* config/tc-hppa.c (hppa_elf_mark_end_of_function): New function.
[deliverable/binutils-gdb.git] / gas / config / tc-hppa.c
CommitLineData
025b0302
ME
1/* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
8f78d0e9 4 This file is part of GAS, the GNU Assembler.
025b0302 5
8f78d0e9
KR
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
025b0302 10
8f78d0e9
KR
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
025b0302 15
8f78d0e9
KR
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
025b0302
ME
19
20
8f78d0e9
KR
21/* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
025b0302
ME
23
24#include <stdio.h>
25#include <ctype.h>
26
27#include "as.h"
28#include "subsegs.h"
29
5cf4cd1b 30#include "../bfd/libhppa.h"
8f78d0e9 31#include "../bfd/libbfd.h"
5cf4cd1b 32
8f78d0e9
KR
33/* Be careful, this file includes data *declarations*. */
34#include "opcode/hppa.h"
35
36/* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
5cf4cd1b 38#ifdef OBJ_ELF
8f78d0e9
KR
39/* Names of various debugging spaces/subspaces. */
40#define GDB_DEBUG_SPACE_NAME ".stab"
41#define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42#define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43#define UNWIND_SECTION_NAME ".hppa_unwind"
44/* Nonzero if CODE is a fixup code needing further processing. */
45
8f78d0e9
KR
46/* Object file formats specify relocation types. */
47typedef elf32_hppa_reloc_type reloc_type;
48
49/* Object file formats specify BFD symbol types. */
50typedef elf_symbol_type obj_symbol_type;
51
aa8b30ed
JL
52/* How to generate a relocation. */
53#define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
8f78d0e9
KR
55/* Who knows. */
56#define obj_version obj_elf_version
57
3b9a72c5
JL
58/* Use space aliases. */
59#define USE_ALIASES 1
60
8f78d0e9
KR
61/* Some local functions only used by ELF. */
62static void pa_build_symextn_section PARAMS ((void));
63static void hppa_tc_make_symextn_section PARAMS ((void));
64#endif
65
66#ifdef OBJ_SOM
67/* Names of various debugging spaces/subspaces. */
68#define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
69#define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
70#define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
71#define UNWIND_SECTION_NAME "$UNWIND$"
72
73/* Object file formats specify relocation types. */
74typedef int reloc_type;
75
76/* Who knows. */
77#define obj_version obj_som_version
78
3b9a72c5
JL
79/* Do not use space aliases. */
80#define USE_ALIASES 0
81
aa8b30ed
JL
82/* How to generate a relocation. */
83#define hppa_gen_reloc_type hppa_som_gen_reloc_type
8f78d0e9
KR
84
85/* Object file formats specify BFD symbol types. */
86typedef som_symbol_type obj_symbol_type;
5cf4cd1b
KR
87#endif
88
8f78d0e9
KR
89/* Various structures and types used internally in tc-hppa.c. */
90
91/* Unwind table and descriptor. FIXME: Sync this with GDB version. */
025b0302
ME
92
93struct unwind_desc
94 {
95 unsigned int cannot_unwind:1;
96 unsigned int millicode:1;
97 unsigned int millicode_save_rest:1;
98 unsigned int region_desc:2;
99 unsigned int save_sr:2;
8f78d0e9
KR
100 unsigned int entry_fr:4;
101 unsigned int entry_gr:5;
025b0302
ME
102 unsigned int args_stored:1;
103 unsigned int call_fr:5;
104 unsigned int call_gr:5;
105 unsigned int save_sp:1;
106 unsigned int save_rp:1;
107 unsigned int save_rp_in_frame:1;
108 unsigned int extn_ptr_defined:1;
109 unsigned int cleanup_defined:1;
110
111 unsigned int hpe_interrupt_marker:1;
112 unsigned int hpux_interrupt_marker:1;
113 unsigned int reserved:3;
114 unsigned int frame_size:27;
115 };
116
025b0302
ME
117struct unwind_table
118 {
8f78d0e9
KR
119 /* Starting and ending offsets of the region described by
120 descriptor. */
121 unsigned int start_offset;
122 unsigned int end_offset;
123 struct unwind_desc descriptor;
025b0302
ME
124 };
125
8f78d0e9
KR
126/* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
127 control the entry and exit code they generate. It is also used in
128 creation of the correct stack unwind descriptors.
025b0302 129
8f78d0e9
KR
130 NOTE: GAS does not support .enter and .leave for the generation of
131 prologues and epilogues. FIXME.
132
133 The fields in structure roughly correspond to the arguments available on the
134 .callinfo pseudo-op. */
025b0302
ME
135
136struct call_info
137 {
8f78d0e9 138 /* Should sr3 be saved in the prologue? */
025b0302 139 int entry_sr;
8f78d0e9
KR
140
141 /* Does this function make calls? */
025b0302 142 int makes_calls;
025b0302 143
8f78d0e9
KR
144 /* The unwind descriptor being built. */
145 struct unwind_table ci_unwind;
146
147 /* Name of this function. */
148 symbolS *start_symbol;
149
150 /* (temporary) symbol used to mark the end of this function. */
151 symbolS *end_symbol;
152
153 /* frags associated with start and end of this function. */
154 fragS *start_frag;
155 fragS *end_frag;
156
157 /* frags for starting/ending offset of this descriptor. */
158 fragS *start_offset_frag;
159 fragS *end_offset_frag;
025b0302 160
8f78d0e9
KR
161 /* The location within {start,end}_offset_frag to find the
162 {start,end}_offset. */
163 int start_frag_where;
164 int end_frag_where;
025b0302 165
8f78d0e9
KR
166 /* Fixups (relocations) for start_offset and end_offset. */
167 fixS *start_fix;
168 fixS *end_fix;
025b0302 169
8f78d0e9
KR
170 /* Next entry in the chain. */
171 struct call_info *ci_next;
172 };
173
174/* Operand formats for FP instructions. Note not all FP instructions
175 allow all four formats to be used (for example fmpysub only allows
176 SGL and DBL). */
177typedef enum
178 {
179 SGL, DBL, ILLEGAL_FMT, QUAD
180 }
181fp_operand_format;
182
e75acd68
JL
183/* This fully describes the symbol types which may be attached to
184 an EXPORT or IMPORT directive. Only SOM uses this formation
185 (ELF has no need for it). */
186typedef enum
c5e9ccd0
JL
187 {
188 SYMBOL_TYPE_UNKNOWN,
189 SYMBOL_TYPE_ABSOLUTE,
190 SYMBOL_TYPE_CODE,
191 SYMBOL_TYPE_DATA,
192 SYMBOL_TYPE_ENTRY,
193 SYMBOL_TYPE_MILLICODE,
194 SYMBOL_TYPE_PLABEL,
195 SYMBOL_TYPE_PRI_PROG,
196 SYMBOL_TYPE_SEC_PROG,
197 }
198pa_symbol_type;
e75acd68 199
8f78d0e9
KR
200/* This structure contains information needed to assemble
201 individual instructions. */
025b0302
ME
202struct pa_it
203 {
8f78d0e9 204 /* Holds the opcode after parsing by pa_ip. */
025b0302 205 unsigned long opcode;
8f78d0e9
KR
206
207 /* Holds an expression associated with the current instruction. */
025b0302 208 expressionS exp;
8f78d0e9
KR
209
210 /* Does this instruction use PC-relative addressing. */
025b0302 211 int pcrel;
8f78d0e9
KR
212
213 /* Floating point formats for operand1 and operand2. */
214 fp_operand_format fpof1;
215 fp_operand_format fpof2;
216
217 /* Holds the field selector for this instruction
218 (for example L%, LR%, etc). */
025b0302 219 long field_selector;
8f78d0e9
KR
220
221 /* Holds any argument relocation bits associated with this
222 instruction. (instruction should be some sort of call). */
025b0302 223 long arg_reloc;
8f78d0e9
KR
224
225 /* The format specification for this instruction. */
025b0302 226 int format;
8f78d0e9
KR
227
228 /* The relocation (if any) associated with this instruction. */
229 reloc_type reloc;
025b0302
ME
230 };
231
8f78d0e9 232/* PA-89 floating point registers are arranged like this:
025b0302 233
025b0302 234
8f78d0e9
KR
235 +--------------+--------------+
236 | 0 or 16L | 16 or 16R |
237 +--------------+--------------+
238 | 1 or 17L | 17 or 17R |
239 +--------------+--------------+
240 | | |
241
242 . . .
243 . . .
244 . . .
245
246 | | |
247 +--------------+--------------+
248 | 14 or 30L | 30 or 30R |
249 +--------------+--------------+
250 | 15 or 31L | 31 or 31R |
251 +--------------+--------------+
252
253
254 The following is a version of pa_parse_number that
255 handles the L/R notation and returns the correct
256 value to put into the instruction register field.
257 The correct value to put into the instruction is
258 encoded in the structure 'pa_89_fp_reg_struct'. */
259
260struct pa_89_fp_reg_struct
261 {
262 /* The register number. */
263 char number_part;
264
265 /* L/R selector. */
266 char l_r_select;
267 };
268
269/* Additional information needed to build argument relocation stubs. */
270struct call_desc
271 {
272 /* The argument relocation specification. */
273 unsigned int arg_reloc;
274
275 /* Number of arguments. */
276 unsigned int arg_count;
277 };
278
279/* This structure defines an entry in the subspace dictionary
280 chain. */
281
282struct subspace_dictionary_chain
283 {
284 /* Index of containing space. */
285 unsigned long ssd_space_index;
286
47f45d66
JL
287 /* Nonzero if this space has been defined by the user code. */
288 unsigned int ssd_defined;
289
8f78d0e9
KR
290 /* Which quadrant within the space this subspace should be loaded into. */
291 unsigned char ssd_quadrant;
292
293 /* Alignment (in bytes) for this subspace. */
294 unsigned long ssd_alignment;
295
296 /* Access control bits to determine read/write/execute permissions
297 as well as gateway privilege promotions. */
298 unsigned char ssd_access_control_bits;
299
300 /* A sorting key so that it is possible to specify ordering of
301 subspaces within a space. */
302 unsigned char ssd_sort_key;
303
304 /* Nonzero of this space should be zero filled. */
305 unsigned long ssd_zero;
306
307 /* Nonzero if this is a common subspace. */
308 unsigned char ssd_common;
309
310 /* Nonzero if this is a common subspace which allows symbols to be
311 multiply defined. */
312 unsigned char ssd_dup_common;
313
314 /* Nonzero if this subspace is loadable. Note loadable subspaces
315 must be contained within loadable spaces; unloadable subspaces
316 must be contained in unloadable spaces. */
317 unsigned char ssd_loadable;
318
c5e9ccd0 319 /* Nonzero if this subspace contains only code. */
8f78d0e9
KR
320 unsigned char ssd_code_only;
321
322 /* Starting offset of this subspace. */
323 unsigned long ssd_subspace_start;
324
325 /* Length of this subspace. */
326 unsigned long ssd_subspace_length;
327
328 /* Name of this subspace. */
329 char *ssd_name;
330
331 /* GAS segment and subsegment associated with this subspace. */
332 asection *ssd_seg;
333 int ssd_subseg;
334
335 /* Index of this subspace within the subspace dictionary of the object
336 file. Not used until object file is written. */
337 int object_file_index;
338
339 /* The size of the last alignment request for this subspace. */
340 int ssd_last_align;
341
8f78d0e9
KR
342 /* Next space in the subspace dictionary chain. */
343 struct subspace_dictionary_chain *ssd_next;
344 };
345
346typedef struct subspace_dictionary_chain ssd_chain_struct;
347
348/* This structure defines an entry in the subspace dictionary
349 chain. */
350
351struct space_dictionary_chain
352 {
353
354 /* Holds the index into the string table of the name of this
355 space. */
356 unsigned int sd_name_index;
357
358 /* Nonzero if the space is loadable. */
359 unsigned int sd_loadable;
360
361 /* Nonzero if this space has been defined by the user code or
362 as a default space. */
363 unsigned int sd_defined;
364
365 /* Nonzero if this spaces has been defined by the user code. */
366 unsigned int sd_user_defined;
367
368 /* Nonzero if this space is not sharable. */
369 unsigned int sd_private;
370
371 /* The space number (or index). */
372 unsigned int sd_spnum;
373
374 /* The sort key for this space. May be used to determine how to lay
375 out the spaces within the object file. */
376 unsigned char sd_sort_key;
377
378 /* The name of this subspace. */
379 char *sd_name;
380
381 /* GAS segment to which this subspace corresponds. */
382 asection *sd_seg;
383
384 /* Current subsegment number being used. */
385 int sd_last_subseg;
386
387 /* The chain of subspaces contained within this space. */
388 ssd_chain_struct *sd_subspaces;
389
390 /* The next entry in the space dictionary chain. */
391 struct space_dictionary_chain *sd_next;
392 };
393
394typedef struct space_dictionary_chain sd_chain_struct;
395
396/* Structure for previous label tracking. Needed so that alignments,
397 callinfo declarations, etc can be easily attached to a particular
398 label. */
399typedef struct label_symbol_struct
400 {
401 struct symbol *lss_label;
402 sd_chain_struct *lss_space;
403 struct label_symbol_struct *lss_next;
404 }
405label_symbol_struct;
406
407/* This structure defines attributes of the default subspace
408 dictionary entries. */
409
410struct default_subspace_dict
411 {
c5e9ccd0 412 /* Name of the subspace. */
8f78d0e9
KR
413 char *name;
414
415 /* FIXME. Is this still needed? */
416 char defined;
417
418 /* Nonzero if this subspace is loadable. */
419 char loadable;
420
421 /* Nonzero if this subspace contains only code. */
422 char code_only;
423
424 /* Nonzero if this is a common subspace. */
425 char common;
426
427 /* Nonzero if this is a common subspace which allows symbols
428 to be multiply defined. */
429 char dup_common;
430
431 /* Nonzero if this subspace should be zero filled. */
432 char zero;
433
434 /* Sort key for this subspace. */
435 unsigned char sort;
436
437 /* Access control bits for this subspace. Can represent RWX access
438 as well as privilege level changes for gateways. */
439 int access;
440
441 /* Index of containing space. */
442 int space_index;
443
444 /* Alignment (in bytes) of this subspace. */
445 int alignment;
446
447 /* Quadrant within space where this subspace should be loaded. */
448 int quadrant;
449
450 /* An index into the default spaces array. */
451 int def_space_index;
452
453 /* An alias for this section (or NULL if no alias exists). */
454 char *alias;
455
456 /* Subsegment associated with this subspace. */
457 subsegT subsegment;
458 };
459
460/* This structure defines attributes of the default space
461 dictionary entries. */
462
463struct default_space_dict
464 {
465 /* Name of the space. */
466 char *name;
467
468 /* Space number. It is possible to identify spaces within
469 assembly code numerically! */
470 int spnum;
471
472 /* Nonzero if this space is loadable. */
473 char loadable;
474
475 /* Nonzero if this space is "defined". FIXME is still needed */
476 char defined;
477
478 /* Nonzero if this space can not be shared. */
479 char private;
480
481 /* Sort key for this space. */
482 unsigned char sort;
483
484 /* Segment associated with this space. */
485 asection *segment;
486
487 /* An alias for this section (or NULL if no alias exists). */
488 char *alias;
489 };
490
491/* Extra information needed to perform fixups (relocations) on the PA. */
492struct hppa_fix_struct
c5e9ccd0 493 {
8f78d0e9 494 /* The field selector. */
f2eed884 495 enum hppa_reloc_field_selector_type fx_r_field;
8f78d0e9
KR
496
497 /* Type of fixup. */
498 int fx_r_type;
499
500 /* Format of fixup. */
501 int fx_r_format;
502
503 /* Argument relocation bits. */
504 long fx_arg_reloc;
505
506 /* The unwind descriptor associated with this fixup. */
507 char fx_unwind[8];
c5e9ccd0 508 };
8f78d0e9
KR
509
510/* Structure to hold information about predefined registers. */
511
512struct pd_reg
c5e9ccd0
JL
513 {
514 char *name;
515 int value;
516 };
8f78d0e9
KR
517
518/* This structure defines the mapping from a FP condition string
519 to a condition number which can be recorded in an instruction. */
520struct fp_cond_map
c5e9ccd0
JL
521 {
522 char *string;
523 int cond;
524 };
8f78d0e9
KR
525
526/* This structure defines a mapping from a field selector
527 string to a field selector type. */
528struct selector_entry
c5e9ccd0
JL
529 {
530 char *prefix;
531 int field_selector;
532 };
025b0302 533
8f78d0e9
KR
534/* Prototypes for functions local to tc-hppa.c. */
535
536static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
8f78d0e9
KR
537static void pa_cons PARAMS ((int));
538static void pa_data PARAMS ((int));
539static void pa_desc PARAMS ((int));
540static void pa_float_cons PARAMS ((int));
541static void pa_fill PARAMS ((int));
542static void pa_lcomm PARAMS ((int));
543static void pa_lsym PARAMS ((int));
544static void pa_stringer PARAMS ((int));
545static void pa_text PARAMS ((int));
546static void pa_version PARAMS ((int));
547static int pa_parse_fp_cmp_cond PARAMS ((char **));
548static int get_expression PARAMS ((char *));
48153d49
JL
549static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
550static int evaluate_absolute PARAMS ((struct pa_it *));
8f78d0e9
KR
551static unsigned int pa_build_arg_reloc PARAMS ((char *));
552static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
553static int pa_parse_nullif PARAMS ((char **));
554static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
555static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
556static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
557static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
558static void pa_block PARAMS ((int));
559static void pa_call PARAMS ((int));
560static void pa_call_args PARAMS ((struct call_desc *));
561static void pa_callinfo PARAMS ((int));
562static void pa_code PARAMS ((int));
563static void pa_comm PARAMS ((int));
564static void pa_copyright PARAMS ((int));
565static void pa_end PARAMS ((int));
566static void pa_enter PARAMS ((int));
567static void pa_entry PARAMS ((int));
568static void pa_equ PARAMS ((int));
569static void pa_exit PARAMS ((int));
570static void pa_export PARAMS ((int));
48153d49 571static void pa_type_args PARAMS ((symbolS *, int));
8f78d0e9
KR
572static void pa_import PARAMS ((int));
573static void pa_label PARAMS ((int));
574static void pa_leave PARAMS ((int));
575static void pa_origin PARAMS ((int));
576static void pa_proc PARAMS ((int));
577static void pa_procend PARAMS ((int));
578static void pa_space PARAMS ((int));
579static void pa_spnum PARAMS ((int));
580static void pa_subspace PARAMS ((int));
581static void pa_param PARAMS ((int));
582static void pa_undefine_label PARAMS ((void));
c5e9ccd0 583static int need_89_opcode PARAMS ((struct pa_it *,
8f78d0e9
KR
584 struct pa_89_fp_reg_struct *));
585static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
586static label_symbol_struct *pa_get_label PARAMS ((void));
587static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
588 char, char, char,
589 asection *, int));
c5e9ccd0
JL
590static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
591 char *, char, char,
592 char, char, char,
593 char, int, int, int,
594 int, asection *));
3b9a72c5
JL
595static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
596 char *, char, char, char,
8f78d0e9 597 char, char, char, int,
18c4f112
JL
598 int, int, int,
599 asection *));
8f78d0e9 600static sd_chain_struct *is_defined_space PARAMS ((char *));
47f45d66 601static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
8f78d0e9 602static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
c5e9ccd0
JL
603static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
604 subsegT));
8f78d0e9
KR
605static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
606static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
8f78d0e9
KR
607static void pa_ip PARAMS ((char *));
608static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
609 long, expressionS *, int,
f2eed884
JL
610 bfd_reloc_code_real_type,
611 enum hppa_reloc_field_selector_type,
8f78d0e9 612 int, long, char *));
8f78d0e9
KR
613static void md_apply_fix_1 PARAMS ((fixS *, long));
614static int is_end_of_statement PARAMS ((void));
615static int reg_name_search PARAMS ((char *));
616static int pa_chk_field_selector PARAMS ((char **));
617static int is_same_frag PARAMS ((fragS *, fragS *));
618static void pa_build_unwind_subspace PARAMS ((struct call_info *));
619static void process_exit PARAMS ((void));
620static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
aa8b30ed 621static int log2 PARAMS ((int));
8f78d0e9
KR
622static int pa_next_subseg PARAMS ((sd_chain_struct *));
623static unsigned int pa_stringer_aux PARAMS ((char *));
624static void pa_spaces_begin PARAMS ((void));
44c0de53 625static void hppa_elf_mark_end_of_function PARAMS ((void));
8f78d0e9
KR
626
627/* File and gloally scoped variable declarations. */
628
629/* Root and final entry in the space chain. */
630static sd_chain_struct *space_dict_root;
631static sd_chain_struct *space_dict_last;
632
633/* The current space and subspace. */
634static sd_chain_struct *current_space;
635static ssd_chain_struct *current_subspace;
636
637/* Root of the call_info chain. */
638static struct call_info *call_info_root;
639
640/* The last call_info (for functions) structure
641 seen so it can be associated with fixups and
642 function labels. */
643static struct call_info *last_call_info;
644
c5e9ccd0 645/* The last call description (for actual calls). */
8f78d0e9
KR
646static struct call_desc last_call_desc;
647
648/* Relaxation isn't supported for the PA yet. */
c5e9ccd0
JL
649const relax_typeS md_relax_table[] =
650{0};
025b0302 651
c5e9ccd0 652/* Jumps are always the same size -- one instruction. */
025b0302
ME
653int md_short_jump_size = 4;
654int md_long_jump_size = 4;
655
8f78d0e9
KR
656/* handle of the OPCODE hash table */
657static struct hash_control *op_hash = NULL;
025b0302 658
8f78d0e9
KR
659/* This array holds the chars that always start a comment. If the
660 pre-processor is disabled, these aren't very useful. */
661const char comment_chars[] = ";";
662
663/* Table of pseudo ops for the PA. FIXME -- how many of these
664 are now redundant with the overall GAS and the object file
665 dependent tables? */
666const pseudo_typeS md_pseudo_table[] =
667{
668 /* align pseudo-ops on the PA specify the actual alignment requested,
669 not the log2 of the requested alignment. */
d33ace2e
JL
670 {"align", s_align_bytes, 8},
671 {"ALIGN", s_align_bytes, 8},
025b0302
ME
672 {"block", pa_block, 1},
673 {"BLOCK", pa_block, 1},
674 {"blockz", pa_block, 0},
675 {"BLOCKZ", pa_block, 0},
676 {"byte", pa_cons, 1},
677 {"BYTE", pa_cons, 1},
678 {"call", pa_call, 0},
679 {"CALL", pa_call, 0},
680 {"callinfo", pa_callinfo, 0},
681 {"CALLINFO", pa_callinfo, 0},
682 {"code", pa_code, 0},
683 {"CODE", pa_code, 0},
684 {"comm", pa_comm, 0},
685 {"COMM", pa_comm, 0},
686 {"copyright", pa_copyright, 0},
687 {"COPYRIGHT", pa_copyright, 0},
688 {"data", pa_data, 0},
689 {"DATA", pa_data, 0},
690 {"desc", pa_desc, 0},
691 {"DESC", pa_desc, 0},
692 {"double", pa_float_cons, 'd'},
693 {"DOUBLE", pa_float_cons, 'd'},
694 {"end", pa_end, 0},
695 {"END", pa_end, 0},
696 {"enter", pa_enter, 0},
697 {"ENTER", pa_enter, 0},
698 {"entry", pa_entry, 0},
699 {"ENTRY", pa_entry, 0},
700 {"equ", pa_equ, 0},
701 {"EQU", pa_equ, 0},
702 {"exit", pa_exit, 0},
703 {"EXIT", pa_exit, 0},
704 {"export", pa_export, 0},
705 {"EXPORT", pa_export, 0},
706 {"fill", pa_fill, 0},
707 {"FILL", pa_fill, 0},
708 {"float", pa_float_cons, 'f'},
709 {"FLOAT", pa_float_cons, 'f'},
710 {"half", pa_cons, 2},
711 {"HALF", pa_cons, 2},
712 {"import", pa_import, 0},
713 {"IMPORT", pa_import, 0},
714 {"int", pa_cons, 4},
715 {"INT", pa_cons, 4},
716 {"label", pa_label, 0},
717 {"LABEL", pa_label, 0},
718 {"lcomm", pa_lcomm, 0},
719 {"LCOMM", pa_lcomm, 0},
720 {"leave", pa_leave, 0},
721 {"LEAVE", pa_leave, 0},
722 {"long", pa_cons, 4},
723 {"LONG", pa_cons, 4},
724 {"lsym", pa_lsym, 0},
725 {"LSYM", pa_lsym, 0},
aa8b30ed
JL
726 {"octa", pa_cons, 16},
727 {"OCTA", pa_cons, 16},
025b0302
ME
728 {"org", pa_origin, 0},
729 {"ORG", pa_origin, 0},
730 {"origin", pa_origin, 0},
731 {"ORIGIN", pa_origin, 0},
5cf4cd1b
KR
732 {"param", pa_param, 0},
733 {"PARAM", pa_param, 0},
025b0302
ME
734 {"proc", pa_proc, 0},
735 {"PROC", pa_proc, 0},
736 {"procend", pa_procend, 0},
737 {"PROCEND", pa_procend, 0},
aa8b30ed
JL
738 {"quad", pa_cons, 8},
739 {"QUAD", pa_cons, 8},
8f78d0e9
KR
740 {"reg", pa_equ, 1},
741 {"REG", pa_equ, 1},
025b0302
ME
742 {"short", pa_cons, 2},
743 {"SHORT", pa_cons, 2},
744 {"single", pa_float_cons, 'f'},
745 {"SINGLE", pa_float_cons, 'f'},
746 {"space", pa_space, 0},
747 {"SPACE", pa_space, 0},
748 {"spnum", pa_spnum, 0},
749 {"SPNUM", pa_spnum, 0},
750 {"string", pa_stringer, 0},
751 {"STRING", pa_stringer, 0},
752 {"stringz", pa_stringer, 1},
753 {"STRINGZ", pa_stringer, 1},
754 {"subspa", pa_subspace, 0},
755 {"SUBSPA", pa_subspace, 0},
756 {"text", pa_text, 0},
757 {"TEXT", pa_text, 0},
758 {"version", pa_version, 0},
759 {"VERSION", pa_version, 0},
760 {"word", pa_cons, 4},
761 {"WORD", pa_cons, 4},
762 {NULL, 0, 0}
763};
764
765/* This array holds the chars that only start a comment at the beginning of
766 a line. If the line seems to have the form '# 123 filename'
8f78d0e9
KR
767 .line and .file directives will appear in the pre-processed output.
768
769 Note that input_file.c hand checks for '#' at the beginning of the
025b0302 770 first line of the input file. This is because the compiler outputs
8f78d0e9
KR
771 #NO_APP at the beginning of its output.
772
773 Also note that '/*' will always start a comment. */
025b0302
ME
774const char line_comment_chars[] = "#";
775
8f78d0e9 776/* This array holds the characters which act as line separators. */
025b0302
ME
777const char line_separator_chars[] = "!";
778
8f78d0e9 779/* Chars that can be used to separate mant from exp in floating point nums. */
025b0302
ME
780const char EXP_CHARS[] = "eE";
781
8f78d0e9
KR
782/* Chars that mean this number is a floating point constant.
783 As in 0f12.456 or 0d1.2345e12.
025b0302 784
8f78d0e9
KR
785 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
786 changed in read.c. Ideally it shouldn't hae to know abou it at
787 all, but nothing is ideal around here. */
788const char FLT_CHARS[] = "rRsSfFdDxXpP";
025b0302 789
8f78d0e9 790static struct pa_it the_insn;
025b0302 791
8f78d0e9
KR
792/* Points to the end of an expression just parsed by get_expressoin
793 and friends. FIXME. This shouldn't be handled with a file-global
794 variable. */
795static char *expr_end;
025b0302 796
8f78d0e9 797/* Nonzero if a .callinfo appeared within the current procedure. */
5cf4cd1b 798static int callinfo_found;
025b0302 799
8f78d0e9 800/* Nonzero if the assembler is currently within a .entry/.exit pair. */
5cf4cd1b 801static int within_entry_exit;
025b0302 802
8f78d0e9 803/* Nonzero if the assembler is currently within a procedure definition. */
5cf4cd1b 804static int within_procedure;
025b0302 805
8f78d0e9
KR
806/* Handle on strucutre which keep track of the last symbol
807 seen in each subspace. */
808static label_symbol_struct *label_symbols_rootp = NULL;
025b0302 809
8f78d0e9
KR
810/* Holds the last field selector. */
811static int hppa_field_selector;
025b0302 812
8f78d0e9
KR
813/* Nonzero if errors are to be printed. */
814static int print_errors = 1;
025b0302 815
8f78d0e9 816/* List of registers that are pre-defined:
025b0302 817
8f78d0e9
KR
818 Each general register has one predefined name of the form
819 %r<REGNUM> which has the value <REGNUM>.
