* som.c (som_begin_writing): Flesh out code for handling simple
[deliverable/binutils-gdb.git] / gas / config / tc-hppa.c
CommitLineData
025b0302
ME
1/* tc-hppa.c -- Assemble for the PA
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
8f78d0e9 4 This file is part of GAS, the GNU Assembler.
025b0302 5
8f78d0e9
KR
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
025b0302 10
8f78d0e9
KR
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
025b0302 15
8f78d0e9
KR
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
025b0302
ME
19
20
8f78d0e9
KR
21/* HP PA-RISC support was contributed by the Center for Software Science
22 at the University of Utah. */
025b0302
ME
23
24#include <stdio.h>
25#include <ctype.h>
26
27#include "as.h"
28#include "subsegs.h"
29
5cf4cd1b 30#include "../bfd/libhppa.h"
8f78d0e9 31#include "../bfd/libbfd.h"
5cf4cd1b 32
8f78d0e9
KR
33/* Be careful, this file includes data *declarations*. */
34#include "opcode/hppa.h"
35
36/* A "convient" place to put object file dependencies which do
37 not need to be seen outside of tc-hppa.c. */
5cf4cd1b 38#ifdef OBJ_ELF
8f78d0e9
KR
39/* Names of various debugging spaces/subspaces. */
40#define GDB_DEBUG_SPACE_NAME ".stab"
41#define GDB_STRINGS_SUBSPACE_NAME ".stabstr"
42#define GDB_SYMBOLS_SUBSPACE_NAME ".stab"
43#define UNWIND_SECTION_NAME ".hppa_unwind"
44/* Nonzero if CODE is a fixup code needing further processing. */
45
8f78d0e9
KR
46/* Object file formats specify relocation types. */
47typedef elf32_hppa_reloc_type reloc_type;
48
49/* Object file formats specify BFD symbol types. */
50typedef elf_symbol_type obj_symbol_type;
51
aa8b30ed
JL
52/* How to generate a relocation. */
53#define hppa_gen_reloc_type hppa_elf_gen_reloc_type
54
8f78d0e9
KR
55/* Who knows. */
56#define obj_version obj_elf_version
57
3b9a72c5
JL
58/* Use space aliases. */
59#define USE_ALIASES 1
60
8f78d0e9
KR
61/* Some local functions only used by ELF. */
62static void pa_build_symextn_section PARAMS ((void));
63static void hppa_tc_make_symextn_section PARAMS ((void));
64#endif
65
66#ifdef OBJ_SOM
67/* Names of various debugging spaces/subspaces. */
68#define GDB_DEBUG_SPACE_NAME "$GDB_DEBUG$"
69#define GDB_STRINGS_SUBSPACE_NAME "$GDB_STRINGS$"
70#define GDB_SYMBOLS_SUBSPACE_NAME "$GDB_SYMBOLS$"
71#define UNWIND_SECTION_NAME "$UNWIND$"
72
73/* Object file formats specify relocation types. */
74typedef int reloc_type;
75
76/* Who knows. */
77#define obj_version obj_som_version
78
3b9a72c5
JL
79/* Do not use space aliases. */
80#define USE_ALIASES 0
81
aa8b30ed
JL
82/* How to generate a relocation. */
83#define hppa_gen_reloc_type hppa_som_gen_reloc_type
8f78d0e9
KR
84
85/* Object file formats specify BFD symbol types. */
86typedef som_symbol_type obj_symbol_type;
5cf4cd1b
KR
87#endif
88
8f78d0e9
KR
89/* Various structures and types used internally in tc-hppa.c. */
90
91/* Unwind table and descriptor. FIXME: Sync this with GDB version. */
025b0302
ME
92
93struct unwind_desc
94 {
95 unsigned int cannot_unwind:1;
96 unsigned int millicode:1;
97 unsigned int millicode_save_rest:1;
98 unsigned int region_desc:2;
99 unsigned int save_sr:2;
8f78d0e9
KR
100 unsigned int entry_fr:4;
101 unsigned int entry_gr:5;
025b0302
ME
102 unsigned int args_stored:1;
103 unsigned int call_fr:5;
104 unsigned int call_gr:5;
105 unsigned int save_sp:1;
106 unsigned int save_rp:1;
107 unsigned int save_rp_in_frame:1;
108 unsigned int extn_ptr_defined:1;
109 unsigned int cleanup_defined:1;
110
111 unsigned int hpe_interrupt_marker:1;
112 unsigned int hpux_interrupt_marker:1;
113 unsigned int reserved:3;
114 unsigned int frame_size:27;
115 };
116
025b0302
ME
117struct unwind_table
118 {
8f78d0e9
KR
119 /* Starting and ending offsets of the region described by
120 descriptor. */
121 unsigned int start_offset;
122 unsigned int end_offset;
123 struct unwind_desc descriptor;
025b0302
ME
124 };
125
8f78d0e9
KR
126/* This structure is used by the .callinfo, .enter, .leave pseudo-ops to
127 control the entry and exit code they generate. It is also used in
128 creation of the correct stack unwind descriptors.
025b0302 129
8f78d0e9
KR
130 NOTE: GAS does not support .enter and .leave for the generation of
131 prologues and epilogues. FIXME.
132
133 The fields in structure roughly correspond to the arguments available on the
134 .callinfo pseudo-op. */
025b0302
ME
135
136struct call_info
137 {
8f78d0e9 138 /* Should sr3 be saved in the prologue? */
025b0302 139 int entry_sr;
8f78d0e9
KR
140
141 /* Does this function make calls? */
025b0302 142 int makes_calls;
025b0302 143
8f78d0e9
KR
144 /* The unwind descriptor being built. */
145 struct unwind_table ci_unwind;
146
147 /* Name of this function. */
148 symbolS *start_symbol;
149
150 /* (temporary) symbol used to mark the end of this function. */
151 symbolS *end_symbol;
152
153 /* frags associated with start and end of this function. */
154 fragS *start_frag;
155 fragS *end_frag;
156
157 /* frags for starting/ending offset of this descriptor. */
158 fragS *start_offset_frag;
159 fragS *end_offset_frag;
025b0302 160
8f78d0e9
KR
161 /* The location within {start,end}_offset_frag to find the
162 {start,end}_offset. */
163 int start_frag_where;
164 int end_frag_where;
025b0302 165
8f78d0e9
KR
166 /* Fixups (relocations) for start_offset and end_offset. */
167 fixS *start_fix;
168 fixS *end_fix;
025b0302 169
8f78d0e9
KR
170 /* Next entry in the chain. */
171 struct call_info *ci_next;
172 };
173
174/* Operand formats for FP instructions. Note not all FP instructions
175 allow all four formats to be used (for example fmpysub only allows
176 SGL and DBL). */
177typedef enum
178 {
179 SGL, DBL, ILLEGAL_FMT, QUAD
180 }
181fp_operand_format;
182
e75acd68
JL
183/* This fully describes the symbol types which may be attached to
184 an EXPORT or IMPORT directive. Only SOM uses this formation
185 (ELF has no need for it). */
186typedef enum
c5e9ccd0
JL
187 {
188 SYMBOL_TYPE_UNKNOWN,
189 SYMBOL_TYPE_ABSOLUTE,
190 SYMBOL_TYPE_CODE,
191 SYMBOL_TYPE_DATA,
192 SYMBOL_TYPE_ENTRY,
193 SYMBOL_TYPE_MILLICODE,
194 SYMBOL_TYPE_PLABEL,
195 SYMBOL_TYPE_PRI_PROG,
196 SYMBOL_TYPE_SEC_PROG,
197 }
198pa_symbol_type;
e75acd68 199
8f78d0e9
KR
200/* This structure contains information needed to assemble
201 individual instructions. */
025b0302
ME
202struct pa_it
203 {
8f78d0e9 204 /* Holds the opcode after parsing by pa_ip. */
025b0302 205 unsigned long opcode;
8f78d0e9
KR
206
207 /* Holds an expression associated with the current instruction. */
025b0302 208 expressionS exp;
8f78d0e9
KR
209
210 /* Does this instruction use PC-relative addressing. */
025b0302 211 int pcrel;
8f78d0e9
KR
212
213 /* Floating point formats for operand1 and operand2. */
214 fp_operand_format fpof1;
215 fp_operand_format fpof2;
216
217 /* Holds the field selector for this instruction
218 (for example L%, LR%, etc). */
025b0302 219 long field_selector;
8f78d0e9
KR
220
221 /* Holds any argument relocation bits associated with this
222 instruction. (instruction should be some sort of call). */
025b0302 223 long arg_reloc;
8f78d0e9
KR
224
225 /* The format specification for this instruction. */
025b0302 226 int format;
8f78d0e9
KR
227
228 /* The relocation (if any) associated with this instruction. */
229 reloc_type reloc;
025b0302
ME
230 };
231
8f78d0e9 232/* PA-89 floating point registers are arranged like this:
025b0302 233
025b0302 234
8f78d0e9
KR
235 +--------------+--------------+
236 | 0 or 16L | 16 or 16R |
237 +--------------+--------------+
238 | 1 or 17L | 17 or 17R |
239 +--------------+--------------+
240 | | |
241
242 . . .
243 . . .
244 . . .
245
246 | | |
247 +--------------+--------------+
248 | 14 or 30L | 30 or 30R |
249 +--------------+--------------+
250 | 15 or 31L | 31 or 31R |
251 +--------------+--------------+
252
253
254 The following is a version of pa_parse_number that
255 handles the L/R notation and returns the correct
256 value to put into the instruction register field.
257 The correct value to put into the instruction is
258 encoded in the structure 'pa_89_fp_reg_struct'. */
259
260struct pa_89_fp_reg_struct
261 {
262 /* The register number. */
263 char number_part;
264
265 /* L/R selector. */
266 char l_r_select;
267 };
268
269/* Additional information needed to build argument relocation stubs. */
270struct call_desc
271 {
272 /* The argument relocation specification. */
273 unsigned int arg_reloc;
274
275 /* Number of arguments. */
276 unsigned int arg_count;
277 };
278
279/* This structure defines an entry in the subspace dictionary
280 chain. */
281
282struct subspace_dictionary_chain
283 {
284 /* Index of containing space. */
285 unsigned long ssd_space_index;
286
47f45d66
JL
287 /* Nonzero if this space has been defined by the user code. */
288 unsigned int ssd_defined;
289
8f78d0e9
KR
290 /* Which quadrant within the space this subspace should be loaded into. */
291 unsigned char ssd_quadrant;
292
293 /* Alignment (in bytes) for this subspace. */
294 unsigned long ssd_alignment;
295
296 /* Access control bits to determine read/write/execute permissions
297 as well as gateway privilege promotions. */
298 unsigned char ssd_access_control_bits;
299
300 /* A sorting key so that it is possible to specify ordering of
301 subspaces within a space. */
302 unsigned char ssd_sort_key;
303
304 /* Nonzero of this space should be zero filled. */
305 unsigned long ssd_zero;
306
307 /* Nonzero if this is a common subspace. */
308 unsigned char ssd_common;
309
310 /* Nonzero if this is a common subspace which allows symbols to be
311 multiply defined. */
312 unsigned char ssd_dup_common;
313
314 /* Nonzero if this subspace is loadable. Note loadable subspaces
315 must be contained within loadable spaces; unloadable subspaces
316 must be contained in unloadable spaces. */
317 unsigned char ssd_loadable;
318
c5e9ccd0 319 /* Nonzero if this subspace contains only code. */
8f78d0e9
KR
320 unsigned char ssd_code_only;
321
322 /* Starting offset of this subspace. */
323 unsigned long ssd_subspace_start;
324
325 /* Length of this subspace. */
326 unsigned long ssd_subspace_length;
327
328 /* Name of this subspace. */
329 char *ssd_name;
330
331 /* GAS segment and subsegment associated with this subspace. */
332 asection *ssd_seg;
333 int ssd_subseg;
334
335 /* Index of this subspace within the subspace dictionary of the object
336 file. Not used until object file is written. */
337 int object_file_index;
338
339 /* The size of the last alignment request for this subspace. */
340 int ssd_last_align;
341
8f78d0e9
KR
342 /* Next space in the subspace dictionary chain. */
343 struct subspace_dictionary_chain *ssd_next;
344 };
345
346typedef struct subspace_dictionary_chain ssd_chain_struct;
347
348/* This structure defines an entry in the subspace dictionary
349 chain. */
350
351struct space_dictionary_chain
352 {
353
354 /* Holds the index into the string table of the name of this
355 space. */
356 unsigned int sd_name_index;
357
358 /* Nonzero if the space is loadable. */
359 unsigned int sd_loadable;
360
361 /* Nonzero if this space has been defined by the user code or
362 as a default space. */
363 unsigned int sd_defined;
364
365 /* Nonzero if this spaces has been defined by the user code. */
366 unsigned int sd_user_defined;
367
368 /* Nonzero if this space is not sharable. */
369 unsigned int sd_private;
370
371 /* The space number (or index). */
372 unsigned int sd_spnum;
373
374 /* The sort key for this space. May be used to determine how to lay
375 out the spaces within the object file. */
376 unsigned char sd_sort_key;
377
378 /* The name of this subspace. */
379 char *sd_name;
380
381 /* GAS segment to which this subspace corresponds. */
382 asection *sd_seg;
383
384 /* Current subsegment number being used. */
385 int sd_last_subseg;
386
387 /* The chain of subspaces contained within this space. */
388 ssd_chain_struct *sd_subspaces;
389
390 /* The next entry in the space dictionary chain. */
391 struct space_dictionary_chain *sd_next;
392 };
393
394typedef struct space_dictionary_chain sd_chain_struct;
395
396/* Structure for previous label tracking. Needed so that alignments,
397 callinfo declarations, etc can be easily attached to a particular
398 label. */
399typedef struct label_symbol_struct
400 {
401 struct symbol *lss_label;
402 sd_chain_struct *lss_space;
403 struct label_symbol_struct *lss_next;
404 }
405label_symbol_struct;
406
407/* This structure defines attributes of the default subspace
408 dictionary entries. */
409
410struct default_subspace_dict
411 {
c5e9ccd0 412 /* Name of the subspace. */
8f78d0e9
KR
413 char *name;
414
415 /* FIXME. Is this still needed? */
416 char defined;
417
418 /* Nonzero if this subspace is loadable. */
419 char loadable;
420
421 /* Nonzero if this subspace contains only code. */
422 char code_only;
423
424 /* Nonzero if this is a common subspace. */
425 char common;
426
427 /* Nonzero if this is a common subspace which allows symbols
428 to be multiply defined. */
429 char dup_common;
430
431 /* Nonzero if this subspace should be zero filled. */
432 char zero;
433
434 /* Sort key for this subspace. */
435 unsigned char sort;
436
437 /* Access control bits for this subspace. Can represent RWX access
438 as well as privilege level changes for gateways. */
439 int access;
440
441 /* Index of containing space. */
442 int space_index;
443
444 /* Alignment (in bytes) of this subspace. */
445 int alignment;
446
447 /* Quadrant within space where this subspace should be loaded. */
448 int quadrant;
449
450 /* An index into the default spaces array. */
451 int def_space_index;
452
453 /* An alias for this section (or NULL if no alias exists). */
454 char *alias;
455
456 /* Subsegment associated with this subspace. */
457 subsegT subsegment;
458 };
459
460/* This structure defines attributes of the default space
461 dictionary entries. */
462
463struct default_space_dict
464 {
465 /* Name of the space. */
466 char *name;
467
468 /* Space number. It is possible to identify spaces within
469 assembly code numerically! */
470 int spnum;
471
472 /* Nonzero if this space is loadable. */
473 char loadable;
474
475 /* Nonzero if this space is "defined". FIXME is still needed */
476 char defined;
477
478 /* Nonzero if this space can not be shared. */
479 char private;
480
481 /* Sort key for this space. */
482 unsigned char sort;
483
484 /* Segment associated with this space. */
485 asection *segment;
486
487 /* An alias for this section (or NULL if no alias exists). */
488 char *alias;
489 };
490
491/* Extra information needed to perform fixups (relocations) on the PA. */
492struct hppa_fix_struct
c5e9ccd0 493 {
8f78d0e9 494 /* The field selector. */
f2eed884 495 enum hppa_reloc_field_selector_type fx_r_field;
8f78d0e9
KR
496
497 /* Type of fixup. */
498 int fx_r_type;
499
500 /* Format of fixup. */
501 int fx_r_format;
502
503 /* Argument relocation bits. */
504 long fx_arg_reloc;
505
506 /* The unwind descriptor associated with this fixup. */
507 char fx_unwind[8];
c5e9ccd0 508 };
8f78d0e9
KR
509
510/* Structure to hold information about predefined registers. */
511
512struct pd_reg
c5e9ccd0
JL
513 {
514 char *name;
515 int value;
516 };
8f78d0e9
KR
517
518/* This structure defines the mapping from a FP condition string
519 to a condition number which can be recorded in an instruction. */
520struct fp_cond_map
c5e9ccd0
JL
521 {
522 char *string;
523 int cond;
524 };
8f78d0e9
KR
525
526/* This structure defines a mapping from a field selector
527 string to a field selector type. */
528struct selector_entry
c5e9ccd0
JL
529 {
530 char *prefix;
531 int field_selector;
532 };
025b0302 533
8f78d0e9
KR
534/* Prototypes for functions local to tc-hppa.c. */
535
536static fp_operand_format pa_parse_fp_format PARAMS ((char **s));
8f78d0e9
KR
537static void pa_cons PARAMS ((int));
538static void pa_data PARAMS ((int));
539static void pa_desc PARAMS ((int));
540static void pa_float_cons PARAMS ((int));
541static void pa_fill PARAMS ((int));
542static void pa_lcomm PARAMS ((int));
543static void pa_lsym PARAMS ((int));
544static void pa_stringer PARAMS ((int));
545static void pa_text PARAMS ((int));
546static void pa_version PARAMS ((int));
547static int pa_parse_fp_cmp_cond PARAMS ((char **));
548static int get_expression PARAMS ((char *));
48153d49
JL
549static int pa_get_absolute_expression PARAMS ((struct pa_it *, char **));
550static int evaluate_absolute PARAMS ((struct pa_it *));
8f78d0e9
KR
551static unsigned int pa_build_arg_reloc PARAMS ((char *));
552static unsigned int pa_align_arg_reloc PARAMS ((unsigned int, unsigned int));
553static int pa_parse_nullif PARAMS ((char **));
554static int pa_parse_nonneg_cmpsub_cmpltr PARAMS ((char **, int));
555static int pa_parse_neg_cmpsub_cmpltr PARAMS ((char **, int));
556static int pa_parse_neg_add_cmpltr PARAMS ((char **, int));
557static int pa_parse_nonneg_add_cmpltr PARAMS ((char **, int));
558static void pa_block PARAMS ((int));
559static void pa_call PARAMS ((int));
560static void pa_call_args PARAMS ((struct call_desc *));
561static void pa_callinfo PARAMS ((int));
562static void pa_code PARAMS ((int));
563static void pa_comm PARAMS ((int));
564static void pa_copyright PARAMS ((int));
565static void pa_end PARAMS ((int));
566static void pa_enter PARAMS ((int));
567static void pa_entry PARAMS ((int));
568static void pa_equ PARAMS ((int));
569static void pa_exit PARAMS ((int));
570static void pa_export PARAMS ((int));
48153d49 571static void pa_type_args PARAMS ((symbolS *, int));
8f78d0e9
KR
572static void pa_import PARAMS ((int));
573static void pa_label PARAMS ((int));
574static void pa_leave PARAMS ((int));
575static void pa_origin PARAMS ((int));
576static void pa_proc PARAMS ((int));
577static void pa_procend PARAMS ((int));
578static void pa_space PARAMS ((int));
579static void pa_spnum PARAMS ((int));
580static void pa_subspace PARAMS ((int));
581static void pa_param PARAMS ((int));
582static void pa_undefine_label PARAMS ((void));
c5e9ccd0 583static int need_89_opcode PARAMS ((struct pa_it *,
8f78d0e9
KR
584 struct pa_89_fp_reg_struct *));
585static int pa_parse_number PARAMS ((char **, struct pa_89_fp_reg_struct *));
586static label_symbol_struct *pa_get_label PARAMS ((void));
587static sd_chain_struct *create_new_space PARAMS ((char *, int, char,
588 char, char, char,
589 asection *, int));
c5e9ccd0
JL
590static ssd_chain_struct *create_new_subspace PARAMS ((sd_chain_struct *,
591 char *, char, char,
592 char, char, char,
593 char, int, int, int,
594 int, asection *));
3b9a72c5
JL
595static ssd_chain_struct *update_subspace PARAMS ((sd_chain_struct *,
596 char *, char, char, char,
8f78d0e9 597 char, char, char, int,
18c4f112
JL
598 int, int, int,
599 asection *));
8f78d0e9 600static sd_chain_struct *is_defined_space PARAMS ((char *));
47f45d66 601static ssd_chain_struct *is_defined_subspace PARAMS ((char *));
8f78d0e9 602static sd_chain_struct *pa_segment_to_space PARAMS ((asection *));
c5e9ccd0
JL
603static ssd_chain_struct *pa_subsegment_to_subspace PARAMS ((asection *,
604 subsegT));
8f78d0e9
KR
605static sd_chain_struct *pa_find_space_by_number PARAMS ((int));
606static unsigned int pa_subspace_start PARAMS ((sd_chain_struct *, int));
8f78d0e9
KR
607static void pa_ip PARAMS ((char *));
608static void fix_new_hppa PARAMS ((fragS *, int, short int, symbolS *,
609 long, expressionS *, int,
f2eed884
JL
610 bfd_reloc_code_real_type,
611 enum hppa_reloc_field_selector_type,
8f78d0e9 612 int, long, char *));
8f78d0e9
KR
613static int is_end_of_statement PARAMS ((void));
614static int reg_name_search PARAMS ((char *));
615static int pa_chk_field_selector PARAMS ((char **));
616static int is_same_frag PARAMS ((fragS *, fragS *));
617static void pa_build_unwind_subspace PARAMS ((struct call_info *));
618static void process_exit PARAMS ((void));
619static sd_chain_struct *pa_parse_space_stmt PARAMS ((char *, int));
aa8b30ed 620static int log2 PARAMS ((int));
8f78d0e9
KR
621static int pa_next_subseg PARAMS ((sd_chain_struct *));
622static unsigned int pa_stringer_aux PARAMS ((char *));
623static void pa_spaces_begin PARAMS ((void));
44c0de53 624static void hppa_elf_mark_end_of_function PARAMS ((void));
8f78d0e9
KR
625
626/* File and gloally scoped variable declarations. */
627
628/* Root and final entry in the space chain. */
629static sd_chain_struct *space_dict_root;
630static sd_chain_struct *space_dict_last;
631
632/* The current space and subspace. */
633static sd_chain_struct *current_space;
634static ssd_chain_struct *current_subspace;
635
636/* Root of the call_info chain. */
637static struct call_info *call_info_root;
638
639/* The last call_info (for functions) structure
640 seen so it can be associated with fixups and
641 function labels. */
642static struct call_info *last_call_info;
643
c5e9ccd0 644/* The last call description (for actual calls). */
8f78d0e9
KR
645static struct call_desc last_call_desc;
646
647/* Relaxation isn't supported for the PA yet. */
c5e9ccd0
JL
648const relax_typeS md_relax_table[] =
649{0};
025b0302 650
c5e9ccd0 651/* Jumps are always the same size -- one instruction. */
025b0302
ME
652int md_short_jump_size = 4;
653int md_long_jump_size = 4;
654
8f78d0e9
KR
655/* handle of the OPCODE hash table */
656static struct hash_control *op_hash = NULL;
025b0302 657
8f78d0e9
KR
658/* This array holds the chars that always start a comment. If the
659 pre-processor is disabled, these aren't very useful. */
660const char comment_chars[] = ";";
661
662/* Table of pseudo ops for the PA. FIXME -- how many of these
663 are now redundant with the overall GAS and the object file
664 dependent tables? */
665const pseudo_typeS md_pseudo_table[] =
666{
667 /* align pseudo-ops on the PA specify the actual alignment requested,
668 not the log2 of the requested alignment. */
d33ace2e
JL
669 {"align", s_align_bytes, 8},
670 {"ALIGN", s_align_bytes, 8},
025b0302
ME
671 {"block", pa_block, 1},
672 {"BLOCK", pa_block, 1},
673 {"blockz", pa_block, 0},
674 {"BLOCKZ", pa_block, 0},
675 {"byte", pa_cons, 1},
676 {"BYTE", pa_cons, 1},
677 {"call", pa_call, 0},
678 {"CALL", pa_call, 0},
679 {"callinfo", pa_callinfo, 0},
680 {"CALLINFO", pa_callinfo, 0},
681 {"code", pa_code, 0},
682 {"CODE", pa_code, 0},
683 {"comm", pa_comm, 0},
684 {"COMM", pa_comm, 0},
685 {"copyright", pa_copyright, 0},
686 {"COPYRIGHT", pa_copyright, 0},
687 {"data", pa_data, 0},
688 {"DATA", pa_data, 0},
689 {"desc", pa_desc, 0},
690 {"DESC", pa_desc, 0},
691 {"double", pa_float_cons, 'd'},
692 {"DOUBLE", pa_float_cons, 'd'},
693 {"end", pa_end, 0},
694 {"END", pa_end, 0},
695 {"enter", pa_enter, 0},
696 {"ENTER", pa_enter, 0},
697 {"entry", pa_entry, 0},
698 {"ENTRY", pa_entry, 0},
699 {"equ", pa_equ, 0},
700 {"EQU", pa_equ, 0},
701 {"exit", pa_exit, 0},
702 {"EXIT", pa_exit, 0},
703 {"export", pa_export, 0},
704 {"EXPORT", pa_export, 0},
705 {"fill", pa_fill, 0},
706 {"FILL", pa_fill, 0},
707 {"float", pa_float_cons, 'f'},
708 {"FLOAT", pa_float_cons, 'f'},
709 {"half", pa_cons, 2},
710 {"HALF", pa_cons, 2},
711 {"import", pa_import, 0},
712 {"IMPORT", pa_import, 0},
713 {"int", pa_cons, 4},
714 {"INT", pa_cons, 4},
715 {"label", pa_label, 0},
716 {"LABEL", pa_label, 0},
717 {"lcomm", pa_lcomm, 0},
718 {"LCOMM", pa_lcomm, 0},
719 {"leave", pa_leave, 0},
720 {"LEAVE", pa_leave, 0},
721 {"long", pa_cons, 4},
722 {"LONG", pa_cons, 4},
723 {"lsym", pa_lsym, 0},
724 {"LSYM", pa_lsym, 0},
aa8b30ed
JL
725 {"octa", pa_cons, 16},
726 {"OCTA", pa_cons, 16},
025b0302
ME
727 {"org", pa_origin, 0},
728 {"ORG", pa_origin, 0},
729 {"origin", pa_origin, 0},
730 {"ORIGIN", pa_origin, 0},
5cf4cd1b
KR
731 {"param", pa_param, 0},
732 {"PARAM", pa_param, 0},
025b0302
ME
733 {"proc", pa_proc, 0},
734 {"PROC", pa_proc, 0},
735 {"procend", pa_procend, 0},
736 {"PROCEND", pa_procend, 0},
aa8b30ed
JL
737 {"quad", pa_cons, 8},
738 {"QUAD", pa_cons, 8},
8f78d0e9
KR
739 {"reg", pa_equ, 1},
740 {"REG", pa_equ, 1},
025b0302
ME
741 {"short", pa_cons, 2},
742 {"SHORT", pa_cons, 2},
743 {"single", pa_float_cons, 'f'},
744 {"SINGLE", pa_float_cons, 'f'},
745 {"space", pa_space, 0},
746 {"SPACE", pa_space, 0},
747 {"spnum", pa_spnum, 0},
748 {"SPNUM", pa_spnum, 0},
749 {"string", pa_stringer, 0},
750 {"STRING", pa_stringer, 0},
751 {"stringz", pa_stringer, 1},
752 {"STRINGZ", pa_stringer, 1},
753 {"subspa", pa_subspace, 0},
754 {"SUBSPA", pa_subspace, 0},
755 {"text", pa_text, 0},
756 {"TEXT", pa_text, 0},
757 {"version", pa_version, 0},
758 {"VERSION", pa_version, 0},
759 {"word", pa_cons, 4},
760 {"WORD", pa_cons, 4},
761 {NULL, 0, 0}
762};
763
764/* This array holds the chars that only start a comment at the beginning of
765 a line. If the line seems to have the form '# 123 filename'
8f78d0e9
KR
766 .line and .file directives will appear in the pre-processed output.
767
768 Note that input_file.c hand checks for '#' at the beginning of the
025b0302 769 first line of the input file. This is because the compiler outputs
8f78d0e9
KR
770 #NO_APP at the beginning of its output.
771
772 Also note that '/*' will always start a comment. */
025b0302
ME
773const char line_comment_chars[] = "#";
774
8f78d0e9 775/* This array holds the characters which act as line separators. */
025b0302
ME
776const char line_separator_chars[] = "!";
777
8f78d0e9 778/* Chars that can be used to separate mant from exp in floating point nums. */
025b0302
ME
779const char EXP_CHARS[] = "eE";
780
8f78d0e9
KR
781/* Chars that mean this number is a floating point constant.
782 As in 0f12.456 or 0d1.2345e12.
025b0302 783
8f78d0e9
KR
784 Be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
785 changed in read.c. Ideally it shouldn't hae to know abou it at
786 all, but nothing is ideal around here. */
787const char FLT_CHARS[] = "rRsSfFdDxXpP";
025b0302 788
8f78d0e9 789static struct pa_it the_insn;
025b0302 790
8f78d0e9
KR
791/* Points to the end of an expression just parsed by get_expressoin
792 and friends. FIXME. This shouldn't be handled with a file-global
793 variable. */
794static char *expr_end;
025b0302 795
8f78d0e9 796/* Nonzero if a .callinfo appeared within the current procedure. */
5cf4cd1b 797static int callinfo_found;
025b0302 798
8f78d0e9 799/* Nonzero if the assembler is currently within a .entry/.exit pair. */
5cf4cd1b 800static int within_entry_exit;
025b0302 801
8f78d0e9 802/* Nonzero if the assembler is currently within a procedure definition. */
5cf4cd1b 803static int within_procedure;
025b0302 804
8f78d0e9
KR
805/* Handle on strucutre which keep track of the last symbol
806 seen in each subspace. */
807static label_symbol_struct *label_symbols_rootp = NULL;
025b0302 808
8f78d0e9
KR
809/* Holds the last field selector. */
810static int hppa_field_selector;
025b0302 811
8f78d0e9
KR
812/* Nonzero if errors are to be printed. */
813static int print_errors = 1;
025b0302 814
8f78d0e9 815/* List of registers that are pre-defined:
025b0302 816
8f78d0e9
KR
817 Each general register has one predefined name of the form
818 %r<REGNUM> which has the value <REGNUM>.
025b0302 819
8f78d0e9
KR
820 Space and control registers are handled in a similar manner,
821 but use %sr<REGNUM> and %cr<REGNUM> as their predefined names.
025b0302 822
8f78d0e9
KR
823 Likewise for the floating point registers, but of the form
824 %fr<REGNUM>. Floating point registers have additional predefined
825 names with 'L' and 'R' suffixes (e.g. %fr19L, %fr19R) which
826 again have the value <REGNUM>.
025b0302 827
8f78d0e9 828 Many registers also have synonyms:
025b0302 829
8f78d0e9
KR
830 %r26 - %r23 have %arg0 - %arg3 as synonyms
831 %r28 - %r29 have %ret0 - %ret1 as synonyms
832 %r30 has %sp as a synonym
d6e524f3
JL
833 %r27 has %dp as a synonym
834 %r2 has %rp as a synonym
025b0302 835
8f78d0e9
KR
836 Almost every control register has a synonym; they are not listed
837 here for brevity.
