* config/tc-mep.h (DIFF_EXPR_OK): Do not define.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
f31fef98 3 2004, 2005, 2006, 2007, 2008, 2009
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
5287ad62 28#include <limits.h>
037e8744 29#include <stdarg.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80/* Bit N indicates that an R_ARM_NONE relocation has been output for
81 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
82 emitted only once per section, to save unnecessary bloat. */
83static unsigned int marked_pr_dependency = 0;
84
85#endif /* OBJ_ELF */
86
4962c51a
MS
87/* Results from operand parsing worker functions. */
88
89typedef enum
90{
91 PARSE_OPERAND_SUCCESS,
92 PARSE_OPERAND_FAIL,
93 PARSE_OPERAND_FAIL_NO_BACKTRACK
94} parse_operand_result;
95
33a392fb
PB
96enum arm_float_abi
97{
98 ARM_FLOAT_ABI_HARD,
99 ARM_FLOAT_ABI_SOFTFP,
100 ARM_FLOAT_ABI_SOFT
101};
102
c19d1205 103/* Types of processor to assemble for. */
b99bd4ef
NC
104#ifndef CPU_DEFAULT
105#if defined __XSCALE__
e74cfd16 106#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
107#else
108#if defined __thumb__
e74cfd16 109#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
110#endif
111#endif
112#endif
113
114#ifndef FPU_DEFAULT
c820d418
MM
115# ifdef TE_LINUX
116# define FPU_DEFAULT FPU_ARCH_FPA
117# elif defined (TE_NetBSD)
118# ifdef OBJ_ELF
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
120# else
121 /* Legacy a.out format. */
122# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
123# endif
4e7fd91e
PB
124# elif defined (TE_VXWORKS)
125# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
126# else
127 /* For backwards compatibility, default to FPA. */
128# define FPU_DEFAULT FPU_ARCH_FPA
129# endif
130#endif /* ifndef FPU_DEFAULT */
b99bd4ef 131
c19d1205 132#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 133
e74cfd16
PB
134static arm_feature_set cpu_variant;
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
03b1477f
RE
148
149/* Variables that we set while parsing command-line options. Once all
150 options have been read we re-process these values to set the real
151 assembly flags. */
e74cfd16
PB
152static const arm_feature_set *legacy_cpu = NULL;
153static const arm_feature_set *legacy_fpu = NULL;
154
155static const arm_feature_set *mcpu_cpu_opt = NULL;
156static const arm_feature_set *mcpu_fpu_opt = NULL;
157static const arm_feature_set *march_cpu_opt = NULL;
158static const arm_feature_set *march_fpu_opt = NULL;
159static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 160static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
161
162/* Constants for known architecture features. */
163static const arm_feature_set fpu_default = FPU_DEFAULT;
164static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
165static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
166static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
167static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
168static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
169static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
170static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
171static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
172
173#ifdef CPU_DEFAULT
174static const arm_feature_set cpu_default = CPU_DEFAULT;
175#endif
176
177static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
178static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
179static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
180static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
181static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
182static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
183static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
184static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
185static const arm_feature_set arm_ext_v4t_5 =
186 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
187static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
188static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
189static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
190static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
191static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
192static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
193static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
194static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311 195static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
7e806470
PB
196static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
197static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
198static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
199static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
200static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
201static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
7e806470
PB
202static const arm_feature_set arm_ext_m =
203 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
e74cfd16
PB
204
205static const arm_feature_set arm_arch_any = ARM_ANY;
206static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
207static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
208static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
209
2d447fca
JM
210static const arm_feature_set arm_cext_iwmmxt2 =
211 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
212static const arm_feature_set arm_cext_iwmmxt =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
214static const arm_feature_set arm_cext_xscale =
215 ARM_FEATURE (0, ARM_CEXT_XSCALE);
216static const arm_feature_set arm_cext_maverick =
217 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
218static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
219static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
220static const arm_feature_set fpu_vfp_ext_v1xd =
221 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
222static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
223static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62 224static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
225static const arm_feature_set fpu_vfp_ext_d32 =
226 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
227static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
228static const arm_feature_set fpu_vfp_v3_or_neon_ext =
229 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
8e79c3df 230static const arm_feature_set fpu_neon_fp16 = ARM_FEATURE (0, FPU_NEON_FP16);
e74cfd16 231
33a392fb 232static int mfloat_abi_opt = -1;
e74cfd16
PB
233/* Record user cpu selection for object attributes. */
234static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
235/* Must be long enough to hold any of the names in arm_cpus. */
236static char selected_cpu_name[16];
7cc69913 237#ifdef OBJ_ELF
deeaaff8
DJ
238# ifdef EABI_DEFAULT
239static int meabi_flags = EABI_DEFAULT;
240# else
d507cf36 241static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 242# endif
e1da3f5b 243
ee3c0378
AS
244static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
245
e1da3f5b 246bfd_boolean
5f4273c7 247arm_is_eabi (void)
e1da3f5b
PB
248{
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
250}
7cc69913 251#endif
b99bd4ef 252
b99bd4ef 253#ifdef OBJ_ELF
c19d1205 254/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
255symbolS * GOT_symbol;
256#endif
257
b99bd4ef
NC
258/* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262static int thumb_mode = 0;
263
c19d1205
ZW
264/* If unified_syntax is true, we are processing the new unified
265 ARM/Thumb syntax. Important differences from the old ARM mode:
266
267 - Immediate operands do not require a # prefix.
268 - Conditional affixes always appear at the end of the
269 instruction. (For backward compatibility, those instructions
270 that formerly had them in the middle, continue to accept them
271 there.)
272 - The IT instruction may appear, and if it does is validated
273 against subsequent conditional affixes. It does not generate
274 machine code.
275
276 Important differences from the old Thumb mode:
277
278 - Immediate operands do not require a # prefix.
279 - Most of the V6T2 instructions are only available in unified mode.
280 - The .N and .W suffixes are recognized and honored (it is an error
281 if they cannot be honored).
282 - All instructions set the flags if and only if they have an 's' affix.
283 - Conditional affixes may be used. They are validated against
284 preceding IT instructions. Unlike ARM mode, you cannot use a
285 conditional affix except in the scope of an IT instruction. */
286
287static bfd_boolean unified_syntax = FALSE;
b99bd4ef 288
5287ad62
JB
289enum neon_el_type
290{
dcbf9037 291 NT_invtype,
5287ad62
JB
292 NT_untyped,
293 NT_integer,
294 NT_float,
295 NT_poly,
296 NT_signed,
dcbf9037 297 NT_unsigned
5287ad62
JB
298};
299
300struct neon_type_el
301{
302 enum neon_el_type type;
303 unsigned size;
304};
305
306#define NEON_MAX_TYPE_ELS 4
307
308struct neon_type
309{
310 struct neon_type_el el[NEON_MAX_TYPE_ELS];
311 unsigned elems;
312};
313
b99bd4ef
NC
314struct arm_it
315{
c19d1205 316 const char * error;
b99bd4ef 317 unsigned long instruction;
c19d1205
ZW
318 int size;
319 int size_req;
320 int cond;
037e8744
JB
321 /* "uncond_value" is set to the value in place of the conditional field in
322 unconditional versions of the instruction, or -1 if nothing is
323 appropriate. */
324 int uncond_value;
5287ad62 325 struct neon_type vectype;
0110f2b8
PB
326 /* Set to the opcode if the instruction needs relaxation.
327 Zero if the instruction is not relaxed. */
328 unsigned long relax;
b99bd4ef
NC
329 struct
330 {
331 bfd_reloc_code_real_type type;
c19d1205
ZW
332 expressionS exp;
333 int pc_rel;
b99bd4ef 334 } reloc;
b99bd4ef 335
c19d1205
ZW
336 struct
337 {
338 unsigned reg;
ca3f61f7 339 signed int imm;
dcbf9037 340 struct neon_type_el vectype;
ca3f61f7
NC
341 unsigned present : 1; /* Operand present. */
342 unsigned isreg : 1; /* Operand was a register. */
343 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
344 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
345 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 346 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
347 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
348 instructions. This allows us to disambiguate ARM <-> vector insns. */
349 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 350 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 351 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 352 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
353 unsigned hasreloc : 1; /* Operand has relocation suffix. */
354 unsigned writeback : 1; /* Operand has trailing ! */
355 unsigned preind : 1; /* Preindexed address. */
356 unsigned postind : 1; /* Postindexed address. */
357 unsigned negative : 1; /* Index register was negated. */
358 unsigned shifted : 1; /* Shift applied to operation. */
359 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 360 } operands[6];
b99bd4ef
NC
361};
362
c19d1205 363static struct arm_it inst;
b99bd4ef
NC
364
365#define NUM_FLOAT_VALS 8
366
05d2d07e 367const char * fp_const[] =
b99bd4ef
NC
368{
369 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
370};
371
c19d1205 372/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
373#define MAX_LITTLENUMS 6
374
375LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
376
377#define FAIL (-1)
378#define SUCCESS (0)
379
380#define SUFF_S 1
381#define SUFF_D 2
382#define SUFF_E 3
383#define SUFF_P 4
384
c19d1205
ZW
385#define CP_T_X 0x00008000
386#define CP_T_Y 0x00400000
b99bd4ef 387
c19d1205
ZW
388#define CONDS_BIT 0x00100000
389#define LOAD_BIT 0x00100000
b99bd4ef
NC
390
391#define DOUBLE_LOAD_FLAG 0x00000001
392
393struct asm_cond
394{
c19d1205 395 const char * template;
b99bd4ef
NC
396 unsigned long value;
397};
398
c19d1205 399#define COND_ALWAYS 0xE
b99bd4ef 400
b99bd4ef
NC
401struct asm_psr
402{
b34976b6 403 const char *template;
b99bd4ef
NC
404 unsigned long field;
405};
406
62b3e311
PB
407struct asm_barrier_opt
408{
409 const char *template;
410 unsigned long value;
411};
412
2d2255b5 413/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
414#define SPSR_BIT (1 << 22)
415
c19d1205
ZW
416/* The individual PSR flag bits. */
417#define PSR_c (1 << 16)
418#define PSR_x (1 << 17)
419#define PSR_s (1 << 18)
420#define PSR_f (1 << 19)
b99bd4ef 421
c19d1205 422struct reloc_entry
bfae80f2 423{
c19d1205
ZW
424 char *name;
425 bfd_reloc_code_real_type reloc;
bfae80f2
RE
426};
427
5287ad62 428enum vfp_reg_pos
bfae80f2 429{
5287ad62
JB
430 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
431 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
432};
433
434enum vfp_ldstm_type
435{
436 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
437};
438
dcbf9037
JB
439/* Bits for DEFINED field in neon_typed_alias. */
440#define NTA_HASTYPE 1
441#define NTA_HASINDEX 2
442
443struct neon_typed_alias
444{
445 unsigned char defined;
446 unsigned char index;
447 struct neon_type_el eltype;
448};
449
c19d1205
ZW
450/* ARM register categories. This includes coprocessor numbers and various
451 architecture extensions' registers. */
452enum arm_reg_type
bfae80f2 453{
c19d1205
ZW
454 REG_TYPE_RN,
455 REG_TYPE_CP,
456 REG_TYPE_CN,
457 REG_TYPE_FN,
458 REG_TYPE_VFS,
459 REG_TYPE_VFD,
5287ad62 460 REG_TYPE_NQ,
037e8744 461 REG_TYPE_VFSD,
5287ad62 462 REG_TYPE_NDQ,
037e8744 463 REG_TYPE_NSDQ,
c19d1205
ZW
464 REG_TYPE_VFC,
465 REG_TYPE_MVF,
466 REG_TYPE_MVD,
467 REG_TYPE_MVFX,
468 REG_TYPE_MVDX,
469 REG_TYPE_MVAX,
470 REG_TYPE_DSPSC,
471 REG_TYPE_MMXWR,
472 REG_TYPE_MMXWC,
473 REG_TYPE_MMXWCG,
474 REG_TYPE_XSCALE,
bfae80f2
RE
475};
476
dcbf9037
JB
477/* Structure for a hash table entry for a register.
478 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
479 information which states whether a vector type or index is specified (for a
480 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
481struct reg_entry
482{
dcbf9037
JB
483 const char *name;
484 unsigned char number;
485 unsigned char type;
486 unsigned char builtin;
487 struct neon_typed_alias *neon;
6c43fab6
RE
488};
489
c19d1205
ZW
490/* Diagnostics used when we don't get a register of the expected type. */
491const char *const reg_expected_msgs[] =
492{
493 N_("ARM register expected"),
494 N_("bad or missing co-processor number"),
495 N_("co-processor register expected"),
496 N_("FPA register expected"),
497 N_("VFP single precision register expected"),
5287ad62
JB
498 N_("VFP/Neon double precision register expected"),
499 N_("Neon quad precision register expected"),
037e8744 500 N_("VFP single or double precision register expected"),
5287ad62 501 N_("Neon double or quad precision register expected"),
037e8744 502 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
503 N_("VFP system register expected"),
504 N_("Maverick MVF register expected"),
505 N_("Maverick MVD register expected"),
506 N_("Maverick MVFX register expected"),
507 N_("Maverick MVDX register expected"),
508 N_("Maverick MVAX register expected"),
509 N_("Maverick DSPSC register expected"),
510 N_("iWMMXt data register expected"),
511 N_("iWMMXt control register expected"),
512 N_("iWMMXt scalar register expected"),
513 N_("XScale accumulator register expected"),
6c43fab6
RE
514};
515
c19d1205
ZW
516/* Some well known registers that we refer to directly elsewhere. */
517#define REG_SP 13
518#define REG_LR 14
519#define REG_PC 15
404ff6b5 520
b99bd4ef
NC
521/* ARM instructions take 4bytes in the object file, Thumb instructions
522 take 2: */
c19d1205 523#define INSN_SIZE 4
b99bd4ef
NC
524
525struct asm_opcode
526{
527 /* Basic string to match. */
c19d1205
ZW
528 const char *template;
529
530 /* Parameters to instruction. */
531 unsigned char operands[8];
532
533 /* Conditional tag - see opcode_lookup. */
534 unsigned int tag : 4;
b99bd4ef
NC
535
536 /* Basic instruction code. */
c19d1205 537 unsigned int avalue : 28;
b99bd4ef 538
c19d1205
ZW
539 /* Thumb-format instruction code. */
540 unsigned int tvalue;
b99bd4ef 541
90e4755a 542 /* Which architecture variant provides this instruction. */
e74cfd16
PB
543 const arm_feature_set *avariant;
544 const arm_feature_set *tvariant;
c19d1205
ZW
545
546 /* Function to call to encode instruction in ARM format. */
547 void (* aencode) (void);
b99bd4ef 548
c19d1205
ZW
549 /* Function to call to encode instruction in Thumb format. */
550 void (* tencode) (void);
b99bd4ef
NC
551};
552
a737bd4d
NC
553/* Defines for various bits that we will want to toggle. */
554#define INST_IMMEDIATE 0x02000000
555#define OFFSET_REG 0x02000000
c19d1205 556#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
557#define SHIFT_BY_REG 0x00000010
558#define PRE_INDEX 0x01000000
559#define INDEX_UP 0x00800000
560#define WRITE_BACK 0x00200000
561#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 562#define CPSI_MMOD 0x00020000
90e4755a 563
a737bd4d
NC
564#define LITERAL_MASK 0xf000f000
565#define OPCODE_MASK 0xfe1fffff
566#define V4_STR_BIT 0x00000020
90e4755a 567
efd81785
PB
568#define T2_SUBS_PC_LR 0xf3de8f00
569
a737bd4d 570#define DATA_OP_SHIFT 21
90e4755a 571
ef8d22e6
PB
572#define T2_OPCODE_MASK 0xfe1fffff
573#define T2_DATA_OP_SHIFT 21
574
a737bd4d
NC
575/* Codes to distinguish the arithmetic instructions. */
576#define OPCODE_AND 0
577#define OPCODE_EOR 1
578#define OPCODE_SUB 2
579#define OPCODE_RSB 3
580#define OPCODE_ADD 4
581#define OPCODE_ADC 5
582#define OPCODE_SBC 6
583#define OPCODE_RSC 7
584#define OPCODE_TST 8
585#define OPCODE_TEQ 9
586#define OPCODE_CMP 10
587#define OPCODE_CMN 11
588#define OPCODE_ORR 12
589#define OPCODE_MOV 13
590#define OPCODE_BIC 14
591#define OPCODE_MVN 15
90e4755a 592
ef8d22e6
PB
593#define T2_OPCODE_AND 0
594#define T2_OPCODE_BIC 1
595#define T2_OPCODE_ORR 2
596#define T2_OPCODE_ORN 3
597#define T2_OPCODE_EOR 4
598#define T2_OPCODE_ADD 8
599#define T2_OPCODE_ADC 10
600#define T2_OPCODE_SBC 11
601#define T2_OPCODE_SUB 13
602#define T2_OPCODE_RSB 14
603
a737bd4d
NC
604#define T_OPCODE_MUL 0x4340
605#define T_OPCODE_TST 0x4200
606#define T_OPCODE_CMN 0x42c0
607#define T_OPCODE_NEG 0x4240
608#define T_OPCODE_MVN 0x43c0
90e4755a 609
a737bd4d
NC
610#define T_OPCODE_ADD_R3 0x1800
611#define T_OPCODE_SUB_R3 0x1a00
612#define T_OPCODE_ADD_HI 0x4400
613#define T_OPCODE_ADD_ST 0xb000
614#define T_OPCODE_SUB_ST 0xb080
615#define T_OPCODE_ADD_SP 0xa800
616#define T_OPCODE_ADD_PC 0xa000
617#define T_OPCODE_ADD_I8 0x3000
618#define T_OPCODE_SUB_I8 0x3800
619#define T_OPCODE_ADD_I3 0x1c00
620#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 621
a737bd4d
NC
622#define T_OPCODE_ASR_R 0x4100
623#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
624#define T_OPCODE_LSR_R 0x40c0
625#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
626#define T_OPCODE_ASR_I 0x1000
627#define T_OPCODE_LSL_I 0x0000
628#define T_OPCODE_LSR_I 0x0800
b99bd4ef 629
a737bd4d
NC
630#define T_OPCODE_MOV_I8 0x2000
631#define T_OPCODE_CMP_I8 0x2800
632#define T_OPCODE_CMP_LR 0x4280
633#define T_OPCODE_MOV_HR 0x4600
634#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 635
a737bd4d
NC
636#define T_OPCODE_LDR_PC 0x4800
637#define T_OPCODE_LDR_SP 0x9800
638#define T_OPCODE_STR_SP 0x9000
639#define T_OPCODE_LDR_IW 0x6800
640#define T_OPCODE_STR_IW 0x6000
641#define T_OPCODE_LDR_IH 0x8800
642#define T_OPCODE_STR_IH 0x8000
643#define T_OPCODE_LDR_IB 0x7800
644#define T_OPCODE_STR_IB 0x7000
645#define T_OPCODE_LDR_RW 0x5800
646#define T_OPCODE_STR_RW 0x5000
647#define T_OPCODE_LDR_RH 0x5a00
648#define T_OPCODE_STR_RH 0x5200
649#define T_OPCODE_LDR_RB 0x5c00
650#define T_OPCODE_STR_RB 0x5400
c9b604bd 651
a737bd4d
NC
652#define T_OPCODE_PUSH 0xb400
653#define T_OPCODE_POP 0xbc00
b99bd4ef 654
2fc8bdac 655#define T_OPCODE_BRANCH 0xe000
b99bd4ef 656
a737bd4d 657#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 658#define THUMB_PP_PC_LR 0x0100
c19d1205 659#define THUMB_LOAD_BIT 0x0800
53365c0d 660#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
661
662#define BAD_ARGS _("bad arguments to instruction")
663#define BAD_PC _("r15 not allowed here")
664#define BAD_COND _("instruction cannot be conditional")
665#define BAD_OVERLAP _("registers may not be the same")
666#define BAD_HIREG _("lo register required")
667#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 668#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
669#define BAD_BRANCH _("branch must be last instruction in IT block")
670#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 671#define BAD_FPU _("selected FPU does not support instruction")
c19d1205
ZW
672
673static struct hash_control *arm_ops_hsh;
674static struct hash_control *arm_cond_hsh;
675static struct hash_control *arm_shift_hsh;
676static struct hash_control *arm_psr_hsh;
62b3e311 677static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
678static struct hash_control *arm_reg_hsh;
679static struct hash_control *arm_reloc_hsh;
62b3e311 680static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 681
b99bd4ef
NC
682/* Stuff needed to resolve the label ambiguity
683 As:
684 ...
685 label: <insn>
686 may differ from:
687 ...
688 label:
5f4273c7 689 <insn> */
b99bd4ef
NC
690
691symbolS * last_label_seen;
b34976b6 692static int label_is_thumb_function_name = FALSE;
a737bd4d 693\f
3d0c9500
NC
694/* Literal pool structure. Held on a per-section
695 and per-sub-section basis. */
a737bd4d 696
c19d1205 697#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 698typedef struct literal_pool
b99bd4ef 699{
c19d1205
ZW
700 expressionS literals [MAX_LITERAL_POOL_SIZE];
701 unsigned int next_free_entry;
702 unsigned int id;
703 symbolS * symbol;
704 segT section;
705 subsegT sub_section;
61b5f74b 706 struct literal_pool * next;
3d0c9500 707} literal_pool;
b99bd4ef 708
3d0c9500
NC
709/* Pointer to a linked list of literal pools. */
710literal_pool * list_of_pools = NULL;
e27ec89e
PB
711
712/* State variables for IT block handling. */
713static bfd_boolean current_it_mask = 0;
714static int current_cc;
c19d1205
ZW
715\f
716/* Pure syntax. */
b99bd4ef 717
c19d1205
ZW
718/* This array holds the chars that always start a comment. If the
719 pre-processor is disabled, these aren't very useful. */
720const char comment_chars[] = "@";
3d0c9500 721
c19d1205
ZW
722/* This array holds the chars that only start a comment at the beginning of
723 a line. If the line seems to have the form '# 123 filename'
724 .line and .file directives will appear in the pre-processed output. */
725/* Note that input_file.c hand checks for '#' at the beginning of the
726 first line of the input file. This is because the compiler outputs
727 #NO_APP at the beginning of its output. */
728/* Also note that comments like this one will always work. */
729const char line_comment_chars[] = "#";
3d0c9500 730
c19d1205 731const char line_separator_chars[] = ";";
b99bd4ef 732
c19d1205
ZW
733/* Chars that can be used to separate mant
734 from exp in floating point numbers. */
735const char EXP_CHARS[] = "eE";
3d0c9500 736
c19d1205
ZW
737/* Chars that mean this number is a floating point constant. */
738/* As in 0f12.456 */
739/* or 0d1.2345e12 */
b99bd4ef 740
c19d1205 741const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 742
c19d1205
ZW
743/* Prefix characters that indicate the start of an immediate
744 value. */
745#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 746
c19d1205
ZW
747/* Separator character handling. */
748
749#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
750
751static inline int
752skip_past_char (char ** str, char c)
753{
754 if (**str == c)
755 {
756 (*str)++;
757 return SUCCESS;
3d0c9500 758 }
c19d1205
ZW
759 else
760 return FAIL;
761}
762#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 763
c19d1205
ZW
764/* Arithmetic expressions (possibly involving symbols). */
765
766/* Return TRUE if anything in the expression is a bignum. */
767
768static int
769walk_no_bignums (symbolS * sp)
770{
771 if (symbol_get_value_expression (sp)->X_op == O_big)
772 return 1;
773
774 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 775 {
c19d1205
ZW
776 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
777 || (symbol_get_value_expression (sp)->X_op_symbol
778 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
779 }
780
c19d1205 781 return 0;
3d0c9500
NC
782}
783
c19d1205
ZW
784static int in_my_get_expression = 0;
785
786/* Third argument to my_get_expression. */
787#define GE_NO_PREFIX 0
788#define GE_IMM_PREFIX 1
789#define GE_OPT_PREFIX 2
5287ad62
JB
790/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
791 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
792#define GE_OPT_PREFIX_BIG 3
a737bd4d 793
b99bd4ef 794static int
c19d1205 795my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 796{
c19d1205
ZW
797 char * save_in;
798 segT seg;
b99bd4ef 799
c19d1205
ZW
800 /* In unified syntax, all prefixes are optional. */
801 if (unified_syntax)
5287ad62
JB
802 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
803 : GE_OPT_PREFIX;
b99bd4ef 804
c19d1205 805 switch (prefix_mode)
b99bd4ef 806 {
c19d1205
ZW
807 case GE_NO_PREFIX: break;
808 case GE_IMM_PREFIX:
809 if (!is_immediate_prefix (**str))
810 {
811 inst.error = _("immediate expression requires a # prefix");
812 return FAIL;
813 }
814 (*str)++;
815 break;
816 case GE_OPT_PREFIX:
5287ad62 817 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
818 if (is_immediate_prefix (**str))
819 (*str)++;
820 break;
821 default: abort ();
822 }
b99bd4ef 823
c19d1205 824 memset (ep, 0, sizeof (expressionS));
b99bd4ef 825
c19d1205
ZW
826 save_in = input_line_pointer;
827 input_line_pointer = *str;
828 in_my_get_expression = 1;
829 seg = expression (ep);
830 in_my_get_expression = 0;
831
832 if (ep->X_op == O_illegal)
b99bd4ef 833 {
c19d1205
ZW
834 /* We found a bad expression in md_operand(). */
835 *str = input_line_pointer;
836 input_line_pointer = save_in;
837 if (inst.error == NULL)
838 inst.error = _("bad expression");
839 return 1;
840 }
b99bd4ef 841
c19d1205
ZW
842#ifdef OBJ_AOUT
843 if (seg != absolute_section
844 && seg != text_section
845 && seg != data_section
846 && seg != bss_section
847 && seg != undefined_section)
848 {
849 inst.error = _("bad segment");
850 *str = input_line_pointer;
851 input_line_pointer = save_in;
852 return 1;
b99bd4ef 853 }
c19d1205 854#endif
b99bd4ef 855
c19d1205
ZW
856 /* Get rid of any bignums now, so that we don't generate an error for which
857 we can't establish a line number later on. Big numbers are never valid
858 in instructions, which is where this routine is always called. */
5287ad62
JB
859 if (prefix_mode != GE_OPT_PREFIX_BIG
860 && (ep->X_op == O_big
861 || (ep->X_add_symbol
862 && (walk_no_bignums (ep->X_add_symbol)
863 || (ep->X_op_symbol
864 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
865 {
866 inst.error = _("invalid constant");
867 *str = input_line_pointer;
868 input_line_pointer = save_in;
869 return 1;
870 }
b99bd4ef 871
c19d1205
ZW
872 *str = input_line_pointer;
873 input_line_pointer = save_in;
874 return 0;
b99bd4ef
NC
875}
876
c19d1205
ZW
877/* Turn a string in input_line_pointer into a floating point constant
878 of type TYPE, and store the appropriate bytes in *LITP. The number
879 of LITTLENUMS emitted is stored in *SIZEP. An error message is
880 returned, or NULL on OK.
b99bd4ef 881
c19d1205
ZW
882 Note that fp constants aren't represent in the normal way on the ARM.
883 In big endian mode, things are as expected. However, in little endian
884 mode fp constants are big-endian word-wise, and little-endian byte-wise
885 within the words. For example, (double) 1.1 in big endian mode is
886 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
887 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 888
c19d1205 889 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 890
c19d1205
ZW
891char *
892md_atof (int type, char * litP, int * sizeP)
893{
894 int prec;
895 LITTLENUM_TYPE words[MAX_LITTLENUMS];
896 char *t;
897 int i;
b99bd4ef 898
c19d1205
ZW
899 switch (type)
900 {
901 case 'f':
902 case 'F':
903 case 's':
904 case 'S':
905 prec = 2;
906 break;
b99bd4ef 907
c19d1205
ZW
908 case 'd':
909 case 'D':
910 case 'r':
911 case 'R':
912 prec = 4;
913 break;
b99bd4ef 914
c19d1205
ZW
915 case 'x':
916 case 'X':
499ac353 917 prec = 5;
c19d1205 918 break;
b99bd4ef 919
c19d1205
ZW
920 case 'p':
921 case 'P':
499ac353 922 prec = 5;
c19d1205 923 break;
a737bd4d 924
c19d1205
ZW
925 default:
926 *sizeP = 0;
499ac353 927 return _("Unrecognized or unsupported floating point constant");
c19d1205 928 }
b99bd4ef 929
c19d1205
ZW
930 t = atof_ieee (input_line_pointer, type, words);
931 if (t)
932 input_line_pointer = t;
499ac353 933 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 934
c19d1205
ZW
935 if (target_big_endian)
936 {
937 for (i = 0; i < prec; i++)
938 {
499ac353
NC
939 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
940 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
941 }
942 }
943 else
944 {
e74cfd16 945 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
946 for (i = prec - 1; i >= 0; i--)
947 {
499ac353
NC
948 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
949 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
950 }
951 else
952 /* For a 4 byte float the order of elements in `words' is 1 0.
953 For an 8 byte float the order is 1 0 3 2. */
954 for (i = 0; i < prec; i += 2)
955 {
499ac353
NC
956 md_number_to_chars (litP, (valueT) words[i + 1],
957 sizeof (LITTLENUM_TYPE));
958 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
959 (valueT) words[i], sizeof (LITTLENUM_TYPE));
960 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
961 }
962 }
b99bd4ef 963
499ac353 964 return NULL;
c19d1205 965}
b99bd4ef 966
c19d1205
ZW
967/* We handle all bad expressions here, so that we can report the faulty
968 instruction in the error message. */
969void
970md_operand (expressionS * expr)
971{
972 if (in_my_get_expression)
973 expr->X_op = O_illegal;
b99bd4ef
NC
974}
975
c19d1205 976/* Immediate values. */
b99bd4ef 977
c19d1205
ZW
978/* Generic immediate-value read function for use in directives.
979 Accepts anything that 'expression' can fold to a constant.
980 *val receives the number. */
981#ifdef OBJ_ELF
982static int
983immediate_for_directive (int *val)
b99bd4ef 984{
c19d1205
ZW
985 expressionS exp;
986 exp.X_op = O_illegal;
b99bd4ef 987
c19d1205
ZW
988 if (is_immediate_prefix (*input_line_pointer))
989 {
990 input_line_pointer++;
991 expression (&exp);
992 }
b99bd4ef 993
c19d1205
ZW
994 if (exp.X_op != O_constant)
995 {
996 as_bad (_("expected #constant"));
997 ignore_rest_of_line ();
998 return FAIL;
999 }
1000 *val = exp.X_add_number;
1001 return SUCCESS;
b99bd4ef 1002}
c19d1205 1003#endif
b99bd4ef 1004
c19d1205 1005/* Register parsing. */
b99bd4ef 1006
c19d1205
ZW
1007/* Generic register parser. CCP points to what should be the
1008 beginning of a register name. If it is indeed a valid register
1009 name, advance CCP over it and return the reg_entry structure;
1010 otherwise return NULL. Does not issue diagnostics. */
1011
1012static struct reg_entry *
1013arm_reg_parse_multi (char **ccp)
b99bd4ef 1014{
c19d1205
ZW
1015 char *start = *ccp;
1016 char *p;
1017 struct reg_entry *reg;
b99bd4ef 1018
c19d1205
ZW
1019#ifdef REGISTER_PREFIX
1020 if (*start != REGISTER_PREFIX)
01cfc07f 1021 return NULL;
c19d1205
ZW
1022 start++;
1023#endif
1024#ifdef OPTIONAL_REGISTER_PREFIX
1025 if (*start == OPTIONAL_REGISTER_PREFIX)
1026 start++;
1027#endif
b99bd4ef 1028
c19d1205
ZW
1029 p = start;
1030 if (!ISALPHA (*p) || !is_name_beginner (*p))
1031 return NULL;
b99bd4ef 1032
c19d1205
ZW
1033 do
1034 p++;
1035 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1036
1037 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1038
1039 if (!reg)
1040 return NULL;
1041
1042 *ccp = p;
1043 return reg;
b99bd4ef
NC
1044}
1045
1046static int
dcbf9037
JB
1047arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1048 enum arm_reg_type type)
b99bd4ef 1049{
c19d1205
ZW
1050 /* Alternative syntaxes are accepted for a few register classes. */
1051 switch (type)
1052 {
1053 case REG_TYPE_MVF:
1054 case REG_TYPE_MVD:
1055 case REG_TYPE_MVFX:
1056 case REG_TYPE_MVDX:
1057 /* Generic coprocessor register names are allowed for these. */
79134647 1058 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1059 return reg->number;
1060 break;
69b97547 1061
c19d1205
ZW
1062 case REG_TYPE_CP:
1063 /* For backward compatibility, a bare number is valid here. */
1064 {
1065 unsigned long processor = strtoul (start, ccp, 10);
1066 if (*ccp != start && processor <= 15)
1067 return processor;
1068 }
6057a28f 1069
c19d1205
ZW
1070 case REG_TYPE_MMXWC:
1071 /* WC includes WCG. ??? I'm not sure this is true for all
1072 instructions that take WC registers. */
79134647 1073 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1074 return reg->number;
6057a28f 1075 break;
c19d1205 1076
6057a28f 1077 default:
c19d1205 1078 break;
6057a28f
NC
1079 }
1080
dcbf9037
JB
1081 return FAIL;
1082}
1083
1084/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1085 return value is the register number or FAIL. */
1086
1087static int
1088arm_reg_parse (char **ccp, enum arm_reg_type type)
1089{
1090 char *start = *ccp;
1091 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1092 int ret;
1093
1094 /* Do not allow a scalar (reg+index) to parse as a register. */
1095 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1096 return FAIL;
1097
1098 if (reg && reg->type == type)
1099 return reg->number;
1100
1101 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1102 return ret;
1103
c19d1205
ZW
1104 *ccp = start;
1105 return FAIL;
1106}
69b97547 1107
dcbf9037
JB
1108/* Parse a Neon type specifier. *STR should point at the leading '.'
1109 character. Does no verification at this stage that the type fits the opcode
1110 properly. E.g.,
1111
1112 .i32.i32.s16
1113 .s32.f32
1114 .u16
1115
1116 Can all be legally parsed by this function.
1117
1118 Fills in neon_type struct pointer with parsed information, and updates STR
1119 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1120 type, FAIL if not. */
1121
1122static int
1123parse_neon_type (struct neon_type *type, char **str)
1124{
1125 char *ptr = *str;
1126
1127 if (type)
1128 type->elems = 0;
1129
1130 while (type->elems < NEON_MAX_TYPE_ELS)
1131 {
1132 enum neon_el_type thistype = NT_untyped;
1133 unsigned thissize = -1u;
1134
1135 if (*ptr != '.')
1136 break;
1137
1138 ptr++;
1139
1140 /* Just a size without an explicit type. */
1141 if (ISDIGIT (*ptr))
1142 goto parsesize;
1143
1144 switch (TOLOWER (*ptr))
1145 {
1146 case 'i': thistype = NT_integer; break;
1147 case 'f': thistype = NT_float; break;
1148 case 'p': thistype = NT_poly; break;
1149 case 's': thistype = NT_signed; break;
1150 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1151 case 'd':
1152 thistype = NT_float;
1153 thissize = 64;
1154 ptr++;
1155 goto done;
dcbf9037
JB
1156 default:
1157 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1158 return FAIL;
1159 }
1160
1161 ptr++;
1162
1163 /* .f is an abbreviation for .f32. */
1164 if (thistype == NT_float && !ISDIGIT (*ptr))
1165 thissize = 32;
1166 else
1167 {
1168 parsesize:
1169 thissize = strtoul (ptr, &ptr, 10);
1170
1171 if (thissize != 8 && thissize != 16 && thissize != 32
1172 && thissize != 64)
1173 {
1174 as_bad (_("bad size %d in type specifier"), thissize);
1175 return FAIL;
1176 }
1177 }
1178
037e8744 1179 done:
dcbf9037
JB
1180 if (type)
1181 {
1182 type->el[type->elems].type = thistype;
1183 type->el[type->elems].size = thissize;
1184 type->elems++;
1185 }
1186 }
1187
1188 /* Empty/missing type is not a successful parse. */
1189 if (type->elems == 0)
1190 return FAIL;
1191
1192 *str = ptr;
1193
1194 return SUCCESS;
1195}
1196
1197/* Errors may be set multiple times during parsing or bit encoding
1198 (particularly in the Neon bits), but usually the earliest error which is set
1199 will be the most meaningful. Avoid overwriting it with later (cascading)
1200 errors by calling this function. */
1201
1202static void
1203first_error (const char *err)
1204{
1205 if (!inst.error)
1206 inst.error = err;
1207}
1208
1209/* Parse a single type, e.g. ".s32", leading period included. */
1210static int
1211parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1212{
1213 char *str = *ccp;
1214 struct neon_type optype;
1215
1216 if (*str == '.')
1217 {
1218 if (parse_neon_type (&optype, &str) == SUCCESS)
1219 {
1220 if (optype.elems == 1)
1221 *vectype = optype.el[0];
1222 else
1223 {
1224 first_error (_("only one type should be specified for operand"));
1225 return FAIL;
1226 }
1227 }
1228 else
1229 {
1230 first_error (_("vector type expected"));
1231 return FAIL;
1232 }
1233 }
1234 else
1235 return FAIL;
5f4273c7 1236
dcbf9037 1237 *ccp = str;
5f4273c7 1238
dcbf9037
JB
1239 return SUCCESS;
1240}
1241
1242/* Special meanings for indices (which have a range of 0-7), which will fit into
1243 a 4-bit integer. */
1244
1245#define NEON_ALL_LANES 15
1246#define NEON_INTERLEAVE_LANES 14
1247
1248/* Parse either a register or a scalar, with an optional type. Return the
1249 register number, and optionally fill in the actual type of the register
1250 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1251 type/index information in *TYPEINFO. */
1252
1253static int
1254parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1255 enum arm_reg_type *rtype,
1256 struct neon_typed_alias *typeinfo)
1257{
1258 char *str = *ccp;
1259 struct reg_entry *reg = arm_reg_parse_multi (&str);
1260 struct neon_typed_alias atype;
1261 struct neon_type_el parsetype;
1262
1263 atype.defined = 0;
1264 atype.index = -1;
1265 atype.eltype.type = NT_invtype;
1266 atype.eltype.size = -1;
1267
1268 /* Try alternate syntax for some types of register. Note these are mutually
1269 exclusive with the Neon syntax extensions. */
1270 if (reg == NULL)
1271 {
1272 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1273 if (altreg != FAIL)
1274 *ccp = str;
1275 if (typeinfo)
1276 *typeinfo = atype;
1277 return altreg;
1278 }
1279
037e8744
JB
1280 /* Undo polymorphism when a set of register types may be accepted. */
1281 if ((type == REG_TYPE_NDQ
1282 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1283 || (type == REG_TYPE_VFSD
1284 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1285 || (type == REG_TYPE_NSDQ
1286 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1287 || reg->type == REG_TYPE_NQ))
1288 || (type == REG_TYPE_MMXWC
1289 && (reg->type == REG_TYPE_MMXWCG)))
dcbf9037
JB
1290 type = reg->type;
1291
1292 if (type != reg->type)
1293 return FAIL;
1294
1295 if (reg->neon)
1296 atype = *reg->neon;
5f4273c7 1297
dcbf9037
JB
1298 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1299 {
1300 if ((atype.defined & NTA_HASTYPE) != 0)
1301 {
1302 first_error (_("can't redefine type for operand"));
1303 return FAIL;
1304 }
1305 atype.defined |= NTA_HASTYPE;
1306 atype.eltype = parsetype;
1307 }
5f4273c7 1308
dcbf9037
JB
1309 if (skip_past_char (&str, '[') == SUCCESS)
1310 {
1311 if (type != REG_TYPE_VFD)
1312 {
1313 first_error (_("only D registers may be indexed"));
1314 return FAIL;
1315 }
5f4273c7 1316
dcbf9037
JB
1317 if ((atype.defined & NTA_HASINDEX) != 0)
1318 {
1319 first_error (_("can't change index for operand"));
1320 return FAIL;
1321 }
1322
1323 atype.defined |= NTA_HASINDEX;
1324
1325 if (skip_past_char (&str, ']') == SUCCESS)
1326 atype.index = NEON_ALL_LANES;
1327 else
1328 {
1329 expressionS exp;
1330
1331 my_get_expression (&exp, &str, GE_NO_PREFIX);
1332
1333 if (exp.X_op != O_constant)
1334 {
1335 first_error (_("constant expression required"));
1336 return FAIL;
1337 }
1338
1339 if (skip_past_char (&str, ']') == FAIL)
1340 return FAIL;
1341
1342 atype.index = exp.X_add_number;
1343 }
1344 }
5f4273c7 1345
dcbf9037
JB
1346 if (typeinfo)
1347 *typeinfo = atype;
5f4273c7 1348
dcbf9037
JB
1349 if (rtype)
1350 *rtype = type;
5f4273c7 1351
dcbf9037 1352 *ccp = str;
5f4273c7 1353
dcbf9037
JB
1354 return reg->number;
1355}
1356
1357/* Like arm_reg_parse, but allow allow the following extra features:
1358 - If RTYPE is non-zero, return the (possibly restricted) type of the
1359 register (e.g. Neon double or quad reg when either has been requested).
1360 - If this is a Neon vector type with additional type information, fill
1361 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1362 This function will fault on encountering a scalar. */
dcbf9037
JB
1363
1364static int
1365arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1366 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1367{
1368 struct neon_typed_alias atype;
1369 char *str = *ccp;
1370 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1371
1372 if (reg == FAIL)
1373 return FAIL;
1374
1375 /* Do not allow a scalar (reg+index) to parse as a register. */
1376 if ((atype.defined & NTA_HASINDEX) != 0)
1377 {
1378 first_error (_("register operand expected, but got scalar"));
1379 return FAIL;
1380 }
1381
1382 if (vectype)
1383 *vectype = atype.eltype;
1384
1385 *ccp = str;
1386
1387 return reg;
1388}
1389
1390#define NEON_SCALAR_REG(X) ((X) >> 4)
1391#define NEON_SCALAR_INDEX(X) ((X) & 15)
1392
5287ad62
JB
1393/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1394 have enough information to be able to do a good job bounds-checking. So, we
1395 just do easy checks here, and do further checks later. */
1396
1397static int
dcbf9037 1398parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1399{
dcbf9037 1400 int reg;
5287ad62 1401 char *str = *ccp;
dcbf9037 1402 struct neon_typed_alias atype;
5f4273c7 1403
dcbf9037 1404 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1405
dcbf9037 1406 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1407 return FAIL;
5f4273c7 1408
dcbf9037 1409 if (atype.index == NEON_ALL_LANES)
5287ad62 1410 {
dcbf9037 1411 first_error (_("scalar must have an index"));
5287ad62
JB
1412 return FAIL;
1413 }
dcbf9037 1414 else if (atype.index >= 64 / elsize)
5287ad62 1415 {
dcbf9037 1416 first_error (_("scalar index out of range"));
5287ad62
JB
1417 return FAIL;
1418 }
5f4273c7 1419
dcbf9037
JB
1420 if (type)
1421 *type = atype.eltype;
5f4273c7 1422
5287ad62 1423 *ccp = str;
5f4273c7 1424
dcbf9037 1425 return reg * 16 + atype.index;
5287ad62
JB
1426}
1427
c19d1205
ZW
1428/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1429static long
1430parse_reg_list (char ** strp)
1431{
1432 char * str = * strp;
1433 long range = 0;
1434 int another_range;
a737bd4d 1435
c19d1205
ZW
1436 /* We come back here if we get ranges concatenated by '+' or '|'. */
1437 do
6057a28f 1438 {
c19d1205 1439 another_range = 0;
a737bd4d 1440
c19d1205
ZW
1441 if (*str == '{')
1442 {
1443 int in_range = 0;
1444 int cur_reg = -1;
a737bd4d 1445
c19d1205
ZW
1446 str++;
1447 do
1448 {
1449 int reg;
6057a28f 1450
dcbf9037 1451 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1452 {
dcbf9037 1453 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1454 return FAIL;
1455 }
a737bd4d 1456
c19d1205
ZW
1457 if (in_range)
1458 {
1459 int i;
a737bd4d 1460
c19d1205
ZW
1461 if (reg <= cur_reg)
1462 {
dcbf9037 1463 first_error (_("bad range in register list"));
c19d1205
ZW
1464 return FAIL;
1465 }
40a18ebd 1466
c19d1205
ZW
1467 for (i = cur_reg + 1; i < reg; i++)
1468 {
1469 if (range & (1 << i))
1470 as_tsktsk
1471 (_("Warning: duplicated register (r%d) in register list"),
1472 i);
1473 else
1474 range |= 1 << i;
1475 }
1476 in_range = 0;
1477 }
a737bd4d 1478
c19d1205
ZW
1479 if (range & (1 << reg))
1480 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1481 reg);
1482 else if (reg <= cur_reg)
1483 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1484
c19d1205
ZW
1485 range |= 1 << reg;
1486 cur_reg = reg;
1487 }
1488 while (skip_past_comma (&str) != FAIL
1489 || (in_range = 1, *str++ == '-'));
1490 str--;
a737bd4d 1491
c19d1205
ZW
1492 if (*str++ != '}')
1493 {
dcbf9037 1494 first_error (_("missing `}'"));
c19d1205
ZW
1495 return FAIL;
1496 }
1497 }
1498 else
1499 {
1500 expressionS expr;
40a18ebd 1501
c19d1205
ZW
1502 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1503 return FAIL;
40a18ebd 1504
c19d1205
ZW
1505 if (expr.X_op == O_constant)
1506 {
1507 if (expr.X_add_number
1508 != (expr.X_add_number & 0x0000ffff))
1509 {
1510 inst.error = _("invalid register mask");
1511 return FAIL;
1512 }
a737bd4d 1513
c19d1205
ZW
1514 if ((range & expr.X_add_number) != 0)
1515 {
1516 int regno = range & expr.X_add_number;
a737bd4d 1517
c19d1205
ZW
1518 regno &= -regno;
1519 regno = (1 << regno) - 1;
1520 as_tsktsk
1521 (_("Warning: duplicated register (r%d) in register list"),
1522 regno);
1523 }
a737bd4d 1524
c19d1205
ZW
1525 range |= expr.X_add_number;
1526 }
1527 else
1528 {
1529 if (inst.reloc.type != 0)
1530 {
1531 inst.error = _("expression too complex");
1532 return FAIL;
1533 }
a737bd4d 1534
c19d1205
ZW
1535 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1536 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1537 inst.reloc.pc_rel = 0;
1538 }
1539 }
a737bd4d 1540
c19d1205
ZW
1541 if (*str == '|' || *str == '+')
1542 {
1543 str++;
1544 another_range = 1;
1545 }
a737bd4d 1546 }
c19d1205 1547 while (another_range);
a737bd4d 1548
c19d1205
ZW
1549 *strp = str;
1550 return range;
a737bd4d
NC
1551}
1552
5287ad62
JB
1553/* Types of registers in a list. */
1554
1555enum reg_list_els
1556{
1557 REGLIST_VFP_S,
1558 REGLIST_VFP_D,
1559 REGLIST_NEON_D
1560};
1561
c19d1205
ZW
1562/* Parse a VFP register list. If the string is invalid return FAIL.
1563 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1564 register. Parses registers of type ETYPE.
1565 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1566 - Q registers can be used to specify pairs of D registers
1567 - { } can be omitted from around a singleton register list
1568 FIXME: This is not implemented, as it would require backtracking in
1569 some cases, e.g.:
1570 vtbl.8 d3,d4,d5
1571 This could be done (the meaning isn't really ambiguous), but doesn't
1572 fit in well with the current parsing framework.
dcbf9037
JB
1573 - 32 D registers may be used (also true for VFPv3).
1574 FIXME: Types are ignored in these register lists, which is probably a
1575 bug. */
6057a28f 1576
c19d1205 1577static int
037e8744 1578parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1579{
037e8744 1580 char *str = *ccp;
c19d1205
ZW
1581 int base_reg;
1582 int new_base;
5287ad62
JB
1583 enum arm_reg_type regtype = 0;
1584 int max_regs = 0;
c19d1205
ZW
1585 int count = 0;
1586 int warned = 0;
1587 unsigned long mask = 0;
a737bd4d 1588 int i;
6057a28f 1589
037e8744 1590 if (*str != '{')
5287ad62
JB
1591 {
1592 inst.error = _("expecting {");
1593 return FAIL;
1594 }
6057a28f 1595
037e8744 1596 str++;
6057a28f 1597
5287ad62 1598 switch (etype)
c19d1205 1599 {
5287ad62 1600 case REGLIST_VFP_S:
c19d1205
ZW
1601 regtype = REG_TYPE_VFS;
1602 max_regs = 32;
5287ad62 1603 break;
5f4273c7 1604
5287ad62
JB
1605 case REGLIST_VFP_D:
1606 regtype = REG_TYPE_VFD;
b7fc2769 1607 break;
5f4273c7 1608
b7fc2769
JB
1609 case REGLIST_NEON_D:
1610 regtype = REG_TYPE_NDQ;
1611 break;
1612 }
1613
1614 if (etype != REGLIST_VFP_S)
1615 {
b1cc4aeb
PB
1616 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1617 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1618 {
1619 max_regs = 32;
1620 if (thumb_mode)
1621 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1622 fpu_vfp_ext_d32);
5287ad62
JB
1623 else
1624 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1625 fpu_vfp_ext_d32);
5287ad62
JB
1626 }
1627 else
1628 max_regs = 16;
c19d1205 1629 }
6057a28f 1630
c19d1205 1631 base_reg = max_regs;
a737bd4d 1632
c19d1205
ZW
1633 do
1634 {
5287ad62 1635 int setmask = 1, addregs = 1;
dcbf9037 1636
037e8744 1637 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1638
c19d1205 1639 if (new_base == FAIL)
a737bd4d 1640 {
dcbf9037 1641 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1642 return FAIL;
1643 }
5f4273c7 1644
b7fc2769
JB
1645 if (new_base >= max_regs)
1646 {
1647 first_error (_("register out of range in list"));
1648 return FAIL;
1649 }
5f4273c7 1650
5287ad62
JB
1651 /* Note: a value of 2 * n is returned for the register Q<n>. */
1652 if (regtype == REG_TYPE_NQ)
1653 {
1654 setmask = 3;
1655 addregs = 2;
1656 }
1657
c19d1205
ZW
1658 if (new_base < base_reg)
1659 base_reg = new_base;
a737bd4d 1660
5287ad62 1661 if (mask & (setmask << new_base))
c19d1205 1662 {
dcbf9037 1663 first_error (_("invalid register list"));
c19d1205 1664 return FAIL;
a737bd4d 1665 }
a737bd4d 1666
c19d1205
ZW
1667 if ((mask >> new_base) != 0 && ! warned)
1668 {
1669 as_tsktsk (_("register list not in ascending order"));
1670 warned = 1;
1671 }
0bbf2aa4 1672
5287ad62
JB
1673 mask |= setmask << new_base;
1674 count += addregs;
0bbf2aa4 1675
037e8744 1676 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1677 {
1678 int high_range;
0bbf2aa4 1679
037e8744 1680 str++;
0bbf2aa4 1681
037e8744 1682 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1683 == FAIL)
c19d1205
ZW
1684 {
1685 inst.error = gettext (reg_expected_msgs[regtype]);
1686 return FAIL;
1687 }
0bbf2aa4 1688
b7fc2769
JB
1689 if (high_range >= max_regs)
1690 {
1691 first_error (_("register out of range in list"));
1692 return FAIL;
1693 }
1694
5287ad62
JB
1695 if (regtype == REG_TYPE_NQ)
1696 high_range = high_range + 1;
1697
c19d1205
ZW
1698 if (high_range <= new_base)
1699 {
1700 inst.error = _("register range not in ascending order");
1701 return FAIL;
1702 }
0bbf2aa4 1703
5287ad62 1704 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1705 {
5287ad62 1706 if (mask & (setmask << new_base))
0bbf2aa4 1707 {
c19d1205
ZW
1708 inst.error = _("invalid register list");
1709 return FAIL;
0bbf2aa4 1710 }
c19d1205 1711
5287ad62
JB
1712 mask |= setmask << new_base;
1713 count += addregs;
0bbf2aa4 1714 }
0bbf2aa4 1715 }
0bbf2aa4 1716 }
037e8744 1717 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1718
037e8744 1719 str++;
0bbf2aa4 1720
c19d1205
ZW
1721 /* Sanity check -- should have raised a parse error above. */
1722 if (count == 0 || count > max_regs)
1723 abort ();
1724
1725 *pbase = base_reg;
1726
1727 /* Final test -- the registers must be consecutive. */
1728 mask >>= base_reg;
1729 for (i = 0; i < count; i++)
1730 {
1731 if ((mask & (1u << i)) == 0)
1732 {
1733 inst.error = _("non-contiguous register range");
1734 return FAIL;
1735 }
1736 }
1737
037e8744
JB
1738 *ccp = str;
1739
c19d1205 1740 return count;
b99bd4ef
NC
1741}
1742
dcbf9037
JB
1743/* True if two alias types are the same. */
1744
1745static int
1746neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1747{
1748 if (!a && !b)
1749 return 1;
5f4273c7 1750
dcbf9037
JB
1751 if (!a || !b)
1752 return 0;
1753
1754 if (a->defined != b->defined)
1755 return 0;
5f4273c7 1756
dcbf9037
JB
1757 if ((a->defined & NTA_HASTYPE) != 0
1758 && (a->eltype.type != b->eltype.type
1759 || a->eltype.size != b->eltype.size))
1760 return 0;
1761
1762 if ((a->defined & NTA_HASINDEX) != 0
1763 && (a->index != b->index))
1764 return 0;
5f4273c7 1765
dcbf9037
JB
1766 return 1;
1767}
1768
5287ad62
JB
1769/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1770 The base register is put in *PBASE.
dcbf9037 1771 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1772 the return value.
1773 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1774 Bits [6:5] encode the list length (minus one).
1775 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1776
5287ad62 1777#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1778#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1779#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1780
1781static int
dcbf9037
JB
1782parse_neon_el_struct_list (char **str, unsigned *pbase,
1783 struct neon_type_el *eltype)
5287ad62
JB
1784{
1785 char *ptr = *str;
1786 int base_reg = -1;
1787 int reg_incr = -1;
1788 int count = 0;
1789 int lane = -1;
1790 int leading_brace = 0;
1791 enum arm_reg_type rtype = REG_TYPE_NDQ;
1792 int addregs = 1;
1793 const char *const incr_error = "register stride must be 1 or 2";
1794 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1795 struct neon_typed_alias firsttype;
5f4273c7 1796
5287ad62
JB
1797 if (skip_past_char (&ptr, '{') == SUCCESS)
1798 leading_brace = 1;
5f4273c7 1799
5287ad62
JB
1800 do
1801 {
dcbf9037
JB
1802 struct neon_typed_alias atype;
1803 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1804
5287ad62
JB
1805 if (getreg == FAIL)
1806 {
dcbf9037 1807 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1808 return FAIL;
1809 }
5f4273c7 1810
5287ad62
JB
1811 if (base_reg == -1)
1812 {
1813 base_reg = getreg;
1814 if (rtype == REG_TYPE_NQ)
1815 {
1816 reg_incr = 1;
1817 addregs = 2;
1818 }
dcbf9037 1819 firsttype = atype;
5287ad62
JB
1820 }
1821 else if (reg_incr == -1)
1822 {
1823 reg_incr = getreg - base_reg;
1824 if (reg_incr < 1 || reg_incr > 2)
1825 {
dcbf9037 1826 first_error (_(incr_error));
5287ad62
JB
1827 return FAIL;
1828 }
1829 }
1830 else if (getreg != base_reg + reg_incr * count)
1831 {
dcbf9037
JB
1832 first_error (_(incr_error));
1833 return FAIL;
1834 }
1835
1836 if (!neon_alias_types_same (&atype, &firsttype))
1837 {
1838 first_error (_(type_error));
5287ad62
JB
1839 return FAIL;
1840 }
5f4273c7 1841
5287ad62
JB
1842 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1843 modes. */
1844 if (ptr[0] == '-')
1845 {
dcbf9037 1846 struct neon_typed_alias htype;
5287ad62
JB
1847 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1848 if (lane == -1)
1849 lane = NEON_INTERLEAVE_LANES;
1850 else if (lane != NEON_INTERLEAVE_LANES)
1851 {
dcbf9037 1852 first_error (_(type_error));
5287ad62
JB
1853 return FAIL;
1854 }
1855 if (reg_incr == -1)
1856 reg_incr = 1;
1857 else if (reg_incr != 1)
1858 {
dcbf9037 1859 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1860 return FAIL;
1861 }
1862 ptr++;
dcbf9037 1863 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1864 if (hireg == FAIL)
1865 {
dcbf9037
JB
1866 first_error (_(reg_expected_msgs[rtype]));
1867 return FAIL;
1868 }
1869 if (!neon_alias_types_same (&htype, &firsttype))
1870 {
1871 first_error (_(type_error));
5287ad62
JB
1872 return FAIL;
1873 }
1874 count += hireg + dregs - getreg;
1875 continue;
1876 }
5f4273c7 1877
5287ad62
JB
1878 /* If we're using Q registers, we can't use [] or [n] syntax. */
1879 if (rtype == REG_TYPE_NQ)
1880 {
1881 count += 2;
1882 continue;
1883 }
5f4273c7 1884
dcbf9037 1885 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1886 {
dcbf9037
JB
1887 if (lane == -1)
1888 lane = atype.index;
1889 else if (lane != atype.index)
5287ad62 1890 {
dcbf9037
JB
1891 first_error (_(type_error));
1892 return FAIL;
5287ad62
JB
1893 }
1894 }
1895 else if (lane == -1)
1896 lane = NEON_INTERLEAVE_LANES;
1897 else if (lane != NEON_INTERLEAVE_LANES)
1898 {
dcbf9037 1899 first_error (_(type_error));
5287ad62
JB
1900 return FAIL;
1901 }
1902 count++;
1903 }
1904 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1905
5287ad62
JB
1906 /* No lane set by [x]. We must be interleaving structures. */
1907 if (lane == -1)
1908 lane = NEON_INTERLEAVE_LANES;
5f4273c7 1909
5287ad62
JB
1910 /* Sanity check. */
1911 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1912 || (count > 1 && reg_incr == -1))
1913 {
dcbf9037 1914 first_error (_("error parsing element/structure list"));
5287ad62
JB
1915 return FAIL;
1916 }
1917
1918 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1919 {
dcbf9037 1920 first_error (_("expected }"));
5287ad62
JB
1921 return FAIL;
1922 }
5f4273c7 1923
5287ad62
JB
1924 if (reg_incr == -1)
1925 reg_incr = 1;
1926
dcbf9037
JB
1927 if (eltype)
1928 *eltype = firsttype.eltype;
1929
5287ad62
JB
1930 *pbase = base_reg;
1931 *str = ptr;
5f4273c7 1932
5287ad62
JB
1933 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1934}
1935
c19d1205
ZW
1936/* Parse an explicit relocation suffix on an expression. This is
1937 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1938 arm_reloc_hsh contains no entries, so this function can only
1939 succeed if there is no () after the word. Returns -1 on error,
1940 BFD_RELOC_UNUSED if there wasn't any suffix. */
1941static int
1942parse_reloc (char **str)
b99bd4ef 1943{
c19d1205
ZW
1944 struct reloc_entry *r;
1945 char *p, *q;
b99bd4ef 1946
c19d1205
ZW
1947 if (**str != '(')
1948 return BFD_RELOC_UNUSED;
b99bd4ef 1949
c19d1205
ZW
1950 p = *str + 1;
1951 q = p;
1952
1953 while (*q && *q != ')' && *q != ',')
1954 q++;
1955 if (*q != ')')
1956 return -1;
1957
1958 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1959 return -1;
1960
1961 *str = q + 1;
1962 return r->reloc;
b99bd4ef
NC
1963}
1964
c19d1205
ZW
1965/* Directives: register aliases. */
1966
dcbf9037 1967static struct reg_entry *
c19d1205 1968insert_reg_alias (char *str, int number, int type)
b99bd4ef 1969{
c19d1205
ZW
1970 struct reg_entry *new;
1971 const char *name;
b99bd4ef 1972
c19d1205
ZW
1973 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1974 {
1975 if (new->builtin)
1976 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1977
c19d1205
ZW
1978 /* Only warn about a redefinition if it's not defined as the
1979 same register. */
1980 else if (new->number != number || new->type != type)
1981 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1982
d929913e 1983 return NULL;
c19d1205 1984 }
b99bd4ef 1985
c19d1205
ZW
1986 name = xstrdup (str);
1987 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1988
c19d1205
ZW
1989 new->name = name;
1990 new->number = number;
1991 new->type = type;
1992 new->builtin = FALSE;
dcbf9037 1993 new->neon = NULL;
b99bd4ef 1994
5a49b8ac 1995 if (hash_insert (arm_reg_hsh, name, (void *) new))
c19d1205 1996 abort ();
5f4273c7 1997
dcbf9037
JB
1998 return new;
1999}
2000
2001static void
2002insert_neon_reg_alias (char *str, int number, int type,
2003 struct neon_typed_alias *atype)
2004{
2005 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2006
dcbf9037
JB
2007 if (!reg)
2008 {
2009 first_error (_("attempt to redefine typed alias"));
2010 return;
2011 }
5f4273c7 2012
dcbf9037
JB
2013 if (atype)
2014 {
2015 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2016 *reg->neon = *atype;
2017 }
c19d1205 2018}
b99bd4ef 2019
c19d1205 2020/* Look for the .req directive. This is of the form:
b99bd4ef 2021
c19d1205 2022 new_register_name .req existing_register_name
b99bd4ef 2023
c19d1205 2024 If we find one, or if it looks sufficiently like one that we want to
d929913e 2025 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2026
d929913e 2027static bfd_boolean
c19d1205
ZW
2028create_register_alias (char * newname, char *p)
2029{
2030 struct reg_entry *old;
2031 char *oldname, *nbuf;
2032 size_t nlen;
b99bd4ef 2033
c19d1205
ZW
2034 /* The input scrubber ensures that whitespace after the mnemonic is
2035 collapsed to single spaces. */
2036 oldname = p;
2037 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2038 return FALSE;
b99bd4ef 2039
c19d1205
ZW
2040 oldname += 6;
2041 if (*oldname == '\0')
d929913e 2042 return FALSE;
b99bd4ef 2043
c19d1205
ZW
2044 old = hash_find (arm_reg_hsh, oldname);
2045 if (!old)
b99bd4ef 2046 {
c19d1205 2047 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2048 return TRUE;
b99bd4ef
NC
2049 }
2050
c19d1205
ZW
2051 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2052 the desired alias name, and p points to its end. If not, then
2053 the desired alias name is in the global original_case_string. */
2054#ifdef TC_CASE_SENSITIVE
2055 nlen = p - newname;
2056#else
2057 newname = original_case_string;
2058 nlen = strlen (newname);
2059#endif
b99bd4ef 2060
c19d1205
ZW
2061 nbuf = alloca (nlen + 1);
2062 memcpy (nbuf, newname, nlen);
2063 nbuf[nlen] = '\0';
b99bd4ef 2064
c19d1205
ZW
2065 /* Create aliases under the new name as stated; an all-lowercase
2066 version of the new name; and an all-uppercase version of the new
2067 name. */
d929913e
NC
2068 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2069 {
2070 for (p = nbuf; *p; p++)
2071 *p = TOUPPER (*p);
c19d1205 2072
d929913e
NC
2073 if (strncmp (nbuf, newname, nlen))
2074 {
2075 /* If this attempt to create an additional alias fails, do not bother
2076 trying to create the all-lower case alias. We will fail and issue
2077 a second, duplicate error message. This situation arises when the
2078 programmer does something like:
2079 foo .req r0
2080 Foo .req r1
2081 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2082 the artificial FOO alias because it has already been created by the
d929913e
NC
2083 first .req. */
2084 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2085 return TRUE;
2086 }
c19d1205 2087
d929913e
NC
2088 for (p = nbuf; *p; p++)
2089 *p = TOLOWER (*p);
c19d1205 2090
d929913e
NC
2091 if (strncmp (nbuf, newname, nlen))
2092 insert_reg_alias (nbuf, old->number, old->type);
2093 }
c19d1205 2094
d929913e 2095 return TRUE;
b99bd4ef
NC
2096}
2097
dcbf9037
JB
2098/* Create a Neon typed/indexed register alias using directives, e.g.:
2099 X .dn d5.s32[1]
2100 Y .qn 6.s16
2101 Z .dn d7
2102 T .dn Z[0]
2103 These typed registers can be used instead of the types specified after the
2104 Neon mnemonic, so long as all operands given have types. Types can also be
2105 specified directly, e.g.:
5f4273c7 2106 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037
JB
2107
2108static int
2109create_neon_reg_alias (char *newname, char *p)
2110{
2111 enum arm_reg_type basetype;
2112 struct reg_entry *basereg;
2113 struct reg_entry mybasereg;
2114 struct neon_type ntype;
2115 struct neon_typed_alias typeinfo;
2116 char *namebuf, *nameend;
2117 int namelen;
5f4273c7 2118
dcbf9037
JB
2119 typeinfo.defined = 0;
2120 typeinfo.eltype.type = NT_invtype;
2121 typeinfo.eltype.size = -1;
2122 typeinfo.index = -1;
5f4273c7 2123
dcbf9037 2124 nameend = p;
5f4273c7 2125
dcbf9037
JB
2126 if (strncmp (p, " .dn ", 5) == 0)
2127 basetype = REG_TYPE_VFD;
2128 else if (strncmp (p, " .qn ", 5) == 0)
2129 basetype = REG_TYPE_NQ;
2130 else
2131 return 0;
5f4273c7 2132
dcbf9037 2133 p += 5;
5f4273c7 2134
dcbf9037
JB
2135 if (*p == '\0')
2136 return 0;
5f4273c7 2137
dcbf9037
JB
2138 basereg = arm_reg_parse_multi (&p);
2139
2140 if (basereg && basereg->type != basetype)
2141 {
2142 as_bad (_("bad type for register"));
2143 return 0;
2144 }
2145
2146 if (basereg == NULL)
2147 {
2148 expressionS exp;
2149 /* Try parsing as an integer. */
2150 my_get_expression (&exp, &p, GE_NO_PREFIX);
2151 if (exp.X_op != O_constant)
2152 {
2153 as_bad (_("expression must be constant"));
2154 return 0;
2155 }
2156 basereg = &mybasereg;
2157 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2158 : exp.X_add_number;
2159 basereg->neon = 0;
2160 }
2161
2162 if (basereg->neon)
2163 typeinfo = *basereg->neon;
2164
2165 if (parse_neon_type (&ntype, &p) == SUCCESS)
2166 {
2167 /* We got a type. */
2168 if (typeinfo.defined & NTA_HASTYPE)
2169 {
2170 as_bad (_("can't redefine the type of a register alias"));
2171 return 0;
2172 }
5f4273c7 2173
dcbf9037
JB
2174 typeinfo.defined |= NTA_HASTYPE;
2175 if (ntype.elems != 1)
2176 {
2177 as_bad (_("you must specify a single type only"));
2178 return 0;
2179 }
2180 typeinfo.eltype = ntype.el[0];
2181 }
5f4273c7 2182
dcbf9037
JB
2183 if (skip_past_char (&p, '[') == SUCCESS)
2184 {
2185 expressionS exp;
2186 /* We got a scalar index. */
5f4273c7 2187
dcbf9037
JB
2188 if (typeinfo.defined & NTA_HASINDEX)
2189 {
2190 as_bad (_("can't redefine the index of a scalar alias"));
2191 return 0;
2192 }
5f4273c7 2193
dcbf9037 2194 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2195
dcbf9037
JB
2196 if (exp.X_op != O_constant)
2197 {
2198 as_bad (_("scalar index must be constant"));
2199 return 0;
2200 }
5f4273c7 2201
dcbf9037
JB
2202 typeinfo.defined |= NTA_HASINDEX;
2203 typeinfo.index = exp.X_add_number;
5f4273c7 2204
dcbf9037
JB
2205 if (skip_past_char (&p, ']') == FAIL)
2206 {
2207 as_bad (_("expecting ]"));
2208 return 0;
2209 }
2210 }
2211
2212 namelen = nameend - newname;
2213 namebuf = alloca (namelen + 1);
2214 strncpy (namebuf, newname, namelen);
2215 namebuf[namelen] = '\0';
5f4273c7 2216
dcbf9037
JB
2217 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2218 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2219
dcbf9037
JB
2220 /* Insert name in all uppercase. */
2221 for (p = namebuf; *p; p++)
2222 *p = TOUPPER (*p);
5f4273c7 2223
dcbf9037
JB
2224 if (strncmp (namebuf, newname, namelen))
2225 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2226 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2227
dcbf9037
JB
2228 /* Insert name in all lowercase. */
2229 for (p = namebuf; *p; p++)
2230 *p = TOLOWER (*p);
5f4273c7 2231
dcbf9037
JB
2232 if (strncmp (namebuf, newname, namelen))
2233 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2234 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2235
dcbf9037
JB
2236 return 1;
2237}
2238
c19d1205
ZW
2239/* Should never be called, as .req goes between the alias and the
2240 register name, not at the beginning of the line. */
b99bd4ef 2241static void
c19d1205 2242s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2243{
c19d1205
ZW
2244 as_bad (_("invalid syntax for .req directive"));
2245}
b99bd4ef 2246
dcbf9037
JB
2247static void
2248s_dn (int a ATTRIBUTE_UNUSED)
2249{
2250 as_bad (_("invalid syntax for .dn directive"));
2251}
2252
2253static void
2254s_qn (int a ATTRIBUTE_UNUSED)
2255{
2256 as_bad (_("invalid syntax for .qn directive"));
2257}
2258
c19d1205
ZW
2259/* The .unreq directive deletes an alias which was previously defined
2260 by .req. For example:
b99bd4ef 2261
c19d1205
ZW
2262 my_alias .req r11
2263 .unreq my_alias */
b99bd4ef
NC
2264
2265static void
c19d1205 2266s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2267{
c19d1205
ZW
2268 char * name;
2269 char saved_char;
b99bd4ef 2270
c19d1205
ZW
2271 name = input_line_pointer;
2272
2273 while (*input_line_pointer != 0
2274 && *input_line_pointer != ' '
2275 && *input_line_pointer != '\n')
2276 ++input_line_pointer;
2277
2278 saved_char = *input_line_pointer;
2279 *input_line_pointer = 0;
2280
2281 if (!*name)
2282 as_bad (_("invalid syntax for .unreq directive"));
2283 else
2284 {
2285 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2286
2287 if (!reg)
2288 as_bad (_("unknown register alias '%s'"), name);
2289 else if (reg->builtin)
2290 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2291 name);
2292 else
2293 {
d929913e
NC
2294 char * p;
2295 char * nbuf;
2296
db0bc284 2297 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2298 free ((char *) reg->name);
dcbf9037
JB
2299 if (reg->neon)
2300 free (reg->neon);
c19d1205 2301 free (reg);
d929913e
NC
2302
2303 /* Also locate the all upper case and all lower case versions.
2304 Do not complain if we cannot find one or the other as it
2305 was probably deleted above. */
5f4273c7 2306
d929913e
NC
2307 nbuf = strdup (name);
2308 for (p = nbuf; *p; p++)
2309 *p = TOUPPER (*p);
2310 reg = hash_find (arm_reg_hsh, nbuf);
2311 if (reg)
2312 {
db0bc284 2313 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2314 free ((char *) reg->name);
2315 if (reg->neon)
2316 free (reg->neon);
2317 free (reg);
2318 }
2319
2320 for (p = nbuf; *p; p++)
2321 *p = TOLOWER (*p);
2322 reg = hash_find (arm_reg_hsh, nbuf);
2323 if (reg)
2324 {
db0bc284 2325 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2326 free ((char *) reg->name);
2327 if (reg->neon)
2328 free (reg->neon);
2329 free (reg);
2330 }
2331
2332 free (nbuf);
c19d1205
ZW
2333 }
2334 }
b99bd4ef 2335
c19d1205 2336 *input_line_pointer = saved_char;
b99bd4ef
NC
2337 demand_empty_rest_of_line ();
2338}
2339
c19d1205
ZW
2340/* Directives: Instruction set selection. */
2341
2342#ifdef OBJ_ELF
2343/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2344 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2345 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2346 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2347
2348static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef 2349
e821645d 2350void
c19d1205 2351mapping_state (enum mstate state)
b99bd4ef 2352{
a737bd4d 2353 symbolS * symbolP;
c19d1205
ZW
2354 const char * symname;
2355 int type;
b99bd4ef 2356
c19d1205
ZW
2357 if (mapstate == state)
2358 /* The mapping symbol has already been emitted.
2359 There is nothing else to do. */
2360 return;
b99bd4ef 2361
c19d1205 2362 mapstate = state;
b99bd4ef 2363
c19d1205 2364 switch (state)
b99bd4ef 2365 {
c19d1205
ZW
2366 case MAP_DATA:
2367 symname = "$d";
2368 type = BSF_NO_FLAGS;
2369 break;
2370 case MAP_ARM:
2371 symname = "$a";
2372 type = BSF_NO_FLAGS;
2373 break;
2374 case MAP_THUMB:
2375 symname = "$t";
2376 type = BSF_NO_FLAGS;
2377 break;
2378 case MAP_UNDEFINED:
2379 return;
2380 default:
2381 abort ();
2382 }
2383
2384 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2385
2386 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2387 symbol_table_insert (symbolP);
2388 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2389
2390 switch (state)
2391 {
2392 case MAP_ARM:
2393 THUMB_SET_FUNC (symbolP, 0);
2394 ARM_SET_THUMB (symbolP, 0);
2395 ARM_SET_INTERWORK (symbolP, support_interwork);
2396 break;
2397
2398 case MAP_THUMB:
2399 THUMB_SET_FUNC (symbolP, 1);
2400 ARM_SET_THUMB (symbolP, 1);
2401 ARM_SET_INTERWORK (symbolP, support_interwork);
2402 break;
2403
2404 case MAP_DATA:
2405 default:
2406 return;
2407 }
2408}
2409#else
2410#define mapping_state(x) /* nothing */
2411#endif
2412
2413/* Find the real, Thumb encoded start of a Thumb function. */
2414
2415static symbolS *
2416find_real_start (symbolS * symbolP)
2417{
2418 char * real_start;
2419 const char * name = S_GET_NAME (symbolP);
2420 symbolS * new_target;
2421
2422 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2423#define STUB_NAME ".real_start_of"
2424
2425 if (name == NULL)
2426 abort ();
2427
37f6032b
ZW
2428 /* The compiler may generate BL instructions to local labels because
2429 it needs to perform a branch to a far away location. These labels
2430 do not have a corresponding ".real_start_of" label. We check
2431 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2432 the ".real_start_of" convention for nonlocal branches. */
2433 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2434 return symbolP;
2435
37f6032b 2436 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2437 new_target = symbol_find (real_start);
2438
2439 if (new_target == NULL)
2440 {
bd3ba5d1 2441 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2442 new_target = symbolP;
2443 }
2444
c19d1205
ZW
2445 return new_target;
2446}
2447
2448static void
2449opcode_select (int width)
2450{
2451 switch (width)
2452 {
2453 case 16:
2454 if (! thumb_mode)
2455 {
e74cfd16 2456 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2457 as_bad (_("selected processor does not support THUMB opcodes"));
2458
2459 thumb_mode = 1;
2460 /* No need to force the alignment, since we will have been
2461 coming from ARM mode, which is word-aligned. */
2462 record_alignment (now_seg, 1);
2463 }
2464 mapping_state (MAP_THUMB);
2465 break;
2466
2467 case 32:
2468 if (thumb_mode)
2469 {
e74cfd16 2470 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2471 as_bad (_("selected processor does not support ARM opcodes"));
2472
2473 thumb_mode = 0;
2474
2475 if (!need_pass_2)
2476 frag_align (2, 0, 0);
2477
2478 record_alignment (now_seg, 1);
2479 }
2480 mapping_state (MAP_ARM);
2481 break;
2482
2483 default:
2484 as_bad (_("invalid instruction size selected (%d)"), width);
2485 }
2486}
2487
2488static void
2489s_arm (int ignore ATTRIBUTE_UNUSED)
2490{
2491 opcode_select (32);
2492 demand_empty_rest_of_line ();
2493}
2494
2495static void
2496s_thumb (int ignore ATTRIBUTE_UNUSED)
2497{
2498 opcode_select (16);
2499 demand_empty_rest_of_line ();
2500}
2501
2502static void
2503s_code (int unused ATTRIBUTE_UNUSED)
2504{
2505 int temp;
2506
2507 temp = get_absolute_expression ();
2508 switch (temp)
2509 {
2510 case 16:
2511 case 32:
2512 opcode_select (temp);
2513 break;
2514
2515 default:
2516 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2517 }
2518}
2519
2520static void
2521s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2522{
2523 /* If we are not already in thumb mode go into it, EVEN if
2524 the target processor does not support thumb instructions.
2525 This is used by gcc/config/arm/lib1funcs.asm for example
2526 to compile interworking support functions even if the
2527 target processor should not support interworking. */
2528 if (! thumb_mode)
2529 {
2530 thumb_mode = 2;
2531 record_alignment (now_seg, 1);
2532 }
2533
2534 demand_empty_rest_of_line ();
2535}
2536
2537static void
2538s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2539{
2540 s_thumb (0);
2541
2542 /* The following label is the name/address of the start of a Thumb function.