025b0302 820
8f78d0e9
KR
821 Space and control registers are handled in a similar manner,
822 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
025b0302 823
8f78d0e9
KR
824 Likewise for the floating point registers, but of the form
825 %fr<REGNUM>. Floating point registers have additional predefined
826 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
827 again have the value <REGNUM>.
025b0302 828
8f78d0e9 829 Many registers also have synonyms:
025b0302 830
8f78d0e9
KR
831 %r26 - %r23 have %arg0 - %arg3 as synonyms
832 %r28 - %r29 have %ret0 - %ret1 as synonyms
833 %r30 has %sp as a synonym
d6e524f3
JL
834 %r27 has %dp as a synonym
835 %r2 has %rp as a synonym
025b0302 836
8f78d0e9
KR
837 Almost every control register has a synonym; they are not listed
838 here for brevity.
025b0302 839
8f78d0e9 840 The table is sorted. Suitable for searching by a binary search. */
025b0302 841
8f78d0e9 842static const struct pd_reg pre_defined_registers[] =
025b0302 843{
8f78d0e9
KR
844 {"%arg0", 26},
845 {"%arg1", 25},
846 {"%arg2", 24},
847 {"%arg3", 23},
848 {"%cr0", 0},
849 {"%cr10", 10},
850 {"%cr11", 11},
851 {"%cr12", 12},
852 {"%cr13", 13},
853 {"%cr14", 14},
854 {"%cr15", 15},
855 {"%cr16", 16},
856 {"%cr17", 17},
857 {"%cr18", 18},
858 {"%cr19", 19},
859 {"%cr20", 20},
860 {"%cr21", 21},
861 {"%cr22", 22},
862 {"%cr23", 23},
863 {"%cr24", 24},
864 {"%cr25", 25},
865 {"%cr26", 26},
866 {"%cr27", 27},
867 {"%cr28", 28},
868 {"%cr29", 29},
869 {"%cr30", 30},
870 {"%cr31", 31},
871 {"%cr8", 8},
872 {"%cr9", 9},
d6e524f3 873 {"%dp", 27},
8f78d0e9
KR
874 {"%eiem", 15},
875 {"%eirr", 23},
876 {"%fr0", 0},
877 {"%fr0L", 0},
878 {"%fr0R", 0},
879 {"%fr1", 1},
880 {"%fr10", 10},
881 {"%fr10L", 10},
882 {"%fr10R", 10},
883 {"%fr11", 11},
884 {"%fr11L", 11},
885 {"%fr11R", 11},
886 {"%fr12", 12},
887 {"%fr12L", 12},
888 {"%fr12R", 12},
889 {"%fr13", 13},
890 {"%fr13L", 13},
891 {"%fr13R", 13},
892 {"%fr14", 14},
893 {"%fr14L", 14},
894 {"%fr14R", 14},
895 {"%fr15", 15},
896 {"%fr15L", 15},
897 {"%fr15R", 15},
898 {"%fr16", 16},
899 {"%fr16L", 16},
900 {"%fr16R", 16},
901 {"%fr17", 17},
902 {"%fr17L", 17},
903 {"%fr17R", 17},
904 {"%fr18", 18},
905 {"%fr18L", 18},
906 {"%fr18R", 18},
907 {"%fr19", 19},
908 {"%fr19L", 19},
909 {"%fr19R", 19},
910 {"%fr1L", 1},
911 {"%fr1R", 1},
912 {"%fr2", 2},
913 {"%fr20", 20},
914 {"%fr20L", 20},
915 {"%fr20R", 20},
916 {"%fr21", 21},
917 {"%fr21L", 21},
918 {"%fr21R", 21},
919 {"%fr22", 22},
920 {"%fr22L", 22},
921 {"%fr22R", 22},
922 {"%fr23", 23},
923 {"%fr23L", 23},
924 {"%fr23R", 23},
925 {"%fr24", 24},
926 {"%fr24L", 24},
927 {"%fr24R", 24},
928 {"%fr25", 25},
929 {"%fr25L", 25},
930 {"%fr25R", 25},
931 {"%fr26", 26},
932 {"%fr26L", 26},
933 {"%fr26R", 26},
934 {"%fr27", 27},
935 {"%fr27L", 27},
936 {"%fr27R", 27},
937 {"%fr28", 28},
938 {"%fr28L", 28},
939 {"%fr28R", 28},
940 {"%fr29", 29},
941 {"%fr29L", 29},
942 {"%fr29R", 29},
943 {"%fr2L", 2},
944 {"%fr2R", 2},
945 {"%fr3", 3},
946 {"%fr30", 30},
947 {"%fr30L", 30},
948 {"%fr30R", 30},
949 {"%fr31", 31},
950 {"%fr31L", 31},
951 {"%fr31R", 31},
952 {"%fr3L", 3},
953 {"%fr3R", 3},
954 {"%fr4", 4},
955 {"%fr4L", 4},
956 {"%fr4R", 4},
957 {"%fr5", 5},
958 {"%fr5L", 5},
959 {"%fr5R", 5},
960 {"%fr6", 6},
961 {"%fr6L", 6},
962 {"%fr6R", 6},
963 {"%fr7", 7},
964 {"%fr7L", 7},
965 {"%fr7R", 7},
966 {"%fr8", 8},
967 {"%fr8L", 8},
968 {"%fr8R", 8},
969 {"%fr9", 9},
970 {"%fr9L", 9},
971 {"%fr9R", 9},
972 {"%hta", 25},
973 {"%iir", 19},
974 {"%ior", 21},
975 {"%ipsw", 22},
976 {"%isr", 20},
977 {"%itmr", 16},
978 {"%iva", 14},
979 {"%pcoq", 18},
980 {"%pcsq", 17},
981 {"%pidr1", 8},
982 {"%pidr2", 9},
983 {"%pidr3", 12},
984 {"%pidr4", 13},
985 {"%ppda", 24},
986 {"%r0", 0},
987 {"%r1", 1},
988 {"%r10", 10},
989 {"%r11", 11},
990 {"%r12", 12},
991 {"%r13", 13},
992 {"%r14", 14},
993 {"%r15", 15},
994 {"%r16", 16},
995 {"%r17", 17},
996 {"%r18", 18},
997 {"%r19", 19},
998 {"%r2", 2},
999 {"%r20", 20},
1000 {"%r21", 21},
1001 {"%r22", 22},
1002 {"%r23", 23},
1003 {"%r24", 24},
1004 {"%r25", 25},
1005 {"%r26", 26},
1006 {"%r27", 27},
1007 {"%r28", 28},
1008 {"%r29", 29},
1009 {"%r3", 3},
1010 {"%r30", 30},
1011 {"%r31", 31},
1012 {"%r4", 4},
1013 {"%r4L", 4},
1014 {"%r4R", 4},
1015 {"%r5", 5},
1016 {"%r5L", 5},
1017 {"%r5R", 5},
1018 {"%r6", 6},
1019 {"%r6L", 6},
1020 {"%r6R", 6},
1021 {"%r7", 7},
1022 {"%r7L", 7},
1023 {"%r7R", 7},
1024 {"%r8", 8},
1025 {"%r8L", 8},
1026 {"%r8R", 8},
1027 {"%r9", 9},
1028 {"%r9L", 9},
1029 {"%r9R", 9},
1030 {"%rctr", 0},
1031 {"%ret0", 28},
1032 {"%ret1", 29},
d6e524f3 1033 {"%rp", 2},
8f78d0e9
KR
1034 {"%sar", 11},
1035 {"%sp", 30},
1036 {"%sr0", 0},
1037 {"%sr1", 1},
1038 {"%sr2", 2},
1039 {"%sr3", 3},
1040 {"%sr4", 4},
1041 {"%sr5", 5},
1042 {"%sr6", 6},
1043 {"%sr7", 7},
1044 {"%tr0", 24},
1045 {"%tr1", 25},
1046 {"%tr2", 26},
1047 {"%tr3", 27},
1048 {"%tr4", 28},
1049 {"%tr5", 29},
1050 {"%tr6", 30},
1051 {"%tr7", 31}
1052};
025b0302 1053
8f78d0e9
KR
1054/* This table is sorted by order of the length of the string. This is
1055 so we check for <> before we check for <. If we had a <> and checked
1056 for < first, we would get a false match. */
c5e9ccd0 1057static const struct fp_cond_map fp_cond_map[] =
8f78d0e9
KR
1058{
1059 {"false?", 0},
1060 {"false", 1},
1061 {"true?", 30},
1062 {"true", 31},
1063 {"!<=>", 3},
1064 {"!?>=", 8},
1065 {"!?<=", 16},
1066 {"!<>", 7},
1067 {"!>=", 11},
1068 {"!?>", 12},
1069 {"?<=", 14},
1070 {"!<=", 19},
1071 {"!?<", 20},
1072 {"?>=", 22},
1073 {"!?=", 24},
1074 {"!=t", 27},
1075 {"<=>", 29},
1076 {"=t", 5},
1077 {"?=", 6},
1078 {"?<", 10},
1079 {"<=", 13},
1080 {"!>", 15},
1081 {"?>", 18},
1082 {">=", 21},
1083 {"!<", 23},
1084 {"<>", 25},
1085 {"!=", 26},
1086 {"!?", 28},
1087 {"?", 2},
1088 {"=", 4},
1089 {"<", 9},
1090 {">", 17}
1091};
025b0302 1092
8f78d0e9
KR
1093static const struct selector_entry selector_table[] =
1094{
1095 {"F'", e_fsel},
1096 {"F%", e_fsel},
1097 {"LS'", e_lssel},
1098 {"LS%", e_lssel},
1099 {"RS'", e_rssel},
1100 {"RS%", e_rssel},
1101 {"L'", e_lsel},
1102 {"L%", e_lsel},
1103 {"R'", e_rsel},
1104 {"R%", e_rsel},
1105 {"LD'", e_ldsel},
1106 {"LD%", e_ldsel},
1107 {"RD'", e_rdsel},
1108 {"RD%", e_rdsel},
1109 {"LR'", e_lrsel},
1110 {"LR%", e_lrsel},
1111 {"RR'", e_rrsel},
1112 {"RR%", e_rrsel},
1113 {"P'", e_psel},
1114 {"P%", e_psel},
1115 {"RP'", e_rpsel},
1116 {"RP%", e_rpsel},
1117 {"LP'", e_lpsel},
1118 {"LP%", e_lpsel},
1119 {"T'", e_tsel},
1120 {"T%", e_tsel},
1121 {"RT'", e_rtsel},
1122 {"RT%", e_rtsel},
1123 {"LT'", e_ltsel},
1124 {"LT%", e_ltsel},
1125 {NULL, e_fsel}
1126};
025b0302 1127
8f78d0e9 1128/* default space and subspace dictionaries */
025b0302 1129
8f78d0e9
KR
1130#define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1131#define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
025b0302 1132
8f78d0e9
KR
1133/* pre-defined subsegments (subspaces) for the HPPA. */
1134#define SUBSEG_CODE 0
1135#define SUBSEG_DATA 0
1136#define SUBSEG_LIT 1
1137#define SUBSEG_BSS 2
1138#define SUBSEG_UNWIND 3
1139#define SUBSEG_GDB_STRINGS 0
1140#define SUBSEG_GDB_SYMBOLS 1
025b0302 1141
8f78d0e9 1142static struct default_subspace_dict pa_def_subspaces[] =
025b0302 1143{
aa8b30ed
JL
1144 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1145 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1146 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1147 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
31a385d1 1148#ifdef OBJ_ELF
aa8b30ed 1149 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
31a385d1 1150#endif
8f78d0e9
KR
1151 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1152};
025b0302 1153
8f78d0e9
KR
1154static struct default_space_dict pa_def_spaces[] =
1155{
aa8b30ed
JL
1156 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1157 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
8f78d0e9
KR
1158 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1159};
025b0302 1160
8f78d0e9
KR
1161/* Misc local definitions used by the assembler. */
1162
1163/* Return nonzero if the string pointed to by S potentially represents
1164 a right or left half of a FP register */
1165#define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1166#define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1167
1168/* These macros are used to maintain spaces/subspaces. */
1169#define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1170#define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1171#define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
1172#define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
1173#define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1174#define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
1175#define SPACE_NAME(space_chain) (space_chain)->sd_name
1176#define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
1177
1178#define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
47f45d66 1179#define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
8f78d0e9
KR
1180#define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
1181#define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
1182#define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
1183#define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
1184#define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
1185#define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
1186#define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
1187#define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
1188#define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
1189#define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
1190#define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
1191#define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1192
48153d49
JL
1193/* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1194 main loop after insertion. */
1195
1196#define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1197 { \
1198 ((OPCODE) |= (FIELD) << (START)); \
1199 continue; \
1200 }
1201
1202/* Simple range checking for FIELD againt HIGH and LOW bounds.
1203 IGNORE is used to suppress the error message. */
1204
1205#define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1206 { \
1207 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1208 { \
1209 if (! IGNORE) \
1210 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1211 (int) (FIELD));\
1212 break; \
1213 } \
1214 }
c5e9ccd0 1215
8f78d0e9
KR
1216#define is_DP_relative(exp) \
1217 ((exp).X_op == O_subtract \
1218 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1219
1220#define is_PC_relative(exp) \
1221 ((exp).X_op == O_subtract \
1222 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1223
1224#define is_complex(exp) \
1225 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1226
1227/* Actual functions to implement the PA specific code for the assembler. */
1228
1229/* Returns a pointer to the label_symbol_struct for the current space.
1230 or NULL if no label_symbol_struct exists for the current space. */
1231
1232static label_symbol_struct *
1233pa_get_label ()
1234{
1235 label_symbol_struct *label_chain;
3b9a72c5 1236 sd_chain_struct *space_chain = current_space;
025b0302 1237
8f78d0e9
KR
1238 for (label_chain = label_symbols_rootp;
1239 label_chain;
1240 label_chain = label_chain->lss_next)
1241 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1242 return label_chain;
025b0302 1243
8f78d0e9
KR
1244 return NULL;
1245}
025b0302 1246
8f78d0e9
KR
1247/* Defines a label for the current space. If one is already defined,
1248 this function will replace it with the new label. */
025b0302 1249
8f78d0e9
KR
1250void
1251pa_define_label (symbol)
1252 symbolS *symbol;
1253{
1254 label_symbol_struct *label_chain = pa_get_label ();
3b9a72c5 1255 sd_chain_struct *space_chain = current_space;
8f78d0e9
KR
1256
1257 if (label_chain)
1258 label_chain->lss_label = symbol;
1259 else
1260 {
1261 /* Create a new label entry and add it to the head of the chain. */
1262 label_chain
1263 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1264 label_chain->lss_label = symbol;
1265 label_chain->lss_space = space_chain;
1266 label_chain->lss_next = NULL;
1267
1268 if (label_symbols_rootp)
1269 label_chain->lss_next = label_symbols_rootp;
1270
1271 label_symbols_rootp = label_chain;
1272 }
1273}
1274
1275/* Removes a label definition for the current space.
1276 If there is no label_symbol_struct entry, then no action is taken. */
1277
1278static void
1279pa_undefine_label ()
1280{
1281 label_symbol_struct *label_chain;
1282 label_symbol_struct *prev_label_chain = NULL;
3b9a72c5 1283 sd_chain_struct *space_chain = current_space;
8f78d0e9
KR
1284
1285 for (label_chain = label_symbols_rootp;
1286 label_chain;
1287 label_chain = label_chain->lss_next)
1288 {
1289 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1290 {
1291 /* Remove the label from the chain and free its memory. */
1292 if (prev_label_chain)
1293 prev_label_chain->lss_next = label_chain->lss_next;
1294 else
1295 label_symbols_rootp = label_chain->lss_next;
1296
1297 free (label_chain);
1298 break;
1299 }
1300 prev_label_chain = label_chain;
1301 }
1302}
1303
1304
1305/* An HPPA-specific version of fix_new. This is required because the HPPA
1306 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1307 results in the creation of an instance of an hppa_fix_struct. An
1308 hppa_fix_struct stores the extra information along with a pointer to the
aa8b30ed
JL
1309 original fixS. This is attached to the original fixup via the
1310 tc_fix_data field. */
8f78d0e9
KR
1311
1312static void
1313fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1314 r_type, r_field, r_format, arg_reloc, unwind_desc)
1315 fragS *frag;
1316 int where;
1317 short int size;
1318 symbolS *add_symbol;
1319 long offset;
1320 expressionS *exp;
1321 int pcrel;
1322 bfd_reloc_code_real_type r_type;
f2eed884 1323 enum hppa_reloc_field_selector_type r_field;
8f78d0e9
KR
1324 int r_format;
1325 long arg_reloc;
1326 char *unwind_desc;
1327{
1328 fixS *new_fix;
1329
1330 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
c5e9ccd0 1331 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
8f78d0e9
KR
1332
1333 if (exp != NULL)
1334 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1335 else
1336 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
aa8b30ed 1337 new_fix->tc_fix_data = hppa_fix;
8f78d0e9
KR
1338 hppa_fix->fx_r_type = r_type;
1339 hppa_fix->fx_r_field = r_field;
1340 hppa_fix->fx_r_format = r_format;
1341 hppa_fix->fx_arg_reloc = arg_reloc;
8f78d0e9 1342 if (unwind_desc)
ff852e11
JL
1343 {
1344 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
025b0302 1345
ff852e11 1346 /* If necessary call BFD backend function to attach the
c5e9ccd0
JL
1347 unwind bits to the target dependent parts of a BFD symbol.
1348 Yuk. */
ff852e11
JL
1349#ifdef obj_attach_unwind_info
1350 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1351#endif
1352 }
25989392
JL
1353
1354 /* foo-$global$ is used to access non-automatic storage. $global$
1355 is really just a marker and has served its purpose, so eliminate
1356 it now so as not to confuse write.c. */
81413fa2
JL
1357 if (new_fix->fx_subsy
1358 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
25989392 1359 new_fix->fx_subsy = NULL;
025b0302
ME
1360}
1361
1362/* Parse a .byte, .word, .long expression for the HPPA. Called by
1363 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1364
025b0302
ME
1365void
1366parse_cons_expression_hppa (exp)
1367 expressionS *exp;
1368{
1369 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
5cf4cd1b 1370 expression (exp);
025b0302
ME
1371}
1372
1373/* This fix_new is called by cons via TC_CONS_FIX_NEW.
1374 hppa_field_selector is set by the parse_cons_expression_hppa. */
1375
1376void
1377cons_fix_new_hppa (frag, where, size, exp)
8f78d0e9
KR
1378 fragS *frag;
1379 int where;
1380 int size;
1381 expressionS *exp;
025b0302
ME
1382{
1383 unsigned int reloc_type;
1384
1385 if (is_DP_relative (*exp))
1386 reloc_type = R_HPPA_GOTOFF;
1387 else if (is_complex (*exp))
1388 reloc_type = R_HPPA_COMPLEX;
1389 else
1390 reloc_type = R_HPPA;
1391
1392 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
8f78d0e9 1393 as_warn ("Invalid field selector. Assuming F%%.");
025b0302 1394
5cf4cd1b
KR
1395 fix_new_hppa (frag, where, size,
1396 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
025b0302 1397 hppa_field_selector, 32, 0, (char *) 0);
1cc248d2
JL
1398
1399 /* Reset field selector to its default state. */
1400 hppa_field_selector = 0;
025b0302
ME
1401}
1402
1403/* This function is called once, at assembler startup time. It should
1404 set up all the tables, etc. that the MD part of the assembler will need. */
8f78d0e9 1405
025b0302
ME
1406void
1407md_begin ()
1408{
18c4f112 1409 const char *retval = NULL;
025b0302 1410 int lose = 0;
8f78d0e9 1411 unsigned int i = 0;
025b0302
ME
1412
1413 last_call_info = NULL;
1414 call_info_root = NULL;
1415
13925cef
JL
1416 /* Folding of text and data segments fails miserably on the PA.
1417 Warn user and disable "-R" option. */
d56f45f5
JL
1418 if (flagseen['R'])
1419 {
1420 as_warn ("-R option not supported on this target.");
1421 flag_readonly_data_in_text = 0;
1422 flagseen['R'] = 0;
1423 }
13925cef 1424
025b0302
ME
1425 pa_spaces_begin ();
1426
1427 op_hash = hash_new ();
1428 if (op_hash == NULL)
1429 as_fatal ("Virtual memory exhausted");
1430
1431 while (i < NUMOPCODES)
1432 {
1433 const char *name = pa_opcodes[i].name;
c5e9ccd0 1434 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
8f78d0e9 1435 if (retval != NULL && *retval != '\0')
025b0302 1436 {
8f78d0e9 1437 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
025b0302
ME
1438 lose = 1;
1439 }
1440 do
1441 {
c5e9ccd0 1442 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
8f78d0e9 1443 != pa_opcodes[i].match)
025b0302
ME
1444 {
1445 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1446 pa_opcodes[i].name, pa_opcodes[i].args);
1447 lose = 1;
1448 }
1449 ++i;
1450 }
8f78d0e9 1451 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
025b0302
ME
1452 }
1453
1454 if (lose)
1455 as_fatal ("Broken assembler. No assembly attempted.");
3b9a72c5
JL
1456
1457 /* SOM will change text_section. To make sure we never put
1458 anything into the old one switch to the new one now. */
1459 subseg_set (text_section, 0);
025b0302
ME
1460}
1461
8f78d0e9
KR
1462/* Called at the end of assembling a source file. Nothing to do
1463 at this point on the PA. */
1464
025b0302
ME
1465void
1466md_end ()
1467{
1468 return;
1469}
1470
8f78d0e9 1471/* Assemble a single instruction storing it into a frag. */
025b0302
ME
1472void
1473md_assemble (str)
1474 char *str;
1475{
8f78d0e9 1476 char *to;
025b0302 1477
8f78d0e9 1478 /* The had better be something to assemble. */
025b0302 1479 assert (str);
8f78d0e9
KR
1480
1481 /* Assemble the instruction. Results are saved into "the_insn". */
025b0302 1482 pa_ip (str);
025b0302 1483
8f78d0e9
KR
1484 /* Get somewhere to put the assembled instrution. */
1485 to = frag_more (4);
025b0302 1486
8f78d0e9
KR
1487 /* Output the opcode. */
1488 md_number_to_chars (to, the_insn.opcode, 4);
025b0302 1489
8f78d0e9 1490 /* If necessary output more stuff. */
aa8b30ed 1491 if (the_insn.reloc != R_HPPA_NONE)
8f78d0e9
KR
1492 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1493 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1494 the_insn.reloc, the_insn.field_selector,
1495 the_insn.format, the_insn.arg_reloc, NULL);
025b0302 1496
8f78d0e9 1497}
025b0302 1498
8f78d0e9
KR
1499/* Do the real work for assembling a single instruction. Store results
1500 into the global "the_insn" variable.
