[binutils][arm] Update the decoding of MVE VMOV, VMVN
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b 34#include "opcode/arm.h"
f37164d7 35#include "cpu-arm.h"
f263249b 36
b99bd4ef
NC
37#ifdef OBJ_ELF
38#include "elf/arm.h"
a394c00f 39#include "dw2gencfi.h"
b99bd4ef
NC
40#endif
41
f0927246
NC
42#include "dwarf2dbg.h"
43
7ed4c4c5
NC
44#ifdef OBJ_ELF
45/* Must be at least the size of the largest unwind opcode (currently two). */
46#define ARM_OPCODE_CHUNK_SIZE 8
47
48/* This structure holds the unwinding state. */
49
50static struct
51{
c19d1205
ZW
52 symbolS * proc_start;
53 symbolS * table_entry;
54 symbolS * personality_routine;
55 int personality_index;
7ed4c4c5 56 /* The segment containing the function. */
c19d1205
ZW
57 segT saved_seg;
58 subsegT saved_subseg;
7ed4c4c5
NC
59 /* Opcodes generated from this function. */
60 unsigned char * opcodes;
c19d1205
ZW
61 int opcode_count;
62 int opcode_alloc;
7ed4c4c5 63 /* The number of bytes pushed to the stack. */
c19d1205 64 offsetT frame_size;
7ed4c4c5
NC
65 /* We don't add stack adjustment opcodes immediately so that we can merge
66 multiple adjustments. We can also omit the final adjustment
67 when using a frame pointer. */
c19d1205 68 offsetT pending_offset;
7ed4c4c5 69 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
70 hold the reg+offset to use when restoring sp from a frame pointer. */
71 offsetT fp_offset;
72 int fp_reg;
7ed4c4c5 73 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 74 unsigned fp_used:1;
7ed4c4c5 75 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 76 unsigned sp_restored:1;
7ed4c4c5
NC
77} unwind;
78
18a20338
CL
79/* Whether --fdpic was given. */
80static int arm_fdpic;
81
8b1ad454
NC
82#endif /* OBJ_ELF */
83
4962c51a
MS
84/* Results from operand parsing worker functions. */
85
86typedef enum
87{
88 PARSE_OPERAND_SUCCESS,
89 PARSE_OPERAND_FAIL,
90 PARSE_OPERAND_FAIL_NO_BACKTRACK
91} parse_operand_result;
92
33a392fb
PB
93enum arm_float_abi
94{
95 ARM_FLOAT_ABI_HARD,
96 ARM_FLOAT_ABI_SOFTFP,
97 ARM_FLOAT_ABI_SOFT
98};
99
c19d1205 100/* Types of processor to assemble for. */
b99bd4ef 101#ifndef CPU_DEFAULT
8a59fff3 102/* The code that was here used to select a default CPU depending on compiler
fa94de6b 103 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
104 changing gas' default behaviour depending upon the build host.
105
106 If you have a target that requires a default CPU option then the you
107 should define CPU_DEFAULT here. */
b99bd4ef
NC
108#endif
109
e8f8842d
TC
110/* Perform range checks on positive and negative overflows by checking if the
111 VALUE given fits within the range of an BITS sized immediate. */
112static bfd_boolean out_of_range_p (offsetT value, offsetT bits)
113 {
114 gas_assert (bits < (offsetT)(sizeof (value) * 8));
115 return (value & ~((1 << bits)-1))
116 && ((value & ~((1 << bits)-1)) != ~((1 << bits)-1));
117}
118
b99bd4ef 119#ifndef FPU_DEFAULT
c820d418
MM
120# ifdef TE_LINUX
121# define FPU_DEFAULT FPU_ARCH_FPA
122# elif defined (TE_NetBSD)
123# ifdef OBJ_ELF
124# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
125# else
126 /* Legacy a.out format. */
127# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
128# endif
4e7fd91e
PB
129# elif defined (TE_VXWORKS)
130# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
131# else
132 /* For backwards compatibility, default to FPA. */
133# define FPU_DEFAULT FPU_ARCH_FPA
134# endif
135#endif /* ifndef FPU_DEFAULT */
b99bd4ef 136
c19d1205 137#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 138
4d354d8b
TP
139/* Current set of feature bits available (CPU+FPU). Different from
140 selected_cpu + selected_fpu in case of autodetection since the CPU
141 feature bits are then all set. */
e74cfd16 142static arm_feature_set cpu_variant;
4d354d8b
TP
143/* Feature bits used in each execution state. Used to set build attribute
144 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
145static arm_feature_set arm_arch_used;
146static arm_feature_set thumb_arch_used;
b99bd4ef 147
b99bd4ef 148/* Flags stored in private area of BFD structure. */
c19d1205
ZW
149static int uses_apcs_26 = FALSE;
150static int atpcs = FALSE;
b34976b6
AM
151static int support_interwork = FALSE;
152static int uses_apcs_float = FALSE;
c19d1205 153static int pic_code = FALSE;
845b51d6 154static int fix_v4bx = FALSE;
278df34e
NS
155/* Warn on using deprecated features. */
156static int warn_on_deprecated = TRUE;
157
2e6976a8
DG
158/* Understand CodeComposer Studio assembly syntax. */
159bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
160
161/* Variables that we set while parsing command-line options. Once all
162 options have been read we re-process these values to set the real
163 assembly flags. */
4d354d8b
TP
164
165/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
166 instead of -mcpu=arm1). */
167static const arm_feature_set *legacy_cpu = NULL;
168static const arm_feature_set *legacy_fpu = NULL;
169
170/* CPU, extension and FPU feature bits selected by -mcpu. */
171static const arm_feature_set *mcpu_cpu_opt = NULL;
172static arm_feature_set *mcpu_ext_opt = NULL;
173static const arm_feature_set *mcpu_fpu_opt = NULL;
174
175/* CPU, extension and FPU feature bits selected by -march. */
176static const arm_feature_set *march_cpu_opt = NULL;
177static arm_feature_set *march_ext_opt = NULL;
178static const arm_feature_set *march_fpu_opt = NULL;
179
180/* Feature bits selected by -mfpu. */
181static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
182
183/* Constants for known architecture features. */
184static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 185static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 186static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
187static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
188static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
189static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
190static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 191#ifdef OBJ_ELF
e74cfd16 192static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 193#endif
e74cfd16
PB
194static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
195
196#ifdef CPU_DEFAULT
197static const arm_feature_set cpu_default = CPU_DEFAULT;
198#endif
199
823d2571 200static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 201static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
202static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
203static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
204static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
205static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
206static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
207static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 208static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
210static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
211static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
212static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
213static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
214static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
215static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
216static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
217/* Only for compatability of hint instructions. */
218static const arm_feature_set arm_ext_v6k_v6t2 =
219 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
220static const arm_feature_set arm_ext_v6_notm =
221 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
222static const arm_feature_set arm_ext_v6_dsp =
223 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
224static const arm_feature_set arm_ext_barrier =
225 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
226static const arm_feature_set arm_ext_msr =
227 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
228static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
229static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
230static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
231static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 232#ifdef OBJ_ELF
e7d39ed3 233static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 234#endif
823d2571 235static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 236static const arm_feature_set arm_ext_m =
173205ca 237 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 238 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
239static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
240static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
241static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
242static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
243static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 244static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 245static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
246static const arm_feature_set arm_ext_v8m_main =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
248static const arm_feature_set arm_ext_v8_1m_main =
249ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
250/* Instructions in ARMv8-M only found in M profile architectures. */
251static const arm_feature_set arm_ext_v8m_m_only =
252 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
253static const arm_feature_set arm_ext_v6t2_v8m =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
255/* Instructions shared between ARMv8-A and ARMv8-M. */
256static const arm_feature_set arm_ext_atomics =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 258#ifdef OBJ_ELF
15afaa63
TP
259/* DSP instructions Tag_DSP_extension refers to. */
260static const arm_feature_set arm_ext_dsp =
261 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 262#endif
4d1464f2
MW
263static const arm_feature_set arm_ext_ras =
264 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
265/* FP16 instructions. */
266static const arm_feature_set arm_ext_fp16 =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
268static const arm_feature_set arm_ext_fp16_fml =
269 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
270static const arm_feature_set arm_ext_v8_2 =
271 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
272static const arm_feature_set arm_ext_v8_3 =
273 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
274static const arm_feature_set arm_ext_sb =
275 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
276static const arm_feature_set arm_ext_predres =
277 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
aab2c27d
MM
278static const arm_feature_set arm_ext_bf16 =
279 ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16);
616ce08e
MM
280static const arm_feature_set arm_ext_i8mm =
281 ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM);
e74cfd16
PB
282
283static const arm_feature_set arm_arch_any = ARM_ANY;
2c6b98ea 284static const arm_feature_set fpu_any = FPU_ANY;
f85d59c3 285static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
286static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
287static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
288
2d447fca 289static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 290 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 291static const arm_feature_set arm_cext_iwmmxt =
823d2571 292 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 293static const arm_feature_set arm_cext_xscale =
823d2571 294 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 295static const arm_feature_set arm_cext_maverick =
823d2571
TG
296 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
297static const arm_feature_set fpu_fpa_ext_v1 =
298 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
299static const arm_feature_set fpu_fpa_ext_v2 =
300 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 301static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
302 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
303static const arm_feature_set fpu_vfp_ext_v1 =
304 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
305static const arm_feature_set fpu_vfp_ext_v2 =
306 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
307static const arm_feature_set fpu_vfp_ext_v3xd =
308 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
309static const arm_feature_set fpu_vfp_ext_v3 =
310 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 311static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
312 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
313static const arm_feature_set fpu_neon_ext_v1 =
314 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 315static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 316 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
317static const arm_feature_set mve_ext =
318 ARM_FEATURE_COPROC (FPU_MVE);
319static const arm_feature_set mve_fp_ext =
320 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 321#ifdef OBJ_ELF
823d2571
TG
322static const arm_feature_set fpu_vfp_fp16 =
323 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
324static const arm_feature_set fpu_neon_ext_fma =
325 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 326#endif
823d2571
TG
327static const arm_feature_set fpu_vfp_ext_fma =
328 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 329static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 330 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 331static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 332 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 333static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 334 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 335static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 336 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 337static const arm_feature_set crc_ext_armv8 =
823d2571 338 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 339static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 340 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
341static const arm_feature_set fpu_neon_ext_dotprod =
342 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 343
33a392fb 344static int mfloat_abi_opt = -1;
4d354d8b
TP
345/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
346 directive. */
347static arm_feature_set selected_arch = ARM_ARCH_NONE;
348/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
349 directive. */
350static arm_feature_set selected_ext = ARM_ARCH_NONE;
351/* Feature bits selected by the last -mcpu/-march or by the combination of the
352 last .cpu/.arch directive .arch_extension directives since that
353 directive. */
e74cfd16 354static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
355/* FPU feature bits selected by the last -mfpu or .fpu directive. */
356static arm_feature_set selected_fpu = FPU_NONE;
357/* Feature bits selected by the last .object_arch directive. */
358static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 359/* Must be long enough to hold any of the names in arm_cpus. */
e20f9590 360static const struct arm_ext_table * selected_ctx_ext_table = NULL;
ef8e6722 361static char selected_cpu_name[20];
8d67f500 362
aacf0b33
KT
363extern FLONUM_TYPE generic_floating_point_number;
364
8d67f500
NC
365/* Return if no cpu was selected on command-line. */
366static bfd_boolean
367no_cpu_selected (void)
368{
823d2571 369 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
370}
371
7cc69913 372#ifdef OBJ_ELF
deeaaff8
DJ
373# ifdef EABI_DEFAULT
374static int meabi_flags = EABI_DEFAULT;
375# else
d507cf36 376static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 377# endif
e1da3f5b 378
ee3c0378
AS
379static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
380
e1da3f5b 381bfd_boolean
5f4273c7 382arm_is_eabi (void)
e1da3f5b
PB
383{
384 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
385}
7cc69913 386#endif
b99bd4ef 387
b99bd4ef 388#ifdef OBJ_ELF
c19d1205 389/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
390symbolS * GOT_symbol;
391#endif
392
b99bd4ef
NC
393/* 0: assemble for ARM,
394 1: assemble for Thumb,
395 2: assemble for Thumb even though target CPU does not support thumb
396 instructions. */
397static int thumb_mode = 0;
8dc2430f
NC
398/* A value distinct from the possible values for thumb_mode that we
399 can use to record whether thumb_mode has been copied into the
400 tc_frag_data field of a frag. */
401#define MODE_RECORDED (1 << 4)
b99bd4ef 402
e07e6e58
NC
403/* Specifies the intrinsic IT insn behavior mode. */
404enum implicit_it_mode
405{
406 IMPLICIT_IT_MODE_NEVER = 0x00,
407 IMPLICIT_IT_MODE_ARM = 0x01,
408 IMPLICIT_IT_MODE_THUMB = 0x02,
409 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
410};
411static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
412
c19d1205
ZW
413/* If unified_syntax is true, we are processing the new unified
414 ARM/Thumb syntax. Important differences from the old ARM mode:
415
416 - Immediate operands do not require a # prefix.
417 - Conditional affixes always appear at the end of the
418 instruction. (For backward compatibility, those instructions
419 that formerly had them in the middle, continue to accept them
420 there.)
421 - The IT instruction may appear, and if it does is validated
422 against subsequent conditional affixes. It does not generate
423 machine code.
424
425 Important differences from the old Thumb mode:
426
427 - Immediate operands do not require a # prefix.
428 - Most of the V6T2 instructions are only available in unified mode.
429 - The .N and .W suffixes are recognized and honored (it is an error
430 if they cannot be honored).
431 - All instructions set the flags if and only if they have an 's' affix.
432 - Conditional affixes may be used. They are validated against
433 preceding IT instructions. Unlike ARM mode, you cannot use a
434 conditional affix except in the scope of an IT instruction. */
435
436static bfd_boolean unified_syntax = FALSE;
b99bd4ef 437
bacebabc
RM
438/* An immediate operand can start with #, and ld*, st*, pld operands
439 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
440 before a [, which can appear as the first operand for pld.
441 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
442const char arm_symbol_chars[] = "#[]{}";
bacebabc 443
5287ad62
JB
444enum neon_el_type
445{
dcbf9037 446 NT_invtype,
5287ad62
JB
447 NT_untyped,
448 NT_integer,
449 NT_float,
450 NT_poly,
451 NT_signed,
aab2c27d 452 NT_bfloat,
dcbf9037 453 NT_unsigned
5287ad62
JB
454};
455
456struct neon_type_el
457{
458 enum neon_el_type type;
459 unsigned size;
460};
461
462#define NEON_MAX_TYPE_ELS 4
463
464struct neon_type
465{
466 struct neon_type_el el[NEON_MAX_TYPE_ELS];
467 unsigned elems;
468};
469
5ee91343 470enum pred_instruction_type
e07e6e58 471{
5ee91343
AV
472 OUTSIDE_PRED_INSN,
473 INSIDE_VPT_INSN,
e07e6e58
NC
474 INSIDE_IT_INSN,
475 INSIDE_IT_LAST_INSN,
476 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 477 if inside, should be the last one. */
e07e6e58 478 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 479 i.e. BKPT and NOP. */
5ee91343
AV
480 IT_INSN, /* The IT insn has been parsed. */
481 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 482 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 483 a predication code. */
35c228db 484 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
485};
486
ad6cec43
MGD
487/* The maximum number of operands we need. */
488#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 489#define ARM_IT_MAX_RELOCS 3
ad6cec43 490
b99bd4ef
NC
491struct arm_it
492{
c19d1205 493 const char * error;
b99bd4ef 494 unsigned long instruction;
c19d1205
ZW
495 int size;
496 int size_req;
497 int cond;
037e8744
JB
498 /* "uncond_value" is set to the value in place of the conditional field in
499 unconditional versions of the instruction, or -1 if nothing is
500 appropriate. */
501 int uncond_value;
5287ad62 502 struct neon_type vectype;
88714cb8
DG
503 /* This does not indicate an actual NEON instruction, only that
504 the mnemonic accepts neon-style type suffixes. */
505 int is_neon;
0110f2b8
PB
506 /* Set to the opcode if the instruction needs relaxation.
507 Zero if the instruction is not relaxed. */
508 unsigned long relax;
b99bd4ef
NC
509 struct
510 {
511 bfd_reloc_code_real_type type;
c19d1205
ZW
512 expressionS exp;
513 int pc_rel;
e2b0ab59 514 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 515
5ee91343 516 enum pred_instruction_type pred_insn_type;
e07e6e58 517
c19d1205
ZW
518 struct
519 {
520 unsigned reg;
ca3f61f7 521 signed int imm;
dcbf9037 522 struct neon_type_el vectype;
ca3f61f7
NC
523 unsigned present : 1; /* Operand present. */
524 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
525 unsigned immisreg : 2; /* .imm field is a second register.
526 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
527 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
528 0) not scalar,
529 1) Neon scalar,
530 2) MVE scalar. */
5287ad62 531 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 532 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
533 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
534 instructions. This allows us to disambiguate ARM <-> vector insns. */
535 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 536 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 537 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 538 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 539 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
540 unsigned hasreloc : 1; /* Operand has relocation suffix. */
541 unsigned writeback : 1; /* Operand has trailing ! */
542 unsigned preind : 1; /* Preindexed address. */
543 unsigned postind : 1; /* Postindexed address. */
544 unsigned negative : 1; /* Index register was negated. */
545 unsigned shifted : 1; /* Shift applied to operation. */
546 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 547 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
548};
549
c19d1205 550static struct arm_it inst;
b99bd4ef
NC
551
552#define NUM_FLOAT_VALS 8
553
05d2d07e 554const char * fp_const[] =
b99bd4ef
NC
555{
556 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
557};
558
b99bd4ef
NC
559LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
560
561#define FAIL (-1)
562#define SUCCESS (0)
563
564#define SUFF_S 1
565#define SUFF_D 2
566#define SUFF_E 3
567#define SUFF_P 4
568
c19d1205
ZW
569#define CP_T_X 0x00008000
570#define CP_T_Y 0x00400000
b99bd4ef 571
c19d1205
ZW
572#define CONDS_BIT 0x00100000
573#define LOAD_BIT 0x00100000
b99bd4ef
NC
574
575#define DOUBLE_LOAD_FLAG 0x00000001
576
577struct asm_cond
578{
d3ce72d0 579 const char * template_name;
c921be7d 580 unsigned long value;
b99bd4ef
NC
581};
582
c19d1205 583#define COND_ALWAYS 0xE
b99bd4ef 584
b99bd4ef
NC
585struct asm_psr
586{
d3ce72d0 587 const char * template_name;
c921be7d 588 unsigned long field;
b99bd4ef
NC
589};
590
62b3e311
PB
591struct asm_barrier_opt
592{
e797f7e0
MGD
593 const char * template_name;
594 unsigned long value;
595 const arm_feature_set arch;
62b3e311
PB
596};
597
2d2255b5 598/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
599#define SPSR_BIT (1 << 22)
600
c19d1205
ZW
601/* The individual PSR flag bits. */
602#define PSR_c (1 << 16)
603#define PSR_x (1 << 17)
604#define PSR_s (1 << 18)
605#define PSR_f (1 << 19)
b99bd4ef 606
c19d1205 607struct reloc_entry
bfae80f2 608{
0198d5e6 609 const char * name;
c921be7d 610 bfd_reloc_code_real_type reloc;
bfae80f2
RE
611};
612
5287ad62 613enum vfp_reg_pos
bfae80f2 614{
5287ad62
JB
615 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
616 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
617};
618
619enum vfp_ldstm_type
620{
621 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
622};
623
dcbf9037
JB
624/* Bits for DEFINED field in neon_typed_alias. */
625#define NTA_HASTYPE 1
626#define NTA_HASINDEX 2
627
628struct neon_typed_alias
629{
c921be7d
NC
630 unsigned char defined;
631 unsigned char index;
632 struct neon_type_el eltype;
dcbf9037
JB
633};
634
c19d1205 635/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
636 architecture extensions' registers. Each entry should have an error message
637 in reg_expected_msgs below. */
c19d1205 638enum arm_reg_type
bfae80f2 639{
c19d1205
ZW
640 REG_TYPE_RN,
641 REG_TYPE_CP,
642 REG_TYPE_CN,
643 REG_TYPE_FN,
644 REG_TYPE_VFS,
645 REG_TYPE_VFD,
5287ad62 646 REG_TYPE_NQ,
037e8744 647 REG_TYPE_VFSD,
5287ad62 648 REG_TYPE_NDQ,
dec41383 649 REG_TYPE_NSD,
037e8744 650 REG_TYPE_NSDQ,
c19d1205
ZW
651 REG_TYPE_VFC,
652 REG_TYPE_MVF,
653 REG_TYPE_MVD,
654 REG_TYPE_MVFX,
655 REG_TYPE_MVDX,
656 REG_TYPE_MVAX,
5ee91343 657 REG_TYPE_MQ,
c19d1205
ZW
658 REG_TYPE_DSPSC,
659 REG_TYPE_MMXWR,
660 REG_TYPE_MMXWC,
661 REG_TYPE_MMXWCG,
662 REG_TYPE_XSCALE,
5ee91343 663 REG_TYPE_RNB,
1b883319 664 REG_TYPE_ZR
bfae80f2
RE
665};
666
dcbf9037
JB
667/* Structure for a hash table entry for a register.
668 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
669 information which states whether a vector type or index is specified (for a
670 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
671struct reg_entry
672{
c921be7d 673 const char * name;
90ec0d68 674 unsigned int number;
c921be7d
NC
675 unsigned char type;
676 unsigned char builtin;
677 struct neon_typed_alias * neon;
6c43fab6
RE
678};
679
c19d1205 680/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 681const char * const reg_expected_msgs[] =
c19d1205 682{
5aa75429
TP
683 [REG_TYPE_RN] = N_("ARM register expected"),
684 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
685 [REG_TYPE_CN] = N_("co-processor register expected"),
686 [REG_TYPE_FN] = N_("FPA register expected"),
687 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
688 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
689 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
690 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
691 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
692 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
693 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
694 " expected"),
695 [REG_TYPE_VFC] = N_("VFP system register expected"),
696 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
697 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
698 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
699 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
700 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
701 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
702 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
703 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
704 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
705 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 706 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 707 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
708};
709
c19d1205 710/* Some well known registers that we refer to directly elsewhere. */
bd340a04 711#define REG_R12 12
c19d1205
ZW
712#define REG_SP 13
713#define REG_LR 14
714#define REG_PC 15
404ff6b5 715
b99bd4ef
NC
716/* ARM instructions take 4bytes in the object file, Thumb instructions
717 take 2: */
c19d1205 718#define INSN_SIZE 4
b99bd4ef
NC
719
720struct asm_opcode
721{
722 /* Basic string to match. */
d3ce72d0 723 const char * template_name;
c19d1205
ZW
724
725 /* Parameters to instruction. */
5be8be5d 726 unsigned int operands[8];
c19d1205
ZW
727
728 /* Conditional tag - see opcode_lookup. */
729 unsigned int tag : 4;
b99bd4ef
NC
730
731 /* Basic instruction code. */
a302e574 732 unsigned int avalue;
b99bd4ef 733
c19d1205
ZW
734 /* Thumb-format instruction code. */
735 unsigned int tvalue;
b99bd4ef 736
90e4755a 737 /* Which architecture variant provides this instruction. */
c921be7d
NC
738 const arm_feature_set * avariant;
739 const arm_feature_set * tvariant;
c19d1205
ZW
740
741 /* Function to call to encode instruction in ARM format. */
742 void (* aencode) (void);
b99bd4ef 743
c19d1205
ZW
744 /* Function to call to encode instruction in Thumb format. */
745 void (* tencode) (void);
5ee91343
AV
746
747 /* Indicates whether this instruction may be vector predicated. */
748 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
749};
750
a737bd4d
NC
751/* Defines for various bits that we will want to toggle. */
752#define INST_IMMEDIATE 0x02000000
753#define OFFSET_REG 0x02000000
c19d1205 754#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
755#define SHIFT_BY_REG 0x00000010
756#define PRE_INDEX 0x01000000
757#define INDEX_UP 0x00800000
758#define WRITE_BACK 0x00200000
759#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 760#define CPSI_MMOD 0x00020000
90e4755a 761
a737bd4d
NC
762#define LITERAL_MASK 0xf000f000
763#define OPCODE_MASK 0xfe1fffff
764#define V4_STR_BIT 0x00000020
8335d6aa 765#define VLDR_VMOV_SAME 0x0040f000
90e4755a 766
efd81785
PB
767#define T2_SUBS_PC_LR 0xf3de8f00
768
a737bd4d 769#define DATA_OP_SHIFT 21
bada4342 770#define SBIT_SHIFT 20
90e4755a 771
ef8d22e6
PB
772#define T2_OPCODE_MASK 0xfe1fffff
773#define T2_DATA_OP_SHIFT 21
bada4342 774#define T2_SBIT_SHIFT 20
ef8d22e6 775
6530b175
NC
776#define A_COND_MASK 0xf0000000
777#define A_PUSH_POP_OP_MASK 0x0fff0000
778
779/* Opcodes for pushing/poping registers to/from the stack. */
780#define A1_OPCODE_PUSH 0x092d0000
781#define A2_OPCODE_PUSH 0x052d0004
782#define A2_OPCODE_POP 0x049d0004
783
a737bd4d
NC
784/* Codes to distinguish the arithmetic instructions. */
785#define OPCODE_AND 0
786#define OPCODE_EOR 1
787#define OPCODE_SUB 2
788#define OPCODE_RSB 3
789#define OPCODE_ADD 4
790#define OPCODE_ADC 5
791#define OPCODE_SBC 6
792#define OPCODE_RSC 7
793#define OPCODE_TST 8
794#define OPCODE_TEQ 9
795#define OPCODE_CMP 10
796#define OPCODE_CMN 11
797#define OPCODE_ORR 12
798#define OPCODE_MOV 13
799#define OPCODE_BIC 14
800#define OPCODE_MVN 15
90e4755a 801
ef8d22e6
PB
802#define T2_OPCODE_AND 0
803#define T2_OPCODE_BIC 1
804#define T2_OPCODE_ORR 2
805#define T2_OPCODE_ORN 3
806#define T2_OPCODE_EOR 4
807#define T2_OPCODE_ADD 8
808#define T2_OPCODE_ADC 10
809#define T2_OPCODE_SBC 11
810#define T2_OPCODE_SUB 13
811#define T2_OPCODE_RSB 14
812
a737bd4d
NC
813#define T_OPCODE_MUL 0x4340
814#define T_OPCODE_TST 0x4200
815#define T_OPCODE_CMN 0x42c0
816#define T_OPCODE_NEG 0x4240
817#define T_OPCODE_MVN 0x43c0
90e4755a 818
a737bd4d
NC
819#define T_OPCODE_ADD_R3 0x1800
820#define T_OPCODE_SUB_R3 0x1a00
821#define T_OPCODE_ADD_HI 0x4400
822#define T_OPCODE_ADD_ST 0xb000
823#define T_OPCODE_SUB_ST 0xb080
824#define T_OPCODE_ADD_SP 0xa800
825#define T_OPCODE_ADD_PC 0xa000
826#define T_OPCODE_ADD_I8 0x3000
827#define T_OPCODE_SUB_I8 0x3800
828#define T_OPCODE_ADD_I3 0x1c00
829#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_ASR_R 0x4100
832#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
833#define T_OPCODE_LSR_R 0x40c0
834#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
835#define T_OPCODE_ASR_I 0x1000
836#define T_OPCODE_LSL_I 0x0000
837#define T_OPCODE_LSR_I 0x0800
b99bd4ef 838
a737bd4d
NC
839#define T_OPCODE_MOV_I8 0x2000
840#define T_OPCODE_CMP_I8 0x2800
841#define T_OPCODE_CMP_LR 0x4280
842#define T_OPCODE_MOV_HR 0x4600
843#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 844
a737bd4d
NC
845#define T_OPCODE_LDR_PC 0x4800
846#define T_OPCODE_LDR_SP 0x9800
847#define T_OPCODE_STR_SP 0x9000
848#define T_OPCODE_LDR_IW 0x6800
849#define T_OPCODE_STR_IW 0x6000
850#define T_OPCODE_LDR_IH 0x8800
851#define T_OPCODE_STR_IH 0x8000
852#define T_OPCODE_LDR_IB 0x7800
853#define T_OPCODE_STR_IB 0x7000
854#define T_OPCODE_LDR_RW 0x5800
855#define T_OPCODE_STR_RW 0x5000
856#define T_OPCODE_LDR_RH 0x5a00
857#define T_OPCODE_STR_RH 0x5200
858#define T_OPCODE_LDR_RB 0x5c00
859#define T_OPCODE_STR_RB 0x5400
c9b604bd 860
a737bd4d
NC
861#define T_OPCODE_PUSH 0xb400
862#define T_OPCODE_POP 0xbc00
b99bd4ef 863
2fc8bdac 864#define T_OPCODE_BRANCH 0xe000
b99bd4ef 865
a737bd4d 866#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 867#define THUMB_PP_PC_LR 0x0100
c19d1205 868#define THUMB_LOAD_BIT 0x0800
53365c0d 869#define THUMB2_LOAD_BIT 0x00100000
c19d1205 870
5ee91343 871#define BAD_SYNTAX _("syntax error")
c19d1205 872#define BAD_ARGS _("bad arguments to instruction")
fdfde340 873#define BAD_SP _("r13 not allowed here")
c19d1205 874#define BAD_PC _("r15 not allowed here")
a302e574
AV
875#define BAD_ODD _("Odd register not allowed here")
876#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
877#define BAD_COND _("instruction cannot be conditional")
878#define BAD_OVERLAP _("registers may not be the same")
879#define BAD_HIREG _("lo register required")
880#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 881#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 882#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 883#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 884#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 885#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 886#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 887#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
888#define BAD_OUT_VPT \
889 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 890#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 891#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 892#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 893#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
894#define BAD_PC_ADDRESSING \
895 _("cannot use register index with PC-relative addressing")
896#define BAD_PC_WRITEBACK \
897 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
898#define BAD_RANGE _("branch out of range")
899#define BAD_FP16 _("selected processor does not support fp16 instruction")
aab2c27d 900#define BAD_BF16 _("selected processor does not support bf16 instruction")
dd5181d5 901#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 902#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
903#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
904 "block")
905#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
906 "block")
907#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
908 " operand")
909#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
910 " operand")
a302e574 911#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
912#define BAD_MVE_AUTO \
913 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
914 " use a valid -march or -mcpu option.")
915#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
916 "and source operands makes instruction UNPREDICTABLE")
35c228db 917#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 918#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 919
c921be7d
NC
920static struct hash_control * arm_ops_hsh;
921static struct hash_control * arm_cond_hsh;
5ee91343 922static struct hash_control * arm_vcond_hsh;
c921be7d
NC
923static struct hash_control * arm_shift_hsh;
924static struct hash_control * arm_psr_hsh;
925static struct hash_control * arm_v7m_psr_hsh;
926static struct hash_control * arm_reg_hsh;
927static struct hash_control * arm_reloc_hsh;
928static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 929
b99bd4ef
NC
930/* Stuff needed to resolve the label ambiguity
931 As:
932 ...
933 label: <insn>
934 may differ from:
935 ...
936 label:
5f4273c7 937 <insn> */
b99bd4ef
NC
938
939symbolS * last_label_seen;
b34976b6 940static int label_is_thumb_function_name = FALSE;
e07e6e58 941
3d0c9500
NC
942/* Literal pool structure. Held on a per-section
943 and per-sub-section basis. */
a737bd4d 944
c19d1205 945#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 946typedef struct literal_pool
b99bd4ef 947{
c921be7d
NC
948 expressionS literals [MAX_LITERAL_POOL_SIZE];
949 unsigned int next_free_entry;
950 unsigned int id;
951 symbolS * symbol;
952 segT section;
953 subsegT sub_section;
a8040cf2
NC
954#ifdef OBJ_ELF
955 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
956#endif
c921be7d 957 struct literal_pool * next;
8335d6aa 958 unsigned int alignment;
3d0c9500 959} literal_pool;
b99bd4ef 960
3d0c9500
NC
961/* Pointer to a linked list of literal pools. */
962literal_pool * list_of_pools = NULL;
e27ec89e 963
2e6976a8
DG
964typedef enum asmfunc_states
965{
966 OUTSIDE_ASMFUNC,
967 WAITING_ASMFUNC_NAME,
968 WAITING_ENDASMFUNC
969} asmfunc_states;
970
971static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
972
e07e6e58 973#ifdef OBJ_ELF
5ee91343 974# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 975#else
5ee91343 976static struct current_pred now_pred;
e07e6e58
NC
977#endif
978
979static inline int
5ee91343 980now_pred_compatible (int cond)
e07e6e58 981{
5ee91343 982 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
983}
984
985static inline int
986conditional_insn (void)
987{
988 return inst.cond != COND_ALWAYS;
989}
990
5ee91343 991static int in_pred_block (void);
e07e6e58 992
5ee91343 993static int handle_pred_state (void);
e07e6e58
NC
994
995static void force_automatic_it_block_close (void);
996
c921be7d
NC
997static void it_fsm_post_encode (void);
998
5ee91343 999#define set_pred_insn_type(type) \
e07e6e58
NC
1000 do \
1001 { \
5ee91343
AV
1002 inst.pred_insn_type = type; \
1003 if (handle_pred_state () == FAIL) \
477330fc 1004 return; \
e07e6e58
NC
1005 } \
1006 while (0)
1007
5ee91343 1008#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
1009 do \
1010 { \
5ee91343
AV
1011 inst.pred_insn_type = type; \
1012 if (handle_pred_state () == FAIL) \
477330fc 1013 return failret; \
c921be7d
NC
1014 } \
1015 while(0)
1016
5ee91343 1017#define set_pred_insn_type_last() \
e07e6e58
NC
1018 do \
1019 { \
1020 if (inst.cond == COND_ALWAYS) \
5ee91343 1021 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1022 else \
5ee91343 1023 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1024 } \
1025 while (0)
1026
e39c1607
SD
1027/* Toggle value[pos]. */
1028#define TOGGLE_BIT(value, pos) (value ^ (1 << pos))
1029
c19d1205 1030/* Pure syntax. */
b99bd4ef 1031
c19d1205
ZW
1032/* This array holds the chars that always start a comment. If the
1033 pre-processor is disabled, these aren't very useful. */
2e6976a8 1034char arm_comment_chars[] = "@";
3d0c9500 1035
c19d1205
ZW
1036/* This array holds the chars that only start a comment at the beginning of
1037 a line. If the line seems to have the form '# 123 filename'
1038 .line and .file directives will appear in the pre-processed output. */
1039/* Note that input_file.c hand checks for '#' at the beginning of the
1040 first line of the input file. This is because the compiler outputs
1041 #NO_APP at the beginning of its output. */
1042/* Also note that comments like this one will always work. */
1043const char line_comment_chars[] = "#";
3d0c9500 1044
2e6976a8 1045char arm_line_separator_chars[] = ";";
b99bd4ef 1046
c19d1205
ZW
1047/* Chars that can be used to separate mant
1048 from exp in floating point numbers. */
1049const char EXP_CHARS[] = "eE";
3d0c9500 1050
c19d1205
ZW
1051/* Chars that mean this number is a floating point constant. */
1052/* As in 0f12.456 */
1053/* or 0d1.2345e12 */
b99bd4ef 1054
5312fe52 1055const char FLT_CHARS[] = "rRsSfFdDxXeEpPHh";
3d0c9500 1056
c19d1205
ZW
1057/* Prefix characters that indicate the start of an immediate
1058 value. */
1059#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1060
c19d1205
ZW
1061/* Separator character handling. */
1062
1063#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1064
5312fe52
BW
1065enum fp_16bit_format
1066{
1067 ARM_FP16_FORMAT_IEEE = 0x1,
1068 ARM_FP16_FORMAT_ALTERNATIVE = 0x2,
1069 ARM_FP16_FORMAT_DEFAULT = 0x3
1070};
1071
1072static enum fp_16bit_format fp16_format = ARM_FP16_FORMAT_DEFAULT;
1073
1074
c19d1205
ZW
1075static inline int
1076skip_past_char (char ** str, char c)
1077{
8ab8155f
NC
1078 /* PR gas/14987: Allow for whitespace before the expected character. */
1079 skip_whitespace (*str);
427d0db6 1080
c19d1205
ZW
1081 if (**str == c)
1082 {
1083 (*str)++;
1084 return SUCCESS;
3d0c9500 1085 }
c19d1205
ZW
1086 else
1087 return FAIL;
1088}
c921be7d 1089
c19d1205 1090#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1091
c19d1205
ZW
1092/* Arithmetic expressions (possibly involving symbols). */
1093
1094/* Return TRUE if anything in the expression is a bignum. */
1095
0198d5e6 1096static bfd_boolean
c19d1205
ZW
1097walk_no_bignums (symbolS * sp)
1098{
1099 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1100 return TRUE;
c19d1205
ZW
1101
1102 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1103 {
c19d1205
ZW
1104 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1105 || (symbol_get_value_expression (sp)->X_op_symbol
1106 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1107 }
1108
0198d5e6 1109 return FALSE;
3d0c9500
NC
1110}
1111
0198d5e6 1112static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1113
1114/* Third argument to my_get_expression. */
1115#define GE_NO_PREFIX 0
1116#define GE_IMM_PREFIX 1
1117#define GE_OPT_PREFIX 2
5287ad62
JB
1118/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1119 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1120#define GE_OPT_PREFIX_BIG 3
a737bd4d 1121
b99bd4ef 1122static int
c19d1205 1123my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1124{
c19d1205 1125 char * save_in;
b99bd4ef 1126
c19d1205
ZW
1127 /* In unified syntax, all prefixes are optional. */
1128 if (unified_syntax)
5287ad62 1129 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1130 : GE_OPT_PREFIX;
b99bd4ef 1131
c19d1205 1132 switch (prefix_mode)
b99bd4ef 1133 {
c19d1205
ZW
1134 case GE_NO_PREFIX: break;
1135 case GE_IMM_PREFIX:
1136 if (!is_immediate_prefix (**str))
1137 {
1138 inst.error = _("immediate expression requires a # prefix");
1139 return FAIL;
1140 }
1141 (*str)++;
1142 break;
1143 case GE_OPT_PREFIX:
5287ad62 1144 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1145 if (is_immediate_prefix (**str))
1146 (*str)++;
1147 break;
0198d5e6
TC
1148 default:
1149 abort ();
c19d1205 1150 }
b99bd4ef 1151
c19d1205 1152 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1153
c19d1205
ZW
1154 save_in = input_line_pointer;
1155 input_line_pointer = *str;
0198d5e6 1156 in_my_get_expression = TRUE;
2ac93be7 1157 expression (ep);
0198d5e6 1158 in_my_get_expression = FALSE;
c19d1205 1159
f86adc07 1160 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1161 {
f86adc07 1162 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1163 *str = input_line_pointer;
1164 input_line_pointer = save_in;
1165 if (inst.error == NULL)
f86adc07
NS
1166 inst.error = (ep->X_op == O_absent
1167 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1168 return 1;
1169 }
b99bd4ef 1170
c19d1205
ZW
1171 /* Get rid of any bignums now, so that we don't generate an error for which
1172 we can't establish a line number later on. Big numbers are never valid
1173 in instructions, which is where this routine is always called. */
5287ad62
JB
1174 if (prefix_mode != GE_OPT_PREFIX_BIG
1175 && (ep->X_op == O_big
477330fc 1176 || (ep->X_add_symbol
5287ad62 1177 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1178 || (ep->X_op_symbol
5287ad62 1179 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1180 {
1181 inst.error = _("invalid constant");
1182 *str = input_line_pointer;
1183 input_line_pointer = save_in;
1184 return 1;
1185 }
b99bd4ef 1186
c19d1205
ZW
1187 *str = input_line_pointer;
1188 input_line_pointer = save_in;
0198d5e6 1189 return SUCCESS;
b99bd4ef
NC
1190}
1191
c19d1205
ZW
1192/* Turn a string in input_line_pointer into a floating point constant
1193 of type TYPE, and store the appropriate bytes in *LITP. The number
1194 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1195 returned, or NULL on OK.
b99bd4ef 1196
c19d1205
ZW
1197 Note that fp constants aren't represent in the normal way on the ARM.
1198 In big endian mode, things are as expected. However, in little endian
1199 mode fp constants are big-endian word-wise, and little-endian byte-wise
1200 within the words. For example, (double) 1.1 in big endian mode is
1201 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1202 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1203
c19d1205 1204 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1205
6d4af3c2 1206const char *
c19d1205
ZW
1207md_atof (int type, char * litP, int * sizeP)
1208{
1209 int prec;
1210 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1211 char *t;
1212 int i;
b99bd4ef 1213
c19d1205
ZW
1214 switch (type)
1215 {
5312fe52
BW
1216 case 'H':
1217 case 'h':
1218 prec = 1;
1219 break;
1220
27cce866
MM
1221 /* If this is a bfloat16, then parse it slightly differently, as it
1222 does not follow the IEEE specification for floating point numbers
1223 exactly. */
1224 case 'b':
1225 {
1226 FLONUM_TYPE generic_float;
1227
1228 t = atof_ieee_detail (input_line_pointer, 1, 8, words, &generic_float);
1229
1230 if (t)
1231 input_line_pointer = t;
1232 else
1233 return _("invalid floating point number");
1234
1235 switch (generic_float.sign)
1236 {
1237 /* Is +Inf. */
1238 case 'P':
1239 words[0] = 0x7f80;
1240 break;
1241
1242 /* Is -Inf. */
1243 case 'N':
1244 words[0] = 0xff80;
1245 break;
1246
1247 /* Is NaN. */
1248 /* bfloat16 has two types of NaN - quiet and signalling.
1249 Quiet NaN has bit[6] == 1 && faction != 0, whereas
1250 signalling NaN's have bit[0] == 0 && fraction != 0.
1251 Chosen this specific encoding as it is the same form
1252 as used by other IEEE 754 encodings in GAS. */
1253 case 0:
1254 words[0] = 0x7fff;
1255 break;
1256
1257 default:
1258 break;
1259 }
1260
1261 *sizeP = 2;
1262
1263 md_number_to_chars (litP, (valueT) words[0], sizeof (LITTLENUM_TYPE));
1264
1265 return NULL;
1266 }
c19d1205
ZW
1267 case 'f':
1268 case 'F':
1269 case 's':
1270 case 'S':
1271 prec = 2;
1272 break;
b99bd4ef 1273
c19d1205
ZW
1274 case 'd':
1275 case 'D':
1276 case 'r':
1277 case 'R':
1278 prec = 4;
1279 break;
b99bd4ef 1280
c19d1205
ZW
1281 case 'x':
1282 case 'X':
499ac353 1283 prec = 5;
c19d1205 1284 break;
b99bd4ef 1285
c19d1205
ZW
1286 case 'p':
1287 case 'P':
499ac353 1288 prec = 5;
c19d1205 1289 break;
a737bd4d 1290
c19d1205
ZW
1291 default:
1292 *sizeP = 0;
499ac353 1293 return _("Unrecognized or unsupported floating point constant");
c19d1205 1294 }
b99bd4ef 1295
c19d1205
ZW
1296 t = atof_ieee (input_line_pointer, type, words);
1297 if (t)
1298 input_line_pointer = t;
499ac353 1299 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1300
72c03e30
BW
1301 if (target_big_endian || prec == 1)
1302 for (i = 0; i < prec; i++)
1303 {
1304 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1305 litP += sizeof (LITTLENUM_TYPE);
1306 }
1307 else if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1308 for (i = prec - 1; i >= 0; i--)
1309 {
1310 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1311 litP += sizeof (LITTLENUM_TYPE);
1312 }
c19d1205 1313 else
72c03e30
BW
1314 /* For a 4 byte float the order of elements in `words' is 1 0.
1315 For an 8 byte float the order is 1 0 3 2. */
1316 for (i = 0; i < prec; i += 2)
1317 {
1318 md_number_to_chars (litP, (valueT) words[i + 1],
1319 sizeof (LITTLENUM_TYPE));
1320 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1321 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1322 litP += 2 * sizeof (LITTLENUM_TYPE);
1323 }
b99bd4ef 1324
499ac353 1325 return NULL;
c19d1205 1326}
b99bd4ef 1327
c19d1205
ZW
1328/* We handle all bad expressions here, so that we can report the faulty
1329 instruction in the error message. */
0198d5e6 1330
c19d1205 1331void
91d6fa6a 1332md_operand (expressionS * exp)
c19d1205
ZW
1333{
1334 if (in_my_get_expression)
91d6fa6a 1335 exp->X_op = O_illegal;
b99bd4ef
NC
1336}
1337
c19d1205 1338/* Immediate values. */
b99bd4ef 1339
0198d5e6 1340#ifdef OBJ_ELF
c19d1205
ZW
1341/* Generic immediate-value read function for use in directives.
1342 Accepts anything that 'expression' can fold to a constant.
1343 *val receives the number. */
0198d5e6 1344
c19d1205
ZW
1345static int
1346immediate_for_directive (int *val)
b99bd4ef 1347{
c19d1205
ZW
1348 expressionS exp;
1349 exp.X_op = O_illegal;
b99bd4ef 1350
c19d1205
ZW
1351 if (is_immediate_prefix (*input_line_pointer))
1352 {
1353 input_line_pointer++;
1354 expression (&exp);
1355 }
b99bd4ef 1356
c19d1205
ZW
1357 if (exp.X_op != O_constant)
1358 {
1359 as_bad (_("expected #constant"));
1360 ignore_rest_of_line ();
1361 return FAIL;
1362 }
1363 *val = exp.X_add_number;
1364 return SUCCESS;
b99bd4ef 1365}
c19d1205 1366#endif
b99bd4ef 1367
c19d1205 1368/* Register parsing. */
b99bd4ef 1369
c19d1205
ZW
1370/* Generic register parser. CCP points to what should be the
1371 beginning of a register name. If it is indeed a valid register
1372 name, advance CCP over it and return the reg_entry structure;
1373 otherwise return NULL. Does not issue diagnostics. */
1374
1375static struct reg_entry *
1376arm_reg_parse_multi (char **ccp)
b99bd4ef 1377{
c19d1205
ZW
1378 char *start = *ccp;
1379 char *p;
1380 struct reg_entry *reg;
b99bd4ef 1381
477330fc
RM
1382 skip_whitespace (start);
1383
c19d1205
ZW
1384#ifdef REGISTER_PREFIX
1385 if (*start != REGISTER_PREFIX)
01cfc07f 1386 return NULL;
c19d1205
ZW
1387 start++;
1388#endif
1389#ifdef OPTIONAL_REGISTER_PREFIX
1390 if (*start == OPTIONAL_REGISTER_PREFIX)
1391 start++;
1392#endif
b99bd4ef 1393
c19d1205
ZW
1394 p = start;
1395 if (!ISALPHA (*p) || !is_name_beginner (*p))
1396 return NULL;
b99bd4ef 1397
c19d1205
ZW
1398 do
1399 p++;
1400 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1401
1402 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1403
1404 if (!reg)
1405 return NULL;
1406
1407 *ccp = p;
1408 return reg;
b99bd4ef
NC
1409}
1410
1411static int
dcbf9037 1412arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1413 enum arm_reg_type type)
b99bd4ef 1414{
c19d1205
ZW
1415 /* Alternative syntaxes are accepted for a few register classes. */
1416 switch (type)
1417 {
1418 case REG_TYPE_MVF:
1419 case REG_TYPE_MVD:
1420 case REG_TYPE_MVFX:
1421 case REG_TYPE_MVDX:
1422 /* Generic coprocessor register names are allowed for these. */
79134647 1423 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1424 return reg->number;
1425 break;
69b97547 1426
c19d1205
ZW
1427 case REG_TYPE_CP:
1428 /* For backward compatibility, a bare number is valid here. */
1429 {
1430 unsigned long processor = strtoul (start, ccp, 10);
1431 if (*ccp != start && processor <= 15)
1432 return processor;
1433 }
1a0670f3 1434 /* Fall through. */
6057a28f 1435
c19d1205
ZW
1436 case REG_TYPE_MMXWC:
1437 /* WC includes WCG. ??? I'm not sure this is true for all
1438 instructions that take WC registers. */
79134647 1439 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1440 return reg->number;
6057a28f 1441 break;
c19d1205 1442
6057a28f 1443 default:
c19d1205 1444 break;
6057a28f
NC
1445 }
1446
dcbf9037
JB
1447 return FAIL;
1448}
1449
1450/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1451 return value is the register number or FAIL. */
1452
1453static int
1454arm_reg_parse (char **ccp, enum arm_reg_type type)
1455{
1456 char *start = *ccp;
1457 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1458 int ret;
1459
1460 /* Do not allow a scalar (reg+index) to parse as a register. */
1461 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1462 return FAIL;
1463
1464 if (reg && reg->type == type)
1465 return reg->number;
1466
1467 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1468 return ret;
1469
c19d1205
ZW
1470 *ccp = start;
1471 return FAIL;
1472}
69b97547 1473
dcbf9037
JB
1474/* Parse a Neon type specifier. *STR should point at the leading '.'
1475 character. Does no verification at this stage that the type fits the opcode
1476 properly. E.g.,
1477
1478 .i32.i32.s16
1479 .s32.f32
1480 .u16
1481
1482 Can all be legally parsed by this function.
1483
1484 Fills in neon_type struct pointer with parsed information, and updates STR
1485 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1486 type, FAIL if not. */
1487
1488static int
1489parse_neon_type (struct neon_type *type, char **str)
1490{
1491 char *ptr = *str;
1492
1493 if (type)
1494 type->elems = 0;
1495
1496 while (type->elems < NEON_MAX_TYPE_ELS)
1497 {
1498 enum neon_el_type thistype = NT_untyped;
1499 unsigned thissize = -1u;
1500
1501 if (*ptr != '.')
1502 break;
1503
1504 ptr++;
1505
1506 /* Just a size without an explicit type. */
1507 if (ISDIGIT (*ptr))
1508 goto parsesize;
1509
1510 switch (TOLOWER (*ptr))
1511 {
1512 case 'i': thistype = NT_integer; break;
1513 case 'f': thistype = NT_float; break;
1514 case 'p': thistype = NT_poly; break;
1515 case 's': thistype = NT_signed; break;
1516 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1517 case 'd':
1518 thistype = NT_float;
1519 thissize = 64;
1520 ptr++;
1521 goto done;
aab2c27d
MM
1522 case 'b':
1523 thistype = NT_bfloat;
1524 switch (TOLOWER (*(++ptr)))
1525 {
1526 case 'f':
1527 ptr += 1;
1528 thissize = strtoul (ptr, &ptr, 10);
1529 if (thissize != 16)
1530 {
1531 as_bad (_("bad size %d in type specifier"), thissize);
1532 return FAIL;
1533 }
1534 goto done;
1535 case '0': case '1': case '2': case '3': case '4':
1536 case '5': case '6': case '7': case '8': case '9':
1537 case ' ': case '.':
1538 as_bad (_("unexpected type character `b' -- did you mean `bf'?"));
1539 return FAIL;
1540 default:
1541 break;
1542 }
1543 break;
dcbf9037
JB
1544 default:
1545 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1546 return FAIL;
1547 }
1548
1549 ptr++;
1550
1551 /* .f is an abbreviation for .f32. */
1552 if (thistype == NT_float && !ISDIGIT (*ptr))
1553 thissize = 32;
1554 else
1555 {
1556 parsesize:
1557 thissize = strtoul (ptr, &ptr, 10);
1558
1559 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1560 && thissize != 64)
1561 {
1562 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1563 return FAIL;
1564 }
1565 }
1566
037e8744 1567 done:
dcbf9037 1568 if (type)
477330fc
RM
1569 {
1570 type->el[type->elems].type = thistype;
dcbf9037
JB
1571 type->el[type->elems].size = thissize;
1572 type->elems++;
1573 }
1574 }
1575
1576 /* Empty/missing type is not a successful parse. */
1577 if (type->elems == 0)
1578 return FAIL;
1579
1580 *str = ptr;
1581
1582 return SUCCESS;
1583}
1584
1585/* Errors may be set multiple times during parsing or bit encoding
1586 (particularly in the Neon bits), but usually the earliest error which is set
1587 will be the most meaningful. Avoid overwriting it with later (cascading)
1588 errors by calling this function. */
1589
1590static void
1591first_error (const char *err)
1592{
1593 if (!inst.error)
1594 inst.error = err;
1595}
1596
1597/* Parse a single type, e.g. ".s32", leading period included. */
1598static int
1599parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1600{
1601 char *str = *ccp;
1602 struct neon_type optype;
1603
1604 if (*str == '.')
1605 {
1606 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1607 {
1608 if (optype.elems == 1)
1609 *vectype = optype.el[0];
1610 else
1611 {
1612 first_error (_("only one type should be specified for operand"));
1613 return FAIL;
1614 }
1615 }
dcbf9037 1616 else
477330fc
RM
1617 {
1618 first_error (_("vector type expected"));
1619 return FAIL;
1620 }
dcbf9037
JB
1621 }
1622 else
1623 return FAIL;
5f4273c7 1624
dcbf9037 1625 *ccp = str;
5f4273c7 1626
dcbf9037
JB
1627 return SUCCESS;
1628}
1629
1630/* Special meanings for indices (which have a range of 0-7), which will fit into
1631 a 4-bit integer. */
1632
1633#define NEON_ALL_LANES 15
1634#define NEON_INTERLEAVE_LANES 14
1635
5ee91343
AV
1636/* Record a use of the given feature. */
1637static void
1638record_feature_use (const arm_feature_set *feature)
1639{
1640 if (thumb_mode)
1641 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1642 else
1643 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1644}
1645
1646/* If the given feature available in the selected CPU, mark it as used.
1647 Returns TRUE iff feature is available. */
1648static bfd_boolean
1649mark_feature_used (const arm_feature_set *feature)
1650{
886e1c73
AV
1651
1652 /* Do not support the use of MVE only instructions when in auto-detection or
1653 -march=all. */
1654 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1655 && ARM_CPU_IS_ANY (cpu_variant))
1656 {
1657 first_error (BAD_MVE_AUTO);
1658 return FALSE;
1659 }
5ee91343
AV
1660 /* Ensure the option is valid on the current architecture. */
1661 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1662 return FALSE;
1663
1664 /* Add the appropriate architecture feature for the barrier option used.
1665 */
1666 record_feature_use (feature);
1667
1668 return TRUE;
1669}
1670
dcbf9037
JB
1671/* Parse either a register or a scalar, with an optional type. Return the
1672 register number, and optionally fill in the actual type of the register
1673 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1674 type/index information in *TYPEINFO. */
1675
1676static int
1677parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1678 enum arm_reg_type *rtype,
1679 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1680{
1681 char *str = *ccp;
1682 struct reg_entry *reg = arm_reg_parse_multi (&str);
1683 struct neon_typed_alias atype;
1684 struct neon_type_el parsetype;
1685
1686 atype.defined = 0;
1687 atype.index = -1;
1688 atype.eltype.type = NT_invtype;
1689 atype.eltype.size = -1;
1690
1691 /* Try alternate syntax for some types of register. Note these are mutually
1692 exclusive with the Neon syntax extensions. */
1693 if (reg == NULL)
1694 {
1695 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1696 if (altreg != FAIL)
477330fc 1697 *ccp = str;
dcbf9037 1698 if (typeinfo)
477330fc 1699 *typeinfo = atype;
dcbf9037
JB
1700 return altreg;
1701 }
1702
037e8744
JB
1703 /* Undo polymorphism when a set of register types may be accepted. */
1704 if ((type == REG_TYPE_NDQ
1705 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1706 || (type == REG_TYPE_VFSD
477330fc 1707 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1708 || (type == REG_TYPE_NSDQ
477330fc
RM
1709 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1710 || reg->type == REG_TYPE_NQ))
dec41383
JW
1711 || (type == REG_TYPE_NSD
1712 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1713 || (type == REG_TYPE_MMXWC
1714 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1715 type = (enum arm_reg_type) reg->type;
dcbf9037 1716
5ee91343
AV
1717 if (type == REG_TYPE_MQ)
1718 {
1719 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1720 return FAIL;
1721
1722 if (!reg || reg->type != REG_TYPE_NQ)
1723 return FAIL;
1724
1725 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1726 {
1727 first_error (_("expected MVE register [q0..q7]"));
1728 return FAIL;
1729 }
1730 type = REG_TYPE_NQ;
1731 }
1732 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1733 && (type == REG_TYPE_NQ))
1734 return FAIL;
1735
1736
dcbf9037
JB
1737 if (type != reg->type)
1738 return FAIL;
1739
1740 if (reg->neon)
1741 atype = *reg->neon;
5f4273c7 1742
dcbf9037
JB
1743 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1744 {
1745 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1746 {
1747 first_error (_("can't redefine type for operand"));
1748 return FAIL;
1749 }
dcbf9037
JB
1750 atype.defined |= NTA_HASTYPE;
1751 atype.eltype = parsetype;
1752 }
5f4273c7 1753
dcbf9037
JB
1754 if (skip_past_char (&str, '[') == SUCCESS)
1755 {
dec41383
JW
1756 if (type != REG_TYPE_VFD
1757 && !(type == REG_TYPE_VFS
57785aa2
AV
1758 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1759 && !(type == REG_TYPE_NQ
1760 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1761 {
57785aa2
AV
1762 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1763 first_error (_("only D and Q registers may be indexed"));
1764 else
1765 first_error (_("only D registers may be indexed"));
477330fc
RM
1766 return FAIL;
1767 }
5f4273c7 1768
dcbf9037 1769 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1770 {
1771 first_error (_("can't change index for operand"));
1772 return FAIL;
1773 }
dcbf9037
JB
1774
1775 atype.defined |= NTA_HASINDEX;
1776
1777 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1778 atype.index = NEON_ALL_LANES;
dcbf9037 1779 else
477330fc
RM
1780 {
1781 expressionS exp;
dcbf9037 1782
477330fc 1783 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1784
477330fc
RM
1785 if (exp.X_op != O_constant)
1786 {
1787 first_error (_("constant expression required"));
1788 return FAIL;
1789 }
dcbf9037 1790
477330fc
RM
1791 if (skip_past_char (&str, ']') == FAIL)
1792 return FAIL;
dcbf9037 1793
477330fc
RM
1794 atype.index = exp.X_add_number;
1795 }
dcbf9037 1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (typeinfo)
1799 *typeinfo = atype;
5f4273c7 1800
dcbf9037
JB
1801 if (rtype)
1802 *rtype = type;
5f4273c7 1803
dcbf9037 1804 *ccp = str;
5f4273c7 1805
dcbf9037
JB
1806 return reg->number;
1807}
1808
efd6b359 1809/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1810 - If RTYPE is non-zero, return the (possibly restricted) type of the
1811 register (e.g. Neon double or quad reg when either has been requested).
1812 - If this is a Neon vector type with additional type information, fill
1813 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1814 This function will fault on encountering a scalar. */
dcbf9037
JB
1815
1816static int
1817arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1818 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1819{
1820 struct neon_typed_alias atype;
1821 char *str = *ccp;
1822 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1823
1824 if (reg == FAIL)
1825 return FAIL;
1826
0855e32b
NS
1827 /* Do not allow regname(... to parse as a register. */
1828 if (*str == '(')
1829 return FAIL;
1830
dcbf9037
JB
1831 /* Do not allow a scalar (reg+index) to parse as a register. */
1832 if ((atype.defined & NTA_HASINDEX) != 0)
1833 {
1834 first_error (_("register operand expected, but got scalar"));
1835 return FAIL;
1836 }
1837
1838 if (vectype)
1839 *vectype = atype.eltype;
1840
1841 *ccp = str;
1842
1843 return reg;
1844}
1845
1846#define NEON_SCALAR_REG(X) ((X) >> 4)
1847#define NEON_SCALAR_INDEX(X) ((X) & 15)
1848
5287ad62
JB
1849/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1850 have enough information to be able to do a good job bounds-checking. So, we
1851 just do easy checks here, and do further checks later. */
1852
1853static int
57785aa2
AV
1854parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1855 arm_reg_type reg_type)
5287ad62 1856{
dcbf9037 1857 int reg;
5287ad62 1858 char *str = *ccp;
dcbf9037 1859 struct neon_typed_alias atype;
57785aa2 1860 unsigned reg_size;
5f4273c7 1861
dec41383 1862 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1863
57785aa2
AV
1864 switch (reg_type)
1865 {
1866 case REG_TYPE_VFS:
1867 reg_size = 32;
1868 break;
1869 case REG_TYPE_VFD:
1870 reg_size = 64;
1871 break;
1872 case REG_TYPE_MQ:
1873 reg_size = 128;
1874 break;
1875 default:
1876 gas_assert (0);
1877 return FAIL;
1878 }
1879
dcbf9037 1880 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1881 return FAIL;
5f4273c7 1882
57785aa2 1883 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1884 {
dcbf9037 1885 first_error (_("scalar must have an index"));
5287ad62
JB
1886 return FAIL;
1887 }
57785aa2 1888 else if (atype.index >= reg_size / elsize)
5287ad62 1889 {
dcbf9037 1890 first_error (_("scalar index out of range"));
5287ad62
JB
1891 return FAIL;
1892 }
5f4273c7 1893
dcbf9037
JB
1894 if (type)
1895 *type = atype.eltype;
5f4273c7 1896
5287ad62 1897 *ccp = str;
5f4273c7 1898
dcbf9037 1899 return reg * 16 + atype.index;
5287ad62
JB
1900}
1901
4b5a202f
AV
1902/* Types of registers in a list. */
1903
1904enum reg_list_els
1905{
1906 REGLIST_RN,
1907 REGLIST_CLRM,
1908 REGLIST_VFP_S,
efd6b359 1909 REGLIST_VFP_S_VPR,
4b5a202f 1910 REGLIST_VFP_D,
efd6b359 1911 REGLIST_VFP_D_VPR,
4b5a202f
AV
1912 REGLIST_NEON_D
1913};
1914
c19d1205 1915/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1916
c19d1205 1917static long
4b5a202f 1918parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1919{
4b5a202f
AV
1920 char *str = *strp;
1921 long range = 0;
1922 int another_range;
1923
1924 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1925
c19d1205
ZW
1926 /* We come back here if we get ranges concatenated by '+' or '|'. */
1927 do
6057a28f 1928 {
477330fc
RM
1929 skip_whitespace (str);
1930
c19d1205 1931 another_range = 0;
a737bd4d 1932
c19d1205
ZW
1933 if (*str == '{')
1934 {
1935 int in_range = 0;
1936 int cur_reg = -1;
a737bd4d 1937
c19d1205
ZW
1938 str++;
1939 do
1940 {
1941 int reg;
4b5a202f
AV
1942 const char apsr_str[] = "apsr";
1943 int apsr_str_len = strlen (apsr_str);
6057a28f 1944
4b5a202f
AV
1945 reg = arm_reg_parse (&str, REGLIST_RN);
1946 if (etype == REGLIST_CLRM)
c19d1205 1947 {
4b5a202f
AV
1948 if (reg == REG_SP || reg == REG_PC)
1949 reg = FAIL;
1950 else if (reg == FAIL
1951 && !strncasecmp (str, apsr_str, apsr_str_len)
1952 && !ISALPHA (*(str + apsr_str_len)))
1953 {
1954 reg = 15;
1955 str += apsr_str_len;
1956 }
1957
1958 if (reg == FAIL)
1959 {
1960 first_error (_("r0-r12, lr or APSR expected"));
1961 return FAIL;
1962 }
1963 }
1964 else /* etype == REGLIST_RN. */
1965 {
1966 if (reg == FAIL)
1967 {
1968 first_error (_(reg_expected_msgs[REGLIST_RN]));
1969 return FAIL;
1970 }
c19d1205 1971 }
a737bd4d 1972
c19d1205
ZW
1973 if (in_range)
1974 {
1975 int i;
a737bd4d 1976
c19d1205
ZW
1977 if (reg <= cur_reg)
1978 {
dcbf9037 1979 first_error (_("bad range in register list"));
c19d1205
ZW
1980 return FAIL;
1981 }
40a18ebd 1982
c19d1205
ZW
1983 for (i = cur_reg + 1; i < reg; i++)
1984 {
1985 if (range & (1 << i))
1986 as_tsktsk
1987 (_("Warning: duplicated register (r%d) in register list"),
1988 i);
1989 else
1990 range |= 1 << i;
1991 }
1992 in_range = 0;
1993 }
a737bd4d 1994
c19d1205
ZW
1995 if (range & (1 << reg))
1996 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1997 reg);
1998 else if (reg <= cur_reg)
1999 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 2000
c19d1205
ZW
2001 range |= 1 << reg;
2002 cur_reg = reg;
2003 }
2004 while (skip_past_comma (&str) != FAIL
2005 || (in_range = 1, *str++ == '-'));
2006 str--;
a737bd4d 2007
d996d970 2008 if (skip_past_char (&str, '}') == FAIL)
c19d1205 2009 {
dcbf9037 2010 first_error (_("missing `}'"));
c19d1205
ZW
2011 return FAIL;
2012 }
2013 }
4b5a202f 2014 else if (etype == REGLIST_RN)
c19d1205 2015 {
91d6fa6a 2016 expressionS exp;
40a18ebd 2017
91d6fa6a 2018 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 2019 return FAIL;
40a18ebd 2020
91d6fa6a 2021 if (exp.X_op == O_constant)
c19d1205 2022 {
91d6fa6a
NC
2023 if (exp.X_add_number
2024 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
2025 {
2026 inst.error = _("invalid register mask");
2027 return FAIL;
2028 }
a737bd4d 2029
91d6fa6a 2030 if ((range & exp.X_add_number) != 0)
c19d1205 2031 {
91d6fa6a 2032 int regno = range & exp.X_add_number;
a737bd4d 2033
c19d1205
ZW
2034 regno &= -regno;
2035 regno = (1 << regno) - 1;
2036 as_tsktsk
2037 (_("Warning: duplicated register (r%d) in register list"),
2038 regno);
2039 }
a737bd4d 2040
91d6fa6a 2041 range |= exp.X_add_number;
c19d1205
ZW
2042 }
2043 else
2044 {
e2b0ab59 2045 if (inst.relocs[0].type != 0)
c19d1205
ZW
2046 {
2047 inst.error = _("expression too complex");
2048 return FAIL;
2049 }
a737bd4d 2050
e2b0ab59
AV
2051 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
2052 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
2053 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
2054 }
2055 }
a737bd4d 2056
c19d1205
ZW
2057 if (*str == '|' || *str == '+')
2058 {
2059 str++;
2060 another_range = 1;
2061 }
a737bd4d 2062 }
c19d1205 2063 while (another_range);
a737bd4d 2064
c19d1205
ZW
2065 *strp = str;
2066 return range;
a737bd4d
NC
2067}
2068
c19d1205
ZW
2069/* Parse a VFP register list. If the string is invalid return FAIL.
2070 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
2071 register. Parses registers of type ETYPE.
2072 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
2073 - Q registers can be used to specify pairs of D registers
2074 - { } can be omitted from around a singleton register list
477330fc
RM
2075 FIXME: This is not implemented, as it would require backtracking in
2076 some cases, e.g.:
2077 vtbl.8 d3,d4,d5
2078 This could be done (the meaning isn't really ambiguous), but doesn't
2079 fit in well with the current parsing framework.
dcbf9037
JB
2080 - 32 D registers may be used (also true for VFPv3).
2081 FIXME: Types are ignored in these register lists, which is probably a
2082 bug. */
6057a28f 2083
c19d1205 2084static int
efd6b359
AV
2085parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
2086 bfd_boolean *partial_match)
6057a28f 2087{
037e8744 2088 char *str = *ccp;
c19d1205
ZW
2089 int base_reg;
2090 int new_base;
21d799b5 2091 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 2092 int max_regs = 0;
c19d1205
ZW
2093 int count = 0;
2094 int warned = 0;
2095 unsigned long mask = 0;
a737bd4d 2096 int i;
efd6b359
AV
2097 bfd_boolean vpr_seen = FALSE;
2098 bfd_boolean expect_vpr =
2099 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2100
477330fc 2101 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2102 {
2103 inst.error = _("expecting {");
2104 return FAIL;
2105 }
6057a28f 2106
5287ad62 2107 switch (etype)
c19d1205 2108 {
5287ad62 2109 case REGLIST_VFP_S:
efd6b359 2110 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2111 regtype = REG_TYPE_VFS;
2112 max_regs = 32;
5287ad62 2113 break;
5f4273c7 2114
5287ad62 2115 case REGLIST_VFP_D:
efd6b359 2116 case REGLIST_VFP_D_VPR:
5287ad62 2117 regtype = REG_TYPE_VFD;
b7fc2769 2118 break;
5f4273c7 2119
b7fc2769
JB
2120 case REGLIST_NEON_D:
2121 regtype = REG_TYPE_NDQ;
2122 break;
4b5a202f
AV
2123
2124 default:
2125 gas_assert (0);
b7fc2769
JB
2126 }
2127
efd6b359 2128 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2129 {
b1cc4aeb
PB
2130 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2131 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2132 {
2133 max_regs = 32;
2134 if (thumb_mode)
2135 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2136 fpu_vfp_ext_d32);
2137 else
2138 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2139 fpu_vfp_ext_d32);
2140 }
5287ad62 2141 else
477330fc 2142 max_regs = 16;
c19d1205 2143 }
6057a28f 2144
c19d1205 2145 base_reg = max_regs;
efd6b359 2146 *partial_match = FALSE;
a737bd4d 2147
c19d1205
ZW
2148 do
2149 {
5287ad62 2150 int setmask = 1, addregs = 1;
efd6b359
AV
2151 const char vpr_str[] = "vpr";
2152 int vpr_str_len = strlen (vpr_str);
dcbf9037 2153
037e8744 2154 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2155
efd6b359
AV
2156 if (expect_vpr)
2157 {
2158 if (new_base == FAIL
2159 && !strncasecmp (str, vpr_str, vpr_str_len)
2160 && !ISALPHA (*(str + vpr_str_len))
2161 && !vpr_seen)
2162 {
2163 vpr_seen = TRUE;
2164 str += vpr_str_len;
2165 if (count == 0)
2166 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2167 }
2168 else if (vpr_seen)
2169 {
2170 first_error (_("VPR expected last"));
2171 return FAIL;
2172 }
2173 else if (new_base == FAIL)
2174 {
2175 if (regtype == REG_TYPE_VFS)
2176 first_error (_("VFP single precision register or VPR "
2177 "expected"));
2178 else /* regtype == REG_TYPE_VFD. */
2179 first_error (_("VFP/Neon double precision register or VPR "
2180 "expected"));
2181 return FAIL;
2182 }
2183 }
2184 else if (new_base == FAIL)
a737bd4d 2185 {
dcbf9037 2186 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2187 return FAIL;
2188 }
5f4273c7 2189
efd6b359
AV
2190 *partial_match = TRUE;
2191 if (vpr_seen)
2192 continue;
2193
b7fc2769 2194 if (new_base >= max_regs)
477330fc
RM
2195 {
2196 first_error (_("register out of range in list"));
2197 return FAIL;
2198 }
5f4273c7 2199
5287ad62
JB
2200 /* Note: a value of 2 * n is returned for the register Q<n>. */
2201 if (regtype == REG_TYPE_NQ)
477330fc
RM
2202 {
2203 setmask = 3;
2204 addregs = 2;
2205 }
5287ad62 2206
c19d1205
ZW
2207 if (new_base < base_reg)
2208 base_reg = new_base;
a737bd4d 2209
5287ad62 2210 if (mask & (setmask << new_base))
c19d1205 2211 {
dcbf9037 2212 first_error (_("invalid register list"));
c19d1205 2213 return FAIL;
a737bd4d 2214 }
a737bd4d 2215
efd6b359 2216 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2217 {
2218 as_tsktsk (_("register list not in ascending order"));
2219 warned = 1;
2220 }
0bbf2aa4 2221
5287ad62
JB
2222 mask |= setmask << new_base;
2223 count += addregs;
0bbf2aa4 2224
037e8744 2225 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2226 {
2227 int high_range;
0bbf2aa4 2228
037e8744 2229 str++;
0bbf2aa4 2230
037e8744 2231 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2232 == FAIL)
c19d1205
ZW
2233 {
2234 inst.error = gettext (reg_expected_msgs[regtype]);
2235 return FAIL;
2236 }
0bbf2aa4 2237
477330fc
RM
2238 if (high_range >= max_regs)
2239 {
2240 first_error (_("register out of range in list"));
2241 return FAIL;
2242 }
b7fc2769 2243
477330fc
RM
2244 if (regtype == REG_TYPE_NQ)
2245 high_range = high_range + 1;
5287ad62 2246
c19d1205
ZW
2247 if (high_range <= new_base)
2248 {
2249 inst.error = _("register range not in ascending order");
2250 return FAIL;
2251 }
0bbf2aa4 2252
5287ad62 2253 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2254 {
5287ad62 2255 if (mask & (setmask << new_base))
0bbf2aa4 2256 {
c19d1205
ZW
2257 inst.error = _("invalid register list");
2258 return FAIL;
0bbf2aa4 2259 }
c19d1205 2260
5287ad62
JB
2261 mask |= setmask << new_base;
2262 count += addregs;
0bbf2aa4 2263 }
0bbf2aa4 2264 }
0bbf2aa4 2265 }
037e8744 2266 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2267
037e8744 2268 str++;
0bbf2aa4 2269
c19d1205 2270 /* Sanity check -- should have raised a parse error above. */
efd6b359 2271 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2272 abort ();
2273
2274 *pbase = base_reg;
2275
efd6b359
AV
2276 if (expect_vpr && !vpr_seen)
2277 {
2278 first_error (_("VPR expected last"));
2279 return FAIL;
2280 }
2281
c19d1205
ZW
2282 /* Final test -- the registers must be consecutive. */
2283 mask >>= base_reg;
2284 for (i = 0; i < count; i++)
2285 {
2286 if ((mask & (1u << i)) == 0)
2287 {
2288 inst.error = _("non-contiguous register range");
2289 return FAIL;
2290 }
2291 }
2292
037e8744
JB
2293 *ccp = str;
2294
c19d1205 2295 return count;
b99bd4ef
NC
2296}
2297
dcbf9037
JB
2298/* True if two alias types are the same. */
2299
c921be7d 2300static bfd_boolean
dcbf9037
JB
2301neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2302{
2303 if (!a && !b)
c921be7d 2304 return TRUE;
5f4273c7 2305
dcbf9037 2306 if (!a || !b)
c921be7d 2307 return FALSE;
dcbf9037
JB
2308
2309 if (a->defined != b->defined)
c921be7d 2310 return FALSE;
5f4273c7 2311
dcbf9037
JB
2312 if ((a->defined & NTA_HASTYPE) != 0
2313 && (a->eltype.type != b->eltype.type
477330fc 2314 || a->eltype.size != b->eltype.size))
c921be7d 2315 return FALSE;
dcbf9037
JB
2316
2317 if ((a->defined & NTA_HASINDEX) != 0
2318 && (a->index != b->index))
c921be7d 2319 return FALSE;
5f4273c7 2320
c921be7d 2321 return TRUE;
dcbf9037
JB
2322}
2323
5287ad62
JB
2324/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2325 The base register is put in *PBASE.
dcbf9037 2326 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2327 the return value.
2328 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2329 Bits [6:5] encode the list length (minus one).
2330 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2331
5287ad62 2332#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2333#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2334#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2335
2336static int
dcbf9037 2337parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2338 int mve,
477330fc 2339 struct neon_type_el *eltype)
5287ad62
JB
2340{
2341 char *ptr = *str;
2342 int base_reg = -1;
2343 int reg_incr = -1;
2344 int count = 0;
2345 int lane = -1;
2346 int leading_brace = 0;
2347 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2348 const char *const incr_error = mve ? _("register stride must be 1") :
2349 _("register stride must be 1 or 2");
20203fb9 2350 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2351 struct neon_typed_alias firsttype;
f85d59c3
KT
2352 firsttype.defined = 0;
2353 firsttype.eltype.type = NT_invtype;
2354 firsttype.eltype.size = -1;
2355 firsttype.index = -1;
5f4273c7 2356
5287ad62
JB
2357 if (skip_past_char (&ptr, '{') == SUCCESS)
2358 leading_brace = 1;
5f4273c7 2359
5287ad62
JB
2360 do
2361 {
dcbf9037 2362 struct neon_typed_alias atype;
35c228db
AV
2363 if (mve)
2364 rtype = REG_TYPE_MQ;
dcbf9037
JB
2365 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2366
5287ad62 2367 if (getreg == FAIL)
477330fc
RM
2368 {
2369 first_error (_(reg_expected_msgs[rtype]));
2370 return FAIL;
2371 }
5f4273c7 2372
5287ad62 2373 if (base_reg == -1)
477330fc
RM
2374 {
2375 base_reg = getreg;
2376 if (rtype == REG_TYPE_NQ)
2377 {
2378 reg_incr = 1;
2379 }
2380 firsttype = atype;
2381 }
5287ad62 2382 else if (reg_incr == -1)
477330fc
RM
2383 {
2384 reg_incr = getreg - base_reg;
2385 if (reg_incr < 1 || reg_incr > 2)
2386 {
2387 first_error (_(incr_error));
2388 return FAIL;
2389 }
2390 }
5287ad62 2391 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2392 {
2393 first_error (_(incr_error));
2394 return FAIL;
2395 }
dcbf9037 2396
c921be7d 2397 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2398 {
2399 first_error (_(type_error));
2400 return FAIL;
2401 }
5f4273c7 2402
5287ad62 2403 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2404 modes. */
5287ad62 2405 if (ptr[0] == '-')
477330fc
RM
2406 {
2407 struct neon_typed_alias htype;
2408 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2409 if (lane == -1)
2410 lane = NEON_INTERLEAVE_LANES;
2411 else if (lane != NEON_INTERLEAVE_LANES)
2412 {
2413 first_error (_(type_error));
2414 return FAIL;
2415 }
2416 if (reg_incr == -1)
2417 reg_incr = 1;
2418 else if (reg_incr != 1)
2419 {
2420 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2421 return FAIL;
2422 }
2423 ptr++;
2424 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2425 if (hireg == FAIL)
2426 {
2427 first_error (_(reg_expected_msgs[rtype]));
2428 return FAIL;
2429 }
2430 if (! neon_alias_types_same (&htype, &firsttype))
2431 {
2432 first_error (_(type_error));
2433 return FAIL;
2434 }
2435 count += hireg + dregs - getreg;
2436 continue;
2437 }
5f4273c7 2438
5287ad62
JB
2439 /* If we're using Q registers, we can't use [] or [n] syntax. */
2440 if (rtype == REG_TYPE_NQ)
477330fc
RM
2441 {
2442 count += 2;
2443 continue;
2444 }
5f4273c7 2445
dcbf9037 2446 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2447 {
2448 if (lane == -1)
2449 lane = atype.index;
2450 else if (lane != atype.index)
2451 {
2452 first_error (_(type_error));
2453 return FAIL;
2454 }
2455 }
5287ad62 2456 else if (lane == -1)
477330fc 2457 lane = NEON_INTERLEAVE_LANES;
5287ad62 2458 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2459 {
2460 first_error (_(type_error));
2461 return FAIL;
2462 }
5287ad62
JB
2463 count++;
2464 }
2465 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2466
5287ad62
JB
2467 /* No lane set by [x]. We must be interleaving structures. */
2468 if (lane == -1)
2469 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2470
5287ad62 2471 /* Sanity check. */
35c228db 2472 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2473 || (count > 1 && reg_incr == -1))
2474 {
dcbf9037 2475 first_error (_("error parsing element/structure list"));
5287ad62
JB
2476 return FAIL;
2477 }
2478
2479 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2480 {
dcbf9037 2481 first_error (_("expected }"));
5287ad62
JB
2482 return FAIL;
2483 }
5f4273c7 2484
5287ad62
JB
2485 if (reg_incr == -1)
2486 reg_incr = 1;
2487
dcbf9037
JB
2488 if (eltype)
2489 *eltype = firsttype.eltype;
2490
5287ad62
JB
2491 *pbase = base_reg;
2492 *str = ptr;
5f4273c7 2493
5287ad62
JB
2494 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2495}
2496
c19d1205
ZW
2497/* Parse an explicit relocation suffix on an expression. This is
2498 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2499 arm_reloc_hsh contains no entries, so this function can only
2500 succeed if there is no () after the word. Returns -1 on error,
2501 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2502
c19d1205
ZW
2503static int
2504parse_reloc (char **str)
b99bd4ef 2505{
c19d1205
ZW
2506 struct reloc_entry *r;
2507 char *p, *q;
b99bd4ef 2508
c19d1205
ZW
2509 if (**str != '(')
2510 return BFD_RELOC_UNUSED;
b99bd4ef 2511
c19d1205
ZW
2512 p = *str + 1;
2513 q = p;
2514
2515 while (*q && *q != ')' && *q != ',')
2516 q++;
2517 if (*q != ')')
2518 return -1;
2519
21d799b5
NC
2520 if ((r = (struct reloc_entry *)
2521 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2522 return -1;
2523
2524 *str = q + 1;
2525 return r->reloc;
b99bd4ef
NC
2526}
2527
c19d1205
ZW
2528/* Directives: register aliases. */
2529
dcbf9037 2530static struct reg_entry *
90ec0d68 2531insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2532{
d3ce72d0 2533 struct reg_entry *new_reg;
c19d1205 2534 const char *name;
b99bd4ef 2535
d3ce72d0 2536 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2537 {
d3ce72d0 2538 if (new_reg->builtin)
c19d1205 2539 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2540
c19d1205
ZW
2541 /* Only warn about a redefinition if it's not defined as the
2542 same register. */
d3ce72d0 2543 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2544 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2545
d929913e 2546 return NULL;
c19d1205 2547 }
b99bd4ef 2548
c19d1205 2549 name = xstrdup (str);
325801bd 2550 new_reg = XNEW (struct reg_entry);
b99bd4ef 2551
d3ce72d0
NC
2552 new_reg->name = name;
2553 new_reg->number = number;
2554 new_reg->type = type;
2555 new_reg->builtin = FALSE;
2556 new_reg->neon = NULL;
b99bd4ef 2557
d3ce72d0 2558 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2559 abort ();
5f4273c7 2560
d3ce72d0 2561 return new_reg;
dcbf9037
JB
2562}
2563
2564static void
2565insert_neon_reg_alias (char *str, int number, int type,
477330fc 2566 struct neon_typed_alias *atype)
dcbf9037
JB
2567{
2568 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2569
dcbf9037
JB
2570 if (!reg)
2571 {
2572 first_error (_("attempt to redefine typed alias"));
2573 return;
2574 }
5f4273c7 2575
dcbf9037
JB
2576 if (atype)
2577 {
325801bd 2578 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2579 *reg->neon = *atype;
2580 }
c19d1205 2581}
b99bd4ef 2582
c19d1205 2583/* Look for the .req directive. This is of the form:
b99bd4ef 2584
c19d1205 2585 new_register_name .req existing_register_name
b99bd4ef 2586
c19d1205 2587 If we find one, or if it looks sufficiently like one that we want to
d929913e 2588 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2589
d929913e 2590static bfd_boolean
c19d1205
ZW
2591create_register_alias (char * newname, char *p)
2592{
2593 struct reg_entry *old;
2594 char *oldname, *nbuf;
2595 size_t nlen;
b99bd4ef 2596
c19d1205
ZW
2597 /* The input scrubber ensures that whitespace after the mnemonic is
2598 collapsed to single spaces. */
2599 oldname = p;
2600 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2601 return FALSE;
b99bd4ef 2602
c19d1205
ZW
2603 oldname += 6;
2604 if (*oldname == '\0')
d929913e 2605 return FALSE;
b99bd4ef 2606
21d799b5 2607 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2608 if (!old)
b99bd4ef 2609 {
c19d1205 2610 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2611 return TRUE;
b99bd4ef
NC
2612 }
2613
c19d1205
ZW
2614 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2615 the desired alias name, and p points to its end. If not, then
2616 the desired alias name is in the global original_case_string. */
2617#ifdef TC_CASE_SENSITIVE
2618 nlen = p - newname;
2619#else
2620 newname = original_case_string;
2621 nlen = strlen (newname);
2622#endif
b99bd4ef 2623
29a2809e 2624 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2625
c19d1205
ZW
2626 /* Create aliases under the new name as stated; an all-lowercase
2627 version of the new name; and an all-uppercase version of the new
2628 name. */
d929913e
NC
2629 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2630 {
2631 for (p = nbuf; *p; p++)
2632 *p = TOUPPER (*p);
c19d1205 2633
d929913e
NC
2634 if (strncmp (nbuf, newname, nlen))
2635 {
2636 /* If this attempt to create an additional alias fails, do not bother
2637 trying to create the all-lower case alias. We will fail and issue
2638 a second, duplicate error message. This situation arises when the
2639 programmer does something like:
2640 foo .req r0
2641 Foo .req r1
2642 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2643 the artificial FOO alias because it has already been created by the
d929913e
NC
2644 first .req. */
2645 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2646 {
2647 free (nbuf);
2648 return TRUE;
2649 }
d929913e 2650 }
c19d1205 2651
d929913e
NC
2652 for (p = nbuf; *p; p++)
2653 *p = TOLOWER (*p);
c19d1205 2654
d929913e
NC
2655 if (strncmp (nbuf, newname, nlen))
2656 insert_reg_alias (nbuf, old->number, old->type);
2657 }
c19d1205 2658
e1fa0163 2659 free (nbuf);
d929913e 2660 return TRUE;
b99bd4ef
NC
2661}
2662
dcbf9037
JB
2663/* Create a Neon typed/indexed register alias using directives, e.g.:
2664 X .dn d5.s32[1]
2665 Y .qn 6.s16
2666 Z .dn d7
2667 T .dn Z[0]
2668 These typed registers can be used instead of the types specified after the
2669 Neon mnemonic, so long as all operands given have types. Types can also be
2670 specified directly, e.g.:
5f4273c7 2671 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2672
c921be7d 2673static bfd_boolean
dcbf9037
JB
2674create_neon_reg_alias (char *newname, char *p)
2675{
2676 enum arm_reg_type basetype;
2677 struct reg_entry *basereg;
2678 struct reg_entry mybasereg;
2679 struct neon_type ntype;
2680 struct neon_typed_alias typeinfo;
12d6b0b7 2681 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2682 int namelen;
5f4273c7 2683
dcbf9037
JB
2684 typeinfo.defined = 0;
2685 typeinfo.eltype.type = NT_invtype;
2686 typeinfo.eltype.size = -1;
2687 typeinfo.index = -1;
5f4273c7 2688
dcbf9037 2689 nameend = p;
5f4273c7 2690
dcbf9037
JB
2691 if (strncmp (p, " .dn ", 5) == 0)
2692 basetype = REG_TYPE_VFD;
2693 else if (strncmp (p, " .qn ", 5) == 0)
2694 basetype = REG_TYPE_NQ;
2695 else
c921be7d 2696 return FALSE;
5f4273c7 2697
dcbf9037 2698 p += 5;
5f4273c7 2699
dcbf9037 2700 if (*p == '\0')
c921be7d 2701 return FALSE;
5f4273c7 2702
dcbf9037
JB
2703 basereg = arm_reg_parse_multi (&p);
2704
2705 if (basereg && basereg->type != basetype)
2706 {
2707 as_bad (_("bad type for register"));
c921be7d 2708 return FALSE;
dcbf9037
JB
2709 }
2710
2711 if (basereg == NULL)
2712 {
2713 expressionS exp;
2714 /* Try parsing as an integer. */
2715 my_get_expression (&exp, &p, GE_NO_PREFIX);
2716 if (exp.X_op != O_constant)
477330fc
RM
2717 {
2718 as_bad (_("expression must be constant"));
2719 return FALSE;
2720 }
dcbf9037
JB
2721 basereg = &mybasereg;
2722 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2723 : exp.X_add_number;
dcbf9037
JB
2724 basereg->neon = 0;
2725 }
2726
2727 if (basereg->neon)
2728 typeinfo = *basereg->neon;
2729
2730 if (parse_neon_type (&ntype, &p) == SUCCESS)
2731 {
2732 /* We got a type. */
2733 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2734 {
2735 as_bad (_("can't redefine the type of a register alias"));
2736 return FALSE;
2737 }
5f4273c7 2738
dcbf9037
JB
2739 typeinfo.defined |= NTA_HASTYPE;
2740 if (ntype.elems != 1)
477330fc
RM
2741 {
2742 as_bad (_("you must specify a single type only"));
2743 return FALSE;
2744 }
dcbf9037
JB
2745 typeinfo.eltype = ntype.el[0];
2746 }
5f4273c7 2747
dcbf9037
JB
2748 if (skip_past_char (&p, '[') == SUCCESS)
2749 {
2750 expressionS exp;
2751 /* We got a scalar index. */
5f4273c7 2752
dcbf9037 2753 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2754 {
2755 as_bad (_("can't redefine the index of a scalar alias"));
2756 return FALSE;
2757 }
5f4273c7 2758
dcbf9037 2759 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2760
dcbf9037 2761 if (exp.X_op != O_constant)
477330fc
RM
2762 {
2763 as_bad (_("scalar index must be constant"));
2764 return FALSE;
2765 }
5f4273c7 2766
dcbf9037
JB
2767 typeinfo.defined |= NTA_HASINDEX;
2768 typeinfo.index = exp.X_add_number;
5f4273c7 2769
dcbf9037 2770 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2771 {
2772 as_bad (_("expecting ]"));
2773 return FALSE;
2774 }
dcbf9037
JB
2775 }
2776
15735687
NS
2777 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2778 the desired alias name, and p points to its end. If not, then
2779 the desired alias name is in the global original_case_string. */
2780#ifdef TC_CASE_SENSITIVE
dcbf9037 2781 namelen = nameend - newname;
15735687
NS
2782#else
2783 newname = original_case_string;
2784 namelen = strlen (newname);
2785#endif
2786
29a2809e 2787 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2788
dcbf9037 2789 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2790 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2791
dcbf9037
JB
2792 /* Insert name in all uppercase. */
2793 for (p = namebuf; *p; p++)
2794 *p = TOUPPER (*p);
5f4273c7 2795
dcbf9037
JB
2796 if (strncmp (namebuf, newname, namelen))
2797 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2798 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2799
dcbf9037
JB
2800 /* Insert name in all lowercase. */
2801 for (p = namebuf; *p; p++)
2802 *p = TOLOWER (*p);
5f4273c7 2803
dcbf9037
JB
2804 if (strncmp (namebuf, newname, namelen))
2805 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2806 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2807
e1fa0163 2808 free (namebuf);
c921be7d 2809 return TRUE;
dcbf9037
JB
2810}
2811
c19d1205
ZW
2812/* Should never be called, as .req goes between the alias and the
2813 register name, not at the beginning of the line. */
c921be7d 2814
b99bd4ef 2815static void
c19d1205 2816s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2817{
c19d1205
ZW
2818 as_bad (_("invalid syntax for .req directive"));
2819}
b99bd4ef 2820
dcbf9037
JB
2821static void
2822s_dn (int a ATTRIBUTE_UNUSED)
2823{
2824 as_bad (_("invalid syntax for .dn directive"));
2825}
2826
2827static void
2828s_qn (int a ATTRIBUTE_UNUSED)
2829{
2830 as_bad (_("invalid syntax for .qn directive"));
2831}
2832
c19d1205
ZW
2833/* The .unreq directive deletes an alias which was previously defined
2834 by .req. For example:
b99bd4ef 2835
c19d1205
ZW
2836 my_alias .req r11
2837 .unreq my_alias */
b99bd4ef
NC
2838
2839static void
c19d1205 2840s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2841{
c19d1205
ZW
2842 char * name;
2843 char saved_char;
b99bd4ef 2844
c19d1205
ZW
2845 name = input_line_pointer;
2846
2847 while (*input_line_pointer != 0
2848 && *input_line_pointer != ' '
2849 && *input_line_pointer != '\n')
2850 ++input_line_pointer;
2851
2852 saved_char = *input_line_pointer;
2853 *input_line_pointer = 0;
2854
2855 if (!*name)
2856 as_bad (_("invalid syntax for .unreq directive"));
2857 else
2858 {
21d799b5 2859 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2860 name);
c19d1205
ZW
2861
2862 if (!reg)
2863 as_bad (_("unknown register alias '%s'"), name);
2864 else if (reg->builtin)
a1727c1a 2865 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2866 name);
2867 else
2868 {
d929913e
NC
2869 char * p;
2870 char * nbuf;
2871
db0bc284 2872 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2873 free ((char *) reg->name);
477330fc
RM
2874 if (reg->neon)
2875 free (reg->neon);
c19d1205 2876 free (reg);
d929913e
NC
2877
2878 /* Also locate the all upper case and all lower case versions.
2879 Do not complain if we cannot find one or the other as it
2880 was probably deleted above. */
5f4273c7 2881
d929913e
NC
2882 nbuf = strdup (name);
2883 for (p = nbuf; *p; p++)
2884 *p = TOUPPER (*p);
21d799b5 2885 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2886 if (reg)
2887 {
db0bc284 2888 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2889 free ((char *) reg->name);
2890 if (reg->neon)
2891 free (reg->neon);
2892 free (reg);
2893 }
2894
2895 for (p = nbuf; *p; p++)
2896 *p = TOLOWER (*p);
21d799b5 2897 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2898 if (reg)
2899 {
db0bc284 2900 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2901 free ((char *) reg->name);
2902 if (reg->neon)
2903 free (reg->neon);
2904 free (reg);
2905 }
2906
2907 free (nbuf);
c19d1205
ZW
2908 }
2909 }
b99bd4ef 2910
c19d1205 2911 *input_line_pointer = saved_char;
b99bd4ef
NC
2912 demand_empty_rest_of_line ();
2913}
2914
c19d1205
ZW
2915/* Directives: Instruction set selection. */
2916
2917#ifdef OBJ_ELF
2918/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2919 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2920 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2921 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2922
cd000bff
DJ
2923/* Create a new mapping symbol for the transition to STATE. */
2924
2925static void
2926make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2927{
a737bd4d 2928 symbolS * symbolP;
c19d1205
ZW
2929 const char * symname;
2930 int type;
b99bd4ef 2931
c19d1205 2932 switch (state)
b99bd4ef 2933 {
c19d1205
ZW
2934 case MAP_DATA:
2935 symname = "$d";
2936 type = BSF_NO_FLAGS;
2937 break;
2938 case MAP_ARM:
2939 symname = "$a";
2940 type = BSF_NO_FLAGS;
2941 break;
2942 case MAP_THUMB:
2943 symname = "$t";
2944 type = BSF_NO_FLAGS;
2945 break;
c19d1205
ZW
2946 default:
2947 abort ();
2948 }
2949
cd000bff 2950 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2951 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2952
2953 switch (state)
2954 {
2955 case MAP_ARM:
2956 THUMB_SET_FUNC (symbolP, 0);
2957 ARM_SET_THUMB (symbolP, 0);
2958 ARM_SET_INTERWORK (symbolP, support_interwork);
2959 break;
2960
2961 case MAP_THUMB:
2962 THUMB_SET_FUNC (symbolP, 1);
2963 ARM_SET_THUMB (symbolP, 1);
2964 ARM_SET_INTERWORK (symbolP, support_interwork);
2965 break;
2966
2967 case MAP_DATA:
2968 default:
cd000bff
DJ
2969 break;
2970 }
2971
2972 /* Save the mapping symbols for future reference. Also check that
2973 we do not place two mapping symbols at the same offset within a
2974 frag. We'll handle overlap between frags in
2de7820f
JZ
2975 check_mapping_symbols.
2976
2977 If .fill or other data filling directive generates zero sized data,
2978 the mapping symbol for the following code will have the same value
2979 as the one generated for the data filling directive. In this case,
2980 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2981 if (value == 0)
2982 {
2de7820f
JZ
2983 if (frag->tc_frag_data.first_map != NULL)
2984 {
2985 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2986 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2987 }
cd000bff
DJ
2988 frag->tc_frag_data.first_map = symbolP;
2989 }
2990 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2991 {
2992 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2993 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2994 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2995 }
cd000bff
DJ
2996 frag->tc_frag_data.last_map = symbolP;
2997}
2998
2999/* We must sometimes convert a region marked as code to data during
3000 code alignment, if an odd number of bytes have to be padded. The
3001 code mapping symbol is pushed to an aligned address. */
3002
3003static void
3004insert_data_mapping_symbol (enum mstate state,
3005 valueT value, fragS *frag, offsetT bytes)
3006{
3007 /* If there was already a mapping symbol, remove it. */
3008 if (frag->tc_frag_data.last_map != NULL
3009 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
3010 {
3011 symbolS *symp = frag->tc_frag_data.last_map;
3012
3013 if (value == 0)
3014 {
3015 know (frag->tc_frag_data.first_map == symp);
3016 frag->tc_frag_data.first_map = NULL;
3017 }
3018 frag->tc_frag_data.last_map = NULL;
3019 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 3020 }
cd000bff
DJ
3021
3022 make_mapping_symbol (MAP_DATA, value, frag);
3023 make_mapping_symbol (state, value + bytes, frag);
3024}
3025
3026static void mapping_state_2 (enum mstate state, int max_chars);
3027
3028/* Set the mapping state to STATE. Only call this when about to
3029 emit some STATE bytes to the file. */
3030
4e9aaefb 3031#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
3032void
3033mapping_state (enum mstate state)
3034{
940b5ce0
DJ
3035 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3036
cd000bff
DJ
3037 if (mapstate == state)
3038 /* The mapping symbol has already been emitted.
3039 There is nothing else to do. */
3040 return;
49c62a33
NC
3041
3042 if (state == MAP_ARM || state == MAP_THUMB)
3043 /* PR gas/12931
3044 All ARM instructions require 4-byte alignment.
3045 (Almost) all Thumb instructions require 2-byte alignment.
3046
3047 When emitting instructions into any section, mark the section
3048 appropriately.
3049
3050 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
3051 but themselves require 2-byte alignment; this applies to some
33eaf5de 3052 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
3053 literal pool generation or an explicit .align >=2, both of
3054 which will cause the section to me marked with sufficient
3055 alignment. Thus, we don't handle those cases here. */
3056 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
3057
3058 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 3059 /* This case will be evaluated later. */
cd000bff 3060 return;
cd000bff
DJ
3061
3062 mapping_state_2 (state, 0);
cd000bff
DJ
3063}
3064
3065/* Same as mapping_state, but MAX_CHARS bytes have already been
3066 allocated. Put the mapping symbol that far back. */
3067
3068static void
3069mapping_state_2 (enum mstate state, int max_chars)
3070{
940b5ce0
DJ
3071 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3072
3073 if (!SEG_NORMAL (now_seg))
3074 return;
3075
cd000bff
DJ
3076 if (mapstate == state)
3077 /* The mapping symbol has already been emitted.
3078 There is nothing else to do. */
3079 return;
3080
4e9aaefb
SA
3081 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
3082 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
3083 {
3084 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
3085 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
3086
3087 if (add_symbol)
3088 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
3089 }
3090
cd000bff
DJ
3091 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
3092 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 3093}
4e9aaefb 3094#undef TRANSITION
c19d1205 3095#else
d3106081
NS
3096#define mapping_state(x) ((void)0)
3097#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3098#endif
3099
3100/* Find the real, Thumb encoded start of a Thumb function. */
3101
4343666d 3102#ifdef OBJ_COFF
c19d1205
ZW
3103static symbolS *
3104find_real_start (symbolS * symbolP)
3105{
3106 char * real_start;
3107 const char * name = S_GET_NAME (symbolP);
3108 symbolS * new_target;
3109
3110 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3111#define STUB_NAME ".real_start_of"
3112
3113 if (name == NULL)
3114 abort ();
3115
37f6032b
ZW
3116 /* The compiler may generate BL instructions to local labels because
3117 it needs to perform a branch to a far away location. These labels
3118 do not have a corresponding ".real_start_of" label. We check
3119 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3120 the ".real_start_of" convention for nonlocal branches. */
3121 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3122 return symbolP;
3123
e1fa0163 3124 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3125 new_target = symbol_find (real_start);
e1fa0163 3126 free (real_start);
c19d1205
ZW
3127
3128 if (new_target == NULL)
3129 {
bd3ba5d1 3130 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3131 new_target = symbolP;
3132 }
3133
c19d1205
ZW
3134 return new_target;
3135}
4343666d 3136#endif
c19d1205
ZW
3137
3138static void
3139opcode_select (int width)
3140{
3141 switch (width)
3142 {
3143 case 16:
3144 if (! thumb_mode)
3145 {
e74cfd16 3146 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3147 as_bad (_("selected processor does not support THUMB opcodes"));
3148
3149 thumb_mode = 1;
3150 /* No need to force the alignment, since we will have been
3151 coming from ARM mode, which is word-aligned. */
3152 record_alignment (now_seg, 1);
3153 }
c19d1205
ZW
3154 break;
3155
3156 case 32:
3157 if (thumb_mode)
3158 {
e74cfd16 3159 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3160 as_bad (_("selected processor does not support ARM opcodes"));
3161
3162 thumb_mode = 0;
3163
3164 if (!need_pass_2)
3165 frag_align (2, 0, 0);
3166
3167 record_alignment (now_seg, 1);
3168 }
c19d1205
ZW
3169 break;
3170
3171 default:
3172 as_bad (_("invalid instruction size selected (%d)"), width);
3173 }
3174}
3175
3176static void
3177s_arm (int ignore ATTRIBUTE_UNUSED)
3178{
3179 opcode_select (32);
3180 demand_empty_rest_of_line ();
3181}
3182
3183static void
3184s_thumb (int ignore ATTRIBUTE_UNUSED)
3185{
3186 opcode_select (16);
3187 demand_empty_rest_of_line ();
3188}
3189
3190static void
3191s_code (int unused ATTRIBUTE_UNUSED)
3192{
3193 int temp;
3194
3195 temp = get_absolute_expression ();
3196 switch (temp)
3197 {
3198 case 16:
3199 case 32:
3200 opcode_select (temp);
3201 break;
3202
3203 default:
3204 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3205 }
3206}
3207
3208static void
3209s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3210{
3211 /* If we are not already in thumb mode go into it, EVEN if
3212 the target processor does not support thumb instructions.
3213 This is used by gcc/config/arm/lib1funcs.asm for example
3214 to compile interworking support functions even if the
3215 target processor should not support interworking. */
3216 if (! thumb_mode)
3217 {
3218 thumb_mode = 2;
3219 record_alignment (now_seg, 1);
3220 }
3221
3222 demand_empty_rest_of_line ();
3223}
3224
3225static void
3226s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3227{
3228 s_thumb (0);
3229
3230 /* The following label is the name/address of the start of a Thumb function.
3231 We need to know this for the interworking support. */
3232 label_is_thumb_function_name = TRUE;
3233}
3234
3235/* Perform a .set directive, but also mark the alias as
3236 being a thumb function. */
3237
3238static void
3239s_thumb_set (int equiv)
3240{
3241 /* XXX the following is a duplicate of the code for s_set() in read.c
3242 We cannot just call that code as we need to get at the symbol that
3243 is created. */
3244 char * name;
3245 char delim;
3246 char * end_name;
3247 symbolS * symbolP;
3248
3249 /* Especial apologies for the random logic:
3250 This just grew, and could be parsed much more simply!
3251 Dean - in haste. */
d02603dc 3252 delim = get_symbol_name (& name);
c19d1205 3253 end_name = input_line_pointer;
d02603dc 3254 (void) restore_line_pointer (delim);
c19d1205
ZW
3255
3256 if (*input_line_pointer != ',')
3257 {
3258 *end_name = 0;
3259 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3260 *end_name = delim;
3261 ignore_rest_of_line ();
3262 return;
3263 }
3264
3265 input_line_pointer++;
3266 *end_name = 0;
3267
3268 if (name[0] == '.' && name[1] == '\0')
3269 {
3270 /* XXX - this should not happen to .thumb_set. */
3271 abort ();
3272 }
3273
3274 if ((symbolP = symbol_find (name)) == NULL
3275 && (symbolP = md_undefined_symbol (name)) == NULL)
3276 {
3277#ifndef NO_LISTING
3278 /* When doing symbol listings, play games with dummy fragments living
3279 outside the normal fragment chain to record the file and line info
c19d1205 3280 for this symbol. */
b99bd4ef
NC
3281 if (listing & LISTING_SYMBOLS)
3282 {
3283 extern struct list_info_struct * listing_tail;
21d799b5 3284 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3285
3286 memset (dummy_frag, 0, sizeof (fragS));
3287 dummy_frag->fr_type = rs_fill;
3288 dummy_frag->line = listing_tail;
3289 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3290 dummy_frag->fr_symbol = symbolP;
3291 }
3292 else
3293#endif
3294 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3295
3296#ifdef OBJ_COFF
3297 /* "set" symbols are local unless otherwise specified. */
3298 SF_SET_LOCAL (symbolP);
3299#endif /* OBJ_COFF */
3300 } /* Make a new symbol. */
3301
3302 symbol_table_insert (symbolP);
3303
3304 * end_name = delim;
3305
3306 if (equiv
3307 && S_IS_DEFINED (symbolP)
3308 && S_GET_SEGMENT (symbolP) != reg_section)
3309 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3310
3311 pseudo_set (symbolP);
3312
3313 demand_empty_rest_of_line ();
3314
c19d1205 3315 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3316
3317 THUMB_SET_FUNC (symbolP, 1);
3318 ARM_SET_THUMB (symbolP, 1);
3319#if defined OBJ_ELF || defined OBJ_COFF
3320 ARM_SET_INTERWORK (symbolP, support_interwork);
3321#endif
3322}
3323
c19d1205 3324/* Directives: Mode selection. */
b99bd4ef 3325
c19d1205
ZW
3326/* .syntax [unified|divided] - choose the new unified syntax
3327 (same for Arm and Thumb encoding, modulo slight differences in what
3328 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3329static void
c19d1205 3330s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3331{
c19d1205
ZW
3332 char *name, delim;
3333
d02603dc 3334 delim = get_symbol_name (& name);
c19d1205
ZW
3335
3336 if (!strcasecmp (name, "unified"))
3337 unified_syntax = TRUE;
3338 else if (!strcasecmp (name, "divided"))
3339 unified_syntax = FALSE;
3340 else
3341 {
3342 as_bad (_("unrecognized syntax mode \"%s\""), name);
3343 return;
3344 }
d02603dc 3345 (void) restore_line_pointer (delim);
b99bd4ef
NC
3346 demand_empty_rest_of_line ();
3347}
3348
c19d1205
ZW
3349/* Directives: sectioning and alignment. */
3350
c19d1205
ZW
3351static void
3352s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3353{
c19d1205
ZW
3354 /* We don't support putting frags in the BSS segment, we fake it by
3355 marking in_bss, then looking at s_skip for clues. */
3356 subseg_set (bss_section, 0);
3357 demand_empty_rest_of_line ();
cd000bff
DJ
3358
3359#ifdef md_elf_section_change_hook
3360 md_elf_section_change_hook ();
3361#endif
c19d1205 3362}
b99bd4ef 3363
c19d1205
ZW
3364static void
3365s_even (int ignore ATTRIBUTE_UNUSED)
3366{
3367 /* Never make frag if expect extra pass. */
3368 if (!need_pass_2)
3369 frag_align (1, 0, 0);
b99bd4ef 3370
c19d1205 3371 record_alignment (now_seg, 1);
b99bd4ef 3372
c19d1205 3373 demand_empty_rest_of_line ();
b99bd4ef
NC
3374}
3375
2e6976a8
DG
3376/* Directives: CodeComposer Studio. */
3377
3378/* .ref (for CodeComposer Studio syntax only). */
3379static void
3380s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3381{
3382 if (codecomposer_syntax)
3383 ignore_rest_of_line ();
3384 else
3385 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3386}
3387
3388/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3389 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3390static void
3391asmfunc_debug (const char * name)
3392{
3393 static const char * last_name = NULL;
3394
3395 if (name != NULL)
3396 {
3397 gas_assert (last_name == NULL);
3398 last_name = name;
3399
3400 if (debug_type == DEBUG_STABS)
3401 stabs_generate_asm_func (name, name);
3402 }
3403 else
3404 {
3405 gas_assert (last_name != NULL);
3406
3407 if (debug_type == DEBUG_STABS)
3408 stabs_generate_asm_endfunc (last_name, last_name);
3409
3410 last_name = NULL;
3411 }
3412}
3413
3414static void
3415s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3416{
3417 if (codecomposer_syntax)
3418 {
3419 switch (asmfunc_state)
3420 {
3421 case OUTSIDE_ASMFUNC:
3422 asmfunc_state = WAITING_ASMFUNC_NAME;
3423 break;
3424
3425 case WAITING_ASMFUNC_NAME:
3426 as_bad (_(".asmfunc repeated."));
3427 break;
3428
3429 case WAITING_ENDASMFUNC:
3430 as_bad (_(".asmfunc without function."));
3431 break;
3432 }
3433 demand_empty_rest_of_line ();
3434 }
3435 else
3436 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3437}
3438
3439static void
3440s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3441{
3442 if (codecomposer_syntax)
3443 {
3444 switch (asmfunc_state)
3445 {
3446 case OUTSIDE_ASMFUNC:
3447 as_bad (_(".endasmfunc without a .asmfunc."));
3448 break;
3449
3450 case WAITING_ASMFUNC_NAME:
3451 as_bad (_(".endasmfunc without function."));
3452 break;
3453
3454 case WAITING_ENDASMFUNC:
3455 asmfunc_state = OUTSIDE_ASMFUNC;
3456 asmfunc_debug (NULL);
3457 break;
3458 }
3459 demand_empty_rest_of_line ();
3460 }
3461 else
3462 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3463}
3464
3465static void
3466s_ccs_def (int name)
3467{
3468 if (codecomposer_syntax)
3469 s_globl (name);
3470 else
3471 as_bad (_(".def pseudo-op only available with -mccs flag."));
3472}
3473
c19d1205 3474/* Directives: Literal pools. */
a737bd4d 3475
c19d1205
ZW
3476static literal_pool *
3477find_literal_pool (void)
a737bd4d 3478{
c19d1205 3479 literal_pool * pool;
a737bd4d 3480
c19d1205 3481 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3482 {
c19d1205
ZW
3483 if (pool->section == now_seg
3484 && pool->sub_section == now_subseg)
3485 break;
a737bd4d
NC
3486 }
3487
c19d1205 3488 return pool;
a737bd4d
NC
3489}
3490
c19d1205
ZW
3491static literal_pool *
3492find_or_make_literal_pool (void)
a737bd4d 3493{
c19d1205
ZW
3494 /* Next literal pool ID number. */
3495 static unsigned int latest_pool_num = 1;
3496 literal_pool * pool;
a737bd4d 3497
c19d1205 3498 pool = find_literal_pool ();
a737bd4d 3499
c19d1205 3500 if (pool == NULL)
a737bd4d 3501 {
c19d1205 3502 /* Create a new pool. */
325801bd 3503 pool = XNEW (literal_pool);
c19d1205
ZW
3504 if (! pool)
3505 return NULL;
a737bd4d 3506
c19d1205
ZW
3507 pool->next_free_entry = 0;
3508 pool->section = now_seg;
3509 pool->sub_section = now_subseg;
3510 pool->next = list_of_pools;
3511 pool->symbol = NULL;
8335d6aa 3512 pool->alignment = 2;
c19d1205
ZW
3513
3514 /* Add it to the list. */
3515 list_of_pools = pool;
a737bd4d 3516 }
a737bd4d 3517
c19d1205
ZW
3518 /* New pools, and emptied pools, will have a NULL symbol. */
3519 if (pool->symbol == NULL)
a737bd4d 3520 {
c19d1205
ZW
3521 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3522 (valueT) 0, &zero_address_frag);
3523 pool->id = latest_pool_num ++;
a737bd4d
NC
3524 }
3525
c19d1205
ZW
3526 /* Done. */
3527 return pool;
a737bd4d
NC
3528}
3529
c19d1205 3530/* Add the literal in the global 'inst'
5f4273c7 3531 structure to the relevant literal pool. */
b99bd4ef
NC
3532
3533static int
8335d6aa 3534add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3535{
8335d6aa
JW
3536#define PADDING_SLOT 0x1
3537#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3538 literal_pool * pool;
8335d6aa
JW
3539 unsigned int entry, pool_size = 0;
3540 bfd_boolean padding_slot_p = FALSE;
e56c722b 3541 unsigned imm1 = 0;
8335d6aa
JW
3542 unsigned imm2 = 0;
3543
3544 if (nbytes == 8)
3545 {
3546 imm1 = inst.operands[1].imm;
3547 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3548 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3549 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3550 if (target_big_endian)
3551 {
3552 imm1 = imm2;
3553 imm2 = inst.operands[1].imm;
3554 }
3555 }
b99bd4ef 3556
c19d1205
ZW
3557 pool = find_or_make_literal_pool ();
3558
3559 /* Check if this literal value is already in the pool. */
3560 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3561 {
8335d6aa
JW
3562 if (nbytes == 4)
3563 {
e2b0ab59
AV
3564 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3565 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3566 && (pool->literals[entry].X_add_number
e2b0ab59 3567 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3568 && (pool->literals[entry].X_md == nbytes)
3569 && (pool->literals[entry].X_unsigned
e2b0ab59 3570 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3571 break;
3572
e2b0ab59
AV
3573 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3574 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3575 && (pool->literals[entry].X_add_number
e2b0ab59 3576 == inst.relocs[0].exp.X_add_number)
8335d6aa 3577 && (pool->literals[entry].X_add_symbol
e2b0ab59 3578 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3579 && (pool->literals[entry].X_op_symbol
e2b0ab59 3580 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3581 && (pool->literals[entry].X_md == nbytes))
3582 break;
3583 }
3584 else if ((nbytes == 8)
3585 && !(pool_size & 0x7)
3586 && ((entry + 1) != pool->next_free_entry)
3587 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3588 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3589 && (pool->literals[entry].X_unsigned
e2b0ab59 3590 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3591 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3592 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3593 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3594 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3595 break;
3596
8335d6aa
JW
3597 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3598 if (padding_slot_p && (nbytes == 4))
c19d1205 3599 break;
8335d6aa
JW
3600
3601 pool_size += 4;
b99bd4ef
NC
3602 }
3603
c19d1205
ZW
3604 /* Do we need to create a new entry? */
3605 if (entry == pool->next_free_entry)
3606 {
3607 if (entry >= MAX_LITERAL_POOL_SIZE)
3608 {
3609 inst.error = _("literal pool overflow");
3610 return FAIL;
3611 }
3612
8335d6aa
JW
3613 if (nbytes == 8)
3614 {
3615 /* For 8-byte entries, we align to an 8-byte boundary,
3616 and split it into two 4-byte entries, because on 32-bit
3617 host, 8-byte constants are treated as big num, thus
3618 saved in "generic_bignum" which will be overwritten
3619 by later assignments.
3620
3621 We also need to make sure there is enough space for
3622 the split.
3623
3624 We also check to make sure the literal operand is a
3625 constant number. */
e2b0ab59
AV
3626 if (!(inst.relocs[0].exp.X_op == O_constant
3627 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3628 {
3629 inst.error = _("invalid type for literal pool");
3630 return FAIL;
3631 }
3632 else if (pool_size & 0x7)
3633 {
3634 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3635 {
3636 inst.error = _("literal pool overflow");
3637 return FAIL;
3638 }
3639
e2b0ab59 3640 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3641 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3642 pool->literals[entry].X_add_number = 0;
3643 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3644 pool->next_free_entry += 1;
3645 pool_size += 4;
3646 }
3647 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3648 {
3649 inst.error = _("literal pool overflow");
3650 return FAIL;
3651 }
3652
e2b0ab59 3653 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3654 pool->literals[entry].X_op = O_constant;
3655 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3656 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3657 pool->literals[entry++].X_md = 4;
e2b0ab59 3658 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3659 pool->literals[entry].X_op = O_constant;
3660 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3661 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3662 pool->literals[entry].X_md = 4;
3663 pool->alignment = 3;
3664 pool->next_free_entry += 1;
3665 }
3666 else
3667 {
e2b0ab59 3668 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3669 pool->literals[entry].X_md = 4;
3670 }
3671
a8040cf2
NC
3672#ifdef OBJ_ELF
3673 /* PR ld/12974: Record the location of the first source line to reference
3674 this entry in the literal pool. If it turns out during linking that the
3675 symbol does not exist we will be able to give an accurate line number for
3676 the (first use of the) missing reference. */
3677 if (debug_type == DEBUG_DWARF2)
3678 dwarf2_where (pool->locs + entry);
3679#endif
c19d1205
ZW
3680 pool->next_free_entry += 1;
3681 }
8335d6aa
JW
3682 else if (padding_slot_p)
3683 {
e2b0ab59 3684 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3685 pool->literals[entry].X_md = nbytes;
3686 }
b99bd4ef 3687
e2b0ab59
AV
3688 inst.relocs[0].exp.X_op = O_symbol;
3689 inst.relocs[0].exp.X_add_number = pool_size;
3690 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3691
c19d1205 3692 return SUCCESS;
b99bd4ef
NC
3693}
3694
2e6976a8 3695bfd_boolean
2e57ce7b 3696tc_start_label_without_colon (void)
2e6976a8
DG
3697{
3698 bfd_boolean ret = TRUE;
3699
3700 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3701 {
2e57ce7b 3702 const char *label = input_line_pointer;
2e6976a8
DG
3703
3704 while (!is_end_of_line[(int) label[-1]])
3705 --label;
3706
3707 if (*label == '.')
3708 {
3709 as_bad (_("Invalid label '%s'"), label);
3710 ret = FALSE;
3711 }
3712
3713 asmfunc_debug (label);
3714
3715 asmfunc_state = WAITING_ENDASMFUNC;
3716 }
3717
3718 return ret;
3719}
3720
c19d1205 3721/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3722 a later date assign it a value. That's what these functions do. */
e16bb312 3723
c19d1205
ZW
3724static void
3725symbol_locate (symbolS * symbolP,
3726 const char * name, /* It is copied, the caller can modify. */
3727 segT segment, /* Segment identifier (SEG_<something>). */
3728 valueT valu, /* Symbol value. */
3729 fragS * frag) /* Associated fragment. */
3730{
e57e6ddc 3731 size_t name_length;
c19d1205 3732 char * preserved_copy_of_name;
e16bb312 3733
c19d1205
ZW
3734 name_length = strlen (name) + 1; /* +1 for \0. */
3735 obstack_grow (&notes, name, name_length);
21d799b5 3736 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3737
c19d1205
ZW
3738#ifdef tc_canonicalize_symbol_name
3739 preserved_copy_of_name =
3740 tc_canonicalize_symbol_name (preserved_copy_of_name);
3741#endif
b99bd4ef 3742
c19d1205 3743 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3744
c19d1205
ZW
3745 S_SET_SEGMENT (symbolP, segment);
3746 S_SET_VALUE (symbolP, valu);
3747 symbol_clear_list_pointers (symbolP);
b99bd4ef 3748
c19d1205 3749 symbol_set_frag (symbolP, frag);
b99bd4ef 3750
c19d1205
ZW
3751 /* Link to end of symbol chain. */
3752 {
3753 extern int symbol_table_frozen;
b99bd4ef 3754
c19d1205
ZW
3755 if (symbol_table_frozen)
3756 abort ();
3757 }
b99bd4ef 3758
c19d1205 3759 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3760
c19d1205 3761 obj_symbol_new_hook (symbolP);
b99bd4ef 3762
c19d1205
ZW
3763#ifdef tc_symbol_new_hook
3764 tc_symbol_new_hook (symbolP);
3765#endif
3766
3767#ifdef DEBUG_SYMS
3768 verify_symbol_chain (symbol_rootP, symbol_lastP);
3769#endif /* DEBUG_SYMS */
b99bd4ef
NC
3770}
3771
c19d1205
ZW
3772static void
3773s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3774{
c19d1205
ZW
3775 unsigned int entry;
3776 literal_pool * pool;
3777 char sym_name[20];
b99bd4ef 3778
c19d1205
ZW
3779 pool = find_literal_pool ();
3780 if (pool == NULL
3781 || pool->symbol == NULL
3782 || pool->next_free_entry == 0)
3783 return;
b99bd4ef 3784
c19d1205
ZW
3785 /* Align pool as you have word accesses.
3786 Only make a frag if we have to. */
3787 if (!need_pass_2)
8335d6aa 3788 frag_align (pool->alignment, 0, 0);
b99bd4ef 3789
c19d1205 3790 record_alignment (now_seg, 2);
b99bd4ef 3791
aaca88ef 3792#ifdef OBJ_ELF
47fc6e36
WN
3793 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3794 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3795#endif
c19d1205 3796 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3797
c19d1205
ZW
3798 symbol_locate (pool->symbol, sym_name, now_seg,
3799 (valueT) frag_now_fix (), frag_now);
3800 symbol_table_insert (pool->symbol);
b99bd4ef 3801
c19d1205 3802 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3803
c19d1205
ZW
3804#if defined OBJ_COFF || defined OBJ_ELF
3805 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3806#endif
6c43fab6 3807
c19d1205 3808 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3809 {
3810#ifdef OBJ_ELF
3811 if (debug_type == DEBUG_DWARF2)
3812 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3813#endif
3814 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3815 emit_expr (&(pool->literals[entry]),
3816 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3817 }
b99bd4ef 3818
c19d1205
ZW
3819 /* Mark the pool as empty. */
3820 pool->next_free_entry = 0;
3821 pool->symbol = NULL;
b99bd4ef
NC
3822}
3823
c19d1205
ZW
3824#ifdef OBJ_ELF
3825/* Forward declarations for functions below, in the MD interface
3826 section. */
3827static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3828static valueT create_unwind_entry (int);
3829static void start_unwind_section (const segT, int);
3830static void add_unwind_opcode (valueT, int);
3831static void flush_pending_unwind (void);
b99bd4ef 3832
c19d1205 3833/* Directives: Data. */
b99bd4ef 3834
c19d1205
ZW
3835static void
3836s_arm_elf_cons (int nbytes)
3837{
3838 expressionS exp;
b99bd4ef 3839
c19d1205
ZW
3840#ifdef md_flush_pending_output
3841 md_flush_pending_output ();
3842#endif
b99bd4ef 3843
c19d1205 3844 if (is_it_end_of_statement ())
b99bd4ef 3845 {
c19d1205
ZW
3846 demand_empty_rest_of_line ();
3847 return;
b99bd4ef
NC
3848 }
3849
c19d1205
ZW
3850#ifdef md_cons_align
3851 md_cons_align (nbytes);
3852#endif
b99bd4ef 3853
c19d1205
ZW
3854 mapping_state (MAP_DATA);
3855 do
b99bd4ef 3856 {
c19d1205
ZW
3857 int reloc;
3858 char *base = input_line_pointer;
b99bd4ef 3859
c19d1205 3860 expression (& exp);
b99bd4ef 3861
c19d1205
ZW
3862 if (exp.X_op != O_symbol)
3863 emit_expr (&exp, (unsigned int) nbytes);
3864 else
3865 {
3866 char *before_reloc = input_line_pointer;
3867 reloc = parse_reloc (&input_line_pointer);
3868 if (reloc == -1)
3869 {
3870 as_bad (_("unrecognized relocation suffix"));
3871 ignore_rest_of_line ();
3872 return;
3873 }
3874 else if (reloc == BFD_RELOC_UNUSED)
3875 emit_expr (&exp, (unsigned int) nbytes);
3876 else
3877 {
21d799b5 3878 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3879 bfd_reloc_type_lookup (stdoutput,
3880 (bfd_reloc_code_real_type) reloc);
c19d1205 3881 int size = bfd_get_reloc_size (howto);
b99bd4ef 3882
2fc8bdac
ZW
3883 if (reloc == BFD_RELOC_ARM_PLT32)
3884 {
3885 as_bad (_("(plt) is only valid on branch targets"));
3886 reloc = BFD_RELOC_UNUSED;
3887 size = 0;
3888 }
3889
c19d1205 3890 if (size > nbytes)
992a06ee
AM
3891 as_bad (ngettext ("%s relocations do not fit in %d byte",
3892 "%s relocations do not fit in %d bytes",
3893 nbytes),
c19d1205
ZW
3894 howto->name, nbytes);
3895 else
3896 {
3897 /* We've parsed an expression stopping at O_symbol.
3898 But there may be more expression left now that we
3899 have parsed the relocation marker. Parse it again.
3900 XXX Surely there is a cleaner way to do this. */
3901 char *p = input_line_pointer;
3902 int offset;
325801bd 3903 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3904
c19d1205
ZW
3905 memcpy (save_buf, base, input_line_pointer - base);
3906 memmove (base + (input_line_pointer - before_reloc),
3907 base, before_reloc - base);
3908
3909 input_line_pointer = base + (input_line_pointer-before_reloc);
3910 expression (&exp);
3911 memcpy (base, save_buf, p - base);
3912
3913 offset = nbytes - size;
4b1a927e
AM
3914 p = frag_more (nbytes);
3915 memset (p, 0, nbytes);
c19d1205 3916 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3917 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3918 free (save_buf);
c19d1205
ZW
3919 }
3920 }
3921 }
b99bd4ef 3922 }
c19d1205 3923 while (*input_line_pointer++ == ',');
b99bd4ef 3924
c19d1205
ZW
3925 /* Put terminator back into stream. */
3926 input_line_pointer --;
3927 demand_empty_rest_of_line ();
b99bd4ef
NC
3928}
3929
c921be7d
NC
3930/* Emit an expression containing a 32-bit thumb instruction.