2543 We need to know this for the interworking support. */
2544 label_is_thumb_function_name = TRUE;
2545}
2546
2547/* Perform a .set directive, but also mark the alias as
2548 being a thumb function. */
2549
2550static void
2551s_thumb_set (int equiv)
2552{
2553 /* XXX the following is a duplicate of the code for s_set() in read.c
2554 We cannot just call that code as we need to get at the symbol that
2555 is created. */
2556 char * name;
2557 char delim;
2558 char * end_name;
2559 symbolS * symbolP;
2560
2561 /* Especial apologies for the random logic:
2562 This just grew, and could be parsed much more simply!
2563 Dean - in haste. */
2564 name = input_line_pointer;
2565 delim = get_symbol_end ();
2566 end_name = input_line_pointer;
2567 *end_name = delim;
2568
2569 if (*input_line_pointer != ',')
2570 {
2571 *end_name = 0;
2572 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2573 *end_name = delim;
2574 ignore_rest_of_line ();
2575 return;
2576 }
2577
2578 input_line_pointer++;
2579 *end_name = 0;
2580
2581 if (name[0] == '.' && name[1] == '\0')
2582 {
2583 /* XXX - this should not happen to .thumb_set. */
2584 abort ();
2585 }
2586
2587 if ((symbolP = symbol_find (name)) == NULL
2588 && (symbolP = md_undefined_symbol (name)) == NULL)
2589 {
2590#ifndef NO_LISTING
2591 /* When doing symbol listings, play games with dummy fragments living
2592 outside the normal fragment chain to record the file and line info
c19d1205 2593 for this symbol. */
b99bd4ef
NC
2594 if (listing & LISTING_SYMBOLS)
2595 {
2596 extern struct list_info_struct * listing_tail;
a737bd4d 2597 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2598
2599 memset (dummy_frag, 0, sizeof (fragS));
2600 dummy_frag->fr_type = rs_fill;
2601 dummy_frag->line = listing_tail;
2602 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2603 dummy_frag->fr_symbol = symbolP;
2604 }
2605 else
2606#endif
2607 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2608
2609#ifdef OBJ_COFF
2610 /* "set" symbols are local unless otherwise specified. */
2611 SF_SET_LOCAL (symbolP);
2612#endif /* OBJ_COFF */
2613 } /* Make a new symbol. */
2614
2615 symbol_table_insert (symbolP);
2616
2617 * end_name = delim;
2618
2619 if (equiv
2620 && S_IS_DEFINED (symbolP)
2621 && S_GET_SEGMENT (symbolP) != reg_section)
2622 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2623
2624 pseudo_set (symbolP);
2625
2626 demand_empty_rest_of_line ();
2627
c19d1205 2628 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2629
2630 THUMB_SET_FUNC (symbolP, 1);
2631 ARM_SET_THUMB (symbolP, 1);
2632#if defined OBJ_ELF || defined OBJ_COFF
2633 ARM_SET_INTERWORK (symbolP, support_interwork);
2634#endif
2635}
2636
c19d1205 2637/* Directives: Mode selection. */
b99bd4ef 2638
c19d1205
ZW
2639/* .syntax [unified|divided] - choose the new unified syntax
2640 (same for Arm and Thumb encoding, modulo slight differences in what
2641 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2642static void
c19d1205 2643s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2644{
c19d1205
ZW
2645 char *name, delim;
2646
2647 name = input_line_pointer;
2648 delim = get_symbol_end ();
2649
2650 if (!strcasecmp (name, "unified"))
2651 unified_syntax = TRUE;
2652 else if (!strcasecmp (name, "divided"))
2653 unified_syntax = FALSE;
2654 else
2655 {
2656 as_bad (_("unrecognized syntax mode \"%s\""), name);
2657 return;
2658 }
2659 *input_line_pointer = delim;
b99bd4ef
NC
2660 demand_empty_rest_of_line ();
2661}
2662
c19d1205
ZW
2663/* Directives: sectioning and alignment. */
2664
2665/* Same as s_align_ptwo but align 0 => align 2. */
2666
b99bd4ef 2667static void
c19d1205 2668s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2669{
a737bd4d 2670 int temp;
dce323d1 2671 bfd_boolean fill_p;
c19d1205
ZW
2672 long temp_fill;
2673 long max_alignment = 15;
b99bd4ef
NC
2674
2675 temp = get_absolute_expression ();
c19d1205
ZW
2676 if (temp > max_alignment)
2677 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2678 else if (temp < 0)
b99bd4ef 2679 {
c19d1205
ZW
2680 as_bad (_("alignment negative. 0 assumed."));
2681 temp = 0;
2682 }
b99bd4ef 2683
c19d1205
ZW
2684 if (*input_line_pointer == ',')
2685 {
2686 input_line_pointer++;
2687 temp_fill = get_absolute_expression ();
dce323d1 2688 fill_p = TRUE;
b99bd4ef 2689 }
c19d1205 2690 else
dce323d1
PB
2691 {
2692 fill_p = FALSE;
2693 temp_fill = 0;
2694 }
b99bd4ef 2695
c19d1205
ZW
2696 if (!temp)
2697 temp = 2;
b99bd4ef 2698
c19d1205
ZW
2699 /* Only make a frag if we HAVE to. */
2700 if (temp && !need_pass_2)
dce323d1
PB
2701 {
2702 if (!fill_p && subseg_text_p (now_seg))
2703 frag_align_code (temp, 0);
2704 else
2705 frag_align (temp, (int) temp_fill, 0);
2706 }
c19d1205
ZW
2707 demand_empty_rest_of_line ();
2708
2709 record_alignment (now_seg, temp);
b99bd4ef
NC
2710}
2711
c19d1205
ZW
2712static void
2713s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2714{
c19d1205
ZW
2715 /* We don't support putting frags in the BSS segment, we fake it by
2716 marking in_bss, then looking at s_skip for clues. */
2717 subseg_set (bss_section, 0);
2718 demand_empty_rest_of_line ();
2719 mapping_state (MAP_DATA);
2720}
b99bd4ef 2721
c19d1205
ZW
2722static void
2723s_even (int ignore ATTRIBUTE_UNUSED)
2724{
2725 /* Never make frag if expect extra pass. */
2726 if (!need_pass_2)
2727 frag_align (1, 0, 0);
b99bd4ef 2728
c19d1205 2729 record_alignment (now_seg, 1);
b99bd4ef 2730
c19d1205 2731 demand_empty_rest_of_line ();
b99bd4ef
NC
2732}
2733
c19d1205 2734/* Directives: Literal pools. */
a737bd4d 2735
c19d1205
ZW
2736static literal_pool *
2737find_literal_pool (void)
a737bd4d 2738{
c19d1205 2739 literal_pool * pool;
a737bd4d 2740
c19d1205 2741 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2742 {
c19d1205
ZW
2743 if (pool->section == now_seg
2744 && pool->sub_section == now_subseg)
2745 break;
a737bd4d
NC
2746 }
2747
c19d1205 2748 return pool;
a737bd4d
NC
2749}
2750
c19d1205
ZW
2751static literal_pool *
2752find_or_make_literal_pool (void)
a737bd4d 2753{
c19d1205
ZW
2754 /* Next literal pool ID number. */
2755 static unsigned int latest_pool_num = 1;
2756 literal_pool * pool;
a737bd4d 2757
c19d1205 2758 pool = find_literal_pool ();
a737bd4d 2759
c19d1205 2760 if (pool == NULL)
a737bd4d 2761 {
c19d1205
ZW
2762 /* Create a new pool. */
2763 pool = xmalloc (sizeof (* pool));
2764 if (! pool)
2765 return NULL;
a737bd4d 2766
c19d1205
ZW
2767 pool->next_free_entry = 0;
2768 pool->section = now_seg;
2769 pool->sub_section = now_subseg;
2770 pool->next = list_of_pools;
2771 pool->symbol = NULL;
2772
2773 /* Add it to the list. */
2774 list_of_pools = pool;
a737bd4d 2775 }
a737bd4d 2776
c19d1205
ZW
2777 /* New pools, and emptied pools, will have a NULL symbol. */
2778 if (pool->symbol == NULL)
a737bd4d 2779 {
c19d1205
ZW
2780 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2781 (valueT) 0, &zero_address_frag);
2782 pool->id = latest_pool_num ++;
a737bd4d
NC
2783 }
2784
c19d1205
ZW
2785 /* Done. */
2786 return pool;
a737bd4d
NC
2787}
2788
c19d1205 2789/* Add the literal in the global 'inst'
5f4273c7 2790 structure to the relevant literal pool. */
b99bd4ef
NC
2791
2792static int
c19d1205 2793add_to_lit_pool (void)
b99bd4ef 2794{
c19d1205
ZW
2795 literal_pool * pool;
2796 unsigned int entry;
b99bd4ef 2797
c19d1205
ZW
2798 pool = find_or_make_literal_pool ();
2799
2800 /* Check if this literal value is already in the pool. */
2801 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2802 {
c19d1205
ZW
2803 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2804 && (inst.reloc.exp.X_op == O_constant)
2805 && (pool->literals[entry].X_add_number
2806 == inst.reloc.exp.X_add_number)
2807 && (pool->literals[entry].X_unsigned
2808 == inst.reloc.exp.X_unsigned))
2809 break;
2810
2811 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2812 && (inst.reloc.exp.X_op == O_symbol)
2813 && (pool->literals[entry].X_add_number
2814 == inst.reloc.exp.X_add_number)
2815 && (pool->literals[entry].X_add_symbol
2816 == inst.reloc.exp.X_add_symbol)
2817 && (pool->literals[entry].X_op_symbol
2818 == inst.reloc.exp.X_op_symbol))
2819 break;
b99bd4ef
NC
2820 }
2821
c19d1205
ZW
2822 /* Do we need to create a new entry? */
2823 if (entry == pool->next_free_entry)
2824 {
2825 if (entry >= MAX_LITERAL_POOL_SIZE)
2826 {
2827 inst.error = _("literal pool overflow");
2828 return FAIL;
2829 }
2830
2831 pool->literals[entry] = inst.reloc.exp;
2832 pool->next_free_entry += 1;
2833 }
b99bd4ef 2834
c19d1205
ZW
2835 inst.reloc.exp.X_op = O_symbol;
2836 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2837 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2838
c19d1205 2839 return SUCCESS;
b99bd4ef
NC
2840}
2841
c19d1205
ZW
2842/* Can't use symbol_new here, so have to create a symbol and then at
2843 a later date assign it a value. Thats what these functions do. */
e16bb312 2844
c19d1205
ZW
2845static void
2846symbol_locate (symbolS * symbolP,
2847 const char * name, /* It is copied, the caller can modify. */
2848 segT segment, /* Segment identifier (SEG_<something>). */
2849 valueT valu, /* Symbol value. */
2850 fragS * frag) /* Associated fragment. */
2851{
2852 unsigned int name_length;
2853 char * preserved_copy_of_name;
e16bb312 2854
c19d1205
ZW
2855 name_length = strlen (name) + 1; /* +1 for \0. */
2856 obstack_grow (&notes, name, name_length);
2857 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2858
c19d1205
ZW
2859#ifdef tc_canonicalize_symbol_name
2860 preserved_copy_of_name =
2861 tc_canonicalize_symbol_name (preserved_copy_of_name);
2862#endif
b99bd4ef 2863
c19d1205 2864 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2865
c19d1205
ZW
2866 S_SET_SEGMENT (symbolP, segment);
2867 S_SET_VALUE (symbolP, valu);
2868 symbol_clear_list_pointers (symbolP);
b99bd4ef 2869
c19d1205 2870 symbol_set_frag (symbolP, frag);
b99bd4ef 2871
c19d1205
ZW
2872 /* Link to end of symbol chain. */
2873 {
2874 extern int symbol_table_frozen;
b99bd4ef 2875
c19d1205
ZW
2876 if (symbol_table_frozen)
2877 abort ();
2878 }
b99bd4ef 2879
c19d1205 2880 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2881
c19d1205 2882 obj_symbol_new_hook (symbolP);
b99bd4ef 2883
c19d1205
ZW
2884#ifdef tc_symbol_new_hook
2885 tc_symbol_new_hook (symbolP);
2886#endif
2887
2888#ifdef DEBUG_SYMS
2889 verify_symbol_chain (symbol_rootP, symbol_lastP);
2890#endif /* DEBUG_SYMS */
b99bd4ef
NC
2891}
2892
b99bd4ef 2893
c19d1205
ZW
2894static void
2895s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2896{
c19d1205
ZW
2897 unsigned int entry;
2898 literal_pool * pool;
2899 char sym_name[20];
b99bd4ef 2900
c19d1205
ZW
2901 pool = find_literal_pool ();
2902 if (pool == NULL
2903 || pool->symbol == NULL
2904 || pool->next_free_entry == 0)
2905 return;
b99bd4ef 2906
c19d1205 2907 mapping_state (MAP_DATA);
b99bd4ef 2908
c19d1205
ZW
2909 /* Align pool as you have word accesses.
2910 Only make a frag if we have to. */
2911 if (!need_pass_2)
2912 frag_align (2, 0, 0);
b99bd4ef 2913
c19d1205 2914 record_alignment (now_seg, 2);
b99bd4ef 2915
c19d1205 2916 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2917
c19d1205
ZW
2918 symbol_locate (pool->symbol, sym_name, now_seg,
2919 (valueT) frag_now_fix (), frag_now);
2920 symbol_table_insert (pool->symbol);
b99bd4ef 2921
c19d1205 2922 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2923
c19d1205
ZW
2924#if defined OBJ_COFF || defined OBJ_ELF
2925 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2926#endif
6c43fab6 2927
c19d1205
ZW
2928 for (entry = 0; entry < pool->next_free_entry; entry ++)
2929 /* First output the expression in the instruction to the pool. */
2930 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2931
c19d1205
ZW
2932 /* Mark the pool as empty. */
2933 pool->next_free_entry = 0;
2934 pool->symbol = NULL;
b99bd4ef
NC
2935}
2936
c19d1205
ZW
2937#ifdef OBJ_ELF
2938/* Forward declarations for functions below, in the MD interface
2939 section. */
2940static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2941static valueT create_unwind_entry (int);
2942static void start_unwind_section (const segT, int);
2943static void add_unwind_opcode (valueT, int);
2944static void flush_pending_unwind (void);
b99bd4ef 2945
c19d1205 2946/* Directives: Data. */
b99bd4ef 2947
c19d1205
ZW
2948static void
2949s_arm_elf_cons (int nbytes)
2950{
2951 expressionS exp;
b99bd4ef 2952
c19d1205
ZW
2953#ifdef md_flush_pending_output
2954 md_flush_pending_output ();
2955#endif
b99bd4ef 2956
c19d1205 2957 if (is_it_end_of_statement ())
b99bd4ef 2958 {
c19d1205
ZW
2959 demand_empty_rest_of_line ();
2960 return;
b99bd4ef
NC
2961 }
2962
c19d1205
ZW
2963#ifdef md_cons_align
2964 md_cons_align (nbytes);
2965#endif
b99bd4ef 2966
c19d1205
ZW
2967 mapping_state (MAP_DATA);
2968 do
b99bd4ef 2969 {
c19d1205
ZW
2970 int reloc;
2971 char *base = input_line_pointer;
b99bd4ef 2972
c19d1205 2973 expression (& exp);
b99bd4ef 2974
c19d1205
ZW
2975 if (exp.X_op != O_symbol)
2976 emit_expr (&exp, (unsigned int) nbytes);
2977 else
2978 {
2979 char *before_reloc = input_line_pointer;
2980 reloc = parse_reloc (&input_line_pointer);
2981 if (reloc == -1)
2982 {
2983 as_bad (_("unrecognized relocation suffix"));
2984 ignore_rest_of_line ();
2985 return;
2986 }
2987 else if (reloc == BFD_RELOC_UNUSED)
2988 emit_expr (&exp, (unsigned int) nbytes);
2989 else
2990 {
2991 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2992 int size = bfd_get_reloc_size (howto);
b99bd4ef 2993
2fc8bdac
ZW
2994 if (reloc == BFD_RELOC_ARM_PLT32)
2995 {
2996 as_bad (_("(plt) is only valid on branch targets"));
2997 reloc = BFD_RELOC_UNUSED;
2998 size = 0;
2999 }
3000
c19d1205 3001 if (size > nbytes)
2fc8bdac 3002 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3003 howto->name, nbytes);
3004 else
3005 {
3006 /* We've parsed an expression stopping at O_symbol.
3007 But there may be more expression left now that we
3008 have parsed the relocation marker. Parse it again.
3009 XXX Surely there is a cleaner way to do this. */
3010 char *p = input_line_pointer;
3011 int offset;
3012 char *save_buf = alloca (input_line_pointer - base);
3013 memcpy (save_buf, base, input_line_pointer - base);
3014 memmove (base + (input_line_pointer - before_reloc),
3015 base, before_reloc - base);
3016
3017 input_line_pointer = base + (input_line_pointer-before_reloc);
3018 expression (&exp);
3019 memcpy (base, save_buf, p - base);
3020
3021 offset = nbytes - size;
3022 p = frag_more ((int) nbytes);
3023 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3024 size, &exp, 0, reloc);
3025 }
3026 }
3027 }
b99bd4ef 3028 }
c19d1205 3029 while (*input_line_pointer++ == ',');
b99bd4ef 3030
c19d1205
ZW
3031 /* Put terminator back into stream. */
3032 input_line_pointer --;
3033 demand_empty_rest_of_line ();
b99bd4ef
NC
3034}
3035
b99bd4ef 3036
c19d1205 3037/* Parse a .rel31 directive. */
b99bd4ef 3038
c19d1205
ZW
3039static void
3040s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3041{
3042 expressionS exp;
3043 char *p;
3044 valueT highbit;
b99bd4ef 3045
c19d1205
ZW
3046 highbit = 0;
3047 if (*input_line_pointer == '1')
3048 highbit = 0x80000000;
3049 else if (*input_line_pointer != '0')
3050 as_bad (_("expected 0 or 1"));
b99bd4ef 3051
c19d1205
ZW
3052 input_line_pointer++;
3053 if (*input_line_pointer != ',')
3054 as_bad (_("missing comma"));
3055 input_line_pointer++;
b99bd4ef 3056
c19d1205
ZW
3057#ifdef md_flush_pending_output
3058 md_flush_pending_output ();
3059#endif
b99bd4ef 3060
c19d1205
ZW
3061#ifdef md_cons_align
3062 md_cons_align (4);
3063#endif
b99bd4ef 3064
c19d1205 3065 mapping_state (MAP_DATA);
b99bd4ef 3066
c19d1205 3067 expression (&exp);
b99bd4ef 3068
c19d1205
ZW
3069 p = frag_more (4);
3070 md_number_to_chars (p, highbit, 4);
3071 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3072 BFD_RELOC_ARM_PREL31);
b99bd4ef 3073
c19d1205 3074 demand_empty_rest_of_line ();
b99bd4ef
NC
3075}
3076
c19d1205 3077/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3078
c19d1205 3079/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3080
c19d1205
ZW
3081static void
3082s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3083{
3084 demand_empty_rest_of_line ();
3085 /* Mark the start of the function. */
3086 unwind.proc_start = expr_build_dot ();
b99bd4ef 3087
c19d1205
ZW
3088 /* Reset the rest of the unwind info. */
3089 unwind.opcode_count = 0;
3090 unwind.table_entry = NULL;
3091 unwind.personality_routine = NULL;
3092 unwind.personality_index = -1;
3093 unwind.frame_size = 0;
3094 unwind.fp_offset = 0;
3095 unwind.fp_reg = 13;
3096 unwind.fp_used = 0;
3097 unwind.sp_restored = 0;
3098}
b99bd4ef 3099
b99bd4ef 3100
c19d1205
ZW
3101/* Parse a handlerdata directive. Creates the exception handling table entry
3102 for the function. */
b99bd4ef 3103
c19d1205
ZW
3104static void
3105s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3106{
3107 demand_empty_rest_of_line ();
3108 if (unwind.table_entry)
6decc662 3109 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3110
c19d1205
ZW
3111 create_unwind_entry (1);
3112}
a737bd4d 3113
c19d1205 3114/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3115
c19d1205
ZW
3116static void
3117s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3118{
3119 long where;
3120 char *ptr;
3121 valueT val;
f02232aa 3122
c19d1205 3123 demand_empty_rest_of_line ();
f02232aa 3124
c19d1205
ZW
3125 /* Add eh table entry. */
3126 if (unwind.table_entry == NULL)
3127 val = create_unwind_entry (0);
3128 else
3129 val = 0;
f02232aa 3130
c19d1205
ZW
3131 /* Add index table entry. This is two words. */
3132 start_unwind_section (unwind.saved_seg, 1);
3133 frag_align (2, 0, 0);
3134 record_alignment (now_seg, 2);
b99bd4ef 3135
c19d1205
ZW
3136 ptr = frag_more (8);
3137 where = frag_now_fix () - 8;
f02232aa 3138
c19d1205
ZW
3139 /* Self relative offset of the function start. */
3140 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3141 BFD_RELOC_ARM_PREL31);
f02232aa 3142
c19d1205
ZW
3143 /* Indicate dependency on EHABI-defined personality routines to the
3144 linker, if it hasn't been done already. */
3145 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3146 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3147 {
5f4273c7
NC
3148 static const char *const name[] =
3149 {
3150 "__aeabi_unwind_cpp_pr0",
3151 "__aeabi_unwind_cpp_pr1",
3152 "__aeabi_unwind_cpp_pr2"
3153 };
c19d1205
ZW
3154 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3155 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3156 marked_pr_dependency |= 1 << unwind.personality_index;
3157 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3158 = marked_pr_dependency;
3159 }
f02232aa 3160
c19d1205
ZW
3161 if (val)
3162 /* Inline exception table entry. */
3163 md_number_to_chars (ptr + 4, val, 4);
3164 else
3165 /* Self relative offset of the table entry. */
3166 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3167 BFD_RELOC_ARM_PREL31);
f02232aa 3168
c19d1205
ZW
3169 /* Restore the original section. */
3170 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3171}
f02232aa 3172
f02232aa 3173
c19d1205 3174/* Parse an unwind_cantunwind directive. */
b99bd4ef 3175
c19d1205
ZW
3176static void
3177s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3178{
3179 demand_empty_rest_of_line ();
3180 if (unwind.personality_routine || unwind.personality_index != -1)
3181 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3182
c19d1205
ZW
3183 unwind.personality_index = -2;
3184}
b99bd4ef 3185
b99bd4ef 3186
c19d1205 3187/* Parse a personalityindex directive. */
b99bd4ef 3188
c19d1205
ZW
3189static void
3190s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3191{
3192 expressionS exp;
b99bd4ef 3193
c19d1205
ZW
3194 if (unwind.personality_routine || unwind.personality_index != -1)
3195 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3196
c19d1205 3197 expression (&exp);
b99bd4ef 3198
c19d1205
ZW
3199 if (exp.X_op != O_constant
3200 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3201 {
c19d1205
ZW
3202 as_bad (_("bad personality routine number"));
3203 ignore_rest_of_line ();
3204 return;
b99bd4ef
NC
3205 }
3206
c19d1205 3207 unwind.personality_index = exp.X_add_number;
b99bd4ef 3208
c19d1205
ZW
3209 demand_empty_rest_of_line ();
3210}
e16bb312 3211
e16bb312 3212
c19d1205 3213/* Parse a personality directive. */
e16bb312 3214
c19d1205
ZW
3215static void
3216s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3217{
3218 char *name, *p, c;
a737bd4d 3219
c19d1205
ZW
3220 if (unwind.personality_routine || unwind.personality_index != -1)
3221 as_bad (_("duplicate .personality directive"));
a737bd4d 3222
c19d1205
ZW
3223 name = input_line_pointer;
3224 c = get_symbol_end ();
3225 p = input_line_pointer;
3226 unwind.personality_routine = symbol_find_or_make (name);
3227 *p = c;
3228 demand_empty_rest_of_line ();
3229}
e16bb312 3230
e16bb312 3231
c19d1205 3232/* Parse a directive saving core registers. */
e16bb312 3233
c19d1205
ZW
3234static void
3235s_arm_unwind_save_core (void)
e16bb312 3236{
c19d1205
ZW
3237 valueT op;
3238 long range;
3239 int n;
e16bb312 3240
c19d1205
ZW
3241 range = parse_reg_list (&input_line_pointer);
3242 if (range == FAIL)
e16bb312 3243 {
c19d1205
ZW
3244 as_bad (_("expected register list"));
3245 ignore_rest_of_line ();
3246 return;
3247 }
e16bb312 3248
c19d1205 3249 demand_empty_rest_of_line ();
e16bb312 3250
c19d1205
ZW
3251 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3252 into .unwind_save {..., sp...}. We aren't bothered about the value of
3253 ip because it is clobbered by calls. */
3254 if (unwind.sp_restored && unwind.fp_reg == 12
3255 && (range & 0x3000) == 0x1000)
3256 {
3257 unwind.opcode_count--;
3258 unwind.sp_restored = 0;
3259 range = (range | 0x2000) & ~0x1000;
3260 unwind.pending_offset = 0;
3261 }
e16bb312 3262
01ae4198
DJ
3263 /* Pop r4-r15. */
3264 if (range & 0xfff0)
c19d1205 3265 {
01ae4198
DJ
3266 /* See if we can use the short opcodes. These pop a block of up to 8
3267 registers starting with r4, plus maybe r14. */
3268 for (n = 0; n < 8; n++)
3269 {
3270 /* Break at the first non-saved register. */
3271 if ((range & (1 << (n + 4))) == 0)
3272 break;
3273 }
3274 /* See if there are any other bits set. */
3275 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3276 {
3277 /* Use the long form. */
3278 op = 0x8000 | ((range >> 4) & 0xfff);
3279 add_unwind_opcode (op, 2);
3280 }
0dd132b6 3281 else
01ae4198
DJ
3282 {
3283 /* Use the short form. */
3284 if (range & 0x4000)
3285 op = 0xa8; /* Pop r14. */
3286 else
3287 op = 0xa0; /* Do not pop r14. */
3288 op |= (n - 1);
3289 add_unwind_opcode (op, 1);
3290 }
c19d1205 3291 }
0dd132b6 3292
c19d1205
ZW
3293 /* Pop r0-r3. */
3294 if (range & 0xf)
3295 {
3296 op = 0xb100 | (range & 0xf);
3297 add_unwind_opcode (op, 2);
0dd132b6
NC
3298 }
3299
c19d1205
ZW
3300 /* Record the number of bytes pushed. */
3301 for (n = 0; n < 16; n++)
3302 {
3303 if (range & (1 << n))
3304 unwind.frame_size += 4;
3305 }
0dd132b6
NC
3306}
3307
c19d1205
ZW
3308
3309/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3310
3311static void
c19d1205 3312s_arm_unwind_save_fpa (int reg)
b99bd4ef 3313{
c19d1205
ZW
3314 expressionS exp;
3315 int num_regs;
3316 valueT op;
b99bd4ef 3317
c19d1205
ZW
3318 /* Get Number of registers to transfer. */
3319 if (skip_past_comma (&input_line_pointer) != FAIL)
3320 expression (&exp);
3321 else
3322 exp.X_op = O_illegal;
b99bd4ef 3323
c19d1205 3324 if (exp.X_op != O_constant)
b99bd4ef 3325 {
c19d1205
ZW
3326 as_bad (_("expected , <constant>"));
3327 ignore_rest_of_line ();
b99bd4ef
NC
3328 return;
3329 }
3330
c19d1205
ZW
3331 num_regs = exp.X_add_number;
3332
3333 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3334 {
c19d1205
ZW
3335 as_bad (_("number of registers must be in the range [1:4]"));
3336 ignore_rest_of_line ();
b99bd4ef
NC
3337 return;
3338 }
3339
c19d1205 3340 demand_empty_rest_of_line ();
b99bd4ef 3341
c19d1205
ZW
3342 if (reg == 4)
3343 {
3344 /* Short form. */
3345 op = 0xb4 | (num_regs - 1);
3346 add_unwind_opcode (op, 1);
3347 }
b99bd4ef
NC
3348 else
3349 {
c19d1205
ZW
3350 /* Long form. */
3351 op = 0xc800 | (reg << 4) | (num_regs - 1);
3352 add_unwind_opcode (op, 2);
b99bd4ef 3353 }
c19d1205 3354 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3355}
3356
c19d1205 3357
fa073d69
MS
3358/* Parse a directive saving VFP registers for ARMv6 and above. */
3359
3360static void
3361s_arm_unwind_save_vfp_armv6 (void)
3362{
3363 int count;
3364 unsigned int start;
3365 valueT op;
3366 int num_vfpv3_regs = 0;
3367 int num_regs_below_16;
3368
3369 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3370 if (count == FAIL)
3371 {
3372 as_bad (_("expected register list"));
3373 ignore_rest_of_line ();
3374 return;
3375 }
3376
3377 demand_empty_rest_of_line ();
3378
3379 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3380 than FSTMX/FLDMX-style ones). */
3381
3382 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3383 if (start >= 16)
3384 num_vfpv3_regs = count;
3385 else if (start + count > 16)
3386 num_vfpv3_regs = start + count - 16;
3387
3388 if (num_vfpv3_regs > 0)
3389 {
3390 int start_offset = start > 16 ? start - 16 : 0;
3391 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3392 add_unwind_opcode (op, 2);
3393 }
3394
3395 /* Generate opcode for registers numbered in the range 0 .. 15. */
3396 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3397 assert (num_regs_below_16 + num_vfpv3_regs == count);
3398 if (num_regs_below_16 > 0)
3399 {
3400 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3401 add_unwind_opcode (op, 2);
3402 }
3403
3404 unwind.frame_size += count * 8;
3405}
3406
3407
3408/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3409
3410static void
c19d1205 3411s_arm_unwind_save_vfp (void)
b99bd4ef 3412{
c19d1205 3413 int count;
ca3f61f7 3414 unsigned int reg;
c19d1205 3415 valueT op;
b99bd4ef 3416
5287ad62 3417 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3418 if (count == FAIL)
b99bd4ef 3419 {
c19d1205
ZW
3420 as_bad (_("expected register list"));
3421 ignore_rest_of_line ();
b99bd4ef
NC
3422 return;
3423 }
3424
c19d1205 3425 demand_empty_rest_of_line ();
b99bd4ef 3426
c19d1205 3427 if (reg == 8)
b99bd4ef 3428 {
c19d1205
ZW
3429 /* Short form. */
3430 op = 0xb8 | (count - 1);
3431 add_unwind_opcode (op, 1);
b99bd4ef 3432 }
c19d1205 3433 else
b99bd4ef 3434 {
c19d1205
ZW
3435 /* Long form. */
3436 op = 0xb300 | (reg << 4) | (count - 1);
3437 add_unwind_opcode (op, 2);
b99bd4ef 3438 }
c19d1205
ZW
3439 unwind.frame_size += count * 8 + 4;
3440}
b99bd4ef 3441
b99bd4ef 3442
c19d1205
ZW
3443/* Parse a directive saving iWMMXt data registers. */
3444
3445static void
3446s_arm_unwind_save_mmxwr (void)
3447{
3448 int reg;
3449 int hi_reg;
3450 int i;
3451 unsigned mask = 0;
3452 valueT op;
b99bd4ef 3453
c19d1205
ZW
3454 if (*input_line_pointer == '{')
3455 input_line_pointer++;
b99bd4ef 3456
c19d1205 3457 do
b99bd4ef 3458 {
dcbf9037 3459 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3460
c19d1205 3461 if (reg == FAIL)
b99bd4ef 3462 {
9b7132d3 3463 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3464 goto error;
b99bd4ef
NC
3465 }
3466
c19d1205
ZW
3467 if (mask >> reg)
3468 as_tsktsk (_("register list not in ascending order"));
3469 mask |= 1 << reg;
b99bd4ef 3470
c19d1205
ZW
3471 if (*input_line_pointer == '-')
3472 {
3473 input_line_pointer++;
dcbf9037 3474 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3475 if (hi_reg == FAIL)
3476 {
9b7132d3 3477 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3478 goto error;
3479 }
3480 else if (reg >= hi_reg)
3481 {
3482 as_bad (_("bad register range"));
3483 goto error;
3484 }
3485 for (; reg < hi_reg; reg++)
3486 mask |= 1 << reg;
3487 }
3488 }
3489 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3490
c19d1205
ZW
3491 if (*input_line_pointer == '}')
3492 input_line_pointer++;
b99bd4ef 3493
c19d1205 3494 demand_empty_rest_of_line ();
b99bd4ef 3495
708587a4 3496 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3497 the list. */
3498 flush_pending_unwind ();
b99bd4ef 3499
c19d1205 3500 for (i = 0; i < 16; i++)
b99bd4ef 3501 {
c19d1205
ZW
3502 if (mask & (1 << i))
3503 unwind.frame_size += 8;
b99bd4ef
NC
3504 }
3505
c19d1205
ZW
3506 /* Attempt to combine with a previous opcode. We do this because gcc
3507 likes to output separate unwind directives for a single block of
3508 registers. */
3509 if (unwind.opcode_count > 0)
b99bd4ef 3510 {
c19d1205
ZW
3511 i = unwind.opcodes[unwind.opcode_count - 1];
3512 if ((i & 0xf8) == 0xc0)
3513 {
3514 i &= 7;
3515 /* Only merge if the blocks are contiguous. */
3516 if (i < 6)
3517 {
3518 if ((mask & 0xfe00) == (1 << 9))
3519 {
3520 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3521 unwind.opcode_count--;
3522 }
3523 }
3524 else if (i == 6 && unwind.opcode_count >= 2)
3525 {
3526 i = unwind.opcodes[unwind.opcode_count - 2];
3527 reg = i >> 4;
3528 i &= 0xf;
b99bd4ef 3529
c19d1205
ZW
3530 op = 0xffff << (reg - 1);
3531 if (reg > 0
87a1fd79 3532 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3533 {
3534 op = (1 << (reg + i + 1)) - 1;
3535 op &= ~((1 << reg) - 1);
3536 mask |= op;
3537 unwind.opcode_count -= 2;
3538 }
3539 }
3540 }
b99bd4ef
NC
3541 }
3542
c19d1205
ZW
3543 hi_reg = 15;
3544 /* We want to generate opcodes in the order the registers have been
3545 saved, ie. descending order. */
3546 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3547 {
c19d1205
ZW
3548 /* Save registers in blocks. */
3549 if (reg < 0
3550 || !(mask & (1 << reg)))
3551 {
3552 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3553 preceding block. */
c19d1205
ZW
3554 if (reg != hi_reg)
3555 {
3556 if (reg == 9)
3557 {
3558 /* Short form. */
3559 op = 0xc0 | (hi_reg - 10);
3560 add_unwind_opcode (op, 1);
3561 }
3562 else
3563 {
3564 /* Long form. */
3565 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3566 add_unwind_opcode (op, 2);
3567 }
3568 }
3569 hi_reg = reg - 1;
3570 }
b99bd4ef
NC
3571 }
3572
c19d1205
ZW
3573 return;
3574error:
3575 ignore_rest_of_line ();
b99bd4ef
NC
3576}
3577
3578static void
c19d1205 3579s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3580{
c19d1205
ZW
3581 int reg;
3582 int hi_reg;
3583 unsigned mask = 0;
3584 valueT op;
b99bd4ef 3585
c19d1205
ZW
3586 if (*input_line_pointer == '{')
3587 input_line_pointer++;
b99bd4ef 3588
c19d1205 3589 do
b99bd4ef 3590 {
dcbf9037 3591 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3592
c19d1205
ZW
3593 if (reg == FAIL)
3594 {
9b7132d3 3595 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3596 goto error;
3597 }
b99bd4ef 3598
c19d1205
ZW
3599 reg -= 8;
3600 if (mask >> reg)
3601 as_tsktsk (_("register list not in ascending order"));
3602 mask |= 1 << reg;
b99bd4ef 3603
c19d1205
ZW
3604 if (*input_line_pointer == '-')
3605 {
3606 input_line_pointer++;
dcbf9037 3607 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3608 if (hi_reg == FAIL)
3609 {
9b7132d3 3610 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3611 goto error;
3612 }
3613 else if (reg >= hi_reg)
3614 {
3615 as_bad (_("bad register range"));
3616 goto error;
3617 }
3618 for (; reg < hi_reg; reg++)
3619 mask |= 1 << reg;
3620 }
b99bd4ef 3621 }
c19d1205 3622 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3623
c19d1205
ZW
3624 if (*input_line_pointer == '}')
3625 input_line_pointer++;
b99bd4ef 3626
c19d1205
ZW
3627 demand_empty_rest_of_line ();
3628
708587a4 3629 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3630 the list. */
3631 flush_pending_unwind ();
b99bd4ef 3632
c19d1205 3633 for (reg = 0; reg < 16; reg++)
b99bd4ef 3634 {
c19d1205
ZW
3635 if (mask & (1 << reg))
3636 unwind.frame_size += 4;
b99bd4ef 3637 }
c19d1205
ZW
3638 op = 0xc700 | mask;
3639 add_unwind_opcode (op, 2);
3640 return;
3641error:
3642 ignore_rest_of_line ();
b99bd4ef
NC
3643}
3644
c19d1205 3645
fa073d69
MS
3646/* Parse an unwind_save directive.
3647 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3648
b99bd4ef 3649static void
fa073d69 3650s_arm_unwind_save (int arch_v6)
b99bd4ef 3651{
c19d1205
ZW
3652 char *peek;
3653 struct reg_entry *reg;
3654 bfd_boolean had_brace = FALSE;
b99bd4ef 3655
c19d1205
ZW
3656 /* Figure out what sort of save we have. */
3657 peek = input_line_pointer;
b99bd4ef 3658
c19d1205 3659 if (*peek == '{')
b99bd4ef 3660 {
c19d1205
ZW
3661 had_brace = TRUE;
3662 peek++;
b99bd4ef
NC
3663 }
3664
c19d1205 3665 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3666
c19d1205 3667 if (!reg)
b99bd4ef 3668 {
c19d1205
ZW
3669 as_bad (_("register expected"));
3670 ignore_rest_of_line ();
b99bd4ef
NC
3671 return;
3672 }
3673
c19d1205 3674 switch (reg->type)
b99bd4ef 3675 {
c19d1205
ZW
3676 case REG_TYPE_FN:
3677 if (had_brace)
3678 {
3679 as_bad (_("FPA .unwind_save does not take a register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
93ac2687 3683 input_line_pointer = peek;
c19d1205 3684 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3685 return;
c19d1205
ZW
3686
3687 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
3688 case REG_TYPE_VFD:
3689 if (arch_v6)
3690 s_arm_unwind_save_vfp_armv6 ();
3691 else
3692 s_arm_unwind_save_vfp ();
3693 return;
c19d1205
ZW
3694 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3695 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3696
3697 default:
3698 as_bad (_(".unwind_save does not support this kind of register"));
3699 ignore_rest_of_line ();
b99bd4ef 3700 }
c19d1205 3701}
b99bd4ef 3702
b99bd4ef 3703
c19d1205
ZW
3704/* Parse an unwind_movsp directive. */
3705
3706static void
3707s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3708{
3709 int reg;
3710 valueT op;
4fa3602b 3711 int offset;
c19d1205 3712
dcbf9037 3713 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3714 if (reg == FAIL)
b99bd4ef 3715 {
9b7132d3 3716 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 3717 ignore_rest_of_line ();
b99bd4ef
NC
3718 return;
3719 }
4fa3602b
PB
3720
3721 /* Optional constant. */
3722 if (skip_past_comma (&input_line_pointer) != FAIL)
3723 {
3724 if (immediate_for_directive (&offset) == FAIL)
3725 return;
3726 }
3727 else
3728 offset = 0;
3729
c19d1205 3730 demand_empty_rest_of_line ();
b99bd4ef 3731
c19d1205 3732 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3733 {
c19d1205 3734 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3735 return;
3736 }
3737
c19d1205
ZW
3738 if (unwind.fp_reg != REG_SP)
3739 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3740
c19d1205
ZW
3741 /* Generate opcode to restore the value. */
3742 op = 0x90 | reg;
3743 add_unwind_opcode (op, 1);
3744
3745 /* Record the information for later. */
3746 unwind.fp_reg = reg;
4fa3602b 3747 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 3748 unwind.sp_restored = 1;
b05fe5cf
ZW
3749}
3750
c19d1205
ZW
3751/* Parse an unwind_pad directive. */
3752
b05fe5cf 3753static void
c19d1205 3754s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3755{
c19d1205 3756 int offset;
b05fe5cf 3757
c19d1205
ZW
3758 if (immediate_for_directive (&offset) == FAIL)
3759 return;
b99bd4ef 3760
c19d1205
ZW
3761 if (offset & 3)
3762 {
3763 as_bad (_("stack increment must be multiple of 4"));
3764 ignore_rest_of_line ();
3765 return;
3766 }
b99bd4ef 3767
c19d1205
ZW
3768 /* Don't generate any opcodes, just record the details for later. */
3769 unwind.frame_size += offset;
3770 unwind.pending_offset += offset;
3771
3772 demand_empty_rest_of_line ();
3773}
3774
3775/* Parse an unwind_setfp directive. */
3776
3777static void
3778s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3779{
c19d1205
ZW
3780 int sp_reg;
3781 int fp_reg;
3782 int offset;
3783
dcbf9037 3784 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3785 if (skip_past_comma (&input_line_pointer) == FAIL)
3786 sp_reg = FAIL;
3787 else
dcbf9037 3788 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3789
c19d1205
ZW
3790 if (fp_reg == FAIL || sp_reg == FAIL)
3791 {
3792 as_bad (_("expected <reg>, <reg>"));
3793 ignore_rest_of_line ();
3794 return;
3795 }
b99bd4ef 3796
c19d1205
ZW
3797 /* Optional constant. */
3798 if (skip_past_comma (&input_line_pointer) != FAIL)
3799 {
3800 if (immediate_for_directive (&offset) == FAIL)
3801 return;
3802 }
3803 else
3804 offset = 0;
a737bd4d 3805
c19d1205 3806 demand_empty_rest_of_line ();
a737bd4d 3807
c19d1205 3808 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 3809 {
c19d1205
ZW
3810 as_bad (_("register must be either sp or set by a previous"
3811 "unwind_movsp directive"));
3812 return;
a737bd4d
NC
3813 }
3814
c19d1205
ZW
3815 /* Don't generate any opcodes, just record the information for later. */
3816 unwind.fp_reg = fp_reg;
3817 unwind.fp_used = 1;
3818 if (sp_reg == 13)
3819 unwind.fp_offset = unwind.frame_size - offset;
3820 else
3821 unwind.fp_offset -= offset;
a737bd4d
NC
3822}
3823
c19d1205
ZW
3824/* Parse an unwind_raw directive. */
3825
3826static void
3827s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3828{
c19d1205 3829 expressionS exp;
708587a4 3830 /* This is an arbitrary limit. */
c19d1205
ZW
3831 unsigned char op[16];
3832 int count;
a737bd4d 3833
c19d1205
ZW
3834 expression (&exp);
3835 if (exp.X_op == O_constant
3836 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3837 {
c19d1205
ZW
3838 unwind.frame_size += exp.X_add_number;
3839 expression (&exp);
3840 }
3841 else
3842 exp.X_op = O_illegal;
a737bd4d 3843
c19d1205
ZW
3844 if (exp.X_op != O_constant)
3845 {
3846 as_bad (_("expected <offset>, <opcode>"));
3847 ignore_rest_of_line ();
3848 return;
3849 }
a737bd4d 3850
c19d1205 3851 count = 0;
a737bd4d 3852
c19d1205
ZW
3853 /* Parse the opcode. */
3854 for (;;)
3855 {
3856 if (count >= 16)
3857 {
3858 as_bad (_("unwind opcode too long"));
3859 ignore_rest_of_line ();
a737bd4d 3860 }
c19d1205 3861 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3862 {
c19d1205
ZW
3863 as_bad (_("invalid unwind opcode"));
3864 ignore_rest_of_line ();
3865 return;
a737bd4d 3866 }
c19d1205 3867 op[count++] = exp.X_add_number;
a737bd4d 3868
c19d1205
ZW
3869 /* Parse the next byte. */
3870 if (skip_past_comma (&input_line_pointer) == FAIL)
3871 break;
a737bd4d 3872
c19d1205
ZW
3873 expression (&exp);
3874 }
b99bd4ef 3875
c19d1205
ZW
3876 /* Add the opcode bytes in reverse order. */
3877 while (count--)
3878 add_unwind_opcode (op[count], 1);
b99bd4ef 3879
c19d1205 3880 demand_empty_rest_of_line ();
b99bd4ef 3881}
ee065d83
PB
3882
3883
3884/* Parse a .eabi_attribute directive. */
3885
3886static void
3887s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3888{
ee3c0378
AS
3889 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
3890
3891 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
3892 attributes_set_explicitly[tag] = 1;
ee065d83 3893}
8463be01 3894#endif /* OBJ_ELF */
ee065d83
PB
3895
3896static void s_arm_arch (int);
7a1d4c38 3897static void s_arm_object_arch (int);
ee065d83
PB
3898static void s_arm_cpu (int);
3899static void s_arm_fpu (int);
b99bd4ef 3900
f0927246
NC
3901#ifdef TE_PE
3902
3903static void
5f4273c7 3904pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
3905{
3906 expressionS exp;
3907
3908 do
3909 {
3910 expression (&exp);
3911 if (exp.X_op == O_symbol)
3912 exp.X_op = O_secrel;
3913
3914 emit_expr (&exp, 4);
3915 }
3916 while (*input_line_pointer++ == ',');
3917
3918 input_line_pointer--;
3919 demand_empty_rest_of_line ();
3920}
3921#endif /* TE_PE */
3922
c19d1205
ZW
3923/* This table describes all the machine specific pseudo-ops the assembler
3924 has to support. The fields are:
3925 pseudo-op name without dot
3926 function to call to execute this pseudo-op
3927 Integer arg to pass to the function. */
b99bd4ef 3928
c19d1205 3929const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3930{
c19d1205
ZW
3931 /* Never called because '.req' does not start a line. */
3932 { "req", s_req, 0 },
dcbf9037
JB
3933 /* Following two are likewise never called. */
3934 { "dn", s_dn, 0 },
3935 { "qn", s_qn, 0 },
c19d1205
ZW
3936 { "unreq", s_unreq, 0 },
3937 { "bss", s_bss, 0 },
3938 { "align", s_align, 0 },
3939 { "arm", s_arm, 0 },
3940 { "thumb", s_thumb, 0 },
3941 { "code", s_code, 0 },
3942 { "force_thumb", s_force_thumb, 0 },
3943 { "thumb_func", s_thumb_func, 0 },
3944 { "thumb_set", s_thumb_set, 0 },
3945 { "even", s_even, 0 },
3946 { "ltorg", s_ltorg, 0 },
3947 { "pool", s_ltorg, 0 },
3948 { "syntax", s_syntax, 0 },
8463be01
PB
3949 { "cpu", s_arm_cpu, 0 },
3950 { "arch", s_arm_arch, 0 },
7a1d4c38 3951 { "object_arch", s_arm_object_arch, 0 },
8463be01 3952 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3953#ifdef OBJ_ELF
3954 { "word", s_arm_elf_cons, 4 },
3955 { "long", s_arm_elf_cons, 4 },
3956 { "rel31", s_arm_rel31, 0 },
3957 { "fnstart", s_arm_unwind_fnstart, 0 },
3958 { "fnend", s_arm_unwind_fnend, 0 },
3959 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3960 { "personality", s_arm_unwind_personality, 0 },
3961 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3962 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3963 { "save", s_arm_unwind_save, 0 },
fa073d69 3964 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
3965 { "movsp", s_arm_unwind_movsp, 0 },
3966 { "pad", s_arm_unwind_pad, 0 },
3967 { "setfp", s_arm_unwind_setfp, 0 },
3968 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3969 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3970#else
3971 { "word", cons, 4},
f0927246
NC
3972
3973 /* These are used for dwarf. */
3974 {"2byte", cons, 2},
3975 {"4byte", cons, 4},
3976 {"8byte", cons, 8},
3977 /* These are used for dwarf2. */
3978 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3979 { "loc", dwarf2_directive_loc, 0 },
3980 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
3981#endif
3982 { "extend", float_cons, 'x' },
3983 { "ldouble", float_cons, 'x' },
3984 { "packed", float_cons, 'p' },
f0927246
NC
3985#ifdef TE_PE
3986 {"secrel32", pe_directive_secrel, 0},
3987#endif
c19d1205
ZW
3988 { 0, 0, 0 }
3989};
3990\f
3991/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3992
c19d1205
ZW
3993/* Generic immediate-value read function for use in insn parsing.
3994 STR points to the beginning of the immediate (the leading #);
3995 VAL receives the value; if the value is outside [MIN, MAX]
3996 issue an error. PREFIX_OPT is true if the immediate prefix is
3997 optional. */
b99bd4ef 3998
c19d1205
ZW
3999static int
4000parse_immediate (char **str, int *val, int min, int max,
4001 bfd_boolean prefix_opt)
4002{
4003 expressionS exp;
4004 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4005 if (exp.X_op != O_constant)
b99bd4ef 4006 {
c19d1205
ZW
4007 inst.error = _("constant expression required");
4008 return FAIL;
4009 }
b99bd4ef 4010
c19d1205
ZW
4011 if (exp.X_add_number < min || exp.X_add_number > max)
4012 {
4013 inst.error = _("immediate value out of range");
4014 return FAIL;
4015 }
b99bd4ef 4016
c19d1205
ZW
4017 *val = exp.X_add_number;
4018 return SUCCESS;
4019}
b99bd4ef 4020
5287ad62 4021/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4022 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4023 instructions. Puts the result directly in inst.operands[i]. */
4024
4025static int
4026parse_big_immediate (char **str, int i)
4027{
4028 expressionS exp;
4029 char *ptr = *str;
4030
4031 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4032
4033 if (exp.X_op == O_constant)
036dc3f7
PB
4034 {
4035 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4036 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4037 O_constant. We have to be careful not to break compilation for
4038 32-bit X_add_number, though. */
4039 if ((exp.X_add_number & ~0xffffffffl) != 0)
4040 {
4041 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4042 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4043 inst.operands[i].regisimm = 1;
4044 }
4045 }
5287ad62
JB
4046 else if (exp.X_op == O_big
4047 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4048 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4049 {
4050 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4051 /* Bignums have their least significant bits in
4052 generic_bignum[0]. Make sure we put 32 bits in imm and
4053 32 bits in reg, in a (hopefully) portable way. */
4054 assert (parts != 0);
4055 inst.operands[i].imm = 0;
4056 for (j = 0; j < parts; j++, idx++)
4057 inst.operands[i].imm |= generic_bignum[idx]
4058 << (LITTLENUM_NUMBER_OF_BITS * j);
4059 inst.operands[i].reg = 0;
4060 for (j = 0; j < parts; j++, idx++)
4061 inst.operands[i].reg |= generic_bignum[idx]
4062 << (LITTLENUM_NUMBER_OF_BITS * j);
4063 inst.operands[i].regisimm = 1;
4064 }
4065 else
4066 return FAIL;
5f4273c7 4067
5287ad62
JB
4068 *str = ptr;
4069
4070 return SUCCESS;
4071}
4072
c19d1205
ZW
4073/* Returns the pseudo-register number of an FPA immediate constant,
4074 or FAIL if there isn't a valid constant here. */
b99bd4ef 4075
c19d1205
ZW
4076static int
4077parse_fpa_immediate (char ** str)
4078{
4079 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4080 char * save_in;
4081 expressionS exp;
4082 int i;
4083 int j;
b99bd4ef 4084
c19d1205
ZW
4085 /* First try and match exact strings, this is to guarantee
4086 that some formats will work even for cross assembly. */
b99bd4ef 4087
c19d1205
ZW
4088 for (i = 0; fp_const[i]; i++)
4089 {
4090 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4091 {
c19d1205 4092 char *start = *str;
b99bd4ef 4093
c19d1205
ZW
4094 *str += strlen (fp_const[i]);
4095 if (is_end_of_line[(unsigned char) **str])
4096 return i + 8;
4097 *str = start;
4098 }
4099 }
b99bd4ef 4100
c19d1205
ZW
4101 /* Just because we didn't get a match doesn't mean that the constant
4102 isn't valid, just that it is in a format that we don't
4103 automatically recognize. Try parsing it with the standard
4104 expression routines. */
b99bd4ef 4105
c19d1205 4106 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4107
c19d1205
ZW
4108 /* Look for a raw floating point number. */
4109 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4110 && is_end_of_line[(unsigned char) *save_in])
4111 {
4112 for (i = 0; i < NUM_FLOAT_VALS; i++)
4113 {
4114 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4115 {
c19d1205
ZW
4116 if (words[j] != fp_values[i][j])
4117 break;
b99bd4ef
NC
4118 }
4119
c19d1205 4120 if (j == MAX_LITTLENUMS)
b99bd4ef 4121 {
c19d1205
ZW
4122 *str = save_in;
4123 return i + 8;
b99bd4ef
NC
4124 }
4125 }
4126 }
b99bd4ef 4127
c19d1205
ZW
4128 /* Try and parse a more complex expression, this will probably fail
4129 unless the code uses a floating point prefix (eg "0f"). */
4130 save_in = input_line_pointer;
4131 input_line_pointer = *str;
4132 if (expression (&exp) == absolute_section
4133 && exp.X_op == O_big
4134 && exp.X_add_number < 0)
4135 {
4136 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4137 Ditto for 15. */
4138 if (gen_to_words (words, 5, (long) 15) == 0)
4139 {
4140 for (i = 0; i < NUM_FLOAT_VALS; i++)
4141 {
4142 for (j = 0; j < MAX_LITTLENUMS; j++)
4143 {
4144 if (words[j] != fp_values[i][j])
4145 break;
4146 }
b99bd4ef 4147
c19d1205
ZW
4148 if (j == MAX_LITTLENUMS)
4149 {
4150 *str = input_line_pointer;
4151 input_line_pointer = save_in;
4152 return i + 8;
4153 }
4154 }
4155 }
b99bd4ef
NC
4156 }
4157
c19d1205
ZW
4158 *str = input_line_pointer;
4159 input_line_pointer = save_in;
4160 inst.error = _("invalid FPA immediate expression");
4161 return FAIL;
b99bd4ef
NC
4162}
4163
136da414
JB
4164/* Returns 1 if a number has "quarter-precision" float format
4165 0baBbbbbbc defgh000 00000000 00000000. */
4166
4167static int
4168is_quarter_float (unsigned imm)
4169{
4170 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4171 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4172}
4173
4174/* Parse an 8-bit "quarter-precision" floating point number of the form:
4175 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4176 The zero and minus-zero cases need special handling, since they can't be
4177 encoded in the "quarter-precision" float format, but can nonetheless be
4178 loaded as integer constants. */
136da414
JB
4179
4180static unsigned
4181parse_qfloat_immediate (char **ccp, int *immed)
4182{
4183 char *str = *ccp;
c96612cc 4184 char *fpnum;
136da414 4185 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4186 int found_fpchar = 0;
5f4273c7 4187
136da414 4188 skip_past_char (&str, '#');
5f4273c7 4189
c96612cc
JB
4190 /* We must not accidentally parse an integer as a floating-point number. Make
4191 sure that the value we parse is not an integer by checking for special
4192 characters '.' or 'e'.
4193 FIXME: This is a horrible hack, but doing better is tricky because type
4194 information isn't in a very usable state at parse time. */
4195 fpnum = str;
4196 skip_whitespace (fpnum);
4197
4198 if (strncmp (fpnum, "0x", 2) == 0)
4199 return FAIL;
4200 else
4201 {
4202 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4203 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4204 {
4205 found_fpchar = 1;
4206 break;
4207 }
4208
4209 if (!found_fpchar)
4210 return FAIL;
4211 }
5f4273c7 4212
136da414
JB
4213 if ((str = atof_ieee (str, 's', words)) != NULL)
4214 {
4215 unsigned fpword = 0;
4216 int i;
5f4273c7 4217
136da414
JB
4218 /* Our FP word must be 32 bits (single-precision FP). */
4219 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4220 {
4221 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4222 fpword |= words[i];
4223 }
5f4273c7 4224
c96612cc 4225 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4226 *immed = fpword;
4227 else
4228 return FAIL;
4229
4230 *ccp = str;
5f4273c7 4231
136da414
JB
4232 return SUCCESS;
4233 }
5f4273c7 4234
136da414
JB
4235 return FAIL;
4236}
4237
c19d1205
ZW
4238/* Shift operands. */
4239enum shift_kind
b99bd4ef 4240{
c19d1205
ZW
4241 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4242};
b99bd4ef 4243
c19d1205
ZW
4244struct asm_shift_name
4245{
4246 const char *name;
4247 enum shift_kind kind;
4248};
b99bd4ef 4249
c19d1205
ZW
4250/* Third argument to parse_shift. */
4251enum parse_shift_mode
4252{
4253 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4254 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4255 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4256 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4257 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4258};
b99bd4ef 4259
c19d1205
ZW
4260/* Parse a <shift> specifier on an ARM data processing instruction.
4261 This has three forms:
b99bd4ef 4262
c19d1205
ZW
4263 (LSL|LSR|ASL|ASR|ROR) Rs
4264 (LSL|LSR|ASL|ASR|ROR) #imm
4265 RRX
b99bd4ef 4266
c19d1205
ZW
4267 Note that ASL is assimilated to LSL in the instruction encoding, and
4268 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4269
c19d1205
ZW
4270static int
4271parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4272{
c19d1205
ZW
4273 const struct asm_shift_name *shift_name;
4274 enum shift_kind shift;
4275 char *s = *str;
4276 char *p = s;
4277 int reg;
b99bd4ef 4278
c19d1205
ZW
4279 for (p = *str; ISALPHA (*p); p++)
4280 ;
b99bd4ef 4281
c19d1205 4282 if (p == *str)
b99bd4ef 4283 {
c19d1205
ZW
4284 inst.error = _("shift expression expected");
4285 return FAIL;
b99bd4ef
NC
4286 }
4287
c19d1205
ZW
4288 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4289
4290 if (shift_name == NULL)
b99bd4ef 4291 {
c19d1205
ZW
4292 inst.error = _("shift expression expected");
4293 return FAIL;
b99bd4ef
NC
4294 }
4295
c19d1205 4296 shift = shift_name->kind;
b99bd4ef 4297
c19d1205
ZW
4298 switch (mode)
4299 {
4300 case NO_SHIFT_RESTRICT:
4301 case SHIFT_IMMEDIATE: break;
b99bd4ef 4302
c19d1205
ZW
4303 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4304 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4305 {
4306 inst.error = _("'LSL' or 'ASR' required");
4307 return FAIL;
4308 }
4309 break;
b99bd4ef 4310
c19d1205
ZW
4311 case SHIFT_LSL_IMMEDIATE:
4312 if (shift != SHIFT_LSL)
4313 {
4314 inst.error = _("'LSL' required");
4315 return FAIL;
4316 }
4317 break;
b99bd4ef 4318
c19d1205
ZW
4319 case SHIFT_ASR_IMMEDIATE:
4320 if (shift != SHIFT_ASR)
4321 {
4322 inst.error = _("'ASR' required");
4323 return FAIL;
4324 }
4325 break;
b99bd4ef 4326
c19d1205
ZW
4327 default: abort ();
4328 }
b99bd4ef 4329
c19d1205
ZW
4330 if (shift != SHIFT_RRX)
4331 {
4332 /* Whitespace can appear here if the next thing is a bare digit. */
4333 skip_whitespace (p);
b99bd4ef 4334
c19d1205 4335 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4336 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4337 {
4338 inst.operands[i].imm = reg;
4339 inst.operands[i].immisreg = 1;
4340 }
4341 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4342 return FAIL;
4343 }
4344 inst.operands[i].shift_kind = shift;
4345 inst.operands[i].shifted = 1;
4346 *str = p;
4347 return SUCCESS;
b99bd4ef
NC
4348}
4349
c19d1205 4350/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4351
c19d1205
ZW
4352 #<immediate>
4353 #<immediate>, <rotate>
4354 <Rm>
4355 <Rm>, <shift>
b99bd4ef 4356
c19d1205
ZW
4357 where <shift> is defined by parse_shift above, and <rotate> is a
4358 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4359 is deferred to md_apply_fix. */
b99bd4ef 4360
c19d1205
ZW
4361static int
4362parse_shifter_operand (char **str, int i)
4363{
4364 int value;
4365 expressionS expr;
b99bd4ef 4366
dcbf9037 4367 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4368 {
4369 inst.operands[i].reg = value;
4370 inst.operands[i].isreg = 1;
b99bd4ef 4371
c19d1205
ZW
4372 /* parse_shift will override this if appropriate */
4373 inst.reloc.exp.X_op = O_constant;
4374 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4375
c19d1205
ZW
4376 if (skip_past_comma (str) == FAIL)
4377 return SUCCESS;
b99bd4ef 4378
c19d1205
ZW
4379 /* Shift operation on register. */
4380 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4381 }
4382
c19d1205
ZW
4383 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4384 return FAIL;
b99bd4ef 4385
c19d1205 4386 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4387 {
c19d1205
ZW
4388 /* #x, y -- ie explicit rotation by Y. */
4389 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4390 return FAIL;
b99bd4ef 4391
c19d1205
ZW
4392 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4393 {
4394 inst.error = _("constant expression expected");
4395 return FAIL;
4396 }
b99bd4ef 4397
c19d1205
ZW
4398 value = expr.X_add_number;
4399 if (value < 0 || value > 30 || value % 2 != 0)
4400 {
4401 inst.error = _("invalid rotation");
4402 return FAIL;
4403 }
4404 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4405 {
4406 inst.error = _("invalid constant");
4407 return FAIL;
4408 }
09d92015 4409
55cf6793 4410 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4411 inst.reloc.exp.X_add_number
4412 = (((inst.reloc.exp.X_add_number << (32 - value))
4413 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4414 }
4415
c19d1205
ZW
4416 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4417 inst.reloc.pc_rel = 0;
4418 return SUCCESS;
09d92015
MM
4419}
4420
4962c51a
MS
4421/* Group relocation information. Each entry in the table contains the
4422 textual name of the relocation as may appear in assembler source
4423 and must end with a colon.
4424 Along with this textual name are the relocation codes to be used if
4425 the corresponding instruction is an ALU instruction (ADD or SUB only),
4426 an LDR, an LDRS, or an LDC. */
4427
4428struct group_reloc_table_entry
4429{
4430 const char *name;
4431 int alu_code;
4432 int ldr_code;
4433 int ldrs_code;
4434 int ldc_code;
4435};
4436
4437typedef enum
4438{
4439 /* Varieties of non-ALU group relocation. */
4440
4441 GROUP_LDR,
4442 GROUP_LDRS,
4443 GROUP_LDC
4444} group_reloc_type;
4445
4446static struct group_reloc_table_entry group_reloc_table[] =
4447 { /* Program counter relative: */
4448 { "pc_g0_nc",
4449 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4450 0, /* LDR */
4451 0, /* LDRS */
4452 0 }, /* LDC */
4453 { "pc_g0",
4454 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4455 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4456 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4457 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4458 { "pc_g1_nc",
4459 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4460 0, /* LDR */
4461 0, /* LDRS */
4462 0 }, /* LDC */
4463 { "pc_g1",
4464 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4465 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4466 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4467 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4468 { "pc_g2",
4469 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4470 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4471 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4472 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4473 /* Section base relative */
4474 { "sb_g0_nc",
4475 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4476 0, /* LDR */
4477 0, /* LDRS */
4478 0 }, /* LDC */
4479 { "sb_g0",
4480 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4481 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4482 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4483 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4484 { "sb_g1_nc",
4485 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4486 0, /* LDR */
4487 0, /* LDRS */
4488 0 }, /* LDC */
4489 { "sb_g1",
4490 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4491 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4492 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4493 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4494 { "sb_g2",
4495 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4496 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4497 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4498 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4499
4500/* Given the address of a pointer pointing to the textual name of a group
4501 relocation as may appear in assembler source, attempt to find its details
4502 in group_reloc_table. The pointer will be updated to the character after
4503 the trailing colon. On failure, FAIL will be returned; SUCCESS
4504 otherwise. On success, *entry will be updated to point at the relevant
4505 group_reloc_table entry. */
4506
4507static int
4508find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4509{
4510 unsigned int i;
4511 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4512 {
4513 int length = strlen (group_reloc_table[i].name);
4514
5f4273c7
NC
4515 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4516 && (*str)[length] == ':')
4962c51a
MS
4517 {
4518 *out = &group_reloc_table[i];
4519 *str += (length + 1);
4520 return SUCCESS;
4521 }
4522 }
4523
4524 return FAIL;
4525}
4526
4527/* Parse a <shifter_operand> for an ARM data processing instruction
4528 (as for parse_shifter_operand) where group relocations are allowed:
4529
4530 #<immediate>
4531 #<immediate>, <rotate>
4532 #:<group_reloc>:<expression>
4533 <Rm>
4534 <Rm>, <shift>
4535
4536 where <group_reloc> is one of the strings defined in group_reloc_table.
4537 The hashes are optional.
4538
4539 Everything else is as for parse_shifter_operand. */
4540
4541static parse_operand_result
4542parse_shifter_operand_group_reloc (char **str, int i)
4543{
4544 /* Determine if we have the sequence of characters #: or just :
4545 coming next. If we do, then we check for a group relocation.
4546 If we don't, punt the whole lot to parse_shifter_operand. */
4547
4548 if (((*str)[0] == '#' && (*str)[1] == ':')
4549 || (*str)[0] == ':')
4550 {
4551 struct group_reloc_table_entry *entry;
4552
4553 if ((*str)[0] == '#')
4554 (*str) += 2;
4555 else
4556 (*str)++;
4557
4558 /* Try to parse a group relocation. Anything else is an error. */
4559 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4560 {
4561 inst.error = _("unknown group relocation");
4562 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4563 }
4564
4565 /* We now have the group relocation table entry corresponding to
4566 the name in the assembler source. Next, we parse the expression. */
4567 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4568 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4569
4570 /* Record the relocation type (always the ALU variant here). */
4571 inst.reloc.type = entry->alu_code;
4572 assert (inst.reloc.type != 0);
4573
4574 return PARSE_OPERAND_SUCCESS;
4575 }
4576 else
4577 return parse_shifter_operand (str, i) == SUCCESS
4578 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4579
4580 /* Never reached. */
4581}
4582
c19d1205
ZW
4583/* Parse all forms of an ARM address expression. Information is written
4584 to inst.operands[i] and/or inst.reloc.
09d92015 4585
c19d1205 4586 Preindexed addressing (.preind=1):
09d92015 4587
c19d1205
ZW
4588 [Rn, #offset] .reg=Rn .reloc.exp=offset
4589 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4590 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4591 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4592
c19d1205 4593 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4594
c19d1205 4595 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4596
c19d1205
ZW
4597 [Rn], #offset .reg=Rn .reloc.exp=offset
4598 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4599 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4600 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4601
c19d1205 4602 Unindexed addressing (.preind=0, .postind=0):
09d92015 4603
c19d1205 4604 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4605
c19d1205 4606 Other:
09d92015 4607
c19d1205
ZW
4608 [Rn]{!} shorthand for [Rn,#0]{!}
4609 =immediate .isreg=0 .reloc.exp=immediate
4610 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4611
c19d1205
ZW
4612 It is the caller's responsibility to check for addressing modes not
4613 supported by the instruction, and to set inst.reloc.type. */
4614
4962c51a
MS
4615static parse_operand_result
4616parse_address_main (char **str, int i, int group_relocations,
4617 group_reloc_type group_type)
09d92015 4618{
c19d1205
ZW
4619 char *p = *str;
4620 int reg;
09d92015 4621
c19d1205 4622 if (skip_past_char (&p, '[') == FAIL)
09d92015 4623 {
c19d1205
ZW
4624 if (skip_past_char (&p, '=') == FAIL)
4625 {
4626 /* bare address - translate to PC-relative offset */
4627 inst.reloc.pc_rel = 1;
4628 inst.operands[i].reg = REG_PC;
4629 inst.operands[i].isreg = 1;
4630 inst.operands[i].preind = 1;
4631 }
4632 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4633
c19d1205 4634 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4635 return PARSE_OPERAND_FAIL;
09d92015 4636
c19d1205 4637 *str = p;
4962c51a 4638 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4639 }
4640
dcbf9037 4641 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4642 {
c19d1205 4643 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4644 return PARSE_OPERAND_FAIL;
09d92015 4645 }
c19d1205
ZW
4646 inst.operands[i].reg = reg;
4647 inst.operands[i].isreg = 1;
09d92015 4648
c19d1205 4649 if (skip_past_comma (&p) == SUCCESS)
09d92015 4650 {
c19d1205 4651 inst.operands[i].preind = 1;
09d92015 4652
c19d1205
ZW
4653 if (*p == '+') p++;
4654 else if (*p == '-') p++, inst.operands[i].negative = 1;
4655
dcbf9037 4656 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4657 {
c19d1205
ZW
4658 inst.operands[i].imm = reg;
4659 inst.operands[i].immisreg = 1;
4660
4661 if (skip_past_comma (&p) == SUCCESS)
4662 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4663 return PARSE_OPERAND_FAIL;
c19d1205 4664 }
5287ad62
JB
4665 else if (skip_past_char (&p, ':') == SUCCESS)
4666 {
4667 /* FIXME: '@' should be used here, but it's filtered out by generic
4668 code before we get to see it here. This may be subject to
4669 change. */
4670 expressionS exp;
4671 my_get_expression (&exp, &p, GE_NO_PREFIX);
4672 if (exp.X_op != O_constant)
4673 {
4674 inst.error = _("alignment must be constant");
4962c51a 4675 return PARSE_OPERAND_FAIL;
5287ad62
JB
4676 }
4677 inst.operands[i].imm = exp.X_add_number << 8;
4678 inst.operands[i].immisalign = 1;
4679 /* Alignments are not pre-indexes. */
4680 inst.operands[i].preind = 0;
4681 }
c19d1205
ZW
4682 else
4683 {
4684 if (inst.operands[i].negative)
4685 {
4686 inst.operands[i].negative = 0;
4687 p--;
4688 }
4962c51a 4689
5f4273c7
NC
4690 if (group_relocations
4691 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
4692 {
4693 struct group_reloc_table_entry *entry;
4694
4695 /* Skip over the #: or : sequence. */
4696 if (*p == '#')
4697 p += 2;
4698 else
4699 p++;
4700
4701 /* Try to parse a group relocation. Anything else is an
4702 error. */
4703 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4704 {
4705 inst.error = _("unknown group relocation");
4706 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4707 }
4708
4709 /* We now have the group relocation table entry corresponding to
4710 the name in the assembler source. Next, we parse the
4711 expression. */
4712 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4713 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4714
4715 /* Record the relocation type. */
4716 switch (group_type)
4717 {
4718 case GROUP_LDR:
4719 inst.reloc.type = entry->ldr_code;
4720 break;
4721
4722 case GROUP_LDRS:
4723 inst.reloc.type = entry->ldrs_code;
4724 break;
4725
4726 case GROUP_LDC:
4727 inst.reloc.type = entry->ldc_code;
4728 break;
4729
4730 default:
4731 assert (0);
4732 }
4733
4734 if (inst.reloc.type == 0)
4735 {
4736 inst.error = _("this group relocation is not allowed on this instruction");
4737 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4738 }
4739 }
4740 else
4741 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4742 return PARSE_OPERAND_FAIL;
09d92015
MM
4743 }
4744 }
4745
c19d1205 4746 if (skip_past_char (&p, ']') == FAIL)
09d92015 4747 {
c19d1205 4748 inst.error = _("']' expected");
4962c51a 4749 return PARSE_OPERAND_FAIL;
09d92015
MM
4750 }
4751
c19d1205
ZW
4752 if (skip_past_char (&p, '!') == SUCCESS)
4753 inst.operands[i].writeback = 1;
09d92015 4754
c19d1205 4755 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4756 {
c19d1205
ZW
4757 if (skip_past_char (&p, '{') == SUCCESS)
4758 {
4759 /* [Rn], {expr} - unindexed, with option */
4760 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4761 0, 255, TRUE) == FAIL)
4962c51a 4762 return PARSE_OPERAND_FAIL;
09d92015 4763
c19d1205
ZW
4764 if (skip_past_char (&p, '}') == FAIL)
4765 {
4766 inst.error = _("'}' expected at end of 'option' field");
4962c51a 4767 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4768 }
4769 if (inst.operands[i].preind)
4770 {
4771 inst.error = _("cannot combine index with option");
4962c51a 4772 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4773 }
4774 *str = p;
4962c51a 4775 return PARSE_OPERAND_SUCCESS;
09d92015 4776 }
c19d1205
ZW
4777 else
4778 {
4779 inst.operands[i].postind = 1;
4780 inst.operands[i].writeback = 1;
09d92015 4781
c19d1205
ZW
4782 if (inst.operands[i].preind)
4783 {
4784 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 4785 return PARSE_OPERAND_FAIL;
c19d1205 4786 }
09d92015 4787
c19d1205
ZW
4788 if (*p == '+') p++;
4789 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4790
dcbf9037 4791 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4792 {
5287ad62
JB
4793 /* We might be using the immediate for alignment already. If we
4794 are, OR the register number into the low-order bits. */
4795 if (inst.operands[i].immisalign)
4796 inst.operands[i].imm |= reg;
4797 else
4798 inst.operands[i].imm = reg;
c19d1205 4799 inst.operands[i].immisreg = 1;
a737bd4d 4800
c19d1205
ZW
4801 if (skip_past_comma (&p) == SUCCESS)
4802 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4803 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4804 }
4805 else
4806 {
4807 if (inst.operands[i].negative)
4808 {
4809 inst.operands[i].negative = 0;
4810 p--;
4811 }
4812 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 4813 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4814 }
4815 }
a737bd4d
NC
4816 }
4817
c19d1205
ZW
4818 /* If at this point neither .preind nor .postind is set, we have a
4819 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4820 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4821 {
4822 inst.operands[i].preind = 1;
4823 inst.reloc.exp.X_op = O_constant;
4824 inst.reloc.exp.X_add_number = 0;
4825 }
4826 *str = p;
4962c51a
MS
4827 return PARSE_OPERAND_SUCCESS;
4828}
4829
4830static int
4831parse_address (char **str, int i)
4832{
4833 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4834 ? SUCCESS : FAIL;
4835}
4836
4837static parse_operand_result
4838parse_address_group_reloc (char **str, int i, group_reloc_type type)
4839{
4840 return parse_address_main (str, i, 1, type);
a737bd4d
NC
4841}
4842
b6895b4f
PB
4843/* Parse an operand for a MOVW or MOVT instruction. */
4844static int
4845parse_half (char **str)
4846{
4847 char * p;
5f4273c7 4848
b6895b4f
PB
4849 p = *str;
4850 skip_past_char (&p, '#');
5f4273c7 4851 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
4852 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4853 else if (strncasecmp (p, ":upper16:", 9) == 0)
4854 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4855
4856 if (inst.reloc.type != BFD_RELOC_UNUSED)
4857 {
4858 p += 9;
5f4273c7 4859 skip_whitespace (p);
b6895b4f
PB
4860 }
4861
4862 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4863 return FAIL;
4864
4865 if (inst.reloc.type == BFD_RELOC_UNUSED)
4866 {
4867 if (inst.reloc.exp.X_op != O_constant)
4868 {
4869 inst.error = _("constant expression expected");
4870 return FAIL;
4871 }
4872 if (inst.reloc.exp.X_add_number < 0
4873 || inst.reloc.exp.X_add_number > 0xffff)
4874 {
4875 inst.error = _("immediate value out of range");
4876 return FAIL;
4877 }
4878 }
4879 *str = p;
4880 return SUCCESS;
4881}
4882
c19d1205 4883/* Miscellaneous. */
a737bd4d 4884
c19d1205
ZW
4885/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4886 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4887static int
4888parse_psr (char **str)
09d92015 4889{
c19d1205
ZW
4890 char *p;
4891 unsigned long psr_field;
62b3e311
PB
4892 const struct asm_psr *psr;
4893 char *start;
09d92015 4894
c19d1205
ZW
4895 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4896 feature for ease of use and backwards compatibility. */
4897 p = *str;
62b3e311 4898 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4899 psr_field = SPSR_BIT;
62b3e311 4900 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4901 psr_field = 0;
4902 else
62b3e311
PB
4903 {
4904 start = p;
4905 do
4906 p++;
4907 while (ISALNUM (*p) || *p == '_');
4908
4909 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4910 if (!psr)
4911 return FAIL;
09d92015 4912
62b3e311
PB
4913 *str = p;
4914 return psr->field;
4915 }
09d92015 4916
62b3e311 4917 p += 4;
c19d1205
ZW
4918 if (*p == '_')
4919 {
4920 /* A suffix follows. */
c19d1205
ZW
4921 p++;
4922 start = p;
a737bd4d 4923
c19d1205
ZW
4924 do
4925 p++;
4926 while (ISALNUM (*p) || *p == '_');
a737bd4d 4927
c19d1205
ZW
4928 psr = hash_find_n (arm_psr_hsh, start, p - start);
4929 if (!psr)
4930 goto error;
a737bd4d 4931
c19d1205 4932 psr_field |= psr->field;
a737bd4d 4933 }
c19d1205 4934 else
a737bd4d 4935 {
c19d1205
ZW
4936 if (ISALNUM (*p))
4937 goto error; /* Garbage after "[CS]PSR". */
4938
4939 psr_field |= (PSR_c | PSR_f);
a737bd4d 4940 }
c19d1205
ZW
4941 *str = p;
4942 return psr_field;
a737bd4d 4943
c19d1205
ZW
4944 error:
4945 inst.error = _("flag for {c}psr instruction expected");
4946 return FAIL;
a737bd4d
NC
4947}
4948
c19d1205
ZW
4949/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4950 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4951
c19d1205
ZW
4952static int
4953parse_cps_flags (char **str)
a737bd4d 4954{
c19d1205
ZW
4955 int val = 0;
4956 int saw_a_flag = 0;
4957 char *s = *str;
a737bd4d 4958
c19d1205
ZW
4959 for (;;)
4960 switch (*s++)
4961 {
4962 case '\0': case ',':
4963 goto done;
a737bd4d 4964
c19d1205
ZW
4965 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4966 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4967 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4968
c19d1205
ZW
4969 default:
4970 inst.error = _("unrecognized CPS flag");
4971 return FAIL;
4972 }
a737bd4d 4973
c19d1205
ZW
4974 done:
4975 if (saw_a_flag == 0)
a737bd4d 4976 {
c19d1205
ZW
4977 inst.error = _("missing CPS flags");
4978 return FAIL;
a737bd4d 4979 }
a737bd4d 4980
c19d1205
ZW
4981 *str = s - 1;
4982 return val;
a737bd4d
NC
4983}
4984
c19d1205
ZW
4985/* Parse an endian specifier ("BE" or "LE", case insensitive);
4986 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4987
4988static int
c19d1205 4989parse_endian_specifier (char **str)
a737bd4d 4990{
c19d1205
ZW
4991 int little_endian;
4992 char *s = *str;
a737bd4d 4993
c19d1205
ZW
4994 if (strncasecmp (s, "BE", 2))
4995 little_endian = 0;
4996 else if (strncasecmp (s, "LE", 2))
4997 little_endian = 1;
4998 else
a737bd4d 4999 {
c19d1205 5000 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5001 return FAIL;
5002 }
5003
c19d1205 5004 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5005 {
c19d1205 5006 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5007 return FAIL;
5008 }
5009
c19d1205
ZW
5010 *str = s + 2;
5011 return little_endian;
5012}
a737bd4d 5013
c19d1205
ZW
5014/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5015 value suitable for poking into the rotate field of an sxt or sxta
5016 instruction, or FAIL on error. */
5017
5018static int
5019parse_ror (char **str)
5020{
5021 int rot;
5022 char *s = *str;
5023
5024 if (strncasecmp (s, "ROR", 3) == 0)
5025 s += 3;
5026 else
a737bd4d 5027 {
c19d1205 5028 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5029 return FAIL;
5030 }
c19d1205
ZW
5031
5032 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5033 return FAIL;
5034
5035 switch (rot)
a737bd4d 5036 {
c19d1205
ZW
5037 case 0: *str = s; return 0x0;
5038 case 8: *str = s; return 0x1;
5039 case 16: *str = s; return 0x2;
5040 case 24: *str = s; return 0x3;
5041
5042 default:
5043 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5044 return FAIL;
5045 }
c19d1205 5046}
a737bd4d 5047
c19d1205
ZW
5048/* Parse a conditional code (from conds[] below). The value returned is in the
5049 range 0 .. 14, or FAIL. */
5050static int
5051parse_cond (char **str)
5052{
c462b453 5053 char *q;
c19d1205 5054 const struct asm_cond *c;
c462b453
PB
5055 int n;
5056 /* Condition codes are always 2 characters, so matching up to
5057 3 characters is sufficient. */
5058 char cond[3];
a737bd4d 5059
c462b453
PB
5060 q = *str;
5061 n = 0;
5062 while (ISALPHA (*q) && n < 3)
5063 {
5064 cond[n] = TOLOWER(*q);
5065 q++;
5066 n++;
5067 }
a737bd4d 5068
c462b453 5069 c = hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5070 if (!c)
a737bd4d 5071 {
c19d1205 5072 inst.error = _("condition required");
a737bd4d
NC
5073 return FAIL;
5074 }
5075
c19d1205
ZW
5076 *str = q;
5077 return c->value;
5078}
5079
62b3e311
PB
5080/* Parse an option for a barrier instruction. Returns the encoding for the
5081 option, or FAIL. */
5082static int
5083parse_barrier (char **str)
5084{
5085 char *p, *q;
5086 const struct asm_barrier_opt *o;
5087
5088 p = q = *str;
5089 while (ISALPHA (*q))
5090 q++;
5091
5092 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5093 if (!o)
5094 return FAIL;
5095
5096 *str = q;
5097 return o->value;
5098}
5099
92e90b6e
PB
5100/* Parse the operands of a table branch instruction. Similar to a memory
5101 operand. */
5102static int
5103parse_tb (char **str)
5104{
5105 char * p = *str;
5106 int reg;
5107
5108 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5109 {
5110 inst.error = _("'[' expected");
5111 return FAIL;
5112 }
92e90b6e 5113
dcbf9037 5114 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5115 {
5116 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5117 return FAIL;
5118 }
5119 inst.operands[0].reg = reg;
5120
5121 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5122 {
5123 inst.error = _("',' expected");
5124 return FAIL;
5125 }
5f4273c7 5126
dcbf9037 5127 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5128 {
5129 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5130 return FAIL;
5131 }
5132 inst.operands[0].imm = reg;
5133
5134 if (skip_past_comma (&p) == SUCCESS)
5135 {
5136 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5137 return FAIL;
5138 if (inst.reloc.exp.X_add_number != 1)
5139 {
5140 inst.error = _("invalid shift");
5141 return FAIL;
5142 }
5143 inst.operands[0].shifted = 1;
5144 }
5145
5146 if (skip_past_char (&p, ']') == FAIL)
5147 {
5148 inst.error = _("']' expected");
5149 return FAIL;
5150 }
5151 *str = p;
5152 return SUCCESS;
5153}
5154
5287ad62
JB
5155/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5156 information on the types the operands can take and how they are encoded.