025b0302 1501
8f78d0e9
KR
1502 FIXME: Should define and use some functions/macros to handle
1503 various common insertions of information into the opcode. */
025b0302
ME
1504
1505static void
1506pa_ip (str)
1507 char *str;
1508{
1509 char *error_message = "";
8f78d0e9 1510 char *s, c, *argstart, *name, *save_s;
025b0302 1511 const char *args;
025b0302
ME
1512 int match = FALSE;
1513 int comma = 0;
48153d49
JL
1514 int cmpltr, nullif, flag, cond, num;
1515 unsigned long opcode;
8f78d0e9 1516 struct pa_opcode *insn;
025b0302 1517
8f78d0e9 1518 /* Skip to something interesting. */
025b0302
ME
1519 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1520 ;
8f78d0e9 1521
025b0302
ME
1522 switch (*s)
1523 {
1524
1525 case '\0':
1526 break;
1527
1528 case ',':
1529 comma = 1;
1530
8f78d0e9 1531 /*FALLTHROUGH */
025b0302
ME
1532
1533 case ' ':
1534 *s++ = '\0';
1535 break;
1536
1537 default:
1538 as_bad ("Unknown opcode: `%s'", str);
1539 exit (1);
1540 }
1541
1542 save_s = str;
1543
8f78d0e9 1544 /* Convert everything into lower case. */
025b0302
ME
1545 while (*save_s)
1546 {
1547 if (isupper (*save_s))
1548 *save_s = tolower (*save_s);
1549 save_s++;
1550 }
1551
8f78d0e9 1552 /* Look up the opcode in the has table. */
025b0302
ME
1553 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1554 {
1555 as_bad ("Unknown opcode: `%s'", str);
1556 return;
1557 }
8f78d0e9 1558
025b0302
ME
1559 if (comma)
1560 {
1561 *--s = ',';
1562 }
8f78d0e9
KR
1563
1564 /* Mark the location where arguments for the instruction start, then
1565 start processing them. */
1566 argstart = s;
025b0302
ME
1567 for (;;)
1568 {
8f78d0e9 1569 /* Do some initialization. */
025b0302
ME
1570 opcode = insn->match;
1571 bzero (&the_insn, sizeof (the_insn));
8f78d0e9 1572
025b0302 1573 the_insn.reloc = R_HPPA_NONE;
8f78d0e9
KR
1574
1575 /* Build the opcode, checking as we go to make
1576 sure that the operands match. */
025b0302
ME
1577 for (args = insn->args;; ++args)
1578 {
025b0302
ME
1579 switch (*args)
1580 {
1581
8f78d0e9
KR
1582 /* End of arguments. */
1583 case '\0':
025b0302 1584 if (*s == '\0')
8f78d0e9 1585 match = TRUE;
025b0302
ME
1586 break;
1587
1588 case '+':
1589 if (*s == '+')
1590 {
1591 ++s;
1592 continue;
1593 }
1594 if (*s == '-')
8f78d0e9 1595 continue;
025b0302
ME
1596 break;
1597
8f78d0e9
KR
1598 /* These must match exactly. */
1599 case '(':
025b0302
ME
1600 case ')':
1601 case ',':
1602 case ' ':
1603 if (*s++ == *args)
1604 continue;
1605 break;
1606
8f78d0e9
KR
1607 /* Handle a 5 bit register or control register field at 10. */
1608 case 'b':
1609 case '^':
48153d49
JL
1610 num = pa_parse_number (&s, 0);
1611 CHECK_FIELD (num, 31, 0, 0);
1612 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
8f78d0e9
KR
1613
1614 /* Handle a 5 bit register field at 15. */
1615 case 'x':
48153d49
JL
1616 num = pa_parse_number (&s, 0);
1617 CHECK_FIELD (num, 31, 0, 0);
1618 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
5cf4cd1b 1619
8f78d0e9
KR
1620 /* Handle a 5 bit register field at 31. */
1621 case 'y':
1622 case 't':
48153d49
JL
1623 num = pa_parse_number (&s, 0);
1624 CHECK_FIELD (num, 31, 0, 0);
1625 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
8f78d0e9
KR
1626
1627 /* Handle a 5 bit field length at 31. */
1628 case 'T':
48153d49
JL
1629 num = pa_get_absolute_expression (&the_insn, &s);
1630 s = expr_end;
1631 CHECK_FIELD (num, 32, 1, 0);
1632 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
8f78d0e9
KR
1633
1634 /* Handle a 5 bit immediate at 15. */
1635 case '5':
48153d49
JL
1636 num = pa_get_absolute_expression (&the_insn, &s);
1637 s = expr_end;
1638 CHECK_FIELD (num, 15, -16, 0);
1639 low_sign_unext (num, 5, &num);
1640 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
025b0302 1641
48153d49
JL
1642 /* Handle a 5 bit immediate at 31. */
1643 case 'V':
1644 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 1645 s = expr_end;
48153d49 1646 CHECK_FIELD (num, 15, -16, 0)
c5e9ccd0 1647 low_sign_unext (num, 5, &num);
48153d49
JL
1648 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1649
1650 /* Handle an unsigned 5 bit immediate at 31. */
1651 case 'r':
1652 num = pa_get_absolute_expression (&the_insn, &s);
1653 s = expr_end;
1654 CHECK_FIELD (num, 31, 0, 0);
1655 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1656
1657 /* Handle an unsigned 5 bit immediate at 15. */
1658 case 'R':
1659 num = pa_get_absolute_expression (&the_insn, &s);
1660 s = expr_end;
1661 CHECK_FIELD (num, 31, 0, 0);
1662 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
025b0302 1663
8f78d0e9
KR
1664 /* Handle a 2 bit space identifier at 17. */
1665 case 's':
48153d49
JL
1666 num = pa_parse_number (&s, 0);
1667 CHECK_FIELD (num, 3, 0, 1);
1668 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
8f78d0e9
KR
1669
1670 /* Handle a 3 bit space identifier at 18. */
1671 case 'S':
48153d49
JL
1672 num = pa_parse_number (&s, 0);
1673 CHECK_FIELD (num, 7, 0, 1);
1674 dis_assemble_3 (num, &num);
1675 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
8f78d0e9
KR
1676
1677 /* Handle a completer for an indexing load or store. */
1678 case 'c':
48153d49
JL
1679 {
1680 int uu = 0;
1681 int m = 0;
1682 int i = 0;
1683 while (*s == ',' && i < 2)
1684 {
1685 s++;
1686 if (strncasecmp (s, "sm", 2) == 0)
1687 {
1688 uu = 1;
1689 m = 1;
1690 s++;
1691 i++;
1692 }
1693 else if (strncasecmp (s, "m", 1) == 0)
025b0302 1694 m = 1;
48153d49
JL
1695 else if (strncasecmp (s, "s", 1) == 0)
1696 uu = 1;
1697 else
1698 as_bad ("Invalid Indexed Load Completer.");
1699 s++;
1700 i++;
1701 }
1702 if (i > 2)
1703 as_bad ("Invalid Indexed Load Completer Syntax.");
1704 opcode |= m << 5;
1705 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1706 }
8f78d0e9
KR
1707
1708 /* Handle a short load/store completer. */
1709 case 'C':
48153d49
JL
1710 {
1711 int a = 0;
1712 int m = 0;
1713 if (*s == ',')
1714 {
1715 s++;
1716 if (strncasecmp (s, "ma", 2) == 0)
1717 {
1718 a = 0;
1719 m = 1;
1720 }
1721 else if (strncasecmp (s, "mb", 2) == 0)
1722 {
1723 a = 1;
1724 m = 1;
1725 }
1726 else
1727 as_bad ("Invalid Short Load/Store Completer.");
1728 s += 2;
1729 }
1730 opcode |= m << 5;
1731 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1732 }
8f78d0e9
KR
1733
1734 /* Handle a stbys completer. */
1735 case 'Y':
48153d49
JL
1736 {
1737 int a = 0;
1738 int m = 0;
1739 int i = 0;
1740 while (*s == ',' && i < 2)
1741 {
1742 s++;
1743 if (strncasecmp (s, "m", 1) == 0)
1744 m = 1;
1745 else if (strncasecmp (s, "b", 1) == 0)
1746 a = 0;
1747 else if (strncasecmp (s, "e", 1) == 0)
1748 a = 1;
1749 else
1750 as_bad ("Invalid Store Bytes Short Completer");
1751 s++;
1752 i++;
1753 }
1754 if (i > 2)
1755 as_bad ("Invalid Store Bytes Short Completer");
1756 opcode |= m << 5;
1757 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1758 }
8f78d0e9
KR
1759
1760 /* Handle a non-negated compare/stubtract condition. */
1761 case '<':
5cf4cd1b 1762 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
025b0302
ME
1763 if (cmpltr < 0)
1764 {
8f78d0e9 1765 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
025b0302
ME
1766 cmpltr = 0;
1767 }
48153d49 1768 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9
KR
1769
1770 /* Handle a negated or non-negated compare/subtract condition. */
1771 case '?':
025b0302 1772 save_s = s;
5cf4cd1b 1773 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
025b0302
ME
1774 if (cmpltr < 0)
1775 {
1776 s = save_s;
5cf4cd1b 1777 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
025b0302
ME
1778 if (cmpltr < 0)
1779 {
8f78d0e9 1780 as_bad ("Invalid Compare/Subtract Condition.");
025b0302
ME
1781 cmpltr = 0;
1782 }
1783 else
1784 {
8f78d0e9
KR
1785 /* Negated condition requires an opcode change. */
1786 opcode |= 1 << 27;
025b0302
ME
1787 }
1788 }
48153d49 1789 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9
KR
1790
1791 /* Handle a negated or non-negated add condition. */
1792 case '!':
025b0302 1793 save_s = s;
5cf4cd1b 1794 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
025b0302
ME
1795 if (cmpltr < 0)
1796 {
1797 s = save_s;
5cf4cd1b 1798 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
025b0302
ME
1799 if (cmpltr < 0)
1800 {
8f78d0e9 1801 as_bad ("Invalid Compare/Subtract Condition");
025b0302
ME
1802 cmpltr = 0;
1803 }
1804 else
1805 {
8f78d0e9
KR
1806 /* Negated condition requires an opcode change. */
1807 opcode |= 1 << 27;
025b0302
ME
1808 }
1809 }
48153d49 1810 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9
KR
1811
1812 /* Handle a compare/subtract condition. */
1813 case 'a':
025b0302 1814 cmpltr = 0;
8f78d0e9 1815 flag = 0;
025b0302
ME
1816 save_s = s;
1817 if (*s == ',')
1818 {
5cf4cd1b 1819 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
025b0302
ME
1820 if (cmpltr < 0)
1821 {
8f78d0e9 1822 flag = 1;
025b0302 1823 s = save_s;
5cf4cd1b 1824 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
025b0302
ME
1825 if (cmpltr < 0)
1826 {
8f78d0e9 1827 as_bad ("Invalid Compare/Subtract Condition");
025b0302
ME
1828 }
1829 }
1830 }
1831 opcode |= cmpltr << 13;
48153d49 1832 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
8f78d0e9
KR
1833
1834 /* Handle a non-negated add condition. */
1835 case 'd':
025b0302
ME
1836 cmpltr = 0;
1837 nullif = 0;
1838 flag = 0;
1839 if (*s == ',')
1840 {
1841 s++;
1842 name = s;
1843 while (*s != ',' && *s != ' ' && *s != '\t')
1844 s += 1;
1845 c = *s;
1846 *s = 0x00;
1847 if (strcmp (name, "=") == 0)
8f78d0e9 1848 cmpltr = 1;
025b0302 1849 else if (strcmp (name, "<") == 0)
8f78d0e9 1850 cmpltr = 2;
025b0302 1851 else if (strcmp (name, "<=") == 0)
8f78d0e9 1852 cmpltr = 3;
025b0302 1853 else if (strcasecmp (name, "nuv") == 0)
8f78d0e9 1854 cmpltr = 4;
025b0302 1855 else if (strcasecmp (name, "znv") == 0)
8f78d0e9 1856 cmpltr = 5;
025b0302 1857 else if (strcasecmp (name, "sv") == 0)
8f78d0e9 1858 cmpltr = 6;
025b0302 1859 else if (strcasecmp (name, "od") == 0)
8f78d0e9 1860 cmpltr = 7;
025b0302 1861 else if (strcasecmp (name, "n") == 0)
8f78d0e9 1862 nullif = 1;
025b0302
ME
1863 else if (strcasecmp (name, "tr") == 0)
1864 {
1865 cmpltr = 0;
1866 flag = 1;
1867 }
1868 else if (strcasecmp (name, "<>") == 0)
1869 {
1870 cmpltr = 1;
1871 flag = 1;
1872 }
1873 else if (strcasecmp (name, ">=") == 0)
1874 {
1875 cmpltr = 2;
1876 flag = 1;
1877 }
1878 else if (strcasecmp (name, ">") == 0)
1879 {
1880 cmpltr = 3;
1881 flag = 1;
1882 }
1883 else if (strcasecmp (name, "uv") == 0)
1884 {
1885 cmpltr = 4;
1886 flag = 1;
1887 }
1888 else if (strcasecmp (name, "vnz") == 0)
1889 {
1890 cmpltr = 5;
1891 flag = 1;
1892 }
1893 else if (strcasecmp (name, "nsv") == 0)
1894 {
1895 cmpltr = 6;
1896 flag = 1;
1897 }
1898 else if (strcasecmp (name, "ev") == 0)
1899 {
1900 cmpltr = 7;
1901 flag = 1;
1902 }
1903 else
8f78d0e9 1904 as_bad ("Invalid Add Condition: %s", name);
025b0302
ME
1905 *s = c;
1906 }
1907 nullif = pa_parse_nullif (&s);
1908 opcode |= nullif << 1;
1909 opcode |= cmpltr << 13;
48153d49 1910 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
8f78d0e9 1911
48153d49 1912 /* HANDLE a logical instruction condition. */
8f78d0e9 1913 case '&':
025b0302 1914 cmpltr = 0;
8f78d0e9 1915 flag = 0;
025b0302
ME
1916 if (*s == ',')
1917 {
1918 s++;
1919 name = s;
1920 while (*s != ',' && *s != ' ' && *s != '\t')
1921 s += 1;
1922 c = *s;
1923 *s = 0x00;
1924 if (strcmp (name, "=") == 0)
8f78d0e9 1925 cmpltr = 1;
025b0302 1926 else if (strcmp (name, "<") == 0)
8f78d0e9 1927 cmpltr = 2;
025b0302 1928 else if (strcmp (name, "<=") == 0)
8f78d0e9 1929 cmpltr = 3;
025b0302 1930 else if (strcasecmp (name, "od") == 0)
8f78d0e9 1931 cmpltr = 7;
025b0302
ME
1932 else if (strcasecmp (name, "tr") == 0)
1933 {
1934 cmpltr = 0;
8f78d0e9 1935 flag = 1;
025b0302
ME
1936 }
1937 else if (strcmp (name, "<>") == 0)
1938 {
1939 cmpltr = 1;
8f78d0e9 1940 flag = 1;
025b0302
ME
1941 }
1942 else if (strcmp (name, ">=") == 0)
1943 {
1944 cmpltr = 2;
8f78d0e9 1945 flag = 1;
025b0302
ME
1946 }
1947 else if (strcmp (name, ">") == 0)
1948 {
1949 cmpltr = 3;
8f78d0e9 1950 flag = 1;
025b0302
ME
1951 }
1952 else if (strcasecmp (name, "ev") == 0)
1953 {
1954 cmpltr = 7;
8f78d0e9 1955 flag = 1;
025b0302
ME
1956 }
1957 else
8f78d0e9 1958 as_bad ("Invalid Logical Instruction Condition.");
025b0302
ME
1959 *s = c;
1960 }
1961 opcode |= cmpltr << 13;
48153d49 1962 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
8f78d0e9
KR
1963
1964 /* Handle a unit instruction condition. */
1965 case 'U':
025b0302 1966 cmpltr = 0;
8f78d0e9 1967 flag = 0;
025b0302
ME
1968 if (*s == ',')
1969 {
1970 s++;
1971 if (strncasecmp (s, "sbz", 3) == 0)
1972 {
1973 cmpltr = 2;
1974 s += 3;
1975 }
1976 else if (strncasecmp (s, "shz", 3) == 0)
1977 {
1978 cmpltr = 3;
1979 s += 3;
1980 }
1981 else if (strncasecmp (s, "sdc", 3) == 0)
1982 {
1983 cmpltr = 4;
1984 s += 3;
1985 }
1986 else if (strncasecmp (s, "sbc", 3) == 0)
1987 {
1988 cmpltr = 6;
1989 s += 3;
1990 }
1991 else if (strncasecmp (s, "shc", 3) == 0)
1992 {
1993 cmpltr = 7;
1994 s += 3;
1995 }
1996 else if (strncasecmp (s, "tr", 2) == 0)
1997 {
1998 cmpltr = 0;
8f78d0e9 1999 flag = 1;
025b0302
ME
2000 s += 2;
2001 }
2002 else if (strncasecmp (s, "nbz", 3) == 0)
2003 {
2004 cmpltr = 2;
8f78d0e9 2005 flag = 1;
025b0302
ME
2006 s += 3;
2007 }
2008 else if (strncasecmp (s, "nhz", 3) == 0)
2009 {
2010 cmpltr = 3;
8f78d0e9 2011 flag = 1;
025b0302
ME
2012 s += 3;
2013 }
2014 else if (strncasecmp (s, "ndc", 3) == 0)
2015 {
2016 cmpltr = 4;
8f78d0e9 2017 flag = 1;
025b0302
ME
2018 s += 3;
2019 }
2020 else if (strncasecmp (s, "nbc", 3) == 0)
2021 {
2022 cmpltr = 6;
8f78d0e9 2023 flag = 1;
025b0302
ME
2024 s += 3;
2025 }
2026 else if (strncasecmp (s, "nhc", 3) == 0)
2027 {
2028 cmpltr = 7;
8f78d0e9 2029 flag = 1;
025b0302
ME
2030 s += 3;
2031 }
2032 else
8f78d0e9 2033 as_bad ("Invalid Logical Instruction Condition.");
025b0302
ME
2034 }
2035 opcode |= cmpltr << 13;
48153d49 2036 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
8f78d0e9
KR
2037
2038 /* Handle a shift/extract/deposit condition. */
2039 case '|':
2040 case '>':
025b0302
ME
2041 cmpltr = 0;
2042 if (*s == ',')
2043 {
8f78d0e9 2044 save_s = s++;
025b0302
ME
2045 name = s;
2046 while (*s != ',' && *s != ' ' && *s != '\t')
2047 s += 1;
2048 c = *s;
2049 *s = 0x00;
2050 if (strcmp (name, "=") == 0)
8f78d0e9 2051 cmpltr = 1;
025b0302 2052 else if (strcmp (name, "<") == 0)
8f78d0e9 2053 cmpltr = 2;
025b0302 2054 else if (strcasecmp (name, "od") == 0)
8f78d0e9 2055 cmpltr = 3;
025b0302 2056 else if (strcasecmp (name, "tr") == 0)
8f78d0e9 2057 cmpltr = 4;
025b0302 2058 else if (strcmp (name, "<>") == 0)
8f78d0e9 2059 cmpltr = 5;
025b0302 2060 else if (strcmp (name, ">=") == 0)
8f78d0e9 2061 cmpltr = 6;
025b0302 2062 else if (strcasecmp (name, "ev") == 0)
8f78d0e9 2063 cmpltr = 7;
5cf4cd1b
KR
2064 /* Handle movb,n. Put things back the way they were.
2065 This includes moving s back to where it started. */
2066 else if (strcasecmp (name, "n") == 0 && *args == '|')
2067 {
2068 *s = c;
2069 s = save_s;
2070 continue;
2071 }
025b0302 2072 else
8f78d0e9 2073 as_bad ("Invalid Shift/Extract/Deposit Condition.");
025b0302
ME
2074 *s = c;
2075 }
48153d49 2076 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9
KR
2077
2078 /* Handle bvb and bb conditions. */
2079 case '~':
025b0302
ME
2080 cmpltr = 0;
2081 if (*s == ',')
2082 {
2083 s++;
2084 if (strncmp (s, "<", 1) == 0)
2085 {
2086 cmpltr = 2;
2087 s++;
2088 }
2089 else if (strncmp (s, ">=", 2) == 0)
2090 {
2091 cmpltr = 6;
2092 s += 2;
2093 }
2094 else
8f78d0e9 2095 as_bad ("Invalid Bit Branch Condition: %c", *s);
025b0302 2096 }
48153d49 2097 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9 2098
48153d49
JL
2099 /* Handle a system control completer. */
2100 case 'Z':
2101 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
025b0302 2102 {
48153d49
JL
2103 flag = 1;
2104 s += 2;
025b0302 2105 }
48153d49
JL
2106 else
2107 flag = 0;
8f78d0e9 2108
48153d49
JL
2109 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2110
2111 /* Handle a nullification completer for branch instructions. */
2112 case 'n':
2113 nullif = pa_parse_nullif (&s);
2114 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
8f78d0e9
KR
2115
2116 /* Handle a 11 bit immediate at 31. */
2117 case 'i':
2118 the_insn.field_selector = pa_chk_field_selector (&s);
2119 get_expression (s);
48153d49 2120 s = expr_end;
5cf4cd1b 2121 if (the_insn.exp.X_op == O_constant)
025b0302 2122 {
48153d49
JL
2123 num = evaluate_absolute (&the_insn);
2124 CHECK_FIELD (num, 1023, -1024, 0);
2125 low_sign_unext (num, 11, &num);
2126 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
025b0302
ME
2127 }
2128 else
2129 {
025b0302
ME
2130 if (is_DP_relative (the_insn.exp))
2131 the_insn.reloc = R_HPPA_GOTOFF;
2132 else if (is_PC_relative (the_insn.exp))
2133 the_insn.reloc = R_HPPA_PCREL_CALL;
2134 else if (is_complex (the_insn.exp))
2135 the_insn.reloc = R_HPPA_COMPLEX;
2136 else
2137 the_insn.reloc = R_HPPA;
2138 the_insn.format = 11;
48153d49 2139 continue;
025b0302 2140 }
8f78d0e9
KR
2141
2142 /* Handle a 14 bit immediate at 31. */
2143 case 'j':
025b0302 2144 the_insn.field_selector = pa_chk_field_selector (&s);
8f78d0e9 2145 get_expression (s);
48153d49 2146 s = expr_end;
5cf4cd1b 2147 if (the_insn.exp.X_op == O_constant)
025b0302 2148 {
48153d49
JL
2149 num = evaluate_absolute (&the_insn);
2150 CHECK_FIELD (num, 8191, -8192, 0);
2151 low_sign_unext (num, 14, &num);
2152 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
025b0302
ME
2153 }
2154 else
2155 {
2156 if (is_DP_relative (the_insn.exp))
2157 the_insn.reloc = R_HPPA_GOTOFF;
2158 else if (is_PC_relative (the_insn.exp))
2159 the_insn.reloc = R_HPPA_PCREL_CALL;
2160 else if (is_complex (the_insn.exp))
2161 the_insn.reloc = R_HPPA_COMPLEX;
2162 else
2163 the_insn.reloc = R_HPPA;
2164 the_insn.format = 14;
48153d49 2165 continue;
025b0302 2166 }
025b0302 2167
8f78d0e9
KR
2168 /* Handle a 21 bit immediate at 31. */
2169 case 'k':
2170 the_insn.field_selector = pa_chk_field_selector (&s);
2171 get_expression (s);
48153d49 2172 s = expr_end;
5cf4cd1b 2173 if (the_insn.exp.X_op == O_constant)
025b0302 2174 {
48153d49 2175 num = evaluate_absolute (&the_insn);
c5e9ccd0 2176 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
48153d49
JL
2177 dis_assemble_21 (num, &num);
2178 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
025b0302
ME
2179 }
2180 else
2181 {
025b0302
ME
2182 if (is_DP_relative (the_insn.exp))
2183 the_insn.reloc = R_HPPA_GOTOFF;
2184 else if (is_PC_relative (the_insn.exp))
2185 the_insn.reloc = R_HPPA_PCREL_CALL;
2186 else if (is_complex (the_insn.exp))
2187 the_insn.reloc = R_HPPA_COMPLEX;
2188 else
2189 the_insn.reloc = R_HPPA;
2190 the_insn.format = 21;
48153d49 2191 continue;
025b0302 2192 }
8f78d0e9
KR
2193
2194 /* Handle a 12 bit branch displacement. */
2195 case 'w':
2196 the_insn.field_selector = pa_chk_field_selector (&s);
2197 get_expression (s);
48153d49 2198 s = expr_end;
025b0302 2199 the_insn.pcrel = 1;
48153d49 2200 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
025b0302
ME
2201 {
2202 unsigned int w1, w, result;
2203
48153d49
JL
2204 num = evaluate_absolute (&the_insn);
2205 if (num % 4)
2206 {
2207 as_bad ("Branch to unaligned address");
2208 break;
2209 }
2210 CHECK_FIELD (num, 8191, -8192, 0);
2211 sign_unext ((num - 8) >> 2, 12, &result);
025b0302 2212 dis_assemble_12 (result, &w1, &w);
48153d49 2213 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
025b0302
ME
2214 }
2215 else
2216 {
025b0302
ME
2217 if (is_complex (the_insn.exp))
2218 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2219 else
2220 the_insn.reloc = R_HPPA_PCREL_CALL;
2221 the_insn.format = 12;
2222 the_insn.arg_reloc = last_call_desc.arg_reloc;
8f78d0e9 2223 bzero (&last_call_desc, sizeof (struct call_desc));
48153d49
JL
2224 s = expr_end;
2225 continue;
025b0302 2226 }
8f78d0e9
KR
2227
2228 /* Handle a 17 bit branch displacement. */
2229 case 'W':
025b0302 2230 the_insn.field_selector = pa_chk_field_selector (&s);
8f78d0e9 2231 get_expression (s);
48153d49 2232 s = expr_end;
025b0302 2233 the_insn.pcrel = 1;
c5e9ccd0 2234 if (!the_insn.exp.X_add_symbol
48153d49
JL
2235 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2236 "L$0\001"))
025b0302 2237 {
48153d49 2238 unsigned int w2, w1, w, result;
025b0302 2239
48153d49
JL
2240 num = evaluate_absolute (&the_insn);
2241 if (num % 4)
025b0302 2242 {
48153d49
JL
2243 as_bad ("Branch to unaligned address");
2244 break;
025b0302 2245 }
48153d49
JL
2246 CHECK_FIELD (num, 262143, -262144, 0);
2247
2248 if (the_insn.exp.X_add_symbol)
2249 num -= 8;
2250
2251 sign_unext (num >> 2, 17, &result);
2252 dis_assemble_17 (result, &w1, &w2, &w);
2253 INSERT_FIELD_AND_CONTINUE (opcode,
c5e9ccd0 2254 ((w2 << 2) | (w1 << 16) | w), 0);
025b0302
ME
2255 }
2256 else
2257 {
48153d49
JL
2258 if (is_complex (the_insn.exp))
2259 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2260 else
2261 the_insn.reloc = R_HPPA_PCREL_CALL;
2262 the_insn.format = 17;
2263 the_insn.arg_reloc = last_call_desc.arg_reloc;
2264 bzero (&last_call_desc, sizeof (struct call_desc));
2265 continue;
025b0302 2266 }
8f78d0e9
KR
2267
2268 /* Handle an absolute 17 bit branch target. */
2269 case 'z':
025b0302 2270 the_insn.field_selector = pa_chk_field_selector (&s);
8f78d0e9 2271 get_expression (s);
48153d49 2272 s = expr_end;
025b0302 2273 the_insn.pcrel = 0;
c5e9ccd0 2274 if (!the_insn.exp.X_add_symbol
48153d49
JL
2275 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2276 "L$0\001"))
025b0302 2277 {
48153d49 2278 unsigned int w2, w1, w, result;
c5e9ccd0 2279
48153d49
JL
2280 num = evaluate_absolute (&the_insn);
2281 if (num % 4)
025b0302 2282 {
48153d49
JL
2283 as_bad ("Branch to unaligned address");
2284 break;
025b0302 2285 }
48153d49
JL
2286 CHECK_FIELD (num, 262143, -262144, 0);
2287
2288 if (the_insn.exp.X_add_symbol)
2289 num -= 8;
2290
2291 sign_unext (num >> 2, 17, &result);
2292 dis_assemble_17 (result, &w1, &w2, &w);
c5e9ccd0
JL
2293 INSERT_FIELD_AND_CONTINUE (opcode,
2294 ((w2 << 2) | (w1 << 16) | w), 0);
025b0302
ME
2295 }
2296 else
2297 {
48153d49
JL
2298 if (is_complex (the_insn.exp))
2299 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2300 else
2301 the_insn.reloc = R_HPPA_ABS_CALL;
2302 the_insn.format = 17;
2303 continue;
025b0302 2304 }
8f78d0e9
KR
2305
2306 /* Handle a 5 bit shift count at 26. */
2307 case 'p':
48153d49 2308 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2309 s = expr_end;
48153d49
JL
2310 CHECK_FIELD (num, 31, 0, 0);
2311 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
8f78d0e9
KR
2312
2313 /* Handle a 5 bit bit position at 26. */
2314 case 'P':
48153d49 2315 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2316 s = expr_end;
48153d49
JL
2317 CHECK_FIELD (num, 31, 0, 0);
2318 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
8f78d0e9
KR
2319
2320 /* Handle a 5 bit immediate at 10. */
2321 case 'Q':
48153d49 2322 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2323 s = expr_end;
48153d49
JL
2324 CHECK_FIELD (num, 31, 0, 0);
2325 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
8f78d0e9
KR
2326
2327 /* Handle a 13 bit immediate at 18. */
2328 case 'A':
48153d49 2329 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2330 s = expr_end;
48153d49
JL
2331 CHECK_FIELD (num, 4095, -4096, 0);
2332 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
8f78d0e9
KR
2333
2334 /* Handle a 26 bit immediate at 31. */
2335 case 'D':
48153d49 2336 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2337 s = expr_end;
48153d49
JL
2338 CHECK_FIELD (num, 671108864, 0, 0);
2339 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
8f78d0e9
KR
2340
2341 /* Handle a 3 bit SFU identifier at 25. */
2342 case 'f':
48153d49
JL
2343 num = pa_get_absolute_expression (&the_insn, &s);
2344 s = expr_end;
2345 CHECK_FIELD (num, 7, 0, 0);
2346 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
8f78d0e9
KR
2347
2348 /* We don't support any of these. FIXME. */
2349 case 'O':
2350 get_expression (s);
025b0302 2351 s = expr_end;
8f78d0e9 2352 abort ();
025b0302 2353 continue;
8f78d0e9
KR
2354
2355 /* Handle a source FP operand format completer. */
2356 case 'F':
2357 flag = pa_parse_fp_format (&s);
8f78d0e9 2358 the_insn.fpof1 = flag;
48153d49 2359 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
8f78d0e9
KR
2360
2361 /* Handle a destination FP operand format completer. */
2362 case 'G':
8f78d0e9
KR
2363 /* pa_parse_format needs the ',' prefix. */
2364 s--;
2365 flag = pa_parse_fp_format (&s);
8f78d0e9 2366 the_insn.fpof2 = flag;
48153d49 2367 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
8f78d0e9
KR
2368
2369 /* Handle FP compare conditions. */
2370 case 'M':
025b0302 2371 cond = pa_parse_fp_cmp_cond (&s);
48153d49 2372 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
025b0302 2373
8f78d0e9
KR
2374 /* Handle L/R register halves like 't'. */
2375 case 'v':
025b0302
ME
2376 {
2377 struct pa_89_fp_reg_struct result;
025b0302 2378
8f78d0e9 2379 pa_parse_number (&s, &result);
48153d49
JL
2380 CHECK_FIELD (result.number_part, 31, 0, 0);
2381 opcode |= result.number_part;
025b0302 2382
48153d49
JL
2383 /* 0x30 opcodes are FP arithmetic operation opcodes
2384 and need to be turned into 0x38 opcodes. This
2385 is not necessary for loads/stores. */
2386 if (need_89_opcode (&the_insn, &result)
2387 && ((opcode & 0xfc000000) == 0x30000000))
2388 opcode |= 1 << 27;
2389
2390 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
025b0302 2391 }
8f78d0e9
KR
2392
2393 /* Handle L/R register halves like 'b'. */
2394 case 'E':
025b0302
ME
2395 {
2396 struct pa_89_fp_reg_struct result;
025b0302 2397
8f78d0e9 2398 pa_parse_number (&s, &result);
48153d49
JL
2399 CHECK_FIELD (result.number_part, 31, 0, 0);
2400 opcode |= result.number_part << 21;
2401 if (need_89_opcode (&the_insn, &result))
025b0302 2402 {
48153d49
JL
2403 opcode |= (result.l_r_select & 1) << 7;
2404 opcode |= 1 << 27;
025b0302 2405 }
48153d49 2406 continue;
025b0302 2407 }
025b0302 2408
8f78d0e9
KR
2409 /* Handle L/R register halves like 'x'. */
2410 case 'X':
025b0302
ME
2411 {
2412 struct pa_89_fp_reg_struct result;
025b0302 2413
8f78d0e9 2414 pa_parse_number (&s, &result);
48153d49
JL
2415 CHECK_FIELD (result.number_part, 31, 0, 0);
2416 opcode |= (result.number_part & 0x1f) << 16;
2417 if (need_89_opcode (&the_insn, &result))
025b0302 2418 {
48153d49
JL
2419 opcode |= (result.l_r_select & 1) << 12;
2420 opcode |= 1 << 27;
025b0302 2421 }
48153d49 2422 continue;
025b0302 2423 }
025b0302 2424
8f78d0e9
KR
2425 /* Handle a 5 bit register field at 10. */
2426 case '4':
025b0302
ME
2427 {
2428 struct pa_89_fp_reg_struct result;
48153d49
JL
2429
2430 pa_parse_number (&s, &result);
2431 CHECK_FIELD (result.number_part, 31, 0, 0);
2432 if (the_insn.fpof1 == SGL)
025b0302 2433 {
48153d49
JL
2434 result.number_part &= 0xF;
2435 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2436 }
48153d49 2437 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
025b0302 2438 }
025b0302 2439
8f78d0e9
KR
2440 /* Handle a 5 bit register field at 15. */
2441 case '6':
025b0302
ME
2442 {
2443 struct pa_89_fp_reg_struct result;
025b0302 2444
48153d49
JL
2445 pa_parse_number (&s, &result);
2446 CHECK_FIELD (result.number_part, 31, 0, 0);
2447 if (the_insn.fpof1 == SGL)
025b0302 2448 {
48153d49
JL
2449 result.number_part &= 0xF;
2450 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2451 }
48153d49 2452 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
025b0302 2453 }
025b0302 2454
8f78d0e9
KR
2455 /* Handle a 5 bit register field at 31. */
2456 case '7':
025b0302
ME
2457 {
2458 struct pa_89_fp_reg_struct result;
025b0302 2459
48153d49
JL
2460 pa_parse_number (&s, &result);
2461 CHECK_FIELD (result.number_part, 31, 0, 0);
2462 if (the_insn.fpof1 == SGL)
025b0302 2463 {
48153d49
JL
2464 result.number_part &= 0xF;
2465 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2466 }
48153d49 2467 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
025b0302 2468 }
025b0302 2469
8f78d0e9
KR
2470 /* Handle a 5 bit register field at 20. */
2471 case '8':
025b0302
ME
2472 {
2473 struct pa_89_fp_reg_struct result;
025b0302 2474
48153d49
JL
2475 pa_parse_number (&s, &result);
2476 CHECK_FIELD (result.number_part, 31, 0, 0);
2477 if (the_insn.fpof1 == SGL)
025b0302 2478 {
48153d49
JL
2479 result.number_part &= 0xF;
2480 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2481 }
48153d49 2482 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
025b0302 2483 }
025b0302 2484
8f78d0e9
KR
2485 /* Handle a 5 bit register field at 25. */
2486 case '9':
025b0302
ME
2487 {
2488 struct pa_89_fp_reg_struct result;
025b0302 2489
48153d49
JL
2490 pa_parse_number (&s, &result);
2491 CHECK_FIELD (result.number_part, 31, 0, 0);
2492 if (the_insn.fpof1 == SGL)
025b0302 2493 {
48153d49
JL
2494 result.number_part &= 0xF;
2495 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2496 }
48153d49 2497 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
025b0302 2498 }
025b0302 2499
8f78d0e9
KR
2500 /* Handle a floating point operand format at 26.
