binutils: Make DWARF register name lookup be via a function pointer
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
79dec6b7
JB
101/* This matches the C -> StaticRounding alias in the opcode table. */
102#define commutative staticrounding
103
6305a203
L
104/*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111typedef struct
112{
d3ce72d0
NC
113 const insn_template *start;
114 const insn_template *end;
6305a203
L
115}
116templates;
117
118/* 386 operand encoding bytes: see 386 book for details of this. */
119typedef struct
120{
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124}
125modrm_byte;
126
127/* x86-64 extension prefix. */
128typedef int rex_byte;
129
6305a203
L
130/* 386 opcode byte to code indirect addressing. */
131typedef struct
132{
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136}
137sib_byte;
138
6305a203
L
139/* x86 arch names, types and features */
140typedef struct
141{
142 const char *name; /* arch name */
8a2c8fef 143 unsigned int len; /* arch string length */
6305a203
L
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 146 unsigned int skip; /* show_arch should skip this. */
6305a203
L
147}
148arch_entry;
149
293f5f65
L
150/* Used to turn off indicated flags. */
151typedef struct
152{
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156}
157noarch_entry;
158
78f12dd3 159static void update_code_flag (int, int);
e3bb37b5
L
160static void set_code_flag (int);
161static void set_16bit_gcc_code_flag (int);
162static void set_intel_syntax (int);
1efbbeb4 163static void set_intel_mnemonic (int);
db51cc60 164static void set_allow_index_reg (int);
7bab8ab5 165static void set_check (int);
e3bb37b5 166static void set_cpu_arch (int);
6482c264 167#ifdef TE_PE
e3bb37b5 168static void pe_directive_secrel (int);
6482c264 169#endif
e3bb37b5
L
170static void signed_cons (int);
171static char *output_invalid (int c);
ee86248c
JB
172static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
a7619375 176static int i386_att_operand (char *);
e3bb37b5 177static int i386_intel_operand (char *, int);
ee86248c
JB
178static int i386_intel_simplify (expressionS *);
179static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
180static const reg_entry *parse_register (char *, char **);
181static char *parse_insn (char *, char *);
182static char *parse_operands (char *, const char *);
183static void swap_operands (void);
4d456e3d 184static void swap_2_operands (int, int);
e3bb37b5
L
185static void optimize_imm (void);
186static void optimize_disp (void);
83b16ac6 187static const insn_template *match_template (char);
e3bb37b5
L
188static int check_string (void);
189static int process_suffix (void);
190static int check_byte_reg (void);
191static int check_long_reg (void);
192static int check_qword_reg (void);
193static int check_word_reg (void);
194static int finalize_imm (void);
195static int process_operands (void);
196static const seg_entry *build_modrm_byte (void);
197static void output_insn (void);
198static void output_imm (fragS *, offsetT);
199static void output_disp (fragS *, offsetT);
29b0f896 200#ifndef I386COFF
e3bb37b5 201static void s_bss (int);
252b5132 202#endif
17d4e2a2
L
203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
205
206/* GNU_PROPERTY_X86_ISA_1_USED. */
207static unsigned int x86_isa_1_used;
208/* GNU_PROPERTY_X86_FEATURE_2_USED. */
209static unsigned int x86_feature_2_used;
210/* Generate x86 used ISA and feature properties. */
211static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 212#endif
252b5132 213
a847613f 214static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 215
43234a1e
L
216/* This struct describes rounding control and SAE in the instruction. */
217struct RC_Operation
218{
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228};
229
230static struct RC_Operation rc_op;
231
232/* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235struct Mask_Operation
236{
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241};
242
243static struct Mask_Operation mask_op;
244
245/* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247struct Broadcast_Operation
248{
8e6e0792 249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
4a1b91ea
L
254
255 /* Number of bytes to broadcast. */
256 int bytes;
43234a1e
L
257};
258
259static struct Broadcast_Operation broadcast_op;
260
c0f3af97
L
261/* VEX prefix. */
262typedef struct
263{
43234a1e
L
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
c0f3af97
L
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269} vex_prefix;
270
252b5132 271/* 'md_assemble ()' gathers together information and puts it into a
47926f60 272 i386_insn. */
252b5132 273
520dc8e8
AM
274union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
a65babc9
L
281enum i386_error
282 {
86e026a4 283 operand_size_mismatch,
a65babc9
L
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
a65babc9
L
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
6c30d220
L
291 unsupported,
292 invalid_vsib_address,
7bab8ab5 293 invalid_vector_register_set,
43234a1e
L
294 unsupported_vector_index_register,
295 unsupported_broadcast,
43234a1e
L
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
a65babc9
L
303 };
304
252b5132
RH
305struct _i386_insn
306 {
47926f60 307 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 308 insn_template tm;
252b5132 309
7d5e4556
L
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
252b5132
RH
312 char suffix;
313
47926f60 314 /* OPERANDS gives the number of given operands. */
252b5132
RH
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
47926f60 319 operands. */
252b5132
RH
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 323 use OP[i] for the corresponding operand. */
40fb9820 324 i386_operand_type types[MAX_OPERANDS];
252b5132 325
520dc8e8
AM
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
252b5132 329
3e73aa7c
JH
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332#define Operand_PCrel 1
c48dadc9 333#define Operand_Mem 2
3e73aa7c 334
252b5132 335 /* Relocation type for operand */
f86103b7 336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 337
252b5132
RH
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 345 explicit segment overrides are given. */
ce8a8b2f 346 const seg_entry *seg[2];
252b5132 347
8325cc63
JB
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
252b5132
RH
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
6f2f06be
JB
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
b4a3a7b4
L
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
252b5132 371 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 372 addressing modes of this insn are encoded. */
252b5132 373 modrm_byte rm;
3e73aa7c 374 rex_byte rex;
43234a1e 375 rex_byte vrex;
252b5132 376 sib_byte sib;
c0f3af97 377 vex_prefix vex;
b6169b20 378
43234a1e
L
379 /* Masking attributes. */
380 struct Mask_Operation *mask;
381
382 /* Rounding control and SAE attributes. */
383 struct RC_Operation *rounding;
384
385 /* Broadcasting attributes. */
386 struct Broadcast_Operation *broadcast;
387
388 /* Compressed disp8*N attribute. */
389 unsigned int memshift;
390
86fa6981
L
391 /* Prefer load or store in encoding. */
392 enum
393 {
394 dir_encoding_default = 0,
395 dir_encoding_load,
64c49ab3
JB
396 dir_encoding_store,
397 dir_encoding_swap
86fa6981 398 } dir_encoding;
891edac4 399
a501d77e
L
400 /* Prefer 8bit or 32bit displacement in encoding. */
401 enum
402 {
403 disp_encoding_default = 0,
404 disp_encoding_8bit,
405 disp_encoding_32bit
406 } disp_encoding;
f8a5c266 407
6b6b6807
L
408 /* Prefer the REX byte in encoding. */
409 bfd_boolean rex_encoding;
410
b6f8c7c4
L
411 /* Disable instruction size optimization. */
412 bfd_boolean no_optimize;
413
86fa6981
L
414 /* How to encode vector instructions. */
415 enum
416 {
417 vex_encoding_default = 0,
418 vex_encoding_vex2,
419 vex_encoding_vex3,
420 vex_encoding_evex
421 } vec_encoding;
422
d5de92cf
L
423 /* REP prefix. */
424 const char *rep_prefix;
425
165de32a
L
426 /* HLE prefix. */
427 const char *hle_prefix;
42164a71 428
7e8b059b
L
429 /* Have BND prefix. */
430 const char *bnd_prefix;
431
04ef582a
L
432 /* Have NOTRACK prefix. */
433 const char *notrack_prefix;
434
891edac4 435 /* Error message. */
a65babc9 436 enum i386_error error;
252b5132
RH
437 };
438
439typedef struct _i386_insn i386_insn;
440
43234a1e
L
441/* Link RC type with corresponding string, that'll be looked for in
442 asm. */
443struct RC_name
444{
445 enum rc_type type;
446 const char *name;
447 unsigned int len;
448};
449
450static const struct RC_name RC_NamesTable[] =
451{
452 { rne, STRING_COMMA_LEN ("rn-sae") },
453 { rd, STRING_COMMA_LEN ("rd-sae") },
454 { ru, STRING_COMMA_LEN ("ru-sae") },
455 { rz, STRING_COMMA_LEN ("rz-sae") },
456 { saeonly, STRING_COMMA_LEN ("sae") },
457};
458
252b5132
RH
459/* List of chars besides those in app.c:symbol_chars that can start an
460 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 461const char extra_symbol_chars[] = "*%-([{}"
252b5132 462#ifdef LEX_AT
32137342
NC
463 "@"
464#endif
465#ifdef LEX_QM
466 "?"
252b5132 467#endif
32137342 468 ;
252b5132 469
29b0f896
AM
470#if (defined (TE_I386AIX) \
471 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 472 && !defined (TE_GNU) \
29b0f896 473 && !defined (TE_LINUX) \
8d63c93e 474 && !defined (TE_NACL) \
29b0f896 475 && !defined (TE_FreeBSD) \
5b806d27 476 && !defined (TE_DragonFly) \
29b0f896 477 && !defined (TE_NetBSD)))
252b5132 478/* This array holds the chars that always start a comment. If the
b3b91714
AM
479 pre-processor is disabled, these aren't very useful. The option
480 --divide will remove '/' from this list. */
481const char *i386_comment_chars = "#/";
482#define SVR4_COMMENT_CHARS 1
252b5132 483#define PREFIX_SEPARATOR '\\'
252b5132 484
b3b91714
AM
485#else
486const char *i386_comment_chars = "#";
487#define PREFIX_SEPARATOR '/'
488#endif
489
252b5132
RH
490/* This array holds the chars that only start a comment at the beginning of
491 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
492 .line and .file directives will appear in the pre-processed output.
493 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 494 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
495 #NO_APP at the beginning of its output.
496 Also note that comments started like this one will always work if
252b5132 497 '/' isn't otherwise defined. */
b3b91714 498const char line_comment_chars[] = "#/";
252b5132 499
63a0b638 500const char line_separator_chars[] = ";";
252b5132 501
ce8a8b2f
AM
502/* Chars that can be used to separate mant from exp in floating point
503 nums. */
252b5132
RH
504const char EXP_CHARS[] = "eE";
505
ce8a8b2f
AM
506/* Chars that mean this number is a floating point constant
507 As in 0f12.456
508 or 0d1.2345e12. */
252b5132
RH
509const char FLT_CHARS[] = "fFdDxX";
510
ce8a8b2f 511/* Tables for lexical analysis. */
252b5132
RH
512static char mnemonic_chars[256];
513static char register_chars[256];
514static char operand_chars[256];
515static char identifier_chars[256];
516static char digit_chars[256];
517
ce8a8b2f 518/* Lexical macros. */
252b5132
RH
519#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
520#define is_operand_char(x) (operand_chars[(unsigned char) x])
521#define is_register_char(x) (register_chars[(unsigned char) x])
522#define is_space_char(x) ((x) == ' ')
523#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
524#define is_digit_char(x) (digit_chars[(unsigned char) x])
525
0234cb7c 526/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
527static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
528
529/* md_assemble() always leaves the strings it's passed unaltered. To
530 effect this we maintain a stack of saved characters that we've smashed
531 with '\0's (indicating end of strings for various sub-fields of the
47926f60 532 assembler instruction). */
252b5132 533static char save_stack[32];
ce8a8b2f 534static char *save_stack_p;
252b5132
RH
535#define END_STRING_AND_SAVE(s) \
536 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
537#define RESTORE_END_STRING(s) \
538 do { *(s) = *--save_stack_p; } while (0)
539
47926f60 540/* The instruction we're assembling. */
252b5132
RH
541static i386_insn i;
542
543/* Possible templates for current insn. */
544static const templates *current_templates;
545
31b2323c
L
546/* Per instruction expressionS buffers: max displacements & immediates. */
547static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
548static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 549
47926f60 550/* Current operand we are working on. */
ee86248c 551static int this_operand = -1;
252b5132 552
3e73aa7c
JH
553/* We support four different modes. FLAG_CODE variable is used to distinguish
554 these. */
555
556enum flag_code {
557 CODE_32BIT,
558 CODE_16BIT,
559 CODE_64BIT };
560
561static enum flag_code flag_code;
4fa24527 562static unsigned int object_64bit;
862be3fb 563static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
564static int use_rela_relocations = 0;
565
7af8ed2d
NC
566#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
567 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
568 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
569
351f65ca
L
570/* The ELF ABI to use. */
571enum x86_elf_abi
572{
573 I386_ABI,
7f56bc95
L
574 X86_64_ABI,
575 X86_64_X32_ABI
351f65ca
L
576};
577
578static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 579#endif
351f65ca 580
167ad85b
TG
581#if defined (TE_PE) || defined (TE_PEP)
582/* Use big object file format. */
583static int use_big_obj = 0;
584#endif
585
8dcea932
L
586#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
587/* 1 if generating code for a shared library. */
588static int shared = 0;
589#endif
590
47926f60
KH
591/* 1 for intel syntax,
592 0 if att syntax. */
593static int intel_syntax = 0;
252b5132 594
e89c5eaa
L
595/* 1 for Intel64 ISA,
596 0 if AMD64 ISA. */
597static int intel64;
598
1efbbeb4
L
599/* 1 for intel mnemonic,
600 0 if att mnemonic. */
601static int intel_mnemonic = !SYSV386_COMPAT;
602
a60de03c
JB
603/* 1 if pseudo registers are permitted. */
604static int allow_pseudo_reg = 0;
605
47926f60
KH
606/* 1 if register prefix % not required. */
607static int allow_naked_reg = 0;
252b5132 608
33eaf5de 609/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
610 instructions supporting it, even if this prefix wasn't specified
611 explicitly. */
612static int add_bnd_prefix = 0;
613
ba104c83 614/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
615static int allow_index_reg = 0;
616
d022bddd
IT
617/* 1 if the assembler should ignore LOCK prefix, even if it was
618 specified explicitly. */
619static int omit_lock_prefix = 0;
620
e4e00185
AS
621/* 1 if the assembler should encode lfence, mfence, and sfence as
622 "lock addl $0, (%{re}sp)". */
623static int avoid_fence = 0;
624
0cb4071e
L
625/* 1 if the assembler should generate relax relocations. */
626
627static int generate_relax_relocations
628 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
629
7bab8ab5 630static enum check_kind
daf50ae7 631 {
7bab8ab5
JB
632 check_none = 0,
633 check_warning,
634 check_error
daf50ae7 635 }
7bab8ab5 636sse_check, operand_check = check_warning;
daf50ae7 637
b6f8c7c4
L
638/* Optimization:
639 1. Clear the REX_W bit with register operand if possible.
640 2. Above plus use 128bit vector instruction to clear the full vector
641 register.
642 */
643static int optimize = 0;
644
645/* Optimization:
646 1. Clear the REX_W bit with register operand if possible.
647 2. Above plus use 128bit vector instruction to clear the full vector
648 register.
649 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
650 "testb $imm7,%r8".
651 */
652static int optimize_for_space = 0;
653
2ca3ace5
L
654/* Register prefix used for error message. */
655static const char *register_prefix = "%";
656
47926f60
KH
657/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
658 leave, push, and pop instructions so that gcc has the same stack
659 frame as in 32 bit mode. */
660static char stackop_size = '\0';
eecb386c 661
12b55ccc
L
662/* Non-zero to optimize code alignment. */
663int optimize_align_code = 1;
664
47926f60
KH
665/* Non-zero to quieten some warnings. */
666static int quiet_warnings = 0;
a38cf1db 667
47926f60
KH
668/* CPU name. */
669static const char *cpu_arch_name = NULL;
6305a203 670static char *cpu_sub_arch_name = NULL;
a38cf1db 671
47926f60 672/* CPU feature flags. */
40fb9820
L
673static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
674
ccc9c027
L
675/* If we have selected a cpu we are generating instructions for. */
676static int cpu_arch_tune_set = 0;
677
9103f4f4 678/* Cpu we are generating instructions for. */
fbf3f584 679enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
680
681/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 682static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 683
ccc9c027 684/* CPU instruction set architecture used. */
fbf3f584 685enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 686
9103f4f4 687/* CPU feature flags of instruction set architecture used. */
fbf3f584 688i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 689
fddf5b5b
AM
690/* If set, conditional jumps are not automatically promoted to handle
691 larger than a byte offset. */
692static unsigned int no_cond_jump_promotion = 0;
693
c0f3af97
L
694/* Encode SSE instructions with VEX prefix. */
695static unsigned int sse2avx;
696
539f890d
L
697/* Encode scalar AVX instructions with specific vector length. */
698static enum
699 {
700 vex128 = 0,
701 vex256
702 } avxscalar;
703
03751133
L
704/* Encode VEX WIG instructions with specific vex.w. */
705static enum
706 {
707 vexw0 = 0,
708 vexw1
709 } vexwig;
710
43234a1e
L
711/* Encode scalar EVEX LIG instructions with specific vector length. */
712static enum
713 {
714 evexl128 = 0,
715 evexl256,
716 evexl512
717 } evexlig;
718
719/* Encode EVEX WIG instructions with specific evex.w. */
720static enum
721 {
722 evexw0 = 0,
723 evexw1
724 } evexwig;
725
d3d3c6db
IT
726/* Value to encode in EVEX RC bits, for SAE-only instructions. */
727static enum rc_type evexrcig = rne;
728
29b0f896 729/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 730static symbolS *GOT_symbol;
29b0f896 731
a4447b93
RH
732/* The dwarf2 return column, adjusted for 32 or 64 bit. */
733unsigned int x86_dwarf2_return_column;
734
735/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
736int x86_cie_data_alignment;
737
252b5132 738/* Interface to relax_segment.
fddf5b5b
AM
739 There are 3 major relax states for 386 jump insns because the
740 different types of jumps add different sizes to frags when we're
741 figuring out what sort of jump to choose to reach a given label. */
252b5132 742
47926f60 743/* Types. */
93c2a809
AM
744#define UNCOND_JUMP 0
745#define COND_JUMP 1
746#define COND_JUMP86 2
fddf5b5b 747
47926f60 748/* Sizes. */
252b5132
RH
749#define CODE16 1
750#define SMALL 0
29b0f896 751#define SMALL16 (SMALL | CODE16)
252b5132 752#define BIG 2
29b0f896 753#define BIG16 (BIG | CODE16)
252b5132
RH
754
755#ifndef INLINE
756#ifdef __GNUC__
757#define INLINE __inline__
758#else
759#define INLINE
760#endif
761#endif
762
fddf5b5b
AM
763#define ENCODE_RELAX_STATE(type, size) \
764 ((relax_substateT) (((type) << 2) | (size)))
765#define TYPE_FROM_RELAX_STATE(s) \
766 ((s) >> 2)
767#define DISP_SIZE_FROM_RELAX_STATE(s) \
768 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
769
770/* This table is used by relax_frag to promote short jumps to long
771 ones where necessary. SMALL (short) jumps may be promoted to BIG
772 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
773 don't allow a short jump in a 32 bit code segment to be promoted to
774 a 16 bit offset jump because it's slower (requires data size
775 prefix), and doesn't work, unless the destination is in the bottom
776 64k of the code segment (The top 16 bits of eip are zeroed). */
777
778const relax_typeS md_relax_table[] =
779{
24eab124
AM
780 /* The fields are:
781 1) most positive reach of this state,
782 2) most negative reach of this state,
93c2a809 783 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 784 4) which index into the table to try if we can't fit into this one. */
252b5132 785
fddf5b5b 786 /* UNCOND_JUMP states. */
93c2a809
AM
787 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
788 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
789 /* dword jmp adds 4 bytes to frag:
790 0 extra opcode bytes, 4 displacement bytes. */
252b5132 791 {0, 0, 4, 0},
93c2a809
AM
792 /* word jmp adds 2 byte2 to frag:
793 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
794 {0, 0, 2, 0},
795
93c2a809
AM
796 /* COND_JUMP states. */
797 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
798 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
799 /* dword conditionals adds 5 bytes to frag:
800 1 extra opcode byte, 4 displacement bytes. */
801 {0, 0, 5, 0},
fddf5b5b 802 /* word conditionals add 3 bytes to frag:
93c2a809
AM
803 1 extra opcode byte, 2 displacement bytes. */
804 {0, 0, 3, 0},
805
806 /* COND_JUMP86 states. */
807 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
808 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
809 /* dword conditionals adds 5 bytes to frag:
810 1 extra opcode byte, 4 displacement bytes. */
811 {0, 0, 5, 0},
812 /* word conditionals add 4 bytes to frag:
813 1 displacement byte and a 3 byte long branch insn. */
814 {0, 0, 4, 0}
252b5132
RH
815};
816
9103f4f4
L
817static const arch_entry cpu_arch[] =
818{
89507696
JB
819 /* Do not replace the first two entries - i386_target_format()
820 relies on them being there in this order. */
8a2c8fef 821 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 822 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 824 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 826 CPU_NONE_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 828 CPU_I186_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 830 CPU_I286_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 832 CPU_I386_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 834 CPU_I486_FLAGS, 0 },
8a2c8fef 835 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 836 CPU_I586_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 838 CPU_I686_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 840 CPU_I586_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 842 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 844 CPU_P2_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 846 CPU_P3_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 848 CPU_P4_FLAGS, 0 },
8a2c8fef 849 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 850 CPU_CORE_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 852 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 853 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 854 CPU_CORE_FLAGS, 1 },
8a2c8fef 855 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 856 CPU_CORE_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 858 CPU_CORE2_FLAGS, 1 },
8a2c8fef 859 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 860 CPU_CORE2_FLAGS, 0 },
8a2c8fef 861 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 862 CPU_COREI7_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 864 CPU_L1OM_FLAGS, 0 },
7a9068fe 865 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 866 CPU_K1OM_FLAGS, 0 },
81486035 867 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 868 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 870 CPU_K6_FLAGS, 0 },
8a2c8fef 871 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 872 CPU_K6_2_FLAGS, 0 },
8a2c8fef 873 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 874 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 876 CPU_K8_FLAGS, 1 },
8a2c8fef 877 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 878 CPU_K8_FLAGS, 0 },
8a2c8fef 879 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 880 CPU_K8_FLAGS, 0 },
8a2c8fef 881 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 882 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 883 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 884 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 885 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 886 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 887 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 888 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 889 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 890 CPU_BDVER4_FLAGS, 0 },
029f3522 891 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 892 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
893 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
894 CPU_ZNVER2_FLAGS, 0 },
7b458c12 895 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 896 CPU_BTVER1_FLAGS, 0 },
7b458c12 897 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 898 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_8087_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_287_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_387_FLAGS, 0 },
1848e567
L
905 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
906 CPU_687_FLAGS, 0 },
d871f3f4
L
907 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
908 CPU_CMOV_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
910 CPU_FXSR_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_MMX_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_SSE_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_SSE2_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_SSE3_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_AVX_FLAGS, 0 },
6c30d220 929 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_AVX2_FLAGS, 0 },
43234a1e 931 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_AVX512F_FLAGS, 0 },
43234a1e 933 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_AVX512CD_FLAGS, 0 },
43234a1e 935 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AVX512ER_FLAGS, 0 },
43234a1e 937 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 939 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 941 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 943 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_VMX_FLAGS, 0 },
8729a6f6 947 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_SMX_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 953 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 955 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 957 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 959 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_AES_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 963 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 965 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 967 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 969 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_F16C_FLAGS, 0 },
6c30d220 971 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_BMI2_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_FMA_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_FMA4_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_XOP_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_LWP_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_MOVBE_FLAGS, 0 },
60aa667e 983 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_CX16_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_EPT_FLAGS, 0 },
6c30d220 987 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_LZCNT_FLAGS, 0 },
42164a71 989 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_HLE_FLAGS, 0 },
42164a71 991 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_RTM_FLAGS, 0 },
6c30d220 993 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_CLFLUSH_FLAGS, 0 },
22109423 997 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_NOP_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1005 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1007 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_SVME_FLAGS, 1 },
8a2c8fef 1011 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_SVME_FLAGS, 0 },
8a2c8fef 1013 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_ABM_FLAGS, 0 },
87973e9f 1017 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_BMI_FLAGS, 0 },
2a2a0f38 1019 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_TBM_FLAGS, 0 },
e2e1fcde 1021 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_ADX_FLAGS, 0 },
e2e1fcde 1023 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1025 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1027 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_SMAP_FLAGS, 0 },
7e8b059b 1029 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_MPX_FLAGS, 0 },
a0046408 1031 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_SHA_FLAGS, 0 },
963f3586 1033 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1035 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1037 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_SE1_FLAGS, 0 },
c5e7287a 1039 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1041 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1043 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1045 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1047 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1049 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1051 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1052 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1053 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1054 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1055 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1056 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1057 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_CLZERO_FLAGS, 0 },
9916071f 1059 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_MWAITX_FLAGS, 0 },
8eab4136 1061 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_OSPKE_FLAGS, 0 },
8bc52696 1063 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1065 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1066 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1067 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1068 CPU_IBT_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1070 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1071 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1072 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1073 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1074 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1075 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1076 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1077 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1078 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1079 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1080 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1081 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1082 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1083 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1084 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1085 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1086 CPU_MOVDIRI_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1088 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1089 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1090 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1091 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1092 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1093 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1094 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1095 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1096 CPU_RDPRU_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1098 CPU_MCOMMIT_FLAGS, 0 },
293f5f65
L
1099};
1100
1101static const noarch_entry cpu_noarch[] =
1102{
1103 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1104 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1105 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1106 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1107 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1108 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1109 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1110 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1111 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1112 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1113 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1114 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1115 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1116 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1117 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1118 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1119 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1127 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1128 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1129 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1130 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1131 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1132 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1133 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1134 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1135 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1136 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1137 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1138 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1139 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1140 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1141};
1142
704209c0 1143#ifdef I386COFF
a6c24e68
NC
1144/* Like s_lcomm_internal in gas/read.c but the alignment string
1145 is allowed to be optional. */
1146
1147static symbolS *
1148pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1149{
1150 addressT align = 0;
1151
1152 SKIP_WHITESPACE ();
1153
7ab9ffdd 1154 if (needs_align
a6c24e68
NC
1155 && *input_line_pointer == ',')
1156 {
1157 align = parse_align (needs_align - 1);
7ab9ffdd 1158
a6c24e68
NC
1159 if (align == (addressT) -1)
1160 return NULL;
1161 }
1162 else
1163 {
1164 if (size >= 8)
1165 align = 3;
1166 else if (size >= 4)
1167 align = 2;
1168 else if (size >= 2)
1169 align = 1;
1170 else
1171 align = 0;
1172 }
1173
1174 bss_alloc (symbolP, size, align);
1175 return symbolP;
1176}
1177
704209c0 1178static void
a6c24e68
NC
1179pe_lcomm (int needs_align)
1180{
1181 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1182}
704209c0 1183#endif
a6c24e68 1184
29b0f896
AM
1185const pseudo_typeS md_pseudo_table[] =
1186{
1187#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1188 {"align", s_align_bytes, 0},
1189#else
1190 {"align", s_align_ptwo, 0},
1191#endif
1192 {"arch", set_cpu_arch, 0},
1193#ifndef I386COFF
1194 {"bss", s_bss, 0},
a6c24e68
NC
1195#else
1196 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1197#endif
1198 {"ffloat", float_cons, 'f'},
1199 {"dfloat", float_cons, 'd'},
1200 {"tfloat", float_cons, 'x'},
1201 {"value", cons, 2},
d182319b 1202 {"slong", signed_cons, 4},
29b0f896
AM
1203 {"noopt", s_ignore, 0},
1204 {"optim", s_ignore, 0},
1205 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1206 {"code16", set_code_flag, CODE_16BIT},
1207 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1208#ifdef BFD64
29b0f896 1209 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1210#endif
29b0f896
AM
1211 {"intel_syntax", set_intel_syntax, 1},
1212 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1213 {"intel_mnemonic", set_intel_mnemonic, 1},
1214 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1215 {"allow_index_reg", set_allow_index_reg, 1},
1216 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1217 {"sse_check", set_check, 0},
1218 {"operand_check", set_check, 1},
3b22753a
L
1219#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1220 {"largecomm", handle_large_common, 0},
07a53e5c 1221#else
68d20676 1222 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1223 {"loc", dwarf2_directive_loc, 0},
1224 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1225#endif
6482c264
NC
1226#ifdef TE_PE
1227 {"secrel32", pe_directive_secrel, 0},
1228#endif
29b0f896
AM
1229 {0, 0, 0}
1230};
1231
1232/* For interface with expression (). */
1233extern char *input_line_pointer;
1234
1235/* Hash table for instruction mnemonic lookup. */
1236static struct hash_control *op_hash;
1237
1238/* Hash table for register lookup. */
1239static struct hash_control *reg_hash;
1240\f
ce8a8b2f
AM
1241 /* Various efficient no-op patterns for aligning code labels.
1242 Note: Don't try to assemble the instructions in the comments.
1243 0L and 0w are not legal. */
62a02d25
L
1244static const unsigned char f32_1[] =
1245 {0x90}; /* nop */
1246static const unsigned char f32_2[] =
1247 {0x66,0x90}; /* xchg %ax,%ax */
1248static const unsigned char f32_3[] =
1249 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1250static const unsigned char f32_4[] =
1251 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1252static const unsigned char f32_6[] =
1253 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1254static const unsigned char f32_7[] =
1255 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1256static const unsigned char f16_3[] =
3ae729d5 1257 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1258static const unsigned char f16_4[] =
3ae729d5
L
1259 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1260static const unsigned char jump_disp8[] =
1261 {0xeb}; /* jmp disp8 */
1262static const unsigned char jump32_disp32[] =
1263 {0xe9}; /* jmp disp32 */
1264static const unsigned char jump16_disp32[] =
1265 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1266/* 32-bit NOPs patterns. */
1267static const unsigned char *const f32_patt[] = {
3ae729d5 1268 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1269};
1270/* 16-bit NOPs patterns. */
1271static const unsigned char *const f16_patt[] = {
3ae729d5 1272 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1273};
1274/* nopl (%[re]ax) */
1275static const unsigned char alt_3[] =
1276 {0x0f,0x1f,0x00};
1277/* nopl 0(%[re]ax) */
1278static const unsigned char alt_4[] =
1279 {0x0f,0x1f,0x40,0x00};
1280/* nopl 0(%[re]ax,%[re]ax,1) */
1281static const unsigned char alt_5[] =
1282 {0x0f,0x1f,0x44,0x00,0x00};
1283/* nopw 0(%[re]ax,%[re]ax,1) */
1284static const unsigned char alt_6[] =
1285 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1286/* nopl 0L(%[re]ax) */
1287static const unsigned char alt_7[] =
1288 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1289/* nopl 0L(%[re]ax,%[re]ax,1) */
1290static const unsigned char alt_8[] =
1291 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1292/* nopw 0L(%[re]ax,%[re]ax,1) */
1293static const unsigned char alt_9[] =
1294 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1295/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1296static const unsigned char alt_10[] =
1297 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1298/* data16 nopw %cs:0L(%eax,%eax,1) */
1299static const unsigned char alt_11[] =
1300 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1301/* 32-bit and 64-bit NOPs patterns. */
1302static const unsigned char *const alt_patt[] = {
1303 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1304 alt_9, alt_10, alt_11
62a02d25
L
1305};
1306
1307/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1308 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1309
1310static void
1311i386_output_nops (char *where, const unsigned char *const *patt,
1312 int count, int max_single_nop_size)
1313
1314{
3ae729d5
L
1315 /* Place the longer NOP first. */
1316 int last;
1317 int offset;
3076e594
NC
1318 const unsigned char *nops;
1319
1320 if (max_single_nop_size < 1)
1321 {
1322 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1323 max_single_nop_size);
1324 return;
1325 }
1326
1327 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1328
1329 /* Use the smaller one if the requsted one isn't available. */
1330 if (nops == NULL)
62a02d25 1331 {
3ae729d5
L
1332 max_single_nop_size--;
1333 nops = patt[max_single_nop_size - 1];
62a02d25
L
1334 }
1335
3ae729d5
L
1336 last = count % max_single_nop_size;
1337
1338 count -= last;
1339 for (offset = 0; offset < count; offset += max_single_nop_size)
1340 memcpy (where + offset, nops, max_single_nop_size);
1341
1342 if (last)
1343 {
1344 nops = patt[last - 1];
1345 if (nops == NULL)
1346 {
1347 /* Use the smaller one plus one-byte NOP if the needed one
1348 isn't available. */
1349 last--;
1350 nops = patt[last - 1];
1351 memcpy (where + offset, nops, last);
1352 where[offset + last] = *patt[0];
1353 }
1354 else
1355 memcpy (where + offset, nops, last);
1356 }
62a02d25
L
1357}
1358
3ae729d5
L
1359static INLINE int
1360fits_in_imm7 (offsetT num)
1361{
1362 return (num & 0x7f) == num;
1363}
1364
1365static INLINE int
1366fits_in_imm31 (offsetT num)
1367{
1368 return (num & 0x7fffffff) == num;
1369}
62a02d25
L
1370
1371/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1372 single NOP instruction LIMIT. */
1373
1374void
3ae729d5 1375i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1376{
3ae729d5 1377 const unsigned char *const *patt = NULL;
62a02d25 1378 int max_single_nop_size;
3ae729d5
L
1379 /* Maximum number of NOPs before switching to jump over NOPs. */
1380 int max_number_of_nops;
62a02d25 1381
3ae729d5 1382 switch (fragP->fr_type)
62a02d25 1383 {
3ae729d5
L
1384 case rs_fill_nop:
1385 case rs_align_code:
1386 break;
1387 default:
62a02d25
L
1388 return;
1389 }
1390
ccc9c027
L
1391 /* We need to decide which NOP sequence to use for 32bit and
1392 64bit. When -mtune= is used:
4eed87de 1393
76bc74dc
L
1394 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1395 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1396 2. For the rest, alt_patt will be used.
1397
1398 When -mtune= isn't used, alt_patt will be used if
22109423 1399 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1400 be used.
ccc9c027
L
1401
1402 When -march= or .arch is used, we can't use anything beyond
1403 cpu_arch_isa_flags. */
1404
1405 if (flag_code == CODE_16BIT)
1406 {
3ae729d5
L
1407 patt = f16_patt;
1408 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1409 /* Limit number of NOPs to 2 in 16-bit mode. */
1410 max_number_of_nops = 2;
252b5132 1411 }
33fef721 1412 else
ccc9c027 1413 {
fbf3f584 1414 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1415 {
1416 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1417 switch (cpu_arch_tune)
1418 {
1419 case PROCESSOR_UNKNOWN:
1420 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1421 optimize with nops. */
1422 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1423 patt = alt_patt;
ccc9c027
L
1424 else
1425 patt = f32_patt;
1426 break;
ccc9c027
L
1427 case PROCESSOR_PENTIUM4:
1428 case PROCESSOR_NOCONA:
ef05d495 1429 case PROCESSOR_CORE:
76bc74dc 1430 case PROCESSOR_CORE2:
bd5295b2 1431 case PROCESSOR_COREI7:
3632d14b 1432 case PROCESSOR_L1OM:
7a9068fe 1433 case PROCESSOR_K1OM:
76bc74dc 1434 case PROCESSOR_GENERIC64:
ccc9c027
L
1435 case PROCESSOR_K6:
1436 case PROCESSOR_ATHLON:
1437 case PROCESSOR_K8:
4eed87de 1438 case PROCESSOR_AMDFAM10:
8aedb9fe 1439 case PROCESSOR_BD:
029f3522 1440 case PROCESSOR_ZNVER:
7b458c12 1441 case PROCESSOR_BT:
80b8656c 1442 patt = alt_patt;
ccc9c027 1443 break;
76bc74dc 1444 case PROCESSOR_I386:
ccc9c027
L
1445 case PROCESSOR_I486:
1446 case PROCESSOR_PENTIUM:
2dde1948 1447 case PROCESSOR_PENTIUMPRO:
81486035 1448 case PROCESSOR_IAMCU:
ccc9c027
L
1449 case PROCESSOR_GENERIC32:
1450 patt = f32_patt;
1451 break;
4eed87de 1452 }
ccc9c027
L
1453 }
1454 else
1455 {
fbf3f584 1456 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1457 {
1458 case PROCESSOR_UNKNOWN:
e6a14101 1459 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1460 PROCESSOR_UNKNOWN. */
1461 abort ();
1462 break;
1463
76bc74dc 1464 case PROCESSOR_I386:
ccc9c027
L
1465 case PROCESSOR_I486:
1466 case PROCESSOR_PENTIUM:
81486035 1467 case PROCESSOR_IAMCU:
ccc9c027
L
1468 case PROCESSOR_K6:
1469 case PROCESSOR_ATHLON:
1470 case PROCESSOR_K8:
4eed87de 1471 case PROCESSOR_AMDFAM10:
8aedb9fe 1472 case PROCESSOR_BD:
029f3522 1473 case PROCESSOR_ZNVER:
7b458c12 1474 case PROCESSOR_BT:
ccc9c027
L
1475 case PROCESSOR_GENERIC32:
1476 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1477 with nops. */
1478 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1479 patt = alt_patt;
ccc9c027
L
1480 else
1481 patt = f32_patt;
1482 break;
76bc74dc
L
1483 case PROCESSOR_PENTIUMPRO:
1484 case PROCESSOR_PENTIUM4:
1485 case PROCESSOR_NOCONA:
1486 case PROCESSOR_CORE:
ef05d495 1487 case PROCESSOR_CORE2:
bd5295b2 1488 case PROCESSOR_COREI7:
3632d14b 1489 case PROCESSOR_L1OM:
7a9068fe 1490 case PROCESSOR_K1OM:
22109423 1491 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1492 patt = alt_patt;
ccc9c027
L
1493 else
1494 patt = f32_patt;
1495 break;
1496 case PROCESSOR_GENERIC64:
80b8656c 1497 patt = alt_patt;
ccc9c027 1498 break;
4eed87de 1499 }
ccc9c027
L
1500 }
1501
76bc74dc
L
1502 if (patt == f32_patt)
1503 {
3ae729d5
L
1504 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1505 /* Limit number of NOPs to 2 for older processors. */
1506 max_number_of_nops = 2;
76bc74dc
L
1507 }
1508 else
1509 {
3ae729d5
L
1510 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1511 /* Limit number of NOPs to 7 for newer processors. */
1512 max_number_of_nops = 7;
1513 }
1514 }
1515
1516 if (limit == 0)
1517 limit = max_single_nop_size;
1518
1519 if (fragP->fr_type == rs_fill_nop)
1520 {
1521 /* Output NOPs for .nop directive. */
1522 if (limit > max_single_nop_size)
1523 {
1524 as_bad_where (fragP->fr_file, fragP->fr_line,
1525 _("invalid single nop size: %d "
1526 "(expect within [0, %d])"),
1527 limit, max_single_nop_size);
1528 return;
1529 }
1530 }
1531 else
1532 fragP->fr_var = count;
1533
1534 if ((count / max_single_nop_size) > max_number_of_nops)
1535 {
1536 /* Generate jump over NOPs. */
1537 offsetT disp = count - 2;
1538 if (fits_in_imm7 (disp))
1539 {
1540 /* Use "jmp disp8" if possible. */
1541 count = disp;
1542 where[0] = jump_disp8[0];
1543 where[1] = count;
1544 where += 2;
1545 }
1546 else
1547 {
1548 unsigned int size_of_jump;
1549
1550 if (flag_code == CODE_16BIT)
1551 {
1552 where[0] = jump16_disp32[0];
1553 where[1] = jump16_disp32[1];
1554 size_of_jump = 2;
1555 }
1556 else
1557 {
1558 where[0] = jump32_disp32[0];
1559 size_of_jump = 1;
1560 }
1561
1562 count -= size_of_jump + 4;
1563 if (!fits_in_imm31 (count))
1564 {
1565 as_bad_where (fragP->fr_file, fragP->fr_line,
1566 _("jump over nop padding out of range"));
1567 return;
1568 }
1569
1570 md_number_to_chars (where + size_of_jump, count, 4);
1571 where += size_of_jump + 4;
76bc74dc 1572 }
ccc9c027 1573 }
3ae729d5
L
1574
1575 /* Generate multiple NOPs. */
1576 i386_output_nops (where, patt, count, limit);
252b5132
RH
1577}
1578
c6fb90c8 1579static INLINE int
0dfbf9d7 1580operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1581{
0dfbf9d7 1582 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1583 {
1584 case 3:
0dfbf9d7 1585 if (x->array[2])
c6fb90c8 1586 return 0;
1a0670f3 1587 /* Fall through. */
c6fb90c8 1588 case 2:
0dfbf9d7 1589 if (x->array[1])
c6fb90c8 1590 return 0;
1a0670f3 1591 /* Fall through. */
c6fb90c8 1592 case 1:
0dfbf9d7 1593 return !x->array[0];
c6fb90c8
L
1594 default:
1595 abort ();
1596 }
40fb9820
L
1597}
1598
c6fb90c8 1599static INLINE void
0dfbf9d7 1600operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1601{
0dfbf9d7 1602 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1603 {
1604 case 3:
0dfbf9d7 1605 x->array[2] = v;
1a0670f3 1606 /* Fall through. */
c6fb90c8 1607 case 2:
0dfbf9d7 1608 x->array[1] = v;
1a0670f3 1609 /* Fall through. */
c6fb90c8 1610 case 1:
0dfbf9d7 1611 x->array[0] = v;
1a0670f3 1612 /* Fall through. */
c6fb90c8
L
1613 break;
1614 default:
1615 abort ();
1616 }
bab6aec1
JB
1617
1618 x->bitfield.class = ClassNone;
75e5731b 1619 x->bitfield.instance = InstanceNone;
c6fb90c8 1620}
40fb9820 1621
c6fb90c8 1622static INLINE int
0dfbf9d7
L
1623operand_type_equal (const union i386_operand_type *x,
1624 const union i386_operand_type *y)
c6fb90c8 1625{
0dfbf9d7 1626 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1627 {
1628 case 3:
0dfbf9d7 1629 if (x->array[2] != y->array[2])
c6fb90c8 1630 return 0;
1a0670f3 1631 /* Fall through. */
c6fb90c8 1632 case 2:
0dfbf9d7 1633 if (x->array[1] != y->array[1])
c6fb90c8 1634 return 0;
1a0670f3 1635 /* Fall through. */
c6fb90c8 1636 case 1:
0dfbf9d7 1637 return x->array[0] == y->array[0];
c6fb90c8
L
1638 break;
1639 default:
1640 abort ();
1641 }
1642}
40fb9820 1643
0dfbf9d7
L
1644static INLINE int
1645cpu_flags_all_zero (const union i386_cpu_flags *x)
1646{
1647 switch (ARRAY_SIZE(x->array))
1648 {
53467f57
IT
1649 case 4:
1650 if (x->array[3])
1651 return 0;
1652 /* Fall through. */
0dfbf9d7
L
1653 case 3:
1654 if (x->array[2])
1655 return 0;
1a0670f3 1656 /* Fall through. */
0dfbf9d7
L
1657 case 2:
1658 if (x->array[1])
1659 return 0;
1a0670f3 1660 /* Fall through. */
0dfbf9d7
L
1661 case 1:
1662 return !x->array[0];
1663 default:
1664 abort ();
1665 }
1666}
1667
0dfbf9d7
L
1668static INLINE int
1669cpu_flags_equal (const union i386_cpu_flags *x,
1670 const union i386_cpu_flags *y)
1671{
1672 switch (ARRAY_SIZE(x->array))
1673 {
53467f57
IT
1674 case 4:
1675 if (x->array[3] != y->array[3])
1676 return 0;
1677 /* Fall through. */
0dfbf9d7
L
1678 case 3:
1679 if (x->array[2] != y->array[2])
1680 return 0;
1a0670f3 1681 /* Fall through. */
0dfbf9d7
L
1682 case 2:
1683 if (x->array[1] != y->array[1])
1684 return 0;
1a0670f3 1685 /* Fall through. */
0dfbf9d7
L
1686 case 1:
1687 return x->array[0] == y->array[0];
1688 break;
1689 default:
1690 abort ();
1691 }
1692}
c6fb90c8
L
1693
1694static INLINE int
1695cpu_flags_check_cpu64 (i386_cpu_flags f)
1696{
1697 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1698 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1699}
1700
c6fb90c8
L
1701static INLINE i386_cpu_flags
1702cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1703{
c6fb90c8
L
1704 switch (ARRAY_SIZE (x.array))
1705 {
53467f57
IT
1706 case 4:
1707 x.array [3] &= y.array [3];
1708 /* Fall through. */
c6fb90c8
L
1709 case 3:
1710 x.array [2] &= y.array [2];
1a0670f3 1711 /* Fall through. */
c6fb90c8
L
1712 case 2:
1713 x.array [1] &= y.array [1];
1a0670f3 1714 /* Fall through. */
c6fb90c8
L
1715 case 1:
1716 x.array [0] &= y.array [0];
1717 break;
1718 default:
1719 abort ();
1720 }
1721 return x;
1722}
40fb9820 1723
c6fb90c8
L
1724static INLINE i386_cpu_flags
1725cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1726{
c6fb90c8 1727 switch (ARRAY_SIZE (x.array))
40fb9820 1728 {
53467f57
IT
1729 case 4:
1730 x.array [3] |= y.array [3];
1731 /* Fall through. */
c6fb90c8
L
1732 case 3:
1733 x.array [2] |= y.array [2];
1a0670f3 1734 /* Fall through. */
c6fb90c8
L
1735 case 2:
1736 x.array [1] |= y.array [1];
1a0670f3 1737 /* Fall through. */
c6fb90c8
L
1738 case 1:
1739 x.array [0] |= y.array [0];
40fb9820
L
1740 break;
1741 default:
1742 abort ();
1743 }
40fb9820
L
1744 return x;
1745}
1746
309d3373
JB
1747static INLINE i386_cpu_flags
1748cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1749{
1750 switch (ARRAY_SIZE (x.array))
1751 {
53467f57
IT
1752 case 4:
1753 x.array [3] &= ~y.array [3];
1754 /* Fall through. */
309d3373
JB
1755 case 3:
1756 x.array [2] &= ~y.array [2];
1a0670f3 1757 /* Fall through. */
309d3373
JB
1758 case 2:
1759 x.array [1] &= ~y.array [1];
1a0670f3 1760 /* Fall through. */
309d3373
JB
1761 case 1:
1762 x.array [0] &= ~y.array [0];
1763 break;
1764 default:
1765 abort ();
1766 }
1767 return x;
1768}
1769
c0f3af97
L
1770#define CPU_FLAGS_ARCH_MATCH 0x1
1771#define CPU_FLAGS_64BIT_MATCH 0x2
1772
c0f3af97 1773#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1774 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1775
1776/* Return CPU flags match bits. */
3629bb00 1777
40fb9820 1778static int
d3ce72d0 1779cpu_flags_match (const insn_template *t)
40fb9820 1780{
c0f3af97
L
1781 i386_cpu_flags x = t->cpu_flags;
1782 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1783
1784 x.bitfield.cpu64 = 0;
1785 x.bitfield.cpuno64 = 0;
1786
0dfbf9d7 1787 if (cpu_flags_all_zero (&x))
c0f3af97
L
1788 {
1789 /* This instruction is available on all archs. */
db12e14e 1790 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1791 }
3629bb00
L
1792 else
1793 {
c0f3af97 1794 /* This instruction is available only on some archs. */
3629bb00
L
1795 i386_cpu_flags cpu = cpu_arch_flags;
1796
ab592e75
JB
1797 /* AVX512VL is no standalone feature - match it and then strip it. */
1798 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1799 return match;
1800 x.bitfield.cpuavx512vl = 0;
1801
3629bb00 1802 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1803 if (!cpu_flags_all_zero (&cpu))
1804 {
a5ff0eb2
L
1805 if (x.bitfield.cpuavx)
1806 {
929f69fa 1807 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1808 if (cpu.bitfield.cpuavx
1809 && (!t->opcode_modifier.sse2avx || sse2avx)
1810 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1811 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1812 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1813 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1814 }
929f69fa
JB
1815 else if (x.bitfield.cpuavx512f)
1816 {
1817 /* We need to check a few extra flags with AVX512F. */
1818 if (cpu.bitfield.cpuavx512f
1819 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1820 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1821 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1822 match |= CPU_FLAGS_ARCH_MATCH;
1823 }
a5ff0eb2 1824 else
db12e14e 1825 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1826 }
3629bb00 1827 }
c0f3af97 1828 return match;
40fb9820
L
1829}
1830
c6fb90c8
L
1831static INLINE i386_operand_type
1832operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1833{
bab6aec1
JB
1834 if (x.bitfield.class != y.bitfield.class)
1835 x.bitfield.class = ClassNone;
75e5731b
JB
1836 if (x.bitfield.instance != y.bitfield.instance)
1837 x.bitfield.instance = InstanceNone;
bab6aec1 1838
c6fb90c8
L
1839 switch (ARRAY_SIZE (x.array))
1840 {
1841 case 3:
1842 x.array [2] &= y.array [2];
1a0670f3 1843 /* Fall through. */
c6fb90c8
L
1844 case 2:
1845 x.array [1] &= y.array [1];
1a0670f3 1846 /* Fall through. */
c6fb90c8
L
1847 case 1:
1848 x.array [0] &= y.array [0];
1849 break;
1850 default:
1851 abort ();
1852 }
1853 return x;
40fb9820
L
1854}
1855
73053c1f
JB
1856static INLINE i386_operand_type
1857operand_type_and_not (i386_operand_type x, i386_operand_type y)
1858{
bab6aec1 1859 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1860 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1861
73053c1f
JB
1862 switch (ARRAY_SIZE (x.array))
1863 {
1864 case 3:
1865 x.array [2] &= ~y.array [2];
1866 /* Fall through. */
1867 case 2:
1868 x.array [1] &= ~y.array [1];
1869 /* Fall through. */
1870 case 1:
1871 x.array [0] &= ~y.array [0];
1872 break;
1873 default:
1874 abort ();
1875 }
1876 return x;
1877}
1878
c6fb90c8
L
1879static INLINE i386_operand_type
1880operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1881{
bab6aec1
JB
1882 gas_assert (x.bitfield.class == ClassNone ||
1883 y.bitfield.class == ClassNone ||
1884 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1885 gas_assert (x.bitfield.instance == InstanceNone ||
1886 y.bitfield.instance == InstanceNone ||
1887 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1888
c6fb90c8 1889 switch (ARRAY_SIZE (x.array))
40fb9820 1890 {
c6fb90c8
L
1891 case 3:
1892 x.array [2] |= y.array [2];
1a0670f3 1893 /* Fall through. */
c6fb90c8
L
1894 case 2:
1895 x.array [1] |= y.array [1];
1a0670f3 1896 /* Fall through. */
c6fb90c8
L
1897 case 1:
1898 x.array [0] |= y.array [0];
40fb9820
L
1899 break;
1900 default:
1901 abort ();
1902 }
c6fb90c8
L
1903 return x;
1904}
40fb9820 1905
c6fb90c8
L
1906static INLINE i386_operand_type
1907operand_type_xor (i386_operand_type x, i386_operand_type y)
1908{
bab6aec1 1909 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1910 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1911
c6fb90c8
L
1912 switch (ARRAY_SIZE (x.array))
1913 {
1914 case 3:
1915 x.array [2] ^= y.array [2];
1a0670f3 1916 /* Fall through. */
c6fb90c8
L
1917 case 2:
1918 x.array [1] ^= y.array [1];
1a0670f3 1919 /* Fall through. */
c6fb90c8
L
1920 case 1:
1921 x.array [0] ^= y.array [0];
1922 break;
1923 default:
1924 abort ();
1925 }
40fb9820
L
1926 return x;
1927}
1928
40fb9820
L
1929static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1930static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1931static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1932static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
1933static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
1934static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 1935static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1936static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1937static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1938static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1939static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1940static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1941static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1942static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1943static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1944static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1945static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1946
1947enum operand_type
1948{
1949 reg,
40fb9820
L
1950 imm,
1951 disp,
1952 anymem
1953};
1954
c6fb90c8 1955static INLINE int
40fb9820
L
1956operand_type_check (i386_operand_type t, enum operand_type c)
1957{
1958 switch (c)
1959 {
1960 case reg:
bab6aec1 1961 return t.bitfield.class == Reg;
40fb9820 1962
40fb9820
L
1963 case imm:
1964 return (t.bitfield.imm8
1965 || t.bitfield.imm8s
1966 || t.bitfield.imm16
1967 || t.bitfield.imm32
1968 || t.bitfield.imm32s
1969 || t.bitfield.imm64);
1970
1971 case disp:
1972 return (t.bitfield.disp8
1973 || t.bitfield.disp16
1974 || t.bitfield.disp32
1975 || t.bitfield.disp32s
1976 || t.bitfield.disp64);
1977
1978 case anymem:
1979 return (t.bitfield.disp8
1980 || t.bitfield.disp16
1981 || t.bitfield.disp32
1982 || t.bitfield.disp32s
1983 || t.bitfield.disp64
1984 || t.bitfield.baseindex);
1985
1986 default:
1987 abort ();
1988 }
2cfe26b6
AM
1989
1990 return 0;
40fb9820
L
1991}
1992
7a54636a
L
1993/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1994 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1995
1996static INLINE int
7a54636a
L
1997match_operand_size (const insn_template *t, unsigned int wanted,
1998 unsigned int given)
5c07affc 1999{
3ac21baa
JB
2000 return !((i.types[given].bitfield.byte
2001 && !t->operand_types[wanted].bitfield.byte)
2002 || (i.types[given].bitfield.word
2003 && !t->operand_types[wanted].bitfield.word)
2004 || (i.types[given].bitfield.dword
2005 && !t->operand_types[wanted].bitfield.dword)
2006 || (i.types[given].bitfield.qword
2007 && !t->operand_types[wanted].bitfield.qword)
2008 || (i.types[given].bitfield.tbyte
2009 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2010}
2011
dd40ce22
L
2012/* Return 1 if there is no conflict in SIMD register between operand
2013 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2014
2015static INLINE int
dd40ce22
L
2016match_simd_size (const insn_template *t, unsigned int wanted,
2017 unsigned int given)
1b54b8d7 2018{
3ac21baa
JB
2019 return !((i.types[given].bitfield.xmmword
2020 && !t->operand_types[wanted].bitfield.xmmword)
2021 || (i.types[given].bitfield.ymmword
2022 && !t->operand_types[wanted].bitfield.ymmword)
2023 || (i.types[given].bitfield.zmmword
2024 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2025}
2026
7a54636a
L
2027/* Return 1 if there is no conflict in any size between operand GIVEN
2028 and opeand WANTED for instruction template T. */
5c07affc
L
2029
2030static INLINE int
dd40ce22
L
2031match_mem_size (const insn_template *t, unsigned int wanted,
2032 unsigned int given)
5c07affc 2033{
7a54636a 2034 return (match_operand_size (t, wanted, given)
3ac21baa 2035 && !((i.types[given].bitfield.unspecified
af508cb9 2036 && !i.broadcast
3ac21baa
JB
2037 && !t->operand_types[wanted].bitfield.unspecified)
2038 || (i.types[given].bitfield.fword
2039 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2040 /* For scalar opcode templates to allow register and memory
2041 operands at the same time, some special casing is needed
d6793fa1
JB
2042 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2043 down-conversion vpmov*. */
3528c362 2044 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2045 && !t->opcode_modifier.broadcast
3ac21baa
JB
2046 && (t->operand_types[wanted].bitfield.byte
2047 || t->operand_types[wanted].bitfield.word
2048 || t->operand_types[wanted].bitfield.dword
2049 || t->operand_types[wanted].bitfield.qword))
2050 ? (i.types[given].bitfield.xmmword
2051 || i.types[given].bitfield.ymmword
2052 || i.types[given].bitfield.zmmword)
2053 : !match_simd_size(t, wanted, given))));
5c07affc
L
2054}
2055
3ac21baa
JB
2056/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2057 operands for instruction template T, and it has MATCH_REVERSE set if there
2058 is no size conflict on any operands for the template with operands reversed
2059 (and the template allows for reversing in the first place). */
5c07affc 2060
3ac21baa
JB
2061#define MATCH_STRAIGHT 1
2062#define MATCH_REVERSE 2
2063
2064static INLINE unsigned int
d3ce72d0 2065operand_size_match (const insn_template *t)
5c07affc 2066{
3ac21baa 2067 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2068
0cfa3eb3 2069 /* Don't check non-absolute jump instructions. */
5c07affc 2070 if (t->opcode_modifier.jump
0cfa3eb3 2071 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2072 return match;
2073
2074 /* Check memory and accumulator operand size. */
2075 for (j = 0; j < i.operands; j++)
2076 {
3528c362
JB
2077 if (i.types[j].bitfield.class != Reg
2078 && i.types[j].bitfield.class != RegSIMD
601e8564 2079 && t->opcode_modifier.anysize)
5c07affc
L
2080 continue;
2081
bab6aec1 2082 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2083 && !match_operand_size (t, j, j))
5c07affc
L
2084 {
2085 match = 0;
2086 break;
2087 }
2088
3528c362 2089 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2090 && !match_simd_size (t, j, j))
1b54b8d7
JB
2091 {
2092 match = 0;
2093 break;
2094 }
2095
75e5731b 2096 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2097 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2098 {
2099 match = 0;
2100 break;
2101 }
2102
c48dadc9 2103 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2104 {
2105 match = 0;
2106 break;
2107 }
2108 }
2109
3ac21baa 2110 if (!t->opcode_modifier.d)
891edac4
L
2111 {
2112mismatch:
3ac21baa
JB
2113 if (!match)
2114 i.error = operand_size_mismatch;
2115 return match;
891edac4 2116 }
5c07affc
L
2117
2118 /* Check reverse. */
f5eb1d70 2119 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2120
f5eb1d70 2121 for (j = 0; j < i.operands; j++)
5c07affc 2122 {
f5eb1d70
JB
2123 unsigned int given = i.operands - j - 1;
2124
bab6aec1 2125 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2126 && !match_operand_size (t, j, given))
891edac4 2127 goto mismatch;
5c07affc 2128
3528c362 2129 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2130 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2131 goto mismatch;
2132
75e5731b 2133 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2134 && (!match_operand_size (t, j, given)
2135 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2136 goto mismatch;
2137
f5eb1d70 2138 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2139 goto mismatch;
5c07affc
L
2140 }
2141
3ac21baa 2142 return match | MATCH_REVERSE;
5c07affc
L
2143}
2144
c6fb90c8 2145static INLINE int
40fb9820
L
2146operand_type_match (i386_operand_type overlap,
2147 i386_operand_type given)
2148{
2149 i386_operand_type temp = overlap;
2150
7d5e4556 2151 temp.bitfield.unspecified = 0;
5c07affc
L
2152 temp.bitfield.byte = 0;
2153 temp.bitfield.word = 0;
2154 temp.bitfield.dword = 0;
2155 temp.bitfield.fword = 0;
2156 temp.bitfield.qword = 0;
2157 temp.bitfield.tbyte = 0;
2158 temp.bitfield.xmmword = 0;
c0f3af97 2159 temp.bitfield.ymmword = 0;
43234a1e 2160 temp.bitfield.zmmword = 0;
0dfbf9d7 2161 if (operand_type_all_zero (&temp))
891edac4 2162 goto mismatch;
40fb9820 2163
6f2f06be 2164 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2165 return 1;
2166
2167mismatch:
a65babc9 2168 i.error = operand_type_mismatch;
891edac4 2169 return 0;
40fb9820
L
2170}
2171
7d5e4556 2172/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2173 unless the expected operand type register overlap is null.