3931 Implementation based on put_thumb32_insn. */
3932
3933static void
3934emit_thumb32_expr (expressionS * exp)
3935{
3936 expressionS exp_high = *exp;
3937
3938 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3939 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3940 exp->X_add_number &= 0xffff;
3941 emit_expr (exp, (unsigned int) THUMB_SIZE);
3942}
3943
3944/* Guess the instruction size based on the opcode. */
3945
3946static int
3947thumb_insn_size (int opcode)
3948{
3949 if ((unsigned int) opcode < 0xe800u)
3950 return 2;
3951 else if ((unsigned int) opcode >= 0xe8000000u)
3952 return 4;
3953 else
3954 return 0;
3955}
3956
3957static bfd_boolean
3958emit_insn (expressionS *exp, int nbytes)
3959{
3960 int size = 0;
3961
3962 if (exp->X_op == O_constant)
3963 {
3964 size = nbytes;
3965
3966 if (size == 0)
3967 size = thumb_insn_size (exp->X_add_number);
3968
3969 if (size != 0)
3970 {
3971 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3972 {
3973 as_bad (_(".inst.n operand too big. "\
3974 "Use .inst.w instead"));
3975 size = 0;
3976 }
3977 else
3978 {
5ee91343
AV
3979 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3980 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3981 else
5ee91343 3982 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3983
3984 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3985 emit_thumb32_expr (exp);
3986 else
3987 emit_expr (exp, (unsigned int) size);
3988
3989 it_fsm_post_encode ();
3990 }
3991 }
3992 else
3993 as_bad (_("cannot determine Thumb instruction size. " \
3994 "Use .inst.n/.inst.w instead"));
3995 }
3996 else
3997 as_bad (_("constant expression required"));
3998
3999 return (size != 0);
4000}
4001
4002/* Like s_arm_elf_cons but do not use md_cons_align and
4003 set the mapping state to MAP_ARM/MAP_THUMB. */
4004
4005static void
4006s_arm_elf_inst (int nbytes)
4007{
4008 if (is_it_end_of_statement ())
4009 {
4010 demand_empty_rest_of_line ();
4011 return;
4012 }
4013
4014 /* Calling mapping_state () here will not change ARM/THUMB,
4015 but will ensure not to be in DATA state. */
4016
4017 if (thumb_mode)
4018 mapping_state (MAP_THUMB);
4019 else
4020 {
4021 if (nbytes != 0)
4022 {
4023 as_bad (_("width suffixes are invalid in ARM mode"));
4024 ignore_rest_of_line ();
4025 return;
4026 }
4027
4028 nbytes = 4;
4029
4030 mapping_state (MAP_ARM);
4031 }
4032
4033 do
4034 {
4035 expressionS exp;
4036
4037 expression (& exp);
4038
4039 if (! emit_insn (& exp, nbytes))
4040 {
4041 ignore_rest_of_line ();
4042 return;
4043 }
4044 }
4045 while (*input_line_pointer++ == ',');
4046
4047 /* Put terminator back into stream. */
4048 input_line_pointer --;
4049 demand_empty_rest_of_line ();
4050}
b99bd4ef 4051
c19d1205 4052/* Parse a .rel31 directive. */
b99bd4ef 4053
c19d1205
ZW
4054static void
4055s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
4056{
4057 expressionS exp;
4058 char *p;
4059 valueT highbit;
b99bd4ef 4060
c19d1205
ZW
4061 highbit = 0;
4062 if (*input_line_pointer == '1')
4063 highbit = 0x80000000;
4064 else if (*input_line_pointer != '0')
4065 as_bad (_("expected 0 or 1"));
b99bd4ef 4066
c19d1205
ZW
4067 input_line_pointer++;
4068 if (*input_line_pointer != ',')
4069 as_bad (_("missing comma"));
4070 input_line_pointer++;
b99bd4ef 4071
c19d1205
ZW
4072#ifdef md_flush_pending_output
4073 md_flush_pending_output ();
4074#endif
b99bd4ef 4075
c19d1205
ZW
4076#ifdef md_cons_align
4077 md_cons_align (4);
4078#endif
b99bd4ef 4079
c19d1205 4080 mapping_state (MAP_DATA);
b99bd4ef 4081
c19d1205 4082 expression (&exp);
b99bd4ef 4083
c19d1205
ZW
4084 p = frag_more (4);
4085 md_number_to_chars (p, highbit, 4);
4086 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
4087 BFD_RELOC_ARM_PREL31);
b99bd4ef 4088
c19d1205 4089 demand_empty_rest_of_line ();
b99bd4ef
NC
4090}
4091
c19d1205 4092/* Directives: AEABI stack-unwind tables. */
b99bd4ef 4093
c19d1205 4094/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 4095
c19d1205
ZW
4096static void
4097s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4098{
4099 demand_empty_rest_of_line ();
921e5f0a
PB
4100 if (unwind.proc_start)
4101 {
c921be7d 4102 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4103 return;
4104 }
4105
c19d1205
ZW
4106 /* Mark the start of the function. */
4107 unwind.proc_start = expr_build_dot ();
b99bd4ef 4108
c19d1205
ZW
4109 /* Reset the rest of the unwind info. */
4110 unwind.opcode_count = 0;
4111 unwind.table_entry = NULL;
4112 unwind.personality_routine = NULL;
4113 unwind.personality_index = -1;
4114 unwind.frame_size = 0;
4115 unwind.fp_offset = 0;
fdfde340 4116 unwind.fp_reg = REG_SP;
c19d1205
ZW
4117 unwind.fp_used = 0;
4118 unwind.sp_restored = 0;
4119}
b99bd4ef 4120
b99bd4ef 4121
c19d1205
ZW
4122/* Parse a handlerdata directive. Creates the exception handling table entry
4123 for the function. */
b99bd4ef 4124
c19d1205
ZW
4125static void
4126s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4127{
4128 demand_empty_rest_of_line ();
921e5f0a 4129 if (!unwind.proc_start)
c921be7d 4130 as_bad (MISSING_FNSTART);
921e5f0a 4131
c19d1205 4132 if (unwind.table_entry)
6decc662 4133 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4134
c19d1205
ZW
4135 create_unwind_entry (1);
4136}
a737bd4d 4137
c19d1205 4138/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4139
c19d1205
ZW
4140static void
4141s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4142{
4143 long where;
4144 char *ptr;
4145 valueT val;
940b5ce0 4146 unsigned int marked_pr_dependency;
f02232aa 4147
c19d1205 4148 demand_empty_rest_of_line ();
f02232aa 4149
921e5f0a
PB
4150 if (!unwind.proc_start)
4151 {
c921be7d 4152 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4153 return;
4154 }
4155
c19d1205
ZW
4156 /* Add eh table entry. */
4157 if (unwind.table_entry == NULL)
4158 val = create_unwind_entry (0);
4159 else
4160 val = 0;
f02232aa 4161
c19d1205
ZW
4162 /* Add index table entry. This is two words. */
4163 start_unwind_section (unwind.saved_seg, 1);
4164 frag_align (2, 0, 0);
4165 record_alignment (now_seg, 2);
b99bd4ef 4166
c19d1205 4167 ptr = frag_more (8);
5011093d 4168 memset (ptr, 0, 8);
c19d1205 4169 where = frag_now_fix () - 8;
f02232aa 4170
c19d1205
ZW
4171 /* Self relative offset of the function start. */
4172 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4173 BFD_RELOC_ARM_PREL31);
f02232aa 4174
c19d1205
ZW
4175 /* Indicate dependency on EHABI-defined personality routines to the
4176 linker, if it hasn't been done already. */
940b5ce0
DJ
4177 marked_pr_dependency
4178 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4179 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4180 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4181 {
5f4273c7
NC
4182 static const char *const name[] =
4183 {
4184 "__aeabi_unwind_cpp_pr0",
4185 "__aeabi_unwind_cpp_pr1",
4186 "__aeabi_unwind_cpp_pr2"
4187 };
c19d1205
ZW
4188 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4189 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4190 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4191 |= 1 << unwind.personality_index;
c19d1205 4192 }
f02232aa 4193
c19d1205
ZW
4194 if (val)
4195 /* Inline exception table entry. */
4196 md_number_to_chars (ptr + 4, val, 4);
4197 else
4198 /* Self relative offset of the table entry. */
4199 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4200 BFD_RELOC_ARM_PREL31);
f02232aa 4201
c19d1205
ZW
4202 /* Restore the original section. */
4203 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4204
4205 unwind.proc_start = NULL;
c19d1205 4206}
f02232aa 4207
f02232aa 4208
c19d1205 4209/* Parse an unwind_cantunwind directive. */
b99bd4ef 4210
c19d1205
ZW
4211static void
4212s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4213{
4214 demand_empty_rest_of_line ();
921e5f0a 4215 if (!unwind.proc_start)
c921be7d 4216 as_bad (MISSING_FNSTART);
921e5f0a 4217
c19d1205
ZW
4218 if (unwind.personality_routine || unwind.personality_index != -1)
4219 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4220
c19d1205
ZW
4221 unwind.personality_index = -2;
4222}
b99bd4ef 4223
b99bd4ef 4224
c19d1205 4225/* Parse a personalityindex directive. */
b99bd4ef 4226
c19d1205
ZW
4227static void
4228s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4229{
4230 expressionS exp;
b99bd4ef 4231
921e5f0a 4232 if (!unwind.proc_start)
c921be7d 4233 as_bad (MISSING_FNSTART);
921e5f0a 4234
c19d1205
ZW
4235 if (unwind.personality_routine || unwind.personality_index != -1)
4236 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4237
c19d1205 4238 expression (&exp);
b99bd4ef 4239
c19d1205
ZW
4240 if (exp.X_op != O_constant
4241 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4242 {
c19d1205
ZW
4243 as_bad (_("bad personality routine number"));
4244 ignore_rest_of_line ();
4245 return;
b99bd4ef
NC
4246 }
4247
c19d1205 4248 unwind.personality_index = exp.X_add_number;
b99bd4ef 4249
c19d1205
ZW
4250 demand_empty_rest_of_line ();
4251}
e16bb312 4252
e16bb312 4253
c19d1205 4254/* Parse a personality directive. */
e16bb312 4255
c19d1205
ZW
4256static void
4257s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4258{
4259 char *name, *p, c;
a737bd4d 4260
921e5f0a 4261 if (!unwind.proc_start)
c921be7d 4262 as_bad (MISSING_FNSTART);
921e5f0a 4263
c19d1205
ZW
4264 if (unwind.personality_routine || unwind.personality_index != -1)
4265 as_bad (_("duplicate .personality directive"));
a737bd4d 4266
d02603dc 4267 c = get_symbol_name (& name);
c19d1205 4268 p = input_line_pointer;
d02603dc
NC
4269 if (c == '"')
4270 ++ input_line_pointer;
c19d1205
ZW
4271 unwind.personality_routine = symbol_find_or_make (name);
4272 *p = c;
4273 demand_empty_rest_of_line ();
4274}
e16bb312 4275
e16bb312 4276
c19d1205 4277/* Parse a directive saving core registers. */
e16bb312 4278
c19d1205
ZW
4279static void
4280s_arm_unwind_save_core (void)
e16bb312 4281{
c19d1205
ZW
4282 valueT op;
4283 long range;
4284 int n;
e16bb312 4285
4b5a202f 4286 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4287 if (range == FAIL)
e16bb312 4288 {
c19d1205
ZW
4289 as_bad (_("expected register list"));
4290 ignore_rest_of_line ();
4291 return;
4292 }
e16bb312 4293
c19d1205 4294 demand_empty_rest_of_line ();
e16bb312 4295
c19d1205
ZW
4296 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4297 into .unwind_save {..., sp...}. We aren't bothered about the value of
4298 ip because it is clobbered by calls. */
4299 if (unwind.sp_restored && unwind.fp_reg == 12
4300 && (range & 0x3000) == 0x1000)
4301 {
4302 unwind.opcode_count--;
4303 unwind.sp_restored = 0;
4304 range = (range | 0x2000) & ~0x1000;
4305 unwind.pending_offset = 0;
4306 }
e16bb312 4307
01ae4198
DJ
4308 /* Pop r4-r15. */
4309 if (range & 0xfff0)
c19d1205 4310 {
01ae4198
DJ
4311 /* See if we can use the short opcodes. These pop a block of up to 8
4312 registers starting with r4, plus maybe r14. */
4313 for (n = 0; n < 8; n++)
4314 {
4315 /* Break at the first non-saved register. */
4316 if ((range & (1 << (n + 4))) == 0)
4317 break;
4318 }
4319 /* See if there are any other bits set. */
4320 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4321 {
4322 /* Use the long form. */
4323 op = 0x8000 | ((range >> 4) & 0xfff);
4324 add_unwind_opcode (op, 2);
4325 }
0dd132b6 4326 else
01ae4198
DJ
4327 {
4328 /* Use the short form. */
4329 if (range & 0x4000)
4330 op = 0xa8; /* Pop r14. */
4331 else
4332 op = 0xa0; /* Do not pop r14. */
4333 op |= (n - 1);
4334 add_unwind_opcode (op, 1);
4335 }
c19d1205 4336 }
0dd132b6 4337
c19d1205
ZW
4338 /* Pop r0-r3. */
4339 if (range & 0xf)
4340 {
4341 op = 0xb100 | (range & 0xf);
4342 add_unwind_opcode (op, 2);
0dd132b6
NC
4343 }
4344
c19d1205
ZW
4345 /* Record the number of bytes pushed. */
4346 for (n = 0; n < 16; n++)
4347 {
4348 if (range & (1 << n))
4349 unwind.frame_size += 4;
4350 }
0dd132b6
NC
4351}
4352
c19d1205
ZW
4353
4354/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4355
4356static void
c19d1205 4357s_arm_unwind_save_fpa (int reg)
b99bd4ef 4358{
c19d1205
ZW
4359 expressionS exp;
4360 int num_regs;
4361 valueT op;
b99bd4ef 4362
c19d1205
ZW
4363 /* Get Number of registers to transfer. */
4364 if (skip_past_comma (&input_line_pointer) != FAIL)
4365 expression (&exp);
4366 else
4367 exp.X_op = O_illegal;
b99bd4ef 4368
c19d1205 4369 if (exp.X_op != O_constant)
b99bd4ef 4370 {
c19d1205
ZW
4371 as_bad (_("expected , <constant>"));
4372 ignore_rest_of_line ();
b99bd4ef
NC
4373 return;
4374 }
4375
c19d1205
ZW
4376 num_regs = exp.X_add_number;
4377
4378 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4379 {
c19d1205
ZW
4380 as_bad (_("number of registers must be in the range [1:4]"));
4381 ignore_rest_of_line ();
b99bd4ef
NC
4382 return;
4383 }
4384
c19d1205 4385 demand_empty_rest_of_line ();
b99bd4ef 4386
c19d1205
ZW
4387 if (reg == 4)
4388 {
4389 /* Short form. */
4390 op = 0xb4 | (num_regs - 1);
4391 add_unwind_opcode (op, 1);
4392 }
b99bd4ef
NC
4393 else
4394 {
c19d1205
ZW
4395 /* Long form. */
4396 op = 0xc800 | (reg << 4) | (num_regs - 1);
4397 add_unwind_opcode (op, 2);
b99bd4ef 4398 }
c19d1205 4399 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4400}
4401
c19d1205 4402
fa073d69
MS
4403/* Parse a directive saving VFP registers for ARMv6 and above. */
4404
4405static void
4406s_arm_unwind_save_vfp_armv6 (void)
4407{
4408 int count;
4409 unsigned int start;
4410 valueT op;
4411 int num_vfpv3_regs = 0;
4412 int num_regs_below_16;
efd6b359 4413 bfd_boolean partial_match;
fa073d69 4414
efd6b359
AV
4415 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4416 &partial_match);
fa073d69
MS
4417 if (count == FAIL)
4418 {
4419 as_bad (_("expected register list"));
4420 ignore_rest_of_line ();
4421 return;
4422 }
4423
4424 demand_empty_rest_of_line ();
4425
4426 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4427 than FSTMX/FLDMX-style ones). */
4428
4429 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4430 if (start >= 16)
4431 num_vfpv3_regs = count;
4432 else if (start + count > 16)
4433 num_vfpv3_regs = start + count - 16;
4434
4435 if (num_vfpv3_regs > 0)
4436 {
4437 int start_offset = start > 16 ? start - 16 : 0;
4438 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4439 add_unwind_opcode (op, 2);
4440 }
4441
4442 /* Generate opcode for registers numbered in the range 0 .. 15. */
4443 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4444 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4445 if (num_regs_below_16 > 0)
4446 {
4447 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4448 add_unwind_opcode (op, 2);
4449 }
4450
4451 unwind.frame_size += count * 8;
4452}
4453
4454
4455/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4456
4457static void
c19d1205 4458s_arm_unwind_save_vfp (void)
b99bd4ef 4459{
c19d1205 4460 int count;
ca3f61f7 4461 unsigned int reg;
c19d1205 4462 valueT op;
efd6b359 4463 bfd_boolean partial_match;
b99bd4ef 4464
efd6b359
AV
4465 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4466 &partial_match);
c19d1205 4467 if (count == FAIL)
b99bd4ef 4468 {
c19d1205
ZW
4469 as_bad (_("expected register list"));
4470 ignore_rest_of_line ();
b99bd4ef
NC
4471 return;
4472 }
4473
c19d1205 4474 demand_empty_rest_of_line ();
b99bd4ef 4475
c19d1205 4476 if (reg == 8)
b99bd4ef 4477 {
c19d1205
ZW
4478 /* Short form. */
4479 op = 0xb8 | (count - 1);
4480 add_unwind_opcode (op, 1);
b99bd4ef 4481 }
c19d1205 4482 else
b99bd4ef 4483 {
c19d1205
ZW
4484 /* Long form. */
4485 op = 0xb300 | (reg << 4) | (count - 1);
4486 add_unwind_opcode (op, 2);
b99bd4ef 4487 }
c19d1205
ZW
4488 unwind.frame_size += count * 8 + 4;
4489}
b99bd4ef 4490
b99bd4ef 4491
c19d1205
ZW
4492/* Parse a directive saving iWMMXt data registers. */
4493
4494static void
4495s_arm_unwind_save_mmxwr (void)
4496{
4497 int reg;
4498 int hi_reg;
4499 int i;
4500 unsigned mask = 0;
4501 valueT op;
b99bd4ef 4502
c19d1205
ZW
4503 if (*input_line_pointer == '{')
4504 input_line_pointer++;
b99bd4ef 4505
c19d1205 4506 do
b99bd4ef 4507 {
dcbf9037 4508 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4509
c19d1205 4510 if (reg == FAIL)
b99bd4ef 4511 {
9b7132d3 4512 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4513 goto error;
b99bd4ef
NC
4514 }
4515
c19d1205
ZW
4516 if (mask >> reg)
4517 as_tsktsk (_("register list not in ascending order"));
4518 mask |= 1 << reg;
b99bd4ef 4519
c19d1205
ZW
4520 if (*input_line_pointer == '-')
4521 {
4522 input_line_pointer++;
dcbf9037 4523 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4524 if (hi_reg == FAIL)
4525 {
9b7132d3 4526 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4527 goto error;
4528 }
4529 else if (reg >= hi_reg)
4530 {
4531 as_bad (_("bad register range"));
4532 goto error;
4533 }
4534 for (; reg < hi_reg; reg++)
4535 mask |= 1 << reg;
4536 }
4537 }
4538 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4539
d996d970 4540 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4541
c19d1205 4542 demand_empty_rest_of_line ();
b99bd4ef 4543
708587a4 4544 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4545 the list. */
4546 flush_pending_unwind ();
b99bd4ef 4547
c19d1205 4548 for (i = 0; i < 16; i++)
b99bd4ef 4549 {
c19d1205
ZW
4550 if (mask & (1 << i))
4551 unwind.frame_size += 8;
b99bd4ef
NC
4552 }
4553
c19d1205
ZW
4554 /* Attempt to combine with a previous opcode. We do this because gcc
4555 likes to output separate unwind directives for a single block of
4556 registers. */
4557 if (unwind.opcode_count > 0)
b99bd4ef 4558 {
c19d1205
ZW
4559 i = unwind.opcodes[unwind.opcode_count - 1];
4560 if ((i & 0xf8) == 0xc0)
4561 {
4562 i &= 7;
4563 /* Only merge if the blocks are contiguous. */
4564 if (i < 6)
4565 {
4566 if ((mask & 0xfe00) == (1 << 9))
4567 {
4568 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4569 unwind.opcode_count--;
4570 }
4571 }
4572 else if (i == 6 && unwind.opcode_count >= 2)
4573 {
4574 i = unwind.opcodes[unwind.opcode_count - 2];
4575 reg = i >> 4;
4576 i &= 0xf;
b99bd4ef 4577
c19d1205
ZW
4578 op = 0xffff << (reg - 1);
4579 if (reg > 0
87a1fd79 4580 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4581 {
4582 op = (1 << (reg + i + 1)) - 1;
4583 op &= ~((1 << reg) - 1);
4584 mask |= op;
4585 unwind.opcode_count -= 2;
4586 }
4587 }
4588 }
b99bd4ef
NC
4589 }
4590
c19d1205
ZW
4591 hi_reg = 15;
4592 /* We want to generate opcodes in the order the registers have been
4593 saved, ie. descending order. */
4594 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4595 {
c19d1205
ZW
4596 /* Save registers in blocks. */
4597 if (reg < 0
4598 || !(mask & (1 << reg)))
4599 {
4600 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4601 preceding block. */
c19d1205
ZW
4602 if (reg != hi_reg)
4603 {
4604 if (reg == 9)
4605 {
4606 /* Short form. */
4607 op = 0xc0 | (hi_reg - 10);
4608 add_unwind_opcode (op, 1);
4609 }
4610 else
4611 {
4612 /* Long form. */
4613 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4614 add_unwind_opcode (op, 2);
4615 }
4616 }
4617 hi_reg = reg - 1;
4618 }
b99bd4ef
NC
4619 }
4620
c19d1205
ZW
4621 return;
4622error:
4623 ignore_rest_of_line ();
b99bd4ef
NC
4624}
4625
4626static void
c19d1205 4627s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4628{
c19d1205
ZW
4629 int reg;
4630 int hi_reg;
4631 unsigned mask = 0;
4632 valueT op;
b99bd4ef 4633
c19d1205
ZW
4634 if (*input_line_pointer == '{')
4635 input_line_pointer++;
b99bd4ef 4636
477330fc
RM
4637 skip_whitespace (input_line_pointer);
4638
c19d1205 4639 do
b99bd4ef 4640 {
dcbf9037 4641 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4642
c19d1205
ZW
4643 if (reg == FAIL)
4644 {
9b7132d3 4645 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4646 goto error;
4647 }
b99bd4ef 4648
c19d1205
ZW
4649 reg -= 8;
4650 if (mask >> reg)
4651 as_tsktsk (_("register list not in ascending order"));
4652 mask |= 1 << reg;
b99bd4ef 4653
c19d1205
ZW
4654 if (*input_line_pointer == '-')
4655 {
4656 input_line_pointer++;
dcbf9037 4657 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4658 if (hi_reg == FAIL)
4659 {
9b7132d3 4660 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4661 goto error;
4662 }
4663 else if (reg >= hi_reg)
4664 {
4665 as_bad (_("bad register range"));
4666 goto error;
4667 }
4668 for (; reg < hi_reg; reg++)
4669 mask |= 1 << reg;
4670 }
b99bd4ef 4671 }
c19d1205 4672 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4673
d996d970 4674 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4675
c19d1205
ZW
4676 demand_empty_rest_of_line ();
4677
708587a4 4678 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4679 the list. */
4680 flush_pending_unwind ();
b99bd4ef 4681
c19d1205 4682 for (reg = 0; reg < 16; reg++)
b99bd4ef 4683 {
c19d1205
ZW
4684 if (mask & (1 << reg))
4685 unwind.frame_size += 4;
b99bd4ef 4686 }
c19d1205
ZW
4687 op = 0xc700 | mask;
4688 add_unwind_opcode (op, 2);
4689 return;
4690error:
4691 ignore_rest_of_line ();
b99bd4ef
NC
4692}
4693
c19d1205 4694
fa073d69
MS
4695/* Parse an unwind_save directive.
4696 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4697
b99bd4ef 4698static void
fa073d69 4699s_arm_unwind_save (int arch_v6)
b99bd4ef 4700{
c19d1205
ZW
4701 char *peek;
4702 struct reg_entry *reg;
4703 bfd_boolean had_brace = FALSE;
b99bd4ef 4704
921e5f0a 4705 if (!unwind.proc_start)
c921be7d 4706 as_bad (MISSING_FNSTART);
921e5f0a 4707
c19d1205
ZW
4708 /* Figure out what sort of save we have. */
4709 peek = input_line_pointer;
b99bd4ef 4710
c19d1205 4711 if (*peek == '{')
b99bd4ef 4712 {
c19d1205
ZW
4713 had_brace = TRUE;
4714 peek++;
b99bd4ef
NC
4715 }
4716
c19d1205 4717 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4718
c19d1205 4719 if (!reg)
b99bd4ef 4720 {
c19d1205
ZW
4721 as_bad (_("register expected"));
4722 ignore_rest_of_line ();
b99bd4ef
NC
4723 return;
4724 }
4725
c19d1205 4726 switch (reg->type)
b99bd4ef 4727 {
c19d1205
ZW
4728 case REG_TYPE_FN:
4729 if (had_brace)
4730 {
4731 as_bad (_("FPA .unwind_save does not take a register list"));
4732 ignore_rest_of_line ();
4733 return;
4734 }
93ac2687 4735 input_line_pointer = peek;
c19d1205 4736 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4737 return;
c19d1205 4738
1f5afe1c
NC
4739 case REG_TYPE_RN:
4740 s_arm_unwind_save_core ();
4741 return;
4742
fa073d69
MS
4743 case REG_TYPE_VFD:
4744 if (arch_v6)
477330fc 4745 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4746 else
477330fc 4747 s_arm_unwind_save_vfp ();
fa073d69 4748 return;
1f5afe1c
NC
4749
4750 case REG_TYPE_MMXWR:
4751 s_arm_unwind_save_mmxwr ();
4752 return;
4753
4754 case REG_TYPE_MMXWCG:
4755 s_arm_unwind_save_mmxwcg ();
4756 return;
c19d1205
ZW
4757
4758 default:
4759 as_bad (_(".unwind_save does not support this kind of register"));
4760 ignore_rest_of_line ();
b99bd4ef 4761 }
c19d1205 4762}
b99bd4ef 4763
b99bd4ef 4764
c19d1205
ZW
4765/* Parse an unwind_movsp directive. */
4766
4767static void
4768s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4769{
4770 int reg;
4771 valueT op;
4fa3602b 4772 int offset;
c19d1205 4773
921e5f0a 4774 if (!unwind.proc_start)
c921be7d 4775 as_bad (MISSING_FNSTART);
921e5f0a 4776
dcbf9037 4777 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4778 if (reg == FAIL)
b99bd4ef 4779 {
9b7132d3 4780 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4781 ignore_rest_of_line ();
b99bd4ef
NC
4782 return;
4783 }
4fa3602b
PB
4784
4785 /* Optional constant. */
4786 if (skip_past_comma (&input_line_pointer) != FAIL)
4787 {
4788 if (immediate_for_directive (&offset) == FAIL)
4789 return;
4790 }
4791 else
4792 offset = 0;
4793
c19d1205 4794 demand_empty_rest_of_line ();
b99bd4ef 4795
c19d1205 4796 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4797 {
c19d1205 4798 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4799 return;
4800 }
4801
c19d1205
ZW
4802 if (unwind.fp_reg != REG_SP)
4803 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4804
c19d1205
ZW
4805 /* Generate opcode to restore the value. */
4806 op = 0x90 | reg;
4807 add_unwind_opcode (op, 1);
4808
4809 /* Record the information for later. */
4810 unwind.fp_reg = reg;
4fa3602b 4811 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4812 unwind.sp_restored = 1;
b05fe5cf
ZW
4813}
4814
c19d1205
ZW
4815/* Parse an unwind_pad directive. */
4816
b05fe5cf 4817static void
c19d1205 4818s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4819{
c19d1205 4820 int offset;
b05fe5cf 4821
921e5f0a 4822 if (!unwind.proc_start)
c921be7d 4823 as_bad (MISSING_FNSTART);
921e5f0a 4824
c19d1205
ZW
4825 if (immediate_for_directive (&offset) == FAIL)
4826 return;
b99bd4ef 4827
c19d1205
ZW
4828 if (offset & 3)
4829 {
4830 as_bad (_("stack increment must be multiple of 4"));
4831 ignore_rest_of_line ();
4832 return;
4833 }
b99bd4ef 4834
c19d1205
ZW
4835 /* Don't generate any opcodes, just record the details for later. */
4836 unwind.frame_size += offset;
4837 unwind.pending_offset += offset;
4838
4839 demand_empty_rest_of_line ();
4840}
4841
4842/* Parse an unwind_setfp directive. */
4843
4844static void
4845s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4846{
c19d1205
ZW
4847 int sp_reg;
4848 int fp_reg;
4849 int offset;
4850
921e5f0a 4851 if (!unwind.proc_start)
c921be7d 4852 as_bad (MISSING_FNSTART);
921e5f0a 4853
dcbf9037 4854 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4855 if (skip_past_comma (&input_line_pointer) == FAIL)
4856 sp_reg = FAIL;
4857 else
dcbf9037 4858 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4859
c19d1205
ZW
4860 if (fp_reg == FAIL || sp_reg == FAIL)
4861 {
4862 as_bad (_("expected <reg>, <reg>"));
4863 ignore_rest_of_line ();
4864 return;
4865 }
b99bd4ef 4866
c19d1205
ZW
4867 /* Optional constant. */
4868 if (skip_past_comma (&input_line_pointer) != FAIL)
4869 {
4870 if (immediate_for_directive (&offset) == FAIL)
4871 return;
4872 }
4873 else
4874 offset = 0;
a737bd4d 4875
c19d1205 4876 demand_empty_rest_of_line ();
a737bd4d 4877
fdfde340 4878 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4879 {
c19d1205
ZW
4880 as_bad (_("register must be either sp or set by a previous"
4881 "unwind_movsp directive"));
4882 return;
a737bd4d
NC
4883 }
4884
c19d1205
ZW
4885 /* Don't generate any opcodes, just record the information for later. */
4886 unwind.fp_reg = fp_reg;
4887 unwind.fp_used = 1;
fdfde340 4888 if (sp_reg == REG_SP)
c19d1205
ZW
4889 unwind.fp_offset = unwind.frame_size - offset;
4890 else
4891 unwind.fp_offset -= offset;
a737bd4d
NC
4892}
4893
c19d1205
ZW
4894/* Parse an unwind_raw directive. */
4895
4896static void
4897s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4898{
c19d1205 4899 expressionS exp;
708587a4 4900 /* This is an arbitrary limit. */
c19d1205
ZW
4901 unsigned char op[16];
4902 int count;
a737bd4d 4903
921e5f0a 4904 if (!unwind.proc_start)
c921be7d 4905 as_bad (MISSING_FNSTART);
921e5f0a 4906
c19d1205
ZW
4907 expression (&exp);
4908 if (exp.X_op == O_constant
4909 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4910 {
c19d1205
ZW
4911 unwind.frame_size += exp.X_add_number;
4912 expression (&exp);
4913 }
4914 else
4915 exp.X_op = O_illegal;
a737bd4d 4916
c19d1205
ZW
4917 if (exp.X_op != O_constant)
4918 {
4919 as_bad (_("expected <offset>, <opcode>"));
4920 ignore_rest_of_line ();
4921 return;
4922 }
a737bd4d 4923
c19d1205 4924 count = 0;
a737bd4d 4925
c19d1205
ZW
4926 /* Parse the opcode. */
4927 for (;;)
4928 {
4929 if (count >= 16)
4930 {
4931 as_bad (_("unwind opcode too long"));
4932 ignore_rest_of_line ();
a737bd4d 4933 }
c19d1205 4934 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4935 {
c19d1205
ZW
4936 as_bad (_("invalid unwind opcode"));
4937 ignore_rest_of_line ();
4938 return;
a737bd4d 4939 }
c19d1205 4940 op[count++] = exp.X_add_number;
a737bd4d 4941
c19d1205
ZW
4942 /* Parse the next byte. */
4943 if (skip_past_comma (&input_line_pointer) == FAIL)
4944 break;
a737bd4d 4945
c19d1205
ZW
4946 expression (&exp);
4947 }
b99bd4ef 4948
c19d1205
ZW
4949 /* Add the opcode bytes in reverse order. */
4950 while (count--)
4951 add_unwind_opcode (op[count], 1);
b99bd4ef 4952
c19d1205 4953 demand_empty_rest_of_line ();
b99bd4ef 4954}
ee065d83
PB
4955
4956
4957/* Parse a .eabi_attribute directive. */
4958
4959static void
4960s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4961{
0420f52b 4962 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4963
3076e594 4964 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4965 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4966}
4967
0855e32b
NS
4968/* Emit a tls fix for the symbol. */
4969
4970static void
4971s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4972{
4973 char *p;
4974 expressionS exp;
4975#ifdef md_flush_pending_output
4976 md_flush_pending_output ();
4977#endif
4978
4979#ifdef md_cons_align
4980 md_cons_align (4);
4981#endif
4982
4983 /* Since we're just labelling the code, there's no need to define a
4984 mapping symbol. */
4985 expression (&exp);
4986 p = obstack_next_free (&frchain_now->frch_obstack);
4987 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4988 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4989 : BFD_RELOC_ARM_TLS_DESCSEQ);
4990}
cdf9ccec 4991#endif /* OBJ_ELF */
0855e32b 4992
ee065d83 4993static void s_arm_arch (int);
7a1d4c38 4994static void s_arm_object_arch (int);
ee065d83
PB
4995static void s_arm_cpu (int);
4996static void s_arm_fpu (int);
69133863 4997static void s_arm_arch_extension (int);
b99bd4ef 4998
f0927246
NC
4999#ifdef TE_PE
5000
5001static void
5f4273c7 5002pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
5003{
5004 expressionS exp;
5005
5006 do
5007 {
5008 expression (&exp);
5009 if (exp.X_op == O_symbol)
5010 exp.X_op = O_secrel;
5011
5012 emit_expr (&exp, 4);
5013 }
5014 while (*input_line_pointer++ == ',');
5015
5016 input_line_pointer--;
5017 demand_empty_rest_of_line ();
5018}
5019#endif /* TE_PE */
5020
5312fe52
BW
5021int
5022arm_is_largest_exponent_ok (int precision)
5023{
5024 /* precision == 1 ensures that this will only return
5025 true for 16 bit floats. */
5026 return (precision == 1) && (fp16_format == ARM_FP16_FORMAT_ALTERNATIVE);
5027}
5028
5029static void
5030set_fp16_format (int dummy ATTRIBUTE_UNUSED)
5031{
5032 char saved_char;
5033 char* name;
5034 enum fp_16bit_format new_format;
5035
5036 new_format = ARM_FP16_FORMAT_DEFAULT;
5037
5038 name = input_line_pointer;
5039 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
5040 input_line_pointer++;
5041
5042 saved_char = *input_line_pointer;
5043 *input_line_pointer = 0;
5044
5045 if (strcasecmp (name, "ieee") == 0)
5046 new_format = ARM_FP16_FORMAT_IEEE;
5047 else if (strcasecmp (name, "alternative") == 0)
5048 new_format = ARM_FP16_FORMAT_ALTERNATIVE;
5049 else
5050 {
5051 as_bad (_("unrecognised float16 format \"%s\""), name);
5052 goto cleanup;
5053 }
5054
5055 /* Only set fp16_format if it is still the default (aka not already
5056 been set yet). */
5057 if (fp16_format == ARM_FP16_FORMAT_DEFAULT)
5058 fp16_format = new_format;
5059 else
5060 {
5061 if (new_format != fp16_format)
5062 as_warn (_("float16 format cannot be set more than once, ignoring."));
5063 }
5064
5065cleanup:
5066 *input_line_pointer = saved_char;
5067 ignore_rest_of_line ();
5068}
5069
c19d1205
ZW
5070/* This table describes all the machine specific pseudo-ops the assembler
5071 has to support. The fields are:
5072 pseudo-op name without dot
5073 function to call to execute this pseudo-op
5074 Integer arg to pass to the function. */
b99bd4ef 5075
c19d1205 5076const pseudo_typeS md_pseudo_table[] =
b99bd4ef 5077{
c19d1205
ZW
5078 /* Never called because '.req' does not start a line. */
5079 { "req", s_req, 0 },
dcbf9037
JB
5080 /* Following two are likewise never called. */
5081 { "dn", s_dn, 0 },
5082 { "qn", s_qn, 0 },
c19d1205
ZW
5083 { "unreq", s_unreq, 0 },
5084 { "bss", s_bss, 0 },
db2ed2e0 5085 { "align", s_align_ptwo, 2 },
c19d1205
ZW
5086 { "arm", s_arm, 0 },
5087 { "thumb", s_thumb, 0 },
5088 { "code", s_code, 0 },
5089 { "force_thumb", s_force_thumb, 0 },
5090 { "thumb_func", s_thumb_func, 0 },
5091 { "thumb_set", s_thumb_set, 0 },
5092 { "even", s_even, 0 },
5093 { "ltorg", s_ltorg, 0 },
5094 { "pool", s_ltorg, 0 },
5095 { "syntax", s_syntax, 0 },
8463be01
PB
5096 { "cpu", s_arm_cpu, 0 },
5097 { "arch", s_arm_arch, 0 },
7a1d4c38 5098 { "object_arch", s_arm_object_arch, 0 },
8463be01 5099 { "fpu", s_arm_fpu, 0 },
69133863 5100 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 5101#ifdef OBJ_ELF
c921be7d
NC
5102 { "word", s_arm_elf_cons, 4 },
5103 { "long", s_arm_elf_cons, 4 },
5104 { "inst.n", s_arm_elf_inst, 2 },
5105 { "inst.w", s_arm_elf_inst, 4 },
5106 { "inst", s_arm_elf_inst, 0 },
5107 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
5108 { "fnstart", s_arm_unwind_fnstart, 0 },
5109 { "fnend", s_arm_unwind_fnend, 0 },
5110 { "cantunwind", s_arm_unwind_cantunwind, 0 },
5111 { "personality", s_arm_unwind_personality, 0 },
5112 { "personalityindex", s_arm_unwind_personalityindex, 0 },
5113 { "handlerdata", s_arm_unwind_handlerdata, 0 },
5114 { "save", s_arm_unwind_save, 0 },
fa073d69 5115 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
5116 { "movsp", s_arm_unwind_movsp, 0 },
5117 { "pad", s_arm_unwind_pad, 0 },
5118 { "setfp", s_arm_unwind_setfp, 0 },
5119 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 5120 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 5121 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
5122#else
5123 { "word", cons, 4},
f0927246
NC
5124
5125 /* These are used for dwarf. */
5126 {"2byte", cons, 2},
5127 {"4byte", cons, 4},
5128 {"8byte", cons, 8},
5129 /* These are used for dwarf2. */
68d20676 5130 { "file", dwarf2_directive_file, 0 },
f0927246
NC
5131 { "loc", dwarf2_directive_loc, 0 },
5132 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
5133#endif
5134 { "extend", float_cons, 'x' },
5135 { "ldouble", float_cons, 'x' },
5136 { "packed", float_cons, 'p' },
27cce866 5137 { "bfloat16", float_cons, 'b' },
f0927246
NC
5138#ifdef TE_PE
5139 {"secrel32", pe_directive_secrel, 0},
5140#endif
2e6976a8
DG
5141
5142 /* These are for compatibility with CodeComposer Studio. */
5143 {"ref", s_ccs_ref, 0},
5144 {"def", s_ccs_def, 0},
5145 {"asmfunc", s_ccs_asmfunc, 0},
5146 {"endasmfunc", s_ccs_endasmfunc, 0},
5147
5312fe52
BW
5148 {"float16", float_cons, 'h' },
5149 {"float16_format", set_fp16_format, 0 },
5150
c19d1205
ZW
5151 { 0, 0, 0 }
5152};
5312fe52 5153
c19d1205 5154/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5155
c19d1205
ZW
5156/* Generic immediate-value read function for use in insn parsing.
5157 STR points to the beginning of the immediate (the leading #);
5158 VAL receives the value; if the value is outside [MIN, MAX]
5159 issue an error. PREFIX_OPT is true if the immediate prefix is
5160 optional. */
b99bd4ef 5161
c19d1205
ZW
5162static int
5163parse_immediate (char **str, int *val, int min, int max,
5164 bfd_boolean prefix_opt)
5165{
5166 expressionS exp;
0198d5e6 5167
c19d1205
ZW
5168 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5169 if (exp.X_op != O_constant)
b99bd4ef 5170 {
c19d1205
ZW
5171 inst.error = _("constant expression required");
5172 return FAIL;
5173 }
b99bd4ef 5174
c19d1205
ZW
5175 if (exp.X_add_number < min || exp.X_add_number > max)
5176 {
5177 inst.error = _("immediate value out of range");
5178 return FAIL;
5179 }
b99bd4ef 5180
c19d1205
ZW
5181 *val = exp.X_add_number;
5182 return SUCCESS;
5183}
b99bd4ef 5184
5287ad62 5185/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5186 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5187 instructions. Puts the result directly in inst.operands[i]. */
5188
5189static int
8335d6aa
JW
5190parse_big_immediate (char **str, int i, expressionS *in_exp,
5191 bfd_boolean allow_symbol_p)
5287ad62
JB
5192{
5193 expressionS exp;
8335d6aa 5194 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5195 char *ptr = *str;
5196
8335d6aa 5197 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5198
8335d6aa 5199 if (exp_p->X_op == O_constant)
036dc3f7 5200 {
8335d6aa 5201 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5202 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5203 O_constant. We have to be careful not to break compilation for
5204 32-bit X_add_number, though. */
8335d6aa 5205 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5206 {
8335d6aa
JW
5207 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5208 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5209 & 0xffffffff);
036dc3f7
PB
5210 inst.operands[i].regisimm = 1;
5211 }
5212 }
8335d6aa
JW
5213 else if (exp_p->X_op == O_big
5214 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5215 {
5216 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5217
5287ad62 5218 /* Bignums have their least significant bits in
477330fc
RM
5219 generic_bignum[0]. Make sure we put 32 bits in imm and
5220 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5221 gas_assert (parts != 0);
95b75c01
NC
5222
5223 /* Make sure that the number is not too big.
5224 PR 11972: Bignums can now be sign-extended to the
5225 size of a .octa so check that the out of range bits
5226 are all zero or all one. */
8335d6aa 5227 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5228 {
5229 LITTLENUM_TYPE m = -1;
5230
5231 if (generic_bignum[parts * 2] != 0
5232 && generic_bignum[parts * 2] != m)
5233 return FAIL;
5234
8335d6aa 5235 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5236 if (generic_bignum[j] != generic_bignum[j-1])
5237 return FAIL;
5238 }
5239
5287ad62
JB
5240 inst.operands[i].imm = 0;
5241 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5242 inst.operands[i].imm |= generic_bignum[idx]
5243 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5244 inst.operands[i].reg = 0;
5245 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5246 inst.operands[i].reg |= generic_bignum[idx]
5247 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5248 inst.operands[i].regisimm = 1;
5249 }
8335d6aa 5250 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5251 return FAIL;
5f4273c7 5252
5287ad62
JB
5253 *str = ptr;
5254
5255 return SUCCESS;
5256}
5257
c19d1205
ZW
5258/* Returns the pseudo-register number of an FPA immediate constant,
5259 or FAIL if there isn't a valid constant here. */
b99bd4ef 5260
c19d1205
ZW
5261static int
5262parse_fpa_immediate (char ** str)
5263{
5264 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5265 char * save_in;
5266 expressionS exp;
5267 int i;
5268 int j;
b99bd4ef 5269
c19d1205
ZW
5270 /* First try and match exact strings, this is to guarantee
5271 that some formats will work even for cross assembly. */
b99bd4ef 5272
c19d1205
ZW
5273 for (i = 0; fp_const[i]; i++)
5274 {
5275 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5276 {
c19d1205 5277 char *start = *str;
b99bd4ef 5278
c19d1205
ZW
5279 *str += strlen (fp_const[i]);
5280 if (is_end_of_line[(unsigned char) **str])
5281 return i + 8;
5282 *str = start;
5283 }
5284 }
b99bd4ef 5285
c19d1205
ZW
5286 /* Just because we didn't get a match doesn't mean that the constant
5287 isn't valid, just that it is in a format that we don't
5288 automatically recognize. Try parsing it with the standard
5289 expression routines. */
b99bd4ef 5290
c19d1205 5291 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5292
c19d1205
ZW
5293 /* Look for a raw floating point number. */
5294 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5295 && is_end_of_line[(unsigned char) *save_in])
5296 {
5297 for (i = 0; i < NUM_FLOAT_VALS; i++)
5298 {
5299 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5300 {
c19d1205
ZW
5301 if (words[j] != fp_values[i][j])
5302 break;
b99bd4ef
NC
5303 }
5304
c19d1205 5305 if (j == MAX_LITTLENUMS)
b99bd4ef 5306 {
c19d1205
ZW
5307 *str = save_in;
5308 return i + 8;
b99bd4ef
NC
5309 }
5310 }
5311 }
b99bd4ef 5312
c19d1205
ZW
5313 /* Try and parse a more complex expression, this will probably fail
5314 unless the code uses a floating point prefix (eg "0f"). */
5315 save_in = input_line_pointer;
5316 input_line_pointer = *str;
5317 if (expression (&exp) == absolute_section
5318 && exp.X_op == O_big
5319 && exp.X_add_number < 0)
5320 {
5321 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5322 Ditto for 15. */
ba592044
AM
5323#define X_PRECISION 5
5324#define E_PRECISION 15L
5325 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5326 {
5327 for (i = 0; i < NUM_FLOAT_VALS; i++)
5328 {
5329 for (j = 0; j < MAX_LITTLENUMS; j++)
5330 {
5331 if (words[j] != fp_values[i][j])
5332 break;
5333 }
b99bd4ef 5334
c19d1205
ZW
5335 if (j == MAX_LITTLENUMS)
5336 {
5337 *str = input_line_pointer;
5338 input_line_pointer = save_in;
5339 return i + 8;
5340 }
5341 }
5342 }
b99bd4ef
NC
5343 }
5344
c19d1205
ZW
5345 *str = input_line_pointer;
5346 input_line_pointer = save_in;
5347 inst.error = _("invalid FPA immediate expression");
5348 return FAIL;
b99bd4ef
NC
5349}
5350
136da414
JB
5351/* Returns 1 if a number has "quarter-precision" float format
5352 0baBbbbbbc defgh000 00000000 00000000. */
5353
5354static int
5355is_quarter_float (unsigned imm)
5356{
5357 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5358 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5359}
5360
aacf0b33
KT
5361
5362/* Detect the presence of a floating point or integer zero constant,
5363 i.e. #0.0 or #0. */
5364
5365static bfd_boolean
5366parse_ifimm_zero (char **in)
5367{
5368 int error_code;
5369
5370 if (!is_immediate_prefix (**in))
3c6452ae
TP
5371 {
5372 /* In unified syntax, all prefixes are optional. */
5373 if (!unified_syntax)
5374 return FALSE;
5375 }
5376 else
5377 ++*in;
0900a05b
JW
5378
5379 /* Accept #0x0 as a synonym for #0. */
5380 if (strncmp (*in, "0x", 2) == 0)
5381 {
5382 int val;
5383 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5384 return FALSE;
5385 return TRUE;
5386 }
5387
aacf0b33
KT
5388 error_code = atof_generic (in, ".", EXP_CHARS,
5389 &generic_floating_point_number);
5390
5391 if (!error_code
5392 && generic_floating_point_number.sign == '+'
5393 && (generic_floating_point_number.low
5394 > generic_floating_point_number.leader))
5395 return TRUE;
5396
5397 return FALSE;
5398}
5399
136da414
JB
5400/* Parse an 8-bit "quarter-precision" floating point number of the form:
5401 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5402 The zero and minus-zero cases need special handling, since they can't be
5403 encoded in the "quarter-precision" float format, but can nonetheless be
5404 loaded as integer constants. */
136da414
JB
5405
5406static unsigned
5407parse_qfloat_immediate (char **ccp, int *immed)
5408{
5409 char *str = *ccp;
c96612cc 5410 char *fpnum;
136da414 5411 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5412 int found_fpchar = 0;
5f4273c7 5413
136da414 5414 skip_past_char (&str, '#');
5f4273c7 5415
c96612cc
JB
5416 /* We must not accidentally parse an integer as a floating-point number. Make
5417 sure that the value we parse is not an integer by checking for special
5418 characters '.' or 'e'.
5419 FIXME: This is a horrible hack, but doing better is tricky because type
5420 information isn't in a very usable state at parse time. */
5421 fpnum = str;
5422 skip_whitespace (fpnum);
5423
5424 if (strncmp (fpnum, "0x", 2) == 0)
5425 return FAIL;
5426 else
5427 {
5428 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5429 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5430 {
5431 found_fpchar = 1;
5432 break;
5433 }
c96612cc
JB
5434
5435 if (!found_fpchar)
477330fc 5436 return FAIL;
c96612cc 5437 }
5f4273c7 5438
136da414
JB
5439 if ((str = atof_ieee (str, 's', words)) != NULL)
5440 {
5441 unsigned fpword = 0;
5442 int i;
5f4273c7 5443
136da414
JB
5444 /* Our FP word must be 32 bits (single-precision FP). */
5445 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5446 {
5447 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5448 fpword |= words[i];
5449 }
5f4273c7 5450
c96612cc 5451 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5452 *immed = fpword;
136da414 5453 else
477330fc 5454 return FAIL;
136da414
JB
5455
5456 *ccp = str;
5f4273c7 5457
136da414
JB
5458 return SUCCESS;
5459 }
5f4273c7 5460
136da414
JB
5461 return FAIL;
5462}
5463
c19d1205
ZW
5464/* Shift operands. */
5465enum shift_kind
b99bd4ef 5466{
f5f10c66 5467 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5468};
b99bd4ef 5469
c19d1205
ZW
5470struct asm_shift_name
5471{
5472 const char *name;
5473 enum shift_kind kind;
5474};
b99bd4ef 5475
c19d1205
ZW
5476/* Third argument to parse_shift. */
5477enum parse_shift_mode
5478{
5479 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5480 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5481 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5482 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5483 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5484 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5485};
b99bd4ef 5486
c19d1205
ZW
5487/* Parse a <shift> specifier on an ARM data processing instruction.
5488 This has three forms:
b99bd4ef 5489
c19d1205
ZW
5490 (LSL|LSR|ASL|ASR|ROR) Rs
5491 (LSL|LSR|ASL|ASR|ROR) #imm
5492 RRX
b99bd4ef 5493
c19d1205
ZW
5494 Note that ASL is assimilated to LSL in the instruction encoding, and
5495 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5496
c19d1205
ZW
5497static int
5498parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5499{
c19d1205
ZW
5500 const struct asm_shift_name *shift_name;
5501 enum shift_kind shift;
5502 char *s = *str;
5503 char *p = s;
5504 int reg;
b99bd4ef 5505
c19d1205
ZW
5506 for (p = *str; ISALPHA (*p); p++)
5507 ;
b99bd4ef 5508
c19d1205 5509 if (p == *str)
b99bd4ef 5510 {
c19d1205
ZW
5511 inst.error = _("shift expression expected");
5512 return FAIL;
b99bd4ef
NC
5513 }
5514
21d799b5 5515 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5516 p - *str);
c19d1205
ZW
5517
5518 if (shift_name == NULL)
b99bd4ef 5519 {
c19d1205
ZW
5520 inst.error = _("shift expression expected");
5521 return FAIL;
b99bd4ef
NC
5522 }
5523
c19d1205 5524 shift = shift_name->kind;
b99bd4ef 5525
c19d1205
ZW
5526 switch (mode)
5527 {
5528 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5529 case SHIFT_IMMEDIATE:
5530 if (shift == SHIFT_UXTW)
5531 {
5532 inst.error = _("'UXTW' not allowed here");
5533 return FAIL;
5534 }
5535 break;
b99bd4ef 5536
c19d1205
ZW
5537 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5538 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5539 {
5540 inst.error = _("'LSL' or 'ASR' required");
5541 return FAIL;
5542 }
5543 break;
b99bd4ef 5544
c19d1205
ZW
5545 case SHIFT_LSL_IMMEDIATE:
5546 if (shift != SHIFT_LSL)
5547 {
5548 inst.error = _("'LSL' required");
5549 return FAIL;
5550 }
5551 break;
b99bd4ef 5552
c19d1205
ZW
5553 case SHIFT_ASR_IMMEDIATE:
5554 if (shift != SHIFT_ASR)
5555 {
5556 inst.error = _("'ASR' required");
5557 return FAIL;
5558 }
5559 break;
f5f10c66
AV
5560 case SHIFT_UXTW_IMMEDIATE:
5561 if (shift != SHIFT_UXTW)
5562 {
5563 inst.error = _("'UXTW' required");
5564 return FAIL;
5565 }
5566 break;
b99bd4ef 5567
c19d1205
ZW
5568 default: abort ();
5569 }
b99bd4ef 5570
c19d1205
ZW
5571 if (shift != SHIFT_RRX)
5572 {
5573 /* Whitespace can appear here if the next thing is a bare digit. */
5574 skip_whitespace (p);
b99bd4ef 5575
c19d1205 5576 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5577 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5578 {
5579 inst.operands[i].imm = reg;
5580 inst.operands[i].immisreg = 1;
5581 }
e2b0ab59 5582 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5583 return FAIL;
5584 }
5585 inst.operands[i].shift_kind = shift;
5586 inst.operands[i].shifted = 1;
5587 *str = p;
5588 return SUCCESS;
b99bd4ef
NC
5589}
5590
c19d1205 5591/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5592
c19d1205
ZW
5593 #<immediate>
5594 #<immediate>, <rotate>
5595 <Rm>
5596 <Rm>, <shift>
b99bd4ef 5597
c19d1205
ZW
5598 where <shift> is defined by parse_shift above, and <rotate> is a
5599 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5600 is deferred to md_apply_fix. */
b99bd4ef 5601
c19d1205
ZW
5602static int
5603parse_shifter_operand (char **str, int i)
5604{
5605 int value;
91d6fa6a 5606 expressionS exp;
b99bd4ef 5607
dcbf9037 5608 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5609 {
5610 inst.operands[i].reg = value;
5611 inst.operands[i].isreg = 1;
b99bd4ef 5612
c19d1205 5613 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5614 inst.relocs[0].exp.X_op = O_constant;
5615 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5616
c19d1205
ZW
5617 if (skip_past_comma (str) == FAIL)
5618 return SUCCESS;
b99bd4ef 5619
c19d1205
ZW
5620 /* Shift operation on register. */
5621 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5622 }
5623
e2b0ab59 5624 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5625 return FAIL;
b99bd4ef 5626
c19d1205 5627 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5628 {
c19d1205 5629 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5630 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5631 return FAIL;
b99bd4ef 5632
e2b0ab59 5633 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5634 {
5635 inst.error = _("constant expression expected");
5636 return FAIL;
5637 }
b99bd4ef 5638
91d6fa6a 5639 value = exp.X_add_number;
c19d1205
ZW
5640 if (value < 0 || value > 30 || value % 2 != 0)
5641 {
5642 inst.error = _("invalid rotation");
5643 return FAIL;
5644 }
e2b0ab59
AV
5645 if (inst.relocs[0].exp.X_add_number < 0
5646 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5647 {
5648 inst.error = _("invalid constant");
5649 return FAIL;
5650 }
09d92015 5651
a415b1cd 5652 /* Encode as specified. */
e2b0ab59 5653 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5654 return SUCCESS;
09d92015
MM
5655 }
5656
e2b0ab59
AV
5657 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5658 inst.relocs[0].pc_rel = 0;
c19d1205 5659 return SUCCESS;
09d92015
MM
5660}
5661
4962c51a
MS
5662/* Group relocation information. Each entry in the table contains the
5663 textual name of the relocation as may appear in assembler source
5664 and must end with a colon.
5665 Along with this textual name are the relocation codes to be used if
5666 the corresponding instruction is an ALU instruction (ADD or SUB only),
5667 an LDR, an LDRS, or an LDC. */
5668
5669struct group_reloc_table_entry
5670{
5671 const char *name;
5672 int alu_code;
5673 int ldr_code;
5674 int ldrs_code;
5675 int ldc_code;
5676};
5677
5678typedef enum
5679{
5680 /* Varieties of non-ALU group relocation. */
5681
5682 GROUP_LDR,
5683 GROUP_LDRS,
35c228db
AV
5684 GROUP_LDC,
5685 GROUP_MVE
4962c51a
MS
5686} group_reloc_type;
5687
5688static struct group_reloc_table_entry group_reloc_table[] =
5689 { /* Program counter relative: */
5690 { "pc_g0_nc",
5691 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5692 0, /* LDR */
5693 0, /* LDRS */
5694 0 }, /* LDC */
5695 { "pc_g0",
5696 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5697 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5698 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5699 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5700 { "pc_g1_nc",
5701 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5702 0, /* LDR */
5703 0, /* LDRS */
5704 0 }, /* LDC */
5705 { "pc_g1",
5706 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5707 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5708 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5709 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5710 { "pc_g2",
5711 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5712 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5713 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5714 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5715 /* Section base relative */
5716 { "sb_g0_nc",
5717 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5718 0, /* LDR */
5719 0, /* LDRS */
5720 0 }, /* LDC */
5721 { "sb_g0",
5722 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5723 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5724 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5725 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5726 { "sb_g1_nc",
5727 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5728 0, /* LDR */
5729 0, /* LDRS */
5730 0 }, /* LDC */
5731 { "sb_g1",
5732 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5733 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5734 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5735 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5736 { "sb_g2",
5737 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5738 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5739 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5740 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5741 /* Absolute thumb alu relocations. */
5742 { "lower0_7",
5743 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5744 0, /* LDR. */
5745 0, /* LDRS. */
5746 0 }, /* LDC. */
5747 { "lower8_15",
5748 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5749 0, /* LDR. */
5750 0, /* LDRS. */
5751 0 }, /* LDC. */
5752 { "upper0_7",
5753 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5754 0, /* LDR. */
5755 0, /* LDRS. */
5756 0 }, /* LDC. */
5757 { "upper8_15",
5758 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5759 0, /* LDR. */
5760 0, /* LDRS. */
5761 0 } }; /* LDC. */
4962c51a
MS
5762
5763/* Given the address of a pointer pointing to the textual name of a group
5764 relocation as may appear in assembler source, attempt to find its details
5765 in group_reloc_table. The pointer will be updated to the character after
5766 the trailing colon. On failure, FAIL will be returned; SUCCESS
5767 otherwise. On success, *entry will be updated to point at the relevant
5768 group_reloc_table entry. */
5769
5770static int
5771find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5772{
5773 unsigned int i;
5774 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5775 {
5776 int length = strlen (group_reloc_table[i].name);
5777
5f4273c7
NC
5778 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5779 && (*str)[length] == ':')
477330fc
RM
5780 {
5781 *out = &group_reloc_table[i];
5782 *str += (length + 1);
5783 return SUCCESS;
5784 }
4962c51a
MS
5785 }
5786
5787 return FAIL;
5788}
5789
5790/* Parse a <shifter_operand> for an ARM data processing instruction
5791 (as for parse_shifter_operand) where group relocations are allowed:
5792
5793 #<immediate>
5794 #<immediate>, <rotate>
5795 #:<group_reloc>:<expression>
5796 <Rm>
5797 <Rm>, <shift>
5798
5799 where <group_reloc> is one of the strings defined in group_reloc_table.
5800 The hashes are optional.
5801
5802 Everything else is as for parse_shifter_operand. */
5803
5804static parse_operand_result
5805parse_shifter_operand_group_reloc (char **str, int i)
5806{
5807 /* Determine if we have the sequence of characters #: or just :
5808 coming next. If we do, then we check for a group relocation.
5809 If we don't, punt the whole lot to parse_shifter_operand. */
5810
5811 if (((*str)[0] == '#' && (*str)[1] == ':')
5812 || (*str)[0] == ':')
5813 {
5814 struct group_reloc_table_entry *entry;
5815
5816 if ((*str)[0] == '#')
477330fc 5817 (*str) += 2;
4962c51a 5818 else
477330fc 5819 (*str)++;
4962c51a
MS
5820
5821 /* Try to parse a group relocation. Anything else is an error. */
5822 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5823 {
5824 inst.error = _("unknown group relocation");
5825 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5826 }
4962c51a
MS
5827
5828 /* We now have the group relocation table entry corresponding to
477330fc 5829 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5830 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5831 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5832
5833 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5834 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5835 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5836
5837 return PARSE_OPERAND_SUCCESS;
5838 }
5839 else
5840 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5841 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5842
5843 /* Never reached. */
5844}
5845
8e560766
MGD
5846/* Parse a Neon alignment expression. Information is written to
5847 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5848
8e560766
MGD
5849 align .imm = align << 8, .immisalign=1, .preind=0 */
5850static parse_operand_result
5851parse_neon_alignment (char **str, int i)
5852{
5853 char *p = *str;
5854 expressionS exp;
5855
5856 my_get_expression (&exp, &p, GE_NO_PREFIX);
5857
5858 if (exp.X_op != O_constant)
5859 {
5860 inst.error = _("alignment must be constant");
5861 return PARSE_OPERAND_FAIL;
5862 }
5863
5864 inst.operands[i].imm = exp.X_add_number << 8;
5865 inst.operands[i].immisalign = 1;
5866 /* Alignments are not pre-indexes. */
5867 inst.operands[i].preind = 0;
5868
5869 *str = p;
5870 return PARSE_OPERAND_SUCCESS;
5871}
5872
c19d1205 5873/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5874 to inst.operands[i] and/or inst.relocs[0].
09d92015 5875
c19d1205 5876 Preindexed addressing (.preind=1):
09d92015 5877
e2b0ab59 5878 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5879 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5880 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5881 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5882
c19d1205 5883 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5884
c19d1205 5885 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5886
e2b0ab59 5887 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5888 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5889 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5890 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5891
c19d1205 5892 Unindexed addressing (.preind=0, .postind=0):
09d92015 5893
c19d1205 5894 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5895
c19d1205 5896 Other:
09d92015 5897
c19d1205 5898 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5899 =immediate .isreg=0 .relocs[0].exp=immediate
5900 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5901
c19d1205 5902 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5903 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5904
4962c51a
MS
5905static parse_operand_result
5906parse_address_main (char **str, int i, int group_relocations,
477330fc 5907 group_reloc_type group_type)
09d92015 5908{
c19d1205
ZW
5909 char *p = *str;
5910 int reg;
09d92015 5911
c19d1205 5912 if (skip_past_char (&p, '[') == FAIL)
09d92015 5913 {
c19d1205
ZW
5914 if (skip_past_char (&p, '=') == FAIL)
5915 {
974da60d 5916 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5917 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5918 inst.operands[i].reg = REG_PC;
5919 inst.operands[i].isreg = 1;
5920 inst.operands[i].preind = 1;
09d92015 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5923 return PARSE_OPERAND_FAIL;
5924 }
e2b0ab59 5925 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5926 /*allow_symbol_p=*/TRUE))
4962c51a 5927 return PARSE_OPERAND_FAIL;
09d92015 5928
c19d1205 5929 *str = p;
4962c51a 5930 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5931 }
5932
8ab8155f
NC
5933 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5934 skip_whitespace (p);
5935
f5f10c66
AV
5936 if (group_type == GROUP_MVE)
5937 {
5938 enum arm_reg_type rtype = REG_TYPE_MQ;
5939 struct neon_type_el et;
5940 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5941 {
5942 inst.operands[i].isquad = 1;
5943 }
5944 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5945 {
5946 inst.error = BAD_ADDR_MODE;
5947 return PARSE_OPERAND_FAIL;
5948 }
5949 }
5950 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5951 {
35c228db
AV
5952 if (group_type == GROUP_MVE)
5953 inst.error = BAD_ADDR_MODE;
5954 else
5955 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5956 return PARSE_OPERAND_FAIL;
09d92015 5957 }
c19d1205
ZW
5958 inst.operands[i].reg = reg;
5959 inst.operands[i].isreg = 1;
09d92015 5960
c19d1205 5961 if (skip_past_comma (&p) == SUCCESS)
09d92015 5962 {
c19d1205 5963 inst.operands[i].preind = 1;
09d92015 5964
c19d1205
ZW
5965 if (*p == '+') p++;
5966 else if (*p == '-') p++, inst.operands[i].negative = 1;
5967
f5f10c66
AV
5968 enum arm_reg_type rtype = REG_TYPE_MQ;
5969 struct neon_type_el et;
5970 if (group_type == GROUP_MVE
5971 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5972 {
5973 inst.operands[i].immisreg = 2;
5974 inst.operands[i].imm = reg;
5975
5976 if (skip_past_comma (&p) == SUCCESS)
5977 {
5978 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5979 {
5980 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5981 inst.relocs[0].exp.X_add_number = 0;
5982 }
5983 else
5984 return PARSE_OPERAND_FAIL;
5985 }
5986 }
5987 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5988 {
c19d1205
ZW
5989 inst.operands[i].imm = reg;
5990 inst.operands[i].immisreg = 1;
5991
5992 if (skip_past_comma (&p) == SUCCESS)
5993 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5994 return PARSE_OPERAND_FAIL;
c19d1205 5995 }
5287ad62 5996 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5997 {
5998 /* FIXME: '@' should be used here, but it's filtered out by generic
5999 code before we get to see it here. This may be subject to
6000 change. */
6001 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 6002
8e560766
MGD
6003 if (result != PARSE_OPERAND_SUCCESS)
6004 return result;
6005 }
c19d1205
ZW
6006 else
6007 {
6008 if (inst.operands[i].negative)
6009 {
6010 inst.operands[i].negative = 0;
6011 p--;
6012 }
4962c51a 6013
5f4273c7
NC
6014 if (group_relocations
6015 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
6016 {
6017 struct group_reloc_table_entry *entry;
6018
477330fc
RM
6019 /* Skip over the #: or : sequence. */
6020 if (*p == '#')
6021 p += 2;
6022 else
6023 p++;
4962c51a
MS
6024
6025 /* Try to parse a group relocation. Anything else is an
477330fc 6026 error. */
4962c51a
MS
6027 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
6028 {
6029 inst.error = _("unknown group relocation");
6030 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6031 }
6032
6033 /* We now have the group relocation table entry corresponding to
6034 the name in the assembler source. Next, we parse the
477330fc 6035 expression. */
e2b0ab59 6036 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
6037 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6038
6039 /* Record the relocation type. */
477330fc
RM
6040 switch (group_type)
6041 {
6042 case GROUP_LDR:
e2b0ab59
AV
6043 inst.relocs[0].type
6044 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 6045 break;
4962c51a 6046
477330fc 6047 case GROUP_LDRS:
e2b0ab59
AV
6048 inst.relocs[0].type
6049 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 6050 break;
4962c51a 6051
477330fc 6052 case GROUP_LDC:
e2b0ab59
AV
6053 inst.relocs[0].type
6054 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 6055 break;
4962c51a 6056
477330fc
RM
6057 default:
6058 gas_assert (0);
6059 }
4962c51a 6060
e2b0ab59 6061 if (inst.relocs[0].type == 0)
4962c51a
MS
6062 {
6063 inst.error = _("this group relocation is not allowed on this instruction");
6064 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6065 }
477330fc
RM
6066 }
6067 else
26d97720
NS
6068 {
6069 char *q = p;
0198d5e6 6070
e2b0ab59 6071 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
6072 return PARSE_OPERAND_FAIL;
6073 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6074 if (inst.relocs[0].exp.X_op == O_constant
6075 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6076 {
6077 skip_whitespace (q);
6078 if (*q == '#')
6079 {
6080 q++;
6081 skip_whitespace (q);
6082 }
6083 if (*q == '-')
6084 inst.operands[i].negative = 1;
6085 }
6086 }
09d92015
MM
6087 }
6088 }
8e560766
MGD
6089 else if (skip_past_char (&p, ':') == SUCCESS)
6090 {
6091 /* FIXME: '@' should be used here, but it's filtered out by generic code
6092 before we get to see it here. This may be subject to change. */
6093 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 6094
8e560766
MGD
6095 if (result != PARSE_OPERAND_SUCCESS)
6096 return result;
6097 }
09d92015 6098
c19d1205 6099 if (skip_past_char (&p, ']') == FAIL)
09d92015 6100 {
c19d1205 6101 inst.error = _("']' expected");
4962c51a 6102 return PARSE_OPERAND_FAIL;
09d92015
MM
6103 }
6104
c19d1205
ZW
6105 if (skip_past_char (&p, '!') == SUCCESS)
6106 inst.operands[i].writeback = 1;
09d92015 6107
c19d1205 6108 else if (skip_past_comma (&p) == SUCCESS)
09d92015 6109 {
c19d1205
ZW
6110 if (skip_past_char (&p, '{') == SUCCESS)
6111 {
6112 /* [Rn], {expr} - unindexed, with option */
6113 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 6114 0, 255, TRUE) == FAIL)
4962c51a 6115 return PARSE_OPERAND_FAIL;
09d92015 6116
c19d1205
ZW
6117 if (skip_past_char (&p, '}') == FAIL)
6118 {
6119 inst.error = _("'}' expected at end of 'option' field");
4962c51a 6120 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6121 }
6122 if (inst.operands[i].preind)
6123 {
6124 inst.error = _("cannot combine index with option");
4962c51a 6125 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6126 }
6127 *str = p;
4962c51a 6128 return PARSE_OPERAND_SUCCESS;
09d92015 6129 }
c19d1205
ZW
6130 else
6131 {
6132 inst.operands[i].postind = 1;
6133 inst.operands[i].writeback = 1;
09d92015 6134
c19d1205
ZW
6135 if (inst.operands[i].preind)
6136 {
6137 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 6138 return PARSE_OPERAND_FAIL;
c19d1205 6139 }
09d92015 6140
c19d1205
ZW
6141 if (*p == '+') p++;
6142 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 6143
f5f10c66
AV
6144 enum arm_reg_type rtype = REG_TYPE_MQ;
6145 struct neon_type_el et;
6146 if (group_type == GROUP_MVE
6147 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
6148 {
6149 inst.operands[i].immisreg = 2;
6150 inst.operands[i].imm = reg;
6151 }
6152 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6153 {
477330fc
RM
6154 /* We might be using the immediate for alignment already. If we
6155 are, OR the register number into the low-order bits. */
6156 if (inst.operands[i].immisalign)
6157 inst.operands[i].imm |= reg;
6158 else
6159 inst.operands[i].imm = reg;
c19d1205 6160 inst.operands[i].immisreg = 1;
a737bd4d 6161
c19d1205
ZW
6162 if (skip_past_comma (&p) == SUCCESS)
6163 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6164 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6165 }
6166 else
6167 {
26d97720 6168 char *q = p;
0198d5e6 6169
c19d1205
ZW
6170 if (inst.operands[i].negative)
6171 {
6172 inst.operands[i].negative = 0;
6173 p--;
6174 }
e2b0ab59 6175 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6176 return PARSE_OPERAND_FAIL;
26d97720 6177 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6178 if (inst.relocs[0].exp.X_op == O_constant
6179 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6180 {
6181 skip_whitespace (q);
6182 if (*q == '#')
6183 {
6184 q++;
6185 skip_whitespace (q);
6186 }
6187 if (*q == '-')
6188 inst.operands[i].negative = 1;
6189 }
c19d1205
ZW
6190 }
6191 }
a737bd4d
NC
6192 }
6193
c19d1205
ZW
6194 /* If at this point neither .preind nor .postind is set, we have a
6195 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6196 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6197 {
6198 inst.operands[i].preind = 1;
e2b0ab59
AV
6199 inst.relocs[0].exp.X_op = O_constant;
6200 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6201 }
6202 *str = p;
4962c51a
MS
6203 return PARSE_OPERAND_SUCCESS;
6204}
6205
6206static int
6207parse_address (char **str, int i)
6208{
21d799b5 6209 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6210 ? SUCCESS : FAIL;
4962c51a
MS
6211}
6212
6213static parse_operand_result
6214parse_address_group_reloc (char **str, int i, group_reloc_type type)
6215{
6216 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6217}
6218
b6895b4f
PB
6219/* Parse an operand for a MOVW or MOVT instruction. */
6220static int
6221parse_half (char **str)
6222{
6223 char * p;
5f4273c7 6224
b6895b4f
PB
6225 p = *str;
6226 skip_past_char (&p, '#');
5f4273c7 6227 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6228 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6229 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6230 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6231
e2b0ab59 6232 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6233 {
6234 p += 9;
5f4273c7 6235 skip_whitespace (p);
b6895b4f
PB
6236 }
6237
e2b0ab59 6238 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6239 return FAIL;
6240
e2b0ab59 6241 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6242 {
e2b0ab59 6243 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6244 {
6245 inst.error = _("constant expression expected");
6246 return FAIL;
6247 }
e2b0ab59
AV
6248 if (inst.relocs[0].exp.X_add_number < 0
6249 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6250 {
6251 inst.error = _("immediate value out of range");
6252 return FAIL;
6253 }
6254 }
6255 *str = p;
6256 return SUCCESS;
6257}
6258
c19d1205 6259/* Miscellaneous. */
a737bd4d 6260
c19d1205
ZW
6261/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6262 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6263static int
d2cd1205 6264parse_psr (char **str, bfd_boolean lhs)
09d92015 6265{
c19d1205
ZW
6266 char *p;
6267 unsigned long psr_field;
62b3e311
PB
6268 const struct asm_psr *psr;
6269 char *start;
d2cd1205 6270 bfd_boolean is_apsr = FALSE;
ac7f631b 6271 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6272
a4482bb6
NC
6273 /* PR gas/12698: If the user has specified -march=all then m_profile will
6274 be TRUE, but we want to ignore it in this case as we are building for any
6275 CPU type, including non-m variants. */
823d2571 6276 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6277 m_profile = FALSE;
6278
c19d1205
ZW
6279 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6280 feature for ease of use and backwards compatibility. */
6281 p = *str;
62b3e311 6282 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6283 {
6284 if (m_profile)
6285 goto unsupported_psr;
fa94de6b 6286
d2cd1205
JB
6287 psr_field = SPSR_BIT;
6288 }
6289 else if (strncasecmp (p, "CPSR", 4) == 0)
6290 {
6291 if (m_profile)
6292 goto unsupported_psr;
6293
6294 psr_field = 0;
6295 }
6296 else if (strncasecmp (p, "APSR", 4) == 0)
6297 {
6298 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6299 and ARMv7-R architecture CPUs. */
6300 is_apsr = TRUE;
6301 psr_field = 0;
6302 }
6303 else if (m_profile)
62b3e311
PB
6304 {
6305 start = p;
6306 do
6307 p++;
6308 while (ISALNUM (*p) || *p == '_');
6309
d2cd1205
JB
6310 if (strncasecmp (start, "iapsr", 5) == 0
6311 || strncasecmp (start, "eapsr", 5) == 0
6312 || strncasecmp (start, "xpsr", 4) == 0
6313 || strncasecmp (start, "psr", 3) == 0)
6314 p = start + strcspn (start, "rR") + 1;
6315
21d799b5 6316 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6317 p - start);
d2cd1205 6318
62b3e311
PB
6319 if (!psr)
6320 return FAIL;
09d92015 6321
d2cd1205
JB
6322 /* If APSR is being written, a bitfield may be specified. Note that
6323 APSR itself is handled above. */
6324 if (psr->field <= 3)
6325 {
6326 psr_field = psr->field;
6327 is_apsr = TRUE;
6328 goto check_suffix;
6329 }
6330
62b3e311 6331 *str = p;
d2cd1205
JB
6332 /* M-profile MSR instructions have the mask field set to "10", except
6333 *PSR variants which modify APSR, which may use a different mask (and
6334 have been handled already). Do that by setting the PSR_f field
6335 here. */
6336 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6337 }
d2cd1205
JB
6338 else
6339 goto unsupported_psr;
09d92015 6340
62b3e311 6341 p += 4;
d2cd1205 6342check_suffix:
c19d1205
ZW
6343 if (*p == '_')
6344 {
6345 /* A suffix follows. */
c19d1205
ZW
6346 p++;
6347 start = p;
a737bd4d 6348
c19d1205
ZW
6349 do
6350 p++;
6351 while (ISALNUM (*p) || *p == '_');
a737bd4d 6352
d2cd1205
JB
6353 if (is_apsr)
6354 {
6355 /* APSR uses a notation for bits, rather than fields. */
6356 unsigned int nzcvq_bits = 0;
6357 unsigned int g_bit = 0;
6358 char *bit;
fa94de6b 6359
d2cd1205
JB
6360 for (bit = start; bit != p; bit++)
6361 {
6362 switch (TOLOWER (*bit))
477330fc 6363 {
d2cd1205
JB
6364 case 'n':
6365 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6366 break;
6367
6368 case 'z':
6369 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6370 break;
6371
6372 case 'c':
6373 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6374 break;
6375
6376 case 'v':
6377 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6378 break;
fa94de6b 6379
d2cd1205
JB
6380 case 'q':
6381 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6382 break;
fa94de6b 6383
d2cd1205
JB
6384 case 'g':
6385 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6386 break;
fa94de6b 6387
d2cd1205
JB
6388 default:
6389 inst.error = _("unexpected bit specified after APSR");
6390 return FAIL;
6391 }
6392 }
fa94de6b 6393
d2cd1205
JB
6394 if (nzcvq_bits == 0x1f)
6395 psr_field |= PSR_f;
fa94de6b 6396
d2cd1205
JB
6397 if (g_bit == 0x1)
6398 {
6399 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6400 {
d2cd1205
JB
6401 inst.error = _("selected processor does not "
6402 "support DSP extension");
6403 return FAIL;
6404 }
6405
6406 psr_field |= PSR_s;
6407 }
fa94de6b 6408
d2cd1205
JB
6409 if ((nzcvq_bits & 0x20) != 0
6410 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6411 || (g_bit & 0x2) != 0)
6412 {
6413 inst.error = _("bad bitmask specified after APSR");
6414 return FAIL;
6415 }
6416 }
6417 else
477330fc 6418 {
d2cd1205 6419 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6420 p - start);
d2cd1205 6421 if (!psr)
477330fc 6422 goto error;
a737bd4d 6423
d2cd1205
JB
6424 psr_field |= psr->field;
6425 }
a737bd4d 6426 }
c19d1205 6427 else
a737bd4d 6428 {
c19d1205
ZW
6429 if (ISALNUM (*p))
6430 goto error; /* Garbage after "[CS]PSR". */
6431
d2cd1205 6432 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6433 is deprecated, but allow it anyway. */
d2cd1205
JB
6434 if (is_apsr && lhs)
6435 {
6436 psr_field |= PSR_f;
6437 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6438 "deprecated"));
6439 }
6440 else if (!m_profile)
6441 /* These bits are never right for M-profile devices: don't set them
6442 (only code paths which read/write APSR reach here). */
6443 psr_field |= (PSR_c | PSR_f);
a737bd4d 6444 }
c19d1205
ZW
6445 *str = p;
6446 return psr_field;
a737bd4d 6447
d2cd1205
JB
6448 unsupported_psr:
6449 inst.error = _("selected processor does not support requested special "
6450 "purpose register");
6451 return FAIL;
6452
c19d1205
ZW
6453 error:
6454 inst.error = _("flag for {c}psr instruction expected");
6455 return FAIL;
a737bd4d
NC
6456}
6457
32c36c3c
AV
6458static int
6459parse_sys_vldr_vstr (char **str)
6460{
6461 unsigned i;
6462 int val = FAIL;
6463 struct {
6464 const char *name;
6465 int regl;
6466 int regh;
6467 } sysregs[] = {
6468 {"FPSCR", 0x1, 0x0},
6469 {"FPSCR_nzcvqc", 0x2, 0x0},
6470 {"VPR", 0x4, 0x1},
6471 {"P0", 0x5, 0x1},
6472 {"FPCXTNS", 0x6, 0x1},
6473 {"FPCXTS", 0x7, 0x1}
6474 };
6475 char *op_end = strchr (*str, ',');
6476 size_t op_strlen = op_end - *str;
6477
6478 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6479 {
6480 if (!strncmp (*str, sysregs[i].name, op_strlen))
6481 {
6482 val = sysregs[i].regl | (sysregs[i].regh << 3);
6483 *str = op_end;
6484 break;
6485 }
6486 }
6487
6488 return val;
6489}
6490
c19d1205
ZW
6491/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6492 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6493
c19d1205
ZW
6494static int
6495parse_cps_flags (char **str)
a737bd4d 6496{
c19d1205
ZW
6497 int val = 0;
6498 int saw_a_flag = 0;
6499 char *s = *str;
a737bd4d 6500
c19d1205
ZW
6501 for (;;)
6502 switch (*s++)
6503 {
6504 case '\0': case ',':
6505 goto done;
a737bd4d 6506
c19d1205
ZW
6507 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6508 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6509 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6510
c19d1205
ZW
6511 default:
6512 inst.error = _("unrecognized CPS flag");
6513 return FAIL;
6514 }
a737bd4d 6515
c19d1205
ZW
6516 done:
6517 if (saw_a_flag == 0)
a737bd4d 6518 {
c19d1205
ZW
6519 inst.error = _("missing CPS flags");
6520 return FAIL;
a737bd4d 6521 }
a737bd4d 6522
c19d1205
ZW
6523 *str = s - 1;
6524 return val;
a737bd4d
NC
6525}
6526
c19d1205
ZW
6527/* Parse an endian specifier ("BE" or "LE", case insensitive);
6528 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6529
6530static int
c19d1205 6531parse_endian_specifier (char **str)
a737bd4d 6532{
c19d1205
ZW
6533 int little_endian;
6534 char *s = *str;
a737bd4d 6535
c19d1205
ZW
6536 if (strncasecmp (s, "BE", 2))
6537 little_endian = 0;
6538 else if (strncasecmp (s, "LE", 2))
6539 little_endian = 1;
6540 else
a737bd4d 6541 {
c19d1205 6542 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6543 return FAIL;
6544 }
6545
c19d1205 6546 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6547 {
c19d1205 6548 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6549 return FAIL;
6550 }
6551
c19d1205
ZW
6552 *str = s + 2;
6553 return little_endian;
6554}
a737bd4d 6555
c19d1205
ZW
6556/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6557 value suitable for poking into the rotate field of an sxt or sxta
6558 instruction, or FAIL on error. */
6559
6560static int
6561parse_ror (char **str)
6562{
6563 int rot;
6564 char *s = *str;
6565
6566 if (strncasecmp (s, "ROR", 3) == 0)
6567 s += 3;
6568 else
a737bd4d 6569 {
c19d1205 6570 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6571 return FAIL;
6572 }
c19d1205
ZW
6573
6574 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6575 return FAIL;
6576
6577 switch (rot)
a737bd4d 6578 {
c19d1205
ZW
6579 case 0: *str = s; return 0x0;
6580 case 8: *str = s; return 0x1;
6581 case 16: *str = s; return 0x2;
6582 case 24: *str = s; return 0x3;
6583
6584 default:
6585 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6586 return FAIL;
6587 }
c19d1205 6588}
a737bd4d 6589
c19d1205
ZW
6590/* Parse a conditional code (from conds[] below). The value returned is in the
6591 range 0 .. 14, or FAIL. */
6592static int
6593parse_cond (char **str)
6594{
c462b453 6595 char *q;
c19d1205 6596 const struct asm_cond *c;
c462b453
PB
6597 int n;
6598 /* Condition codes are always 2 characters, so matching up to
6599 3 characters is sufficient. */
6600 char cond[3];
a737bd4d 6601
c462b453
PB
6602 q = *str;
6603 n = 0;
6604 while (ISALPHA (*q) && n < 3)
6605 {
e07e6e58 6606 cond[n] = TOLOWER (*q);
c462b453
PB
6607 q++;
6608 n++;
6609 }
a737bd4d 6610
21d799b5 6611 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6612 if (!c)
a737bd4d 6613 {
c19d1205 6614 inst.error = _("condition required");
a737bd4d
NC
6615 return FAIL;
6616 }
6617
c19d1205
ZW
6618 *str = q;
6619 return c->value;
6620}
6621
62b3e311
PB
6622/* Parse an option for a barrier instruction. Returns the encoding for the
6623 option, or FAIL. */
6624static int
6625parse_barrier (char **str)
6626{
6627 char *p, *q;
6628 const struct asm_barrier_opt *o;
6629
6630 p = q = *str;
6631 while (ISALPHA (*q))
6632 q++;
6633
21d799b5 6634 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6635 q - p);
62b3e311
PB
6636 if (!o)
6637 return FAIL;
6638
e797f7e0
MGD
6639 if (!mark_feature_used (&o->arch))
6640 return FAIL;
6641
62b3e311
PB
6642 *str = q;
6643 return o->value;
6644}
6645
92e90b6e
PB
6646/* Parse the operands of a table branch instruction. Similar to a memory
6647 operand. */
6648static int
6649parse_tb (char **str)
6650{
6651 char * p = *str;
6652 int reg;
6653
6654 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6655 {
6656 inst.error = _("'[' expected");
6657 return FAIL;
6658 }
92e90b6e 6659
dcbf9037 6660 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6661 {
6662 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6663 return FAIL;
6664 }
6665 inst.operands[0].reg = reg;
6666
6667 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6668 {
6669 inst.error = _("',' expected");
6670 return FAIL;
6671 }
5f4273c7 6672
dcbf9037 6673 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6674 {
6675 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6676 return FAIL;
6677 }
6678 inst.operands[0].imm = reg;
6679
6680 if (skip_past_comma (&p) == SUCCESS)
6681 {
6682 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6683 return FAIL;
e2b0ab59 6684 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6685 {
6686 inst.error = _("invalid shift");
6687 return FAIL;
6688 }
6689 inst.operands[0].shifted = 1;
6690 }
6691
6692 if (skip_past_char (&p, ']') == FAIL)
6693 {
6694 inst.error = _("']' expected");
6695 return FAIL;
6696 }
6697 *str = p;
6698 return SUCCESS;
6699}
6700
5287ad62
JB
6701/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6702 information on the types the operands can take and how they are encoded.
037e8744
JB
6703 Up to four operands may be read; this function handles setting the
6704 ".present" field for each read operand itself.
5287ad62
JB
6705 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6706 else returns FAIL. */
6707
6708static int
6709parse_neon_mov (char **str, int *which_operand)
6710{
6711 int i = *which_operand, val;
6712 enum arm_reg_type rtype;
6713 char *ptr = *str;
dcbf9037 6714 struct neon_type_el optype;
5f4273c7 6715
57785aa2
AV
6716 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6717 {
6718 /* Cases 17 or 19. */
6719 inst.operands[i].reg = val;
6720 inst.operands[i].isvec = 1;
6721 inst.operands[i].isscalar = 2;
6722 inst.operands[i].vectype = optype;
6723 inst.operands[i++].present = 1;
6724
6725 if (skip_past_comma (&ptr) == FAIL)
6726 goto wanted_comma;
6727
6728 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6729 {
6730 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6731 inst.operands[i].reg = val;
6732 inst.operands[i].isreg = 1;
6733 inst.operands[i].present = 1;
6734 }
6735 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6736 {
6737 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6738 inst.operands[i].reg = val;
6739 inst.operands[i].isvec = 1;
6740 inst.operands[i].isscalar = 2;
6741 inst.operands[i].vectype = optype;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6748 goto wanted_arm;
6749
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isreg = 1;
6752 inst.operands[i++].present = 1;
6753
6754 if (skip_past_comma (&ptr) == FAIL)
6755 goto wanted_comma;
6756
6757 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6758 goto wanted_arm;
6759
6760 inst.operands[i].reg = val;
6761 inst.operands[i].isreg = 1;
6762 inst.operands[i].present = 1;
6763 }
6764 else
6765 {
6766 first_error (_("expected ARM or MVE vector register"));
6767 return FAIL;
6768 }
6769 }
6770 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6771 {
6772 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6773 inst.operands[i].reg = val;
6774 inst.operands[i].isscalar = 1;
dcbf9037 6775 inst.operands[i].vectype = optype;
5287ad62
JB
6776 inst.operands[i++].present = 1;
6777
6778 if (skip_past_comma (&ptr) == FAIL)
477330fc 6779 goto wanted_comma;
5f4273c7 6780
dcbf9037 6781 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6782 goto wanted_arm;
5f4273c7 6783
5287ad62
JB
6784 inst.operands[i].reg = val;
6785 inst.operands[i].isreg = 1;
6786 inst.operands[i].present = 1;
6787 }
57785aa2
AV
6788 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6789 != FAIL)
6790 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6791 != FAIL))
5287ad62
JB
6792 {
6793 /* Cases 0, 1, 2, 3, 5 (D only). */
6794 if (skip_past_comma (&ptr) == FAIL)
477330fc 6795 goto wanted_comma;
5f4273c7 6796
5287ad62
JB
6797 inst.operands[i].reg = val;
6798 inst.operands[i].isreg = 1;
6799 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6800 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6801 inst.operands[i].isvec = 1;
dcbf9037 6802 inst.operands[i].vectype = optype;
5287ad62
JB
6803 inst.operands[i++].present = 1;
6804
dcbf9037 6805 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6806 {
6807 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6808 Case 13: VMOV <Sd>, <Rm> */
6809 inst.operands[i].reg = val;
6810 inst.operands[i].isreg = 1;
6811 inst.operands[i].present = 1;
6812
6813 if (rtype == REG_TYPE_NQ)
6814 {
6815 first_error (_("can't use Neon quad register here"));
6816 return FAIL;
6817 }
6818 else if (rtype != REG_TYPE_VFS)
6819 {
6820 i++;
6821 if (skip_past_comma (&ptr) == FAIL)
6822 goto wanted_comma;
6823 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6824 goto wanted_arm;
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isreg = 1;
6827 inst.operands[i].present = 1;
6828 }
6829 }
c4a23bf8
SP
6830 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6831 &optype)) != FAIL)
6832 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype,
6833 &optype)) != FAIL))
477330fc
RM
6834 {
6835 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6836 Case 1: VMOV<c><q> <Dd>, <Dm>
6837 Case 8: VMOV.F32 <Sd>, <Sm>
6838 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6839
6840 inst.operands[i].reg = val;
6841 inst.operands[i].isreg = 1;
6842 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6843 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6844 inst.operands[i].isvec = 1;
6845 inst.operands[i].vectype = optype;
6846 inst.operands[i].present = 1;
6847
6848 if (skip_past_comma (&ptr) == SUCCESS)
6849 {
6850 /* Case 15. */
6851 i++;
6852
6853 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6854 goto wanted_arm;
6855
6856 inst.operands[i].reg = val;
6857 inst.operands[i].isreg = 1;
6858 inst.operands[i++].present = 1;
6859
6860 if (skip_past_comma (&ptr) == FAIL)
6861 goto wanted_comma;
6862
6863 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6864 goto wanted_arm;
6865
6866 inst.operands[i].reg = val;
6867 inst.operands[i].isreg = 1;
6868 inst.operands[i].present = 1;
6869 }
6870 }
4641781c 6871 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6872 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6873 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6874 Case 10: VMOV.F32 <Sd>, #<imm>
6875 Case 11: VMOV.F64 <Dd>, #<imm> */
6876 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6877 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6878 == SUCCESS)
477330fc
RM
6879 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6880 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6881 ;
5287ad62 6882 else
477330fc
RM
6883 {
6884 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6885 return FAIL;
6886 }
5287ad62 6887 }
dcbf9037 6888 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6889 {
57785aa2 6890 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6891 inst.operands[i].reg = val;
6892 inst.operands[i].isreg = 1;
6893 inst.operands[i++].present = 1;
5f4273c7 6894
5287ad62 6895 if (skip_past_comma (&ptr) == FAIL)
477330fc 6896 goto wanted_comma;
5f4273c7 6897
57785aa2
AV
6898 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6899 {
6900 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6901 inst.operands[i].reg = val;
6902 inst.operands[i].isscalar = 2;
6903 inst.operands[i].present = 1;
6904 inst.operands[i].vectype = optype;
6905 }
6906 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6907 {
6908 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6909 inst.operands[i].reg = val;
6910 inst.operands[i].isscalar = 1;
6911 inst.operands[i].present = 1;
6912 inst.operands[i].vectype = optype;
6913 }
dcbf9037 6914 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6915 {
477330fc
RM
6916 inst.operands[i].reg = val;
6917 inst.operands[i].isreg = 1;
6918 inst.operands[i++].present = 1;
6919
6920 if (skip_past_comma (&ptr) == FAIL)
6921 goto wanted_comma;
6922
6923 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6924 != FAIL)
477330fc 6925 {
57785aa2 6926 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6927
477330fc
RM
6928 inst.operands[i].reg = val;
6929 inst.operands[i].isreg = 1;
6930 inst.operands[i].isvec = 1;
57785aa2 6931 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6932 inst.operands[i].vectype = optype;
6933 inst.operands[i].present = 1;
57785aa2
AV
6934
6935 if (rtype == REG_TYPE_VFS)
6936 {
6937 /* Case 14. */
6938 i++;
6939 if (skip_past_comma (&ptr) == FAIL)
6940 goto wanted_comma;
6941 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6942 &optype)) == FAIL)
6943 {
6944 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6945 return FAIL;
6946 }
6947 inst.operands[i].reg = val;
6948 inst.operands[i].isreg = 1;
6949 inst.operands[i].isvec = 1;
6950 inst.operands[i].issingle = 1;
6951 inst.operands[i].vectype = optype;
6952 inst.operands[i].present = 1;
6953 }
6954 }
6955 else
6956 {
6957 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6958 != FAIL)
6959 {
6960 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6961 inst.operands[i].reg = val;
6962 inst.operands[i].isvec = 1;
6963 inst.operands[i].isscalar = 2;
6964 inst.operands[i].vectype = optype;
6965 inst.operands[i++].present = 1;
6966
6967 if (skip_past_comma (&ptr) == FAIL)
6968 goto wanted_comma;
6969
6970 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6971 == FAIL)
6972 {
6973 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6974 return FAIL;
6975 }
6976 inst.operands[i].reg = val;
6977 inst.operands[i].isvec = 1;
6978 inst.operands[i].isscalar = 2;
6979 inst.operands[i].vectype = optype;
6980 inst.operands[i].present = 1;
6981 }
6982 else
6983 {
6984 first_error (_("VFP single, double or MVE vector register"
6985 " expected"));
6986 return FAIL;
6987 }
477330fc
RM
6988 }
6989 }
037e8744 6990 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6991 != FAIL)
6992 {
6993 /* Case 13. */
6994 inst.operands[i].reg = val;
6995 inst.operands[i].isreg = 1;
6996 inst.operands[i].isvec = 1;
6997 inst.operands[i].issingle = 1;
6998 inst.operands[i].vectype = optype;
6999 inst.operands[i].present = 1;
7000 }
5287ad62
JB
7001 }
7002 else
7003 {
dcbf9037 7004 first_error (_("parse error"));
5287ad62
JB
7005 return FAIL;
7006 }
7007
7008 /* Successfully parsed the operands. Update args. */
7009 *which_operand = i;
7010 *str = ptr;
7011 return SUCCESS;
7012
5f4273c7 7013 wanted_comma:
dcbf9037 7014 first_error (_("expected comma"));
5287ad62 7015 return FAIL;
5f4273c7
NC
7016
7017 wanted_arm:
dcbf9037 7018 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 7019 return FAIL;
5287ad62
JB
7020}
7021
5be8be5d
DG
7022/* Use this macro when the operand constraints are different
7023 for ARM and THUMB (e.g. ldrd). */
7024#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
7025 ((arm_operand) | ((thumb_operand) << 16))
7026
c19d1205
ZW
7027/* Matcher codes for parse_operands. */
7028enum operand_parse_code
7029{
7030 OP_stop, /* end of line */
7031
7032 OP_RR, /* ARM register */
7033 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 7034 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 7035 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 7036 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 7037 optional trailing ! */
c19d1205
ZW
7038 OP_RRw, /* ARM register, not r15, optional trailing ! */
7039 OP_RCP, /* Coprocessor number */
7040 OP_RCN, /* Coprocessor register */
7041 OP_RF, /* FPA register */
7042 OP_RVS, /* VFP single precision register */
5287ad62
JB
7043 OP_RVD, /* VFP double precision register (0..15) */
7044 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
7045 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
7046 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
7047 */
5287ad62 7048 OP_RNQ, /* Neon quad precision register */
5ee91343 7049 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 7050 OP_RVSD, /* VFP single or double precision register */
1b883319 7051 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 7052 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 7053 OP_RNSD, /* Neon single or double precision register */
5287ad62 7054 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 7055 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 7056 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 7057 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 7058 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
7059 OP_RVC, /* VFP control register */
7060 OP_RMF, /* Maverick F register */
7061 OP_RMD, /* Maverick D register */
7062 OP_RMFX, /* Maverick FX register */
7063 OP_RMDX, /* Maverick DX register */
7064 OP_RMAX, /* Maverick AX register */
7065 OP_RMDS, /* Maverick DSPSC register */
7066 OP_RIWR, /* iWMMXt wR register */
7067 OP_RIWC, /* iWMMXt wC register */
7068 OP_RIWG, /* iWMMXt wCG register */
7069 OP_RXA, /* XScale accumulator register */
7070
5ee91343
AV
7071 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
7072 */
7073 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
7074 GPR (no SP/SP) */
a302e574 7075 OP_RMQ, /* MVE vector register. */
1b883319 7076 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
35d1cfc2 7077 OP_RMQRR, /* MVE vector or ARM register. */
a302e574 7078
60f993ce
AV
7079 /* New operands for Armv8.1-M Mainline. */
7080 OP_LR, /* ARM LR register */
a302e574
AV
7081 OP_RRe, /* ARM register, only even numbered. */
7082 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce 7083 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
e39c1607 7084 OP_RR_ZR, /* ARM register or ZR but no PC */
60f993ce 7085
c19d1205 7086 OP_REGLST, /* ARM register list */
4b5a202f 7087 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
7088 OP_VRSLST, /* VFP single-precision register list */
7089 OP_VRDLST, /* VFP double-precision register list */
037e8744 7090 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
7091 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
7092 OP_NSTRLST, /* Neon element/structure list */
efd6b359 7093 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
7094 OP_MSTRLST2, /* MVE vector list with two elements. */
7095 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 7096
5287ad62 7097 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 7098 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 7099 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
7100 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
7101 zero. */
5287ad62 7102 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 7103 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 7104 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
7105 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
7106 */
a8465a06
AV
7107 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
7108 scalar, or ARM register. */
5287ad62 7109 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
42b16635
AV
7110 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
7111 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
7112 register. */
5d281bf0 7113 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
7114 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
7115 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 7116 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
7117 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
7118 OP_RNDQMQ_Ibig,
5287ad62 7119 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5150f0d8
AV
7120 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
7121 ARM register. */
2d447fca 7122 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 7123 OP_VLDR, /* VLDR operand. */
5287ad62
JB
7124
7125 OP_I0, /* immediate zero */
c19d1205
ZW
7126 OP_I7, /* immediate value 0 .. 7 */
7127 OP_I15, /* 0 .. 15 */
7128 OP_I16, /* 1 .. 16 */
5287ad62 7129 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
7130 OP_I31, /* 0 .. 31 */
7131 OP_I31w, /* 0 .. 31, optional trailing ! */
7132 OP_I32, /* 1 .. 32 */
5287ad62 7133 OP_I32z, /* 0 .. 32 */
08132bdd 7134 OP_I48_I64, /* 48 or 64 */
5287ad62 7135 OP_I63, /* 0 .. 63 */
c19d1205 7136 OP_I63s, /* -64 .. 63 */
5287ad62
JB
7137 OP_I64, /* 1 .. 64 */
7138 OP_I64z, /* 0 .. 64 */
c19d1205 7139 OP_I255, /* 0 .. 255 */
c19d1205
ZW
7140
7141 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
7142 OP_I7b, /* 0 .. 7 */
7143 OP_I15b, /* 0 .. 15 */
7144 OP_I31b, /* 0 .. 31 */
7145
7146 OP_SH, /* shifter operand */
4962c51a 7147 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 7148 OP_ADDR, /* Memory address expression (any mode) */
35c228db 7149 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
7150 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
7151 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
7152 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
7153 OP_EXP, /* arbitrary expression */
7154 OP_EXPi, /* same, with optional immediate prefix */
7155 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 7156 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 7157 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
7158 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7159 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
7160
7161 OP_CPSF, /* CPS flags */
7162 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7163 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7164 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7165 OP_COND, /* conditional code */
92e90b6e 7166 OP_TB, /* Table branch. */
c19d1205 7167
037e8744
JB
7168 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7169
c19d1205 7170 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7171 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7172 OP_RR_EXi, /* ARM register or expression with imm prefix */
7173 OP_RF_IF, /* FPA register or immediate */
7174 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7175 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7176
7177 /* Optional operands. */
7178 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7179 OP_oI31b, /* 0 .. 31 */
5287ad62 7180 OP_oI32b, /* 1 .. 32 */
5f1af56b 7181 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7182 OP_oIffffb, /* 0 .. 65535 */
7183 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7184
7185 OP_oRR, /* ARM register */
60f993ce 7186 OP_oLR, /* ARM LR register */
c19d1205 7187 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7188 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7189 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7190 OP_oRND, /* Optional Neon double precision register */
7191 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7192 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7193 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7194 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7195 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7196 register. */
c19d1205
ZW
7197 OP_oSHll, /* LSL immediate */
7198 OP_oSHar, /* ASR immediate */
7199 OP_oSHllar, /* LSL or ASR immediate */
7200 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7201 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7202
1b883319
AV
7203 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7204
5be8be5d
DG
7205 /* Some pre-defined mixed (ARM/THUMB) operands. */
7206 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7207 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7208 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7209
c19d1205
ZW
7210 OP_FIRST_OPTIONAL = OP_oI7b
7211};
a737bd4d 7212
c19d1205
ZW
7213/* Generic instruction operand parser. This does no encoding and no
7214 semantic validation; it merely squirrels values away in the inst
7215 structure. Returns SUCCESS or FAIL depending on whether the
7216 specified grammar matched. */
7217static int
5be8be5d 7218parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7219{
5be8be5d 7220 unsigned const int *upat = pattern;
c19d1205
ZW
7221 char *backtrack_pos = 0;
7222 const char *backtrack_error = 0;
99aad254 7223 int i, val = 0, backtrack_index = 0;
5287ad62 7224 enum arm_reg_type rtype;
4962c51a 7225 parse_operand_result result;
5be8be5d 7226 unsigned int op_parse_code;
efd6b359 7227 bfd_boolean partial_match;
c19d1205 7228
e07e6e58
NC
7229#define po_char_or_fail(chr) \
7230 do \
7231 { \
7232 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7233 goto bad_args; \
e07e6e58
NC
7234 } \
7235 while (0)
c19d1205 7236
e07e6e58
NC
7237#define po_reg_or_fail(regtype) \
7238 do \
dcbf9037 7239 { \
e07e6e58 7240 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7241 & inst.operands[i].vectype); \
e07e6e58 7242 if (val == FAIL) \
477330fc
RM
7243 { \
7244 first_error (_(reg_expected_msgs[regtype])); \
7245 goto failure; \
7246 } \
e07e6e58
NC
7247 inst.operands[i].reg = val; \
7248 inst.operands[i].isreg = 1; \
7249 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7250 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7251 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7252 || rtype == REG_TYPE_VFD \
7253 || rtype == REG_TYPE_NQ); \
1b883319 7254 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7255 } \
e07e6e58
NC
7256 while (0)
7257
7258#define po_reg_or_goto(regtype, label) \
7259 do \
7260 { \
7261 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7262 & inst.operands[i].vectype); \
7263 if (val == FAIL) \
7264 goto label; \
dcbf9037 7265 \
e07e6e58
NC
7266 inst.operands[i].reg = val; \
7267 inst.operands[i].isreg = 1; \
7268 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7269 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7270 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7271 || rtype == REG_TYPE_VFD \
e07e6e58 7272 || rtype == REG_TYPE_NQ); \
1b883319 7273 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7274 } \
7275 while (0)
7276
7277#define po_imm_or_fail(min, max, popt) \
7278 do \
7279 { \
7280 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7281 goto failure; \
7282 inst.operands[i].imm = val; \
7283 } \
7284 while (0)
7285
08132bdd
SP
7286#define po_imm1_or_imm2_or_fail(imm1, imm2, popt) \
7287 do \
7288 { \
7289 expressionS exp; \
7290 my_get_expression (&exp, &str, popt); \
7291 if (exp.X_op != O_constant) \
7292 { \
7293 inst.error = _("constant expression required"); \
7294 goto failure; \
7295 } \
7296 if (exp.X_add_number != imm1 && exp.X_add_number != imm2) \
7297 { \
7298 inst.error = _("immediate value 48 or 64 expected"); \
7299 goto failure; \
7300 } \
7301 inst.operands[i].imm = exp.X_add_number; \
7302 } \
7303 while (0)
7304
57785aa2 7305#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7306 do \
7307 { \
57785aa2
AV
7308 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7309 reg_type); \
e07e6e58
NC
7310 if (val == FAIL) \
7311 goto label; \
7312 inst.operands[i].reg = val; \
7313 inst.operands[i].isscalar = 1; \
7314 } \
7315 while (0)
7316
7317#define po_misc_or_fail(expr) \
7318 do \
7319 { \
7320 if (expr) \
7321 goto failure; \
7322 } \
7323 while (0)
7324
7325#define po_misc_or_fail_no_backtrack(expr) \
7326 do \
7327 { \
7328 result = expr; \
7329 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7330 backtrack_pos = 0; \
7331 if (result != PARSE_OPERAND_SUCCESS) \
7332 goto failure; \
7333 } \
7334 while (0)
4962c51a 7335
52e7f43d
RE
7336#define po_barrier_or_imm(str) \
7337 do \
7338 { \
7339 val = parse_barrier (&str); \
ccb84d65
JB
7340 if (val == FAIL && ! ISALPHA (*str)) \
7341 goto immediate; \
7342 if (val == FAIL \
7343 /* ISB can only take SY as an option. */ \
7344 || ((inst.instruction & 0xf0) == 0x60 \
7345 && val != 0xf)) \
52e7f43d 7346 { \
ccb84d65
JB
7347 inst.error = _("invalid barrier type"); \
7348 backtrack_pos = 0; \
7349 goto failure; \
52e7f43d
RE
7350 } \
7351 } \
7352 while (0)
7353
c19d1205
ZW
7354 skip_whitespace (str);
7355
7356 for (i = 0; upat[i] != OP_stop; i++)
7357 {
5be8be5d
DG
7358 op_parse_code = upat[i];
7359 if (op_parse_code >= 1<<16)
7360 op_parse_code = thumb ? (op_parse_code >> 16)
7361 : (op_parse_code & ((1<<16)-1));
7362
7363 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7364 {
7365 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7366 backtrack_pos = str;
7367 backtrack_error = inst.error;
7368 backtrack_index = i;
7369 }
7370
b6702015 7371 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7372 po_char_or_fail (',');
7373
5be8be5d 7374 switch (op_parse_code)
c19d1205
ZW
7375 {
7376 /* Registers */
7377 case OP_oRRnpc:
5be8be5d 7378 case OP_oRRnpcsp:
c19d1205 7379 case OP_RRnpc:
5be8be5d 7380 case OP_RRnpcsp:
c19d1205 7381 case OP_oRR:
a302e574
AV
7382 case OP_RRe:
7383 case OP_RRo:
60f993ce
AV
7384 case OP_LR:
7385 case OP_oLR:
c19d1205
ZW
7386 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7387 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7388 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7389 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7390 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7391 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7392 case OP_oRND:
5ee91343
AV
7393 case OP_RNDMQR:
7394 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7395 break;
7396 try_rndmq:
7397 case OP_RNDMQ:
7398 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7399 break;
7400 try_rnd:
5287ad62 7401 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7402 case OP_RVC:
7403 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7404 break;
7405 /* Also accept generic coprocessor regs for unknown registers. */
7406 coproc_reg:
ba6cd17f
SD
7407 po_reg_or_goto (REG_TYPE_CN, vpr_po);
7408 break;
7409 /* Also accept P0 or p0 for VPR.P0. Since P0 is already an
7410 existing register with a value of 0, this seems like the
7411 best way to parse P0. */
7412 vpr_po:
7413 if (strncasecmp (str, "P0", 2) == 0)
7414 {
7415 str += 2;
7416 inst.operands[i].isreg = 1;
7417 inst.operands[i].reg = 13;
7418 }
7419 else
7420 goto failure;
cd2cf30b 7421 break;
c19d1205
ZW
7422 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7423 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7424 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7425 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7426 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7427 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7428 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7429 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7430 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7431 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7432 case OP_oRNQ:
5ee91343
AV
7433 case OP_RNQMQ:
7434 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7435 break;
7436 try_nq:
5287ad62 7437 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7438 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7439 case OP_RNDQMQR:
7440 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7441 break;
7442 try_rndqmq:
5ee91343
AV
7443 case OP_oRNDQMQ:
7444 case OP_RNDQMQ:
7445 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7446 break;
7447 try_rndq:
477330fc 7448 case OP_oRNDQ:
5287ad62 7449 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7450 case OP_RVSDMQ:
7451 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7452 break;
7453 try_rvsd:
477330fc 7454 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7455 case OP_RVSD_COND:
7456 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7457 break;
477330fc
RM
7458 case OP_oRNSDQ:
7459 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7460 case OP_RNSDQMQR:
7461 po_reg_or_goto (REG_TYPE_RN, try_mq);
7462 break;
7463 try_mq:
7464 case OP_oRNSDQMQ:
7465 case OP_RNSDQMQ:
7466 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7467 break;
7468 try_nsdq2:
7469 po_reg_or_fail (REG_TYPE_NSDQ);
7470 inst.error = 0;
7471 break;
35d1cfc2
AV
7472 case OP_RMQRR:
7473 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7474 break;
7475 try_rmq:
a302e574
AV
7476 case OP_RMQ:
7477 po_reg_or_fail (REG_TYPE_MQ);
7478 break;
477330fc
RM
7479 /* Neon scalar. Using an element size of 8 means that some invalid
7480 scalars are accepted here, so deal with those in later code. */
57785aa2 7481 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7482
7483 case OP_RNDQ_I0:
7484 {
7485 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7486 break;
7487 try_imm0:
7488 po_imm_or_fail (0, 0, TRUE);
7489 }
7490 break;
7491
7492 case OP_RVSD_I0:
7493 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7494 break;
7495
1b883319
AV
7496 case OP_RSVDMQ_FI0:
7497 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7498 break;
7499 try_rsvd_fi0:
aacf0b33
KT
7500 case OP_RSVD_FI0:
7501 {
7502 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7503 break;
7504 try_ifimm0:
7505 if (parse_ifimm_zero (&str))
7506 inst.operands[i].imm = 0;
7507 else
7508 {
7509 inst.error
7510 = _("only floating point zero is allowed as immediate value");
7511 goto failure;
7512 }
7513 }
7514 break;
7515
477330fc
RM
7516 case OP_RR_RNSC:
7517 {
57785aa2 7518 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7519 break;
7520 try_rr:
7521 po_reg_or_fail (REG_TYPE_RN);
7522 }
7523 break;
7524
a8465a06
AV
7525 case OP_RNSDQ_RNSC_MQ_RR:
7526 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7527 break;
7528 try_rnsdq_rnsc_mq:
886e1c73
AV
7529 case OP_RNSDQ_RNSC_MQ:
7530 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7531 break;
7532 try_rnsdq_rnsc:
477330fc
RM
7533 case OP_RNSDQ_RNSC:
7534 {
57785aa2
AV
7535 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7536 inst.error = 0;
477330fc
RM
7537 break;
7538 try_nsdq:
7539 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7540 inst.error = 0;
477330fc
RM
7541 }
7542 break;
7543
dec41383
JW
7544 case OP_RNSD_RNSC:
7545 {
57785aa2 7546 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7547 break;
7548 try_s_scalar:
57785aa2 7549 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7550 break;
7551 try_nsd:
7552 po_reg_or_fail (REG_TYPE_NSD);
7553 }
7554 break;
7555
42b16635
AV
7556 case OP_RNDQMQ_RNSC_RR:
7557 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7558 break;
7559 try_rndq_rnsc_rr:
7560 case OP_RNDQ_RNSC_RR:
7561 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7562 break;
5d281bf0
AV
7563 case OP_RNDQMQ_RNSC:
7564 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7565 break;
7566 try_rndq_rnsc:
477330fc
RM
7567 case OP_RNDQ_RNSC:
7568 {
57785aa2 7569 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7570 break;
7571 try_ndq:
7572 po_reg_or_fail (REG_TYPE_NDQ);
7573 }
7574 break;
7575
7576 case OP_RND_RNSC:
7577 {
57785aa2 7578 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7579 break;
7580 try_vfd:
7581 po_reg_or_fail (REG_TYPE_VFD);
7582 }
7583 break;
7584
7585 case OP_VMOV:
7586 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7587 not careful then bad things might happen. */
7588 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7589 break;
7590
f601a00c
AV
7591 case OP_RNDQMQ_Ibig:
7592 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7593 break;
7594 try_rndq_ibig:
477330fc
RM
7595 case OP_RNDQ_Ibig:
7596 {
7597 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7598 break;
7599 try_immbig:
7600 /* There's a possibility of getting a 64-bit immediate here, so
7601 we need special handling. */
8335d6aa
JW
7602 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7603 == FAIL)
477330fc
RM
7604 {
7605 inst.error = _("immediate value is out of range");
7606 goto failure;
7607 }
7608 }
7609 break;
7610
5150f0d8
AV
7611 case OP_RNDQMQ_I63b_RR:
7612 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7613 break;
7614 try_rndq_i63b_rr:
7615 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7616 break;
7617 try_rndq_i63b:
477330fc
RM
7618 case OP_RNDQ_I63b:
7619 {
7620 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7621 break;
7622 try_shimm:
7623 po_imm_or_fail (0, 63, TRUE);
7624 }
7625 break;
c19d1205
ZW
7626
7627 case OP_RRnpcb:
7628 po_char_or_fail ('[');
7629 po_reg_or_fail (REG_TYPE_RN);
7630 po_char_or_fail (']');
7631 break;
a737bd4d 7632
55881a11 7633 case OP_RRnpctw:
c19d1205 7634 case OP_RRw:
b6702015 7635 case OP_oRRw:
c19d1205
ZW
7636 po_reg_or_fail (REG_TYPE_RN);
7637 if (skip_past_char (&str, '!') == SUCCESS)
7638 inst.operands[i].writeback = 1;
7639 break;
7640
7641 /* Immediates */
7642 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7643 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7644 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7645 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7646 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7647 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7648 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
08132bdd 7649 case OP_I48_I64: po_imm1_or_imm2_or_fail (48, 64, FALSE); break;
c19d1205 7650 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7651 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7652 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7653 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7654 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7655
7656 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7657 case OP_oI7b:
7658 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7659 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7660 case OP_oI31b:
7661 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7662 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7663 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7664 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7665
7666 /* Immediate variants */
7667 case OP_oI255c:
7668 po_char_or_fail ('{');
7669 po_imm_or_fail (0, 255, TRUE);
7670 po_char_or_fail ('}');
7671 break;
7672
7673 case OP_I31w:
7674 /* The expression parser chokes on a trailing !, so we have
7675 to find it first and zap it. */
7676 {
7677 char *s = str;
7678 while (*s && *s != ',')
7679 s++;
7680 if (s[-1] == '!')
7681 {
7682 s[-1] = '\0';
7683 inst.operands[i].writeback = 1;
7684 }
7685 po_imm_or_fail (0, 31, TRUE);
7686 if (str == s - 1)
7687 str = s;
7688 }
7689 break;
7690
7691 /* Expressions */
7692 case OP_EXPi: EXPi:
e2b0ab59 7693 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7694 GE_OPT_PREFIX));
7695 break;
7696
7697 case OP_EXP:
e2b0ab59 7698 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7699 GE_NO_PREFIX));
7700 break;
7701
7702 case OP_EXPr: EXPr:
e2b0ab59 7703 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7704 GE_NO_PREFIX));
e2b0ab59 7705 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7706 {
c19d1205
ZW
7707 val = parse_reloc (&str);
7708 if (val == -1)
7709 {
7710 inst.error = _("unrecognized relocation suffix");
7711 goto failure;
7712 }
7713 else if (val != BFD_RELOC_UNUSED)
7714 {
7715 inst.operands[i].imm = val;
7716 inst.operands[i].hasreloc = 1;
7717 }
a737bd4d 7718 }
c19d1205 7719 break;
a737bd4d 7720
e2b0ab59
AV
7721 case OP_EXPs:
7722 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7723 GE_NO_PREFIX));
7724 if (inst.relocs[i].exp.X_op == O_symbol)
7725 {
7726 inst.operands[i].hasreloc = 1;
7727 }
7728 else if (inst.relocs[i].exp.X_op == O_constant)
7729 {
7730 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7731 inst.operands[i].hasreloc = 0;
7732 }
7733 break;
7734
b6895b4f
PB
7735 /* Operand for MOVW or MOVT. */
7736 case OP_HALF:
7737 po_misc_or_fail (parse_half (&str));
7738 break;
7739
e07e6e58 7740 /* Register or expression. */
c19d1205
ZW
7741 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7742 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7743
e07e6e58 7744 /* Register or immediate. */
c19d1205
ZW
7745 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7746 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7747
23d00a41
SD
7748 case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break;
7749 I32: po_imm_or_fail (1, 32, FALSE); break;
7750
c19d1205
ZW
7751 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7752 IF:
7753 if (!is_immediate_prefix (*str))
7754 goto bad_args;
7755 str++;
7756 val = parse_fpa_immediate (&str);
7757 if (val == FAIL)
7758 goto failure;
7759 /* FPA immediates are encoded as registers 8-15.
7760 parse_fpa_immediate has already applied the offset. */
7761 inst.operands[i].reg = val;
7762 inst.operands[i].isreg = 1;
7763 break;
09d92015 7764
2d447fca
JM
7765 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7766 I32z: po_imm_or_fail (0, 32, FALSE); break;
7767
e07e6e58 7768 /* Two kinds of register. */
c19d1205
ZW
7769 case OP_RIWR_RIWC:
7770 {
7771 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7772 if (!rege
7773 || (rege->type != REG_TYPE_MMXWR
7774 && rege->type != REG_TYPE_MMXWC
7775 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7776 {
7777 inst.error = _("iWMMXt data or control register expected");
7778 goto failure;
7779 }
7780 inst.operands[i].reg = rege->number;
7781 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7782 }
7783 break;
09d92015 7784
41adaa5c
JM
7785 case OP_RIWC_RIWG:
7786 {
7787 struct reg_entry *rege = arm_reg_parse_multi (&str);
7788 if (!rege
7789 || (rege->type != REG_TYPE_MMXWC
7790 && rege->type != REG_TYPE_MMXWCG))
7791 {
7792 inst.error = _("iWMMXt control register expected");
7793 goto failure;
7794 }
7795 inst.operands[i].reg = rege->number;
7796 inst.operands[i].isreg = 1;
7797 }
7798 break;
7799
c19d1205
ZW
7800 /* Misc */
7801 case OP_CPSF: val = parse_cps_flags (&str); break;
7802 case OP_ENDI: val = parse_endian_specifier (&str); break;
7803 case OP_oROR: val = parse_ror (&str); break;
1b883319 7804 try_cond:
c19d1205 7805 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7806 case OP_oBARRIER_I15:
7807 po_barrier_or_imm (str); break;
7808 immediate:
7809 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7810 goto failure;
52e7f43d 7811 break;
c19d1205 7812
fa94de6b 7813 case OP_wPSR:
d2cd1205 7814 case OP_rPSR:
90ec0d68
MGD
7815 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7816 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7817 {
7818 inst.error = _("Banked registers are not available with this "
7819 "architecture.");
7820 goto failure;
7821 }
7822 break;
d2cd1205
JB
7823 try_psr:
7824 val = parse_psr (&str, op_parse_code == OP_wPSR);
7825 break;
037e8744 7826
32c36c3c
AV
7827 case OP_VLDR:
7828 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7829 break;
7830 try_sysreg:
7831 val = parse_sys_vldr_vstr (&str);
7832 break;
7833
477330fc
RM
7834 case OP_APSR_RR:
7835 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7836 break;
7837 try_apsr:
7838 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7839 instruction). */
7840 if (strncasecmp (str, "APSR_", 5) == 0)
7841 {
7842 unsigned found = 0;
7843 str += 5;
7844 while (found < 15)
7845 switch (*str++)
7846 {
7847 case 'c': found = (found & 1) ? 16 : found | 1; break;
7848 case 'n': found = (found & 2) ? 16 : found | 2; break;
7849 case 'z': found = (found & 4) ? 16 : found | 4; break;
7850 case 'v': found = (found & 8) ? 16 : found | 8; break;
7851 default: found = 16;
7852 }
7853 if (found != 15)
7854 goto failure;
7855 inst.operands[i].isvec = 1;
f7c21dc7
NC
7856 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7857 inst.operands[i].reg = REG_PC;
477330fc
RM
7858 }
7859 else
7860 goto failure;
7861 break;
037e8744 7862
92e90b6e
PB
7863 case OP_TB:
7864 po_misc_or_fail (parse_tb (&str));
7865 break;
7866
e07e6e58 7867 /* Register lists. */
c19d1205 7868 case OP_REGLST:
4b5a202f 7869 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7870 if (*str == '^')
7871 {
5e0d7f77 7872 inst.operands[i].writeback = 1;
c19d1205
ZW
7873 str++;
7874 }
7875 break;
09d92015 7876
4b5a202f
AV
7877 case OP_CLRMLST:
7878 val = parse_reg_list (&str, REGLIST_CLRM);
7879 break;
7880
c19d1205 7881 case OP_VRSLST:
efd6b359
AV
7882 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7883 &partial_match);
c19d1205 7884 break;
09d92015 7885
c19d1205 7886 case OP_VRDLST:
efd6b359
AV
7887 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7888 &partial_match);
c19d1205 7889 break;
a737bd4d 7890
477330fc
RM
7891 case OP_VRSDLST:
7892 /* Allow Q registers too. */
7893 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7894 REGLIST_NEON_D, &partial_match);
477330fc
RM
7895 if (val == FAIL)
7896 {
7897 inst.error = NULL;
7898 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7899 REGLIST_VFP_S, &partial_match);
7900 inst.operands[i].issingle = 1;
7901 }
7902 break;
7903
7904 case OP_VRSDVLST:
7905 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7906 REGLIST_VFP_D_VPR, &partial_match);
7907 if (val == FAIL && !partial_match)
7908 {
7909 inst.error = NULL;
7910 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7911 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7912 inst.operands[i].issingle = 1;
7913 }
7914 break;
7915
7916 case OP_NRDLST:
7917 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7918 REGLIST_NEON_D, &partial_match);
477330fc 7919 break;
5287ad62 7920
35c228db
AV
7921 case OP_MSTRLST4:
7922 case OP_MSTRLST2:
7923 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7924 1, &inst.operands[i].vectype);
7925 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7926 goto failure;
7927 break;
5287ad62 7928 case OP_NSTRLST:
477330fc 7929 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7930 0, &inst.operands[i].vectype);
477330fc 7931 break;
5287ad62 7932
c19d1205 7933 /* Addressing modes */
35c228db
AV
7934 case OP_ADDRMVE:
7935 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7936 break;
7937
c19d1205
ZW
7938 case OP_ADDR:
7939 po_misc_or_fail (parse_address (&str, i));
7940 break;
09d92015 7941
4962c51a
MS
7942 case OP_ADDRGLDR:
7943 po_misc_or_fail_no_backtrack (
477330fc 7944 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7945 break;
7946
7947 case OP_ADDRGLDRS:
7948 po_misc_or_fail_no_backtrack (
477330fc 7949 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7950 break;
7951
7952 case OP_ADDRGLDC:
7953 po_misc_or_fail_no_backtrack (
477330fc 7954 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7955 break;
7956
c19d1205
ZW
7957 case OP_SH:
7958 po_misc_or_fail (parse_shifter_operand (&str, i));
7959 break;
09d92015 7960
4962c51a
MS
7961 case OP_SHG:
7962 po_misc_or_fail_no_backtrack (
477330fc 7963 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7964 break;
7965
c19d1205
ZW
7966 case OP_oSHll:
7967 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7968 break;
09d92015 7969
c19d1205
ZW
7970 case OP_oSHar:
7971 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7972 break;
09d92015 7973
c19d1205
ZW
7974 case OP_oSHllar:
7975 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7976 break;
09d92015 7977
1b883319
AV
7978 case OP_RMQRZ:
7979 case OP_oRMQRZ:
7980 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7981 break;
e39c1607
SD
7982
7983 case OP_RR_ZR:
1b883319
AV
7984 try_rr_zr:
7985 po_reg_or_goto (REG_TYPE_RN, ZR);
7986 break;
7987 ZR:
7988 po_reg_or_fail (REG_TYPE_ZR);
7989 break;
7990
c19d1205 7991 default:
5be8be5d 7992 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7993 }
09d92015 7994
c19d1205
ZW
7995 /* Various value-based sanity checks and shared operations. We
7996 do not signal immediate failures for the register constraints;
7997 this allows a syntax error to take precedence. */
5be8be5d 7998 switch (op_parse_code)
c19d1205
ZW
7999 {
8000 case OP_oRRnpc:
8001 case OP_RRnpc:
8002 case OP_RRnpcb:
8003 case OP_RRw:
b6702015 8004 case OP_oRRw:
c19d1205
ZW
8005 case OP_RRnpc_I0:
8006 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
8007 inst.error = BAD_PC;
8008 break;
09d92015 8009
5be8be5d
DG
8010 case OP_oRRnpcsp:
8011 case OP_RRnpcsp:
23d00a41 8012 case OP_RRnpcsp_I32:
5be8be5d
DG
8013 if (inst.operands[i].isreg)
8014 {
8015 if (inst.operands[i].reg == REG_PC)
8016 inst.error = BAD_PC;
5c8ed6a4
JW
8017 else if (inst.operands[i].reg == REG_SP
8018 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
8019 relaxed since ARMv8-A. */
8020 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8021 {
8022 gas_assert (thumb);
8023 inst.error = BAD_SP;
8024 }
5be8be5d
DG
8025 }
8026 break;
8027
55881a11 8028 case OP_RRnpctw:
fa94de6b
RM
8029 if (inst.operands[i].isreg
8030 && inst.operands[i].reg == REG_PC
55881a11
MGD
8031 && (inst.operands[i].writeback || thumb))
8032 inst.error = BAD_PC;
8033 break;
8034
1b883319 8035 case OP_RVSD_COND:
32c36c3c
AV
8036 case OP_VLDR:
8037 if (inst.operands[i].isreg)
8038 break;
8039 /* fall through. */
1b883319 8040
c19d1205
ZW
8041 case OP_CPSF:
8042 case OP_ENDI:
8043 case OP_oROR:
d2cd1205
JB
8044 case OP_wPSR:
8045 case OP_rPSR:
c19d1205 8046 case OP_COND:
52e7f43d 8047 case OP_oBARRIER_I15:
c19d1205 8048 case OP_REGLST:
4b5a202f 8049 case OP_CLRMLST:
c19d1205
ZW
8050 case OP_VRSLST:
8051 case OP_VRDLST:
477330fc 8052 case OP_VRSDLST:
efd6b359 8053 case OP_VRSDVLST:
477330fc
RM
8054 case OP_NRDLST:
8055 case OP_NSTRLST:
35c228db
AV
8056 case OP_MSTRLST2:
8057 case OP_MSTRLST4:
c19d1205
ZW
8058 if (val == FAIL)
8059 goto failure;
8060 inst.operands[i].imm = val;
8061 break;
a737bd4d 8062
60f993ce
AV
8063 case OP_LR:
8064 case OP_oLR:
8065 if (inst.operands[i].reg != REG_LR)
8066 inst.error = _("operand must be LR register");
8067 break;
8068
1b883319
AV
8069 case OP_RMQRZ:
8070 case OP_oRMQRZ:
e39c1607 8071 case OP_RR_ZR:
1b883319
AV
8072 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
8073 inst.error = BAD_PC;
8074 break;
8075
a302e574
AV
8076 case OP_RRe:
8077 if (inst.operands[i].isreg
8078 && (inst.operands[i].reg & 0x00000001) != 0)
8079 inst.error = BAD_ODD;
8080 break;
8081
8082 case OP_RRo:
8083 if (inst.operands[i].isreg)
8084 {
8085 if ((inst.operands[i].reg & 0x00000001) != 1)
8086 inst.error = BAD_EVEN;
8087 else if (inst.operands[i].reg == REG_SP)
8088 as_tsktsk (MVE_BAD_SP);
8089 else if (inst.operands[i].reg == REG_PC)
8090 inst.error = BAD_PC;
8091 }
8092 break;
8093
c19d1205
ZW
8094 default:
8095 break;
8096 }
09d92015 8097
c19d1205
ZW
8098 /* If we get here, this operand was successfully parsed. */
8099 inst.operands[i].present = 1;
8100 continue;
09d92015 8101
c19d1205 8102 bad_args:
09d92015 8103 inst.error = BAD_ARGS;
c19d1205
ZW
8104
8105 failure:
8106 if (!backtrack_pos)
d252fdde
PB
8107 {
8108 /* The parse routine should already have set inst.error, but set a
5f4273c7 8109 default here just in case. */
d252fdde 8110 if (!inst.error)
5ee91343 8111 inst.error = BAD_SYNTAX;
d252fdde
PB
8112 return FAIL;
8113 }
c19d1205
ZW
8114
8115 /* Do not backtrack over a trailing optional argument that
8116 absorbed some text. We will only fail again, with the
8117 'garbage following instruction' error message, which is
8118 probably less helpful than the current one. */
8119 if (backtrack_index == i && backtrack_pos != str
8120 && upat[i+1] == OP_stop)
d252fdde
PB
8121 {
8122 if (!inst.error)
5ee91343 8123 inst.error = BAD_SYNTAX;
d252fdde
PB
8124 return FAIL;
8125 }
c19d1205
ZW
8126
8127 /* Try again, skipping the optional argument at backtrack_pos. */
8128 str = backtrack_pos;
8129 inst.error = backtrack_error;
8130 inst.operands[backtrack_index].present = 0;
8131 i = backtrack_index;
8132 backtrack_pos = 0;
09d92015 8133 }
09d92015 8134
c19d1205
ZW
8135 /* Check that we have parsed all the arguments. */
8136 if (*str != '\0' && !inst.error)
8137 inst.error = _("garbage following instruction");
09d92015 8138
c19d1205 8139 return inst.error ? FAIL : SUCCESS;
09d92015
MM
8140}
8141
c19d1205
ZW
8142#undef po_char_or_fail
8143#undef po_reg_or_fail
8144#undef po_reg_or_goto
8145#undef po_imm_or_fail
5287ad62 8146#undef po_scalar_or_fail
52e7f43d 8147#undef po_barrier_or_imm
e07e6e58 8148
c19d1205 8149/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
8150#define constraint(expr, err) \
8151 do \
c19d1205 8152 { \
e07e6e58
NC
8153 if (expr) \
8154 { \
8155 inst.error = err; \
8156 return; \
8157 } \
c19d1205 8158 } \
e07e6e58 8159 while (0)
c19d1205 8160
fdfde340
JM
8161/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
8162 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
8163 is the BadReg predicate in ARM's Thumb-2 documentation.