2501 Only allows single and double precision. */
2502 case 'H':
2503 flag = pa_parse_fp_format (&s);
2504 switch (flag)
025b0302
ME
2505 {
2506 case SGL:
2507 opcode |= 0x20;
2508 case DBL:
8f78d0e9 2509 the_insn.fpof1 = flag;
025b0302
ME
2510 continue;
2511
2512 case QUAD:
2513 case ILLEGAL_FMT:
2514 default:
8f78d0e9 2515 as_bad ("Invalid Floating Point Operand Format.");
025b0302
ME
2516 }
2517 break;
2518
2519 default:
2520 abort ();
2521 }
2522 break;
2523 }
892a3ff1 2524
8f78d0e9 2525 /* Check if the args matched. */
025b0302
ME
2526 if (match == FALSE)
2527 {
025b0302
ME
2528 if (&insn[1] - pa_opcodes < NUMOPCODES
2529 && !strcmp (insn->name, insn[1].name))
2530 {
2531 ++insn;
8f78d0e9 2532 s = argstart;
025b0302
ME
2533 continue;
2534 }
2535 else
2536 {
8f78d0e9 2537 as_bad ("Invalid operands %s", error_message);
025b0302
ME
2538 return;
2539 }
2540 }
2541 break;
2542 }
2543
2544 the_insn.opcode = opcode;
025b0302
ME
2545 return;
2546}
2547
8f78d0e9 2548/* Turn a string in input_line_pointer into a floating point constant of type
025b0302 2549 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
8f78d0e9 2550 emitted is stored in *sizeP . An error message or NULL is returned. */
025b0302 2551
025b0302
ME
2552#define MAX_LITTLENUMS 6
2553
2554char *
2555md_atof (type, litP, sizeP)
2556 char type;
2557 char *litP;
2558 int *sizeP;
2559{
2560 int prec;
2561 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2562 LITTLENUM_TYPE *wordP;
2563 char *t;
025b0302
ME
2564
2565 switch (type)
2566 {
2567
2568 case 'f':
2569 case 'F':
2570 case 's':
2571 case 'S':
2572 prec = 2;
2573 break;
2574
2575 case 'd':
2576 case 'D':
2577 case 'r':
2578 case 'R':
2579 prec = 4;
2580 break;
2581
2582 case 'x':
2583 case 'X':
2584 prec = 6;
2585 break;
2586
2587 case 'p':
2588 case 'P':
2589 prec = 6;
2590 break;
2591
2592 default:
2593 *sizeP = 0;
2594 return "Bad call to MD_ATOF()";
2595 }
2596 t = atof_ieee (input_line_pointer, type, words);
2597 if (t)
2598 input_line_pointer = t;
2599 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2600 for (wordP = words; prec--;)
2601 {
8f78d0e9 2602 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
025b0302
ME
2603 litP += sizeof (LITTLENUM_TYPE);
2604 }
aa8b30ed 2605 return NULL;
025b0302
ME
2606}
2607
8f78d0e9
KR
2608/* Write out big-endian. */
2609
025b0302
ME
2610void
2611md_number_to_chars (buf, val, n)
2612 char *buf;
2613 valueT val;
2614 int n;
2615{
2616
2617 switch (n)
2618 {
025b0302
ME
2619 case 4:
2620 *buf++ = val >> 24;
2621 *buf++ = val >> 16;
2622 case 2:
2623 *buf++ = val >> 8;
2624 case 1:
2625 *buf = val;
2626 break;
025b0302
ME
2627 default:
2628 abort ();
2629 }
2630 return;
2631}
2632
025b0302 2633/* Translate internal representation of relocation info to BFD target
62f0841b 2634 format. */
8f78d0e9 2635
025b0302
ME
2636arelent **
2637tc_gen_reloc (section, fixp)
2638 asection *section;
2639 fixS *fixp;
2640{
2641 arelent *reloc;
aa8b30ed 2642 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
025b0302
ME
2643 bfd_reloc_code_real_type code;
2644 static int unwind_reloc_fixp_cnt = 0;
2645 static arelent *unwind_reloc_entryP = NULL;
2646 static arelent *no_relocs = NULL;
2647 arelent **relocs;
2648 bfd_reloc_code_real_type **codes;
2649 int n_relocs;
2650 int i;
2651
2652 if (fixp->fx_addsy == 0)
2653 return &no_relocs;
2654 assert (hppa_fixp != 0);
2655 assert (section != 0);
2656
62f0841b
JL
2657#ifdef OBJ_ELF
2658 /* Yuk. I would really like to push all this ELF specific unwind
2659 crud into BFD and the linker. That's how SOM does it -- and
2660 if we could make ELF emulate that then we could share more code
2661 in GAS (and potentially a gnu-linker later).
2662
2663 Unwind section relocations are handled in a special way.
8f78d0e9
KR
2664 The relocations for the .unwind section are originally
2665 built in the usual way. That is, for each unwind table
2666 entry there are two relocations: one for the beginning of
2667 the function and one for the end.
2668
2669 The first time we enter this function we create a
2670 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2671 of the relocation is initialized to 0. Each additional
2672 pair of times this function is called for the unwind
2673 section represents an additional unwind table entry. Thus,
2674 the addend of the relocation should end up to be the number
2675 of unwind table entries. */
025b0302
ME
2676 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2677 {
2678 if (unwind_reloc_entryP == NULL)
2679 {
c5e9ccd0 2680 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
8f78d0e9 2681 sizeof (arelent));
025b0302
ME
2682 assert (reloc != 0);
2683 unwind_reloc_entryP = reloc;
2684 unwind_reloc_fixp_cnt++;
8f78d0e9
KR
2685 unwind_reloc_entryP->address
2686 = fixp->fx_frag->fr_address + fixp->fx_where;
2687 /* A pointer to any function will do. We only
2688 need one to tell us what section the unwind
2689 relocations are for. */
025b0302 2690 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
8f78d0e9
KR
2691 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2692 fixp->fx_r_type = R_HPPA_UNWIND;
025b0302
ME
2693 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2694 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
8f78d0e9
KR
2695 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2696 sizeof (arelent *) * 2);
025b0302
ME
2697 assert (relocs != 0);
2698 relocs[0] = unwind_reloc_entryP;
2699 relocs[1] = NULL;
2700 return relocs;
2701 }
2702 unwind_reloc_fixp_cnt++;
2703 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2704
2705 return &no_relocs;
2706 }
62f0841b 2707#endif
025b0302
ME
2708
2709 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2710 assert (reloc != 0);
2711
2712 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
aa8b30ed
JL
2713 codes = hppa_gen_reloc_type (stdoutput,
2714 fixp->fx_r_type,
2715 hppa_fixp->fx_r_format,
2716 hppa_fixp->fx_r_field);
025b0302
ME
2717
2718 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2719 ;
2720
8f78d0e9
KR
2721 relocs = (arelent **)
2722 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
025b0302
ME
2723 assert (relocs != 0);
2724
8f78d0e9
KR
2725 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2726 sizeof (arelent) * n_relocs);
025b0302
ME
2727 if (n_relocs > 0)
2728 assert (reloc != 0);
2729
2730 for (i = 0; i < n_relocs; i++)
2731 relocs[i] = &reloc[i];
2732
2733 relocs[n_relocs] = NULL;
2734
62f0841b 2735#ifdef OBJ_ELF
025b0302
ME
2736 switch (fixp->fx_r_type)
2737 {
2738 case R_HPPA_COMPLEX:
2739 case R_HPPA_COMPLEX_PCREL_CALL:
2740 case R_HPPA_COMPLEX_ABS_CALL:
2741 assert (n_relocs == 5);
2742
2743 for (i = 0; i < n_relocs; i++)
2744 {
2745 reloc[i].sym_ptr_ptr = NULL;
2746 reloc[i].address = 0;
2747 reloc[i].addend = 0;
2748 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2749 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2750 }
2751
2752 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2753 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2754 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2755
2756 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2757 reloc[3].addend = fixp->fx_addnumber;
2758 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2759 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2760 reloc[1].addend = fixp->fx_addnumber;
2761
2762 break;
2763
2764 default:
2765 assert (n_relocs == 1);
2766
2767 code = *codes[0];
2768
2769 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2770 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2771 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2772 reloc->addend = 0; /* default */
2773
2774 assert (reloc->howto && code == reloc->howto->type);
2775
8f78d0e9 2776 /* Now, do any processing that is dependent on the relocation type. */
025b0302
ME
2777 switch (code)
2778 {
2779 case R_HPPA_PLABEL_32:
2780 case R_HPPA_PLABEL_11:
2781 case R_HPPA_PLABEL_14:
2782 case R_HPPA_PLABEL_L21:
2783 case R_HPPA_PLABEL_R11:
2784 case R_HPPA_PLABEL_R14:
8f78d0e9
KR
2785 /* For plabel relocations, the addend of the
2786 relocation should be either 0 (no static link) or 2
2787 (static link required).
2788
2789 FIXME: assume that fx_addnumber contains this
2790 information */
025b0302
ME
2791 reloc->addend = fixp->fx_addnumber;
2792 break;
2793
2794 case R_HPPA_ABS_CALL_11:
2795 case R_HPPA_ABS_CALL_14:
2796 case R_HPPA_ABS_CALL_17:
2797 case R_HPPA_ABS_CALL_L21:
2798 case R_HPPA_ABS_CALL_R11:
2799 case R_HPPA_ABS_CALL_R14:
2800 case R_HPPA_ABS_CALL_R17:
2801 case R_HPPA_ABS_CALL_LS21:
2802 case R_HPPA_ABS_CALL_RS11:
2803 case R_HPPA_ABS_CALL_RS14:
2804 case R_HPPA_ABS_CALL_RS17:
2805 case R_HPPA_ABS_CALL_LD21:
2806 case R_HPPA_ABS_CALL_RD11:
2807 case R_HPPA_ABS_CALL_RD14:
2808 case R_HPPA_ABS_CALL_RD17:
2809 case R_HPPA_ABS_CALL_LR21:
2810 case R_HPPA_ABS_CALL_RR14:
2811 case R_HPPA_ABS_CALL_RR17:
2812
2813 case R_HPPA_PCREL_CALL_11:
2814 case R_HPPA_PCREL_CALL_14:
2815 case R_HPPA_PCREL_CALL_17:
2816 case R_HPPA_PCREL_CALL_L21:
2817 case R_HPPA_PCREL_CALL_R11:
2818 case R_HPPA_PCREL_CALL_R14:
2819 case R_HPPA_PCREL_CALL_R17:
2820 case R_HPPA_PCREL_CALL_LS21:
2821 case R_HPPA_PCREL_CALL_RS11:
2822 case R_HPPA_PCREL_CALL_RS14:
2823 case R_HPPA_PCREL_CALL_RS17:
2824 case R_HPPA_PCREL_CALL_LD21:
2825 case R_HPPA_PCREL_CALL_RD11:
2826 case R_HPPA_PCREL_CALL_RD14:
2827 case R_HPPA_PCREL_CALL_RD17:
2828 case R_HPPA_PCREL_CALL_LR21:
2829 case R_HPPA_PCREL_CALL_RR14:
2830 case R_HPPA_PCREL_CALL_RR17:
8f78d0e9
KR
2831 /* The constant is stored in the instruction. */
2832 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
025b0302
ME
2833 break;
2834 default:
2835 reloc->addend = fixp->fx_addnumber;
2836 break;
2837 }
2838 break;
2839 }
62f0841b 2840#else /* OBJ_SOM */
025b0302 2841
62f0841b
JL
2842 /* Preliminary relocation handling for SOM. Needs to handle
2843 COMPLEX relocations (yes, I've seen them occur) and it will
2844 need to handle R_ENTRY/R_EXIT relocations in the very near future
2845 (for generating unwinds). */
2846 switch (fixp->fx_r_type)
2847 {
2848 case R_HPPA_COMPLEX:
2849 case R_HPPA_COMPLEX_PCREL_CALL:
2850 case R_HPPA_COMPLEX_ABS_CALL:
c5e9ccd0 2851 abort ();
62f0841b
JL
2852 break;
2853 default:
2854 assert (n_relocs == 1);
c5e9ccd0 2855
62f0841b 2856 code = *codes[0];
c5e9ccd0 2857
62f0841b
JL
2858 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2859 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
c5e9ccd0 2860 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
025b0302 2861
62f0841b
JL
2862 switch (code)
2863 {
2864 case R_PCREL_CALL:
2865 case R_ABS_CALL:
2866 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
2867 break;
f2eed884
JL
2868
2869 case R_DATA_PLABEL:
2870 case R_CODE_PLABEL:
2871 /* For plabel relocations, the addend of the
2872 relocation should be either 0 (no static link) or 2
2873 (static link required).
2874
2875 FIXME: We always assume no static link! */
2876 reloc->addend = 0;
2877 break;
2878
62f0841b
JL
2879 default:
2880 reloc->addend = fixp->fx_addnumber;
2881 break;
2882 }
2883 break;
2884 }
025b0302
ME
2885#endif
2886
62f0841b
JL
2887 return relocs;
2888}
2889
8f78d0e9
KR
2890/* Process any machine dependent frag types. */
2891
025b0302
ME
2892void
2893md_convert_frag (abfd, sec, fragP)
2894 register bfd *abfd;
2895 register asection *sec;
2896 register fragS *fragP;
2897{
2898 unsigned int address;
2899
2900 if (fragP->fr_type == rs_machine_dependent)
2901 {
2902 switch ((int) fragP->fr_subtype)
2903 {
2904 case 0:
2905 fragP->fr_type = rs_fill;
2906 know (fragP->fr_var == 1);
2907 know (fragP->fr_next);
2908 address = fragP->fr_address + fragP->fr_fix;
2909 if (address % fragP->fr_offset)
2910 {
2911 fragP->fr_offset =
2912 fragP->fr_next->fr_address
2913 - fragP->fr_address
2914 - fragP->fr_fix;
2915 }
2916 else
2917 fragP->fr_offset = 0;
2918 break;
2919 }
8f78d0e9
KR
2920 }
2921}
025b0302 2922
8f78d0e9 2923/* Round up a section size to the appropriate boundary. */
025b0302 2924
8f78d0e9
KR
2925valueT
2926md_section_align (segment, size)
2927 asection *segment;
2928 valueT size;
025b0302 2929{
8f78d0e9
KR
2930 int align = bfd_get_section_alignment (stdoutput, segment);
2931 int align2 = (1 << align) - 1;
025b0302 2932
8f78d0e9 2933 return (size + align2) & ~align2;
025b0302 2934
8f78d0e9 2935}
025b0302 2936
8f78d0e9
KR
2937/* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2938void
2939md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2940 char *ptr;
2941 addressT from_addr, to_addr;
2942 fragS *frag;
2943 symbolS *to_symbol;
2944{
2945 fprintf (stderr, "pa_create_short_jmp\n");
2946 abort ();
2947}
025b0302 2948
8f78d0e9
KR
2949/* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2950void
2951md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2952 char *ptr;
2953 addressT from_addr, to_addr;
2954 fragS *frag;
2955 symbolS *to_symbol;
2956{
2957 fprintf (stderr, "pa_create_long_jump\n");
2958 abort ();
025b0302
ME
2959}
2960
8f78d0e9
KR
2961/* Return the approximate size of a frag before relaxation has occurred. */
2962int
2963md_estimate_size_before_relax (fragP, segment)
2964 register fragS *fragP;
2965 asection *segment;
025b0302 2966{
8f78d0e9
KR
2967 int size;
2968
2969 size = 0;
2970
2971 while ((fragP->fr_fix + size) % fragP->fr_offset)
2972 size++;
2973
2974 return size;
025b0302
ME
2975}
2976
c5e9ccd0 2977/* Parse machine dependent options. There are none on the PA. */
8f78d0e9
KR
2978int
2979md_parse_option (argP, cntP, vecP)
2980 char **argP;
2981 int *cntP;
2982 char ***vecP;
025b0302 2983{
8f78d0e9
KR
2984 return 1;
2985}
025b0302 2986
8f78d0e9
KR
2987/* We have no need to default values of symbols. */
2988
2989symbolS *
2990md_undefined_symbol (name)
2991 char *name;
2992{
2993 return 0;
025b0302
ME
2994}
2995
8f78d0e9
KR
2996/* Parse an operand that is machine-specific.
2997 We just return without modifying the expression as we have nothing
2998 to do on the PA. */
2999
3000void
3001md_operand (expressionP)
3002 expressionS *expressionP;
025b0302 3003{
8f78d0e9 3004}
025b0302 3005
8f78d0e9
KR
3006/* Helper function for md_apply_fix. Actually determine if the fix
3007 can be applied, and if so, apply it.
3008
3009 If a fix is applied, then set fx_addsy to NULL which indicates
3010 the fix was applied and need not be emitted into the object file. */
3011
3012static void
3013md_apply_fix_1 (fixP, val)
3014 fixS *fixP;
3015 long val;
025b0302 3016{
8f78d0e9 3017 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
aa8b30ed 3018 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
8f78d0e9
KR
3019 long new_val, result;
3020 unsigned int w1, w2, w;
3021
ff852e11
JL
3022 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
3023 never be "applied". They must always be emitted. */
3024#ifdef OBJ_SOM
3025 if (fixP->fx_r_type == R_HPPA_ENTRY
3026 || fixP->fx_r_type == R_HPPA_EXIT)
3027 return;
3028#endif
3029
8f78d0e9
KR
3030 /* There should have been an HPPA specific fixup associated
3031 with the GAS fixup. */
3032 if (hppa_fixP)
3033 {
3034 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
aa8b30ed 3035 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
8f78d0e9 3036
aa8b30ed
JL
3037 if (fixP->fx_r_type == R_HPPA_NONE)
3038 fmt = 0;
8f78d0e9
KR
3039
3040 /* Remember this value for emit_reloc. FIXME, is this braindamage
c5e9ccd0 3041 documented anywhere!?! */
8f78d0e9
KR
3042 fixP->fx_addnumber = val;
3043
3044 /* Check if this is an undefined symbol. No relocation can
3045 possibly be performed in this case. */
3046 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
3047 || (fixP->fx_subsy
3048 && fixP->fx_subsy->bsym->section == &bfd_und_section))
3049 return;
3050
f2eed884
JL
3051 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
3052 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
3053 && hppa_fixP->fx_r_field != R_HPPA_RPSEL)
48153d49
JL
3054 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3055 else
3056 new_val = 0;
3057
8f78d0e9
KR
3058 switch (fmt)
3059 {
3060 /* Handle all opcodes with the 'j' operand type. */
3061 case 14:
48153d49 3062 CHECK_FIELD (new_val, 8191, -8192, 0);
8f78d0e9
KR
3063
3064 /* Mask off 14 bits to be changed. */
3065 bfd_put_32 (stdoutput,
3066 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3067 buf);
3068 low_sign_unext (new_val, 14, &result);
3069 break;
3070
3071 /* Handle all opcodes with the 'k' operand type. */
3072 case 21:
48153d49 3073 CHECK_FIELD (new_val, 2097152, 0, 0);
8f78d0e9
KR
3074
3075 /* Mask off 21 bits to be changed. */
3076 bfd_put_32 (stdoutput,
3077 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3078 buf);
3079 dis_assemble_21 (new_val, &result);
3080 break;
3081
3082 /* Handle all the opcodes with the 'i' operand type. */
3083 case 11:
48153d49 3084 CHECK_FIELD (new_val, 1023, -1023, 0);
8f78d0e9
KR
3085
3086 /* Mask off 11 bits to be changed. */
3087 bfd_put_32 (stdoutput,
3088 bfd_get_32 (stdoutput, buf) & 0xffff800,
3089 buf);
3090 low_sign_unext (new_val, 11, &result);
3091 break;
3092
3093 /* Handle all the opcodes with the 'w' operand type. */
3094 case 12:
48153d49 3095 CHECK_FIELD (new_val, 8191, -8192, 0)
8f78d0e9
KR
3096
3097 /* Mask off 11 bits to be changed. */
c5e9ccd0 3098 sign_unext ((new_val - 8) >> 2, 12, &result);
8f78d0e9
KR
3099 bfd_put_32 (stdoutput,
3100 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3101 buf);
3102
3103 dis_assemble_12 (result, &w1, &w);
3104 result = ((w1 << 2) | w);
8f78d0e9
KR
3105 break;
3106
8f78d0e9
KR
3107#define stub_needed(CALLER, CALLEE) \
3108 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
3109
3110 /* Handle some of the opcodes with the 'W' operand type. */
3111 case 17:
c5e9ccd0 3112 /* If a long-call stub or argument relocation stub is
8f78d0e9
KR
3113 needed, then we can not apply this relocation, instead
3114 the linker must handle it. */
48153d49 3115 if (new_val > 262143 || new_val < -262144
aa8b30ed 3116 || stub_needed (((obj_symbol_type *)
8f78d0e9
KR
3117 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3118 hppa_fixP->fx_arg_reloc))
3119 return;
3120
3121 /* No stubs were needed, we can perform this relocation. */
48153d49 3122 CHECK_FIELD (new_val, 262143, -262144, 0);
8f78d0e9
KR
3123
3124 /* Mask off 17 bits to be changed. */
3125 bfd_put_32 (stdoutput,
3126 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3127 buf);
3128 sign_unext ((new_val - 8) >> 2, 17, &result);
3129 dis_assemble_17 (result, &w1, &w2, &w);
3130 result = ((w2 << 2) | (w1 << 16) | w);
8f78d0e9
KR
3131 break;
3132
3133#undef too_far
3134#undef stub_needed
3135
3136 case 32:
aa8b30ed 3137#ifdef OBJ_ELF
ff852e11
JL
3138 /* These are ELF specific relocations. ELF unfortunately
3139 handles unwinds in a completely different manner. */
8f78d0e9
KR
3140 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3141 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3142 result = fixP->fx_addnumber;
3143 else
aa8b30ed 3144#endif
8f78d0e9
KR
3145 {
3146 result = 0;
3147 fixP->fx_addnumber = fixP->fx_offset;
3148 bfd_put_32 (stdoutput, 0, buf);
3149 return;
3150 }
3151 break;
3152
3153 case 0:
3154 return;
3155
3156 default:
48153d49 3157 as_bad ("Unknown relocation encountered in md_apply_fix.");
8f78d0e9
KR
3158 return;
3159 }
3160
3161 /* Insert the relocation. */
48153d49 3162 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
8f78d0e9 3163 }
025b0302 3164 else
8f78d0e9
KR
3165 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3166 (unsigned int) fixP, fixP->fx_r_type);
025b0302 3167}
8f78d0e9
KR
3168
3169/* Apply a fix into a frag's data (if possible). */
025b0302
ME
3170
3171int
8f78d0e9
KR
3172md_apply_fix (fixP, valp)
3173 fixS *fixP;
3174 valueT *valp;
3175{
3176 md_apply_fix_1 (fixP, (long) *valp);
3177 return 1;
3178}
3179
3180/* Exactly what point is a PC-relative offset relative TO?
3181 On the PA, they're relative to the address of the offset. */
3182
3183long
3184md_pcrel_from (fixP)
3185 fixS *fixP;
3186{
3187 return fixP->fx_where + fixP->fx_frag->fr_address;
3188}
3189
3190/* Return nonzero if the input line pointer is at the end of
3191 a statement. */
3192
3193static int
3194is_end_of_statement ()
3195{
3196 return ((*input_line_pointer == '\n')
3197 || (*input_line_pointer == ';')
3198 || (*input_line_pointer == '!'));
3199}
3200
3201/* Read a number from S. The number might come in one of many forms,
3202 the most common will be a hex or decimal constant, but it could be
3203 a pre-defined register (Yuk!), or an absolute symbol.
