libctf: endianness fixes
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
101/*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108typedef struct
109{
d3ce72d0
NC
110 const insn_template *start;
111 const insn_template *end;
6305a203
L
112}
113templates;
114
115/* 386 operand encoding bytes: see 386 book for details of this. */
116typedef struct
117{
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121}
122modrm_byte;
123
124/* x86-64 extension prefix. */
125typedef int rex_byte;
126
6305a203
L
127/* 386 opcode byte to code indirect addressing. */
128typedef struct
129{
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133}
134sib_byte;
135
6305a203
L
136/* x86 arch names, types and features */
137typedef struct
138{
139 const char *name; /* arch name */
8a2c8fef 140 unsigned int len; /* arch string length */
6305a203
L
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 143 unsigned int skip; /* show_arch should skip this. */
6305a203
L
144}
145arch_entry;
146
293f5f65
L
147/* Used to turn off indicated flags. */
148typedef struct
149{
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153}
154noarch_entry;
155
78f12dd3 156static void update_code_flag (int, int);
e3bb37b5
L
157static void set_code_flag (int);
158static void set_16bit_gcc_code_flag (int);
159static void set_intel_syntax (int);
1efbbeb4 160static void set_intel_mnemonic (int);
db51cc60 161static void set_allow_index_reg (int);
7bab8ab5 162static void set_check (int);
e3bb37b5 163static void set_cpu_arch (int);
6482c264 164#ifdef TE_PE
e3bb37b5 165static void pe_directive_secrel (int);
6482c264 166#endif
e3bb37b5
L
167static void signed_cons (int);
168static char *output_invalid (int c);
ee86248c
JB
169static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
a7619375 173static int i386_att_operand (char *);
e3bb37b5 174static int i386_intel_operand (char *, int);
ee86248c
JB
175static int i386_intel_simplify (expressionS *);
176static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
177static const reg_entry *parse_register (char *, char **);
178static char *parse_insn (char *, char *);
179static char *parse_operands (char *, const char *);
180static void swap_operands (void);
4d456e3d 181static void swap_2_operands (int, int);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
43234a1e
L
213/* This struct describes rounding control and SAE in the instruction. */
214struct RC_Operation
215{
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225};
226
227static struct RC_Operation rc_op;
228
229/* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232struct Mask_Operation
233{
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238};
239
240static struct Mask_Operation mask_op;
241
242/* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244struct Broadcast_Operation
245{
8e6e0792 246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
4a1b91ea
L
251
252 /* Number of bytes to broadcast. */
253 int bytes;
43234a1e
L
254};
255
256static struct Broadcast_Operation broadcast_op;
257
c0f3af97
L
258/* VEX prefix. */
259typedef struct
260{
43234a1e
L
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
c0f3af97
L
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266} vex_prefix;
267
252b5132 268/* 'md_assemble ()' gathers together information and puts it into a
47926f60 269 i386_insn. */
252b5132 270
520dc8e8
AM
271union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
a65babc9
L
278enum i386_error
279 {
86e026a4 280 operand_size_mismatch,
a65babc9
L
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
a65babc9
L
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
6c30d220
L
288 unsupported,
289 invalid_vsib_address,
7bab8ab5 290 invalid_vector_register_set,
43234a1e
L
291 unsupported_vector_index_register,
292 unsupported_broadcast,
43234a1e
L
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
a65babc9
L
300 };
301
252b5132
RH
302struct _i386_insn
303 {
47926f60 304 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 305 insn_template tm;
252b5132 306
7d5e4556
L
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
252b5132
RH
309 char suffix;
310
47926f60 311 /* OPERANDS gives the number of given operands. */
252b5132
RH
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
47926f60 316 operands. */
252b5132
RH
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 320 use OP[i] for the corresponding operand. */
40fb9820 321 i386_operand_type types[MAX_OPERANDS];
252b5132 322
520dc8e8
AM
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
252b5132 326
3e73aa7c
JH
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329#define Operand_PCrel 1
c48dadc9 330#define Operand_Mem 2
3e73aa7c 331
252b5132 332 /* Relocation type for operand */
f86103b7 333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 334
252b5132
RH
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 342 explicit segment overrides are given. */
ce8a8b2f 343 const seg_entry *seg[2];
252b5132 344
8325cc63
JB
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
252b5132
RH
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
b4a3a7b4
L
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
252b5132 365 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 366 addressing modes of this insn are encoded. */
252b5132 367 modrm_byte rm;
3e73aa7c 368 rex_byte rex;
43234a1e 369 rex_byte vrex;
252b5132 370 sib_byte sib;
c0f3af97 371 vex_prefix vex;
b6169b20 372
43234a1e
L
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
86fa6981
L
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
64c49ab3
JB
390 dir_encoding_store,
391 dir_encoding_swap
86fa6981 392 } dir_encoding;
891edac4 393
a501d77e
L
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
f8a5c266 401
6b6b6807
L
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
b6f8c7c4
L
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
86fa6981
L
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
d5de92cf
L
417 /* REP prefix. */
418 const char *rep_prefix;
419
165de32a
L
420 /* HLE prefix. */
421 const char *hle_prefix;
42164a71 422
7e8b059b
L
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
04ef582a
L
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
891edac4 429 /* Error message. */
a65babc9 430 enum i386_error error;
252b5132
RH
431 };
432
433typedef struct _i386_insn i386_insn;
434
43234a1e
L
435/* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437struct RC_name
438{
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442};
443
444static const struct RC_name RC_NamesTable[] =
445{
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451};
452
252b5132
RH
453/* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 455const char extra_symbol_chars[] = "*%-([{}"
252b5132 456#ifdef LEX_AT
32137342
NC
457 "@"
458#endif
459#ifdef LEX_QM
460 "?"
252b5132 461#endif
32137342 462 ;
252b5132 463
29b0f896
AM
464#if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 466 && !defined (TE_GNU) \
29b0f896 467 && !defined (TE_LINUX) \
8d63c93e 468 && !defined (TE_NACL) \
29b0f896 469 && !defined (TE_FreeBSD) \
5b806d27 470 && !defined (TE_DragonFly) \
29b0f896 471 && !defined (TE_NetBSD)))
252b5132 472/* This array holds the chars that always start a comment. If the
b3b91714
AM
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475const char *i386_comment_chars = "#/";
476#define SVR4_COMMENT_CHARS 1
252b5132 477#define PREFIX_SEPARATOR '\\'
252b5132 478
b3b91714
AM
479#else
480const char *i386_comment_chars = "#";
481#define PREFIX_SEPARATOR '/'
482#endif
483
252b5132
RH
484/* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 488 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
252b5132 491 '/' isn't otherwise defined. */
b3b91714 492const char line_comment_chars[] = "#/";
252b5132 493
63a0b638 494const char line_separator_chars[] = ";";
252b5132 495
ce8a8b2f
AM
496/* Chars that can be used to separate mant from exp in floating point
497 nums. */
252b5132
RH
498const char EXP_CHARS[] = "eE";
499
ce8a8b2f
AM
500/* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
252b5132
RH
503const char FLT_CHARS[] = "fFdDxX";
504
ce8a8b2f 505/* Tables for lexical analysis. */
252b5132
RH
506static char mnemonic_chars[256];
507static char register_chars[256];
508static char operand_chars[256];
509static char identifier_chars[256];
510static char digit_chars[256];
511
ce8a8b2f 512/* Lexical macros. */
252b5132
RH
513#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514#define is_operand_char(x) (operand_chars[(unsigned char) x])
515#define is_register_char(x) (register_chars[(unsigned char) x])
516#define is_space_char(x) ((x) == ' ')
517#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518#define is_digit_char(x) (digit_chars[(unsigned char) x])
519
0234cb7c 520/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
521static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523/* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
47926f60 526 assembler instruction). */
252b5132 527static char save_stack[32];
ce8a8b2f 528static char *save_stack_p;
252b5132
RH
529#define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531#define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
47926f60 534/* The instruction we're assembling. */
252b5132
RH
535static i386_insn i;
536
537/* Possible templates for current insn. */
538static const templates *current_templates;
539
31b2323c
L
540/* Per instruction expressionS buffers: max displacements & immediates. */
541static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 543
47926f60 544/* Current operand we are working on. */
ee86248c 545static int this_operand = -1;
252b5132 546
3e73aa7c
JH
547/* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555static enum flag_code flag_code;
4fa24527 556static unsigned int object_64bit;
862be3fb 557static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
558static int use_rela_relocations = 0;
559
7af8ed2d
NC
560#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
351f65ca
L
564/* The ELF ABI to use. */
565enum x86_elf_abi
566{
567 I386_ABI,
7f56bc95
L
568 X86_64_ABI,
569 X86_64_X32_ABI
351f65ca
L
570};
571
572static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 573#endif
351f65ca 574
167ad85b
TG
575#if defined (TE_PE) || defined (TE_PEP)
576/* Use big object file format. */
577static int use_big_obj = 0;
578#endif
579
8dcea932
L
580#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581/* 1 if generating code for a shared library. */
582static int shared = 0;
583#endif
584
47926f60
KH
585/* 1 for intel syntax,
586 0 if att syntax. */
587static int intel_syntax = 0;
252b5132 588
e89c5eaa
L
589/* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591static int intel64;
592
1efbbeb4
L
593/* 1 for intel mnemonic,
594 0 if att mnemonic. */
595static int intel_mnemonic = !SYSV386_COMPAT;
596
a60de03c
JB
597/* 1 if pseudo registers are permitted. */
598static int allow_pseudo_reg = 0;
599
47926f60
KH
600/* 1 if register prefix % not required. */
601static int allow_naked_reg = 0;
252b5132 602
33eaf5de 603/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606static int add_bnd_prefix = 0;
607
ba104c83 608/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
609static int allow_index_reg = 0;
610
d022bddd
IT
611/* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613static int omit_lock_prefix = 0;
614
e4e00185
AS
615/* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617static int avoid_fence = 0;
618
0cb4071e
L
619/* 1 if the assembler should generate relax relocations. */
620
621static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
7bab8ab5 624static enum check_kind
daf50ae7 625 {
7bab8ab5
JB
626 check_none = 0,
627 check_warning,
628 check_error
daf50ae7 629 }
7bab8ab5 630sse_check, operand_check = check_warning;
daf50ae7 631
b6f8c7c4
L
632/* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637static int optimize = 0;
638
639/* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646static int optimize_for_space = 0;
647
2ca3ace5
L
648/* Register prefix used for error message. */
649static const char *register_prefix = "%";
650
47926f60
KH
651/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654static char stackop_size = '\0';
eecb386c 655
12b55ccc
L
656/* Non-zero to optimize code alignment. */
657int optimize_align_code = 1;
658
47926f60
KH
659/* Non-zero to quieten some warnings. */
660static int quiet_warnings = 0;
a38cf1db 661
47926f60
KH
662/* CPU name. */
663static const char *cpu_arch_name = NULL;
6305a203 664static char *cpu_sub_arch_name = NULL;
a38cf1db 665
47926f60 666/* CPU feature flags. */
40fb9820
L
667static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
ccc9c027
L
669/* If we have selected a cpu we are generating instructions for. */
670static int cpu_arch_tune_set = 0;
671
9103f4f4 672/* Cpu we are generating instructions for. */
fbf3f584 673enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
674
675/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 676static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 677
ccc9c027 678/* CPU instruction set architecture used. */
fbf3f584 679enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 680
9103f4f4 681/* CPU feature flags of instruction set architecture used. */
fbf3f584 682i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 683
fddf5b5b
AM
684/* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686static unsigned int no_cond_jump_promotion = 0;
687
c0f3af97
L
688/* Encode SSE instructions with VEX prefix. */
689static unsigned int sse2avx;
690
539f890d
L
691/* Encode scalar AVX instructions with specific vector length. */
692static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
03751133
L
698/* Encode VEX WIG instructions with specific vex.w. */
699static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
43234a1e
L
705/* Encode scalar EVEX LIG instructions with specific vector length. */
706static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713/* Encode EVEX WIG instructions with specific evex.w. */
714static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
d3d3c6db
IT
720/* Value to encode in EVEX RC bits, for SAE-only instructions. */
721static enum rc_type evexrcig = rne;
722
29b0f896 723/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 724static symbolS *GOT_symbol;
29b0f896 725
a4447b93
RH
726/* The dwarf2 return column, adjusted for 32 or 64 bit. */
727unsigned int x86_dwarf2_return_column;
728
729/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730int x86_cie_data_alignment;
731
252b5132 732/* Interface to relax_segment.
fddf5b5b
AM
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
252b5132 736
47926f60 737/* Types. */
93c2a809
AM
738#define UNCOND_JUMP 0
739#define COND_JUMP 1
740#define COND_JUMP86 2
fddf5b5b 741
47926f60 742/* Sizes. */
252b5132
RH
743#define CODE16 1
744#define SMALL 0
29b0f896 745#define SMALL16 (SMALL | CODE16)
252b5132 746#define BIG 2
29b0f896 747#define BIG16 (BIG | CODE16)
252b5132
RH
748
749#ifndef INLINE
750#ifdef __GNUC__
751#define INLINE __inline__
752#else
753#define INLINE
754#endif
755#endif
756
fddf5b5b
AM
757#define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759#define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761#define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
763
764/* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772const relax_typeS md_relax_table[] =
773{
24eab124
AM
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
93c2a809 777 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 778 4) which index into the table to try if we can't fit into this one. */
252b5132 779
fddf5b5b 780 /* UNCOND_JUMP states. */
93c2a809
AM
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
252b5132 785 {0, 0, 4, 0},
93c2a809
AM
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
788 {0, 0, 2, 0},
789
93c2a809
AM
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
fddf5b5b 796 /* word conditionals add 3 bytes to frag:
93c2a809
AM
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
252b5132
RH
809};
810
9103f4f4
L
811static const arch_entry cpu_arch[] =
812{
89507696
JB
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
8a2c8fef 815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 816 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 818 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 820 CPU_NONE_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 822 CPU_I186_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 824 CPU_I286_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 826 CPU_I386_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 828 CPU_I486_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 830 CPU_I586_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 832 CPU_I686_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 834 CPU_I586_FLAGS, 0 },
8a2c8fef 835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 836 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 838 CPU_P2_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 840 CPU_P3_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 842 CPU_P4_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 844 CPU_CORE_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 846 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 848 CPU_CORE_FLAGS, 1 },
8a2c8fef 849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 850 CPU_CORE_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 852 CPU_CORE2_FLAGS, 1 },
8a2c8fef 853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 854 CPU_CORE2_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 856 CPU_COREI7_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 858 CPU_L1OM_FLAGS, 0 },
7a9068fe 859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 860 CPU_K1OM_FLAGS, 0 },
81486035 861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 862 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 864 CPU_K6_FLAGS, 0 },
8a2c8fef 865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 866 CPU_K6_2_FLAGS, 0 },
8a2c8fef 867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 868 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 870 CPU_K8_FLAGS, 1 },
8a2c8fef 871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 872 CPU_K8_FLAGS, 0 },
8a2c8fef 873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 874 CPU_K8_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 876 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 878 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 880 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 882 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 884 CPU_BDVER4_FLAGS, 0 },
029f3522 885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 886 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
7b458c12 889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 890 CPU_BTVER1_FLAGS, 0 },
7b458c12 891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 892 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_8087_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_287_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_387_FLAGS, 0 },
1848e567
L
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
d871f3f4
L
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_MMX_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_SSE_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_SSE2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_SSE3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_AVX_FLAGS, 0 },
6c30d220 923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_AVX2_FLAGS, 0 },
43234a1e 925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_AVX512F_FLAGS, 0 },
43234a1e 927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_AVX512CD_FLAGS, 0 },
43234a1e 929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_AVX512ER_FLAGS, 0 },
43234a1e 931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_VMX_FLAGS, 0 },
8729a6f6 941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_SMX_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_AES_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_F16C_FLAGS, 0 },
6c30d220 965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_BMI2_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_FMA_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_FMA4_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_XOP_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_LWP_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_MOVBE_FLAGS, 0 },
60aa667e 977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_CX16_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_EPT_FLAGS, 0 },
6c30d220 981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_LZCNT_FLAGS, 0 },
42164a71 983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_HLE_FLAGS, 0 },
42164a71 985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_RTM_FLAGS, 0 },
6c30d220 987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_CLFLUSH_FLAGS, 0 },
22109423 991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_NOP_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SVME_FLAGS, 1 },
8a2c8fef 1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_SVME_FLAGS, 0 },
8a2c8fef 1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_ABM_FLAGS, 0 },
87973e9f 1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_BMI_FLAGS, 0 },
2a2a0f38 1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_TBM_FLAGS, 0 },
e2e1fcde 1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_ADX_FLAGS, 0 },
e2e1fcde 1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_SMAP_FLAGS, 0 },
7e8b059b 1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_MPX_FLAGS, 0 },
a0046408 1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_SHA_FLAGS, 0 },
963f3586 1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_SE1_FLAGS, 0 },
c5e7287a 1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_CLZERO_FLAGS, 0 },
9916071f 1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_MWAITX_FLAGS, 0 },
8eab4136 1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_OSPKE_FLAGS, 0 },
8bc52696 1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1085 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1086 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1087 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1088 CPU_ENQCMD_FLAGS, 0 },
293f5f65
L
1089};
1090
1091static const noarch_entry cpu_noarch[] =
1092{
1093 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1094 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1095 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1096 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1097 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1098 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1099 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1100 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1101 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1103 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1104 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1105 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1106 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1107 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1108 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1109 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1118 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1119 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1120 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1121 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1122 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1123 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1124 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1125 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1126 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1127 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1128 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1129 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1130 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1131};
1132
704209c0 1133#ifdef I386COFF
a6c24e68
NC
1134/* Like s_lcomm_internal in gas/read.c but the alignment string
1135 is allowed to be optional. */
1136
1137static symbolS *
1138pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1139{
1140 addressT align = 0;
1141
1142 SKIP_WHITESPACE ();
1143
7ab9ffdd 1144 if (needs_align
a6c24e68
NC
1145 && *input_line_pointer == ',')
1146 {
1147 align = parse_align (needs_align - 1);
7ab9ffdd 1148
a6c24e68
NC
1149 if (align == (addressT) -1)
1150 return NULL;
1151 }
1152 else
1153 {
1154 if (size >= 8)
1155 align = 3;
1156 else if (size >= 4)
1157 align = 2;
1158 else if (size >= 2)
1159 align = 1;
1160 else
1161 align = 0;
1162 }
1163
1164 bss_alloc (symbolP, size, align);
1165 return symbolP;
1166}
1167
704209c0 1168static void
a6c24e68
NC
1169pe_lcomm (int needs_align)
1170{
1171 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1172}
704209c0 1173#endif
a6c24e68 1174
29b0f896
AM
1175const pseudo_typeS md_pseudo_table[] =
1176{
1177#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1178 {"align", s_align_bytes, 0},
1179#else
1180 {"align", s_align_ptwo, 0},
1181#endif
1182 {"arch", set_cpu_arch, 0},
1183#ifndef I386COFF
1184 {"bss", s_bss, 0},
a6c24e68
NC
1185#else
1186 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1187#endif
1188 {"ffloat", float_cons, 'f'},
1189 {"dfloat", float_cons, 'd'},
1190 {"tfloat", float_cons, 'x'},
1191 {"value", cons, 2},
d182319b 1192 {"slong", signed_cons, 4},
29b0f896
AM
1193 {"noopt", s_ignore, 0},
1194 {"optim", s_ignore, 0},
1195 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1196 {"code16", set_code_flag, CODE_16BIT},
1197 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1198#ifdef BFD64
29b0f896 1199 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1200#endif
29b0f896
AM
1201 {"intel_syntax", set_intel_syntax, 1},
1202 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1203 {"intel_mnemonic", set_intel_mnemonic, 1},
1204 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1205 {"allow_index_reg", set_allow_index_reg, 1},
1206 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1207 {"sse_check", set_check, 0},
1208 {"operand_check", set_check, 1},
3b22753a
L
1209#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1210 {"largecomm", handle_large_common, 0},
07a53e5c 1211#else
68d20676 1212 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1213 {"loc", dwarf2_directive_loc, 0},
1214 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1215#endif
6482c264
NC
1216#ifdef TE_PE
1217 {"secrel32", pe_directive_secrel, 0},
1218#endif
29b0f896
AM
1219 {0, 0, 0}
1220};
1221
1222/* For interface with expression (). */
1223extern char *input_line_pointer;
1224
1225/* Hash table for instruction mnemonic lookup. */
1226static struct hash_control *op_hash;
1227
1228/* Hash table for register lookup. */
1229static struct hash_control *reg_hash;
1230\f
ce8a8b2f
AM
1231 /* Various efficient no-op patterns for aligning code labels.
1232 Note: Don't try to assemble the instructions in the comments.
1233 0L and 0w are not legal. */
62a02d25
L
1234static const unsigned char f32_1[] =
1235 {0x90}; /* nop */
1236static const unsigned char f32_2[] =
1237 {0x66,0x90}; /* xchg %ax,%ax */
1238static const unsigned char f32_3[] =
1239 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1240static const unsigned char f32_4[] =
1241 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1242static const unsigned char f32_6[] =
1243 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1244static const unsigned char f32_7[] =
1245 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1246static const unsigned char f16_3[] =
3ae729d5 1247 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1248static const unsigned char f16_4[] =
3ae729d5
L
1249 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1250static const unsigned char jump_disp8[] =
1251 {0xeb}; /* jmp disp8 */
1252static const unsigned char jump32_disp32[] =
1253 {0xe9}; /* jmp disp32 */
1254static const unsigned char jump16_disp32[] =
1255 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1256/* 32-bit NOPs patterns. */
1257static const unsigned char *const f32_patt[] = {
3ae729d5 1258 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1259};
1260/* 16-bit NOPs patterns. */
1261static const unsigned char *const f16_patt[] = {
3ae729d5 1262 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1263};
1264/* nopl (%[re]ax) */
1265static const unsigned char alt_3[] =
1266 {0x0f,0x1f,0x00};
1267/* nopl 0(%[re]ax) */
1268static const unsigned char alt_4[] =
1269 {0x0f,0x1f,0x40,0x00};
1270/* nopl 0(%[re]ax,%[re]ax,1) */
1271static const unsigned char alt_5[] =
1272 {0x0f,0x1f,0x44,0x00,0x00};
1273/* nopw 0(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_6[] =
1275 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1276/* nopl 0L(%[re]ax) */
1277static const unsigned char alt_7[] =
1278 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1279/* nopl 0L(%[re]ax,%[re]ax,1) */
1280static const unsigned char alt_8[] =
1281 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1282/* nopw 0L(%[re]ax,%[re]ax,1) */
1283static const unsigned char alt_9[] =
1284 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1286static const unsigned char alt_10[] =
1287 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1288/* data16 nopw %cs:0L(%eax,%eax,1) */
1289static const unsigned char alt_11[] =
1290 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1291/* 32-bit and 64-bit NOPs patterns. */
1292static const unsigned char *const alt_patt[] = {
1293 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1294 alt_9, alt_10, alt_11
62a02d25
L
1295};
1296
1297/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1298 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1299
1300static void
1301i386_output_nops (char *where, const unsigned char *const *patt,
1302 int count, int max_single_nop_size)
1303
1304{
3ae729d5
L
1305 /* Place the longer NOP first. */
1306 int last;
1307 int offset;
3076e594
NC
1308 const unsigned char *nops;
1309
1310 if (max_single_nop_size < 1)
1311 {
1312 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1313 max_single_nop_size);
1314 return;
1315 }
1316
1317 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1318
1319 /* Use the smaller one if the requsted one isn't available. */
1320 if (nops == NULL)
62a02d25 1321 {
3ae729d5
L
1322 max_single_nop_size--;
1323 nops = patt[max_single_nop_size - 1];
62a02d25
L
1324 }
1325
3ae729d5
L
1326 last = count % max_single_nop_size;
1327
1328 count -= last;
1329 for (offset = 0; offset < count; offset += max_single_nop_size)
1330 memcpy (where + offset, nops, max_single_nop_size);
1331
1332 if (last)
1333 {
1334 nops = patt[last - 1];
1335 if (nops == NULL)
1336 {
1337 /* Use the smaller one plus one-byte NOP if the needed one
1338 isn't available. */
1339 last--;
1340 nops = patt[last - 1];
1341 memcpy (where + offset, nops, last);
1342 where[offset + last] = *patt[0];
1343 }
1344 else
1345 memcpy (where + offset, nops, last);
1346 }
62a02d25
L
1347}
1348
3ae729d5
L
1349static INLINE int
1350fits_in_imm7 (offsetT num)
1351{
1352 return (num & 0x7f) == num;
1353}
1354
1355static INLINE int
1356fits_in_imm31 (offsetT num)
1357{
1358 return (num & 0x7fffffff) == num;
1359}
62a02d25
L
1360
1361/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1362 single NOP instruction LIMIT. */
1363
1364void
3ae729d5 1365i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1366{
3ae729d5 1367 const unsigned char *const *patt = NULL;
62a02d25 1368 int max_single_nop_size;
3ae729d5
L
1369 /* Maximum number of NOPs before switching to jump over NOPs. */
1370 int max_number_of_nops;
62a02d25 1371
3ae729d5 1372 switch (fragP->fr_type)
62a02d25 1373 {
3ae729d5
L
1374 case rs_fill_nop:
1375 case rs_align_code:
1376 break;
1377 default:
62a02d25
L
1378 return;
1379 }
1380
ccc9c027
L
1381 /* We need to decide which NOP sequence to use for 32bit and
1382 64bit. When -mtune= is used:
4eed87de 1383
76bc74dc
L
1384 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1385 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1386 2. For the rest, alt_patt will be used.
1387
1388 When -mtune= isn't used, alt_patt will be used if
22109423 1389 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1390 be used.
ccc9c027
L
1391
1392 When -march= or .arch is used, we can't use anything beyond
1393 cpu_arch_isa_flags. */
1394
1395 if (flag_code == CODE_16BIT)
1396 {
3ae729d5
L
1397 patt = f16_patt;
1398 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1399 /* Limit number of NOPs to 2 in 16-bit mode. */
1400 max_number_of_nops = 2;
252b5132 1401 }
33fef721 1402 else
ccc9c027 1403 {
fbf3f584 1404 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1405 {
1406 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1407 switch (cpu_arch_tune)
1408 {
1409 case PROCESSOR_UNKNOWN:
1410 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1411 optimize with nops. */
1412 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1413 patt = alt_patt;
ccc9c027
L
1414 else
1415 patt = f32_patt;
1416 break;
ccc9c027
L
1417 case PROCESSOR_PENTIUM4:
1418 case PROCESSOR_NOCONA:
ef05d495 1419 case PROCESSOR_CORE:
76bc74dc 1420 case PROCESSOR_CORE2:
bd5295b2 1421 case PROCESSOR_COREI7:
3632d14b 1422 case PROCESSOR_L1OM:
7a9068fe 1423 case PROCESSOR_K1OM:
76bc74dc 1424 case PROCESSOR_GENERIC64:
ccc9c027
L
1425 case PROCESSOR_K6:
1426 case PROCESSOR_ATHLON:
1427 case PROCESSOR_K8:
4eed87de 1428 case PROCESSOR_AMDFAM10:
8aedb9fe 1429 case PROCESSOR_BD:
029f3522 1430 case PROCESSOR_ZNVER:
7b458c12 1431 case PROCESSOR_BT:
80b8656c 1432 patt = alt_patt;
ccc9c027 1433 break;
76bc74dc 1434 case PROCESSOR_I386:
ccc9c027
L
1435 case PROCESSOR_I486:
1436 case PROCESSOR_PENTIUM:
2dde1948 1437 case PROCESSOR_PENTIUMPRO:
81486035 1438 case PROCESSOR_IAMCU:
ccc9c027
L
1439 case PROCESSOR_GENERIC32:
1440 patt = f32_patt;
1441 break;
4eed87de 1442 }
ccc9c027
L
1443 }
1444 else
1445 {
fbf3f584 1446 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1447 {
1448 case PROCESSOR_UNKNOWN:
e6a14101 1449 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1450 PROCESSOR_UNKNOWN. */
1451 abort ();
1452 break;
1453
76bc74dc 1454 case PROCESSOR_I386:
ccc9c027
L
1455 case PROCESSOR_I486:
1456 case PROCESSOR_PENTIUM:
81486035 1457 case PROCESSOR_IAMCU:
ccc9c027
L
1458 case PROCESSOR_K6:
1459 case PROCESSOR_ATHLON:
1460 case PROCESSOR_K8:
4eed87de 1461 case PROCESSOR_AMDFAM10:
8aedb9fe 1462 case PROCESSOR_BD:
029f3522 1463 case PROCESSOR_ZNVER:
7b458c12 1464 case PROCESSOR_BT:
ccc9c027
L
1465 case PROCESSOR_GENERIC32:
1466 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1467 with nops. */
1468 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1469 patt = alt_patt;
ccc9c027
L
1470 else
1471 patt = f32_patt;
1472 break;
76bc74dc
L
1473 case PROCESSOR_PENTIUMPRO:
1474 case PROCESSOR_PENTIUM4:
1475 case PROCESSOR_NOCONA:
1476 case PROCESSOR_CORE:
ef05d495 1477 case PROCESSOR_CORE2:
bd5295b2 1478 case PROCESSOR_COREI7:
3632d14b 1479 case PROCESSOR_L1OM:
7a9068fe 1480 case PROCESSOR_K1OM:
22109423 1481 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1482 patt = alt_patt;
ccc9c027
L
1483 else
1484 patt = f32_patt;
1485 break;
1486 case PROCESSOR_GENERIC64:
80b8656c 1487 patt = alt_patt;
ccc9c027 1488 break;
4eed87de 1489 }
ccc9c027
L
1490 }
1491
76bc74dc
L
1492 if (patt == f32_patt)
1493 {
3ae729d5
L
1494 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1495 /* Limit number of NOPs to 2 for older processors. */
1496 max_number_of_nops = 2;
76bc74dc
L
1497 }
1498 else
1499 {
3ae729d5
L
1500 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1501 /* Limit number of NOPs to 7 for newer processors. */
1502 max_number_of_nops = 7;
1503 }
1504 }
1505
1506 if (limit == 0)
1507 limit = max_single_nop_size;
1508
1509 if (fragP->fr_type == rs_fill_nop)
1510 {
1511 /* Output NOPs for .nop directive. */
1512 if (limit > max_single_nop_size)
1513 {
1514 as_bad_where (fragP->fr_file, fragP->fr_line,
1515 _("invalid single nop size: %d "
1516 "(expect within [0, %d])"),
1517 limit, max_single_nop_size);
1518 return;
1519 }
1520 }
1521 else
1522 fragP->fr_var = count;
1523
1524 if ((count / max_single_nop_size) > max_number_of_nops)
1525 {
1526 /* Generate jump over NOPs. */
1527 offsetT disp = count - 2;
1528 if (fits_in_imm7 (disp))
1529 {
1530 /* Use "jmp disp8" if possible. */
1531 count = disp;
1532 where[0] = jump_disp8[0];
1533 where[1] = count;
1534 where += 2;
1535 }
1536 else
1537 {
1538 unsigned int size_of_jump;
1539
1540 if (flag_code == CODE_16BIT)
1541 {
1542 where[0] = jump16_disp32[0];
1543 where[1] = jump16_disp32[1];
1544 size_of_jump = 2;
1545 }
1546 else
1547 {
1548 where[0] = jump32_disp32[0];
1549 size_of_jump = 1;
1550 }
1551
1552 count -= size_of_jump + 4;
1553 if (!fits_in_imm31 (count))
1554 {
1555 as_bad_where (fragP->fr_file, fragP->fr_line,
1556 _("jump over nop padding out of range"));
1557 return;
1558 }
1559
1560 md_number_to_chars (where + size_of_jump, count, 4);
1561 where += size_of_jump + 4;
76bc74dc 1562 }
ccc9c027 1563 }
3ae729d5
L
1564
1565 /* Generate multiple NOPs. */
1566 i386_output_nops (where, patt, count, limit);
252b5132
RH
1567}
1568
c6fb90c8 1569static INLINE int
0dfbf9d7 1570operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1571{
0dfbf9d7 1572 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1573 {
1574 case 3:
0dfbf9d7 1575 if (x->array[2])
c6fb90c8 1576 return 0;
1a0670f3 1577 /* Fall through. */
c6fb90c8 1578 case 2:
0dfbf9d7 1579 if (x->array[1])
c6fb90c8 1580 return 0;
1a0670f3 1581 /* Fall through. */
c6fb90c8 1582 case 1:
0dfbf9d7 1583 return !x->array[0];
c6fb90c8
L
1584 default:
1585 abort ();
1586 }
40fb9820
L
1587}
1588
c6fb90c8 1589static INLINE void
0dfbf9d7 1590operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1591{
0dfbf9d7 1592 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1593 {
1594 case 3:
0dfbf9d7 1595 x->array[2] = v;
1a0670f3 1596 /* Fall through. */
c6fb90c8 1597 case 2:
0dfbf9d7 1598 x->array[1] = v;
1a0670f3 1599 /* Fall through. */
c6fb90c8 1600 case 1:
0dfbf9d7 1601 x->array[0] = v;
1a0670f3 1602 /* Fall through. */
c6fb90c8
L
1603 break;
1604 default:
1605 abort ();
1606 }
1607}
40fb9820 1608
c6fb90c8 1609static INLINE int
0dfbf9d7
L
1610operand_type_equal (const union i386_operand_type *x,
1611 const union i386_operand_type *y)
c6fb90c8 1612{
0dfbf9d7 1613 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1614 {
1615 case 3:
0dfbf9d7 1616 if (x->array[2] != y->array[2])
c6fb90c8 1617 return 0;
1a0670f3 1618 /* Fall through. */
c6fb90c8 1619 case 2:
0dfbf9d7 1620 if (x->array[1] != y->array[1])
c6fb90c8 1621 return 0;
1a0670f3 1622 /* Fall through. */
c6fb90c8 1623 case 1:
0dfbf9d7 1624 return x->array[0] == y->array[0];
c6fb90c8
L
1625 break;
1626 default:
1627 abort ();
1628 }
1629}
40fb9820 1630
0dfbf9d7
L
1631static INLINE int
1632cpu_flags_all_zero (const union i386_cpu_flags *x)
1633{
1634 switch (ARRAY_SIZE(x->array))
1635 {
53467f57
IT
1636 case 4:
1637 if (x->array[3])
1638 return 0;
1639 /* Fall through. */
0dfbf9d7
L
1640 case 3:
1641 if (x->array[2])
1642 return 0;
1a0670f3 1643 /* Fall through. */
0dfbf9d7
L
1644 case 2:
1645 if (x->array[1])
1646 return 0;
1a0670f3 1647 /* Fall through. */
0dfbf9d7
L
1648 case 1:
1649 return !x->array[0];
1650 default:
1651 abort ();
1652 }
1653}
1654
0dfbf9d7
L
1655static INLINE int
1656cpu_flags_equal (const union i386_cpu_flags *x,
1657 const union i386_cpu_flags *y)
1658{
1659 switch (ARRAY_SIZE(x->array))
1660 {
53467f57
IT
1661 case 4:
1662 if (x->array[3] != y->array[3])
1663 return 0;
1664 /* Fall through. */
0dfbf9d7
L
1665 case 3:
1666 if (x->array[2] != y->array[2])
1667 return 0;
1a0670f3 1668 /* Fall through. */
0dfbf9d7
L
1669 case 2:
1670 if (x->array[1] != y->array[1])
1671 return 0;
1a0670f3 1672 /* Fall through. */
0dfbf9d7
L
1673 case 1:
1674 return x->array[0] == y->array[0];
1675 break;
1676 default:
1677 abort ();
1678 }
1679}
c6fb90c8
L
1680
1681static INLINE int
1682cpu_flags_check_cpu64 (i386_cpu_flags f)
1683{
1684 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1685 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1686}
1687
c6fb90c8
L
1688static INLINE i386_cpu_flags
1689cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1690{
c6fb90c8
L
1691 switch (ARRAY_SIZE (x.array))
1692 {
53467f57
IT
1693 case 4:
1694 x.array [3] &= y.array [3];
1695 /* Fall through. */
c6fb90c8
L
1696 case 3:
1697 x.array [2] &= y.array [2];
1a0670f3 1698 /* Fall through. */
c6fb90c8
L
1699 case 2:
1700 x.array [1] &= y.array [1];
1a0670f3 1701 /* Fall through. */
c6fb90c8
L
1702 case 1:
1703 x.array [0] &= y.array [0];
1704 break;
1705 default:
1706 abort ();
1707 }
1708 return x;
1709}
40fb9820 1710
c6fb90c8
L
1711static INLINE i386_cpu_flags
1712cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1713{
c6fb90c8 1714 switch (ARRAY_SIZE (x.array))
40fb9820 1715 {
53467f57
IT
1716 case 4:
1717 x.array [3] |= y.array [3];
1718 /* Fall through. */
c6fb90c8
L
1719 case 3:
1720 x.array [2] |= y.array [2];
1a0670f3 1721 /* Fall through. */
c6fb90c8
L
1722 case 2:
1723 x.array [1] |= y.array [1];
1a0670f3 1724 /* Fall through. */
c6fb90c8
L
1725 case 1:
1726 x.array [0] |= y.array [0];
40fb9820
L
1727 break;
1728 default:
1729 abort ();
1730 }
40fb9820
L
1731 return x;
1732}
1733
309d3373
JB
1734static INLINE i386_cpu_flags
1735cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1736{
1737 switch (ARRAY_SIZE (x.array))
1738 {
53467f57
IT
1739 case 4:
1740 x.array [3] &= ~y.array [3];
1741 /* Fall through. */
309d3373
JB
1742 case 3:
1743 x.array [2] &= ~y.array [2];
1a0670f3 1744 /* Fall through. */
309d3373
JB
1745 case 2:
1746 x.array [1] &= ~y.array [1];
1a0670f3 1747 /* Fall through. */
309d3373
JB
1748 case 1:
1749 x.array [0] &= ~y.array [0];
1750 break;
1751 default:
1752 abort ();
1753 }
1754 return x;
1755}
1756
c0f3af97
L
1757#define CPU_FLAGS_ARCH_MATCH 0x1
1758#define CPU_FLAGS_64BIT_MATCH 0x2
1759
c0f3af97 1760#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1761 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1762
1763/* Return CPU flags match bits. */
3629bb00 1764
40fb9820 1765static int
d3ce72d0 1766cpu_flags_match (const insn_template *t)
40fb9820 1767{
c0f3af97
L
1768 i386_cpu_flags x = t->cpu_flags;
1769 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1770
1771 x.bitfield.cpu64 = 0;
1772 x.bitfield.cpuno64 = 0;
1773
0dfbf9d7 1774 if (cpu_flags_all_zero (&x))
c0f3af97
L
1775 {
1776 /* This instruction is available on all archs. */
db12e14e 1777 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1778 }
3629bb00
L
1779 else
1780 {
c0f3af97 1781 /* This instruction is available only on some archs. */
3629bb00
L
1782 i386_cpu_flags cpu = cpu_arch_flags;
1783
ab592e75
JB
1784 /* AVX512VL is no standalone feature - match it and then strip it. */
1785 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1786 return match;
1787 x.bitfield.cpuavx512vl = 0;
1788
3629bb00 1789 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1790 if (!cpu_flags_all_zero (&cpu))
1791 {
a5ff0eb2
L
1792 if (x.bitfield.cpuavx)
1793 {
929f69fa 1794 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1795 if (cpu.bitfield.cpuavx
1796 && (!t->opcode_modifier.sse2avx || sse2avx)
1797 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1798 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1799 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1800 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1801 }
929f69fa
JB
1802 else if (x.bitfield.cpuavx512f)
1803 {
1804 /* We need to check a few extra flags with AVX512F. */
1805 if (cpu.bitfield.cpuavx512f
1806 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1807 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1808 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1809 match |= CPU_FLAGS_ARCH_MATCH;
1810 }
a5ff0eb2 1811 else
db12e14e 1812 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1813 }
3629bb00 1814 }
c0f3af97 1815 return match;
40fb9820
L
1816}
1817
c6fb90c8
L
1818static INLINE i386_operand_type
1819operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1820{
c6fb90c8
L
1821 switch (ARRAY_SIZE (x.array))
1822 {
1823 case 3:
1824 x.array [2] &= y.array [2];
1a0670f3 1825 /* Fall through. */
c6fb90c8
L
1826 case 2:
1827 x.array [1] &= y.array [1];
1a0670f3 1828 /* Fall through. */
c6fb90c8
L
1829 case 1:
1830 x.array [0] &= y.array [0];
1831 break;
1832 default:
1833 abort ();
1834 }
1835 return x;
40fb9820
L
1836}
1837
73053c1f
JB
1838static INLINE i386_operand_type
1839operand_type_and_not (i386_operand_type x, i386_operand_type y)
1840{
1841 switch (ARRAY_SIZE (x.array))
1842 {
1843 case 3:
1844 x.array [2] &= ~y.array [2];
1845 /* Fall through. */
1846 case 2:
1847 x.array [1] &= ~y.array [1];
1848 /* Fall through. */
1849 case 1:
1850 x.array [0] &= ~y.array [0];
1851 break;
1852 default:
1853 abort ();
1854 }
1855 return x;
1856}
1857
c6fb90c8
L
1858static INLINE i386_operand_type
1859operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1860{
c6fb90c8 1861 switch (ARRAY_SIZE (x.array))
40fb9820 1862 {
c6fb90c8
L
1863 case 3:
1864 x.array [2] |= y.array [2];
1a0670f3 1865 /* Fall through. */
c6fb90c8
L
1866 case 2:
1867 x.array [1] |= y.array [1];
1a0670f3 1868 /* Fall through. */
c6fb90c8
L
1869 case 1:
1870 x.array [0] |= y.array [0];
40fb9820
L
1871 break;
1872 default:
1873 abort ();
1874 }
c6fb90c8
L
1875 return x;
1876}
40fb9820 1877
c6fb90c8
L
1878static INLINE i386_operand_type
1879operand_type_xor (i386_operand_type x, i386_operand_type y)
1880{
1881 switch (ARRAY_SIZE (x.array))
1882 {
1883 case 3:
1884 x.array [2] ^= y.array [2];
1a0670f3 1885 /* Fall through. */
c6fb90c8
L
1886 case 2:
1887 x.array [1] ^= y.array [1];
1a0670f3 1888 /* Fall through. */
c6fb90c8
L
1889 case 1:
1890 x.array [0] ^= y.array [0];
1891 break;
1892 default:
1893 abort ();
1894 }
40fb9820
L
1895 return x;
1896}
1897
1898static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1899static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1900static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1901static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1902static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1903static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1904static const i386_operand_type anydisp
1905 = OPERAND_TYPE_ANYDISP;
40fb9820 1906static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1907static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1908static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1909static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1910static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1911static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1912static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1913static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1914static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1915static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1916static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1917static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1918
1919enum operand_type
1920{
1921 reg,
40fb9820
L
1922 imm,
1923 disp,
1924 anymem
1925};
1926
c6fb90c8 1927static INLINE int
40fb9820
L
1928operand_type_check (i386_operand_type t, enum operand_type c)
1929{
1930 switch (c)
1931 {
1932 case reg:
dc821c5f 1933 return t.bitfield.reg;
40fb9820 1934
40fb9820
L
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
2cfe26b6
AM
1961
1962 return 0;
40fb9820
L
1963}
1964
7a54636a
L
1965/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1967
1968static INLINE int
7a54636a
L
1969match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
5c07affc 1971{
3ac21baa
JB
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1982}
1983
dd40ce22
L
1984/* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1986
1987static INLINE int
dd40ce22
L
1988match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1b54b8d7 1990{
3ac21baa
JB
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1997}
1998
7a54636a
L
1999/* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
5c07affc
L
2001
2002static INLINE int
dd40ce22
L
2003match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
5c07affc 2005{
7a54636a 2006 return (match_operand_size (t, wanted, given)
3ac21baa 2007 && !((i.types[given].bitfield.unspecified
af508cb9 2008 && !i.broadcast
3ac21baa
JB
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
d6793fa1
JB
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
3ac21baa 2016 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2017 && !t->opcode_modifier.broadcast
3ac21baa
JB
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
5c07affc
L
2026}
2027
3ac21baa
JB
2028/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
5c07affc 2032
3ac21baa
JB
2033#define MATCH_STRAIGHT 1
2034#define MATCH_REVERSE 2
2035
2036static INLINE unsigned int
d3ce72d0 2037operand_size_match (const insn_template *t)
5c07affc 2038{
3ac21baa 2039 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
1b54b8d7
JB
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2053 continue;
2054
1b54b8d7 2055 if (t->operand_types[j].bitfield.reg
7a54636a 2056 && !match_operand_size (t, j, j))
5c07affc
L
2057 {
2058 match = 0;
2059 break;
2060 }
2061
1b54b8d7 2062 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2063 && !match_simd_size (t, j, j))
1b54b8d7
JB
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
7a54636a 2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2071 {
2072 match = 0;
2073 break;
2074 }
2075
c48dadc9 2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
3ac21baa 2083 if (!t->opcode_modifier.d)
891edac4
L
2084 {
2085mismatch:
3ac21baa
JB
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
891edac4 2089 }
5c07affc
L
2090
2091 /* Check reverse. */
f5eb1d70 2092 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2093
f5eb1d70 2094 for (j = 0; j < i.operands; j++)
5c07affc 2095 {
f5eb1d70
JB
2096 unsigned int given = i.operands - j - 1;
2097
dbbc8b7e 2098 if (t->operand_types[j].bitfield.reg
f5eb1d70 2099 && !match_operand_size (t, j, given))
891edac4 2100 goto mismatch;
5c07affc 2101
dbbc8b7e 2102 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2103 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2109 goto mismatch;
2110
f5eb1d70 2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2112 goto mismatch;
5c07affc
L
2113 }
2114
3ac21baa 2115 return match | MATCH_REVERSE;
5c07affc
L
2116}
2117
c6fb90c8 2118static INLINE int
40fb9820
L
2119operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121{
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
7d5e4556 2125 temp.bitfield.unspecified = 0;
5c07affc
L
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
c0f3af97 2133 temp.bitfield.ymmword = 0;
43234a1e 2134 temp.bitfield.zmmword = 0;
0dfbf9d7 2135 if (operand_type_all_zero (&temp))
891edac4 2136 goto mismatch;
40fb9820 2137
891edac4
L
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142mismatch:
a65babc9 2143 i.error = operand_type_mismatch;
891edac4 2144 return 0;
40fb9820
L
2145}
2146
7d5e4556 2147/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
40fb9820 2151
c6fb90c8 2152static INLINE int
dc821c5f 2153operand_type_register_match (i386_operand_type g0,
40fb9820 2154 i386_operand_type t0,
40fb9820
L
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157{
10c17abd
JB
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
40fb9820
L
2163 return 1;
2164
10c17abd
JB
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
40fb9820
L
2170 return 1;
2171
dc821c5f
JB
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2179 return 1;
2180
dc821c5f
JB
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2188 return 1;
2189
a65babc9 2190 i.error = register_type_mismatch;
891edac4
L
2191
2192 return 0;
40fb9820
L
2193}
2194
4c692bc7
JB
2195static INLINE unsigned int
2196register_number (const reg_entry *r)
2197{
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
200cbe0f
L
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
4c692bc7
JB
2206 return nr;
2207}
2208
252b5132 2209static INLINE unsigned int
40fb9820 2210mode_from_disp_size (i386_operand_type t)
252b5132 2211{
b5014f7a 2212 if (t.bitfield.disp8)
40fb9820
L
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
252b5132
RH
2220}
2221
2222static INLINE int
65879393 2223fits_in_signed_byte (addressT num)
252b5132 2224{
65879393 2225 return num + 0x80 <= 0xff;
47926f60 2226}
252b5132
RH
2227
2228static INLINE int
65879393 2229fits_in_unsigned_byte (addressT num)
252b5132 2230{
65879393 2231 return num <= 0xff;
47926f60 2232}
252b5132
RH
2233
2234static INLINE int
65879393 2235fits_in_unsigned_word (addressT num)
252b5132 2236{
65879393 2237 return num <= 0xffff;
47926f60 2238}
252b5132
RH
2239
2240static INLINE int
65879393 2241fits_in_signed_word (addressT num)
252b5132 2242{
65879393 2243 return num + 0x8000 <= 0xffff;
47926f60 2244}
2a962e6d 2245
3e73aa7c 2246static INLINE int
65879393 2247fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2248{
2249#ifndef BFD64
2250 return 1;
2251#else
65879393 2252 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2253#endif
2254} /* fits_in_signed_long() */
2a962e6d 2255
3e73aa7c 2256static INLINE int
65879393 2257fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2258{
2259#ifndef BFD64
2260 return 1;
2261#else
65879393 2262 return num <= 0xffffffff;
3e73aa7c
JH
2263#endif
2264} /* fits_in_unsigned_long() */
252b5132 2265
43234a1e 2266static INLINE int
b5014f7a 2267fits_in_disp8 (offsetT num)
43234a1e
L
2268{
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283}
2284
a683cc34
SP
2285static INLINE int
2286fits_in_imm4 (offsetT num)
2287{
2288 return (num & 0xf) == num;
2289}
2290
40fb9820 2291static i386_operand_type
e3bb37b5 2292smallest_imm_type (offsetT num)
252b5132 2293{
40fb9820 2294 i386_operand_type t;
7ab9ffdd 2295
0dfbf9d7 2296 operand_type_set (&t, 0);
40fb9820
L
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
40fb9820
L
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
47926f60 2343}
252b5132 2344
847f7ad4 2345static offsetT
e3bb37b5 2346offset_in_range (offsetT val, int size)
847f7ad4 2347{
508866be 2348 addressT mask;
ba2adb93 2349
847f7ad4
AM
2350 switch (size)
2351 {
508866be
L
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2355#ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357#endif
47926f60 2358 default: abort ();
847f7ad4
AM
2359 }
2360
9de868bf
L
2361#ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2367#endif
ba2adb93 2368
47926f60 2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378}
2379
c32fa91d
L
2380enum PREFIX_GROUP
2381{
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
04ef582a 2385 PREFIX_DS,
c32fa91d
L
2386 PREFIX_OTHER
2387};
2388
2389/* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2396 */
2397
2398static enum PREFIX_GROUP
e3bb37b5 2399add_prefix (unsigned int prefix)
252b5132 2400{
c32fa91d 2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2402 unsigned int q;
252b5132 2403
29b0f896
AM
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
b1905489 2406 {
161a04f6 2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2411 ret = PREFIX_EXIST;
b1905489
JB
2412 q = REX_PREFIX;
2413 }
3e73aa7c 2414 else
b1905489
JB
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
b1905489 2421 case DS_PREFIX_OPCODE:
04ef582a
L
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
b1905489
JB
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
c32fa91d
L
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
b1905489 2438 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
b1905489
JB
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
c32fa91d 2456 ret = PREFIX_EXIST;
b1905489 2457 }
252b5132 2458
b1905489 2459 if (ret)
252b5132 2460 {
b1905489
JB
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
252b5132 2464 }
b1905489
JB
2465 else
2466 as_bad (_("same type of prefix used twice"));
252b5132 2467
252b5132
RH
2468 return ret;
2469}
2470
2471static void
78f12dd3 2472update_code_flag (int value, int check)
eecb386c 2473{
78f12dd3
L
2474 PRINTF_LIKE ((*as_error));
2475
1e9cc1c2 2476 flag_code = (enum flag_code) value;
40fb9820
L
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2488 {
78f12dd3
L
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2495 }
40fb9820 2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2497 {
78f12dd3
L
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2504 }
eecb386c
AM
2505 stackop_size = '\0';
2506}
2507
78f12dd3
L
2508static void
2509set_code_flag (int value)
2510{
2511 update_code_flag (value, 0);
2512}
2513
eecb386c 2514static void
e3bb37b5 2515set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2516{
1e9cc1c2 2517 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2522 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2523}
2524
2525static void
e3bb37b5 2526set_intel_syntax (int syntax_flag)
252b5132
RH
2527{
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
29b0f896 2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2533 {
d02603dc
NC
2534 char *string;
2535 int e = get_symbol_name (&string);
252b5132 2536
47926f60 2537 if (strcmp (string, "prefix") == 0)
252b5132 2538 ask_naked_reg = 1;
47926f60 2539 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2540 ask_naked_reg = -1;
2541 else
d0b47220 2542 as_bad (_("bad argument to syntax directive."));
d02603dc 2543 (void) restore_line_pointer (e);
252b5132
RH
2544 }
2545 demand_empty_rest_of_line ();
c3332e24 2546
252b5132
RH
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
f86103b7
AM
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2554
ee86248c 2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2556
e4a3b5a4 2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2559 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2560}
2561
1efbbeb4
L
2562static void
2563set_intel_mnemonic (int mnemonic_flag)
2564{
e1d4d893 2565 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2566}
2567
db51cc60
L
2568static void
2569set_allow_index_reg (int flag)
2570{
2571 allow_index_reg = flag;
2572}
2573
cb19c032 2574static void
7bab8ab5 2575set_check (int what)
cb19c032 2576{
7bab8ab5
JB
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
cb19c032
L
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
d02603dc
NC
2595 char *string;
2596 int e = get_symbol_name (&string);
cb19c032
L
2597
2598 if (strcmp (string, "none") == 0)
7bab8ab5 2599 *kind = check_none;
cb19c032 2600 else if (strcmp (string, "warning") == 0)
7bab8ab5 2601 *kind = check_warning;
cb19c032 2602 else if (strcmp (string, "error") == 0)
7bab8ab5 2603 *kind = check_error;
cb19c032 2604 else
7bab8ab5 2605 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2606 (void) restore_line_pointer (e);
cb19c032
L
2607 }
2608 else
7bab8ab5 2609 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2610
2611 demand_empty_rest_of_line ();
2612}
2613
8a9036a4
L
2614static void
2615check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2617{
2618#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
81486035
L
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
3632d14b 2639 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2641 || new_flag.bitfield.cpul1om)
8a9036a4 2642 return;
76ba9986 2643
7a9068fe
L
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
8a9036a4
L
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650#endif
2651}
2652
e413e4e9 2653static void
e3bb37b5 2654set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2655{
47926f60 2656 SKIP_WHITESPACE ();
e413e4e9 2657
29b0f896 2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2659 {
d02603dc
NC
2660 char *string;
2661 int e = get_symbol_name (&string);
91d6fa6a 2662 unsigned int j;
40fb9820 2663 i386_cpu_flags flags;
e413e4e9 2664
91d6fa6a 2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2666 {
91d6fa6a 2667 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2668 {
91d6fa6a 2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2670
5c6af06e
JB
2671 if (*string != '.')