037e8744
JB
5157 Up to four operands may be read; this function handles setting the
5158 ".present" field for each read operand itself.
5287ad62
JB
5159 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5160 else returns FAIL. */
5161
5162static int
5163parse_neon_mov (char **str, int *which_operand)
5164{
5165 int i = *which_operand, val;
5166 enum arm_reg_type rtype;
5167 char *ptr = *str;
dcbf9037 5168 struct neon_type_el optype;
5f4273c7 5169
dcbf9037 5170 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5171 {
5172 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5173 inst.operands[i].reg = val;
5174 inst.operands[i].isscalar = 1;
dcbf9037 5175 inst.operands[i].vectype = optype;
5287ad62
JB
5176 inst.operands[i++].present = 1;
5177
5178 if (skip_past_comma (&ptr) == FAIL)
5179 goto wanted_comma;
5f4273c7 5180
dcbf9037 5181 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5182 goto wanted_arm;
5f4273c7 5183
5287ad62
JB
5184 inst.operands[i].reg = val;
5185 inst.operands[i].isreg = 1;
5186 inst.operands[i].present = 1;
5187 }
037e8744 5188 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5189 != FAIL)
5287ad62
JB
5190 {
5191 /* Cases 0, 1, 2, 3, 5 (D only). */
5192 if (skip_past_comma (&ptr) == FAIL)
5193 goto wanted_comma;
5f4273c7 5194
5287ad62
JB
5195 inst.operands[i].reg = val;
5196 inst.operands[i].isreg = 1;
5197 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5198 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5199 inst.operands[i].isvec = 1;
dcbf9037 5200 inst.operands[i].vectype = optype;
5287ad62
JB
5201 inst.operands[i++].present = 1;
5202
dcbf9037 5203 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5204 {
037e8744
JB
5205 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5206 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5207 inst.operands[i].reg = val;
5208 inst.operands[i].isreg = 1;
037e8744 5209 inst.operands[i].present = 1;
5287ad62
JB
5210
5211 if (rtype == REG_TYPE_NQ)
5212 {
dcbf9037 5213 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5214 return FAIL;
5215 }
037e8744
JB
5216 else if (rtype != REG_TYPE_VFS)
5217 {
5218 i++;
5219 if (skip_past_comma (&ptr) == FAIL)
5220 goto wanted_comma;
5221 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5222 goto wanted_arm;
5223 inst.operands[i].reg = val;
5224 inst.operands[i].isreg = 1;
5225 inst.operands[i].present = 1;
5226 }
5287ad62 5227 }
037e8744
JB
5228 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5229 &optype)) != FAIL)
5287ad62
JB
5230 {
5231 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5232 Case 1: VMOV<c><q> <Dd>, <Dm>
5233 Case 8: VMOV.F32 <Sd>, <Sm>
5234 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5235
5236 inst.operands[i].reg = val;
5237 inst.operands[i].isreg = 1;
5238 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5239 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5240 inst.operands[i].isvec = 1;
dcbf9037 5241 inst.operands[i].vectype = optype;
5287ad62 5242 inst.operands[i].present = 1;
5f4273c7 5243
037e8744
JB
5244 if (skip_past_comma (&ptr) == SUCCESS)
5245 {
5246 /* Case 15. */
5247 i++;
5248
5249 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5250 goto wanted_arm;
5251
5252 inst.operands[i].reg = val;
5253 inst.operands[i].isreg = 1;
5254 inst.operands[i++].present = 1;
5f4273c7 5255
037e8744
JB
5256 if (skip_past_comma (&ptr) == FAIL)
5257 goto wanted_comma;
5f4273c7 5258
037e8744
JB
5259 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5260 goto wanted_arm;
5f4273c7 5261
037e8744
JB
5262 inst.operands[i].reg = val;
5263 inst.operands[i].isreg = 1;
5264 inst.operands[i++].present = 1;
5265 }
5287ad62 5266 }
4641781c
PB
5267 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5268 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5269 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5270 Case 10: VMOV.F32 <Sd>, #<imm>
5271 Case 11: VMOV.F64 <Dd>, #<imm> */
5272 inst.operands[i].immisfloat = 1;
5273 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5274 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5275 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5276 ;
5287ad62
JB
5277 else
5278 {
dcbf9037 5279 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5280 return FAIL;
5281 }
5282 }
dcbf9037 5283 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5284 {
5285 /* Cases 6, 7. */
5286 inst.operands[i].reg = val;
5287 inst.operands[i].isreg = 1;
5288 inst.operands[i++].present = 1;
5f4273c7 5289
5287ad62
JB
5290 if (skip_past_comma (&ptr) == FAIL)
5291 goto wanted_comma;
5f4273c7 5292
dcbf9037 5293 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5294 {
5295 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5296 inst.operands[i].reg = val;
5297 inst.operands[i].isscalar = 1;
5298 inst.operands[i].present = 1;
dcbf9037 5299 inst.operands[i].vectype = optype;
5287ad62 5300 }
dcbf9037 5301 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5302 {
5303 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5304 inst.operands[i].reg = val;
5305 inst.operands[i].isreg = 1;
5306 inst.operands[i++].present = 1;
5f4273c7 5307
5287ad62
JB
5308 if (skip_past_comma (&ptr) == FAIL)
5309 goto wanted_comma;
5f4273c7 5310
037e8744 5311 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5312 == FAIL)
5287ad62 5313 {
037e8744 5314 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5315 return FAIL;
5316 }
5317
5318 inst.operands[i].reg = val;
5319 inst.operands[i].isreg = 1;
037e8744
JB
5320 inst.operands[i].isvec = 1;
5321 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5322 inst.operands[i].vectype = optype;
5287ad62 5323 inst.operands[i].present = 1;
5f4273c7 5324
037e8744
JB
5325 if (rtype == REG_TYPE_VFS)
5326 {
5327 /* Case 14. */
5328 i++;
5329 if (skip_past_comma (&ptr) == FAIL)
5330 goto wanted_comma;
5331 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5332 &optype)) == FAIL)
5333 {
5334 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5335 return FAIL;
5336 }
5337 inst.operands[i].reg = val;
5338 inst.operands[i].isreg = 1;
5339 inst.operands[i].isvec = 1;
5340 inst.operands[i].issingle = 1;
5341 inst.operands[i].vectype = optype;
5342 inst.operands[i].present = 1;
5343 }
5344 }
5345 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5346 != FAIL)
5347 {
5348 /* Case 13. */
5349 inst.operands[i].reg = val;
5350 inst.operands[i].isreg = 1;
5351 inst.operands[i].isvec = 1;
5352 inst.operands[i].issingle = 1;
5353 inst.operands[i].vectype = optype;
5354 inst.operands[i++].present = 1;
5287ad62
JB
5355 }
5356 }
5357 else
5358 {
dcbf9037 5359 first_error (_("parse error"));
5287ad62
JB
5360 return FAIL;
5361 }
5362
5363 /* Successfully parsed the operands. Update args. */
5364 *which_operand = i;
5365 *str = ptr;
5366 return SUCCESS;
5367
5f4273c7 5368 wanted_comma:
dcbf9037 5369 first_error (_("expected comma"));
5287ad62 5370 return FAIL;
5f4273c7
NC
5371
5372 wanted_arm:
dcbf9037 5373 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5374 return FAIL;
5287ad62
JB
5375}
5376
c19d1205
ZW
5377/* Matcher codes for parse_operands. */
5378enum operand_parse_code
5379{
5380 OP_stop, /* end of line */
5381
5382 OP_RR, /* ARM register */
5383 OP_RRnpc, /* ARM register, not r15 */
5384 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5385 OP_RRw, /* ARM register, not r15, optional trailing ! */
5386 OP_RCP, /* Coprocessor number */
5387 OP_RCN, /* Coprocessor register */
5388 OP_RF, /* FPA register */
5389 OP_RVS, /* VFP single precision register */
5287ad62
JB
5390 OP_RVD, /* VFP double precision register (0..15) */
5391 OP_RND, /* Neon double precision register (0..31) */
5392 OP_RNQ, /* Neon quad precision register */
037e8744 5393 OP_RVSD, /* VFP single or double precision register */
5287ad62 5394 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5395 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5396 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5397 OP_RVC, /* VFP control register */
5398 OP_RMF, /* Maverick F register */
5399 OP_RMD, /* Maverick D register */
5400 OP_RMFX, /* Maverick FX register */
5401 OP_RMDX, /* Maverick DX register */
5402 OP_RMAX, /* Maverick AX register */
5403 OP_RMDS, /* Maverick DSPSC register */
5404 OP_RIWR, /* iWMMXt wR register */
5405 OP_RIWC, /* iWMMXt wC register */
5406 OP_RIWG, /* iWMMXt wCG register */
5407 OP_RXA, /* XScale accumulator register */
5408
5409 OP_REGLST, /* ARM register list */
5410 OP_VRSLST, /* VFP single-precision register list */
5411 OP_VRDLST, /* VFP double-precision register list */
037e8744 5412 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5413 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5414 OP_NSTRLST, /* Neon element/structure list */
5415
5416 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5417 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5418 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5419 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5420 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5421 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5422 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5423 OP_VMOV, /* Neon VMOV operands. */
5424 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5425 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5426 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5427
5428 OP_I0, /* immediate zero */
c19d1205
ZW
5429 OP_I7, /* immediate value 0 .. 7 */
5430 OP_I15, /* 0 .. 15 */
5431 OP_I16, /* 1 .. 16 */
5287ad62 5432 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5433 OP_I31, /* 0 .. 31 */
5434 OP_I31w, /* 0 .. 31, optional trailing ! */
5435 OP_I32, /* 1 .. 32 */
5287ad62
JB
5436 OP_I32z, /* 0 .. 32 */
5437 OP_I63, /* 0 .. 63 */
c19d1205 5438 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5439 OP_I64, /* 1 .. 64 */
5440 OP_I64z, /* 0 .. 64 */
c19d1205 5441 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5442
5443 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5444 OP_I7b, /* 0 .. 7 */
5445 OP_I15b, /* 0 .. 15 */
5446 OP_I31b, /* 0 .. 31 */
5447
5448 OP_SH, /* shifter operand */
4962c51a 5449 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5450 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5451 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5452 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5453 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5454 OP_EXP, /* arbitrary expression */
5455 OP_EXPi, /* same, with optional immediate prefix */
5456 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5457 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5458
5459 OP_CPSF, /* CPS flags */
5460 OP_ENDI, /* Endianness specifier */
5461 OP_PSR, /* CPSR/SPSR mask for msr */
5462 OP_COND, /* conditional code */
92e90b6e 5463 OP_TB, /* Table branch. */
c19d1205 5464
037e8744
JB
5465 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5466 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5467
c19d1205
ZW
5468 OP_RRnpc_I0, /* ARM register or literal 0 */
5469 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5470 OP_RR_EXi, /* ARM register or expression with imm prefix */
5471 OP_RF_IF, /* FPA register or immediate */
5472 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5473 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5474
5475 /* Optional operands. */
5476 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5477 OP_oI31b, /* 0 .. 31 */
5287ad62 5478 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5479 OP_oIffffb, /* 0 .. 65535 */
5480 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5481
5482 OP_oRR, /* ARM register */
5483 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5484 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5485 OP_oRND, /* Optional Neon double precision register */
5486 OP_oRNQ, /* Optional Neon quad precision register */
5487 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5488 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5489 OP_oSHll, /* LSL immediate */
5490 OP_oSHar, /* ASR immediate */
5491 OP_oSHllar, /* LSL or ASR immediate */
5492 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5493 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5494
5495 OP_FIRST_OPTIONAL = OP_oI7b
5496};
a737bd4d 5497
c19d1205
ZW
5498/* Generic instruction operand parser. This does no encoding and no
5499 semantic validation; it merely squirrels values away in the inst
5500 structure. Returns SUCCESS or FAIL depending on whether the
5501 specified grammar matched. */
5502static int
ca3f61f7 5503parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5504{
5505 unsigned const char *upat = pattern;
5506 char *backtrack_pos = 0;
5507 const char *backtrack_error = 0;
5508 int i, val, backtrack_index = 0;
5287ad62 5509 enum arm_reg_type rtype;
4962c51a 5510 parse_operand_result result;
c19d1205
ZW
5511
5512#define po_char_or_fail(chr) do { \
5513 if (skip_past_char (&str, chr) == FAIL) \
5514 goto bad_args; \
5515} while (0)
5516
dcbf9037
JB
5517#define po_reg_or_fail(regtype) do { \
5518 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5519 &inst.operands[i].vectype); \
5520 if (val == FAIL) \
5521 { \
5522 first_error (_(reg_expected_msgs[regtype])); \
5523 goto failure; \
5524 } \
5525 inst.operands[i].reg = val; \
5526 inst.operands[i].isreg = 1; \
5527 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5528 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5529 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5530 || rtype == REG_TYPE_VFD \
5531 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5532} while (0)
5533
dcbf9037
JB
5534#define po_reg_or_goto(regtype, label) do { \
5535 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5536 &inst.operands[i].vectype); \
5537 if (val == FAIL) \
5538 goto label; \
5539 \
5540 inst.operands[i].reg = val; \
5541 inst.operands[i].isreg = 1; \
5542 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5543 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5544 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5545 || rtype == REG_TYPE_VFD \
5546 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5547} while (0)
5548
5549#define po_imm_or_fail(min, max, popt) do { \
5550 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5551 goto failure; \
5552 inst.operands[i].imm = val; \
5553} while (0)
5554
dcbf9037
JB
5555#define po_scalar_or_goto(elsz, label) do { \
5556 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5557 if (val == FAIL) \
5558 goto label; \
5559 inst.operands[i].reg = val; \
5560 inst.operands[i].isscalar = 1; \
5287ad62
JB
5561} while (0)
5562
c19d1205
ZW
5563#define po_misc_or_fail(expr) do { \
5564 if (expr) \
5565 goto failure; \
5566} while (0)
5567
4962c51a
MS
5568#define po_misc_or_fail_no_backtrack(expr) do { \
5569 result = expr; \
5570 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5571 backtrack_pos = 0; \
5572 if (result != PARSE_OPERAND_SUCCESS) \
5573 goto failure; \
5574} while (0)
5575
c19d1205
ZW
5576 skip_whitespace (str);
5577
5578 for (i = 0; upat[i] != OP_stop; i++)
5579 {
5580 if (upat[i] >= OP_FIRST_OPTIONAL)
5581 {
5582 /* Remember where we are in case we need to backtrack. */
5583 assert (!backtrack_pos);
5584 backtrack_pos = str;
5585 backtrack_error = inst.error;
5586 backtrack_index = i;
5587 }
5588
b6702015 5589 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5590 po_char_or_fail (',');
5591
5592 switch (upat[i])
5593 {
5594 /* Registers */
5595 case OP_oRRnpc:
5596 case OP_RRnpc:
5597 case OP_oRR:
5598 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5599 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5600 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5601 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5602 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5603 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5604 case OP_oRND:
5605 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
5606 case OP_RVC:
5607 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5608 break;
5609 /* Also accept generic coprocessor regs for unknown registers. */
5610 coproc_reg:
5611 po_reg_or_fail (REG_TYPE_CN);
5612 break;
c19d1205
ZW
5613 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5614 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5615 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5616 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5617 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5618 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5619 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5620 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5621 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5622 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5623 case OP_oRNQ:
5624 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5625 case OP_oRNDQ:
5626 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5627 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5628 case OP_oRNSDQ:
5629 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
5630
5631 /* Neon scalar. Using an element size of 8 means that some invalid
5632 scalars are accepted here, so deal with those in later code. */
5633 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5634
5635 /* WARNING: We can expand to two operands here. This has the potential
5636 to totally confuse the backtracking mechanism! It will be OK at
5637 least as long as we don't try to use optional args as well,
5638 though. */
5639 case OP_NILO:
5640 {
5641 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 5642 inst.operands[i].present = 1;
5287ad62
JB
5643 i++;
5644 skip_past_comma (&str);
5645 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5646 break;
5647 one_reg_only:
5648 /* Optional register operand was omitted. Unfortunately, it's in
5649 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5650 here (this is a bit grotty). */
5651 inst.operands[i] = inst.operands[i-1];
5652 inst.operands[i-1].present = 0;
5653 break;
5654 try_imm:
036dc3f7
PB
5655 /* There's a possibility of getting a 64-bit immediate here, so
5656 we need special handling. */
5657 if (parse_big_immediate (&str, i) == FAIL)
5658 {
5659 inst.error = _("immediate value is out of range");
5660 goto failure;
5661 }
5287ad62
JB
5662 }
5663 break;
5664
5665 case OP_RNDQ_I0:
5666 {
5667 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5668 break;
5669 try_imm0:
5670 po_imm_or_fail (0, 0, TRUE);
5671 }
5672 break;
5673
037e8744
JB
5674 case OP_RVSD_I0:
5675 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5676 break;
5677
5287ad62
JB
5678 case OP_RR_RNSC:
5679 {
5680 po_scalar_or_goto (8, try_rr);
5681 break;
5682 try_rr:
5683 po_reg_or_fail (REG_TYPE_RN);
5684 }
5685 break;
5686
037e8744
JB
5687 case OP_RNSDQ_RNSC:
5688 {
5689 po_scalar_or_goto (8, try_nsdq);
5690 break;
5691 try_nsdq:
5692 po_reg_or_fail (REG_TYPE_NSDQ);
5693 }
5694 break;
5695
5287ad62
JB
5696 case OP_RNDQ_RNSC:
5697 {
5698 po_scalar_or_goto (8, try_ndq);
5699 break;
5700 try_ndq:
5701 po_reg_or_fail (REG_TYPE_NDQ);
5702 }
5703 break;
5704
5705 case OP_RND_RNSC:
5706 {
5707 po_scalar_or_goto (8, try_vfd);
5708 break;
5709 try_vfd:
5710 po_reg_or_fail (REG_TYPE_VFD);
5711 }
5712 break;
5713
5714 case OP_VMOV:
5715 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5716 not careful then bad things might happen. */
5717 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5718 break;
5719
5720 case OP_RNDQ_IMVNb:
5721 {
5722 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5723 break;
5724 try_mvnimm:
5725 /* There's a possibility of getting a 64-bit immediate here, so
5726 we need special handling. */
5727 if (parse_big_immediate (&str, i) == FAIL)
5728 {
5729 inst.error = _("immediate value is out of range");
5730 goto failure;
5731 }
5732 }
5733 break;
5734
5735 case OP_RNDQ_I63b:
5736 {
5737 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5738 break;
5739 try_shimm:
5740 po_imm_or_fail (0, 63, TRUE);
5741 }
5742 break;
c19d1205
ZW
5743
5744 case OP_RRnpcb:
5745 po_char_or_fail ('[');
5746 po_reg_or_fail (REG_TYPE_RN);
5747 po_char_or_fail (']');
5748 break;
a737bd4d 5749
c19d1205 5750 case OP_RRw:
b6702015 5751 case OP_oRRw:
c19d1205
ZW
5752 po_reg_or_fail (REG_TYPE_RN);
5753 if (skip_past_char (&str, '!') == SUCCESS)
5754 inst.operands[i].writeback = 1;
5755 break;
5756
5757 /* Immediates */
5758 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5759 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5760 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5761 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5762 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5763 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5764 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5765 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5766 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5767 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5768 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 5769 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
5770
5771 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5772 case OP_oI7b:
5773 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5774 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5775 case OP_oI31b:
5776 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5777 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5778 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5779
5780 /* Immediate variants */
5781 case OP_oI255c:
5782 po_char_or_fail ('{');
5783 po_imm_or_fail (0, 255, TRUE);
5784 po_char_or_fail ('}');
5785 break;
5786
5787 case OP_I31w:
5788 /* The expression parser chokes on a trailing !, so we have
5789 to find it first and zap it. */
5790 {
5791 char *s = str;
5792 while (*s && *s != ',')
5793 s++;
5794 if (s[-1] == '!')
5795 {
5796 s[-1] = '\0';
5797 inst.operands[i].writeback = 1;
5798 }
5799 po_imm_or_fail (0, 31, TRUE);
5800 if (str == s - 1)
5801 str = s;
5802 }
5803 break;
5804
5805 /* Expressions */
5806 case OP_EXPi: EXPi:
5807 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5808 GE_OPT_PREFIX));
5809 break;
5810
5811 case OP_EXP:
5812 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5813 GE_NO_PREFIX));
5814 break;
5815
5816 case OP_EXPr: EXPr:
5817 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5818 GE_NO_PREFIX));
5819 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5820 {
c19d1205
ZW
5821 val = parse_reloc (&str);
5822 if (val == -1)
5823 {
5824 inst.error = _("unrecognized relocation suffix");
5825 goto failure;
5826 }
5827 else if (val != BFD_RELOC_UNUSED)
5828 {
5829 inst.operands[i].imm = val;
5830 inst.operands[i].hasreloc = 1;
5831 }
a737bd4d 5832 }
c19d1205 5833 break;
a737bd4d 5834
b6895b4f
PB
5835 /* Operand for MOVW or MOVT. */
5836 case OP_HALF:
5837 po_misc_or_fail (parse_half (&str));
5838 break;
5839
c19d1205
ZW
5840 /* Register or expression */
5841 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5842 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5843
c19d1205
ZW
5844 /* Register or immediate */
5845 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5846 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5847
c19d1205
ZW
5848 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5849 IF:
5850 if (!is_immediate_prefix (*str))
5851 goto bad_args;
5852 str++;
5853 val = parse_fpa_immediate (&str);
5854 if (val == FAIL)
5855 goto failure;
5856 /* FPA immediates are encoded as registers 8-15.
5857 parse_fpa_immediate has already applied the offset. */
5858 inst.operands[i].reg = val;
5859 inst.operands[i].isreg = 1;
5860 break;
09d92015 5861
2d447fca
JM
5862 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5863 I32z: po_imm_or_fail (0, 32, FALSE); break;
5864
c19d1205
ZW
5865 /* Two kinds of register */
5866 case OP_RIWR_RIWC:
5867 {
5868 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
5869 if (!rege
5870 || (rege->type != REG_TYPE_MMXWR
5871 && rege->type != REG_TYPE_MMXWC
5872 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
5873 {
5874 inst.error = _("iWMMXt data or control register expected");
5875 goto failure;
5876 }
5877 inst.operands[i].reg = rege->number;
5878 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5879 }
5880 break;
09d92015 5881
41adaa5c
JM
5882 case OP_RIWC_RIWG:
5883 {
5884 struct reg_entry *rege = arm_reg_parse_multi (&str);
5885 if (!rege
5886 || (rege->type != REG_TYPE_MMXWC
5887 && rege->type != REG_TYPE_MMXWCG))
5888 {
5889 inst.error = _("iWMMXt control register expected");
5890 goto failure;
5891 }
5892 inst.operands[i].reg = rege->number;
5893 inst.operands[i].isreg = 1;
5894 }
5895 break;
5896
c19d1205
ZW
5897 /* Misc */
5898 case OP_CPSF: val = parse_cps_flags (&str); break;
5899 case OP_ENDI: val = parse_endian_specifier (&str); break;
5900 case OP_oROR: val = parse_ror (&str); break;
5901 case OP_PSR: val = parse_psr (&str); break;
5902 case OP_COND: val = parse_cond (&str); break;
62b3e311 5903 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5904
037e8744
JB
5905 case OP_RVC_PSR:
5906 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5907 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5908 break;
5909 try_psr:
5910 val = parse_psr (&str);
5911 break;
5912
5913 case OP_APSR_RR:
5914 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5915 break;
5916 try_apsr:
5917 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5918 instruction). */
5919 if (strncasecmp (str, "APSR_", 5) == 0)
5920 {
5921 unsigned found = 0;
5922 str += 5;
5923 while (found < 15)
5924 switch (*str++)
5925 {
5926 case 'c': found = (found & 1) ? 16 : found | 1; break;
5927 case 'n': found = (found & 2) ? 16 : found | 2; break;
5928 case 'z': found = (found & 4) ? 16 : found | 4; break;
5929 case 'v': found = (found & 8) ? 16 : found | 8; break;
5930 default: found = 16;
5931 }
5932 if (found != 15)
5933 goto failure;
5934 inst.operands[i].isvec = 1;
5935 }
5936 else
5937 goto failure;
5938 break;
5939
92e90b6e
PB
5940 case OP_TB:
5941 po_misc_or_fail (parse_tb (&str));
5942 break;
5943
c19d1205
ZW
5944 /* Register lists */
5945 case OP_REGLST:
5946 val = parse_reg_list (&str);
5947 if (*str == '^')
5948 {
5949 inst.operands[1].writeback = 1;
5950 str++;
5951 }
5952 break;
09d92015 5953
c19d1205 5954 case OP_VRSLST:
5287ad62 5955 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5956 break;
09d92015 5957
c19d1205 5958 case OP_VRDLST:
5287ad62 5959 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5960 break;
a737bd4d 5961
037e8744
JB
5962 case OP_VRSDLST:
5963 /* Allow Q registers too. */
5964 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5965 REGLIST_NEON_D);
5966 if (val == FAIL)
5967 {
5968 inst.error = NULL;
5969 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5970 REGLIST_VFP_S);
5971 inst.operands[i].issingle = 1;
5972 }
5973 break;
5974
5287ad62
JB
5975 case OP_NRDLST:
5976 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5977 REGLIST_NEON_D);
5978 break;
5979
5980 case OP_NSTRLST:
dcbf9037
JB
5981 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5982 &inst.operands[i].vectype);
5287ad62
JB
5983 break;
5984
c19d1205
ZW
5985 /* Addressing modes */
5986 case OP_ADDR:
5987 po_misc_or_fail (parse_address (&str, i));
5988 break;
09d92015 5989
4962c51a
MS
5990 case OP_ADDRGLDR:
5991 po_misc_or_fail_no_backtrack (
5992 parse_address_group_reloc (&str, i, GROUP_LDR));
5993 break;
5994
5995 case OP_ADDRGLDRS:
5996 po_misc_or_fail_no_backtrack (
5997 parse_address_group_reloc (&str, i, GROUP_LDRS));
5998 break;
5999
6000 case OP_ADDRGLDC:
6001 po_misc_or_fail_no_backtrack (
6002 parse_address_group_reloc (&str, i, GROUP_LDC));
6003 break;
6004
c19d1205
ZW
6005 case OP_SH:
6006 po_misc_or_fail (parse_shifter_operand (&str, i));
6007 break;
09d92015 6008
4962c51a
MS
6009 case OP_SHG:
6010 po_misc_or_fail_no_backtrack (
6011 parse_shifter_operand_group_reloc (&str, i));
6012 break;
6013
c19d1205
ZW
6014 case OP_oSHll:
6015 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6016 break;
09d92015 6017
c19d1205
ZW
6018 case OP_oSHar:
6019 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6020 break;
09d92015 6021
c19d1205
ZW
6022 case OP_oSHllar:
6023 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6024 break;
09d92015 6025
c19d1205 6026 default:
bd3ba5d1 6027 as_fatal (_("unhandled operand code %d"), upat[i]);
c19d1205 6028 }
09d92015 6029
c19d1205
ZW
6030 /* Various value-based sanity checks and shared operations. We
6031 do not signal immediate failures for the register constraints;
6032 this allows a syntax error to take precedence. */
6033 switch (upat[i])
6034 {
6035 case OP_oRRnpc:
6036 case OP_RRnpc:
6037 case OP_RRnpcb:
6038 case OP_RRw:
b6702015 6039 case OP_oRRw:
c19d1205
ZW
6040 case OP_RRnpc_I0:
6041 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6042 inst.error = BAD_PC;
6043 break;
09d92015 6044
c19d1205
ZW
6045 case OP_CPSF:
6046 case OP_ENDI:
6047 case OP_oROR:
6048 case OP_PSR:
037e8744 6049 case OP_RVC_PSR:
c19d1205 6050 case OP_COND:
62b3e311 6051 case OP_oBARRIER:
c19d1205
ZW
6052 case OP_REGLST:
6053 case OP_VRSLST:
6054 case OP_VRDLST:
037e8744 6055 case OP_VRSDLST:
5287ad62
JB
6056 case OP_NRDLST:
6057 case OP_NSTRLST:
c19d1205
ZW
6058 if (val == FAIL)
6059 goto failure;
6060 inst.operands[i].imm = val;
6061 break;
a737bd4d 6062
c19d1205
ZW
6063 default:
6064 break;
6065 }
09d92015 6066
c19d1205
ZW
6067 /* If we get here, this operand was successfully parsed. */
6068 inst.operands[i].present = 1;
6069 continue;
09d92015 6070
c19d1205 6071 bad_args:
09d92015 6072 inst.error = BAD_ARGS;
c19d1205
ZW
6073
6074 failure:
6075 if (!backtrack_pos)
d252fdde
PB
6076 {
6077 /* The parse routine should already have set inst.error, but set a
5f4273c7 6078 default here just in case. */
d252fdde
PB
6079 if (!inst.error)
6080 inst.error = _("syntax error");
6081 return FAIL;
6082 }
c19d1205
ZW
6083
6084 /* Do not backtrack over a trailing optional argument that
6085 absorbed some text. We will only fail again, with the
6086 'garbage following instruction' error message, which is
6087 probably less helpful than the current one. */
6088 if (backtrack_index == i && backtrack_pos != str
6089 && upat[i+1] == OP_stop)
d252fdde
PB
6090 {
6091 if (!inst.error)
6092 inst.error = _("syntax error");
6093 return FAIL;
6094 }
c19d1205
ZW
6095
6096 /* Try again, skipping the optional argument at backtrack_pos. */
6097 str = backtrack_pos;
6098 inst.error = backtrack_error;
6099 inst.operands[backtrack_index].present = 0;
6100 i = backtrack_index;
6101 backtrack_pos = 0;
09d92015 6102 }
09d92015 6103
c19d1205
ZW
6104 /* Check that we have parsed all the arguments. */
6105 if (*str != '\0' && !inst.error)
6106 inst.error = _("garbage following instruction");
09d92015 6107
c19d1205 6108 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6109}
6110
c19d1205
ZW
6111#undef po_char_or_fail
6112#undef po_reg_or_fail
6113#undef po_reg_or_goto
6114#undef po_imm_or_fail
5287ad62 6115#undef po_scalar_or_fail
c19d1205
ZW
6116\f
6117/* Shorthand macro for instruction encoding functions issuing errors. */
6118#define constraint(expr, err) do { \
6119 if (expr) \
6120 { \
6121 inst.error = err; \
6122 return; \
6123 } \
6124} while (0)
6125
6126/* Functions for operand encoding. ARM, then Thumb. */
6127
6128#define rotate_left(v, n) (v << n | v >> (32 - n))
6129
6130/* If VAL can be encoded in the immediate field of an ARM instruction,
6131 return the encoded form. Otherwise, return FAIL. */
6132
6133static unsigned int
6134encode_arm_immediate (unsigned int val)
09d92015 6135{
c19d1205
ZW
6136 unsigned int a, i;
6137
6138 for (i = 0; i < 32; i += 2)
6139 if ((a = rotate_left (val, i)) <= 0xff)
6140 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6141
6142 return FAIL;
09d92015
MM
6143}
6144
c19d1205
ZW
6145/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6146 return the encoded form. Otherwise, return FAIL. */
6147static unsigned int
6148encode_thumb32_immediate (unsigned int val)
09d92015 6149{
c19d1205 6150 unsigned int a, i;
09d92015 6151
9c3c69f2 6152 if (val <= 0xff)
c19d1205 6153 return val;
a737bd4d 6154
9c3c69f2 6155 for (i = 1; i <= 24; i++)
09d92015 6156 {
9c3c69f2
PB
6157 a = val >> i;
6158 if ((val & ~(0xff << i)) == 0)
6159 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6160 }
a737bd4d 6161
c19d1205
ZW
6162 a = val & 0xff;
6163 if (val == ((a << 16) | a))
6164 return 0x100 | a;
6165 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6166 return 0x300 | a;
09d92015 6167
c19d1205
ZW
6168 a = val & 0xff00;
6169 if (val == ((a << 16) | a))
6170 return 0x200 | (a >> 8);
a737bd4d 6171
c19d1205 6172 return FAIL;
09d92015 6173}
5287ad62 6174/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6175
6176static void
5287ad62
JB
6177encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6178{
6179 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6180 && reg > 15)
6181 {
b1cc4aeb 6182 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6183 {
6184 if (thumb_mode)
6185 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6186 fpu_vfp_ext_d32);
5287ad62
JB
6187 else
6188 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6189 fpu_vfp_ext_d32);
5287ad62
JB
6190 }
6191 else
6192 {
dcbf9037 6193 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6194 return;
6195 }
6196 }
6197
c19d1205 6198 switch (pos)
09d92015 6199 {
c19d1205
ZW
6200 case VFP_REG_Sd:
6201 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6202 break;
6203
6204 case VFP_REG_Sn:
6205 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6206 break;
6207
6208 case VFP_REG_Sm:
6209 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6210 break;
6211
5287ad62
JB
6212 case VFP_REG_Dd:
6213 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6214 break;
5f4273c7 6215
5287ad62
JB
6216 case VFP_REG_Dn:
6217 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6218 break;
5f4273c7 6219
5287ad62
JB
6220 case VFP_REG_Dm:
6221 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6222 break;
6223
c19d1205
ZW
6224 default:
6225 abort ();
09d92015 6226 }
09d92015
MM
6227}
6228
c19d1205 6229/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6230 if any, is handled by md_apply_fix. */
09d92015 6231static void
c19d1205 6232encode_arm_shift (int i)
09d92015 6233{
c19d1205
ZW
6234 if (inst.operands[i].shift_kind == SHIFT_RRX)
6235 inst.instruction |= SHIFT_ROR << 5;
6236 else
09d92015 6237 {
c19d1205
ZW
6238 inst.instruction |= inst.operands[i].shift_kind << 5;
6239 if (inst.operands[i].immisreg)
6240 {
6241 inst.instruction |= SHIFT_BY_REG;
6242 inst.instruction |= inst.operands[i].imm << 8;
6243 }
6244 else
6245 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6246 }
c19d1205 6247}
09d92015 6248
c19d1205
ZW
6249static void
6250encode_arm_shifter_operand (int i)
6251{
6252 if (inst.operands[i].isreg)
09d92015 6253 {
c19d1205
ZW
6254 inst.instruction |= inst.operands[i].reg;
6255 encode_arm_shift (i);
09d92015 6256 }
c19d1205
ZW
6257 else
6258 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6259}
6260
c19d1205 6261/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6262static void
c19d1205 6263encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6264{
c19d1205
ZW
6265 assert (inst.operands[i].isreg);
6266 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6267
c19d1205 6268 if (inst.operands[i].preind)
09d92015 6269 {
c19d1205
ZW
6270 if (is_t)
6271 {
6272 inst.error = _("instruction does not accept preindexed addressing");
6273 return;
6274 }
6275 inst.instruction |= PRE_INDEX;
6276 if (inst.operands[i].writeback)
6277 inst.instruction |= WRITE_BACK;
09d92015 6278
c19d1205
ZW
6279 }
6280 else if (inst.operands[i].postind)
6281 {
6282 assert (inst.operands[i].writeback);
6283 if (is_t)
6284 inst.instruction |= WRITE_BACK;
6285 }
6286 else /* unindexed - only for coprocessor */
09d92015 6287 {
c19d1205 6288 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6289 return;
6290 }
6291
c19d1205
ZW
6292 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6293 && (((inst.instruction & 0x000f0000) >> 16)
6294 == ((inst.instruction & 0x0000f000) >> 12)))
6295 as_warn ((inst.instruction & LOAD_BIT)
6296 ? _("destination register same as write-back base")
6297 : _("source register same as write-back base"));
09d92015
MM
6298}
6299
c19d1205
ZW
6300/* inst.operands[i] was set up by parse_address. Encode it into an
6301 ARM-format mode 2 load or store instruction. If is_t is true,
6302 reject forms that cannot be used with a T instruction (i.e. not
6303 post-indexed). */
a737bd4d 6304static void
c19d1205 6305encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6306{
c19d1205 6307 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6308
c19d1205 6309 if (inst.operands[i].immisreg)
09d92015 6310 {
c19d1205
ZW
6311 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6312 inst.instruction |= inst.operands[i].imm;
6313 if (!inst.operands[i].negative)
6314 inst.instruction |= INDEX_UP;
6315 if (inst.operands[i].shifted)
6316 {
6317 if (inst.operands[i].shift_kind == SHIFT_RRX)
6318 inst.instruction |= SHIFT_ROR << 5;
6319 else
6320 {
6321 inst.instruction |= inst.operands[i].shift_kind << 5;
6322 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6323 }
6324 }
09d92015 6325 }
c19d1205 6326 else /* immediate offset in inst.reloc */
09d92015 6327 {
c19d1205
ZW
6328 if (inst.reloc.type == BFD_RELOC_UNUSED)
6329 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6330 }
09d92015
MM
6331}
6332
c19d1205
ZW
6333/* inst.operands[i] was set up by parse_address. Encode it into an
6334 ARM-format mode 3 load or store instruction. Reject forms that
6335 cannot be used with such instructions. If is_t is true, reject
6336 forms that cannot be used with a T instruction (i.e. not
6337 post-indexed). */
6338static void
6339encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6340{
c19d1205 6341 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6342 {
c19d1205
ZW
6343 inst.error = _("instruction does not accept scaled register index");
6344 return;
09d92015 6345 }
a737bd4d 6346
c19d1205 6347 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6348
c19d1205
ZW
6349 if (inst.operands[i].immisreg)
6350 {
6351 inst.instruction |= inst.operands[i].imm;
6352 if (!inst.operands[i].negative)
6353 inst.instruction |= INDEX_UP;
6354 }
6355 else /* immediate offset in inst.reloc */
6356 {
6357 inst.instruction |= HWOFFSET_IMM;
6358 if (inst.reloc.type == BFD_RELOC_UNUSED)
6359 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6360 }
a737bd4d
NC
6361}
6362
c19d1205
ZW
6363/* inst.operands[i] was set up by parse_address. Encode it into an
6364 ARM-format instruction. Reject all forms which cannot be encoded
6365 into a coprocessor load/store instruction. If wb_ok is false,
6366 reject use of writeback; if unind_ok is false, reject use of
6367 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6368 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6369 (in which case it is preserved). */
09d92015 6370
c19d1205
ZW
6371static int
6372encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6373{
c19d1205 6374 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6375
c19d1205 6376 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6377
c19d1205 6378 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6379 {
c19d1205
ZW
6380 assert (!inst.operands[i].writeback);
6381 if (!unind_ok)
6382 {
6383 inst.error = _("instruction does not support unindexed addressing");
6384 return FAIL;
6385 }
6386 inst.instruction |= inst.operands[i].imm;
6387 inst.instruction |= INDEX_UP;
6388 return SUCCESS;
09d92015 6389 }
a737bd4d 6390
c19d1205
ZW
6391 if (inst.operands[i].preind)
6392 inst.instruction |= PRE_INDEX;
a737bd4d 6393
c19d1205 6394 if (inst.operands[i].writeback)
09d92015 6395 {
c19d1205
ZW
6396 if (inst.operands[i].reg == REG_PC)
6397 {
6398 inst.error = _("pc may not be used with write-back");
6399 return FAIL;
6400 }
6401 if (!wb_ok)
6402 {
6403 inst.error = _("instruction does not support writeback");
6404 return FAIL;
6405 }
6406 inst.instruction |= WRITE_BACK;
09d92015 6407 }
a737bd4d 6408
c19d1205
ZW
6409 if (reloc_override)
6410 inst.reloc.type = reloc_override;
4962c51a
MS
6411 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6412 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6413 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6414 {
6415 if (thumb_mode)
6416 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6417 else
6418 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6419 }
6420
c19d1205
ZW
6421 return SUCCESS;
6422}
a737bd4d 6423
c19d1205
ZW
6424/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6425 Determine whether it can be performed with a move instruction; if
6426 it can, convert inst.instruction to that move instruction and
6427 return 1; if it can't, convert inst.instruction to a literal-pool
6428 load and return 0. If this is not a valid thing to do in the
6429 current context, set inst.error and return 1.
a737bd4d 6430
c19d1205
ZW
6431 inst.operands[i] describes the destination register. */
6432
6433static int
6434move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6435{
53365c0d
PB
6436 unsigned long tbit;
6437
6438 if (thumb_p)
6439 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6440 else
6441 tbit = LOAD_BIT;
6442
6443 if ((inst.instruction & tbit) == 0)
09d92015 6444 {
c19d1205
ZW
6445 inst.error = _("invalid pseudo operation");
6446 return 1;
09d92015 6447 }
c19d1205 6448 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6449 {
6450 inst.error = _("constant expression expected");
c19d1205 6451 return 1;
09d92015 6452 }
c19d1205 6453 if (inst.reloc.exp.X_op == O_constant)
09d92015 6454 {
c19d1205
ZW
6455 if (thumb_p)
6456 {
53365c0d 6457 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6458 {
6459 /* This can be done with a mov(1) instruction. */
6460 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6461 inst.instruction |= inst.reloc.exp.X_add_number;
6462 return 1;
6463 }
6464 }
6465 else
6466 {
6467 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6468 if (value != FAIL)
6469 {
6470 /* This can be done with a mov instruction. */
6471 inst.instruction &= LITERAL_MASK;
6472 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6473 inst.instruction |= value & 0xfff;
6474 return 1;
6475 }
09d92015 6476
c19d1205
ZW
6477 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6478 if (value != FAIL)
6479 {
6480 /* This can be done with a mvn instruction. */
6481 inst.instruction &= LITERAL_MASK;
6482 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6483 inst.instruction |= value & 0xfff;
6484 return 1;
6485 }
6486 }
09d92015
MM
6487 }
6488
c19d1205
ZW
6489 if (add_to_lit_pool () == FAIL)
6490 {
6491 inst.error = _("literal pool insertion failed");
6492 return 1;
6493 }
6494 inst.operands[1].reg = REG_PC;
6495 inst.operands[1].isreg = 1;
6496 inst.operands[1].preind = 1;
6497 inst.reloc.pc_rel = 1;
6498 inst.reloc.type = (thumb_p
6499 ? BFD_RELOC_ARM_THUMB_OFFSET
6500 : (mode_3
6501 ? BFD_RELOC_ARM_HWLITERAL
6502 : BFD_RELOC_ARM_LITERAL));
6503 return 0;
09d92015
MM
6504}
6505
5f4273c7 6506/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
6507 First some generics; their names are taken from the conventional
6508 bit positions for register arguments in ARM format instructions. */
09d92015 6509
a737bd4d 6510static void
c19d1205 6511do_noargs (void)
09d92015 6512{
c19d1205 6513}
a737bd4d 6514
c19d1205
ZW
6515static void
6516do_rd (void)
6517{
6518 inst.instruction |= inst.operands[0].reg << 12;
6519}
a737bd4d 6520
c19d1205
ZW
6521static void
6522do_rd_rm (void)
6523{
6524 inst.instruction |= inst.operands[0].reg << 12;
6525 inst.instruction |= inst.operands[1].reg;
6526}
09d92015 6527
c19d1205
ZW
6528static void
6529do_rd_rn (void)
6530{
6531 inst.instruction |= inst.operands[0].reg << 12;
6532 inst.instruction |= inst.operands[1].reg << 16;
6533}
a737bd4d 6534
c19d1205
ZW
6535static void
6536do_rn_rd (void)
6537{
6538 inst.instruction |= inst.operands[0].reg << 16;
6539 inst.instruction |= inst.operands[1].reg << 12;
6540}
09d92015 6541
c19d1205
ZW
6542static void
6543do_rd_rm_rn (void)
6544{
9a64e435 6545 unsigned Rn = inst.operands[2].reg;
708587a4 6546 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6547 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6548 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6549 _("Rn must not overlap other operands"));
c19d1205
ZW
6550 inst.instruction |= inst.operands[0].reg << 12;
6551 inst.instruction |= inst.operands[1].reg;
9a64e435 6552 inst.instruction |= Rn << 16;
c19d1205 6553}
09d92015 6554
c19d1205
ZW
6555static void
6556do_rd_rn_rm (void)
6557{
6558 inst.instruction |= inst.operands[0].reg << 12;
6559 inst.instruction |= inst.operands[1].reg << 16;
6560 inst.instruction |= inst.operands[2].reg;
6561}
a737bd4d 6562
c19d1205
ZW
6563static void
6564do_rm_rd_rn (void)
6565{
6566 inst.instruction |= inst.operands[0].reg;
6567 inst.instruction |= inst.operands[1].reg << 12;
6568 inst.instruction |= inst.operands[2].reg << 16;
6569}
09d92015 6570
c19d1205
ZW
6571static void
6572do_imm0 (void)
6573{
6574 inst.instruction |= inst.operands[0].imm;
6575}
09d92015 6576
c19d1205
ZW
6577static void
6578do_rd_cpaddr (void)
6579{
6580 inst.instruction |= inst.operands[0].reg << 12;
6581 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6582}
a737bd4d 6583
c19d1205
ZW
6584/* ARM instructions, in alphabetical order by function name (except
6585 that wrapper functions appear immediately after the function they
6586 wrap). */
09d92015 6587
c19d1205
ZW
6588/* This is a pseudo-op of the form "adr rd, label" to be converted
6589 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6590
6591static void
c19d1205 6592do_adr (void)
09d92015 6593{
c19d1205 6594 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6595
c19d1205
ZW
6596 /* Frag hacking will turn this into a sub instruction if the offset turns
6597 out to be negative. */
6598 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6599 inst.reloc.pc_rel = 1;
2fc8bdac 6600 inst.reloc.exp.X_add_number -= 8;
c19d1205 6601}
b99bd4ef 6602
c19d1205
ZW
6603/* This is a pseudo-op of the form "adrl rd, label" to be converted
6604 into a relative address of the form:
6605 add rd, pc, #low(label-.-8)"
6606 add rd, rd, #high(label-.-8)" */
b99bd4ef 6607
c19d1205
ZW
6608static void
6609do_adrl (void)
6610{
6611 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6612
c19d1205
ZW
6613 /* Frag hacking will turn this into a sub instruction if the offset turns
6614 out to be negative. */
6615 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
6616 inst.reloc.pc_rel = 1;
6617 inst.size = INSN_SIZE * 2;
2fc8bdac 6618 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
6619}
6620
b99bd4ef 6621static void
c19d1205 6622do_arit (void)
b99bd4ef 6623{
c19d1205
ZW
6624 if (!inst.operands[1].present)
6625 inst.operands[1].reg = inst.operands[0].reg;
6626 inst.instruction |= inst.operands[0].reg << 12;
6627 inst.instruction |= inst.operands[1].reg << 16;
6628 encode_arm_shifter_operand (2);
6629}
b99bd4ef 6630
62b3e311
PB
6631static void
6632do_barrier (void)
6633{
6634 if (inst.operands[0].present)
6635 {
6636 constraint ((inst.instruction & 0xf0) != 0x40
6637 && inst.operands[0].imm != 0xf,
bd3ba5d1 6638 _("bad barrier type"));
62b3e311
PB
6639 inst.instruction |= inst.operands[0].imm;
6640 }
6641 else
6642 inst.instruction |= 0xf;
6643}
6644
c19d1205
ZW
6645static void
6646do_bfc (void)
6647{
6648 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6649 constraint (msb > 32, _("bit-field extends past end of register"));
6650 /* The instruction encoding stores the LSB and MSB,
6651 not the LSB and width. */
6652 inst.instruction |= inst.operands[0].reg << 12;
6653 inst.instruction |= inst.operands[1].imm << 7;
6654 inst.instruction |= (msb - 1) << 16;
6655}
b99bd4ef 6656
c19d1205
ZW
6657static void
6658do_bfi (void)
6659{
6660 unsigned int msb;
b99bd4ef 6661
c19d1205
ZW
6662 /* #0 in second position is alternative syntax for bfc, which is
6663 the same instruction but with REG_PC in the Rm field. */
6664 if (!inst.operands[1].isreg)
6665 inst.operands[1].reg = REG_PC;
b99bd4ef 6666
c19d1205
ZW
6667 msb = inst.operands[2].imm + inst.operands[3].imm;
6668 constraint (msb > 32, _("bit-field extends past end of register"));
6669 /* The instruction encoding stores the LSB and MSB,
6670 not the LSB and width. */
6671 inst.instruction |= inst.operands[0].reg << 12;
6672 inst.instruction |= inst.operands[1].reg;
6673 inst.instruction |= inst.operands[2].imm << 7;
6674 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
6675}
6676
b99bd4ef 6677static void
c19d1205 6678do_bfx (void)
b99bd4ef 6679{
c19d1205
ZW
6680 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6681 _("bit-field extends past end of register"));
6682 inst.instruction |= inst.operands[0].reg << 12;
6683 inst.instruction |= inst.operands[1].reg;
6684 inst.instruction |= inst.operands[2].imm << 7;
6685 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6686}
09d92015 6687
c19d1205
ZW
6688/* ARM V5 breakpoint instruction (argument parse)
6689 BKPT <16 bit unsigned immediate>
6690 Instruction is not conditional.
6691 The bit pattern given in insns[] has the COND_ALWAYS condition,
6692 and it is an error if the caller tried to override that. */
b99bd4ef 6693
c19d1205
ZW
6694static void
6695do_bkpt (void)
6696{
6697 /* Top 12 of 16 bits to bits 19:8. */
6698 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6699
c19d1205
ZW
6700 /* Bottom 4 of 16 bits to bits 3:0. */
6701 inst.instruction |= inst.operands[0].imm & 0xf;
6702}
09d92015 6703
c19d1205
ZW
6704static void
6705encode_branch (int default_reloc)
6706{
6707 if (inst.operands[0].hasreloc)
6708 {
6709 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6710 _("the only suffix valid here is '(plt)'"));
6711 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6712 }
b99bd4ef 6713 else
c19d1205
ZW
6714 {
6715 inst.reloc.type = default_reloc;
c19d1205 6716 }
2fc8bdac 6717 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6718}
6719
b99bd4ef 6720static void
c19d1205 6721do_branch (void)
b99bd4ef 6722{
39b41c9c
PB
6723#ifdef OBJ_ELF
6724 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6725 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6726 else
6727#endif
6728 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6729}
6730
6731static void
6732do_bl (void)
6733{
6734#ifdef OBJ_ELF
6735 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6736 {
6737 if (inst.cond == COND_ALWAYS)
6738 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6739 else
6740 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6741 }
6742 else
6743#endif
6744 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6745}
b99bd4ef 6746
c19d1205
ZW
6747/* ARM V5 branch-link-exchange instruction (argument parse)
6748 BLX <target_addr> ie BLX(1)
6749 BLX{<condition>} <Rm> ie BLX(2)
6750 Unfortunately, there are two different opcodes for this mnemonic.
6751 So, the insns[].value is not used, and the code here zaps values
6752 into inst.instruction.
6753 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6754
c19d1205
ZW
6755static void
6756do_blx (void)
6757{
6758 if (inst.operands[0].isreg)
b99bd4ef 6759 {
c19d1205
ZW
6760 /* Arg is a register; the opcode provided by insns[] is correct.
6761 It is not illegal to do "blx pc", just useless. */
6762 if (inst.operands[0].reg == REG_PC)
6763 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6764
c19d1205
ZW
6765 inst.instruction |= inst.operands[0].reg;
6766 }
6767 else
b99bd4ef 6768 {
c19d1205
ZW
6769 /* Arg is an address; this instruction cannot be executed
6770 conditionally, and the opcode must be adjusted. */
6771 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6772 inst.instruction = 0xfa000000;
39b41c9c
PB
6773#ifdef OBJ_ELF
6774 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6775 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6776 else
6777#endif
6778 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6779 }
c19d1205
ZW
6780}
6781
6782static void
6783do_bx (void)
6784{
845b51d6
PB
6785 bfd_boolean want_reloc;
6786
c19d1205
ZW
6787 if (inst.operands[0].reg == REG_PC)
6788 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6789
c19d1205 6790 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
6791 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
6792 it is for ARMv4t or earlier. */
6793 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
6794 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
6795 want_reloc = TRUE;
6796
5ad34203 6797#ifdef OBJ_ELF
845b51d6 6798 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 6799#endif
584206db 6800 want_reloc = FALSE;
845b51d6
PB
6801
6802 if (want_reloc)
6803 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
6804}
6805
c19d1205
ZW
6806
6807/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6808
6809static void
c19d1205 6810do_bxj (void)
a737bd4d 6811{
c19d1205
ZW
6812 if (inst.operands[0].reg == REG_PC)
6813 as_tsktsk (_("use of r15 in bxj is not really useful"));
6814
6815 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6816}
6817
c19d1205
ZW
6818/* Co-processor data operation:
6819 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6820 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6821static void
6822do_cdp (void)
6823{
6824 inst.instruction |= inst.operands[0].reg << 8;
6825 inst.instruction |= inst.operands[1].imm << 20;
6826 inst.instruction |= inst.operands[2].reg << 12;
6827 inst.instruction |= inst.operands[3].reg << 16;
6828 inst.instruction |= inst.operands[4].reg;
6829 inst.instruction |= inst.operands[5].imm << 5;
6830}
a737bd4d
NC
6831
6832static void
c19d1205 6833do_cmp (void)
a737bd4d 6834{
c19d1205
ZW
6835 inst.instruction |= inst.operands[0].reg << 16;
6836 encode_arm_shifter_operand (1);
a737bd4d
NC
6837}
6838
c19d1205
ZW
6839/* Transfer between coprocessor and ARM registers.
6840 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6841 MRC2
6842 MCR{cond}
6843 MCR2
6844
6845 No special properties. */
09d92015
MM
6846
6847static void
c19d1205 6848do_co_reg (void)
09d92015 6849{
c19d1205
ZW
6850 inst.instruction |= inst.operands[0].reg << 8;
6851 inst.instruction |= inst.operands[1].imm << 21;
6852 inst.instruction |= inst.operands[2].reg << 12;
6853 inst.instruction |= inst.operands[3].reg << 16;
6854 inst.instruction |= inst.operands[4].reg;
6855 inst.instruction |= inst.operands[5].imm << 5;
6856}
09d92015 6857
c19d1205
ZW
6858/* Transfer between coprocessor register and pair of ARM registers.
6859 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6860 MCRR2
6861 MRRC{cond}
6862 MRRC2
b99bd4ef 6863
c19d1205 6864 Two XScale instructions are special cases of these:
09d92015 6865
c19d1205
ZW
6866 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6867 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6868
5f4273c7 6869 Result unpredictable if Rd or Rn is R15. */
a737bd4d 6870
c19d1205
ZW
6871static void
6872do_co_reg2c (void)
6873{
6874 inst.instruction |= inst.operands[0].reg << 8;
6875 inst.instruction |= inst.operands[1].imm << 4;
6876 inst.instruction |= inst.operands[2].reg << 12;
6877 inst.instruction |= inst.operands[3].reg << 16;
6878 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6879}
6880
c19d1205
ZW
6881static void
6882do_cpsi (void)
6883{
6884 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
6885 if (inst.operands[1].present)
6886 {
6887 inst.instruction |= CPSI_MMOD;
6888 inst.instruction |= inst.operands[1].imm;
6889 }
c19d1205 6890}
b99bd4ef 6891
62b3e311
PB
6892static void
6893do_dbg (void)
6894{
6895 inst.instruction |= inst.operands[0].imm;
6896}
6897
b99bd4ef 6898static void
c19d1205 6899do_it (void)
b99bd4ef 6900{
c19d1205
ZW
6901 /* There is no IT instruction in ARM mode. We
6902 process it but do not generate code for it. */
6903 inst.size = 0;
09d92015 6904}
b99bd4ef 6905
09d92015 6906static void
c19d1205 6907do_ldmstm (void)
ea6ef066 6908{
c19d1205
ZW
6909 int base_reg = inst.operands[0].reg;
6910 int range = inst.operands[1].imm;
ea6ef066 6911
c19d1205
ZW
6912 inst.instruction |= base_reg << 16;
6913 inst.instruction |= range;
ea6ef066 6914
c19d1205
ZW
6915 if (inst.operands[1].writeback)
6916 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6917
c19d1205 6918 if (inst.operands[0].writeback)
ea6ef066 6919 {
c19d1205
ZW
6920 inst.instruction |= WRITE_BACK;
6921 /* Check for unpredictable uses of writeback. */
6922 if (inst.instruction & LOAD_BIT)
09d92015 6923 {
c19d1205
ZW
6924 /* Not allowed in LDM type 2. */
6925 if ((inst.instruction & LDM_TYPE_2_OR_3)
6926 && ((range & (1 << REG_PC)) == 0))
6927 as_warn (_("writeback of base register is UNPREDICTABLE"));
6928 /* Only allowed if base reg not in list for other types. */
6929 else if (range & (1 << base_reg))
6930 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6931 }
6932 else /* STM. */
6933 {
6934 /* Not allowed for type 2. */
6935 if (inst.instruction & LDM_TYPE_2_OR_3)
6936 as_warn (_("writeback of base register is UNPREDICTABLE"));
6937 /* Only allowed if base reg not in list, or first in list. */
6938 else if ((range & (1 << base_reg))
6939 && (range & ((1 << base_reg) - 1)))
6940 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 6941 }
ea6ef066 6942 }
a737bd4d
NC
6943}
6944
c19d1205
ZW
6945/* ARMv5TE load-consecutive (argument parse)
6946 Mode is like LDRH.
6947
6948 LDRccD R, mode
6949 STRccD R, mode. */
6950
a737bd4d 6951static void
c19d1205 6952do_ldrd (void)
a737bd4d 6953{
c19d1205
ZW
6954 constraint (inst.operands[0].reg % 2 != 0,
6955 _("first destination register must be even"));
6956 constraint (inst.operands[1].present
6957 && inst.operands[1].reg != inst.operands[0].reg + 1,
6958 _("can only load two consecutive registers"));
6959 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6960 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 6961
c19d1205
ZW
6962 if (!inst.operands[1].present)
6963 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 6964
c19d1205 6965 if (inst.instruction & LOAD_BIT)
a737bd4d 6966 {
c19d1205
ZW
6967 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6968 register and the first register written; we have to diagnose
6969 overlap between the base and the second register written here. */
ea6ef066 6970
c19d1205
ZW
6971 if (inst.operands[2].reg == inst.operands[1].reg
6972 && (inst.operands[2].writeback || inst.operands[2].postind))
6973 as_warn (_("base register written back, and overlaps "
6974 "second destination register"));
b05fe5cf 6975
c19d1205
ZW
6976 /* For an index-register load, the index register must not overlap the
6977 destination (even if not write-back). */
6978 else if (inst.operands[2].immisreg
ca3f61f7
NC
6979 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6980 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 6981 as_warn (_("index register overlaps destination register"));
b05fe5cf 6982 }
c19d1205
ZW
6983
6984 inst.instruction |= inst.operands[0].reg << 12;
6985 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
6986}
6987
6988static void
c19d1205 6989do_ldrex (void)
b05fe5cf 6990{
c19d1205
ZW
6991 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6992 || inst.operands[1].postind || inst.operands[1].writeback
6993 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
6994 || inst.operands[1].negative
6995 /* This can arise if the programmer has written
6996 strex rN, rM, foo
6997 or if they have mistakenly used a register name as the last
6998 operand, eg:
6999 strex rN, rM, rX
7000 It is very difficult to distinguish between these two cases
7001 because "rX" might actually be a label. ie the register
7002 name has been occluded by a symbol of the same name. So we
7003 just generate a general 'bad addressing mode' type error
7004 message and leave it up to the programmer to discover the
7005 true cause and fix their mistake. */
7006 || (inst.operands[1].reg == REG_PC),
7007 BAD_ADDR_MODE);
b05fe5cf 7008
c19d1205
ZW
7009 constraint (inst.reloc.exp.X_op != O_constant
7010 || inst.reloc.exp.X_add_number != 0,
7011 _("offset must be zero in ARM encoding"));
b05fe5cf 7012
c19d1205
ZW
7013 inst.instruction |= inst.operands[0].reg << 12;
7014 inst.instruction |= inst.operands[1].reg << 16;
7015 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7016}
7017
7018static void
c19d1205 7019do_ldrexd (void)
b05fe5cf 7020{
c19d1205
ZW
7021 constraint (inst.operands[0].reg % 2 != 0,
7022 _("even register required"));
7023 constraint (inst.operands[1].present
7024 && inst.operands[1].reg != inst.operands[0].reg + 1,
7025 _("can only load two consecutive registers"));
7026 /* If op 1 were present and equal to PC, this function wouldn't
7027 have been called in the first place. */
7028 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7029
c19d1205
ZW
7030 inst.instruction |= inst.operands[0].reg << 12;
7031 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7032}
7033
7034static void
c19d1205 7035do_ldst (void)
b05fe5cf 7036{
c19d1205
ZW
7037 inst.instruction |= inst.operands[0].reg << 12;
7038 if (!inst.operands[1].isreg)
7039 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7040 return;
c19d1205 7041 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7042}
7043
7044static void
c19d1205 7045do_ldstt (void)
b05fe5cf 7046{
c19d1205
ZW
7047 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7048 reject [Rn,...]. */
7049 if (inst.operands[1].preind)
b05fe5cf 7050 {
bd3ba5d1
NC
7051 constraint (inst.reloc.exp.X_op != O_constant
7052 || inst.reloc.exp.X_add_number != 0,
c19d1205 7053 _("this instruction requires a post-indexed address"));
b05fe5cf 7054
c19d1205
ZW
7055 inst.operands[1].preind = 0;
7056 inst.operands[1].postind = 1;
7057 inst.operands[1].writeback = 1;
b05fe5cf 7058 }
c19d1205
ZW
7059 inst.instruction |= inst.operands[0].reg << 12;
7060 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7061}
b05fe5cf 7062
c19d1205 7063/* Halfword and signed-byte load/store operations. */
b05fe5cf 7064
c19d1205
ZW
7065static void
7066do_ldstv4 (void)
7067{
7068 inst.instruction |= inst.operands[0].reg << 12;
7069 if (!inst.operands[1].isreg)
7070 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7071 return;
c19d1205 7072 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7073}
7074
7075static void
c19d1205 7076do_ldsttv4 (void)
b05fe5cf 7077{
c19d1205
ZW
7078 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7079 reject [Rn,...]. */
7080 if (inst.operands[1].preind)
b05fe5cf 7081 {
bd3ba5d1
NC
7082 constraint (inst.reloc.exp.X_op != O_constant
7083 || inst.reloc.exp.X_add_number != 0,
c19d1205 7084 _("this instruction requires a post-indexed address"));
b05fe5cf 7085
c19d1205
ZW
7086 inst.operands[1].preind = 0;
7087 inst.operands[1].postind = 1;
7088 inst.operands[1].writeback = 1;
b05fe5cf 7089 }
c19d1205
ZW
7090 inst.instruction |= inst.operands[0].reg << 12;
7091 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7092}
b05fe5cf 7093
c19d1205
ZW
7094/* Co-processor register load/store.
7095 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7096static void
7097do_lstc (void)
7098{
7099 inst.instruction |= inst.operands[0].reg << 8;
7100 inst.instruction |= inst.operands[1].reg << 12;
7101 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7102}
7103
b05fe5cf 7104static void
c19d1205 7105do_mlas (void)
b05fe5cf 7106{
8fb9d7b9 7107 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7108 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7109 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7110 && !(inst.instruction & 0x00400000))
8fb9d7b9 7111 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7112
c19d1205
ZW
7113 inst.instruction |= inst.operands[0].reg << 16;
7114 inst.instruction |= inst.operands[1].reg;
7115 inst.instruction |= inst.operands[2].reg << 8;
7116 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7117}
b05fe5cf 7118
c19d1205
ZW
7119static void
7120do_mov (void)
7121{
7122 inst.instruction |= inst.operands[0].reg << 12;
7123 encode_arm_shifter_operand (1);
7124}
b05fe5cf 7125
c19d1205
ZW
7126/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7127static void
7128do_mov16 (void)
7129{
b6895b4f
PB
7130 bfd_vma imm;
7131 bfd_boolean top;
7132
7133 top = (inst.instruction & 0x00400000) != 0;
7134 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7135 _(":lower16: not allowed this instruction"));
7136 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7137 _(":upper16: not allowed instruction"));
c19d1205 7138 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7139 if (inst.reloc.type == BFD_RELOC_UNUSED)
7140 {
7141 imm = inst.reloc.exp.X_add_number;
7142 /* The value is in two pieces: 0:11, 16:19. */
7143 inst.instruction |= (imm & 0x00000fff);
7144 inst.instruction |= (imm & 0x0000f000) << 4;
7145 }
b05fe5cf 7146}
b99bd4ef 7147
037e8744
JB
7148static void do_vfp_nsyn_opcode (const char *);
7149
7150static int
7151do_vfp_nsyn_mrs (void)
7152{
7153 if (inst.operands[0].isvec)
7154 {
7155 if (inst.operands[1].reg != 1)
7156 first_error (_("operand 1 must be FPSCR"));
7157 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7158 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7159 do_vfp_nsyn_opcode ("fmstat");
7160 }
7161 else if (inst.operands[1].isvec)
7162 do_vfp_nsyn_opcode ("fmrx");
7163 else
7164 return FAIL;
5f4273c7 7165
037e8744
JB
7166 return SUCCESS;
7167}
7168
7169static int
7170do_vfp_nsyn_msr (void)
7171{
7172 if (inst.operands[0].isvec)
7173 do_vfp_nsyn_opcode ("fmxr");
7174 else
7175 return FAIL;
7176
7177 return SUCCESS;
7178}
7179
b99bd4ef 7180static void
c19d1205 7181do_mrs (void)
b99bd4ef 7182{
037e8744
JB
7183 if (do_vfp_nsyn_mrs () == SUCCESS)
7184 return;
7185
c19d1205
ZW
7186 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7187 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7188 != (PSR_c|PSR_f),
7189 _("'CPSR' or 'SPSR' expected"));
7190 inst.instruction |= inst.operands[0].reg << 12;
7191 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7192}
b99bd4ef 7193
c19d1205
ZW
7194/* Two possible forms:
7195 "{C|S}PSR_<field>, Rm",
7196 "{C|S}PSR_f, #expression". */
b99bd4ef 7197
c19d1205
ZW
7198static void
7199do_msr (void)
7200{
037e8744
JB
7201 if (do_vfp_nsyn_msr () == SUCCESS)
7202 return;
7203
c19d1205
ZW
7204 inst.instruction |= inst.operands[0].imm;
7205 if (inst.operands[1].isreg)
7206 inst.instruction |= inst.operands[1].reg;
7207 else
b99bd4ef 7208 {
c19d1205
ZW
7209 inst.instruction |= INST_IMMEDIATE;
7210 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7211 inst.reloc.pc_rel = 0;
b99bd4ef 7212 }
b99bd4ef
NC
7213}
7214
c19d1205
ZW
7215static void
7216do_mul (void)
a737bd4d 7217{
c19d1205
ZW
7218 if (!inst.operands[2].present)
7219 inst.operands[2].reg = inst.operands[0].reg;
7220 inst.instruction |= inst.operands[0].reg << 16;
7221 inst.instruction |= inst.operands[1].reg;
7222 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7223
8fb9d7b9
MS
7224 if (inst.operands[0].reg == inst.operands[1].reg
7225 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7226 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7227}
7228
c19d1205
ZW
7229/* Long Multiply Parser
7230 UMULL RdLo, RdHi, Rm, Rs
7231 SMULL RdLo, RdHi, Rm, Rs
7232 UMLAL RdLo, RdHi, Rm, Rs
7233 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7234
7235static void
c19d1205 7236do_mull (void)
b99bd4ef 7237{
c19d1205
ZW
7238 inst.instruction |= inst.operands[0].reg << 12;
7239 inst.instruction |= inst.operands[1].reg << 16;
7240 inst.instruction |= inst.operands[2].reg;
7241 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7242
682b27ad
PB
7243 /* rdhi and rdlo must be different. */
7244 if (inst.operands[0].reg == inst.operands[1].reg)
7245 as_tsktsk (_("rdhi and rdlo must be different"));
7246
7247 /* rdhi, rdlo and rm must all be different before armv6. */
7248 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7249 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7250 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7251 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7252}
b99bd4ef 7253
c19d1205
ZW
7254static void
7255do_nop (void)
7256{
7257 if (inst.operands[0].present)
7258 {
7259 /* Architectural NOP hints are CPSR sets with no bits selected. */
7260 inst.instruction &= 0xf0000000;
7261 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7262 }
b99bd4ef
NC
7263}
7264
c19d1205
ZW
7265/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7266 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7267 Condition defaults to COND_ALWAYS.
7268 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7269
7270static void
c19d1205 7271do_pkhbt (void)
b99bd4ef 7272{
c19d1205
ZW
7273 inst.instruction |= inst.operands[0].reg << 12;
7274 inst.instruction |= inst.operands[1].reg << 16;
7275 inst.instruction |= inst.operands[2].reg;
7276 if (inst.operands[3].present)
7277 encode_arm_shift (3);
7278}
b99bd4ef 7279
c19d1205 7280/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7281
c19d1205
ZW
7282static void
7283do_pkhtb (void)
7284{
7285 if (!inst.operands[3].present)
b99bd4ef 7286 {
c19d1205
ZW
7287 /* If the shift specifier is omitted, turn the instruction
7288 into pkhbt rd, rm, rn. */
7289 inst.instruction &= 0xfff00010;
7290 inst.instruction |= inst.operands[0].reg << 12;
7291 inst.instruction |= inst.operands[1].reg;
7292 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7293 }
7294 else
7295 {
c19d1205
ZW
7296 inst.instruction |= inst.operands[0].reg << 12;
7297 inst.instruction |= inst.operands[1].reg << 16;
7298 inst.instruction |= inst.operands[2].reg;
7299 encode_arm_shift (3);
b99bd4ef
NC
7300 }
7301}
7302
c19d1205
ZW
7303/* ARMv5TE: Preload-Cache
7304
7305 PLD <addr_mode>
7306
7307 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7308
7309static void
c19d1205 7310do_pld (void)
b99bd4ef 7311{
c19d1205
ZW
7312 constraint (!inst.operands[0].isreg,
7313 _("'[' expected after PLD mnemonic"));
7314 constraint (inst.operands[0].postind,
7315 _("post-indexed expression used in preload instruction"));
7316 constraint (inst.operands[0].writeback,
7317 _("writeback used in preload instruction"));
7318 constraint (!inst.operands[0].preind,
7319 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7320 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7321}
b99bd4ef 7322
62b3e311
PB
7323/* ARMv7: PLI <addr_mode> */
7324static void
7325do_pli (void)
7326{
7327 constraint (!inst.operands[0].isreg,
7328 _("'[' expected after PLI mnemonic"));
7329 constraint (inst.operands[0].postind,
7330 _("post-indexed expression used in preload instruction"));
7331 constraint (inst.operands[0].writeback,
7332 _("writeback used in preload instruction"));
7333 constraint (!inst.operands[0].preind,
7334 _("unindexed addressing used in preload instruction"));
7335 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7336 inst.instruction &= ~PRE_INDEX;
7337}
7338
c19d1205
ZW
7339static void
7340do_push_pop (void)
7341{
7342 inst.operands[1] = inst.operands[0];
7343 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7344 inst.operands[0].isreg = 1;
7345 inst.operands[0].writeback = 1;
7346 inst.operands[0].reg = REG_SP;
7347 do_ldmstm ();
7348}
b99bd4ef 7349
c19d1205
ZW
7350/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7351 word at the specified address and the following word
7352 respectively.
7353 Unconditionally executed.
7354 Error if Rn is R15. */
b99bd4ef 7355
c19d1205
ZW
7356static void
7357do_rfe (void)
7358{
7359 inst.instruction |= inst.operands[0].reg << 16;
7360 if (inst.operands[0].writeback)
7361 inst.instruction |= WRITE_BACK;
7362}
b99bd4ef 7363
c19d1205 7364/* ARM V6 ssat (argument parse). */
b99bd4ef 7365
c19d1205
ZW
7366static void
7367do_ssat (void)
7368{
7369 inst.instruction |= inst.operands[0].reg << 12;
7370 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7371 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7372
c19d1205
ZW
7373 if (inst.operands[3].present)
7374 encode_arm_shift (3);
b99bd4ef
NC
7375}
7376
c19d1205 7377/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7378
7379static void
c19d1205 7380do_usat (void)
b99bd4ef 7381{
c19d1205
ZW
7382 inst.instruction |= inst.operands[0].reg << 12;
7383 inst.instruction |= inst.operands[1].imm << 16;
7384 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7385
c19d1205
ZW
7386 if (inst.operands[3].present)
7387 encode_arm_shift (3);
b99bd4ef
NC
7388}
7389
c19d1205 7390/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7391
7392static void
c19d1205 7393do_ssat16 (void)
09d92015 7394{
c19d1205
ZW
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7397 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7398}
7399
c19d1205
ZW
7400static void
7401do_usat16 (void)
a737bd4d 7402{
c19d1205
ZW
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 inst.instruction |= inst.operands[1].imm << 16;
7405 inst.instruction |= inst.operands[2].reg;
7406}
a737bd4d 7407
c19d1205
ZW
7408/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7409 preserving the other bits.
a737bd4d 7410
c19d1205
ZW
7411 setend <endian_specifier>, where <endian_specifier> is either
7412 BE or LE. */
a737bd4d 7413
c19d1205
ZW
7414static void
7415do_setend (void)
7416{
7417 if (inst.operands[0].imm)
7418 inst.instruction |= 0x200;
a737bd4d
NC
7419}
7420
7421static void
c19d1205 7422do_shift (void)
a737bd4d 7423{
c19d1205
ZW
7424 unsigned int Rm = (inst.operands[1].present
7425 ? inst.operands[1].reg
7426 : inst.operands[0].reg);
a737bd4d 7427
c19d1205
ZW
7428 inst.instruction |= inst.operands[0].reg << 12;
7429 inst.instruction |= Rm;
7430 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7431 {
c19d1205
ZW
7432 inst.instruction |= inst.operands[2].reg << 8;
7433 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7434 }
7435 else
c19d1205 7436 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7437}
7438
09d92015 7439static void
3eb17e6b 7440do_smc (void)
09d92015 7441{
3eb17e6b 7442 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7443 inst.reloc.pc_rel = 0;
09d92015
MM
7444}
7445
09d92015 7446static void
c19d1205 7447do_swi (void)
09d92015 7448{
c19d1205
ZW
7449 inst.reloc.type = BFD_RELOC_ARM_SWI;
7450 inst.reloc.pc_rel = 0;
09d92015
MM
7451}
7452
c19d1205
ZW
7453/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7454 SMLAxy{cond} Rd,Rm,Rs,Rn
7455 SMLAWy{cond} Rd,Rm,Rs,Rn
7456 Error if any register is R15. */
e16bb312 7457
c19d1205
ZW
7458static void
7459do_smla (void)
e16bb312 7460{
c19d1205
ZW
7461 inst.instruction |= inst.operands[0].reg << 16;
7462 inst.instruction |= inst.operands[1].reg;
7463 inst.instruction |= inst.operands[2].reg << 8;
7464 inst.instruction |= inst.operands[3].reg << 12;
7465}
a737bd4d 7466
c19d1205
ZW
7467/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7468 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7469 Error if any register is R15.
7470 Warning if Rdlo == Rdhi. */
a737bd4d 7471
c19d1205
ZW
7472static void
7473do_smlal (void)
7474{
7475 inst.instruction |= inst.operands[0].reg << 12;
7476 inst.instruction |= inst.operands[1].reg << 16;
7477 inst.instruction |= inst.operands[2].reg;
7478 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7479
c19d1205
ZW
7480 if (inst.operands[0].reg == inst.operands[1].reg)
7481 as_tsktsk (_("rdhi and rdlo must be different"));
7482}
a737bd4d 7483
c19d1205
ZW
7484/* ARM V5E (El Segundo) signed-multiply (argument parse)
7485 SMULxy{cond} Rd,Rm,Rs
7486 Error if any register is R15. */
a737bd4d 7487
c19d1205
ZW
7488static void
7489do_smul (void)
7490{
7491 inst.instruction |= inst.operands[0].reg << 16;
7492 inst.instruction |= inst.operands[1].reg;
7493 inst.instruction |= inst.operands[2].reg << 8;
7494}
a737bd4d 7495
b6702015
PB
7496/* ARM V6 srs (argument parse). The variable fields in the encoding are
7497 the same for both ARM and Thumb-2. */
a737bd4d 7498
c19d1205
ZW
7499static void
7500do_srs (void)
7501{
b6702015
PB
7502 int reg;
7503
7504 if (inst.operands[0].present)
7505 {
7506 reg = inst.operands[0].reg;
7507 constraint (reg != 13, _("SRS base register must be r13"));
7508 }
7509 else
7510 reg = 13;
7511
7512 inst.instruction |= reg << 16;
7513 inst.instruction |= inst.operands[1].imm;
7514 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
7515 inst.instruction |= WRITE_BACK;
7516}
a737bd4d 7517
c19d1205 7518/* ARM V6 strex (argument parse). */
a737bd4d 7519
c19d1205
ZW
7520static void
7521do_strex (void)
7522{
7523 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7524 || inst.operands[2].postind || inst.operands[2].writeback
7525 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7526 || inst.operands[2].negative
7527 /* See comment in do_ldrex(). */
7528 || (inst.operands[2].reg == REG_PC),
7529 BAD_ADDR_MODE);
a737bd4d 7530
c19d1205
ZW
7531 constraint (inst.operands[0].reg == inst.operands[1].reg
7532 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7533
c19d1205
ZW
7534 constraint (inst.reloc.exp.X_op != O_constant
7535 || inst.reloc.exp.X_add_number != 0,
7536 _("offset must be zero in ARM encoding"));
a737bd4d 7537
c19d1205
ZW
7538 inst.instruction |= inst.operands[0].reg << 12;
7539 inst.instruction |= inst.operands[1].reg;
7540 inst.instruction |= inst.operands[2].reg << 16;
7541 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7542}
7543
7544static void
c19d1205 7545do_strexd (void)
e16bb312 7546{
c19d1205
ZW
7547 constraint (inst.operands[1].reg % 2 != 0,
7548 _("even register required"));
7549 constraint (inst.operands[2].present
7550 && inst.operands[2].reg != inst.operands[1].reg + 1,
7551 _("can only store two consecutive registers"));
7552 /* If op 2 were present and equal to PC, this function wouldn't
7553 have been called in the first place. */
7554 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7555
c19d1205
ZW
7556 constraint (inst.operands[0].reg == inst.operands[1].reg
7557 || inst.operands[0].reg == inst.operands[1].reg + 1
7558 || inst.operands[0].reg == inst.operands[3].reg,
7559 BAD_OVERLAP);
e16bb312 7560
c19d1205
ZW
7561 inst.instruction |= inst.operands[0].reg << 12;
7562 inst.instruction |= inst.operands[1].reg;
7563 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
7564}
7565
c19d1205
ZW
7566/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7567 extends it to 32-bits, and adds the result to a value in another
7568 register. You can specify a rotation by 0, 8, 16, or 24 bits
7569 before extracting the 16-bit value.
7570 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7571 Condition defaults to COND_ALWAYS.
7572 Error if any register uses R15. */
7573
e16bb312 7574static void
c19d1205 7575do_sxtah (void)
e16bb312 7576{
c19d1205
ZW
7577 inst.instruction |= inst.operands[0].reg << 12;
7578 inst.instruction |= inst.operands[1].reg << 16;
7579 inst.instruction |= inst.operands[2].reg;
7580 inst.instruction |= inst.operands[3].imm << 10;
7581}
e16bb312 7582
c19d1205 7583/* ARM V6 SXTH.
e16bb312 7584
c19d1205
ZW
7585 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7586 Condition defaults to COND_ALWAYS.