2174 Memory operand size of certain SIMD instructions is also being checked
2175 here. */
40fb9820 2176
c6fb90c8 2177static INLINE int
dc821c5f 2178operand_type_register_match (i386_operand_type g0,
40fb9820 2179 i386_operand_type t0,
40fb9820
L
2180 i386_operand_type g1,
2181 i386_operand_type t1)
2182{
bab6aec1 2183 if (g0.bitfield.class != Reg
3528c362 2184 && g0.bitfield.class != RegSIMD
10c17abd
JB
2185 && (!operand_type_check (g0, anymem)
2186 || g0.bitfield.unspecified
3528c362 2187 || t0.bitfield.class != RegSIMD))
40fb9820
L
2188 return 1;
2189
bab6aec1 2190 if (g1.bitfield.class != Reg
3528c362 2191 && g1.bitfield.class != RegSIMD
10c17abd
JB
2192 && (!operand_type_check (g1, anymem)
2193 || g1.bitfield.unspecified
3528c362 2194 || t1.bitfield.class != RegSIMD))
40fb9820
L
2195 return 1;
2196
dc821c5f
JB
2197 if (g0.bitfield.byte == g1.bitfield.byte
2198 && g0.bitfield.word == g1.bitfield.word
2199 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2200 && g0.bitfield.qword == g1.bitfield.qword
2201 && g0.bitfield.xmmword == g1.bitfield.xmmword
2202 && g0.bitfield.ymmword == g1.bitfield.ymmword
2203 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2204 return 1;
2205
dc821c5f
JB
2206 if (!(t0.bitfield.byte & t1.bitfield.byte)
2207 && !(t0.bitfield.word & t1.bitfield.word)
2208 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2209 && !(t0.bitfield.qword & t1.bitfield.qword)
2210 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2211 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2212 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2213 return 1;
2214
a65babc9 2215 i.error = register_type_mismatch;
891edac4
L
2216
2217 return 0;
40fb9820
L
2218}
2219
4c692bc7
JB
2220static INLINE unsigned int
2221register_number (const reg_entry *r)
2222{
2223 unsigned int nr = r->reg_num;
2224
2225 if (r->reg_flags & RegRex)
2226 nr += 8;
2227
200cbe0f
L
2228 if (r->reg_flags & RegVRex)
2229 nr += 16;
2230
4c692bc7
JB
2231 return nr;
2232}
2233
252b5132 2234static INLINE unsigned int
40fb9820 2235mode_from_disp_size (i386_operand_type t)
252b5132 2236{
b5014f7a 2237 if (t.bitfield.disp8)
40fb9820
L
2238 return 1;
2239 else if (t.bitfield.disp16
2240 || t.bitfield.disp32
2241 || t.bitfield.disp32s)
2242 return 2;
2243 else
2244 return 0;
252b5132
RH
2245}
2246
2247static INLINE int
65879393 2248fits_in_signed_byte (addressT num)
252b5132 2249{
65879393 2250 return num + 0x80 <= 0xff;
47926f60 2251}
252b5132
RH
2252
2253static INLINE int
65879393 2254fits_in_unsigned_byte (addressT num)
252b5132 2255{
65879393 2256 return num <= 0xff;
47926f60 2257}
252b5132
RH
2258
2259static INLINE int
65879393 2260fits_in_unsigned_word (addressT num)
252b5132 2261{
65879393 2262 return num <= 0xffff;
47926f60 2263}
252b5132
RH
2264
2265static INLINE int
65879393 2266fits_in_signed_word (addressT num)
252b5132 2267{
65879393 2268 return num + 0x8000 <= 0xffff;
47926f60 2269}
2a962e6d 2270
3e73aa7c 2271static INLINE int
65879393 2272fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2273{
2274#ifndef BFD64
2275 return 1;
2276#else
65879393 2277 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2278#endif
2279} /* fits_in_signed_long() */
2a962e6d 2280
3e73aa7c 2281static INLINE int
65879393 2282fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2283{
2284#ifndef BFD64
2285 return 1;
2286#else
65879393 2287 return num <= 0xffffffff;
3e73aa7c
JH
2288#endif
2289} /* fits_in_unsigned_long() */
252b5132 2290
43234a1e 2291static INLINE int
b5014f7a 2292fits_in_disp8 (offsetT num)
43234a1e
L
2293{
2294 int shift = i.memshift;
2295 unsigned int mask;
2296
2297 if (shift == -1)
2298 abort ();
2299
2300 mask = (1 << shift) - 1;
2301
2302 /* Return 0 if NUM isn't properly aligned. */
2303 if ((num & mask))
2304 return 0;
2305
2306 /* Check if NUM will fit in 8bit after shift. */
2307 return fits_in_signed_byte (num >> shift);
2308}
2309
a683cc34
SP
2310static INLINE int
2311fits_in_imm4 (offsetT num)
2312{
2313 return (num & 0xf) == num;
2314}
2315
40fb9820 2316static i386_operand_type
e3bb37b5 2317smallest_imm_type (offsetT num)
252b5132 2318{
40fb9820 2319 i386_operand_type t;
7ab9ffdd 2320
0dfbf9d7 2321 operand_type_set (&t, 0);
40fb9820
L
2322 t.bitfield.imm64 = 1;
2323
2324 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2325 {
2326 /* This code is disabled on the 486 because all the Imm1 forms
2327 in the opcode table are slower on the i486. They're the
2328 versions with the implicitly specified single-position
2329 displacement, which has another syntax if you really want to
2330 use that form. */
40fb9820
L
2331 t.bitfield.imm1 = 1;
2332 t.bitfield.imm8 = 1;
2333 t.bitfield.imm8s = 1;
2334 t.bitfield.imm16 = 1;
2335 t.bitfield.imm32 = 1;
2336 t.bitfield.imm32s = 1;
2337 }
2338 else if (fits_in_signed_byte (num))
2339 {
2340 t.bitfield.imm8 = 1;
2341 t.bitfield.imm8s = 1;
2342 t.bitfield.imm16 = 1;
2343 t.bitfield.imm32 = 1;
2344 t.bitfield.imm32s = 1;
2345 }
2346 else if (fits_in_unsigned_byte (num))
2347 {
2348 t.bitfield.imm8 = 1;
2349 t.bitfield.imm16 = 1;
2350 t.bitfield.imm32 = 1;
2351 t.bitfield.imm32s = 1;
2352 }
2353 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2354 {
2355 t.bitfield.imm16 = 1;
2356 t.bitfield.imm32 = 1;
2357 t.bitfield.imm32s = 1;
2358 }
2359 else if (fits_in_signed_long (num))
2360 {
2361 t.bitfield.imm32 = 1;
2362 t.bitfield.imm32s = 1;
2363 }
2364 else if (fits_in_unsigned_long (num))
2365 t.bitfield.imm32 = 1;
2366
2367 return t;
47926f60 2368}
252b5132 2369
847f7ad4 2370static offsetT
e3bb37b5 2371offset_in_range (offsetT val, int size)
847f7ad4 2372{
508866be 2373 addressT mask;
ba2adb93 2374
847f7ad4
AM
2375 switch (size)
2376 {
508866be
L
2377 case 1: mask = ((addressT) 1 << 8) - 1; break;
2378 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2379 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2380#ifdef BFD64
2381 case 8: mask = ((addressT) 2 << 63) - 1; break;
2382#endif
47926f60 2383 default: abort ();
847f7ad4
AM
2384 }
2385
9de868bf
L
2386#ifdef BFD64
2387 /* If BFD64, sign extend val for 32bit address mode. */
2388 if (flag_code != CODE_64BIT
2389 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2390 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2391 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2392#endif
ba2adb93 2393
47926f60 2394 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2395 {
2396 char buf1[40], buf2[40];
2397
2398 sprint_value (buf1, val);
2399 sprint_value (buf2, val & mask);
2400 as_warn (_("%s shortened to %s"), buf1, buf2);
2401 }
2402 return val & mask;
2403}
2404
c32fa91d
L
2405enum PREFIX_GROUP
2406{
2407 PREFIX_EXIST = 0,
2408 PREFIX_LOCK,
2409 PREFIX_REP,
04ef582a 2410 PREFIX_DS,
c32fa91d
L
2411 PREFIX_OTHER
2412};
2413
2414/* Returns
2415 a. PREFIX_EXIST if attempting to add a prefix where one from the
2416 same class already exists.
2417 b. PREFIX_LOCK if lock prefix is added.
2418 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2419 d. PREFIX_DS if ds prefix is added.
2420 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2421 */
2422
2423static enum PREFIX_GROUP
e3bb37b5 2424add_prefix (unsigned int prefix)
252b5132 2425{
c32fa91d 2426 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2427 unsigned int q;
252b5132 2428
29b0f896
AM
2429 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2430 && flag_code == CODE_64BIT)
b1905489 2431 {
161a04f6 2432 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2433 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2434 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2435 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2436 ret = PREFIX_EXIST;
b1905489
JB
2437 q = REX_PREFIX;
2438 }
3e73aa7c 2439 else
b1905489
JB
2440 {
2441 switch (prefix)
2442 {
2443 default:
2444 abort ();
2445
b1905489 2446 case DS_PREFIX_OPCODE:
04ef582a
L
2447 ret = PREFIX_DS;
2448 /* Fall through. */
2449 case CS_PREFIX_OPCODE:
b1905489
JB
2450 case ES_PREFIX_OPCODE:
2451 case FS_PREFIX_OPCODE:
2452 case GS_PREFIX_OPCODE:
2453 case SS_PREFIX_OPCODE:
2454 q = SEG_PREFIX;
2455 break;
2456
2457 case REPNE_PREFIX_OPCODE:
2458 case REPE_PREFIX_OPCODE:
c32fa91d
L
2459 q = REP_PREFIX;
2460 ret = PREFIX_REP;
2461 break;
2462
b1905489 2463 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2464 q = LOCK_PREFIX;
2465 ret = PREFIX_LOCK;
b1905489
JB
2466 break;
2467
2468 case FWAIT_OPCODE:
2469 q = WAIT_PREFIX;
2470 break;
2471
2472 case ADDR_PREFIX_OPCODE:
2473 q = ADDR_PREFIX;
2474 break;
2475
2476 case DATA_PREFIX_OPCODE:
2477 q = DATA_PREFIX;
2478 break;
2479 }
2480 if (i.prefix[q] != 0)
c32fa91d 2481 ret = PREFIX_EXIST;
b1905489 2482 }
252b5132 2483
b1905489 2484 if (ret)
252b5132 2485 {
b1905489
JB
2486 if (!i.prefix[q])
2487 ++i.prefixes;
2488 i.prefix[q] |= prefix;
252b5132 2489 }
b1905489
JB
2490 else
2491 as_bad (_("same type of prefix used twice"));
252b5132 2492
252b5132
RH
2493 return ret;
2494}
2495
2496static void
78f12dd3 2497update_code_flag (int value, int check)
eecb386c 2498{
78f12dd3
L
2499 PRINTF_LIKE ((*as_error));
2500
1e9cc1c2 2501 flag_code = (enum flag_code) value;
40fb9820
L
2502 if (flag_code == CODE_64BIT)
2503 {
2504 cpu_arch_flags.bitfield.cpu64 = 1;
2505 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2506 }
2507 else
2508 {
2509 cpu_arch_flags.bitfield.cpu64 = 0;
2510 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2511 }
2512 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2513 {
78f12dd3
L
2514 if (check)
2515 as_error = as_fatal;
2516 else
2517 as_error = as_bad;
2518 (*as_error) (_("64bit mode not supported on `%s'."),
2519 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2520 }
40fb9820 2521 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2522 {
78f12dd3
L
2523 if (check)
2524 as_error = as_fatal;
2525 else
2526 as_error = as_bad;
2527 (*as_error) (_("32bit mode not supported on `%s'."),
2528 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2529 }
eecb386c
AM
2530 stackop_size = '\0';
2531}
2532
78f12dd3
L
2533static void
2534set_code_flag (int value)
2535{
2536 update_code_flag (value, 0);
2537}
2538
eecb386c 2539static void
e3bb37b5 2540set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2541{
1e9cc1c2 2542 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2543 if (flag_code != CODE_16BIT)
2544 abort ();
2545 cpu_arch_flags.bitfield.cpu64 = 0;
2546 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2547 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2548}
2549
2550static void
e3bb37b5 2551set_intel_syntax (int syntax_flag)
252b5132
RH
2552{
2553 /* Find out if register prefixing is specified. */
2554 int ask_naked_reg = 0;
2555
2556 SKIP_WHITESPACE ();
29b0f896 2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2558 {
d02603dc
NC
2559 char *string;
2560 int e = get_symbol_name (&string);
252b5132 2561
47926f60 2562 if (strcmp (string, "prefix") == 0)
252b5132 2563 ask_naked_reg = 1;
47926f60 2564 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2565 ask_naked_reg = -1;
2566 else
d0b47220 2567 as_bad (_("bad argument to syntax directive."));
d02603dc 2568 (void) restore_line_pointer (e);
252b5132
RH
2569 }
2570 demand_empty_rest_of_line ();
c3332e24 2571
252b5132
RH
2572 intel_syntax = syntax_flag;
2573
2574 if (ask_naked_reg == 0)
f86103b7
AM
2575 allow_naked_reg = (intel_syntax
2576 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2577 else
2578 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2579
ee86248c 2580 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2581
e4a3b5a4 2582 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2583 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2584 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2585}
2586
1efbbeb4
L
2587static void
2588set_intel_mnemonic (int mnemonic_flag)
2589{
e1d4d893 2590 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2591}
2592
db51cc60
L
2593static void
2594set_allow_index_reg (int flag)
2595{
2596 allow_index_reg = flag;
2597}
2598
cb19c032 2599static void
7bab8ab5 2600set_check (int what)
cb19c032 2601{
7bab8ab5
JB
2602 enum check_kind *kind;
2603 const char *str;
2604
2605 if (what)
2606 {
2607 kind = &operand_check;
2608 str = "operand";
2609 }
2610 else
2611 {
2612 kind = &sse_check;
2613 str = "sse";
2614 }
2615
cb19c032
L
2616 SKIP_WHITESPACE ();
2617
2618 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2619 {
d02603dc
NC
2620 char *string;
2621 int e = get_symbol_name (&string);
cb19c032
L
2622
2623 if (strcmp (string, "none") == 0)
7bab8ab5 2624 *kind = check_none;
cb19c032 2625 else if (strcmp (string, "warning") == 0)
7bab8ab5 2626 *kind = check_warning;
cb19c032 2627 else if (strcmp (string, "error") == 0)
7bab8ab5 2628 *kind = check_error;
cb19c032 2629 else
7bab8ab5 2630 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2631 (void) restore_line_pointer (e);
cb19c032
L
2632 }
2633 else
7bab8ab5 2634 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2635
2636 demand_empty_rest_of_line ();
2637}
2638
8a9036a4
L
2639static void
2640check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2641 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2642{
2643#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2644 static const char *arch;
2645
2646 /* Intel LIOM is only supported on ELF. */
2647 if (!IS_ELF)
2648 return;
2649
2650 if (!arch)
2651 {
2652 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2653 use default_arch. */
2654 arch = cpu_arch_name;
2655 if (!arch)
2656 arch = default_arch;
2657 }
2658
81486035
L
2659 /* If we are targeting Intel MCU, we must enable it. */
2660 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2661 || new_flag.bitfield.cpuiamcu)
2662 return;
2663
3632d14b 2664 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2665 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2666 || new_flag.bitfield.cpul1om)
8a9036a4 2667 return;
76ba9986 2668
7a9068fe
L
2669 /* If we are targeting Intel K1OM, we must enable it. */
2670 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2671 || new_flag.bitfield.cpuk1om)
2672 return;
2673
8a9036a4
L
2674 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2675#endif
2676}
2677
e413e4e9 2678static void
e3bb37b5 2679set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2680{
47926f60 2681 SKIP_WHITESPACE ();
e413e4e9 2682
29b0f896 2683 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2684 {
d02603dc
NC
2685 char *string;
2686 int e = get_symbol_name (&string);
91d6fa6a 2687 unsigned int j;
40fb9820 2688 i386_cpu_flags flags;
e413e4e9 2689
91d6fa6a 2690 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2691 {
91d6fa6a 2692 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2693 {
91d6fa6a 2694 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2695
5c6af06e
JB
2696 if (*string != '.')
2697 {
91d6fa6a 2698 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2699 cpu_sub_arch_name = NULL;
91d6fa6a 2700 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2701 if (flag_code == CODE_64BIT)
2702 {
2703 cpu_arch_flags.bitfield.cpu64 = 1;
2704 cpu_arch_flags.bitfield.cpuno64 = 0;
2705 }
2706 else
2707 {
2708 cpu_arch_flags.bitfield.cpu64 = 0;
2709 cpu_arch_flags.bitfield.cpuno64 = 1;
2710 }
91d6fa6a
NC
2711 cpu_arch_isa = cpu_arch[j].type;
2712 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2713 if (!cpu_arch_tune_set)
2714 {
2715 cpu_arch_tune = cpu_arch_isa;
2716 cpu_arch_tune_flags = cpu_arch_isa_flags;
2717 }
5c6af06e
JB
2718 break;
2719 }
40fb9820 2720
293f5f65
L
2721 flags = cpu_flags_or (cpu_arch_flags,
2722 cpu_arch[j].flags);
81486035 2723
5b64d091 2724 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2725 {
6305a203
L
2726 if (cpu_sub_arch_name)
2727 {
2728 char *name = cpu_sub_arch_name;
2729 cpu_sub_arch_name = concat (name,
91d6fa6a 2730 cpu_arch[j].name,
1bf57e9f 2731 (const char *) NULL);
6305a203
L
2732 free (name);
2733 }
2734 else
91d6fa6a 2735 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2736 cpu_arch_flags = flags;
a586129e 2737 cpu_arch_isa_flags = flags;
5c6af06e 2738 }
0089dace
L
2739 else
2740 cpu_arch_isa_flags
2741 = cpu_flags_or (cpu_arch_isa_flags,
2742 cpu_arch[j].flags);
d02603dc 2743 (void) restore_line_pointer (e);
5c6af06e
JB
2744 demand_empty_rest_of_line ();
2745 return;
e413e4e9
AM
2746 }
2747 }
293f5f65
L
2748
2749 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2750 {
33eaf5de 2751 /* Disable an ISA extension. */
293f5f65
L
2752 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2753 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2754 {
2755 flags = cpu_flags_and_not (cpu_arch_flags,
2756 cpu_noarch[j].flags);
2757 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2758 {
2759 if (cpu_sub_arch_name)
2760 {
2761 char *name = cpu_sub_arch_name;
2762 cpu_sub_arch_name = concat (name, string,
2763 (const char *) NULL);
2764 free (name);
2765 }
2766 else
2767 cpu_sub_arch_name = xstrdup (string);
2768 cpu_arch_flags = flags;
2769 cpu_arch_isa_flags = flags;
2770 }
2771 (void) restore_line_pointer (e);
2772 demand_empty_rest_of_line ();
2773 return;
2774 }
2775
2776 j = ARRAY_SIZE (cpu_arch);
2777 }
2778
91d6fa6a 2779 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2780 as_bad (_("no such architecture: `%s'"), string);
2781
2782 *input_line_pointer = e;
2783 }
2784 else
2785 as_bad (_("missing cpu architecture"));
2786
fddf5b5b
AM
2787 no_cond_jump_promotion = 0;
2788 if (*input_line_pointer == ','
29b0f896 2789 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2790 {
d02603dc
NC
2791 char *string;
2792 char e;
2793
2794 ++input_line_pointer;
2795 e = get_symbol_name (&string);
fddf5b5b
AM
2796
2797 if (strcmp (string, "nojumps") == 0)
2798 no_cond_jump_promotion = 1;
2799 else if (strcmp (string, "jumps") == 0)
2800 ;
2801 else
2802 as_bad (_("no such architecture modifier: `%s'"), string);
2803
d02603dc 2804 (void) restore_line_pointer (e);
fddf5b5b
AM
2805 }
2806
e413e4e9
AM
2807 demand_empty_rest_of_line ();
2808}
2809
8a9036a4
L
2810enum bfd_architecture
2811i386_arch (void)
2812{
3632d14b 2813 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2814 {
2815 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2816 || flag_code != CODE_64BIT)
2817 as_fatal (_("Intel L1OM is 64bit ELF only"));
2818 return bfd_arch_l1om;
2819 }
7a9068fe
L
2820 else if (cpu_arch_isa == PROCESSOR_K1OM)
2821 {
2822 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2823 || flag_code != CODE_64BIT)
2824 as_fatal (_("Intel K1OM is 64bit ELF only"));
2825 return bfd_arch_k1om;
2826 }
81486035
L
2827 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2828 {
2829 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2830 || flag_code == CODE_64BIT)
2831 as_fatal (_("Intel MCU is 32bit ELF only"));
2832 return bfd_arch_iamcu;
2833 }
8a9036a4
L
2834 else
2835 return bfd_arch_i386;
2836}
2837
b9d79e03 2838unsigned long
7016a5d5 2839i386_mach (void)
b9d79e03 2840{
351f65ca 2841 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2842 {
3632d14b 2843 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2844 {
351f65ca
L
2845 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2846 || default_arch[6] != '\0')
8a9036a4
L
2847 as_fatal (_("Intel L1OM is 64bit ELF only"));
2848 return bfd_mach_l1om;
2849 }
7a9068fe
L
2850 else if (cpu_arch_isa == PROCESSOR_K1OM)
2851 {
2852 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2853 || default_arch[6] != '\0')
2854 as_fatal (_("Intel K1OM is 64bit ELF only"));
2855 return bfd_mach_k1om;
2856 }
351f65ca 2857 else if (default_arch[6] == '\0')
8a9036a4 2858 return bfd_mach_x86_64;
351f65ca
L
2859 else
2860 return bfd_mach_x64_32;
8a9036a4 2861 }
5197d474
L
2862 else if (!strcmp (default_arch, "i386")
2863 || !strcmp (default_arch, "iamcu"))
81486035
L
2864 {
2865 if (cpu_arch_isa == PROCESSOR_IAMCU)
2866 {
2867 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2868 as_fatal (_("Intel MCU is 32bit ELF only"));
2869 return bfd_mach_i386_iamcu;
2870 }
2871 else
2872 return bfd_mach_i386_i386;
2873 }
b9d79e03 2874 else
2b5d6a91 2875 as_fatal (_("unknown architecture"));
b9d79e03 2876}
b9d79e03 2877\f
252b5132 2878void
7016a5d5 2879md_begin (void)
252b5132
RH
2880{
2881 const char *hash_err;
2882
86fa6981
L
2883 /* Support pseudo prefixes like {disp32}. */
2884 lex_type ['{'] = LEX_BEGIN_NAME;
2885
47926f60 2886 /* Initialize op_hash hash table. */
252b5132
RH
2887 op_hash = hash_new ();
2888
2889 {
d3ce72d0 2890 const insn_template *optab;
29b0f896 2891 templates *core_optab;
252b5132 2892
47926f60
KH
2893 /* Setup for loop. */
2894 optab = i386_optab;
add39d23 2895 core_optab = XNEW (templates);
252b5132
RH
2896 core_optab->start = optab;
2897
2898 while (1)
2899 {
2900 ++optab;
2901 if (optab->name == NULL
2902 || strcmp (optab->name, (optab - 1)->name) != 0)
2903 {
2904 /* different name --> ship out current template list;
47926f60 2905 add to hash table; & begin anew. */
252b5132
RH
2906 core_optab->end = optab;
2907 hash_err = hash_insert (op_hash,
2908 (optab - 1)->name,
5a49b8ac 2909 (void *) core_optab);
252b5132
RH
2910 if (hash_err)
2911 {
b37df7c4 2912 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2913 (optab - 1)->name,
2914 hash_err);
2915 }
2916 if (optab->name == NULL)
2917 break;
add39d23 2918 core_optab = XNEW (templates);
252b5132
RH
2919 core_optab->start = optab;
2920 }
2921 }
2922 }
2923
47926f60 2924 /* Initialize reg_hash hash table. */
252b5132
RH
2925 reg_hash = hash_new ();
2926 {
29b0f896 2927 const reg_entry *regtab;
c3fe08fa 2928 unsigned int regtab_size = i386_regtab_size;
252b5132 2929
c3fe08fa 2930 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2931 {
5a49b8ac 2932 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2933 if (hash_err)
b37df7c4 2934 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2935 regtab->reg_name,
2936 hash_err);
252b5132
RH
2937 }
2938 }
2939
47926f60 2940 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2941 {
29b0f896
AM
2942 int c;
2943 char *p;
252b5132
RH
2944
2945 for (c = 0; c < 256; c++)
2946 {
3882b010 2947 if (ISDIGIT (c))
252b5132
RH
2948 {
2949 digit_chars[c] = c;
2950 mnemonic_chars[c] = c;
2951 register_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
3882b010 2954 else if (ISLOWER (c))
252b5132
RH
2955 {
2956 mnemonic_chars[c] = c;
2957 register_chars[c] = c;
2958 operand_chars[c] = c;
2959 }
3882b010 2960 else if (ISUPPER (c))
252b5132 2961 {
3882b010 2962 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2963 register_chars[c] = mnemonic_chars[c];
2964 operand_chars[c] = c;
2965 }
43234a1e 2966 else if (c == '{' || c == '}')
86fa6981
L
2967 {
2968 mnemonic_chars[c] = c;
2969 operand_chars[c] = c;
2970 }
252b5132 2971
3882b010 2972 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2973 identifier_chars[c] = c;
2974 else if (c >= 128)
2975 {
2976 identifier_chars[c] = c;
2977 operand_chars[c] = c;
2978 }
2979 }
2980
2981#ifdef LEX_AT
2982 identifier_chars['@'] = '@';
32137342
NC
2983#endif
2984#ifdef LEX_QM
2985 identifier_chars['?'] = '?';
2986 operand_chars['?'] = '?';
252b5132 2987#endif
252b5132 2988 digit_chars['-'] = '-';
c0f3af97 2989 mnemonic_chars['_'] = '_';
791fe849 2990 mnemonic_chars['-'] = '-';
0003779b 2991 mnemonic_chars['.'] = '.';
252b5132
RH
2992 identifier_chars['_'] = '_';
2993 identifier_chars['.'] = '.';
2994
2995 for (p = operand_special_chars; *p != '\0'; p++)
2996 operand_chars[(unsigned char) *p] = *p;
2997 }
2998
a4447b93
RH
2999 if (flag_code == CODE_64BIT)
3000 {
ca19b261
KT
3001#if defined (OBJ_COFF) && defined (TE_PE)
3002 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3003 ? 32 : 16);
3004#else
a4447b93 3005 x86_dwarf2_return_column = 16;
ca19b261 3006#endif
61ff971f 3007 x86_cie_data_alignment = -8;
a4447b93
RH
3008 }
3009 else
3010 {
3011 x86_dwarf2_return_column = 8;
3012 x86_cie_data_alignment = -4;
3013 }
252b5132
RH
3014}
3015
3016void
e3bb37b5 3017i386_print_statistics (FILE *file)
252b5132
RH
3018{
3019 hash_print_statistics (file, "i386 opcode", op_hash);
3020 hash_print_statistics (file, "i386 register", reg_hash);
3021}
3022\f
252b5132
RH
3023#ifdef DEBUG386
3024
ce8a8b2f 3025/* Debugging routines for md_assemble. */
d3ce72d0 3026static void pte (insn_template *);
40fb9820 3027static void pt (i386_operand_type);
e3bb37b5
L
3028static void pe (expressionS *);
3029static void ps (symbolS *);
252b5132
RH
3030
3031static void
2c703856 3032pi (const char *line, i386_insn *x)
252b5132 3033{
09137c09 3034 unsigned int j;
252b5132
RH
3035
3036 fprintf (stdout, "%s: template ", line);
3037 pte (&x->tm);
09f131f2
JH
3038 fprintf (stdout, " address: base %s index %s scale %x\n",
3039 x->base_reg ? x->base_reg->reg_name : "none",
3040 x->index_reg ? x->index_reg->reg_name : "none",
3041 x->log2_scale_factor);
3042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3043 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3044 fprintf (stdout, " sib: base %x index %x scale %x\n",
3045 x->sib.base, x->sib.index, x->sib.scale);
3046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3047 (x->rex & REX_W) != 0,
3048 (x->rex & REX_R) != 0,
3049 (x->rex & REX_X) != 0,
3050 (x->rex & REX_B) != 0);
09137c09 3051 for (j = 0; j < x->operands; j++)
252b5132 3052 {
09137c09
SP
3053 fprintf (stdout, " #%d: ", j + 1);
3054 pt (x->types[j]);
252b5132 3055 fprintf (stdout, "\n");
bab6aec1 3056 if (x->types[j].bitfield.class == Reg
3528c362
JB
3057 || x->types[j].bitfield.class == RegMMX
3058 || x->types[j].bitfield.class == RegSIMD
00cee14f 3059 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3060 || x->types[j].bitfield.class == RegCR
3061 || x->types[j].bitfield.class == RegDR
3062 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3063 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3064 if (operand_type_check (x->types[j], imm))
3065 pe (x->op[j].imms);
3066 if (operand_type_check (x->types[j], disp))
3067 pe (x->op[j].disps);
252b5132
RH
3068 }
3069}
3070
3071static void
d3ce72d0 3072pte (insn_template *t)
252b5132 3073{
09137c09 3074 unsigned int j;
252b5132 3075 fprintf (stdout, " %d operands ", t->operands);
47926f60 3076 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3077 if (t->extension_opcode != None)
3078 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3079 if (t->opcode_modifier.d)
252b5132 3080 fprintf (stdout, "D");
40fb9820 3081 if (t->opcode_modifier.w)
252b5132
RH
3082 fprintf (stdout, "W");
3083 fprintf (stdout, "\n");
09137c09 3084 for (j = 0; j < t->operands; j++)
252b5132 3085 {
09137c09
SP
3086 fprintf (stdout, " #%d type ", j + 1);
3087 pt (t->operand_types[j]);
252b5132
RH
3088 fprintf (stdout, "\n");
3089 }
3090}
3091
3092static void
e3bb37b5 3093pe (expressionS *e)
252b5132 3094{
24eab124 3095 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3096 fprintf (stdout, " add_number %ld (%lx)\n",
3097 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3098 if (e->X_add_symbol)
3099 {
3100 fprintf (stdout, " add_symbol ");
3101 ps (e->X_add_symbol);
3102 fprintf (stdout, "\n");
3103 }
3104 if (e->X_op_symbol)
3105 {
3106 fprintf (stdout, " op_symbol ");
3107 ps (e->X_op_symbol);
3108 fprintf (stdout, "\n");
3109 }
3110}
3111
3112static void
e3bb37b5 3113ps (symbolS *s)
252b5132
RH
3114{
3115 fprintf (stdout, "%s type %s%s",
3116 S_GET_NAME (s),
3117 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3118 segment_name (S_GET_SEGMENT (s)));
3119}
3120
7b81dfbb 3121static struct type_name
252b5132 3122 {
40fb9820
L
3123 i386_operand_type mask;
3124 const char *name;
252b5132 3125 }
7b81dfbb 3126const type_names[] =
252b5132 3127{
40fb9820
L
3128 { OPERAND_TYPE_REG8, "r8" },
3129 { OPERAND_TYPE_REG16, "r16" },
3130 { OPERAND_TYPE_REG32, "r32" },
3131 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3132 { OPERAND_TYPE_ACC8, "acc8" },
3133 { OPERAND_TYPE_ACC16, "acc16" },
3134 { OPERAND_TYPE_ACC32, "acc32" },
3135 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3136 { OPERAND_TYPE_IMM8, "i8" },
3137 { OPERAND_TYPE_IMM8, "i8s" },
3138 { OPERAND_TYPE_IMM16, "i16" },
3139 { OPERAND_TYPE_IMM32, "i32" },
3140 { OPERAND_TYPE_IMM32S, "i32s" },
3141 { OPERAND_TYPE_IMM64, "i64" },
3142 { OPERAND_TYPE_IMM1, "i1" },
3143 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3144 { OPERAND_TYPE_DISP8, "d8" },
3145 { OPERAND_TYPE_DISP16, "d16" },
3146 { OPERAND_TYPE_DISP32, "d32" },
3147 { OPERAND_TYPE_DISP32S, "d32s" },
3148 { OPERAND_TYPE_DISP64, "d64" },
3149 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3150 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3151 { OPERAND_TYPE_CONTROL, "control reg" },
3152 { OPERAND_TYPE_TEST, "test reg" },
3153 { OPERAND_TYPE_DEBUG, "debug reg" },
3154 { OPERAND_TYPE_FLOATREG, "FReg" },
3155 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3156 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3157 { OPERAND_TYPE_REGMMX, "rMMX" },
3158 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3159 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3160 { OPERAND_TYPE_REGZMM, "rZMM" },
3161 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3162};
3163
3164static void
40fb9820 3165pt (i386_operand_type t)
252b5132 3166{
40fb9820 3167 unsigned int j;
c6fb90c8 3168 i386_operand_type a;
252b5132 3169
40fb9820 3170 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3171 {
3172 a = operand_type_and (t, type_names[j].mask);
2c703856 3173 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3174 fprintf (stdout, "%s, ", type_names[j].name);
3175 }
252b5132
RH
3176 fflush (stdout);
3177}
3178
3179#endif /* DEBUG386 */
3180\f
252b5132 3181static bfd_reloc_code_real_type
3956db08 3182reloc (unsigned int size,
64e74474
AM
3183 int pcrel,
3184 int sign,
3185 bfd_reloc_code_real_type other)
252b5132 3186{
47926f60 3187 if (other != NO_RELOC)
3956db08 3188 {
91d6fa6a 3189 reloc_howto_type *rel;
3956db08
JB
3190
3191 if (size == 8)
3192 switch (other)
3193 {
64e74474
AM
3194 case BFD_RELOC_X86_64_GOT32:
3195 return BFD_RELOC_X86_64_GOT64;
3196 break;
553d1284
L
3197 case BFD_RELOC_X86_64_GOTPLT64:
3198 return BFD_RELOC_X86_64_GOTPLT64;
3199 break;
64e74474
AM
3200 case BFD_RELOC_X86_64_PLTOFF64:
3201 return BFD_RELOC_X86_64_PLTOFF64;
3202 break;
3203 case BFD_RELOC_X86_64_GOTPC32:
3204 other = BFD_RELOC_X86_64_GOTPC64;
3205 break;
3206 case BFD_RELOC_X86_64_GOTPCREL:
3207 other = BFD_RELOC_X86_64_GOTPCREL64;
3208 break;
3209 case BFD_RELOC_X86_64_TPOFF32:
3210 other = BFD_RELOC_X86_64_TPOFF64;
3211 break;
3212 case BFD_RELOC_X86_64_DTPOFF32:
3213 other = BFD_RELOC_X86_64_DTPOFF64;
3214 break;
3215 default:
3216 break;
3956db08 3217 }
e05278af 3218
8ce3d284 3219#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3220 if (other == BFD_RELOC_SIZE32)
3221 {
3222 if (size == 8)
1ab668bf 3223 other = BFD_RELOC_SIZE64;
8fd4256d 3224 if (pcrel)
1ab668bf
AM
3225 {
3226 as_bad (_("there are no pc-relative size relocations"));
3227 return NO_RELOC;
3228 }
8fd4256d 3229 }
8ce3d284 3230#endif
8fd4256d 3231
e05278af 3232 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3233 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3234 sign = -1;
3235
91d6fa6a
NC
3236 rel = bfd_reloc_type_lookup (stdoutput, other);
3237 if (!rel)
3956db08 3238 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3239 else if (size != bfd_get_reloc_size (rel))
3956db08 3240 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3241 bfd_get_reloc_size (rel),
3956db08 3242 size);
91d6fa6a 3243 else if (pcrel && !rel->pc_relative)
3956db08 3244 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3245 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3246 && !sign)
91d6fa6a 3247 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3248 && sign > 0))
3956db08
JB
3249 as_bad (_("relocated field and relocation type differ in signedness"));
3250 else
3251 return other;
3252 return NO_RELOC;
3253 }
252b5132
RH
3254
3255 if (pcrel)
3256 {
3e73aa7c 3257 if (!sign)
3956db08 3258 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3259 switch (size)
3260 {
3261 case 1: return BFD_RELOC_8_PCREL;
3262 case 2: return BFD_RELOC_16_PCREL;
d258b828 3263 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3264 case 8: return BFD_RELOC_64_PCREL;
252b5132 3265 }
3956db08 3266 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3267 }
3268 else
3269 {
3956db08 3270 if (sign > 0)
e5cb08ac 3271 switch (size)
3e73aa7c
JH
3272 {
3273 case 4: return BFD_RELOC_X86_64_32S;
3274 }
3275 else
3276 switch (size)
3277 {
3278 case 1: return BFD_RELOC_8;
3279 case 2: return BFD_RELOC_16;
3280 case 4: return BFD_RELOC_32;
3281 case 8: return BFD_RELOC_64;
3282 }
3956db08
JB
3283 as_bad (_("cannot do %s %u byte relocation"),
3284 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3285 }
3286
0cc9e1d3 3287 return NO_RELOC;
252b5132
RH
3288}
3289
47926f60
KH
3290/* Here we decide which fixups can be adjusted to make them relative to
3291 the beginning of the section instead of the symbol. Basically we need
3292 to make sure that the dynamic relocations are done correctly, so in
3293 some cases we force the original symbol to be used. */
3294
252b5132 3295int
e3bb37b5 3296tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3297{
6d249963 3298#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3299 if (!IS_ELF)
31312f95
AM
3300 return 1;
3301
a161fe53
AM
3302 /* Don't adjust pc-relative references to merge sections in 64-bit
3303 mode. */
3304 if (use_rela_relocations
3305 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3306 && fixP->fx_pcrel)
252b5132 3307 return 0;
31312f95 3308
8d01d9a9
AJ
3309 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3310 and changed later by validate_fix. */
3311 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3312 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3313 return 0;
3314
8fd4256d
L
3315 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3316 for size relocations. */
3317 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3318 || fixP->fx_r_type == BFD_RELOC_SIZE64
3319 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3320 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3321 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3322 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3323 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3324 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3325 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3326 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3327 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3328 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3329 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3330 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3331 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3332 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3333 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3334 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3335 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3336 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3337 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3338 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3339 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3340 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3341 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3342 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3343 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3344 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3345 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3346 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3347 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3348 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3349 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3350 return 0;
31312f95 3351#endif
252b5132
RH
3352 return 1;
3353}
252b5132 3354
b4cac588 3355static int
e3bb37b5 3356intel_float_operand (const char *mnemonic)
252b5132 3357{
9306ca4a
JB
3358 /* Note that the value returned is meaningful only for opcodes with (memory)
3359 operands, hence the code here is free to improperly handle opcodes that
3360 have no operands (for better performance and smaller code). */
3361
3362 if (mnemonic[0] != 'f')
3363 return 0; /* non-math */
3364
3365 switch (mnemonic[1])
3366 {
3367 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3368 the fs segment override prefix not currently handled because no
3369 call path can make opcodes without operands get here */
3370 case 'i':
3371 return 2 /* integer op */;
3372 case 'l':
3373 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3374 return 3; /* fldcw/fldenv */
3375 break;
3376 case 'n':
3377 if (mnemonic[2] != 'o' /* fnop */)
3378 return 3; /* non-waiting control op */
3379 break;
3380 case 'r':
3381 if (mnemonic[2] == 's')
3382 return 3; /* frstor/frstpm */
3383 break;
3384 case 's':
3385 if (mnemonic[2] == 'a')
3386 return 3; /* fsave */
3387 if (mnemonic[2] == 't')
3388 {
3389 switch (mnemonic[3])
3390 {
3391 case 'c': /* fstcw */
3392 case 'd': /* fstdw */
3393 case 'e': /* fstenv */
3394 case 's': /* fsts[gw] */
3395 return 3;
3396 }
3397 }
3398 break;
3399 case 'x':
3400 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3401 return 0; /* fxsave/fxrstor are not really math ops */
3402 break;
3403 }
252b5132 3404
9306ca4a 3405 return 1;
252b5132
RH
3406}
3407
c0f3af97
L
3408/* Build the VEX prefix. */
3409
3410static void
d3ce72d0 3411build_vex_prefix (const insn_template *t)
c0f3af97
L
3412{
3413 unsigned int register_specifier;
3414 unsigned int implied_prefix;
3415 unsigned int vector_length;
03751133 3416 unsigned int w;
c0f3af97
L
3417
3418 /* Check register specifier. */
3419 if (i.vex.register_specifier)
43234a1e
L
3420 {
3421 register_specifier =
3422 ~register_number (i.vex.register_specifier) & 0xf;
3423 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3424 }
c0f3af97
L
3425 else
3426 register_specifier = 0xf;
3427
79f0fa25
L
3428 /* Use 2-byte VEX prefix by swapping destination and source operand
3429 if there are more than 1 register operand. */
3430 if (i.reg_operands > 1
3431 && i.vec_encoding != vex_encoding_vex3
86fa6981 3432 && i.dir_encoding == dir_encoding_default
fa99fab2 3433 && i.operands == i.reg_operands
dbbc8b7e 3434 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3435 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3436 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3437 && i.rex == REX_B)
3438 {
3439 unsigned int xchg = i.operands - 1;
3440 union i386_op temp_op;
3441 i386_operand_type temp_type;
3442
3443 temp_type = i.types[xchg];
3444 i.types[xchg] = i.types[0];
3445 i.types[0] = temp_type;
3446 temp_op = i.op[xchg];
3447 i.op[xchg] = i.op[0];
3448 i.op[0] = temp_op;
3449
9c2799c2 3450 gas_assert (i.rm.mode == 3);
fa99fab2
L
3451
3452 i.rex = REX_R;
3453 xchg = i.rm.regmem;
3454 i.rm.regmem = i.rm.reg;
3455 i.rm.reg = xchg;
3456
dbbc8b7e
JB
3457 if (i.tm.opcode_modifier.d)
3458 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3459 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3460 else /* Use the next insn. */
3461 i.tm = t[1];
fa99fab2
L
3462 }
3463
79dec6b7
JB
3464 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3465 are no memory operands and at least 3 register ones. */
3466 if (i.reg_operands >= 3
3467 && i.vec_encoding != vex_encoding_vex3
3468 && i.reg_operands == i.operands - i.imm_operands
3469 && i.tm.opcode_modifier.vex
3470 && i.tm.opcode_modifier.commutative
3471 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3472 && i.rex == REX_B
3473 && i.vex.register_specifier
3474 && !(i.vex.register_specifier->reg_flags & RegRex))
3475 {
3476 unsigned int xchg = i.operands - i.reg_operands;
3477 union i386_op temp_op;
3478 i386_operand_type temp_type;
3479
3480 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3481 gas_assert (!i.tm.opcode_modifier.sae);
3482 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3483 &i.types[i.operands - 3]));
3484 gas_assert (i.rm.mode == 3);
3485
3486 temp_type = i.types[xchg];
3487 i.types[xchg] = i.types[xchg + 1];
3488 i.types[xchg + 1] = temp_type;
3489 temp_op = i.op[xchg];
3490 i.op[xchg] = i.op[xchg + 1];
3491 i.op[xchg + 1] = temp_op;
3492
3493 i.rex = 0;
3494 xchg = i.rm.regmem | 8;
3495 i.rm.regmem = ~register_specifier & 0xf;
3496 gas_assert (!(i.rm.regmem & 8));
3497 i.vex.register_specifier += xchg - i.rm.regmem;
3498 register_specifier = ~xchg & 0xf;
3499 }
3500
539f890d
L
3501 if (i.tm.opcode_modifier.vex == VEXScalar)