2672 {
91d6fa6a 2673 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2674 cpu_sub_arch_name = NULL;
91d6fa6a 2675 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
91d6fa6a
NC
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
5c6af06e
JB
2693 break;
2694 }
40fb9820 2695
293f5f65
L
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
81486035 2698
5b64d091 2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2700 {
6305a203
L
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
91d6fa6a 2705 cpu_arch[j].name,
1bf57e9f 2706 (const char *) NULL);
6305a203
L
2707 free (name);
2708 }
2709 else
91d6fa6a 2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2711 cpu_arch_flags = flags;
a586129e 2712 cpu_arch_isa_flags = flags;
5c6af06e 2713 }
0089dace
L
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
d02603dc 2718 (void) restore_line_pointer (e);
5c6af06e
JB
2719 demand_empty_rest_of_line ();
2720 return;
e413e4e9
AM
2721 }
2722 }
293f5f65
L
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
33eaf5de 2726 /* Disable an ISA extension. */
293f5f65
L
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
91d6fa6a 2754 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
fddf5b5b
AM
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
29b0f896 2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2765 {
d02603dc
NC
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
fddf5b5b
AM
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
d02603dc 2779 (void) restore_line_pointer (e);
fddf5b5b
AM
2780 }
2781
e413e4e9
AM
2782 demand_empty_rest_of_line ();
2783}
2784
8a9036a4
L
2785enum bfd_architecture
2786i386_arch (void)
2787{
3632d14b 2788 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
7a9068fe
L
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
81486035
L
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
8a9036a4
L
2809 else
2810 return bfd_arch_i386;
2811}
2812
b9d79e03 2813unsigned long
7016a5d5 2814i386_mach (void)
b9d79e03 2815{
351f65ca 2816 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2817 {
3632d14b 2818 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2819 {
351f65ca
L
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
8a9036a4
L
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
7a9068fe
L
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
351f65ca 2832 else if (default_arch[6] == '\0')
8a9036a4 2833 return bfd_mach_x86_64;
351f65ca
L
2834 else
2835 return bfd_mach_x64_32;
8a9036a4 2836 }
5197d474
L
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
81486035
L
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
b9d79e03 2849 else
2b5d6a91 2850 as_fatal (_("unknown architecture"));
b9d79e03 2851}
b9d79e03 2852\f
252b5132 2853void
7016a5d5 2854md_begin (void)
252b5132
RH
2855{
2856 const char *hash_err;
2857
86fa6981
L
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
47926f60 2861 /* Initialize op_hash hash table. */
252b5132
RH
2862 op_hash = hash_new ();
2863
2864 {
d3ce72d0 2865 const insn_template *optab;
29b0f896 2866 templates *core_optab;
252b5132 2867
47926f60
KH
2868 /* Setup for loop. */
2869 optab = i386_optab;
add39d23 2870 core_optab = XNEW (templates);
252b5132
RH
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
47926f60 2880 add to hash table; & begin anew. */
252b5132
RH
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
5a49b8ac 2884 (void *) core_optab);
252b5132
RH
2885 if (hash_err)
2886 {
b37df7c4 2887 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
add39d23 2893 core_optab = XNEW (templates);
252b5132
RH
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
47926f60 2899 /* Initialize reg_hash hash table. */
252b5132
RH
2900 reg_hash = hash_new ();
2901 {
29b0f896 2902 const reg_entry *regtab;
c3fe08fa 2903 unsigned int regtab_size = i386_regtab_size;
252b5132 2904
c3fe08fa 2905 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2906 {
5a49b8ac 2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2908 if (hash_err)
b37df7c4 2909 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2910 regtab->reg_name,
2911 hash_err);
252b5132
RH
2912 }
2913 }
2914
47926f60 2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2916 {
29b0f896
AM
2917 int c;
2918 char *p;
252b5132
RH
2919
2920 for (c = 0; c < 256; c++)
2921 {
3882b010 2922 if (ISDIGIT (c))
252b5132
RH
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
3882b010 2929 else if (ISLOWER (c))
252b5132
RH
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
3882b010 2935 else if (ISUPPER (c))
252b5132 2936 {
3882b010 2937 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
43234a1e 2941 else if (c == '{' || c == '}')
86fa6981
L
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
252b5132 2946
3882b010 2947 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956#ifdef LEX_AT
2957 identifier_chars['@'] = '@';
32137342
NC
2958#endif
2959#ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
252b5132 2962#endif
252b5132 2963 digit_chars['-'] = '-';
c0f3af97 2964 mnemonic_chars['_'] = '_';
791fe849 2965 mnemonic_chars['-'] = '-';
0003779b 2966 mnemonic_chars['.'] = '.';
252b5132
RH
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
a4447b93
RH
2974 if (flag_code == CODE_64BIT)
2975 {
ca19b261
KT
2976#if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979#else
a4447b93 2980 x86_dwarf2_return_column = 16;
ca19b261 2981#endif
61ff971f 2982 x86_cie_data_alignment = -8;
a4447b93
RH
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
252b5132
RH
2989}
2990
2991void
e3bb37b5 2992i386_print_statistics (FILE *file)
252b5132
RH
2993{
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996}
2997\f
252b5132
RH
2998#ifdef DEBUG386
2999
ce8a8b2f 3000/* Debugging routines for md_assemble. */
d3ce72d0 3001static void pte (insn_template *);
40fb9820 3002static void pt (i386_operand_type);
e3bb37b5
L
3003static void pe (expressionS *);
3004static void ps (symbolS *);
252b5132
RH
3005
3006static void
e3bb37b5 3007pi (char *line, i386_insn *x)
252b5132 3008{
09137c09 3009 unsigned int j;
252b5132
RH
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
09f131f2
JH
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3018 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
09137c09 3026 for (j = 0; j < x->operands; j++)
252b5132 3027 {
09137c09
SP
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
252b5132 3030 fprintf (stdout, "\n");
dc821c5f 3031 if (x->types[j].bitfield.reg
09137c09 3032 || x->types[j].bitfield.regmmx
1b54b8d7 3033 || x->types[j].bitfield.regsimd
09137c09
SP
3034 || x->types[j].bitfield.sreg2
3035 || x->types[j].bitfield.sreg3
3036 || x->types[j].bitfield.control
3037 || x->types[j].bitfield.debug
3038 || x->types[j].bitfield.test)
3039 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3040 if (operand_type_check (x->types[j], imm))
3041 pe (x->op[j].imms);
3042 if (operand_type_check (x->types[j], disp))
3043 pe (x->op[j].disps);
252b5132
RH
3044 }
3045}
3046
3047static void
d3ce72d0 3048pte (insn_template *t)
252b5132 3049{
09137c09 3050 unsigned int j;
252b5132 3051 fprintf (stdout, " %d operands ", t->operands);
47926f60 3052 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3053 if (t->extension_opcode != None)
3054 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3055 if (t->opcode_modifier.d)
252b5132 3056 fprintf (stdout, "D");
40fb9820 3057 if (t->opcode_modifier.w)
252b5132
RH
3058 fprintf (stdout, "W");
3059 fprintf (stdout, "\n");
09137c09 3060 for (j = 0; j < t->operands; j++)
252b5132 3061 {
09137c09
SP
3062 fprintf (stdout, " #%d type ", j + 1);
3063 pt (t->operand_types[j]);
252b5132
RH
3064 fprintf (stdout, "\n");
3065 }
3066}
3067
3068static void
e3bb37b5 3069pe (expressionS *e)
252b5132 3070{
24eab124 3071 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3072 fprintf (stdout, " add_number %ld (%lx)\n",
3073 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3074 if (e->X_add_symbol)
3075 {
3076 fprintf (stdout, " add_symbol ");
3077 ps (e->X_add_symbol);
3078 fprintf (stdout, "\n");
3079 }
3080 if (e->X_op_symbol)
3081 {
3082 fprintf (stdout, " op_symbol ");
3083 ps (e->X_op_symbol);
3084 fprintf (stdout, "\n");
3085 }
3086}
3087
3088static void
e3bb37b5 3089ps (symbolS *s)
252b5132
RH
3090{
3091 fprintf (stdout, "%s type %s%s",
3092 S_GET_NAME (s),
3093 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3094 segment_name (S_GET_SEGMENT (s)));
3095}
3096
7b81dfbb 3097static struct type_name
252b5132 3098 {
40fb9820
L
3099 i386_operand_type mask;
3100 const char *name;
252b5132 3101 }
7b81dfbb 3102const type_names[] =
252b5132 3103{
40fb9820
L
3104 { OPERAND_TYPE_REG8, "r8" },
3105 { OPERAND_TYPE_REG16, "r16" },
3106 { OPERAND_TYPE_REG32, "r32" },
3107 { OPERAND_TYPE_REG64, "r64" },
3108 { OPERAND_TYPE_IMM8, "i8" },
3109 { OPERAND_TYPE_IMM8, "i8s" },
3110 { OPERAND_TYPE_IMM16, "i16" },
3111 { OPERAND_TYPE_IMM32, "i32" },
3112 { OPERAND_TYPE_IMM32S, "i32s" },
3113 { OPERAND_TYPE_IMM64, "i64" },
3114 { OPERAND_TYPE_IMM1, "i1" },
3115 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3116 { OPERAND_TYPE_DISP8, "d8" },
3117 { OPERAND_TYPE_DISP16, "d16" },
3118 { OPERAND_TYPE_DISP32, "d32" },
3119 { OPERAND_TYPE_DISP32S, "d32s" },
3120 { OPERAND_TYPE_DISP64, "d64" },
3121 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3122 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3123 { OPERAND_TYPE_CONTROL, "control reg" },
3124 { OPERAND_TYPE_TEST, "test reg" },
3125 { OPERAND_TYPE_DEBUG, "debug reg" },
3126 { OPERAND_TYPE_FLOATREG, "FReg" },
3127 { OPERAND_TYPE_FLOATACC, "FAcc" },
3128 { OPERAND_TYPE_SREG2, "SReg2" },
3129 { OPERAND_TYPE_SREG3, "SReg3" },
3130 { OPERAND_TYPE_ACC, "Acc" },
3131 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3132 { OPERAND_TYPE_REGMMX, "rMMX" },
3133 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3134 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3135 { OPERAND_TYPE_REGZMM, "rZMM" },
3136 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3137 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3138};
3139
3140static void
40fb9820 3141pt (i386_operand_type t)
252b5132 3142{
40fb9820 3143 unsigned int j;
c6fb90c8 3144 i386_operand_type a;
252b5132 3145
40fb9820 3146 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3147 {
3148 a = operand_type_and (t, type_names[j].mask);
0349dc08 3149 if (!operand_type_all_zero (&a))
c6fb90c8
L
3150 fprintf (stdout, "%s, ", type_names[j].name);
3151 }
252b5132
RH
3152 fflush (stdout);
3153}
3154
3155#endif /* DEBUG386 */
3156\f
252b5132 3157static bfd_reloc_code_real_type
3956db08 3158reloc (unsigned int size,
64e74474
AM
3159 int pcrel,
3160 int sign,
3161 bfd_reloc_code_real_type other)
252b5132 3162{
47926f60 3163 if (other != NO_RELOC)
3956db08 3164 {
91d6fa6a 3165 reloc_howto_type *rel;
3956db08
JB
3166
3167 if (size == 8)
3168 switch (other)
3169 {
64e74474
AM
3170 case BFD_RELOC_X86_64_GOT32:
3171 return BFD_RELOC_X86_64_GOT64;
3172 break;
553d1284
L
3173 case BFD_RELOC_X86_64_GOTPLT64:
3174 return BFD_RELOC_X86_64_GOTPLT64;
3175 break;
64e74474
AM
3176 case BFD_RELOC_X86_64_PLTOFF64:
3177 return BFD_RELOC_X86_64_PLTOFF64;
3178 break;
3179 case BFD_RELOC_X86_64_GOTPC32:
3180 other = BFD_RELOC_X86_64_GOTPC64;
3181 break;
3182 case BFD_RELOC_X86_64_GOTPCREL:
3183 other = BFD_RELOC_X86_64_GOTPCREL64;
3184 break;
3185 case BFD_RELOC_X86_64_TPOFF32:
3186 other = BFD_RELOC_X86_64_TPOFF64;
3187 break;
3188 case BFD_RELOC_X86_64_DTPOFF32:
3189 other = BFD_RELOC_X86_64_DTPOFF64;
3190 break;
3191 default:
3192 break;
3956db08 3193 }
e05278af 3194
8ce3d284 3195#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3196 if (other == BFD_RELOC_SIZE32)
3197 {
3198 if (size == 8)
1ab668bf 3199 other = BFD_RELOC_SIZE64;
8fd4256d 3200 if (pcrel)
1ab668bf
AM
3201 {
3202 as_bad (_("there are no pc-relative size relocations"));
3203 return NO_RELOC;
3204 }
8fd4256d 3205 }
8ce3d284 3206#endif
8fd4256d 3207
e05278af 3208 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3209 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3210 sign = -1;
3211
91d6fa6a
NC
3212 rel = bfd_reloc_type_lookup (stdoutput, other);
3213 if (!rel)
3956db08 3214 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3215 else if (size != bfd_get_reloc_size (rel))
3956db08 3216 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3217 bfd_get_reloc_size (rel),
3956db08 3218 size);
91d6fa6a 3219 else if (pcrel && !rel->pc_relative)
3956db08 3220 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3221 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3222 && !sign)
91d6fa6a 3223 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3224 && sign > 0))
3956db08
JB
3225 as_bad (_("relocated field and relocation type differ in signedness"));
3226 else
3227 return other;
3228 return NO_RELOC;
3229 }
252b5132
RH
3230
3231 if (pcrel)
3232 {
3e73aa7c 3233 if (!sign)
3956db08 3234 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3235 switch (size)
3236 {
3237 case 1: return BFD_RELOC_8_PCREL;
3238 case 2: return BFD_RELOC_16_PCREL;
d258b828 3239 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3240 case 8: return BFD_RELOC_64_PCREL;
252b5132 3241 }
3956db08 3242 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3243 }
3244 else
3245 {
3956db08 3246 if (sign > 0)
e5cb08ac 3247 switch (size)
3e73aa7c
JH
3248 {
3249 case 4: return BFD_RELOC_X86_64_32S;
3250 }
3251 else
3252 switch (size)
3253 {
3254 case 1: return BFD_RELOC_8;
3255 case 2: return BFD_RELOC_16;
3256 case 4: return BFD_RELOC_32;
3257 case 8: return BFD_RELOC_64;
3258 }
3956db08
JB
3259 as_bad (_("cannot do %s %u byte relocation"),
3260 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3261 }
3262
0cc9e1d3 3263 return NO_RELOC;
252b5132
RH
3264}
3265
47926f60
KH
3266/* Here we decide which fixups can be adjusted to make them relative to
3267 the beginning of the section instead of the symbol. Basically we need
3268 to make sure that the dynamic relocations are done correctly, so in
3269 some cases we force the original symbol to be used. */
3270
252b5132 3271int
e3bb37b5 3272tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3273{
6d249963 3274#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3275 if (!IS_ELF)
31312f95
AM
3276 return 1;
3277
a161fe53
AM
3278 /* Don't adjust pc-relative references to merge sections in 64-bit
3279 mode. */
3280 if (use_rela_relocations
3281 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3282 && fixP->fx_pcrel)
252b5132 3283 return 0;
31312f95 3284
8d01d9a9
AJ
3285 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3286 and changed later by validate_fix. */
3287 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3288 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3289 return 0;
3290
8fd4256d
L
3291 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3292 for size relocations. */
3293 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3294 || fixP->fx_r_type == BFD_RELOC_SIZE64
3295 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3296 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3297 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3299 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3309 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3324 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3326 return 0;
31312f95 3327#endif
252b5132
RH
3328 return 1;
3329}
252b5132 3330
b4cac588 3331static int
e3bb37b5 3332intel_float_operand (const char *mnemonic)
252b5132 3333{
9306ca4a
JB
3334 /* Note that the value returned is meaningful only for opcodes with (memory)
3335 operands, hence the code here is free to improperly handle opcodes that
3336 have no operands (for better performance and smaller code). */
3337
3338 if (mnemonic[0] != 'f')
3339 return 0; /* non-math */
3340
3341 switch (mnemonic[1])
3342 {
3343 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3344 the fs segment override prefix not currently handled because no
3345 call path can make opcodes without operands get here */
3346 case 'i':
3347 return 2 /* integer op */;
3348 case 'l':
3349 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3350 return 3; /* fldcw/fldenv */
3351 break;
3352 case 'n':
3353 if (mnemonic[2] != 'o' /* fnop */)
3354 return 3; /* non-waiting control op */
3355 break;
3356 case 'r':
3357 if (mnemonic[2] == 's')
3358 return 3; /* frstor/frstpm */
3359 break;
3360 case 's':
3361 if (mnemonic[2] == 'a')
3362 return 3; /* fsave */
3363 if (mnemonic[2] == 't')
3364 {
3365 switch (mnemonic[3])
3366 {
3367 case 'c': /* fstcw */
3368 case 'd': /* fstdw */
3369 case 'e': /* fstenv */
3370 case 's': /* fsts[gw] */
3371 return 3;
3372 }
3373 }
3374 break;
3375 case 'x':
3376 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3377 return 0; /* fxsave/fxrstor are not really math ops */
3378 break;
3379 }
252b5132 3380
9306ca4a 3381 return 1;
252b5132
RH
3382}
3383
c0f3af97
L
3384/* Build the VEX prefix. */
3385
3386static void
d3ce72d0 3387build_vex_prefix (const insn_template *t)
c0f3af97
L
3388{
3389 unsigned int register_specifier;
3390 unsigned int implied_prefix;
3391 unsigned int vector_length;
03751133 3392 unsigned int w;
c0f3af97
L
3393
3394 /* Check register specifier. */
3395 if (i.vex.register_specifier)
43234a1e
L
3396 {
3397 register_specifier =
3398 ~register_number (i.vex.register_specifier) & 0xf;
3399 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3400 }
c0f3af97
L
3401 else
3402 register_specifier = 0xf;
3403
79f0fa25
L
3404 /* Use 2-byte VEX prefix by swapping destination and source operand
3405 if there are more than 1 register operand. */
3406 if (i.reg_operands > 1
3407 && i.vec_encoding != vex_encoding_vex3
86fa6981 3408 && i.dir_encoding == dir_encoding_default
fa99fab2 3409 && i.operands == i.reg_operands
dbbc8b7e 3410 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3411 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3412 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3413 && i.rex == REX_B)
3414 {
3415 unsigned int xchg = i.operands - 1;
3416 union i386_op temp_op;
3417 i386_operand_type temp_type;
3418
3419 temp_type = i.types[xchg];
3420 i.types[xchg] = i.types[0];
3421 i.types[0] = temp_type;
3422 temp_op = i.op[xchg];
3423 i.op[xchg] = i.op[0];
3424 i.op[0] = temp_op;
3425
9c2799c2 3426 gas_assert (i.rm.mode == 3);
fa99fab2
L
3427
3428 i.rex = REX_R;
3429 xchg = i.rm.regmem;
3430 i.rm.regmem = i.rm.reg;
3431 i.rm.reg = xchg;
3432
dbbc8b7e
JB
3433 if (i.tm.opcode_modifier.d)
3434 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3435 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3436 else /* Use the next insn. */
3437 i.tm = t[1];
fa99fab2
L
3438 }
3439
539f890d
L
3440 if (i.tm.opcode_modifier.vex == VEXScalar)
3441 vector_length = avxscalar;
10c17abd
JB
3442 else if (i.tm.opcode_modifier.vex == VEX256)
3443 vector_length = 1;
539f890d 3444 else
10c17abd 3445 {
56522fc5 3446 unsigned int op;
10c17abd 3447
c7213af9
L
3448 /* Determine vector length from the last multi-length vector
3449 operand. */
10c17abd 3450 vector_length = 0;
56522fc5 3451 for (op = t->operands; op--;)
10c17abd
JB
3452 if (t->operand_types[op].bitfield.xmmword
3453 && t->operand_types[op].bitfield.ymmword
3454 && i.types[op].bitfield.ymmword)
3455 {
3456 vector_length = 1;
3457 break;
3458 }
3459 }
c0f3af97
L
3460
3461 switch ((i.tm.base_opcode >> 8) & 0xff)
3462 {
3463 case 0:
3464 implied_prefix = 0;
3465 break;
3466 case DATA_PREFIX_OPCODE:
3467 implied_prefix = 1;
3468 break;
3469 case REPE_PREFIX_OPCODE:
3470 implied_prefix = 2;
3471 break;
3472 case REPNE_PREFIX_OPCODE:
3473 implied_prefix = 3;
3474 break;
3475 default:
3476 abort ();
3477 }
3478
03751133
L
3479 /* Check the REX.W bit and VEXW. */
3480 if (i.tm.opcode_modifier.vexw == VEXWIG)
3481 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3482 else if (i.tm.opcode_modifier.vexw)
3483 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3484 else
931d03b7 3485 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3486
c0f3af97 3487 /* Use 2-byte VEX prefix if possible. */
03751133
L
3488 if (w == 0
3489 && i.vec_encoding != vex_encoding_vex3
86fa6981 3490 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3491 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3492 {
3493 /* 2-byte VEX prefix. */
3494 unsigned int r;
3495
3496 i.vex.length = 2;
3497 i.vex.bytes[0] = 0xc5;
3498
3499 /* Check the REX.R bit. */
3500 r = (i.rex & REX_R) ? 0 : 1;
3501 i.vex.bytes[1] = (r << 7
3502 | register_specifier << 3
3503 | vector_length << 2
3504 | implied_prefix);
3505 }
3506 else
3507 {
3508 /* 3-byte VEX prefix. */
03751133 3509 unsigned int m;
c0f3af97 3510
f88c9eb0 3511 i.vex.length = 3;
f88c9eb0 3512
7f399153 3513 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3514 {
7f399153
L
3515 case VEX0F:
3516 m = 0x1;
80de6e00 3517 i.vex.bytes[0] = 0xc4;
7f399153
L
3518 break;
3519 case VEX0F38:
3520 m = 0x2;
80de6e00 3521 i.vex.bytes[0] = 0xc4;
7f399153
L
3522 break;
3523 case VEX0F3A:
3524 m = 0x3;
80de6e00 3525 i.vex.bytes[0] = 0xc4;
7f399153
L
3526 break;
3527 case XOP08:
5dd85c99
SP
3528 m = 0x8;
3529 i.vex.bytes[0] = 0x8f;
7f399153
L
3530 break;
3531 case XOP09:
f88c9eb0
SP
3532 m = 0x9;
3533 i.vex.bytes[0] = 0x8f;
7f399153
L
3534 break;
3535 case XOP0A:
f88c9eb0
SP
3536 m = 0xa;
3537 i.vex.bytes[0] = 0x8f;
7f399153
L
3538 break;
3539 default:
3540 abort ();
f88c9eb0 3541 }
c0f3af97 3542
c0f3af97
L
3543 /* The high 3 bits of the second VEX byte are 1's compliment
3544 of RXB bits from REX. */
3545 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3546
c0f3af97
L
3547 i.vex.bytes[2] = (w << 7
3548 | register_specifier << 3
3549 | vector_length << 2
3550 | implied_prefix);
3551 }
3552}
3553
e771e7c9
JB
3554static INLINE bfd_boolean
3555is_evex_encoding (const insn_template *t)
3556{
7091c612 3557 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3558 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3559 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3560}
3561
7a8655d2
JB
3562static INLINE bfd_boolean
3563is_any_vex_encoding (const insn_template *t)
3564{
3565 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3566 || is_evex_encoding (t);
3567}
3568
43234a1e
L
3569/* Build the EVEX prefix. */
3570
3571static void
3572build_evex_prefix (void)
3573{
3574 unsigned int register_specifier;
3575 unsigned int implied_prefix;
3576 unsigned int m, w;
3577 rex_byte vrex_used = 0;
3578
3579 /* Check register specifier. */
3580 if (i.vex.register_specifier)
3581 {
3582 gas_assert ((i.vrex & REX_X) == 0);
3583
3584 register_specifier = i.vex.register_specifier->reg_num;
3585 if ((i.vex.register_specifier->reg_flags & RegRex))
3586 register_specifier += 8;
3587 /* The upper 16 registers are encoded in the fourth byte of the
3588 EVEX prefix. */
3589 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3590 i.vex.bytes[3] = 0x8;
3591 register_specifier = ~register_specifier & 0xf;
3592 }
3593 else
3594 {
3595 register_specifier = 0xf;
3596
3597 /* Encode upper 16 vector index register in the fourth byte of
3598 the EVEX prefix. */
3599 if (!(i.vrex & REX_X))
3600 i.vex.bytes[3] = 0x8;
3601 else
3602 vrex_used |= REX_X;
3603 }
3604
3605 switch ((i.tm.base_opcode >> 8) & 0xff)
3606 {
3607 case 0:
3608 implied_prefix = 0;
3609 break;
3610 case DATA_PREFIX_OPCODE:
3611 implied_prefix = 1;
3612 break;
3613 case REPE_PREFIX_OPCODE:
3614 implied_prefix = 2;
3615 break;
3616 case REPNE_PREFIX_OPCODE:
3617 implied_prefix = 3;
3618 break;
3619 default:
3620 abort ();
3621 }
3622
3623 /* 4 byte EVEX prefix. */
3624 i.vex.length = 4;
3625 i.vex.bytes[0] = 0x62;
3626
3627 /* mmmm bits. */
3628 switch (i.tm.opcode_modifier.vexopcode)
3629 {
3630 case VEX0F:
3631 m = 1;
3632 break;
3633 case VEX0F38:
3634 m = 2;
3635 break;
3636 case VEX0F3A:
3637 m = 3;
3638 break;
3639 default:
3640 abort ();
3641 break;
3642 }
3643
3644 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3645 bits from REX. */
3646 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3647
3648 /* The fifth bit of the second EVEX byte is 1's compliment of the
3649 REX_R bit in VREX. */
3650 if (!(i.vrex & REX_R))
3651 i.vex.bytes[1] |= 0x10;
3652 else
3653 vrex_used |= REX_R;
3654
3655 if ((i.reg_operands + i.imm_operands) == i.operands)
3656 {
3657 /* When all operands are registers, the REX_X bit in REX is not
3658 used. We reuse it to encode the upper 16 registers, which is
3659 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3660 as 1's compliment. */
3661 if ((i.vrex & REX_B))
3662 {
3663 vrex_used |= REX_B;
3664 i.vex.bytes[1] &= ~0x40;
3665 }
3666 }
3667
3668 /* EVEX instructions shouldn't need the REX prefix. */
3669 i.vrex &= ~vrex_used;
3670 gas_assert (i.vrex == 0);
3671
6865c043
L
3672 /* Check the REX.W bit and VEXW. */
3673 if (i.tm.opcode_modifier.vexw == VEXWIG)
3674 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3675 else if (i.tm.opcode_modifier.vexw)
3676 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3677 else
931d03b7 3678 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3679
3680 /* Encode the U bit. */
3681 implied_prefix |= 0x4;
3682
3683 /* The third byte of the EVEX prefix. */
3684 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3685
3686 /* The fourth byte of the EVEX prefix. */
3687 /* The zeroing-masking bit. */
3688 if (i.mask && i.mask->zeroing)
3689 i.vex.bytes[3] |= 0x80;
3690
3691 /* Don't always set the broadcast bit if there is no RC. */
3692 if (!i.rounding)
3693 {
3694 /* Encode the vector length. */
3695 unsigned int vec_length;
3696
e771e7c9
JB
3697 if (!i.tm.opcode_modifier.evex
3698 || i.tm.opcode_modifier.evex == EVEXDYN)
3699 {
56522fc5 3700 unsigned int op;
e771e7c9 3701
c7213af9
L
3702 /* Determine vector length from the last multi-length vector
3703 operand. */
e771e7c9 3704 vec_length = 0;
56522fc5 3705 for (op = i.operands; op--;)
e771e7c9
JB
3706 if (i.tm.operand_types[op].bitfield.xmmword
3707 + i.tm.operand_types[op].bitfield.ymmword
3708 + i.tm.operand_types[op].bitfield.zmmword > 1)
3709 {
3710 if (i.types[op].bitfield.zmmword)
c7213af9
L
3711 {
3712 i.tm.opcode_modifier.evex = EVEX512;
3713 break;
3714 }
e771e7c9 3715 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3716 {
3717 i.tm.opcode_modifier.evex = EVEX256;
3718 break;
3719 }
e771e7c9 3720 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3721 {
3722 i.tm.opcode_modifier.evex = EVEX128;
3723 break;
3724 }
625cbd7a
JB
3725 else if (i.broadcast && (int) op == i.broadcast->operand)
3726 {
4a1b91ea 3727 switch (i.broadcast->bytes)
625cbd7a
JB
3728 {
3729 case 64:
3730 i.tm.opcode_modifier.evex = EVEX512;
3731 break;
3732 case 32:
3733 i.tm.opcode_modifier.evex = EVEX256;
3734 break;
3735 case 16:
3736 i.tm.opcode_modifier.evex = EVEX128;
3737 break;
3738 default:
c7213af9 3739 abort ();
625cbd7a 3740 }
c7213af9 3741 break;
625cbd7a 3742 }
e771e7c9 3743 }
c7213af9 3744
56522fc5 3745 if (op >= MAX_OPERANDS)
c7213af9 3746 abort ();
e771e7c9
JB
3747 }
3748
43234a1e
L
3749 switch (i.tm.opcode_modifier.evex)
3750 {
3751 case EVEXLIG: /* LL' is ignored */
3752 vec_length = evexlig << 5;
3753 break;
3754 case EVEX128:
3755 vec_length = 0 << 5;
3756 break;
3757 case EVEX256:
3758 vec_length = 1 << 5;
3759 break;
3760 case EVEX512:
3761 vec_length = 2 << 5;
3762 break;
3763 default:
3764 abort ();
3765 break;
3766 }
3767 i.vex.bytes[3] |= vec_length;
3768 /* Encode the broadcast bit. */
3769 if (i.broadcast)
3770 i.vex.bytes[3] |= 0x10;
3771 }
3772 else
3773 {
3774 if (i.rounding->type != saeonly)
3775 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3776 else
d3d3c6db 3777 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3778 }
3779
3780 if (i.mask && i.mask->mask)
3781 i.vex.bytes[3] |= i.mask->mask->reg_num;
3782}
3783
65da13b5
L
3784static void
3785process_immext (void)
3786{
3787 expressionS *exp;
3788
4c692bc7
JB
3789 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3790 && i.operands > 0)
65da13b5 3791 {
4c692bc7
JB
3792 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3793 with an opcode suffix which is coded in the same place as an
3794 8-bit immediate field would be.
3795 Here we check those operands and remove them afterwards. */
65da13b5
L
3796 unsigned int x;
3797
3798 for (x = 0; x < i.operands; x++)
4c692bc7 3799 if (register_number (i.op[x].regs) != x)
65da13b5 3800 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3801 register_prefix, i.op[x].regs->reg_name, x + 1,
3802 i.tm.name);
3803
3804 i.operands = 0;
65da13b5
L
3805 }
3806
9916071f
AP
3807 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3808 {
3809 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3810 suffix which is coded in the same place as an 8-bit immediate
3811 field would be.
3812 Here we check those operands and remove them afterwards. */
3813 unsigned int x;
3814
3815 if (i.operands != 3)
3816 abort();
3817
3818 for (x = 0; x < 2; x++)
3819 if (register_number (i.op[x].regs) != x)
3820 goto bad_register_operand;
3821
3822 /* Check for third operand for mwaitx/monitorx insn. */
3823 if (register_number (i.op[x].regs)
3824 != (x + (i.tm.extension_opcode == 0xfb)))
3825 {
3826bad_register_operand:
3827 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3828 register_prefix, i.op[x].regs->reg_name, x+1,
3829 i.tm.name);
3830 }
3831
3832 i.operands = 0;
3833 }
3834
c0f3af97 3835 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3836 which is coded in the same place as an 8-bit immediate field
3837 would be. Here we fake an 8-bit immediate operand from the
3838 opcode suffix stored in tm.extension_opcode.