3204
3205 Return a number or -1 for failure.
3206
3207 When parsing PA-89 FP register numbers RESULT will be
3208 the address of a structure to return information about
3209 L/R half of FP registers, store results there as appropriate.
3210
3211 pa_parse_number can not handle negative constants and will fail
3212 horribly if it is passed such a constant. */
3213
3214static int
3215pa_parse_number (s, result)
025b0302
ME
3216 char **s;
3217 struct pa_89_fp_reg_struct *result;
3218{
3219 int num;
3220 char *name;
3221 char c;
3222 symbolS *sym;
3223 int status;
3224 char *p = *s;
3225
8f78d0e9 3226 /* Skip whitespace before the number. */
025b0302
ME
3227 while (*p == ' ' || *p == '\t')
3228 p = p + 1;
8f78d0e9
KR
3229
3230 /* Store info in RESULT if requested by caller. */
3231 if (result)
3232 {
3233 result->number_part = -1;
3234 result->l_r_select = -1;
3235 }
3236 num = -1;
025b0302
ME
3237
3238 if (isdigit (*p))
3239 {
8f78d0e9
KR
3240 /* Looks like a number. */
3241 num = 0;
025b0302
ME
3242
3243 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
8f78d0e9
KR
3244 {
3245 /* The number is specified in hex. */
3246 p += 2;
025b0302
ME
3247 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3248 || ((*p >= 'A') && (*p <= 'F')))
3249 {
3250 if (isdigit (*p))
3251 num = num * 16 + *p - '0';
3252 else if (*p >= 'a' && *p <= 'f')
3253 num = num * 16 + *p - 'a' + 10;
3254 else
3255 num = num * 16 + *p - 'A' + 10;
3256 ++p;
3257 }
3258 }
3259 else
3260 {
8f78d0e9 3261 /* The number is specified in decimal. */
025b0302
ME
3262 while (isdigit (*p))
3263 {
3264 num = num * 10 + *p - '0';
3265 ++p;
3266 }
3267 }
3268
8f78d0e9
KR
3269 /* Store info in RESULT if requested by the caller. */
3270 if (result)
025b0302 3271 {
8f78d0e9 3272 result->number_part = num;
025b0302 3273
8f78d0e9
KR
3274 if (IS_R_SELECT (p))
3275 {
3276 result->l_r_select = 1;
3277 ++p;
3278 }
3279 else if (IS_L_SELECT (p))
3280 {
3281 result->l_r_select = 0;
3282 ++p;
3283 }
3284 else
3285 result->l_r_select = 0;
3286 }
025b0302
ME
3287 }
3288 else if (*p == '%')
8f78d0e9
KR
3289 {
3290 /* The number might be a predefined register. */
025b0302
ME
3291 num = 0;
3292 name = p;
3293 p++;
3294 c = *p;
8f78d0e9
KR
3295 /* Tege hack: Special case for general registers as the general
3296 code makes a binary search with case translation, and is VERY
3297 slow. */
025b0302
ME
3298 if (c == 'r')
3299 {
3300 p++;
8f78d0e9
KR
3301 if (*p == 'e' && *(p + 1) == 't'
3302 && (*(p + 2) == '0' || *(p + 2) == '1'))
025b0302
ME
3303 {
3304 p += 2;
8f78d0e9 3305 num = *p - '0' + 28;
025b0302
ME
3306 p++;
3307 }
d6e524f3
JL
3308 else if (*p == 'p')
3309 {
3310 num = 2;
3311 p++;
3312 }
025b0302 3313 else if (!isdigit (*p))
d6e524f3
JL
3314 {
3315 if (print_errors)
3316 as_bad ("Undefined register: '%s'.", name);
3317 num = -1;
3318 }
025b0302
ME
3319 else
3320 {
3321 do
3322 num = num * 10 + *p++ - '0';
3323 while (isdigit (*p));
3324 }
3325 }
3326 else
3327 {
8f78d0e9 3328 /* Do a normal register search. */
025b0302
ME
3329 while (is_part_of_name (c))
3330 {
3331 p = p + 1;
3332 c = *p;
3333 }
3334 *p = 0;
3335 status = reg_name_search (name);
3336 if (status >= 0)
3337 num = status;
3338 else
3339 {
3340 if (print_errors)
d6e524f3
JL
3341 as_bad ("Undefined register: '%s'.", name);
3342 num = -1;
025b0302
ME
3343 }
3344 *p = c;
3345 }
3346
8f78d0e9
KR
3347 /* Store info in RESULT if requested by caller. */
3348 if (result)
3349 {
3350 result->number_part = num;
3351 if (IS_R_SELECT (p - 1))
3352 result->l_r_select = 1;
3353 else if (IS_L_SELECT (p - 1))
3354 result->l_r_select = 0;
3355 else
3356 result->l_r_select = 0;
3357 }
025b0302
ME
3358 }
3359 else
3360 {
8f78d0e9
KR
3361 /* And finally, it could be a symbol in the absolute section which
3362 is effectively a constant. */
025b0302
ME
3363 num = 0;
3364 name = p;
3365 c = *p;
3366 while (is_part_of_name (c))
3367 {
3368 p = p + 1;
3369 c = *p;
3370 }
3371 *p = 0;
3372 if ((sym = symbol_find (name)) != NULL)
3373 {
025b0302 3374 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
8f78d0e9 3375 num = S_GET_VALUE (sym);
025b0302
ME
3376 else
3377 {
3378 if (print_errors)
d6e524f3
JL
3379 as_bad ("Non-absolute symbol: '%s'.", name);
3380 num = -1;
025b0302
ME
3381 }
3382 }
3383 else
3384 {
d6e524f3
JL
3385 /* There is where we'd come for an undefined symbol
3386 or for an empty string. For an empty string we
3387 will return zero. That's a concession made for
3388 compatability with the braindamaged HP assemblers. */
1cc248d2 3389 if (*name == 0)
d6e524f3 3390 num = 0;
025b0302 3391 else
d6e524f3
JL
3392 {
3393 if (print_errors)
3394 as_bad ("Undefined absolute constant: '%s'.", name);
3395 num = -1;
3396 }
025b0302
ME
3397 }
3398 *p = c;
025b0302 3399
8f78d0e9
KR
3400 /* Store info in RESULT if requested by caller. */
3401 if (result)
3402 {
3403 result->number_part = num;
3404 if (IS_R_SELECT (p - 1))
3405 result->l_r_select = 1;
3406 else if (IS_L_SELECT (p - 1))
3407 result->l_r_select = 0;
3408 else
3409 result->l_r_select = 0;
3410 }
025b0302
ME
3411 }
3412
3413 *s = p;
3414 return num;
8f78d0e9
KR
3415}
3416
3417#define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3418
3419/* Given NAME, find the register number associated with that name, return
3420 the integer value associated with the given name or -1 on failure. */
3421
3422static int
3423reg_name_search (name)
3424 char *name;
3425{
3426 int middle, low, high;
3427
3428 low = 0;
3429 high = REG_NAME_CNT - 1;
3430
3431 do
3432 {
3433 middle = (low + high) / 2;
3434 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3435 high = middle - 1;
3436 else
3437 low = middle + 1;
3438 }
3439 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3440 (low > high)));
3441
3442 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3443 return (pre_defined_registers[middle].value);
3444 else
3445 return (-1);
3446}
3447
3448
3449/* Return nonzero if the given INSN and L/R information will require
3450 a new PA-89 opcode. */
025b0302 3451
8f78d0e9
KR
3452static int
3453need_89_opcode (insn, result)
3454 struct pa_it *insn;
3455 struct pa_89_fp_reg_struct *result;
3456{
3457 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3458 return TRUE;
3459 else
3460 return FALSE;
025b0302
ME
3461}
3462
8f78d0e9
KR
3463/* Parse a condition for a fcmp instruction. Return the numerical
3464 code associated with the condition. */
c5e9ccd0 3465
8f78d0e9 3466static int
025b0302
ME
3467pa_parse_fp_cmp_cond (s)
3468 char **s;
3469{
3470 int cond, i;
025b0302
ME
3471
3472 cond = 0;
3473
3474 for (i = 0; i < 32; i++)
3475 {
8f78d0e9
KR
3476 if (strncasecmp (*s, fp_cond_map[i].string,
3477 strlen (fp_cond_map[i].string)) == 0)
025b0302 3478 {
8f78d0e9
KR
3479 cond = fp_cond_map[i].cond;
3480 *s += strlen (fp_cond_map[i].string);
025b0302
ME
3481 while (**s == ' ' || **s == '\t')
3482 *s = *s + 1;
3483 return cond;
3484 }
3485 }
3486
8f78d0e9 3487 as_bad ("Invalid FP Compare Condition: %c", **s);
025b0302
ME
3488 return 0;
3489}
3490
8f78d0e9
KR
3491/* Parse an FP operand format completer returning the completer
3492 type. */
c5e9ccd0 3493
8f78d0e9 3494static fp_operand_format
025b0302
ME
3495pa_parse_fp_format (s)
3496 char **s;
3497{
8f78d0e9 3498 int format;
025b0302 3499
8f78d0e9 3500 format = SGL;
025b0302
ME
3501 if (**s == ',')
3502 {
3503 *s += 1;
3504 if (strncasecmp (*s, "sgl", 3) == 0)
3505 {
8f78d0e9 3506 format = SGL;
025b0302
ME
3507 *s += 4;
3508 }
3509 else if (strncasecmp (*s, "dbl", 3) == 0)
3510 {
8f78d0e9 3511 format = DBL;
025b0302
ME
3512 *s += 4;
3513 }
3514 else if (strncasecmp (*s, "quad", 4) == 0)
3515 {
8f78d0e9 3516 format = QUAD;
025b0302
ME
3517 *s += 5;
3518 }
3519 else
3520 {
8f78d0e9
KR
3521 format = ILLEGAL_FMT;
3522 as_bad ("Invalid FP Operand Format: %3s", *s);
025b0302
ME
3523 }
3524 }
025b0302 3525
8f78d0e9 3526 return format;
025b0302
ME
3527}
3528
8f78d0e9
KR
3529/* Convert from a selector string into a selector type. */
3530
3531static int
025b0302
ME
3532pa_chk_field_selector (str)
3533 char **str;
3534{
3535 int selector;
18c4f112 3536 const struct selector_entry *tablep;
025b0302
ME
3537
3538 selector = e_fsel;
3539
8f78d0e9 3540 /* Read past any whitespace. */
025b0302 3541 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
8f78d0e9
KR
3542 *str = *str + 1;
3543
3544 /* Yuk. Looks like a linear search through the table. With the
3545 frequence of some selectors it might make sense to sort the
3546 table by usage. */
3547 for (tablep = selector_table; tablep->prefix; tablep++)
025b0302 3548 {
8f78d0e9 3549 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
025b0302 3550 {
8f78d0e9
KR
3551 *str += strlen (tablep->prefix);
3552 selector = tablep->field_selector;
025b0302
ME
3553 break;
3554 }
3555 }
3556 return selector;
3557}
3558
c5e9ccd0 3559/* Mark (via expr_end) the end of an expression (I think). FIXME. */
025b0302 3560
8f78d0e9
KR
3561static int
3562get_expression (str)
025b0302
ME
3563 char *str;
3564{
3565 char *save_in;
8f78d0e9 3566 asection *seg;
025b0302
ME
3567
3568 save_in = input_line_pointer;
3569 input_line_pointer = str;
5cf4cd1b
KR
3570 seg = expression (&the_insn.exp);
3571 if (!(seg == absolute_section
3572 || seg == undefined_section
3573 || SEG_NORMAL (seg)))
025b0302 3574 {
c5e9ccd0 3575 as_warn ("Bad segment in expression.");
025b0302
ME
3576 expr_end = input_line_pointer;
3577 input_line_pointer = save_in;
3578 return 1;
3579 }
3580 expr_end = input_line_pointer;
3581 input_line_pointer = save_in;
3582 return 0;
3583}
3584
8f78d0e9
KR
3585/* Mark (via expr_end) the end of an absolute expression. FIXME. */
3586static int
48153d49
JL
3587pa_get_absolute_expression (insn, strp)
3588 struct pa_it *insn;
3589 char **strp;
025b0302
ME
3590{
3591 char *save_in;
025b0302 3592
48153d49 3593 insn->field_selector = pa_chk_field_selector (strp);
025b0302 3594 save_in = input_line_pointer;
48153d49
JL
3595 input_line_pointer = *strp;
3596 expression (&insn->exp);
3597 if (insn->exp.X_op != O_constant)
025b0302 3598 {
48153d49 3599 as_bad ("Bad segment (should be absolute).");
025b0302
ME
3600 expr_end = input_line_pointer;
3601 input_line_pointer = save_in;
48153d49 3602 return 0;
025b0302
ME
3603 }
3604 expr_end = input_line_pointer;
3605 input_line_pointer = save_in;
48153d49 3606 return evaluate_absolute (insn);
025b0302
ME
3607}
3608
8f78d0e9
KR
3609/* Evaluate an absolute expression EXP which may be modified by
3610 the selector FIELD_SELECTOR. Return the value of the expression. */
3611static int
48153d49
JL
3612evaluate_absolute (insn)
3613 struct pa_it *insn;
025b0302
ME
3614{
3615 int value;
f41f3d72 3616 expressionS exp;
48153d49 3617 int field_selector = insn->field_selector;
025b0302 3618
f41f3d72 3619 exp = insn->exp;
025b0302
ME
3620 value = exp.X_add_number;
3621
025b0302
ME
3622 switch (field_selector)
3623 {
8f78d0e9
KR
3624 /* No change. */
3625 case e_fsel:
025b0302
ME
3626 break;
3627
8f78d0e9
KR
3628 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3629 case e_lssel:
025b0302
ME
3630 if (value & 0x00000400)
3631 value += 0x800;
3632 value = (value & 0xfffff800) >> 11;
3633 break;
3634
8f78d0e9
KR
3635 /* Sign extend from bit 21. */
3636 case e_rssel:
025b0302
ME
3637 if (value & 0x00000400)
3638 value |= 0xfffff800;
3639 else
3640 value &= 0x7ff;
3641 break;
3642
8f78d0e9
KR
3643 /* Arithmetic shift right 11 bits. */
3644 case e_lsel:
025b0302
ME
3645 value = (value & 0xfffff800) >> 11;
3646 break;
3647
8f78d0e9
KR
3648 /* Set bits 0-20 to zero. */
3649 case e_rsel:
025b0302
ME
3650 value = value & 0x7ff;
3651 break;
3652
8f78d0e9
KR
3653 /* Add 0x800 and arithmetic shift right 11 bits. */
3654 case e_ldsel:
025b0302 3655 value += 0x800;
025b0302 3656
025b0302 3657
025b0302
ME
3658 value = (value & 0xfffff800) >> 11;
3659 break;
3660
8f78d0e9
KR
3661 /* Set bitgs 0-21 to one. */
3662 case e_rdsel:
3663 value |= 0xfffff800;
025b0302
ME
3664 break;
3665
8f78d0e9
KR
3666 /* This had better get fixed. It looks like we're quickly moving
3667 to LR/RR. FIXME. */
3668 case e_rrsel:
3669 case e_lrsel:
3670 abort ();
3671
025b0302
ME
3672 default:
3673 BAD_CASE (field_selector);
3674 break;
3675 }
3676 return value;
3677}
3678
8f78d0e9
KR
3679/* Given an argument location specification return the associated
3680 argument location number. */
3681
3682static unsigned int
025b0302
ME
3683pa_build_arg_reloc (type_name)
3684 char *type_name;
3685{
3686
3687 if (strncasecmp (type_name, "no", 2) == 0)
8f78d0e9 3688 return 0;
025b0302 3689 if (strncasecmp (type_name, "gr", 2) == 0)
8f78d0e9 3690 return 1;
025b0302 3691 else if (strncasecmp (type_name, "fr", 2) == 0)
8f78d0e9 3692 return 2;
025b0302 3693 else if (strncasecmp (type_name, "fu", 2) == 0)
8f78d0e9 3694 return 3;
025b0302 3695 else
8f78d0e9 3696 as_bad ("Invalid argument location: %s\n", type_name);
025b0302
ME
3697
3698 return 0;
3699}
3700
8f78d0e9
KR
3701/* Encode and return an argument relocation specification for
3702 the given register in the location specified by arg_reloc. */
3703
3704static unsigned int
025b0302
ME
3705pa_align_arg_reloc (reg, arg_reloc)
3706 unsigned int reg;
3707 unsigned int arg_reloc;
3708{
3709 unsigned int new_reloc;
3710
3711 new_reloc = arg_reloc;
3712 switch (reg)
3713 {
3714 case 0:
3715 new_reloc <<= 8;
3716 break;
3717 case 1:
3718 new_reloc <<= 6;
3719 break;
3720 case 2:
3721 new_reloc <<= 4;
3722 break;
3723 case 3:
3724 new_reloc <<= 2;
3725 break;
3726 default:
8f78d0e9 3727 as_bad ("Invalid argument description: %d", reg);
025b0302
ME
3728 }
3729
3730 return new_reloc;
3731}
3732
8f78d0e9
KR
3733/* Parse a PA nullification completer (,n). Return nonzero if the
3734 completer was found; return zero if no completer was found. */
3735
3736static int
025b0302
ME
3737pa_parse_nullif (s)
3738 char **s;
3739{
3740 int nullif;
3741
3742 nullif = 0;
3743 if (**s == ',')
3744 {
3745 *s = *s + 1;
3746 if (strncasecmp (*s, "n", 1) == 0)
3747 nullif = 1;
3748 else
3749 {
8f78d0e9 3750 as_bad ("Invalid Nullification: (%c)", **s);
025b0302
ME
3751 nullif = 0;
3752 }
3753 *s = *s + 1;
3754 }
025b0302
ME
3755
3756 return nullif;
3757}
3758
8f78d0e9
KR
3759/* Parse a non-negated compare/subtract completer returning the
3760 number (for encoding in instrutions) of the given completer.
3761
3762 ISBRANCH specifies whether or not this is parsing a condition
3763 completer for a branch (vs a nullification completer for a
3764 computational instruction. */
3765
3766static int
5cf4cd1b 3767pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
025b0302 3768 char **s;
5cf4cd1b 3769 int isbranch;
025b0302
ME
3770{
3771 int cmpltr;
5cf4cd1b 3772 char *name = *s + 1;
025b0302 3773 char c;
5cf4cd1b 3774 char *save_s = *s;
025b0302 3775
5cf4cd1b 3776 cmpltr = 0;
025b0302
ME
3777 if (**s == ',')
3778 {
3779 *s += 1;
025b0302
ME
3780 while (**s != ',' && **s != ' ' && **s != '\t')
3781 *s += 1;
3782 c = **s;
3783 **s = 0x00;
3784 if (strcmp (name, "=") == 0)
3785 {
3786 cmpltr = 1;
3787 }
3788 else if (strcmp (name, "<") == 0)
3789 {
3790 cmpltr = 2;
3791 }
3792 else if (strcmp (name, "<=") == 0)
3793 {
3794 cmpltr = 3;
3795 }
3796 else if (strcmp (name, "<<") == 0)
3797 {
3798 cmpltr = 4;
3799 }
3800 else if (strcmp (name, "<<=") == 0)
3801 {
3802 cmpltr = 5;
3803 }
3804 else if (strcasecmp (name, "sv") == 0)
3805 {
3806 cmpltr = 6;
3807 }
3808 else if (strcasecmp (name, "od") == 0)
3809 {
3810 cmpltr = 7;
3811 }
5cf4cd1b 3812 /* If we have something like addb,n then there is no condition
8f78d0e9 3813 completer. */
5cf4cd1b 3814 else if (strcasecmp (name, "n") == 0 && isbranch)
025b0302 3815 {
5cf4cd1b 3816 cmpltr = 0;
025b0302 3817 }
8f78d0e9 3818 else
025b0302 3819 {
5cf4cd1b 3820 cmpltr = -1;
025b0302 3821 }
025b0302
ME
3822 **s = c;
3823 }
025b0302 3824
5cf4cd1b
KR
3825 /* Reset pointers if this was really a ,n for a branch instruction. */
3826 if (cmpltr == 0 && *name == 'n' && isbranch)
3827 *s = save_s;
3828
025b0302
ME
3829 return cmpltr;
3830}
3831
8f78d0e9
KR
3832/* Parse a negated compare/subtract completer returning the
3833 number (for encoding in instrutions) of the given completer.
3834
3835 ISBRANCH specifies whether or not this is parsing a condition
3836 completer for a branch (vs a nullification completer for a
3837 computational instruction. */
3838
3839static int
5cf4cd1b 3840pa_parse_neg_cmpsub_cmpltr (s, isbranch)
025b0302 3841 char **s;
5cf4cd1b 3842 int isbranch;
025b0302
ME
3843{
3844 int cmpltr;
5cf4cd1b 3845 char *name = *s + 1;
025b0302 3846 char c;
5cf4cd1b 3847 char *save_s = *s;
025b0302 3848
5cf4cd1b 3849 cmpltr = 0;
025b0302
ME
3850 if (**s == ',')
3851 {
3852 *s += 1;
025b0302
ME
3853 while (**s != ',' && **s != ' ' && **s != '\t')
3854 *s += 1;
3855 c = **s;
3856 **s = 0x00;
3857 if (strcasecmp (name, "tr") == 0)
3858 {
3859 cmpltr = 0;
3860 }
3861 else if (strcmp (name, "<>") == 0)
3862 {
3863 cmpltr = 1;
3864 }
3865 else if (strcmp (name, ">=") == 0)
3866 {
3867 cmpltr = 2;
3868 }
3869 else if (strcmp (name, ">") == 0)
3870 {
3871 cmpltr = 3;
3872 }
3873 else if (strcmp (name, ">>=") == 0)
3874 {
3875 cmpltr = 4;
3876 }
3877 else if (strcmp (name, ">>") == 0)
3878 {
3879 cmpltr = 5;
3880 }
3881 else if (strcasecmp (name, "nsv") == 0)
3882 {
3883 cmpltr = 6;
3884 }
3885 else if (strcasecmp (name, "ev") == 0)
3886 {
3887 cmpltr = 7;
3888 }
5cf4cd1b 3889 /* If we have something like addb,n then there is no condition
8f78d0e9 3890 completer. */
5cf4cd1b
KR
3891 else if (strcasecmp (name, "n") == 0 && isbranch)
3892 {
3893 cmpltr = 0;
3894 }
3895 else
3896 {
3897 cmpltr = -1;
3898 }
025b0302
ME
3899 **s = c;
3900 }
025b0302 3901
5cf4cd1b
KR
3902 /* Reset pointers if this was really a ,n for a branch instruction. */
3903 if (cmpltr == 0 && *name == 'n' && isbranch)
3904 *s = save_s;
3905
025b0302
ME
3906 return cmpltr;
3907}
3908
8f78d0e9
KR
3909/* Parse a non-negated addition completer returning the number
3910 (for encoding in instrutions) of the given completer.
3911
3912 ISBRANCH specifies whether or not this is parsing a condition
3913 completer for a branch (vs a nullification completer for a
3914 computational instruction. */
3915
3916static int
5cf4cd1b 3917pa_parse_nonneg_add_cmpltr (s, isbranch)
025b0302 3918 char **s;
5cf4cd1b 3919 int isbranch;
025b0302
ME
3920{
3921 int cmpltr;
5cf4cd1b 3922 char *name = *s + 1;
025b0302 3923 char c;
5cf4cd1b 3924 char *save_s = *s;
025b0302 3925
5cf4cd1b 3926 cmpltr = 0;
025b0302
ME
3927 if (**s == ',')
3928 {
3929 *s += 1;
025b0302
ME
3930 while (**s != ',' && **s != ' ' && **s != '\t')
3931 *s += 1;
3932 c = **s;
3933 **s = 0x00;
3934 if (strcmp (name, "=") == 0)
3935 {
3936 cmpltr = 1;
3937 }
3938 else if (strcmp (name, "<") == 0)
3939 {
3940 cmpltr = 2;
3941 }
3942 else if (strcmp (name, "<=") == 0)
3943 {
3944 cmpltr = 3;
3945 }
3946 else if (strcasecmp (name, "nuv") == 0)
3947 {
3948 cmpltr = 4;
3949 }
3950 else if (strcasecmp (name, "znv") == 0)
3951 {
3952 cmpltr = 5;
3953 }
3954 else if (strcasecmp (name, "sv") == 0)
3955 {
3956 cmpltr = 6;
3957 }
3958 else if (strcasecmp (name, "od") == 0)
3959 {
3960 cmpltr = 7;
3961 }
5cf4cd1b 3962 /* If we have something like addb,n then there is no condition
8f78d0e9 3963 completer. */
5cf4cd1b
KR
3964 else if (strcasecmp (name, "n") == 0 && isbranch)
3965 {
3966 cmpltr = 0;
3967 }
3968 else
3969 {
3970 cmpltr = -1;
3971 }
025b0302
ME
3972 **s = c;
3973 }
025b0302 3974
5cf4cd1b
KR
3975 /* Reset pointers if this was really a ,n for a branch instruction. */
3976 if (cmpltr == 0 && *name == 'n' && isbranch)
3977 *s = save_s;
3978
025b0302
ME
3979 return cmpltr;
3980}
3981
8f78d0e9
KR
3982/* Parse a negated addition completer returning the number
3983 (for encoding in instrutions) of the given completer.