025b0302 838
8f78d0e9 839 The table is sorted. Suitable for searching by a binary search. */
025b0302 840
8f78d0e9 841static const struct pd_reg pre_defined_registers[] =
025b0302 842{
8f78d0e9
KR
843 {"%arg0", 26},
844 {"%arg1", 25},
845 {"%arg2", 24},
846 {"%arg3", 23},
847 {"%cr0", 0},
848 {"%cr10", 10},
849 {"%cr11", 11},
850 {"%cr12", 12},
851 {"%cr13", 13},
852 {"%cr14", 14},
853 {"%cr15", 15},
854 {"%cr16", 16},
855 {"%cr17", 17},
856 {"%cr18", 18},
857 {"%cr19", 19},
858 {"%cr20", 20},
859 {"%cr21", 21},
860 {"%cr22", 22},
861 {"%cr23", 23},
862 {"%cr24", 24},
863 {"%cr25", 25},
864 {"%cr26", 26},
865 {"%cr27", 27},
866 {"%cr28", 28},
867 {"%cr29", 29},
868 {"%cr30", 30},
869 {"%cr31", 31},
870 {"%cr8", 8},
871 {"%cr9", 9},
d6e524f3 872 {"%dp", 27},
8f78d0e9
KR
873 {"%eiem", 15},
874 {"%eirr", 23},
875 {"%fr0", 0},
876 {"%fr0L", 0},
877 {"%fr0R", 0},
878 {"%fr1", 1},
879 {"%fr10", 10},
880 {"%fr10L", 10},
881 {"%fr10R", 10},
882 {"%fr11", 11},
883 {"%fr11L", 11},
884 {"%fr11R", 11},
885 {"%fr12", 12},
886 {"%fr12L", 12},
887 {"%fr12R", 12},
888 {"%fr13", 13},
889 {"%fr13L", 13},
890 {"%fr13R", 13},
891 {"%fr14", 14},
892 {"%fr14L", 14},
893 {"%fr14R", 14},
894 {"%fr15", 15},
895 {"%fr15L", 15},
896 {"%fr15R", 15},
897 {"%fr16", 16},
898 {"%fr16L", 16},
899 {"%fr16R", 16},
900 {"%fr17", 17},
901 {"%fr17L", 17},
902 {"%fr17R", 17},
903 {"%fr18", 18},
904 {"%fr18L", 18},
905 {"%fr18R", 18},
906 {"%fr19", 19},
907 {"%fr19L", 19},
908 {"%fr19R", 19},
909 {"%fr1L", 1},
910 {"%fr1R", 1},
911 {"%fr2", 2},
912 {"%fr20", 20},
913 {"%fr20L", 20},
914 {"%fr20R", 20},
915 {"%fr21", 21},
916 {"%fr21L", 21},
917 {"%fr21R", 21},
918 {"%fr22", 22},
919 {"%fr22L", 22},
920 {"%fr22R", 22},
921 {"%fr23", 23},
922 {"%fr23L", 23},
923 {"%fr23R", 23},
924 {"%fr24", 24},
925 {"%fr24L", 24},
926 {"%fr24R", 24},
927 {"%fr25", 25},
928 {"%fr25L", 25},
929 {"%fr25R", 25},
930 {"%fr26", 26},
931 {"%fr26L", 26},
932 {"%fr26R", 26},
933 {"%fr27", 27},
934 {"%fr27L", 27},
935 {"%fr27R", 27},
936 {"%fr28", 28},
937 {"%fr28L", 28},
938 {"%fr28R", 28},
939 {"%fr29", 29},
940 {"%fr29L", 29},
941 {"%fr29R", 29},
942 {"%fr2L", 2},
943 {"%fr2R", 2},
944 {"%fr3", 3},
945 {"%fr30", 30},
946 {"%fr30L", 30},
947 {"%fr30R", 30},
948 {"%fr31", 31},
949 {"%fr31L", 31},
950 {"%fr31R", 31},
951 {"%fr3L", 3},
952 {"%fr3R", 3},
953 {"%fr4", 4},
954 {"%fr4L", 4},
955 {"%fr4R", 4},
956 {"%fr5", 5},
957 {"%fr5L", 5},
958 {"%fr5R", 5},
959 {"%fr6", 6},
960 {"%fr6L", 6},
961 {"%fr6R", 6},
962 {"%fr7", 7},
963 {"%fr7L", 7},
964 {"%fr7R", 7},
965 {"%fr8", 8},
966 {"%fr8L", 8},
967 {"%fr8R", 8},
968 {"%fr9", 9},
969 {"%fr9L", 9},
970 {"%fr9R", 9},
971 {"%hta", 25},
972 {"%iir", 19},
973 {"%ior", 21},
974 {"%ipsw", 22},
975 {"%isr", 20},
976 {"%itmr", 16},
977 {"%iva", 14},
978 {"%pcoq", 18},
979 {"%pcsq", 17},
980 {"%pidr1", 8},
981 {"%pidr2", 9},
982 {"%pidr3", 12},
983 {"%pidr4", 13},
984 {"%ppda", 24},
985 {"%r0", 0},
986 {"%r1", 1},
987 {"%r10", 10},
988 {"%r11", 11},
989 {"%r12", 12},
990 {"%r13", 13},
991 {"%r14", 14},
992 {"%r15", 15},
993 {"%r16", 16},
994 {"%r17", 17},
995 {"%r18", 18},
996 {"%r19", 19},
997 {"%r2", 2},
998 {"%r20", 20},
999 {"%r21", 21},
1000 {"%r22", 22},
1001 {"%r23", 23},
1002 {"%r24", 24},
1003 {"%r25", 25},
1004 {"%r26", 26},
1005 {"%r27", 27},
1006 {"%r28", 28},
1007 {"%r29", 29},
1008 {"%r3", 3},
1009 {"%r30", 30},
1010 {"%r31", 31},
1011 {"%r4", 4},
1012 {"%r4L", 4},
1013 {"%r4R", 4},
1014 {"%r5", 5},
1015 {"%r5L", 5},
1016 {"%r5R", 5},
1017 {"%r6", 6},
1018 {"%r6L", 6},
1019 {"%r6R", 6},
1020 {"%r7", 7},
1021 {"%r7L", 7},
1022 {"%r7R", 7},
1023 {"%r8", 8},
1024 {"%r8L", 8},
1025 {"%r8R", 8},
1026 {"%r9", 9},
1027 {"%r9L", 9},
1028 {"%r9R", 9},
1029 {"%rctr", 0},
1030 {"%ret0", 28},
1031 {"%ret1", 29},
d6e524f3 1032 {"%rp", 2},
8f78d0e9
KR
1033 {"%sar", 11},
1034 {"%sp", 30},
1035 {"%sr0", 0},
1036 {"%sr1", 1},
1037 {"%sr2", 2},
1038 {"%sr3", 3},
1039 {"%sr4", 4},
1040 {"%sr5", 5},
1041 {"%sr6", 6},
1042 {"%sr7", 7},
1043 {"%tr0", 24},
1044 {"%tr1", 25},
1045 {"%tr2", 26},
1046 {"%tr3", 27},
1047 {"%tr4", 28},
1048 {"%tr5", 29},
1049 {"%tr6", 30},
1050 {"%tr7", 31}
1051};
025b0302 1052
8f78d0e9
KR
1053/* This table is sorted by order of the length of the string. This is
1054 so we check for <> before we check for <. If we had a <> and checked
1055 for < first, we would get a false match. */
c5e9ccd0 1056static const struct fp_cond_map fp_cond_map[] =
8f78d0e9
KR
1057{
1058 {"false?", 0},
1059 {"false", 1},
1060 {"true?", 30},
1061 {"true", 31},
1062 {"!<=>", 3},
1063 {"!?>=", 8},
1064 {"!?<=", 16},
1065 {"!<>", 7},
1066 {"!>=", 11},
1067 {"!?>", 12},
1068 {"?<=", 14},
1069 {"!<=", 19},
1070 {"!?<", 20},
1071 {"?>=", 22},
1072 {"!?=", 24},
1073 {"!=t", 27},
1074 {"<=>", 29},
1075 {"=t", 5},
1076 {"?=", 6},
1077 {"?<", 10},
1078 {"<=", 13},
1079 {"!>", 15},
1080 {"?>", 18},
1081 {">=", 21},
1082 {"!<", 23},
1083 {"<>", 25},
1084 {"!=", 26},
1085 {"!?", 28},
1086 {"?", 2},
1087 {"=", 4},
1088 {"<", 9},
1089 {">", 17}
1090};
025b0302 1091
8f78d0e9
KR
1092static const struct selector_entry selector_table[] =
1093{
1094 {"F'", e_fsel},
1095 {"F%", e_fsel},
1096 {"LS'", e_lssel},
1097 {"LS%", e_lssel},
1098 {"RS'", e_rssel},
1099 {"RS%", e_rssel},
1100 {"L'", e_lsel},
1101 {"L%", e_lsel},
1102 {"R'", e_rsel},
1103 {"R%", e_rsel},
1104 {"LD'", e_ldsel},
1105 {"LD%", e_ldsel},
1106 {"RD'", e_rdsel},
1107 {"RD%", e_rdsel},
1108 {"LR'", e_lrsel},
1109 {"LR%", e_lrsel},
1110 {"RR'", e_rrsel},
1111 {"RR%", e_rrsel},
1112 {"P'", e_psel},
1113 {"P%", e_psel},
1114 {"RP'", e_rpsel},
1115 {"RP%", e_rpsel},
1116 {"LP'", e_lpsel},
1117 {"LP%", e_lpsel},
1118 {"T'", e_tsel},
1119 {"T%", e_tsel},
1120 {"RT'", e_rtsel},
1121 {"RT%", e_rtsel},
1122 {"LT'", e_ltsel},
1123 {"LT%", e_ltsel},
1124 {NULL, e_fsel}
1125};
025b0302 1126
8f78d0e9 1127/* default space and subspace dictionaries */
025b0302 1128
8f78d0e9
KR
1129#define GDB_SYMBOLS GDB_SYMBOLS_SUBSPACE_NAME
1130#define GDB_STRINGS GDB_STRINGS_SUBSPACE_NAME
025b0302 1131
8f78d0e9
KR
1132/* pre-defined subsegments (subspaces) for the HPPA. */
1133#define SUBSEG_CODE 0
1134#define SUBSEG_DATA 0
1135#define SUBSEG_LIT 1
1136#define SUBSEG_BSS 2
1137#define SUBSEG_UNWIND 3
1138#define SUBSEG_GDB_STRINGS 0
1139#define SUBSEG_GDB_SYMBOLS 1
025b0302 1140
8f78d0e9 1141static struct default_subspace_dict pa_def_subspaces[] =
025b0302 1142{
aa8b30ed
JL
1143 {"$CODE$", 1, 1, 1, 0, 0, 0, 24, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_CODE},
1144 {"$DATA$", 1, 1, 0, 0, 0, 0, 24, 0x1f, 1, 8, 1, 1, ".data", SUBSEG_DATA},
1145 {"$LIT$", 1, 1, 0, 0, 0, 0, 16, 0x2c, 0, 8, 0, 0, ".text", SUBSEG_LIT},
1146 {"$BSS$", 1, 1, 0, 0, 0, 1, 80, 0x1f, 1, 8, 1, 1, ".bss", SUBSEG_BSS},
31a385d1 1147#ifdef OBJ_ELF
aa8b30ed 1148 {"$UNWIND$", 1, 1, 0, 0, 0, 0, 64, 0x2c, 0, 4, 0, 0, ".hppa_unwind", SUBSEG_UNWIND},
31a385d1 1149#endif
8f78d0e9
KR
1150 {NULL, 0, 1, 0, 0, 0, 0, 255, 0x1f, 0, 4, 0, 0, 0}
1151};
025b0302 1152
8f78d0e9
KR
1153static struct default_space_dict pa_def_spaces[] =
1154{
aa8b30ed
JL
1155 {"$TEXT$", 0, 1, 1, 0, 8, ASEC_NULL, ".text"},
1156 {"$PRIVATE$", 1, 1, 1, 1, 16, ASEC_NULL, ".data"},
8f78d0e9
KR
1157 {NULL, 0, 0, 0, 0, 0, ASEC_NULL, NULL}
1158};
025b0302 1159
8f78d0e9
KR
1160/* Misc local definitions used by the assembler. */
1161
1162/* Return nonzero if the string pointed to by S potentially represents
1163 a right or left half of a FP register */
1164#define IS_R_SELECT(S) (*(S) == 'R' || *(S) == 'r')
1165#define IS_L_SELECT(S) (*(S) == 'L' || *(S) == 'l')
1166
1167/* These macros are used to maintain spaces/subspaces. */
1168#define SPACE_DEFINED(space_chain) (space_chain)->sd_defined
1169#define SPACE_USER_DEFINED(space_chain) (space_chain)->sd_user_defined
1170#define SPACE_PRIVATE(space_chain) (space_chain)->sd_private
1171#define SPACE_LOADABLE(space_chain) (space_chain)->sd_loadable
1172#define SPACE_SPNUM(space_chain) (space_chain)->sd_spnum
1173#define SPACE_SORT(space_chain) (space_chain)->sd_sort_key
1174#define SPACE_NAME(space_chain) (space_chain)->sd_name
1175#define SPACE_NAME_INDEX(space_chain) (space_chain)->sd_name_index
1176
1177#define SUBSPACE_SPACE_INDEX(ss_chain) (ss_chain)->ssd_space_index
47f45d66 1178#define SUBSPACE_DEFINED(ss_chain) (ss_chain)->ssd_defined
8f78d0e9
KR
1179#define SUBSPACE_QUADRANT(ss_chain) (ss_chain)->ssd_quadrant
1180#define SUBSPACE_ALIGN(ss_chain) (ss_chain)->ssd_alignment
1181#define SUBSPACE_ACCESS(ss_chain) (ss_chain)->ssd_access_control_bits
1182#define SUBSPACE_SORT(ss_chain) (ss_chain)->ssd_sort_key
1183#define SUBSPACE_COMMON(ss_chain) (ss_chain)->ssd_common
1184#define SUBSPACE_ZERO(ss_chain) (ss_chain)->ssd_zero
1185#define SUBSPACE_DUP_COMM(ss_chain) (ss_chain)->ssd_dup_common
1186#define SUBSPACE_CODE_ONLY(ss_chain) (ss_chain)->ssd_code_only
1187#define SUBSPACE_LOADABLE(ss_chain) (ss_chain)->ssd_loadable
1188#define SUBSPACE_SUBSPACE_START(ss_chain) (ss_chain)->ssd_subspace_start
1189#define SUBSPACE_SUBSPACE_LENGTH(ss_chain) (ss_chain)->ssd_subspace_length
1190#define SUBSPACE_NAME(ss_chain) (ss_chain)->ssd_name
1191
48153d49
JL
1192/* Insert FIELD into OPCODE starting at bit START. Continue pa_ip
1193 main loop after insertion. */
1194
1195#define INSERT_FIELD_AND_CONTINUE(OPCODE, FIELD, START) \
1196 { \
1197 ((OPCODE) |= (FIELD) << (START)); \
1198 continue; \
1199 }
1200
1201/* Simple range checking for FIELD againt HIGH and LOW bounds.
1202 IGNORE is used to suppress the error message. */
1203
1204#define CHECK_FIELD(FIELD, HIGH, LOW, IGNORE) \
1205 { \
1206 if ((FIELD) > (HIGH) || (FIELD) < (LOW)) \
1207 { \
1208 if (! IGNORE) \
1209 as_bad ("Field out of range [%d..%d] (%d).", (LOW), (HIGH), \
1210 (int) (FIELD));\
1211 break; \
1212 } \
1213 }
c5e9ccd0 1214
8f78d0e9
KR
1215#define is_DP_relative(exp) \
1216 ((exp).X_op == O_subtract \
1217 && strcmp((exp).X_op_symbol->bsym->name, "$global$") == 0)
1218
1219#define is_PC_relative(exp) \
1220 ((exp).X_op == O_subtract \
1221 && strcmp((exp).X_op_symbol->bsym->name, "$PIC_pcrel$0") == 0)
1222
1223#define is_complex(exp) \
1224 ((exp).X_op != O_constant && (exp).X_op != O_symbol)
1225
1226/* Actual functions to implement the PA specific code for the assembler. */
1227
1228/* Returns a pointer to the label_symbol_struct for the current space.
1229 or NULL if no label_symbol_struct exists for the current space. */
1230
1231static label_symbol_struct *
1232pa_get_label ()
1233{
1234 label_symbol_struct *label_chain;
3b9a72c5 1235 sd_chain_struct *space_chain = current_space;
025b0302 1236
8f78d0e9
KR
1237 for (label_chain = label_symbols_rootp;
1238 label_chain;
1239 label_chain = label_chain->lss_next)
1240 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1241 return label_chain;
025b0302 1242
8f78d0e9
KR
1243 return NULL;
1244}
025b0302 1245
8f78d0e9
KR
1246/* Defines a label for the current space. If one is already defined,
1247 this function will replace it with the new label. */
025b0302 1248
8f78d0e9
KR
1249void
1250pa_define_label (symbol)
1251 symbolS *symbol;
1252{
1253 label_symbol_struct *label_chain = pa_get_label ();
3b9a72c5 1254 sd_chain_struct *space_chain = current_space;
8f78d0e9
KR
1255
1256 if (label_chain)
1257 label_chain->lss_label = symbol;
1258 else
1259 {
1260 /* Create a new label entry and add it to the head of the chain. */
1261 label_chain
1262 = (label_symbol_struct *) xmalloc (sizeof (label_symbol_struct));
1263 label_chain->lss_label = symbol;
1264 label_chain->lss_space = space_chain;
1265 label_chain->lss_next = NULL;
1266
1267 if (label_symbols_rootp)
1268 label_chain->lss_next = label_symbols_rootp;
1269
1270 label_symbols_rootp = label_chain;
1271 }
1272}
1273
1274/* Removes a label definition for the current space.
1275 If there is no label_symbol_struct entry, then no action is taken. */
1276
1277static void
1278pa_undefine_label ()
1279{
1280 label_symbol_struct *label_chain;
1281 label_symbol_struct *prev_label_chain = NULL;
3b9a72c5 1282 sd_chain_struct *space_chain = current_space;
8f78d0e9
KR
1283
1284 for (label_chain = label_symbols_rootp;
1285 label_chain;
1286 label_chain = label_chain->lss_next)
1287 {
1288 if (space_chain == label_chain->lss_space && label_chain->lss_label)
1289 {
1290 /* Remove the label from the chain and free its memory. */
1291 if (prev_label_chain)
1292 prev_label_chain->lss_next = label_chain->lss_next;
1293 else
1294 label_symbols_rootp = label_chain->lss_next;
1295
1296 free (label_chain);
1297 break;
1298 }
1299 prev_label_chain = label_chain;
1300 }
1301}
1302
1303
1304/* An HPPA-specific version of fix_new. This is required because the HPPA
1305 code needs to keep track of some extra stuff. Each call to fix_new_hppa
1306 results in the creation of an instance of an hppa_fix_struct. An
1307 hppa_fix_struct stores the extra information along with a pointer to the
aa8b30ed
JL
1308 original fixS. This is attached to the original fixup via the
1309 tc_fix_data field. */
8f78d0e9
KR
1310
1311static void
1312fix_new_hppa (frag, where, size, add_symbol, offset, exp, pcrel,
1313 r_type, r_field, r_format, arg_reloc, unwind_desc)
1314 fragS *frag;
1315 int where;
1316 short int size;
1317 symbolS *add_symbol;
1318 long offset;
1319 expressionS *exp;
1320 int pcrel;
1321 bfd_reloc_code_real_type r_type;
f2eed884 1322 enum hppa_reloc_field_selector_type r_field;
8f78d0e9
KR
1323 int r_format;
1324 long arg_reloc;
1325 char *unwind_desc;
1326{
1327 fixS *new_fix;
1328
1329 struct hppa_fix_struct *hppa_fix = (struct hppa_fix_struct *)
c5e9ccd0 1330 obstack_alloc (&notes, sizeof (struct hppa_fix_struct));
8f78d0e9
KR
1331
1332 if (exp != NULL)
1333 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
1334 else
1335 new_fix = fix_new (frag, where, size, add_symbol, offset, pcrel, r_type);
aa8b30ed 1336 new_fix->tc_fix_data = hppa_fix;
8f78d0e9
KR
1337 hppa_fix->fx_r_type = r_type;
1338 hppa_fix->fx_r_field = r_field;
1339 hppa_fix->fx_r_format = r_format;
1340 hppa_fix->fx_arg_reloc = arg_reloc;
8f78d0e9 1341 if (unwind_desc)
ff852e11
JL
1342 {
1343 bcopy (unwind_desc, hppa_fix->fx_unwind, 8);
025b0302 1344
ff852e11 1345 /* If necessary call BFD backend function to attach the
c5e9ccd0
JL
1346 unwind bits to the target dependent parts of a BFD symbol.
1347 Yuk. */
ff852e11
JL
1348#ifdef obj_attach_unwind_info
1349 obj_attach_unwind_info (add_symbol->bsym, unwind_desc);
1350#endif
1351 }
25989392
JL
1352
1353 /* foo-$global$ is used to access non-automatic storage. $global$
1354 is really just a marker and has served its purpose, so eliminate
1355 it now so as not to confuse write.c. */
81413fa2
JL
1356 if (new_fix->fx_subsy
1357 && !strcmp (S_GET_NAME (new_fix->fx_subsy), "$global$"))
25989392 1358 new_fix->fx_subsy = NULL;
025b0302
ME
1359}
1360
1361/* Parse a .byte, .word, .long expression for the HPPA. Called by
1362 cons via the TC_PARSE_CONS_EXPRESSION macro. */
1363
025b0302
ME
1364void
1365parse_cons_expression_hppa (exp)
1366 expressionS *exp;
1367{
1368 hppa_field_selector = pa_chk_field_selector (&input_line_pointer);
5cf4cd1b 1369 expression (exp);
025b0302
ME
1370}
1371
1372/* This fix_new is called by cons via TC_CONS_FIX_NEW.
1373 hppa_field_selector is set by the parse_cons_expression_hppa. */
1374
1375void
1376cons_fix_new_hppa (frag, where, size, exp)
8f78d0e9
KR
1377 fragS *frag;
1378 int where;
1379 int size;
1380 expressionS *exp;
025b0302
ME
1381{
1382 unsigned int reloc_type;
1383
1384 if (is_DP_relative (*exp))
1385 reloc_type = R_HPPA_GOTOFF;
1386 else if (is_complex (*exp))
1387 reloc_type = R_HPPA_COMPLEX;
1388 else
1389 reloc_type = R_HPPA;
1390
1391 if (hppa_field_selector != e_psel && hppa_field_selector != e_fsel)
8f78d0e9 1392 as_warn ("Invalid field selector. Assuming F%%.");
025b0302 1393
5cf4cd1b
KR
1394 fix_new_hppa (frag, where, size,
1395 (symbolS *) NULL, (offsetT) 0, exp, 0, reloc_type,
025b0302 1396 hppa_field_selector, 32, 0, (char *) 0);
1cc248d2
JL
1397
1398 /* Reset field selector to its default state. */
1399 hppa_field_selector = 0;
025b0302
ME
1400}
1401
1402/* This function is called once, at assembler startup time. It should
1403 set up all the tables, etc. that the MD part of the assembler will need. */
8f78d0e9 1404
025b0302
ME
1405void
1406md_begin ()
1407{
18c4f112 1408 const char *retval = NULL;
025b0302 1409 int lose = 0;
8f78d0e9 1410 unsigned int i = 0;
025b0302
ME
1411
1412 last_call_info = NULL;
1413 call_info_root = NULL;
1414
13925cef
JL
1415 /* Folding of text and data segments fails miserably on the PA.
1416 Warn user and disable "-R" option. */
d56f45f5
JL
1417 if (flagseen['R'])
1418 {
1419 as_warn ("-R option not supported on this target.");
1420 flag_readonly_data_in_text = 0;
1421 flagseen['R'] = 0;
1422 }
13925cef 1423
025b0302
ME
1424 pa_spaces_begin ();
1425
1426 op_hash = hash_new ();
1427 if (op_hash == NULL)
1428 as_fatal ("Virtual memory exhausted");
1429
1430 while (i < NUMOPCODES)
1431 {
1432 const char *name = pa_opcodes[i].name;
c5e9ccd0 1433 retval = hash_insert (op_hash, name, (struct pa_opcode *) &pa_opcodes[i]);
8f78d0e9 1434 if (retval != NULL && *retval != '\0')
025b0302 1435 {
8f78d0e9 1436 as_fatal ("Internal error: can't hash `%s': %s\n", name, retval);
025b0302
ME
1437 lose = 1;
1438 }
1439 do
1440 {
c5e9ccd0 1441 if ((pa_opcodes[i].match & pa_opcodes[i].mask)
8f78d0e9 1442 != pa_opcodes[i].match)
025b0302
ME
1443 {
1444 fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
1445 pa_opcodes[i].name, pa_opcodes[i].args);
1446 lose = 1;
1447 }
1448 ++i;
1449 }
8f78d0e9 1450 while (i < NUMOPCODES && !strcmp (pa_opcodes[i].name, name));
025b0302
ME
1451 }
1452
1453 if (lose)
1454 as_fatal ("Broken assembler. No assembly attempted.");
3b9a72c5
JL
1455
1456 /* SOM will change text_section. To make sure we never put
1457 anything into the old one switch to the new one now. */
1458 subseg_set (text_section, 0);
025b0302
ME
1459}
1460
8f78d0e9
KR
1461/* Called at the end of assembling a source file. Nothing to do
1462 at this point on the PA. */
1463
025b0302
ME
1464void
1465md_end ()
1466{
1467 return;
1468}
1469
8f78d0e9 1470/* Assemble a single instruction storing it into a frag. */
025b0302
ME
1471void
1472md_assemble (str)
1473 char *str;
1474{
8f78d0e9 1475 char *to;
025b0302 1476
8f78d0e9 1477 /* The had better be something to assemble. */
025b0302 1478 assert (str);
8f78d0e9
KR
1479
1480 /* Assemble the instruction. Results are saved into "the_insn". */
025b0302 1481 pa_ip (str);
025b0302 1482
8f78d0e9
KR
1483 /* Get somewhere to put the assembled instrution. */
1484 to = frag_more (4);
025b0302 1485
8f78d0e9
KR
1486 /* Output the opcode. */
1487 md_number_to_chars (to, the_insn.opcode, 4);
025b0302 1488
8f78d0e9 1489 /* If necessary output more stuff. */
aa8b30ed 1490 if (the_insn.reloc != R_HPPA_NONE)
8f78d0e9
KR
1491 fix_new_hppa (frag_now, (to - frag_now->fr_literal), 4, NULL,
1492 (offsetT) 0, &the_insn.exp, the_insn.pcrel,
1493 the_insn.reloc, the_insn.field_selector,
1494 the_insn.format, the_insn.arg_reloc, NULL);
025b0302 1495
8f78d0e9 1496}
025b0302 1497
8f78d0e9
KR
1498/* Do the real work for assembling a single instruction. Store results
1499 into the global "the_insn" variable.