3839
c1e679ec 3840 AVX instructions also use this encoding, for some of
c0f3af97 3841 3 argument instructions. */
65da13b5 3842
43234a1e 3843 gas_assert (i.imm_operands <= 1
7ab9ffdd 3844 && (i.operands <= 2
7a8655d2 3845 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3846 && i.operands <= 4)));
65da13b5
L
3847
3848 exp = &im_expressions[i.imm_operands++];
3849 i.op[i.operands].imms = exp;
3850 i.types[i.operands] = imm8;
3851 i.operands++;
3852 exp->X_op = O_constant;
3853 exp->X_add_number = i.tm.extension_opcode;
3854 i.tm.extension_opcode = None;
3855}
3856
42164a71
L
3857
3858static int
3859check_hle (void)
3860{
3861 switch (i.tm.opcode_modifier.hleprefixok)
3862 {
3863 default:
3864 abort ();
82c2def5 3865 case HLEPrefixNone:
165de32a
L
3866 as_bad (_("invalid instruction `%s' after `%s'"),
3867 i.tm.name, i.hle_prefix);
42164a71 3868 return 0;
82c2def5 3869 case HLEPrefixLock:
42164a71
L
3870 if (i.prefix[LOCK_PREFIX])
3871 return 1;
165de32a 3872 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3873 return 0;
82c2def5 3874 case HLEPrefixAny:
42164a71 3875 return 1;
82c2def5 3876 case HLEPrefixRelease:
42164a71
L
3877 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3878 {
3879 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3880 i.tm.name);
3881 return 0;
3882 }
3883 if (i.mem_operands == 0
3884 || !operand_type_check (i.types[i.operands - 1], anymem))
3885 {
3886 as_bad (_("memory destination needed for instruction `%s'"
3887 " after `xrelease'"), i.tm.name);
3888 return 0;
3889 }
3890 return 1;
3891 }
3892}
3893
b6f8c7c4
L
3894/* Try the shortest encoding by shortening operand size. */
3895
3896static void
3897optimize_encoding (void)
3898{
3899 int j;
3900
3901 if (optimize_for_space
3902 && i.reg_operands == 1
3903 && i.imm_operands == 1
3904 && !i.types[1].bitfield.byte
3905 && i.op[0].imms->X_op == O_constant
3906 && fits_in_imm7 (i.op[0].imms->X_add_number)
3907 && ((i.tm.base_opcode == 0xa8
3908 && i.tm.extension_opcode == None)
3909 || (i.tm.base_opcode == 0xf6
3910 && i.tm.extension_opcode == 0x0)))
3911 {
3912 /* Optimize: -Os:
3913 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3914 */
3915 unsigned int base_regnum = i.op[1].regs->reg_num;
3916 if (flag_code == CODE_64BIT || base_regnum < 4)
3917 {
3918 i.types[1].bitfield.byte = 1;
3919 /* Ignore the suffix. */
3920 i.suffix = 0;
3921 if (base_regnum >= 4
3922 && !(i.op[1].regs->reg_flags & RegRex))
3923 {
3924 /* Handle SP, BP, SI and DI registers. */
3925 if (i.types[1].bitfield.word)
3926 j = 16;
3927 else if (i.types[1].bitfield.dword)
3928 j = 32;
3929 else
3930 j = 48;
3931 i.op[1].regs -= j;
3932 }
3933 }
3934 }
3935 else if (flag_code == CODE_64BIT
d3d50934
L
3936 && ((i.types[1].bitfield.qword
3937 && i.reg_operands == 1
b6f8c7c4
L
3938 && i.imm_operands == 1
3939 && i.op[0].imms->X_op == O_constant
3940 && ((i.tm.base_opcode == 0xb0
3941 && i.tm.extension_opcode == None
3942 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3943 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3944 && (((i.tm.base_opcode == 0x24
3945 || i.tm.base_opcode == 0xa8)
3946 && i.tm.extension_opcode == None)
3947 || (i.tm.base_opcode == 0x80
3948 && i.tm.extension_opcode == 0x4)
3949 || ((i.tm.base_opcode == 0xf6
3950 || i.tm.base_opcode == 0xc6)
3951 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3952 || (i.types[0].bitfield.qword
3953 && ((i.reg_operands == 2
3954 && i.op[0].regs == i.op[1].regs
3955 && ((i.tm.base_opcode == 0x30
3956 || i.tm.base_opcode == 0x28)
3957 && i.tm.extension_opcode == None))
3958 || (i.reg_operands == 1
3959 && i.operands == 1
3960 && i.tm.base_opcode == 0x30
3961 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3962 {
3963 /* Optimize: -O:
3964 andq $imm31, %r64 -> andl $imm31, %r32
3965 testq $imm31, %r64 -> testl $imm31, %r32
3966 xorq %r64, %r64 -> xorl %r32, %r32
3967 subq %r64, %r64 -> subl %r32, %r32
3968 movq $imm31, %r64 -> movl $imm31, %r32
3969 movq $imm32, %r64 -> movl $imm32, %r32
3970 */
3971 i.tm.opcode_modifier.norex64 = 1;
3972 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3973 {
3974 /* Handle
3975 movq $imm31, %r64 -> movl $imm31, %r32
3976 movq $imm32, %r64 -> movl $imm32, %r32
3977 */
3978 i.tm.operand_types[0].bitfield.imm32 = 1;
3979 i.tm.operand_types[0].bitfield.imm32s = 0;
3980 i.tm.operand_types[0].bitfield.imm64 = 0;
3981 i.types[0].bitfield.imm32 = 1;
3982 i.types[0].bitfield.imm32s = 0;
3983 i.types[0].bitfield.imm64 = 0;
3984 i.types[1].bitfield.dword = 1;
3985 i.types[1].bitfield.qword = 0;
3986 if (i.tm.base_opcode == 0xc6)
3987 {
3988 /* Handle
3989 movq $imm31, %r64 -> movl $imm31, %r32
3990 */
3991 i.tm.base_opcode = 0xb0;
3992 i.tm.extension_opcode = None;
3993 i.tm.opcode_modifier.shortform = 1;
3994 i.tm.opcode_modifier.modrm = 0;
3995 }
3996 }
3997 }
99112332 3998 else if (i.reg_operands == 3
b6f8c7c4
L
3999 && i.op[0].regs == i.op[1].regs
4000 && !i.types[2].bitfield.xmmword
4001 && (i.tm.opcode_modifier.vex
7a69eac3 4002 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4003 && !i.rounding
e771e7c9 4004 && is_evex_encoding (&i.tm)
80c34c38 4005 && (i.vec_encoding != vex_encoding_evex
dd22218c 4006 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4007 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4008 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4009 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4010 && ((i.tm.base_opcode == 0x55
4011 || i.tm.base_opcode == 0x6655
4012 || i.tm.base_opcode == 0x66df
4013 || i.tm.base_opcode == 0x57
4014 || i.tm.base_opcode == 0x6657
8305403a
L
4015 || i.tm.base_opcode == 0x66ef
4016 || i.tm.base_opcode == 0x66f8
4017 || i.tm.base_opcode == 0x66f9
4018 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4019 || i.tm.base_opcode == 0x66fb
4020 || i.tm.base_opcode == 0x42
4021 || i.tm.base_opcode == 0x6642
4022 || i.tm.base_opcode == 0x47
4023 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4024 && i.tm.extension_opcode == None))
4025 {
99112332 4026 /* Optimize: -O1:
8305403a
L
4027 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4028 vpsubq and vpsubw:
b6f8c7c4
L
4029 EVEX VOP %zmmM, %zmmM, %zmmN
4030 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4031 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4032 EVEX VOP %ymmM, %ymmM, %ymmN
4033 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4034 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4035 VEX VOP %ymmM, %ymmM, %ymmN
4036 -> VEX VOP %xmmM, %xmmM, %xmmN
4037 VOP, one of vpandn and vpxor:
4038 VEX VOP %ymmM, %ymmM, %ymmN
4039 -> VEX VOP %xmmM, %xmmM, %xmmN
4040 VOP, one of vpandnd and vpandnq:
4041 EVEX VOP %zmmM, %zmmM, %zmmN
4042 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4043 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4044 EVEX VOP %ymmM, %ymmM, %ymmN
4045 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4046 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4047 VOP, one of vpxord and vpxorq:
4048 EVEX VOP %zmmM, %zmmM, %zmmN
4049 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4050 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4051 EVEX VOP %ymmM, %ymmM, %ymmN
4052 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4053 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4054 VOP, one of kxord and kxorq:
4055 VEX VOP %kM, %kM, %kN
4056 -> VEX kxorw %kM, %kM, %kN
4057 VOP, one of kandnd and kandnq:
4058 VEX VOP %kM, %kM, %kN
4059 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4060 */
e771e7c9 4061 if (is_evex_encoding (&i.tm))
b6f8c7c4 4062 {
7b1d7ca1 4063 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4064 {
4065 i.tm.opcode_modifier.vex = VEX128;
4066 i.tm.opcode_modifier.vexw = VEXW0;
4067 i.tm.opcode_modifier.evex = 0;
4068 }
7b1d7ca1 4069 else if (optimize > 1)
dd22218c
L
4070 i.tm.opcode_modifier.evex = EVEX128;
4071 else
4072 return;
b6f8c7c4 4073 }
1424ad86
JB
4074 else if (i.tm.operand_types[0].bitfield.regmask)
4075 {
4076 i.tm.base_opcode &= 0xff;
4077 i.tm.opcode_modifier.vexw = VEXW0;
4078 }
b6f8c7c4
L
4079 else
4080 i.tm.opcode_modifier.vex = VEX128;
4081
4082 if (i.tm.opcode_modifier.vex)
4083 for (j = 0; j < 3; j++)
4084 {
4085 i.types[j].bitfield.xmmword = 1;
4086 i.types[j].bitfield.ymmword = 0;
4087 }
4088 }
392a5972 4089 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4090 && !i.types[0].bitfield.zmmword
392a5972 4091 && !i.types[1].bitfield.zmmword
97ed31ae
L
4092 && !i.mask
4093 && is_evex_encoding (&i.tm)
392a5972
L
4094 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4095 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4096 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
97ed31ae
L
4097 && i.tm.extension_opcode == None)
4098 {
4099 /* Optimize: -O1:
4100 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4101 vmovdqu32 and vmovdqu64:
4102 EVEX VOP %xmmM, %xmmN
4103 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4104 EVEX VOP %ymmM, %ymmN
4105 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4106 EVEX VOP %xmmM, mem
4107 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4108 EVEX VOP %ymmM, mem
4109 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4110 EVEX VOP mem, %xmmN
4111 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4112 EVEX VOP mem, %ymmN
4113 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4114 */
392a5972
L
4115 for (j = 0; j < 2; j++)
4116 if (operand_type_check (i.types[j], disp)
4117 && i.op[j].disps->X_op == O_constant)
4118 {
4119 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4120 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4121 bytes, we choose EVEX Disp8 over VEX Disp32. */
4122 int evex_disp8, vex_disp8;
4123 unsigned int memshift = i.memshift;
4124 offsetT n = i.op[j].disps->X_add_number;
4125
4126 evex_disp8 = fits_in_disp8 (n);
4127 i.memshift = 0;
4128 vex_disp8 = fits_in_disp8 (n);
4129 if (evex_disp8 != vex_disp8)
4130 {
4131 i.memshift = memshift;
4132 return;
4133 }
4134
4135 i.types[j].bitfield.disp8 = vex_disp8;
4136 break;
4137 }
4138 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4139 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4140 i.tm.opcode_modifier.vex
4141 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4142 i.tm.opcode_modifier.vexw = VEXW0;
4143 i.tm.opcode_modifier.evex = 0;
4144 i.tm.opcode_modifier.masking = 0;
4145 i.tm.opcode_modifier.disp8memshift = 0;
4146 i.memshift = 0;
4147 for (j = 0; j < 2; j++)
4148 if (operand_type_check (i.types[j], disp)
4149 && i.op[j].disps->X_op == O_constant)
4150 {
4151 i.types[j].bitfield.disp8
4152 = fits_in_disp8 (i.op[j].disps->X_add_number);
4153 break;
4154 }
4155 }
b6f8c7c4
L
4156}
4157
252b5132
RH
4158/* This is the guts of the machine-dependent assembler. LINE points to a
4159 machine dependent instruction. This function is supposed to emit
4160 the frags/bytes it assembles to. */
4161
4162void
65da13b5 4163md_assemble (char *line)
252b5132 4164{
40fb9820 4165 unsigned int j;
83b16ac6 4166 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4167 const insn_template *t;
252b5132 4168
47926f60 4169 /* Initialize globals. */
252b5132
RH
4170 memset (&i, '\0', sizeof (i));
4171 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4172 i.reloc[j] = NO_RELOC;
252b5132
RH
4173 memset (disp_expressions, '\0', sizeof (disp_expressions));
4174 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4175 save_stack_p = save_stack;
252b5132
RH
4176
4177 /* First parse an instruction mnemonic & call i386_operand for the operands.
4178 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4179 start of a (possibly prefixed) mnemonic. */
252b5132 4180
29b0f896
AM
4181 line = parse_insn (line, mnemonic);
4182 if (line == NULL)
4183 return;
83b16ac6 4184 mnem_suffix = i.suffix;
252b5132 4185
29b0f896 4186 line = parse_operands (line, mnemonic);
ee86248c 4187 this_operand = -1;
8325cc63
JB
4188 xfree (i.memop1_string);
4189 i.memop1_string = NULL;
29b0f896
AM
4190 if (line == NULL)
4191 return;
252b5132 4192
29b0f896
AM
4193 /* Now we've parsed the mnemonic into a set of templates, and have the
4194 operands at hand. */
4195
4196 /* All intel opcodes have reversed operands except for "bound" and
4197 "enter". We also don't reverse intersegment "jmp" and "call"
4198 instructions with 2 immediate operands so that the immediate segment
050dfa73 4199 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4200 if (intel_syntax
4201 && i.operands > 1
29b0f896 4202 && (strcmp (mnemonic, "bound") != 0)
30123838 4203 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4204 && !(operand_type_check (i.types[0], imm)
4205 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4206 swap_operands ();
4207
ec56d5c0
JB
4208 /* The order of the immediates should be reversed
4209 for 2 immediates extrq and insertq instructions */
4210 if (i.imm_operands == 2
4211 && (strcmp (mnemonic, "extrq") == 0
4212 || strcmp (mnemonic, "insertq") == 0))
4213 swap_2_operands (0, 1);
4214
29b0f896
AM
4215 if (i.imm_operands)
4216 optimize_imm ();
4217
b300c311
L
4218 /* Don't optimize displacement for movabs since it only takes 64bit
4219 displacement. */
4220 if (i.disp_operands
a501d77e 4221 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4222 && (flag_code != CODE_64BIT
4223 || strcmp (mnemonic, "movabs") != 0))
4224 optimize_disp ();
29b0f896
AM
4225
4226 /* Next, we find a template that matches the given insn,
4227 making sure the overlap of the given operands types is consistent
4228 with the template operand types. */
252b5132 4229
83b16ac6 4230 if (!(t = match_template (mnem_suffix)))
29b0f896 4231 return;
252b5132 4232
7bab8ab5 4233 if (sse_check != check_none
81f8a913 4234 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4235 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4236 && (i.tm.cpu_flags.bitfield.cpusse
4237 || i.tm.cpu_flags.bitfield.cpusse2
4238 || i.tm.cpu_flags.bitfield.cpusse3
4239 || i.tm.cpu_flags.bitfield.cpussse3
4240 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4241 || i.tm.cpu_flags.bitfield.cpusse4_2
4242 || i.tm.cpu_flags.bitfield.cpupclmul
4243 || i.tm.cpu_flags.bitfield.cpuaes
4244 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4245 {
7bab8ab5 4246 (sse_check == check_warning
daf50ae7
L
4247 ? as_warn
4248 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4249 }
4250
321fd21e
L
4251 /* Zap movzx and movsx suffix. The suffix has been set from
4252 "word ptr" or "byte ptr" on the source operand in Intel syntax
4253 or extracted from mnemonic in AT&T syntax. But we'll use
4254 the destination register to choose the suffix for encoding. */
4255 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4256 {
321fd21e
L
4257 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4258 there is no suffix, the default will be byte extension. */
4259 if (i.reg_operands != 2
4260 && !i.suffix
7ab9ffdd 4261 && intel_syntax)
321fd21e
L
4262 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4263
4264 i.suffix = 0;
cd61ebfe 4265 }
24eab124 4266
40fb9820 4267 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4268 if (!add_prefix (FWAIT_OPCODE))
4269 return;
252b5132 4270
d5de92cf
L
4271 /* Check if REP prefix is OK. */
4272 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4273 {
4274 as_bad (_("invalid instruction `%s' after `%s'"),
4275 i.tm.name, i.rep_prefix);
4276 return;
4277 }
4278
c1ba0266
L
4279 /* Check for lock without a lockable instruction. Destination operand
4280 must be memory unless it is xchg (0x86). */
c32fa91d
L
4281 if (i.prefix[LOCK_PREFIX]
4282 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4283 || i.mem_operands == 0
4284 || (i.tm.base_opcode != 0x86
4285 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4286 {
4287 as_bad (_("expecting lockable instruction after `lock'"));
4288 return;
4289 }
4290
7a8655d2
JB
4291 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4292 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4293 {
4294 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4295 return;
4296 }
4297
42164a71 4298 /* Check if HLE prefix is OK. */
165de32a 4299 if (i.hle_prefix && !check_hle ())
42164a71
L
4300 return;
4301
7e8b059b
L
4302 /* Check BND prefix. */
4303 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4304 as_bad (_("expecting valid branch instruction after `bnd'"));
4305
04ef582a 4306 /* Check NOTRACK prefix. */
9fef80d6
L
4307 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4308 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4309
327e8c42
JB
4310 if (i.tm.cpu_flags.bitfield.cpumpx)
4311 {
4312 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4313 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4314 else if (flag_code != CODE_16BIT
4315 ? i.prefix[ADDR_PREFIX]
4316 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4317 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4318 }
7e8b059b
L
4319
4320 /* Insert BND prefix. */
76d3a78a
JB
4321 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4322 {
4323 if (!i.prefix[BND_PREFIX])
4324 add_prefix (BND_PREFIX_OPCODE);
4325 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4326 {
4327 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4328 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4329 }
4330 }
7e8b059b 4331
29b0f896 4332 /* Check string instruction segment overrides. */
40fb9820 4333 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4334 {
4335 if (!check_string ())
5dd0794d 4336 return;
fc0763e6 4337 i.disp_operands = 0;
29b0f896 4338 }
5dd0794d 4339
b6f8c7c4
L
4340 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4341 optimize_encoding ();
4342
29b0f896
AM
4343 if (!process_suffix ())
4344 return;
e413e4e9 4345
bc0844ae
L
4346 /* Update operand types. */
4347 for (j = 0; j < i.operands; j++)
4348 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4349
29b0f896
AM
4350 /* Make still unresolved immediate matches conform to size of immediate
4351 given in i.suffix. */
4352 if (!finalize_imm ())
4353 return;
252b5132 4354
40fb9820 4355 if (i.types[0].bitfield.imm1)
29b0f896 4356 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4357
9afe6eb8
L
4358 /* We only need to check those implicit registers for instructions
4359 with 3 operands or less. */
4360 if (i.operands <= 3)
4361 for (j = 0; j < i.operands; j++)
4362 if (i.types[j].bitfield.inoutportreg
4363 || i.types[j].bitfield.shiftcount
1b54b8d7 4364 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4365 i.reg_operands--;
40fb9820 4366
c0f3af97
L
4367 /* ImmExt should be processed after SSE2AVX. */
4368 if (!i.tm.opcode_modifier.sse2avx
4369 && i.tm.opcode_modifier.immext)
65da13b5 4370 process_immext ();
252b5132 4371
29b0f896
AM
4372 /* For insns with operands there are more diddles to do to the opcode. */
4373 if (i.operands)
4374 {
4375 if (!process_operands ())
4376 return;
4377 }
40fb9820 4378 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4379 {
4380 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4381 as_warn (_("translating to `%sp'"), i.tm.name);
4382 }
252b5132 4383
7a8655d2 4384 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4385 {
4386 if (flag_code == CODE_16BIT)
4387 {
4388 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4389 i.tm.name);
4390 return;
4391 }
c0f3af97 4392
9e5e5283
L
4393 if (i.tm.opcode_modifier.vex)
4394 build_vex_prefix (t);
4395 else
4396 build_evex_prefix ();
4397 }
43234a1e 4398
5dd85c99
SP
4399 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4400 instructions may define INT_OPCODE as well, so avoid this corner
4401 case for those instructions that use MODRM. */
4402 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4403 && !i.tm.opcode_modifier.modrm
4404 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4405 {
4406 i.tm.base_opcode = INT3_OPCODE;
4407 i.imm_operands = 0;
4408 }
252b5132 4409
40fb9820
L
4410 if ((i.tm.opcode_modifier.jump
4411 || i.tm.opcode_modifier.jumpbyte
4412 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4413 && i.op[0].disps->X_op == O_constant)
4414 {
4415 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4416 the absolute address given by the constant. Since ix86 jumps and
4417 calls are pc relative, we need to generate a reloc. */
4418 i.op[0].disps->X_add_symbol = &abs_symbol;
4419 i.op[0].disps->X_op = O_symbol;
4420 }
252b5132 4421
40fb9820 4422 if (i.tm.opcode_modifier.rex64)
161a04f6 4423 i.rex |= REX_W;
252b5132 4424
29b0f896
AM
4425 /* For 8 bit registers we need an empty rex prefix. Also if the
4426 instruction already has a prefix, we need to convert old
4427 registers to new ones. */
773f551c 4428
dc821c5f 4429 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4430 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4431 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4432 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4433 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4434 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4435 && i.rex != 0))
4436 {
4437 int x;
726c5dcd 4438
29b0f896
AM
4439 i.rex |= REX_OPCODE;
4440 for (x = 0; x < 2; x++)
4441 {
4442 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4443 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4444 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4445 {
29b0f896
AM
4446 /* In case it is "hi" register, give up. */
4447 if (i.op[x].regs->reg_num > 3)
a540244d 4448 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4449 "instruction requiring REX prefix."),
a540244d 4450 register_prefix, i.op[x].regs->reg_name);
773f551c 4451
29b0f896
AM
4452 /* Otherwise it is equivalent to the extended register.
4453 Since the encoding doesn't change this is merely
4454 cosmetic cleanup for debug output. */
4455
4456 i.op[x].regs = i.op[x].regs + 8;
773f551c 4457 }
29b0f896
AM
4458 }
4459 }
773f551c 4460
6b6b6807
L
4461 if (i.rex == 0 && i.rex_encoding)
4462 {
4463 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4464 that uses legacy register. If it is "hi" register, don't add
4465 the REX_OPCODE byte. */
4466 int x;
4467 for (x = 0; x < 2; x++)
4468 if (i.types[x].bitfield.reg
4469 && i.types[x].bitfield.byte
4470 && (i.op[x].regs->reg_flags & RegRex64) == 0
4471 && i.op[x].regs->reg_num > 3)
4472 {
4473 i.rex_encoding = FALSE;
4474 break;
4475 }
4476
4477 if (i.rex_encoding)
4478 i.rex = REX_OPCODE;
4479 }
4480
7ab9ffdd 4481 if (i.rex != 0)
29b0f896
AM
4482 add_prefix (REX_OPCODE | i.rex);
4483
4484 /* We are ready to output the insn. */
4485 output_insn ();
4486}
4487
4488static char *
e3bb37b5 4489parse_insn (char *line, char *mnemonic)
29b0f896
AM
4490{
4491 char *l = line;
4492 char *token_start = l;
4493 char *mnem_p;
5c6af06e 4494 int supported;
d3ce72d0 4495 const insn_template *t;
b6169b20 4496 char *dot_p = NULL;
29b0f896 4497
29b0f896
AM
4498 while (1)
4499 {
4500 mnem_p = mnemonic;
4501 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4502 {
b6169b20
L
4503 if (*mnem_p == '.')
4504 dot_p = mnem_p;
29b0f896
AM
4505 mnem_p++;
4506 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4507 {
29b0f896
AM
4508 as_bad (_("no such instruction: `%s'"), token_start);
4509 return NULL;
4510 }
4511 l++;
4512 }
4513 if (!is_space_char (*l)
4514 && *l != END_OF_INSN
e44823cf
JB
4515 && (intel_syntax
4516 || (*l != PREFIX_SEPARATOR
4517 && *l != ',')))
29b0f896
AM
4518 {
4519 as_bad (_("invalid character %s in mnemonic"),
4520 output_invalid (*l));
4521 return NULL;
4522 }
4523 if (token_start == l)
4524 {
e44823cf 4525 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4526 as_bad (_("expecting prefix; got nothing"));
4527 else
4528 as_bad (_("expecting mnemonic; got nothing"));
4529 return NULL;
4530 }
45288df1 4531
29b0f896 4532 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4533 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4534
29b0f896
AM
4535 if (*l != END_OF_INSN
4536 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4537 && current_templates
40fb9820 4538 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4539 {
c6fb90c8 4540 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4541 {
4542 as_bad ((flag_code != CODE_64BIT
4543 ? _("`%s' is only supported in 64-bit mode")
4544 : _("`%s' is not supported in 64-bit mode")),
4545 current_templates->start->name);
4546 return NULL;
4547 }
29b0f896
AM
4548 /* If we are in 16-bit mode, do not allow addr16 or data16.
4549 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4550 if ((current_templates->start->opcode_modifier.size == SIZE16
4551 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4552 && flag_code != CODE_64BIT
673fe0f0 4553 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4554 ^ (flag_code == CODE_16BIT)))
4555 {
4556 as_bad (_("redundant %s prefix"),
4557 current_templates->start->name);
4558 return NULL;
45288df1 4559 }
86fa6981 4560 if (current_templates->start->opcode_length == 0)
29b0f896 4561 {
86fa6981
L
4562 /* Handle pseudo prefixes. */
4563 switch (current_templates->start->base_opcode)
4564 {
4565 case 0x0:
4566 /* {disp8} */
4567 i.disp_encoding = disp_encoding_8bit;
4568 break;
4569 case 0x1:
4570 /* {disp32} */
4571 i.disp_encoding = disp_encoding_32bit;
4572 break;
4573 case 0x2:
4574 /* {load} */
4575 i.dir_encoding = dir_encoding_load;
4576 break;
4577 case 0x3:
4578 /* {store} */
4579 i.dir_encoding = dir_encoding_store;
4580 break;
4581 case 0x4:
4582 /* {vex2} */
4583 i.vec_encoding = vex_encoding_vex2;
4584 break;
4585 case 0x5:
4586 /* {vex3} */
4587 i.vec_encoding = vex_encoding_vex3;
4588 break;
4589 case 0x6:
4590 /* {evex} */
4591 i.vec_encoding = vex_encoding_evex;
4592 break;
6b6b6807
L
4593 case 0x7:
4594 /* {rex} */
4595 i.rex_encoding = TRUE;
4596 break;
b6f8c7c4
L
4597 case 0x8:
4598 /* {nooptimize} */
4599 i.no_optimize = TRUE;
4600 break;
86fa6981
L
4601 default:
4602 abort ();
4603 }
4604 }
4605 else
4606 {
4607 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4608 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4609 {
4e9ac44a
L
4610 case PREFIX_EXIST:
4611 return NULL;
4612 case PREFIX_DS:
d777820b 4613 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4614 i.notrack_prefix = current_templates->start->name;
4615 break;
4616 case PREFIX_REP:
4617 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4618 i.hle_prefix = current_templates->start->name;
4619 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4620 i.bnd_prefix = current_templates->start->name;
4621 else
4622 i.rep_prefix = current_templates->start->name;
4623 break;
4624 default:
4625 break;
86fa6981 4626 }
29b0f896
AM
4627 }
4628 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4629 token_start = ++l;
4630 }
4631 else
4632 break;
4633 }
45288df1 4634
30a55f88 4635 if (!current_templates)
b6169b20 4636 {
07d5e953
JB
4637 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4638 Check if we should swap operand or force 32bit displacement in
f8a5c266 4639 encoding. */
30a55f88 4640 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4641 i.dir_encoding = dir_encoding_swap;
8d63c93e 4642 else if (mnem_p - 3 == dot_p
a501d77e
L
4643 && dot_p[1] == 'd'
4644 && dot_p[2] == '8')
4645 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4646 else if (mnem_p - 4 == dot_p
f8a5c266
L
4647 && dot_p[1] == 'd'
4648 && dot_p[2] == '3'
4649 && dot_p[3] == '2')
a501d77e 4650 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4651 else
4652 goto check_suffix;
4653 mnem_p = dot_p;
4654 *dot_p = '\0';
d3ce72d0 4655 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4656 }
4657
29b0f896
AM
4658 if (!current_templates)
4659 {
b6169b20 4660check_suffix:
1c529385 4661 if (mnem_p > mnemonic)
29b0f896 4662 {
1c529385
LH
4663 /* See if we can get a match by trimming off a suffix. */
4664 switch (mnem_p[-1])
29b0f896 4665 {
1c529385
LH
4666 case WORD_MNEM_SUFFIX:
4667 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4668 i.suffix = SHORT_MNEM_SUFFIX;
4669 else
1c529385
LH
4670 /* Fall through. */
4671 case BYTE_MNEM_SUFFIX:
4672 case QWORD_MNEM_SUFFIX:
4673 i.suffix = mnem_p[-1];
29b0f896 4674 mnem_p[-1] = '\0';
d3ce72d0 4675 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4676 mnemonic);
4677 break;
4678 case SHORT_MNEM_SUFFIX:
4679 case LONG_MNEM_SUFFIX:
4680 if (!intel_syntax)
4681 {
4682 i.suffix = mnem_p[-1];
4683 mnem_p[-1] = '\0';
4684 current_templates = (const templates *) hash_find (op_hash,
4685 mnemonic);
4686 }
4687 break;
4688
4689 /* Intel Syntax. */
4690 case 'd':
4691 if (intel_syntax)
4692 {
4693 if (intel_float_operand (mnemonic) == 1)
4694 i.suffix = SHORT_MNEM_SUFFIX;
4695 else
4696 i.suffix = LONG_MNEM_SUFFIX;
4697 mnem_p[-1] = '\0';
4698 current_templates = (const templates *) hash_find (op_hash,
4699 mnemonic);
4700 }
4701 break;
29b0f896 4702 }
29b0f896 4703 }
1c529385 4704
29b0f896
AM
4705 if (!current_templates)
4706 {
4707 as_bad (_("no such instruction: `%s'"), token_start);
4708 return NULL;
4709 }
4710 }
252b5132 4711
40fb9820
L
4712 if (current_templates->start->opcode_modifier.jump
4713 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4714 {
4715 /* Check for a branch hint. We allow ",pt" and ",pn" for
4716 predict taken and predict not taken respectively.
4717 I'm not sure that branch hints actually do anything on loop
4718 and jcxz insns (JumpByte) for current Pentium4 chips. They
4719 may work in the future and it doesn't hurt to accept them
4720 now. */
4721 if (l[0] == ',' && l[1] == 'p')
4722 {
4723 if (l[2] == 't')
4724 {
4725 if (!add_prefix (DS_PREFIX_OPCODE))
4726 return NULL;
4727 l += 3;
4728 }
4729 else if (l[2] == 'n')
4730 {
4731 if (!add_prefix (CS_PREFIX_OPCODE))
4732 return NULL;
4733 l += 3;
4734 }
4735 }
4736 }
4737 /* Any other comma loses. */
4738 if (*l == ',')
4739 {
4740 as_bad (_("invalid character %s in mnemonic"),
4741 output_invalid (*l));
4742 return NULL;
4743 }
252b5132 4744
29b0f896 4745 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4746 supported = 0;
4747 for (t = current_templates->start; t < current_templates->end; ++t)
4748 {
c0f3af97
L
4749 supported |= cpu_flags_match (t);
4750 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4751 {
4752 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4753 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4754
548d0ee6
JB
4755 return l;
4756 }
29b0f896 4757 }
3629bb00 4758
548d0ee6
JB
4759 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4760 as_bad (flag_code == CODE_64BIT
4761 ? _("`%s' is not supported in 64-bit mode")
4762 : _("`%s' is only supported in 64-bit mode"),
4763 current_templates->start->name);
4764 else
4765 as_bad (_("`%s' is not supported on `%s%s'"),
4766 current_templates->start->name,
4767 cpu_arch_name ? cpu_arch_name : default_arch,
4768 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4769
548d0ee6 4770 return NULL;
29b0f896 4771}
252b5132 4772
29b0f896 4773static char *
e3bb37b5 4774parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4775{
4776 char *token_start;
3138f287 4777
29b0f896
AM
4778 /* 1 if operand is pending after ','. */
4779 unsigned int expecting_operand = 0;
252b5132 4780
29b0f896
AM
4781 /* Non-zero if operand parens not balanced. */
4782 unsigned int paren_not_balanced;
4783
4784 while (*l != END_OF_INSN)
4785 {
4786 /* Skip optional white space before operand. */
4787 if (is_space_char (*l))
4788 ++l;
d02603dc 4789 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4790 {
4791 as_bad (_("invalid character %s before operand %d"),
4792 output_invalid (*l),
4793 i.operands + 1);
4794 return NULL;
4795 }
d02603dc 4796 token_start = l; /* After white space. */
29b0f896
AM
4797 paren_not_balanced = 0;
4798 while (paren_not_balanced || *l != ',')
4799 {
4800 if (*l == END_OF_INSN)
4801 {
4802 if (paren_not_balanced)
4803 {
4804 if (!intel_syntax)
4805 as_bad (_("unbalanced parenthesis in operand %d."),
4806 i.operands + 1);
4807 else
4808 as_bad (_("unbalanced brackets in operand %d."),
4809 i.operands + 1);
4810 return NULL;
4811 }
4812 else
4813 break; /* we are done */
4814 }
d02603dc 4815 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4816 {
4817 as_bad (_("invalid character %s in operand %d"),
4818 output_invalid (*l),
4819 i.operands + 1);
4820 return NULL;
4821 }
4822 if (!intel_syntax)
4823 {
4824 if (*l == '(')
4825 ++paren_not_balanced;
4826 if (*l == ')')
4827 --paren_not_balanced;
4828 }
4829 else
4830 {
4831 if (*l == '[')
4832 ++paren_not_balanced;
4833 if (*l == ']')
4834 --paren_not_balanced;
4835 }
4836 l++;
4837 }
4838 if (l != token_start)
4839 { /* Yes, we've read in another operand. */
4840 unsigned int operand_ok;
4841 this_operand = i.operands++;
4842 if (i.operands > MAX_OPERANDS)
4843 {
4844 as_bad (_("spurious operands; (%d operands/instruction max)"),
4845 MAX_OPERANDS);
4846 return NULL;
4847 }
9d46ce34 4848 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4849 /* Now parse operand adding info to 'i' as we go along. */
4850 END_STRING_AND_SAVE (l);
4851
1286ab78
L
4852 if (i.mem_operands > 1)
4853 {
4854 as_bad (_("too many memory references for `%s'"),
4855 mnemonic);
4856 return 0;
4857 }
4858
29b0f896
AM
4859 if (intel_syntax)
4860 operand_ok =
4861 i386_intel_operand (token_start,
4862 intel_float_operand (mnemonic));
4863 else
a7619375 4864 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4865
4866 RESTORE_END_STRING (l);
4867 if (!operand_ok)
4868 return NULL;
4869 }
4870 else
4871 {
4872 if (expecting_operand)
4873 {
4874 expecting_operand_after_comma:
4875 as_bad (_("expecting operand after ','; got nothing"));
4876 return NULL;
4877 }
4878 if (*l == ',')
4879 {
4880 as_bad (_("expecting operand before ','; got nothing"));
4881 return NULL;
4882 }
4883 }
7f3f1ea2 4884
29b0f896
AM
4885 /* Now *l must be either ',' or END_OF_INSN. */
4886 if (*l == ',')
4887 {
4888 if (*++l == END_OF_INSN)
4889 {
4890 /* Just skip it, if it's \n complain. */
4891 goto expecting_operand_after_comma;
4892 }
4893 expecting_operand = 1;
4894 }
4895 }
4896 return l;
4897}
7f3f1ea2 4898
050dfa73 4899static void
4d456e3d 4900swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4901{
4902 union i386_op temp_op;
40fb9820 4903 i386_operand_type temp_type;
c48dadc9 4904 unsigned int temp_flags;
050dfa73 4905 enum bfd_reloc_code_real temp_reloc;
4eed87de 4906
050dfa73
MM
4907 temp_type = i.types[xchg2];
4908 i.types[xchg2] = i.types[xchg1];
4909 i.types[xchg1] = temp_type;
c48dadc9
JB
4910
4911 temp_flags = i.flags[xchg2];
4912 i.flags[xchg2] = i.flags[xchg1];
4913 i.flags[xchg1] = temp_flags;
4914
050dfa73
MM
4915 temp_op = i.op[xchg2];
4916 i.op[xchg2] = i.op[xchg1];
4917 i.op[xchg1] = temp_op;
c48dadc9 4918
050dfa73
MM
4919 temp_reloc = i.reloc[xchg2];
4920 i.reloc[xchg2] = i.reloc[xchg1];
4921 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4922
4923 if (i.mask)
4924 {
4925 if (i.mask->operand == xchg1)
4926 i.mask->operand = xchg2;
4927 else if (i.mask->operand == xchg2)
4928 i.mask->operand = xchg1;
4929 }
4930 if (i.broadcast)
4931 {
4932 if (i.broadcast->operand == xchg1)
4933 i.broadcast->operand = xchg2;
4934 else if (i.broadcast->operand == xchg2)
4935 i.broadcast->operand = xchg1;
4936 }
4937 if (i.rounding)
4938 {
4939 if (i.rounding->operand == xchg1)
4940 i.rounding->operand = xchg2;
4941 else if (i.rounding->operand == xchg2)
4942 i.rounding->operand = xchg1;
4943 }
050dfa73
MM
4944}
4945
29b0f896 4946static void
e3bb37b5 4947swap_operands (void)
29b0f896 4948{
b7c61d9a 4949 switch (i.operands)
050dfa73 4950 {
c0f3af97 4951 case 5:
b7c61d9a 4952 case 4:
4d456e3d 4953 swap_2_operands (1, i.operands - 2);
1a0670f3 4954 /* Fall through. */
b7c61d9a
L
4955 case 3:
4956 case 2:
4d456e3d 4957 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4958 break;
4959 default:
4960 abort ();
29b0f896 4961 }
29b0f896
AM
4962
4963 if (i.mem_operands == 2)
4964 {
4965 const seg_entry *temp_seg;
4966 temp_seg = i.seg[0];
4967 i.seg[0] = i.seg[1];
4968 i.seg[1] = temp_seg;
4969 }
4970}
252b5132 4971
29b0f896
AM
4972/* Try to ensure constant immediates are represented in the smallest
4973 opcode possible. */
4974static void
e3bb37b5 4975optimize_imm (void)
29b0f896
AM
4976{
4977 char guess_suffix = 0;
4978 int op;
252b5132 4979
29b0f896
AM
4980 if (i.suffix)
4981 guess_suffix = i.suffix;
4982 else if (i.reg_operands)
4983 {
4984 /* Figure out a suffix from the last register operand specified.
4985 We can't do this properly yet, ie. excluding InOutPortReg,
4986 but the following works for instructions with immediates.
4987 In any case, we can't set i.suffix yet. */
4988 for (op = i.operands; --op >= 0;)
dc821c5f 4989 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4990 {
40fb9820
L
4991 guess_suffix = BYTE_MNEM_SUFFIX;
4992 break;
4993 }
dc821c5f 4994 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4995 {
40fb9820
L
4996 guess_suffix = WORD_MNEM_SUFFIX;
4997 break;
4998 }
dc821c5f 4999 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
5000 {
5001 guess_suffix = LONG_MNEM_SUFFIX;
5002 break;
5003 }
dc821c5f 5004 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
5005 {
5006 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5007 break;
252b5132 5008 }
29b0f896
AM
5009 }
5010 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5011 guess_suffix = WORD_MNEM_SUFFIX;
5012
5013 for (op = i.operands; --op >= 0;)
40fb9820 5014 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5015 {
5016 switch (i.op[op].imms->X_op)
252b5132 5017 {
29b0f896
AM
5018 case O_constant:
5019 /* If a suffix is given, this operand may be shortened. */
5020 switch (guess_suffix)
252b5132 5021 {
29b0f896 5022 case LONG_MNEM_SUFFIX:
40fb9820
L
5023 i.types[op].bitfield.imm32 = 1;
5024 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5025 break;
5026 case WORD_MNEM_SUFFIX:
40fb9820
L
5027 i.types[op].bitfield.imm16 = 1;
5028 i.types[op].bitfield.imm32 = 1;
5029 i.types[op].bitfield.imm32s = 1;
5030 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5031 break;
5032 case BYTE_MNEM_SUFFIX:
40fb9820
L
5033 i.types[op].bitfield.imm8 = 1;
5034 i.types[op].bitfield.imm8s = 1;
5035 i.types[op].bitfield.imm16 = 1;
5036 i.types[op].bitfield.imm32 = 1;
5037 i.types[op].bitfield.imm32s = 1;
5038 i.types[op].bitfield.imm64 = 1;
29b0f896 5039 break;
252b5132 5040 }
252b5132 5041
29b0f896
AM
5042 /* If this operand is at most 16 bits, convert it
5043 to a signed 16 bit number before trying to see
5044 whether it will fit in an even smaller size.