8164
8165 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
8166 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
8167#define reject_bad_reg(reg) \
8168 do \
8169 if (reg == REG_PC) \
8170 { \
8171 inst.error = BAD_PC; \
8172 return; \
8173 } \
8174 else if (reg == REG_SP \
8175 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
8176 { \
8177 inst.error = BAD_SP; \
8178 return; \
8179 } \
fdfde340
JM
8180 while (0)
8181
94206790
MM
8182/* If REG is R13 (the stack pointer), warn that its use is
8183 deprecated. */
8184#define warn_deprecated_sp(reg) \
8185 do \
8186 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 8187 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
8188 while (0)
8189
c19d1205
ZW
8190/* Functions for operand encoding. ARM, then Thumb. */
8191
d840c081 8192#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 8193
9db2f6b4
RL
8194/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8195
8196 The only binary encoding difference is the Coprocessor number. Coprocessor
8197 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 8198 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
8199 exists for Single-Precision operation. */
8200
8201static void
8202do_scalar_fp16_v82_encode (void)
8203{
5ee91343 8204 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
8205 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8206 " the behaviour is UNPREDICTABLE"));
8207 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8208 _(BAD_FP16));
8209
8210 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8211 mark_feature_used (&arm_ext_fp16);
8212}
8213
c19d1205
ZW
8214/* If VAL can be encoded in the immediate field of an ARM instruction,
8215 return the encoded form. Otherwise, return FAIL. */
8216
8217static unsigned int
8218encode_arm_immediate (unsigned int val)
09d92015 8219{
c19d1205
ZW
8220 unsigned int a, i;
8221
4f1d6205
L
8222 if (val <= 0xff)
8223 return val;
8224
8225 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8226 if ((a = rotate_left (val, i)) <= 0xff)
8227 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8228
8229 return FAIL;
09d92015
MM
8230}
8231
c19d1205
ZW
8232/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8233 return the encoded form. Otherwise, return FAIL. */
8234static unsigned int
8235encode_thumb32_immediate (unsigned int val)
09d92015 8236{
c19d1205 8237 unsigned int a, i;
09d92015 8238
9c3c69f2 8239 if (val <= 0xff)
c19d1205 8240 return val;
a737bd4d 8241
9c3c69f2 8242 for (i = 1; i <= 24; i++)
09d92015 8243 {
9c3c69f2
PB
8244 a = val >> i;
8245 if ((val & ~(0xff << i)) == 0)
8246 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8247 }
a737bd4d 8248
c19d1205
ZW
8249 a = val & 0xff;
8250 if (val == ((a << 16) | a))
8251 return 0x100 | a;
8252 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8253 return 0x300 | a;
09d92015 8254
c19d1205
ZW
8255 a = val & 0xff00;
8256 if (val == ((a << 16) | a))
8257 return 0x200 | (a >> 8);
a737bd4d 8258
c19d1205 8259 return FAIL;
09d92015 8260}
5287ad62 8261/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8262
8263static void
5287ad62
JB
8264encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8265{
8266 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8267 && reg > 15)
8268 {
b1cc4aeb 8269 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8270 {
8271 if (thumb_mode)
8272 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8273 fpu_vfp_ext_d32);
8274 else
8275 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8276 fpu_vfp_ext_d32);
8277 }
5287ad62 8278 else
477330fc
RM
8279 {
8280 first_error (_("D register out of range for selected VFP version"));
8281 return;
8282 }
5287ad62
JB
8283 }
8284
c19d1205 8285 switch (pos)
09d92015 8286 {
c19d1205
ZW
8287 case VFP_REG_Sd:
8288 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8289 break;
8290
8291 case VFP_REG_Sn:
8292 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8293 break;
8294
8295 case VFP_REG_Sm:
8296 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8297 break;
8298
5287ad62
JB
8299 case VFP_REG_Dd:
8300 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8301 break;
5f4273c7 8302
5287ad62
JB
8303 case VFP_REG_Dn:
8304 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8305 break;
5f4273c7 8306
5287ad62
JB
8307 case VFP_REG_Dm:
8308 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8309 break;
8310
c19d1205
ZW
8311 default:
8312 abort ();
09d92015 8313 }
09d92015
MM
8314}
8315
c19d1205 8316/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8317 if any, is handled by md_apply_fix. */
09d92015 8318static void
c19d1205 8319encode_arm_shift (int i)
09d92015 8320{
008a97ef
RL
8321 /* register-shifted register. */
8322 if (inst.operands[i].immisreg)
8323 {
bf355b69
MR
8324 int op_index;
8325 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8326 {
5689c942
RL
8327 /* Check the operand only when it's presented. In pre-UAL syntax,
8328 if the destination register is the same as the first operand, two
8329 register form of the instruction can be used. */
bf355b69
MR
8330 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8331 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8332 as_warn (UNPRED_REG ("r15"));
8333 }
8334
8335 if (inst.operands[i].imm == REG_PC)
8336 as_warn (UNPRED_REG ("r15"));
8337 }
8338
c19d1205
ZW
8339 if (inst.operands[i].shift_kind == SHIFT_RRX)
8340 inst.instruction |= SHIFT_ROR << 5;
8341 else
09d92015 8342 {
c19d1205
ZW
8343 inst.instruction |= inst.operands[i].shift_kind << 5;
8344 if (inst.operands[i].immisreg)
8345 {
8346 inst.instruction |= SHIFT_BY_REG;
8347 inst.instruction |= inst.operands[i].imm << 8;
8348 }
8349 else
e2b0ab59 8350 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8351 }
c19d1205 8352}
09d92015 8353
c19d1205
ZW
8354static void
8355encode_arm_shifter_operand (int i)
8356{
8357 if (inst.operands[i].isreg)
09d92015 8358 {
c19d1205
ZW
8359 inst.instruction |= inst.operands[i].reg;
8360 encode_arm_shift (i);
09d92015 8361 }
c19d1205 8362 else
a415b1cd
JB
8363 {
8364 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8365 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8366 inst.instruction |= inst.operands[i].imm;
8367 }
09d92015
MM
8368}
8369
c19d1205 8370/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8371static void
c19d1205 8372encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8373{
2b2f5df9
NC
8374 /* PR 14260:
8375 Generate an error if the operand is not a register. */
8376 constraint (!inst.operands[i].isreg,
8377 _("Instruction does not support =N addresses"));
8378
c19d1205 8379 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8380
c19d1205 8381 if (inst.operands[i].preind)
09d92015 8382 {
c19d1205
ZW
8383 if (is_t)
8384 {
8385 inst.error = _("instruction does not accept preindexed addressing");
8386 return;
8387 }
8388 inst.instruction |= PRE_INDEX;
8389 if (inst.operands[i].writeback)
8390 inst.instruction |= WRITE_BACK;
09d92015 8391
c19d1205
ZW
8392 }
8393 else if (inst.operands[i].postind)
8394 {
9c2799c2 8395 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8396 if (is_t)
8397 inst.instruction |= WRITE_BACK;
8398 }
8399 else /* unindexed - only for coprocessor */
09d92015 8400 {
c19d1205 8401 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8402 return;
8403 }
8404
c19d1205
ZW
8405 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8406 && (((inst.instruction & 0x000f0000) >> 16)
8407 == ((inst.instruction & 0x0000f000) >> 12)))
8408 as_warn ((inst.instruction & LOAD_BIT)
8409 ? _("destination register same as write-back base")
8410 : _("source register same as write-back base"));
09d92015
MM
8411}
8412
c19d1205
ZW
8413/* inst.operands[i] was set up by parse_address. Encode it into an
8414 ARM-format mode 2 load or store instruction. If is_t is true,
8415 reject forms that cannot be used with a T instruction (i.e. not
8416 post-indexed). */
a737bd4d 8417static void
c19d1205 8418encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8419{
5be8be5d
DG
8420 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8421
c19d1205 8422 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8423
c19d1205 8424 if (inst.operands[i].immisreg)
09d92015 8425 {
5be8be5d
DG
8426 constraint ((inst.operands[i].imm == REG_PC
8427 || (is_pc && inst.operands[i].writeback)),
8428 BAD_PC_ADDRESSING);
c19d1205
ZW
8429 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8430 inst.instruction |= inst.operands[i].imm;
8431 if (!inst.operands[i].negative)
8432 inst.instruction |= INDEX_UP;
8433 if (inst.operands[i].shifted)
8434 {
8435 if (inst.operands[i].shift_kind == SHIFT_RRX)
8436 inst.instruction |= SHIFT_ROR << 5;
8437 else
8438 {
8439 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8440 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8441 }
8442 }
09d92015 8443 }
e2b0ab59 8444 else /* immediate offset in inst.relocs[0] */
09d92015 8445 {
e2b0ab59 8446 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8447 {
8448 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8449
8450 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8451 cannot use PC in addressing.
8452 PC cannot be used in writeback addressing, either. */
8453 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8454 BAD_PC_ADDRESSING);
23a10334 8455
dc5ec521 8456 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8457 if (warn_on_deprecated
8458 && !is_load
8459 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8460 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8461 }
8462
e2b0ab59 8463 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8464 {
8465 /* Prefer + for zero encoded value. */
8466 if (!inst.operands[i].negative)
8467 inst.instruction |= INDEX_UP;
e2b0ab59 8468 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8469 }
09d92015 8470 }
09d92015
MM
8471}
8472
c19d1205
ZW
8473/* inst.operands[i] was set up by parse_address. Encode it into an
8474 ARM-format mode 3 load or store instruction. Reject forms that
8475 cannot be used with such instructions. If is_t is true, reject
8476 forms that cannot be used with a T instruction (i.e. not
8477 post-indexed). */
8478static void
8479encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8480{
c19d1205 8481 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8482 {
c19d1205
ZW
8483 inst.error = _("instruction does not accept scaled register index");
8484 return;
09d92015 8485 }
a737bd4d 8486
c19d1205 8487 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8488
c19d1205
ZW
8489 if (inst.operands[i].immisreg)
8490 {
5be8be5d 8491 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8492 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8493 BAD_PC_ADDRESSING);
eb9f3f00
JB
8494 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8495 BAD_PC_WRITEBACK);
c19d1205
ZW
8496 inst.instruction |= inst.operands[i].imm;
8497 if (!inst.operands[i].negative)
8498 inst.instruction |= INDEX_UP;
8499 }
e2b0ab59 8500 else /* immediate offset in inst.relocs[0] */
c19d1205 8501 {
e2b0ab59 8502 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8503 && inst.operands[i].writeback),
8504 BAD_PC_WRITEBACK);
c19d1205 8505 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8506 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8507 {
8508 /* Prefer + for zero encoded value. */
8509 if (!inst.operands[i].negative)
8510 inst.instruction |= INDEX_UP;
8511
e2b0ab59 8512 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8513 }
c19d1205 8514 }
a737bd4d
NC
8515}
8516
8335d6aa
JW
8517/* Write immediate bits [7:0] to the following locations:
8518
8519 |28/24|23 19|18 16|15 4|3 0|
8520 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8521
8522 This function is used by VMOV/VMVN/VORR/VBIC. */
8523
8524static void
8525neon_write_immbits (unsigned immbits)
8526{
8527 inst.instruction |= immbits & 0xf;
8528 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8529 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8530}
8531
8532/* Invert low-order SIZE bits of XHI:XLO. */
8533
8534static void
8535neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8536{
8537 unsigned immlo = xlo ? *xlo : 0;
8538 unsigned immhi = xhi ? *xhi : 0;
8539
8540 switch (size)
8541 {
8542 case 8:
8543 immlo = (~immlo) & 0xff;
8544 break;
8545
8546 case 16:
8547 immlo = (~immlo) & 0xffff;
8548 break;
8549
8550 case 64:
8551 immhi = (~immhi) & 0xffffffff;
8552 /* fall through. */
8553
8554 case 32:
8555 immlo = (~immlo) & 0xffffffff;
8556 break;
8557
8558 default:
8559 abort ();
8560 }
8561
8562 if (xlo)
8563 *xlo = immlo;
8564
8565 if (xhi)
8566 *xhi = immhi;
8567}
8568
8569/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8570 A, B, C, D. */
09d92015 8571
c19d1205 8572static int
8335d6aa 8573neon_bits_same_in_bytes (unsigned imm)
09d92015 8574{
8335d6aa
JW
8575 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8576 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8577 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8578 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8579}
a737bd4d 8580
8335d6aa 8581/* For immediate of above form, return 0bABCD. */
09d92015 8582
8335d6aa
JW
8583static unsigned
8584neon_squash_bits (unsigned imm)
8585{
8586 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8587 | ((imm & 0x01000000) >> 21);
8588}
8589
8590/* Compress quarter-float representation to 0b...000 abcdefgh. */
8591
8592static unsigned
8593neon_qfloat_bits (unsigned imm)
8594{
8595 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8596}
8597
8598/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8599 the instruction. *OP is passed as the initial value of the op field, and
8600 may be set to a different value depending on the constant (i.e.
8601 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8602 MVN). If the immediate looks like a repeated pattern then also
8603 try smaller element sizes. */
8604
8605static int
8606neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8607 unsigned *immbits, int *op, int size,
8608 enum neon_el_type type)
8609{
8610 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8611 float. */
8612 if (type == NT_float && !float_p)
8613 return FAIL;
8614
8615 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8616 {
8335d6aa
JW
8617 if (size != 32 || *op == 1)
8618 return FAIL;
8619 *immbits = neon_qfloat_bits (immlo);
8620 return 0xf;
8621 }
8622
8623 if (size == 64)
8624 {
8625 if (neon_bits_same_in_bytes (immhi)
8626 && neon_bits_same_in_bytes (immlo))
c19d1205 8627 {
8335d6aa
JW
8628 if (*op == 1)
8629 return FAIL;
8630 *immbits = (neon_squash_bits (immhi) << 4)
8631 | neon_squash_bits (immlo);
8632 *op = 1;
8633 return 0xe;
c19d1205 8634 }
a737bd4d 8635
8335d6aa
JW
8636 if (immhi != immlo)
8637 return FAIL;
8638 }
a737bd4d 8639
8335d6aa 8640 if (size >= 32)
09d92015 8641 {
8335d6aa 8642 if (immlo == (immlo & 0x000000ff))
c19d1205 8643 {
8335d6aa
JW
8644 *immbits = immlo;
8645 return 0x0;
c19d1205 8646 }
8335d6aa 8647 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8648 {
8335d6aa
JW
8649 *immbits = immlo >> 8;
8650 return 0x2;
c19d1205 8651 }
8335d6aa
JW
8652 else if (immlo == (immlo & 0x00ff0000))
8653 {
8654 *immbits = immlo >> 16;
8655 return 0x4;
8656 }
8657 else if (immlo == (immlo & 0xff000000))
8658 {
8659 *immbits = immlo >> 24;
8660 return 0x6;
8661 }
8662 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8663 {
8664 *immbits = (immlo >> 8) & 0xff;
8665 return 0xc;
8666 }
8667 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8668 {
8669 *immbits = (immlo >> 16) & 0xff;
8670 return 0xd;
8671 }
8672
8673 if ((immlo & 0xffff) != (immlo >> 16))
8674 return FAIL;
8675 immlo &= 0xffff;
09d92015 8676 }
a737bd4d 8677
8335d6aa 8678 if (size >= 16)
4962c51a 8679 {
8335d6aa
JW
8680 if (immlo == (immlo & 0x000000ff))
8681 {
8682 *immbits = immlo;
8683 return 0x8;
8684 }
8685 else if (immlo == (immlo & 0x0000ff00))
8686 {
8687 *immbits = immlo >> 8;
8688 return 0xa;
8689 }
8690
8691 if ((immlo & 0xff) != (immlo >> 8))
8692 return FAIL;
8693 immlo &= 0xff;
4962c51a
MS
8694 }
8695
8335d6aa
JW
8696 if (immlo == (immlo & 0x000000ff))
8697 {
8698 /* Don't allow MVN with 8-bit immediate. */
8699 if (*op == 1)
8700 return FAIL;
8701 *immbits = immlo;
8702 return 0xe;
8703 }
26d97720 8704
8335d6aa 8705 return FAIL;
c19d1205 8706}
a737bd4d 8707
5fc177c8 8708#if defined BFD_HOST_64_BIT
ba592044
AM
8709/* Returns TRUE if double precision value V may be cast
8710 to single precision without loss of accuracy. */
8711
8712static bfd_boolean
5fc177c8 8713is_double_a_single (bfd_int64_t v)
ba592044 8714{
5fc177c8 8715 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8716 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8717
8718 return (exp == 0 || exp == 0x7FF
8719 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8720 && (mantissa & 0x1FFFFFFFl) == 0;
8721}
8722
3739860c 8723/* Returns a double precision value casted to single precision
ba592044
AM
8724 (ignoring the least significant bits in exponent and mantissa). */
8725
8726static int
5fc177c8 8727double_to_single (bfd_int64_t v)
ba592044
AM
8728{
8729 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8730 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8731 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8732
8733 if (exp == 0x7FF)
8734 exp = 0xFF;
8735 else
8736 {
8737 exp = exp - 1023 + 127;
8738 if (exp >= 0xFF)
8739 {
8740 /* Infinity. */
8741 exp = 0x7F;
8742 mantissa = 0;
8743 }
8744 else if (exp < 0)
8745 {
8746 /* No denormalized numbers. */
8747 exp = 0;
8748 mantissa = 0;
8749 }
8750 }
8751 mantissa >>= 29;
8752 return (sign << 31) | (exp << 23) | mantissa;
8753}
5fc177c8 8754#endif /* BFD_HOST_64_BIT */
ba592044 8755
8335d6aa
JW
8756enum lit_type
8757{
8758 CONST_THUMB,
8759 CONST_ARM,
8760 CONST_VEC
8761};
8762
ba592044
AM
8763static void do_vfp_nsyn_opcode (const char *);
8764
e2b0ab59 8765/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8766 Determine whether it can be performed with a move instruction; if
8767 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8768 return TRUE; if it can't, convert inst.instruction to a literal-pool
8769 load and return FALSE. If this is not a valid thing to do in the
8770 current context, set inst.error and return TRUE.
a737bd4d 8771
c19d1205
ZW
8772 inst.operands[i] describes the destination register. */
8773
c921be7d 8774static bfd_boolean
8335d6aa 8775move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8776{
53365c0d 8777 unsigned long tbit;
8335d6aa
JW
8778 bfd_boolean thumb_p = (t == CONST_THUMB);
8779 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8780
8781 if (thumb_p)
8782 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8783 else
8784 tbit = LOAD_BIT;
8785
8786 if ((inst.instruction & tbit) == 0)
09d92015 8787 {
c19d1205 8788 inst.error = _("invalid pseudo operation");
c921be7d 8789 return TRUE;
09d92015 8790 }
ba592044 8791
e2b0ab59
AV
8792 if (inst.relocs[0].exp.X_op != O_constant
8793 && inst.relocs[0].exp.X_op != O_symbol
8794 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8795 {
8796 inst.error = _("constant expression expected");
c921be7d 8797 return TRUE;
09d92015 8798 }
ba592044 8799
e2b0ab59
AV
8800 if (inst.relocs[0].exp.X_op == O_constant
8801 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8802 {
5fc177c8
NC
8803#if defined BFD_HOST_64_BIT
8804 bfd_int64_t v;
8805#else
ba592044 8806 offsetT v;
5fc177c8 8807#endif
e2b0ab59 8808 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8809 {
ba592044
AM
8810 LITTLENUM_TYPE w[X_PRECISION];
8811 LITTLENUM_TYPE * l;
8812
e2b0ab59 8813 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8814 {
ba592044
AM
8815 gen_to_words (w, X_PRECISION, E_PRECISION);
8816 l = w;
8817 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8818 }
ba592044
AM
8819 else
8820 l = generic_bignum;
3739860c 8821
5fc177c8
NC
8822#if defined BFD_HOST_64_BIT
8823 v =
8824 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8825 << LITTLENUM_NUMBER_OF_BITS)
8826 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8827 << LITTLENUM_NUMBER_OF_BITS)
8828 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8829 << LITTLENUM_NUMBER_OF_BITS)
8830 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8831#else
ba592044
AM
8832 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8833 | (l[0] & LITTLENUM_MASK);
5fc177c8 8834#endif
8335d6aa 8835 }
ba592044 8836 else
e2b0ab59 8837 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8838
8839 if (!inst.operands[i].issingle)
8335d6aa 8840 {
12569877 8841 if (thumb_p)
8335d6aa 8842 {
53445554
TP
8843 /* LDR should not use lead in a flag-setting instruction being
8844 chosen so we do not check whether movs can be used. */
12569877 8845
53445554 8846 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8847 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8848 && inst.operands[i].reg != 13
8849 && inst.operands[i].reg != 15)
12569877 8850 {
fc289b0a
TP
8851 /* Check if on thumb2 it can be done with a mov.w, mvn or
8852 movw instruction. */
12569877
AM
8853 unsigned int newimm;
8854 bfd_boolean isNegated;
8855
8856 newimm = encode_thumb32_immediate (v);
8857 if (newimm != (unsigned int) FAIL)
8858 isNegated = FALSE;
8859 else
8860 {
582cfe03 8861 newimm = encode_thumb32_immediate (~v);
12569877
AM
8862 if (newimm != (unsigned int) FAIL)
8863 isNegated = TRUE;
8864 }
8865
fc289b0a
TP
8866 /* The number can be loaded with a mov.w or mvn
8867 instruction. */
ff8646ee
TP
8868 if (newimm != (unsigned int) FAIL
8869 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8870 {
fc289b0a 8871 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8872 | (inst.operands[i].reg << 8));
fc289b0a 8873 /* Change to MOVN. */
582cfe03 8874 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8875 inst.instruction |= (newimm & 0x800) << 15;
8876 inst.instruction |= (newimm & 0x700) << 4;
8877 inst.instruction |= (newimm & 0x0ff);
8878 return TRUE;
8879 }
fc289b0a 8880 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8881 else if ((v & ~0xFFFF) == 0
8882 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8883 {
582cfe03 8884 int imm = v & 0xFFFF;
12569877 8885
582cfe03 8886 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8887 inst.instruction |= (inst.operands[i].reg << 8);
8888 inst.instruction |= (imm & 0xf000) << 4;
8889 inst.instruction |= (imm & 0x0800) << 15;
8890 inst.instruction |= (imm & 0x0700) << 4;
8891 inst.instruction |= (imm & 0x00ff);
8fe9a076
AV
8892 /* In case this replacement is being done on Armv8-M
8893 Baseline we need to make sure to disable the
8894 instruction size check, as otherwise GAS will reject
8895 the use of this T32 instruction. */
8896 inst.size_req = 0;
12569877
AM
8897 return TRUE;
8898 }
8899 }
8335d6aa 8900 }
12569877 8901 else if (arm_p)
ba592044
AM
8902 {
8903 int value = encode_arm_immediate (v);
12569877 8904
ba592044
AM
8905 if (value != FAIL)
8906 {
8907 /* This can be done with a mov instruction. */
8908 inst.instruction &= LITERAL_MASK;
8909 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8910 inst.instruction |= value & 0xfff;
8911 return TRUE;
8912 }
8335d6aa 8913
ba592044
AM
8914 value = encode_arm_immediate (~ v);
8915 if (value != FAIL)
8916 {
8917 /* This can be done with a mvn instruction. */
8918 inst.instruction &= LITERAL_MASK;
8919 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8920 inst.instruction |= value & 0xfff;
8921 return TRUE;
8922 }
8923 }
934c2632 8924 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8925 {
ba592044
AM
8926 int op = 0;
8927 unsigned immbits = 0;
8928 unsigned immlo = inst.operands[1].imm;
8929 unsigned immhi = inst.operands[1].regisimm
8930 ? inst.operands[1].reg
e2b0ab59 8931 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8932 ? 0
8933 : ((bfd_int64_t)((int) immlo)) >> 32;
8934 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8935 &op, 64, NT_invtype);
8936
8937 if (cmode == FAIL)
8938 {
8939 neon_invert_size (&immlo, &immhi, 64);
8940 op = !op;
8941 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8942 &op, 64, NT_invtype);
8943 }
8944
8945 if (cmode != FAIL)
8946 {
8947 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8948 | (1 << 23)
8949 | (cmode << 8)
8950 | (op << 5)
8951 | (1 << 4);
8952
8953 /* Fill other bits in vmov encoding for both thumb and arm. */
8954 if (thumb_mode)
eff0bc54 8955 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8956 else
eff0bc54 8957 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8958 neon_write_immbits (immbits);
8959 return TRUE;
8960 }
8335d6aa
JW
8961 }
8962 }
8335d6aa 8963
ba592044
AM
8964 if (t == CONST_VEC)
8965 {
8966 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8967 if (inst.operands[i].issingle
8968 && is_quarter_float (inst.operands[1].imm)
8969 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8970 {
ba592044
AM
8971 inst.operands[1].imm =
8972 neon_qfloat_bits (v);
8973 do_vfp_nsyn_opcode ("fconsts");
8974 return TRUE;
8335d6aa 8975 }
5fc177c8
NC
8976
8977 /* If our host does not support a 64-bit type then we cannot perform
8978 the following optimization. This mean that there will be a
8979 discrepancy between the output produced by an assembler built for
8980 a 32-bit-only host and the output produced from a 64-bit host, but
8981 this cannot be helped. */
8982#if defined BFD_HOST_64_BIT
ba592044
AM
8983 else if (!inst.operands[1].issingle
8984 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8985 {
ba592044
AM
8986 if (is_double_a_single (v)
8987 && is_quarter_float (double_to_single (v)))
8988 {
8989 inst.operands[1].imm =
8990 neon_qfloat_bits (double_to_single (v));
8991 do_vfp_nsyn_opcode ("fconstd");
8992 return TRUE;
8993 }
8335d6aa 8994 }
5fc177c8 8995#endif
8335d6aa
JW
8996 }
8997 }
8998
8999 if (add_to_lit_pool ((!inst.operands[i].isvec
9000 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
9001 return TRUE;
9002
9003 inst.operands[1].reg = REG_PC;
9004 inst.operands[1].isreg = 1;
9005 inst.operands[1].preind = 1;
e2b0ab59
AV
9006 inst.relocs[0].pc_rel = 1;
9007 inst.relocs[0].type = (thumb_p
8335d6aa
JW
9008 ? BFD_RELOC_ARM_THUMB_OFFSET
9009 : (mode_3
9010 ? BFD_RELOC_ARM_HWLITERAL
9011 : BFD_RELOC_ARM_LITERAL));
9012 return FALSE;
9013}
9014
9015/* inst.operands[i] was set up by parse_address. Encode it into an
9016 ARM-format instruction. Reject all forms which cannot be encoded
9017 into a coprocessor load/store instruction. If wb_ok is false,
9018 reject use of writeback; if unind_ok is false, reject use of
9019 unindexed addressing. If reloc_override is not 0, use it instead
9020 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
9021 (in which case it is preserved). */
9022
9023static int
9024encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
9025{
9026 if (!inst.operands[i].isreg)
9027 {
99b2a2dd
NC
9028 /* PR 18256 */
9029 if (! inst.operands[0].isvec)
9030 {
9031 inst.error = _("invalid co-processor operand");
9032 return FAIL;
9033 }
8335d6aa
JW
9034 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
9035 return SUCCESS;
9036 }
9037
9038 inst.instruction |= inst.operands[i].reg << 16;
9039
9040 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
9041
9042 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
9043 {
9044 gas_assert (!inst.operands[i].writeback);
9045 if (!unind_ok)
9046 {
9047 inst.error = _("instruction does not support unindexed addressing");
9048 return FAIL;
9049 }
9050 inst.instruction |= inst.operands[i].imm;
9051 inst.instruction |= INDEX_UP;
9052 return SUCCESS;
9053 }
9054
9055 if (inst.operands[i].preind)
9056 inst.instruction |= PRE_INDEX;
9057
9058 if (inst.operands[i].writeback)
09d92015 9059 {
8335d6aa 9060 if (inst.operands[i].reg == REG_PC)
c19d1205 9061 {
8335d6aa
JW
9062 inst.error = _("pc may not be used with write-back");
9063 return FAIL;
c19d1205 9064 }
8335d6aa 9065 if (!wb_ok)
c19d1205 9066 {
8335d6aa
JW
9067 inst.error = _("instruction does not support writeback");
9068 return FAIL;
c19d1205 9069 }
8335d6aa 9070 inst.instruction |= WRITE_BACK;
09d92015
MM
9071 }
9072
8335d6aa 9073 if (reloc_override)
e2b0ab59
AV
9074 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
9075 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
9076 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
9077 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 9078 {
8335d6aa 9079 if (thumb_mode)
e2b0ab59 9080 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 9081 else
e2b0ab59 9082 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 9083 }
8335d6aa
JW
9084
9085 /* Prefer + for zero encoded value. */
9086 if (!inst.operands[i].negative)
9087 inst.instruction |= INDEX_UP;
9088
9089 return SUCCESS;
09d92015
MM
9090}
9091
5f4273c7 9092/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
9093 First some generics; their names are taken from the conventional
9094 bit positions for register arguments in ARM format instructions. */
09d92015 9095
a737bd4d 9096static void
c19d1205 9097do_noargs (void)
09d92015 9098{
c19d1205 9099}
a737bd4d 9100
c19d1205
ZW
9101static void
9102do_rd (void)
9103{
9104 inst.instruction |= inst.operands[0].reg << 12;
9105}
a737bd4d 9106
16a1fa25
TP
9107static void
9108do_rn (void)
9109{
9110 inst.instruction |= inst.operands[0].reg << 16;
9111}
9112
c19d1205
ZW
9113static void
9114do_rd_rm (void)
9115{
9116 inst.instruction |= inst.operands[0].reg << 12;
9117 inst.instruction |= inst.operands[1].reg;
9118}
09d92015 9119
9eb6c0f1
MGD
9120static void
9121do_rm_rn (void)
9122{
9123 inst.instruction |= inst.operands[0].reg;
9124 inst.instruction |= inst.operands[1].reg << 16;
9125}
9126
c19d1205
ZW
9127static void
9128do_rd_rn (void)
9129{
9130 inst.instruction |= inst.operands[0].reg << 12;
9131 inst.instruction |= inst.operands[1].reg << 16;
9132}
a737bd4d 9133
c19d1205
ZW
9134static void
9135do_rn_rd (void)
9136{
9137 inst.instruction |= inst.operands[0].reg << 16;
9138 inst.instruction |= inst.operands[1].reg << 12;
9139}
09d92015 9140
4ed7ed8d
TP
9141static void
9142do_tt (void)
9143{
9144 inst.instruction |= inst.operands[0].reg << 8;
9145 inst.instruction |= inst.operands[1].reg << 16;
9146}
9147
59d09be6
MGD
9148static bfd_boolean
9149check_obsolete (const arm_feature_set *feature, const char *msg)
9150{
9151 if (ARM_CPU_IS_ANY (cpu_variant))
9152 {
5c3696f8 9153 as_tsktsk ("%s", msg);
59d09be6
MGD
9154 return TRUE;
9155 }
9156 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
9157 {
9158 as_bad ("%s", msg);
9159 return TRUE;
9160 }
9161
9162 return FALSE;
9163}
9164
c19d1205
ZW
9165static void
9166do_rd_rm_rn (void)
9167{
9a64e435 9168 unsigned Rn = inst.operands[2].reg;
708587a4 9169 /* Enforce restrictions on SWP instruction. */
9a64e435 9170 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
9171 {
9172 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
9173 _("Rn must not overlap other operands"));
9174
59d09be6
MGD
9175 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
9176 */
9177 if (!check_obsolete (&arm_ext_v8,
9178 _("swp{b} use is obsoleted for ARMv8 and later"))
9179 && warn_on_deprecated
9180 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 9181 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 9182 }
59d09be6 9183
c19d1205
ZW
9184 inst.instruction |= inst.operands[0].reg << 12;
9185 inst.instruction |= inst.operands[1].reg;
9a64e435 9186 inst.instruction |= Rn << 16;
c19d1205 9187}
09d92015 9188
c19d1205
ZW
9189static void
9190do_rd_rn_rm (void)
9191{
9192 inst.instruction |= inst.operands[0].reg << 12;
9193 inst.instruction |= inst.operands[1].reg << 16;
9194 inst.instruction |= inst.operands[2].reg;
9195}
a737bd4d 9196
c19d1205
ZW
9197static void
9198do_rm_rd_rn (void)
9199{
5be8be5d 9200 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
9201 constraint (((inst.relocs[0].exp.X_op != O_constant
9202 && inst.relocs[0].exp.X_op != O_illegal)
9203 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 9204 BAD_ADDR_MODE);
c19d1205
ZW
9205 inst.instruction |= inst.operands[0].reg;
9206 inst.instruction |= inst.operands[1].reg << 12;
9207 inst.instruction |= inst.operands[2].reg << 16;
9208}
09d92015 9209
c19d1205
ZW
9210static void
9211do_imm0 (void)
9212{
9213 inst.instruction |= inst.operands[0].imm;
9214}
09d92015 9215
c19d1205
ZW
9216static void
9217do_rd_cpaddr (void)
9218{
9219 inst.instruction |= inst.operands[0].reg << 12;
9220 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 9221}
a737bd4d 9222
c19d1205
ZW
9223/* ARM instructions, in alphabetical order by function name (except
9224 that wrapper functions appear immediately after the function they
9225 wrap). */
09d92015 9226
c19d1205
ZW
9227/* This is a pseudo-op of the form "adr rd, label" to be converted
9228 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9229
9230static void
c19d1205 9231do_adr (void)
09d92015 9232{
c19d1205 9233 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9234
c19d1205
ZW
9235 /* Frag hacking will turn this into a sub instruction if the offset turns
9236 out to be negative. */
e2b0ab59
AV
9237 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9238 inst.relocs[0].pc_rel = 1;
9239 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9240
fc6141f0 9241 if (support_interwork
e2b0ab59
AV
9242 && inst.relocs[0].exp.X_op == O_symbol
9243 && inst.relocs[0].exp.X_add_symbol != NULL
9244 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9245 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9246 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9247}
b99bd4ef 9248
c19d1205
ZW
9249/* This is a pseudo-op of the form "adrl rd, label" to be converted
9250 into a relative address of the form:
9251 add rd, pc, #low(label-.-8)"
9252 add rd, rd, #high(label-.-8)" */
b99bd4ef 9253
c19d1205
ZW
9254static void
9255do_adrl (void)
9256{
9257 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9258
c19d1205
ZW
9259 /* Frag hacking will turn this into a sub instruction if the offset turns
9260 out to be negative. */
e2b0ab59
AV
9261 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9262 inst.relocs[0].pc_rel = 1;
c19d1205 9263 inst.size = INSN_SIZE * 2;
e2b0ab59 9264 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9265
fc6141f0 9266 if (support_interwork
e2b0ab59
AV
9267 && inst.relocs[0].exp.X_op == O_symbol
9268 && inst.relocs[0].exp.X_add_symbol != NULL
9269 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9270 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9271 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9272}
9273
b99bd4ef 9274static void
c19d1205 9275do_arit (void)
b99bd4ef 9276{
e2b0ab59
AV
9277 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9278 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9279 THUMB1_RELOC_ONLY);
c19d1205
ZW
9280 if (!inst.operands[1].present)
9281 inst.operands[1].reg = inst.operands[0].reg;
9282 inst.instruction |= inst.operands[0].reg << 12;
9283 inst.instruction |= inst.operands[1].reg << 16;
9284 encode_arm_shifter_operand (2);
9285}
b99bd4ef 9286
62b3e311
PB
9287static void
9288do_barrier (void)
9289{
9290 if (inst.operands[0].present)
ccb84d65 9291 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9292 else
9293 inst.instruction |= 0xf;
9294}
9295
c19d1205
ZW
9296static void
9297do_bfc (void)
9298{
9299 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9300 constraint (msb > 32, _("bit-field extends past end of register"));
9301 /* The instruction encoding stores the LSB and MSB,
9302 not the LSB and width. */
9303 inst.instruction |= inst.operands[0].reg << 12;
9304 inst.instruction |= inst.operands[1].imm << 7;
9305 inst.instruction |= (msb - 1) << 16;
9306}
b99bd4ef 9307
c19d1205
ZW
9308static void
9309do_bfi (void)
9310{
9311 unsigned int msb;
b99bd4ef 9312
c19d1205
ZW
9313 /* #0 in second position is alternative syntax for bfc, which is
9314 the same instruction but with REG_PC in the Rm field. */
9315 if (!inst.operands[1].isreg)
9316 inst.operands[1].reg = REG_PC;
b99bd4ef 9317
c19d1205
ZW
9318 msb = inst.operands[2].imm + inst.operands[3].imm;
9319 constraint (msb > 32, _("bit-field extends past end of register"));
9320 /* The instruction encoding stores the LSB and MSB,
9321 not the LSB and width. */
9322 inst.instruction |= inst.operands[0].reg << 12;
9323 inst.instruction |= inst.operands[1].reg;
9324 inst.instruction |= inst.operands[2].imm << 7;
9325 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9326}
9327
b99bd4ef 9328static void
c19d1205 9329do_bfx (void)
b99bd4ef 9330{
c19d1205
ZW
9331 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9332 _("bit-field extends past end of register"));
9333 inst.instruction |= inst.operands[0].reg << 12;
9334 inst.instruction |= inst.operands[1].reg;
9335 inst.instruction |= inst.operands[2].imm << 7;
9336 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9337}
09d92015 9338
c19d1205
ZW
9339/* ARM V5 breakpoint instruction (argument parse)
9340 BKPT <16 bit unsigned immediate>
9341 Instruction is not conditional.
9342 The bit pattern given in insns[] has the COND_ALWAYS condition,
9343 and it is an error if the caller tried to override that. */
b99bd4ef 9344
c19d1205
ZW
9345static void
9346do_bkpt (void)
9347{
9348 /* Top 12 of 16 bits to bits 19:8. */
9349 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9350
c19d1205
ZW
9351 /* Bottom 4 of 16 bits to bits 3:0. */
9352 inst.instruction |= inst.operands[0].imm & 0xf;
9353}
09d92015 9354
c19d1205
ZW
9355static void
9356encode_branch (int default_reloc)
9357{
9358 if (inst.operands[0].hasreloc)
9359 {
0855e32b
NS
9360 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9361 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9362 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9363 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9364 ? BFD_RELOC_ARM_PLT32
9365 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9366 }
b99bd4ef 9367 else
e2b0ab59
AV
9368 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9369 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9370}
9371
b99bd4ef 9372static void
c19d1205 9373do_branch (void)
b99bd4ef 9374{
39b41c9c
PB
9375#ifdef OBJ_ELF
9376 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9377 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9378 else
9379#endif
9380 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9381}
9382
9383static void
9384do_bl (void)
9385{
9386#ifdef OBJ_ELF
9387 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9388 {
9389 if (inst.cond == COND_ALWAYS)
9390 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9391 else
9392 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9393 }
9394 else
9395#endif
9396 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9397}
b99bd4ef 9398
c19d1205
ZW
9399/* ARM V5 branch-link-exchange instruction (argument parse)
9400 BLX <target_addr> ie BLX(1)
9401 BLX{<condition>} <Rm> ie BLX(2)
9402 Unfortunately, there are two different opcodes for this mnemonic.
9403 So, the insns[].value is not used, and the code here zaps values
9404 into inst.instruction.
9405 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9406
c19d1205
ZW
9407static void
9408do_blx (void)
9409{
9410 if (inst.operands[0].isreg)
b99bd4ef 9411 {
c19d1205
ZW
9412 /* Arg is a register; the opcode provided by insns[] is correct.
9413 It is not illegal to do "blx pc", just useless. */
9414 if (inst.operands[0].reg == REG_PC)
9415 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9416
c19d1205
ZW
9417 inst.instruction |= inst.operands[0].reg;
9418 }
9419 else
b99bd4ef 9420 {
c19d1205 9421 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9422 conditionally, and the opcode must be adjusted.
9423 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9424 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9425 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9426 inst.instruction = 0xfa000000;
267bf995 9427 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9428 }
c19d1205
ZW
9429}
9430
9431static void
9432do_bx (void)
9433{
845b51d6
PB
9434 bfd_boolean want_reloc;
9435
c19d1205
ZW
9436 if (inst.operands[0].reg == REG_PC)
9437 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9438
c19d1205 9439 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9440 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9441 it is for ARMv4t or earlier. */
9442 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9443 if (!ARM_FEATURE_ZERO (selected_object_arch)
9444 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9445 want_reloc = TRUE;
9446
5ad34203 9447#ifdef OBJ_ELF
845b51d6 9448 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9449#endif
584206db 9450 want_reloc = FALSE;
845b51d6
PB
9451
9452 if (want_reloc)
e2b0ab59 9453 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9454}
9455
c19d1205
ZW
9456
9457/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9458
9459static void
c19d1205 9460do_bxj (void)
a737bd4d 9461{
c19d1205
ZW
9462 if (inst.operands[0].reg == REG_PC)
9463 as_tsktsk (_("use of r15 in bxj is not really useful"));
9464
9465 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9466}
9467
c19d1205
ZW
9468/* Co-processor data operation:
9469 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9470 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9471static void
9472do_cdp (void)
9473{
9474 inst.instruction |= inst.operands[0].reg << 8;
9475 inst.instruction |= inst.operands[1].imm << 20;
9476 inst.instruction |= inst.operands[2].reg << 12;
9477 inst.instruction |= inst.operands[3].reg << 16;
9478 inst.instruction |= inst.operands[4].reg;
9479 inst.instruction |= inst.operands[5].imm << 5;
9480}
a737bd4d
NC
9481
9482static void
c19d1205 9483do_cmp (void)
a737bd4d 9484{
c19d1205
ZW
9485 inst.instruction |= inst.operands[0].reg << 16;
9486 encode_arm_shifter_operand (1);
a737bd4d
NC
9487}
9488
c19d1205
ZW
9489/* Transfer between coprocessor and ARM registers.
9490 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9491 MRC2
9492 MCR{cond}
9493 MCR2
9494
9495 No special properties. */
09d92015 9496
dcbd0d71
MGD
9497struct deprecated_coproc_regs_s
9498{
9499 unsigned cp;
9500 int opc1;
9501 unsigned crn;
9502 unsigned crm;
9503 int opc2;
9504 arm_feature_set deprecated;
9505 arm_feature_set obsoleted;
9506 const char *dep_msg;
9507 const char *obs_msg;
9508};
9509
9510#define DEPR_ACCESS_V8 \
9511 N_("This coprocessor register access is deprecated in ARMv8")
9512
9513/* Table of all deprecated coprocessor registers. */
9514static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9515{
9516 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9517 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9518 DEPR_ACCESS_V8, NULL},
9519 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9520 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9521 DEPR_ACCESS_V8, NULL},
9522 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9523 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9524 DEPR_ACCESS_V8, NULL},
9525 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9526 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9527 DEPR_ACCESS_V8, NULL},
9528 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9529 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9530 DEPR_ACCESS_V8, NULL},
9531};
9532
9533#undef DEPR_ACCESS_V8
9534
9535static const size_t deprecated_coproc_reg_count =
9536 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9537
09d92015 9538static void
c19d1205 9539do_co_reg (void)
09d92015 9540{
fdfde340 9541 unsigned Rd;
dcbd0d71 9542 size_t i;
fdfde340
JM
9543
9544 Rd = inst.operands[2].reg;
9545 if (thumb_mode)
9546 {
9547 if (inst.instruction == 0xee000010
9548 || inst.instruction == 0xfe000010)
9549 /* MCR, MCR2 */
9550 reject_bad_reg (Rd);
5c8ed6a4 9551 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9552 /* MRC, MRC2 */
9553 constraint (Rd == REG_SP, BAD_SP);
9554 }
9555 else
9556 {
9557 /* MCR */
9558 if (inst.instruction == 0xe000010)
9559 constraint (Rd == REG_PC, BAD_PC);
9560 }
9561
dcbd0d71
MGD
9562 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9563 {
9564 const struct deprecated_coproc_regs_s *r =
9565 deprecated_coproc_regs + i;
9566
9567 if (inst.operands[0].reg == r->cp
9568 && inst.operands[1].imm == r->opc1
9569 && inst.operands[3].reg == r->crn
9570 && inst.operands[4].reg == r->crm
9571 && inst.operands[5].imm == r->opc2)
9572 {
b10bf8c5 9573 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9574 && warn_on_deprecated
dcbd0d71 9575 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9576 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9577 }
9578 }
fdfde340 9579
c19d1205
ZW
9580 inst.instruction |= inst.operands[0].reg << 8;
9581 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9582 inst.instruction |= Rd << 12;
c19d1205
ZW
9583 inst.instruction |= inst.operands[3].reg << 16;
9584 inst.instruction |= inst.operands[4].reg;
9585 inst.instruction |= inst.operands[5].imm << 5;
9586}
09d92015 9587
c19d1205
ZW
9588/* Transfer between coprocessor register and pair of ARM registers.
9589 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9590 MCRR2
9591 MRRC{cond}
9592 MRRC2
b99bd4ef 9593
c19d1205 9594 Two XScale instructions are special cases of these:
09d92015 9595
c19d1205
ZW
9596 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9597 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9598
5f4273c7 9599 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9600
c19d1205
ZW
9601static void
9602do_co_reg2c (void)
9603{
fdfde340
JM
9604 unsigned Rd, Rn;
9605
9606 Rd = inst.operands[2].reg;
9607 Rn = inst.operands[3].reg;
9608
9609 if (thumb_mode)
9610 {
9611 reject_bad_reg (Rd);
9612 reject_bad_reg (Rn);
9613 }
9614 else
9615 {
9616 constraint (Rd == REG_PC, BAD_PC);
9617 constraint (Rn == REG_PC, BAD_PC);
9618 }
9619
873f10f0
TC
9620 /* Only check the MRRC{2} variants. */
9621 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9622 {
9623 /* If Rd == Rn, error that the operation is
9624 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9625 constraint (Rd == Rn, BAD_OVERLAP);
9626 }
9627
c19d1205
ZW
9628 inst.instruction |= inst.operands[0].reg << 8;
9629 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9630 inst.instruction |= Rd << 12;
9631 inst.instruction |= Rn << 16;
c19d1205 9632 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9633}
9634
c19d1205
ZW
9635static void
9636do_cpsi (void)
9637{
9638 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9639 if (inst.operands[1].present)
9640 {
9641 inst.instruction |= CPSI_MMOD;
9642 inst.instruction |= inst.operands[1].imm;
9643 }
c19d1205 9644}
b99bd4ef 9645
62b3e311
PB
9646static void
9647do_dbg (void)
9648{
9649 inst.instruction |= inst.operands[0].imm;
9650}
9651
eea54501
MGD
9652static void
9653do_div (void)
9654{
9655 unsigned Rd, Rn, Rm;
9656
9657 Rd = inst.operands[0].reg;
9658 Rn = (inst.operands[1].present
9659 ? inst.operands[1].reg : Rd);
9660 Rm = inst.operands[2].reg;
9661
9662 constraint ((Rd == REG_PC), BAD_PC);
9663 constraint ((Rn == REG_PC), BAD_PC);
9664 constraint ((Rm == REG_PC), BAD_PC);
9665
9666 inst.instruction |= Rd << 16;
9667 inst.instruction |= Rn << 0;
9668 inst.instruction |= Rm << 8;
9669}
9670
b99bd4ef 9671static void
c19d1205 9672do_it (void)
b99bd4ef 9673{
c19d1205 9674 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9675 process it to do the validation as if in
9676 thumb mode, just in case the code gets
9677 assembled for thumb using the unified syntax. */
9678
c19d1205 9679 inst.size = 0;
e07e6e58
NC
9680 if (unified_syntax)
9681 {
5ee91343
AV
9682 set_pred_insn_type (IT_INSN);
9683 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9684 now_pred.cc = inst.operands[0].imm;
e07e6e58 9685 }
09d92015 9686}
b99bd4ef 9687
6530b175
NC
9688/* If there is only one register in the register list,
9689 then return its register number. Otherwise return -1. */
9690static int
9691only_one_reg_in_list (int range)
9692{
9693 int i = ffs (range) - 1;
9694 return (i > 15 || range != (1 << i)) ? -1 : i;
9695}
9696
09d92015 9697static void
6530b175 9698encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9699{
c19d1205
ZW
9700 int base_reg = inst.operands[0].reg;
9701 int range = inst.operands[1].imm;
6530b175 9702 int one_reg;
ea6ef066 9703
c19d1205
ZW
9704 inst.instruction |= base_reg << 16;
9705 inst.instruction |= range;
ea6ef066 9706
c19d1205
ZW
9707 if (inst.operands[1].writeback)
9708 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9709
c19d1205 9710 if (inst.operands[0].writeback)
ea6ef066 9711 {
c19d1205
ZW
9712 inst.instruction |= WRITE_BACK;
9713 /* Check for unpredictable uses of writeback. */
9714 if (inst.instruction & LOAD_BIT)
09d92015 9715 {
c19d1205
ZW
9716 /* Not allowed in LDM type 2. */
9717 if ((inst.instruction & LDM_TYPE_2_OR_3)
9718 && ((range & (1 << REG_PC)) == 0))
9719 as_warn (_("writeback of base register is UNPREDICTABLE"));
9720 /* Only allowed if base reg not in list for other types. */
9721 else if (range & (1 << base_reg))
9722 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9723 }
9724 else /* STM. */
9725 {
9726 /* Not allowed for type 2. */
9727 if (inst.instruction & LDM_TYPE_2_OR_3)
9728 as_warn (_("writeback of base register is UNPREDICTABLE"));
9729 /* Only allowed if base reg not in list, or first in list. */
9730 else if ((range & (1 << base_reg))
9731 && (range & ((1 << base_reg) - 1)))
9732 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9733 }
ea6ef066 9734 }
6530b175
NC
9735
9736 /* If PUSH/POP has only one register, then use the A2 encoding. */
9737 one_reg = only_one_reg_in_list (range);
9738 if (from_push_pop_mnem && one_reg >= 0)
9739 {
9740 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9741
4f588891
NC
9742 if (is_push && one_reg == 13 /* SP */)
9743 /* PR 22483: The A2 encoding cannot be used when
9744 pushing the stack pointer as this is UNPREDICTABLE. */
9745 return;
9746
6530b175
NC
9747 inst.instruction &= A_COND_MASK;
9748 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9749 inst.instruction |= one_reg << 12;
9750 }
9751}
9752
9753static void
9754do_ldmstm (void)
9755{
9756 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9757}
9758
c19d1205
ZW
9759/* ARMv5TE load-consecutive (argument parse)
9760 Mode is like LDRH.
9761
9762 LDRccD R, mode
9763 STRccD R, mode. */
9764
a737bd4d 9765static void
c19d1205 9766do_ldrd (void)
a737bd4d 9767{
c19d1205 9768 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9769 _("first transfer register must be even"));
c19d1205
ZW
9770 constraint (inst.operands[1].present
9771 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9772 _("can only transfer two consecutive registers"));
c19d1205
ZW
9773 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9774 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9775
c19d1205
ZW
9776 if (!inst.operands[1].present)
9777 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9778
c56791bb
RE
9779 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9780 register and the first register written; we have to diagnose
9781 overlap between the base and the second register written here. */
ea6ef066 9782
c56791bb
RE
9783 if (inst.operands[2].reg == inst.operands[1].reg
9784 && (inst.operands[2].writeback || inst.operands[2].postind))
9785 as_warn (_("base register written back, and overlaps "
9786 "second transfer register"));
b05fe5cf 9787
c56791bb
RE
9788 if (!(inst.instruction & V4_STR_BIT))
9789 {
c19d1205 9790 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9791 destination (even if not write-back). */
9792 if (inst.operands[2].immisreg
9793 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9794 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9795 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9796 }
c19d1205
ZW
9797 inst.instruction |= inst.operands[0].reg << 12;
9798 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9799}
9800
9801static void
c19d1205 9802do_ldrex (void)
b05fe5cf 9803{
c19d1205
ZW
9804 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9805 || inst.operands[1].postind || inst.operands[1].writeback
9806 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9807 || inst.operands[1].negative
9808 /* This can arise if the programmer has written
9809 strex rN, rM, foo
9810 or if they have mistakenly used a register name as the last
9811 operand, eg:
9812 strex rN, rM, rX
9813 It is very difficult to distinguish between these two cases
9814 because "rX" might actually be a label. ie the register
9815 name has been occluded by a symbol of the same name. So we
9816 just generate a general 'bad addressing mode' type error
9817 message and leave it up to the programmer to discover the
9818 true cause and fix their mistake. */
9819 || (inst.operands[1].reg == REG_PC),
9820 BAD_ADDR_MODE);
b05fe5cf 9821
e2b0ab59
AV
9822 constraint (inst.relocs[0].exp.X_op != O_constant
9823 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9824 _("offset must be zero in ARM encoding"));
b05fe5cf 9825
5be8be5d
DG
9826 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9827
c19d1205
ZW
9828 inst.instruction |= inst.operands[0].reg << 12;
9829 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9830 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9831}
9832
9833static void
c19d1205 9834do_ldrexd (void)
b05fe5cf 9835{
c19d1205
ZW
9836 constraint (inst.operands[0].reg % 2 != 0,
9837 _("even register required"));
9838 constraint (inst.operands[1].present
9839 && inst.operands[1].reg != inst.operands[0].reg + 1,
9840 _("can only load two consecutive registers"));
9841 /* If op 1 were present and equal to PC, this function wouldn't
9842 have been called in the first place. */
9843 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9844
c19d1205
ZW
9845 inst.instruction |= inst.operands[0].reg << 12;
9846 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9847}
9848
1be5fd2e
NC
9849/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9850 which is not a multiple of four is UNPREDICTABLE. */
9851static void
9852check_ldr_r15_aligned (void)
9853{
9854 constraint (!(inst.operands[1].immisreg)
9855 && (inst.operands[0].reg == REG_PC
9856 && inst.operands[1].reg == REG_PC
e2b0ab59 9857 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9858 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9859}
9860
b05fe5cf 9861static void
c19d1205 9862do_ldst (void)
b05fe5cf 9863{
c19d1205
ZW
9864 inst.instruction |= inst.operands[0].reg << 12;
9865 if (!inst.operands[1].isreg)
8335d6aa 9866 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9867 return;
c19d1205 9868 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9869 check_ldr_r15_aligned ();
b05fe5cf
ZW
9870}
9871
9872static void
c19d1205 9873do_ldstt (void)
b05fe5cf 9874{
c19d1205
ZW
9875 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9876 reject [Rn,...]. */
9877 if (inst.operands[1].preind)
b05fe5cf 9878 {
e2b0ab59
AV
9879 constraint (inst.relocs[0].exp.X_op != O_constant
9880 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9881 _("this instruction requires a post-indexed address"));
b05fe5cf 9882
c19d1205
ZW
9883 inst.operands[1].preind = 0;
9884 inst.operands[1].postind = 1;
9885 inst.operands[1].writeback = 1;
b05fe5cf 9886 }
c19d1205
ZW
9887 inst.instruction |= inst.operands[0].reg << 12;
9888 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9889}
b05fe5cf 9890
c19d1205 9891/* Halfword and signed-byte load/store operations. */
b05fe5cf 9892
c19d1205
ZW
9893static void
9894do_ldstv4 (void)
9895{
ff4a8d2b 9896 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9897 inst.instruction |= inst.operands[0].reg << 12;
9898 if (!inst.operands[1].isreg)
8335d6aa 9899 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9900 return;
c19d1205 9901 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9902}
9903
9904static void
c19d1205 9905do_ldsttv4 (void)
b05fe5cf 9906{
c19d1205
ZW
9907 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9908 reject [Rn,...]. */
9909 if (inst.operands[1].preind)
b05fe5cf 9910 {
e2b0ab59
AV
9911 constraint (inst.relocs[0].exp.X_op != O_constant
9912 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9913 _("this instruction requires a post-indexed address"));
b05fe5cf 9914
c19d1205
ZW
9915 inst.operands[1].preind = 0;
9916 inst.operands[1].postind = 1;
9917 inst.operands[1].writeback = 1;
b05fe5cf 9918 }
c19d1205
ZW
9919 inst.instruction |= inst.operands[0].reg << 12;
9920 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9921}
b05fe5cf 9922
c19d1205
ZW
9923/* Co-processor register load/store.
9924 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9925static void
9926do_lstc (void)
9927{
9928 inst.instruction |= inst.operands[0].reg << 8;
9929 inst.instruction |= inst.operands[1].reg << 12;
9930 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9931}
9932
b05fe5cf 9933static void
c19d1205 9934do_mlas (void)
b05fe5cf 9935{
8fb9d7b9 9936 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9937 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9938 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9939 && !(inst.instruction & 0x00400000))
8fb9d7b9 9940 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9941
c19d1205
ZW
9942 inst.instruction |= inst.operands[0].reg << 16;
9943 inst.instruction |= inst.operands[1].reg;
9944 inst.instruction |= inst.operands[2].reg << 8;
9945 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9946}
b05fe5cf 9947
c19d1205
ZW
9948static void
9949do_mov (void)
9950{
e2b0ab59
AV
9951 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9952 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9953 THUMB1_RELOC_ONLY);
c19d1205
ZW
9954 inst.instruction |= inst.operands[0].reg << 12;
9955 encode_arm_shifter_operand (1);
9956}
b05fe5cf 9957
c19d1205
ZW
9958/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9959static void
9960do_mov16 (void)
9961{
b6895b4f
PB
9962 bfd_vma imm;
9963 bfd_boolean top;
9964
9965 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9966 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9967 _(":lower16: not allowed in this instruction"));
e2b0ab59 9968 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9969 _(":upper16: not allowed in this instruction"));
c19d1205 9970 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9971 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9972 {
e2b0ab59 9973 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9974 /* The value is in two pieces: 0:11, 16:19. */
9975 inst.instruction |= (imm & 0x00000fff);
9976 inst.instruction |= (imm & 0x0000f000) << 4;
9977 }
b05fe5cf 9978}
b99bd4ef 9979
037e8744
JB
9980static int
9981do_vfp_nsyn_mrs (void)
9982{
9983 if (inst.operands[0].isvec)
9984 {
9985 if (inst.operands[1].reg != 1)
477330fc 9986 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9987 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9988 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9989 do_vfp_nsyn_opcode ("fmstat");
9990 }
9991 else if (inst.operands[1].isvec)
9992 do_vfp_nsyn_opcode ("fmrx");
9993 else
9994 return FAIL;
5f4273c7 9995
037e8744
JB
9996 return SUCCESS;
9997}
9998
9999static int
10000do_vfp_nsyn_msr (void)
10001{
10002 if (inst.operands[0].isvec)
10003 do_vfp_nsyn_opcode ("fmxr");
10004 else
10005 return FAIL;
10006
10007 return SUCCESS;
10008}
10009
f7c21dc7
NC
10010static void
10011do_vmrs (void)
10012{
10013 unsigned Rt = inst.operands[0].reg;
fa94de6b 10014
16d02dc9 10015 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
10016 {
10017 inst.error = BAD_SP;
10018 return;
10019 }
10020
ba6cd17f
SD
10021 switch (inst.operands[1].reg)
10022 {
10023 /* MVFR2 is only valid for Armv8-A. */
10024 case 5:
10025 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10026 _(BAD_FPU));
10027 break;
10028
10029 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10030 case 1: /* fpscr. */
10031 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10032 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10033 _(BAD_FPU));
10034 break;
10035
10036 case 14: /* fpcxt_ns. */
10037 case 15: /* fpcxt_s. */
10038 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10039 _("selected processor does not support instruction"));
10040 break;
10041
10042 case 2: /* fpscr_nzcvqc. */
10043 case 12: /* vpr. */
10044 case 13: /* p0. */
10045 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10046 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10047 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10048 _("selected processor does not support instruction"));
10049 if (inst.operands[0].reg != 2
10050 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10051 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10052 break;
10053
10054 default:
10055 break;
10056 }
40c7d507 10057
f7c21dc7 10058 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 10059 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
10060 {
10061 inst.error = BAD_PC;
10062 return;
10063 }
10064
16d02dc9
JB
10065 /* If we get through parsing the register name, we just insert the number
10066 generated into the instruction without further validation. */
10067 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
10068 inst.instruction |= (Rt << 12);
10069}
10070
10071static void
10072do_vmsr (void)
10073{
10074 unsigned Rt = inst.operands[1].reg;
fa94de6b 10075
f7c21dc7
NC
10076 if (thumb_mode)
10077 reject_bad_reg (Rt);
10078 else if (Rt == REG_PC)
10079 {
10080 inst.error = BAD_PC;
10081 return;
10082 }
10083
ba6cd17f
SD
10084 switch (inst.operands[0].reg)
10085 {
10086 /* MVFR2 is only valid for Armv8-A. */
10087 case 5:
10088 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10089 _(BAD_FPU));
10090 break;
10091
10092 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10093 case 1: /* fpcr. */
10094 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10095 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10096 _(BAD_FPU));
10097 break;
10098
10099 case 14: /* fpcxt_ns. */
10100 case 15: /* fpcxt_s. */
10101 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10102 _("selected processor does not support instruction"));
10103 break;
10104
10105 case 2: /* fpscr_nzcvqc. */
10106 case 12: /* vpr. */
10107 case 13: /* p0. */
10108 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10109 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10110 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10111 _("selected processor does not support instruction"));
10112 if (inst.operands[0].reg != 2
10113 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10114 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10115 break;
10116
10117 default:
10118 break;
10119 }
40c7d507 10120
16d02dc9
JB
10121 /* If we get through parsing the register name, we just insert the number
10122 generated into the instruction without further validation. */
10123 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
10124 inst.instruction |= (Rt << 12);
10125}
10126
b99bd4ef 10127static void
c19d1205 10128do_mrs (void)
b99bd4ef 10129{
90ec0d68
MGD
10130 unsigned br;
10131
037e8744
JB
10132 if (do_vfp_nsyn_mrs () == SUCCESS)
10133 return;
10134
ff4a8d2b 10135 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 10136 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
10137
10138 if (inst.operands[1].isreg)
10139 {
10140 br = inst.operands[1].reg;
806ab1c0 10141 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
10142 as_bad (_("bad register for mrs"));
10143 }
10144 else
10145 {
10146 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10147 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
10148 != (PSR_c|PSR_f),
d2cd1205 10149 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
10150 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
10151 }
10152
10153 inst.instruction |= br;
c19d1205 10154}
b99bd4ef 10155
c19d1205
ZW
10156/* Two possible forms:
10157 "{C|S}PSR_<field>, Rm",
10158 "{C|S}PSR_f, #expression". */
b99bd4ef 10159
c19d1205
ZW
10160static void
10161do_msr (void)
10162{
037e8744
JB
10163 if (do_vfp_nsyn_msr () == SUCCESS)
10164 return;
10165
c19d1205
ZW
10166 inst.instruction |= inst.operands[0].imm;
10167 if (inst.operands[1].isreg)
10168 inst.instruction |= inst.operands[1].reg;
10169 else
b99bd4ef 10170 {
c19d1205 10171 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
10172 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
10173 inst.relocs[0].pc_rel = 0;
b99bd4ef 10174 }
b99bd4ef
NC
10175}
10176
c19d1205
ZW
10177static void
10178do_mul (void)
a737bd4d 10179{
ff4a8d2b
NC
10180 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
10181
c19d1205
ZW
10182 if (!inst.operands[2].present)
10183 inst.operands[2].reg = inst.operands[0].reg;
10184 inst.instruction |= inst.operands[0].reg << 16;
10185 inst.instruction |= inst.operands[1].reg;
10186 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 10187
8fb9d7b9
MS
10188 if (inst.operands[0].reg == inst.operands[1].reg
10189 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10190 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
10191}
10192
c19d1205
ZW
10193/* Long Multiply Parser
10194 UMULL RdLo, RdHi, Rm, Rs
10195 SMULL RdLo, RdHi, Rm, Rs
10196 UMLAL RdLo, RdHi, Rm, Rs
10197 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
10198
10199static void
c19d1205 10200do_mull (void)
b99bd4ef 10201{
c19d1205
ZW
10202 inst.instruction |= inst.operands[0].reg << 12;
10203 inst.instruction |= inst.operands[1].reg << 16;
10204 inst.instruction |= inst.operands[2].reg;
10205 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 10206
682b27ad
PB
10207 /* rdhi and rdlo must be different. */
10208 if (inst.operands[0].reg == inst.operands[1].reg)
10209 as_tsktsk (_("rdhi and rdlo must be different"));
10210
10211 /* rdhi, rdlo and rm must all be different before armv6. */
10212 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 10213 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 10214 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
10215 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
10216}
b99bd4ef 10217
c19d1205
ZW
10218static void
10219do_nop (void)
10220{
e7495e45
NS
10221 if (inst.operands[0].present
10222 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
10223 {
10224 /* Architectural NOP hints are CPSR sets with no bits selected. */
10225 inst.instruction &= 0xf0000000;
e7495e45
NS
10226 inst.instruction |= 0x0320f000;
10227 if (inst.operands[0].present)
10228 inst.instruction |= inst.operands[0].imm;
c19d1205 10229 }
b99bd4ef
NC
10230}
10231
c19d1205
ZW
10232/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
10233 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
10234 Condition defaults to COND_ALWAYS.
10235 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
10236
10237static void
c19d1205 10238do_pkhbt (void)
b99bd4ef 10239{
c19d1205
ZW
10240 inst.instruction |= inst.operands[0].reg << 12;
10241 inst.instruction |= inst.operands[1].reg << 16;
10242 inst.instruction |= inst.operands[2].reg;
10243 if (inst.operands[3].present)
10244 encode_arm_shift (3);
10245}
b99bd4ef 10246
c19d1205 10247/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 10248
c19d1205
ZW
10249static void
10250do_pkhtb (void)
10251{
10252 if (!inst.operands[3].present)
b99bd4ef 10253 {
c19d1205
ZW
10254 /* If the shift specifier is omitted, turn the instruction
10255 into pkhbt rd, rm, rn. */
10256 inst.instruction &= 0xfff00010;
10257 inst.instruction |= inst.operands[0].reg << 12;
10258 inst.instruction |= inst.operands[1].reg;
10259 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10260 }
10261 else
10262 {
c19d1205
ZW
10263 inst.instruction |= inst.operands[0].reg << 12;
10264 inst.instruction |= inst.operands[1].reg << 16;
10265 inst.instruction |= inst.operands[2].reg;
10266 encode_arm_shift (3);
b99bd4ef
NC
10267 }
10268}
10269
c19d1205 10270/* ARMv5TE: Preload-Cache
60e5ef9f 10271 MP Extensions: Preload for write
c19d1205 10272
60e5ef9f 10273 PLD(W) <addr_mode>
c19d1205
ZW
10274
10275 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
10276
10277static void
c19d1205 10278do_pld (void)
b99bd4ef 10279{
c19d1205
ZW
10280 constraint (!inst.operands[0].isreg,
10281 _("'[' expected after PLD mnemonic"));
10282 constraint (inst.operands[0].postind,
10283 _("post-indexed expression used in preload instruction"));
10284 constraint (inst.operands[0].writeback,
10285 _("writeback used in preload instruction"));
10286 constraint (!inst.operands[0].preind,
10287 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
10288 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10289}
b99bd4ef 10290
62b3e311
PB
10291/* ARMv7: PLI <addr_mode> */
10292static void
10293do_pli (void)
10294{
10295 constraint (!inst.operands[0].isreg,
10296 _("'[' expected after PLI mnemonic"));
10297 constraint (inst.operands[0].postind,
10298 _("post-indexed expression used in preload instruction"));
10299 constraint (inst.operands[0].writeback,
10300 _("writeback used in preload instruction"));
10301 constraint (!inst.operands[0].preind,
10302 _("unindexed addressing used in preload instruction"));
10303 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10304 inst.instruction &= ~PRE_INDEX;
10305}
10306
c19d1205
ZW
10307static void
10308do_push_pop (void)
10309{
5e0d7f77
MP
10310 constraint (inst.operands[0].writeback,
10311 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10312 inst.operands[1] = inst.operands[0];
10313 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10314 inst.operands[0].isreg = 1;
10315 inst.operands[0].writeback = 1;
10316 inst.operands[0].reg = REG_SP;
6530b175 10317 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10318}
b99bd4ef 10319
c19d1205
ZW
10320/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10321 word at the specified address and the following word
10322 respectively.
10323 Unconditionally executed.
10324 Error if Rn is R15. */
b99bd4ef 10325
c19d1205
ZW
10326static void
10327do_rfe (void)
10328{
10329 inst.instruction |= inst.operands[0].reg << 16;
10330 if (inst.operands[0].writeback)
10331 inst.instruction |= WRITE_BACK;
10332}
b99bd4ef 10333
c19d1205 10334/* ARM V6 ssat (argument parse). */
b99bd4ef 10335
c19d1205
ZW
10336static void
10337do_ssat (void)
10338{
10339 inst.instruction |= inst.operands[0].reg << 12;
10340 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10341 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10342
c19d1205
ZW
10343 if (inst.operands[3].present)
10344 encode_arm_shift (3);
b99bd4ef
NC
10345}
10346
c19d1205 10347/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10348
10349static void
c19d1205 10350do_usat (void)
b99bd4ef 10351{
c19d1205
ZW
10352 inst.instruction |= inst.operands[0].reg << 12;
10353 inst.instruction |= inst.operands[1].imm << 16;
10354 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10355
c19d1205
ZW
10356 if (inst.operands[3].present)
10357 encode_arm_shift (3);
b99bd4ef
NC
10358}
10359
c19d1205 10360/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10361
10362static void
c19d1205 10363do_ssat16 (void)
09d92015 10364{
c19d1205
ZW
10365 inst.instruction |= inst.operands[0].reg << 12;
10366 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10367 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10368}
10369
c19d1205
ZW
10370static void
10371do_usat16 (void)
a737bd4d 10372{
c19d1205
ZW
10373 inst.instruction |= inst.operands[0].reg << 12;
10374 inst.instruction |= inst.operands[1].imm << 16;
10375 inst.instruction |= inst.operands[2].reg;
10376}
a737bd4d 10377
c19d1205
ZW
10378/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10379 preserving the other bits.
a737bd4d 10380
c19d1205
ZW
10381 setend <endian_specifier>, where <endian_specifier> is either
10382 BE or LE. */
a737bd4d 10383
c19d1205
ZW
10384static void
10385do_setend (void)
10386{
12e37cbc
MGD
10387 if (warn_on_deprecated
10388 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10389 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10390
c19d1205
ZW
10391 if (inst.operands[0].imm)
10392 inst.instruction |= 0x200;
a737bd4d
NC
10393}
10394
10395static void
c19d1205 10396do_shift (void)
a737bd4d 10397{
c19d1205
ZW
10398 unsigned int Rm = (inst.operands[1].present
10399 ? inst.operands[1].reg
10400 : inst.operands[0].reg);
a737bd4d 10401
c19d1205
ZW
10402 inst.instruction |= inst.operands[0].reg << 12;
10403 inst.instruction |= Rm;
10404 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10405 {
c19d1205
ZW
10406 inst.instruction |= inst.operands[2].reg << 8;
10407 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10408 /* PR 12854: Error on extraneous shifts. */
10409 constraint (inst.operands[2].shifted,
10410 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10411 }
10412 else
e2b0ab59 10413 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10414}
10415
09d92015 10416static void
3eb17e6b 10417do_smc (void)
09d92015 10418{
ba85f98c
BW
10419 unsigned int value = inst.relocs[0].exp.X_add_number;
10420 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
10421
e2b0ab59
AV
10422 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10423 inst.relocs[0].pc_rel = 0;
09d92015
MM
10424}
10425
90ec0d68
MGD
10426static void
10427do_hvc (void)
10428{
e2b0ab59
AV
10429 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10430 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10431}
10432
09d92015 10433static void
c19d1205 10434do_swi (void)
09d92015 10435{
e2b0ab59
AV
10436 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10437 inst.relocs[0].pc_rel = 0;
09d92015
MM
10438}
10439
ddfded2f
MW
10440static void
10441do_setpan (void)
10442{
10443 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10444 _("selected processor does not support SETPAN instruction"));
10445
10446 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10447}
10448
10449static void
10450do_t_setpan (void)
10451{
10452 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10453 _("selected processor does not support SETPAN instruction"));
10454
10455 inst.instruction |= (inst.operands[0].imm << 3);
10456}
10457
c19d1205
ZW
10458/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10459 SMLAxy{cond} Rd,Rm,Rs,Rn
10460 SMLAWy{cond} Rd,Rm,Rs,Rn
10461 Error if any register is R15. */
e16bb312 10462
c19d1205
ZW
10463static void
10464do_smla (void)
e16bb312 10465{
c19d1205
ZW
10466 inst.instruction |= inst.operands[0].reg << 16;
10467 inst.instruction |= inst.operands[1].reg;
10468 inst.instruction |= inst.operands[2].reg << 8;
10469 inst.instruction |= inst.operands[3].reg << 12;
10470}
a737bd4d 10471
c19d1205
ZW
10472/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10473 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10474 Error if any register is R15.
10475 Warning if Rdlo == Rdhi. */
a737bd4d 10476
c19d1205
ZW
10477static void
10478do_smlal (void)
10479{
10480 inst.instruction |= inst.operands[0].reg << 12;
10481 inst.instruction |= inst.operands[1].reg << 16;
10482 inst.instruction |= inst.operands[2].reg;
10483 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10484
c19d1205
ZW
10485 if (inst.operands[0].reg == inst.operands[1].reg)
10486 as_tsktsk (_("rdhi and rdlo must be different"));
10487}
a737bd4d 10488
c19d1205
ZW
10489/* ARM V5E (El Segundo) signed-multiply (argument parse)
10490 SMULxy{cond} Rd,Rm,Rs
10491 Error if any register is R15. */
a737bd4d 10492
c19d1205
ZW
10493static void
10494do_smul (void)
10495{
10496 inst.instruction |= inst.operands[0].reg << 16;
10497 inst.instruction |= inst.operands[1].reg;
10498 inst.instruction |= inst.operands[2].reg << 8;
10499}
a737bd4d 10500
b6702015
PB
10501/* ARM V6 srs (argument parse). The variable fields in the encoding are
10502 the same for both ARM and Thumb-2. */
a737bd4d 10503
c19d1205
ZW
10504static void
10505do_srs (void)
10506{
b6702015
PB
10507 int reg;
10508
10509 if (inst.operands[0].present)
10510 {
10511 reg = inst.operands[0].reg;
fdfde340 10512 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10513 }
10514 else
fdfde340 10515 reg = REG_SP;
b6702015
PB
10516
10517 inst.instruction |= reg << 16;
10518 inst.instruction |= inst.operands[1].imm;
10519 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10520 inst.instruction |= WRITE_BACK;
10521}
a737bd4d 10522
c19d1205 10523/* ARM V6 strex (argument parse). */
a737bd4d 10524
c19d1205
ZW
10525static void
10526do_strex (void)
10527{
10528 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10529 || inst.operands[2].postind || inst.operands[2].writeback
10530 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10531 || inst.operands[2].negative
10532 /* See comment in do_ldrex(). */
10533 || (inst.operands[2].reg == REG_PC),
10534 BAD_ADDR_MODE);
a737bd4d 10535
c19d1205
ZW
10536 constraint (inst.operands[0].reg == inst.operands[1].reg
10537 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10538
e2b0ab59
AV
10539 constraint (inst.relocs[0].exp.X_op != O_constant
10540 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10541 _("offset must be zero in ARM encoding"));
a737bd4d 10542
c19d1205
ZW
10543 inst.instruction |= inst.operands[0].reg << 12;
10544 inst.instruction |= inst.operands[1].reg;
10545 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10546 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10547}
10548
877807f8
NC
10549static void
10550do_t_strexbh (void)
10551{
10552 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10553 || inst.operands[2].postind || inst.operands[2].writeback
10554 || inst.operands[2].immisreg || inst.operands[2].shifted
10555 || inst.operands[2].negative,
10556 BAD_ADDR_MODE);
10557
10558 constraint (inst.operands[0].reg == inst.operands[1].reg
10559 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10560
10561 do_rm_rd_rn ();
10562}
10563
e16bb312 10564static void
c19d1205 10565do_strexd (void)
e16bb312 10566{
c19d1205
ZW
10567 constraint (inst.operands[1].reg % 2 != 0,
10568 _("even register required"));
10569 constraint (inst.operands[2].present
10570 && inst.operands[2].reg != inst.operands[1].reg + 1,
10571 _("can only store two consecutive registers"));
10572 /* If op 2 were present and equal to PC, this function wouldn't
10573 have been called in the first place. */
10574 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10575
c19d1205
ZW
10576 constraint (inst.operands[0].reg == inst.operands[1].reg
10577 || inst.operands[0].reg == inst.operands[1].reg + 1
10578 || inst.operands[0].reg == inst.operands[3].reg,
10579 BAD_OVERLAP);
e16bb312 10580
c19d1205
ZW
10581 inst.instruction |= inst.operands[0].reg << 12;
10582 inst.instruction |= inst.operands[1].reg;
10583 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10584}
10585
9eb6c0f1
MGD
10586/* ARM V8 STRL. */
10587static void
4b8c8c02 10588do_stlex (void)
9eb6c0f1
MGD
10589{
10590 constraint (inst.operands[0].reg == inst.operands[1].reg
10591 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10592
10593 do_rd_rm_rn ();
10594}
10595
10596static void
4b8c8c02 10597do_t_stlex (void)
9eb6c0f1
MGD
10598{
10599 constraint (inst.operands[0].reg == inst.operands[1].reg
10600 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10601
10602 do_rm_rd_rn ();
10603}
10604
c19d1205
ZW
10605/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10606 extends it to 32-bits, and adds the result to a value in another
10607 register. You can specify a rotation by 0, 8, 16, or 24 bits
10608 before extracting the 16-bit value.
10609 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10610 Condition defaults to COND_ALWAYS.
10611 Error if any register uses R15. */
10612
e16bb312 10613static void
c19d1205 10614do_sxtah (void)
e16bb312 10615{
c19d1205
ZW
10616 inst.instruction |= inst.operands[0].reg << 12;
10617 inst.instruction |= inst.operands[1].reg << 16;
10618 inst.instruction |= inst.operands[2].reg;
10619 inst.instruction |= inst.operands[3].imm << 10;
10620}
e16bb312 10621
c19d1205 10622/* ARM V6 SXTH.
e16bb312 10623
c19d1205
ZW
10624 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10625 Condition defaults to COND_ALWAYS.
10626 Error if any register uses R15. */
e16bb312
NC
10627
10628static void
c19d1205 10629do_sxth (void)
e16bb312 10630{
c19d1205
ZW
10631 inst.instruction |= inst.operands[0].reg << 12;
10632 inst.instruction |= inst.operands[1].reg;
10633 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10634}
c19d1205
ZW
10635\f
10636/* VFP instructions. In a logical order: SP variant first, monad
10637 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10638
10639static void
c19d1205 10640do_vfp_sp_monadic (void)
e16bb312 10641{
57785aa2
AV
10642 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10643 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10644 _(BAD_FPU));
10645
5287ad62
JB
10646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10647 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10648}
10649
10650static void
c19d1205 10651do_vfp_sp_dyadic (void)
e16bb312 10652{
5287ad62
JB
10653 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10654 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10655 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10656}
10657
10658static void
c19d1205 10659do_vfp_sp_compare_z (void)
e16bb312 10660{
5287ad62 10661 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10662}
10663
10664static void
c19d1205 10665do_vfp_dp_sp_cvt (void)
e16bb312 10666{
5287ad62
JB
10667 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10668 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10669}
10670
10671static void
c19d1205 10672do_vfp_sp_dp_cvt (void)
e16bb312 10673{
5287ad62
JB
10674 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10675 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10676}
10677
10678static void
c19d1205 10679do_vfp_reg_from_sp (void)
e16bb312 10680{
57785aa2
AV
10681 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10682 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10683 _(BAD_FPU));
10684
c19d1205 10685 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10686 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10687}
10688
10689static void
c19d1205 10690do_vfp_reg2_from_sp2 (void)
e16bb312 10691{
c19d1205
ZW
10692 constraint (inst.operands[2].imm != 2,
10693 _("only two consecutive VFP SP registers allowed here"));
10694 inst.instruction |= inst.operands[0].reg << 12;
10695 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10696 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10697}
10698
10699static void
c19d1205 10700do_vfp_sp_from_reg (void)
e16bb312 10701{
57785aa2
AV
10702 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10703 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10704 _(BAD_FPU));
10705
5287ad62 10706 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10707 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10708}
10709
10710static void
c19d1205 10711do_vfp_sp2_from_reg2 (void)
e16bb312 10712{
c19d1205
ZW
10713 constraint (inst.operands[0].imm != 2,
10714 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10715 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10716 inst.instruction |= inst.operands[1].reg << 12;
10717 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10718}
10719
10720static void
c19d1205 10721do_vfp_sp_ldst (void)
e16bb312 10722{
5287ad62 10723 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10724 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10725}
10726
10727static void
c19d1205 10728do_vfp_dp_ldst (void)
e16bb312 10729{
5287ad62 10730 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10731 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10732}
10733
c19d1205 10734
e16bb312 10735static void
c19d1205 10736vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10737{
c19d1205
ZW
10738 if (inst.operands[0].writeback)
10739 inst.instruction |= WRITE_BACK;
10740 else
10741 constraint (ldstm_type != VFP_LDSTMIA,
10742 _("this addressing mode requires base-register writeback"));
10743 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10744 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10745 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10746}
10747
10748static void
c19d1205 10749vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10750{
c19d1205 10751 int count;
e16bb312 10752
c19d1205
ZW
10753 if (inst.operands[0].writeback)
10754 inst.instruction |= WRITE_BACK;
10755 else
10756 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10757 _("this addressing mode requires base-register writeback"));
e16bb312 10758
c19d1205 10759 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10760 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10761
c19d1205
ZW
10762 count = inst.operands[1].imm << 1;
10763 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10764 count += 1;
e16bb312 10765
c19d1205 10766 inst.instruction |= count;
e16bb312
NC
10767}
10768
10769static void
c19d1205 10770do_vfp_sp_ldstmia (void)
e16bb312 10771{
c19d1205 10772 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10773}
10774
10775static void
c19d1205 10776do_vfp_sp_ldstmdb (void)
e16bb312 10777{
c19d1205 10778 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10779}
10780
10781static void
c19d1205 10782do_vfp_dp_ldstmia (void)
e16bb312 10783{
c19d1205 10784 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10785}
10786
10787static void
c19d1205 10788do_vfp_dp_ldstmdb (void)
e16bb312 10789{
c19d1205 10790 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10791}
10792
10793static void
c19d1205 10794do_vfp_xp_ldstmia (void)
e16bb312 10795{
c19d1205
ZW
10796 vfp_dp_ldstm (VFP_LDSTMIAX);
10797}
e16bb312 10798
c19d1205
ZW
10799static void
10800do_vfp_xp_ldstmdb (void)
10801{
10802 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10803}
5287ad62
JB
10804
10805static void
10806do_vfp_dp_rd_rm (void)
10807{
57785aa2
AV
10808 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10809 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10810 _(BAD_FPU));
10811
5287ad62
JB
10812 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10813 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10814}
10815
10816static void
10817do_vfp_dp_rn_rd (void)
10818{
10819 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10820 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10821}
10822
10823static void
10824do_vfp_dp_rd_rn (void)
10825{
10826 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10827 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10828}
10829
10830static void
10831do_vfp_dp_rd_rn_rm (void)
10832{
57785aa2
AV
10833 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10834 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10835 _(BAD_FPU));
10836
5287ad62
JB
10837 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10838 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10839 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10840}
10841
10842static void
10843do_vfp_dp_rd (void)
10844{
10845 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10846}
10847
10848static void
10849do_vfp_dp_rm_rd_rn (void)
10850{
57785aa2
AV
10851 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10852 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10853 _(BAD_FPU));
10854
5287ad62
JB
10855 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10856 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10857 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10858}
10859
10860/* VFPv3 instructions. */
10861static void
10862do_vfp_sp_const (void)
10863{
10864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10865 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10866 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10867}
10868
10869static void
10870do_vfp_dp_const (void)
10871{
10872 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10873 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10874 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10875}
10876
10877static void
10878vfp_conv (int srcsize)
10879{
5f1af56b
MGD
10880 int immbits = srcsize - inst.operands[1].imm;
10881
fa94de6b
RM
10882 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10883 {
5f1af56b 10884 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10885 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10886 inst.error = _("immediate value out of range, expected range [0, 16]");
10887 return;
10888 }
fa94de6b 10889 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10890 {
10891 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10892 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10893 inst.error = _("immediate value out of range, expected range [1, 32]");
10894 return;
10895 }
10896
5287ad62
JB
10897 inst.instruction |= (immbits & 1) << 5;
10898 inst.instruction |= (immbits >> 1);
10899}
10900
10901static void
10902do_vfp_sp_conv_16 (void)
10903{
10904 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10905 vfp_conv (16);
10906}
10907
10908static void
10909do_vfp_dp_conv_16 (void)
10910{
10911 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10912 vfp_conv (16);
10913}
10914
10915static void
10916do_vfp_sp_conv_32 (void)
10917{
10918 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10919 vfp_conv (32);
10920}
10921
10922static void
10923do_vfp_dp_conv_32 (void)
10924{
10925 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10926 vfp_conv (32);
10927}
c19d1205
ZW
10928\f
10929/* FPA instructions. Also in a logical order. */
e16bb312 10930
c19d1205
ZW
10931static void
10932do_fpa_cmp (void)
10933{
10934 inst.instruction |= inst.operands[0].reg << 16;
10935 inst.instruction |= inst.operands[1].reg;
10936}
b99bd4ef
NC
10937
10938static void
c19d1205 10939do_fpa_ldmstm (void)
b99bd4ef 10940{
c19d1205
ZW
10941 inst.instruction |= inst.operands[0].reg << 12;
10942 switch (inst.operands[1].imm)
10943 {
10944 case 1: inst.instruction |= CP_T_X; break;
10945 case 2: inst.instruction |= CP_T_Y; break;
10946 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10947 case 4: break;
10948 default: abort ();
10949 }
b99bd4ef 10950
c19d1205
ZW
10951 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10952 {
10953 /* The instruction specified "ea" or "fd", so we can only accept
10954 [Rn]{!}. The instruction does not really support stacking or
10955 unstacking, so we have to emulate these by setting appropriate
10956 bits and offsets. */
e2b0ab59
AV
10957 constraint (inst.relocs[0].exp.X_op != O_constant
10958 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10959 _("this instruction does not support indexing"));
b99bd4ef 10960
c19d1205 10961 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10962 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10963
c19d1205 10964 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10965 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10966
c19d1205
ZW
10967 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10968 {
10969 inst.operands[2].preind = 0;
10970 inst.operands[2].postind = 1;
10971 }
10972 }
b99bd4ef 10973
c19d1205 10974 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10975}
c19d1205
ZW
10976\f
10977/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10978
c19d1205
ZW
10979static void
10980do_iwmmxt_tandorc (void)
10981{
10982 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10983}
b99bd4ef 10984
c19d1205
ZW
10985static void
10986do_iwmmxt_textrc (void)
10987{
10988 inst.instruction |= inst.operands[0].reg << 12;
10989 inst.instruction |= inst.operands[1].imm;
10990}
b99bd4ef
NC
10991
10992static void
c19d1205 10993do_iwmmxt_textrm (void)
b99bd4ef 10994{
c19d1205
ZW
10995 inst.instruction |= inst.operands[0].reg << 12;
10996 inst.instruction |= inst.operands[1].reg << 16;
10997 inst.instruction |= inst.operands[2].imm;
10998}
b99bd4ef 10999
c19d1205
ZW
11000static void
11001do_iwmmxt_tinsr (void)
11002{
11003 inst.instruction |= inst.operands[0].reg << 16;
11004 inst.instruction |= inst.operands[1].reg << 12;
11005 inst.instruction |= inst.operands[2].imm;
11006}
b99bd4ef 11007
c19d1205
ZW
11008static void
11009do_iwmmxt_tmia (void)
11010{
11011 inst.instruction |= inst.operands[0].reg << 5;
11012 inst.instruction |= inst.operands[1].reg;
11013 inst.instruction |= inst.operands[2].reg << 12;
11014}
b99bd4ef 11015
c19d1205
ZW
11016static void
11017do_iwmmxt_waligni (void)
11018{
11019 inst.instruction |= inst.operands[0].reg << 12;
11020 inst.instruction |= inst.operands[1].reg << 16;
11021 inst.instruction |= inst.operands[2].reg;
11022 inst.instruction |= inst.operands[3].imm << 20;
11023}
b99bd4ef 11024
2d447fca
JM
11025static void
11026do_iwmmxt_wmerge (void)
11027{
11028 inst.instruction |= inst.operands[0].reg << 12;
11029 inst.instruction |= inst.operands[1].reg << 16;
11030 inst.instruction |= inst.operands[2].reg;
11031 inst.instruction |= inst.operands[3].imm << 21;
11032}
11033
c19d1205
ZW
11034static void
11035do_iwmmxt_wmov (void)
11036{
11037 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
11038 inst.instruction |= inst.operands[0].reg << 12;
11039 inst.instruction |= inst.operands[1].reg << 16;
11040 inst.instruction |= inst.operands[1].reg;
11041}
b99bd4ef 11042
c19d1205
ZW
11043static void
11044do_iwmmxt_wldstbh (void)
11045{
8f06b2d8 11046 int reloc;
c19d1205 11047 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
11048 if (thumb_mode)
11049 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
11050 else
11051 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
11052 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
11053}
11054
c19d1205
ZW
11055static void
11056do_iwmmxt_wldstw (void)
11057{
11058 /* RIWR_RIWC clears .isreg for a control register. */
11059 if (!inst.operands[0].isreg)
11060 {
11061 constraint (inst.cond != COND_ALWAYS, BAD_COND);
11062 inst.instruction |= 0xf0000000;
11063 }
b99bd4ef 11064
c19d1205
ZW
11065 inst.instruction |= inst.operands[0].reg << 12;
11066 encode_arm_cp_address (1, TRUE, TRUE, 0);
11067}
b99bd4ef
NC
11068
11069static void
c19d1205 11070do_iwmmxt_wldstd (void)
b99bd4ef 11071{
c19d1205 11072 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
11073 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
11074 && inst.operands[1].immisreg)
11075 {
11076 inst.instruction &= ~0x1a000ff;
eff0bc54 11077 inst.instruction |= (0xfU << 28);
2d447fca
JM
11078 if (inst.operands[1].preind)
11079 inst.instruction |= PRE_INDEX;
11080 if (!inst.operands[1].negative)
11081 inst.instruction |= INDEX_UP;
11082 if (inst.operands[1].writeback)
11083 inst.instruction |= WRITE_BACK;
11084 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 11085 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
11086 inst.instruction |= inst.operands[1].imm;
11087 }
11088 else
11089 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 11090}
b99bd4ef 11091
c19d1205
ZW
11092static void
11093do_iwmmxt_wshufh (void)
11094{
11095 inst.instruction |= inst.operands[0].reg << 12;
11096 inst.instruction |= inst.operands[1].reg << 16;
11097 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
11098 inst.instruction |= (inst.operands[2].imm & 0x0f);
11099}
b99bd4ef 11100
c19d1205
ZW
11101static void
11102do_iwmmxt_wzero (void)
11103{
11104 /* WZERO reg is an alias for WANDN reg, reg, reg. */
11105 inst.instruction |= inst.operands[0].reg;
11106 inst.instruction |= inst.operands[0].reg << 12;
11107 inst.instruction |= inst.operands[0].reg << 16;
11108}
2d447fca
JM
11109
11110static void
11111do_iwmmxt_wrwrwr_or_imm5 (void)
11112{
11113 if (inst.operands[2].isreg)
11114 do_rd_rn_rm ();
11115 else {
11116 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
11117 _("immediate operand requires iWMMXt2"));
11118 do_rd_rn ();
11119 if (inst.operands[2].imm == 0)
11120 {
11121 switch ((inst.instruction >> 20) & 0xf)
11122 {
11123 case 4:
11124 case 5:
11125 case 6:
5f4273c7 11126 case 7:
2d447fca
JM
11127 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
11128 inst.operands[2].imm = 16;
11129 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
11130 break;
11131 case 8:
11132 case 9:
11133 case 10:
11134 case 11:
11135 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
11136 inst.operands[2].imm = 32;
11137 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
11138 break;
11139 case 12:
11140 case 13:
11141 case 14:
11142 case 15:
11143 {
11144 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
11145 unsigned long wrn;
11146 wrn = (inst.instruction >> 16) & 0xf;
11147 inst.instruction &= 0xff0fff0f;
11148 inst.instruction |= wrn;
11149 /* Bail out here; the instruction is now assembled. */
11150 return;
11151 }
11152 }
11153 }
11154 /* Map 32 -> 0, etc. */
11155 inst.operands[2].imm &= 0x1f;
eff0bc54 11156 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
11157 }
11158}
c19d1205
ZW
11159\f
11160/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
11161 operations first, then control, shift, and load/store. */
b99bd4ef 11162
c19d1205 11163/* Insns like "foo X,Y,Z". */
b99bd4ef 11164
c19d1205
ZW
11165static void
11166do_mav_triple (void)
11167{
11168 inst.instruction |= inst.operands[0].reg << 16;
11169 inst.instruction |= inst.operands[1].reg;
11170 inst.instruction |= inst.operands[2].reg << 12;
11171}
b99bd4ef 11172
c19d1205
ZW
11173/* Insns like "foo W,X,Y,Z".
11174 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 11175
c19d1205
ZW
11176static void
11177do_mav_quad (void)
11178{
11179 inst.instruction |= inst.operands[0].reg << 5;
11180 inst.instruction |= inst.operands[1].reg << 12;
11181 inst.instruction |= inst.operands[2].reg << 16;
11182 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
11183}
11184
c19d1205
ZW
11185/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
11186static void
11187do_mav_dspsc (void)
a737bd4d 11188{
c19d1205
ZW
11189 inst.instruction |= inst.operands[1].reg << 12;
11190}
a737bd4d 11191
c19d1205
ZW
11192/* Maverick shift immediate instructions.
11193 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
11194 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 11195
c19d1205
ZW
11196static void
11197do_mav_shift (void)
11198{
11199 int imm = inst.operands[2].imm;
a737bd4d 11200
c19d1205
ZW
11201 inst.instruction |= inst.operands[0].reg << 12;
11202 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 11203
c19d1205
ZW
11204 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
11205 Bits 5-7 of the insn should have bits 4-6 of the immediate.
11206 Bit 4 should be 0. */
11207 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 11208
c19d1205
ZW
11209 inst.instruction |= imm;
11210}
11211\f
11212/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 11213
c19d1205
ZW
11214/* Xscale multiply-accumulate (argument parse)
11215 MIAcc acc0,Rm,Rs
11216 MIAPHcc acc0,Rm,Rs
11217 MIAxycc acc0,Rm,Rs. */
a737bd4d 11218
c19d1205
ZW
11219static void
11220do_xsc_mia (void)
11221{
11222 inst.instruction |= inst.operands[1].reg;
11223 inst.instruction |= inst.operands[2].reg << 12;
11224}
a737bd4d 11225
c19d1205 11226/* Xscale move-accumulator-register (argument parse)
a737bd4d 11227
c19d1205 11228 MARcc acc0,RdLo,RdHi. */
b99bd4ef 11229
c19d1205
ZW
11230static void
11231do_xsc_mar (void)
11232{
11233 inst.instruction |= inst.operands[1].reg << 12;
11234 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
11235}
11236
c19d1205 11237/* Xscale move-register-accumulator (argument parse)
b99bd4ef 11238
c19d1205 11239 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
11240
11241static void
c19d1205 11242do_xsc_mra (void)
b99bd4ef 11243{
c19d1205
ZW
11244 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
11245 inst.instruction |= inst.operands[0].reg << 12;
11246 inst.instruction |= inst.operands[1].reg << 16;
11247}
11248\f
11249/* Encoding functions relevant only to Thumb. */
b99bd4ef 11250
c19d1205
ZW
11251/* inst.operands[i] is a shifted-register operand; encode
11252 it into inst.instruction in the format used by Thumb32. */
11253
11254static void
11255encode_thumb32_shifted_operand (int i)
11256{
e2b0ab59 11257 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 11258 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 11259
9c3c69f2
PB
11260 constraint (inst.operands[i].immisreg,
11261 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
11262 inst.instruction |= inst.operands[i].reg;
11263 if (shift == SHIFT_RRX)
11264 inst.instruction |= SHIFT_ROR << 4;
11265 else
b99bd4ef 11266 {
e2b0ab59 11267 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
11268 _("expression too complex"));
11269
11270 constraint (value > 32
11271 || (value == 32 && (shift == SHIFT_LSL
11272 || shift == SHIFT_ROR)),
11273 _("shift expression is too large"));
11274
11275 if (value == 0)
11276 shift = SHIFT_LSL;
11277 else if (value == 32)
11278 value = 0;
11279
11280 inst.instruction |= shift << 4;
11281 inst.instruction |= (value & 0x1c) << 10;
11282 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 11283 }
c19d1205 11284}
b99bd4ef 11285
b99bd4ef 11286
c19d1205
ZW
11287/* inst.operands[i] was set up by parse_address. Encode it into a
11288 Thumb32 format load or store instruction. Reject forms that cannot
11289 be used with such instructions. If is_t is true, reject forms that
11290 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
11291 that cannot be used with a D instruction. If it is a store insn,
11292 reject PC in Rn. */
b99bd4ef 11293
c19d1205
ZW
11294static void
11295encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11296{
5be8be5d 11297 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11298
11299 constraint (!inst.operands[i].isreg,
53365c0d 11300 _("Instruction does not support =N addresses"));
b99bd4ef 11301
c19d1205
ZW
11302 inst.instruction |= inst.operands[i].reg << 16;
11303 if (inst.operands[i].immisreg)
b99bd4ef 11304 {
5be8be5d 11305 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11306 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11307 constraint (inst.operands[i].negative,
11308 _("Thumb does not support negative register indexing"));
11309 constraint (inst.operands[i].postind,
11310 _("Thumb does not support register post-indexing"));
11311 constraint (inst.operands[i].writeback,
11312 _("Thumb does not support register indexing with writeback"));
11313 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11314 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11315
f40d1643 11316 inst.instruction |= inst.operands[i].imm;
c19d1205 11317 if (inst.operands[i].shifted)
b99bd4ef 11318 {
e2b0ab59 11319 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11320 _("expression too complex"));
e2b0ab59
AV
11321 constraint (inst.relocs[0].exp.X_add_number < 0
11322 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11323 _("shift out of range"));
e2b0ab59 11324 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11325 }
e2b0ab59 11326 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11327 }
11328 else if (inst.operands[i].preind)
11329 {
5be8be5d 11330 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11331 constraint (is_t && inst.operands[i].writeback,
c19d1205 11332 _("cannot use writeback with this instruction"));
4755303e
WN
11333 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11334 BAD_PC_ADDRESSING);
c19d1205
ZW
11335
11336 if (is_d)
11337 {
11338 inst.instruction |= 0x01000000;
11339 if (inst.operands[i].writeback)
11340 inst.instruction |= 0x00200000;
b99bd4ef 11341 }
c19d1205 11342 else
b99bd4ef 11343 {
c19d1205
ZW
11344 inst.instruction |= 0x00000c00;
11345 if (inst.operands[i].writeback)
11346 inst.instruction |= 0x00000100;
b99bd4ef 11347 }
e2b0ab59 11348 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11349 }
c19d1205 11350 else if (inst.operands[i].postind)
b99bd4ef 11351 {
9c2799c2 11352 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11353 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11354 constraint (is_t, _("cannot use post-indexing with this instruction"));
11355
11356 if (is_d)
11357 inst.instruction |= 0x00200000;
11358 else
11359 inst.instruction |= 0x00000900;
e2b0ab59 11360 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11361 }
11362 else /* unindexed - only for coprocessor */
11363 inst.error = _("instruction does not accept unindexed addressing");
11364}
11365
e39c1607 11366/* Table of Thumb instructions which exist in 16- and/or 32-bit
c19d1205
ZW
11367 encodings (the latter only in post-V6T2 cores). The index is the
11368 value used in the insns table below. When there is more than one
11369 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11370 holds variant (1).
11371 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11372#define T16_32_TAB \
21d799b5
NC
11373 X(_adc, 4140, eb400000), \
11374 X(_adcs, 4140, eb500000), \
11375 X(_add, 1c00, eb000000), \
11376 X(_adds, 1c00, eb100000), \
11377 X(_addi, 0000, f1000000), \
11378 X(_addis, 0000, f1100000), \
11379 X(_add_pc,000f, f20f0000), \
11380 X(_add_sp,000d, f10d0000), \
11381 X(_adr, 000f, f20f0000), \
11382 X(_and, 4000, ea000000), \
11383 X(_ands, 4000, ea100000), \
11384 X(_asr, 1000, fa40f000), \
11385 X(_asrs, 1000, fa50f000), \
11386 X(_b, e000, f000b000), \
11387 X(_bcond, d000, f0008000), \
4389b29a 11388 X(_bf, 0000, f040e001), \
f6b2b12d 11389 X(_bfcsel,0000, f000e001), \
f1c7f421 11390 X(_bfx, 0000, f060e001), \
65d1bc05 11391 X(_bfl, 0000, f000c001), \
f1c7f421 11392 X(_bflx, 0000, f070e001), \
21d799b5
NC
11393 X(_bic, 4380, ea200000), \
11394 X(_bics, 4380, ea300000), \
e39c1607
SD
11395 X(_cinc, 0000, ea509000), \
11396 X(_cinv, 0000, ea50a000), \
21d799b5
NC
11397 X(_cmn, 42c0, eb100f00), \
11398 X(_cmp, 2800, ebb00f00), \
e39c1607 11399 X(_cneg, 0000, ea50b000), \
21d799b5
NC
11400 X(_cpsie, b660, f3af8400), \
11401 X(_cpsid, b670, f3af8600), \
11402 X(_cpy, 4600, ea4f0000), \
e39c1607
SD
11403 X(_csel, 0000, ea508000), \
11404 X(_cset, 0000, ea5f900f), \
11405 X(_csetm, 0000, ea5fa00f), \
11406 X(_csinc, 0000, ea509000), \
11407 X(_csinv, 0000, ea50a000), \
11408 X(_csneg, 0000, ea50b000), \
21d799b5 11409 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11410 X(_dls, 0000, f040e001), \
1f6234a3 11411 X(_dlstp, 0000, f000e001), \
21d799b5
NC
11412 X(_eor, 4040, ea800000), \
11413 X(_eors, 4040, ea900000), \
11414 X(_inc_sp,00dd, f10d0d00), \
1f6234a3 11415 X(_lctp, 0000, f00fe001), \
21d799b5
NC
11416 X(_ldmia, c800, e8900000), \
11417 X(_ldr, 6800, f8500000), \
11418 X(_ldrb, 7800, f8100000), \
11419 X(_ldrh, 8800, f8300000), \
11420 X(_ldrsb, 5600, f9100000), \
11421 X(_ldrsh, 5e00, f9300000), \
11422 X(_ldr_pc,4800, f85f0000), \
11423 X(_ldr_pc2,4800, f85f0000), \
11424 X(_ldr_sp,9800, f85d0000), \
60f993ce 11425 X(_le, 0000, f00fc001), \
1f6234a3 11426 X(_letp, 0000, f01fc001), \
21d799b5
NC
11427 X(_lsl, 0000, fa00f000), \
11428 X(_lsls, 0000, fa10f000), \
11429 X(_lsr, 0800, fa20f000), \
11430 X(_lsrs, 0800, fa30f000), \
11431 X(_mov, 2000, ea4f0000), \
11432 X(_movs, 2000, ea5f0000), \
11433 X(_mul, 4340, fb00f000), \
11434 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11435 X(_mvn, 43c0, ea6f0000), \
11436 X(_mvns, 43c0, ea7f0000), \
11437 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11438 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11439 X(_orr, 4300, ea400000), \
11440 X(_orrs, 4300, ea500000), \
11441 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11442 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11443 X(_rev, ba00, fa90f080), \
11444 X(_rev16, ba40, fa90f090), \
11445 X(_revsh, bac0, fa90f0b0), \
11446 X(_ror, 41c0, fa60f000), \
11447 X(_rors, 41c0, fa70f000), \
11448 X(_sbc, 4180, eb600000), \
11449 X(_sbcs, 4180, eb700000), \
11450 X(_stmia, c000, e8800000), \
11451 X(_str, 6000, f8400000), \
11452 X(_strb, 7000, f8000000), \
11453 X(_strh, 8000, f8200000), \
11454 X(_str_sp,9000, f84d0000), \
11455 X(_sub, 1e00, eba00000), \
11456 X(_subs, 1e00, ebb00000), \
11457 X(_subi, 8000, f1a00000), \
11458 X(_subis, 8000, f1b00000), \
11459 X(_sxtb, b240, fa4ff080), \
11460 X(_sxth, b200, fa0ff080), \
11461 X(_tst, 4200, ea100f00), \
11462 X(_uxtb, b2c0, fa5ff080), \
11463 X(_uxth, b280, fa1ff080), \
11464 X(_nop, bf00, f3af8000), \
11465 X(_yield, bf10, f3af8001), \
11466 X(_wfe, bf20, f3af8002), \
11467 X(_wfi, bf30, f3af8003), \
60f993ce 11468 X(_wls, 0000, f040c001), \
1f6234a3 11469 X(_wlstp, 0000, f000c001), \
53c4b28b 11470 X(_sev, bf40, f3af8004), \
74db7efb
NC
11471 X(_sevl, bf50, f3af8005), \
11472 X(_udf, de00, f7f0a000)
c19d1205
ZW
11473
11474/* To catch errors in encoding functions, the codes are all offset by
11475 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11476 as 16-bit instructions. */
21d799b5 11477#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11478enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11479#undef X
11480
11481#define X(a,b,c) 0x##b
11482static const unsigned short thumb_op16[] = { T16_32_TAB };
11483#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11484#undef X
11485
11486#define X(a,b,c) 0x##c
11487static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11488#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11489#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11490#undef X
11491#undef T16_32_TAB
11492
11493/* Thumb instruction encoders, in alphabetical order. */
11494
92e90b6e 11495/* ADDW or SUBW. */
c921be7d 11496
92e90b6e
PB
11497static void
11498do_t_add_sub_w (void)
11499{
11500 int Rd, Rn;
11501
11502 Rd = inst.operands[0].reg;
11503 Rn = inst.operands[1].reg;
11504
539d4391
NC
11505 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11506 is the SP-{plus,minus}-immediate form of the instruction. */
11507 if (Rn == REG_SP)
11508 constraint (Rd == REG_PC, BAD_PC);
11509 else
11510 reject_bad_reg (Rd);
fdfde340 11511
92e90b6e 11512 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11513 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11514}
11515
c19d1205 11516/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11517 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11518
11519static void
11520do_t_add_sub (void)
11521{
11522 int Rd, Rs, Rn;
11523
11524 Rd = inst.operands[0].reg;
11525 Rs = (inst.operands[1].present
11526 ? inst.operands[1].reg /* Rd, Rs, foo */
11527 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11528
e07e6e58 11529 if (Rd == REG_PC)
5ee91343 11530 set_pred_insn_type_last ();
e07e6e58 11531
c19d1205
ZW
11532 if (unified_syntax)
11533 {
0110f2b8
PB
11534 bfd_boolean flags;
11535 bfd_boolean narrow;
11536 int opcode;
11537
11538 flags = (inst.instruction == T_MNEM_adds
11539 || inst.instruction == T_MNEM_subs);
11540 if (flags)
5ee91343 11541 narrow = !in_pred_block ();
0110f2b8 11542 else
5ee91343 11543 narrow = in_pred_block ();
c19d1205 11544 if (!inst.operands[2].isreg)
b99bd4ef 11545 {
16805f35
PB
11546 int add;
11547
5c8ed6a4
JW
11548 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11549 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11550
16805f35
PB
11551 add = (inst.instruction == T_MNEM_add
11552 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11553 opcode = 0;
11554 if (inst.size_req != 4)
11555 {
0110f2b8 11556 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11557 appropriate. */
0110f2b8
PB
11558 if (Rd == REG_SP && Rs == REG_SP && !flags)
11559 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11560 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11561 opcode = T_MNEM_add_sp;
11562 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11563 opcode = T_MNEM_add_pc;
11564 else if (Rd <= 7 && Rs <= 7 && narrow)
11565 {
11566 if (flags)
11567 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11568 else
11569 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11570 }
11571 if (opcode)
11572 {
11573 inst.instruction = THUMB_OP16(opcode);
11574 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11575 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11576 || (inst.relocs[0].type
11577 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11578 {
11579 if (inst.size_req == 2)
e2b0ab59 11580 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11581 else
11582 inst.relax = opcode;
11583 }
0110f2b8
PB
11584 }
11585 else
11586 constraint (inst.size_req == 2, BAD_HIREG);
11587 }
11588 if (inst.size_req == 4
11589 || (inst.size_req != 2 && !opcode))
11590 {
e2b0ab59
AV
11591 constraint ((inst.relocs[0].type
11592 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11593 && (inst.relocs[0].type
11594 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11595 THUMB1_RELOC_ONLY);
efd81785
PB
11596 if (Rd == REG_PC)
11597 {
fdfde340 11598 constraint (add, BAD_PC);
efd81785
PB
11599 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11600 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11601 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11602 _("expression too complex"));
e2b0ab59
AV
11603 constraint (inst.relocs[0].exp.X_add_number < 0
11604 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11605 _("immediate value out of range"));
11606 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11607 | inst.relocs[0].exp.X_add_number;
11608 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11609 return;
11610 }
11611 else if (Rs == REG_PC)
16805f35
PB
11612 {
11613 /* Always use addw/subw. */
11614 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11615 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11616 }
11617 else
11618 {
11619 inst.instruction = THUMB_OP32 (inst.instruction);
11620 inst.instruction = (inst.instruction & 0xe1ffffff)
11621 | 0x10000000;
11622 if (flags)
e2b0ab59 11623 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11624 else
e2b0ab59 11625 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11626 }
dc4503c6
PB
11627 inst.instruction |= Rd << 8;
11628 inst.instruction |= Rs << 16;
0110f2b8 11629 }
b99bd4ef 11630 }
c19d1205
ZW
11631 else
11632 {
e2b0ab59 11633 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11634 unsigned int shift = inst.operands[2].shift_kind;
11635
c19d1205
ZW
11636 Rn = inst.operands[2].reg;
11637 /* See if we can do this with a 16-bit instruction. */
11638 if (!inst.operands[2].shifted && inst.size_req != 4)
11639 {
e27ec89e
PB
11640 if (Rd > 7 || Rs > 7 || Rn > 7)
11641 narrow = FALSE;
11642
11643 if (narrow)
c19d1205 11644 {
e27ec89e
PB
11645 inst.instruction = ((inst.instruction == T_MNEM_adds
11646 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11647 ? T_OPCODE_ADD_R3
11648 : T_OPCODE_SUB_R3);
11649 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11650 return;
11651 }
b99bd4ef 11652
7e806470 11653 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11654 {
7e806470
PB
11655 /* Thumb-1 cores (except v6-M) require at least one high
11656 register in a narrow non flag setting add. */
11657 if (Rd > 7 || Rn > 7
11658 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11659 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11660 {
7e806470
PB
11661 if (Rd == Rn)
11662 {
11663 Rn = Rs;
11664 Rs = Rd;
11665 }
c19d1205
ZW
11666 inst.instruction = T_OPCODE_ADD_HI;
11667 inst.instruction |= (Rd & 8) << 4;
11668 inst.instruction |= (Rd & 7);
11669 inst.instruction |= Rn << 3;
11670 return;
11671 }
c19d1205
ZW
11672 }
11673 }
c921be7d 11674
fdfde340 11675 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11676 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11677 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11678 constraint (Rs == REG_PC, BAD_PC);
11679 reject_bad_reg (Rn);
11680
c19d1205
ZW
11681 /* If we get here, it can't be done in 16 bits. */
11682 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11683 _("shift must be constant"));
11684 inst.instruction = THUMB_OP32 (inst.instruction);
11685 inst.instruction |= Rd << 8;
11686 inst.instruction |= Rs << 16;
5f4cb198
NC
11687 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11688 _("shift value over 3 not allowed in thumb mode"));
11689 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11690 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11691 encode_thumb32_shifted_operand (2);
11692 }
11693 }
11694 else
11695 {
11696 constraint (inst.instruction == T_MNEM_adds
11697 || inst.instruction == T_MNEM_subs,
11698 BAD_THUMB32);
b99bd4ef 11699
c19d1205 11700 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11701 {
c19d1205
ZW
11702 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11703 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11704 BAD_HIREG);
11705
11706 inst.instruction = (inst.instruction == T_MNEM_add
11707 ? 0x0000 : 0x8000);
11708 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11709 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11710 return;
11711 }
11712
c19d1205
ZW
11713 Rn = inst.operands[2].reg;
11714 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11715
c19d1205
ZW
11716 /* We now have Rd, Rs, and Rn set to registers. */
11717 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11718 {
c19d1205
ZW
11719 /* Can't do this for SUB. */
11720 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11721 inst.instruction = T_OPCODE_ADD_HI;
11722 inst.instruction |= (Rd & 8) << 4;
11723 inst.instruction |= (Rd & 7);
11724 if (Rs == Rd)
11725 inst.instruction |= Rn << 3;
11726 else if (Rn == Rd)
11727 inst.instruction |= Rs << 3;
11728 else
11729 constraint (1, _("dest must overlap one source register"));
11730 }
11731 else
11732 {
11733 inst.instruction = (inst.instruction == T_MNEM_add
11734 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11735 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11736 }
b99bd4ef 11737 }
b99bd4ef
NC
11738}
11739
c19d1205
ZW
11740static void
11741do_t_adr (void)
11742{
fdfde340
JM
11743 unsigned Rd;
11744
11745 Rd = inst.operands[0].reg;
11746 reject_bad_reg (Rd);
11747
11748 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11749 {
11750 /* Defer to section relaxation. */
11751 inst.relax = inst.instruction;
11752 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11753 inst.instruction |= Rd << 4;
0110f2b8
PB
11754 }
11755 else if (unified_syntax && inst.size_req != 2)
e9f89963 11756 {
0110f2b8 11757 /* Generate a 32-bit opcode. */
e9f89963 11758 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11759 inst.instruction |= Rd << 8;
e2b0ab59
AV
11760 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11761 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11762 }
11763 else
11764 {
0110f2b8 11765 /* Generate a 16-bit opcode. */
e9f89963 11766 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11767 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11768 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11769 inst.relocs[0].pc_rel = 1;
fdfde340 11770 inst.instruction |= Rd << 4;
e9f89963 11771 }
52a86f84 11772
e2b0ab59
AV
11773 if (inst.relocs[0].exp.X_op == O_symbol
11774 && inst.relocs[0].exp.X_add_symbol != NULL
11775 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11776 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11777 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11778}
b99bd4ef 11779
c19d1205
ZW
11780/* Arithmetic instructions for which there is just one 16-bit
11781 instruction encoding, and it allows only two low registers.