7587 Error if any register uses R15. */
e16bb312
NC
7588
7589static void
c19d1205 7590do_sxth (void)
e16bb312 7591{
c19d1205
ZW
7592 inst.instruction |= inst.operands[0].reg << 12;
7593 inst.instruction |= inst.operands[1].reg;
7594 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 7595}
c19d1205
ZW
7596\f
7597/* VFP instructions. In a logical order: SP variant first, monad
7598 before dyad, arithmetic then move then load/store. */
e16bb312
NC
7599
7600static void
c19d1205 7601do_vfp_sp_monadic (void)
e16bb312 7602{
5287ad62
JB
7603 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7604 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7605}
7606
7607static void
c19d1205 7608do_vfp_sp_dyadic (void)
e16bb312 7609{
5287ad62
JB
7610 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7611 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7612 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7613}
7614
7615static void
c19d1205 7616do_vfp_sp_compare_z (void)
e16bb312 7617{
5287ad62 7618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
7619}
7620
7621static void
c19d1205 7622do_vfp_dp_sp_cvt (void)
e16bb312 7623{
5287ad62
JB
7624 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7625 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7626}
7627
7628static void
c19d1205 7629do_vfp_sp_dp_cvt (void)
e16bb312 7630{
5287ad62
JB
7631 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7632 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
7633}
7634
7635static void
c19d1205 7636do_vfp_reg_from_sp (void)
e16bb312 7637{
c19d1205 7638 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 7639 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
7640}
7641
7642static void
c19d1205 7643do_vfp_reg2_from_sp2 (void)
e16bb312 7644{
c19d1205
ZW
7645 constraint (inst.operands[2].imm != 2,
7646 _("only two consecutive VFP SP registers allowed here"));
7647 inst.instruction |= inst.operands[0].reg << 12;
7648 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 7649 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7650}
7651
7652static void
c19d1205 7653do_vfp_sp_from_reg (void)
e16bb312 7654{
5287ad62 7655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 7656 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
7657}
7658
7659static void
c19d1205 7660do_vfp_sp2_from_reg2 (void)
e16bb312 7661{
c19d1205
ZW
7662 constraint (inst.operands[0].imm != 2,
7663 _("only two consecutive VFP SP registers allowed here"));
5287ad62 7664 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
7665 inst.instruction |= inst.operands[1].reg << 12;
7666 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
7667}
7668
7669static void
c19d1205 7670do_vfp_sp_ldst (void)
e16bb312 7671{
5287ad62 7672 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 7673 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7674}
7675
7676static void
c19d1205 7677do_vfp_dp_ldst (void)
e16bb312 7678{
5287ad62 7679 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 7680 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7681}
7682
c19d1205 7683
e16bb312 7684static void
c19d1205 7685vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7686{
c19d1205
ZW
7687 if (inst.operands[0].writeback)
7688 inst.instruction |= WRITE_BACK;
7689 else
7690 constraint (ldstm_type != VFP_LDSTMIA,
7691 _("this addressing mode requires base-register writeback"));
7692 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7693 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 7694 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
7695}
7696
7697static void
c19d1205 7698vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7699{
c19d1205 7700 int count;
e16bb312 7701
c19d1205
ZW
7702 if (inst.operands[0].writeback)
7703 inst.instruction |= WRITE_BACK;
7704 else
7705 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7706 _("this addressing mode requires base-register writeback"));
e16bb312 7707
c19d1205 7708 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7709 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 7710
c19d1205
ZW
7711 count = inst.operands[1].imm << 1;
7712 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7713 count += 1;
e16bb312 7714
c19d1205 7715 inst.instruction |= count;
e16bb312
NC
7716}
7717
7718static void
c19d1205 7719do_vfp_sp_ldstmia (void)
e16bb312 7720{
c19d1205 7721 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7722}
7723
7724static void
c19d1205 7725do_vfp_sp_ldstmdb (void)
e16bb312 7726{
c19d1205 7727 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7728}
7729
7730static void
c19d1205 7731do_vfp_dp_ldstmia (void)
e16bb312 7732{
c19d1205 7733 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7734}
7735
7736static void
c19d1205 7737do_vfp_dp_ldstmdb (void)
e16bb312 7738{
c19d1205 7739 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7740}
7741
7742static void
c19d1205 7743do_vfp_xp_ldstmia (void)
e16bb312 7744{
c19d1205
ZW
7745 vfp_dp_ldstm (VFP_LDSTMIAX);
7746}
e16bb312 7747
c19d1205
ZW
7748static void
7749do_vfp_xp_ldstmdb (void)
7750{
7751 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 7752}
5287ad62
JB
7753
7754static void
7755do_vfp_dp_rd_rm (void)
7756{
7757 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7758 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7759}
7760
7761static void
7762do_vfp_dp_rn_rd (void)
7763{
7764 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7765 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7766}
7767
7768static void
7769do_vfp_dp_rd_rn (void)
7770{
7771 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7772 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7773}
7774
7775static void
7776do_vfp_dp_rd_rn_rm (void)
7777{
7778 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7779 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7780 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7781}
7782
7783static void
7784do_vfp_dp_rd (void)
7785{
7786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7787}
7788
7789static void
7790do_vfp_dp_rm_rd_rn (void)
7791{
7792 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7793 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7794 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7795}
7796
7797/* VFPv3 instructions. */
7798static void
7799do_vfp_sp_const (void)
7800{
7801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
7802 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7803 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7804}
7805
7806static void
7807do_vfp_dp_const (void)
7808{
7809 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
7810 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7811 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7812}
7813
7814static void
7815vfp_conv (int srcsize)
7816{
7817 unsigned immbits = srcsize - inst.operands[1].imm;
7818 inst.instruction |= (immbits & 1) << 5;
7819 inst.instruction |= (immbits >> 1);
7820}
7821
7822static void
7823do_vfp_sp_conv_16 (void)
7824{
7825 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7826 vfp_conv (16);
7827}
7828
7829static void
7830do_vfp_dp_conv_16 (void)
7831{
7832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7833 vfp_conv (16);
7834}
7835
7836static void
7837do_vfp_sp_conv_32 (void)
7838{
7839 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7840 vfp_conv (32);
7841}
7842
7843static void
7844do_vfp_dp_conv_32 (void)
7845{
7846 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7847 vfp_conv (32);
7848}
c19d1205
ZW
7849\f
7850/* FPA instructions. Also in a logical order. */
e16bb312 7851
c19d1205
ZW
7852static void
7853do_fpa_cmp (void)
7854{
7855 inst.instruction |= inst.operands[0].reg << 16;
7856 inst.instruction |= inst.operands[1].reg;
7857}
b99bd4ef
NC
7858
7859static void
c19d1205 7860do_fpa_ldmstm (void)
b99bd4ef 7861{
c19d1205
ZW
7862 inst.instruction |= inst.operands[0].reg << 12;
7863 switch (inst.operands[1].imm)
7864 {
7865 case 1: inst.instruction |= CP_T_X; break;
7866 case 2: inst.instruction |= CP_T_Y; break;
7867 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7868 case 4: break;
7869 default: abort ();
7870 }
b99bd4ef 7871
c19d1205
ZW
7872 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7873 {
7874 /* The instruction specified "ea" or "fd", so we can only accept
7875 [Rn]{!}. The instruction does not really support stacking or
7876 unstacking, so we have to emulate these by setting appropriate
7877 bits and offsets. */
7878 constraint (inst.reloc.exp.X_op != O_constant
7879 || inst.reloc.exp.X_add_number != 0,
7880 _("this instruction does not support indexing"));
b99bd4ef 7881
c19d1205
ZW
7882 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7883 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7884
c19d1205
ZW
7885 if (!(inst.instruction & INDEX_UP))
7886 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7887
c19d1205
ZW
7888 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7889 {
7890 inst.operands[2].preind = 0;
7891 inst.operands[2].postind = 1;
7892 }
7893 }
b99bd4ef 7894
c19d1205 7895 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7896}
c19d1205
ZW
7897\f
7898/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7899
c19d1205
ZW
7900static void
7901do_iwmmxt_tandorc (void)
7902{
7903 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7904}
b99bd4ef 7905
c19d1205
ZW
7906static void
7907do_iwmmxt_textrc (void)
7908{
7909 inst.instruction |= inst.operands[0].reg << 12;
7910 inst.instruction |= inst.operands[1].imm;
7911}
b99bd4ef
NC
7912
7913static void
c19d1205 7914do_iwmmxt_textrm (void)
b99bd4ef 7915{
c19d1205
ZW
7916 inst.instruction |= inst.operands[0].reg << 12;
7917 inst.instruction |= inst.operands[1].reg << 16;
7918 inst.instruction |= inst.operands[2].imm;
7919}
b99bd4ef 7920
c19d1205
ZW
7921static void
7922do_iwmmxt_tinsr (void)
7923{
7924 inst.instruction |= inst.operands[0].reg << 16;
7925 inst.instruction |= inst.operands[1].reg << 12;
7926 inst.instruction |= inst.operands[2].imm;
7927}
b99bd4ef 7928
c19d1205
ZW
7929static void
7930do_iwmmxt_tmia (void)
7931{
7932 inst.instruction |= inst.operands[0].reg << 5;
7933 inst.instruction |= inst.operands[1].reg;
7934 inst.instruction |= inst.operands[2].reg << 12;
7935}
b99bd4ef 7936
c19d1205
ZW
7937static void
7938do_iwmmxt_waligni (void)
7939{
7940 inst.instruction |= inst.operands[0].reg << 12;
7941 inst.instruction |= inst.operands[1].reg << 16;
7942 inst.instruction |= inst.operands[2].reg;
7943 inst.instruction |= inst.operands[3].imm << 20;
7944}
b99bd4ef 7945
2d447fca
JM
7946static void
7947do_iwmmxt_wmerge (void)
7948{
7949 inst.instruction |= inst.operands[0].reg << 12;
7950 inst.instruction |= inst.operands[1].reg << 16;
7951 inst.instruction |= inst.operands[2].reg;
7952 inst.instruction |= inst.operands[3].imm << 21;
7953}
7954
c19d1205
ZW
7955static void
7956do_iwmmxt_wmov (void)
7957{
7958 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7959 inst.instruction |= inst.operands[0].reg << 12;
7960 inst.instruction |= inst.operands[1].reg << 16;
7961 inst.instruction |= inst.operands[1].reg;
7962}
b99bd4ef 7963
c19d1205
ZW
7964static void
7965do_iwmmxt_wldstbh (void)
7966{
8f06b2d8 7967 int reloc;
c19d1205 7968 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
7969 if (thumb_mode)
7970 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7971 else
7972 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7973 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
7974}
7975
c19d1205
ZW
7976static void
7977do_iwmmxt_wldstw (void)
7978{
7979 /* RIWR_RIWC clears .isreg for a control register. */
7980 if (!inst.operands[0].isreg)
7981 {
7982 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7983 inst.instruction |= 0xf0000000;
7984 }
b99bd4ef 7985
c19d1205
ZW
7986 inst.instruction |= inst.operands[0].reg << 12;
7987 encode_arm_cp_address (1, TRUE, TRUE, 0);
7988}
b99bd4ef
NC
7989
7990static void
c19d1205 7991do_iwmmxt_wldstd (void)
b99bd4ef 7992{
c19d1205 7993 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
7994 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7995 && inst.operands[1].immisreg)
7996 {
7997 inst.instruction &= ~0x1a000ff;
7998 inst.instruction |= (0xf << 28);
7999 if (inst.operands[1].preind)
8000 inst.instruction |= PRE_INDEX;
8001 if (!inst.operands[1].negative)
8002 inst.instruction |= INDEX_UP;
8003 if (inst.operands[1].writeback)
8004 inst.instruction |= WRITE_BACK;
8005 inst.instruction |= inst.operands[1].reg << 16;
8006 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8007 inst.instruction |= inst.operands[1].imm;
8008 }
8009 else
8010 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8011}
b99bd4ef 8012
c19d1205
ZW
8013static void
8014do_iwmmxt_wshufh (void)
8015{
8016 inst.instruction |= inst.operands[0].reg << 12;
8017 inst.instruction |= inst.operands[1].reg << 16;
8018 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8019 inst.instruction |= (inst.operands[2].imm & 0x0f);
8020}
b99bd4ef 8021
c19d1205
ZW
8022static void
8023do_iwmmxt_wzero (void)
8024{
8025 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8026 inst.instruction |= inst.operands[0].reg;
8027 inst.instruction |= inst.operands[0].reg << 12;
8028 inst.instruction |= inst.operands[0].reg << 16;
8029}
2d447fca
JM
8030
8031static void
8032do_iwmmxt_wrwrwr_or_imm5 (void)
8033{
8034 if (inst.operands[2].isreg)
8035 do_rd_rn_rm ();
8036 else {
8037 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8038 _("immediate operand requires iWMMXt2"));
8039 do_rd_rn ();
8040 if (inst.operands[2].imm == 0)
8041 {
8042 switch ((inst.instruction >> 20) & 0xf)
8043 {
8044 case 4:
8045 case 5:
8046 case 6:
5f4273c7 8047 case 7:
2d447fca
JM
8048 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8049 inst.operands[2].imm = 16;
8050 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8051 break;
8052 case 8:
8053 case 9:
8054 case 10:
8055 case 11:
8056 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8057 inst.operands[2].imm = 32;
8058 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8059 break;
8060 case 12:
8061 case 13:
8062 case 14:
8063 case 15:
8064 {
8065 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8066 unsigned long wrn;
8067 wrn = (inst.instruction >> 16) & 0xf;
8068 inst.instruction &= 0xff0fff0f;
8069 inst.instruction |= wrn;
8070 /* Bail out here; the instruction is now assembled. */
8071 return;
8072 }
8073 }
8074 }
8075 /* Map 32 -> 0, etc. */
8076 inst.operands[2].imm &= 0x1f;
8077 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8078 }
8079}
c19d1205
ZW
8080\f
8081/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8082 operations first, then control, shift, and load/store. */
b99bd4ef 8083
c19d1205 8084/* Insns like "foo X,Y,Z". */
b99bd4ef 8085
c19d1205
ZW
8086static void
8087do_mav_triple (void)
8088{
8089 inst.instruction |= inst.operands[0].reg << 16;
8090 inst.instruction |= inst.operands[1].reg;
8091 inst.instruction |= inst.operands[2].reg << 12;
8092}
b99bd4ef 8093
c19d1205
ZW
8094/* Insns like "foo W,X,Y,Z".
8095 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8096
c19d1205
ZW
8097static void
8098do_mav_quad (void)
8099{
8100 inst.instruction |= inst.operands[0].reg << 5;
8101 inst.instruction |= inst.operands[1].reg << 12;
8102 inst.instruction |= inst.operands[2].reg << 16;
8103 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8104}
8105
c19d1205
ZW
8106/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8107static void
8108do_mav_dspsc (void)
a737bd4d 8109{
c19d1205
ZW
8110 inst.instruction |= inst.operands[1].reg << 12;
8111}
a737bd4d 8112
c19d1205
ZW
8113/* Maverick shift immediate instructions.
8114 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8115 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8116
c19d1205
ZW
8117static void
8118do_mav_shift (void)
8119{
8120 int imm = inst.operands[2].imm;
a737bd4d 8121
c19d1205
ZW
8122 inst.instruction |= inst.operands[0].reg << 12;
8123 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8124
c19d1205
ZW
8125 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8126 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8127 Bit 4 should be 0. */
8128 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8129
c19d1205
ZW
8130 inst.instruction |= imm;
8131}
8132\f
8133/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8134
c19d1205
ZW
8135/* Xscale multiply-accumulate (argument parse)
8136 MIAcc acc0,Rm,Rs
8137 MIAPHcc acc0,Rm,Rs
8138 MIAxycc acc0,Rm,Rs. */
a737bd4d 8139
c19d1205
ZW
8140static void
8141do_xsc_mia (void)
8142{
8143 inst.instruction |= inst.operands[1].reg;
8144 inst.instruction |= inst.operands[2].reg << 12;
8145}
a737bd4d 8146
c19d1205 8147/* Xscale move-accumulator-register (argument parse)
a737bd4d 8148
c19d1205 8149 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8150
c19d1205
ZW
8151static void
8152do_xsc_mar (void)
8153{
8154 inst.instruction |= inst.operands[1].reg << 12;
8155 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8156}
8157
c19d1205 8158/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8159
c19d1205 8160 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8161
8162static void
c19d1205 8163do_xsc_mra (void)
b99bd4ef 8164{
c19d1205
ZW
8165 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8166 inst.instruction |= inst.operands[0].reg << 12;
8167 inst.instruction |= inst.operands[1].reg << 16;
8168}
8169\f
8170/* Encoding functions relevant only to Thumb. */
b99bd4ef 8171
c19d1205
ZW
8172/* inst.operands[i] is a shifted-register operand; encode
8173 it into inst.instruction in the format used by Thumb32. */
8174
8175static void
8176encode_thumb32_shifted_operand (int i)
8177{
8178 unsigned int value = inst.reloc.exp.X_add_number;
8179 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8180
9c3c69f2
PB
8181 constraint (inst.operands[i].immisreg,
8182 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8183 inst.instruction |= inst.operands[i].reg;
8184 if (shift == SHIFT_RRX)
8185 inst.instruction |= SHIFT_ROR << 4;
8186 else
b99bd4ef 8187 {
c19d1205
ZW
8188 constraint (inst.reloc.exp.X_op != O_constant,
8189 _("expression too complex"));
8190
8191 constraint (value > 32
8192 || (value == 32 && (shift == SHIFT_LSL
8193 || shift == SHIFT_ROR)),
8194 _("shift expression is too large"));
8195
8196 if (value == 0)
8197 shift = SHIFT_LSL;
8198 else if (value == 32)
8199 value = 0;
8200
8201 inst.instruction |= shift << 4;
8202 inst.instruction |= (value & 0x1c) << 10;
8203 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8204 }
c19d1205 8205}
b99bd4ef 8206
b99bd4ef 8207
c19d1205
ZW
8208/* inst.operands[i] was set up by parse_address. Encode it into a
8209 Thumb32 format load or store instruction. Reject forms that cannot
8210 be used with such instructions. If is_t is true, reject forms that
8211 cannot be used with a T instruction; if is_d is true, reject forms
8212 that cannot be used with a D instruction. */
b99bd4ef 8213
c19d1205
ZW
8214static void
8215encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8216{
8217 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8218
8219 constraint (!inst.operands[i].isreg,
53365c0d 8220 _("Instruction does not support =N addresses"));
b99bd4ef 8221
c19d1205
ZW
8222 inst.instruction |= inst.operands[i].reg << 16;
8223 if (inst.operands[i].immisreg)
b99bd4ef 8224 {
c19d1205
ZW
8225 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8226 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8227 constraint (inst.operands[i].negative,
8228 _("Thumb does not support negative register indexing"));
8229 constraint (inst.operands[i].postind,
8230 _("Thumb does not support register post-indexing"));
8231 constraint (inst.operands[i].writeback,
8232 _("Thumb does not support register indexing with writeback"));
8233 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8234 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8235
f40d1643 8236 inst.instruction |= inst.operands[i].imm;
c19d1205 8237 if (inst.operands[i].shifted)
b99bd4ef 8238 {
c19d1205
ZW
8239 constraint (inst.reloc.exp.X_op != O_constant,
8240 _("expression too complex"));
9c3c69f2
PB
8241 constraint (inst.reloc.exp.X_add_number < 0
8242 || inst.reloc.exp.X_add_number > 3,
c19d1205 8243 _("shift out of range"));
9c3c69f2 8244 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8245 }
8246 inst.reloc.type = BFD_RELOC_UNUSED;
8247 }
8248 else if (inst.operands[i].preind)
8249 {
8250 constraint (is_pc && inst.operands[i].writeback,
8251 _("cannot use writeback with PC-relative addressing"));
f40d1643 8252 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8253 _("cannot use writeback with this instruction"));
8254
8255 if (is_d)
8256 {
8257 inst.instruction |= 0x01000000;
8258 if (inst.operands[i].writeback)
8259 inst.instruction |= 0x00200000;
b99bd4ef 8260 }
c19d1205 8261 else
b99bd4ef 8262 {
c19d1205
ZW
8263 inst.instruction |= 0x00000c00;
8264 if (inst.operands[i].writeback)
8265 inst.instruction |= 0x00000100;
b99bd4ef 8266 }
c19d1205 8267 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8268 }
c19d1205 8269 else if (inst.operands[i].postind)
b99bd4ef 8270 {
c19d1205
ZW
8271 assert (inst.operands[i].writeback);
8272 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8273 constraint (is_t, _("cannot use post-indexing with this instruction"));
8274
8275 if (is_d)
8276 inst.instruction |= 0x00200000;
8277 else
8278 inst.instruction |= 0x00000900;
8279 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8280 }
8281 else /* unindexed - only for coprocessor */
8282 inst.error = _("instruction does not accept unindexed addressing");
8283}
8284
8285/* Table of Thumb instructions which exist in both 16- and 32-bit
8286 encodings (the latter only in post-V6T2 cores). The index is the
8287 value used in the insns table below. When there is more than one
8288 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8289 holds variant (1).
8290 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
8291#define T16_32_TAB \
8292 X(adc, 4140, eb400000), \
8293 X(adcs, 4140, eb500000), \
8294 X(add, 1c00, eb000000), \
8295 X(adds, 1c00, eb100000), \
0110f2b8
PB
8296 X(addi, 0000, f1000000), \
8297 X(addis, 0000, f1100000), \
8298 X(add_pc,000f, f20f0000), \
8299 X(add_sp,000d, f10d0000), \
e9f89963 8300 X(adr, 000f, f20f0000), \
c19d1205
ZW
8301 X(and, 4000, ea000000), \
8302 X(ands, 4000, ea100000), \
8303 X(asr, 1000, fa40f000), \
8304 X(asrs, 1000, fa50f000), \
0110f2b8
PB
8305 X(b, e000, f000b000), \
8306 X(bcond, d000, f0008000), \
c19d1205
ZW
8307 X(bic, 4380, ea200000), \
8308 X(bics, 4380, ea300000), \
8309 X(cmn, 42c0, eb100f00), \
8310 X(cmp, 2800, ebb00f00), \
8311 X(cpsie, b660, f3af8400), \
8312 X(cpsid, b670, f3af8600), \
8313 X(cpy, 4600, ea4f0000), \
155257ea 8314 X(dec_sp,80dd, f1ad0d00), \
c19d1205
ZW
8315 X(eor, 4040, ea800000), \
8316 X(eors, 4040, ea900000), \
0110f2b8 8317 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
8318 X(ldmia, c800, e8900000), \
8319 X(ldr, 6800, f8500000), \
8320 X(ldrb, 7800, f8100000), \
8321 X(ldrh, 8800, f8300000), \
8322 X(ldrsb, 5600, f9100000), \
8323 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
8324 X(ldr_pc,4800, f85f0000), \
8325 X(ldr_pc2,4800, f85f0000), \
8326 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
8327 X(lsl, 0000, fa00f000), \
8328 X(lsls, 0000, fa10f000), \
8329 X(lsr, 0800, fa20f000), \
8330 X(lsrs, 0800, fa30f000), \
8331 X(mov, 2000, ea4f0000), \
8332 X(movs, 2000, ea5f0000), \
8333 X(mul, 4340, fb00f000), \
8334 X(muls, 4340, ffffffff), /* no 32b muls */ \
8335 X(mvn, 43c0, ea6f0000), \
8336 X(mvns, 43c0, ea7f0000), \
8337 X(neg, 4240, f1c00000), /* rsb #0 */ \
8338 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8339 X(orr, 4300, ea400000), \
8340 X(orrs, 4300, ea500000), \
e9f89963
PB
8341 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8342 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
8343 X(rev, ba00, fa90f080), \
8344 X(rev16, ba40, fa90f090), \
8345 X(revsh, bac0, fa90f0b0), \
8346 X(ror, 41c0, fa60f000), \
8347 X(rors, 41c0, fa70f000), \
8348 X(sbc, 4180, eb600000), \
8349 X(sbcs, 4180, eb700000), \
8350 X(stmia, c000, e8800000), \
8351 X(str, 6000, f8400000), \
8352 X(strb, 7000, f8000000), \
8353 X(strh, 8000, f8200000), \
0110f2b8 8354 X(str_sp,9000, f84d0000), \
c19d1205
ZW
8355 X(sub, 1e00, eba00000), \
8356 X(subs, 1e00, ebb00000), \
0110f2b8
PB
8357 X(subi, 8000, f1a00000), \
8358 X(subis, 8000, f1b00000), \
c19d1205
ZW
8359 X(sxtb, b240, fa4ff080), \
8360 X(sxth, b200, fa0ff080), \
8361 X(tst, 4200, ea100f00), \
8362 X(uxtb, b2c0, fa5ff080), \
8363 X(uxth, b280, fa1ff080), \
8364 X(nop, bf00, f3af8000), \
8365 X(yield, bf10, f3af8001), \
8366 X(wfe, bf20, f3af8002), \
8367 X(wfi, bf30, f3af8003), \
8368 X(sev, bf40, f3af9004), /* typo, 8004? */
8369
8370/* To catch errors in encoding functions, the codes are all offset by
8371 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8372 as 16-bit instructions. */
8373#define X(a,b,c) T_MNEM_##a
8374enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8375#undef X
8376
8377#define X(a,b,c) 0x##b
8378static const unsigned short thumb_op16[] = { T16_32_TAB };
8379#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8380#undef X
8381
8382#define X(a,b,c) 0x##c
8383static const unsigned int thumb_op32[] = { T16_32_TAB };
8384#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8385#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8386#undef X
8387#undef T16_32_TAB
8388
8389/* Thumb instruction encoders, in alphabetical order. */
8390
92e90b6e
PB
8391/* ADDW or SUBW. */
8392static void
8393do_t_add_sub_w (void)
8394{
8395 int Rd, Rn;
8396
8397 Rd = inst.operands[0].reg;
8398 Rn = inst.operands[1].reg;
8399
8400 constraint (Rd == 15, _("PC not allowed as destination"));
8401 inst.instruction |= (Rn << 16) | (Rd << 8);
8402 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8403}
8404
c19d1205
ZW
8405/* Parse an add or subtract instruction. We get here with inst.instruction
8406 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8407
8408static void
8409do_t_add_sub (void)
8410{
8411 int Rd, Rs, Rn;
8412
8413 Rd = inst.operands[0].reg;
8414 Rs = (inst.operands[1].present
8415 ? inst.operands[1].reg /* Rd, Rs, foo */
8416 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8417
8418 if (unified_syntax)
8419 {
0110f2b8
PB
8420 bfd_boolean flags;
8421 bfd_boolean narrow;
8422 int opcode;
8423
8424 flags = (inst.instruction == T_MNEM_adds
8425 || inst.instruction == T_MNEM_subs);
8426 if (flags)
8427 narrow = (current_it_mask == 0);
8428 else
8429 narrow = (current_it_mask != 0);
c19d1205 8430 if (!inst.operands[2].isreg)
b99bd4ef 8431 {
16805f35
PB
8432 int add;
8433
8434 add = (inst.instruction == T_MNEM_add
8435 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8436 opcode = 0;
8437 if (inst.size_req != 4)
8438 {
0110f2b8
PB
8439 /* Attempt to use a narrow opcode, with relaxation if
8440 appropriate. */
8441 if (Rd == REG_SP && Rs == REG_SP && !flags)
8442 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8443 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8444 opcode = T_MNEM_add_sp;
8445 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8446 opcode = T_MNEM_add_pc;
8447 else if (Rd <= 7 && Rs <= 7 && narrow)
8448 {
8449 if (flags)
8450 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8451 else
8452 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8453 }
8454 if (opcode)
8455 {
8456 inst.instruction = THUMB_OP16(opcode);
8457 inst.instruction |= (Rd << 4) | Rs;
8458 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8459 if (inst.size_req != 2)
8460 inst.relax = opcode;
8461 }
8462 else
8463 constraint (inst.size_req == 2, BAD_HIREG);
8464 }
8465 if (inst.size_req == 4
8466 || (inst.size_req != 2 && !opcode))
8467 {
efd81785
PB
8468 if (Rd == REG_PC)
8469 {
8470 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8471 _("only SUBS PC, LR, #const allowed"));
8472 constraint (inst.reloc.exp.X_op != O_constant,
8473 _("expression too complex"));
8474 constraint (inst.reloc.exp.X_add_number < 0
8475 || inst.reloc.exp.X_add_number > 0xff,
8476 _("immediate value out of range"));
8477 inst.instruction = T2_SUBS_PC_LR
8478 | inst.reloc.exp.X_add_number;
8479 inst.reloc.type = BFD_RELOC_UNUSED;
8480 return;
8481 }
8482 else if (Rs == REG_PC)
16805f35
PB
8483 {
8484 /* Always use addw/subw. */
8485 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8486 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8487 }
8488 else
8489 {
8490 inst.instruction = THUMB_OP32 (inst.instruction);
8491 inst.instruction = (inst.instruction & 0xe1ffffff)
8492 | 0x10000000;
8493 if (flags)
8494 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8495 else
8496 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8497 }
dc4503c6
PB
8498 inst.instruction |= Rd << 8;
8499 inst.instruction |= Rs << 16;
0110f2b8 8500 }
b99bd4ef 8501 }
c19d1205
ZW
8502 else
8503 {
8504 Rn = inst.operands[2].reg;
8505 /* See if we can do this with a 16-bit instruction. */
8506 if (!inst.operands[2].shifted && inst.size_req != 4)
8507 {
e27ec89e
PB
8508 if (Rd > 7 || Rs > 7 || Rn > 7)
8509 narrow = FALSE;
8510
8511 if (narrow)
c19d1205 8512 {
e27ec89e
PB
8513 inst.instruction = ((inst.instruction == T_MNEM_adds
8514 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8515 ? T_OPCODE_ADD_R3
8516 : T_OPCODE_SUB_R3);
8517 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8518 return;
8519 }
b99bd4ef 8520
7e806470 8521 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 8522 {
7e806470
PB
8523 /* Thumb-1 cores (except v6-M) require at least one high
8524 register in a narrow non flag setting add. */
8525 if (Rd > 7 || Rn > 7
8526 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8527 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 8528 {
7e806470
PB
8529 if (Rd == Rn)
8530 {
8531 Rn = Rs;
8532 Rs = Rd;
8533 }
c19d1205
ZW
8534 inst.instruction = T_OPCODE_ADD_HI;
8535 inst.instruction |= (Rd & 8) << 4;
8536 inst.instruction |= (Rd & 7);
8537 inst.instruction |= Rn << 3;
8538 return;
8539 }
c19d1205
ZW
8540 }
8541 }
8542 /* If we get here, it can't be done in 16 bits. */
8543 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8544 _("shift must be constant"));
8545 inst.instruction = THUMB_OP32 (inst.instruction);
8546 inst.instruction |= Rd << 8;
8547 inst.instruction |= Rs << 16;
8548 encode_thumb32_shifted_operand (2);
8549 }
8550 }
8551 else
8552 {
8553 constraint (inst.instruction == T_MNEM_adds
8554 || inst.instruction == T_MNEM_subs,
8555 BAD_THUMB32);
b99bd4ef 8556
c19d1205 8557 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 8558 {
c19d1205
ZW
8559 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8560 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8561 BAD_HIREG);
8562
8563 inst.instruction = (inst.instruction == T_MNEM_add
8564 ? 0x0000 : 0x8000);
8565 inst.instruction |= (Rd << 4) | Rs;
8566 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
8567 return;
8568 }
8569
c19d1205
ZW
8570 Rn = inst.operands[2].reg;
8571 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 8572
c19d1205
ZW
8573 /* We now have Rd, Rs, and Rn set to registers. */
8574 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 8575 {
c19d1205
ZW
8576 /* Can't do this for SUB. */
8577 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8578 inst.instruction = T_OPCODE_ADD_HI;
8579 inst.instruction |= (Rd & 8) << 4;
8580 inst.instruction |= (Rd & 7);
8581 if (Rs == Rd)
8582 inst.instruction |= Rn << 3;
8583 else if (Rn == Rd)
8584 inst.instruction |= Rs << 3;
8585 else
8586 constraint (1, _("dest must overlap one source register"));
8587 }
8588 else
8589 {
8590 inst.instruction = (inst.instruction == T_MNEM_add
8591 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8592 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 8593 }
b99bd4ef 8594 }
b99bd4ef
NC
8595}
8596
c19d1205
ZW
8597static void
8598do_t_adr (void)
8599{
0110f2b8
PB
8600 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8601 {
8602 /* Defer to section relaxation. */
8603 inst.relax = inst.instruction;
8604 inst.instruction = THUMB_OP16 (inst.instruction);
8605 inst.instruction |= inst.operands[0].reg << 4;
8606 }
8607 else if (unified_syntax && inst.size_req != 2)
e9f89963 8608 {
0110f2b8 8609 /* Generate a 32-bit opcode. */
e9f89963
PB
8610 inst.instruction = THUMB_OP32 (inst.instruction);
8611 inst.instruction |= inst.operands[0].reg << 8;
8612 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8613 inst.reloc.pc_rel = 1;
8614 }
8615 else
8616 {
0110f2b8 8617 /* Generate a 16-bit opcode. */
e9f89963
PB
8618 inst.instruction = THUMB_OP16 (inst.instruction);
8619 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8620 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8621 inst.reloc.pc_rel = 1;
b99bd4ef 8622
e9f89963
PB
8623 inst.instruction |= inst.operands[0].reg << 4;
8624 }
c19d1205 8625}
b99bd4ef 8626
c19d1205
ZW
8627/* Arithmetic instructions for which there is just one 16-bit
8628 instruction encoding, and it allows only two low registers.
8629 For maximal compatibility with ARM syntax, we allow three register
8630 operands even when Thumb-32 instructions are not available, as long
8631 as the first two are identical. For instance, both "sbc r0,r1" and
8632 "sbc r0,r0,r1" are allowed. */
b99bd4ef 8633static void
c19d1205 8634do_t_arit3 (void)
b99bd4ef 8635{
c19d1205 8636 int Rd, Rs, Rn;
b99bd4ef 8637
c19d1205
ZW
8638 Rd = inst.operands[0].reg;
8639 Rs = (inst.operands[1].present
8640 ? inst.operands[1].reg /* Rd, Rs, foo */
8641 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8642 Rn = inst.operands[2].reg;
b99bd4ef 8643
c19d1205 8644 if (unified_syntax)
b99bd4ef 8645 {
c19d1205
ZW
8646 if (!inst.operands[2].isreg)
8647 {
8648 /* For an immediate, we always generate a 32-bit opcode;
8649 section relaxation will shrink it later if possible. */
8650 inst.instruction = THUMB_OP32 (inst.instruction);
8651 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8652 inst.instruction |= Rd << 8;
8653 inst.instruction |= Rs << 16;
8654 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8655 }
8656 else
8657 {
e27ec89e
PB
8658 bfd_boolean narrow;
8659
c19d1205 8660 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8661 if (THUMB_SETS_FLAGS (inst.instruction))
8662 narrow = current_it_mask == 0;
8663 else
8664 narrow = current_it_mask != 0;
8665
8666 if (Rd > 7 || Rn > 7 || Rs > 7)
8667 narrow = FALSE;
8668 if (inst.operands[2].shifted)
8669 narrow = FALSE;
8670 if (inst.size_req == 4)
8671 narrow = FALSE;
8672
8673 if (narrow
c19d1205
ZW
8674 && Rd == Rs)
8675 {
8676 inst.instruction = THUMB_OP16 (inst.instruction);
8677 inst.instruction |= Rd;
8678 inst.instruction |= Rn << 3;
8679 return;
8680 }
b99bd4ef 8681
c19d1205
ZW
8682 /* If we get here, it can't be done in 16 bits. */
8683 constraint (inst.operands[2].shifted
8684 && inst.operands[2].immisreg,
8685 _("shift must be constant"));
8686 inst.instruction = THUMB_OP32 (inst.instruction);
8687 inst.instruction |= Rd << 8;
8688 inst.instruction |= Rs << 16;
8689 encode_thumb32_shifted_operand (2);
8690 }
a737bd4d 8691 }
c19d1205 8692 else
b99bd4ef 8693 {
c19d1205
ZW
8694 /* On its face this is a lie - the instruction does set the
8695 flags. However, the only supported mnemonic in this mode
8696 says it doesn't. */
8697 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8698
c19d1205
ZW
8699 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8700 _("unshifted register required"));
8701 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8702 constraint (Rd != Rs,
8703 _("dest and source1 must be the same register"));
a737bd4d 8704
c19d1205
ZW
8705 inst.instruction = THUMB_OP16 (inst.instruction);
8706 inst.instruction |= Rd;
8707 inst.instruction |= Rn << 3;
b99bd4ef 8708 }
a737bd4d 8709}
b99bd4ef 8710
c19d1205
ZW
8711/* Similarly, but for instructions where the arithmetic operation is
8712 commutative, so we can allow either of them to be different from
8713 the destination operand in a 16-bit instruction. For instance, all
8714 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8715 accepted. */
8716static void
8717do_t_arit3c (void)
a737bd4d 8718{
c19d1205 8719 int Rd, Rs, Rn;
b99bd4ef 8720
c19d1205
ZW
8721 Rd = inst.operands[0].reg;
8722 Rs = (inst.operands[1].present
8723 ? inst.operands[1].reg /* Rd, Rs, foo */
8724 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8725 Rn = inst.operands[2].reg;
a737bd4d 8726
c19d1205 8727 if (unified_syntax)
a737bd4d 8728 {
c19d1205 8729 if (!inst.operands[2].isreg)
b99bd4ef 8730 {
c19d1205
ZW
8731 /* For an immediate, we always generate a 32-bit opcode;
8732 section relaxation will shrink it later if possible. */
8733 inst.instruction = THUMB_OP32 (inst.instruction);
8734 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8735 inst.instruction |= Rd << 8;
8736 inst.instruction |= Rs << 16;
8737 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8738 }
c19d1205 8739 else
a737bd4d 8740 {
e27ec89e
PB
8741 bfd_boolean narrow;
8742
c19d1205 8743 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8744 if (THUMB_SETS_FLAGS (inst.instruction))
8745 narrow = current_it_mask == 0;
8746 else
8747 narrow = current_it_mask != 0;
8748
8749 if (Rd > 7 || Rn > 7 || Rs > 7)
8750 narrow = FALSE;
8751 if (inst.operands[2].shifted)
8752 narrow = FALSE;
8753 if (inst.size_req == 4)
8754 narrow = FALSE;
8755
8756 if (narrow)
a737bd4d 8757 {
c19d1205 8758 if (Rd == Rs)
a737bd4d 8759 {
c19d1205
ZW
8760 inst.instruction = THUMB_OP16 (inst.instruction);
8761 inst.instruction |= Rd;
8762 inst.instruction |= Rn << 3;
8763 return;
a737bd4d 8764 }
c19d1205 8765 if (Rd == Rn)
a737bd4d 8766 {
c19d1205
ZW
8767 inst.instruction = THUMB_OP16 (inst.instruction);
8768 inst.instruction |= Rd;
8769 inst.instruction |= Rs << 3;
8770 return;
a737bd4d
NC
8771 }
8772 }
c19d1205
ZW
8773
8774 /* If we get here, it can't be done in 16 bits. */
8775 constraint (inst.operands[2].shifted
8776 && inst.operands[2].immisreg,
8777 _("shift must be constant"));
8778 inst.instruction = THUMB_OP32 (inst.instruction);
8779 inst.instruction |= Rd << 8;
8780 inst.instruction |= Rs << 16;
8781 encode_thumb32_shifted_operand (2);
a737bd4d 8782 }
b99bd4ef 8783 }
c19d1205
ZW
8784 else
8785 {
8786 /* On its face this is a lie - the instruction does set the
8787 flags. However, the only supported mnemonic in this mode
8788 says it doesn't. */
8789 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8790
c19d1205
ZW
8791 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8792 _("unshifted register required"));
8793 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8794
8795 inst.instruction = THUMB_OP16 (inst.instruction);
8796 inst.instruction |= Rd;
8797
8798 if (Rd == Rs)
8799 inst.instruction |= Rn << 3;
8800 else if (Rd == Rn)
8801 inst.instruction |= Rs << 3;
8802 else
8803 constraint (1, _("dest must overlap one source register"));
8804 }
a737bd4d
NC
8805}
8806
62b3e311
PB
8807static void
8808do_t_barrier (void)
8809{
8810 if (inst.operands[0].present)
8811 {
8812 constraint ((inst.instruction & 0xf0) != 0x40
8813 && inst.operands[0].imm != 0xf,
bd3ba5d1 8814 _("bad barrier type"));
62b3e311
PB
8815 inst.instruction |= inst.operands[0].imm;
8816 }
8817 else
8818 inst.instruction |= 0xf;
8819}
8820
c19d1205
ZW
8821static void
8822do_t_bfc (void)
a737bd4d 8823{
c19d1205
ZW
8824 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8825 constraint (msb > 32, _("bit-field extends past end of register"));
8826 /* The instruction encoding stores the LSB and MSB,
8827 not the LSB and width. */
8828 inst.instruction |= inst.operands[0].reg << 8;
8829 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8830 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8831 inst.instruction |= msb - 1;
b99bd4ef
NC
8832}
8833
c19d1205
ZW
8834static void
8835do_t_bfi (void)
b99bd4ef 8836{
c19d1205 8837 unsigned int msb;
b99bd4ef 8838
c19d1205
ZW
8839 /* #0 in second position is alternative syntax for bfc, which is
8840 the same instruction but with REG_PC in the Rm field. */
8841 if (!inst.operands[1].isreg)
8842 inst.operands[1].reg = REG_PC;
b99bd4ef 8843
c19d1205
ZW
8844 msb = inst.operands[2].imm + inst.operands[3].imm;
8845 constraint (msb > 32, _("bit-field extends past end of register"));
8846 /* The instruction encoding stores the LSB and MSB,
8847 not the LSB and width. */
8848 inst.instruction |= inst.operands[0].reg << 8;
8849 inst.instruction |= inst.operands[1].reg << 16;
8850 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8851 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8852 inst.instruction |= msb - 1;
b99bd4ef
NC
8853}
8854
c19d1205
ZW
8855static void
8856do_t_bfx (void)
b99bd4ef 8857{
c19d1205
ZW
8858 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8859 _("bit-field extends past end of register"));
8860 inst.instruction |= inst.operands[0].reg << 8;
8861 inst.instruction |= inst.operands[1].reg << 16;
8862 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8863 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8864 inst.instruction |= inst.operands[3].imm - 1;
8865}
b99bd4ef 8866
c19d1205
ZW
8867/* ARM V5 Thumb BLX (argument parse)
8868 BLX <target_addr> which is BLX(1)
8869 BLX <Rm> which is BLX(2)
8870 Unfortunately, there are two different opcodes for this mnemonic.
8871 So, the insns[].value is not used, and the code here zaps values
8872 into inst.instruction.
b99bd4ef 8873
c19d1205
ZW
8874 ??? How to take advantage of the additional two bits of displacement
8875 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8876
c19d1205
ZW
8877static void
8878do_t_blx (void)
8879{
dfa9f0d5 8880 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8881 if (inst.operands[0].isreg)
8882 /* We have a register, so this is BLX(2). */
8883 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
8884 else
8885 {
c19d1205 8886 /* No register. This must be BLX(1). */
2fc8bdac 8887 inst.instruction = 0xf000e800;
39b41c9c
PB
8888#ifdef OBJ_ELF
8889 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8890 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8891 else
8892#endif
8893 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 8894 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8895 }
8896}
8897
c19d1205
ZW
8898static void
8899do_t_branch (void)
b99bd4ef 8900{
0110f2b8 8901 int opcode;
dfa9f0d5
PB
8902 int cond;
8903
8904 if (current_it_mask)
8905 {
8906 /* Conditional branches inside IT blocks are encoded as unconditional
8907 branches. */
8908 cond = COND_ALWAYS;
8909 /* A branch must be the last instruction in an IT block. */
8910 constraint (current_it_mask != 0x10, BAD_BRANCH);
8911 }
8912 else
8913 cond = inst.cond;
8914
8915 if (cond != COND_ALWAYS)
0110f2b8
PB
8916 opcode = T_MNEM_bcond;
8917 else
8918 opcode = inst.instruction;
8919
8920 if (unified_syntax && inst.size_req == 4)
c19d1205 8921 {
0110f2b8 8922 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 8923 if (cond == COND_ALWAYS)
0110f2b8 8924 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
8925 else
8926 {
dfa9f0d5
PB
8927 assert (cond != 0xF);
8928 inst.instruction |= cond << 22;
c19d1205
ZW
8929 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8930 }
8931 }
b99bd4ef
NC
8932 else
8933 {
0110f2b8 8934 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 8935 if (cond == COND_ALWAYS)
c19d1205
ZW
8936 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8937 else
b99bd4ef 8938 {
dfa9f0d5 8939 inst.instruction |= cond << 8;
c19d1205 8940 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 8941 }
0110f2b8
PB
8942 /* Allow section relaxation. */
8943 if (unified_syntax && inst.size_req != 2)
8944 inst.relax = opcode;
b99bd4ef 8945 }
c19d1205
ZW
8946
8947 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8948}
8949
8950static void
c19d1205 8951do_t_bkpt (void)
b99bd4ef 8952{
dfa9f0d5
PB
8953 constraint (inst.cond != COND_ALWAYS,
8954 _("instruction is always unconditional"));
c19d1205 8955 if (inst.operands[0].present)
b99bd4ef 8956 {
c19d1205
ZW
8957 constraint (inst.operands[0].imm > 255,
8958 _("immediate value out of range"));
8959 inst.instruction |= inst.operands[0].imm;
b99bd4ef 8960 }
b99bd4ef
NC
8961}
8962
8963static void
c19d1205 8964do_t_branch23 (void)
b99bd4ef 8965{
dfa9f0d5 8966 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8967 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
8968 inst.reloc.pc_rel = 1;
8969
c19d1205
ZW
8970 /* If the destination of the branch is a defined symbol which does not have
8971 the THUMB_FUNC attribute, then we must be calling a function which has
8972 the (interfacearm) attribute. We look for the Thumb entry point to that
8973 function and change the branch to refer to that function instead. */
8974 if ( inst.reloc.exp.X_op == O_symbol
8975 && inst.reloc.exp.X_add_symbol != NULL
8976 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8977 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8978 inst.reloc.exp.X_add_symbol =
8979 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
8980}
8981
8982static void
c19d1205 8983do_t_bx (void)
90e4755a 8984{
dfa9f0d5 8985 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8986 inst.instruction |= inst.operands[0].reg << 3;
8987 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8988 should cause the alignment to be checked once it is known. This is
8989 because BX PC only works if the instruction is word aligned. */
8990}
90e4755a 8991
c19d1205
ZW
8992static void
8993do_t_bxj (void)
8994{
dfa9f0d5 8995 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8996 if (inst.operands[0].reg == REG_PC)
8997 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 8998
c19d1205 8999 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
9000}
9001
9002static void
c19d1205 9003do_t_clz (void)
90e4755a 9004{
c19d1205
ZW
9005 inst.instruction |= inst.operands[0].reg << 8;
9006 inst.instruction |= inst.operands[1].reg << 16;
9007 inst.instruction |= inst.operands[1].reg;
9008}
90e4755a 9009
dfa9f0d5
PB
9010static void
9011do_t_cps (void)
9012{
9013 constraint (current_it_mask, BAD_NOT_IT);
9014 inst.instruction |= inst.operands[0].imm;
9015}
9016
c19d1205
ZW
9017static void
9018do_t_cpsi (void)
9019{
dfa9f0d5 9020 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 9021 if (unified_syntax
62b3e311
PB
9022 && (inst.operands[1].present || inst.size_req == 4)
9023 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9024 {
c19d1205
ZW
9025 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9026 inst.instruction = 0xf3af8000;
9027 inst.instruction |= imod << 9;
9028 inst.instruction |= inst.operands[0].imm << 5;
9029 if (inst.operands[1].present)
9030 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9031 }
c19d1205 9032 else
90e4755a 9033 {
62b3e311
PB
9034 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9035 && (inst.operands[0].imm & 4),
9036 _("selected processor does not support 'A' form "
9037 "of this instruction"));
9038 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9039 _("Thumb does not support the 2-argument "
9040 "form of this instruction"));
9041 inst.instruction |= inst.operands[0].imm;
90e4755a 9042 }
90e4755a
RE
9043}
9044
c19d1205
ZW
9045/* THUMB CPY instruction (argument parse). */
9046
90e4755a 9047static void
c19d1205 9048do_t_cpy (void)
90e4755a 9049{
c19d1205 9050 if (inst.size_req == 4)
90e4755a 9051 {
c19d1205
ZW
9052 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9053 inst.instruction |= inst.operands[0].reg << 8;
9054 inst.instruction |= inst.operands[1].reg;
90e4755a 9055 }
c19d1205 9056 else
90e4755a 9057 {
c19d1205
ZW
9058 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9059 inst.instruction |= (inst.operands[0].reg & 0x7);
9060 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9061 }
90e4755a
RE
9062}
9063
90e4755a 9064static void
25fe350b 9065do_t_cbz (void)
90e4755a 9066{
dfa9f0d5 9067 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9068 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9069 inst.instruction |= inst.operands[0].reg;
9070 inst.reloc.pc_rel = 1;
9071 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9072}
90e4755a 9073
62b3e311
PB
9074static void
9075do_t_dbg (void)
9076{
9077 inst.instruction |= inst.operands[0].imm;
9078}
9079
9080static void
9081do_t_div (void)
9082{
9083 if (!inst.operands[1].present)
9084 inst.operands[1].reg = inst.operands[0].reg;
9085 inst.instruction |= inst.operands[0].reg << 8;
9086 inst.instruction |= inst.operands[1].reg << 16;
9087 inst.instruction |= inst.operands[2].reg;
9088}
9089
c19d1205
ZW
9090static void
9091do_t_hint (void)
9092{
9093 if (unified_syntax && inst.size_req == 4)
9094 inst.instruction = THUMB_OP32 (inst.instruction);
9095 else
9096 inst.instruction = THUMB_OP16 (inst.instruction);
9097}
90e4755a 9098
c19d1205
ZW
9099static void
9100do_t_it (void)
9101{
9102 unsigned int cond = inst.operands[0].imm;
e27ec89e 9103
dfa9f0d5 9104 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
9105 current_it_mask = (inst.instruction & 0xf) | 0x10;
9106 current_cc = cond;
9107
9108 /* If the condition is a negative condition, invert the mask. */
c19d1205 9109 if ((cond & 0x1) == 0x0)
90e4755a 9110 {
c19d1205 9111 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9112
c19d1205
ZW
9113 if ((mask & 0x7) == 0)
9114 /* no conversion needed */;
9115 else if ((mask & 0x3) == 0)
e27ec89e
PB
9116 mask ^= 0x8;
9117 else if ((mask & 0x1) == 0)
9118 mask ^= 0xC;
c19d1205 9119 else
e27ec89e 9120 mask ^= 0xE;
90e4755a 9121
e27ec89e
PB
9122 inst.instruction &= 0xfff0;
9123 inst.instruction |= mask;
c19d1205 9124 }
90e4755a 9125
c19d1205
ZW
9126 inst.instruction |= cond << 4;
9127}
90e4755a 9128
3c707909
PB
9129/* Helper function used for both push/pop and ldm/stm. */
9130static void
9131encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9132{
9133 bfd_boolean load;
9134
9135 load = (inst.instruction & (1 << 20)) != 0;
9136
9137 if (mask & (1 << 13))
9138 inst.error = _("SP not allowed in register list");
9139 if (load)
9140 {
9141 if (mask & (1 << 14)
9142 && mask & (1 << 15))
9143 inst.error = _("LR and PC should not both be in register list");
9144
9145 if ((mask & (1 << base)) != 0
9146 && writeback)
9147 as_warn (_("base register should not be in register list "
9148 "when written back"));
9149 }
9150 else
9151 {
9152 if (mask & (1 << 15))
9153 inst.error = _("PC not allowed in register list");
9154
9155 if (mask & (1 << base))
9156 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9157 }
9158
9159 if ((mask & (mask - 1)) == 0)
9160 {
9161 /* Single register transfers implemented as str/ldr. */
9162 if (writeback)
9163 {
9164 if (inst.instruction & (1 << 23))
9165 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9166 else
9167 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9168 }
9169 else
9170 {
9171 if (inst.instruction & (1 << 23))
9172 inst.instruction = 0x00800000; /* ia -> [base] */
9173 else
9174 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9175 }
9176
9177 inst.instruction |= 0xf8400000;
9178 if (load)
9179 inst.instruction |= 0x00100000;
9180
5f4273c7 9181 mask = ffs (mask) - 1;
3c707909
PB
9182 mask <<= 12;
9183 }
9184 else if (writeback)
9185 inst.instruction |= WRITE_BACK;
9186
9187 inst.instruction |= mask;
9188 inst.instruction |= base << 16;
9189}
9190
c19d1205
ZW
9191static void
9192do_t_ldmstm (void)
9193{
9194 /* This really doesn't seem worth it. */
9195 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9196 _("expression too complex"));
9197 constraint (inst.operands[1].writeback,
9198 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9199
c19d1205
ZW
9200 if (unified_syntax)
9201 {
3c707909
PB
9202 bfd_boolean narrow;
9203 unsigned mask;
9204
9205 narrow = FALSE;
c19d1205
ZW
9206 /* See if we can use a 16-bit instruction. */
9207 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9208 && inst.size_req != 4
3c707909 9209 && !(inst.operands[1].imm & ~0xff))
90e4755a 9210 {
3c707909 9211 mask = 1 << inst.operands[0].reg;
90e4755a 9212
3c707909
PB
9213 if (inst.operands[0].reg <= 7
9214 && (inst.instruction == T_MNEM_stmia
9215 ? inst.operands[0].writeback
9216 : (inst.operands[0].writeback
9217 == !(inst.operands[1].imm & mask))))
90e4755a 9218 {
3c707909
PB
9219 if (inst.instruction == T_MNEM_stmia
9220 && (inst.operands[1].imm & mask)
9221 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9222 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9223 inst.operands[0].reg);
3c707909
PB
9224
9225 inst.instruction = THUMB_OP16 (inst.instruction);
9226 inst.instruction |= inst.operands[0].reg << 8;
9227 inst.instruction |= inst.operands[1].imm;
9228 narrow = TRUE;
90e4755a 9229 }
3c707909
PB
9230 else if (inst.operands[0] .reg == REG_SP
9231 && inst.operands[0].writeback)
90e4755a 9232 {
3c707909
PB
9233 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9234 ? T_MNEM_push : T_MNEM_pop);
9235 inst.instruction |= inst.operands[1].imm;
9236 narrow = TRUE;
90e4755a 9237 }
3c707909
PB
9238 }
9239
9240 if (!narrow)
9241 {
c19d1205
ZW
9242 if (inst.instruction < 0xffff)
9243 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9244
5f4273c7
NC
9245 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9246 inst.operands[0].writeback);
90e4755a
RE
9247 }
9248 }
c19d1205 9249 else
90e4755a 9250 {
c19d1205
ZW
9251 constraint (inst.operands[0].reg > 7
9252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9253 constraint (inst.instruction != T_MNEM_ldmia
9254 && inst.instruction != T_MNEM_stmia,
9255 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9256 if (inst.instruction == T_MNEM_stmia)
f03698e6 9257 {
c19d1205
ZW
9258 if (!inst.operands[0].writeback)
9259 as_warn (_("this instruction will write back the base register"));
9260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9262 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9263 inst.operands[0].reg);
f03698e6 9264 }
c19d1205 9265 else
90e4755a 9266 {
c19d1205
ZW
9267 if (!inst.operands[0].writeback
9268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9269 as_warn (_("this instruction will write back the base register"));
9270 else if (inst.operands[0].writeback
9271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9272 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9273 }
9274
c19d1205
ZW
9275 inst.instruction = THUMB_OP16 (inst.instruction);
9276 inst.instruction |= inst.operands[0].reg << 8;
9277 inst.instruction |= inst.operands[1].imm;
9278 }
9279}
e28cd48c 9280
c19d1205
ZW
9281static void
9282do_t_ldrex (void)
9283{
9284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9285 || inst.operands[1].postind || inst.operands[1].writeback
9286 || inst.operands[1].immisreg || inst.operands[1].shifted
9287 || inst.operands[1].negative,
01cfc07f 9288 BAD_ADDR_MODE);
e28cd48c 9289
c19d1205
ZW
9290 inst.instruction |= inst.operands[0].reg << 12;
9291 inst.instruction |= inst.operands[1].reg << 16;
9292 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9293}
e28cd48c 9294
c19d1205
ZW
9295static void
9296do_t_ldrexd (void)
9297{
9298 if (!inst.operands[1].present)
1cac9012 9299 {
c19d1205
ZW
9300 constraint (inst.operands[0].reg == REG_LR,
9301 _("r14 not allowed as first register "
9302 "when second register is omitted"));
9303 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9304 }
c19d1205
ZW
9305 constraint (inst.operands[0].reg == inst.operands[1].reg,
9306 BAD_OVERLAP);
b99bd4ef 9307
c19d1205
ZW
9308 inst.instruction |= inst.operands[0].reg << 12;
9309 inst.instruction |= inst.operands[1].reg << 8;
9310 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9311}
9312
9313static void
c19d1205 9314do_t_ldst (void)
b99bd4ef 9315{
0110f2b8
PB
9316 unsigned long opcode;
9317 int Rn;
9318
9319 opcode = inst.instruction;
c19d1205 9320 if (unified_syntax)
b99bd4ef 9321 {
53365c0d
PB
9322 if (!inst.operands[1].isreg)
9323 {
9324 if (opcode <= 0xffff)
9325 inst.instruction = THUMB_OP32 (opcode);
9326 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9327 return;
9328 }
0110f2b8
PB
9329 if (inst.operands[1].isreg
9330 && !inst.operands[1].writeback
c19d1205
ZW
9331 && !inst.operands[1].shifted && !inst.operands[1].postind
9332 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9333 && opcode <= 0xffff
9334 && inst.size_req != 4)
c19d1205 9335 {
0110f2b8
PB
9336 /* Insn may have a 16-bit form. */
9337 Rn = inst.operands[1].reg;
9338 if (inst.operands[1].immisreg)
9339 {
9340 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 9341 /* [Rn, Rik] */
0110f2b8
PB
9342 if (Rn <= 7 && inst.operands[1].imm <= 7)
9343 goto op16;
9344 }
9345 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9346 && opcode != T_MNEM_ldrsb)
9347 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9348 || (Rn == REG_SP && opcode == T_MNEM_str))
9349 {
9350 /* [Rn, #const] */
9351 if (Rn > 7)
9352 {
9353 if (Rn == REG_PC)
9354 {
9355 if (inst.reloc.pc_rel)
9356 opcode = T_MNEM_ldr_pc2;
9357 else
9358 opcode = T_MNEM_ldr_pc;
9359 }
9360 else
9361 {
9362 if (opcode == T_MNEM_ldr)
9363 opcode = T_MNEM_ldr_sp;
9364 else
9365 opcode = T_MNEM_str_sp;
9366 }
9367 inst.instruction = inst.operands[0].reg << 8;
9368 }
9369 else
9370 {
9371 inst.instruction = inst.operands[0].reg;
9372 inst.instruction |= inst.operands[1].reg << 3;
9373 }
9374 inst.instruction |= THUMB_OP16 (opcode);
9375 if (inst.size_req == 2)
9376 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9377 else
9378 inst.relax = opcode;
9379 return;
9380 }
c19d1205 9381 }
0110f2b8
PB
9382 /* Definitely a 32-bit variant. */
9383 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9384 inst.instruction |= inst.operands[0].reg << 12;
9385 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9386 return;
9387 }
9388
c19d1205
ZW
9389 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9390
9391 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9392 {
c19d1205
ZW
9393 /* Only [Rn,Rm] is acceptable. */
9394 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9395 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9396 || inst.operands[1].postind || inst.operands[1].shifted
9397 || inst.operands[1].negative,
9398 _("Thumb does not support this addressing mode"));
9399 inst.instruction = THUMB_OP16 (inst.instruction);
9400 goto op16;
b99bd4ef 9401 }
5f4273c7 9402
c19d1205
ZW
9403 inst.instruction = THUMB_OP16 (inst.instruction);
9404 if (!inst.operands[1].isreg)
9405 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9406 return;
b99bd4ef 9407
c19d1205
ZW
9408 constraint (!inst.operands[1].preind
9409 || inst.operands[1].shifted
9410 || inst.operands[1].writeback,
9411 _("Thumb does not support this addressing mode"));
9412 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9413 {
c19d1205
ZW
9414 constraint (inst.instruction & 0x0600,
9415 _("byte or halfword not valid for base register"));
9416 constraint (inst.operands[1].reg == REG_PC
9417 && !(inst.instruction & THUMB_LOAD_BIT),
9418 _("r15 based store not allowed"));
9419 constraint (inst.operands[1].immisreg,
9420 _("invalid base register for register offset"));
b99bd4ef 9421
c19d1205
ZW
9422 if (inst.operands[1].reg == REG_PC)
9423 inst.instruction = T_OPCODE_LDR_PC;
9424 else if (inst.instruction & THUMB_LOAD_BIT)
9425 inst.instruction = T_OPCODE_LDR_SP;
9426 else
9427 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9428
c19d1205
ZW
9429 inst.instruction |= inst.operands[0].reg << 8;
9430 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9431 return;
9432 }
90e4755a 9433
c19d1205
ZW
9434 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9435 if (!inst.operands[1].immisreg)
9436 {
9437 /* Immediate offset. */
9438 inst.instruction |= inst.operands[0].reg;
9439 inst.instruction |= inst.operands[1].reg << 3;
9440 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9441 return;
9442 }
90e4755a 9443
c19d1205
ZW
9444 /* Register offset. */
9445 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9446 constraint (inst.operands[1].negative,
9447 _("Thumb does not support this addressing mode"));
90e4755a 9448
c19d1205
ZW
9449 op16:
9450 switch (inst.instruction)
9451 {
9452 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9453 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9454 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9455 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9456 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9457 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9458 case 0x5600 /* ldrsb */:
9459 case 0x5e00 /* ldrsh */: break;
9460 default: abort ();
9461 }
90e4755a 9462
c19d1205
ZW
9463 inst.instruction |= inst.operands[0].reg;
9464 inst.instruction |= inst.operands[1].reg << 3;
9465 inst.instruction |= inst.operands[1].imm << 6;
9466}
90e4755a 9467
c19d1205
ZW
9468static void
9469do_t_ldstd (void)
9470{
9471 if (!inst.operands[1].present)
b99bd4ef 9472 {
c19d1205
ZW
9473 inst.operands[1].reg = inst.operands[0].reg + 1;
9474 constraint (inst.operands[0].reg == REG_LR,
9475 _("r14 not allowed here"));
b99bd4ef 9476 }
c19d1205
ZW
9477 inst.instruction |= inst.operands[0].reg << 12;
9478 inst.instruction |= inst.operands[1].reg << 8;
9479 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
9480}
9481
c19d1205
ZW
9482static void
9483do_t_ldstt (void)
9484{
9485 inst.instruction |= inst.operands[0].reg << 12;
9486 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9487}
a737bd4d 9488
b99bd4ef 9489static void
c19d1205 9490do_t_mla (void)
b99bd4ef 9491{
c19d1205
ZW
9492 inst.instruction |= inst.operands[0].reg << 8;
9493 inst.instruction |= inst.operands[1].reg << 16;
9494 inst.instruction |= inst.operands[2].reg;
9495 inst.instruction |= inst.operands[3].reg << 12;
9496}
b99bd4ef 9497
c19d1205
ZW
9498static void
9499do_t_mlal (void)
9500{
9501 inst.instruction |= inst.operands[0].reg << 12;
9502 inst.instruction |= inst.operands[1].reg << 8;
9503 inst.instruction |= inst.operands[2].reg << 16;
9504 inst.instruction |= inst.operands[3].reg;
9505}
b99bd4ef 9506
c19d1205
ZW
9507static void
9508do_t_mov_cmp (void)
9509{
9510 if (unified_syntax)
b99bd4ef 9511 {
c19d1205
ZW
9512 int r0off = (inst.instruction == T_MNEM_mov
9513 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 9514 unsigned long opcode;
3d388997
PB
9515 bfd_boolean narrow;
9516 bfd_boolean low_regs;
9517
9518 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
0110f2b8 9519 opcode = inst.instruction;
3d388997 9520 if (current_it_mask)
0110f2b8 9521 narrow = opcode != T_MNEM_movs;
3d388997 9522 else
0110f2b8 9523 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
9524 if (inst.size_req == 4
9525 || inst.operands[1].shifted)
9526 narrow = FALSE;
9527
efd81785
PB
9528 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9529 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9530 && !inst.operands[1].shifted
9531 && inst.operands[0].reg == REG_PC
9532 && inst.operands[1].reg == REG_LR)
9533 {
9534 inst.instruction = T2_SUBS_PC_LR;
9535 return;
9536 }
9537
c19d1205
ZW
9538 if (!inst.operands[1].isreg)
9539 {
0110f2b8
PB
9540 /* Immediate operand. */
9541 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9542 narrow = 0;
9543 if (low_regs && narrow)
9544 {
9545 inst.instruction = THUMB_OP16 (opcode);
9546 inst.instruction |= inst.operands[0].reg << 8;
9547 if (inst.size_req == 2)
9548 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9549 else
9550 inst.relax = opcode;
9551 }
9552 else
9553 {
9554 inst.instruction = THUMB_OP32 (inst.instruction);
9555 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9556 inst.instruction |= inst.operands[0].reg << r0off;
9557 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9558 }
c19d1205 9559 }
728ca7c9
PB
9560 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9561 && (inst.instruction == T_MNEM_mov
9562 || inst.instruction == T_MNEM_movs))
9563 {
9564 /* Register shifts are encoded as separate shift instructions. */
9565 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9566
9567 if (current_it_mask)
9568 narrow = !flags;
9569 else
9570 narrow = flags;
9571
9572 if (inst.size_req == 4)
9573 narrow = FALSE;
9574
9575 if (!low_regs || inst.operands[1].imm > 7)
9576 narrow = FALSE;
9577
9578 if (inst.operands[0].reg != inst.operands[1].reg)
9579 narrow = FALSE;
9580
9581 switch (inst.operands[1].shift_kind)
9582 {
9583 case SHIFT_LSL:
9584 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9585 break;
9586 case SHIFT_ASR:
9587 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9588 break;
9589 case SHIFT_LSR:
9590 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9591 break;
9592 case SHIFT_ROR:
9593 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9594 break;
9595 default:
5f4273c7 9596 abort ();
728ca7c9
PB
9597 }
9598
9599 inst.instruction = opcode;
9600 if (narrow)
9601 {
9602 inst.instruction |= inst.operands[0].reg;
9603 inst.instruction |= inst.operands[1].imm << 3;
9604 }
9605 else
9606 {
9607 if (flags)
9608 inst.instruction |= CONDS_BIT;
9609
9610 inst.instruction |= inst.operands[0].reg << 8;
9611 inst.instruction |= inst.operands[1].reg << 16;
9612 inst.instruction |= inst.operands[1].imm;
9613 }
9614 }
3d388997 9615 else if (!narrow)
c19d1205 9616 {
728ca7c9
PB
9617 /* Some mov with immediate shift have narrow variants.
9618 Register shifts are handled above. */
9619 if (low_regs && inst.operands[1].shifted
9620 && (inst.instruction == T_MNEM_mov
9621 || inst.instruction == T_MNEM_movs))
9622 {
9623 if (current_it_mask)
9624 narrow = (inst.instruction == T_MNEM_mov);
9625 else
9626 narrow = (inst.instruction == T_MNEM_movs);
9627 }
9628
9629 if (narrow)
9630 {
9631 switch (inst.operands[1].shift_kind)
9632 {
9633 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9634 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9635 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9636 default: narrow = FALSE; break;
9637 }
9638 }
9639
9640 if (narrow)
9641 {
9642 inst.instruction |= inst.operands[0].reg;
9643 inst.instruction |= inst.operands[1].reg << 3;
9644 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9645 }
9646 else
9647 {
9648 inst.instruction = THUMB_OP32 (inst.instruction);
9649 inst.instruction |= inst.operands[0].reg << r0off;
9650 encode_thumb32_shifted_operand (1);
9651 }
c19d1205
ZW
9652 }
9653 else
9654 switch (inst.instruction)
9655 {
9656 case T_MNEM_mov:
9657 inst.instruction = T_OPCODE_MOV_HR;
9658 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9659 inst.instruction |= (inst.operands[0].reg & 0x7);
9660 inst.instruction |= inst.operands[1].reg << 3;
9661 break;
b99bd4ef 9662
c19d1205
ZW
9663 case T_MNEM_movs:
9664 /* We know we have low registers at this point.