5045 This allows a 16-bit operand such as $0xffe0 to
5046 be recognised as within Imm8S range. */
40fb9820 5047 if ((i.types[op].bitfield.imm16)
29b0f896 5048 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5049 {
29b0f896
AM
5050 i.op[op].imms->X_add_number =
5051 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5052 }
a28def75
L
5053#ifdef BFD64
5054 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5055 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5056 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5057 == 0))
5058 {
5059 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5060 ^ ((offsetT) 1 << 31))
5061 - ((offsetT) 1 << 31));
5062 }
a28def75 5063#endif
40fb9820 5064 i.types[op]
c6fb90c8
L
5065 = operand_type_or (i.types[op],
5066 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5067
29b0f896
AM
5068 /* We must avoid matching of Imm32 templates when 64bit
5069 only immediate is available. */
5070 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5071 i.types[op].bitfield.imm32 = 0;
29b0f896 5072 break;
252b5132 5073
29b0f896
AM
5074 case O_absent:
5075 case O_register:
5076 abort ();
5077
5078 /* Symbols and expressions. */
5079 default:
9cd96992
JB
5080 /* Convert symbolic operand to proper sizes for matching, but don't
5081 prevent matching a set of insns that only supports sizes other
5082 than those matching the insn suffix. */
5083 {
40fb9820 5084 i386_operand_type mask, allowed;
d3ce72d0 5085 const insn_template *t;
9cd96992 5086
0dfbf9d7
L
5087 operand_type_set (&mask, 0);
5088 operand_type_set (&allowed, 0);
40fb9820 5089
4eed87de
AM
5090 for (t = current_templates->start;
5091 t < current_templates->end;
5092 ++t)
c6fb90c8
L
5093 allowed = operand_type_or (allowed,
5094 t->operand_types[op]);
9cd96992
JB
5095 switch (guess_suffix)
5096 {
5097 case QWORD_MNEM_SUFFIX:
40fb9820
L
5098 mask.bitfield.imm64 = 1;
5099 mask.bitfield.imm32s = 1;
9cd96992
JB
5100 break;
5101 case LONG_MNEM_SUFFIX:
40fb9820 5102 mask.bitfield.imm32 = 1;
9cd96992
JB
5103 break;
5104 case WORD_MNEM_SUFFIX:
40fb9820 5105 mask.bitfield.imm16 = 1;
9cd96992
JB
5106 break;
5107 case BYTE_MNEM_SUFFIX:
40fb9820 5108 mask.bitfield.imm8 = 1;
9cd96992
JB
5109 break;
5110 default:
9cd96992
JB
5111 break;
5112 }
c6fb90c8 5113 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5114 if (!operand_type_all_zero (&allowed))
c6fb90c8 5115 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5116 }
29b0f896 5117 break;
252b5132 5118 }
29b0f896
AM
5119 }
5120}
47926f60 5121
29b0f896
AM
5122/* Try to use the smallest displacement type too. */
5123static void
e3bb37b5 5124optimize_disp (void)
29b0f896
AM
5125{
5126 int op;
3e73aa7c 5127
29b0f896 5128 for (op = i.operands; --op >= 0;)
40fb9820 5129 if (operand_type_check (i.types[op], disp))
252b5132 5130 {
b300c311 5131 if (i.op[op].disps->X_op == O_constant)
252b5132 5132 {
91d6fa6a 5133 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5134
40fb9820 5135 if (i.types[op].bitfield.disp16
91d6fa6a 5136 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5137 {
5138 /* If this operand is at most 16 bits, convert
5139 to a signed 16 bit number and don't use 64bit
5140 displacement. */
91d6fa6a 5141 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5142 i.types[op].bitfield.disp64 = 0;
b300c311 5143 }
a28def75
L
5144#ifdef BFD64
5145 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5146 if (i.types[op].bitfield.disp32
91d6fa6a 5147 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5148 {
5149 /* If this operand is at most 32 bits, convert
5150 to a signed 32 bit number and don't use 64bit
5151 displacement. */
91d6fa6a
NC
5152 op_disp &= (((offsetT) 2 << 31) - 1);
5153 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5154 i.types[op].bitfield.disp64 = 0;
b300c311 5155 }
a28def75 5156#endif
91d6fa6a 5157 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5158 {
40fb9820
L
5159 i.types[op].bitfield.disp8 = 0;
5160 i.types[op].bitfield.disp16 = 0;
5161 i.types[op].bitfield.disp32 = 0;
5162 i.types[op].bitfield.disp32s = 0;
5163 i.types[op].bitfield.disp64 = 0;
b300c311
L
5164 i.op[op].disps = 0;
5165 i.disp_operands--;
5166 }
5167 else if (flag_code == CODE_64BIT)
5168 {
91d6fa6a 5169 if (fits_in_signed_long (op_disp))
28a9d8f5 5170 {
40fb9820
L
5171 i.types[op].bitfield.disp64 = 0;
5172 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5173 }
0e1147d9 5174 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5175 && fits_in_unsigned_long (op_disp))
40fb9820 5176 i.types[op].bitfield.disp32 = 1;
b300c311 5177 }
40fb9820
L
5178 if ((i.types[op].bitfield.disp32
5179 || i.types[op].bitfield.disp32s
5180 || i.types[op].bitfield.disp16)
b5014f7a 5181 && fits_in_disp8 (op_disp))
40fb9820 5182 i.types[op].bitfield.disp8 = 1;
252b5132 5183 }
67a4f2b7
AO
5184 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5185 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5186 {
5187 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5188 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5189 i.types[op].bitfield.disp8 = 0;
5190 i.types[op].bitfield.disp16 = 0;
5191 i.types[op].bitfield.disp32 = 0;
5192 i.types[op].bitfield.disp32s = 0;
5193 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5194 }
5195 else
b300c311 5196 /* We only support 64bit displacement on constants. */
40fb9820 5197 i.types[op].bitfield.disp64 = 0;
252b5132 5198 }
29b0f896
AM
5199}
5200
4a1b91ea
L
5201/* Return 1 if there is a match in broadcast bytes between operand
5202 GIVEN and instruction template T. */
5203
5204static INLINE int
5205match_broadcast_size (const insn_template *t, unsigned int given)
5206{
5207 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5208 && i.types[given].bitfield.byte)
5209 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5210 && i.types[given].bitfield.word)
5211 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5212 && i.types[given].bitfield.dword)
5213 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5214 && i.types[given].bitfield.qword));
5215}
5216
6c30d220
L
5217/* Check if operands are valid for the instruction. */
5218
5219static int
5220check_VecOperands (const insn_template *t)
5221{
43234a1e 5222 unsigned int op;
e2195274
JB
5223 i386_cpu_flags cpu;
5224 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5225
5226 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5227 any one operand are implicity requiring AVX512VL support if the actual
5228 operand size is YMMword or XMMword. Since this function runs after
5229 template matching, there's no need to check for YMMword/XMMword in
5230 the template. */
5231 cpu = cpu_flags_and (t->cpu_flags, avx512);
5232 if (!cpu_flags_all_zero (&cpu)
5233 && !t->cpu_flags.bitfield.cpuavx512vl
5234 && !cpu_arch_flags.bitfield.cpuavx512vl)
5235 {
5236 for (op = 0; op < t->operands; ++op)
5237 {
5238 if (t->operand_types[op].bitfield.zmmword
5239 && (i.types[op].bitfield.ymmword
5240 || i.types[op].bitfield.xmmword))
5241 {
5242 i.error = unsupported;
5243 return 1;
5244 }
5245 }
5246 }
43234a1e 5247
6c30d220
L
5248 /* Without VSIB byte, we can't have a vector register for index. */
5249 if (!t->opcode_modifier.vecsib
5250 && i.index_reg
1b54b8d7
JB
5251 && (i.index_reg->reg_type.bitfield.xmmword
5252 || i.index_reg->reg_type.bitfield.ymmword
5253 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5254 {
5255 i.error = unsupported_vector_index_register;
5256 return 1;
5257 }
5258
ad8ecc81
MZ
5259 /* Check if default mask is allowed. */
5260 if (t->opcode_modifier.nodefmask
5261 && (!i.mask || i.mask->mask->reg_num == 0))
5262 {
5263 i.error = no_default_mask;
5264 return 1;
5265 }
5266
7bab8ab5
JB
5267 /* For VSIB byte, we need a vector register for index, and all vector
5268 registers must be distinct. */
5269 if (t->opcode_modifier.vecsib)
5270 {
5271 if (!i.index_reg
6c30d220 5272 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5273 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5274 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5275 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5276 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5277 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5278 {
5279 i.error = invalid_vsib_address;
5280 return 1;
5281 }
5282
43234a1e
L
5283 gas_assert (i.reg_operands == 2 || i.mask);
5284 if (i.reg_operands == 2 && !i.mask)
5285 {
1b54b8d7
JB
5286 gas_assert (i.types[0].bitfield.regsimd);
5287 gas_assert (i.types[0].bitfield.xmmword
5288 || i.types[0].bitfield.ymmword);
5289 gas_assert (i.types[2].bitfield.regsimd);
5290 gas_assert (i.types[2].bitfield.xmmword
5291 || i.types[2].bitfield.ymmword);
43234a1e
L
5292 if (operand_check == check_none)
5293 return 0;
5294 if (register_number (i.op[0].regs)
5295 != register_number (i.index_reg)
5296 && register_number (i.op[2].regs)
5297 != register_number (i.index_reg)
5298 && register_number (i.op[0].regs)
5299 != register_number (i.op[2].regs))
5300 return 0;
5301 if (operand_check == check_error)
5302 {
5303 i.error = invalid_vector_register_set;
5304 return 1;
5305 }
5306 as_warn (_("mask, index, and destination registers should be distinct"));
5307 }
8444f82a
MZ
5308 else if (i.reg_operands == 1 && i.mask)
5309 {
1b54b8d7
JB
5310 if (i.types[1].bitfield.regsimd
5311 && (i.types[1].bitfield.xmmword
5312 || i.types[1].bitfield.ymmword
5313 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5314 && (register_number (i.op[1].regs)
5315 == register_number (i.index_reg)))
5316 {
5317 if (operand_check == check_error)
5318 {
5319 i.error = invalid_vector_register_set;
5320 return 1;
5321 }
5322 if (operand_check != check_none)
5323 as_warn (_("index and destination registers should be distinct"));
5324 }
5325 }
43234a1e 5326 }
7bab8ab5 5327
43234a1e
L
5328 /* Check if broadcast is supported by the instruction and is applied
5329 to the memory operand. */
5330 if (i.broadcast)
5331 {
8e6e0792 5332 i386_operand_type type, overlap;
43234a1e
L
5333
5334 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5335 and its broadcast bytes match the memory operand. */
32546502 5336 op = i.broadcast->operand;
8e6e0792 5337 if (!t->opcode_modifier.broadcast
c48dadc9 5338 || !(i.flags[op] & Operand_Mem)
c39e5b26 5339 || (!i.types[op].bitfield.unspecified
4a1b91ea 5340 && !match_broadcast_size (t, op)))
43234a1e
L
5341 {
5342 bad_broadcast:
5343 i.error = unsupported_broadcast;
5344 return 1;
5345 }
8e6e0792 5346
4a1b91ea
L
5347 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5348 * i.broadcast->type);
8e6e0792 5349 operand_type_set (&type, 0);
4a1b91ea 5350 switch (i.broadcast->bytes)
8e6e0792 5351 {
4a1b91ea
L
5352 case 2:
5353 type.bitfield.word = 1;
5354 break;
5355 case 4:
5356 type.bitfield.dword = 1;
5357 break;
8e6e0792
JB
5358 case 8:
5359 type.bitfield.qword = 1;
5360 break;
5361 case 16:
5362 type.bitfield.xmmword = 1;
5363 break;
5364 case 32:
5365 type.bitfield.ymmword = 1;
5366 break;
5367 case 64:
5368 type.bitfield.zmmword = 1;
5369 break;
5370 default:
5371 goto bad_broadcast;
5372 }
5373
5374 overlap = operand_type_and (type, t->operand_types[op]);
5375 if (operand_type_all_zero (&overlap))
5376 goto bad_broadcast;
5377
5378 if (t->opcode_modifier.checkregsize)
5379 {
5380 unsigned int j;
5381
e2195274 5382 type.bitfield.baseindex = 1;
8e6e0792
JB
5383 for (j = 0; j < i.operands; ++j)
5384 {
5385 if (j != op
5386 && !operand_type_register_match(i.types[j],
5387 t->operand_types[j],
5388 type,
5389 t->operand_types[op]))
5390 goto bad_broadcast;
5391 }
5392 }
43234a1e
L
5393 }
5394 /* If broadcast is supported in this instruction, we need to check if
5395 operand of one-element size isn't specified without broadcast. */
5396 else if (t->opcode_modifier.broadcast && i.mem_operands)
5397 {
5398 /* Find memory operand. */
5399 for (op = 0; op < i.operands; op++)
5400 if (operand_type_check (i.types[op], anymem))
5401 break;
5402 gas_assert (op < i.operands);
5403 /* Check size of the memory operand. */
4a1b91ea 5404 if (match_broadcast_size (t, op))
43234a1e
L
5405 {
5406 i.error = broadcast_needed;
5407 return 1;
5408 }
5409 }
c39e5b26
JB
5410 else
5411 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5412
5413 /* Check if requested masking is supported. */
ae2387fe 5414 if (i.mask)
43234a1e 5415 {
ae2387fe
JB
5416 switch (t->opcode_modifier.masking)
5417 {
5418 case BOTH_MASKING:
5419 break;
5420 case MERGING_MASKING:
5421 if (i.mask->zeroing)
5422 {
5423 case 0:
5424 i.error = unsupported_masking;
5425 return 1;
5426 }
5427 break;
5428 case DYNAMIC_MASKING:
5429 /* Memory destinations allow only merging masking. */
5430 if (i.mask->zeroing && i.mem_operands)
5431 {
5432 /* Find memory operand. */
5433 for (op = 0; op < i.operands; op++)
c48dadc9 5434 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5435 break;
5436 gas_assert (op < i.operands);
5437 if (op == i.operands - 1)
5438 {
5439 i.error = unsupported_masking;
5440 return 1;
5441 }
5442 }
5443 break;
5444 default:
5445 abort ();
5446 }
43234a1e
L
5447 }
5448
5449 /* Check if masking is applied to dest operand. */
5450 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5451 {
5452 i.error = mask_not_on_destination;
5453 return 1;
5454 }
5455
43234a1e
L
5456 /* Check RC/SAE. */
5457 if (i.rounding)
5458 {
5459 if ((i.rounding->type != saeonly
5460 && !t->opcode_modifier.staticrounding)
5461 || (i.rounding->type == saeonly
5462 && (t->opcode_modifier.staticrounding
5463 || !t->opcode_modifier.sae)))
5464 {
5465 i.error = unsupported_rc_sae;
5466 return 1;
5467 }
5468 /* If the instruction has several immediate operands and one of
5469 them is rounding, the rounding operand should be the last
5470 immediate operand. */
5471 if (i.imm_operands > 1
5472 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5473 {
43234a1e 5474 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5475 return 1;
5476 }
6c30d220
L
5477 }
5478
43234a1e 5479 /* Check vector Disp8 operand. */
b5014f7a
JB
5480 if (t->opcode_modifier.disp8memshift
5481 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5482 {
5483 if (i.broadcast)
4a1b91ea 5484 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5485 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5486 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5487 else
5488 {
5489 const i386_operand_type *type = NULL;
5490
5491 i.memshift = 0;
5492 for (op = 0; op < i.operands; op++)
5493 if (operand_type_check (i.types[op], anymem))
5494 {
4174bfff
JB
5495 if (t->opcode_modifier.evex == EVEXLIG)
5496 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5497 else if (t->operand_types[op].bitfield.xmmword
5498 + t->operand_types[op].bitfield.ymmword
5499 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5500 type = &t->operand_types[op];
5501 else if (!i.types[op].bitfield.unspecified)
5502 type = &i.types[op];
5503 }
4174bfff
JB
5504 else if (i.types[op].bitfield.regsimd
5505 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5506 {
5507 if (i.types[op].bitfield.zmmword)
5508 i.memshift = 6;
5509 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5510 i.memshift = 5;
5511 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5512 i.memshift = 4;
5513 }
5514
5515 if (type)
5516 {
5517 if (type->bitfield.zmmword)
5518 i.memshift = 6;
5519 else if (type->bitfield.ymmword)
5520 i.memshift = 5;
5521 else if (type->bitfield.xmmword)
5522 i.memshift = 4;
5523 }
5524
5525 /* For the check in fits_in_disp8(). */
5526 if (i.memshift == 0)
5527 i.memshift = -1;
5528 }
43234a1e
L
5529
5530 for (op = 0; op < i.operands; op++)
5531 if (operand_type_check (i.types[op], disp)
5532 && i.op[op].disps->X_op == O_constant)
5533 {
b5014f7a 5534 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5535 {
b5014f7a
JB
5536 i.types[op].bitfield.disp8 = 1;
5537 return 0;
43234a1e 5538 }
b5014f7a 5539 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5540 }
5541 }
b5014f7a
JB
5542
5543 i.memshift = 0;
43234a1e 5544
6c30d220
L
5545 return 0;
5546}
5547
43f3e2ee 5548/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5549 operand types. */
5550
5551static int
5552VEX_check_operands (const insn_template *t)
5553{
86fa6981 5554 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5555 {
86fa6981 5556 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5557 if (!is_evex_encoding (t))
86fa6981
L
5558 {
5559 i.error = unsupported;
5560 return 1;
5561 }
5562 return 0;
43234a1e
L
5563 }
5564
a683cc34 5565 if (!t->opcode_modifier.vex)
86fa6981
L
5566 {
5567 /* This instruction template doesn't have VEX prefix. */
5568 if (i.vec_encoding != vex_encoding_default)
5569 {
5570 i.error = unsupported;
5571 return 1;
5572 }
5573 return 0;
5574 }
a683cc34
SP
5575
5576 /* Only check VEX_Imm4, which must be the first operand. */
5577 if (t->operand_types[0].bitfield.vec_imm4)
5578 {
5579 if (i.op[0].imms->X_op != O_constant
5580 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5581 {
a65babc9 5582 i.error = bad_imm4;
891edac4
L
5583 return 1;
5584 }
a683cc34
SP
5585
5586 /* Turn off Imm8 so that update_imm won't complain. */
5587 i.types[0] = vec_imm4;
5588 }
5589
5590 return 0;
5591}
5592
d3ce72d0 5593static const insn_template *
83b16ac6 5594match_template (char mnem_suffix)
29b0f896
AM
5595{
5596 /* Points to template once we've found it. */
d3ce72d0 5597 const insn_template *t;
40fb9820 5598 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5599 i386_operand_type overlap4;
29b0f896 5600 unsigned int found_reverse_match;
83b16ac6 5601 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5602 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5603 int addr_prefix_disp;
a5c311ca 5604 unsigned int j;
3ac21baa 5605 unsigned int found_cpu_match, size_match;
45664ddb 5606 unsigned int check_register;
5614d22c 5607 enum i386_error specific_error = 0;
29b0f896 5608
c0f3af97
L
5609#if MAX_OPERANDS != 5
5610# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5611#endif
5612
29b0f896 5613 found_reverse_match = 0;
539e75ad 5614 addr_prefix_disp = -1;
40fb9820
L
5615
5616 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5617 if (intel_syntax && i.broadcast)
5618 /* nothing */;
5619 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5620 suffix_check.no_bsuf = 1;
5621 else if (i.suffix == WORD_MNEM_SUFFIX)
5622 suffix_check.no_wsuf = 1;
5623 else if (i.suffix == SHORT_MNEM_SUFFIX)
5624 suffix_check.no_ssuf = 1;
5625 else if (i.suffix == LONG_MNEM_SUFFIX)
5626 suffix_check.no_lsuf = 1;
5627 else if (i.suffix == QWORD_MNEM_SUFFIX)
5628 suffix_check.no_qsuf = 1;
5629 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5630 suffix_check.no_ldsuf = 1;
29b0f896 5631
83b16ac6
JB
5632 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5633 if (intel_syntax)
5634 {
5635 switch (mnem_suffix)
5636 {
5637 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5638 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5639 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5640 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5641 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5642 }
5643 }
5644
01559ecc
L
5645 /* Must have right number of operands. */
5646 i.error = number_of_operands_mismatch;
5647
45aa61fe 5648 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5649 {
539e75ad 5650 addr_prefix_disp = -1;
dbbc8b7e 5651 found_reverse_match = 0;
539e75ad 5652
29b0f896
AM
5653 if (i.operands != t->operands)
5654 continue;
5655
50aecf8c 5656 /* Check processor support. */
a65babc9 5657 i.error = unsupported;
c0f3af97
L
5658 found_cpu_match = (cpu_flags_match (t)
5659 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5660 if (!found_cpu_match)
5661 continue;
5662
e1d4d893 5663 /* Check AT&T mnemonic. */
a65babc9 5664 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5665 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5666 continue;
5667
e92bae62 5668 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5669 i.error = unsupported_syntax;
5c07affc 5670 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5671 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5672 || (intel64 && t->opcode_modifier.amd64)
5673 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5674 continue;
5675
20592a94 5676 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5677 i.error = invalid_instruction_suffix;
567e4e96
L
5678 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5679 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5680 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5681 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5682 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5683 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5684 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5685 continue;
83b16ac6
JB
5686 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5687 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5688 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5689 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5690 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5691 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5692 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5693 continue;
29b0f896 5694
3ac21baa
JB
5695 size_match = operand_size_match (t);
5696 if (!size_match)
7d5e4556 5697 continue;
539e75ad 5698
5c07affc
L
5699 for (j = 0; j < MAX_OPERANDS; j++)
5700 operand_types[j] = t->operand_types[j];
5701
45aa61fe
AM
5702 /* In general, don't allow 64-bit operands in 32-bit mode. */
5703 if (i.suffix == QWORD_MNEM_SUFFIX
5704 && flag_code != CODE_64BIT
5705 && (intel_syntax
40fb9820 5706 ? (!t->opcode_modifier.ignoresize
625cbd7a 5707 && !t->opcode_modifier.broadcast
45aa61fe
AM
5708 && !intel_float_operand (t->name))
5709 : intel_float_operand (t->name) != 2)
40fb9820 5710 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5711 && !operand_types[0].bitfield.regsimd)
40fb9820 5712 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5713 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5714 && (t->base_opcode != 0x0fc7
5715 || t->extension_opcode != 1 /* cmpxchg8b */))
5716 continue;
5717
192dc9c6
JB
5718 /* In general, don't allow 32-bit operands on pre-386. */
5719 else if (i.suffix == LONG_MNEM_SUFFIX
5720 && !cpu_arch_flags.bitfield.cpui386
5721 && (intel_syntax
5722 ? (!t->opcode_modifier.ignoresize
5723 && !intel_float_operand (t->name))
5724 : intel_float_operand (t->name) != 2)
5725 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5726 && !operand_types[0].bitfield.regsimd)
192dc9c6 5727 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5728 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5729 continue;
5730
29b0f896 5731 /* Do not verify operands when there are none. */
50aecf8c 5732 else
29b0f896 5733 {
c6fb90c8 5734 if (!t->operands)
2dbab7d5
L
5735 /* We've found a match; break out of loop. */
5736 break;
29b0f896 5737 }
252b5132 5738
539e75ad
L
5739 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5740 into Disp32/Disp16/Disp32 operand. */
5741 if (i.prefix[ADDR_PREFIX] != 0)
5742 {
40fb9820 5743 /* There should be only one Disp operand. */
539e75ad
L
5744 switch (flag_code)
5745 {
5746 case CODE_16BIT:
40fb9820
L
5747 for (j = 0; j < MAX_OPERANDS; j++)
5748 {
5749 if (operand_types[j].bitfield.disp16)
5750 {
5751 addr_prefix_disp = j;
5752 operand_types[j].bitfield.disp32 = 1;
5753 operand_types[j].bitfield.disp16 = 0;
5754 break;
5755 }
5756 }
539e75ad
L
5757 break;
5758 case CODE_32BIT:
40fb9820
L
5759 for (j = 0; j < MAX_OPERANDS; j++)
5760 {
5761 if (operand_types[j].bitfield.disp32)
5762 {
5763 addr_prefix_disp = j;
5764 operand_types[j].bitfield.disp32 = 0;
5765 operand_types[j].bitfield.disp16 = 1;
5766 break;
5767 }
5768 }
539e75ad
L
5769 break;
5770 case CODE_64BIT:
40fb9820
L
5771 for (j = 0; j < MAX_OPERANDS; j++)
5772 {
5773 if (operand_types[j].bitfield.disp64)
5774 {
5775 addr_prefix_disp = j;
5776 operand_types[j].bitfield.disp64 = 0;
5777 operand_types[j].bitfield.disp32 = 1;
5778 break;
5779 }
5780 }
539e75ad
L
5781 break;
5782 }
539e75ad
L
5783 }
5784
02a86693
L
5785 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5786 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5787 continue;
5788
56ffb741 5789 /* We check register size if needed. */
e2195274
JB
5790 if (t->opcode_modifier.checkregsize)
5791 {
5792 check_register = (1 << t->operands) - 1;
5793 if (i.broadcast)
5794 check_register &= ~(1 << i.broadcast->operand);
5795 }
5796 else
5797 check_register = 0;
5798
c6fb90c8 5799 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5800 switch (t->operands)
5801 {
5802 case 1:
40fb9820 5803 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5804 continue;
5805 break;
5806 case 2:
33eaf5de 5807 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5808 only in 32bit mode and we can use opcode 0x90. In 64bit
5809 mode, we can't use 0x90 for xchg %eax, %eax since it should
5810 zero-extend %eax to %rax. */
5811 if (flag_code == CODE_64BIT
5812 && t->base_opcode == 0x90
0dfbf9d7
L
5813 && operand_type_equal (&i.types [0], &acc32)
5814 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5815 continue;
1212781b
JB
5816 /* xrelease mov %eax, <disp> is another special case. It must not
5817 match the accumulator-only encoding of mov. */
5818 if (flag_code != CODE_64BIT
5819 && i.hle_prefix
5820 && t->base_opcode == 0xa0
5821 && i.types[0].bitfield.acc
5822 && operand_type_check (i.types[1], anymem))
5823 continue;
f5eb1d70
JB
5824 /* Fall through. */
5825
5826 case 3:
3ac21baa
JB
5827 if (!(size_match & MATCH_STRAIGHT))
5828 goto check_reverse;
64c49ab3
JB
5829 /* Reverse direction of operands if swapping is possible in the first
5830 place (operands need to be symmetric) and
5831 - the load form is requested, and the template is a store form,
5832 - the store form is requested, and the template is a load form,
5833 - the non-default (swapped) form is requested. */
5834 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5835 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5836 && !operand_type_all_zero (&overlap1))
5837 switch (i.dir_encoding)
5838 {
5839 case dir_encoding_load:
5840 if (operand_type_check (operand_types[i.operands - 1], anymem)
5841 || operand_types[i.operands - 1].bitfield.regmem)
5842 goto check_reverse;
5843 break;
5844
5845 case dir_encoding_store:
5846 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5847 && !operand_types[i.operands - 1].bitfield.regmem)
5848 goto check_reverse;
5849 break;
5850
5851 case dir_encoding_swap:
5852 goto check_reverse;
5853
5854 case dir_encoding_default:
5855 break;
5856 }
86fa6981 5857 /* If we want store form, we skip the current load. */
64c49ab3
JB
5858 if ((i.dir_encoding == dir_encoding_store
5859 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5860 && i.mem_operands == 0
5861 && t->opcode_modifier.load)
fa99fab2 5862 continue;
1a0670f3 5863 /* Fall through. */
f48ff2ae 5864 case 4:
c0f3af97 5865 case 5:
c6fb90c8 5866 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5867 if (!operand_type_match (overlap0, i.types[0])
5868 || !operand_type_match (overlap1, i.types[1])
e2195274 5869 || ((check_register & 3) == 3
dc821c5f 5870 && !operand_type_register_match (i.types[0],
40fb9820 5871 operand_types[0],
dc821c5f 5872 i.types[1],
40fb9820 5873 operand_types[1])))
29b0f896
AM
5874 {
5875 /* Check if other direction is valid ... */
38e314eb 5876 if (!t->opcode_modifier.d)
29b0f896
AM
5877 continue;
5878
b6169b20 5879check_reverse:
3ac21baa
JB
5880 if (!(size_match & MATCH_REVERSE))
5881 continue;
29b0f896 5882 /* Try reversing direction of operands. */
f5eb1d70
JB
5883 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5884 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5885 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5886 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5887 || (check_register
dc821c5f 5888 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5889 operand_types[i.operands - 1],
5890 i.types[i.operands - 1],
45664ddb 5891 operand_types[0])))
29b0f896
AM
5892 {
5893 /* Does not match either direction. */
5894 continue;
5895 }
38e314eb 5896 /* found_reverse_match holds which of D or FloatR
29b0f896 5897 we've found. */
38e314eb
JB
5898 if (!t->opcode_modifier.d)
5899 found_reverse_match = 0;
5900 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5901 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5902 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5903 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5904 || operand_types[0].bitfield.regmmx
f5eb1d70 5905 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5906 || is_any_vex_encoding(t))
5907 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5908 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5909 else
38e314eb 5910 found_reverse_match = Opcode_D;
40fb9820 5911 if (t->opcode_modifier.floatr)
8a2ed489 5912 found_reverse_match |= Opcode_FloatR;
29b0f896 5913 }
f48ff2ae 5914 else
29b0f896 5915 {
f48ff2ae 5916 /* Found a forward 2 operand match here. */
d1cbb4db
L
5917 switch (t->operands)
5918 {
c0f3af97
L
5919 case 5:
5920 overlap4 = operand_type_and (i.types[4],
5921 operand_types[4]);
1a0670f3 5922 /* Fall through. */
d1cbb4db 5923 case 4:
c6fb90c8
L
5924 overlap3 = operand_type_and (i.types[3],
5925 operand_types[3]);
1a0670f3 5926 /* Fall through. */
d1cbb4db 5927 case 3:
c6fb90c8
L
5928 overlap2 = operand_type_and (i.types[2],
5929 operand_types[2]);
d1cbb4db
L
5930 break;
5931 }
29b0f896 5932
f48ff2ae
L
5933 switch (t->operands)
5934 {
c0f3af97
L
5935 case 5:
5936 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5937 || !operand_type_register_match (i.types[3],
c0f3af97 5938 operand_types[3],
c0f3af97
L
5939 i.types[4],
5940 operand_types[4]))
5941 continue;
1a0670f3 5942 /* Fall through. */
f48ff2ae 5943 case 4:
40fb9820 5944 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5945 || ((check_register & 0xa) == 0xa
5946 && !operand_type_register_match (i.types[1],
f7768225
JB
5947 operand_types[1],
5948 i.types[3],
e2195274
JB
5949 operand_types[3]))
5950 || ((check_register & 0xc) == 0xc
5951 && !operand_type_register_match (i.types[2],
5952 operand_types[2],
5953 i.types[3],
5954 operand_types[3])))
f48ff2ae 5955 continue;
1a0670f3 5956 /* Fall through. */
f48ff2ae
L
5957 case 3:
5958 /* Here we make use of the fact that there are no
23e42951 5959 reverse match 3 operand instructions. */
40fb9820 5960 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5961 || ((check_register & 5) == 5
5962 && !operand_type_register_match (i.types[0],
23e42951
JB
5963 operand_types[0],
5964 i.types[2],
e2195274
JB
5965 operand_types[2]))
5966 || ((check_register & 6) == 6
5967 && !operand_type_register_match (i.types[1],
5968 operand_types[1],
5969 i.types[2],
5970 operand_types[2])))
f48ff2ae
L
5971 continue;
5972 break;
5973 }
29b0f896 5974 }
f48ff2ae 5975 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5976 slip through to break. */
5977 }
3629bb00 5978 if (!found_cpu_match)
dbbc8b7e 5979 continue;
c0f3af97 5980
5614d22c
JB
5981 /* Check if vector and VEX operands are valid. */
5982 if (check_VecOperands (t) || VEX_check_operands (t))
5983 {
5984 specific_error = i.error;
5985 continue;
5986 }
a683cc34 5987
29b0f896
AM
5988 /* We've found a match; break out of loop. */
5989 break;
5990 }
5991
5992 if (t == current_templates->end)
5993 {
5994 /* We found no match. */
a65babc9 5995 const char *err_msg;
5614d22c 5996 switch (specific_error ? specific_error : i.error)
a65babc9
L
5997 {
5998 default:
5999 abort ();
86e026a4 6000 case operand_size_mismatch:
a65babc9
L
6001 err_msg = _("operand size mismatch");
6002 break;
6003 case operand_type_mismatch:
6004 err_msg = _("operand type mismatch");
6005 break;
6006 case register_type_mismatch:
6007 err_msg = _("register type mismatch");
6008 break;
6009 case number_of_operands_mismatch:
6010 err_msg = _("number of operands mismatch");
6011 break;
6012 case invalid_instruction_suffix:
6013 err_msg = _("invalid instruction suffix");
6014 break;
6015 case bad_imm4:
4a2608e3 6016 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6017 break;
a65babc9
L
6018 case unsupported_with_intel_mnemonic:
6019 err_msg = _("unsupported with Intel mnemonic");
6020 break;
6021 case unsupported_syntax:
6022 err_msg = _("unsupported syntax");
6023 break;
6024 case unsupported:
35262a23 6025 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6026 current_templates->start->name);
6027 return NULL;
6c30d220
L
6028 case invalid_vsib_address:
6029 err_msg = _("invalid VSIB address");
6030 break;
7bab8ab5
JB
6031 case invalid_vector_register_set:
6032 err_msg = _("mask, index, and destination registers must be distinct");
6033 break;
6c30d220
L
6034 case unsupported_vector_index_register:
6035 err_msg = _("unsupported vector index register");
6036 break;
43234a1e
L
6037 case unsupported_broadcast:
6038 err_msg = _("unsupported broadcast");
6039 break;
43234a1e
L
6040 case broadcast_needed:
6041 err_msg = _("broadcast is needed for operand of such type");
6042 break;
6043 case unsupported_masking:
6044 err_msg = _("unsupported masking");
6045 break;
6046 case mask_not_on_destination:
6047 err_msg = _("mask not on destination operand");
6048 break;
6049 case no_default_mask:
6050 err_msg = _("default mask isn't allowed");
6051 break;
6052 case unsupported_rc_sae:
6053 err_msg = _("unsupported static rounding/sae");
6054 break;
6055 case rc_sae_operand_not_last_imm:
6056 if (intel_syntax)
6057 err_msg = _("RC/SAE operand must precede immediate operands");
6058 else
6059 err_msg = _("RC/SAE operand must follow immediate operands");
6060 break;
6061 case invalid_register_operand:
6062 err_msg = _("invalid register operand");
6063 break;
a65babc9
L
6064 }
6065 as_bad (_("%s for `%s'"), err_msg,
891edac4 6066 current_templates->start->name);
fa99fab2 6067 return NULL;
29b0f896 6068 }
252b5132 6069
29b0f896
AM
6070 if (!quiet_warnings)
6071 {
6072 if (!intel_syntax
40fb9820
L
6073 && (i.types[0].bitfield.jumpabsolute
6074 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6075 {
6076 as_warn (_("indirect %s without `*'"), t->name);
6077 }
6078
40fb9820
L
6079 if (t->opcode_modifier.isprefix
6080 && t->opcode_modifier.ignoresize)
29b0f896
AM
6081 {
6082 /* Warn them that a data or address size prefix doesn't
6083 affect assembly of the next line of code. */
6084 as_warn (_("stand-alone `%s' prefix"), t->name);
6085 }
6086 }
6087
6088 /* Copy the template we found. */
6089 i.tm = *t;
539e75ad
L
6090
6091 if (addr_prefix_disp != -1)
6092 i.tm.operand_types[addr_prefix_disp]
6093 = operand_types[addr_prefix_disp];
6094
29b0f896
AM
6095 if (found_reverse_match)
6096 {
6097 /* If we found a reverse match we must alter the opcode
6098 direction bit. found_reverse_match holds bits to change
6099 (different for int & float insns). */
6100
6101 i.tm.base_opcode ^= found_reverse_match;
6102
f5eb1d70
JB
6103 i.tm.operand_types[0] = operand_types[i.operands - 1];
6104 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
6105 }
6106
fa99fab2 6107 return t;
29b0f896
AM
6108}
6109
6110static int
e3bb37b5 6111check_string (void)
29b0f896 6112{
40fb9820
L
6113 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6114 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6115 {
6116 if (i.seg[0] != NULL && i.seg[0] != &es)
6117 {
a87af027 6118 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6119 i.tm.name,
a87af027
JB
6120 mem_op + 1,
6121 register_prefix);
29b0f896
AM
6122 return 0;
6123 }
6124 /* There's only ever one segment override allowed per instruction.
6125 This instruction possibly has a legal segment override on the
6126 second operand, so copy the segment to where non-string
6127 instructions store it, allowing common code. */
6128 i.seg[0] = i.seg[1];
6129 }
40fb9820 6130 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6131 {
6132 if (i.seg[1] != NULL && i.seg[1] != &es)
6133 {
a87af027 6134 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6135 i.tm.name,
a87af027
JB
6136 mem_op + 2,
6137 register_prefix);
29b0f896
AM
6138 return 0;
6139 }
6140 }
6141 return 1;
6142}
6143
6144static int
543613e9 6145process_suffix (void)
29b0f896
AM
6146{
6147 /* If matched instruction specifies an explicit instruction mnemonic
6148 suffix, use it. */
673fe0f0 6149 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6150 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6151 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6152 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6153 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6154 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6155 else if (i.reg_operands)
6156 {
6157 /* If there's no instruction mnemonic suffix we try to invent one
6158 based on register operands. */
6159 if (!i.suffix)
6160 {
6161 /* We take i.suffix from the last register operand specified,
6162 Destination register type is more significant than source
381d071f
L
6163 register type. crc32 in SSE4.2 prefers source register
6164 type. */
556059dd 6165 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6166 {
556059dd
JB
6167 if (i.types[0].bitfield.byte)
6168 i.suffix = BYTE_MNEM_SUFFIX;
6169 else if (i.types[0].bitfield.word)
40fb9820 6170 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6171 else if (i.types[0].bitfield.dword)
40fb9820 6172 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6173 else if (i.types[0].bitfield.qword)
40fb9820 6174 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6175 }
6176
6177 if (!i.suffix)
6178 {
6179 int op;
6180
556059dd 6181 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6182 {
6183 /* We have to know the operand size for crc32. */
6184 as_bad (_("ambiguous memory operand size for `%s`"),
6185 i.tm.name);
6186 return 0;
6187 }
6188
381d071f 6189 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6190 if (!i.tm.operand_types[op].bitfield.inoutportreg
6191 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6192 {
8819ada6
JB
6193 if (!i.types[op].bitfield.reg)
6194 continue;
6195 if (i.types[op].bitfield.byte)
6196 i.suffix = BYTE_MNEM_SUFFIX;
6197 else if (i.types[op].bitfield.word)
6198 i.suffix = WORD_MNEM_SUFFIX;
6199 else if (i.types[op].bitfield.dword)
6200 i.suffix = LONG_MNEM_SUFFIX;
6201 else if (i.types[op].bitfield.qword)
6202 i.suffix = QWORD_MNEM_SUFFIX;
6203 else
6204 continue;
6205 break;
381d071f
L
6206 }
6207 }
29b0f896
AM
6208 }
6209 else if (i.suffix == BYTE_MNEM_SUFFIX)
6210 {
2eb952a4
L
6211 if (intel_syntax
6212 && i.tm.opcode_modifier.ignoresize
6213 && i.tm.opcode_modifier.no_bsuf)
6214 i.suffix = 0;
6215 else if (!check_byte_reg ())
29b0f896
AM
6216 return 0;
6217 }
6218 else if (i.suffix == LONG_MNEM_SUFFIX)
6219 {
2eb952a4
L
6220 if (intel_syntax
6221 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6222 && i.tm.opcode_modifier.no_lsuf
6223 && !i.tm.opcode_modifier.todword
6224 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6225 i.suffix = 0;
6226 else if (!check_long_reg ())
29b0f896
AM
6227 return 0;
6228 }
6229 else if (i.suffix == QWORD_MNEM_SUFFIX)
6230 {
955e1e6a
L
6231 if (intel_syntax
6232 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6233 && i.tm.opcode_modifier.no_qsuf
6234 && !i.tm.opcode_modifier.todword
6235 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6236 i.suffix = 0;
6237 else if (!check_qword_reg ())
29b0f896
AM
6238 return 0;
6239 }
6240 else if (i.suffix == WORD_MNEM_SUFFIX)
6241 {
2eb952a4
L
6242 if (intel_syntax
6243 && i.tm.opcode_modifier.ignoresize
6244 && i.tm.opcode_modifier.no_wsuf)
6245 i.suffix = 0;
6246 else if (!check_word_reg ())
29b0f896
AM
6247 return 0;
6248 }
40fb9820 6249 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6250 /* Do nothing if the instruction is going to ignore the prefix. */
6251 ;
6252 else
6253 abort ();
6254 }
40fb9820 6255 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6256 && !i.suffix
6257 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6258 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6259 {
06f74c5c
L
6260 if (stackop_size == LONG_MNEM_SUFFIX
6261 && i.tm.base_opcode == 0xcf)
6262 {
6263 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6264 .code16gcc directive to support 16-bit mode with
6265 32-bit address. For IRET without a suffix, generate
6266 16-bit IRET (opcode 0xcf) to return from an interrupt
6267 handler. */
6268 i.suffix = WORD_MNEM_SUFFIX;
6269 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6270 }
6271 else
6272 i.suffix = stackop_size;
29b0f896 6273 }
9306ca4a
JB
6274 else if (intel_syntax
6275 && !i.suffix
40fb9820
L
6276 && (i.tm.operand_types[0].bitfield.jumpabsolute
6277 || i.tm.opcode_modifier.jumpbyte
6278 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6279 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6280 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6281 {
6282 switch (flag_code)
6283 {
6284 case CODE_64BIT:
40fb9820 6285 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6286 {
6287 i.suffix = QWORD_MNEM_SUFFIX;
6288 break;
6289 }
1a0670f3 6290 /* Fall through. */
9306ca4a 6291 case CODE_32BIT:
40fb9820 6292 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6293 i.suffix = LONG_MNEM_SUFFIX;
6294 break;
6295 case CODE_16BIT:
40fb9820 6296 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6297 i.suffix = WORD_MNEM_SUFFIX;
6298 break;
6299 }
6300 }
252b5132 6301
9306ca4a 6302 if (!i.suffix)
29b0f896 6303 {
9306ca4a
JB
6304 if (!intel_syntax)
6305 {
40fb9820 6306 if (i.tm.opcode_modifier.w)
9306ca4a 6307 {
4eed87de
AM
6308 as_bad (_("no instruction mnemonic suffix given and "
6309 "no register operands; can't size instruction"));
9306ca4a
JB
6310 return 0;
6311 }
6312 }
6313 else
6314 {
40fb9820 6315 unsigned int suffixes;
7ab9ffdd 6316
40fb9820
L
6317 suffixes = !i.tm.opcode_modifier.no_bsuf;
6318 if (!i.tm.opcode_modifier.no_wsuf)
6319 suffixes |= 1 << 1;
6320 if (!i.tm.opcode_modifier.no_lsuf)
6321 suffixes |= 1 << 2;
fc4adea1 6322 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6323 suffixes |= 1 << 3;
6324 if (!i.tm.opcode_modifier.no_ssuf)
6325 suffixes |= 1 << 4;
c2b9da16 6326 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6327 suffixes |= 1 << 5;
6328
6329 /* There are more than suffix matches. */
6330 if (i.tm.opcode_modifier.w
9306ca4a 6331 || ((suffixes & (suffixes - 1))
40fb9820
L
6332 && !i.tm.opcode_modifier.defaultsize
6333 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6334 {
6335 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6336 return 0;
6337 }
6338 }
29b0f896 6339 }
252b5132 6340
d2224064
JB
6341 /* Change the opcode based on the operand size given by i.suffix. */
6342 switch (i.suffix)
29b0f896 6343 {
d2224064
JB
6344 /* Size floating point instruction. */
6345 case LONG_MNEM_SUFFIX:
6346 if (i.tm.opcode_modifier.floatmf)
6347 {
6348 i.tm.base_opcode ^= 4;
6349 break;
6350 }
6351 /* fall through */
6352 case WORD_MNEM_SUFFIX:
6353 case QWORD_MNEM_SUFFIX:
29b0f896 6354 /* It's not a byte, select word/dword operation. */
40fb9820 6355 if (i.tm.opcode_modifier.w)
29b0f896 6356 {
40fb9820 6357 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6358 i.tm.base_opcode |= 8;
6359 else
6360 i.tm.base_opcode |= 1;
6361 }
d2224064
JB
6362 /* fall through */
6363 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6364 /* Now select between word & dword operations via the operand
6365 size prefix, except for instructions that will ignore this
6366 prefix anyway. */
75c0a438
L
6367 if (i.reg_operands > 0
6368 && i.types[0].bitfield.reg
6369 && i.tm.opcode_modifier.addrprefixopreg
6370 && (i.tm.opcode_modifier.immext
6371 || i.operands == 1))
cb712a9e 6372 {
ca61edf2
L
6373 /* The address size override prefix changes the size of the
6374 first operand. */
40fb9820 6375 if ((flag_code == CODE_32BIT
75c0a438 6376 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6377 || (flag_code != CODE_32BIT
75c0a438 6378 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6379 if (!add_prefix (ADDR_PREFIX_OPCODE))
6380 return 0;
6381 }
6382 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6383 && !i.tm.opcode_modifier.ignoresize
6384 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6385 && !i.tm.opcode_modifier.vex
6386 && !i.tm.opcode_modifier.vexopcode
6387 && !is_evex_encoding (&i.tm)
cb712a9e
L
6388 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6389 || (flag_code == CODE_64BIT
40fb9820 6390 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6391 {
6392 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6393
40fb9820 6394 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6395 prefix = ADDR_PREFIX_OPCODE;
252b5132 6396
29b0f896
AM
6397 if (!add_prefix (prefix))
6398 return 0;
24eab124 6399 }
252b5132 6400
29b0f896
AM
6401 /* Set mode64 for an operand. */
6402 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6403 && flag_code == CODE_64BIT
d2224064 6404 && !i.tm.opcode_modifier.norex64
46e883c5 6405 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6406 need rex64. */
6407 && ! (i.operands == 2
6408 && i.tm.base_opcode == 0x90
6409 && i.tm.extension_opcode == None
6410 && operand_type_equal (&i.types [0], &acc64)
6411 && operand_type_equal (&i.types [1], &acc64)))
6412 i.rex |= REX_W;
3e73aa7c 6413
d2224064 6414 break;
29b0f896 6415 }
7ecd2f8b 6416
c0a30a9f
L
6417 if (i.reg_operands != 0
6418 && i.operands > 1
6419 && i.tm.opcode_modifier.addrprefixopreg
6420 && !i.tm.opcode_modifier.immext)
6421 {
6422 /* Check invalid register operand when the address size override
6423 prefix changes the size of register operands. */
6424 unsigned int op;
6425 enum { need_word, need_dword, need_qword } need;
6426
6427 if (flag_code == CODE_32BIT)
6428 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6429 else
6430 {
6431 if (i.prefix[ADDR_PREFIX])
6432 need = need_dword;
6433 else
6434 need = flag_code == CODE_64BIT ? need_qword : need_word;
6435 }
6436
6437 for (op = 0; op < i.operands; op++)
6438 if (i.types[op].bitfield.reg
6439 && ((need == need_word
6440 && !i.op[op].regs->reg_type.bitfield.word)
6441 || (need == need_dword
6442 && !i.op[op].regs->reg_type.bitfield.dword)
6443 || (need == need_qword
6444 && !i.op[op].regs->reg_type.bitfield.qword)))
6445 {
6446 as_bad (_("invalid register operand size for `%s'"),
6447 i.tm.name);
6448 return 0;
6449 }
6450 }
6451
29b0f896
AM
6452 return 1;
6453}
3e73aa7c 6454
29b0f896 6455static int
543613e9 6456check_byte_reg (void)
29b0f896
AM
6457{
6458 int op;
543613e9 6459
29b0f896
AM
6460 for (op = i.operands; --op >= 0;)
6461 {
dc821c5f
JB
6462 /* Skip non-register operands. */
6463 if (!i.types[op].bitfield.reg)
6464 continue;
6465
29b0f896
AM
6466 /* If this is an eight bit register, it's OK. If it's the 16 or
6467 32 bit version of an eight bit register, we will just use the
6468 low portion, and that's OK too. */
dc821c5f 6469 if (i.types[op].bitfield.byte)
29b0f896
AM
6470 continue;
6471
5a819eb9
JB
6472 /* I/O port address operands are OK too. */
6473 if (i.tm.operand_types[op].bitfield.inoutportreg)
6474 continue;
6475
9344ff29
L
6476 /* crc32 doesn't generate this warning. */
6477 if (i.tm.base_opcode == 0xf20f38f0)
6478 continue;
6479
dc821c5f
JB
6480 if ((i.types[op].bitfield.word
6481 || i.types[op].bitfield.dword
6482 || i.types[op].bitfield.qword)
5a819eb9
JB
6483 && i.op[op].regs->reg_num < 4
6484 /* Prohibit these changes in 64bit mode, since the lowering
6485 would be more complicated. */
6486 && flag_code != CODE_64BIT)
29b0f896 6487 {
29b0f896 6488#if REGISTER_WARNINGS
5a819eb9 6489 if (!quiet_warnings)
a540244d
L
6490 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6491 register_prefix,
dc821c5f 6492 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6493 ? REGNAM_AL - REGNAM_AX
6494 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6495 register_prefix,
29b0f896
AM
6496 i.op[op].regs->reg_name,
6497 i.suffix);
6498#endif
6499 continue;
6500 }
6501 /* Any other register is bad. */
dc821c5f 6502 if (i.types[op].bitfield.reg
40fb9820 6503 || i.types[op].bitfield.regmmx
1b54b8d7 6504 || i.types[op].bitfield.regsimd
40fb9820
L
6505 || i.types[op].bitfield.sreg2
6506 || i.types[op].bitfield.sreg3
6507 || i.types[op].bitfield.control
6508 || i.types[op].bitfield.debug
ca0d63fe 6509 || i.types[op].bitfield.test)
29b0f896 6510 {
a540244d
L
6511 as_bad (_("`%s%s' not allowed with `%s%c'"),
6512 register_prefix,
29b0f896
AM
6513 i.op[op].regs->reg_name,
6514 i.tm.name,
6515 i.suffix);
6516 return 0;
6517 }
6518 }
6519 return 1;
6520}
6521
6522static int
e3bb37b5 6523check_long_reg (void)
29b0f896
AM
6524{
6525 int op;
6526
6527 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6528 /* Skip non-register operands. */
6529 if (!i.types[op].bitfield.reg)
6530 continue;
29b0f896
AM
6531 /* Reject eight bit registers, except where the template requires
6532 them. (eg. movzb) */
dc821c5f
JB
6533 else if (i.types[op].bitfield.byte
6534 && (i.tm.operand_types[op].bitfield.reg
6535 || i.tm.operand_types[op].bitfield.acc)
6536 && (i.tm.operand_types[op].bitfield.word
6537 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6538 {
a540244d
L
6539 as_bad (_("`%s%s' not allowed with `%s%c'"),
6540 register_prefix,
29b0f896
AM
6541 i.op[op].regs->reg_name,
6542 i.tm.name,
6543 i.suffix);
6544 return 0;
6545 }
e4630f71 6546 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6547 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6548 && i.types[op].bitfield.word
6549 && (i.tm.operand_types[op].bitfield.reg
6550 || i.tm.operand_types[op].bitfield.acc)
6551 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6552 {
6553 /* Prohibit these changes in the 64bit mode, since the
6554 lowering is more complicated. */
6555 if (flag_code == CODE_64BIT)
252b5132 6556 {
2b5d6a91 6557 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6558 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6559 i.suffix);
6560 return 0;
252b5132 6561 }
29b0f896 6562#if REGISTER_WARNINGS
cecf1424
JB
6563 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6564 register_prefix,
6565 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6566 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6567#endif
252b5132 6568 }
e4630f71 6569 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6570 else if (i.types[op].bitfield.qword
6571 && (i.tm.operand_types[op].bitfield.reg
6572 || i.tm.operand_types[op].bitfield.acc)
6573 && i.tm.operand_types[op].bitfield.dword)
252b5132 6574 {
34828aad 6575 if (intel_syntax
ca61edf2 6576 && i.tm.opcode_modifier.toqword
1b54b8d7 6577 && !i.types[0].bitfield.regsimd)
34828aad 6578 {
ca61edf2 6579 /* Convert to QWORD. We want REX byte. */
34828aad
L
6580 i.suffix = QWORD_MNEM_SUFFIX;
6581 }
6582 else
6583 {
2b5d6a91 6584 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6585 register_prefix, i.op[op].regs->reg_name,
6586 i.suffix);
6587 return 0;
6588 }
29b0f896
AM
6589 }
6590 return 1;
6591}
252b5132 6592
29b0f896 6593static int
e3bb37b5 6594check_qword_reg (void)
29b0f896
AM
6595{
6596 int op;
252b5132 6597
29b0f896 6598 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6599 /* Skip non-register operands. */
6600 if (!i.types[op].bitfield.reg)
6601 continue;
29b0f896
AM
6602 /* Reject eight bit registers, except where the template requires
6603 them. (eg. movzb) */
dc821c5f
JB
6604 else if (i.types[op].bitfield.byte
6605 && (i.tm.operand_types[op].bitfield.reg
6606 || i.tm.operand_types[op].bitfield.acc)
6607 && (i.tm.operand_types[op].bitfield.word
6608 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6609 {
a540244d
L
6610 as_bad (_("`%s%s' not allowed with `%s%c'"),
6611 register_prefix,
29b0f896
AM
6612 i.op[op].regs->reg_name,
6613 i.tm.name,
6614 i.suffix);
6615 return 0;
6616 }
e4630f71 6617 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6618 else if ((i.types[op].bitfield.word
6619 || i.types[op].bitfield.dword)
6620 && (i.tm.operand_types[op].bitfield.reg
6621 || i.tm.operand_types[op].bitfield.acc)
6622 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6623 {
6624 /* Prohibit these changes in the 64bit mode, since the
6625 lowering is more complicated. */
34828aad 6626 if (intel_syntax
ca61edf2 6627 && i.tm.opcode_modifier.todword
1b54b8d7 6628 && !i.types[0].bitfield.regsimd)
34828aad 6629 {
ca61edf2 6630 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6631 i.suffix = LONG_MNEM_SUFFIX;
6632 }
6633 else
6634 {
2b5d6a91 6635 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6636 register_prefix, i.op[op].regs->reg_name,
6637 i.suffix);
6638 return 0;
6639 }
252b5132 6640 }
29b0f896
AM
6641 return 1;
6642}
252b5132 6643
29b0f896 6644static int
e3bb37b5 6645check_word_reg (void)
29b0f896
AM
6646{
6647 int op;
6648 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6649 /* Skip non-register operands. */
6650 if (!i.types[op].bitfield.reg)
6651 continue;
29b0f896
AM
6652 /* Reject eight bit registers, except where the template requires
6653 them. (eg. movzb) */
dc821c5f
JB
6654 else if (i.types[op].bitfield.byte
6655 && (i.tm.operand_types[op].bitfield.reg
6656 || i.tm.operand_types[op].bitfield.acc)
6657 && (i.tm.operand_types[op].bitfield.word
6658 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6659 {
a540244d
L
6660 as_bad (_("`%s%s' not allowed with `%s%c'"),
6661 register_prefix,
29b0f896
AM
6662 i.op[op].regs->reg_name,
6663 i.tm.name,
6664 i.suffix);
6665 return 0;
6666 }
e4630f71 6667 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6668 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6669 && (i.types[op].bitfield.dword
6670 || i.types[op].bitfield.qword)
6671 && (i.tm.operand_types[op].bitfield.reg
6672 || i.tm.operand_types[op].bitfield.acc)
6673 && i.tm.operand_types[op].bitfield.word)
252b5132 6674 {
29b0f896
AM
6675 /* Prohibit these changes in the 64bit mode, since the
6676 lowering is more complicated. */
6677 if (flag_code == CODE_64BIT)
252b5132 6678 {
2b5d6a91 6679 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6680 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6681 i.suffix);
6682 return 0;
252b5132 6683 }
29b0f896 6684#if REGISTER_WARNINGS
cecf1424
JB
6685 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6686 register_prefix,
6687 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6688 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6689#endif
6690 }
6691 return 1;
6692}
252b5132 6693
29b0f896 6694static int
40fb9820 6695update_imm (unsigned int j)
29b0f896 6696{
bc0844ae 6697 i386_operand_type overlap = i.types[j];
40fb9820
L
6698 if ((overlap.bitfield.imm8
6699 || overlap.bitfield.imm8s
6700 || overlap.bitfield.imm16
6701 || overlap.bitfield.imm32
6702 || overlap.bitfield.imm32s
6703 || overlap.bitfield.imm64)
0dfbf9d7
L
6704 && !operand_type_equal (&overlap, &imm8)
6705 && !operand_type_equal (&overlap, &imm8s)
6706 && !operand_type_equal (&overlap, &imm16)
6707 && !operand_type_equal (&overlap, &imm32)
6708 && !operand_type_equal (&overlap, &imm32s)
6709 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6710 {
6711 if (i.suffix)
6712 {
40fb9820
L
6713 i386_operand_type temp;
6714
0dfbf9d7 6715 operand_type_set (&temp, 0);
7ab9ffdd 6716 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6717 {
6718 temp.bitfield.imm8 = overlap.bitfield.imm8;
6719 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6720 }
6721 else if (i.suffix == WORD_MNEM_SUFFIX)
6722 temp.bitfield.imm16 = overlap.bitfield.imm16;
6723 else if (i.suffix == QWORD_MNEM_SUFFIX)
6724 {
6725 temp.bitfield.imm64 = overlap.bitfield.imm64;
6726 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6727 }
6728 else
6729 temp.bitfield.imm32 = overlap.bitfield.imm32;
6730 overlap = temp;
29b0f896 6731 }
0dfbf9d7
L
6732 else if (operand_type_equal (&overlap, &imm16_32_32s)
6733 || operand_type_equal (&overlap, &imm16_32)
6734 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6735 {
40fb9820 6736 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6737 overlap = imm16;
40fb9820 6738 else
65da13b5 6739 overlap = imm32s;
29b0f896 6740 }
0dfbf9d7
L
6741 if (!operand_type_equal (&overlap, &imm8)
6742 && !operand_type_equal (&overlap, &imm8s)
6743 && !operand_type_equal (&overlap, &imm16)
6744 && !operand_type_equal (&overlap, &imm32)
6745 && !operand_type_equal (&overlap, &imm32s)
6746 && !operand_type_equal (&overlap, &imm64))
29b0f896 6747 {
4eed87de
AM
6748 as_bad (_("no instruction mnemonic suffix given; "
6749 "can't determine immediate size"));
29b0f896
AM
6750 return 0;
6751 }
6752 }
40fb9820 6753 i.types[j] = overlap;
29b0f896 6754
40fb9820
L
6755 return 1;
6756}
6757
6758static int
6759finalize_imm (void)
6760{
bc0844ae 6761 unsigned int j, n;
29b0f896 6762
bc0844ae
L
6763 /* Update the first 2 immediate operands. */
6764 n = i.operands > 2 ? 2 : i.operands;
6765 if (n)
6766 {
6767 for (j = 0; j < n; j++)
6768 if (update_imm (j) == 0)
6769 return 0;
40fb9820 6770
bc0844ae
L
6771 /* The 3rd operand can't be immediate operand. */
6772 gas_assert (operand_type_check (i.types[2], imm) == 0);
6773 }
29b0f896
AM
6774
6775 return 1;
6776}
6777
6778static int
e3bb37b5 6779process_operands (void)
29b0f896
AM
6780{
6781 /* Default segment register this instruction will use for memory
6782 accesses. 0 means unknown. This is only for optimizing out
6783 unnecessary segment overrides. */
6784 const seg_entry *default_seg = 0;
6785
2426c15f 6786 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6787 {
91d6fa6a
NC
6788 unsigned int dupl = i.operands;
6789 unsigned int dest = dupl - 1;
9fcfb3d7
L
6790 unsigned int j;
6791
c0f3af97 6792 /* The destination must be an xmm register. */
9c2799c2 6793 gas_assert (i.reg_operands
91d6fa6a 6794 && MAX_OPERANDS > dupl
7ab9ffdd 6795 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6796
1b54b8d7
JB
6797 if (i.tm.operand_types[0].bitfield.acc
6798 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6799 {
8cd7925b 6800 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6801 {
6802 /* Keep xmm0 for instructions with VEX prefix and 3
6803 sources. */
1b54b8d7
JB
6804 i.tm.operand_types[0].bitfield.acc = 0;
6805 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6806 goto duplicate;
6807 }
e2ec9d29 6808 else
c0f3af97
L
6809 {
6810 /* We remove the first xmm0 and keep the number of
6811 operands unchanged, which in fact duplicates the
6812 destination. */
6813 for (j = 1; j < i.operands; j++)
6814 {
6815 i.op[j - 1] = i.op[j];
6816 i.types[j - 1] = i.types[j];
6817 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6818 }
6819 }
6820 }
6821 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6822 {
91d6fa6a 6823 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6824 && (i.tm.opcode_modifier.vexsources
6825 == VEX3SOURCES));
c0f3af97
L
6826
6827 /* Add the implicit xmm0 for instructions with VEX prefix
6828 and 3 sources. */
6829 for (j = i.operands; j > 0; j--)
6830 {
6831 i.op[j] = i.op[j - 1];
6832 i.types[j] = i.types[j - 1];
6833 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6834 }
6835 i.op[0].regs
6836 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6837 i.types[0] = regxmm;
c0f3af97
L
6838 i.tm.operand_types[0] = regxmm;
6839
6840 i.operands += 2;
6841 i.reg_operands += 2;
6842 i.tm.operands += 2;
6843
91d6fa6a 6844 dupl++;
c0f3af97 6845 dest++;
91d6fa6a
NC
6846 i.op[dupl] = i.op[dest];
6847 i.types[dupl] = i.types[dest];
6848 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6849 }
c0f3af97
L
6850 else
6851 {
6852duplicate:
6853 i.operands++;
6854 i.reg_operands++;
6855 i.tm.operands++;
6856
91d6fa6a
NC
6857 i.op[dupl] = i.op[dest];
6858 i.types[dupl] = i.types[dest];
6859 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6860 }
6861
6862 if (i.tm.opcode_modifier.immext)
6863 process_immext ();
6864 }
1b54b8d7
JB
6865 else if (i.tm.operand_types[0].bitfield.acc
6866 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6867 {
6868 unsigned int j;
6869
9fcfb3d7
L
6870 for (j = 1; j < i.operands; j++)
6871 {
6872 i.op[j - 1] = i.op[j];
6873 i.types[j - 1] = i.types[j];
6874
6875 /* We need to adjust fields in i.tm since they are used by
6876 build_modrm_byte. */
6877 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6878 }
6879
e2ec9d29
L
6880 i.operands--;
6881 i.reg_operands--;
e2ec9d29
L
6882 i.tm.operands--;
6883 }
920d2ddc
IT
6884 else if (i.tm.opcode_modifier.implicitquadgroup)
6885 {
a477a8c4
JB
6886 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6887
920d2ddc 6888 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6889 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6890 regnum = register_number (i.op[1].regs);
6891 first_reg_in_group = regnum & ~3;
6892 last_reg_in_group = first_reg_in_group + 3;
6893 if (regnum != first_reg_in_group)
6894 as_warn (_("source register `%s%s' implicitly denotes"
6895 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6896 register_prefix, i.op[1].regs->reg_name,
6897 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6898 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6899 i.tm.name);
6900 }
e2ec9d29
L
6901 else if (i.tm.opcode_modifier.regkludge)
6902 {
6903 /* The imul $imm, %reg instruction is converted into
6904 imul $imm, %reg, %reg, and the clr %reg instruction
6905 is converted into xor %reg, %reg. */
6906
6907 unsigned int first_reg_op;
6908
6909 if (operand_type_check (i.types[0], reg))
6910 first_reg_op = 0;
6911 else
6912 first_reg_op = 1;
6913 /* Pretend we saw the extra register operand. */
9c2799c2 6914 gas_assert (i.reg_operands == 1
7ab9ffdd 6915 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6916 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6917 i.types[first_reg_op + 1] = i.types[first_reg_op];
6918 i.operands++;
6919 i.reg_operands++;
29b0f896
AM
6920 }
6921
40fb9820 6922 if (i.tm.opcode_modifier.shortform)
29b0f896 6923 {
40fb9820
L
6924 if (i.types[0].bitfield.sreg2
6925 || i.types[0].bitfield.sreg3)
29b0f896 6926 {
4eed87de
AM
6927 if (i.tm.base_opcode == POP_SEG_SHORT
6928 && i.op[0].regs->reg_num == 1)
29b0f896 6929 {
a87af027 6930 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6931 return 0;
29b0f896 6932 }
4eed87de
AM
6933 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6934 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6935 i.rex |= REX_B;
4eed87de
AM
6936 }
6937 else
6938 {
7ab9ffdd 6939 /* The register or float register operand is in operand
85f10a01 6940 0 or 1. */
40fb9820 6941 unsigned int op;
7ab9ffdd 6942
ca0d63fe 6943 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6944 || operand_type_check (i.types[0], reg))
6945 op = 0;
6946 else
6947 op = 1;
4eed87de
AM
6948 /* Register goes in low 3 bits of opcode. */
6949 i.tm.base_opcode |= i.op[op].regs->reg_num;
6950 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6951 i.rex |= REX_B;
40fb9820 6952 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6953 {
4eed87de
AM
6954 /* Warn about some common errors, but press on regardless.