11782 For maximal compatibility with ARM syntax, we allow three register
11783 operands even when Thumb-32 instructions are not available, as long
11784 as the first two are identical. For instance, both "sbc r0,r1" and
11785 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11786static void
c19d1205 11787do_t_arit3 (void)
b99bd4ef 11788{
c19d1205 11789 int Rd, Rs, Rn;
b99bd4ef 11790
c19d1205
ZW
11791 Rd = inst.operands[0].reg;
11792 Rs = (inst.operands[1].present
11793 ? inst.operands[1].reg /* Rd, Rs, foo */
11794 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11795 Rn = inst.operands[2].reg;
b99bd4ef 11796
fdfde340
JM
11797 reject_bad_reg (Rd);
11798 reject_bad_reg (Rs);
11799 if (inst.operands[2].isreg)
11800 reject_bad_reg (Rn);
11801
c19d1205 11802 if (unified_syntax)
b99bd4ef 11803 {
c19d1205
ZW
11804 if (!inst.operands[2].isreg)
11805 {
11806 /* For an immediate, we always generate a 32-bit opcode;
11807 section relaxation will shrink it later if possible. */
11808 inst.instruction = THUMB_OP32 (inst.instruction);
11809 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11810 inst.instruction |= Rd << 8;
11811 inst.instruction |= Rs << 16;
e2b0ab59 11812 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11813 }
11814 else
11815 {
e27ec89e
PB
11816 bfd_boolean narrow;
11817
c19d1205 11818 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11819 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11820 narrow = !in_pred_block ();
e27ec89e 11821 else
5ee91343 11822 narrow = in_pred_block ();
e27ec89e
PB
11823
11824 if (Rd > 7 || Rn > 7 || Rs > 7)
11825 narrow = FALSE;
11826 if (inst.operands[2].shifted)
11827 narrow = FALSE;
11828 if (inst.size_req == 4)
11829 narrow = FALSE;
11830
11831 if (narrow
c19d1205
ZW
11832 && Rd == Rs)
11833 {
11834 inst.instruction = THUMB_OP16 (inst.instruction);
11835 inst.instruction |= Rd;
11836 inst.instruction |= Rn << 3;
11837 return;
11838 }
b99bd4ef 11839
c19d1205
ZW
11840 /* If we get here, it can't be done in 16 bits. */
11841 constraint (inst.operands[2].shifted
11842 && inst.operands[2].immisreg,
11843 _("shift must be constant"));
11844 inst.instruction = THUMB_OP32 (inst.instruction);
11845 inst.instruction |= Rd << 8;
11846 inst.instruction |= Rs << 16;
11847 encode_thumb32_shifted_operand (2);
11848 }
a737bd4d 11849 }
c19d1205 11850 else
b99bd4ef 11851 {
c19d1205
ZW
11852 /* On its face this is a lie - the instruction does set the
11853 flags. However, the only supported mnemonic in this mode
11854 says it doesn't. */
11855 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11856
c19d1205
ZW
11857 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11858 _("unshifted register required"));
11859 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11860 constraint (Rd != Rs,
11861 _("dest and source1 must be the same register"));
a737bd4d 11862
c19d1205
ZW
11863 inst.instruction = THUMB_OP16 (inst.instruction);
11864 inst.instruction |= Rd;
11865 inst.instruction |= Rn << 3;
b99bd4ef 11866 }
a737bd4d 11867}
b99bd4ef 11868
c19d1205
ZW
11869/* Similarly, but for instructions where the arithmetic operation is
11870 commutative, so we can allow either of them to be different from
11871 the destination operand in a 16-bit instruction. For instance, all
11872 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11873 accepted. */
11874static void
11875do_t_arit3c (void)
a737bd4d 11876{
c19d1205 11877 int Rd, Rs, Rn;
b99bd4ef 11878
c19d1205
ZW
11879 Rd = inst.operands[0].reg;
11880 Rs = (inst.operands[1].present
11881 ? inst.operands[1].reg /* Rd, Rs, foo */
11882 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11883 Rn = inst.operands[2].reg;
c921be7d 11884
fdfde340
JM
11885 reject_bad_reg (Rd);
11886 reject_bad_reg (Rs);
11887 if (inst.operands[2].isreg)
11888 reject_bad_reg (Rn);
a737bd4d 11889
c19d1205 11890 if (unified_syntax)
a737bd4d 11891 {
c19d1205 11892 if (!inst.operands[2].isreg)
b99bd4ef 11893 {
c19d1205
ZW
11894 /* For an immediate, we always generate a 32-bit opcode;
11895 section relaxation will shrink it later if possible. */
11896 inst.instruction = THUMB_OP32 (inst.instruction);
11897 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11898 inst.instruction |= Rd << 8;
11899 inst.instruction |= Rs << 16;
e2b0ab59 11900 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11901 }
c19d1205 11902 else
a737bd4d 11903 {
e27ec89e
PB
11904 bfd_boolean narrow;
11905
c19d1205 11906 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11907 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11908 narrow = !in_pred_block ();
e27ec89e 11909 else
5ee91343 11910 narrow = in_pred_block ();
e27ec89e
PB
11911
11912 if (Rd > 7 || Rn > 7 || Rs > 7)
11913 narrow = FALSE;
11914 if (inst.operands[2].shifted)
11915 narrow = FALSE;
11916 if (inst.size_req == 4)
11917 narrow = FALSE;
11918
11919 if (narrow)
a737bd4d 11920 {
c19d1205 11921 if (Rd == Rs)
a737bd4d 11922 {
c19d1205
ZW
11923 inst.instruction = THUMB_OP16 (inst.instruction);
11924 inst.instruction |= Rd;
11925 inst.instruction |= Rn << 3;
11926 return;
a737bd4d 11927 }
c19d1205 11928 if (Rd == Rn)
a737bd4d 11929 {
c19d1205
ZW
11930 inst.instruction = THUMB_OP16 (inst.instruction);
11931 inst.instruction |= Rd;
11932 inst.instruction |= Rs << 3;
11933 return;
a737bd4d
NC
11934 }
11935 }
c19d1205
ZW
11936
11937 /* If we get here, it can't be done in 16 bits. */
11938 constraint (inst.operands[2].shifted
11939 && inst.operands[2].immisreg,
11940 _("shift must be constant"));
11941 inst.instruction = THUMB_OP32 (inst.instruction);
11942 inst.instruction |= Rd << 8;
11943 inst.instruction |= Rs << 16;
11944 encode_thumb32_shifted_operand (2);
a737bd4d 11945 }
b99bd4ef 11946 }
c19d1205
ZW
11947 else
11948 {
11949 /* On its face this is a lie - the instruction does set the
11950 flags. However, the only supported mnemonic in this mode
11951 says it doesn't. */
11952 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11953
c19d1205
ZW
11954 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11955 _("unshifted register required"));
11956 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11957
11958 inst.instruction = THUMB_OP16 (inst.instruction);
11959 inst.instruction |= Rd;
11960
11961 if (Rd == Rs)
11962 inst.instruction |= Rn << 3;
11963 else if (Rd == Rn)
11964 inst.instruction |= Rs << 3;
11965 else
11966 constraint (1, _("dest must overlap one source register"));
11967 }
a737bd4d
NC
11968}
11969
c19d1205
ZW
11970static void
11971do_t_bfc (void)
a737bd4d 11972{
fdfde340 11973 unsigned Rd;
c19d1205
ZW
11974 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11975 constraint (msb > 32, _("bit-field extends past end of register"));
11976 /* The instruction encoding stores the LSB and MSB,
11977 not the LSB and width. */
fdfde340
JM
11978 Rd = inst.operands[0].reg;
11979 reject_bad_reg (Rd);
11980 inst.instruction |= Rd << 8;
c19d1205
ZW
11981 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11982 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11983 inst.instruction |= msb - 1;
b99bd4ef
NC
11984}
11985
c19d1205
ZW
11986static void
11987do_t_bfi (void)
b99bd4ef 11988{
fdfde340 11989 int Rd, Rn;
c19d1205 11990 unsigned int msb;
b99bd4ef 11991
fdfde340
JM
11992 Rd = inst.operands[0].reg;
11993 reject_bad_reg (Rd);
11994
c19d1205
ZW
11995 /* #0 in second position is alternative syntax for bfc, which is
11996 the same instruction but with REG_PC in the Rm field. */
11997 if (!inst.operands[1].isreg)
fdfde340
JM
11998 Rn = REG_PC;
11999 else
12000 {
12001 Rn = inst.operands[1].reg;
12002 reject_bad_reg (Rn);
12003 }
b99bd4ef 12004
c19d1205
ZW
12005 msb = inst.operands[2].imm + inst.operands[3].imm;
12006 constraint (msb > 32, _("bit-field extends past end of register"));
12007 /* The instruction encoding stores the LSB and MSB,
12008 not the LSB and width. */
fdfde340
JM
12009 inst.instruction |= Rd << 8;
12010 inst.instruction |= Rn << 16;
c19d1205
ZW
12011 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12012 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12013 inst.instruction |= msb - 1;
b99bd4ef
NC
12014}
12015
c19d1205
ZW
12016static void
12017do_t_bfx (void)
b99bd4ef 12018{
fdfde340
JM
12019 unsigned Rd, Rn;
12020
12021 Rd = inst.operands[0].reg;
12022 Rn = inst.operands[1].reg;
12023
12024 reject_bad_reg (Rd);
12025 reject_bad_reg (Rn);
12026
c19d1205
ZW
12027 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
12028 _("bit-field extends past end of register"));
fdfde340
JM
12029 inst.instruction |= Rd << 8;
12030 inst.instruction |= Rn << 16;
c19d1205
ZW
12031 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12032 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12033 inst.instruction |= inst.operands[3].imm - 1;
12034}
b99bd4ef 12035
c19d1205
ZW
12036/* ARM V5 Thumb BLX (argument parse)
12037 BLX <target_addr> which is BLX(1)
12038 BLX <Rm> which is BLX(2)
12039 Unfortunately, there are two different opcodes for this mnemonic.
12040 So, the insns[].value is not used, and the code here zaps values
12041 into inst.instruction.
b99bd4ef 12042
c19d1205
ZW
12043 ??? How to take advantage of the additional two bits of displacement
12044 available in Thumb32 mode? Need new relocation? */
b99bd4ef 12045
c19d1205
ZW
12046static void
12047do_t_blx (void)
12048{
5ee91343 12049 set_pred_insn_type_last ();
e07e6e58 12050
c19d1205 12051 if (inst.operands[0].isreg)
fdfde340
JM
12052 {
12053 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
12054 /* We have a register, so this is BLX(2). */
12055 inst.instruction |= inst.operands[0].reg << 3;
12056 }
b99bd4ef
NC
12057 else
12058 {
c19d1205 12059 /* No register. This must be BLX(1). */
2fc8bdac 12060 inst.instruction = 0xf000e800;
0855e32b 12061 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
12062 }
12063}
12064
c19d1205
ZW
12065static void
12066do_t_branch (void)
b99bd4ef 12067{
0110f2b8 12068 int opcode;
dfa9f0d5 12069 int cond;
2fe88214 12070 bfd_reloc_code_real_type reloc;
dfa9f0d5 12071
e07e6e58 12072 cond = inst.cond;
5ee91343 12073 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 12074
5ee91343 12075 if (in_pred_block ())
dfa9f0d5
PB
12076 {
12077 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 12078 branches. */
dfa9f0d5 12079 cond = COND_ALWAYS;
dfa9f0d5
PB
12080 }
12081 else
12082 cond = inst.cond;
12083
12084 if (cond != COND_ALWAYS)
0110f2b8
PB
12085 opcode = T_MNEM_bcond;
12086 else
12087 opcode = inst.instruction;
12088
12d6b0b7
RS
12089 if (unified_syntax
12090 && (inst.size_req == 4
10960bfb
PB
12091 || (inst.size_req != 2
12092 && (inst.operands[0].hasreloc
e2b0ab59 12093 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 12094 {
0110f2b8 12095 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 12096 if (cond == COND_ALWAYS)
9ae92b05 12097 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
12098 else
12099 {
ff8646ee
TP
12100 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
12101 _("selected architecture does not support "
12102 "wide conditional branch instruction"));
12103
9c2799c2 12104 gas_assert (cond != 0xF);
dfa9f0d5 12105 inst.instruction |= cond << 22;
9ae92b05 12106 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
12107 }
12108 }
b99bd4ef
NC
12109 else
12110 {
0110f2b8 12111 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 12112 if (cond == COND_ALWAYS)
9ae92b05 12113 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 12114 else
b99bd4ef 12115 {
dfa9f0d5 12116 inst.instruction |= cond << 8;
9ae92b05 12117 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 12118 }
0110f2b8
PB
12119 /* Allow section relaxation. */
12120 if (unified_syntax && inst.size_req != 2)
12121 inst.relax = opcode;
b99bd4ef 12122 }
e2b0ab59
AV
12123 inst.relocs[0].type = reloc;
12124 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
12125}
12126
8884b720 12127/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 12128 between the two is the maximum immediate allowed - which is passed in
8884b720 12129 RANGE. */
b99bd4ef 12130static void
8884b720 12131do_t_bkpt_hlt1 (int range)
b99bd4ef 12132{
dfa9f0d5
PB
12133 constraint (inst.cond != COND_ALWAYS,
12134 _("instruction is always unconditional"));
c19d1205 12135 if (inst.operands[0].present)
b99bd4ef 12136 {
8884b720 12137 constraint (inst.operands[0].imm > range,
c19d1205
ZW
12138 _("immediate value out of range"));
12139 inst.instruction |= inst.operands[0].imm;
b99bd4ef 12140 }
8884b720 12141
5ee91343 12142 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
12143}
12144
12145static void
12146do_t_hlt (void)
12147{
12148 do_t_bkpt_hlt1 (63);
12149}
12150
12151static void
12152do_t_bkpt (void)
12153{
12154 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
12155}
12156
12157static void
c19d1205 12158do_t_branch23 (void)
b99bd4ef 12159{
5ee91343 12160 set_pred_insn_type_last ();
0855e32b 12161 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 12162
0855e32b
NS
12163 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
12164 this file. We used to simply ignore the PLT reloc type here --
12165 the branch encoding is now needed to deal with TLSCALL relocs.
12166 So if we see a PLT reloc now, put it back to how it used to be to
12167 keep the preexisting behaviour. */
e2b0ab59
AV
12168 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
12169 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 12170
4343666d 12171#if defined(OBJ_COFF)
c19d1205
ZW
12172 /* If the destination of the branch is a defined symbol which does not have
12173 the THUMB_FUNC attribute, then we must be calling a function which has
12174 the (interfacearm) attribute. We look for the Thumb entry point to that
12175 function and change the branch to refer to that function instead. */
e2b0ab59
AV
12176 if ( inst.relocs[0].exp.X_op == O_symbol
12177 && inst.relocs[0].exp.X_add_symbol != NULL
12178 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
12179 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
12180 inst.relocs[0].exp.X_add_symbol
12181 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 12182#endif
90e4755a
RE
12183}
12184
12185static void
c19d1205 12186do_t_bx (void)
90e4755a 12187{
5ee91343 12188 set_pred_insn_type_last ();
c19d1205
ZW
12189 inst.instruction |= inst.operands[0].reg << 3;
12190 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
12191 should cause the alignment to be checked once it is known. This is
12192 because BX PC only works if the instruction is word aligned. */
12193}
90e4755a 12194
c19d1205
ZW
12195static void
12196do_t_bxj (void)
12197{
fdfde340 12198 int Rm;
90e4755a 12199
5ee91343 12200 set_pred_insn_type_last ();
fdfde340
JM
12201 Rm = inst.operands[0].reg;
12202 reject_bad_reg (Rm);
12203 inst.instruction |= Rm << 16;
90e4755a
RE
12204}
12205
12206static void
c19d1205 12207do_t_clz (void)
90e4755a 12208{
fdfde340
JM
12209 unsigned Rd;
12210 unsigned Rm;
12211
12212 Rd = inst.operands[0].reg;
12213 Rm = inst.operands[1].reg;
12214
12215 reject_bad_reg (Rd);
12216 reject_bad_reg (Rm);
12217
12218 inst.instruction |= Rd << 8;
12219 inst.instruction |= Rm << 16;
12220 inst.instruction |= Rm;
c19d1205 12221}
90e4755a 12222
e39c1607
SD
12223/* For the Armv8.1-M conditional instructions. */
12224static void
12225do_t_cond (void)
12226{
12227 unsigned Rd, Rn, Rm;
12228 signed int cond;
12229
12230 constraint (inst.cond != COND_ALWAYS, BAD_COND);
12231
12232 Rd = inst.operands[0].reg;
12233 switch (inst.instruction)
12234 {
12235 case T_MNEM_csinc:
12236 case T_MNEM_csinv:
12237 case T_MNEM_csneg:
12238 case T_MNEM_csel:
12239 Rn = inst.operands[1].reg;
12240 Rm = inst.operands[2].reg;
12241 cond = inst.operands[3].imm;
12242 constraint (Rn == REG_SP, BAD_SP);
12243 constraint (Rm == REG_SP, BAD_SP);
12244 break;
12245
12246 case T_MNEM_cinc:
12247 case T_MNEM_cinv:
12248 case T_MNEM_cneg:
12249 Rn = inst.operands[1].reg;
12250 cond = inst.operands[2].imm;
12251 /* Invert the last bit to invert the cond. */
12252 cond = TOGGLE_BIT (cond, 0);
12253 constraint (Rn == REG_SP, BAD_SP);
12254 Rm = Rn;
12255 break;
12256
12257 case T_MNEM_csetm:
12258 case T_MNEM_cset:
12259 cond = inst.operands[1].imm;
12260 /* Invert the last bit to invert the cond. */
12261 cond = TOGGLE_BIT (cond, 0);
12262 Rn = REG_PC;
12263 Rm = REG_PC;
12264 break;
12265
12266 default: abort ();
12267 }
12268
12269 set_pred_insn_type (OUTSIDE_PRED_INSN);
12270 inst.instruction = THUMB_OP32 (inst.instruction);
12271 inst.instruction |= Rd << 8;
12272 inst.instruction |= Rn << 16;
12273 inst.instruction |= Rm;
12274 inst.instruction |= cond << 4;
12275}
12276
91d8b670
JG
12277static void
12278do_t_csdb (void)
12279{
5ee91343 12280 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
12281}
12282
dfa9f0d5
PB
12283static void
12284do_t_cps (void)
12285{
5ee91343 12286 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
12287 inst.instruction |= inst.operands[0].imm;
12288}
12289
c19d1205
ZW
12290static void
12291do_t_cpsi (void)
12292{
5ee91343 12293 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 12294 if (unified_syntax
62b3e311
PB
12295 && (inst.operands[1].present || inst.size_req == 4)
12296 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 12297 {
c19d1205
ZW
12298 unsigned int imod = (inst.instruction & 0x0030) >> 4;
12299 inst.instruction = 0xf3af8000;
12300 inst.instruction |= imod << 9;
12301 inst.instruction |= inst.operands[0].imm << 5;
12302 if (inst.operands[1].present)
12303 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 12304 }
c19d1205 12305 else
90e4755a 12306 {
62b3e311
PB
12307 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
12308 && (inst.operands[0].imm & 4),
12309 _("selected processor does not support 'A' form "
12310 "of this instruction"));
12311 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
12312 _("Thumb does not support the 2-argument "
12313 "form of this instruction"));
12314 inst.instruction |= inst.operands[0].imm;
90e4755a 12315 }
90e4755a
RE
12316}
12317
c19d1205
ZW
12318/* THUMB CPY instruction (argument parse). */
12319
90e4755a 12320static void
c19d1205 12321do_t_cpy (void)
90e4755a 12322{
c19d1205 12323 if (inst.size_req == 4)
90e4755a 12324 {
c19d1205
ZW
12325 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12326 inst.instruction |= inst.operands[0].reg << 8;
12327 inst.instruction |= inst.operands[1].reg;
90e4755a 12328 }
c19d1205 12329 else
90e4755a 12330 {
c19d1205
ZW
12331 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12332 inst.instruction |= (inst.operands[0].reg & 0x7);
12333 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 12334 }
90e4755a
RE
12335}
12336
90e4755a 12337static void
25fe350b 12338do_t_cbz (void)
90e4755a 12339{
5ee91343 12340 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
12341 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12342 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
12343 inst.relocs[0].pc_rel = 1;
12344 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 12345}
90e4755a 12346
62b3e311
PB
12347static void
12348do_t_dbg (void)
12349{
12350 inst.instruction |= inst.operands[0].imm;
12351}
12352
12353static void
12354do_t_div (void)
12355{
fdfde340
JM
12356 unsigned Rd, Rn, Rm;
12357
12358 Rd = inst.operands[0].reg;
12359 Rn = (inst.operands[1].present
12360 ? inst.operands[1].reg : Rd);
12361 Rm = inst.operands[2].reg;
12362
12363 reject_bad_reg (Rd);
12364 reject_bad_reg (Rn);
12365 reject_bad_reg (Rm);
12366
12367 inst.instruction |= Rd << 8;
12368 inst.instruction |= Rn << 16;
12369 inst.instruction |= Rm;
62b3e311
PB
12370}
12371
c19d1205
ZW
12372static void
12373do_t_hint (void)
12374{
12375 if (unified_syntax && inst.size_req == 4)
12376 inst.instruction = THUMB_OP32 (inst.instruction);
12377 else
12378 inst.instruction = THUMB_OP16 (inst.instruction);
12379}
90e4755a 12380
c19d1205
ZW
12381static void
12382do_t_it (void)
12383{
12384 unsigned int cond = inst.operands[0].imm;
e27ec89e 12385
5ee91343
AV
12386 set_pred_insn_type (IT_INSN);
12387 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12388 now_pred.cc = cond;
12389 now_pred.warn_deprecated = FALSE;
12390 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12391
12392 /* If the condition is a negative condition, invert the mask. */
c19d1205 12393 if ((cond & 0x1) == 0x0)
90e4755a 12394 {
c19d1205 12395 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12396
c19d1205 12397 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12398 {
12399 /* No conversion needed. */
5ee91343 12400 now_pred.block_length = 1;
5a01bb1d 12401 }
c19d1205 12402 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12403 {
12404 mask ^= 0x8;
5ee91343 12405 now_pred.block_length = 2;
5a01bb1d 12406 }
e27ec89e 12407 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12408 {
12409 mask ^= 0xC;
5ee91343 12410 now_pred.block_length = 3;
5a01bb1d 12411 }
c19d1205 12412 else
5a01bb1d
MGD
12413 {
12414 mask ^= 0xE;
5ee91343 12415 now_pred.block_length = 4;
5a01bb1d 12416 }
90e4755a 12417
e27ec89e
PB
12418 inst.instruction &= 0xfff0;
12419 inst.instruction |= mask;
c19d1205 12420 }
90e4755a 12421
c19d1205
ZW
12422 inst.instruction |= cond << 4;
12423}
90e4755a 12424
3c707909
PB
12425/* Helper function used for both push/pop and ldm/stm. */
12426static void
4b5a202f
AV
12427encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12428 bfd_boolean writeback)
3c707909 12429{
4b5a202f 12430 bfd_boolean load, store;
3c707909 12431
4b5a202f
AV
12432 gas_assert (base != -1 || !do_io);
12433 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12434 store = do_io && !load;
3c707909
PB
12435
12436 if (mask & (1 << 13))
12437 inst.error = _("SP not allowed in register list");
1e5b0379 12438
4b5a202f 12439 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12440 && writeback)
12441 inst.error = _("having the base register in the register list when "
12442 "using write back is UNPREDICTABLE");
12443
3c707909
PB
12444 if (load)
12445 {
e07e6e58 12446 if (mask & (1 << 15))
477330fc
RM
12447 {
12448 if (mask & (1 << 14))
12449 inst.error = _("LR and PC should not both be in register list");
12450 else
5ee91343 12451 set_pred_insn_type_last ();
477330fc 12452 }
3c707909 12453 }
4b5a202f 12454 else if (store)
3c707909
PB
12455 {
12456 if (mask & (1 << 15))
12457 inst.error = _("PC not allowed in register list");
3c707909
PB
12458 }
12459
4b5a202f 12460 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12461 {
12462 /* Single register transfers implemented as str/ldr. */
12463 if (writeback)
12464 {
12465 if (inst.instruction & (1 << 23))
12466 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12467 else
12468 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12469 }
12470 else
12471 {
12472 if (inst.instruction & (1 << 23))
12473 inst.instruction = 0x00800000; /* ia -> [base] */
12474 else
12475 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12476 }
12477
12478 inst.instruction |= 0xf8400000;
12479 if (load)
12480 inst.instruction |= 0x00100000;
12481
5f4273c7 12482 mask = ffs (mask) - 1;
3c707909
PB
12483 mask <<= 12;
12484 }
12485 else if (writeback)
12486 inst.instruction |= WRITE_BACK;
12487
12488 inst.instruction |= mask;
4b5a202f
AV
12489 if (do_io)
12490 inst.instruction |= base << 16;
3c707909
PB
12491}
12492
c19d1205
ZW
12493static void
12494do_t_ldmstm (void)
12495{
12496 /* This really doesn't seem worth it. */
e2b0ab59 12497 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12498 _("expression too complex"));
12499 constraint (inst.operands[1].writeback,
12500 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12501
c19d1205
ZW
12502 if (unified_syntax)
12503 {
3c707909
PB
12504 bfd_boolean narrow;
12505 unsigned mask;
12506
12507 narrow = FALSE;
c19d1205
ZW
12508 /* See if we can use a 16-bit instruction. */
12509 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12510 && inst.size_req != 4
3c707909 12511 && !(inst.operands[1].imm & ~0xff))
90e4755a 12512 {
3c707909 12513 mask = 1 << inst.operands[0].reg;
90e4755a 12514
eab4f823 12515 if (inst.operands[0].reg <= 7)
90e4755a 12516 {
3c707909 12517 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12518 ? inst.operands[0].writeback
12519 : (inst.operands[0].writeback
12520 == !(inst.operands[1].imm & mask)))
477330fc 12521 {
eab4f823
MGD
12522 if (inst.instruction == T_MNEM_stmia
12523 && (inst.operands[1].imm & mask)
12524 && (inst.operands[1].imm & (mask - 1)))
12525 as_warn (_("value stored for r%d is UNKNOWN"),
12526 inst.operands[0].reg);
3c707909 12527
eab4f823
MGD
12528 inst.instruction = THUMB_OP16 (inst.instruction);
12529 inst.instruction |= inst.operands[0].reg << 8;
12530 inst.instruction |= inst.operands[1].imm;
12531 narrow = TRUE;
12532 }
12533 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12534 {
12535 /* This means 1 register in reg list one of 3 situations:
12536 1. Instruction is stmia, but without writeback.
12537 2. lmdia without writeback, but with Rn not in
477330fc 12538 reglist.
eab4f823
MGD
12539 3. ldmia with writeback, but with Rn in reglist.
12540 Case 3 is UNPREDICTABLE behaviour, so we handle
12541 case 1 and 2 which can be converted into a 16-bit
12542 str or ldr. The SP cases are handled below. */
12543 unsigned long opcode;
12544 /* First, record an error for Case 3. */
12545 if (inst.operands[1].imm & mask
12546 && inst.operands[0].writeback)
fa94de6b 12547 inst.error =
eab4f823
MGD
12548 _("having the base register in the register list when "
12549 "using write back is UNPREDICTABLE");
fa94de6b
RM
12550
12551 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12552 : T_MNEM_ldr);
12553 inst.instruction = THUMB_OP16 (opcode);
12554 inst.instruction |= inst.operands[0].reg << 3;
12555 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12556 narrow = TRUE;
12557 }
90e4755a 12558 }
eab4f823 12559 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12560 {
eab4f823
MGD
12561 if (inst.operands[0].writeback)
12562 {
fa94de6b 12563 inst.instruction =
eab4f823 12564 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12565 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12566 inst.instruction |= inst.operands[1].imm;
477330fc 12567 narrow = TRUE;
eab4f823
MGD
12568 }
12569 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12570 {
fa94de6b 12571 inst.instruction =
eab4f823 12572 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12573 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12574 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12575 narrow = TRUE;
eab4f823 12576 }
90e4755a 12577 }
3c707909
PB
12578 }
12579
12580 if (!narrow)
12581 {
c19d1205
ZW
12582 if (inst.instruction < 0xffff)
12583 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12584
4b5a202f
AV
12585 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12586 inst.operands[1].imm,
12587 inst.operands[0].writeback);
90e4755a
RE
12588 }
12589 }
c19d1205 12590 else
90e4755a 12591 {
c19d1205
ZW
12592 constraint (inst.operands[0].reg > 7
12593 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12594 constraint (inst.instruction != T_MNEM_ldmia
12595 && inst.instruction != T_MNEM_stmia,
12596 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12597 if (inst.instruction == T_MNEM_stmia)
f03698e6 12598 {
c19d1205
ZW
12599 if (!inst.operands[0].writeback)
12600 as_warn (_("this instruction will write back the base register"));
12601 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12602 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12603 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12604 inst.operands[0].reg);
f03698e6 12605 }
c19d1205 12606 else
90e4755a 12607 {
c19d1205
ZW
12608 if (!inst.operands[0].writeback
12609 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12610 as_warn (_("this instruction will write back the base register"));
12611 else if (inst.operands[0].writeback
12612 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12613 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12614 }
12615
c19d1205
ZW
12616 inst.instruction = THUMB_OP16 (inst.instruction);
12617 inst.instruction |= inst.operands[0].reg << 8;
12618 inst.instruction |= inst.operands[1].imm;
12619 }
12620}
e28cd48c 12621
c19d1205
ZW
12622static void
12623do_t_ldrex (void)
12624{
12625 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12626 || inst.operands[1].postind || inst.operands[1].writeback
12627 || inst.operands[1].immisreg || inst.operands[1].shifted
12628 || inst.operands[1].negative,
01cfc07f 12629 BAD_ADDR_MODE);
e28cd48c 12630
5be8be5d
DG
12631 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12632
c19d1205
ZW
12633 inst.instruction |= inst.operands[0].reg << 12;
12634 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12635 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12636}
e28cd48c 12637
c19d1205
ZW
12638static void
12639do_t_ldrexd (void)
12640{
12641 if (!inst.operands[1].present)
1cac9012 12642 {
c19d1205
ZW
12643 constraint (inst.operands[0].reg == REG_LR,
12644 _("r14 not allowed as first register "
12645 "when second register is omitted"));
12646 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12647 }
c19d1205
ZW
12648 constraint (inst.operands[0].reg == inst.operands[1].reg,
12649 BAD_OVERLAP);
b99bd4ef 12650
c19d1205
ZW
12651 inst.instruction |= inst.operands[0].reg << 12;
12652 inst.instruction |= inst.operands[1].reg << 8;
12653 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12654}
12655
12656static void
c19d1205 12657do_t_ldst (void)
b99bd4ef 12658{
0110f2b8
PB
12659 unsigned long opcode;
12660 int Rn;
12661
e07e6e58
NC
12662 if (inst.operands[0].isreg
12663 && !inst.operands[0].preind
12664 && inst.operands[0].reg == REG_PC)
5ee91343 12665 set_pred_insn_type_last ();
e07e6e58 12666
0110f2b8 12667 opcode = inst.instruction;
c19d1205 12668 if (unified_syntax)
b99bd4ef 12669 {
53365c0d
PB
12670 if (!inst.operands[1].isreg)
12671 {
12672 if (opcode <= 0xffff)
12673 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12674 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12675 return;
12676 }
0110f2b8
PB
12677 if (inst.operands[1].isreg
12678 && !inst.operands[1].writeback
c19d1205
ZW
12679 && !inst.operands[1].shifted && !inst.operands[1].postind
12680 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12681 && opcode <= 0xffff
12682 && inst.size_req != 4)
c19d1205 12683 {
0110f2b8
PB
12684 /* Insn may have a 16-bit form. */
12685 Rn = inst.operands[1].reg;
12686 if (inst.operands[1].immisreg)
12687 {
12688 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12689 /* [Rn, Rik] */
0110f2b8
PB
12690 if (Rn <= 7 && inst.operands[1].imm <= 7)
12691 goto op16;
5be8be5d
DG
12692 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12693 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12694 }
12695 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12696 && opcode != T_MNEM_ldrsb)
12697 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12698 || (Rn == REG_SP && opcode == T_MNEM_str))
12699 {
12700 /* [Rn, #const] */
12701 if (Rn > 7)
12702 {
12703 if (Rn == REG_PC)
12704 {
e2b0ab59 12705 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12706 opcode = T_MNEM_ldr_pc2;
12707 else
12708 opcode = T_MNEM_ldr_pc;
12709 }
12710 else
12711 {
12712 if (opcode == T_MNEM_ldr)
12713 opcode = T_MNEM_ldr_sp;
12714 else
12715 opcode = T_MNEM_str_sp;
12716 }
12717 inst.instruction = inst.operands[0].reg << 8;
12718 }
12719 else
12720 {
12721 inst.instruction = inst.operands[0].reg;
12722 inst.instruction |= inst.operands[1].reg << 3;
12723 }
12724 inst.instruction |= THUMB_OP16 (opcode);
12725 if (inst.size_req == 2)
e2b0ab59 12726 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12727 else
12728 inst.relax = opcode;
12729 return;
12730 }
c19d1205 12731 }
0110f2b8 12732 /* Definitely a 32-bit variant. */
5be8be5d 12733
8d67f500
NC
12734 /* Warning for Erratum 752419. */
12735 if (opcode == T_MNEM_ldr
12736 && inst.operands[0].reg == REG_SP
12737 && inst.operands[1].writeback == 1
12738 && !inst.operands[1].immisreg)
12739 {
12740 if (no_cpu_selected ()
12741 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12742 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12743 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12744 as_warn (_("This instruction may be unpredictable "
12745 "if executed on M-profile cores "
12746 "with interrupts enabled."));
12747 }
12748
5be8be5d 12749 /* Do some validations regarding addressing modes. */
1be5fd2e 12750 if (inst.operands[1].immisreg)
5be8be5d
DG
12751 reject_bad_reg (inst.operands[1].imm);
12752
1be5fd2e
NC
12753 constraint (inst.operands[1].writeback == 1
12754 && inst.operands[0].reg == inst.operands[1].reg,
12755 BAD_OVERLAP);
12756
0110f2b8 12757 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12758 inst.instruction |= inst.operands[0].reg << 12;
12759 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12760 check_ldr_r15_aligned ();
b99bd4ef
NC
12761 return;
12762 }
12763
c19d1205
ZW
12764 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12765
12766 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12767 {
c19d1205
ZW
12768 /* Only [Rn,Rm] is acceptable. */
12769 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12770 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12771 || inst.operands[1].postind || inst.operands[1].shifted
12772 || inst.operands[1].negative,
12773 _("Thumb does not support this addressing mode"));
12774 inst.instruction = THUMB_OP16 (inst.instruction);
12775 goto op16;
b99bd4ef 12776 }
5f4273c7 12777
c19d1205
ZW
12778 inst.instruction = THUMB_OP16 (inst.instruction);
12779 if (!inst.operands[1].isreg)
8335d6aa 12780 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12781 return;
b99bd4ef 12782
c19d1205
ZW
12783 constraint (!inst.operands[1].preind
12784 || inst.operands[1].shifted
12785 || inst.operands[1].writeback,
12786 _("Thumb does not support this addressing mode"));
12787 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12788 {
c19d1205
ZW
12789 constraint (inst.instruction & 0x0600,
12790 _("byte or halfword not valid for base register"));
12791 constraint (inst.operands[1].reg == REG_PC
12792 && !(inst.instruction & THUMB_LOAD_BIT),
12793 _("r15 based store not allowed"));
12794 constraint (inst.operands[1].immisreg,
12795 _("invalid base register for register offset"));
b99bd4ef 12796
c19d1205
ZW
12797 if (inst.operands[1].reg == REG_PC)
12798 inst.instruction = T_OPCODE_LDR_PC;
12799 else if (inst.instruction & THUMB_LOAD_BIT)
12800 inst.instruction = T_OPCODE_LDR_SP;
12801 else
12802 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12803
c19d1205 12804 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12805 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12806 return;
12807 }
90e4755a 12808
c19d1205
ZW
12809 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12810 if (!inst.operands[1].immisreg)
12811 {
12812 /* Immediate offset. */
12813 inst.instruction |= inst.operands[0].reg;
12814 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12815 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12816 return;
12817 }
90e4755a 12818
c19d1205
ZW
12819 /* Register offset. */
12820 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12821 constraint (inst.operands[1].negative,
12822 _("Thumb does not support this addressing mode"));
90e4755a 12823
c19d1205
ZW
12824 op16:
12825 switch (inst.instruction)
12826 {
12827 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12828 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12829 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12830 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12831 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12832 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12833 case 0x5600 /* ldrsb */:
12834 case 0x5e00 /* ldrsh */: break;
12835 default: abort ();
12836 }
90e4755a 12837
c19d1205
ZW
12838 inst.instruction |= inst.operands[0].reg;
12839 inst.instruction |= inst.operands[1].reg << 3;
12840 inst.instruction |= inst.operands[1].imm << 6;
12841}
90e4755a 12842
c19d1205
ZW
12843static void
12844do_t_ldstd (void)
12845{
12846 if (!inst.operands[1].present)
b99bd4ef 12847 {
c19d1205
ZW
12848 inst.operands[1].reg = inst.operands[0].reg + 1;
12849 constraint (inst.operands[0].reg == REG_LR,
12850 _("r14 not allowed here"));
bd340a04 12851 constraint (inst.operands[0].reg == REG_R12,
477330fc 12852 _("r12 not allowed here"));
b99bd4ef 12853 }
bd340a04
MGD
12854
12855 if (inst.operands[2].writeback
12856 && (inst.operands[0].reg == inst.operands[2].reg
12857 || inst.operands[1].reg == inst.operands[2].reg))
12858 as_warn (_("base register written back, and overlaps "
477330fc 12859 "one of transfer registers"));
bd340a04 12860
c19d1205
ZW
12861 inst.instruction |= inst.operands[0].reg << 12;
12862 inst.instruction |= inst.operands[1].reg << 8;
12863 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12864}
12865
c19d1205
ZW
12866static void
12867do_t_ldstt (void)
12868{
12869 inst.instruction |= inst.operands[0].reg << 12;
12870 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12871}
a737bd4d 12872
b99bd4ef 12873static void
c19d1205 12874do_t_mla (void)
b99bd4ef 12875{
fdfde340 12876 unsigned Rd, Rn, Rm, Ra;
c921be7d 12877
fdfde340
JM
12878 Rd = inst.operands[0].reg;
12879 Rn = inst.operands[1].reg;
12880 Rm = inst.operands[2].reg;
12881 Ra = inst.operands[3].reg;
12882
12883 reject_bad_reg (Rd);
12884 reject_bad_reg (Rn);
12885 reject_bad_reg (Rm);
12886 reject_bad_reg (Ra);
12887
12888 inst.instruction |= Rd << 8;
12889 inst.instruction |= Rn << 16;
12890 inst.instruction |= Rm;
12891 inst.instruction |= Ra << 12;
c19d1205 12892}
b99bd4ef 12893
c19d1205
ZW
12894static void
12895do_t_mlal (void)
12896{
fdfde340
JM
12897 unsigned RdLo, RdHi, Rn, Rm;
12898
12899 RdLo = inst.operands[0].reg;
12900 RdHi = inst.operands[1].reg;
12901 Rn = inst.operands[2].reg;
12902 Rm = inst.operands[3].reg;
12903
12904 reject_bad_reg (RdLo);
12905 reject_bad_reg (RdHi);
12906 reject_bad_reg (Rn);
12907 reject_bad_reg (Rm);
12908
12909 inst.instruction |= RdLo << 12;
12910 inst.instruction |= RdHi << 8;
12911 inst.instruction |= Rn << 16;
12912 inst.instruction |= Rm;
c19d1205 12913}
b99bd4ef 12914
c19d1205
ZW
12915static void
12916do_t_mov_cmp (void)
12917{
fdfde340
JM
12918 unsigned Rn, Rm;
12919
12920 Rn = inst.operands[0].reg;
12921 Rm = inst.operands[1].reg;
12922
e07e6e58 12923 if (Rn == REG_PC)
5ee91343 12924 set_pred_insn_type_last ();
e07e6e58 12925
c19d1205 12926 if (unified_syntax)
b99bd4ef 12927 {
c19d1205
ZW
12928 int r0off = (inst.instruction == T_MNEM_mov
12929 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12930 unsigned long opcode;
3d388997
PB
12931 bfd_boolean narrow;
12932 bfd_boolean low_regs;
12933
fdfde340 12934 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12935 opcode = inst.instruction;
5ee91343 12936 if (in_pred_block ())
0110f2b8 12937 narrow = opcode != T_MNEM_movs;
3d388997 12938 else
0110f2b8 12939 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12940 if (inst.size_req == 4
12941 || inst.operands[1].shifted)
12942 narrow = FALSE;
12943
efd81785
PB
12944 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12945 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12946 && !inst.operands[1].shifted
fdfde340
JM
12947 && Rn == REG_PC
12948 && Rm == REG_LR)
efd81785
PB
12949 {
12950 inst.instruction = T2_SUBS_PC_LR;
12951 return;
12952 }
12953
fdfde340
JM
12954 if (opcode == T_MNEM_cmp)
12955 {
12956 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12957 if (narrow)
12958 {
12959 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12960 but valid. */
12961 warn_deprecated_sp (Rm);
12962 /* R15 was documented as a valid choice for Rm in ARMv6,
12963 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12964 tools reject R15, so we do too. */
12965 constraint (Rm == REG_PC, BAD_PC);
12966 }
12967 else
12968 reject_bad_reg (Rm);
fdfde340
JM
12969 }
12970 else if (opcode == T_MNEM_mov
12971 || opcode == T_MNEM_movs)
12972 {
12973 if (inst.operands[1].isreg)
12974 {
12975 if (opcode == T_MNEM_movs)
12976 {
12977 reject_bad_reg (Rn);
12978 reject_bad_reg (Rm);
12979 }
76fa04a4
MGD
12980 else if (narrow)
12981 {
12982 /* This is mov.n. */
12983 if ((Rn == REG_SP || Rn == REG_PC)
12984 && (Rm == REG_SP || Rm == REG_PC))
12985 {
5c3696f8 12986 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12987 "deprecated when r%u is the destination "
12988 "register."), Rm, Rn);
12989 }
12990 }
12991 else
12992 {
12993 /* This is mov.w. */
12994 constraint (Rn == REG_PC, BAD_PC);
12995 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12996 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12997 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12998 }
fdfde340
JM
12999 }
13000 else
13001 reject_bad_reg (Rn);
13002 }
13003
c19d1205
ZW
13004 if (!inst.operands[1].isreg)
13005 {
0110f2b8 13006 /* Immediate operand. */
5ee91343 13007 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
13008 narrow = 0;
13009 if (low_regs && narrow)
13010 {
13011 inst.instruction = THUMB_OP16 (opcode);
fdfde340 13012 inst.instruction |= Rn << 8;
e2b0ab59
AV
13013 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
13014 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 13015 {
a9f02af8 13016 if (inst.size_req == 2)
e2b0ab59 13017 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
13018 else
13019 inst.relax = opcode;
72d98d16 13020 }
0110f2b8
PB
13021 }
13022 else
13023 {
e2b0ab59
AV
13024 constraint ((inst.relocs[0].type
13025 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
13026 && (inst.relocs[0].type
13027 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
13028 THUMB1_RELOC_ONLY);
13029
0110f2b8
PB
13030 inst.instruction = THUMB_OP32 (inst.instruction);
13031 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 13032 inst.instruction |= Rn << r0off;
e2b0ab59 13033 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 13034 }
c19d1205 13035 }
728ca7c9
PB
13036 else if (inst.operands[1].shifted && inst.operands[1].immisreg
13037 && (inst.instruction == T_MNEM_mov
13038 || inst.instruction == T_MNEM_movs))
13039 {
13040 /* Register shifts are encoded as separate shift instructions. */
13041 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
13042
5ee91343 13043 if (in_pred_block ())
728ca7c9
PB
13044 narrow = !flags;
13045 else
13046 narrow = flags;
13047
13048 if (inst.size_req == 4)
13049 narrow = FALSE;
13050
13051 if (!low_regs || inst.operands[1].imm > 7)
13052 narrow = FALSE;
13053
fdfde340 13054 if (Rn != Rm)
728ca7c9
PB
13055 narrow = FALSE;
13056
13057 switch (inst.operands[1].shift_kind)
13058 {
13059 case SHIFT_LSL:
13060 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
13061 break;
13062 case SHIFT_ASR:
13063 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
13064 break;
13065 case SHIFT_LSR:
13066 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
13067 break;
13068 case SHIFT_ROR:
13069 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
13070 break;
13071 default:
5f4273c7 13072 abort ();
728ca7c9
PB
13073 }
13074
13075 inst.instruction = opcode;
13076 if (narrow)
13077 {
fdfde340 13078 inst.instruction |= Rn;
728ca7c9
PB
13079 inst.instruction |= inst.operands[1].imm << 3;
13080 }
13081 else
13082 {
13083 if (flags)
13084 inst.instruction |= CONDS_BIT;
13085
fdfde340
JM
13086 inst.instruction |= Rn << 8;
13087 inst.instruction |= Rm << 16;
728ca7c9
PB
13088 inst.instruction |= inst.operands[1].imm;
13089 }
13090 }
3d388997 13091 else if (!narrow)
c19d1205 13092 {
728ca7c9
PB
13093 /* Some mov with immediate shift have narrow variants.
13094 Register shifts are handled above. */
13095 if (low_regs && inst.operands[1].shifted
13096 && (inst.instruction == T_MNEM_mov
13097 || inst.instruction == T_MNEM_movs))
13098 {
5ee91343 13099 if (in_pred_block ())
728ca7c9
PB
13100 narrow = (inst.instruction == T_MNEM_mov);
13101 else
13102 narrow = (inst.instruction == T_MNEM_movs);
13103 }
13104
13105 if (narrow)
13106 {
13107 switch (inst.operands[1].shift_kind)
13108 {
13109 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13110 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13111 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13112 default: narrow = FALSE; break;
13113 }
13114 }
13115
13116 if (narrow)
13117 {
fdfde340
JM
13118 inst.instruction |= Rn;
13119 inst.instruction |= Rm << 3;
e2b0ab59 13120 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
13121 }
13122 else
13123 {
13124 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 13125 inst.instruction |= Rn << r0off;
728ca7c9
PB
13126 encode_thumb32_shifted_operand (1);
13127 }
c19d1205
ZW
13128 }
13129 else
13130 switch (inst.instruction)
13131 {
13132 case T_MNEM_mov:
837b3435 13133 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
13134 results. Don't allow this. */
13135 if (low_regs)
13136 {
13137 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
13138 "MOV Rd, Rs with two low registers is not "
13139 "permitted on this architecture");
fa94de6b 13140 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
13141 arm_ext_v6);
13142 }
13143
c19d1205 13144 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
13145 inst.instruction |= (Rn & 0x8) << 4;
13146 inst.instruction |= (Rn & 0x7);
13147 inst.instruction |= Rm << 3;
c19d1205 13148 break;
b99bd4ef 13149
c19d1205
ZW
13150 case T_MNEM_movs:
13151 /* We know we have low registers at this point.
941a8a52
MGD
13152 Generate LSLS Rd, Rs, #0. */
13153 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
13154 inst.instruction |= Rn;
13155 inst.instruction |= Rm << 3;
c19d1205
ZW
13156 break;
13157
13158 case T_MNEM_cmp:
3d388997 13159 if (low_regs)
c19d1205
ZW
13160 {
13161 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
13162 inst.instruction |= Rn;
13163 inst.instruction |= Rm << 3;
c19d1205
ZW
13164 }
13165 else
13166 {
13167 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
13168 inst.instruction |= (Rn & 0x8) << 4;
13169 inst.instruction |= (Rn & 0x7);
13170 inst.instruction |= Rm << 3;
c19d1205
ZW
13171 }
13172 break;
13173 }
b99bd4ef
NC
13174 return;
13175 }
13176
c19d1205 13177 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
13178
13179 /* PR 10443: Do not silently ignore shifted operands. */
13180 constraint (inst.operands[1].shifted,
13181 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
13182
c19d1205 13183 if (inst.operands[1].isreg)
b99bd4ef 13184 {
fdfde340 13185 if (Rn < 8 && Rm < 8)
b99bd4ef 13186 {
c19d1205
ZW
13187 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
13188 since a MOV instruction produces unpredictable results. */
13189 if (inst.instruction == T_OPCODE_MOV_I8)
13190 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 13191 else
c19d1205 13192 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 13193
fdfde340
JM
13194 inst.instruction |= Rn;
13195 inst.instruction |= Rm << 3;
b99bd4ef
NC
13196 }
13197 else
13198 {
c19d1205
ZW
13199 if (inst.instruction == T_OPCODE_MOV_I8)
13200 inst.instruction = T_OPCODE_MOV_HR;
13201 else
13202 inst.instruction = T_OPCODE_CMP_HR;
13203 do_t_cpy ();
b99bd4ef
NC
13204 }
13205 }
c19d1205 13206 else
b99bd4ef 13207 {
fdfde340 13208 constraint (Rn > 7,
c19d1205 13209 _("only lo regs allowed with immediate"));
fdfde340 13210 inst.instruction |= Rn << 8;
e2b0ab59 13211 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
13212 }
13213}
b99bd4ef 13214
c19d1205
ZW
13215static void
13216do_t_mov16 (void)
13217{
fdfde340 13218 unsigned Rd;
b6895b4f
PB
13219 bfd_vma imm;
13220 bfd_boolean top;
13221
13222 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 13223 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 13224 {
33eaf5de 13225 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 13226 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 13227 }
e2b0ab59 13228 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 13229 {
33eaf5de 13230 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 13231 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
13232 }
13233
fdfde340
JM
13234 Rd = inst.operands[0].reg;
13235 reject_bad_reg (Rd);
13236
13237 inst.instruction |= Rd << 8;
e2b0ab59 13238 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 13239 {
e2b0ab59 13240 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
13241 inst.instruction |= (imm & 0xf000) << 4;
13242 inst.instruction |= (imm & 0x0800) << 15;
13243 inst.instruction |= (imm & 0x0700) << 4;
13244 inst.instruction |= (imm & 0x00ff);
13245 }
c19d1205 13246}
b99bd4ef 13247
c19d1205
ZW
13248static void
13249do_t_mvn_tst (void)
13250{
fdfde340 13251 unsigned Rn, Rm;
c921be7d 13252
fdfde340
JM
13253 Rn = inst.operands[0].reg;
13254 Rm = inst.operands[1].reg;
13255
13256 if (inst.instruction == T_MNEM_cmp
13257 || inst.instruction == T_MNEM_cmn)
13258 constraint (Rn == REG_PC, BAD_PC);
13259 else
13260 reject_bad_reg (Rn);
13261 reject_bad_reg (Rm);
13262
c19d1205
ZW
13263 if (unified_syntax)
13264 {
13265 int r0off = (inst.instruction == T_MNEM_mvn
13266 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
13267 bfd_boolean narrow;
13268
13269 if (inst.size_req == 4
13270 || inst.instruction > 0xffff
13271 || inst.operands[1].shifted
fdfde340 13272 || Rn > 7 || Rm > 7)
3d388997 13273 narrow = FALSE;
fe8b4cc3
KT
13274 else if (inst.instruction == T_MNEM_cmn
13275 || inst.instruction == T_MNEM_tst)
3d388997
PB
13276 narrow = TRUE;
13277 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13278 narrow = !in_pred_block ();
3d388997 13279 else
5ee91343 13280 narrow = in_pred_block ();
3d388997 13281
c19d1205 13282 if (!inst.operands[1].isreg)
b99bd4ef 13283 {
c19d1205
ZW
13284 /* For an immediate, we always generate a 32-bit opcode;
13285 section relaxation will shrink it later if possible. */
13286 if (inst.instruction < 0xffff)
13287 inst.instruction = THUMB_OP32 (inst.instruction);
13288 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 13289 inst.instruction |= Rn << r0off;
e2b0ab59 13290 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 13291 }
c19d1205 13292 else
b99bd4ef 13293 {
c19d1205 13294 /* See if we can do this with a 16-bit instruction. */
3d388997 13295 if (narrow)
b99bd4ef 13296 {
c19d1205 13297 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13298 inst.instruction |= Rn;
13299 inst.instruction |= Rm << 3;
b99bd4ef 13300 }
c19d1205 13301 else
b99bd4ef 13302 {
c19d1205
ZW
13303 constraint (inst.operands[1].shifted
13304 && inst.operands[1].immisreg,
13305 _("shift must be constant"));
13306 if (inst.instruction < 0xffff)
13307 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 13308 inst.instruction |= Rn << r0off;
c19d1205 13309 encode_thumb32_shifted_operand (1);
b99bd4ef 13310 }
b99bd4ef
NC
13311 }
13312 }
13313 else
13314 {
c19d1205
ZW
13315 constraint (inst.instruction > 0xffff
13316 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
13317 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
13318 _("unshifted register required"));
fdfde340 13319 constraint (Rn > 7 || Rm > 7,
c19d1205 13320 BAD_HIREG);
b99bd4ef 13321
c19d1205 13322 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13323 inst.instruction |= Rn;
13324 inst.instruction |= Rm << 3;
b99bd4ef 13325 }
b99bd4ef
NC
13326}
13327
b05fe5cf 13328static void
c19d1205 13329do_t_mrs (void)
b05fe5cf 13330{
fdfde340 13331 unsigned Rd;
037e8744
JB
13332
13333 if (do_vfp_nsyn_mrs () == SUCCESS)
13334 return;
13335
90ec0d68
MGD
13336 Rd = inst.operands[0].reg;
13337 reject_bad_reg (Rd);
13338 inst.instruction |= Rd << 8;
13339
13340 if (inst.operands[1].isreg)
62b3e311 13341 {
90ec0d68
MGD
13342 unsigned br = inst.operands[1].reg;
13343 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13344 as_bad (_("bad register for mrs"));
13345
13346 inst.instruction |= br & (0xf << 16);
13347 inst.instruction |= (br & 0x300) >> 4;
13348 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
13349 }
13350 else
13351 {
90ec0d68 13352 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 13353
d2cd1205 13354 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
13355 {
13356 /* PR gas/12698: The constraint is only applied for m_profile.
13357 If the user has specified -march=all, we want to ignore it as
13358 we are building for any CPU type, including non-m variants. */
823d2571
TG
13359 bfd_boolean m_profile =
13360 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
13361 constraint ((flags != 0) && m_profile, _("selected processor does "
13362 "not support requested special purpose register"));
13363 }
90ec0d68 13364 else
d2cd1205
JB
13365 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13366 devices). */
13367 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13368 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13369
90ec0d68
MGD
13370 inst.instruction |= (flags & SPSR_BIT) >> 2;
13371 inst.instruction |= inst.operands[1].imm & 0xff;
13372 inst.instruction |= 0xf0000;
13373 }
c19d1205 13374}
b05fe5cf 13375
c19d1205
ZW
13376static void
13377do_t_msr (void)
13378{
62b3e311 13379 int flags;
fdfde340 13380 unsigned Rn;
62b3e311 13381
037e8744
JB
13382 if (do_vfp_nsyn_msr () == SUCCESS)
13383 return;
13384
c19d1205
ZW
13385 constraint (!inst.operands[1].isreg,
13386 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13387
13388 if (inst.operands[0].isreg)
13389 flags = (int)(inst.operands[0].reg);
13390 else
13391 flags = inst.operands[0].imm;
13392
d2cd1205 13393 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13394 {
d2cd1205
JB
13395 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13396
1a43faaf 13397 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13398 If the user has specified -march=all, we want to ignore it as
13399 we are building for any CPU type, including non-m variants. */
823d2571
TG
13400 bfd_boolean m_profile =
13401 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13402 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13403 && (bits & ~(PSR_s | PSR_f)) != 0)
13404 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13405 && bits != PSR_f)) && m_profile,
13406 _("selected processor does not support requested special "
13407 "purpose register"));
62b3e311
PB
13408 }
13409 else
d2cd1205
JB
13410 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13411 "requested special purpose register"));
c921be7d 13412
fdfde340
JM
13413 Rn = inst.operands[1].reg;
13414 reject_bad_reg (Rn);
13415
62b3e311 13416 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13417 inst.instruction |= (flags & 0xf0000) >> 8;
13418 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13419 inst.instruction |= (flags & 0xff);
fdfde340 13420 inst.instruction |= Rn << 16;
c19d1205 13421}
b05fe5cf 13422
c19d1205
ZW
13423static void
13424do_t_mul (void)
13425{
17828f45 13426 bfd_boolean narrow;
fdfde340 13427 unsigned Rd, Rn, Rm;
17828f45 13428
c19d1205
ZW
13429 if (!inst.operands[2].present)
13430 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13431
fdfde340
JM
13432 Rd = inst.operands[0].reg;
13433 Rn = inst.operands[1].reg;
13434 Rm = inst.operands[2].reg;
13435
17828f45 13436 if (unified_syntax)
b05fe5cf 13437 {
17828f45 13438 if (inst.size_req == 4
fdfde340
JM
13439 || (Rd != Rn
13440 && Rd != Rm)
13441 || Rn > 7
13442 || Rm > 7)
17828f45
JM
13443 narrow = FALSE;
13444 else if (inst.instruction == T_MNEM_muls)
5ee91343 13445 narrow = !in_pred_block ();
17828f45 13446 else
5ee91343 13447 narrow = in_pred_block ();
b05fe5cf 13448 }
c19d1205 13449 else
b05fe5cf 13450 {
17828f45 13451 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13452 constraint (Rn > 7 || Rm > 7,
c19d1205 13453 BAD_HIREG);
17828f45
JM
13454 narrow = TRUE;
13455 }
b05fe5cf 13456
17828f45
JM
13457 if (narrow)
13458 {
13459 /* 16-bit MULS/Conditional MUL. */
c19d1205 13460 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13461 inst.instruction |= Rd;
b05fe5cf 13462
fdfde340
JM
13463 if (Rd == Rn)
13464 inst.instruction |= Rm << 3;
13465 else if (Rd == Rm)
13466 inst.instruction |= Rn << 3;
c19d1205
ZW
13467 else
13468 constraint (1, _("dest must overlap one source register"));
13469 }
17828f45
JM
13470 else
13471 {
e07e6e58
NC
13472 constraint (inst.instruction != T_MNEM_mul,
13473 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13474 /* 32-bit MUL. */
13475 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13476 inst.instruction |= Rd << 8;
13477 inst.instruction |= Rn << 16;
13478 inst.instruction |= Rm << 0;
13479
13480 reject_bad_reg (Rd);
13481 reject_bad_reg (Rn);
13482 reject_bad_reg (Rm);
17828f45 13483 }
c19d1205 13484}
b05fe5cf 13485
c19d1205
ZW
13486static void
13487do_t_mull (void)
13488{
fdfde340 13489 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13490
fdfde340
JM
13491 RdLo = inst.operands[0].reg;
13492 RdHi = inst.operands[1].reg;
13493 Rn = inst.operands[2].reg;
13494 Rm = inst.operands[3].reg;
13495
13496 reject_bad_reg (RdLo);
13497 reject_bad_reg (RdHi);
13498 reject_bad_reg (Rn);
13499 reject_bad_reg (Rm);
13500
13501 inst.instruction |= RdLo << 12;
13502 inst.instruction |= RdHi << 8;
13503 inst.instruction |= Rn << 16;
13504 inst.instruction |= Rm;
13505
13506 if (RdLo == RdHi)
c19d1205
ZW
13507 as_tsktsk (_("rdhi and rdlo must be different"));
13508}
b05fe5cf 13509
c19d1205
ZW
13510static void
13511do_t_nop (void)
13512{
5ee91343 13513 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13514
c19d1205
ZW
13515 if (unified_syntax)
13516 {
13517 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13518 {
c19d1205
ZW
13519 inst.instruction = THUMB_OP32 (inst.instruction);
13520 inst.instruction |= inst.operands[0].imm;
13521 }
13522 else
13523 {
bc2d1808
NC
13524 /* PR9722: Check for Thumb2 availability before
13525 generating a thumb2 nop instruction. */
afa62d5e 13526 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13527 {
13528 inst.instruction = THUMB_OP16 (inst.instruction);
13529 inst.instruction |= inst.operands[0].imm << 4;
13530 }
13531 else
13532 inst.instruction = 0x46c0;
c19d1205
ZW
13533 }
13534 }
13535 else
13536 {
13537 constraint (inst.operands[0].present,
13538 _("Thumb does not support NOP with hints"));
13539 inst.instruction = 0x46c0;
13540 }
13541}
b05fe5cf 13542
c19d1205
ZW
13543static void
13544do_t_neg (void)
13545{
13546 if (unified_syntax)
13547 {
3d388997
PB
13548 bfd_boolean narrow;
13549
13550 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13551 narrow = !in_pred_block ();
3d388997 13552 else
5ee91343 13553 narrow = in_pred_block ();
3d388997
PB
13554 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13555 narrow = FALSE;
13556 if (inst.size_req == 4)
13557 narrow = FALSE;
13558
13559 if (!narrow)
c19d1205
ZW
13560 {
13561 inst.instruction = THUMB_OP32 (inst.instruction);
13562 inst.instruction |= inst.operands[0].reg << 8;
13563 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13564 }
13565 else
13566 {
c19d1205
ZW
13567 inst.instruction = THUMB_OP16 (inst.instruction);
13568 inst.instruction |= inst.operands[0].reg;
13569 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13570 }
13571 }
13572 else
13573 {
c19d1205
ZW
13574 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13575 BAD_HIREG);
13576 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13577
13578 inst.instruction = THUMB_OP16 (inst.instruction);
13579 inst.instruction |= inst.operands[0].reg;
13580 inst.instruction |= inst.operands[1].reg << 3;
13581 }
13582}
13583
1c444d06
JM
13584static void
13585do_t_orn (void)
13586{
13587 unsigned Rd, Rn;
13588
13589 Rd = inst.operands[0].reg;
13590 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13591
fdfde340
JM
13592 reject_bad_reg (Rd);
13593 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13594 reject_bad_reg (Rn);
13595
1c444d06
JM
13596 inst.instruction |= Rd << 8;
13597 inst.instruction |= Rn << 16;
13598
13599 if (!inst.operands[2].isreg)
13600 {
13601 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13602 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13603 }
13604 else
13605 {
13606 unsigned Rm;
13607
13608 Rm = inst.operands[2].reg;
fdfde340 13609 reject_bad_reg (Rm);
1c444d06
JM
13610
13611 constraint (inst.operands[2].shifted
13612 && inst.operands[2].immisreg,
13613 _("shift must be constant"));
13614 encode_thumb32_shifted_operand (2);
13615 }
13616}
13617
c19d1205
ZW
13618static void
13619do_t_pkhbt (void)
13620{
fdfde340
JM
13621 unsigned Rd, Rn, Rm;
13622
13623 Rd = inst.operands[0].reg;
13624 Rn = inst.operands[1].reg;
13625 Rm = inst.operands[2].reg;
13626
13627 reject_bad_reg (Rd);
13628 reject_bad_reg (Rn);
13629 reject_bad_reg (Rm);
13630
13631 inst.instruction |= Rd << 8;
13632 inst.instruction |= Rn << 16;
13633 inst.instruction |= Rm;
c19d1205
ZW
13634 if (inst.operands[3].present)
13635 {
e2b0ab59
AV
13636 unsigned int val = inst.relocs[0].exp.X_add_number;
13637 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13638 _("expression too complex"));
13639 inst.instruction |= (val & 0x1c) << 10;
13640 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13641 }
c19d1205 13642}
b05fe5cf 13643
c19d1205
ZW
13644static void
13645do_t_pkhtb (void)
13646{
13647 if (!inst.operands[3].present)
1ef52f49
NC
13648 {
13649 unsigned Rtmp;
13650
13651 inst.instruction &= ~0x00000020;
13652
13653 /* PR 10168. Swap the Rm and Rn registers. */
13654 Rtmp = inst.operands[1].reg;
13655 inst.operands[1].reg = inst.operands[2].reg;
13656 inst.operands[2].reg = Rtmp;
13657 }
c19d1205 13658 do_t_pkhbt ();
b05fe5cf
ZW
13659}
13660
c19d1205
ZW
13661static void
13662do_t_pld (void)
13663{
fdfde340
JM
13664 if (inst.operands[0].immisreg)
13665 reject_bad_reg (inst.operands[0].imm);
13666
c19d1205
ZW
13667 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13668}
b05fe5cf 13669
c19d1205
ZW
13670static void
13671do_t_push_pop (void)
b99bd4ef 13672{
e9f89963 13673 unsigned mask;
5f4273c7 13674
c19d1205
ZW
13675 constraint (inst.operands[0].writeback,
13676 _("push/pop do not support {reglist}^"));
e2b0ab59 13677 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13678 _("expression too complex"));
b99bd4ef 13679
e9f89963 13680 mask = inst.operands[0].imm;
d3bfe16e 13681 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13682 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13683 else if (inst.size_req != 4
c6025a80 13684 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13685 ? REG_LR : REG_PC)))
b99bd4ef 13686 {
c19d1205
ZW
13687 inst.instruction = THUMB_OP16 (inst.instruction);
13688 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13689 inst.instruction |= mask & 0xff;
c19d1205
ZW
13690 }
13691 else if (unified_syntax)
13692 {
3c707909 13693 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13694 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13695 }
13696 else
13697 {
13698 inst.error = _("invalid register list to push/pop instruction");
13699 return;
c19d1205 13700 }
4b5a202f
AV
13701}
13702
13703static void
13704do_t_clrm (void)
13705{
13706 if (unified_syntax)
13707 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13708 else
13709 {
13710 inst.error = _("invalid register list to push/pop instruction");
13711 return;
13712 }
c19d1205 13713}
b99bd4ef 13714
efd6b359
AV
13715static void
13716do_t_vscclrm (void)
13717{
13718 if (inst.operands[0].issingle)
13719 {
13720 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13721 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13722 inst.instruction |= inst.operands[0].imm;
13723 }
13724 else
13725 {
13726 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13727 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13728 inst.instruction |= 1 << 8;
13729 inst.instruction |= inst.operands[0].imm << 1;
13730 }
13731}
13732
c19d1205
ZW
13733static void
13734do_t_rbit (void)
13735{
fdfde340
JM
13736 unsigned Rd, Rm;
13737
13738 Rd = inst.operands[0].reg;
13739 Rm = inst.operands[1].reg;
13740
13741 reject_bad_reg (Rd);
13742 reject_bad_reg (Rm);
13743
13744 inst.instruction |= Rd << 8;
13745 inst.instruction |= Rm << 16;
13746 inst.instruction |= Rm;
c19d1205 13747}
b99bd4ef 13748
c19d1205
ZW
13749static void
13750do_t_rev (void)
13751{
fdfde340
JM
13752 unsigned Rd, Rm;
13753
13754 Rd = inst.operands[0].reg;
13755 Rm = inst.operands[1].reg;
13756
13757 reject_bad_reg (Rd);
13758 reject_bad_reg (Rm);
13759
13760 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13761 && inst.size_req != 4)
13762 {
13763 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13764 inst.instruction |= Rd;
13765 inst.instruction |= Rm << 3;
c19d1205
ZW
13766 }
13767 else if (unified_syntax)
13768 {
13769 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13770 inst.instruction |= Rd << 8;
13771 inst.instruction |= Rm << 16;
13772 inst.instruction |= Rm;
c19d1205
ZW
13773 }
13774 else
13775 inst.error = BAD_HIREG;
13776}
b99bd4ef 13777
1c444d06
JM
13778static void
13779do_t_rrx (void)
13780{
13781 unsigned Rd, Rm;
13782
13783 Rd = inst.operands[0].reg;
13784 Rm = inst.operands[1].reg;
13785
fdfde340
JM
13786 reject_bad_reg (Rd);
13787 reject_bad_reg (Rm);
c921be7d 13788
1c444d06
JM
13789 inst.instruction |= Rd << 8;
13790 inst.instruction |= Rm;
13791}
13792
c19d1205
ZW
13793static void
13794do_t_rsb (void)
13795{
fdfde340 13796 unsigned Rd, Rs;
b99bd4ef 13797
c19d1205
ZW
13798 Rd = inst.operands[0].reg;
13799 Rs = (inst.operands[1].present
13800 ? inst.operands[1].reg /* Rd, Rs, foo */
13801 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13802
fdfde340
JM
13803 reject_bad_reg (Rd);
13804 reject_bad_reg (Rs);
13805 if (inst.operands[2].isreg)
13806 reject_bad_reg (inst.operands[2].reg);
13807
c19d1205
ZW
13808 inst.instruction |= Rd << 8;
13809 inst.instruction |= Rs << 16;
13810 if (!inst.operands[2].isreg)
13811 {
026d3abb
PB
13812 bfd_boolean narrow;
13813
13814 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13815 narrow = !in_pred_block ();
026d3abb 13816 else
5ee91343 13817 narrow = in_pred_block ();
026d3abb
PB
13818
13819 if (Rd > 7 || Rs > 7)
13820 narrow = FALSE;
13821
13822 if (inst.size_req == 4 || !unified_syntax)
13823 narrow = FALSE;
13824
e2b0ab59
AV
13825 if (inst.relocs[0].exp.X_op != O_constant
13826 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13827 narrow = FALSE;
13828
13829 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13830 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13831 if (narrow)
13832 {
e2b0ab59 13833 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13834 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13835 inst.instruction |= Rs << 3;
13836 inst.instruction |= Rd;
13837 }
13838 else
13839 {
13840 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13841 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13842 }
c19d1205
ZW
13843 }
13844 else
13845 encode_thumb32_shifted_operand (2);
13846}
b99bd4ef 13847
c19d1205
ZW
13848static void
13849do_t_setend (void)
13850{
12e37cbc
MGD
13851 if (warn_on_deprecated
13852 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13853 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13854
5ee91343 13855 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13856 if (inst.operands[0].imm)
13857 inst.instruction |= 0x8;
13858}
b99bd4ef 13859
c19d1205
ZW
13860static void
13861do_t_shift (void)
13862{
13863 if (!inst.operands[1].present)
13864 inst.operands[1].reg = inst.operands[0].reg;
13865
13866 if (unified_syntax)
13867 {
3d388997
PB
13868 bfd_boolean narrow;
13869 int shift_kind;
13870
13871 switch (inst.instruction)
13872 {
13873 case T_MNEM_asr:
13874 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13875 case T_MNEM_lsl:
13876 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13877 case T_MNEM_lsr:
13878 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13879 case T_MNEM_ror:
13880 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13881 default: abort ();
13882 }
13883
13884 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13885 narrow = !in_pred_block ();
3d388997 13886 else
5ee91343 13887 narrow = in_pred_block ();
3d388997
PB
13888 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13889 narrow = FALSE;
13890 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13891 narrow = FALSE;
13892 if (inst.operands[2].isreg
13893 && (inst.operands[1].reg != inst.operands[0].reg
13894 || inst.operands[2].reg > 7))
13895 narrow = FALSE;
13896 if (inst.size_req == 4)
13897 narrow = FALSE;
13898
fdfde340
JM
13899 reject_bad_reg (inst.operands[0].reg);
13900 reject_bad_reg (inst.operands[1].reg);
c921be7d 13901
3d388997 13902 if (!narrow)
c19d1205
ZW
13903 {
13904 if (inst.operands[2].isreg)
b99bd4ef 13905 {
fdfde340 13906 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13907 inst.instruction = THUMB_OP32 (inst.instruction);
13908 inst.instruction |= inst.operands[0].reg << 8;
13909 inst.instruction |= inst.operands[1].reg << 16;
13910 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13911
13912 /* PR 12854: Error on extraneous shifts. */
13913 constraint (inst.operands[2].shifted,
13914 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13915 }
13916 else
13917 {
13918 inst.operands[1].shifted = 1;
3d388997 13919 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13920 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13921 ? T_MNEM_movs : T_MNEM_mov);
13922 inst.instruction |= inst.operands[0].reg << 8;
13923 encode_thumb32_shifted_operand (1);
13924 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13925 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13926 }
13927 }
13928 else
13929 {
c19d1205 13930 if (inst.operands[2].isreg)
b99bd4ef 13931 {
3d388997 13932 switch (shift_kind)
b99bd4ef 13933 {
3d388997
PB
13934 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13935 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13936 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13937 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13938 default: abort ();
b99bd4ef 13939 }
5f4273c7 13940
c19d1205
ZW
13941 inst.instruction |= inst.operands[0].reg;
13942 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13943
13944 /* PR 12854: Error on extraneous shifts. */
13945 constraint (inst.operands[2].shifted,
13946 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13947 }
13948 else
13949 {
3d388997 13950 switch (shift_kind)
b99bd4ef 13951 {
3d388997
PB
13952 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13953 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13954 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13955 default: abort ();
b99bd4ef 13956 }
e2b0ab59 13957 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13958 inst.instruction |= inst.operands[0].reg;
13959 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13960 }
13961 }
c19d1205
ZW
13962 }
13963 else
13964 {
13965 constraint (inst.operands[0].reg > 7
13966 || inst.operands[1].reg > 7, BAD_HIREG);
13967 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13968
c19d1205
ZW
13969 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13970 {
13971 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13972 constraint (inst.operands[0].reg != inst.operands[1].reg,
13973 _("source1 and dest must be same register"));
b99bd4ef 13974
c19d1205
ZW
13975 switch (inst.instruction)
13976 {
13977 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13978 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13979 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13980 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13981 default: abort ();
13982 }
5f4273c7 13983
c19d1205
ZW
13984 inst.instruction |= inst.operands[0].reg;
13985 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13986
13987 /* PR 12854: Error on extraneous shifts. */
13988 constraint (inst.operands[2].shifted,
13989 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13990 }
13991 else
b99bd4ef 13992 {
c19d1205
ZW
13993 switch (inst.instruction)
13994 {
13995 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13996 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13997 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13998 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13999 default: abort ();
14000 }
e2b0ab59 14001 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
14002 inst.instruction |= inst.operands[0].reg;
14003 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
14004 }
14005 }
b99bd4ef
NC
14006}
14007
14008static void
c19d1205 14009do_t_simd (void)
b99bd4ef 14010{
fdfde340
JM
14011 unsigned Rd, Rn, Rm;
14012
14013 Rd = inst.operands[0].reg;
14014 Rn = inst.operands[1].reg;
14015 Rm = inst.operands[2].reg;
14016
14017 reject_bad_reg (Rd);
14018 reject_bad_reg (Rn);
14019 reject_bad_reg (Rm);
14020
14021 inst.instruction |= Rd << 8;
14022 inst.instruction |= Rn << 16;
14023 inst.instruction |= Rm;
c19d1205 14024}
b99bd4ef 14025
03ee1b7f
NC
14026static void
14027do_t_simd2 (void)
14028{
14029 unsigned Rd, Rn, Rm;
14030
14031 Rd = inst.operands[0].reg;
14032 Rm = inst.operands[1].reg;
14033 Rn = inst.operands[2].reg;
14034
14035 reject_bad_reg (Rd);
14036 reject_bad_reg (Rn);
14037 reject_bad_reg (Rm);
14038
14039 inst.instruction |= Rd << 8;
14040 inst.instruction |= Rn << 16;
14041 inst.instruction |= Rm;
14042}
14043
c19d1205 14044static void
3eb17e6b 14045do_t_smc (void)
c19d1205 14046{
e2b0ab59 14047 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
14048 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
14049 _("SMC is not permitted on this architecture"));
e2b0ab59 14050 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 14051 _("expression too complex"));
ba85f98c
BW
14052 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
14053
e2b0ab59 14054 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205 14055 inst.instruction |= (value & 0x000f) << 16;
ba85f98c 14056
24382199 14057 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 14058 set_pred_insn_type_last ();
c19d1205 14059}
b99bd4ef 14060
90ec0d68
MGD
14061static void
14062do_t_hvc (void)
14063{
e2b0ab59 14064 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 14065
e2b0ab59 14066 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
14067 inst.instruction |= (value & 0x0fff);
14068 inst.instruction |= (value & 0xf000) << 4;
14069}
14070
c19d1205 14071static void
3a21c15a 14072do_t_ssat_usat (int bias)
c19d1205 14073{
fdfde340
JM
14074 unsigned Rd, Rn;
14075
14076 Rd = inst.operands[0].reg;
14077 Rn = inst.operands[2].reg;
14078
14079 reject_bad_reg (Rd);
14080 reject_bad_reg (Rn);
14081
14082 inst.instruction |= Rd << 8;
3a21c15a 14083 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 14084 inst.instruction |= Rn << 16;
b99bd4ef 14085
c19d1205 14086 if (inst.operands[3].present)
b99bd4ef 14087 {
e2b0ab59 14088 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 14089
e2b0ab59 14090 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 14091
e2b0ab59 14092 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 14093 _("expression too complex"));
b99bd4ef 14094
3a21c15a 14095 if (shift_amount != 0)
6189168b 14096 {
3a21c15a
NC
14097 constraint (shift_amount > 31,
14098 _("shift expression is too large"));
14099
c19d1205 14100 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
14101 inst.instruction |= 0x00200000; /* sh bit. */
14102
14103 inst.instruction |= (shift_amount & 0x1c) << 10;
14104 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
14105 }
14106 }
b99bd4ef 14107}
c921be7d 14108
3a21c15a
NC
14109static void
14110do_t_ssat (void)
14111{
14112 do_t_ssat_usat (1);
14113}
b99bd4ef 14114
0dd132b6 14115static void
c19d1205 14116do_t_ssat16 (void)
0dd132b6 14117{
fdfde340
JM
14118 unsigned Rd, Rn;
14119
14120 Rd = inst.operands[0].reg;
14121 Rn = inst.operands[2].reg;
14122
14123 reject_bad_reg (Rd);
14124 reject_bad_reg (Rn);
14125
14126 inst.instruction |= Rd << 8;
c19d1205 14127 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 14128 inst.instruction |= Rn << 16;
c19d1205 14129}
0dd132b6 14130
c19d1205
ZW
14131static void
14132do_t_strex (void)
14133{
14134 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
14135 || inst.operands[2].postind || inst.operands[2].writeback
14136 || inst.operands[2].immisreg || inst.operands[2].shifted
14137 || inst.operands[2].negative,
01cfc07f 14138 BAD_ADDR_MODE);
0dd132b6 14139
5be8be5d
DG
14140 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
14141
c19d1205
ZW
14142 inst.instruction |= inst.operands[0].reg << 8;
14143 inst.instruction |= inst.operands[1].reg << 12;
14144 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 14145 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
14146}
14147
b99bd4ef 14148static void
c19d1205 14149do_t_strexd (void)
b99bd4ef 14150{
c19d1205
ZW
14151 if (!inst.operands[2].present)
14152 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 14153
c19d1205
ZW
14154 constraint (inst.operands[0].reg == inst.operands[1].reg
14155 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 14156 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 14157 BAD_OVERLAP);
b99bd4ef 14158
c19d1205
ZW
14159 inst.instruction |= inst.operands[0].reg;
14160 inst.instruction |= inst.operands[1].reg << 12;
14161 inst.instruction |= inst.operands[2].reg << 8;
14162 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
14163}
14164
14165static void
c19d1205 14166do_t_sxtah (void)
b99bd4ef 14167{
fdfde340
JM
14168 unsigned Rd, Rn, Rm;
14169
14170 Rd = inst.operands[0].reg;
14171 Rn = inst.operands[1].reg;
14172 Rm = inst.operands[2].reg;
14173
14174 reject_bad_reg (Rd);
14175 reject_bad_reg (Rn);
14176 reject_bad_reg (Rm);
14177
14178 inst.instruction |= Rd << 8;
14179 inst.instruction |= Rn << 16;
14180 inst.instruction |= Rm;
c19d1205
ZW
14181 inst.instruction |= inst.operands[3].imm << 4;
14182}
b99bd4ef 14183
c19d1205
ZW
14184static void
14185do_t_sxth (void)
14186{
fdfde340
JM
14187 unsigned Rd, Rm;
14188
14189 Rd = inst.operands[0].reg;
14190 Rm = inst.operands[1].reg;
14191
14192 reject_bad_reg (Rd);
14193 reject_bad_reg (Rm);
c921be7d
NC
14194
14195 if (inst.instruction <= 0xffff
14196 && inst.size_req != 4
fdfde340 14197 && Rd <= 7 && Rm <= 7
c19d1205 14198 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 14199 {
c19d1205 14200 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
14201 inst.instruction |= Rd;
14202 inst.instruction |= Rm << 3;
b99bd4ef 14203 }
c19d1205 14204 else if (unified_syntax)
b99bd4ef 14205 {
c19d1205
ZW
14206 if (inst.instruction <= 0xffff)
14207 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
14208 inst.instruction |= Rd << 8;
14209 inst.instruction |= Rm;
c19d1205 14210 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 14211 }
c19d1205 14212 else
b99bd4ef 14213 {
c19d1205
ZW
14214 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
14215 _("Thumb encoding does not support rotation"));
14216 constraint (1, BAD_HIREG);
b99bd4ef 14217 }
c19d1205 14218}
b99bd4ef 14219
c19d1205
ZW
14220static void
14221do_t_swi (void)
14222{
e2b0ab59 14223 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 14224}
b99bd4ef 14225
92e90b6e
PB
14226static void
14227do_t_tb (void)
14228{
fdfde340 14229 unsigned Rn, Rm;
92e90b6e
PB
14230 int half;
14231
14232 half = (inst.instruction & 0x10) != 0;
5ee91343 14233 set_pred_insn_type_last ();
dfa9f0d5
PB
14234 constraint (inst.operands[0].immisreg,
14235 _("instruction requires register index"));
fdfde340
JM
14236
14237 Rn = inst.operands[0].reg;
14238 Rm = inst.operands[0].imm;
c921be7d 14239
5c8ed6a4
JW
14240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
14241 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
14242 reject_bad_reg (Rm);
14243
92e90b6e
PB
14244 constraint (!half && inst.operands[0].shifted,
14245 _("instruction does not allow shifted index"));
fdfde340 14246 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
14247}
14248
74db7efb
NC
14249static void
14250do_t_udf (void)
14251{
14252 if (!inst.operands[0].present)
14253 inst.operands[0].imm = 0;
14254
14255 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
14256 {
14257 constraint (inst.size_req == 2,
14258 _("immediate value out of range"));
14259 inst.instruction = THUMB_OP32 (inst.instruction);
14260 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
14261 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
14262 }
14263 else
14264 {
14265 inst.instruction = THUMB_OP16 (inst.instruction);
14266 inst.instruction |= inst.operands[0].imm;
14267 }
14268
5ee91343 14269 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
14270}
14271
14272
c19d1205
ZW
14273static void
14274do_t_usat (void)
14275{
3a21c15a 14276 do_t_ssat_usat (0);
b99bd4ef
NC
14277}
14278
14279static void
c19d1205 14280do_t_usat16 (void)
b99bd4ef 14281{
fdfde340
JM
14282 unsigned Rd, Rn;
14283
14284 Rd = inst.operands[0].reg;
14285 Rn = inst.operands[2].reg;
14286
14287 reject_bad_reg (Rd);
14288 reject_bad_reg (Rn);
14289
14290 inst.instruction |= Rd << 8;
c19d1205 14291 inst.instruction |= inst.operands[1].imm;
fdfde340 14292 inst.instruction |= Rn << 16;
b99bd4ef 14293}
c19d1205 14294
e12437dc
AV
14295/* Checking the range of the branch offset (VAL) with NBITS bits
14296 and IS_SIGNED signedness. Also checks the LSB to be 0. */
14297static int
14298v8_1_branch_value_check (int val, int nbits, int is_signed)
14299{
14300 gas_assert (nbits > 0 && nbits <= 32);
14301 if (is_signed)
14302 {
14303 int cmp = (1 << (nbits - 1));
14304 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
14305 return FAIL;
14306 }
14307 else
14308 {
14309 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
14310 return FAIL;
14311 }
14312 return SUCCESS;
14313}
14314
4389b29a
AV
14315/* For branches in Armv8.1-M Mainline. */
14316static void
14317do_t_branch_future (void)
14318{
14319 unsigned long insn = inst.instruction;
14320
14321 inst.instruction = THUMB_OP32 (inst.instruction);
14322 if (inst.operands[0].hasreloc == 0)
14323 {
14324 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14325 as_bad (BAD_BRANCH_OFF);
14326
14327 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14328 }
14329 else
14330 {
14331 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14332 inst.relocs[0].pc_rel = 1;
14333 }
14334
14335 switch (insn)
14336 {
14337 case T_MNEM_bf:
14338 if (inst.operands[1].hasreloc == 0)
14339 {
14340 int val = inst.operands[1].imm;
14341 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14342 as_bad (BAD_BRANCH_OFF);
14343
14344 int immA = (val & 0x0001f000) >> 12;
14345 int immB = (val & 0x00000ffc) >> 2;
14346 int immC = (val & 0x00000002) >> 1;
14347 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14348 }
14349 else
14350 {
14351 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14352 inst.relocs[1].pc_rel = 1;
14353 }
14354 break;
14355
65d1bc05
AV
14356 case T_MNEM_bfl:
14357 if (inst.operands[1].hasreloc == 0)
14358 {
14359 int val = inst.operands[1].imm;
14360 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14361 as_bad (BAD_BRANCH_OFF);
14362
14363 int immA = (val & 0x0007f000) >> 12;
14364 int immB = (val & 0x00000ffc) >> 2;
14365 int immC = (val & 0x00000002) >> 1;
14366 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14367 }
14368 else
14369 {
14370 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14371 inst.relocs[1].pc_rel = 1;
14372 }
14373 break;
14374
f6b2b12d
AV
14375 case T_MNEM_bfcsel:
14376 /* Operand 1. */
14377 if (inst.operands[1].hasreloc == 0)
14378 {
14379 int val = inst.operands[1].imm;
14380 int immA = (val & 0x00001000) >> 12;
14381 int immB = (val & 0x00000ffc) >> 2;
14382 int immC = (val & 0x00000002) >> 1;
14383 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14384 }
14385 else
14386 {
14387 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14388 inst.relocs[1].pc_rel = 1;
14389 }
14390
14391 /* Operand 2. */
14392 if (inst.operands[2].hasreloc == 0)
14393 {
14394 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14395 int val2 = inst.operands[2].imm;
14396 int val0 = inst.operands[0].imm & 0x1f;
14397 int diff = val2 - val0;
14398 if (diff == 4)
14399 inst.instruction |= 1 << 17; /* T bit. */
14400 else if (diff != 2)
14401 as_bad (_("out of range label-relative fixup value"));
14402 }
14403 else
14404 {
14405 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14406 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14407 inst.relocs[2].pc_rel = 1;
14408 }
14409
14410 /* Operand 3. */
14411 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14412 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14413 break;
14414
f1c7f421
AV
14415 case T_MNEM_bfx:
14416 case T_MNEM_bflx:
14417 inst.instruction |= inst.operands[1].reg << 16;
14418 break;
14419
4389b29a
AV
14420 default: abort ();
14421 }
14422}
14423
60f993ce
AV
14424/* Helper function for do_t_loloop to handle relocations. */
14425static void
14426v8_1_loop_reloc (int is_le)
14427{
14428 if (inst.relocs[0].exp.X_op == O_constant)
14429 {
14430 int value = inst.relocs[0].exp.X_add_number;
14431 value = (is_le) ? -value : value;
14432
14433 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14434 as_bad (BAD_BRANCH_OFF);
14435
14436 int imml, immh;
14437
14438 immh = (value & 0x00000ffc) >> 2;
14439 imml = (value & 0x00000002) >> 1;
14440
14441 inst.instruction |= (imml << 11) | (immh << 1);
14442 }
14443 else
14444 {
14445 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14446 inst.relocs[0].pc_rel = 1;
14447 }
14448}
14449
08132bdd
SP
14450/* For shifts with four operands in MVE. */
14451static void
14452do_mve_scalar_shift1 (void)
14453{
14454 unsigned int value = inst.operands[2].imm;
14455
14456 inst.instruction |= inst.operands[0].reg << 16;
14457 inst.instruction |= inst.operands[1].reg << 8;
14458
14459 /* Setting the bit for saturation. */
14460 inst.instruction |= ((value == 64) ? 0: 1) << 7;
14461
14462 /* Assuming Rm is already checked not to be 11x1. */
14463 constraint (inst.operands[3].reg == inst.operands[0].reg, BAD_OVERLAP);
14464 constraint (inst.operands[3].reg == inst.operands[1].reg, BAD_OVERLAP);
14465 inst.instruction |= inst.operands[3].reg << 12;
14466}
14467
23d00a41
SD
14468/* For shifts in MVE. */
14469static void
14470do_mve_scalar_shift (void)
14471{
14472 if (!inst.operands[2].present)
14473 {
14474 inst.operands[2] = inst.operands[1];
14475 inst.operands[1].reg = 0xf;
14476 }
14477
14478 inst.instruction |= inst.operands[0].reg << 16;
14479 inst.instruction |= inst.operands[1].reg << 8;
14480
14481 if (inst.operands[2].isreg)
14482 {
14483 /* Assuming Rm is already checked not to be 11x1. */
14484 constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP);
14485 constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP);
14486 inst.instruction |= inst.operands[2].reg << 12;
14487 }
14488 else
14489 {
14490 /* Assuming imm is already checked as [1,32]. */
14491 unsigned int value = inst.operands[2].imm;
14492 inst.instruction |= (value & 0x1c) << 10;
14493 inst.instruction |= (value & 0x03) << 6;
14494 /* Change last 4 bits from 0xd to 0xf. */
14495 inst.instruction |= 0x2;
14496 }
14497}
14498
a302e574
AV
14499/* MVE instruction encoder helpers. */
14500#define M_MNEM_vabav 0xee800f01
14501#define M_MNEM_vmladav 0xeef00e00
14502#define M_MNEM_vmladava 0xeef00e20
14503#define M_MNEM_vmladavx 0xeef01e00
14504#define M_MNEM_vmladavax 0xeef01e20
14505#define M_MNEM_vmlsdav 0xeef00e01
14506#define M_MNEM_vmlsdava 0xeef00e21
14507#define M_MNEM_vmlsdavx 0xeef01e01
14508#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14509#define M_MNEM_vmullt 0xee011e00
14510#define M_MNEM_vmullb 0xee010e00
efd0b310 14511#define M_MNEM_vctp 0xf000e801
35c228db
AV
14512#define M_MNEM_vst20 0xfc801e00
14513#define M_MNEM_vst21 0xfc801e20
14514#define M_MNEM_vst40 0xfc801e01
14515#define M_MNEM_vst41 0xfc801e21
14516#define M_MNEM_vst42 0xfc801e41
14517#define M_MNEM_vst43 0xfc801e61
14518#define M_MNEM_vld20 0xfc901e00
14519#define M_MNEM_vld21 0xfc901e20
14520#define M_MNEM_vld40 0xfc901e01
14521#define M_MNEM_vld41 0xfc901e21
14522#define M_MNEM_vld42 0xfc901e41
14523#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14524#define M_MNEM_vstrb 0xec000e00
14525#define M_MNEM_vstrh 0xec000e10
14526#define M_MNEM_vstrw 0xec000e40
14527#define M_MNEM_vstrd 0xec000e50
14528#define M_MNEM_vldrb 0xec100e00
14529#define M_MNEM_vldrh 0xec100e10
14530#define M_MNEM_vldrw 0xec100e40
14531#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14532#define M_MNEM_vmovlt 0xeea01f40
14533#define M_MNEM_vmovlb 0xeea00f40
14534#define M_MNEM_vmovnt 0xfe311e81
14535#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14536#define M_MNEM_vadc 0xee300f00
14537#define M_MNEM_vadci 0xee301f00
14538#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14539#define M_MNEM_vaddlv 0xee890f00
14540#define M_MNEM_vaddlva 0xee890f20
14541#define M_MNEM_vaddv 0xeef10f00
14542#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14543#define M_MNEM_vddup 0xee011f6e
14544#define M_MNEM_vdwdup 0xee011f60
14545#define M_MNEM_vidup 0xee010f6e
14546#define M_MNEM_viwdup 0xee010f60
13ccd4c0
AV
14547#define M_MNEM_vmaxv 0xeee20f00
14548#define M_MNEM_vmaxav 0xeee00f00
14549#define M_MNEM_vminv 0xeee20f80
14550#define M_MNEM_vminav 0xeee00f80
93925576
AV
14551#define M_MNEM_vmlaldav 0xee800e00
14552#define M_MNEM_vmlaldava 0xee800e20
14553#define M_MNEM_vmlaldavx 0xee801e00
14554#define M_MNEM_vmlaldavax 0xee801e20
14555#define M_MNEM_vmlsldav 0xee800e01
14556#define M_MNEM_vmlsldava 0xee800e21
14557#define M_MNEM_vmlsldavx 0xee801e01
14558#define M_MNEM_vmlsldavax 0xee801e21
14559#define M_MNEM_vrmlaldavhx 0xee801f00
14560#define M_MNEM_vrmlaldavhax 0xee801f20
14561#define M_MNEM_vrmlsldavh 0xfe800e01
14562#define M_MNEM_vrmlsldavha 0xfe800e21
14563#define M_MNEM_vrmlsldavhx 0xfe801e01
14564#define M_MNEM_vrmlsldavhax 0xfe801e21
1be7aba3
AV
14565#define M_MNEM_vqmovnt 0xee331e01
14566#define M_MNEM_vqmovnb 0xee330e01
14567#define M_MNEM_vqmovunt 0xee311e81
14568#define M_MNEM_vqmovunb 0xee310e81
4aa88b50
AV
14569#define M_MNEM_vshrnt 0xee801fc1
14570#define M_MNEM_vshrnb 0xee800fc1
14571#define M_MNEM_vrshrnt 0xfe801fc1
14572#define M_MNEM_vqshrnt 0xee801f40
14573#define M_MNEM_vqshrnb 0xee800f40
14574#define M_MNEM_vqshrunt 0xee801fc0
14575#define M_MNEM_vqshrunb 0xee800fc0
14576#define M_MNEM_vrshrnb 0xfe800fc1
14577#define M_MNEM_vqrshrnt 0xee801f41
14578#define M_MNEM_vqrshrnb 0xee800f41
14579#define M_MNEM_vqrshrunt 0xfe801fc0
14580#define M_MNEM_vqrshrunb 0xfe800fc0
a302e574 14581
aab2c27d
MM
14582/* Bfloat16 instruction encoder helpers. */
14583#define B_MNEM_vfmat 0xfc300850
14584#define B_MNEM_vfmab 0xfc300810
14585
5287ad62 14586/* Neon instruction encoder helpers. */
5f4273c7 14587
5287ad62 14588/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14589
5287ad62
JB
14590/* An "invalid" code for the following tables. */
14591#define N_INV -1u
14592
14593struct neon_tab_entry
b99bd4ef 14594{
5287ad62
JB
14595 unsigned integer;
14596 unsigned float_or_poly;
14597 unsigned scalar_or_imm;
14598};
5f4273c7 14599
5287ad62
JB
14600/* Map overloaded Neon opcodes to their respective encodings. */
14601#define NEON_ENC_TAB \
14602 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14603 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14604 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14605 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14606 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14607 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14608 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14609 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14610 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14611 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14612 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14613 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14614 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14615 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14616 /* Register variants of the following two instructions are encoded as
e07e6e58 14617 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14618 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14619 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14620 X(vfma, N_INV, 0x0000c10, N_INV), \
14621 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14622 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14623 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14624 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14625 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14626 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14627 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14628 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14629 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14630 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14631 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14632 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14633 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14634 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14635 X(vshl, 0x0000400, N_INV, 0x0800510), \
14636 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14637 X(vand, 0x0000110, N_INV, 0x0800030), \
14638 X(vbic, 0x0100110, N_INV, 0x0800030), \
14639 X(veor, 0x1000110, N_INV, N_INV), \
14640 X(vorn, 0x0300110, N_INV, 0x0800010), \
14641 X(vorr, 0x0200110, N_INV, 0x0800010), \
14642 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14643 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14644 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14645 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14646 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14647 X(vst1, 0x0000000, 0x0800000, N_INV), \
14648 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14649 X(vst2, 0x0000100, 0x0800100, N_INV), \
14650 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14651 X(vst3, 0x0000200, 0x0800200, N_INV), \
14652 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14653 X(vst4, 0x0000300, 0x0800300, N_INV), \
14654 X(vmovn, 0x1b20200, N_INV, N_INV), \
14655 X(vtrn, 0x1b20080, N_INV, N_INV), \
14656 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14657 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14658 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14659 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14660 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14661 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14662 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14663 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14664 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14665 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14666 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14667 X(vseleq, 0xe000a00, N_INV, N_INV), \
14668 X(vselvs, 0xe100a00, N_INV, N_INV), \
14669 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14670 X(vselgt, 0xe300a00, N_INV, N_INV), \
14671 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14672 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14673 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14674 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14675 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14676 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14677 X(sha3op, 0x2000c00, N_INV, N_INV), \
14678 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14679 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14680
14681enum neon_opc
14682{
14683#define X(OPC,I,F,S) N_MNEM_##OPC
14684NEON_ENC_TAB
14685#undef X
14686};
b99bd4ef 14687
5287ad62
JB
14688static const struct neon_tab_entry neon_enc_tab[] =
14689{
14690#define X(OPC,I,F,S) { (I), (F), (S) }
14691NEON_ENC_TAB
14692#undef X
14693};
b99bd4ef 14694
88714cb8
DG
14695/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14696#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14697#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14698#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14699#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14700#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14701#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14702#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14703#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14704#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14705#define NEON_ENC_SINGLE_(X) \
037e8744 14706 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14707#define NEON_ENC_DOUBLE_(X) \
037e8744 14708 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14709#define NEON_ENC_FPV8_(X) \
14710 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14711
88714cb8
DG
14712#define NEON_ENCODE(type, inst) \
14713 do \
14714 { \
14715 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14716 inst.is_neon = 1; \
14717 } \
14718 while (0)
14719
14720#define check_neon_suffixes \
14721 do \
14722 { \
14723 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14724 { \
14725 as_bad (_("invalid neon suffix for non neon instruction")); \
14726 return; \
14727 } \
14728 } \
14729 while (0)
14730
037e8744
JB
14731/* Define shapes for instruction operands. The following mnemonic characters
14732 are used in this table:
5287ad62 14733
037e8744 14734 F - VFP S<n> register
5287ad62
JB
14735 D - Neon D<n> register
14736 Q - Neon Q<n> register
14737 I - Immediate
14738 S - Scalar
14739 R - ARM register
14740 L - D<n> register list
5f4273c7 14741
037e8744
JB
14742 This table is used to generate various data:
14743 - enumerations of the form NS_DDR to be used as arguments to
14744 neon_select_shape.
14745 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14746 - a table used to drive neon_select_shape. */
b99bd4ef 14747
037e8744 14748#define NEON_SHAPE_DEF \
93925576 14749 X(4, (R, R, Q, Q), QUAD), \
b409bdb6 14750 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14751 X(4, (R, R, S, S), QUAD), \
14752 X(4, (S, S, R, R), QUAD), \
b409bdb6 14753 X(3, (Q, R, I), QUAD), \
1b883319
AV
14754 X(3, (I, Q, Q), QUAD), \
14755 X(3, (I, Q, R), QUAD), \
a302e574 14756 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14757 X(3, (D, D, D), DOUBLE), \
14758 X(3, (Q, Q, Q), QUAD), \
14759 X(3, (D, D, I), DOUBLE), \
14760 X(3, (Q, Q, I), QUAD), \
14761 X(3, (D, D, S), DOUBLE), \
14762 X(3, (Q, Q, S), QUAD), \
5ee91343 14763 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14764 X(3, (R, R, Q), QUAD), \
14765 X(2, (R, Q), QUAD), \
037e8744
JB
14766 X(2, (D, D), DOUBLE), \
14767 X(2, (Q, Q), QUAD), \
14768 X(2, (D, S), DOUBLE), \
14769 X(2, (Q, S), QUAD), \
14770 X(2, (D, R), DOUBLE), \
14771 X(2, (Q, R), QUAD), \
14772 X(2, (D, I), DOUBLE), \
14773 X(2, (Q, I), QUAD), \
14774 X(3, (D, L, D), DOUBLE), \
14775 X(2, (D, Q), MIXED), \
14776 X(2, (Q, D), MIXED), \
14777 X(3, (D, Q, I), MIXED), \
14778 X(3, (Q, D, I), MIXED), \
14779 X(3, (Q, D, D), MIXED), \
14780 X(3, (D, Q, Q), MIXED), \
14781 X(3, (Q, Q, D), MIXED), \
14782 X(3, (Q, D, S), MIXED), \
14783 X(3, (D, Q, S), MIXED), \
14784 X(4, (D, D, D, I), DOUBLE), \
14785 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14786 X(4, (D, D, S, I), DOUBLE), \
14787 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14788 X(2, (F, F), SINGLE), \
14789 X(3, (F, F, F), SINGLE), \
14790 X(2, (F, I), SINGLE), \
14791 X(2, (F, D), MIXED), \
14792 X(2, (D, F), MIXED), \
14793 X(3, (F, F, I), MIXED), \
14794 X(4, (R, R, F, F), SINGLE), \
14795 X(4, (F, F, R, R), SINGLE), \
14796 X(3, (D, R, R), DOUBLE), \
14797 X(3, (R, R, D), DOUBLE), \
14798 X(2, (S, R), SINGLE), \
14799 X(2, (R, S), SINGLE), \
14800 X(2, (F, R), SINGLE), \
d54af2d0 14801 X(2, (R, F), SINGLE), \
1f6234a3
AV
14802/* Used for MVE tail predicated loop instructions. */\
14803 X(2, (R, R), QUAD), \
d54af2d0
RL
14804/* Half float shape supported so far. */\
14805 X (2, (H, D), MIXED), \
14806 X (2, (D, H), MIXED), \
14807 X (2, (H, F), MIXED), \
14808 X (2, (F, H), MIXED), \
14809 X (2, (H, H), HALF), \
14810 X (2, (H, R), HALF), \
14811 X (2, (R, H), HALF), \
14812 X (2, (H, I), HALF), \
14813 X (3, (H, H, H), HALF), \
14814 X (3, (H, F, I), MIXED), \
dec41383
JW
14815 X (3, (F, H, I), MIXED), \
14816 X (3, (D, H, H), MIXED), \
14817 X (3, (D, H, S), MIXED)
037e8744
JB
14818
14819#define S2(A,B) NS_##A##B
14820#define S3(A,B,C) NS_##A##B##C
14821#define S4(A,B,C,D) NS_##A##B##C##D
14822
14823#define X(N, L, C) S##N L
14824
5287ad62
JB
14825enum neon_shape
14826{
037e8744
JB
14827 NEON_SHAPE_DEF,
14828 NS_NULL
5287ad62 14829};
b99bd4ef 14830
037e8744
JB
14831#undef X
14832#undef S2
14833#undef S3
14834#undef S4
14835
14836enum neon_shape_class
14837{
d54af2d0 14838 SC_HALF,
037e8744
JB
14839 SC_SINGLE,
14840 SC_DOUBLE,
14841 SC_QUAD,
14842 SC_MIXED
14843};
14844
14845#define X(N, L, C) SC_##C
14846
14847static enum neon_shape_class neon_shape_class[] =
14848{
14849 NEON_SHAPE_DEF
14850};
14851
14852#undef X
14853
14854enum neon_shape_el
14855{
d54af2d0 14856 SE_H,
037e8744
JB
14857 SE_F,
14858 SE_D,
14859 SE_Q,
14860 SE_I,
14861 SE_S,
14862 SE_R,
14863 SE_L
14864};
14865
14866/* Register widths of above. */
14867static unsigned neon_shape_el_size[] =
14868{
d54af2d0 14869 16,
037e8744
JB
14870 32,
14871 64,
14872 128,
14873 0,
14874 32,
14875 32,
14876 0
14877};
14878
14879struct neon_shape_info
14880{
14881 unsigned els;
14882 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14883};
14884
14885#define S2(A,B) { SE_##A, SE_##B }
14886#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14887#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14888
14889#define X(N, L, C) { N, S##N L }
14890
14891static struct neon_shape_info neon_shape_tab[] =
14892{
14893 NEON_SHAPE_DEF
14894};
14895
14896#undef X
14897#undef S2
14898#undef S3
14899#undef S4
14900
5287ad62
JB
14901/* Bit masks used in type checking given instructions.
14902 'N_EQK' means the type must be the same as (or based on in some way) the key
14903 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14904 set, various other bits can be set as well in order to modify the meaning of
14905 the type constraint. */
14906
14907enum neon_type_mask
14908{
8e79c3df
CM
14909 N_S8 = 0x0000001,
14910 N_S16 = 0x0000002,
14911 N_S32 = 0x0000004,
14912 N_S64 = 0x0000008,
14913 N_U8 = 0x0000010,
14914 N_U16 = 0x0000020,
14915 N_U32 = 0x0000040,
14916 N_U64 = 0x0000080,
14917 N_I8 = 0x0000100,
14918 N_I16 = 0x0000200,
14919 N_I32 = 0x0000400,
14920 N_I64 = 0x0000800,
14921 N_8 = 0x0001000,
14922 N_16 = 0x0002000,
14923 N_32 = 0x0004000,
14924 N_64 = 0x0008000,
14925 N_P8 = 0x0010000,
14926 N_P16 = 0x0020000,
14927 N_F16 = 0x0040000,
14928 N_F32 = 0x0080000,
14929 N_F64 = 0x0100000,
4f51b4bd 14930 N_P64 = 0x0200000,
aab2c27d 14931 N_BF16 = 0x0400000,
c921be7d
NC
14932 N_KEY = 0x1000000, /* Key element (main type specifier). */
14933 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14934 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14935 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14936 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14937 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14938 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14939 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14940 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14941 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14942 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14943 N_UTYP = 0,
4f51b4bd 14944 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14945};
14946
dcbf9037
JB
14947#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14948
5287ad62
JB
14949#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14950#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14951#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14952#define N_S_32 (N_S8 | N_S16 | N_S32)
14953#define N_F_16_32 (N_F16 | N_F32)
14954#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14955#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14956#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14957#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14958#define N_I_MVE (N_I8 | N_I16 | N_I32)
14959#define N_F_MVE (N_F16 | N_F32)
14960#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14961
14962/* Pass this as the first type argument to neon_check_type to ignore types
14963 altogether. */
14964#define N_IGNORE_TYPE (N_KEY | N_EQK)
14965
037e8744
JB
14966/* Select a "shape" for the current instruction (describing register types or
14967 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14968 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14969 function of operand parsing, so this function doesn't need to be called.
14970 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14971
14972static enum neon_shape
037e8744 14973neon_select_shape (enum neon_shape shape, ...)
5287ad62 14974{
037e8744
JB
14975 va_list ap;
14976 enum neon_shape first_shape = shape;
5287ad62
JB
14977
14978 /* Fix missing optional operands. FIXME: we don't know at this point how
14979 many arguments we should have, so this makes the assumption that we have
14980 > 1. This is true of all current Neon opcodes, I think, but may not be
14981 true in the future. */
14982 if (!inst.operands[1].present)
14983 inst.operands[1] = inst.operands[0];
14984
037e8744 14985 va_start (ap, shape);
5f4273c7 14986
21d799b5 14987 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14988 {
14989 unsigned j;
14990 int matches = 1;
14991
14992 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14993 {
14994 if (!inst.operands[j].present)
14995 {
14996 matches = 0;
14997 break;
14998 }
14999
15000 switch (neon_shape_tab[shape].el[j])
15001 {
d54af2d0
RL
15002 /* If a .f16, .16, .u16, .s16 type specifier is given over
15003 a VFP single precision register operand, it's essentially
15004 means only half of the register is used.
15005
15006 If the type specifier is given after the mnemonics, the
15007 information is stored in inst.vectype. If the type specifier
15008 is given after register operand, the information is stored
15009 in inst.operands[].vectype.
15010
15011 When there is only one type specifier, and all the register
15012 operands are the same type of hardware register, the type
15013 specifier applies to all register operands.
15014
15015 If no type specifier is given, the shape is inferred from
15016 operand information.
15017
15018 for example:
15019 vadd.f16 s0, s1, s2: NS_HHH
15020 vabs.f16 s0, s1: NS_HH
15021 vmov.f16 s0, r1: NS_HR
15022 vmov.f16 r0, s1: NS_RH
15023 vcvt.f16 r0, s1: NS_RH
15024 vcvt.f16.s32 s2, s2, #29: NS_HFI
15025 vcvt.f16.s32 s2, s2: NS_HF
15026 */
15027 case SE_H:
15028 if (!(inst.operands[j].isreg
15029 && inst.operands[j].isvec
15030 && inst.operands[j].issingle
15031 && !inst.operands[j].isquad
15032 && ((inst.vectype.elems == 1
15033 && inst.vectype.el[0].size == 16)
15034 || (inst.vectype.elems > 1
15035 && inst.vectype.el[j].size == 16)
15036 || (inst.vectype.elems == 0
15037 && inst.operands[j].vectype.type != NT_invtype
15038 && inst.operands[j].vectype.size == 16))))
15039 matches = 0;
15040 break;
15041
477330fc
RM
15042 case SE_F:
15043 if (!(inst.operands[j].isreg
15044 && inst.operands[j].isvec
15045 && inst.operands[j].issingle
d54af2d0
RL
15046 && !inst.operands[j].isquad
15047 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
15048 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
15049 || (inst.vectype.elems == 0
15050 && (inst.operands[j].vectype.size == 32
15051 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
15052 matches = 0;
15053 break;
15054
15055 case SE_D:
15056 if (!(inst.operands[j].isreg
15057 && inst.operands[j].isvec
15058 && !inst.operands[j].isquad
15059 && !inst.operands[j].issingle))
15060 matches = 0;
15061 break;
15062
15063 case SE_R:
15064 if (!(inst.operands[j].isreg
15065 && !inst.operands[j].isvec))
15066 matches = 0;
15067 break;
15068
15069 case SE_Q:
15070 if (!(inst.operands[j].isreg
15071 && inst.operands[j].isvec
15072 && inst.operands[j].isquad
15073 && !inst.operands[j].issingle))
15074 matches = 0;
15075 break;
15076
15077 case SE_I:
15078 if (!(!inst.operands[j].isreg
15079 && !inst.operands[j].isscalar))
15080 matches = 0;
15081 break;
15082
15083 case SE_S:
15084 if (!(!inst.operands[j].isreg
15085 && inst.operands[j].isscalar))
15086 matches = 0;
15087 break;
15088
15089 case SE_L:
15090 break;
15091 }
3fde54a2
JZ
15092 if (!matches)
15093 break;
477330fc 15094 }
ad6cec43
MGD
15095 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
15096 /* We've matched all the entries in the shape table, and we don't
15097 have any left over operands which have not been matched. */
477330fc 15098 break;
037e8744 15099 }
5f4273c7 15100
037e8744 15101 va_end (ap);
5287ad62 15102
037e8744
JB
15103 if (shape == NS_NULL && first_shape != NS_NULL)
15104 first_error (_("invalid instruction shape"));
5287ad62 15105
037e8744
JB
15106 return shape;
15107}
5287ad62 15108
037e8744
JB
15109/* True if SHAPE is predominantly a quadword operation (most of the time, this
15110 means the Q bit should be set). */
15111
15112static int
15113neon_quad (enum neon_shape shape)
15114{
15115 return neon_shape_class[shape] == SC_QUAD;
5287ad62 15116}
037e8744 15117
5287ad62
JB
15118static void
15119neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 15120 unsigned *g_size)
5287ad62
JB
15121{
15122 /* Allow modification to be made to types which are constrained to be
15123 based on the key element, based on bits set alongside N_EQK. */
15124 if ((typebits & N_EQK) != 0)
15125 {
15126 if ((typebits & N_HLF) != 0)
15127 *g_size /= 2;
15128 else if ((typebits & N_DBL) != 0)
15129 *g_size *= 2;
15130 if ((typebits & N_SGN) != 0)
15131 *g_type = NT_signed;
15132 else if ((typebits & N_UNS) != 0)
477330fc 15133 *g_type = NT_unsigned;
5287ad62 15134 else if ((typebits & N_INT) != 0)
477330fc 15135 *g_type = NT_integer;
5287ad62 15136 else if ((typebits & N_FLT) != 0)
477330fc 15137 *g_type = NT_float;
dcbf9037 15138 else if ((typebits & N_SIZ) != 0)
477330fc 15139 *g_type = NT_untyped;
5287ad62
JB
15140 }
15141}
5f4273c7 15142
5287ad62
JB
15143/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
15144 operand type, i.e. the single type specified in a Neon instruction when it
15145 is the only one given. */
15146
15147static struct neon_type_el
15148neon_type_promote (struct neon_type_el *key, unsigned thisarg)
15149{
15150 struct neon_type_el dest = *key;
5f4273c7 15151
9c2799c2 15152 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 15153
5287ad62
JB
15154 neon_modify_type_size (thisarg, &dest.type, &dest.size);
15155
15156 return dest;
15157}
15158
15159/* Convert Neon type and size into compact bitmask representation. */
15160
15161static enum neon_type_mask
15162type_chk_of_el_type (enum neon_el_type type, unsigned size)
15163{
15164 switch (type)
15165 {
15166 case NT_untyped:
15167 switch (size)
477330fc
RM
15168 {
15169 case 8: return N_8;
15170 case 16: return N_16;
15171 case 32: return N_32;
15172 case 64: return N_64;
15173 default: ;
15174 }
5287ad62
JB
15175 break;
15176
15177 case NT_integer:
15178 switch (size)
477330fc
RM
15179 {
15180 case 8: return N_I8;
15181 case 16: return N_I16;
15182 case 32: return N_I32;
15183 case 64: return N_I64;
15184 default: ;
15185 }
5287ad62
JB
15186 break;
15187
15188 case NT_float:
037e8744 15189 switch (size)
477330fc 15190 {
8e79c3df 15191 case 16: return N_F16;
477330fc
RM
15192 case 32: return N_F32;
15193 case 64: return N_F64;
15194 default: ;
15195 }
5287ad62
JB
15196 break;
15197
15198 case NT_poly:
15199 switch (size)
477330fc
RM
15200 {
15201 case 8: return N_P8;
15202 case 16: return N_P16;
4f51b4bd 15203 case 64: return N_P64;
477330fc
RM
15204 default: ;
15205 }
5287ad62
JB
15206 break;
15207
15208 case NT_signed:
15209 switch (size)
477330fc
RM
15210 {
15211 case 8: return N_S8;
15212 case 16: return N_S16;
15213 case 32: return N_S32;
15214 case 64: return N_S64;
15215 default: ;
15216 }
5287ad62
JB
15217 break;
15218
15219 case NT_unsigned:
15220 switch (size)
477330fc
RM
15221 {
15222 case 8: return N_U8;
15223 case 16: return N_U16;
15224 case 32: return N_U32;
15225 case 64: return N_U64;
15226 default: ;
15227 }
5287ad62
JB
15228 break;
15229
aab2c27d
MM
15230 case NT_bfloat:
15231 if (size == 16) return N_BF16;
15232 break;
15233
5287ad62
JB
15234 default: ;
15235 }
5f4273c7 15236
5287ad62
JB
15237 return N_UTYP;
15238}
15239
15240/* Convert compact Neon bitmask type representation to a type and size. Only
15241 handles the case where a single bit is set in the mask. */
15242
dcbf9037 15243static int
5287ad62 15244el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 15245 enum neon_type_mask mask)
5287ad62 15246{
dcbf9037
JB
15247 if ((mask & N_EQK) != 0)
15248 return FAIL;
15249
5287ad62
JB
15250 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
15251 *size = 8;
aab2c27d
MM
15252 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16 | N_BF16))
15253 != 0)
5287ad62 15254 *size = 16;
dcbf9037 15255 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 15256 *size = 32;
4f51b4bd 15257 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 15258 *size = 64;
dcbf9037
JB
15259 else
15260 return FAIL;
15261
5287ad62
JB
15262 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
15263 *type = NT_signed;
dcbf9037 15264 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 15265 *type = NT_unsigned;
dcbf9037 15266 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 15267 *type = NT_integer;
dcbf9037 15268 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 15269 *type = NT_untyped;
4f51b4bd 15270 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 15271 *type = NT_poly;
d54af2d0 15272 else if ((mask & (N_F_ALL)) != 0)
5287ad62 15273 *type = NT_float;
aab2c27d
MM
15274 else if ((mask & (N_BF16)) != 0)
15275 *type = NT_bfloat;
dcbf9037
JB
15276 else
15277 return FAIL;
5f4273c7 15278
dcbf9037 15279 return SUCCESS;
5287ad62
JB
15280}
15281
15282/* Modify a bitmask of allowed types. This is only needed for type
15283 relaxation. */
15284
15285static unsigned
15286modify_types_allowed (unsigned allowed, unsigned mods)
15287{
15288 unsigned size;
15289 enum neon_el_type type;
15290 unsigned destmask;
15291 int i;
5f4273c7 15292
5287ad62 15293 destmask = 0;
5f4273c7 15294
5287ad62
JB
15295 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
15296 {
21d799b5 15297 if (el_type_of_type_chk (&type, &size,
477330fc
RM
15298 (enum neon_type_mask) (allowed & i)) == SUCCESS)
15299 {
15300 neon_modify_type_size (mods, &type, &size);
15301 destmask |= type_chk_of_el_type (type, size);
15302 }
5287ad62 15303 }
5f4273c7 15304
5287ad62
JB
15305 return destmask;
15306}
15307
15308/* Check type and return type classification.
15309 The manual states (paraphrase): If one datatype is given, it indicates the
15310 type given in:
15311 - the second operand, if there is one
15312 - the operand, if there is no second operand
15313 - the result, if there are no operands.
15314 This isn't quite good enough though, so we use a concept of a "key" datatype
15315 which is set on a per-instruction basis, which is the one which matters when
15316 only one data type is written.
15317 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 15318 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
15319
15320static struct neon_type_el
15321neon_check_type (unsigned els, enum neon_shape ns, ...)
15322{
15323 va_list ap;
15324 unsigned i, pass, key_el = 0;
15325 unsigned types[NEON_MAX_TYPE_ELS];
15326 enum neon_el_type k_type = NT_invtype;
15327 unsigned k_size = -1u;
15328 struct neon_type_el badtype = {NT_invtype, -1};
15329 unsigned key_allowed = 0;
15330
15331 /* Optional registers in Neon instructions are always (not) in operand 1.
15332 Fill in the missing operand here, if it was omitted. */
15333 if (els > 1 && !inst.operands[1].present)
15334 inst.operands[1] = inst.operands[0];
15335
15336 /* Suck up all the varargs. */
15337 va_start (ap, ns);
15338 for (i = 0; i < els; i++)
15339 {
15340 unsigned thisarg = va_arg (ap, unsigned);
15341 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
15342 {
15343 va_end (ap);
15344 return badtype;
15345 }
5287ad62
JB
15346 types[i] = thisarg;
15347 if ((thisarg & N_KEY) != 0)
477330fc 15348 key_el = i;
5287ad62
JB
15349 }
15350 va_end (ap);
15351
dcbf9037
JB
15352 if (inst.vectype.elems > 0)
15353 for (i = 0; i < els; i++)
15354 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
15355 {
15356 first_error (_("types specified in both the mnemonic and operands"));
15357 return badtype;
15358 }
dcbf9037 15359
5287ad62
JB
15360 /* Duplicate inst.vectype elements here as necessary.
15361 FIXME: No idea if this is exactly the same as the ARM assembler,
15362 particularly when an insn takes one register and one non-register
15363 operand. */
15364 if (inst.vectype.elems == 1 && els > 1)
15365 {
15366 unsigned j;
15367 inst.vectype.elems = els;
15368 inst.vectype.el[key_el] = inst.vectype.el[0];
15369 for (j = 0; j < els; j++)
477330fc
RM
15370 if (j != key_el)
15371 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15372 types[j]);
dcbf9037
JB
15373 }
15374 else if (inst.vectype.elems == 0 && els > 0)
15375 {
15376 unsigned j;
15377 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
15378 after each operand. We allow some flexibility here; as long as the
15379 "key" operand has a type, we can infer the others. */
dcbf9037 15380 for (j = 0; j < els; j++)
477330fc
RM
15381 if (inst.operands[j].vectype.type != NT_invtype)
15382 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
15383
15384 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
15385 {
15386 for (j = 0; j < els; j++)
15387 if (inst.operands[j].vectype.type == NT_invtype)
15388 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15389 types[j]);
15390 }
dcbf9037 15391 else
477330fc
RM
15392 {
15393 first_error (_("operand types can't be inferred"));
15394 return badtype;
15395 }
5287ad62
JB
15396 }
15397 else if (inst.vectype.elems != els)
15398 {
dcbf9037 15399 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
15400 return badtype;
15401 }
15402
15403 for (pass = 0; pass < 2; pass++)
15404 {
15405 for (i = 0; i < els; i++)
477330fc
RM
15406 {
15407 unsigned thisarg = types[i];
15408 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15409 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15410 enum neon_el_type g_type = inst.vectype.el[i].type;
15411 unsigned g_size = inst.vectype.el[i].size;
15412
15413 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 15414 integer types if sign-specific variants are unavailable. */
477330fc 15415 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
15416 && (types_allowed & N_SU_ALL) == 0)
15417 g_type = NT_integer;
15418
477330fc 15419 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
15420 them. Some instructions only care about signs for some element
15421 sizes, so handle that properly. */
477330fc 15422 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
15423 && ((g_size == 8 && (types_allowed & N_8) != 0)
15424 || (g_size == 16 && (types_allowed & N_16) != 0)
15425 || (g_size == 32 && (types_allowed & N_32) != 0)
15426 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
15427 g_type = NT_untyped;
15428
477330fc
RM
15429 if (pass == 0)
15430 {
15431 if ((thisarg & N_KEY) != 0)
15432 {
15433 k_type = g_type;
15434 k_size = g_size;
15435 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15436
15437 /* Check architecture constraint on FP16 extension. */
15438 if (k_size == 16
15439 && k_type == NT_float
15440 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15441 {
15442 inst.error = _(BAD_FP16);
15443 return badtype;
15444 }
477330fc
RM
15445 }
15446 }
15447 else
15448 {
15449 if ((thisarg & N_VFP) != 0)
15450 {
15451 enum neon_shape_el regshape;
15452 unsigned regwidth, match;
99b253c5
NC
15453
15454 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15455 if (ns == NS_NULL)
15456 {
15457 first_error (_("invalid instruction shape"));
15458 return badtype;
15459 }
477330fc
RM
15460 regshape = neon_shape_tab[ns].el[i];
15461 regwidth = neon_shape_el_size[regshape];
15462
15463 /* In VFP mode, operands must match register widths. If we
15464 have a key operand, use its width, else use the width of
15465 the current operand. */
15466 if (k_size != -1u)
15467 match = k_size;
15468 else
15469 match = g_size;
15470
9db2f6b4
RL
15471 /* FP16 will use a single precision register. */
15472 if (regwidth == 32 && match == 16)
15473 {
15474 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15475 match = regwidth;
15476 else
15477 {
15478 inst.error = _(BAD_FP16);
15479 return badtype;
15480 }
15481 }
15482
477330fc
RM
15483 if (regwidth != match)
15484 {
15485 first_error (_("operand size must match register width"));
15486 return badtype;
15487 }
15488 }
15489
15490 if ((thisarg & N_EQK) == 0)
15491 {
15492 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15493
15494 if ((given_type & types_allowed) == 0)
15495 {
a302e574 15496 first_error (BAD_SIMD_TYPE);
477330fc
RM
15497 return badtype;
15498 }
15499 }
15500 else
15501 {
15502 enum neon_el_type mod_k_type = k_type;
15503 unsigned mod_k_size = k_size;
15504 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15505 if (g_type != mod_k_type || g_size != mod_k_size)
15506 {
15507 first_error (_("inconsistent types in Neon instruction"));
15508 return badtype;
15509 }
15510 }
15511 }
15512 }
5287ad62
JB
15513 }
15514
15515 return inst.vectype.el[key_el];
15516}
15517
037e8744 15518/* Neon-style VFP instruction forwarding. */
5287ad62 15519
037e8744
JB
15520/* Thumb VFP instructions have 0xE in the condition field. */
15521
15522static void
15523do_vfp_cond_or_thumb (void)
5287ad62 15524{
88714cb8
DG
15525 inst.is_neon = 1;
15526
5287ad62 15527 if (thumb_mode)
037e8744 15528 inst.instruction |= 0xe0000000;
5287ad62 15529 else
037e8744 15530 inst.instruction |= inst.cond << 28;
5287ad62
JB
15531}
15532
037e8744
JB
15533/* Look up and encode a simple mnemonic, for use as a helper function for the
15534 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15535 etc. It is assumed that operand parsing has already been done, and that the
15536 operands are in the form expected by the given opcode (this isn't necessarily
15537 the same as the form in which they were parsed, hence some massaging must
15538 take place before this function is called).