3502 vector_length = avxscalar;
10c17abd
JB
3503 else if (i.tm.opcode_modifier.vex == VEX256)
3504 vector_length = 1;
539f890d 3505 else
10c17abd 3506 {
56522fc5 3507 unsigned int op;
10c17abd 3508
c7213af9
L
3509 /* Determine vector length from the last multi-length vector
3510 operand. */
10c17abd 3511 vector_length = 0;
56522fc5 3512 for (op = t->operands; op--;)
10c17abd
JB
3513 if (t->operand_types[op].bitfield.xmmword
3514 && t->operand_types[op].bitfield.ymmword
3515 && i.types[op].bitfield.ymmword)
3516 {
3517 vector_length = 1;
3518 break;
3519 }
3520 }
c0f3af97
L
3521
3522 switch ((i.tm.base_opcode >> 8) & 0xff)
3523 {
3524 case 0:
3525 implied_prefix = 0;
3526 break;
3527 case DATA_PREFIX_OPCODE:
3528 implied_prefix = 1;
3529 break;
3530 case REPE_PREFIX_OPCODE:
3531 implied_prefix = 2;
3532 break;
3533 case REPNE_PREFIX_OPCODE:
3534 implied_prefix = 3;
3535 break;
3536 default:
3537 abort ();
3538 }
3539
03751133
L
3540 /* Check the REX.W bit and VEXW. */
3541 if (i.tm.opcode_modifier.vexw == VEXWIG)
3542 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3543 else if (i.tm.opcode_modifier.vexw)
3544 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3545 else
931d03b7 3546 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3547
c0f3af97 3548 /* Use 2-byte VEX prefix if possible. */
03751133
L
3549 if (w == 0
3550 && i.vec_encoding != vex_encoding_vex3
86fa6981 3551 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3552 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3553 {
3554 /* 2-byte VEX prefix. */
3555 unsigned int r;
3556
3557 i.vex.length = 2;
3558 i.vex.bytes[0] = 0xc5;
3559
3560 /* Check the REX.R bit. */
3561 r = (i.rex & REX_R) ? 0 : 1;
3562 i.vex.bytes[1] = (r << 7
3563 | register_specifier << 3
3564 | vector_length << 2
3565 | implied_prefix);
3566 }
3567 else
3568 {
3569 /* 3-byte VEX prefix. */
03751133 3570 unsigned int m;
c0f3af97 3571
f88c9eb0 3572 i.vex.length = 3;
f88c9eb0 3573
7f399153 3574 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3575 {
7f399153
L
3576 case VEX0F:
3577 m = 0x1;
80de6e00 3578 i.vex.bytes[0] = 0xc4;
7f399153
L
3579 break;
3580 case VEX0F38:
3581 m = 0x2;
80de6e00 3582 i.vex.bytes[0] = 0xc4;
7f399153
L
3583 break;
3584 case VEX0F3A:
3585 m = 0x3;
80de6e00 3586 i.vex.bytes[0] = 0xc4;
7f399153
L
3587 break;
3588 case XOP08:
5dd85c99
SP
3589 m = 0x8;
3590 i.vex.bytes[0] = 0x8f;
7f399153
L
3591 break;
3592 case XOP09:
f88c9eb0
SP
3593 m = 0x9;
3594 i.vex.bytes[0] = 0x8f;
7f399153
L
3595 break;
3596 case XOP0A:
f88c9eb0
SP
3597 m = 0xa;
3598 i.vex.bytes[0] = 0x8f;
7f399153
L
3599 break;
3600 default:
3601 abort ();
f88c9eb0 3602 }
c0f3af97 3603
c0f3af97
L
3604 /* The high 3 bits of the second VEX byte are 1's compliment
3605 of RXB bits from REX. */
3606 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3607
c0f3af97
L
3608 i.vex.bytes[2] = (w << 7
3609 | register_specifier << 3
3610 | vector_length << 2
3611 | implied_prefix);
3612 }
3613}
3614
e771e7c9
JB
3615static INLINE bfd_boolean
3616is_evex_encoding (const insn_template *t)
3617{
7091c612 3618 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3619 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3620 || t->opcode_modifier.sae;
e771e7c9
JB
3621}
3622
7a8655d2
JB
3623static INLINE bfd_boolean
3624is_any_vex_encoding (const insn_template *t)
3625{
3626 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3627 || is_evex_encoding (t);
3628}
3629
43234a1e
L
3630/* Build the EVEX prefix. */
3631
3632static void
3633build_evex_prefix (void)
3634{
3635 unsigned int register_specifier;
3636 unsigned int implied_prefix;
3637 unsigned int m, w;
3638 rex_byte vrex_used = 0;
3639
3640 /* Check register specifier. */
3641 if (i.vex.register_specifier)
3642 {
3643 gas_assert ((i.vrex & REX_X) == 0);
3644
3645 register_specifier = i.vex.register_specifier->reg_num;
3646 if ((i.vex.register_specifier->reg_flags & RegRex))
3647 register_specifier += 8;
3648 /* The upper 16 registers are encoded in the fourth byte of the
3649 EVEX prefix. */
3650 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3651 i.vex.bytes[3] = 0x8;
3652 register_specifier = ~register_specifier & 0xf;
3653 }
3654 else
3655 {
3656 register_specifier = 0xf;
3657
3658 /* Encode upper 16 vector index register in the fourth byte of
3659 the EVEX prefix. */
3660 if (!(i.vrex & REX_X))
3661 i.vex.bytes[3] = 0x8;
3662 else
3663 vrex_used |= REX_X;
3664 }
3665
3666 switch ((i.tm.base_opcode >> 8) & 0xff)
3667 {
3668 case 0:
3669 implied_prefix = 0;
3670 break;
3671 case DATA_PREFIX_OPCODE:
3672 implied_prefix = 1;
3673 break;
3674 case REPE_PREFIX_OPCODE:
3675 implied_prefix = 2;
3676 break;
3677 case REPNE_PREFIX_OPCODE:
3678 implied_prefix = 3;
3679 break;
3680 default:
3681 abort ();
3682 }
3683
3684 /* 4 byte EVEX prefix. */
3685 i.vex.length = 4;
3686 i.vex.bytes[0] = 0x62;
3687
3688 /* mmmm bits. */
3689 switch (i.tm.opcode_modifier.vexopcode)
3690 {
3691 case VEX0F:
3692 m = 1;
3693 break;
3694 case VEX0F38:
3695 m = 2;
3696 break;
3697 case VEX0F3A:
3698 m = 3;
3699 break;
3700 default:
3701 abort ();
3702 break;
3703 }
3704
3705 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3706 bits from REX. */
3707 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3708
3709 /* The fifth bit of the second EVEX byte is 1's compliment of the
3710 REX_R bit in VREX. */
3711 if (!(i.vrex & REX_R))
3712 i.vex.bytes[1] |= 0x10;
3713 else
3714 vrex_used |= REX_R;
3715
3716 if ((i.reg_operands + i.imm_operands) == i.operands)
3717 {
3718 /* When all operands are registers, the REX_X bit in REX is not
3719 used. We reuse it to encode the upper 16 registers, which is
3720 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3721 as 1's compliment. */
3722 if ((i.vrex & REX_B))
3723 {
3724 vrex_used |= REX_B;
3725 i.vex.bytes[1] &= ~0x40;
3726 }
3727 }
3728
3729 /* EVEX instructions shouldn't need the REX prefix. */
3730 i.vrex &= ~vrex_used;
3731 gas_assert (i.vrex == 0);
3732
6865c043
L
3733 /* Check the REX.W bit and VEXW. */
3734 if (i.tm.opcode_modifier.vexw == VEXWIG)
3735 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3736 else if (i.tm.opcode_modifier.vexw)
3737 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3738 else
931d03b7 3739 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3740
3741 /* Encode the U bit. */
3742 implied_prefix |= 0x4;
3743
3744 /* The third byte of the EVEX prefix. */
3745 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3746
3747 /* The fourth byte of the EVEX prefix. */
3748 /* The zeroing-masking bit. */
3749 if (i.mask && i.mask->zeroing)
3750 i.vex.bytes[3] |= 0x80;
3751
3752 /* Don't always set the broadcast bit if there is no RC. */
3753 if (!i.rounding)
3754 {
3755 /* Encode the vector length. */
3756 unsigned int vec_length;
3757
e771e7c9
JB
3758 if (!i.tm.opcode_modifier.evex
3759 || i.tm.opcode_modifier.evex == EVEXDYN)
3760 {
56522fc5 3761 unsigned int op;
e771e7c9 3762
c7213af9
L
3763 /* Determine vector length from the last multi-length vector
3764 operand. */
e771e7c9 3765 vec_length = 0;
56522fc5 3766 for (op = i.operands; op--;)
e771e7c9
JB
3767 if (i.tm.operand_types[op].bitfield.xmmword
3768 + i.tm.operand_types[op].bitfield.ymmword
3769 + i.tm.operand_types[op].bitfield.zmmword > 1)
3770 {
3771 if (i.types[op].bitfield.zmmword)
c7213af9
L
3772 {
3773 i.tm.opcode_modifier.evex = EVEX512;
3774 break;
3775 }
e771e7c9 3776 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3777 {
3778 i.tm.opcode_modifier.evex = EVEX256;
3779 break;
3780 }
e771e7c9 3781 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3782 {
3783 i.tm.opcode_modifier.evex = EVEX128;
3784 break;
3785 }
625cbd7a
JB
3786 else if (i.broadcast && (int) op == i.broadcast->operand)
3787 {
4a1b91ea 3788 switch (i.broadcast->bytes)
625cbd7a
JB
3789 {
3790 case 64:
3791 i.tm.opcode_modifier.evex = EVEX512;
3792 break;
3793 case 32:
3794 i.tm.opcode_modifier.evex = EVEX256;
3795 break;
3796 case 16:
3797 i.tm.opcode_modifier.evex = EVEX128;
3798 break;
3799 default:
c7213af9 3800 abort ();
625cbd7a 3801 }
c7213af9 3802 break;
625cbd7a 3803 }
e771e7c9 3804 }
c7213af9 3805
56522fc5 3806 if (op >= MAX_OPERANDS)
c7213af9 3807 abort ();
e771e7c9
JB
3808 }
3809
43234a1e
L
3810 switch (i.tm.opcode_modifier.evex)
3811 {
3812 case EVEXLIG: /* LL' is ignored */
3813 vec_length = evexlig << 5;
3814 break;
3815 case EVEX128:
3816 vec_length = 0 << 5;
3817 break;
3818 case EVEX256:
3819 vec_length = 1 << 5;
3820 break;
3821 case EVEX512:
3822 vec_length = 2 << 5;
3823 break;
3824 default:
3825 abort ();
3826 break;
3827 }
3828 i.vex.bytes[3] |= vec_length;
3829 /* Encode the broadcast bit. */
3830 if (i.broadcast)
3831 i.vex.bytes[3] |= 0x10;
3832 }
3833 else
3834 {
3835 if (i.rounding->type != saeonly)
3836 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3837 else
d3d3c6db 3838 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3839 }
3840
3841 if (i.mask && i.mask->mask)
3842 i.vex.bytes[3] |= i.mask->mask->reg_num;
3843}
3844
65da13b5
L
3845static void
3846process_immext (void)
3847{
3848 expressionS *exp;
3849
c0f3af97 3850 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3851 which is coded in the same place as an 8-bit immediate field
3852 would be. Here we fake an 8-bit immediate operand from the
3853 opcode suffix stored in tm.extension_opcode.
3854
c1e679ec 3855 AVX instructions also use this encoding, for some of
c0f3af97 3856 3 argument instructions. */
65da13b5 3857
43234a1e 3858 gas_assert (i.imm_operands <= 1
7ab9ffdd 3859 && (i.operands <= 2
7a8655d2 3860 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3861 && i.operands <= 4)));
65da13b5
L
3862
3863 exp = &im_expressions[i.imm_operands++];
3864 i.op[i.operands].imms = exp;
3865 i.types[i.operands] = imm8;
3866 i.operands++;
3867 exp->X_op = O_constant;
3868 exp->X_add_number = i.tm.extension_opcode;
3869 i.tm.extension_opcode = None;
3870}
3871
42164a71
L
3872
3873static int
3874check_hle (void)
3875{
3876 switch (i.tm.opcode_modifier.hleprefixok)
3877 {
3878 default:
3879 abort ();
82c2def5 3880 case HLEPrefixNone:
165de32a
L
3881 as_bad (_("invalid instruction `%s' after `%s'"),
3882 i.tm.name, i.hle_prefix);
42164a71 3883 return 0;
82c2def5 3884 case HLEPrefixLock:
42164a71
L
3885 if (i.prefix[LOCK_PREFIX])
3886 return 1;
165de32a 3887 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3888 return 0;
82c2def5 3889 case HLEPrefixAny:
42164a71 3890 return 1;
82c2def5 3891 case HLEPrefixRelease:
42164a71
L
3892 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3893 {
3894 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3895 i.tm.name);
3896 return 0;
3897 }
8dc0818e 3898 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
3899 {
3900 as_bad (_("memory destination needed for instruction `%s'"
3901 " after `xrelease'"), i.tm.name);
3902 return 0;
3903 }
3904 return 1;
3905 }
3906}
3907
b6f8c7c4
L
3908/* Try the shortest encoding by shortening operand size. */
3909
3910static void
3911optimize_encoding (void)
3912{
a0a1771e 3913 unsigned int j;
b6f8c7c4
L
3914
3915 if (optimize_for_space
3916 && i.reg_operands == 1
3917 && i.imm_operands == 1
3918 && !i.types[1].bitfield.byte
3919 && i.op[0].imms->X_op == O_constant
3920 && fits_in_imm7 (i.op[0].imms->X_add_number)
3921 && ((i.tm.base_opcode == 0xa8
3922 && i.tm.extension_opcode == None)
3923 || (i.tm.base_opcode == 0xf6
3924 && i.tm.extension_opcode == 0x0)))
3925 {
3926 /* Optimize: -Os:
3927 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3928 */
3929 unsigned int base_regnum = i.op[1].regs->reg_num;
3930 if (flag_code == CODE_64BIT || base_regnum < 4)
3931 {
3932 i.types[1].bitfield.byte = 1;
3933 /* Ignore the suffix. */
3934 i.suffix = 0;
3935 if (base_regnum >= 4
3936 && !(i.op[1].regs->reg_flags & RegRex))
3937 {
3938 /* Handle SP, BP, SI and DI registers. */
3939 if (i.types[1].bitfield.word)
3940 j = 16;
3941 else if (i.types[1].bitfield.dword)
3942 j = 32;
3943 else
3944 j = 48;
3945 i.op[1].regs -= j;
3946 }
3947 }
3948 }
3949 else if (flag_code == CODE_64BIT
d3d50934
L
3950 && ((i.types[1].bitfield.qword
3951 && i.reg_operands == 1
b6f8c7c4
L
3952 && i.imm_operands == 1
3953 && i.op[0].imms->X_op == O_constant
507916b8 3954 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
3955 && i.tm.extension_opcode == None
3956 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3957 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3958 && (((i.tm.base_opcode == 0x24
3959 || i.tm.base_opcode == 0xa8)
3960 && i.tm.extension_opcode == None)
3961 || (i.tm.base_opcode == 0x80
3962 && i.tm.extension_opcode == 0x4)
3963 || ((i.tm.base_opcode == 0xf6
507916b8 3964 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
3965 && i.tm.extension_opcode == 0x0)))
3966 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3967 && i.tm.base_opcode == 0x83
3968 && i.tm.extension_opcode == 0x4)))
d3d50934
L
3969 || (i.types[0].bitfield.qword
3970 && ((i.reg_operands == 2
3971 && i.op[0].regs == i.op[1].regs
3972 && ((i.tm.base_opcode == 0x30
3973 || i.tm.base_opcode == 0x28)
3974 && i.tm.extension_opcode == None))
3975 || (i.reg_operands == 1
3976 && i.operands == 1
3977 && i.tm.base_opcode == 0x30
3978 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3979 {
3980 /* Optimize: -O:
3981 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 3982 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
3983 testq $imm31, %r64 -> testl $imm31, %r32
3984 xorq %r64, %r64 -> xorl %r32, %r32
3985 subq %r64, %r64 -> subl %r32, %r32
3986 movq $imm31, %r64 -> movl $imm31, %r32
3987 movq $imm32, %r64 -> movl $imm32, %r32
3988 */
3989 i.tm.opcode_modifier.norex64 = 1;
507916b8 3990 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
3991 {
3992 /* Handle
3993 movq $imm31, %r64 -> movl $imm31, %r32
3994 movq $imm32, %r64 -> movl $imm32, %r32
3995 */
3996 i.tm.operand_types[0].bitfield.imm32 = 1;
3997 i.tm.operand_types[0].bitfield.imm32s = 0;
3998 i.tm.operand_types[0].bitfield.imm64 = 0;
3999 i.types[0].bitfield.imm32 = 1;
4000 i.types[0].bitfield.imm32s = 0;
4001 i.types[0].bitfield.imm64 = 0;
4002 i.types[1].bitfield.dword = 1;
4003 i.types[1].bitfield.qword = 0;
507916b8 4004 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4005 {
4006 /* Handle
4007 movq $imm31, %r64 -> movl $imm31, %r32
4008 */
507916b8 4009 i.tm.base_opcode = 0xb8;
b6f8c7c4 4010 i.tm.extension_opcode = None;
507916b8 4011 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4012 i.tm.opcode_modifier.shortform = 1;
4013 i.tm.opcode_modifier.modrm = 0;
4014 }
4015 }
4016 }
5641ec01
JB
4017 else if (optimize > 1
4018 && !optimize_for_space
4019 && i.reg_operands == 2
4020 && i.op[0].regs == i.op[1].regs
4021 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4022 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4023 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4024 {
4025 /* Optimize: -O2:
4026 andb %rN, %rN -> testb %rN, %rN
4027 andw %rN, %rN -> testw %rN, %rN
4028 andq %rN, %rN -> testq %rN, %rN
4029 orb %rN, %rN -> testb %rN, %rN
4030 orw %rN, %rN -> testw %rN, %rN
4031 orq %rN, %rN -> testq %rN, %rN
4032
4033 and outside of 64-bit mode
4034
4035 andl %rN, %rN -> testl %rN, %rN
4036 orl %rN, %rN -> testl %rN, %rN
4037 */
4038 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4039 }
99112332 4040 else if (i.reg_operands == 3
b6f8c7c4
L
4041 && i.op[0].regs == i.op[1].regs
4042 && !i.types[2].bitfield.xmmword
4043 && (i.tm.opcode_modifier.vex
7a69eac3 4044 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4045 && !i.rounding
e771e7c9 4046 && is_evex_encoding (&i.tm)
80c34c38 4047 && (i.vec_encoding != vex_encoding_evex
dd22218c 4048 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4049 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4050 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4051 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4052 && ((i.tm.base_opcode == 0x55
4053 || i.tm.base_opcode == 0x6655
4054 || i.tm.base_opcode == 0x66df
4055 || i.tm.base_opcode == 0x57
4056 || i.tm.base_opcode == 0x6657
8305403a
L
4057 || i.tm.base_opcode == 0x66ef
4058 || i.tm.base_opcode == 0x66f8
4059 || i.tm.base_opcode == 0x66f9
4060 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4061 || i.tm.base_opcode == 0x66fb
4062 || i.tm.base_opcode == 0x42
4063 || i.tm.base_opcode == 0x6642
4064 || i.tm.base_opcode == 0x47
4065 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4066 && i.tm.extension_opcode == None))
4067 {
99112332 4068 /* Optimize: -O1:
8305403a
L
4069 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4070 vpsubq and vpsubw:
b6f8c7c4
L
4071 EVEX VOP %zmmM, %zmmM, %zmmN
4072 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4073 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4074 EVEX VOP %ymmM, %ymmM, %ymmN
4075 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4076 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4077 VEX VOP %ymmM, %ymmM, %ymmN
4078 -> VEX VOP %xmmM, %xmmM, %xmmN
4079 VOP, one of vpandn and vpxor:
4080 VEX VOP %ymmM, %ymmM, %ymmN
4081 -> VEX VOP %xmmM, %xmmM, %xmmN
4082 VOP, one of vpandnd and vpandnq:
4083 EVEX VOP %zmmM, %zmmM, %zmmN
4084 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4085 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4086 EVEX VOP %ymmM, %ymmM, %ymmN
4087 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4088 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4089 VOP, one of vpxord and vpxorq:
4090 EVEX VOP %zmmM, %zmmM, %zmmN
4091 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4092 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4093 EVEX VOP %ymmM, %ymmM, %ymmN
4094 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4095 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4096 VOP, one of kxord and kxorq:
4097 VEX VOP %kM, %kM, %kN
4098 -> VEX kxorw %kM, %kM, %kN
4099 VOP, one of kandnd and kandnq:
4100 VEX VOP %kM, %kM, %kN
4101 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4102 */
e771e7c9 4103 if (is_evex_encoding (&i.tm))
b6f8c7c4 4104 {
7b1d7ca1 4105 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4106 {
4107 i.tm.opcode_modifier.vex = VEX128;
4108 i.tm.opcode_modifier.vexw = VEXW0;
4109 i.tm.opcode_modifier.evex = 0;
4110 }
7b1d7ca1 4111 else if (optimize > 1)
dd22218c
L
4112 i.tm.opcode_modifier.evex = EVEX128;
4113 else
4114 return;
b6f8c7c4 4115 }
f74a6307 4116 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4117 {
4118 i.tm.base_opcode &= 0xff;
4119 i.tm.opcode_modifier.vexw = VEXW0;
4120 }
b6f8c7c4
L
4121 else
4122 i.tm.opcode_modifier.vex = VEX128;
4123
4124 if (i.tm.opcode_modifier.vex)
4125 for (j = 0; j < 3; j++)
4126 {
4127 i.types[j].bitfield.xmmword = 1;
4128 i.types[j].bitfield.ymmword = 0;
4129 }
4130 }
392a5972 4131 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4132 && !i.types[0].bitfield.zmmword
392a5972 4133 && !i.types[1].bitfield.zmmword
97ed31ae 4134 && !i.mask
a0a1771e 4135 && !i.broadcast
97ed31ae 4136 && is_evex_encoding (&i.tm)
392a5972
L
4137 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4138 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4139 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4140 || (i.tm.base_opcode & ~4) == 0x66db
4141 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4142 && i.tm.extension_opcode == None)
4143 {
4144 /* Optimize: -O1:
4145 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4146 vmovdqu32 and vmovdqu64:
4147 EVEX VOP %xmmM, %xmmN
4148 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4149 EVEX VOP %ymmM, %ymmN
4150 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4151 EVEX VOP %xmmM, mem
4152 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4153 EVEX VOP %ymmM, mem
4154 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4155 EVEX VOP mem, %xmmN
4156 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4157 EVEX VOP mem, %ymmN
4158 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4159 VOP, one of vpand, vpandn, vpor, vpxor:
4160 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4161 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4162 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4163 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4164 EVEX VOP{d,q} mem, %xmmM, %xmmN
4165 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4166 EVEX VOP{d,q} mem, %ymmM, %ymmN
4167 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4168 */
a0a1771e 4169 for (j = 0; j < i.operands; j++)
392a5972
L
4170 if (operand_type_check (i.types[j], disp)
4171 && i.op[j].disps->X_op == O_constant)
4172 {
4173 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4174 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4175 bytes, we choose EVEX Disp8 over VEX Disp32. */
4176 int evex_disp8, vex_disp8;
4177 unsigned int memshift = i.memshift;
4178 offsetT n = i.op[j].disps->X_add_number;
4179
4180 evex_disp8 = fits_in_disp8 (n);
4181 i.memshift = 0;
4182 vex_disp8 = fits_in_disp8 (n);
4183 if (evex_disp8 != vex_disp8)
4184 {
4185 i.memshift = memshift;
4186 return;
4187 }
4188
4189 i.types[j].bitfield.disp8 = vex_disp8;
4190 break;
4191 }
4192 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4193 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4194 i.tm.opcode_modifier.vex
4195 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4196 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4197 /* VPAND, VPOR, and VPXOR are commutative. */
4198 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4199 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4200 i.tm.opcode_modifier.evex = 0;
4201 i.tm.opcode_modifier.masking = 0;
a0a1771e 4202 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4203 i.tm.opcode_modifier.disp8memshift = 0;
4204 i.memshift = 0;
a0a1771e
JB
4205 if (j < i.operands)
4206 i.types[j].bitfield.disp8
4207 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4208 }
b6f8c7c4
L
4209}
4210
252b5132
RH
4211/* This is the guts of the machine-dependent assembler. LINE points to a
4212 machine dependent instruction. This function is supposed to emit
4213 the frags/bytes it assembles to. */
4214
4215void
65da13b5 4216md_assemble (char *line)
252b5132 4217{
40fb9820 4218 unsigned int j;
83b16ac6 4219 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4220 const insn_template *t;
252b5132 4221
47926f60 4222 /* Initialize globals. */
252b5132
RH
4223 memset (&i, '\0', sizeof (i));
4224 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4225 i.reloc[j] = NO_RELOC;
252b5132
RH
4226 memset (disp_expressions, '\0', sizeof (disp_expressions));
4227 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4228 save_stack_p = save_stack;
252b5132
RH
4229
4230 /* First parse an instruction mnemonic & call i386_operand for the operands.
4231 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4232 start of a (possibly prefixed) mnemonic. */
252b5132 4233
29b0f896
AM
4234 line = parse_insn (line, mnemonic);
4235 if (line == NULL)
4236 return;
83b16ac6 4237 mnem_suffix = i.suffix;
252b5132 4238
29b0f896 4239 line = parse_operands (line, mnemonic);
ee86248c 4240 this_operand = -1;
8325cc63
JB
4241 xfree (i.memop1_string);
4242 i.memop1_string = NULL;
29b0f896
AM
4243 if (line == NULL)
4244 return;
252b5132 4245
29b0f896
AM
4246 /* Now we've parsed the mnemonic into a set of templates, and have the
4247 operands at hand. */
4248
4249 /* All intel opcodes have reversed operands except for "bound" and
4250 "enter". We also don't reverse intersegment "jmp" and "call"
4251 instructions with 2 immediate operands so that the immediate segment
050dfa73 4252 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4253 if (intel_syntax
4254 && i.operands > 1
29b0f896 4255 && (strcmp (mnemonic, "bound") != 0)
30123838 4256 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4257 && !(operand_type_check (i.types[0], imm)
4258 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4259 swap_operands ();
4260
ec56d5c0
JB
4261 /* The order of the immediates should be reversed
4262 for 2 immediates extrq and insertq instructions */
4263 if (i.imm_operands == 2
4264 && (strcmp (mnemonic, "extrq") == 0
4265 || strcmp (mnemonic, "insertq") == 0))
4266 swap_2_operands (0, 1);
4267
29b0f896
AM
4268 if (i.imm_operands)
4269 optimize_imm ();
4270
b300c311
L
4271 /* Don't optimize displacement for movabs since it only takes 64bit
4272 displacement. */
4273 if (i.disp_operands
a501d77e 4274 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4275 && (flag_code != CODE_64BIT
4276 || strcmp (mnemonic, "movabs") != 0))
4277 optimize_disp ();
29b0f896
AM
4278
4279 /* Next, we find a template that matches the given insn,
4280 making sure the overlap of the given operands types is consistent
4281 with the template operand types. */
252b5132 4282
83b16ac6 4283 if (!(t = match_template (mnem_suffix)))
29b0f896 4284 return;
252b5132 4285
7bab8ab5 4286 if (sse_check != check_none
81f8a913 4287 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4288 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4289 && (i.tm.cpu_flags.bitfield.cpusse
4290 || i.tm.cpu_flags.bitfield.cpusse2
4291 || i.tm.cpu_flags.bitfield.cpusse3
4292 || i.tm.cpu_flags.bitfield.cpussse3
4293 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4294 || i.tm.cpu_flags.bitfield.cpusse4_2
4295 || i.tm.cpu_flags.bitfield.cpupclmul
4296 || i.tm.cpu_flags.bitfield.cpuaes
4297 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4298 {
7bab8ab5 4299 (sse_check == check_warning
daf50ae7
L
4300 ? as_warn
4301 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4302 }
4303
321fd21e
L
4304 /* Zap movzx and movsx suffix. The suffix has been set from
4305 "word ptr" or "byte ptr" on the source operand in Intel syntax
4306 or extracted from mnemonic in AT&T syntax. But we'll use
4307 the destination register to choose the suffix for encoding. */
4308 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4309 {
321fd21e
L
4310 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4311 there is no suffix, the default will be byte extension. */
4312 if (i.reg_operands != 2
4313 && !i.suffix
7ab9ffdd 4314 && intel_syntax)
321fd21e
L
4315 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4316
4317 i.suffix = 0;
cd61ebfe 4318 }
24eab124 4319
40fb9820 4320 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4321 if (!add_prefix (FWAIT_OPCODE))
4322 return;
252b5132 4323
d5de92cf
L
4324 /* Check if REP prefix is OK. */
4325 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4326 {
4327 as_bad (_("invalid instruction `%s' after `%s'"),
4328 i.tm.name, i.rep_prefix);
4329 return;
4330 }
4331
c1ba0266
L
4332 /* Check for lock without a lockable instruction. Destination operand
4333 must be memory unless it is xchg (0x86). */
c32fa91d
L
4334 if (i.prefix[LOCK_PREFIX]
4335 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4336 || i.mem_operands == 0
4337 || (i.tm.base_opcode != 0x86
8dc0818e 4338 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4339 {
4340 as_bad (_("expecting lockable instruction after `lock'"));
4341 return;
4342 }
4343
7a8655d2
JB
4344 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4345 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4346 {
4347 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4348 return;
4349 }
4350
42164a71 4351 /* Check if HLE prefix is OK. */
165de32a 4352 if (i.hle_prefix && !check_hle ())
42164a71
L
4353 return;
4354
7e8b059b
L
4355 /* Check BND prefix. */
4356 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4357 as_bad (_("expecting valid branch instruction after `bnd'"));
4358
04ef582a 4359 /* Check NOTRACK prefix. */
9fef80d6
L
4360 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4361 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4362
327e8c42
JB
4363 if (i.tm.cpu_flags.bitfield.cpumpx)
4364 {
4365 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4366 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4367 else if (flag_code != CODE_16BIT
4368 ? i.prefix[ADDR_PREFIX]
4369 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4370 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4371 }
7e8b059b
L
4372
4373 /* Insert BND prefix. */
76d3a78a
JB
4374 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4375 {
4376 if (!i.prefix[BND_PREFIX])
4377 add_prefix (BND_PREFIX_OPCODE);
4378 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4379 {
4380 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4381 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4382 }
4383 }
7e8b059b 4384
29b0f896 4385 /* Check string instruction segment overrides. */
51c8edf6 4386 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4387 {
51c8edf6 4388 gas_assert (i.mem_operands);
29b0f896 4389 if (!check_string ())
5dd0794d 4390 return;
fc0763e6 4391 i.disp_operands = 0;
29b0f896 4392 }
5dd0794d 4393
b6f8c7c4
L
4394 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4395 optimize_encoding ();
4396
29b0f896
AM
4397 if (!process_suffix ())
4398 return;
e413e4e9 4399
bc0844ae
L
4400 /* Update operand types. */
4401 for (j = 0; j < i.operands; j++)
4402 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4403
29b0f896
AM
4404 /* Make still unresolved immediate matches conform to size of immediate
4405 given in i.suffix. */
4406 if (!finalize_imm ())
4407 return;
252b5132 4408
40fb9820 4409 if (i.types[0].bitfield.imm1)
29b0f896 4410 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4411
9afe6eb8
L
4412 /* We only need to check those implicit registers for instructions
4413 with 3 operands or less. */
4414 if (i.operands <= 3)
4415 for (j = 0; j < i.operands; j++)
75e5731b
JB
4416 if (i.types[j].bitfield.instance != InstanceNone
4417 && !i.types[j].bitfield.xmmword)
9afe6eb8 4418 i.reg_operands--;
40fb9820 4419
c0f3af97
L
4420 /* ImmExt should be processed after SSE2AVX. */
4421 if (!i.tm.opcode_modifier.sse2avx
4422 && i.tm.opcode_modifier.immext)
65da13b5 4423 process_immext ();
252b5132 4424
29b0f896
AM
4425 /* For insns with operands there are more diddles to do to the opcode. */
4426 if (i.operands)
4427 {
4428 if (!process_operands ())
4429 return;
4430 }
40fb9820 4431 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4432 {
4433 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4434 as_warn (_("translating to `%sp'"), i.tm.name);
4435 }
252b5132 4436
7a8655d2 4437 if (is_any_vex_encoding (&i.tm))
9e5e5283 4438 {
c1dc7af5 4439 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4440 {
c1dc7af5 4441 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4442 i.tm.name);
4443 return;
4444 }
c0f3af97 4445
9e5e5283
L
4446 if (i.tm.opcode_modifier.vex)
4447 build_vex_prefix (t);
4448 else
4449 build_evex_prefix ();
4450 }
43234a1e 4451
5dd85c99
SP
4452 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4453 instructions may define INT_OPCODE as well, so avoid this corner
4454 case for those instructions that use MODRM. */
4455 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4456 && !i.tm.opcode_modifier.modrm
4457 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4458 {
4459 i.tm.base_opcode = INT3_OPCODE;
4460 i.imm_operands = 0;
4461 }
252b5132 4462
0cfa3eb3
JB
4463 if ((i.tm.opcode_modifier.jump == JUMP
4464 || i.tm.opcode_modifier.jump == JUMP_BYTE
4465 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4466 && i.op[0].disps->X_op == O_constant)
4467 {
4468 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4469 the absolute address given by the constant. Since ix86 jumps and
4470 calls are pc relative, we need to generate a reloc. */
4471 i.op[0].disps->X_add_symbol = &abs_symbol;
4472 i.op[0].disps->X_op = O_symbol;
4473 }
252b5132 4474
40fb9820 4475 if (i.tm.opcode_modifier.rex64)
161a04f6 4476 i.rex |= REX_W;
252b5132 4477
29b0f896
AM
4478 /* For 8 bit registers we need an empty rex prefix. Also if the
4479 instruction already has a prefix, we need to convert old
4480 registers to new ones. */
773f551c 4481
bab6aec1 4482 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4483 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4484 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4485 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4486 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4487 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4488 && i.rex != 0))
4489 {
4490 int x;
726c5dcd 4491
29b0f896
AM
4492 i.rex |= REX_OPCODE;
4493 for (x = 0; x < 2; x++)
4494 {
4495 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4496 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4497 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4498 {
29b0f896
AM
4499 /* In case it is "hi" register, give up. */
4500 if (i.op[x].regs->reg_num > 3)
a540244d 4501 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4502 "instruction requiring REX prefix."),
a540244d 4503 register_prefix, i.op[x].regs->reg_name);
773f551c 4504
29b0f896
AM
4505 /* Otherwise it is equivalent to the extended register.
4506 Since the encoding doesn't change this is merely
4507 cosmetic cleanup for debug output. */
4508
4509 i.op[x].regs = i.op[x].regs + 8;
773f551c 4510 }
29b0f896
AM
4511 }
4512 }
773f551c 4513
6b6b6807
L
4514 if (i.rex == 0 && i.rex_encoding)
4515 {
4516 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4517 that uses legacy register. If it is "hi" register, don't add
4518 the REX_OPCODE byte. */
4519 int x;
4520 for (x = 0; x < 2; x++)
bab6aec1 4521 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4522 && i.types[x].bitfield.byte
4523 && (i.op[x].regs->reg_flags & RegRex64) == 0
4524 && i.op[x].regs->reg_num > 3)
4525 {
4526 i.rex_encoding = FALSE;
4527 break;
4528 }
4529
4530 if (i.rex_encoding)
4531 i.rex = REX_OPCODE;
4532 }
4533
7ab9ffdd 4534 if (i.rex != 0)
29b0f896
AM
4535 add_prefix (REX_OPCODE | i.rex);
4536
4537 /* We are ready to output the insn. */
4538 output_insn ();
4539}
4540
4541static char *
e3bb37b5 4542parse_insn (char *line, char *mnemonic)
29b0f896
AM
4543{
4544 char *l = line;
4545 char *token_start = l;
4546 char *mnem_p;
5c6af06e 4547 int supported;
d3ce72d0 4548 const insn_template *t;
b6169b20 4549 char *dot_p = NULL;
29b0f896 4550
29b0f896
AM
4551 while (1)
4552 {
4553 mnem_p = mnemonic;
4554 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4555 {
b6169b20
L
4556 if (*mnem_p == '.')
4557 dot_p = mnem_p;
29b0f896
AM
4558 mnem_p++;
4559 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4560 {
29b0f896
AM
4561 as_bad (_("no such instruction: `%s'"), token_start);
4562 return NULL;
4563 }
4564 l++;
4565 }
4566 if (!is_space_char (*l)
4567 && *l != END_OF_INSN
e44823cf
JB
4568 && (intel_syntax
4569 || (*l != PREFIX_SEPARATOR
4570 && *l != ',')))
29b0f896
AM
4571 {
4572 as_bad (_("invalid character %s in mnemonic"),
4573 output_invalid (*l));
4574 return NULL;
4575 }
4576 if (token_start == l)
4577 {
e44823cf 4578 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4579 as_bad (_("expecting prefix; got nothing"));
4580 else
4581 as_bad (_("expecting mnemonic; got nothing"));
4582 return NULL;
4583 }
45288df1 4584
29b0f896 4585 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4586 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4587
29b0f896
AM
4588 if (*l != END_OF_INSN
4589 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4590 && current_templates
40fb9820 4591 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4592 {
c6fb90c8 4593 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4594 {
4595 as_bad ((flag_code != CODE_64BIT
4596 ? _("`%s' is only supported in 64-bit mode")
4597 : _("`%s' is not supported in 64-bit mode")),
4598 current_templates->start->name);
4599 return NULL;
4600 }
29b0f896
AM
4601 /* If we are in 16-bit mode, do not allow addr16 or data16.
4602 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4603 if ((current_templates->start->opcode_modifier.size == SIZE16
4604 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4605 && flag_code != CODE_64BIT
673fe0f0 4606 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4607 ^ (flag_code == CODE_16BIT)))
4608 {
4609 as_bad (_("redundant %s prefix"),
4610 current_templates->start->name);
4611 return NULL;
45288df1 4612 }
86fa6981 4613 if (current_templates->start->opcode_length == 0)
29b0f896 4614 {
86fa6981
L
4615 /* Handle pseudo prefixes. */
4616 switch (current_templates->start->base_opcode)
4617 {
4618 case 0x0:
4619 /* {disp8} */
4620 i.disp_encoding = disp_encoding_8bit;
4621 break;
4622 case 0x1:
4623 /* {disp32} */
4624 i.disp_encoding = disp_encoding_32bit;
4625 break;
4626 case 0x2:
4627 /* {load} */
4628 i.dir_encoding = dir_encoding_load;
4629 break;
4630 case 0x3:
4631 /* {store} */
4632 i.dir_encoding = dir_encoding_store;
4633 break;
4634 case 0x4:
4635 /* {vex2} */
4636 i.vec_encoding = vex_encoding_vex2;
4637 break;
4638 case 0x5:
4639 /* {vex3} */
4640 i.vec_encoding = vex_encoding_vex3;
4641 break;
4642 case 0x6:
4643 /* {evex} */
4644 i.vec_encoding = vex_encoding_evex;
4645 break;
6b6b6807
L
4646 case 0x7:
4647 /* {rex} */
4648 i.rex_encoding = TRUE;
4649 break;
b6f8c7c4
L
4650 case 0x8:
4651 /* {nooptimize} */
4652 i.no_optimize = TRUE;
4653 break;
86fa6981
L
4654 default:
4655 abort ();
4656 }
4657 }
4658 else
4659 {
4660 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4661 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4662 {
4e9ac44a
L
4663 case PREFIX_EXIST:
4664 return NULL;
4665 case PREFIX_DS:
d777820b 4666 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4667 i.notrack_prefix = current_templates->start->name;
4668 break;
4669 case PREFIX_REP:
4670 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4671 i.hle_prefix = current_templates->start->name;
4672 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4673 i.bnd_prefix = current_templates->start->name;
4674 else
4675 i.rep_prefix = current_templates->start->name;
4676 break;
4677 default:
4678 break;
86fa6981 4679 }
29b0f896
AM
4680 }
4681 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4682 token_start = ++l;
4683 }
4684 else
4685 break;
4686 }
45288df1 4687
30a55f88 4688 if (!current_templates)
b6169b20 4689 {
07d5e953
JB
4690 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4691 Check if we should swap operand or force 32bit displacement in
f8a5c266 4692 encoding. */
30a55f88 4693 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4694 i.dir_encoding = dir_encoding_swap;
8d63c93e 4695 else if (mnem_p - 3 == dot_p
a501d77e
L
4696 && dot_p[1] == 'd'
4697 && dot_p[2] == '8')
4698 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4699 else if (mnem_p - 4 == dot_p
f8a5c266
L
4700 && dot_p[1] == 'd'
4701 && dot_p[2] == '3'
4702 && dot_p[3] == '2')
a501d77e 4703 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4704 else
4705 goto check_suffix;
4706 mnem_p = dot_p;
4707 *dot_p = '\0';
d3ce72d0 4708 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4709 }
4710
29b0f896
AM
4711 if (!current_templates)
4712 {
b6169b20 4713check_suffix:
1c529385 4714 if (mnem_p > mnemonic)
29b0f896 4715 {
1c529385
LH
4716 /* See if we can get a match by trimming off a suffix. */
4717 switch (mnem_p[-1])
29b0f896 4718 {
1c529385
LH
4719 case WORD_MNEM_SUFFIX:
4720 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4721 i.suffix = SHORT_MNEM_SUFFIX;
4722 else
1c529385
LH
4723 /* Fall through. */
4724 case BYTE_MNEM_SUFFIX:
4725 case QWORD_MNEM_SUFFIX:
4726 i.suffix = mnem_p[-1];
29b0f896 4727 mnem_p[-1] = '\0';
d3ce72d0 4728 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4729 mnemonic);
4730 break;
4731 case SHORT_MNEM_SUFFIX:
4732 case LONG_MNEM_SUFFIX:
4733 if (!intel_syntax)
4734 {
4735 i.suffix = mnem_p[-1];
4736 mnem_p[-1] = '\0';
4737 current_templates = (const templates *) hash_find (op_hash,
4738 mnemonic);
4739 }
4740 break;
4741
4742 /* Intel Syntax. */
4743 case 'd':
4744 if (intel_syntax)
4745 {
4746 if (intel_float_operand (mnemonic) == 1)
4747 i.suffix = SHORT_MNEM_SUFFIX;
4748 else
4749 i.suffix = LONG_MNEM_SUFFIX;
4750 mnem_p[-1] = '\0';
4751 current_templates = (const templates *) hash_find (op_hash,
4752 mnemonic);
4753 }
4754 break;
29b0f896 4755 }
29b0f896 4756 }
1c529385 4757
29b0f896
AM
4758 if (!current_templates)
4759 {
4760 as_bad (_("no such instruction: `%s'"), token_start);
4761 return NULL;
4762 }
4763 }
252b5132 4764
0cfa3eb3
JB
4765 if (current_templates->start->opcode_modifier.jump == JUMP
4766 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4767 {
4768 /* Check for a branch hint. We allow ",pt" and ",pn" for
4769 predict taken and predict not taken respectively.