6955 The first case can be generated by gcc (<= 2.8.1). */
6956 if (i.operands == 2)
6957 {
6958 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6959 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6960 register_prefix, i.op[!intel_syntax].regs->reg_name,
6961 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6962 }
6963 else
6964 {
6965 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6966 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6967 register_prefix, i.op[0].regs->reg_name);
4eed87de 6968 }
29b0f896
AM
6969 }
6970 }
6971 }
40fb9820 6972 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6973 {
6974 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6975 must be put into the modrm byte). Now, we make the modrm and
6976 index base bytes based on all the info we've collected. */
29b0f896
AM
6977
6978 default_seg = build_modrm_byte ();
6979 }
8a2ed489 6980 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6981 {
6982 default_seg = &ds;
6983 }
40fb9820 6984 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6985 {
6986 /* For the string instructions that allow a segment override
6987 on one of their operands, the default segment is ds. */
6988 default_seg = &ds;
6989 }
6990
75178d9d
L
6991 if (i.tm.base_opcode == 0x8d /* lea */
6992 && i.seg[0]
6993 && !quiet_warnings)
30123838 6994 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6995
6996 /* If a segment was explicitly specified, and the specified segment
6997 is not the default, use an opcode prefix to select it. If we
6998 never figured out what the default segment is, then default_seg
6999 will be zero at this point, and the specified segment prefix will
7000 always be used. */
29b0f896
AM
7001 if ((i.seg[0]) && (i.seg[0] != default_seg))
7002 {
7003 if (!add_prefix (i.seg[0]->seg_prefix))
7004 return 0;
7005 }
7006 return 1;
7007}
7008
7009static const seg_entry *
e3bb37b5 7010build_modrm_byte (void)
29b0f896
AM
7011{
7012 const seg_entry *default_seg = 0;
c0f3af97 7013 unsigned int source, dest;
8cd7925b 7014 int vex_3_sources;
c0f3af97 7015
8cd7925b 7016 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7017 if (vex_3_sources)
7018 {
91d6fa6a 7019 unsigned int nds, reg_slot;
4c2c6516 7020 expressionS *exp;
c0f3af97 7021
6b8d3588 7022 dest = i.operands - 1;
c0f3af97 7023 nds = dest - 1;
922d8de8 7024
a683cc34 7025 /* There are 2 kinds of instructions:
bed3d976
JB
7026 1. 5 operands: 4 register operands or 3 register operands
7027 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7028 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7029 ZMM register.
bed3d976 7030 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7031 plus 1 memory operand, with VexXDS. */
922d8de8 7032 gas_assert ((i.reg_operands == 4
bed3d976
JB
7033 || (i.reg_operands == 3 && i.mem_operands == 1))
7034 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7035 && i.tm.opcode_modifier.vexw
7036 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7037
48db9223
JB
7038 /* If VexW1 is set, the first non-immediate operand is the source and
7039 the second non-immediate one is encoded in the immediate operand. */
7040 if (i.tm.opcode_modifier.vexw == VEXW1)
7041 {
7042 source = i.imm_operands;
7043 reg_slot = i.imm_operands + 1;
7044 }
7045 else
7046 {
7047 source = i.imm_operands + 1;
7048 reg_slot = i.imm_operands;
7049 }
7050
a683cc34 7051 if (i.imm_operands == 0)
bed3d976
JB
7052 {
7053 /* When there is no immediate operand, generate an 8bit
7054 immediate operand to encode the first operand. */
7055 exp = &im_expressions[i.imm_operands++];
7056 i.op[i.operands].imms = exp;
7057 i.types[i.operands] = imm8;
7058 i.operands++;
7059
7060 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7061 exp->X_op = O_constant;
7062 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7063 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7064 }
922d8de8 7065 else
bed3d976
JB
7066 {
7067 unsigned int imm_slot;
a683cc34 7068
2f1bada2
JB
7069 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7070
bed3d976
JB
7071 if (i.tm.opcode_modifier.immext)
7072 {
7073 /* When ImmExt is set, the immediate byte is the last
7074 operand. */
7075 imm_slot = i.operands - 1;
7076 source--;
7077 reg_slot--;
7078 }
7079 else
7080 {
7081 imm_slot = 0;
7082
7083 /* Turn on Imm8 so that output_imm will generate it. */
7084 i.types[imm_slot].bitfield.imm8 = 1;
7085 }
7086
7087 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7088 i.op[imm_slot].imms->X_add_number
7089 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7090 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7091 }
a683cc34 7092
10c17abd 7093 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7094 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7095 }
7096 else
7097 source = dest = 0;
29b0f896
AM
7098
7099 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7100 implicit registers do not count. If there are 3 register
7101 operands, it must be a instruction with VexNDS. For a
7102 instruction with VexNDD, the destination register is encoded
7103 in VEX prefix. If there are 4 register operands, it must be
7104 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7105 if (i.mem_operands == 0
7106 && ((i.reg_operands == 2
2426c15f 7107 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7108 || (i.reg_operands == 3
2426c15f 7109 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7110 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7111 {
cab737b9
L
7112 switch (i.operands)
7113 {
7114 case 2:
7115 source = 0;
7116 break;
7117 case 3:
c81128dc
L
7118 /* When there are 3 operands, one of them may be immediate,
7119 which may be the first or the last operand. Otherwise,
c0f3af97
L
7120 the first operand must be shift count register (cl) or it
7121 is an instruction with VexNDS. */
9c2799c2 7122 gas_assert (i.imm_operands == 1
7ab9ffdd 7123 || (i.imm_operands == 0
2426c15f 7124 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7125 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7126 if (operand_type_check (i.types[0], imm)
7127 || i.types[0].bitfield.shiftcount)
7128 source = 1;
7129 else
7130 source = 0;
cab737b9
L
7131 break;
7132 case 4:
368d64cc
L
7133 /* When there are 4 operands, the first two must be 8bit
7134 immediate operands. The source operand will be the 3rd
c0f3af97
L
7135 one.
7136
7137 For instructions with VexNDS, if the first operand
7138 an imm8, the source operand is the 2nd one. If the last
7139 operand is imm8, the source operand is the first one. */
9c2799c2 7140 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7141 && i.types[0].bitfield.imm8
7142 && i.types[1].bitfield.imm8)
2426c15f 7143 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7144 && i.imm_operands == 1
7145 && (i.types[0].bitfield.imm8
43234a1e
L
7146 || i.types[i.operands - 1].bitfield.imm8
7147 || i.rounding)));
9f2670f2
L
7148 if (i.imm_operands == 2)
7149 source = 2;
7150 else
c0f3af97
L
7151 {
7152 if (i.types[0].bitfield.imm8)
7153 source = 1;
7154 else
7155 source = 0;
7156 }
c0f3af97
L
7157 break;
7158 case 5:
e771e7c9 7159 if (is_evex_encoding (&i.tm))
43234a1e
L
7160 {
7161 /* For EVEX instructions, when there are 5 operands, the
7162 first one must be immediate operand. If the second one
7163 is immediate operand, the source operand is the 3th
7164 one. If the last one is immediate operand, the source
7165 operand is the 2nd one. */
7166 gas_assert (i.imm_operands == 2
7167 && i.tm.opcode_modifier.sae
7168 && operand_type_check (i.types[0], imm));
7169 if (operand_type_check (i.types[1], imm))
7170 source = 2;
7171 else if (operand_type_check (i.types[4], imm))
7172 source = 1;
7173 else
7174 abort ();
7175 }
cab737b9
L
7176 break;
7177 default:
7178 abort ();
7179 }
7180
c0f3af97
L
7181 if (!vex_3_sources)
7182 {
7183 dest = source + 1;
7184
43234a1e
L
7185 /* RC/SAE operand could be between DEST and SRC. That happens
7186 when one operand is GPR and the other one is XMM/YMM/ZMM
7187 register. */
7188 if (i.rounding && i.rounding->operand == (int) dest)
7189 dest++;
7190
2426c15f 7191 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7192 {
43234a1e 7193 /* For instructions with VexNDS, the register-only source
c5d0745b 7194 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7195 register. It is encoded in VEX prefix. We need to
7196 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7197
7198 i386_operand_type op;
7199 unsigned int vvvv;
7200
7201 /* Check register-only source operand when two source
7202 operands are swapped. */
7203 if (!i.tm.operand_types[source].bitfield.baseindex
7204 && i.tm.operand_types[dest].bitfield.baseindex)
7205 {
7206 vvvv = source;
7207 source = dest;
7208 }
7209 else
7210 vvvv = dest;
7211
7212 op = i.tm.operand_types[vvvv];
fa99fab2 7213 op.bitfield.regmem = 0;
c0f3af97 7214 if ((dest + 1) >= i.operands
dc821c5f
JB
7215 || ((!op.bitfield.reg
7216 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7217 && !op.bitfield.regsimd
43234a1e 7218 && !operand_type_equal (&op, &regmask)))
c0f3af97 7219 abort ();
f12dc422 7220 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7221 dest++;
7222 }
7223 }
29b0f896
AM
7224
7225 i.rm.mode = 3;
7226 /* One of the register operands will be encoded in the i.tm.reg
7227 field, the other in the combined i.tm.mode and i.tm.regmem
7228 fields. If no form of this instruction supports a memory
7229 destination operand, then we assume the source operand may
7230 sometimes be a memory operand and so we need to store the
7231 destination in the i.rm.reg field. */
40fb9820
L
7232 if (!i.tm.operand_types[dest].bitfield.regmem
7233 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7234 {
7235 i.rm.reg = i.op[dest].regs->reg_num;
7236 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7237 if (i.op[dest].regs->reg_type.bitfield.regmmx
7238 || i.op[source].regs->reg_type.bitfield.regmmx)
7239 i.has_regmmx = TRUE;
7240 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7241 || i.op[source].regs->reg_type.bitfield.regsimd)
7242 {
7243 if (i.types[dest].bitfield.zmmword
7244 || i.types[source].bitfield.zmmword)
7245 i.has_regzmm = TRUE;
7246 else if (i.types[dest].bitfield.ymmword
7247 || i.types[source].bitfield.ymmword)
7248 i.has_regymm = TRUE;
7249 else
7250 i.has_regxmm = TRUE;
7251 }
29b0f896 7252 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7253 i.rex |= REX_R;
43234a1e
L
7254 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7255 i.vrex |= REX_R;
29b0f896 7256 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7257 i.rex |= REX_B;
43234a1e
L
7258 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7259 i.vrex |= REX_B;
29b0f896
AM
7260 }
7261 else
7262 {
7263 i.rm.reg = i.op[source].regs->reg_num;
7264 i.rm.regmem = i.op[dest].regs->reg_num;
7265 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7266 i.rex |= REX_B;
43234a1e
L
7267 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7268 i.vrex |= REX_B;
29b0f896 7269 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7270 i.rex |= REX_R;
43234a1e
L
7271 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7272 i.vrex |= REX_R;
29b0f896 7273 }
e0c7f900 7274 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7275 {
e0c7f900 7276 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7277 abort ();
e0c7f900 7278 i.rex &= ~REX_R;
c4a530c5
JB
7279 add_prefix (LOCK_PREFIX_OPCODE);
7280 }
29b0f896
AM
7281 }
7282 else
7283 { /* If it's not 2 reg operands... */
c0f3af97
L
7284 unsigned int mem;
7285
29b0f896
AM
7286 if (i.mem_operands)
7287 {
7288 unsigned int fake_zero_displacement = 0;
99018f42 7289 unsigned int op;
4eed87de 7290
7ab9ffdd
L
7291 for (op = 0; op < i.operands; op++)
7292 if (operand_type_check (i.types[op], anymem))
7293 break;
7ab9ffdd 7294 gas_assert (op < i.operands);
29b0f896 7295
6c30d220
L
7296 if (i.tm.opcode_modifier.vecsib)
7297 {
e968fc9b 7298 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7299 abort ();
7300
7301 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7302 if (!i.base_reg)
7303 {
7304 i.sib.base = NO_BASE_REGISTER;
7305 i.sib.scale = i.log2_scale_factor;
7306 i.types[op].bitfield.disp8 = 0;
7307 i.types[op].bitfield.disp16 = 0;
7308 i.types[op].bitfield.disp64 = 0;
43083a50 7309 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7310 {
7311 /* Must be 32 bit */
7312 i.types[op].bitfield.disp32 = 1;
7313 i.types[op].bitfield.disp32s = 0;
7314 }
7315 else
7316 {
7317 i.types[op].bitfield.disp32 = 0;
7318 i.types[op].bitfield.disp32s = 1;
7319 }
7320 }
7321 i.sib.index = i.index_reg->reg_num;
7322 if ((i.index_reg->reg_flags & RegRex) != 0)
7323 i.rex |= REX_X;
43234a1e
L
7324 if ((i.index_reg->reg_flags & RegVRex) != 0)
7325 i.vrex |= REX_X;
6c30d220
L
7326 }
7327
29b0f896
AM
7328 default_seg = &ds;
7329
7330 if (i.base_reg == 0)
7331 {
7332 i.rm.mode = 0;
7333 if (!i.disp_operands)
9bb129e8 7334 fake_zero_displacement = 1;
29b0f896
AM
7335 if (i.index_reg == 0)
7336 {
73053c1f
JB
7337 i386_operand_type newdisp;
7338
6c30d220 7339 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7340 /* Operand is just <disp> */
20f0a1fc 7341 if (flag_code == CODE_64BIT)
29b0f896
AM
7342 {
7343 /* 64bit mode overwrites the 32bit absolute
7344 addressing by RIP relative addressing and
7345 absolute addressing is encoded by one of the
7346 redundant SIB forms. */
7347 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7348 i.sib.base = NO_BASE_REGISTER;
7349 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7350 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7351 }
fc225355
L
7352 else if ((flag_code == CODE_16BIT)
7353 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7354 {
7355 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7356 newdisp = disp16;
20f0a1fc
NC
7357 }
7358 else
7359 {
7360 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7361 newdisp = disp32;
29b0f896 7362 }
73053c1f
JB
7363 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7364 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7365 }
6c30d220 7366 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7367 {
6c30d220 7368 /* !i.base_reg && i.index_reg */
e968fc9b 7369 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7370 i.sib.index = NO_INDEX_REGISTER;
7371 else
7372 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7373 i.sib.base = NO_BASE_REGISTER;
7374 i.sib.scale = i.log2_scale_factor;
7375 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7376 i.types[op].bitfield.disp8 = 0;
7377 i.types[op].bitfield.disp16 = 0;
7378 i.types[op].bitfield.disp64 = 0;
43083a50 7379 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7380 {
7381 /* Must be 32 bit */
7382 i.types[op].bitfield.disp32 = 1;
7383 i.types[op].bitfield.disp32s = 0;
7384 }
29b0f896 7385 else
40fb9820
L
7386 {
7387 i.types[op].bitfield.disp32 = 0;
7388 i.types[op].bitfield.disp32s = 1;
7389 }
29b0f896 7390 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7391 i.rex |= REX_X;
29b0f896
AM
7392 }
7393 }
7394 /* RIP addressing for 64bit mode. */
e968fc9b 7395 else if (i.base_reg->reg_num == RegIP)
29b0f896 7396 {
6c30d220 7397 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7398 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7399 i.types[op].bitfield.disp8 = 0;
7400 i.types[op].bitfield.disp16 = 0;
7401 i.types[op].bitfield.disp32 = 0;
7402 i.types[op].bitfield.disp32s = 1;
7403 i.types[op].bitfield.disp64 = 0;
71903a11 7404 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7405 if (! i.disp_operands)
7406 fake_zero_displacement = 1;
29b0f896 7407 }
dc821c5f 7408 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7409 {
6c30d220 7410 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7411 switch (i.base_reg->reg_num)
7412 {
7413 case 3: /* (%bx) */
7414 if (i.index_reg == 0)
7415 i.rm.regmem = 7;
7416 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7417 i.rm.regmem = i.index_reg->reg_num - 6;
7418 break;
7419 case 5: /* (%bp) */
7420 default_seg = &ss;
7421 if (i.index_reg == 0)
7422 {
7423 i.rm.regmem = 6;
40fb9820 7424 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7425 {
7426 /* fake (%bp) into 0(%bp) */
b5014f7a 7427 i.types[op].bitfield.disp8 = 1;
252b5132 7428 fake_zero_displacement = 1;
29b0f896
AM
7429 }
7430 }
7431 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7432 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7433 break;
7434 default: /* (%si) -> 4 or (%di) -> 5 */
7435 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7436 }
7437 i.rm.mode = mode_from_disp_size (i.types[op]);
7438 }
7439 else /* i.base_reg and 32/64 bit mode */
7440 {
7441 if (flag_code == CODE_64BIT
40fb9820
L
7442 && operand_type_check (i.types[op], disp))
7443 {
73053c1f
JB
7444 i.types[op].bitfield.disp16 = 0;
7445 i.types[op].bitfield.disp64 = 0;
40fb9820 7446 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7447 {
7448 i.types[op].bitfield.disp32 = 0;
7449 i.types[op].bitfield.disp32s = 1;
7450 }
40fb9820 7451 else
73053c1f
JB
7452 {
7453 i.types[op].bitfield.disp32 = 1;
7454 i.types[op].bitfield.disp32s = 0;
7455 }
40fb9820 7456 }
20f0a1fc 7457
6c30d220
L
7458 if (!i.tm.opcode_modifier.vecsib)
7459 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7460 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7461 i.rex |= REX_B;
29b0f896
AM
7462 i.sib.base = i.base_reg->reg_num;
7463 /* x86-64 ignores REX prefix bit here to avoid decoder
7464 complications. */
848930b2
JB
7465 if (!(i.base_reg->reg_flags & RegRex)
7466 && (i.base_reg->reg_num == EBP_REG_NUM
7467 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7468 default_seg = &ss;
848930b2 7469 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7470 {
848930b2 7471 fake_zero_displacement = 1;
b5014f7a 7472 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7473 }
7474 i.sib.scale = i.log2_scale_factor;
7475 if (i.index_reg == 0)
7476 {
6c30d220 7477 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7478 /* <disp>(%esp) becomes two byte modrm with no index
7479 register. We've already stored the code for esp
7480 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7481 Any base register besides %esp will not use the
7482 extra modrm byte. */
7483 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7484 }
6c30d220 7485 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7486 {
e968fc9b 7487 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7488 i.sib.index = NO_INDEX_REGISTER;
7489 else
7490 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7491 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7492 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7493 i.rex |= REX_X;
29b0f896 7494 }
67a4f2b7
AO
7495
7496 if (i.disp_operands
7497 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7498 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7499 i.rm.mode = 0;
7500 else
a501d77e
L
7501 {
7502 if (!fake_zero_displacement
7503 && !i.disp_operands
7504 && i.disp_encoding)
7505 {
7506 fake_zero_displacement = 1;
7507 if (i.disp_encoding == disp_encoding_8bit)
7508 i.types[op].bitfield.disp8 = 1;
7509 else
7510 i.types[op].bitfield.disp32 = 1;
7511 }
7512 i.rm.mode = mode_from_disp_size (i.types[op]);
7513 }
29b0f896 7514 }
252b5132 7515
29b0f896
AM
7516 if (fake_zero_displacement)
7517 {
7518 /* Fakes a zero displacement assuming that i.types[op]
7519 holds the correct displacement size. */
7520 expressionS *exp;
7521
9c2799c2 7522 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7523 exp = &disp_expressions[i.disp_operands++];
7524 i.op[op].disps = exp;
7525 exp->X_op = O_constant;
7526 exp->X_add_number = 0;
7527 exp->X_add_symbol = (symbolS *) 0;
7528 exp->X_op_symbol = (symbolS *) 0;
7529 }
c0f3af97
L
7530
7531 mem = op;
29b0f896 7532 }
c0f3af97
L
7533 else
7534 mem = ~0;
252b5132 7535
8c43a48b 7536 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7537 {
7538 if (operand_type_check (i.types[0], imm))
7539 i.vex.register_specifier = NULL;
7540 else
7541 {
7542 /* VEX.vvvv encodes one of the sources when the first
7543 operand is not an immediate. */
1ef99a7b 7544 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7545 i.vex.register_specifier = i.op[0].regs;
7546 else
7547 i.vex.register_specifier = i.op[1].regs;
7548 }
7549
7550 /* Destination is a XMM register encoded in the ModRM.reg
7551 and VEX.R bit. */
7552 i.rm.reg = i.op[2].regs->reg_num;
7553 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7554 i.rex |= REX_R;
7555
7556 /* ModRM.rm and VEX.B encodes the other source. */
7557 if (!i.mem_operands)
7558 {
7559 i.rm.mode = 3;
7560
1ef99a7b 7561 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7562 i.rm.regmem = i.op[1].regs->reg_num;
7563 else
7564 i.rm.regmem = i.op[0].regs->reg_num;
7565
7566 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7567 i.rex |= REX_B;
7568 }
7569 }
2426c15f 7570 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7571 {
7572 i.vex.register_specifier = i.op[2].regs;
7573 if (!i.mem_operands)
7574 {
7575 i.rm.mode = 3;
7576 i.rm.regmem = i.op[1].regs->reg_num;
7577 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7578 i.rex |= REX_B;
7579 }
7580 }
29b0f896
AM
7581 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7582 (if any) based on i.tm.extension_opcode. Again, we must be
7583 careful to make sure that segment/control/debug/test/MMX
7584 registers are coded into the i.rm.reg field. */
f88c9eb0 7585 else if (i.reg_operands)
29b0f896 7586 {
99018f42 7587 unsigned int op;
7ab9ffdd
L
7588 unsigned int vex_reg = ~0;
7589
7590 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7591 {
7592 if (i.types[op].bitfield.reg
7593 || i.types[op].bitfield.regbnd
7594 || i.types[op].bitfield.regmask
7595 || i.types[op].bitfield.sreg2
7596 || i.types[op].bitfield.sreg3
7597 || i.types[op].bitfield.control
7598 || i.types[op].bitfield.debug
7599 || i.types[op].bitfield.test)
7600 break;
7601 if (i.types[op].bitfield.regsimd)
7602 {
7603 if (i.types[op].bitfield.zmmword)
7604 i.has_regzmm = TRUE;
7605 else if (i.types[op].bitfield.ymmword)
7606 i.has_regymm = TRUE;
7607 else
7608 i.has_regxmm = TRUE;
7609 break;
7610 }
7611 if (i.types[op].bitfield.regmmx)
7612 {
7613 i.has_regmmx = TRUE;
7614 break;
7615 }
7616 }
c0209578 7617
7ab9ffdd
L
7618 if (vex_3_sources)
7619 op = dest;
2426c15f 7620 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7621 {
7622 /* For instructions with VexNDS, the register-only
7623 source operand is encoded in VEX prefix. */
7624 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7625
7ab9ffdd 7626 if (op > mem)
c0f3af97 7627 {
7ab9ffdd
L
7628 vex_reg = op++;
7629 gas_assert (op < i.operands);
c0f3af97
L
7630 }
7631 else
c0f3af97 7632 {
f12dc422
L
7633 /* Check register-only source operand when two source
7634 operands are swapped. */
7635 if (!i.tm.operand_types[op].bitfield.baseindex
7636 && i.tm.operand_types[op + 1].bitfield.baseindex)
7637 {
7638 vex_reg = op;
7639 op += 2;
7640 gas_assert (mem == (vex_reg + 1)
7641 && op < i.operands);
7642 }
7643 else
7644 {
7645 vex_reg = op + 1;
7646 gas_assert (vex_reg < i.operands);
7647 }
c0f3af97 7648 }
7ab9ffdd 7649 }
2426c15f 7650 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7651 {
f12dc422 7652 /* For instructions with VexNDD, the register destination
7ab9ffdd 7653 is encoded in VEX prefix. */
f12dc422
L
7654 if (i.mem_operands == 0)
7655 {
7656 /* There is no memory operand. */
7657 gas_assert ((op + 2) == i.operands);
7658 vex_reg = op + 1;
7659 }
7660 else
8d63c93e 7661 {
ed438a93
JB
7662 /* There are only 2 non-immediate operands. */
7663 gas_assert (op < i.imm_operands + 2
7664 && i.operands == i.imm_operands + 2);
7665 vex_reg = i.imm_operands + 1;
f12dc422 7666 }
7ab9ffdd
L
7667 }
7668 else
7669 gas_assert (op < i.operands);
99018f42 7670
7ab9ffdd
L
7671 if (vex_reg != (unsigned int) ~0)
7672 {
f12dc422 7673 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7674
dc821c5f
JB
7675 if ((!type->bitfield.reg
7676 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7677 && !type->bitfield.regsimd
43234a1e 7678 && !operand_type_equal (type, &regmask))
7ab9ffdd 7679 abort ();
f88c9eb0 7680
7ab9ffdd
L
7681 i.vex.register_specifier = i.op[vex_reg].regs;
7682 }
7683
1b9f0c97
L
7684 /* Don't set OP operand twice. */
7685 if (vex_reg != op)
7ab9ffdd 7686 {
1b9f0c97
L
7687 /* If there is an extension opcode to put here, the
7688 register number must be put into the regmem field. */
7689 if (i.tm.extension_opcode != None)
7690 {
7691 i.rm.regmem = i.op[op].regs->reg_num;
7692 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7693 i.rex |= REX_B;
43234a1e
L
7694 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7695 i.vrex |= REX_B;
1b9f0c97
L
7696 }
7697 else
7698 {
7699 i.rm.reg = i.op[op].regs->reg_num;
7700 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7701 i.rex |= REX_R;
43234a1e
L
7702 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7703 i.vrex |= REX_R;
1b9f0c97 7704 }
7ab9ffdd 7705 }
252b5132 7706
29b0f896
AM
7707 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7708 must set it to 3 to indicate this is a register operand
7709 in the regmem field. */
7710 if (!i.mem_operands)
7711 i.rm.mode = 3;
7712 }
252b5132 7713
29b0f896 7714 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7715 if (i.tm.extension_opcode != None)
29b0f896
AM
7716 i.rm.reg = i.tm.extension_opcode;
7717 }
7718 return default_seg;
7719}
252b5132 7720
29b0f896 7721static void
e3bb37b5 7722output_branch (void)
29b0f896
AM
7723{
7724 char *p;
f8a5c266 7725 int size;
29b0f896
AM
7726 int code16;
7727 int prefix;
7728 relax_substateT subtype;
7729 symbolS *sym;
7730 offsetT off;
7731
f8a5c266 7732 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7733 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7734
7735 prefix = 0;
7736 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7737 {
29b0f896
AM
7738 prefix = 1;
7739 i.prefixes -= 1;
7740 code16 ^= CODE16;
252b5132 7741 }
29b0f896
AM
7742 /* Pentium4 branch hints. */
7743 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7744 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7745 {
29b0f896
AM
7746 prefix++;
7747 i.prefixes--;
7748 }
7749 if (i.prefix[REX_PREFIX] != 0)
7750 {
7751 prefix++;
7752 i.prefixes--;
2f66722d
AM
7753 }
7754
7e8b059b
L
7755 /* BND prefixed jump. */
7756 if (i.prefix[BND_PREFIX] != 0)
7757 {
7758 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7759 i.prefixes -= 1;
7760 }
7761
29b0f896
AM
7762 if (i.prefixes != 0 && !intel_syntax)
7763 as_warn (_("skipping prefixes on this instruction"));
7764
7765 /* It's always a symbol; End frag & setup for relax.
7766 Make sure there is enough room in this frag for the largest
7767 instruction we may generate in md_convert_frag. This is 2
7768 bytes for the opcode and room for the prefix and largest
7769 displacement. */
7770 frag_grow (prefix + 2 + 4);
7771 /* Prefix and 1 opcode byte go in fr_fix. */
7772 p = frag_more (prefix + 1);
7773 if (i.prefix[DATA_PREFIX] != 0)
7774 *p++ = DATA_PREFIX_OPCODE;
7775 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7776 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7777 *p++ = i.prefix[SEG_PREFIX];
7778 if (i.prefix[REX_PREFIX] != 0)
7779 *p++ = i.prefix[REX_PREFIX];
7780 *p = i.tm.base_opcode;
7781
7782 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7783 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7784 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7785 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7786 else
f8a5c266 7787 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7788 subtype |= code16;
3e73aa7c 7789
29b0f896
AM
7790 sym = i.op[0].disps->X_add_symbol;
7791 off = i.op[0].disps->X_add_number;
3e73aa7c 7792
29b0f896
AM
7793 if (i.op[0].disps->X_op != O_constant
7794 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7795 {
29b0f896
AM
7796 /* Handle complex expressions. */
7797 sym = make_expr_symbol (i.op[0].disps);
7798 off = 0;
7799 }
3e73aa7c 7800
29b0f896
AM
7801 /* 1 possible extra opcode + 4 byte displacement go in var part.
7802 Pass reloc in fr_var. */
d258b828 7803 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7804}
3e73aa7c 7805
bd7ab16b
L
7806#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7807/* Return TRUE iff PLT32 relocation should be used for branching to
7808 symbol S. */
7809
7810static bfd_boolean
7811need_plt32_p (symbolS *s)
7812{
7813 /* PLT32 relocation is ELF only. */
7814 if (!IS_ELF)
7815 return FALSE;
7816
a5def729
RO
7817#ifdef TE_SOLARIS
7818 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7819 krtld support it. */
7820 return FALSE;
7821#endif
7822
bd7ab16b
L
7823 /* Since there is no need to prepare for PLT branch on x86-64, we
7824 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7825 be used as a marker for 32-bit PC-relative branches. */
7826 if (!object_64bit)
7827 return FALSE;
7828
7829 /* Weak or undefined symbol need PLT32 relocation. */
7830 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7831 return TRUE;
7832
7833 /* Non-global symbol doesn't need PLT32 relocation. */
7834 if (! S_IS_EXTERNAL (s))
7835 return FALSE;
7836
7837 /* Other global symbols need PLT32 relocation. NB: Symbol with
7838 non-default visibilities are treated as normal global symbol
7839 so that PLT32 relocation can be used as a marker for 32-bit
7840 PC-relative branches. It is useful for linker relaxation. */
7841 return TRUE;
7842}
7843#endif
7844
29b0f896 7845static void
e3bb37b5 7846output_jump (void)
29b0f896
AM
7847{
7848 char *p;
7849 int size;
3e02c1cc 7850 fixS *fixP;
bd7ab16b 7851 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7852
40fb9820 7853 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7854 {
7855 /* This is a loop or jecxz type instruction. */
7856 size = 1;
7857 if (i.prefix[ADDR_PREFIX] != 0)
7858 {
7859 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7860 i.prefixes -= 1;
7861 }
7862 /* Pentium4 branch hints. */
7863 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7864 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7865 {
7866 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7867 i.prefixes--;
3e73aa7c
JH
7868 }
7869 }
29b0f896
AM
7870 else
7871 {
7872 int code16;
3e73aa7c 7873
29b0f896
AM
7874 code16 = 0;
7875 if (flag_code == CODE_16BIT)
7876 code16 = CODE16;
3e73aa7c 7877
29b0f896
AM
7878 if (i.prefix[DATA_PREFIX] != 0)
7879 {
7880 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7881 i.prefixes -= 1;
7882 code16 ^= CODE16;
7883 }
252b5132 7884
29b0f896
AM
7885 size = 4;
7886 if (code16)
7887 size = 2;
7888 }
9fcc94b6 7889
29b0f896
AM
7890 if (i.prefix[REX_PREFIX] != 0)
7891 {
7892 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7893 i.prefixes -= 1;
7894 }
252b5132 7895
7e8b059b
L
7896 /* BND prefixed jump. */
7897 if (i.prefix[BND_PREFIX] != 0)
7898 {
7899 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7900 i.prefixes -= 1;
7901 }
7902
29b0f896
AM
7903 if (i.prefixes != 0 && !intel_syntax)
7904 as_warn (_("skipping prefixes on this instruction"));
e0890092 7905
42164a71
L
7906 p = frag_more (i.tm.opcode_length + size);
7907 switch (i.tm.opcode_length)
7908 {
7909 case 2:
7910 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7911 /* Fall through. */
42164a71
L
7912 case 1:
7913 *p++ = i.tm.base_opcode;
7914 break;
7915 default:
7916 abort ();
7917 }
e0890092 7918
bd7ab16b
L
7919#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7920 if (size == 4
7921 && jump_reloc == NO_RELOC
7922 && need_plt32_p (i.op[0].disps->X_add_symbol))
7923 jump_reloc = BFD_RELOC_X86_64_PLT32;
7924#endif
7925
7926 jump_reloc = reloc (size, 1, 1, jump_reloc);
7927
3e02c1cc 7928 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7929 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7930
7931 /* All jumps handled here are signed, but don't use a signed limit
7932 check for 32 and 16 bit jumps as we want to allow wrap around at
7933 4G and 64k respectively. */
7934 if (size == 1)
7935 fixP->fx_signed = 1;
29b0f896 7936}
e0890092 7937
29b0f896 7938static void
e3bb37b5 7939output_interseg_jump (void)
29b0f896
AM
7940{
7941 char *p;
7942 int size;
7943 int prefix;
7944 int code16;
252b5132 7945
29b0f896
AM
7946 code16 = 0;
7947 if (flag_code == CODE_16BIT)
7948 code16 = CODE16;
a217f122 7949
29b0f896
AM
7950 prefix = 0;
7951 if (i.prefix[DATA_PREFIX] != 0)
7952 {
7953 prefix = 1;
7954 i.prefixes -= 1;
7955 code16 ^= CODE16;
7956 }
7957 if (i.prefix[REX_PREFIX] != 0)
7958 {
7959 prefix++;
7960 i.prefixes -= 1;
7961 }
252b5132 7962
29b0f896
AM
7963 size = 4;
7964 if (code16)
7965 size = 2;
252b5132 7966
29b0f896
AM
7967 if (i.prefixes != 0 && !intel_syntax)
7968 as_warn (_("skipping prefixes on this instruction"));
252b5132 7969
29b0f896
AM
7970 /* 1 opcode; 2 segment; offset */
7971 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7972
29b0f896
AM
7973 if (i.prefix[DATA_PREFIX] != 0)
7974 *p++ = DATA_PREFIX_OPCODE;
252b5132 7975
29b0f896
AM
7976 if (i.prefix[REX_PREFIX] != 0)
7977 *p++ = i.prefix[REX_PREFIX];
252b5132 7978
29b0f896
AM
7979 *p++ = i.tm.base_opcode;
7980 if (i.op[1].imms->X_op == O_constant)
7981 {
7982 offsetT n = i.op[1].imms->X_add_number;
252b5132 7983
29b0f896
AM
7984 if (size == 2
7985 && !fits_in_unsigned_word (n)
7986 && !fits_in_signed_word (n))
7987 {
7988 as_bad (_("16-bit jump out of range"));
7989 return;
7990 }
7991 md_number_to_chars (p, n, size);
7992 }
7993 else
7994 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7995 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7996 if (i.op[0].imms->X_op != O_constant)
7997 as_bad (_("can't handle non absolute segment in `%s'"),
7998 i.tm.name);
7999 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8000}
a217f122 8001
b4a3a7b4
L
8002#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8003void
8004x86_cleanup (void)
8005{
8006 char *p;
8007 asection *seg = now_seg;
8008 subsegT subseg = now_subseg;
8009 asection *sec;
8010 unsigned int alignment, align_size_1;
8011 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8012 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8013 unsigned int padding;
8014
8015 if (!IS_ELF || !x86_used_note)
8016 return;
8017
b4a3a7b4
L
8018 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8019
8020 /* The .note.gnu.property section layout:
8021
8022 Field Length Contents
8023 ---- ---- ----
8024 n_namsz 4 4
8025 n_descsz 4 The note descriptor size
8026 n_type 4 NT_GNU_PROPERTY_TYPE_0
8027 n_name 4 "GNU"
8028 n_desc n_descsz The program property array
8029 .... .... ....