15539 Checks current arch version against that in the looked-up opcode. */
5287ad62 15540
037e8744
JB
15541static void
15542do_vfp_nsyn_opcode (const char *opname)
5287ad62 15543{
037e8744 15544 const struct asm_opcode *opcode;
5f4273c7 15545
21d799b5 15546 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15547
037e8744
JB
15548 if (!opcode)
15549 abort ();
5287ad62 15550
037e8744 15551 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15552 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15553 _(BAD_FPU));
5287ad62 15554
88714cb8
DG
15555 inst.is_neon = 1;
15556
037e8744
JB
15557 if (thumb_mode)
15558 {
15559 inst.instruction = opcode->tvalue;
15560 opcode->tencode ();
15561 }
15562 else
15563 {
15564 inst.instruction = (inst.cond << 28) | opcode->avalue;
15565 opcode->aencode ();
15566 }
15567}
5287ad62
JB
15568
15569static void
037e8744 15570do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15571{
037e8744
JB
15572 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15573
9db2f6b4 15574 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15575 {
15576 if (is_add)
477330fc 15577 do_vfp_nsyn_opcode ("fadds");
037e8744 15578 else
477330fc 15579 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15580
15581 /* ARMv8.2 fp16 instruction. */
15582 if (rs == NS_HHH)
15583 do_scalar_fp16_v82_encode ();
037e8744
JB
15584 }
15585 else
15586 {
15587 if (is_add)
477330fc 15588 do_vfp_nsyn_opcode ("faddd");
037e8744 15589 else
477330fc 15590 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15591 }
15592}
15593
15594/* Check operand types to see if this is a VFP instruction, and if so call
15595 PFN (). */
15596
15597static int
15598try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15599{
15600 enum neon_shape rs;
15601 struct neon_type_el et;
15602
15603 switch (args)
15604 {
15605 case 2:
9db2f6b4
RL
15606 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15607 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15608 break;
5f4273c7 15609
037e8744 15610 case 3:
9db2f6b4
RL
15611 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15612 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15613 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15614 break;
15615
15616 default:
15617 abort ();
15618 }
15619
15620 if (et.type != NT_invtype)
15621 {
15622 pfn (rs);
15623 return SUCCESS;
15624 }
037e8744 15625
99b253c5 15626 inst.error = NULL;
037e8744
JB
15627 return FAIL;
15628}
15629
15630static void
15631do_vfp_nsyn_mla_mls (enum neon_shape rs)
15632{
15633 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15634
9db2f6b4 15635 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15636 {
15637 if (is_mla)
477330fc 15638 do_vfp_nsyn_opcode ("fmacs");
037e8744 15639 else
477330fc 15640 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15641
15642 /* ARMv8.2 fp16 instruction. */
15643 if (rs == NS_HHH)
15644 do_scalar_fp16_v82_encode ();
037e8744
JB
15645 }
15646 else
15647 {
15648 if (is_mla)
477330fc 15649 do_vfp_nsyn_opcode ("fmacd");
037e8744 15650 else
477330fc 15651 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15652 }
15653}
15654
62f3b8c8
PB
15655static void
15656do_vfp_nsyn_fma_fms (enum neon_shape rs)
15657{
15658 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15659
9db2f6b4 15660 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15661 {
15662 if (is_fma)
477330fc 15663 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15664 else
477330fc 15665 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15666
15667 /* ARMv8.2 fp16 instruction. */
15668 if (rs == NS_HHH)
15669 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15670 }
15671 else
15672 {
15673 if (is_fma)
477330fc 15674 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15675 else
477330fc 15676 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15677 }
15678}
15679
037e8744
JB
15680static void
15681do_vfp_nsyn_mul (enum neon_shape rs)
15682{
9db2f6b4
RL
15683 if (rs == NS_FFF || rs == NS_HHH)
15684 {
15685 do_vfp_nsyn_opcode ("fmuls");
15686
15687 /* ARMv8.2 fp16 instruction. */
15688 if (rs == NS_HHH)
15689 do_scalar_fp16_v82_encode ();
15690 }
037e8744
JB
15691 else
15692 do_vfp_nsyn_opcode ("fmuld");
15693}
15694
15695static void
15696do_vfp_nsyn_abs_neg (enum neon_shape rs)
15697{
15698 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15699 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15700
9db2f6b4 15701 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15702 {
15703 if (is_neg)
477330fc 15704 do_vfp_nsyn_opcode ("fnegs");
037e8744 15705 else
477330fc 15706 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15707
15708 /* ARMv8.2 fp16 instruction. */
15709 if (rs == NS_HH)
15710 do_scalar_fp16_v82_encode ();
037e8744
JB
15711 }
15712 else
15713 {
15714 if (is_neg)
477330fc 15715 do_vfp_nsyn_opcode ("fnegd");
037e8744 15716 else
477330fc 15717 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15718 }
15719}
15720
15721/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15722 insns belong to Neon, and are handled elsewhere. */
15723
15724static void
15725do_vfp_nsyn_ldm_stm (int is_dbmode)
15726{
15727 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15728 if (is_ldm)
15729 {
15730 if (is_dbmode)
477330fc 15731 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15732 else
477330fc 15733 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15734 }
15735 else
15736 {
15737 if (is_dbmode)
477330fc 15738 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15739 else
477330fc 15740 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15741 }
15742}
15743
037e8744
JB
15744static void
15745do_vfp_nsyn_sqrt (void)
15746{
9db2f6b4
RL
15747 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15748 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15749
9db2f6b4
RL
15750 if (rs == NS_FF || rs == NS_HH)
15751 {
15752 do_vfp_nsyn_opcode ("fsqrts");
15753
15754 /* ARMv8.2 fp16 instruction. */
15755 if (rs == NS_HH)
15756 do_scalar_fp16_v82_encode ();
15757 }
037e8744
JB
15758 else
15759 do_vfp_nsyn_opcode ("fsqrtd");
15760}
15761
15762static void
15763do_vfp_nsyn_div (void)
15764{
9db2f6b4 15765 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15766 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15767 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15768
9db2f6b4
RL
15769 if (rs == NS_FFF || rs == NS_HHH)
15770 {
15771 do_vfp_nsyn_opcode ("fdivs");
15772
15773 /* ARMv8.2 fp16 instruction. */
15774 if (rs == NS_HHH)
15775 do_scalar_fp16_v82_encode ();
15776 }
037e8744
JB
15777 else
15778 do_vfp_nsyn_opcode ("fdivd");
15779}
15780
15781static void
15782do_vfp_nsyn_nmul (void)
15783{
9db2f6b4 15784 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15785 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15786 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15787
9db2f6b4 15788 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15789 {
88714cb8 15790 NEON_ENCODE (SINGLE, inst);
037e8744 15791 do_vfp_sp_dyadic ();
9db2f6b4
RL
15792
15793 /* ARMv8.2 fp16 instruction. */
15794 if (rs == NS_HHH)
15795 do_scalar_fp16_v82_encode ();
037e8744
JB
15796 }
15797 else
15798 {
88714cb8 15799 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15800 do_vfp_dp_rd_rn_rm ();
15801 }
15802 do_vfp_cond_or_thumb ();
9db2f6b4 15803
037e8744
JB
15804}
15805
1b883319
AV
15806/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15807 (0, 1, 2, 3). */
15808
15809static unsigned
15810neon_logbits (unsigned x)
15811{
15812 return ffs (x) - 4;
15813}
15814
15815#define LOW4(R) ((R) & 0xf)
15816#define HI1(R) (((R) >> 4) & 1)
15817
15818static unsigned
15819mve_get_vcmp_vpt_cond (struct neon_type_el et)
15820{
15821 switch (et.type)
15822 {
15823 default:
15824 first_error (BAD_EL_TYPE);
15825 return 0;
15826 case NT_float:
15827 switch (inst.operands[0].imm)
15828 {
15829 default:
15830 first_error (_("invalid condition"));
15831 return 0;
15832 case 0x0:
15833 /* eq. */
15834 return 0;
15835 case 0x1:
15836 /* ne. */
15837 return 1;
15838 case 0xa:
15839 /* ge/ */
15840 return 4;
15841 case 0xb:
15842 /* lt. */
15843 return 5;
15844 case 0xc:
15845 /* gt. */
15846 return 6;
15847 case 0xd:
15848 /* le. */
15849 return 7;
15850 }
15851 case NT_integer:
15852 /* only accept eq and ne. */
15853 if (inst.operands[0].imm > 1)
15854 {
15855 first_error (_("invalid condition"));
15856 return 0;
15857 }
15858 return inst.operands[0].imm;
15859 case NT_unsigned:
15860 if (inst.operands[0].imm == 0x2)
15861 return 2;
15862 else if (inst.operands[0].imm == 0x8)
15863 return 3;
15864 else
15865 {
15866 first_error (_("invalid condition"));
15867 return 0;
15868 }
15869 case NT_signed:
15870 switch (inst.operands[0].imm)
15871 {
15872 default:
15873 first_error (_("invalid condition"));
15874 return 0;
15875 case 0xa:
15876 /* ge. */
15877 return 4;
15878 case 0xb:
15879 /* lt. */
15880 return 5;
15881 case 0xc:
15882 /* gt. */
15883 return 6;
15884 case 0xd:
15885 /* le. */
15886 return 7;
15887 }
15888 }
15889 /* Should be unreachable. */
15890 abort ();
15891}
15892
efd0b310
SP
15893/* For VCTP (create vector tail predicate) in MVE. */
15894static void
15895do_mve_vctp (void)
15896{
15897 int dt = 0;
15898 unsigned size = 0x0;
15899
15900 if (inst.cond > COND_ALWAYS)
15901 inst.pred_insn_type = INSIDE_VPT_INSN;
15902 else
15903 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15904
15905 /* This is a typical MVE instruction which has no type but have size 8, 16,
15906 32 and 64. For instructions with no type, inst.vectype.el[j].type is set
15907 to NT_untyped and size is updated in inst.vectype.el[j].size. */
15908 if ((inst.operands[0].present) && (inst.vectype.el[0].type == NT_untyped))
15909 dt = inst.vectype.el[0].size;
15910
15911 /* Setting this does not indicate an actual NEON instruction, but only
15912 indicates that the mnemonic accepts neon-style type suffixes. */
15913 inst.is_neon = 1;
15914
15915 switch (dt)
15916 {
15917 case 8:
15918 break;
15919 case 16:
15920 size = 0x1; break;
15921 case 32:
15922 size = 0x2; break;
15923 case 64:
15924 size = 0x3; break;
15925 default:
15926 first_error (_("Type is not allowed for this instruction"));
15927 }
15928 inst.instruction |= size << 20;
15929 inst.instruction |= inst.operands[0].reg << 16;
15930}
15931
1b883319
AV
15932static void
15933do_mve_vpt (void)
15934{
15935 /* We are dealing with a vector predicated block. */
15936 if (inst.operands[0].present)
15937 {
15938 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15939 struct neon_type_el et
15940 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15941 N_EQK);
15942
15943 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15944
15945 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15946
15947 if (et.type == NT_invtype)
15948 return;
15949
15950 if (et.type == NT_float)
15951 {
15952 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15953 BAD_FPU);
15954 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15955 inst.instruction |= (et.size == 16) << 28;
15956 inst.instruction |= 0x3 << 20;
15957 }
15958 else
15959 {
15960 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15961 BAD_EL_TYPE);
15962 inst.instruction |= 1 << 28;
15963 inst.instruction |= neon_logbits (et.size) << 20;
15964 }
15965
15966 if (inst.operands[2].isquad)
15967 {
15968 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15969 inst.instruction |= LOW4 (inst.operands[2].reg);
15970 inst.instruction |= (fcond & 0x2) >> 1;
15971 }
15972 else
15973 {
15974 if (inst.operands[2].reg == REG_SP)
15975 as_tsktsk (MVE_BAD_SP);
15976 inst.instruction |= 1 << 6;
15977 inst.instruction |= (fcond & 0x2) << 4;
15978 inst.instruction |= inst.operands[2].reg;
15979 }
15980 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15981 inst.instruction |= (fcond & 0x4) << 10;
15982 inst.instruction |= (fcond & 0x1) << 7;
15983
15984 }
15985 set_pred_insn_type (VPT_INSN);
15986 now_pred.cc = 0;
15987 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15988 | ((inst.instruction & 0xe000) >> 13);
15989 now_pred.warn_deprecated = FALSE;
15990 now_pred.type = VECTOR_PRED;
15991 inst.is_neon = 1;
15992}
15993
15994static void
15995do_mve_vcmp (void)
15996{
15997 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15998 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15999 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
16000 if (!inst.operands[2].present)
16001 first_error (_("MVE vector or ARM register expected"));
16002 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16003
16004 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
16005 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
16006 && inst.operands[1].isquad)
16007 {
16008 inst.instruction = N_MNEM_vcmp;
16009 inst.cond = 0x10;
16010 }
16011
16012 if (inst.cond > COND_ALWAYS)
16013 inst.pred_insn_type = INSIDE_VPT_INSN;
16014 else
16015 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16016
16017 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
16018 struct neon_type_el et
16019 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
16020 N_EQK);
16021
16022 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
16023 && !inst.operands[2].iszr, BAD_PC);
16024
16025 unsigned fcond = mve_get_vcmp_vpt_cond (et);
16026
16027 inst.instruction = 0xee010f00;
16028 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16029 inst.instruction |= (fcond & 0x4) << 10;
16030 inst.instruction |= (fcond & 0x1) << 7;
16031 if (et.type == NT_float)
16032 {
16033 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
16034 BAD_FPU);
16035 inst.instruction |= (et.size == 16) << 28;
16036 inst.instruction |= 0x3 << 20;
16037 }
16038 else
16039 {
16040 inst.instruction |= 1 << 28;
16041 inst.instruction |= neon_logbits (et.size) << 20;
16042 }
16043 if (inst.operands[2].isquad)
16044 {
16045 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16046 inst.instruction |= (fcond & 0x2) >> 1;
16047 inst.instruction |= LOW4 (inst.operands[2].reg);
16048 }
16049 else
16050 {
16051 if (inst.operands[2].reg == REG_SP)
16052 as_tsktsk (MVE_BAD_SP);
16053 inst.instruction |= 1 << 6;
16054 inst.instruction |= (fcond & 0x2) << 4;
16055 inst.instruction |= inst.operands[2].reg;
16056 }
16057
16058 inst.is_neon = 1;
16059 return;
16060}
16061
935295b5
AV
16062static void
16063do_mve_vmaxa_vmina (void)
16064{
16065 if (inst.cond > COND_ALWAYS)
16066 inst.pred_insn_type = INSIDE_VPT_INSN;
16067 else
16068 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16069
16070 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16071 struct neon_type_el et
16072 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
16073
16074 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16075 inst.instruction |= neon_logbits (et.size) << 18;
16076 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16077 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16078 inst.instruction |= LOW4 (inst.operands[1].reg);
16079 inst.is_neon = 1;
16080}
16081
f30ee27c
AV
16082static void
16083do_mve_vfmas (void)
16084{
16085 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16086 struct neon_type_el et
16087 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
16088
16089 if (inst.cond > COND_ALWAYS)
16090 inst.pred_insn_type = INSIDE_VPT_INSN;
16091 else
16092 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16093
16094 if (inst.operands[2].reg == REG_SP)
16095 as_tsktsk (MVE_BAD_SP);
16096 else if (inst.operands[2].reg == REG_PC)
16097 as_tsktsk (MVE_BAD_PC);
16098
16099 inst.instruction |= (et.size == 16) << 28;
16100 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16101 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16102 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16103 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16104 inst.instruction |= inst.operands[2].reg;
16105 inst.is_neon = 1;
16106}
16107
b409bdb6
AV
16108static void
16109do_mve_viddup (void)
16110{
16111 if (inst.cond > COND_ALWAYS)
16112 inst.pred_insn_type = INSIDE_VPT_INSN;
16113 else
16114 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16115
16116 unsigned imm = inst.relocs[0].exp.X_add_number;
16117 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
16118 _("immediate must be either 1, 2, 4 or 8"));
16119
16120 enum neon_shape rs;
16121 struct neon_type_el et;
16122 unsigned Rm;
16123 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
16124 {
16125 rs = neon_select_shape (NS_QRI, NS_NULL);
16126 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
16127 Rm = 7;
16128 }
16129 else
16130 {
16131 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
16132 if (inst.operands[2].reg == REG_SP)
16133 as_tsktsk (MVE_BAD_SP);
16134 else if (inst.operands[2].reg == REG_PC)
16135 first_error (BAD_PC);
16136
16137 rs = neon_select_shape (NS_QRRI, NS_NULL);
16138 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
16139 Rm = inst.operands[2].reg >> 1;
16140 }
16141 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16142 inst.instruction |= neon_logbits (et.size) << 20;
16143 inst.instruction |= inst.operands[1].reg << 16;
16144 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16145 inst.instruction |= (imm > 2) << 7;
16146 inst.instruction |= Rm << 1;
16147 inst.instruction |= (imm == 2 || imm == 8);
16148 inst.is_neon = 1;
16149}
16150
2d78f95b
AV
16151static void
16152do_mve_vmlas (void)
16153{
16154 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16155 struct neon_type_el et
16156 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16157
16158 if (inst.operands[2].reg == REG_PC)
16159 as_tsktsk (MVE_BAD_PC);
16160 else if (inst.operands[2].reg == REG_SP)
16161 as_tsktsk (MVE_BAD_SP);
16162
16163 if (inst.cond > COND_ALWAYS)
16164 inst.pred_insn_type = INSIDE_VPT_INSN;
16165 else
16166 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16167
16168 inst.instruction |= (et.type == NT_unsigned) << 28;
16169 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16170 inst.instruction |= neon_logbits (et.size) << 20;
16171 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16172 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16173 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16174 inst.instruction |= inst.operands[2].reg;
16175 inst.is_neon = 1;
16176}
16177
acca5630
AV
16178static void
16179do_mve_vshll (void)
16180{
16181 struct neon_type_el et
16182 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
16183
16184 if (inst.cond > COND_ALWAYS)
16185 inst.pred_insn_type = INSIDE_VPT_INSN;
16186 else
16187 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16188
16189 int imm = inst.operands[2].imm;
16190 constraint (imm < 1 || (unsigned)imm > et.size,
16191 _("immediate value out of range"));
16192
16193 if ((unsigned)imm == et.size)
16194 {
16195 inst.instruction |= neon_logbits (et.size) << 18;
16196 inst.instruction |= 0x110001;
16197 }
16198 else
16199 {
16200 inst.instruction |= (et.size + imm) << 16;
16201 inst.instruction |= 0x800140;
16202 }
16203
16204 inst.instruction |= (et.type == NT_unsigned) << 28;
16205 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16206 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16207 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16208 inst.instruction |= LOW4 (inst.operands[1].reg);
16209 inst.is_neon = 1;
16210}
16211
16212static void
16213do_mve_vshlc (void)
16214{
16215 if (inst.cond > COND_ALWAYS)
16216 inst.pred_insn_type = INSIDE_VPT_INSN;
16217 else
16218 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16219
16220 if (inst.operands[1].reg == REG_PC)
16221 as_tsktsk (MVE_BAD_PC);
16222 else if (inst.operands[1].reg == REG_SP)
16223 as_tsktsk (MVE_BAD_SP);
16224
16225 int imm = inst.operands[2].imm;
16226 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
16227
16228 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16229 inst.instruction |= (imm & 0x1f) << 16;
16230 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16231 inst.instruction |= inst.operands[1].reg;
16232 inst.is_neon = 1;
16233}
16234
4aa88b50
AV
16235static void
16236do_mve_vshrn (void)
16237{
16238 unsigned types;
16239 switch (inst.instruction)
16240 {
16241 case M_MNEM_vshrnt:
16242 case M_MNEM_vshrnb:
16243 case M_MNEM_vrshrnt:
16244 case M_MNEM_vrshrnb:
16245 types = N_I16 | N_I32;
16246 break;
16247 case M_MNEM_vqshrnt:
16248 case M_MNEM_vqshrnb:
16249 case M_MNEM_vqrshrnt:
16250 case M_MNEM_vqrshrnb:
16251 types = N_U16 | N_U32 | N_S16 | N_S32;
16252 break;
16253 case M_MNEM_vqshrunt:
16254 case M_MNEM_vqshrunb:
16255 case M_MNEM_vqrshrunt:
16256 case M_MNEM_vqrshrunb:
16257 types = N_S16 | N_S32;
16258 break;
16259 default:
16260 abort ();
16261 }
16262
16263 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
16264
16265 if (inst.cond > COND_ALWAYS)
16266 inst.pred_insn_type = INSIDE_VPT_INSN;
16267 else
16268 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16269
16270 unsigned Qd = inst.operands[0].reg;
16271 unsigned Qm = inst.operands[1].reg;
16272 unsigned imm = inst.operands[2].imm;
16273 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
16274 et.size == 16
16275 ? _("immediate operand expected in the range [1,8]")
16276 : _("immediate operand expected in the range [1,16]"));
16277
16278 inst.instruction |= (et.type == NT_unsigned) << 28;
16279 inst.instruction |= HI1 (Qd) << 22;
16280 inst.instruction |= (et.size - imm) << 16;
16281 inst.instruction |= LOW4 (Qd) << 12;
16282 inst.instruction |= HI1 (Qm) << 5;
16283 inst.instruction |= LOW4 (Qm);
16284 inst.is_neon = 1;
16285}
16286
1be7aba3
AV
16287static void
16288do_mve_vqmovn (void)
16289{
16290 struct neon_type_el et;
16291 if (inst.instruction == M_MNEM_vqmovnt
16292 || inst.instruction == M_MNEM_vqmovnb)
16293 et = neon_check_type (2, NS_QQ, N_EQK,
16294 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
16295 else
16296 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
16297
16298 if (inst.cond > COND_ALWAYS)
16299 inst.pred_insn_type = INSIDE_VPT_INSN;
16300 else
16301 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16302
16303 inst.instruction |= (et.type == NT_unsigned) << 28;
16304 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16305 inst.instruction |= (et.size == 32) << 18;
16306 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16307 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16308 inst.instruction |= LOW4 (inst.operands[1].reg);
16309 inst.is_neon = 1;
16310}
16311
3063888e
AV
16312static void
16313do_mve_vpsel (void)
16314{
16315 neon_select_shape (NS_QQQ, NS_NULL);
16316
16317 if (inst.cond > COND_ALWAYS)
16318 inst.pred_insn_type = INSIDE_VPT_INSN;
16319 else
16320 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16321
16322 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16323 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16324 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16325 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16326 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16327 inst.instruction |= LOW4 (inst.operands[2].reg);
16328 inst.is_neon = 1;
16329}
16330
16331static void
16332do_mve_vpnot (void)
16333{
16334 if (inst.cond > COND_ALWAYS)
16335 inst.pred_insn_type = INSIDE_VPT_INSN;
16336 else
16337 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16338}
16339
935295b5
AV
16340static void
16341do_mve_vmaxnma_vminnma (void)
16342{
16343 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16344 struct neon_type_el et
16345 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
16346
16347 if (inst.cond > COND_ALWAYS)
16348 inst.pred_insn_type = INSIDE_VPT_INSN;
16349 else
16350 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16351
16352 inst.instruction |= (et.size == 16) << 28;
16353 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16354 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16355 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16356 inst.instruction |= LOW4 (inst.operands[1].reg);
16357 inst.is_neon = 1;
16358}
16359
5d281bf0
AV
16360static void
16361do_mve_vcmul (void)
16362{
16363 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
16364 struct neon_type_el et
16365 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
16366
16367 if (inst.cond > COND_ALWAYS)
16368 inst.pred_insn_type = INSIDE_VPT_INSN;
16369 else
16370 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16371
16372 unsigned rot = inst.relocs[0].exp.X_add_number;
16373 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
16374 _("immediate out of range"));
16375
16376 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
16377 || inst.operands[0].reg == inst.operands[2].reg))
16378 as_tsktsk (BAD_MVE_SRCDEST);
16379
16380 inst.instruction |= (et.size == 32) << 28;
16381 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16382 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16383 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16384 inst.instruction |= (rot > 90) << 12;
16385 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16386 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16387 inst.instruction |= LOW4 (inst.operands[2].reg);
16388 inst.instruction |= (rot == 90 || rot == 270);
16389 inst.is_neon = 1;
16390}
16391
1f6234a3
AV
16392/* To handle the Low Overhead Loop instructions
16393 in Armv8.1-M Mainline and MVE. */
16394static void
16395do_t_loloop (void)
16396{
16397 unsigned long insn = inst.instruction;
16398
16399 inst.instruction = THUMB_OP32 (inst.instruction);
16400
16401 if (insn == T_MNEM_lctp)
16402 return;
16403
16404 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
16405
16406 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16407 {
16408 struct neon_type_el et
16409 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16410 inst.instruction |= neon_logbits (et.size) << 20;
16411 inst.is_neon = 1;
16412 }
16413
16414 switch (insn)
16415 {
16416 case T_MNEM_letp:
16417 constraint (!inst.operands[0].present,
16418 _("expected LR"));
16419 /* fall through. */
16420 case T_MNEM_le:
16421 /* le <label>. */
16422 if (!inst.operands[0].present)
16423 inst.instruction |= 1 << 21;
16424
16425 v8_1_loop_reloc (TRUE);
16426 break;
16427
16428 case T_MNEM_wls:
16429 case T_MNEM_wlstp:
16430 v8_1_loop_reloc (FALSE);
16431 /* fall through. */
16432 case T_MNEM_dlstp:
16433 case T_MNEM_dls:
16434 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16435
16436 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16437 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16438 else if (inst.operands[1].reg == REG_PC)
16439 as_tsktsk (MVE_BAD_PC);
16440 if (inst.operands[1].reg == REG_SP)
16441 as_tsktsk (MVE_BAD_SP);
16442
16443 inst.instruction |= (inst.operands[1].reg << 16);
16444 break;
16445
16446 default:
16447 abort ();
16448 }
16449}
16450
16451
037e8744
JB
16452static void
16453do_vfp_nsyn_cmp (void)
16454{
9db2f6b4 16455 enum neon_shape rs;
1b883319
AV
16456 if (!inst.operands[0].isreg)
16457 {
16458 do_mve_vcmp ();
16459 return;
16460 }
16461 else
16462 {
16463 constraint (inst.operands[2].present, BAD_SYNTAX);
16464 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16465 BAD_FPU);
16466 }
16467
037e8744
JB
16468 if (inst.operands[1].isreg)
16469 {
9db2f6b4
RL
16470 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16471 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 16472
9db2f6b4 16473 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
16474 {
16475 NEON_ENCODE (SINGLE, inst);
16476 do_vfp_sp_monadic ();
16477 }
037e8744 16478 else
477330fc
RM
16479 {
16480 NEON_ENCODE (DOUBLE, inst);
16481 do_vfp_dp_rd_rm ();
16482 }
037e8744
JB
16483 }
16484 else
16485 {
9db2f6b4
RL
16486 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16487 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
16488
16489 switch (inst.instruction & 0x0fffffff)
477330fc
RM
16490 {
16491 case N_MNEM_vcmp:
16492 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16493 break;
16494 case N_MNEM_vcmpe:
16495 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16496 break;
16497 default:
16498 abort ();
16499 }
5f4273c7 16500
9db2f6b4 16501 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
16502 {
16503 NEON_ENCODE (SINGLE, inst);
16504 do_vfp_sp_compare_z ();
16505 }
037e8744 16506 else
477330fc
RM
16507 {
16508 NEON_ENCODE (DOUBLE, inst);
16509 do_vfp_dp_rd ();
16510 }
037e8744
JB
16511 }
16512 do_vfp_cond_or_thumb ();
9db2f6b4
RL
16513
16514 /* ARMv8.2 fp16 instruction. */
16515 if (rs == NS_HI || rs == NS_HH)
16516 do_scalar_fp16_v82_encode ();
037e8744
JB
16517}
16518
16519static void
16520nsyn_insert_sp (void)
16521{
16522 inst.operands[1] = inst.operands[0];
16523 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 16524 inst.operands[0].reg = REG_SP;
037e8744
JB
16525 inst.operands[0].isreg = 1;
16526 inst.operands[0].writeback = 1;
16527 inst.operands[0].present = 1;
16528}
16529
16530static void
16531do_vfp_nsyn_push (void)
16532{
16533 nsyn_insert_sp ();
b126985e
NC
16534
16535 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16536 _("register list must contain at least 1 and at most 16 "
16537 "registers"));
16538
037e8744
JB
16539 if (inst.operands[1].issingle)
16540 do_vfp_nsyn_opcode ("fstmdbs");
16541 else
16542 do_vfp_nsyn_opcode ("fstmdbd");
16543}
16544
16545static void
16546do_vfp_nsyn_pop (void)
16547{
16548 nsyn_insert_sp ();
b126985e
NC
16549
16550 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16551 _("register list must contain at least 1 and at most 16 "
16552 "registers"));
16553
037e8744 16554 if (inst.operands[1].issingle)
22b5b651 16555 do_vfp_nsyn_opcode ("fldmias");
037e8744 16556 else
22b5b651 16557 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
16558}
16559
16560/* Fix up Neon data-processing instructions, ORing in the correct bits for
16561 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16562
88714cb8
DG
16563static void
16564neon_dp_fixup (struct arm_it* insn)
037e8744 16565{
88714cb8
DG
16566 unsigned int i = insn->instruction;
16567 insn->is_neon = 1;
16568
037e8744
JB
16569 if (thumb_mode)
16570 {
16571 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16572 if (i & (1 << 24))
477330fc 16573 i |= 1 << 28;
5f4273c7 16574
037e8744 16575 i &= ~(1 << 24);
5f4273c7 16576
037e8744
JB
16577 i |= 0xef000000;
16578 }
16579 else
16580 i |= 0xf2000000;
5f4273c7 16581
88714cb8 16582 insn->instruction = i;
037e8744
JB
16583}
16584
5ee91343 16585static void
7df54120 16586mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
16587{
16588 if (inst.operands[2].reg == REG_SP)
16589 as_tsktsk (MVE_BAD_SP);
16590 else if (inst.operands[2].reg == REG_PC)
16591 as_tsktsk (MVE_BAD_PC);
16592
16593 if (fp)
16594 {
16595 /* vadd. */
16596 if (((unsigned)inst.instruction) == 0xd00)
16597 inst.instruction = 0xee300f40;
16598 /* vsub. */
16599 else if (((unsigned)inst.instruction) == 0x200d00)
16600 inst.instruction = 0xee301f40;
a8465a06
AV
16601 /* vmul. */
16602 else if (((unsigned)inst.instruction) == 0x1000d10)
16603 inst.instruction = 0xee310e60;
5ee91343
AV
16604
16605 /* Setting size which is 1 for F16 and 0 for F32. */
16606 inst.instruction |= (size == 16) << 28;
16607 }
16608 else
16609 {
16610 /* vadd. */
16611 if (((unsigned)inst.instruction) == 0x800)
16612 inst.instruction = 0xee010f40;
16613 /* vsub. */
16614 else if (((unsigned)inst.instruction) == 0x1000800)
16615 inst.instruction = 0xee011f40;
7df54120
AV
16616 /* vhadd. */
16617 else if (((unsigned)inst.instruction) == 0)
16618 inst.instruction = 0xee000f40;
16619 /* vhsub. */
16620 else if (((unsigned)inst.instruction) == 0x200)
16621 inst.instruction = 0xee001f40;
a8465a06
AV
16622 /* vmla. */
16623 else if (((unsigned)inst.instruction) == 0x900)
16624 inst.instruction = 0xee010e40;
16625 /* vmul. */
16626 else if (((unsigned)inst.instruction) == 0x910)
16627 inst.instruction = 0xee011e60;
16628 /* vqadd. */
16629 else if (((unsigned)inst.instruction) == 0x10)
16630 inst.instruction = 0xee000f60;
16631 /* vqsub. */
16632 else if (((unsigned)inst.instruction) == 0x210)
16633 inst.instruction = 0xee001f60;
42b16635
AV
16634 /* vqrdmlah. */
16635 else if (((unsigned)inst.instruction) == 0x3000b10)
16636 inst.instruction = 0xee000e40;
16637 /* vqdmulh. */
16638 else if (((unsigned)inst.instruction) == 0x0000b00)
16639 inst.instruction = 0xee010e60;
16640 /* vqrdmulh. */
16641 else if (((unsigned)inst.instruction) == 0x1000b00)
16642 inst.instruction = 0xfe010e60;
7df54120
AV
16643
16644 /* Set U-bit. */
16645 inst.instruction |= U << 28;
16646
5ee91343
AV
16647 /* Setting bits for size. */
16648 inst.instruction |= neon_logbits (size) << 20;
16649 }
16650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16651 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16652 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16653 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16654 inst.instruction |= inst.operands[2].reg;
16655 inst.is_neon = 1;
16656}
16657
a302e574
AV
16658static void
16659mve_encode_rqq (unsigned bit28, unsigned size)
16660{
16661 inst.instruction |= bit28 << 28;
16662 inst.instruction |= neon_logbits (size) << 20;
16663 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16664 inst.instruction |= inst.operands[0].reg << 12;
16665 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16666 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16667 inst.instruction |= LOW4 (inst.operands[2].reg);
16668 inst.is_neon = 1;
16669}
16670
886e1c73
AV
16671static void
16672mve_encode_qqq (int ubit, int size)
16673{
16674
16675 inst.instruction |= (ubit != 0) << 28;
16676 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16677 inst.instruction |= neon_logbits (size) << 20;
16678 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16679 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16680 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16681 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16682 inst.instruction |= LOW4 (inst.operands[2].reg);
16683
16684 inst.is_neon = 1;
16685}
16686
26c1e780
AV
16687static void
16688mve_encode_rq (unsigned bit28, unsigned size)
16689{
16690 inst.instruction |= bit28 << 28;
16691 inst.instruction |= neon_logbits (size) << 18;
16692 inst.instruction |= inst.operands[0].reg << 12;
16693 inst.instruction |= LOW4 (inst.operands[1].reg);
16694 inst.is_neon = 1;
16695}
886e1c73 16696
93925576
AV
16697static void
16698mve_encode_rrqq (unsigned U, unsigned size)
16699{
16700 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16701
16702 inst.instruction |= U << 28;
16703 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16704 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16705 inst.instruction |= (size == 32) << 16;
16706 inst.instruction |= inst.operands[0].reg << 12;
16707 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16708 inst.instruction |= inst.operands[3].reg;
16709 inst.is_neon = 1;
16710}
16711
aab2c27d
MM
16712/* Helper function for neon_three_same handling the operands. */
16713static void
16714neon_three_args (int isquad)
16715{
16716 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16717 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16718 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16719 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16720 inst.instruction |= LOW4 (inst.operands[2].reg);
16721 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16722 inst.instruction |= (isquad != 0) << 6;
16723 inst.is_neon = 1;
16724}
16725
037e8744
JB
16726/* Encode insns with bit pattern:
16727
16728 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16729 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 16730
037e8744
JB
16731 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16732 different meaning for some instruction. */
16733
16734static void
16735neon_three_same (int isquad, int ubit, int size)
16736{
aab2c27d 16737 neon_three_args (isquad);
037e8744
JB
16738 inst.instruction |= (ubit != 0) << 24;
16739 if (size != -1)
16740 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16741
88714cb8 16742 neon_dp_fixup (&inst);
037e8744
JB
16743}
16744
16745/* Encode instructions of the form:
16746
16747 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16748 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
16749
16750 Don't write size if SIZE == -1. */
16751
16752static void
16753neon_two_same (int qbit, int ubit, int size)
16754{
16755 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16756 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16757 inst.instruction |= LOW4 (inst.operands[1].reg);
16758 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16759 inst.instruction |= (qbit != 0) << 6;
16760 inst.instruction |= (ubit != 0) << 24;
16761
16762 if (size != -1)
16763 inst.instruction |= neon_logbits (size) << 18;
16764
88714cb8 16765 neon_dp_fixup (&inst);
5287ad62
JB
16766}
16767
7df54120
AV
16768enum vfp_or_neon_is_neon_bits
16769{
16770NEON_CHECK_CC = 1,
16771NEON_CHECK_ARCH = 2,
16772NEON_CHECK_ARCH8 = 4
16773};
16774
16775/* Call this function if an instruction which may have belonged to the VFP or
16776 Neon instruction sets, but turned out to be a Neon instruction (due to the
16777 operand types involved, etc.). We have to check and/or fix-up a couple of
16778 things:
16779
16780 - Make sure the user hasn't attempted to make a Neon instruction
16781 conditional.
16782 - Alter the value in the condition code field if necessary.
16783 - Make sure that the arch supports Neon instructions.
16784
16785 Which of these operations take place depends on bits from enum
16786 vfp_or_neon_is_neon_bits.
16787
16788 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16789 current instruction's condition is COND_ALWAYS, the condition field is
16790 changed to inst.uncond_value. This is necessary because instructions shared
16791 between VFP and Neon may be conditional for the VFP variants only, and the
16792 unconditional Neon version must have, e.g., 0xF in the condition field. */
16793
16794static int
16795vfp_or_neon_is_neon (unsigned check)
16796{
16797/* Conditions are always legal in Thumb mode (IT blocks). */
16798if (!thumb_mode && (check & NEON_CHECK_CC))
16799 {
16800 if (inst.cond != COND_ALWAYS)
16801 {
16802 first_error (_(BAD_COND));
16803 return FAIL;
16804 }
16805 if (inst.uncond_value != -1)
16806 inst.instruction |= inst.uncond_value << 28;
16807 }
16808
16809
16810 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16811 || ((check & NEON_CHECK_ARCH8)
16812 && !mark_feature_used (&fpu_neon_ext_armv8)))
16813 {
16814 first_error (_(BAD_FPU));
16815 return FAIL;
16816 }
16817
16818return SUCCESS;
16819}
16820
64c350f2
AV
16821
16822/* Return TRUE if the SIMD instruction is available for the current
16823 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16824 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16825 vfp_or_neon_is_neon for the NEON specific checks. */
16826
16827static bfd_boolean
7df54120
AV
16828check_simd_pred_availability (int fp, unsigned check)
16829{
16830if (inst.cond > COND_ALWAYS)
16831 {
16832 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16833 {
16834 inst.error = BAD_FPU;
64c350f2 16835 return FALSE;
7df54120
AV
16836 }
16837 inst.pred_insn_type = INSIDE_VPT_INSN;
16838 }
16839else if (inst.cond < COND_ALWAYS)
16840 {
16841 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16842 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16843 else if (vfp_or_neon_is_neon (check) == FAIL)
64c350f2 16844 return FALSE;
7df54120
AV
16845 }
16846else
16847 {
16848 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16849 && vfp_or_neon_is_neon (check) == FAIL)
64c350f2 16850 return FALSE;
7df54120
AV
16851
16852 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16853 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16854 }
64c350f2 16855return TRUE;
7df54120
AV
16856}
16857
5287ad62
JB
16858/* Neon instruction encoders, in approximate order of appearance. */
16859
16860static void
16861do_neon_dyadic_i_su (void)
16862{
64c350f2 16863 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
7df54120
AV
16864 return;
16865
16866 enum neon_shape rs;
16867 struct neon_type_el et;
16868 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16869 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16870 else
16871 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16872
16873 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16874
16875
16876 if (rs != NS_QQR)
16877 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16878 else
16879 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16880}
16881
16882static void
16883do_neon_dyadic_i64_su (void)
16884{
64c350f2 16885 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
a8465a06
AV
16886 return;
16887 enum neon_shape rs;
16888 struct neon_type_el et;
16889 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16890 {
16891 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16892 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16893 }
16894 else
16895 {
16896 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16897 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16898 }
16899 if (rs == NS_QQR)
16900 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16901 else
16902 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16903}
16904
16905static void
16906neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16907 unsigned immbits)
5287ad62
JB
16908{
16909 unsigned size = et.size >> 3;
16910 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16911 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16912 inst.instruction |= LOW4 (inst.operands[1].reg);
16913 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16914 inst.instruction |= (isquad != 0) << 6;
16915 inst.instruction |= immbits << 16;
16916 inst.instruction |= (size >> 3) << 7;
16917 inst.instruction |= (size & 0x7) << 19;
16918 if (write_ubit)
16919 inst.instruction |= (uval != 0) << 24;
16920
88714cb8 16921 neon_dp_fixup (&inst);
5287ad62
JB
16922}
16923
16924static void
5150f0d8 16925do_neon_shl (void)
5287ad62 16926{
64c350f2 16927 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
5150f0d8
AV
16928 return;
16929
5287ad62
JB
16930 if (!inst.operands[2].isreg)
16931 {
5150f0d8
AV
16932 enum neon_shape rs;
16933 struct neon_type_el et;
16934 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16935 {
16936 rs = neon_select_shape (NS_QQI, NS_NULL);
16937 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16938 }
16939 else
16940 {
16941 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16942 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16943 }
cb3b1e65
JB
16944 int imm = inst.operands[2].imm;
16945
16946 constraint (imm < 0 || (unsigned)imm >= et.size,
16947 _("immediate out of range for shift"));
88714cb8 16948 NEON_ENCODE (IMMED, inst);
cb3b1e65 16949 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16950 }
16951 else
16952 {
5150f0d8
AV
16953 enum neon_shape rs;
16954 struct neon_type_el et;
16955 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16956 {
16957 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16958 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16959 }
16960 else
16961 {
16962 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16963 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16964 }
16965
16966
16967 if (rs == NS_QQR)
16968 {
16969 constraint (inst.operands[0].reg != inst.operands[1].reg,
16970 _("invalid instruction shape"));
16971 if (inst.operands[2].reg == REG_SP)
16972 as_tsktsk (MVE_BAD_SP);
16973 else if (inst.operands[2].reg == REG_PC)
16974 as_tsktsk (MVE_BAD_PC);
16975
16976 inst.instruction = 0xee311e60;
16977 inst.instruction |= (et.type == NT_unsigned) << 28;
16978 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16979 inst.instruction |= neon_logbits (et.size) << 18;
16980 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16981 inst.instruction |= inst.operands[2].reg;
16982 inst.is_neon = 1;
16983 }
16984 else
16985 {
16986 unsigned int tmp;
16987
16988 /* VSHL/VQSHL 3-register variants have syntax such as:
16989 vshl.xx Dd, Dm, Dn
16990 whereas other 3-register operations encoded by neon_three_same have
16991 syntax like:
16992 vadd.xx Dd, Dn, Dm
16993 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
16994 operands[2].reg here. */
16995 tmp = inst.operands[2].reg;
16996 inst.operands[2].reg = inst.operands[1].reg;
16997 inst.operands[1].reg = tmp;
16998 NEON_ENCODE (INTEGER, inst);
16999 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17000 }
5287ad62
JB
17001 }
17002}
17003
17004static void
5150f0d8 17005do_neon_qshl (void)
5287ad62 17006{
64c350f2 17007 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
5150f0d8
AV
17008 return;
17009
5287ad62
JB
17010 if (!inst.operands[2].isreg)
17011 {
5150f0d8
AV
17012 enum neon_shape rs;
17013 struct neon_type_el et;
17014 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17015 {
17016 rs = neon_select_shape (NS_QQI, NS_NULL);
17017 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
17018 }
17019 else
17020 {
17021 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17022 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
17023 }
cb3b1e65 17024 int imm = inst.operands[2].imm;
627907b7 17025
cb3b1e65
JB
17026 constraint (imm < 0 || (unsigned)imm >= et.size,
17027 _("immediate out of range for shift"));
88714cb8 17028 NEON_ENCODE (IMMED, inst);
cb3b1e65 17029 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
17030 }
17031 else
17032 {
5150f0d8
AV
17033 enum neon_shape rs;
17034 struct neon_type_el et;
627907b7 17035
5150f0d8
AV
17036 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17037 {
17038 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17039 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
17040 }
17041 else
17042 {
17043 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17044 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
17045 }
17046
17047 if (rs == NS_QQR)
17048 {
17049 constraint (inst.operands[0].reg != inst.operands[1].reg,
17050 _("invalid instruction shape"));
17051 if (inst.operands[2].reg == REG_SP)
17052 as_tsktsk (MVE_BAD_SP);
17053 else if (inst.operands[2].reg == REG_PC)
17054 as_tsktsk (MVE_BAD_PC);
17055
17056 inst.instruction = 0xee311ee0;
17057 inst.instruction |= (et.type == NT_unsigned) << 28;
17058 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17059 inst.instruction |= neon_logbits (et.size) << 18;
17060 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17061 inst.instruction |= inst.operands[2].reg;
17062 inst.is_neon = 1;
17063 }
17064 else
17065 {
17066 unsigned int tmp;
17067
17068 /* See note in do_neon_shl. */
17069 tmp = inst.operands[2].reg;
17070 inst.operands[2].reg = inst.operands[1].reg;
17071 inst.operands[1].reg = tmp;
17072 NEON_ENCODE (INTEGER, inst);
17073 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17074 }
5287ad62
JB
17075 }
17076}
17077
627907b7
JB
17078static void
17079do_neon_rshl (void)
17080{
64c350f2 17081 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
1be7aba3
AV
17082 return;
17083
17084 enum neon_shape rs;
17085 struct neon_type_el et;
17086 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17087 {
17088 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17089 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17090 }
17091 else
17092 {
17093 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17094 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
17095 }
17096
627907b7
JB
17097 unsigned int tmp;
17098
1be7aba3
AV
17099 if (rs == NS_QQR)
17100 {
17101 if (inst.operands[2].reg == REG_PC)
17102 as_tsktsk (MVE_BAD_PC);
17103 else if (inst.operands[2].reg == REG_SP)
17104 as_tsktsk (MVE_BAD_SP);
17105
17106 constraint (inst.operands[0].reg != inst.operands[1].reg,
17107 _("invalid instruction shape"));
17108
17109 if (inst.instruction == 0x0000510)
17110 /* We are dealing with vqrshl. */
17111 inst.instruction = 0xee331ee0;
17112 else
17113 /* We are dealing with vrshl. */
17114 inst.instruction = 0xee331e60;
17115
17116 inst.instruction |= (et.type == NT_unsigned) << 28;
17117 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17118 inst.instruction |= neon_logbits (et.size) << 18;
17119 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17120 inst.instruction |= inst.operands[2].reg;
17121 inst.is_neon = 1;
17122 }
17123 else
17124 {
17125 tmp = inst.operands[2].reg;
17126 inst.operands[2].reg = inst.operands[1].reg;
17127 inst.operands[1].reg = tmp;
17128 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17129 }
627907b7
JB
17130}
17131
5287ad62
JB
17132static int
17133neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
17134{
036dc3f7
PB
17135 /* Handle .I8 pseudo-instructions. */
17136 if (size == 8)
5287ad62 17137 {
5287ad62 17138 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
17139 FIXME is this the intended semantics? There doesn't seem much point in
17140 accepting .I8 if so. */
5287ad62
JB
17141 immediate |= immediate << 8;
17142 size = 16;
036dc3f7
PB
17143 }
17144
17145 if (size >= 32)
17146 {
17147 if (immediate == (immediate & 0x000000ff))
17148 {
17149 *immbits = immediate;
17150 return 0x1;
17151 }
17152 else if (immediate == (immediate & 0x0000ff00))
17153 {
17154 *immbits = immediate >> 8;
17155 return 0x3;
17156 }
17157 else if (immediate == (immediate & 0x00ff0000))
17158 {
17159 *immbits = immediate >> 16;
17160 return 0x5;
17161 }
17162 else if (immediate == (immediate & 0xff000000))
17163 {
17164 *immbits = immediate >> 24;
17165 return 0x7;
17166 }
17167 if ((immediate & 0xffff) != (immediate >> 16))
17168 goto bad_immediate;
17169 immediate &= 0xffff;
5287ad62
JB
17170 }
17171
17172 if (immediate == (immediate & 0x000000ff))
17173 {
17174 *immbits = immediate;
036dc3f7 17175 return 0x9;
5287ad62
JB
17176 }
17177 else if (immediate == (immediate & 0x0000ff00))
17178 {
17179 *immbits = immediate >> 8;
036dc3f7 17180 return 0xb;
5287ad62
JB
17181 }
17182
17183 bad_immediate:
dcbf9037 17184 first_error (_("immediate value out of range"));
5287ad62
JB
17185 return FAIL;
17186}
17187
5287ad62
JB
17188static void
17189do_neon_logic (void)
17190{
17191 if (inst.operands[2].present && inst.operands[2].isreg)
17192 {
037e8744 17193 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c 17194 if (rs == NS_QQQ
64c350f2
AV
17195 && !check_simd_pred_availability (FALSE,
17196 NEON_CHECK_ARCH | NEON_CHECK_CC))
f601a00c
AV
17197 return;
17198 else if (rs != NS_QQQ
17199 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17200 first_error (BAD_FPU);
17201
5287ad62
JB
17202 neon_check_type (3, rs, N_IGNORE_TYPE);
17203 /* U bit and size field were set as part of the bitmask. */
88714cb8 17204 NEON_ENCODE (INTEGER, inst);
037e8744 17205 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
17206 }
17207 else
17208 {
4316f0d2
DG
17209 const int three_ops_form = (inst.operands[2].present
17210 && !inst.operands[2].isreg);
17211 const int immoperand = (three_ops_form ? 2 : 1);
17212 enum neon_shape rs = (three_ops_form
17213 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
17214 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
17215 /* Because neon_select_shape makes the second operand a copy of the first
17216 if the second operand is not present. */
17217 if (rs == NS_QQI
64c350f2
AV
17218 && !check_simd_pred_availability (FALSE,
17219 NEON_CHECK_ARCH | NEON_CHECK_CC))
f601a00c
AV
17220 return;
17221 else if (rs != NS_QQI
17222 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17223 first_error (BAD_FPU);
17224
17225 struct neon_type_el et;
17226 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17227 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
17228 else
17229 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
17230 | N_KEY, N_EQK);
17231
17232 if (et.type == NT_invtype)
17233 return;
21d799b5 17234 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
17235 unsigned immbits;
17236 int cmode;
5f4273c7 17237
5f4273c7 17238
4316f0d2
DG
17239 if (three_ops_form)
17240 constraint (inst.operands[0].reg != inst.operands[1].reg,
17241 _("first and second operands shall be the same register"));
17242
88714cb8 17243 NEON_ENCODE (IMMED, inst);
5287ad62 17244
4316f0d2 17245 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
17246 if (et.size == 64)
17247 {
17248 /* .i64 is a pseudo-op, so the immediate must be a repeating
17249 pattern. */
4316f0d2
DG
17250 if (immbits != (inst.operands[immoperand].regisimm ?
17251 inst.operands[immoperand].reg : 0))
036dc3f7
PB
17252 {
17253 /* Set immbits to an invalid constant. */
17254 immbits = 0xdeadbeef;
17255 }
17256 }
17257
5287ad62 17258 switch (opcode)
477330fc
RM
17259 {
17260 case N_MNEM_vbic:
17261 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17262 break;
17263
17264 case N_MNEM_vorr:
17265 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17266 break;
17267
17268 case N_MNEM_vand:
17269 /* Pseudo-instruction for VBIC. */
17270 neon_invert_size (&immbits, 0, et.size);
17271 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17272 break;
17273
17274 case N_MNEM_vorn:
17275 /* Pseudo-instruction for VORR. */
17276 neon_invert_size (&immbits, 0, et.size);
17277 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17278 break;
17279
17280 default:
17281 abort ();
17282 }
5287ad62
JB
17283
17284 if (cmode == FAIL)
477330fc 17285 return;
5287ad62 17286
037e8744 17287 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17288 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17289 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17290 inst.instruction |= cmode << 8;
17291 neon_write_immbits (immbits);
5f4273c7 17292
88714cb8 17293 neon_dp_fixup (&inst);
5287ad62
JB
17294 }
17295}
17296
17297static void
17298do_neon_bitfield (void)
17299{
037e8744 17300 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 17301 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 17302 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
17303}
17304
17305static void
dcbf9037 17306neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 17307 unsigned destbits)
5287ad62 17308{
5ee91343 17309 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 17310 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 17311 types | N_KEY);
5287ad62
JB
17312 if (et.type == NT_float)
17313 {
88714cb8 17314 NEON_ENCODE (FLOAT, inst);
5ee91343 17315 if (rs == NS_QQR)
7df54120 17316 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
17317 else
17318 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17319 }
17320 else
17321 {
88714cb8 17322 NEON_ENCODE (INTEGER, inst);
5ee91343 17323 if (rs == NS_QQR)
a8465a06 17324 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
5ee91343
AV
17325 else
17326 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
17327 }
17328}
17329
5287ad62
JB
17330
17331static void
17332do_neon_dyadic_if_su_d (void)
17333{
17334 /* This version only allow D registers, but that constraint is enforced during
17335 operand parsing so we don't need to do anything extra here. */
dcbf9037 17336 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
17337}
17338
5287ad62
JB
17339static void
17340do_neon_dyadic_if_i_d (void)
17341{
428e3f1f
PB
17342 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17343 affected if we specify unsigned args. */
17344 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
17345}
17346
f5f10c66
AV
17347static void
17348do_mve_vstr_vldr_QI (int size, int elsize, int load)
17349{
17350 constraint (size < 32, BAD_ADDR_MODE);
17351 constraint (size != elsize, BAD_EL_TYPE);
17352 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17353 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
17354 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
17355 _("destination register and offset register may not be the"
17356 " same"));
17357
17358 int imm = inst.relocs[0].exp.X_add_number;
17359 int add = 1;
17360 if (imm < 0)
17361 {
17362 add = 0;
17363 imm = -imm;
17364 }
17365 constraint ((imm % (size / 8) != 0)
17366 || imm > (0x7f << neon_logbits (size)),
17367 (size == 32) ? _("immediate must be a multiple of 4 in the"
17368 " range of +/-[0,508]")
17369 : _("immediate must be a multiple of 8 in the"
17370 " range of +/-[0,1016]"));
17371 inst.instruction |= 0x11 << 24;
17372 inst.instruction |= add << 23;
17373 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17374 inst.instruction |= inst.operands[1].writeback << 21;
17375 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17376 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17377 inst.instruction |= 1 << 12;
17378 inst.instruction |= (size == 64) << 8;
17379 inst.instruction &= 0xffffff00;
17380 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17381 inst.instruction |= imm >> neon_logbits (size);
17382}
17383
17384static void
17385do_mve_vstr_vldr_RQ (int size, int elsize, int load)
17386{
17387 unsigned os = inst.operands[1].imm >> 5;
e449ea97 17388 unsigned type = inst.vectype.el[0].type;
f5f10c66
AV
17389 constraint (os != 0 && size == 8,
17390 _("can not shift offsets when accessing less than half-word"));
17391 constraint (os && os != neon_logbits (size),
17392 _("shift immediate must be 1, 2 or 3 for half-word, word"
17393 " or double-word accesses respectively"));
17394 if (inst.operands[1].reg == REG_PC)
17395 as_tsktsk (MVE_BAD_PC);
17396
17397 switch (size)
17398 {
17399 case 8:
17400 constraint (elsize >= 64, BAD_EL_TYPE);
17401 break;
17402 case 16:
17403 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17404 break;
17405 case 32:
17406 case 64:
17407 constraint (elsize != size, BAD_EL_TYPE);
17408 break;
17409 default:
17410 break;
17411 }
17412 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
17413 BAD_ADDR_MODE);
17414 if (load)
17415 {
17416 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
17417 _("destination register and offset register may not be"
17418 " the same"));
e449ea97
SP
17419 constraint (size == elsize && type == NT_signed, BAD_EL_TYPE);
17420 constraint (size != elsize && type != NT_unsigned && type != NT_signed,
f5f10c66 17421 BAD_EL_TYPE);
e449ea97 17422 inst.instruction |= ((size == elsize) || (type == NT_unsigned)) << 28;
f5f10c66
AV
17423 }
17424 else
17425 {
e449ea97 17426 constraint (type != NT_untyped, BAD_EL_TYPE);
f5f10c66
AV
17427 }
17428
17429 inst.instruction |= 1 << 23;
17430 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17431 inst.instruction |= inst.operands[1].reg << 16;
17432 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17433 inst.instruction |= neon_logbits (elsize) << 7;
17434 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17435 inst.instruction |= LOW4 (inst.operands[1].imm);
17436 inst.instruction |= !!os;
17437}
17438
17439static void
17440do_mve_vstr_vldr_RI (int size, int elsize, int load)
17441{
17442 enum neon_el_type type = inst.vectype.el[0].type;
17443
17444 constraint (size >= 64, BAD_ADDR_MODE);
17445 switch (size)
17446 {
17447 case 16:
17448 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17449 break;
17450 case 32:
17451 constraint (elsize != size, BAD_EL_TYPE);
17452 break;
17453 default:
17454 break;
17455 }
17456 if (load)
17457 {
17458 constraint (elsize != size && type != NT_unsigned
17459 && type != NT_signed, BAD_EL_TYPE);
17460 }
17461 else
17462 {
17463 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17464 }
17465
17466 int imm = inst.relocs[0].exp.X_add_number;
17467 int add = 1;
17468 if (imm < 0)
17469 {
17470 add = 0;
17471 imm = -imm;
17472 }
17473
17474 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17475 {
17476 switch (size)
17477 {
17478 case 8:
17479 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17480 break;
17481 case 16:
17482 constraint (1, _("immediate must be a multiple of 2 in the"
17483 " range of +/-[0,254]"));
17484 break;
17485 case 32:
17486 constraint (1, _("immediate must be a multiple of 4 in the"
17487 " range of +/-[0,508]"));
17488 break;
17489 }
17490 }
17491
17492 if (size != elsize)
17493 {
17494 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17495 constraint (inst.operands[0].reg > 14,
17496 _("MVE vector register in the range [Q0..Q7] expected"));
17497 inst.instruction |= (load && type == NT_unsigned) << 28;
17498 inst.instruction |= (size == 16) << 19;
17499 inst.instruction |= neon_logbits (elsize) << 7;
17500 }
17501 else
17502 {
17503 if (inst.operands[1].reg == REG_PC)
17504 as_tsktsk (MVE_BAD_PC);
17505 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17506 as_tsktsk (MVE_BAD_SP);
17507 inst.instruction |= 1 << 12;
17508 inst.instruction |= neon_logbits (size) << 7;
17509 }
17510 inst.instruction |= inst.operands[1].preind << 24;
17511 inst.instruction |= add << 23;
17512 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17513 inst.instruction |= inst.operands[1].writeback << 21;
17514 inst.instruction |= inst.operands[1].reg << 16;
17515 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17516 inst.instruction &= 0xffffff80;
17517 inst.instruction |= imm >> neon_logbits (size);
17518
17519}
17520
17521static void
17522do_mve_vstr_vldr (void)
17523{
17524 unsigned size;
17525 int load = 0;
17526
17527 if (inst.cond > COND_ALWAYS)
17528 inst.pred_insn_type = INSIDE_VPT_INSN;
17529 else
17530 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17531
17532 switch (inst.instruction)
17533 {
17534 default:
17535 gas_assert (0);
17536 break;
17537 case M_MNEM_vldrb:
17538 load = 1;
17539 /* fall through. */
17540 case M_MNEM_vstrb:
17541 size = 8;
17542 break;
17543 case M_MNEM_vldrh:
17544 load = 1;
17545 /* fall through. */
17546 case M_MNEM_vstrh:
17547 size = 16;
17548 break;
17549 case M_MNEM_vldrw:
17550 load = 1;
17551 /* fall through. */
17552 case M_MNEM_vstrw:
17553 size = 32;
17554 break;
17555 case M_MNEM_vldrd:
17556 load = 1;
17557 /* fall through. */
17558 case M_MNEM_vstrd:
17559 size = 64;
17560 break;
17561 }
17562 unsigned elsize = inst.vectype.el[0].size;
17563
17564 if (inst.operands[1].isquad)
17565 {
17566 /* We are dealing with [Q, imm]{!} cases. */
17567 do_mve_vstr_vldr_QI (size, elsize, load);
17568 }
17569 else
17570 {
17571 if (inst.operands[1].immisreg == 2)
17572 {
17573 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17574 do_mve_vstr_vldr_RQ (size, elsize, load);
17575 }
17576 else if (!inst.operands[1].immisreg)
17577 {
17578 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17579 do_mve_vstr_vldr_RI (size, elsize, load);
17580 }
17581 else
17582 constraint (1, BAD_ADDR_MODE);
17583 }
17584
17585 inst.is_neon = 1;
17586}
17587
35c228db
AV
17588static void
17589do_mve_vst_vld (void)
17590{
17591 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17592 return;
17593
17594 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17595 || inst.relocs[0].exp.X_add_number != 0
17596 || inst.operands[1].immisreg != 0,
17597 BAD_ADDR_MODE);
17598 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17599 if (inst.operands[1].reg == REG_PC)
17600 as_tsktsk (MVE_BAD_PC);
17601 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17602 as_tsktsk (MVE_BAD_SP);
17603
17604
17605 /* These instructions are one of the "exceptions" mentioned in
17606 handle_pred_state. They are MVE instructions that are not VPT compatible
17607 and do not accept a VPT code, thus appending such a code is a syntax
17608 error. */
17609 if (inst.cond > COND_ALWAYS)
17610 first_error (BAD_SYNTAX);
17611 /* If we append a scalar condition code we can set this to
17612 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17613 else if (inst.cond < COND_ALWAYS)
17614 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17615 else
17616 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17617
17618 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17619 inst.instruction |= inst.operands[1].writeback << 21;
17620 inst.instruction |= inst.operands[1].reg << 16;
17621 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17622 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17623 inst.is_neon = 1;
17624}
17625
26c1e780
AV
17626static void
17627do_mve_vaddlv (void)
17628{
17629 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17630 struct neon_type_el et
17631 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17632
17633 if (et.type == NT_invtype)
17634 first_error (BAD_EL_TYPE);
17635
17636 if (inst.cond > COND_ALWAYS)
17637 inst.pred_insn_type = INSIDE_VPT_INSN;
17638 else
17639 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17640
17641 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17642
17643 inst.instruction |= (et.type == NT_unsigned) << 28;
17644 inst.instruction |= inst.operands[1].reg << 19;
17645 inst.instruction |= inst.operands[0].reg << 12;
17646 inst.instruction |= inst.operands[2].reg;
17647 inst.is_neon = 1;
17648}
17649
5287ad62 17650static void
5ee91343 17651do_neon_dyadic_if_su (void)
5287ad62 17652{
5ee91343
AV
17653 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17654 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17655 N_SUF_32 | N_KEY);
17656
935295b5
AV
17657 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17658 || inst.instruction == ((unsigned) N_MNEM_vmin))
17659 && et.type == NT_float
17660 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17661
64c350f2
AV
17662 if (!check_simd_pred_availability (et.type == NT_float,
17663 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
17664 return;
17665
5ee91343
AV
17666 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17667}
17668
17669static void
17670do_neon_addsub_if_i (void)
17671{
17672 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17673 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
17674 return;
17675
5ee91343
AV
17676 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17677 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17678 N_EQK, N_IF_32 | N_I64 | N_KEY);
17679
17680 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17681 /* If we are parsing Q registers and the element types match MVE, which NEON
17682 also supports, then we must check whether this is an instruction that can
17683 be used by both MVE/NEON. This distinction can be made based on whether
17684 they are predicated or not. */
17685 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17686 {
64c350f2
AV
17687 if (!check_simd_pred_availability (et.type == NT_float,
17688 NEON_CHECK_ARCH | NEON_CHECK_CC))
5ee91343
AV
17689 return;
17690 }
17691 else
17692 {
17693 /* If they are either in a D register or are using an unsupported. */
17694 if (rs != NS_QQR
17695 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17696 return;
17697 }
17698
5287ad62
JB
17699 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17700 affected if we specify unsigned args. */
dcbf9037 17701 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
17702}
17703
17704/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17705 result to be:
17706 V<op> A,B (A is operand 0, B is operand 2)
17707 to mean:
17708 V<op> A,B,A
17709 not:
17710 V<op> A,B,B
17711 so handle that case specially. */
17712
17713static void
17714neon_exchange_operands (void)
17715{
5287ad62
JB
17716 if (inst.operands[1].present)
17717 {
e1fa0163
NC
17718 void *scratch = xmalloc (sizeof (inst.operands[0]));
17719
5287ad62
JB
17720 /* Swap operands[1] and operands[2]. */
17721 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17722 inst.operands[1] = inst.operands[2];
17723 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 17724 free (scratch);
5287ad62
JB
17725 }
17726 else
17727 {
17728 inst.operands[1] = inst.operands[2];
17729 inst.operands[2] = inst.operands[0];
17730 }
17731}
17732
17733static void
17734neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17735{
17736 if (inst.operands[2].isreg)
17737 {
17738 if (invert)
477330fc 17739 neon_exchange_operands ();
dcbf9037 17740 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
17741 }
17742 else
17743 {
037e8744 17744 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 17745 struct neon_type_el et = neon_check_type (2, rs,
477330fc 17746 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 17747
88714cb8 17748 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17749 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17750 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17751 inst.instruction |= LOW4 (inst.operands[1].reg);
17752 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17753 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17754 inst.instruction |= (et.type == NT_float) << 10;
17755 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17756
88714cb8 17757 neon_dp_fixup (&inst);
5287ad62
JB
17758 }
17759}
17760
17761static void
17762do_neon_cmp (void)
17763{
cc933301 17764 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
17765}
17766
17767static void
17768do_neon_cmp_inv (void)
17769{
cc933301 17770 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
17771}
17772
17773static void
17774do_neon_ceq (void)
17775{
17776 neon_compare (N_IF_32, N_IF_32, FALSE);
17777}
17778
17779/* For multiply instructions, we have the possibility of 16-bit or 32-bit
17780 scalars, which are encoded in 5 bits, M : Rm.
17781 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17782 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
17783 index in M.
17784
17785 Dot Product instructions are similar to multiply instructions except elsize
17786 should always be 32.
17787
17788 This function translates SCALAR, which is GAS's internal encoding of indexed
17789 scalar register, to raw encoding. There is also register and index range
17790 check based on ELSIZE. */
5287ad62
JB
17791
17792static unsigned
17793neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17794{
dcbf9037
JB
17795 unsigned regno = NEON_SCALAR_REG (scalar);
17796 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
17797
17798 switch (elsize)
17799 {
17800 case 16:
17801 if (regno > 7 || elno > 3)
477330fc 17802 goto bad_scalar;
5287ad62 17803 return regno | (elno << 3);
5f4273c7 17804
5287ad62
JB
17805 case 32:
17806 if (regno > 15 || elno > 1)
477330fc 17807 goto bad_scalar;
5287ad62
JB
17808 return regno | (elno << 4);
17809
17810 default:
17811 bad_scalar:
dcbf9037 17812 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
17813 }
17814
17815 return 0;
17816}
17817
17818/* Encode multiply / multiply-accumulate scalar instructions. */
17819
17820static void
17821neon_mul_mac (struct neon_type_el et, int ubit)
17822{
dcbf9037
JB
17823 unsigned scalar;
17824
17825 /* Give a more helpful error message if we have an invalid type. */
17826 if (et.type == NT_invtype)
17827 return;
5f4273c7 17828
dcbf9037 17829 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
17830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17832 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17833 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17834 inst.instruction |= LOW4 (scalar);
17835 inst.instruction |= HI1 (scalar) << 5;
17836 inst.instruction |= (et.type == NT_float) << 8;
17837 inst.instruction |= neon_logbits (et.size) << 20;
17838 inst.instruction |= (ubit != 0) << 24;
17839
88714cb8 17840 neon_dp_fixup (&inst);
5287ad62
JB
17841}
17842
17843static void
17844do_neon_mac_maybe_scalar (void)
17845{
037e8744
JB
17846 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17847 return;
17848
64c350f2 17849 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17850 return;
17851
5287ad62
JB
17852 if (inst.operands[2].isscalar)
17853 {
a8465a06 17854 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17855 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17856 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 17857 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 17858 NEON_ENCODE (SCALAR, inst);
037e8744 17859 neon_mul_mac (et, neon_quad (rs));
5287ad62 17860 }
a8465a06
AV
17861 else if (!inst.operands[2].isvec)
17862 {
17863 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17864
17865 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17866 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17867
17868 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17869 }
5287ad62 17870 else
428e3f1f 17871 {
a8465a06 17872 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
428e3f1f
PB
17873 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17874 affected if we specify unsigned args. */
17875 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17876 }
5287ad62
JB
17877}
17878
aab2c27d
MM
17879static void
17880do_bfloat_vfma (void)
17881{
17882 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
17883 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
17884 enum neon_shape rs;
17885 int t_bit = 0;
17886
17887 if (inst.instruction != B_MNEM_vfmab)
17888 {
17889 t_bit = 1;
17890 inst.instruction = B_MNEM_vfmat;
17891 }
17892
17893 if (inst.operands[2].isscalar)
17894 {
17895 rs = neon_select_shape (NS_QQS, NS_NULL);
17896 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17897
17898 inst.instruction |= (1 << 25);
17899 int index = inst.operands[2].reg & 0xf;
17900 constraint (!(index < 4), _("index must be in the range 0 to 3"));
17901 inst.operands[2].reg >>= 4;
17902 constraint (!(inst.operands[2].reg < 8),
17903 _("indexed register must be less than 8"));
17904 neon_three_args (t_bit);
17905 inst.instruction |= ((index & 1) << 3);
17906 inst.instruction |= ((index & 2) << 4);
17907 }
17908 else
17909 {
17910 rs = neon_select_shape (NS_QQQ, NS_NULL);
17911 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17912 neon_three_args (t_bit);
17913 }
17914
17915}
17916
62f3b8c8
PB
17917static void
17918do_neon_fmac (void)
17919{
d58196e0
AV
17920 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17921 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
17922 return;
17923
64c350f2 17924 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
17925 return;
17926
d58196e0
AV
17927 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17928 {
17929 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17930 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17931 N_EQK);
17932
17933 if (rs == NS_QQR)
17934 {
aab2c27d 17935
d58196e0
AV
17936 if (inst.operands[2].reg == REG_SP)
17937 as_tsktsk (MVE_BAD_SP);
17938 else if (inst.operands[2].reg == REG_PC)
17939 as_tsktsk (MVE_BAD_PC);
17940
17941 inst.instruction = 0xee310e40;
17942 inst.instruction |= (et.size == 16) << 28;
17943 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17944 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17945 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17946 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17947 inst.instruction |= inst.operands[2].reg;
17948 inst.is_neon = 1;
17949 return;
17950 }
17951 }
17952 else
17953 {
17954 constraint (!inst.operands[2].isvec, BAD_FPU);
17955 }
17956
62f3b8c8
PB
17957 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17958}
17959
aab2c27d
MM
17960static void
17961do_mve_vfma (void)
17962{
17963 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_bf16) &&
17964 inst.cond == COND_ALWAYS)
17965 {
17966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17967 inst.instruction = N_MNEM_vfma;
17968 inst.pred_insn_type = INSIDE_VPT_INSN;
17969 inst.cond = 0xf;
17970 return do_neon_fmac();
17971 }
17972 else
17973 {
17974 do_bfloat_vfma();
17975 }
17976}
17977
5287ad62
JB
17978static void
17979do_neon_tst (void)
17980{
037e8744 17981 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
17982 struct neon_type_el et = neon_check_type (3, rs,
17983 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 17984 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17985}
17986
17987/* VMUL with 3 registers allows the P8 type. The scalar version supports the
17988 same types as the MAC equivalents. The polynomial type for this instruction
17989 is encoded the same as the integer type. */
17990
17991static void
17992do_neon_mul (void)
17993{
037e8744
JB
17994 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17995 return;
17996
64c350f2 17997 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17998 return;
17999
5287ad62 18000 if (inst.operands[2].isscalar)
a8465a06
AV
18001 {
18002 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18003 do_neon_mac_maybe_scalar ();
18004 }
5287ad62 18005 else
a8465a06
AV
18006 {
18007 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18008 {
18009 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
18010 struct neon_type_el et
18011 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
18012 if (et.type == NT_float)
18013 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
18014 BAD_FPU);
18015
18016 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
18017 }
18018 else
18019 {
18020 constraint (!inst.operands[2].isvec, BAD_FPU);
18021 neon_dyadic_misc (NT_poly,
18022 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
18023 }
18024 }
5287ad62
JB
18025}
18026
18027static void
18028do_neon_qdmulh (void)
18029{
64c350f2 18030 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
42b16635
AV
18031 return;
18032
5287ad62
JB
18033 if (inst.operands[2].isscalar)
18034 {
42b16635 18035 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 18036 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 18037 struct neon_type_el et = neon_check_type (3, rs,
477330fc 18038 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 18039 NEON_ENCODE (SCALAR, inst);
037e8744 18040 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
18041 }
18042 else
18043 {
42b16635
AV
18044 enum neon_shape rs;
18045 struct neon_type_el et;
18046 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18047 {
18048 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
18049 et = neon_check_type (3, rs,
18050 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18051 }
18052 else
18053 {
18054 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18055 et = neon_check_type (3, rs,
18056 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18057 }
18058
88714cb8 18059 NEON_ENCODE (INTEGER, inst);
42b16635
AV
18060 if (rs == NS_QQR)
18061 mve_encode_qqr (et.size, 0, 0);
18062 else
18063 /* The U bit (rounding) comes from bit mask. */
18064 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
18065 }
18066}
18067
26c1e780
AV
18068static void
18069do_mve_vaddv (void)
18070{
18071 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18072 struct neon_type_el et
18073 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18074
18075 if (et.type == NT_invtype)
18076 first_error (BAD_EL_TYPE);
18077
18078 if (inst.cond > COND_ALWAYS)
18079 inst.pred_insn_type = INSIDE_VPT_INSN;
18080 else
18081 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18082
18083 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
18084
18085 mve_encode_rq (et.type == NT_unsigned, et.size);
18086}
18087
7df54120
AV
18088static void
18089do_mve_vhcadd (void)
18090{
18091 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
18092 struct neon_type_el et
18093 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18094
18095 if (inst.cond > COND_ALWAYS)
18096 inst.pred_insn_type = INSIDE_VPT_INSN;
18097 else
18098 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18099
18100 unsigned rot = inst.relocs[0].exp.X_add_number;
18101 constraint (rot != 90 && rot != 270, _("immediate out of range"));
18102
18103 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
18104 as_tsktsk (_("Warning: 32-bit element size and same first and third "
18105 "operand makes instruction UNPREDICTABLE"));
18106
18107 mve_encode_qqq (0, et.size);
18108 inst.instruction |= (rot == 270) << 12;
18109 inst.is_neon = 1;
18110}
18111
35d1cfc2
AV
18112static void
18113do_mve_vqdmull (void)
18114{
18115 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
18116 struct neon_type_el et
18117 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18118
18119 if (et.size == 32
18120 && (inst.operands[0].reg == inst.operands[1].reg
18121 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
18122 as_tsktsk (BAD_MVE_SRCDEST);
18123
18124 if (inst.cond > COND_ALWAYS)
18125 inst.pred_insn_type = INSIDE_VPT_INSN;
18126 else
18127 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18128
18129 if (rs == NS_QQQ)
18130 {
18131 mve_encode_qqq (et.size == 32, 64);
18132 inst.instruction |= 1;
18133 }
18134 else
18135 {
18136 mve_encode_qqr (64, et.size == 32, 0);
18137 inst.instruction |= 0x3 << 5;
18138 }
18139}
18140
c2dafc2a
AV
18141static void
18142do_mve_vadc (void)
18143{
18144 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18145 struct neon_type_el et
18146 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
18147
18148 if (et.type == NT_invtype)
18149 first_error (BAD_EL_TYPE);
18150
18151 if (inst.cond > COND_ALWAYS)
18152 inst.pred_insn_type = INSIDE_VPT_INSN;
18153 else
18154 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18155
18156 mve_encode_qqq (0, 64);
18157}
18158
18159static void
18160do_mve_vbrsr (void)
18161{
18162 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18163 struct neon_type_el et
18164 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18165
18166 if (inst.cond > COND_ALWAYS)
18167 inst.pred_insn_type = INSIDE_VPT_INSN;
18168 else
18169 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18170
7df54120 18171 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
18172}
18173
18174static void
18175do_mve_vsbc (void)
18176{
18177 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
18178
18179 if (inst.cond > COND_ALWAYS)
18180 inst.pred_insn_type = INSIDE_VPT_INSN;
18181 else
18182 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18183
18184 mve_encode_qqq (1, 64);
18185}
18186
2d78f95b
AV
18187static void
18188do_mve_vmulh (void)
18189{
18190 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18191 struct neon_type_el et
18192 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
18193
18194 if (inst.cond > COND_ALWAYS)
18195 inst.pred_insn_type = INSIDE_VPT_INSN;
18196 else
18197 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18198
18199 mve_encode_qqq (et.type == NT_unsigned, et.size);
18200}
18201
42b16635
AV
18202static void
18203do_mve_vqdmlah (void)
18204{
18205 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18206 struct neon_type_el et
23d188c7 18207 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
42b16635
AV
18208
18209 if (inst.cond > COND_ALWAYS)
18210 inst.pred_insn_type = INSIDE_VPT_INSN;
18211 else
18212 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18213
18214 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18215}
8b8b22a4
AV
18216
18217static void
18218do_mve_vqdmladh (void)
18219{
18220 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18221 struct neon_type_el et
18222 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18223
18224 if (inst.cond > COND_ALWAYS)
18225 inst.pred_insn_type = INSIDE_VPT_INSN;
18226 else
18227 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18228
8b8b22a4
AV
18229 mve_encode_qqq (0, et.size);
18230}
18231
18232
886e1c73
AV
18233static void
18234do_mve_vmull (void)
18235{
18236
18237 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
18238 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
18239 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18240 && inst.cond == COND_ALWAYS
18241 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
18242 {
18243 if (rs == NS_QQQ)
18244 {
18245
18246 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18247 N_SUF_32 | N_F64 | N_P8
18248 | N_P16 | N_I_MVE | N_KEY);
18249 if (((et.type == NT_poly) && et.size == 8
18250 && ARM_CPU_IS_ANY (cpu_variant))
18251 || (et.type == NT_integer) || (et.type == NT_float))
18252 goto neon_vmul;
18253 }
18254 else
18255 goto neon_vmul;
18256 }
18257
18258 constraint (rs != NS_QQQ, BAD_FPU);
18259 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18260 N_SU_32 | N_P8 | N_P16 | N_KEY);
18261
18262 /* We are dealing with MVE's vmullt. */
18263 if (et.size == 32
18264 && (inst.operands[0].reg == inst.operands[1].reg
18265 || inst.operands[0].reg == inst.operands[2].reg))
18266 as_tsktsk (BAD_MVE_SRCDEST);
18267
18268 if (inst.cond > COND_ALWAYS)
18269 inst.pred_insn_type = INSIDE_VPT_INSN;
18270 else
18271 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18272
18273 if (et.type == NT_poly)
18274 mve_encode_qqq (neon_logbits (et.size), 64);
18275 else
18276 mve_encode_qqq (et.type == NT_unsigned, et.size);
18277
18278 return;
18279
18280neon_vmul:
18281 inst.instruction = N_MNEM_vmul;
18282 inst.cond = 0xb;
18283 if (thumb_mode)
18284 inst.pred_insn_type = INSIDE_IT_INSN;
18285 do_neon_mul ();
18286}
18287
a302e574
AV
18288static void
18289do_mve_vabav (void)
18290{
18291 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18292
18293 if (rs == NS_NULL)
18294 return;
18295
18296 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18297 return;
18298
18299 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
18300 | N_S16 | N_S32 | N_U8 | N_U16
18301 | N_U32);
18302
18303 if (inst.cond > COND_ALWAYS)
18304 inst.pred_insn_type = INSIDE_VPT_INSN;
18305 else
18306 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18307
18308 mve_encode_rqq (et.type == NT_unsigned, et.size);
18309}
18310
18311static void
18312do_mve_vmladav (void)
18313{
18314 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18315 struct neon_type_el et = neon_check_type (3, rs,
18316 N_EQK, N_EQK, N_SU_MVE | N_KEY);
18317
18318 if (et.type == NT_unsigned
18319 && (inst.instruction == M_MNEM_vmladavx
18320 || inst.instruction == M_MNEM_vmladavax
18321 || inst.instruction == M_MNEM_vmlsdav
18322 || inst.instruction == M_MNEM_vmlsdava
18323 || inst.instruction == M_MNEM_vmlsdavx
18324 || inst.instruction == M_MNEM_vmlsdavax))
18325 first_error (BAD_SIMD_TYPE);
18326
18327 constraint (inst.operands[2].reg > 14,
18328 _("MVE vector register in the range [Q0..Q7] expected"));
18329
18330 if (inst.cond > COND_ALWAYS)
18331 inst.pred_insn_type = INSIDE_VPT_INSN;
18332 else
18333 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18334
18335 if (inst.instruction == M_MNEM_vmlsdav
18336 || inst.instruction == M_MNEM_vmlsdava
18337 || inst.instruction == M_MNEM_vmlsdavx
18338 || inst.instruction == M_MNEM_vmlsdavax)
18339 inst.instruction |= (et.size == 8) << 28;
18340 else
18341 inst.instruction |= (et.size == 8) << 8;
18342
18343 mve_encode_rqq (et.type == NT_unsigned, 64);
18344 inst.instruction |= (et.size == 32) << 16;
18345}
18346
93925576
AV
18347static void
18348do_mve_vmlaldav (void)
18349{
18350 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
18351 struct neon_type_el et
18352 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
18353 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
18354
18355 if (et.type == NT_unsigned
18356 && (inst.instruction == M_MNEM_vmlsldav
18357 || inst.instruction == M_MNEM_vmlsldava
18358 || inst.instruction == M_MNEM_vmlsldavx
18359 || inst.instruction == M_MNEM_vmlsldavax))
18360 first_error (BAD_SIMD_TYPE);
18361
18362 if (inst.cond > COND_ALWAYS)
18363 inst.pred_insn_type = INSIDE_VPT_INSN;
18364 else
18365 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18366
18367 mve_encode_rrqq (et.type == NT_unsigned, et.size);
18368}
18369
18370static void
18371do_mve_vrmlaldavh (void)
18372{
18373 struct neon_type_el et;
18374 if (inst.instruction == M_MNEM_vrmlsldavh
18375 || inst.instruction == M_MNEM_vrmlsldavha
18376 || inst.instruction == M_MNEM_vrmlsldavhx
18377 || inst.instruction == M_MNEM_vrmlsldavhax)
18378 {
18379 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18380 if (inst.operands[1].reg == REG_SP)
18381 as_tsktsk (MVE_BAD_SP);
18382 }
18383 else
18384 {
18385 if (inst.instruction == M_MNEM_vrmlaldavhx
18386 || inst.instruction == M_MNEM_vrmlaldavhax)
18387 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18388 else
18389 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
18390 N_U32 | N_S32 | N_KEY);
18391 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
18392 with vmax/min instructions, making the use of SP in assembly really
18393 nonsensical, so instead of issuing a warning like we do for other uses
18394 of SP for the odd register operand we error out. */
18395 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
18396 }
18397
18398 /* Make sure we still check the second operand is an odd one and that PC is
18399 disallowed. This because we are parsing for any GPR operand, to be able
18400 to distinguish between giving a warning or an error for SP as described
18401 above. */
18402 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
18403 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
18404
18405 if (inst.cond > COND_ALWAYS)
18406 inst.pred_insn_type = INSIDE_VPT_INSN;
18407 else
18408 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18409
18410 mve_encode_rrqq (et.type == NT_unsigned, 0);
18411}
18412
18413
8cd78170
AV
18414static void
18415do_mve_vmaxnmv (void)
18416{
18417 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18418 struct neon_type_el et
18419 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
18420
18421 if (inst.cond > COND_ALWAYS)
18422 inst.pred_insn_type = INSIDE_VPT_INSN;
18423 else
18424 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18425
18426 if (inst.operands[0].reg == REG_SP)
18427 as_tsktsk (MVE_BAD_SP);
18428 else if (inst.operands[0].reg == REG_PC)
18429 as_tsktsk (MVE_BAD_PC);
18430
18431 mve_encode_rq (et.size == 16, 64);
18432}
18433
13ccd4c0
AV
18434static void
18435do_mve_vmaxv (void)
18436{
18437 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18438 struct neon_type_el et;
18439
18440 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
18441 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
18442 else
18443 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18444
18445 if (inst.cond > COND_ALWAYS)
18446 inst.pred_insn_type = INSIDE_VPT_INSN;
18447 else
18448 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18449
18450 if (inst.operands[0].reg == REG_SP)
18451 as_tsktsk (MVE_BAD_SP);
18452 else if (inst.operands[0].reg == REG_PC)
18453 as_tsktsk (MVE_BAD_PC);
18454
18455 mve_encode_rq (et.type == NT_unsigned, et.size);
18456}
18457
18458
643afb90
MW
18459static void
18460do_neon_qrdmlah (void)
18461{
64c350f2 18462 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
42b16635
AV
18463 return;
18464 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
643afb90 18465 {
42b16635
AV
18466 /* Check we're on the correct architecture. */
18467 if (!mark_feature_used (&fpu_neon_ext_armv8))
18468 inst.error
18469 = _("instruction form not available on this architecture.");
18470 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
18471 {
18472 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18473 record_feature_use (&fpu_neon_ext_v8_1);
18474 }
18475 if (inst.operands[2].isscalar)
18476 {
18477 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18478 struct neon_type_el et = neon_check_type (3, rs,
18479 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18480 NEON_ENCODE (SCALAR, inst);
18481 neon_mul_mac (et, neon_quad (rs));
18482 }
18483 else
18484 {
18485 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18486 struct neon_type_el et = neon_check_type (3, rs,
18487 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18488 NEON_ENCODE (INTEGER, inst);
18489 /* The U bit (rounding) comes from bit mask. */
18490 neon_three_same (neon_quad (rs), 0, et.size);
18491 }
643afb90
MW
18492 }
18493 else
18494 {
42b16635
AV
18495 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18496 struct neon_type_el et
23d188c7 18497 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
42b16635 18498
643afb90 18499 NEON_ENCODE (INTEGER, inst);
42b16635 18500 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
643afb90
MW
18501 }
18502}
18503
5287ad62
JB
18504static void
18505do_neon_fcmp_absolute (void)
18506{
037e8744 18507 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
18508 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18509 N_F_16_32 | N_KEY);
5287ad62 18510 /* Size field comes from bit mask. */
cc933301 18511 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
18512}
18513
18514static void
18515do_neon_fcmp_absolute_inv (void)
18516{
18517 neon_exchange_operands ();
18518 do_neon_fcmp_absolute ();
18519}
18520
18521static void
18522do_neon_step (void)
18523{
037e8744 18524 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
18525 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18526 N_F_16_32 | N_KEY);
18527 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
18528}
18529
18530static void
18531do_neon_abs_neg (void)
18532{
037e8744
JB
18533 enum neon_shape rs;
18534 struct neon_type_el et;
5f4273c7 18535
037e8744
JB
18536 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18537 return;
18538
037e8744 18539 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 18540 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 18541
64c350f2
AV
18542 if (!check_simd_pred_availability (et.type == NT_float,
18543 NEON_CHECK_ARCH | NEON_CHECK_CC))
485dee97
AV
18544 return;
18545
5287ad62
JB
18546 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18547 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18548 inst.instruction |= LOW4 (inst.operands[1].reg);
18549 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18550 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18551 inst.instruction |= (et.type == NT_float) << 10;
18552 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 18553
88714cb8 18554 neon_dp_fixup (&inst);
5287ad62
JB
18555}
18556
18557static void
18558do_neon_sli (void)
18559{
64c350f2 18560 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
4401c241
AV
18561 return;
18562
18563 enum neon_shape rs;
18564 struct neon_type_el et;
18565 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18566 {
18567 rs = neon_select_shape (NS_QQI, NS_NULL);
18568 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18569 }
18570 else
18571 {
18572 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18573 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18574 }
18575
18576
5287ad62
JB
18577 int imm = inst.operands[2].imm;
18578 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 18579 _("immediate out of range for insert"));
037e8744 18580 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
18581}
18582
18583static void
18584do_neon_sri (void)
18585{
64c350f2 18586 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
4401c241
AV
18587 return;
18588
18589 enum neon_shape rs;
18590 struct neon_type_el et;
18591 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18592 {
18593 rs = neon_select_shape (NS_QQI, NS_NULL);
18594 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18595 }
18596 else
18597 {
18598 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18599 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18600 }
18601
5287ad62
JB
18602 int imm = inst.operands[2].imm;
18603 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18604 _("immediate out of range for insert"));
037e8744 18605 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
18606}
18607
18608static void
18609do_neon_qshlu_imm (void)
18610{
64c350f2 18611 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
5150f0d8
AV
18612 return;
18613
18614 enum neon_shape rs;
18615 struct neon_type_el et;
18616 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18617 {
18618 rs = neon_select_shape (NS_QQI, NS_NULL);
18619 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18620 }
18621 else
18622 {
18623 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18624 et = neon_check_type (2, rs, N_EQK | N_UNS,
18625 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18626 }
18627
5287ad62
JB
18628 int imm = inst.operands[2].imm;
18629 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 18630 _("immediate out of range for shift"));
5287ad62
JB
18631 /* Only encodes the 'U present' variant of the instruction.
18632 In this case, signed types have OP (bit 8) set to 0.
18633 Unsigned types have OP set to 1. */
18634 inst.instruction |= (et.type == NT_unsigned) << 8;
18635 /* The rest of the bits are the same as other immediate shifts. */
037e8744 18636 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
18637}
18638
18639static void
18640do_neon_qmovn (void)
18641{
18642 struct neon_type_el et = neon_check_type (2, NS_DQ,
18643 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18644 /* Saturating move where operands can be signed or unsigned, and the
18645 destination has the same signedness. */
88714cb8 18646 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18647 if (et.type == NT_unsigned)
18648 inst.instruction |= 0xc0;
18649 else
18650 inst.instruction |= 0x80;
18651 neon_two_same (0, 1, et.size / 2);
18652}
18653
18654static void
18655do_neon_qmovun (void)
18656{
18657 struct neon_type_el et = neon_check_type (2, NS_DQ,
18658 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18659 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 18660 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18661 neon_two_same (0, 1, et.size / 2);
18662}
18663
18664static void
18665do_neon_rshift_sat_narrow (void)
18666{
18667 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18668 or unsigned. If operands are unsigned, results must also be unsigned. */
18669 struct neon_type_el et = neon_check_type (2, NS_DQI,
18670 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18671 int imm = inst.operands[2].imm;
18672 /* This gets the bounds check, size encoding and immediate bits calculation
18673 right. */
18674 et.size /= 2;
5f4273c7 18675
5287ad62
JB
18676 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18677 VQMOVN.I<size> <Dd>, <Qm>. */
18678 if (imm == 0)
18679 {
18680 inst.operands[2].present = 0;
18681 inst.instruction = N_MNEM_vqmovn;
18682 do_neon_qmovn ();
18683 return;
18684 }
5f4273c7 18685
5287ad62 18686 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18687 _("immediate out of range"));
5287ad62
JB
18688 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18689}
18690
18691static void
18692do_neon_rshift_sat_narrow_u (void)
18693{
18694 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18695 or unsigned. If operands are unsigned, results must also be unsigned. */
18696 struct neon_type_el et = neon_check_type (2, NS_DQI,
18697 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18698 int imm = inst.operands[2].imm;
18699 /* This gets the bounds check, size encoding and immediate bits calculation
18700 right. */
18701 et.size /= 2;
18702
18703 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18704 VQMOVUN.I<size> <Dd>, <Qm>. */
18705 if (imm == 0)
18706 {
18707 inst.operands[2].present = 0;
18708 inst.instruction = N_MNEM_vqmovun;
18709 do_neon_qmovun ();
18710 return;
18711 }
18712
18713 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18714 _("immediate out of range"));
5287ad62
JB
18715 /* FIXME: The manual is kind of unclear about what value U should have in
18716 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18717 must be 1. */
18718 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18719}
18720
18721static void
18722do_neon_movn (void)
18723{
18724 struct neon_type_el et = neon_check_type (2, NS_DQ,
18725 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 18726 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18727 neon_two_same (0, 1, et.size / 2);
18728}
18729
18730static void
18731do_neon_rshift_narrow (void)
18732{
18733 struct neon_type_el et = neon_check_type (2, NS_DQI,
18734 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18735 int imm = inst.operands[2].imm;
18736 /* This gets the bounds check, size encoding and immediate bits calculation
18737 right. */
18738 et.size /= 2;
5f4273c7 18739
5287ad62
JB
18740 /* If immediate is zero then we are a pseudo-instruction for
18741 VMOVN.I<size> <Dd>, <Qm> */
18742 if (imm == 0)
18743 {
18744 inst.operands[2].present = 0;
18745 inst.instruction = N_MNEM_vmovn;
18746 do_neon_movn ();
18747 return;
18748 }
5f4273c7 18749
5287ad62 18750 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18751 _("immediate out of range for narrowing operation"));
5287ad62
JB
18752 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18753}
18754
18755static void
18756do_neon_shll (void)
18757{
18758 /* FIXME: Type checking when lengthening. */
18759 struct neon_type_el et = neon_check_type (2, NS_QDI,
18760 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18761 unsigned imm = inst.operands[2].imm;
18762
18763 if (imm == et.size)
18764 {
18765 /* Maximum shift variant. */
88714cb8 18766 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18767 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18768 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18769 inst.instruction |= LOW4 (inst.operands[1].reg);
18770 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18771 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 18772
88714cb8 18773 neon_dp_fixup (&inst);
5287ad62
JB
18774 }
18775 else
18776 {
18777 /* A more-specific type check for non-max versions. */
18778 et = neon_check_type (2, NS_QDI,
477330fc 18779 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 18780 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18781 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18782 }
18783}
18784
037e8744 18785/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
18786 the current instruction is. */
18787
6b9a8b67
MGD
18788#define CVT_FLAVOUR_VAR \
18789 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18790 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18791 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18792 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18793 /* Half-precision conversions. */ \
cc933301
JW
18794 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18795 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18796 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18797 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
18798 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18799 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
18800 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18801 Compared with single/double precision variants, only the co-processor \
18802 field is different, so the encoding flow is reused here. */ \
18803 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18804 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18805 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18806 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
aab2c27d 18807 CVT_VAR (bf16_f32, N_BF16, N_F32, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
18808 /* VFP instructions. */ \
18809 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18810 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18811 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18812 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18813 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18814 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18815 /* VFP instructions with bitshift. */ \
18816 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18817 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18818 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18819 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18820 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18821 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18822 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18823 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18824
18825#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18826 neon_cvt_flavour_##C,
18827
18828/* The different types of conversions we can do. */
18829enum neon_cvt_flavour
18830{
18831 CVT_FLAVOUR_VAR
18832 neon_cvt_flavour_invalid,
18833 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18834};
18835
18836#undef CVT_VAR
18837
18838static enum neon_cvt_flavour
18839get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 18840{
6b9a8b67
MGD
18841#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18842 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18843 if (et.type != NT_invtype) \
18844 { \
18845 inst.error = NULL; \
18846 return (neon_cvt_flavour_##C); \
5287ad62 18847 }
6b9a8b67 18848
5287ad62 18849 struct neon_type_el et;
037e8744 18850 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 18851 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
18852 /* The instruction versions which take an immediate take one register
18853 argument, which is extended to the width of the full register. Thus the
18854 "source" and "destination" registers must have the same width. Hack that
18855 here by making the size equal to the key (wider, in this case) operand. */
18856 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 18857
6b9a8b67
MGD
18858 CVT_FLAVOUR_VAR;
18859
18860 return neon_cvt_flavour_invalid;
5287ad62
JB
18861#undef CVT_VAR
18862}
18863
7e8e6784
MGD
18864enum neon_cvt_mode
18865{
18866 neon_cvt_mode_a,
18867 neon_cvt_mode_n,
18868 neon_cvt_mode_p,
18869 neon_cvt_mode_m,
18870 neon_cvt_mode_z,
30bdf752
MGD
18871 neon_cvt_mode_x,
18872 neon_cvt_mode_r
7e8e6784
MGD
18873};
18874
037e8744
JB
18875/* Neon-syntax VFP conversions. */
18876
5287ad62 18877static void
6b9a8b67 18878do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 18879{
037e8744 18880 const char *opname = 0;
5f4273c7 18881
d54af2d0
RL
18882 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18883 || rs == NS_FHI || rs == NS_HFI)
5287ad62 18884 {
037e8744
JB
18885 /* Conversions with immediate bitshift. */
18886 const char *enc[] =
477330fc 18887 {
6b9a8b67
MGD
18888#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18889 CVT_FLAVOUR_VAR
18890 NULL
18891#undef CVT_VAR
477330fc 18892 };
037e8744 18893
6b9a8b67 18894 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
18895 {
18896 opname = enc[flavour];
18897 constraint (inst.operands[0].reg != inst.operands[1].reg,
18898 _("operands 0 and 1 must be the same register"));
18899 inst.operands[1] = inst.operands[2];
18900 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18901 }
5287ad62
JB
18902 }
18903 else
18904 {
037e8744
JB
18905 /* Conversions without bitshift. */
18906 const char *enc[] =
477330fc 18907 {
6b9a8b67
MGD
18908#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18909 CVT_FLAVOUR_VAR
18910 NULL
18911#undef CVT_VAR
477330fc 18912 };
037e8744 18913
6b9a8b67 18914 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 18915 opname = enc[flavour];
037e8744
JB
18916 }
18917
18918 if (opname)
18919 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
18920
18921 /* ARMv8.2 fp16 VCVT instruction. */
18922 if (flavour == neon_cvt_flavour_s32_f16
18923 || flavour == neon_cvt_flavour_u32_f16
18924 || flavour == neon_cvt_flavour_f16_u32
18925 || flavour == neon_cvt_flavour_f16_s32)
18926 do_scalar_fp16_v82_encode ();
037e8744
JB
18927}
18928
18929static void
18930do_vfp_nsyn_cvtz (void)
18931{
d54af2d0 18932 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 18933 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
18934 const char *enc[] =
18935 {
6b9a8b67
MGD
18936#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18937 CVT_FLAVOUR_VAR
18938 NULL
18939#undef CVT_VAR
037e8744
JB
18940 };
18941
6b9a8b67 18942 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
18943 do_vfp_nsyn_opcode (enc[flavour]);
18944}
f31fef98 18945
037e8744 18946static void
bacebabc 18947do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
18948 enum neon_cvt_mode mode)
18949{
18950 int sz, op;
18951 int rm;
18952
a715796b
TG
18953 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18954 D register operands. */
18955 if (flavour == neon_cvt_flavour_s32_f64
18956 || flavour == neon_cvt_flavour_u32_f64)
18957 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18958 _(BAD_FPU));
18959
9db2f6b4
RL
18960 if (flavour == neon_cvt_flavour_s32_f16
18961 || flavour == neon_cvt_flavour_u32_f16)
18962 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18963 _(BAD_FP16));
18964
5ee91343 18965 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
18966
18967 switch (flavour)
18968 {
18969 case neon_cvt_flavour_s32_f64:
18970 sz = 1;
827f64ff 18971 op = 1;
7e8e6784
MGD
18972 break;
18973 case neon_cvt_flavour_s32_f32:
18974 sz = 0;
18975 op = 1;
18976 break;
9db2f6b4
RL
18977 case neon_cvt_flavour_s32_f16:
18978 sz = 0;
18979 op = 1;
18980 break;
7e8e6784
MGD
18981 case neon_cvt_flavour_u32_f64:
18982 sz = 1;
18983 op = 0;
18984 break;
18985 case neon_cvt_flavour_u32_f32:
18986 sz = 0;
18987 op = 0;
18988 break;
9db2f6b4
RL
18989 case neon_cvt_flavour_u32_f16:
18990 sz = 0;
18991 op = 0;
18992 break;
7e8e6784
MGD
18993 default:
18994 first_error (_("invalid instruction shape"));
18995 return;
18996 }
18997
18998 switch (mode)
18999 {
19000 case neon_cvt_mode_a: rm = 0; break;
19001 case neon_cvt_mode_n: rm = 1; break;
19002 case neon_cvt_mode_p: rm = 2; break;
19003 case neon_cvt_mode_m: rm = 3; break;
19004 default: first_error (_("invalid rounding mode")); return;
19005 }
19006
19007 NEON_ENCODE (FPV8, inst);
19008 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
19009 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
19010 inst.instruction |= sz << 8;
9db2f6b4
RL
19011
19012 /* ARMv8.2 fp16 VCVT instruction. */
19013 if (flavour == neon_cvt_flavour_s32_f16
19014 ||flavour == neon_cvt_flavour_u32_f16)
19015 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
19016 inst.instruction |= op << 7;
19017 inst.instruction |= rm << 16;
19018 inst.instruction |= 0xf0000000;
19019 inst.is_neon = TRUE;
19020}
19021
19022static void
19023do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
19024{
19025 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
19026 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
19027 NS_FH, NS_HF, NS_FHI, NS_HFI,
19028 NS_NULL);
6b9a8b67 19029 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 19030
cc933301
JW
19031 if (flavour == neon_cvt_flavour_invalid)
19032 return;
19033
e3e535bc 19034 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 19035 if (mode == neon_cvt_mode_z
e3e535bc 19036 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
19037 && (flavour == neon_cvt_flavour_s16_f16
19038 || flavour == neon_cvt_flavour_u16_f16
19039 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
19040 || flavour == neon_cvt_flavour_u32_f32
19041 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 19042 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
19043 && (rs == NS_FD || rs == NS_FF))
19044 {
19045 do_vfp_nsyn_cvtz ();
19046 return;
19047 }
19048
9db2f6b4
RL
19049 /* ARMv8.2 fp16 VCVT conversions. */
19050 if (mode == neon_cvt_mode_z
19051 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
19052 && (flavour == neon_cvt_flavour_s32_f16
19053 || flavour == neon_cvt_flavour_u32_f16)
19054 && (rs == NS_FH))
19055 {
19056 do_vfp_nsyn_cvtz ();
19057 do_scalar_fp16_v82_encode ();
19058 return;
19059 }
19060
037e8744 19061 /* VFP rather than Neon conversions. */
6b9a8b67 19062 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 19063 {
7e8e6784
MGD
19064 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19065 do_vfp_nsyn_cvt (rs, flavour);
19066 else
19067 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19068
037e8744
JB
19069 return;
19070 }
19071
19072 switch (rs)
19073 {
037e8744 19074 case NS_QQI:
dd9634d9
AV
19075 if (mode == neon_cvt_mode_z
19076 && (flavour == neon_cvt_flavour_f16_s16
19077 || flavour == neon_cvt_flavour_f16_u16
19078 || flavour == neon_cvt_flavour_s16_f16
19079 || flavour == neon_cvt_flavour_u16_f16
19080 || flavour == neon_cvt_flavour_f32_u32
19081 || flavour == neon_cvt_flavour_f32_s32
19082 || flavour == neon_cvt_flavour_s32_f32
19083 || flavour == neon_cvt_flavour_u32_f32))
19084 {
64c350f2
AV
19085 if (!check_simd_pred_availability (TRUE,
19086 NEON_CHECK_CC | NEON_CHECK_ARCH))
dd9634d9
AV
19087 return;
19088 }
19089 else if (mode == neon_cvt_mode_n)
19090 {
19091 /* We are dealing with vcvt with the 'ne' condition. */
19092 inst.cond = 0x1;
19093 inst.instruction = N_MNEM_vcvt;
19094 do_neon_cvt_1 (neon_cvt_mode_z);
19095 return;
19096 }
19097 /* fall through. */
19098 case NS_DDI:
037e8744 19099 {
477330fc 19100 unsigned immbits;
cc933301
JW
19101 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
19102 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 19103
dd9634d9
AV
19104 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19105 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19106 return;
19107
19108 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19109 {
19110 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
19111 _("immediate value out of range"));
19112 switch (flavour)
19113 {
19114 case neon_cvt_flavour_f16_s16:
19115 case neon_cvt_flavour_f16_u16:
19116 case neon_cvt_flavour_s16_f16:
19117 case neon_cvt_flavour_u16_f16:
19118 constraint (inst.operands[2].imm > 16,
19119 _("immediate value out of range"));
19120 break;
19121 case neon_cvt_flavour_f32_u32:
19122 case neon_cvt_flavour_f32_s32:
19123 case neon_cvt_flavour_s32_f32:
19124 case neon_cvt_flavour_u32_f32:
19125 constraint (inst.operands[2].imm > 32,
19126 _("immediate value out of range"));
19127 break;
19128 default:
19129 inst.error = BAD_FPU;
19130 return;
19131 }
19132 }
037e8744 19133
477330fc
RM
19134 /* Fixed-point conversion with #0 immediate is encoded as an
19135 integer conversion. */
19136 if (inst.operands[2].present && inst.operands[2].imm == 0)
19137 goto int_encode;
477330fc
RM
19138 NEON_ENCODE (IMMED, inst);
19139 if (flavour != neon_cvt_flavour_invalid)
19140 inst.instruction |= enctab[flavour];
19141 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19142 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19143 inst.instruction |= LOW4 (inst.operands[1].reg);
19144 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19145 inst.instruction |= neon_quad (rs) << 6;
19146 inst.instruction |= 1 << 21;
cc933301
JW
19147 if (flavour < neon_cvt_flavour_s16_f16)
19148 {
19149 inst.instruction |= 1 << 21;
19150 immbits = 32 - inst.operands[2].imm;
19151 inst.instruction |= immbits << 16;
19152 }
19153 else
19154 {
19155 inst.instruction |= 3 << 20;
19156 immbits = 16 - inst.operands[2].imm;
19157 inst.instruction |= immbits << 16;
19158 inst.instruction &= ~(1 << 9);
19159 }
477330fc
RM
19160
19161 neon_dp_fixup (&inst);
037e8744
JB
19162 }
19163 break;
19164
037e8744 19165 case NS_QQ:
dd9634d9
AV
19166 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19167 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
19168 && (flavour == neon_cvt_flavour_s16_f16
19169 || flavour == neon_cvt_flavour_u16_f16
19170 || flavour == neon_cvt_flavour_s32_f32
19171 || flavour == neon_cvt_flavour_u32_f32))
19172 {
64c350f2
AV
19173 if (!check_simd_pred_availability (TRUE,
19174 NEON_CHECK_CC | NEON_CHECK_ARCH8))
dd9634d9
AV
19175 return;
19176 }
19177 else if (mode == neon_cvt_mode_z
19178 && (flavour == neon_cvt_flavour_f16_s16
19179 || flavour == neon_cvt_flavour_f16_u16
19180 || flavour == neon_cvt_flavour_s16_f16
19181 || flavour == neon_cvt_flavour_u16_f16
19182 || flavour == neon_cvt_flavour_f32_u32
19183 || flavour == neon_cvt_flavour_f32_s32
19184 || flavour == neon_cvt_flavour_s32_f32
19185 || flavour == neon_cvt_flavour_u32_f32))
19186 {
64c350f2
AV
19187 if (!check_simd_pred_availability (TRUE,
19188 NEON_CHECK_CC | NEON_CHECK_ARCH))
dd9634d9
AV
19189 return;
19190 }
19191 /* fall through. */
19192 case NS_DD:
7e8e6784
MGD
19193 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
19194 {
7e8e6784 19195
dd9634d9 19196 NEON_ENCODE (FLOAT, inst);
64c350f2
AV
19197 if (!check_simd_pred_availability (TRUE,
19198 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
19199 return;
19200
19201 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19202 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19203 inst.instruction |= LOW4 (inst.operands[1].reg);
19204 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19205 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
19206 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
19207 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 19208 inst.instruction |= mode << 8;
cc933301
JW
19209 if (flavour == neon_cvt_flavour_u16_f16
19210 || flavour == neon_cvt_flavour_s16_f16)
19211 /* Mask off the original size bits and reencode them. */
19212 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
19213
7e8e6784
MGD
19214 if (thumb_mode)
19215 inst.instruction |= 0xfc000000;
19216 else
19217 inst.instruction |= 0xf0000000;
19218 }
19219 else
19220 {
037e8744 19221 int_encode:
7e8e6784 19222 {
cc933301
JW
19223 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
19224 0x100, 0x180, 0x0, 0x080};
037e8744 19225
7e8e6784 19226 NEON_ENCODE (INTEGER, inst);
037e8744 19227
dd9634d9
AV
19228 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19229 {
19230 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19231 return;
19232 }
037e8744 19233
7e8e6784
MGD
19234 if (flavour != neon_cvt_flavour_invalid)
19235 inst.instruction |= enctab[flavour];
037e8744 19236
7e8e6784
MGD
19237 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19238 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19239 inst.instruction |= LOW4 (inst.operands[1].reg);
19240 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19241 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
19242 if (flavour >= neon_cvt_flavour_s16_f16
19243 && flavour <= neon_cvt_flavour_f16_u16)
19244 /* Half precision. */
19245 inst.instruction |= 1 << 18;
19246 else
19247 inst.instruction |= 2 << 18;
037e8744 19248
7e8e6784
MGD
19249 neon_dp_fixup (&inst);
19250 }
19251 }
19252 break;
037e8744 19253
8e79c3df
CM
19254 /* Half-precision conversions for Advanced SIMD -- neon. */
19255 case NS_QD:
19256 case NS_DQ:
bc52d49c
MM
19257 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19258 return;
8e79c3df
CM
19259
19260 if ((rs == NS_DQ)
19261 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
19262 {
19263 as_bad (_("operand size must match register width"));
19264 break;
19265 }
19266
19267 if ((rs == NS_QD)
19268 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
19269 {
19270 as_bad (_("operand size must match register width"));
19271 break;
19272 }
19273
19274 if (rs == NS_DQ)
aab2c27d
MM
19275 {
19276 if (flavour == neon_cvt_flavour_bf16_f32)
19277 {
19278 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH8) == FAIL)
19279 return;
19280 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19281 /* VCVT.bf16.f32. */
19282 inst.instruction = 0x11b60640;
19283 }
19284 else
19285 /* VCVT.f16.f32. */
19286 inst.instruction = 0x3b60600;
19287 }
8e79c3df 19288 else
aab2c27d 19289 /* VCVT.f32.f16. */
8e79c3df
CM
19290 inst.instruction = 0x3b60700;
19291
19292 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19293 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19294 inst.instruction |= LOW4 (inst.operands[1].reg);
19295 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 19296 neon_dp_fixup (&inst);
8e79c3df
CM
19297 break;
19298
037e8744
JB
19299 default:
19300 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
19301 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19302 do_vfp_nsyn_cvt (rs, flavour);
19303 else
19304 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 19305 }
5287ad62
JB
19306}
19307
e3e535bc
NC
19308static void
19309do_neon_cvtr (void)
19310{
7e8e6784 19311 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
19312}
19313
19314static void
19315do_neon_cvt (void)
19316{
7e8e6784
MGD
19317 do_neon_cvt_1 (neon_cvt_mode_z);
19318}
19319
19320static void
19321do_neon_cvta (void)
19322{
19323 do_neon_cvt_1 (neon_cvt_mode_a);
19324}
19325
19326static void
19327do_neon_cvtn (void)
19328{
19329 do_neon_cvt_1 (neon_cvt_mode_n);
19330}
19331
19332static void
19333do_neon_cvtp (void)
19334{
19335 do_neon_cvt_1 (neon_cvt_mode_p);
19336}
19337
19338static void
19339do_neon_cvtm (void)
19340{
19341 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
19342}
19343
8e79c3df 19344static void
c70a8987 19345do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 19346{
c70a8987
MGD
19347 if (is_double)
19348 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 19349
c70a8987
MGD
19350 encode_arm_vfp_reg (inst.operands[0].reg,
19351 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
19352 encode_arm_vfp_reg (inst.operands[1].reg,
19353 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
19354 inst.instruction |= to ? 0x10000 : 0;
19355 inst.instruction |= t ? 0x80 : 0;
19356 inst.instruction |= is_double ? 0x100 : 0;
19357 do_vfp_cond_or_thumb ();
19358}
8e79c3df 19359
c70a8987
MGD
19360static void
19361do_neon_cvttb_1 (bfd_boolean t)
19362{
d54af2d0 19363 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 19364 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 19365
c70a8987
MGD
19366 if (rs == NS_NULL)
19367 return;
dd9634d9
AV
19368 else if (rs == NS_QQ || rs == NS_QQI)
19369 {
19370 int single_to_half = 0;
64c350f2 19371 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
dd9634d9
AV
19372 return;
19373
19374 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19375
19376 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19377 && (flavour == neon_cvt_flavour_u16_f16
19378 || flavour == neon_cvt_flavour_s16_f16
19379 || flavour == neon_cvt_flavour_f16_s16
19380 || flavour == neon_cvt_flavour_f16_u16
19381 || flavour == neon_cvt_flavour_u32_f32
19382 || flavour == neon_cvt_flavour_s32_f32
19383 || flavour == neon_cvt_flavour_f32_s32
19384 || flavour == neon_cvt_flavour_f32_u32))
19385 {
19386 inst.cond = 0xf;
19387 inst.instruction = N_MNEM_vcvt;
19388 set_pred_insn_type (INSIDE_VPT_INSN);
19389 do_neon_cvt_1 (neon_cvt_mode_z);
19390 return;
19391 }
19392 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
19393 single_to_half = 1;
19394 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
19395 {
19396 first_error (BAD_FPU);
19397 return;
19398 }
19399
19400 inst.instruction = 0xee3f0e01;
19401 inst.instruction |= single_to_half << 28;
19402 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19403 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
19404 inst.instruction |= t << 12;
19405 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19406 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
19407 inst.is_neon = 1;
19408 }
c70a8987
MGD
19409 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
19410 {
19411 inst.error = NULL;
19412 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19413 }
19414 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
19415 {
19416 inst.error = NULL;
19417 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
19418 }
19419 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
19420 {
a715796b
TG
19421 /* The VCVTB and VCVTT instructions with D-register operands
19422 don't work for SP only targets. */
19423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19424 _(BAD_FPU));
19425
c70a8987
MGD
19426 inst.error = NULL;
19427 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
19428 }
19429 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
19430 {
a715796b
TG
19431 /* The VCVTB and VCVTT instructions with D-register operands
19432 don't work for SP only targets. */
19433 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19434 _(BAD_FPU));
19435
c70a8987
MGD
19436 inst.error = NULL;
19437 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
19438 }
aab2c27d
MM
19439 else if (neon_check_type (2, rs, N_BF16 | N_VFP, N_F32).type != NT_invtype)
19440 {
19441 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19442 inst.error = NULL;
19443 inst.instruction |= (1 << 8);
19444 inst.instruction &= ~(1 << 9);
19445 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19446 }
c70a8987
MGD
19447 else
19448 return;
19449}
19450
19451static void
19452do_neon_cvtb (void)
19453{
19454 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
19455}
19456
19457
19458static void
19459do_neon_cvtt (void)
19460{
c70a8987 19461 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
19462}
19463
5287ad62
JB
19464static void
19465neon_move_immediate (void)
19466{
037e8744
JB
19467 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
19468 struct neon_type_el et = neon_check_type (2, rs,
19469 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 19470 unsigned immlo, immhi = 0, immbits;
c96612cc 19471 int op, cmode, float_p;
5287ad62 19472
037e8744 19473 constraint (et.type == NT_invtype,
477330fc 19474 _("operand size must be specified for immediate VMOV"));
037e8744 19475
5287ad62
JB
19476 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19477 op = (inst.instruction & (1 << 5)) != 0;
19478
19479 immlo = inst.operands[1].imm;
19480 if (inst.operands[1].regisimm)
19481 immhi = inst.operands[1].reg;
19482
19483 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 19484 _("immediate has bits set outside the operand size"));
5287ad62 19485
c96612cc
JB
19486 float_p = inst.operands[1].immisfloat;
19487
19488 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 19489 et.size, et.type)) == FAIL)
5287ad62
JB
19490 {
19491 /* Invert relevant bits only. */
19492 neon_invert_size (&immlo, &immhi, et.size);
19493 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
19494 with one or the other; those cases are caught by
19495 neon_cmode_for_move_imm. */
5287ad62 19496 op = !op;
c96612cc
JB
19497 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
19498 &op, et.size, et.type)) == FAIL)
477330fc
RM
19499 {
19500 first_error (_("immediate out of range"));
19501 return;
19502 }
5287ad62
JB
19503 }
19504
19505 inst.instruction &= ~(1 << 5);
19506 inst.instruction |= op << 5;
19507
19508 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19509 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 19510 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19511 inst.instruction |= cmode << 8;
19512
19513 neon_write_immbits (immbits);
19514}
19515
19516static void
19517do_neon_mvn (void)
19518{
64c350f2 19519 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
1a186d29
AV
19520 return;
19521
5287ad62
JB
19522 if (inst.operands[1].isreg)
19523 {
1a186d29
AV
19524 enum neon_shape rs;
19525 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19526 rs = neon_select_shape (NS_QQ, NS_NULL);
19527 else
19528 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 19529
88714cb8 19530 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
19531 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19532 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19533 inst.instruction |= LOW4 (inst.operands[1].reg);
19534 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 19535 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19536 }
19537 else
19538 {
88714cb8 19539 NEON_ENCODE (IMMED, inst);
5287ad62
JB
19540 neon_move_immediate ();
19541 }
19542
88714cb8 19543 neon_dp_fixup (&inst);
1a186d29
AV
19544
19545 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19546 {
19547 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
1a186d29 19548 }
5287ad62
JB
19549}
19550
19551/* Encode instructions of form:
19552
19553 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 19554 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
19555
19556static void
19557neon_mixed_length (struct neon_type_el et, unsigned size)
19558{
19559 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19560 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19561 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19562 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19563 inst.instruction |= LOW4 (inst.operands[2].reg);
19564 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19565 inst.instruction |= (et.type == NT_unsigned) << 24;
19566 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 19567
88714cb8 19568 neon_dp_fixup (&inst);
5287ad62
JB
19569}
19570
19571static void
19572do_neon_dyadic_long (void)
19573{
5ee91343
AV
19574 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
19575 if (rs == NS_QDD)
19576 {
19577 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19578 return;
19579
19580 NEON_ENCODE (INTEGER, inst);
19581 /* FIXME: Type checking for lengthening op. */
19582 struct neon_type_el et = neon_check_type (3, NS_QDD,
19583 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19584 neon_mixed_length (et, et.size);
19585 }
19586 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19587 && (inst.cond == 0xf || inst.cond == 0x10))
19588 {
19589 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19590 in an IT block with le/lt conditions. */
19591
19592 if (inst.cond == 0xf)
19593 inst.cond = 0xb;
19594 else if (inst.cond == 0x10)
19595 inst.cond = 0xd;
19596
19597 inst.pred_insn_type = INSIDE_IT_INSN;
19598
19599 if (inst.instruction == N_MNEM_vaddl)
19600 {
19601 inst.instruction = N_MNEM_vadd;
19602 do_neon_addsub_if_i ();
19603 }
19604 else if (inst.instruction == N_MNEM_vsubl)
19605 {
19606 inst.instruction = N_MNEM_vsub;
19607 do_neon_addsub_if_i ();
19608 }
19609 else if (inst.instruction == N_MNEM_vabdl)
19610 {
19611 inst.instruction = N_MNEM_vabd;
19612 do_neon_dyadic_if_su ();
19613 }
19614 }
19615 else
19616 first_error (BAD_FPU);
5287ad62
JB
19617}
19618
19619static void
19620do_neon_abal (void)
19621{
19622 struct neon_type_el et = neon_check_type (3, NS_QDD,
19623 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19624 neon_mixed_length (et, et.size);
19625}
19626
19627static void
19628neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19629{
19630 if (inst.operands[2].isscalar)
19631 {
dcbf9037 19632 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 19633 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 19634 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
19635 neon_mul_mac (et, et.type == NT_unsigned);
19636 }
19637 else
19638 {
19639 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 19640 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 19641 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
19642 neon_mixed_length (et, et.size);
19643 }
19644}
19645
19646static void
19647do_neon_mac_maybe_scalar_long (void)
19648{
19649 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19650}
19651
dec41383
JW
19652/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19653 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19654
19655static unsigned
19656neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19657{
19658 unsigned regno = NEON_SCALAR_REG (scalar);
19659 unsigned elno = NEON_SCALAR_INDEX (scalar);
19660
19661 if (quad_p)
19662 {
19663 if (regno > 7 || elno > 3)
19664 goto bad_scalar;
19665
19666 return ((regno & 0x7)
19667 | ((elno & 0x1) << 3)
19668 | (((elno >> 1) & 0x1) << 5));
19669 }
19670 else
19671 {
19672 if (regno > 15 || elno > 1)
19673 goto bad_scalar;
19674
19675 return (((regno & 0x1) << 5)
19676 | ((regno >> 1) & 0x7)
19677 | ((elno & 0x1) << 3));
19678 }
19679
19680bad_scalar:
19681 first_error (_("scalar out of range for multiply instruction"));
19682 return 0;
19683}
19684
19685static void
19686do_neon_fmac_maybe_scalar_long (int subtype)
19687{
19688 enum neon_shape rs;
19689 int high8;
19690 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19691 field (bits[21:20]) has different meaning. For scalar index variant, it's
19692 used to differentiate add and subtract, otherwise it's with fixed value
19693 0x2. */
19694 int size = -1;
19695
dec41383
JW
19696 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19697 be a scalar index register. */
19698 if (inst.operands[2].isscalar)
19699 {
19700 high8 = 0xfe000000;
19701 if (subtype)
19702 size = 16;
19703 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19704 }
19705 else
19706 {
19707 high8 = 0xfc000000;
19708 size = 32;
19709 if (subtype)
19710 inst.instruction |= (0x1 << 23);
19711 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19712 }
19713
aab2c27d
MM
19714
19715 if (inst.cond != COND_ALWAYS)
19716 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19717 "behaviour is UNPREDICTABLE"));
19718
19719 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
19720 _(BAD_FP16));
19721
19722 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19723 _(BAD_FPU));
dec41383
JW
19724
19725 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19726 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19727 so we simply pass -1 as size. */
19728 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19729 neon_three_same (quad_p, 0, size);
19730
19731 /* Undo neon_dp_fixup. Redo the high eight bits. */
19732 inst.instruction &= 0x00ffffff;
19733 inst.instruction |= high8;
19734
19735#define LOW1(R) ((R) & 0x1)
19736#define HI4(R) (((R) >> 1) & 0xf)
19737 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19738 whether the instruction is in Q form and whether Vm is a scalar indexed
19739 operand. */
19740 if (inst.operands[2].isscalar)
19741 {
19742 unsigned rm
19743 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19744 inst.instruction &= 0xffffffd0;
19745 inst.instruction |= rm;
19746
19747 if (!quad_p)
19748 {
19749 /* Redo Rn as well. */
19750 inst.instruction &= 0xfff0ff7f;
19751 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19752 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19753 }
19754 }
19755 else if (!quad_p)
19756 {
19757 /* Redo Rn and Rm. */
19758 inst.instruction &= 0xfff0ff50;
19759 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19760 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19761 inst.instruction |= HI4 (inst.operands[2].reg);
19762 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19763 }
19764}
19765
19766static void
19767do_neon_vfmal (void)
19768{
19769 return do_neon_fmac_maybe_scalar_long (0);
19770}
19771
19772static void
19773do_neon_vfmsl (void)
19774{
19775 return do_neon_fmac_maybe_scalar_long (1);
19776}
19777
5287ad62
JB
19778static void
19779do_neon_dyadic_wide (void)
19780{
19781 struct neon_type_el et = neon_check_type (3, NS_QQD,
19782 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19783 neon_mixed_length (et, et.size);
19784}
19785
19786static void
19787do_neon_dyadic_narrow (void)
19788{
19789 struct neon_type_el et = neon_check_type (3, NS_QDD,
19790 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
19791 /* Operand sign is unimportant, and the U bit is part of the opcode,
19792 so force the operand type to integer. */
19793 et.type = NT_integer;
5287ad62
JB
19794 neon_mixed_length (et, et.size / 2);
19795}
19796
19797static void
19798do_neon_mul_sat_scalar_long (void)
19799{
19800 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19801}
19802
19803static void
19804do_neon_vmull (void)
19805{
19806 if (inst.operands[2].isscalar)
19807 do_neon_mac_maybe_scalar_long ();
19808 else
19809 {
19810 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 19811 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 19812
5287ad62 19813 if (et.type == NT_poly)
477330fc 19814 NEON_ENCODE (POLY, inst);
5287ad62 19815 else
477330fc 19816 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
19817
19818 /* For polynomial encoding the U bit must be zero, and the size must
19819 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19820 obviously, as 0b10). */
19821 if (et.size == 64)
19822 {
19823 /* Check we're on the correct architecture. */
19824 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19825 inst.error =
19826 _("Instruction form not available on this architecture.");
19827
19828 et.size = 32;
19829 }
19830
5287ad62
JB
19831 neon_mixed_length (et, et.size);
19832 }
19833}
19834
19835static void
19836do_neon_ext (void)
19837{
037e8744 19838 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
19839 struct neon_type_el et = neon_check_type (3, rs,
19840 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19841 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
19842
19843 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19844 _("shift out of range"));
5287ad62
JB
19845 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19846 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19847 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19848 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19849 inst.instruction |= LOW4 (inst.operands[2].reg);
19850 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 19851 inst.instruction |= neon_quad (rs) << 6;
5287ad62 19852 inst.instruction |= imm << 8;
5f4273c7 19853
88714cb8 19854 neon_dp_fixup (&inst);
5287ad62
JB
19855}
19856
19857static void
19858do_neon_rev (void)
19859{
64c350f2 19860 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
4401c241
AV
19861 return;
19862
19863 enum neon_shape rs;
19864 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19865 rs = neon_select_shape (NS_QQ, NS_NULL);
19866 else
19867 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19868
5287ad62
JB
19869 struct neon_type_el et = neon_check_type (2, rs,
19870 N_EQK, N_8 | N_16 | N_32 | N_KEY);
4401c241 19871
5287ad62
JB
19872 unsigned op = (inst.instruction >> 7) & 3;
19873 /* N (width of reversed regions) is encoded as part of the bitmask. We
19874 extract it here to check the elements to be reversed are smaller.
19875 Otherwise we'd get a reserved instruction. */
19876 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
4401c241
AV
19877
19878 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19879 && inst.operands[0].reg == inst.operands[1].reg)
19880 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19881 " operands makes instruction UNPREDICTABLE"));
19882
9c2799c2 19883 gas_assert (elsize != 0);
5287ad62 19884 constraint (et.size >= elsize,
477330fc 19885 _("elements must be smaller than reversal region"));
037e8744 19886 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19887}
19888
19889static void
19890do_neon_dup (void)
19891{
19892 if (inst.operands[1].isscalar)
19893 {
b409bdb6
AV
19894 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19895 BAD_FPU);
037e8744 19896 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 19897 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19898 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 19899 unsigned sizebits = et.size >> 3;
dcbf9037 19900 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 19901 int logsize = neon_logbits (et.size);
dcbf9037 19902 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
19903
19904 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 19905 return;
037e8744 19906
88714cb8 19907 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
19908 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19909 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19910 inst.instruction |= LOW4 (dm);
19911 inst.instruction |= HI1 (dm) << 5;
037e8744 19912 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19913 inst.instruction |= x << 17;
19914 inst.instruction |= sizebits << 16;
5f4273c7 19915
88714cb8 19916 neon_dp_fixup (&inst);
5287ad62
JB
19917 }
19918 else
19919 {
037e8744
JB
19920 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19921 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19922 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
19923 if (rs == NS_QR)
19924 {
64c350f2 19925 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
b409bdb6
AV
19926 return;
19927 }
19928 else
19929 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19930 BAD_FPU);
19931
19932 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19933 {
19934 if (inst.operands[1].reg == REG_SP)
19935 as_tsktsk (MVE_BAD_SP);
19936 else if (inst.operands[1].reg == REG_PC)
19937 as_tsktsk (MVE_BAD_PC);
19938 }
19939
5287ad62 19940 /* Duplicate ARM register to lanes of vector. */
88714cb8 19941 NEON_ENCODE (ARMREG, inst);
5287ad62 19942 switch (et.size)
477330fc
RM
19943 {
19944 case 8: inst.instruction |= 0x400000; break;
19945 case 16: inst.instruction |= 0x000020; break;
19946 case 32: inst.instruction |= 0x000000; break;
19947 default: break;
19948 }
5287ad62
JB
19949 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19950 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19951 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 19952 inst.instruction |= neon_quad (rs) << 21;
5287ad62 19953 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 19954 variants, except for the condition field. */
037e8744 19955 do_vfp_cond_or_thumb ();
5287ad62
JB
19956 }
19957}
19958
57785aa2
AV
19959static void
19960do_mve_mov (int toQ)
19961{
19962 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19963 return;
19964 if (inst.cond > COND_ALWAYS)
19965 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19966
19967 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19968 if (toQ)
19969 {
19970 Q0 = 0;
19971 Q1 = 1;
19972 Rt = 2;
19973 Rt2 = 3;
19974 }
19975
19976 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19977 _("Index one must be [2,3] and index two must be two less than"
19978 " index one."));
19979 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19980 _("General purpose registers may not be the same"));
19981 constraint (inst.operands[Rt].reg == REG_SP
19982 || inst.operands[Rt2].reg == REG_SP,
19983 BAD_SP);
19984 constraint (inst.operands[Rt].reg == REG_PC
19985 || inst.operands[Rt2].reg == REG_PC,
19986 BAD_PC);
19987
19988 inst.instruction = 0xec000f00;
19989 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19990 inst.instruction |= !!toQ << 20;
19991 inst.instruction |= inst.operands[Rt2].reg << 16;
19992 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19993 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19994 inst.instruction |= inst.operands[Rt].reg;
19995}
19996
19997static void
19998do_mve_movn (void)
19999{
20000 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20001 return;
20002
20003 if (inst.cond > COND_ALWAYS)
20004 inst.pred_insn_type = INSIDE_VPT_INSN;
20005 else
20006 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
20007
20008 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
20009 | N_KEY);
20010
20011 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20012 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
20013 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20014 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20015 inst.instruction |= LOW4 (inst.operands[1].reg);
20016 inst.is_neon = 1;
20017
20018}
20019
5287ad62
JB
20020/* VMOV has particularly many variations. It can be one of:
20021 0. VMOV<c><q> <Qd>, <Qm>
20022 1. VMOV<c><q> <Dd>, <Dm>
20023 (Register operations, which are VORR with Rm = Rn.)
20024 2. VMOV<c><q>.<dt> <Qd>, #<imm>
20025 3. VMOV<c><q>.<dt> <Dd>, #<imm>
20026 (Immediate loads.)
20027 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
20028 (ARM register to scalar.)
20029 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
20030 (Two ARM registers to vector.)
20031 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
20032 (Scalar to ARM register.)
20033 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
20034 (Vector to two ARM registers.)
037e8744
JB
20035 8. VMOV.F32 <Sd>, <Sm>
20036 9. VMOV.F64 <Dd>, <Dm>
20037 (VFP register moves.)
20038 10. VMOV.F32 <Sd>, #imm
20039 11. VMOV.F64 <Dd>, #imm
20040 (VFP float immediate load.)
20041 12. VMOV <Rd>, <Sm>
20042 (VFP single to ARM reg.)
20043 13. VMOV <Sd>, <Rm>
20044 (ARM reg to VFP single.)
20045 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
20046 (Two ARM regs to two VFP singles.)
20047 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
20048 (Two VFP singles to two ARM regs.)
57785aa2
AV
20049 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
20050 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
20051 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
20052 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 20053
037e8744
JB
20054 These cases can be disambiguated using neon_select_shape, except cases 1/9
20055 and 3/11 which depend on the operand type too.
5f4273c7 20056
5287ad62 20057 All the encoded bits are hardcoded by this function.
5f4273c7 20058
b7fc2769
JB
20059 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
20060 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 20061
5287ad62 20062 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 20063 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
20064
20065static void
20066do_neon_mov (void)
20067{
57785aa2
AV
20068 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
20069 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
20070 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
20071 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
20072 NS_NULL);
037e8744
JB
20073 struct neon_type_el et;
20074 const char *ldconst = 0;
5287ad62 20075
037e8744 20076 switch (rs)
5287ad62 20077 {
037e8744
JB
20078 case NS_DD: /* case 1/9. */
20079 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20080 /* It is not an error here if no type is given. */
20081 inst.error = NULL;
1c1e0fe5
SP
20082
20083 /* In MVE we interpret the following instructions as same, so ignoring
20084 the following type (float) and size (64) checks.