4770 I'm not sure that branch hints actually do anything on loop
4771 and jcxz insns (JumpByte) for current Pentium4 chips. They
4772 may work in the future and it doesn't hurt to accept them
4773 now. */
4774 if (l[0] == ',' && l[1] == 'p')
4775 {
4776 if (l[2] == 't')
4777 {
4778 if (!add_prefix (DS_PREFIX_OPCODE))
4779 return NULL;
4780 l += 3;
4781 }
4782 else if (l[2] == 'n')
4783 {
4784 if (!add_prefix (CS_PREFIX_OPCODE))
4785 return NULL;
4786 l += 3;
4787 }
4788 }
4789 }
4790 /* Any other comma loses. */
4791 if (*l == ',')
4792 {
4793 as_bad (_("invalid character %s in mnemonic"),
4794 output_invalid (*l));
4795 return NULL;
4796 }
252b5132 4797
29b0f896 4798 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4799 supported = 0;
4800 for (t = current_templates->start; t < current_templates->end; ++t)
4801 {
c0f3af97
L
4802 supported |= cpu_flags_match (t);
4803 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4804 {
4805 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4806 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4807
548d0ee6
JB
4808 return l;
4809 }
29b0f896 4810 }
3629bb00 4811
548d0ee6
JB
4812 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4813 as_bad (flag_code == CODE_64BIT
4814 ? _("`%s' is not supported in 64-bit mode")
4815 : _("`%s' is only supported in 64-bit mode"),
4816 current_templates->start->name);
4817 else
4818 as_bad (_("`%s' is not supported on `%s%s'"),
4819 current_templates->start->name,
4820 cpu_arch_name ? cpu_arch_name : default_arch,
4821 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4822
548d0ee6 4823 return NULL;
29b0f896 4824}
252b5132 4825
29b0f896 4826static char *
e3bb37b5 4827parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4828{
4829 char *token_start;
3138f287 4830
29b0f896
AM
4831 /* 1 if operand is pending after ','. */
4832 unsigned int expecting_operand = 0;
252b5132 4833
29b0f896
AM
4834 /* Non-zero if operand parens not balanced. */
4835 unsigned int paren_not_balanced;
4836
4837 while (*l != END_OF_INSN)
4838 {
4839 /* Skip optional white space before operand. */
4840 if (is_space_char (*l))
4841 ++l;
d02603dc 4842 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4843 {
4844 as_bad (_("invalid character %s before operand %d"),
4845 output_invalid (*l),
4846 i.operands + 1);
4847 return NULL;
4848 }
d02603dc 4849 token_start = l; /* After white space. */
29b0f896
AM
4850 paren_not_balanced = 0;
4851 while (paren_not_balanced || *l != ',')
4852 {
4853 if (*l == END_OF_INSN)
4854 {
4855 if (paren_not_balanced)
4856 {
4857 if (!intel_syntax)
4858 as_bad (_("unbalanced parenthesis in operand %d."),
4859 i.operands + 1);
4860 else
4861 as_bad (_("unbalanced brackets in operand %d."),
4862 i.operands + 1);
4863 return NULL;
4864 }
4865 else
4866 break; /* we are done */
4867 }
d02603dc 4868 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4869 {
4870 as_bad (_("invalid character %s in operand %d"),
4871 output_invalid (*l),
4872 i.operands + 1);
4873 return NULL;
4874 }
4875 if (!intel_syntax)
4876 {
4877 if (*l == '(')
4878 ++paren_not_balanced;
4879 if (*l == ')')
4880 --paren_not_balanced;
4881 }
4882 else
4883 {
4884 if (*l == '[')
4885 ++paren_not_balanced;
4886 if (*l == ']')
4887 --paren_not_balanced;
4888 }
4889 l++;
4890 }
4891 if (l != token_start)
4892 { /* Yes, we've read in another operand. */
4893 unsigned int operand_ok;
4894 this_operand = i.operands++;
4895 if (i.operands > MAX_OPERANDS)
4896 {
4897 as_bad (_("spurious operands; (%d operands/instruction max)"),
4898 MAX_OPERANDS);
4899 return NULL;
4900 }
9d46ce34 4901 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4902 /* Now parse operand adding info to 'i' as we go along. */
4903 END_STRING_AND_SAVE (l);
4904
1286ab78
L
4905 if (i.mem_operands > 1)
4906 {
4907 as_bad (_("too many memory references for `%s'"),
4908 mnemonic);
4909 return 0;
4910 }
4911
29b0f896
AM
4912 if (intel_syntax)
4913 operand_ok =
4914 i386_intel_operand (token_start,
4915 intel_float_operand (mnemonic));
4916 else
a7619375 4917 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4918
4919 RESTORE_END_STRING (l);
4920 if (!operand_ok)
4921 return NULL;
4922 }
4923 else
4924 {
4925 if (expecting_operand)
4926 {
4927 expecting_operand_after_comma:
4928 as_bad (_("expecting operand after ','; got nothing"));
4929 return NULL;
4930 }
4931 if (*l == ',')
4932 {
4933 as_bad (_("expecting operand before ','; got nothing"));
4934 return NULL;
4935 }
4936 }
7f3f1ea2 4937
29b0f896
AM
4938 /* Now *l must be either ',' or END_OF_INSN. */
4939 if (*l == ',')
4940 {
4941 if (*++l == END_OF_INSN)
4942 {
4943 /* Just skip it, if it's \n complain. */
4944 goto expecting_operand_after_comma;
4945 }
4946 expecting_operand = 1;
4947 }
4948 }
4949 return l;
4950}
7f3f1ea2 4951
050dfa73 4952static void
4d456e3d 4953swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4954{
4955 union i386_op temp_op;
40fb9820 4956 i386_operand_type temp_type;
c48dadc9 4957 unsigned int temp_flags;
050dfa73 4958 enum bfd_reloc_code_real temp_reloc;
4eed87de 4959
050dfa73
MM
4960 temp_type = i.types[xchg2];
4961 i.types[xchg2] = i.types[xchg1];
4962 i.types[xchg1] = temp_type;
c48dadc9
JB
4963
4964 temp_flags = i.flags[xchg2];
4965 i.flags[xchg2] = i.flags[xchg1];
4966 i.flags[xchg1] = temp_flags;
4967
050dfa73
MM
4968 temp_op = i.op[xchg2];
4969 i.op[xchg2] = i.op[xchg1];
4970 i.op[xchg1] = temp_op;
c48dadc9 4971
050dfa73
MM
4972 temp_reloc = i.reloc[xchg2];
4973 i.reloc[xchg2] = i.reloc[xchg1];
4974 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4975
4976 if (i.mask)
4977 {
4978 if (i.mask->operand == xchg1)
4979 i.mask->operand = xchg2;
4980 else if (i.mask->operand == xchg2)
4981 i.mask->operand = xchg1;
4982 }
4983 if (i.broadcast)
4984 {
4985 if (i.broadcast->operand == xchg1)
4986 i.broadcast->operand = xchg2;
4987 else if (i.broadcast->operand == xchg2)
4988 i.broadcast->operand = xchg1;
4989 }
4990 if (i.rounding)
4991 {
4992 if (i.rounding->operand == xchg1)
4993 i.rounding->operand = xchg2;
4994 else if (i.rounding->operand == xchg2)
4995 i.rounding->operand = xchg1;
4996 }
050dfa73
MM
4997}
4998
29b0f896 4999static void
e3bb37b5 5000swap_operands (void)
29b0f896 5001{
b7c61d9a 5002 switch (i.operands)
050dfa73 5003 {
c0f3af97 5004 case 5:
b7c61d9a 5005 case 4:
4d456e3d 5006 swap_2_operands (1, i.operands - 2);
1a0670f3 5007 /* Fall through. */
b7c61d9a
L
5008 case 3:
5009 case 2:
4d456e3d 5010 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5011 break;
5012 default:
5013 abort ();
29b0f896 5014 }
29b0f896
AM
5015
5016 if (i.mem_operands == 2)
5017 {
5018 const seg_entry *temp_seg;
5019 temp_seg = i.seg[0];
5020 i.seg[0] = i.seg[1];
5021 i.seg[1] = temp_seg;
5022 }
5023}
252b5132 5024
29b0f896
AM
5025/* Try to ensure constant immediates are represented in the smallest
5026 opcode possible. */
5027static void
e3bb37b5 5028optimize_imm (void)
29b0f896
AM
5029{
5030 char guess_suffix = 0;
5031 int op;
252b5132 5032
29b0f896
AM
5033 if (i.suffix)
5034 guess_suffix = i.suffix;
5035 else if (i.reg_operands)
5036 {
5037 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5038 We can't do this properly yet, i.e. excluding special register
5039 instances, but the following works for instructions with
5040 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5041 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5042 if (i.types[op].bitfield.class != Reg)
5043 continue;
5044 else if (i.types[op].bitfield.byte)
7ab9ffdd 5045 {
40fb9820
L
5046 guess_suffix = BYTE_MNEM_SUFFIX;
5047 break;
5048 }
bab6aec1 5049 else if (i.types[op].bitfield.word)
252b5132 5050 {
40fb9820
L
5051 guess_suffix = WORD_MNEM_SUFFIX;
5052 break;
5053 }
bab6aec1 5054 else if (i.types[op].bitfield.dword)
40fb9820
L
5055 {
5056 guess_suffix = LONG_MNEM_SUFFIX;
5057 break;
5058 }
bab6aec1 5059 else if (i.types[op].bitfield.qword)
40fb9820
L
5060 {
5061 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5062 break;
252b5132 5063 }
29b0f896
AM
5064 }
5065 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5066 guess_suffix = WORD_MNEM_SUFFIX;
5067
5068 for (op = i.operands; --op >= 0;)
40fb9820 5069 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5070 {
5071 switch (i.op[op].imms->X_op)
252b5132 5072 {
29b0f896
AM
5073 case O_constant:
5074 /* If a suffix is given, this operand may be shortened. */
5075 switch (guess_suffix)
252b5132 5076 {
29b0f896 5077 case LONG_MNEM_SUFFIX:
40fb9820
L
5078 i.types[op].bitfield.imm32 = 1;
5079 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5080 break;
5081 case WORD_MNEM_SUFFIX:
40fb9820
L
5082 i.types[op].bitfield.imm16 = 1;
5083 i.types[op].bitfield.imm32 = 1;
5084 i.types[op].bitfield.imm32s = 1;
5085 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5086 break;
5087 case BYTE_MNEM_SUFFIX:
40fb9820
L
5088 i.types[op].bitfield.imm8 = 1;
5089 i.types[op].bitfield.imm8s = 1;
5090 i.types[op].bitfield.imm16 = 1;
5091 i.types[op].bitfield.imm32 = 1;
5092 i.types[op].bitfield.imm32s = 1;
5093 i.types[op].bitfield.imm64 = 1;
29b0f896 5094 break;
252b5132 5095 }
252b5132 5096
29b0f896
AM
5097 /* If this operand is at most 16 bits, convert it
5098 to a signed 16 bit number before trying to see
5099 whether it will fit in an even smaller size.
5100 This allows a 16-bit operand such as $0xffe0 to
5101 be recognised as within Imm8S range. */
40fb9820 5102 if ((i.types[op].bitfield.imm16)
29b0f896 5103 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5104 {
29b0f896
AM
5105 i.op[op].imms->X_add_number =
5106 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5107 }
a28def75
L
5108#ifdef BFD64
5109 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5110 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5111 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5112 == 0))
5113 {
5114 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5115 ^ ((offsetT) 1 << 31))
5116 - ((offsetT) 1 << 31));
5117 }
a28def75 5118#endif
40fb9820 5119 i.types[op]
c6fb90c8
L
5120 = operand_type_or (i.types[op],
5121 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5122
29b0f896
AM
5123 /* We must avoid matching of Imm32 templates when 64bit
5124 only immediate is available. */
5125 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5126 i.types[op].bitfield.imm32 = 0;
29b0f896 5127 break;
252b5132 5128
29b0f896
AM
5129 case O_absent:
5130 case O_register:
5131 abort ();
5132
5133 /* Symbols and expressions. */
5134 default:
9cd96992
JB
5135 /* Convert symbolic operand to proper sizes for matching, but don't
5136 prevent matching a set of insns that only supports sizes other
5137 than those matching the insn suffix. */
5138 {
40fb9820 5139 i386_operand_type mask, allowed;
d3ce72d0 5140 const insn_template *t;
9cd96992 5141
0dfbf9d7
L
5142 operand_type_set (&mask, 0);
5143 operand_type_set (&allowed, 0);
40fb9820 5144
4eed87de
AM
5145 for (t = current_templates->start;
5146 t < current_templates->end;
5147 ++t)
bab6aec1
JB
5148 {
5149 allowed = operand_type_or (allowed, t->operand_types[op]);
5150 allowed = operand_type_and (allowed, anyimm);
5151 }
9cd96992
JB
5152 switch (guess_suffix)
5153 {
5154 case QWORD_MNEM_SUFFIX:
40fb9820
L
5155 mask.bitfield.imm64 = 1;
5156 mask.bitfield.imm32s = 1;
9cd96992
JB
5157 break;
5158 case LONG_MNEM_SUFFIX:
40fb9820 5159 mask.bitfield.imm32 = 1;
9cd96992
JB
5160 break;
5161 case WORD_MNEM_SUFFIX:
40fb9820 5162 mask.bitfield.imm16 = 1;
9cd96992
JB
5163 break;
5164 case BYTE_MNEM_SUFFIX:
40fb9820 5165 mask.bitfield.imm8 = 1;
9cd96992
JB
5166 break;
5167 default:
9cd96992
JB
5168 break;
5169 }
c6fb90c8 5170 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5171 if (!operand_type_all_zero (&allowed))
c6fb90c8 5172 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5173 }
29b0f896 5174 break;
252b5132 5175 }
29b0f896
AM
5176 }
5177}
47926f60 5178
29b0f896
AM
5179/* Try to use the smallest displacement type too. */
5180static void
e3bb37b5 5181optimize_disp (void)
29b0f896
AM
5182{
5183 int op;
3e73aa7c 5184
29b0f896 5185 for (op = i.operands; --op >= 0;)
40fb9820 5186 if (operand_type_check (i.types[op], disp))
252b5132 5187 {
b300c311 5188 if (i.op[op].disps->X_op == O_constant)
252b5132 5189 {
91d6fa6a 5190 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5191
40fb9820 5192 if (i.types[op].bitfield.disp16
91d6fa6a 5193 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5194 {
5195 /* If this operand is at most 16 bits, convert
5196 to a signed 16 bit number and don't use 64bit
5197 displacement. */
91d6fa6a 5198 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5199 i.types[op].bitfield.disp64 = 0;
b300c311 5200 }
a28def75
L
5201#ifdef BFD64
5202 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5203 if (i.types[op].bitfield.disp32
91d6fa6a 5204 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5205 {
5206 /* If this operand is at most 32 bits, convert
5207 to a signed 32 bit number and don't use 64bit
5208 displacement. */
91d6fa6a
NC
5209 op_disp &= (((offsetT) 2 << 31) - 1);
5210 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5211 i.types[op].bitfield.disp64 = 0;
b300c311 5212 }
a28def75 5213#endif
91d6fa6a 5214 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5215 {
40fb9820
L
5216 i.types[op].bitfield.disp8 = 0;
5217 i.types[op].bitfield.disp16 = 0;
5218 i.types[op].bitfield.disp32 = 0;
5219 i.types[op].bitfield.disp32s = 0;
5220 i.types[op].bitfield.disp64 = 0;
b300c311
L
5221 i.op[op].disps = 0;
5222 i.disp_operands--;
5223 }
5224 else if (flag_code == CODE_64BIT)
5225 {
91d6fa6a 5226 if (fits_in_signed_long (op_disp))
28a9d8f5 5227 {
40fb9820
L
5228 i.types[op].bitfield.disp64 = 0;
5229 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5230 }
0e1147d9 5231 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5232 && fits_in_unsigned_long (op_disp))
40fb9820 5233 i.types[op].bitfield.disp32 = 1;
b300c311 5234 }
40fb9820
L
5235 if ((i.types[op].bitfield.disp32
5236 || i.types[op].bitfield.disp32s
5237 || i.types[op].bitfield.disp16)
b5014f7a 5238 && fits_in_disp8 (op_disp))
40fb9820 5239 i.types[op].bitfield.disp8 = 1;
252b5132 5240 }
67a4f2b7
AO
5241 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5242 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5243 {
5244 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5245 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5246 i.types[op].bitfield.disp8 = 0;
5247 i.types[op].bitfield.disp16 = 0;
5248 i.types[op].bitfield.disp32 = 0;
5249 i.types[op].bitfield.disp32s = 0;
5250 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5251 }
5252 else
b300c311 5253 /* We only support 64bit displacement on constants. */
40fb9820 5254 i.types[op].bitfield.disp64 = 0;
252b5132 5255 }
29b0f896
AM
5256}
5257
4a1b91ea
L
5258/* Return 1 if there is a match in broadcast bytes between operand
5259 GIVEN and instruction template T. */
5260
5261static INLINE int
5262match_broadcast_size (const insn_template *t, unsigned int given)
5263{
5264 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5265 && i.types[given].bitfield.byte)
5266 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5267 && i.types[given].bitfield.word)
5268 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5269 && i.types[given].bitfield.dword)
5270 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5271 && i.types[given].bitfield.qword));
5272}
5273
6c30d220
L
5274/* Check if operands are valid for the instruction. */
5275
5276static int
5277check_VecOperands (const insn_template *t)
5278{
43234a1e 5279 unsigned int op;
e2195274
JB
5280 i386_cpu_flags cpu;
5281 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5282
5283 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5284 any one operand are implicity requiring AVX512VL support if the actual
5285 operand size is YMMword or XMMword. Since this function runs after
5286 template matching, there's no need to check for YMMword/XMMword in
5287 the template. */
5288 cpu = cpu_flags_and (t->cpu_flags, avx512);
5289 if (!cpu_flags_all_zero (&cpu)
5290 && !t->cpu_flags.bitfield.cpuavx512vl
5291 && !cpu_arch_flags.bitfield.cpuavx512vl)
5292 {
5293 for (op = 0; op < t->operands; ++op)
5294 {
5295 if (t->operand_types[op].bitfield.zmmword
5296 && (i.types[op].bitfield.ymmword
5297 || i.types[op].bitfield.xmmword))
5298 {
5299 i.error = unsupported;
5300 return 1;
5301 }
5302 }
5303 }
43234a1e 5304
6c30d220
L
5305 /* Without VSIB byte, we can't have a vector register for index. */
5306 if (!t->opcode_modifier.vecsib
5307 && i.index_reg
1b54b8d7
JB
5308 && (i.index_reg->reg_type.bitfield.xmmword
5309 || i.index_reg->reg_type.bitfield.ymmword
5310 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5311 {
5312 i.error = unsupported_vector_index_register;
5313 return 1;
5314 }
5315
ad8ecc81
MZ
5316 /* Check if default mask is allowed. */
5317 if (t->opcode_modifier.nodefmask
5318 && (!i.mask || i.mask->mask->reg_num == 0))
5319 {
5320 i.error = no_default_mask;
5321 return 1;
5322 }
5323
7bab8ab5
JB
5324 /* For VSIB byte, we need a vector register for index, and all vector
5325 registers must be distinct. */
5326 if (t->opcode_modifier.vecsib)
5327 {
5328 if (!i.index_reg
6c30d220 5329 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5330 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5331 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5332 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5333 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5334 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5335 {
5336 i.error = invalid_vsib_address;
5337 return 1;
5338 }
5339
43234a1e
L
5340 gas_assert (i.reg_operands == 2 || i.mask);
5341 if (i.reg_operands == 2 && !i.mask)
5342 {
3528c362 5343 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5344 gas_assert (i.types[0].bitfield.xmmword
5345 || i.types[0].bitfield.ymmword);
3528c362 5346 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5347 gas_assert (i.types[2].bitfield.xmmword
5348 || i.types[2].bitfield.ymmword);
43234a1e
L
5349 if (operand_check == check_none)
5350 return 0;
5351 if (register_number (i.op[0].regs)
5352 != register_number (i.index_reg)
5353 && register_number (i.op[2].regs)
5354 != register_number (i.index_reg)
5355 && register_number (i.op[0].regs)
5356 != register_number (i.op[2].regs))
5357 return 0;
5358 if (operand_check == check_error)
5359 {
5360 i.error = invalid_vector_register_set;
5361 return 1;
5362 }
5363 as_warn (_("mask, index, and destination registers should be distinct"));
5364 }
8444f82a
MZ
5365 else if (i.reg_operands == 1 && i.mask)
5366 {
3528c362 5367 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5368 && (i.types[1].bitfield.xmmword
5369 || i.types[1].bitfield.ymmword
5370 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5371 && (register_number (i.op[1].regs)
5372 == register_number (i.index_reg)))
5373 {
5374 if (operand_check == check_error)
5375 {
5376 i.error = invalid_vector_register_set;
5377 return 1;
5378 }
5379 if (operand_check != check_none)
5380 as_warn (_("index and destination registers should be distinct"));
5381 }
5382 }
43234a1e 5383 }
7bab8ab5 5384
43234a1e
L
5385 /* Check if broadcast is supported by the instruction and is applied
5386 to the memory operand. */
5387 if (i.broadcast)
5388 {
8e6e0792 5389 i386_operand_type type, overlap;
43234a1e
L
5390
5391 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5392 and its broadcast bytes match the memory operand. */
32546502 5393 op = i.broadcast->operand;
8e6e0792 5394 if (!t->opcode_modifier.broadcast
c48dadc9 5395 || !(i.flags[op] & Operand_Mem)
c39e5b26 5396 || (!i.types[op].bitfield.unspecified
4a1b91ea 5397 && !match_broadcast_size (t, op)))
43234a1e
L
5398 {
5399 bad_broadcast:
5400 i.error = unsupported_broadcast;
5401 return 1;
5402 }
8e6e0792 5403
4a1b91ea
L
5404 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5405 * i.broadcast->type);
8e6e0792 5406 operand_type_set (&type, 0);
4a1b91ea 5407 switch (i.broadcast->bytes)
8e6e0792 5408 {
4a1b91ea
L
5409 case 2:
5410 type.bitfield.word = 1;
5411 break;
5412 case 4:
5413 type.bitfield.dword = 1;
5414 break;
8e6e0792
JB
5415 case 8:
5416 type.bitfield.qword = 1;
5417 break;
5418 case 16:
5419 type.bitfield.xmmword = 1;
5420 break;
5421 case 32:
5422 type.bitfield.ymmword = 1;
5423 break;
5424 case 64:
5425 type.bitfield.zmmword = 1;
5426 break;
5427 default:
5428 goto bad_broadcast;
5429 }
5430
5431 overlap = operand_type_and (type, t->operand_types[op]);
5432 if (operand_type_all_zero (&overlap))
5433 goto bad_broadcast;
5434
5435 if (t->opcode_modifier.checkregsize)
5436 {
5437 unsigned int j;
5438
e2195274 5439 type.bitfield.baseindex = 1;
8e6e0792
JB
5440 for (j = 0; j < i.operands; ++j)
5441 {
5442 if (j != op
5443 && !operand_type_register_match(i.types[j],
5444 t->operand_types[j],
5445 type,
5446 t->operand_types[op]))
5447 goto bad_broadcast;
5448 }
5449 }
43234a1e
L
5450 }
5451 /* If broadcast is supported in this instruction, we need to check if
5452 operand of one-element size isn't specified without broadcast. */
5453 else if (t->opcode_modifier.broadcast && i.mem_operands)
5454 {
5455 /* Find memory operand. */
5456 for (op = 0; op < i.operands; op++)
8dc0818e 5457 if (i.flags[op] & Operand_Mem)
43234a1e
L
5458 break;
5459 gas_assert (op < i.operands);
5460 /* Check size of the memory operand. */
4a1b91ea 5461 if (match_broadcast_size (t, op))
43234a1e
L
5462 {
5463 i.error = broadcast_needed;
5464 return 1;
5465 }
5466 }
c39e5b26
JB
5467 else
5468 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5469
5470 /* Check if requested masking is supported. */
ae2387fe 5471 if (i.mask)
43234a1e 5472 {
ae2387fe
JB
5473 switch (t->opcode_modifier.masking)
5474 {
5475 case BOTH_MASKING:
5476 break;
5477 case MERGING_MASKING:
5478 if (i.mask->zeroing)
5479 {
5480 case 0:
5481 i.error = unsupported_masking;
5482 return 1;
5483 }
5484 break;
5485 case DYNAMIC_MASKING:
5486 /* Memory destinations allow only merging masking. */
5487 if (i.mask->zeroing && i.mem_operands)
5488 {
5489 /* Find memory operand. */
5490 for (op = 0; op < i.operands; op++)
c48dadc9 5491 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5492 break;
5493 gas_assert (op < i.operands);
5494 if (op == i.operands - 1)
5495 {
5496 i.error = unsupported_masking;
5497 return 1;
5498 }
5499 }
5500 break;
5501 default:
5502 abort ();
5503 }
43234a1e
L
5504 }
5505
5506 /* Check if masking is applied to dest operand. */
5507 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5508 {
5509 i.error = mask_not_on_destination;
5510 return 1;
5511 }
5512
43234a1e
L
5513 /* Check RC/SAE. */
5514 if (i.rounding)
5515 {
a80195f1
JB
5516 if (!t->opcode_modifier.sae
5517 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5518 {
5519 i.error = unsupported_rc_sae;
5520 return 1;
5521 }
5522 /* If the instruction has several immediate operands and one of
5523 them is rounding, the rounding operand should be the last
5524 immediate operand. */
5525 if (i.imm_operands > 1
5526 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5527 {
43234a1e 5528 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5529 return 1;
5530 }
6c30d220
L
5531 }
5532
43234a1e 5533 /* Check vector Disp8 operand. */
b5014f7a
JB
5534 if (t->opcode_modifier.disp8memshift
5535 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5536 {
5537 if (i.broadcast)
4a1b91ea 5538 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5539 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5540 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5541 else
5542 {
5543 const i386_operand_type *type = NULL;
5544
5545 i.memshift = 0;
5546 for (op = 0; op < i.operands; op++)
8dc0818e 5547 if (i.flags[op] & Operand_Mem)
7091c612 5548 {
4174bfff
JB
5549 if (t->opcode_modifier.evex == EVEXLIG)
5550 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5551 else if (t->operand_types[op].bitfield.xmmword
5552 + t->operand_types[op].bitfield.ymmword
5553 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5554 type = &t->operand_types[op];
5555 else if (!i.types[op].bitfield.unspecified)
5556 type = &i.types[op];
5557 }
3528c362 5558 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5559 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5560 {
5561 if (i.types[op].bitfield.zmmword)
5562 i.memshift = 6;
5563 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5564 i.memshift = 5;
5565 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5566 i.memshift = 4;
5567 }
5568
5569 if (type)
5570 {
5571 if (type->bitfield.zmmword)
5572 i.memshift = 6;
5573 else if (type->bitfield.ymmword)
5574 i.memshift = 5;
5575 else if (type->bitfield.xmmword)
5576 i.memshift = 4;
5577 }
5578
5579 /* For the check in fits_in_disp8(). */
5580 if (i.memshift == 0)
5581 i.memshift = -1;
5582 }
43234a1e
L
5583
5584 for (op = 0; op < i.operands; op++)
5585 if (operand_type_check (i.types[op], disp)
5586 && i.op[op].disps->X_op == O_constant)
5587 {
b5014f7a 5588 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5589 {
b5014f7a
JB
5590 i.types[op].bitfield.disp8 = 1;
5591 return 0;
43234a1e 5592 }
b5014f7a 5593 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5594 }
5595 }
b5014f7a
JB
5596
5597 i.memshift = 0;
43234a1e 5598
6c30d220
L
5599 return 0;
5600}
5601
43f3e2ee 5602/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5603 operand types. */
5604
5605static int
5606VEX_check_operands (const insn_template *t)
5607{
86fa6981 5608 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5609 {
86fa6981 5610 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5611 if (!is_evex_encoding (t))
86fa6981
L
5612 {
5613 i.error = unsupported;
5614 return 1;
5615 }
5616 return 0;
43234a1e
L
5617 }
5618
a683cc34 5619 if (!t->opcode_modifier.vex)
86fa6981
L
5620 {
5621 /* This instruction template doesn't have VEX prefix. */
5622 if (i.vec_encoding != vex_encoding_default)
5623 {
5624 i.error = unsupported;
5625 return 1;
5626 }
5627 return 0;
5628 }
a683cc34 5629
9d3bf266
JB
5630 /* Check the special Imm4 cases; must be the first operand. */
5631 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5632 {
5633 if (i.op[0].imms->X_op != O_constant
5634 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5635 {
a65babc9 5636 i.error = bad_imm4;
891edac4
L
5637 return 1;
5638 }
a683cc34 5639
9d3bf266
JB
5640 /* Turn off Imm<N> so that update_imm won't complain. */
5641 operand_type_set (&i.types[0], 0);
a683cc34
SP
5642 }
5643
5644 return 0;
5645}
5646
d3ce72d0 5647static const insn_template *
83b16ac6 5648match_template (char mnem_suffix)
29b0f896
AM
5649{
5650 /* Points to template once we've found it. */
d3ce72d0 5651 const insn_template *t;
40fb9820 5652 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5653 i386_operand_type overlap4;
29b0f896 5654 unsigned int found_reverse_match;
dc2be329 5655 i386_opcode_modifier suffix_check;
40fb9820 5656 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5657 int addr_prefix_disp;
a5c311ca 5658 unsigned int j;
3ac21baa 5659 unsigned int found_cpu_match, size_match;
45664ddb 5660 unsigned int check_register;
5614d22c 5661 enum i386_error specific_error = 0;
29b0f896 5662
c0f3af97
L
5663#if MAX_OPERANDS != 5
5664# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5665#endif
5666
29b0f896 5667 found_reverse_match = 0;
539e75ad 5668 addr_prefix_disp = -1;
40fb9820 5669
dc2be329 5670 /* Prepare for mnemonic suffix check. */
40fb9820 5671 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5672 switch (mnem_suffix)
5673 {
5674 case BYTE_MNEM_SUFFIX:
5675 suffix_check.no_bsuf = 1;
5676 break;
5677 case WORD_MNEM_SUFFIX:
5678 suffix_check.no_wsuf = 1;
5679 break;
5680 case SHORT_MNEM_SUFFIX:
5681 suffix_check.no_ssuf = 1;
5682 break;
5683 case LONG_MNEM_SUFFIX:
5684 suffix_check.no_lsuf = 1;
5685 break;
5686 case QWORD_MNEM_SUFFIX:
5687 suffix_check.no_qsuf = 1;
5688 break;
5689 default:
5690 /* NB: In Intel syntax, normally we can check for memory operand
5691 size when there is no mnemonic suffix. But jmp and call have
5692 2 different encodings with Dword memory operand size, one with
5693 No_ldSuf and the other without. i.suffix is set to
5694 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5695 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5696 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5697 }
5698
01559ecc
L
5699 /* Must have right number of operands. */
5700 i.error = number_of_operands_mismatch;
5701
45aa61fe 5702 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5703 {
539e75ad 5704 addr_prefix_disp = -1;
dbbc8b7e 5705 found_reverse_match = 0;
539e75ad 5706
29b0f896
AM
5707 if (i.operands != t->operands)
5708 continue;
5709
50aecf8c 5710 /* Check processor support. */
a65babc9 5711 i.error = unsupported;
c0f3af97
L
5712 found_cpu_match = (cpu_flags_match (t)
5713 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5714 if (!found_cpu_match)
5715 continue;
5716
e1d4d893 5717 /* Check AT&T mnemonic. */
a65babc9 5718 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5719 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5720 continue;
5721
e92bae62 5722 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5723 i.error = unsupported_syntax;
5c07affc 5724 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5725 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5726 || (intel64 && t->opcode_modifier.amd64)
5727 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5728 continue;
5729
dc2be329 5730 /* Check the suffix. */
a65babc9 5731 i.error = invalid_instruction_suffix;
dc2be329
L
5732 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5733 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5734 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5735 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5736 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5737 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5738 continue;
29b0f896 5739
3ac21baa
JB
5740 size_match = operand_size_match (t);
5741 if (!size_match)
7d5e4556 5742 continue;
539e75ad 5743
6f2f06be
JB
5744 /* This is intentionally not
5745
0cfa3eb3 5746 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5747
5748 as the case of a missing * on the operand is accepted (perhaps with
5749 a warning, issued further down). */
0cfa3eb3 5750 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5751 {
5752 i.error = operand_type_mismatch;
5753 continue;
5754 }
5755
5c07affc
L
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 operand_types[j] = t->operand_types[j];
5758
45aa61fe
AM
5759 /* In general, don't allow 64-bit operands in 32-bit mode. */
5760 if (i.suffix == QWORD_MNEM_SUFFIX
5761 && flag_code != CODE_64BIT
5762 && (intel_syntax
40fb9820 5763 ? (!t->opcode_modifier.ignoresize
625cbd7a 5764 && !t->opcode_modifier.broadcast
45aa61fe
AM
5765 && !intel_float_operand (t->name))
5766 : intel_float_operand (t->name) != 2)
3528c362
JB
5767 && ((operand_types[0].bitfield.class != RegMMX
5768 && operand_types[0].bitfield.class != RegSIMD)
5769 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5770 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5771 && (t->base_opcode != 0x0fc7
5772 || t->extension_opcode != 1 /* cmpxchg8b */))
5773 continue;
5774
192dc9c6
JB
5775 /* In general, don't allow 32-bit operands on pre-386. */
5776 else if (i.suffix == LONG_MNEM_SUFFIX
5777 && !cpu_arch_flags.bitfield.cpui386
5778 && (intel_syntax
5779 ? (!t->opcode_modifier.ignoresize
5780 && !intel_float_operand (t->name))
5781 : intel_float_operand (t->name) != 2)
3528c362
JB
5782 && ((operand_types[0].bitfield.class != RegMMX
5783 && operand_types[0].bitfield.class != RegSIMD)
5784 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5785 && operand_types[t->operands > 1].bitfield.class
5786 != RegSIMD)))
192dc9c6
JB
5787 continue;
5788
29b0f896 5789 /* Do not verify operands when there are none. */
50aecf8c 5790 else
29b0f896 5791 {
c6fb90c8 5792 if (!t->operands)
2dbab7d5
L
5793 /* We've found a match; break out of loop. */
5794 break;
29b0f896 5795 }
252b5132 5796
539e75ad
L
5797 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5798 into Disp32/Disp16/Disp32 operand. */
5799 if (i.prefix[ADDR_PREFIX] != 0)
5800 {
40fb9820 5801 /* There should be only one Disp operand. */
539e75ad
L
5802 switch (flag_code)
5803 {
5804 case CODE_16BIT:
40fb9820
L
5805 for (j = 0; j < MAX_OPERANDS; j++)
5806 {
5807 if (operand_types[j].bitfield.disp16)
5808 {
5809 addr_prefix_disp = j;
5810 operand_types[j].bitfield.disp32 = 1;
5811 operand_types[j].bitfield.disp16 = 0;
5812 break;
5813 }
5814 }
539e75ad
L
5815 break;
5816 case CODE_32BIT:
40fb9820
L
5817 for (j = 0; j < MAX_OPERANDS; j++)
5818 {
5819 if (operand_types[j].bitfield.disp32)
5820 {
5821 addr_prefix_disp = j;
5822 operand_types[j].bitfield.disp32 = 0;
5823 operand_types[j].bitfield.disp16 = 1;
5824 break;
5825 }
5826 }
539e75ad
L
5827 break;
5828 case CODE_64BIT:
40fb9820
L
5829 for (j = 0; j < MAX_OPERANDS; j++)
5830 {
5831 if (operand_types[j].bitfield.disp64)
5832 {
5833 addr_prefix_disp = j;
5834 operand_types[j].bitfield.disp64 = 0;
5835 operand_types[j].bitfield.disp32 = 1;
5836 break;
5837 }
5838 }
539e75ad
L
5839 break;
5840 }
539e75ad
L
5841 }
5842
02a86693
L
5843 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5844 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5845 continue;
5846
56ffb741 5847 /* We check register size if needed. */
e2195274
JB
5848 if (t->opcode_modifier.checkregsize)
5849 {
5850 check_register = (1 << t->operands) - 1;
5851 if (i.broadcast)
5852 check_register &= ~(1 << i.broadcast->operand);
5853 }
5854 else
5855 check_register = 0;
5856
c6fb90c8 5857 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5858 switch (t->operands)
5859 {
5860 case 1:
40fb9820 5861 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5862 continue;
5863 break;
5864 case 2:
33eaf5de 5865 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5866 only in 32bit mode and we can use opcode 0x90. In 64bit
5867 mode, we can't use 0x90 for xchg %eax, %eax since it should
5868 zero-extend %eax to %rax. */
5869 if (flag_code == CODE_64BIT
5870 && t->base_opcode == 0x90
75e5731b
JB
5871 && i.types[0].bitfield.instance == Accum
5872 && i.types[0].bitfield.dword
5873 && i.types[1].bitfield.instance == Accum
5874 && i.types[1].bitfield.dword)
8b38ad71 5875 continue;
1212781b
JB
5876 /* xrelease mov %eax, <disp> is another special case. It must not
5877 match the accumulator-only encoding of mov. */
5878 if (flag_code != CODE_64BIT
5879 && i.hle_prefix
5880 && t->base_opcode == 0xa0
75e5731b 5881 && i.types[0].bitfield.instance == Accum
8dc0818e 5882 && (i.flags[1] & Operand_Mem))
1212781b 5883 continue;
f5eb1d70
JB
5884 /* Fall through. */
5885
5886 case 3:
3ac21baa
JB
5887 if (!(size_match & MATCH_STRAIGHT))
5888 goto check_reverse;
64c49ab3
JB
5889 /* Reverse direction of operands if swapping is possible in the first
5890 place (operands need to be symmetric) and
5891 - the load form is requested, and the template is a store form,
5892 - the store form is requested, and the template is a load form,
5893 - the non-default (swapped) form is requested. */
5894 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5895 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5896 && !operand_type_all_zero (&overlap1))
5897 switch (i.dir_encoding)
5898 {
5899 case dir_encoding_load:
5900 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5901 || t->opcode_modifier.regmem)
64c49ab3
JB
5902 goto check_reverse;
5903 break;
5904
5905 case dir_encoding_store:
5906 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 5907 && !t->opcode_modifier.regmem)
64c49ab3
JB
5908 goto check_reverse;
5909 break;
5910
5911 case dir_encoding_swap:
5912 goto check_reverse;
5913
5914 case dir_encoding_default:
5915 break;
5916 }
86fa6981 5917 /* If we want store form, we skip the current load. */
64c49ab3
JB
5918 if ((i.dir_encoding == dir_encoding_store
5919 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5920 && i.mem_operands == 0
5921 && t->opcode_modifier.load)
fa99fab2 5922 continue;
1a0670f3 5923 /* Fall through. */
f48ff2ae 5924 case 4:
c0f3af97 5925 case 5:
c6fb90c8 5926 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5927 if (!operand_type_match (overlap0, i.types[0])
5928 || !operand_type_match (overlap1, i.types[1])
e2195274 5929 || ((check_register & 3) == 3
dc821c5f 5930 && !operand_type_register_match (i.types[0],
40fb9820 5931 operand_types[0],
dc821c5f 5932 i.types[1],
40fb9820 5933 operand_types[1])))
29b0f896
AM
5934 {
5935 /* Check if other direction is valid ... */
38e314eb 5936 if (!t->opcode_modifier.d)
29b0f896
AM
5937 continue;
5938
b6169b20 5939check_reverse:
3ac21baa
JB
5940 if (!(size_match & MATCH_REVERSE))
5941 continue;
29b0f896 5942 /* Try reversing direction of operands. */
f5eb1d70
JB
5943 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5944 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5945 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5946 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5947 || (check_register
dc821c5f 5948 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5949 operand_types[i.operands - 1],
5950 i.types[i.operands - 1],
45664ddb 5951 operand_types[0])))
29b0f896
AM
5952 {
5953 /* Does not match either direction. */
5954 continue;
5955 }
38e314eb 5956 /* found_reverse_match holds which of D or FloatR
29b0f896 5957 we've found. */
38e314eb
JB
5958 if (!t->opcode_modifier.d)
5959 found_reverse_match = 0;
5960 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5961 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5962 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5963 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
5964 || operand_types[0].bitfield.class == RegMMX
5965 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
5966 || is_any_vex_encoding(t))
5967 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5968 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5969 else
38e314eb 5970 found_reverse_match = Opcode_D;
40fb9820 5971 if (t->opcode_modifier.floatr)
8a2ed489 5972 found_reverse_match |= Opcode_FloatR;
29b0f896 5973 }
f48ff2ae 5974 else
29b0f896 5975 {
f48ff2ae 5976 /* Found a forward 2 operand match here. */
d1cbb4db
L
5977 switch (t->operands)
5978 {
c0f3af97
L
5979 case 5:
5980 overlap4 = operand_type_and (i.types[4],
5981 operand_types[4]);
1a0670f3 5982 /* Fall through. */
d1cbb4db 5983 case 4:
c6fb90c8
L
5984 overlap3 = operand_type_and (i.types[3],
5985 operand_types[3]);
1a0670f3 5986 /* Fall through. */
d1cbb4db 5987 case 3:
c6fb90c8
L
5988 overlap2 = operand_type_and (i.types[2],
5989 operand_types[2]);
d1cbb4db
L
5990 break;
5991 }
29b0f896 5992
f48ff2ae
L
5993 switch (t->operands)
5994 {
c0f3af97
L
5995 case 5:
5996 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5997 || !operand_type_register_match (i.types[3],
c0f3af97 5998 operand_types[3],
c0f3af97
L
5999 i.types[4],
6000 operand_types[4]))
6001 continue;
1a0670f3 6002 /* Fall through. */
f48ff2ae 6003 case 4:
40fb9820 6004 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6005 || ((check_register & 0xa) == 0xa
6006 && !operand_type_register_match (i.types[1],
f7768225
JB
6007 operand_types[1],
6008 i.types[3],
e2195274
JB
6009 operand_types[3]))
6010 || ((check_register & 0xc) == 0xc
6011 && !operand_type_register_match (i.types[2],
6012 operand_types[2],
6013 i.types[3],
6014 operand_types[3])))
f48ff2ae 6015 continue;
1a0670f3 6016 /* Fall through. */
f48ff2ae
L
6017 case 3:
6018 /* Here we make use of the fact that there are no
23e42951 6019 reverse match 3 operand instructions. */
40fb9820 6020 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6021 || ((check_register & 5) == 5
6022 && !operand_type_register_match (i.types[0],
23e42951
JB
6023 operand_types[0],
6024 i.types[2],
e2195274
JB
6025 operand_types[2]))
6026 || ((check_register & 6) == 6
6027 && !operand_type_register_match (i.types[1],
6028 operand_types[1],
6029 i.types[2],
6030 operand_types[2])))
f48ff2ae
L
6031 continue;
6032 break;
6033 }
29b0f896 6034 }
f48ff2ae 6035 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6036 slip through to break. */
6037 }
3629bb00 6038 if (!found_cpu_match)
dbbc8b7e 6039 continue;
c0f3af97 6040
5614d22c
JB
6041 /* Check if vector and VEX operands are valid. */
6042 if (check_VecOperands (t) || VEX_check_operands (t))
6043 {
6044 specific_error = i.error;
6045 continue;
6046 }
a683cc34 6047
29b0f896
AM
6048 /* We've found a match; break out of loop. */
6049 break;
6050 }
6051
6052 if (t == current_templates->end)
6053 {
6054 /* We found no match. */
a65babc9 6055 const char *err_msg;
5614d22c 6056 switch (specific_error ? specific_error : i.error)
a65babc9
L
6057 {
6058 default:
6059 abort ();
86e026a4 6060 case operand_size_mismatch:
a65babc9
L
6061 err_msg = _("operand size mismatch");
6062 break;
6063 case operand_type_mismatch:
6064 err_msg = _("operand type mismatch");
6065 break;
6066 case register_type_mismatch:
6067 err_msg = _("register type mismatch");
6068 break;
6069 case number_of_operands_mismatch:
6070 err_msg = _("number of operands mismatch");
6071 break;
6072 case invalid_instruction_suffix:
6073 err_msg = _("invalid instruction suffix");
6074 break;
6075 case bad_imm4:
4a2608e3 6076 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6077 break;
a65babc9
L
6078 case unsupported_with_intel_mnemonic:
6079 err_msg = _("unsupported with Intel mnemonic");
6080 break;
6081 case unsupported_syntax:
6082 err_msg = _("unsupported syntax");
6083 break;
6084 case unsupported:
35262a23 6085 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6086 current_templates->start->name);
6087 return NULL;
6c30d220
L
6088 case invalid_vsib_address:
6089 err_msg = _("invalid VSIB address");
6090 break;
7bab8ab5
JB
6091 case invalid_vector_register_set:
6092 err_msg = _("mask, index, and destination registers must be distinct");
6093 break;
6c30d220
L
6094 case unsupported_vector_index_register:
6095 err_msg = _("unsupported vector index register");
6096 break;
43234a1e
L
6097 case unsupported_broadcast:
6098 err_msg = _("unsupported broadcast");
6099 break;
43234a1e
L
6100 case broadcast_needed:
6101 err_msg = _("broadcast is needed for operand of such type");
6102 break;
6103 case unsupported_masking:
6104 err_msg = _("unsupported masking");
6105 break;
6106 case mask_not_on_destination:
6107 err_msg = _("mask not on destination operand");
6108 break;
6109 case no_default_mask:
6110 err_msg = _("default mask isn't allowed");
6111 break;
6112 case unsupported_rc_sae:
6113 err_msg = _("unsupported static rounding/sae");
6114 break;
6115 case rc_sae_operand_not_last_imm:
6116 if (intel_syntax)
6117 err_msg = _("RC/SAE operand must precede immediate operands");
6118 else
6119 err_msg = _("RC/SAE operand must follow immediate operands");
6120 break;
6121 case invalid_register_operand:
6122 err_msg = _("invalid register operand");
6123 break;
a65babc9
L
6124 }
6125 as_bad (_("%s for `%s'"), err_msg,
891edac4 6126 current_templates->start->name);
fa99fab2 6127 return NULL;
29b0f896 6128 }
252b5132 6129
29b0f896
AM
6130 if (!quiet_warnings)
6131 {
6132 if (!intel_syntax
0cfa3eb3 6133 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6134 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6135
40fb9820
L
6136 if (t->opcode_modifier.isprefix
6137 && t->opcode_modifier.ignoresize)
29b0f896
AM
6138 {
6139 /* Warn them that a data or address size prefix doesn't
6140 affect assembly of the next line of code. */
6141 as_warn (_("stand-alone `%s' prefix"), t->name);
6142 }
6143 }
6144
6145 /* Copy the template we found. */
6146 i.tm = *t;
539e75ad
L
6147
6148 if (addr_prefix_disp != -1)
6149 i.tm.operand_types[addr_prefix_disp]
6150 = operand_types[addr_prefix_disp];
6151
29b0f896
AM
6152 if (found_reverse_match)
6153 {
dfd69174
JB
6154 /* If we found a reverse match we must alter the opcode direction
6155 bit and clear/flip the regmem modifier one. found_reverse_match
6156 holds bits to change (different for int & float insns). */
29b0f896
AM
6157
6158 i.tm.base_opcode ^= found_reverse_match;
6159
f5eb1d70
JB
6160 i.tm.operand_types[0] = operand_types[i.operands - 1];
6161 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6162
6163 /* Certain SIMD insns have their load forms specified in the opcode
6164 table, and hence we need to _set_ RegMem instead of clearing it.
6165 We need to avoid setting the bit though on insns like KMOVW. */
6166 i.tm.opcode_modifier.regmem
6167 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6168 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6169 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6170 }
6171
fa99fab2 6172 return t;
29b0f896
AM
6173}
6174
6175static int
e3bb37b5 6176check_string (void)
29b0f896 6177{
51c8edf6
JB
6178 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6179 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6180
51c8edf6 6181 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6182 {
51c8edf6
JB
6183 as_bad (_("`%s' operand %u must use `%ses' segment"),
6184 i.tm.name,
6185 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6186 register_prefix);
6187 return 0;
29b0f896 6188 }
51c8edf6
JB
6189
6190 /* There's only ever one segment override allowed per instruction.