025b0302 1500
8f78d0e9
KR
1501 FIXME: Should define and use some functions/macros to handle
1502 various common insertions of information into the opcode. */
025b0302
ME
1503
1504static void
1505pa_ip (str)
1506 char *str;
1507{
1508 char *error_message = "";
8f78d0e9 1509 char *s, c, *argstart, *name, *save_s;
025b0302 1510 const char *args;
025b0302
ME
1511 int match = FALSE;
1512 int comma = 0;
48153d49
JL
1513 int cmpltr, nullif, flag, cond, num;
1514 unsigned long opcode;
8f78d0e9 1515 struct pa_opcode *insn;
025b0302 1516
8f78d0e9 1517 /* Skip to something interesting. */
025b0302
ME
1518 for (s = str; isupper (*s) || islower (*s) || (*s >= '0' && *s <= '3'); ++s)
1519 ;
8f78d0e9 1520
025b0302
ME
1521 switch (*s)
1522 {
1523
1524 case '\0':
1525 break;
1526
1527 case ',':
1528 comma = 1;
1529
8f78d0e9 1530 /*FALLTHROUGH */
025b0302
ME
1531
1532 case ' ':
1533 *s++ = '\0';
1534 break;
1535
1536 default:
1537 as_bad ("Unknown opcode: `%s'", str);
1538 exit (1);
1539 }
1540
1541 save_s = str;
1542
8f78d0e9 1543 /* Convert everything into lower case. */
025b0302
ME
1544 while (*save_s)
1545 {
1546 if (isupper (*save_s))
1547 *save_s = tolower (*save_s);
1548 save_s++;
1549 }
1550
8f78d0e9 1551 /* Look up the opcode in the has table. */
025b0302
ME
1552 if ((insn = (struct pa_opcode *) hash_find (op_hash, str)) == NULL)
1553 {
1554 as_bad ("Unknown opcode: `%s'", str);
1555 return;
1556 }
8f78d0e9 1557
025b0302
ME
1558 if (comma)
1559 {
1560 *--s = ',';
1561 }
8f78d0e9
KR
1562
1563 /* Mark the location where arguments for the instruction start, then
1564 start processing them. */
1565 argstart = s;
025b0302
ME
1566 for (;;)
1567 {
8f78d0e9 1568 /* Do some initialization. */
025b0302
ME
1569 opcode = insn->match;
1570 bzero (&the_insn, sizeof (the_insn));
8f78d0e9 1571
025b0302 1572 the_insn.reloc = R_HPPA_NONE;
8f78d0e9
KR
1573
1574 /* Build the opcode, checking as we go to make
1575 sure that the operands match. */
025b0302
ME
1576 for (args = insn->args;; ++args)
1577 {
025b0302
ME
1578 switch (*args)
1579 {
1580
8f78d0e9
KR
1581 /* End of arguments. */
1582 case '\0':
025b0302 1583 if (*s == '\0')
8f78d0e9 1584 match = TRUE;
025b0302
ME
1585 break;
1586
1587 case '+':
1588 if (*s == '+')
1589 {
1590 ++s;
1591 continue;
1592 }
1593 if (*s == '-')
8f78d0e9 1594 continue;
025b0302
ME
1595 break;
1596
8f78d0e9
KR
1597 /* These must match exactly. */
1598 case '(':
025b0302
ME
1599 case ')':
1600 case ',':
1601 case ' ':
1602 if (*s++ == *args)
1603 continue;
1604 break;
1605
8f78d0e9
KR
1606 /* Handle a 5 bit register or control register field at 10. */
1607 case 'b':
1608 case '^':
48153d49
JL
1609 num = pa_parse_number (&s, 0);
1610 CHECK_FIELD (num, 31, 0, 0);
1611 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
8f78d0e9
KR
1612
1613 /* Handle a 5 bit register field at 15. */
1614 case 'x':
48153d49
JL
1615 num = pa_parse_number (&s, 0);
1616 CHECK_FIELD (num, 31, 0, 0);
1617 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
5cf4cd1b 1618
8f78d0e9
KR
1619 /* Handle a 5 bit register field at 31. */
1620 case 'y':
1621 case 't':
48153d49
JL
1622 num = pa_parse_number (&s, 0);
1623 CHECK_FIELD (num, 31, 0, 0);
1624 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
8f78d0e9
KR
1625
1626 /* Handle a 5 bit field length at 31. */
1627 case 'T':
48153d49
JL
1628 num = pa_get_absolute_expression (&the_insn, &s);
1629 s = expr_end;
1630 CHECK_FIELD (num, 32, 1, 0);
1631 INSERT_FIELD_AND_CONTINUE (opcode, 32 - num, 0);
8f78d0e9
KR
1632
1633 /* Handle a 5 bit immediate at 15. */
1634 case '5':
48153d49
JL
1635 num = pa_get_absolute_expression (&the_insn, &s);
1636 s = expr_end;
1637 CHECK_FIELD (num, 15, -16, 0);
1638 low_sign_unext (num, 5, &num);
1639 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
025b0302 1640
48153d49
JL
1641 /* Handle a 5 bit immediate at 31. */
1642 case 'V':
1643 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 1644 s = expr_end;
48153d49 1645 CHECK_FIELD (num, 15, -16, 0)
c5e9ccd0 1646 low_sign_unext (num, 5, &num);
48153d49
JL
1647 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1648
1649 /* Handle an unsigned 5 bit immediate at 31. */
1650 case 'r':
1651 num = pa_get_absolute_expression (&the_insn, &s);
1652 s = expr_end;
1653 CHECK_FIELD (num, 31, 0, 0);
1654 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
1655
1656 /* Handle an unsigned 5 bit immediate at 15. */
1657 case 'R':
1658 num = pa_get_absolute_expression (&the_insn, &s);
1659 s = expr_end;
1660 CHECK_FIELD (num, 31, 0, 0);
1661 INSERT_FIELD_AND_CONTINUE (opcode, num, 16);
025b0302 1662
8f78d0e9
KR
1663 /* Handle a 2 bit space identifier at 17. */
1664 case 's':
48153d49
JL
1665 num = pa_parse_number (&s, 0);
1666 CHECK_FIELD (num, 3, 0, 1);
1667 INSERT_FIELD_AND_CONTINUE (opcode, num, 14);
8f78d0e9
KR
1668
1669 /* Handle a 3 bit space identifier at 18. */
1670 case 'S':
48153d49
JL
1671 num = pa_parse_number (&s, 0);
1672 CHECK_FIELD (num, 7, 0, 1);
1673 dis_assemble_3 (num, &num);
1674 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
8f78d0e9
KR
1675
1676 /* Handle a completer for an indexing load or store. */
1677 case 'c':
48153d49
JL
1678 {
1679 int uu = 0;
1680 int m = 0;
1681 int i = 0;
1682 while (*s == ',' && i < 2)
1683 {
1684 s++;
1685 if (strncasecmp (s, "sm", 2) == 0)
1686 {
1687 uu = 1;
1688 m = 1;
1689 s++;
1690 i++;
1691 }
1692 else if (strncasecmp (s, "m", 1) == 0)
025b0302 1693 m = 1;
48153d49
JL
1694 else if (strncasecmp (s, "s", 1) == 0)
1695 uu = 1;
1696 else
1697 as_bad ("Invalid Indexed Load Completer.");
1698 s++;
1699 i++;
1700 }
1701 if (i > 2)
1702 as_bad ("Invalid Indexed Load Completer Syntax.");
1703 opcode |= m << 5;
1704 INSERT_FIELD_AND_CONTINUE (opcode, uu, 13);
1705 }
8f78d0e9
KR
1706
1707 /* Handle a short load/store completer. */
1708 case 'C':
48153d49
JL
1709 {
1710 int a = 0;
1711 int m = 0;
1712 if (*s == ',')
1713 {
1714 s++;
1715 if (strncasecmp (s, "ma", 2) == 0)
1716 {
1717 a = 0;
1718 m = 1;
1719 }
1720 else if (strncasecmp (s, "mb", 2) == 0)
1721 {
1722 a = 1;
1723 m = 1;
1724 }
1725 else
1726 as_bad ("Invalid Short Load/Store Completer.");
1727 s += 2;
1728 }
1729 opcode |= m << 5;
1730 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1731 }
8f78d0e9
KR
1732
1733 /* Handle a stbys completer. */
1734 case 'Y':
48153d49
JL
1735 {
1736 int a = 0;
1737 int m = 0;
1738 int i = 0;
1739 while (*s == ',' && i < 2)
1740 {
1741 s++;
1742 if (strncasecmp (s, "m", 1) == 0)
1743 m = 1;
1744 else if (strncasecmp (s, "b", 1) == 0)
1745 a = 0;
1746 else if (strncasecmp (s, "e", 1) == 0)
1747 a = 1;
1748 else
1749 as_bad ("Invalid Store Bytes Short Completer");
1750 s++;
1751 i++;
1752 }
1753 if (i > 2)
1754 as_bad ("Invalid Store Bytes Short Completer");
1755 opcode |= m << 5;
1756 INSERT_FIELD_AND_CONTINUE (opcode, a, 13);
1757 }
8f78d0e9
KR
1758
1759 /* Handle a non-negated compare/stubtract condition. */
1760 case '<':
5cf4cd1b 1761 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
025b0302
ME
1762 if (cmpltr < 0)
1763 {
8f78d0e9 1764 as_bad ("Invalid Compare/Subtract Condition: %c", *s);
025b0302
ME
1765 cmpltr = 0;
1766 }
48153d49 1767 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9
KR
1768
1769 /* Handle a negated or non-negated compare/subtract condition. */
1770 case '?':
025b0302 1771 save_s = s;
5cf4cd1b 1772 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 1);
025b0302
ME
1773 if (cmpltr < 0)
1774 {
1775 s = save_s;
5cf4cd1b 1776 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 1);
025b0302
ME
1777 if (cmpltr < 0)
1778 {
8f78d0e9 1779 as_bad ("Invalid Compare/Subtract Condition.");
025b0302
ME
1780 cmpltr = 0;
1781 }
1782 else
1783 {
8f78d0e9
KR
1784 /* Negated condition requires an opcode change. */
1785 opcode |= 1 << 27;
025b0302
ME
1786 }
1787 }
48153d49 1788 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9
KR
1789
1790 /* Handle a negated or non-negated add condition. */
1791 case '!':
025b0302 1792 save_s = s;
5cf4cd1b 1793 cmpltr = pa_parse_nonneg_add_cmpltr (&s, 1);
025b0302
ME
1794 if (cmpltr < 0)
1795 {
1796 s = save_s;
5cf4cd1b 1797 cmpltr = pa_parse_neg_add_cmpltr (&s, 1);
025b0302
ME
1798 if (cmpltr < 0)
1799 {
8f78d0e9 1800 as_bad ("Invalid Compare/Subtract Condition");
025b0302
ME
1801 cmpltr = 0;
1802 }
1803 else
1804 {
8f78d0e9
KR
1805 /* Negated condition requires an opcode change. */
1806 opcode |= 1 << 27;
025b0302
ME
1807 }
1808 }
48153d49 1809 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9
KR
1810
1811 /* Handle a compare/subtract condition. */
1812 case 'a':
025b0302 1813 cmpltr = 0;
8f78d0e9 1814 flag = 0;
025b0302
ME
1815 save_s = s;
1816 if (*s == ',')
1817 {
5cf4cd1b 1818 cmpltr = pa_parse_nonneg_cmpsub_cmpltr (&s, 0);
025b0302
ME
1819 if (cmpltr < 0)
1820 {
8f78d0e9 1821 flag = 1;
025b0302 1822 s = save_s;
5cf4cd1b 1823 cmpltr = pa_parse_neg_cmpsub_cmpltr (&s, 0);
025b0302
ME
1824 if (cmpltr < 0)
1825 {
8f78d0e9 1826 as_bad ("Invalid Compare/Subtract Condition");
025b0302
ME
1827 }
1828 }
1829 }
1830 opcode |= cmpltr << 13;
48153d49 1831 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
8f78d0e9
KR
1832
1833 /* Handle a non-negated add condition. */
1834 case 'd':
025b0302
ME
1835 cmpltr = 0;
1836 nullif = 0;
1837 flag = 0;
1838 if (*s == ',')
1839 {
1840 s++;
1841 name = s;
1842 while (*s != ',' && *s != ' ' && *s != '\t')
1843 s += 1;
1844 c = *s;
1845 *s = 0x00;
1846 if (strcmp (name, "=") == 0)
8f78d0e9 1847 cmpltr = 1;
025b0302 1848 else if (strcmp (name, "<") == 0)
8f78d0e9 1849 cmpltr = 2;
025b0302 1850 else if (strcmp (name, "<=") == 0)
8f78d0e9 1851 cmpltr = 3;
025b0302 1852 else if (strcasecmp (name, "nuv") == 0)
8f78d0e9 1853 cmpltr = 4;
025b0302 1854 else if (strcasecmp (name, "znv") == 0)
8f78d0e9 1855 cmpltr = 5;
025b0302 1856 else if (strcasecmp (name, "sv") == 0)
8f78d0e9 1857 cmpltr = 6;
025b0302 1858 else if (strcasecmp (name, "od") == 0)
8f78d0e9 1859 cmpltr = 7;
025b0302 1860 else if (strcasecmp (name, "n") == 0)
8f78d0e9 1861 nullif = 1;
025b0302
ME
1862 else if (strcasecmp (name, "tr") == 0)
1863 {
1864 cmpltr = 0;
1865 flag = 1;
1866 }
1867 else if (strcasecmp (name, "<>") == 0)
1868 {
1869 cmpltr = 1;
1870 flag = 1;
1871 }
1872 else if (strcasecmp (name, ">=") == 0)
1873 {
1874 cmpltr = 2;
1875 flag = 1;
1876 }
1877 else if (strcasecmp (name, ">") == 0)
1878 {
1879 cmpltr = 3;
1880 flag = 1;
1881 }
1882 else if (strcasecmp (name, "uv") == 0)
1883 {
1884 cmpltr = 4;
1885 flag = 1;
1886 }
1887 else if (strcasecmp (name, "vnz") == 0)
1888 {
1889 cmpltr = 5;
1890 flag = 1;
1891 }
1892 else if (strcasecmp (name, "nsv") == 0)
1893 {
1894 cmpltr = 6;
1895 flag = 1;
1896 }
1897 else if (strcasecmp (name, "ev") == 0)
1898 {
1899 cmpltr = 7;
1900 flag = 1;
1901 }
1902 else
8f78d0e9 1903 as_bad ("Invalid Add Condition: %s", name);
025b0302
ME
1904 *s = c;
1905 }
1906 nullif = pa_parse_nullif (&s);
1907 opcode |= nullif << 1;
1908 opcode |= cmpltr << 13;
48153d49 1909 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
8f78d0e9 1910
48153d49 1911 /* HANDLE a logical instruction condition. */
8f78d0e9 1912 case '&':
025b0302 1913 cmpltr = 0;
8f78d0e9 1914 flag = 0;
025b0302
ME
1915 if (*s == ',')
1916 {
1917 s++;
1918 name = s;
1919 while (*s != ',' && *s != ' ' && *s != '\t')
1920 s += 1;
1921 c = *s;
1922 *s = 0x00;
1923 if (strcmp (name, "=") == 0)
8f78d0e9 1924 cmpltr = 1;
025b0302 1925 else if (strcmp (name, "<") == 0)
8f78d0e9 1926 cmpltr = 2;
025b0302 1927 else if (strcmp (name, "<=") == 0)
8f78d0e9 1928 cmpltr = 3;
025b0302 1929 else if (strcasecmp (name, "od") == 0)
8f78d0e9 1930 cmpltr = 7;
025b0302
ME
1931 else if (strcasecmp (name, "tr") == 0)
1932 {
1933 cmpltr = 0;
8f78d0e9 1934 flag = 1;
025b0302
ME
1935 }
1936 else if (strcmp (name, "<>") == 0)
1937 {
1938 cmpltr = 1;
8f78d0e9 1939 flag = 1;
025b0302
ME
1940 }
1941 else if (strcmp (name, ">=") == 0)
1942 {
1943 cmpltr = 2;
8f78d0e9 1944 flag = 1;
025b0302
ME
1945 }
1946 else if (strcmp (name, ">") == 0)
1947 {
1948 cmpltr = 3;
8f78d0e9 1949 flag = 1;
025b0302
ME
1950 }
1951 else if (strcasecmp (name, "ev") == 0)
1952 {
1953 cmpltr = 7;
8f78d0e9 1954 flag = 1;
025b0302
ME
1955 }
1956 else
8f78d0e9 1957 as_bad ("Invalid Logical Instruction Condition.");
025b0302
ME
1958 *s = c;
1959 }
1960 opcode |= cmpltr << 13;
48153d49 1961 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
8f78d0e9
KR
1962
1963 /* Handle a unit instruction condition. */
1964 case 'U':
025b0302 1965 cmpltr = 0;
8f78d0e9 1966 flag = 0;
025b0302
ME
1967 if (*s == ',')
1968 {
1969 s++;
1970 if (strncasecmp (s, "sbz", 3) == 0)
1971 {
1972 cmpltr = 2;
1973 s += 3;
1974 }
1975 else if (strncasecmp (s, "shz", 3) == 0)
1976 {
1977 cmpltr = 3;
1978 s += 3;
1979 }
1980 else if (strncasecmp (s, "sdc", 3) == 0)
1981 {
1982 cmpltr = 4;
1983 s += 3;
1984 }
1985 else if (strncasecmp (s, "sbc", 3) == 0)
1986 {
1987 cmpltr = 6;
1988 s += 3;
1989 }
1990 else if (strncasecmp (s, "shc", 3) == 0)
1991 {
1992 cmpltr = 7;
1993 s += 3;
1994 }
1995 else if (strncasecmp (s, "tr", 2) == 0)
1996 {
1997 cmpltr = 0;
8f78d0e9 1998 flag = 1;
025b0302
ME
1999 s += 2;
2000 }
2001 else if (strncasecmp (s, "nbz", 3) == 0)
2002 {
2003 cmpltr = 2;
8f78d0e9 2004 flag = 1;
025b0302
ME
2005 s += 3;
2006 }
2007 else if (strncasecmp (s, "nhz", 3) == 0)
2008 {
2009 cmpltr = 3;
8f78d0e9 2010 flag = 1;
025b0302
ME
2011 s += 3;
2012 }
2013 else if (strncasecmp (s, "ndc", 3) == 0)
2014 {
2015 cmpltr = 4;
8f78d0e9 2016 flag = 1;
025b0302
ME
2017 s += 3;
2018 }
2019 else if (strncasecmp (s, "nbc", 3) == 0)
2020 {
2021 cmpltr = 6;
8f78d0e9 2022 flag = 1;
025b0302
ME
2023 s += 3;
2024 }
2025 else if (strncasecmp (s, "nhc", 3) == 0)
2026 {
2027 cmpltr = 7;
8f78d0e9 2028 flag = 1;
025b0302
ME
2029 s += 3;
2030 }
2031 else
8f78d0e9 2032 as_bad ("Invalid Logical Instruction Condition.");
025b0302
ME
2033 }
2034 opcode |= cmpltr << 13;
48153d49 2035 INSERT_FIELD_AND_CONTINUE (opcode, flag, 12);
8f78d0e9
KR
2036
2037 /* Handle a shift/extract/deposit condition. */
2038 case '|':
2039 case '>':
025b0302
ME
2040 cmpltr = 0;
2041 if (*s == ',')
2042 {
8f78d0e9 2043 save_s = s++;
025b0302
ME
2044 name = s;
2045 while (*s != ',' && *s != ' ' && *s != '\t')
2046 s += 1;
2047 c = *s;
2048 *s = 0x00;
2049 if (strcmp (name, "=") == 0)
8f78d0e9 2050 cmpltr = 1;
025b0302 2051 else if (strcmp (name, "<") == 0)
8f78d0e9 2052 cmpltr = 2;
025b0302 2053 else if (strcasecmp (name, "od") == 0)
8f78d0e9 2054 cmpltr = 3;
025b0302 2055 else if (strcasecmp (name, "tr") == 0)
8f78d0e9 2056 cmpltr = 4;
025b0302 2057 else if (strcmp (name, "<>") == 0)
8f78d0e9 2058 cmpltr = 5;
025b0302 2059 else if (strcmp (name, ">=") == 0)
8f78d0e9 2060 cmpltr = 6;
025b0302 2061 else if (strcasecmp (name, "ev") == 0)
8f78d0e9 2062 cmpltr = 7;
5cf4cd1b
KR
2063 /* Handle movb,n. Put things back the way they were.
2064 This includes moving s back to where it started. */
2065 else if (strcasecmp (name, "n") == 0 && *args == '|')
2066 {
2067 *s = c;
2068 s = save_s;
2069 continue;
2070 }
025b0302 2071 else
8f78d0e9 2072 as_bad ("Invalid Shift/Extract/Deposit Condition.");
025b0302
ME
2073 *s = c;
2074 }
48153d49 2075 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9
KR
2076
2077 /* Handle bvb and bb conditions. */
2078 case '~':
025b0302
ME
2079 cmpltr = 0;
2080 if (*s == ',')
2081 {
2082 s++;
2083 if (strncmp (s, "<", 1) == 0)
2084 {
2085 cmpltr = 2;
2086 s++;
2087 }
2088 else if (strncmp (s, ">=", 2) == 0)
2089 {
2090 cmpltr = 6;
2091 s += 2;
2092 }
2093 else
8f78d0e9 2094 as_bad ("Invalid Bit Branch Condition: %c", *s);
025b0302 2095 }
48153d49 2096 INSERT_FIELD_AND_CONTINUE (opcode, cmpltr, 13);
8f78d0e9 2097
48153d49
JL
2098 /* Handle a system control completer. */
2099 case 'Z':
2100 if (*s == ',' && (*(s + 1) == 'm' || *(s + 1) == 'M'))
025b0302 2101 {
48153d49
JL
2102 flag = 1;
2103 s += 2;
025b0302 2104 }
48153d49
JL
2105 else
2106 flag = 0;
8f78d0e9 2107
48153d49
JL
2108 INSERT_FIELD_AND_CONTINUE (opcode, flag, 5);
2109
2110 /* Handle a nullification completer for branch instructions. */
2111 case 'n':
2112 nullif = pa_parse_nullif (&s);
2113 INSERT_FIELD_AND_CONTINUE (opcode, nullif, 1);
8f78d0e9
KR
2114
2115 /* Handle a 11 bit immediate at 31. */
2116 case 'i':
2117 the_insn.field_selector = pa_chk_field_selector (&s);
2118 get_expression (s);
48153d49 2119 s = expr_end;
5cf4cd1b 2120 if (the_insn.exp.X_op == O_constant)
025b0302 2121 {
48153d49
JL
2122 num = evaluate_absolute (&the_insn);
2123 CHECK_FIELD (num, 1023, -1024, 0);
2124 low_sign_unext (num, 11, &num);
2125 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
025b0302
ME
2126 }
2127 else
2128 {
025b0302
ME
2129 if (is_DP_relative (the_insn.exp))
2130 the_insn.reloc = R_HPPA_GOTOFF;
2131 else if (is_PC_relative (the_insn.exp))
2132 the_insn.reloc = R_HPPA_PCREL_CALL;
2133 else if (is_complex (the_insn.exp))
2134 the_insn.reloc = R_HPPA_COMPLEX;
2135 else
2136 the_insn.reloc = R_HPPA;
2137 the_insn.format = 11;
48153d49 2138 continue;
025b0302 2139 }
8f78d0e9
KR
2140
2141 /* Handle a 14 bit immediate at 31. */
2142 case 'j':
025b0302 2143 the_insn.field_selector = pa_chk_field_selector (&s);
8f78d0e9 2144 get_expression (s);
48153d49 2145 s = expr_end;
5cf4cd1b 2146 if (the_insn.exp.X_op == O_constant)
025b0302 2147 {
48153d49
JL
2148 num = evaluate_absolute (&the_insn);
2149 CHECK_FIELD (num, 8191, -8192, 0);
2150 low_sign_unext (num, 14, &num);
2151 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
025b0302
ME
2152 }
2153 else
2154 {
2155 if (is_DP_relative (the_insn.exp))
2156 the_insn.reloc = R_HPPA_GOTOFF;
2157 else if (is_PC_relative (the_insn.exp))
2158 the_insn.reloc = R_HPPA_PCREL_CALL;
2159 else if (is_complex (the_insn.exp))
2160 the_insn.reloc = R_HPPA_COMPLEX;
2161 else
2162 the_insn.reloc = R_HPPA;
2163 the_insn.format = 14;
48153d49 2164 continue;
025b0302 2165 }
025b0302 2166
8f78d0e9
KR
2167 /* Handle a 21 bit immediate at 31. */
2168 case 'k':
2169 the_insn.field_selector = pa_chk_field_selector (&s);
2170 get_expression (s);
48153d49 2171 s = expr_end;
5cf4cd1b 2172 if (the_insn.exp.X_op == O_constant)
025b0302 2173 {
48153d49 2174 num = evaluate_absolute (&the_insn);
c5e9ccd0 2175 CHECK_FIELD (num >> 11, 1048575, -1048576, 0);
48153d49
JL
2176 dis_assemble_21 (num, &num);
2177 INSERT_FIELD_AND_CONTINUE (opcode, num, 0);
025b0302
ME
2178 }
2179 else
2180 {
025b0302
ME
2181 if (is_DP_relative (the_insn.exp))
2182 the_insn.reloc = R_HPPA_GOTOFF;
2183 else if (is_PC_relative (the_insn.exp))
2184 the_insn.reloc = R_HPPA_PCREL_CALL;
2185 else if (is_complex (the_insn.exp))
2186 the_insn.reloc = R_HPPA_COMPLEX;
2187 else
2188 the_insn.reloc = R_HPPA;
2189 the_insn.format = 21;
48153d49 2190 continue;
025b0302 2191 }
8f78d0e9
KR
2192
2193 /* Handle a 12 bit branch displacement. */
2194 case 'w':
2195 the_insn.field_selector = pa_chk_field_selector (&s);
2196 get_expression (s);
48153d49 2197 s = expr_end;
025b0302 2198 the_insn.pcrel = 1;
48153d49 2199 if (!strcmp (S_GET_NAME (the_insn.exp.X_add_symbol), "L$0\001"))
025b0302
ME
2200 {
2201 unsigned int w1, w, result;
2202
48153d49
JL
2203 num = evaluate_absolute (&the_insn);
2204 if (num % 4)
2205 {
2206 as_bad ("Branch to unaligned address");
2207 break;
2208 }
2209 CHECK_FIELD (num, 8191, -8192, 0);
2210 sign_unext ((num - 8) >> 2, 12, &result);
025b0302 2211 dis_assemble_12 (result, &w1, &w);
48153d49 2212 INSERT_FIELD_AND_CONTINUE (opcode, ((w1 << 2) | w), 0);
025b0302
ME
2213 }
2214 else
2215 {
025b0302
ME
2216 if (is_complex (the_insn.exp))
2217 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2218 else
2219 the_insn.reloc = R_HPPA_PCREL_CALL;
2220 the_insn.format = 12;
2221 the_insn.arg_reloc = last_call_desc.arg_reloc;
8f78d0e9 2222 bzero (&last_call_desc, sizeof (struct call_desc));
48153d49
JL
2223 s = expr_end;
2224 continue;
025b0302 2225 }
8f78d0e9
KR
2226
2227 /* Handle a 17 bit branch displacement. */
2228 case 'W':
025b0302 2229 the_insn.field_selector = pa_chk_field_selector (&s);
8f78d0e9 2230 get_expression (s);
48153d49 2231 s = expr_end;
025b0302 2232 the_insn.pcrel = 1;
c5e9ccd0 2233 if (!the_insn.exp.X_add_symbol
48153d49
JL
2234 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2235 "L$0\001"))
025b0302 2236 {
48153d49 2237 unsigned int w2, w1, w, result;
025b0302 2238
48153d49
JL
2239 num = evaluate_absolute (&the_insn);
2240 if (num % 4)
025b0302 2241 {
48153d49
JL
2242 as_bad ("Branch to unaligned address");
2243 break;
025b0302 2244 }
48153d49
JL
2245 CHECK_FIELD (num, 262143, -262144, 0);
2246
2247 if (the_insn.exp.X_add_symbol)
2248 num -= 8;
2249
2250 sign_unext (num >> 2, 17, &result);
2251 dis_assemble_17 (result, &w1, &w2, &w);
2252 INSERT_FIELD_AND_CONTINUE (opcode,
c5e9ccd0 2253 ((w2 << 2) | (w1 << 16) | w), 0);
025b0302
ME
2254 }
2255 else
2256 {
48153d49
JL
2257 if (is_complex (the_insn.exp))
2258 the_insn.reloc = R_HPPA_COMPLEX_PCREL_CALL;
2259 else
2260 the_insn.reloc = R_HPPA_PCREL_CALL;
2261 the_insn.format = 17;
2262 the_insn.arg_reloc = last_call_desc.arg_reloc;
2263 bzero (&last_call_desc, sizeof (struct call_desc));
2264 continue;
025b0302 2265 }
8f78d0e9
KR
2266
2267 /* Handle an absolute 17 bit branch target. */
2268 case 'z':
025b0302 2269 the_insn.field_selector = pa_chk_field_selector (&s);
8f78d0e9 2270 get_expression (s);
48153d49 2271 s = expr_end;
025b0302 2272 the_insn.pcrel = 0;
c5e9ccd0 2273 if (!the_insn.exp.X_add_symbol
48153d49
JL
2274 || !strcmp (S_GET_NAME (the_insn.exp.X_add_symbol),
2275 "L$0\001"))
025b0302 2276 {
48153d49 2277 unsigned int w2, w1, w, result;
c5e9ccd0 2278
48153d49
JL
2279 num = evaluate_absolute (&the_insn);
2280 if (num % 4)
025b0302 2281 {
48153d49
JL
2282 as_bad ("Branch to unaligned address");
2283 break;
025b0302 2284 }
48153d49
JL
2285 CHECK_FIELD (num, 262143, -262144, 0);
2286
2287 if (the_insn.exp.X_add_symbol)
2288 num -= 8;
2289
2290 sign_unext (num >> 2, 17, &result);
2291 dis_assemble_17 (result, &w1, &w2, &w);
c5e9ccd0
JL
2292 INSERT_FIELD_AND_CONTINUE (opcode,
2293 ((w2 << 2) | (w1 << 16) | w), 0);
025b0302
ME
2294 }
2295 else
2296 {
48153d49
JL
2297 if (is_complex (the_insn.exp))
2298 the_insn.reloc = R_HPPA_COMPLEX_ABS_CALL;
2299 else
2300 the_insn.reloc = R_HPPA_ABS_CALL;
2301 the_insn.format = 17;
2302 continue;
025b0302 2303 }
8f78d0e9
KR
2304
2305 /* Handle a 5 bit shift count at 26. */
2306 case 'p':
48153d49 2307 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2308 s = expr_end;
48153d49
JL
2309 CHECK_FIELD (num, 31, 0, 0);
2310 INSERT_FIELD_AND_CONTINUE (opcode, 31 - num, 5);
8f78d0e9
KR
2311
2312 /* Handle a 5 bit bit position at 26. */
2313 case 'P':
48153d49 2314 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2315 s = expr_end;
48153d49
JL
2316 CHECK_FIELD (num, 31, 0, 0);
2317 INSERT_FIELD_AND_CONTINUE (opcode, num, 5);
8f78d0e9
KR
2318
2319 /* Handle a 5 bit immediate at 10. */
2320 case 'Q':
48153d49 2321 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2322 s = expr_end;
48153d49
JL
2323 CHECK_FIELD (num, 31, 0, 0);
2324 INSERT_FIELD_AND_CONTINUE (opcode, num, 21);
8f78d0e9
KR
2325
2326 /* Handle a 13 bit immediate at 18. */
2327 case 'A':
48153d49 2328 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2329 s = expr_end;
48153d49
JL
2330 CHECK_FIELD (num, 4095, -4096, 0);
2331 INSERT_FIELD_AND_CONTINUE (opcode, num, 13);
8f78d0e9
KR
2332
2333 /* Handle a 26 bit immediate at 31. */
2334 case 'D':
48153d49 2335 num = pa_get_absolute_expression (&the_insn, &s);
025b0302 2336 s = expr_end;
48153d49
JL
2337 CHECK_FIELD (num, 671108864, 0, 0);
2338 INSERT_FIELD_AND_CONTINUE (opcode, num, 1);
8f78d0e9
KR
2339
2340 /* Handle a 3 bit SFU identifier at 25. */
2341 case 'f':
48153d49
JL
2342 num = pa_get_absolute_expression (&the_insn, &s);
2343 s = expr_end;
2344 CHECK_FIELD (num, 7, 0, 0);
2345 INSERT_FIELD_AND_CONTINUE (opcode, num, 6);
8f78d0e9
KR
2346
2347 /* We don't support any of these. FIXME. */
2348 case 'O':
2349 get_expression (s);
025b0302 2350 s = expr_end;
8f78d0e9 2351 abort ();
025b0302 2352 continue;
8f78d0e9
KR
2353
2354 /* Handle a source FP operand format completer. */
2355 case 'F':
2356 flag = pa_parse_fp_format (&s);
8f78d0e9 2357 the_insn.fpof1 = flag;
48153d49 2358 INSERT_FIELD_AND_CONTINUE (opcode, flag, 11);
8f78d0e9
KR
2359
2360 /* Handle a destination FP operand format completer. */
2361 case 'G':
8f78d0e9
KR
2362 /* pa_parse_format needs the ',' prefix. */
2363 s--;
2364 flag = pa_parse_fp_format (&s);
8f78d0e9 2365 the_insn.fpof2 = flag;
48153d49 2366 INSERT_FIELD_AND_CONTINUE (opcode, flag, 13);
8f78d0e9
KR
2367
2368 /* Handle FP compare conditions. */
2369 case 'M':
025b0302 2370 cond = pa_parse_fp_cmp_cond (&s);
48153d49 2371 INSERT_FIELD_AND_CONTINUE (opcode, cond, 0);
025b0302 2372
8f78d0e9
KR
2373 /* Handle L/R register halves like 't'. */
2374 case 'v':
025b0302
ME
2375 {
2376 struct pa_89_fp_reg_struct result;
025b0302 2377
8f78d0e9 2378 pa_parse_number (&s, &result);
48153d49
JL
2379 CHECK_FIELD (result.number_part, 31, 0, 0);
2380 opcode |= result.number_part;
025b0302 2381
48153d49
JL
2382 /* 0x30 opcodes are FP arithmetic operation opcodes
2383 and need to be turned into 0x38 opcodes. This
2384 is not necessary for loads/stores. */
2385 if (need_89_opcode (&the_insn, &result)
2386 && ((opcode & 0xfc000000) == 0x30000000))
2387 opcode |= 1 << 27;
2388
2389 INSERT_FIELD_AND_CONTINUE (opcode, result.l_r_select & 1, 6);
025b0302 2390 }
8f78d0e9
KR
2391
2392 /* Handle L/R register halves like 'b'. */
2393 case 'E':
025b0302
ME
2394 {
2395 struct pa_89_fp_reg_struct result;
025b0302 2396
8f78d0e9 2397 pa_parse_number (&s, &result);
48153d49
JL
2398 CHECK_FIELD (result.number_part, 31, 0, 0);
2399 opcode |= result.number_part << 21;
2400 if (need_89_opcode (&the_insn, &result))
025b0302 2401 {
48153d49
JL
2402 opcode |= (result.l_r_select & 1) << 7;
2403 opcode |= 1 << 27;
025b0302 2404 }
48153d49 2405 continue;
025b0302 2406 }
025b0302 2407
8f78d0e9
KR
2408 /* Handle L/R register halves like 'x'. */
2409 case 'X':
025b0302
ME
2410 {
2411 struct pa_89_fp_reg_struct result;
025b0302 2412
8f78d0e9 2413 pa_parse_number (&s, &result);
48153d49
JL
2414 CHECK_FIELD (result.number_part, 31, 0, 0);
2415 opcode |= (result.number_part & 0x1f) << 16;
2416 if (need_89_opcode (&the_insn, &result))
025b0302 2417 {
48153d49
JL
2418 opcode |= (result.l_r_select & 1) << 12;
2419 opcode |= 1 << 27;
025b0302 2420 }
48153d49 2421 continue;
025b0302 2422 }
025b0302 2423
8f78d0e9
KR
2424 /* Handle a 5 bit register field at 10. */
2425 case '4':
025b0302
ME
2426 {
2427 struct pa_89_fp_reg_struct result;
48153d49
JL
2428
2429 pa_parse_number (&s, &result);
2430 CHECK_FIELD (result.number_part, 31, 0, 0);
2431 if (the_insn.fpof1 == SGL)
025b0302 2432 {
48153d49
JL
2433 result.number_part &= 0xF;
2434 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2435 }
48153d49 2436 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 21);
025b0302 2437 }
025b0302 2438
8f78d0e9
KR
2439 /* Handle a 5 bit register field at 15. */
2440 case '6':
025b0302
ME
2441 {
2442 struct pa_89_fp_reg_struct result;
025b0302 2443
48153d49
JL
2444 pa_parse_number (&s, &result);
2445 CHECK_FIELD (result.number_part, 31, 0, 0);
2446 if (the_insn.fpof1 == SGL)
025b0302 2447 {
48153d49
JL
2448 result.number_part &= 0xF;
2449 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2450 }
48153d49 2451 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 16);
025b0302 2452 }
025b0302 2453
8f78d0e9
KR
2454 /* Handle a 5 bit register field at 31. */
2455 case '7':
025b0302
ME
2456 {
2457 struct pa_89_fp_reg_struct result;
025b0302 2458
48153d49
JL
2459 pa_parse_number (&s, &result);
2460 CHECK_FIELD (result.number_part, 31, 0, 0);
2461 if (the_insn.fpof1 == SGL)
025b0302 2462 {
48153d49
JL
2463 result.number_part &= 0xF;
2464 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2465 }
48153d49 2466 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 0);
025b0302 2467 }
025b0302 2468
8f78d0e9
KR
2469 /* Handle a 5 bit register field at 20. */
2470 case '8':
025b0302
ME
2471 {
2472 struct pa_89_fp_reg_struct result;
025b0302 2473
48153d49
JL
2474 pa_parse_number (&s, &result);
2475 CHECK_FIELD (result.number_part, 31, 0, 0);
2476 if (the_insn.fpof1 == SGL)
025b0302 2477 {
48153d49
JL
2478 result.number_part &= 0xF;
2479 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2480 }
48153d49 2481 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 11);
025b0302 2482 }
025b0302 2483
8f78d0e9
KR
2484 /* Handle a 5 bit register field at 25. */
2485 case '9':
025b0302
ME
2486 {
2487 struct pa_89_fp_reg_struct result;
025b0302 2488
48153d49
JL
2489 pa_parse_number (&s, &result);
2490 CHECK_FIELD (result.number_part, 31, 0, 0);
2491 if (the_insn.fpof1 == SGL)
025b0302 2492 {
48153d49
JL
2493 result.number_part &= 0xF;
2494 result.number_part |= (result.l_r_select & 1) << 4;
025b0302 2495 }
48153d49 2496 INSERT_FIELD_AND_CONTINUE (opcode, result.number_part, 6);
025b0302 2497 }
025b0302 2498
8f78d0e9
KR
2499 /* Handle a floating point operand format at 26.