3984
3985 ISBRANCH specifies whether or not this is parsing a condition
3986 completer for a branch (vs a nullification completer for a
3987 computational instruction. */
3988
3989static int
5cf4cd1b 3990pa_parse_neg_add_cmpltr (s, isbranch)
025b0302 3991 char **s;
5cf4cd1b 3992 int isbranch;
025b0302
ME
3993{
3994 int cmpltr;
5cf4cd1b 3995 char *name = *s + 1;
025b0302 3996 char c;
5cf4cd1b 3997 char *save_s = *s;
025b0302 3998
5cf4cd1b 3999 cmpltr = 0;
025b0302
ME
4000 if (**s == ',')
4001 {
4002 *s += 1;
025b0302
ME
4003 while (**s != ',' && **s != ' ' && **s != '\t')
4004 *s += 1;
4005 c = **s;
4006 **s = 0x00;
4007 if (strcasecmp (name, "tr") == 0)
4008 {
4009 cmpltr = 0;
4010 }
4011 else if (strcmp (name, "<>") == 0)
4012 {
4013 cmpltr = 1;
4014 }
4015 else if (strcmp (name, ">=") == 0)
4016 {
4017 cmpltr = 2;
4018 }
4019 else if (strcmp (name, ">") == 0)
4020 {
4021 cmpltr = 3;
4022 }
4023 else if (strcmp (name, "uv") == 0)
4024 {
4025 cmpltr = 4;
4026 }
4027 else if (strcmp (name, "vnz") == 0)
4028 {
4029 cmpltr = 5;
4030 }
4031 else if (strcasecmp (name, "nsv") == 0)
4032 {
4033 cmpltr = 6;
4034 }
4035 else if (strcasecmp (name, "ev") == 0)
4036 {
4037 cmpltr = 7;
4038 }
5cf4cd1b 4039 /* If we have something like addb,n then there is no condition
8f78d0e9 4040 completer. */
5cf4cd1b
KR
4041 else if (strcasecmp (name, "n") == 0 && isbranch)
4042 {
4043 cmpltr = 0;
4044 }
4045 else
4046 {
4047 cmpltr = -1;
4048 }
025b0302
ME
4049 **s = c;
4050 }
025b0302 4051
5cf4cd1b
KR
4052 /* Reset pointers if this was really a ,n for a branch instruction. */
4053 if (cmpltr == 0 && *name == 'n' && isbranch)
4054 *s = save_s;
4055
025b0302
ME
4056 return cmpltr;
4057}
4058
8f78d0e9 4059/* Handle a .BLOCK type pseudo-op. */
025b0302 4060
8f78d0e9 4061static void
025b0302
ME
4062pa_block (z)
4063 int z;
4064{
8f78d0e9
KR
4065 char *p;
4066 long int temp_fill;
4067 unsigned int temp_size;
4068 int i;
025b0302
ME
4069
4070 temp_size = get_absolute_expression ();
4071
8f78d0e9
KR
4072 /* Always fill with zeros, that's what the HP assembler does. */
4073 temp_fill = 0;
025b0302 4074
c5e9ccd0 4075 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
8f78d0e9
KR
4076 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4077 bzero (p, temp_size);
025b0302 4078
8f78d0e9 4079 /* Convert 2 bytes at a time. */
025b0302
ME
4080
4081 for (i = 0; i < temp_size; i += 2)
4082 {
4083 md_number_to_chars (p + i,
8f78d0e9 4084 (valueT) temp_fill,
025b0302
ME
4085 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4086 }
4087
4088 pa_undefine_label ();
4089 demand_empty_rest_of_line ();
4090 return;
4091}
4092
8f78d0e9
KR
4093/* Handle a .CALL pseudo-op. This involves storing away information
4094 about where arguments are to be found so the linker can detect
4095 (and correct) argument location mismatches between caller and callee. */
025b0302 4096
8f78d0e9
KR
4097static void
4098pa_call (unused)
4099 int unused;
4100{
025b0302
ME
4101 pa_call_args (&last_call_desc);
4102 demand_empty_rest_of_line ();
4103 return;
4104}
4105
8f78d0e9
KR
4106/* Do the dirty work of building a call descriptor which describes
4107 where the caller placed arguments to a function call. */
4108
4109static void
025b0302 4110pa_call_args (call_desc)
8f78d0e9 4111 struct call_desc *call_desc;
025b0302 4112{
8f78d0e9
KR
4113 char *name, c, *p;
4114 unsigned int temp, arg_reloc;
025b0302
ME
4115
4116 while (!is_end_of_statement ())
4117 {
4118 name = input_line_pointer;
4119 c = get_symbol_end ();
8f78d0e9 4120 /* Process a source argument. */
025b0302
ME
4121 if ((strncasecmp (name, "argw", 4) == 0))
4122 {
4123 temp = atoi (name + 4);
4124 p = input_line_pointer;
4125 *p = c;
4126 input_line_pointer++;
4127 name = input_line_pointer;
4128 c = get_symbol_end ();
4129 arg_reloc = pa_build_arg_reloc (name);
4130 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4131 }
8f78d0e9 4132 /* Process a return value. */
025b0302
ME
4133 else if ((strncasecmp (name, "rtnval", 6) == 0))
4134 {
4135 p = input_line_pointer;
4136 *p = c;
4137 input_line_pointer++;
4138 name = input_line_pointer;
4139 c = get_symbol_end ();
4140 arg_reloc = pa_build_arg_reloc (name);
4141 call_desc->arg_reloc |= (arg_reloc & 0x3);
4142 }
4143 else
4144 {
8f78d0e9 4145 as_bad ("Invalid .CALL argument: %s", name);
025b0302
ME
4146 }
4147 p = input_line_pointer;
4148 *p = c;
4149 if (!is_end_of_statement ())
4150 input_line_pointer++;
4151 }
4152}
4153
8f78d0e9
KR
4154/* Return TRUE if FRAG1 and FRAG2 are the same. */
4155
025b0302 4156static int
8f78d0e9
KR
4157is_same_frag (frag1, frag2)
4158 fragS *frag1;
4159 fragS *frag2;
025b0302
ME
4160{
4161
8f78d0e9 4162 if (frag1 == NULL)
025b0302 4163 return (FALSE);
8f78d0e9 4164 else if (frag2 == NULL)
025b0302 4165 return (FALSE);
8f78d0e9 4166 else if (frag1 == frag2)
025b0302 4167 return (TRUE);
8f78d0e9
KR
4168 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4169 return (is_same_frag (frag1, frag2->fr_next));
025b0302
ME
4170 else
4171 return (FALSE);
4172}
4173
ff852e11
JL
4174#ifdef OBJ_ELF
4175/* Build an entry in the UNWIND subspace from the given function
4176 attributes in CALL_INFO. This is not needed for SOM as using
4177 R_ENTRY and R_EXIT relocations allow the linker to handle building
4178 of the unwind spaces. */
c5e9ccd0 4179
025b0302
ME
4180static void
4181pa_build_unwind_subspace (call_info)
8f78d0e9 4182 struct call_info *call_info;
025b0302 4183{
8f78d0e9
KR
4184 char *unwind;
4185 asection *seg, *save_seg;
025b0302
ME
4186 subsegT subseg, save_subseg;
4187 int i;
8f78d0e9
KR
4188 char c, *p;
4189
4190 /* Get into the right seg/subseg. This may involve creating
4191 the seg the first time through. Make sure to have the
4192 old seg/subseg so that we can reset things when we are done. */
4193 subseg = SUBSEG_UNWIND;
4194 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4195 if (seg == ASEC_NULL)
025b0302 4196 {
8f78d0e9
KR
4197 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4198 bfd_set_section_flags (stdoutput, seg,
4199 SEC_READONLY | SEC_HAS_CONTENTS
4200 | SEC_LOAD | SEC_RELOC);
025b0302
ME
4201 }
4202
025b0302
ME
4203 save_seg = now_seg;
4204 save_subseg = now_subseg;
80aab579 4205 subseg_set (seg, subseg);
025b0302 4206
8f78d0e9
KR
4207
4208 /* Get some space to hold relocation information for the unwind
4209 descriptor. */
025b0302
ME
4210 p = frag_more (4);
4211 call_info->start_offset_frag = frag_now;
4212 call_info->start_frag_where = p - frag_now->fr_literal;
4213
8f78d0e9 4214 /* Relocation info. for start offset of the function. */
8f78d0e9
KR
4215 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4216 call_info->start_symbol, (offsetT) 0,
4217 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4218 (char *) 0);
025b0302 4219
8f78d0e9
KR
4220 /* We need to search for the first relocation involving the start_symbol of
4221 this call_info descriptor. */
025b0302
ME
4222 {
4223 fixS *fixP;
4224
8f78d0e9 4225 call_info->start_fix = seg_info (now_seg)->fix_root;
025b0302
ME
4226 for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
4227 {
8f78d0e9
KR
4228 if (fixP->fx_addsy == call_info->start_symbol
4229 || fixP->fx_subsy == call_info->start_symbol)
025b0302
ME
4230 {
4231 call_info->start_fix = fixP;
4232 break;
4233 }
4234 }
4235 }
4236
4237 p = frag_more (4);
4238 call_info->end_offset_frag = frag_now;
4239 call_info->end_frag_where = p - frag_now->fr_literal;
4240
8f78d0e9 4241 /* Relocation info. for end offset of the function. */
8f78d0e9
KR
4242 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4243 call_info->end_symbol, (offsetT) 0,
4244 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4245 (char *) 0);
025b0302 4246
8f78d0e9
KR
4247 /* We need to search for the first relocation involving the end_symbol of
4248 this call_info descriptor. */
025b0302
ME
4249 {
4250 fixS *fixP;
4251
4252 call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
4253 for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
4254 {
8f78d0e9
KR
4255 if (fixP->fx_addsy == call_info->end_symbol
4256 || fixP->fx_subsy == call_info->end_symbol)
025b0302
ME
4257 {
4258 call_info->end_fix = fixP;
4259 break;
4260 }
4261 }
4262 }
4263
8f78d0e9
KR
4264 /* Dump it. */
4265 unwind = (char *) &call_info->ci_unwind;
4266 for (i = 8; i < sizeof (struct unwind_table); i++)
025b0302 4267 {
8f78d0e9 4268 c = *(unwind + i);
025b0302
ME
4269 {
4270 FRAG_APPEND_1_CHAR (c);
4271 }
4272 }
4273
8f78d0e9 4274 /* Return back to the original segment/subsegment. */
80aab579 4275 subseg_set (save_seg, save_subseg);
025b0302 4276}
ff852e11 4277#endif
025b0302 4278
8f78d0e9
KR
4279/* Process a .CALLINFO pseudo-op. This information is used later
4280 to build unwind descriptors and maybe one day to support
4281 .ENTER and .LEAVE. */
025b0302 4282
8f78d0e9
KR
4283static void
4284pa_callinfo (unused)
4285 int unused;
025b0302 4286{
8f78d0e9
KR
4287 char *name, c, *p;
4288 int temp;
025b0302 4289
8f78d0e9 4290 /* .CALLINFO must appear within a procedure definition. */
025b0302
ME
4291 if (!within_procedure)
4292 as_bad (".callinfo is not within a procedure definition");
4293
8f78d0e9
KR
4294 /* Mark the fact that we found the .CALLINFO for the
4295 current procedure. */
025b0302
ME
4296 callinfo_found = TRUE;
4297
8f78d0e9 4298 /* Iterate over the .CALLINFO arguments. */
025b0302
ME
4299 while (!is_end_of_statement ())
4300 {
4301 name = input_line_pointer;
4302 c = get_symbol_end ();
8f78d0e9 4303 /* Frame size specification. */
025b0302
ME
4304 if ((strncasecmp (name, "frame", 5) == 0))
4305 {
4306 p = input_line_pointer;
4307 *p = c;
4308 input_line_pointer++;
4309 temp = get_absolute_expression ();
4310 if ((temp & 0x3) != 0)
4311 {
4312 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4313 temp = 0;
4314 }
49fc68a1 4315
c5e9ccd0 4316 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
49fc68a1
JL
4317 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4318
025b0302 4319 }
8f78d0e9 4320 /* Entry register (GR, GR and SR) specifications. */
025b0302
ME
4321 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4322 {
4323 p = input_line_pointer;
4324 *p = c;
4325 input_line_pointer++;
4326 temp = get_absolute_expression ();
aa8b30ed
JL
4327 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4328 even though %r19 is caller saved. I think this is a bug in
4329 the HP assembler, and we are not going to emulate it. */
4330 if (temp < 3 || temp > 18)
4331 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4332 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
025b0302
ME
4333 }
4334 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4335 {
4336 p = input_line_pointer;
4337 *p = c;
4338 input_line_pointer++;
4339 temp = get_absolute_expression ();
aa8b30ed
JL
4340 /* Similarly the HP assembler takes 31 as the high bound even
4341 though %fr21 is the last callee saved floating point register. */
4342 if (temp < 12 || temp > 21)
4343 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4344 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
025b0302
ME
4345 }
4346 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4347 {
4348 p = input_line_pointer;
4349 *p = c;
4350 input_line_pointer++;
4351 temp = get_absolute_expression ();
aa8b30ed
JL
4352 if (temp != 3)
4353 as_bad ("Value for ENTRY_SR must be 3\n");
4354 last_call_info->entry_sr = temp - 2;
025b0302 4355 }
8f78d0e9 4356 /* Note whether or not this function performs any calls. */
025b0302
ME
4357 else if ((strncasecmp (name, "calls", 5) == 0) ||
4358 (strncasecmp (name, "caller", 6) == 0))
4359 {
4360 p = input_line_pointer;
4361 *p = c;
4362 last_call_info->makes_calls = 1;
4363 }
4364 else if ((strncasecmp (name, "no_calls", 8) == 0))
4365 {
4366 p = input_line_pointer;
4367 *p = c;
4368 last_call_info->makes_calls = 0;
4369 }
8f78d0e9 4370 /* Should RP be saved into the stack. */
025b0302
ME
4371 else if ((strncasecmp (name, "save_rp", 7) == 0))
4372 {
4373 p = input_line_pointer;
4374 *p = c;
4375 last_call_info->ci_unwind.descriptor.save_rp = 1;
4376 }
8f78d0e9 4377 /* Likewise for SP. */
025b0302
ME
4378 else if ((strncasecmp (name, "save_sp", 7) == 0))
4379 {
4380 p = input_line_pointer;
4381 *p = c;
4382 last_call_info->ci_unwind.descriptor.save_sp = 1;
4383 }
8f78d0e9 4384 /* Is this an unwindable procedure. If so mark it so
c5e9ccd0 4385 in the unwind descriptor. */
025b0302
ME
4386 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4387 {
4388 p = input_line_pointer;
4389 *p = c;
4390 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4391 }
8f78d0e9 4392 /* Is this an interrupt routine. If so mark it in the
c5e9ccd0 4393 unwind descriptor. */
025b0302
ME
4394 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4395 {
4396 p = input_line_pointer;
4397 *p = c;
8f78d0e9 4398 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
025b0302
ME
4399 }
4400 else
4401 {
8f78d0e9 4402 as_bad ("Invalid .CALLINFO argument: %s", name);
025b0302
ME
4403 }
4404 if (!is_end_of_statement ())
4405 input_line_pointer++;
4406 }
4407
4408 demand_empty_rest_of_line ();
4409 return;
4410}
4411
8f78d0e9
KR
4412/* Switch into the code subspace. */
4413
4414static void
4415pa_code (unused)
4416 int unused;
025b0302 4417{
8f78d0e9 4418 sd_chain_struct *sdchain;
025b0302 4419
8f78d0e9
KR
4420 /* First time through it might be necessary to create the
4421 $TEXT$ space. */
025b0302
ME
4422 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4423 {
8f78d0e9
KR
4424 sdchain = create_new_space (pa_def_spaces[0].name,
4425 pa_def_spaces[0].spnum,
4426 pa_def_spaces[0].loadable,
4427 pa_def_spaces[0].defined,
4428 pa_def_spaces[0].private,
4429 pa_def_spaces[0].sort,
4430 pa_def_spaces[0].segment, 0);
025b0302
ME
4431 }
4432
4433 SPACE_DEFINED (sdchain) = 1;
80aab579 4434 subseg_set (text_section, SUBSEG_CODE);
025b0302
ME
4435 demand_empty_rest_of_line ();
4436 return;
4437}
4438
8f78d0e9
KR
4439/* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4440 the .comm pseudo-op has the following symtax:
025b0302 4441
8f78d0e9
KR
4442 <label> .comm <length>
4443
4444 where <label> is optional and is a symbol whose address will be the start of
4445 a block of memory <length> bytes long. <length> must be an absolute
4446 expression. <length> bytes will be allocated in the current space
4447 and subspace. */
4448
4449static void
4450pa_comm (unused)
4451 int unused;
025b0302 4452{
8f78d0e9
KR
4453 unsigned int size;
4454 symbolS *symbol;
4455 label_symbol_struct *label_symbol = pa_get_label ();
025b0302 4456
8f78d0e9
KR
4457 if (label_symbol)
4458 symbol = label_symbol->lss_label;
025b0302 4459 else
8f78d0e9 4460 symbol = NULL;
025b0302
ME
4461
4462 SKIP_WHITESPACE ();
8f78d0e9 4463 size = get_absolute_expression ();
025b0302 4464
8f78d0e9 4465 if (symbol)
025b0302 4466 {
d56f45f5 4467 /* It is incorrect to check S_IS_DEFINED at this point as
c5e9ccd0
JL
4468 the symbol will *always* be defined. FIXME. How to
4469 correctly determine when this label really as been
4470 defined before. */
8f78d0e9 4471 if (S_GET_VALUE (symbol))
025b0302 4472 {
8f78d0e9 4473 if (S_GET_VALUE (symbol) != size)
025b0302 4474 {
8f78d0e9
KR
4475 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4476 S_GET_NAME (symbol), S_GET_VALUE (symbol));
025b0302
ME
4477 return;
4478 }
4479 }
4480 else
4481 {
8f78d0e9 4482 S_SET_VALUE (symbol, size);
aa8b30ed 4483 S_SET_SEGMENT (symbol, &bfd_und_section);
8f78d0e9 4484 S_SET_EXTERNAL (symbol);
025b0302 4485 }
025b0302 4486 }
025b0302
ME
4487 demand_empty_rest_of_line ();
4488}
4489
8f78d0e9
KR
4490/* Process a .COPYRIGHT pseudo-op. */
4491
4492static void
4493pa_copyright (unused)
4494 int unused;
025b0302 4495{
8f78d0e9
KR
4496 char *name;
4497 char c;
025b0302
ME
4498
4499 SKIP_WHITESPACE ();
4500 if (*input_line_pointer == '\"')
4501 {
8f78d0e9 4502 ++input_line_pointer;
025b0302
ME
4503 name = input_line_pointer;
4504 while ((c = next_char_of_string ()) >= 0)
4505 ;
4506 c = *input_line_pointer;
4507 *input_line_pointer = '\0';
4508 *(input_line_pointer - 1) = '\0';
4509 {
8f78d0e9
KR
4510 /* FIXME. Not supported */
4511 abort ();
025b0302
ME
4512 }
4513 *input_line_pointer = c;
4514 }
4515 else
4516 {
4517 as_bad ("Expected \"-ed string");
4518 }
4519 pa_undefine_label ();
4520 demand_empty_rest_of_line ();
4521}
4522
8f78d0e9 4523/* Process a .END pseudo-op. */
025b0302 4524
8f78d0e9
KR
4525static void
4526pa_end (unused)
4527 int unused;
4528{
025b0302
ME
4529 demand_empty_rest_of_line ();
4530 return;
4531}
4532
c5e9ccd0 4533/* Process a .ENTER pseudo-op. This is not supported. */
8f78d0e9
KR
4534static void
4535pa_enter (unused)
4536 int unused;
025b0302 4537{
c5e9ccd0 4538 abort ();
025b0302
ME
4539 return;
4540}
4541
8f78d0e9
KR
4542/* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4543 procesure. */
4544static void
4545pa_entry (unused)
4546 int unused;
025b0302 4547{
025b0302
ME
4548 if (!within_procedure)
4549 as_bad ("Misplaced .entry. Ignored.");
4550 else
4551 {
4552 if (!callinfo_found)
4553 as_bad ("Missing .callinfo.");
4554
4555 last_call_info->start_frag = frag_now;
4556 }
4557 demand_empty_rest_of_line ();
4558 within_entry_exit = TRUE;
8f78d0e9
KR
4559
4560 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4561 It will not be on if no .EXPORT pseudo-op exists (static function). */
4562 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4563
ff852e11
JL
4564#ifdef OBJ_SOM
4565 /* SOM defers building of unwind descriptors until the link phase.
4566 The assembler is responsible for creating an R_ENTRY relocation
4567 to mark the beginning of a region and hold the unwind bits, and
4568 for creating an R_EXIT relocation to mark the end of the region.
4569
4570 FIXME. ELF should be using the same conventions! The problem
4571 is an unwind requires too much relocation space. Hmmm. Maybe
4572 if we split the unwind bits up between the relocations which
4573 denote the entry and exit points. */
4574 {
4575 char *where = frag_more (0);
c5e9ccd0
JL
4576
4577 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
ff852e11
JL
4578 last_call_info->start_symbol, (offsetT) 0, NULL,
4579 0, R_HPPA_ENTRY, e_fsel, 0, 0,
c5e9ccd0 4580 (char *) &last_call_info->ci_unwind.descriptor);
ff852e11
JL
4581 }
4582#endif
4583
025b0302
ME
4584 return;
4585}
4586
8f78d0e9
KR
4587/* Handle a .EQU pseudo-op. */
4588
4589static void
025b0302
ME
4590pa_equ (reg)
4591 int reg;
4592{
8f78d0e9
KR
4593 label_symbol_struct *label_symbol = pa_get_label ();
4594 symbolS *symbol;
025b0302 4595
8f78d0e9 4596 if (label_symbol)
025b0302 4597 {
8f78d0e9
KR
4598 symbol = label_symbol->lss_label;
4599 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4600 S_SET_SEGMENT (symbol, &bfd_abs_section);
025b0302
ME
4601 }
4602 else
4603 {
4604 if (reg)
4605 as_bad (".REG must use a label");
4606 else
4607 as_bad (".EQU must use a label");
4608 }
4609
4610 pa_undefine_label ();
4611 demand_empty_rest_of_line ();
4612 return;
4613}
4614
8f78d0e9
KR
4615/* Helper function. Does processing for the end of a function. This
4616 usually involves creating some relocations or building special
4617 symbols to mark the end of the function. */
4618
4619static void
025b0302
ME
4620process_exit ()
4621{
4622 char *where;
4623
4624 where = frag_more (0);
aa8b30ed 4625
ff852e11 4626#ifdef OBJ_ELF
44c0de53
JL
4627 /* Mark the end of the function, stuff away the location of the frag
4628 for the end of the function, and finally call pa_build_unwind_subspace
4629 to add an entry in the unwind table. */
4630 hppa_elf_mark_end_of_function ();
8f78d0e9 4631 last_call_info->end_frag = frag_now;
025b0302 4632 pa_build_unwind_subspace (last_call_info);
ff852e11
JL
4633#else
4634 /* SOM defers building of unwind descriptors until the link phase.
4635 The assembler is responsible for creating an R_ENTRY relocation
4636 to mark the beginning of a region and hold the unwind bits, and
4637 for creating an R_EXIT relocation to mark the end of the region.
4638
4639 FIXME. ELF should be using the same conventions! The problem
4640 is an unwind requires too much relocation space. Hmmm. Maybe
4641 if we split the unwind bits up between the relocations which
4642 denote the entry and exit points. */
4643 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4644 last_call_info->start_symbol, (offsetT) 0,
4645 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4646#endif
4647
025b0302
ME
4648}
4649
8f78d0e9 4650/* Process a .EXIT pseudo-op. */
025b0302 4651
8f78d0e9
KR
4652static void
4653pa_exit (unused)
4654 int unused;
4655{
025b0302
ME
4656 if (!within_procedure)
4657 as_bad (".EXIT must appear within a procedure");
4658 else
4659 {
4660 if (!callinfo_found)
4661 as_bad ("Missing .callinfo");
4662 else
4663 {
4664 if (!within_entry_exit)
4665 as_bad ("No .ENTRY for this .EXIT");
4666 else
4667 {
4668 within_entry_exit = FALSE;
4669 process_exit ();
4670 }
4671 }
4672 }
4673 demand_empty_rest_of_line ();
4674 return;
4675}
4676
8f78d0e9
KR
4677/* Process a .EXPORT directive. This makes functions external
4678 and provides information such as argument relocation entries
4679 to callers. */
5cf4cd1b 4680
8f78d0e9
KR
4681static void
4682pa_export (unused)
4683 int unused;
025b0302 4684{
8f78d0e9
KR
4685 char *name, c, *p;
4686 symbolS *symbol;
025b0302
ME
4687
4688 name = input_line_pointer;
4689 c = get_symbol_end ();
8f78d0e9
KR
4690 /* Make sure the given symbol exists. */
4691 if ((symbol = symbol_find_or_make (name)) == NULL)
025b0302
ME
4692 {
4693 as_bad ("Cannot define export symbol: %s\n", name);
4694 p = input_line_pointer;
4695 *p = c;
4696 input_line_pointer++;
4697 }
4698 else
4699 {
8f78d0e9
KR
4700 /* OK. Set the external bits and process argument relocations. */
4701 S_SET_EXTERNAL (symbol);
025b0302
ME
4702 p = input_line_pointer;
4703 *p = c;
4704 if (!is_end_of_statement ())
4705 {
4706 input_line_pointer++;
48153d49 4707 pa_type_args (symbol, 1);
5cf4cd1b 4708#ifdef OBJ_ELF
8f78d0e9 4709 pa_build_symextn_section ();
5cf4cd1b 4710#endif
025b0302
ME
4711 }
4712 }
4713
4714 demand_empty_rest_of_line ();
4715 return;
4716}
4717
8f78d0e9
KR
4718/* Helper function to process arguments to a .EXPORT pseudo-op. */
4719
4720static void
48153d49 4721pa_type_args (symbolP, is_export)
8f78d0e9 4722 symbolS *symbolP;
48153d49 4723 int is_export;
025b0302 4724{
8f78d0e9
KR
4725 char *name, c, *p;
4726 unsigned int temp, arg_reloc;
e75acd68 4727 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
8f78d0e9 4728 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
025b0302
ME
4729
4730 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
48153d49 4731
025b0302
ME
4732 {
4733 input_line_pointer += 8;
9a182533 4734 symbolP->bsym->flags &= ~BSF_FUNCTION;
025b0302 4735 S_SET_SEGMENT (symbolP, &bfd_abs_section);
e75acd68 4736 type = SYMBOL_TYPE_ABSOLUTE;
025b0302
ME
4737 }
4738 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
9a182533
JL
4739 {
4740 input_line_pointer += 4;
a721c80b 4741 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
c5e9ccd0 4742 instead one should be IMPORTing/EXPORTing ENTRY types.