6191 This instruction possibly has a legal segment override on the
6192 second operand, so copy the segment to where non-string
6193 instructions store it, allowing common code. */
6194 i.seg[op] = i.seg[1];
6195
29b0f896
AM
6196 return 1;
6197}
6198
6199static int
543613e9 6200process_suffix (void)
29b0f896
AM
6201{
6202 /* If matched instruction specifies an explicit instruction mnemonic
6203 suffix, use it. */
673fe0f0 6204 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6205 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6206 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6207 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6208 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6209 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6210 else if (i.reg_operands)
6211 {
6212 /* If there's no instruction mnemonic suffix we try to invent one
6213 based on register operands. */
6214 if (!i.suffix)
6215 {
6216 /* We take i.suffix from the last register operand specified,
6217 Destination register type is more significant than source
381d071f
L
6218 register type. crc32 in SSE4.2 prefers source register
6219 type. */
bab6aec1
JB
6220 if (i.tm.base_opcode == 0xf20f38f0
6221 && i.types[0].bitfield.class == Reg)
381d071f 6222 {
556059dd
JB
6223 if (i.types[0].bitfield.byte)
6224 i.suffix = BYTE_MNEM_SUFFIX;
6225 else if (i.types[0].bitfield.word)
40fb9820 6226 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6227 else if (i.types[0].bitfield.dword)
40fb9820 6228 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6229 else if (i.types[0].bitfield.qword)
40fb9820 6230 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6231 }
6232
6233 if (!i.suffix)
6234 {
6235 int op;
6236
556059dd 6237 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6238 {
6239 /* We have to know the operand size for crc32. */
6240 as_bad (_("ambiguous memory operand size for `%s`"),
6241 i.tm.name);
6242 return 0;
6243 }
6244
381d071f 6245 for (op = i.operands; --op >= 0;)
75e5731b
JB
6246 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6247 || i.tm.operand_types[op].bitfield.instance == Accum)
381d071f 6248 {
bab6aec1 6249 if (i.types[op].bitfield.class != Reg)
8819ada6
JB
6250 continue;
6251 if (i.types[op].bitfield.byte)
6252 i.suffix = BYTE_MNEM_SUFFIX;
6253 else if (i.types[op].bitfield.word)
6254 i.suffix = WORD_MNEM_SUFFIX;
6255 else if (i.types[op].bitfield.dword)
6256 i.suffix = LONG_MNEM_SUFFIX;
6257 else if (i.types[op].bitfield.qword)
6258 i.suffix = QWORD_MNEM_SUFFIX;
6259 else
6260 continue;
6261 break;
381d071f
L
6262 }
6263 }
29b0f896
AM
6264 }
6265 else if (i.suffix == BYTE_MNEM_SUFFIX)
6266 {
2eb952a4
L
6267 if (intel_syntax
6268 && i.tm.opcode_modifier.ignoresize
6269 && i.tm.opcode_modifier.no_bsuf)
6270 i.suffix = 0;
6271 else if (!check_byte_reg ())
29b0f896
AM
6272 return 0;
6273 }
6274 else if (i.suffix == LONG_MNEM_SUFFIX)
6275 {
2eb952a4
L
6276 if (intel_syntax
6277 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6278 && i.tm.opcode_modifier.no_lsuf
6279 && !i.tm.opcode_modifier.todword
6280 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6281 i.suffix = 0;
6282 else if (!check_long_reg ())
29b0f896
AM
6283 return 0;
6284 }
6285 else if (i.suffix == QWORD_MNEM_SUFFIX)
6286 {
955e1e6a
L
6287 if (intel_syntax
6288 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6289 && i.tm.opcode_modifier.no_qsuf
6290 && !i.tm.opcode_modifier.todword
6291 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6292 i.suffix = 0;
6293 else if (!check_qword_reg ())
29b0f896
AM
6294 return 0;
6295 }
6296 else if (i.suffix == WORD_MNEM_SUFFIX)
6297 {
2eb952a4
L
6298 if (intel_syntax
6299 && i.tm.opcode_modifier.ignoresize
6300 && i.tm.opcode_modifier.no_wsuf)
6301 i.suffix = 0;
6302 else if (!check_word_reg ())
29b0f896
AM
6303 return 0;
6304 }
40fb9820 6305 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6306 /* Do nothing if the instruction is going to ignore the prefix. */
6307 ;
6308 else
6309 abort ();
6310 }
40fb9820 6311 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6312 && !i.suffix
6313 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6314 && i.tm.opcode_modifier.no_ssuf)
29b0f896 6315 {
06f74c5c
L
6316 if (stackop_size == LONG_MNEM_SUFFIX
6317 && i.tm.base_opcode == 0xcf)
6318 {
6319 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6320 .code16gcc directive to support 16-bit mode with
6321 32-bit address. For IRET without a suffix, generate
6322 16-bit IRET (opcode 0xcf) to return from an interrupt
6323 handler. */
6324 i.suffix = WORD_MNEM_SUFFIX;
6325 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6326 }
6327 else
6328 i.suffix = stackop_size;
29b0f896 6329 }
9306ca4a
JB
6330 else if (intel_syntax
6331 && !i.suffix
0cfa3eb3
JB
6332 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6333 || i.tm.opcode_modifier.jump == JUMP_BYTE
6334 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6335 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6336 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6337 {
6338 switch (flag_code)
6339 {
6340 case CODE_64BIT:
40fb9820 6341 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6342 {
6343 i.suffix = QWORD_MNEM_SUFFIX;
6344 break;
6345 }
1a0670f3 6346 /* Fall through. */
9306ca4a 6347 case CODE_32BIT:
40fb9820 6348 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6349 i.suffix = LONG_MNEM_SUFFIX;
6350 break;
6351 case CODE_16BIT:
40fb9820 6352 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6353 i.suffix = WORD_MNEM_SUFFIX;
6354 break;
6355 }
6356 }
252b5132 6357
9306ca4a 6358 if (!i.suffix)
29b0f896 6359 {
9306ca4a
JB
6360 if (!intel_syntax)
6361 {
40fb9820 6362 if (i.tm.opcode_modifier.w)
9306ca4a 6363 {
4eed87de
AM
6364 as_bad (_("no instruction mnemonic suffix given and "
6365 "no register operands; can't size instruction"));
9306ca4a
JB
6366 return 0;
6367 }
6368 }
6369 else
6370 {
40fb9820 6371 unsigned int suffixes;
7ab9ffdd 6372
40fb9820
L
6373 suffixes = !i.tm.opcode_modifier.no_bsuf;
6374 if (!i.tm.opcode_modifier.no_wsuf)
6375 suffixes |= 1 << 1;
6376 if (!i.tm.opcode_modifier.no_lsuf)
6377 suffixes |= 1 << 2;
fc4adea1 6378 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6379 suffixes |= 1 << 3;
6380 if (!i.tm.opcode_modifier.no_ssuf)
6381 suffixes |= 1 << 4;
c2b9da16 6382 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6383 suffixes |= 1 << 5;
6384
6385 /* There are more than suffix matches. */
6386 if (i.tm.opcode_modifier.w
9306ca4a 6387 || ((suffixes & (suffixes - 1))
40fb9820
L
6388 && !i.tm.opcode_modifier.defaultsize
6389 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6390 {
6391 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6392 return 0;
6393 }
6394 }
29b0f896 6395 }
252b5132 6396
d2224064
JB
6397 /* Change the opcode based on the operand size given by i.suffix. */
6398 switch (i.suffix)
29b0f896 6399 {
d2224064
JB
6400 /* Size floating point instruction. */
6401 case LONG_MNEM_SUFFIX:
6402 if (i.tm.opcode_modifier.floatmf)
6403 {
6404 i.tm.base_opcode ^= 4;
6405 break;
6406 }
6407 /* fall through */
6408 case WORD_MNEM_SUFFIX:
6409 case QWORD_MNEM_SUFFIX:
29b0f896 6410 /* It's not a byte, select word/dword operation. */
40fb9820 6411 if (i.tm.opcode_modifier.w)
29b0f896 6412 {
40fb9820 6413 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6414 i.tm.base_opcode |= 8;
6415 else
6416 i.tm.base_opcode |= 1;
6417 }
d2224064
JB
6418 /* fall through */
6419 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6420 /* Now select between word & dword operations via the operand
6421 size prefix, except for instructions that will ignore this
6422 prefix anyway. */
75c0a438 6423 if (i.reg_operands > 0
bab6aec1 6424 && i.types[0].bitfield.class == Reg
75c0a438 6425 && i.tm.opcode_modifier.addrprefixopreg
474da251 6426 && (i.tm.operand_types[0].bitfield.instance == Accum
75c0a438 6427 || i.operands == 1))
cb712a9e 6428 {
ca61edf2
L
6429 /* The address size override prefix changes the size of the
6430 first operand. */
40fb9820 6431 if ((flag_code == CODE_32BIT
75c0a438 6432 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6433 || (flag_code != CODE_32BIT
75c0a438 6434 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6435 if (!add_prefix (ADDR_PREFIX_OPCODE))
6436 return 0;
6437 }
6438 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6439 && !i.tm.opcode_modifier.ignoresize
6440 && !i.tm.opcode_modifier.floatmf
a38d7118 6441 && !is_any_vex_encoding (&i.tm)
cb712a9e
L
6442 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6443 || (flag_code == CODE_64BIT
0cfa3eb3 6444 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6445 {
6446 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6447
0cfa3eb3 6448 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6449 prefix = ADDR_PREFIX_OPCODE;
252b5132 6450
29b0f896
AM
6451 if (!add_prefix (prefix))
6452 return 0;
24eab124 6453 }
252b5132 6454
29b0f896
AM
6455 /* Set mode64 for an operand. */
6456 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6457 && flag_code == CODE_64BIT
d2224064 6458 && !i.tm.opcode_modifier.norex64
46e883c5 6459 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6460 need rex64. */
6461 && ! (i.operands == 2
6462 && i.tm.base_opcode == 0x90
6463 && i.tm.extension_opcode == None
75e5731b
JB
6464 && i.types[0].bitfield.instance == Accum
6465 && i.types[0].bitfield.qword
6466 && i.types[1].bitfield.instance == Accum
6467 && i.types[1].bitfield.qword))
d2224064 6468 i.rex |= REX_W;
3e73aa7c 6469
d2224064 6470 break;
29b0f896 6471 }
7ecd2f8b 6472
c0a30a9f
L
6473 if (i.reg_operands != 0
6474 && i.operands > 1
6475 && i.tm.opcode_modifier.addrprefixopreg
474da251 6476 && i.tm.operand_types[0].bitfield.instance != Accum)
c0a30a9f
L
6477 {
6478 /* Check invalid register operand when the address size override
6479 prefix changes the size of register operands. */
6480 unsigned int op;
6481 enum { need_word, need_dword, need_qword } need;
6482
6483 if (flag_code == CODE_32BIT)
6484 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6485 else
6486 {
6487 if (i.prefix[ADDR_PREFIX])
6488 need = need_dword;
6489 else
6490 need = flag_code == CODE_64BIT ? need_qword : need_word;
6491 }
6492
6493 for (op = 0; op < i.operands; op++)
bab6aec1 6494 if (i.types[op].bitfield.class == Reg
c0a30a9f
L
6495 && ((need == need_word
6496 && !i.op[op].regs->reg_type.bitfield.word)
6497 || (need == need_dword
6498 && !i.op[op].regs->reg_type.bitfield.dword)
6499 || (need == need_qword
6500 && !i.op[op].regs->reg_type.bitfield.qword)))
6501 {
6502 as_bad (_("invalid register operand size for `%s'"),
6503 i.tm.name);
6504 return 0;
6505 }
6506 }
6507
29b0f896
AM
6508 return 1;
6509}
3e73aa7c 6510
29b0f896 6511static int
543613e9 6512check_byte_reg (void)
29b0f896
AM
6513{
6514 int op;
543613e9 6515
29b0f896
AM
6516 for (op = i.operands; --op >= 0;)
6517 {
dc821c5f 6518 /* Skip non-register operands. */
bab6aec1 6519 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6520 continue;
6521
29b0f896
AM
6522 /* If this is an eight bit register, it's OK. If it's the 16 or
6523 32 bit version of an eight bit register, we will just use the
6524 low portion, and that's OK too. */
dc821c5f 6525 if (i.types[op].bitfield.byte)
29b0f896
AM
6526 continue;
6527
5a819eb9 6528 /* I/O port address operands are OK too. */
75e5731b
JB
6529 if (i.tm.operand_types[op].bitfield.instance == RegD
6530 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6531 continue;
6532
9344ff29
L
6533 /* crc32 doesn't generate this warning. */
6534 if (i.tm.base_opcode == 0xf20f38f0)
6535 continue;
6536
dc821c5f
JB
6537 if ((i.types[op].bitfield.word
6538 || i.types[op].bitfield.dword
6539 || i.types[op].bitfield.qword)
5a819eb9
JB
6540 && i.op[op].regs->reg_num < 4
6541 /* Prohibit these changes in 64bit mode, since the lowering
6542 would be more complicated. */
6543 && flag_code != CODE_64BIT)
29b0f896 6544 {
29b0f896 6545#if REGISTER_WARNINGS
5a819eb9 6546 if (!quiet_warnings)
a540244d
L
6547 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6548 register_prefix,
dc821c5f 6549 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6550 ? REGNAM_AL - REGNAM_AX
6551 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6552 register_prefix,
29b0f896
AM
6553 i.op[op].regs->reg_name,
6554 i.suffix);
6555#endif
6556 continue;
6557 }
6558 /* Any other register is bad. */
bab6aec1 6559 if (i.types[op].bitfield.class == Reg
3528c362
JB
6560 || i.types[op].bitfield.class == RegMMX
6561 || i.types[op].bitfield.class == RegSIMD
00cee14f 6562 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6563 || i.types[op].bitfield.class == RegCR
6564 || i.types[op].bitfield.class == RegDR
6565 || i.types[op].bitfield.class == RegTR)
29b0f896 6566 {
a540244d
L
6567 as_bad (_("`%s%s' not allowed with `%s%c'"),
6568 register_prefix,
29b0f896
AM
6569 i.op[op].regs->reg_name,
6570 i.tm.name,
6571 i.suffix);
6572 return 0;
6573 }
6574 }
6575 return 1;
6576}
6577
6578static int
e3bb37b5 6579check_long_reg (void)
29b0f896
AM
6580{
6581 int op;
6582
6583 for (op = i.operands; --op >= 0;)
dc821c5f 6584 /* Skip non-register operands. */
bab6aec1 6585 if (i.types[op].bitfield.class != Reg)
dc821c5f 6586 continue;
29b0f896
AM
6587 /* Reject eight bit registers, except where the template requires
6588 them. (eg. movzb) */
dc821c5f 6589 else if (i.types[op].bitfield.byte
bab6aec1 6590 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6591 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6592 && (i.tm.operand_types[op].bitfield.word
6593 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6594 {
a540244d
L
6595 as_bad (_("`%s%s' not allowed with `%s%c'"),
6596 register_prefix,
29b0f896
AM
6597 i.op[op].regs->reg_name,
6598 i.tm.name,
6599 i.suffix);
6600 return 0;
6601 }
e4630f71 6602 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6603 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f 6604 && i.types[op].bitfield.word
bab6aec1 6605 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6606 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6607 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6608 {
6609 /* Prohibit these changes in the 64bit mode, since the
6610 lowering is more complicated. */
6611 if (flag_code == CODE_64BIT)
252b5132 6612 {
2b5d6a91 6613 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6614 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6615 i.suffix);
6616 return 0;
252b5132 6617 }
29b0f896 6618#if REGISTER_WARNINGS
cecf1424
JB
6619 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6620 register_prefix,
6621 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6622 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6623#endif
252b5132 6624 }
e4630f71 6625 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6626 else if (i.types[op].bitfield.qword
bab6aec1 6627 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6628 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6629 && i.tm.operand_types[op].bitfield.dword)
252b5132 6630 {
34828aad 6631 if (intel_syntax
ca61edf2 6632 && i.tm.opcode_modifier.toqword
3528c362 6633 && i.types[0].bitfield.class != RegSIMD)
34828aad 6634 {
ca61edf2 6635 /* Convert to QWORD. We want REX byte. */
34828aad
L
6636 i.suffix = QWORD_MNEM_SUFFIX;
6637 }
6638 else
6639 {
2b5d6a91 6640 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6641 register_prefix, i.op[op].regs->reg_name,
6642 i.suffix);
6643 return 0;
6644 }
29b0f896
AM
6645 }
6646 return 1;
6647}
252b5132 6648
29b0f896 6649static int
e3bb37b5 6650check_qword_reg (void)
29b0f896
AM
6651{
6652 int op;
252b5132 6653
29b0f896 6654 for (op = i.operands; --op >= 0; )
dc821c5f 6655 /* Skip non-register operands. */
bab6aec1 6656 if (i.types[op].bitfield.class != Reg)
dc821c5f 6657 continue;
29b0f896
AM
6658 /* Reject eight bit registers, except where the template requires
6659 them. (eg. movzb) */
dc821c5f 6660 else if (i.types[op].bitfield.byte
bab6aec1 6661 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6662 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6663 && (i.tm.operand_types[op].bitfield.word
6664 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6665 {
a540244d
L
6666 as_bad (_("`%s%s' not allowed with `%s%c'"),
6667 register_prefix,
29b0f896
AM
6668 i.op[op].regs->reg_name,
6669 i.tm.name,
6670 i.suffix);
6671 return 0;
6672 }
e4630f71 6673 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6674 else if ((i.types[op].bitfield.word
6675 || i.types[op].bitfield.dword)
bab6aec1 6676 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6677 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6678 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6679 {
6680 /* Prohibit these changes in the 64bit mode, since the
6681 lowering is more complicated. */
34828aad 6682 if (intel_syntax
ca61edf2 6683 && i.tm.opcode_modifier.todword
3528c362 6684 && i.types[0].bitfield.class != RegSIMD)
34828aad 6685 {
ca61edf2 6686 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6687 i.suffix = LONG_MNEM_SUFFIX;
6688 }
6689 else
6690 {
2b5d6a91 6691 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6692 register_prefix, i.op[op].regs->reg_name,
6693 i.suffix);
6694 return 0;
6695 }
252b5132 6696 }
29b0f896
AM
6697 return 1;
6698}
252b5132 6699
29b0f896 6700static int
e3bb37b5 6701check_word_reg (void)
29b0f896
AM
6702{
6703 int op;
6704 for (op = i.operands; --op >= 0;)
dc821c5f 6705 /* Skip non-register operands. */
bab6aec1 6706 if (i.types[op].bitfield.class != Reg)
dc821c5f 6707 continue;
29b0f896
AM
6708 /* Reject eight bit registers, except where the template requires
6709 them. (eg. movzb) */
dc821c5f 6710 else if (i.types[op].bitfield.byte
bab6aec1 6711 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6712 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6713 && (i.tm.operand_types[op].bitfield.word
6714 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6715 {
a540244d
L
6716 as_bad (_("`%s%s' not allowed with `%s%c'"),
6717 register_prefix,
29b0f896
AM
6718 i.op[op].regs->reg_name,
6719 i.tm.name,
6720 i.suffix);
6721 return 0;
6722 }
e4630f71 6723 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6724 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6725 && (i.types[op].bitfield.dword
6726 || i.types[op].bitfield.qword)
bab6aec1 6727 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6728 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6729 && i.tm.operand_types[op].bitfield.word)
252b5132 6730 {
29b0f896
AM
6731 /* Prohibit these changes in the 64bit mode, since the
6732 lowering is more complicated. */
6733 if (flag_code == CODE_64BIT)
252b5132 6734 {
2b5d6a91 6735 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6736 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6737 i.suffix);
6738 return 0;
252b5132 6739 }
29b0f896 6740#if REGISTER_WARNINGS
cecf1424
JB
6741 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6742 register_prefix,
6743 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6744 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6745#endif
6746 }
6747 return 1;
6748}
252b5132 6749
29b0f896 6750static int
40fb9820 6751update_imm (unsigned int j)
29b0f896 6752{
bc0844ae 6753 i386_operand_type overlap = i.types[j];
40fb9820
L
6754 if ((overlap.bitfield.imm8
6755 || overlap.bitfield.imm8s
6756 || overlap.bitfield.imm16
6757 || overlap.bitfield.imm32
6758 || overlap.bitfield.imm32s
6759 || overlap.bitfield.imm64)
0dfbf9d7
L
6760 && !operand_type_equal (&overlap, &imm8)
6761 && !operand_type_equal (&overlap, &imm8s)
6762 && !operand_type_equal (&overlap, &imm16)
6763 && !operand_type_equal (&overlap, &imm32)
6764 && !operand_type_equal (&overlap, &imm32s)
6765 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6766 {
6767 if (i.suffix)
6768 {
40fb9820
L
6769 i386_operand_type temp;
6770
0dfbf9d7 6771 operand_type_set (&temp, 0);
7ab9ffdd 6772 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6773 {
6774 temp.bitfield.imm8 = overlap.bitfield.imm8;
6775 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6776 }
6777 else if (i.suffix == WORD_MNEM_SUFFIX)
6778 temp.bitfield.imm16 = overlap.bitfield.imm16;
6779 else if (i.suffix == QWORD_MNEM_SUFFIX)
6780 {
6781 temp.bitfield.imm64 = overlap.bitfield.imm64;
6782 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6783 }
6784 else
6785 temp.bitfield.imm32 = overlap.bitfield.imm32;
6786 overlap = temp;
29b0f896 6787 }
0dfbf9d7
L
6788 else if (operand_type_equal (&overlap, &imm16_32_32s)
6789 || operand_type_equal (&overlap, &imm16_32)
6790 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6791 {
40fb9820 6792 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6793 overlap = imm16;
40fb9820 6794 else
65da13b5 6795 overlap = imm32s;
29b0f896 6796 }
0dfbf9d7
L
6797 if (!operand_type_equal (&overlap, &imm8)
6798 && !operand_type_equal (&overlap, &imm8s)
6799 && !operand_type_equal (&overlap, &imm16)
6800 && !operand_type_equal (&overlap, &imm32)
6801 && !operand_type_equal (&overlap, &imm32s)
6802 && !operand_type_equal (&overlap, &imm64))
29b0f896 6803 {
4eed87de
AM
6804 as_bad (_("no instruction mnemonic suffix given; "
6805 "can't determine immediate size"));
29b0f896
AM
6806 return 0;
6807 }
6808 }
40fb9820 6809 i.types[j] = overlap;
29b0f896 6810
40fb9820
L
6811 return 1;
6812}
6813
6814static int
6815finalize_imm (void)
6816{
bc0844ae 6817 unsigned int j, n;
29b0f896 6818
bc0844ae
L
6819 /* Update the first 2 immediate operands. */
6820 n = i.operands > 2 ? 2 : i.operands;
6821 if (n)
6822 {
6823 for (j = 0; j < n; j++)
6824 if (update_imm (j) == 0)
6825 return 0;
40fb9820 6826
bc0844ae
L
6827 /* The 3rd operand can't be immediate operand. */
6828 gas_assert (operand_type_check (i.types[2], imm) == 0);
6829 }
29b0f896
AM
6830
6831 return 1;
6832}
6833
6834static int
e3bb37b5 6835process_operands (void)
29b0f896
AM
6836{
6837 /* Default segment register this instruction will use for memory
6838 accesses. 0 means unknown. This is only for optimizing out
6839 unnecessary segment overrides. */
6840 const seg_entry *default_seg = 0;
6841
2426c15f 6842 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6843 {
91d6fa6a
NC
6844 unsigned int dupl = i.operands;
6845 unsigned int dest = dupl - 1;
9fcfb3d7
L
6846 unsigned int j;
6847
c0f3af97 6848 /* The destination must be an xmm register. */
9c2799c2 6849 gas_assert (i.reg_operands
91d6fa6a 6850 && MAX_OPERANDS > dupl
7ab9ffdd 6851 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6852
75e5731b 6853 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6854 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6855 {
8cd7925b 6856 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6857 {
6858 /* Keep xmm0 for instructions with VEX prefix and 3
6859 sources. */
75e5731b 6860 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 6861 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
6862 goto duplicate;
6863 }
e2ec9d29 6864 else
c0f3af97
L
6865 {
6866 /* We remove the first xmm0 and keep the number of
6867 operands unchanged, which in fact duplicates the
6868 destination. */
6869 for (j = 1; j < i.operands; j++)
6870 {
6871 i.op[j - 1] = i.op[j];
6872 i.types[j - 1] = i.types[j];
6873 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 6874 i.flags[j - 1] = i.flags[j];
c0f3af97
L
6875 }
6876 }
6877 }
6878 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6879 {
91d6fa6a 6880 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6881 && (i.tm.opcode_modifier.vexsources
6882 == VEX3SOURCES));
c0f3af97
L
6883
6884 /* Add the implicit xmm0 for instructions with VEX prefix
6885 and 3 sources. */
6886 for (j = i.operands; j > 0; j--)
6887 {
6888 i.op[j] = i.op[j - 1];
6889 i.types[j] = i.types[j - 1];
6890 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 6891 i.flags[j] = i.flags[j - 1];
c0f3af97
L
6892 }
6893 i.op[0].regs
6894 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6895 i.types[0] = regxmm;
c0f3af97
L
6896 i.tm.operand_types[0] = regxmm;
6897
6898 i.operands += 2;
6899 i.reg_operands += 2;
6900 i.tm.operands += 2;
6901
91d6fa6a 6902 dupl++;
c0f3af97 6903 dest++;
91d6fa6a
NC
6904 i.op[dupl] = i.op[dest];
6905 i.types[dupl] = i.types[dest];
6906 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6907 i.flags[dupl] = i.flags[dest];
e2ec9d29 6908 }
c0f3af97
L
6909 else
6910 {
6911duplicate:
6912 i.operands++;
6913 i.reg_operands++;
6914 i.tm.operands++;
6915
91d6fa6a
NC
6916 i.op[dupl] = i.op[dest];
6917 i.types[dupl] = i.types[dest];
6918 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 6919 i.flags[dupl] = i.flags[dest];
c0f3af97
L
6920 }
6921
6922 if (i.tm.opcode_modifier.immext)
6923 process_immext ();
6924 }
75e5731b 6925 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 6926 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6927 {
6928 unsigned int j;
6929
9fcfb3d7
L
6930 for (j = 1; j < i.operands; j++)
6931 {
6932 i.op[j - 1] = i.op[j];
6933 i.types[j - 1] = i.types[j];
6934
6935 /* We need to adjust fields in i.tm since they are used by
6936 build_modrm_byte. */
6937 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
6938
6939 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
6940 }
6941
e2ec9d29
L
6942 i.operands--;
6943 i.reg_operands--;
e2ec9d29
L
6944 i.tm.operands--;
6945 }
920d2ddc
IT
6946 else if (i.tm.opcode_modifier.implicitquadgroup)
6947 {
a477a8c4
JB
6948 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6949
920d2ddc 6950 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 6951 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
6952 regnum = register_number (i.op[1].regs);
6953 first_reg_in_group = regnum & ~3;
6954 last_reg_in_group = first_reg_in_group + 3;
6955 if (regnum != first_reg_in_group)
6956 as_warn (_("source register `%s%s' implicitly denotes"
6957 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6958 register_prefix, i.op[1].regs->reg_name,
6959 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6960 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6961 i.tm.name);
6962 }
e2ec9d29
L
6963 else if (i.tm.opcode_modifier.regkludge)
6964 {
6965 /* The imul $imm, %reg instruction is converted into
6966 imul $imm, %reg, %reg, and the clr %reg instruction
6967 is converted into xor %reg, %reg. */
6968
6969 unsigned int first_reg_op;
6970
6971 if (operand_type_check (i.types[0], reg))
6972 first_reg_op = 0;
6973 else
6974 first_reg_op = 1;
6975 /* Pretend we saw the extra register operand. */
9c2799c2 6976 gas_assert (i.reg_operands == 1
7ab9ffdd 6977 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6978 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6979 i.types[first_reg_op + 1] = i.types[first_reg_op];
6980 i.operands++;
6981 i.reg_operands++;
29b0f896
AM
6982 }
6983
85b80b0f 6984 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6985 {
6986 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6987 must be put into the modrm byte). Now, we make the modrm and
6988 index base bytes based on all the info we've collected. */
29b0f896
AM
6989
6990 default_seg = build_modrm_byte ();
6991 }
00cee14f 6992 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
6993 {
6994 if (flag_code != CODE_64BIT
6995 ? i.tm.base_opcode == POP_SEG_SHORT
6996 && i.op[0].regs->reg_num == 1
6997 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
6998 && i.op[0].regs->reg_num < 4)
6999 {
7000 as_bad (_("you can't `%s %s%s'"),
7001 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7002 return 0;
7003 }
7004 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7005 {
7006 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7007 i.tm.opcode_length = 2;
7008 }
7009 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7010 }
8a2ed489 7011 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7012 {
7013 default_seg = &ds;
7014 }
40fb9820 7015 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7016 {
7017 /* For the string instructions that allow a segment override
7018 on one of their operands, the default segment is ds. */
7019 default_seg = &ds;
7020 }
85b80b0f
JB
7021 else if (i.tm.opcode_modifier.shortform)
7022 {
7023 /* The register or float register operand is in operand
7024 0 or 1. */
bab6aec1 7025 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7026
7027 /* Register goes in low 3 bits of opcode. */
7028 i.tm.base_opcode |= i.op[op].regs->reg_num;
7029 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7030 i.rex |= REX_B;
7031 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7032 {
7033 /* Warn about some common errors, but press on regardless.
7034 The first case can be generated by gcc (<= 2.8.1). */
7035 if (i.operands == 2)
7036 {
7037 /* Reversed arguments on faddp, fsubp, etc. */
7038 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7039 register_prefix, i.op[!intel_syntax].regs->reg_name,
7040 register_prefix, i.op[intel_syntax].regs->reg_name);
7041 }
7042 else
7043 {
7044 /* Extraneous `l' suffix on fp insn. */
7045 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7046 register_prefix, i.op[0].regs->reg_name);
7047 }
7048 }
7049 }
29b0f896 7050
75178d9d
L
7051 if (i.tm.base_opcode == 0x8d /* lea */
7052 && i.seg[0]
7053 && !quiet_warnings)
30123838 7054 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
7055
7056 /* If a segment was explicitly specified, and the specified segment
7057 is not the default, use an opcode prefix to select it. If we
7058 never figured out what the default segment is, then default_seg
7059 will be zero at this point, and the specified segment prefix will
7060 always be used. */
29b0f896
AM
7061 if ((i.seg[0]) && (i.seg[0] != default_seg))
7062 {
7063 if (!add_prefix (i.seg[0]->seg_prefix))
7064 return 0;
7065 }
7066 return 1;
7067}
7068
7069static const seg_entry *
e3bb37b5 7070build_modrm_byte (void)
29b0f896
AM
7071{
7072 const seg_entry *default_seg = 0;
c0f3af97 7073 unsigned int source, dest;
8cd7925b 7074 int vex_3_sources;
c0f3af97 7075
8cd7925b 7076 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7077 if (vex_3_sources)
7078 {
91d6fa6a 7079 unsigned int nds, reg_slot;
4c2c6516 7080 expressionS *exp;
c0f3af97 7081
6b8d3588 7082 dest = i.operands - 1;
c0f3af97 7083 nds = dest - 1;
922d8de8 7084
a683cc34 7085 /* There are 2 kinds of instructions:
bed3d976 7086 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7087 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7088 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7089 ZMM register.
bed3d976 7090 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7091 plus 1 memory operand, with VexXDS. */
922d8de8 7092 gas_assert ((i.reg_operands == 4
bed3d976
JB
7093 || (i.reg_operands == 3 && i.mem_operands == 1))
7094 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7095 && i.tm.opcode_modifier.vexw
3528c362 7096 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7097
48db9223
JB
7098 /* If VexW1 is set, the first non-immediate operand is the source and
7099 the second non-immediate one is encoded in the immediate operand. */
7100 if (i.tm.opcode_modifier.vexw == VEXW1)
7101 {
7102 source = i.imm_operands;
7103 reg_slot = i.imm_operands + 1;
7104 }
7105 else
7106 {
7107 source = i.imm_operands + 1;
7108 reg_slot = i.imm_operands;
7109 }
7110
a683cc34 7111 if (i.imm_operands == 0)
bed3d976
JB
7112 {
7113 /* When there is no immediate operand, generate an 8bit
7114 immediate operand to encode the first operand. */
7115 exp = &im_expressions[i.imm_operands++];
7116 i.op[i.operands].imms = exp;
7117 i.types[i.operands] = imm8;
7118 i.operands++;
7119
3528c362 7120 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7121 exp->X_op = O_constant;
7122 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7123 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7124 }
922d8de8 7125 else
bed3d976 7126 {
9d3bf266
JB
7127 gas_assert (i.imm_operands == 1);
7128 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7129 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7130
9d3bf266
JB
7131 /* Turn on Imm8 again so that output_imm will generate it. */
7132 i.types[0].bitfield.imm8 = 1;
bed3d976 7133
3528c362 7134 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7135 i.op[0].imms->X_add_number
bed3d976 7136 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7137 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7138 }
a683cc34 7139
3528c362 7140 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7141 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7142 }
7143 else
7144 source = dest = 0;
29b0f896
AM
7145
7146 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7147 implicit registers do not count. If there are 3 register
7148 operands, it must be a instruction with VexNDS. For a
7149 instruction with VexNDD, the destination register is encoded
7150 in VEX prefix. If there are 4 register operands, it must be
7151 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7152 if (i.mem_operands == 0
7153 && ((i.reg_operands == 2
2426c15f 7154 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7155 || (i.reg_operands == 3
2426c15f 7156 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7157 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7158 {
cab737b9
L
7159 switch (i.operands)
7160 {
7161 case 2:
7162 source = 0;
7163 break;
7164 case 3:
c81128dc
L
7165 /* When there are 3 operands, one of them may be immediate,
7166 which may be the first or the last operand. Otherwise,
c0f3af97
L
7167 the first operand must be shift count register (cl) or it
7168 is an instruction with VexNDS. */
9c2799c2 7169 gas_assert (i.imm_operands == 1
7ab9ffdd 7170 || (i.imm_operands == 0
2426c15f 7171 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7172 || (i.types[0].bitfield.instance == RegC
7173 && i.types[0].bitfield.byte))));
40fb9820 7174 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7175 || (i.types[0].bitfield.instance == RegC
7176 && i.types[0].bitfield.byte))
40fb9820
L
7177 source = 1;
7178 else
7179 source = 0;
cab737b9
L
7180 break;
7181 case 4:
368d64cc
L
7182 /* When there are 4 operands, the first two must be 8bit
7183 immediate operands. The source operand will be the 3rd
c0f3af97
L
7184 one.
7185
7186 For instructions with VexNDS, if the first operand
7187 an imm8, the source operand is the 2nd one. If the last
7188 operand is imm8, the source operand is the first one. */
9c2799c2 7189 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7190 && i.types[0].bitfield.imm8
7191 && i.types[1].bitfield.imm8)
2426c15f 7192 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7193 && i.imm_operands == 1
7194 && (i.types[0].bitfield.imm8
43234a1e
L
7195 || i.types[i.operands - 1].bitfield.imm8
7196 || i.rounding)));
9f2670f2
L
7197 if (i.imm_operands == 2)
7198 source = 2;
7199 else
c0f3af97
L
7200 {
7201 if (i.types[0].bitfield.imm8)
7202 source = 1;
7203 else
7204 source = 0;
7205 }
c0f3af97
L
7206 break;
7207 case 5:
e771e7c9 7208 if (is_evex_encoding (&i.tm))
43234a1e
L
7209 {
7210 /* For EVEX instructions, when there are 5 operands, the
7211 first one must be immediate operand. If the second one
7212 is immediate operand, the source operand is the 3th
7213 one. If the last one is immediate operand, the source
7214 operand is the 2nd one. */
7215 gas_assert (i.imm_operands == 2
7216 && i.tm.opcode_modifier.sae
7217 && operand_type_check (i.types[0], imm));
7218 if (operand_type_check (i.types[1], imm))
7219 source = 2;
7220 else if (operand_type_check (i.types[4], imm))
7221 source = 1;
7222 else
7223 abort ();
7224 }
cab737b9
L
7225 break;
7226 default:
7227 abort ();
7228 }
7229
c0f3af97
L
7230 if (!vex_3_sources)
7231 {
7232 dest = source + 1;
7233
43234a1e
L
7234 /* RC/SAE operand could be between DEST and SRC. That happens
7235 when one operand is GPR and the other one is XMM/YMM/ZMM
7236 register. */
7237 if (i.rounding && i.rounding->operand == (int) dest)
7238 dest++;
7239
2426c15f 7240 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7241 {
43234a1e 7242 /* For instructions with VexNDS, the register-only source
c5d0745b 7243 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7244 register. It is encoded in VEX prefix. */
f12dc422
L
7245
7246 i386_operand_type op;
7247 unsigned int vvvv;
7248
7249 /* Check register-only source operand when two source
7250 operands are swapped. */
7251 if (!i.tm.operand_types[source].bitfield.baseindex
7252 && i.tm.operand_types[dest].bitfield.baseindex)
7253 {
7254 vvvv = source;
7255 source = dest;
7256 }
7257 else
7258 vvvv = dest;
7259
7260 op = i.tm.operand_types[vvvv];
c0f3af97 7261 if ((dest + 1) >= i.operands
bab6aec1 7262 || ((op.bitfield.class != Reg
dc821c5f 7263 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7264 && op.bitfield.class != RegSIMD
43234a1e 7265 && !operand_type_equal (&op, &regmask)))
c0f3af97 7266 abort ();
f12dc422 7267 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7268 dest++;
7269 }
7270 }
29b0f896
AM
7271
7272 i.rm.mode = 3;
dfd69174
JB
7273 /* One of the register operands will be encoded in the i.rm.reg
7274 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7275 fields. If no form of this instruction supports a memory
7276 destination operand, then we assume the source operand may
7277 sometimes be a memory operand and so we need to store the
7278 destination in the i.rm.reg field. */
dfd69174 7279 if (!i.tm.opcode_modifier.regmem
40fb9820 7280 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7281 {
7282 i.rm.reg = i.op[dest].regs->reg_num;
7283 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7284 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7285 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7286 i.has_regmmx = TRUE;
3528c362
JB
7287 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7288 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7289 {
7290 if (i.types[dest].bitfield.zmmword
7291 || i.types[source].bitfield.zmmword)
7292 i.has_regzmm = TRUE;
7293 else if (i.types[dest].bitfield.ymmword
7294 || i.types[source].bitfield.ymmword)
7295 i.has_regymm = TRUE;
7296 else
7297 i.has_regxmm = TRUE;
7298 }
29b0f896 7299 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7300 i.rex |= REX_R;
43234a1e
L
7301 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7302 i.vrex |= REX_R;
29b0f896 7303 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7304 i.rex |= REX_B;
43234a1e
L
7305 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7306 i.vrex |= REX_B;
29b0f896
AM
7307 }
7308 else
7309 {
7310 i.rm.reg = i.op[source].regs->reg_num;
7311 i.rm.regmem = i.op[dest].regs->reg_num;
7312 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7313 i.rex |= REX_B;
43234a1e
L
7314 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7315 i.vrex |= REX_B;
29b0f896 7316 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7317 i.rex |= REX_R;
43234a1e
L
7318 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7319 i.vrex |= REX_R;
29b0f896 7320 }
e0c7f900 7321 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7322 {
4a5c67ed 7323 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7324 abort ();
e0c7f900 7325 i.rex &= ~REX_R;
c4a530c5
JB
7326 add_prefix (LOCK_PREFIX_OPCODE);
7327 }
29b0f896
AM
7328 }
7329 else
7330 { /* If it's not 2 reg operands... */
c0f3af97
L
7331 unsigned int mem;
7332
29b0f896
AM
7333 if (i.mem_operands)
7334 {
7335 unsigned int fake_zero_displacement = 0;
99018f42 7336 unsigned int op;
4eed87de 7337
7ab9ffdd 7338 for (op = 0; op < i.operands; op++)
8dc0818e 7339 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7340 break;
7ab9ffdd 7341 gas_assert (op < i.operands);
29b0f896 7342
6c30d220
L
7343 if (i.tm.opcode_modifier.vecsib)
7344 {
e968fc9b 7345 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7346 abort ();
7347
7348 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7349 if (!i.base_reg)
7350 {
7351 i.sib.base = NO_BASE_REGISTER;
7352 i.sib.scale = i.log2_scale_factor;
7353 i.types[op].bitfield.disp8 = 0;
7354 i.types[op].bitfield.disp16 = 0;
7355 i.types[op].bitfield.disp64 = 0;
43083a50 7356 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7357 {
7358 /* Must be 32 bit */
7359 i.types[op].bitfield.disp32 = 1;
7360 i.types[op].bitfield.disp32s = 0;
7361 }
7362 else
7363 {
7364 i.types[op].bitfield.disp32 = 0;
7365 i.types[op].bitfield.disp32s = 1;
7366 }
7367 }
7368 i.sib.index = i.index_reg->reg_num;
7369 if ((i.index_reg->reg_flags & RegRex) != 0)
7370 i.rex |= REX_X;
43234a1e
L
7371 if ((i.index_reg->reg_flags & RegVRex) != 0)
7372 i.vrex |= REX_X;
6c30d220
L
7373 }
7374
29b0f896
AM
7375 default_seg = &ds;
7376
7377 if (i.base_reg == 0)
7378 {
7379 i.rm.mode = 0;
7380 if (!i.disp_operands)
9bb129e8 7381 fake_zero_displacement = 1;
29b0f896
AM
7382 if (i.index_reg == 0)
7383 {
73053c1f
JB
7384 i386_operand_type newdisp;
7385
6c30d220 7386 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7387 /* Operand is just <disp> */
20f0a1fc 7388 if (flag_code == CODE_64BIT)
29b0f896
AM
7389 {
7390 /* 64bit mode overwrites the 32bit absolute
7391 addressing by RIP relative addressing and
7392 absolute addressing is encoded by one of the
7393 redundant SIB forms. */
7394 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7395 i.sib.base = NO_BASE_REGISTER;
7396 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7397 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7398 }
fc225355
L
7399 else if ((flag_code == CODE_16BIT)
7400 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7401 {
7402 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7403 newdisp = disp16;
20f0a1fc
NC
7404 }
7405 else
7406 {
7407 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7408 newdisp = disp32;
29b0f896 7409 }
73053c1f
JB
7410 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7411 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7412 }
6c30d220 7413 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7414 {
6c30d220 7415 /* !i.base_reg && i.index_reg */
e968fc9b 7416 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7417 i.sib.index = NO_INDEX_REGISTER;
7418 else
7419 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7420 i.sib.base = NO_BASE_REGISTER;
7421 i.sib.scale = i.log2_scale_factor;
7422 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7423 i.types[op].bitfield.disp8 = 0;
7424 i.types[op].bitfield.disp16 = 0;
7425 i.types[op].bitfield.disp64 = 0;
43083a50 7426 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7427 {
7428 /* Must be 32 bit */
7429 i.types[op].bitfield.disp32 = 1;
7430 i.types[op].bitfield.disp32s = 0;
7431 }
29b0f896 7432 else
40fb9820
L
7433 {
7434 i.types[op].bitfield.disp32 = 0;
7435 i.types[op].bitfield.disp32s = 1;
7436 }
29b0f896 7437 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7438 i.rex |= REX_X;
29b0f896
AM
7439 }
7440 }
7441 /* RIP addressing for 64bit mode. */
e968fc9b 7442 else if (i.base_reg->reg_num == RegIP)
29b0f896 7443 {
6c30d220 7444 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7445 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7446 i.types[op].bitfield.disp8 = 0;
7447 i.types[op].bitfield.disp16 = 0;
7448 i.types[op].bitfield.disp32 = 0;
7449 i.types[op].bitfield.disp32s = 1;
7450 i.types[op].bitfield.disp64 = 0;
71903a11 7451 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7452 if (! i.disp_operands)
7453 fake_zero_displacement = 1;
29b0f896 7454 }
dc821c5f 7455 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7456 {
6c30d220 7457 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7458 switch (i.base_reg->reg_num)
7459 {
7460 case 3: /* (%bx) */
7461 if (i.index_reg == 0)
7462 i.rm.regmem = 7;
7463 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7464 i.rm.regmem = i.index_reg->reg_num - 6;
7465 break;
7466 case 5: /* (%bp) */
7467 default_seg = &ss;
7468 if (i.index_reg == 0)
7469 {
7470 i.rm.regmem = 6;
40fb9820 7471 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7472 {
7473 /* fake (%bp) into 0(%bp) */
b5014f7a 7474 i.types[op].bitfield.disp8 = 1;
252b5132 7475 fake_zero_displacement = 1;
29b0f896
AM
7476 }
7477 }
7478 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7479 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7480 break;
7481 default: /* (%si) -> 4 or (%di) -> 5 */
7482 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7483 }
7484 i.rm.mode = mode_from_disp_size (i.types[op]);
7485 }
7486 else /* i.base_reg and 32/64 bit mode */
7487 {
7488 if (flag_code == CODE_64BIT
40fb9820
L
7489 && operand_type_check (i.types[op], disp))
7490 {
73053c1f
JB
7491 i.types[op].bitfield.disp16 = 0;
7492 i.types[op].bitfield.disp64 = 0;
40fb9820 7493 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7494 {
7495 i.types[op].bitfield.disp32 = 0;
7496 i.types[op].bitfield.disp32s = 1;
7497 }
40fb9820 7498 else
73053c1f
JB
7499 {
7500 i.types[op].bitfield.disp32 = 1;
7501 i.types[op].bitfield.disp32s = 0;
7502 }
40fb9820 7503 }
20f0a1fc 7504
6c30d220
L
7505 if (!i.tm.opcode_modifier.vecsib)
7506 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7507 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7508 i.rex |= REX_B;
29b0f896
AM
7509 i.sib.base = i.base_reg->reg_num;
7510 /* x86-64 ignores REX prefix bit here to avoid decoder
7511 complications. */
848930b2
JB
7512 if (!(i.base_reg->reg_flags & RegRex)
7513 && (i.base_reg->reg_num == EBP_REG_NUM
7514 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7515 default_seg = &ss;
848930b2 7516 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7517 {
848930b2 7518 fake_zero_displacement = 1;
b5014f7a 7519 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7520 }
7521 i.sib.scale = i.log2_scale_factor;
7522 if (i.index_reg == 0)
7523 {
6c30d220 7524 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7525 /* <disp>(%esp) becomes two byte modrm with no index
7526 register. We've already stored the code for esp
7527 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7528 Any base register besides %esp will not use the
7529 extra modrm byte. */
7530 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7531 }
6c30d220 7532 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7533 {
e968fc9b 7534 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7535 i.sib.index = NO_INDEX_REGISTER;
7536 else
7537 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7538 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7539 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7540 i.rex |= REX_X;
29b0f896 7541 }
67a4f2b7
AO
7542
7543 if (i.disp_operands
7544 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7545 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7546 i.rm.mode = 0;
7547 else
a501d77e
L
7548 {
7549 if (!fake_zero_displacement
7550 && !i.disp_operands
7551 && i.disp_encoding)
7552 {
7553 fake_zero_displacement = 1;
7554 if (i.disp_encoding == disp_encoding_8bit)
7555 i.types[op].bitfield.disp8 = 1;
7556 else
7557 i.types[op].bitfield.disp32 = 1;
7558 }
7559 i.rm.mode = mode_from_disp_size (i.types[op]);
7560 }
29b0f896 7561 }
252b5132 7562
29b0f896
AM
7563 if (fake_zero_displacement)
7564 {
7565 /* Fakes a zero displacement assuming that i.types[op]
7566 holds the correct displacement size. */
7567 expressionS *exp;
7568
9c2799c2 7569 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7570 exp = &disp_expressions[i.disp_operands++];
7571 i.op[op].disps = exp;
7572 exp->X_op = O_constant;
7573 exp->X_add_number = 0;
7574 exp->X_add_symbol = (symbolS *) 0;
7575 exp->X_op_symbol = (symbolS *) 0;
7576 }
c0f3af97
L
7577
7578 mem = op;
29b0f896 7579 }
c0f3af97
L
7580 else
7581 mem = ~0;
252b5132 7582
8c43a48b 7583 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7584 {
7585 if (operand_type_check (i.types[0], imm))
7586 i.vex.register_specifier = NULL;
7587 else
7588 {
7589 /* VEX.vvvv encodes one of the sources when the first
7590 operand is not an immediate. */
1ef99a7b 7591 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7592 i.vex.register_specifier = i.op[0].regs;
7593 else
7594 i.vex.register_specifier = i.op[1].regs;
7595 }
7596
7597 /* Destination is a XMM register encoded in the ModRM.reg
7598 and VEX.R bit. */
7599 i.rm.reg = i.op[2].regs->reg_num;
7600 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7601 i.rex |= REX_R;
7602
7603 /* ModRM.rm and VEX.B encodes the other source. */
7604 if (!i.mem_operands)
7605 {
7606 i.rm.mode = 3;
7607
1ef99a7b 7608 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7609 i.rm.regmem = i.op[1].regs->reg_num;
7610 else
7611 i.rm.regmem = i.op[0].regs->reg_num;
7612
7613 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7614 i.rex |= REX_B;
7615 }
7616 }
2426c15f 7617 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7618 {
7619 i.vex.register_specifier = i.op[2].regs;
7620 if (!i.mem_operands)
7621 {
7622 i.rm.mode = 3;
7623 i.rm.regmem = i.op[1].regs->reg_num;
7624 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7625 i.rex |= REX_B;
7626 }
7627 }
29b0f896
AM
7628 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7629 (if any) based on i.tm.extension_opcode. Again, we must be
7630 careful to make sure that segment/control/debug/test/MMX
7631 registers are coded into the i.rm.reg field. */
f88c9eb0 7632 else if (i.reg_operands)
29b0f896 7633 {
99018f42 7634 unsigned int op;
7ab9ffdd
L
7635 unsigned int vex_reg = ~0;
7636
7637 for (op = 0; op < i.operands; op++)
b4a3a7b4 7638 {
bab6aec1 7639 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7640 || i.types[op].bitfield.class == RegBND
7641 || i.types[op].bitfield.class == RegMask
00cee14f 7642 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7643 || i.types[op].bitfield.class == RegCR
7644 || i.types[op].bitfield.class == RegDR
7645 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7646 break;
3528c362 7647 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7648 {
7649 if (i.types[op].bitfield.zmmword)
7650 i.has_regzmm = TRUE;
7651 else if (i.types[op].bitfield.ymmword)
7652 i.has_regymm = TRUE;
7653 else
7654 i.has_regxmm = TRUE;
7655 break;
7656 }
3528c362 7657 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7658 {
7659 i.has_regmmx = TRUE;
7660 break;
7661 }
7662 }
c0209578 7663
7ab9ffdd
L
7664 if (vex_3_sources)
7665 op = dest;
2426c15f 7666 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7667 {
7668 /* For instructions with VexNDS, the register-only
7669 source operand is encoded in VEX prefix. */
7670 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7671
7ab9ffdd 7672 if (op > mem)
c0f3af97 7673 {
7ab9ffdd
L
7674 vex_reg = op++;
7675 gas_assert (op < i.operands);
c0f3af97
L
7676 }
7677 else
c0f3af97 7678 {
f12dc422
L
7679 /* Check register-only source operand when two source
7680 operands are swapped. */
7681 if (!i.tm.operand_types[op].bitfield.baseindex
7682 && i.tm.operand_types[op + 1].bitfield.baseindex)
7683 {
7684 vex_reg = op;
7685 op += 2;
7686 gas_assert (mem == (vex_reg + 1)
7687 && op < i.operands);
7688 }
7689 else
7690 {
7691 vex_reg = op + 1;
7692 gas_assert (vex_reg < i.operands);
7693 }
c0f3af97 7694 }
7ab9ffdd 7695 }
2426c15f 7696 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7697 {
f12dc422 7698 /* For instructions with VexNDD, the register destination
7ab9ffdd 7699 is encoded in VEX prefix. */
f12dc422
L
7700 if (i.mem_operands == 0)
7701 {
7702 /* There is no memory operand. */
7703 gas_assert ((op + 2) == i.operands);
7704 vex_reg = op + 1;
7705 }
7706 else
8d63c93e 7707 {
ed438a93
JB
7708 /* There are only 2 non-immediate operands. */
7709 gas_assert (op < i.imm_operands + 2
7710 && i.operands == i.imm_operands + 2);
7711 vex_reg = i.imm_operands + 1;
f12dc422 7712 }
7ab9ffdd
L
7713 }
7714 else
7715 gas_assert (op < i.operands);
99018f42 7716
7ab9ffdd
L
7717 if (vex_reg != (unsigned int) ~0)
7718 {
f12dc422 7719 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7720
bab6aec1 7721 if ((type->bitfield.class != Reg
dc821c5f 7722 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7723 && type->bitfield.class != RegSIMD
43234a1e 7724 && !operand_type_equal (type, &regmask))
7ab9ffdd 7725 abort ();
f88c9eb0 7726
7ab9ffdd
L
7727 i.vex.register_specifier = i.op[vex_reg].regs;
7728 }
7729
1b9f0c97
L
7730 /* Don't set OP operand twice. */
7731 if (vex_reg != op)
7ab9ffdd 7732 {
1b9f0c97
L
7733 /* If there is an extension opcode to put here, the
7734 register number must be put into the regmem field. */
7735 if (i.tm.extension_opcode != None)
7736 {
7737 i.rm.regmem = i.op[op].regs->reg_num;
7738 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7739 i.rex |= REX_B;
43234a1e
L
7740 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7741 i.vrex |= REX_B;
1b9f0c97
L
7742 }
7743 else
7744 {
7745 i.rm.reg = i.op[op].regs->reg_num;
7746 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7747 i.rex |= REX_R;
43234a1e
L
7748 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7749 i.vrex |= REX_R;
1b9f0c97 7750 }
7ab9ffdd 7751 }
252b5132 7752
29b0f896
AM
7753 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7754 must set it to 3 to indicate this is a register operand
7755 in the regmem field. */
7756 if (!i.mem_operands)
7757 i.rm.mode = 3;
7758 }
252b5132 7759
29b0f896 7760 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7761 if (i.tm.extension_opcode != None)
29b0f896
AM
7762 i.rm.reg = i.tm.extension_opcode;
7763 }
7764 return default_seg;
7765}
252b5132 7766
29b0f896 7767static void
e3bb37b5 7768output_branch (void)
29b0f896
AM
7769{
7770 char *p;
f8a5c266 7771 int size;
29b0f896
AM
7772 int code16;
7773 int prefix;
7774 relax_substateT subtype;
7775 symbolS *sym;
7776 offsetT off;
7777
f8a5c266 7778 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7779 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7780
7781 prefix = 0;
7782 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7783 {
29b0f896
AM
7784 prefix = 1;
7785 i.prefixes -= 1;
7786 code16 ^= CODE16;
252b5132 7787 }
29b0f896
AM
7788 /* Pentium4 branch hints. */
7789 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7790 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7791 {
29b0f896
AM
7792 prefix++;
7793 i.prefixes--;
7794 }
7795 if (i.prefix[REX_PREFIX] != 0)
7796 {
7797 prefix++;
7798 i.prefixes--;
2f66722d
AM
7799 }
7800
7e8b059b
L
7801 /* BND prefixed jump. */
7802 if (i.prefix[BND_PREFIX] != 0)
7803 {
7804 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7805 i.prefixes -= 1;
7806 }
7807
29b0f896
AM
7808 if (i.prefixes != 0 && !intel_syntax)
7809 as_warn (_("skipping prefixes on this instruction"));
7810
7811 /* It's always a symbol; End frag & setup for relax.