9665 Generate ADD Rd, Rs, #0. */
9666 inst.instruction = T_OPCODE_ADD_I3;
9667 inst.instruction |= inst.operands[0].reg;
9668 inst.instruction |= inst.operands[1].reg << 3;
9669 break;
9670
9671 case T_MNEM_cmp:
3d388997 9672 if (low_regs)
c19d1205
ZW
9673 {
9674 inst.instruction = T_OPCODE_CMP_LR;
9675 inst.instruction |= inst.operands[0].reg;
9676 inst.instruction |= inst.operands[1].reg << 3;
9677 }
9678 else
9679 {
9680 inst.instruction = T_OPCODE_CMP_HR;
9681 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9682 inst.instruction |= (inst.operands[0].reg & 0x7);
9683 inst.instruction |= inst.operands[1].reg << 3;
9684 }
9685 break;
9686 }
b99bd4ef
NC
9687 return;
9688 }
9689
c19d1205
ZW
9690 inst.instruction = THUMB_OP16 (inst.instruction);
9691 if (inst.operands[1].isreg)
b99bd4ef 9692 {
c19d1205 9693 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 9694 {
c19d1205
ZW
9695 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9696 since a MOV instruction produces unpredictable results. */
9697 if (inst.instruction == T_OPCODE_MOV_I8)
9698 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 9699 else
c19d1205 9700 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 9701
c19d1205
ZW
9702 inst.instruction |= inst.operands[0].reg;
9703 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9704 }
9705 else
9706 {
c19d1205
ZW
9707 if (inst.instruction == T_OPCODE_MOV_I8)
9708 inst.instruction = T_OPCODE_MOV_HR;
9709 else
9710 inst.instruction = T_OPCODE_CMP_HR;
9711 do_t_cpy ();
b99bd4ef
NC
9712 }
9713 }
c19d1205 9714 else
b99bd4ef 9715 {
c19d1205
ZW
9716 constraint (inst.operands[0].reg > 7,
9717 _("only lo regs allowed with immediate"));
9718 inst.instruction |= inst.operands[0].reg << 8;
9719 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9720 }
9721}
b99bd4ef 9722
c19d1205
ZW
9723static void
9724do_t_mov16 (void)
9725{
b6895b4f
PB
9726 bfd_vma imm;
9727 bfd_boolean top;
9728
9729 top = (inst.instruction & 0x00800000) != 0;
9730 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9731 {
9732 constraint (top, _(":lower16: not allowed this instruction"));
9733 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9734 }
9735 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9736 {
9737 constraint (!top, _(":upper16: not allowed this instruction"));
9738 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9739 }
9740
c19d1205 9741 inst.instruction |= inst.operands[0].reg << 8;
b6895b4f
PB
9742 if (inst.reloc.type == BFD_RELOC_UNUSED)
9743 {
9744 imm = inst.reloc.exp.X_add_number;
9745 inst.instruction |= (imm & 0xf000) << 4;
9746 inst.instruction |= (imm & 0x0800) << 15;
9747 inst.instruction |= (imm & 0x0700) << 4;
9748 inst.instruction |= (imm & 0x00ff);
9749 }
c19d1205 9750}
b99bd4ef 9751
c19d1205
ZW
9752static void
9753do_t_mvn_tst (void)
9754{
9755 if (unified_syntax)
9756 {
9757 int r0off = (inst.instruction == T_MNEM_mvn
9758 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
9759 bfd_boolean narrow;
9760
9761 if (inst.size_req == 4
9762 || inst.instruction > 0xffff
9763 || inst.operands[1].shifted
9764 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9765 narrow = FALSE;
9766 else if (inst.instruction == T_MNEM_cmn)
9767 narrow = TRUE;
9768 else if (THUMB_SETS_FLAGS (inst.instruction))
9769 narrow = (current_it_mask == 0);
9770 else
9771 narrow = (current_it_mask != 0);
9772
c19d1205 9773 if (!inst.operands[1].isreg)
b99bd4ef 9774 {
c19d1205
ZW
9775 /* For an immediate, we always generate a 32-bit opcode;
9776 section relaxation will shrink it later if possible. */
9777 if (inst.instruction < 0xffff)
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9780 inst.instruction |= inst.operands[0].reg << r0off;
9781 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9782 }
c19d1205 9783 else
b99bd4ef 9784 {
c19d1205 9785 /* See if we can do this with a 16-bit instruction. */
3d388997 9786 if (narrow)
b99bd4ef 9787 {
c19d1205
ZW
9788 inst.instruction = THUMB_OP16 (inst.instruction);
9789 inst.instruction |= inst.operands[0].reg;
9790 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9791 }
c19d1205 9792 else
b99bd4ef 9793 {
c19d1205
ZW
9794 constraint (inst.operands[1].shifted
9795 && inst.operands[1].immisreg,
9796 _("shift must be constant"));
9797 if (inst.instruction < 0xffff)
9798 inst.instruction = THUMB_OP32 (inst.instruction);
9799 inst.instruction |= inst.operands[0].reg << r0off;
9800 encode_thumb32_shifted_operand (1);
b99bd4ef 9801 }
b99bd4ef
NC
9802 }
9803 }
9804 else
9805 {
c19d1205
ZW
9806 constraint (inst.instruction > 0xffff
9807 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9808 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9809 _("unshifted register required"));
9810 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9811 BAD_HIREG);
b99bd4ef 9812
c19d1205
ZW
9813 inst.instruction = THUMB_OP16 (inst.instruction);
9814 inst.instruction |= inst.operands[0].reg;
9815 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9816 }
b99bd4ef
NC
9817}
9818
b05fe5cf 9819static void
c19d1205 9820do_t_mrs (void)
b05fe5cf 9821{
62b3e311 9822 int flags;
037e8744
JB
9823
9824 if (do_vfp_nsyn_mrs () == SUCCESS)
9825 return;
9826
62b3e311
PB
9827 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9828 if (flags == 0)
9829 {
7e806470 9830 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
9831 _("selected processor does not support "
9832 "requested special purpose register"));
9833 }
9834 else
9835 {
9836 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9837 _("selected processor does not support "
44bf2362 9838 "requested special purpose register"));
62b3e311
PB
9839 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9840 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9841 _("'CPSR' or 'SPSR' expected"));
9842 }
5f4273c7 9843
c19d1205 9844 inst.instruction |= inst.operands[0].reg << 8;
62b3e311
PB
9845 inst.instruction |= (flags & SPSR_BIT) >> 2;
9846 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 9847}
b05fe5cf 9848
c19d1205
ZW
9849static void
9850do_t_msr (void)
9851{
62b3e311
PB
9852 int flags;
9853
037e8744
JB
9854 if (do_vfp_nsyn_msr () == SUCCESS)
9855 return;
9856
c19d1205
ZW
9857 constraint (!inst.operands[1].isreg,
9858 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
9859 flags = inst.operands[0].imm;
9860 if (flags & ~0xff)
9861 {
9862 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9863 _("selected processor does not support "
9864 "requested special purpose register"));
9865 }
9866 else
9867 {
7e806470 9868 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
9869 _("selected processor does not support "
9870 "requested special purpose register"));
9871 flags |= PSR_f;
9872 }
9873 inst.instruction |= (flags & SPSR_BIT) >> 2;
9874 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9875 inst.instruction |= (flags & 0xff);
c19d1205
ZW
9876 inst.instruction |= inst.operands[1].reg << 16;
9877}
b05fe5cf 9878
c19d1205
ZW
9879static void
9880do_t_mul (void)
9881{
9882 if (!inst.operands[2].present)
9883 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 9884
c19d1205
ZW
9885 /* There is no 32-bit MULS and no 16-bit MUL. */
9886 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 9887 {
c19d1205
ZW
9888 inst.instruction = THUMB_OP32 (inst.instruction);
9889 inst.instruction |= inst.operands[0].reg << 8;
9890 inst.instruction |= inst.operands[1].reg << 16;
9891 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 9892 }
c19d1205 9893 else
b05fe5cf 9894 {
c19d1205
ZW
9895 constraint (!unified_syntax
9896 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9897 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9898 BAD_HIREG);
b05fe5cf 9899
c19d1205
ZW
9900 inst.instruction = THUMB_OP16 (inst.instruction);
9901 inst.instruction |= inst.operands[0].reg;
b05fe5cf 9902
c19d1205
ZW
9903 if (inst.operands[0].reg == inst.operands[1].reg)
9904 inst.instruction |= inst.operands[2].reg << 3;
9905 else if (inst.operands[0].reg == inst.operands[2].reg)
9906 inst.instruction |= inst.operands[1].reg << 3;
9907 else
9908 constraint (1, _("dest must overlap one source register"));
9909 }
9910}
b05fe5cf 9911
c19d1205
ZW
9912static void
9913do_t_mull (void)
9914{
9915 inst.instruction |= inst.operands[0].reg << 12;
9916 inst.instruction |= inst.operands[1].reg << 8;
9917 inst.instruction |= inst.operands[2].reg << 16;
9918 inst.instruction |= inst.operands[3].reg;
b05fe5cf 9919
c19d1205
ZW
9920 if (inst.operands[0].reg == inst.operands[1].reg)
9921 as_tsktsk (_("rdhi and rdlo must be different"));
9922}
b05fe5cf 9923
c19d1205
ZW
9924static void
9925do_t_nop (void)
9926{
9927 if (unified_syntax)
9928 {
9929 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 9930 {
c19d1205
ZW
9931 inst.instruction = THUMB_OP32 (inst.instruction);
9932 inst.instruction |= inst.operands[0].imm;
9933 }
9934 else
9935 {
bc2d1808
NC
9936 /* PR9722: Check for Thumb2 availability before
9937 generating a thumb2 nop instruction. */
9938 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
9939 {
9940 inst.instruction = THUMB_OP16 (inst.instruction);
9941 inst.instruction |= inst.operands[0].imm << 4;
9942 }
9943 else
9944 inst.instruction = 0x46c0;
c19d1205
ZW
9945 }
9946 }
9947 else
9948 {
9949 constraint (inst.operands[0].present,
9950 _("Thumb does not support NOP with hints"));
9951 inst.instruction = 0x46c0;
9952 }
9953}
b05fe5cf 9954
c19d1205
ZW
9955static void
9956do_t_neg (void)
9957{
9958 if (unified_syntax)
9959 {
3d388997
PB
9960 bfd_boolean narrow;
9961
9962 if (THUMB_SETS_FLAGS (inst.instruction))
9963 narrow = (current_it_mask == 0);
9964 else
9965 narrow = (current_it_mask != 0);
9966 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9967 narrow = FALSE;
9968 if (inst.size_req == 4)
9969 narrow = FALSE;
9970
9971 if (!narrow)
c19d1205
ZW
9972 {
9973 inst.instruction = THUMB_OP32 (inst.instruction);
9974 inst.instruction |= inst.operands[0].reg << 8;
9975 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
9976 }
9977 else
9978 {
c19d1205
ZW
9979 inst.instruction = THUMB_OP16 (inst.instruction);
9980 inst.instruction |= inst.operands[0].reg;
9981 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
9982 }
9983 }
9984 else
9985 {
c19d1205
ZW
9986 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9987 BAD_HIREG);
9988 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9989
9990 inst.instruction = THUMB_OP16 (inst.instruction);
9991 inst.instruction |= inst.operands[0].reg;
9992 inst.instruction |= inst.operands[1].reg << 3;
9993 }
9994}
9995
9996static void
9997do_t_pkhbt (void)
9998{
9999 inst.instruction |= inst.operands[0].reg << 8;
10000 inst.instruction |= inst.operands[1].reg << 16;
10001 inst.instruction |= inst.operands[2].reg;
10002 if (inst.operands[3].present)
10003 {
10004 unsigned int val = inst.reloc.exp.X_add_number;
10005 constraint (inst.reloc.exp.X_op != O_constant,
10006 _("expression too complex"));
10007 inst.instruction |= (val & 0x1c) << 10;
10008 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 10009 }
c19d1205 10010}
b05fe5cf 10011
c19d1205
ZW
10012static void
10013do_t_pkhtb (void)
10014{
10015 if (!inst.operands[3].present)
10016 inst.instruction &= ~0x00000020;
10017 do_t_pkhbt ();
b05fe5cf
ZW
10018}
10019
c19d1205
ZW
10020static void
10021do_t_pld (void)
10022{
10023 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10024}
b05fe5cf 10025
c19d1205
ZW
10026static void
10027do_t_push_pop (void)
b99bd4ef 10028{
e9f89963 10029 unsigned mask;
5f4273c7 10030
c19d1205
ZW
10031 constraint (inst.operands[0].writeback,
10032 _("push/pop do not support {reglist}^"));
10033 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10034 _("expression too complex"));
b99bd4ef 10035
e9f89963
PB
10036 mask = inst.operands[0].imm;
10037 if ((mask & ~0xff) == 0)
3c707909 10038 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 10039 else if ((inst.instruction == T_MNEM_push
e9f89963 10040 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 10041 || (inst.instruction == T_MNEM_pop
e9f89963 10042 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10043 {
c19d1205
ZW
10044 inst.instruction = THUMB_OP16 (inst.instruction);
10045 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10046 inst.instruction |= mask & 0xff;
c19d1205
ZW
10047 }
10048 else if (unified_syntax)
10049 {
3c707909 10050 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10051 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10052 }
10053 else
10054 {
10055 inst.error = _("invalid register list to push/pop instruction");
10056 return;
10057 }
c19d1205 10058}
b99bd4ef 10059
c19d1205
ZW
10060static void
10061do_t_rbit (void)
10062{
10063 inst.instruction |= inst.operands[0].reg << 8;
10064 inst.instruction |= inst.operands[1].reg << 16;
4ecab7d4 10065 inst.instruction |= inst.operands[1].reg;
c19d1205 10066}
b99bd4ef 10067
c19d1205
ZW
10068static void
10069do_t_rev (void)
10070{
10071 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10072 && inst.size_req != 4)
10073 {
10074 inst.instruction = THUMB_OP16 (inst.instruction);
10075 inst.instruction |= inst.operands[0].reg;
10076 inst.instruction |= inst.operands[1].reg << 3;
10077 }
10078 else if (unified_syntax)
10079 {
10080 inst.instruction = THUMB_OP32 (inst.instruction);
10081 inst.instruction |= inst.operands[0].reg << 8;
10082 inst.instruction |= inst.operands[1].reg << 16;
10083 inst.instruction |= inst.operands[1].reg;
10084 }
10085 else
10086 inst.error = BAD_HIREG;
10087}
b99bd4ef 10088
c19d1205
ZW
10089static void
10090do_t_rsb (void)
10091{
10092 int Rd, Rs;
b99bd4ef 10093
c19d1205
ZW
10094 Rd = inst.operands[0].reg;
10095 Rs = (inst.operands[1].present
10096 ? inst.operands[1].reg /* Rd, Rs, foo */
10097 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10098
c19d1205
ZW
10099 inst.instruction |= Rd << 8;
10100 inst.instruction |= Rs << 16;
10101 if (!inst.operands[2].isreg)
10102 {
026d3abb
PB
10103 bfd_boolean narrow;
10104
10105 if ((inst.instruction & 0x00100000) != 0)
10106 narrow = (current_it_mask == 0);
10107 else
10108 narrow = (current_it_mask != 0);
10109
10110 if (Rd > 7 || Rs > 7)
10111 narrow = FALSE;
10112
10113 if (inst.size_req == 4 || !unified_syntax)
10114 narrow = FALSE;
10115
10116 if (inst.reloc.exp.X_op != O_constant
10117 || inst.reloc.exp.X_add_number != 0)
10118 narrow = FALSE;
10119
10120 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10121 relaxation, but it doesn't seem worth the hassle. */
10122 if (narrow)
10123 {
10124 inst.reloc.type = BFD_RELOC_UNUSED;
10125 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10126 inst.instruction |= Rs << 3;
10127 inst.instruction |= Rd;
10128 }
10129 else
10130 {
10131 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10132 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10133 }
c19d1205
ZW
10134 }
10135 else
10136 encode_thumb32_shifted_operand (2);
10137}
b99bd4ef 10138
c19d1205
ZW
10139static void
10140do_t_setend (void)
10141{
dfa9f0d5 10142 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
10143 if (inst.operands[0].imm)
10144 inst.instruction |= 0x8;
10145}
b99bd4ef 10146
c19d1205
ZW
10147static void
10148do_t_shift (void)
10149{
10150 if (!inst.operands[1].present)
10151 inst.operands[1].reg = inst.operands[0].reg;
10152
10153 if (unified_syntax)
10154 {
3d388997
PB
10155 bfd_boolean narrow;
10156 int shift_kind;
10157
10158 switch (inst.instruction)
10159 {
10160 case T_MNEM_asr:
10161 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10162 case T_MNEM_lsl:
10163 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10164 case T_MNEM_lsr:
10165 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10166 case T_MNEM_ror:
10167 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10168 default: abort ();
10169 }
10170
10171 if (THUMB_SETS_FLAGS (inst.instruction))
10172 narrow = (current_it_mask == 0);
10173 else
10174 narrow = (current_it_mask != 0);
10175 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10176 narrow = FALSE;
10177 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10178 narrow = FALSE;
10179 if (inst.operands[2].isreg
10180 && (inst.operands[1].reg != inst.operands[0].reg
10181 || inst.operands[2].reg > 7))
10182 narrow = FALSE;
10183 if (inst.size_req == 4)
10184 narrow = FALSE;
10185
10186 if (!narrow)
c19d1205
ZW
10187 {
10188 if (inst.operands[2].isreg)
b99bd4ef 10189 {
c19d1205
ZW
10190 inst.instruction = THUMB_OP32 (inst.instruction);
10191 inst.instruction |= inst.operands[0].reg << 8;
10192 inst.instruction |= inst.operands[1].reg << 16;
10193 inst.instruction |= inst.operands[2].reg;
10194 }
10195 else
10196 {
10197 inst.operands[1].shifted = 1;
3d388997 10198 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
10199 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10200 ? T_MNEM_movs : T_MNEM_mov);
10201 inst.instruction |= inst.operands[0].reg << 8;
10202 encode_thumb32_shifted_operand (1);
10203 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10204 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
10205 }
10206 }
10207 else
10208 {
c19d1205 10209 if (inst.operands[2].isreg)
b99bd4ef 10210 {
3d388997 10211 switch (shift_kind)
b99bd4ef 10212 {
3d388997
PB
10213 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10214 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10215 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10216 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 10217 default: abort ();
b99bd4ef 10218 }
5f4273c7 10219
c19d1205
ZW
10220 inst.instruction |= inst.operands[0].reg;
10221 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
10222 }
10223 else
10224 {
3d388997 10225 switch (shift_kind)
b99bd4ef 10226 {
3d388997
PB
10227 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10228 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10229 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 10230 default: abort ();
b99bd4ef 10231 }
c19d1205
ZW
10232 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10233 inst.instruction |= inst.operands[0].reg;
10234 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10235 }
10236 }
c19d1205
ZW
10237 }
10238 else
10239 {
10240 constraint (inst.operands[0].reg > 7
10241 || inst.operands[1].reg > 7, BAD_HIREG);
10242 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 10243
c19d1205
ZW
10244 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10245 {
10246 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10247 constraint (inst.operands[0].reg != inst.operands[1].reg,
10248 _("source1 and dest must be same register"));
b99bd4ef 10249
c19d1205
ZW
10250 switch (inst.instruction)
10251 {
10252 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10253 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10254 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10255 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10256 default: abort ();
10257 }
5f4273c7 10258
c19d1205
ZW
10259 inst.instruction |= inst.operands[0].reg;
10260 inst.instruction |= inst.operands[2].reg << 3;
10261 }
10262 else
b99bd4ef 10263 {
c19d1205
ZW
10264 switch (inst.instruction)
10265 {
10266 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10267 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10268 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10269 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10270 default: abort ();
10271 }
10272 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10273 inst.instruction |= inst.operands[0].reg;
10274 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10275 }
10276 }
b99bd4ef
NC
10277}
10278
10279static void
c19d1205 10280do_t_simd (void)
b99bd4ef 10281{
c19d1205
ZW
10282 inst.instruction |= inst.operands[0].reg << 8;
10283 inst.instruction |= inst.operands[1].reg << 16;
10284 inst.instruction |= inst.operands[2].reg;
10285}
b99bd4ef 10286
c19d1205 10287static void
3eb17e6b 10288do_t_smc (void)
c19d1205
ZW
10289{
10290 unsigned int value = inst.reloc.exp.X_add_number;
10291 constraint (inst.reloc.exp.X_op != O_constant,
10292 _("expression too complex"));
10293 inst.reloc.type = BFD_RELOC_UNUSED;
10294 inst.instruction |= (value & 0xf000) >> 12;
10295 inst.instruction |= (value & 0x0ff0);
10296 inst.instruction |= (value & 0x000f) << 16;
10297}
b99bd4ef 10298
c19d1205
ZW
10299static void
10300do_t_ssat (void)
10301{
10302 inst.instruction |= inst.operands[0].reg << 8;
10303 inst.instruction |= inst.operands[1].imm - 1;
10304 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10305
c19d1205 10306 if (inst.operands[3].present)
b99bd4ef 10307 {
c19d1205
ZW
10308 constraint (inst.reloc.exp.X_op != O_constant,
10309 _("expression too complex"));
b99bd4ef 10310
c19d1205 10311 if (inst.reloc.exp.X_add_number != 0)
6189168b 10312 {
c19d1205
ZW
10313 if (inst.operands[3].shift_kind == SHIFT_ASR)
10314 inst.instruction |= 0x00200000; /* sh bit */
10315 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10316 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 10317 }
c19d1205 10318 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 10319 }
b99bd4ef
NC
10320}
10321
0dd132b6 10322static void
c19d1205 10323do_t_ssat16 (void)
0dd132b6 10324{
c19d1205
ZW
10325 inst.instruction |= inst.operands[0].reg << 8;
10326 inst.instruction |= inst.operands[1].imm - 1;
10327 inst.instruction |= inst.operands[2].reg << 16;
10328}
0dd132b6 10329
c19d1205
ZW
10330static void
10331do_t_strex (void)
10332{
10333 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10334 || inst.operands[2].postind || inst.operands[2].writeback
10335 || inst.operands[2].immisreg || inst.operands[2].shifted
10336 || inst.operands[2].negative,
01cfc07f 10337 BAD_ADDR_MODE);
0dd132b6 10338
c19d1205
ZW
10339 inst.instruction |= inst.operands[0].reg << 8;
10340 inst.instruction |= inst.operands[1].reg << 12;
10341 inst.instruction |= inst.operands[2].reg << 16;
10342 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
10343}
10344
b99bd4ef 10345static void
c19d1205 10346do_t_strexd (void)
b99bd4ef 10347{
c19d1205
ZW
10348 if (!inst.operands[2].present)
10349 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 10350
c19d1205
ZW
10351 constraint (inst.operands[0].reg == inst.operands[1].reg
10352 || inst.operands[0].reg == inst.operands[2].reg
10353 || inst.operands[0].reg == inst.operands[3].reg
10354 || inst.operands[1].reg == inst.operands[2].reg,
10355 BAD_OVERLAP);
b99bd4ef 10356
c19d1205
ZW
10357 inst.instruction |= inst.operands[0].reg;
10358 inst.instruction |= inst.operands[1].reg << 12;
10359 inst.instruction |= inst.operands[2].reg << 8;
10360 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
10361}
10362
10363static void
c19d1205 10364do_t_sxtah (void)
b99bd4ef 10365{
c19d1205
ZW
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg << 16;
10368 inst.instruction |= inst.operands[2].reg;
10369 inst.instruction |= inst.operands[3].imm << 4;
10370}
b99bd4ef 10371
c19d1205
ZW
10372static void
10373do_t_sxth (void)
10374{
10375 if (inst.instruction <= 0xffff && inst.size_req != 4
10376 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10377 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 10378 {
c19d1205
ZW
10379 inst.instruction = THUMB_OP16 (inst.instruction);
10380 inst.instruction |= inst.operands[0].reg;
10381 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 10382 }
c19d1205 10383 else if (unified_syntax)
b99bd4ef 10384 {
c19d1205
ZW
10385 if (inst.instruction <= 0xffff)
10386 inst.instruction = THUMB_OP32 (inst.instruction);
10387 inst.instruction |= inst.operands[0].reg << 8;
10388 inst.instruction |= inst.operands[1].reg;
10389 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 10390 }
c19d1205 10391 else
b99bd4ef 10392 {
c19d1205
ZW
10393 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10394 _("Thumb encoding does not support rotation"));
10395 constraint (1, BAD_HIREG);
b99bd4ef 10396 }
c19d1205 10397}
b99bd4ef 10398
c19d1205
ZW
10399static void
10400do_t_swi (void)
10401{
10402 inst.reloc.type = BFD_RELOC_ARM_SWI;
10403}
b99bd4ef 10404
92e90b6e
PB
10405static void
10406do_t_tb (void)
10407{
10408 int half;
10409
10410 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
10411 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10412 constraint (inst.operands[0].immisreg,
10413 _("instruction requires register index"));
92e90b6e
PB
10414 constraint (inst.operands[0].imm == 15,
10415 _("PC is not a valid index register"));
10416 constraint (!half && inst.operands[0].shifted,
10417 _("instruction does not allow shifted index"));
92e90b6e
PB
10418 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10419}
10420
c19d1205
ZW
10421static void
10422do_t_usat (void)
10423{
10424 inst.instruction |= inst.operands[0].reg << 8;
10425 inst.instruction |= inst.operands[1].imm;
10426 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10427
c19d1205 10428 if (inst.operands[3].present)
b99bd4ef 10429 {
c19d1205
ZW
10430 constraint (inst.reloc.exp.X_op != O_constant,
10431 _("expression too complex"));
10432 if (inst.reloc.exp.X_add_number != 0)
10433 {
10434 if (inst.operands[3].shift_kind == SHIFT_ASR)
10435 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 10436
c19d1205
ZW
10437 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10438 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10439 }
10440 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 10441 }
b99bd4ef
NC
10442}
10443
10444static void
c19d1205 10445do_t_usat16 (void)
b99bd4ef 10446{
c19d1205
ZW
10447 inst.instruction |= inst.operands[0].reg << 8;
10448 inst.instruction |= inst.operands[1].imm;
10449 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10450}
c19d1205 10451
5287ad62 10452/* Neon instruction encoder helpers. */
5f4273c7 10453
5287ad62 10454/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 10455
5287ad62
JB
10456/* An "invalid" code for the following tables. */
10457#define N_INV -1u
10458
10459struct neon_tab_entry
b99bd4ef 10460{
5287ad62
JB
10461 unsigned integer;
10462 unsigned float_or_poly;
10463 unsigned scalar_or_imm;
10464};
5f4273c7 10465
5287ad62
JB
10466/* Map overloaded Neon opcodes to their respective encodings. */
10467#define NEON_ENC_TAB \
10468 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10469 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10470 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10471 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10472 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10473 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10474 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10475 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10476 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10477 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10478 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10479 /* Register variants of the following two instructions are encoded as
10480 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
10481 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10482 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
5287ad62
JB
10483 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10484 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10485 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10486 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10487 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10488 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10489 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10490 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10491 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10492 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10493 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10494 X(vshl, 0x0000400, N_INV, 0x0800510), \
10495 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10496 X(vand, 0x0000110, N_INV, 0x0800030), \
10497 X(vbic, 0x0100110, N_INV, 0x0800030), \
10498 X(veor, 0x1000110, N_INV, N_INV), \
10499 X(vorn, 0x0300110, N_INV, 0x0800010), \
10500 X(vorr, 0x0200110, N_INV, 0x0800010), \
10501 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10502 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10503 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10504 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10505 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10506 X(vst1, 0x0000000, 0x0800000, N_INV), \
10507 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10508 X(vst2, 0x0000100, 0x0800100, N_INV), \
10509 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10510 X(vst3, 0x0000200, 0x0800200, N_INV), \
10511 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10512 X(vst4, 0x0000300, 0x0800300, N_INV), \
10513 X(vmovn, 0x1b20200, N_INV, N_INV), \
10514 X(vtrn, 0x1b20080, N_INV, N_INV), \
10515 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
10516 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10517 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10518 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10519 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10520 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10521 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10522 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10523 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
10524
10525enum neon_opc
10526{
10527#define X(OPC,I,F,S) N_MNEM_##OPC
10528NEON_ENC_TAB
10529#undef X
10530};
b99bd4ef 10531
5287ad62
JB
10532static const struct neon_tab_entry neon_enc_tab[] =
10533{
10534#define X(OPC,I,F,S) { (I), (F), (S) }
10535NEON_ENC_TAB
10536#undef X
10537};
b99bd4ef 10538
5287ad62
JB
10539#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10540#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10541#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10542#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10543#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10544#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10545#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10546#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10547#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
10548#define NEON_ENC_SINGLE(X) \
10549 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10550#define NEON_ENC_DOUBLE(X) \
10551 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 10552
037e8744
JB
10553/* Define shapes for instruction operands. The following mnemonic characters
10554 are used in this table:
5287ad62 10555
037e8744 10556 F - VFP S<n> register
5287ad62
JB
10557 D - Neon D<n> register
10558 Q - Neon Q<n> register
10559 I - Immediate
10560 S - Scalar
10561 R - ARM register
10562 L - D<n> register list
5f4273c7 10563
037e8744
JB
10564 This table is used to generate various data:
10565 - enumerations of the form NS_DDR to be used as arguments to
10566 neon_select_shape.
10567 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 10568 - a table used to drive neon_select_shape. */
b99bd4ef 10569
037e8744
JB
10570#define NEON_SHAPE_DEF \
10571 X(3, (D, D, D), DOUBLE), \
10572 X(3, (Q, Q, Q), QUAD), \
10573 X(3, (D, D, I), DOUBLE), \
10574 X(3, (Q, Q, I), QUAD), \
10575 X(3, (D, D, S), DOUBLE), \
10576 X(3, (Q, Q, S), QUAD), \
10577 X(2, (D, D), DOUBLE), \
10578 X(2, (Q, Q), QUAD), \
10579 X(2, (D, S), DOUBLE), \
10580 X(2, (Q, S), QUAD), \
10581 X(2, (D, R), DOUBLE), \
10582 X(2, (Q, R), QUAD), \
10583 X(2, (D, I), DOUBLE), \
10584 X(2, (Q, I), QUAD), \
10585 X(3, (D, L, D), DOUBLE), \
10586 X(2, (D, Q), MIXED), \
10587 X(2, (Q, D), MIXED), \
10588 X(3, (D, Q, I), MIXED), \
10589 X(3, (Q, D, I), MIXED), \
10590 X(3, (Q, D, D), MIXED), \
10591 X(3, (D, Q, Q), MIXED), \
10592 X(3, (Q, Q, D), MIXED), \
10593 X(3, (Q, D, S), MIXED), \
10594 X(3, (D, Q, S), MIXED), \
10595 X(4, (D, D, D, I), DOUBLE), \
10596 X(4, (Q, Q, Q, I), QUAD), \
10597 X(2, (F, F), SINGLE), \
10598 X(3, (F, F, F), SINGLE), \
10599 X(2, (F, I), SINGLE), \
10600 X(2, (F, D), MIXED), \
10601 X(2, (D, F), MIXED), \
10602 X(3, (F, F, I), MIXED), \
10603 X(4, (R, R, F, F), SINGLE), \
10604 X(4, (F, F, R, R), SINGLE), \
10605 X(3, (D, R, R), DOUBLE), \
10606 X(3, (R, R, D), DOUBLE), \
10607 X(2, (S, R), SINGLE), \
10608 X(2, (R, S), SINGLE), \
10609 X(2, (F, R), SINGLE), \
10610 X(2, (R, F), SINGLE)
10611
10612#define S2(A,B) NS_##A##B
10613#define S3(A,B,C) NS_##A##B##C
10614#define S4(A,B,C,D) NS_##A##B##C##D
10615
10616#define X(N, L, C) S##N L
10617
5287ad62
JB
10618enum neon_shape
10619{
037e8744
JB
10620 NEON_SHAPE_DEF,
10621 NS_NULL
5287ad62 10622};
b99bd4ef 10623
037e8744
JB
10624#undef X
10625#undef S2
10626#undef S3
10627#undef S4
10628
10629enum neon_shape_class
10630{
10631 SC_SINGLE,
10632 SC_DOUBLE,
10633 SC_QUAD,
10634 SC_MIXED
10635};
10636
10637#define X(N, L, C) SC_##C
10638
10639static enum neon_shape_class neon_shape_class[] =
10640{
10641 NEON_SHAPE_DEF
10642};
10643
10644#undef X
10645
10646enum neon_shape_el
10647{
10648 SE_F,
10649 SE_D,
10650 SE_Q,
10651 SE_I,
10652 SE_S,
10653 SE_R,
10654 SE_L
10655};
10656
10657/* Register widths of above. */
10658static unsigned neon_shape_el_size[] =
10659{
10660 32,
10661 64,
10662 128,
10663 0,
10664 32,
10665 32,
10666 0
10667};
10668
10669struct neon_shape_info
10670{
10671 unsigned els;
10672 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10673};
10674
10675#define S2(A,B) { SE_##A, SE_##B }
10676#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10677#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10678
10679#define X(N, L, C) { N, S##N L }
10680
10681static struct neon_shape_info neon_shape_tab[] =
10682{
10683 NEON_SHAPE_DEF
10684};
10685
10686#undef X
10687#undef S2
10688#undef S3
10689#undef S4
10690
5287ad62
JB
10691/* Bit masks used in type checking given instructions.
10692 'N_EQK' means the type must be the same as (or based on in some way) the key
10693 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10694 set, various other bits can be set as well in order to modify the meaning of
10695 the type constraint. */
10696
10697enum neon_type_mask
10698{
8e79c3df
CM
10699 N_S8 = 0x0000001,
10700 N_S16 = 0x0000002,
10701 N_S32 = 0x0000004,
10702 N_S64 = 0x0000008,
10703 N_U8 = 0x0000010,
10704 N_U16 = 0x0000020,
10705 N_U32 = 0x0000040,
10706 N_U64 = 0x0000080,
10707 N_I8 = 0x0000100,
10708 N_I16 = 0x0000200,
10709 N_I32 = 0x0000400,
10710 N_I64 = 0x0000800,
10711 N_8 = 0x0001000,
10712 N_16 = 0x0002000,
10713 N_32 = 0x0004000,
10714 N_64 = 0x0008000,
10715 N_P8 = 0x0010000,
10716 N_P16 = 0x0020000,
10717 N_F16 = 0x0040000,
10718 N_F32 = 0x0080000,
10719 N_F64 = 0x0100000,
10720 N_KEY = 0x1000000, /* key element (main type specifier). */
10721 N_EQK = 0x2000000, /* given operand has the same type & size as the key. */
10722 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
10723 N_DBL = 0x0000001, /* if N_EQK, this operand is twice the size. */
10724 N_HLF = 0x0000002, /* if N_EQK, this operand is half the size. */
10725 N_SGN = 0x0000004, /* if N_EQK, this operand is forced to be signed. */
10726 N_UNS = 0x0000008, /* if N_EQK, this operand is forced to be unsigned. */
10727 N_INT = 0x0000010, /* if N_EQK, this operand is forced to be integer. */
10728 N_FLT = 0x0000020, /* if N_EQK, this operand is forced to be float. */
10729 N_SIZ = 0x0000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62 10730 N_UTYP = 0,
037e8744 10731 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
10732};
10733
dcbf9037
JB
10734#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10735
5287ad62
JB
10736#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10737#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10738#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10739#define N_SUF_32 (N_SU_32 | N_F32)
10740#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10741#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10742
10743/* Pass this as the first type argument to neon_check_type to ignore types
10744 altogether. */
10745#define N_IGNORE_TYPE (N_KEY | N_EQK)
10746
037e8744
JB
10747/* Select a "shape" for the current instruction (describing register types or
10748 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10749 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10750 function of operand parsing, so this function doesn't need to be called.
10751 Shapes should be listed in order of decreasing length. */
5287ad62
JB
10752
10753static enum neon_shape
037e8744 10754neon_select_shape (enum neon_shape shape, ...)
5287ad62 10755{
037e8744
JB
10756 va_list ap;
10757 enum neon_shape first_shape = shape;
5287ad62
JB
10758
10759 /* Fix missing optional operands. FIXME: we don't know at this point how
10760 many arguments we should have, so this makes the assumption that we have
10761 > 1. This is true of all current Neon opcodes, I think, but may not be
10762 true in the future. */
10763 if (!inst.operands[1].present)
10764 inst.operands[1] = inst.operands[0];
10765
037e8744 10766 va_start (ap, shape);
5f4273c7 10767
037e8744
JB
10768 for (; shape != NS_NULL; shape = va_arg (ap, int))
10769 {
10770 unsigned j;
10771 int matches = 1;
10772
10773 for (j = 0; j < neon_shape_tab[shape].els; j++)
10774 {
10775 if (!inst.operands[j].present)
10776 {
10777 matches = 0;
10778 break;
10779 }
10780
10781 switch (neon_shape_tab[shape].el[j])
10782 {
10783 case SE_F:
10784 if (!(inst.operands[j].isreg
10785 && inst.operands[j].isvec
10786 && inst.operands[j].issingle
10787 && !inst.operands[j].isquad))
10788 matches = 0;
10789 break;
10790
10791 case SE_D:
10792 if (!(inst.operands[j].isreg
10793 && inst.operands[j].isvec
10794 && !inst.operands[j].isquad
10795 && !inst.operands[j].issingle))
10796 matches = 0;
10797 break;
10798
10799 case SE_R:
10800 if (!(inst.operands[j].isreg
10801 && !inst.operands[j].isvec))
10802 matches = 0;
10803 break;
10804
10805 case SE_Q:
10806 if (!(inst.operands[j].isreg
10807 && inst.operands[j].isvec
10808 && inst.operands[j].isquad
10809 && !inst.operands[j].issingle))
10810 matches = 0;
10811 break;
10812
10813 case SE_I:
10814 if (!(!inst.operands[j].isreg
10815 && !inst.operands[j].isscalar))
10816 matches = 0;
10817 break;
10818
10819 case SE_S:
10820 if (!(!inst.operands[j].isreg
10821 && inst.operands[j].isscalar))
10822 matches = 0;
10823 break;
10824
10825 case SE_L:
10826 break;
10827 }
10828 }
10829 if (matches)
5287ad62 10830 break;
037e8744 10831 }
5f4273c7 10832
037e8744 10833 va_end (ap);
5287ad62 10834
037e8744
JB
10835 if (shape == NS_NULL && first_shape != NS_NULL)
10836 first_error (_("invalid instruction shape"));
5287ad62 10837
037e8744
JB
10838 return shape;
10839}
5287ad62 10840
037e8744
JB
10841/* True if SHAPE is predominantly a quadword operation (most of the time, this
10842 means the Q bit should be set). */
10843
10844static int
10845neon_quad (enum neon_shape shape)
10846{
10847 return neon_shape_class[shape] == SC_QUAD;
5287ad62 10848}
037e8744 10849
5287ad62
JB
10850static void
10851neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10852 unsigned *g_size)
10853{
10854 /* Allow modification to be made to types which are constrained to be
10855 based on the key element, based on bits set alongside N_EQK. */
10856 if ((typebits & N_EQK) != 0)
10857 {
10858 if ((typebits & N_HLF) != 0)
10859 *g_size /= 2;
10860 else if ((typebits & N_DBL) != 0)
10861 *g_size *= 2;
10862 if ((typebits & N_SGN) != 0)
10863 *g_type = NT_signed;
10864 else if ((typebits & N_UNS) != 0)
10865 *g_type = NT_unsigned;
10866 else if ((typebits & N_INT) != 0)
10867 *g_type = NT_integer;
10868 else if ((typebits & N_FLT) != 0)
10869 *g_type = NT_float;
dcbf9037
JB
10870 else if ((typebits & N_SIZ) != 0)
10871 *g_type = NT_untyped;
5287ad62
JB
10872 }
10873}
5f4273c7 10874
5287ad62
JB
10875/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10876 operand type, i.e. the single type specified in a Neon instruction when it
10877 is the only one given. */
10878
10879static struct neon_type_el
10880neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10881{
10882 struct neon_type_el dest = *key;
5f4273c7 10883
5287ad62 10884 assert ((thisarg & N_EQK) != 0);
5f4273c7 10885
5287ad62
JB
10886 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10887
10888 return dest;
10889}
10890
10891/* Convert Neon type and size into compact bitmask representation. */
10892
10893static enum neon_type_mask
10894type_chk_of_el_type (enum neon_el_type type, unsigned size)
10895{
10896 switch (type)
10897 {
10898 case NT_untyped:
10899 switch (size)
10900 {
10901 case 8: return N_8;
10902 case 16: return N_16;
10903 case 32: return N_32;
10904 case 64: return N_64;
10905 default: ;
10906 }
10907 break;
10908
10909 case NT_integer:
10910 switch (size)
10911 {
10912 case 8: return N_I8;
10913 case 16: return N_I16;
10914 case 32: return N_I32;
10915 case 64: return N_I64;
10916 default: ;
10917 }
10918 break;
10919
10920 case NT_float:
037e8744
JB
10921 switch (size)
10922 {
8e79c3df 10923 case 16: return N_F16;
037e8744
JB
10924 case 32: return N_F32;
10925 case 64: return N_F64;
10926 default: ;
10927 }
5287ad62
JB
10928 break;
10929
10930 case NT_poly:
10931 switch (size)
10932 {
10933 case 8: return N_P8;
10934 case 16: return N_P16;
10935 default: ;
10936 }
10937 break;
10938
10939 case NT_signed:
10940 switch (size)
10941 {
10942 case 8: return N_S8;
10943 case 16: return N_S16;
10944 case 32: return N_S32;
10945 case 64: return N_S64;
10946 default: ;
10947 }
10948 break;
10949
10950 case NT_unsigned:
10951 switch (size)
10952 {
10953 case 8: return N_U8;
10954 case 16: return N_U16;
10955 case 32: return N_U32;
10956 case 64: return N_U64;
10957 default: ;
10958 }
10959 break;
10960
10961 default: ;
10962 }
5f4273c7 10963
5287ad62
JB
10964 return N_UTYP;
10965}
10966
10967/* Convert compact Neon bitmask type representation to a type and size. Only
10968 handles the case where a single bit is set in the mask. */
10969
dcbf9037 10970static int
5287ad62
JB
10971el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10972 enum neon_type_mask mask)
10973{
dcbf9037
JB
10974 if ((mask & N_EQK) != 0)
10975 return FAIL;
10976
5287ad62
JB
10977 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10978 *size = 8;
dcbf9037 10979 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 10980 *size = 16;
dcbf9037 10981 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 10982 *size = 32;
037e8744 10983 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 10984 *size = 64;
dcbf9037
JB
10985 else
10986 return FAIL;
10987
5287ad62
JB
10988 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10989 *type = NT_signed;
dcbf9037 10990 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 10991 *type = NT_unsigned;
dcbf9037 10992 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 10993 *type = NT_integer;
dcbf9037 10994 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 10995 *type = NT_untyped;
dcbf9037 10996 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 10997 *type = NT_poly;
037e8744 10998 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 10999 *type = NT_float;
dcbf9037
JB
11000 else
11001 return FAIL;
5f4273c7 11002
dcbf9037 11003 return SUCCESS;
5287ad62
JB
11004}
11005
11006/* Modify a bitmask of allowed types. This is only needed for type
11007 relaxation. */
11008
11009static unsigned
11010modify_types_allowed (unsigned allowed, unsigned mods)
11011{
11012 unsigned size;
11013 enum neon_el_type type;
11014 unsigned destmask;
11015 int i;
5f4273c7 11016
5287ad62 11017 destmask = 0;
5f4273c7 11018
5287ad62
JB
11019 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11020 {
dcbf9037
JB
11021 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11022 {
11023 neon_modify_type_size (mods, &type, &size);
11024 destmask |= type_chk_of_el_type (type, size);
11025 }
5287ad62 11026 }
5f4273c7 11027
5287ad62
JB
11028 return destmask;
11029}
11030
11031/* Check type and return type classification.
11032 The manual states (paraphrase): If one datatype is given, it indicates the
11033 type given in:
11034 - the second operand, if there is one
11035 - the operand, if there is no second operand
11036 - the result, if there are no operands.
11037 This isn't quite good enough though, so we use a concept of a "key" datatype
11038 which is set on a per-instruction basis, which is the one which matters when
11039 only one data type is written.
11040 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 11041 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
11042
11043static struct neon_type_el
11044neon_check_type (unsigned els, enum neon_shape ns, ...)
11045{
11046 va_list ap;
11047 unsigned i, pass, key_el = 0;
11048 unsigned types[NEON_MAX_TYPE_ELS];
11049 enum neon_el_type k_type = NT_invtype;
11050 unsigned k_size = -1u;
11051 struct neon_type_el badtype = {NT_invtype, -1};
11052 unsigned key_allowed = 0;
11053
11054 /* Optional registers in Neon instructions are always (not) in operand 1.
11055 Fill in the missing operand here, if it was omitted. */
11056 if (els > 1 && !inst.operands[1].present)
11057 inst.operands[1] = inst.operands[0];
11058
11059 /* Suck up all the varargs. */
11060 va_start (ap, ns);
11061 for (i = 0; i < els; i++)
11062 {
11063 unsigned thisarg = va_arg (ap, unsigned);
11064 if (thisarg == N_IGNORE_TYPE)
11065 {
11066 va_end (ap);
11067 return badtype;
11068 }
11069 types[i] = thisarg;
11070 if ((thisarg & N_KEY) != 0)
11071 key_el = i;
11072 }
11073 va_end (ap);
11074
dcbf9037
JB
11075 if (inst.vectype.elems > 0)
11076 for (i = 0; i < els; i++)
11077 if (inst.operands[i].vectype.type != NT_invtype)
11078 {
11079 first_error (_("types specified in both the mnemonic and operands"));
11080 return badtype;
11081 }
11082
5287ad62
JB
11083 /* Duplicate inst.vectype elements here as necessary.
11084 FIXME: No idea if this is exactly the same as the ARM assembler,
11085 particularly when an insn takes one register and one non-register
11086 operand. */
11087 if (inst.vectype.elems == 1 && els > 1)
11088 {
11089 unsigned j;
11090 inst.vectype.elems = els;
11091 inst.vectype.el[key_el] = inst.vectype.el[0];
11092 for (j = 0; j < els; j++)
dcbf9037
JB
11093 if (j != key_el)
11094 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11095 types[j]);
11096 }
11097 else if (inst.vectype.elems == 0 && els > 0)
11098 {
11099 unsigned j;
11100 /* No types were given after the mnemonic, so look for types specified
11101 after each operand. We allow some flexibility here; as long as the
11102 "key" operand has a type, we can infer the others. */
11103 for (j = 0; j < els; j++)
11104 if (inst.operands[j].vectype.type != NT_invtype)
11105 inst.vectype.el[j] = inst.operands[j].vectype;
11106
11107 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 11108 {
dcbf9037
JB
11109 for (j = 0; j < els; j++)
11110 if (inst.operands[j].vectype.type == NT_invtype)
11111 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11112 types[j]);
11113 }
11114 else
11115 {
11116 first_error (_("operand types can't be inferred"));
11117 return badtype;
5287ad62
JB
11118 }
11119 }
11120 else if (inst.vectype.elems != els)
11121 {
dcbf9037 11122 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
11123 return badtype;
11124 }
11125
11126 for (pass = 0; pass < 2; pass++)
11127 {
11128 for (i = 0; i < els; i++)
11129 {
11130 unsigned thisarg = types[i];
11131 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11132 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11133 enum neon_el_type g_type = inst.vectype.el[i].type;
11134 unsigned g_size = inst.vectype.el[i].size;
11135
11136 /* Decay more-specific signed & unsigned types to sign-insensitive
11137 integer types if sign-specific variants are unavailable. */
11138 if ((g_type == NT_signed || g_type == NT_unsigned)
11139 && (types_allowed & N_SU_ALL) == 0)
11140 g_type = NT_integer;
11141
11142 /* If only untyped args are allowed, decay any more specific types to
11143 them. Some instructions only care about signs for some element
11144 sizes, so handle that properly. */
11145 if ((g_size == 8 && (types_allowed & N_8) != 0)
11146 || (g_size == 16 && (types_allowed & N_16) != 0)
11147 || (g_size == 32 && (types_allowed & N_32) != 0)
11148 || (g_size == 64 && (types_allowed & N_64) != 0))
11149 g_type = NT_untyped;
11150
11151 if (pass == 0)
11152 {
11153 if ((thisarg & N_KEY) != 0)
11154 {
11155 k_type = g_type;
11156 k_size = g_size;
11157 key_allowed = thisarg & ~N_KEY;
11158 }
11159 }
11160 else
11161 {
037e8744
JB
11162 if ((thisarg & N_VFP) != 0)
11163 {
11164 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11165 unsigned regwidth = neon_shape_el_size[regshape], match;
11166
11167 /* In VFP mode, operands must match register widths. If we
11168 have a key operand, use its width, else use the width of
11169 the current operand. */
11170 if (k_size != -1u)
11171 match = k_size;
11172 else
11173 match = g_size;
11174
11175 if (regwidth != match)
11176 {
11177 first_error (_("operand size must match register width"));
11178 return badtype;
11179 }
11180 }
5f4273c7 11181
5287ad62
JB
11182 if ((thisarg & N_EQK) == 0)
11183 {
11184 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11185
11186 if ((given_type & types_allowed) == 0)
11187 {
dcbf9037 11188 first_error (_("bad type in Neon instruction"));
5287ad62
JB
11189 return badtype;
11190 }
11191 }
11192 else
11193 {
11194 enum neon_el_type mod_k_type = k_type;
11195 unsigned mod_k_size = k_size;
11196 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11197 if (g_type != mod_k_type || g_size != mod_k_size)
11198 {
dcbf9037 11199 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
11200 return badtype;
11201 }
11202 }
11203 }
11204 }
11205 }
11206
11207 return inst.vectype.el[key_el];
11208}
11209
037e8744 11210/* Neon-style VFP instruction forwarding. */
5287ad62 11211
037e8744
JB
11212/* Thumb VFP instructions have 0xE in the condition field. */
11213
11214static void
11215do_vfp_cond_or_thumb (void)
5287ad62
JB
11216{
11217 if (thumb_mode)
037e8744 11218 inst.instruction |= 0xe0000000;
5287ad62 11219 else
037e8744 11220 inst.instruction |= inst.cond << 28;
5287ad62
JB
11221}
11222
037e8744
JB
11223/* Look up and encode a simple mnemonic, for use as a helper function for the
11224 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11225 etc. It is assumed that operand parsing has already been done, and that the
11226 operands are in the form expected by the given opcode (this isn't necessarily
11227 the same as the form in which they were parsed, hence some massaging must
11228 take place before this function is called).
11229 Checks current arch version against that in the looked-up opcode. */
5287ad62 11230
037e8744
JB
11231static void
11232do_vfp_nsyn_opcode (const char *opname)
5287ad62 11233{
037e8744 11234 const struct asm_opcode *opcode;
5f4273c7 11235
037e8744 11236 opcode = hash_find (arm_ops_hsh, opname);
5287ad62 11237
037e8744
JB
11238 if (!opcode)
11239 abort ();
5287ad62 11240
037e8744
JB
11241 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11242 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11243 _(BAD_FPU));
5287ad62 11244
037e8744
JB
11245 if (thumb_mode)
11246 {
11247 inst.instruction = opcode->tvalue;
11248 opcode->tencode ();
11249 }
11250 else
11251 {
11252 inst.instruction = (inst.cond << 28) | opcode->avalue;
11253 opcode->aencode ();
11254 }
11255}
5287ad62
JB
11256
11257static void
037e8744 11258do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 11259{
037e8744
JB
11260 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11261
11262 if (rs == NS_FFF)
11263 {
11264 if (is_add)
11265 do_vfp_nsyn_opcode ("fadds");
11266 else
11267 do_vfp_nsyn_opcode ("fsubs");
11268 }
11269 else
11270 {
11271 if (is_add)
11272 do_vfp_nsyn_opcode ("faddd");
11273 else
11274 do_vfp_nsyn_opcode ("fsubd");
11275 }
11276}
11277
11278/* Check operand types to see if this is a VFP instruction, and if so call
11279 PFN (). */
11280
11281static int
11282try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11283{
11284 enum neon_shape rs;
11285 struct neon_type_el et;
11286
11287 switch (args)
11288 {
11289 case 2:
11290 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11291 et = neon_check_type (2, rs,
11292 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11293 break;
5f4273c7 11294
037e8744
JB
11295 case 3:
11296 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11297 et = neon_check_type (3, rs,
11298 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11299 break;
11300
11301 default:
11302 abort ();
11303 }
11304
11305 if (et.type != NT_invtype)
11306 {
11307 pfn (rs);
11308 return SUCCESS;
11309 }
11310 else
11311 inst.error = NULL;
11312
11313 return FAIL;
11314}
11315
11316static void
11317do_vfp_nsyn_mla_mls (enum neon_shape rs)
11318{
11319 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 11320
037e8744
JB
11321 if (rs == NS_FFF)
11322 {
11323 if (is_mla)
11324 do_vfp_nsyn_opcode ("fmacs");
11325 else
11326 do_vfp_nsyn_opcode ("fmscs");
11327 }
11328 else
11329 {
11330 if (is_mla)
11331 do_vfp_nsyn_opcode ("fmacd");
11332 else
11333 do_vfp_nsyn_opcode ("fmscd");
11334 }
11335}
11336
11337static void
11338do_vfp_nsyn_mul (enum neon_shape rs)
11339{
11340 if (rs == NS_FFF)
11341 do_vfp_nsyn_opcode ("fmuls");
11342 else
11343 do_vfp_nsyn_opcode ("fmuld");
11344}
11345
11346static void
11347do_vfp_nsyn_abs_neg (enum neon_shape rs)
11348{
11349 int is_neg = (inst.instruction & 0x80) != 0;
11350 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11351
11352 if (rs == NS_FF)
11353 {
11354 if (is_neg)
11355 do_vfp_nsyn_opcode ("fnegs");
11356 else
11357 do_vfp_nsyn_opcode ("fabss");
11358 }
11359 else
11360 {
11361 if (is_neg)
11362 do_vfp_nsyn_opcode ("fnegd");
11363 else
11364 do_vfp_nsyn_opcode ("fabsd");
11365 }
11366}
11367
11368/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11369 insns belong to Neon, and are handled elsewhere. */
11370
11371static void
11372do_vfp_nsyn_ldm_stm (int is_dbmode)
11373{
11374 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11375 if (is_ldm)
11376 {
11377 if (is_dbmode)
11378 do_vfp_nsyn_opcode ("fldmdbs");
11379 else
11380 do_vfp_nsyn_opcode ("fldmias");
11381 }
11382 else
11383 {
11384 if (is_dbmode)
11385 do_vfp_nsyn_opcode ("fstmdbs");
11386 else
11387 do_vfp_nsyn_opcode ("fstmias");
11388 }
11389}
11390
037e8744
JB
11391static void
11392do_vfp_nsyn_sqrt (void)
11393{
11394 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11395 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11396
037e8744
JB
11397 if (rs == NS_FF)
11398 do_vfp_nsyn_opcode ("fsqrts");
11399 else
11400 do_vfp_nsyn_opcode ("fsqrtd");
11401}
11402
11403static void
11404do_vfp_nsyn_div (void)
11405{
11406 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11407 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11408 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11409
037e8744
JB
11410 if (rs == NS_FFF)
11411 do_vfp_nsyn_opcode ("fdivs");
11412 else
11413 do_vfp_nsyn_opcode ("fdivd");
11414}
11415
11416static void
11417do_vfp_nsyn_nmul (void)
11418{
11419 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11420 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11421 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11422
037e8744
JB
11423 if (rs == NS_FFF)
11424 {
11425 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11426 do_vfp_sp_dyadic ();
11427 }
11428 else
11429 {
11430 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11431 do_vfp_dp_rd_rn_rm ();
11432 }
11433 do_vfp_cond_or_thumb ();
11434}
11435
11436static void
11437do_vfp_nsyn_cmp (void)
11438{
11439 if (inst.operands[1].isreg)
11440 {
11441 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11442 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 11443
037e8744
JB
11444 if (rs == NS_FF)
11445 {
11446 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11447 do_vfp_sp_monadic ();
11448 }
11449 else
11450 {
11451 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11452 do_vfp_dp_rd_rm ();
11453 }
11454 }
11455 else
11456 {
11457 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11458 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11459
11460 switch (inst.instruction & 0x0fffffff)
11461 {
11462 case N_MNEM_vcmp:
11463 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11464 break;
11465 case N_MNEM_vcmpe:
11466 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11467 break;
11468 default:
11469 abort ();
11470 }
5f4273c7 11471
037e8744
JB
11472 if (rs == NS_FI)
11473 {
11474 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11475 do_vfp_sp_compare_z ();
11476 }
11477 else
11478 {
11479 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11480 do_vfp_dp_rd ();
11481 }
11482 }
11483 do_vfp_cond_or_thumb ();
11484}
11485
11486static void
11487nsyn_insert_sp (void)
11488{
11489 inst.operands[1] = inst.operands[0];
11490 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11491 inst.operands[0].reg = 13;
11492 inst.operands[0].isreg = 1;
11493 inst.operands[0].writeback = 1;
11494 inst.operands[0].present = 1;
11495}
11496
11497static void
11498do_vfp_nsyn_push (void)
11499{
11500 nsyn_insert_sp ();
11501 if (inst.operands[1].issingle)
11502 do_vfp_nsyn_opcode ("fstmdbs");
11503 else
11504 do_vfp_nsyn_opcode ("fstmdbd");
11505}
11506
11507static void
11508do_vfp_nsyn_pop (void)
11509{
11510 nsyn_insert_sp ();
11511 if (inst.operands[1].issingle)
22b5b651 11512 do_vfp_nsyn_opcode ("fldmias");
037e8744 11513 else
22b5b651 11514 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
11515}
11516
11517/* Fix up Neon data-processing instructions, ORing in the correct bits for
11518 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11519
11520static unsigned
11521neon_dp_fixup (unsigned i)
11522{
11523 if (thumb_mode)
11524 {
11525 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11526 if (i & (1 << 24))
11527 i |= 1 << 28;
5f4273c7 11528
037e8744 11529 i &= ~(1 << 24);
5f4273c7 11530
037e8744
JB
11531 i |= 0xef000000;
11532 }
11533 else
11534 i |= 0xf2000000;
5f4273c7 11535
037e8744
JB
11536 return i;
11537}
11538
11539/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11540 (0, 1, 2, 3). */
11541
11542static unsigned
11543neon_logbits (unsigned x)
11544{
11545 return ffs (x) - 4;
11546}
11547
11548#define LOW4(R) ((R) & 0xf)
11549#define HI1(R) (((R) >> 4) & 1)
11550
11551/* Encode insns with bit pattern:
11552
11553 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11554 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 11555
037e8744
JB
11556 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11557 different meaning for some instruction. */
11558
11559static void
11560neon_three_same (int isquad, int ubit, int size)
11561{
11562 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11563 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11564 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11565 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11566 inst.instruction |= LOW4 (inst.operands[2].reg);
11567 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11568 inst.instruction |= (isquad != 0) << 6;
11569 inst.instruction |= (ubit != 0) << 24;
11570 if (size != -1)
11571 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 11572
037e8744
JB
11573 inst.instruction = neon_dp_fixup (inst.instruction);
11574}
11575
11576/* Encode instructions of the form:
11577
11578 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11579 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
11580
11581 Don't write size if SIZE == -1. */
11582
11583static void
11584neon_two_same (int qbit, int ubit, int size)
11585{
11586 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11587 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11588 inst.instruction |= LOW4 (inst.operands[1].reg);
11589 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11590 inst.instruction |= (qbit != 0) << 6;
11591 inst.instruction |= (ubit != 0) << 24;
11592
11593 if (size != -1)
11594 inst.instruction |= neon_logbits (size) << 18;
11595
11596 inst.instruction = neon_dp_fixup (inst.instruction);
11597}
11598
11599/* Neon instruction encoders, in approximate order of appearance. */
11600
11601static void
11602do_neon_dyadic_i_su (void)
11603{
037e8744 11604 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11605 struct neon_type_el et = neon_check_type (3, rs,
11606 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 11607 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11608}
11609
11610static void
11611do_neon_dyadic_i64_su (void)
11612{
037e8744 11613 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11614 struct neon_type_el et = neon_check_type (3, rs,
11615 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 11616 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11617}
11618
11619static void
11620neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11621 unsigned immbits)
11622{
11623 unsigned size = et.size >> 3;
11624 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11625 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11626 inst.instruction |= LOW4 (inst.operands[1].reg);
11627 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11628 inst.instruction |= (isquad != 0) << 6;
11629 inst.instruction |= immbits << 16;
11630 inst.instruction |= (size >> 3) << 7;
11631 inst.instruction |= (size & 0x7) << 19;
11632 if (write_ubit)
11633 inst.instruction |= (uval != 0) << 24;
11634
11635 inst.instruction = neon_dp_fixup (inst.instruction);
11636}
11637
11638static void
11639do_neon_shl_imm (void)
11640{
11641 if (!inst.operands[2].isreg)
11642 {
037e8744 11643 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11644 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11645 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11646 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
11647 }
11648 else
11649 {
037e8744 11650 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11651 struct neon_type_el et = neon_check_type (3, rs,
11652 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11653 unsigned int tmp;
11654
11655 /* VSHL/VQSHL 3-register variants have syntax such as:
11656 vshl.xx Dd, Dm, Dn
11657 whereas other 3-register operations encoded by neon_three_same have
11658 syntax like:
11659 vadd.xx Dd, Dn, Dm
11660 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11661 here. */
11662 tmp = inst.operands[2].reg;
11663 inst.operands[2].reg = inst.operands[1].reg;
11664 inst.operands[1].reg = tmp;
5287ad62 11665 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11666 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11667 }
11668}
11669
11670static void
11671do_neon_qshl_imm (void)
11672{
11673 if (!inst.operands[2].isreg)
11674 {
037e8744 11675 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 11676 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 11677
5287ad62 11678 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11679 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
11680 inst.operands[2].imm);
11681 }
11682 else
11683 {
037e8744 11684 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11685 struct neon_type_el et = neon_check_type (3, rs,
11686 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11687 unsigned int tmp;
11688
11689 /* See note in do_neon_shl_imm. */
11690 tmp = inst.operands[2].reg;
11691 inst.operands[2].reg = inst.operands[1].reg;
11692 inst.operands[1].reg = tmp;
5287ad62 11693 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11694 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11695 }
11696}
11697
627907b7
JB
11698static void
11699do_neon_rshl (void)
11700{
11701 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11702 struct neon_type_el et = neon_check_type (3, rs,
11703 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11704 unsigned int tmp;
11705
11706 tmp = inst.operands[2].reg;
11707 inst.operands[2].reg = inst.operands[1].reg;
11708 inst.operands[1].reg = tmp;
11709 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11710}
11711
5287ad62
JB
11712static int
11713neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11714{
036dc3f7
PB
11715 /* Handle .I8 pseudo-instructions. */
11716 if (size == 8)
5287ad62 11717 {
5287ad62
JB
11718 /* Unfortunately, this will make everything apart from zero out-of-range.
11719 FIXME is this the intended semantics? There doesn't seem much point in
11720 accepting .I8 if so. */
11721 immediate |= immediate << 8;
11722 size = 16;
036dc3f7
PB
11723 }
11724
11725 if (size >= 32)
11726 {
11727 if (immediate == (immediate & 0x000000ff))
11728 {
11729 *immbits = immediate;
11730 return 0x1;
11731 }
11732 else if (immediate == (immediate & 0x0000ff00))
11733 {
11734 *immbits = immediate >> 8;
11735 return 0x3;
11736 }
11737 else if (immediate == (immediate & 0x00ff0000))
11738 {
11739 *immbits = immediate >> 16;
11740 return 0x5;
11741 }
11742 else if (immediate == (immediate & 0xff000000))
11743 {
11744 *immbits = immediate >> 24;
11745 return 0x7;
11746 }
11747 if ((immediate & 0xffff) != (immediate >> 16))
11748 goto bad_immediate;
11749 immediate &= 0xffff;
5287ad62
JB
11750 }
11751
11752 if (immediate == (immediate & 0x000000ff))
11753 {
11754 *immbits = immediate;
036dc3f7 11755 return 0x9;
5287ad62
JB
11756 }
11757 else if (immediate == (immediate & 0x0000ff00))
11758 {
11759 *immbits = immediate >> 8;
036dc3f7 11760 return 0xb;
5287ad62
JB
11761 }
11762
11763 bad_immediate:
dcbf9037 11764 first_error (_("immediate value out of range"));
5287ad62
JB
11765 return FAIL;
11766}
11767
11768/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11769 A, B, C, D. */
11770
11771static int
11772neon_bits_same_in_bytes (unsigned imm)
11773{
11774 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11775 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11776 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11777 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11778}
11779
11780/* For immediate of above form, return 0bABCD. */
11781
11782static unsigned
11783neon_squash_bits (unsigned imm)
11784{
11785 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11786 | ((imm & 0x01000000) >> 21);
11787}
11788
136da414 11789/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
11790
11791static unsigned
11792neon_qfloat_bits (unsigned imm)
11793{
136da414 11794 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
11795}
11796
11797/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11798 the instruction. *OP is passed as the initial value of the op field, and
11799 may be set to a different value depending on the constant (i.e.
11800 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 11801 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 11802 try smaller element sizes. */
5287ad62
JB
11803
11804static int
c96612cc
JB
11805neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11806 unsigned *immbits, int *op, int size,
11807 enum neon_el_type type)
5287ad62 11808{
c96612cc
JB
11809 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11810 float. */
11811 if (type == NT_float && !float_p)
11812 return FAIL;
11813
136da414
JB
11814 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11815 {
11816 if (size != 32 || *op == 1)
11817 return FAIL;
11818 *immbits = neon_qfloat_bits (immlo);
11819 return 0xf;
11820 }
036dc3f7
PB
11821
11822 if (size == 64)
5287ad62 11823 {
036dc3f7
PB
11824 if (neon_bits_same_in_bytes (immhi)
11825 && neon_bits_same_in_bytes (immlo))
11826 {
11827 if (*op == 1)
11828 return FAIL;
11829 *immbits = (neon_squash_bits (immhi) << 4)
11830 | neon_squash_bits (immlo);
11831 *op = 1;
11832 return 0xe;
11833 }
11834
11835 if (immhi != immlo)
11836 return FAIL;
5287ad62 11837 }
036dc3f7
PB
11838
11839 if (size >= 32)
5287ad62 11840 {
036dc3f7
PB
11841 if (immlo == (immlo & 0x000000ff))
11842 {
11843 *immbits = immlo;
11844 return 0x0;
11845 }
11846 else if (immlo == (immlo & 0x0000ff00))
11847 {
11848 *immbits = immlo >> 8;
11849 return 0x2;
11850 }
11851 else if (immlo == (immlo & 0x00ff0000))
11852 {
11853 *immbits = immlo >> 16;
11854 return 0x4;
11855 }
11856 else if (immlo == (immlo & 0xff000000))
11857 {
11858 *immbits = immlo >> 24;
11859 return 0x6;
11860 }
11861 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11862 {
11863 *immbits = (immlo >> 8) & 0xff;
11864 return 0xc;
11865 }
11866 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11867 {
11868 *immbits = (immlo >> 16) & 0xff;
11869 return 0xd;
11870 }
11871
11872 if ((immlo & 0xffff) != (immlo >> 16))
11873 return FAIL;
11874 immlo &= 0xffff;
5287ad62 11875 }
036dc3f7
PB
11876
11877 if (size >= 16)
5287ad62 11878 {
036dc3f7
PB
11879 if (immlo == (immlo & 0x000000ff))
11880 {
11881 *immbits = immlo;
11882 return 0x8;
11883 }
11884 else if (immlo == (immlo & 0x0000ff00))
11885 {
11886 *immbits = immlo >> 8;
11887 return 0xa;
11888 }
11889
11890 if ((immlo & 0xff) != (immlo >> 8))
11891 return FAIL;
11892 immlo &= 0xff;
5287ad62 11893 }
036dc3f7
PB
11894
11895 if (immlo == (immlo & 0x000000ff))
5287ad62 11896 {
036dc3f7
PB
11897 /* Don't allow MVN with 8-bit immediate. */
11898 if (*op == 1)
11899 return FAIL;
11900 *immbits = immlo;
11901 return 0xe;
5287ad62 11902 }
5287ad62
JB
11903
11904 return FAIL;
11905}
11906
11907/* Write immediate bits [7:0] to the following locations:
11908
11909 |28/24|23 19|18 16|15 4|3 0|
11910 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11911
11912 This function is used by VMOV/VMVN/VORR/VBIC. */
11913
11914static void
11915neon_write_immbits (unsigned immbits)
11916{
11917 inst.instruction |= immbits & 0xf;
11918 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11919 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11920}
11921
11922/* Invert low-order SIZE bits of XHI:XLO. */
11923
11924static void
11925neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11926{
11927 unsigned immlo = xlo ? *xlo : 0;
11928 unsigned immhi = xhi ? *xhi : 0;
11929
11930 switch (size)
11931 {
11932 case 8:
11933 immlo = (~immlo) & 0xff;
11934 break;
11935
11936 case 16:
11937 immlo = (~immlo) & 0xffff;
11938 break;
11939
11940 case 64:
11941 immhi = (~immhi) & 0xffffffff;
11942 /* fall through. */
11943
11944 case 32:
11945 immlo = (~immlo) & 0xffffffff;
11946 break;
11947
11948 default:
11949 abort ();
11950 }
11951
11952 if (xlo)
11953 *xlo = immlo;
11954
11955 if (xhi)
11956 *xhi = immhi;
11957}
11958
11959static void
11960do_neon_logic (void)
11961{
11962 if (inst.operands[2].present && inst.operands[2].isreg)
11963 {
037e8744 11964 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11965 neon_check_type (3, rs, N_IGNORE_TYPE);
11966 /* U bit and size field were set as part of the bitmask. */
11967 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11968 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11969 }
11970 else
11971 {
037e8744
JB
11972 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11973 struct neon_type_el et = neon_check_type (2, rs,
11974 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
11975 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11976 unsigned immbits;
11977 int cmode;
5f4273c7 11978
5287ad62
JB
11979 if (et.type == NT_invtype)
11980 return;
5f4273c7 11981
5287ad62
JB
11982 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11983
036dc3f7
PB
11984 immbits = inst.operands[1].imm;
11985 if (et.size == 64)
11986 {
11987 /* .i64 is a pseudo-op, so the immediate must be a repeating
11988 pattern. */
11989 if (immbits != (inst.operands[1].regisimm ?
11990 inst.operands[1].reg : 0))
11991 {
11992 /* Set immbits to an invalid constant. */
11993 immbits = 0xdeadbeef;
11994 }
11995 }
11996
5287ad62
JB
11997 switch (opcode)
11998 {
11999 case N_MNEM_vbic:
036dc3f7 12000 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12001 break;
5f4273c7 12002
5287ad62 12003 case N_MNEM_vorr:
036dc3f7 12004 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12005 break;
5f4273c7 12006
5287ad62
JB
12007 case N_MNEM_vand:
12008 /* Pseudo-instruction for VBIC. */
5287ad62
JB
12009 neon_invert_size (&immbits, 0, et.size);
12010 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12011 break;
5f4273c7 12012
5287ad62
JB
12013 case N_MNEM_vorn:
12014 /* Pseudo-instruction for VORR. */
5287ad62
JB
12015 neon_invert_size (&immbits, 0, et.size);
12016 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12017 break;
5f4273c7 12018
5287ad62
JB
12019 default:
12020 abort ();
12021 }
12022
12023 if (cmode == FAIL)
12024 return;
12025
037e8744 12026 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12027 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12028 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12029 inst.instruction |= cmode << 8;
12030 neon_write_immbits (immbits);
5f4273c7 12031
5287ad62
JB
12032 inst.instruction = neon_dp_fixup (inst.instruction);
12033 }
12034}
12035
12036static void
12037do_neon_bitfield (void)
12038{
037e8744 12039 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 12040 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 12041 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12042}
12043
12044static void
dcbf9037
JB
12045neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12046 unsigned destbits)
5287ad62 12047{
037e8744 12048 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
12049 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12050 types | N_KEY);
5287ad62
JB
12051 if (et.type == NT_float)
12052 {
12053 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 12054 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12055 }
12056 else
12057 {
12058 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12059 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
12060 }
12061}
12062
12063static void
12064do_neon_dyadic_if_su (void)
12065{
dcbf9037 12066 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12067}
12068
12069static void
12070do_neon_dyadic_if_su_d (void)
12071{
12072 /* This version only allow D registers, but that constraint is enforced during
12073 operand parsing so we don't need to do anything extra here. */
dcbf9037 12074 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12075}
12076
5287ad62
JB
12077static void
12078do_neon_dyadic_if_i_d (void)
12079{
428e3f1f
PB
12080 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12081 affected if we specify unsigned args. */
12082 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
12083}
12084
037e8744
JB
12085enum vfp_or_neon_is_neon_bits
12086{
12087 NEON_CHECK_CC = 1,
12088 NEON_CHECK_ARCH = 2
12089};
12090
12091/* Call this function if an instruction which may have belonged to the VFP or
12092 Neon instruction sets, but turned out to be a Neon instruction (due to the
12093 operand types involved, etc.). We have to check and/or fix-up a couple of
12094 things:
12095
12096 - Make sure the user hasn't attempted to make a Neon instruction
12097 conditional.
12098 - Alter the value in the condition code field if necessary.
12099 - Make sure that the arch supports Neon instructions.
12100
12101 Which of these operations take place depends on bits from enum
12102 vfp_or_neon_is_neon_bits.
12103
12104 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12105 current instruction's condition is COND_ALWAYS, the condition field is
12106 changed to inst.uncond_value. This is necessary because instructions shared
12107 between VFP and Neon may be conditional for the VFP variants only, and the
12108 unconditional Neon version must have, e.g., 0xF in the condition field. */
12109
12110static int
12111vfp_or_neon_is_neon (unsigned check)
12112{
12113 /* Conditions are always legal in Thumb mode (IT blocks). */
12114 if (!thumb_mode && (check & NEON_CHECK_CC))
12115 {
12116 if (inst.cond != COND_ALWAYS)
12117 {
12118 first_error (_(BAD_COND));
12119 return FAIL;
12120 }
12121 if (inst.uncond_value != -1)
12122 inst.instruction |= inst.uncond_value << 28;
12123 }
5f4273c7 12124
037e8744
JB
12125 if ((check & NEON_CHECK_ARCH)
12126 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12127 {
12128 first_error (_(BAD_FPU));
12129 return FAIL;
12130 }
5f4273c7 12131
037e8744
JB
12132 return SUCCESS;
12133}
12134
5287ad62
JB
12135static void
12136do_neon_addsub_if_i (void)
12137{
037e8744
JB
12138 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12139 return;
12140
12141 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12142 return;
12143
5287ad62
JB
12144 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12145 affected if we specify unsigned args. */
dcbf9037 12146 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
12147}
12148
12149/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12150 result to be:
12151 V<op> A,B (A is operand 0, B is operand 2)
12152 to mean:
12153 V<op> A,B,A
12154 not:
12155 V<op> A,B,B
12156 so handle that case specially. */
12157
12158static void
12159neon_exchange_operands (void)
12160{
12161 void *scratch = alloca (sizeof (inst.operands[0]));
12162 if (inst.operands[1].present)
12163 {
12164 /* Swap operands[1] and operands[2]. */
12165 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12166 inst.operands[1] = inst.operands[2];
12167 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12168 }
12169 else
12170 {
12171 inst.operands[1] = inst.operands[2];
12172 inst.operands[2] = inst.operands[0];
12173 }
12174}
12175
12176static void
12177neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12178{
12179 if (inst.operands[2].isreg)
12180 {
12181 if (invert)
12182 neon_exchange_operands ();
dcbf9037 12183 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
12184 }
12185 else
12186 {
037e8744 12187 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
12188 struct neon_type_el et = neon_check_type (2, rs,
12189 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
12190
12191 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12192 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12193 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12194 inst.instruction |= LOW4 (inst.operands[1].reg);
12195 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12196 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12197 inst.instruction |= (et.type == NT_float) << 10;
12198 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12199
5287ad62
JB
12200 inst.instruction = neon_dp_fixup (inst.instruction);
12201 }
12202}
12203
12204static void
12205do_neon_cmp (void)
12206{
12207 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12208}
12209
12210static void
12211do_neon_cmp_inv (void)
12212{
12213 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12214}
12215
12216static void
12217do_neon_ceq (void)
12218{
12219 neon_compare (N_IF_32, N_IF_32, FALSE);
12220}
12221
12222/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12223 scalars, which are encoded in 5 bits, M : Rm.
12224 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12225 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12226 index in M. */
12227
12228static unsigned
12229neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12230{
dcbf9037
JB
12231 unsigned regno = NEON_SCALAR_REG (scalar);
12232 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
12233
12234 switch (elsize)
12235 {
12236 case 16:
12237 if (regno > 7 || elno > 3)
12238 goto bad_scalar;
12239 return regno | (elno << 3);
5f4273c7 12240
5287ad62
JB
12241 case 32:
12242 if (regno > 15 || elno > 1)
12243 goto bad_scalar;
12244 return regno | (elno << 4);
12245
12246 default:
12247 bad_scalar:
dcbf9037 12248 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
12249 }
12250
12251 return 0;
12252}
12253
12254/* Encode multiply / multiply-accumulate scalar instructions. */
12255
12256static void
12257neon_mul_mac (struct neon_type_el et, int ubit)
12258{
dcbf9037
JB
12259 unsigned scalar;
12260
12261 /* Give a more helpful error message if we have an invalid type. */
12262 if (et.type == NT_invtype)
12263 return;
5f4273c7 12264
dcbf9037 12265 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
12266 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12267 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12268 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12269 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12270 inst.instruction |= LOW4 (scalar);
12271 inst.instruction |= HI1 (scalar) << 5;
12272 inst.instruction |= (et.type == NT_float) << 8;
12273 inst.instruction |= neon_logbits (et.size) << 20;
12274 inst.instruction |= (ubit != 0) << 24;
12275
12276 inst.instruction = neon_dp_fixup (inst.instruction);
12277}
12278
12279static void
12280do_neon_mac_maybe_scalar (void)
12281{
037e8744
JB
12282 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12283 return;
12284
12285 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12286 return;
12287
5287ad62
JB
12288 if (inst.operands[2].isscalar)
12289 {
037e8744 12290 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12291 struct neon_type_el et = neon_check_type (3, rs,
12292 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12293 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12294 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12295 }
12296 else
428e3f1f
PB
12297 {
12298 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12299 affected if we specify unsigned args. */
12300 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12301 }
5287ad62
JB
12302}
12303
12304static void
12305do_neon_tst (void)
12306{
037e8744 12307 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12308 struct neon_type_el et = neon_check_type (3, rs,
12309 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 12310 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12311}
12312
12313/* VMUL with 3 registers allows the P8 type. The scalar version supports the
12314 same types as the MAC equivalents. The polynomial type for this instruction
12315 is encoded the same as the integer type. */
12316
12317static void
12318do_neon_mul (void)
12319{
037e8744
JB
12320 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12321 return;
12322
12323 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12324 return;
12325
5287ad62
JB
12326 if (inst.operands[2].isscalar)
12327 do_neon_mac_maybe_scalar ();
12328 else
dcbf9037 12329 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
12330}
12331
12332static void
12333do_neon_qdmulh (void)
12334{
12335 if (inst.operands[2].isscalar)
12336 {
037e8744 12337 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12338 struct neon_type_el et = neon_check_type (3, rs,
12339 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12340 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12341 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12342 }
12343 else
12344 {
037e8744 12345 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12346 struct neon_type_el et = neon_check_type (3, rs,
12347 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12348 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12349 /* The U bit (rounding) comes from bit mask. */
037e8744 12350 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12351 }
12352}
12353
12354static void
12355do_neon_fcmp_absolute (void)
12356{
037e8744 12357 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12358 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12359 /* Size field comes from bit mask. */
037e8744 12360 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
12361}
12362
12363static void
12364do_neon_fcmp_absolute_inv (void)
12365{
12366 neon_exchange_operands ();
12367 do_neon_fcmp_absolute ();
12368}
12369
12370static void
12371do_neon_step (void)
12372{
037e8744 12373 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 12374 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 12375 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12376}
12377
12378static void
12379do_neon_abs_neg (void)
12380{
037e8744
JB
12381 enum neon_shape rs;
12382 struct neon_type_el et;
5f4273c7 12383
037e8744
JB
12384 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12385 return;
12386
12387 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12388 return;
12389
12390 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12391 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 12392
5287ad62
JB
12393 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12394 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12395 inst.instruction |= LOW4 (inst.operands[1].reg);
12396 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12397 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12398 inst.instruction |= (et.type == NT_float) << 10;
12399 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12400
5287ad62
JB
12401 inst.instruction = neon_dp_fixup (inst.instruction);
12402}
12403
12404static void
12405do_neon_sli (void)
12406{
037e8744 12407 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12408 struct neon_type_el et = neon_check_type (2, rs,
12409 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12410 int imm = inst.operands[2].imm;
12411 constraint (imm < 0 || (unsigned)imm >= et.size,
12412 _("immediate out of range for insert"));
037e8744 12413 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12414}
12415
12416static void
12417do_neon_sri (void)
12418{
037e8744 12419 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12420 struct neon_type_el et = neon_check_type (2, rs,
12421 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12422 int imm = inst.operands[2].imm;
12423 constraint (imm < 1 || (unsigned)imm > et.size,
12424 _("immediate out of range for insert"));
037e8744 12425 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
12426}
12427
12428static void
12429do_neon_qshlu_imm (void)
12430{
037e8744 12431 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12432 struct neon_type_el et = neon_check_type (2, rs,
12433 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12434 int imm = inst.operands[2].imm;
12435 constraint (imm < 0 || (unsigned)imm >= et.size,
12436 _("immediate out of range for shift"));
12437 /* Only encodes the 'U present' variant of the instruction.
12438 In this case, signed types have OP (bit 8) set to 0.
12439 Unsigned types have OP set to 1. */
12440 inst.instruction |= (et.type == NT_unsigned) << 8;
12441 /* The rest of the bits are the same as other immediate shifts. */
037e8744 12442 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12443}
12444
12445static void
12446do_neon_qmovn (void)
12447{
12448 struct neon_type_el et = neon_check_type (2, NS_DQ,
12449 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12450 /* Saturating move where operands can be signed or unsigned, and the
12451 destination has the same signedness. */
12452 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12453 if (et.type == NT_unsigned)
12454 inst.instruction |= 0xc0;
12455 else
12456 inst.instruction |= 0x80;
12457 neon_two_same (0, 1, et.size / 2);
12458}
12459
12460static void
12461do_neon_qmovun (void)
12462{
12463 struct neon_type_el et = neon_check_type (2, NS_DQ,
12464 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12465 /* Saturating move with unsigned results. Operands must be signed. */
12466 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12467 neon_two_same (0, 1, et.size / 2);
12468}
12469
12470static void
12471do_neon_rshift_sat_narrow (void)
12472{
12473 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12474 or unsigned. If operands are unsigned, results must also be unsigned. */
12475 struct neon_type_el et = neon_check_type (2, NS_DQI,
12476 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12477 int imm = inst.operands[2].imm;
12478 /* This gets the bounds check, size encoding and immediate bits calculation
12479 right. */
12480 et.size /= 2;
5f4273c7 12481
5287ad62
JB
12482 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12483 VQMOVN.I<size> <Dd>, <Qm>. */
12484 if (imm == 0)
12485 {
12486 inst.operands[2].present = 0;
12487 inst.instruction = N_MNEM_vqmovn;
12488 do_neon_qmovn ();
12489 return;
12490 }
5f4273c7 12491
5287ad62
JB
12492 constraint (imm < 1 || (unsigned)imm > et.size,
12493 _("immediate out of range"));
12494 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12495}
12496
12497static void
12498do_neon_rshift_sat_narrow_u (void)
12499{
12500 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12501 or unsigned. If operands are unsigned, results must also be unsigned. */
12502 struct neon_type_el et = neon_check_type (2, NS_DQI,
12503 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12504 int imm = inst.operands[2].imm;
12505 /* This gets the bounds check, size encoding and immediate bits calculation
12506 right. */
12507 et.size /= 2;
12508
12509 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12510 VQMOVUN.I<size> <Dd>, <Qm>. */
12511 if (imm == 0)
12512 {
12513 inst.operands[2].present = 0;
12514 inst.instruction = N_MNEM_vqmovun;
12515 do_neon_qmovun ();
12516 return;
12517 }
12518
12519 constraint (imm < 1 || (unsigned)imm > et.size,
12520 _("immediate out of range"));
12521 /* FIXME: The manual is kind of unclear about what value U should have in
12522 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12523 must be 1. */
12524 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12525}
12526
12527static void
12528do_neon_movn (void)
12529{
12530 struct neon_type_el et = neon_check_type (2, NS_DQ,
12531 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12532 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12533 neon_two_same (0, 1, et.size / 2);
12534}
12535
12536static void
12537do_neon_rshift_narrow (void)
12538{
12539 struct neon_type_el et = neon_check_type (2, NS_DQI,
12540 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12541 int imm = inst.operands[2].imm;
12542 /* This gets the bounds check, size encoding and immediate bits calculation
12543 right. */
12544 et.size /= 2;
5f4273c7 12545
5287ad62
JB
12546 /* If immediate is zero then we are a pseudo-instruction for
12547 VMOVN.I<size> <Dd>, <Qm> */
12548 if (imm == 0)
12549 {
12550 inst.operands[2].present = 0;
12551 inst.instruction = N_MNEM_vmovn;
12552 do_neon_movn ();
12553 return;
12554 }
5f4273c7 12555
5287ad62
JB
12556 constraint (imm < 1 || (unsigned)imm > et.size,
12557 _("immediate out of range for narrowing operation"));
12558 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12559}
12560
12561static void
12562do_neon_shll (void)
12563{
12564 /* FIXME: Type checking when lengthening. */
12565 struct neon_type_el et = neon_check_type (2, NS_QDI,
12566 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12567 unsigned imm = inst.operands[2].imm;
12568
12569 if (imm == et.size)
12570 {
12571 /* Maximum shift variant. */
12572 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12573 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12574 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12575 inst.instruction |= LOW4 (inst.operands[1].reg);
12576 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12577 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 12578
5287ad62
JB
12579 inst.instruction = neon_dp_fixup (inst.instruction);
12580 }
12581 else
12582 {
12583 /* A more-specific type check for non-max versions. */
12584 et = neon_check_type (2, NS_QDI,
12585 N_EQK | N_DBL, N_SU_32 | N_KEY);
12586 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12587 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12588 }
12589}
12590
037e8744 12591/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
12592 the current instruction is. */
12593
12594static int
12595neon_cvt_flavour (enum neon_shape rs)
12596{
037e8744
JB
12597#define CVT_VAR(C,X,Y) \
12598 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12599 if (et.type != NT_invtype) \
12600 { \
12601 inst.error = NULL; \
12602 return (C); \
5287ad62
JB
12603 }
12604 struct neon_type_el et;
037e8744
JB
12605 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12606 || rs == NS_FF) ? N_VFP : 0;
12607 /* The instruction versions which take an immediate take one register
12608 argument, which is extended to the width of the full register. Thus the
12609 "source" and "destination" registers must have the same width. Hack that
12610 here by making the size equal to the key (wider, in this case) operand. */
12611 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 12612
5287ad62
JB
12613 CVT_VAR (0, N_S32, N_F32);
12614 CVT_VAR (1, N_U32, N_F32);
12615 CVT_VAR (2, N_F32, N_S32);
12616 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
12617 /* Half-precision conversions. */
12618 CVT_VAR (4, N_F32, N_F16);
12619 CVT_VAR (5, N_F16, N_F32);
5f4273c7 12620
037e8744 12621 whole_reg = N_VFP;
5f4273c7 12622
037e8744 12623 /* VFP instructions. */
8e79c3df
CM
12624 CVT_VAR (6, N_F32, N_F64);
12625 CVT_VAR (7, N_F64, N_F32);
12626 CVT_VAR (8, N_S32, N_F64 | key);
12627 CVT_VAR (9, N_U32, N_F64 | key);
12628 CVT_VAR (10, N_F64 | key, N_S32);
12629 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 12630 /* VFP instructions with bitshift. */
8e79c3df
CM
12631 CVT_VAR (12, N_F32 | key, N_S16);
12632 CVT_VAR (13, N_F32 | key, N_U16);
12633 CVT_VAR (14, N_F64 | key, N_S16);
12634 CVT_VAR (15, N_F64 | key, N_U16);
12635 CVT_VAR (16, N_S16, N_F32 | key);
12636 CVT_VAR (17, N_U16, N_F32 | key);
12637 CVT_VAR (18, N_S16, N_F64 | key);
12638 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 12639
5287ad62
JB
12640 return -1;
12641#undef CVT_VAR
12642}
12643
037e8744
JB
12644/* Neon-syntax VFP conversions. */
12645
5287ad62 12646static void
037e8744 12647do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 12648{
037e8744 12649 const char *opname = 0;
5f4273c7 12650
037e8744 12651 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 12652 {
037e8744
JB
12653 /* Conversions with immediate bitshift. */
12654 const char *enc[] =
12655 {
12656 "ftosls",
12657 "ftouls",
12658 "fsltos",
12659 "fultos",
12660 NULL,
12661 NULL,
8e79c3df
CM
12662 NULL,
12663 NULL,
037e8744
JB
12664 "ftosld",
12665 "ftould",
12666 "fsltod",
12667 "fultod",
12668 "fshtos",
12669 "fuhtos",
12670 "fshtod",
12671 "fuhtod",
12672 "ftoshs",
12673 "ftouhs",
12674 "ftoshd",
12675 "ftouhd"
12676 };
12677
12678 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12679 {
12680 opname = enc[flavour];
12681 constraint (inst.operands[0].reg != inst.operands[1].reg,
12682 _("operands 0 and 1 must be the same register"));
12683 inst.operands[1] = inst.operands[2];
12684 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12685 }
5287ad62
JB
12686 }
12687 else
12688 {
037e8744
JB
12689 /* Conversions without bitshift. */
12690 const char *enc[] =
12691 {
12692 "ftosis",
12693 "ftouis",
12694 "fsitos",
12695 "fuitos",
8e79c3df
CM
12696 "NULL",
12697 "NULL",
037e8744
JB
12698 "fcvtsd",
12699 "fcvtds",
12700 "ftosid",
12701 "ftouid",
12702 "fsitod",
12703 "fuitod"
12704 };
12705
12706 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12707 opname = enc[flavour];
12708 }
12709
12710 if (opname)
12711 do_vfp_nsyn_opcode (opname);
12712}
12713
12714static void
12715do_vfp_nsyn_cvtz (void)
12716{
12717 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12718 int flavour = neon_cvt_flavour (rs);
12719 const char *enc[] =
12720 {
12721 "ftosizs",
12722 "ftouizs",
12723 NULL,
12724 NULL,
12725 NULL,
12726 NULL,
8e79c3df
CM
12727 NULL,
12728 NULL,
037e8744
JB
12729 "ftosizd",
12730 "ftouizd"
12731 };
12732
12733 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12734 do_vfp_nsyn_opcode (enc[flavour]);
12735}
f31fef98 12736
037e8744
JB
12737static void
12738do_neon_cvt (void)
12739{
12740 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 12741 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
12742 int flavour = neon_cvt_flavour (rs);
12743
12744 /* VFP rather than Neon conversions. */
8e79c3df 12745 if (flavour >= 6)
037e8744
JB
12746 {
12747 do_vfp_nsyn_cvt (rs, flavour);
12748 return;
12749 }
12750
12751 switch (rs)
12752 {
12753 case NS_DDI:
12754 case NS_QQI:
12755 {
35997600
NC
12756 unsigned immbits;
12757 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12758
037e8744
JB
12759 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12760 return;
12761
12762 /* Fixed-point conversion with #0 immediate is encoded as an
12763 integer conversion. */
12764 if (inst.operands[2].present && inst.operands[2].imm == 0)
12765 goto int_encode;
35997600 12766 immbits = 32 - inst.operands[2].imm;
037e8744
JB
12767 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12768 if (flavour != -1)
12769 inst.instruction |= enctab[flavour];
12770 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12771 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12772 inst.instruction |= LOW4 (inst.operands[1].reg);
12773 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12774 inst.instruction |= neon_quad (rs) << 6;
12775 inst.instruction |= 1 << 21;
12776 inst.instruction |= immbits << 16;
12777
12778 inst.instruction = neon_dp_fixup (inst.instruction);
12779 }
12780 break;
12781
12782 case NS_DD:
12783 case NS_QQ:
12784 int_encode:
12785 {
12786 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12787
12788 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12789
12790 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12791 return;
12792
12793 if (flavour != -1)
12794 inst.instruction |= enctab[flavour];
12795
12796 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12797 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12798 inst.instruction |= LOW4 (inst.operands[1].reg);
12799 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12800 inst.instruction |= neon_quad (rs) << 6;
12801 inst.instruction |= 2 << 18;
12802
12803 inst.instruction = neon_dp_fixup (inst.instruction);
12804 }
12805 break;
12806
8e79c3df
CM
12807 /* Half-precision conversions for Advanced SIMD -- neon. */
12808 case NS_QD:
12809 case NS_DQ:
12810
12811 if ((rs == NS_DQ)
12812 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
12813 {
12814 as_bad (_("operand size must match register width"));
12815 break;
12816 }
12817
12818 if ((rs == NS_QD)
12819 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
12820 {
12821 as_bad (_("operand size must match register width"));
12822 break;
12823 }
12824
12825 if (rs == NS_DQ)
12826 inst.instruction = 0x3b60600;
12827 else
12828 inst.instruction = 0x3b60700;
12829
12830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12832 inst.instruction |= LOW4 (inst.operands[1].reg);
12833 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12834 inst.instruction = neon_dp_fixup (inst.instruction);
12835 break;
12836
037e8744
JB
12837 default:
12838 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12839 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 12840 }
5287ad62
JB
12841}
12842
8e79c3df
CM
12843static void
12844do_neon_cvtb (void)
12845{
12846 inst.instruction = 0xeb20a40;
12847
12848 /* The sizes are attached to the mnemonic. */
12849 if (inst.vectype.el[0].type != NT_invtype
12850 && inst.vectype.el[0].size == 16)
12851 inst.instruction |= 0x00010000;
12852
12853 /* Programmer's syntax: the sizes are attached to the operands. */
12854 else if (inst.operands[0].vectype.type != NT_invtype
12855 && inst.operands[0].vectype.size == 16)
12856 inst.instruction |= 0x00010000;
12857
12858 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
12859 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
12860 do_vfp_cond_or_thumb ();
12861}
12862
12863
12864static void
12865do_neon_cvtt (void)
12866{
12867 do_neon_cvtb ();
12868 inst.instruction |= 0x80;
12869}
12870
5287ad62
JB
12871static void
12872neon_move_immediate (void)
12873{
037e8744
JB
12874 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12875 struct neon_type_el et = neon_check_type (2, rs,
12876 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 12877 unsigned immlo, immhi = 0, immbits;
c96612cc 12878 int op, cmode, float_p;
5287ad62 12879
037e8744
JB
12880 constraint (et.type == NT_invtype,
12881 _("operand size must be specified for immediate VMOV"));
12882
5287ad62
JB
12883 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12884 op = (inst.instruction & (1 << 5)) != 0;
12885
12886 immlo = inst.operands[1].imm;
12887 if (inst.operands[1].regisimm)
12888 immhi = inst.operands[1].reg;
12889
12890 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12891 _("immediate has bits set outside the operand size"));
12892
c96612cc
JB
12893 float_p = inst.operands[1].immisfloat;
12894
12895 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 12896 et.size, et.type)) == FAIL)
5287ad62
JB
12897 {
12898 /* Invert relevant bits only. */
12899 neon_invert_size (&immlo, &immhi, et.size);
12900 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12901 with one or the other; those cases are caught by
12902 neon_cmode_for_move_imm. */
12903 op = !op;
c96612cc
JB
12904 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12905 &op, et.size, et.type)) == FAIL)
5287ad62 12906 {
dcbf9037 12907 first_error (_("immediate out of range"));
5287ad62
JB
12908 return;
12909 }
12910 }
12911
12912 inst.instruction &= ~(1 << 5);
12913 inst.instruction |= op << 5;
12914
12915 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12916 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 12917 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12918 inst.instruction |= cmode << 8;
12919
12920 neon_write_immbits (immbits);
12921}
12922
12923static void
12924do_neon_mvn (void)
12925{
12926 if (inst.operands[1].isreg)
12927 {
037e8744 12928 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 12929
5287ad62
JB
12930 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12931 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12932 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12933 inst.instruction |= LOW4 (inst.operands[1].reg);
12934 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12935 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12936 }
12937 else
12938 {
12939 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12940 neon_move_immediate ();
12941 }
12942
12943 inst.instruction = neon_dp_fixup (inst.instruction);
12944}
12945
12946/* Encode instructions of form:
12947
12948 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 12949 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
12950
12951static void
12952neon_mixed_length (struct neon_type_el et, unsigned size)
12953{
12954 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12955 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12956 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12957 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12958 inst.instruction |= LOW4 (inst.operands[2].reg);
12959 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12960 inst.instruction |= (et.type == NT_unsigned) << 24;
12961 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12962
5287ad62
JB
12963 inst.instruction = neon_dp_fixup (inst.instruction);
12964}
12965
12966static void
12967do_neon_dyadic_long (void)
12968{
12969 /* FIXME: Type checking for lengthening op. */
12970 struct neon_type_el et = neon_check_type (3, NS_QDD,
12971 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12972 neon_mixed_length (et, et.size);
12973}
12974
12975static void
12976do_neon_abal (void)
12977{
12978 struct neon_type_el et = neon_check_type (3, NS_QDD,
12979 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12980 neon_mixed_length (et, et.size);
12981}
12982
12983static void
12984neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12985{
12986 if (inst.operands[2].isscalar)
12987 {
dcbf9037
JB
12988 struct neon_type_el et = neon_check_type (3, NS_QDS,
12989 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
12990 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12991 neon_mul_mac (et, et.type == NT_unsigned);
12992 }
12993 else
12994 {
12995 struct neon_type_el et = neon_check_type (3, NS_QDD,
12996 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12997 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12998 neon_mixed_length (et, et.size);
12999 }
13000}
13001
13002static void
13003do_neon_mac_maybe_scalar_long (void)
13004{
13005 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13006}
13007
13008static void
13009do_neon_dyadic_wide (void)
13010{
13011 struct neon_type_el et = neon_check_type (3, NS_QQD,
13012 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13013 neon_mixed_length (et, et.size);
13014}
13015
13016static void
13017do_neon_dyadic_narrow (void)
13018{
13019 struct neon_type_el et = neon_check_type (3, NS_QDD,
13020 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
13021 /* Operand sign is unimportant, and the U bit is part of the opcode,
13022 so force the operand type to integer. */
13023 et.type = NT_integer;
5287ad62
JB
13024 neon_mixed_length (et, et.size / 2);
13025}
13026
13027static void
13028do_neon_mul_sat_scalar_long (void)
13029{
13030 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13031}
13032
13033static void
13034do_neon_vmull (void)
13035{
13036 if (inst.operands[2].isscalar)
13037 do_neon_mac_maybe_scalar_long ();
13038 else
13039 {
13040 struct neon_type_el et = neon_check_type (3, NS_QDD,
13041 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13042 if (et.type == NT_poly)
13043 inst.instruction = NEON_ENC_POLY (inst.instruction);
13044 else
13045 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13046 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13047 zero. Should be OK as-is. */
13048 neon_mixed_length (et, et.size);
13049 }
13050}
13051
13052static void
13053do_neon_ext (void)
13054{
037e8744 13055 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
13056 struct neon_type_el et = neon_check_type (3, rs,
13057 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13058 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
13059
13060 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13061 _("shift out of range"));
5287ad62
JB
13062 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13063 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13064 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13065 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13066 inst.instruction |= LOW4 (inst.operands[2].reg);
13067 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 13068 inst.instruction |= neon_quad (rs) << 6;
5287ad62 13069 inst.instruction |= imm << 8;
5f4273c7 13070
5287ad62
JB
13071 inst.instruction = neon_dp_fixup (inst.instruction);
13072}
13073
13074static void
13075do_neon_rev (void)
13076{
037e8744 13077 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13078 struct neon_type_el et = neon_check_type (2, rs,
13079 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13080 unsigned op = (inst.instruction >> 7) & 3;
13081 /* N (width of reversed regions) is encoded as part of the bitmask. We
13082 extract it here to check the elements to be reversed are smaller.