2500 Only allows single and double precision. */
2501 case 'H':
2502 flag = pa_parse_fp_format (&s);
2503 switch (flag)
025b0302
ME
2504 {
2505 case SGL:
2506 opcode |= 0x20;
2507 case DBL:
8f78d0e9 2508 the_insn.fpof1 = flag;
025b0302
ME
2509 continue;
2510
2511 case QUAD:
2512 case ILLEGAL_FMT:
2513 default:
8f78d0e9 2514 as_bad ("Invalid Floating Point Operand Format.");
025b0302
ME
2515 }
2516 break;
2517
2518 default:
2519 abort ();
2520 }
2521 break;
2522 }
892a3ff1 2523
8f78d0e9 2524 /* Check if the args matched. */
025b0302
ME
2525 if (match == FALSE)
2526 {
025b0302
ME
2527 if (&insn[1] - pa_opcodes < NUMOPCODES
2528 && !strcmp (insn->name, insn[1].name))
2529 {
2530 ++insn;
8f78d0e9 2531 s = argstart;
025b0302
ME
2532 continue;
2533 }
2534 else
2535 {
8f78d0e9 2536 as_bad ("Invalid operands %s", error_message);
025b0302
ME
2537 return;
2538 }
2539 }
2540 break;
2541 }
2542
2543 the_insn.opcode = opcode;
025b0302
ME
2544 return;
2545}
2546
8f78d0e9 2547/* Turn a string in input_line_pointer into a floating point constant of type
025b0302 2548 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
8f78d0e9 2549 emitted is stored in *sizeP . An error message or NULL is returned. */
025b0302 2550
025b0302
ME
2551#define MAX_LITTLENUMS 6
2552
2553char *
2554md_atof (type, litP, sizeP)
2555 char type;
2556 char *litP;
2557 int *sizeP;
2558{
2559 int prec;
2560 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2561 LITTLENUM_TYPE *wordP;
2562 char *t;
025b0302
ME
2563
2564 switch (type)
2565 {
2566
2567 case 'f':
2568 case 'F':
2569 case 's':
2570 case 'S':
2571 prec = 2;
2572 break;
2573
2574 case 'd':
2575 case 'D':
2576 case 'r':
2577 case 'R':
2578 prec = 4;
2579 break;
2580
2581 case 'x':
2582 case 'X':
2583 prec = 6;
2584 break;
2585
2586 case 'p':
2587 case 'P':
2588 prec = 6;
2589 break;
2590
2591 default:
2592 *sizeP = 0;
2593 return "Bad call to MD_ATOF()";
2594 }
2595 t = atof_ieee (input_line_pointer, type, words);
2596 if (t)
2597 input_line_pointer = t;
2598 *sizeP = prec * sizeof (LITTLENUM_TYPE);
2599 for (wordP = words; prec--;)
2600 {
8f78d0e9 2601 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
025b0302
ME
2602 litP += sizeof (LITTLENUM_TYPE);
2603 }
aa8b30ed 2604 return NULL;
025b0302
ME
2605}
2606
8f78d0e9
KR
2607/* Write out big-endian. */
2608
025b0302
ME
2609void
2610md_number_to_chars (buf, val, n)
2611 char *buf;
2612 valueT val;
2613 int n;
2614{
bfbfba45 2615 number_to_chars_bigendian (buf, val, n);
025b0302
ME
2616}
2617
025b0302 2618/* Translate internal representation of relocation info to BFD target
62f0841b 2619 format. */
8f78d0e9 2620
025b0302
ME
2621arelent **
2622tc_gen_reloc (section, fixp)
2623 asection *section;
2624 fixS *fixp;
2625{
2626 arelent *reloc;
aa8b30ed 2627 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
025b0302
ME
2628 bfd_reloc_code_real_type code;
2629 static int unwind_reloc_fixp_cnt = 0;
2630 static arelent *unwind_reloc_entryP = NULL;
2631 static arelent *no_relocs = NULL;
2632 arelent **relocs;
2633 bfd_reloc_code_real_type **codes;
2634 int n_relocs;
2635 int i;
2636
2637 if (fixp->fx_addsy == 0)
2638 return &no_relocs;
2639 assert (hppa_fixp != 0);
2640 assert (section != 0);
2641
62f0841b
JL
2642#ifdef OBJ_ELF
2643 /* Yuk. I would really like to push all this ELF specific unwind
2644 crud into BFD and the linker. That's how SOM does it -- and
2645 if we could make ELF emulate that then we could share more code
2646 in GAS (and potentially a gnu-linker later).
2647
2648 Unwind section relocations are handled in a special way.
8f78d0e9
KR
2649 The relocations for the .unwind section are originally
2650 built in the usual way. That is, for each unwind table
2651 entry there are two relocations: one for the beginning of
2652 the function and one for the end.
2653
2654 The first time we enter this function we create a
2655 relocation of the type R_HPPA_UNWIND_ENTRIES. The addend
2656 of the relocation is initialized to 0. Each additional
2657 pair of times this function is called for the unwind
2658 section represents an additional unwind table entry. Thus,
2659 the addend of the relocation should end up to be the number
2660 of unwind table entries. */
025b0302
ME
2661 if (strcmp (UNWIND_SECTION_NAME, section->name) == 0)
2662 {
2663 if (unwind_reloc_entryP == NULL)
2664 {
c5e9ccd0 2665 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
8f78d0e9 2666 sizeof (arelent));
025b0302
ME
2667 assert (reloc != 0);
2668 unwind_reloc_entryP = reloc;
2669 unwind_reloc_fixp_cnt++;
8f78d0e9
KR
2670 unwind_reloc_entryP->address
2671 = fixp->fx_frag->fr_address + fixp->fx_where;
2672 /* A pointer to any function will do. We only
2673 need one to tell us what section the unwind
2674 relocations are for. */
025b0302 2675 unwind_reloc_entryP->sym_ptr_ptr = &fixp->fx_addsy->bsym;
8f78d0e9
KR
2676 hppa_fixp->fx_r_type = code = R_HPPA_UNWIND_ENTRIES;
2677 fixp->fx_r_type = R_HPPA_UNWIND;
025b0302
ME
2678 unwind_reloc_entryP->howto = bfd_reloc_type_lookup (stdoutput, code);
2679 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
8f78d0e9
KR
2680 relocs = (arelent **) bfd_alloc_by_size_t (stdoutput,
2681 sizeof (arelent *) * 2);
025b0302
ME
2682 assert (relocs != 0);
2683 relocs[0] = unwind_reloc_entryP;
2684 relocs[1] = NULL;
2685 return relocs;
2686 }
2687 unwind_reloc_fixp_cnt++;
2688 unwind_reloc_entryP->addend = unwind_reloc_fixp_cnt / 2;
2689
2690 return &no_relocs;
2691 }
62f0841b 2692#endif
025b0302
ME
2693
2694 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
2695 assert (reloc != 0);
2696
2697 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
aa8b30ed
JL
2698 codes = hppa_gen_reloc_type (stdoutput,
2699 fixp->fx_r_type,
2700 hppa_fixp->fx_r_format,
2701 hppa_fixp->fx_r_field);
025b0302
ME
2702
2703 for (n_relocs = 0; codes[n_relocs]; n_relocs++)
2704 ;
2705
8f78d0e9
KR
2706 relocs = (arelent **)
2707 bfd_alloc_by_size_t (stdoutput, sizeof (arelent *) * n_relocs + 1);
025b0302
ME
2708 assert (relocs != 0);
2709
8f78d0e9
KR
2710 reloc = (arelent *) bfd_alloc_by_size_t (stdoutput,
2711 sizeof (arelent) * n_relocs);
025b0302
ME
2712 if (n_relocs > 0)
2713 assert (reloc != 0);
2714
2715 for (i = 0; i < n_relocs; i++)
2716 relocs[i] = &reloc[i];
2717
2718 relocs[n_relocs] = NULL;
2719
62f0841b 2720#ifdef OBJ_ELF
025b0302
ME
2721 switch (fixp->fx_r_type)
2722 {
2723 case R_HPPA_COMPLEX:
2724 case R_HPPA_COMPLEX_PCREL_CALL:
2725 case R_HPPA_COMPLEX_ABS_CALL:
2726 assert (n_relocs == 5);
2727
2728 for (i = 0; i < n_relocs; i++)
2729 {
2730 reloc[i].sym_ptr_ptr = NULL;
2731 reloc[i].address = 0;
2732 reloc[i].addend = 0;
2733 reloc[i].howto = bfd_reloc_type_lookup (stdoutput, *codes[i]);
2734 assert (reloc[i].howto && *codes[i] == reloc[i].howto->type);
2735 }
2736
2737 reloc[0].sym_ptr_ptr = &fixp->fx_addsy->bsym;
2738 reloc[1].sym_ptr_ptr = &fixp->fx_subsy->bsym;
2739 reloc[4].address = fixp->fx_frag->fr_address + fixp->fx_where;
2740
2741 if (fixp->fx_r_type == R_HPPA_COMPLEX)
2742 reloc[3].addend = fixp->fx_addnumber;
2743 else if (fixp->fx_r_type == R_HPPA_COMPLEX_PCREL_CALL ||
2744 fixp->fx_r_type == R_HPPA_COMPLEX_ABS_CALL)
2745 reloc[1].addend = fixp->fx_addnumber;
2746
2747 break;
2748
2749 default:
2750 assert (n_relocs == 1);
2751
2752 code = *codes[0];
2753
2754 reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2755 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2756 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2757 reloc->addend = 0; /* default */
2758
2759 assert (reloc->howto && code == reloc->howto->type);
2760
8f78d0e9 2761 /* Now, do any processing that is dependent on the relocation type. */
025b0302
ME
2762 switch (code)
2763 {
2764 case R_HPPA_PLABEL_32:
2765 case R_HPPA_PLABEL_11:
2766 case R_HPPA_PLABEL_14:
2767 case R_HPPA_PLABEL_L21:
2768 case R_HPPA_PLABEL_R11:
2769 case R_HPPA_PLABEL_R14:
8f78d0e9
KR
2770 /* For plabel relocations, the addend of the
2771 relocation should be either 0 (no static link) or 2
2772 (static link required).
2773
7b624bf2
JL
2774 FIXME: We always assume no static link! */
2775 reloc->addend = 0;
025b0302
ME
2776 break;
2777
2778 case R_HPPA_ABS_CALL_11:
2779 case R_HPPA_ABS_CALL_14:
2780 case R_HPPA_ABS_CALL_17:
2781 case R_HPPA_ABS_CALL_L21:
2782 case R_HPPA_ABS_CALL_R11:
2783 case R_HPPA_ABS_CALL_R14:
2784 case R_HPPA_ABS_CALL_R17:
2785 case R_HPPA_ABS_CALL_LS21:
2786 case R_HPPA_ABS_CALL_RS11:
2787 case R_HPPA_ABS_CALL_RS14:
2788 case R_HPPA_ABS_CALL_RS17:
2789 case R_HPPA_ABS_CALL_LD21:
2790 case R_HPPA_ABS_CALL_RD11:
2791 case R_HPPA_ABS_CALL_RD14:
2792 case R_HPPA_ABS_CALL_RD17:
2793 case R_HPPA_ABS_CALL_LR21:
2794 case R_HPPA_ABS_CALL_RR14:
2795 case R_HPPA_ABS_CALL_RR17:
2796
2797 case R_HPPA_PCREL_CALL_11:
2798 case R_HPPA_PCREL_CALL_14:
2799 case R_HPPA_PCREL_CALL_17:
2800 case R_HPPA_PCREL_CALL_L21:
2801 case R_HPPA_PCREL_CALL_R11:
2802 case R_HPPA_PCREL_CALL_R14:
2803 case R_HPPA_PCREL_CALL_R17:
2804 case R_HPPA_PCREL_CALL_LS21:
2805 case R_HPPA_PCREL_CALL_RS11:
2806 case R_HPPA_PCREL_CALL_RS14:
2807 case R_HPPA_PCREL_CALL_RS17:
2808 case R_HPPA_PCREL_CALL_LD21:
2809 case R_HPPA_PCREL_CALL_RD11:
2810 case R_HPPA_PCREL_CALL_RD14:
2811 case R_HPPA_PCREL_CALL_RD17:
2812 case R_HPPA_PCREL_CALL_LR21:
2813 case R_HPPA_PCREL_CALL_RR14:
2814 case R_HPPA_PCREL_CALL_RR17:
8f78d0e9
KR
2815 /* The constant is stored in the instruction. */
2816 reloc->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
025b0302
ME
2817 break;
2818 default:
2819 reloc->addend = fixp->fx_addnumber;
2820 break;
2821 }
2822 break;
2823 }
62f0841b 2824#else /* OBJ_SOM */
025b0302 2825
4165dcc2
JL
2826 /* Walk over reach relocation returned by the BFD backend. */
2827 for (i = 0; i < n_relocs; i++)
62f0841b 2828 {
4165dcc2 2829 code = *codes[i];
c5e9ccd0 2830
4165dcc2
JL
2831 relocs[i]->sym_ptr_ptr = &fixp->fx_addsy->bsym;
2832 relocs[i]->howto = bfd_reloc_type_lookup (stdoutput, code);
2833 relocs[i]->address = fixp->fx_frag->fr_address + fixp->fx_where;
025b0302 2834
62f0841b
JL
2835 switch (code)
2836 {
2837 case R_PCREL_CALL:
2838 case R_ABS_CALL:
4165dcc2 2839 relocs[i]->addend = HPPA_R_ADDEND (hppa_fixp->fx_arg_reloc, 0);
62f0841b 2840 break;
f2eed884
JL
2841
2842 case R_DATA_PLABEL:
2843 case R_CODE_PLABEL:
2844 /* For plabel relocations, the addend of the
2845 relocation should be either 0 (no static link) or 2
2846 (static link required).
2847
2848 FIXME: We always assume no static link! */
4165dcc2
JL
2849 relocs[i]->addend = 0;
2850 break;
2851
2852 case R_N_MODE:
2853 case R_S_MODE:
2854 case R_D_MODE:
2855 case R_R_MODE:
2856 /* There is no symbol or addend associated with these fixups. */
2857 relocs[i]->sym_ptr_ptr = 0;
2858 relocs[i]->addend = 0;
f2eed884
JL
2859 break;
2860
62f0841b 2861 default:
4165dcc2 2862 relocs[i]->addend = fixp->fx_addnumber;
62f0841b
JL
2863 break;
2864 }
62f0841b 2865 }
025b0302
ME
2866#endif
2867
62f0841b
JL
2868 return relocs;
2869}
2870
8f78d0e9
KR
2871/* Process any machine dependent frag types. */
2872
025b0302
ME
2873void
2874md_convert_frag (abfd, sec, fragP)
2875 register bfd *abfd;
2876 register asection *sec;
2877 register fragS *fragP;
2878{
2879 unsigned int address;
2880
2881 if (fragP->fr_type == rs_machine_dependent)
2882 {
2883 switch ((int) fragP->fr_subtype)
2884 {
2885 case 0:
2886 fragP->fr_type = rs_fill;
2887 know (fragP->fr_var == 1);
2888 know (fragP->fr_next);
2889 address = fragP->fr_address + fragP->fr_fix;
2890 if (address % fragP->fr_offset)
2891 {
2892 fragP->fr_offset =
2893 fragP->fr_next->fr_address
2894 - fragP->fr_address
2895 - fragP->fr_fix;
2896 }
2897 else
2898 fragP->fr_offset = 0;
2899 break;
2900 }
8f78d0e9
KR
2901 }
2902}
025b0302 2903
8f78d0e9 2904/* Round up a section size to the appropriate boundary. */
025b0302 2905
8f78d0e9
KR
2906valueT
2907md_section_align (segment, size)
2908 asection *segment;
2909 valueT size;
025b0302 2910{
8f78d0e9
KR
2911 int align = bfd_get_section_alignment (stdoutput, segment);
2912 int align2 = (1 << align) - 1;
025b0302 2913
8f78d0e9 2914 return (size + align2) & ~align2;
025b0302 2915
8f78d0e9 2916}
025b0302 2917
8f78d0e9
KR
2918/* Create a short jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2919void
2920md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2921 char *ptr;
2922 addressT from_addr, to_addr;
2923 fragS *frag;
2924 symbolS *to_symbol;
2925{
2926 fprintf (stderr, "pa_create_short_jmp\n");
2927 abort ();
2928}
025b0302 2929
8f78d0e9
KR
2930/* Create a long jump from FROM_ADDR to TO_ADDR. Not used on the PA. */
2931void
2932md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2933 char *ptr;
2934 addressT from_addr, to_addr;
2935 fragS *frag;
2936 symbolS *to_symbol;
2937{
2938 fprintf (stderr, "pa_create_long_jump\n");
2939 abort ();
025b0302
ME
2940}
2941
8f78d0e9
KR
2942/* Return the approximate size of a frag before relaxation has occurred. */
2943int
2944md_estimate_size_before_relax (fragP, segment)
2945 register fragS *fragP;
2946 asection *segment;
025b0302 2947{
8f78d0e9
KR
2948 int size;
2949
2950 size = 0;
2951
2952 while ((fragP->fr_fix + size) % fragP->fr_offset)
2953 size++;
2954
2955 return size;
025b0302
ME
2956}
2957
c5e9ccd0 2958/* Parse machine dependent options. There are none on the PA. */
8f78d0e9
KR
2959int
2960md_parse_option (argP, cntP, vecP)
2961 char **argP;
2962 int *cntP;
2963 char ***vecP;
025b0302 2964{
8f78d0e9
KR
2965 return 1;
2966}
025b0302 2967
8f78d0e9
KR
2968/* We have no need to default values of symbols. */
2969
2970symbolS *
2971md_undefined_symbol (name)
2972 char *name;
2973{
2974 return 0;
025b0302
ME
2975}
2976
8f78d0e9
KR
2977/* Parse an operand that is machine-specific.
2978 We just return without modifying the expression as we have nothing
2979 to do on the PA. */
2980
2981void
2982md_operand (expressionP)
2983 expressionS *expressionP;
025b0302 2984{
8f78d0e9 2985}
025b0302 2986
753dcbbd 2987/* Apply a fixup to an instruction. */
8f78d0e9 2988
753dcbbd
JL
2989int
2990md_apply_fix (fixP, valp)
8f78d0e9 2991 fixS *fixP;
753dcbbd 2992 valueT *valp;
025b0302 2993{
8f78d0e9 2994 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
aa8b30ed 2995 struct hppa_fix_struct *hppa_fixP = fixP->tc_fix_data;
8f78d0e9
KR
2996 long new_val, result;
2997 unsigned int w1, w2, w;
753dcbbd 2998 valueT val = *valp;
8f78d0e9 2999
ff852e11 3000 /* SOM uses R_HPPA_ENTRY and R_HPPA_EXIT relocations which can
753dcbbd 3001 never be "applied" (they are just markers). */
ff852e11
JL
3002#ifdef OBJ_SOM
3003 if (fixP->fx_r_type == R_HPPA_ENTRY
3004 || fixP->fx_r_type == R_HPPA_EXIT)
753dcbbd 3005 return 1;
ff852e11
JL
3006#endif
3007
8f78d0e9
KR
3008 /* There should have been an HPPA specific fixup associated
3009 with the GAS fixup. */
3010 if (hppa_fixP)
3011 {
3012 unsigned long buf_wd = bfd_get_32 (stdoutput, buf);
aa8b30ed 3013 unsigned char fmt = bfd_hppa_insn2fmt (buf_wd);
8f78d0e9 3014
aa8b30ed
JL
3015 if (fixP->fx_r_type == R_HPPA_NONE)
3016 fmt = 0;
8f78d0e9
KR
3017
3018 /* Remember this value for emit_reloc. FIXME, is this braindamage
c5e9ccd0 3019 documented anywhere!?! */
8f78d0e9
KR
3020 fixP->fx_addnumber = val;
3021
3022 /* Check if this is an undefined symbol. No relocation can
3023 possibly be performed in this case. */
3024 if ((fixP->fx_addsy && fixP->fx_addsy->bsym->section == &bfd_und_section)
3025 || (fixP->fx_subsy
3026 && fixP->fx_subsy->bsym->section == &bfd_und_section))
753dcbbd 3027 return 1;
8f78d0e9 3028
753dcbbd 3029 /* PLABEL field selectors should not be passed to hppa_field_adjust. */
f2eed884
JL
3030 if (fmt != 0 && hppa_fixP->fx_r_field != R_HPPA_PSEL
3031 && hppa_fixP->fx_r_field != R_HPPA_LPSEL
3032 && hppa_fixP->fx_r_field != R_HPPA_RPSEL)
48153d49
JL
3033 new_val = hppa_field_adjust (val, 0, hppa_fixP->fx_r_field);
3034 else
3035 new_val = 0;
3036
8f78d0e9
KR
3037 switch (fmt)
3038 {
3039 /* Handle all opcodes with the 'j' operand type. */
3040 case 14:
48153d49 3041 CHECK_FIELD (new_val, 8191, -8192, 0);
8f78d0e9
KR
3042
3043 /* Mask off 14 bits to be changed. */
3044 bfd_put_32 (stdoutput,
3045 bfd_get_32 (stdoutput, buf) & 0xffffc000,
3046 buf);
3047 low_sign_unext (new_val, 14, &result);
3048 break;
3049
3050 /* Handle all opcodes with the 'k' operand type. */
3051 case 21:
48153d49 3052 CHECK_FIELD (new_val, 2097152, 0, 0);
8f78d0e9
KR
3053
3054 /* Mask off 21 bits to be changed. */
3055 bfd_put_32 (stdoutput,
3056 bfd_get_32 (stdoutput, buf) & 0xffe00000,
3057 buf);
3058 dis_assemble_21 (new_val, &result);
3059 break;
3060
3061 /* Handle all the opcodes with the 'i' operand type. */
3062 case 11:
48153d49 3063 CHECK_FIELD (new_val, 1023, -1023, 0);
8f78d0e9
KR
3064
3065 /* Mask off 11 bits to be changed. */
3066 bfd_put_32 (stdoutput,
3067 bfd_get_32 (stdoutput, buf) & 0xffff800,
3068 buf);
3069 low_sign_unext (new_val, 11, &result);
3070 break;
3071
3072 /* Handle all the opcodes with the 'w' operand type. */
3073 case 12:
48153d49 3074 CHECK_FIELD (new_val, 8191, -8192, 0)
8f78d0e9
KR
3075
3076 /* Mask off 11 bits to be changed. */
c5e9ccd0 3077 sign_unext ((new_val - 8) >> 2, 12, &result);
8f78d0e9
KR
3078 bfd_put_32 (stdoutput,
3079 bfd_get_32 (stdoutput, buf) & 0xffffe002,
3080 buf);
3081
3082 dis_assemble_12 (result, &w1, &w);
3083 result = ((w1 << 2) | w);
8f78d0e9
KR
3084 break;
3085
753dcbbd
JL
3086 /* Handle some of the opcodes with the 'W' operand type. */
3087 case 17:
3088
8f78d0e9
KR
3089#define stub_needed(CALLER, CALLEE) \
3090 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
753dcbbd
JL
3091 /* It is necessary to force PC-relative calls/jumps to have a
3092 relocation entry if they're going to need either a argument
3093 relocation or long call stub. FIXME. Can't we need the same
3094 for absolute calls? */
3095 if (fixP->fx_addsy
3096 && (stub_needed (((obj_symbol_type *)
3097 fixP->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
3098 hppa_fixP->fx_arg_reloc)))
3099 return 1;
3100#undef stub_needed
8f78d0e9 3101
48153d49 3102 CHECK_FIELD (new_val, 262143, -262144, 0);
8f78d0e9
KR
3103
3104 /* Mask off 17 bits to be changed. */
3105 bfd_put_32 (stdoutput,
3106 bfd_get_32 (stdoutput, buf) & 0xffe0e002,
3107 buf);
3108 sign_unext ((new_val - 8) >> 2, 17, &result);
3109 dis_assemble_17 (result, &w1, &w2, &w);
3110 result = ((w2 << 2) | (w1 << 16) | w);
8f78d0e9
KR
3111 break;
3112
8f78d0e9 3113 case 32:
aa8b30ed 3114#ifdef OBJ_ELF
ff852e11
JL
3115 /* These are ELF specific relocations. ELF unfortunately
3116 handles unwinds in a completely different manner. */
8f78d0e9
KR
3117 if (hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRY
3118 || hppa_fixP->fx_r_type == R_HPPA_UNWIND_ENTRIES)
3119 result = fixP->fx_addnumber;
3120 else
aa8b30ed 3121#endif
8f78d0e9
KR
3122 {
3123 result = 0;
3124 fixP->fx_addnumber = fixP->fx_offset;
3125 bfd_put_32 (stdoutput, 0, buf);
753dcbbd 3126 return 1;
8f78d0e9
KR
3127 }
3128 break;
3129
3130 case 0:
753dcbbd 3131 return 1;
8f78d0e9
KR
3132
3133 default:
48153d49 3134 as_bad ("Unknown relocation encountered in md_apply_fix.");
753dcbbd 3135 return 1;
8f78d0e9
KR
3136 }
3137
3138 /* Insert the relocation. */
48153d49 3139 bfd_put_32 (stdoutput, bfd_get_32 (stdoutput, buf) | result, buf);
753dcbbd 3140 return 1;
8f78d0e9 3141 }
025b0302 3142 else
753dcbbd
JL
3143 {
3144 printf ("no hppa_fixup entry for this fixup (fixP = 0x%x, type = 0x%x)\n",
3145 (unsigned int) fixP, fixP->fx_r_type);
3146 return 0;
3147 }
8f78d0e9
KR
3148}
3149
3150/* Exactly what point is a PC-relative offset relative TO?
3151 On the PA, they're relative to the address of the offset. */
3152
3153long
3154md_pcrel_from (fixP)
3155 fixS *fixP;
3156{
3157 return fixP->fx_where + fixP->fx_frag->fr_address;
3158}
3159
3160/* Return nonzero if the input line pointer is at the end of
3161 a statement. */
3162
3163static int
3164is_end_of_statement ()
3165{
3166 return ((*input_line_pointer == '\n')
3167 || (*input_line_pointer == ';')
3168 || (*input_line_pointer == '!'));
3169}
3170
3171/* Read a number from S. The number might come in one of many forms,
3172 the most common will be a hex or decimal constant, but it could be
3173 a pre-defined register (Yuk!), or an absolute symbol.