7812 Make sure there is enough room in this frag for the largest
7813 instruction we may generate in md_convert_frag. This is 2
7814 bytes for the opcode and room for the prefix and largest
7815 displacement. */
7816 frag_grow (prefix + 2 + 4);
7817 /* Prefix and 1 opcode byte go in fr_fix. */
7818 p = frag_more (prefix + 1);
7819 if (i.prefix[DATA_PREFIX] != 0)
7820 *p++ = DATA_PREFIX_OPCODE;
7821 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7822 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7823 *p++ = i.prefix[SEG_PREFIX];
7824 if (i.prefix[REX_PREFIX] != 0)
7825 *p++ = i.prefix[REX_PREFIX];
7826 *p = i.tm.base_opcode;
7827
7828 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7829 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7830 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7831 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7832 else
f8a5c266 7833 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7834 subtype |= code16;
3e73aa7c 7835
29b0f896
AM
7836 sym = i.op[0].disps->X_add_symbol;
7837 off = i.op[0].disps->X_add_number;
3e73aa7c 7838
29b0f896
AM
7839 if (i.op[0].disps->X_op != O_constant
7840 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7841 {
29b0f896
AM
7842 /* Handle complex expressions. */
7843 sym = make_expr_symbol (i.op[0].disps);
7844 off = 0;
7845 }
3e73aa7c 7846
29b0f896
AM
7847 /* 1 possible extra opcode + 4 byte displacement go in var part.
7848 Pass reloc in fr_var. */
d258b828 7849 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7850}
3e73aa7c 7851
bd7ab16b
L
7852#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7853/* Return TRUE iff PLT32 relocation should be used for branching to
7854 symbol S. */
7855
7856static bfd_boolean
7857need_plt32_p (symbolS *s)
7858{
7859 /* PLT32 relocation is ELF only. */
7860 if (!IS_ELF)
7861 return FALSE;
7862
a5def729
RO
7863#ifdef TE_SOLARIS
7864 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7865 krtld support it. */
7866 return FALSE;
7867#endif
7868
bd7ab16b
L
7869 /* Since there is no need to prepare for PLT branch on x86-64, we
7870 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7871 be used as a marker for 32-bit PC-relative branches. */
7872 if (!object_64bit)
7873 return FALSE;
7874
7875 /* Weak or undefined symbol need PLT32 relocation. */
7876 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7877 return TRUE;
7878
7879 /* Non-global symbol doesn't need PLT32 relocation. */
7880 if (! S_IS_EXTERNAL (s))
7881 return FALSE;
7882
7883 /* Other global symbols need PLT32 relocation. NB: Symbol with
7884 non-default visibilities are treated as normal global symbol
7885 so that PLT32 relocation can be used as a marker for 32-bit
7886 PC-relative branches. It is useful for linker relaxation. */
7887 return TRUE;
7888}
7889#endif
7890
29b0f896 7891static void
e3bb37b5 7892output_jump (void)
29b0f896
AM
7893{
7894 char *p;
7895 int size;
3e02c1cc 7896 fixS *fixP;
bd7ab16b 7897 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7898
0cfa3eb3 7899 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
7900 {
7901 /* This is a loop or jecxz type instruction. */
7902 size = 1;
7903 if (i.prefix[ADDR_PREFIX] != 0)
7904 {
7905 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7906 i.prefixes -= 1;
7907 }
7908 /* Pentium4 branch hints. */
7909 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7910 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7911 {
7912 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7913 i.prefixes--;
3e73aa7c
JH
7914 }
7915 }
29b0f896
AM
7916 else
7917 {
7918 int code16;
3e73aa7c 7919
29b0f896
AM
7920 code16 = 0;
7921 if (flag_code == CODE_16BIT)
7922 code16 = CODE16;
3e73aa7c 7923
29b0f896
AM
7924 if (i.prefix[DATA_PREFIX] != 0)
7925 {
7926 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7927 i.prefixes -= 1;
7928 code16 ^= CODE16;
7929 }
252b5132 7930
29b0f896
AM
7931 size = 4;
7932 if (code16)
7933 size = 2;
7934 }
9fcc94b6 7935
29b0f896
AM
7936 if (i.prefix[REX_PREFIX] != 0)
7937 {
7938 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7939 i.prefixes -= 1;
7940 }
252b5132 7941
7e8b059b
L
7942 /* BND prefixed jump. */
7943 if (i.prefix[BND_PREFIX] != 0)
7944 {
7945 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7946 i.prefixes -= 1;
7947 }
7948
29b0f896
AM
7949 if (i.prefixes != 0 && !intel_syntax)
7950 as_warn (_("skipping prefixes on this instruction"));
e0890092 7951
42164a71
L
7952 p = frag_more (i.tm.opcode_length + size);
7953 switch (i.tm.opcode_length)
7954 {
7955 case 2:
7956 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7957 /* Fall through. */
42164a71
L
7958 case 1:
7959 *p++ = i.tm.base_opcode;
7960 break;
7961 default:
7962 abort ();
7963 }
e0890092 7964
bd7ab16b
L
7965#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7966 if (size == 4
7967 && jump_reloc == NO_RELOC
7968 && need_plt32_p (i.op[0].disps->X_add_symbol))
7969 jump_reloc = BFD_RELOC_X86_64_PLT32;
7970#endif
7971
7972 jump_reloc = reloc (size, 1, 1, jump_reloc);
7973
3e02c1cc 7974 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7975 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7976
7977 /* All jumps handled here are signed, but don't use a signed limit
7978 check for 32 and 16 bit jumps as we want to allow wrap around at
7979 4G and 64k respectively. */
7980 if (size == 1)
7981 fixP->fx_signed = 1;
29b0f896 7982}
e0890092 7983
29b0f896 7984static void
e3bb37b5 7985output_interseg_jump (void)
29b0f896
AM
7986{
7987 char *p;
7988 int size;
7989 int prefix;
7990 int code16;
252b5132 7991
29b0f896
AM
7992 code16 = 0;
7993 if (flag_code == CODE_16BIT)
7994 code16 = CODE16;
a217f122 7995
29b0f896
AM
7996 prefix = 0;
7997 if (i.prefix[DATA_PREFIX] != 0)
7998 {
7999 prefix = 1;
8000 i.prefixes -= 1;
8001 code16 ^= CODE16;
8002 }
8003 if (i.prefix[REX_PREFIX] != 0)
8004 {
8005 prefix++;
8006 i.prefixes -= 1;
8007 }
252b5132 8008
29b0f896
AM
8009 size = 4;
8010 if (code16)
8011 size = 2;
252b5132 8012
29b0f896
AM
8013 if (i.prefixes != 0 && !intel_syntax)
8014 as_warn (_("skipping prefixes on this instruction"));
252b5132 8015
29b0f896
AM
8016 /* 1 opcode; 2 segment; offset */
8017 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8018
29b0f896
AM
8019 if (i.prefix[DATA_PREFIX] != 0)
8020 *p++ = DATA_PREFIX_OPCODE;
252b5132 8021
29b0f896
AM
8022 if (i.prefix[REX_PREFIX] != 0)
8023 *p++ = i.prefix[REX_PREFIX];
252b5132 8024
29b0f896
AM
8025 *p++ = i.tm.base_opcode;
8026 if (i.op[1].imms->X_op == O_constant)
8027 {
8028 offsetT n = i.op[1].imms->X_add_number;
252b5132 8029
29b0f896
AM
8030 if (size == 2
8031 && !fits_in_unsigned_word (n)
8032 && !fits_in_signed_word (n))
8033 {
8034 as_bad (_("16-bit jump out of range"));
8035 return;
8036 }
8037 md_number_to_chars (p, n, size);
8038 }
8039 else
8040 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8041 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8042 if (i.op[0].imms->X_op != O_constant)
8043 as_bad (_("can't handle non absolute segment in `%s'"),
8044 i.tm.name);
8045 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8046}
a217f122 8047
b4a3a7b4
L
8048#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8049void
8050x86_cleanup (void)
8051{
8052 char *p;
8053 asection *seg = now_seg;
8054 subsegT subseg = now_subseg;
8055 asection *sec;
8056 unsigned int alignment, align_size_1;
8057 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8058 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8059 unsigned int padding;
8060
8061 if (!IS_ELF || !x86_used_note)
8062 return;
8063
b4a3a7b4
L
8064 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8065
8066 /* The .note.gnu.property section layout:
8067
8068 Field Length Contents
8069 ---- ---- ----
8070 n_namsz 4 4
8071 n_descsz 4 The note descriptor size
8072 n_type 4 NT_GNU_PROPERTY_TYPE_0
8073 n_name 4 "GNU"
8074 n_desc n_descsz The program property array
8075 .... .... ....
8076 */
8077
8078 /* Create the .note.gnu.property section. */
8079 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8080 bfd_set_section_flags (sec,
b4a3a7b4
L
8081 (SEC_ALLOC
8082 | SEC_LOAD
8083 | SEC_DATA
8084 | SEC_HAS_CONTENTS
8085 | SEC_READONLY));
8086
8087 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8088 {
8089 align_size_1 = 7;
8090 alignment = 3;
8091 }
8092 else
8093 {
8094 align_size_1 = 3;
8095 alignment = 2;
8096 }
8097
fd361982 8098 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8099 elf_section_type (sec) = SHT_NOTE;
8100
8101 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8102 + 4-byte data */
8103 isa_1_descsz_raw = 4 + 4 + 4;
8104 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8105 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8106
8107 feature_2_descsz_raw = isa_1_descsz;
8108 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8109 + 4-byte data */
8110 feature_2_descsz_raw += 4 + 4 + 4;
8111 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8112 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8113 & ~align_size_1);
8114
8115 descsz = feature_2_descsz;
8116 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8117 p = frag_more (4 + 4 + 4 + 4 + descsz);
8118
8119 /* Write n_namsz. */
8120 md_number_to_chars (p, (valueT) 4, 4);
8121
8122 /* Write n_descsz. */
8123 md_number_to_chars (p + 4, (valueT) descsz, 4);
8124
8125 /* Write n_type. */
8126 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8127
8128 /* Write n_name. */
8129 memcpy (p + 4 * 3, "GNU", 4);
8130
8131 /* Write 4-byte type. */
8132 md_number_to_chars (p + 4 * 4,
8133 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8134
8135 /* Write 4-byte data size. */
8136 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8137
8138 /* Write 4-byte data. */
8139 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8140
8141 /* Zero out paddings. */
8142 padding = isa_1_descsz - isa_1_descsz_raw;
8143 if (padding)
8144 memset (p + 4 * 7, 0, padding);
8145
8146 /* Write 4-byte type. */
8147 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8148 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8149
8150 /* Write 4-byte data size. */
8151 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8152
8153 /* Write 4-byte data. */
8154 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8155 (valueT) x86_feature_2_used, 4);
8156
8157 /* Zero out paddings. */
8158 padding = feature_2_descsz - feature_2_descsz_raw;
8159 if (padding)
8160 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8161
8162 /* We probably can't restore the current segment, for there likely
8163 isn't one yet... */
8164 if (seg && subseg)
8165 subseg_set (seg, subseg);
8166}
8167#endif
8168
9c33702b
JB
8169static unsigned int
8170encoding_length (const fragS *start_frag, offsetT start_off,
8171 const char *frag_now_ptr)
8172{
8173 unsigned int len = 0;
8174
8175 if (start_frag != frag_now)
8176 {
8177 const fragS *fr = start_frag;
8178
8179 do {
8180 len += fr->fr_fix;
8181 fr = fr->fr_next;
8182 } while (fr && fr != frag_now);
8183 }
8184
8185 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8186}
8187
29b0f896 8188static void
e3bb37b5 8189output_insn (void)
29b0f896 8190{
2bbd9c25
JJ
8191 fragS *insn_start_frag;
8192 offsetT insn_start_off;
8193
b4a3a7b4
L
8194#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8195 if (IS_ELF && x86_used_note)
8196 {
8197 if (i.tm.cpu_flags.bitfield.cpucmov)
8198 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8199 if (i.tm.cpu_flags.bitfield.cpusse)
8200 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8201 if (i.tm.cpu_flags.bitfield.cpusse2)
8202 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8203 if (i.tm.cpu_flags.bitfield.cpusse3)
8204 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8205 if (i.tm.cpu_flags.bitfield.cpussse3)
8206 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8207 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8208 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8209 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8210 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8211 if (i.tm.cpu_flags.bitfield.cpuavx)
8212 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8213 if (i.tm.cpu_flags.bitfield.cpuavx2)
8214 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8215 if (i.tm.cpu_flags.bitfield.cpufma)
8216 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8217 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8218 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8219 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8220 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8221 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8222 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8223 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8224 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8225 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8226 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8227 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8228 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8229 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8230 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8231 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8232 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8233 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8234 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8235 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8236 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8237 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8238 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8239 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8240 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8241 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8243 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8244 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8245 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8247
8248 if (i.tm.cpu_flags.bitfield.cpu8087
8249 || i.tm.cpu_flags.bitfield.cpu287
8250 || i.tm.cpu_flags.bitfield.cpu387
8251 || i.tm.cpu_flags.bitfield.cpu687
8252 || i.tm.cpu_flags.bitfield.cpufisttp)
8253 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8254 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8255 Xfence instructions. */
8256 if (i.tm.base_opcode != 0xf18
8257 && i.tm.base_opcode != 0xf0d
c3949f43 8258 && i.tm.base_opcode != 0xfaef8
b4a3a7b4
L
8259 && (i.has_regmmx
8260 || i.tm.cpu_flags.bitfield.cpummx
8261 || i.tm.cpu_flags.bitfield.cpua3dnow
8262 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8263 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8264 if (i.has_regxmm)
8265 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8266 if (i.has_regymm)
8267 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8268 if (i.has_regzmm)
8269 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8270 if (i.tm.cpu_flags.bitfield.cpufxsr)
8271 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8272 if (i.tm.cpu_flags.bitfield.cpuxsave)
8273 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8274 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8275 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8276 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8277 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8278 }
8279#endif
8280
29b0f896
AM
8281 /* Tie dwarf2 debug info to the address at the start of the insn.
8282 We can't do this after the insn has been output as the current
8283 frag may have been closed off. eg. by frag_var. */
8284 dwarf2_emit_insn (0);
8285
2bbd9c25
JJ
8286 insn_start_frag = frag_now;
8287 insn_start_off = frag_now_fix ();
8288
29b0f896 8289 /* Output jumps. */
0cfa3eb3 8290 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8291 output_branch ();
0cfa3eb3
JB
8292 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8293 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8294 output_jump ();
0cfa3eb3 8295 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8296 output_interseg_jump ();
8297 else
8298 {
8299 /* Output normal instructions here. */
8300 char *p;
8301 unsigned char *q;
47465058 8302 unsigned int j;
331d2d0d 8303 unsigned int prefix;
4dffcebc 8304
e4e00185 8305 if (avoid_fence
c3949f43
JB
8306 && (i.tm.base_opcode == 0xfaee8
8307 || i.tm.base_opcode == 0xfaef0
8308 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8309 {
8310 /* Encode lfence, mfence, and sfence as
8311 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8312 offsetT val = 0x240483f0ULL;
8313 p = frag_more (5);
8314 md_number_to_chars (p, val, 5);
8315 return;
8316 }
8317
d022bddd
IT
8318 /* Some processors fail on LOCK prefix. This options makes
8319 assembler ignore LOCK prefix and serves as a workaround. */
8320 if (omit_lock_prefix)
8321 {
8322 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8323 return;
8324 i.prefix[LOCK_PREFIX] = 0;
8325 }
8326
43234a1e
L
8327 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8328 don't need the explicit prefix. */
8329 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8330 {
c0f3af97 8331 switch (i.tm.opcode_length)
bc4bd9ab 8332 {
c0f3af97
L
8333 case 3:
8334 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8335 {
c0f3af97 8336 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8337 if (!i.tm.cpu_flags.bitfield.cpupadlock
8338 || prefix != REPE_PREFIX_OPCODE
8339 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8340 add_prefix (prefix);
c0f3af97
L
8341 }
8342 break;
8343 case 2:
8344 if ((i.tm.base_opcode & 0xff0000) != 0)
8345 {
8346 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8347 add_prefix (prefix);
4dffcebc 8348 }
c0f3af97
L
8349 break;
8350 case 1:
8351 break;
390c91cf
L
8352 case 0:
8353 /* Check for pseudo prefixes. */
8354 as_bad_where (insn_start_frag->fr_file,
8355 insn_start_frag->fr_line,
8356 _("pseudo prefix without instruction"));
8357 return;
c0f3af97
L
8358 default:
8359 abort ();
bc4bd9ab 8360 }
c0f3af97 8361
6d19a37a 8362#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8363 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8364 R_X86_64_GOTTPOFF relocation so that linker can safely
8365 perform IE->LE optimization. */
8366 if (x86_elf_abi == X86_64_X32_ABI
8367 && i.operands == 2
8368 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8369 && i.prefix[REX_PREFIX] == 0)
8370 add_prefix (REX_OPCODE);
6d19a37a 8371#endif
cf61b747 8372
c0f3af97
L
8373 /* The prefix bytes. */
8374 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8375 if (*q)
8376 FRAG_APPEND_1_CHAR (*q);
0f10071e 8377 }
ae5c1c7b 8378 else
c0f3af97
L
8379 {
8380 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8381 if (*q)
8382 switch (j)
8383 {
8384 case REX_PREFIX:
8385 /* REX byte is encoded in VEX prefix. */
8386 break;
8387 case SEG_PREFIX:
8388 case ADDR_PREFIX:
8389 FRAG_APPEND_1_CHAR (*q);
8390 break;
8391 default:
8392 /* There should be no other prefixes for instructions
8393 with VEX prefix. */
8394 abort ();
8395 }
8396
43234a1e
L
8397 /* For EVEX instructions i.vrex should become 0 after
8398 build_evex_prefix. For VEX instructions upper 16 registers
8399 aren't available, so VREX should be 0. */
8400 if (i.vrex)
8401 abort ();
c0f3af97
L
8402 /* Now the VEX prefix. */
8403 p = frag_more (i.vex.length);
8404 for (j = 0; j < i.vex.length; j++)
8405 p[j] = i.vex.bytes[j];
8406 }
252b5132 8407
29b0f896 8408 /* Now the opcode; be careful about word order here! */
4dffcebc 8409 if (i.tm.opcode_length == 1)
29b0f896
AM
8410 {
8411 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8412 }
8413 else
8414 {
4dffcebc 8415 switch (i.tm.opcode_length)
331d2d0d 8416 {
43234a1e
L
8417 case 4:
8418 p = frag_more (4);
8419 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8420 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8421 break;
4dffcebc 8422 case 3:
331d2d0d
L
8423 p = frag_more (3);
8424 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8425 break;
8426 case 2:
8427 p = frag_more (2);
8428 break;
8429 default:
8430 abort ();
8431 break;
331d2d0d 8432 }
0f10071e 8433
29b0f896
AM
8434 /* Put out high byte first: can't use md_number_to_chars! */
8435 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8436 *p = i.tm.base_opcode & 0xff;
8437 }
3e73aa7c 8438
29b0f896 8439 /* Now the modrm byte and sib byte (if present). */
40fb9820 8440 if (i.tm.opcode_modifier.modrm)
29b0f896 8441 {
4a3523fa
L
8442 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8443 | i.rm.reg << 3
8444 | i.rm.mode << 6));
29b0f896
AM
8445 /* If i.rm.regmem == ESP (4)
8446 && i.rm.mode != (Register mode)
8447 && not 16 bit
8448 ==> need second modrm byte. */
8449 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8450 && i.rm.mode != 3
dc821c5f 8451 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8452 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8453 | i.sib.index << 3
8454 | i.sib.scale << 6));
29b0f896 8455 }
3e73aa7c 8456
29b0f896 8457 if (i.disp_operands)
2bbd9c25 8458 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8459
29b0f896 8460 if (i.imm_operands)
2bbd9c25 8461 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8462
8463 /*
8464 * frag_now_fix () returning plain abs_section_offset when we're in the
8465 * absolute section, and abs_section_offset not getting updated as data
8466 * gets added to the frag breaks the logic below.
8467 */
8468 if (now_seg != absolute_section)
8469 {
8470 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8471 if (j > 15)
8472 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8473 j);
8474 }
29b0f896 8475 }
252b5132 8476
29b0f896
AM
8477#ifdef DEBUG386
8478 if (flag_debug)
8479 {
7b81dfbb 8480 pi ("" /*line*/, &i);
29b0f896
AM
8481 }
8482#endif /* DEBUG386 */
8483}
252b5132 8484
e205caa7
L
8485/* Return the size of the displacement operand N. */
8486
8487static int
8488disp_size (unsigned int n)
8489{
8490 int size = 4;
43234a1e 8491
b5014f7a 8492 if (i.types[n].bitfield.disp64)
40fb9820
L
8493 size = 8;
8494 else if (i.types[n].bitfield.disp8)
8495 size = 1;
8496 else if (i.types[n].bitfield.disp16)
8497 size = 2;
e205caa7
L
8498 return size;
8499}
8500
8501/* Return the size of the immediate operand N. */
8502
8503static int
8504imm_size (unsigned int n)
8505{
8506 int size = 4;
40fb9820
L
8507 if (i.types[n].bitfield.imm64)
8508 size = 8;
8509 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8510 size = 1;
8511 else if (i.types[n].bitfield.imm16)
8512 size = 2;
e205caa7
L
8513 return size;
8514}
8515
29b0f896 8516static void
64e74474 8517output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8518{
8519 char *p;
8520 unsigned int n;
252b5132 8521
29b0f896
AM
8522 for (n = 0; n < i.operands; n++)
8523 {
b5014f7a 8524 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8525 {
8526 if (i.op[n].disps->X_op == O_constant)
8527 {
e205caa7 8528 int size = disp_size (n);
43234a1e 8529 offsetT val = i.op[n].disps->X_add_number;
252b5132 8530
629cfaf1
JB
8531 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8532 size);
29b0f896
AM
8533 p = frag_more (size);
8534 md_number_to_chars (p, val, size);
8535 }
8536 else
8537 {
f86103b7 8538 enum bfd_reloc_code_real reloc_type;
e205caa7 8539 int size = disp_size (n);
40fb9820 8540 int sign = i.types[n].bitfield.disp32s;
29b0f896 8541 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8542 fixS *fixP;
29b0f896 8543
e205caa7 8544 /* We can't have 8 bit displacement here. */
9c2799c2 8545 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8546
29b0f896
AM
8547 /* The PC relative address is computed relative
8548 to the instruction boundary, so in case immediate
8549 fields follows, we need to adjust the value. */
8550 if (pcrel && i.imm_operands)
8551 {
29b0f896 8552 unsigned int n1;
e205caa7 8553 int sz = 0;
252b5132 8554
29b0f896 8555 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8556 if (operand_type_check (i.types[n1], imm))
252b5132 8557 {
e205caa7
L
8558 /* Only one immediate is allowed for PC
8559 relative address. */
9c2799c2 8560 gas_assert (sz == 0);
e205caa7
L
8561 sz = imm_size (n1);
8562 i.op[n].disps->X_add_number -= sz;
252b5132 8563 }
29b0f896 8564 /* We should find the immediate. */
9c2799c2 8565 gas_assert (sz != 0);
29b0f896 8566 }
520dc8e8 8567
29b0f896 8568 p = frag_more (size);
d258b828 8569 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8570 if (GOT_symbol
2bbd9c25 8571 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8572 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8573 || reloc_type == BFD_RELOC_X86_64_32S
8574 || (reloc_type == BFD_RELOC_64
8575 && object_64bit))
d6ab8113
JB
8576 && (i.op[n].disps->X_op == O_symbol
8577 || (i.op[n].disps->X_op == O_add
8578 && ((symbol_get_value_expression
8579 (i.op[n].disps->X_op_symbol)->X_op)
8580 == O_subtract))))
8581 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 8582 {
4fa24527 8583 if (!object_64bit)
7b81dfbb
AJ
8584 {
8585 reloc_type = BFD_RELOC_386_GOTPC;
d583596c
JB
8586 i.op[n].imms->X_add_number +=
8587 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
8588 }
8589 else if (reloc_type == BFD_RELOC_64)
8590 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8591 else
7b81dfbb
AJ
8592 /* Don't do the adjustment for x86-64, as there
8593 the pcrel addressing is relative to the _next_
8594 insn, and that is taken care of in other code. */
d6ab8113 8595 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8596 }
02a86693
L
8597 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8598 size, i.op[n].disps, pcrel,
8599 reloc_type);
8600 /* Check for "call/jmp *mem", "mov mem, %reg",
8601 "test %reg, mem" and "binop mem, %reg" where binop
8602 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8603 instructions without data prefix. Always generate
8604 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8605 if (i.prefix[DATA_PREFIX] == 0
8606 && (generate_relax_relocations
8607 || (!object_64bit
8608 && i.rm.mode == 0
8609 && i.rm.regmem == 5))
0cb4071e
L
8610 && (i.rm.mode == 2
8611 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8612 && ((i.operands == 1
8613 && i.tm.base_opcode == 0xff
8614 && (i.rm.reg == 2 || i.rm.reg == 4))
8615 || (i.operands == 2
8616 && (i.tm.base_opcode == 0x8b
8617 || i.tm.base_opcode == 0x85
8618 || (i.tm.base_opcode & 0xc7) == 0x03))))
8619 {
8620 if (object_64bit)
8621 {
8622 fixP->fx_tcbit = i.rex != 0;
8623 if (i.base_reg
e968fc9b 8624 && (i.base_reg->reg_num == RegIP))
02a86693
L
8625 fixP->fx_tcbit2 = 1;
8626 }
8627 else
8628 fixP->fx_tcbit2 = 1;
8629 }
29b0f896
AM
8630 }
8631 }
8632 }
8633}
252b5132 8634
29b0f896 8635static void
64e74474 8636output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8637{
8638 char *p;
8639 unsigned int n;
252b5132 8640
29b0f896
AM
8641 for (n = 0; n < i.operands; n++)
8642 {
43234a1e
L
8643 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8644 if (i.rounding && (int) n == i.rounding->operand)
8645 continue;
8646
40fb9820 8647 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8648 {
8649 if (i.op[n].imms->X_op == O_constant)
8650 {
e205caa7 8651 int size = imm_size (n);
29b0f896 8652 offsetT val;
b4cac588 8653
29b0f896
AM
8654 val = offset_in_range (i.op[n].imms->X_add_number,
8655 size);
8656 p = frag_more (size);
8657 md_number_to_chars (p, val, size);
8658 }
8659 else
8660 {
8661 /* Not absolute_section.
8662 Need a 32-bit fixup (don't support 8bit
8663 non-absolute imms). Try to support other
8664 sizes ... */
f86103b7 8665 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8666 int size = imm_size (n);
8667 int sign;
29b0f896 8668
40fb9820 8669 if (i.types[n].bitfield.imm32s
a7d61044 8670 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8671 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8672 sign = 1;
e205caa7
L
8673 else
8674 sign = 0;
520dc8e8 8675
29b0f896 8676 p = frag_more (size);
d258b828 8677 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8678
2bbd9c25
JJ
8679 /* This is tough to explain. We end up with this one if we
8680 * have operands that look like
8681 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8682 * obtain the absolute address of the GOT, and it is strongly
8683 * preferable from a performance point of view to avoid using
8684 * a runtime relocation for this. The actual sequence of
8685 * instructions often look something like:
8686 *
8687 * call .L66
8688 * .L66:
8689 * popl %ebx
8690 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8691 *
8692 * The call and pop essentially return the absolute address
8693 * of the label .L66 and store it in %ebx. The linker itself
8694 * will ultimately change the first operand of the addl so
8695 * that %ebx points to the GOT, but to keep things simple, the
8696 * .o file must have this operand set so that it generates not
8697 * the absolute address of .L66, but the absolute address of
8698 * itself. This allows the linker itself simply treat a GOTPC
8699 * relocation as asking for a pcrel offset to the GOT to be
8700 * added in, and the addend of the relocation is stored in the
8701 * operand field for the instruction itself.
8702 *
8703 * Our job here is to fix the operand so that it would add
8704 * the correct offset so that %ebx would point to itself. The
8705 * thing that is tricky is that .-.L66 will point to the
8706 * beginning of the instruction, so we need to further modify
8707 * the operand so that it will point to itself. There are
8708 * other cases where you have something like:
8709 *
8710 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8711 *
8712 * and here no correction would be required. Internally in
8713 * the assembler we treat operands of this form as not being
8714 * pcrel since the '.' is explicitly mentioned, and I wonder
8715 * whether it would simplify matters to do it this way. Who
8716 * knows. In earlier versions of the PIC patches, the
8717 * pcrel_adjust field was used to store the correction, but
8718 * since the expression is not pcrel, I felt it would be
8719 * confusing to do it this way. */
8720
d6ab8113 8721 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8722 || reloc_type == BFD_RELOC_X86_64_32S
8723 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8724 && GOT_symbol
8725 && GOT_symbol == i.op[n].imms->X_add_symbol
8726 && (i.op[n].imms->X_op == O_symbol
8727 || (i.op[n].imms->X_op == O_add
8728 && ((symbol_get_value_expression
8729 (i.op[n].imms->X_op_symbol)->X_op)
8730 == O_subtract))))
8731 {
4fa24527 8732 if (!object_64bit)
d6ab8113 8733 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8734 else if (size == 4)
d6ab8113 8735 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8736 else if (size == 8)
8737 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d583596c
JB
8738 i.op[n].imms->X_add_number +=
8739 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 8740 }
29b0f896
AM
8741 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8742 i.op[n].imms, 0, reloc_type);
8743 }
8744 }
8745 }
252b5132
RH
8746}
8747\f
d182319b
JB
8748/* x86_cons_fix_new is called via the expression parsing code when a
8749 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8750static int cons_sign = -1;
8751
8752void
e3bb37b5 8753x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8754 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8755{
d258b828 8756 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8757
8758#ifdef TE_PE
8759 if (exp->X_op == O_secrel)
8760 {
8761 exp->X_op = O_symbol;
8762 r = BFD_RELOC_32_SECREL;
8763 }
8764#endif
8765
8766 fix_new_exp (frag, off, len, exp, 0, r);
8767}
8768
357d1bd8
L
8769/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8770 purpose of the `.dc.a' internal pseudo-op. */
8771
8772int
8773x86_address_bytes (void)
8774{
8775 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8776 return 4;
8777 return stdoutput->arch_info->bits_per_address / 8;
8778}
8779
d382c579
TG
8780#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8781 || defined (LEX_AT)
d258b828 8782# define lex_got(reloc, adjust, types) NULL
718ddfc0 8783#else
f3c180ae
AM
8784/* Parse operands of the form
8785 <symbol>@GOTOFF+<nnn>
8786 and similar .plt or .got references.
8787
8788 If we find one, set up the correct relocation in RELOC and copy the
8789 input string, minus the `@GOTOFF' into a malloc'd buffer for
8790 parsing by the calling routine. Return this buffer, and if ADJUST
8791 is non-null set it to the length of the string we removed from the
8792 input line. Otherwise return NULL. */
8793static char *
91d6fa6a 8794lex_got (enum bfd_reloc_code_real *rel,
64e74474 8795 int *adjust,
d258b828 8796 i386_operand_type *types)
f3c180ae 8797{
7b81dfbb
AJ
8798 /* Some of the relocations depend on the size of what field is to
8799 be relocated. But in our callers i386_immediate and i386_displacement
8800 we don't yet know the operand size (this will be set by insn
8801 matching). Hence we record the word32 relocation here,
8802 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8803 static const struct {
8804 const char *str;
cff8d58a 8805 int len;
4fa24527 8806 const enum bfd_reloc_code_real rel[2];
40fb9820 8807 const i386_operand_type types64;
f3c180ae 8808 } gotrel[] = {
8ce3d284 8809#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8810 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8811 BFD_RELOC_SIZE32 },
8812 OPERAND_TYPE_IMM32_64 },
8ce3d284 8813#endif
cff8d58a
L
8814 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8815 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8816 OPERAND_TYPE_IMM64 },
cff8d58a
L
8817 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8818 BFD_RELOC_X86_64_PLT32 },
40fb9820 8819 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8820 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8821 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8822 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8823 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8824 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8825 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8826 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8827 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8828 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8829 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8830 BFD_RELOC_X86_64_TLSGD },
40fb9820 8831 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8832 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8833 _dummy_first_bfd_reloc_code_real },
40fb9820 8834 OPERAND_TYPE_NONE },
cff8d58a
L
8835 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8836 BFD_RELOC_X86_64_TLSLD },
40fb9820 8837 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8838 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8839 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8840 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8841 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8842 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8843 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8844 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8845 _dummy_first_bfd_reloc_code_real },
40fb9820 8846 OPERAND_TYPE_NONE },
cff8d58a
L
8847 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8848 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8849 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8850 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8851 _dummy_first_bfd_reloc_code_real },
40fb9820 8852 OPERAND_TYPE_NONE },
cff8d58a
L
8853 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8854 _dummy_first_bfd_reloc_code_real },
40fb9820 8855 OPERAND_TYPE_NONE },
cff8d58a
L
8856 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8857 BFD_RELOC_X86_64_GOT32 },
40fb9820 8858 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8859 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8860 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8861 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8862 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8863 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8864 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8865 };
8866 char *cp;
8867 unsigned int j;
8868
d382c579 8869#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8870 if (!IS_ELF)
8871 return NULL;
d382c579 8872#endif
718ddfc0 8873
f3c180ae 8874 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8875 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8876 return NULL;
8877
47465058 8878 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8879 {
cff8d58a 8880 int len = gotrel[j].len;
28f81592 8881 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8882 {
4fa24527 8883 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8884 {
28f81592
AM
8885 int first, second;
8886 char *tmpbuf, *past_reloc;
f3c180ae 8887
91d6fa6a 8888 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8889
3956db08
JB
8890 if (types)
8891 {
8892 if (flag_code != CODE_64BIT)
40fb9820
L
8893 {
8894 types->bitfield.imm32 = 1;
8895 types->bitfield.disp32 = 1;
8896 }
3956db08
JB
8897 else
8898 *types = gotrel[j].types64;
8899 }
8900
8fd4256d 8901 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8902 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8903
28f81592 8904 /* The length of the first part of our input line. */
f3c180ae 8905 first = cp - input_line_pointer;
28f81592
AM
8906
8907 /* The second part goes from after the reloc token until
67c11a9b 8908 (and including) an end_of_line char or comma. */
28f81592 8909 past_reloc = cp + 1 + len;
67c11a9b
AM
8910 cp = past_reloc;
8911 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8912 ++cp;
8913 second = cp + 1 - past_reloc;
28f81592
AM
8914
8915 /* Allocate and copy string. The trailing NUL shouldn't
8916 be necessary, but be safe. */
add39d23 8917 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8918 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8919 if (second != 0 && *past_reloc != ' ')
8920 /* Replace the relocation token with ' ', so that
8921 errors like foo@GOTOFF1 will be detected. */
8922 tmpbuf[first++] = ' ';
af89796a
L
8923 else
8924 /* Increment length by 1 if the relocation token is
8925 removed. */
8926 len++;
8927 if (adjust)
8928 *adjust = len;
0787a12d
AM
8929 memcpy (tmpbuf + first, past_reloc, second);
8930 tmpbuf[first + second] = '\0';
f3c180ae
AM
8931 return tmpbuf;
8932 }
8933
4fa24527
JB
8934 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8935 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8936 return NULL;
8937 }
8938 }
8939
8940 /* Might be a symbol version string. Don't as_bad here. */
8941 return NULL;
8942}
4e4f7c87 8943#endif
f3c180ae 8944
a988325c
NC
8945#ifdef TE_PE
8946#ifdef lex_got
8947#undef lex_got
8948#endif
8949/* Parse operands of the form
8950 <symbol>@SECREL32+<nnn>
8951
8952 If we find one, set up the correct relocation in RELOC and copy the
8953 input string, minus the `@SECREL32' into a malloc'd buffer for
8954 parsing by the calling routine. Return this buffer, and if ADJUST
8955 is non-null set it to the length of the string we removed from the
34bca508
L
8956 input line. Otherwise return NULL.
8957
a988325c
NC
8958 This function is copied from the ELF version above adjusted for PE targets. */
8959
8960static char *
8961lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8962 int *adjust ATTRIBUTE_UNUSED,
d258b828 8963 i386_operand_type *types)
a988325c
NC
8964{
8965 static const struct
8966 {
8967 const char *str;
8968 int len;
8969 const enum bfd_reloc_code_real rel[2];
8970 const i386_operand_type types64;
8971 }
8972 gotrel[] =
8973 {
8974 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8975 BFD_RELOC_32_SECREL },
8976 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8977 };
8978
8979 char *cp;
8980 unsigned j;
8981
8982 for (cp = input_line_pointer; *cp != '@'; cp++)
8983 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8984 return NULL;
8985
8986 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8987 {
8988 int len = gotrel[j].len;
8989
8990 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8991 {
8992 if (gotrel[j].rel[object_64bit] != 0)
8993 {
8994 int first, second;
8995 char *tmpbuf, *past_reloc;
8996
8997 *rel = gotrel[j].rel[object_64bit];
8998 if (adjust)
8999 *adjust = len;
9000
9001 if (types)
9002 {
9003 if (flag_code != CODE_64BIT)
9004 {
9005 types->bitfield.imm32 = 1;
9006 types->bitfield.disp32 = 1;
9007 }
9008 else
9009 *types = gotrel[j].types64;
9010 }
9011
9012 /* The length of the first part of our input line. */
9013 first = cp - input_line_pointer;
9014
9015 /* The second part goes from after the reloc token until
9016 (and including) an end_of_line char or comma. */
9017 past_reloc = cp + 1 + len;
9018 cp = past_reloc;
9019 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9020 ++cp;
9021 second = cp + 1 - past_reloc;
9022
9023 /* Allocate and copy string. The trailing NUL shouldn't
9024 be necessary, but be safe. */
add39d23 9025 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9026 memcpy (tmpbuf, input_line_pointer, first);
9027 if (second != 0 && *past_reloc != ' ')
9028 /* Replace the relocation token with ' ', so that
9029 errors like foo@SECLREL321 will be detected. */
9030 tmpbuf[first++] = ' ';
9031 memcpy (tmpbuf + first, past_reloc, second);
9032 tmpbuf[first + second] = '\0';
9033 return tmpbuf;
9034 }
9035
9036 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9037 gotrel[j].str, 1 << (5 + object_64bit));
9038 return NULL;
9039 }
9040 }
9041
9042 /* Might be a symbol version string. Don't as_bad here. */
9043 return NULL;
9044}
9045
9046#endif /* TE_PE */
9047
62ebcb5c 9048bfd_reloc_code_real_type
e3bb37b5 9049x86_cons (expressionS *exp, int size)
f3c180ae 9050{
62ebcb5c
AM
9051 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9052
ee86248c
JB
9053 intel_syntax = -intel_syntax;
9054
3c7b9c2c 9055 exp->X_md = 0;
4fa24527 9056 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9057 {
9058 /* Handle @GOTOFF and the like in an expression. */
9059 char *save;
9060 char *gotfree_input_line;
4a57f2cf 9061 int adjust = 0;
f3c180ae
AM
9062
9063 save = input_line_pointer;
d258b828 9064 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9065 if (gotfree_input_line)
9066 input_line_pointer = gotfree_input_line;
9067
9068 expression (exp);
9069
9070 if (gotfree_input_line)
9071 {
9072 /* expression () has merrily parsed up to the end of line,
9073 or a comma - in the wrong buffer. Transfer how far
9074 input_line_pointer has moved to the right buffer. */
9075 input_line_pointer = (save
9076 + (input_line_pointer - gotfree_input_line)
9077 + adjust);
9078 free (gotfree_input_line);
3992d3b7
AM
9079 if (exp->X_op == O_constant
9080 || exp->X_op == O_absent
9081 || exp->X_op == O_illegal
0398aac5 9082 || exp->X_op == O_register
3992d3b7
AM
9083 || exp->X_op == O_big)
9084 {
9085 char c = *input_line_pointer;
9086 *input_line_pointer = 0;
9087 as_bad (_("missing or invalid expression `%s'"), save);
9088 *input_line_pointer = c;
9089 }
b9519cfe
L
9090 else if ((got_reloc == BFD_RELOC_386_PLT32
9091 || got_reloc == BFD_RELOC_X86_64_PLT32)
9092 && exp->X_op != O_symbol)
9093 {
9094 char c = *input_line_pointer;
9095 *input_line_pointer = 0;
9096 as_bad (_("invalid PLT expression `%s'"), save);
9097 *input_line_pointer = c;
9098 }
f3c180ae
AM
9099 }
9100 }
9101 else
9102 expression (exp);
ee86248c
JB
9103
9104 intel_syntax = -intel_syntax;
9105
9106 if (intel_syntax)
9107 i386_intel_simplify (exp);
62ebcb5c
AM
9108
9109 return got_reloc;
f3c180ae 9110}
f3c180ae 9111
9f32dd5b
L
9112static void
9113signed_cons (int size)
6482c264 9114{
d182319b
JB
9115 if (flag_code == CODE_64BIT)
9116 cons_sign = 1;
9117 cons (size);
9118 cons_sign = -1;
6482c264
NC
9119}
9120
d182319b 9121#ifdef TE_PE
6482c264 9122static void
7016a5d5 9123pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9124{
9125 expressionS exp;
9126
9127 do
9128 {
9129 expression (&exp);
9130 if (exp.X_op == O_symbol)
9131 exp.X_op = O_secrel;
9132
9133 emit_expr (&exp, 4);
9134 }
9135 while (*input_line_pointer++ == ',');
9136
9137 input_line_pointer--;
9138 demand_empty_rest_of_line ();
9139}
6482c264
NC
9140#endif
9141
43234a1e
L
9142/* Handle Vector operations. */
9143
9144static char *
9145check_VecOperations (char *op_string, char *op_end)
9146{
9147 const reg_entry *mask;
9148 const char *saved;
9149 char *end_op;
9150
9151 while (*op_string
9152 && (op_end == NULL || op_string < op_end))
9153 {
9154 saved = op_string;
9155 if (*op_string == '{')
9156 {
9157 op_string++;
9158
9159 /* Check broadcasts. */
9160 if (strncmp (op_string, "1to", 3) == 0)
9161 {
9162 int bcst_type;
9163
9164 if (i.broadcast)
9165 goto duplicated_vec_op;
9166
9167 op_string += 3;
9168 if (*op_string == '8')
8e6e0792 9169 bcst_type = 8;
b28d1bda 9170 else if (*op_string == '4')
8e6e0792 9171 bcst_type = 4;
b28d1bda 9172 else if (*op_string == '2')
8e6e0792 9173 bcst_type = 2;
43234a1e
L
9174 else if (*op_string == '1'
9175 && *(op_string+1) == '6')
9176 {
8e6e0792 9177 bcst_type = 16;
43234a1e
L
9178 op_string++;
9179 }
9180 else
9181 {
9182 as_bad (_("Unsupported broadcast: `%s'"), saved);
9183 return NULL;
9184 }
9185 op_string++;
9186
9187 broadcast_op.type = bcst_type;
9188 broadcast_op.operand = this_operand;
1f75763a 9189 broadcast_op.bytes = 0;
43234a1e
L
9190 i.broadcast = &broadcast_op;
9191 }
9192 /* Check masking operation. */
9193 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9194 {
9195 /* k0 can't be used for write mask. */
f74a6307 9196 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9197 {
6d2cd6b2
JB
9198 as_bad (_("`%s%s' can't be used for write mask"),
9199 register_prefix, mask->reg_name);
43234a1e
L
9200 return NULL;
9201 }
9202
9203 if (!i.mask)
9204 {
9205 mask_op.mask = mask;
9206 mask_op.zeroing = 0;
9207 mask_op.operand = this_operand;
9208 i.mask = &mask_op;
9209 }
9210 else
9211 {
9212 if (i.mask->mask)
9213 goto duplicated_vec_op;
9214
9215 i.mask->mask = mask;
9216
9217 /* Only "{z}" is allowed here. No need to check
9218 zeroing mask explicitly. */
9219 if (i.mask->operand != this_operand)
9220 {
9221 as_bad (_("invalid write mask `%s'"), saved);
9222 return NULL;
9223 }
9224 }
9225
9226 op_string = end_op;
9227 }
9228 /* Check zeroing-flag for masking operation. */
9229 else if (*op_string == 'z')
9230 {
9231 if (!i.mask)
9232 {
9233 mask_op.mask = NULL;
9234 mask_op.zeroing = 1;
9235 mask_op.operand = this_operand;
9236 i.mask = &mask_op;
9237 }
9238 else
9239 {
9240 if (i.mask->zeroing)
9241 {
9242 duplicated_vec_op:
9243 as_bad (_("duplicated `%s'"), saved);
9244 return NULL;
9245 }
9246
9247 i.mask->zeroing = 1;
9248
9249 /* Only "{%k}" is allowed here. No need to check mask
9250 register explicitly. */
9251 if (i.mask->operand != this_operand)
9252 {
9253 as_bad (_("invalid zeroing-masking `%s'"),
9254 saved);
9255 return NULL;
9256 }
9257 }
9258
9259 op_string++;
9260 }
9261 else
9262 goto unknown_vec_op;
9263
9264 if (*op_string != '}')
9265 {
9266 as_bad (_("missing `}' in `%s'"), saved);
9267 return NULL;
9268 }
9269 op_string++;
0ba3a731
L
9270
9271 /* Strip whitespace since the addition of pseudo prefixes
9272 changed how the scrubber treats '{'. */
9273 if (is_space_char (*op_string))
9274 ++op_string;
9275
43234a1e
L
9276 continue;
9277 }
9278 unknown_vec_op:
9279 /* We don't know this one. */
9280 as_bad (_("unknown vector operation: `%s'"), saved);
9281 return NULL;
9282 }
9283
6d2cd6b2
JB
9284 if (i.mask && i.mask->zeroing && !i.mask->mask)
9285 {
9286 as_bad (_("zeroing-masking only allowed with write mask"));
9287 return NULL;
9288 }
9289
43234a1e
L
9290 return op_string;
9291}
9292
252b5132 9293static int
70e41ade 9294i386_immediate (char *imm_start)
252b5132
RH
9295{
9296 char *save_input_line_pointer;
f3c180ae 9297 char *gotfree_input_line;
252b5132 9298 segT exp_seg = 0;
47926f60 9299 expressionS *exp;
40fb9820
L
9300 i386_operand_type types;
9301
0dfbf9d7 9302 operand_type_set (&types, ~0);
252b5132
RH
9303
9304 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9305 {
31b2323c
L
9306 as_bad (_("at most %d immediate operands are allowed"),
9307 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9308 return 0;
9309 }
9310
9311 exp = &im_expressions[i.imm_operands++];
520dc8e8 9312 i.op[this_operand].imms = exp;
252b5132
RH
9313
9314 if (is_space_char (*imm_start))
9315 ++imm_start;
9316
9317 save_input_line_pointer = input_line_pointer;
9318 input_line_pointer = imm_start;
9319
d258b828 9320 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9321 if (gotfree_input_line)
9322 input_line_pointer = gotfree_input_line;
252b5132
RH
9323
9324 exp_seg = expression (exp);
9325
83183c0c 9326 SKIP_WHITESPACE ();
43234a1e
L
9327
9328 /* Handle vector operations. */
9329 if (*input_line_pointer == '{')
9330 {
9331 input_line_pointer = check_VecOperations (input_line_pointer,
9332 NULL);
9333 if (input_line_pointer == NULL)
9334 return 0;
9335 }
9336
252b5132 9337 if (*input_line_pointer)
f3c180ae 9338 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9339
9340 input_line_pointer = save_input_line_pointer;
f3c180ae 9341 if (gotfree_input_line)
ee86248c
JB
9342 {
9343 free (gotfree_input_line);
9344
9345 if (exp->X_op == O_constant || exp->X_op == O_register)
9346 exp->X_op = O_illegal;
9347 }
9348
9349 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9350}
252b5132 9351
ee86248c
JB
9352static int
9353i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9354 i386_operand_type types, const char *imm_start)
9355{
9356 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9357 {
313c53d1
L
9358 if (imm_start)
9359 as_bad (_("missing or invalid immediate expression `%s'"),
9360 imm_start);
3992d3b7 9361 return 0;
252b5132 9362 }
3e73aa7c 9363 else if (exp->X_op == O_constant)
252b5132 9364 {
47926f60 9365 /* Size it properly later. */
40fb9820 9366 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9367 /* If not 64bit, sign extend val. */
9368 if (flag_code != CODE_64BIT
4eed87de
AM
9369 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9370 exp->X_add_number
9371 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9372 }
4c63da97 9373#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9374 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9375 && exp_seg != absolute_section
47926f60 9376 && exp_seg != text_section
24eab124
AM
9377 && exp_seg != data_section
9378 && exp_seg != bss_section
9379 && exp_seg != undefined_section
f86103b7 9380 && !bfd_is_com_section (exp_seg))
252b5132 9381 {
d0b47220 9382 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9383 return 0;
9384 }
9385#endif
a841bdf5 9386 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9387 {
313c53d1
L
9388 if (imm_start)
9389 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9390 return 0;
9391 }
252b5132
RH
9392 else
9393 {
9394 /* This is an address. The size of the address will be
24eab124 9395 determined later, depending on destination register,
3e73aa7c 9396 suffix, or the default for the section. */
40fb9820
L
9397 i.types[this_operand].bitfield.imm8 = 1;
9398 i.types[this_operand].bitfield.imm16 = 1;
9399 i.types[this_operand].bitfield.imm32 = 1;
9400 i.types[this_operand].bitfield.imm32s = 1;
9401 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9402 i.types[this_operand] = operand_type_and (i.types[this_operand],
9403 types);
252b5132
RH
9404 }
9405
9406 return 1;
9407}
9408
551c1ca1 9409static char *
e3bb37b5 9410i386_scale (char *scale)
252b5132 9411{
551c1ca1
AM
9412 offsetT val;
9413 char *save = input_line_pointer;
252b5132 9414
551c1ca1
AM
9415 input_line_pointer = scale;
9416 val = get_absolute_expression ();
9417
9418 switch (val)
252b5132 9419 {
551c1ca1 9420 case 1:
252b5132
RH
9421 i.log2_scale_factor = 0;
9422 break;
551c1ca1 9423 case 2:
252b5132
RH
9424 i.log2_scale_factor = 1;
9425 break;
551c1ca1 9426 case 4:
252b5132
RH
9427 i.log2_scale_factor = 2;
9428 break;
551c1ca1 9429 case 8:
252b5132
RH
9430 i.log2_scale_factor = 3;
9431 break;
9432 default:
a724f0f4
JB
9433 {
9434 char sep = *input_line_pointer;
9435
9436 *input_line_pointer = '\0';
9437 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9438 scale);
9439 *input_line_pointer = sep;
9440 input_line_pointer = save;
9441 return NULL;
9442 }
252b5132 9443 }
29b0f896 9444 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9445 {
9446 as_warn (_("scale factor of %d without an index register"),
24eab124 9447 1 << i.log2_scale_factor);
252b5132 9448 i.log2_scale_factor = 0;
252b5132 9449 }
551c1ca1
AM
9450 scale = input_line_pointer;
9451 input_line_pointer = save;
9452 return scale;
252b5132
RH
9453}
9454
252b5132 9455static int
e3bb37b5 9456i386_displacement (char *disp_start, char *disp_end)
252b5132 9457{
29b0f896 9458 expressionS *exp;
252b5132
RH
9459 segT exp_seg = 0;
9460 char *save_input_line_pointer;
f3c180ae 9461 char *gotfree_input_line;
40fb9820
L
9462 int override;
9463 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9464 int ret;
252b5132 9465
31b2323c
L
9466 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9467 {
9468 as_bad (_("at most %d displacement operands are allowed"),
9469 MAX_MEMORY_OPERANDS);
9470 return 0;
9471 }
9472
0dfbf9d7 9473 operand_type_set (&bigdisp, 0);
6f2f06be 9474 if (i.jumpabsolute
0cfa3eb3
JB
9475 || (current_templates->start->opcode_modifier.jump != JUMP
9476 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 9477 {
40fb9820 9478 bigdisp.bitfield.disp32 = 1;
e05278af 9479 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9480 if (flag_code == CODE_64BIT)
9481 {
9482 if (!override)
9483 {
9484 bigdisp.bitfield.disp32s = 1;
9485 bigdisp.bitfield.disp64 = 1;
9486 }
9487 }
9488 else if ((flag_code == CODE_16BIT) ^ override)
9489 {
9490 bigdisp.bitfield.disp32 = 0;
9491 bigdisp.bitfield.disp16 = 1;
9492 }
e05278af
JB
9493 }
9494 else
9495 {
9496 /* For PC-relative branches, the width of the displacement
9497 is dependent upon data size, not address size. */
e05278af 9498 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9499 if (flag_code == CODE_64BIT)
9500 {
9501 if (override || i.suffix == WORD_MNEM_SUFFIX)
9502 bigdisp.bitfield.disp16 = 1;
9503 else
9504 {
9505 bigdisp.bitfield.disp32 = 1;
9506 bigdisp.bitfield.disp32s = 1;
9507 }
9508 }
9509 else
e05278af
JB
9510 {
9511 if (!override)
9512 override = (i.suffix == (flag_code != CODE_16BIT
9513 ? WORD_MNEM_SUFFIX
9514 : LONG_MNEM_SUFFIX));
40fb9820
L
9515 bigdisp.bitfield.disp32 = 1;
9516 if ((flag_code == CODE_16BIT) ^ override)
9517 {
9518 bigdisp.bitfield.disp32 = 0;
9519 bigdisp.bitfield.disp16 = 1;
9520 }
e05278af 9521 }
e05278af 9522 }
c6fb90c8
L
9523 i.types[this_operand] = operand_type_or (i.types[this_operand],
9524 bigdisp);
252b5132
RH
9525
9526 exp = &disp_expressions[i.disp_operands];
520dc8e8 9527 i.op[this_operand].disps = exp;
252b5132
RH
9528 i.disp_operands++;
9529 save_input_line_pointer = input_line_pointer;
9530 input_line_pointer = disp_start;
9531 END_STRING_AND_SAVE (disp_end);
9532
9533#ifndef GCC_ASM_O_HACK
9534#define GCC_ASM_O_HACK 0
9535#endif
9536#if GCC_ASM_O_HACK
9537 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9538 if (i.types[this_operand].bitfield.baseIndex
24eab124 9539 && displacement_string_end[-1] == '+')
252b5132
RH
9540 {
9541 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9542 constraint within gcc asm statements.