20085 a: VMOV<c><q> <Dd>, <Dm>
20086 b: VMOV<c><q>.F64 <Dd>, <Dm>. */
20087 if ((et.type == NT_float && et.size == 64)
20088 || (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc
RM
20089 {
20090 do_vfp_nsyn_opcode ("fcpyd");
20091 break;
20092 }
037e8744 20093 /* fall through. */
5287ad62 20094
037e8744
JB
20095 case NS_QQ: /* case 0/1. */
20096 {
64c350f2
AV
20097 if (!check_simd_pred_availability (FALSE,
20098 NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
20099 return;
20100 /* The architecture manual I have doesn't explicitly state which
20101 value the U bit should have for register->register moves, but
20102 the equivalent VORR instruction has U = 0, so do that. */
20103 inst.instruction = 0x0200110;
20104 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20105 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20106 inst.instruction |= LOW4 (inst.operands[1].reg);
20107 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20108 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20109 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20110 inst.instruction |= neon_quad (rs) << 6;
20111
20112 neon_dp_fixup (&inst);
037e8744
JB
20113 }
20114 break;
5f4273c7 20115
037e8744
JB
20116 case NS_DI: /* case 3/11. */
20117 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20118 inst.error = NULL;
20119 if (et.type == NT_float && et.size == 64)
477330fc
RM
20120 {
20121 /* case 11 (fconstd). */
20122 ldconst = "fconstd";
20123 goto encode_fconstd;
20124 }
037e8744
JB
20125 /* fall through. */
20126
20127 case NS_QI: /* case 2/3. */
64c350f2
AV
20128 if (!check_simd_pred_availability (FALSE,
20129 NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 20130 return;
037e8744
JB
20131 inst.instruction = 0x0800010;
20132 neon_move_immediate ();
88714cb8 20133 neon_dp_fixup (&inst);
5287ad62 20134 break;
5f4273c7 20135
037e8744
JB
20136 case NS_SR: /* case 4. */
20137 {
477330fc
RM
20138 unsigned bcdebits = 0;
20139 int logsize;
20140 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
20141 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 20142
05ac0ffb
JB
20143 /* .<size> is optional here, defaulting to .32. */
20144 if (inst.vectype.elems == 0
20145 && inst.operands[0].vectype.type == NT_invtype
20146 && inst.operands[1].vectype.type == NT_invtype)
20147 {
20148 inst.vectype.el[0].type = NT_untyped;
20149 inst.vectype.el[0].size = 32;
20150 inst.vectype.elems = 1;
20151 }
20152
477330fc
RM
20153 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
20154 logsize = neon_logbits (et.size);
20155
57785aa2
AV
20156 if (et.size != 32)
20157 {
20158 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20159 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
20160 return;
20161 }
20162 else
20163 {
20164 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20165 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20166 _(BAD_FPU));
20167 }
20168
20169 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20170 {
20171 if (inst.operands[1].reg == REG_SP)
20172 as_tsktsk (MVE_BAD_SP);
20173 else if (inst.operands[1].reg == REG_PC)
20174 as_tsktsk (MVE_BAD_PC);
20175 }
20176 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
20177
477330fc 20178 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
20179 constraint (x >= size / et.size, _("scalar index out of range"));
20180
477330fc
RM
20181
20182 switch (et.size)
20183 {
20184 case 8: bcdebits = 0x8; break;
20185 case 16: bcdebits = 0x1; break;
20186 case 32: bcdebits = 0x0; break;
20187 default: ;
20188 }
20189
57785aa2 20190 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
20191
20192 inst.instruction = 0xe000b10;
20193 do_vfp_cond_or_thumb ();
20194 inst.instruction |= LOW4 (dn) << 16;
20195 inst.instruction |= HI1 (dn) << 7;
20196 inst.instruction |= inst.operands[1].reg << 12;
20197 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
20198 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
20199 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
20200 }
20201 break;
5f4273c7 20202
037e8744 20203 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
20204 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20205 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 20206 _(BAD_FPU));
b7fc2769 20207
037e8744
JB
20208 inst.instruction = 0xc400b10;
20209 do_vfp_cond_or_thumb ();
20210 inst.instruction |= LOW4 (inst.operands[0].reg);
20211 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
20212 inst.instruction |= inst.operands[1].reg << 12;
20213 inst.instruction |= inst.operands[2].reg << 16;
20214 break;
5f4273c7 20215
037e8744
JB
20216 case NS_RS: /* case 6. */
20217 {
477330fc
RM
20218 unsigned logsize;
20219 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
20220 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
20221 unsigned abcdebits = 0;
037e8744 20222
05ac0ffb
JB
20223 /* .<dt> is optional here, defaulting to .32. */
20224 if (inst.vectype.elems == 0
20225 && inst.operands[0].vectype.type == NT_invtype
20226 && inst.operands[1].vectype.type == NT_invtype)
20227 {
20228 inst.vectype.el[0].type = NT_untyped;
20229 inst.vectype.el[0].size = 32;
20230 inst.vectype.elems = 1;
20231 }
20232
91d6fa6a
NC
20233 et = neon_check_type (2, NS_NULL,
20234 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
20235 logsize = neon_logbits (et.size);
20236
57785aa2
AV
20237 if (et.size != 32)
20238 {
20239 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20240 && vfp_or_neon_is_neon (NEON_CHECK_CC
20241 | NEON_CHECK_ARCH) == FAIL)
20242 return;
20243 }
20244 else
20245 {
20246 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20247 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20248 _(BAD_FPU));
20249 }
20250
20251 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20252 {
20253 if (inst.operands[0].reg == REG_SP)
20254 as_tsktsk (MVE_BAD_SP);
20255 else if (inst.operands[0].reg == REG_PC)
20256 as_tsktsk (MVE_BAD_PC);
20257 }
20258
20259 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
20260
477330fc 20261 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 20262 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
20263
20264 switch (et.size)
20265 {
20266 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
20267 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
20268 case 32: abcdebits = 0x00; break;
20269 default: ;
20270 }
20271
57785aa2 20272 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
20273 inst.instruction = 0xe100b10;
20274 do_vfp_cond_or_thumb ();
20275 inst.instruction |= LOW4 (dn) << 16;
20276 inst.instruction |= HI1 (dn) << 7;
20277 inst.instruction |= inst.operands[0].reg << 12;
20278 inst.instruction |= (abcdebits & 3) << 5;
20279 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 20280 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
20281 }
20282 break;
5f4273c7 20283
037e8744 20284 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
20285 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20286 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 20287 _(BAD_FPU));
037e8744
JB
20288
20289 inst.instruction = 0xc500b10;
20290 do_vfp_cond_or_thumb ();
20291 inst.instruction |= inst.operands[0].reg << 12;
20292 inst.instruction |= inst.operands[1].reg << 16;
20293 inst.instruction |= LOW4 (inst.operands[2].reg);
20294 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20295 break;
5f4273c7 20296
037e8744
JB
20297 case NS_FF: /* case 8 (fcpys). */
20298 do_vfp_nsyn_opcode ("fcpys");
20299 break;
5f4273c7 20300
9db2f6b4 20301 case NS_HI:
037e8744
JB
20302 case NS_FI: /* case 10 (fconsts). */
20303 ldconst = "fconsts";
4ef4710f 20304 encode_fconstd:
58ed5c38
TC
20305 if (!inst.operands[1].immisfloat)
20306 {
4ef4710f 20307 unsigned new_imm;
58ed5c38 20308 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
20309 float imm = (float) inst.operands[1].imm;
20310 memcpy (&new_imm, &imm, sizeof (float));
20311 /* But the assembly may have been written to provide an integer
20312 bit pattern that equates to a float, so check that the
20313 conversion has worked. */
20314 if (is_quarter_float (new_imm))
20315 {
20316 if (is_quarter_float (inst.operands[1].imm))
20317 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
20318
20319 inst.operands[1].imm = new_imm;
20320 inst.operands[1].immisfloat = 1;
20321 }
58ed5c38
TC
20322 }
20323
037e8744 20324 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
20325 {
20326 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
20327 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
20328
20329 /* ARMv8.2 fp16 vmov.f16 instruction. */
20330 if (rs == NS_HI)
20331 do_scalar_fp16_v82_encode ();
477330fc 20332 }
5287ad62 20333 else
477330fc 20334 first_error (_("immediate out of range"));
037e8744 20335 break;
5f4273c7 20336
9db2f6b4 20337 case NS_RH:
037e8744
JB
20338 case NS_RF: /* case 12 (fmrs). */
20339 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
20340 /* ARMv8.2 fp16 vmov.f16 instruction. */
20341 if (rs == NS_RH)
20342 do_scalar_fp16_v82_encode ();
037e8744 20343 break;
5f4273c7 20344
9db2f6b4 20345 case NS_HR:
037e8744
JB
20346 case NS_FR: /* case 13 (fmsr). */
20347 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
20348 /* ARMv8.2 fp16 vmov.f16 instruction. */
20349 if (rs == NS_HR)
20350 do_scalar_fp16_v82_encode ();
037e8744 20351 break;
5f4273c7 20352
57785aa2
AV
20353 case NS_RRSS:
20354 do_mve_mov (0);
20355 break;
20356 case NS_SSRR:
20357 do_mve_mov (1);
20358 break;
20359
037e8744
JB
20360 /* The encoders for the fmrrs and fmsrr instructions expect three operands
20361 (one of which is a list), but we have parsed four. Do some fiddling to
20362 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
20363 expect. */
20364 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
20365 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20366 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20367 _(BAD_FPU));
037e8744 20368 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 20369 _("VFP registers must be adjacent"));
037e8744
JB
20370 inst.operands[2].imm = 2;
20371 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20372 do_vfp_nsyn_opcode ("fmrrs");
20373 break;
5f4273c7 20374
037e8744 20375 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
20376 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20377 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20378 _(BAD_FPU));
037e8744 20379 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 20380 _("VFP registers must be adjacent"));
037e8744
JB
20381 inst.operands[1] = inst.operands[2];
20382 inst.operands[2] = inst.operands[3];
20383 inst.operands[0].imm = 2;
20384 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20385 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 20386 break;
5f4273c7 20387
4c261dff
NC
20388 case NS_NULL:
20389 /* neon_select_shape has determined that the instruction
20390 shape is wrong and has already set the error message. */
20391 break;
20392
5287ad62
JB
20393 default:
20394 abort ();
20395 }
20396}
20397
57785aa2
AV
20398static void
20399do_mve_movl (void)
20400{
20401 if (!(inst.operands[0].present && inst.operands[0].isquad
20402 && inst.operands[1].present && inst.operands[1].isquad
20403 && !inst.operands[2].present))
20404 {
20405 inst.instruction = 0;
20406 inst.cond = 0xb;
20407 if (thumb_mode)
20408 set_pred_insn_type (INSIDE_IT_INSN);
20409 do_neon_mov ();
20410 return;
20411 }
20412
20413 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20414 return;
20415
20416 if (inst.cond != COND_ALWAYS)
20417 inst.pred_insn_type = INSIDE_VPT_INSN;
20418
20419 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
20420 | N_S16 | N_U16 | N_KEY);
20421
20422 inst.instruction |= (et.type == NT_unsigned) << 28;
20423 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20424 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
20425 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20426 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20427 inst.instruction |= LOW4 (inst.operands[1].reg);
20428 inst.is_neon = 1;
20429}
20430
5287ad62
JB
20431static void
20432do_neon_rshift_round_imm (void)
20433{
64c350f2 20434 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
4401c241
AV
20435 return;
20436
20437 enum neon_shape rs;
20438 struct neon_type_el et;
20439
20440 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20441 {
20442 rs = neon_select_shape (NS_QQI, NS_NULL);
20443 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
20444 }
20445 else
20446 {
20447 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
20448 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
20449 }
5287ad62
JB
20450 int imm = inst.operands[2].imm;
20451
20452 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
20453 if (imm == 0)
20454 {
20455 inst.operands[2].present = 0;
20456 do_neon_mov ();
20457 return;
20458 }
20459
20460 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 20461 _("immediate out of range for shift"));
037e8744 20462 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 20463 et.size - imm);
5287ad62
JB
20464}
20465
9db2f6b4
RL
20466static void
20467do_neon_movhf (void)
20468{
20469 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
20470 constraint (rs != NS_HH, _("invalid suffix"));
20471
7bdf778b
ASDV
20472 if (inst.cond != COND_ALWAYS)
20473 {
20474 if (thumb_mode)
20475 {
20476 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20477 " the behaviour is UNPREDICTABLE"));
20478 }
20479 else
20480 {
20481 inst.error = BAD_COND;
20482 return;
20483 }
20484 }
20485
9db2f6b4
RL
20486 do_vfp_sp_monadic ();
20487
20488 inst.is_neon = 1;
20489 inst.instruction |= 0xf0000000;
20490}
20491
5287ad62
JB
20492static void
20493do_neon_movl (void)
20494{
20495 struct neon_type_el et = neon_check_type (2, NS_QD,
20496 N_EQK | N_DBL, N_SU_32 | N_KEY);
20497 unsigned sizebits = et.size >> 3;
20498 inst.instruction |= sizebits << 19;
20499 neon_two_same (0, et.type == NT_unsigned, -1);
20500}
20501
20502static void
20503do_neon_trn (void)
20504{
037e8744 20505 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
20506 struct neon_type_el et = neon_check_type (2, rs,
20507 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 20508 NEON_ENCODE (INTEGER, inst);
037e8744 20509 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20510}
20511
20512static void
20513do_neon_zip_uzp (void)
20514{
037e8744 20515 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
20516 struct neon_type_el et = neon_check_type (2, rs,
20517 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20518 if (rs == NS_DD && et.size == 32)
20519 {
20520 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20521 inst.instruction = N_MNEM_vtrn;
20522 do_neon_trn ();
20523 return;
20524 }
037e8744 20525 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20526}
20527
20528static void
20529do_neon_sat_abs_neg (void)
20530{
64c350f2 20531 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
1a186d29
AV
20532 return;
20533
20534 enum neon_shape rs;
20535 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20536 rs = neon_select_shape (NS_QQ, NS_NULL);
20537 else
20538 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
20539 struct neon_type_el et = neon_check_type (2, rs,
20540 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 20541 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20542}
20543
20544static void
20545do_neon_pair_long (void)
20546{
037e8744 20547 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
20548 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20549 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20550 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 20551 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20552}
20553
20554static void
20555do_neon_recip_est (void)
20556{
037e8744 20557 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 20558 struct neon_type_el et = neon_check_type (2, rs,
cc933301 20559 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 20560 inst.instruction |= (et.type == NT_float) << 8;
037e8744 20561 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20562}
20563
20564static void
20565do_neon_cls (void)
20566{
64c350f2 20567 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
f30ee27c
AV
20568 return;
20569
20570 enum neon_shape rs;
20571 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20572 rs = neon_select_shape (NS_QQ, NS_NULL);
20573 else
20574 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20575
5287ad62
JB
20576 struct neon_type_el et = neon_check_type (2, rs,
20577 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 20578 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20579}
20580
20581static void
20582do_neon_clz (void)
20583{
64c350f2 20584 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
f30ee27c
AV
20585 return;
20586
20587 enum neon_shape rs;
20588 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20589 rs = neon_select_shape (NS_QQ, NS_NULL);
20590 else
20591 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20592
5287ad62
JB
20593 struct neon_type_el et = neon_check_type (2, rs,
20594 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 20595 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20596}
20597
20598static void
20599do_neon_cnt (void)
20600{
037e8744 20601 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
20602 struct neon_type_el et = neon_check_type (2, rs,
20603 N_EQK | N_INT, N_8 | N_KEY);
037e8744 20604 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
20605}
20606
20607static void
20608do_neon_swp (void)
20609{
037e8744
JB
20610 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20611 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
20612}
20613
20614static void
20615do_neon_tbl_tbx (void)
20616{
20617 unsigned listlenbits;
dcbf9037 20618 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 20619
5287ad62
JB
20620 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20621 {
dcbf9037 20622 first_error (_("bad list length for table lookup"));
5287ad62
JB
20623 return;
20624 }
5f4273c7 20625
5287ad62
JB
20626 listlenbits = inst.operands[1].imm - 1;
20627 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20628 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20629 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20630 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20631 inst.instruction |= LOW4 (inst.operands[2].reg);
20632 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20633 inst.instruction |= listlenbits << 8;
5f4273c7 20634
88714cb8 20635 neon_dp_fixup (&inst);
5287ad62
JB
20636}
20637
20638static void
20639do_neon_ldm_stm (void)
20640{
20641 /* P, U and L bits are part of bitmask. */
20642 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20643 unsigned offsetbits = inst.operands[1].imm * 2;
20644
037e8744
JB
20645 if (inst.operands[1].issingle)
20646 {
20647 do_vfp_nsyn_ldm_stm (is_dbmode);
20648 return;
20649 }
20650
5287ad62 20651 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 20652 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
20653
20654 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
20655 _("register list must contain at least 1 and at most 16 "
20656 "registers"));
5287ad62
JB
20657
20658 inst.instruction |= inst.operands[0].reg << 16;
20659 inst.instruction |= inst.operands[0].writeback << 21;
20660 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20661 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20662
20663 inst.instruction |= offsetbits;
5f4273c7 20664
037e8744 20665 do_vfp_cond_or_thumb ();
5287ad62
JB
20666}
20667
20668static void
20669do_neon_ldr_str (void)
20670{
5287ad62 20671 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 20672
6844b2c2
MGD
20673 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20674 And is UNPREDICTABLE in thumb mode. */
fa94de6b 20675 if (!is_ldr
6844b2c2 20676 && inst.operands[1].reg == REG_PC
ba86b375 20677 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 20678 {
94dcf8bf 20679 if (thumb_mode)
6844b2c2 20680 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 20681 else if (warn_on_deprecated)
5c3696f8 20682 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
20683 }
20684
037e8744
JB
20685 if (inst.operands[0].issingle)
20686 {
cd2f129f 20687 if (is_ldr)
477330fc 20688 do_vfp_nsyn_opcode ("flds");
cd2f129f 20689 else
477330fc 20690 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
20691
20692 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20693 if (inst.vectype.el[0].size == 16)
20694 do_scalar_fp16_v82_encode ();
5287ad62
JB
20695 }
20696 else
5287ad62 20697 {
cd2f129f 20698 if (is_ldr)
477330fc 20699 do_vfp_nsyn_opcode ("fldd");
5287ad62 20700 else
477330fc 20701 do_vfp_nsyn_opcode ("fstd");
5287ad62 20702 }
5287ad62
JB
20703}
20704
32c36c3c
AV
20705static void
20706do_t_vldr_vstr_sysreg (void)
20707{
20708 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20709 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20710
20711 /* Use of PC is UNPREDICTABLE. */
20712 if (inst.operands[1].reg == REG_PC)
20713 inst.error = _("Use of PC here is UNPREDICTABLE");
20714
20715 if (inst.operands[1].immisreg)
20716 inst.error = _("instruction does not accept register index");
20717
20718 if (!inst.operands[1].isreg)
20719 inst.error = _("instruction does not accept PC-relative addressing");
20720
20721 if (abs (inst.operands[1].imm) >= (1 << 7))
20722 inst.error = _("immediate value out of range");
20723
20724 inst.instruction = 0xec000f80;
20725 if (is_vldr)
20726 inst.instruction |= 1 << sysreg_vldr_bitno;
20727 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20728 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20729 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20730}
20731
20732static void
20733do_vldr_vstr (void)
20734{
20735 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20736
20737 /* VLDR/VSTR (System Register). */
20738 if (sysreg_op)
20739 {
20740 if (!mark_feature_used (&arm_ext_v8_1m_main))
20741 as_bad (_("Instruction not permitted on this architecture"));
20742
20743 do_t_vldr_vstr_sysreg ();
20744 }
20745 /* VLDR/VSTR. */
20746 else
20747 {
20748 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
20749 as_bad (_("Instruction not permitted on this architecture"));
20750 do_neon_ldr_str ();
20751 }
20752}
20753
5287ad62
JB
20754/* "interleave" version also handles non-interleaving register VLD1/VST1
20755 instructions. */
20756
20757static void
20758do_neon_ld_st_interleave (void)
20759{
037e8744 20760 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 20761 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
20762 unsigned alignbits = 0;
20763 unsigned idx;
20764 /* The bits in this table go:
20765 0: register stride of one (0) or two (1)
20766 1,2: register list length, minus one (1, 2, 3, 4).
20767 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20768 We use -1 for invalid entries. */
20769 const int typetable[] =
20770 {
20771 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20772 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20773 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20774 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20775 };
20776 int typebits;
20777
dcbf9037
JB
20778 if (et.type == NT_invtype)
20779 return;
20780
5287ad62
JB
20781 if (inst.operands[1].immisalign)
20782 switch (inst.operands[1].imm >> 8)
20783 {
20784 case 64: alignbits = 1; break;
20785 case 128:
477330fc 20786 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 20787 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
20788 goto bad_alignment;
20789 alignbits = 2;
20790 break;
5287ad62 20791 case 256:
477330fc
RM
20792 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20793 goto bad_alignment;
20794 alignbits = 3;
20795 break;
5287ad62
JB
20796 default:
20797 bad_alignment:
477330fc
RM
20798 first_error (_("bad alignment"));
20799 return;
5287ad62
JB
20800 }
20801
20802 inst.instruction |= alignbits << 4;
20803 inst.instruction |= neon_logbits (et.size) << 6;
20804
20805 /* Bits [4:6] of the immediate in a list specifier encode register stride
20806 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20807 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20808 up the right value for "type" in a table based on this value and the given
20809 list style, then stick it back. */
20810 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 20811 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
20812
20813 typebits = typetable[idx];
5f4273c7 20814
5287ad62 20815 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 20816 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 20817 BAD_EL_TYPE);
5287ad62
JB
20818
20819 inst.instruction &= ~0xf00;
20820 inst.instruction |= typebits << 8;
20821}
20822
20823/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20824 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20825 otherwise. The variable arguments are a list of pairs of legal (size, align)
20826 values, terminated with -1. */
20827
20828static int
aa8a0863 20829neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
20830{
20831 va_list ap;
20832 int result = FAIL, thissize, thisalign;
5f4273c7 20833
5287ad62
JB
20834 if (!inst.operands[1].immisalign)
20835 {
aa8a0863 20836 *do_alignment = 0;
5287ad62
JB
20837 return SUCCESS;
20838 }
5f4273c7 20839
aa8a0863 20840 va_start (ap, do_alignment);
5287ad62
JB
20841
20842 do
20843 {
20844 thissize = va_arg (ap, int);
20845 if (thissize == -1)
477330fc 20846 break;
5287ad62
JB
20847 thisalign = va_arg (ap, int);
20848
20849 if (size == thissize && align == thisalign)
477330fc 20850 result = SUCCESS;
5287ad62
JB
20851 }
20852 while (result != SUCCESS);
20853
20854 va_end (ap);
20855
20856 if (result == SUCCESS)
aa8a0863 20857 *do_alignment = 1;
5287ad62 20858 else
dcbf9037 20859 first_error (_("unsupported alignment for instruction"));
5f4273c7 20860
5287ad62
JB
20861 return result;
20862}
20863
20864static void
20865do_neon_ld_st_lane (void)
20866{
037e8744 20867 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20868 int align_good, do_alignment = 0;
5287ad62
JB
20869 int logsize = neon_logbits (et.size);
20870 int align = inst.operands[1].imm >> 8;
20871 int n = (inst.instruction >> 8) & 3;
20872 int max_el = 64 / et.size;
5f4273c7 20873
dcbf9037
JB
20874 if (et.type == NT_invtype)
20875 return;
5f4273c7 20876
5287ad62 20877 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 20878 _("bad list length"));
5287ad62 20879 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 20880 _("scalar index out of range"));
5287ad62 20881 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
20882 && et.size == 8,
20883 _("stride of 2 unavailable when element size is 8"));
5f4273c7 20884
5287ad62
JB
20885 switch (n)
20886 {
20887 case 0: /* VLD1 / VST1. */
aa8a0863 20888 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 20889 32, 32, -1);
5287ad62 20890 if (align_good == FAIL)
477330fc 20891 return;
aa8a0863 20892 if (do_alignment)
477330fc
RM
20893 {
20894 unsigned alignbits = 0;
20895 switch (et.size)
20896 {
20897 case 16: alignbits = 0x1; break;
20898 case 32: alignbits = 0x3; break;
20899 default: ;
20900 }
20901 inst.instruction |= alignbits << 4;
20902 }
5287ad62
JB
20903 break;
20904
20905 case 1: /* VLD2 / VST2. */
aa8a0863
TS
20906 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20907 16, 32, 32, 64, -1);
5287ad62 20908 if (align_good == FAIL)
477330fc 20909 return;
aa8a0863 20910 if (do_alignment)
477330fc 20911 inst.instruction |= 1 << 4;
5287ad62
JB
20912 break;
20913
20914 case 2: /* VLD3 / VST3. */
20915 constraint (inst.operands[1].immisalign,
477330fc 20916 _("can't use alignment with this instruction"));
5287ad62
JB
20917 break;
20918
20919 case 3: /* VLD4 / VST4. */
aa8a0863 20920 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 20921 16, 64, 32, 64, 32, 128, -1);
5287ad62 20922 if (align_good == FAIL)
477330fc 20923 return;
aa8a0863 20924 if (do_alignment)
477330fc
RM
20925 {
20926 unsigned alignbits = 0;
20927 switch (et.size)
20928 {
20929 case 8: alignbits = 0x1; break;
20930 case 16: alignbits = 0x1; break;
20931 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20932 default: ;
20933 }
20934 inst.instruction |= alignbits << 4;
20935 }
5287ad62
JB
20936 break;
20937
20938 default: ;
20939 }
20940
20941 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20942 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20943 inst.instruction |= 1 << (4 + logsize);
5f4273c7 20944
5287ad62
JB
20945 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20946 inst.instruction |= logsize << 10;
20947}
20948
20949/* Encode single n-element structure to all lanes VLD<n> instructions. */
20950
20951static void
20952do_neon_ld_dup (void)
20953{
037e8744 20954 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20955 int align_good, do_alignment = 0;
5287ad62 20956
dcbf9037
JB
20957 if (et.type == NT_invtype)
20958 return;
20959
5287ad62
JB
20960 switch ((inst.instruction >> 8) & 3)
20961 {
20962 case 0: /* VLD1. */
9c2799c2 20963 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 20964 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 20965 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 20966 if (align_good == FAIL)
477330fc 20967 return;
5287ad62 20968 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
20969 {
20970 case 1: break;
20971 case 2: inst.instruction |= 1 << 5; break;
20972 default: first_error (_("bad list length")); return;
20973 }
5287ad62
JB
20974 inst.instruction |= neon_logbits (et.size) << 6;
20975 break;
20976
20977 case 1: /* VLD2. */
20978 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
20979 &do_alignment, 8, 16, 16, 32, 32, 64,
20980 -1);
5287ad62 20981 if (align_good == FAIL)
477330fc 20982 return;
5287ad62 20983 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 20984 _("bad list length"));
5287ad62 20985 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20986 inst.instruction |= 1 << 5;
5287ad62
JB
20987 inst.instruction |= neon_logbits (et.size) << 6;
20988 break;
20989
20990 case 2: /* VLD3. */
20991 constraint (inst.operands[1].immisalign,
477330fc 20992 _("can't use alignment with this instruction"));
5287ad62 20993 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 20994 _("bad list length"));
5287ad62 20995 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20996 inst.instruction |= 1 << 5;
5287ad62
JB
20997 inst.instruction |= neon_logbits (et.size) << 6;
20998 break;
20999
21000 case 3: /* VLD4. */
21001 {
477330fc 21002 int align = inst.operands[1].imm >> 8;
aa8a0863 21003 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
21004 16, 64, 32, 64, 32, 128, -1);
21005 if (align_good == FAIL)
21006 return;
21007 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
21008 _("bad list length"));
21009 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21010 inst.instruction |= 1 << 5;
21011 if (et.size == 32 && align == 128)
21012 inst.instruction |= 0x3 << 6;
21013 else
21014 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
21015 }
21016 break;
21017
21018 default: ;
21019 }
21020
aa8a0863 21021 inst.instruction |= do_alignment << 4;
5287ad62
JB
21022}
21023
21024/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
21025 apart from bits [11:4]. */
21026
21027static void
21028do_neon_ldx_stx (void)
21029{
b1a769ed
DG
21030 if (inst.operands[1].isreg)
21031 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
21032
5287ad62
JB
21033 switch (NEON_LANE (inst.operands[0].imm))
21034 {
21035 case NEON_INTERLEAVE_LANES:
88714cb8 21036 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
21037 do_neon_ld_st_interleave ();
21038 break;
5f4273c7 21039
5287ad62 21040 case NEON_ALL_LANES:
88714cb8 21041 NEON_ENCODE (DUP, inst);
2d51fb74
JB
21042 if (inst.instruction == N_INV)
21043 {
21044 first_error ("only loads support such operands");
21045 break;
21046 }
5287ad62
JB
21047 do_neon_ld_dup ();
21048 break;
5f4273c7 21049
5287ad62 21050 default:
88714cb8 21051 NEON_ENCODE (LANE, inst);
5287ad62
JB
21052 do_neon_ld_st_lane ();
21053 }
21054
21055 /* L bit comes from bit mask. */
21056 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21057 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21058 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 21059
5287ad62
JB
21060 if (inst.operands[1].postind)
21061 {
21062 int postreg = inst.operands[1].imm & 0xf;
21063 constraint (!inst.operands[1].immisreg,
477330fc 21064 _("post-index must be a register"));
5287ad62 21065 constraint (postreg == 0xd || postreg == 0xf,
477330fc 21066 _("bad register for post-index"));
5287ad62
JB
21067 inst.instruction |= postreg;
21068 }
4f2374c7 21069 else
5287ad62 21070 {
4f2374c7 21071 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
21072 constraint (inst.relocs[0].exp.X_op != O_constant
21073 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
21074 BAD_ADDR_MODE);
21075
21076 if (inst.operands[1].writeback)
21077 {
21078 inst.instruction |= 0xd;
21079 }
21080 else
21081 inst.instruction |= 0xf;
5287ad62 21082 }
5f4273c7 21083
5287ad62
JB
21084 if (thumb_mode)
21085 inst.instruction |= 0xf9000000;
21086 else
21087 inst.instruction |= 0xf4000000;
21088}
33399f07
MGD
21089
21090/* FP v8. */
21091static void
21092do_vfp_nsyn_fpv8 (enum neon_shape rs)
21093{
a715796b
TG
21094 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21095 D register operands. */
21096 if (neon_shape_class[rs] == SC_DOUBLE)
21097 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21098 _(BAD_FPU));
21099
33399f07
MGD
21100 NEON_ENCODE (FPV8, inst);
21101
9db2f6b4
RL
21102 if (rs == NS_FFF || rs == NS_HHH)
21103 {
21104 do_vfp_sp_dyadic ();
21105
21106 /* ARMv8.2 fp16 instruction. */
21107 if (rs == NS_HHH)
21108 do_scalar_fp16_v82_encode ();
21109 }
33399f07
MGD
21110 else
21111 do_vfp_dp_rd_rn_rm ();
21112
21113 if (rs == NS_DDD)
21114 inst.instruction |= 0x100;
21115
21116 inst.instruction |= 0xf0000000;
21117}
21118
21119static void
21120do_vsel (void)
21121{
5ee91343 21122 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
21123
21124 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
21125 first_error (_("invalid instruction shape"));
21126}
21127
73924fbc
MGD
21128static void
21129do_vmaxnm (void)
21130{
935295b5
AV
21131 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21132 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
21133
21134 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
21135 return;
21136
64c350f2 21137 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
73924fbc
MGD
21138 return;
21139
cc933301 21140 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
21141}
21142
30bdf752
MGD
21143static void
21144do_vrint_1 (enum neon_cvt_mode mode)
21145{
9db2f6b4 21146 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
21147 struct neon_type_el et;
21148
21149 if (rs == NS_NULL)
21150 return;
21151
a715796b
TG
21152 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21153 D register operands. */
21154 if (neon_shape_class[rs] == SC_DOUBLE)
21155 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21156 _(BAD_FPU));
21157
9db2f6b4
RL
21158 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
21159 | N_VFP);
30bdf752
MGD
21160 if (et.type != NT_invtype)
21161 {
21162 /* VFP encodings. */
21163 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
21164 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 21165 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
21166
21167 NEON_ENCODE (FPV8, inst);
9db2f6b4 21168 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
21169 do_vfp_sp_monadic ();
21170 else
21171 do_vfp_dp_rd_rm ();
21172
21173 switch (mode)
21174 {
21175 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
21176 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
21177 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
21178 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
21179 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
21180 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
21181 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
21182 default: abort ();
21183 }
21184
21185 inst.instruction |= (rs == NS_DD) << 8;
21186 do_vfp_cond_or_thumb ();
9db2f6b4
RL
21187
21188 /* ARMv8.2 fp16 vrint instruction. */
21189 if (rs == NS_HH)
21190 do_scalar_fp16_v82_encode ();
30bdf752
MGD
21191 }
21192 else
21193 {
21194 /* Neon encodings (or something broken...). */
21195 inst.error = NULL;
cc933301 21196 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
21197
21198 if (et.type == NT_invtype)
21199 return;
21200
64c350f2
AV
21201 if (!check_simd_pred_availability (TRUE,
21202 NEON_CHECK_CC | NEON_CHECK_ARCH8))
30bdf752
MGD
21203 return;
21204
a710b305
AV
21205 NEON_ENCODE (FLOAT, inst);
21206
30bdf752
MGD
21207 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21208 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21209 inst.instruction |= LOW4 (inst.operands[1].reg);
21210 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21211 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
21212 /* Mask off the original size bits and reencode them. */
21213 inst.instruction = ((inst.instruction & 0xfff3ffff)
21214 | neon_logbits (et.size) << 18);
21215
30bdf752
MGD
21216 switch (mode)
21217 {
21218 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
21219 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
21220 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
21221 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
21222 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
21223 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
21224 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
21225 default: abort ();
21226 }
21227
21228 if (thumb_mode)
21229 inst.instruction |= 0xfc000000;
21230 else
21231 inst.instruction |= 0xf0000000;
21232 }
21233}
21234
21235static void
21236do_vrintx (void)
21237{
21238 do_vrint_1 (neon_cvt_mode_x);
21239}
21240
21241static void
21242do_vrintz (void)
21243{
21244 do_vrint_1 (neon_cvt_mode_z);
21245}
21246
21247static void
21248do_vrintr (void)
21249{
21250 do_vrint_1 (neon_cvt_mode_r);
21251}
21252
21253static void
21254do_vrinta (void)
21255{
21256 do_vrint_1 (neon_cvt_mode_a);
21257}
21258
21259static void
21260do_vrintn (void)
21261{
21262 do_vrint_1 (neon_cvt_mode_n);
21263}
21264
21265static void
21266do_vrintp (void)
21267{
21268 do_vrint_1 (neon_cvt_mode_p);
21269}
21270
21271static void
21272do_vrintm (void)
21273{
21274 do_vrint_1 (neon_cvt_mode_m);
21275}
21276
c28eeff2
SN
21277static unsigned
21278neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
21279{
21280 unsigned regno = NEON_SCALAR_REG (opnd);
21281 unsigned elno = NEON_SCALAR_INDEX (opnd);
21282
21283 if (elsize == 16 && elno < 2 && regno < 16)
21284 return regno | (elno << 4);
21285 else if (elsize == 32 && elno == 0)
21286 return regno;
21287
21288 first_error (_("scalar out of range"));
21289 return 0;
21290}
21291
21292static void
21293do_vcmla (void)
21294{
5d281bf0
AV
21295 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
21296 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21297 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
21298 constraint (inst.relocs[0].exp.X_op != O_constant,
21299 _("expression too complex"));
21300 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
21301 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
21302 _("immediate out of range"));
21303 rot /= 90;
5d281bf0 21304
64c350f2
AV
21305 if (!check_simd_pred_availability (TRUE,
21306 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
5d281bf0
AV
21307 return;
21308
c28eeff2
SN
21309 if (inst.operands[2].isscalar)
21310 {
5d281bf0
AV
21311 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21312 first_error (_("invalid instruction shape"));
c28eeff2
SN
21313 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
21314 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21315 N_KEY | N_F16 | N_F32).size;
21316 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
21317 inst.is_neon = 1;
21318 inst.instruction = 0xfe000800;
21319 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21320 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21321 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21322 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21323 inst.instruction |= LOW4 (m);
21324 inst.instruction |= HI1 (m) << 5;
21325 inst.instruction |= neon_quad (rs) << 6;
21326 inst.instruction |= rot << 20;
21327 inst.instruction |= (size == 32) << 23;
21328 }
21329 else
21330 {
5d281bf0
AV
21331 enum neon_shape rs;
21332 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21333 rs = neon_select_shape (NS_QQQI, NS_NULL);
21334 else
21335 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21336
c28eeff2
SN
21337 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21338 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
21339 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
21340 && (inst.operands[0].reg == inst.operands[1].reg
21341 || inst.operands[0].reg == inst.operands[2].reg))
21342 as_tsktsk (BAD_MVE_SRCDEST);
21343
c28eeff2
SN
21344 neon_three_same (neon_quad (rs), 0, -1);
21345 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21346 inst.instruction |= 0xfc200800;
21347 inst.instruction |= rot << 23;
21348 inst.instruction |= (size == 32) << 20;
21349 }
21350}
21351
21352static void
21353do_vcadd (void)
21354{
5d281bf0
AV
21355 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
21356 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21357 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
21358 constraint (inst.relocs[0].exp.X_op != O_constant,
21359 _("expression too complex"));
5d281bf0 21360
e2b0ab59 21361 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 21362 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
21363 enum neon_shape rs;
21364 struct neon_type_el et;
21365 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21366 {
21367 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21368 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
21369 }
21370 else
21371 {
21372 rs = neon_select_shape (NS_QQQI, NS_NULL);
21373 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
21374 | N_I16 | N_I32);
21375 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
21376 as_tsktsk (_("Warning: 32-bit element size and same first and third "
21377 "operand makes instruction UNPREDICTABLE"));
21378 }
21379
21380 if (et.type == NT_invtype)
21381 return;
21382
64c350f2
AV
21383 if (!check_simd_pred_availability (et.type == NT_float,
21384 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
5d281bf0
AV
21385 return;
21386
21387 if (et.type == NT_float)
21388 {
21389 neon_three_same (neon_quad (rs), 0, -1);
21390 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21391 inst.instruction |= 0xfc800800;
21392 inst.instruction |= (rot == 270) << 24;
21393 inst.instruction |= (et.size == 32) << 20;
21394 }
21395 else
21396 {
21397 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
21398 inst.instruction = 0xfe000f00;
21399 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21400 inst.instruction |= neon_logbits (et.size) << 20;
21401 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21402 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21403 inst.instruction |= (rot == 270) << 12;
21404 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21405 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
21406 inst.instruction |= LOW4 (inst.operands[2].reg);
21407 inst.is_neon = 1;
21408 }
c28eeff2
SN
21409}
21410
c604a79a
JW
21411/* Dot Product instructions encoding support. */
21412
21413static void
21414do_neon_dotproduct (int unsigned_p)
21415{
21416 enum neon_shape rs;
21417 unsigned scalar_oprd2 = 0;
21418 int high8;
21419
21420 if (inst.cond != COND_ALWAYS)
21421 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
21422 "is UNPREDICTABLE"));
21423
21424 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
21425 _(BAD_FPU));
21426
21427 /* Dot Product instructions are in three-same D/Q register format or the third
21428 operand can be a scalar index register. */
21429 if (inst.operands[2].isscalar)
21430 {
21431 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
21432 high8 = 0xfe000000;
21433 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21434 }
21435 else
21436 {
21437 high8 = 0xfc000000;
21438 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21439 }
21440
21441 if (unsigned_p)
21442 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
21443 else
21444 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
21445
21446 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
21447 Product instruction, so we pass 0 as the "ubit" parameter. And the
21448 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
21449 neon_three_same (neon_quad (rs), 0, 32);
21450
21451 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
21452 different NEON three-same encoding. */
21453 inst.instruction &= 0x00ffffff;
21454 inst.instruction |= high8;
21455 /* Encode 'U' bit which indicates signedness. */
21456 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
21457 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
21458 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
21459 the instruction encoding. */
21460 if (inst.operands[2].isscalar)
21461 {
21462 inst.instruction &= 0xffffffd0;
21463 inst.instruction |= LOW4 (scalar_oprd2);
21464 inst.instruction |= HI1 (scalar_oprd2) << 5;
21465 }
21466}
21467
21468/* Dot Product instructions for signed integer. */
21469
21470static void
21471do_neon_dotproduct_s (void)
21472{
21473 return do_neon_dotproduct (0);
21474}
21475
21476/* Dot Product instructions for unsigned integer. */
21477
21478static void
21479do_neon_dotproduct_u (void)
21480{
21481 return do_neon_dotproduct (1);
21482}
21483
616ce08e
MM
21484static void
21485do_vusdot (void)
21486{
21487 enum neon_shape rs;
21488 set_pred_insn_type (OUTSIDE_PRED_INSN);
21489 if (inst.operands[2].isscalar)
21490 {
21491 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21492 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21493
21494 inst.instruction |= (1 << 25);
21495 int index = inst.operands[2].reg & 0xf;
21496 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21497 inst.operands[2].reg >>= 4;
21498 constraint (!(inst.operands[2].reg < 16),
21499 _("indexed register must be less than 16"));
21500 neon_three_args (rs == NS_QQS);
21501 inst.instruction |= (index << 5);
21502 }
21503 else
21504 {
21505 inst.instruction |= (1 << 21);
21506 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21507 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21508 neon_three_args (rs == NS_QQQ);
21509 }
21510}
21511
21512static void
21513do_vsudot (void)
21514{
21515 enum neon_shape rs;
21516 set_pred_insn_type (OUTSIDE_PRED_INSN);
21517 if (inst.operands[2].isscalar)
21518 {
21519 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21520 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21521
21522 inst.instruction |= (1 << 25);
21523 int index = inst.operands[2].reg & 0xf;
21524 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21525 inst.operands[2].reg >>= 4;
21526 constraint (!(inst.operands[2].reg < 16),
21527 _("indexed register must be less than 16"));
21528 neon_three_args (rs == NS_QQS);
21529 inst.instruction |= (index << 5);
21530 }
21531}
21532
21533static void
21534do_vsmmla (void)
21535{
21536 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21537 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21538
21539 set_pred_insn_type (OUTSIDE_PRED_INSN);
21540
21541 neon_three_args (1);
21542
21543}
21544
21545static void
21546do_vummla (void)
21547{
21548 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21549 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21550
21551 set_pred_insn_type (OUTSIDE_PRED_INSN);
21552
21553 neon_three_args (1);
21554
21555}
21556
91ff7894
MGD
21557/* Crypto v1 instructions. */
21558static void
21559do_crypto_2op_1 (unsigned elttype, int op)
21560{
5ee91343 21561 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
21562
21563 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
21564 == NT_invtype)
21565 return;
21566
21567 inst.error = NULL;
21568
21569 NEON_ENCODE (INTEGER, inst);
21570 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21571 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21572 inst.instruction |= LOW4 (inst.operands[1].reg);
21573 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21574 if (op != -1)
21575 inst.instruction |= op << 6;
21576
21577 if (thumb_mode)
21578 inst.instruction |= 0xfc000000;
21579 else
21580 inst.instruction |= 0xf0000000;
21581}
21582
48adcd8e
MGD
21583static void
21584do_crypto_3op_1 (int u, int op)
21585{
5ee91343 21586 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
21587
21588 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
21589 N_32 | N_UNT | N_KEY).type == NT_invtype)
21590 return;
21591
21592 inst.error = NULL;
21593
21594 NEON_ENCODE (INTEGER, inst);
21595 neon_three_same (1, u, 8 << op);
21596}
21597
91ff7894
MGD
21598static void
21599do_aese (void)
21600{
21601 do_crypto_2op_1 (N_8, 0);
21602}
21603
21604static void
21605do_aesd (void)
21606{
21607 do_crypto_2op_1 (N_8, 1);
21608}
21609
21610static void
21611do_aesmc (void)
21612{
21613 do_crypto_2op_1 (N_8, 2);
21614}
21615
21616static void
21617do_aesimc (void)
21618{
21619 do_crypto_2op_1 (N_8, 3);
21620}
21621
48adcd8e
MGD
21622static void
21623do_sha1c (void)
21624{
21625 do_crypto_3op_1 (0, 0);
21626}
21627
21628static void
21629do_sha1p (void)
21630{
21631 do_crypto_3op_1 (0, 1);
21632}
21633
21634static void
21635do_sha1m (void)
21636{
21637 do_crypto_3op_1 (0, 2);
21638}
21639
21640static void
21641do_sha1su0 (void)
21642{
21643 do_crypto_3op_1 (0, 3);
21644}
91ff7894 21645
48adcd8e
MGD
21646static void
21647do_sha256h (void)
21648{
21649 do_crypto_3op_1 (1, 0);
21650}
21651
21652static void
21653do_sha256h2 (void)
21654{
21655 do_crypto_3op_1 (1, 1);
21656}
21657
21658static void
21659do_sha256su1 (void)
21660{
21661 do_crypto_3op_1 (1, 2);
21662}
3c9017d2
MGD
21663
21664static void
21665do_sha1h (void)
21666{
21667 do_crypto_2op_1 (N_32, -1);
21668}
21669
21670static void
21671do_sha1su1 (void)
21672{
21673 do_crypto_2op_1 (N_32, 0);
21674}
21675
21676static void
21677do_sha256su0 (void)
21678{
21679 do_crypto_2op_1 (N_32, 1);
21680}
dd5181d5
KT
21681
21682static void
21683do_crc32_1 (unsigned int poly, unsigned int sz)
21684{
21685 unsigned int Rd = inst.operands[0].reg;
21686 unsigned int Rn = inst.operands[1].reg;
21687 unsigned int Rm = inst.operands[2].reg;
21688
5ee91343 21689 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
21690 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
21691 inst.instruction |= LOW4 (Rn) << 16;
21692 inst.instruction |= LOW4 (Rm);
21693 inst.instruction |= sz << (thumb_mode ? 4 : 21);
21694 inst.instruction |= poly << (thumb_mode ? 20 : 9);
21695
21696 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
21697 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
21698}
21699
21700static void
21701do_crc32b (void)
21702{
21703 do_crc32_1 (0, 0);
21704}
21705
21706static void
21707do_crc32h (void)
21708{
21709 do_crc32_1 (0, 1);
21710}
21711
21712static void
21713do_crc32w (void)
21714{
21715 do_crc32_1 (0, 2);
21716}
21717
21718static void
21719do_crc32cb (void)
21720{
21721 do_crc32_1 (1, 0);
21722}
21723
21724static void
21725do_crc32ch (void)
21726{
21727 do_crc32_1 (1, 1);
21728}
21729
21730static void
21731do_crc32cw (void)
21732{
21733 do_crc32_1 (1, 2);
21734}
21735
49e8a725
SN
21736static void
21737do_vjcvt (void)
21738{
21739 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21740 _(BAD_FPU));
21741 neon_check_type (2, NS_FD, N_S32, N_F64);
21742 do_vfp_sp_dp_cvt ();
21743 do_vfp_cond_or_thumb ();
21744}
21745
aab2c27d
MM
21746static void
21747do_vdot (void)
21748{
21749 enum neon_shape rs;
21750 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
21751 set_pred_insn_type (OUTSIDE_PRED_INSN);
21752 if (inst.operands[2].isscalar)
21753 {
21754 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21755 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
21756
21757 inst.instruction |= (1 << 25);
21758 int index = inst.operands[2].reg & 0xf;
21759 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21760 inst.operands[2].reg >>= 4;
21761 constraint (!(inst.operands[2].reg < 16),
21762 _("indexed register must be less than 16"));
21763 neon_three_args (rs == NS_QQS);
21764 inst.instruction |= (index << 5);
21765 }
21766 else
21767 {
21768 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21769 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
21770 neon_three_args (rs == NS_QQQ);
21771 }
21772}
21773
21774static void
21775do_vmmla (void)
21776{
21777 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21778 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
21779
21780 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
21781 set_pred_insn_type (OUTSIDE_PRED_INSN);
21782
21783 neon_three_args (1);
21784}
21785
5287ad62
JB
21786\f
21787/* Overall per-instruction processing. */
21788
21789/* We need to be able to fix up arbitrary expressions in some statements.
21790 This is so that we can handle symbols that are an arbitrary distance from
21791 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
21792 which returns part of an address in a form which will be valid for
21793 a data instruction. We do this by pushing the expression into a symbol
21794 in the expr_section, and creating a fix for that. */
21795
21796static void
21797fix_new_arm (fragS * frag,
21798 int where,
21799 short int size,
21800 expressionS * exp,
21801 int pc_rel,
21802 int reloc)
21803{
21804 fixS * new_fix;
21805
21806 switch (exp->X_op)
21807 {
21808 case O_constant:
6e7ce2cd
PB
21809 if (pc_rel)
21810 {
21811 /* Create an absolute valued symbol, so we have something to
477330fc
RM
21812 refer to in the object file. Unfortunately for us, gas's
21813 generic expression parsing will already have folded out
21814 any use of .set foo/.type foo %function that may have
21815 been used to set type information of the target location,
21816 that's being specified symbolically. We have to presume
21817 the user knows what they are doing. */
6e7ce2cd
PB
21818 char name[16 + 8];
21819 symbolS *symbol;
21820
21821 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
21822
21823 symbol = symbol_find_or_make (name);
21824 S_SET_SEGMENT (symbol, absolute_section);
21825 symbol_set_frag (symbol, &zero_address_frag);
21826 S_SET_VALUE (symbol, exp->X_add_number);
21827 exp->X_op = O_symbol;
21828 exp->X_add_symbol = symbol;
21829 exp->X_add_number = 0;
21830 }
21831 /* FALLTHROUGH */
5287ad62
JB
21832 case O_symbol:
21833 case O_add:
21834 case O_subtract:
21d799b5 21835 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 21836 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
21837 break;
21838
21839 default:
21d799b5 21840 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 21841 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
21842 break;
21843 }
21844
21845 /* Mark whether the fix is to a THUMB instruction, or an ARM
21846 instruction. */
21847 new_fix->tc_fix_data = thumb_mode;
21848}
21849
21850/* Create a frg for an instruction requiring relaxation. */
21851static void
21852output_relax_insn (void)
21853{
21854 char * to;
21855 symbolS *sym;
0110f2b8
PB
21856 int offset;
21857
6e1cb1a6
PB
21858 /* The size of the instruction is unknown, so tie the debug info to the
21859 start of the instruction. */
21860 dwarf2_emit_insn (0);
6e1cb1a6 21861
e2b0ab59 21862 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
21863 {
21864 case O_symbol:
e2b0ab59
AV
21865 sym = inst.relocs[0].exp.X_add_symbol;
21866 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
21867 break;
21868 case O_constant:
21869 sym = NULL;
e2b0ab59 21870 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
21871 break;
21872 default:
e2b0ab59 21873 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
21874 offset = 0;
21875 break;
21876 }
21877 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21878 inst.relax, sym, offset, NULL/*offset, opcode*/);
21879 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
21880}
21881
21882/* Write a 32-bit thumb instruction to buf. */
21883static void
21884put_thumb32_insn (char * buf, unsigned long insn)
21885{
21886 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21887 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21888}
21889
b99bd4ef 21890static void
c19d1205 21891output_inst (const char * str)
b99bd4ef 21892{
c19d1205 21893 char * to = NULL;
b99bd4ef 21894
c19d1205 21895 if (inst.error)
b99bd4ef 21896 {
c19d1205 21897 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
21898 return;
21899 }
5f4273c7
NC
21900 if (inst.relax)
21901 {
21902 output_relax_insn ();
0110f2b8 21903 return;
5f4273c7 21904 }
c19d1205
ZW
21905 if (inst.size == 0)
21906 return;
b99bd4ef 21907
c19d1205 21908 to = frag_more (inst.size);
8dc2430f
NC
21909 /* PR 9814: Record the thumb mode into the current frag so that we know
21910 what type of NOP padding to use, if necessary. We override any previous
21911 setting so that if the mode has changed then the NOPS that we use will
21912 match the encoding of the last instruction in the frag. */
cd000bff 21913 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
21914
21915 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 21916 {
9c2799c2 21917 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 21918 put_thumb32_insn (to, inst.instruction);
b99bd4ef 21919 }
c19d1205 21920 else if (inst.size > INSN_SIZE)
b99bd4ef 21921 {
9c2799c2 21922 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
21923 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21924 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 21925 }
c19d1205
ZW
21926 else
21927 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 21928
e2b0ab59
AV
21929 int r;
21930 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21931 {
21932 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21933 fix_new_arm (frag_now, to - frag_now->fr_literal,
21934 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21935 inst.relocs[r].type);
21936 }
b99bd4ef 21937
c19d1205 21938 dwarf2_emit_insn (inst.size);
c19d1205 21939}
b99bd4ef 21940
e07e6e58
NC
21941static char *
21942output_it_inst (int cond, int mask, char * to)
21943{
21944 unsigned long instruction = 0xbf00;
21945
21946 mask &= 0xf;
21947 instruction |= mask;
21948 instruction |= cond << 4;
21949
21950 if (to == NULL)
21951 {
21952 to = frag_more (2);
21953#ifdef OBJ_ELF
21954 dwarf2_emit_insn (2);
21955#endif
21956 }
21957
21958 md_number_to_chars (to, instruction, 2);
21959
21960 return to;
21961}
21962
c19d1205
ZW
21963/* Tag values used in struct asm_opcode's tag field. */
21964enum opcode_tag
21965{
21966 OT_unconditional, /* Instruction cannot be conditionalized.
21967 The ARM condition field is still 0xE. */
21968 OT_unconditionalF, /* Instruction cannot be conditionalized
21969 and carries 0xF in its ARM condition field. */
21970 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
21971 OT_csuffixF, /* Some forms of the instruction take a scalar
21972 conditional suffix, others place 0xF where the
21973 condition field would be, others take a vector
21974 conditional suffix. */
c19d1205
ZW
21975 OT_cinfix3, /* Instruction takes a conditional infix,
21976 beginning at character index 3. (In
21977 unified mode, it becomes a suffix.) */
088fa78e
KH
21978 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21979 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
21980 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21981 character index 3, even in unified mode. Used for
21982 legacy instructions where suffix and infix forms
21983 may be ambiguous. */
c19d1205 21984 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 21985 suffix or an infix at character index 3. */
c19d1205
ZW
21986 OT_odd_infix_unc, /* This is the unconditional variant of an
21987 instruction that takes a conditional infix
21988 at an unusual position. In unified mode,
21989 this variant will accept a suffix. */
21990 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21991 are the conditional variants of instructions that
21992 take conditional infixes in unusual positions.
21993 The infix appears at character index
21994 (tag - OT_odd_infix_0). These are not accepted
21995 in unified mode. */
21996};
b99bd4ef 21997
c19d1205
ZW
21998/* Subroutine of md_assemble, responsible for looking up the primary
21999 opcode from the mnemonic the user wrote. STR points to the
22000 beginning of the mnemonic.
22001
22002 This is not simply a hash table lookup, because of conditional
22003 variants. Most instructions have conditional variants, which are
22004 expressed with a _conditional affix_ to the mnemonic. If we were
22005 to encode each conditional variant as a literal string in the opcode
22006 table, it would have approximately 20,000 entries.
22007
22008 Most mnemonics take this affix as a suffix, and in unified syntax,
22009 'most' is upgraded to 'all'. However, in the divided syntax, some
22010 instructions take the affix as an infix, notably the s-variants of
22011 the arithmetic instructions. Of those instructions, all but six
22012 have the infix appear after the third character of the mnemonic.
22013
22014 Accordingly, the algorithm for looking up primary opcodes given
22015 an identifier is:
22016
22017 1. Look up the identifier in the opcode table.
22018 If we find a match, go to step U.
22019
22020 2. Look up the last two characters of the identifier in the
22021 conditions table. If we find a match, look up the first N-2
22022 characters of the identifier in the opcode table. If we
22023 find a match, go to step CE.
22024
22025 3. Look up the fourth and fifth characters of the identifier in
22026 the conditions table. If we find a match, extract those
22027 characters from the identifier, and look up the remaining
22028 characters in the opcode table. If we find a match, go
22029 to step CM.
22030
22031 4. Fail.
22032
22033 U. Examine the tag field of the opcode structure, in case this is
22034 one of the six instructions with its conditional infix in an
22035 unusual place. If it is, the tag tells us where to find the
22036 infix; look it up in the conditions table and set inst.cond
22037 accordingly. Otherwise, this is an unconditional instruction.
22038 Again set inst.cond accordingly. Return the opcode structure.
22039
22040 CE. Examine the tag field to make sure this is an instruction that
22041 should receive a conditional suffix. If it is not, fail.
22042 Otherwise, set inst.cond from the suffix we already looked up,
22043 and return the opcode structure.
22044
22045 CM. Examine the tag field to make sure this is an instruction that
22046 should receive a conditional infix after the third character.
22047 If it is not, fail. Otherwise, undo the edits to the current
22048 line of input and proceed as for case CE. */
22049
22050static const struct asm_opcode *
22051opcode_lookup (char **str)
22052{
22053 char *end, *base;
22054 char *affix;
22055 const struct asm_opcode *opcode;
22056 const struct asm_cond *cond;
e3cb604e 22057 char save[2];
c19d1205
ZW
22058
22059 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 22060 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 22061 for (base = end = *str; *end != '\0'; end++)
721a8186 22062 if (*end == ' ' || *end == '.')
c19d1205 22063 break;
b99bd4ef 22064
c19d1205 22065 if (end == base)
c921be7d 22066 return NULL;
b99bd4ef 22067
5287ad62 22068 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 22069 if (end[0] == '.')
b99bd4ef 22070 {
5287ad62 22071 int offset = 2;
5f4273c7 22072
267d2029 22073 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 22074 use. */
267d2029 22075 if (unified_syntax && end[1] == 'w')
c19d1205 22076 inst.size_req = 4;
267d2029 22077 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
22078 inst.size_req = 2;
22079 else
477330fc 22080 offset = 0;
5287ad62
JB
22081
22082 inst.vectype.elems = 0;
22083
22084 *str = end + offset;
b99bd4ef 22085
5f4273c7 22086 if (end[offset] == '.')
5287ad62 22087 {
267d2029 22088 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
22089 non-unified ARM syntax mode). */
22090 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 22091 return NULL;
477330fc 22092 }
5287ad62 22093 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 22094 return NULL;
b99bd4ef 22095 }
c19d1205
ZW
22096 else
22097 *str = end;
b99bd4ef 22098
c19d1205 22099 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 22100 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 22101 end - base);
c19d1205 22102 if (opcode)
b99bd4ef 22103 {
c19d1205
ZW
22104 /* step U */
22105 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 22106 {
c19d1205
ZW
22107 inst.cond = COND_ALWAYS;
22108 return opcode;
b99bd4ef 22109 }
b99bd4ef 22110
278df34e 22111 if (warn_on_deprecated && unified_syntax)
5c3696f8 22112 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 22113 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 22114 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 22115 gas_assert (cond);
b99bd4ef 22116
c19d1205
ZW
22117 inst.cond = cond->value;
22118 return opcode;
22119 }
5ee91343
AV
22120 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
22121 {
22122 /* Cannot have a conditional suffix on a mnemonic of less than a character.
22123 */
22124 if (end - base < 2)
22125 return NULL;
22126 affix = end - 1;
22127 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
22128 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22129 affix - base);
22130 /* If this opcode can not be vector predicated then don't accept it with a
22131 vector predication code. */
22132 if (opcode && !opcode->mayBeVecPred)
22133 opcode = NULL;
22134 }
22135 if (!opcode || !cond)
22136 {
22137 /* Cannot have a conditional suffix on a mnemonic of less than two
22138 characters. */
22139 if (end - base < 3)
22140 return NULL;
b99bd4ef 22141
5ee91343
AV
22142 /* Look for suffixed mnemonic. */
22143 affix = end - 2;
22144 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22145 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22146 affix - base);
22147 }
b99bd4ef 22148
c19d1205
ZW
22149 if (opcode && cond)
22150 {
22151 /* step CE */
22152 switch (opcode->tag)
22153 {
e3cb604e
PB
22154 case OT_cinfix3_legacy:
22155 /* Ignore conditional suffixes matched on infix only mnemonics. */
22156 break;
22157
c19d1205 22158 case OT_cinfix3:
088fa78e 22159 case OT_cinfix3_deprecated:
c19d1205
ZW
22160 case OT_odd_infix_unc:
22161 if (!unified_syntax)
0198d5e6 22162 return NULL;
1a0670f3 22163 /* Fall through. */
c19d1205
ZW
22164
22165 case OT_csuffix:
477330fc 22166 case OT_csuffixF:
c19d1205
ZW
22167 case OT_csuf_or_in3:
22168 inst.cond = cond->value;
22169 return opcode;
22170
22171 case OT_unconditional:
22172 case OT_unconditionalF:
dfa9f0d5 22173 if (thumb_mode)
c921be7d 22174 inst.cond = cond->value;
dfa9f0d5
PB
22175 else
22176 {
c921be7d 22177 /* Delayed diagnostic. */
dfa9f0d5
PB
22178 inst.error = BAD_COND;
22179 inst.cond = COND_ALWAYS;
22180 }
c19d1205 22181 return opcode;
b99bd4ef 22182
c19d1205 22183 default:
c921be7d 22184 return NULL;
c19d1205
ZW
22185 }
22186 }
b99bd4ef 22187
c19d1205
ZW
22188 /* Cannot have a usual-position infix on a mnemonic of less than
22189 six characters (five would be a suffix). */
22190 if (end - base < 6)
c921be7d 22191 return NULL;
b99bd4ef 22192
c19d1205
ZW
22193 /* Look for infixed mnemonic in the usual position. */
22194 affix = base + 3;
21d799b5 22195 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 22196 if (!cond)
c921be7d 22197 return NULL;
e3cb604e
PB
22198
22199 memcpy (save, affix, 2);
22200 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 22201 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 22202 (end - base) - 2);
e3cb604e
PB
22203 memmove (affix + 2, affix, (end - affix) - 2);
22204 memcpy (affix, save, 2);
22205
088fa78e
KH
22206 if (opcode
22207 && (opcode->tag == OT_cinfix3
22208 || opcode->tag == OT_cinfix3_deprecated
22209 || opcode->tag == OT_csuf_or_in3
22210 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 22211 {
c921be7d 22212 /* Step CM. */
278df34e 22213 if (warn_on_deprecated && unified_syntax
088fa78e
KH
22214 && (opcode->tag == OT_cinfix3
22215 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 22216 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
22217
22218 inst.cond = cond->value;
22219 return opcode;
b99bd4ef
NC
22220 }
22221
c921be7d 22222 return NULL;
b99bd4ef
NC
22223}
22224
e07e6e58
NC
22225/* This function generates an initial IT instruction, leaving its block
22226 virtually open for the new instructions. Eventually,
5ee91343 22227 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
22228 a new instruction needs to be included in the IT block.
22229 Finally, the block is closed with close_automatic_it_block ().
22230 The block closure can be requested either from md_assemble (),
22231 a tencode (), or due to a label hook. */
22232
22233static void
22234new_automatic_it_block (int cond)
22235{
5ee91343
AV
22236 now_pred.state = AUTOMATIC_PRED_BLOCK;
22237 now_pred.mask = 0x18;
22238 now_pred.cc = cond;
22239 now_pred.block_length = 1;
cd000bff 22240 mapping_state (MAP_THUMB);
5ee91343
AV
22241 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
22242 now_pred.warn_deprecated = FALSE;
22243 now_pred.insn_cond = TRUE;
e07e6e58
NC
22244}
22245
22246/* Close an automatic IT block.
22247 See comments in new_automatic_it_block (). */
22248
22249static void
22250close_automatic_it_block (void)
22251{
5ee91343
AV
22252 now_pred.mask = 0x10;
22253 now_pred.block_length = 0;
e07e6e58
NC
22254}
22255
22256/* Update the mask of the current automatically-generated IT
22257 instruction. See comments in new_automatic_it_block (). */
22258
22259static void
5ee91343 22260now_pred_add_mask (int cond)
e07e6e58
NC
22261{
22262#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
22263#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 22264 | ((bitvalue) << (nbit)))
e07e6e58 22265 const int resulting_bit = (cond & 1);
c921be7d 22266
5ee91343
AV
22267 now_pred.mask &= 0xf;
22268 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 22269 resulting_bit,
5ee91343
AV
22270 (5 - now_pred.block_length));
22271 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 22272 1,
5ee91343
AV
22273 ((5 - now_pred.block_length) - 1));
22274 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
22275
22276#undef CLEAR_BIT
22277#undef SET_BIT_VALUE
e07e6e58
NC
22278}
22279
22280/* The IT blocks handling machinery is accessed through the these functions:
22281 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
22282 set_pred_insn_type () optional, from the tencode functions
22283 set_pred_insn_type_last () ditto
22284 in_pred_block () ditto
e07e6e58 22285 it_fsm_post_encode () from md_assemble ()
33eaf5de 22286 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
22287
22288 Rationale:
22289 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
22290 initializing the IT insn type with a generic initial value depending
22291 on the inst.condition.
e07e6e58 22292 2) During the tencode function, two things may happen:
477330fc 22293 a) The tencode function overrides the IT insn type by
5ee91343
AV
22294 calling either set_pred_insn_type (type) or
22295 set_pred_insn_type_last ().
477330fc 22296 b) The tencode function queries the IT block state by
5ee91343 22297 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 22298
5ee91343
AV
22299 Both set_pred_insn_type and in_pred_block run the internal FSM state
22300 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
22301 type may incur in an invalid state (exiting the function),
22302 and b) querying the state requires the FSM to be updated.
22303 Specifically we want to avoid creating an IT block for conditional
22304 branches, so it_fsm_pre_encode is actually a guess and we can't
22305 determine whether an IT block is required until the tencode () routine
22306 has decided what type of instruction this actually it.
5ee91343
AV
22307 Because of this, if set_pred_insn_type and in_pred_block have to be
22308 used, set_pred_insn_type has to be called first.
477330fc 22309
5ee91343
AV
22310 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
22311 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
22312 When a tencode () routine encodes an instruction that can be
22313 either outside an IT block, or, in the case of being inside, has to be
5ee91343 22314 the last one, set_pred_insn_type_last () will determine the proper
477330fc 22315 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 22316 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
22317 for covering other cases.
22318
5ee91343
AV
22319 Calling handle_pred_state () may not transition the IT block state to
22320 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 22321 still queried. Instead, if the FSM determines that the state should
5ee91343 22322 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
22323 after the tencode () function: that's what it_fsm_post_encode () does.
22324
5ee91343 22325 Since in_pred_block () calls the state handling function to get an
477330fc
RM
22326 updated state, an error may occur (due to invalid insns combination).
22327 In that case, inst.error is set.
22328 Therefore, inst.error has to be checked after the execution of
22329 the tencode () routine.
e07e6e58
NC
22330
22331 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 22332 any pending state change (if any) that didn't take place in
5ee91343 22333 handle_pred_state () as explained above. */
e07e6e58
NC
22334
22335static void
22336it_fsm_pre_encode (void)
22337{
22338 if (inst.cond != COND_ALWAYS)
5ee91343 22339 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 22340 else
5ee91343 22341 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 22342
5ee91343 22343 now_pred.state_handled = 0;
e07e6e58
NC
22344}
22345
22346/* IT state FSM handling function. */
5ee91343
AV
22347/* MVE instructions and non-MVE instructions are handled differently because of
22348 the introduction of VPT blocks.
22349 Specifications say that any non-MVE instruction inside a VPT block is
22350 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
22351 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 22352 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
22353 The error messages provided depending on the different combinations possible
22354 are described in the cases below:
22355 For 'most' MVE instructions:
22356 1) In an IT block, with an IT code: syntax error
22357 2) In an IT block, with a VPT code: error: must be in a VPT block
22358 3) In an IT block, with no code: warning: UNPREDICTABLE
22359 4) In a VPT block, with an IT code: syntax error
22360 5) In a VPT block, with a VPT code: OK!
22361 6) In a VPT block, with no code: error: missing code
22362 7) Outside a pred block, with an IT code: error: syntax error
22363 8) Outside a pred block, with a VPT code: error: should be in a VPT block
22364 9) Outside a pred block, with no code: OK!
22365 For non-MVE instructions:
22366 10) In an IT block, with an IT code: OK!
22367 11) In an IT block, with a VPT code: syntax error
22368 12) In an IT block, with no code: error: missing code
22369 13) In a VPT block, with an IT code: error: should be in an IT block
22370 14) In a VPT block, with a VPT code: syntax error
22371 15) In a VPT block, with no code: UNPREDICTABLE
22372 16) Outside a pred block, with an IT code: error: should be in an IT block
22373 17) Outside a pred block, with a VPT code: syntax error
22374 18) Outside a pred block, with no code: OK!
22375 */
22376
e07e6e58
NC
22377
22378static int
5ee91343 22379handle_pred_state (void)
e07e6e58 22380{
5ee91343
AV
22381 now_pred.state_handled = 1;
22382 now_pred.insn_cond = FALSE;
e07e6e58 22383
5ee91343 22384 switch (now_pred.state)
e07e6e58 22385 {
5ee91343
AV
22386 case OUTSIDE_PRED_BLOCK:
22387 switch (inst.pred_insn_type)
e07e6e58 22388 {
35c228db 22389 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
22390 case MVE_OUTSIDE_PRED_INSN:
22391 if (inst.cond < COND_ALWAYS)
22392 {
22393 /* Case 7: Outside a pred block, with an IT code: error: syntax
22394 error. */
22395 inst.error = BAD_SYNTAX;
22396 return FAIL;
22397 }
22398 /* Case 9: Outside a pred block, with no code: OK! */
22399 break;
22400 case OUTSIDE_PRED_INSN:
22401 if (inst.cond > COND_ALWAYS)
22402 {
22403 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22404 */
22405 inst.error = BAD_SYNTAX;
22406 return FAIL;
22407 }
22408 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
22409 break;
22410
5ee91343
AV
22411 case INSIDE_VPT_INSN:
22412 /* Case 8: Outside a pred block, with a VPT code: error: should be in
22413 a VPT block. */
22414 inst.error = BAD_OUT_VPT;
22415 return FAIL;
22416
e07e6e58
NC
22417 case INSIDE_IT_INSN:
22418 case INSIDE_IT_LAST_INSN:
5ee91343 22419 if (inst.cond < COND_ALWAYS)
e07e6e58 22420 {
5ee91343
AV
22421 /* Case 16: Outside a pred block, with an IT code: error: should
22422 be in an IT block. */
22423 if (thumb_mode == 0)
e07e6e58 22424 {
5ee91343
AV
22425 if (unified_syntax
22426 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
22427 as_tsktsk (_("Warning: conditional outside an IT block"\
22428 " for Thumb."));
e07e6e58
NC
22429 }
22430 else
22431 {
5ee91343
AV
22432 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
22433 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
22434 {
22435 /* Automatically generate the IT instruction. */
22436 new_automatic_it_block (inst.cond);
22437 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
22438 close_automatic_it_block ();
22439 }
22440 else
22441 {
22442 inst.error = BAD_OUT_IT;
22443 return FAIL;
22444 }
e07e6e58 22445 }
5ee91343 22446 break;
e07e6e58 22447 }
5ee91343
AV
22448 else if (inst.cond > COND_ALWAYS)
22449 {
22450 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22451 */
22452 inst.error = BAD_SYNTAX;
22453 return FAIL;
22454 }
22455 else
22456 gas_assert (0);
e07e6e58
NC
22457 case IF_INSIDE_IT_LAST_INSN:
22458 case NEUTRAL_IT_INSN:
22459 break;
22460
5ee91343
AV
22461 case VPT_INSN:
22462 if (inst.cond != COND_ALWAYS)
22463 first_error (BAD_SYNTAX);
22464 now_pred.state = MANUAL_PRED_BLOCK;
22465 now_pred.block_length = 0;
22466 now_pred.type = VECTOR_PRED;
22467 now_pred.cc = 0;
22468 break;
e07e6e58 22469 case IT_INSN:
5ee91343
AV
22470 now_pred.state = MANUAL_PRED_BLOCK;
22471 now_pred.block_length = 0;
22472 now_pred.type = SCALAR_PRED;
e07e6e58
NC
22473 break;
22474 }
22475 break;
22476
5ee91343 22477 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
22478 /* Three things may happen now:
22479 a) We should increment current it block size;
22480 b) We should close current it block (closing insn or 4 insns);
22481 c) We should close current it block and start a new one (due
22482 to incompatible conditions or
22483 4 insns-length block reached). */
22484
5ee91343 22485 switch (inst.pred_insn_type)
e07e6e58 22486 {
5ee91343
AV
22487 case INSIDE_VPT_INSN:
22488 case VPT_INSN:
35c228db 22489 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
22490 case MVE_OUTSIDE_PRED_INSN:
22491 gas_assert (0);
22492 case OUTSIDE_PRED_INSN:
2b0f3761 22493 /* The closure of the block shall happen immediately,
5ee91343 22494 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
22495 force_automatic_it_block_close ();
22496 break;
22497
22498 case INSIDE_IT_INSN:
22499 case INSIDE_IT_LAST_INSN:
22500 case IF_INSIDE_IT_LAST_INSN:
5ee91343 22501 now_pred.block_length++;
e07e6e58 22502
5ee91343
AV
22503 if (now_pred.block_length > 4
22504 || !now_pred_compatible (inst.cond))
e07e6e58
NC
22505 {
22506 force_automatic_it_block_close ();
5ee91343 22507 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
22508 new_automatic_it_block (inst.cond);
22509 }
22510 else
22511 {
5ee91343
AV
22512 now_pred.insn_cond = TRUE;
22513 now_pred_add_mask (inst.cond);
e07e6e58
NC
22514 }
22515
5ee91343
AV
22516 if (now_pred.state == AUTOMATIC_PRED_BLOCK
22517 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
22518 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
22519 close_automatic_it_block ();
22520 break;
22521
22522 case NEUTRAL_IT_INSN:
5ee91343
AV
22523 now_pred.block_length++;
22524 now_pred.insn_cond = TRUE;
e07e6e58 22525
5ee91343 22526 if (now_pred.block_length > 4)
e07e6e58
NC
22527 force_automatic_it_block_close ();
22528 else
5ee91343 22529 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
22530 break;
22531
22532 case IT_INSN:
22533 close_automatic_it_block ();
5ee91343 22534 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
22535 break;
22536 }
22537 break;
22538
5ee91343 22539 case MANUAL_PRED_BLOCK:
e07e6e58 22540 {
5ee91343
AV
22541 int cond, is_last;
22542 if (now_pred.type == SCALAR_PRED)
e07e6e58 22543 {
5ee91343
AV
22544 /* Check conditional suffixes. */
22545 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
22546 now_pred.mask <<= 1;
22547 now_pred.mask &= 0x1f;
22548 is_last = (now_pred.mask == 0x10);
22549 }
22550 else
22551 {
22552 now_pred.cc ^= (now_pred.mask >> 4);
22553 cond = now_pred.cc + 0xf;
22554 now_pred.mask <<= 1;
22555 now_pred.mask &= 0x1f;
22556 is_last = now_pred.mask == 0x10;
22557 }
22558 now_pred.insn_cond = TRUE;
e07e6e58 22559
5ee91343
AV
22560 switch (inst.pred_insn_type)
22561 {
22562 case OUTSIDE_PRED_INSN:
22563 if (now_pred.type == SCALAR_PRED)
22564 {
22565 if (inst.cond == COND_ALWAYS)
22566 {
22567 /* Case 12: In an IT block, with no code: error: missing
22568 code. */
22569 inst.error = BAD_NOT_IT;
22570 return FAIL;
22571 }
22572 else if (inst.cond > COND_ALWAYS)
22573 {
22574 /* Case 11: In an IT block, with a VPT code: syntax error.
22575 */
22576 inst.error = BAD_SYNTAX;
22577 return FAIL;
22578 }
22579 else if (thumb_mode)
22580 {
22581 /* This is for some special cases where a non-MVE
22582 instruction is not allowed in an IT block, such as cbz,
22583 but are put into one with a condition code.
22584 You could argue this should be a syntax error, but we
22585 gave the 'not allowed in IT block' diagnostic in the
22586 past so we will keep doing so. */
22587 inst.error = BAD_NOT_IT;
22588 return FAIL;
22589 }
22590 break;
22591 }
22592 else
22593 {
22594 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
22595 as_tsktsk (MVE_NOT_VPT);
22596 return SUCCESS;
22597 }
22598 case MVE_OUTSIDE_PRED_INSN:
22599 if (now_pred.type == SCALAR_PRED)
22600 {
22601 if (inst.cond == COND_ALWAYS)
22602 {
22603 /* Case 3: In an IT block, with no code: warning:
22604 UNPREDICTABLE. */
22605 as_tsktsk (MVE_NOT_IT);
22606 return SUCCESS;
22607 }
22608 else if (inst.cond < COND_ALWAYS)
22609 {
22610 /* Case 1: In an IT block, with an IT code: syntax error.
22611 */
22612 inst.error = BAD_SYNTAX;
22613 return FAIL;
22614 }
22615 else
22616 gas_assert (0);
22617 }
22618 else
22619 {
22620 if (inst.cond < COND_ALWAYS)
22621 {
22622 /* Case 4: In a VPT block, with an IT code: syntax error.
22623 */
22624 inst.error = BAD_SYNTAX;
22625 return FAIL;
22626 }
22627 else if (inst.cond == COND_ALWAYS)
22628 {
22629 /* Case 6: In a VPT block, with no code: error: missing
22630 code. */
22631 inst.error = BAD_NOT_VPT;
22632 return FAIL;
22633 }
22634 else
22635 {
22636 gas_assert (0);
22637 }
22638 }
35c228db
AV
22639 case MVE_UNPREDICABLE_INSN:
22640 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
22641 return SUCCESS;
e07e6e58 22642 case INSIDE_IT_INSN:
5ee91343 22643 if (inst.cond > COND_ALWAYS)
e07e6e58 22644 {
5ee91343
AV
22645 /* Case 11: In an IT block, with a VPT code: syntax error. */
22646 /* Case 14: In a VPT block, with a VPT code: syntax error. */
22647 inst.error = BAD_SYNTAX;
22648 return FAIL;
22649 }
22650 else if (now_pred.type == SCALAR_PRED)
22651 {
22652 /* Case 10: In an IT block, with an IT code: OK! */
22653 if (cond != inst.cond)
22654 {
22655 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
22656 BAD_VPT_COND;
22657 return FAIL;
22658 }
22659 }
22660 else
22661 {
22662 /* Case 13: In a VPT block, with an IT code: error: should be
22663 in an IT block. */
22664 inst.error = BAD_OUT_IT;
e07e6e58
NC
22665 return FAIL;
22666 }
22667 break;
22668
5ee91343
AV
22669 case INSIDE_VPT_INSN:
22670 if (now_pred.type == SCALAR_PRED)
22671 {
22672 /* Case 2: In an IT block, with a VPT code: error: must be in a
22673 VPT block. */
22674 inst.error = BAD_OUT_VPT;
22675 return FAIL;
22676 }
22677 /* Case 5: In a VPT block, with a VPT code: OK! */
22678 else if (cond != inst.cond)
22679 {
22680 inst.error = BAD_VPT_COND;
22681 return FAIL;
22682 }
22683 break;
e07e6e58
NC
22684 case INSIDE_IT_LAST_INSN:
22685 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
22686 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
22687 {
22688 /* Case 4: In a VPT block, with an IT code: syntax error. */
22689 /* Case 11: In an IT block, with a VPT code: syntax error. */
22690 inst.error = BAD_SYNTAX;
22691 return FAIL;
22692 }
22693 else if (cond != inst.cond)
e07e6e58
NC
22694 {
22695 inst.error = BAD_IT_COND;
22696 return FAIL;
22697 }
22698 if (!is_last)
22699 {
22700 inst.error = BAD_BRANCH;
22701 return FAIL;
22702 }
22703 break;
22704
22705 case NEUTRAL_IT_INSN:
5ee91343
AV
22706 /* The BKPT instruction is unconditional even in a IT or VPT
22707 block. */
e07e6e58
NC
22708 break;
22709
22710 case IT_INSN:
5ee91343
AV
22711 if (now_pred.type == SCALAR_PRED)
22712 {
22713 inst.error = BAD_IT_IT;
22714 return FAIL;
22715 }
22716 /* fall through. */
22717 case VPT_INSN:
22718 if (inst.cond == COND_ALWAYS)
22719 {
22720 /* Executing a VPT/VPST instruction inside an IT block or a
22721 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
22722 */
22723 if (now_pred.type == SCALAR_PRED)
22724 as_tsktsk (MVE_NOT_IT);
22725 else
22726 as_tsktsk (MVE_NOT_VPT);
22727 return SUCCESS;
22728 }
22729 else
22730 {
22731 /* VPT/VPST do not accept condition codes. */
22732 inst.error = BAD_SYNTAX;
22733 return FAIL;
22734 }
e07e6e58 22735 }
5ee91343 22736 }
e07e6e58
NC
22737 break;
22738 }
22739
22740 return SUCCESS;
22741}
22742
5a01bb1d
MGD
22743struct depr_insn_mask
22744{
22745 unsigned long pattern;
22746 unsigned long mask;
22747 const char* description;
22748};
22749
22750/* List of 16-bit instruction patterns deprecated in an IT block in
22751 ARMv8. */
22752static const struct depr_insn_mask depr_it_insns[] = {
22753 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
22754 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
22755 { 0xa000, 0xb800, N_("ADR") },
22756 { 0x4800, 0xf800, N_("Literal loads") },
22757 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
22758 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
22759 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
22760 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
22761 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
22762 { 0, 0, NULL }
22763};
22764
e07e6e58
NC
22765static void
22766it_fsm_post_encode (void)
22767{
22768 int is_last;
22769
5ee91343
AV
22770 if (!now_pred.state_handled)
22771 handle_pred_state ();
e07e6e58 22772
5ee91343
AV
22773 if (now_pred.insn_cond
22774 && !now_pred.warn_deprecated
5a01bb1d 22775 && warn_on_deprecated
df9909b8
TP
22776 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
22777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
22778 {
22779 if (inst.instruction >= 0x10000)
22780 {
5c3696f8 22781 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 22782 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 22783 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
22784 }
22785 else
22786 {
22787 const struct depr_insn_mask *p = depr_it_insns;
22788
22789 while (p->mask != 0)
22790 {
22791 if ((inst.instruction & p->mask) == p->pattern)
22792 {
df9909b8
TP
22793 as_tsktsk (_("IT blocks containing 16-bit Thumb "
22794 "instructions of the following class are "
22795 "performance deprecated in ARMv8-A and "
22796 "ARMv8-R: %s"), p->description);
5ee91343 22797 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
22798 break;
22799 }
22800
22801 ++p;
22802 }
22803 }
22804
5ee91343 22805 if (now_pred.block_length > 1)
5a01bb1d 22806 {
5c3696f8 22807 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
22808 "instruction are performance deprecated in ARMv8-A and "
22809 "ARMv8-R"));
5ee91343 22810 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
22811 }
22812 }
22813
5ee91343
AV
22814 is_last = (now_pred.mask == 0x10);
22815 if (is_last)
22816 {
22817 now_pred.state = OUTSIDE_PRED_BLOCK;
22818 now_pred.mask = 0;
22819 }
e07e6e58
NC
22820}
22821
22822static void
22823force_automatic_it_block_close (void)
22824{
5ee91343 22825 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
22826 {
22827 close_automatic_it_block ();
5ee91343
AV
22828 now_pred.state = OUTSIDE_PRED_BLOCK;
22829 now_pred.mask = 0;
e07e6e58
NC
22830 }
22831}
22832
22833static int
5ee91343 22834in_pred_block (void)
e07e6e58 22835{
5ee91343
AV
22836 if (!now_pred.state_handled)
22837 handle_pred_state ();
e07e6e58 22838
5ee91343 22839 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
22840}
22841
ff8646ee
TP
22842/* Whether OPCODE only has T32 encoding. Since this function is only used by
22843 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22844 here, hence the "known" in the function name. */
fc289b0a
TP
22845
22846static bfd_boolean
ff8646ee 22847known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
22848{
22849 /* Original Thumb-1 wide instruction. */
22850 if (opcode->tencode == do_t_blx
22851 || opcode->tencode == do_t_branch23
22852 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22853 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22854 return TRUE;
22855
16a1fa25
TP
22856 /* Wide-only instruction added to ARMv8-M Baseline. */
22857 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
22858 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22859 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22860 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22861 return TRUE;
22862
22863 return FALSE;
22864}
22865
22866/* Whether wide instruction variant can be used if available for a valid OPCODE
22867 in ARCH. */
22868
22869static bfd_boolean
22870t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22871{
22872 if (known_t32_only_insn (opcode))
22873 return TRUE;
22874
22875 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22876 of variant T3 of B.W is checked in do_t_branch. */
22877 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22878 && opcode->tencode == do_t_branch)
22879 return TRUE;
22880
bada4342
JW
22881 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22882 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22883 && opcode->tencode == do_t_mov_cmp
22884 /* Make sure CMP instruction is not affected. */
22885 && opcode->aencode == do_mov)
22886 return TRUE;
22887
ff8646ee
TP
22888 /* Wide instruction variants of all instructions with narrow *and* wide
22889 variants become available with ARMv6t2. Other opcodes are either
22890 narrow-only or wide-only and are thus available if OPCODE is valid. */
22891 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22892 return TRUE;
22893
22894 /* OPCODE with narrow only instruction variant or wide variant not
22895 available. */
fc289b0a
TP
22896 return FALSE;
22897}
22898
c19d1205
ZW
22899void
22900md_assemble (char *str)
b99bd4ef 22901{
c19d1205
ZW
22902 char *p = str;
22903 const struct asm_opcode * opcode;
b99bd4ef 22904
c19d1205
ZW
22905 /* Align the previous label if needed. */
22906 if (last_label_seen != NULL)
b99bd4ef 22907 {
c19d1205
ZW
22908 symbol_set_frag (last_label_seen, frag_now);
22909 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22910 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
22911 }
22912
c19d1205 22913 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
22914 int r;
22915 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22916 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 22917
c19d1205
ZW
22918 opcode = opcode_lookup (&p);
22919 if (!opcode)
b99bd4ef 22920 {
c19d1205 22921 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 22922 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 22923 if (! create_register_alias (str, p)
477330fc 22924 && ! create_neon_reg_alias (str, p))
c19d1205 22925 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 22926
b99bd4ef
NC
22927 return;
22928 }
22929
278df34e 22930 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 22931 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 22932
037e8744
JB
22933 /* The value which unconditional instructions should have in place of the
22934 condition field. */
22935 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22936
c19d1205 22937 if (thumb_mode)
b99bd4ef 22938 {
e74cfd16 22939 arm_feature_set variant;
8f06b2d8
PB
22940
22941 variant = cpu_variant;
22942 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
22943 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22944 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 22945 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
22946 if (!opcode->tvariant
22947 || (thumb_mode == 1
22948 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 22949 {
173205ca
TP
22950 if (opcode->tencode == do_t_swi)
22951 as_bad (_("SVC is not permitted on this architecture"));
22952 else
22953 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
22954 return;
22955 }
c19d1205
ZW
22956 if (inst.cond != COND_ALWAYS && !unified_syntax
22957 && opcode->tencode != do_t_branch)
b99bd4ef 22958 {
c19d1205 22959 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
22960 return;
22961 }
22962
fc289b0a
TP
22963 /* Two things are addressed here:
22964 1) Implicit require narrow instructions on Thumb-1.
22965 This avoids relaxation accidentally introducing Thumb-2
22966 instructions.
22967 2) Reject wide instructions in non Thumb-2 cores.
22968
22969 Only instructions with narrow and wide variants need to be handled
22970 but selecting all non wide-only instructions is easier. */
22971 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 22972 && !t32_insn_ok (variant, opcode))
076d447c 22973 {
fc289b0a
TP
22974 if (inst.size_req == 0)
22975 inst.size_req = 2;
22976 else if (inst.size_req == 4)
752d5da4 22977 {
ff8646ee
TP
22978 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22979 as_bad (_("selected processor does not support 32bit wide "
22980 "variant of instruction `%s'"), str);
22981 else
22982 as_bad (_("selected processor does not support `%s' in "
22983 "Thumb-2 mode"), str);
fc289b0a 22984 return;
752d5da4 22985 }
076d447c
PB
22986 }
22987
c19d1205
ZW
22988 inst.instruction = opcode->tvalue;
22989
5be8be5d 22990 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 22991 {
5ee91343 22992 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
22993 it. */
22994 it_fsm_pre_encode ();
c19d1205 22995
477330fc 22996 opcode->tencode ();
e07e6e58 22997
477330fc
RM
22998 it_fsm_post_encode ();
22999 }
e27ec89e 23000
0110f2b8 23001 if (!(inst.error || inst.relax))
b99bd4ef 23002 {
9c2799c2 23003 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
23004 inst.size = (inst.instruction > 0xffff ? 4 : 2);
23005 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 23006 {
c19d1205 23007 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
23008 return;
23009 }
23010 }
076d447c
PB
23011
23012 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 23013 instruction. */
9c2799c2 23014 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 23015
e74cfd16
PB
23016 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23017 *opcode->tvariant);
ee065d83 23018 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
23019 set those bits when Thumb-2 32-bit instructions are seen. The impact
23020 of relaxable instructions will be considered later after we finish all
23021 relaxation. */
ff8646ee
TP
23022 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
23023 variant = arm_arch_none;
23024 else
23025 variant = cpu_variant;
23026 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
23027 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23028 arm_ext_v6t2);
cd000bff 23029
88714cb8
DG
23030 check_neon_suffixes;
23031
cd000bff 23032 if (!inst.error)
c877a2f2
NC
23033 {
23034 mapping_state (MAP_THUMB);
23035 }
c19d1205 23036 }
3e9e4fcf 23037 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 23038 {
845b51d6
PB
23039 bfd_boolean is_bx;
23040
23041 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
23042 is_bx = (opcode->aencode == do_bx);
23043
c19d1205 23044 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
23045 if (!(is_bx && fix_v4bx)
23046 && !(opcode->avariant &&
23047 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 23048 {
84b52b66 23049 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 23050 return;
b99bd4ef 23051 }
c19d1205 23052 if (inst.size_req)
b99bd4ef 23053 {
c19d1205
ZW
23054 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
23055 return;
b99bd4ef
NC
23056 }
23057
c19d1205
ZW
23058 inst.instruction = opcode->avalue;
23059 if (opcode->tag == OT_unconditionalF)
eff0bc54 23060 inst.instruction |= 0xFU << 28;
c19d1205
ZW
23061 else
23062 inst.instruction |= inst.cond << 28;
23063 inst.size = INSN_SIZE;
5be8be5d 23064 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
23065 {
23066 it_fsm_pre_encode ();
23067 opcode->aencode ();
23068 it_fsm_post_encode ();
23069 }
ee065d83 23070 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 23071 on a hypothetical non-thumb v5 core. */
845b51d6 23072 if (is_bx)
e74cfd16 23073 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 23074 else
e74cfd16
PB
23075 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
23076 *opcode->avariant);
88714cb8
DG
23077
23078 check_neon_suffixes;
23079
cd000bff 23080 if (!inst.error)
c877a2f2
NC
23081 {
23082 mapping_state (MAP_ARM);
23083 }
b99bd4ef 23084 }
3e9e4fcf
JB
23085 else
23086 {
23087 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
23088 "-- `%s'"), str);
23089 return;
23090 }
c19d1205
ZW
23091 output_inst (str);
23092}
b99bd4ef 23093
e07e6e58 23094static void
5ee91343 23095check_pred_blocks_finished (void)
e07e6e58
NC
23096{
23097#ifdef OBJ_ELF
23098 asection *sect;
23099
23100 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
23101 if (seg_info (sect)->tc_segment_info_data.current_pred.state
23102 == MANUAL_PRED_BLOCK)
e07e6e58 23103 {
5ee91343
AV
23104 if (now_pred.type == SCALAR_PRED)
23105 as_warn (_("section '%s' finished with an open IT block."),
23106 sect->name);
23107 else
23108 as_warn (_("section '%s' finished with an open VPT/VPST block."),
23109 sect->name);
e07e6e58
NC
23110 }
23111#else
5ee91343
AV
23112 if (now_pred.state == MANUAL_PRED_BLOCK)
23113 {
23114 if (now_pred.type == SCALAR_PRED)
23115 as_warn (_("file finished with an open IT block."));
23116 else
23117 as_warn (_("file finished with an open VPT/VPST block."));
23118 }
e07e6e58
NC
23119#endif
23120}
23121
c19d1205
ZW
23122/* Various frobbings of labels and their addresses. */
23123
23124void
23125arm_start_line_hook (void)
23126{
23127 last_label_seen = NULL;
b99bd4ef
NC
23128}
23129
c19d1205
ZW
23130void
23131arm_frob_label (symbolS * sym)
b99bd4ef 23132{
c19d1205 23133 last_label_seen = sym;
b99bd4ef 23134
c19d1205 23135 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 23136
c19d1205
ZW
23137#if defined OBJ_COFF || defined OBJ_ELF
23138 ARM_SET_INTERWORK (sym, support_interwork);
23139#endif
b99bd4ef 23140
e07e6e58
NC
23141 force_automatic_it_block_close ();
23142
5f4273c7 23143 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
23144 as Thumb functions. This is because these labels, whilst
23145 they exist inside Thumb code, are not the entry points for
23146 possible ARM->Thumb calls. Also, these labels can be used
23147 as part of a computed goto or switch statement. eg gcc
23148 can generate code that looks like this:
b99bd4ef 23149
c19d1205
ZW
23150 ldr r2, [pc, .Laaa]
23151 lsl r3, r3, #2
23152 ldr r2, [r3, r2]
23153 mov pc, r2
b99bd4ef 23154
c19d1205
ZW
23155 .Lbbb: .word .Lxxx
23156 .Lccc: .word .Lyyy
23157 ..etc...
23158 .Laaa: .word Lbbb
b99bd4ef 23159
c19d1205
ZW
23160 The first instruction loads the address of the jump table.
23161 The second instruction converts a table index into a byte offset.
23162 The third instruction gets the jump address out of the table.
23163 The fourth instruction performs the jump.
b99bd4ef 23164
c19d1205
ZW
23165 If the address stored at .Laaa is that of a symbol which has the
23166 Thumb_Func bit set, then the linker will arrange for this address
23167 to have the bottom bit set, which in turn would mean that the
23168 address computation performed by the third instruction would end
23169 up with the bottom bit set. Since the ARM is capable of unaligned
23170 word loads, the instruction would then load the incorrect address
23171 out of the jump table, and chaos would ensue. */
23172 if (label_is_thumb_function_name
23173 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
fd361982 23174 && (bfd_section_flags (now_seg) & SEC_CODE) != 0)
b99bd4ef 23175 {
c19d1205
ZW
23176 /* When the address of a Thumb function is taken the bottom
23177 bit of that address should be set. This will allow
23178 interworking between Arm and Thumb functions to work
23179 correctly. */
b99bd4ef 23180
c19d1205 23181 THUMB_SET_FUNC (sym, 1);
b99bd4ef 23182
c19d1205 23183 label_is_thumb_function_name = FALSE;
b99bd4ef 23184 }
07a53e5c 23185
07a53e5c 23186 dwarf2_emit_label (sym);
b99bd4ef
NC
23187}
23188
c921be7d 23189bfd_boolean
c19d1205 23190arm_data_in_code (void)
b99bd4ef 23191{
c19d1205 23192 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 23193 {
c19d1205
ZW
23194 *input_line_pointer = '/';
23195 input_line_pointer += 5;
23196 *input_line_pointer = 0;
c921be7d 23197 return TRUE;
b99bd4ef
NC
23198 }
23199
c921be7d 23200 return FALSE;
b99bd4ef
NC
23201}
23202
c19d1205
ZW
23203char *
23204arm_canonicalize_symbol_name (char * name)
b99bd4ef 23205{
c19d1205 23206 int len;
b99bd4ef 23207
c19d1205
ZW
23208 if (thumb_mode && (len = strlen (name)) > 5
23209 && streq (name + len - 5, "/data"))
23210 *(name + len - 5) = 0;
b99bd4ef 23211
c19d1205 23212 return name;
b99bd4ef 23213}
c19d1205
ZW
23214\f
23215/* Table of all register names defined by default. The user can
23216 define additional names with .req. Note that all register names
23217 should appear in both upper and lowercase variants. Some registers
23218 also have mixed-case names. */
b99bd4ef 23219
dcbf9037 23220#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 23221#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 23222#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
23223#define REGSET(p,t) \
23224 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
23225 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
23226 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
23227 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
23228#define REGSETH(p,t) \
23229 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
23230 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
23231 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
23232 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
23233#define REGSET2(p,t) \
23234 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
23235 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
23236 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
23237 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
23238#define SPLRBANK(base,bank,t) \
23239 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
23240 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
23241 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
23242 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
23243 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
23244 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 23245
c19d1205 23246static const struct reg_entry reg_names[] =
7ed4c4c5 23247{
c19d1205
ZW
23248 /* ARM integer registers. */
23249 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 23250
c19d1205
ZW
23251 /* ATPCS synonyms. */
23252 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
23253 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
23254 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 23255
c19d1205
ZW
23256 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
23257 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
23258 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 23259
c19d1205
ZW
23260 /* Well-known aliases. */
23261 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
23262 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
23263
23264 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
23265 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
23266
1b883319
AV
23267 /* Defining the new Zero register from ARMv8.1-M. */
23268 REGDEF(zr,15,ZR),
23269 REGDEF(ZR,15,ZR),
23270
c19d1205
ZW
23271 /* Coprocessor numbers. */
23272 REGSET(p, CP), REGSET(P, CP),
23273
23274 /* Coprocessor register numbers. The "cr" variants are for backward
23275 compatibility. */
23276 REGSET(c, CN), REGSET(C, CN),
23277 REGSET(cr, CN), REGSET(CR, CN),
23278
90ec0d68
MGD
23279 /* ARM banked registers. */
23280 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
23281 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
23282 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
23283 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
23284 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
23285 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
23286 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
23287
23288 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
23289 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
23290 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
23291 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
23292 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 23293 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
23294 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
23295 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
23296
23297 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
23298 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
23299 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
23300 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
23301 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
23302 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
23303 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 23304 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
23305 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
23306
c19d1205
ZW
23307 /* FPA registers. */
23308 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
23309 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
23310
23311 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
23312 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
23313
23314 /* VFP SP registers. */
5287ad62
JB
23315 REGSET(s,VFS), REGSET(S,VFS),
23316 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
23317
23318 /* VFP DP Registers. */
5287ad62
JB
23319 REGSET(d,VFD), REGSET(D,VFD),
23320 /* Extra Neon DP registers. */
23321 REGSETH(d,VFD), REGSETH(D,VFD),
23322
23323 /* Neon QP registers. */
23324 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
23325
23326 /* VFP control registers. */
23327 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
23328 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
23329 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
23330 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
23331 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
23332 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 23333 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
ba6cd17f
SD
23334 REGDEF(fpscr_nzcvqc,2,VFC), REGDEF(FPSCR_nzcvqc,2,VFC),
23335 REGDEF(vpr,12,VFC), REGDEF(VPR,12,VFC),
23336 REGDEF(fpcxt_ns,14,VFC), REGDEF(FPCXT_NS,14,VFC),
23337 REGDEF(fpcxt_s,15,VFC), REGDEF(FPCXT_S,15,VFC),
c19d1205
ZW
23338
23339 /* Maverick DSP coprocessor registers. */
23340 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
23341 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
23342
23343 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
23344 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
23345 REGDEF(dspsc,0,DSPSC),
23346
23347 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
23348 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
23349 REGDEF(DSPSC,0,DSPSC),
23350
23351 /* iWMMXt data registers - p0, c0-15. */
23352 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
23353
23354 /* iWMMXt control registers - p1, c0-3. */
23355 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
23356 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
23357 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
23358 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
23359
23360 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
23361 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
23362 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
23363 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
23364 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
23365
23366 /* XScale accumulator registers. */
23367 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
23368};
23369#undef REGDEF
23370#undef REGNUM
23371#undef REGSET
7ed4c4c5 23372
c19d1205
ZW
23373/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
23374 within psr_required_here. */
23375static const struct asm_psr psrs[] =
23376{
23377 /* Backward compatibility notation. Note that "all" is no longer
23378 truly all possible PSR bits. */
23379 {"all", PSR_c | PSR_f},
23380 {"flg", PSR_f},
23381 {"ctl", PSR_c},
23382
23383 /* Individual flags. */
23384 {"f", PSR_f},
23385 {"c", PSR_c},
23386 {"x", PSR_x},
23387 {"s", PSR_s},
59b42a0d 23388
c19d1205
ZW
23389 /* Combinations of flags. */
23390 {"fs", PSR_f | PSR_s},
23391 {"fx", PSR_f | PSR_x},
23392 {"fc", PSR_f | PSR_c},
23393 {"sf", PSR_s | PSR_f},
23394 {"sx", PSR_s | PSR_x},
23395 {"sc", PSR_s | PSR_c},
23396 {"xf", PSR_x | PSR_f},
23397 {"xs", PSR_x | PSR_s},
23398 {"xc", PSR_x | PSR_c},
23399 {"cf", PSR_c | PSR_f},
23400 {"cs", PSR_c | PSR_s},
23401 {"cx", PSR_c | PSR_x},
23402 {"fsx", PSR_f | PSR_s | PSR_x},
23403 {"fsc", PSR_f | PSR_s | PSR_c},
23404 {"fxs", PSR_f | PSR_x | PSR_s},
23405 {"fxc", PSR_f | PSR_x | PSR_c},
23406 {"fcs", PSR_f | PSR_c | PSR_s},
23407 {"fcx", PSR_f | PSR_c | PSR_x},
23408 {"sfx", PSR_s | PSR_f | PSR_x},
23409 {"sfc", PSR_s | PSR_f | PSR_c},
23410 {"sxf", PSR_s | PSR_x | PSR_f},
23411 {"sxc", PSR_s | PSR_x | PSR_c},
23412 {"scf", PSR_s | PSR_c | PSR_f},
23413 {"scx", PSR_s | PSR_c | PSR_x},
23414 {"xfs", PSR_x | PSR_f | PSR_s},
23415 {"xfc", PSR_x | PSR_f | PSR_c},
23416 {"xsf", PSR_x | PSR_s | PSR_f},
23417 {"xsc", PSR_x | PSR_s | PSR_c},
23418 {"xcf", PSR_x | PSR_c | PSR_f},
23419 {"xcs", PSR_x | PSR_c | PSR_s},
23420 {"cfs", PSR_c | PSR_f | PSR_s},
23421 {"cfx", PSR_c | PSR_f | PSR_x},
23422 {"csf", PSR_c | PSR_s | PSR_f},
23423 {"csx", PSR_c | PSR_s | PSR_x},
23424 {"cxf", PSR_c | PSR_x | PSR_f},
23425 {"cxs", PSR_c | PSR_x | PSR_s},
23426 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
23427 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
23428 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
23429 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
23430 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
23431 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
23432 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
23433 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
23434 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
23435 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
23436 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
23437 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
23438 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
23439 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
23440 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
23441 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
23442 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
23443 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
23444 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
23445 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
23446 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
23447 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
23448 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
23449 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
23450};
23451
62b3e311
PB
23452/* Table of V7M psr names. */
23453static const struct asm_psr v7m_psrs[] =
23454{
1a336194
TP
23455 {"apsr", 0x0 }, {"APSR", 0x0 },
23456 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
23457 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
23458 {"psr", 0x3 }, {"PSR", 0x3 },
23459 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
23460 {"ipsr", 0x5 }, {"IPSR", 0x5 },
23461 {"epsr", 0x6 }, {"EPSR", 0x6 },
23462 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
23463 {"msp", 0x8 }, {"MSP", 0x8 },
23464 {"psp", 0x9 }, {"PSP", 0x9 },
23465 {"msplim", 0xa }, {"MSPLIM", 0xa },
23466 {"psplim", 0xb }, {"PSPLIM", 0xb },
23467 {"primask", 0x10}, {"PRIMASK", 0x10},
23468 {"basepri", 0x11}, {"BASEPRI", 0x11},
23469 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
23470 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
23471 {"control", 0x14}, {"CONTROL", 0x14},
23472 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
23473 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
23474 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
23475 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
23476 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
23477 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
23478 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
23479 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
23480 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
23481};
23482
c19d1205
ZW
23483/* Table of all shift-in-operand names. */
23484static const struct asm_shift_name shift_names [] =
b99bd4ef 23485{
c19d1205
ZW
23486 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
23487 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
23488 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
23489 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
23490 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
23491 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
23492 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 23493};
b99bd4ef 23494
c19d1205
ZW
23495/* Table of all explicit relocation names. */
23496#ifdef OBJ_ELF
23497static struct reloc_entry reloc_names[] =
23498{
23499 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
23500 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
23501 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
23502 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
23503 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
23504 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
23505 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
23506 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
23507 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
23508 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 23509 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
23510 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
23511 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 23512 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 23513 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 23514 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 23515 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
23516 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
23517 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
23518 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
23519 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23520 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23521 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
23522 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
23523 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
23524 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
23525 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
23526};
23527#endif
b99bd4ef 23528
5ee91343 23529/* Table of all conditional affixes. */
c19d1205
ZW
23530static const struct asm_cond conds[] =
23531{
23532 {"eq", 0x0},
23533 {"ne", 0x1},
23534 {"cs", 0x2}, {"hs", 0x2},
23535 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
23536 {"mi", 0x4},
23537 {"pl", 0x5},
23538 {"vs", 0x6},
23539 {"vc", 0x7},
23540 {"hi", 0x8},
23541 {"ls", 0x9},
23542 {"ge", 0xa},
23543 {"lt", 0xb},
23544 {"gt", 0xc},
23545 {"le", 0xd},
23546 {"al", 0xe}
23547};
5ee91343
AV
23548static const struct asm_cond vconds[] =
23549{
23550 {"t", 0xf},
23551 {"e", 0x10}
23552};
bfae80f2 23553
e797f7e0 23554#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
23555 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
23556 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 23557
62b3e311
PB
23558static struct asm_barrier_opt barrier_opt_names[] =
23559{
e797f7e0
MGD
23560 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
23561 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
23562 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
23563 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
23564 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
23565 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
23566 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
23567 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
23568 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
23569 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
23570 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
23571 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
23572 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
23573 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
23574 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
23575 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
23576};
23577
e797f7e0
MGD
23578#undef UL_BARRIER
23579
c19d1205
ZW
23580/* Table of ARM-format instructions. */
23581
23582/* Macros for gluing together operand strings. N.B. In all cases
23583 other than OPS0, the trailing OP_stop comes from default
23584 zero-initialization of the unspecified elements of the array. */
23585#define OPS0() { OP_stop, }
23586#define OPS1(a) { OP_##a, }
23587#define OPS2(a,b) { OP_##a,OP_##b, }
23588#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
23589#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
23590#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
23591#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
23592
5be8be5d
DG
23593/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
23594 This is useful when mixing operands for ARM and THUMB, i.e. using the
23595 MIX_ARM_THUMB_OPERANDS macro.
23596 In order to use these macros, prefix the number of operands with _
23597 e.g. _3. */
23598#define OPS_1(a) { a, }
23599#define OPS_2(a,b) { a,b, }
23600#define OPS_3(a,b,c) { a,b,c, }
23601#define OPS_4(a,b,c,d) { a,b,c,d, }
23602#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
23603#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
23604
c19d1205
ZW
23605/* These macros abstract out the exact format of the mnemonic table and
23606 save some repeated characters. */
23607
23608/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
23609#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 23610 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 23611 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
23612
23613/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
23614 a T_MNEM_xyz enumerator. */
23615#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 23616 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 23617#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 23618 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
23619
23620/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
23621 infix after the third character. */
23622#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 23623 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 23624 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 23625#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 23626 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 23627 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 23628#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 23629 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 23630#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 23631 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 23632#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 23633 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 23634#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 23635 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 23636
c19d1205 23637/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
23638 field is still 0xE. Many of the Thumb variants can be executed
23639 conditionally, so this is checked separately. */
c19d1205 23640#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 23641 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 23642 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 23643
dd5181d5
KT
23644/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
23645 Used by mnemonics that have very minimal differences in the encoding for
23646 ARM and Thumb variants and can be handled in a common function. */
23647#define TUEc(mnem, op, top, nops, ops, en) \
23648 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 23649 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 23650
c19d1205
ZW
23651/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
23652 condition code field. */
23653#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 23654 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 23655 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
23656
23657/* ARM-only variants of all the above. */
6a86118a 23658#define CE(mnem, op, nops, ops, ae) \
5ee91343 23659 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
23660
23661#define C3(mnem, op, nops, ops, ae) \
5ee91343 23662 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 23663
cf3cf39d
TP
23664/* Thumb-only variants of TCE and TUE. */
23665#define ToC(mnem, top, nops, ops, te) \
23666 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 23667 do_##te, 0 }
cf3cf39d
TP
23668
23669#define ToU(mnem, top, nops, ops, te) \
23670 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 23671 NULL, do_##te, 0 }
cf3cf39d 23672
4389b29a
AV
23673/* T_MNEM_xyz enumerator variants of ToC. */
23674#define toC(mnem, top, nops, ops, te) \
23675 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 23676 do_##te, 0 }
4389b29a 23677
f6b2b12d
AV
23678/* T_MNEM_xyz enumerator variants of ToU. */
23679#define toU(mnem, top, nops, ops, te) \
23680 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 23681 NULL, do_##te, 0 }
f6b2b12d 23682
e3cb604e
PB
23683/* Legacy mnemonics that always have conditional infix after the third
23684 character. */
23685#define CL(mnem, op, nops, ops, ae) \
21d799b5 23686 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 23687 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 23688
8f06b2d8
PB
23689/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
23690#define cCE(mnem, op, nops, ops, ae) \
5ee91343 23691 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 23692
57785aa2
AV
23693/* mov instructions that are shared between coprocessor and MVE. */
23694#define mcCE(mnem, op, nops, ops, ae) \
23695 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
23696
e3cb604e
PB
23697/* Legacy coprocessor instructions where conditional infix and conditional
23698 suffix are ambiguous. For consistency this includes all FPA instructions,
23699 not just the potentially ambiguous ones. */
23700#define cCL(mnem, op, nops, ops, ae) \
21d799b5 23701 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 23702 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
23703
23704/* Coprocessor, takes either a suffix or a position-3 infix
23705 (for an FPA corner case). */
23706#define C3E(mnem, op, nops, ops, ae) \
21d799b5 23707 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 23708 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 23709
6a86118a 23710#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
23711 { m1 #m2 m3, OPS##nops ops, \
23712 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 23713 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
23714
23715#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
23716 xCM_ (m1, , m2, op, nops, ops, ae), \
23717 xCM_ (m1, eq, m2, op, nops, ops, ae), \
23718 xCM_ (m1, ne, m2, op, nops, ops, ae), \
23719 xCM_ (m1, cs, m2, op, nops, ops, ae), \
23720 xCM_ (m1, hs, m2, op, nops, ops, ae), \
23721 xCM_ (m1, cc, m2, op, nops, ops, ae), \
23722 xCM_ (m1, ul, m2, op, nops, ops, ae), \
23723 xCM_ (m1, lo, m2, op, nops, ops, ae), \
23724 xCM_ (m1, mi, m2, op, nops, ops, ae), \
23725 xCM_ (m1, pl, m2, op, nops, ops, ae), \
23726 xCM_ (m1, vs, m2, op, nops, ops, ae), \
23727 xCM_ (m1, vc, m2, op, nops, ops, ae), \
23728 xCM_ (m1, hi, m2, op, nops, ops, ae), \
23729 xCM_ (m1, ls, m2, op, nops, ops, ae), \
23730 xCM_ (m1, ge, m2, op, nops, ops, ae), \
23731 xCM_ (m1, lt, m2, op, nops, ops, ae), \
23732 xCM_ (m1, gt, m2, op, nops, ops, ae), \
23733 xCM_ (m1, le, m2, op, nops, ops, ae), \
23734 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
23735
23736#define UE(mnem, op, nops, ops, ae) \
5ee91343 23737 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
23738
23739#define UF(mnem, op, nops, ops, ae) \
5ee91343 23740 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 23741
5287ad62
JB
23742/* Neon data-processing. ARM versions are unconditional with cond=0xf.
23743 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
23744 use the same encoding function for each. */
23745#define NUF(mnem, op, nops, ops, enc) \
23746 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 23747 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
23748
23749/* Neon data processing, version which indirects through neon_enc_tab for
23750 the various overloaded versions of opcodes. */
23751#define nUF(mnem, op, nops, ops, enc) \
21d799b5 23752 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 23753 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
23754
23755/* Neon insn with conditional suffix for the ARM version, non-overloaded
23756 version. */
5ee91343 23757#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 23758 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 23759 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 23760
037e8744 23761#define NCE(mnem, op, nops, ops, enc) \
5ee91343 23762 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
23763
23764#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 23765 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 23766
5287ad62 23767/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 23768#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 23769 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 23770 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 23771
037e8744 23772#define nCE(mnem, op, nops, ops, enc) \
5ee91343 23773 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
23774
23775#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
23776 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23777
23778/* */
23779#define mCEF(mnem, op, nops, ops, enc) \
a302e574 23780 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
23781 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23782
23783
23784/* nCEF but for MVE predicated instructions. */
23785#define mnCEF(mnem, op, nops, ops, enc) \
23786 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23787
23788/* nCE but for MVE predicated instructions. */
23789#define mnCE(mnem, op, nops, ops, enc) \
23790 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 23791
5ee91343
AV
23792/* NUF but for potentially MVE predicated instructions. */
23793#define MNUF(mnem, op, nops, ops, enc) \
23794 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23795 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23796
23797/* nUF but for potentially MVE predicated instructions. */
23798#define mnUF(mnem, op, nops, ops, enc) \
23799 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23800 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23801
23802/* ToC but for potentially MVE predicated instructions. */
23803#define mToC(mnem, top, nops, ops, te) \
23804 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23805 do_##te, 1 }
23806
23807/* NCE but for MVE predicated instructions. */
23808#define MNCE(mnem, op, nops, ops, enc) \
23809 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23810
23811/* NCEF but for MVE predicated instructions. */
23812#define MNCEF(mnem, op, nops, ops, enc) \
23813 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
23814#define do_0 0
23815
c19d1205 23816static const struct asm_opcode insns[] =
bfae80f2 23817{
74db7efb
NC
23818#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
23819#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
23820 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
23821 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
23822 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
23823 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
23824 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
23825 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
23826 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
23827 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
23828 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
23829 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
23830 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
23831 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
23832 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
23833 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
23834 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
23835 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
23836
23837 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
23838 for setting PSR flag bits. They are obsolete in V6 and do not
23839 have Thumb equivalents. */
21d799b5
NC
23840 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23841 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23842 CL("tstp", 110f000, 2, (RR, SH), cmp),
23843 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23844 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23845 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23846 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23847 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23848 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23849
23850 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 23851 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
23852 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23853 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23854
23855 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
23856 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23857 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23858 OP_RRnpc),
23859 OP_ADDRGLDR),ldst, t_ldst),
23860 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
23861
23862 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23863 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23864 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23865 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23866 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23867 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23868
21d799b5
NC
23869 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23870 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 23871
c19d1205 23872 /* Pseudo ops. */
21d799b5 23873 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 23874 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 23875 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 23876 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
23877
23878 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
23879 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23880 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23881 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23882 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23883 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23884 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23885 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23886 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23887 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23888 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23889 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23890 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 23891
16a4cf17 23892 /* These may simplify to neg. */
21d799b5
NC
23893 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23894 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 23895
173205ca
TP
23896#undef THUMB_VARIANT
23897#define THUMB_VARIANT & arm_ext_os
23898
23899 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23900 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23901
c921be7d
NC
23902#undef THUMB_VARIANT
23903#define THUMB_VARIANT & arm_ext_v6
23904
21d799b5 23905 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
23906
23907 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
23908#undef THUMB_VARIANT
23909#define THUMB_VARIANT & arm_ext_v6t2
23910
21d799b5
NC
23911 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23912 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23913 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 23914
5be8be5d
DG
23915 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23916 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23917 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23918 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 23919
21d799b5
NC
23920 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23921 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 23922
21d799b5
NC
23923 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23924 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
23925
23926 /* V1 instructions with no Thumb analogue at all. */
21d799b5 23927 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
23928 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23929
23930 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23931 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23932 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23933 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23934 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23935 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23936 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23937 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23938
c921be7d
NC
23939#undef ARM_VARIANT
23940#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23941#undef THUMB_VARIANT
23942#define THUMB_VARIANT & arm_ext_v4t
23943
21d799b5
NC
23944 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23945 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 23946
c921be7d
NC
23947#undef THUMB_VARIANT
23948#define THUMB_VARIANT & arm_ext_v6t2
23949
21d799b5 23950 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
23951 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23952
23953 /* Generic coprocessor instructions. */
21d799b5
NC
23954 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23955 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23956 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23957 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23958 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23959 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 23960 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23961
c921be7d
NC
23962#undef ARM_VARIANT
23963#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23964
21d799b5 23965 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
23966 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23967
c921be7d
NC
23968#undef ARM_VARIANT
23969#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23970#undef THUMB_VARIANT
23971#define THUMB_VARIANT & arm_ext_msr
23972
d2cd1205
JB
23973 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23974 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 23975
c921be7d
NC
23976#undef ARM_VARIANT
23977#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23978#undef THUMB_VARIANT
23979#define THUMB_VARIANT & arm_ext_v6t2
23980
21d799b5
NC
23981 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23982 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23983 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23984 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23985 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23986 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23987 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23988 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 23989
c921be7d
NC
23990#undef ARM_VARIANT
23991#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23992#undef THUMB_VARIANT
23993#define THUMB_VARIANT & arm_ext_v4t
23994
5be8be5d
DG
23995 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23996 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23997 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23998 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
23999 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24000 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 24001
c921be7d
NC
24002#undef ARM_VARIANT
24003#define ARM_VARIANT & arm_ext_v4t_5
24004
c19d1205
ZW
24005 /* ARM Architecture 4T. */
24006 /* Note: bx (and blx) are required on V5, even if the processor does
24007 not support Thumb. */
21d799b5 24008 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 24009
c921be7d
NC
24010#undef ARM_VARIANT
24011#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
24012#undef THUMB_VARIANT
24013#define THUMB_VARIANT & arm_ext_v5t
24014
c19d1205
ZW
24015 /* Note: blx has 2 variants; the .value coded here is for
24016 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
24017 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
24018 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 24019
c921be7d
NC
24020#undef THUMB_VARIANT
24021#define THUMB_VARIANT & arm_ext_v6t2
24022
21d799b5
NC
24023 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
24024 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24025 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24026 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24027 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24028 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
24029 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24030 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 24031
c921be7d 24032#undef ARM_VARIANT
74db7efb
NC
24033#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
24034#undef THUMB_VARIANT
24035#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 24036
21d799b5
NC
24037 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24038 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24039 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24040 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 24041
21d799b5
NC
24042 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24043 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 24044
21d799b5
NC
24045 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24046 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24047 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24048 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 24049
21d799b5
NC
24050 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24051 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24052 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24053 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 24054
21d799b5
NC
24055 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24056 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 24057
03ee1b7f
NC
24058 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24059 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24060 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24061 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 24062
c921be7d 24063#undef ARM_VARIANT
74db7efb
NC
24064#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
24065#undef THUMB_VARIANT
24066#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 24067
21d799b5 24068 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
24069 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
24070 ldrd, t_ldstd),
24071 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
24072 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 24073
21d799b5
NC
24074 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24075 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 24076
c921be7d
NC
24077#undef ARM_VARIANT
24078#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
24079
21d799b5 24080 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 24081
c921be7d
NC
24082#undef ARM_VARIANT
24083#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
24084#undef THUMB_VARIANT
24085#define THUMB_VARIANT & arm_ext_v6
24086
21d799b5
NC
24087 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
24088 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
24089 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24090 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24091 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24092 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24093 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24094 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24095 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24096 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 24097
c921be7d 24098#undef THUMB_VARIANT
ff8646ee 24099#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 24100
5be8be5d
DG
24101 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
24102 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24103 strex, t_strex),
ff8646ee
TP
24104#undef THUMB_VARIANT
24105#define THUMB_VARIANT & arm_ext_v6t2
24106
21d799b5
NC
24107 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24108 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 24109
21d799b5
NC
24110 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
24111 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 24112
9e3c6df6 24113/* ARM V6 not included in V7M. */
c921be7d
NC
24114#undef THUMB_VARIANT
24115#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 24116 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 24117 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
24118 UF(rfeib, 9900a00, 1, (RRw), rfe),
24119 UF(rfeda, 8100a00, 1, (RRw), rfe),
24120 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24121 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
24122 UF(rfefa, 8100a00, 1, (RRw), rfe),
24123 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24124 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 24125 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
24126 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24127 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 24128 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 24129 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 24130 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 24131 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 24132 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 24133 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 24134 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 24135
9e3c6df6
PB
24136/* ARM V6 not included in V7M (eg. integer SIMD). */
24137#undef THUMB_VARIANT
24138#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
24139 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
24140 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
24141 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24142 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24143 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24144 /* Old name for QASX. */
74db7efb 24145 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 24146 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24147 /* Old name for QSAX. */
74db7efb 24148 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
24149 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24150 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24151 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24152 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24153 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24154 /* Old name for SASX. */
74db7efb 24155 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
24156 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24157 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 24158 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24159 /* Old name for SHASX. */
21d799b5 24160 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 24161 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24162 /* Old name for SHSAX. */
21d799b5
NC
24163 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24164 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24165 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24166 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24167 /* Old name for SSAX. */
74db7efb 24168 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
24169 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24170 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24171 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24172 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24173 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24174 /* Old name for UASX. */
74db7efb 24175 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
24176 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24177 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 24178 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24179 /* Old name for UHASX. */
21d799b5
NC
24180 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24181 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24182 /* Old name for UHSAX. */
21d799b5
NC
24183 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24184 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24185 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24186 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24187 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 24188 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24189 /* Old name for UQASX. */
21d799b5
NC
24190 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24191 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24192 /* Old name for UQSAX. */
21d799b5
NC
24193 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24194 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24195 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24196 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24197 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 24198 /* Old name for USAX. */
74db7efb 24199 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 24200 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
24201 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24202 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24203 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24204 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24205 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24206 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24207 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24208 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24209 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24210 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24211 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24212 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24213 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24214 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24215 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24216 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24217 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24218 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24219 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24220 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24221 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24222 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24223 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24224 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24225 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24226 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24227 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
24228 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
24229 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
24230 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24231 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24232 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 24233
c921be7d 24234#undef ARM_VARIANT
55e8aae7 24235#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 24236#undef THUMB_VARIANT
55e8aae7 24237#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 24238
21d799b5
NC
24239 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
24240 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
24241 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
24242 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 24243
c921be7d
NC
24244#undef THUMB_VARIANT
24245#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
24246 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
24247 ldrexd, t_ldrexd),
24248 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
24249 RRnpcb), strexd, t_strexd),
ebdca51a 24250
c921be7d 24251#undef THUMB_VARIANT
ff8646ee 24252#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
24253 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
24254 rd_rn, rd_rn),
24255 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
24256 rd_rn, rd_rn),
24257 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 24258 strex, t_strexbh),
5be8be5d 24259 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 24260 strex, t_strexbh),
21d799b5 24261 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 24262
c921be7d 24263#undef ARM_VARIANT
f4c65163 24264#define ARM_VARIANT & arm_ext_sec
74db7efb 24265#undef THUMB_VARIANT
f4c65163 24266#define THUMB_VARIANT & arm_ext_sec
c921be7d 24267
21d799b5 24268 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 24269
90ec0d68
MGD
24270#undef ARM_VARIANT
24271#define ARM_VARIANT & arm_ext_virt
24272#undef THUMB_VARIANT
24273#define THUMB_VARIANT & arm_ext_virt
24274
24275 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
24276 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
24277
ddfded2f
MW
24278#undef ARM_VARIANT
24279#define ARM_VARIANT & arm_ext_pan
24280#undef THUMB_VARIANT
24281#define THUMB_VARIANT & arm_ext_pan
24282
24283 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
24284
c921be7d 24285#undef ARM_VARIANT
74db7efb 24286#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
24287#undef THUMB_VARIANT
24288#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 24289
21d799b5
NC
24290 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
24291 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
24292 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
24293 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 24294
21d799b5 24295 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 24296 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 24297
5be8be5d
DG
24298 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24299 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24300 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24301 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 24302
91d8b670
JG
24303#undef ARM_VARIANT
24304#define ARM_VARIANT & arm_ext_v3
24305#undef THUMB_VARIANT
24306#define THUMB_VARIANT & arm_ext_v6t2
24307
24308 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
24309 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
24310 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
24311
24312#undef ARM_VARIANT
24313#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
24314#undef THUMB_VARIANT
24315#define THUMB_VARIANT & arm_ext_v6t2_v8m
24316 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
24317 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
24318
bf3eeda7 24319 /* Thumb-only instructions. */
74db7efb 24320#undef ARM_VARIANT
bf3eeda7
NS
24321#define ARM_VARIANT NULL
24322 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
24323 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
24324
24325 /* ARM does not really have an IT instruction, so always allow it.