13083 Otherwise we'd get a reserved instruction. */
13084 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13085 assert (elsize != 0);
13086 constraint (et.size >= elsize,
13087 _("elements must be smaller than reversal region"));
037e8744 13088 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13089}
13090
13091static void
13092do_neon_dup (void)
13093{
13094 if (inst.operands[1].isscalar)
13095 {
037e8744 13096 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
13097 struct neon_type_el et = neon_check_type (2, rs,
13098 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 13099 unsigned sizebits = et.size >> 3;
dcbf9037 13100 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 13101 int logsize = neon_logbits (et.size);
dcbf9037 13102 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
13103
13104 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13105 return;
13106
5287ad62
JB
13107 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13108 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13109 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13110 inst.instruction |= LOW4 (dm);
13111 inst.instruction |= HI1 (dm) << 5;
037e8744 13112 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13113 inst.instruction |= x << 17;
13114 inst.instruction |= sizebits << 16;
5f4273c7 13115
5287ad62
JB
13116 inst.instruction = neon_dp_fixup (inst.instruction);
13117 }
13118 else
13119 {
037e8744
JB
13120 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13121 struct neon_type_el et = neon_check_type (2, rs,
13122 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
13123 /* Duplicate ARM register to lanes of vector. */
13124 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13125 switch (et.size)
13126 {
13127 case 8: inst.instruction |= 0x400000; break;
13128 case 16: inst.instruction |= 0x000020; break;
13129 case 32: inst.instruction |= 0x000000; break;
13130 default: break;
13131 }
13132 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13133 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13134 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 13135 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
13136 /* The encoding for this instruction is identical for the ARM and Thumb
13137 variants, except for the condition field. */
037e8744 13138 do_vfp_cond_or_thumb ();
5287ad62
JB
13139 }
13140}
13141
13142/* VMOV has particularly many variations. It can be one of:
13143 0. VMOV<c><q> <Qd>, <Qm>
13144 1. VMOV<c><q> <Dd>, <Dm>
13145 (Register operations, which are VORR with Rm = Rn.)
13146 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13147 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13148 (Immediate loads.)
13149 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13150 (ARM register to scalar.)
13151 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13152 (Two ARM registers to vector.)
13153 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13154 (Scalar to ARM register.)
13155 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13156 (Vector to two ARM registers.)
037e8744
JB
13157 8. VMOV.F32 <Sd>, <Sm>
13158 9. VMOV.F64 <Dd>, <Dm>
13159 (VFP register moves.)
13160 10. VMOV.F32 <Sd>, #imm
13161 11. VMOV.F64 <Dd>, #imm
13162 (VFP float immediate load.)
13163 12. VMOV <Rd>, <Sm>
13164 (VFP single to ARM reg.)
13165 13. VMOV <Sd>, <Rm>
13166 (ARM reg to VFP single.)
13167 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13168 (Two ARM regs to two VFP singles.)
13169 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13170 (Two VFP singles to two ARM regs.)
5f4273c7 13171
037e8744
JB
13172 These cases can be disambiguated using neon_select_shape, except cases 1/9
13173 and 3/11 which depend on the operand type too.
5f4273c7 13174
5287ad62 13175 All the encoded bits are hardcoded by this function.
5f4273c7 13176
b7fc2769
JB
13177 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13178 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 13179
5287ad62 13180 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 13181 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
13182
13183static void
13184do_neon_mov (void)
13185{
037e8744
JB
13186 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13187 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13188 NS_NULL);
13189 struct neon_type_el et;
13190 const char *ldconst = 0;
5287ad62 13191
037e8744 13192 switch (rs)
5287ad62 13193 {
037e8744
JB
13194 case NS_DD: /* case 1/9. */
13195 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13196 /* It is not an error here if no type is given. */
13197 inst.error = NULL;
13198 if (et.type == NT_float && et.size == 64)
5287ad62 13199 {
037e8744
JB
13200 do_vfp_nsyn_opcode ("fcpyd");
13201 break;
5287ad62 13202 }
037e8744 13203 /* fall through. */
5287ad62 13204
037e8744
JB
13205 case NS_QQ: /* case 0/1. */
13206 {
13207 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13208 return;
13209 /* The architecture manual I have doesn't explicitly state which
13210 value the U bit should have for register->register moves, but
13211 the equivalent VORR instruction has U = 0, so do that. */
13212 inst.instruction = 0x0200110;
13213 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13214 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13215 inst.instruction |= LOW4 (inst.operands[1].reg);
13216 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13217 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13218 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13219 inst.instruction |= neon_quad (rs) << 6;
13220
13221 inst.instruction = neon_dp_fixup (inst.instruction);
13222 }
13223 break;
5f4273c7 13224
037e8744
JB
13225 case NS_DI: /* case 3/11. */
13226 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13227 inst.error = NULL;
13228 if (et.type == NT_float && et.size == 64)
5287ad62 13229 {
037e8744
JB
13230 /* case 11 (fconstd). */
13231 ldconst = "fconstd";
13232 goto encode_fconstd;
5287ad62 13233 }
037e8744
JB
13234 /* fall through. */
13235
13236 case NS_QI: /* case 2/3. */
13237 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13238 return;
13239 inst.instruction = 0x0800010;
13240 neon_move_immediate ();
13241 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62 13242 break;
5f4273c7 13243
037e8744
JB
13244 case NS_SR: /* case 4. */
13245 {
13246 unsigned bcdebits = 0;
13247 struct neon_type_el et = neon_check_type (2, NS_NULL,
13248 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13249 int logsize = neon_logbits (et.size);
13250 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13251 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13252
13253 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13254 _(BAD_FPU));
13255 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13256 && et.size != 32, _(BAD_FPU));
13257 constraint (et.type == NT_invtype, _("bad type for scalar"));
13258 constraint (x >= 64 / et.size, _("scalar index out of range"));
13259
13260 switch (et.size)
13261 {
13262 case 8: bcdebits = 0x8; break;
13263 case 16: bcdebits = 0x1; break;
13264 case 32: bcdebits = 0x0; break;
13265 default: ;
13266 }
13267
13268 bcdebits |= x << logsize;
13269
13270 inst.instruction = 0xe000b10;
13271 do_vfp_cond_or_thumb ();
13272 inst.instruction |= LOW4 (dn) << 16;
13273 inst.instruction |= HI1 (dn) << 7;
13274 inst.instruction |= inst.operands[1].reg << 12;
13275 inst.instruction |= (bcdebits & 3) << 5;
13276 inst.instruction |= (bcdebits >> 2) << 21;
13277 }
13278 break;
5f4273c7 13279
037e8744 13280 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 13281 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 13282 _(BAD_FPU));
b7fc2769 13283
037e8744
JB
13284 inst.instruction = 0xc400b10;
13285 do_vfp_cond_or_thumb ();
13286 inst.instruction |= LOW4 (inst.operands[0].reg);
13287 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13288 inst.instruction |= inst.operands[1].reg << 12;
13289 inst.instruction |= inst.operands[2].reg << 16;
13290 break;
5f4273c7 13291
037e8744
JB
13292 case NS_RS: /* case 6. */
13293 {
13294 struct neon_type_el et = neon_check_type (2, NS_NULL,
13295 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13296 unsigned logsize = neon_logbits (et.size);
13297 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13298 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13299 unsigned abcdebits = 0;
13300
13301 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13302 _(BAD_FPU));
13303 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13304 && et.size != 32, _(BAD_FPU));
13305 constraint (et.type == NT_invtype, _("bad type for scalar"));
13306 constraint (x >= 64 / et.size, _("scalar index out of range"));
13307
13308 switch (et.size)
13309 {
13310 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13311 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13312 case 32: abcdebits = 0x00; break;
13313 default: ;
13314 }
13315
13316 abcdebits |= x << logsize;
13317 inst.instruction = 0xe100b10;
13318 do_vfp_cond_or_thumb ();
13319 inst.instruction |= LOW4 (dn) << 16;
13320 inst.instruction |= HI1 (dn) << 7;
13321 inst.instruction |= inst.operands[0].reg << 12;
13322 inst.instruction |= (abcdebits & 3) << 5;
13323 inst.instruction |= (abcdebits >> 2) << 21;
13324 }
13325 break;
5f4273c7 13326
037e8744
JB
13327 case NS_RRD: /* case 7 (fmrrd). */
13328 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13329 _(BAD_FPU));
13330
13331 inst.instruction = 0xc500b10;
13332 do_vfp_cond_or_thumb ();
13333 inst.instruction |= inst.operands[0].reg << 12;
13334 inst.instruction |= inst.operands[1].reg << 16;
13335 inst.instruction |= LOW4 (inst.operands[2].reg);
13336 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13337 break;
5f4273c7 13338
037e8744
JB
13339 case NS_FF: /* case 8 (fcpys). */
13340 do_vfp_nsyn_opcode ("fcpys");
13341 break;
5f4273c7 13342
037e8744
JB
13343 case NS_FI: /* case 10 (fconsts). */
13344 ldconst = "fconsts";
13345 encode_fconstd:
13346 if (is_quarter_float (inst.operands[1].imm))
5287ad62 13347 {
037e8744
JB
13348 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13349 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
13350 }
13351 else
037e8744
JB
13352 first_error (_("immediate out of range"));
13353 break;
5f4273c7 13354
037e8744
JB
13355 case NS_RF: /* case 12 (fmrs). */
13356 do_vfp_nsyn_opcode ("fmrs");
13357 break;
5f4273c7 13358
037e8744
JB
13359 case NS_FR: /* case 13 (fmsr). */
13360 do_vfp_nsyn_opcode ("fmsr");
13361 break;
5f4273c7 13362
037e8744
JB
13363 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13364 (one of which is a list), but we have parsed four. Do some fiddling to
13365 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13366 expect. */
13367 case NS_RRFF: /* case 14 (fmrrs). */
13368 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13369 _("VFP registers must be adjacent"));
13370 inst.operands[2].imm = 2;
13371 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13372 do_vfp_nsyn_opcode ("fmrrs");
13373 break;
5f4273c7 13374
037e8744
JB
13375 case NS_FFRR: /* case 15 (fmsrr). */
13376 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13377 _("VFP registers must be adjacent"));
13378 inst.operands[1] = inst.operands[2];
13379 inst.operands[2] = inst.operands[3];
13380 inst.operands[0].imm = 2;
13381 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13382 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 13383 break;
5f4273c7 13384
5287ad62
JB
13385 default:
13386 abort ();
13387 }
13388}
13389
13390static void
13391do_neon_rshift_round_imm (void)
13392{
037e8744 13393 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13394 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13395 int imm = inst.operands[2].imm;
13396
13397 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13398 if (imm == 0)
13399 {
13400 inst.operands[2].present = 0;
13401 do_neon_mov ();
13402 return;
13403 }
13404
13405 constraint (imm < 1 || (unsigned)imm > et.size,
13406 _("immediate out of range for shift"));
037e8744 13407 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13408 et.size - imm);
13409}
13410
13411static void
13412do_neon_movl (void)
13413{
13414 struct neon_type_el et = neon_check_type (2, NS_QD,
13415 N_EQK | N_DBL, N_SU_32 | N_KEY);
13416 unsigned sizebits = et.size >> 3;
13417 inst.instruction |= sizebits << 19;
13418 neon_two_same (0, et.type == NT_unsigned, -1);
13419}
13420
13421static void
13422do_neon_trn (void)
13423{
037e8744 13424 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13425 struct neon_type_el et = neon_check_type (2, rs,
13426 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13427 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 13428 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13429}
13430
13431static void
13432do_neon_zip_uzp (void)
13433{
037e8744 13434 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13435 struct neon_type_el et = neon_check_type (2, rs,
13436 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13437 if (rs == NS_DD && et.size == 32)
13438 {
13439 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13440 inst.instruction = N_MNEM_vtrn;
13441 do_neon_trn ();
13442 return;
13443 }
037e8744 13444 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13445}
13446
13447static void
13448do_neon_sat_abs_neg (void)
13449{
037e8744 13450 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13451 struct neon_type_el et = neon_check_type (2, rs,
13452 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13453 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13454}
13455
13456static void
13457do_neon_pair_long (void)
13458{
037e8744 13459 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13460 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13461 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13462 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 13463 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13464}
13465
13466static void
13467do_neon_recip_est (void)
13468{
037e8744 13469 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13470 struct neon_type_el et = neon_check_type (2, rs,
13471 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13472 inst.instruction |= (et.type == NT_float) << 8;
037e8744 13473 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13474}
13475
13476static void
13477do_neon_cls (void)
13478{
037e8744 13479 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13480 struct neon_type_el et = neon_check_type (2, rs,
13481 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13482 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13483}
13484
13485static void
13486do_neon_clz (void)
13487{
037e8744 13488 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13489 struct neon_type_el et = neon_check_type (2, rs,
13490 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 13491 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13492}
13493
13494static void
13495do_neon_cnt (void)
13496{
037e8744 13497 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13498 struct neon_type_el et = neon_check_type (2, rs,
13499 N_EQK | N_INT, N_8 | N_KEY);
037e8744 13500 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13501}
13502
13503static void
13504do_neon_swp (void)
13505{
037e8744
JB
13506 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13507 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
13508}
13509
13510static void
13511do_neon_tbl_tbx (void)
13512{
13513 unsigned listlenbits;
dcbf9037 13514 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 13515
5287ad62
JB
13516 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13517 {
dcbf9037 13518 first_error (_("bad list length for table lookup"));
5287ad62
JB
13519 return;
13520 }
5f4273c7 13521
5287ad62
JB
13522 listlenbits = inst.operands[1].imm - 1;
13523 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13524 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13525 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13526 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13527 inst.instruction |= LOW4 (inst.operands[2].reg);
13528 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13529 inst.instruction |= listlenbits << 8;
5f4273c7 13530
5287ad62
JB
13531 inst.instruction = neon_dp_fixup (inst.instruction);
13532}
13533
13534static void
13535do_neon_ldm_stm (void)
13536{
13537 /* P, U and L bits are part of bitmask. */
13538 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13539 unsigned offsetbits = inst.operands[1].imm * 2;
13540
037e8744
JB
13541 if (inst.operands[1].issingle)
13542 {
13543 do_vfp_nsyn_ldm_stm (is_dbmode);
13544 return;
13545 }
13546
5287ad62
JB
13547 constraint (is_dbmode && !inst.operands[0].writeback,
13548 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13549
13550 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13551 _("register list must contain at least 1 and at most 16 "
13552 "registers"));
13553
13554 inst.instruction |= inst.operands[0].reg << 16;
13555 inst.instruction |= inst.operands[0].writeback << 21;
13556 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13557 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13558
13559 inst.instruction |= offsetbits;
5f4273c7 13560
037e8744 13561 do_vfp_cond_or_thumb ();
5287ad62
JB
13562}
13563
13564static void
13565do_neon_ldr_str (void)
13566{
5287ad62 13567 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 13568
037e8744
JB
13569 if (inst.operands[0].issingle)
13570 {
cd2f129f
JB
13571 if (is_ldr)
13572 do_vfp_nsyn_opcode ("flds");
13573 else
13574 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
13575 }
13576 else
5287ad62 13577 {
cd2f129f
JB
13578 if (is_ldr)
13579 do_vfp_nsyn_opcode ("fldd");
5287ad62 13580 else
cd2f129f 13581 do_vfp_nsyn_opcode ("fstd");
5287ad62 13582 }
5287ad62
JB
13583}
13584
13585/* "interleave" version also handles non-interleaving register VLD1/VST1
13586 instructions. */
13587
13588static void
13589do_neon_ld_st_interleave (void)
13590{
037e8744 13591 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
13592 N_8 | N_16 | N_32 | N_64);
13593 unsigned alignbits = 0;
13594 unsigned idx;
13595 /* The bits in this table go:
13596 0: register stride of one (0) or two (1)
13597 1,2: register list length, minus one (1, 2, 3, 4).
13598 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13599 We use -1 for invalid entries. */
13600 const int typetable[] =
13601 {
13602 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13603 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13604 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13605 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13606 };
13607 int typebits;
13608
dcbf9037
JB
13609 if (et.type == NT_invtype)
13610 return;
13611
5287ad62
JB
13612 if (inst.operands[1].immisalign)
13613 switch (inst.operands[1].imm >> 8)
13614 {
13615 case 64: alignbits = 1; break;
13616 case 128:
13617 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13618 goto bad_alignment;
13619 alignbits = 2;
13620 break;
13621 case 256:
13622 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13623 goto bad_alignment;
13624 alignbits = 3;
13625 break;
13626 default:
13627 bad_alignment:
dcbf9037 13628 first_error (_("bad alignment"));
5287ad62
JB
13629 return;
13630 }
13631
13632 inst.instruction |= alignbits << 4;
13633 inst.instruction |= neon_logbits (et.size) << 6;
13634
13635 /* Bits [4:6] of the immediate in a list specifier encode register stride
13636 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13637 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13638 up the right value for "type" in a table based on this value and the given
13639 list style, then stick it back. */
13640 idx = ((inst.operands[0].imm >> 4) & 7)
13641 | (((inst.instruction >> 8) & 3) << 3);
13642
13643 typebits = typetable[idx];
5f4273c7 13644
5287ad62
JB
13645 constraint (typebits == -1, _("bad list type for instruction"));
13646
13647 inst.instruction &= ~0xf00;
13648 inst.instruction |= typebits << 8;
13649}
13650
13651/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13652 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13653 otherwise. The variable arguments are a list of pairs of legal (size, align)
13654 values, terminated with -1. */
13655
13656static int
13657neon_alignment_bit (int size, int align, int *do_align, ...)
13658{
13659 va_list ap;
13660 int result = FAIL, thissize, thisalign;
5f4273c7 13661
5287ad62
JB
13662 if (!inst.operands[1].immisalign)
13663 {
13664 *do_align = 0;
13665 return SUCCESS;
13666 }
5f4273c7 13667
5287ad62
JB
13668 va_start (ap, do_align);
13669
13670 do
13671 {
13672 thissize = va_arg (ap, int);
13673 if (thissize == -1)
13674 break;
13675 thisalign = va_arg (ap, int);
13676
13677 if (size == thissize && align == thisalign)
13678 result = SUCCESS;
13679 }
13680 while (result != SUCCESS);
13681
13682 va_end (ap);
13683
13684 if (result == SUCCESS)
13685 *do_align = 1;
13686 else
dcbf9037 13687 first_error (_("unsupported alignment for instruction"));
5f4273c7 13688
5287ad62
JB
13689 return result;
13690}
13691
13692static void
13693do_neon_ld_st_lane (void)
13694{
037e8744 13695 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13696 int align_good, do_align = 0;
13697 int logsize = neon_logbits (et.size);
13698 int align = inst.operands[1].imm >> 8;
13699 int n = (inst.instruction >> 8) & 3;
13700 int max_el = 64 / et.size;
5f4273c7 13701
dcbf9037
JB
13702 if (et.type == NT_invtype)
13703 return;
5f4273c7 13704
5287ad62
JB
13705 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13706 _("bad list length"));
13707 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13708 _("scalar index out of range"));
13709 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13710 && et.size == 8,
13711 _("stride of 2 unavailable when element size is 8"));
5f4273c7 13712
5287ad62
JB
13713 switch (n)
13714 {
13715 case 0: /* VLD1 / VST1. */
13716 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13717 32, 32, -1);
13718 if (align_good == FAIL)
13719 return;
13720 if (do_align)
13721 {
13722 unsigned alignbits = 0;
13723 switch (et.size)
13724 {
13725 case 16: alignbits = 0x1; break;
13726 case 32: alignbits = 0x3; break;
13727 default: ;
13728 }
13729 inst.instruction |= alignbits << 4;
13730 }
13731 break;
13732
13733 case 1: /* VLD2 / VST2. */
13734 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13735 32, 64, -1);
13736 if (align_good == FAIL)
13737 return;
13738 if (do_align)
13739 inst.instruction |= 1 << 4;
13740 break;
13741
13742 case 2: /* VLD3 / VST3. */
13743 constraint (inst.operands[1].immisalign,
13744 _("can't use alignment with this instruction"));
13745 break;
13746
13747 case 3: /* VLD4 / VST4. */
13748 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13749 16, 64, 32, 64, 32, 128, -1);
13750 if (align_good == FAIL)
13751 return;
13752 if (do_align)
13753 {
13754 unsigned alignbits = 0;
13755 switch (et.size)
13756 {
13757 case 8: alignbits = 0x1; break;
13758 case 16: alignbits = 0x1; break;
13759 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13760 default: ;
13761 }
13762 inst.instruction |= alignbits << 4;
13763 }
13764 break;
13765
13766 default: ;
13767 }
13768
13769 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13770 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13771 inst.instruction |= 1 << (4 + logsize);
5f4273c7 13772
5287ad62
JB
13773 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13774 inst.instruction |= logsize << 10;
13775}
13776
13777/* Encode single n-element structure to all lanes VLD<n> instructions. */
13778
13779static void
13780do_neon_ld_dup (void)
13781{
037e8744 13782 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13783 int align_good, do_align = 0;
13784
dcbf9037
JB
13785 if (et.type == NT_invtype)
13786 return;
13787
5287ad62
JB
13788 switch ((inst.instruction >> 8) & 3)
13789 {
13790 case 0: /* VLD1. */
13791 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13792 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13793 &do_align, 16, 16, 32, 32, -1);
13794 if (align_good == FAIL)
13795 return;
13796 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13797 {
13798 case 1: break;
13799 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 13800 default: first_error (_("bad list length")); return;
5287ad62
JB
13801 }
13802 inst.instruction |= neon_logbits (et.size) << 6;
13803 break;
13804
13805 case 1: /* VLD2. */
13806 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13807 &do_align, 8, 16, 16, 32, 32, 64, -1);
13808 if (align_good == FAIL)
13809 return;
13810 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13811 _("bad list length"));
13812 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13813 inst.instruction |= 1 << 5;
13814 inst.instruction |= neon_logbits (et.size) << 6;
13815 break;
13816
13817 case 2: /* VLD3. */
13818 constraint (inst.operands[1].immisalign,
13819 _("can't use alignment with this instruction"));
13820 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13821 _("bad list length"));
13822 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13823 inst.instruction |= 1 << 5;
13824 inst.instruction |= neon_logbits (et.size) << 6;
13825 break;
13826
13827 case 3: /* VLD4. */
13828 {
13829 int align = inst.operands[1].imm >> 8;
13830 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13831 16, 64, 32, 64, 32, 128, -1);
13832 if (align_good == FAIL)
13833 return;
13834 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13835 _("bad list length"));
13836 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13837 inst.instruction |= 1 << 5;
13838 if (et.size == 32 && align == 128)
13839 inst.instruction |= 0x3 << 6;
13840 else
13841 inst.instruction |= neon_logbits (et.size) << 6;
13842 }
13843 break;
13844
13845 default: ;
13846 }
13847
13848 inst.instruction |= do_align << 4;
13849}
13850
13851/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13852 apart from bits [11:4]. */
13853
13854static void
13855do_neon_ldx_stx (void)
13856{
13857 switch (NEON_LANE (inst.operands[0].imm))
13858 {
13859 case NEON_INTERLEAVE_LANES:
13860 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13861 do_neon_ld_st_interleave ();
13862 break;
5f4273c7 13863
5287ad62
JB
13864 case NEON_ALL_LANES:
13865 inst.instruction = NEON_ENC_DUP (inst.instruction);
13866 do_neon_ld_dup ();
13867 break;
5f4273c7 13868
5287ad62
JB
13869 default:
13870 inst.instruction = NEON_ENC_LANE (inst.instruction);
13871 do_neon_ld_st_lane ();
13872 }
13873
13874 /* L bit comes from bit mask. */
13875 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13876 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13877 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 13878
5287ad62
JB
13879 if (inst.operands[1].postind)
13880 {
13881 int postreg = inst.operands[1].imm & 0xf;
13882 constraint (!inst.operands[1].immisreg,
13883 _("post-index must be a register"));
13884 constraint (postreg == 0xd || postreg == 0xf,
13885 _("bad register for post-index"));
13886 inst.instruction |= postreg;
13887 }
13888 else if (inst.operands[1].writeback)
13889 {
13890 inst.instruction |= 0xd;
13891 }
13892 else
5f4273c7
NC
13893 inst.instruction |= 0xf;
13894
5287ad62
JB
13895 if (thumb_mode)
13896 inst.instruction |= 0xf9000000;
13897 else
13898 inst.instruction |= 0xf4000000;
13899}
5287ad62
JB
13900\f
13901/* Overall per-instruction processing. */
13902
13903/* We need to be able to fix up arbitrary expressions in some statements.
13904 This is so that we can handle symbols that are an arbitrary distance from
13905 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13906 which returns part of an address in a form which will be valid for
13907 a data instruction. We do this by pushing the expression into a symbol
13908 in the expr_section, and creating a fix for that. */
13909
13910static void
13911fix_new_arm (fragS * frag,
13912 int where,
13913 short int size,
13914 expressionS * exp,
13915 int pc_rel,
13916 int reloc)
13917{
13918 fixS * new_fix;
13919
13920 switch (exp->X_op)
13921 {
13922 case O_constant:
13923 case O_symbol:
13924 case O_add:
13925 case O_subtract:
13926 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13927 break;
13928
13929 default:
13930 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13931 pc_rel, reloc);
13932 break;
13933 }
13934
13935 /* Mark whether the fix is to a THUMB instruction, or an ARM
13936 instruction. */
13937 new_fix->tc_fix_data = thumb_mode;
13938}
13939
13940/* Create a frg for an instruction requiring relaxation. */
13941static void
13942output_relax_insn (void)
13943{
13944 char * to;
13945 symbolS *sym;
0110f2b8
PB
13946 int offset;
13947
6e1cb1a6
PB
13948 /* The size of the instruction is unknown, so tie the debug info to the
13949 start of the instruction. */
13950 dwarf2_emit_insn (0);
6e1cb1a6 13951
0110f2b8
PB
13952 switch (inst.reloc.exp.X_op)
13953 {
13954 case O_symbol:
13955 sym = inst.reloc.exp.X_add_symbol;
13956 offset = inst.reloc.exp.X_add_number;
13957 break;
13958 case O_constant:
13959 sym = NULL;
13960 offset = inst.reloc.exp.X_add_number;
13961 break;
13962 default:
13963 sym = make_expr_symbol (&inst.reloc.exp);
13964 offset = 0;
13965 break;
13966 }
13967 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13968 inst.relax, sym, offset, NULL/*offset, opcode*/);
13969 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
13970}
13971
13972/* Write a 32-bit thumb instruction to buf. */
13973static void
13974put_thumb32_insn (char * buf, unsigned long insn)
13975{
13976 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13977 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13978}
13979
b99bd4ef 13980static void
c19d1205 13981output_inst (const char * str)
b99bd4ef 13982{
c19d1205 13983 char * to = NULL;
b99bd4ef 13984
c19d1205 13985 if (inst.error)
b99bd4ef 13986 {
c19d1205 13987 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
13988 return;
13989 }
5f4273c7
NC
13990 if (inst.relax)
13991 {
13992 output_relax_insn ();
0110f2b8 13993 return;
5f4273c7 13994 }
c19d1205
ZW
13995 if (inst.size == 0)
13996 return;
b99bd4ef 13997
c19d1205
ZW
13998 to = frag_more (inst.size);
13999
14000 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 14001 {
c19d1205 14002 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 14003 put_thumb32_insn (to, inst.instruction);
b99bd4ef 14004 }
c19d1205 14005 else if (inst.size > INSN_SIZE)
b99bd4ef 14006 {
c19d1205
ZW
14007 assert (inst.size == (2 * INSN_SIZE));
14008 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14009 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 14010 }
c19d1205
ZW
14011 else
14012 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 14013
c19d1205
ZW
14014 if (inst.reloc.type != BFD_RELOC_UNUSED)
14015 fix_new_arm (frag_now, to - frag_now->fr_literal,
14016 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14017 inst.reloc.type);
b99bd4ef 14018
c19d1205 14019 dwarf2_emit_insn (inst.size);
c19d1205 14020}
b99bd4ef 14021
c19d1205
ZW
14022/* Tag values used in struct asm_opcode's tag field. */
14023enum opcode_tag
14024{
14025 OT_unconditional, /* Instruction cannot be conditionalized.
14026 The ARM condition field is still 0xE. */
14027 OT_unconditionalF, /* Instruction cannot be conditionalized
14028 and carries 0xF in its ARM condition field. */
14029 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
14030 OT_csuffixF, /* Some forms of the instruction take a conditional
14031 suffix, others place 0xF where the condition field
14032 would be. */
c19d1205
ZW
14033 OT_cinfix3, /* Instruction takes a conditional infix,
14034 beginning at character index 3. (In
14035 unified mode, it becomes a suffix.) */
088fa78e
KH
14036 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14037 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
14038 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14039 character index 3, even in unified mode. Used for
14040 legacy instructions where suffix and infix forms
14041 may be ambiguous. */
c19d1205 14042 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 14043 suffix or an infix at character index 3. */
c19d1205
ZW
14044 OT_odd_infix_unc, /* This is the unconditional variant of an
14045 instruction that takes a conditional infix
14046 at an unusual position. In unified mode,
14047 this variant will accept a suffix. */
14048 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14049 are the conditional variants of instructions that
14050 take conditional infixes in unusual positions.
14051 The infix appears at character index
14052 (tag - OT_odd_infix_0). These are not accepted
14053 in unified mode. */
14054};
b99bd4ef 14055
c19d1205
ZW
14056/* Subroutine of md_assemble, responsible for looking up the primary
14057 opcode from the mnemonic the user wrote. STR points to the
14058 beginning of the mnemonic.
14059
14060 This is not simply a hash table lookup, because of conditional
14061 variants. Most instructions have conditional variants, which are
14062 expressed with a _conditional affix_ to the mnemonic. If we were
14063 to encode each conditional variant as a literal string in the opcode
14064 table, it would have approximately 20,000 entries.
14065
14066 Most mnemonics take this affix as a suffix, and in unified syntax,
14067 'most' is upgraded to 'all'. However, in the divided syntax, some
14068 instructions take the affix as an infix, notably the s-variants of
14069 the arithmetic instructions. Of those instructions, all but six
14070 have the infix appear after the third character of the mnemonic.
14071
14072 Accordingly, the algorithm for looking up primary opcodes given
14073 an identifier is:
14074
14075 1. Look up the identifier in the opcode table.
14076 If we find a match, go to step U.
14077
14078 2. Look up the last two characters of the identifier in the
14079 conditions table. If we find a match, look up the first N-2
14080 characters of the identifier in the opcode table. If we
14081 find a match, go to step CE.
14082
14083 3. Look up the fourth and fifth characters of the identifier in
14084 the conditions table. If we find a match, extract those
14085 characters from the identifier, and look up the remaining
14086 characters in the opcode table. If we find a match, go
14087 to step CM.
14088
14089 4. Fail.
14090
14091 U. Examine the tag field of the opcode structure, in case this is
14092 one of the six instructions with its conditional infix in an
14093 unusual place. If it is, the tag tells us where to find the
14094 infix; look it up in the conditions table and set inst.cond
14095 accordingly. Otherwise, this is an unconditional instruction.
14096 Again set inst.cond accordingly. Return the opcode structure.
14097
14098 CE. Examine the tag field to make sure this is an instruction that
14099 should receive a conditional suffix. If it is not, fail.
14100 Otherwise, set inst.cond from the suffix we already looked up,
14101 and return the opcode structure.
14102
14103 CM. Examine the tag field to make sure this is an instruction that
14104 should receive a conditional infix after the third character.
14105 If it is not, fail. Otherwise, undo the edits to the current
14106 line of input and proceed as for case CE. */
14107
14108static const struct asm_opcode *
14109opcode_lookup (char **str)
14110{
14111 char *end, *base;
14112 char *affix;
14113 const struct asm_opcode *opcode;
14114 const struct asm_cond *cond;
e3cb604e 14115 char save[2];
267d2029 14116 bfd_boolean neon_supported;
5f4273c7 14117
267d2029 14118 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
c19d1205
ZW
14119
14120 /* Scan up to the end of the mnemonic, which must end in white space,
267d2029 14121 '.' (in unified mode, or for Neon instructions), or end of string. */
c19d1205 14122 for (base = end = *str; *end != '\0'; end++)
267d2029 14123 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
c19d1205 14124 break;
b99bd4ef 14125
c19d1205
ZW
14126 if (end == base)
14127 return 0;
b99bd4ef 14128
5287ad62 14129 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 14130 if (end[0] == '.')
b99bd4ef 14131 {
5287ad62 14132 int offset = 2;
5f4273c7 14133
267d2029
JB
14134 /* The .w and .n suffixes are only valid if the unified syntax is in
14135 use. */
14136 if (unified_syntax && end[1] == 'w')
c19d1205 14137 inst.size_req = 4;
267d2029 14138 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
14139 inst.size_req = 2;
14140 else
5287ad62
JB
14141 offset = 0;
14142
14143 inst.vectype.elems = 0;
14144
14145 *str = end + offset;
b99bd4ef 14146
5f4273c7 14147 if (end[offset] == '.')
5287ad62 14148 {
267d2029
JB
14149 /* See if we have a Neon type suffix (possible in either unified or
14150 non-unified ARM syntax mode). */
dcbf9037 14151 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
14152 return 0;
14153 }
14154 else if (end[offset] != '\0' && end[offset] != ' ')
14155 return 0;
b99bd4ef 14156 }
c19d1205
ZW
14157 else
14158 *str = end;
b99bd4ef 14159
c19d1205
ZW
14160 /* Look for unaffixed or special-case affixed mnemonic. */
14161 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14162 if (opcode)
b99bd4ef 14163 {
c19d1205
ZW
14164 /* step U */
14165 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 14166 {
c19d1205
ZW
14167 inst.cond = COND_ALWAYS;
14168 return opcode;
b99bd4ef 14169 }
b99bd4ef 14170
278df34e 14171 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
14172 as_warn (_("conditional infixes are deprecated in unified syntax"));
14173 affix = base + (opcode->tag - OT_odd_infix_0);
14174 cond = hash_find_n (arm_cond_hsh, affix, 2);
14175 assert (cond);
b99bd4ef 14176
c19d1205
ZW
14177 inst.cond = cond->value;
14178 return opcode;
14179 }
b99bd4ef 14180
c19d1205
ZW
14181 /* Cannot have a conditional suffix on a mnemonic of less than two
14182 characters. */
14183 if (end - base < 3)
14184 return 0;
b99bd4ef 14185
c19d1205
ZW
14186 /* Look for suffixed mnemonic. */
14187 affix = end - 2;
14188 cond = hash_find_n (arm_cond_hsh, affix, 2);
14189 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14190 if (opcode && cond)
14191 {
14192 /* step CE */
14193 switch (opcode->tag)
14194 {
e3cb604e
PB
14195 case OT_cinfix3_legacy:
14196 /* Ignore conditional suffixes matched on infix only mnemonics. */
14197 break;
14198
c19d1205 14199 case OT_cinfix3:
088fa78e 14200 case OT_cinfix3_deprecated:
c19d1205
ZW
14201 case OT_odd_infix_unc:
14202 if (!unified_syntax)
e3cb604e 14203 return 0;
c19d1205
ZW
14204 /* else fall through */
14205
14206 case OT_csuffix:
037e8744 14207 case OT_csuffixF:
c19d1205
ZW
14208 case OT_csuf_or_in3:
14209 inst.cond = cond->value;
14210 return opcode;
14211
14212 case OT_unconditional:
14213 case OT_unconditionalF:
dfa9f0d5
PB
14214 if (thumb_mode)
14215 {
14216 inst.cond = cond->value;
14217 }
14218 else
14219 {
14220 /* delayed diagnostic */
14221 inst.error = BAD_COND;
14222 inst.cond = COND_ALWAYS;
14223 }
c19d1205 14224 return opcode;
b99bd4ef 14225
c19d1205
ZW
14226 default:
14227 return 0;
14228 }
14229 }
b99bd4ef 14230
c19d1205
ZW
14231 /* Cannot have a usual-position infix on a mnemonic of less than
14232 six characters (five would be a suffix). */
14233 if (end - base < 6)
14234 return 0;
b99bd4ef 14235
c19d1205
ZW
14236 /* Look for infixed mnemonic in the usual position. */
14237 affix = base + 3;
14238 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
14239 if (!cond)
14240 return 0;
14241
14242 memcpy (save, affix, 2);
14243 memmove (affix, affix + 2, (end - affix) - 2);
14244 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14245 memmove (affix + 2, affix, (end - affix) - 2);
14246 memcpy (affix, save, 2);
14247
088fa78e
KH
14248 if (opcode
14249 && (opcode->tag == OT_cinfix3
14250 || opcode->tag == OT_cinfix3_deprecated
14251 || opcode->tag == OT_csuf_or_in3
14252 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 14253 {
c19d1205 14254 /* step CM */
278df34e 14255 if (warn_on_deprecated && unified_syntax
088fa78e
KH
14256 && (opcode->tag == OT_cinfix3
14257 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
14258 as_warn (_("conditional infixes are deprecated in unified syntax"));
14259
14260 inst.cond = cond->value;
14261 return opcode;
b99bd4ef
NC
14262 }
14263
c19d1205 14264 return 0;
b99bd4ef
NC
14265}
14266
c19d1205
ZW
14267void
14268md_assemble (char *str)
b99bd4ef 14269{
c19d1205
ZW
14270 char *p = str;
14271 const struct asm_opcode * opcode;
b99bd4ef 14272
c19d1205
ZW
14273 /* Align the previous label if needed. */
14274 if (last_label_seen != NULL)
b99bd4ef 14275 {
c19d1205
ZW
14276 symbol_set_frag (last_label_seen, frag_now);
14277 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14278 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
14279 }
14280
c19d1205
ZW
14281 memset (&inst, '\0', sizeof (inst));
14282 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 14283
c19d1205
ZW
14284 opcode = opcode_lookup (&p);
14285 if (!opcode)
b99bd4ef 14286 {
c19d1205 14287 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
14288 the form alias .req reg, or a Neon .dn/.qn directive. */
14289 if (!create_register_alias (str, p)
14290 && !create_neon_reg_alias (str, p))
c19d1205 14291 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 14292
b99bd4ef
NC
14293 return;
14294 }
14295
278df34e 14296 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
14297 as_warn (_("s suffix on comparison instruction is deprecated"));
14298
037e8744
JB
14299 /* The value which unconditional instructions should have in place of the
14300 condition field. */
14301 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14302
c19d1205 14303 if (thumb_mode)
b99bd4ef 14304 {
e74cfd16 14305 arm_feature_set variant;
8f06b2d8
PB
14306
14307 variant = cpu_variant;
14308 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
14309 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14310 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 14311 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14312 if (!opcode->tvariant
14313 || (thumb_mode == 1
14314 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 14315 {
c19d1205 14316 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
14317 return;
14318 }
c19d1205
ZW
14319 if (inst.cond != COND_ALWAYS && !unified_syntax
14320 && opcode->tencode != do_t_branch)
b99bd4ef 14321 {
c19d1205 14322 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
14323 return;
14324 }
14325
076d447c
PB
14326 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14327 {
14328 /* Implicit require narrow instructions on Thumb-1. This avoids
14329 relaxation accidentally introducing Thumb-2 instructions. */
7e806470
PB
14330 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
14331 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
076d447c
PB
14332 inst.size_req = 2;
14333 }
14334
e27ec89e
PB
14335 /* Check conditional suffixes. */
14336 if (current_it_mask)
14337 {
14338 int cond;
14339 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
14340 current_it_mask <<= 1;
14341 current_it_mask &= 0x1f;
14342 /* The BKPT instruction is unconditional even in an IT block. */
14343 if (!inst.error
14344 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
14345 {
14346 as_bad (_("incorrect condition in IT block"));
14347 return;
14348 }
e27ec89e
PB
14349 }
14350 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14351 {
6decc662 14352 as_bad (_("thumb conditional instruction not in IT block"));
e27ec89e
PB
14353 return;
14354 }
14355
c19d1205
ZW
14356 mapping_state (MAP_THUMB);
14357 inst.instruction = opcode->tvalue;
14358
14359 if (!parse_operands (p, opcode->operands))
14360 opcode->tencode ();
14361
e27ec89e
PB
14362 /* Clear current_it_mask at the end of an IT block. */
14363 if (current_it_mask == 0x10)
14364 current_it_mask = 0;
14365
0110f2b8 14366 if (!(inst.error || inst.relax))
b99bd4ef 14367 {
c19d1205
ZW
14368 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14369 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14370 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 14371 {
c19d1205 14372 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
14373 return;
14374 }
14375 }
076d447c
PB
14376
14377 /* Something has gone badly wrong if we try to relax a fixed size
14378 instruction. */
14379 assert (inst.size_req == 0 || !inst.relax);
14380
e74cfd16
PB
14381 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14382 *opcode->tvariant);
ee065d83 14383 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 14384 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 14385 anything other than bl/blx and v6-M instructions.
ee065d83 14386 This is overly pessimistic for relaxable instructions. */
7e806470
PB
14387 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14388 || inst.relax)
14389 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
e74cfd16
PB
14390 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14391 arm_ext_v6t2);
c19d1205 14392 }
3e9e4fcf 14393 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 14394 {
845b51d6
PB
14395 bfd_boolean is_bx;
14396
14397 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
14398 is_bx = (opcode->aencode == do_bx);
14399
c19d1205 14400 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
14401 if (!(is_bx && fix_v4bx)
14402 && !(opcode->avariant &&
14403 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 14404 {
c19d1205
ZW
14405 as_bad (_("selected processor does not support `%s'"), str);
14406 return;
b99bd4ef 14407 }
c19d1205 14408 if (inst.size_req)
b99bd4ef 14409 {
c19d1205
ZW
14410 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14411 return;
b99bd4ef
NC
14412 }
14413
c19d1205
ZW
14414 mapping_state (MAP_ARM);
14415 inst.instruction = opcode->avalue;
14416 if (opcode->tag == OT_unconditionalF)
14417 inst.instruction |= 0xF << 28;
14418 else
14419 inst.instruction |= inst.cond << 28;
14420 inst.size = INSN_SIZE;
14421 if (!parse_operands (p, opcode->operands))
14422 opcode->aencode ();
ee065d83
PB
14423 /* Arm mode bx is marked as both v4T and v5 because it's still required
14424 on a hypothetical non-thumb v5 core. */
845b51d6 14425 if (is_bx)
e74cfd16 14426 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 14427 else
e74cfd16
PB
14428 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14429 *opcode->avariant);
b99bd4ef 14430 }
3e9e4fcf
JB
14431 else
14432 {
14433 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14434 "-- `%s'"), str);
14435 return;
14436 }
c19d1205
ZW
14437 output_inst (str);
14438}
b99bd4ef 14439
c19d1205
ZW
14440/* Various frobbings of labels and their addresses. */
14441
14442void
14443arm_start_line_hook (void)
14444{
14445 last_label_seen = NULL;
b99bd4ef
NC
14446}
14447
c19d1205
ZW
14448void
14449arm_frob_label (symbolS * sym)
b99bd4ef 14450{
c19d1205 14451 last_label_seen = sym;
b99bd4ef 14452
c19d1205 14453 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 14454
c19d1205
ZW
14455#if defined OBJ_COFF || defined OBJ_ELF
14456 ARM_SET_INTERWORK (sym, support_interwork);
14457#endif
b99bd4ef 14458
5f4273c7 14459 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
14460 as Thumb functions. This is because these labels, whilst
14461 they exist inside Thumb code, are not the entry points for
14462 possible ARM->Thumb calls. Also, these labels can be used
14463 as part of a computed goto or switch statement. eg gcc
14464 can generate code that looks like this:
b99bd4ef 14465
c19d1205
ZW
14466 ldr r2, [pc, .Laaa]
14467 lsl r3, r3, #2
14468 ldr r2, [r3, r2]
14469 mov pc, r2
b99bd4ef 14470
c19d1205
ZW
14471 .Lbbb: .word .Lxxx
14472 .Lccc: .word .Lyyy
14473 ..etc...
14474 .Laaa: .word Lbbb
b99bd4ef 14475
c19d1205
ZW
14476 The first instruction loads the address of the jump table.
14477 The second instruction converts a table index into a byte offset.
14478 The third instruction gets the jump address out of the table.
14479 The fourth instruction performs the jump.
b99bd4ef 14480
c19d1205
ZW
14481 If the address stored at .Laaa is that of a symbol which has the
14482 Thumb_Func bit set, then the linker will arrange for this address
14483 to have the bottom bit set, which in turn would mean that the
14484 address computation performed by the third instruction would end
14485 up with the bottom bit set. Since the ARM is capable of unaligned
14486 word loads, the instruction would then load the incorrect address
14487 out of the jump table, and chaos would ensue. */
14488 if (label_is_thumb_function_name
14489 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14490 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 14491 {
c19d1205
ZW
14492 /* When the address of a Thumb function is taken the bottom
14493 bit of that address should be set. This will allow
14494 interworking between Arm and Thumb functions to work
14495 correctly. */
b99bd4ef 14496
c19d1205 14497 THUMB_SET_FUNC (sym, 1);
b99bd4ef 14498
c19d1205 14499 label_is_thumb_function_name = FALSE;
b99bd4ef 14500 }
07a53e5c 14501
07a53e5c 14502 dwarf2_emit_label (sym);
b99bd4ef
NC
14503}
14504
c19d1205
ZW
14505int
14506arm_data_in_code (void)
b99bd4ef 14507{
c19d1205 14508 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 14509 {
c19d1205
ZW
14510 *input_line_pointer = '/';
14511 input_line_pointer += 5;
14512 *input_line_pointer = 0;
14513 return 1;
b99bd4ef
NC
14514 }
14515
c19d1205 14516 return 0;
b99bd4ef
NC
14517}
14518
c19d1205
ZW
14519char *
14520arm_canonicalize_symbol_name (char * name)
b99bd4ef 14521{
c19d1205 14522 int len;
b99bd4ef 14523
c19d1205
ZW
14524 if (thumb_mode && (len = strlen (name)) > 5
14525 && streq (name + len - 5, "/data"))
14526 *(name + len - 5) = 0;
b99bd4ef 14527
c19d1205 14528 return name;
b99bd4ef 14529}
c19d1205
ZW
14530\f
14531/* Table of all register names defined by default. The user can
14532 define additional names with .req. Note that all register names
14533 should appear in both upper and lowercase variants. Some registers
14534 also have mixed-case names. */
b99bd4ef 14535
dcbf9037 14536#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 14537#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 14538#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
14539#define REGSET(p,t) \
14540 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14541 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14542 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14543 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
14544#define REGSETH(p,t) \
14545 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14546 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14547 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14548 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14549#define REGSET2(p,t) \
14550 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14551 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14552 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14553 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 14554
c19d1205 14555static const struct reg_entry reg_names[] =
7ed4c4c5 14556{
c19d1205
ZW
14557 /* ARM integer registers. */
14558 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 14559
c19d1205
ZW
14560 /* ATPCS synonyms. */
14561 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14562 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14563 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 14564
c19d1205
ZW
14565 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14566 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14567 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 14568
c19d1205
ZW
14569 /* Well-known aliases. */
14570 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14571 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14572
14573 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14574 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14575
14576 /* Coprocessor numbers. */
14577 REGSET(p, CP), REGSET(P, CP),
14578
14579 /* Coprocessor register numbers. The "cr" variants are for backward
14580 compatibility. */
14581 REGSET(c, CN), REGSET(C, CN),
14582 REGSET(cr, CN), REGSET(CR, CN),
14583
14584 /* FPA registers. */
14585 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14586 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14587
14588 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14589 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14590
14591 /* VFP SP registers. */
5287ad62
JB
14592 REGSET(s,VFS), REGSET(S,VFS),
14593 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
14594
14595 /* VFP DP Registers. */
5287ad62
JB
14596 REGSET(d,VFD), REGSET(D,VFD),
14597 /* Extra Neon DP registers. */
14598 REGSETH(d,VFD), REGSETH(D,VFD),
14599
14600 /* Neon QP registers. */
14601 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
14602
14603 /* VFP control registers. */
14604 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14605 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
14606 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
14607 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
14608 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
14609 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
14610
14611 /* Maverick DSP coprocessor registers. */
14612 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14613 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14614
14615 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14616 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14617 REGDEF(dspsc,0,DSPSC),
14618
14619 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14620 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14621 REGDEF(DSPSC,0,DSPSC),
14622
14623 /* iWMMXt data registers - p0, c0-15. */
14624 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14625
14626 /* iWMMXt control registers - p1, c0-3. */
14627 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14628 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14629 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14630 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14631
14632 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14633 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14634 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14635 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14636 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14637
14638 /* XScale accumulator registers. */
14639 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14640};
14641#undef REGDEF
14642#undef REGNUM
14643#undef REGSET
7ed4c4c5 14644
c19d1205
ZW
14645/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14646 within psr_required_here. */
14647static const struct asm_psr psrs[] =
14648{
14649 /* Backward compatibility notation. Note that "all" is no longer
14650 truly all possible PSR bits. */
14651 {"all", PSR_c | PSR_f},
14652 {"flg", PSR_f},
14653 {"ctl", PSR_c},
14654
14655 /* Individual flags. */
14656 {"f", PSR_f},
14657 {"c", PSR_c},
14658 {"x", PSR_x},
14659 {"s", PSR_s},
14660 /* Combinations of flags. */
14661 {"fs", PSR_f | PSR_s},
14662 {"fx", PSR_f | PSR_x},
14663 {"fc", PSR_f | PSR_c},
14664 {"sf", PSR_s | PSR_f},
14665 {"sx", PSR_s | PSR_x},
14666 {"sc", PSR_s | PSR_c},
14667 {"xf", PSR_x | PSR_f},
14668 {"xs", PSR_x | PSR_s},
14669 {"xc", PSR_x | PSR_c},
14670 {"cf", PSR_c | PSR_f},
14671 {"cs", PSR_c | PSR_s},
14672 {"cx", PSR_c | PSR_x},
14673 {"fsx", PSR_f | PSR_s | PSR_x},
14674 {"fsc", PSR_f | PSR_s | PSR_c},
14675 {"fxs", PSR_f | PSR_x | PSR_s},
14676 {"fxc", PSR_f | PSR_x | PSR_c},
14677 {"fcs", PSR_f | PSR_c | PSR_s},
14678 {"fcx", PSR_f | PSR_c | PSR_x},
14679 {"sfx", PSR_s | PSR_f | PSR_x},
14680 {"sfc", PSR_s | PSR_f | PSR_c},
14681 {"sxf", PSR_s | PSR_x | PSR_f},
14682 {"sxc", PSR_s | PSR_x | PSR_c},
14683 {"scf", PSR_s | PSR_c | PSR_f},
14684 {"scx", PSR_s | PSR_c | PSR_x},
14685 {"xfs", PSR_x | PSR_f | PSR_s},
14686 {"xfc", PSR_x | PSR_f | PSR_c},
14687 {"xsf", PSR_x | PSR_s | PSR_f},
14688 {"xsc", PSR_x | PSR_s | PSR_c},
14689 {"xcf", PSR_x | PSR_c | PSR_f},
14690 {"xcs", PSR_x | PSR_c | PSR_s},
14691 {"cfs", PSR_c | PSR_f | PSR_s},
14692 {"cfx", PSR_c | PSR_f | PSR_x},
14693 {"csf", PSR_c | PSR_s | PSR_f},
14694 {"csx", PSR_c | PSR_s | PSR_x},
14695 {"cxf", PSR_c | PSR_x | PSR_f},
14696 {"cxs", PSR_c | PSR_x | PSR_s},
14697 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14698 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14699 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14700 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14701 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14702 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14703 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14704 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14705 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14706 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14707 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14708 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14709 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14710 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14711 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14712 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14713 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14714 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14715 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14716 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14717 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14718 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14719 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14720 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14721};
14722
62b3e311
PB
14723/* Table of V7M psr names. */
14724static const struct asm_psr v7m_psrs[] =
14725{
2b744c99
PB
14726 {"apsr", 0 }, {"APSR", 0 },
14727 {"iapsr", 1 }, {"IAPSR", 1 },
14728 {"eapsr", 2 }, {"EAPSR", 2 },
14729 {"psr", 3 }, {"PSR", 3 },
14730 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14731 {"ipsr", 5 }, {"IPSR", 5 },
14732 {"epsr", 6 }, {"EPSR", 6 },
14733 {"iepsr", 7 }, {"IEPSR", 7 },
14734 {"msp", 8 }, {"MSP", 8 },
14735 {"psp", 9 }, {"PSP", 9 },
14736 {"primask", 16}, {"PRIMASK", 16},
14737 {"basepri", 17}, {"BASEPRI", 17},
14738 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14739 {"faultmask", 19}, {"FAULTMASK", 19},
14740 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
14741};
14742
c19d1205
ZW
14743/* Table of all shift-in-operand names. */
14744static const struct asm_shift_name shift_names [] =
b99bd4ef 14745{
c19d1205
ZW
14746 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14747 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14748 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14749 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14750 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14751 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14752};
b99bd4ef 14753
c19d1205
ZW
14754/* Table of all explicit relocation names. */
14755#ifdef OBJ_ELF
14756static struct reloc_entry reloc_names[] =
14757{
14758 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14759 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14760 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14761 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14762 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14763 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14764 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14765 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14766 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14767 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14768 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14769};
14770#endif
b99bd4ef 14771
c19d1205
ZW
14772/* Table of all conditional affixes. 0xF is not defined as a condition code. */
14773static const struct asm_cond conds[] =
14774{
14775 {"eq", 0x0},
14776 {"ne", 0x1},
14777 {"cs", 0x2}, {"hs", 0x2},
14778 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14779 {"mi", 0x4},
14780 {"pl", 0x5},
14781 {"vs", 0x6},
14782 {"vc", 0x7},
14783 {"hi", 0x8},
14784 {"ls", 0x9},
14785 {"ge", 0xa},
14786 {"lt", 0xb},
14787 {"gt", 0xc},
14788 {"le", 0xd},
14789 {"al", 0xe}
14790};
bfae80f2 14791
62b3e311
PB
14792static struct asm_barrier_opt barrier_opt_names[] =
14793{
14794 { "sy", 0xf },
14795 { "un", 0x7 },
14796 { "st", 0xe },
14797 { "unst", 0x6 }
14798};
14799
c19d1205
ZW
14800/* Table of ARM-format instructions. */
14801
14802/* Macros for gluing together operand strings. N.B. In all cases
14803 other than OPS0, the trailing OP_stop comes from default
14804 zero-initialization of the unspecified elements of the array. */
14805#define OPS0() { OP_stop, }
14806#define OPS1(a) { OP_##a, }
14807#define OPS2(a,b) { OP_##a,OP_##b, }
14808#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14809#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14810#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14811#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14812
14813/* These macros abstract out the exact format of the mnemonic table and
14814 save some repeated characters. */
14815
14816/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14817#define TxCE(mnem, op, top, nops, ops, ae, te) \
14818 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 14819 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14820
14821/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14822 a T_MNEM_xyz enumerator. */
14823#define TCE(mnem, aop, top, nops, ops, ae, te) \
14824 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14825#define tCE(mnem, aop, top, nops, ops, ae, te) \
14826 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14827
14828/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14829 infix after the third character. */
14830#define TxC3(mnem, op, top, nops, ops, ae, te) \
14831 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 14832 THUMB_VARIANT, do_##ae, do_##te }
088fa78e
KH
14833#define TxC3w(mnem, op, top, nops, ops, ae, te) \
14834 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14835 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14836#define TC3(mnem, aop, top, nops, ops, ae, te) \
14837 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e
KH
14838#define TC3w(mnem, aop, top, nops, ops, ae, te) \
14839 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205
ZW
14840#define tC3(mnem, aop, top, nops, ops, ae, te) \
14841 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
088fa78e
KH
14842#define tC3w(mnem, aop, top, nops, ops, ae, te) \
14843 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
c19d1205
ZW
14844
14845/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14846 appear in the condition table. */
14847#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14848 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 14849 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14850
14851#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14852 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14853 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14854 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14855 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14856 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14857 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14858 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14859 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14860 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14861 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14862 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14863 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14864 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14865 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14866 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14867 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14868 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14869 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14870 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14871
14872#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14873 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14874#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14875 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14876
14877/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
14878 field is still 0xE. Many of the Thumb variants can be executed
14879 conditionally, so this is checked separately. */
c19d1205
ZW
14880#define TUE(mnem, op, top, nops, ops, ae, te) \
14881 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14882 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14883
14884/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14885 condition code field. */
14886#define TUF(mnem, op, top, nops, ops, ae, te) \
14887 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14888 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14889
14890/* ARM-only variants of all the above. */
6a86118a
NC
14891#define CE(mnem, op, nops, ops, ae) \
14892 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14893
14894#define C3(mnem, op, nops, ops, ae) \
14895 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14896
e3cb604e
PB
14897/* Legacy mnemonics that always have conditional infix after the third
14898 character. */
14899#define CL(mnem, op, nops, ops, ae) \
14900 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14901 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14902
8f06b2d8
PB
14903/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14904#define cCE(mnem, op, nops, ops, ae) \
14905 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14906
e3cb604e
PB
14907/* Legacy coprocessor instructions where conditional infix and conditional
14908 suffix are ambiguous. For consistency this includes all FPA instructions,
14909 not just the potentially ambiguous ones. */
14910#define cCL(mnem, op, nops, ops, ae) \
14911 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14912 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14913
14914/* Coprocessor, takes either a suffix or a position-3 infix
14915 (for an FPA corner case). */
14916#define C3E(mnem, op, nops, ops, ae) \
14917 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14918 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 14919
6a86118a
NC
14920#define xCM_(m1, m2, m3, op, nops, ops, ae) \
14921 { #m1 #m2 #m3, OPS##nops ops, \
14922 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14923 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14924
14925#define CM(m1, m2, op, nops, ops, ae) \
14926 xCM_(m1, , m2, op, nops, ops, ae), \
14927 xCM_(m1, eq, m2, op, nops, ops, ae), \
14928 xCM_(m1, ne, m2, op, nops, ops, ae), \
14929 xCM_(m1, cs, m2, op, nops, ops, ae), \
14930 xCM_(m1, hs, m2, op, nops, ops, ae), \
14931 xCM_(m1, cc, m2, op, nops, ops, ae), \
14932 xCM_(m1, ul, m2, op, nops, ops, ae), \
14933 xCM_(m1, lo, m2, op, nops, ops, ae), \
14934 xCM_(m1, mi, m2, op, nops, ops, ae), \
14935 xCM_(m1, pl, m2, op, nops, ops, ae), \
14936 xCM_(m1, vs, m2, op, nops, ops, ae), \
14937 xCM_(m1, vc, m2, op, nops, ops, ae), \
14938 xCM_(m1, hi, m2, op, nops, ops, ae), \
14939 xCM_(m1, ls, m2, op, nops, ops, ae), \
14940 xCM_(m1, ge, m2, op, nops, ops, ae), \
14941 xCM_(m1, lt, m2, op, nops, ops, ae), \
14942 xCM_(m1, gt, m2, op, nops, ops, ae), \
14943 xCM_(m1, le, m2, op, nops, ops, ae), \
14944 xCM_(m1, al, m2, op, nops, ops, ae)
14945
14946#define UE(mnem, op, nops, ops, ae) \
14947 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14948
14949#define UF(mnem, op, nops, ops, ae) \
14950 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14951
5287ad62
JB
14952/* Neon data-processing. ARM versions are unconditional with cond=0xf.
14953 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14954 use the same encoding function for each. */
14955#define NUF(mnem, op, nops, ops, enc) \
14956 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14957 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14958
14959/* Neon data processing, version which indirects through neon_enc_tab for
14960 the various overloaded versions of opcodes. */
14961#define nUF(mnem, op, nops, ops, enc) \
14962 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14963 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14964
14965/* Neon insn with conditional suffix for the ARM version, non-overloaded
14966 version. */
037e8744
JB
14967#define NCE_tag(mnem, op, nops, ops, enc, tag) \
14968 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
14969 THUMB_VARIANT, do_##enc, do_##enc }
14970
037e8744
JB
14971#define NCE(mnem, op, nops, ops, enc) \
14972 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14973
14974#define NCEF(mnem, op, nops, ops, enc) \
14975 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14976
5287ad62 14977/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744
JB
14978#define nCE_tag(mnem, op, nops, ops, enc, tag) \
14979 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
5287ad62
JB
14980 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14981
037e8744
JB
14982#define nCE(mnem, op, nops, ops, enc) \
14983 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14984
14985#define nCEF(mnem, op, nops, ops, enc) \
14986 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14987
c19d1205
ZW
14988#define do_0 0
14989
14990/* Thumb-only, unconditional. */
14991#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14992
c19d1205 14993static const struct asm_opcode insns[] =
bfae80f2 14994{
e74cfd16
PB
14995#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14996#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14997 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14998 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14999 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
15000 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
15001 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
15002 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
4962c51a
MS
15003 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
15004 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
c19d1205
ZW
15005 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
15006 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
15007 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
15008 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
15009 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
15010 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
15011 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
15012 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
15013
15014 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
15015 for setting PSR flag bits. They are obsolete in V6 and do not
15016 have Thumb equivalents. */
15017 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 15018 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 15019 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205 15020 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
088fa78e 15021 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 15022 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205 15023 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 15024 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 15025 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
15026
15027 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
15028 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
15029 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
15030 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
15031
4962c51a
MS
15032 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
15033 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15034 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
15035 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
c19d1205 15036
f5208ef2 15037 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15038 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15039 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 15040 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15041 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15042 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15043
15044 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 15045 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 15046 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 15047 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 15048
c19d1205 15049 /* Pseudo ops. */
e9f89963 15050 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
15051 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
15052 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
15053
15054 /* Thumb-compatibility pseudo ops. */
15055 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
15056 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
15057 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
15058 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
15059 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 15060 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
15061 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
15062 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
15063 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
15064 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
15065 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
15066 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
15067
16a4cf17
PB
15068 /* These may simplify to neg. */
15069 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
15070 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
15071
c19d1205 15072#undef THUMB_VARIANT
e74cfd16 15073#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 15074 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
15075
15076 /* V1 instructions with no Thumb analogue prior to V6T2. */
15077#undef THUMB_VARIANT
e74cfd16 15078#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15079 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 15080 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 15081 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
15082
15083 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 15084 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 15085 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 15086 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 15087
9c3c69f2
PB
15088 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15089 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 15090
9c3c69f2
PB
15091 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15092 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
15093
15094 /* V1 instructions with no Thumb analogue at all. */
15095 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
15096 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
15097
15098 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
15099 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
15100 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
15101 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
15102 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
15103 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
15104 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
15105 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
15106
15107#undef ARM_VARIANT
e74cfd16 15108#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 15109#undef THUMB_VARIANT
e74cfd16 15110#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
15111 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15112 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15113
15114#undef THUMB_VARIANT
e74cfd16 15115#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15116 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15117 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
15118
15119 /* Generic coprocessor instructions. */
15120 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
4962c51a
MS
15121 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15122 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15123 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15124 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15125 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15126 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15127
15128#undef ARM_VARIANT
e74cfd16 15129#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
15130 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15131 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15132
15133#undef ARM_VARIANT
e74cfd16 15134#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
7e806470
PB
15135#undef THUMB_VARIANT
15136#define THUMB_VARIANT &arm_ext_msr
037e8744
JB
15137 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15138 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205
ZW
15139
15140#undef ARM_VARIANT
e74cfd16 15141#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
7e806470
PB
15142#undef THUMB_VARIANT
15143#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15144 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15145 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15146 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15147 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15148 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15149 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15150 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15151 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15152
15153#undef ARM_VARIANT
e74cfd16 15154#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 15155#undef THUMB_VARIANT
e74cfd16 15156#define THUMB_VARIANT &arm_ext_v4t
4962c51a
MS
15157 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15158 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15159 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15160 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15161 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15162 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205
ZW
15163
15164#undef ARM_VARIANT
e74cfd16 15165#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
15166 /* ARM Architecture 4T. */
15167 /* Note: bx (and blx) are required on V5, even if the processor does
15168 not support Thumb. */
15169 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15170
15171#undef ARM_VARIANT
e74cfd16 15172#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 15173#undef THUMB_VARIANT
e74cfd16 15174#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
15175 /* Note: blx has 2 variants; the .value coded here is for
15176 BLX(2). Only this variant has conditional execution. */
15177 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15178 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15179
15180#undef THUMB_VARIANT
e74cfd16 15181#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15182 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
4962c51a
MS
15183 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15184 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15185 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15186 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
15187 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15188 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15189 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15190
15191#undef ARM_VARIANT
e74cfd16 15192#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
15193 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15194 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15195 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15196 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15197
15198 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15199 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15200
15201 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15202 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15203 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15204 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15205
15206 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15207 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15208 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15209 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15210
15211 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15212 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15213
15214 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15215 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15216 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15217 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15218
15219#undef ARM_VARIANT
e74cfd16 15220#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205 15221 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
79d49516
PB
15222 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15223 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205
ZW
15224
15225 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15226 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15227
15228#undef ARM_VARIANT
e74cfd16 15229#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
15230 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15231
15232#undef ARM_VARIANT
e74cfd16 15233#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 15234#undef THUMB_VARIANT
e74cfd16 15235#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
15236 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15237 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15238 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15239 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15240 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15241 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15242 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15243 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15244 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15245 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15246
15247#undef THUMB_VARIANT
e74cfd16 15248#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 15249 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
91568d08 15250 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
c19d1205
ZW
15251 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15252 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
15253
15254 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15255 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15256
15257/* ARM V6 not included in V7M (eg. integer SIMD). */
15258#undef THUMB_VARIANT
15259#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 15260 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
15261 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15262 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15263 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15264 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15265 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15266 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15267 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15268 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15269 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15270 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15271 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15272 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15273 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15274 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15275 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15276 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15277 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15278 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15279 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15280 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15281 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15282 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15283 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15284 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15285 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15286 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15287 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15288 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15289 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15290 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15291 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15292 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15293 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15294 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15295 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15296 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15297 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15298 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15299 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15300 UF(rfeib, 9900a00, 1, (RRw), rfe),
15301 UF(rfeda, 8100a00, 1, (RRw), rfe),
15302 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15303 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15304 UF(rfefa, 9900a00, 1, (RRw), rfe),
15305 UF(rfeea, 8100a00, 1, (RRw), rfe),
15306 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15307 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15308 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15309 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15310 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15311 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15312 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15313 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15314 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 15315 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15316 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15317 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15318 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15319 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15320 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15321 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15322 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15323 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15324 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15325 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15326 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15327 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15328 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15329 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15330 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15331 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15332 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15333 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
b6702015
PB
15334 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15335 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15336 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15337 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c19d1205 15338 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
c19d1205
ZW
15339 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15340 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15341 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
15342 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15343
15344#undef ARM_VARIANT
e74cfd16 15345#define ARM_VARIANT &arm_ext_v6k
c19d1205 15346#undef THUMB_VARIANT
e74cfd16 15347#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
15348 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15349 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15350 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15351 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15352
ebdca51a
PB
15353#undef THUMB_VARIANT
15354#define THUMB_VARIANT &arm_ext_v6_notm
15355 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15356 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15357
c19d1205 15358#undef THUMB_VARIANT
e74cfd16 15359#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15360 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15361 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
15362 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15363 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
15364 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15365
15366#undef ARM_VARIANT
e74cfd16 15367#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 15368 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
15369
15370#undef ARM_VARIANT
e74cfd16 15371#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
15372 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15373 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15374 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15375 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15376
15377 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
b6895b4f
PB
15378 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15379 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
401a54cf 15380 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205
ZW
15381
15382 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15383 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15384 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15385 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15386
25fe350b
MS
15387 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15388 UT(cbz, b100, 2, (RR, EXP), t_cbz),
f91e006c
PB
15389 /* ARM does not really have an IT instruction, so always allow it. */
15390#undef ARM_VARIANT
15391#define ARM_VARIANT &arm_ext_v1
c19d1205
ZW
15392 TUE(it, 0, bf08, 1, (COND), it, t_it),
15393 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15394 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15395 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15396 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15397 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15398 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15399 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15400 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15401 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15402 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15403 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15404 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15405 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15406 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15407
92e90b6e
PB
15408 /* Thumb2 only instructions. */
15409#undef ARM_VARIANT
e74cfd16 15410#define ARM_VARIANT NULL
92e90b6e
PB
15411
15412 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15413 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15414 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15415 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15416
62b3e311
PB
15417 /* Thumb-2 hardware division instructions (R and M profiles only). */
15418#undef THUMB_VARIANT
15419#define THUMB_VARIANT &arm_ext_div
15420 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15421 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15422
7e806470
PB
15423 /* ARM V6M/V7 instructions. */
15424#undef ARM_VARIANT
15425#define ARM_VARIANT &arm_ext_barrier
15426#undef THUMB_VARIANT
15427#define THUMB_VARIANT &arm_ext_barrier
15428 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15429 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15430 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15431
62b3e311
PB
15432 /* ARM V7 instructions. */
15433#undef ARM_VARIANT
15434#define ARM_VARIANT &arm_ext_v7
15435#undef THUMB_VARIANT
15436#define THUMB_VARIANT &arm_ext_v7
15437 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15438 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 15439
c19d1205 15440#undef ARM_VARIANT
e74cfd16 15441#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
15442 cCE(wfs, e200110, 1, (RR), rd),
15443 cCE(rfs, e300110, 1, (RR), rd),
15444 cCE(wfc, e400110, 1, (RR), rd),
15445 cCE(rfc, e500110, 1, (RR), rd),
15446
4962c51a
MS
15447 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15448 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15449 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15450 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e 15451
4962c51a
MS
15452 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15453 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15454 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15455 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e
PB
15456
15457 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15458 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15459 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15460 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15461 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15462 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15463 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15464 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15465 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15466 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15467 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15468 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15469
15470 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15471 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15472 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15473 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15474 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15475 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15476 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15477 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15478 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15479 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15480 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15481 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15482
15483 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15484 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15485 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15486 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15487 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15488 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15489 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15490 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15491 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15492 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15493 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15494 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15495
15496 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15497 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15498 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15499 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15500 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15501 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15502 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15503 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15504 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15505 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15506 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15507 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15508
15509 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15510 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15511 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15512 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15513 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15514 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15515 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15516 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15517 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15518 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15519 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15520 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15521
15522 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15523 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15524 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15525 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15526 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15527 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15528 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15529 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15530 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15531 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15532 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15533 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15534
15535 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15536 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15537 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15538 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15539 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15540 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15541 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15542 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15543 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15544 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15545 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15546 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15547
15548 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15549 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15550 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15551 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15552 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15553 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15554 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15555 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15556 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15557 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15558 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15559 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15560
15561 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15562 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15563 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15564 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15565 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15566 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15567 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15568 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15569 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15570 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15571 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15572 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15573
15574 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15575 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15576 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15577 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15578 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15579 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15580 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15581 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15582 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15583 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15584 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15585 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15586
15587 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15588 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15589 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15590 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15591 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15592 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15593 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15594 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15595 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15596 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15597 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15598 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15599
15600 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15601 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15602 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15603 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15604 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15605 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15606 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15607 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15608 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15609 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15610 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15611 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15612
15613 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15614 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15615 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15616 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15617 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15618 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15619 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15620 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15621 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15622 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15623 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15624 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15625
15626 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15627 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15628 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15629 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15630 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15631 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15632 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15633 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15634 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15635 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15636 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15637 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15638
15639 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15640 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15641 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15642 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15643 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15644 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15645 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15646 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15647 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15648 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15649 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15650 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15651
15652 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15653 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15654 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15655 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15656 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15657 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15658 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15659 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15660 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15661 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15662 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15663 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15664
15665 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15666 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15667 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15668 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15669 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15670 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15671 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15672 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15673 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15674 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15675 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15676 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15677
15678 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15679 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15680 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15681 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15682 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15683 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15684 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15685 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15686 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15687 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15688 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15689 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15690
15691 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15692 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15693 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15694 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15695 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15696 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15697 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15698 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15699 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15700 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15701 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15702 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15703
15704 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15705 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15706 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15707 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15708 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15709 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15710 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15711 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15712 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15713 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15714 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15715 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15716
15717 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15718 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15719 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15720 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15721 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15722 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15723 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15724 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15725 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15726 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15727 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15728 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15729
15730 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15731 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15732 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15733 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15734 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15735 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15736 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15737 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15738 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15739 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15740 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15741 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15742
15743 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15744 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15745 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15746 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15747 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15748 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15749 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15750 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15751 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15752 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15753 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15754 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15755
15756 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15757 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15758 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15759 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15760 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15761 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15762 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15763 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15764 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15765 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15766 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15767 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15768
15769 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15770 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15771 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15772 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15773 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15774 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15775 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15776 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15777 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15778 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15779 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15780 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15781
15782 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15783 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15784 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15785 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15786 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15787 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15788 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15789 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15790 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15791 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15792 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15793 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15794
15795 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15796 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15797 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15798 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15799 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15800 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15801 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15802 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15803 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15804 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15805 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15806 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15807
15808 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15809 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15810 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15811 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15812 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15813 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15814 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15815 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15816 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15817 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15818 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15819 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15820
15821 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15822 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15823 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15824 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15825 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15826 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15827 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15828 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15829 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15830 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15831 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15832 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
15833
15834 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 15835 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 15836 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
15837 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15838
e3cb604e
PB
15839 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15840 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15841 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15842 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15843 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15844 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15845 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15846 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15847 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15848 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15849 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15850 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 15851
c19d1205
ZW
15852 /* The implementation of the FIX instruction is broken on some
15853 assemblers, in that it accepts a precision specifier as well as a
15854 rounding specifier, despite the fact that this is meaningless.