9543 For instance:
9544
9545 #define _set_tssldt_desc(n,addr,limit,type) \
9546 __asm__ __volatile__ ( \
9547 "movw %w2,%0\n\t" \
9548 "movw %w1,2+%0\n\t" \
9549 "rorl $16,%1\n\t" \
9550 "movb %b1,4+%0\n\t" \
9551 "movb %4,5+%0\n\t" \
9552 "movb $0,6+%0\n\t" \
9553 "movb %h1,7+%0\n\t" \
9554 "rorl $16,%1" \
9555 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9556
9557 This works great except that the output assembler ends
9558 up looking a bit weird if it turns out that there is
9559 no offset. You end up producing code that looks like:
9560
9561 #APP
9562 movw $235,(%eax)
9563 movw %dx,2+(%eax)
9564 rorl $16,%edx
9565 movb %dl,4+(%eax)
9566 movb $137,5+(%eax)
9567 movb $0,6+(%eax)
9568 movb %dh,7+(%eax)
9569 rorl $16,%edx
9570 #NO_APP
9571
47926f60 9572 So here we provide the missing zero. */
24eab124
AM
9573
9574 *displacement_string_end = '0';
252b5132
RH
9575 }
9576#endif
d258b828 9577 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9578 if (gotfree_input_line)
9579 input_line_pointer = gotfree_input_line;
252b5132 9580
24eab124 9581 exp_seg = expression (exp);
252b5132 9582
636c26b0
AM
9583 SKIP_WHITESPACE ();
9584 if (*input_line_pointer)
9585 as_bad (_("junk `%s' after expression"), input_line_pointer);
9586#if GCC_ASM_O_HACK
9587 RESTORE_END_STRING (disp_end + 1);
9588#endif
636c26b0 9589 input_line_pointer = save_input_line_pointer;
636c26b0 9590 if (gotfree_input_line)
ee86248c
JB
9591 {
9592 free (gotfree_input_line);
9593
9594 if (exp->X_op == O_constant || exp->X_op == O_register)
9595 exp->X_op = O_illegal;
9596 }
9597
9598 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9599
9600 RESTORE_END_STRING (disp_end);
9601
9602 return ret;
9603}
9604
9605static int
9606i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9607 i386_operand_type types, const char *disp_start)
9608{
9609 i386_operand_type bigdisp;
9610 int ret = 1;
636c26b0 9611
24eab124
AM
9612 /* We do this to make sure that the section symbol is in
9613 the symbol table. We will ultimately change the relocation
47926f60 9614 to be relative to the beginning of the section. */
1ae12ab7 9615 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9616 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9617 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9618 {
636c26b0 9619 if (exp->X_op != O_symbol)
3992d3b7 9620 goto inv_disp;
636c26b0 9621
e5cb08ac 9622 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9623 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9624 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9625 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9626 exp->X_op = O_subtract;
9627 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9628 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9629 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9630 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9631 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9632 else
29b0f896 9633 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9634 }
252b5132 9635
3992d3b7
AM
9636 else if (exp->X_op == O_absent
9637 || exp->X_op == O_illegal
ee86248c 9638 || exp->X_op == O_big)
2daf4fd8 9639 {
3992d3b7
AM
9640 inv_disp:
9641 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9642 disp_start);
3992d3b7 9643 ret = 0;
2daf4fd8
AM
9644 }
9645
0e1147d9
L
9646 else if (flag_code == CODE_64BIT
9647 && !i.prefix[ADDR_PREFIX]
9648 && exp->X_op == O_constant)
9649 {
9650 /* Since displacement is signed extended to 64bit, don't allow
9651 disp32 and turn off disp32s if they are out of range. */
9652 i.types[this_operand].bitfield.disp32 = 0;
9653 if (!fits_in_signed_long (exp->X_add_number))
9654 {
9655 i.types[this_operand].bitfield.disp32s = 0;
9656 if (i.types[this_operand].bitfield.baseindex)
9657 {
9658 as_bad (_("0x%lx out range of signed 32bit displacement"),
9659 (long) exp->X_add_number);
9660 ret = 0;
9661 }
9662 }
9663 }
9664
4c63da97 9665#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9666 else if (exp->X_op != O_constant
9667 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9668 && exp_seg != absolute_section
9669 && exp_seg != text_section
9670 && exp_seg != data_section
9671 && exp_seg != bss_section
9672 && exp_seg != undefined_section
9673 && !bfd_is_com_section (exp_seg))
24eab124 9674 {
d0b47220 9675 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9676 ret = 0;
24eab124 9677 }
252b5132 9678#endif
3956db08 9679
40fb9820
L
9680 /* Check if this is a displacement only operand. */
9681 bigdisp = i.types[this_operand];
9682 bigdisp.bitfield.disp8 = 0;
9683 bigdisp.bitfield.disp16 = 0;
9684 bigdisp.bitfield.disp32 = 0;
9685 bigdisp.bitfield.disp32s = 0;
9686 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9687 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9688 i.types[this_operand] = operand_type_and (i.types[this_operand],
9689 types);
3956db08 9690
3992d3b7 9691 return ret;
252b5132
RH
9692}
9693
2abc2bec
JB
9694/* Return the active addressing mode, taking address override and
9695 registers forming the address into consideration. Update the
9696 address override prefix if necessary. */
47926f60 9697
2abc2bec
JB
9698static enum flag_code
9699i386_addressing_mode (void)
252b5132 9700{
be05d201
L
9701 enum flag_code addr_mode;
9702
9703 if (i.prefix[ADDR_PREFIX])
9704 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9705 else
9706 {
9707 addr_mode = flag_code;
9708
24eab124 9709#if INFER_ADDR_PREFIX
be05d201
L
9710 if (i.mem_operands == 0)
9711 {
9712 /* Infer address prefix from the first memory operand. */
9713 const reg_entry *addr_reg = i.base_reg;
9714
9715 if (addr_reg == NULL)
9716 addr_reg = i.index_reg;
eecb386c 9717
be05d201
L
9718 if (addr_reg)
9719 {
e968fc9b 9720 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9721 addr_mode = CODE_32BIT;
9722 else if (flag_code != CODE_64BIT
dc821c5f 9723 && addr_reg->reg_type.bitfield.word)
be05d201
L
9724 addr_mode = CODE_16BIT;
9725
9726 if (addr_mode != flag_code)
9727 {
9728 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9729 i.prefixes += 1;
9730 /* Change the size of any displacement too. At most one
9731 of Disp16 or Disp32 is set.
9732 FIXME. There doesn't seem to be any real need for
9733 separate Disp16 and Disp32 flags. The same goes for
9734 Imm16 and Imm32. Removing them would probably clean
9735 up the code quite a lot. */
9736 if (flag_code != CODE_64BIT
9737 && (i.types[this_operand].bitfield.disp16
9738 || i.types[this_operand].bitfield.disp32))
9739 i.types[this_operand]
9740 = operand_type_xor (i.types[this_operand], disp16_32);
9741 }
9742 }
9743 }
24eab124 9744#endif
be05d201
L
9745 }
9746
2abc2bec
JB
9747 return addr_mode;
9748}
9749
9750/* Make sure the memory operand we've been dealt is valid.
9751 Return 1 on success, 0 on a failure. */
9752
9753static int
9754i386_index_check (const char *operand_string)
9755{
9756 const char *kind = "base/index";
9757 enum flag_code addr_mode = i386_addressing_mode ();
9758
fc0763e6 9759 if (current_templates->start->opcode_modifier.isstring
c3949f43 9760 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
9761 && (current_templates->end[-1].opcode_modifier.isstring
9762 || i.mem_operands))
9763 {
9764 /* Memory operands of string insns are special in that they only allow
9765 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9766 const reg_entry *expected_reg;
9767 static const char *di_si[][2] =
9768 {
9769 { "esi", "edi" },
9770 { "si", "di" },
9771 { "rsi", "rdi" }
9772 };
9773 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9774
9775 kind = "string address";
9776
8325cc63 9777 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 9778 {
51c8edf6
JB
9779 int es_op = current_templates->end[-1].opcode_modifier.isstring
9780 - IS_STRING_ES_OP0;
9781 int op = 0;
fc0763e6 9782
51c8edf6 9783 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
9784 || ((!i.mem_operands != !intel_syntax)
9785 && current_templates->end[-1].operand_types[1]
9786 .bitfield.baseindex))
51c8edf6
JB
9787 op = 1;
9788 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
9789 }
9790 else
be05d201 9791 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9792
be05d201
L
9793 if (i.base_reg != expected_reg
9794 || i.index_reg
fc0763e6 9795 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9796 {
be05d201
L
9797 /* The second memory operand must have the same size as
9798 the first one. */
9799 if (i.mem_operands
9800 && i.base_reg
9801 && !((addr_mode == CODE_64BIT
dc821c5f 9802 && i.base_reg->reg_type.bitfield.qword)
be05d201 9803 || (addr_mode == CODE_32BIT
dc821c5f
JB
9804 ? i.base_reg->reg_type.bitfield.dword
9805 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9806 goto bad_address;
9807
fc0763e6
JB
9808 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9809 operand_string,
9810 intel_syntax ? '[' : '(',
9811 register_prefix,
be05d201 9812 expected_reg->reg_name,
fc0763e6 9813 intel_syntax ? ']' : ')');
be05d201 9814 return 1;
fc0763e6 9815 }
be05d201
L
9816 else
9817 return 1;
9818
9819bad_address:
9820 as_bad (_("`%s' is not a valid %s expression"),
9821 operand_string, kind);
9822 return 0;
3e73aa7c
JH
9823 }
9824 else
9825 {
be05d201
L
9826 if (addr_mode != CODE_16BIT)
9827 {
9828 /* 32-bit/64-bit checks. */
9829 if ((i.base_reg
e968fc9b
JB
9830 && ((addr_mode == CODE_64BIT
9831 ? !i.base_reg->reg_type.bitfield.qword
9832 : !i.base_reg->reg_type.bitfield.dword)
9833 || (i.index_reg && i.base_reg->reg_num == RegIP)
9834 || i.base_reg->reg_num == RegIZ))
be05d201 9835 || (i.index_reg
1b54b8d7
JB
9836 && !i.index_reg->reg_type.bitfield.xmmword
9837 && !i.index_reg->reg_type.bitfield.ymmword
9838 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9839 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9840 ? !i.index_reg->reg_type.bitfield.qword
9841 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9842 || !i.index_reg->reg_type.bitfield.baseindex)))
9843 goto bad_address;
8178be5b
JB
9844
9845 /* bndmk, bndldx, and bndstx have special restrictions. */
9846 if (current_templates->start->base_opcode == 0xf30f1b
9847 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9848 {
9849 /* They cannot use RIP-relative addressing. */
e968fc9b 9850 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9851 {
9852 as_bad (_("`%s' cannot be used here"), operand_string);
9853 return 0;
9854 }
9855
9856 /* bndldx and bndstx ignore their scale factor. */
9857 if (current_templates->start->base_opcode != 0xf30f1b
9858 && i.log2_scale_factor)
9859 as_warn (_("register scaling is being ignored here"));
9860 }
be05d201
L
9861 }
9862 else
3e73aa7c 9863 {
be05d201 9864 /* 16-bit checks. */
3e73aa7c 9865 if ((i.base_reg
dc821c5f 9866 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9867 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9868 || (i.index_reg
dc821c5f 9869 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9870 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9871 || !(i.base_reg
9872 && i.base_reg->reg_num < 6
9873 && i.index_reg->reg_num >= 6
9874 && i.log2_scale_factor == 0))))
be05d201 9875 goto bad_address;
3e73aa7c
JH
9876 }
9877 }
be05d201 9878 return 1;
24eab124 9879}
252b5132 9880
43234a1e
L
9881/* Handle vector immediates. */
9882
9883static int
9884RC_SAE_immediate (const char *imm_start)
9885{
9886 unsigned int match_found, j;
9887 const char *pstr = imm_start;
9888 expressionS *exp;
9889
9890 if (*pstr != '{')
9891 return 0;
9892
9893 pstr++;
9894 match_found = 0;
9895 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9896 {
9897 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9898 {
9899 if (!i.rounding)
9900 {
9901 rc_op.type = RC_NamesTable[j].type;
9902 rc_op.operand = this_operand;
9903 i.rounding = &rc_op;
9904 }
9905 else
9906 {
9907 as_bad (_("duplicated `%s'"), imm_start);
9908 return 0;
9909 }
9910 pstr += RC_NamesTable[j].len;
9911 match_found = 1;
9912 break;
9913 }
9914 }
9915 if (!match_found)
9916 return 0;
9917
9918 if (*pstr++ != '}')
9919 {
9920 as_bad (_("Missing '}': '%s'"), imm_start);
9921 return 0;
9922 }
9923 /* RC/SAE immediate string should contain nothing more. */;
9924 if (*pstr != 0)
9925 {
9926 as_bad (_("Junk after '}': '%s'"), imm_start);
9927 return 0;
9928 }
9929
9930 exp = &im_expressions[i.imm_operands++];
9931 i.op[this_operand].imms = exp;
9932
9933 exp->X_op = O_constant;
9934 exp->X_add_number = 0;
9935 exp->X_add_symbol = (symbolS *) 0;
9936 exp->X_op_symbol = (symbolS *) 0;
9937
9938 i.types[this_operand].bitfield.imm8 = 1;
9939 return 1;
9940}
9941
8325cc63
JB
9942/* Only string instructions can have a second memory operand, so
9943 reduce current_templates to just those if it contains any. */
9944static int
9945maybe_adjust_templates (void)
9946{
9947 const insn_template *t;
9948
9949 gas_assert (i.mem_operands == 1);
9950
9951 for (t = current_templates->start; t < current_templates->end; ++t)
9952 if (t->opcode_modifier.isstring)
9953 break;
9954
9955 if (t < current_templates->end)
9956 {
9957 static templates aux_templates;
9958 bfd_boolean recheck;
9959
9960 aux_templates.start = t;
9961 for (; t < current_templates->end; ++t)
9962 if (!t->opcode_modifier.isstring)
9963 break;
9964 aux_templates.end = t;
9965
9966 /* Determine whether to re-check the first memory operand. */
9967 recheck = (aux_templates.start != current_templates->start
9968 || t != current_templates->end);
9969
9970 current_templates = &aux_templates;
9971
9972 if (recheck)
9973 {
9974 i.mem_operands = 0;
9975 if (i.memop1_string != NULL
9976 && i386_index_check (i.memop1_string) == 0)
9977 return 0;
9978 i.mem_operands = 1;
9979 }
9980 }
9981
9982 return 1;
9983}
9984
fc0763e6 9985/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9986 on error. */
252b5132 9987
252b5132 9988static int
a7619375 9989i386_att_operand (char *operand_string)
252b5132 9990{
af6bdddf
AM
9991 const reg_entry *r;
9992 char *end_op;
24eab124 9993 char *op_string = operand_string;
252b5132 9994
24eab124 9995 if (is_space_char (*op_string))
252b5132
RH
9996 ++op_string;
9997
24eab124 9998 /* We check for an absolute prefix (differentiating,
47926f60 9999 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10000 if (*op_string == ABSOLUTE_PREFIX)
10001 {
10002 ++op_string;
10003 if (is_space_char (*op_string))
10004 ++op_string;
6f2f06be 10005 i.jumpabsolute = TRUE;
24eab124 10006 }
252b5132 10007
47926f60 10008 /* Check if operand is a register. */
4d1bb795 10009 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10010 {
40fb9820
L
10011 i386_operand_type temp;
10012
24eab124
AM
10013 /* Check for a segment override by searching for ':' after a
10014 segment register. */
10015 op_string = end_op;
10016 if (is_space_char (*op_string))
10017 ++op_string;
00cee14f 10018 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10019 {
10020 switch (r->reg_num)
10021 {
10022 case 0:
10023 i.seg[i.mem_operands] = &es;
10024 break;
10025 case 1:
10026 i.seg[i.mem_operands] = &cs;
10027 break;
10028 case 2:
10029 i.seg[i.mem_operands] = &ss;
10030 break;
10031 case 3:
10032 i.seg[i.mem_operands] = &ds;
10033 break;
10034 case 4:
10035 i.seg[i.mem_operands] = &fs;
10036 break;
10037 case 5:
10038 i.seg[i.mem_operands] = &gs;
10039 break;
10040 }
252b5132 10041
24eab124 10042 /* Skip the ':' and whitespace. */
252b5132
RH
10043 ++op_string;
10044 if (is_space_char (*op_string))
24eab124 10045 ++op_string;
252b5132 10046
24eab124
AM
10047 if (!is_digit_char (*op_string)
10048 && !is_identifier_char (*op_string)
10049 && *op_string != '('
10050 && *op_string != ABSOLUTE_PREFIX)
10051 {
10052 as_bad (_("bad memory operand `%s'"), op_string);
10053 return 0;
10054 }
47926f60 10055 /* Handle case of %es:*foo. */
24eab124
AM
10056 if (*op_string == ABSOLUTE_PREFIX)
10057 {
10058 ++op_string;
10059 if (is_space_char (*op_string))
10060 ++op_string;
6f2f06be 10061 i.jumpabsolute = TRUE;
24eab124
AM
10062 }
10063 goto do_memory_reference;
10064 }
43234a1e
L
10065
10066 /* Handle vector operations. */
10067 if (*op_string == '{')
10068 {
10069 op_string = check_VecOperations (op_string, NULL);
10070 if (op_string == NULL)
10071 return 0;
10072 }
10073
24eab124
AM
10074 if (*op_string)
10075 {
d0b47220 10076 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10077 return 0;
10078 }
40fb9820
L
10079 temp = r->reg_type;
10080 temp.bitfield.baseindex = 0;
c6fb90c8
L
10081 i.types[this_operand] = operand_type_or (i.types[this_operand],
10082 temp);
7d5e4556 10083 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10084 i.op[this_operand].regs = r;
24eab124
AM
10085 i.reg_operands++;
10086 }
af6bdddf
AM
10087 else if (*op_string == REGISTER_PREFIX)
10088 {
10089 as_bad (_("bad register name `%s'"), op_string);
10090 return 0;
10091 }
24eab124 10092 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10093 {
24eab124 10094 ++op_string;
6f2f06be 10095 if (i.jumpabsolute)
24eab124 10096 {
d0b47220 10097 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10098 return 0;
10099 }
10100 if (!i386_immediate (op_string))
10101 return 0;
10102 }
43234a1e
L
10103 else if (RC_SAE_immediate (operand_string))
10104 {
10105 /* If it is a RC or SAE immediate, do nothing. */
10106 ;
10107 }
24eab124
AM
10108 else if (is_digit_char (*op_string)
10109 || is_identifier_char (*op_string)
d02603dc 10110 || *op_string == '"'
e5cb08ac 10111 || *op_string == '(')
24eab124 10112 {
47926f60 10113 /* This is a memory reference of some sort. */
af6bdddf 10114 char *base_string;
252b5132 10115
47926f60 10116 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10117 char *displacement_string_start;
10118 char *displacement_string_end;
43234a1e 10119 char *vop_start;
252b5132 10120
24eab124 10121 do_memory_reference:
8325cc63
JB
10122 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10123 return 0;
24eab124 10124 if ((i.mem_operands == 1
40fb9820 10125 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10126 || i.mem_operands == 2)
10127 {
10128 as_bad (_("too many memory references for `%s'"),
10129 current_templates->start->name);
10130 return 0;
10131 }
252b5132 10132
24eab124
AM
10133 /* Check for base index form. We detect the base index form by
10134 looking for an ')' at the end of the operand, searching
10135 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10136 after the '('. */
af6bdddf 10137 base_string = op_string + strlen (op_string);
c3332e24 10138
43234a1e
L
10139 /* Handle vector operations. */
10140 vop_start = strchr (op_string, '{');
10141 if (vop_start && vop_start < base_string)
10142 {
10143 if (check_VecOperations (vop_start, base_string) == NULL)
10144 return 0;
10145 base_string = vop_start;
10146 }
10147
af6bdddf
AM
10148 --base_string;
10149 if (is_space_char (*base_string))
10150 --base_string;
252b5132 10151
47926f60 10152 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10153 displacement_string_start = op_string;
10154 displacement_string_end = base_string + 1;
252b5132 10155
24eab124
AM
10156 if (*base_string == ')')
10157 {
af6bdddf 10158 char *temp_string;
24eab124
AM
10159 unsigned int parens_balanced = 1;
10160 /* We've already checked that the number of left & right ()'s are
47926f60 10161 equal, so this loop will not be infinite. */
24eab124
AM
10162 do
10163 {
10164 base_string--;
10165 if (*base_string == ')')
10166 parens_balanced++;
10167 if (*base_string == '(')
10168 parens_balanced--;
10169 }
10170 while (parens_balanced);
c3332e24 10171
af6bdddf 10172 temp_string = base_string;
c3332e24 10173
24eab124 10174 /* Skip past '(' and whitespace. */
252b5132
RH
10175 ++base_string;
10176 if (is_space_char (*base_string))
24eab124 10177 ++base_string;
252b5132 10178
af6bdddf 10179 if (*base_string == ','
4eed87de
AM
10180 || ((i.base_reg = parse_register (base_string, &end_op))
10181 != NULL))
252b5132 10182 {
af6bdddf 10183 displacement_string_end = temp_string;
252b5132 10184
40fb9820 10185 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10186
af6bdddf 10187 if (i.base_reg)
24eab124 10188 {
24eab124
AM
10189 base_string = end_op;
10190 if (is_space_char (*base_string))
10191 ++base_string;
af6bdddf
AM
10192 }
10193
10194 /* There may be an index reg or scale factor here. */
10195 if (*base_string == ',')
10196 {
10197 ++base_string;
10198 if (is_space_char (*base_string))
10199 ++base_string;
10200
4eed87de
AM
10201 if ((i.index_reg = parse_register (base_string, &end_op))
10202 != NULL)
24eab124 10203 {
af6bdddf 10204 base_string = end_op;
24eab124
AM
10205 if (is_space_char (*base_string))
10206 ++base_string;
af6bdddf
AM
10207 if (*base_string == ',')
10208 {
10209 ++base_string;
10210 if (is_space_char (*base_string))
10211 ++base_string;
10212 }
e5cb08ac 10213 else if (*base_string != ')')
af6bdddf 10214 {
4eed87de
AM
10215 as_bad (_("expecting `,' or `)' "
10216 "after index register in `%s'"),
af6bdddf
AM
10217 operand_string);
10218 return 0;
10219 }
24eab124 10220 }
af6bdddf 10221 else if (*base_string == REGISTER_PREFIX)
24eab124 10222 {
f76bf5e0
L
10223 end_op = strchr (base_string, ',');
10224 if (end_op)
10225 *end_op = '\0';
af6bdddf 10226 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10227 return 0;
10228 }
252b5132 10229
47926f60 10230 /* Check for scale factor. */
551c1ca1 10231 if (*base_string != ')')
af6bdddf 10232 {
551c1ca1
AM
10233 char *end_scale = i386_scale (base_string);
10234
10235 if (!end_scale)
af6bdddf 10236 return 0;
24eab124 10237
551c1ca1 10238 base_string = end_scale;
af6bdddf
AM
10239 if (is_space_char (*base_string))
10240 ++base_string;
10241 if (*base_string != ')')
10242 {
4eed87de
AM
10243 as_bad (_("expecting `)' "
10244 "after scale factor in `%s'"),
af6bdddf
AM
10245 operand_string);
10246 return 0;
10247 }
10248 }
10249 else if (!i.index_reg)
24eab124 10250 {
4eed87de
AM
10251 as_bad (_("expecting index register or scale factor "
10252 "after `,'; got '%c'"),
af6bdddf 10253 *base_string);
24eab124
AM
10254 return 0;
10255 }
10256 }
af6bdddf 10257 else if (*base_string != ')')
24eab124 10258 {
4eed87de
AM
10259 as_bad (_("expecting `,' or `)' "
10260 "after base register in `%s'"),
af6bdddf 10261 operand_string);
24eab124
AM
10262 return 0;
10263 }
c3332e24 10264 }
af6bdddf 10265 else if (*base_string == REGISTER_PREFIX)
c3332e24 10266 {
f76bf5e0
L
10267 end_op = strchr (base_string, ',');
10268 if (end_op)
10269 *end_op = '\0';
af6bdddf 10270 as_bad (_("bad register name `%s'"), base_string);
24eab124 10271 return 0;
c3332e24 10272 }
24eab124
AM
10273 }
10274
10275 /* If there's an expression beginning the operand, parse it,
10276 assuming displacement_string_start and
10277 displacement_string_end are meaningful. */
10278 if (displacement_string_start != displacement_string_end)
10279 {
10280 if (!i386_displacement (displacement_string_start,
10281 displacement_string_end))
10282 return 0;
10283 }
10284
10285 /* Special case for (%dx) while doing input/output op. */
10286 if (i.base_reg
75e5731b
JB
10287 && i.base_reg->reg_type.bitfield.instance == RegD
10288 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10289 && i.index_reg == 0
10290 && i.log2_scale_factor == 0
10291 && i.seg[i.mem_operands] == 0
40fb9820 10292 && !operand_type_check (i.types[this_operand], disp))
24eab124 10293 {
2fb5be8d 10294 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10295 return 1;
10296 }
10297
eecb386c
AM
10298 if (i386_index_check (operand_string) == 0)
10299 return 0;
c48dadc9 10300 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10301 if (i.mem_operands == 0)
10302 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10303 i.mem_operands++;
10304 }
10305 else
ce8a8b2f
AM
10306 {
10307 /* It's not a memory operand; argh! */
24eab124
AM
10308 as_bad (_("invalid char %s beginning operand %d `%s'"),
10309 output_invalid (*op_string),
10310 this_operand + 1,
10311 op_string);
10312 return 0;
10313 }
47926f60 10314 return 1; /* Normal return. */
252b5132
RH
10315}
10316\f
fa94de6b
RM
10317/* Calculate the maximum variable size (i.e., excluding fr_fix)
10318 that an rs_machine_dependent frag may reach. */
10319
10320unsigned int
10321i386_frag_max_var (fragS *frag)
10322{
10323 /* The only relaxable frags are for jumps.
10324 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10325 gas_assert (frag->fr_type == rs_machine_dependent);
10326 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10327}
10328
b084df0b
L
10329#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10330static int
8dcea932 10331elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10332{
10333 /* STT_GNU_IFUNC symbol must go through PLT. */
10334 if ((symbol_get_bfdsym (fr_symbol)->flags
10335 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10336 return 0;
10337
10338 if (!S_IS_EXTERNAL (fr_symbol))
10339 /* Symbol may be weak or local. */
10340 return !S_IS_WEAK (fr_symbol);
10341
8dcea932
L
10342 /* Global symbols with non-default visibility can't be preempted. */
10343 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10344 return 1;
10345
10346 if (fr_var != NO_RELOC)
10347 switch ((enum bfd_reloc_code_real) fr_var)
10348 {
10349 case BFD_RELOC_386_PLT32:
10350 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10351 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10352 return 0;
10353 default:
10354 abort ();
10355 }
10356
b084df0b
L
10357 /* Global symbols with default visibility in a shared library may be
10358 preempted by another definition. */
8dcea932 10359 return !shared;
b084df0b
L
10360}
10361#endif
10362
ee7fcc42
AM
10363/* md_estimate_size_before_relax()
10364
10365 Called just before relax() for rs_machine_dependent frags. The x86
10366 assembler uses these frags to handle variable size jump
10367 instructions.
10368
10369 Any symbol that is now undefined will not become defined.
10370 Return the correct fr_subtype in the frag.
10371 Return the initial "guess for variable size of frag" to caller.
10372 The guess is actually the growth beyond the fixed part. Whatever
10373 we do to grow the fixed or variable part contributes to our
10374 returned value. */
10375
252b5132 10376int
7016a5d5 10377md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10378{
252b5132 10379 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10380 check for un-relaxable symbols. On an ELF system, we can't relax
10381 an externally visible symbol, because it may be overridden by a
10382 shared library. */
10383 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10384#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10385 || (IS_ELF
8dcea932
L
10386 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10387 fragP->fr_var))
fbeb56a4
DK
10388#endif
10389#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10390 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10391 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10392#endif
10393 )
252b5132 10394 {
b98ef147
AM
10395 /* Symbol is undefined in this segment, or we need to keep a
10396 reloc so that weak symbols can be overridden. */
10397 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10398 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10399 unsigned char *opcode;
10400 int old_fr_fix;
f6af82bd 10401
ee7fcc42 10402 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10403 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10404 else if (size == 2)
f6af82bd 10405 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10406#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10407 else if (need_plt32_p (fragP->fr_symbol))
10408 reloc_type = BFD_RELOC_X86_64_PLT32;
10409#endif
f6af82bd
AM
10410 else
10411 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10412
ee7fcc42
AM
10413 old_fr_fix = fragP->fr_fix;
10414 opcode = (unsigned char *) fragP->fr_opcode;
10415
fddf5b5b 10416 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10417 {
fddf5b5b
AM
10418 case UNCOND_JUMP:
10419 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10420 opcode[0] = 0xe9;
252b5132 10421 fragP->fr_fix += size;
062cd5e7
AS
10422 fix_new (fragP, old_fr_fix, size,
10423 fragP->fr_symbol,
10424 fragP->fr_offset, 1,
10425 reloc_type);
252b5132
RH
10426 break;
10427
fddf5b5b 10428 case COND_JUMP86:
412167cb
AM
10429 if (size == 2
10430 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10431 {
10432 /* Negate the condition, and branch past an
10433 unconditional jump. */
10434 opcode[0] ^= 1;
10435 opcode[1] = 3;
10436 /* Insert an unconditional jump. */
10437 opcode[2] = 0xe9;
10438 /* We added two extra opcode bytes, and have a two byte
10439 offset. */
10440 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10441 fix_new (fragP, old_fr_fix + 2, 2,
10442 fragP->fr_symbol,
10443 fragP->fr_offset, 1,
10444 reloc_type);
fddf5b5b
AM
10445 break;
10446 }
10447 /* Fall through. */
10448
10449 case COND_JUMP:
412167cb
AM
10450 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10451 {
3e02c1cc
AM
10452 fixS *fixP;
10453
412167cb 10454 fragP->fr_fix += 1;
3e02c1cc
AM
10455 fixP = fix_new (fragP, old_fr_fix, 1,
10456 fragP->fr_symbol,
10457 fragP->fr_offset, 1,
10458 BFD_RELOC_8_PCREL);
10459 fixP->fx_signed = 1;
412167cb
AM
10460 break;
10461 }
93c2a809 10462
24eab124 10463 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10464 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10465 opcode[1] = opcode[0] + 0x10;
f6af82bd 10466 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10467 /* We've added an opcode byte. */
10468 fragP->fr_fix += 1 + size;
062cd5e7
AS
10469 fix_new (fragP, old_fr_fix + 1, size,
10470 fragP->fr_symbol,
10471 fragP->fr_offset, 1,
10472 reloc_type);
252b5132 10473 break;
fddf5b5b
AM
10474
10475 default:
10476 BAD_CASE (fragP->fr_subtype);
10477 break;
252b5132
RH
10478 }
10479 frag_wane (fragP);
ee7fcc42 10480 return fragP->fr_fix - old_fr_fix;
252b5132 10481 }
93c2a809 10482
93c2a809
AM
10483 /* Guess size depending on current relax state. Initially the relax
10484 state will correspond to a short jump and we return 1, because
10485 the variable part of the frag (the branch offset) is one byte
10486 long. However, we can relax a section more than once and in that
10487 case we must either set fr_subtype back to the unrelaxed state,
10488 or return the value for the appropriate branch. */
10489 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10490}
10491
47926f60
KH
10492/* Called after relax() is finished.
10493
10494 In: Address of frag.
10495 fr_type == rs_machine_dependent.
10496 fr_subtype is what the address relaxed to.
10497
10498 Out: Any fixSs and constants are set up.
10499 Caller will turn frag into a ".space 0". */
10500
252b5132 10501void
7016a5d5
TG
10502md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10503 fragS *fragP)
252b5132 10504{
29b0f896 10505 unsigned char *opcode;
252b5132 10506 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10507 offsetT target_address;
10508 offsetT opcode_address;
252b5132 10509 unsigned int extension = 0;
847f7ad4 10510 offsetT displacement_from_opcode_start;
252b5132
RH
10511
10512 opcode = (unsigned char *) fragP->fr_opcode;
10513
47926f60 10514 /* Address we want to reach in file space. */
252b5132 10515 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10516
47926f60 10517 /* Address opcode resides at in file space. */
252b5132
RH
10518 opcode_address = fragP->fr_address + fragP->fr_fix;
10519
47926f60 10520 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10521 displacement_from_opcode_start = target_address - opcode_address;
10522
fddf5b5b 10523 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10524 {
47926f60
KH
10525 /* Don't have to change opcode. */
10526 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10527 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10528 }
10529 else
10530 {
10531 if (no_cond_jump_promotion
10532 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10533 as_warn_where (fragP->fr_file, fragP->fr_line,
10534 _("long jump required"));
252b5132 10535
fddf5b5b
AM
10536 switch (fragP->fr_subtype)
10537 {
10538 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10539 extension = 4; /* 1 opcode + 4 displacement */
10540 opcode[0] = 0xe9;
10541 where_to_put_displacement = &opcode[1];
10542 break;
252b5132 10543
fddf5b5b
AM
10544 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10545 extension = 2; /* 1 opcode + 2 displacement */
10546 opcode[0] = 0xe9;
10547 where_to_put_displacement = &opcode[1];
10548 break;
252b5132 10549
fddf5b5b
AM
10550 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10551 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10552 extension = 5; /* 2 opcode + 4 displacement */
10553 opcode[1] = opcode[0] + 0x10;
10554 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10555 where_to_put_displacement = &opcode[2];
10556 break;
252b5132 10557
fddf5b5b
AM
10558 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10559 extension = 3; /* 2 opcode + 2 displacement */
10560 opcode[1] = opcode[0] + 0x10;
10561 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10562 where_to_put_displacement = &opcode[2];
10563 break;
252b5132 10564
fddf5b5b
AM
10565 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10566 extension = 4;
10567 opcode[0] ^= 1;
10568 opcode[1] = 3;
10569 opcode[2] = 0xe9;
10570 where_to_put_displacement = &opcode[3];
10571 break;
10572
10573 default:
10574 BAD_CASE (fragP->fr_subtype);
10575 break;
10576 }
252b5132 10577 }
fddf5b5b 10578
7b81dfbb
AJ
10579 /* If size if less then four we are sure that the operand fits,
10580 but if it's 4, then it could be that the displacement is larger
10581 then -/+ 2GB. */
10582 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10583 && object_64bit
10584 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10585 + ((addressT) 1 << 31))
10586 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10587 {
10588 as_bad_where (fragP->fr_file, fragP->fr_line,
10589 _("jump target out of range"));
10590 /* Make us emit 0. */
10591 displacement_from_opcode_start = extension;
10592 }
47926f60 10593 /* Now put displacement after opcode. */
252b5132
RH
10594 md_number_to_chars ((char *) where_to_put_displacement,
10595 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10596 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10597 fragP->fr_fix += extension;
10598}
10599\f
7016a5d5 10600/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10601 by our caller that we have all the info we need to fix it up.
10602
7016a5d5
TG
10603 Parameter valP is the pointer to the value of the bits.
10604
252b5132
RH
10605 On the 386, immediates, displacements, and data pointers are all in
10606 the same (little-endian) format, so we don't need to care about which
10607 we are handling. */
10608
94f592af 10609void
7016a5d5 10610md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10611{
94f592af 10612 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10613 valueT value = *valP;
252b5132 10614
f86103b7 10615#if !defined (TE_Mach)
93382f6d
AM
10616 if (fixP->fx_pcrel)
10617 {
10618 switch (fixP->fx_r_type)
10619 {
5865bb77
ILT
10620 default:
10621 break;
10622
d6ab8113
JB
10623 case BFD_RELOC_64:
10624 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10625 break;
93382f6d 10626 case BFD_RELOC_32:
ae8887b5 10627 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10628 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10629 break;
10630 case BFD_RELOC_16:
10631 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10632 break;
10633 case BFD_RELOC_8:
10634 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10635 break;
10636 }
10637 }
252b5132 10638
a161fe53 10639 if (fixP->fx_addsy != NULL
31312f95 10640 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10641 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10642 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10643 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10644 && !use_rela_relocations)
252b5132 10645 {
31312f95
AM
10646 /* This is a hack. There should be a better way to handle this.
10647 This covers for the fact that bfd_install_relocation will
10648 subtract the current location (for partial_inplace, PC relative
10649 relocations); see more below. */
252b5132 10650#ifndef OBJ_AOUT
718ddfc0 10651 if (IS_ELF
252b5132
RH
10652#ifdef TE_PE
10653 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10654#endif
10655 )
10656 value += fixP->fx_where + fixP->fx_frag->fr_address;
10657#endif
10658#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10659 if (IS_ELF)
252b5132 10660 {
6539b54b 10661 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10662
6539b54b 10663 if ((sym_seg == seg
2f66722d 10664 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10665 && sym_seg != absolute_section))
af65af87 10666 && !generic_force_reloc (fixP))
2f66722d
AM
10667 {
10668 /* Yes, we add the values in twice. This is because
6539b54b
AM
10669 bfd_install_relocation subtracts them out again. I think
10670 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10671 it. FIXME. */
10672 value += fixP->fx_where + fixP->fx_frag->fr_address;
10673 }
252b5132
RH
10674 }
10675#endif
10676#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10677 /* For some reason, the PE format does not store a
10678 section address offset for a PC relative symbol. */
10679 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10680 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10681 value += md_pcrel_from (fixP);
10682#endif
10683 }
fbeb56a4 10684#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10685 if (fixP->fx_addsy != NULL
10686 && S_IS_WEAK (fixP->fx_addsy)
10687 /* PR 16858: Do not modify weak function references. */
10688 && ! fixP->fx_pcrel)
fbeb56a4 10689 {
296a8689
NC
10690#if !defined (TE_PEP)
10691 /* For x86 PE weak function symbols are neither PC-relative
10692 nor do they set S_IS_FUNCTION. So the only reliable way
10693 to detect them is to check the flags of their containing
10694 section. */
10695 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10696 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10697 ;
10698 else
10699#endif
fbeb56a4
DK
10700 value -= S_GET_VALUE (fixP->fx_addsy);
10701 }
10702#endif
252b5132
RH
10703
10704 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10705 and we must not disappoint it. */
252b5132 10706#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10707 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10708 switch (fixP->fx_r_type)
10709 {
10710 case BFD_RELOC_386_PLT32:
3e73aa7c 10711 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10712 /* Make the jump instruction point to the address of the operand.
10713 At runtime we merely add the offset to the actual PLT entry.
10714 NB: Subtract the offset size only for jump instructions. */
10715 if (fixP->fx_pcrel)
10716 value = -4;
47926f60 10717 break;
31312f95 10718
13ae64f3
JJ
10719 case BFD_RELOC_386_TLS_GD:
10720 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10721 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10722 case BFD_RELOC_386_TLS_IE:
10723 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10724 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10725 case BFD_RELOC_X86_64_TLSGD:
10726 case BFD_RELOC_X86_64_TLSLD:
10727 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10728 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10729 value = 0; /* Fully resolved at runtime. No addend. */
10730 /* Fallthrough */
10731 case BFD_RELOC_386_TLS_LE:
10732 case BFD_RELOC_386_TLS_LDO_32:
10733 case BFD_RELOC_386_TLS_LE_32:
10734 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10735 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10736 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10737 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10738 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10739 break;
10740
67a4f2b7
AO
10741 case BFD_RELOC_386_TLS_DESC_CALL:
10742 case BFD_RELOC_X86_64_TLSDESC_CALL:
10743 value = 0; /* Fully resolved at runtime. No addend. */
10744 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10745 fixP->fx_done = 0;
10746 return;
10747
47926f60
KH
10748 case BFD_RELOC_VTABLE_INHERIT:
10749 case BFD_RELOC_VTABLE_ENTRY:
10750 fixP->fx_done = 0;
94f592af 10751 return;
47926f60
KH
10752
10753 default:
10754 break;
10755 }
10756#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10757 *valP = value;
f86103b7 10758#endif /* !defined (TE_Mach) */
3e73aa7c 10759
3e73aa7c 10760 /* Are we finished with this relocation now? */
c6682705 10761 if (fixP->fx_addsy == NULL)
3e73aa7c 10762 fixP->fx_done = 1;
fbeb56a4
DK
10763#if defined (OBJ_COFF) && defined (TE_PE)
10764 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10765 {
10766 fixP->fx_done = 0;
10767 /* Remember value for tc_gen_reloc. */
10768 fixP->fx_addnumber = value;
10769 /* Clear out the frag for now. */
10770 value = 0;
10771 }
10772#endif
3e73aa7c
JH
10773 else if (use_rela_relocations)
10774 {
10775 fixP->fx_no_overflow = 1;
062cd5e7
AS
10776 /* Remember value for tc_gen_reloc. */
10777 fixP->fx_addnumber = value;
3e73aa7c
JH
10778 value = 0;
10779 }
f86103b7 10780
94f592af 10781 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10782}
252b5132 10783\f
6d4af3c2 10784const char *
499ac353 10785md_atof (int type, char *litP, int *sizeP)
252b5132 10786{
499ac353
NC
10787 /* This outputs the LITTLENUMs in REVERSE order;
10788 in accord with the bigendian 386. */
10789 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10790}
10791\f
2d545b82 10792static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10793
252b5132 10794static char *
e3bb37b5 10795output_invalid (int c)
252b5132 10796{
3882b010 10797 if (ISPRINT (c))
f9f21a03
L
10798 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10799 "'%c'", c);
252b5132 10800 else
f9f21a03 10801 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10802 "(0x%x)", (unsigned char) c);
252b5132
RH
10803 return output_invalid_buf;
10804}
10805
af6bdddf 10806/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10807
10808static const reg_entry *
4d1bb795 10809parse_real_register (char *reg_string, char **end_op)
252b5132 10810{
af6bdddf
AM
10811 char *s = reg_string;
10812 char *p;
252b5132
RH
10813 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10814 const reg_entry *r;
10815
10816 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10817 if (*s == REGISTER_PREFIX)
10818 ++s;
10819
10820 if (is_space_char (*s))
10821 ++s;
10822
10823 p = reg_name_given;
af6bdddf 10824 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10825 {
10826 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10827 return (const reg_entry *) NULL;
10828 s++;
252b5132
RH
10829 }
10830
6588847e
DN
10831 /* For naked regs, make sure that we are not dealing with an identifier.