24326 The opcode is copied from Thumb in order to allow warnings in
24327 -mimplicit-it=[never | arm] modes. */
24328#undef ARM_VARIANT
24329#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
24330#undef THUMB_VARIANT
24331#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 24332
21d799b5
NC
24333 TUE("it", bf08, bf08, 1, (COND), it, t_it),
24334 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
24335 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
24336 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
24337 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
24338 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
24339 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
24340 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
24341 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
24342 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
24343 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
24344 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
24345 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
24346 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
24347 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 24348 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
24349 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
24350 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 24351
92e90b6e 24352 /* Thumb2 only instructions. */
c921be7d
NC
24353#undef ARM_VARIANT
24354#define ARM_VARIANT NULL
92e90b6e 24355
21d799b5
NC
24356 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24357 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24358 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
24359 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
24360 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
24361 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 24362
eea54501
MGD
24363 /* Hardware division instructions. */
24364#undef ARM_VARIANT
24365#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
24366#undef THUMB_VARIANT
24367#define THUMB_VARIANT & arm_ext_div
24368
eea54501
MGD
24369 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
24370 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 24371
7e806470 24372 /* ARM V6M/V7 instructions. */
c921be7d
NC
24373#undef ARM_VARIANT
24374#define ARM_VARIANT & arm_ext_barrier
24375#undef THUMB_VARIANT
24376#define THUMB_VARIANT & arm_ext_barrier
24377
ccb84d65
JB
24378 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
24379 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
24380 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 24381
62b3e311 24382 /* ARM V7 instructions. */
c921be7d
NC
24383#undef ARM_VARIANT
24384#define ARM_VARIANT & arm_ext_v7
24385#undef THUMB_VARIANT
24386#define THUMB_VARIANT & arm_ext_v7
24387
21d799b5
NC
24388 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
24389 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 24390
74db7efb 24391#undef ARM_VARIANT
60e5ef9f 24392#define ARM_VARIANT & arm_ext_mp
74db7efb 24393#undef THUMB_VARIANT
60e5ef9f
MGD
24394#define THUMB_VARIANT & arm_ext_mp
24395
24396 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
24397
53c4b28b
MGD
24398 /* AArchv8 instructions. */
24399#undef ARM_VARIANT
24400#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
24401
24402/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 24403#undef THUMB_VARIANT
4ed7ed8d 24404#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 24405
4ed7ed8d
TP
24406 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24407 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24408 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24409 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24410 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24411 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 24412 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
24413 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
24414 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24415 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
24416 stlex, t_stlex),
4b8c8c02
RE
24417 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
24418 stlex, t_stlex),
24419 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
24420 stlex, t_stlex),
4ed7ed8d
TP
24421#undef THUMB_VARIANT
24422#define THUMB_VARIANT & arm_ext_v8
53c4b28b 24423
4ed7ed8d 24424 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
24425 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
24426 ldrexd, t_ldrexd),
24427 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
24428 strexd, t_strexd),
f7dd2fb2
TC
24429
24430/* Defined in V8 but is in undefined encoding space for earlier
24431 architectures. However earlier architectures are required to treat
24432 this instuction as a semihosting trap as well. Hence while not explicitly
24433 defined as such, it is in fact correct to define the instruction for all
24434 architectures. */
24435#undef THUMB_VARIANT
24436#define THUMB_VARIANT & arm_ext_v1
24437#undef ARM_VARIANT
24438#define ARM_VARIANT & arm_ext_v1
24439 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
24440
8884b720 24441 /* ARMv8 T32 only. */
74db7efb 24442#undef ARM_VARIANT
b79f7053
MGD
24443#define ARM_VARIANT NULL
24444 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
24445 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
24446 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
24447
33399f07
MGD
24448 /* FP for ARMv8. */
24449#undef ARM_VARIANT
a715796b 24450#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 24451#undef THUMB_VARIANT
a715796b 24452#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
24453
24454 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
24455 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
24456 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
24457 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
30bdf752 24458 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
a710b305
AV
24459 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
24460 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
24461 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
24462 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
24463 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
24464 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
33399f07 24465
91ff7894
MGD
24466 /* Crypto v1 extensions. */
24467#undef ARM_VARIANT
24468#define ARM_VARIANT & fpu_crypto_ext_armv8
24469#undef THUMB_VARIANT
24470#define THUMB_VARIANT & fpu_crypto_ext_armv8
24471
24472 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
24473 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
24474 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
24475 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
24476 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
24477 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
24478 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
24479 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
24480 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
24481 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
24482 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
24483 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
24484 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
24485 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 24486
dd5181d5 24487#undef ARM_VARIANT
74db7efb 24488#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
24489#undef THUMB_VARIANT
24490#define THUMB_VARIANT & crc_ext_armv8
24491 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
24492 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
24493 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
24494 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
24495 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
24496 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
24497
105bde57
MW
24498 /* ARMv8.2 RAS extension. */
24499#undef ARM_VARIANT
4d1464f2 24500#define ARM_VARIANT & arm_ext_ras
105bde57 24501#undef THUMB_VARIANT
4d1464f2 24502#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
24503 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
24504
49e8a725
SN
24505#undef ARM_VARIANT
24506#define ARM_VARIANT & arm_ext_v8_3
24507#undef THUMB_VARIANT
24508#define THUMB_VARIANT & arm_ext_v8_3
24509 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
24510
c604a79a
JW
24511#undef ARM_VARIANT
24512#define ARM_VARIANT & fpu_neon_ext_dotprod
24513#undef THUMB_VARIANT
24514#define THUMB_VARIANT & fpu_neon_ext_dotprod
24515 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
24516 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
24517
c921be7d
NC
24518#undef ARM_VARIANT
24519#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
24520#undef THUMB_VARIANT
24521#define THUMB_VARIANT NULL
c921be7d 24522
21d799b5
NC
24523 cCE("wfs", e200110, 1, (RR), rd),
24524 cCE("rfs", e300110, 1, (RR), rd),
24525 cCE("wfc", e400110, 1, (RR), rd),
24526 cCE("rfc", e500110, 1, (RR), rd),
24527
24528 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
24529 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
24530 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
24531 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
24532
24533 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
24534 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
24535 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
24536 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
24537
24538 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
24539 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
24540 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
24541 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
24542 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
24543 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
24544 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
24545 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
24546 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
24547 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
24548 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
24549 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
24550
24551 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
24552 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
24553 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
24554 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
24555 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
24556 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
24557 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
24558 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
24559 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
24560 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
24561 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
24562 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
24563
24564 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
24565 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
24566 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
24567 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
24568 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
24569 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
24570 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
24571 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
24572 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
24573 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
24574 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
24575 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
24576
24577 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
24578 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
24579 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
24580 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
24581 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
24582 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
24583 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
24584 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
24585 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
24586 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
24587 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
24588 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
24589
24590 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
24591 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
24592 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
24593 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
24594 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
24595 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
24596 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
24597 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
24598 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
24599 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
24600 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
24601 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
24602
24603 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
24604 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
24605 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
24606 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
24607 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
24608 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
24609 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
24610 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
24611 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
24612 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
24613 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
24614 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
24615
24616 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
24617 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
24618 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
24619 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
24620 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
24621 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
24622 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
24623 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
24624 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
24625 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
24626 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
24627 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
24628
24629 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
24630 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
24631 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
24632 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
24633 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
24634 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
24635 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
24636 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
24637 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
24638 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
24639 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
24640 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
24641
24642 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
24643 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
24644 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
24645 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
24646 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
24647 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
24648 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
24649 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
24650 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
24651 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
24652 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
24653 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
24654
24655 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
24656 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
24657 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
24658 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
24659 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
24660 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
24661 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
24662 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
24663 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
24664 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
24665 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
24666 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
24667
24668 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
24669 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
24670 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
24671 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
24672 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
24673 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
24674 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
24675 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
24676 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
24677 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
24678 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
24679 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
24680
24681 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
24682 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
24683 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
24684 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
24685 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
24686 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
24687 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
24688 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
24689 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
24690 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
24691 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
24692 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
24693
24694 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
24695 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
24696 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
24697 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
24698 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
24699 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
24700 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
24701 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
24702 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
24703 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
24704 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
24705 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
24706
24707 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
24708 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
24709 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
24710 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
24711 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
24712 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
24713 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
24714 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
24715 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
24716 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
24717 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
24718 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
24719
24720 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
24721 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
24722 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
24723 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
24724 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
24725 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
24726 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
24727 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
24728 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
24729 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
24730 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
24731 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
24732
24733 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
24734 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
24735 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
24736 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
24737 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
24738 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
24739 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
24740 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
24741 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
24742 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
24743 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
24744 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
24745
24746 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
24747 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
24748 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
24749 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
24750 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
24751 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24752 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24753 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24754 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
24755 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
24756 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
24757 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
24758
24759 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
24760 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
24761 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
24762 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
24763 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
24764 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24765 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24766 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24767 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
24768 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
24769 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
24770 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
24771
24772 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
24773 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
24774 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
24775 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
24776 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
24777 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24778 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24779 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24780 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
24781 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
24782 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
24783 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
24784
24785 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
24786 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
24787 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
24788 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
24789 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
24790 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24791 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24792 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24793 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
24794 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
24795 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
24796 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
24797
24798 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
24799 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
24800 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
24801 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
24802 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
24803 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24804 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24805 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24806 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
24807 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
24808 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
24809 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
24810
24811 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
24812 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
24813 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
24814 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
24815 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
24816 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24817 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24818 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24819 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
24820 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
24821 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
24822 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
24823
24824 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
24825 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
24826 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
24827 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
24828 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
24829 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24830 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24831 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24832 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
24833 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
24834 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
24835 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
24836
24837 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
24838 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
24839 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
24840 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
24841 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
24842 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24843 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24844 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24845 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24846 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24847 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24848 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24849
24850 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24851 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24852 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24853 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24854 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24855 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24856 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24857 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24858 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24859 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24860 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24861 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24862
24863 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24864 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24865 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24866 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24867 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24868 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24869 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24870 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24871 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24872 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24873 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24874 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24875
24876 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24877 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24878 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24879 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24880 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24881 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24882 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24883 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24884 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24885 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24886 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24887 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24888
24889 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24890 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24891 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24892 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24893 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24894 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24895 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24896 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24897 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24898 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24899 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24900 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24901
24902 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24903 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24904 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24905 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24906 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24907 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24908 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24909 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24910 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24911 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24912 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24913 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24914
24915 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24916 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24917 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24918 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24919
24920 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24921 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24922 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24923 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24924 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24925 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24926 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24927 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24928 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24929 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24930 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24931 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 24932
c19d1205
ZW
24933 /* The implementation of the FIX instruction is broken on some
24934 assemblers, in that it accepts a precision specifier as well as a
24935 rounding specifier, despite the fact that this is meaningless.
24936 To be more compatible, we accept it as well, though of course it
24937 does not set any bits. */
21d799b5
NC
24938 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24939 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24940 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24941 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24942 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24943 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24944 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24945 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24946 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24947 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24948 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24949 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24950 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 24951
c19d1205 24952 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
24953#undef ARM_VARIANT
24954#define ARM_VARIANT & fpu_fpa_ext_v2
24955
21d799b5
NC
24956 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24957 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24958 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24959 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24960 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24961 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 24962
c921be7d
NC
24963#undef ARM_VARIANT
24964#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
ba6cd17f
SD
24965#undef THUMB_VARIANT
24966#define THUMB_VARIANT & arm_ext_v6t2
24967 mcCE(vmrs, ef00a10, 2, (APSR_RR, RVC), vmrs),
24968 mcCE(vmsr, ee00a10, 2, (RVC, RR), vmsr),
24969#undef THUMB_VARIANT
c921be7d 24970
c19d1205 24971 /* Moves and type conversions. */
21d799b5
NC
24972 cCE("fmstat", ef1fa10, 0, (), noargs),
24973 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24974 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24975 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24976 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24977 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24978 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24979 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24980 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
24981
24982 /* Memory operations. */
21d799b5
NC
24983 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24984 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
24985 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24986 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24987 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24988 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24989 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24990 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24991 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24992 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24993 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24994 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24995 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24996 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24997 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24998 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24999 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25000 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 25001
c19d1205 25002 /* Monadic operations. */
21d799b5
NC
25003 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
25004 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
25005 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
25006
25007 /* Dyadic operations. */
21d799b5
NC
25008 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25009 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25010 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25011 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25012 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25013 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25014 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25015 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25016 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 25017
c19d1205 25018 /* Comparisons. */
21d799b5
NC
25019 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
25020 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
25021 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
25022 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 25023
62f3b8c8
PB
25024 /* Double precision load/store are still present on single precision
25025 implementations. */
25026 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
25027 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
25028 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25029 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25030 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25031 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25032 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25033 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25034 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25035 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 25036
c921be7d
NC
25037#undef ARM_VARIANT
25038#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
25039
c19d1205 25040 /* Moves and type conversions. */
21d799b5
NC
25041 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25042 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25043 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
25044 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
25045 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
25046 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
25047 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25048 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
25049 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25050 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25051 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25052 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 25053
c19d1205 25054 /* Monadic operations. */
21d799b5
NC
25055 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25056 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25057 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
25058
25059 /* Dyadic operations. */
21d799b5
NC
25060 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25061 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25062 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25063 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25064 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25065 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25066 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25067 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25068 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 25069
c19d1205 25070 /* Comparisons. */
21d799b5
NC
25071 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25072 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
25073 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25074 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 25075
037e8744
JB
25076/* Instructions which may belong to either the Neon or VFP instruction sets.
25077 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
25078#undef ARM_VARIANT
25079#define ARM_VARIANT & fpu_vfp_ext_v1xd
25080#undef THUMB_VARIANT
25081#define THUMB_VARIANT & fpu_vfp_ext_v1xd
25082
037e8744
JB
25083 /* These mnemonics are unique to VFP. */
25084 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
25085 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
25086 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25087 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25088 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
25089 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
25090 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
25091 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
25092
25093 /* Mnemonics shared by Neon and VFP. */
21d799b5 25094 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 25095
55881a11
MGD
25096 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25097 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25098 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25099 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25100 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25101 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 25102
dd9634d9 25103 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 25104 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
25105 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
25106 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 25107
037e8744
JB
25108
25109 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
25110 NCE(vmovq, 0, 1, (VMOV), neon_mov),
25111
32c36c3c
AV
25112#undef THUMB_VARIANT
25113/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
25114 by different feature bits. Since we are setting the Thumb guard, we can
25115 require Thumb-1 which makes it a nop guard and set the right feature bit in
25116 do_vldr_vstr (). */
25117#define THUMB_VARIANT & arm_ext_v4t
25118 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25119 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25120
9db2f6b4
RL
25121#undef ARM_VARIANT
25122#define ARM_VARIANT & arm_ext_fp16
25123#undef THUMB_VARIANT
25124#define THUMB_VARIANT & arm_ext_fp16
25125 /* New instructions added from v8.2, allowing the extraction and insertion of
25126 the upper 16 bits of a 32-bit vector register. */
25127 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
25128 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
25129
dec41383 25130 /* New backported fma/fms instructions optional in v8.2. */
aab2c27d
MM
25131 NUF (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
25132 NUF (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
dec41383 25133
c921be7d
NC
25134#undef THUMB_VARIANT
25135#define THUMB_VARIANT & fpu_neon_ext_v1
25136#undef ARM_VARIANT
25137#define ARM_VARIANT & fpu_neon_ext_v1
25138
5287ad62
JB
25139 /* Data processing with three registers of the same length. */
25140 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
25141 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
25142 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 25143 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 25144 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
25145 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25146 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 25147 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
5287ad62 25148 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7 25149 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
627907b7 25150 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62 25151 /* If not immediate, fall back to neon_dyadic_i64_su.
5150f0d8
AV
25152 shl should accept I8 I16 I32 I64,
25153 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
25154 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
25155 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
5287ad62 25156 /* Logic ops, types optional & ignored. */
4316f0d2 25157 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 25158 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 25159 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 25160 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 25161 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
25162 /* Bitfield ops, untyped. */
25163 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25164 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25165 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25166 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25167 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25168 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 25169 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5 25170 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 25171 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 25172 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
25173 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
25174 back to neon_dyadic_if_su. */
21d799b5
NC
25175 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25176 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25177 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25178 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25179 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25180 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
25181 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25182 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 25183 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
25184 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
25185 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 25186 /* As above, D registers only. */
21d799b5
NC
25187 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
25188 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 25189 /* Int and float variants, signedness unimportant. */
21d799b5
NC
25190 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25191 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25192 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 25193 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
25194 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
25195 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
25196 /* vtst takes sizes 8, 16, 32. */
25197 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
25198 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
25199 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 25200 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 25201 /* VQD{R}MULH takes S16 S32. */
21d799b5 25202 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21d799b5 25203 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
25204 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25205 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
25206 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25207 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
25208 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25209 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
25210 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25211 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
25212 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25213 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
25214 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25215 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 25216 /* ARM v8.1 extension. */
643afb90
MW
25217 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
25218 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
25219 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
25220
25221 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 25222 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
25223 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
25224
25225 /* Data processing with two registers and a shift amount. */
25226 /* Right shifts, and variants with rounding.
25227 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 25228 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
5287ad62
JB
25229 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
25230 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25231 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25232 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25233 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25234 /* Shift and insert. Sizes accepted 8 16 32 64. */
5287ad62 25235 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
5287ad62
JB
25236 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
25237 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62
JB
25238 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
25239 /* Right shift immediate, saturating & narrowing, with rounding variants.
25240 Types accepted S16 S32 S64 U16 U32 U64. */
25241 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25242 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25243 /* As above, unsigned. Types accepted S16 S32 S64. */
25244 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25245 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25246 /* Right shift narrowing. Types accepted I16 I32 I64. */
25247 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25248 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25249 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 25250 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 25251 /* CVT with optional immediate for fixed-point variant. */
21d799b5 25252 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 25253
4316f0d2 25254 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
25255
25256 /* Data processing, three registers of different lengths. */
25257 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
25258 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
25259 /* If not scalar, fall back to neon_dyadic_long.
25260 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
25261 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
25262 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
25263 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
25264 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25265 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25266 /* Dyadic, narrowing insns. Types I16 I32 I64. */
25267 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25268 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25269 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25270 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25271 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
25272 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25273 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25274 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
25275 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
25276 S16 S32 U16 U32. */
21d799b5 25277 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
25278
25279 /* Extract. Size 8. */
3b8d421e
PB
25280 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
25281 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
25282
25283 /* Two registers, miscellaneous. */
25284 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
5287ad62 25285 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
5287ad62 25286 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
5287ad62
JB
25287 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
25288 /* Vector replicate. Sizes 8 16 32. */
21d799b5 25289 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
25290 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
25291 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
25292 /* VMOVN. Types I16 I32 I64. */
21d799b5 25293 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 25294 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 25295 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 25296 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 25297 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
25298 /* VZIP / VUZP. Sizes 8 16 32. */
25299 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
25300 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
25301 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
25302 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
25303 /* VQABS / VQNEG. Types S8 S16 S32. */
5287ad62 25304 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
5287ad62
JB
25305 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
25306 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
25307 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
25308 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
25309 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
25310 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 25311 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
25312 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
25313 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
25314 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
25315 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
25316 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
25317 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
25318 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
25319 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
25320 /* VCNT. Size 8. */
25321 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
25322 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
25323 /* Two address, untyped. */
25324 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
25325 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
25326 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
25327 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
25328 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
25329
25330 /* Table lookup. Size 8. */
25331 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25332 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25333
c921be7d
NC
25334#undef THUMB_VARIANT
25335#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
25336#undef ARM_VARIANT
25337#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
25338
5287ad62 25339 /* Neon element/structure load/store. */
21d799b5
NC
25340 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25341 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25342 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25343 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25344 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25345 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25346 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25347 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 25348
c921be7d 25349#undef THUMB_VARIANT
74db7efb
NC
25350#define THUMB_VARIANT & fpu_vfp_ext_v3xd
25351#undef ARM_VARIANT
25352#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
25353 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
25354 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25355 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25356 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25357 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25358 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25359 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25360 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25361 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25362
74db7efb 25363#undef THUMB_VARIANT
c921be7d
NC
25364#define THUMB_VARIANT & fpu_vfp_ext_v3
25365#undef ARM_VARIANT
25366#define ARM_VARIANT & fpu_vfp_ext_v3
25367
21d799b5 25368 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 25369 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 25370 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 25371 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 25372 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 25373 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 25374 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 25375 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 25376 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 25377
74db7efb
NC
25378#undef ARM_VARIANT
25379#define ARM_VARIANT & fpu_vfp_ext_fma
25380#undef THUMB_VARIANT
25381#define THUMB_VARIANT & fpu_vfp_ext_fma
aab2c27d 25382 /* Mnemonics shared by Neon, VFP, MVE and BF16. These are included in the
62f3b8c8
PB
25383 VFP FMA variant; NEON and VFP FMA always includes the NEON
25384 FMA instructions. */
d58196e0 25385 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
aab2c27d 25386 TUF ("vfmat", c300850, fc300850, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), mve_vfma, mve_vfma),
d58196e0
AV
25387 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
25388
62f3b8c8
PB
25389 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
25390 the v form should always be used. */
25391 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25392 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25393 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25394 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25395 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25396 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25397
5287ad62 25398#undef THUMB_VARIANT
c921be7d
NC
25399#undef ARM_VARIANT
25400#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
25401
21d799b5
NC
25402 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25403 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25404 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25405 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25406 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25407 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25408 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
25409 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 25410
c921be7d
NC
25411#undef ARM_VARIANT
25412#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
25413
21d799b5
NC
25414 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
25415 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
25416 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
25417 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
25418 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
25419 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
25420 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
25421 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
25422 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
25423 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25424 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25425 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25426 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25427 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25428 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
25429 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25430 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25431 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25432 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
25433 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
25434 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25435 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25436 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25437 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25438 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25439 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
25440 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
25441 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
25442 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
25443 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
25444 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
25445 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
25446 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
25447 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
25448 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
25449 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
25450 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
25451 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25452 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25453 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25454 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25455 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25456 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25457 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25458 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25459 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25460 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
25461 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25462 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25463 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25464 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
25465 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25466 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25467 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25468 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25469 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25470 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25471 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25472 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25473 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
25474 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25475 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25476 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25477 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25478 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25479 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
25480 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25481 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25482 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25483 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25484 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25485 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25486 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25487 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25488 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25489 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25490 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25491 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25492 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25493 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25494 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25495 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25496 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25497 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25498 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25499 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25500 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25501 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25502 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
25503 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25504 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25505 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25506 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25507 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
25508 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25509 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25510 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25511 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25512 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25513 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
25514 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25515 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25516 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25517 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25518 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25519 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25520 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25521 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25522 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25523 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25524 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
25525 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25526 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25527 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25528 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25529 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25530 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25531 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25532 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25533 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25534 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25535 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25536 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25537 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25538 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25539 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25540 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25541 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25542 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25543 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25544 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25545 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25546 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25547 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25548 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25549 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25550 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25551 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25552 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25553 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25554 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25555 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25556 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
25557 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
25558 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
25559 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
25560 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
25561 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
25562 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25563 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25564 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25565 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
25566 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
25567 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
25568 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
25569 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
25570 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
25571 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25572 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25573 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25574 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25575 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 25576
c921be7d
NC
25577#undef ARM_VARIANT
25578#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
25579
21d799b5
NC
25580 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
25581 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
25582 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
25583 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
25584 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
25585 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
25586 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25587 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25588 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25589 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25590 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25591 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25592 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25593 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25594 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25595 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25596 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25597 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25598 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25599 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25600 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
25601 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25602 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25603 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25604 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25605 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25606 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25607 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25608 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25609 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25610 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25611 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25612 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25613 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25614 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25615 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25616 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25617 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25618 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25619 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25620 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25621 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25622 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25623 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25624 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25625 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25626 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25627 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25628 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25629 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25630 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25631 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25632 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25633 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25634 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25635 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25636 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 25637
c921be7d
NC
25638#undef ARM_VARIANT
25639#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
25640
21d799b5
NC
25641 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25642 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25643 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25644 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25645 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25646 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25647 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25648 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25649 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
25650 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
25651 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
25652 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
25653 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
25654 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
25655 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
25656 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
25657 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
25658 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
25659 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
25660 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
25661 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
25662 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
25663 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
25664 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
25665 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
25666 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
25667 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
25668 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
25669 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
25670 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
25671 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
25672 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
25673 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
25674 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
25675 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
25676 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
25677 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
25678 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
25679 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
25680 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
25681 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
25682 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
25683 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
25684 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
25685 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
25686 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
25687 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
25688 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
25689 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
25690 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
25691 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
25692 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
25693 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
25694 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
25695 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
25696 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
25697 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
25698 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
25699 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
25700 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
25701 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
25702 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
25703 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
25704 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
25705 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25706 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25707 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25708 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25709 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25710 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25711 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25712 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
25713 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25714 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
25715 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25716 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 25717
7fadb25d
SD
25718 /* ARMv8.5-A instructions. */
25719#undef ARM_VARIANT
25720#define ARM_VARIANT & arm_ext_sb
25721#undef THUMB_VARIANT
25722#define THUMB_VARIANT & arm_ext_sb
25723 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
25724
dad0c3bf
SD
25725#undef ARM_VARIANT
25726#define ARM_VARIANT & arm_ext_predres
25727#undef THUMB_VARIANT
25728#define THUMB_VARIANT & arm_ext_predres
25729 CE("cfprctx", e070f93, 1, (RRnpc), rd),
25730 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
25731 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
25732
16a1fa25 25733 /* ARMv8-M instructions. */
4ed7ed8d
TP
25734#undef ARM_VARIANT
25735#define ARM_VARIANT NULL
25736#undef THUMB_VARIANT
25737#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
25738 ToU("sg", e97fe97f, 0, (), noargs),
25739 ToC("blxns", 4784, 1, (RRnpc), t_blx),
25740 ToC("bxns", 4704, 1, (RRnpc), t_bx),
25741 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
25742 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
25743 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
25744 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
25745
25746 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
25747 instructions behave as nop if no VFP is present. */
25748#undef THUMB_VARIANT
25749#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
25750 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
25751 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
25752
25753 /* Armv8.1-M Mainline instructions. */
25754#undef THUMB_VARIANT
25755#define THUMB_VARIANT & arm_ext_v8_1m_main
e39c1607
SD
25756 toU("cinc", _cinc, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25757 toU("cinv", _cinv, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25758 toU("cneg", _cneg, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25759 toU("csel", _csel, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25760 toU("csetm", _csetm, 2, (RRnpcsp, COND), t_cond),
25761 toU("cset", _cset, 2, (RRnpcsp, COND), t_cond),
25762 toU("csinc", _csinc, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25763 toU("csinv", _csinv, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25764 toU("csneg", _csneg, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25765
4389b29a 25766 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 25767 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 25768 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 25769 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 25770 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
25771
25772 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
25773 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
25774 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 25775
efd6b359 25776 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
25777 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
25778
25779#undef THUMB_VARIANT
25780#define THUMB_VARIANT & mve_ext
23d00a41
SD
25781 ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25782 ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25783 ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
08132bdd
SP
25784 ToC("uqrshll", ea51010d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
25785 ToC("sqrshrl", ea51012d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
23d00a41
SD
25786 ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift),
25787 ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25788 ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift),
25789 ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift),
25790 ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25791 ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25792 ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift),
25793 ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift),
25794 ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift),
25795 ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift),
1b883319
AV
25796
25797 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25798 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25799 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25800 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25801 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25802 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25803 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25804 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25805 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25806 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25807 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25808 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25809 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25810 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25811 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25812
5ee91343
AV
25813 ToC("vpst", fe710f4d, 0, (), mve_vpt),
25814 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
25815 ToC("vpste", fe718f4d, 0, (), mve_vpt),
25816 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
25817 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
25818 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
25819 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
25820 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
25821 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
25822 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
25823 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
25824 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
25825 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
25826 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
25827 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
25828
a302e574 25829 /* MVE and MVE FP only. */
7df54120 25830 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
efd0b310 25831 mCEF(vctp, _vctp, 1, (RRnpc), mve_vctp),
c2dafc2a
AV
25832 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
25833 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
25834 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25835 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 25836 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
25837 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
25838 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25839 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25840 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25841 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25842 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25843 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25844 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25845 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25846 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25847 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25848
35c228db
AV
25849 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25850 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25851 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25852 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25853 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25854 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25855 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25856 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25857 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25858 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25859 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25860 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
25861 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25862 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25863 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25864 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25865 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25866 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25867 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25868 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 25869
57785aa2
AV
25870 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
25871 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 25872 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
25873 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25874 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25875 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25876 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
25877 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25878 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25879 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25880 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
935295b5
AV
25881 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25882 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
13ccd4c0
AV
25883 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25884 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25885 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25886 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
57785aa2 25887
93925576
AV
25888 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25889 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25890 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25891 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25892 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25893 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25894 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25895 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25896 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25897 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25898 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25899 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25900 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25901 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25902 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25903 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25904 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25905 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25906 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25907 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25908
2d78f95b
AV
25909 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25910 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25911 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
3063888e
AV
25912 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25913 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
2d78f95b 25914
8b8b22a4
AV
25915 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25916 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25917 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25918 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25919 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25920 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25921 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25922 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
42b16635
AV
25923 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25924 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25925 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
35d1cfc2
AV
25926 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25927 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
1be7aba3
AV
25928 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25929 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25930 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25931 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
8b8b22a4 25932
4aa88b50
AV
25933 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25934 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25935 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25936 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25937 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25938 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25939 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25940 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25941 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25942 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25943 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25944 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25945
acca5630
AV
25946 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
25947 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
25948 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
25949
1f6234a3
AV
25950 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
25951 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
25952 toU("letp", _letp, 2, (LR, EXP), t_loloop),
25953 toU("lctp", _lctp, 0, (), t_loloop),
25954
5d281bf0
AV
25955#undef THUMB_VARIANT
25956#define THUMB_VARIANT & mve_fp_ext
25957 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 25958 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
935295b5
AV
25959 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25960 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
8cd78170
AV
25961 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25962 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25963 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25964 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
5d281bf0 25965
5ee91343 25966#undef ARM_VARIANT
57785aa2 25967#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
25968#undef THUMB_VARIANT
25969#define THUMB_VARIANT & arm_ext_v6t2
a8465a06
AV
25970 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25971 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
5ee91343 25972
57785aa2
AV
25973 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25974
25975#undef ARM_VARIANT
25976#define ARM_VARIANT & fpu_vfp_ext_v1xd
25977
25978 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25979 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25980 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25981 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25982
886e1c73
AV
25983 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25984 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25985 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 25986
485dee97
AV
25987 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25988 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25989
57785aa2
AV
25990 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25991 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25992
1b883319
AV
25993 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25994 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25995
57785aa2
AV
25996#undef ARM_VARIANT
25997#define ARM_VARIANT & fpu_vfp_ext_v2
25998
25999 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
26000 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
26001 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
26002 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
26003
dd9634d9
AV
26004#undef ARM_VARIANT
26005#define ARM_VARIANT & fpu_vfp_ext_armv8xd
26006 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
26007 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
26008 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
26009 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
935295b5
AV
26010 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
26011 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
dd9634d9
AV
26012
26013#undef ARM_VARIANT
5ee91343 26014#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 26015 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
26016 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
26017 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
26018 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
26019 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26020 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26021 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26022 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26023 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
26024 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
26025 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 26026 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
26027 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
26028 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
26029 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
935295b5
AV
26030 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26031 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
a8465a06
AV
26032 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
26033 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
1a186d29
AV
26034 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
26035 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
26036 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
42b16635
AV
26037 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
26038 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
26039 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
1be7aba3
AV
26040 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
26041 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
4401c241
AV
26042 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26043 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26044 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
26045 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
26046 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
26047 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
26048 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
5150f0d8
AV
26049 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
26050 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
26051 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
5d281bf0
AV
26052
26053#undef ARM_VARIANT
26054#define ARM_VARIANT & arm_ext_v8_3
26055#undef THUMB_VARIANT
26056#define THUMB_VARIANT & arm_ext_v6t2_v8m
26057 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
26058 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
aab2c27d
MM
26059
26060#undef ARM_VARIANT
26061#define ARM_VARIANT &arm_ext_bf16
26062#undef THUMB_VARIANT
26063#define THUMB_VARIANT &arm_ext_bf16
26064 TUF ("vdot", c000d00, fc000d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vdot, vdot),
26065 TUF ("vmmla", c000c40, fc000c40, 3, (RNQ, RNQ, RNQ), vmmla, vmmla),
26066 TUF ("vfmab", c300810, fc300810, 3, (RNDQ, RNDQ, RNDQ_RNSC), bfloat_vfma, bfloat_vfma),
26067
26068#undef ARM_VARIANT
26069#define ARM_VARIANT &arm_ext_i8mm
26070#undef THUMB_VARIANT
26071#define THUMB_VARIANT &arm_ext_i8mm
26072 TUF ("vsmmla", c200c40, fc200c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
26073 TUF ("vummla", c200c50, fc200c50, 3, (RNQ, RNQ, RNQ), vummla, vummla),
616ce08e 26074 TUF ("vusmmla", ca00c40, fca00c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
aab2c27d
MM
26075 TUF ("vusdot", c800d00, fc800d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vusdot, vusdot),
26076 TUF ("vsudot", c800d10, fc800d10, 3, (RNDQ, RNDQ, RNSC), vsudot, vsudot),
c19d1205
ZW
26077};
26078#undef ARM_VARIANT
26079#undef THUMB_VARIANT
26080#undef TCE
c19d1205
ZW
26081#undef TUE
26082#undef TUF
26083#undef TCC
8f06b2d8 26084#undef cCE
e3cb604e
PB
26085#undef cCL
26086#undef C3E
4389b29a 26087#undef C3
c19d1205
ZW
26088#undef CE
26089#undef CM
4389b29a 26090#undef CL
c19d1205
ZW
26091#undef UE
26092#undef UF
26093#undef UT
5287ad62
JB
26094#undef NUF
26095#undef nUF
26096#undef NCE
26097#undef nCE
c19d1205
ZW
26098#undef OPS0
26099#undef OPS1
26100#undef OPS2
26101#undef OPS3
26102#undef OPS4
26103#undef OPS5
26104#undef OPS6
26105#undef do_0
4389b29a
AV
26106#undef ToC
26107#undef toC
26108#undef ToU
f6b2b12d 26109#undef toU
c19d1205
ZW
26110\f
26111/* MD interface: bits in the object file. */
bfae80f2 26112
c19d1205
ZW
26113/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
26114 for use in the a.out file, and stores them in the array pointed to by buf.
26115 This knows about the endian-ness of the target machine and does
26116 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
26117 2 (short) and 4 (long) Floating numbers are put out as a series of
26118 LITTLENUMS (shorts, here at least). */
b99bd4ef 26119
c19d1205
ZW
26120void
26121md_number_to_chars (char * buf, valueT val, int n)
26122{
26123 if (target_big_endian)
26124 number_to_chars_bigendian (buf, val, n);
26125 else
26126 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
26127}
26128
c19d1205
ZW
26129static valueT
26130md_chars_to_number (char * buf, int n)
bfae80f2 26131{
c19d1205
ZW
26132 valueT result = 0;
26133 unsigned char * where = (unsigned char *) buf;
bfae80f2 26134
c19d1205 26135 if (target_big_endian)
b99bd4ef 26136 {
c19d1205
ZW
26137 while (n--)
26138 {
26139 result <<= 8;
26140 result |= (*where++ & 255);
26141 }
b99bd4ef 26142 }
c19d1205 26143 else
b99bd4ef 26144 {
c19d1205
ZW
26145 while (n--)
26146 {
26147 result <<= 8;
26148 result |= (where[n] & 255);
26149 }
bfae80f2 26150 }
b99bd4ef 26151
c19d1205 26152 return result;
bfae80f2 26153}
b99bd4ef 26154
c19d1205 26155/* MD interface: Sections. */
b99bd4ef 26156
fa94de6b
RM
26157/* Calculate the maximum variable size (i.e., excluding fr_fix)
26158 that an rs_machine_dependent frag may reach. */
26159
26160unsigned int
26161arm_frag_max_var (fragS *fragp)
26162{
26163 /* We only use rs_machine_dependent for variable-size Thumb instructions,
26164 which are either THUMB_SIZE (2) or INSN_SIZE (4).
26165
26166 Note that we generate relaxable instructions even for cases that don't
26167 really need it, like an immediate that's a trivial constant. So we're
26168 overestimating the instruction size for some of those cases. Rather
26169 than putting more intelligence here, it would probably be better to
26170 avoid generating a relaxation frag in the first place when it can be
26171 determined up front that a short instruction will suffice. */
26172
26173 gas_assert (fragp->fr_type == rs_machine_dependent);
26174 return INSN_SIZE;
26175}
26176
0110f2b8
PB
26177/* Estimate the size of a frag before relaxing. Assume everything fits in
26178 2 bytes. */
26179
c19d1205 26180int
0110f2b8 26181md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
26182 segT segtype ATTRIBUTE_UNUSED)
26183{
0110f2b8
PB
26184 fragp->fr_var = 2;
26185 return 2;
26186}
26187
26188/* Convert a machine dependent frag. */
26189
26190void
26191md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
26192{
26193 unsigned long insn;
26194 unsigned long old_op;
26195 char *buf;
26196 expressionS exp;
26197 fixS *fixp;
26198 int reloc_type;
26199 int pc_rel;
26200 int opcode;
26201
26202 buf = fragp->fr_literal + fragp->fr_fix;
26203
26204 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
26205 if (fragp->fr_symbol)
26206 {
0110f2b8
PB
26207 exp.X_op = O_symbol;
26208 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
26209 }
26210 else
26211 {
0110f2b8 26212 exp.X_op = O_constant;
5f4273c7 26213 }
0110f2b8
PB
26214 exp.X_add_number = fragp->fr_offset;
26215 opcode = fragp->fr_subtype;
26216 switch (opcode)
26217 {
26218 case T_MNEM_ldr_pc:
26219 case T_MNEM_ldr_pc2:
26220 case T_MNEM_ldr_sp:
26221 case T_MNEM_str_sp:
26222 case T_MNEM_ldr:
26223 case T_MNEM_ldrb:
26224 case T_MNEM_ldrh:
26225 case T_MNEM_str:
26226 case T_MNEM_strb:
26227 case T_MNEM_strh:
26228 if (fragp->fr_var == 4)
26229 {
5f4273c7 26230 insn = THUMB_OP32 (opcode);
0110f2b8
PB
26231 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
26232 {
26233 insn |= (old_op & 0x700) << 4;
26234 }
26235 else
26236 {
26237 insn |= (old_op & 7) << 12;
26238 insn |= (old_op & 0x38) << 13;
26239 }
26240 insn |= 0x00000c00;
26241 put_thumb32_insn (buf, insn);
26242 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
26243 }
26244 else
26245 {
26246 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
26247 }
26248 pc_rel = (opcode == T_MNEM_ldr_pc2);
26249 break;
26250 case T_MNEM_adr:
26251 if (fragp->fr_var == 4)
26252 {
26253 insn = THUMB_OP32 (opcode);
26254 insn |= (old_op & 0xf0) << 4;
26255 put_thumb32_insn (buf, insn);
26256 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
26257 }
26258 else
26259 {
26260 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26261 exp.X_add_number -= 4;
26262 }
26263 pc_rel = 1;
26264 break;
26265 case T_MNEM_mov:
26266 case T_MNEM_movs:
26267 case T_MNEM_cmp:
26268 case T_MNEM_cmn:
26269 if (fragp->fr_var == 4)
26270 {
26271 int r0off = (opcode == T_MNEM_mov
26272 || opcode == T_MNEM_movs) ? 0 : 8;
26273 insn = THUMB_OP32 (opcode);
26274 insn = (insn & 0xe1ffffff) | 0x10000000;
26275 insn |= (old_op & 0x700) << r0off;
26276 put_thumb32_insn (buf, insn);
26277 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
26278 }
26279 else
26280 {
26281 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
26282 }
26283 pc_rel = 0;
26284 break;
26285 case T_MNEM_b:
26286 if (fragp->fr_var == 4)
26287 {
26288 insn = THUMB_OP32(opcode);
26289 put_thumb32_insn (buf, insn);
26290 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
26291 }
26292 else
26293 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
26294 pc_rel = 1;
26295 break;
26296 case T_MNEM_bcond:
26297 if (fragp->fr_var == 4)
26298 {
26299 insn = THUMB_OP32(opcode);
26300 insn |= (old_op & 0xf00) << 14;
26301 put_thumb32_insn (buf, insn);
26302 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
26303 }
26304 else
26305 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
26306 pc_rel = 1;
26307 break;
26308 case T_MNEM_add_sp:
26309 case T_MNEM_add_pc:
26310 case T_MNEM_inc_sp:
26311 case T_MNEM_dec_sp:
26312 if (fragp->fr_var == 4)
26313 {
26314 /* ??? Choose between add and addw. */
26315 insn = THUMB_OP32 (opcode);
26316 insn |= (old_op & 0xf0) << 4;
26317 put_thumb32_insn (buf, insn);
16805f35
PB
26318 if (opcode == T_MNEM_add_pc)
26319 reloc_type = BFD_RELOC_ARM_T32_IMM12;
26320 else
26321 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
26322 }
26323 else
26324 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26325 pc_rel = 0;
26326 break;
26327
26328 case T_MNEM_addi:
26329 case T_MNEM_addis:
26330 case T_MNEM_subi:
26331 case T_MNEM_subis:
26332 if (fragp->fr_var == 4)
26333 {
26334 insn = THUMB_OP32 (opcode);
26335 insn |= (old_op & 0xf0) << 4;
26336 insn |= (old_op & 0xf) << 16;
26337 put_thumb32_insn (buf, insn);
16805f35
PB
26338 if (insn & (1 << 20))
26339 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
26340 else
26341 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
26342 }
26343 else
26344 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26345 pc_rel = 0;
26346 break;
26347 default:
5f4273c7 26348 abort ();
0110f2b8
PB
26349 }
26350 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 26351 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
26352 fixp->fx_file = fragp->fr_file;
26353 fixp->fx_line = fragp->fr_line;
26354 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
26355
26356 /* Set whether we use thumb-2 ISA based on final relaxation results. */
26357 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
26358 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
26359 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
26360}
26361
26362/* Return the size of a relaxable immediate operand instruction.
26363 SHIFT and SIZE specify the form of the allowable immediate. */
26364static int
26365relax_immediate (fragS *fragp, int size, int shift)
26366{
26367 offsetT offset;
26368 offsetT mask;
26369 offsetT low;
26370
26371 /* ??? Should be able to do better than this. */
26372 if (fragp->fr_symbol)
26373 return 4;
26374
26375 low = (1 << shift) - 1;
26376 mask = (1 << (shift + size)) - (1 << shift);
26377 offset = fragp->fr_offset;
26378 /* Force misaligned offsets to 32-bit variant. */
26379 if (offset & low)
5e77afaa 26380 return 4;
0110f2b8
PB
26381 if (offset & ~mask)
26382 return 4;
26383 return 2;
26384}
26385
5e77afaa
PB
26386/* Get the address of a symbol during relaxation. */
26387static addressT
5f4273c7 26388relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
26389{
26390 fragS *sym_frag;
26391 addressT addr;
26392 symbolS *sym;
26393
26394 sym = fragp->fr_symbol;
26395 sym_frag = symbol_get_frag (sym);
26396 know (S_GET_SEGMENT (sym) != absolute_section
26397 || sym_frag == &zero_address_frag);
26398 addr = S_GET_VALUE (sym) + fragp->fr_offset;
26399
26400 /* If frag has yet to be reached on this pass, assume it will
26401 move by STRETCH just as we did. If this is not so, it will
26402 be because some frag between grows, and that will force
26403 another pass. */
26404
26405 if (stretch != 0
26406 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
26407 {
26408 fragS *f;
26409
26410 /* Adjust stretch for any alignment frag. Note that if have
26411 been expanding the earlier code, the symbol may be
26412 defined in what appears to be an earlier frag. FIXME:
26413 This doesn't handle the fr_subtype field, which specifies
26414 a maximum number of bytes to skip when doing an
26415 alignment. */
26416 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
26417 {
26418 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
26419 {
26420 if (stretch < 0)
26421 stretch = - ((- stretch)
26422 & ~ ((1 << (int) f->fr_offset) - 1));
26423 else
26424 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
26425 if (stretch == 0)
26426 break;
26427 }
26428 }
26429 if (f != NULL)
26430 addr += stretch;
26431 }
5e77afaa
PB
26432
26433 return addr;
26434}
26435
0110f2b8
PB
26436/* Return the size of a relaxable adr pseudo-instruction or PC-relative
26437 load. */
26438static int
5e77afaa 26439relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
26440{
26441 addressT addr;
26442 offsetT val;
26443
26444 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
26445 if (fragp->fr_symbol == NULL
26446 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
26447 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26448 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
26449 return 4;
26450
5f4273c7 26451 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
26452 addr = fragp->fr_address + fragp->fr_fix;
26453 addr = (addr + 4) & ~3;
5e77afaa 26454 /* Force misaligned targets to 32-bit variant. */
0110f2b8 26455 if (val & 3)
5e77afaa 26456 return 4;
0110f2b8
PB
26457 val -= addr;
26458 if (val < 0 || val > 1020)
26459 return 4;
26460 return 2;
26461}
26462
26463/* Return the size of a relaxable add/sub immediate instruction. */
26464static int
26465relax_addsub (fragS *fragp, asection *sec)
26466{
26467 char *buf;
26468 int op;
26469
26470 buf = fragp->fr_literal + fragp->fr_fix;
26471 op = bfd_get_16(sec->owner, buf);
26472 if ((op & 0xf) == ((op >> 4) & 0xf))
26473 return relax_immediate (fragp, 8, 0);
26474 else
26475 return relax_immediate (fragp, 3, 0);
26476}
26477
e83a675f
RE
26478/* Return TRUE iff the definition of symbol S could be pre-empted
26479 (overridden) at link or load time. */
26480static bfd_boolean
26481symbol_preemptible (symbolS *s)
26482{
26483 /* Weak symbols can always be pre-empted. */
26484 if (S_IS_WEAK (s))
26485 return TRUE;
26486
26487 /* Non-global symbols cannot be pre-empted. */
26488 if (! S_IS_EXTERNAL (s))
26489 return FALSE;
26490
26491#ifdef OBJ_ELF
26492 /* In ELF, a global symbol can be marked protected, or private. In that
26493 case it can't be pre-empted (other definitions in the same link unit
26494 would violate the ODR). */
26495 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
26496 return FALSE;
26497#endif
26498
26499 /* Other global symbols might be pre-empted. */
26500 return TRUE;
26501}
0110f2b8
PB
26502
26503/* Return the size of a relaxable branch instruction. BITS is the
26504 size of the offset field in the narrow instruction. */
26505
26506static int
5e77afaa 26507relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
26508{
26509 addressT addr;
26510 offsetT val;
26511 offsetT limit;
26512
26513 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 26514 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
26515 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26516 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
26517 return 4;
26518
267bf995 26519#ifdef OBJ_ELF
e83a675f 26520 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
26521 if (S_IS_DEFINED (fragp->fr_symbol)
26522 && ARM_IS_FUNC (fragp->fr_symbol))
26523 return 4;
e83a675f 26524#endif
0d9b4b55 26525
e83a675f 26526 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 26527 return 4;
267bf995 26528
5f4273c7 26529 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
26530 addr = fragp->fr_address + fragp->fr_fix + 4;
26531 val -= addr;
26532
26533 /* Offset is a signed value *2 */
26534 limit = 1 << bits;
26535 if (val >= limit || val < -limit)
26536 return 4;
26537 return 2;
26538}
26539
26540
26541/* Relax a machine dependent frag. This returns the amount by which
26542 the current size of the frag should change. */
26543
26544int
5e77afaa 26545arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
26546{
26547 int oldsize;
26548 int newsize;
26549
26550 oldsize = fragp->fr_var;
26551 switch (fragp->fr_subtype)
26552 {
26553 case T_MNEM_ldr_pc2:
5f4273c7 26554 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
26555 break;
26556 case T_MNEM_ldr_pc:
26557 case T_MNEM_ldr_sp:
26558 case T_MNEM_str_sp:
5f4273c7 26559 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
26560 break;
26561 case T_MNEM_ldr:
26562 case T_MNEM_str:
5f4273c7 26563 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
26564 break;
26565 case T_MNEM_ldrh:
26566 case T_MNEM_strh:
5f4273c7 26567 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
26568 break;
26569 case T_MNEM_ldrb:
26570 case T_MNEM_strb:
5f4273c7 26571 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
26572 break;
26573 case T_MNEM_adr:
5f4273c7 26574 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
26575 break;
26576 case T_MNEM_mov:
26577 case T_MNEM_movs:
26578 case T_MNEM_cmp:
26579 case T_MNEM_cmn:
5f4273c7 26580 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
26581 break;
26582 case T_MNEM_b:
5f4273c7 26583 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
26584 break;
26585 case T_MNEM_bcond:
5f4273c7 26586 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
26587 break;
26588 case T_MNEM_add_sp:
26589 case T_MNEM_add_pc:
26590 newsize = relax_immediate (fragp, 8, 2);
26591 break;
26592 case T_MNEM_inc_sp:
26593 case T_MNEM_dec_sp:
26594 newsize = relax_immediate (fragp, 7, 2);
26595 break;
26596 case T_MNEM_addi:
26597 case T_MNEM_addis:
26598 case T_MNEM_subi:
26599 case T_MNEM_subis:
26600 newsize = relax_addsub (fragp, sec);
26601 break;
26602 default:
5f4273c7 26603 abort ();
0110f2b8 26604 }
5e77afaa
PB
26605
26606 fragp->fr_var = newsize;
26607 /* Freeze wide instructions that are at or before the same location as
26608 in the previous pass. This avoids infinite loops.
5f4273c7
NC
26609 Don't freeze them unconditionally because targets may be artificially
26610 misaligned by the expansion of preceding frags. */
5e77afaa 26611 if (stretch <= 0 && newsize > 2)
0110f2b8 26612 {
0110f2b8 26613 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 26614 frag_wane (fragp);
0110f2b8 26615 }
5e77afaa 26616
0110f2b8 26617 return newsize - oldsize;
c19d1205 26618}
b99bd4ef 26619
c19d1205 26620/* Round up a section size to the appropriate boundary. */
b99bd4ef 26621
c19d1205
ZW
26622valueT
26623md_section_align (segT segment ATTRIBUTE_UNUSED,
26624 valueT size)
26625{
6844c0cc 26626 return size;
bfae80f2 26627}
b99bd4ef 26628
c19d1205
ZW
26629/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
26630 of an rs_align_code fragment. */
26631
26632void
26633arm_handle_align (fragS * fragP)
bfae80f2 26634{
d9235011 26635 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
26636 {
26637 { /* ARMv1 */
26638 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
26639 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
26640 },
26641 { /* ARMv6k */
26642 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
26643 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
26644 },
26645 };
d9235011 26646 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
26647 {
26648 { /* Thumb-1 */
26649 {0xc0, 0x46}, /* LE */
26650 {0x46, 0xc0}, /* BE */
26651 },
26652 { /* Thumb-2 */
26653 {0x00, 0xbf}, /* LE */
26654 {0xbf, 0x00} /* BE */
26655 }
26656 };
d9235011 26657 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
26658 { /* Wide Thumb-2 */
26659 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
26660 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
26661 };
c921be7d 26662
e7495e45 26663 unsigned bytes, fix, noop_size;
c19d1205 26664 char * p;
d9235011
TS
26665 const unsigned char * noop;
26666 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
26667#ifdef OBJ_ELF
26668 enum mstate state;
26669#endif
bfae80f2 26670
c19d1205 26671 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
26672 return;
26673
c19d1205
ZW
26674 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
26675 p = fragP->fr_literal + fragP->fr_fix;
26676 fix = 0;
bfae80f2 26677
c19d1205
ZW
26678 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
26679 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 26680
cd000bff 26681 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 26682
cd000bff 26683 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 26684 {
7f78eb34
JW
26685 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26686 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
26687 {
26688 narrow_noop = thumb_noop[1][target_big_endian];
26689 noop = wide_thumb_noop[target_big_endian];
26690 }
c19d1205 26691 else
e7495e45
NS
26692 noop = thumb_noop[0][target_big_endian];
26693 noop_size = 2;
cd000bff
DJ
26694#ifdef OBJ_ELF
26695 state = MAP_THUMB;
26696#endif
7ed4c4c5
NC
26697 }
26698 else
26699 {
7f78eb34
JW
26700 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26701 ? selected_cpu : arm_arch_none,
26702 arm_ext_v6k) != 0]
e7495e45
NS
26703 [target_big_endian];
26704 noop_size = 4;
cd000bff
DJ
26705#ifdef OBJ_ELF
26706 state = MAP_ARM;
26707#endif
7ed4c4c5 26708 }
c921be7d 26709
e7495e45 26710 fragP->fr_var = noop_size;
c921be7d 26711
c19d1205 26712 if (bytes & (noop_size - 1))
7ed4c4c5 26713 {
c19d1205 26714 fix = bytes & (noop_size - 1);
cd000bff
DJ
26715#ifdef OBJ_ELF
26716 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
26717#endif
c19d1205
ZW
26718 memset (p, 0, fix);
26719 p += fix;
26720 bytes -= fix;
a737bd4d 26721 }
a737bd4d 26722
e7495e45
NS
26723 if (narrow_noop)
26724 {
26725 if (bytes & noop_size)
26726 {
26727 /* Insert a narrow noop. */
26728 memcpy (p, narrow_noop, noop_size);
26729 p += noop_size;
26730 bytes -= noop_size;
26731 fix += noop_size;
26732 }
26733
26734 /* Use wide noops for the remainder */
26735 noop_size = 4;
26736 }
26737
c19d1205 26738 while (bytes >= noop_size)
a737bd4d 26739 {
c19d1205
ZW
26740 memcpy (p, noop, noop_size);
26741 p += noop_size;
26742 bytes -= noop_size;
26743 fix += noop_size;
a737bd4d
NC
26744 }
26745
c19d1205 26746 fragP->fr_fix += fix;
a737bd4d
NC
26747}
26748
c19d1205
ZW
26749/* Called from md_do_align. Used to create an alignment
26750 frag in a code section. */
26751
26752void
26753arm_frag_align_code (int n, int max)
bfae80f2 26754{
c19d1205 26755 char * p;
7ed4c4c5 26756
c19d1205 26757 /* We assume that there will never be a requirement
6ec8e702 26758 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 26759 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
26760 {
26761 char err_msg[128];
26762
fa94de6b 26763 sprintf (err_msg,
477330fc
RM
26764 _("alignments greater than %d bytes not supported in .text sections."),
26765 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 26766 as_fatal ("%s", err_msg);
6ec8e702 26767 }
bfae80f2 26768
c19d1205
ZW
26769 p = frag_var (rs_align_code,
26770 MAX_MEM_FOR_RS_ALIGN_CODE,
26771 1,
26772 (relax_substateT) max,
26773 (symbolS *) NULL,
26774 (offsetT) n,
26775 (char *) NULL);
26776 *p = 0;
26777}
bfae80f2 26778
8dc2430f
NC
26779/* Perform target specific initialisation of a frag.
26780 Note - despite the name this initialisation is not done when the frag
26781 is created, but only when its type is assigned. A frag can be created
26782 and used a long time before its type is set, so beware of assuming that
33eaf5de 26783 this initialisation is performed first. */
bfae80f2 26784
cd000bff
DJ
26785#ifndef OBJ_ELF
26786void
26787arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
26788{
26789 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 26790 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
26791}
26792
26793#else /* OBJ_ELF is defined. */
c19d1205 26794void
cd000bff 26795arm_init_frag (fragS * fragP, int max_chars)
c19d1205 26796{
e8d84ca1 26797 bfd_boolean frag_thumb_mode;
b968d18a 26798
8dc2430f
NC
26799 /* If the current ARM vs THUMB mode has not already
26800 been recorded into this frag then do so now. */
cd000bff 26801 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
26802 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26803
e8d84ca1
NC
26804 /* PR 21809: Do not set a mapping state for debug sections
26805 - it just confuses other tools. */
fd361982 26806 if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
e8d84ca1
NC
26807 return;
26808
b968d18a 26809 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 26810
f9c1b181
RL
26811 /* Record a mapping symbol for alignment frags. We will delete this
26812 later if the alignment ends up empty. */
26813 switch (fragP->fr_type)
26814 {
26815 case rs_align:
26816 case rs_align_test:
26817 case rs_fill:
26818 mapping_state_2 (MAP_DATA, max_chars);
26819 break;
26820 case rs_align_code:
b968d18a 26821 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
26822 break;
26823 default:
26824 break;
cd000bff 26825 }
bfae80f2
RE
26826}
26827
c19d1205
ZW
26828/* When we change sections we need to issue a new mapping symbol. */
26829
26830void
26831arm_elf_change_section (void)
bfae80f2 26832{
c19d1205
ZW
26833 /* Link an unlinked unwind index table section to the .text section. */
26834 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
26835 && elf_linked_to_section (now_seg) == NULL)
26836 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
26837}
26838
c19d1205
ZW
26839int
26840arm_elf_section_type (const char * str, size_t len)
e45d0630 26841{
c19d1205
ZW
26842 if (len == 5 && strncmp (str, "exidx", 5) == 0)
26843 return SHT_ARM_EXIDX;
e45d0630 26844
c19d1205
ZW
26845 return -1;
26846}
26847\f
26848/* Code to deal with unwinding tables. */
e45d0630 26849
c19d1205 26850static void add_unwind_adjustsp (offsetT);
e45d0630 26851
5f4273c7 26852/* Generate any deferred unwind frame offset. */
e45d0630 26853
bfae80f2 26854static void
c19d1205 26855flush_pending_unwind (void)
bfae80f2 26856{
c19d1205 26857 offsetT offset;
bfae80f2 26858
c19d1205
ZW
26859 offset = unwind.pending_offset;
26860 unwind.pending_offset = 0;
26861 if (offset != 0)
26862 add_unwind_adjustsp (offset);
bfae80f2
RE
26863}
26864
c19d1205
ZW
26865/* Add an opcode to this list for this function. Two-byte opcodes should
26866 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
26867 order. */
26868
bfae80f2 26869static void
c19d1205 26870add_unwind_opcode (valueT op, int length)
bfae80f2 26871{
c19d1205
ZW
26872 /* Add any deferred stack adjustment. */
26873 if (unwind.pending_offset)
26874 flush_pending_unwind ();
bfae80f2 26875
c19d1205 26876 unwind.sp_restored = 0;
bfae80f2 26877
c19d1205 26878 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 26879 {
c19d1205
ZW
26880 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
26881 if (unwind.opcodes)
325801bd
TS
26882 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
26883 unwind.opcode_alloc);
c19d1205 26884 else
325801bd 26885 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 26886 }
c19d1205 26887 while (length > 0)
bfae80f2 26888 {
c19d1205
ZW
26889 length--;
26890 unwind.opcodes[unwind.opcode_count] = op & 0xff;
26891 op >>= 8;
26892 unwind.opcode_count++;
bfae80f2 26893 }
bfae80f2
RE
26894}
26895
c19d1205
ZW
26896/* Add unwind opcodes to adjust the stack pointer. */
26897
bfae80f2 26898static void
c19d1205 26899add_unwind_adjustsp (offsetT offset)
bfae80f2 26900{
c19d1205 26901 valueT op;
bfae80f2 26902
c19d1205 26903 if (offset > 0x200)
bfae80f2 26904 {
c19d1205
ZW
26905 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26906 char bytes[5];
26907 int n;
26908 valueT o;
bfae80f2 26909
c19d1205
ZW
26910 /* Long form: 0xb2, uleb128. */
26911 /* This might not fit in a word so add the individual bytes,
26912 remembering the list is built in reverse order. */
26913 o = (valueT) ((offset - 0x204) >> 2);
26914 if (o == 0)
26915 add_unwind_opcode (0, 1);
bfae80f2 26916
c19d1205
ZW
26917 /* Calculate the uleb128 encoding of the offset. */
26918 n = 0;
26919 while (o)
26920 {
26921 bytes[n] = o & 0x7f;
26922 o >>= 7;
26923 if (o)
26924 bytes[n] |= 0x80;
26925 n++;
26926 }
26927 /* Add the insn. */
26928 for (; n; n--)
26929 add_unwind_opcode (bytes[n - 1], 1);
26930 add_unwind_opcode (0xb2, 1);
26931 }
26932 else if (offset > 0x100)
bfae80f2 26933 {
c19d1205
ZW
26934 /* Two short opcodes. */
26935 add_unwind_opcode (0x3f, 1);
26936 op = (offset - 0x104) >> 2;
26937 add_unwind_opcode (op, 1);
bfae80f2 26938 }
c19d1205
ZW
26939 else if (offset > 0)
26940 {
26941 /* Short opcode. */
26942 op = (offset - 4) >> 2;
26943 add_unwind_opcode (op, 1);
26944 }
26945 else if (offset < 0)
bfae80f2 26946 {
c19d1205
ZW
26947 offset = -offset;
26948 while (offset > 0x100)
bfae80f2 26949 {
c19d1205
ZW
26950 add_unwind_opcode (0x7f, 1);
26951 offset -= 0x100;
bfae80f2 26952 }
c19d1205
ZW
26953 op = ((offset - 4) >> 2) | 0x40;
26954 add_unwind_opcode (op, 1);
bfae80f2 26955 }
bfae80f2
RE
26956}
26957
c19d1205 26958/* Finish the list of unwind opcodes for this function. */
0198d5e6 26959
c19d1205
ZW
26960static void
26961finish_unwind_opcodes (void)
bfae80f2 26962{
c19d1205 26963 valueT op;
bfae80f2 26964
c19d1205 26965 if (unwind.fp_used)
bfae80f2 26966 {
708587a4 26967 /* Adjust sp as necessary. */
c19d1205
ZW
26968 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26969 flush_pending_unwind ();
bfae80f2 26970
c19d1205
ZW
26971 /* After restoring sp from the frame pointer. */
26972 op = 0x90 | unwind.fp_reg;
26973 add_unwind_opcode (op, 1);
26974 }
26975 else
26976 flush_pending_unwind ();
bfae80f2
RE
26977}
26978
bfae80f2 26979
c19d1205
ZW
26980/* Start an exception table entry. If idx is nonzero this is an index table
26981 entry. */
bfae80f2
RE
26982
26983static void
c19d1205 26984start_unwind_section (const segT text_seg, int idx)
bfae80f2 26985{
c19d1205
ZW
26986 const char * text_name;
26987 const char * prefix;
26988 const char * prefix_once;
26989 const char * group_name;
c19d1205 26990 char * sec_name;
c19d1205
ZW
26991 int type;
26992 int flags;
26993 int linkonce;
bfae80f2 26994
c19d1205 26995 if (idx)
bfae80f2 26996 {
c19d1205
ZW
26997 prefix = ELF_STRING_ARM_unwind;
26998 prefix_once = ELF_STRING_ARM_unwind_once;
26999 type = SHT_ARM_EXIDX;
bfae80f2 27000 }
c19d1205 27001 else
bfae80f2 27002 {
c19d1205
ZW
27003 prefix = ELF_STRING_ARM_unwind_info;
27004 prefix_once = ELF_STRING_ARM_unwind_info_once;
27005 type = SHT_PROGBITS;
bfae80f2
RE
27006 }
27007
c19d1205
ZW
27008 text_name = segment_name (text_seg);
27009 if (streq (text_name, ".text"))
27010 text_name = "";
27011
27012 if (strncmp (text_name, ".gnu.linkonce.t.",
27013 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 27014 {
c19d1205
ZW
27015 prefix = prefix_once;
27016 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
27017 }
27018
29a2809e 27019 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 27020
c19d1205
ZW
27021 flags = SHF_ALLOC;
27022 linkonce = 0;
27023 group_name = 0;
bfae80f2 27024
c19d1205
ZW
27025 /* Handle COMDAT group. */
27026 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 27027 {
c19d1205
ZW
27028 group_name = elf_group_name (text_seg);
27029 if (group_name == NULL)
27030 {
bd3ba5d1 27031 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
27032 segment_name (text_seg));
27033 ignore_rest_of_line ();
27034 return;
27035 }
27036 flags |= SHF_GROUP;
27037 linkonce = 1;
bfae80f2
RE
27038 }
27039
a91e1603
L
27040 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
27041 linkonce, 0);
bfae80f2 27042
5f4273c7 27043 /* Set the section link for index tables. */
c19d1205
ZW
27044 if (idx)
27045 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
27046}
27047
bfae80f2 27048
c19d1205
ZW
27049/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
27050 personality routine data. Returns zero, or the index table value for
cad0da33 27051 an inline entry. */
c19d1205
ZW
27052
27053static valueT
27054create_unwind_entry (int have_data)
bfae80f2 27055{
c19d1205
ZW
27056 int size;
27057 addressT where;
27058 char *ptr;
27059 /* The current word of data. */
27060 valueT data;
27061 /* The number of bytes left in this word. */
27062 int n;
bfae80f2 27063
c19d1205 27064 finish_unwind_opcodes ();
bfae80f2 27065
c19d1205
ZW
27066 /* Remember the current text section. */
27067 unwind.saved_seg = now_seg;
27068 unwind.saved_subseg = now_subseg;
bfae80f2 27069
c19d1205 27070 start_unwind_section (now_seg, 0);
bfae80f2 27071
c19d1205 27072 if (unwind.personality_routine == NULL)
bfae80f2 27073 {
c19d1205
ZW
27074 if (unwind.personality_index == -2)
27075 {
27076 if (have_data)
5f4273c7 27077 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
27078 return 1; /* EXIDX_CANTUNWIND. */
27079 }
bfae80f2 27080
c19d1205
ZW
27081 /* Use a default personality routine if none is specified. */
27082 if (unwind.personality_index == -1)
27083 {
27084 if (unwind.opcode_count > 3)
27085 unwind.personality_index = 1;
27086 else
27087 unwind.personality_index = 0;
27088 }
bfae80f2 27089
c19d1205
ZW
27090 /* Space for the personality routine entry. */
27091 if (unwind.personality_index == 0)
27092 {
27093 if (unwind.opcode_count > 3)
27094 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 27095
c19d1205
ZW
27096 if (!have_data)
27097 {
27098 /* All the data is inline in the index table. */
27099 data = 0x80;
27100 n = 3;
27101 while (unwind.opcode_count > 0)
27102 {
27103 unwind.opcode_count--;
27104 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27105 n--;
27106 }
bfae80f2 27107
c19d1205
ZW
27108 /* Pad with "finish" opcodes. */
27109 while (n--)
27110 data = (data << 8) | 0xb0;
bfae80f2 27111
c19d1205
ZW
27112 return data;
27113 }
27114 size = 0;
27115 }
27116 else
27117 /* We get two opcodes "free" in the first word. */
27118 size = unwind.opcode_count - 2;
27119 }
27120 else
5011093d 27121 {
cad0da33
NC
27122 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
27123 if (unwind.personality_index != -1)
27124 {
27125 as_bad (_("attempt to recreate an unwind entry"));
27126 return 1;
27127 }
5011093d
NC
27128
27129 /* An extra byte is required for the opcode count. */
27130 size = unwind.opcode_count + 1;
27131 }
bfae80f2 27132
c19d1205
ZW
27133 size = (size + 3) >> 2;
27134 if (size > 0xff)
27135 as_bad (_("too many unwind opcodes"));
bfae80f2 27136
c19d1205
ZW
27137 frag_align (2, 0, 0);
27138 record_alignment (now_seg, 2);
27139 unwind.table_entry = expr_build_dot ();
27140
27141 /* Allocate the table entry. */
27142 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
27143 /* PR 13449: Zero the table entries in case some of them are not used. */
27144 memset (ptr, 0, (size << 2) + 4);
c19d1205 27145 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 27146
c19d1205 27147 switch (unwind.personality_index)
bfae80f2 27148 {
c19d1205
ZW
27149 case -1:
27150 /* ??? Should this be a PLT generating relocation? */
27151 /* Custom personality routine. */
27152 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
27153 BFD_RELOC_ARM_PREL31);
bfae80f2 27154
c19d1205
ZW
27155 where += 4;
27156 ptr += 4;
bfae80f2 27157
c19d1205 27158 /* Set the first byte to the number of additional words. */
5011093d 27159 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
27160 n = 3;
27161 break;
bfae80f2 27162
c19d1205
ZW
27163 /* ABI defined personality routines. */
27164 case 0:
27165 /* Three opcodes bytes are packed into the first word. */
27166 data = 0x80;
27167 n = 3;
27168 break;
bfae80f2 27169
c19d1205
ZW
27170 case 1:
27171 case 2:
27172 /* The size and first two opcode bytes go in the first word. */
27173 data = ((0x80 + unwind.personality_index) << 8) | size;
27174 n = 2;
27175 break;
bfae80f2 27176
c19d1205
ZW
27177 default:
27178 /* Should never happen. */
27179 abort ();
27180 }
bfae80f2 27181
c19d1205
ZW
27182 /* Pack the opcodes into words (MSB first), reversing the list at the same
27183 time. */
27184 while (unwind.opcode_count > 0)
27185 {
27186 if (n == 0)
27187 {
27188 md_number_to_chars (ptr, data, 4);
27189 ptr += 4;
27190 n = 4;
27191 data = 0;
27192 }
27193 unwind.opcode_count--;
27194 n--;
27195 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27196 }
27197
27198 /* Finish off the last word. */
27199 if (n < 4)
27200 {
27201 /* Pad with "finish" opcodes. */
27202 while (n--)
27203 data = (data << 8) | 0xb0;
27204
27205 md_number_to_chars (ptr, data, 4);
27206 }
27207
27208 if (!have_data)
27209 {
27210 /* Add an empty descriptor if there is no user-specified data. */
27211 ptr = frag_more (4);
27212 md_number_to_chars (ptr, 0, 4);
27213 }
27214
27215 return 0;
bfae80f2
RE
27216}
27217
f0927246
NC
27218
27219/* Initialize the DWARF-2 unwind information for this procedure. */
27220
27221void
27222tc_arm_frame_initial_instructions (void)
27223{
27224 cfi_add_CFA_def_cfa (REG_SP, 0);
27225}
27226#endif /* OBJ_ELF */
27227
c19d1205
ZW
27228/* Convert REGNAME to a DWARF-2 register number. */
27229
27230int
1df69f4f 27231tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 27232{
1df69f4f 27233 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
27234 if (reg != FAIL)
27235 return reg;
c19d1205 27236
1f5afe1c
NC
27237 /* PR 16694: Allow VFP registers as well. */
27238 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
27239 if (reg != FAIL)
27240 return 64 + reg;
c19d1205 27241
1f5afe1c
NC
27242 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
27243 if (reg != FAIL)
27244 return reg + 256;
27245
0198d5e6 27246 return FAIL;
bfae80f2
RE
27247}
27248
f0927246 27249#ifdef TE_PE
c19d1205 27250void
f0927246 27251tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 27252{
91d6fa6a 27253 expressionS exp;
bfae80f2 27254
91d6fa6a
NC
27255 exp.X_op = O_secrel;
27256 exp.X_add_symbol = symbol;
27257 exp.X_add_number = 0;
27258 emit_expr (&exp, size);
f0927246
NC
27259}
27260#endif
bfae80f2 27261
c19d1205 27262/* MD interface: Symbol and relocation handling. */
bfae80f2 27263
2fc8bdac
ZW
27264/* Return the address within the segment that a PC-relative fixup is
27265 relative to. For ARM, PC-relative fixups applied to instructions
27266 are generally relative to the location of the fixup plus 8 bytes.
27267 Thumb branches are offset by 4, and Thumb loads relative to PC
27268 require special handling. */
bfae80f2 27269
c19d1205 27270long
2fc8bdac 27271md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 27272{
2fc8bdac
ZW
27273 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
27274
27275 /* If this is pc-relative and we are going to emit a relocation
27276 then we just want to put out any pipeline compensation that the linker
53baae48
NC
27277 will need. Otherwise we want to use the calculated base.
27278 For WinCE we skip the bias for externals as well, since this
27279 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 27280 if (fixP->fx_pcrel
2fc8bdac 27281 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
27282 || (arm_force_relocation (fixP)
27283#ifdef TE_WINCE
27284 && !S_IS_EXTERNAL (fixP->fx_addsy)
27285#endif
27286 )))
2fc8bdac 27287 base = 0;
bfae80f2 27288
267bf995 27289
c19d1205 27290 switch (fixP->fx_r_type)
bfae80f2 27291 {
2fc8bdac
ZW
27292 /* PC relative addressing on the Thumb is slightly odd as the
27293 bottom two bits of the PC are forced to zero for the
27294 calculation. This happens *after* application of the
27295 pipeline offset. However, Thumb adrl already adjusts for
27296 this, so we need not do it again. */
c19d1205 27297 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 27298 return base & ~3;
c19d1205
ZW
27299
27300 case BFD_RELOC_ARM_THUMB_OFFSET:
27301 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 27302 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 27303 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 27304 return (base + 4) & ~3;
c19d1205 27305
2fc8bdac 27306 /* Thumb branches are simply offset by +4. */
e12437dc 27307 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
27308 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27309 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27310 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27311 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 27312 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 27313 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 27314 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 27315 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 27316 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 27317 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 27318 return base + 4;
bfae80f2 27319
267bf995 27320 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
27321 if (fixP->fx_addsy
27322 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27323 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 27324 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
27325 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27326 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
27327 return base + 4;
27328
00adf2d4
JB
27329 /* BLX is like branches above, but forces the low two bits of PC to
27330 zero. */
486499d0
CL
27331 case BFD_RELOC_THUMB_PCREL_BLX:
27332 if (fixP->fx_addsy
27333 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27334 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
27335 && THUMB_IS_FUNC (fixP->fx_addsy)
27336 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27337 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
27338 return (base + 4) & ~3;
27339
2fc8bdac
ZW
27340 /* ARM mode branches are offset by +8. However, the Windows CE
27341 loader expects the relocation not to take this into account. */
267bf995 27342 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
27343 if (fixP->fx_addsy
27344 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27345 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
27346 && ARM_IS_FUNC (fixP->fx_addsy)
27347 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27348 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 27349 return base + 8;
267bf995 27350
486499d0
CL
27351 case BFD_RELOC_ARM_PCREL_CALL:
27352 if (fixP->fx_addsy
27353 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27354 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
27355 && THUMB_IS_FUNC (fixP->fx_addsy)
27356 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27357 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 27358 return base + 8;
267bf995 27359
2fc8bdac 27360 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 27361 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 27362 case BFD_RELOC_ARM_PLT32:
c19d1205 27363#ifdef TE_WINCE
5f4273c7 27364 /* When handling fixups immediately, because we have already
477330fc 27365 discovered the value of a symbol, or the address of the frag involved
53baae48 27366 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
27367 see fixup_segment() in write.c
27368 The S_IS_EXTERNAL test handles the case of global symbols.
27369 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
27370 if (fixP->fx_pcrel
27371 && fixP->fx_addsy != NULL
27372 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27373 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
27374 return base + 8;
2fc8bdac 27375 return base;
c19d1205 27376#else
2fc8bdac 27377 return base + 8;
c19d1205 27378#endif
2fc8bdac 27379
267bf995 27380
2fc8bdac
ZW
27381 /* ARM mode loads relative to PC are also offset by +8. Unlike
27382 branches, the Windows CE loader *does* expect the relocation
27383 to take this into account. */
27384 case BFD_RELOC_ARM_OFFSET_IMM:
27385 case BFD_RELOC_ARM_OFFSET_IMM8:
27386 case BFD_RELOC_ARM_HWLITERAL:
27387 case BFD_RELOC_ARM_LITERAL:
27388 case BFD_RELOC_ARM_CP_OFF_IMM:
27389 return base + 8;
27390
27391
27392 /* Other PC-relative relocations are un-offset. */
27393 default:
27394 return base;
27395 }
bfae80f2
RE
27396}
27397
8b2d793c
NC
27398static bfd_boolean flag_warn_syms = TRUE;
27399
ae8714c2
NC
27400bfd_boolean
27401arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 27402{
8b2d793c
NC
27403 /* PR 18347 - Warn if the user attempts to create a symbol with the same
27404 name as an ARM instruction. Whilst strictly speaking it is allowed, it
27405 does mean that the resulting code might be very confusing to the reader.
27406 Also this warning can be triggered if the user omits an operand before
27407 an immediate address, eg:
27408
27409 LDR =foo
27410
27411 GAS treats this as an assignment of the value of the symbol foo to a
27412 symbol LDR, and so (without this code) it will not issue any kind of
27413 warning or error message.
27414
27415 Note - ARM instructions are case-insensitive but the strings in the hash
27416 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
27417 lower case too. */
27418 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
27419 {
27420 char * nbuf = strdup (name);
27421 char * p;
27422
27423 for (p = nbuf; *p; p++)
27424 *p = TOLOWER (*p);
27425 if (hash_find (arm_ops_hsh, nbuf) != NULL)
27426 {
27427 static struct hash_control * already_warned = NULL;
27428
27429 if (already_warned == NULL)
27430 already_warned = hash_new ();
27431 /* Only warn about the symbol once. To keep the code
27432 simple we let hash_insert do the lookup for us. */
3076e594 27433 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 27434 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
27435 }
27436 else
27437 free (nbuf);
27438 }
3739860c 27439
ae8714c2
NC
27440 return FALSE;
27441}
27442
27443/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
27444 Otherwise we have no need to default values of symbols. */
27445
27446symbolS *
27447md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
27448{
27449#ifdef OBJ_ELF
27450 if (name[0] == '_' && name[1] == 'G'
27451 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
27452 {
27453 if (!GOT_symbol)
27454 {
27455 if (symbol_find (name))
27456 as_bad (_("GOT already in the symbol table"));
27457
27458 GOT_symbol = symbol_new (name, undefined_section,
27459 (valueT) 0, & zero_address_frag);
27460 }
27461
27462 return GOT_symbol;
27463 }
27464#endif
27465
c921be7d 27466 return NULL;
bfae80f2
RE
27467}
27468
55cf6793 27469/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
27470 computed as two separate immediate values, added together. We
27471 already know that this value cannot be computed by just one ARM
27472 instruction. */
27473
27474static unsigned int
27475validate_immediate_twopart (unsigned int val,
27476 unsigned int * highpart)
bfae80f2 27477{
c19d1205
ZW
27478 unsigned int a;
27479 unsigned int i;
bfae80f2 27480
c19d1205
ZW
27481 for (i = 0; i < 32; i += 2)
27482 if (((a = rotate_left (val, i)) & 0xff) != 0)
27483 {
27484 if (a & 0xff00)
27485 {
27486 if (a & ~ 0xffff)
27487 continue;
27488 * highpart = (a >> 8) | ((i + 24) << 7);
27489 }
27490 else if (a & 0xff0000)
27491 {
27492 if (a & 0xff000000)
27493 continue;
27494 * highpart = (a >> 16) | ((i + 16) << 7);
27495 }
27496 else
27497 {
9c2799c2 27498 gas_assert (a & 0xff000000);
c19d1205
ZW
27499 * highpart = (a >> 24) | ((i + 8) << 7);
27500 }
bfae80f2 27501
c19d1205
ZW
27502 return (a & 0xff) | (i << 7);
27503 }
bfae80f2 27504
c19d1205 27505 return FAIL;
bfae80f2
RE
27506}
27507
c19d1205
ZW
27508static int
27509validate_offset_imm (unsigned int val, int hwse)
27510{
27511 if ((hwse && val > 255) || val > 4095)
27512 return FAIL;
27513 return val;
27514}
bfae80f2 27515
55cf6793 27516/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
27517 negative immediate constant by altering the instruction. A bit of
27518 a hack really.
27519 MOV <-> MVN
27520 AND <-> BIC
27521 ADC <-> SBC
27522 by inverting the second operand, and
27523 ADD <-> SUB
27524 CMP <-> CMN
27525 by negating the second operand. */
bfae80f2 27526
c19d1205
ZW
27527static int
27528negate_data_op (unsigned long * instruction,
27529 unsigned long value)
bfae80f2 27530{
c19d1205
ZW
27531 int op, new_inst;
27532 unsigned long negated, inverted;
bfae80f2 27533
c19d1205
ZW
27534 negated = encode_arm_immediate (-value);
27535 inverted = encode_arm_immediate (~value);
bfae80f2 27536
c19d1205
ZW
27537 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
27538 switch (op)
bfae80f2 27539 {
c19d1205
ZW
27540 /* First negates. */
27541 case OPCODE_SUB: /* ADD <-> SUB */
27542 new_inst = OPCODE_ADD;
27543 value = negated;
27544 break;
bfae80f2 27545
c19d1205
ZW
27546 case OPCODE_ADD:
27547 new_inst = OPCODE_SUB;
27548 value = negated;
27549 break;
bfae80f2 27550
c19d1205
ZW
27551 case OPCODE_CMP: /* CMP <-> CMN */
27552 new_inst = OPCODE_CMN;
27553 value = negated;
27554 break;
bfae80f2 27555
c19d1205
ZW
27556 case OPCODE_CMN:
27557 new_inst = OPCODE_CMP;
27558 value = negated;
27559 break;
bfae80f2 27560
c19d1205
ZW
27561 /* Now Inverted ops. */
27562 case OPCODE_MOV: /* MOV <-> MVN */
27563 new_inst = OPCODE_MVN;
27564 value = inverted;
27565 break;
bfae80f2 27566
c19d1205
ZW
27567 case OPCODE_MVN:
27568 new_inst = OPCODE_MOV;
27569 value = inverted;
27570 break;
bfae80f2 27571
c19d1205
ZW
27572 case OPCODE_AND: /* AND <-> BIC */
27573 new_inst = OPCODE_BIC;
27574 value = inverted;
27575 break;
bfae80f2 27576
c19d1205
ZW
27577 case OPCODE_BIC:
27578 new_inst = OPCODE_AND;
27579 value = inverted;
27580 break;
bfae80f2 27581
c19d1205
ZW
27582 case OPCODE_ADC: /* ADC <-> SBC */
27583 new_inst = OPCODE_SBC;
27584 value = inverted;
27585 break;
bfae80f2 27586
c19d1205
ZW
27587 case OPCODE_SBC:
27588 new_inst = OPCODE_ADC;
27589 value = inverted;
27590 break;
bfae80f2 27591
c19d1205
ZW
27592 /* We cannot do anything. */
27593 default:
27594 return FAIL;
b99bd4ef
NC
27595 }
27596
c19d1205
ZW
27597 if (value == (unsigned) FAIL)
27598 return FAIL;
27599
27600 *instruction &= OPCODE_MASK;
27601 *instruction |= new_inst << DATA_OP_SHIFT;
27602 return value;
b99bd4ef
NC
27603}
27604
ef8d22e6
PB
27605/* Like negate_data_op, but for Thumb-2. */
27606
27607static unsigned int
16dd5e42 27608thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
27609{
27610 int op, new_inst;
27611 int rd;
16dd5e42 27612 unsigned int negated, inverted;
ef8d22e6
PB
27613
27614 negated = encode_thumb32_immediate (-value);
27615 inverted = encode_thumb32_immediate (~value);
27616
27617 rd = (*instruction >> 8) & 0xf;
27618 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
27619 switch (op)
27620 {
27621 /* ADD <-> SUB. Includes CMP <-> CMN. */
27622 case T2_OPCODE_SUB:
27623 new_inst = T2_OPCODE_ADD;
27624 value = negated;
27625 break;
27626
27627 case T2_OPCODE_ADD:
27628 new_inst = T2_OPCODE_SUB;
27629 value = negated;
27630 break;
27631
27632 /* ORR <-> ORN. Includes MOV <-> MVN. */
27633 case T2_OPCODE_ORR:
27634 new_inst = T2_OPCODE_ORN;
27635 value = inverted;
27636 break;
27637
27638 case T2_OPCODE_ORN:
27639 new_inst = T2_OPCODE_ORR;
27640 value = inverted;
27641 break;
27642
27643 /* AND <-> BIC. TST has no inverted equivalent. */
27644 case T2_OPCODE_AND:
27645 new_inst = T2_OPCODE_BIC;
27646 if (rd == 15)
27647 value = FAIL;
27648 else
27649 value = inverted;
27650 break;
27651
27652 case T2_OPCODE_BIC:
27653 new_inst = T2_OPCODE_AND;
27654 value = inverted;
27655 break;
27656
27657 /* ADC <-> SBC */
27658 case T2_OPCODE_ADC:
27659 new_inst = T2_OPCODE_SBC;
27660 value = inverted;
27661 break;
27662
27663 case T2_OPCODE_SBC:
27664 new_inst = T2_OPCODE_ADC;
27665 value = inverted;
27666 break;
27667
27668 /* We cannot do anything. */
27669 default:
27670 return FAIL;
27671 }
27672
16dd5e42 27673 if (value == (unsigned int)FAIL)
ef8d22e6
PB
27674 return FAIL;
27675
27676 *instruction &= T2_OPCODE_MASK;
27677 *instruction |= new_inst << T2_DATA_OP_SHIFT;
27678 return value;
27679}
27680
8f06b2d8 27681/* Read a 32-bit thumb instruction from buf. */
0198d5e6 27682
8f06b2d8
PB
27683static unsigned long
27684get_thumb32_insn (char * buf)
27685{
27686 unsigned long insn;
27687 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
27688 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27689
27690 return insn;
27691}
27692
a8bc6c78
PB
27693/* We usually want to set the low bit on the address of thumb function
27694 symbols. In particular .word foo - . should have the low bit set.
27695 Generic code tries to fold the difference of two symbols to
27696 a constant. Prevent this and force a relocation when the first symbols
27697 is a thumb function. */
c921be7d
NC
27698
27699bfd_boolean
a8bc6c78
PB
27700arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
27701{
27702 if (op == O_subtract
27703 && l->X_op == O_symbol
27704 && r->X_op == O_symbol
27705 && THUMB_IS_FUNC (l->X_add_symbol))
27706 {
27707 l->X_op = O_subtract;
27708 l->X_op_symbol = r->X_add_symbol;
27709 l->X_add_number -= r->X_add_number;
c921be7d 27710 return TRUE;
a8bc6c78 27711 }
c921be7d 27712
a8bc6c78 27713 /* Process as normal. */
c921be7d 27714 return FALSE;
a8bc6c78
PB
27715}
27716
4a42ebbc
RR
27717/* Encode Thumb2 unconditional branches and calls. The encoding
27718 for the 2 are identical for the immediate values. */
27719
27720static void
27721encode_thumb2_b_bl_offset (char * buf, offsetT value)
27722{
27723#define T2I1I2MASK ((1 << 13) | (1 << 11))
27724 offsetT newval;
27725 offsetT newval2;
27726 addressT S, I1, I2, lo, hi;
27727
27728 S = (value >> 24) & 0x01;
27729 I1 = (value >> 23) & 0x01;
27730 I2 = (value >> 22) & 0x01;
27731 hi = (value >> 12) & 0x3ff;
fa94de6b 27732 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
27733 newval = md_chars_to_number (buf, THUMB_SIZE);
27734 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27735 newval |= (S << 10) | hi;
27736 newval2 &= ~T2I1I2MASK;
27737 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
27738 md_number_to_chars (buf, newval, THUMB_SIZE);
27739 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27740}
27741
c19d1205 27742void
55cf6793 27743md_apply_fix (fixS * fixP,
c19d1205
ZW
27744 valueT * valP,
27745 segT seg)
27746{
27747 offsetT value = * valP;
27748 offsetT newval;
27749 unsigned int newimm;
27750 unsigned long temp;
27751 int sign;
27752 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 27753
9c2799c2 27754 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 27755
c19d1205 27756 /* Note whether this will delete the relocation. */
4962c51a 27757
c19d1205
ZW
27758 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
27759 fixP->fx_done = 1;
b99bd4ef 27760
adbaf948 27761 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 27762 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
27763 for emit_reloc. */
27764 value &= 0xffffffff;
27765 value ^= 0x80000000;
5f4273c7 27766 value -= 0x80000000;
adbaf948
ZW
27767
27768 *valP = value;
c19d1205 27769 fixP->fx_addnumber = value;
b99bd4ef 27770
adbaf948
ZW
27771 /* Same treatment for fixP->fx_offset. */
27772 fixP->fx_offset &= 0xffffffff;
27773 fixP->fx_offset ^= 0x80000000;
27774 fixP->fx_offset -= 0x80000000;
27775
c19d1205 27776 switch (fixP->fx_r_type)
b99bd4ef 27777 {
c19d1205
ZW
27778 case BFD_RELOC_NONE:
27779 /* This will need to go in the object file. */
27780 fixP->fx_done = 0;
27781 break;
b99bd4ef 27782
c19d1205
ZW
27783 case BFD_RELOC_ARM_IMMEDIATE:
27784 /* We claim that this fixup has been processed here,
27785 even if in fact we generate an error because we do
27786 not have a reloc for it, so tc_gen_reloc will reject it. */
27787 fixP->fx_done = 1;
b99bd4ef 27788
77db8e2e 27789 if (fixP->fx_addsy)
b99bd4ef 27790 {
77db8e2e 27791 const char *msg = 0;
b99bd4ef 27792
77db8e2e
NC
27793 if (! S_IS_DEFINED (fixP->fx_addsy))
27794 msg = _("undefined symbol %s used as an immediate value");
27795 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27796 msg = _("symbol %s is in a different section");
27797 else if (S_IS_WEAK (fixP->fx_addsy))
27798 msg = _("symbol %s is weak and may be overridden later");
27799
27800 if (msg)
27801 {
27802 as_bad_where (fixP->fx_file, fixP->fx_line,
27803 msg, S_GET_NAME (fixP->fx_addsy));
27804 break;
27805 }
42e5fcbf
AS
27806 }
27807
c19d1205
ZW
27808 temp = md_chars_to_number (buf, INSN_SIZE);
27809
5e73442d
SL
27810 /* If the offset is negative, we should use encoding A2 for ADR. */
27811 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
27812 newimm = negate_data_op (&temp, value);
27813 else
27814 {
27815 newimm = encode_arm_immediate (value);
27816
27817 /* If the instruction will fail, see if we can fix things up by
27818 changing the opcode. */
27819 if (newimm == (unsigned int) FAIL)
27820 newimm = negate_data_op (&temp, value);
bada4342
JW
27821 /* MOV accepts both ARM modified immediate (A1 encoding) and
27822 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
27823 When disassembling, MOV is preferred when there is no encoding
27824 overlap. */
27825 if (newimm == (unsigned int) FAIL
27826 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
27827 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
27828 && !((temp >> SBIT_SHIFT) & 0x1)
27829 && value >= 0 && value <= 0xffff)
27830 {
27831 /* Clear bits[23:20] to change encoding from A1 to A2. */
27832 temp &= 0xff0fffff;
27833 /* Encoding high 4bits imm. Code below will encode the remaining
27834 low 12bits. */
27835 temp |= (value & 0x0000f000) << 4;
27836 newimm = value & 0x00000fff;
27837 }
5e73442d
SL
27838 }
27839
27840 if (newimm == (unsigned int) FAIL)
b99bd4ef 27841 {
c19d1205
ZW
27842 as_bad_where (fixP->fx_file, fixP->fx_line,
27843 _("invalid constant (%lx) after fixup"),
27844 (unsigned long) value);
27845 break;
b99bd4ef 27846 }
b99bd4ef 27847
c19d1205
ZW
27848 newimm |= (temp & 0xfffff000);
27849 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27850 break;
b99bd4ef 27851
c19d1205
ZW
27852 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27853 {
27854 unsigned int highpart = 0;
27855 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 27856
77db8e2e 27857 if (fixP->fx_addsy)
42e5fcbf 27858 {
77db8e2e 27859 const char *msg = 0;
42e5fcbf 27860
77db8e2e
NC
27861 if (! S_IS_DEFINED (fixP->fx_addsy))
27862 msg = _("undefined symbol %s used as an immediate value");
27863 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27864 msg = _("symbol %s is in a different section");
27865 else if (S_IS_WEAK (fixP->fx_addsy))
27866 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 27867
77db8e2e
NC
27868 if (msg)
27869 {
27870 as_bad_where (fixP->fx_file, fixP->fx_line,
27871 msg, S_GET_NAME (fixP->fx_addsy));
27872 break;
27873 }
27874 }
fa94de6b 27875
c19d1205
ZW
27876 newimm = encode_arm_immediate (value);
27877 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 27878
c19d1205
ZW
27879 /* If the instruction will fail, see if we can fix things up by
27880 changing the opcode. */
27881 if (newimm == (unsigned int) FAIL
27882 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
27883 {
27884 /* No ? OK - try using two ADD instructions to generate
27885 the value. */
27886 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 27887
c19d1205
ZW
27888 /* Yes - then make sure that the second instruction is
27889 also an add. */
27890 if (newimm != (unsigned int) FAIL)
27891 newinsn = temp;
27892 /* Still No ? Try using a negated value. */
27893 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
27894 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
27895 /* Otherwise - give up. */
27896 else
27897 {
27898 as_bad_where (fixP->fx_file, fixP->fx_line,
27899 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
27900 (long) value);
27901 break;
27902 }
b99bd4ef 27903
c19d1205
ZW
27904 /* Replace the first operand in the 2nd instruction (which
27905 is the PC) with the destination register. We have
27906 already added in the PC in the first instruction and we
27907 do not want to do it again. */
27908 newinsn &= ~ 0xf0000;
27909 newinsn |= ((newinsn & 0x0f000) << 4);
27910 }
b99bd4ef 27911
c19d1205
ZW
27912 newimm |= (temp & 0xfffff000);
27913 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 27914
c19d1205
ZW
27915 highpart |= (newinsn & 0xfffff000);
27916 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27917 }
27918 break;
b99bd4ef 27919
c19d1205 27920 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
27921 if (!fixP->fx_done && seg->use_rela_p)
27922 value = 0;
1a0670f3 27923 /* Fall through. */
00a97672 27924
c19d1205 27925 case BFD_RELOC_ARM_LITERAL:
26d97720 27926 sign = value > 0;
b99bd4ef 27927
c19d1205
ZW
27928 if (value < 0)
27929 value = - value;
b99bd4ef 27930
c19d1205 27931 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 27932 {
c19d1205
ZW
27933 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27934 as_bad_where (fixP->fx_file, fixP->fx_line,
27935 _("invalid literal constant: pool needs to be closer"));
27936 else
27937 as_bad_where (fixP->fx_file, fixP->fx_line,
27938 _("bad immediate value for offset (%ld)"),
27939 (long) value);
27940 break;
f03698e6
RE
27941 }
27942
c19d1205 27943 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
27944 if (value == 0)
27945 newval &= 0xfffff000;
27946 else
27947 {
27948 newval &= 0xff7ff000;
27949 newval |= value | (sign ? INDEX_UP : 0);
27950 }
c19d1205
ZW
27951 md_number_to_chars (buf, newval, INSN_SIZE);
27952 break;
b99bd4ef 27953
c19d1205
ZW
27954 case BFD_RELOC_ARM_OFFSET_IMM8:
27955 case BFD_RELOC_ARM_HWLITERAL:
26d97720 27956 sign = value > 0;
b99bd4ef 27957
c19d1205
ZW
27958 if (value < 0)
27959 value = - value;
b99bd4ef 27960
c19d1205 27961 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 27962 {
c19d1205
ZW
27963 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27964 as_bad_where (fixP->fx_file, fixP->fx_line,
27965 _("invalid literal constant: pool needs to be closer"));
27966 else
427d0db6
RM
27967 as_bad_where (fixP->fx_file, fixP->fx_line,
27968 _("bad immediate value for 8-bit offset (%ld)"),
27969 (long) value);
c19d1205 27970 break;
b99bd4ef
NC
27971 }
27972
c19d1205 27973 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
27974 if (value == 0)
27975 newval &= 0xfffff0f0;
27976 else
27977 {
27978 newval &= 0xff7ff0f0;
27979 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27980 }
c19d1205
ZW
27981 md_number_to_chars (buf, newval, INSN_SIZE);
27982 break;
b99bd4ef 27983
c19d1205
ZW
27984 case BFD_RELOC_ARM_T32_OFFSET_U8:
27985 if (value < 0 || value > 1020 || value % 4 != 0)
27986 as_bad_where (fixP->fx_file, fixP->fx_line,
27987 _("bad immediate value for offset (%ld)"), (long) value);
27988 value /= 4;
b99bd4ef 27989
c19d1205 27990 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
27991 newval |= value;
27992 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27993 break;
b99bd4ef 27994
c19d1205
ZW
27995 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27996 /* This is a complicated relocation used for all varieties of Thumb32
27997 load/store instruction with immediate offset:
27998
27999 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 28000 *4, optional writeback(W)
c19d1205
ZW
28001 (doubleword load/store)
28002
28003 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
28004 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
28005 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
28006 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
28007 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
28008
28009 Uppercase letters indicate bits that are already encoded at
28010 this point. Lowercase letters are our problem. For the
28011 second block of instructions, the secondary opcode nybble
28012 (bits 8..11) is present, and bit 23 is zero, even if this is
28013 a PC-relative operation. */
28014 newval = md_chars_to_number (buf, THUMB_SIZE);
28015 newval <<= 16;
28016 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 28017
c19d1205 28018 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 28019 {
c19d1205
ZW
28020 /* Doubleword load/store: 8-bit offset, scaled by 4. */
28021 if (value >= 0)
28022 newval |= (1 << 23);
28023 else
28024 value = -value;
28025 if (value % 4 != 0)
28026 {
28027 as_bad_where (fixP->fx_file, fixP->fx_line,
28028 _("offset not a multiple of 4"));
28029 break;
28030 }
28031 value /= 4;
216d22bc 28032 if (value > 0xff)
c19d1205
ZW
28033 {
28034 as_bad_where (fixP->fx_file, fixP->fx_line,
28035 _("offset out of range"));
28036 break;
28037 }
28038 newval &= ~0xff;
b99bd4ef 28039 }
c19d1205 28040 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 28041 {
c19d1205
ZW
28042 /* PC-relative, 12-bit offset. */
28043 if (value >= 0)
28044 newval |= (1 << 23);
28045 else
28046 value = -value;
216d22bc 28047 if (value > 0xfff)
c19d1205
ZW
28048 {
28049 as_bad_where (fixP->fx_file, fixP->fx_line,
28050 _("offset out of range"));
28051 break;
28052 }
28053 newval &= ~0xfff;
b99bd4ef 28054 }
c19d1205 28055 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 28056 {
c19d1205
ZW
28057 /* Writeback: 8-bit, +/- offset. */
28058 if (value >= 0)
28059 newval |= (1 << 9);
28060 else
28061 value = -value;
216d22bc 28062 if (value > 0xff)
c19d1205
ZW
28063 {
28064 as_bad_where (fixP->fx_file, fixP->fx_line,
28065 _("offset out of range"));
28066 break;
28067 }
28068 newval &= ~0xff;
b99bd4ef 28069 }
c19d1205 28070 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 28071 {
c19d1205 28072 /* T-instruction: positive 8-bit offset. */
216d22bc 28073 if (value < 0 || value > 0xff)
b99bd4ef 28074 {
c19d1205
ZW
28075 as_bad_where (fixP->fx_file, fixP->fx_line,
28076 _("offset out of range"));
28077 break;
b99bd4ef 28078 }
c19d1205
ZW
28079 newval &= ~0xff;
28080 newval |= value;
b99bd4ef
NC
28081 }
28082 else
b99bd4ef 28083 {
c19d1205
ZW
28084 /* Positive 12-bit or negative 8-bit offset. */
28085 int limit;
28086 if (value >= 0)
b99bd4ef 28087 {
c19d1205
ZW
28088 newval |= (1 << 23);
28089 limit = 0xfff;
28090 }
28091 else
28092 {
28093 value = -value;
28094 limit = 0xff;
28095 }
28096 if (value > limit)
28097 {
28098 as_bad_where (fixP->fx_file, fixP->fx_line,
28099 _("offset out of range"));
28100 break;
b99bd4ef 28101 }
c19d1205 28102 newval &= ~limit;
b99bd4ef 28103 }
b99bd4ef 28104
c19d1205
ZW
28105 newval |= value;
28106 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
28107 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
28108 break;
404ff6b5 28109
c19d1205
ZW
28110 case BFD_RELOC_ARM_SHIFT_IMM:
28111 newval = md_chars_to_number (buf, INSN_SIZE);
28112 if (((unsigned long) value) > 32
28113 || (value == 32
28114 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
28115 {
28116 as_bad_where (fixP->fx_file, fixP->fx_line,
28117 _("shift expression is too large"));
28118 break;
28119 }
404ff6b5 28120
c19d1205
ZW
28121 if (value == 0)
28122 /* Shifts of zero must be done as lsl. */
28123 newval &= ~0x60;
28124 else if (value == 32)
28125 value = 0;
28126 newval &= 0xfffff07f;
28127 newval |= (value & 0x1f) << 7;
28128 md_number_to_chars (buf, newval, INSN_SIZE);
28129 break;
404ff6b5 28130
c19d1205 28131 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 28132 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 28133 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 28134 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
28135 /* We claim that this fixup has been processed here,
28136 even if in fact we generate an error because we do
28137 not have a reloc for it, so tc_gen_reloc will reject it. */
28138 fixP->fx_done = 1;
404ff6b5 28139
c19d1205
ZW
28140 if (fixP->fx_addsy
28141 && ! S_IS_DEFINED (fixP->fx_addsy))
28142 {
28143 as_bad_where (fixP->fx_file, fixP->fx_line,
28144 _("undefined symbol %s used as an immediate value"),
28145 S_GET_NAME (fixP->fx_addsy));
28146 break;
28147 }
404ff6b5 28148
c19d1205
ZW
28149 newval = md_chars_to_number (buf, THUMB_SIZE);
28150 newval <<= 16;
28151 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 28152
16805f35 28153 newimm = FAIL;
bada4342
JW
28154 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28155 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
28156 Thumb2 modified immediate encoding (T2). */
28157 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 28158 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
28159 {
28160 newimm = encode_thumb32_immediate (value);
28161 if (newimm == (unsigned int) FAIL)
28162 newimm = thumb32_negate_data_op (&newval, value);
28163 }
bada4342 28164 if (newimm == (unsigned int) FAIL)
92e90b6e 28165 {
bada4342 28166 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 28167 {
bada4342
JW
28168 /* Turn add/sum into addw/subw. */
28169 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
28170 newval = (newval & 0xfeffffff) | 0x02000000;
28171 /* No flat 12-bit imm encoding for addsw/subsw. */
28172 if ((newval & 0x00100000) == 0)
40f246e3 28173 {
bada4342
JW
28174 /* 12 bit immediate for addw/subw. */
28175 if (value < 0)
28176 {
28177 value = -value;
28178 newval ^= 0x00a00000;
28179 }
28180 if (value > 0xfff)
28181 newimm = (unsigned int) FAIL;
28182 else
28183 newimm = value;
28184 }
28185 }
28186 else
28187 {
28188 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
28189 UINT16 (T3 encoding), MOVW only accepts UINT16. When
28190 disassembling, MOV is preferred when there is no encoding
db7bf105 28191 overlap. */
bada4342 28192 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
28193 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
28194 but with the Rn field [19:16] set to 1111. */
28195 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
28196 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
28197 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 28198 && value >= 0 && value <= 0xffff)
bada4342
JW
28199 {
28200 /* Toggle bit[25] to change encoding from T2 to T3. */
28201 newval ^= 1 << 25;
28202 /* Clear bits[19:16]. */
28203 newval &= 0xfff0ffff;
28204 /* Encoding high 4bits imm. Code below will encode the
28205 remaining low 12bits. */
28206 newval |= (value & 0x0000f000) << 4;
28207 newimm = value & 0x00000fff;
40f246e3 28208 }
e9f89963 28209 }
92e90b6e 28210 }
cc8a6dd0 28211
c19d1205 28212 if (newimm == (unsigned int)FAIL)
3631a3c8 28213 {
c19d1205
ZW
28214 as_bad_where (fixP->fx_file, fixP->fx_line,
28215 _("invalid constant (%lx) after fixup"),
28216 (unsigned long) value);
28217 break;
3631a3c8
NC
28218 }
28219
c19d1205
ZW
28220 newval |= (newimm & 0x800) << 15;
28221 newval |= (newimm & 0x700) << 4;
28222 newval |= (newimm & 0x0ff);
cc8a6dd0 28223
c19d1205
ZW
28224 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
28225 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
28226 break;
a737bd4d 28227
3eb17e6b 28228 case BFD_RELOC_ARM_SMC:
ba85f98c 28229 if (((unsigned long) value) > 0xf)
c19d1205 28230 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 28231 _("invalid smc expression"));
ba85f98c 28232
2fc8bdac 28233 newval = md_chars_to_number (buf, INSN_SIZE);
ba85f98c 28234 newval |= (value & 0xf);
c19d1205
ZW
28235 md_number_to_chars (buf, newval, INSN_SIZE);
28236 break;
a737bd4d 28237
90ec0d68
MGD
28238 case BFD_RELOC_ARM_HVC:
28239 if (((unsigned long) value) > 0xffff)
28240 as_bad_where (fixP->fx_file, fixP->fx_line,
28241 _("invalid hvc expression"));
28242 newval = md_chars_to_number (buf, INSN_SIZE);
28243 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
28244 md_number_to_chars (buf, newval, INSN_SIZE);
28245 break;
28246
c19d1205 28247 case BFD_RELOC_ARM_SWI:
adbaf948 28248 if (fixP->tc_fix_data != 0)
c19d1205
ZW
28249 {
28250 if (((unsigned long) value) > 0xff)
28251 as_bad_where (fixP->fx_file, fixP->fx_line,
28252 _("invalid swi expression"));
2fc8bdac 28253 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
28254 newval |= value;
28255 md_number_to_chars (buf, newval, THUMB_SIZE);
28256 }
28257 else
28258 {
28259 if (((unsigned long) value) > 0x00ffffff)
28260 as_bad_where (fixP->fx_file, fixP->fx_line,
28261 _("invalid swi expression"));
2fc8bdac 28262 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
28263 newval |= value;
28264 md_number_to_chars (buf, newval, INSN_SIZE);
28265 }
28266 break;
a737bd4d 28267
c19d1205
ZW
28268 case BFD_RELOC_ARM_MULTI:
28269 if (((unsigned long) value) > 0xffff)
28270 as_bad_where (fixP->fx_file, fixP->fx_line,
28271 _("invalid expression in load/store multiple"));
28272 newval = value | md_chars_to_number (buf, INSN_SIZE);
28273 md_number_to_chars (buf, newval, INSN_SIZE);
28274 break;
a737bd4d 28275
c19d1205 28276#ifdef OBJ_ELF
39b41c9c 28277 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
28278
28279 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28280 && fixP->fx_addsy
34e77a92 28281 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
28282 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28283 && THUMB_IS_FUNC (fixP->fx_addsy))
28284 /* Flip the bl to blx. This is a simple flip
28285 bit here because we generate PCREL_CALL for
28286 unconditional bls. */
28287 {
28288 newval = md_chars_to_number (buf, INSN_SIZE);
28289 newval = newval | 0x10000000;
28290 md_number_to_chars (buf, newval, INSN_SIZE);
28291 temp = 1;
28292 fixP->fx_done = 1;
28293 }
39b41c9c
PB
28294 else
28295 temp = 3;
28296 goto arm_branch_common;
28297
28298 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
28299 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28300 && fixP->fx_addsy
34e77a92 28301 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
28302 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28303 && THUMB_IS_FUNC (fixP->fx_addsy))
28304 {
28305 /* This would map to a bl<cond>, b<cond>,
28306 b<always> to a Thumb function. We
28307 need to force a relocation for this particular
28308 case. */
28309 newval = md_chars_to_number (buf, INSN_SIZE);
28310 fixP->fx_done = 0;
28311 }
1a0670f3 28312 /* Fall through. */
267bf995 28313
2fc8bdac 28314 case BFD_RELOC_ARM_PLT32:
c19d1205 28315#endif
39b41c9c
PB
28316 case BFD_RELOC_ARM_PCREL_BRANCH:
28317 temp = 3;
28318 goto arm_branch_common;
a737bd4d 28319
39b41c9c 28320 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 28321
39b41c9c 28322 temp = 1;
267bf995
RR
28323 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28324 && fixP->fx_addsy
34e77a92 28325 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
28326 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28327 && ARM_IS_FUNC (fixP->fx_addsy))
28328 {
28329 /* Flip the blx to a bl and warn. */
28330 const char *name = S_GET_NAME (fixP->fx_addsy);
28331 newval = 0xeb000000;
28332 as_warn_where (fixP->fx_file, fixP->fx_line,
28333 _("blx to '%s' an ARM ISA state function changed to bl"),
28334 name);
28335 md_number_to_chars (buf, newval, INSN_SIZE);
28336 temp = 3;
28337 fixP->fx_done = 1;
28338 }
28339
28340#ifdef OBJ_ELF
28341 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 28342 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
28343#endif
28344
39b41c9c 28345 arm_branch_common:
c19d1205 28346 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
28347 instruction, in a 24 bit, signed field. Bits 26 through 32 either
28348 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 28349 also be clear. */
39b41c9c 28350 if (value & temp)
c19d1205 28351 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
28352 _("misaligned branch destination"));
28353 if ((value & (offsetT)0xfe000000) != (offsetT)0
28354 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 28355 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 28356
2fc8bdac 28357 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 28358 {
2fc8bdac
ZW
28359 newval = md_chars_to_number (buf, INSN_SIZE);
28360 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
28361 /* Set the H bit on BLX instructions. */
28362 if (temp == 1)
28363 {
28364 if (value & 2)
28365 newval |= 0x01000000;
28366 else
28367 newval &= ~0x01000000;
28368 }
2fc8bdac 28369 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 28370 }
c19d1205 28371 break;
a737bd4d 28372
25fe350b
MS
28373 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
28374 /* CBZ can only branch forward. */
a737bd4d 28375
738755b0 28376 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
28377 (which, strictly speaking, are prohibited) will be turned into
28378 no-ops.
738755b0
MS
28379
28380 FIXME: It may be better to remove the instruction completely and
28381 perform relaxation. */
28382 if (value == -2)
2fc8bdac
ZW
28383 {
28384 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 28385 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
28386 md_number_to_chars (buf, newval, THUMB_SIZE);
28387 }
738755b0
MS
28388 else
28389 {
28390 if (value & ~0x7e)
08f10d51 28391 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 28392
477330fc 28393 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
28394 {
28395 newval = md_chars_to_number (buf, THUMB_SIZE);
28396 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
28397 md_number_to_chars (buf, newval, THUMB_SIZE);
28398 }
28399 }
c19d1205 28400 break;
a737bd4d 28401
c19d1205 28402 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
e8f8842d 28403 if (out_of_range_p (value, 8))
08f10d51 28404 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 28405
2fc8bdac
ZW
28406 if (fixP->fx_done || !seg->use_rela_p)
28407 {
28408 newval = md_chars_to_number (buf, THUMB_SIZE);
28409 newval |= (value & 0x1ff) >> 1;
28410 md_number_to_chars (buf, newval, THUMB_SIZE);
28411 }
c19d1205 28412 break;
a737bd4d 28413
c19d1205 28414 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
e8f8842d 28415 if (out_of_range_p (value, 11))
08f10d51 28416 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 28417
2fc8bdac
ZW
28418 if (fixP->fx_done || !seg->use_rela_p)
28419 {
28420 newval = md_chars_to_number (buf, THUMB_SIZE);
28421 newval |= (value & 0xfff) >> 1;
28422 md_number_to_chars (buf, newval, THUMB_SIZE);
28423 }
c19d1205 28424 break;
a737bd4d 28425
e8f8842d 28426 /* This relocation is misnamed, it should be BRANCH21. */
c19d1205 28427 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
28428 if (fixP->fx_addsy
28429 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 28430 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
28431 && ARM_IS_FUNC (fixP->fx_addsy)
28432 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28433 {
28434 /* Force a relocation for a branch 20 bits wide. */
28435 fixP->fx_done = 0;
28436 }
e8f8842d 28437 if (out_of_range_p (value, 20))
2fc8bdac
ZW
28438 as_bad_where (fixP->fx_file, fixP->fx_line,
28439 _("conditional branch out of range"));
404ff6b5 28440
2fc8bdac
ZW
28441 if (fixP->fx_done || !seg->use_rela_p)
28442 {
28443 offsetT newval2;
28444 addressT S, J1, J2, lo, hi;
404ff6b5 28445
2fc8bdac
ZW
28446 S = (value & 0x00100000) >> 20;
28447 J2 = (value & 0x00080000) >> 19;
28448 J1 = (value & 0x00040000) >> 18;
28449 hi = (value & 0x0003f000) >> 12;
28450 lo = (value & 0x00000ffe) >> 1;
6c43fab6 28451
2fc8bdac
ZW
28452 newval = md_chars_to_number (buf, THUMB_SIZE);
28453 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28454 newval |= (S << 10) | hi;
28455 newval2 |= (J1 << 13) | (J2 << 11) | lo;
28456 md_number_to_chars (buf, newval, THUMB_SIZE);
28457 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28458 }
c19d1205 28459 break;
6c43fab6 28460
c19d1205 28461 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
28462 /* If there is a blx from a thumb state function to
28463 another thumb function flip this to a bl and warn
28464 about it. */
28465
28466 if (fixP->fx_addsy
34e77a92 28467 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
28468 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28469 && THUMB_IS_FUNC (fixP->fx_addsy))
28470 {
28471 const char *name = S_GET_NAME (fixP->fx_addsy);
28472 as_warn_where (fixP->fx_file, fixP->fx_line,
28473 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
28474 name);
28475 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28476 newval = newval | 0x1000;
28477 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28478 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28479 fixP->fx_done = 1;
28480 }
28481
28482
28483 goto thumb_bl_common;
28484
c19d1205 28485 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
28486 /* A bl from Thumb state ISA to an internal ARM state function
28487 is converted to a blx. */
28488 if (fixP->fx_addsy
28489 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 28490 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
28491 && ARM_IS_FUNC (fixP->fx_addsy)
28492 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28493 {
28494 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28495 newval = newval & ~0x1000;
28496 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28497 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
28498 fixP->fx_done = 1;
28499 }
28500
28501 thumb_bl_common:
28502
2fc8bdac
ZW
28503 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28504 /* For a BLX instruction, make sure that the relocation is rounded up
28505 to a word boundary. This follows the semantics of the instruction
28506 which specifies that bit 1 of the target address will come from bit
28507 1 of the base address. */
d406f3e4
JB
28508 value = (value + 3) & ~ 3;
28509
28510#ifdef OBJ_ELF
28511 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
28512 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28513 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28514#endif
404ff6b5 28515
e8f8842d 28516 if (out_of_range_p (value, 22))
2b2f5df9 28517 {
fc289b0a 28518 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9 28519 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
e8f8842d 28520 else if (out_of_range_p (value, 24))
2b2f5df9
NC
28521 as_bad_where (fixP->fx_file, fixP->fx_line,
28522 _("Thumb2 branch out of range"));
28523 }
4a42ebbc
RR
28524
28525 if (fixP->fx_done || !seg->use_rela_p)
28526 encode_thumb2_b_bl_offset (buf, value);
28527
c19d1205 28528 break;
404ff6b5 28529
c19d1205 28530 case BFD_RELOC_THUMB_PCREL_BRANCH25:
e8f8842d 28531 if (out_of_range_p (value, 24))
08f10d51 28532 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 28533
2fc8bdac 28534 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 28535 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 28536
2fc8bdac 28537 break;
a737bd4d 28538
2fc8bdac
ZW
28539 case BFD_RELOC_8:
28540 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 28541 *buf = value;
c19d1205 28542 break;
a737bd4d 28543
c19d1205 28544 case BFD_RELOC_16:
2fc8bdac 28545 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 28546 md_number_to_chars (buf, value, 2);
c19d1205 28547 break;
a737bd4d 28548
c19d1205 28549#ifdef OBJ_ELF
0855e32b
NS
28550 case BFD_RELOC_ARM_TLS_CALL:
28551 case BFD_RELOC_ARM_THM_TLS_CALL:
28552 case BFD_RELOC_ARM_TLS_DESCSEQ:
28553 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 28554 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
28555 case BFD_RELOC_ARM_TLS_GD32:
28556 case BFD_RELOC_ARM_TLS_LE32:
28557 case BFD_RELOC_ARM_TLS_IE32:
28558 case BFD_RELOC_ARM_TLS_LDM32:
28559 case BFD_RELOC_ARM_TLS_LDO32:
28560 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 28561 break;
6c43fab6 28562
5c5a4843
CL
28563 /* Same handling as above, but with the arm_fdpic guard. */
28564 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28565 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28566 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28567 if (arm_fdpic)
28568 {
28569 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28570 }
28571 else
28572 {
28573 as_bad_where (fixP->fx_file, fixP->fx_line,
28574 _("Relocation supported only in FDPIC mode"));
28575 }
28576 break;
28577
c19d1205
ZW
28578 case BFD_RELOC_ARM_GOT32:
28579 case BFD_RELOC_ARM_GOTOFF:
c19d1205 28580 break;
b43420e6
NC
28581
28582 case BFD_RELOC_ARM_GOT_PREL:
28583 if (fixP->fx_done || !seg->use_rela_p)
477330fc 28584 md_number_to_chars (buf, value, 4);
b43420e6
NC
28585 break;
28586
9a6f4e97
NS
28587 case BFD_RELOC_ARM_TARGET2:
28588 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
28589 addend here for REL targets, because it won't be written out
28590 during reloc processing later. */
9a6f4e97
NS
28591 if (fixP->fx_done || !seg->use_rela_p)
28592 md_number_to_chars (buf, fixP->fx_offset, 4);
28593 break;
188fd7ae
CL
28594
28595 /* Relocations for FDPIC. */
28596 case BFD_RELOC_ARM_GOTFUNCDESC:
28597 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28598 case BFD_RELOC_ARM_FUNCDESC:
28599 if (arm_fdpic)
28600 {
28601 if (fixP->fx_done || !seg->use_rela_p)
28602 md_number_to_chars (buf, 0, 4);
28603 }
28604 else
28605 {
28606 as_bad_where (fixP->fx_file, fixP->fx_line,
28607 _("Relocation supported only in FDPIC mode"));
28608 }
28609 break;
c19d1205 28610#endif
6c43fab6 28611
c19d1205
ZW
28612 case BFD_RELOC_RVA:
28613 case BFD_RELOC_32:
28614 case BFD_RELOC_ARM_TARGET1:
28615 case BFD_RELOC_ARM_ROSEGREL32:
28616 case BFD_RELOC_ARM_SBREL32:
28617 case BFD_RELOC_32_PCREL:
f0927246
NC
28618#ifdef TE_PE
28619 case BFD_RELOC_32_SECREL:
28620#endif
2fc8bdac 28621 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
28622#ifdef TE_WINCE
28623 /* For WinCE we only do this for pcrel fixups. */
28624 if (fixP->fx_done || fixP->fx_pcrel)
28625#endif
28626 md_number_to_chars (buf, value, 4);
c19d1205 28627 break;
6c43fab6 28628
c19d1205
ZW
28629#ifdef OBJ_ELF
28630 case BFD_RELOC_ARM_PREL31:
2fc8bdac 28631 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
28632 {
28633 newval = md_chars_to_number (buf, 4) & 0x80000000;
28634 if ((value ^ (value >> 1)) & 0x40000000)
28635 {
28636 as_bad_where (fixP->fx_file, fixP->fx_line,
28637 _("rel31 relocation overflow"));
28638 }
28639 newval |= value & 0x7fffffff;
28640 md_number_to_chars (buf, newval, 4);
28641 }
28642 break;
c19d1205 28643#endif
a737bd4d 28644
c19d1205 28645 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 28646 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 28647 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
28648 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
28649 newval = md_chars_to_number (buf, INSN_SIZE);
28650 else
28651 newval = get_thumb32_insn (buf);
28652 if ((newval & 0x0f200f00) == 0x0d000900)
28653 {
28654 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
28655 has permitted values that are multiples of 2, in the range 0
28656 to 510. */
28657 if (value < -510 || value > 510 || (value & 1))
28658 as_bad_where (fixP->fx_file, fixP->fx_line,
28659 _("co-processor offset out of range"));
28660 }
32c36c3c
AV
28661 else if ((newval & 0xfe001f80) == 0xec000f80)
28662 {
28663 if (value < -511 || value > 512 || (value & 3))
28664 as_bad_where (fixP->fx_file, fixP->fx_line,
28665 _("co-processor offset out of range"));
28666 }
9db2f6b4 28667 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
28668 as_bad_where (fixP->fx_file, fixP->fx_line,
28669 _("co-processor offset out of range"));
28670 cp_off_common:
26d97720 28671 sign = value > 0;
c19d1205
ZW
28672 if (value < 0)
28673 value = -value;
8f06b2d8
PB
28674 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28675 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28676 newval = md_chars_to_number (buf, INSN_SIZE);
28677 else
28678 newval = get_thumb32_insn (buf);
26d97720 28679 if (value == 0)
32c36c3c
AV
28680 {
28681 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28682 newval &= 0xffffff80;
28683 else
28684 newval &= 0xffffff00;
28685 }
26d97720
NS
28686 else
28687 {
32c36c3c
AV
28688 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28689 newval &= 0xff7fff80;
28690 else
28691 newval &= 0xff7fff00;
9db2f6b4
RL
28692 if ((newval & 0x0f200f00) == 0x0d000900)
28693 {
28694 /* This is a fp16 vstr/vldr.
28695
28696 It requires the immediate offset in the instruction is shifted
28697 left by 1 to be a half-word offset.