8030 */
8031
8032 /* Create the .note.gnu.property section. */
8033 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8034 bfd_set_section_flags (stdoutput, sec,
8035 (SEC_ALLOC
8036 | SEC_LOAD
8037 | SEC_DATA
8038 | SEC_HAS_CONTENTS
8039 | SEC_READONLY));
8040
8041 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8042 {
8043 align_size_1 = 7;
8044 alignment = 3;
8045 }
8046 else
8047 {
8048 align_size_1 = 3;
8049 alignment = 2;
8050 }
8051
8052 bfd_set_section_alignment (stdoutput, sec, alignment);
8053 elf_section_type (sec) = SHT_NOTE;
8054
8055 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8056 + 4-byte data */
8057 isa_1_descsz_raw = 4 + 4 + 4;
8058 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8059 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8060
8061 feature_2_descsz_raw = isa_1_descsz;
8062 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8063 + 4-byte data */
8064 feature_2_descsz_raw += 4 + 4 + 4;
8065 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8066 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8067 & ~align_size_1);
8068
8069 descsz = feature_2_descsz;
8070 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8071 p = frag_more (4 + 4 + 4 + 4 + descsz);
8072
8073 /* Write n_namsz. */
8074 md_number_to_chars (p, (valueT) 4, 4);
8075
8076 /* Write n_descsz. */
8077 md_number_to_chars (p + 4, (valueT) descsz, 4);
8078
8079 /* Write n_type. */
8080 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8081
8082 /* Write n_name. */
8083 memcpy (p + 4 * 3, "GNU", 4);
8084
8085 /* Write 4-byte type. */
8086 md_number_to_chars (p + 4 * 4,
8087 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8088
8089 /* Write 4-byte data size. */
8090 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8091
8092 /* Write 4-byte data. */
8093 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8094
8095 /* Zero out paddings. */
8096 padding = isa_1_descsz - isa_1_descsz_raw;
8097 if (padding)
8098 memset (p + 4 * 7, 0, padding);
8099
8100 /* Write 4-byte type. */
8101 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8102 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8103
8104 /* Write 4-byte data size. */
8105 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8106
8107 /* Write 4-byte data. */
8108 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8109 (valueT) x86_feature_2_used, 4);
8110
8111 /* Zero out paddings. */
8112 padding = feature_2_descsz - feature_2_descsz_raw;
8113 if (padding)
8114 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8115
8116 /* We probably can't restore the current segment, for there likely
8117 isn't one yet... */
8118 if (seg && subseg)
8119 subseg_set (seg, subseg);
8120}
8121#endif
8122
29b0f896 8123static void
e3bb37b5 8124output_insn (void)
29b0f896 8125{
2bbd9c25
JJ
8126 fragS *insn_start_frag;
8127 offsetT insn_start_off;
8128
b4a3a7b4
L
8129#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8130 if (IS_ELF && x86_used_note)
8131 {
8132 if (i.tm.cpu_flags.bitfield.cpucmov)
8133 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8134 if (i.tm.cpu_flags.bitfield.cpusse)
8135 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8136 if (i.tm.cpu_flags.bitfield.cpusse2)
8137 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8138 if (i.tm.cpu_flags.bitfield.cpusse3)
8139 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8140 if (i.tm.cpu_flags.bitfield.cpussse3)
8141 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8142 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8143 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8144 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8145 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8146 if (i.tm.cpu_flags.bitfield.cpuavx)
8147 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8148 if (i.tm.cpu_flags.bitfield.cpuavx2)
8149 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8150 if (i.tm.cpu_flags.bitfield.cpufma)
8151 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8152 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8153 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8154 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8155 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8156 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8157 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8158 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8159 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8160 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8161 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8162 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8163 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8164 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8165 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8166 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8167 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8168 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8169 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8170 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8171 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8172 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8173 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8174 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8175 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8176 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8177 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8178 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8179 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8180 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8181 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8182
8183 if (i.tm.cpu_flags.bitfield.cpu8087
8184 || i.tm.cpu_flags.bitfield.cpu287
8185 || i.tm.cpu_flags.bitfield.cpu387
8186 || i.tm.cpu_flags.bitfield.cpu687
8187 || i.tm.cpu_flags.bitfield.cpufisttp)
8188 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8189 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8190 Xfence instructions. */
8191 if (i.tm.base_opcode != 0xf18
8192 && i.tm.base_opcode != 0xf0d
8193 && i.tm.base_opcode != 0xfae
8194 && (i.has_regmmx
8195 || i.tm.cpu_flags.bitfield.cpummx
8196 || i.tm.cpu_flags.bitfield.cpua3dnow
8197 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8198 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8199 if (i.has_regxmm)
8200 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8201 if (i.has_regymm)
8202 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8203 if (i.has_regzmm)
8204 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8205 if (i.tm.cpu_flags.bitfield.cpufxsr)
8206 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8207 if (i.tm.cpu_flags.bitfield.cpuxsave)
8208 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8209 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8210 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8211 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8212 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8213 }
8214#endif
8215
29b0f896
AM
8216 /* Tie dwarf2 debug info to the address at the start of the insn.
8217 We can't do this after the insn has been output as the current
8218 frag may have been closed off. eg. by frag_var. */
8219 dwarf2_emit_insn (0);
8220
2bbd9c25
JJ
8221 insn_start_frag = frag_now;
8222 insn_start_off = frag_now_fix ();
8223
29b0f896 8224 /* Output jumps. */
40fb9820 8225 if (i.tm.opcode_modifier.jump)
29b0f896 8226 output_branch ();
40fb9820
L
8227 else if (i.tm.opcode_modifier.jumpbyte
8228 || i.tm.opcode_modifier.jumpdword)
29b0f896 8229 output_jump ();
40fb9820 8230 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8231 output_interseg_jump ();
8232 else
8233 {
8234 /* Output normal instructions here. */
8235 char *p;
8236 unsigned char *q;
47465058 8237 unsigned int j;
331d2d0d 8238 unsigned int prefix;
4dffcebc 8239
e4e00185
AS
8240 if (avoid_fence
8241 && i.tm.base_opcode == 0xfae
8242 && i.operands == 1
8243 && i.imm_operands == 1
8244 && (i.op[0].imms->X_add_number == 0xe8
8245 || i.op[0].imms->X_add_number == 0xf0
8246 || i.op[0].imms->X_add_number == 0xf8))
8247 {
8248 /* Encode lfence, mfence, and sfence as
8249 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8250 offsetT val = 0x240483f0ULL;
8251 p = frag_more (5);
8252 md_number_to_chars (p, val, 5);
8253 return;
8254 }
8255
d022bddd
IT
8256 /* Some processors fail on LOCK prefix. This options makes
8257 assembler ignore LOCK prefix and serves as a workaround. */
8258 if (omit_lock_prefix)
8259 {
8260 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8261 return;
8262 i.prefix[LOCK_PREFIX] = 0;
8263 }
8264
43234a1e
L
8265 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8266 don't need the explicit prefix. */
8267 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8268 {
c0f3af97 8269 switch (i.tm.opcode_length)
bc4bd9ab 8270 {
c0f3af97
L
8271 case 3:
8272 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8273 {
c0f3af97 8274 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8275 add_prefix (prefix);
c0f3af97
L
8276 }
8277 break;
8278 case 2:
8279 if ((i.tm.base_opcode & 0xff0000) != 0)
8280 {
8281 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8282 if (!i.tm.cpu_flags.bitfield.cpupadlock
8283 || prefix != REPE_PREFIX_OPCODE
8284 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8285 add_prefix (prefix);
8286 }
c0f3af97
L
8287 break;
8288 case 1:
8289 break;
390c91cf
L
8290 case 0:
8291 /* Check for pseudo prefixes. */
8292 as_bad_where (insn_start_frag->fr_file,
8293 insn_start_frag->fr_line,
8294 _("pseudo prefix without instruction"));
8295 return;
c0f3af97
L
8296 default:
8297 abort ();
bc4bd9ab 8298 }
c0f3af97 8299
6d19a37a 8300#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8301 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8302 R_X86_64_GOTTPOFF relocation so that linker can safely
8303 perform IE->LE optimization. */
8304 if (x86_elf_abi == X86_64_X32_ABI
8305 && i.operands == 2
8306 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8307 && i.prefix[REX_PREFIX] == 0)
8308 add_prefix (REX_OPCODE);
6d19a37a 8309#endif
cf61b747 8310
c0f3af97
L
8311 /* The prefix bytes. */
8312 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8313 if (*q)
8314 FRAG_APPEND_1_CHAR (*q);
0f10071e 8315 }
ae5c1c7b 8316 else
c0f3af97
L
8317 {
8318 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8319 if (*q)
8320 switch (j)
8321 {
8322 case REX_PREFIX:
8323 /* REX byte is encoded in VEX prefix. */
8324 break;
8325 case SEG_PREFIX:
8326 case ADDR_PREFIX:
8327 FRAG_APPEND_1_CHAR (*q);
8328 break;
8329 default:
8330 /* There should be no other prefixes for instructions
8331 with VEX prefix. */
8332 abort ();
8333 }
8334
43234a1e
L
8335 /* For EVEX instructions i.vrex should become 0 after
8336 build_evex_prefix. For VEX instructions upper 16 registers
8337 aren't available, so VREX should be 0. */
8338 if (i.vrex)
8339 abort ();
c0f3af97
L
8340 /* Now the VEX prefix. */
8341 p = frag_more (i.vex.length);
8342 for (j = 0; j < i.vex.length; j++)
8343 p[j] = i.vex.bytes[j];
8344 }
252b5132 8345
29b0f896 8346 /* Now the opcode; be careful about word order here! */
4dffcebc 8347 if (i.tm.opcode_length == 1)
29b0f896
AM
8348 {
8349 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8350 }
8351 else
8352 {
4dffcebc 8353 switch (i.tm.opcode_length)
331d2d0d 8354 {
43234a1e
L
8355 case 4:
8356 p = frag_more (4);
8357 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8358 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8359 break;
4dffcebc 8360 case 3:
331d2d0d
L
8361 p = frag_more (3);
8362 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8363 break;
8364 case 2:
8365 p = frag_more (2);
8366 break;
8367 default:
8368 abort ();
8369 break;
331d2d0d 8370 }
0f10071e 8371
29b0f896
AM
8372 /* Put out high byte first: can't use md_number_to_chars! */
8373 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8374 *p = i.tm.base_opcode & 0xff;
8375 }
3e73aa7c 8376
29b0f896 8377 /* Now the modrm byte and sib byte (if present). */
40fb9820 8378 if (i.tm.opcode_modifier.modrm)
29b0f896 8379 {
4a3523fa
L
8380 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8381 | i.rm.reg << 3
8382 | i.rm.mode << 6));
29b0f896
AM
8383 /* If i.rm.regmem == ESP (4)
8384 && i.rm.mode != (Register mode)
8385 && not 16 bit
8386 ==> need second modrm byte. */
8387 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8388 && i.rm.mode != 3
dc821c5f 8389 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8390 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8391 | i.sib.index << 3
8392 | i.sib.scale << 6));
29b0f896 8393 }
3e73aa7c 8394
29b0f896 8395 if (i.disp_operands)
2bbd9c25 8396 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8397
29b0f896 8398 if (i.imm_operands)
2bbd9c25 8399 output_imm (insn_start_frag, insn_start_off);
29b0f896 8400 }
252b5132 8401
29b0f896
AM
8402#ifdef DEBUG386
8403 if (flag_debug)
8404 {
7b81dfbb 8405 pi ("" /*line*/, &i);
29b0f896
AM
8406 }
8407#endif /* DEBUG386 */
8408}
252b5132 8409
e205caa7
L
8410/* Return the size of the displacement operand N. */
8411
8412static int
8413disp_size (unsigned int n)
8414{
8415 int size = 4;
43234a1e 8416
b5014f7a 8417 if (i.types[n].bitfield.disp64)
40fb9820
L
8418 size = 8;
8419 else if (i.types[n].bitfield.disp8)
8420 size = 1;
8421 else if (i.types[n].bitfield.disp16)
8422 size = 2;
e205caa7
L
8423 return size;
8424}
8425
8426/* Return the size of the immediate operand N. */
8427
8428static int
8429imm_size (unsigned int n)
8430{
8431 int size = 4;
40fb9820
L
8432 if (i.types[n].bitfield.imm64)
8433 size = 8;
8434 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8435 size = 1;
8436 else if (i.types[n].bitfield.imm16)
8437 size = 2;
e205caa7
L
8438 return size;
8439}
8440
29b0f896 8441static void
64e74474 8442output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8443{
8444 char *p;
8445 unsigned int n;
252b5132 8446
29b0f896
AM
8447 for (n = 0; n < i.operands; n++)
8448 {
b5014f7a 8449 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8450 {
8451 if (i.op[n].disps->X_op == O_constant)
8452 {
e205caa7 8453 int size = disp_size (n);
43234a1e 8454 offsetT val = i.op[n].disps->X_add_number;
252b5132 8455
629cfaf1
JB
8456 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8457 size);
29b0f896
AM
8458 p = frag_more (size);
8459 md_number_to_chars (p, val, size);
8460 }
8461 else
8462 {
f86103b7 8463 enum bfd_reloc_code_real reloc_type;
e205caa7 8464 int size = disp_size (n);
40fb9820 8465 int sign = i.types[n].bitfield.disp32s;
29b0f896 8466 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8467 fixS *fixP;
29b0f896 8468
e205caa7 8469 /* We can't have 8 bit displacement here. */
9c2799c2 8470 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8471
29b0f896
AM
8472 /* The PC relative address is computed relative
8473 to the instruction boundary, so in case immediate
8474 fields follows, we need to adjust the value. */
8475 if (pcrel && i.imm_operands)
8476 {
29b0f896 8477 unsigned int n1;
e205caa7 8478 int sz = 0;
252b5132 8479
29b0f896 8480 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8481 if (operand_type_check (i.types[n1], imm))
252b5132 8482 {
e205caa7
L
8483 /* Only one immediate is allowed for PC
8484 relative address. */
9c2799c2 8485 gas_assert (sz == 0);
e205caa7
L
8486 sz = imm_size (n1);
8487 i.op[n].disps->X_add_number -= sz;
252b5132 8488 }
29b0f896 8489 /* We should find the immediate. */
9c2799c2 8490 gas_assert (sz != 0);
29b0f896 8491 }
520dc8e8 8492
29b0f896 8493 p = frag_more (size);
d258b828 8494 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8495 if (GOT_symbol
2bbd9c25 8496 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8497 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8498 || reloc_type == BFD_RELOC_X86_64_32S
8499 || (reloc_type == BFD_RELOC_64
8500 && object_64bit))
d6ab8113
JB
8501 && (i.op[n].disps->X_op == O_symbol
8502 || (i.op[n].disps->X_op == O_add
8503 && ((symbol_get_value_expression
8504 (i.op[n].disps->X_op_symbol)->X_op)
8505 == O_subtract))))
8506 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8507 {
8508 offsetT add;
8509
8510 if (insn_start_frag == frag_now)
8511 add = (p - frag_now->fr_literal) - insn_start_off;
8512 else
8513 {
8514 fragS *fr;
8515
8516 add = insn_start_frag->fr_fix - insn_start_off;
8517 for (fr = insn_start_frag->fr_next;
8518 fr && fr != frag_now; fr = fr->fr_next)
8519 add += fr->fr_fix;
8520 add += p - frag_now->fr_literal;
8521 }
8522
4fa24527 8523 if (!object_64bit)
7b81dfbb
AJ
8524 {
8525 reloc_type = BFD_RELOC_386_GOTPC;
8526 i.op[n].imms->X_add_number += add;
8527 }
8528 else if (reloc_type == BFD_RELOC_64)
8529 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8530 else
7b81dfbb
AJ
8531 /* Don't do the adjustment for x86-64, as there
8532 the pcrel addressing is relative to the _next_
8533 insn, and that is taken care of in other code. */
d6ab8113 8534 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8535 }
02a86693
L
8536 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8537 size, i.op[n].disps, pcrel,
8538 reloc_type);
8539 /* Check for "call/jmp *mem", "mov mem, %reg",
8540 "test %reg, mem" and "binop mem, %reg" where binop
8541 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8542 instructions without data prefix. Always generate
8543 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8544 if (i.prefix[DATA_PREFIX] == 0
8545 && (generate_relax_relocations
8546 || (!object_64bit
8547 && i.rm.mode == 0
8548 && i.rm.regmem == 5))
0cb4071e
L
8549 && (i.rm.mode == 2
8550 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8551 && ((i.operands == 1
8552 && i.tm.base_opcode == 0xff
8553 && (i.rm.reg == 2 || i.rm.reg == 4))
8554 || (i.operands == 2
8555 && (i.tm.base_opcode == 0x8b
8556 || i.tm.base_opcode == 0x85
8557 || (i.tm.base_opcode & 0xc7) == 0x03))))
8558 {
8559 if (object_64bit)
8560 {
8561 fixP->fx_tcbit = i.rex != 0;
8562 if (i.base_reg
e968fc9b 8563 && (i.base_reg->reg_num == RegIP))
02a86693
L
8564 fixP->fx_tcbit2 = 1;
8565 }
8566 else
8567 fixP->fx_tcbit2 = 1;
8568 }
29b0f896
AM
8569 }
8570 }
8571 }
8572}
252b5132 8573
29b0f896 8574static void
64e74474 8575output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8576{
8577 char *p;
8578 unsigned int n;
252b5132 8579
29b0f896
AM
8580 for (n = 0; n < i.operands; n++)
8581 {
43234a1e
L
8582 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8583 if (i.rounding && (int) n == i.rounding->operand)
8584 continue;
8585
40fb9820 8586 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8587 {
8588 if (i.op[n].imms->X_op == O_constant)
8589 {
e205caa7 8590 int size = imm_size (n);
29b0f896 8591 offsetT val;
b4cac588 8592
29b0f896
AM
8593 val = offset_in_range (i.op[n].imms->X_add_number,
8594 size);
8595 p = frag_more (size);
8596 md_number_to_chars (p, val, size);
8597 }
8598 else
8599 {
8600 /* Not absolute_section.
8601 Need a 32-bit fixup (don't support 8bit
8602 non-absolute imms). Try to support other
8603 sizes ... */
f86103b7 8604 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8605 int size = imm_size (n);
8606 int sign;
29b0f896 8607
40fb9820 8608 if (i.types[n].bitfield.imm32s
a7d61044 8609 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8610 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8611 sign = 1;
e205caa7
L
8612 else
8613 sign = 0;
520dc8e8 8614
29b0f896 8615 p = frag_more (size);
d258b828 8616 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8617
2bbd9c25
JJ
8618 /* This is tough to explain. We end up with this one if we
8619 * have operands that look like
8620 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8621 * obtain the absolute address of the GOT, and it is strongly
8622 * preferable from a performance point of view to avoid using
8623 * a runtime relocation for this. The actual sequence of
8624 * instructions often look something like:
8625 *
8626 * call .L66
8627 * .L66:
8628 * popl %ebx
8629 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8630 *
8631 * The call and pop essentially return the absolute address
8632 * of the label .L66 and store it in %ebx. The linker itself
8633 * will ultimately change the first operand of the addl so
8634 * that %ebx points to the GOT, but to keep things simple, the
8635 * .o file must have this operand set so that it generates not
8636 * the absolute address of .L66, but the absolute address of
8637 * itself. This allows the linker itself simply treat a GOTPC
8638 * relocation as asking for a pcrel offset to the GOT to be
8639 * added in, and the addend of the relocation is stored in the
8640 * operand field for the instruction itself.
8641 *
8642 * Our job here is to fix the operand so that it would add
8643 * the correct offset so that %ebx would point to itself. The
8644 * thing that is tricky is that .-.L66 will point to the
8645 * beginning of the instruction, so we need to further modify
8646 * the operand so that it will point to itself. There are
8647 * other cases where you have something like:
8648 *
8649 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8650 *
8651 * and here no correction would be required. Internally in
8652 * the assembler we treat operands of this form as not being
8653 * pcrel since the '.' is explicitly mentioned, and I wonder
8654 * whether it would simplify matters to do it this way. Who
8655 * knows. In earlier versions of the PIC patches, the
8656 * pcrel_adjust field was used to store the correction, but
8657 * since the expression is not pcrel, I felt it would be
8658 * confusing to do it this way. */
8659
d6ab8113 8660 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8661 || reloc_type == BFD_RELOC_X86_64_32S
8662 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8663 && GOT_symbol
8664 && GOT_symbol == i.op[n].imms->X_add_symbol
8665 && (i.op[n].imms->X_op == O_symbol
8666 || (i.op[n].imms->X_op == O_add
8667 && ((symbol_get_value_expression
8668 (i.op[n].imms->X_op_symbol)->X_op)
8669 == O_subtract))))
8670 {
2bbd9c25
JJ
8671 offsetT add;
8672
8673 if (insn_start_frag == frag_now)
8674 add = (p - frag_now->fr_literal) - insn_start_off;
8675 else
8676 {
8677 fragS *fr;
8678
8679 add = insn_start_frag->fr_fix - insn_start_off;
8680 for (fr = insn_start_frag->fr_next;
8681 fr && fr != frag_now; fr = fr->fr_next)
8682 add += fr->fr_fix;
8683 add += p - frag_now->fr_literal;
8684 }
8685
4fa24527 8686 if (!object_64bit)
d6ab8113 8687 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8688 else if (size == 4)
d6ab8113 8689 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8690 else if (size == 8)
8691 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8692 i.op[n].imms->X_add_number += add;
29b0f896 8693 }
29b0f896
AM
8694 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8695 i.op[n].imms, 0, reloc_type);
8696 }
8697 }
8698 }
252b5132
RH
8699}
8700\f
d182319b
JB
8701/* x86_cons_fix_new is called via the expression parsing code when a
8702 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8703static int cons_sign = -1;
8704
8705void
e3bb37b5 8706x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8707 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8708{
d258b828 8709 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8710
8711#ifdef TE_PE
8712 if (exp->X_op == O_secrel)
8713 {
8714 exp->X_op = O_symbol;
8715 r = BFD_RELOC_32_SECREL;
8716 }
8717#endif
8718
8719 fix_new_exp (frag, off, len, exp, 0, r);
8720}
8721
357d1bd8
L
8722/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8723 purpose of the `.dc.a' internal pseudo-op. */
8724
8725int
8726x86_address_bytes (void)
8727{
8728 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8729 return 4;
8730 return stdoutput->arch_info->bits_per_address / 8;
8731}
8732
d382c579
TG
8733#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8734 || defined (LEX_AT)
d258b828 8735# define lex_got(reloc, adjust, types) NULL
718ddfc0 8736#else
f3c180ae
AM
8737/* Parse operands of the form
8738 <symbol>@GOTOFF+<nnn>
8739 and similar .plt or .got references.
8740
8741 If we find one, set up the correct relocation in RELOC and copy the
8742 input string, minus the `@GOTOFF' into a malloc'd buffer for
8743 parsing by the calling routine. Return this buffer, and if ADJUST
8744 is non-null set it to the length of the string we removed from the
8745 input line. Otherwise return NULL. */
8746static char *
91d6fa6a 8747lex_got (enum bfd_reloc_code_real *rel,
64e74474 8748 int *adjust,
d258b828 8749 i386_operand_type *types)
f3c180ae 8750{
7b81dfbb
AJ
8751 /* Some of the relocations depend on the size of what field is to
8752 be relocated. But in our callers i386_immediate and i386_displacement
8753 we don't yet know the operand size (this will be set by insn
8754 matching). Hence we record the word32 relocation here,
8755 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8756 static const struct {
8757 const char *str;
cff8d58a 8758 int len;
4fa24527 8759 const enum bfd_reloc_code_real rel[2];
40fb9820 8760 const i386_operand_type types64;
f3c180ae 8761 } gotrel[] = {
8ce3d284 8762#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8763 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8764 BFD_RELOC_SIZE32 },
8765 OPERAND_TYPE_IMM32_64 },
8ce3d284 8766#endif
cff8d58a
L
8767 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8768 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8769 OPERAND_TYPE_IMM64 },
cff8d58a
L
8770 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8771 BFD_RELOC_X86_64_PLT32 },
40fb9820 8772 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8773 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8774 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8775 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8776 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8777 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8778 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8779 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8780 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8781 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8782 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8783 BFD_RELOC_X86_64_TLSGD },
40fb9820 8784 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8785 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8786 _dummy_first_bfd_reloc_code_real },
40fb9820 8787 OPERAND_TYPE_NONE },
cff8d58a
L
8788 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8789 BFD_RELOC_X86_64_TLSLD },
40fb9820 8790 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8791 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8792 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8793 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8794 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8795 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8796 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8797 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8798 _dummy_first_bfd_reloc_code_real },
40fb9820 8799 OPERAND_TYPE_NONE },
cff8d58a
L
8800 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8801 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8802 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8803 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8804 _dummy_first_bfd_reloc_code_real },
40fb9820 8805 OPERAND_TYPE_NONE },
cff8d58a
L
8806 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8807 _dummy_first_bfd_reloc_code_real },
40fb9820 8808 OPERAND_TYPE_NONE },
cff8d58a
L
8809 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8810 BFD_RELOC_X86_64_GOT32 },
40fb9820 8811 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8812 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8813 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8814 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8815 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8816 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8817 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8818 };
8819 char *cp;
8820 unsigned int j;
8821
d382c579 8822#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8823 if (!IS_ELF)
8824 return NULL;
d382c579 8825#endif
718ddfc0 8826
f3c180ae 8827 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8828 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8829 return NULL;
8830
47465058 8831 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8832 {
cff8d58a 8833 int len = gotrel[j].len;
28f81592 8834 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8835 {
4fa24527 8836 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8837 {
28f81592
AM
8838 int first, second;
8839 char *tmpbuf, *past_reloc;
f3c180ae 8840
91d6fa6a 8841 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8842
3956db08
JB
8843 if (types)
8844 {
8845 if (flag_code != CODE_64BIT)
40fb9820
L
8846 {
8847 types->bitfield.imm32 = 1;
8848 types->bitfield.disp32 = 1;
8849 }
3956db08
JB
8850 else
8851 *types = gotrel[j].types64;
8852 }
8853
8fd4256d 8854 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8855 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8856
28f81592 8857 /* The length of the first part of our input line. */
f3c180ae 8858 first = cp - input_line_pointer;
28f81592
AM
8859
8860 /* The second part goes from after the reloc token until
67c11a9b 8861 (and including) an end_of_line char or comma. */
28f81592 8862 past_reloc = cp + 1 + len;
67c11a9b
AM
8863 cp = past_reloc;
8864 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8865 ++cp;
8866 second = cp + 1 - past_reloc;
28f81592
AM
8867
8868 /* Allocate and copy string. The trailing NUL shouldn't
8869 be necessary, but be safe. */
add39d23 8870 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8871 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8872 if (second != 0 && *past_reloc != ' ')
8873 /* Replace the relocation token with ' ', so that
8874 errors like foo@GOTOFF1 will be detected. */
8875 tmpbuf[first++] = ' ';
af89796a
L
8876 else
8877 /* Increment length by 1 if the relocation token is
8878 removed. */
8879 len++;
8880 if (adjust)
8881 *adjust = len;
0787a12d
AM
8882 memcpy (tmpbuf + first, past_reloc, second);
8883 tmpbuf[first + second] = '\0';
f3c180ae
AM
8884 return tmpbuf;
8885 }
8886
4fa24527
JB
8887 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8888 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8889 return NULL;
8890 }
8891 }
8892
8893 /* Might be a symbol version string. Don't as_bad here. */
8894 return NULL;
8895}
4e4f7c87 8896#endif
f3c180ae 8897
a988325c
NC
8898#ifdef TE_PE
8899#ifdef lex_got
8900#undef lex_got
8901#endif
8902/* Parse operands of the form
8903 <symbol>@SECREL32+<nnn>
8904
8905 If we find one, set up the correct relocation in RELOC and copy the
8906 input string, minus the `@SECREL32' into a malloc'd buffer for
8907 parsing by the calling routine. Return this buffer, and if ADJUST
8908 is non-null set it to the length of the string we removed from the
34bca508
L
8909 input line. Otherwise return NULL.
8910
a988325c
NC
8911 This function is copied from the ELF version above adjusted for PE targets. */
8912
8913static char *
8914lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8915 int *adjust ATTRIBUTE_UNUSED,
d258b828 8916 i386_operand_type *types)
a988325c
NC
8917{
8918 static const struct
8919 {
8920 const char *str;
8921 int len;
8922 const enum bfd_reloc_code_real rel[2];
8923 const i386_operand_type types64;
8924 }
8925 gotrel[] =
8926 {
8927 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8928 BFD_RELOC_32_SECREL },
8929 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8930 };
8931
8932 char *cp;
8933 unsigned j;
8934
8935 for (cp = input_line_pointer; *cp != '@'; cp++)
8936 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8937 return NULL;
8938
8939 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8940 {
8941 int len = gotrel[j].len;
8942
8943 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8944 {
8945 if (gotrel[j].rel[object_64bit] != 0)
8946 {
8947 int first, second;
8948 char *tmpbuf, *past_reloc;
8949
8950 *rel = gotrel[j].rel[object_64bit];
8951 if (adjust)
8952 *adjust = len;
8953
8954 if (types)
8955 {
8956 if (flag_code != CODE_64BIT)
8957 {
8958 types->bitfield.imm32 = 1;
8959 types->bitfield.disp32 = 1;
8960 }
8961 else
8962 *types = gotrel[j].types64;
8963 }
8964
8965 /* The length of the first part of our input line. */
8966 first = cp - input_line_pointer;
8967
8968 /* The second part goes from after the reloc token until
8969 (and including) an end_of_line char or comma. */
8970 past_reloc = cp + 1 + len;
8971 cp = past_reloc;
8972 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8973 ++cp;
8974 second = cp + 1 - past_reloc;
8975
8976 /* Allocate and copy string. The trailing NUL shouldn't
8977 be necessary, but be safe. */
add39d23 8978 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8979 memcpy (tmpbuf, input_line_pointer, first);
8980 if (second != 0 && *past_reloc != ' ')
8981 /* Replace the relocation token with ' ', so that
8982 errors like foo@SECLREL321 will be detected. */
8983 tmpbuf[first++] = ' ';
8984 memcpy (tmpbuf + first, past_reloc, second);
8985 tmpbuf[first + second] = '\0';
8986 return tmpbuf;
8987 }
8988
8989 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8990 gotrel[j].str, 1 << (5 + object_64bit));
8991 return NULL;
8992 }
8993 }
8994
8995 /* Might be a symbol version string. Don't as_bad here. */
8996 return NULL;
8997}
8998
8999#endif /* TE_PE */
9000
62ebcb5c 9001bfd_reloc_code_real_type
e3bb37b5 9002x86_cons (expressionS *exp, int size)
f3c180ae 9003{
62ebcb5c
AM
9004 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9005
ee86248c
JB
9006 intel_syntax = -intel_syntax;
9007
3c7b9c2c 9008 exp->X_md = 0;
4fa24527 9009 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9010 {
9011 /* Handle @GOTOFF and the like in an expression. */
9012 char *save;
9013 char *gotfree_input_line;
4a57f2cf 9014 int adjust = 0;
f3c180ae
AM
9015
9016 save = input_line_pointer;
d258b828 9017 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9018 if (gotfree_input_line)
9019 input_line_pointer = gotfree_input_line;
9020
9021 expression (exp);
9022
9023 if (gotfree_input_line)
9024 {
9025 /* expression () has merrily parsed up to the end of line,
9026 or a comma - in the wrong buffer. Transfer how far
9027 input_line_pointer has moved to the right buffer. */
9028 input_line_pointer = (save
9029 + (input_line_pointer - gotfree_input_line)
9030 + adjust);
9031 free (gotfree_input_line);
3992d3b7
AM
9032 if (exp->X_op == O_constant
9033 || exp->X_op == O_absent
9034 || exp->X_op == O_illegal
0398aac5 9035 || exp->X_op == O_register
3992d3b7
AM
9036 || exp->X_op == O_big)
9037 {
9038 char c = *input_line_pointer;
9039 *input_line_pointer = 0;
9040 as_bad (_("missing or invalid expression `%s'"), save);
9041 *input_line_pointer = c;
9042 }
b9519cfe
L
9043 else if ((got_reloc == BFD_RELOC_386_PLT32
9044 || got_reloc == BFD_RELOC_X86_64_PLT32)
9045 && exp->X_op != O_symbol)
9046 {
9047 char c = *input_line_pointer;
9048 *input_line_pointer = 0;
9049 as_bad (_("invalid PLT expression `%s'"), save);
9050 *input_line_pointer = c;
9051 }
f3c180ae
AM
9052 }
9053 }
9054 else
9055 expression (exp);
ee86248c
JB
9056
9057 intel_syntax = -intel_syntax;
9058
9059 if (intel_syntax)
9060 i386_intel_simplify (exp);
62ebcb5c
AM
9061
9062 return got_reloc;
f3c180ae 9063}
f3c180ae 9064
9f32dd5b
L
9065static void
9066signed_cons (int size)
6482c264 9067{
d182319b
JB
9068 if (flag_code == CODE_64BIT)
9069 cons_sign = 1;
9070 cons (size);
9071 cons_sign = -1;
6482c264
NC
9072}
9073
d182319b 9074#ifdef TE_PE
6482c264 9075static void
7016a5d5 9076pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9077{
9078 expressionS exp;
9079
9080 do
9081 {
9082 expression (&exp);
9083 if (exp.X_op == O_symbol)
9084 exp.X_op = O_secrel;
9085
9086 emit_expr (&exp, 4);
9087 }
9088 while (*input_line_pointer++ == ',');
9089
9090 input_line_pointer--;
9091 demand_empty_rest_of_line ();
9092}
6482c264
NC
9093#endif
9094
43234a1e
L
9095/* Handle Vector operations. */
9096
9097static char *
9098check_VecOperations (char *op_string, char *op_end)
9099{
9100 const reg_entry *mask;
9101 const char *saved;
9102 char *end_op;
9103
9104 while (*op_string
9105 && (op_end == NULL || op_string < op_end))
9106 {
9107 saved = op_string;
9108 if (*op_string == '{')
9109 {
9110 op_string++;
9111
9112 /* Check broadcasts. */
9113 if (strncmp (op_string, "1to", 3) == 0)
9114 {
9115 int bcst_type;
9116
9117 if (i.broadcast)
9118 goto duplicated_vec_op;
9119
9120 op_string += 3;
9121 if (*op_string == '8')
8e6e0792 9122 bcst_type = 8;
b28d1bda 9123 else if (*op_string == '4')
8e6e0792 9124 bcst_type = 4;
b28d1bda 9125 else if (*op_string == '2')
8e6e0792 9126 bcst_type = 2;
43234a1e
L
9127 else if (*op_string == '1'
9128 && *(op_string+1) == '6')
9129 {
8e6e0792 9130 bcst_type = 16;
43234a1e
L
9131 op_string++;
9132 }
9133 else
9134 {
9135 as_bad (_("Unsupported broadcast: `%s'"), saved);
9136 return NULL;
9137 }
9138 op_string++;
9139
9140 broadcast_op.type = bcst_type;
9141 broadcast_op.operand = this_operand;
1f75763a 9142 broadcast_op.bytes = 0;
43234a1e
L
9143 i.broadcast = &broadcast_op;
9144 }
9145 /* Check masking operation. */
9146 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9147 {
9148 /* k0 can't be used for write mask. */
6d2cd6b2 9149 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9150 {
6d2cd6b2
JB
9151 as_bad (_("`%s%s' can't be used for write mask"),
9152 register_prefix, mask->reg_name);
43234a1e
L
9153 return NULL;
9154 }
9155
9156 if (!i.mask)
9157 {
9158 mask_op.mask = mask;
9159 mask_op.zeroing = 0;
9160 mask_op.operand = this_operand;
9161 i.mask = &mask_op;
9162 }
9163 else
9164 {
9165 if (i.mask->mask)
9166 goto duplicated_vec_op;
9167
9168 i.mask->mask = mask;
9169
9170 /* Only "{z}" is allowed here. No need to check
9171 zeroing mask explicitly. */
9172 if (i.mask->operand != this_operand)
9173 {
9174 as_bad (_("invalid write mask `%s'"), saved);
9175 return NULL;
9176 }
9177 }
9178
9179 op_string = end_op;
9180 }
9181 /* Check zeroing-flag for masking operation. */
9182 else if (*op_string == 'z')
9183 {
9184 if (!i.mask)
9185 {
9186 mask_op.mask = NULL;
9187 mask_op.zeroing = 1;
9188 mask_op.operand = this_operand;
9189 i.mask = &mask_op;
9190 }
9191 else
9192 {
9193 if (i.mask->zeroing)
9194 {
9195 duplicated_vec_op:
9196 as_bad (_("duplicated `%s'"), saved);
9197 return NULL;
9198 }
9199
9200 i.mask->zeroing = 1;
9201
9202 /* Only "{%k}" is allowed here. No need to check mask
9203 register explicitly. */
9204 if (i.mask->operand != this_operand)
9205 {
9206 as_bad (_("invalid zeroing-masking `%s'"),
9207 saved);
9208 return NULL;
9209 }
9210 }
9211
9212 op_string++;
9213 }
9214 else
9215 goto unknown_vec_op;
9216
9217 if (*op_string != '}')
9218 {
9219 as_bad (_("missing `}' in `%s'"), saved);
9220 return NULL;
9221 }
9222 op_string++;
0ba3a731
L
9223
9224 /* Strip whitespace since the addition of pseudo prefixes
9225 changed how the scrubber treats '{'. */
9226 if (is_space_char (*op_string))
9227 ++op_string;
9228
43234a1e
L
9229 continue;
9230 }
9231 unknown_vec_op:
9232 /* We don't know this one. */
9233 as_bad (_("unknown vector operation: `%s'"), saved);
9234 return NULL;
9235 }
9236
6d2cd6b2
JB
9237 if (i.mask && i.mask->zeroing && !i.mask->mask)
9238 {
9239 as_bad (_("zeroing-masking only allowed with write mask"));
9240 return NULL;
9241 }
9242
43234a1e
L
9243 return op_string;
9244}
9245
252b5132 9246static int
70e41ade 9247i386_immediate (char *imm_start)
252b5132
RH
9248{
9249 char *save_input_line_pointer;
f3c180ae 9250 char *gotfree_input_line;
252b5132 9251 segT exp_seg = 0;
47926f60 9252 expressionS *exp;
40fb9820
L
9253 i386_operand_type types;
9254
0dfbf9d7 9255 operand_type_set (&types, ~0);
252b5132
RH
9256
9257 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9258 {
31b2323c
L
9259 as_bad (_("at most %d immediate operands are allowed"),
9260 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9261 return 0;
9262 }
9263
9264 exp = &im_expressions[i.imm_operands++];
520dc8e8 9265 i.op[this_operand].imms = exp;
252b5132
RH
9266
9267 if (is_space_char (*imm_start))
9268 ++imm_start;
9269
9270 save_input_line_pointer = input_line_pointer;
9271 input_line_pointer = imm_start;
9272
d258b828 9273 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9274 if (gotfree_input_line)
9275 input_line_pointer = gotfree_input_line;
252b5132
RH
9276
9277 exp_seg = expression (exp);
9278
83183c0c 9279 SKIP_WHITESPACE ();
43234a1e
L
9280
9281 /* Handle vector operations. */
9282 if (*input_line_pointer == '{')
9283 {
9284 input_line_pointer = check_VecOperations (input_line_pointer,
9285 NULL);
9286 if (input_line_pointer == NULL)
9287 return 0;
9288 }
9289
252b5132 9290 if (*input_line_pointer)
f3c180ae 9291 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9292
9293 input_line_pointer = save_input_line_pointer;
f3c180ae 9294 if (gotfree_input_line)
ee86248c
JB
9295 {
9296 free (gotfree_input_line);
9297
9298 if (exp->X_op == O_constant || exp->X_op == O_register)
9299 exp->X_op = O_illegal;
9300 }
9301
9302 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9303}
252b5132 9304
ee86248c
JB
9305static int
9306i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9307 i386_operand_type types, const char *imm_start)
9308{
9309 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9310 {
313c53d1
L
9311 if (imm_start)
9312 as_bad (_("missing or invalid immediate expression `%s'"),
9313 imm_start);
3992d3b7 9314 return 0;
252b5132 9315 }
3e73aa7c 9316 else if (exp->X_op == O_constant)
252b5132 9317 {
47926f60 9318 /* Size it properly later. */
40fb9820 9319 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9320 /* If not 64bit, sign extend val. */
9321 if (flag_code != CODE_64BIT
4eed87de
AM
9322 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9323 exp->X_add_number
9324 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9325 }
4c63da97 9326#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9327 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9328 && exp_seg != absolute_section
47926f60 9329 && exp_seg != text_section
24eab124
AM
9330 && exp_seg != data_section
9331 && exp_seg != bss_section
9332 && exp_seg != undefined_section
f86103b7 9333 && !bfd_is_com_section (exp_seg))
252b5132 9334 {
d0b47220 9335 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9336 return 0;
9337 }
9338#endif
a841bdf5 9339 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9340 {
313c53d1
L
9341 if (imm_start)
9342 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9343 return 0;
9344 }
252b5132
RH
9345 else
9346 {
9347 /* This is an address. The size of the address will be
24eab124 9348 determined later, depending on destination register,
3e73aa7c 9349 suffix, or the default for the section. */
40fb9820
L
9350 i.types[this_operand].bitfield.imm8 = 1;
9351 i.types[this_operand].bitfield.imm16 = 1;
9352 i.types[this_operand].bitfield.imm32 = 1;
9353 i.types[this_operand].bitfield.imm32s = 1;
9354 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9355 i.types[this_operand] = operand_type_and (i.types[this_operand],
9356 types);
252b5132
RH
9357 }
9358
9359 return 1;
9360}
9361
551c1ca1 9362static char *
e3bb37b5 9363i386_scale (char *scale)
252b5132 9364{
551c1ca1
AM
9365 offsetT val;
9366 char *save = input_line_pointer;
252b5132 9367
551c1ca1
AM
9368 input_line_pointer = scale;
9369 val = get_absolute_expression ();
9370
9371 switch (val)
252b5132 9372 {
551c1ca1 9373 case 1:
252b5132
RH
9374 i.log2_scale_factor = 0;
9375 break;
551c1ca1 9376 case 2:
252b5132
RH
9377 i.log2_scale_factor = 1;
9378 break;
551c1ca1 9379 case 4:
252b5132
RH
9380 i.log2_scale_factor = 2;
9381 break;
551c1ca1 9382 case 8:
252b5132
RH
9383 i.log2_scale_factor = 3;
9384 break;
9385 default:
a724f0f4
JB
9386 {
9387 char sep = *input_line_pointer;
9388
9389 *input_line_pointer = '\0';
9390 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9391 scale);
9392 *input_line_pointer = sep;
9393 input_line_pointer = save;
9394 return NULL;
9395 }
252b5132 9396 }
29b0f896 9397 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9398 {
9399 as_warn (_("scale factor of %d without an index register"),
24eab124 9400 1 << i.log2_scale_factor);
252b5132 9401 i.log2_scale_factor = 0;
252b5132 9402 }
551c1ca1
AM
9403 scale = input_line_pointer;
9404 input_line_pointer = save;
9405 return scale;
252b5132
RH
9406}
9407
252b5132 9408static int
e3bb37b5 9409i386_displacement (char *disp_start, char *disp_end)
252b5132 9410{
29b0f896 9411 expressionS *exp;
252b5132
RH
9412 segT exp_seg = 0;
9413 char *save_input_line_pointer;
f3c180ae 9414 char *gotfree_input_line;
40fb9820
L
9415 int override;
9416 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9417 int ret;
252b5132 9418
31b2323c
L
9419 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9420 {
9421 as_bad (_("at most %d displacement operands are allowed"),
9422 MAX_MEMORY_OPERANDS);
9423 return 0;
9424 }
9425
0dfbf9d7 9426 operand_type_set (&bigdisp, 0);
40fb9820
L
9427 if ((i.types[this_operand].bitfield.jumpabsolute)
9428 || (!current_templates->start->opcode_modifier.jump
9429 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9430 {
40fb9820 9431 bigdisp.bitfield.disp32 = 1;
e05278af 9432 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9433 if (flag_code == CODE_64BIT)
9434 {
9435 if (!override)
9436 {
9437 bigdisp.bitfield.disp32s = 1;
9438 bigdisp.bitfield.disp64 = 1;
9439 }
9440 }
9441 else if ((flag_code == CODE_16BIT) ^ override)
9442 {
9443 bigdisp.bitfield.disp32 = 0;
9444 bigdisp.bitfield.disp16 = 1;
9445 }
e05278af
JB
9446 }
9447 else
9448 {
9449 /* For PC-relative branches, the width of the displacement
9450 is dependent upon data size, not address size. */
e05278af 9451 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9452 if (flag_code == CODE_64BIT)
9453 {
9454 if (override || i.suffix == WORD_MNEM_SUFFIX)
9455 bigdisp.bitfield.disp16 = 1;
9456 else
9457 {
9458 bigdisp.bitfield.disp32 = 1;
9459 bigdisp.bitfield.disp32s = 1;
9460 }
9461 }
9462 else
e05278af
JB
9463 {
9464 if (!override)
9465 override = (i.suffix == (flag_code != CODE_16BIT
9466 ? WORD_MNEM_SUFFIX
9467 : LONG_MNEM_SUFFIX));
40fb9820
L
9468 bigdisp.bitfield.disp32 = 1;
9469 if ((flag_code == CODE_16BIT) ^ override)
9470 {
9471 bigdisp.bitfield.disp32 = 0;
9472 bigdisp.bitfield.disp16 = 1;
9473 }
e05278af 9474 }
e05278af 9475 }
c6fb90c8
L
9476 i.types[this_operand] = operand_type_or (i.types[this_operand],
9477 bigdisp);
252b5132
RH
9478
9479 exp = &disp_expressions[i.disp_operands];
520dc8e8 9480 i.op[this_operand].disps = exp;
252b5132
RH
9481 i.disp_operands++;
9482 save_input_line_pointer = input_line_pointer;
9483 input_line_pointer = disp_start;
9484 END_STRING_AND_SAVE (disp_end);
9485
9486#ifndef GCC_ASM_O_HACK
9487#define GCC_ASM_O_HACK 0
9488#endif
9489#if GCC_ASM_O_HACK
9490 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9491 if (i.types[this_operand].bitfield.baseIndex
24eab124 9492 && displacement_string_end[-1] == '+')
252b5132
RH
9493 {
9494 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9495 constraint within gcc asm statements.