3174
3175 Return a number or -1 for failure.
3176
3177 When parsing PA-89 FP register numbers RESULT will be
3178 the address of a structure to return information about
3179 L/R half of FP registers, store results there as appropriate.
3180
3181 pa_parse_number can not handle negative constants and will fail
3182 horribly if it is passed such a constant. */
3183
3184static int
3185pa_parse_number (s, result)
025b0302
ME
3186 char **s;
3187 struct pa_89_fp_reg_struct *result;
3188{
3189 int num;
3190 char *name;
3191 char c;
3192 symbolS *sym;
3193 int status;
3194 char *p = *s;
3195
8f78d0e9 3196 /* Skip whitespace before the number. */
025b0302
ME
3197 while (*p == ' ' || *p == '\t')
3198 p = p + 1;
8f78d0e9
KR
3199
3200 /* Store info in RESULT if requested by caller. */
3201 if (result)
3202 {
3203 result->number_part = -1;
3204 result->l_r_select = -1;
3205 }
3206 num = -1;
025b0302
ME
3207
3208 if (isdigit (*p))
3209 {
8f78d0e9
KR
3210 /* Looks like a number. */
3211 num = 0;
025b0302
ME
3212
3213 if (*p == '0' && (*(p + 1) == 'x' || *(p + 1) == 'X'))
8f78d0e9
KR
3214 {
3215 /* The number is specified in hex. */
3216 p += 2;
025b0302
ME
3217 while (isdigit (*p) || ((*p >= 'a') && (*p <= 'f'))
3218 || ((*p >= 'A') && (*p <= 'F')))
3219 {
3220 if (isdigit (*p))
3221 num = num * 16 + *p - '0';
3222 else if (*p >= 'a' && *p <= 'f')
3223 num = num * 16 + *p - 'a' + 10;
3224 else
3225 num = num * 16 + *p - 'A' + 10;
3226 ++p;
3227 }
3228 }
3229 else
3230 {
8f78d0e9 3231 /* The number is specified in decimal. */
025b0302
ME
3232 while (isdigit (*p))
3233 {
3234 num = num * 10 + *p - '0';
3235 ++p;
3236 }
3237 }
3238
8f78d0e9
KR
3239 /* Store info in RESULT if requested by the caller. */
3240 if (result)
025b0302 3241 {
8f78d0e9 3242 result->number_part = num;
025b0302 3243
8f78d0e9
KR
3244 if (IS_R_SELECT (p))
3245 {
3246 result->l_r_select = 1;
3247 ++p;
3248 }
3249 else if (IS_L_SELECT (p))
3250 {
3251 result->l_r_select = 0;
3252 ++p;
3253 }
3254 else
3255 result->l_r_select = 0;
3256 }
025b0302
ME
3257 }
3258 else if (*p == '%')
8f78d0e9
KR
3259 {
3260 /* The number might be a predefined register. */
025b0302
ME
3261 num = 0;
3262 name = p;
3263 p++;
3264 c = *p;
8f78d0e9
KR
3265 /* Tege hack: Special case for general registers as the general
3266 code makes a binary search with case translation, and is VERY
3267 slow. */
025b0302
ME
3268 if (c == 'r')
3269 {
3270 p++;
8f78d0e9
KR
3271 if (*p == 'e' && *(p + 1) == 't'
3272 && (*(p + 2) == '0' || *(p + 2) == '1'))
025b0302
ME
3273 {
3274 p += 2;
8f78d0e9 3275 num = *p - '0' + 28;
025b0302
ME
3276 p++;
3277 }
d6e524f3
JL
3278 else if (*p == 'p')
3279 {
3280 num = 2;
3281 p++;
3282 }
025b0302 3283 else if (!isdigit (*p))
d6e524f3
JL
3284 {
3285 if (print_errors)
3286 as_bad ("Undefined register: '%s'.", name);
3287 num = -1;
3288 }
025b0302
ME
3289 else
3290 {
3291 do
3292 num = num * 10 + *p++ - '0';
3293 while (isdigit (*p));
3294 }
3295 }
3296 else
3297 {
8f78d0e9 3298 /* Do a normal register search. */
025b0302
ME
3299 while (is_part_of_name (c))
3300 {
3301 p = p + 1;
3302 c = *p;
3303 }
3304 *p = 0;
3305 status = reg_name_search (name);
3306 if (status >= 0)
3307 num = status;
3308 else
3309 {
3310 if (print_errors)
d6e524f3
JL
3311 as_bad ("Undefined register: '%s'.", name);
3312 num = -1;
025b0302
ME
3313 }
3314 *p = c;
3315 }
3316
8f78d0e9
KR
3317 /* Store info in RESULT if requested by caller. */
3318 if (result)
3319 {
3320 result->number_part = num;
3321 if (IS_R_SELECT (p - 1))
3322 result->l_r_select = 1;
3323 else if (IS_L_SELECT (p - 1))
3324 result->l_r_select = 0;
3325 else
3326 result->l_r_select = 0;
3327 }
025b0302
ME
3328 }
3329 else
3330 {
8f78d0e9
KR
3331 /* And finally, it could be a symbol in the absolute section which
3332 is effectively a constant. */
025b0302
ME
3333 num = 0;
3334 name = p;
3335 c = *p;
3336 while (is_part_of_name (c))
3337 {
3338 p = p + 1;
3339 c = *p;
3340 }
3341 *p = 0;
3342 if ((sym = symbol_find (name)) != NULL)
3343 {
025b0302 3344 if (S_GET_SEGMENT (sym) == &bfd_abs_section)
8f78d0e9 3345 num = S_GET_VALUE (sym);
025b0302
ME
3346 else
3347 {
3348 if (print_errors)
d6e524f3
JL
3349 as_bad ("Non-absolute symbol: '%s'.", name);
3350 num = -1;
025b0302
ME
3351 }
3352 }
3353 else
3354 {
d6e524f3
JL
3355 /* There is where we'd come for an undefined symbol
3356 or for an empty string. For an empty string we
3357 will return zero. That's a concession made for
3358 compatability with the braindamaged HP assemblers. */
1cc248d2 3359 if (*name == 0)
d6e524f3 3360 num = 0;
025b0302 3361 else
d6e524f3
JL
3362 {
3363 if (print_errors)
3364 as_bad ("Undefined absolute constant: '%s'.", name);
3365 num = -1;
3366 }
025b0302
ME
3367 }
3368 *p = c;
025b0302 3369
8f78d0e9
KR
3370 /* Store info in RESULT if requested by caller. */
3371 if (result)
3372 {
3373 result->number_part = num;
3374 if (IS_R_SELECT (p - 1))
3375 result->l_r_select = 1;
3376 else if (IS_L_SELECT (p - 1))
3377 result->l_r_select = 0;
3378 else
3379 result->l_r_select = 0;
3380 }
025b0302
ME
3381 }
3382
3383 *s = p;
3384 return num;
8f78d0e9
KR
3385}
3386
3387#define REG_NAME_CNT (sizeof(pre_defined_registers) / sizeof(struct pd_reg))
3388
3389/* Given NAME, find the register number associated with that name, return
3390 the integer value associated with the given name or -1 on failure. */
3391
3392static int
3393reg_name_search (name)
3394 char *name;
3395{
3396 int middle, low, high;
3397
3398 low = 0;
3399 high = REG_NAME_CNT - 1;
3400
3401 do
3402 {
3403 middle = (low + high) / 2;
3404 if (strcasecmp (name, pre_defined_registers[middle].name) < 0)
3405 high = middle - 1;
3406 else
3407 low = middle + 1;
3408 }
3409 while (!((strcasecmp (name, pre_defined_registers[middle].name) == 0) ||
3410 (low > high)));
3411
3412 if (strcasecmp (name, pre_defined_registers[middle].name) == 0)
3413 return (pre_defined_registers[middle].value);
3414 else
3415 return (-1);
3416}
3417
3418
3419/* Return nonzero if the given INSN and L/R information will require
3420 a new PA-89 opcode. */
025b0302 3421
8f78d0e9
KR
3422static int
3423need_89_opcode (insn, result)
3424 struct pa_it *insn;
3425 struct pa_89_fp_reg_struct *result;
3426{
3427 if (result->l_r_select == 1 && !(insn->fpof1 == DBL && insn->fpof2 == DBL))
3428 return TRUE;
3429 else
3430 return FALSE;
025b0302
ME
3431}
3432
8f78d0e9
KR
3433/* Parse a condition for a fcmp instruction. Return the numerical
3434 code associated with the condition. */
c5e9ccd0 3435
8f78d0e9 3436static int
025b0302
ME
3437pa_parse_fp_cmp_cond (s)
3438 char **s;
3439{
3440 int cond, i;
025b0302
ME
3441
3442 cond = 0;
3443
3444 for (i = 0; i < 32; i++)
3445 {
8f78d0e9
KR
3446 if (strncasecmp (*s, fp_cond_map[i].string,
3447 strlen (fp_cond_map[i].string)) == 0)
025b0302 3448 {
8f78d0e9
KR
3449 cond = fp_cond_map[i].cond;
3450 *s += strlen (fp_cond_map[i].string);
025b0302
ME
3451 while (**s == ' ' || **s == '\t')
3452 *s = *s + 1;
3453 return cond;
3454 }
3455 }
3456
8f78d0e9 3457 as_bad ("Invalid FP Compare Condition: %c", **s);
025b0302
ME
3458 return 0;
3459}
3460
8f78d0e9
KR
3461/* Parse an FP operand format completer returning the completer
3462 type. */
c5e9ccd0 3463
8f78d0e9 3464static fp_operand_format
025b0302
ME
3465pa_parse_fp_format (s)
3466 char **s;
3467{
8f78d0e9 3468 int format;
025b0302 3469
8f78d0e9 3470 format = SGL;
025b0302
ME
3471 if (**s == ',')
3472 {
3473 *s += 1;
3474 if (strncasecmp (*s, "sgl", 3) == 0)
3475 {
8f78d0e9 3476 format = SGL;
025b0302
ME
3477 *s += 4;
3478 }
3479 else if (strncasecmp (*s, "dbl", 3) == 0)
3480 {
8f78d0e9 3481 format = DBL;
025b0302
ME
3482 *s += 4;
3483 }
3484 else if (strncasecmp (*s, "quad", 4) == 0)
3485 {
8f78d0e9 3486 format = QUAD;
025b0302
ME
3487 *s += 5;
3488 }
3489 else
3490 {
8f78d0e9
KR
3491 format = ILLEGAL_FMT;
3492 as_bad ("Invalid FP Operand Format: %3s", *s);
025b0302
ME
3493 }
3494 }
025b0302 3495
8f78d0e9 3496 return format;
025b0302
ME
3497}
3498
8f78d0e9
KR
3499/* Convert from a selector string into a selector type. */
3500
3501static int
025b0302
ME
3502pa_chk_field_selector (str)
3503 char **str;
3504{
3505 int selector;
18c4f112 3506 const struct selector_entry *tablep;
025b0302
ME
3507
3508 selector = e_fsel;
3509
8f78d0e9 3510 /* Read past any whitespace. */
025b0302 3511 while (**str == ' ' || **str == '\t' || **str == '\n' || **str == '\f')
8f78d0e9
KR
3512 *str = *str + 1;
3513
3514 /* Yuk. Looks like a linear search through the table. With the
3515 frequence of some selectors it might make sense to sort the
3516 table by usage. */
3517 for (tablep = selector_table; tablep->prefix; tablep++)
025b0302 3518 {
8f78d0e9 3519 if (strncasecmp (tablep->prefix, *str, strlen (tablep->prefix)) == 0)
025b0302 3520 {
8f78d0e9
KR
3521 *str += strlen (tablep->prefix);
3522 selector = tablep->field_selector;
025b0302
ME
3523 break;
3524 }
3525 }
3526 return selector;
3527}
3528
c5e9ccd0 3529/* Mark (via expr_end) the end of an expression (I think). FIXME. */
025b0302 3530
8f78d0e9
KR
3531static int
3532get_expression (str)
025b0302
ME
3533 char *str;
3534{
3535 char *save_in;
8f78d0e9 3536 asection *seg;
025b0302
ME
3537
3538 save_in = input_line_pointer;
3539 input_line_pointer = str;
5cf4cd1b
KR
3540 seg = expression (&the_insn.exp);
3541 if (!(seg == absolute_section
3542 || seg == undefined_section
3543 || SEG_NORMAL (seg)))
025b0302 3544 {
c5e9ccd0 3545 as_warn ("Bad segment in expression.");
025b0302
ME
3546 expr_end = input_line_pointer;
3547 input_line_pointer = save_in;
3548 return 1;
3549 }
3550 expr_end = input_line_pointer;
3551 input_line_pointer = save_in;
3552 return 0;
3553}
3554
8f78d0e9
KR
3555/* Mark (via expr_end) the end of an absolute expression. FIXME. */
3556static int
48153d49
JL
3557pa_get_absolute_expression (insn, strp)
3558 struct pa_it *insn;
3559 char **strp;
025b0302
ME
3560{
3561 char *save_in;
025b0302 3562
48153d49 3563 insn->field_selector = pa_chk_field_selector (strp);
025b0302 3564 save_in = input_line_pointer;
48153d49
JL
3565 input_line_pointer = *strp;
3566 expression (&insn->exp);
3567 if (insn->exp.X_op != O_constant)
025b0302 3568 {
48153d49 3569 as_bad ("Bad segment (should be absolute).");
025b0302
ME
3570 expr_end = input_line_pointer;
3571 input_line_pointer = save_in;
48153d49 3572 return 0;
025b0302
ME
3573 }
3574 expr_end = input_line_pointer;
3575 input_line_pointer = save_in;
48153d49 3576 return evaluate_absolute (insn);
025b0302
ME
3577}
3578
8f78d0e9
KR
3579/* Evaluate an absolute expression EXP which may be modified by
3580 the selector FIELD_SELECTOR. Return the value of the expression. */
3581static int
48153d49
JL
3582evaluate_absolute (insn)
3583 struct pa_it *insn;
025b0302
ME
3584{
3585 int value;
f41f3d72 3586 expressionS exp;
48153d49 3587 int field_selector = insn->field_selector;
025b0302 3588
f41f3d72 3589 exp = insn->exp;
025b0302
ME
3590 value = exp.X_add_number;
3591
025b0302
ME
3592 switch (field_selector)
3593 {
8f78d0e9
KR
3594 /* No change. */
3595 case e_fsel:
025b0302
ME
3596 break;
3597
8f78d0e9
KR
3598 /* If bit 21 is on then add 0x800 and arithmetic shift right 11 bits. */
3599 case e_lssel:
025b0302
ME
3600 if (value & 0x00000400)
3601 value += 0x800;
3602 value = (value & 0xfffff800) >> 11;
3603 break;
3604
8f78d0e9
KR
3605 /* Sign extend from bit 21. */
3606 case e_rssel:
025b0302
ME
3607 if (value & 0x00000400)
3608 value |= 0xfffff800;
3609 else
3610 value &= 0x7ff;
3611 break;
3612
8f78d0e9
KR
3613 /* Arithmetic shift right 11 bits. */
3614 case e_lsel:
025b0302
ME
3615 value = (value & 0xfffff800) >> 11;
3616 break;
3617
8f78d0e9
KR
3618 /* Set bits 0-20 to zero. */
3619 case e_rsel:
025b0302
ME
3620 value = value & 0x7ff;
3621 break;
3622
8f78d0e9
KR
3623 /* Add 0x800 and arithmetic shift right 11 bits. */
3624 case e_ldsel:
025b0302 3625 value += 0x800;
025b0302
ME
3626 value = (value & 0xfffff800) >> 11;
3627 break;
3628
8f78d0e9
KR
3629 /* Set bitgs 0-21 to one. */
3630 case e_rdsel:
3631 value |= 0xfffff800;
025b0302
ME
3632 break;
3633
7b624bf2 3634#define RSEL_ROUND(c) (((c) + 0x1000) & ~0x1fff)
8f78d0e9 3635 case e_rrsel:
7b624bf2
JL
3636 value = (RSEL_ROUND (value) & 0x7ff) + (value - RSEL_ROUND (value));
3637 break;
3638
8f78d0e9 3639 case e_lrsel:
7b624bf2
JL
3640 value = (RSEL_ROUND (value) >> 11) & 0x1fffff;
3641 break;
3642#undef RSEL_ROUND
8f78d0e9 3643
025b0302
ME
3644 default:
3645 BAD_CASE (field_selector);
3646 break;
3647 }
3648 return value;
3649}
3650
8f78d0e9
KR
3651/* Given an argument location specification return the associated
3652 argument location number. */
3653
3654static unsigned int
025b0302
ME
3655pa_build_arg_reloc (type_name)
3656 char *type_name;
3657{
3658
3659 if (strncasecmp (type_name, "no", 2) == 0)
8f78d0e9 3660 return 0;
025b0302 3661 if (strncasecmp (type_name, "gr", 2) == 0)
8f78d0e9 3662 return 1;
025b0302 3663 else if (strncasecmp (type_name, "fr", 2) == 0)
8f78d0e9 3664 return 2;
025b0302 3665 else if (strncasecmp (type_name, "fu", 2) == 0)
8f78d0e9 3666 return 3;
025b0302 3667 else
8f78d0e9 3668 as_bad ("Invalid argument location: %s\n", type_name);
025b0302
ME
3669
3670 return 0;
3671}
3672
8f78d0e9
KR
3673/* Encode and return an argument relocation specification for
3674 the given register in the location specified by arg_reloc. */
3675
3676static unsigned int
025b0302
ME
3677pa_align_arg_reloc (reg, arg_reloc)
3678 unsigned int reg;
3679 unsigned int arg_reloc;
3680{
3681 unsigned int new_reloc;
3682
3683 new_reloc = arg_reloc;
3684 switch (reg)
3685 {
3686 case 0:
3687 new_reloc <<= 8;
3688 break;
3689 case 1:
3690 new_reloc <<= 6;
3691 break;
3692 case 2:
3693 new_reloc <<= 4;
3694 break;
3695 case 3:
3696 new_reloc <<= 2;
3697 break;
3698 default:
8f78d0e9 3699 as_bad ("Invalid argument description: %d", reg);
025b0302
ME
3700 }
3701
3702 return new_reloc;
3703}
3704
8f78d0e9
KR
3705/* Parse a PA nullification completer (,n). Return nonzero if the
3706 completer was found; return zero if no completer was found. */
3707
3708static int
025b0302
ME
3709pa_parse_nullif (s)
3710 char **s;
3711{
3712 int nullif;
3713
3714 nullif = 0;
3715 if (**s == ',')
3716 {
3717 *s = *s + 1;
3718 if (strncasecmp (*s, "n", 1) == 0)
3719 nullif = 1;
3720 else
3721 {
8f78d0e9 3722 as_bad ("Invalid Nullification: (%c)", **s);
025b0302
ME
3723 nullif = 0;
3724 }
3725 *s = *s + 1;
3726 }
025b0302
ME
3727
3728 return nullif;
3729}
3730
8f78d0e9
KR
3731/* Parse a non-negated compare/subtract completer returning the
3732 number (for encoding in instrutions) of the given completer.
3733
3734 ISBRANCH specifies whether or not this is parsing a condition
3735 completer for a branch (vs a nullification completer for a
3736 computational instruction. */
3737
3738static int
5cf4cd1b 3739pa_parse_nonneg_cmpsub_cmpltr (s, isbranch)
025b0302 3740 char **s;
5cf4cd1b 3741 int isbranch;
025b0302
ME
3742{
3743 int cmpltr;
5cf4cd1b 3744 char *name = *s + 1;
025b0302 3745 char c;
5cf4cd1b 3746 char *save_s = *s;
025b0302 3747
5cf4cd1b 3748 cmpltr = 0;
025b0302
ME
3749 if (**s == ',')
3750 {
3751 *s += 1;
025b0302
ME
3752 while (**s != ',' && **s != ' ' && **s != '\t')
3753 *s += 1;
3754 c = **s;
3755 **s = 0x00;
3756 if (strcmp (name, "=") == 0)
3757 {
3758 cmpltr = 1;
3759 }
3760 else if (strcmp (name, "<") == 0)
3761 {
3762 cmpltr = 2;
3763 }
3764 else if (strcmp (name, "<=") == 0)
3765 {
3766 cmpltr = 3;
3767 }
3768 else if (strcmp (name, "<<") == 0)
3769 {
3770 cmpltr = 4;
3771 }
3772 else if (strcmp (name, "<<=") == 0)
3773 {
3774 cmpltr = 5;
3775 }
3776 else if (strcasecmp (name, "sv") == 0)
3777 {
3778 cmpltr = 6;
3779 }
3780 else if (strcasecmp (name, "od") == 0)
3781 {
3782 cmpltr = 7;
3783 }
5cf4cd1b 3784 /* If we have something like addb,n then there is no condition
8f78d0e9 3785 completer. */
5cf4cd1b 3786 else if (strcasecmp (name, "n") == 0 && isbranch)
025b0302 3787 {
5cf4cd1b 3788 cmpltr = 0;
025b0302 3789 }
8f78d0e9 3790 else
025b0302 3791 {
5cf4cd1b 3792 cmpltr = -1;
025b0302 3793 }
025b0302
ME
3794 **s = c;
3795 }
025b0302 3796
5cf4cd1b
KR
3797 /* Reset pointers if this was really a ,n for a branch instruction. */
3798 if (cmpltr == 0 && *name == 'n' && isbranch)
3799 *s = save_s;
3800
025b0302
ME
3801 return cmpltr;
3802}
3803
8f78d0e9
KR
3804/* Parse a negated compare/subtract completer returning the
3805 number (for encoding in instrutions) of the given completer.
3806
3807 ISBRANCH specifies whether or not this is parsing a condition
3808 completer for a branch (vs a nullification completer for a
3809 computational instruction. */
3810
3811static int
5cf4cd1b 3812pa_parse_neg_cmpsub_cmpltr (s, isbranch)
025b0302 3813 char **s;
5cf4cd1b 3814 int isbranch;
025b0302
ME
3815{
3816 int cmpltr;
5cf4cd1b 3817 char *name = *s + 1;
025b0302 3818 char c;
5cf4cd1b 3819 char *save_s = *s;
025b0302 3820
5cf4cd1b 3821 cmpltr = 0;
025b0302
ME
3822 if (**s == ',')
3823 {
3824 *s += 1;
025b0302
ME
3825 while (**s != ',' && **s != ' ' && **s != '\t')
3826 *s += 1;
3827 c = **s;
3828 **s = 0x00;
3829 if (strcasecmp (name, "tr") == 0)
3830 {
3831 cmpltr = 0;
3832 }
3833 else if (strcmp (name, "<>") == 0)
3834 {
3835 cmpltr = 1;
3836 }
3837 else if (strcmp (name, ">=") == 0)
3838 {
3839 cmpltr = 2;
3840 }
3841 else if (strcmp (name, ">") == 0)
3842 {
3843 cmpltr = 3;
3844 }
3845 else if (strcmp (name, ">>=") == 0)
3846 {
3847 cmpltr = 4;
3848 }
3849 else if (strcmp (name, ">>") == 0)
3850 {
3851 cmpltr = 5;
3852 }
3853 else if (strcasecmp (name, "nsv") == 0)
3854 {
3855 cmpltr = 6;
3856 }
3857 else if (strcasecmp (name, "ev") == 0)
3858 {
3859 cmpltr = 7;
3860 }
5cf4cd1b 3861 /* If we have something like addb,n then there is no condition
8f78d0e9 3862 completer. */
5cf4cd1b
KR
3863 else if (strcasecmp (name, "n") == 0 && isbranch)
3864 {
3865 cmpltr = 0;
3866 }
3867 else
3868 {
3869 cmpltr = -1;
3870 }
025b0302
ME
3871 **s = c;
3872 }
025b0302 3873
5cf4cd1b
KR
3874 /* Reset pointers if this was really a ,n for a branch instruction. */
3875 if (cmpltr == 0 && *name == 'n' && isbranch)
3876 *s = save_s;
3877
025b0302
ME
3878 return cmpltr;
3879}
3880
8f78d0e9
KR
3881/* Parse a non-negated addition completer returning the number
3882 (for encoding in instrutions) of the given completer.
3883
3884 ISBRANCH specifies whether or not this is parsing a condition
3885 completer for a branch (vs a nullification completer for a
3886 computational instruction. */
3887
3888static int
5cf4cd1b 3889pa_parse_nonneg_add_cmpltr (s, isbranch)
025b0302 3890 char **s;
5cf4cd1b 3891 int isbranch;
025b0302
ME
3892{
3893 int cmpltr;
5cf4cd1b 3894 char *name = *s + 1;
025b0302 3895 char c;
5cf4cd1b 3896 char *save_s = *s;
025b0302 3897
5cf4cd1b 3898 cmpltr = 0;
025b0302
ME
3899 if (**s == ',')
3900 {
3901 *s += 1;
025b0302
ME
3902 while (**s != ',' && **s != ' ' && **s != '\t')
3903 *s += 1;
3904 c = **s;
3905 **s = 0x00;
3906 if (strcmp (name, "=") == 0)
3907 {
3908 cmpltr = 1;
3909 }
3910 else if (strcmp (name, "<") == 0)
3911 {
3912 cmpltr = 2;
3913 }
3914 else if (strcmp (name, "<=") == 0)
3915 {
3916 cmpltr = 3;
3917 }
3918 else if (strcasecmp (name, "nuv") == 0)
3919 {
3920 cmpltr = 4;
3921 }
3922 else if (strcasecmp (name, "znv") == 0)
3923 {
3924 cmpltr = 5;
3925 }
3926 else if (strcasecmp (name, "sv") == 0)
3927 {
3928 cmpltr = 6;
3929 }
3930 else if (strcasecmp (name, "od") == 0)
3931 {
3932 cmpltr = 7;
3933 }
5cf4cd1b 3934 /* If we have something like addb,n then there is no condition
8f78d0e9 3935 completer. */
5cf4cd1b
KR
3936 else if (strcasecmp (name, "n") == 0 && isbranch)
3937 {
3938 cmpltr = 0;
3939 }
3940 else
3941 {
3942 cmpltr = -1;
3943 }
025b0302
ME
3944 **s = c;
3945 }
025b0302 3946
5cf4cd1b
KR
3947 /* Reset pointers if this was really a ,n for a branch instruction. */
3948 if (cmpltr == 0 && *name == 'n' && isbranch)
3949 *s = save_s;
3950
025b0302
ME
3951 return cmpltr;
3952}
3953
8f78d0e9
KR
3954/* Parse a negated addition completer returning the number
3955 (for encoding in instrutions) of the given completer.