15855 To be more compatible, we accept it as well, though of course it
15856 does not set any bits. */
8f06b2d8 15857 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
15858 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15859 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15860 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15861 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15862 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15863 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15864 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15865 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15866 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15867 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15868 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15869 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 15870
c19d1205
ZW
15871 /* Instructions that were new with the real FPA, call them V2. */
15872#undef ARM_VARIANT
e74cfd16 15873#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 15874 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15875 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15876 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 15877 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15878 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15879 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
15880
15881#undef ARM_VARIANT
e74cfd16 15882#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 15883 /* Moves and type conversions. */
8f06b2d8
PB
15884 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15885 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15886 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15887 cCE(fmstat, ef1fa10, 0, (), noargs),
15888 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15889 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15890 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15891 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15892 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15893 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15894 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15895 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
15896
15897 /* Memory operations. */
4962c51a
MS
15898 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15899 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
8f06b2d8
PB
15900 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15901 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15902 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15903 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15904 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15905 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15906 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15907 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15908 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15909 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15910 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15911 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15912 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15913 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15914 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15915 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 15916
c19d1205 15917 /* Monadic operations. */
8f06b2d8
PB
15918 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15919 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15920 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
15921
15922 /* Dyadic operations. */
8f06b2d8
PB
15923 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15924 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15925 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15926 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15927 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15928 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15929 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15930 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15931 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 15932
c19d1205 15933 /* Comparisons. */
8f06b2d8
PB
15934 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15935 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15936 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15937 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 15938
c19d1205 15939#undef ARM_VARIANT
e74cfd16 15940#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 15941 /* Moves and type conversions. */
5287ad62 15942 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
15943 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15944 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
15945 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15946 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15947 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15948 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
15949 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15950 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15951 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15952 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15953 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15954 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
15955
15956 /* Memory operations. */
4962c51a
MS
15957 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15958 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
8f06b2d8
PB
15959 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15960 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15961 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15962 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15963 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15964 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15965 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15966 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 15967
c19d1205 15968 /* Monadic operations. */
5287ad62
JB
15969 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15970 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15971 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
15972
15973 /* Dyadic operations. */
5287ad62
JB
15974 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15975 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15976 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15977 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15978 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15979 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15980 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15981 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15982 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 15983
c19d1205 15984 /* Comparisons. */
5287ad62
JB
15985 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15986 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15987 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15988 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
15989
15990#undef ARM_VARIANT
e74cfd16 15991#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
15992 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15993 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
15994 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15995 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15996
037e8744
JB
15997/* Instructions which may belong to either the Neon or VFP instruction sets.
15998 Individual encoder functions perform additional architecture checks. */
15999#undef ARM_VARIANT
16000#define ARM_VARIANT &fpu_vfp_ext_v1xd
16001#undef THUMB_VARIANT
16002#define THUMB_VARIANT &fpu_vfp_ext_v1xd
16003 /* These mnemonics are unique to VFP. */
16004 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
16005 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
16006 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16007 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16008 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16009 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16010 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16011 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
16012 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
16013 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
16014
16015 /* Mnemonics shared by Neon and VFP. */
16016 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
16017 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16018 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16019
16020 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16021 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16022
16023 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16024 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16025
16026 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16027 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16028 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16029 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16030 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16031 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
16032 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16033 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744
JB
16034
16035 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
8e79c3df
CM
16036 nCEF(vcvtb, vcvt, 2, (RVS, RVS), neon_cvtb),
16037 nCEF(vcvtt, vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 16038
037e8744
JB
16039
16040 /* NOTE: All VMOV encoding is special-cased! */
16041 NCE(vmov, 0, 1, (VMOV), neon_mov),
16042 NCE(vmovq, 0, 1, (VMOV), neon_mov),
16043
5287ad62
JB
16044#undef THUMB_VARIANT
16045#define THUMB_VARIANT &fpu_neon_ext_v1
16046#undef ARM_VARIANT
16047#define ARM_VARIANT &fpu_neon_ext_v1
16048 /* Data processing with three registers of the same length. */
16049 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
16050 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
16051 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
16052 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16053 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16054 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16055 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16056 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16057 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16058 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
16059 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16060 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16061 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16062 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
16063 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16064 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16065 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16066 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
16067 /* If not immediate, fall back to neon_dyadic_i64_su.
16068 shl_imm should accept I8 I16 I32 I64,
16069 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
16070 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
16071 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
16072 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
16073 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
16074 /* Logic ops, types optional & ignored. */
16075 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
16076 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
16077 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
16078 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
16079 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
16080 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
16081 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
16082 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
16083 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
16084 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
16085 /* Bitfield ops, untyped. */
16086 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16087 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16088 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16089 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16090 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16091 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16092 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
16093 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16094 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16095 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16096 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16097 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16098 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16099 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
16100 back to neon_dyadic_if_su. */
16101 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16102 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16103 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16104 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16105 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16106 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16107 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16108 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 16109 /* Comparison. Type I8 I16 I32 F32. */
5287ad62
JB
16110 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
16111 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
16112 /* As above, D registers only. */
16113 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16114 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16115 /* Int and float variants, signedness unimportant. */
5287ad62 16116 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
5287ad62
JB
16117 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16118 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
16119 /* Add/sub take types I8 I16 I32 I64 F32. */
5287ad62 16120 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
16121 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16122 /* vtst takes sizes 8, 16, 32. */
16123 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
16124 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
16125 /* VMUL takes I8 I16 I32 F32 P8. */
037e8744 16126 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62
JB
16127 /* VQD{R}MULH takes S16 S32. */
16128 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16129 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16130 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16131 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16132 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16133 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16134 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16135 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
16136 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16137 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16138 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16139 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
16140 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16141 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16142 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16143 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16144
16145 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 16146 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
16147 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16148
16149 /* Data processing with two registers and a shift amount. */
16150 /* Right shifts, and variants with rounding.
16151 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16152 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16153 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16154 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16155 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16156 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16157 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16158 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16159 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16160 /* Shift and insert. Sizes accepted 8 16 32 64. */
16161 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16162 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16163 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16164 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16165 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16166 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16167 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16168 /* Right shift immediate, saturating & narrowing, with rounding variants.
16169 Types accepted S16 S32 S64 U16 U32 U64. */
16170 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16171 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16172 /* As above, unsigned. Types accepted S16 S32 S64. */
16173 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16174 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16175 /* Right shift narrowing. Types accepted I16 I32 I64. */
16176 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16177 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16178 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16179 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16180 /* CVT with optional immediate for fixed-point variant. */
037e8744 16181 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 16182
5287ad62
JB
16183 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16184 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16185
16186 /* Data processing, three registers of different lengths. */
16187 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16188 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16189 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16190 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16191 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16192 /* If not scalar, fall back to neon_dyadic_long.
16193 Vector types as above, scalar types S16 S32 U16 U32. */
16194 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16195 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16196 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16197 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16198 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16199 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16200 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16201 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16202 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16203 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16204 /* Saturating doubling multiplies. Types S16 S32. */
16205 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16206 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16207 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16208 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16209 S16 S32 U16 U32. */
16210 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16211
16212 /* Extract. Size 8. */
3b8d421e
PB
16213 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16214 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
16215
16216 /* Two registers, miscellaneous. */
16217 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16218 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16219 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16220 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16221 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16222 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16223 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16224 /* Vector replicate. Sizes 8 16 32. */
16225 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16226 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16227 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16228 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16229 /* VMOVN. Types I16 I32 I64. */
16230 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16231 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16232 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16233 /* VQMOVUN. Types S16 S32 S64. */
16234 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16235 /* VZIP / VUZP. Sizes 8 16 32. */
16236 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16237 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16238 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16239 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16240 /* VQABS / VQNEG. Types S8 S16 S32. */
16241 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16242 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16243 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16244 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16245 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16246 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16247 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16248 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16249 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16250 /* Reciprocal estimates. Types U32 F32. */
16251 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16252 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16253 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16254 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16255 /* VCLS. Types S8 S16 S32. */
16256 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16257 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16258 /* VCLZ. Types I8 I16 I32. */
16259 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16260 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16261 /* VCNT. Size 8. */
16262 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16263 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16264 /* Two address, untyped. */
16265 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16266 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16267 /* VTRN. Sizes 8 16 32. */
16268 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16269 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16270
16271 /* Table lookup. Size 8. */
16272 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16273 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16274
b7fc2769
JB
16275#undef THUMB_VARIANT
16276#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16277#undef ARM_VARIANT
16278#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
5287ad62
JB
16279 /* Neon element/structure load/store. */
16280 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16281 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16282 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16283 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16284 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16285 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16286 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16287 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16288
16289#undef THUMB_VARIANT
16290#define THUMB_VARIANT &fpu_vfp_ext_v3
16291#undef ARM_VARIANT
16292#define ARM_VARIANT &fpu_vfp_ext_v3
5287ad62
JB
16293 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16294 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16295 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16296 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16297 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16298 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16299 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16300 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16301 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16302 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16303 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16304 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16305 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16306 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16307 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16308 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16309 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16310 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 16311
5287ad62 16312#undef THUMB_VARIANT
c19d1205 16313#undef ARM_VARIANT
e74cfd16 16314#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
16315 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16316 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16317 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16318 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16319 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16320 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16321 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16322 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
16323
16324#undef ARM_VARIANT
e74cfd16 16325#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
16326 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16327 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16328 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16329 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16330 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16331 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16332 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16333 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16334 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16335 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16336 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16337 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16338 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16339 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16340 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16341 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16342 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16343 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
41adaa5c 16344 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
8f06b2d8
PB
16345 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16346 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16347 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16348 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16349 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16350 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16351 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16352 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16353 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16354 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
41adaa5c 16355 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
8f06b2d8
PB
16356 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16357 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16358 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16359 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16360 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16361 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16362 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16363 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16364 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16365 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16366 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16367 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16368 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16369 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16370 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16371 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16372 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16373 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16374 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16375 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16376 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16377 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16378 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16379 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16380 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16381 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16382 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16383 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16384 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16385 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16386 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16387 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16388 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16389 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16390 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16391 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16392 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16393 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16394 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16395 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16396 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16397 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16398 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16399 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16400 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16401 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16402 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16403 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16404 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16405 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16406 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16407 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16408 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16409 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16410 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16411 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16412 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16413 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16414 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16415 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16416 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16417 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16418 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16419 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16420 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16421 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16422 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16423 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16424 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16425 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 16426 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16427 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16428 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16429 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16430 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16431 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16432 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16433 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16434 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16435 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16436 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
2d447fca 16437 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16438 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16439 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16440 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16441 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16442 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16443 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16444 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16445 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16446 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16447 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16448 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16449 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16450 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16451 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16452 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16453 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16454 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16455 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16456 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16457 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16458 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16459 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16460 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16461 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16462 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16463 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16464 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16465 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16466 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16467 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16468 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16469 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16470 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16471 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16472 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16473 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16474 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16475 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16476 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16477 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16478 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16479 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16480 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16481 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16482 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16483 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16484 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16485 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16486 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16487 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 16488
2d447fca
JM
16489#undef ARM_VARIANT
16490#define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16491 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16492 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16493 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16494 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16495 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16496 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16497 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16498 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16499 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16500 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16501 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16502 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16503 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16504 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16505 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16506 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16507 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16508 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16509 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16510 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16511 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16512 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16513 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16514 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16515 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16516 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16517 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16518 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16519 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16520 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16521 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16522 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16523 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16524 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16525 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16526 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16527 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16528 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16529 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16530 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16531 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16532 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16533 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16534 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16535 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16536 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16537 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16538 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16539 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16540 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16541 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16542 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16543 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16544 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16545 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16546 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16547 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16548
c19d1205 16549#undef ARM_VARIANT
e74cfd16 16550#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
4962c51a
MS
16551 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16552 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16553 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16554 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16555 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16556 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16557 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16558 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
8f06b2d8
PB
16559 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16560 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16561 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16562 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16563 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16564 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16565 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16566 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16567 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16568 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16569 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16570 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16571 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16572 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16573 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16574 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16575 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16576 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16577 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16578 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16579 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16580 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16581 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16582 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16583 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16584 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16585 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16586 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16587 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16588 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16589 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16590 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16591 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16592 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16593 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16594 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16595 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16596 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16597 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16598 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16599 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16600 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16601 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16602 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16603 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16604 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16605 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16606 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16607 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16608 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16609 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16610 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16611 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16612 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16613 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16614 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16615 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16616 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16617 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16618 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16619 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16620 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16621 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16622 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16623 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16624 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16625 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16626 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
16627};
16628#undef ARM_VARIANT
16629#undef THUMB_VARIANT
16630#undef TCE
16631#undef TCM
16632#undef TUE
16633#undef TUF
16634#undef TCC
8f06b2d8 16635#undef cCE
e3cb604e
PB
16636#undef cCL
16637#undef C3E
c19d1205
ZW
16638#undef CE
16639#undef CM
16640#undef UE
16641#undef UF
16642#undef UT
5287ad62
JB
16643#undef NUF
16644#undef nUF
16645#undef NCE
16646#undef nCE
c19d1205
ZW
16647#undef OPS0
16648#undef OPS1
16649#undef OPS2
16650#undef OPS3
16651#undef OPS4
16652#undef OPS5
16653#undef OPS6
16654#undef do_0
16655\f
16656/* MD interface: bits in the object file. */
bfae80f2 16657
c19d1205
ZW
16658/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16659 for use in the a.out file, and stores them in the array pointed to by buf.
16660 This knows about the endian-ness of the target machine and does
16661 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16662 2 (short) and 4 (long) Floating numbers are put out as a series of
16663 LITTLENUMS (shorts, here at least). */
b99bd4ef 16664
c19d1205
ZW
16665void
16666md_number_to_chars (char * buf, valueT val, int n)
16667{
16668 if (target_big_endian)
16669 number_to_chars_bigendian (buf, val, n);
16670 else
16671 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
16672}
16673
c19d1205
ZW
16674static valueT
16675md_chars_to_number (char * buf, int n)
bfae80f2 16676{
c19d1205
ZW
16677 valueT result = 0;
16678 unsigned char * where = (unsigned char *) buf;
bfae80f2 16679
c19d1205 16680 if (target_big_endian)
b99bd4ef 16681 {
c19d1205
ZW
16682 while (n--)
16683 {
16684 result <<= 8;
16685 result |= (*where++ & 255);
16686 }
b99bd4ef 16687 }
c19d1205 16688 else
b99bd4ef 16689 {
c19d1205
ZW
16690 while (n--)
16691 {
16692 result <<= 8;
16693 result |= (where[n] & 255);
16694 }
bfae80f2 16695 }
b99bd4ef 16696
c19d1205 16697 return result;
bfae80f2 16698}
b99bd4ef 16699
c19d1205 16700/* MD interface: Sections. */
b99bd4ef 16701
0110f2b8
PB
16702/* Estimate the size of a frag before relaxing. Assume everything fits in
16703 2 bytes. */
16704
c19d1205 16705int
0110f2b8 16706md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
16707 segT segtype ATTRIBUTE_UNUSED)
16708{
0110f2b8
PB
16709 fragp->fr_var = 2;
16710 return 2;
16711}
16712
16713/* Convert a machine dependent frag. */
16714
16715void
16716md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16717{
16718 unsigned long insn;
16719 unsigned long old_op;
16720 char *buf;
16721 expressionS exp;
16722 fixS *fixp;
16723 int reloc_type;
16724 int pc_rel;
16725 int opcode;
16726
16727 buf = fragp->fr_literal + fragp->fr_fix;
16728
16729 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
16730 if (fragp->fr_symbol)
16731 {
0110f2b8
PB
16732 exp.X_op = O_symbol;
16733 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
16734 }
16735 else
16736 {
0110f2b8 16737 exp.X_op = O_constant;
5f4273c7 16738 }
0110f2b8
PB
16739 exp.X_add_number = fragp->fr_offset;
16740 opcode = fragp->fr_subtype;
16741 switch (opcode)
16742 {
16743 case T_MNEM_ldr_pc:
16744 case T_MNEM_ldr_pc2:
16745 case T_MNEM_ldr_sp:
16746 case T_MNEM_str_sp:
16747 case T_MNEM_ldr:
16748 case T_MNEM_ldrb:
16749 case T_MNEM_ldrh:
16750 case T_MNEM_str:
16751 case T_MNEM_strb:
16752 case T_MNEM_strh:
16753 if (fragp->fr_var == 4)
16754 {
5f4273c7 16755 insn = THUMB_OP32 (opcode);
0110f2b8
PB
16756 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16757 {
16758 insn |= (old_op & 0x700) << 4;
16759 }
16760 else
16761 {
16762 insn |= (old_op & 7) << 12;
16763 insn |= (old_op & 0x38) << 13;
16764 }
16765 insn |= 0x00000c00;
16766 put_thumb32_insn (buf, insn);
16767 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16768 }
16769 else
16770 {
16771 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16772 }
16773 pc_rel = (opcode == T_MNEM_ldr_pc2);
16774 break;
16775 case T_MNEM_adr:
16776 if (fragp->fr_var == 4)
16777 {
16778 insn = THUMB_OP32 (opcode);
16779 insn |= (old_op & 0xf0) << 4;
16780 put_thumb32_insn (buf, insn);
16781 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16782 }
16783 else
16784 {
16785 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16786 exp.X_add_number -= 4;
16787 }
16788 pc_rel = 1;
16789 break;
16790 case T_MNEM_mov:
16791 case T_MNEM_movs:
16792 case T_MNEM_cmp:
16793 case T_MNEM_cmn:
16794 if (fragp->fr_var == 4)
16795 {
16796 int r0off = (opcode == T_MNEM_mov
16797 || opcode == T_MNEM_movs) ? 0 : 8;
16798 insn = THUMB_OP32 (opcode);
16799 insn = (insn & 0xe1ffffff) | 0x10000000;
16800 insn |= (old_op & 0x700) << r0off;
16801 put_thumb32_insn (buf, insn);
16802 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16803 }
16804 else
16805 {
16806 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16807 }
16808 pc_rel = 0;
16809 break;
16810 case T_MNEM_b:
16811 if (fragp->fr_var == 4)
16812 {
16813 insn = THUMB_OP32(opcode);
16814 put_thumb32_insn (buf, insn);
16815 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16816 }
16817 else
16818 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16819 pc_rel = 1;
16820 break;
16821 case T_MNEM_bcond:
16822 if (fragp->fr_var == 4)
16823 {
16824 insn = THUMB_OP32(opcode);
16825 insn |= (old_op & 0xf00) << 14;
16826 put_thumb32_insn (buf, insn);
16827 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16828 }
16829 else
16830 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16831 pc_rel = 1;
16832 break;
16833 case T_MNEM_add_sp:
16834 case T_MNEM_add_pc:
16835 case T_MNEM_inc_sp:
16836 case T_MNEM_dec_sp:
16837 if (fragp->fr_var == 4)
16838 {
16839 /* ??? Choose between add and addw. */
16840 insn = THUMB_OP32 (opcode);
16841 insn |= (old_op & 0xf0) << 4;
16842 put_thumb32_insn (buf, insn);
16805f35
PB
16843 if (opcode == T_MNEM_add_pc)
16844 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16845 else
16846 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
16847 }
16848 else
16849 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16850 pc_rel = 0;
16851 break;
16852
16853 case T_MNEM_addi:
16854 case T_MNEM_addis:
16855 case T_MNEM_subi:
16856 case T_MNEM_subis:
16857 if (fragp->fr_var == 4)
16858 {
16859 insn = THUMB_OP32 (opcode);
16860 insn |= (old_op & 0xf0) << 4;
16861 insn |= (old_op & 0xf) << 16;
16862 put_thumb32_insn (buf, insn);
16805f35
PB
16863 if (insn & (1 << 20))
16864 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16865 else
16866 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
16867 }
16868 else
16869 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16870 pc_rel = 0;
16871 break;
16872 default:
5f4273c7 16873 abort ();
0110f2b8
PB
16874 }
16875 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16876 reloc_type);
16877 fixp->fx_file = fragp->fr_file;
16878 fixp->fx_line = fragp->fr_line;
16879 fragp->fr_fix += fragp->fr_var;
16880}
16881
16882/* Return the size of a relaxable immediate operand instruction.
16883 SHIFT and SIZE specify the form of the allowable immediate. */
16884static int
16885relax_immediate (fragS *fragp, int size, int shift)
16886{
16887 offsetT offset;
16888 offsetT mask;
16889 offsetT low;
16890
16891 /* ??? Should be able to do better than this. */
16892 if (fragp->fr_symbol)
16893 return 4;
16894
16895 low = (1 << shift) - 1;
16896 mask = (1 << (shift + size)) - (1 << shift);
16897 offset = fragp->fr_offset;
16898 /* Force misaligned offsets to 32-bit variant. */
16899 if (offset & low)
5e77afaa 16900 return 4;
0110f2b8
PB
16901 if (offset & ~mask)
16902 return 4;
16903 return 2;
16904}
16905
5e77afaa
PB
16906/* Get the address of a symbol during relaxation. */
16907static addressT
5f4273c7 16908relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
16909{
16910 fragS *sym_frag;
16911 addressT addr;
16912 symbolS *sym;
16913
16914 sym = fragp->fr_symbol;
16915 sym_frag = symbol_get_frag (sym);
16916 know (S_GET_SEGMENT (sym) != absolute_section
16917 || sym_frag == &zero_address_frag);
16918 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16919
16920 /* If frag has yet to be reached on this pass, assume it will
16921 move by STRETCH just as we did. If this is not so, it will
16922 be because some frag between grows, and that will force
16923 another pass. */
16924
16925 if (stretch != 0
16926 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
16927 {
16928 fragS *f;
16929
16930 /* Adjust stretch for any alignment frag. Note that if have
16931 been expanding the earlier code, the symbol may be
16932 defined in what appears to be an earlier frag. FIXME:
16933 This doesn't handle the fr_subtype field, which specifies
16934 a maximum number of bytes to skip when doing an
16935 alignment. */
16936 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16937 {
16938 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16939 {
16940 if (stretch < 0)
16941 stretch = - ((- stretch)
16942 & ~ ((1 << (int) f->fr_offset) - 1));
16943 else
16944 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16945 if (stretch == 0)
16946 break;
16947 }
16948 }
16949 if (f != NULL)
16950 addr += stretch;
16951 }
5e77afaa
PB
16952
16953 return addr;
16954}
16955
0110f2b8
PB
16956/* Return the size of a relaxable adr pseudo-instruction or PC-relative
16957 load. */
16958static int
5e77afaa 16959relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
16960{
16961 addressT addr;
16962 offsetT val;
16963
16964 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 16965 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
16966 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16967 return 4;
16968
5f4273c7 16969 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
16970 addr = fragp->fr_address + fragp->fr_fix;
16971 addr = (addr + 4) & ~3;
5e77afaa 16972 /* Force misaligned targets to 32-bit variant. */
0110f2b8 16973 if (val & 3)
5e77afaa 16974 return 4;
0110f2b8
PB
16975 val -= addr;
16976 if (val < 0 || val > 1020)
16977 return 4;
16978 return 2;
16979}
16980
16981/* Return the size of a relaxable add/sub immediate instruction. */
16982static int
16983relax_addsub (fragS *fragp, asection *sec)
16984{
16985 char *buf;
16986 int op;
16987
16988 buf = fragp->fr_literal + fragp->fr_fix;
16989 op = bfd_get_16(sec->owner, buf);
16990 if ((op & 0xf) == ((op >> 4) & 0xf))
16991 return relax_immediate (fragp, 8, 0);
16992 else
16993 return relax_immediate (fragp, 3, 0);
16994}
16995
16996
16997/* Return the size of a relaxable branch instruction. BITS is the
16998 size of the offset field in the narrow instruction. */
16999
17000static int
5e77afaa 17001relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
17002{
17003 addressT addr;
17004 offsetT val;
17005 offsetT limit;
17006
17007 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 17008 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
17009 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17010 return 4;
17011
5f4273c7 17012 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
17013 addr = fragp->fr_address + fragp->fr_fix + 4;
17014 val -= addr;
17015
17016 /* Offset is a signed value *2 */
17017 limit = 1 << bits;
17018 if (val >= limit || val < -limit)
17019 return 4;
17020 return 2;
17021}
17022
17023
17024/* Relax a machine dependent frag. This returns the amount by which
17025 the current size of the frag should change. */
17026
17027int
5e77afaa 17028arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
17029{
17030 int oldsize;
17031 int newsize;
17032
17033 oldsize = fragp->fr_var;
17034 switch (fragp->fr_subtype)
17035 {
17036 case T_MNEM_ldr_pc2:
5f4273c7 17037 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
17038 break;
17039 case T_MNEM_ldr_pc:
17040 case T_MNEM_ldr_sp:
17041 case T_MNEM_str_sp:
5f4273c7 17042 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
17043 break;
17044 case T_MNEM_ldr:
17045 case T_MNEM_str:
5f4273c7 17046 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
17047 break;
17048 case T_MNEM_ldrh:
17049 case T_MNEM_strh:
5f4273c7 17050 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
17051 break;
17052 case T_MNEM_ldrb:
17053 case T_MNEM_strb:
5f4273c7 17054 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
17055 break;
17056 case T_MNEM_adr:
5f4273c7 17057 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
17058 break;
17059 case T_MNEM_mov:
17060 case T_MNEM_movs:
17061 case T_MNEM_cmp:
17062 case T_MNEM_cmn:
5f4273c7 17063 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
17064 break;
17065 case T_MNEM_b:
5f4273c7 17066 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
17067 break;
17068 case T_MNEM_bcond:
5f4273c7 17069 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
17070 break;
17071 case T_MNEM_add_sp:
17072 case T_MNEM_add_pc:
17073 newsize = relax_immediate (fragp, 8, 2);
17074 break;
17075 case T_MNEM_inc_sp:
17076 case T_MNEM_dec_sp:
17077 newsize = relax_immediate (fragp, 7, 2);
17078 break;
17079 case T_MNEM_addi:
17080 case T_MNEM_addis:
17081 case T_MNEM_subi:
17082 case T_MNEM_subis:
17083 newsize = relax_addsub (fragp, sec);
17084 break;
17085 default:
5f4273c7 17086 abort ();
0110f2b8 17087 }
5e77afaa
PB
17088
17089 fragp->fr_var = newsize;
17090 /* Freeze wide instructions that are at or before the same location as
17091 in the previous pass. This avoids infinite loops.
5f4273c7
NC
17092 Don't freeze them unconditionally because targets may be artificially
17093 misaligned by the expansion of preceding frags. */
5e77afaa 17094 if (stretch <= 0 && newsize > 2)
0110f2b8 17095 {
0110f2b8 17096 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 17097 frag_wane (fragp);
0110f2b8 17098 }
5e77afaa 17099
0110f2b8 17100 return newsize - oldsize;
c19d1205 17101}
b99bd4ef 17102
c19d1205 17103/* Round up a section size to the appropriate boundary. */
b99bd4ef 17104
c19d1205
ZW
17105valueT
17106md_section_align (segT segment ATTRIBUTE_UNUSED,
17107 valueT size)
17108{
f0927246
NC
17109#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
17110 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
17111 {
17112 /* For a.out, force the section size to be aligned. If we don't do
17113 this, BFD will align it for us, but it will not write out the
17114 final bytes of the section. This may be a bug in BFD, but it is
17115 easier to fix it here since that is how the other a.out targets
17116 work. */
17117 int align;
17118
17119 align = bfd_get_section_alignment (stdoutput, segment);
17120 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
17121 }
c19d1205 17122#endif
f0927246
NC
17123
17124 return size;
bfae80f2 17125}
b99bd4ef 17126
c19d1205
ZW
17127/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
17128 of an rs_align_code fragment. */
17129
17130void
17131arm_handle_align (fragS * fragP)
bfae80f2 17132{
c19d1205
ZW
17133 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
17134 static char const thumb_noop[2] = { 0xc0, 0x46 };
17135 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
17136 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
17137
17138 int bytes, fix, noop_size;
17139 char * p;
17140 const char * noop;
bfae80f2 17141
c19d1205 17142 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
17143 return;
17144
c19d1205
ZW
17145 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17146 p = fragP->fr_literal + fragP->fr_fix;
17147 fix = 0;
bfae80f2 17148
c19d1205
ZW
17149 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17150 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 17151
c19d1205 17152 if (fragP->tc_frag_data)
a737bd4d 17153 {
c19d1205
ZW
17154 if (target_big_endian)
17155 noop = thumb_bigend_noop;
17156 else
17157 noop = thumb_noop;
17158 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
17159 }
17160 else
17161 {
c19d1205
ZW
17162 if (target_big_endian)
17163 noop = arm_bigend_noop;
17164 else
17165 noop = arm_noop;
17166 noop_size = sizeof (arm_noop);
7ed4c4c5 17167 }
a737bd4d 17168
c19d1205 17169 if (bytes & (noop_size - 1))
7ed4c4c5 17170 {
c19d1205
ZW
17171 fix = bytes & (noop_size - 1);
17172 memset (p, 0, fix);
17173 p += fix;
17174 bytes -= fix;
a737bd4d 17175 }
a737bd4d 17176
c19d1205 17177 while (bytes >= noop_size)
a737bd4d 17178 {
c19d1205
ZW
17179 memcpy (p, noop, noop_size);
17180 p += noop_size;
17181 bytes -= noop_size;
17182 fix += noop_size;
a737bd4d
NC
17183 }
17184
c19d1205
ZW
17185 fragP->fr_fix += fix;
17186 fragP->fr_var = noop_size;
a737bd4d
NC
17187}
17188
c19d1205
ZW
17189/* Called from md_do_align. Used to create an alignment
17190 frag in a code section. */
17191
17192void
17193arm_frag_align_code (int n, int max)
bfae80f2 17194{
c19d1205 17195 char * p;
7ed4c4c5 17196
c19d1205
ZW
17197 /* We assume that there will never be a requirement
17198 to support alignments greater than 32 bytes. */
17199 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17200 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 17201
c19d1205
ZW
17202 p = frag_var (rs_align_code,
17203 MAX_MEM_FOR_RS_ALIGN_CODE,
17204 1,
17205 (relax_substateT) max,
17206 (symbolS *) NULL,
17207 (offsetT) n,
17208 (char *) NULL);
17209 *p = 0;
17210}
bfae80f2 17211
c19d1205 17212/* Perform target specific initialisation of a frag. */
bfae80f2 17213
c19d1205
ZW
17214void
17215arm_init_frag (fragS * fragP)
17216{
17217 /* Record whether this frag is in an ARM or a THUMB area. */
17218 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
17219}
17220
c19d1205
ZW
17221#ifdef OBJ_ELF
17222/* When we change sections we need to issue a new mapping symbol. */
17223
17224void
17225arm_elf_change_section (void)
bfae80f2 17226{
c19d1205
ZW
17227 flagword flags;
17228 segment_info_type *seginfo;
bfae80f2 17229
c19d1205
ZW
17230 /* Link an unlinked unwind index table section to the .text section. */
17231 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17232 && elf_linked_to_section (now_seg) == NULL)
17233 elf_linked_to_section (now_seg) = text_section;
17234
17235 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
17236 return;
17237
c19d1205
ZW
17238 flags = bfd_get_section_flags (stdoutput, now_seg);
17239
17240 /* We can ignore sections that only contain debug info. */
17241 if ((flags & SEC_ALLOC) == 0)
17242 return;
bfae80f2 17243
c19d1205
ZW
17244 seginfo = seg_info (now_seg);
17245 mapstate = seginfo->tc_segment_info_data.mapstate;
17246 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
17247}
17248
c19d1205
ZW
17249int
17250arm_elf_section_type (const char * str, size_t len)
e45d0630 17251{
c19d1205
ZW
17252 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17253 return SHT_ARM_EXIDX;
e45d0630 17254
c19d1205
ZW
17255 return -1;
17256}
17257\f
17258/* Code to deal with unwinding tables. */
e45d0630 17259
c19d1205 17260static void add_unwind_adjustsp (offsetT);
e45d0630 17261
5f4273c7 17262/* Generate any deferred unwind frame offset. */
e45d0630 17263
bfae80f2 17264static void
c19d1205 17265flush_pending_unwind (void)
bfae80f2 17266{
c19d1205 17267 offsetT offset;
bfae80f2 17268
c19d1205
ZW
17269 offset = unwind.pending_offset;
17270 unwind.pending_offset = 0;
17271 if (offset != 0)
17272 add_unwind_adjustsp (offset);
bfae80f2
RE
17273}
17274
c19d1205
ZW
17275/* Add an opcode to this list for this function. Two-byte opcodes should
17276 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17277 order. */
17278
bfae80f2 17279static void
c19d1205 17280add_unwind_opcode (valueT op, int length)
bfae80f2 17281{
c19d1205
ZW
17282 /* Add any deferred stack adjustment. */
17283 if (unwind.pending_offset)
17284 flush_pending_unwind ();
bfae80f2 17285
c19d1205 17286 unwind.sp_restored = 0;
bfae80f2 17287
c19d1205 17288 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 17289 {
c19d1205
ZW
17290 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17291 if (unwind.opcodes)
17292 unwind.opcodes = xrealloc (unwind.opcodes,
17293 unwind.opcode_alloc);
17294 else
17295 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 17296 }
c19d1205 17297 while (length > 0)
bfae80f2 17298 {
c19d1205
ZW
17299 length--;
17300 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17301 op >>= 8;
17302 unwind.opcode_count++;
bfae80f2 17303 }
bfae80f2
RE
17304}
17305
c19d1205
ZW
17306/* Add unwind opcodes to adjust the stack pointer. */
17307
bfae80f2 17308static void
c19d1205 17309add_unwind_adjustsp (offsetT offset)
bfae80f2 17310{
c19d1205 17311 valueT op;
bfae80f2 17312
c19d1205 17313 if (offset > 0x200)
bfae80f2 17314 {
c19d1205
ZW
17315 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17316 char bytes[5];
17317 int n;
17318 valueT o;
bfae80f2 17319
c19d1205
ZW
17320 /* Long form: 0xb2, uleb128. */
17321 /* This might not fit in a word so add the individual bytes,
17322 remembering the list is built in reverse order. */
17323 o = (valueT) ((offset - 0x204) >> 2);
17324 if (o == 0)
17325 add_unwind_opcode (0, 1);
bfae80f2 17326
c19d1205
ZW
17327 /* Calculate the uleb128 encoding of the offset. */
17328 n = 0;
17329 while (o)
17330 {
17331 bytes[n] = o & 0x7f;
17332 o >>= 7;
17333 if (o)
17334 bytes[n] |= 0x80;
17335 n++;
17336 }
17337 /* Add the insn. */
17338 for (; n; n--)
17339 add_unwind_opcode (bytes[n - 1], 1);
17340 add_unwind_opcode (0xb2, 1);
17341 }
17342 else if (offset > 0x100)
bfae80f2 17343 {
c19d1205
ZW
17344 /* Two short opcodes. */
17345 add_unwind_opcode (0x3f, 1);
17346 op = (offset - 0x104) >> 2;
17347 add_unwind_opcode (op, 1);
bfae80f2 17348 }
c19d1205
ZW
17349 else if (offset > 0)
17350 {
17351 /* Short opcode. */
17352 op = (offset - 4) >> 2;
17353 add_unwind_opcode (op, 1);
17354 }
17355 else if (offset < 0)
bfae80f2 17356 {
c19d1205
ZW
17357 offset = -offset;
17358 while (offset > 0x100)
bfae80f2 17359 {
c19d1205
ZW
17360 add_unwind_opcode (0x7f, 1);
17361 offset -= 0x100;
bfae80f2 17362 }
c19d1205
ZW
17363 op = ((offset - 4) >> 2) | 0x40;
17364 add_unwind_opcode (op, 1);
bfae80f2 17365 }
bfae80f2
RE
17366}
17367
c19d1205
ZW
17368/* Finish the list of unwind opcodes for this function. */
17369static void
17370finish_unwind_opcodes (void)
bfae80f2 17371{
c19d1205 17372 valueT op;
bfae80f2 17373
c19d1205 17374 if (unwind.fp_used)
bfae80f2 17375 {
708587a4 17376 /* Adjust sp as necessary. */
c19d1205
ZW
17377 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17378 flush_pending_unwind ();
bfae80f2 17379
c19d1205
ZW
17380 /* After restoring sp from the frame pointer. */
17381 op = 0x90 | unwind.fp_reg;
17382 add_unwind_opcode (op, 1);
17383 }
17384 else
17385 flush_pending_unwind ();
bfae80f2
RE
17386}
17387
bfae80f2 17388
c19d1205
ZW
17389/* Start an exception table entry. If idx is nonzero this is an index table
17390 entry. */
bfae80f2
RE
17391
17392static void
c19d1205 17393start_unwind_section (const segT text_seg, int idx)
bfae80f2 17394{
c19d1205
ZW
17395 const char * text_name;
17396 const char * prefix;
17397 const char * prefix_once;
17398 const char * group_name;
17399 size_t prefix_len;
17400 size_t text_len;
17401 char * sec_name;
17402 size_t sec_name_len;
17403 int type;
17404 int flags;
17405 int linkonce;
bfae80f2 17406
c19d1205 17407 if (idx)
bfae80f2 17408 {
c19d1205
ZW
17409 prefix = ELF_STRING_ARM_unwind;
17410 prefix_once = ELF_STRING_ARM_unwind_once;
17411 type = SHT_ARM_EXIDX;
bfae80f2 17412 }
c19d1205 17413 else
bfae80f2 17414 {
c19d1205
ZW
17415 prefix = ELF_STRING_ARM_unwind_info;
17416 prefix_once = ELF_STRING_ARM_unwind_info_once;
17417 type = SHT_PROGBITS;
bfae80f2
RE
17418 }
17419
c19d1205
ZW
17420 text_name = segment_name (text_seg);
17421 if (streq (text_name, ".text"))
17422 text_name = "";
17423
17424 if (strncmp (text_name, ".gnu.linkonce.t.",
17425 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 17426 {
c19d1205
ZW
17427 prefix = prefix_once;
17428 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
17429 }
17430
c19d1205
ZW
17431 prefix_len = strlen (prefix);
17432 text_len = strlen (text_name);
17433 sec_name_len = prefix_len + text_len;
17434 sec_name = xmalloc (sec_name_len + 1);
17435 memcpy (sec_name, prefix, prefix_len);
17436 memcpy (sec_name + prefix_len, text_name, text_len);
17437 sec_name[prefix_len + text_len] = '\0';
bfae80f2 17438
c19d1205
ZW
17439 flags = SHF_ALLOC;
17440 linkonce = 0;
17441 group_name = 0;
bfae80f2 17442
c19d1205
ZW
17443 /* Handle COMDAT group. */
17444 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 17445 {
c19d1205
ZW
17446 group_name = elf_group_name (text_seg);
17447 if (group_name == NULL)
17448 {
bd3ba5d1 17449 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
17450 segment_name (text_seg));
17451 ignore_rest_of_line ();
17452 return;
17453 }
17454 flags |= SHF_GROUP;
17455 linkonce = 1;
bfae80f2
RE
17456 }
17457
c19d1205 17458 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 17459
5f4273c7 17460 /* Set the section link for index tables. */
c19d1205
ZW
17461 if (idx)
17462 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
17463}
17464
bfae80f2 17465
c19d1205
ZW
17466/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17467 personality routine data. Returns zero, or the index table value for
17468 and inline entry. */
17469
17470static valueT
17471create_unwind_entry (int have_data)
bfae80f2 17472{
c19d1205
ZW
17473 int size;
17474 addressT where;
17475 char *ptr;
17476 /* The current word of data. */
17477 valueT data;
17478 /* The number of bytes left in this word. */
17479 int n;
bfae80f2 17480
c19d1205 17481 finish_unwind_opcodes ();
bfae80f2 17482
c19d1205
ZW
17483 /* Remember the current text section. */
17484 unwind.saved_seg = now_seg;
17485 unwind.saved_subseg = now_subseg;
bfae80f2 17486
c19d1205 17487 start_unwind_section (now_seg, 0);
bfae80f2 17488
c19d1205 17489 if (unwind.personality_routine == NULL)
bfae80f2 17490 {
c19d1205
ZW
17491 if (unwind.personality_index == -2)
17492 {
17493 if (have_data)
5f4273c7 17494 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
17495 return 1; /* EXIDX_CANTUNWIND. */
17496 }
bfae80f2 17497
c19d1205
ZW
17498 /* Use a default personality routine if none is specified. */
17499 if (unwind.personality_index == -1)
17500 {
17501 if (unwind.opcode_count > 3)
17502 unwind.personality_index = 1;
17503 else
17504 unwind.personality_index = 0;
17505 }
bfae80f2 17506
c19d1205
ZW
17507 /* Space for the personality routine entry. */
17508 if (unwind.personality_index == 0)
17509 {
17510 if (unwind.opcode_count > 3)
17511 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 17512
c19d1205
ZW
17513 if (!have_data)
17514 {
17515 /* All the data is inline in the index table. */
17516 data = 0x80;
17517 n = 3;
17518 while (unwind.opcode_count > 0)
17519 {
17520 unwind.opcode_count--;
17521 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17522 n--;
17523 }
bfae80f2 17524
c19d1205
ZW
17525 /* Pad with "finish" opcodes. */
17526 while (n--)
17527 data = (data << 8) | 0xb0;
bfae80f2 17528
c19d1205
ZW
17529 return data;
17530 }
17531 size = 0;
17532 }
17533 else
17534 /* We get two opcodes "free" in the first word. */
17535 size = unwind.opcode_count - 2;
17536 }
17537 else
17538 /* An extra byte is required for the opcode count. */
17539 size = unwind.opcode_count + 1;
bfae80f2 17540
c19d1205
ZW
17541 size = (size + 3) >> 2;
17542 if (size > 0xff)
17543 as_bad (_("too many unwind opcodes"));
bfae80f2 17544
c19d1205
ZW
17545 frag_align (2, 0, 0);
17546 record_alignment (now_seg, 2);
17547 unwind.table_entry = expr_build_dot ();
17548
17549 /* Allocate the table entry. */
17550 ptr = frag_more ((size << 2) + 4);
17551 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 17552
c19d1205 17553 switch (unwind.personality_index)
bfae80f2 17554 {
c19d1205
ZW
17555 case -1:
17556 /* ??? Should this be a PLT generating relocation? */
17557 /* Custom personality routine. */
17558 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17559 BFD_RELOC_ARM_PREL31);
bfae80f2 17560
c19d1205
ZW
17561 where += 4;
17562 ptr += 4;
bfae80f2 17563
c19d1205
ZW
17564 /* Set the first byte to the number of additional words. */
17565 data = size - 1;
17566 n = 3;
17567 break;
bfae80f2 17568
c19d1205
ZW
17569 /* ABI defined personality routines. */
17570 case 0:
17571 /* Three opcodes bytes are packed into the first word. */
17572 data = 0x80;
17573 n = 3;
17574 break;
bfae80f2 17575
c19d1205
ZW
17576 case 1:
17577 case 2:
17578 /* The size and first two opcode bytes go in the first word. */
17579 data = ((0x80 + unwind.personality_index) << 8) | size;
17580 n = 2;
17581 break;
bfae80f2 17582
c19d1205
ZW
17583 default:
17584 /* Should never happen. */
17585 abort ();
17586 }
bfae80f2 17587
c19d1205
ZW
17588 /* Pack the opcodes into words (MSB first), reversing the list at the same
17589 time. */
17590 while (unwind.opcode_count > 0)
17591 {
17592 if (n == 0)
17593 {
17594 md_number_to_chars (ptr, data, 4);
17595 ptr += 4;
17596 n = 4;
17597 data = 0;
17598 }
17599 unwind.opcode_count--;
17600 n--;
17601 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17602 }
17603
17604 /* Finish off the last word. */
17605 if (n < 4)
17606 {
17607 /* Pad with "finish" opcodes. */
17608 while (n--)
17609 data = (data << 8) | 0xb0;
17610
17611 md_number_to_chars (ptr, data, 4);
17612 }
17613
17614 if (!have_data)
17615 {
17616 /* Add an empty descriptor if there is no user-specified data. */
17617 ptr = frag_more (4);
17618 md_number_to_chars (ptr, 0, 4);
17619 }
17620
17621 return 0;
bfae80f2
RE
17622}
17623
f0927246
NC
17624
17625/* Initialize the DWARF-2 unwind information for this procedure. */
17626
17627void
17628tc_arm_frame_initial_instructions (void)
17629{
17630 cfi_add_CFA_def_cfa (REG_SP, 0);
17631}
17632#endif /* OBJ_ELF */
17633
c19d1205
ZW
17634/* Convert REGNAME to a DWARF-2 register number. */
17635
17636int
1df69f4f 17637tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 17638{
1df69f4f 17639 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
17640
17641 if (reg == FAIL)
17642 return -1;
17643
17644 return reg;
bfae80f2
RE
17645}
17646
f0927246 17647#ifdef TE_PE
c19d1205 17648void
f0927246 17649tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 17650{
f0927246 17651 expressionS expr;
bfae80f2 17652
f0927246
NC
17653 expr.X_op = O_secrel;
17654 expr.X_add_symbol = symbol;
17655 expr.X_add_number = 0;
17656 emit_expr (&expr, size);
17657}
17658#endif
bfae80f2 17659
c19d1205 17660/* MD interface: Symbol and relocation handling. */
bfae80f2 17661
2fc8bdac
ZW
17662/* Return the address within the segment that a PC-relative fixup is
17663 relative to. For ARM, PC-relative fixups applied to instructions
17664 are generally relative to the location of the fixup plus 8 bytes.
17665 Thumb branches are offset by 4, and Thumb loads relative to PC
17666 require special handling. */
bfae80f2 17667
c19d1205 17668long
2fc8bdac 17669md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 17670{
2fc8bdac
ZW
17671 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17672
17673 /* If this is pc-relative and we are going to emit a relocation
17674 then we just want to put out any pipeline compensation that the linker
53baae48
NC
17675 will need. Otherwise we want to use the calculated base.
17676 For WinCE we skip the bias for externals as well, since this
17677 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 17678 if (fixP->fx_pcrel
2fc8bdac 17679 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
17680 || (arm_force_relocation (fixP)
17681#ifdef TE_WINCE
17682 && !S_IS_EXTERNAL (fixP->fx_addsy)
17683#endif
17684 )))
2fc8bdac 17685 base = 0;
bfae80f2 17686
c19d1205 17687 switch (fixP->fx_r_type)
bfae80f2 17688 {
2fc8bdac
ZW
17689 /* PC relative addressing on the Thumb is slightly odd as the
17690 bottom two bits of the PC are forced to zero for the
17691 calculation. This happens *after* application of the
17692 pipeline offset. However, Thumb adrl already adjusts for
17693 this, so we need not do it again. */
c19d1205 17694 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 17695 return base & ~3;
c19d1205
ZW
17696
17697 case BFD_RELOC_ARM_THUMB_OFFSET:
17698 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 17699 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 17700 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 17701 return (base + 4) & ~3;
c19d1205 17702
2fc8bdac
ZW
17703 /* Thumb branches are simply offset by +4. */
17704 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17705 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17706 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17707 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17708 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17709 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17710 case BFD_RELOC_THUMB_PCREL_BLX:
17711 return base + 4;
bfae80f2 17712
2fc8bdac
ZW
17713 /* ARM mode branches are offset by +8. However, the Windows CE
17714 loader expects the relocation not to take this into account. */
17715 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
17716 case BFD_RELOC_ARM_PCREL_CALL:
17717 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
17718 case BFD_RELOC_ARM_PCREL_BLX:
17719 case BFD_RELOC_ARM_PLT32:
c19d1205 17720#ifdef TE_WINCE
5f4273c7 17721 /* When handling fixups immediately, because we have already
53baae48
NC
17722 discovered the value of a symbol, or the address of the frag involved
17723 we must account for the offset by +8, as the OS loader will never see the reloc.
17724 see fixup_segment() in write.c
17725 The S_IS_EXTERNAL test handles the case of global symbols.
17726 Those need the calculated base, not just the pipe compensation the linker will need. */
17727 if (fixP->fx_pcrel
17728 && fixP->fx_addsy != NULL
17729 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17730 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17731 return base + 8;
2fc8bdac 17732 return base;
c19d1205 17733#else
2fc8bdac 17734 return base + 8;
c19d1205 17735#endif
2fc8bdac
ZW
17736
17737 /* ARM mode loads relative to PC are also offset by +8. Unlike
17738 branches, the Windows CE loader *does* expect the relocation
17739 to take this into account. */
17740 case BFD_RELOC_ARM_OFFSET_IMM:
17741 case BFD_RELOC_ARM_OFFSET_IMM8:
17742 case BFD_RELOC_ARM_HWLITERAL:
17743 case BFD_RELOC_ARM_LITERAL:
17744 case BFD_RELOC_ARM_CP_OFF_IMM:
17745 return base + 8;
17746
17747
17748 /* Other PC-relative relocations are un-offset. */
17749 default:
17750 return base;
17751 }
bfae80f2
RE
17752}
17753
c19d1205
ZW
17754/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17755 Otherwise we have no need to default values of symbols. */
17756
17757symbolS *
17758md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 17759{
c19d1205
ZW
17760#ifdef OBJ_ELF
17761 if (name[0] == '_' && name[1] == 'G'
17762 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17763 {
17764 if (!GOT_symbol)
17765 {
17766 if (symbol_find (name))
bd3ba5d1 17767 as_bad (_("GOT already in the symbol table"));
bfae80f2 17768
c19d1205
ZW
17769 GOT_symbol = symbol_new (name, undefined_section,
17770 (valueT) 0, & zero_address_frag);
17771 }
bfae80f2 17772
c19d1205 17773 return GOT_symbol;
bfae80f2 17774 }
c19d1205 17775#endif
bfae80f2 17776
c19d1205 17777 return 0;
bfae80f2
RE
17778}
17779
55cf6793 17780/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
17781 computed as two separate immediate values, added together. We
17782 already know that this value cannot be computed by just one ARM
17783 instruction. */
17784
17785static unsigned int
17786validate_immediate_twopart (unsigned int val,
17787 unsigned int * highpart)
bfae80f2 17788{
c19d1205
ZW
17789 unsigned int a;
17790 unsigned int i;
bfae80f2 17791
c19d1205
ZW
17792 for (i = 0; i < 32; i += 2)
17793 if (((a = rotate_left (val, i)) & 0xff) != 0)
17794 {
17795 if (a & 0xff00)
17796 {
17797 if (a & ~ 0xffff)
17798 continue;
17799 * highpart = (a >> 8) | ((i + 24) << 7);
17800 }
17801 else if (a & 0xff0000)
17802 {
17803 if (a & 0xff000000)
17804 continue;
17805 * highpart = (a >> 16) | ((i + 16) << 7);
17806 }
17807 else
17808 {
17809 assert (a & 0xff000000);
17810 * highpart = (a >> 24) | ((i + 8) << 7);
17811 }
bfae80f2 17812
c19d1205
ZW
17813 return (a & 0xff) | (i << 7);
17814 }
bfae80f2 17815
c19d1205 17816 return FAIL;
bfae80f2
RE
17817}
17818
c19d1205
ZW
17819static int
17820validate_offset_imm (unsigned int val, int hwse)
17821{
17822 if ((hwse && val > 255) || val > 4095)
17823 return FAIL;
17824 return val;
17825}
bfae80f2 17826
55cf6793 17827/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
17828 negative immediate constant by altering the instruction. A bit of
17829 a hack really.
17830 MOV <-> MVN
17831 AND <-> BIC
17832 ADC <-> SBC
17833 by inverting the second operand, and
17834 ADD <-> SUB
17835 CMP <-> CMN
17836 by negating the second operand. */
bfae80f2 17837
c19d1205
ZW
17838static int
17839negate_data_op (unsigned long * instruction,
17840 unsigned long value)
bfae80f2 17841{
c19d1205
ZW
17842 int op, new_inst;
17843 unsigned long negated, inverted;
bfae80f2 17844
c19d1205
ZW
17845 negated = encode_arm_immediate (-value);
17846 inverted = encode_arm_immediate (~value);
bfae80f2 17847
c19d1205
ZW
17848 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17849 switch (op)
bfae80f2 17850 {
c19d1205
ZW
17851 /* First negates. */
17852 case OPCODE_SUB: /* ADD <-> SUB */
17853 new_inst = OPCODE_ADD;
17854 value = negated;
17855 break;
bfae80f2 17856
c19d1205
ZW
17857 case OPCODE_ADD:
17858 new_inst = OPCODE_SUB;
17859 value = negated;
17860 break;
bfae80f2 17861
c19d1205
ZW
17862 case OPCODE_CMP: /* CMP <-> CMN */
17863 new_inst = OPCODE_CMN;
17864 value = negated;
17865 break;
bfae80f2 17866
c19d1205
ZW
17867 case OPCODE_CMN:
17868 new_inst = OPCODE_CMP;
17869 value = negated;
17870 break;
bfae80f2 17871
c19d1205
ZW
17872 /* Now Inverted ops. */
17873 case OPCODE_MOV: /* MOV <-> MVN */
17874 new_inst = OPCODE_MVN;
17875 value = inverted;
17876 break;
bfae80f2 17877
c19d1205
ZW
17878 case OPCODE_MVN:
17879 new_inst = OPCODE_MOV;
17880 value = inverted;
17881 break;
bfae80f2 17882
c19d1205
ZW
17883 case OPCODE_AND: /* AND <-> BIC */
17884 new_inst = OPCODE_BIC;
17885 value = inverted;
17886 break;
bfae80f2 17887
c19d1205
ZW
17888 case OPCODE_BIC:
17889 new_inst = OPCODE_AND;
17890 value = inverted;
17891 break;
bfae80f2 17892
c19d1205
ZW
17893 case OPCODE_ADC: /* ADC <-> SBC */
17894 new_inst = OPCODE_SBC;
17895 value = inverted;
17896 break;
bfae80f2 17897
c19d1205
ZW
17898 case OPCODE_SBC:
17899 new_inst = OPCODE_ADC;
17900 value = inverted;
17901 break;
bfae80f2 17902
c19d1205
ZW
17903 /* We cannot do anything. */
17904 default:
17905 return FAIL;
b99bd4ef
NC
17906 }
17907
c19d1205
ZW
17908 if (value == (unsigned) FAIL)
17909 return FAIL;
17910
17911 *instruction &= OPCODE_MASK;
17912 *instruction |= new_inst << DATA_OP_SHIFT;
17913 return value;
b99bd4ef
NC
17914}
17915
ef8d22e6
PB
17916/* Like negate_data_op, but for Thumb-2. */
17917
17918static unsigned int
16dd5e42 17919thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
17920{
17921 int op, new_inst;
17922 int rd;
16dd5e42 17923 unsigned int negated, inverted;
ef8d22e6
PB
17924
17925 negated = encode_thumb32_immediate (-value);
17926 inverted = encode_thumb32_immediate (~value);
17927
17928 rd = (*instruction >> 8) & 0xf;
17929 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17930 switch (op)
17931 {
17932 /* ADD <-> SUB. Includes CMP <-> CMN. */
17933 case T2_OPCODE_SUB:
17934 new_inst = T2_OPCODE_ADD;
17935 value = negated;
17936 break;
17937
17938 case T2_OPCODE_ADD:
17939 new_inst = T2_OPCODE_SUB;
17940 value = negated;
17941 break;
17942
17943 /* ORR <-> ORN. Includes MOV <-> MVN. */
17944 case T2_OPCODE_ORR:
17945 new_inst = T2_OPCODE_ORN;
17946 value = inverted;
17947 break;
17948
17949 case T2_OPCODE_ORN:
17950 new_inst = T2_OPCODE_ORR;
17951 value = inverted;
17952 break;
17953
17954 /* AND <-> BIC. TST has no inverted equivalent. */
17955 case T2_OPCODE_AND:
17956 new_inst = T2_OPCODE_BIC;
17957 if (rd == 15)
17958 value = FAIL;
17959 else
17960 value = inverted;
17961 break;
17962
17963 case T2_OPCODE_BIC:
17964 new_inst = T2_OPCODE_AND;
17965 value = inverted;
17966 break;
17967
17968 /* ADC <-> SBC */
17969 case T2_OPCODE_ADC:
17970 new_inst = T2_OPCODE_SBC;
17971 value = inverted;
17972 break;
17973
17974 case T2_OPCODE_SBC:
17975 new_inst = T2_OPCODE_ADC;
17976 value = inverted;
17977 break;
17978
17979 /* We cannot do anything. */
17980 default:
17981 return FAIL;
17982 }
17983
16dd5e42 17984 if (value == (unsigned int)FAIL)
ef8d22e6
PB
17985 return FAIL;
17986
17987 *instruction &= T2_OPCODE_MASK;
17988 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17989 return value;
17990}
17991
8f06b2d8
PB
17992/* Read a 32-bit thumb instruction from buf. */
17993static unsigned long
17994get_thumb32_insn (char * buf)
17995{
17996 unsigned long insn;
17997 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17998 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17999
18000 return insn;
18001}
18002
a8bc6c78
PB
18003
18004/* We usually want to set the low bit on the address of thumb function
18005 symbols. In particular .word foo - . should have the low bit set.
18006 Generic code tries to fold the difference of two symbols to
18007 a constant. Prevent this and force a relocation when the first symbols
18008 is a thumb function. */
18009int
18010arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
18011{
18012 if (op == O_subtract
18013 && l->X_op == O_symbol
18014 && r->X_op == O_symbol
18015 && THUMB_IS_FUNC (l->X_add_symbol))
18016 {
18017 l->X_op = O_subtract;
18018 l->X_op_symbol = r->X_add_symbol;
18019 l->X_add_number -= r->X_add_number;
18020 return 1;
18021 }
18022 /* Process as normal. */
18023 return 0;
18024}
18025
c19d1205 18026void
55cf6793 18027md_apply_fix (fixS * fixP,
c19d1205
ZW
18028 valueT * valP,
18029 segT seg)
18030{
18031 offsetT value = * valP;
18032 offsetT newval;
18033 unsigned int newimm;
18034 unsigned long temp;
18035 int sign;
18036 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 18037
c19d1205 18038 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 18039
c19d1205 18040 /* Note whether this will delete the relocation. */
4962c51a 18041
c19d1205
ZW
18042 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
18043 fixP->fx_done = 1;
b99bd4ef 18044
adbaf948 18045 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 18046 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
18047 for emit_reloc. */
18048 value &= 0xffffffff;
18049 value ^= 0x80000000;
5f4273c7 18050 value -= 0x80000000;
adbaf948
ZW
18051
18052 *valP = value;
c19d1205 18053 fixP->fx_addnumber = value;
b99bd4ef 18054
adbaf948
ZW
18055 /* Same treatment for fixP->fx_offset. */
18056 fixP->fx_offset &= 0xffffffff;
18057 fixP->fx_offset ^= 0x80000000;
18058 fixP->fx_offset -= 0x80000000;
18059
c19d1205 18060 switch (fixP->fx_r_type)
b99bd4ef 18061 {
c19d1205
ZW
18062 case BFD_RELOC_NONE:
18063 /* This will need to go in the object file. */
18064 fixP->fx_done = 0;
18065 break;
b99bd4ef 18066
c19d1205
ZW
18067 case BFD_RELOC_ARM_IMMEDIATE:
18068 /* We claim that this fixup has been processed here,
18069 even if in fact we generate an error because we do
18070 not have a reloc for it, so tc_gen_reloc will reject it. */
18071 fixP->fx_done = 1;
b99bd4ef 18072
c19d1205
ZW
18073 if (fixP->fx_addsy
18074 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 18075 {
c19d1205
ZW
18076 as_bad_where (fixP->fx_file, fixP->fx_line,
18077 _("undefined symbol %s used as an immediate value"),
18078 S_GET_NAME (fixP->fx_addsy));
18079 break;
b99bd4ef
NC
18080 }
18081
c19d1205
ZW
18082 newimm = encode_arm_immediate (value);
18083 temp = md_chars_to_number (buf, INSN_SIZE);
18084
18085 /* If the instruction will fail, see if we can fix things up by
18086 changing the opcode. */
18087 if (newimm == (unsigned int) FAIL
18088 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 18089 {
c19d1205
ZW
18090 as_bad_where (fixP->fx_file, fixP->fx_line,
18091 _("invalid constant (%lx) after fixup"),
18092 (unsigned long) value);
18093 break;
b99bd4ef 18094 }
b99bd4ef 18095
c19d1205
ZW
18096 newimm |= (temp & 0xfffff000);
18097 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18098 break;
b99bd4ef 18099
c19d1205
ZW
18100 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18101 {
18102 unsigned int highpart = 0;
18103 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 18104
c19d1205
ZW
18105 newimm = encode_arm_immediate (value);
18106 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 18107
c19d1205
ZW
18108 /* If the instruction will fail, see if we can fix things up by
18109 changing the opcode. */
18110 if (newimm == (unsigned int) FAIL
18111 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
18112 {
18113 /* No ? OK - try using two ADD instructions to generate
18114 the value. */
18115 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 18116
c19d1205
ZW
18117 /* Yes - then make sure that the second instruction is
18118 also an add. */
18119 if (newimm != (unsigned int) FAIL)
18120 newinsn = temp;
18121 /* Still No ? Try using a negated value. */
18122 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
18123 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
18124 /* Otherwise - give up. */
18125 else
18126 {
18127 as_bad_where (fixP->fx_file, fixP->fx_line,
18128 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
18129 (long) value);
18130 break;
18131 }
b99bd4ef 18132
c19d1205
ZW
18133 /* Replace the first operand in the 2nd instruction (which
18134 is the PC) with the destination register. We have
18135 already added in the PC in the first instruction and we
18136 do not want to do it again. */
18137 newinsn &= ~ 0xf0000;
18138 newinsn |= ((newinsn & 0x0f000) << 4);
18139 }
b99bd4ef 18140
c19d1205
ZW
18141 newimm |= (temp & 0xfffff000);
18142 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 18143
c19d1205
ZW
18144 highpart |= (newinsn & 0xfffff000);
18145 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18146 }
18147 break;
b99bd4ef 18148
c19d1205 18149 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
18150 if (!fixP->fx_done && seg->use_rela_p)
18151 value = 0;
18152
c19d1205
ZW
18153 case BFD_RELOC_ARM_LITERAL:
18154 sign = value >= 0;
b99bd4ef 18155
c19d1205
ZW
18156 if (value < 0)
18157 value = - value;
b99bd4ef 18158
c19d1205 18159 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 18160 {
c19d1205
ZW
18161 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18162 as_bad_where (fixP->fx_file, fixP->fx_line,
18163 _("invalid literal constant: pool needs to be closer"));
18164 else
18165 as_bad_where (fixP->fx_file, fixP->fx_line,
18166 _("bad immediate value for offset (%ld)"),
18167 (long) value);
18168 break;
f03698e6
RE
18169 }
18170
c19d1205
ZW
18171 newval = md_chars_to_number (buf, INSN_SIZE);
18172 newval &= 0xff7ff000;
18173 newval |= value | (sign ? INDEX_UP : 0);
18174 md_number_to_chars (buf, newval, INSN_SIZE);
18175 break;
b99bd4ef 18176
c19d1205
ZW
18177 case BFD_RELOC_ARM_OFFSET_IMM8:
18178 case BFD_RELOC_ARM_HWLITERAL:
18179 sign = value >= 0;
b99bd4ef 18180
c19d1205
ZW
18181 if (value < 0)
18182 value = - value;
b99bd4ef 18183
c19d1205 18184 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 18185 {
c19d1205
ZW
18186 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18187 as_bad_where (fixP->fx_file, fixP->fx_line,
18188 _("invalid literal constant: pool needs to be closer"));
18189 else
f9d4405b 18190 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
18191 (long) value);
18192 break;
b99bd4ef
NC
18193 }
18194
c19d1205
ZW
18195 newval = md_chars_to_number (buf, INSN_SIZE);
18196 newval &= 0xff7ff0f0;
18197 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18198 md_number_to_chars (buf, newval, INSN_SIZE);
18199 break;
b99bd4ef 18200
c19d1205
ZW
18201 case BFD_RELOC_ARM_T32_OFFSET_U8:
18202 if (value < 0 || value > 1020 || value % 4 != 0)
18203 as_bad_where (fixP->fx_file, fixP->fx_line,
18204 _("bad immediate value for offset (%ld)"), (long) value);
18205 value /= 4;
b99bd4ef 18206
c19d1205 18207 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
18208 newval |= value;
18209 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18210 break;
b99bd4ef 18211
c19d1205
ZW
18212 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18213 /* This is a complicated relocation used for all varieties of Thumb32
18214 load/store instruction with immediate offset:
18215
18216 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18217 *4, optional writeback(W)
18218 (doubleword load/store)
18219
18220 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18221 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18222 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18223 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18224 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18225
18226 Uppercase letters indicate bits that are already encoded at
18227 this point. Lowercase letters are our problem. For the
18228 second block of instructions, the secondary opcode nybble
18229 (bits 8..11) is present, and bit 23 is zero, even if this is
18230 a PC-relative operation. */
18231 newval = md_chars_to_number (buf, THUMB_SIZE);
18232 newval <<= 16;
18233 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 18234
c19d1205 18235 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 18236 {
c19d1205
ZW
18237 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18238 if (value >= 0)
18239 newval |= (1 << 23);
18240 else
18241 value = -value;
18242 if (value % 4 != 0)
18243 {
18244 as_bad_where (fixP->fx_file, fixP->fx_line,
18245 _("offset not a multiple of 4"));
18246 break;
18247 }
18248 value /= 4;
216d22bc 18249 if (value > 0xff)
c19d1205
ZW
18250 {
18251 as_bad_where (fixP->fx_file, fixP->fx_line,
18252 _("offset out of range"));
18253 break;
18254 }
18255 newval &= ~0xff;
b99bd4ef 18256 }
c19d1205 18257 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 18258 {
c19d1205
ZW
18259 /* PC-relative, 12-bit offset. */
18260 if (value >= 0)
18261 newval |= (1 << 23);
18262 else
18263 value = -value;
216d22bc 18264 if (value > 0xfff)
c19d1205
ZW
18265 {
18266 as_bad_where (fixP->fx_file, fixP->fx_line,
18267 _("offset out of range"));
18268 break;
18269 }
18270 newval &= ~0xfff;
b99bd4ef 18271 }
c19d1205 18272 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 18273 {
c19d1205
ZW
18274 /* Writeback: 8-bit, +/- offset. */
18275 if (value >= 0)
18276 newval |= (1 << 9);
18277 else
18278 value = -value;
216d22bc 18279 if (value > 0xff)
c19d1205
ZW
18280 {
18281 as_bad_where (fixP->fx_file, fixP->fx_line,
18282 _("offset out of range"));
18283 break;
18284 }
18285 newval &= ~0xff;
b99bd4ef 18286 }
c19d1205 18287 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 18288 {
c19d1205 18289 /* T-instruction: positive 8-bit offset. */
216d22bc 18290 if (value < 0 || value > 0xff)
b99bd4ef 18291 {
c19d1205
ZW
18292 as_bad_where (fixP->fx_file, fixP->fx_line,
18293 _("offset out of range"));
18294 break;
b99bd4ef 18295 }
c19d1205
ZW
18296 newval &= ~0xff;
18297 newval |= value;
b99bd4ef
NC
18298 }
18299 else
b99bd4ef 18300 {
c19d1205
ZW
18301 /* Positive 12-bit or negative 8-bit offset. */
18302 int limit;
18303 if (value >= 0)
b99bd4ef 18304 {
c19d1205
ZW
18305 newval |= (1 << 23);
18306 limit = 0xfff;
18307 }
18308 else
18309 {
18310 value = -value;
18311 limit = 0xff;
18312 }
18313 if (value > limit)
18314 {
18315 as_bad_where (fixP->fx_file, fixP->fx_line,
18316 _("offset out of range"));
18317 break;
b99bd4ef 18318 }
c19d1205 18319 newval &= ~limit;
b99bd4ef 18320 }
b99bd4ef 18321
c19d1205
ZW
18322 newval |= value;
18323 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18324 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18325 break;
404ff6b5 18326
c19d1205
ZW
18327 case BFD_RELOC_ARM_SHIFT_IMM:
18328 newval = md_chars_to_number (buf, INSN_SIZE);
18329 if (((unsigned long) value) > 32
18330 || (value == 32
18331 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18332 {
18333 as_bad_where (fixP->fx_file, fixP->fx_line,
18334 _("shift expression is too large"));
18335 break;
18336 }
404ff6b5 18337
c19d1205
ZW
18338 if (value == 0)
18339 /* Shifts of zero must be done as lsl. */
18340 newval &= ~0x60;
18341 else if (value == 32)
18342 value = 0;
18343 newval &= 0xfffff07f;
18344 newval |= (value & 0x1f) << 7;
18345 md_number_to_chars (buf, newval, INSN_SIZE);
18346 break;
404ff6b5 18347
c19d1205 18348 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 18349 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 18350 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 18351 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
18352 /* We claim that this fixup has been processed here,
18353 even if in fact we generate an error because we do
18354 not have a reloc for it, so tc_gen_reloc will reject it. */
18355 fixP->fx_done = 1;
404ff6b5 18356
c19d1205
ZW
18357 if (fixP->fx_addsy
18358 && ! S_IS_DEFINED (fixP->fx_addsy))
18359 {
18360 as_bad_where (fixP->fx_file, fixP->fx_line,
18361 _("undefined symbol %s used as an immediate value"),
18362 S_GET_NAME (fixP->fx_addsy));
18363 break;
18364 }
404ff6b5 18365
c19d1205
ZW
18366 newval = md_chars_to_number (buf, THUMB_SIZE);
18367 newval <<= 16;
18368 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 18369
16805f35
PB
18370 newimm = FAIL;
18371 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18372 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
18373 {
18374 newimm = encode_thumb32_immediate (value);
18375 if (newimm == (unsigned int) FAIL)
18376 newimm = thumb32_negate_data_op (&newval, value);
18377 }
16805f35
PB
18378 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18379 && newimm == (unsigned int) FAIL)
92e90b6e 18380 {
16805f35
PB
18381 /* Turn add/sum into addw/subw. */
18382 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18383 newval = (newval & 0xfeffffff) | 0x02000000;
18384
e9f89963
PB
18385 /* 12 bit immediate for addw/subw. */
18386 if (value < 0)
18387 {
18388 value = -value;
18389 newval ^= 0x00a00000;
18390 }
92e90b6e
PB
18391 if (value > 0xfff)
18392 newimm = (unsigned int) FAIL;
18393 else
18394 newimm = value;
18395 }
cc8a6dd0 18396
c19d1205 18397 if (newimm == (unsigned int)FAIL)
3631a3c8 18398 {
c19d1205
ZW
18399 as_bad_where (fixP->fx_file, fixP->fx_line,
18400 _("invalid constant (%lx) after fixup"),
18401 (unsigned long) value);
18402 break;
3631a3c8
NC
18403 }
18404
c19d1205
ZW
18405 newval |= (newimm & 0x800) << 15;
18406 newval |= (newimm & 0x700) << 4;
18407 newval |= (newimm & 0x0ff);
cc8a6dd0 18408
c19d1205
ZW
18409 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18410 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18411 break;
a737bd4d 18412
3eb17e6b 18413 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
18414 if (((unsigned long) value) > 0xffff)
18415 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 18416 _("invalid smc expression"));
2fc8bdac 18417 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18418 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18419 md_number_to_chars (buf, newval, INSN_SIZE);
18420 break;
a737bd4d 18421
c19d1205 18422 case BFD_RELOC_ARM_SWI:
adbaf948 18423 if (fixP->tc_fix_data != 0)
c19d1205
ZW
18424 {
18425 if (((unsigned long) value) > 0xff)
18426 as_bad_where (fixP->fx_file, fixP->fx_line,
18427 _("invalid swi expression"));
2fc8bdac 18428 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
18429 newval |= value;
18430 md_number_to_chars (buf, newval, THUMB_SIZE);
18431 }
18432 else
18433 {
18434 if (((unsigned long) value) > 0x00ffffff)
18435 as_bad_where (fixP->fx_file, fixP->fx_line,
18436 _("invalid swi expression"));
2fc8bdac 18437 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18438 newval |= value;
18439 md_number_to_chars (buf, newval, INSN_SIZE);
18440 }
18441 break;
a737bd4d 18442
c19d1205
ZW
18443 case BFD_RELOC_ARM_MULTI:
18444 if (((unsigned long) value) > 0xffff)
18445 as_bad_where (fixP->fx_file, fixP->fx_line,
18446 _("invalid expression in load/store multiple"));
18447 newval = value | md_chars_to_number (buf, INSN_SIZE);
18448 md_number_to_chars (buf, newval, INSN_SIZE);
18449 break;
a737bd4d 18450
c19d1205 18451#ifdef OBJ_ELF
39b41c9c
PB
18452 case BFD_RELOC_ARM_PCREL_CALL:
18453 newval = md_chars_to_number (buf, INSN_SIZE);
18454 if ((newval & 0xf0000000) == 0xf0000000)
18455 temp = 1;
18456 else
18457 temp = 3;
18458 goto arm_branch_common;
18459
18460 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 18461 case BFD_RELOC_ARM_PLT32:
c19d1205 18462#endif
39b41c9c
PB
18463 case BFD_RELOC_ARM_PCREL_BRANCH:
18464 temp = 3;
18465 goto arm_branch_common;
a737bd4d 18466
39b41c9c
PB
18467 case BFD_RELOC_ARM_PCREL_BLX:
18468 temp = 1;
18469 arm_branch_common:
c19d1205 18470 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
18471 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18472 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18473 also be be clear. */
18474 if (value & temp)
c19d1205 18475 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
18476 _("misaligned branch destination"));
18477 if ((value & (offsetT)0xfe000000) != (offsetT)0
18478 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18479 as_bad_where (fixP->fx_file, fixP->fx_line,
18480 _("branch out of range"));
a737bd4d 18481
2fc8bdac 18482 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18483 {
2fc8bdac
ZW
18484 newval = md_chars_to_number (buf, INSN_SIZE);
18485 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
18486 /* Set the H bit on BLX instructions. */
18487 if (temp == 1)
18488 {
18489 if (value & 2)
18490 newval |= 0x01000000;
18491 else
18492 newval &= ~0x01000000;
18493 }
2fc8bdac 18494 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 18495 }
c19d1205 18496 break;
a737bd4d 18497
25fe350b
MS
18498 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18499 /* CBZ can only branch forward. */
a737bd4d 18500
738755b0
MS
18501 /* Attempts to use CBZ to branch to the next instruction
18502 (which, strictly speaking, are prohibited) will be turned into
18503 no-ops.