9496 For instance:
9497
9498 #define _set_tssldt_desc(n,addr,limit,type) \
9499 __asm__ __volatile__ ( \
9500 "movw %w2,%0\n\t" \
9501 "movw %w1,2+%0\n\t" \
9502 "rorl $16,%1\n\t" \
9503 "movb %b1,4+%0\n\t" \
9504 "movb %4,5+%0\n\t" \
9505 "movb $0,6+%0\n\t" \
9506 "movb %h1,7+%0\n\t" \
9507 "rorl $16,%1" \
9508 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9509
9510 This works great except that the output assembler ends
9511 up looking a bit weird if it turns out that there is
9512 no offset. You end up producing code that looks like:
9513
9514 #APP
9515 movw $235,(%eax)
9516 movw %dx,2+(%eax)
9517 rorl $16,%edx
9518 movb %dl,4+(%eax)
9519 movb $137,5+(%eax)
9520 movb $0,6+(%eax)
9521 movb %dh,7+(%eax)
9522 rorl $16,%edx
9523 #NO_APP
9524
47926f60 9525 So here we provide the missing zero. */
24eab124
AM
9526
9527 *displacement_string_end = '0';
252b5132
RH
9528 }
9529#endif
d258b828 9530 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9531 if (gotfree_input_line)
9532 input_line_pointer = gotfree_input_line;
252b5132 9533
24eab124 9534 exp_seg = expression (exp);
252b5132 9535
636c26b0
AM
9536 SKIP_WHITESPACE ();
9537 if (*input_line_pointer)
9538 as_bad (_("junk `%s' after expression"), input_line_pointer);
9539#if GCC_ASM_O_HACK
9540 RESTORE_END_STRING (disp_end + 1);
9541#endif
636c26b0 9542 input_line_pointer = save_input_line_pointer;
636c26b0 9543 if (gotfree_input_line)
ee86248c
JB
9544 {
9545 free (gotfree_input_line);
9546
9547 if (exp->X_op == O_constant || exp->X_op == O_register)
9548 exp->X_op = O_illegal;
9549 }
9550
9551 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9552
9553 RESTORE_END_STRING (disp_end);
9554
9555 return ret;
9556}
9557
9558static int
9559i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9560 i386_operand_type types, const char *disp_start)
9561{
9562 i386_operand_type bigdisp;
9563 int ret = 1;
636c26b0 9564
24eab124
AM
9565 /* We do this to make sure that the section symbol is in
9566 the symbol table. We will ultimately change the relocation
47926f60 9567 to be relative to the beginning of the section. */
1ae12ab7 9568 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9569 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9570 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9571 {
636c26b0 9572 if (exp->X_op != O_symbol)
3992d3b7 9573 goto inv_disp;
636c26b0 9574
e5cb08ac 9575 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9576 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9577 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9578 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9579 exp->X_op = O_subtract;
9580 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9581 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9582 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9583 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9584 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9585 else
29b0f896 9586 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9587 }
252b5132 9588
3992d3b7
AM
9589 else if (exp->X_op == O_absent
9590 || exp->X_op == O_illegal
ee86248c 9591 || exp->X_op == O_big)
2daf4fd8 9592 {
3992d3b7
AM
9593 inv_disp:
9594 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9595 disp_start);
3992d3b7 9596 ret = 0;
2daf4fd8
AM
9597 }
9598
0e1147d9
L
9599 else if (flag_code == CODE_64BIT
9600 && !i.prefix[ADDR_PREFIX]
9601 && exp->X_op == O_constant)
9602 {
9603 /* Since displacement is signed extended to 64bit, don't allow
9604 disp32 and turn off disp32s if they are out of range. */
9605 i.types[this_operand].bitfield.disp32 = 0;
9606 if (!fits_in_signed_long (exp->X_add_number))
9607 {
9608 i.types[this_operand].bitfield.disp32s = 0;
9609 if (i.types[this_operand].bitfield.baseindex)
9610 {
9611 as_bad (_("0x%lx out range of signed 32bit displacement"),
9612 (long) exp->X_add_number);
9613 ret = 0;
9614 }
9615 }
9616 }
9617
4c63da97 9618#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9619 else if (exp->X_op != O_constant
9620 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9621 && exp_seg != absolute_section
9622 && exp_seg != text_section
9623 && exp_seg != data_section
9624 && exp_seg != bss_section
9625 && exp_seg != undefined_section
9626 && !bfd_is_com_section (exp_seg))
24eab124 9627 {
d0b47220 9628 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9629 ret = 0;
24eab124 9630 }
252b5132 9631#endif
3956db08 9632
40fb9820
L
9633 /* Check if this is a displacement only operand. */
9634 bigdisp = i.types[this_operand];
9635 bigdisp.bitfield.disp8 = 0;
9636 bigdisp.bitfield.disp16 = 0;
9637 bigdisp.bitfield.disp32 = 0;
9638 bigdisp.bitfield.disp32s = 0;
9639 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9640 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9641 i.types[this_operand] = operand_type_and (i.types[this_operand],
9642 types);
3956db08 9643
3992d3b7 9644 return ret;
252b5132
RH
9645}
9646
2abc2bec
JB
9647/* Return the active addressing mode, taking address override and
9648 registers forming the address into consideration. Update the
9649 address override prefix if necessary. */
47926f60 9650
2abc2bec
JB
9651static enum flag_code
9652i386_addressing_mode (void)
252b5132 9653{
be05d201
L
9654 enum flag_code addr_mode;
9655
9656 if (i.prefix[ADDR_PREFIX])
9657 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9658 else
9659 {
9660 addr_mode = flag_code;
9661
24eab124 9662#if INFER_ADDR_PREFIX
be05d201
L
9663 if (i.mem_operands == 0)
9664 {
9665 /* Infer address prefix from the first memory operand. */
9666 const reg_entry *addr_reg = i.base_reg;
9667
9668 if (addr_reg == NULL)
9669 addr_reg = i.index_reg;
eecb386c 9670
be05d201
L
9671 if (addr_reg)
9672 {
e968fc9b 9673 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9674 addr_mode = CODE_32BIT;
9675 else if (flag_code != CODE_64BIT
dc821c5f 9676 && addr_reg->reg_type.bitfield.word)
be05d201
L
9677 addr_mode = CODE_16BIT;
9678
9679 if (addr_mode != flag_code)
9680 {
9681 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9682 i.prefixes += 1;
9683 /* Change the size of any displacement too. At most one
9684 of Disp16 or Disp32 is set.
9685 FIXME. There doesn't seem to be any real need for
9686 separate Disp16 and Disp32 flags. The same goes for
9687 Imm16 and Imm32. Removing them would probably clean
9688 up the code quite a lot. */
9689 if (flag_code != CODE_64BIT
9690 && (i.types[this_operand].bitfield.disp16
9691 || i.types[this_operand].bitfield.disp32))
9692 i.types[this_operand]
9693 = operand_type_xor (i.types[this_operand], disp16_32);
9694 }
9695 }
9696 }
24eab124 9697#endif
be05d201
L
9698 }
9699
2abc2bec
JB
9700 return addr_mode;
9701}
9702
9703/* Make sure the memory operand we've been dealt is valid.
9704 Return 1 on success, 0 on a failure. */
9705
9706static int
9707i386_index_check (const char *operand_string)
9708{
9709 const char *kind = "base/index";
9710 enum flag_code addr_mode = i386_addressing_mode ();
9711
fc0763e6
JB
9712 if (current_templates->start->opcode_modifier.isstring
9713 && !current_templates->start->opcode_modifier.immext
9714 && (current_templates->end[-1].opcode_modifier.isstring
9715 || i.mem_operands))
9716 {
9717 /* Memory operands of string insns are special in that they only allow
9718 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9719 const reg_entry *expected_reg;
9720 static const char *di_si[][2] =
9721 {
9722 { "esi", "edi" },
9723 { "si", "di" },
9724 { "rsi", "rdi" }
9725 };
9726 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9727
9728 kind = "string address";
9729
8325cc63 9730 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9731 {
9732 i386_operand_type type = current_templates->end[-1].operand_types[0];
9733
9734 if (!type.bitfield.baseindex
9735 || ((!i.mem_operands != !intel_syntax)
9736 && current_templates->end[-1].operand_types[1]
9737 .bitfield.baseindex))
9738 type = current_templates->end[-1].operand_types[1];
be05d201
L
9739 expected_reg = hash_find (reg_hash,
9740 di_si[addr_mode][type.bitfield.esseg]);
9741
fc0763e6
JB
9742 }
9743 else
be05d201 9744 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9745
be05d201
L
9746 if (i.base_reg != expected_reg
9747 || i.index_reg
fc0763e6 9748 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9749 {
be05d201
L
9750 /* The second memory operand must have the same size as
9751 the first one. */
9752 if (i.mem_operands
9753 && i.base_reg
9754 && !((addr_mode == CODE_64BIT
dc821c5f 9755 && i.base_reg->reg_type.bitfield.qword)
be05d201 9756 || (addr_mode == CODE_32BIT
dc821c5f
JB
9757 ? i.base_reg->reg_type.bitfield.dword
9758 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9759 goto bad_address;
9760
fc0763e6
JB
9761 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9762 operand_string,
9763 intel_syntax ? '[' : '(',
9764 register_prefix,
be05d201 9765 expected_reg->reg_name,
fc0763e6 9766 intel_syntax ? ']' : ')');
be05d201 9767 return 1;
fc0763e6 9768 }
be05d201
L
9769 else
9770 return 1;
9771
9772bad_address:
9773 as_bad (_("`%s' is not a valid %s expression"),
9774 operand_string, kind);
9775 return 0;
3e73aa7c
JH
9776 }
9777 else
9778 {
be05d201
L
9779 if (addr_mode != CODE_16BIT)
9780 {
9781 /* 32-bit/64-bit checks. */
9782 if ((i.base_reg
e968fc9b
JB
9783 && ((addr_mode == CODE_64BIT
9784 ? !i.base_reg->reg_type.bitfield.qword
9785 : !i.base_reg->reg_type.bitfield.dword)
9786 || (i.index_reg && i.base_reg->reg_num == RegIP)
9787 || i.base_reg->reg_num == RegIZ))
be05d201 9788 || (i.index_reg
1b54b8d7
JB
9789 && !i.index_reg->reg_type.bitfield.xmmword
9790 && !i.index_reg->reg_type.bitfield.ymmword
9791 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9792 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9793 ? !i.index_reg->reg_type.bitfield.qword
9794 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9795 || !i.index_reg->reg_type.bitfield.baseindex)))
9796 goto bad_address;
8178be5b
JB
9797
9798 /* bndmk, bndldx, and bndstx have special restrictions. */
9799 if (current_templates->start->base_opcode == 0xf30f1b
9800 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9801 {
9802 /* They cannot use RIP-relative addressing. */
e968fc9b 9803 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9804 {
9805 as_bad (_("`%s' cannot be used here"), operand_string);
9806 return 0;
9807 }
9808
9809 /* bndldx and bndstx ignore their scale factor. */
9810 if (current_templates->start->base_opcode != 0xf30f1b
9811 && i.log2_scale_factor)
9812 as_warn (_("register scaling is being ignored here"));
9813 }
be05d201
L
9814 }
9815 else
3e73aa7c 9816 {
be05d201 9817 /* 16-bit checks. */
3e73aa7c 9818 if ((i.base_reg
dc821c5f 9819 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9820 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9821 || (i.index_reg
dc821c5f 9822 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9823 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9824 || !(i.base_reg
9825 && i.base_reg->reg_num < 6
9826 && i.index_reg->reg_num >= 6
9827 && i.log2_scale_factor == 0))))
be05d201 9828 goto bad_address;
3e73aa7c
JH
9829 }
9830 }
be05d201 9831 return 1;
24eab124 9832}
252b5132 9833
43234a1e
L
9834/* Handle vector immediates. */
9835
9836static int
9837RC_SAE_immediate (const char *imm_start)
9838{
9839 unsigned int match_found, j;
9840 const char *pstr = imm_start;
9841 expressionS *exp;
9842
9843 if (*pstr != '{')
9844 return 0;
9845
9846 pstr++;
9847 match_found = 0;
9848 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9849 {
9850 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9851 {
9852 if (!i.rounding)
9853 {
9854 rc_op.type = RC_NamesTable[j].type;
9855 rc_op.operand = this_operand;
9856 i.rounding = &rc_op;
9857 }
9858 else
9859 {
9860 as_bad (_("duplicated `%s'"), imm_start);
9861 return 0;
9862 }
9863 pstr += RC_NamesTable[j].len;
9864 match_found = 1;
9865 break;
9866 }
9867 }
9868 if (!match_found)
9869 return 0;
9870
9871 if (*pstr++ != '}')
9872 {
9873 as_bad (_("Missing '}': '%s'"), imm_start);
9874 return 0;
9875 }
9876 /* RC/SAE immediate string should contain nothing more. */;
9877 if (*pstr != 0)
9878 {
9879 as_bad (_("Junk after '}': '%s'"), imm_start);
9880 return 0;
9881 }
9882
9883 exp = &im_expressions[i.imm_operands++];
9884 i.op[this_operand].imms = exp;
9885
9886 exp->X_op = O_constant;
9887 exp->X_add_number = 0;
9888 exp->X_add_symbol = (symbolS *) 0;
9889 exp->X_op_symbol = (symbolS *) 0;
9890
9891 i.types[this_operand].bitfield.imm8 = 1;
9892 return 1;
9893}
9894
8325cc63
JB
9895/* Only string instructions can have a second memory operand, so
9896 reduce current_templates to just those if it contains any. */
9897static int
9898maybe_adjust_templates (void)
9899{
9900 const insn_template *t;
9901
9902 gas_assert (i.mem_operands == 1);
9903
9904 for (t = current_templates->start; t < current_templates->end; ++t)
9905 if (t->opcode_modifier.isstring)
9906 break;
9907
9908 if (t < current_templates->end)
9909 {
9910 static templates aux_templates;
9911 bfd_boolean recheck;
9912
9913 aux_templates.start = t;
9914 for (; t < current_templates->end; ++t)
9915 if (!t->opcode_modifier.isstring)
9916 break;
9917 aux_templates.end = t;
9918
9919 /* Determine whether to re-check the first memory operand. */
9920 recheck = (aux_templates.start != current_templates->start
9921 || t != current_templates->end);
9922
9923 current_templates = &aux_templates;
9924
9925 if (recheck)
9926 {
9927 i.mem_operands = 0;
9928 if (i.memop1_string != NULL
9929 && i386_index_check (i.memop1_string) == 0)
9930 return 0;
9931 i.mem_operands = 1;
9932 }
9933 }
9934
9935 return 1;
9936}
9937
fc0763e6 9938/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9939 on error. */
252b5132 9940
252b5132 9941static int
a7619375 9942i386_att_operand (char *operand_string)
252b5132 9943{
af6bdddf
AM
9944 const reg_entry *r;
9945 char *end_op;
24eab124 9946 char *op_string = operand_string;
252b5132 9947
24eab124 9948 if (is_space_char (*op_string))
252b5132
RH
9949 ++op_string;
9950
24eab124 9951 /* We check for an absolute prefix (differentiating,
47926f60 9952 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9953 if (*op_string == ABSOLUTE_PREFIX)
9954 {
9955 ++op_string;
9956 if (is_space_char (*op_string))
9957 ++op_string;
40fb9820 9958 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9959 }
252b5132 9960
47926f60 9961 /* Check if operand is a register. */
4d1bb795 9962 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9963 {
40fb9820
L
9964 i386_operand_type temp;
9965
24eab124
AM
9966 /* Check for a segment override by searching for ':' after a
9967 segment register. */
9968 op_string = end_op;
9969 if (is_space_char (*op_string))
9970 ++op_string;
40fb9820
L
9971 if (*op_string == ':'
9972 && (r->reg_type.bitfield.sreg2
9973 || r->reg_type.bitfield.sreg3))
24eab124
AM
9974 {
9975 switch (r->reg_num)
9976 {
9977 case 0:
9978 i.seg[i.mem_operands] = &es;
9979 break;
9980 case 1:
9981 i.seg[i.mem_operands] = &cs;
9982 break;
9983 case 2:
9984 i.seg[i.mem_operands] = &ss;
9985 break;
9986 case 3:
9987 i.seg[i.mem_operands] = &ds;
9988 break;
9989 case 4:
9990 i.seg[i.mem_operands] = &fs;
9991 break;
9992 case 5:
9993 i.seg[i.mem_operands] = &gs;
9994 break;
9995 }
252b5132 9996
24eab124 9997 /* Skip the ':' and whitespace. */
252b5132
RH
9998 ++op_string;
9999 if (is_space_char (*op_string))
24eab124 10000 ++op_string;
252b5132 10001
24eab124
AM
10002 if (!is_digit_char (*op_string)
10003 && !is_identifier_char (*op_string)
10004 && *op_string != '('
10005 && *op_string != ABSOLUTE_PREFIX)
10006 {
10007 as_bad (_("bad memory operand `%s'"), op_string);
10008 return 0;
10009 }
47926f60 10010 /* Handle case of %es:*foo. */
24eab124
AM
10011 if (*op_string == ABSOLUTE_PREFIX)
10012 {
10013 ++op_string;
10014 if (is_space_char (*op_string))
10015 ++op_string;
40fb9820 10016 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
10017 }
10018 goto do_memory_reference;
10019 }
43234a1e
L
10020
10021 /* Handle vector operations. */
10022 if (*op_string == '{')
10023 {
10024 op_string = check_VecOperations (op_string, NULL);
10025 if (op_string == NULL)
10026 return 0;
10027 }
10028
24eab124
AM
10029 if (*op_string)
10030 {
d0b47220 10031 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10032 return 0;
10033 }
40fb9820
L
10034 temp = r->reg_type;
10035 temp.bitfield.baseindex = 0;
c6fb90c8
L
10036 i.types[this_operand] = operand_type_or (i.types[this_operand],
10037 temp);
7d5e4556 10038 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10039 i.op[this_operand].regs = r;
24eab124
AM
10040 i.reg_operands++;
10041 }
af6bdddf
AM
10042 else if (*op_string == REGISTER_PREFIX)
10043 {
10044 as_bad (_("bad register name `%s'"), op_string);
10045 return 0;
10046 }
24eab124 10047 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10048 {
24eab124 10049 ++op_string;
40fb9820 10050 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10051 {
d0b47220 10052 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10053 return 0;
10054 }
10055 if (!i386_immediate (op_string))
10056 return 0;
10057 }
43234a1e
L
10058 else if (RC_SAE_immediate (operand_string))
10059 {
10060 /* If it is a RC or SAE immediate, do nothing. */
10061 ;
10062 }
24eab124
AM
10063 else if (is_digit_char (*op_string)
10064 || is_identifier_char (*op_string)
d02603dc 10065 || *op_string == '"'
e5cb08ac 10066 || *op_string == '(')
24eab124 10067 {
47926f60 10068 /* This is a memory reference of some sort. */
af6bdddf 10069 char *base_string;
252b5132 10070
47926f60 10071 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10072 char *displacement_string_start;
10073 char *displacement_string_end;
43234a1e 10074 char *vop_start;
252b5132 10075
24eab124 10076 do_memory_reference:
8325cc63
JB
10077 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10078 return 0;
24eab124 10079 if ((i.mem_operands == 1
40fb9820 10080 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10081 || i.mem_operands == 2)
10082 {
10083 as_bad (_("too many memory references for `%s'"),
10084 current_templates->start->name);
10085 return 0;
10086 }
252b5132 10087
24eab124
AM
10088 /* Check for base index form. We detect the base index form by
10089 looking for an ')' at the end of the operand, searching
10090 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10091 after the '('. */
af6bdddf 10092 base_string = op_string + strlen (op_string);
c3332e24 10093
43234a1e
L
10094 /* Handle vector operations. */
10095 vop_start = strchr (op_string, '{');
10096 if (vop_start && vop_start < base_string)
10097 {
10098 if (check_VecOperations (vop_start, base_string) == NULL)
10099 return 0;
10100 base_string = vop_start;
10101 }
10102
af6bdddf
AM
10103 --base_string;
10104 if (is_space_char (*base_string))
10105 --base_string;
252b5132 10106
47926f60 10107 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10108 displacement_string_start = op_string;
10109 displacement_string_end = base_string + 1;
252b5132 10110
24eab124
AM
10111 if (*base_string == ')')
10112 {
af6bdddf 10113 char *temp_string;
24eab124
AM
10114 unsigned int parens_balanced = 1;
10115 /* We've already checked that the number of left & right ()'s are
47926f60 10116 equal, so this loop will not be infinite. */
24eab124
AM
10117 do
10118 {
10119 base_string--;
10120 if (*base_string == ')')
10121 parens_balanced++;
10122 if (*base_string == '(')
10123 parens_balanced--;
10124 }
10125 while (parens_balanced);
c3332e24 10126
af6bdddf 10127 temp_string = base_string;
c3332e24 10128
24eab124 10129 /* Skip past '(' and whitespace. */
252b5132
RH
10130 ++base_string;
10131 if (is_space_char (*base_string))
24eab124 10132 ++base_string;
252b5132 10133
af6bdddf 10134 if (*base_string == ','
4eed87de
AM
10135 || ((i.base_reg = parse_register (base_string, &end_op))
10136 != NULL))
252b5132 10137 {
af6bdddf 10138 displacement_string_end = temp_string;
252b5132 10139
40fb9820 10140 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10141
af6bdddf 10142 if (i.base_reg)
24eab124 10143 {
24eab124
AM
10144 base_string = end_op;
10145 if (is_space_char (*base_string))
10146 ++base_string;
af6bdddf
AM
10147 }
10148
10149 /* There may be an index reg or scale factor here. */
10150 if (*base_string == ',')
10151 {
10152 ++base_string;
10153 if (is_space_char (*base_string))
10154 ++base_string;
10155
4eed87de
AM
10156 if ((i.index_reg = parse_register (base_string, &end_op))
10157 != NULL)
24eab124 10158 {
af6bdddf 10159 base_string = end_op;
24eab124
AM
10160 if (is_space_char (*base_string))
10161 ++base_string;
af6bdddf
AM
10162 if (*base_string == ',')
10163 {
10164 ++base_string;
10165 if (is_space_char (*base_string))
10166 ++base_string;
10167 }
e5cb08ac 10168 else if (*base_string != ')')
af6bdddf 10169 {
4eed87de
AM
10170 as_bad (_("expecting `,' or `)' "
10171 "after index register in `%s'"),
af6bdddf
AM
10172 operand_string);
10173 return 0;
10174 }
24eab124 10175 }
af6bdddf 10176 else if (*base_string == REGISTER_PREFIX)
24eab124 10177 {
f76bf5e0
L
10178 end_op = strchr (base_string, ',');
10179 if (end_op)
10180 *end_op = '\0';
af6bdddf 10181 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10182 return 0;
10183 }
252b5132 10184
47926f60 10185 /* Check for scale factor. */
551c1ca1 10186 if (*base_string != ')')
af6bdddf 10187 {
551c1ca1
AM
10188 char *end_scale = i386_scale (base_string);
10189
10190 if (!end_scale)
af6bdddf 10191 return 0;
24eab124 10192
551c1ca1 10193 base_string = end_scale;
af6bdddf
AM
10194 if (is_space_char (*base_string))
10195 ++base_string;
10196 if (*base_string != ')')
10197 {
4eed87de
AM
10198 as_bad (_("expecting `)' "
10199 "after scale factor in `%s'"),
af6bdddf
AM
10200 operand_string);
10201 return 0;
10202 }
10203 }
10204 else if (!i.index_reg)
24eab124 10205 {
4eed87de
AM
10206 as_bad (_("expecting index register or scale factor "
10207 "after `,'; got '%c'"),
af6bdddf 10208 *base_string);
24eab124
AM
10209 return 0;
10210 }
10211 }
af6bdddf 10212 else if (*base_string != ')')
24eab124 10213 {
4eed87de
AM
10214 as_bad (_("expecting `,' or `)' "
10215 "after base register in `%s'"),
af6bdddf 10216 operand_string);
24eab124
AM
10217 return 0;
10218 }
c3332e24 10219 }
af6bdddf 10220 else if (*base_string == REGISTER_PREFIX)
c3332e24 10221 {
f76bf5e0
L
10222 end_op = strchr (base_string, ',');
10223 if (end_op)
10224 *end_op = '\0';
af6bdddf 10225 as_bad (_("bad register name `%s'"), base_string);
24eab124 10226 return 0;
c3332e24 10227 }
24eab124
AM
10228 }
10229
10230 /* If there's an expression beginning the operand, parse it,
10231 assuming displacement_string_start and
10232 displacement_string_end are meaningful. */
10233 if (displacement_string_start != displacement_string_end)
10234 {
10235 if (!i386_displacement (displacement_string_start,
10236 displacement_string_end))
10237 return 0;
10238 }
10239
10240 /* Special case for (%dx) while doing input/output op. */
10241 if (i.base_reg
2fb5be8d 10242 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10243 && i.index_reg == 0
10244 && i.log2_scale_factor == 0
10245 && i.seg[i.mem_operands] == 0
40fb9820 10246 && !operand_type_check (i.types[this_operand], disp))
24eab124 10247 {
2fb5be8d 10248 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10249 return 1;
10250 }
10251
eecb386c
AM
10252 if (i386_index_check (operand_string) == 0)
10253 return 0;
c48dadc9 10254 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10255 if (i.mem_operands == 0)
10256 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10257 i.mem_operands++;
10258 }
10259 else
ce8a8b2f
AM
10260 {
10261 /* It's not a memory operand; argh! */
24eab124
AM
10262 as_bad (_("invalid char %s beginning operand %d `%s'"),
10263 output_invalid (*op_string),
10264 this_operand + 1,
10265 op_string);
10266 return 0;
10267 }
47926f60 10268 return 1; /* Normal return. */
252b5132
RH
10269}
10270\f
fa94de6b
RM
10271/* Calculate the maximum variable size (i.e., excluding fr_fix)
10272 that an rs_machine_dependent frag may reach. */
10273
10274unsigned int
10275i386_frag_max_var (fragS *frag)
10276{
10277 /* The only relaxable frags are for jumps.
10278 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10279 gas_assert (frag->fr_type == rs_machine_dependent);
10280 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10281}
10282
b084df0b
L
10283#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10284static int
8dcea932 10285elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10286{
10287 /* STT_GNU_IFUNC symbol must go through PLT. */
10288 if ((symbol_get_bfdsym (fr_symbol)->flags
10289 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10290 return 0;
10291
10292 if (!S_IS_EXTERNAL (fr_symbol))
10293 /* Symbol may be weak or local. */
10294 return !S_IS_WEAK (fr_symbol);
10295
8dcea932
L
10296 /* Global symbols with non-default visibility can't be preempted. */
10297 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10298 return 1;
10299
10300 if (fr_var != NO_RELOC)
10301 switch ((enum bfd_reloc_code_real) fr_var)
10302 {
10303 case BFD_RELOC_386_PLT32:
10304 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10305 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10306 return 0;
10307 default:
10308 abort ();
10309 }
10310
b084df0b
L
10311 /* Global symbols with default visibility in a shared library may be
10312 preempted by another definition. */
8dcea932 10313 return !shared;
b084df0b
L
10314}
10315#endif
10316
ee7fcc42
AM
10317/* md_estimate_size_before_relax()
10318
10319 Called just before relax() for rs_machine_dependent frags. The x86
10320 assembler uses these frags to handle variable size jump
10321 instructions.
10322
10323 Any symbol that is now undefined will not become defined.
10324 Return the correct fr_subtype in the frag.
10325 Return the initial "guess for variable size of frag" to caller.
10326 The guess is actually the growth beyond the fixed part. Whatever
10327 we do to grow the fixed or variable part contributes to our
10328 returned value. */
10329
252b5132 10330int
7016a5d5 10331md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10332{
252b5132 10333 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10334 check for un-relaxable symbols. On an ELF system, we can't relax
10335 an externally visible symbol, because it may be overridden by a
10336 shared library. */
10337 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10338#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10339 || (IS_ELF
8dcea932
L
10340 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10341 fragP->fr_var))
fbeb56a4
DK
10342#endif
10343#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10344 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10345 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10346#endif
10347 )
252b5132 10348 {
b98ef147
AM
10349 /* Symbol is undefined in this segment, or we need to keep a
10350 reloc so that weak symbols can be overridden. */
10351 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10352 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10353 unsigned char *opcode;
10354 int old_fr_fix;
f6af82bd 10355
ee7fcc42 10356 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10357 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10358 else if (size == 2)
f6af82bd 10359 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10360#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10361 else if (need_plt32_p (fragP->fr_symbol))
10362 reloc_type = BFD_RELOC_X86_64_PLT32;
10363#endif
f6af82bd
AM
10364 else
10365 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10366
ee7fcc42
AM
10367 old_fr_fix = fragP->fr_fix;
10368 opcode = (unsigned char *) fragP->fr_opcode;
10369
fddf5b5b 10370 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10371 {
fddf5b5b
AM
10372 case UNCOND_JUMP:
10373 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10374 opcode[0] = 0xe9;
252b5132 10375 fragP->fr_fix += size;
062cd5e7
AS
10376 fix_new (fragP, old_fr_fix, size,
10377 fragP->fr_symbol,
10378 fragP->fr_offset, 1,
10379 reloc_type);
252b5132
RH
10380 break;
10381
fddf5b5b 10382 case COND_JUMP86:
412167cb
AM
10383 if (size == 2
10384 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10385 {
10386 /* Negate the condition, and branch past an
10387 unconditional jump. */
10388 opcode[0] ^= 1;
10389 opcode[1] = 3;
10390 /* Insert an unconditional jump. */
10391 opcode[2] = 0xe9;
10392 /* We added two extra opcode bytes, and have a two byte
10393 offset. */
10394 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10395 fix_new (fragP, old_fr_fix + 2, 2,
10396 fragP->fr_symbol,
10397 fragP->fr_offset, 1,
10398 reloc_type);
fddf5b5b
AM
10399 break;
10400 }
10401 /* Fall through. */
10402
10403 case COND_JUMP:
412167cb
AM
10404 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10405 {
3e02c1cc
AM
10406 fixS *fixP;
10407
412167cb 10408 fragP->fr_fix += 1;
3e02c1cc
AM
10409 fixP = fix_new (fragP, old_fr_fix, 1,
10410 fragP->fr_symbol,
10411 fragP->fr_offset, 1,
10412 BFD_RELOC_8_PCREL);
10413 fixP->fx_signed = 1;
412167cb
AM
10414 break;
10415 }
93c2a809 10416
24eab124 10417 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10418 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10419 opcode[1] = opcode[0] + 0x10;
f6af82bd 10420 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10421 /* We've added an opcode byte. */
10422 fragP->fr_fix += 1 + size;
062cd5e7
AS
10423 fix_new (fragP, old_fr_fix + 1, size,
10424 fragP->fr_symbol,
10425 fragP->fr_offset, 1,
10426 reloc_type);
252b5132 10427 break;
fddf5b5b
AM
10428
10429 default:
10430 BAD_CASE (fragP->fr_subtype);
10431 break;
252b5132
RH
10432 }
10433 frag_wane (fragP);
ee7fcc42 10434 return fragP->fr_fix - old_fr_fix;
252b5132 10435 }
93c2a809 10436
93c2a809
AM
10437 /* Guess size depending on current relax state. Initially the relax
10438 state will correspond to a short jump and we return 1, because
10439 the variable part of the frag (the branch offset) is one byte
10440 long. However, we can relax a section more than once and in that
10441 case we must either set fr_subtype back to the unrelaxed state,
10442 or return the value for the appropriate branch. */
10443 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10444}
10445
47926f60
KH
10446/* Called after relax() is finished.
10447
10448 In: Address of frag.
10449 fr_type == rs_machine_dependent.
10450 fr_subtype is what the address relaxed to.
10451
10452 Out: Any fixSs and constants are set up.
10453 Caller will turn frag into a ".space 0". */
10454
252b5132 10455void
7016a5d5
TG
10456md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10457 fragS *fragP)
252b5132 10458{
29b0f896 10459 unsigned char *opcode;
252b5132 10460 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10461 offsetT target_address;
10462 offsetT opcode_address;
252b5132 10463 unsigned int extension = 0;
847f7ad4 10464 offsetT displacement_from_opcode_start;
252b5132
RH
10465
10466 opcode = (unsigned char *) fragP->fr_opcode;
10467
47926f60 10468 /* Address we want to reach in file space. */
252b5132 10469 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10470
47926f60 10471 /* Address opcode resides at in file space. */
252b5132
RH
10472 opcode_address = fragP->fr_address + fragP->fr_fix;
10473
47926f60 10474 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10475 displacement_from_opcode_start = target_address - opcode_address;
10476
fddf5b5b 10477 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10478 {
47926f60
KH
10479 /* Don't have to change opcode. */
10480 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10481 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10482 }
10483 else
10484 {
10485 if (no_cond_jump_promotion
10486 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10487 as_warn_where (fragP->fr_file, fragP->fr_line,
10488 _("long jump required"));
252b5132 10489
fddf5b5b
AM
10490 switch (fragP->fr_subtype)
10491 {
10492 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10493 extension = 4; /* 1 opcode + 4 displacement */
10494 opcode[0] = 0xe9;
10495 where_to_put_displacement = &opcode[1];
10496 break;
252b5132 10497
fddf5b5b
AM
10498 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10499 extension = 2; /* 1 opcode + 2 displacement */
10500 opcode[0] = 0xe9;
10501 where_to_put_displacement = &opcode[1];
10502 break;
252b5132 10503
fddf5b5b
AM
10504 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10505 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10506 extension = 5; /* 2 opcode + 4 displacement */
10507 opcode[1] = opcode[0] + 0x10;
10508 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10509 where_to_put_displacement = &opcode[2];
10510 break;
252b5132 10511
fddf5b5b
AM
10512 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10513 extension = 3; /* 2 opcode + 2 displacement */
10514 opcode[1] = opcode[0] + 0x10;
10515 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10516 where_to_put_displacement = &opcode[2];
10517 break;
252b5132 10518
fddf5b5b
AM
10519 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10520 extension = 4;
10521 opcode[0] ^= 1;
10522 opcode[1] = 3;
10523 opcode[2] = 0xe9;
10524 where_to_put_displacement = &opcode[3];
10525 break;
10526
10527 default:
10528 BAD_CASE (fragP->fr_subtype);
10529 break;
10530 }
252b5132 10531 }
fddf5b5b 10532
7b81dfbb
AJ
10533 /* If size if less then four we are sure that the operand fits,
10534 but if it's 4, then it could be that the displacement is larger
10535 then -/+ 2GB. */
10536 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10537 && object_64bit
10538 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10539 + ((addressT) 1 << 31))
10540 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10541 {
10542 as_bad_where (fragP->fr_file, fragP->fr_line,
10543 _("jump target out of range"));
10544 /* Make us emit 0. */
10545 displacement_from_opcode_start = extension;
10546 }
47926f60 10547 /* Now put displacement after opcode. */
252b5132
RH
10548 md_number_to_chars ((char *) where_to_put_displacement,
10549 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10550 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10551 fragP->fr_fix += extension;
10552}
10553\f
7016a5d5 10554/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10555 by our caller that we have all the info we need to fix it up.
10556
7016a5d5
TG
10557 Parameter valP is the pointer to the value of the bits.
10558
252b5132
RH
10559 On the 386, immediates, displacements, and data pointers are all in
10560 the same (little-endian) format, so we don't need to care about which
10561 we are handling. */
10562
94f592af 10563void
7016a5d5 10564md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10565{
94f592af 10566 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10567 valueT value = *valP;
252b5132 10568
f86103b7 10569#if !defined (TE_Mach)
93382f6d
AM
10570 if (fixP->fx_pcrel)
10571 {
10572 switch (fixP->fx_r_type)
10573 {
5865bb77
ILT
10574 default:
10575 break;
10576
d6ab8113
JB
10577 case BFD_RELOC_64:
10578 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10579 break;
93382f6d 10580 case BFD_RELOC_32:
ae8887b5 10581 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10582 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10583 break;
10584 case BFD_RELOC_16:
10585 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10586 break;
10587 case BFD_RELOC_8:
10588 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10589 break;
10590 }
10591 }
252b5132 10592
a161fe53 10593 if (fixP->fx_addsy != NULL
31312f95 10594 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10595 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10596 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10597 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10598 && !use_rela_relocations)
252b5132 10599 {
31312f95
AM
10600 /* This is a hack. There should be a better way to handle this.
10601 This covers for the fact that bfd_install_relocation will
10602 subtract the current location (for partial_inplace, PC relative
10603 relocations); see more below. */
252b5132 10604#ifndef OBJ_AOUT
718ddfc0 10605 if (IS_ELF
252b5132
RH
10606#ifdef TE_PE
10607 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10608#endif
10609 )
10610 value += fixP->fx_where + fixP->fx_frag->fr_address;
10611#endif
10612#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10613 if (IS_ELF)
252b5132 10614 {
6539b54b 10615 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10616
6539b54b 10617 if ((sym_seg == seg
2f66722d 10618 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10619 && sym_seg != absolute_section))
af65af87 10620 && !generic_force_reloc (fixP))
2f66722d
AM
10621 {
10622 /* Yes, we add the values in twice. This is because
6539b54b
AM
10623 bfd_install_relocation subtracts them out again. I think
10624 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10625 it. FIXME. */
10626 value += fixP->fx_where + fixP->fx_frag->fr_address;
10627 }
252b5132
RH
10628 }
10629#endif
10630#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10631 /* For some reason, the PE format does not store a
10632 section address offset for a PC relative symbol. */
10633 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10634 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10635 value += md_pcrel_from (fixP);
10636#endif
10637 }
fbeb56a4 10638#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10639 if (fixP->fx_addsy != NULL
10640 && S_IS_WEAK (fixP->fx_addsy)
10641 /* PR 16858: Do not modify weak function references. */
10642 && ! fixP->fx_pcrel)
fbeb56a4 10643 {
296a8689
NC
10644#if !defined (TE_PEP)
10645 /* For x86 PE weak function symbols are neither PC-relative
10646 nor do they set S_IS_FUNCTION. So the only reliable way
10647 to detect them is to check the flags of their containing
10648 section. */
10649 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10650 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10651 ;
10652 else
10653#endif
fbeb56a4
DK
10654 value -= S_GET_VALUE (fixP->fx_addsy);
10655 }
10656#endif
252b5132
RH
10657
10658 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10659 and we must not disappoint it. */
252b5132 10660#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10661 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10662 switch (fixP->fx_r_type)
10663 {
10664 case BFD_RELOC_386_PLT32:
3e73aa7c 10665 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10666 /* Make the jump instruction point to the address of the operand.
10667 At runtime we merely add the offset to the actual PLT entry.
10668 NB: Subtract the offset size only for jump instructions. */
10669 if (fixP->fx_pcrel)
10670 value = -4;
47926f60 10671 break;
31312f95 10672
13ae64f3
JJ
10673 case BFD_RELOC_386_TLS_GD:
10674 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10675 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10676 case BFD_RELOC_386_TLS_IE:
10677 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10678 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10679 case BFD_RELOC_X86_64_TLSGD:
10680 case BFD_RELOC_X86_64_TLSLD:
10681 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10682 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10683 value = 0; /* Fully resolved at runtime. No addend. */
10684 /* Fallthrough */
10685 case BFD_RELOC_386_TLS_LE:
10686 case BFD_RELOC_386_TLS_LDO_32:
10687 case BFD_RELOC_386_TLS_LE_32:
10688 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10689 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10690 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10691 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10692 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10693 break;
10694
67a4f2b7
AO
10695 case BFD_RELOC_386_TLS_DESC_CALL:
10696 case BFD_RELOC_X86_64_TLSDESC_CALL:
10697 value = 0; /* Fully resolved at runtime. No addend. */
10698 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10699 fixP->fx_done = 0;
10700 return;
10701
47926f60
KH
10702 case BFD_RELOC_VTABLE_INHERIT:
10703 case BFD_RELOC_VTABLE_ENTRY:
10704 fixP->fx_done = 0;
94f592af 10705 return;
47926f60
KH
10706
10707 default:
10708 break;
10709 }
10710#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10711 *valP = value;
f86103b7 10712#endif /* !defined (TE_Mach) */
3e73aa7c 10713
3e73aa7c 10714 /* Are we finished with this relocation now? */
c6682705 10715 if (fixP->fx_addsy == NULL)
3e73aa7c 10716 fixP->fx_done = 1;
fbeb56a4
DK
10717#if defined (OBJ_COFF) && defined (TE_PE)
10718 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10719 {
10720 fixP->fx_done = 0;
10721 /* Remember value for tc_gen_reloc. */
10722 fixP->fx_addnumber = value;
10723 /* Clear out the frag for now. */
10724 value = 0;
10725 }
10726#endif
3e73aa7c
JH
10727 else if (use_rela_relocations)
10728 {
10729 fixP->fx_no_overflow = 1;
062cd5e7
AS
10730 /* Remember value for tc_gen_reloc. */
10731 fixP->fx_addnumber = value;
3e73aa7c
JH
10732 value = 0;
10733 }
f86103b7 10734
94f592af 10735 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10736}
252b5132 10737\f
6d4af3c2 10738const char *
499ac353 10739md_atof (int type, char *litP, int *sizeP)
252b5132 10740{
499ac353
NC
10741 /* This outputs the LITTLENUMs in REVERSE order;
10742 in accord with the bigendian 386. */
10743 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10744}
10745\f
2d545b82 10746static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10747
252b5132 10748static char *
e3bb37b5 10749output_invalid (int c)
252b5132 10750{
3882b010 10751 if (ISPRINT (c))
f9f21a03
L
10752 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10753 "'%c'", c);
252b5132 10754 else
f9f21a03 10755 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10756 "(0x%x)", (unsigned char) c);
252b5132
RH
10757 return output_invalid_buf;
10758}
10759
af6bdddf 10760/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10761
10762static const reg_entry *
4d1bb795 10763parse_real_register (char *reg_string, char **end_op)
252b5132 10764{
af6bdddf
AM
10765 char *s = reg_string;
10766 char *p;
252b5132
RH
10767 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10768 const reg_entry *r;
10769
10770 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10771 if (*s == REGISTER_PREFIX)
10772 ++s;
10773
10774 if (is_space_char (*s))
10775 ++s;
10776
10777 p = reg_name_given;
af6bdddf 10778 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10779 {
10780 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10781 return (const reg_entry *) NULL;
10782 s++;
252b5132
RH
10783 }
10784
6588847e
DN
10785 /* For naked regs, make sure that we are not dealing with an identifier.