3956
3957 ISBRANCH specifies whether or not this is parsing a condition
3958 completer for a branch (vs a nullification completer for a
3959 computational instruction. */
3960
3961static int
5cf4cd1b 3962pa_parse_neg_add_cmpltr (s, isbranch)
025b0302 3963 char **s;
5cf4cd1b 3964 int isbranch;
025b0302
ME
3965{
3966 int cmpltr;
5cf4cd1b 3967 char *name = *s + 1;
025b0302 3968 char c;
5cf4cd1b 3969 char *save_s = *s;
025b0302 3970
5cf4cd1b 3971 cmpltr = 0;
025b0302
ME
3972 if (**s == ',')
3973 {
3974 *s += 1;
025b0302
ME
3975 while (**s != ',' && **s != ' ' && **s != '\t')
3976 *s += 1;
3977 c = **s;
3978 **s = 0x00;
3979 if (strcasecmp (name, "tr") == 0)
3980 {
3981 cmpltr = 0;
3982 }
3983 else if (strcmp (name, "<>") == 0)
3984 {
3985 cmpltr = 1;
3986 }
3987 else if (strcmp (name, ">=") == 0)
3988 {
3989 cmpltr = 2;
3990 }
3991 else if (strcmp (name, ">") == 0)
3992 {
3993 cmpltr = 3;
3994 }
3995 else if (strcmp (name, "uv") == 0)
3996 {
3997 cmpltr = 4;
3998 }
3999 else if (strcmp (name, "vnz") == 0)
4000 {
4001 cmpltr = 5;
4002 }
4003 else if (strcasecmp (name, "nsv") == 0)
4004 {
4005 cmpltr = 6;
4006 }
4007 else if (strcasecmp (name, "ev") == 0)
4008 {
4009 cmpltr = 7;
4010 }
5cf4cd1b 4011 /* If we have something like addb,n then there is no condition
8f78d0e9 4012 completer. */
5cf4cd1b
KR
4013 else if (strcasecmp (name, "n") == 0 && isbranch)
4014 {
4015 cmpltr = 0;
4016 }
4017 else
4018 {
4019 cmpltr = -1;
4020 }
025b0302
ME
4021 **s = c;
4022 }
025b0302 4023
5cf4cd1b
KR
4024 /* Reset pointers if this was really a ,n for a branch instruction. */
4025 if (cmpltr == 0 && *name == 'n' && isbranch)
4026 *s = save_s;
4027
025b0302
ME
4028 return cmpltr;
4029}
4030
8f78d0e9 4031/* Handle a .BLOCK type pseudo-op. */
025b0302 4032
8f78d0e9 4033static void
025b0302
ME
4034pa_block (z)
4035 int z;
4036{
8f78d0e9
KR
4037 char *p;
4038 long int temp_fill;
4039 unsigned int temp_size;
4040 int i;
025b0302
ME
4041
4042 temp_size = get_absolute_expression ();
4043
8f78d0e9
KR
4044 /* Always fill with zeros, that's what the HP assembler does. */
4045 temp_fill = 0;
025b0302 4046
c5e9ccd0 4047 p = frag_var (rs_fill, (int) temp_size, (int) temp_size,
8f78d0e9
KR
4048 (relax_substateT) 0, (symbolS *) 0, 1, NULL);
4049 bzero (p, temp_size);
025b0302 4050
8f78d0e9 4051 /* Convert 2 bytes at a time. */
025b0302
ME
4052
4053 for (i = 0; i < temp_size; i += 2)
4054 {
4055 md_number_to_chars (p + i,
8f78d0e9 4056 (valueT) temp_fill,
025b0302
ME
4057 (int) ((temp_size - i) > 2 ? 2 : (temp_size - i)));
4058 }
4059
4060 pa_undefine_label ();
4061 demand_empty_rest_of_line ();
4062 return;
4063}
4064
8f78d0e9
KR
4065/* Handle a .CALL pseudo-op. This involves storing away information
4066 about where arguments are to be found so the linker can detect
4067 (and correct) argument location mismatches between caller and callee. */
025b0302 4068
8f78d0e9
KR
4069static void
4070pa_call (unused)
4071 int unused;
4072{
025b0302
ME
4073 pa_call_args (&last_call_desc);
4074 demand_empty_rest_of_line ();
4075 return;
4076}
4077
8f78d0e9
KR
4078/* Do the dirty work of building a call descriptor which describes
4079 where the caller placed arguments to a function call. */
4080
4081static void
025b0302 4082pa_call_args (call_desc)
8f78d0e9 4083 struct call_desc *call_desc;
025b0302 4084{
8f78d0e9
KR
4085 char *name, c, *p;
4086 unsigned int temp, arg_reloc;
025b0302
ME
4087
4088 while (!is_end_of_statement ())
4089 {
4090 name = input_line_pointer;
4091 c = get_symbol_end ();
8f78d0e9 4092 /* Process a source argument. */
025b0302
ME
4093 if ((strncasecmp (name, "argw", 4) == 0))
4094 {
4095 temp = atoi (name + 4);
4096 p = input_line_pointer;
4097 *p = c;
4098 input_line_pointer++;
4099 name = input_line_pointer;
4100 c = get_symbol_end ();
4101 arg_reloc = pa_build_arg_reloc (name);
4102 call_desc->arg_reloc |= pa_align_arg_reloc (temp, arg_reloc);
4103 }
8f78d0e9 4104 /* Process a return value. */
025b0302
ME
4105 else if ((strncasecmp (name, "rtnval", 6) == 0))
4106 {
4107 p = input_line_pointer;
4108 *p = c;
4109 input_line_pointer++;
4110 name = input_line_pointer;
4111 c = get_symbol_end ();
4112 arg_reloc = pa_build_arg_reloc (name);
4113 call_desc->arg_reloc |= (arg_reloc & 0x3);
4114 }
4115 else
4116 {
8f78d0e9 4117 as_bad ("Invalid .CALL argument: %s", name);
025b0302
ME
4118 }
4119 p = input_line_pointer;
4120 *p = c;
4121 if (!is_end_of_statement ())
4122 input_line_pointer++;
4123 }
4124}
4125
8f78d0e9
KR
4126/* Return TRUE if FRAG1 and FRAG2 are the same. */
4127
025b0302 4128static int
8f78d0e9
KR
4129is_same_frag (frag1, frag2)
4130 fragS *frag1;
4131 fragS *frag2;
025b0302
ME
4132{
4133
8f78d0e9 4134 if (frag1 == NULL)
025b0302 4135 return (FALSE);
8f78d0e9 4136 else if (frag2 == NULL)
025b0302 4137 return (FALSE);
8f78d0e9 4138 else if (frag1 == frag2)
025b0302 4139 return (TRUE);
8f78d0e9
KR
4140 else if (frag2->fr_type == rs_fill && frag2->fr_fix == 0)
4141 return (is_same_frag (frag1, frag2->fr_next));
025b0302
ME
4142 else
4143 return (FALSE);
4144}
4145
ff852e11
JL
4146#ifdef OBJ_ELF
4147/* Build an entry in the UNWIND subspace from the given function
4148 attributes in CALL_INFO. This is not needed for SOM as using
4149 R_ENTRY and R_EXIT relocations allow the linker to handle building
4150 of the unwind spaces. */
c5e9ccd0 4151
025b0302
ME
4152static void
4153pa_build_unwind_subspace (call_info)
8f78d0e9 4154 struct call_info *call_info;
025b0302 4155{
8f78d0e9
KR
4156 char *unwind;
4157 asection *seg, *save_seg;
025b0302
ME
4158 subsegT subseg, save_subseg;
4159 int i;
8f78d0e9
KR
4160 char c, *p;
4161
4162 /* Get into the right seg/subseg. This may involve creating
4163 the seg the first time through. Make sure to have the
4164 old seg/subseg so that we can reset things when we are done. */
4165 subseg = SUBSEG_UNWIND;
4166 seg = bfd_get_section_by_name (stdoutput, UNWIND_SECTION_NAME);
4167 if (seg == ASEC_NULL)
025b0302 4168 {
8f78d0e9
KR
4169 seg = bfd_make_section_old_way (stdoutput, UNWIND_SECTION_NAME);
4170 bfd_set_section_flags (stdoutput, seg,
4171 SEC_READONLY | SEC_HAS_CONTENTS
4172 | SEC_LOAD | SEC_RELOC);
025b0302
ME
4173 }
4174
025b0302
ME
4175 save_seg = now_seg;
4176 save_subseg = now_subseg;
80aab579 4177 subseg_set (seg, subseg);
025b0302 4178
8f78d0e9
KR
4179
4180 /* Get some space to hold relocation information for the unwind
4181 descriptor. */
025b0302
ME
4182 p = frag_more (4);
4183 call_info->start_offset_frag = frag_now;
4184 call_info->start_frag_where = p - frag_now->fr_literal;
4185
8f78d0e9 4186 /* Relocation info. for start offset of the function. */
8f78d0e9
KR
4187 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4188 call_info->start_symbol, (offsetT) 0,
4189 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4190 (char *) 0);
025b0302 4191
8f78d0e9
KR
4192 /* We need to search for the first relocation involving the start_symbol of
4193 this call_info descriptor. */
025b0302
ME
4194 {
4195 fixS *fixP;
4196
8f78d0e9 4197 call_info->start_fix = seg_info (now_seg)->fix_root;
025b0302
ME
4198 for (fixP = call_info->start_fix; fixP; fixP = fixP->fx_next)
4199 {
8f78d0e9
KR
4200 if (fixP->fx_addsy == call_info->start_symbol
4201 || fixP->fx_subsy == call_info->start_symbol)
025b0302
ME
4202 {
4203 call_info->start_fix = fixP;
4204 break;
4205 }
4206 }
4207 }
4208
4209 p = frag_more (4);
4210 call_info->end_offset_frag = frag_now;
4211 call_info->end_frag_where = p - frag_now->fr_literal;
4212
8f78d0e9 4213 /* Relocation info. for end offset of the function. */
8f78d0e9
KR
4214 fix_new_hppa (frag_now, p - frag_now->fr_literal, 4,
4215 call_info->end_symbol, (offsetT) 0,
4216 (expressionS *) NULL, 0, R_HPPA_UNWIND, e_fsel, 32, 0,
4217 (char *) 0);
025b0302 4218
8f78d0e9
KR
4219 /* We need to search for the first relocation involving the end_symbol of
4220 this call_info descriptor. */
025b0302
ME
4221 {
4222 fixS *fixP;
4223
4224 call_info->end_fix = seg_info (now_seg)->fix_root; /* the default */
4225 for (fixP = call_info->end_fix; fixP; fixP = fixP->fx_next)
4226 {
8f78d0e9
KR
4227 if (fixP->fx_addsy == call_info->end_symbol
4228 || fixP->fx_subsy == call_info->end_symbol)
025b0302
ME
4229 {
4230 call_info->end_fix = fixP;
4231 break;
4232 }
4233 }
4234 }
4235
8f78d0e9
KR
4236 /* Dump it. */
4237 unwind = (char *) &call_info->ci_unwind;
4238 for (i = 8; i < sizeof (struct unwind_table); i++)
025b0302 4239 {
8f78d0e9 4240 c = *(unwind + i);
025b0302
ME
4241 {
4242 FRAG_APPEND_1_CHAR (c);
4243 }
4244 }
4245
8f78d0e9 4246 /* Return back to the original segment/subsegment. */
80aab579 4247 subseg_set (save_seg, save_subseg);
025b0302 4248}
ff852e11 4249#endif
025b0302 4250
8f78d0e9
KR
4251/* Process a .CALLINFO pseudo-op. This information is used later
4252 to build unwind descriptors and maybe one day to support
4253 .ENTER and .LEAVE. */
025b0302 4254
8f78d0e9
KR
4255static void
4256pa_callinfo (unused)
4257 int unused;
025b0302 4258{
8f78d0e9
KR
4259 char *name, c, *p;
4260 int temp;
025b0302 4261
8f78d0e9 4262 /* .CALLINFO must appear within a procedure definition. */
025b0302
ME
4263 if (!within_procedure)
4264 as_bad (".callinfo is not within a procedure definition");
4265
8f78d0e9
KR
4266 /* Mark the fact that we found the .CALLINFO for the
4267 current procedure. */
025b0302
ME
4268 callinfo_found = TRUE;
4269
8f78d0e9 4270 /* Iterate over the .CALLINFO arguments. */
025b0302
ME
4271 while (!is_end_of_statement ())
4272 {
4273 name = input_line_pointer;
4274 c = get_symbol_end ();
8f78d0e9 4275 /* Frame size specification. */
025b0302
ME
4276 if ((strncasecmp (name, "frame", 5) == 0))
4277 {
4278 p = input_line_pointer;
4279 *p = c;
4280 input_line_pointer++;
4281 temp = get_absolute_expression ();
4282 if ((temp & 0x3) != 0)
4283 {
4284 as_bad ("FRAME parameter must be a multiple of 8: %d\n", temp);
4285 temp = 0;
4286 }
49fc68a1 4287
c5e9ccd0 4288 /* callinfo is in bytes and unwind_desc is in 8 byte units. */
49fc68a1
JL
4289 last_call_info->ci_unwind.descriptor.frame_size = temp / 8;
4290
025b0302 4291 }
8f78d0e9 4292 /* Entry register (GR, GR and SR) specifications. */
025b0302
ME
4293 else if ((strncasecmp (name, "entry_gr", 8) == 0))
4294 {
4295 p = input_line_pointer;
4296 *p = c;
4297 input_line_pointer++;
4298 temp = get_absolute_expression ();
aa8b30ed
JL
4299 /* The HP assembler accepts 19 as the high bound for ENTRY_GR
4300 even though %r19 is caller saved. I think this is a bug in
4301 the HP assembler, and we are not going to emulate it. */
4302 if (temp < 3 || temp > 18)
4303 as_bad ("Value for ENTRY_GR must be in the range 3..18\n");
4304 last_call_info->ci_unwind.descriptor.entry_gr = temp - 2;
025b0302
ME
4305 }
4306 else if ((strncasecmp (name, "entry_fr", 8) == 0))
4307 {
4308 p = input_line_pointer;
4309 *p = c;
4310 input_line_pointer++;
4311 temp = get_absolute_expression ();
aa8b30ed
JL
4312 /* Similarly the HP assembler takes 31 as the high bound even
4313 though %fr21 is the last callee saved floating point register. */
4314 if (temp < 12 || temp > 21)
4315 as_bad ("Value for ENTRY_FR must be in the range 12..21\n");
4316 last_call_info->ci_unwind.descriptor.entry_fr = temp - 11;
025b0302
ME
4317 }
4318 else if ((strncasecmp (name, "entry_sr", 8) == 0))
4319 {
4320 p = input_line_pointer;
4321 *p = c;
4322 input_line_pointer++;
4323 temp = get_absolute_expression ();
aa8b30ed
JL
4324 if (temp != 3)
4325 as_bad ("Value for ENTRY_SR must be 3\n");
4326 last_call_info->entry_sr = temp - 2;
025b0302 4327 }
8f78d0e9 4328 /* Note whether or not this function performs any calls. */
025b0302
ME
4329 else if ((strncasecmp (name, "calls", 5) == 0) ||
4330 (strncasecmp (name, "caller", 6) == 0))
4331 {
4332 p = input_line_pointer;
4333 *p = c;
4334 last_call_info->makes_calls = 1;
4335 }
4336 else if ((strncasecmp (name, "no_calls", 8) == 0))
4337 {
4338 p = input_line_pointer;
4339 *p = c;
4340 last_call_info->makes_calls = 0;
4341 }
8f78d0e9 4342 /* Should RP be saved into the stack. */
025b0302
ME
4343 else if ((strncasecmp (name, "save_rp", 7) == 0))
4344 {
4345 p = input_line_pointer;
4346 *p = c;
4347 last_call_info->ci_unwind.descriptor.save_rp = 1;
4348 }
8f78d0e9 4349 /* Likewise for SP. */
025b0302
ME
4350 else if ((strncasecmp (name, "save_sp", 7) == 0))
4351 {
4352 p = input_line_pointer;
4353 *p = c;
4354 last_call_info->ci_unwind.descriptor.save_sp = 1;
4355 }
8f78d0e9 4356 /* Is this an unwindable procedure. If so mark it so
c5e9ccd0 4357 in the unwind descriptor. */
025b0302
ME
4358 else if ((strncasecmp (name, "no_unwind", 9) == 0))
4359 {
4360 p = input_line_pointer;
4361 *p = c;
4362 last_call_info->ci_unwind.descriptor.cannot_unwind = 1;
4363 }
8f78d0e9 4364 /* Is this an interrupt routine. If so mark it in the
c5e9ccd0 4365 unwind descriptor. */
025b0302
ME
4366 else if ((strncasecmp (name, "hpux_int", 7) == 0))
4367 {
4368 p = input_line_pointer;
4369 *p = c;
8f78d0e9 4370 last_call_info->ci_unwind.descriptor.hpux_interrupt_marker = 1;
025b0302
ME
4371 }
4372 else
4373 {
8f78d0e9 4374 as_bad ("Invalid .CALLINFO argument: %s", name);
025b0302
ME
4375 }
4376 if (!is_end_of_statement ())
4377 input_line_pointer++;
4378 }
4379
4380 demand_empty_rest_of_line ();
4381 return;
4382}
4383
8f78d0e9
KR
4384/* Switch into the code subspace. */
4385
4386static void
4387pa_code (unused)
4388 int unused;
025b0302 4389{
8f78d0e9 4390 sd_chain_struct *sdchain;
025b0302 4391
8f78d0e9
KR
4392 /* First time through it might be necessary to create the
4393 $TEXT$ space. */
025b0302
ME
4394 if ((sdchain = is_defined_space ("$TEXT$")) == NULL)
4395 {
8f78d0e9
KR
4396 sdchain = create_new_space (pa_def_spaces[0].name,
4397 pa_def_spaces[0].spnum,
4398 pa_def_spaces[0].loadable,
4399 pa_def_spaces[0].defined,
4400 pa_def_spaces[0].private,
4401 pa_def_spaces[0].sort,
4402 pa_def_spaces[0].segment, 0);
025b0302
ME
4403 }
4404
4405 SPACE_DEFINED (sdchain) = 1;
80aab579 4406 subseg_set (text_section, SUBSEG_CODE);
025b0302
ME
4407 demand_empty_rest_of_line ();
4408 return;
4409}
4410
8f78d0e9
KR
4411/* This is different than the standard GAS s_comm(). On HP9000/800 machines,
4412 the .comm pseudo-op has the following symtax:
025b0302 4413
8f78d0e9
KR
4414 <label> .comm <length>
4415
4416 where <label> is optional and is a symbol whose address will be the start of
4417 a block of memory <length> bytes long. <length> must be an absolute
4418 expression. <length> bytes will be allocated in the current space
4419 and subspace. */
4420
4421static void
4422pa_comm (unused)
4423 int unused;
025b0302 4424{
8f78d0e9
KR
4425 unsigned int size;
4426 symbolS *symbol;
4427 label_symbol_struct *label_symbol = pa_get_label ();
025b0302 4428
8f78d0e9
KR
4429 if (label_symbol)
4430 symbol = label_symbol->lss_label;
025b0302 4431 else
8f78d0e9 4432 symbol = NULL;
025b0302
ME
4433
4434 SKIP_WHITESPACE ();
8f78d0e9 4435 size = get_absolute_expression ();
025b0302 4436
8f78d0e9 4437 if (symbol)
025b0302 4438 {
d56f45f5 4439 /* It is incorrect to check S_IS_DEFINED at this point as
c5e9ccd0
JL
4440 the symbol will *always* be defined. FIXME. How to
4441 correctly determine when this label really as been
4442 defined before. */
8f78d0e9 4443 if (S_GET_VALUE (symbol))
025b0302 4444 {
8f78d0e9 4445 if (S_GET_VALUE (symbol) != size)
025b0302 4446 {
8f78d0e9
KR
4447 as_warn ("Length of .comm \"%s\" is already %d. Not changed.",
4448 S_GET_NAME (symbol), S_GET_VALUE (symbol));
025b0302
ME
4449 return;
4450 }
4451 }
4452 else
4453 {
8f78d0e9 4454 S_SET_VALUE (symbol, size);
aa8b30ed 4455 S_SET_SEGMENT (symbol, &bfd_und_section);
8f78d0e9 4456 S_SET_EXTERNAL (symbol);
025b0302 4457 }
025b0302 4458 }
025b0302
ME
4459 demand_empty_rest_of_line ();
4460}
4461
8f78d0e9
KR
4462/* Process a .COPYRIGHT pseudo-op. */
4463
4464static void
4465pa_copyright (unused)
4466 int unused;
025b0302 4467{
8f78d0e9
KR
4468 char *name;
4469 char c;
025b0302
ME
4470
4471 SKIP_WHITESPACE ();
4472 if (*input_line_pointer == '\"')
4473 {
8f78d0e9 4474 ++input_line_pointer;
025b0302
ME
4475 name = input_line_pointer;
4476 while ((c = next_char_of_string ()) >= 0)
4477 ;
4478 c = *input_line_pointer;
4479 *input_line_pointer = '\0';
4480 *(input_line_pointer - 1) = '\0';
4481 {
8f78d0e9
KR
4482 /* FIXME. Not supported */
4483 abort ();
025b0302
ME
4484 }
4485 *input_line_pointer = c;
4486 }
4487 else
4488 {
4489 as_bad ("Expected \"-ed string");
4490 }
4491 pa_undefine_label ();
4492 demand_empty_rest_of_line ();
4493}
4494
8f78d0e9 4495/* Process a .END pseudo-op. */
025b0302 4496
8f78d0e9
KR
4497static void
4498pa_end (unused)
4499 int unused;
4500{
025b0302
ME
4501 demand_empty_rest_of_line ();
4502 return;
4503}
4504
c5e9ccd0 4505/* Process a .ENTER pseudo-op. This is not supported. */
8f78d0e9
KR
4506static void
4507pa_enter (unused)
4508 int unused;
025b0302 4509{
c5e9ccd0 4510 abort ();
025b0302
ME
4511 return;
4512}
4513
8f78d0e9
KR
4514/* Process a .ENTRY pseudo-op. .ENTRY marks the beginning of the
4515 procesure. */
4516static void
4517pa_entry (unused)
4518 int unused;
025b0302 4519{
025b0302
ME
4520 if (!within_procedure)
4521 as_bad ("Misplaced .entry. Ignored.");
4522 else
4523 {
4524 if (!callinfo_found)
4525 as_bad ("Missing .callinfo.");
4526
4527 last_call_info->start_frag = frag_now;
4528 }
4529 demand_empty_rest_of_line ();
4530 within_entry_exit = TRUE;
8f78d0e9
KR
4531
4532 /* Go back to the last symbol and turn on the BSF_FUNCTION flag.
4533 It will not be on if no .EXPORT pseudo-op exists (static function). */
4534 last_call_info->start_symbol->bsym->flags |= BSF_FUNCTION;
4535
ff852e11
JL
4536#ifdef OBJ_SOM
4537 /* SOM defers building of unwind descriptors until the link phase.
4538 The assembler is responsible for creating an R_ENTRY relocation
4539 to mark the beginning of a region and hold the unwind bits, and
4540 for creating an R_EXIT relocation to mark the end of the region.
4541
4542 FIXME. ELF should be using the same conventions! The problem
4543 is an unwind requires too much relocation space. Hmmm. Maybe
4544 if we split the unwind bits up between the relocations which
4545 denote the entry and exit points. */
4546 {
4547 char *where = frag_more (0);
c5e9ccd0
JL
4548
4549 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
ff852e11
JL
4550 last_call_info->start_symbol, (offsetT) 0, NULL,
4551 0, R_HPPA_ENTRY, e_fsel, 0, 0,
c5e9ccd0 4552 (char *) &last_call_info->ci_unwind.descriptor);
ff852e11
JL
4553 }
4554#endif
4555
025b0302
ME
4556 return;
4557}
4558
8f78d0e9
KR
4559/* Handle a .EQU pseudo-op. */
4560
4561static void
025b0302
ME
4562pa_equ (reg)
4563 int reg;
4564{
8f78d0e9
KR
4565 label_symbol_struct *label_symbol = pa_get_label ();
4566 symbolS *symbol;
025b0302 4567
8f78d0e9 4568 if (label_symbol)
025b0302 4569 {
8f78d0e9
KR
4570 symbol = label_symbol->lss_label;
4571 S_SET_VALUE (symbol, (unsigned int) get_absolute_expression ());
4572 S_SET_SEGMENT (symbol, &bfd_abs_section);
025b0302
ME
4573 }
4574 else
4575 {
4576 if (reg)
4577 as_bad (".REG must use a label");
4578 else
4579 as_bad (".EQU must use a label");
4580 }
4581
4582 pa_undefine_label ();
4583 demand_empty_rest_of_line ();
4584 return;
4585}
4586
8f78d0e9
KR
4587/* Helper function. Does processing for the end of a function. This
4588 usually involves creating some relocations or building special
4589 symbols to mark the end of the function. */
4590
4591static void
025b0302
ME
4592process_exit ()
4593{
4594 char *where;
4595
4596 where = frag_more (0);
aa8b30ed 4597
ff852e11 4598#ifdef OBJ_ELF
44c0de53
JL
4599 /* Mark the end of the function, stuff away the location of the frag
4600 for the end of the function, and finally call pa_build_unwind_subspace
4601 to add an entry in the unwind table. */
4602 hppa_elf_mark_end_of_function ();
8f78d0e9 4603 last_call_info->end_frag = frag_now;
025b0302 4604 pa_build_unwind_subspace (last_call_info);
ff852e11
JL
4605#else
4606 /* SOM defers building of unwind descriptors until the link phase.
4607 The assembler is responsible for creating an R_ENTRY relocation
4608 to mark the beginning of a region and hold the unwind bits, and
4609 for creating an R_EXIT relocation to mark the end of the region.
4610
4611 FIXME. ELF should be using the same conventions! The problem
4612 is an unwind requires too much relocation space. Hmmm. Maybe
4613 if we split the unwind bits up between the relocations which
4614 denote the entry and exit points. */
4615 fix_new_hppa (frag_now, where - frag_now->fr_literal, 0,
4616 last_call_info->start_symbol, (offsetT) 0,
4617 NULL, 0, R_HPPA_EXIT, e_fsel, 0, 0, NULL);
4618#endif
4619
025b0302
ME
4620}
4621
8f78d0e9 4622/* Process a .EXIT pseudo-op. */
025b0302 4623
8f78d0e9
KR
4624static void
4625pa_exit (unused)
4626 int unused;
4627{
025b0302
ME
4628 if (!within_procedure)
4629 as_bad (".EXIT must appear within a procedure");
4630 else
4631 {
4632 if (!callinfo_found)
4633 as_bad ("Missing .callinfo");
4634 else
4635 {
4636 if (!within_entry_exit)
4637 as_bad ("No .ENTRY for this .EXIT");
4638 else
4639 {
4640 within_entry_exit = FALSE;
4641 process_exit ();
4642 }
4643 }
4644 }
4645 demand_empty_rest_of_line ();
4646 return;
4647}
4648
8f78d0e9
KR
4649/* Process a .EXPORT directive. This makes functions external
4650 and provides information such as argument relocation entries
4651 to callers. */
5cf4cd1b 4652
8f78d0e9
KR
4653static void
4654pa_export (unused)
4655 int unused;
025b0302 4656{
8f78d0e9
KR
4657 char *name, c, *p;
4658 symbolS *symbol;
025b0302
ME
4659
4660 name = input_line_pointer;
4661 c = get_symbol_end ();
8f78d0e9
KR
4662 /* Make sure the given symbol exists. */
4663 if ((symbol = symbol_find_or_make (name)) == NULL)
025b0302
ME
4664 {
4665 as_bad ("Cannot define export symbol: %s\n", name);
4666 p = input_line_pointer;
4667 *p = c;
4668 input_line_pointer++;
4669 }
4670 else
4671 {
8f78d0e9
KR
4672 /* OK. Set the external bits and process argument relocations. */
4673 S_SET_EXTERNAL (symbol);
025b0302
ME
4674 p = input_line_pointer;
4675 *p = c;
4676 if (!is_end_of_statement ())
4677 {
4678 input_line_pointer++;
48153d49 4679 pa_type_args (symbol, 1);
5cf4cd1b 4680#ifdef OBJ_ELF
8f78d0e9 4681 pa_build_symextn_section ();
5cf4cd1b 4682#endif
025b0302
ME
4683 }
4684 }
4685
4686 demand_empty_rest_of_line ();
4687 return;
4688}
4689
8f78d0e9
KR
4690/* Helper function to process arguments to a .EXPORT pseudo-op. */
4691
4692static void
48153d49 4693pa_type_args (symbolP, is_export)
8f78d0e9 4694 symbolS *symbolP;
48153d49 4695 int is_export;
025b0302 4696{
8f78d0e9
KR
4697 char *name, c, *p;
4698 unsigned int temp, arg_reloc;
e75acd68 4699 pa_symbol_type type = SYMBOL_TYPE_UNKNOWN;
8f78d0e9 4700 obj_symbol_type *symbol = (obj_symbol_type *) symbolP->bsym;
025b0302
ME
4701
4702 if (strncasecmp (input_line_pointer, "absolute", 8) == 0)
48153d49 4703
025b0302
ME
4704 {
4705 input_line_pointer += 8;
9a182533 4706 symbolP->bsym->flags &= ~BSF_FUNCTION;
025b0302 4707 S_SET_SEGMENT (symbolP, &bfd_abs_section);
e75acd68 4708 type = SYMBOL_TYPE_ABSOLUTE;
025b0302
ME
4709 }
4710 else if (strncasecmp (input_line_pointer, "code", 4) == 0)
9a182533
JL
4711 {
4712 input_line_pointer += 4;
a721c80b 4713 /* IMPORTing/EXPORTing CODE types for functions is meaningless for SOM,
c5e9ccd0 4714 instead one should be IMPORTing/EXPORTing ENTRY types.
a721c80b 4715
c5e9ccd0
JL
4716 Complain if one tries to EXPORT a CODE type since that's never
4717 done. Both GCC and HP C still try to IMPORT CODE types, so
4718 silently fix them to be ENTRY types. */
a721c80b 4719 if (symbolP->bsym->flags & BSF_FUNCTION)
48153d49 4720 {
a721c80b
JL
4721 if (is_export)
4722 as_tsktsk ("Using ENTRY rather than CODE in export directive for %s", symbolP->bsym->name);
4723
48153d49
JL
4724 symbolP->bsym->flags |= BSF_FUNCTION;
4725 type = SYMBOL_TYPE_ENTRY;
4726 }
4727 else
4728 {
4729 symbolP->bsym->flags &= ~BSF_FUNCTION;
4730 type = SYMBOL_TYPE_CODE;
4731 }
9a182533 4732 }
025b0302 4733 else if (strncasecmp (input_line_pointer, "data", 4) == 0)
9a182533
JL
4734 {
4735 input_line_pointer += 4;
4736 symbolP->bsym->flags &= ~BSF_FUNCTION;
e75acd68 4737 type = SYMBOL_TYPE_DATA;
9a182533 4738 }
025b0302
ME
4739 else if ((strncasecmp (input_line_pointer, "entry", 5) == 0))
4740 {
4741 input_line_pointer += 5;
025b0302 4742 symbolP->bsym->flags |= BSF_FUNCTION;
e75acd68 4743 type = SYMBOL_TYPE_ENTRY;
025b0302
ME
4744 }
4745 else if (strncasecmp (input_line_pointer, "millicode", 9) == 0)
4746 {
4747 input_line_pointer += 9;
9a182533 4748 symbolP->bsym->flags |= BSF_FUNCTION;
e75acd68 4749 type = SYMBOL_TYPE_MILLICODE;
025b0302
ME
4750 }
4751 else if (strncasecmp (input_line_pointer, "plabel", 6) == 0)
4752 {
4753 input_line_pointer += 6;
9a182533 4754 symbolP->bsym->flags &= ~BSF_FUNCTION;
e75acd68 4755 type = SYMBOL_TYPE_PLABEL;
025b0302
ME
4756 }
4757 else if (strncasecmp (input_line_pointer, "pri_prog", 8) == 0)
4758 {
4759 input_line_pointer += 8;
9a182533 4760 symbolP->bsym->flags |= BSF_FUNCTION;
e75acd68 4761 type = SYMBOL_TYPE_PRI_PROG;
025b0302
ME
4762 }
4763 else if (strncasecmp (input_line_pointer, "sec_prog", 8) == 0)
4764 {
4765 input_line_pointer += 8;
9a182533 4766 symbolP->bsym->flags |= BSF_FUNCTION;
e75acd68 4767 type = SYMBOL_TYPE_SEC_PROG;
025b0302
ME
4768 }
4769
e75acd68
JL
4770 /* SOM requires much more information about symbol types
4771 than BFD understands. This is how we get this information
4772 to the SOM BFD backend. */
4773#ifdef obj_set_symbol_type
4774 obj_set_symbol_type (symbolP->bsym, (int) type);
4775#endif
4776
8f78d0e9
KR
4777 /* Now that the type of the exported symbol has been handled,
4778 handle any argument relocation information. */
025b0302
ME
4779 while (!is_end_of_statement ())
4780 {
4781 if (*input_line_pointer == ',')
4782 input_line_pointer++;
4783 name = input_line_pointer;
4784 c = get_symbol_end ();
8f78d0e9 4785 /* Argument sources. */
025b0302
ME
4786 if ((strncasecmp (name, "argw", 4) == 0))
4787 {
4788 p = input_line_pointer;
4789 *p = c;
4790 input_line_pointer++;
4791 temp = atoi (name + 4);
4792 name = input_line_pointer;
4793 c = get_symbol_end ();
4794 arg_reloc = pa_align_arg_reloc (temp, pa_build_arg_reloc (name));
8f78d0e9 4795 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
025b0302
ME
4796 *input_line_pointer = c;
4797 }
8f78d0e9 4798 /* The return value. */
025b0302
ME
4799 else if ((strncasecmp (name, "rtnval", 6)) == 0)
4800 {
4801 p = input_line_pointer;
4802 *p = c;
4803 input_line_pointer++;
4804 name = input_line_pointer;
4805 c = get_symbol_end ();
4806 arg_reloc = pa_build_arg_reloc (name);
8f78d0e9 4807 symbol->tc_data.hppa_arg_reloc |= arg_reloc;
025b0302
ME
4808 *input_line_pointer = c;
4809 }
8f78d0e9 4810 /* Privelege level. */
025b0302
ME
4811 else if ((strncasecmp (name, "priv_lev", 8)) == 0)
4812 {
4813 p = input_line_pointer;
4814 *p = c;
4815 input_line_pointer++;
025b0302
ME
4816 temp = atoi (input_line_pointer);
4817 c = get_symbol_end ();
4818 *input_line_pointer = c;
025b0302
ME
4819 }
4820 else
4821 {
4822 as_bad ("Undefined .EXPORT/.IMPORT argument (ignored): %s", name);
4823 p = input_line_pointer;
4824 *p = c;
4825 }
4826 if (!is_end_of_statement ())
4827 input_line_pointer++;
4828 }
4829}
4830
8f78d0e9
KR
4831/* Handle an .IMPORT pseudo-op. Any symbol referenced in a given
4832 assembly file must either be defined in the assembly file, or
4833 explicitly IMPORTED from another. */
4834
4835static void
4836pa_import (unused)
4837 int unused;
025b0302 4838{
8f78d0e9
KR
4839 char *name, c, *p;
4840 symbolS *symbol;
025b0302
ME
4841
4842 name = input_line_pointer;
4843 c = get_symbol_end ();
025b0302 4844
8f78d0e9 4845 symbol = symbol_find_or_make (name);
025b0302
ME
4846 p = input_line_pointer;
4847 *p = c;
4848
4849 if (!is_end_of_statement ())
4850 {
4851 input_line_pointer++;
48153d49 4852 pa_type_args (symbol, 0);
025b0302
ME
4853 }
4854 else
4855 {
47f45d66 4856 /* Sigh. To be compatable with the HP assembler and to help
c5e9ccd0
JL
4857 poorly written assembly code, we assign a type based on
4858 the the current segment. Note only BSF_FUNCTION really
4859 matters, we do not need to set the full SYMBOL_TYPE_* info here. */
47f45d66
JL
4860 if (now_seg == text_section)
4861 symbol->bsym->flags |= BSF_FUNCTION;
4862
8f78d0e9
KR
4863 /* If the section is undefined, then the symbol is undefined