10832 This prevents confusing an identifier like `eax_var' with register
10833 `eax'. */
10834 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10835 return (const reg_entry *) NULL;
10836
af6bdddf 10837 *end_op = s;
252b5132
RH
10838
10839 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10840
5f47d35b 10841 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10842 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10843 {
0e0eea78
JB
10844 if (!cpu_arch_flags.bitfield.cpu8087
10845 && !cpu_arch_flags.bitfield.cpu287
10846 && !cpu_arch_flags.bitfield.cpu387)
10847 return (const reg_entry *) NULL;
10848
5f47d35b
AM
10849 if (is_space_char (*s))
10850 ++s;
10851 if (*s == '(')
10852 {
af6bdddf 10853 ++s;
5f47d35b
AM
10854 if (is_space_char (*s))
10855 ++s;
10856 if (*s >= '0' && *s <= '7')
10857 {
db557034 10858 int fpr = *s - '0';
af6bdddf 10859 ++s;
5f47d35b
AM
10860 if (is_space_char (*s))
10861 ++s;
10862 if (*s == ')')
10863 {
10864 *end_op = s + 1;
1e9cc1c2 10865 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10866 know (r);
10867 return r + fpr;
5f47d35b 10868 }
5f47d35b 10869 }
47926f60 10870 /* We have "%st(" then garbage. */
5f47d35b
AM
10871 return (const reg_entry *) NULL;
10872 }
10873 }
10874
a60de03c
JB
10875 if (r == NULL || allow_pseudo_reg)
10876 return r;
10877
0dfbf9d7 10878 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10879 return (const reg_entry *) NULL;
10880
dc821c5f 10881 if ((r->reg_type.bitfield.dword
00cee14f 10882 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
10883 || r->reg_type.bitfield.class == RegCR
10884 || r->reg_type.bitfield.class == RegDR
10885 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
10886 && !cpu_arch_flags.bitfield.cpui386)
10887 return (const reg_entry *) NULL;
10888
3528c362 10889 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10890 return (const reg_entry *) NULL;
10891
6e041cf4
JB
10892 if (!cpu_arch_flags.bitfield.cpuavx512f)
10893 {
f74a6307
JB
10894 if (r->reg_type.bitfield.zmmword
10895 || r->reg_type.bitfield.class == RegMask)
6e041cf4 10896 return (const reg_entry *) NULL;
40f12533 10897
6e041cf4
JB
10898 if (!cpu_arch_flags.bitfield.cpuavx)
10899 {
10900 if (r->reg_type.bitfield.ymmword)
10901 return (const reg_entry *) NULL;
1848e567 10902
6e041cf4
JB
10903 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10904 return (const reg_entry *) NULL;
10905 }
10906 }
43234a1e 10907
f74a6307 10908 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
10909 return (const reg_entry *) NULL;
10910
db51cc60 10911 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10912 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10913 return (const reg_entry *) NULL;
10914
1d3f8286
JB
10915 /* Upper 16 vector registers are only available with VREX in 64bit
10916 mode, and require EVEX encoding. */
10917 if (r->reg_flags & RegVRex)
43234a1e 10918 {
e951d5ca 10919 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10920 || flag_code != CODE_64BIT)
10921 return (const reg_entry *) NULL;
1d3f8286
JB
10922
10923 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10924 }
10925
4787f4a5 10926 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 10927 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 10928 && flag_code != CODE_64BIT)
20f0a1fc 10929 return (const reg_entry *) NULL;
1ae00879 10930
00cee14f
JB
10931 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
10932 && !intel_syntax)
b7240065
JB
10933 return (const reg_entry *) NULL;
10934
252b5132
RH
10935 return r;
10936}
4d1bb795
JB
10937
10938/* REG_STRING starts *before* REGISTER_PREFIX. */
10939
10940static const reg_entry *
10941parse_register (char *reg_string, char **end_op)
10942{
10943 const reg_entry *r;
10944
10945 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10946 r = parse_real_register (reg_string, end_op);
10947 else
10948 r = NULL;
10949 if (!r)
10950 {
10951 char *save = input_line_pointer;
10952 char c;
10953 symbolS *symbolP;
10954
10955 input_line_pointer = reg_string;
d02603dc 10956 c = get_symbol_name (&reg_string);
4d1bb795
JB
10957 symbolP = symbol_find (reg_string);
10958 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10959 {
10960 const expressionS *e = symbol_get_value_expression (symbolP);
10961
0398aac5 10962 know (e->X_op == O_register);
4eed87de 10963 know (e->X_add_number >= 0
c3fe08fa 10964 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10965 r = i386_regtab + e->X_add_number;
d3bb6b49 10966 if ((r->reg_flags & RegVRex))
86fa6981 10967 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10968 *end_op = input_line_pointer;
10969 }
10970 *input_line_pointer = c;
10971 input_line_pointer = save;
10972 }
10973 return r;
10974}
10975
10976int
10977i386_parse_name (char *name, expressionS *e, char *nextcharP)
10978{
10979 const reg_entry *r;
10980 char *end = input_line_pointer;
10981
10982 *end = *nextcharP;
10983 r = parse_register (name, &input_line_pointer);
10984 if (r && end <= input_line_pointer)
10985 {
10986 *nextcharP = *input_line_pointer;
10987 *input_line_pointer = 0;
10988 e->X_op = O_register;
10989 e->X_add_number = r - i386_regtab;
10990 return 1;
10991 }
10992 input_line_pointer = end;
10993 *end = 0;
ee86248c 10994 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10995}
10996
10997void
10998md_operand (expressionS *e)
10999{
ee86248c
JB
11000 char *end;
11001 const reg_entry *r;
4d1bb795 11002
ee86248c
JB
11003 switch (*input_line_pointer)
11004 {
11005 case REGISTER_PREFIX:
11006 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
11007 if (r)
11008 {
11009 e->X_op = O_register;
11010 e->X_add_number = r - i386_regtab;
11011 input_line_pointer = end;
11012 }
ee86248c
JB
11013 break;
11014
11015 case '[':
9c2799c2 11016 gas_assert (intel_syntax);
ee86248c
JB
11017 end = input_line_pointer++;
11018 expression (e);
11019 if (*input_line_pointer == ']')
11020 {
11021 ++input_line_pointer;
11022 e->X_op_symbol = make_expr_symbol (e);
11023 e->X_add_symbol = NULL;
11024 e->X_add_number = 0;
11025 e->X_op = O_index;
11026 }
11027 else
11028 {
11029 e->X_op = O_absent;
11030 input_line_pointer = end;
11031 }
11032 break;
4d1bb795
JB
11033 }
11034}
11035
252b5132 11036\f
4cc782b5 11037#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 11038const char *md_shortopts = "kVQ:sqnO::";
252b5132 11039#else
b6f8c7c4 11040const char *md_shortopts = "qnO::";
252b5132 11041#endif
6e0b89ee 11042
3e73aa7c 11043#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
11044#define OPTION_64 (OPTION_MD_BASE + 1)
11045#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
11046#define OPTION_MARCH (OPTION_MD_BASE + 3)
11047#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
11048#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11049#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11050#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11051#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 11052#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 11053#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 11054#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
11055#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11056#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11057#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 11058#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
11059#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11060#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 11061#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 11062#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 11063#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 11064#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
11065#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11066#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 11067#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 11068#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 11069#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 11070
99ad8390
NC
11071struct option md_longopts[] =
11072{
3e73aa7c 11073 {"32", no_argument, NULL, OPTION_32},
321098a5 11074#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11075 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 11076 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
11077#endif
11078#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11079 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 11080 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11081 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11082#endif
b3b91714 11083 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11084 {"march", required_argument, NULL, OPTION_MARCH},
11085 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11086 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11087 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11088 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11089 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11090 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11091 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11092 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11093 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11094 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11095 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11096 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11097 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11098# if defined (TE_PE) || defined (TE_PEP)
11099 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11100#endif
d1982f93 11101 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11102 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11103 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11104 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11105 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11106 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11107 {NULL, no_argument, NULL, 0}
11108};
11109size_t md_longopts_size = sizeof (md_longopts);
11110
11111int
17b9d67d 11112md_parse_option (int c, const char *arg)
252b5132 11113{
91d6fa6a 11114 unsigned int j;
293f5f65 11115 char *arch, *next, *saved;
9103f4f4 11116
252b5132
RH
11117 switch (c)
11118 {
12b55ccc
L
11119 case 'n':
11120 optimize_align_code = 0;
11121 break;
11122
a38cf1db
AM
11123 case 'q':
11124 quiet_warnings = 1;
252b5132
RH
11125 break;
11126
11127#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11128 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11129 should be emitted or not. FIXME: Not implemented. */
11130 case 'Q':
d4693039
JB
11131 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11132 return 0;
252b5132
RH
11133 break;
11134
11135 /* -V: SVR4 argument to print version ID. */
11136 case 'V':
11137 print_version_id ();
11138 break;
11139
a38cf1db
AM
11140 /* -k: Ignore for FreeBSD compatibility. */
11141 case 'k':
252b5132 11142 break;
4cc782b5
ILT
11143
11144 case 's':
11145 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11146 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11147 break;
8dcea932
L
11148
11149 case OPTION_MSHARED:
11150 shared = 1;
11151 break;
b4a3a7b4
L
11152
11153 case OPTION_X86_USED_NOTE:
11154 if (strcasecmp (arg, "yes") == 0)
11155 x86_used_note = 1;
11156 else if (strcasecmp (arg, "no") == 0)
11157 x86_used_note = 0;
11158 else
11159 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11160 break;
11161
11162
99ad8390 11163#endif
321098a5 11164#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11165 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11166 case OPTION_64:
11167 {
11168 const char **list, **l;
11169
3e73aa7c
JH
11170 list = bfd_target_list ();
11171 for (l = list; *l != NULL; l++)
8620418b 11172 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11173 || strcmp (*l, "coff-x86-64") == 0
11174 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11175 || strcmp (*l, "pei-x86-64") == 0
11176 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11177 {
11178 default_arch = "x86_64";
11179 break;
11180 }
3e73aa7c 11181 if (*l == NULL)
2b5d6a91 11182 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11183 free (list);
11184 }
11185 break;
11186#endif
252b5132 11187
351f65ca 11188#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11189 case OPTION_X32:
351f65ca
L
11190 if (IS_ELF)
11191 {
11192 const char **list, **l;
11193
11194 list = bfd_target_list ();
11195 for (l = list; *l != NULL; l++)
11196 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11197 {
11198 default_arch = "x86_64:32";
11199 break;
11200 }
11201 if (*l == NULL)
2b5d6a91 11202 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11203 free (list);
11204 }
11205 else
11206 as_fatal (_("32bit x86_64 is only supported for ELF"));
11207 break;
11208#endif
11209
6e0b89ee
AM
11210 case OPTION_32:
11211 default_arch = "i386";
11212 break;
11213
b3b91714
AM
11214 case OPTION_DIVIDE:
11215#ifdef SVR4_COMMENT_CHARS
11216 {
11217 char *n, *t;
11218 const char *s;
11219
add39d23 11220 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11221 t = n;
11222 for (s = i386_comment_chars; *s != '\0'; s++)
11223 if (*s != '/')
11224 *t++ = *s;
11225 *t = '\0';
11226 i386_comment_chars = n;
11227 }
11228#endif
11229 break;
11230
9103f4f4 11231 case OPTION_MARCH:
293f5f65
L
11232 saved = xstrdup (arg);
11233 arch = saved;
11234 /* Allow -march=+nosse. */
11235 if (*arch == '+')
11236 arch++;
6305a203 11237 do
9103f4f4 11238 {
6305a203 11239 if (*arch == '.')
2b5d6a91 11240 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11241 next = strchr (arch, '+');
11242 if (next)
11243 *next++ = '\0';
91d6fa6a 11244 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11245 {
91d6fa6a 11246 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11247 {
6305a203 11248 /* Processor. */
1ded5609
JB
11249 if (! cpu_arch[j].flags.bitfield.cpui386)
11250 continue;
11251
91d6fa6a 11252 cpu_arch_name = cpu_arch[j].name;
6305a203 11253 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11254 cpu_arch_flags = cpu_arch[j].flags;
11255 cpu_arch_isa = cpu_arch[j].type;
11256 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11257 if (!cpu_arch_tune_set)
11258 {
11259 cpu_arch_tune = cpu_arch_isa;
11260 cpu_arch_tune_flags = cpu_arch_isa_flags;
11261 }
11262 break;
11263 }
91d6fa6a
NC
11264 else if (*cpu_arch [j].name == '.'
11265 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11266 {
33eaf5de 11267 /* ISA extension. */
6305a203 11268 i386_cpu_flags flags;
309d3373 11269
293f5f65
L
11270 flags = cpu_flags_or (cpu_arch_flags,
11271 cpu_arch[j].flags);
81486035 11272
5b64d091 11273 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11274 {
11275 if (cpu_sub_arch_name)
11276 {
11277 char *name = cpu_sub_arch_name;
11278 cpu_sub_arch_name = concat (name,
91d6fa6a 11279 cpu_arch[j].name,
1bf57e9f 11280 (const char *) NULL);
6305a203
L
11281 free (name);
11282 }
11283 else
91d6fa6a 11284 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11285 cpu_arch_flags = flags;
a586129e 11286 cpu_arch_isa_flags = flags;
6305a203 11287 }
0089dace
L
11288 else
11289 cpu_arch_isa_flags
11290 = cpu_flags_or (cpu_arch_isa_flags,
11291 cpu_arch[j].flags);
6305a203 11292 break;
ccc9c027 11293 }
9103f4f4 11294 }
6305a203 11295
293f5f65
L
11296 if (j >= ARRAY_SIZE (cpu_arch))
11297 {
33eaf5de 11298 /* Disable an ISA extension. */
293f5f65
L
11299 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11300 if (strcmp (arch, cpu_noarch [j].name) == 0)
11301 {
11302 i386_cpu_flags flags;
11303
11304 flags = cpu_flags_and_not (cpu_arch_flags,
11305 cpu_noarch[j].flags);
11306 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11307 {
11308 if (cpu_sub_arch_name)
11309 {
11310 char *name = cpu_sub_arch_name;
11311 cpu_sub_arch_name = concat (arch,
11312 (const char *) NULL);
11313 free (name);
11314 }
11315 else
11316 cpu_sub_arch_name = xstrdup (arch);
11317 cpu_arch_flags = flags;
11318 cpu_arch_isa_flags = flags;
11319 }
11320 break;
11321 }
11322
11323 if (j >= ARRAY_SIZE (cpu_noarch))
11324 j = ARRAY_SIZE (cpu_arch);
11325 }
11326
91d6fa6a 11327 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11328 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11329
11330 arch = next;
9103f4f4 11331 }
293f5f65
L
11332 while (next != NULL);
11333 free (saved);
9103f4f4
L
11334 break;
11335
11336 case OPTION_MTUNE:
11337 if (*arg == '.')
2b5d6a91 11338 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11339 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11340 {
91d6fa6a 11341 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11342 {
ccc9c027 11343 cpu_arch_tune_set = 1;
91d6fa6a
NC
11344 cpu_arch_tune = cpu_arch [j].type;
11345 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11346 break;
11347 }
11348 }
91d6fa6a 11349 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11350 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11351 break;
11352
1efbbeb4
L
11353 case OPTION_MMNEMONIC:
11354 if (strcasecmp (arg, "att") == 0)
11355 intel_mnemonic = 0;
11356 else if (strcasecmp (arg, "intel") == 0)
11357 intel_mnemonic = 1;
11358 else
2b5d6a91 11359 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11360 break;
11361
11362 case OPTION_MSYNTAX:
11363 if (strcasecmp (arg, "att") == 0)
11364 intel_syntax = 0;
11365 else if (strcasecmp (arg, "intel") == 0)
11366 intel_syntax = 1;
11367 else
2b5d6a91 11368 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11369 break;
11370
11371 case OPTION_MINDEX_REG:
11372 allow_index_reg = 1;
11373 break;
11374
11375 case OPTION_MNAKED_REG:
11376 allow_naked_reg = 1;
11377 break;
11378
c0f3af97
L
11379 case OPTION_MSSE2AVX:
11380 sse2avx = 1;
11381 break;
11382
daf50ae7
L
11383 case OPTION_MSSE_CHECK:
11384 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11385 sse_check = check_error;
daf50ae7 11386 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11387 sse_check = check_warning;
daf50ae7 11388 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11389 sse_check = check_none;
daf50ae7 11390 else
2b5d6a91 11391 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11392 break;
11393
7bab8ab5
JB
11394 case OPTION_MOPERAND_CHECK:
11395 if (strcasecmp (arg, "error") == 0)
11396 operand_check = check_error;
11397 else if (strcasecmp (arg, "warning") == 0)
11398 operand_check = check_warning;
11399 else if (strcasecmp (arg, "none") == 0)
11400 operand_check = check_none;
11401 else
11402 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11403 break;
11404
539f890d
L
11405 case OPTION_MAVXSCALAR:
11406 if (strcasecmp (arg, "128") == 0)
11407 avxscalar = vex128;
11408 else if (strcasecmp (arg, "256") == 0)
11409 avxscalar = vex256;
11410 else
2b5d6a91 11411 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11412 break;
11413
03751133
L
11414 case OPTION_MVEXWIG:
11415 if (strcmp (arg, "0") == 0)
40c9c8de 11416 vexwig = vexw0;
03751133 11417 else if (strcmp (arg, "1") == 0)
40c9c8de 11418 vexwig = vexw1;
03751133
L
11419 else
11420 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11421 break;
11422
7e8b059b
L
11423 case OPTION_MADD_BND_PREFIX:
11424 add_bnd_prefix = 1;
11425 break;
11426
43234a1e
L
11427 case OPTION_MEVEXLIG:
11428 if (strcmp (arg, "128") == 0)
11429 evexlig = evexl128;
11430 else if (strcmp (arg, "256") == 0)
11431 evexlig = evexl256;
11432 else if (strcmp (arg, "512") == 0)
11433 evexlig = evexl512;
11434 else
11435 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11436 break;
11437
d3d3c6db
IT
11438 case OPTION_MEVEXRCIG:
11439 if (strcmp (arg, "rne") == 0)
11440 evexrcig = rne;
11441 else if (strcmp (arg, "rd") == 0)
11442 evexrcig = rd;
11443 else if (strcmp (arg, "ru") == 0)
11444 evexrcig = ru;
11445 else if (strcmp (arg, "rz") == 0)
11446 evexrcig = rz;
11447 else
11448 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11449 break;
11450
43234a1e
L
11451 case OPTION_MEVEXWIG:
11452 if (strcmp (arg, "0") == 0)
11453 evexwig = evexw0;
11454 else if (strcmp (arg, "1") == 0)
11455 evexwig = evexw1;
11456 else
11457 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11458 break;
11459
167ad85b
TG
11460# if defined (TE_PE) || defined (TE_PEP)
11461 case OPTION_MBIG_OBJ:
11462 use_big_obj = 1;
11463 break;
11464#endif
11465
d1982f93 11466 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11467 if (strcasecmp (arg, "yes") == 0)
11468 omit_lock_prefix = 1;
11469 else if (strcasecmp (arg, "no") == 0)
11470 omit_lock_prefix = 0;
11471 else
11472 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11473 break;
11474
e4e00185
AS
11475 case OPTION_MFENCE_AS_LOCK_ADD:
11476 if (strcasecmp (arg, "yes") == 0)
11477 avoid_fence = 1;
11478 else if (strcasecmp (arg, "no") == 0)
11479 avoid_fence = 0;
11480 else
11481 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11482 break;
11483
0cb4071e
L
11484 case OPTION_MRELAX_RELOCATIONS:
11485 if (strcasecmp (arg, "yes") == 0)
11486 generate_relax_relocations = 1;
11487 else if (strcasecmp (arg, "no") == 0)
11488 generate_relax_relocations = 0;
11489 else
11490 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11491 break;
11492
5db04b09 11493 case OPTION_MAMD64:
e89c5eaa 11494 intel64 = 0;
5db04b09
L
11495 break;
11496
11497 case OPTION_MINTEL64:
e89c5eaa 11498 intel64 = 1;
5db04b09
L
11499 break;
11500
b6f8c7c4
L
11501 case 'O':
11502 if (arg == NULL)
11503 {
11504 optimize = 1;
11505 /* Turn off -Os. */
11506 optimize_for_space = 0;
11507 }
11508 else if (*arg == 's')
11509 {
11510 optimize_for_space = 1;
11511 /* Turn on all encoding optimizations. */
41fd2579 11512 optimize = INT_MAX;
b6f8c7c4
L
11513 }
11514 else
11515 {
11516 optimize = atoi (arg);
11517 /* Turn off -Os. */
11518 optimize_for_space = 0;
11519 }
11520 break;
11521
252b5132
RH
11522 default:
11523 return 0;
11524 }
11525 return 1;
11526}
11527
8a2c8fef
L
11528#define MESSAGE_TEMPLATE \
11529" "
11530
293f5f65
L
11531static char *
11532output_message (FILE *stream, char *p, char *message, char *start,
11533 int *left_p, const char *name, int len)
11534{
11535 int size = sizeof (MESSAGE_TEMPLATE);
11536 int left = *left_p;
11537
11538 /* Reserve 2 spaces for ", " or ",\0" */
11539 left -= len + 2;
11540
11541 /* Check if there is any room. */
11542 if (left >= 0)
11543 {
11544 if (p != start)
11545 {
11546 *p++ = ',';
11547 *p++ = ' ';
11548 }
11549 p = mempcpy (p, name, len);
11550 }
11551 else
11552 {
11553 /* Output the current message now and start a new one. */
11554 *p++ = ',';
11555 *p = '\0';
11556 fprintf (stream, "%s\n", message);
11557 p = start;
11558 left = size - (start - message) - len - 2;
11559
11560 gas_assert (left >= 0);
11561
11562 p = mempcpy (p, name, len);
11563 }
11564
11565 *left_p = left;
11566 return p;
11567}
11568
8a2c8fef 11569static void
1ded5609 11570show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11571{
11572 static char message[] = MESSAGE_TEMPLATE;
11573 char *start = message + 27;
11574 char *p;
11575 int size = sizeof (MESSAGE_TEMPLATE);
11576 int left;
11577 const char *name;
11578 int len;
11579 unsigned int j;
11580
11581 p = start;
11582 left = size - (start - message);
11583 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11584 {
11585 /* Should it be skipped? */
11586 if (cpu_arch [j].skip)
11587 continue;
11588
11589 name = cpu_arch [j].name;
11590 len = cpu_arch [j].len;
11591 if (*name == '.')
11592 {
11593 /* It is an extension. Skip if we aren't asked to show it. */
11594 if (ext)
11595 {
11596 name++;
11597 len--;
11598 }
11599 else
11600 continue;
11601 }
11602 else if (ext)
11603 {
11604 /* It is an processor. Skip if we show only extension. */
11605 continue;
11606 }
1ded5609
JB
11607 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11608 {
11609 /* It is an impossible processor - skip. */
11610 continue;
11611 }
8a2c8fef 11612
293f5f65 11613 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11614 }
11615
293f5f65
L
11616 /* Display disabled extensions. */
11617 if (ext)
11618 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11619 {
11620 name = cpu_noarch [j].name;
11621 len = cpu_noarch [j].len;
11622 p = output_message (stream, p, message, start, &left, name,
11623 len);
11624 }
11625
8a2c8fef
L
11626 *p = '\0';
11627 fprintf (stream, "%s\n", message);
11628}
11629
252b5132 11630void
8a2c8fef 11631md_show_usage (FILE *stream)
252b5132 11632{
4cc782b5
ILT
11633#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11634 fprintf (stream, _("\
d4693039 11635 -Qy, -Qn ignored\n\
a38cf1db 11636 -V print assembler version number\n\
b3b91714
AM
11637 -k ignored\n"));
11638#endif
11639 fprintf (stream, _("\
12b55ccc 11640 -n Do not optimize code alignment\n\
b3b91714
AM
11641 -q quieten some warnings\n"));
11642#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11643 fprintf (stream, _("\
a38cf1db 11644 -s ignored\n"));
b3b91714 11645#endif
d7f449c0
L
11646#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11647 || defined (TE_PE) || defined (TE_PEP))
751d281c 11648 fprintf (stream, _("\
570561f7 11649 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11650#endif
b3b91714
AM
11651#ifdef SVR4_COMMENT_CHARS
11652 fprintf (stream, _("\
11653 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11654#else
11655 fprintf (stream, _("\
b3b91714 11656 --divide ignored\n"));
4cc782b5 11657#endif
9103f4f4 11658 fprintf (stream, _("\
6305a203 11659 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11660 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11661 show_arch (stream, 0, 1);
8a2c8fef
L
11662 fprintf (stream, _("\
11663 EXTENSION is combination of:\n"));
1ded5609 11664 show_arch (stream, 1, 0);
6305a203 11665 fprintf (stream, _("\
8a2c8fef 11666 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11667 show_arch (stream, 0, 0);
ba104c83 11668 fprintf (stream, _("\
c0f3af97
L
11669 -msse2avx encode SSE instructions with VEX prefix\n"));
11670 fprintf (stream, _("\
7c5c05ef 11671 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11672 check SSE instructions\n"));
11673 fprintf (stream, _("\
7c5c05ef 11674 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11675 check operand combinations for validity\n"));
11676 fprintf (stream, _("\
7c5c05ef
L
11677 -mavxscalar=[128|256] (default: 128)\n\
11678 encode scalar AVX instructions with specific vector\n\
539f890d
L
11679 length\n"));
11680 fprintf (stream, _("\
03751133
L
11681 -mvexwig=[0|1] (default: 0)\n\
11682 encode VEX instructions with specific VEX.W value\n\
11683 for VEX.W bit ignored instructions\n"));
11684 fprintf (stream, _("\
7c5c05ef
L
11685 -mevexlig=[128|256|512] (default: 128)\n\
11686 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11687 length\n"));
11688 fprintf (stream, _("\
7c5c05ef
L
11689 -mevexwig=[0|1] (default: 0)\n\
11690 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11691 for EVEX.W bit ignored instructions\n"));
11692 fprintf (stream, _("\
7c5c05ef 11693 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11694 encode EVEX instructions with specific EVEX.RC value\n\
11695 for SAE-only ignored instructions\n"));
11696 fprintf (stream, _("\
7c5c05ef
L
11697 -mmnemonic=[att|intel] "));
11698 if (SYSV386_COMPAT)
11699 fprintf (stream, _("(default: att)\n"));
11700 else
11701 fprintf (stream, _("(default: intel)\n"));
11702 fprintf (stream, _("\
11703 use AT&T/Intel mnemonic\n"));
ba104c83 11704 fprintf (stream, _("\
7c5c05ef
L
11705 -msyntax=[att|intel] (default: att)\n\
11706 use AT&T/Intel syntax\n"));
ba104c83
L
11707 fprintf (stream, _("\
11708 -mindex-reg support pseudo index registers\n"));
11709 fprintf (stream, _("\
11710 -mnaked-reg don't require `%%' prefix for registers\n"));
11711 fprintf (stream, _("\
7e8b059b 11712 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11713#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11714 fprintf (stream, _("\
11715 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11716 fprintf (stream, _("\
11717 -mx86-used-note=[no|yes] "));
11718 if (DEFAULT_X86_USED_NOTE)
11719 fprintf (stream, _("(default: yes)\n"));
11720 else
11721 fprintf (stream, _("(default: no)\n"));
11722 fprintf (stream, _("\
11723 generate x86 used ISA and feature properties\n"));
11724#endif
11725#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11726 fprintf (stream, _("\
11727 -mbig-obj generate big object files\n"));
11728#endif
d022bddd 11729 fprintf (stream, _("\
7c5c05ef 11730 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11731 strip all lock prefixes\n"));
5db04b09 11732 fprintf (stream, _("\
7c5c05ef 11733 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11734 encode lfence, mfence and sfence as\n\
11735 lock addl $0x0, (%%{re}sp)\n"));
11736 fprintf (stream, _("\
7c5c05ef
L
11737 -mrelax-relocations=[no|yes] "));
11738 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11739 fprintf (stream, _("(default: yes)\n"));
11740 else
11741 fprintf (stream, _("(default: no)\n"));
11742 fprintf (stream, _("\
0cb4071e
L
11743 generate relax relocations\n"));
11744 fprintf (stream, _("\
7c5c05ef 11745 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11746 fprintf (stream, _("\
11747 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11748}
11749
3e73aa7c 11750#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11751 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11752 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11753
11754/* Pick the target format to use. */
11755
47926f60 11756const char *
e3bb37b5 11757i386_target_format (void)
252b5132 11758{
351f65ca
L
11759 if (!strncmp (default_arch, "x86_64", 6))
11760 {
11761 update_code_flag (CODE_64BIT, 1);
11762 if (default_arch[6] == '\0')
7f56bc95 11763 x86_elf_abi = X86_64_ABI;
351f65ca 11764 else
7f56bc95 11765 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11766 }
3e73aa7c 11767 else if (!strcmp (default_arch, "i386"))
78f12dd3 11768 update_code_flag (CODE_32BIT, 1);
5197d474
L
11769 else if (!strcmp (default_arch, "iamcu"))
11770 {
11771 update_code_flag (CODE_32BIT, 1);
11772 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11773 {
11774 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11775 cpu_arch_name = "iamcu";
11776 cpu_sub_arch_name = NULL;
11777 cpu_arch_flags = iamcu_flags;
11778 cpu_arch_isa = PROCESSOR_IAMCU;
11779 cpu_arch_isa_flags = iamcu_flags;
11780 if (!cpu_arch_tune_set)
11781 {
11782 cpu_arch_tune = cpu_arch_isa;
11783 cpu_arch_tune_flags = cpu_arch_isa_flags;
11784 }
11785 }
8d471ec1 11786 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11787 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11788 cpu_arch_name);
11789 }
3e73aa7c 11790 else
2b5d6a91 11791 as_fatal (_("unknown architecture"));
89507696
JB
11792
11793 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11794 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11795 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11796 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11797
252b5132
RH
11798 switch (OUTPUT_FLAVOR)
11799 {
9384f2ff 11800#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11801 case bfd_target_aout_flavour:
47926f60 11802 return AOUT_TARGET_FORMAT;
4c63da97 11803#endif
9384f2ff
AM
11804#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11805# if defined (TE_PE) || defined (TE_PEP)
11806 case bfd_target_coff_flavour:
167ad85b
TG
11807 if (flag_code == CODE_64BIT)
11808 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11809 else
11810 return "pe-i386";
9384f2ff 11811# elif defined (TE_GO32)
0561d57c
JK
11812 case bfd_target_coff_flavour:
11813 return "coff-go32";
9384f2ff 11814# else
252b5132
RH
11815 case bfd_target_coff_flavour:
11816 return "coff-i386";
9384f2ff 11817# endif
4c63da97 11818#endif
3e73aa7c 11819#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11820 case bfd_target_elf_flavour:
3e73aa7c 11821 {
351f65ca
L
11822 const char *format;
11823
11824 switch (x86_elf_abi)
4fa24527 11825 {
351f65ca
L
11826 default:
11827 format = ELF_TARGET_FORMAT;
11828 break;
7f56bc95 11829 case X86_64_ABI:
351f65ca 11830 use_rela_relocations = 1;
4fa24527 11831 object_64bit = 1;
351f65ca
L
11832 format = ELF_TARGET_FORMAT64;
11833 break;
7f56bc95 11834 case X86_64_X32_ABI:
4fa24527 11835 use_rela_relocations = 1;
351f65ca 11836 object_64bit = 1;
862be3fb 11837 disallow_64bit_reloc = 1;
351f65ca
L
11838 format = ELF_TARGET_FORMAT32;
11839 break;
4fa24527 11840 }
3632d14b 11841 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11842 {
7f56bc95 11843 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11844 as_fatal (_("Intel L1OM is 64bit only"));
11845 return ELF_TARGET_L1OM_FORMAT;
11846 }
b49f93f6 11847 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11848 {
11849 if (x86_elf_abi != X86_64_ABI)
11850 as_fatal (_("Intel K1OM is 64bit only"));
11851 return ELF_TARGET_K1OM_FORMAT;
11852 }
81486035
L
11853 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11854 {
11855 if (x86_elf_abi != I386_ABI)
11856 as_fatal (_("Intel MCU is 32bit only"));
11857 return ELF_TARGET_IAMCU_FORMAT;
11858 }
8a9036a4 11859 else
351f65ca 11860 return format;
3e73aa7c 11861 }
e57f8c65
TG
11862#endif
11863#if defined (OBJ_MACH_O)
11864 case bfd_target_mach_o_flavour:
d382c579
TG
11865 if (flag_code == CODE_64BIT)
11866 {
11867 use_rela_relocations = 1;
11868 object_64bit = 1;
11869 return "mach-o-x86-64";
11870 }
11871 else
11872 return "mach-o-i386";
4c63da97 11873#endif
252b5132
RH
11874 default:
11875 abort ();
11876 return NULL;
11877 }
11878}
11879
47926f60 11880#endif /* OBJ_MAYBE_ more than one */
252b5132 11881\f
252b5132 11882symbolS *
7016a5d5 11883md_undefined_symbol (char *name)
252b5132 11884{
18dc2407
ILT
11885 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11886 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11887 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11888 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11889 {
11890 if (!GOT_symbol)
11891 {
11892 if (symbol_find (name))
11893 as_bad (_("GOT already in symbol table"));
11894 GOT_symbol = symbol_new (name, undefined_section,
11895 (valueT) 0, &zero_address_frag);
11896 };
11897 return GOT_symbol;
11898 }
252b5132
RH
11899 return 0;
11900}
11901
11902/* Round up a section size to the appropriate boundary. */
47926f60 11903
252b5132 11904valueT
7016a5d5 11905md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11906{
4c63da97
AM
11907#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11908 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11909 {
11910 /* For a.out, force the section size to be aligned. If we don't do
11911 this, BFD will align it for us, but it will not write out the
11912 final bytes of the section. This may be a bug in BFD, but it is
11913 easier to fix it here since that is how the other a.out targets
11914 work. */
11915 int align;
11916
fd361982 11917 align = bfd_section_alignment (segment);
8d3842cd 11918 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11919 }
252b5132
RH
11920#endif
11921
11922 return size;
11923}
11924
11925/* On the i386, PC-relative offsets are relative to the start of the
11926 next instruction. That is, the address of the offset, plus its
11927 size, since the offset is always the last part of the insn. */
11928
11929long
e3bb37b5 11930md_pcrel_from (fixS *fixP)
252b5132
RH
11931{
11932 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11933}
11934
11935#ifndef I386COFF
11936
11937static void
e3bb37b5 11938s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11939{
29b0f896 11940 int temp;
252b5132 11941
8a75718c
JB
11942#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11943 if (IS_ELF)
11944 obj_elf_section_change_hook ();
11945#endif
252b5132
RH
11946 temp = get_absolute_expression ();
11947 subseg_set (bss_section, (subsegT) temp);
11948 demand_empty_rest_of_line ();
11949}
11950
11951#endif
11952
252b5132 11953void
e3bb37b5 11954i386_validate_fix (fixS *fixp)
252b5132 11955{
02a86693 11956 if (fixp->fx_subsy)
252b5132 11957 {
02a86693 11958 if (fixp->fx_subsy == GOT_symbol)
23df1078 11959 {
02a86693
L
11960 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11961 {
11962 if (!object_64bit)
11963 abort ();
11964#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11965 if (fixp->fx_tcbit2)
56ceb5b5
L
11966 fixp->fx_r_type = (fixp->fx_tcbit
11967 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11968 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11969 else
11970#endif
11971 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11972 }
d6ab8113 11973 else
02a86693
L
11974 {
11975 if (!object_64bit)
11976 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11977 else
11978 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11979 }
11980 fixp->fx_subsy = 0;
23df1078 11981 }
252b5132 11982 }
02a86693
L
11983#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11984 else if (!object_64bit)
11985 {
11986 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11987 && fixp->fx_tcbit2)
11988 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11989 }
11990#endif
252b5132
RH
11991}
11992
252b5132 11993arelent *
7016a5d5 11994tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11995{
11996 arelent *rel;
11997 bfd_reloc_code_real_type code;
11998
11999 switch (fixp->fx_r_type)
12000 {
8ce3d284 12001#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
12002 case BFD_RELOC_SIZE32:
12003 case BFD_RELOC_SIZE64:
12004 if (S_IS_DEFINED (fixp->fx_addsy)
12005 && !S_IS_EXTERNAL (fixp->fx_addsy))
12006 {
12007 /* Resolve size relocation against local symbol to size of
12008 the symbol plus addend. */
12009 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12010 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12011 && !fits_in_unsigned_long (value))
12012 as_bad_where (fixp->fx_file, fixp->fx_line,
12013 _("symbol size computation overflow"));
12014 fixp->fx_addsy = NULL;
12015 fixp->fx_subsy = NULL;
12016 md_apply_fix (fixp, (valueT *) &value, NULL);
12017 return NULL;
12018 }
8ce3d284 12019#endif
1a0670f3 12020 /* Fall through. */
8fd4256d 12021
3e73aa7c
JH
12022 case BFD_RELOC_X86_64_PLT32:
12023 case BFD_RELOC_X86_64_GOT32:
12024 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12025 case BFD_RELOC_X86_64_GOTPCRELX:
12026 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
12027 case BFD_RELOC_386_PLT32:
12028 case BFD_RELOC_386_GOT32:
02a86693 12029 case BFD_RELOC_386_GOT32X:
252b5132
RH
12030 case BFD_RELOC_386_GOTOFF:
12031 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
12032 case BFD_RELOC_386_TLS_GD:
12033 case BFD_RELOC_386_TLS_LDM:
12034 case BFD_RELOC_386_TLS_LDO_32:
12035 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12036 case BFD_RELOC_386_TLS_IE:
12037 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
12038 case BFD_RELOC_386_TLS_LE_32:
12039 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
12040 case BFD_RELOC_386_TLS_GOTDESC:
12041 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
12042 case BFD_RELOC_X86_64_TLSGD:
12043 case BFD_RELOC_X86_64_TLSLD:
12044 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12045 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
12046 case BFD_RELOC_X86_64_GOTTPOFF:
12047 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
12048 case BFD_RELOC_X86_64_TPOFF64:
12049 case BFD_RELOC_X86_64_GOTOFF64:
12050 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
12051 case BFD_RELOC_X86_64_GOT64:
12052 case BFD_RELOC_X86_64_GOTPCREL64:
12053 case BFD_RELOC_X86_64_GOTPC64:
12054 case BFD_RELOC_X86_64_GOTPLT64:
12055 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
12056 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12057 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
12058 case BFD_RELOC_RVA:
12059 case BFD_RELOC_VTABLE_ENTRY:
12060 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
12061#ifdef TE_PE
12062 case BFD_RELOC_32_SECREL:
12063#endif
252b5132
RH
12064 code = fixp->fx_r_type;
12065 break;
dbbaec26
L
12066 case BFD_RELOC_X86_64_32S:
12067 if (!fixp->fx_pcrel)
12068 {
12069 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12070 code = fixp->fx_r_type;
12071 break;
12072 }
1a0670f3 12073 /* Fall through. */
252b5132 12074 default:
93382f6d 12075 if (fixp->fx_pcrel)
252b5132 12076 {
93382f6d
AM
12077 switch (fixp->fx_size)
12078 {
12079 default:
b091f402
AM
12080 as_bad_where (fixp->fx_file, fixp->fx_line,
12081 _("can not do %d byte pc-relative relocation"),
12082 fixp->fx_size);
93382f6d
AM
12083 code = BFD_RELOC_32_PCREL;
12084 break;
12085 case 1: code = BFD_RELOC_8_PCREL; break;
12086 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12087 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12088#ifdef BFD64
12089 case 8: code = BFD_RELOC_64_PCREL; break;
12090#endif
93382f6d
AM
12091 }
12092 }
12093 else
12094 {
12095 switch (fixp->fx_size)
12096 {
12097 default:
b091f402
AM
12098 as_bad_where (fixp->fx_file, fixp->fx_line,
12099 _("can not do %d byte relocation"),
12100 fixp->fx_size);
93382f6d
AM
12101 code = BFD_RELOC_32;
12102 break;
12103 case 1: code = BFD_RELOC_8; break;
12104 case 2: code = BFD_RELOC_16; break;
12105 case 4: code = BFD_RELOC_32; break;
937149dd 12106#ifdef BFD64
3e73aa7c 12107 case 8: code = BFD_RELOC_64; break;
937149dd 12108#endif
93382f6d 12109 }
252b5132
RH
12110 }
12111 break;
12112 }
252b5132 12113
d182319b
JB
12114 if ((code == BFD_RELOC_32
12115 || code == BFD_RELOC_32_PCREL
12116 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12117 && GOT_symbol
12118 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12119 {
4fa24527 12120 if (!object_64bit)
d6ab8113
JB
12121 code = BFD_RELOC_386_GOTPC;
12122 else
12123 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12124 }
7b81dfbb
AJ
12125 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12126 && GOT_symbol
12127 && fixp->fx_addsy == GOT_symbol)
12128 {
12129 code = BFD_RELOC_X86_64_GOTPC64;
12130 }
252b5132 12131
add39d23
TS
12132 rel = XNEW (arelent);
12133 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12134 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12135
12136 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12137
3e73aa7c
JH
12138 if (!use_rela_relocations)
12139 {
12140 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12141 vtable entry to be used in the relocation's section offset. */
12142 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12143 rel->address = fixp->fx_offset;
fbeb56a4
DK
12144#if defined (OBJ_COFF) && defined (TE_PE)
12145 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12146 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12147 else
12148#endif
c6682705 12149 rel->addend = 0;
3e73aa7c
JH
12150 }
12151 /* Use the rela in 64bit mode. */
252b5132 12152 else
3e73aa7c 12153 {
862be3fb
L
12154 if (disallow_64bit_reloc)
12155 switch (code)
12156 {
862be3fb
L
12157 case BFD_RELOC_X86_64_DTPOFF64:
12158 case BFD_RELOC_X86_64_TPOFF64:
12159 case BFD_RELOC_64_PCREL:
12160 case BFD_RELOC_X86_64_GOTOFF64:
12161 case BFD_RELOC_X86_64_GOT64:
12162 case BFD_RELOC_X86_64_GOTPCREL64:
12163 case BFD_RELOC_X86_64_GOTPC64:
12164 case BFD_RELOC_X86_64_GOTPLT64:
12165 case BFD_RELOC_X86_64_PLTOFF64:
12166 as_bad_where (fixp->fx_file, fixp->fx_line,
12167 _("cannot represent relocation type %s in x32 mode"),
12168 bfd_get_reloc_code_name (code));
12169 break;
12170 default:
12171 break;
12172 }
12173
062cd5e7
AS
12174 if (!fixp->fx_pcrel)
12175 rel->addend = fixp->fx_offset;
12176 else
12177 switch (code)
12178 {
12179 case BFD_RELOC_X86_64_PLT32:
12180 case BFD_RELOC_X86_64_GOT32:
12181 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12182 case BFD_RELOC_X86_64_GOTPCRELX:
12183 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12184 case BFD_RELOC_X86_64_TLSGD:
12185 case BFD_RELOC_X86_64_TLSLD:
12186 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12187 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12188 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12189 rel->addend = fixp->fx_offset - fixp->fx_size;
12190 break;
12191 default:
12192 rel->addend = (section->vma
12193 - fixp->fx_size
12194 + fixp->fx_addnumber
12195 + md_pcrel_from (fixp));
12196 break;
12197 }
3e73aa7c
JH
12198 }
12199
252b5132
RH
12200 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12201 if (rel->howto == NULL)
12202 {
12203 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12204 _("cannot represent relocation type %s"),
252b5132
RH
12205 bfd_get_reloc_code_name (code));
12206 /* Set howto to a garbage value so that we can keep going. */
12207 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12208 gas_assert (rel->howto != NULL);
252b5132
RH
12209 }
12210
12211 return rel;
12212}
12213
ee86248c 12214#include "tc-i386-intel.c"
54cfded0 12215
a60de03c
JB
12216void
12217tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12218{
a60de03c
JB
12219 int saved_naked_reg;
12220 char saved_register_dot;
54cfded0 12221
a60de03c
JB
12222 saved_naked_reg = allow_naked_reg;
12223 allow_naked_reg = 1;
12224 saved_register_dot = register_chars['.'];
12225 register_chars['.'] = '.';
12226 allow_pseudo_reg = 1;
12227 expression_and_evaluate (exp);
12228 allow_pseudo_reg = 0;
12229 register_chars['.'] = saved_register_dot;
12230 allow_naked_reg = saved_naked_reg;
12231
e96d56a1 12232 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12233 {
a60de03c
JB
12234 if ((addressT) exp->X_add_number < i386_regtab_size)
12235 {
12236 exp->X_op = O_constant;
12237 exp->X_add_number = i386_regtab[exp->X_add_number]
12238 .dw2_regnum[flag_code >> 1];
12239 }
12240 else
12241 exp->X_op = O_illegal;
54cfded0 12242 }
54cfded0
AM
12243}
12244
12245void
12246tc_x86_frame_initial_instructions (void)
12247{
a60de03c
JB
12248 static unsigned int sp_regno[2];
12249
12250 if (!sp_regno[flag_code >> 1])
12251 {
12252 char *saved_input = input_line_pointer;
12253 char sp[][4] = {"esp", "rsp"};
12254 expressionS exp;
a4447b93 12255
a60de03c
JB
12256 input_line_pointer = sp[flag_code >> 1];
12257 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12258 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12259 sp_regno[flag_code >> 1] = exp.X_add_number;
12260 input_line_pointer = saved_input;
12261 }
a4447b93 12262
61ff971f
L
12263 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12264 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12265}
d2b2c203 12266
d7921315
L
12267int
12268x86_dwarf2_addr_size (void)
12269{
12270#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12271 if (x86_elf_abi == X86_64_X32_ABI)
12272 return 4;
12273#endif
12274 return bfd_arch_bits_per_address (stdoutput) / 8;
12275}
12276
d2b2c203
DJ
12277int
12278i386_elf_section_type (const char *str, size_t len)
12279{
12280 if (flag_code == CODE_64BIT
12281 && len == sizeof ("unwind") - 1
12282 && strncmp (str, "unwind", 6) == 0)
12283 return SHT_X86_64_UNWIND;
12284
12285 return -1;
12286}
bb41ade5 12287
ad5fec3b
EB
12288#ifdef TE_SOLARIS
12289void
12290i386_solaris_fix_up_eh_frame (segT sec)
12291{
12292 if (flag_code == CODE_64BIT)
12293 elf_section_type (sec) = SHT_X86_64_UNWIND;
12294}
12295#endif
12296
bb41ade5
AM
12297#ifdef TE_PE
12298void
12299tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12300{
91d6fa6a 12301 expressionS exp;
bb41ade5 12302
91d6fa6a
NC
12303 exp.X_op = O_secrel;
12304 exp.X_add_symbol = symbol;
12305 exp.X_add_number = 0;
12306 emit_expr (&exp, size);
bb41ade5
AM
12307}
12308#endif
3b22753a
L
12309
12310#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12311/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12312
01e1a5bc 12313bfd_vma
6d4af3c2 12314x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12315{
12316 if (flag_code == CODE_64BIT)
12317 {
12318 if (letter == 'l')
12319 return SHF_X86_64_LARGE;
12320
8f3bae45 12321 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12322 }
3b22753a 12323 else
8f3bae45 12324 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12325 return -1;
12326}
12327
01e1a5bc 12328bfd_vma
3b22753a
L
12329x86_64_section_word (char *str, size_t len)
12330{
8620418b 12331 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12332 return SHF_X86_64_LARGE;
12333
12334 return -1;
12335}
12336
12337static void
12338handle_large_common (int small ATTRIBUTE_UNUSED)
12339{
12340 if (flag_code != CODE_64BIT)
12341 {
12342 s_comm_internal (0, elf_common_parse);
12343 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12344 }
12345 else
12346 {
12347 static segT lbss_section;
12348 asection *saved_com_section_ptr = elf_com_section_ptr;
12349 asection *saved_bss_section = bss_section;
12350
12351 if (lbss_section == NULL)
12352 {
12353 flagword applicable;
12354 segT seg = now_seg;
12355 subsegT subseg = now_subseg;
12356
12357 /* The .lbss section is for local .largecomm symbols. */
12358 lbss_section = subseg_new (".lbss", 0);
12359 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 12360 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
12361 seg_info (lbss_section)->bss = 1;
12362
12363 subseg_set (seg, subseg);
12364 }
12365
12366 elf_com_section_ptr = &_bfd_elf_large_com_section;
12367 bss_section = lbss_section;
12368
12369 s_comm_internal (0, elf_common_parse);
12370
12371 elf_com_section_ptr = saved_com_section_ptr;
12372 bss_section = saved_bss_section;
12373 }
12374}
12375#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.195463 seconds and 4 git commands to generate.