a721c80b 4743
c5e9ccd0
JL
4744 Complain if one tries to EXPORT a CODE type since that's never
4745 done. Both GCC and HP C still try to IMPORT CODE types, so
4746 silently fix them to be ENTRY types. */
a721c80b 4747 if (symbolP->bsym->flags & BSF_FUNCTION)
48153d49 4748 {
a721c80b
JL
4749 if (is_export)
4750 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4751
48153d49
JL
4752 symbolP->bsym->flags |= BSF_FUNCTION;
4753 type = SYMBOL_TYPE_ENTRY;
4754 }
4755 else
4756 {
4757 symbolP->bsym->flags &= ~BSF_FUNCTION;
4758 type = SYMBOL_TYPE_CODE;
4759 }
9a182533 4760 }
025b0302 4761 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
9a182533
JL
4762 {
4763 input_line_pointer += 4;
4764 symbolP->bsym->flags &= ~BSF_FUNCTION;
e75acd68 4765 type = SYMBOL_TYPE_DATA;
9a182533 4766 }
025b0302
ME
4767 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4768 {
4769 input_line_pointer += 5;
025b0302 4770 symbolP->bsym->flags |= BSF_FUNCTION;
e75acd68 4771 type = SYMBOL_TYPE_ENTRY;
025b0302
ME
4772 }
4773 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4774 {
4775 input_line_pointer += 9;
9a182533 4776 symbolP->bsym->flags |= BSF_FUNCTION;
e75acd68 4777 type = SYMBOL_TYPE_MILLICODE;
025b0302
ME
4778 }
4779 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4780 {
4781 input_line_pointer += 6;
9a182533 4782 symbolP->bsym->flags &= ~BSF_FUNCTION;
e75acd68 4783 type = SYMBOL_TYPE_PLABEL;
025b0302
ME
4784 }
4785 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4786 {
4787 input_line_pointer += 8;
9a182533 4788 symbolP->bsym->flags |= BSF_FUNCTION;
e75acd68 4789 type = SYMBOL_TYPE_PRI_PROG;
025b0302
ME
4790 }
4791 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4792 {
4793 input_line_pointer += 8;
9a182533 4794 symbolP->bsym->flags |= BSF_FUNCTION;
e75acd68 4795 type = SYMBOL_TYPE_SEC_PROG;
025b0302
ME
4796 }
4797
e75acd68
JL
4798 /* SOM requires much more information about symbol types
4799 than BFD understands. This is how we get this information
4800 to the SOM BFD backend. */
4801#ifdef obj_set_symbol_type
4802 obj_set_symbol_type (symbolP->bsym, (int) type);
4803#endif
4804
8f78d0e9
KR
4805 /* Now that the type of the exported symbol has been handled,
4806 handle any argument relocation information. */
025b0302
ME
4807 while (!is_end_of_statement ())
4808 {
4809 if (*input_line_pointer == ',')
4810 input_line_pointer++;
4811 name = input_line_pointer;
4812 c = get_symbol_end ();
8f78d0e9 4813 /* Argument sources. */
025b0302
ME
4814 if ((strncasecmp (name, "argw", 4) == 0))
4815 {
4816 p = input_line_pointer;
4817 *p = c;
4818 input_line_pointer++;
4819 temp = atoi (name + 4);
4820 name = input_line_pointer;
4821 c = get_symbol_end ();
4822 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
8f78d0e9 4823 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
025b0302
ME
4824 *input_line_pointer = c;
4825 }
8f78d0e9 4826 /* The return value. */
025b0302
ME
4827 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4828 {
4829 p = input_line_pointer;
4830 *p = c;
4831 input_line_pointer++;
4832 name = input_line_pointer;
4833 c = get_symbol_end ();
4834 arg_reloc = pa_build_arg_reloc (name);
8f78d0e9 4835 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
025b0302
ME
4836 *input_line_pointer = c;
4837 }
8f78d0e9 4838 /* Privelege level. */
025b0302
ME
4839 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4840 {
4841 p = input_line_pointer;
4842 *p = c;
4843 input_line_pointer++;
025b0302
ME
4844 temp = atoi (input_line_pointer);
4845 c = get_symbol_end ();
4846 *input_line_pointer = c;
025b0302
ME
4847 }
4848 else
4849 {
4850 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4851 p = input_line_pointer;
4852 *p = c;
4853 }
4854 if (!is_end_of_statement ())
4855 input_line_pointer++;
4856 }
4857}
4858
8f78d0e9
KR
4859/* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4860 assembly file must either be defined in the assembly file, or
4861 explicitly IMPORTED from another. */
4862
4863static void
4864pa_import (unused)
4865 int unused;
025b0302 4866{
8f78d0e9
KR
4867 char *name, c, *p;
4868 symbolS *symbol;
025b0302
ME
4869
4870 name = input_line_pointer;
4871 c = get_symbol_end ();
025b0302 4872
8f78d0e9 4873 symbol = symbol_find_or_make (name);
025b0302
ME
4874 p = input_line_pointer;
4875 *p = c;
4876
4877 if (!is_end_of_statement ())
4878 {
4879 input_line_pointer++;
48153d49 4880 pa_type_args (symbol, 0);
025b0302
ME
4881 }
4882 else
4883 {
47f45d66 4884 /* Sigh. To be compatable with the HP assembler and to help
c5e9ccd0
JL
4885 poorly written assembly code, we assign a type based on
4886 the the current segment. Note only BSF_FUNCTION really
4887 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
47f45d66
JL
4888 if (now_seg == text_section)
4889 symbol->bsym->flags |= BSF_FUNCTION;
4890
8f78d0e9
KR
4891 /* If the section is undefined, then the symbol is undefined
4892 Since this is an import, leave the section undefined. */
4893 S_SET_SEGMENT (symbol, &bfd_und_section);
025b0302
ME
4894 }
4895
025b0302
ME
4896 demand_empty_rest_of_line ();
4897 return;
4898}
4899
8f78d0e9
KR
4900/* Handle a .LABEL pseudo-op. */
4901
4902static void
4903pa_label (unused)
4904 int unused;
025b0302 4905{
8f78d0e9 4906 char *name, c, *p;
025b0302
ME
4907
4908 name = input_line_pointer;
4909 c = get_symbol_end ();
025b0302
ME
4910
4911 if (strlen (name) > 0)
4912 {
4913 colon (name);
4914 p = input_line_pointer;
4915 *p = c;
4916 }
4917 else
4918 {
4919 as_warn ("Missing label name on .LABEL");
4920 }
4921
4922 if (!is_end_of_statement ())
4923 {
4924 as_warn ("extra .LABEL arguments ignored.");
4925 ignore_rest_of_line ();
4926 }
4927 demand_empty_rest_of_line ();
4928 return;
4929}
4930
8f78d0e9 4931/* Handle a .LEAVE pseudo-op. This is not supported yet. */
025b0302 4932
8f78d0e9
KR
4933static void
4934pa_leave (unused)
4935 int unused;
4936{
c5e9ccd0 4937 abort ();
025b0302
ME
4938}
4939
8f78d0e9
KR
4940/* Handle a .ORIGIN pseudo-op. */
4941
4942static void
4943pa_origin (unused)
4944 int unused;
025b0302 4945{
8f78d0e9 4946 s_org (0);
025b0302
ME
4947 pa_undefine_label ();
4948 return;
4949}
4950
8f78d0e9
KR
4951/* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4952 is for static functions. FIXME. Should share more code with .EXPORT. */
5cf4cd1b 4953
8f78d0e9
KR
4954static void
4955pa_param (unused)
4956 int unused;
5cf4cd1b 4957{
8f78d0e9
KR
4958 char *name, c, *p;
4959 symbolS *symbol;
5cf4cd1b
KR
4960
4961 name = input_line_pointer;
4962 c = get_symbol_end ();
5cf4cd1b 4963
8f78d0e9 4964 if ((symbol = symbol_find_or_make (name)) == NULL)
5cf4cd1b
KR
4965 {
4966 as_bad ("Cannot define static symbol: %s\n", name);
4967 p = input_line_pointer;
4968 *p = c;
4969 input_line_pointer++;
4970 }
4971 else
4972 {
8f78d0e9 4973 S_CLEAR_EXTERNAL (symbol);
5cf4cd1b
KR
4974 p = input_line_pointer;
4975 *p = c;
4976 if (!is_end_of_statement ())
4977 {
4978 input_line_pointer++;
48153d49 4979 pa_type_args (symbol, 0);
5cf4cd1b
KR
4980 }
4981 }
4982
4983 demand_empty_rest_of_line ();
4984 return;
4985}
4986
8f78d0e9
KR
4987/* Handle a .PROC pseudo-op. It is used to mark the beginning
4988 of a procedure from a syntatical point of view. */
4989
4990static void
4991pa_proc (unused)
4992 int unused;
025b0302 4993{
8f78d0e9 4994 struct call_info *call_info;
025b0302
ME
4995
4996 if (within_procedure)
4997 as_fatal ("Nested procedures");
4998
8f78d0e9 4999 /* Reset global variables for new procedure. */
025b0302
ME
5000 callinfo_found = FALSE;
5001 within_procedure = TRUE;
025b0302 5002
8f78d0e9
KR
5003 /* Create another call_info structure. */
5004 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
025b0302
ME
5005
5006 if (!call_info)
5007 as_fatal ("Cannot allocate unwind descriptor\n");
5008
8f78d0e9 5009 bzero (call_info, sizeof (struct call_info));
025b0302
ME
5010
5011 call_info->ci_next = NULL;
5012
5013 if (call_info_root == NULL)
5014 {
5015 call_info_root = call_info;
5016 last_call_info = call_info;
5017 }
5018 else
5019 {
5020 last_call_info->ci_next = call_info;
5021 last_call_info = call_info;
5022 }
5023
5024 /* set up defaults on call_info structure */
5025
5026 call_info->ci_unwind.descriptor.cannot_unwind = 0;
5027 call_info->ci_unwind.descriptor.region_desc = 1;
8f78d0e9 5028 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
025b0302
ME
5029 call_info->entry_sr = ~0;
5030 call_info->makes_calls = 1;
025b0302
ME
5031
5032 /* If we got a .PROC pseudo-op, we know that the function is defined
8f78d0e9 5033 locally. Make sure it gets into the symbol table. */
025b0302 5034 {
8f78d0e9 5035 label_symbol_struct *label_symbol = pa_get_label ();
025b0302 5036
8f78d0e9 5037 if (label_symbol)
025b0302 5038 {
8f78d0e9 5039 if (label_symbol->lss_label)
025b0302 5040 {
8f78d0e9
KR
5041 last_call_info->start_symbol = label_symbol->lss_label;
5042 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
025b0302
ME
5043 }
5044 else
5045 as_bad ("Missing function name for .PROC (corrupted label)");
5046 }
5047 else
5048 as_bad ("Missing function name for .PROC");
5049 }
5050
5051 demand_empty_rest_of_line ();
5052 return;
5053}
5054
8f78d0e9
KR
5055/* Process the syntatical end of a procedure. Make sure all the
5056 appropriate pseudo-ops were found within the procedure. */
5057
5058static void
5059pa_procend (unused)
5060 int unused;
025b0302
ME
5061{
5062
5063 if (!within_procedure)
5064 as_bad ("misplaced .procend");
5065
5066 if (!callinfo_found)
5067 as_bad ("Missing .callinfo for this procedure");
5068
5069 if (within_entry_exit)
5070 as_bad ("Missing .EXIT for a .ENTRY");
5071
44c0de53
JL
5072#ifdef OBJ_ELF
5073 /* ELF needs to mark the end of each function so that it can compute
5074 the size of the function (apparently its needed in the symbol table. */
5075 hppa_elf_mark_end_of_function ();
5076#endif
5077
025b0302
ME
5078 within_procedure = FALSE;
5079 demand_empty_rest_of_line ();
5080 return;
5081}
5082
8f78d0e9
KR
5083/* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5084 then create a new space entry to hold the information specified
5085 by the parameters to the .SPACE directive. */
5086
5087static sd_chain_struct *
025b0302
ME
5088pa_parse_space_stmt (space_name, create_flag)
5089 char *space_name;
5090 int create_flag;
5091{
8f78d0e9
KR
5092 char *name, *ptemp, c;
5093 char loadable, defined, private, sort;
025b0302 5094 int spnum;
3b9a72c5 5095 asection *seg = NULL;
8f78d0e9 5096 sd_chain_struct *space;
025b0302
ME
5097
5098 /* load default values */
5099 spnum = 0;
3b9a72c5 5100 sort = 0;
025b0302
ME
5101 loadable = TRUE;
5102 defined = TRUE;
5103 private = FALSE;
5104 if (strcasecmp (space_name, "$TEXT$") == 0)
5105 {
0f3b419c
JL
5106 seg = pa_def_spaces[0].segment;
5107 sort = pa_def_spaces[0].sort;
025b0302 5108 }
0f3b419c 5109 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
025b0302 5110 {
0f3b419c
JL
5111 seg = pa_def_spaces[1].segment;
5112 sort = pa_def_spaces[1].sort;
025b0302
ME
5113 }
5114
5115 if (!is_end_of_statement ())
5116 {
5117 print_errors = FALSE;
5118 ptemp = input_line_pointer + 1;
8f78d0e9
KR
5119 /* First see if the space was specified as a number rather than
5120 as a name. According to the PA assembly manual the rest of
5121 the line should be ignored. */
5122 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5123 input_line_pointer = ptemp;
025b0302
ME
5124 else
5125 {
5126 while (!is_end_of_statement ())
5127 {
5128 input_line_pointer++;
5129 name = input_line_pointer;
5130 c = get_symbol_end ();
5131 if ((strncasecmp (name, "SPNUM", 5) == 0))
5132 {
8f78d0e9 5133 *input_line_pointer = c;
025b0302 5134 input_line_pointer++;
8f78d0e9 5135 spnum = get_absolute_expression ();
025b0302
ME
5136 }
5137 else if ((strncasecmp (name, "SORT", 4) == 0))
5138 {
8f78d0e9 5139 *input_line_pointer = c;
025b0302 5140 input_line_pointer++;
8f78d0e9 5141 sort = get_absolute_expression ();
025b0302
ME
5142 }
5143 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5144 {
8f78d0e9 5145 *input_line_pointer = c;
025b0302
ME
5146 loadable = FALSE;
5147 }
5148 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
5149 {
8f78d0e9 5150 *input_line_pointer = c;
025b0302
ME
5151 defined = FALSE;
5152 }
5153 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
5154 {
8f78d0e9 5155 *input_line_pointer = c;
025b0302
ME
5156 private = TRUE;
5157 }
5158 else
3515a504
JL
5159 {
5160 as_bad ("Invalid .SPACE argument");
5161 *input_line_pointer = c;
c5e9ccd0 5162 if (!is_end_of_statement ())
3515a504
JL
5163 input_line_pointer++;
5164 }
025b0302
ME
5165 }
5166 }
5167 print_errors = TRUE;
5168 }
8f78d0e9 5169
3b9a72c5
JL
5170 if (create_flag && seg == NULL)
5171 seg = subseg_new (space_name, 0);
c5e9ccd0 5172
8f78d0e9
KR
5173 /* If create_flag is nonzero, then create the new space with
5174 the attributes computed above. Else set the values in
5175 an already existing space -- this can only happen for
5176 the first occurence of a built-in space. */
025b0302 5177 if (create_flag)
8f78d0e9
KR
5178 space = create_new_space (space_name, spnum, loadable, defined,
5179 private, sort, seg, 1);
025b0302 5180 else
8f78d0e9 5181 {
025b0302
ME
5182 space = is_defined_space (space_name);
5183 SPACE_SPNUM (space) = spnum;
5184 SPACE_LOADABLE (space) = loadable & 1;
5185 SPACE_DEFINED (space) = defined & 1;
8f78d0e9 5186 SPACE_USER_DEFINED (space) = 1;
025b0302
ME
5187 SPACE_PRIVATE (space) = private & 1;
5188 SPACE_SORT (space) = sort & 0xff;
025b0302
ME
5189 space->sd_seg = seg;
5190 }
548ea75b
JL
5191
5192#ifdef obj_set_section_attributes
5193 obj_set_section_attributes (seg, defined, private, sort, spnum);
5194#endif
5195
025b0302
ME
5196 return space;
5197}
5198
8f78d0e9
KR
5199/* Handle a .SPACE pseudo-op; this switches the current space to the
5200 given space, creating the new space if necessary. */
5201
5202static void
5203pa_space (unused)
5204 int unused;
025b0302 5205{
aa8b30ed 5206 char *name, c, *space_name, *save_s;
8f78d0e9
KR
5207 int temp;
5208 sd_chain_struct *sd_chain;
025b0302
ME
5209
5210 if (within_procedure)
5211 {
5212 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5213 ignore_rest_of_line ();
5214 }
5215 else
5216 {
8f78d0e9
KR
5217 /* Check for some of the predefined spaces. FIXME: most of the code
5218 below is repeated several times, can we extract the common parts
5219 and place them into a subroutine or something similar? */
025b0302
ME
5220 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5221 {
5222 input_line_pointer += 6;
5223 sd_chain = is_defined_space ("$TEXT$");
5224 if (sd_chain == NULL)
5225 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
8f78d0e9 5226 else if (SPACE_USER_DEFINED (sd_chain) == 0)
025b0302
ME
5227 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5228
5229 current_space = sd_chain;
80aab579 5230 subseg_set (text_section, sd_chain->sd_last_subseg);
8f78d0e9
KR
5231 current_subspace
5232 = pa_subsegment_to_subspace (text_section,
5233 sd_chain->sd_last_subseg);
025b0302
ME
5234 demand_empty_rest_of_line ();
5235 return;
5236 }
5237 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5238 {
5239 input_line_pointer += 9;
5240 sd_chain = is_defined_space ("$PRIVATE$");
5241 if (sd_chain == NULL)
5242 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
8f78d0e9 5243 else if (SPACE_USER_DEFINED (sd_chain) == 0)
025b0302
ME
5244 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5245
5246 current_space = sd_chain;
80aab579 5247 subseg_set (data_section, sd_chain->sd_last_subseg);
8f78d0e9
KR
5248 current_subspace
5249 = pa_subsegment_to_subspace (data_section,
5250 sd_chain->sd_last_subseg);
025b0302
ME
5251 demand_empty_rest_of_line ();
5252 return;
5253 }
8f78d0e9
KR
5254 if (!strncasecmp (input_line_pointer,
5255 GDB_DEBUG_SPACE_NAME,
5256 strlen (GDB_DEBUG_SPACE_NAME)))
025b0302
ME
5257 {
5258 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5259 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5260 if (sd_chain == NULL)
5261 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
8f78d0e9 5262 else if (SPACE_USER_DEFINED (sd_chain) == 0)
025b0302
ME
5263 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5264
5265 current_space = sd_chain;
80aab579 5266
5cf4cd1b 5267 {
8f78d0e9
KR
5268 asection *gdb_section
5269 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5270
8f78d0e9
KR
5271 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5272 current_subspace
5273 = pa_subsegment_to_subspace (gdb_section,
5274 sd_chain->sd_last_subseg);
5cf4cd1b 5275 }
025b0302
ME
5276 demand_empty_rest_of_line ();
5277 return;
5278 }
5279
8f78d0e9 5280 /* It could be a space specified by number. */
aa8b30ed
JL
5281 print_errors = 0;
5282 save_s = input_line_pointer;
8f78d0e9 5283 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
025b0302
ME
5284 {
5285 if (sd_chain = pa_find_space_by_number (temp))
5286 {
5287 current_space = sd_chain;
8f78d0e9 5288
80aab579 5289 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
8f78d0e9
KR
5290 current_subspace
5291 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5292 sd_chain->sd_last_subseg);
025b0302
ME
5293 demand_empty_rest_of_line ();
5294 return;
5295 }
5296 }
5297
8f78d0e9 5298 /* Not a number, attempt to create a new space. */
aa8b30ed
JL
5299 print_errors = 1;
5300 input_line_pointer = save_s;
025b0302
ME
5301 name = input_line_pointer;
5302 c = get_symbol_end ();
8f78d0e9 5303 space_name = xmalloc (strlen (name) + 1);
025b0302
ME
5304 strcpy (space_name, name);
5305 *input_line_pointer = c;
5306
5307 sd_chain = pa_parse_space_stmt (space_name, 1);
5308 current_space = sd_chain;
8f78d0e9 5309
80aab579 5310 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
025b0302
ME
5311 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5312 sd_chain->sd_last_subseg);
5313 demand_empty_rest_of_line ();
5314 }
5315 return;
5316}
5317
c5e9ccd0 5318/* Switch to a new space. (I think). FIXME. */
8f78d0e9
KR
5319
5320static void
5321pa_spnum (unused)
5322 int unused;
025b0302 5323{
8f78d0e9
KR
5324 char *name;
5325 char c;
5326 char *p;
5327 sd_chain_struct *space;
025b0302
ME
5328
5329 name = input_line_pointer;
5330 c = get_symbol_end ();
5331 space = is_defined_space (name);
5332 if (space)
5333 {
5334 p = frag_more (4);
025b0302
ME
5335 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5336 }
5337 else
5338 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5339
5340 *input_line_pointer = c;
5341 demand_empty_rest_of_line ();
5342 return;
5343}
5344
8f78d0e9 5345/* If VALUE is an exact power of two between zero and 2^31, then
aa8b30ed 5346 return log2 (VALUE). Else return -1. */
8f78d0e9
KR
5347
5348static int
aa8b30ed 5349log2 (value)
025b0302
ME
5350 int value;
5351{
8f78d0e9 5352 int shift = 0;
025b0302 5353
025b0302
ME
5354 while ((1 << shift) != value && shift < 32)
5355 shift++;
5356
5357 if (shift >= 32)
aa8b30ed 5358 return -1;
8f78d0e9 5359 else
aa8b30ed 5360 return shift;
025b0302
ME
5361}
5362
3b9a72c5 5363/* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
8f78d0e9
KR
5364 given subspace, creating the new subspace if necessary.
5365
5366 FIXME. Should mirror pa_space more closely, in particular how
5367 they're broken up into subroutines. */
5368
5369static void
5370pa_subspace (unused)
5371 int unused;
025b0302 5372{
3b9a72c5 5373 char *name, *ss_name, *alias, c;
8f78d0e9 5374 char loadable, code_only, common, dup_common, zero, sort;
3b9a72c5 5375 int i, access, space_index, alignment, quadrant, applicable, flags;
8f78d0e9
KR
5376 sd_chain_struct *space;
5377 ssd_chain_struct *ssd;
3b9a72c5 5378 asection *section;
025b0302
ME
5379
5380 if (within_procedure)
5381 {
5382 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5383 ignore_rest_of_line ();
5384 }
5385 else
5386 {
5387 name = input_line_pointer;
5388 c = get_symbol_end ();
025b0302
ME
5389 ss_name = xmalloc (strlen (name) + 1);
5390 strcpy (ss_name, name);
025b0302
ME
5391 *input_line_pointer = c;
5392
8f78d0e9 5393 /* Load default values. */
025b0302
ME
5394 sort = 0;
5395 access = 0x7f;
5396 loadable = 1;
5397 common = 0;
5398 dup_common = 0;
5399 code_only = 0;
5400 zero = 0;
8f78d0e9
KR
5401 space_index = ~0;
5402 alignment = 0;
025b0302 5403 quadrant = 0;
3b9a72c5 5404 alias = NULL;
025b0302 5405
3b9a72c5 5406 space = current_space;
47f45d66
JL
5407 ssd = is_defined_subspace (ss_name);
5408 /* Allow user to override the builtin attributes of subspaces. But
c5e9ccd0 5409 only allow the attributes to be changed once! */
47f45d66 5410 if (ssd && SUBSPACE_DEFINED (ssd))
025b0302 5411 {
8f78d0e9
KR
5412 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5413 if (!is_end_of_statement ())
5414 as_warn ("Parameters of an existing subspace can\'t be modified");
5415 demand_empty_rest_of_line ();
5416 return;
025b0302
ME
5417 }
5418 else
5419 {
3b9a72c5
JL
5420 /* A new subspace. Load default values if it matches one of
5421 the builtin subspaces. */
025b0302
ME
5422 i = 0;
5423 while (pa_def_subspaces[i].name)
5424 {
5425 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5426 {
5427 loadable = pa_def_subspaces[i].loadable;
5428 common = pa_def_subspaces[i].common;
5429 dup_common = pa_def_subspaces[i].dup_common;
5430 code_only = pa_def_subspaces[i].code_only;
5431 zero = pa_def_subspaces[i].zero;
5432 space_index = pa_def_subspaces[i].space_index;
8f78d0e9 5433 alignment = pa_def_subspaces[i].alignment;
025b0302
ME
5434 quadrant = pa_def_subspaces[i].quadrant;
5435 access = pa_def_subspaces[i].access;
5436 sort = pa_def_subspaces[i].sort;
3b9a72c5
JL
5437 if (USE_ALIASES && pa_def_subspaces[i].alias)
5438 alias = pa_def_subspaces[i].alias;
025b0302
ME
5439 break;
5440 }
5441 i++;
5442 }
5443 }
5444
8f78d0e9
KR
5445 /* We should be working with a new subspace now. Fill in
5446 any information as specified by the user. */
025b0302
ME
5447 if (!is_end_of_statement ())
5448 {
5449 input_line_pointer++;
5450 while (!is_end_of_statement ())
5451 {
5452 name = input_line_pointer;
5453 c = get_symbol_end ();
5454 if ((strncasecmp (name, "QUAD", 4) == 0))
5455 {
5456 *input_line_pointer = c;
5457 input_line_pointer++;
8f78d0e9 5458 quadrant = get_absolute_expression ();
025b0302
ME
5459 }
5460 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5461 {
5462 *input_line_pointer = c;
5463 input_line_pointer++;
8f78d0e9 5464 alignment = get_absolute_expression ();
aa8b30ed 5465 if (log2 (alignment) == -1)
025b0302
ME
5466 {
5467 as_bad ("Alignment must be a power of 2");
5468 alignment = 1;
5469 }
5470 }
5471 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5472 {
5473 *input_line_pointer = c;
5474 input_line_pointer++;
8f78d0e9 5475 access = get_absolute_expression ();
025b0302
ME
5476 }
5477 else if ((strncasecmp (name, "SORT", 4) == 0))
5478 {
5479 *input_line_pointer = c;
5480 input_line_pointer++;
8f78d0e9 5481 sort = get_absolute_expression ();
025b0302
ME
5482 }
5483 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5484 {
5485 *input_line_pointer = c;
5486 code_only = 1;
5487 }
5488 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5489 {
5490 *input_line_pointer = c;
5491 loadable = 0;
5492 }
5493 else if ((strncasecmp (name, "COMMON", 6) == 0))
5494 {
5495 *input_line_pointer = c;
5496 common = 1;
5497 }
5498 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5499 {
5500 *input_line_pointer = c;
5501 dup_common = 1;
5502 }
5503 else if ((strncasecmp (name, "ZERO", 4) == 0))
5504 {
5505 *input_line_pointer = c;
5506 zero = 1;
5507 }
8f78d0e9
KR
5508 else if ((strncasecmp (name, "FIRST", 5) == 0))
5509 as_bad ("FIRST not supported as a .SUBSPACE argument");
025b0302 5510 else
8f78d0e9 5511 as_bad ("Invalid .SUBSPACE argument");
025b0302
ME
5512 if (!is_end_of_statement ())
5513 input_line_pointer++;
5514 }
5515 }
8f78d0e9 5516
3b9a72c5 5517 /* Compute a reasonable set of BFD flags based on the information
c5e9ccd0 5518 in the .subspace directive. */
3b9a72c5
JL
5519 applicable = bfd_applicable_section_flags (stdoutput);
5520 flags = 0;
5521 if (loadable)
5522 flags |= (SEC_ALLOC | SEC_LOAD);
5523 if (code_only)
5524 flags |= SEC_CODE;
5525 if (common || dup_common)
5526 flags |= SEC_IS_COMMON;
5527
5528 /* This is a zero-filled subspace (eg BSS). */
5529 if (zero)
5530 flags &= ~SEC_LOAD;
5531
5532 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5533 applicable &= flags;
5534
5535 /* If this is an existing subspace, then we want to use the
c5e9ccd0 5536 segment already associated with the subspace.
3b9a72c5 5537
c5e9ccd0
JL
5538 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5539 lots of sections. It might be a problem in the PA ELF
5540 code, I do not know yet. For now avoid creating anything
5541 but the "standard" sections for ELF. */
3b9a72c5
JL
5542 if (ssd)
5543 section = ssd->ssd_seg;
47f45d66 5544 else if (alias)
3b9a72c5 5545 section = subseg_new (alias, 0);
c5e9ccd0 5546 else if (!alias && USE_ALIASES)
3b9a72c5
JL
5547 {
5548 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5549 demand_empty_rest_of_line ();
5550 return;
5551 }
c5e9ccd0 5552 else
3b9a72c5
JL
5553 section = subseg_new (ss_name, 0);
5554
5555 /* Now set the flags. */
5556 bfd_set_section_flags (stdoutput, section, applicable);
5557
5558 /* Record any alignment request for this section. */
5559 record_alignment (section, log2 (alignment));
5560
5561 /* Set the starting offset for this section. */
5562 bfd_set_section_vma (stdoutput, section,
5563 pa_subspace_start (space, quadrant));
c5e9ccd0 5564
8f78d0e9 5565 /* Now that all the flags are set, update an existing subspace,
3b9a72c5 5566 or create a new one. */
025b0302 5567 if (ssd)
3b9a72c5
JL
5568
5569 current_subspace = update_subspace (space, ss_name, loadable,
5570 code_only, common, dup_common,
5571 sort, zero, access, space_index,
c5e9ccd0 5572 alignment, quadrant,
47f45d66 5573 section);
025b0302 5574 else
8f78d0e9
KR
5575 current_subspace = create_new_subspace (space, ss_name, loadable,
5576 code_only, common,
5577 dup_common, zero, sort,
5578 access, space_index,
c5e9ccd0 5579 alignment, quadrant, section);
025b0302
ME
5580
5581 demand_empty_rest_of_line ();
3b9a72c5 5582 current_subspace->ssd_seg = section;
80aab579 5583 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
025b0302 5584 }
47f45d66 5585 SUBSPACE_DEFINED (current_subspace) = 1;
025b0302
ME
5586 return;
5587}
5588
025b0302 5589
8f78d0e9 5590/* Create default space and subspace dictionaries. */
025b0302 5591
c5e9ccd0 5592static void
025b0302
ME
5593pa_spaces_begin ()
5594{
025b0302 5595 int i;
025b0302
ME
5596
5597 space_dict_root = NULL;
5598 space_dict_last = NULL;
5599
025b0302
ME
5600 i = 0;
5601 while (pa_def_spaces[i].name)
5602 {
3b9a72c5
JL
5603 char *name;
5604
5605 /* Pick the right name to use for the new section. */
5606 if (pa_def_spaces[i].alias && USE_ALIASES)
5607 name = pa_def_spaces[i].alias;
025b0302 5608 else
c5e9ccd0 5609 name = pa_def_spaces[i].name;
025b0302 5610
3b9a72c5 5611 pa_def_spaces[i].segment = subseg_new (name, 0);
025b0302
ME
5612 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5613 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
8f78d0e9
KR
5614 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5615 pa_def_spaces[i].segment, 0);
025b0302
ME
5616 i++;
5617 }
5618
5619 i = 0;
5620 while (pa_def_subspaces[i].name)
5621 {
3b9a72c5
JL
5622 char *name;
5623 int applicable, subsegment;
5624 asection *segment = NULL;
5625 sd_chain_struct *space;
5626
5627 /* Pick the right name for the new section and pick the right
c5e9ccd0 5628 subsegment number. */
3b9a72c5 5629 if (pa_def_subspaces[i].alias && USE_ALIASES)
025b0302 5630 {
3b9a72c5
JL
5631 name = pa_def_subspaces[i].alias;
5632 subsegment = pa_def_subspaces[i].subsegment;
025b0302
ME
5633 }
5634 else
3b9a72c5
JL
5635 {
5636 name = pa_def_subspaces[i].name;
5637 subsegment = 0;
5638 }
c5e9ccd0 5639
3b9a72c5
JL
5640 /* Create the new section. */
5641 segment = subseg_new (name, subsegment);
5642
5643
5644 /* For SOM we want to replace the standard .text, .data, and .bss
c5e9ccd0
JL
5645 sections with our own. */
5646 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
3b9a72c5
JL
5647 {
5648 text_section = segment;
5649 applicable = bfd_applicable_section_flags (stdoutput);
5650 bfd_set_section_flags (stdoutput, text_section,
c5e9ccd0
JL
5651 applicable & (SEC_ALLOC | SEC_LOAD
5652 | SEC_RELOC | SEC_CODE
5653 | SEC_READONLY
3b9a72c5
JL
5654 | SEC_HAS_CONTENTS));
5655 }
c5e9ccd0 5656 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
3b9a72c5
JL
5657 {
5658 data_section = segment;
5659 applicable = bfd_applicable_section_flags (stdoutput);
5660 bfd_set_section_flags (stdoutput, data_section,
c5e9ccd0 5661 applicable & (SEC_ALLOC | SEC_LOAD
3b9a72c5
JL
5662 | SEC_RELOC
5663 | SEC_HAS_CONTENTS));
c5e9ccd0
JL
5664
5665
3b9a72c5 5666 }
c5e9ccd0 5667 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
3b9a72c5
JL
5668 {
5669 bss_section = segment;
5670 applicable = bfd_applicable_section_flags (stdoutput);
5671 bfd_set_section_flags (stdoutput, bss_section,
5672 applicable & SEC_ALLOC);
5673 }
5674
5675 /* Find the space associated with this subspace. */
5676 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5677 def_space_index].segment);
5678 if (space == NULL)
5679 {
5680 as_fatal ("Internal error: Unable to find containing space for %s.",
5681 pa_def_subspaces[i].name);
5682 }
5683
5684 create_new_subspace (space, name,
5685 pa_def_subspaces[i].loadable,
5686 pa_def_subspaces[i].code_only,
5687 pa_def_subspaces[i].common,
5688 pa_def_subspaces[i].dup_common,
5689 pa_def_subspaces[i].zero,
5690 pa_def_subspaces[i].sort,
5691 pa_def_subspaces[i].access,
5692 pa_def_subspaces[i].space_index,
5693 pa_def_subspaces[i].alignment,
5694 pa_def_subspaces[i].quadrant,
5695 segment);
025b0302
ME
5696 i++;
5697 }
5698}
5699
8f78d0e9
KR
5700
5701
5702/* Create a new space NAME, with the appropriate flags as defined
5703 by the given parameters.
5704
5705 Add the new space to the space dictionary chain in numerical
5706 order as defined by the SORT entries. */
5707
5708static sd_chain_struct *
5709create_new_space (name, spnum, loadable, defined, private,
5710 sort, seg, user_defined)
025b0302
ME
5711 char *name;
5712 int spnum;
5713 char loadable;
5714 char defined;
5715 char private;
5716 char sort;
025b0302 5717 asection *seg;
8f78d0e9 5718 int user_defined;
025b0302 5719{
8f78d0e9
KR
5720 sd_chain_struct *chain_entry;
5721
5722 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
025b0302 5723 if (!chain_entry)
8f78d0e9
KR
5724 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5725 name);
025b0302
ME
5726
5727 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5728 strcpy (SPACE_NAME (chain_entry), name);
8f78d0e9
KR
5729 SPACE_NAME_INDEX (chain_entry) = 0;
5730 SPACE_LOADABLE (chain_entry) = loadable;
5731 SPACE_DEFINED (chain_entry) = defined;
5732 SPACE_USER_DEFINED (chain_entry) = user_defined;
5733 SPACE_PRIVATE (chain_entry) = private;
5734 SPACE_SPNUM (chain_entry) = spnum;
5735 SPACE_SORT (chain_entry) = sort;
025b0302 5736
025b0302
ME
5737 chain_entry->sd_seg = seg;
5738 chain_entry->sd_last_subseg = -1;
5739 chain_entry->sd_next = NULL;
5740
8f78d0e9 5741 /* Find spot for the new space based on its sort key. */
025b0302
ME
5742 if (!space_dict_last)
5743 space_dict_last = chain_entry;
5744
8f78d0e9 5745 if (space_dict_root == NULL)
025b0302
ME
5746 space_dict_root = chain_entry;
5747 else
5748 {
8f78d0e9
KR
5749 sd_chain_struct *chain_pointer;
5750 sd_chain_struct *prev_chain_pointer;
025b0302 5751
8f78d0e9
KR
5752 chain_pointer = space_dict_root;
5753 prev_chain_pointer = NULL;
025b0302 5754
8f78d0e9 5755 while (chain_pointer)
025b0302 5756 {
8f78d0e9 5757 if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
025b0302 5758 {
8f78d0e9
KR
5759 prev_chain_pointer = chain_pointer;
5760 chain_pointer = chain_pointer->sd_next;
025b0302 5761 }
8f78d0e9
KR
5762 else
5763 break;
025b0302
ME
5764 }
5765
8f78d0e9
KR
5766 /* At this point we've found the correct place to add the new
5767 entry. So add it and update the linked lists as appropriate. */
5768 if (prev_chain_pointer)
025b0302 5769 {
8f78d0e9
KR
5770 chain_entry->sd_next = chain_pointer;
5771 prev_chain_pointer->sd_next = chain_entry;
025b0302
ME
5772 }
5773 else
5774 {
5775 space_dict_root = chain_entry;
8f78d0e9 5776 chain_entry->sd_next = chain_pointer;
025b0302
ME
5777 }
5778
5779 if (chain_entry->sd_next == NULL)
5780 space_dict_last = chain_entry;
5781 }
5782
548ea75b
JL
5783 /* This is here to catch predefined spaces which do not get
5784 modified by the user's input. Another call is found at
5785 the bottom of pa_parse_space_stmt to handle cases where
5786 the user modifies a predefined space. */
5787#ifdef obj_set_section_attributes
5788 obj_set_section_attributes (seg, defined, private, sort, spnum);
5789#endif
5790
025b0302
ME
5791 return chain_entry;
5792}
5793
8f78d0e9
KR
5794/* Create a new subspace NAME, with the appropriate flags as defined
5795 by the given parameters.