4864 Since this is an import, leave the section undefined. */
4865 S_SET_SEGMENT (symbol, &bfd_und_section);
025b0302
ME
4866 }
4867
025b0302
ME
4868 demand_empty_rest_of_line ();
4869 return;
4870}
4871
8f78d0e9
KR
4872/* Handle a .LABEL pseudo-op. */
4873
4874static void
4875pa_label (unused)
4876 int unused;
025b0302 4877{
8f78d0e9 4878 char *name, c, *p;
025b0302
ME
4879
4880 name = input_line_pointer;
4881 c = get_symbol_end ();
025b0302
ME
4882
4883 if (strlen (name) > 0)
4884 {
4885 colon (name);
4886 p = input_line_pointer;
4887 *p = c;
4888 }
4889 else
4890 {
4891 as_warn ("Missing label name on .LABEL");
4892 }
4893
4894 if (!is_end_of_statement ())
4895 {
4896 as_warn ("extra .LABEL arguments ignored.");
4897 ignore_rest_of_line ();
4898 }
4899 demand_empty_rest_of_line ();
4900 return;
4901}
4902
8f78d0e9 4903/* Handle a .LEAVE pseudo-op. This is not supported yet. */
025b0302 4904
8f78d0e9
KR
4905static void
4906pa_leave (unused)
4907 int unused;
4908{
c5e9ccd0 4909 abort ();
025b0302
ME
4910}
4911
8f78d0e9
KR
4912/* Handle a .ORIGIN pseudo-op. */
4913
4914static void
4915pa_origin (unused)
4916 int unused;
025b0302 4917{
8f78d0e9 4918 s_org (0);
025b0302
ME
4919 pa_undefine_label ();
4920 return;
4921}
4922
8f78d0e9
KR
4923/* Handle a .PARAM pseudo-op. This is much like a .EXPORT, except it
4924 is for static functions. FIXME. Should share more code with .EXPORT. */
5cf4cd1b 4925
8f78d0e9
KR
4926static void
4927pa_param (unused)
4928 int unused;
5cf4cd1b 4929{
8f78d0e9
KR
4930 char *name, c, *p;
4931 symbolS *symbol;
5cf4cd1b
KR
4932
4933 name = input_line_pointer;
4934 c = get_symbol_end ();
5cf4cd1b 4935
8f78d0e9 4936 if ((symbol = symbol_find_or_make (name)) == NULL)
5cf4cd1b
KR
4937 {
4938 as_bad ("Cannot define static symbol: %s\n", name);
4939 p = input_line_pointer;
4940 *p = c;
4941 input_line_pointer++;
4942 }
4943 else
4944 {
8f78d0e9 4945 S_CLEAR_EXTERNAL (symbol);
5cf4cd1b
KR
4946 p = input_line_pointer;
4947 *p = c;
4948 if (!is_end_of_statement ())
4949 {
4950 input_line_pointer++;
48153d49 4951 pa_type_args (symbol, 0);
5cf4cd1b
KR
4952 }
4953 }
4954
4955 demand_empty_rest_of_line ();
4956 return;
4957}
4958
8f78d0e9
KR
4959/* Handle a .PROC pseudo-op. It is used to mark the beginning
4960 of a procedure from a syntatical point of view. */
4961
4962static void
4963pa_proc (unused)
4964 int unused;
025b0302 4965{
8f78d0e9 4966 struct call_info *call_info;
025b0302
ME
4967
4968 if (within_procedure)
4969 as_fatal ("Nested procedures");
4970
8f78d0e9 4971 /* Reset global variables for new procedure. */
025b0302
ME
4972 callinfo_found = FALSE;
4973 within_procedure = TRUE;
025b0302 4974
8f78d0e9
KR
4975 /* Create another call_info structure. */
4976 call_info = (struct call_info *) xmalloc (sizeof (struct call_info));
025b0302
ME
4977
4978 if (!call_info)
4979 as_fatal ("Cannot allocate unwind descriptor\n");
4980
8f78d0e9 4981 bzero (call_info, sizeof (struct call_info));
025b0302
ME
4982
4983 call_info->ci_next = NULL;
4984
4985 if (call_info_root == NULL)
4986 {
4987 call_info_root = call_info;
4988 last_call_info = call_info;
4989 }
4990 else
4991 {
4992 last_call_info->ci_next = call_info;
4993 last_call_info = call_info;
4994 }
4995
4996 /* set up defaults on call_info structure */
4997
4998 call_info->ci_unwind.descriptor.cannot_unwind = 0;
4999 call_info->ci_unwind.descriptor.region_desc = 1;
8f78d0e9 5000 call_info->ci_unwind.descriptor.hpux_interrupt_marker = 0;
025b0302
ME
5001 call_info->entry_sr = ~0;
5002 call_info->makes_calls = 1;
025b0302
ME
5003
5004 /* If we got a .PROC pseudo-op, we know that the function is defined
8f78d0e9 5005 locally. Make sure it gets into the symbol table. */
025b0302 5006 {
8f78d0e9 5007 label_symbol_struct *label_symbol = pa_get_label ();
025b0302 5008
8f78d0e9 5009 if (label_symbol)
025b0302 5010 {
8f78d0e9 5011 if (label_symbol->lss_label)
025b0302 5012 {
8f78d0e9
KR
5013 last_call_info->start_symbol = label_symbol->lss_label;
5014 label_symbol->lss_label->bsym->flags |= BSF_FUNCTION;
025b0302
ME
5015 }
5016 else
5017 as_bad ("Missing function name for .PROC (corrupted label)");
5018 }
5019 else
5020 as_bad ("Missing function name for .PROC");
5021 }
5022
5023 demand_empty_rest_of_line ();
5024 return;
5025}
5026
8f78d0e9
KR
5027/* Process the syntatical end of a procedure. Make sure all the
5028 appropriate pseudo-ops were found within the procedure. */
5029
5030static void
5031pa_procend (unused)
5032 int unused;
025b0302
ME
5033{
5034
5035 if (!within_procedure)
5036 as_bad ("misplaced .procend");
5037
5038 if (!callinfo_found)
5039 as_bad ("Missing .callinfo for this procedure");
5040
5041 if (within_entry_exit)
5042 as_bad ("Missing .EXIT for a .ENTRY");
5043
44c0de53
JL
5044#ifdef OBJ_ELF
5045 /* ELF needs to mark the end of each function so that it can compute
5046 the size of the function (apparently its needed in the symbol table. */
5047 hppa_elf_mark_end_of_function ();
5048#endif
5049
025b0302
ME
5050 within_procedure = FALSE;
5051 demand_empty_rest_of_line ();
5052 return;
5053}
5054
8f78d0e9
KR
5055/* Parse the parameters to a .SPACE directive; if CREATE_FLAG is nonzero,
5056 then create a new space entry to hold the information specified
5057 by the parameters to the .SPACE directive. */
5058
5059static sd_chain_struct *
025b0302
ME
5060pa_parse_space_stmt (space_name, create_flag)
5061 char *space_name;
5062 int create_flag;
5063{
8f78d0e9
KR
5064 char *name, *ptemp, c;
5065 char loadable, defined, private, sort;
025b0302 5066 int spnum;
3b9a72c5 5067 asection *seg = NULL;
8f78d0e9 5068 sd_chain_struct *space;
025b0302
ME
5069
5070 /* load default values */
5071 spnum = 0;
3b9a72c5 5072 sort = 0;
025b0302
ME
5073 loadable = TRUE;
5074 defined = TRUE;
5075 private = FALSE;
5076 if (strcasecmp (space_name, "$TEXT$") == 0)
5077 {
0f3b419c
JL
5078 seg = pa_def_spaces[0].segment;
5079 sort = pa_def_spaces[0].sort;
025b0302 5080 }
0f3b419c 5081 else if (strcasecmp (space_name, "$PRIVATE$") == 0)
025b0302 5082 {
0f3b419c
JL
5083 seg = pa_def_spaces[1].segment;
5084 sort = pa_def_spaces[1].sort;
025b0302
ME
5085 }
5086
5087 if (!is_end_of_statement ())
5088 {
5089 print_errors = FALSE;
5090 ptemp = input_line_pointer + 1;
8f78d0e9
KR
5091 /* First see if the space was specified as a number rather than
5092 as a name. According to the PA assembly manual the rest of
5093 the line should be ignored. */
5094 if ((spnum = pa_parse_number (&ptemp, 0)) >= 0)
5095 input_line_pointer = ptemp;
025b0302
ME
5096 else
5097 {
5098 while (!is_end_of_statement ())
5099 {
5100 input_line_pointer++;
5101 name = input_line_pointer;
5102 c = get_symbol_end ();
5103 if ((strncasecmp (name, "SPNUM", 5) == 0))
5104 {
8f78d0e9 5105 *input_line_pointer = c;
025b0302 5106 input_line_pointer++;
8f78d0e9 5107 spnum = get_absolute_expression ();
025b0302
ME
5108 }
5109 else if ((strncasecmp (name, "SORT", 4) == 0))
5110 {
8f78d0e9 5111 *input_line_pointer = c;
025b0302 5112 input_line_pointer++;
8f78d0e9 5113 sort = get_absolute_expression ();
025b0302
ME
5114 }
5115 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5116 {
8f78d0e9 5117 *input_line_pointer = c;
025b0302
ME
5118 loadable = FALSE;
5119 }
5120 else if ((strncasecmp (name, "NOTDEFINED", 10) == 0))
5121 {
8f78d0e9 5122 *input_line_pointer = c;
025b0302
ME
5123 defined = FALSE;
5124 }
5125 else if ((strncasecmp (name, "PRIVATE", 7) == 0))
5126 {
8f78d0e9 5127 *input_line_pointer = c;
025b0302
ME
5128 private = TRUE;
5129 }
5130 else
3515a504
JL
5131 {
5132 as_bad ("Invalid .SPACE argument");
5133 *input_line_pointer = c;
c5e9ccd0 5134 if (!is_end_of_statement ())
3515a504
JL
5135 input_line_pointer++;
5136 }
025b0302
ME
5137 }
5138 }
5139 print_errors = TRUE;
5140 }
8f78d0e9 5141
3b9a72c5
JL
5142 if (create_flag && seg == NULL)
5143 seg = subseg_new (space_name, 0);
c5e9ccd0 5144
8f78d0e9
KR
5145 /* If create_flag is nonzero, then create the new space with
5146 the attributes computed above. Else set the values in
5147 an already existing space -- this can only happen for
5148 the first occurence of a built-in space. */
025b0302 5149 if (create_flag)
8f78d0e9
KR
5150 space = create_new_space (space_name, spnum, loadable, defined,
5151 private, sort, seg, 1);
025b0302 5152 else
8f78d0e9 5153 {
025b0302
ME
5154 space = is_defined_space (space_name);
5155 SPACE_SPNUM (space) = spnum;
5156 SPACE_LOADABLE (space) = loadable & 1;
5157 SPACE_DEFINED (space) = defined & 1;
8f78d0e9 5158 SPACE_USER_DEFINED (space) = 1;
025b0302
ME
5159 SPACE_PRIVATE (space) = private & 1;
5160 SPACE_SORT (space) = sort & 0xff;
025b0302
ME
5161 space->sd_seg = seg;
5162 }
548ea75b
JL
5163
5164#ifdef obj_set_section_attributes
5165 obj_set_section_attributes (seg, defined, private, sort, spnum);
5166#endif
5167
025b0302
ME
5168 return space;
5169}
5170
8f78d0e9
KR
5171/* Handle a .SPACE pseudo-op; this switches the current space to the
5172 given space, creating the new space if necessary. */
5173
5174static void
5175pa_space (unused)
5176 int unused;
025b0302 5177{
aa8b30ed 5178 char *name, c, *space_name, *save_s;
8f78d0e9
KR
5179 int temp;
5180 sd_chain_struct *sd_chain;
025b0302
ME
5181
5182 if (within_procedure)
5183 {
5184 as_bad ("Can\'t change spaces within a procedure definition. Ignored");
5185 ignore_rest_of_line ();
5186 }
5187 else
5188 {
8f78d0e9
KR
5189 /* Check for some of the predefined spaces. FIXME: most of the code
5190 below is repeated several times, can we extract the common parts
5191 and place them into a subroutine or something similar? */
025b0302
ME
5192 if (strncasecmp (input_line_pointer, "$text$", 6) == 0)
5193 {
5194 input_line_pointer += 6;
5195 sd_chain = is_defined_space ("$TEXT$");
5196 if (sd_chain == NULL)
5197 sd_chain = pa_parse_space_stmt ("$TEXT$", 1);
8f78d0e9 5198 else if (SPACE_USER_DEFINED (sd_chain) == 0)
025b0302
ME
5199 sd_chain = pa_parse_space_stmt ("$TEXT$", 0);
5200
5201 current_space = sd_chain;
80aab579 5202 subseg_set (text_section, sd_chain->sd_last_subseg);
8f78d0e9
KR
5203 current_subspace
5204 = pa_subsegment_to_subspace (text_section,
5205 sd_chain->sd_last_subseg);
025b0302
ME
5206 demand_empty_rest_of_line ();
5207 return;
5208 }
5209 if (strncasecmp (input_line_pointer, "$private$", 9) == 0)
5210 {
5211 input_line_pointer += 9;
5212 sd_chain = is_defined_space ("$PRIVATE$");
5213 if (sd_chain == NULL)
5214 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 1);
8f78d0e9 5215 else if (SPACE_USER_DEFINED (sd_chain) == 0)
025b0302
ME
5216 sd_chain = pa_parse_space_stmt ("$PRIVATE$", 0);
5217
5218 current_space = sd_chain;
80aab579 5219 subseg_set (data_section, sd_chain->sd_last_subseg);
8f78d0e9
KR
5220 current_subspace
5221 = pa_subsegment_to_subspace (data_section,
5222 sd_chain->sd_last_subseg);
025b0302
ME
5223 demand_empty_rest_of_line ();
5224 return;
5225 }
8f78d0e9
KR
5226 if (!strncasecmp (input_line_pointer,
5227 GDB_DEBUG_SPACE_NAME,
5228 strlen (GDB_DEBUG_SPACE_NAME)))
025b0302
ME
5229 {
5230 input_line_pointer += strlen (GDB_DEBUG_SPACE_NAME);
5231 sd_chain = is_defined_space (GDB_DEBUG_SPACE_NAME);
5232 if (sd_chain == NULL)
5233 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 1);
8f78d0e9 5234 else if (SPACE_USER_DEFINED (sd_chain) == 0)
025b0302
ME
5235 sd_chain = pa_parse_space_stmt (GDB_DEBUG_SPACE_NAME, 0);
5236
5237 current_space = sd_chain;
80aab579 5238
5cf4cd1b 5239 {
8f78d0e9
KR
5240 asection *gdb_section
5241 = bfd_make_section_old_way (stdoutput, GDB_DEBUG_SPACE_NAME);
5242
8f78d0e9
KR
5243 subseg_set (gdb_section, sd_chain->sd_last_subseg);
5244 current_subspace
5245 = pa_subsegment_to_subspace (gdb_section,
5246 sd_chain->sd_last_subseg);
5cf4cd1b 5247 }
025b0302
ME
5248 demand_empty_rest_of_line ();
5249 return;
5250 }
5251
8f78d0e9 5252 /* It could be a space specified by number. */
aa8b30ed
JL
5253 print_errors = 0;
5254 save_s = input_line_pointer;
8f78d0e9 5255 if ((temp = pa_parse_number (&input_line_pointer, 0)) >= 0)
025b0302
ME
5256 {
5257 if (sd_chain = pa_find_space_by_number (temp))
5258 {
5259 current_space = sd_chain;
8f78d0e9 5260
80aab579 5261 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
8f78d0e9
KR
5262 current_subspace
5263 = pa_subsegment_to_subspace (sd_chain->sd_seg,
5264 sd_chain->sd_last_subseg);
025b0302
ME
5265 demand_empty_rest_of_line ();
5266 return;
5267 }
5268 }
5269
8f78d0e9 5270 /* Not a number, attempt to create a new space. */
aa8b30ed
JL
5271 print_errors = 1;
5272 input_line_pointer = save_s;
025b0302
ME
5273 name = input_line_pointer;
5274 c = get_symbol_end ();
8f78d0e9 5275 space_name = xmalloc (strlen (name) + 1);
025b0302
ME
5276 strcpy (space_name, name);
5277 *input_line_pointer = c;
5278
5279 sd_chain = pa_parse_space_stmt (space_name, 1);
5280 current_space = sd_chain;
8f78d0e9 5281
80aab579 5282 subseg_set (sd_chain->sd_seg, sd_chain->sd_last_subseg);
025b0302
ME
5283 current_subspace = pa_subsegment_to_subspace (sd_chain->sd_seg,
5284 sd_chain->sd_last_subseg);
5285 demand_empty_rest_of_line ();
5286 }
5287 return;
5288}
5289
c5e9ccd0 5290/* Switch to a new space. (I think). FIXME. */
8f78d0e9
KR
5291
5292static void
5293pa_spnum (unused)
5294 int unused;
025b0302 5295{
8f78d0e9
KR
5296 char *name;
5297 char c;
5298 char *p;
5299 sd_chain_struct *space;
025b0302
ME
5300
5301 name = input_line_pointer;
5302 c = get_symbol_end ();
5303 space = is_defined_space (name);
5304 if (space)
5305 {
5306 p = frag_more (4);
025b0302
ME
5307 md_number_to_chars (p, SPACE_SPNUM (space), 4);
5308 }
5309 else
5310 as_warn ("Undefined space: '%s' Assuming space number = 0.", name);
5311
5312 *input_line_pointer = c;
5313 demand_empty_rest_of_line ();
5314 return;
5315}
5316
8f78d0e9 5317/* If VALUE is an exact power of two between zero and 2^31, then
aa8b30ed 5318 return log2 (VALUE). Else return -1. */
8f78d0e9
KR
5319
5320static int
aa8b30ed 5321log2 (value)
025b0302
ME
5322 int value;
5323{
8f78d0e9 5324 int shift = 0;
025b0302 5325
025b0302
ME
5326 while ((1 << shift) != value && shift < 32)
5327 shift++;
5328
5329 if (shift >= 32)
aa8b30ed 5330 return -1;
8f78d0e9 5331 else
aa8b30ed 5332 return shift;
025b0302
ME
5333}
5334
3b9a72c5 5335/* Handle a .SUBSPACE pseudo-op; this switches the current subspace to the
8f78d0e9
KR
5336 given subspace, creating the new subspace if necessary.
5337
5338 FIXME. Should mirror pa_space more closely, in particular how
5339 they're broken up into subroutines. */
5340
5341static void
5342pa_subspace (unused)
5343 int unused;
025b0302 5344{
3b9a72c5 5345 char *name, *ss_name, *alias, c;
8f78d0e9 5346 char loadable, code_only, common, dup_common, zero, sort;
3b9a72c5 5347 int i, access, space_index, alignment, quadrant, applicable, flags;
8f78d0e9
KR
5348 sd_chain_struct *space;
5349 ssd_chain_struct *ssd;
3b9a72c5 5350 asection *section;
025b0302
ME
5351
5352 if (within_procedure)
5353 {
5354 as_bad ("Can\'t change subspaces within a procedure definition. Ignored");
5355 ignore_rest_of_line ();
5356 }
5357 else
5358 {
5359 name = input_line_pointer;
5360 c = get_symbol_end ();
025b0302
ME
5361 ss_name = xmalloc (strlen (name) + 1);
5362 strcpy (ss_name, name);
025b0302
ME
5363 *input_line_pointer = c;
5364
8f78d0e9 5365 /* Load default values. */
025b0302
ME
5366 sort = 0;
5367 access = 0x7f;
5368 loadable = 1;
5369 common = 0;
5370 dup_common = 0;
5371 code_only = 0;
5372 zero = 0;
8f78d0e9
KR
5373 space_index = ~0;
5374 alignment = 0;
025b0302 5375 quadrant = 0;
3b9a72c5 5376 alias = NULL;
025b0302 5377
3b9a72c5 5378 space = current_space;
47f45d66
JL
5379 ssd = is_defined_subspace (ss_name);
5380 /* Allow user to override the builtin attributes of subspaces. But
c5e9ccd0 5381 only allow the attributes to be changed once! */
47f45d66 5382 if (ssd && SUBSPACE_DEFINED (ssd))
025b0302 5383 {
8f78d0e9
KR
5384 subseg_set (ssd->ssd_seg, ssd->ssd_subseg);
5385 if (!is_end_of_statement ())
5386 as_warn ("Parameters of an existing subspace can\'t be modified");
5387 demand_empty_rest_of_line ();
5388 return;
025b0302
ME
5389 }
5390 else
5391 {
3b9a72c5
JL
5392 /* A new subspace. Load default values if it matches one of
5393 the builtin subspaces. */
025b0302
ME
5394 i = 0;
5395 while (pa_def_subspaces[i].name)
5396 {
5397 if (strcasecmp (pa_def_subspaces[i].name, ss_name) == 0)
5398 {
5399 loadable = pa_def_subspaces[i].loadable;
5400 common = pa_def_subspaces[i].common;
5401 dup_common = pa_def_subspaces[i].dup_common;
5402 code_only = pa_def_subspaces[i].code_only;
5403 zero = pa_def_subspaces[i].zero;
5404 space_index = pa_def_subspaces[i].space_index;
8f78d0e9 5405 alignment = pa_def_subspaces[i].alignment;
025b0302
ME
5406 quadrant = pa_def_subspaces[i].quadrant;
5407 access = pa_def_subspaces[i].access;
5408 sort = pa_def_subspaces[i].sort;
3b9a72c5
JL
5409 if (USE_ALIASES && pa_def_subspaces[i].alias)
5410 alias = pa_def_subspaces[i].alias;
025b0302
ME
5411 break;
5412 }
5413 i++;
5414 }
5415 }
5416
8f78d0e9
KR
5417 /* We should be working with a new subspace now. Fill in
5418 any information as specified by the user. */
025b0302
ME
5419 if (!is_end_of_statement ())
5420 {
5421 input_line_pointer++;
5422 while (!is_end_of_statement ())
5423 {
5424 name = input_line_pointer;
5425 c = get_symbol_end ();
5426 if ((strncasecmp (name, "QUAD", 4) == 0))
5427 {
5428 *input_line_pointer = c;
5429 input_line_pointer++;
8f78d0e9 5430 quadrant = get_absolute_expression ();
025b0302
ME
5431 }
5432 else if ((strncasecmp (name, "ALIGN", 5) == 0))
5433 {
5434 *input_line_pointer = c;
5435 input_line_pointer++;
8f78d0e9 5436 alignment = get_absolute_expression ();
aa8b30ed 5437 if (log2 (alignment) == -1)
025b0302
ME
5438 {
5439 as_bad ("Alignment must be a power of 2");
5440 alignment = 1;
5441 }
5442 }
5443 else if ((strncasecmp (name, "ACCESS", 6) == 0))
5444 {
5445 *input_line_pointer = c;
5446 input_line_pointer++;
8f78d0e9 5447 access = get_absolute_expression ();
025b0302
ME
5448 }
5449 else if ((strncasecmp (name, "SORT", 4) == 0))
5450 {
5451 *input_line_pointer = c;
5452 input_line_pointer++;
8f78d0e9 5453 sort = get_absolute_expression ();
025b0302
ME
5454 }
5455 else if ((strncasecmp (name, "CODE_ONLY", 9) == 0))
5456 {
5457 *input_line_pointer = c;
5458 code_only = 1;
5459 }
5460 else if ((strncasecmp (name, "UNLOADABLE", 10) == 0))
5461 {
5462 *input_line_pointer = c;
5463 loadable = 0;
5464 }
5465 else if ((strncasecmp (name, "COMMON", 6) == 0))
5466 {
5467 *input_line_pointer = c;
5468 common = 1;
5469 }
5470 else if ((strncasecmp (name, "DUP_COMM", 8) == 0))
5471 {
5472 *input_line_pointer = c;
5473 dup_common = 1;
5474 }
5475 else if ((strncasecmp (name, "ZERO", 4) == 0))
5476 {
5477 *input_line_pointer = c;
5478 zero = 1;
5479 }
8f78d0e9
KR
5480 else if ((strncasecmp (name, "FIRST", 5) == 0))
5481 as_bad ("FIRST not supported as a .SUBSPACE argument");
025b0302 5482 else
8f78d0e9 5483 as_bad ("Invalid .SUBSPACE argument");
025b0302
ME
5484 if (!is_end_of_statement ())
5485 input_line_pointer++;
5486 }
5487 }
8f78d0e9 5488
3b9a72c5 5489 /* Compute a reasonable set of BFD flags based on the information
c5e9ccd0 5490 in the .subspace directive. */
3b9a72c5
JL
5491 applicable = bfd_applicable_section_flags (stdoutput);
5492 flags = 0;
5493 if (loadable)
5494 flags |= (SEC_ALLOC | SEC_LOAD);
5495 if (code_only)
5496 flags |= SEC_CODE;
5497 if (common || dup_common)
5498 flags |= SEC_IS_COMMON;
5499
5500 /* This is a zero-filled subspace (eg BSS). */
5501 if (zero)
5502 flags &= ~SEC_LOAD;
5503
5504 flags |= SEC_RELOC | SEC_HAS_CONTENTS;
5505 applicable &= flags;
5506
5507 /* If this is an existing subspace, then we want to use the
c5e9ccd0 5508 segment already associated with the subspace.
3b9a72c5 5509
c5e9ccd0
JL
5510 FIXME NOW! ELF BFD doesn't appear to be ready to deal with
5511 lots of sections. It might be a problem in the PA ELF
5512 code, I do not know yet. For now avoid creating anything
5513 but the "standard" sections for ELF. */
3b9a72c5
JL
5514 if (ssd)
5515 section = ssd->ssd_seg;
47f45d66 5516 else if (alias)
3b9a72c5 5517 section = subseg_new (alias, 0);
c5e9ccd0 5518 else if (!alias && USE_ALIASES)
3b9a72c5
JL
5519 {
5520 as_warn ("Ignoring subspace decl due to ELF BFD bugs.");
5521 demand_empty_rest_of_line ();
5522 return;
5523 }
c5e9ccd0 5524 else
3b9a72c5
JL
5525 section = subseg_new (ss_name, 0);
5526
5527 /* Now set the flags. */
5528 bfd_set_section_flags (stdoutput, section, applicable);
5529
5530 /* Record any alignment request for this section. */
5531 record_alignment (section, log2 (alignment));
5532
5533 /* Set the starting offset for this section. */
5534 bfd_set_section_vma (stdoutput, section,
5535 pa_subspace_start (space, quadrant));
c5e9ccd0 5536
8f78d0e9 5537 /* Now that all the flags are set, update an existing subspace,
3b9a72c5 5538 or create a new one. */
025b0302 5539 if (ssd)
3b9a72c5
JL
5540
5541 current_subspace = update_subspace (space, ss_name, loadable,
5542 code_only, common, dup_common,
5543 sort, zero, access, space_index,
c5e9ccd0 5544 alignment, quadrant,
47f45d66 5545 section);
025b0302 5546 else
8f78d0e9
KR
5547 current_subspace = create_new_subspace (space, ss_name, loadable,
5548 code_only, common,
5549 dup_common, zero, sort,
5550 access, space_index,
c5e9ccd0 5551 alignment, quadrant, section);
025b0302
ME
5552
5553 demand_empty_rest_of_line ();
3b9a72c5 5554 current_subspace->ssd_seg = section;
80aab579 5555 subseg_set (current_subspace->ssd_seg, current_subspace->ssd_subseg);
025b0302 5556 }
47f45d66 5557 SUBSPACE_DEFINED (current_subspace) = 1;
025b0302
ME
5558 return;
5559}
5560
025b0302 5561
8f78d0e9 5562/* Create default space and subspace dictionaries. */
025b0302 5563
c5e9ccd0 5564static void
025b0302
ME
5565pa_spaces_begin ()
5566{
025b0302 5567 int i;
025b0302
ME
5568
5569 space_dict_root = NULL;
5570 space_dict_last = NULL;
5571
025b0302
ME
5572 i = 0;
5573 while (pa_def_spaces[i].name)
5574 {
3b9a72c5
JL
5575 char *name;
5576
5577 /* Pick the right name to use for the new section. */
5578 if (pa_def_spaces[i].alias && USE_ALIASES)
5579 name = pa_def_spaces[i].alias;
025b0302 5580 else
c5e9ccd0 5581 name = pa_def_spaces[i].name;
025b0302 5582
3b9a72c5 5583 pa_def_spaces[i].segment = subseg_new (name, 0);
025b0302
ME
5584 create_new_space (pa_def_spaces[i].name, pa_def_spaces[i].spnum,
5585 pa_def_spaces[i].loadable, pa_def_spaces[i].defined,
8f78d0e9
KR
5586 pa_def_spaces[i].private, pa_def_spaces[i].sort,
5587 pa_def_spaces[i].segment, 0);
025b0302
ME
5588 i++;
5589 }
5590
5591 i = 0;
5592 while (pa_def_subspaces[i].name)
5593 {
3b9a72c5
JL
5594 char *name;
5595 int applicable, subsegment;
5596 asection *segment = NULL;
5597 sd_chain_struct *space;
5598
5599 /* Pick the right name for the new section and pick the right
c5e9ccd0 5600 subsegment number. */
3b9a72c5 5601 if (pa_def_subspaces[i].alias && USE_ALIASES)
025b0302 5602 {
3b9a72c5
JL
5603 name = pa_def_subspaces[i].alias;
5604 subsegment = pa_def_subspaces[i].subsegment;
025b0302
ME
5605 }
5606 else
3b9a72c5
JL
5607 {
5608 name = pa_def_subspaces[i].name;
5609 subsegment = 0;
5610 }
c5e9ccd0 5611
3b9a72c5
JL
5612 /* Create the new section. */
5613 segment = subseg_new (name, subsegment);
5614
5615
5616 /* For SOM we want to replace the standard .text, .data, and .bss
c5e9ccd0
JL
5617 sections with our own. */
5618 if (!strcmp (pa_def_subspaces[i].name, "$CODE$") && !USE_ALIASES)
3b9a72c5
JL
5619 {
5620 text_section = segment;
5621 applicable = bfd_applicable_section_flags (stdoutput);
5622 bfd_set_section_flags (stdoutput, text_section,
c5e9ccd0
JL
5623 applicable & (SEC_ALLOC | SEC_LOAD
5624 | SEC_RELOC | SEC_CODE
5625 | SEC_READONLY
3b9a72c5
JL
5626 | SEC_HAS_CONTENTS));
5627 }
c5e9ccd0 5628 else if (!strcmp (pa_def_subspaces[i].name, "$DATA$") && !USE_ALIASES)
3b9a72c5
JL
5629 {
5630 data_section = segment;
5631 applicable = bfd_applicable_section_flags (stdoutput);
5632 bfd_set_section_flags (stdoutput, data_section,
c5e9ccd0 5633 applicable & (SEC_ALLOC | SEC_LOAD
3b9a72c5
JL
5634 | SEC_RELOC
5635 | SEC_HAS_CONTENTS));
c5e9ccd0
JL
5636
5637
3b9a72c5 5638 }
c5e9ccd0 5639 else if (!strcmp (pa_def_subspaces[i].name, "$BSS$") && !USE_ALIASES)
3b9a72c5
JL
5640 {
5641 bss_section = segment;
5642 applicable = bfd_applicable_section_flags (stdoutput);
5643 bfd_set_section_flags (stdoutput, bss_section,
5644 applicable & SEC_ALLOC);
5645 }
5646
5647 /* Find the space associated with this subspace. */
5648 space = pa_segment_to_space (pa_def_spaces[pa_def_subspaces[i].
5649 def_space_index].segment);
5650 if (space == NULL)
5651 {
5652 as_fatal ("Internal error: Unable to find containing space for %s.",
5653 pa_def_subspaces[i].name);
5654 }
5655
5656 create_new_subspace (space, name,
5657 pa_def_subspaces[i].loadable,
5658 pa_def_subspaces[i].code_only,
5659 pa_def_subspaces[i].common,
5660 pa_def_subspaces[i].dup_common,
5661 pa_def_subspaces[i].zero,
5662 pa_def_subspaces[i].sort,
5663 pa_def_subspaces[i].access,
5664 pa_def_subspaces[i].space_index,
5665 pa_def_subspaces[i].alignment,
5666 pa_def_subspaces[i].quadrant,
5667 segment);
025b0302
ME
5668 i++;
5669 }
5670}
5671
8f78d0e9
KR
5672
5673
5674/* Create a new space NAME, with the appropriate flags as defined
5675 by the given parameters.
5676
5677 Add the new space to the space dictionary chain in numerical
5678 order as defined by the SORT entries. */
5679
5680static sd_chain_struct *
5681create_new_space (name, spnum, loadable, defined, private,
5682 sort, seg, user_defined)
025b0302
ME
5683 char *name;
5684 int spnum;
5685 char loadable;
5686 char defined;
5687 char private;
5688 char sort;
025b0302 5689 asection *seg;
8f78d0e9 5690 int user_defined;
025b0302 5691{
8f78d0e9
KR
5692 sd_chain_struct *chain_entry;
5693
5694 chain_entry = (sd_chain_struct *) xmalloc (sizeof (sd_chain_struct));
025b0302 5695 if (!chain_entry)
8f78d0e9
KR
5696 as_fatal ("Out of memory: could not allocate new space chain entry: %s\n",
5697 name);
025b0302
ME
5698
5699 SPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5700 strcpy (SPACE_NAME (chain_entry), name);
8f78d0e9
KR
5701 SPACE_NAME_INDEX (chain_entry) = 0;
5702 SPACE_LOADABLE (chain_entry) = loadable;
5703 SPACE_DEFINED (chain_entry) = defined;
5704 SPACE_USER_DEFINED (chain_entry) = user_defined;
5705 SPACE_PRIVATE (chain_entry) = private;
5706 SPACE_SPNUM (chain_entry) = spnum;
5707 SPACE_SORT (chain_entry) = sort;
025b0302 5708
025b0302
ME
5709 chain_entry->sd_seg = seg;
5710 chain_entry->sd_last_subseg = -1;
5711 chain_entry->sd_next = NULL;
5712
8f78d0e9 5713 /* Find spot for the new space based on its sort key. */
025b0302
ME
5714 if (!space_dict_last)
5715 space_dict_last = chain_entry;
5716
8f78d0e9 5717 if (space_dict_root == NULL)
025b0302
ME
5718 space_dict_root = chain_entry;
5719 else
5720 {
8f78d0e9
KR
5721 sd_chain_struct *chain_pointer;
5722 sd_chain_struct *prev_chain_pointer;
025b0302 5723
8f78d0e9
KR
5724 chain_pointer = space_dict_root;
5725 prev_chain_pointer = NULL;
025b0302 5726
8f78d0e9 5727 while (chain_pointer)
025b0302 5728 {
8f78d0e9 5729 if (SPACE_SORT (chain_pointer) <= SPACE_SORT (chain_entry))
025b0302 5730 {
8f78d0e9
KR
5731 prev_chain_pointer = chain_pointer;
5732 chain_pointer = chain_pointer->sd_next;
025b0302 5733 }
8f78d0e9
KR
5734 else
5735 break;
025b0302
ME
5736 }
5737
8f78d0e9
KR
5738 /* At this point we've found the correct place to add the new
5739 entry. So add it and update the linked lists as appropriate. */
5740 if (prev_chain_pointer)
025b0302 5741 {
8f78d0e9
KR
5742 chain_entry->sd_next = chain_pointer;
5743 prev_chain_pointer->sd_next = chain_entry;
025b0302
ME
5744 }
5745 else
5746 {
5747 space_dict_root = chain_entry;
8f78d0e9 5748 chain_entry->sd_next = chain_pointer;
025b0302
ME
5749 }
5750
5751 if (chain_entry->sd_next == NULL)
5752 space_dict_last = chain_entry;
5753 }
5754
548ea75b
JL
5755 /* This is here to catch predefined spaces which do not get
5756 modified by the user's input. Another call is found at
5757 the bottom of pa_parse_space_stmt to handle cases where
5758 the user modifies a predefined space. */
5759#ifdef obj_set_section_attributes
5760 obj_set_section_attributes (seg, defined, private, sort, spnum);
5761#endif
5762
025b0302
ME
5763 return chain_entry;
5764}
5765
8f78d0e9
KR
5766/* Create a new subspace NAME, with the appropriate flags as defined
5767 by the given parameters.