10786 This prevents confusing an identifier like `eax_var' with register
10787 `eax'. */
10788 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10789 return (const reg_entry *) NULL;
10790
af6bdddf 10791 *end_op = s;
252b5132
RH
10792
10793 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10794
5f47d35b 10795 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10796 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10797 {
0e0eea78
JB
10798 if (!cpu_arch_flags.bitfield.cpu8087
10799 && !cpu_arch_flags.bitfield.cpu287
10800 && !cpu_arch_flags.bitfield.cpu387)
10801 return (const reg_entry *) NULL;
10802
5f47d35b
AM
10803 if (is_space_char (*s))
10804 ++s;
10805 if (*s == '(')
10806 {
af6bdddf 10807 ++s;
5f47d35b
AM
10808 if (is_space_char (*s))
10809 ++s;
10810 if (*s >= '0' && *s <= '7')
10811 {
db557034 10812 int fpr = *s - '0';
af6bdddf 10813 ++s;
5f47d35b
AM
10814 if (is_space_char (*s))
10815 ++s;
10816 if (*s == ')')
10817 {
10818 *end_op = s + 1;
1e9cc1c2 10819 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10820 know (r);
10821 return r + fpr;
5f47d35b 10822 }
5f47d35b 10823 }
47926f60 10824 /* We have "%st(" then garbage. */
5f47d35b
AM
10825 return (const reg_entry *) NULL;
10826 }
10827 }
10828
a60de03c
JB
10829 if (r == NULL || allow_pseudo_reg)
10830 return r;
10831
0dfbf9d7 10832 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10833 return (const reg_entry *) NULL;
10834
dc821c5f 10835 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10836 || r->reg_type.bitfield.sreg3
10837 || r->reg_type.bitfield.control
10838 || r->reg_type.bitfield.debug
10839 || r->reg_type.bitfield.test)
10840 && !cpu_arch_flags.bitfield.cpui386)
10841 return (const reg_entry *) NULL;
10842
6e041cf4 10843 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10844 return (const reg_entry *) NULL;
10845
6e041cf4
JB
10846 if (!cpu_arch_flags.bitfield.cpuavx512f)
10847 {
10848 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10849 return (const reg_entry *) NULL;
40f12533 10850
6e041cf4
JB
10851 if (!cpu_arch_flags.bitfield.cpuavx)
10852 {
10853 if (r->reg_type.bitfield.ymmword)
10854 return (const reg_entry *) NULL;
1848e567 10855
6e041cf4
JB
10856 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10857 return (const reg_entry *) NULL;
10858 }
10859 }
43234a1e 10860
1adf7f56
JB
10861 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10862 return (const reg_entry *) NULL;
10863
db51cc60 10864 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10865 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10866 return (const reg_entry *) NULL;
10867
1d3f8286
JB
10868 /* Upper 16 vector registers are only available with VREX in 64bit
10869 mode, and require EVEX encoding. */
10870 if (r->reg_flags & RegVRex)
43234a1e 10871 {
e951d5ca 10872 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10873 || flag_code != CODE_64BIT)
10874 return (const reg_entry *) NULL;
1d3f8286
JB
10875
10876 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10877 }
10878
4787f4a5
JB
10879 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10880 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10881 && flag_code != CODE_64BIT)
20f0a1fc 10882 return (const reg_entry *) NULL;
1ae00879 10883
b7240065
JB
10884 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10885 return (const reg_entry *) NULL;
10886
252b5132
RH
10887 return r;
10888}
4d1bb795
JB
10889
10890/* REG_STRING starts *before* REGISTER_PREFIX. */
10891
10892static const reg_entry *
10893parse_register (char *reg_string, char **end_op)
10894{
10895 const reg_entry *r;
10896
10897 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10898 r = parse_real_register (reg_string, end_op);
10899 else
10900 r = NULL;
10901 if (!r)
10902 {
10903 char *save = input_line_pointer;
10904 char c;
10905 symbolS *symbolP;
10906
10907 input_line_pointer = reg_string;
d02603dc 10908 c = get_symbol_name (&reg_string);
4d1bb795
JB
10909 symbolP = symbol_find (reg_string);
10910 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10911 {
10912 const expressionS *e = symbol_get_value_expression (symbolP);
10913
0398aac5 10914 know (e->X_op == O_register);
4eed87de 10915 know (e->X_add_number >= 0
c3fe08fa 10916 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10917 r = i386_regtab + e->X_add_number;
d3bb6b49 10918 if ((r->reg_flags & RegVRex))
86fa6981 10919 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10920 *end_op = input_line_pointer;
10921 }
10922 *input_line_pointer = c;
10923 input_line_pointer = save;
10924 }
10925 return r;
10926}
10927
10928int
10929i386_parse_name (char *name, expressionS *e, char *nextcharP)
10930{
10931 const reg_entry *r;
10932 char *end = input_line_pointer;
10933
10934 *end = *nextcharP;
10935 r = parse_register (name, &input_line_pointer);
10936 if (r && end <= input_line_pointer)
10937 {
10938 *nextcharP = *input_line_pointer;
10939 *input_line_pointer = 0;
10940 e->X_op = O_register;
10941 e->X_add_number = r - i386_regtab;
10942 return 1;
10943 }
10944 input_line_pointer = end;
10945 *end = 0;
ee86248c 10946 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10947}
10948
10949void
10950md_operand (expressionS *e)
10951{
ee86248c
JB
10952 char *end;
10953 const reg_entry *r;
4d1bb795 10954
ee86248c
JB
10955 switch (*input_line_pointer)
10956 {
10957 case REGISTER_PREFIX:
10958 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10959 if (r)
10960 {
10961 e->X_op = O_register;
10962 e->X_add_number = r - i386_regtab;
10963 input_line_pointer = end;
10964 }
ee86248c
JB
10965 break;
10966
10967 case '[':
9c2799c2 10968 gas_assert (intel_syntax);
ee86248c
JB
10969 end = input_line_pointer++;
10970 expression (e);
10971 if (*input_line_pointer == ']')
10972 {
10973 ++input_line_pointer;
10974 e->X_op_symbol = make_expr_symbol (e);
10975 e->X_add_symbol = NULL;
10976 e->X_add_number = 0;
10977 e->X_op = O_index;
10978 }
10979 else
10980 {
10981 e->X_op = O_absent;
10982 input_line_pointer = end;
10983 }
10984 break;
4d1bb795
JB
10985 }
10986}
10987
252b5132 10988\f
4cc782b5 10989#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10990const char *md_shortopts = "kVQ:sqnO::";
252b5132 10991#else
b6f8c7c4 10992const char *md_shortopts = "qnO::";
252b5132 10993#endif
6e0b89ee 10994
3e73aa7c 10995#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10996#define OPTION_64 (OPTION_MD_BASE + 1)
10997#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10998#define OPTION_MARCH (OPTION_MD_BASE + 3)
10999#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11000#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11001#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11002#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11003#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11004#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11005#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11006#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11007#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11008#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11009#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11010#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11011#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11012#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11013#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11014#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11015#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11016#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11017#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11018#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11019#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11020#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11021#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11022
99ad8390
NC
11023struct option md_longopts[] =
11024{
3e73aa7c 11025 {"32", no_argument, NULL, OPTION_32},
321098a5 11026#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11027 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11028 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11029#endif
11030#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11031 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11032 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11033 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11034#endif
b3b91714 11035 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11036 {"march", required_argument, NULL, OPTION_MARCH},
11037 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11038 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11039 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11040 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11041 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11042 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11043 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11044 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11045 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11046 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11047 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11048 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11049 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11050# if defined (TE_PE) || defined (TE_PEP)
11051 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11052#endif
d1982f93 11053 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11054 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11055 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11056 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11057 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11058 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11059 {NULL, no_argument, NULL, 0}
11060};
11061size_t md_longopts_size = sizeof (md_longopts);
11062
11063int
17b9d67d 11064md_parse_option (int c, const char *arg)
252b5132 11065{
91d6fa6a 11066 unsigned int j;
293f5f65 11067 char *arch, *next, *saved;
9103f4f4 11068
252b5132
RH
11069 switch (c)
11070 {
12b55ccc
L
11071 case 'n':
11072 optimize_align_code = 0;
11073 break;
11074
a38cf1db
AM
11075 case 'q':
11076 quiet_warnings = 1;
252b5132
RH
11077 break;
11078
11079#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11080 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11081 should be emitted or not. FIXME: Not implemented. */
11082 case 'Q':
252b5132
RH
11083 break;
11084
11085 /* -V: SVR4 argument to print version ID. */
11086 case 'V':
11087 print_version_id ();
11088 break;
11089
a38cf1db
AM
11090 /* -k: Ignore for FreeBSD compatibility. */
11091 case 'k':
252b5132 11092 break;
4cc782b5
ILT
11093
11094 case 's':
11095 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11096 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11097 break;
8dcea932
L
11098
11099 case OPTION_MSHARED:
11100 shared = 1;
11101 break;
b4a3a7b4
L
11102
11103 case OPTION_X86_USED_NOTE:
11104 if (strcasecmp (arg, "yes") == 0)
11105 x86_used_note = 1;
11106 else if (strcasecmp (arg, "no") == 0)
11107 x86_used_note = 0;
11108 else
11109 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11110 break;
11111
11112
99ad8390 11113#endif
321098a5 11114#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11115 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11116 case OPTION_64:
11117 {
11118 const char **list, **l;
11119
3e73aa7c
JH
11120 list = bfd_target_list ();
11121 for (l = list; *l != NULL; l++)
8620418b 11122 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11123 || strcmp (*l, "coff-x86-64") == 0
11124 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11125 || strcmp (*l, "pei-x86-64") == 0
11126 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11127 {
11128 default_arch = "x86_64";
11129 break;
11130 }
3e73aa7c 11131 if (*l == NULL)
2b5d6a91 11132 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11133 free (list);
11134 }
11135 break;
11136#endif
252b5132 11137
351f65ca 11138#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11139 case OPTION_X32:
351f65ca
L
11140 if (IS_ELF)
11141 {
11142 const char **list, **l;
11143
11144 list = bfd_target_list ();
11145 for (l = list; *l != NULL; l++)
11146 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11147 {
11148 default_arch = "x86_64:32";
11149 break;
11150 }
11151 if (*l == NULL)
2b5d6a91 11152 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11153 free (list);
11154 }
11155 else
11156 as_fatal (_("32bit x86_64 is only supported for ELF"));
11157 break;
11158#endif
11159
6e0b89ee
AM
11160 case OPTION_32:
11161 default_arch = "i386";
11162 break;
11163
b3b91714
AM
11164 case OPTION_DIVIDE:
11165#ifdef SVR4_COMMENT_CHARS
11166 {
11167 char *n, *t;
11168 const char *s;
11169
add39d23 11170 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11171 t = n;
11172 for (s = i386_comment_chars; *s != '\0'; s++)
11173 if (*s != '/')
11174 *t++ = *s;
11175 *t = '\0';
11176 i386_comment_chars = n;
11177 }
11178#endif
11179 break;
11180
9103f4f4 11181 case OPTION_MARCH:
293f5f65
L
11182 saved = xstrdup (arg);
11183 arch = saved;
11184 /* Allow -march=+nosse. */
11185 if (*arch == '+')
11186 arch++;
6305a203 11187 do
9103f4f4 11188 {
6305a203 11189 if (*arch == '.')
2b5d6a91 11190 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11191 next = strchr (arch, '+');
11192 if (next)
11193 *next++ = '\0';
91d6fa6a 11194 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11195 {
91d6fa6a 11196 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11197 {
6305a203 11198 /* Processor. */
1ded5609
JB
11199 if (! cpu_arch[j].flags.bitfield.cpui386)
11200 continue;
11201
91d6fa6a 11202 cpu_arch_name = cpu_arch[j].name;
6305a203 11203 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11204 cpu_arch_flags = cpu_arch[j].flags;
11205 cpu_arch_isa = cpu_arch[j].type;
11206 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11207 if (!cpu_arch_tune_set)
11208 {
11209 cpu_arch_tune = cpu_arch_isa;
11210 cpu_arch_tune_flags = cpu_arch_isa_flags;
11211 }
11212 break;
11213 }
91d6fa6a
NC
11214 else if (*cpu_arch [j].name == '.'
11215 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11216 {
33eaf5de 11217 /* ISA extension. */
6305a203 11218 i386_cpu_flags flags;
309d3373 11219
293f5f65
L
11220 flags = cpu_flags_or (cpu_arch_flags,
11221 cpu_arch[j].flags);
81486035 11222
5b64d091 11223 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11224 {
11225 if (cpu_sub_arch_name)
11226 {
11227 char *name = cpu_sub_arch_name;
11228 cpu_sub_arch_name = concat (name,
91d6fa6a 11229 cpu_arch[j].name,
1bf57e9f 11230 (const char *) NULL);
6305a203
L
11231 free (name);
11232 }
11233 else
91d6fa6a 11234 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11235 cpu_arch_flags = flags;
a586129e 11236 cpu_arch_isa_flags = flags;
6305a203 11237 }
0089dace
L
11238 else
11239 cpu_arch_isa_flags
11240 = cpu_flags_or (cpu_arch_isa_flags,
11241 cpu_arch[j].flags);
6305a203 11242 break;
ccc9c027 11243 }
9103f4f4 11244 }
6305a203 11245
293f5f65
L
11246 if (j >= ARRAY_SIZE (cpu_arch))
11247 {
33eaf5de 11248 /* Disable an ISA extension. */
293f5f65
L
11249 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11250 if (strcmp (arch, cpu_noarch [j].name) == 0)
11251 {
11252 i386_cpu_flags flags;
11253
11254 flags = cpu_flags_and_not (cpu_arch_flags,
11255 cpu_noarch[j].flags);
11256 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11257 {
11258 if (cpu_sub_arch_name)
11259 {
11260 char *name = cpu_sub_arch_name;
11261 cpu_sub_arch_name = concat (arch,
11262 (const char *) NULL);
11263 free (name);
11264 }
11265 else
11266 cpu_sub_arch_name = xstrdup (arch);
11267 cpu_arch_flags = flags;
11268 cpu_arch_isa_flags = flags;
11269 }
11270 break;
11271 }
11272
11273 if (j >= ARRAY_SIZE (cpu_noarch))
11274 j = ARRAY_SIZE (cpu_arch);
11275 }
11276
91d6fa6a 11277 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11278 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11279
11280 arch = next;
9103f4f4 11281 }
293f5f65
L
11282 while (next != NULL);
11283 free (saved);
9103f4f4
L
11284 break;
11285
11286 case OPTION_MTUNE:
11287 if (*arg == '.')
2b5d6a91 11288 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11289 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11290 {
91d6fa6a 11291 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11292 {
ccc9c027 11293 cpu_arch_tune_set = 1;
91d6fa6a
NC
11294 cpu_arch_tune = cpu_arch [j].type;
11295 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11296 break;
11297 }
11298 }
91d6fa6a 11299 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11300 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11301 break;
11302
1efbbeb4
L
11303 case OPTION_MMNEMONIC:
11304 if (strcasecmp (arg, "att") == 0)
11305 intel_mnemonic = 0;
11306 else if (strcasecmp (arg, "intel") == 0)
11307 intel_mnemonic = 1;
11308 else
2b5d6a91 11309 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11310 break;
11311
11312 case OPTION_MSYNTAX:
11313 if (strcasecmp (arg, "att") == 0)
11314 intel_syntax = 0;
11315 else if (strcasecmp (arg, "intel") == 0)
11316 intel_syntax = 1;
11317 else
2b5d6a91 11318 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11319 break;
11320
11321 case OPTION_MINDEX_REG:
11322 allow_index_reg = 1;
11323 break;
11324
11325 case OPTION_MNAKED_REG:
11326 allow_naked_reg = 1;
11327 break;
11328
c0f3af97
L
11329 case OPTION_MSSE2AVX:
11330 sse2avx = 1;
11331 break;
11332
daf50ae7
L
11333 case OPTION_MSSE_CHECK:
11334 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11335 sse_check = check_error;
daf50ae7 11336 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11337 sse_check = check_warning;
daf50ae7 11338 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11339 sse_check = check_none;
daf50ae7 11340 else
2b5d6a91 11341 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11342 break;
11343
7bab8ab5
JB
11344 case OPTION_MOPERAND_CHECK:
11345 if (strcasecmp (arg, "error") == 0)
11346 operand_check = check_error;
11347 else if (strcasecmp (arg, "warning") == 0)
11348 operand_check = check_warning;
11349 else if (strcasecmp (arg, "none") == 0)
11350 operand_check = check_none;
11351 else
11352 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11353 break;
11354
539f890d
L
11355 case OPTION_MAVXSCALAR:
11356 if (strcasecmp (arg, "128") == 0)
11357 avxscalar = vex128;
11358 else if (strcasecmp (arg, "256") == 0)
11359 avxscalar = vex256;
11360 else
2b5d6a91 11361 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11362 break;
11363
03751133
L
11364 case OPTION_MVEXWIG:
11365 if (strcmp (arg, "0") == 0)
11366 vexwig = evexw0;
11367 else if (strcmp (arg, "1") == 0)
11368 vexwig = evexw1;
11369 else
11370 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11371 break;
11372
7e8b059b
L
11373 case OPTION_MADD_BND_PREFIX:
11374 add_bnd_prefix = 1;
11375 break;
11376
43234a1e
L
11377 case OPTION_MEVEXLIG:
11378 if (strcmp (arg, "128") == 0)
11379 evexlig = evexl128;
11380 else if (strcmp (arg, "256") == 0)
11381 evexlig = evexl256;
11382 else if (strcmp (arg, "512") == 0)
11383 evexlig = evexl512;
11384 else
11385 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11386 break;
11387
d3d3c6db
IT
11388 case OPTION_MEVEXRCIG:
11389 if (strcmp (arg, "rne") == 0)
11390 evexrcig = rne;
11391 else if (strcmp (arg, "rd") == 0)
11392 evexrcig = rd;
11393 else if (strcmp (arg, "ru") == 0)
11394 evexrcig = ru;
11395 else if (strcmp (arg, "rz") == 0)
11396 evexrcig = rz;
11397 else
11398 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11399 break;
11400
43234a1e
L
11401 case OPTION_MEVEXWIG:
11402 if (strcmp (arg, "0") == 0)
11403 evexwig = evexw0;
11404 else if (strcmp (arg, "1") == 0)
11405 evexwig = evexw1;
11406 else
11407 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11408 break;
11409
167ad85b
TG
11410# if defined (TE_PE) || defined (TE_PEP)
11411 case OPTION_MBIG_OBJ:
11412 use_big_obj = 1;
11413 break;
11414#endif
11415
d1982f93 11416 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11417 if (strcasecmp (arg, "yes") == 0)
11418 omit_lock_prefix = 1;
11419 else if (strcasecmp (arg, "no") == 0)
11420 omit_lock_prefix = 0;
11421 else
11422 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11423 break;
11424
e4e00185
AS
11425 case OPTION_MFENCE_AS_LOCK_ADD:
11426 if (strcasecmp (arg, "yes") == 0)
11427 avoid_fence = 1;
11428 else if (strcasecmp (arg, "no") == 0)
11429 avoid_fence = 0;
11430 else
11431 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11432 break;
11433
0cb4071e
L
11434 case OPTION_MRELAX_RELOCATIONS:
11435 if (strcasecmp (arg, "yes") == 0)
11436 generate_relax_relocations = 1;
11437 else if (strcasecmp (arg, "no") == 0)
11438 generate_relax_relocations = 0;
11439 else
11440 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11441 break;
11442
5db04b09 11443 case OPTION_MAMD64:
e89c5eaa 11444 intel64 = 0;
5db04b09
L
11445 break;
11446
11447 case OPTION_MINTEL64:
e89c5eaa 11448 intel64 = 1;
5db04b09
L
11449 break;
11450
b6f8c7c4
L
11451 case 'O':
11452 if (arg == NULL)
11453 {
11454 optimize = 1;
11455 /* Turn off -Os. */
11456 optimize_for_space = 0;
11457 }
11458 else if (*arg == 's')
11459 {
11460 optimize_for_space = 1;
11461 /* Turn on all encoding optimizations. */
41fd2579 11462 optimize = INT_MAX;
b6f8c7c4
L
11463 }
11464 else
11465 {
11466 optimize = atoi (arg);
11467 /* Turn off -Os. */
11468 optimize_for_space = 0;
11469 }
11470 break;
11471
252b5132
RH
11472 default:
11473 return 0;
11474 }
11475 return 1;
11476}
11477
8a2c8fef
L
11478#define MESSAGE_TEMPLATE \
11479" "
11480
293f5f65
L
11481static char *
11482output_message (FILE *stream, char *p, char *message, char *start,
11483 int *left_p, const char *name, int len)
11484{
11485 int size = sizeof (MESSAGE_TEMPLATE);
11486 int left = *left_p;
11487
11488 /* Reserve 2 spaces for ", " or ",\0" */
11489 left -= len + 2;
11490
11491 /* Check if there is any room. */
11492 if (left >= 0)
11493 {
11494 if (p != start)
11495 {
11496 *p++ = ',';
11497 *p++ = ' ';
11498 }
11499 p = mempcpy (p, name, len);
11500 }
11501 else
11502 {
11503 /* Output the current message now and start a new one. */
11504 *p++ = ',';
11505 *p = '\0';
11506 fprintf (stream, "%s\n", message);
11507 p = start;
11508 left = size - (start - message) - len - 2;
11509
11510 gas_assert (left >= 0);
11511
11512 p = mempcpy (p, name, len);
11513 }
11514
11515 *left_p = left;
11516 return p;
11517}
11518
8a2c8fef 11519static void
1ded5609 11520show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11521{
11522 static char message[] = MESSAGE_TEMPLATE;
11523 char *start = message + 27;
11524 char *p;
11525 int size = sizeof (MESSAGE_TEMPLATE);
11526 int left;
11527 const char *name;
11528 int len;
11529 unsigned int j;
11530
11531 p = start;
11532 left = size - (start - message);
11533 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11534 {
11535 /* Should it be skipped? */
11536 if (cpu_arch [j].skip)
11537 continue;
11538
11539 name = cpu_arch [j].name;
11540 len = cpu_arch [j].len;
11541 if (*name == '.')
11542 {
11543 /* It is an extension. Skip if we aren't asked to show it. */
11544 if (ext)
11545 {
11546 name++;
11547 len--;
11548 }
11549 else
11550 continue;
11551 }
11552 else if (ext)
11553 {
11554 /* It is an processor. Skip if we show only extension. */
11555 continue;
11556 }
1ded5609
JB
11557 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11558 {
11559 /* It is an impossible processor - skip. */
11560 continue;
11561 }
8a2c8fef 11562
293f5f65 11563 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11564 }
11565
293f5f65
L
11566 /* Display disabled extensions. */
11567 if (ext)
11568 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11569 {
11570 name = cpu_noarch [j].name;
11571 len = cpu_noarch [j].len;
11572 p = output_message (stream, p, message, start, &left, name,
11573 len);
11574 }
11575
8a2c8fef
L
11576 *p = '\0';
11577 fprintf (stream, "%s\n", message);
11578}
11579
252b5132 11580void
8a2c8fef 11581md_show_usage (FILE *stream)
252b5132 11582{
4cc782b5
ILT
11583#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11584 fprintf (stream, _("\
a38cf1db
AM
11585 -Q ignored\n\
11586 -V print assembler version number\n\
b3b91714
AM
11587 -k ignored\n"));
11588#endif
11589 fprintf (stream, _("\
12b55ccc 11590 -n Do not optimize code alignment\n\
b3b91714
AM
11591 -q quieten some warnings\n"));
11592#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11593 fprintf (stream, _("\
a38cf1db 11594 -s ignored\n"));
b3b91714 11595#endif
d7f449c0
L
11596#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11597 || defined (TE_PE) || defined (TE_PEP))
751d281c 11598 fprintf (stream, _("\
570561f7 11599 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11600#endif
b3b91714
AM
11601#ifdef SVR4_COMMENT_CHARS
11602 fprintf (stream, _("\
11603 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11604#else
11605 fprintf (stream, _("\
b3b91714 11606 --divide ignored\n"));
4cc782b5 11607#endif
9103f4f4 11608 fprintf (stream, _("\
6305a203 11609 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11610 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11611 show_arch (stream, 0, 1);
8a2c8fef
L
11612 fprintf (stream, _("\
11613 EXTENSION is combination of:\n"));
1ded5609 11614 show_arch (stream, 1, 0);
6305a203 11615 fprintf (stream, _("\
8a2c8fef 11616 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11617 show_arch (stream, 0, 0);
ba104c83 11618 fprintf (stream, _("\
c0f3af97
L
11619 -msse2avx encode SSE instructions with VEX prefix\n"));
11620 fprintf (stream, _("\
7c5c05ef 11621 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11622 check SSE instructions\n"));
11623 fprintf (stream, _("\
7c5c05ef 11624 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11625 check operand combinations for validity\n"));
11626 fprintf (stream, _("\
7c5c05ef
L
11627 -mavxscalar=[128|256] (default: 128)\n\
11628 encode scalar AVX instructions with specific vector\n\
539f890d
L
11629 length\n"));
11630 fprintf (stream, _("\
03751133
L
11631 -mvexwig=[0|1] (default: 0)\n\
11632 encode VEX instructions with specific VEX.W value\n\
11633 for VEX.W bit ignored instructions\n"));
11634 fprintf (stream, _("\
7c5c05ef
L
11635 -mevexlig=[128|256|512] (default: 128)\n\
11636 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11637 length\n"));
11638 fprintf (stream, _("\
7c5c05ef
L
11639 -mevexwig=[0|1] (default: 0)\n\
11640 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11641 for EVEX.W bit ignored instructions\n"));
11642 fprintf (stream, _("\
7c5c05ef 11643 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11644 encode EVEX instructions with specific EVEX.RC value\n\
11645 for SAE-only ignored instructions\n"));
11646 fprintf (stream, _("\
7c5c05ef
L
11647 -mmnemonic=[att|intel] "));
11648 if (SYSV386_COMPAT)
11649 fprintf (stream, _("(default: att)\n"));
11650 else
11651 fprintf (stream, _("(default: intel)\n"));
11652 fprintf (stream, _("\
11653 use AT&T/Intel mnemonic\n"));
ba104c83 11654 fprintf (stream, _("\
7c5c05ef
L
11655 -msyntax=[att|intel] (default: att)\n\
11656 use AT&T/Intel syntax\n"));
ba104c83
L
11657 fprintf (stream, _("\
11658 -mindex-reg support pseudo index registers\n"));
11659 fprintf (stream, _("\
11660 -mnaked-reg don't require `%%' prefix for registers\n"));
11661 fprintf (stream, _("\
7e8b059b 11662 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11663#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11664 fprintf (stream, _("\
11665 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11666 fprintf (stream, _("\
11667 -mx86-used-note=[no|yes] "));
11668 if (DEFAULT_X86_USED_NOTE)
11669 fprintf (stream, _("(default: yes)\n"));
11670 else
11671 fprintf (stream, _("(default: no)\n"));
11672 fprintf (stream, _("\
11673 generate x86 used ISA and feature properties\n"));
11674#endif
11675#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11676 fprintf (stream, _("\
11677 -mbig-obj generate big object files\n"));
11678#endif
d022bddd 11679 fprintf (stream, _("\
7c5c05ef 11680 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11681 strip all lock prefixes\n"));
5db04b09 11682 fprintf (stream, _("\
7c5c05ef 11683 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11684 encode lfence, mfence and sfence as\n\
11685 lock addl $0x0, (%%{re}sp)\n"));
11686 fprintf (stream, _("\
7c5c05ef
L
11687 -mrelax-relocations=[no|yes] "));
11688 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11689 fprintf (stream, _("(default: yes)\n"));
11690 else
11691 fprintf (stream, _("(default: no)\n"));
11692 fprintf (stream, _("\
0cb4071e
L
11693 generate relax relocations\n"));
11694 fprintf (stream, _("\
7c5c05ef 11695 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11696 fprintf (stream, _("\
11697 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11698}
11699
3e73aa7c 11700#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11701 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11702 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11703
11704/* Pick the target format to use. */
11705
47926f60 11706const char *
e3bb37b5 11707i386_target_format (void)
252b5132 11708{
351f65ca
L
11709 if (!strncmp (default_arch, "x86_64", 6))
11710 {
11711 update_code_flag (CODE_64BIT, 1);
11712 if (default_arch[6] == '\0')
7f56bc95 11713 x86_elf_abi = X86_64_ABI;
351f65ca 11714 else
7f56bc95 11715 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11716 }
3e73aa7c 11717 else if (!strcmp (default_arch, "i386"))
78f12dd3 11718 update_code_flag (CODE_32BIT, 1);
5197d474
L
11719 else if (!strcmp (default_arch, "iamcu"))
11720 {
11721 update_code_flag (CODE_32BIT, 1);
11722 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11723 {
11724 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11725 cpu_arch_name = "iamcu";
11726 cpu_sub_arch_name = NULL;
11727 cpu_arch_flags = iamcu_flags;
11728 cpu_arch_isa = PROCESSOR_IAMCU;
11729 cpu_arch_isa_flags = iamcu_flags;
11730 if (!cpu_arch_tune_set)
11731 {
11732 cpu_arch_tune = cpu_arch_isa;
11733 cpu_arch_tune_flags = cpu_arch_isa_flags;
11734 }
11735 }
8d471ec1 11736 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11737 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11738 cpu_arch_name);
11739 }
3e73aa7c 11740 else
2b5d6a91 11741 as_fatal (_("unknown architecture"));
89507696
JB
11742
11743 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11744 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11745 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11746 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11747
252b5132
RH
11748 switch (OUTPUT_FLAVOR)
11749 {
9384f2ff 11750#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11751 case bfd_target_aout_flavour:
47926f60 11752 return AOUT_TARGET_FORMAT;
4c63da97 11753#endif
9384f2ff
AM
11754#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11755# if defined (TE_PE) || defined (TE_PEP)
11756 case bfd_target_coff_flavour:
167ad85b
TG
11757 if (flag_code == CODE_64BIT)
11758 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11759 else
11760 return "pe-i386";
9384f2ff 11761# elif defined (TE_GO32)
0561d57c
JK
11762 case bfd_target_coff_flavour:
11763 return "coff-go32";
9384f2ff 11764# else
252b5132
RH
11765 case bfd_target_coff_flavour:
11766 return "coff-i386";
9384f2ff 11767# endif
4c63da97 11768#endif
3e73aa7c 11769#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11770 case bfd_target_elf_flavour:
3e73aa7c 11771 {
351f65ca
L
11772 const char *format;
11773
11774 switch (x86_elf_abi)
4fa24527 11775 {
351f65ca
L
11776 default:
11777 format = ELF_TARGET_FORMAT;
11778 break;
7f56bc95 11779 case X86_64_ABI:
351f65ca 11780 use_rela_relocations = 1;
4fa24527 11781 object_64bit = 1;
351f65ca
L
11782 format = ELF_TARGET_FORMAT64;
11783 break;
7f56bc95 11784 case X86_64_X32_ABI:
4fa24527 11785 use_rela_relocations = 1;
351f65ca 11786 object_64bit = 1;
862be3fb 11787 disallow_64bit_reloc = 1;
351f65ca
L
11788 format = ELF_TARGET_FORMAT32;
11789 break;
4fa24527 11790 }
3632d14b 11791 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11792 {
7f56bc95 11793 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11794 as_fatal (_("Intel L1OM is 64bit only"));
11795 return ELF_TARGET_L1OM_FORMAT;
11796 }
b49f93f6 11797 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11798 {
11799 if (x86_elf_abi != X86_64_ABI)
11800 as_fatal (_("Intel K1OM is 64bit only"));
11801 return ELF_TARGET_K1OM_FORMAT;
11802 }
81486035
L
11803 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11804 {
11805 if (x86_elf_abi != I386_ABI)
11806 as_fatal (_("Intel MCU is 32bit only"));
11807 return ELF_TARGET_IAMCU_FORMAT;
11808 }
8a9036a4 11809 else
351f65ca 11810 return format;
3e73aa7c 11811 }
e57f8c65
TG
11812#endif
11813#if defined (OBJ_MACH_O)
11814 case bfd_target_mach_o_flavour:
d382c579
TG
11815 if (flag_code == CODE_64BIT)
11816 {
11817 use_rela_relocations = 1;
11818 object_64bit = 1;
11819 return "mach-o-x86-64";
11820 }
11821 else
11822 return "mach-o-i386";
4c63da97 11823#endif
252b5132
RH
11824 default:
11825 abort ();
11826 return NULL;
11827 }
11828}
11829
47926f60 11830#endif /* OBJ_MAYBE_ more than one */
252b5132 11831\f
252b5132 11832symbolS *
7016a5d5 11833md_undefined_symbol (char *name)
252b5132 11834{
18dc2407
ILT
11835 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11836 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11837 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11838 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11839 {
11840 if (!GOT_symbol)
11841 {
11842 if (symbol_find (name))
11843 as_bad (_("GOT already in symbol table"));
11844 GOT_symbol = symbol_new (name, undefined_section,
11845 (valueT) 0, &zero_address_frag);
11846 };
11847 return GOT_symbol;
11848 }
252b5132
RH
11849 return 0;
11850}
11851
11852/* Round up a section size to the appropriate boundary. */
47926f60 11853
252b5132 11854valueT
7016a5d5 11855md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11856{
4c63da97
AM
11857#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11858 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11859 {
11860 /* For a.out, force the section size to be aligned. If we don't do
11861 this, BFD will align it for us, but it will not write out the
11862 final bytes of the section. This may be a bug in BFD, but it is
11863 easier to fix it here since that is how the other a.out targets
11864 work. */
11865 int align;
11866
11867 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11868 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11869 }
252b5132
RH
11870#endif
11871
11872 return size;
11873}
11874
11875/* On the i386, PC-relative offsets are relative to the start of the
11876 next instruction. That is, the address of the offset, plus its
11877 size, since the offset is always the last part of the insn. */
11878
11879long
e3bb37b5 11880md_pcrel_from (fixS *fixP)
252b5132
RH
11881{
11882 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11883}
11884
11885#ifndef I386COFF
11886
11887static void
e3bb37b5 11888s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11889{
29b0f896 11890 int temp;
252b5132 11891
8a75718c
JB
11892#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11893 if (IS_ELF)
11894 obj_elf_section_change_hook ();
11895#endif
252b5132
RH
11896 temp = get_absolute_expression ();
11897 subseg_set (bss_section, (subsegT) temp);
11898 demand_empty_rest_of_line ();
11899}
11900
11901#endif
11902
252b5132 11903void
e3bb37b5 11904i386_validate_fix (fixS *fixp)
252b5132 11905{
02a86693 11906 if (fixp->fx_subsy)
252b5132 11907 {
02a86693 11908 if (fixp->fx_subsy == GOT_symbol)
23df1078 11909 {
02a86693
L
11910 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11911 {
11912 if (!object_64bit)
11913 abort ();
11914#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11915 if (fixp->fx_tcbit2)
56ceb5b5
L
11916 fixp->fx_r_type = (fixp->fx_tcbit
11917 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11918 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11919 else
11920#endif
11921 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11922 }
d6ab8113 11923 else
02a86693
L
11924 {
11925 if (!object_64bit)
11926 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11927 else
11928 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11929 }
11930 fixp->fx_subsy = 0;
23df1078 11931 }
252b5132 11932 }
02a86693
L
11933#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11934 else if (!object_64bit)
11935 {
11936 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11937 && fixp->fx_tcbit2)
11938 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11939 }
11940#endif
252b5132
RH
11941}
11942
252b5132 11943arelent *
7016a5d5 11944tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11945{
11946 arelent *rel;
11947 bfd_reloc_code_real_type code;
11948
11949 switch (fixp->fx_r_type)
11950 {
8ce3d284 11951#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11952 case BFD_RELOC_SIZE32:
11953 case BFD_RELOC_SIZE64:
11954 if (S_IS_DEFINED (fixp->fx_addsy)
11955 && !S_IS_EXTERNAL (fixp->fx_addsy))
11956 {
11957 /* Resolve size relocation against local symbol to size of
11958 the symbol plus addend. */
11959 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11960 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11961 && !fits_in_unsigned_long (value))
11962 as_bad_where (fixp->fx_file, fixp->fx_line,
11963 _("symbol size computation overflow"));
11964 fixp->fx_addsy = NULL;
11965 fixp->fx_subsy = NULL;
11966 md_apply_fix (fixp, (valueT *) &value, NULL);
11967 return NULL;
11968 }
8ce3d284 11969#endif
1a0670f3 11970 /* Fall through. */
8fd4256d 11971
3e73aa7c
JH
11972 case BFD_RELOC_X86_64_PLT32:
11973 case BFD_RELOC_X86_64_GOT32:
11974 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11975 case BFD_RELOC_X86_64_GOTPCRELX:
11976 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11977 case BFD_RELOC_386_PLT32:
11978 case BFD_RELOC_386_GOT32:
02a86693 11979 case BFD_RELOC_386_GOT32X:
252b5132
RH
11980 case BFD_RELOC_386_GOTOFF:
11981 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11982 case BFD_RELOC_386_TLS_GD:
11983 case BFD_RELOC_386_TLS_LDM:
11984 case BFD_RELOC_386_TLS_LDO_32:
11985 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11986 case BFD_RELOC_386_TLS_IE:
11987 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11988 case BFD_RELOC_386_TLS_LE_32:
11989 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11990 case BFD_RELOC_386_TLS_GOTDESC:
11991 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11992 case BFD_RELOC_X86_64_TLSGD:
11993 case BFD_RELOC_X86_64_TLSLD:
11994 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11995 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11996 case BFD_RELOC_X86_64_GOTTPOFF:
11997 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11998 case BFD_RELOC_X86_64_TPOFF64:
11999 case BFD_RELOC_X86_64_GOTOFF64:
12000 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12001 case BFD_RELOC_X86_64_GOT64:
12002 case BFD_RELOC_X86_64_GOTPCREL64:
12003 case BFD_RELOC_X86_64_GOTPC64:
12004 case BFD_RELOC_X86_64_GOTPLT64:
12005 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12006 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12007 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12008 case BFD_RELOC_RVA:
12009 case BFD_RELOC_VTABLE_ENTRY:
12010 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12011#ifdef TE_PE
12012 case BFD_RELOC_32_SECREL:
12013#endif
252b5132
RH
12014 code = fixp->fx_r_type;
12015 break;
dbbaec26
L
12016 case BFD_RELOC_X86_64_32S:
12017 if (!fixp->fx_pcrel)
12018 {
12019 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12020 code = fixp->fx_r_type;
12021 break;
12022 }
1a0670f3 12023 /* Fall through. */
252b5132 12024 default:
93382f6d 12025 if (fixp->fx_pcrel)
252b5132 12026 {
93382f6d
AM
12027 switch (fixp->fx_size)
12028 {
12029 default:
b091f402
AM
12030 as_bad_where (fixp->fx_file, fixp->fx_line,
12031 _("can not do %d byte pc-relative relocation"),
12032 fixp->fx_size);
93382f6d
AM
12033 code = BFD_RELOC_32_PCREL;
12034 break;
12035 case 1: code = BFD_RELOC_8_PCREL; break;
12036 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12037 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12038#ifdef BFD64
12039 case 8: code = BFD_RELOC_64_PCREL; break;
12040#endif
93382f6d
AM
12041 }
12042 }
12043 else
12044 {
12045 switch (fixp->fx_size)
12046 {
12047 default:
b091f402
AM
12048 as_bad_where (fixp->fx_file, fixp->fx_line,
12049 _("can not do %d byte relocation"),
12050 fixp->fx_size);
93382f6d
AM
12051 code = BFD_RELOC_32;
12052 break;
12053 case 1: code = BFD_RELOC_8; break;
12054 case 2: code = BFD_RELOC_16; break;
12055 case 4: code = BFD_RELOC_32; break;
937149dd 12056#ifdef BFD64
3e73aa7c 12057 case 8: code = BFD_RELOC_64; break;
937149dd 12058#endif
93382f6d 12059 }
252b5132
RH
12060 }
12061 break;
12062 }
252b5132 12063
d182319b
JB
12064 if ((code == BFD_RELOC_32
12065 || code == BFD_RELOC_32_PCREL
12066 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12067 && GOT_symbol
12068 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12069 {
4fa24527 12070 if (!object_64bit)
d6ab8113
JB
12071 code = BFD_RELOC_386_GOTPC;
12072 else
12073 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12074 }
7b81dfbb
AJ
12075 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12076 && GOT_symbol
12077 && fixp->fx_addsy == GOT_symbol)
12078 {
12079 code = BFD_RELOC_X86_64_GOTPC64;
12080 }
252b5132 12081
add39d23
TS
12082 rel = XNEW (arelent);
12083 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12084 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12085
12086 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12087
3e73aa7c
JH
12088 if (!use_rela_relocations)
12089 {
12090 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12091 vtable entry to be used in the relocation's section offset. */
12092 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12093 rel->address = fixp->fx_offset;
fbeb56a4
DK
12094#if defined (OBJ_COFF) && defined (TE_PE)
12095 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12096 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12097 else
12098#endif
c6682705 12099 rel->addend = 0;
3e73aa7c
JH
12100 }
12101 /* Use the rela in 64bit mode. */
252b5132 12102 else
3e73aa7c 12103 {
862be3fb
L
12104 if (disallow_64bit_reloc)
12105 switch (code)
12106 {
862be3fb
L
12107 case BFD_RELOC_X86_64_DTPOFF64:
12108 case BFD_RELOC_X86_64_TPOFF64:
12109 case BFD_RELOC_64_PCREL:
12110 case BFD_RELOC_X86_64_GOTOFF64:
12111 case BFD_RELOC_X86_64_GOT64:
12112 case BFD_RELOC_X86_64_GOTPCREL64:
12113 case BFD_RELOC_X86_64_GOTPC64:
12114 case BFD_RELOC_X86_64_GOTPLT64:
12115 case BFD_RELOC_X86_64_PLTOFF64:
12116 as_bad_where (fixp->fx_file, fixp->fx_line,
12117 _("cannot represent relocation type %s in x32 mode"),
12118 bfd_get_reloc_code_name (code));
12119 break;
12120 default:
12121 break;
12122 }
12123
062cd5e7
AS
12124 if (!fixp->fx_pcrel)
12125 rel->addend = fixp->fx_offset;
12126 else
12127 switch (code)
12128 {
12129 case BFD_RELOC_X86_64_PLT32:
12130 case BFD_RELOC_X86_64_GOT32:
12131 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12132 case BFD_RELOC_X86_64_GOTPCRELX:
12133 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12134 case BFD_RELOC_X86_64_TLSGD:
12135 case BFD_RELOC_X86_64_TLSLD:
12136 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12137 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12138 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12139 rel->addend = fixp->fx_offset - fixp->fx_size;
12140 break;
12141 default:
12142 rel->addend = (section->vma
12143 - fixp->fx_size
12144 + fixp->fx_addnumber
12145 + md_pcrel_from (fixp));
12146 break;
12147 }
3e73aa7c
JH
12148 }
12149
252b5132
RH
12150 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12151 if (rel->howto == NULL)
12152 {
12153 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12154 _("cannot represent relocation type %s"),
252b5132
RH
12155 bfd_get_reloc_code_name (code));
12156 /* Set howto to a garbage value so that we can keep going. */
12157 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12158 gas_assert (rel->howto != NULL);
252b5132
RH
12159 }
12160
12161 return rel;
12162}
12163
ee86248c 12164#include "tc-i386-intel.c"
54cfded0 12165
a60de03c
JB
12166void
12167tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12168{
a60de03c
JB
12169 int saved_naked_reg;
12170 char saved_register_dot;
54cfded0 12171
a60de03c
JB
12172 saved_naked_reg = allow_naked_reg;
12173 allow_naked_reg = 1;
12174 saved_register_dot = register_chars['.'];
12175 register_chars['.'] = '.';
12176 allow_pseudo_reg = 1;
12177 expression_and_evaluate (exp);
12178 allow_pseudo_reg = 0;
12179 register_chars['.'] = saved_register_dot;
12180 allow_naked_reg = saved_naked_reg;
12181
e96d56a1 12182 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12183 {
a60de03c
JB
12184 if ((addressT) exp->X_add_number < i386_regtab_size)
12185 {
12186 exp->X_op = O_constant;
12187 exp->X_add_number = i386_regtab[exp->X_add_number]
12188 .dw2_regnum[flag_code >> 1];
12189 }
12190 else
12191 exp->X_op = O_illegal;
54cfded0 12192 }
54cfded0
AM
12193}
12194
12195void
12196tc_x86_frame_initial_instructions (void)
12197{
a60de03c
JB
12198 static unsigned int sp_regno[2];
12199
12200 if (!sp_regno[flag_code >> 1])
12201 {
12202 char *saved_input = input_line_pointer;
12203 char sp[][4] = {"esp", "rsp"};
12204 expressionS exp;
a4447b93 12205
a60de03c
JB
12206 input_line_pointer = sp[flag_code >> 1];
12207 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12208 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12209 sp_regno[flag_code >> 1] = exp.X_add_number;
12210 input_line_pointer = saved_input;
12211 }
a4447b93 12212
61ff971f
L
12213 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12214 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12215}
d2b2c203 12216
d7921315
L
12217int
12218x86_dwarf2_addr_size (void)
12219{
12220#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12221 if (x86_elf_abi == X86_64_X32_ABI)
12222 return 4;
12223#endif
12224 return bfd_arch_bits_per_address (stdoutput) / 8;
12225}
12226
d2b2c203
DJ
12227int
12228i386_elf_section_type (const char *str, size_t len)
12229{
12230 if (flag_code == CODE_64BIT
12231 && len == sizeof ("unwind") - 1
12232 && strncmp (str, "unwind", 6) == 0)
12233 return SHT_X86_64_UNWIND;
12234
12235 return -1;
12236}
bb41ade5 12237
ad5fec3b
EB
12238#ifdef TE_SOLARIS
12239void
12240i386_solaris_fix_up_eh_frame (segT sec)
12241{
12242 if (flag_code == CODE_64BIT)
12243 elf_section_type (sec) = SHT_X86_64_UNWIND;
12244}
12245#endif
12246
bb41ade5
AM
12247#ifdef TE_PE
12248void
12249tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12250{
91d6fa6a 12251 expressionS exp;
bb41ade5 12252
91d6fa6a
NC
12253 exp.X_op = O_secrel;
12254 exp.X_add_symbol = symbol;
12255 exp.X_add_number = 0;
12256 emit_expr (&exp, size);
bb41ade5
AM
12257}
12258#endif
3b22753a
L
12259
12260#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12261/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12262
01e1a5bc 12263bfd_vma
6d4af3c2 12264x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12265{
12266 if (flag_code == CODE_64BIT)
12267 {
12268 if (letter == 'l')
12269 return SHF_X86_64_LARGE;
12270
8f3bae45 12271 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12272 }
3b22753a 12273 else
8f3bae45 12274 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12275 return -1;
12276}
12277
01e1a5bc 12278bfd_vma
3b22753a
L
12279x86_64_section_word (char *str, size_t len)
12280{
8620418b 12281 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12282 return SHF_X86_64_LARGE;
12283
12284 return -1;
12285}
12286
12287static void
12288handle_large_common (int small ATTRIBUTE_UNUSED)
12289{
12290 if (flag_code != CODE_64BIT)
12291 {
12292 s_comm_internal (0, elf_common_parse);
12293 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12294 }
12295 else
12296 {
12297 static segT lbss_section;
12298 asection *saved_com_section_ptr = elf_com_section_ptr;
12299 asection *saved_bss_section = bss_section;
12300
12301 if (lbss_section == NULL)
12302 {
12303 flagword applicable;
12304 segT seg = now_seg;
12305 subsegT subseg = now_subseg;
12306
12307 /* The .lbss section is for local .largecomm symbols. */
12308 lbss_section = subseg_new (".lbss", 0);
12309 applicable = bfd_applicable_section_flags (stdoutput);
12310 bfd_set_section_flags (stdoutput, lbss_section,
12311 applicable & SEC_ALLOC);
12312 seg_info (lbss_section)->bss = 1;
12313
12314 subseg_set (seg, subseg);
12315 }
12316
12317 elf_com_section_ptr = &_bfd_elf_large_com_section;
12318 bss_section = lbss_section;
12319
12320 s_comm_internal (0, elf_common_parse);
12321
12322 elf_com_section_ptr = saved_com_section_ptr;
12323 bss_section = saved_bss_section;
12324 }
12325}
12326#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.108766 seconds and 4 git commands to generate.