5796
5797 Add the new subspace to the subspace dictionary chain in numerical
5798 order as defined by the SORT entries. */
5799
5800static ssd_chain_struct *
5801create_new_subspace (space, name, loadable, code_only, common,
5802 dup_common, is_zero, sort, access, space_index,
5803 alignment, quadrant, seg)
5804 sd_chain_struct *space;
025b0302 5805 char *name;
8f78d0e9 5806 char loadable, code_only, common, dup_common, is_zero;
025b0302
ME
5807 char sort;
5808 int access;
5809 int space_index;
5810 int alignment;
5811 int quadrant;
5812 asection *seg;
5813{
8f78d0e9 5814 ssd_chain_struct *chain_entry;
025b0302 5815
8f78d0e9 5816 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
025b0302
ME
5817 if (!chain_entry)
5818 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5819
025b0302
ME
5820 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5821 strcpy (SUBSPACE_NAME (chain_entry), name);
5822
8f78d0e9
KR
5823 SUBSPACE_ACCESS (chain_entry) = access;
5824 SUBSPACE_LOADABLE (chain_entry) = loadable;
5825 SUBSPACE_COMMON (chain_entry) = common;
5826 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5827 SUBSPACE_SORT (chain_entry) = sort;
5828 SUBSPACE_CODE_ONLY (chain_entry) = code_only;
5829 SUBSPACE_ALIGN (chain_entry) = alignment;
5830 SUBSPACE_QUADRANT (chain_entry) = quadrant;
025b0302 5831 SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
8f78d0e9
KR
5832 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5833 SUBSPACE_ZERO (chain_entry) = is_zero;
025b0302 5834
240cbc57
JL
5835 /* Initialize subspace_defined. When we hit a .subspace directive
5836 we'll set it to 1 which "locks-in" the subspace attributes. */
5837 SUBSPACE_DEFINED (chain_entry) = 0;
5838
3b9a72c5 5839 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
025b0302 5840 chain_entry->ssd_seg = seg;
025b0302
ME
5841 chain_entry->ssd_last_align = 1;
5842 chain_entry->ssd_next = NULL;
5843
8f78d0e9
KR
5844 /* Find spot for the new subspace based on its sort key. */
5845 if (space->sd_subspaces == NULL)
025b0302
ME
5846 space->sd_subspaces = chain_entry;
5847 else
5848 {
8f78d0e9
KR
5849 ssd_chain_struct *chain_pointer;
5850 ssd_chain_struct *prev_chain_pointer;
025b0302 5851
8f78d0e9
KR
5852 chain_pointer = space->sd_subspaces;
5853 prev_chain_pointer = NULL;
025b0302 5854
8f78d0e9 5855 while (chain_pointer)
025b0302 5856 {
8f78d0e9 5857 if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
025b0302 5858 {
8f78d0e9
KR
5859 prev_chain_pointer = chain_pointer;
5860 chain_pointer = chain_pointer->ssd_next;
025b0302 5861 }
8f78d0e9
KR
5862 else
5863 break;
5864
025b0302
ME
5865 }
5866
8f78d0e9
KR
5867 /* Now we have somewhere to put the new entry. Insert it and update
5868 the links. */
5869 if (prev_chain_pointer)
025b0302 5870 {
8f78d0e9
KR
5871 chain_entry->ssd_next = chain_pointer;
5872 prev_chain_pointer->ssd_next = chain_entry;
025b0302
ME
5873 }
5874 else
5875 {
5876 space->sd_subspaces = chain_entry;
8f78d0e9 5877 chain_entry->ssd_next = chain_pointer;
025b0302
ME
5878 }
5879 }
5880
548ea75b 5881#ifdef obj_set_subsection_attributes
c5e9ccd0 5882 obj_set_subsection_attributes (seg, space->sd_seg, access,
548ea75b
JL
5883 sort, quadrant);
5884#endif
5885
025b0302
ME
5886 return chain_entry;
5887
5888}
5889
8f78d0e9
KR
5890/* Update the information for the given subspace based upon the
5891 various arguments. Return the modified subspace chain entry. */
5892
5893static ssd_chain_struct *
3b9a72c5 5894update_subspace (space, name, loadable, code_only, common, dup_common, sort,
18c4f112 5895 zero, access, space_index, alignment, quadrant, section)
3b9a72c5 5896 sd_chain_struct *space;
025b0302 5897 char *name;
8f78d0e9
KR
5898 char loadable;
5899 char code_only;
5900 char common;
5901 char dup_common;
5902 char zero;
025b0302
ME
5903 char sort;
5904 int access;
5905 int space_index;
5906 int alignment;
5907 int quadrant;
18c4f112 5908 asection *section;
025b0302 5909{
8f78d0e9 5910 ssd_chain_struct *chain_entry;
025b0302 5911
47f45d66 5912 if ((chain_entry = is_defined_subspace (name)))
025b0302 5913 {
8f78d0e9
KR
5914 SUBSPACE_ACCESS (chain_entry) = access;
5915 SUBSPACE_LOADABLE (chain_entry) = loadable;
5916 SUBSPACE_COMMON (chain_entry) = common;
5917 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5918 SUBSPACE_CODE_ONLY (chain_entry) = 1;
5919 SUBSPACE_SORT (chain_entry) = sort;
5920 SUBSPACE_ALIGN (chain_entry) = alignment;
5921 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5922 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
025b0302
ME
5923 SUBSPACE_ZERO (chain_entry) = zero;
5924 }
5925 else
5926 chain_entry = NULL;
5927
548ea75b 5928#ifdef obj_set_subsection_attributes
c5e9ccd0 5929 obj_set_subsection_attributes (section, space->sd_seg, access,
548ea75b
JL
5930 sort, quadrant);
5931#endif
5932
025b0302
ME
5933 return chain_entry;
5934
5935}
5936
8f78d0e9
KR
5937/* Return the space chain entry for the space with the name NAME or
5938 NULL if no such space exists. */
5939
5940static sd_chain_struct *
025b0302
ME
5941is_defined_space (name)
5942 char *name;
5943{
8f78d0e9 5944 sd_chain_struct *chain_pointer;
025b0302 5945
8f78d0e9
KR
5946 for (chain_pointer = space_dict_root;
5947 chain_pointer;
5948 chain_pointer = chain_pointer->sd_next)
025b0302 5949 {
8f78d0e9
KR
5950 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5951 return chain_pointer;
025b0302
ME
5952 }
5953
8f78d0e9 5954 /* No mapping from segment to space was found. Return NULL. */
025b0302
ME
5955 return NULL;
5956}
5957
8f78d0e9
KR
5958/* Find and return the space associated with the given seg. If no mapping
5959 from the given seg to a space is found, then return NULL.
5960
5961 Unlike subspaces, the number of spaces is not expected to grow much,
5962 so a linear exhaustive search is OK here. */
5963
5964static sd_chain_struct *
025b0302
ME
5965pa_segment_to_space (seg)
5966 asection *seg;
5967{
8f78d0e9 5968 sd_chain_struct *space_chain;
025b0302 5969
8f78d0e9
KR
5970 /* Walk through each space looking for the correct mapping. */
5971 for (space_chain = space_dict_root;
5972 space_chain;
5973 space_chain = space_chain->sd_next)
025b0302 5974 {
8f78d0e9
KR
5975 if (space_chain->sd_seg == seg)
5976 return space_chain;
025b0302
ME
5977 }
5978
8f78d0e9 5979 /* Mapping was not found. Return NULL. */
025b0302
ME
5980 return NULL;
5981}
5982
8f78d0e9
KR
5983/* Return the space chain entry for the subspace with the name NAME or
5984 NULL if no such subspace exists.
5985
5986 Uses a linear search through all the spaces and subspaces, this may
5987 not be appropriate if we ever being placing each function in its
5988 own subspace. */
5989
5990static ssd_chain_struct *
47f45d66 5991is_defined_subspace (name)
025b0302 5992 char *name;
025b0302 5993{
c5e9ccd0 5994 sd_chain_struct *space_chain;
8f78d0e9 5995 ssd_chain_struct *subspace_chain;
025b0302 5996
8f78d0e9
KR
5997 /* Walk through each space. */
5998 for (space_chain = space_dict_root;
5999 space_chain;
6000 space_chain = space_chain->sd_next)
025b0302 6001 {
8f78d0e9
KR
6002 /* Walk through each subspace looking for a name which matches. */
6003 for (subspace_chain = space_chain->sd_subspaces;
6004 subspace_chain;
6005 subspace_chain = subspace_chain->ssd_next)
6006 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
6007 return subspace_chain;
025b0302 6008 }
8f78d0e9
KR
6009
6010 /* Subspace wasn't found. Return NULL. */
025b0302
ME
6011 return NULL;
6012}
6013
8f78d0e9
KR
6014/* Find and return the subspace associated with the given seg. If no
6015 mapping from the given seg to a subspace is found, then return NULL.
6016
6017 If we ever put each procedure/function within its own subspace
6018 (to make life easier on the compiler and linker), then this will have
6019 to become more efficient. */
6020
6021static ssd_chain_struct *
025b0302
ME
6022pa_subsegment_to_subspace (seg, subseg)
6023 asection *seg;
6024 subsegT subseg;
6025{
8f78d0e9
KR
6026 sd_chain_struct *space_chain;
6027 ssd_chain_struct *subspace_chain;
025b0302 6028
8f78d0e9
KR
6029 /* Walk through each space. */
6030 for (space_chain = space_dict_root;
6031 space_chain;
6032 space_chain = space_chain->sd_next)
025b0302 6033 {
8f78d0e9 6034 if (space_chain->sd_seg == seg)
025b0302 6035 {
8f78d0e9
KR
6036 /* Walk through each subspace within each space looking for
6037 the correct mapping. */
6038 for (subspace_chain = space_chain->sd_subspaces;
6039 subspace_chain;
6040 subspace_chain = subspace_chain->ssd_next)
6041 if (subspace_chain->ssd_subseg == (int) subseg)
6042 return subspace_chain;
025b0302
ME
6043 }
6044 }
6045
8f78d0e9 6046 /* No mapping from subsegment to subspace found. Return NULL. */
025b0302
ME
6047 return NULL;
6048}
6049
8f78d0e9
KR
6050/* Given a number, try and find a space with the name number.
6051
6052 Return a pointer to a space dictionary chain entry for the space
6053 that was found or NULL on failure. */
6054
6055static sd_chain_struct *
025b0302
ME
6056pa_find_space_by_number (number)
6057 int number;
6058{
8f78d0e9 6059 sd_chain_struct *space_chain;
025b0302 6060
8f78d0e9
KR
6061 for (space_chain = space_dict_root;
6062 space_chain;
6063 space_chain = space_chain->sd_next)
025b0302 6064 {
8f78d0e9
KR
6065 if (SPACE_SPNUM (space_chain) == number)
6066 return space_chain;
025b0302
ME
6067 }
6068
8f78d0e9 6069 /* No appropriate space found. Return NULL. */
025b0302
ME
6070 return NULL;
6071}
6072
8f78d0e9
KR
6073/* Return the starting address for the given subspace. If the starting
6074 address is unknown then return zero. */
6075
6076static unsigned int
025b0302 6077pa_subspace_start (space, quadrant)
8f78d0e9 6078 sd_chain_struct *space;
025b0302
ME
6079 int quadrant;
6080{
8f78d0e9
KR
6081 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
6082 is not correct for the PA OSF1 port. */
6083 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
6084 return 0x40000000;
025b0302 6085 else if (space->sd_seg == data_section && quadrant == 1)
8f78d0e9 6086 return 0x40000000;
025b0302
ME
6087 else
6088 return 0;
6089}
6090
8f78d0e9
KR
6091/* FIXME. Needs documentation. */
6092static int
025b0302 6093pa_next_subseg (space)
8f78d0e9 6094 sd_chain_struct *space;
025b0302
ME
6095{
6096
6097 space->sd_last_subseg++;
6098 return space->sd_last_subseg;
6099}
6100
8f78d0e9
KR
6101/* Helper function for pa_stringer. Used to find the end of
6102 a string. */
6103
025b0302
ME
6104static unsigned int
6105pa_stringer_aux (s)
6106 char *s;
6107{
6108 unsigned int c = *s & CHAR_MASK;
6109 switch (c)
6110 {
6111 case '\"':
6112 c = NOT_A_CHAR;
6113 break;
6114 default:
6115 break;
6116 }
6117 return c;
6118}
6119
8f78d0e9
KR
6120/* Handle a .STRING type pseudo-op. */
6121
6122static void
6123pa_stringer (append_zero)
6124 int append_zero;
025b0302 6125{
8f78d0e9 6126 char *s, num_buf[4];
025b0302 6127 unsigned int c;
025b0302
ME
6128 int i;
6129
8f78d0e9
KR
6130 /* Preprocess the string to handle PA-specific escape sequences.
6131 For example, \xDD where DD is a hexidecimal number should be
6132 changed to \OOO where OOO is an octal number. */
025b0302 6133
8f78d0e9
KR
6134 /* Skip the opening quote. */
6135 s = input_line_pointer + 1;
025b0302
ME
6136
6137 while (is_a_char (c = pa_stringer_aux (s++)))
6138 {
6139 if (c == '\\')
6140 {
6141 c = *s;
6142 switch (c)
6143 {
8f78d0e9 6144 /* Handle \x<num>. */
025b0302
ME
6145 case 'x':
6146 {
6147 unsigned int number;
6148 int num_digit;
6149 char dg;
6150 char *s_start = s;
6151
8f78d0e9
KR
6152 /* Get pas the 'x'. */
6153 s++;
025b0302
ME
6154 for (num_digit = 0, number = 0, dg = *s;
6155 num_digit < 2
6156 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6157 || (dg >= 'A' && dg <= 'F'));
6158 num_digit++)
6159 {
6160 if (isdigit (dg))
6161 number = number * 16 + dg - '0';
6162 else if (dg >= 'a' && dg <= 'f')
6163 number = number * 16 + dg - 'a' + 10;
6164 else
6165 number = number * 16 + dg - 'A' + 10;
6166
6167 s++;
6168 dg = *s;
6169 }
6170 if (num_digit > 0)
6171 {
6172 switch (num_digit)
6173 {
6174 case 1:
6175 sprintf (num_buf, "%02o", number);
6176 break;
6177 case 2:
6178 sprintf (num_buf, "%03o", number);
6179 break;
6180 }
6181 for (i = 0; i <= num_digit; i++)
6182 s_start[i] = num_buf[i];
6183 }
5cf4cd1b 6184 break;
025b0302 6185 }
8f78d0e9 6186 /* This might be a "\"", skip over the escaped char. */
5cf4cd1b
KR
6187 default:
6188 s++;
025b0302
ME
6189 break;
6190 }
6191 }
6192 }
6193 stringer (append_zero);
6194 pa_undefine_label ();
6195}
6196
8f78d0e9
KR
6197/* Handle a .VERSION pseudo-op. */
6198
6199static void
6200pa_version (unused)
6201 int unused;
025b0302 6202{
8f78d0e9 6203 obj_version (0);
025b0302
ME
6204 pa_undefine_label ();
6205}
6206
8f78d0e9
KR
6207/* Just like a normal cons, but when finished we have to undefine
6208 the latest space label. */
6209
6210static void
025b0302 6211pa_cons (nbytes)
8f78d0e9 6212 int nbytes;
025b0302
ME
6213{
6214 cons (nbytes);
6215 pa_undefine_label ();
6216}
6217
8f78d0e9
KR
6218/* Switch to the data space. As usual delete our label. */
6219
6220static void
6221pa_data (unused)
6222 int unused;
025b0302 6223{
80aab579 6224 s_data (0);
025b0302
ME
6225 pa_undefine_label ();
6226}
6227
8f78d0e9 6228/* FIXME. What's the purpose of this pseudo-op? */
025b0302 6229
8f78d0e9
KR
6230static void
6231pa_desc (unused)
6232 int unused;
6233{
025b0302
ME
6234 pa_undefine_label ();
6235}
6236
8f78d0e9 6237/* Like float_cons, but we need to undefine our label. */
c5e9ccd0 6238
8f78d0e9 6239static void
025b0302 6240pa_float_cons (float_type)
8f78d0e9 6241 int float_type;
025b0302
ME
6242{
6243 float_cons (float_type);
6244 pa_undefine_label ();
6245}
6246
8f78d0e9
KR
6247/* Like s_fill, but delete our label when finished. */
6248
6249static void
6250pa_fill (unused)
6251 int unused;
025b0302 6252{
80aab579 6253 s_fill (0);
025b0302
ME
6254 pa_undefine_label ();
6255}
6256
8f78d0e9
KR
6257/* Like lcomm, but delete our label when finished. */
6258
6259static void
025b0302 6260pa_lcomm (needs_align)
025b0302
ME
6261 int needs_align;
6262{
6263 s_lcomm (needs_align);
6264 pa_undefine_label ();
6265}
6266
8f78d0e9
KR
6267/* Like lsym, but delete our label when finished. */
6268
6269static void
6270pa_lsym (unused)
6271 int unused;
025b0302 6272{
80aab579 6273 s_lsym (0);
025b0302
ME
6274 pa_undefine_label ();
6275}
6276
8f78d0e9
KR
6277/* Switch to the text space. Like s_text, but delete our
6278 label when finished. */
6279static void
6280pa_text (unused)
6281 int unused;
025b0302 6282{
80aab579 6283 s_text (0);
025b0302
ME
6284 pa_undefine_label ();
6285}
5cf4cd1b 6286
aa8b30ed
JL
6287/* On the PA relocations which involve function symbols must not be
6288 adjusted. This so that the linker can know when/how to create argument
6289 relocation stubs for indirect calls and calls to static functions.
6290
6291 FIXME. Also reject R_HPPA relocations which are 32 bits
6292 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6293 needs to generate relocations to push the addend and symbol value
6294 onto the stack, add them, then pop the value off the stack and
6295 use it in a relocation -- yuk. */
6296
6297int
c5e9ccd0 6298hppa_fix_adjustable (fixp)
aa8b30ed
JL
6299 fixS *fixp;
6300{
6301 struct hppa_fix_struct *hppa_fix;
6302
6303 hppa_fix = fixp->tc_fix_data;
6304
6305 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6306 return 0;
6307
c5e9ccd0 6308 if (fixp->fx_addsy == 0
aa8b30ed
JL
6309 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6310 return 1;
6311
6312 return 0;
6313}
c5e9ccd0 6314
335d35c8
JL
6315/* Return nonzero if the fixup in FIXP will require a relocation,
6316 even it if appears that the fixup could be completely handled
6317 within GAS. */
6318
6319int
6320hppa_force_relocation (fixp)
6321 fixS *fixp;
6322{
6323 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6324
6325#ifdef OBJ_SOM
6326 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6327 return 1;
6328#endif
6329
6330#define stub_needed(CALLER, CALLEE) \
6331 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6332
6333 /* It is necessary to force PC-relative calls/jumps to have a relocation
6334 entry if they're going to need either a argument relocation or long
6335 call stub. FIXME. Can't we need the same for absolute calls? */
6336 if (fixp->fx_pcrel
6337 && (stub_needed (((obj_symbol_type *)
6338 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6339 hppa_fixp->fx_arg_reloc)))
6340 return 1;
6341
6342#undef stub_needed
6343
6344 /* No need (yet) to force another relocations to be emitted. */
6345 return 0;
6346}
6347
8f78d0e9
KR
6348/* Now for some ELF specific code. FIXME. */
6349#ifdef OBJ_ELF
6350static symext_chainS *symext_rootP;
6351static symext_chainS *symext_lastP;
6352
44c0de53
JL
6353/* Mark the end of a function so that it's possible to compute
6354 the size of the function in hppa_elf_final_processing. */
6355
6356static void
6357hppa_elf_mark_end_of_function ()
6358{
6359 /* ELF does not have EXIT relocations. All we do is create a
6360 temporary symbol marking the end of the function. */
6361 char *name = (char *)
6362 xmalloc (strlen ("L$\001end_") +
6363 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6364
6365 if (name)
6366 {
6367 symbolS *symbolP;
6368
6369 strcpy (name, "L$\001end_");
6370 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6371
6372 /* If we have a .exit followed by a .procend, then the
6373 symbol will have already been defined. */
6374 symbolP = symbol_find (name);
6375 if (symbolP)
6376 {
6377 /* The symbol has already been defined! This can
6378 happen if we have a .exit followed by a .procend.
6379
6380 This is *not* an error. All we want to do is free
6381 the memory we just allocated for the name and continue. */
6382 xfree (name);
6383 }
6384 else
6385 {
6386 /* symbol value should be the offset of the
6387 last instruction of the function */
6388 symbolP = symbol_new (name, now_seg,
6389 (valueT) (obstack_next_free (&frags)
6390 - frag_now->fr_literal - 4),
6391 frag_now);
6392
6393 assert (symbolP);
6394 symbolP->bsym->flags = BSF_LOCAL;
6395 symbol_table_insert (symbolP);
6396 }
6397
6398 if (symbolP)
6399 last_call_info->end_symbol = symbolP;
6400 else
6401 as_bad ("Symbol '%s' could not be created.", name);
6402
6403 }
6404 else
6405 as_bad ("No memory for symbol name.");
6406
6407 /* Stuff away the location of the frag for the end of the function,
6408 and call pa_build_unwind_subspace to add an entry in the unwind
6409 table. */
6410 last_call_info->end_frag = frag_now;
6411}
6412
8f78d0e9 6413/* Do any symbol processing requested by the target-cpu or target-format. */
5cf4cd1b
KR
6414
6415void
6416hppa_tc_symbol (abfd, symbolP, sym_idx)
8f78d0e9
KR
6417 bfd *abfd;
6418 elf_symbol_type *symbolP;
5cf4cd1b
KR
6419 int sym_idx;
6420{
6421 symext_chainS *symextP;
6422 unsigned int arg_reloc;
6423
8f78d0e9 6424 /* Only functions can have argument relocations. */
5cf4cd1b
KR
6425 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6426 return;
6427
6428 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6429
8f78d0e9
KR
6430 /* If there are no argument relocation bits, then no relocation is
6431 necessary. Do not add this to the symextn section. */
6432 if (arg_reloc == 0)
6433 return;
6434
5cf4cd1b
KR
6435 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6436
6437 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6438 symextP[0].next = &symextP[1];
6439
6440 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6441 symextP[1].next = NULL;
6442
6443 if (symext_rootP == NULL)
6444 {
6445 symext_rootP = &symextP[0];
6446 symext_lastP = &symextP[1];
6447 }
6448 else
6449 {
6450 symext_lastP->next = &symextP[0];
6451 symext_lastP = &symextP[1];
6452 }
6453}
6454
8f78d0e9 6455/* Make sections needed by the target cpu and/or target format. */
5cf4cd1b
KR
6456void
6457hppa_tc_make_sections (abfd)
8f78d0e9 6458 bfd *abfd;
5cf4cd1b
KR
6459{
6460 symext_chainS *symextP;
8f78d0e9 6461 int size, n;
5cf4cd1b
KR
6462 asection *symextn_sec;
6463 segT save_seg = now_seg;
6464 subsegT save_subseg = now_subseg;
6465
8f78d0e9
KR
6466 /* Build the symbol extension section. */
6467 hppa_tc_make_symextn_section ();
5cf4cd1b 6468
8f78d0e9
KR
6469 /* Force some calculation to occur. */
6470 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
5cf4cd1b
KR
6471
6472 hppa_elf_stub_finish (abfd);
6473
8f78d0e9 6474 /* If no symbols for the symbol extension section, then stop now. */
5cf4cd1b
KR
6475 if (symext_rootP == NULL)
6476 return;
6477
8f78d0e9 6478 /* Count the number of symbols for the symbol extension section. */
5cf4cd1b
KR
6479 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6480 ;
6481
6482 size = sizeof (symext_entryS) * n;
6483
8f78d0e9
KR
6484 /* Switch to the symbol extension section. */
6485 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
5cf4cd1b
KR
6486
6487 frag_wane (frag_now);
6488 frag_new (0);
6489
6490 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6491 {
6492 char *ptr;
8f78d0e9 6493 int *symtab_map = elf_sym_extra (abfd);
5cf4cd1b
KR
6494 int idx;
6495
8f78d0e9
KR
6496 /* First, patch the symbol extension record to reflect the true
6497 symbol table index. */
5cf4cd1b 6498
8f78d0e9 6499 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
5cf4cd1b 6500 {
8f78d0e9 6501 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
5cf4cd1b 6502 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
8f78d0e9 6503 symtab_map[idx]);
5cf4cd1b
KR
6504 }
6505
8f78d0e9
KR
6506 ptr = frag_more (sizeof (symextP->entry));
6507 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
5cf4cd1b
KR
6508 }
6509
6510 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6511 frag_wane (frag_now);
6512
8f78d0e9
KR
6513 /* Switch back to the original segment. */
6514 subseg_set (save_seg, save_subseg);
5cf4cd1b
KR
6515
6516 return;
6517}
6518
8f78d0e9
KR
6519/* Make the symbol extension section. */
6520
5cf4cd1b 6521static void
8f78d0e9 6522hppa_tc_make_symextn_section ()
5cf4cd1b 6523{
5cf4cd1b
KR
6524 if (symext_rootP)
6525 {
6526 symext_chainS *symextP;
6527 int n;
8f78d0e9 6528 unsigned int size;
5cf4cd1b
KR
6529 segT symextn_sec;
6530 segT save_seg = now_seg;
6531 subsegT save_subseg = now_subseg;
6532
6533 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6534 ;
6535
6536 size = sizeof (symext_entryS) * n;
6537
8f78d0e9 6538 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
5cf4cd1b 6539
8f78d0e9
KR
6540 bfd_set_section_flags (stdoutput, symextn_sec,
6541 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
5cf4cd1b
KR
6542 bfd_set_section_size (stdoutput, symextn_sec, size);
6543
8f78d0e9
KR
6544 /* Now, switch back to the original segment. */
6545 subseg_set (save_seg, save_subseg);
6546 }
6547}
6548
6549/* Build the symbol extension section. */
6550
6551static void
6552pa_build_symextn_section ()
6553{
6554 segT seg;
6555 asection *save_seg = now_seg;
6556 subsegT subseg = (subsegT) 0;
6557 subsegT save_subseg = now_subseg;
6558
6559 seg = subseg_new (".hppa_symextn", subseg);
6560 bfd_set_section_flags (stdoutput,
6561 seg,
c5e9ccd0 6562 SEC_HAS_CONTENTS | SEC_READONLY
8f78d0e9
KR
6563 | SEC_ALLOC | SEC_LOAD);
6564
6565 subseg_set (save_seg, save_subseg);
6566
6567}
6568
6569/* For ELF, this function serves one purpose: to setup the st_size
6570 field of STT_FUNC symbols. To do this, we need to scan the
6571 call_info structure list, determining st_size in one of two possible
6572 ways:
6573
6574 1. call_info->start_frag->fr_fix has the size of the fragment.
6575 This approach assumes that the function was built into a
6576 single fragment. This works for most cases, but might fail.
6577 For example, if there was a segment change in the middle of
6578 the function.
6579
6580 2. The st_size field is the difference in the addresses of the
6581 call_info->start_frag->fr_address field and the fr_address
6582 field of the next fragment with fr_type == rs_fill and
6583 fr_fix != 0. */
6584
6585void
6586elf_hppa_final_processing ()
6587{
6588 struct call_info *call_info_pointer;
6589
6590 for (call_info_pointer = call_info_root;
6591 call_info_pointer;
6592 call_info_pointer = call_info_pointer->ci_next)
6593 {
6594 elf_symbol_type *esym
c5e9ccd0 6595 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
8f78d0e9
KR
6596 esym->internal_elf_sym.st_size =
6597 S_GET_VALUE (call_info_pointer->end_symbol)
c5e9ccd0 6598 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
5cf4cd1b
KR
6599 }
6600}
8f78d0e9 6601#endif
This page took 0.377144 seconds and 4 git commands to generate.