5768
5769 Add the new subspace to the subspace dictionary chain in numerical
5770 order as defined by the SORT entries. */
5771
5772static ssd_chain_struct *
5773create_new_subspace (space, name, loadable, code_only, common,
5774 dup_common, is_zero, sort, access, space_index,
5775 alignment, quadrant, seg)
5776 sd_chain_struct *space;
025b0302 5777 char *name;
8f78d0e9 5778 char loadable, code_only, common, dup_common, is_zero;
025b0302
ME
5779 char sort;
5780 int access;
5781 int space_index;
5782 int alignment;
5783 int quadrant;
5784 asection *seg;
5785{
8f78d0e9 5786 ssd_chain_struct *chain_entry;
025b0302 5787
8f78d0e9 5788 chain_entry = (ssd_chain_struct *) xmalloc (sizeof (ssd_chain_struct));
025b0302
ME
5789 if (!chain_entry)
5790 as_fatal ("Out of memory: could not allocate new subspace chain entry: %s\n", name);
5791
025b0302
ME
5792 SUBSPACE_NAME (chain_entry) = (char *) xmalloc (strlen (name) + 1);
5793 strcpy (SUBSPACE_NAME (chain_entry), name);
5794
8f78d0e9
KR
5795 SUBSPACE_ACCESS (chain_entry) = access;
5796 SUBSPACE_LOADABLE (chain_entry) = loadable;
5797 SUBSPACE_COMMON (chain_entry) = common;
5798 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5799 SUBSPACE_SORT (chain_entry) = sort;
5800 SUBSPACE_CODE_ONLY (chain_entry) = code_only;
5801 SUBSPACE_ALIGN (chain_entry) = alignment;
5802 SUBSPACE_QUADRANT (chain_entry) = quadrant;
025b0302 5803 SUBSPACE_SUBSPACE_START (chain_entry) = pa_subspace_start (space, quadrant);
8f78d0e9
KR
5804 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
5805 SUBSPACE_ZERO (chain_entry) = is_zero;
025b0302 5806
240cbc57
JL
5807 /* Initialize subspace_defined. When we hit a .subspace directive
5808 we'll set it to 1 which "locks-in" the subspace attributes. */
5809 SUBSPACE_DEFINED (chain_entry) = 0;
5810
3b9a72c5 5811 chain_entry->ssd_subseg = USE_ALIASES ? pa_next_subseg (space) : 0;
025b0302 5812 chain_entry->ssd_seg = seg;
025b0302
ME
5813 chain_entry->ssd_last_align = 1;
5814 chain_entry->ssd_next = NULL;
5815
8f78d0e9
KR
5816 /* Find spot for the new subspace based on its sort key. */
5817 if (space->sd_subspaces == NULL)
025b0302
ME
5818 space->sd_subspaces = chain_entry;
5819 else
5820 {
8f78d0e9
KR
5821 ssd_chain_struct *chain_pointer;
5822 ssd_chain_struct *prev_chain_pointer;
025b0302 5823
8f78d0e9
KR
5824 chain_pointer = space->sd_subspaces;
5825 prev_chain_pointer = NULL;
025b0302 5826
8f78d0e9 5827 while (chain_pointer)
025b0302 5828 {
8f78d0e9 5829 if (SUBSPACE_SORT (chain_pointer) <= SUBSPACE_SORT (chain_entry))
025b0302 5830 {
8f78d0e9
KR
5831 prev_chain_pointer = chain_pointer;
5832 chain_pointer = chain_pointer->ssd_next;
025b0302 5833 }
8f78d0e9
KR
5834 else
5835 break;
5836
025b0302
ME
5837 }
5838
8f78d0e9
KR
5839 /* Now we have somewhere to put the new entry. Insert it and update
5840 the links. */
5841 if (prev_chain_pointer)
025b0302 5842 {
8f78d0e9
KR
5843 chain_entry->ssd_next = chain_pointer;
5844 prev_chain_pointer->ssd_next = chain_entry;
025b0302
ME
5845 }
5846 else
5847 {
5848 space->sd_subspaces = chain_entry;
8f78d0e9 5849 chain_entry->ssd_next = chain_pointer;
025b0302
ME
5850 }
5851 }
5852
548ea75b 5853#ifdef obj_set_subsection_attributes
c5e9ccd0 5854 obj_set_subsection_attributes (seg, space->sd_seg, access,
548ea75b
JL
5855 sort, quadrant);
5856#endif
5857
025b0302
ME
5858 return chain_entry;
5859
5860}
5861
8f78d0e9
KR
5862/* Update the information for the given subspace based upon the
5863 various arguments. Return the modified subspace chain entry. */
5864
5865static ssd_chain_struct *
3b9a72c5 5866update_subspace (space, name, loadable, code_only, common, dup_common, sort,
18c4f112 5867 zero, access, space_index, alignment, quadrant, section)
3b9a72c5 5868 sd_chain_struct *space;
025b0302 5869 char *name;
8f78d0e9
KR
5870 char loadable;
5871 char code_only;
5872 char common;
5873 char dup_common;
5874 char zero;
025b0302
ME
5875 char sort;
5876 int access;
5877 int space_index;
5878 int alignment;
5879 int quadrant;
18c4f112 5880 asection *section;
025b0302 5881{
8f78d0e9 5882 ssd_chain_struct *chain_entry;
025b0302 5883
47f45d66 5884 if ((chain_entry = is_defined_subspace (name)))
025b0302 5885 {
8f78d0e9
KR
5886 SUBSPACE_ACCESS (chain_entry) = access;
5887 SUBSPACE_LOADABLE (chain_entry) = loadable;
5888 SUBSPACE_COMMON (chain_entry) = common;
5889 SUBSPACE_DUP_COMM (chain_entry) = dup_common;
5890 SUBSPACE_CODE_ONLY (chain_entry) = 1;
5891 SUBSPACE_SORT (chain_entry) = sort;
5892 SUBSPACE_ALIGN (chain_entry) = alignment;
5893 SUBSPACE_QUADRANT (chain_entry) = quadrant;
5894 SUBSPACE_SPACE_INDEX (chain_entry) = space_index;
025b0302
ME
5895 SUBSPACE_ZERO (chain_entry) = zero;
5896 }
5897 else
5898 chain_entry = NULL;
5899
548ea75b 5900#ifdef obj_set_subsection_attributes
c5e9ccd0 5901 obj_set_subsection_attributes (section, space->sd_seg, access,
548ea75b
JL
5902 sort, quadrant);
5903#endif
5904
025b0302
ME
5905 return chain_entry;
5906
5907}
5908
8f78d0e9
KR
5909/* Return the space chain entry for the space with the name NAME or
5910 NULL if no such space exists. */
5911
5912static sd_chain_struct *
025b0302
ME
5913is_defined_space (name)
5914 char *name;
5915{
8f78d0e9 5916 sd_chain_struct *chain_pointer;
025b0302 5917
8f78d0e9
KR
5918 for (chain_pointer = space_dict_root;
5919 chain_pointer;
5920 chain_pointer = chain_pointer->sd_next)
025b0302 5921 {
8f78d0e9
KR
5922 if (strcmp (SPACE_NAME (chain_pointer), name) == 0)
5923 return chain_pointer;
025b0302
ME
5924 }
5925
8f78d0e9 5926 /* No mapping from segment to space was found. Return NULL. */
025b0302
ME
5927 return NULL;
5928}
5929
8f78d0e9
KR
5930/* Find and return the space associated with the given seg. If no mapping
5931 from the given seg to a space is found, then return NULL.
5932
5933 Unlike subspaces, the number of spaces is not expected to grow much,
5934 so a linear exhaustive search is OK here. */
5935
5936static sd_chain_struct *
025b0302
ME
5937pa_segment_to_space (seg)
5938 asection *seg;
5939{
8f78d0e9 5940 sd_chain_struct *space_chain;
025b0302 5941
8f78d0e9
KR
5942 /* Walk through each space looking for the correct mapping. */
5943 for (space_chain = space_dict_root;
5944 space_chain;
5945 space_chain = space_chain->sd_next)
025b0302 5946 {
8f78d0e9
KR
5947 if (space_chain->sd_seg == seg)
5948 return space_chain;
025b0302
ME
5949 }
5950
8f78d0e9 5951 /* Mapping was not found. Return NULL. */
025b0302
ME
5952 return NULL;
5953}
5954
8f78d0e9
KR
5955/* Return the space chain entry for the subspace with the name NAME or
5956 NULL if no such subspace exists.
5957
5958 Uses a linear search through all the spaces and subspaces, this may
5959 not be appropriate if we ever being placing each function in its
5960 own subspace. */
5961
5962static ssd_chain_struct *
47f45d66 5963is_defined_subspace (name)
025b0302 5964 char *name;
025b0302 5965{
c5e9ccd0 5966 sd_chain_struct *space_chain;
8f78d0e9 5967 ssd_chain_struct *subspace_chain;
025b0302 5968
8f78d0e9
KR
5969 /* Walk through each space. */
5970 for (space_chain = space_dict_root;
5971 space_chain;
5972 space_chain = space_chain->sd_next)
025b0302 5973 {
8f78d0e9
KR
5974 /* Walk through each subspace looking for a name which matches. */
5975 for (subspace_chain = space_chain->sd_subspaces;
5976 subspace_chain;
5977 subspace_chain = subspace_chain->ssd_next)
5978 if (strcmp (SUBSPACE_NAME (subspace_chain), name) == 0)
5979 return subspace_chain;
025b0302 5980 }
8f78d0e9
KR
5981
5982 /* Subspace wasn't found. Return NULL. */
025b0302
ME
5983 return NULL;
5984}
5985
8f78d0e9
KR
5986/* Find and return the subspace associated with the given seg. If no
5987 mapping from the given seg to a subspace is found, then return NULL.
5988
5989 If we ever put each procedure/function within its own subspace
5990 (to make life easier on the compiler and linker), then this will have
5991 to become more efficient. */
5992
5993static ssd_chain_struct *
025b0302
ME
5994pa_subsegment_to_subspace (seg, subseg)
5995 asection *seg;
5996 subsegT subseg;
5997{
8f78d0e9
KR
5998 sd_chain_struct *space_chain;
5999 ssd_chain_struct *subspace_chain;
025b0302 6000
8f78d0e9
KR
6001 /* Walk through each space. */
6002 for (space_chain = space_dict_root;
6003 space_chain;
6004 space_chain = space_chain->sd_next)
025b0302 6005 {
8f78d0e9 6006 if (space_chain->sd_seg == seg)
025b0302 6007 {
8f78d0e9
KR
6008 /* Walk through each subspace within each space looking for
6009 the correct mapping. */
6010 for (subspace_chain = space_chain->sd_subspaces;
6011 subspace_chain;
6012 subspace_chain = subspace_chain->ssd_next)
6013 if (subspace_chain->ssd_subseg == (int) subseg)
6014 return subspace_chain;
025b0302
ME
6015 }
6016 }
6017
8f78d0e9 6018 /* No mapping from subsegment to subspace found. Return NULL. */
025b0302
ME
6019 return NULL;
6020}
6021
8f78d0e9
KR
6022/* Given a number, try and find a space with the name number.
6023
6024 Return a pointer to a space dictionary chain entry for the space
6025 that was found or NULL on failure. */
6026
6027static sd_chain_struct *
025b0302
ME
6028pa_find_space_by_number (number)
6029 int number;
6030{
8f78d0e9 6031 sd_chain_struct *space_chain;
025b0302 6032
8f78d0e9
KR
6033 for (space_chain = space_dict_root;
6034 space_chain;
6035 space_chain = space_chain->sd_next)
025b0302 6036 {
8f78d0e9
KR
6037 if (SPACE_SPNUM (space_chain) == number)
6038 return space_chain;
025b0302
ME
6039 }
6040
8f78d0e9 6041 /* No appropriate space found. Return NULL. */
025b0302
ME
6042 return NULL;
6043}
6044
8f78d0e9
KR
6045/* Return the starting address for the given subspace. If the starting
6046 address is unknown then return zero. */
6047
6048static unsigned int
025b0302 6049pa_subspace_start (space, quadrant)
8f78d0e9 6050 sd_chain_struct *space;
025b0302
ME
6051 int quadrant;
6052{
8f78d0e9
KR
6053 /* FIXME. Assumes everyone puts read/write data at 0x4000000, this
6054 is not correct for the PA OSF1 port. */
6055 if ((strcasecmp (SPACE_NAME (space), "$PRIVATE$") == 0) && quadrant == 1)
6056 return 0x40000000;
025b0302 6057 else if (space->sd_seg == data_section && quadrant == 1)
8f78d0e9 6058 return 0x40000000;
025b0302
ME
6059 else
6060 return 0;
6061}
6062
8f78d0e9
KR
6063/* FIXME. Needs documentation. */
6064static int
025b0302 6065pa_next_subseg (space)
8f78d0e9 6066 sd_chain_struct *space;
025b0302
ME
6067{
6068
6069 space->sd_last_subseg++;
6070 return space->sd_last_subseg;
6071}
6072
8f78d0e9
KR
6073/* Helper function for pa_stringer. Used to find the end of
6074 a string. */
6075
025b0302
ME
6076static unsigned int
6077pa_stringer_aux (s)
6078 char *s;
6079{
6080 unsigned int c = *s & CHAR_MASK;
6081 switch (c)
6082 {
6083 case '\"':
6084 c = NOT_A_CHAR;
6085 break;
6086 default:
6087 break;
6088 }
6089 return c;
6090}
6091
8f78d0e9
KR
6092/* Handle a .STRING type pseudo-op. */
6093
6094static void
6095pa_stringer (append_zero)
6096 int append_zero;
025b0302 6097{
8f78d0e9 6098 char *s, num_buf[4];
025b0302 6099 unsigned int c;
025b0302
ME
6100 int i;
6101
8f78d0e9
KR
6102 /* Preprocess the string to handle PA-specific escape sequences.
6103 For example, \xDD where DD is a hexidecimal number should be
6104 changed to \OOO where OOO is an octal number. */
025b0302 6105
8f78d0e9
KR
6106 /* Skip the opening quote. */
6107 s = input_line_pointer + 1;
025b0302
ME
6108
6109 while (is_a_char (c = pa_stringer_aux (s++)))
6110 {
6111 if (c == '\\')
6112 {
6113 c = *s;
6114 switch (c)
6115 {
8f78d0e9 6116 /* Handle \x<num>. */
025b0302
ME
6117 case 'x':
6118 {
6119 unsigned int number;
6120 int num_digit;
6121 char dg;
6122 char *s_start = s;
6123
8f78d0e9
KR
6124 /* Get pas the 'x'. */
6125 s++;
025b0302
ME
6126 for (num_digit = 0, number = 0, dg = *s;
6127 num_digit < 2
6128 && (isdigit (dg) || (dg >= 'a' && dg <= 'f')
6129 || (dg >= 'A' && dg <= 'F'));
6130 num_digit++)
6131 {
6132 if (isdigit (dg))
6133 number = number * 16 + dg - '0';
6134 else if (dg >= 'a' && dg <= 'f')
6135 number = number * 16 + dg - 'a' + 10;
6136 else
6137 number = number * 16 + dg - 'A' + 10;
6138
6139 s++;
6140 dg = *s;
6141 }
6142 if (num_digit > 0)
6143 {
6144 switch (num_digit)
6145 {
6146 case 1:
6147 sprintf (num_buf, "%02o", number);
6148 break;
6149 case 2:
6150 sprintf (num_buf, "%03o", number);
6151 break;
6152 }
6153 for (i = 0; i <= num_digit; i++)
6154 s_start[i] = num_buf[i];
6155 }
5cf4cd1b 6156 break;
025b0302 6157 }
8f78d0e9 6158 /* This might be a "\"", skip over the escaped char. */
5cf4cd1b
KR
6159 default:
6160 s++;
025b0302
ME
6161 break;
6162 }
6163 }
6164 }
6165 stringer (append_zero);
6166 pa_undefine_label ();
6167}
6168
8f78d0e9
KR
6169/* Handle a .VERSION pseudo-op. */
6170
6171static void
6172pa_version (unused)
6173 int unused;
025b0302 6174{
8f78d0e9 6175 obj_version (0);
025b0302
ME
6176 pa_undefine_label ();
6177}
6178
8f78d0e9
KR
6179/* Just like a normal cons, but when finished we have to undefine
6180 the latest space label. */
6181
6182static void
025b0302 6183pa_cons (nbytes)
8f78d0e9 6184 int nbytes;
025b0302
ME
6185{
6186 cons (nbytes);
6187 pa_undefine_label ();
6188}
6189
8f78d0e9
KR
6190/* Switch to the data space. As usual delete our label. */
6191
6192static void
6193pa_data (unused)
6194 int unused;
025b0302 6195{
80aab579 6196 s_data (0);
025b0302
ME
6197 pa_undefine_label ();
6198}
6199
8f78d0e9 6200/* FIXME. What's the purpose of this pseudo-op? */
025b0302 6201
8f78d0e9
KR
6202static void
6203pa_desc (unused)
6204 int unused;
6205{
025b0302
ME
6206 pa_undefine_label ();
6207}
6208
8f78d0e9 6209/* Like float_cons, but we need to undefine our label. */
c5e9ccd0 6210
8f78d0e9 6211static void
025b0302 6212pa_float_cons (float_type)
8f78d0e9 6213 int float_type;
025b0302
ME
6214{
6215 float_cons (float_type);
6216 pa_undefine_label ();
6217}
6218
8f78d0e9
KR
6219/* Like s_fill, but delete our label when finished. */
6220
6221static void
6222pa_fill (unused)
6223 int unused;
025b0302 6224{
80aab579 6225 s_fill (0);
025b0302
ME
6226 pa_undefine_label ();
6227}
6228
8f78d0e9
KR
6229/* Like lcomm, but delete our label when finished. */
6230
6231static void
025b0302 6232pa_lcomm (needs_align)
025b0302
ME
6233 int needs_align;
6234{
6235 s_lcomm (needs_align);
6236 pa_undefine_label ();
6237}
6238
8f78d0e9
KR
6239/* Like lsym, but delete our label when finished. */
6240
6241static void
6242pa_lsym (unused)
6243 int unused;
025b0302 6244{
80aab579 6245 s_lsym (0);
025b0302
ME
6246 pa_undefine_label ();
6247}
6248
8f78d0e9
KR
6249/* Switch to the text space. Like s_text, but delete our
6250 label when finished. */
6251static void
6252pa_text (unused)
6253 int unused;
025b0302 6254{
80aab579 6255 s_text (0);
025b0302
ME
6256 pa_undefine_label ();
6257}
5cf4cd1b 6258
aa8b30ed
JL
6259/* On the PA relocations which involve function symbols must not be
6260 adjusted. This so that the linker can know when/how to create argument
6261 relocation stubs for indirect calls and calls to static functions.
6262
6263 FIXME. Also reject R_HPPA relocations which are 32 bits
6264 wide. Helps with code lables in arrays for SOM. (SOM BFD code
6265 needs to generate relocations to push the addend and symbol value
6266 onto the stack, add them, then pop the value off the stack and
6267 use it in a relocation -- yuk. */
6268
6269int
c5e9ccd0 6270hppa_fix_adjustable (fixp)
aa8b30ed
JL
6271 fixS *fixp;
6272{
6273 struct hppa_fix_struct *hppa_fix;
6274
6275 hppa_fix = fixp->tc_fix_data;
6276
6277 if (fixp->fx_r_type == R_HPPA && hppa_fix->fx_r_format == 32)
6278 return 0;
6279
c5e9ccd0 6280 if (fixp->fx_addsy == 0
aa8b30ed
JL
6281 || (fixp->fx_addsy->bsym->flags & BSF_FUNCTION) == 0)
6282 return 1;
6283
6284 return 0;
6285}
c5e9ccd0 6286
335d35c8
JL
6287/* Return nonzero if the fixup in FIXP will require a relocation,
6288 even it if appears that the fixup could be completely handled
6289 within GAS. */
6290
6291int
6292hppa_force_relocation (fixp)
6293 fixS *fixp;
6294{
6295 struct hppa_fix_struct *hppa_fixp = fixp->tc_fix_data;
6296
6297#ifdef OBJ_SOM
6298 if (fixp->fx_r_type == R_HPPA_ENTRY || fixp->fx_r_type == R_HPPA_EXIT)
6299 return 1;
6300#endif
6301
6302#define stub_needed(CALLER, CALLEE) \
6303 ((CALLEE) && (CALLER) && ((CALLEE) != (CALLER)))
6304
6305 /* It is necessary to force PC-relative calls/jumps to have a relocation
6306 entry if they're going to need either a argument relocation or long
6307 call stub. FIXME. Can't we need the same for absolute calls? */
753dcbbd 6308 if (fixp->fx_pcrel && fixp->fx_addsy
335d35c8
JL
6309 && (stub_needed (((obj_symbol_type *)
6310 fixp->fx_addsy->bsym)->tc_data.hppa_arg_reloc,
6311 hppa_fixp->fx_arg_reloc)))
6312 return 1;
6313
6314#undef stub_needed
6315
6316 /* No need (yet) to force another relocations to be emitted. */
6317 return 0;
6318}
6319
8f78d0e9
KR
6320/* Now for some ELF specific code. FIXME. */
6321#ifdef OBJ_ELF
6322static symext_chainS *symext_rootP;
6323static symext_chainS *symext_lastP;
6324
44c0de53
JL
6325/* Mark the end of a function so that it's possible to compute
6326 the size of the function in hppa_elf_final_processing. */
6327
6328static void
6329hppa_elf_mark_end_of_function ()
6330{
6331 /* ELF does not have EXIT relocations. All we do is create a
6332 temporary symbol marking the end of the function. */
6333 char *name = (char *)
6334 xmalloc (strlen ("L$\001end_") +
6335 strlen (S_GET_NAME (last_call_info->start_symbol)) + 1);
6336
6337 if (name)
6338 {
6339 symbolS *symbolP;
6340
6341 strcpy (name, "L$\001end_");
6342 strcat (name, S_GET_NAME (last_call_info->start_symbol));
6343
6344 /* If we have a .exit followed by a .procend, then the
6345 symbol will have already been defined. */
6346 symbolP = symbol_find (name);
6347 if (symbolP)
6348 {
6349 /* The symbol has already been defined! This can
6350 happen if we have a .exit followed by a .procend.
6351
6352 This is *not* an error. All we want to do is free
6353 the memory we just allocated for the name and continue. */
6354 xfree (name);
6355 }
6356 else
6357 {
6358 /* symbol value should be the offset of the
6359 last instruction of the function */
6360 symbolP = symbol_new (name, now_seg,
6361 (valueT) (obstack_next_free (&frags)
6362 - frag_now->fr_literal - 4),
6363 frag_now);
6364
6365 assert (symbolP);
6366 symbolP->bsym->flags = BSF_LOCAL;
6367 symbol_table_insert (symbolP);
6368 }
6369
6370 if (symbolP)
6371 last_call_info->end_symbol = symbolP;
6372 else
6373 as_bad ("Symbol '%s' could not be created.", name);
6374
6375 }
6376 else
6377 as_bad ("No memory for symbol name.");
6378
6379 /* Stuff away the location of the frag for the end of the function,
6380 and call pa_build_unwind_subspace to add an entry in the unwind
6381 table. */
6382 last_call_info->end_frag = frag_now;
6383}
6384
8f78d0e9 6385/* Do any symbol processing requested by the target-cpu or target-format. */
5cf4cd1b
KR
6386
6387void
6388hppa_tc_symbol (abfd, symbolP, sym_idx)
8f78d0e9
KR
6389 bfd *abfd;
6390 elf_symbol_type *symbolP;
5cf4cd1b
KR
6391 int sym_idx;
6392{
6393 symext_chainS *symextP;
6394 unsigned int arg_reloc;
6395
8f78d0e9 6396 /* Only functions can have argument relocations. */
5cf4cd1b
KR
6397 if (!(symbolP->symbol.flags & BSF_FUNCTION))
6398 return;
6399
6400 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
6401
8f78d0e9
KR
6402 /* If there are no argument relocation bits, then no relocation is
6403 necessary. Do not add this to the symextn section. */
6404 if (arg_reloc == 0)
6405 return;
6406
5cf4cd1b
KR
6407 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
6408
6409 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
6410 symextP[0].next = &symextP[1];
6411
6412 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
6413 symextP[1].next = NULL;
6414
6415 if (symext_rootP == NULL)
6416 {
6417 symext_rootP = &symextP[0];
6418 symext_lastP = &symextP[1];
6419 }
6420 else
6421 {
6422 symext_lastP->next = &symextP[0];
6423 symext_lastP = &symextP[1];
6424 }
6425}
6426
8f78d0e9 6427/* Make sections needed by the target cpu and/or target format. */
5cf4cd1b
KR
6428void
6429hppa_tc_make_sections (abfd)
8f78d0e9 6430 bfd *abfd;
5cf4cd1b
KR
6431{
6432 symext_chainS *symextP;
8f78d0e9 6433 int size, n;
5cf4cd1b
KR
6434 asection *symextn_sec;
6435 segT save_seg = now_seg;
6436 subsegT save_subseg = now_subseg;
6437
8f78d0e9
KR
6438 /* Build the symbol extension section. */
6439 hppa_tc_make_symextn_section ();
5cf4cd1b 6440
8f78d0e9
KR
6441 /* Force some calculation to occur. */
6442 bfd_set_section_contents (stdoutput, stdoutput->sections, "", 0, 0);
5cf4cd1b
KR
6443
6444 hppa_elf_stub_finish (abfd);
6445
8f78d0e9 6446 /* If no symbols for the symbol extension section, then stop now. */
5cf4cd1b
KR
6447 if (symext_rootP == NULL)
6448 return;
6449
8f78d0e9 6450 /* Count the number of symbols for the symbol extension section. */
5cf4cd1b
KR
6451 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6452 ;
6453
6454 size = sizeof (symext_entryS) * n;
6455
8f78d0e9
KR
6456 /* Switch to the symbol extension section. */
6457 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
5cf4cd1b
KR
6458
6459 frag_wane (frag_now);
6460 frag_new (0);
6461
6462 for (symextP = symext_rootP; symextP; symextP = symextP->next)
6463 {
6464 char *ptr;
8f78d0e9 6465 int *symtab_map = elf_sym_extra (abfd);
5cf4cd1b
KR
6466 int idx;
6467
8f78d0e9
KR
6468 /* First, patch the symbol extension record to reflect the true
6469 symbol table index. */
5cf4cd1b 6470
8f78d0e9 6471 if (ELF32_HPPA_SX_TYPE (symextP->entry) == HPPA_SXT_SYMNDX)
5cf4cd1b 6472 {
8f78d0e9 6473 idx = ELF32_HPPA_SX_VAL (symextP->entry) - 1;
5cf4cd1b 6474 symextP->entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX,
8f78d0e9 6475 symtab_map[idx]);
5cf4cd1b
KR
6476 }
6477
8f78d0e9
KR
6478 ptr = frag_more (sizeof (symextP->entry));
6479 md_number_to_chars (ptr, symextP->entry, sizeof (symextP->entry));
5cf4cd1b
KR
6480 }
6481
6482 frag_now->fr_fix = obstack_next_free (&frags) - frag_now->fr_literal;
6483 frag_wane (frag_now);
6484
8f78d0e9
KR
6485 /* Switch back to the original segment. */
6486 subseg_set (save_seg, save_subseg);
5cf4cd1b
KR
6487
6488 return;
6489}
6490
8f78d0e9
KR
6491/* Make the symbol extension section. */
6492
5cf4cd1b 6493static void
8f78d0e9 6494hppa_tc_make_symextn_section ()
5cf4cd1b 6495{
5cf4cd1b
KR
6496 if (symext_rootP)
6497 {
6498 symext_chainS *symextP;
6499 int n;
8f78d0e9 6500 unsigned int size;
5cf4cd1b
KR
6501 segT symextn_sec;
6502 segT save_seg = now_seg;
6503 subsegT save_subseg = now_subseg;
6504
6505 for (n = 0, symextP = symext_rootP; symextP; symextP = symextP->next, ++n)
6506 ;
6507
6508 size = sizeof (symext_entryS) * n;
6509
8f78d0e9 6510 symextn_sec = subseg_new (SYMEXTN_SECTION_NAME, 0);
5cf4cd1b 6511
8f78d0e9
KR
6512 bfd_set_section_flags (stdoutput, symextn_sec,
6513 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
5cf4cd1b
KR
6514 bfd_set_section_size (stdoutput, symextn_sec, size);
6515
8f78d0e9
KR
6516 /* Now, switch back to the original segment. */
6517 subseg_set (save_seg, save_subseg);
6518 }
6519}
6520
6521/* Build the symbol extension section. */
6522
6523static void
6524pa_build_symextn_section ()
6525{
6526 segT seg;
6527 asection *save_seg = now_seg;
6528 subsegT subseg = (subsegT) 0;
6529 subsegT save_subseg = now_subseg;
6530
6531 seg = subseg_new (".hppa_symextn", subseg);
6532 bfd_set_section_flags (stdoutput,
6533 seg,
c5e9ccd0 6534 SEC_HAS_CONTENTS | SEC_READONLY
8f78d0e9
KR
6535 | SEC_ALLOC | SEC_LOAD);
6536
6537 subseg_set (save_seg, save_subseg);
6538
6539}
6540
6541/* For ELF, this function serves one purpose: to setup the st_size
6542 field of STT_FUNC symbols. To do this, we need to scan the
6543 call_info structure list, determining st_size in one of two possible
6544 ways:
6545
6546 1. call_info->start_frag->fr_fix has the size of the fragment.
6547 This approach assumes that the function was built into a
6548 single fragment. This works for most cases, but might fail.
6549 For example, if there was a segment change in the middle of
6550 the function.
6551
6552 2. The st_size field is the difference in the addresses of the
6553 call_info->start_frag->fr_address field and the fr_address
6554 field of the next fragment with fr_type == rs_fill and
6555 fr_fix != 0. */
6556
6557void
6558elf_hppa_final_processing ()
6559{
6560 struct call_info *call_info_pointer;
6561
6562 for (call_info_pointer = call_info_root;
6563 call_info_pointer;
6564 call_info_pointer = call_info_pointer->ci_next)
6565 {
6566 elf_symbol_type *esym
c5e9ccd0 6567 = (elf_symbol_type *) call_info_pointer->start_symbol->bsym;
8f78d0e9
KR
6568 esym->internal_elf_sym.st_size =
6569 S_GET_VALUE (call_info_pointer->end_symbol)
c5e9ccd0 6570 - S_GET_VALUE (call_info_pointer->start_symbol) + 4;
5cf4cd1b
KR
6571 }
6572}
8f78d0e9 6573#endif
This page took 0.356839 seconds and 4 git commands to generate.