28698
28699 Here, left shift by 1 first, and later right shift by 2
28700 should get the right offset. */
28701 value <<= 1;
28702 }
26d97720
NS
28703 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
28704 }
8f06b2d8
PB
28705 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28706 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28707 md_number_to_chars (buf, newval, INSN_SIZE);
28708 else
28709 put_thumb32_insn (buf, newval);
c19d1205 28710 break;
a737bd4d 28711
c19d1205 28712 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 28713 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
28714 if (value < -255 || value > 255)
28715 as_bad_where (fixP->fx_file, fixP->fx_line,
28716 _("co-processor offset out of range"));
df7849c5 28717 value *= 4;
c19d1205 28718 goto cp_off_common;
6c43fab6 28719
c19d1205
ZW
28720 case BFD_RELOC_ARM_THUMB_OFFSET:
28721 newval = md_chars_to_number (buf, THUMB_SIZE);
28722 /* Exactly what ranges, and where the offset is inserted depends
28723 on the type of instruction, we can establish this from the
28724 top 4 bits. */
28725 switch (newval >> 12)
28726 {
28727 case 4: /* PC load. */
28728 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
28729 forced to zero for these loads; md_pcrel_from has already
28730 compensated for this. */
28731 if (value & 3)
28732 as_bad_where (fixP->fx_file, fixP->fx_line,
28733 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
28734 (((unsigned long) fixP->fx_frag->fr_address
28735 + (unsigned long) fixP->fx_where) & ~3)
28736 + (unsigned long) value);
a737bd4d 28737
c19d1205
ZW
28738 if (value & ~0x3fc)
28739 as_bad_where (fixP->fx_file, fixP->fx_line,
28740 _("invalid offset, value too big (0x%08lX)"),
28741 (long) value);
a737bd4d 28742
c19d1205
ZW
28743 newval |= value >> 2;
28744 break;
a737bd4d 28745
c19d1205
ZW
28746 case 9: /* SP load/store. */
28747 if (value & ~0x3fc)
28748 as_bad_where (fixP->fx_file, fixP->fx_line,
28749 _("invalid offset, value too big (0x%08lX)"),
28750 (long) value);
28751 newval |= value >> 2;
28752 break;
6c43fab6 28753
c19d1205
ZW
28754 case 6: /* Word load/store. */
28755 if (value & ~0x7c)
28756 as_bad_where (fixP->fx_file, fixP->fx_line,
28757 _("invalid offset, value too big (0x%08lX)"),
28758 (long) value);
28759 newval |= value << 4; /* 6 - 2. */
28760 break;
a737bd4d 28761
c19d1205
ZW
28762 case 7: /* Byte load/store. */
28763 if (value & ~0x1f)
28764 as_bad_where (fixP->fx_file, fixP->fx_line,
28765 _("invalid offset, value too big (0x%08lX)"),
28766 (long) value);
28767 newval |= value << 6;
28768 break;
a737bd4d 28769
c19d1205
ZW
28770 case 8: /* Halfword load/store. */
28771 if (value & ~0x3e)
28772 as_bad_where (fixP->fx_file, fixP->fx_line,
28773 _("invalid offset, value too big (0x%08lX)"),
28774 (long) value);
28775 newval |= value << 5; /* 6 - 1. */
28776 break;
a737bd4d 28777
c19d1205
ZW
28778 default:
28779 as_bad_where (fixP->fx_file, fixP->fx_line,
28780 "Unable to process relocation for thumb opcode: %lx",
28781 (unsigned long) newval);
28782 break;
28783 }
28784 md_number_to_chars (buf, newval, THUMB_SIZE);
28785 break;
a737bd4d 28786
c19d1205
ZW
28787 case BFD_RELOC_ARM_THUMB_ADD:
28788 /* This is a complicated relocation, since we use it for all of
28789 the following immediate relocations:
a737bd4d 28790
c19d1205
ZW
28791 3bit ADD/SUB
28792 8bit ADD/SUB
28793 9bit ADD/SUB SP word-aligned
28794 10bit ADD PC/SP word-aligned
a737bd4d 28795
c19d1205
ZW
28796 The type of instruction being processed is encoded in the
28797 instruction field:
a737bd4d 28798
c19d1205
ZW
28799 0x8000 SUB
28800 0x00F0 Rd
28801 0x000F Rs
28802 */
28803 newval = md_chars_to_number (buf, THUMB_SIZE);
28804 {
28805 int rd = (newval >> 4) & 0xf;
28806 int rs = newval & 0xf;
28807 int subtract = !!(newval & 0x8000);
a737bd4d 28808
c19d1205
ZW
28809 /* Check for HI regs, only very restricted cases allowed:
28810 Adjusting SP, and using PC or SP to get an address. */
28811 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
28812 || (rs > 7 && rs != REG_SP && rs != REG_PC))
28813 as_bad_where (fixP->fx_file, fixP->fx_line,
28814 _("invalid Hi register with immediate"));
a737bd4d 28815
c19d1205
ZW
28816 /* If value is negative, choose the opposite instruction. */
28817 if (value < 0)
28818 {
28819 value = -value;
28820 subtract = !subtract;
28821 if (value < 0)
28822 as_bad_where (fixP->fx_file, fixP->fx_line,
28823 _("immediate value out of range"));
28824 }
a737bd4d 28825
c19d1205
ZW
28826 if (rd == REG_SP)
28827 {
75c11999 28828 if (value & ~0x1fc)
c19d1205
ZW
28829 as_bad_where (fixP->fx_file, fixP->fx_line,
28830 _("invalid immediate for stack address calculation"));
28831 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
28832 newval |= value >> 2;
28833 }
28834 else if (rs == REG_PC || rs == REG_SP)
28835 {
c12d2c9d
NC
28836 /* PR gas/18541. If the addition is for a defined symbol
28837 within range of an ADR instruction then accept it. */
28838 if (subtract
28839 && value == 4
28840 && fixP->fx_addsy != NULL)
28841 {
28842 subtract = 0;
28843
28844 if (! S_IS_DEFINED (fixP->fx_addsy)
28845 || S_GET_SEGMENT (fixP->fx_addsy) != seg
28846 || S_IS_WEAK (fixP->fx_addsy))
28847 {
28848 as_bad_where (fixP->fx_file, fixP->fx_line,
28849 _("address calculation needs a strongly defined nearby symbol"));
28850 }
28851 else
28852 {
28853 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
28854
28855 /* Round up to the next 4-byte boundary. */
28856 if (v & 3)
28857 v = (v + 3) & ~ 3;
28858 else
28859 v += 4;
28860 v = S_GET_VALUE (fixP->fx_addsy) - v;
28861
28862 if (v & ~0x3fc)
28863 {
28864 as_bad_where (fixP->fx_file, fixP->fx_line,
28865 _("symbol too far away"));
28866 }
28867 else
28868 {
28869 fixP->fx_done = 1;
28870 value = v;
28871 }
28872 }
28873 }
28874
c19d1205
ZW
28875 if (subtract || value & ~0x3fc)
28876 as_bad_where (fixP->fx_file, fixP->fx_line,
28877 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 28878 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
28879 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
28880 newval |= rd << 8;
28881 newval |= value >> 2;
28882 }
28883 else if (rs == rd)
28884 {
28885 if (value & ~0xff)
28886 as_bad_where (fixP->fx_file, fixP->fx_line,
28887 _("immediate value out of range"));
28888 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
28889 newval |= (rd << 8) | value;
28890 }
28891 else
28892 {
28893 if (value & ~0x7)
28894 as_bad_where (fixP->fx_file, fixP->fx_line,
28895 _("immediate value out of range"));
28896 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
28897 newval |= rd | (rs << 3) | (value << 6);
28898 }
28899 }
28900 md_number_to_chars (buf, newval, THUMB_SIZE);
28901 break;
a737bd4d 28902
c19d1205
ZW
28903 case BFD_RELOC_ARM_THUMB_IMM:
28904 newval = md_chars_to_number (buf, THUMB_SIZE);
28905 if (value < 0 || value > 255)
28906 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 28907 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
28908 (long) value);
28909 newval |= value;
28910 md_number_to_chars (buf, newval, THUMB_SIZE);
28911 break;
a737bd4d 28912
c19d1205
ZW
28913 case BFD_RELOC_ARM_THUMB_SHIFT:
28914 /* 5bit shift value (0..32). LSL cannot take 32. */
28915 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28916 temp = newval & 0xf800;
28917 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28918 as_bad_where (fixP->fx_file, fixP->fx_line,
28919 _("invalid shift value: %ld"), (long) value);
28920 /* Shifts of zero must be encoded as LSL. */
28921 if (value == 0)
28922 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28923 /* Shifts of 32 are encoded as zero. */
28924 else if (value == 32)
28925 value = 0;
28926 newval |= value << 6;
28927 md_number_to_chars (buf, newval, THUMB_SIZE);
28928 break;
a737bd4d 28929
c19d1205
ZW
28930 case BFD_RELOC_VTABLE_INHERIT:
28931 case BFD_RELOC_VTABLE_ENTRY:
28932 fixP->fx_done = 0;
28933 return;
6c43fab6 28934
b6895b4f
PB
28935 case BFD_RELOC_ARM_MOVW:
28936 case BFD_RELOC_ARM_MOVT:
28937 case BFD_RELOC_ARM_THUMB_MOVW:
28938 case BFD_RELOC_ARM_THUMB_MOVT:
28939 if (fixP->fx_done || !seg->use_rela_p)
28940 {
28941 /* REL format relocations are limited to a 16-bit addend. */
28942 if (!fixP->fx_done)
28943 {
39623e12 28944 if (value < -0x8000 || value > 0x7fff)
b6895b4f 28945 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 28946 _("offset out of range"));
b6895b4f
PB
28947 }
28948 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28949 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28950 {
28951 value >>= 16;
28952 }
28953
28954 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28955 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28956 {
28957 newval = get_thumb32_insn (buf);
28958 newval &= 0xfbf08f00;
28959 newval |= (value & 0xf000) << 4;
28960 newval |= (value & 0x0800) << 15;
28961 newval |= (value & 0x0700) << 4;
28962 newval |= (value & 0x00ff);
28963 put_thumb32_insn (buf, newval);
28964 }
28965 else
28966 {
28967 newval = md_chars_to_number (buf, 4);
28968 newval &= 0xfff0f000;
28969 newval |= value & 0x0fff;
28970 newval |= (value & 0xf000) << 4;
28971 md_number_to_chars (buf, newval, 4);
28972 }
28973 }
28974 return;
28975
72d98d16
MG
28976 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28977 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28978 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28979 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28980 gas_assert (!fixP->fx_done);
28981 {
28982 bfd_vma insn;
28983 bfd_boolean is_mov;
28984 bfd_vma encoded_addend = value;
28985
28986 /* Check that addend can be encoded in instruction. */
28987 if (!seg->use_rela_p && (value < 0 || value > 255))
28988 as_bad_where (fixP->fx_file, fixP->fx_line,
28989 _("the offset 0x%08lX is not representable"),
28990 (unsigned long) encoded_addend);
28991
28992 /* Extract the instruction. */
28993 insn = md_chars_to_number (buf, THUMB_SIZE);
28994 is_mov = (insn & 0xf800) == 0x2000;
28995
28996 /* Encode insn. */
28997 if (is_mov)
28998 {
28999 if (!seg->use_rela_p)
29000 insn |= encoded_addend;
29001 }
29002 else
29003 {
29004 int rd, rs;
29005
29006 /* Extract the instruction. */
29007 /* Encoding is the following
29008 0x8000 SUB
29009 0x00F0 Rd
29010 0x000F Rs
29011 */
29012 /* The following conditions must be true :
29013 - ADD
29014 - Rd == Rs
29015 - Rd <= 7
29016 */
29017 rd = (insn >> 4) & 0xf;
29018 rs = insn & 0xf;
29019 if ((insn & 0x8000) || (rd != rs) || rd > 7)
29020 as_bad_where (fixP->fx_file, fixP->fx_line,
29021 _("Unable to process relocation for thumb opcode: %lx"),
29022 (unsigned long) insn);
29023
29024 /* Encode as ADD immediate8 thumb 1 code. */
29025 insn = 0x3000 | (rd << 8);
29026
29027 /* Place the encoded addend into the first 8 bits of the
29028 instruction. */
29029 if (!seg->use_rela_p)
29030 insn |= encoded_addend;
29031 }
29032
29033 /* Update the instruction. */
29034 md_number_to_chars (buf, insn, THUMB_SIZE);
29035 }
29036 break;
29037
4962c51a
MS
29038 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29039 case BFD_RELOC_ARM_ALU_PC_G0:
29040 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29041 case BFD_RELOC_ARM_ALU_PC_G1:
29042 case BFD_RELOC_ARM_ALU_PC_G2:
29043 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29044 case BFD_RELOC_ARM_ALU_SB_G0:
29045 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29046 case BFD_RELOC_ARM_ALU_SB_G1:
29047 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 29048 gas_assert (!fixP->fx_done);
4962c51a
MS
29049 if (!seg->use_rela_p)
29050 {
477330fc
RM
29051 bfd_vma insn;
29052 bfd_vma encoded_addend;
3ca4a8ec 29053 bfd_vma addend_abs = llabs (value);
477330fc
RM
29054
29055 /* Check that the absolute value of the addend can be
29056 expressed as an 8-bit constant plus a rotation. */
29057 encoded_addend = encode_arm_immediate (addend_abs);
29058 if (encoded_addend == (unsigned int) FAIL)
4962c51a 29059 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
29060 _("the offset 0x%08lX is not representable"),
29061 (unsigned long) addend_abs);
29062
29063 /* Extract the instruction. */
29064 insn = md_chars_to_number (buf, INSN_SIZE);
29065
29066 /* If the addend is positive, use an ADD instruction.
29067 Otherwise use a SUB. Take care not to destroy the S bit. */
29068 insn &= 0xff1fffff;
29069 if (value < 0)
29070 insn |= 1 << 22;
29071 else
29072 insn |= 1 << 23;
29073
29074 /* Place the encoded addend into the first 12 bits of the
29075 instruction. */
29076 insn &= 0xfffff000;
29077 insn |= encoded_addend;
29078
29079 /* Update the instruction. */
29080 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
29081 }
29082 break;
29083
29084 case BFD_RELOC_ARM_LDR_PC_G0:
29085 case BFD_RELOC_ARM_LDR_PC_G1:
29086 case BFD_RELOC_ARM_LDR_PC_G2:
29087 case BFD_RELOC_ARM_LDR_SB_G0:
29088 case BFD_RELOC_ARM_LDR_SB_G1:
29089 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 29090 gas_assert (!fixP->fx_done);
4962c51a 29091 if (!seg->use_rela_p)
477330fc
RM
29092 {
29093 bfd_vma insn;
3ca4a8ec 29094 bfd_vma addend_abs = llabs (value);
4962c51a 29095
477330fc
RM
29096 /* Check that the absolute value of the addend can be
29097 encoded in 12 bits. */
29098 if (addend_abs >= 0x1000)
4962c51a 29099 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
29100 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
29101 (unsigned long) addend_abs);
29102
29103 /* Extract the instruction. */
29104 insn = md_chars_to_number (buf, INSN_SIZE);
29105
29106 /* If the addend is negative, clear bit 23 of the instruction.
29107 Otherwise set it. */
29108 if (value < 0)
29109 insn &= ~(1 << 23);
29110 else
29111 insn |= 1 << 23;
29112
29113 /* Place the absolute value of the addend into the first 12 bits
29114 of the instruction. */
29115 insn &= 0xfffff000;
29116 insn |= addend_abs;
29117
29118 /* Update the instruction. */
29119 md_number_to_chars (buf, insn, INSN_SIZE);
29120 }
4962c51a
MS
29121 break;
29122
29123 case BFD_RELOC_ARM_LDRS_PC_G0:
29124 case BFD_RELOC_ARM_LDRS_PC_G1:
29125 case BFD_RELOC_ARM_LDRS_PC_G2:
29126 case BFD_RELOC_ARM_LDRS_SB_G0:
29127 case BFD_RELOC_ARM_LDRS_SB_G1:
29128 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 29129 gas_assert (!fixP->fx_done);
4962c51a 29130 if (!seg->use_rela_p)
477330fc
RM
29131 {
29132 bfd_vma insn;
3ca4a8ec 29133 bfd_vma addend_abs = llabs (value);
4962c51a 29134
477330fc
RM
29135 /* Check that the absolute value of the addend can be
29136 encoded in 8 bits. */
29137 if (addend_abs >= 0x100)
4962c51a 29138 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
29139 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
29140 (unsigned long) addend_abs);
29141
29142 /* Extract the instruction. */
29143 insn = md_chars_to_number (buf, INSN_SIZE);
29144
29145 /* If the addend is negative, clear bit 23 of the instruction.
29146 Otherwise set it. */
29147 if (value < 0)
29148 insn &= ~(1 << 23);
29149 else
29150 insn |= 1 << 23;
29151
29152 /* Place the first four bits of the absolute value of the addend
29153 into the first 4 bits of the instruction, and the remaining
29154 four into bits 8 .. 11. */
29155 insn &= 0xfffff0f0;
29156 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
29157
29158 /* Update the instruction. */
29159 md_number_to_chars (buf, insn, INSN_SIZE);
29160 }
4962c51a
MS
29161 break;
29162
29163 case BFD_RELOC_ARM_LDC_PC_G0:
29164 case BFD_RELOC_ARM_LDC_PC_G1:
29165 case BFD_RELOC_ARM_LDC_PC_G2:
29166 case BFD_RELOC_ARM_LDC_SB_G0:
29167 case BFD_RELOC_ARM_LDC_SB_G1:
29168 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 29169 gas_assert (!fixP->fx_done);
4962c51a 29170 if (!seg->use_rela_p)
477330fc
RM
29171 {
29172 bfd_vma insn;
3ca4a8ec 29173 bfd_vma addend_abs = llabs (value);
4962c51a 29174
477330fc
RM
29175 /* Check that the absolute value of the addend is a multiple of
29176 four and, when divided by four, fits in 8 bits. */
29177 if (addend_abs & 0x3)
4962c51a 29178 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
29179 _("bad offset 0x%08lX (must be word-aligned)"),
29180 (unsigned long) addend_abs);
4962c51a 29181
477330fc 29182 if ((addend_abs >> 2) > 0xff)
4962c51a 29183 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
29184 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
29185 (unsigned long) addend_abs);
29186
29187 /* Extract the instruction. */
29188 insn = md_chars_to_number (buf, INSN_SIZE);
29189
29190 /* If the addend is negative, clear bit 23 of the instruction.
29191 Otherwise set it. */
29192 if (value < 0)
29193 insn &= ~(1 << 23);
29194 else
29195 insn |= 1 << 23;
29196
29197 /* Place the addend (divided by four) into the first eight
29198 bits of the instruction. */
29199 insn &= 0xfffffff0;
29200 insn |= addend_abs >> 2;
29201
29202 /* Update the instruction. */
29203 md_number_to_chars (buf, insn, INSN_SIZE);
29204 }
4962c51a
MS
29205 break;
29206
e12437dc
AV
29207 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29208 if (fixP->fx_addsy
29209 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29210 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29211 && ARM_IS_FUNC (fixP->fx_addsy)
29212 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29213 {
29214 /* Force a relocation for a branch 5 bits wide. */
29215 fixP->fx_done = 0;
29216 }
29217 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
29218 as_bad_where (fixP->fx_file, fixP->fx_line,
29219 BAD_BRANCH_OFF);
29220
29221 if (fixP->fx_done || !seg->use_rela_p)
29222 {
29223 addressT boff = value >> 1;
29224
29225 newval = md_chars_to_number (buf, THUMB_SIZE);
29226 newval |= (boff << 7);
29227 md_number_to_chars (buf, newval, THUMB_SIZE);
29228 }
29229 break;
29230
f6b2b12d
AV
29231 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29232 if (fixP->fx_addsy
29233 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29234 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29235 && ARM_IS_FUNC (fixP->fx_addsy)
29236 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29237 {
29238 fixP->fx_done = 0;
29239 }
29240 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
29241 as_bad_where (fixP->fx_file, fixP->fx_line,
29242 _("branch out of range"));
29243
29244 if (fixP->fx_done || !seg->use_rela_p)
29245 {
29246 newval = md_chars_to_number (buf, THUMB_SIZE);
29247
29248 addressT boff = ((newval & 0x0780) >> 7) << 1;
29249 addressT diff = value - boff;
29250
29251 if (diff == 4)
29252 {
29253 newval |= 1 << 1; /* T bit. */
29254 }
29255 else if (diff != 2)
29256 {
29257 as_bad_where (fixP->fx_file, fixP->fx_line,
29258 _("out of range label-relative fixup value"));
29259 }
29260 md_number_to_chars (buf, newval, THUMB_SIZE);
29261 }
29262 break;
29263
e5d6e09e
AV
29264 case BFD_RELOC_ARM_THUMB_BF17:
29265 if (fixP->fx_addsy
29266 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29267 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29268 && ARM_IS_FUNC (fixP->fx_addsy)
29269 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29270 {
29271 /* Force a relocation for a branch 17 bits wide. */
29272 fixP->fx_done = 0;
29273 }
29274
29275 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
29276 as_bad_where (fixP->fx_file, fixP->fx_line,
29277 BAD_BRANCH_OFF);
29278
29279 if (fixP->fx_done || !seg->use_rela_p)
29280 {
29281 offsetT newval2;
29282 addressT immA, immB, immC;
29283
29284 immA = (value & 0x0001f000) >> 12;
29285 immB = (value & 0x00000ffc) >> 2;
29286 immC = (value & 0x00000002) >> 1;
29287
29288 newval = md_chars_to_number (buf, THUMB_SIZE);
29289 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29290 newval |= immA;
29291 newval2 |= (immC << 11) | (immB << 1);
29292 md_number_to_chars (buf, newval, THUMB_SIZE);
29293 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29294 }
29295 break;
29296
1caf72a5
AV
29297 case BFD_RELOC_ARM_THUMB_BF19:
29298 if (fixP->fx_addsy
29299 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29300 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29301 && ARM_IS_FUNC (fixP->fx_addsy)
29302 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29303 {
29304 /* Force a relocation for a branch 19 bits wide. */
29305 fixP->fx_done = 0;
29306 }
29307
29308 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
29309 as_bad_where (fixP->fx_file, fixP->fx_line,
29310 BAD_BRANCH_OFF);
29311
29312 if (fixP->fx_done || !seg->use_rela_p)
29313 {
29314 offsetT newval2;
29315 addressT immA, immB, immC;
29316
29317 immA = (value & 0x0007f000) >> 12;
29318 immB = (value & 0x00000ffc) >> 2;
29319 immC = (value & 0x00000002) >> 1;
29320
29321 newval = md_chars_to_number (buf, THUMB_SIZE);
29322 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29323 newval |= immA;
29324 newval2 |= (immC << 11) | (immB << 1);
29325 md_number_to_chars (buf, newval, THUMB_SIZE);
29326 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29327 }
29328 break;
29329
1889da70
AV
29330 case BFD_RELOC_ARM_THUMB_BF13:
29331 if (fixP->fx_addsy
29332 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29333 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29334 && ARM_IS_FUNC (fixP->fx_addsy)
29335 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29336 {
29337 /* Force a relocation for a branch 13 bits wide. */
29338 fixP->fx_done = 0;
29339 }
29340
29341 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
29342 as_bad_where (fixP->fx_file, fixP->fx_line,
29343 BAD_BRANCH_OFF);
29344
29345 if (fixP->fx_done || !seg->use_rela_p)
29346 {
29347 offsetT newval2;
29348 addressT immA, immB, immC;
29349
29350 immA = (value & 0x00001000) >> 12;
29351 immB = (value & 0x00000ffc) >> 2;
29352 immC = (value & 0x00000002) >> 1;
29353
29354 newval = md_chars_to_number (buf, THUMB_SIZE);
29355 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29356 newval |= immA;
29357 newval2 |= (immC << 11) | (immB << 1);
29358 md_number_to_chars (buf, newval, THUMB_SIZE);
29359 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29360 }
29361 break;
29362
60f993ce
AV
29363 case BFD_RELOC_ARM_THUMB_LOOP12:
29364 if (fixP->fx_addsy
29365 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29366 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29367 && ARM_IS_FUNC (fixP->fx_addsy)
29368 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29369 {
29370 /* Force a relocation for a branch 12 bits wide. */
29371 fixP->fx_done = 0;
29372 }
29373
29374 bfd_vma insn = get_thumb32_insn (buf);
1f6234a3 29375 /* le lr, <label>, le <label> or letp lr, <label> */
60f993ce 29376 if (((insn & 0xffffffff) == 0xf00fc001)
1f6234a3
AV
29377 || ((insn & 0xffffffff) == 0xf02fc001)
29378 || ((insn & 0xffffffff) == 0xf01fc001))
60f993ce
AV
29379 value = -value;
29380
29381 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
29382 as_bad_where (fixP->fx_file, fixP->fx_line,
29383 BAD_BRANCH_OFF);
29384 if (fixP->fx_done || !seg->use_rela_p)
29385 {
29386 addressT imml, immh;
29387
29388 immh = (value & 0x00000ffc) >> 2;
29389 imml = (value & 0x00000002) >> 1;
29390
29391 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29392 newval |= (imml << 11) | (immh << 1);
29393 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
29394 }
29395 break;
29396
845b51d6
PB
29397 case BFD_RELOC_ARM_V4BX:
29398 /* This will need to go in the object file. */
29399 fixP->fx_done = 0;
29400 break;
29401
c19d1205
ZW
29402 case BFD_RELOC_UNUSED:
29403 default:
29404 as_bad_where (fixP->fx_file, fixP->fx_line,
29405 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
29406 }
6c43fab6
RE
29407}
29408
c19d1205
ZW
29409/* Translate internal representation of relocation info to BFD target
29410 format. */
a737bd4d 29411
c19d1205 29412arelent *
00a97672 29413tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 29414{
c19d1205
ZW
29415 arelent * reloc;
29416 bfd_reloc_code_real_type code;
a737bd4d 29417
325801bd 29418 reloc = XNEW (arelent);
a737bd4d 29419
325801bd 29420 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
29421 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
29422 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 29423
2fc8bdac 29424 if (fixp->fx_pcrel)
00a97672
RS
29425 {
29426 if (section->use_rela_p)
29427 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
29428 else
29429 fixp->fx_offset = reloc->address;
29430 }
c19d1205 29431 reloc->addend = fixp->fx_offset;
a737bd4d 29432
c19d1205 29433 switch (fixp->fx_r_type)
a737bd4d 29434 {
c19d1205
ZW
29435 case BFD_RELOC_8:
29436 if (fixp->fx_pcrel)
29437 {
29438 code = BFD_RELOC_8_PCREL;
29439 break;
29440 }
1a0670f3 29441 /* Fall through. */
a737bd4d 29442
c19d1205
ZW
29443 case BFD_RELOC_16:
29444 if (fixp->fx_pcrel)
29445 {
29446 code = BFD_RELOC_16_PCREL;
29447 break;
29448 }
1a0670f3 29449 /* Fall through. */
6c43fab6 29450
c19d1205
ZW
29451 case BFD_RELOC_32:
29452 if (fixp->fx_pcrel)
29453 {
29454 code = BFD_RELOC_32_PCREL;
29455 break;
29456 }
1a0670f3 29457 /* Fall through. */
a737bd4d 29458
b6895b4f
PB
29459 case BFD_RELOC_ARM_MOVW:
29460 if (fixp->fx_pcrel)
29461 {
29462 code = BFD_RELOC_ARM_MOVW_PCREL;
29463 break;
29464 }
1a0670f3 29465 /* Fall through. */
b6895b4f
PB
29466
29467 case BFD_RELOC_ARM_MOVT:
29468 if (fixp->fx_pcrel)
29469 {
29470 code = BFD_RELOC_ARM_MOVT_PCREL;
29471 break;
29472 }
1a0670f3 29473 /* Fall through. */
b6895b4f
PB
29474
29475 case BFD_RELOC_ARM_THUMB_MOVW:
29476 if (fixp->fx_pcrel)
29477 {
29478 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
29479 break;
29480 }
1a0670f3 29481 /* Fall through. */
b6895b4f
PB
29482
29483 case BFD_RELOC_ARM_THUMB_MOVT:
29484 if (fixp->fx_pcrel)
29485 {
29486 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
29487 break;
29488 }
1a0670f3 29489 /* Fall through. */
b6895b4f 29490
c19d1205
ZW
29491 case BFD_RELOC_NONE:
29492 case BFD_RELOC_ARM_PCREL_BRANCH:
29493 case BFD_RELOC_ARM_PCREL_BLX:
29494 case BFD_RELOC_RVA:
29495 case BFD_RELOC_THUMB_PCREL_BRANCH7:
29496 case BFD_RELOC_THUMB_PCREL_BRANCH9:
29497 case BFD_RELOC_THUMB_PCREL_BRANCH12:
29498 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29499 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29500 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
29501 case BFD_RELOC_VTABLE_ENTRY:
29502 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
29503#ifdef TE_PE
29504 case BFD_RELOC_32_SECREL:
29505#endif
c19d1205
ZW
29506 code = fixp->fx_r_type;
29507 break;
a737bd4d 29508
00adf2d4
JB
29509 case BFD_RELOC_THUMB_PCREL_BLX:
29510#ifdef OBJ_ELF
29511 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
29512 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
29513 else
29514#endif
29515 code = BFD_RELOC_THUMB_PCREL_BLX;
29516 break;
29517
c19d1205
ZW
29518 case BFD_RELOC_ARM_LITERAL:
29519 case BFD_RELOC_ARM_HWLITERAL:
29520 /* If this is called then the a literal has
29521 been referenced across a section boundary. */
29522 as_bad_where (fixp->fx_file, fixp->fx_line,
29523 _("literal referenced across section boundary"));
29524 return NULL;
a737bd4d 29525
c19d1205 29526#ifdef OBJ_ELF
0855e32b
NS
29527 case BFD_RELOC_ARM_TLS_CALL:
29528 case BFD_RELOC_ARM_THM_TLS_CALL:
29529 case BFD_RELOC_ARM_TLS_DESCSEQ:
29530 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
29531 case BFD_RELOC_ARM_GOT32:
29532 case BFD_RELOC_ARM_GOTOFF:
b43420e6 29533 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
29534 case BFD_RELOC_ARM_PLT32:
29535 case BFD_RELOC_ARM_TARGET1:
29536 case BFD_RELOC_ARM_ROSEGREL32:
29537 case BFD_RELOC_ARM_SBREL32:
29538 case BFD_RELOC_ARM_PREL31:
29539 case BFD_RELOC_ARM_TARGET2:
c19d1205 29540 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
29541 case BFD_RELOC_ARM_PCREL_CALL:
29542 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
29543 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29544 case BFD_RELOC_ARM_ALU_PC_G0:
29545 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29546 case BFD_RELOC_ARM_ALU_PC_G1:
29547 case BFD_RELOC_ARM_ALU_PC_G2:
29548 case BFD_RELOC_ARM_LDR_PC_G0:
29549 case BFD_RELOC_ARM_LDR_PC_G1:
29550 case BFD_RELOC_ARM_LDR_PC_G2:
29551 case BFD_RELOC_ARM_LDRS_PC_G0:
29552 case BFD_RELOC_ARM_LDRS_PC_G1:
29553 case BFD_RELOC_ARM_LDRS_PC_G2:
29554 case BFD_RELOC_ARM_LDC_PC_G0:
29555 case BFD_RELOC_ARM_LDC_PC_G1:
29556 case BFD_RELOC_ARM_LDC_PC_G2:
29557 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29558 case BFD_RELOC_ARM_ALU_SB_G0:
29559 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29560 case BFD_RELOC_ARM_ALU_SB_G1:
29561 case BFD_RELOC_ARM_ALU_SB_G2:
29562 case BFD_RELOC_ARM_LDR_SB_G0:
29563 case BFD_RELOC_ARM_LDR_SB_G1:
29564 case BFD_RELOC_ARM_LDR_SB_G2:
29565 case BFD_RELOC_ARM_LDRS_SB_G0:
29566 case BFD_RELOC_ARM_LDRS_SB_G1:
29567 case BFD_RELOC_ARM_LDRS_SB_G2:
29568 case BFD_RELOC_ARM_LDC_SB_G0:
29569 case BFD_RELOC_ARM_LDC_SB_G1:
29570 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 29571 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
29572 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
29573 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
29574 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
29575 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
29576 case BFD_RELOC_ARM_GOTFUNCDESC:
29577 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
29578 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 29579 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 29580 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 29581 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
29582 code = fixp->fx_r_type;
29583 break;
a737bd4d 29584
0855e32b 29585 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 29586 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 29587 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 29588 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 29589 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 29590 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 29591 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 29592 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
29593 /* BFD will include the symbol's address in the addend.
29594 But we don't want that, so subtract it out again here. */
29595 if (!S_IS_COMMON (fixp->fx_addsy))
29596 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
29597 code = fixp->fx_r_type;
29598 break;
29599#endif
a737bd4d 29600
c19d1205
ZW
29601 case BFD_RELOC_ARM_IMMEDIATE:
29602 as_bad_where (fixp->fx_file, fixp->fx_line,
29603 _("internal relocation (type: IMMEDIATE) not fixed up"));
29604 return NULL;
a737bd4d 29605
c19d1205
ZW
29606 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
29607 as_bad_where (fixp->fx_file, fixp->fx_line,
29608 _("ADRL used for a symbol not defined in the same file"));
29609 return NULL;
a737bd4d 29610
e12437dc 29611 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 29612 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 29613 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
29614 as_bad_where (fixp->fx_file, fixp->fx_line,
29615 _("%s used for a symbol not defined in the same file"),
29616 bfd_get_reloc_code_name (fixp->fx_r_type));
29617 return NULL;
29618
c19d1205 29619 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
29620 if (section->use_rela_p)
29621 {
29622 code = fixp->fx_r_type;
29623 break;
29624 }
29625
c19d1205
ZW
29626 if (fixp->fx_addsy != NULL
29627 && !S_IS_DEFINED (fixp->fx_addsy)
29628 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 29629 {
c19d1205
ZW
29630 as_bad_where (fixp->fx_file, fixp->fx_line,
29631 _("undefined local label `%s'"),
29632 S_GET_NAME (fixp->fx_addsy));
29633 return NULL;
a737bd4d
NC
29634 }
29635
c19d1205
ZW
29636 as_bad_where (fixp->fx_file, fixp->fx_line,
29637 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
29638 return NULL;
a737bd4d 29639
c19d1205
ZW
29640 default:
29641 {
e0471c16 29642 const char * type;
6c43fab6 29643
c19d1205
ZW
29644 switch (fixp->fx_r_type)
29645 {
29646 case BFD_RELOC_NONE: type = "NONE"; break;
29647 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
29648 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 29649 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
29650 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
29651 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
29652 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 29653 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 29654 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
29655 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
29656 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
29657 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
29658 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
29659 default: type = _("<unknown>"); break;
29660 }
29661 as_bad_where (fixp->fx_file, fixp->fx_line,
29662 _("cannot represent %s relocation in this object file format"),
29663 type);
29664 return NULL;
29665 }
a737bd4d 29666 }
6c43fab6 29667
c19d1205
ZW
29668#ifdef OBJ_ELF
29669 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
29670 && GOT_symbol
29671 && fixp->fx_addsy == GOT_symbol)
29672 {
29673 code = BFD_RELOC_ARM_GOTPC;
29674 reloc->addend = fixp->fx_offset = reloc->address;
29675 }
29676#endif
6c43fab6 29677
c19d1205 29678 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 29679
c19d1205
ZW
29680 if (reloc->howto == NULL)
29681 {
29682 as_bad_where (fixp->fx_file, fixp->fx_line,
29683 _("cannot represent %s relocation in this object file format"),
29684 bfd_get_reloc_code_name (code));
29685 return NULL;
29686 }
6c43fab6 29687
c19d1205
ZW
29688 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
29689 vtable entry to be used in the relocation's section offset. */
29690 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29691 reloc->address = fixp->fx_offset;
6c43fab6 29692
c19d1205 29693 return reloc;
6c43fab6
RE
29694}
29695
c19d1205 29696/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 29697
c19d1205
ZW
29698void
29699cons_fix_new_arm (fragS * frag,
29700 int where,
29701 int size,
62ebcb5c
AM
29702 expressionS * exp,
29703 bfd_reloc_code_real_type reloc)
6c43fab6 29704{
c19d1205 29705 int pcrel = 0;
6c43fab6 29706
c19d1205
ZW
29707 /* Pick a reloc.
29708 FIXME: @@ Should look at CPU word size. */
29709 switch (size)
29710 {
29711 case 1:
62ebcb5c 29712 reloc = BFD_RELOC_8;
c19d1205
ZW
29713 break;
29714 case 2:
62ebcb5c 29715 reloc = BFD_RELOC_16;
c19d1205
ZW
29716 break;
29717 case 4:
29718 default:
62ebcb5c 29719 reloc = BFD_RELOC_32;
c19d1205
ZW
29720 break;
29721 case 8:
62ebcb5c 29722 reloc = BFD_RELOC_64;
c19d1205
ZW
29723 break;
29724 }
6c43fab6 29725
f0927246
NC
29726#ifdef TE_PE
29727 if (exp->X_op == O_secrel)
29728 {
29729 exp->X_op = O_symbol;
62ebcb5c 29730 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
29731 }
29732#endif
29733
62ebcb5c 29734 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 29735}
6c43fab6 29736
4343666d 29737#if defined (OBJ_COFF)
c19d1205
ZW
29738void
29739arm_validate_fix (fixS * fixP)
6c43fab6 29740{
c19d1205
ZW
29741 /* If the destination of the branch is a defined symbol which does not have
29742 the THUMB_FUNC attribute, then we must be calling a function which has
29743 the (interfacearm) attribute. We look for the Thumb entry point to that
29744 function and change the branch to refer to that function instead. */
29745 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
29746 && fixP->fx_addsy != NULL
29747 && S_IS_DEFINED (fixP->fx_addsy)
29748 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 29749 {
c19d1205 29750 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 29751 }
c19d1205
ZW
29752}
29753#endif
6c43fab6 29754
267bf995 29755
c19d1205
ZW
29756int
29757arm_force_relocation (struct fix * fixp)
29758{
29759#if defined (OBJ_COFF) && defined (TE_PE)
29760 if (fixp->fx_r_type == BFD_RELOC_RVA)
29761 return 1;
29762#endif
6c43fab6 29763
267bf995
RR
29764 /* In case we have a call or a branch to a function in ARM ISA mode from
29765 a thumb function or vice-versa force the relocation. These relocations
29766 are cleared off for some cores that might have blx and simple transformations
29767 are possible. */
29768
29769#ifdef OBJ_ELF
29770 switch (fixp->fx_r_type)
29771 {
29772 case BFD_RELOC_ARM_PCREL_JUMP:
29773 case BFD_RELOC_ARM_PCREL_CALL:
29774 case BFD_RELOC_THUMB_PCREL_BLX:
29775 if (THUMB_IS_FUNC (fixp->fx_addsy))
29776 return 1;
29777 break;
29778
29779 case BFD_RELOC_ARM_PCREL_BLX:
29780 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29781 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29782 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29783 if (ARM_IS_FUNC (fixp->fx_addsy))
29784 return 1;
29785 break;
29786
29787 default:
29788 break;
29789 }
29790#endif
29791
b5884301
PB
29792 /* Resolve these relocations even if the symbol is extern or weak.
29793 Technically this is probably wrong due to symbol preemption.
29794 In practice these relocations do not have enough range to be useful
29795 at dynamic link time, and some code (e.g. in the Linux kernel)
29796 expects these references to be resolved. */
c19d1205
ZW
29797 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
29798 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 29799 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 29800 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
29801 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29802 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
29803 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 29804 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
29805 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
29806 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
29807 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
29808 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
29809 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
29810 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 29811 return 0;
a737bd4d 29812
4962c51a
MS
29813 /* Always leave these relocations for the linker. */
29814 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29815 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29816 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29817 return 1;
29818
f0291e4c
PB
29819 /* Always generate relocations against function symbols. */
29820 if (fixp->fx_r_type == BFD_RELOC_32
29821 && fixp->fx_addsy
29822 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
29823 return 1;
29824
c19d1205 29825 return generic_force_reloc (fixp);
404ff6b5
AH
29826}
29827
0ffdc86c 29828#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
29829/* Relocations against function names must be left unadjusted,
29830 so that the linker can use this information to generate interworking
29831 stubs. The MIPS version of this function
c19d1205
ZW
29832 also prevents relocations that are mips-16 specific, but I do not
29833 know why it does this.
404ff6b5 29834
c19d1205
ZW
29835 FIXME:
29836 There is one other problem that ought to be addressed here, but
29837 which currently is not: Taking the address of a label (rather
29838 than a function) and then later jumping to that address. Such
29839 addresses also ought to have their bottom bit set (assuming that
29840 they reside in Thumb code), but at the moment they will not. */
404ff6b5 29841
c19d1205
ZW
29842bfd_boolean
29843arm_fix_adjustable (fixS * fixP)
404ff6b5 29844{
c19d1205
ZW
29845 if (fixP->fx_addsy == NULL)
29846 return 1;
404ff6b5 29847
e28387c3
PB
29848 /* Preserve relocations against symbols with function type. */
29849 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 29850 return FALSE;
e28387c3 29851
c19d1205
ZW
29852 if (THUMB_IS_FUNC (fixP->fx_addsy)
29853 && fixP->fx_subsy == NULL)
c921be7d 29854 return FALSE;
a737bd4d 29855
c19d1205
ZW
29856 /* We need the symbol name for the VTABLE entries. */
29857 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
29858 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 29859 return FALSE;
404ff6b5 29860
c19d1205
ZW
29861 /* Don't allow symbols to be discarded on GOT related relocs. */
29862 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
29863 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
29864 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
29865 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 29866 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
29867 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
29868 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 29869 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 29870 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 29871 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 29872 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
29873 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
29874 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
29875 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
29876 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
29877 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 29878 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 29879 return FALSE;
a737bd4d 29880
4962c51a
MS
29881 /* Similarly for group relocations. */
29882 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29883 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29884 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 29885 return FALSE;
4962c51a 29886
79947c54
CD
29887 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
29888 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
29889 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29890 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
29891 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
29892 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29893 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
29894 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
29895 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 29896 return FALSE;
79947c54 29897
72d98d16
MG
29898 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
29899 offsets, so keep these symbols. */
29900 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
29901 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
29902 return FALSE;
29903
c921be7d 29904 return TRUE;
a737bd4d 29905}
0ffdc86c
NC
29906#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29907
29908#ifdef OBJ_ELF
c19d1205
ZW
29909const char *
29910elf32_arm_target_format (void)
404ff6b5 29911{
c19d1205
ZW
29912#ifdef TE_SYMBIAN
29913 return (target_big_endian
29914 ? "elf32-bigarm-symbian"
29915 : "elf32-littlearm-symbian");
29916#elif defined (TE_VXWORKS)
29917 return (target_big_endian
29918 ? "elf32-bigarm-vxworks"
29919 : "elf32-littlearm-vxworks");
b38cadfb
NC
29920#elif defined (TE_NACL)
29921 return (target_big_endian
29922 ? "elf32-bigarm-nacl"
29923 : "elf32-littlearm-nacl");
c19d1205 29924#else
18a20338
CL
29925 if (arm_fdpic)
29926 {
29927 if (target_big_endian)
29928 return "elf32-bigarm-fdpic";
29929 else
29930 return "elf32-littlearm-fdpic";
29931 }
c19d1205 29932 else
18a20338
CL
29933 {
29934 if (target_big_endian)
29935 return "elf32-bigarm";
29936 else
29937 return "elf32-littlearm";
29938 }
c19d1205 29939#endif
404ff6b5
AH
29940}
29941
c19d1205
ZW
29942void
29943armelf_frob_symbol (symbolS * symp,
29944 int * puntp)
404ff6b5 29945{
c19d1205
ZW
29946 elf_frob_symbol (symp, puntp);
29947}
29948#endif
404ff6b5 29949
c19d1205 29950/* MD interface: Finalization. */
a737bd4d 29951
c19d1205
ZW
29952void
29953arm_cleanup (void)
29954{
29955 literal_pool * pool;
a737bd4d 29956
5ee91343
AV
29957 /* Ensure that all the predication blocks are properly closed. */
29958 check_pred_blocks_finished ();
e07e6e58 29959
c19d1205
ZW
29960 for (pool = list_of_pools; pool; pool = pool->next)
29961 {
5f4273c7 29962 /* Put it at the end of the relevant section. */
c19d1205
ZW
29963 subseg_set (pool->section, pool->sub_section);
29964#ifdef OBJ_ELF
29965 arm_elf_change_section ();
29966#endif
29967 s_ltorg (0);
29968 }
404ff6b5
AH
29969}
29970
cd000bff
DJ
29971#ifdef OBJ_ELF
29972/* Remove any excess mapping symbols generated for alignment frags in
29973 SEC. We may have created a mapping symbol before a zero byte
29974 alignment; remove it if there's a mapping symbol after the
29975 alignment. */
29976static void
29977check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29978 void *dummy ATTRIBUTE_UNUSED)
29979{
29980 segment_info_type *seginfo = seg_info (sec);
29981 fragS *fragp;
29982
29983 if (seginfo == NULL || seginfo->frchainP == NULL)
29984 return;
29985
29986 for (fragp = seginfo->frchainP->frch_root;
29987 fragp != NULL;
29988 fragp = fragp->fr_next)
29989 {
29990 symbolS *sym = fragp->tc_frag_data.last_map;
29991 fragS *next = fragp->fr_next;
29992
29993 /* Variable-sized frags have been converted to fixed size by
29994 this point. But if this was variable-sized to start with,
29995 there will be a fixed-size frag after it. So don't handle
29996 next == NULL. */
29997 if (sym == NULL || next == NULL)
29998 continue;
29999
30000 if (S_GET_VALUE (sym) < next->fr_address)
30001 /* Not at the end of this frag. */
30002 continue;
30003 know (S_GET_VALUE (sym) == next->fr_address);
30004
30005 do
30006 {
30007 if (next->tc_frag_data.first_map != NULL)
30008 {
30009 /* Next frag starts with a mapping symbol. Discard this
30010 one. */
30011 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30012 break;
30013 }
30014
30015 if (next->fr_next == NULL)
30016 {
30017 /* This mapping symbol is at the end of the section. Discard
30018 it. */
30019 know (next->fr_fix == 0 && next->fr_var == 0);
30020 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30021 break;
30022 }
30023
30024 /* As long as we have empty frags without any mapping symbols,
30025 keep looking. */
30026 /* If the next frag is non-empty and does not start with a
30027 mapping symbol, then this mapping symbol is required. */
30028 if (next->fr_address != next->fr_next->fr_address)
30029 break;
30030
30031 next = next->fr_next;
30032 }
30033 while (next != NULL);
30034 }
30035}
30036#endif
30037
c19d1205
ZW
30038/* Adjust the symbol table. This marks Thumb symbols as distinct from
30039 ARM ones. */
404ff6b5 30040
c19d1205
ZW
30041void
30042arm_adjust_symtab (void)
404ff6b5 30043{
c19d1205
ZW
30044#ifdef OBJ_COFF
30045 symbolS * sym;
404ff6b5 30046
c19d1205
ZW
30047 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
30048 {
30049 if (ARM_IS_THUMB (sym))
30050 {
30051 if (THUMB_IS_FUNC (sym))
30052 {
30053 /* Mark the symbol as a Thumb function. */
30054 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
30055 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
30056 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 30057
c19d1205
ZW
30058 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
30059 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
30060 else
30061 as_bad (_("%s: unexpected function type: %d"),
30062 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
30063 }
30064 else switch (S_GET_STORAGE_CLASS (sym))
30065 {
30066 case C_EXT:
30067 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
30068 break;
30069 case C_STAT:
30070 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
30071 break;
30072 case C_LABEL:
30073 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
30074 break;
30075 default:
30076 /* Do nothing. */
30077 break;
30078 }
30079 }
a737bd4d 30080
c19d1205
ZW
30081 if (ARM_IS_INTERWORK (sym))
30082 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 30083 }
c19d1205
ZW
30084#endif
30085#ifdef OBJ_ELF
30086 symbolS * sym;
30087 char bind;
404ff6b5 30088
c19d1205 30089 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 30090 {
c19d1205
ZW
30091 if (ARM_IS_THUMB (sym))
30092 {
30093 elf_symbol_type * elf_sym;
404ff6b5 30094
c19d1205
ZW
30095 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
30096 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 30097
b0796911
PB
30098 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
30099 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
30100 {
30101 /* If it's a .thumb_func, declare it as so,
30102 otherwise tag label as .code 16. */
30103 if (THUMB_IS_FUNC (sym))
39d911fc
TP
30104 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
30105 ST_BRANCH_TO_THUMB);
3ba67470 30106 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
30107 elf_sym->internal_elf_sym.st_info =
30108 ELF_ST_INFO (bind, STT_ARM_16BIT);
30109 }
30110 }
30111 }
cd000bff
DJ
30112
30113 /* Remove any overlapping mapping symbols generated by alignment frags. */
30114 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
30115 /* Now do generic ELF adjustments. */
30116 elf_adjust_symtab ();
c19d1205 30117#endif
404ff6b5
AH
30118}
30119
c19d1205 30120/* MD interface: Initialization. */
404ff6b5 30121
a737bd4d 30122static void
c19d1205 30123set_constant_flonums (void)
a737bd4d 30124{
c19d1205 30125 int i;
404ff6b5 30126
c19d1205
ZW
30127 for (i = 0; i < NUM_FLOAT_VALS; i++)
30128 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
30129 abort ();
a737bd4d 30130}
404ff6b5 30131
3e9e4fcf
JB
30132/* Auto-select Thumb mode if it's the only available instruction set for the
30133 given architecture. */
30134
30135static void
30136autoselect_thumb_from_cpu_variant (void)
30137{
30138 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
30139 opcode_select (16);
30140}
30141
c19d1205
ZW
30142void
30143md_begin (void)
a737bd4d 30144{
c19d1205
ZW
30145 unsigned mach;
30146 unsigned int i;
404ff6b5 30147
c19d1205
ZW
30148 if ( (arm_ops_hsh = hash_new ()) == NULL
30149 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 30150 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
30151 || (arm_shift_hsh = hash_new ()) == NULL
30152 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 30153 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 30154 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
30155 || (arm_reloc_hsh = hash_new ()) == NULL
30156 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
30157 as_fatal (_("virtual memory exhausted"));
30158
30159 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 30160 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 30161 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 30162 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
30163 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
30164 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 30165 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 30166 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 30167 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 30168 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 30169 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 30170 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 30171 (void *) (v7m_psrs + i));
c19d1205 30172 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 30173 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
30174 for (i = 0;
30175 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
30176 i++)
d3ce72d0 30177 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 30178 (void *) (barrier_opt_names + i));
c19d1205 30179#ifdef OBJ_ELF
3da1d841
NC
30180 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
30181 {
30182 struct reloc_entry * entry = reloc_names + i;
30183
30184 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
30185 /* This makes encode_branch() use the EABI versions of this relocation. */
30186 entry->reloc = BFD_RELOC_UNUSED;
30187
30188 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
30189 }
c19d1205
ZW
30190#endif
30191
30192 set_constant_flonums ();
404ff6b5 30193
c19d1205
ZW
30194 /* Set the cpu variant based on the command-line options. We prefer
30195 -mcpu= over -march= if both are set (as for GCC); and we prefer
30196 -mfpu= over any other way of setting the floating point unit.
30197 Use of legacy options with new options are faulted. */
e74cfd16 30198 if (legacy_cpu)
404ff6b5 30199 {
e74cfd16 30200 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
30201 as_bad (_("use of old and new-style options to set CPU type"));
30202
4d354d8b 30203 selected_arch = *legacy_cpu;
404ff6b5 30204 }
4d354d8b
TP
30205 else if (mcpu_cpu_opt)
30206 {
30207 selected_arch = *mcpu_cpu_opt;
30208 selected_ext = *mcpu_ext_opt;
30209 }
30210 else if (march_cpu_opt)
c168ce07 30211 {
4d354d8b
TP
30212 selected_arch = *march_cpu_opt;
30213 selected_ext = *march_ext_opt;
c168ce07 30214 }
4d354d8b 30215 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 30216
e74cfd16 30217 if (legacy_fpu)
c19d1205 30218 {
e74cfd16 30219 if (mfpu_opt)
c19d1205 30220 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 30221
4d354d8b 30222 selected_fpu = *legacy_fpu;
03b1477f 30223 }
4d354d8b
TP
30224 else if (mfpu_opt)
30225 selected_fpu = *mfpu_opt;
30226 else
03b1477f 30227 {
45eb4c1b
NS
30228#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
30229 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
30230 /* Some environments specify a default FPU. If they don't, infer it
30231 from the processor. */
e74cfd16 30232 if (mcpu_fpu_opt)
4d354d8b 30233 selected_fpu = *mcpu_fpu_opt;
e7da50fa 30234 else if (march_fpu_opt)
4d354d8b 30235 selected_fpu = *march_fpu_opt;
39c2da32 30236#else
4d354d8b 30237 selected_fpu = fpu_default;
39c2da32 30238#endif
03b1477f
RE
30239 }
30240
4d354d8b 30241 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 30242 {
4d354d8b
TP
30243 if (!no_cpu_selected ())
30244 selected_fpu = fpu_default;
03b1477f 30245 else
4d354d8b 30246 selected_fpu = fpu_arch_fpa;
03b1477f
RE
30247 }
30248
ee065d83 30249#ifdef CPU_DEFAULT
4d354d8b 30250 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 30251 {
4d354d8b
TP
30252 selected_arch = cpu_default;
30253 selected_cpu = selected_arch;
ee065d83 30254 }
4d354d8b 30255 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 30256#else
4d354d8b
TP
30257 /* Autodection of feature mode: allow all features in cpu_variant but leave
30258 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
30259 after all instruction have been processed and we can decide what CPU
30260 should be selected. */
30261 if (ARM_FEATURE_ZERO (selected_arch))
30262 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 30263 else
4d354d8b 30264 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 30265#endif
03b1477f 30266
3e9e4fcf
JB
30267 autoselect_thumb_from_cpu_variant ();
30268
e74cfd16 30269 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 30270
f17c130b 30271#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 30272 {
7cc69913
NC
30273 unsigned int flags = 0;
30274
30275#if defined OBJ_ELF
30276 flags = meabi_flags;
d507cf36
PB
30277
30278 switch (meabi_flags)
33a392fb 30279 {
d507cf36 30280 case EF_ARM_EABI_UNKNOWN:
7cc69913 30281#endif
d507cf36
PB
30282 /* Set the flags in the private structure. */
30283 if (uses_apcs_26) flags |= F_APCS26;
30284 if (support_interwork) flags |= F_INTERWORK;
30285 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 30286 if (pic_code) flags |= F_PIC;
e74cfd16 30287 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
30288 flags |= F_SOFT_FLOAT;
30289
d507cf36
PB
30290 switch (mfloat_abi_opt)
30291 {
30292 case ARM_FLOAT_ABI_SOFT:
30293 case ARM_FLOAT_ABI_SOFTFP:
30294 flags |= F_SOFT_FLOAT;
30295 break;
33a392fb 30296
d507cf36
PB
30297 case ARM_FLOAT_ABI_HARD:
30298 if (flags & F_SOFT_FLOAT)
30299 as_bad (_("hard-float conflicts with specified fpu"));
30300 break;
30301 }
03b1477f 30302
e74cfd16
PB
30303 /* Using pure-endian doubles (even if soft-float). */
30304 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 30305 flags |= F_VFP_FLOAT;
f17c130b 30306
fde78edd 30307#if defined OBJ_ELF
e74cfd16 30308 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 30309 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
30310 break;
30311
8cb51566 30312 case EF_ARM_EABI_VER4:
3a4a14e9 30313 case EF_ARM_EABI_VER5:
c19d1205 30314 /* No additional flags to set. */
d507cf36
PB
30315 break;
30316
30317 default:
30318 abort ();
30319 }
7cc69913 30320#endif
b99bd4ef
NC
30321 bfd_set_private_flags (stdoutput, flags);
30322
30323 /* We have run out flags in the COFF header to encode the
30324 status of ATPCS support, so instead we create a dummy,
c19d1205 30325 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
30326 if (atpcs)
30327 {
30328 asection * sec;
30329
30330 sec = bfd_make_section (stdoutput, ".arm.atpcs");
30331
30332 if (sec != NULL)
30333 {
fd361982
AM
30334 bfd_set_section_flags (sec, SEC_READONLY | SEC_DEBUGGING);
30335 bfd_set_section_size (sec, 0);
b99bd4ef
NC
30336 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
30337 }
30338 }
7cc69913 30339 }
f17c130b 30340#endif
b99bd4ef
NC
30341
30342 /* Record the CPU type as well. */
2d447fca
JM
30343 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
30344 mach = bfd_mach_arm_iWMMXt2;
30345 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 30346 mach = bfd_mach_arm_iWMMXt;
e74cfd16 30347 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 30348 mach = bfd_mach_arm_XScale;
e74cfd16 30349 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 30350 mach = bfd_mach_arm_ep9312;
e74cfd16 30351 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 30352 mach = bfd_mach_arm_5TE;
e74cfd16 30353 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 30354 {
e74cfd16 30355 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
30356 mach = bfd_mach_arm_5T;
30357 else
30358 mach = bfd_mach_arm_5;
30359 }
e74cfd16 30360 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 30361 {
e74cfd16 30362 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
30363 mach = bfd_mach_arm_4T;
30364 else
30365 mach = bfd_mach_arm_4;
30366 }
e74cfd16 30367 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 30368 mach = bfd_mach_arm_3M;
e74cfd16
PB
30369 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
30370 mach = bfd_mach_arm_3;
30371 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
30372 mach = bfd_mach_arm_2a;
30373 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
30374 mach = bfd_mach_arm_2;
30375 else
30376 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
30377
30378 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
30379}
30380
c19d1205 30381/* Command line processing. */
b99bd4ef 30382
c19d1205
ZW
30383/* md_parse_option
30384 Invocation line includes a switch not recognized by the base assembler.
30385 See if it's a processor-specific option.
b99bd4ef 30386
c19d1205
ZW
30387 This routine is somewhat complicated by the need for backwards
30388 compatibility (since older releases of gcc can't be changed).
30389 The new options try to make the interface as compatible as
30390 possible with GCC.
b99bd4ef 30391
c19d1205 30392 New options (supported) are:
b99bd4ef 30393
c19d1205
ZW
30394 -mcpu=<cpu name> Assemble for selected processor
30395 -march=<architecture name> Assemble for selected architecture
30396 -mfpu=<fpu architecture> Assemble for selected FPU.
30397 -EB/-mbig-endian Big-endian
30398 -EL/-mlittle-endian Little-endian
30399 -k Generate PIC code
30400 -mthumb Start in Thumb mode
30401 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 30402
278df34e 30403 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 30404 -m[no-]warn-syms Warn when symbols match instructions
267bf995 30405
c19d1205 30406 For now we will also provide support for:
b99bd4ef 30407
c19d1205
ZW
30408 -mapcs-32 32-bit Program counter
30409 -mapcs-26 26-bit Program counter
30410 -macps-float Floats passed in FP registers
30411 -mapcs-reentrant Reentrant code
30412 -matpcs
30413 (sometime these will probably be replaced with -mapcs=<list of options>
30414 and -matpcs=<list of options>)
b99bd4ef 30415
c19d1205
ZW
30416 The remaining options are only supported for back-wards compatibility.
30417 Cpu variants, the arm part is optional:
30418 -m[arm]1 Currently not supported.
30419 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
30420 -m[arm]3 Arm 3 processor
30421 -m[arm]6[xx], Arm 6 processors
30422 -m[arm]7[xx][t][[d]m] Arm 7 processors
30423 -m[arm]8[10] Arm 8 processors
30424 -m[arm]9[20][tdmi] Arm 9 processors
30425 -mstrongarm[110[0]] StrongARM processors
30426 -mxscale XScale processors
30427 -m[arm]v[2345[t[e]]] Arm architectures
30428 -mall All (except the ARM1)
30429 FP variants:
30430 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
30431 -mfpe-old (No float load/store multiples)
30432 -mvfpxd VFP Single precision
30433 -mvfp All VFP
30434 -mno-fpu Disable all floating point instructions
b99bd4ef 30435
c19d1205
ZW
30436 The following CPU names are recognized:
30437 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
30438 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
30439 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
30440 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
30441 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
30442 arm10t arm10e, arm1020t, arm1020e, arm10200e,
30443 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 30444
c19d1205 30445 */
b99bd4ef 30446
c19d1205 30447const char * md_shortopts = "m:k";
b99bd4ef 30448
c19d1205
ZW
30449#ifdef ARM_BI_ENDIAN
30450#define OPTION_EB (OPTION_MD_BASE + 0)
30451#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 30452#else
c19d1205
ZW
30453#if TARGET_BYTES_BIG_ENDIAN
30454#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 30455#else
c19d1205
ZW
30456#define OPTION_EL (OPTION_MD_BASE + 1)
30457#endif
b99bd4ef 30458#endif
845b51d6 30459#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 30460#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 30461
c19d1205 30462struct option md_longopts[] =
b99bd4ef 30463{
c19d1205
ZW
30464#ifdef OPTION_EB
30465 {"EB", no_argument, NULL, OPTION_EB},
30466#endif
30467#ifdef OPTION_EL
30468 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 30469#endif
845b51d6 30470 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
30471#ifdef OBJ_ELF
30472 {"fdpic", no_argument, NULL, OPTION_FDPIC},
30473#endif
c19d1205
ZW
30474 {NULL, no_argument, NULL, 0}
30475};
b99bd4ef 30476
c19d1205 30477size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 30478
c19d1205 30479struct arm_option_table
b99bd4ef 30480{
0198d5e6
TC
30481 const char * option; /* Option name to match. */
30482 const char * help; /* Help information. */
30483 int * var; /* Variable to change. */
30484 int value; /* What to change it to. */
30485 const char * deprecated; /* If non-null, print this message. */
c19d1205 30486};
b99bd4ef 30487
c19d1205
ZW
30488struct arm_option_table arm_opts[] =
30489{
30490 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
30491 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
30492 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
30493 &support_interwork, 1, NULL},
30494 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
30495 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
30496 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
30497 1, NULL},
30498 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
30499 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
30500 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
30501 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
30502 NULL},
b99bd4ef 30503
c19d1205
ZW
30504 /* These are recognized by the assembler, but have no affect on code. */
30505 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
30506 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
30507
30508 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
30509 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
30510 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
30511 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
30512 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
30513 {NULL, NULL, NULL, 0, NULL}
30514};
30515
30516struct arm_legacy_option_table
30517{
0198d5e6
TC
30518 const char * option; /* Option name to match. */
30519 const arm_feature_set ** var; /* Variable to change. */
30520 const arm_feature_set value; /* What to change it to. */
30521 const char * deprecated; /* If non-null, print this message. */
e74cfd16 30522};
b99bd4ef 30523
e74cfd16
PB
30524const struct arm_legacy_option_table arm_legacy_opts[] =
30525{
c19d1205
ZW
30526 /* DON'T add any new processors to this list -- we want the whole list
30527 to go away... Add them to the processors table instead. */
e74cfd16
PB
30528 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30529 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30530 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30531 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30532 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30533 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30534 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30535 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30536 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30537 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30538 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30539 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30540 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30541 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30542 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30543 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30544 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30545 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30546 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30547 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30548 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30549 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30550 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30551 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30552 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30553 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30554 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30555 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30556 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30557 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30558 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30559 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30560 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30561 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30562 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30563 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30564 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30565 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30566 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30567 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30568 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30569 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30570 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30571 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30572 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30573 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30574 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30575 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30576 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30577 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30578 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30579 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30580 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30581 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30582 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30583 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30584 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30585 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30586 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30587 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30588 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30589 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30590 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30591 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30592 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30593 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30594 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30595 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30596 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
30597 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 30598 N_("use -mcpu=strongarm110")},
e74cfd16 30599 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 30600 N_("use -mcpu=strongarm1100")},
e74cfd16 30601 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 30602 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
30603 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
30604 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
30605 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 30606
c19d1205 30607 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
30608 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30609 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30610 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30611 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30612 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30613 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30614 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30615 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30616 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30617 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30618 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30619 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30620 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30621 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30622 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30623 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30624 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30625 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 30626
c19d1205 30627 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
30628 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
30629 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
30630 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
30631 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 30632 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 30633
e74cfd16 30634 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 30635};
7ed4c4c5 30636
c19d1205 30637struct arm_cpu_option_table
7ed4c4c5 30638{
0198d5e6
TC
30639 const char * name;
30640 size_t name_len;
30641 const arm_feature_set value;
30642 const arm_feature_set ext;
c19d1205
ZW
30643 /* For some CPUs we assume an FPU unless the user explicitly sets
30644 -mfpu=... */
0198d5e6 30645 const arm_feature_set default_fpu;
ee065d83
PB
30646 /* The canonical name of the CPU, or NULL to use NAME converted to upper
30647 case. */
0198d5e6 30648 const char * canonical_name;
c19d1205 30649};
7ed4c4c5 30650
c19d1205
ZW
30651/* This list should, at a minimum, contain all the cpu names
30652 recognized by GCC. */
996b5569 30653#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 30654
e74cfd16 30655static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 30656{
996b5569
TP
30657 ARM_CPU_OPT ("all", NULL, ARM_ANY,
30658 ARM_ARCH_NONE,
30659 FPU_ARCH_FPA),
30660 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
30661 ARM_ARCH_NONE,
30662 FPU_ARCH_FPA),
30663 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
30664 ARM_ARCH_NONE,
30665 FPU_ARCH_FPA),
30666 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
30667 ARM_ARCH_NONE,
30668 FPU_ARCH_FPA),
30669 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
30670 ARM_ARCH_NONE,
30671 FPU_ARCH_FPA),
30672 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
30673 ARM_ARCH_NONE,
30674 FPU_ARCH_FPA),
30675 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
30676 ARM_ARCH_NONE,
30677 FPU_ARCH_FPA),
30678 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
30679 ARM_ARCH_NONE,
30680 FPU_ARCH_FPA),
30681 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
30682 ARM_ARCH_NONE,
30683 FPU_ARCH_FPA),
30684 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
30685 ARM_ARCH_NONE,
30686 FPU_ARCH_FPA),
30687 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
30688 ARM_ARCH_NONE,
30689 FPU_ARCH_FPA),
30690 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
30691 ARM_ARCH_NONE,
30692 FPU_ARCH_FPA),
30693 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
30694 ARM_ARCH_NONE,
30695 FPU_ARCH_FPA),
30696 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
30697 ARM_ARCH_NONE,
30698 FPU_ARCH_FPA),
30699 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
30700 ARM_ARCH_NONE,
30701 FPU_ARCH_FPA),
30702 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
30703 ARM_ARCH_NONE,
30704 FPU_ARCH_FPA),
30705 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
30706 ARM_ARCH_NONE,
30707 FPU_ARCH_FPA),
30708 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
30709 ARM_ARCH_NONE,
30710 FPU_ARCH_FPA),
30711 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
30712 ARM_ARCH_NONE,
30713 FPU_ARCH_FPA),
30714 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
30715 ARM_ARCH_NONE,
30716 FPU_ARCH_FPA),
30717 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
30718 ARM_ARCH_NONE,
30719 FPU_ARCH_FPA),
30720 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
30721 ARM_ARCH_NONE,
30722 FPU_ARCH_FPA),
30723 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
30724 ARM_ARCH_NONE,
30725 FPU_ARCH_FPA),
30726 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
30727 ARM_ARCH_NONE,
30728 FPU_ARCH_FPA),
30729 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
30730 ARM_ARCH_NONE,
30731 FPU_ARCH_FPA),
30732 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
30733 ARM_ARCH_NONE,
30734 FPU_ARCH_FPA),
30735 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
30736 ARM_ARCH_NONE,
30737 FPU_ARCH_FPA),
30738 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
30739 ARM_ARCH_NONE,
30740 FPU_ARCH_FPA),
30741 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
30742 ARM_ARCH_NONE,
30743 FPU_ARCH_FPA),
30744 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
30745 ARM_ARCH_NONE,
30746 FPU_ARCH_FPA),
30747 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
30748 ARM_ARCH_NONE,
30749 FPU_ARCH_FPA),
30750 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
30751 ARM_ARCH_NONE,
30752 FPU_ARCH_FPA),
30753 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
30754 ARM_ARCH_NONE,
30755 FPU_ARCH_FPA),
30756 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
30757 ARM_ARCH_NONE,
30758 FPU_ARCH_FPA),
30759 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
30760 ARM_ARCH_NONE,
30761 FPU_ARCH_FPA),
30762 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
30763 ARM_ARCH_NONE,
30764 FPU_ARCH_FPA),
30765 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
30766 ARM_ARCH_NONE,
30767 FPU_ARCH_FPA),
30768 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
30769 ARM_ARCH_NONE,
30770 FPU_ARCH_FPA),
30771 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
30772 ARM_ARCH_NONE,
30773 FPU_ARCH_FPA),
30774 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
30775 ARM_ARCH_NONE,
30776 FPU_ARCH_FPA),
30777 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
30778 ARM_ARCH_NONE,
30779 FPU_ARCH_FPA),
30780 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
30781 ARM_ARCH_NONE,
30782 FPU_ARCH_FPA),
30783 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
30784 ARM_ARCH_NONE,
30785 FPU_ARCH_FPA),
30786 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
30787 ARM_ARCH_NONE,
30788 FPU_ARCH_FPA),
30789 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
30790 ARM_ARCH_NONE,
30791 FPU_ARCH_FPA),
30792 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
30793 ARM_ARCH_NONE,
30794 FPU_ARCH_FPA),
30795
c19d1205
ZW
30796 /* For V5 or later processors we default to using VFP; but the user
30797 should really set the FPU type explicitly. */
996b5569
TP
30798 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
30799 ARM_ARCH_NONE,
30800 FPU_ARCH_VFP_V2),
30801 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
30802 ARM_ARCH_NONE,
30803 FPU_ARCH_VFP_V2),
30804 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30805 ARM_ARCH_NONE,
30806 FPU_ARCH_VFP_V2),
30807 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30808 ARM_ARCH_NONE,
30809 FPU_ARCH_VFP_V2),
30810 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
30811 ARM_ARCH_NONE,
30812 FPU_ARCH_VFP_V2),
30813 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
30814 ARM_ARCH_NONE,
30815 FPU_ARCH_VFP_V2),
30816 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
30817 ARM_ARCH_NONE,
30818 FPU_ARCH_VFP_V2),
30819 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
30820 ARM_ARCH_NONE,
30821 FPU_ARCH_VFP_V2),
30822 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
30823 ARM_ARCH_NONE,
30824 FPU_ARCH_VFP_V2),
30825 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
30826 ARM_ARCH_NONE,
30827 FPU_ARCH_VFP_V2),
30828 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
30829 ARM_ARCH_NONE,
30830 FPU_ARCH_VFP_V2),
30831 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
30832 ARM_ARCH_NONE,
30833 FPU_ARCH_VFP_V2),
30834 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
30835 ARM_ARCH_NONE,
30836 FPU_ARCH_VFP_V1),
30837 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
30838 ARM_ARCH_NONE,
30839 FPU_ARCH_VFP_V1),
30840 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
30841 ARM_ARCH_NONE,
30842 FPU_ARCH_VFP_V2),
30843 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
30844 ARM_ARCH_NONE,
30845 FPU_ARCH_VFP_V2),
30846 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
30847 ARM_ARCH_NONE,
30848 FPU_ARCH_VFP_V1),
30849 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
30850 ARM_ARCH_NONE,
30851 FPU_ARCH_VFP_V2),
30852 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
30853 ARM_ARCH_NONE,
30854 FPU_ARCH_VFP_V2),
30855 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
30856 ARM_ARCH_NONE,
30857 FPU_ARCH_VFP_V2),
30858 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
30859 ARM_ARCH_NONE,
30860 FPU_ARCH_VFP_V2),
30861 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
30862 ARM_ARCH_NONE,
30863 FPU_ARCH_VFP_V2),
30864 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
30865 ARM_ARCH_NONE,
30866 FPU_ARCH_VFP_V2),
30867 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
30868 ARM_ARCH_NONE,
30869 FPU_ARCH_VFP_V2),
30870 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
30871 ARM_ARCH_NONE,
30872 FPU_ARCH_VFP_V2),
30873 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
30874 ARM_ARCH_NONE,
30875 FPU_ARCH_VFP_V2),
30876 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
30877 ARM_ARCH_NONE,
30878 FPU_NONE),
30879 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
30880 ARM_ARCH_NONE,
30881 FPU_NONE),
30882 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
30883 ARM_ARCH_NONE,
30884 FPU_ARCH_VFP_V2),
30885 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
30886 ARM_ARCH_NONE,
30887 FPU_ARCH_VFP_V2),
30888 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
30889 ARM_ARCH_NONE,
30890 FPU_ARCH_VFP_V2),
30891 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
30892 ARM_ARCH_NONE,
30893 FPU_NONE),
30894 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
30895 ARM_ARCH_NONE,
30896 FPU_NONE),
30897 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
30898 ARM_ARCH_NONE,
30899 FPU_ARCH_VFP_V2),
30900 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
30901 ARM_ARCH_NONE,
30902 FPU_NONE),
30903 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30904 ARM_ARCH_NONE,
30905 FPU_ARCH_VFP_V2),
30906 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30907 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30908 FPU_NONE),
30909 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30910 ARM_ARCH_NONE,
30911 FPU_ARCH_NEON_VFP_V4),
30912 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30913 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30914 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30915 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30916 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30917 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30918 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30919 ARM_ARCH_NONE,
30920 FPU_ARCH_NEON_VFP_V4),
30921 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30922 ARM_ARCH_NONE,
30923 FPU_ARCH_NEON_VFP_V4),
30924 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30925 ARM_ARCH_NONE,
30926 FPU_ARCH_NEON_VFP_V4),
30927 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30928 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30929 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30930 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30931 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30932 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30933 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30934 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30935 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
30936 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30937 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 30938 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
30939 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30940 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30941 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30942 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30943 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30944 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30945 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30946 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30947 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
30948 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30949 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 30950 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 30951 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30952 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30953 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
0535e5d7
DZ
30954 ARM_CPU_OPT ("cortex-a76ae", "Cortex-A76AE", ARM_ARCH_V8_2A,
30955 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30956 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30957 ARM_CPU_OPT ("cortex-a77", "Cortex-A77", ARM_ARCH_V8_2A,
30958 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30959 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
30960 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30961 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30962 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
30963 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30964 ARM_ARCH_NONE,
30965 FPU_NONE),
30966 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30967 ARM_ARCH_NONE,
30968 FPU_ARCH_VFP_V3D16),
30969 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30970 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30971 FPU_NONE),
30972 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30973 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30974 FPU_ARCH_VFP_V3D16),
30975 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30976 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30977 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
30978 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30979 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30980 FPU_ARCH_NEON_VFP_ARMV8),
0535e5d7
DZ
30981 ARM_CPU_OPT ("cortex-m35p", "Cortex-M35P", ARM_ARCH_V8M_MAIN,
30982 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30983 FPU_NONE),
996b5569
TP
30984 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30985 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30986 FPU_NONE),
30987 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30988 ARM_ARCH_NONE,
30989 FPU_NONE),
30990 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30991 ARM_ARCH_NONE,
30992 FPU_NONE),
30993 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30994 ARM_ARCH_NONE,
30995 FPU_NONE),
30996 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30997 ARM_ARCH_NONE,
30998 FPU_NONE),
30999 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
31000 ARM_ARCH_NONE,
31001 FPU_NONE),
31002 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
31003 ARM_ARCH_NONE,
31004 FPU_NONE),
31005 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
31006 ARM_ARCH_NONE,
31007 FPU_NONE),
31008 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
31009 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
31010 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
31011 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
31012 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31013 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 31014 /* ??? XSCALE is really an architecture. */
996b5569
TP
31015 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
31016 ARM_ARCH_NONE,
31017 FPU_ARCH_VFP_V2),
31018
c19d1205 31019 /* ??? iwmmxt is not a processor. */
996b5569
TP
31020 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
31021 ARM_ARCH_NONE,
31022 FPU_ARCH_VFP_V2),
31023 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
31024 ARM_ARCH_NONE,
31025 FPU_ARCH_VFP_V2),
31026 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
31027 ARM_ARCH_NONE,
31028 FPU_ARCH_VFP_V2),
31029
0198d5e6 31030 /* Maverick. */
996b5569
TP
31031 ARM_CPU_OPT ("ep9312", "ARM920T",
31032 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
31033 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
31034
da4339ed 31035 /* Marvell processors. */
996b5569
TP
31036 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
31037 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31038 FPU_ARCH_VFP_V3D16),
31039 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
31040 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31041 FPU_ARCH_NEON_VFP_V4),
da4339ed 31042
996b5569
TP
31043 /* APM X-Gene family. */
31044 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
31045 ARM_ARCH_NONE,
31046 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31047 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
31048 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
31049 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31050
31051 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 31052};
f3bad469 31053#undef ARM_CPU_OPT
7ed4c4c5 31054
34ef62f4
AV
31055struct arm_ext_table
31056{
31057 const char * name;
31058 size_t name_len;
31059 const arm_feature_set merge;
31060 const arm_feature_set clear;
31061};
31062
c19d1205 31063struct arm_arch_option_table
7ed4c4c5 31064{
34ef62f4
AV
31065 const char * name;
31066 size_t name_len;
31067 const arm_feature_set value;
31068 const arm_feature_set default_fpu;
31069 const struct arm_ext_table * ext_table;
31070};
31071
31072/* Used to add support for +E and +noE extension. */
31073#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
31074/* Used to add support for a +E extension. */
31075#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
31076/* Used to add support for a +noE extension. */
31077#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
31078
31079#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
31080 ~0 & ~FPU_ENDIAN_PURE)
31081
31082static const struct arm_ext_table armv5te_ext_table[] =
31083{
31084 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
31085 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31086};
31087
31088static const struct arm_ext_table armv7_ext_table[] =
31089{
31090 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31091 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31092};
31093
31094static const struct arm_ext_table armv7ve_ext_table[] =
31095{
31096 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
31097 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
31098 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31099 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31100 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31101 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
31102 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31103
31104 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
31105 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31106
31107 /* Aliases for +simd. */
31108 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31109
31110 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31111 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31112 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31113
31114 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31115};
31116
31117static const struct arm_ext_table armv7a_ext_table[] =
31118{
31119 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31120 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31121 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31122 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31123 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31124 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
31125 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31126
31127 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
31128 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31129
31130 /* Aliases for +simd. */
31131 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31132 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31133
31134 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31135 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31136
31137 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
31138 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
31139 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31140};
31141
31142static const struct arm_ext_table armv7r_ext_table[] =
31143{
31144 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
31145 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
31146 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31147 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31148 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
31149 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31150 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31151 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
31152 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31153};
31154
31155static const struct arm_ext_table armv7em_ext_table[] =
31156{
31157 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
31158 /* Alias for +fp, used to be known as fpv4-sp-d16. */
31159 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
31160 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
31161 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31162 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
31163 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31164};
31165
31166static const struct arm_ext_table armv8a_ext_table[] =
31167{
31168 ARM_ADD ("crc", ARCH_CRC_ARMV8),
31169 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31170 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31171 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31172
31173 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31174 should use the +simd option to turn on FP. */
31175 ARM_REMOVE ("fp", ALL_FP),
31176 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31177 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31178 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31179};
31180
31181
31182static const struct arm_ext_table armv81a_ext_table[] =
31183{
31184 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31185 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31186 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31187
31188 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31189 should use the +simd option to turn on FP. */
31190 ARM_REMOVE ("fp", ALL_FP),
31191 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31192 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31193 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31194};
31195
31196static const struct arm_ext_table armv82a_ext_table[] =
31197{
31198 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31199 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
31200 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
616ce08e
MM
31201 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31202 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
34ef62f4
AV
31203 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31204 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31205 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31206
31207 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31208 should use the +simd option to turn on FP. */
31209 ARM_REMOVE ("fp", ALL_FP),
31210 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31211 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31212 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31213};
31214
31215static const struct arm_ext_table armv84a_ext_table[] =
31216{
31217 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31218 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
616ce08e
MM
31219 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31220 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
34ef62f4
AV
31221 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31222 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31223
31224 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31225 should use the +simd option to turn on FP. */
31226 ARM_REMOVE ("fp", ALL_FP),
31227 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31228 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31229 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31230};
31231
31232static const struct arm_ext_table armv85a_ext_table[] =
31233{
31234 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31235 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
616ce08e
MM
31236 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31237 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
34ef62f4
AV
31238 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31239 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31240
31241 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31242 should use the +simd option to turn on FP. */
31243 ARM_REMOVE ("fp", ALL_FP),
31244 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31245};
31246
aab2c27d
MM
31247static const struct arm_ext_table armv86a_ext_table[] =
31248{
616ce08e 31249 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
aab2c27d
MM
31250 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31251};
31252
34ef62f4
AV
31253static const struct arm_ext_table armv8m_main_ext_table[] =
31254{
31255 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31256 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
31257 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
31258 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31259 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31260};
31261
e0991585
AV
31262static const struct arm_ext_table armv8_1m_main_ext_table[] =
31263{
31264 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31265 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
31266 ARM_EXT ("fp",
31267 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31268 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
31269 ALL_FP),
31270 ARM_ADD ("fp.dp",
31271 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31272 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
31273 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
31274 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
31275 ARM_ADD ("mve.fp",
31276 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31277 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
31278 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
31279 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31280};
31281
34ef62f4
AV
31282static const struct arm_ext_table armv8r_ext_table[] =
31283{
31284 ARM_ADD ("crc", ARCH_CRC_ARMV8),
31285 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31286 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31287 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31288 ARM_REMOVE ("fp", ALL_FP),
31289 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
31290 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 31291};
7ed4c4c5 31292
c19d1205
ZW
31293/* This list should, at a minimum, contain all the architecture names
31294 recognized by GCC. */
34ef62f4
AV
31295#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
31296#define ARM_ARCH_OPT2(N, V, DF, ext) \
31297 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 31298
e74cfd16 31299static const struct arm_arch_option_table arm_archs[] =
c19d1205 31300{
497d849d
TP
31301 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
31302 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
31303 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
31304 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
31305 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
31306 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
31307 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
31308 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
31309 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
31310 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
31311 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
31312 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
31313 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
31314 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
31315 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
31316 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
31317 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
31318 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31319 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31320 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
31321 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
31322 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
31323 kept to preserve existing behaviour. */
34ef62f4
AV
31324 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31325 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31326 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
31327 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
31328 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
31329 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
31330 kept to preserve existing behaviour. */
34ef62f4
AV
31331 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
31332 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
31333 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
31334 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 31335 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
31336 /* The official spelling of the ARMv7 profile variants is the dashed form.
31337 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
31338 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31339 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
31340 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 31341 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
31342 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31343 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 31344 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 31345 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 31346 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
31347 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
31348 armv8m_main),
e0991585
AV
31349 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
31350 armv8_1m_main),
34ef62f4
AV
31351 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
31352 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
31353 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
31354 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
31355 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
31356 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
31357 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
aab2c27d 31358 ARM_ARCH_OPT2 ("armv8.6-a", ARM_ARCH_V8_6A, FPU_ARCH_VFP, armv86a),
497d849d
TP
31359 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
31360 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
31361 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 31362 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 31363};
f3bad469 31364#undef ARM_ARCH_OPT
7ed4c4c5 31365
69133863 31366/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 31367
69133863 31368struct arm_option_extension_value_table
c19d1205 31369{
0198d5e6
TC
31370 const char * name;
31371 size_t name_len;
31372 const arm_feature_set merge_value;
31373 const arm_feature_set clear_value;
d942732e
TP
31374 /* List of architectures for which an extension is available. ARM_ARCH_NONE
31375 indicates that an extension is available for all architectures while
31376 ARM_ANY marks an empty entry. */
0198d5e6 31377 const arm_feature_set allowed_archs[2];
c19d1205 31378};
7ed4c4c5 31379
0198d5e6
TC
31380/* The following table must be in alphabetical order with a NULL last entry. */
31381
d942732e
TP
31382#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
31383#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 31384
34ef62f4
AV
31385/* DEPRECATED: Refrain from using this table to add any new extensions, instead
31386 use the context sensitive approach using arm_ext_table's. */
69133863 31387static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 31388{
823d2571
TG
31389 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
31390 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 31391 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
31392 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
31393 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
31394 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
31395 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
31396 ARM_ARCH_V8_2A),
15afaa63
TP
31397 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31398 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31399 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
31400 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
31401 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
31402 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31403 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31404 ARM_ARCH_V8_2A),
01f48020
TC
31405 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31406 | ARM_EXT2_FP16_FML),
31407 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31408 | ARM_EXT2_FP16_FML),
31409 ARM_ARCH_V8_2A),
d942732e 31410 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 31411 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
31412 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31413 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
31414 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
31415 Thumb divide instruction. Due to this having the same name as the
31416 previous entry, this will be ignored when doing command-line parsing and
31417 only considered by build attribute selection code. */
31418 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31419 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31420 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 31421 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 31422 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 31423 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 31424 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 31425 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
31426 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
31427 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 31428 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
31429 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31430 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
31431 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31432 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31433 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
31434 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
31435 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 31436 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
31437 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31438 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31439 ARM_ARCH_V8A),
4d1464f2
MW
31440 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
31441 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 31442 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
31443 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
31444 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 31445 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
31446 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31447 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31448 ARM_ARCH_V8A),
d942732e 31449 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 31450 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
31451 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
31452 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
31453 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
31454 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
31455 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
31456 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
31457 | ARM_EXT_DIV),
31458 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
31459 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
31460 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
31461 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
31462 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 31463};
f3bad469 31464#undef ARM_EXT_OPT
69133863
MGD
31465
31466/* ISA floating-point and Advanced SIMD extensions. */
31467struct arm_option_fpu_value_table
31468{
0198d5e6
TC
31469 const char * name;
31470 const arm_feature_set value;
c19d1205 31471};
7ed4c4c5 31472
c19d1205
ZW
31473/* This list should, at a minimum, contain all the fpu names
31474 recognized by GCC. */
69133863 31475static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
31476{
31477 {"softfpa", FPU_NONE},
31478 {"fpe", FPU_ARCH_FPE},
31479 {"fpe2", FPU_ARCH_FPE},
31480 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
31481 {"fpa", FPU_ARCH_FPA},
31482 {"fpa10", FPU_ARCH_FPA},
31483 {"fpa11", FPU_ARCH_FPA},
31484 {"arm7500fe", FPU_ARCH_FPA},
31485 {"softvfp", FPU_ARCH_VFP},
31486 {"softvfp+vfp", FPU_ARCH_VFP_V2},
31487 {"vfp", FPU_ARCH_VFP_V2},
31488 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 31489 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
31490 {"vfp10", FPU_ARCH_VFP_V2},
31491 {"vfp10-r0", FPU_ARCH_VFP_V1},
31492 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
31493 {"vfpv2", FPU_ARCH_VFP_V2},
31494 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 31495 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 31496 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
31497 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
31498 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
31499 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
31500 {"arm1020t", FPU_ARCH_VFP_V1},
31501 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 31502 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
31503 {"arm1136jf-s", FPU_ARCH_VFP_V2},
31504 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 31505 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 31506 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 31507 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
31508 {"vfpv4", FPU_ARCH_VFP_V4},
31509 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 31510 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
31511 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
31512 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 31513 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
31514 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
31515 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
31516 {"crypto-neon-fp-armv8",
31517 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 31518 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
31519 {"crypto-neon-fp-armv8.1",
31520 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
31521 {NULL, ARM_ARCH_NONE}
31522};
31523
31524struct arm_option_value_table
31525{
e0471c16 31526 const char *name;
e74cfd16 31527 long value;
c19d1205 31528};
7ed4c4c5 31529
e74cfd16 31530static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
31531{
31532 {"hard", ARM_FLOAT_ABI_HARD},
31533 {"softfp", ARM_FLOAT_ABI_SOFTFP},
31534 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 31535 {NULL, 0}
c19d1205 31536};
7ed4c4c5 31537
c19d1205 31538#ifdef OBJ_ELF
3a4a14e9 31539/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 31540static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
31541{
31542 {"gnu", EF_ARM_EABI_UNKNOWN},
31543 {"4", EF_ARM_EABI_VER4},
3a4a14e9 31544 {"5", EF_ARM_EABI_VER5},
e74cfd16 31545 {NULL, 0}
c19d1205
ZW
31546};
31547#endif
7ed4c4c5 31548
c19d1205
ZW
31549struct arm_long_option_table
31550{
0198d5e6 31551 const char * option; /* Substring to match. */
e0471c16 31552 const char * help; /* Help information. */
17b9d67d 31553 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 31554 const char * deprecated; /* If non-null, print this message. */
c19d1205 31555};
7ed4c4c5 31556
c921be7d 31557static bfd_boolean
c168ce07 31558arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
31559 arm_feature_set *ext_set,
31560 const struct arm_ext_table *ext_table)
7ed4c4c5 31561{
69133863 31562 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
31563 extensions being added before being removed. We achieve this by having
31564 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 31565 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 31566 or removing it (0) and only allowing it to change in the order
69133863
MGD
31567 -1 -> 1 -> 0. */
31568 const struct arm_option_extension_value_table * opt = NULL;
d942732e 31569 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
31570 int adding_value = -1;
31571
c19d1205 31572 while (str != NULL && *str != 0)
7ed4c4c5 31573 {
82b8a785 31574 const char *ext;
f3bad469 31575 size_t len;
7ed4c4c5 31576
c19d1205
ZW
31577 if (*str != '+')
31578 {
31579 as_bad (_("invalid architectural extension"));
c921be7d 31580 return FALSE;
c19d1205 31581 }
7ed4c4c5 31582
c19d1205
ZW
31583 str++;
31584 ext = strchr (str, '+');
7ed4c4c5 31585
c19d1205 31586 if (ext != NULL)
f3bad469 31587 len = ext - str;
c19d1205 31588 else
f3bad469 31589 len = strlen (str);
7ed4c4c5 31590
f3bad469 31591 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
31592 {
31593 if (adding_value != 0)
31594 {
31595 adding_value = 0;
31596 opt = arm_extensions;
31597 }
31598
f3bad469 31599 len -= 2;
69133863
MGD
31600 str += 2;
31601 }
f3bad469 31602 else if (len > 0)
69133863
MGD
31603 {
31604 if (adding_value == -1)
31605 {
31606 adding_value = 1;
31607 opt = arm_extensions;
31608 }
31609 else if (adding_value != 1)
31610 {
31611 as_bad (_("must specify extensions to add before specifying "
31612 "those to remove"));
31613 return FALSE;
31614 }
31615 }
31616
f3bad469 31617 if (len == 0)
c19d1205
ZW
31618 {
31619 as_bad (_("missing architectural extension"));
c921be7d 31620 return FALSE;
c19d1205 31621 }
7ed4c4c5 31622
69133863
MGD
31623 gas_assert (adding_value != -1);
31624 gas_assert (opt != NULL);
31625
34ef62f4
AV
31626 if (ext_table != NULL)
31627 {
31628 const struct arm_ext_table * ext_opt = ext_table;
31629 bfd_boolean found = FALSE;
31630 for (; ext_opt->name != NULL; ext_opt++)
31631 if (ext_opt->name_len == len
31632 && strncmp (ext_opt->name, str, len) == 0)
31633 {
31634 if (adding_value)
31635 {
31636 if (ARM_FEATURE_ZERO (ext_opt->merge))
31637 /* TODO: Option not supported. When we remove the
31638 legacy table this case should error out. */
31639 continue;
31640
31641 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
31642 }
31643 else
31644 {
31645 if (ARM_FEATURE_ZERO (ext_opt->clear))
31646 /* TODO: Option not supported. When we remove the
31647 legacy table this case should error out. */
31648 continue;
31649 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
31650 }
31651 found = TRUE;
31652 break;
31653 }
31654 if (found)
31655 {
31656 str = ext;
31657 continue;
31658 }
31659 }
31660
69133863
MGD
31661 /* Scan over the options table trying to find an exact match. */
31662 for (; opt->name != NULL; opt++)
f3bad469 31663 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 31664 {
d942732e
TP
31665 int i, nb_allowed_archs =
31666 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 31667 /* Check we can apply the extension to this architecture. */
d942732e
TP
31668 for (i = 0; i < nb_allowed_archs; i++)
31669 {
31670 /* Empty entry. */
31671 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
31672 continue;
c168ce07 31673 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
31674 break;
31675 }
31676 if (i == nb_allowed_archs)
69133863
MGD
31677 {
31678 as_bad (_("extension does not apply to the base architecture"));
31679 return FALSE;
31680 }
31681
31682 /* Add or remove the extension. */
31683 if (adding_value)
4d354d8b 31684 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 31685 else
4d354d8b 31686 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 31687
3d030cdb
TP
31688 /* Allowing Thumb division instructions for ARMv7 in autodetection
31689 rely on this break so that duplicate extensions (extensions
31690 with the same name as a previous extension in the list) are not
31691 considered for command-line parsing. */
c19d1205
ZW
31692 break;
31693 }
7ed4c4c5 31694
c19d1205
ZW
31695 if (opt->name == NULL)
31696 {
69133863
MGD
31697 /* Did we fail to find an extension because it wasn't specified in
31698 alphabetical order, or because it does not exist? */
31699
31700 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 31701 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
31702 break;
31703
31704 if (opt->name == NULL)
31705 as_bad (_("unknown architectural extension `%s'"), str);
31706 else
31707 as_bad (_("architectural extensions must be specified in "
31708 "alphabetical order"));
31709
c921be7d 31710 return FALSE;
c19d1205 31711 }
69133863
MGD
31712 else
31713 {
31714 /* We should skip the extension we've just matched the next time
31715 round. */
31716 opt++;
31717 }
7ed4c4c5 31718
c19d1205
ZW
31719 str = ext;
31720 };
7ed4c4c5 31721
c921be7d 31722 return TRUE;
c19d1205 31723}
7ed4c4c5 31724
5312fe52
BW
31725static bfd_boolean
31726arm_parse_fp16_opt (const char *str)
31727{
31728 if (strcasecmp (str, "ieee") == 0)
31729 fp16_format = ARM_FP16_FORMAT_IEEE;
31730 else if (strcasecmp (str, "alternative") == 0)
31731 fp16_format = ARM_FP16_FORMAT_ALTERNATIVE;
31732 else
31733 {
31734 as_bad (_("unrecognised float16 format \"%s\""), str);
31735 return FALSE;
31736 }
31737
31738 return TRUE;
31739}
31740
c921be7d 31741static bfd_boolean
17b9d67d 31742arm_parse_cpu (const char *str)
7ed4c4c5 31743{
f3bad469 31744 const struct arm_cpu_option_table *opt;
82b8a785 31745 const char *ext = strchr (str, '+');
f3bad469 31746 size_t len;
7ed4c4c5 31747
c19d1205 31748 if (ext != NULL)
f3bad469 31749 len = ext - str;
7ed4c4c5 31750 else
f3bad469 31751 len = strlen (str);
7ed4c4c5 31752
f3bad469 31753 if (len == 0)
7ed4c4c5 31754 {
c19d1205 31755 as_bad (_("missing cpu name `%s'"), str);
c921be7d 31756 return FALSE;
7ed4c4c5
NC
31757 }
31758
c19d1205 31759 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 31760 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 31761 {
c168ce07 31762 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
31763 if (mcpu_ext_opt == NULL)
31764 mcpu_ext_opt = XNEW (arm_feature_set);
31765 *mcpu_ext_opt = opt->ext;
e74cfd16 31766 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 31767 if (opt->canonical_name)
ef8e6722
JW
31768 {
31769 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
31770 strcpy (selected_cpu_name, opt->canonical_name);
31771 }
ee065d83
PB
31772 else
31773 {
f3bad469 31774 size_t i;
c921be7d 31775
ef8e6722
JW
31776 if (len >= sizeof selected_cpu_name)
31777 len = (sizeof selected_cpu_name) - 1;
31778
f3bad469 31779 for (i = 0; i < len; i++)
ee065d83
PB
31780 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31781 selected_cpu_name[i] = 0;
31782 }
7ed4c4c5 31783
c19d1205 31784 if (ext != NULL)
34ef62f4 31785 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 31786
c921be7d 31787 return TRUE;
c19d1205 31788 }
7ed4c4c5 31789
c19d1205 31790 as_bad (_("unknown cpu `%s'"), str);
c921be7d 31791 return FALSE;
7ed4c4c5
NC
31792}
31793
c921be7d 31794static bfd_boolean
17b9d67d 31795arm_parse_arch (const char *str)
7ed4c4c5 31796{
e74cfd16 31797 const struct arm_arch_option_table *opt;
82b8a785 31798 const char *ext = strchr (str, '+');
f3bad469 31799 size_t len;
7ed4c4c5 31800
c19d1205 31801 if (ext != NULL)
f3bad469 31802 len = ext - str;
7ed4c4c5 31803 else
f3bad469 31804 len = strlen (str);
7ed4c4c5 31805
f3bad469 31806 if (len == 0)
7ed4c4c5 31807 {
c19d1205 31808 as_bad (_("missing architecture name `%s'"), str);
c921be7d 31809 return FALSE;
7ed4c4c5
NC
31810 }
31811
c19d1205 31812 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 31813 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 31814 {
e74cfd16 31815 march_cpu_opt = &opt->value;
4d354d8b
TP
31816 if (march_ext_opt == NULL)
31817 march_ext_opt = XNEW (arm_feature_set);
31818 *march_ext_opt = arm_arch_none;
e74cfd16 31819 march_fpu_opt = &opt->default_fpu;
e20f9590 31820 selected_ctx_ext_table = opt->ext_table;
5f4273c7 31821 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 31822
c19d1205 31823 if (ext != NULL)
34ef62f4
AV
31824 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
31825 opt->ext_table);
7ed4c4c5 31826
c921be7d 31827 return TRUE;
c19d1205
ZW
31828 }
31829
31830 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 31831 return FALSE;
7ed4c4c5 31832}
eb043451 31833
c921be7d 31834static bfd_boolean
17b9d67d 31835arm_parse_fpu (const char * str)
c19d1205 31836{
69133863 31837 const struct arm_option_fpu_value_table * opt;
b99bd4ef 31838
c19d1205
ZW
31839 for (opt = arm_fpus; opt->name != NULL; opt++)
31840 if (streq (opt->name, str))
31841 {
e74cfd16 31842 mfpu_opt = &opt->value;
c921be7d 31843 return TRUE;
c19d1205 31844 }
b99bd4ef 31845
c19d1205 31846 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 31847 return FALSE;
c19d1205
ZW
31848}
31849
c921be7d 31850static bfd_boolean
17b9d67d 31851arm_parse_float_abi (const char * str)
b99bd4ef 31852{
e74cfd16 31853 const struct arm_option_value_table * opt;
b99bd4ef 31854
c19d1205
ZW
31855 for (opt = arm_float_abis; opt->name != NULL; opt++)
31856 if (streq (opt->name, str))
31857 {
31858 mfloat_abi_opt = opt->value;
c921be7d 31859 return TRUE;
c19d1205 31860 }
cc8a6dd0 31861
c19d1205 31862 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 31863 return FALSE;
c19d1205 31864}
b99bd4ef 31865
c19d1205 31866#ifdef OBJ_ELF
c921be7d 31867static bfd_boolean
17b9d67d 31868arm_parse_eabi (const char * str)
c19d1205 31869{
e74cfd16 31870 const struct arm_option_value_table *opt;
cc8a6dd0 31871
c19d1205
ZW
31872 for (opt = arm_eabis; opt->name != NULL; opt++)
31873 if (streq (opt->name, str))
31874 {
31875 meabi_flags = opt->value;
c921be7d 31876 return TRUE;
c19d1205
ZW
31877 }
31878 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 31879 return FALSE;
c19d1205
ZW
31880}
31881#endif
cc8a6dd0 31882
c921be7d 31883static bfd_boolean
17b9d67d 31884arm_parse_it_mode (const char * str)
e07e6e58 31885{
c921be7d 31886 bfd_boolean ret = TRUE;
e07e6e58
NC
31887
31888 if (streq ("arm", str))
31889 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
31890 else if (streq ("thumb", str))
31891 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
31892 else if (streq ("always", str))
31893 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
31894 else if (streq ("never", str))
31895 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
31896 else
31897 {
31898 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 31899 "arm, thumb, always, or never."), str);
c921be7d 31900 ret = FALSE;
e07e6e58
NC
31901 }
31902
31903 return ret;
31904}
31905
2e6976a8 31906static bfd_boolean
17b9d67d 31907arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
31908{
31909 codecomposer_syntax = TRUE;
31910 arm_comment_chars[0] = ';';
31911 arm_line_separator_chars[0] = 0;
31912 return TRUE;
31913}
31914
c19d1205
ZW
31915struct arm_long_option_table arm_long_opts[] =
31916{
31917 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
31918 arm_parse_cpu, NULL},
31919 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
31920 arm_parse_arch, NULL},
31921 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
31922 arm_parse_fpu, NULL},
31923 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
31924 arm_parse_float_abi, NULL},
31925#ifdef OBJ_ELF
7fac0536 31926 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
31927 arm_parse_eabi, NULL},
31928#endif
e07e6e58
NC
31929 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
31930 arm_parse_it_mode, NULL},
2e6976a8
DG
31931 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
31932 arm_ccs_mode, NULL},
5312fe52
BW
31933 {"mfp16-format=",
31934 N_("[ieee|alternative]\n\
31935 set the encoding for half precision floating point "
31936 "numbers to IEEE\n\
31937 or Arm alternative format."),
31938 arm_parse_fp16_opt, NULL },
c19d1205
ZW
31939 {NULL, NULL, 0, NULL}
31940};
cc8a6dd0 31941
c19d1205 31942int
17b9d67d 31943md_parse_option (int c, const char * arg)
c19d1205
ZW
31944{
31945 struct arm_option_table *opt;
e74cfd16 31946 const struct arm_legacy_option_table *fopt;
c19d1205 31947 struct arm_long_option_table *lopt;
b99bd4ef 31948
c19d1205 31949 switch (c)
b99bd4ef 31950 {
c19d1205
ZW
31951#ifdef OPTION_EB
31952 case OPTION_EB:
31953 target_big_endian = 1;
31954 break;
31955#endif
cc8a6dd0 31956
c19d1205
ZW
31957#ifdef OPTION_EL
31958 case OPTION_EL:
31959 target_big_endian = 0;
31960 break;
31961#endif
b99bd4ef 31962
845b51d6
PB
31963 case OPTION_FIX_V4BX:
31964 fix_v4bx = TRUE;
31965 break;
31966
18a20338
CL
31967#ifdef OBJ_ELF
31968 case OPTION_FDPIC:
31969 arm_fdpic = TRUE;
31970 break;
31971#endif /* OBJ_ELF */
31972
c19d1205
ZW
31973 case 'a':
31974 /* Listing option. Just ignore these, we don't support additional
31975 ones. */
31976 return 0;
b99bd4ef 31977
c19d1205
ZW
31978 default:
31979 for (opt = arm_opts; opt->option != NULL; opt++)
31980 {
31981 if (c == opt->option[0]
31982 && ((arg == NULL && opt->option[1] == 0)
31983 || streq (arg, opt->option + 1)))
31984 {
c19d1205 31985 /* If the option is deprecated, tell the user. */
278df34e 31986 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
31987 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31988 arg ? arg : "", _(opt->deprecated));
b99bd4ef 31989
c19d1205
ZW
31990 if (opt->var != NULL)
31991 *opt->var = opt->value;
cc8a6dd0 31992
c19d1205
ZW
31993 return 1;
31994 }
31995 }
b99bd4ef 31996
e74cfd16
PB
31997 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
31998 {
31999 if (c == fopt->option[0]
32000 && ((arg == NULL && fopt->option[1] == 0)
32001 || streq (arg, fopt->option + 1)))
32002 {
e74cfd16 32003 /* If the option is deprecated, tell the user. */
278df34e 32004 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
32005 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
32006 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
32007
32008 if (fopt->var != NULL)
32009 *fopt->var = &fopt->value;
32010
32011 return 1;
32012 }
32013 }
32014
c19d1205
ZW
32015 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32016 {
32017 /* These options are expected to have an argument. */
32018 if (c == lopt->option[0]
32019 && arg != NULL
32020 && strncmp (arg, lopt->option + 1,
32021 strlen (lopt->option + 1)) == 0)
32022 {
c19d1205 32023 /* If the option is deprecated, tell the user. */
278df34e 32024 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
32025 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
32026 _(lopt->deprecated));
b99bd4ef 32027
c19d1205
ZW
32028 /* Call the sup-option parser. */
32029 return lopt->func (arg + strlen (lopt->option) - 1);
32030 }
32031 }
a737bd4d 32032
c19d1205
ZW
32033 return 0;
32034 }
a394c00f 32035
c19d1205
ZW
32036 return 1;
32037}
a394c00f 32038
c19d1205
ZW
32039void
32040md_show_usage (FILE * fp)
a394c00f 32041{
c19d1205
ZW
32042 struct arm_option_table *opt;
32043 struct arm_long_option_table *lopt;
a394c00f 32044
c19d1205 32045 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 32046
c19d1205
ZW
32047 for (opt = arm_opts; opt->option != NULL; opt++)
32048 if (opt->help != NULL)
32049 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 32050
c19d1205
ZW
32051 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32052 if (lopt->help != NULL)
32053 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 32054
c19d1205
ZW
32055#ifdef OPTION_EB
32056 fprintf (fp, _("\
32057 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
32058#endif
32059
c19d1205
ZW
32060#ifdef OPTION_EL
32061 fprintf (fp, _("\
32062 -EL assemble code for a little-endian cpu\n"));
a737bd4d 32063#endif
845b51d6
PB
32064
32065 fprintf (fp, _("\
32066 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
32067
32068#ifdef OBJ_ELF
32069 fprintf (fp, _("\
32070 --fdpic generate an FDPIC object file\n"));
32071#endif /* OBJ_ELF */
c19d1205 32072}
ee065d83 32073
ee065d83 32074#ifdef OBJ_ELF
0198d5e6 32075
62b3e311
PB
32076typedef struct
32077{
32078 int val;
32079 arm_feature_set flags;
32080} cpu_arch_ver_table;
32081
2c6b98ea
TP
32082/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
32083 chronologically for architectures, with an exception for ARMv6-M and
32084 ARMv6S-M due to legacy reasons. No new architecture should have a
32085 special case. This allows for build attribute selection results to be
32086 stable when new architectures are added. */
62b3e311
PB
32087static const cpu_arch_ver_table cpu_arch_ver[] =
32088{
031254f2
AV
32089 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
32090 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
32091 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
32092 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
32093 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
32094 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
32095 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
32096 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
32097 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
32098 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
32099 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
32100 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
32101 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
32102 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
32103 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
32104 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
32105 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
32106 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
32107 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
32108 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
32109 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
32110 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
32111 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
32112 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
32113
32114 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
32115 always selected build attributes to match those of ARMv6-M
32116 (resp. ARMv6S-M). However, due to these architectures being a strict
32117 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
32118 would be selected when fully respecting chronology of architectures.
32119 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
32120 move them before ARMv7 architectures. */
031254f2
AV
32121 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
32122 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
32123
32124 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
32125 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
32126 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
32127 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
32128 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
32129 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
32130 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
32131 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
32132 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
32133 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
32134 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
32135 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
32136 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
32137 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
32138 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
32139 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
aab2c27d
MM
32140 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_6A},
32141 {-1, ARM_ARCH_NONE}
62b3e311
PB
32142};
32143
ee3c0378 32144/* Set an attribute if it has not already been set by the user. */
0198d5e6 32145
ee3c0378
AS
32146static void
32147aeabi_set_attribute_int (int tag, int value)
32148{
32149 if (tag < 1
32150 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32151 || !attributes_set_explicitly[tag])
32152 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
32153}
32154
32155static void
32156aeabi_set_attribute_string (int tag, const char *value)
32157{
32158 if (tag < 1
32159 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32160 || !attributes_set_explicitly[tag])
32161 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
32162}
32163
2c6b98ea
TP
32164/* Return whether features in the *NEEDED feature set are available via
32165 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 32166
2c6b98ea
TP
32167static bfd_boolean
32168have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
32169 const arm_feature_set *needed)
32170{
32171 int i, nb_allowed_archs;
32172 arm_feature_set ext_fset;
32173 const struct arm_option_extension_value_table *opt;
32174
32175 ext_fset = arm_arch_none;
32176 for (opt = arm_extensions; opt->name != NULL; opt++)
32177 {
32178 /* Extension does not provide any feature we need. */
32179 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
32180 continue;
32181
32182 nb_allowed_archs =
32183 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
32184 for (i = 0; i < nb_allowed_archs; i++)
32185 {
32186 /* Empty entry. */
32187 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
32188 break;
32189
32190 /* Extension is available, add it. */
32191 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
32192 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
32193 }
32194 }
32195
32196 /* Can we enable all features in *needed? */
32197 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
32198}
32199
32200/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
32201 a given architecture feature set *ARCH_EXT_FSET including extension feature
32202 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
32203 - if true, check for an exact match of the architecture modulo extensions;
32204 - otherwise, select build attribute value of the first superset
32205 architecture released so that results remains stable when new architectures
32206 are added.
32207 For -march/-mcpu=all the build attribute value of the most featureful
32208 architecture is returned. Tag_CPU_arch_profile result is returned in
32209 PROFILE. */
0198d5e6 32210
2c6b98ea
TP
32211static int
32212get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
32213 const arm_feature_set *ext_fset,
32214 char *profile, int exact_match)
32215{
32216 arm_feature_set arch_fset;
32217 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
32218
32219 /* Select most featureful architecture with all its extensions if building
32220 for -march=all as the feature sets used to set build attributes. */
32221 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
32222 {
32223 /* Force revisiting of decision for each new architecture. */
031254f2 32224 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
32225 *profile = 'A';
32226 return TAG_CPU_ARCH_V8;
32227 }
32228
32229 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
32230
32231 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
32232 {
32233 arm_feature_set known_arch_fset;
32234
32235 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
32236 if (exact_match)
32237 {
32238 /* Base architecture match user-specified architecture and
32239 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
32240 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
32241 {
32242 p_ver_ret = p_ver;
32243 goto found;
32244 }
32245 /* Base architecture match user-specified architecture only
32246 (eg. ARMv6-M in the same case as above). Record it in case we
32247 find a match with above condition. */
32248 else if (p_ver_ret == NULL
32249 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
32250 p_ver_ret = p_ver;
32251 }
32252 else
32253 {
32254
32255 /* Architecture has all features wanted. */
32256 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
32257 {
32258 arm_feature_set added_fset;
32259
32260 /* Compute features added by this architecture over the one
32261 recorded in p_ver_ret. */
32262 if (p_ver_ret != NULL)
32263 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
32264 p_ver_ret->flags);
32265 /* First architecture that match incl. with extensions, or the
32266 only difference in features over the recorded match is
32267 features that were optional and are now mandatory. */
32268 if (p_ver_ret == NULL
32269 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
32270 {
32271 p_ver_ret = p_ver;
32272 goto found;
32273 }
32274 }
32275 else if (p_ver_ret == NULL)
32276 {
32277 arm_feature_set needed_ext_fset;
32278
32279 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
32280
32281 /* Architecture has all features needed when using some
32282 extensions. Record it and continue searching in case there
32283 exist an architecture providing all needed features without
32284 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
32285 OS extension). */
32286 if (have_ext_for_needed_feat_p (&known_arch_fset,
32287 &needed_ext_fset))
32288 p_ver_ret = p_ver;
32289 }
32290 }
32291 }
32292
32293 if (p_ver_ret == NULL)
32294 return -1;
32295
32296found:
32297 /* Tag_CPU_arch_profile. */
32298 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
32299 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
32300 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
32301 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
32302 *profile = 'A';
32303 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
32304 *profile = 'R';
32305 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
32306 *profile = 'M';
32307 else
32308 *profile = '\0';
32309 return p_ver_ret->val;
32310}
32311
ee065d83 32312/* Set the public EABI object attributes. */
0198d5e6 32313
c168ce07 32314static void
ee065d83
PB
32315aeabi_set_public_attributes (void)
32316{
b90d5ba0 32317 char profile = '\0';
2c6b98ea 32318 int arch = -1;
90ec0d68 32319 int virt_sec = 0;
bca38921 32320 int fp16_optional = 0;
2c6b98ea
TP
32321 int skip_exact_match = 0;
32322 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 32323
54bab281
TP
32324 /* Autodetection mode, choose the architecture based the instructions
32325 actually used. */
32326 if (no_cpu_selected ())
32327 {
32328 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 32329
54bab281
TP
32330 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
32331 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 32332
54bab281
TP
32333 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
32334 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 32335
54bab281 32336 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
32337 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32338 flags_ext = arm_arch_none;
32339 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
32340 selected_ext = flags_ext;
54bab281
TP
32341 selected_cpu = flags;
32342 }
32343 /* Otherwise, choose the architecture based on the capabilities of the
32344 requested cpu. */
32345 else
4d354d8b
TP
32346 {
32347 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
32348 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
32349 flags_ext = selected_ext;
32350 flags = selected_cpu;
32351 }
32352 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 32353
ddd7f988 32354 /* Allow the user to override the reported architecture. */
4d354d8b 32355 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 32356 {
4d354d8b 32357 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 32358 flags_ext = arm_arch_none;
7a1d4c38 32359 }
2c6b98ea 32360 else
4d354d8b 32361 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
32362
32363 /* When this function is run again after relaxation has happened there is no
32364 way to determine whether an architecture or CPU was specified by the user:
32365 - selected_cpu is set above for relaxation to work;
32366 - march_cpu_opt is not set if only -mcpu or .cpu is used;
32367 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
32368 Therefore, if not in -march=all case we first try an exact match and fall
32369 back to autodetection. */
32370 if (!skip_exact_match)
32371 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
32372 if (arch == -1)
32373 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
32374 if (arch == -1)
32375 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 32376
ee065d83
PB
32377 /* Tag_CPU_name. */
32378 if (selected_cpu_name[0])
32379 {
91d6fa6a 32380 char *q;
ee065d83 32381
91d6fa6a
NC
32382 q = selected_cpu_name;
32383 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
32384 {
32385 int i;
5f4273c7 32386
91d6fa6a
NC
32387 q += 4;
32388 for (i = 0; q[i]; i++)
32389 q[i] = TOUPPER (q[i]);
ee065d83 32390 }
91d6fa6a 32391 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 32392 }
62f3b8c8 32393
ee065d83 32394 /* Tag_CPU_arch. */
ee3c0378 32395 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 32396
62b3e311 32397 /* Tag_CPU_arch_profile. */
69239280
MGD
32398 if (profile != '\0')
32399 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 32400
15afaa63 32401 /* Tag_DSP_extension. */
4d354d8b 32402 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 32403 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 32404
2c6b98ea 32405 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 32406 /* Tag_ARM_ISA_use. */
ee3c0378 32407 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 32408 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 32409 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 32410
ee065d83 32411 /* Tag_THUMB_ISA_use. */
ee3c0378 32412 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 32413 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
32414 {
32415 int thumb_isa_use;
32416
32417 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 32418 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
32419 thumb_isa_use = 3;
32420 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
32421 thumb_isa_use = 2;
32422 else
32423 thumb_isa_use = 1;
32424 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
32425 }
62f3b8c8 32426
ee065d83 32427 /* Tag_VFP_arch. */
a715796b
TG
32428 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
32429 aeabi_set_attribute_int (Tag_VFP_arch,
32430 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32431 ? 7 : 8);
bca38921 32432 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
32433 aeabi_set_attribute_int (Tag_VFP_arch,
32434 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32435 ? 5 : 6);
32436 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
32437 {
32438 fp16_optional = 1;
32439 aeabi_set_attribute_int (Tag_VFP_arch, 3);
32440 }
ada65aa3 32441 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
32442 {
32443 aeabi_set_attribute_int (Tag_VFP_arch, 4);
32444 fp16_optional = 1;
32445 }
ee3c0378
AS
32446 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
32447 aeabi_set_attribute_int (Tag_VFP_arch, 2);
32448 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 32449 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 32450 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 32451
4547cb56
NC
32452 /* Tag_ABI_HardFP_use. */
32453 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
32454 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
32455 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
32456
ee065d83 32457 /* Tag_WMMX_arch. */
ee3c0378
AS
32458 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
32459 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
32460 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
32461 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 32462
ee3c0378 32463 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
32464 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
32465 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
32466 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
32467 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
32468 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
32469 {
32470 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
32471 {
32472 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
32473 }
32474 else
32475 {
32476 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
32477 fp16_optional = 1;
32478 }
32479 }
fa94de6b 32480
a7ad558c
AV
32481 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
32482 aeabi_set_attribute_int (Tag_MVE_arch, 2);
32483 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
32484 aeabi_set_attribute_int (Tag_MVE_arch, 1);
32485
ee3c0378 32486 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 32487 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 32488 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 32489
69239280
MGD
32490 /* Tag_DIV_use.
32491
32492 We set Tag_DIV_use to two when integer divide instructions have been used
32493 in ARM state, or when Thumb integer divide instructions have been used,
32494 but we have no architecture profile set, nor have we any ARM instructions.
32495
4ed7ed8d
TP
32496 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
32497 by the base architecture.
bca38921 32498
69239280 32499 For new architectures we will have to check these tests. */
031254f2 32500 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
32501 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
32502 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
32503 aeabi_set_attribute_int (Tag_DIV_use, 0);
32504 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
32505 || (profile == '\0'
32506 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
32507 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 32508 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
32509
32510 /* Tag_MP_extension_use. */
32511 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
32512 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
32513
32514 /* Tag Virtualization_use. */
32515 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
32516 virt_sec |= 1;
32517 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
32518 virt_sec |= 2;
32519 if (virt_sec != 0)
32520 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
5312fe52
BW
32521
32522 if (fp16_format != ARM_FP16_FORMAT_DEFAULT)
32523 aeabi_set_attribute_int (Tag_ABI_FP_16bit_format, fp16_format);
ee065d83
PB
32524}
32525
c168ce07
TP
32526/* Post relaxation hook. Recompute ARM attributes now that relaxation is
32527 finished and free extension feature bits which will not be used anymore. */
0198d5e6 32528
c168ce07
TP
32529void
32530arm_md_post_relax (void)
32531{
32532 aeabi_set_public_attributes ();
4d354d8b
TP
32533 XDELETE (mcpu_ext_opt);
32534 mcpu_ext_opt = NULL;
32535 XDELETE (march_ext_opt);
32536 march_ext_opt = NULL;
c168ce07
TP
32537}
32538
104d59d1 32539/* Add the default contents for the .ARM.attributes section. */
0198d5e6 32540
ee065d83
PB
32541void
32542arm_md_end (void)
32543{
ee065d83
PB
32544 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
32545 return;
32546
32547 aeabi_set_public_attributes ();
ee065d83 32548}
8463be01 32549#endif /* OBJ_ELF */
ee065d83 32550
ee065d83
PB
32551/* Parse a .cpu directive. */
32552
32553static void
32554s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
32555{
e74cfd16 32556 const struct arm_cpu_option_table *opt;
ee065d83
PB
32557 char *name;
32558 char saved_char;
32559
32560 name = input_line_pointer;
5f4273c7 32561 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
32562 input_line_pointer++;
32563 saved_char = *input_line_pointer;
32564 *input_line_pointer = 0;
32565
32566 /* Skip the first "all" entry. */
32567 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
32568 if (streq (opt->name, name))
32569 {
4d354d8b
TP
32570 selected_arch = opt->value;
32571 selected_ext = opt->ext;
32572 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 32573 if (opt->canonical_name)
5f4273c7 32574 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
32575 else
32576 {
32577 int i;
32578 for (i = 0; opt->name[i]; i++)
32579 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 32580
ee065d83
PB
32581 selected_cpu_name[i] = 0;
32582 }
4d354d8b
TP
32583 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32584
ee065d83
PB
32585 *input_line_pointer = saved_char;
32586 demand_empty_rest_of_line ();
32587 return;
32588 }
32589 as_bad (_("unknown cpu `%s'"), name);
32590 *input_line_pointer = saved_char;
32591 ignore_rest_of_line ();
32592}
32593
ee065d83
PB
32594/* Parse a .arch directive. */
32595
32596static void
32597s_arm_arch (int ignored ATTRIBUTE_UNUSED)
32598{
e74cfd16 32599 const struct arm_arch_option_table *opt;
ee065d83
PB
32600 char saved_char;
32601 char *name;
32602
32603 name = input_line_pointer;
5f4273c7 32604 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
32605 input_line_pointer++;
32606 saved_char = *input_line_pointer;
32607 *input_line_pointer = 0;
32608
32609 /* Skip the first "all" entry. */
32610 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32611 if (streq (opt->name, name))
32612 {
4d354d8b
TP
32613 selected_arch = opt->value;
32614 selected_ext = arm_arch_none;
32615 selected_cpu = selected_arch;
5f4273c7 32616 strcpy (selected_cpu_name, opt->name);
4d354d8b 32617 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
32618 *input_line_pointer = saved_char;
32619 demand_empty_rest_of_line ();
32620 return;
32621 }
32622
32623 as_bad (_("unknown architecture `%s'\n"), name);
32624 *input_line_pointer = saved_char;
32625 ignore_rest_of_line ();
32626}
32627
7a1d4c38
PB
32628/* Parse a .object_arch directive. */
32629
32630static void
32631s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
32632{
32633 const struct arm_arch_option_table *opt;
32634 char saved_char;
32635 char *name;
32636
32637 name = input_line_pointer;
5f4273c7 32638 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
32639 input_line_pointer++;
32640 saved_char = *input_line_pointer;
32641 *input_line_pointer = 0;
32642
32643 /* Skip the first "all" entry. */
32644 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32645 if (streq (opt->name, name))
32646 {
4d354d8b 32647 selected_object_arch = opt->value;
7a1d4c38
PB
32648 *input_line_pointer = saved_char;
32649 demand_empty_rest_of_line ();
32650 return;
32651 }
32652
32653 as_bad (_("unknown architecture `%s'\n"), name);
32654 *input_line_pointer = saved_char;
32655 ignore_rest_of_line ();
32656}
32657
69133863
MGD
32658/* Parse a .arch_extension directive. */
32659
32660static void
32661s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
32662{
32663 const struct arm_option_extension_value_table *opt;
32664 char saved_char;
32665 char *name;
32666 int adding_value = 1;
32667
32668 name = input_line_pointer;
32669 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32670 input_line_pointer++;
32671 saved_char = *input_line_pointer;
32672 *input_line_pointer = 0;
32673
32674 if (strlen (name) >= 2
32675 && strncmp (name, "no", 2) == 0)
32676 {
32677 adding_value = 0;
32678 name += 2;
32679 }
32680
e20f9590
MI
32681 /* Check the context specific extension table */
32682 if (selected_ctx_ext_table)
32683 {
32684 const struct arm_ext_table * ext_opt;
32685 for (ext_opt = selected_ctx_ext_table; ext_opt->name != NULL; ext_opt++)
32686 {
32687 if (streq (ext_opt->name, name))
32688 {
32689 if (adding_value)
32690 {
32691 if (ARM_FEATURE_ZERO (ext_opt->merge))
32692 /* TODO: Option not supported. When we remove the
32693 legacy table this case should error out. */
32694 continue;
32695 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
32696 ext_opt->merge);
32697 }
32698 else
32699 ARM_CLEAR_FEATURE (selected_ext, selected_ext, ext_opt->clear);
32700
32701 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32702 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32703 *input_line_pointer = saved_char;
32704 demand_empty_rest_of_line ();
32705 return;
32706 }
32707 }
32708 }
32709
69133863
MGD
32710 for (opt = arm_extensions; opt->name != NULL; opt++)
32711 if (streq (opt->name, name))
32712 {
d942732e
TP
32713 int i, nb_allowed_archs =
32714 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
32715 for (i = 0; i < nb_allowed_archs; i++)
32716 {
32717 /* Empty entry. */
4d354d8b 32718 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 32719 continue;
4d354d8b 32720 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
32721 break;
32722 }
32723
32724 if (i == nb_allowed_archs)
69133863
MGD
32725 {
32726 as_bad (_("architectural extension `%s' is not allowed for the "
32727 "current base architecture"), name);
32728 break;
32729 }
32730
32731 if (adding_value)
4d354d8b 32732 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 32733 opt->merge_value);
69133863 32734 else
4d354d8b 32735 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 32736
4d354d8b
TP
32737 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32738 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
32739 *input_line_pointer = saved_char;
32740 demand_empty_rest_of_line ();
3d030cdb
TP
32741 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
32742 on this return so that duplicate extensions (extensions with the
32743 same name as a previous extension in the list) are not considered
32744 for command-line parsing. */
69133863
MGD
32745 return;
32746 }
32747
32748 if (opt->name == NULL)
e673710a 32749 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
32750
32751 *input_line_pointer = saved_char;
32752 ignore_rest_of_line ();
32753}
32754
ee065d83
PB
32755/* Parse a .fpu directive. */
32756
32757static void
32758s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
32759{
69133863 32760 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
32761 char saved_char;
32762 char *name;
32763
32764 name = input_line_pointer;
5f4273c7 32765 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
32766 input_line_pointer++;
32767 saved_char = *input_line_pointer;
32768 *input_line_pointer = 0;
5f4273c7 32769
ee065d83
PB
32770 for (opt = arm_fpus; opt->name != NULL; opt++)
32771 if (streq (opt->name, name))
32772 {
4d354d8b 32773 selected_fpu = opt->value;
f4399880 32774 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, fpu_any);
4d354d8b
TP
32775#ifndef CPU_DEFAULT
32776 if (no_cpu_selected ())
32777 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
32778 else
32779#endif
32780 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
32781 *input_line_pointer = saved_char;
32782 demand_empty_rest_of_line ();
32783 return;
32784 }
32785
32786 as_bad (_("unknown floating point format `%s'\n"), name);
32787 *input_line_pointer = saved_char;
32788 ignore_rest_of_line ();
32789}
ee065d83 32790
794ba86a 32791/* Copy symbol information. */
f31fef98 32792
794ba86a
DJ
32793void
32794arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
32795{
32796 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
32797}
e04befd0 32798
f31fef98 32799#ifdef OBJ_ELF
e04befd0
AS
32800/* Given a symbolic attribute NAME, return the proper integer value.
32801 Returns -1 if the attribute is not known. */
f31fef98 32802
e04befd0
AS
32803int
32804arm_convert_symbolic_attribute (const char *name)
32805{
f31fef98
NC
32806 static const struct
32807 {
32808 const char * name;
32809 const int tag;
32810 }
32811 attribute_table[] =
32812 {
32813 /* When you modify this table you should
32814 also modify the list in doc/c-arm.texi. */
e04befd0 32815#define T(tag) {#tag, tag}
f31fef98
NC
32816 T (Tag_CPU_raw_name),
32817 T (Tag_CPU_name),
32818 T (Tag_CPU_arch),
32819 T (Tag_CPU_arch_profile),
32820 T (Tag_ARM_ISA_use),
32821 T (Tag_THUMB_ISA_use),
75375b3e 32822 T (Tag_FP_arch),
f31fef98
NC
32823 T (Tag_VFP_arch),
32824 T (Tag_WMMX_arch),
32825 T (Tag_Advanced_SIMD_arch),
32826 T (Tag_PCS_config),
32827 T (Tag_ABI_PCS_R9_use),
32828 T (Tag_ABI_PCS_RW_data),
32829 T (Tag_ABI_PCS_RO_data),
32830 T (Tag_ABI_PCS_GOT_use),
32831 T (Tag_ABI_PCS_wchar_t),
32832 T (Tag_ABI_FP_rounding),
32833 T (Tag_ABI_FP_denormal),
32834 T (Tag_ABI_FP_exceptions),
32835 T (Tag_ABI_FP_user_exceptions),
32836 T (Tag_ABI_FP_number_model),
75375b3e 32837 T (Tag_ABI_align_needed),
f31fef98 32838 T (Tag_ABI_align8_needed),
75375b3e 32839 T (Tag_ABI_align_preserved),
f31fef98
NC
32840 T (Tag_ABI_align8_preserved),
32841 T (Tag_ABI_enum_size),
32842 T (Tag_ABI_HardFP_use),
32843 T (Tag_ABI_VFP_args),
32844 T (Tag_ABI_WMMX_args),
32845 T (Tag_ABI_optimization_goals),
32846 T (Tag_ABI_FP_optimization_goals),
32847 T (Tag_compatibility),
32848 T (Tag_CPU_unaligned_access),
75375b3e 32849 T (Tag_FP_HP_extension),
f31fef98
NC
32850 T (Tag_VFP_HP_extension),
32851 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
32852 T (Tag_MPextension_use),
32853 T (Tag_DIV_use),
f31fef98
NC
32854 T (Tag_nodefaults),
32855 T (Tag_also_compatible_with),
32856 T (Tag_conformance),
32857 T (Tag_T2EE_use),
32858 T (Tag_Virtualization_use),
15afaa63 32859 T (Tag_DSP_extension),
a7ad558c 32860 T (Tag_MVE_arch),
cd21e546 32861 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 32862#undef T
f31fef98 32863 };
e04befd0
AS
32864 unsigned int i;
32865
32866 if (name == NULL)
32867 return -1;
32868
f31fef98 32869 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 32870 if (streq (name, attribute_table[i].name))
e04befd0
AS
32871 return attribute_table[i].tag;
32872
32873 return -1;
32874}
267bf995 32875
93ef582d
NC
32876/* Apply sym value for relocations only in the case that they are for
32877 local symbols in the same segment as the fixup and you have the
32878 respective architectural feature for blx and simple switches. */
0198d5e6 32879
267bf995 32880int
93ef582d 32881arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
32882{
32883 if (fixP->fx_addsy
32884 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
32885 /* PR 17444: If the local symbol is in a different section then a reloc
32886 will always be generated for it, so applying the symbol value now
32887 will result in a double offset being stored in the relocation. */
32888 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 32889 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
32890 {
32891 switch (fixP->fx_r_type)
32892 {
32893 case BFD_RELOC_ARM_PCREL_BLX:
32894 case BFD_RELOC_THUMB_PCREL_BRANCH23:
32895 if (ARM_IS_FUNC (fixP->fx_addsy))
32896 return 1;
32897 break;
32898
32899 case BFD_RELOC_ARM_PCREL_CALL:
32900 case BFD_RELOC_THUMB_PCREL_BLX:
32901 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 32902 return 1;
267bf995
RR
32903 break;
32904
32905 default:
32906 break;
32907 }
32908
32909 }
32910 return 0;
32911}
f31fef98 32912#endif /* OBJ_ELF */
This page took 4.592745 seconds and 4 git commands to generate.