18504
18505 FIXME: It may be better to remove the instruction completely and
18506 perform relaxation. */
18507 if (value == -2)
2fc8bdac
ZW
18508 {
18509 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 18510 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
18511 md_number_to_chars (buf, newval, THUMB_SIZE);
18512 }
738755b0
MS
18513 else
18514 {
18515 if (value & ~0x7e)
18516 as_bad_where (fixP->fx_file, fixP->fx_line,
18517 _("branch out of range"));
18518
18519 if (fixP->fx_done || !seg->use_rela_p)
18520 {
18521 newval = md_chars_to_number (buf, THUMB_SIZE);
18522 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18523 md_number_to_chars (buf, newval, THUMB_SIZE);
18524 }
18525 }
c19d1205 18526 break;
a737bd4d 18527
c19d1205 18528 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
18529 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18530 as_bad_where (fixP->fx_file, fixP->fx_line,
18531 _("branch out of range"));
a737bd4d 18532
2fc8bdac
ZW
18533 if (fixP->fx_done || !seg->use_rela_p)
18534 {
18535 newval = md_chars_to_number (buf, THUMB_SIZE);
18536 newval |= (value & 0x1ff) >> 1;
18537 md_number_to_chars (buf, newval, THUMB_SIZE);
18538 }
c19d1205 18539 break;
a737bd4d 18540
c19d1205 18541 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
18542 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18543 as_bad_where (fixP->fx_file, fixP->fx_line,
18544 _("branch out of range"));
a737bd4d 18545
2fc8bdac
ZW
18546 if (fixP->fx_done || !seg->use_rela_p)
18547 {
18548 newval = md_chars_to_number (buf, THUMB_SIZE);
18549 newval |= (value & 0xfff) >> 1;
18550 md_number_to_chars (buf, newval, THUMB_SIZE);
18551 }
c19d1205 18552 break;
a737bd4d 18553
c19d1205 18554 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
18555 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18556 as_bad_where (fixP->fx_file, fixP->fx_line,
18557 _("conditional branch out of range"));
404ff6b5 18558
2fc8bdac
ZW
18559 if (fixP->fx_done || !seg->use_rela_p)
18560 {
18561 offsetT newval2;
18562 addressT S, J1, J2, lo, hi;
404ff6b5 18563
2fc8bdac
ZW
18564 S = (value & 0x00100000) >> 20;
18565 J2 = (value & 0x00080000) >> 19;
18566 J1 = (value & 0x00040000) >> 18;
18567 hi = (value & 0x0003f000) >> 12;
18568 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18569
2fc8bdac
ZW
18570 newval = md_chars_to_number (buf, THUMB_SIZE);
18571 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18572 newval |= (S << 10) | hi;
18573 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18574 md_number_to_chars (buf, newval, THUMB_SIZE);
18575 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18576 }
c19d1205 18577 break;
6c43fab6 18578
c19d1205
ZW
18579 case BFD_RELOC_THUMB_PCREL_BLX:
18580 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
18581 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18582 as_bad_where (fixP->fx_file, fixP->fx_line,
18583 _("branch out of range"));
404ff6b5 18584
2fc8bdac
ZW
18585 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18586 /* For a BLX instruction, make sure that the relocation is rounded up
18587 to a word boundary. This follows the semantics of the instruction
18588 which specifies that bit 1 of the target address will come from bit
18589 1 of the base address. */
18590 value = (value + 1) & ~ 1;
404ff6b5 18591
2fc8bdac 18592 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18593 {
2fc8bdac
ZW
18594 offsetT newval2;
18595
18596 newval = md_chars_to_number (buf, THUMB_SIZE);
18597 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18598 newval |= (value & 0x7fffff) >> 12;
18599 newval2 |= (value & 0xfff) >> 1;
18600 md_number_to_chars (buf, newval, THUMB_SIZE);
18601 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 18602 }
c19d1205 18603 break;
404ff6b5 18604
c19d1205 18605 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
18606 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18607 as_bad_where (fixP->fx_file, fixP->fx_line,
18608 _("branch out of range"));
6c43fab6 18609
2fc8bdac
ZW
18610 if (fixP->fx_done || !seg->use_rela_p)
18611 {
18612 offsetT newval2;
18613 addressT S, I1, I2, lo, hi;
6c43fab6 18614
2fc8bdac
ZW
18615 S = (value & 0x01000000) >> 24;
18616 I1 = (value & 0x00800000) >> 23;
18617 I2 = (value & 0x00400000) >> 22;
18618 hi = (value & 0x003ff000) >> 12;
18619 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18620
2fc8bdac
ZW
18621 I1 = !(I1 ^ S);
18622 I2 = !(I2 ^ S);
a737bd4d 18623
2fc8bdac
ZW
18624 newval = md_chars_to_number (buf, THUMB_SIZE);
18625 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18626 newval |= (S << 10) | hi;
18627 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18628 md_number_to_chars (buf, newval, THUMB_SIZE);
18629 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18630 }
18631 break;
a737bd4d 18632
2fc8bdac
ZW
18633 case BFD_RELOC_8:
18634 if (fixP->fx_done || !seg->use_rela_p)
18635 md_number_to_chars (buf, value, 1);
c19d1205 18636 break;
a737bd4d 18637
c19d1205 18638 case BFD_RELOC_16:
2fc8bdac 18639 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18640 md_number_to_chars (buf, value, 2);
c19d1205 18641 break;
a737bd4d 18642
c19d1205
ZW
18643#ifdef OBJ_ELF
18644 case BFD_RELOC_ARM_TLS_GD32:
18645 case BFD_RELOC_ARM_TLS_LE32:
18646 case BFD_RELOC_ARM_TLS_IE32:
18647 case BFD_RELOC_ARM_TLS_LDM32:
18648 case BFD_RELOC_ARM_TLS_LDO32:
18649 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18650 /* fall through */
6c43fab6 18651
c19d1205
ZW
18652 case BFD_RELOC_ARM_GOT32:
18653 case BFD_RELOC_ARM_GOTOFF:
18654 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
18655 if (fixP->fx_done || !seg->use_rela_p)
18656 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
18657 break;
18658#endif
6c43fab6 18659
c19d1205
ZW
18660 case BFD_RELOC_RVA:
18661 case BFD_RELOC_32:
18662 case BFD_RELOC_ARM_TARGET1:
18663 case BFD_RELOC_ARM_ROSEGREL32:
18664 case BFD_RELOC_ARM_SBREL32:
18665 case BFD_RELOC_32_PCREL:
f0927246
NC
18666#ifdef TE_PE
18667 case BFD_RELOC_32_SECREL:
18668#endif
2fc8bdac 18669 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
18670#ifdef TE_WINCE
18671 /* For WinCE we only do this for pcrel fixups. */
18672 if (fixP->fx_done || fixP->fx_pcrel)
18673#endif
18674 md_number_to_chars (buf, value, 4);
c19d1205 18675 break;
6c43fab6 18676
c19d1205
ZW
18677#ifdef OBJ_ELF
18678 case BFD_RELOC_ARM_PREL31:
2fc8bdac 18679 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
18680 {
18681 newval = md_chars_to_number (buf, 4) & 0x80000000;
18682 if ((value ^ (value >> 1)) & 0x40000000)
18683 {
18684 as_bad_where (fixP->fx_file, fixP->fx_line,
18685 _("rel31 relocation overflow"));
18686 }
18687 newval |= value & 0x7fffffff;
18688 md_number_to_chars (buf, newval, 4);
18689 }
18690 break;
c19d1205 18691#endif
a737bd4d 18692
c19d1205 18693 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 18694 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
18695 if (value < -1023 || value > 1023 || (value & 3))
18696 as_bad_where (fixP->fx_file, fixP->fx_line,
18697 _("co-processor offset out of range"));
18698 cp_off_common:
18699 sign = value >= 0;
18700 if (value < 0)
18701 value = -value;
8f06b2d8
PB
18702 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18703 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18704 newval = md_chars_to_number (buf, INSN_SIZE);
18705 else
18706 newval = get_thumb32_insn (buf);
18707 newval &= 0xff7fff00;
c19d1205 18708 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
18709 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18710 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18711 md_number_to_chars (buf, newval, INSN_SIZE);
18712 else
18713 put_thumb32_insn (buf, newval);
c19d1205 18714 break;
a737bd4d 18715
c19d1205 18716 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 18717 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
18718 if (value < -255 || value > 255)
18719 as_bad_where (fixP->fx_file, fixP->fx_line,
18720 _("co-processor offset out of range"));
df7849c5 18721 value *= 4;
c19d1205 18722 goto cp_off_common;
6c43fab6 18723
c19d1205
ZW
18724 case BFD_RELOC_ARM_THUMB_OFFSET:
18725 newval = md_chars_to_number (buf, THUMB_SIZE);
18726 /* Exactly what ranges, and where the offset is inserted depends
18727 on the type of instruction, we can establish this from the
18728 top 4 bits. */
18729 switch (newval >> 12)
18730 {
18731 case 4: /* PC load. */
18732 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18733 forced to zero for these loads; md_pcrel_from has already
18734 compensated for this. */
18735 if (value & 3)
18736 as_bad_where (fixP->fx_file, fixP->fx_line,
18737 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
18738 (((unsigned long) fixP->fx_frag->fr_address
18739 + (unsigned long) fixP->fx_where) & ~3)
18740 + (unsigned long) value);
a737bd4d 18741
c19d1205
ZW
18742 if (value & ~0x3fc)
18743 as_bad_where (fixP->fx_file, fixP->fx_line,
18744 _("invalid offset, value too big (0x%08lX)"),
18745 (long) value);
a737bd4d 18746
c19d1205
ZW
18747 newval |= value >> 2;
18748 break;
a737bd4d 18749
c19d1205
ZW
18750 case 9: /* SP load/store. */
18751 if (value & ~0x3fc)
18752 as_bad_where (fixP->fx_file, fixP->fx_line,
18753 _("invalid offset, value too big (0x%08lX)"),
18754 (long) value);
18755 newval |= value >> 2;
18756 break;
6c43fab6 18757
c19d1205
ZW
18758 case 6: /* Word load/store. */
18759 if (value & ~0x7c)
18760 as_bad_where (fixP->fx_file, fixP->fx_line,
18761 _("invalid offset, value too big (0x%08lX)"),
18762 (long) value);
18763 newval |= value << 4; /* 6 - 2. */
18764 break;
a737bd4d 18765
c19d1205
ZW
18766 case 7: /* Byte load/store. */
18767 if (value & ~0x1f)
18768 as_bad_where (fixP->fx_file, fixP->fx_line,
18769 _("invalid offset, value too big (0x%08lX)"),
18770 (long) value);
18771 newval |= value << 6;
18772 break;
a737bd4d 18773
c19d1205
ZW
18774 case 8: /* Halfword load/store. */
18775 if (value & ~0x3e)
18776 as_bad_where (fixP->fx_file, fixP->fx_line,
18777 _("invalid offset, value too big (0x%08lX)"),
18778 (long) value);
18779 newval |= value << 5; /* 6 - 1. */
18780 break;
a737bd4d 18781
c19d1205
ZW
18782 default:
18783 as_bad_where (fixP->fx_file, fixP->fx_line,
18784 "Unable to process relocation for thumb opcode: %lx",
18785 (unsigned long) newval);
18786 break;
18787 }
18788 md_number_to_chars (buf, newval, THUMB_SIZE);
18789 break;
a737bd4d 18790
c19d1205
ZW
18791 case BFD_RELOC_ARM_THUMB_ADD:
18792 /* This is a complicated relocation, since we use it for all of
18793 the following immediate relocations:
a737bd4d 18794
c19d1205
ZW
18795 3bit ADD/SUB
18796 8bit ADD/SUB
18797 9bit ADD/SUB SP word-aligned
18798 10bit ADD PC/SP word-aligned
a737bd4d 18799
c19d1205
ZW
18800 The type of instruction being processed is encoded in the
18801 instruction field:
a737bd4d 18802
c19d1205
ZW
18803 0x8000 SUB
18804 0x00F0 Rd
18805 0x000F Rs
18806 */
18807 newval = md_chars_to_number (buf, THUMB_SIZE);
18808 {
18809 int rd = (newval >> 4) & 0xf;
18810 int rs = newval & 0xf;
18811 int subtract = !!(newval & 0x8000);
a737bd4d 18812
c19d1205
ZW
18813 /* Check for HI regs, only very restricted cases allowed:
18814 Adjusting SP, and using PC or SP to get an address. */
18815 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18816 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18817 as_bad_where (fixP->fx_file, fixP->fx_line,
18818 _("invalid Hi register with immediate"));
a737bd4d 18819
c19d1205
ZW
18820 /* If value is negative, choose the opposite instruction. */
18821 if (value < 0)
18822 {
18823 value = -value;
18824 subtract = !subtract;
18825 if (value < 0)
18826 as_bad_where (fixP->fx_file, fixP->fx_line,
18827 _("immediate value out of range"));
18828 }
a737bd4d 18829
c19d1205
ZW
18830 if (rd == REG_SP)
18831 {
18832 if (value & ~0x1fc)
18833 as_bad_where (fixP->fx_file, fixP->fx_line,
18834 _("invalid immediate for stack address calculation"));
18835 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18836 newval |= value >> 2;
18837 }
18838 else if (rs == REG_PC || rs == REG_SP)
18839 {
18840 if (subtract || value & ~0x3fc)
18841 as_bad_where (fixP->fx_file, fixP->fx_line,
18842 _("invalid immediate for address calculation (value = 0x%08lX)"),
18843 (unsigned long) value);
18844 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18845 newval |= rd << 8;
18846 newval |= value >> 2;
18847 }
18848 else if (rs == rd)
18849 {
18850 if (value & ~0xff)
18851 as_bad_where (fixP->fx_file, fixP->fx_line,
18852 _("immediate value out of range"));
18853 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18854 newval |= (rd << 8) | value;
18855 }
18856 else
18857 {
18858 if (value & ~0x7)
18859 as_bad_where (fixP->fx_file, fixP->fx_line,
18860 _("immediate value out of range"));
18861 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18862 newval |= rd | (rs << 3) | (value << 6);
18863 }
18864 }
18865 md_number_to_chars (buf, newval, THUMB_SIZE);
18866 break;
a737bd4d 18867
c19d1205
ZW
18868 case BFD_RELOC_ARM_THUMB_IMM:
18869 newval = md_chars_to_number (buf, THUMB_SIZE);
18870 if (value < 0 || value > 255)
18871 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 18872 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
18873 (long) value);
18874 newval |= value;
18875 md_number_to_chars (buf, newval, THUMB_SIZE);
18876 break;
a737bd4d 18877
c19d1205
ZW
18878 case BFD_RELOC_ARM_THUMB_SHIFT:
18879 /* 5bit shift value (0..32). LSL cannot take 32. */
18880 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18881 temp = newval & 0xf800;
18882 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18883 as_bad_where (fixP->fx_file, fixP->fx_line,
18884 _("invalid shift value: %ld"), (long) value);
18885 /* Shifts of zero must be encoded as LSL. */
18886 if (value == 0)
18887 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18888 /* Shifts of 32 are encoded as zero. */
18889 else if (value == 32)
18890 value = 0;
18891 newval |= value << 6;
18892 md_number_to_chars (buf, newval, THUMB_SIZE);
18893 break;
a737bd4d 18894
c19d1205
ZW
18895 case BFD_RELOC_VTABLE_INHERIT:
18896 case BFD_RELOC_VTABLE_ENTRY:
18897 fixP->fx_done = 0;
18898 return;
6c43fab6 18899
b6895b4f
PB
18900 case BFD_RELOC_ARM_MOVW:
18901 case BFD_RELOC_ARM_MOVT:
18902 case BFD_RELOC_ARM_THUMB_MOVW:
18903 case BFD_RELOC_ARM_THUMB_MOVT:
18904 if (fixP->fx_done || !seg->use_rela_p)
18905 {
18906 /* REL format relocations are limited to a 16-bit addend. */
18907 if (!fixP->fx_done)
18908 {
39623e12 18909 if (value < -0x8000 || value > 0x7fff)
b6895b4f 18910 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 18911 _("offset out of range"));
b6895b4f
PB
18912 }
18913 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18914 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18915 {
18916 value >>= 16;
18917 }
18918
18919 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18920 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18921 {
18922 newval = get_thumb32_insn (buf);
18923 newval &= 0xfbf08f00;
18924 newval |= (value & 0xf000) << 4;
18925 newval |= (value & 0x0800) << 15;
18926 newval |= (value & 0x0700) << 4;
18927 newval |= (value & 0x00ff);
18928 put_thumb32_insn (buf, newval);
18929 }
18930 else
18931 {
18932 newval = md_chars_to_number (buf, 4);
18933 newval &= 0xfff0f000;
18934 newval |= value & 0x0fff;
18935 newval |= (value & 0xf000) << 4;
18936 md_number_to_chars (buf, newval, 4);
18937 }
18938 }
18939 return;
18940
4962c51a
MS
18941 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18942 case BFD_RELOC_ARM_ALU_PC_G0:
18943 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18944 case BFD_RELOC_ARM_ALU_PC_G1:
18945 case BFD_RELOC_ARM_ALU_PC_G2:
18946 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18947 case BFD_RELOC_ARM_ALU_SB_G0:
18948 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18949 case BFD_RELOC_ARM_ALU_SB_G1:
18950 case BFD_RELOC_ARM_ALU_SB_G2:
18951 assert (!fixP->fx_done);
18952 if (!seg->use_rela_p)
18953 {
18954 bfd_vma insn;
18955 bfd_vma encoded_addend;
18956 bfd_vma addend_abs = abs (value);
18957
18958 /* Check that the absolute value of the addend can be
18959 expressed as an 8-bit constant plus a rotation. */
18960 encoded_addend = encode_arm_immediate (addend_abs);
18961 if (encoded_addend == (unsigned int) FAIL)
18962 as_bad_where (fixP->fx_file, fixP->fx_line,
18963 _("the offset 0x%08lX is not representable"),
495bde8e 18964 (unsigned long) addend_abs);
4962c51a
MS
18965
18966 /* Extract the instruction. */
18967 insn = md_chars_to_number (buf, INSN_SIZE);
18968
18969 /* If the addend is positive, use an ADD instruction.
18970 Otherwise use a SUB. Take care not to destroy the S bit. */
18971 insn &= 0xff1fffff;
18972 if (value < 0)
18973 insn |= 1 << 22;
18974 else
18975 insn |= 1 << 23;
18976
18977 /* Place the encoded addend into the first 12 bits of the
18978 instruction. */
18979 insn &= 0xfffff000;
18980 insn |= encoded_addend;
5f4273c7
NC
18981
18982 /* Update the instruction. */
4962c51a
MS
18983 md_number_to_chars (buf, insn, INSN_SIZE);
18984 }
18985 break;
18986
18987 case BFD_RELOC_ARM_LDR_PC_G0:
18988 case BFD_RELOC_ARM_LDR_PC_G1:
18989 case BFD_RELOC_ARM_LDR_PC_G2:
18990 case BFD_RELOC_ARM_LDR_SB_G0:
18991 case BFD_RELOC_ARM_LDR_SB_G1:
18992 case BFD_RELOC_ARM_LDR_SB_G2:
18993 assert (!fixP->fx_done);
18994 if (!seg->use_rela_p)
18995 {
18996 bfd_vma insn;
18997 bfd_vma addend_abs = abs (value);
18998
18999 /* Check that the absolute value of the addend can be
19000 encoded in 12 bits. */
19001 if (addend_abs >= 0x1000)
19002 as_bad_where (fixP->fx_file, fixP->fx_line,
19003 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 19004 (unsigned long) addend_abs);
4962c51a
MS
19005
19006 /* Extract the instruction. */
19007 insn = md_chars_to_number (buf, INSN_SIZE);
19008
19009 /* If the addend is negative, clear bit 23 of the instruction.
19010 Otherwise set it. */
19011 if (value < 0)
19012 insn &= ~(1 << 23);
19013 else
19014 insn |= 1 << 23;
19015
19016 /* Place the absolute value of the addend into the first 12 bits
19017 of the instruction. */
19018 insn &= 0xfffff000;
19019 insn |= addend_abs;
5f4273c7
NC
19020
19021 /* Update the instruction. */
4962c51a
MS
19022 md_number_to_chars (buf, insn, INSN_SIZE);
19023 }
19024 break;
19025
19026 case BFD_RELOC_ARM_LDRS_PC_G0:
19027 case BFD_RELOC_ARM_LDRS_PC_G1:
19028 case BFD_RELOC_ARM_LDRS_PC_G2:
19029 case BFD_RELOC_ARM_LDRS_SB_G0:
19030 case BFD_RELOC_ARM_LDRS_SB_G1:
19031 case BFD_RELOC_ARM_LDRS_SB_G2:
19032 assert (!fixP->fx_done);
19033 if (!seg->use_rela_p)
19034 {
19035 bfd_vma insn;
19036 bfd_vma addend_abs = abs (value);
19037
19038 /* Check that the absolute value of the addend can be
19039 encoded in 8 bits. */
19040 if (addend_abs >= 0x100)
19041 as_bad_where (fixP->fx_file, fixP->fx_line,
19042 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 19043 (unsigned long) addend_abs);
4962c51a
MS
19044
19045 /* Extract the instruction. */
19046 insn = md_chars_to_number (buf, INSN_SIZE);
19047
19048 /* If the addend is negative, clear bit 23 of the instruction.
19049 Otherwise set it. */
19050 if (value < 0)
19051 insn &= ~(1 << 23);
19052 else
19053 insn |= 1 << 23;
19054
19055 /* Place the first four bits of the absolute value of the addend
19056 into the first 4 bits of the instruction, and the remaining
19057 four into bits 8 .. 11. */
19058 insn &= 0xfffff0f0;
19059 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
19060
19061 /* Update the instruction. */
4962c51a
MS
19062 md_number_to_chars (buf, insn, INSN_SIZE);
19063 }
19064 break;
19065
19066 case BFD_RELOC_ARM_LDC_PC_G0:
19067 case BFD_RELOC_ARM_LDC_PC_G1:
19068 case BFD_RELOC_ARM_LDC_PC_G2:
19069 case BFD_RELOC_ARM_LDC_SB_G0:
19070 case BFD_RELOC_ARM_LDC_SB_G1:
19071 case BFD_RELOC_ARM_LDC_SB_G2:
19072 assert (!fixP->fx_done);
19073 if (!seg->use_rela_p)
19074 {
19075 bfd_vma insn;
19076 bfd_vma addend_abs = abs (value);
19077
19078 /* Check that the absolute value of the addend is a multiple of
19079 four and, when divided by four, fits in 8 bits. */
19080 if (addend_abs & 0x3)
19081 as_bad_where (fixP->fx_file, fixP->fx_line,
19082 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 19083 (unsigned long) addend_abs);
4962c51a
MS
19084
19085 if ((addend_abs >> 2) > 0xff)
19086 as_bad_where (fixP->fx_file, fixP->fx_line,
19087 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 19088 (unsigned long) addend_abs);
4962c51a
MS
19089
19090 /* Extract the instruction. */
19091 insn = md_chars_to_number (buf, INSN_SIZE);
19092
19093 /* If the addend is negative, clear bit 23 of the instruction.
19094 Otherwise set it. */
19095 if (value < 0)
19096 insn &= ~(1 << 23);
19097 else
19098 insn |= 1 << 23;
19099
19100 /* Place the addend (divided by four) into the first eight
19101 bits of the instruction. */
19102 insn &= 0xfffffff0;
19103 insn |= addend_abs >> 2;
5f4273c7
NC
19104
19105 /* Update the instruction. */
4962c51a
MS
19106 md_number_to_chars (buf, insn, INSN_SIZE);
19107 }
19108 break;
19109
845b51d6
PB
19110 case BFD_RELOC_ARM_V4BX:
19111 /* This will need to go in the object file. */
19112 fixP->fx_done = 0;
19113 break;
19114
c19d1205
ZW
19115 case BFD_RELOC_UNUSED:
19116 default:
19117 as_bad_where (fixP->fx_file, fixP->fx_line,
19118 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
19119 }
6c43fab6
RE
19120}
19121
c19d1205
ZW
19122/* Translate internal representation of relocation info to BFD target
19123 format. */
a737bd4d 19124
c19d1205 19125arelent *
00a97672 19126tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 19127{
c19d1205
ZW
19128 arelent * reloc;
19129 bfd_reloc_code_real_type code;
a737bd4d 19130
c19d1205 19131 reloc = xmalloc (sizeof (arelent));
a737bd4d 19132
c19d1205
ZW
19133 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
19134 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
19135 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 19136
2fc8bdac 19137 if (fixp->fx_pcrel)
00a97672
RS
19138 {
19139 if (section->use_rela_p)
19140 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
19141 else
19142 fixp->fx_offset = reloc->address;
19143 }
c19d1205 19144 reloc->addend = fixp->fx_offset;
a737bd4d 19145
c19d1205 19146 switch (fixp->fx_r_type)
a737bd4d 19147 {
c19d1205
ZW
19148 case BFD_RELOC_8:
19149 if (fixp->fx_pcrel)
19150 {
19151 code = BFD_RELOC_8_PCREL;
19152 break;
19153 }
a737bd4d 19154
c19d1205
ZW
19155 case BFD_RELOC_16:
19156 if (fixp->fx_pcrel)
19157 {
19158 code = BFD_RELOC_16_PCREL;
19159 break;
19160 }
6c43fab6 19161
c19d1205
ZW
19162 case BFD_RELOC_32:
19163 if (fixp->fx_pcrel)
19164 {
19165 code = BFD_RELOC_32_PCREL;
19166 break;
19167 }
a737bd4d 19168
b6895b4f
PB
19169 case BFD_RELOC_ARM_MOVW:
19170 if (fixp->fx_pcrel)
19171 {
19172 code = BFD_RELOC_ARM_MOVW_PCREL;
19173 break;
19174 }
19175
19176 case BFD_RELOC_ARM_MOVT:
19177 if (fixp->fx_pcrel)
19178 {
19179 code = BFD_RELOC_ARM_MOVT_PCREL;
19180 break;
19181 }
19182
19183 case BFD_RELOC_ARM_THUMB_MOVW:
19184 if (fixp->fx_pcrel)
19185 {
19186 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19187 break;
19188 }
19189
19190 case BFD_RELOC_ARM_THUMB_MOVT:
19191 if (fixp->fx_pcrel)
19192 {
19193 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19194 break;
19195 }
19196
c19d1205
ZW
19197 case BFD_RELOC_NONE:
19198 case BFD_RELOC_ARM_PCREL_BRANCH:
19199 case BFD_RELOC_ARM_PCREL_BLX:
19200 case BFD_RELOC_RVA:
19201 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19202 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19203 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19204 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19205 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19206 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19207 case BFD_RELOC_THUMB_PCREL_BLX:
19208 case BFD_RELOC_VTABLE_ENTRY:
19209 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
19210#ifdef TE_PE
19211 case BFD_RELOC_32_SECREL:
19212#endif
c19d1205
ZW
19213 code = fixp->fx_r_type;
19214 break;
a737bd4d 19215
c19d1205
ZW
19216 case BFD_RELOC_ARM_LITERAL:
19217 case BFD_RELOC_ARM_HWLITERAL:
19218 /* If this is called then the a literal has
19219 been referenced across a section boundary. */
19220 as_bad_where (fixp->fx_file, fixp->fx_line,
19221 _("literal referenced across section boundary"));
19222 return NULL;
a737bd4d 19223
c19d1205
ZW
19224#ifdef OBJ_ELF
19225 case BFD_RELOC_ARM_GOT32:
19226 case BFD_RELOC_ARM_GOTOFF:
19227 case BFD_RELOC_ARM_PLT32:
19228 case BFD_RELOC_ARM_TARGET1:
19229 case BFD_RELOC_ARM_ROSEGREL32:
19230 case BFD_RELOC_ARM_SBREL32:
19231 case BFD_RELOC_ARM_PREL31:
19232 case BFD_RELOC_ARM_TARGET2:
19233 case BFD_RELOC_ARM_TLS_LE32:
19234 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
19235 case BFD_RELOC_ARM_PCREL_CALL:
19236 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
19237 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19238 case BFD_RELOC_ARM_ALU_PC_G0:
19239 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19240 case BFD_RELOC_ARM_ALU_PC_G1:
19241 case BFD_RELOC_ARM_ALU_PC_G2:
19242 case BFD_RELOC_ARM_LDR_PC_G0:
19243 case BFD_RELOC_ARM_LDR_PC_G1:
19244 case BFD_RELOC_ARM_LDR_PC_G2:
19245 case BFD_RELOC_ARM_LDRS_PC_G0:
19246 case BFD_RELOC_ARM_LDRS_PC_G1:
19247 case BFD_RELOC_ARM_LDRS_PC_G2:
19248 case BFD_RELOC_ARM_LDC_PC_G0:
19249 case BFD_RELOC_ARM_LDC_PC_G1:
19250 case BFD_RELOC_ARM_LDC_PC_G2:
19251 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19252 case BFD_RELOC_ARM_ALU_SB_G0:
19253 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19254 case BFD_RELOC_ARM_ALU_SB_G1:
19255 case BFD_RELOC_ARM_ALU_SB_G2:
19256 case BFD_RELOC_ARM_LDR_SB_G0:
19257 case BFD_RELOC_ARM_LDR_SB_G1:
19258 case BFD_RELOC_ARM_LDR_SB_G2:
19259 case BFD_RELOC_ARM_LDRS_SB_G0:
19260 case BFD_RELOC_ARM_LDRS_SB_G1:
19261 case BFD_RELOC_ARM_LDRS_SB_G2:
19262 case BFD_RELOC_ARM_LDC_SB_G0:
19263 case BFD_RELOC_ARM_LDC_SB_G1:
19264 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 19265 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
19266 code = fixp->fx_r_type;
19267 break;
a737bd4d 19268
c19d1205
ZW
19269 case BFD_RELOC_ARM_TLS_GD32:
19270 case BFD_RELOC_ARM_TLS_IE32:
19271 case BFD_RELOC_ARM_TLS_LDM32:
19272 /* BFD will include the symbol's address in the addend.
19273 But we don't want that, so subtract it out again here. */
19274 if (!S_IS_COMMON (fixp->fx_addsy))
19275 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19276 code = fixp->fx_r_type;
19277 break;
19278#endif
a737bd4d 19279
c19d1205
ZW
19280 case BFD_RELOC_ARM_IMMEDIATE:
19281 as_bad_where (fixp->fx_file, fixp->fx_line,
19282 _("internal relocation (type: IMMEDIATE) not fixed up"));
19283 return NULL;
a737bd4d 19284
c19d1205
ZW
19285 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19286 as_bad_where (fixp->fx_file, fixp->fx_line,
19287 _("ADRL used for a symbol not defined in the same file"));
19288 return NULL;
a737bd4d 19289
c19d1205 19290 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19291 if (section->use_rela_p)
19292 {
19293 code = fixp->fx_r_type;
19294 break;
19295 }
19296
c19d1205
ZW
19297 if (fixp->fx_addsy != NULL
19298 && !S_IS_DEFINED (fixp->fx_addsy)
19299 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 19300 {
c19d1205
ZW
19301 as_bad_where (fixp->fx_file, fixp->fx_line,
19302 _("undefined local label `%s'"),
19303 S_GET_NAME (fixp->fx_addsy));
19304 return NULL;
a737bd4d
NC
19305 }
19306
c19d1205
ZW
19307 as_bad_where (fixp->fx_file, fixp->fx_line,
19308 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19309 return NULL;
a737bd4d 19310
c19d1205
ZW
19311 default:
19312 {
19313 char * type;
6c43fab6 19314
c19d1205
ZW
19315 switch (fixp->fx_r_type)
19316 {
19317 case BFD_RELOC_NONE: type = "NONE"; break;
19318 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19319 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 19320 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
19321 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19322 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19323 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 19324 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
19325 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19326 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19327 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19328 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19329 default: type = _("<unknown>"); break;
19330 }
19331 as_bad_where (fixp->fx_file, fixp->fx_line,
19332 _("cannot represent %s relocation in this object file format"),
19333 type);
19334 return NULL;
19335 }
a737bd4d 19336 }
6c43fab6 19337
c19d1205
ZW
19338#ifdef OBJ_ELF
19339 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19340 && GOT_symbol
19341 && fixp->fx_addsy == GOT_symbol)
19342 {
19343 code = BFD_RELOC_ARM_GOTPC;
19344 reloc->addend = fixp->fx_offset = reloc->address;
19345 }
19346#endif
6c43fab6 19347
c19d1205 19348 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 19349
c19d1205
ZW
19350 if (reloc->howto == NULL)
19351 {
19352 as_bad_where (fixp->fx_file, fixp->fx_line,
19353 _("cannot represent %s relocation in this object file format"),
19354 bfd_get_reloc_code_name (code));
19355 return NULL;
19356 }
6c43fab6 19357
c19d1205
ZW
19358 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19359 vtable entry to be used in the relocation's section offset. */
19360 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19361 reloc->address = fixp->fx_offset;
6c43fab6 19362
c19d1205 19363 return reloc;
6c43fab6
RE
19364}
19365
c19d1205 19366/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 19367
c19d1205
ZW
19368void
19369cons_fix_new_arm (fragS * frag,
19370 int where,
19371 int size,
19372 expressionS * exp)
6c43fab6 19373{
c19d1205
ZW
19374 bfd_reloc_code_real_type type;
19375 int pcrel = 0;
6c43fab6 19376
c19d1205
ZW
19377 /* Pick a reloc.
19378 FIXME: @@ Should look at CPU word size. */
19379 switch (size)
19380 {
19381 case 1:
19382 type = BFD_RELOC_8;
19383 break;
19384 case 2:
19385 type = BFD_RELOC_16;
19386 break;
19387 case 4:
19388 default:
19389 type = BFD_RELOC_32;
19390 break;
19391 case 8:
19392 type = BFD_RELOC_64;
19393 break;
19394 }
6c43fab6 19395
f0927246
NC
19396#ifdef TE_PE
19397 if (exp->X_op == O_secrel)
19398 {
19399 exp->X_op = O_symbol;
19400 type = BFD_RELOC_32_SECREL;
19401 }
19402#endif
19403
c19d1205
ZW
19404 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19405}
6c43fab6 19406
c19d1205
ZW
19407#if defined OBJ_COFF || defined OBJ_ELF
19408void
19409arm_validate_fix (fixS * fixP)
6c43fab6 19410{
c19d1205
ZW
19411 /* If the destination of the branch is a defined symbol which does not have
19412 the THUMB_FUNC attribute, then we must be calling a function which has
19413 the (interfacearm) attribute. We look for the Thumb entry point to that
19414 function and change the branch to refer to that function instead. */
19415 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19416 && fixP->fx_addsy != NULL
19417 && S_IS_DEFINED (fixP->fx_addsy)
19418 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 19419 {
c19d1205 19420 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 19421 }
c19d1205
ZW
19422}
19423#endif
6c43fab6 19424
c19d1205
ZW
19425int
19426arm_force_relocation (struct fix * fixp)
19427{
19428#if defined (OBJ_COFF) && defined (TE_PE)
19429 if (fixp->fx_r_type == BFD_RELOC_RVA)
19430 return 1;
19431#endif
6c43fab6 19432
c19d1205
ZW
19433 /* Resolve these relocations even if the symbol is extern or weak. */
19434 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19435 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 19436 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 19437 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
19438 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19439 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19440 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 19441 return 0;
a737bd4d 19442
4962c51a
MS
19443 /* Always leave these relocations for the linker. */
19444 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19445 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19446 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19447 return 1;
19448
f0291e4c
PB
19449 /* Always generate relocations against function symbols. */
19450 if (fixp->fx_r_type == BFD_RELOC_32
19451 && fixp->fx_addsy
19452 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19453 return 1;
19454
c19d1205 19455 return generic_force_reloc (fixp);
404ff6b5
AH
19456}
19457
0ffdc86c 19458#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
19459/* Relocations against function names must be left unadjusted,
19460 so that the linker can use this information to generate interworking
19461 stubs. The MIPS version of this function
c19d1205
ZW
19462 also prevents relocations that are mips-16 specific, but I do not
19463 know why it does this.
404ff6b5 19464
c19d1205
ZW
19465 FIXME:
19466 There is one other problem that ought to be addressed here, but
19467 which currently is not: Taking the address of a label (rather
19468 than a function) and then later jumping to that address. Such
19469 addresses also ought to have their bottom bit set (assuming that
19470 they reside in Thumb code), but at the moment they will not. */
404ff6b5 19471
c19d1205
ZW
19472bfd_boolean
19473arm_fix_adjustable (fixS * fixP)
404ff6b5 19474{
c19d1205
ZW
19475 if (fixP->fx_addsy == NULL)
19476 return 1;
404ff6b5 19477
e28387c3
PB
19478 /* Preserve relocations against symbols with function type. */
19479 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19480 return 0;
19481
c19d1205
ZW
19482 if (THUMB_IS_FUNC (fixP->fx_addsy)
19483 && fixP->fx_subsy == NULL)
19484 return 0;
a737bd4d 19485
c19d1205
ZW
19486 /* We need the symbol name for the VTABLE entries. */
19487 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19488 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19489 return 0;
404ff6b5 19490
c19d1205
ZW
19491 /* Don't allow symbols to be discarded on GOT related relocs. */
19492 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19493 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19494 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19495 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19496 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19497 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19498 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19499 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19500 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19501 return 0;
a737bd4d 19502
4962c51a
MS
19503 /* Similarly for group relocations. */
19504 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19505 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19506 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19507 return 0;
19508
79947c54
CD
19509 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
19510 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
19511 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
19512 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
19513 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
19514 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
19515 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
19516 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
19517 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
19518 return 0;
19519
c19d1205 19520 return 1;
a737bd4d 19521}
0ffdc86c
NC
19522#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19523
19524#ifdef OBJ_ELF
404ff6b5 19525
c19d1205
ZW
19526const char *
19527elf32_arm_target_format (void)
404ff6b5 19528{
c19d1205
ZW
19529#ifdef TE_SYMBIAN
19530 return (target_big_endian
19531 ? "elf32-bigarm-symbian"
19532 : "elf32-littlearm-symbian");
19533#elif defined (TE_VXWORKS)
19534 return (target_big_endian
19535 ? "elf32-bigarm-vxworks"
19536 : "elf32-littlearm-vxworks");
19537#else
19538 if (target_big_endian)
19539 return "elf32-bigarm";
19540 else
19541 return "elf32-littlearm";
19542#endif
404ff6b5
AH
19543}
19544
c19d1205
ZW
19545void
19546armelf_frob_symbol (symbolS * symp,
19547 int * puntp)
404ff6b5 19548{
c19d1205
ZW
19549 elf_frob_symbol (symp, puntp);
19550}
19551#endif
404ff6b5 19552
c19d1205 19553/* MD interface: Finalization. */
a737bd4d 19554
c19d1205
ZW
19555/* A good place to do this, although this was probably not intended
19556 for this kind of use. We need to dump the literal pool before
19557 references are made to a null symbol pointer. */
a737bd4d 19558
c19d1205
ZW
19559void
19560arm_cleanup (void)
19561{
19562 literal_pool * pool;
a737bd4d 19563
c19d1205
ZW
19564 for (pool = list_of_pools; pool; pool = pool->next)
19565 {
5f4273c7 19566 /* Put it at the end of the relevant section. */
c19d1205
ZW
19567 subseg_set (pool->section, pool->sub_section);
19568#ifdef OBJ_ELF
19569 arm_elf_change_section ();
19570#endif
19571 s_ltorg (0);
19572 }
404ff6b5
AH
19573}
19574
c19d1205
ZW
19575/* Adjust the symbol table. This marks Thumb symbols as distinct from
19576 ARM ones. */
404ff6b5 19577
c19d1205
ZW
19578void
19579arm_adjust_symtab (void)
404ff6b5 19580{
c19d1205
ZW
19581#ifdef OBJ_COFF
19582 symbolS * sym;
404ff6b5 19583
c19d1205
ZW
19584 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19585 {
19586 if (ARM_IS_THUMB (sym))
19587 {
19588 if (THUMB_IS_FUNC (sym))
19589 {
19590 /* Mark the symbol as a Thumb function. */
19591 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19592 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19593 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 19594
c19d1205
ZW
19595 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19596 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19597 else
19598 as_bad (_("%s: unexpected function type: %d"),
19599 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19600 }
19601 else switch (S_GET_STORAGE_CLASS (sym))
19602 {
19603 case C_EXT:
19604 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19605 break;
19606 case C_STAT:
19607 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19608 break;
19609 case C_LABEL:
19610 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19611 break;
19612 default:
19613 /* Do nothing. */
19614 break;
19615 }
19616 }
a737bd4d 19617
c19d1205
ZW
19618 if (ARM_IS_INTERWORK (sym))
19619 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 19620 }
c19d1205
ZW
19621#endif
19622#ifdef OBJ_ELF
19623 symbolS * sym;
19624 char bind;
404ff6b5 19625
c19d1205 19626 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 19627 {
c19d1205
ZW
19628 if (ARM_IS_THUMB (sym))
19629 {
19630 elf_symbol_type * elf_sym;
404ff6b5 19631
c19d1205
ZW
19632 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19633 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 19634
b0796911
PB
19635 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19636 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
19637 {
19638 /* If it's a .thumb_func, declare it as so,
19639 otherwise tag label as .code 16. */
19640 if (THUMB_IS_FUNC (sym))
19641 elf_sym->internal_elf_sym.st_info =
19642 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 19643 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
19644 elf_sym->internal_elf_sym.st_info =
19645 ELF_ST_INFO (bind, STT_ARM_16BIT);
19646 }
19647 }
19648 }
19649#endif
404ff6b5
AH
19650}
19651
c19d1205 19652/* MD interface: Initialization. */
404ff6b5 19653
a737bd4d 19654static void
c19d1205 19655set_constant_flonums (void)
a737bd4d 19656{
c19d1205 19657 int i;
404ff6b5 19658
c19d1205
ZW
19659 for (i = 0; i < NUM_FLOAT_VALS; i++)
19660 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19661 abort ();
a737bd4d 19662}
404ff6b5 19663
3e9e4fcf
JB
19664/* Auto-select Thumb mode if it's the only available instruction set for the
19665 given architecture. */
19666
19667static void
19668autoselect_thumb_from_cpu_variant (void)
19669{
19670 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19671 opcode_select (16);
19672}
19673
c19d1205
ZW
19674void
19675md_begin (void)
a737bd4d 19676{
c19d1205
ZW
19677 unsigned mach;
19678 unsigned int i;
404ff6b5 19679
c19d1205
ZW
19680 if ( (arm_ops_hsh = hash_new ()) == NULL
19681 || (arm_cond_hsh = hash_new ()) == NULL
19682 || (arm_shift_hsh = hash_new ()) == NULL
19683 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 19684 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 19685 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
19686 || (arm_reloc_hsh = hash_new ()) == NULL
19687 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
19688 as_fatal (_("virtual memory exhausted"));
19689
19690 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
5a49b8ac 19691 hash_insert (arm_ops_hsh, insns[i].template, (void *) (insns + i));
c19d1205 19692 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
5a49b8ac 19693 hash_insert (arm_cond_hsh, conds[i].template, (void *) (conds + i));
c19d1205 19694 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 19695 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 19696 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
5a49b8ac 19697 hash_insert (arm_psr_hsh, psrs[i].template, (void *) (psrs + i));
62b3e311 19698 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
5a49b8ac 19699 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (void *) (v7m_psrs + i));
c19d1205 19700 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 19701 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
19702 for (i = 0;
19703 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19704 i++)
19705 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
5a49b8ac 19706 (void *) (barrier_opt_names + i));
c19d1205
ZW
19707#ifdef OBJ_ELF
19708 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 19709 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
19710#endif
19711
19712 set_constant_flonums ();
404ff6b5 19713
c19d1205
ZW
19714 /* Set the cpu variant based on the command-line options. We prefer
19715 -mcpu= over -march= if both are set (as for GCC); and we prefer
19716 -mfpu= over any other way of setting the floating point unit.
19717 Use of legacy options with new options are faulted. */
e74cfd16 19718 if (legacy_cpu)
404ff6b5 19719 {
e74cfd16 19720 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
19721 as_bad (_("use of old and new-style options to set CPU type"));
19722
19723 mcpu_cpu_opt = legacy_cpu;
404ff6b5 19724 }
e74cfd16 19725 else if (!mcpu_cpu_opt)
c19d1205 19726 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 19727
e74cfd16 19728 if (legacy_fpu)
c19d1205 19729 {
e74cfd16 19730 if (mfpu_opt)
c19d1205 19731 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
19732
19733 mfpu_opt = legacy_fpu;
19734 }
e74cfd16 19735 else if (!mfpu_opt)
03b1477f 19736 {
c19d1205 19737#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
19738 /* Some environments specify a default FPU. If they don't, infer it
19739 from the processor. */
e74cfd16 19740 if (mcpu_fpu_opt)
03b1477f
RE
19741 mfpu_opt = mcpu_fpu_opt;
19742 else
19743 mfpu_opt = march_fpu_opt;
39c2da32 19744#else
e74cfd16 19745 mfpu_opt = &fpu_default;
39c2da32 19746#endif
03b1477f
RE
19747 }
19748
e74cfd16 19749 if (!mfpu_opt)
03b1477f 19750 {
493cb6ef 19751 if (mcpu_cpu_opt != NULL)
e74cfd16 19752 mfpu_opt = &fpu_default;
493cb6ef 19753 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 19754 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 19755 else
e74cfd16 19756 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
19757 }
19758
ee065d83 19759#ifdef CPU_DEFAULT
e74cfd16 19760 if (!mcpu_cpu_opt)
ee065d83 19761 {
e74cfd16
PB
19762 mcpu_cpu_opt = &cpu_default;
19763 selected_cpu = cpu_default;
ee065d83 19764 }
e74cfd16
PB
19765#else
19766 if (mcpu_cpu_opt)
19767 selected_cpu = *mcpu_cpu_opt;
ee065d83 19768 else
e74cfd16 19769 mcpu_cpu_opt = &arm_arch_any;
ee065d83 19770#endif
03b1477f 19771
e74cfd16 19772 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 19773
3e9e4fcf
JB
19774 autoselect_thumb_from_cpu_variant ();
19775
e74cfd16 19776 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 19777
f17c130b 19778#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 19779 {
7cc69913
NC
19780 unsigned int flags = 0;
19781
19782#if defined OBJ_ELF
19783 flags = meabi_flags;
d507cf36
PB
19784
19785 switch (meabi_flags)
33a392fb 19786 {
d507cf36 19787 case EF_ARM_EABI_UNKNOWN:
7cc69913 19788#endif
d507cf36
PB
19789 /* Set the flags in the private structure. */
19790 if (uses_apcs_26) flags |= F_APCS26;
19791 if (support_interwork) flags |= F_INTERWORK;
19792 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 19793 if (pic_code) flags |= F_PIC;
e74cfd16 19794 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
19795 flags |= F_SOFT_FLOAT;
19796
d507cf36
PB
19797 switch (mfloat_abi_opt)
19798 {
19799 case ARM_FLOAT_ABI_SOFT:
19800 case ARM_FLOAT_ABI_SOFTFP:
19801 flags |= F_SOFT_FLOAT;
19802 break;
33a392fb 19803
d507cf36
PB
19804 case ARM_FLOAT_ABI_HARD:
19805 if (flags & F_SOFT_FLOAT)
19806 as_bad (_("hard-float conflicts with specified fpu"));
19807 break;
19808 }
03b1477f 19809
e74cfd16
PB
19810 /* Using pure-endian doubles (even if soft-float). */
19811 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 19812 flags |= F_VFP_FLOAT;
f17c130b 19813
fde78edd 19814#if defined OBJ_ELF
e74cfd16 19815 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 19816 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
19817 break;
19818
8cb51566 19819 case EF_ARM_EABI_VER4:
3a4a14e9 19820 case EF_ARM_EABI_VER5:
c19d1205 19821 /* No additional flags to set. */
d507cf36
PB
19822 break;
19823
19824 default:
19825 abort ();
19826 }
7cc69913 19827#endif
b99bd4ef
NC
19828 bfd_set_private_flags (stdoutput, flags);
19829
19830 /* We have run out flags in the COFF header to encode the
19831 status of ATPCS support, so instead we create a dummy,
c19d1205 19832 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
19833 if (atpcs)
19834 {
19835 asection * sec;
19836
19837 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19838
19839 if (sec != NULL)
19840 {
19841 bfd_set_section_flags
19842 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19843 bfd_set_section_size (stdoutput, sec, 0);
19844 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19845 }
19846 }
7cc69913 19847 }
f17c130b 19848#endif
b99bd4ef
NC
19849
19850 /* Record the CPU type as well. */
2d447fca
JM
19851 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19852 mach = bfd_mach_arm_iWMMXt2;
19853 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 19854 mach = bfd_mach_arm_iWMMXt;
e74cfd16 19855 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 19856 mach = bfd_mach_arm_XScale;
e74cfd16 19857 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 19858 mach = bfd_mach_arm_ep9312;
e74cfd16 19859 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 19860 mach = bfd_mach_arm_5TE;
e74cfd16 19861 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 19862 {
e74cfd16 19863 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19864 mach = bfd_mach_arm_5T;
19865 else
19866 mach = bfd_mach_arm_5;
19867 }
e74cfd16 19868 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 19869 {
e74cfd16 19870 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19871 mach = bfd_mach_arm_4T;
19872 else
19873 mach = bfd_mach_arm_4;
19874 }
e74cfd16 19875 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 19876 mach = bfd_mach_arm_3M;
e74cfd16
PB
19877 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19878 mach = bfd_mach_arm_3;
19879 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19880 mach = bfd_mach_arm_2a;
19881 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19882 mach = bfd_mach_arm_2;
19883 else
19884 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
19885
19886 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19887}
19888
c19d1205 19889/* Command line processing. */
b99bd4ef 19890
c19d1205
ZW
19891/* md_parse_option
19892 Invocation line includes a switch not recognized by the base assembler.
19893 See if it's a processor-specific option.
b99bd4ef 19894
c19d1205
ZW
19895 This routine is somewhat complicated by the need for backwards
19896 compatibility (since older releases of gcc can't be changed).
19897 The new options try to make the interface as compatible as
19898 possible with GCC.
b99bd4ef 19899
c19d1205 19900 New options (supported) are:
b99bd4ef 19901
c19d1205
ZW
19902 -mcpu=<cpu name> Assemble for selected processor
19903 -march=<architecture name> Assemble for selected architecture
19904 -mfpu=<fpu architecture> Assemble for selected FPU.
19905 -EB/-mbig-endian Big-endian
19906 -EL/-mlittle-endian Little-endian
19907 -k Generate PIC code
19908 -mthumb Start in Thumb mode
19909 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 19910
278df34e
NS
19911 -m[no-]warn-deprecated Warn about deprecated features
19912
c19d1205 19913 For now we will also provide support for:
b99bd4ef 19914
c19d1205
ZW
19915 -mapcs-32 32-bit Program counter
19916 -mapcs-26 26-bit Program counter
19917 -macps-float Floats passed in FP registers
19918 -mapcs-reentrant Reentrant code
19919 -matpcs
19920 (sometime these will probably be replaced with -mapcs=<list of options>
19921 and -matpcs=<list of options>)
b99bd4ef 19922
c19d1205
ZW
19923 The remaining options are only supported for back-wards compatibility.
19924 Cpu variants, the arm part is optional:
19925 -m[arm]1 Currently not supported.
19926 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19927 -m[arm]3 Arm 3 processor
19928 -m[arm]6[xx], Arm 6 processors
19929 -m[arm]7[xx][t][[d]m] Arm 7 processors
19930 -m[arm]8[10] Arm 8 processors
19931 -m[arm]9[20][tdmi] Arm 9 processors
19932 -mstrongarm[110[0]] StrongARM processors
19933 -mxscale XScale processors
19934 -m[arm]v[2345[t[e]]] Arm architectures
19935 -mall All (except the ARM1)
19936 FP variants:
19937 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19938 -mfpe-old (No float load/store multiples)
19939 -mvfpxd VFP Single precision
19940 -mvfp All VFP
19941 -mno-fpu Disable all floating point instructions
b99bd4ef 19942
c19d1205
ZW
19943 The following CPU names are recognized:
19944 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19945 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19946 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19947 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19948 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19949 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19950 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 19951
c19d1205 19952 */
b99bd4ef 19953
c19d1205 19954const char * md_shortopts = "m:k";
b99bd4ef 19955
c19d1205
ZW
19956#ifdef ARM_BI_ENDIAN
19957#define OPTION_EB (OPTION_MD_BASE + 0)
19958#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 19959#else
c19d1205
ZW
19960#if TARGET_BYTES_BIG_ENDIAN
19961#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 19962#else
c19d1205
ZW
19963#define OPTION_EL (OPTION_MD_BASE + 1)
19964#endif
b99bd4ef 19965#endif
845b51d6 19966#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 19967
c19d1205 19968struct option md_longopts[] =
b99bd4ef 19969{
c19d1205
ZW
19970#ifdef OPTION_EB
19971 {"EB", no_argument, NULL, OPTION_EB},
19972#endif
19973#ifdef OPTION_EL
19974 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 19975#endif
845b51d6 19976 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
19977 {NULL, no_argument, NULL, 0}
19978};
b99bd4ef 19979
c19d1205 19980size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 19981
c19d1205 19982struct arm_option_table
b99bd4ef 19983{
c19d1205
ZW
19984 char *option; /* Option name to match. */
19985 char *help; /* Help information. */
19986 int *var; /* Variable to change. */
19987 int value; /* What to change it to. */
19988 char *deprecated; /* If non-null, print this message. */
19989};
b99bd4ef 19990
c19d1205
ZW
19991struct arm_option_table arm_opts[] =
19992{
19993 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19994 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19995 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19996 &support_interwork, 1, NULL},
19997 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19998 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19999 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
20000 1, NULL},
20001 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
20002 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
20003 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
20004 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
20005 NULL},
b99bd4ef 20006
c19d1205
ZW
20007 /* These are recognized by the assembler, but have no affect on code. */
20008 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
20009 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
20010
20011 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
20012 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
20013 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
20014 {NULL, NULL, NULL, 0, NULL}
20015};
20016
20017struct arm_legacy_option_table
20018{
20019 char *option; /* Option name to match. */
20020 const arm_feature_set **var; /* Variable to change. */
20021 const arm_feature_set value; /* What to change it to. */
20022 char *deprecated; /* If non-null, print this message. */
20023};
b99bd4ef 20024
e74cfd16
PB
20025const struct arm_legacy_option_table arm_legacy_opts[] =
20026{
c19d1205
ZW
20027 /* DON'T add any new processors to this list -- we want the whole list
20028 to go away... Add them to the processors table instead. */
e74cfd16
PB
20029 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20030 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20031 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20032 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20033 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20034 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20035 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20036 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20037 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20038 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20039 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20040 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20041 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20042 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20043 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20044 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20045 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20046 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20047 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20048 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20049 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20050 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20051 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20052 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20053 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20054 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20055 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20056 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20057 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20058 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20059 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20060 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20061 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20062 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20063 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20064 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20065 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20066 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20067 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20068 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20069 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20070 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20071 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20072 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20073 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20074 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20075 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20076 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20077 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20078 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20079 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20080 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20081 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20082 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20083 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20084 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20085 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20086 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20087 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20088 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20089 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20090 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20091 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20092 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20093 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20094 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20095 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20096 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20097 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
20098 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20099 N_("use -mcpu=strongarm110")},
e74cfd16 20100 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20101 N_("use -mcpu=strongarm1100")},
e74cfd16 20102 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 20103 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
20104 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
20105 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
20106 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 20107
c19d1205 20108 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
20109 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20110 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20111 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20112 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20113 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20114 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20115 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20116 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20117 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20118 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20119 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20120 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20121 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20122 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20123 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20124 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20125 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20126 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 20127
c19d1205 20128 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
20129 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
20130 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
20131 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
20132 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 20133 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 20134
e74cfd16 20135 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 20136};
7ed4c4c5 20137
c19d1205 20138struct arm_cpu_option_table
7ed4c4c5 20139{
c19d1205 20140 char *name;
e74cfd16 20141 const arm_feature_set value;
c19d1205
ZW
20142 /* For some CPUs we assume an FPU unless the user explicitly sets
20143 -mfpu=... */
e74cfd16 20144 const arm_feature_set default_fpu;
ee065d83
PB
20145 /* The canonical name of the CPU, or NULL to use NAME converted to upper
20146 case. */
20147 const char *canonical_name;
c19d1205 20148};
7ed4c4c5 20149
c19d1205
ZW
20150/* This list should, at a minimum, contain all the cpu names
20151 recognized by GCC. */
e74cfd16 20152static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 20153{
ee065d83
PB
20154 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
20155 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
20156 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
20157 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20158 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20159 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20160 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20161 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20162 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20163 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20164 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20165 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20166 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20167 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20168 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20169 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20170 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20171 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20172 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20173 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20174 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20175 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20176 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20177 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20178 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20179 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20180 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20181 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20182 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20183 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20184 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20185 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20186 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20187 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20188 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20189 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20190 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20191 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20192 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20193 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20194 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20195 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20196 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20197 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
20198 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20199 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
20200 /* For V5 or later processors we default to using VFP; but the user
20201 should really set the FPU type explicitly. */
ee065d83
PB
20202 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20203 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20204 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20205 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20206 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20207 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20208 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20209 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20210 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20211 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20212 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20213 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20214 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20215 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20216 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20217 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20218 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20219 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20220 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20221 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20222 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
20223 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
20224 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
20225 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20226 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20227 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20228 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20229 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20230 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20231 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20232 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20233 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20234 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
20235 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20236 | FPU_NEON_EXT_V1),
15290f0a
PB
20237 NULL},
20238 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20239 | FPU_NEON_EXT_V1),
5287ad62 20240 NULL},
62b3e311
PB
20241 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20242 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
7e806470 20243 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
c19d1205 20244 /* ??? XSCALE is really an architecture. */
ee065d83 20245 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20246 /* ??? iwmmxt is not a processor. */
ee065d83 20247 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 20248 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 20249 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 20250 /* Maverick */
e74cfd16
PB
20251 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20252 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 20253};
7ed4c4c5 20254
c19d1205 20255struct arm_arch_option_table
7ed4c4c5 20256{
c19d1205 20257 char *name;
e74cfd16
PB
20258 const arm_feature_set value;
20259 const arm_feature_set default_fpu;
c19d1205 20260};
7ed4c4c5 20261
c19d1205
ZW
20262/* This list should, at a minimum, contain all the architecture names
20263 recognized by GCC. */
e74cfd16 20264static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
20265{
20266 {"all", ARM_ANY, FPU_ARCH_FPA},
20267 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20268 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20269 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20270 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20271 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20272 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20273 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20274 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20275 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20276 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20277 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20278 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20279 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20280 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20281 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20282 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20283 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20284 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20285 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20286 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20287 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20288 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20289 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20290 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20291 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 20292 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
62b3e311 20293 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
20294 /* The official spelling of the ARMv7 profile variants is the dashed form.
20295 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
20296 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20297 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20298 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
20299 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20300 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20301 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
20302 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20303 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 20304 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 20305 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 20306};
7ed4c4c5 20307
c19d1205 20308/* ISA extensions in the co-processor space. */
e74cfd16 20309struct arm_option_cpu_value_table
c19d1205
ZW
20310{
20311 char *name;
e74cfd16 20312 const arm_feature_set value;
c19d1205 20313};
7ed4c4c5 20314
e74cfd16 20315static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 20316{
e74cfd16
PB
20317 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20318 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20319 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 20320 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 20321 {NULL, ARM_ARCH_NONE}
c19d1205 20322};
7ed4c4c5 20323
c19d1205
ZW
20324/* This list should, at a minimum, contain all the fpu names
20325 recognized by GCC. */
e74cfd16 20326static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
20327{
20328 {"softfpa", FPU_NONE},
20329 {"fpe", FPU_ARCH_FPE},
20330 {"fpe2", FPU_ARCH_FPE},
20331 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20332 {"fpa", FPU_ARCH_FPA},
20333 {"fpa10", FPU_ARCH_FPA},
20334 {"fpa11", FPU_ARCH_FPA},
20335 {"arm7500fe", FPU_ARCH_FPA},
20336 {"softvfp", FPU_ARCH_VFP},
20337 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20338 {"vfp", FPU_ARCH_VFP_V2},
20339 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 20340 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
20341 {"vfp10", FPU_ARCH_VFP_V2},
20342 {"vfp10-r0", FPU_ARCH_VFP_V1},
20343 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
20344 {"vfpv2", FPU_ARCH_VFP_V2},
20345 {"vfpv3", FPU_ARCH_VFP_V3},
20346 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
c19d1205
ZW
20347 {"arm1020t", FPU_ARCH_VFP_V1},
20348 {"arm1020e", FPU_ARCH_VFP_V2},
20349 {"arm1136jfs", FPU_ARCH_VFP_V2},
20350 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20351 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 20352 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 20353 {"neon-fp16", FPU_ARCH_NEON_FP16},
e74cfd16
PB
20354 {NULL, ARM_ARCH_NONE}
20355};
20356
20357struct arm_option_value_table
20358{
20359 char *name;
20360 long value;
c19d1205 20361};
7ed4c4c5 20362
e74cfd16 20363static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
20364{
20365 {"hard", ARM_FLOAT_ABI_HARD},
20366 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20367 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 20368 {NULL, 0}
c19d1205 20369};
7ed4c4c5 20370
c19d1205 20371#ifdef OBJ_ELF
3a4a14e9 20372/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 20373static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
20374{
20375 {"gnu", EF_ARM_EABI_UNKNOWN},
20376 {"4", EF_ARM_EABI_VER4},
3a4a14e9 20377 {"5", EF_ARM_EABI_VER5},
e74cfd16 20378 {NULL, 0}
c19d1205
ZW
20379};
20380#endif
7ed4c4c5 20381
c19d1205
ZW
20382struct arm_long_option_table
20383{
20384 char * option; /* Substring to match. */
20385 char * help; /* Help information. */
20386 int (* func) (char * subopt); /* Function to decode sub-option. */
20387 char * deprecated; /* If non-null, print this message. */
20388};
7ed4c4c5
NC
20389
20390static int
e74cfd16 20391arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 20392{
e74cfd16
PB
20393 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20394
20395 /* Copy the feature set, so that we can modify it. */
20396 *ext_set = **opt_p;
20397 *opt_p = ext_set;
20398
c19d1205 20399 while (str != NULL && *str != 0)
7ed4c4c5 20400 {
e74cfd16 20401 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
20402 char * ext;
20403 int optlen;
7ed4c4c5 20404
c19d1205
ZW
20405 if (*str != '+')
20406 {
20407 as_bad (_("invalid architectural extension"));
20408 return 0;
20409 }
7ed4c4c5 20410
c19d1205
ZW
20411 str++;
20412 ext = strchr (str, '+');
7ed4c4c5 20413
c19d1205
ZW
20414 if (ext != NULL)
20415 optlen = ext - str;
20416 else
20417 optlen = strlen (str);
7ed4c4c5 20418
c19d1205
ZW
20419 if (optlen == 0)
20420 {
20421 as_bad (_("missing architectural extension"));
20422 return 0;
20423 }
7ed4c4c5 20424
c19d1205
ZW
20425 for (opt = arm_extensions; opt->name != NULL; opt++)
20426 if (strncmp (opt->name, str, optlen) == 0)
20427 {
e74cfd16 20428 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
20429 break;
20430 }
7ed4c4c5 20431
c19d1205
ZW
20432 if (opt->name == NULL)
20433 {
5f4273c7 20434 as_bad (_("unknown architectural extension `%s'"), str);
c19d1205
ZW
20435 return 0;
20436 }
7ed4c4c5 20437
c19d1205
ZW
20438 str = ext;
20439 };
7ed4c4c5 20440
c19d1205
ZW
20441 return 1;
20442}
7ed4c4c5 20443
c19d1205
ZW
20444static int
20445arm_parse_cpu (char * str)
7ed4c4c5 20446{
e74cfd16 20447 const struct arm_cpu_option_table * opt;
c19d1205
ZW
20448 char * ext = strchr (str, '+');
20449 int optlen;
7ed4c4c5 20450
c19d1205
ZW
20451 if (ext != NULL)
20452 optlen = ext - str;
7ed4c4c5 20453 else
c19d1205 20454 optlen = strlen (str);
7ed4c4c5 20455
c19d1205 20456 if (optlen == 0)
7ed4c4c5 20457 {
c19d1205
ZW
20458 as_bad (_("missing cpu name `%s'"), str);
20459 return 0;
7ed4c4c5
NC
20460 }
20461
c19d1205
ZW
20462 for (opt = arm_cpus; opt->name != NULL; opt++)
20463 if (strncmp (opt->name, str, optlen) == 0)
20464 {
e74cfd16
PB
20465 mcpu_cpu_opt = &opt->value;
20466 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 20467 if (opt->canonical_name)
5f4273c7 20468 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
20469 else
20470 {
20471 int i;
20472 for (i = 0; i < optlen; i++)
20473 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20474 selected_cpu_name[i] = 0;
20475 }
7ed4c4c5 20476
c19d1205
ZW
20477 if (ext != NULL)
20478 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 20479
c19d1205
ZW
20480 return 1;
20481 }
7ed4c4c5 20482
c19d1205
ZW
20483 as_bad (_("unknown cpu `%s'"), str);
20484 return 0;
7ed4c4c5
NC
20485}
20486
c19d1205
ZW
20487static int
20488arm_parse_arch (char * str)
7ed4c4c5 20489{
e74cfd16 20490 const struct arm_arch_option_table *opt;
c19d1205
ZW
20491 char *ext = strchr (str, '+');
20492 int optlen;
7ed4c4c5 20493
c19d1205
ZW
20494 if (ext != NULL)
20495 optlen = ext - str;
7ed4c4c5 20496 else
c19d1205 20497 optlen = strlen (str);
7ed4c4c5 20498
c19d1205 20499 if (optlen == 0)
7ed4c4c5 20500 {
c19d1205
ZW
20501 as_bad (_("missing architecture name `%s'"), str);
20502 return 0;
7ed4c4c5
NC
20503 }
20504
c19d1205
ZW
20505 for (opt = arm_archs; opt->name != NULL; opt++)
20506 if (streq (opt->name, str))
20507 {
e74cfd16
PB
20508 march_cpu_opt = &opt->value;
20509 march_fpu_opt = &opt->default_fpu;
5f4273c7 20510 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 20511
c19d1205
ZW
20512 if (ext != NULL)
20513 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 20514
c19d1205
ZW
20515 return 1;
20516 }
20517
20518 as_bad (_("unknown architecture `%s'\n"), str);
20519 return 0;
7ed4c4c5 20520}
eb043451 20521
c19d1205
ZW
20522static int
20523arm_parse_fpu (char * str)
20524{
e74cfd16 20525 const struct arm_option_cpu_value_table * opt;
b99bd4ef 20526
c19d1205
ZW
20527 for (opt = arm_fpus; opt->name != NULL; opt++)
20528 if (streq (opt->name, str))
20529 {
e74cfd16 20530 mfpu_opt = &opt->value;
c19d1205
ZW
20531 return 1;
20532 }
b99bd4ef 20533
c19d1205
ZW
20534 as_bad (_("unknown floating point format `%s'\n"), str);
20535 return 0;
20536}
20537
20538static int
20539arm_parse_float_abi (char * str)
b99bd4ef 20540{
e74cfd16 20541 const struct arm_option_value_table * opt;
b99bd4ef 20542
c19d1205
ZW
20543 for (opt = arm_float_abis; opt->name != NULL; opt++)
20544 if (streq (opt->name, str))
20545 {
20546 mfloat_abi_opt = opt->value;
20547 return 1;
20548 }
cc8a6dd0 20549
c19d1205
ZW
20550 as_bad (_("unknown floating point abi `%s'\n"), str);
20551 return 0;
20552}
b99bd4ef 20553
c19d1205
ZW
20554#ifdef OBJ_ELF
20555static int
20556arm_parse_eabi (char * str)
20557{
e74cfd16 20558 const struct arm_option_value_table *opt;
cc8a6dd0 20559
c19d1205
ZW
20560 for (opt = arm_eabis; opt->name != NULL; opt++)
20561 if (streq (opt->name, str))
20562 {
20563 meabi_flags = opt->value;
20564 return 1;
20565 }
20566 as_bad (_("unknown EABI `%s'\n"), str);
20567 return 0;
20568}
20569#endif
cc8a6dd0 20570
c19d1205
ZW
20571struct arm_long_option_table arm_long_opts[] =
20572{
20573 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20574 arm_parse_cpu, NULL},
20575 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20576 arm_parse_arch, NULL},
20577 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20578 arm_parse_fpu, NULL},
20579 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20580 arm_parse_float_abi, NULL},
20581#ifdef OBJ_ELF
7fac0536 20582 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
20583 arm_parse_eabi, NULL},
20584#endif
20585 {NULL, NULL, 0, NULL}
20586};
cc8a6dd0 20587
c19d1205
ZW
20588int
20589md_parse_option (int c, char * arg)
20590{
20591 struct arm_option_table *opt;
e74cfd16 20592 const struct arm_legacy_option_table *fopt;
c19d1205 20593 struct arm_long_option_table *lopt;
b99bd4ef 20594
c19d1205 20595 switch (c)
b99bd4ef 20596 {
c19d1205
ZW
20597#ifdef OPTION_EB
20598 case OPTION_EB:
20599 target_big_endian = 1;
20600 break;
20601#endif
cc8a6dd0 20602
c19d1205
ZW
20603#ifdef OPTION_EL
20604 case OPTION_EL:
20605 target_big_endian = 0;
20606 break;
20607#endif
b99bd4ef 20608
845b51d6
PB
20609 case OPTION_FIX_V4BX:
20610 fix_v4bx = TRUE;
20611 break;
20612
c19d1205
ZW
20613 case 'a':
20614 /* Listing option. Just ignore these, we don't support additional
20615 ones. */
20616 return 0;
b99bd4ef 20617
c19d1205
ZW
20618 default:
20619 for (opt = arm_opts; opt->option != NULL; opt++)
20620 {
20621 if (c == opt->option[0]
20622 && ((arg == NULL && opt->option[1] == 0)
20623 || streq (arg, opt->option + 1)))
20624 {
c19d1205 20625 /* If the option is deprecated, tell the user. */
278df34e 20626 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
20627 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20628 arg ? arg : "", _(opt->deprecated));
b99bd4ef 20629
c19d1205
ZW
20630 if (opt->var != NULL)
20631 *opt->var = opt->value;
cc8a6dd0 20632
c19d1205
ZW
20633 return 1;
20634 }
20635 }
b99bd4ef 20636
e74cfd16
PB
20637 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20638 {
20639 if (c == fopt->option[0]
20640 && ((arg == NULL && fopt->option[1] == 0)
20641 || streq (arg, fopt->option + 1)))
20642 {
e74cfd16 20643 /* If the option is deprecated, tell the user. */
278df34e 20644 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
20645 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20646 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
20647
20648 if (fopt->var != NULL)
20649 *fopt->var = &fopt->value;
20650
20651 return 1;
20652 }
20653 }
20654
c19d1205
ZW
20655 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20656 {
20657 /* These options are expected to have an argument. */
20658 if (c == lopt->option[0]
20659 && arg != NULL
20660 && strncmp (arg, lopt->option + 1,
20661 strlen (lopt->option + 1)) == 0)
20662 {
c19d1205 20663 /* If the option is deprecated, tell the user. */
278df34e 20664 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
20665 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20666 _(lopt->deprecated));
b99bd4ef 20667
c19d1205
ZW
20668 /* Call the sup-option parser. */
20669 return lopt->func (arg + strlen (lopt->option) - 1);
20670 }
20671 }
a737bd4d 20672
c19d1205
ZW
20673 return 0;
20674 }
a394c00f 20675
c19d1205
ZW
20676 return 1;
20677}
a394c00f 20678
c19d1205
ZW
20679void
20680md_show_usage (FILE * fp)
a394c00f 20681{
c19d1205
ZW
20682 struct arm_option_table *opt;
20683 struct arm_long_option_table *lopt;
a394c00f 20684
c19d1205 20685 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 20686
c19d1205
ZW
20687 for (opt = arm_opts; opt->option != NULL; opt++)
20688 if (opt->help != NULL)
20689 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 20690
c19d1205
ZW
20691 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20692 if (lopt->help != NULL)
20693 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 20694
c19d1205
ZW
20695#ifdef OPTION_EB
20696 fprintf (fp, _("\
20697 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
20698#endif
20699
c19d1205
ZW
20700#ifdef OPTION_EL
20701 fprintf (fp, _("\
20702 -EL assemble code for a little-endian cpu\n"));
a737bd4d 20703#endif
845b51d6
PB
20704
20705 fprintf (fp, _("\
20706 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 20707}
ee065d83
PB
20708
20709
20710#ifdef OBJ_ELF
62b3e311
PB
20711typedef struct
20712{
20713 int val;
20714 arm_feature_set flags;
20715} cpu_arch_ver_table;
20716
20717/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20718 least features first. */
20719static const cpu_arch_ver_table cpu_arch_ver[] =
20720{
20721 {1, ARM_ARCH_V4},
20722 {2, ARM_ARCH_V4T},
20723 {3, ARM_ARCH_V5},
ee3c0378 20724 {3, ARM_ARCH_V5T},
62b3e311
PB
20725 {4, ARM_ARCH_V5TE},
20726 {5, ARM_ARCH_V5TEJ},
20727 {6, ARM_ARCH_V6},
20728 {7, ARM_ARCH_V6Z},
7e806470 20729 {9, ARM_ARCH_V6K},
91e22acd 20730 {11, ARM_ARCH_V6M},
7e806470 20731 {8, ARM_ARCH_V6T2},
62b3e311
PB
20732 {10, ARM_ARCH_V7A},
20733 {10, ARM_ARCH_V7R},
20734 {10, ARM_ARCH_V7M},
20735 {0, ARM_ARCH_NONE}
20736};
20737
ee3c0378
AS
20738/* Set an attribute if it has not already been set by the user. */
20739static void
20740aeabi_set_attribute_int (int tag, int value)
20741{
20742 if (tag < 1
20743 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
20744 || !attributes_set_explicitly[tag])
20745 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
20746}
20747
20748static void
20749aeabi_set_attribute_string (int tag, const char *value)
20750{
20751 if (tag < 1
20752 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
20753 || !attributes_set_explicitly[tag])
20754 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
20755}
20756
ee065d83
PB
20757/* Set the public EABI object attributes. */
20758static void
20759aeabi_set_public_attributes (void)
20760{
20761 int arch;
e74cfd16 20762 arm_feature_set flags;
62b3e311
PB
20763 arm_feature_set tmp;
20764 const cpu_arch_ver_table *p;
ee065d83
PB
20765
20766 /* Choose the architecture based on the capabilities of the requested cpu
20767 (if any) and/or the instructions actually used. */
e74cfd16
PB
20768 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20769 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20770 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
20771 /*Allow the user to override the reported architecture. */
20772 if (object_arch)
20773 {
20774 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20775 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20776 }
20777
62b3e311
PB
20778 tmp = flags;
20779 arch = 0;
20780 for (p = cpu_arch_ver; p->val; p++)
20781 {
20782 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20783 {
20784 arch = p->val;
20785 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20786 }
20787 }
ee065d83
PB
20788
20789 /* Tag_CPU_name. */
20790 if (selected_cpu_name[0])
20791 {
20792 char *p;
20793
20794 p = selected_cpu_name;
5f4273c7 20795 if (strncmp (p, "armv", 4) == 0)
ee065d83
PB
20796 {
20797 int i;
5f4273c7 20798
ee065d83
PB
20799 p += 4;
20800 for (i = 0; p[i]; i++)
20801 p[i] = TOUPPER (p[i]);
20802 }
ee3c0378 20803 aeabi_set_attribute_string (Tag_CPU_name, p);
ee065d83
PB
20804 }
20805 /* Tag_CPU_arch. */
ee3c0378 20806 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62b3e311
PB
20807 /* Tag_CPU_arch_profile. */
20808 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 20809 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 20810 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 20811 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 20812 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 20813 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
ee065d83 20814 /* Tag_ARM_ISA_use. */
ee3c0378
AS
20815 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
20816 || arch == 0)
20817 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
ee065d83 20818 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
20819 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
20820 || arch == 0)
20821 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
20822 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
ee065d83 20823 /* Tag_VFP_arch. */
ee3c0378
AS
20824 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
20825 aeabi_set_attribute_int (Tag_VFP_arch, 3);
20826 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
20827 aeabi_set_attribute_int (Tag_VFP_arch, 4);
20828 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
20829 aeabi_set_attribute_int (Tag_VFP_arch, 2);
20830 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
20831 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
20832 aeabi_set_attribute_int (Tag_VFP_arch, 1);
ee065d83 20833 /* Tag_WMMX_arch. */
ee3c0378
AS
20834 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
20835 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
20836 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
20837 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
20838 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 20839 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
ee3c0378
AS
20840 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
20841 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
8e79c3df 20842 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_fp16))
ee3c0378 20843 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
ee065d83
PB
20844}
20845
104d59d1 20846/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
20847void
20848arm_md_end (void)
20849{
ee065d83
PB
20850 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20851 return;
20852
20853 aeabi_set_public_attributes ();
ee065d83 20854}
8463be01 20855#endif /* OBJ_ELF */
ee065d83
PB
20856
20857
20858/* Parse a .cpu directive. */
20859
20860static void
20861s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20862{
e74cfd16 20863 const struct arm_cpu_option_table *opt;
ee065d83
PB
20864 char *name;
20865 char saved_char;
20866
20867 name = input_line_pointer;
5f4273c7 20868 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
20869 input_line_pointer++;
20870 saved_char = *input_line_pointer;
20871 *input_line_pointer = 0;
20872
20873 /* Skip the first "all" entry. */
20874 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20875 if (streq (opt->name, name))
20876 {
e74cfd16
PB
20877 mcpu_cpu_opt = &opt->value;
20878 selected_cpu = opt->value;
ee065d83 20879 if (opt->canonical_name)
5f4273c7 20880 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
20881 else
20882 {
20883 int i;
20884 for (i = 0; opt->name[i]; i++)
20885 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20886 selected_cpu_name[i] = 0;
20887 }
e74cfd16 20888 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20889 *input_line_pointer = saved_char;
20890 demand_empty_rest_of_line ();
20891 return;
20892 }
20893 as_bad (_("unknown cpu `%s'"), name);
20894 *input_line_pointer = saved_char;
20895 ignore_rest_of_line ();
20896}
20897
20898
20899/* Parse a .arch directive. */
20900
20901static void
20902s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20903{
e74cfd16 20904 const struct arm_arch_option_table *opt;
ee065d83
PB
20905 char saved_char;
20906 char *name;
20907
20908 name = input_line_pointer;
5f4273c7 20909 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
20910 input_line_pointer++;
20911 saved_char = *input_line_pointer;
20912 *input_line_pointer = 0;
20913
20914 /* Skip the first "all" entry. */
20915 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20916 if (streq (opt->name, name))
20917 {
e74cfd16
PB
20918 mcpu_cpu_opt = &opt->value;
20919 selected_cpu = opt->value;
5f4273c7 20920 strcpy (selected_cpu_name, opt->name);
e74cfd16 20921 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20922 *input_line_pointer = saved_char;
20923 demand_empty_rest_of_line ();
20924 return;
20925 }
20926
20927 as_bad (_("unknown architecture `%s'\n"), name);
20928 *input_line_pointer = saved_char;
20929 ignore_rest_of_line ();
20930}
20931
20932
7a1d4c38
PB
20933/* Parse a .object_arch directive. */
20934
20935static void
20936s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20937{
20938 const struct arm_arch_option_table *opt;
20939 char saved_char;
20940 char *name;
20941
20942 name = input_line_pointer;
5f4273c7 20943 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
20944 input_line_pointer++;
20945 saved_char = *input_line_pointer;
20946 *input_line_pointer = 0;
20947
20948 /* Skip the first "all" entry. */
20949 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20950 if (streq (opt->name, name))
20951 {
20952 object_arch = &opt->value;
20953 *input_line_pointer = saved_char;
20954 demand_empty_rest_of_line ();
20955 return;
20956 }
20957
20958 as_bad (_("unknown architecture `%s'\n"), name);
20959 *input_line_pointer = saved_char;
20960 ignore_rest_of_line ();
20961}
20962
ee065d83
PB
20963/* Parse a .fpu directive. */
20964
20965static void
20966s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20967{
e74cfd16 20968 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
20969 char saved_char;
20970 char *name;
20971
20972 name = input_line_pointer;
5f4273c7 20973 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
20974 input_line_pointer++;
20975 saved_char = *input_line_pointer;
20976 *input_line_pointer = 0;
5f4273c7 20977
ee065d83
PB
20978 for (opt = arm_fpus; opt->name != NULL; opt++)
20979 if (streq (opt->name, name))
20980 {
e74cfd16
PB
20981 mfpu_opt = &opt->value;
20982 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20983 *input_line_pointer = saved_char;
20984 demand_empty_rest_of_line ();
20985 return;
20986 }
20987
20988 as_bad (_("unknown floating point format `%s'\n"), name);
20989 *input_line_pointer = saved_char;
20990 ignore_rest_of_line ();
20991}
ee065d83 20992
794ba86a 20993/* Copy symbol information. */
f31fef98 20994
794ba86a
DJ
20995void
20996arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20997{
20998 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20999}
e04befd0 21000
f31fef98 21001#ifdef OBJ_ELF
e04befd0
AS
21002/* Given a symbolic attribute NAME, return the proper integer value.
21003 Returns -1 if the attribute is not known. */
f31fef98 21004
e04befd0
AS
21005int
21006arm_convert_symbolic_attribute (const char *name)
21007{
f31fef98
NC
21008 static const struct
21009 {
21010 const char * name;
21011 const int tag;
21012 }
21013 attribute_table[] =
21014 {
21015 /* When you modify this table you should
21016 also modify the list in doc/c-arm.texi. */
e04befd0 21017#define T(tag) {#tag, tag}
f31fef98
NC
21018 T (Tag_CPU_raw_name),
21019 T (Tag_CPU_name),
21020 T (Tag_CPU_arch),
21021 T (Tag_CPU_arch_profile),
21022 T (Tag_ARM_ISA_use),
21023 T (Tag_THUMB_ISA_use),
21024 T (Tag_VFP_arch),
21025 T (Tag_WMMX_arch),
21026 T (Tag_Advanced_SIMD_arch),
21027 T (Tag_PCS_config),
21028 T (Tag_ABI_PCS_R9_use),
21029 T (Tag_ABI_PCS_RW_data),
21030 T (Tag_ABI_PCS_RO_data),
21031 T (Tag_ABI_PCS_GOT_use),
21032 T (Tag_ABI_PCS_wchar_t),
21033 T (Tag_ABI_FP_rounding),
21034 T (Tag_ABI_FP_denormal),
21035 T (Tag_ABI_FP_exceptions),
21036 T (Tag_ABI_FP_user_exceptions),
21037 T (Tag_ABI_FP_number_model),
21038 T (Tag_ABI_align8_needed),
21039 T (Tag_ABI_align8_preserved),
21040 T (Tag_ABI_enum_size),
21041 T (Tag_ABI_HardFP_use),
21042 T (Tag_ABI_VFP_args),
21043 T (Tag_ABI_WMMX_args),
21044 T (Tag_ABI_optimization_goals),
21045 T (Tag_ABI_FP_optimization_goals),
21046 T (Tag_compatibility),
21047 T (Tag_CPU_unaligned_access),
21048 T (Tag_VFP_HP_extension),
21049 T (Tag_ABI_FP_16bit_format),
21050 T (Tag_nodefaults),
21051 T (Tag_also_compatible_with),
21052 T (Tag_conformance),
21053 T (Tag_T2EE_use),
21054 T (Tag_Virtualization_use),
21055 T (Tag_MPextension_use)
e04befd0 21056#undef T
f31fef98 21057 };
e04befd0
AS
21058 unsigned int i;
21059
21060 if (name == NULL)
21061 return -1;
21062
f31fef98 21063 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
e04befd0
AS
21064 if (strcmp (name, attribute_table[i].name) == 0)
21065 return attribute_table[i].tag;
21066
21067 return -1;
21068}
f31fef98 21069#endif /* OBJ_ELF */
This page took 1.863201 seconds and 4 git commands to generate.