gas: avoid spurious failures in non-ELF targets in the SPARC testsuite.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
6f2750fe 2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d
L
68#define LOCK_PREFIX 5
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
84#define XMMWORD_MNEM_SUFFIX 'x'
c0f3af97 85#define YMMWORD_MNEM_SUFFIX 'y'
43234a1e 86#define ZMMWORD_MNEM_SUFFIX 'z'
6305a203
L
87/* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89#define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91#define END_OF_INSN '\0'
92
93/*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100typedef struct
101{
d3ce72d0
NC
102 const insn_template *start;
103 const insn_template *end;
6305a203
L
104}
105templates;
106
107/* 386 operand encoding bytes: see 386 book for details of this. */
108typedef struct
109{
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113}
114modrm_byte;
115
116/* x86-64 extension prefix. */
117typedef int rex_byte;
118
6305a203
L
119/* 386 opcode byte to code indirect addressing. */
120typedef struct
121{
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125}
126sib_byte;
127
6305a203
L
128/* x86 arch names, types and features */
129typedef struct
130{
131 const char *name; /* arch name */
8a2c8fef 132 unsigned int len; /* arch string length */
6305a203
L
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 135 unsigned int skip; /* show_arch should skip this. */
6305a203
L
136}
137arch_entry;
138
293f5f65
L
139/* Used to turn off indicated flags. */
140typedef struct
141{
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145}
146noarch_entry;
147
78f12dd3 148static void update_code_flag (int, int);
e3bb37b5
L
149static void set_code_flag (int);
150static void set_16bit_gcc_code_flag (int);
151static void set_intel_syntax (int);
1efbbeb4 152static void set_intel_mnemonic (int);
db51cc60 153static void set_allow_index_reg (int);
7bab8ab5 154static void set_check (int);
e3bb37b5 155static void set_cpu_arch (int);
6482c264 156#ifdef TE_PE
e3bb37b5 157static void pe_directive_secrel (int);
6482c264 158#endif
e3bb37b5
L
159static void signed_cons (int);
160static char *output_invalid (int c);
ee86248c
JB
161static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
a7619375 165static int i386_att_operand (char *);
e3bb37b5 166static int i386_intel_operand (char *, int);
ee86248c
JB
167static int i386_intel_simplify (expressionS *);
168static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
169static const reg_entry *parse_register (char *, char **);
170static char *parse_insn (char *, char *);
171static char *parse_operands (char *, const char *);
172static void swap_operands (void);
4d456e3d 173static void swap_2_operands (int, int);
e3bb37b5
L
174static void optimize_imm (void);
175static void optimize_disp (void);
83b16ac6 176static const insn_template *match_template (char);
e3bb37b5
L
177static int check_string (void);
178static int process_suffix (void);
179static int check_byte_reg (void);
180static int check_long_reg (void);
181static int check_qword_reg (void);
182static int check_word_reg (void);
183static int finalize_imm (void);
184static int process_operands (void);
185static const seg_entry *build_modrm_byte (void);
186static void output_insn (void);
187static void output_imm (fragS *, offsetT);
188static void output_disp (fragS *, offsetT);
29b0f896 189#ifndef I386COFF
e3bb37b5 190static void s_bss (int);
252b5132 191#endif
17d4e2a2
L
192#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193static void handle_large_common (int small ATTRIBUTE_UNUSED);
194#endif
252b5132 195
a847613f 196static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 197
43234a1e
L
198/* This struct describes rounding control and SAE in the instruction. */
199struct RC_Operation
200{
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210};
211
212static struct RC_Operation rc_op;
213
214/* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217struct Mask_Operation
218{
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223};
224
225static struct Mask_Operation mask_op;
226
227/* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229struct Broadcast_Operation
230{
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236};
237
238static struct Broadcast_Operation broadcast_op;
239
c0f3af97
L
240/* VEX prefix. */
241typedef struct
242{
43234a1e
L
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
c0f3af97
L
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248} vex_prefix;
249
252b5132 250/* 'md_assemble ()' gathers together information and puts it into a
47926f60 251 i386_insn. */
252b5132 252
520dc8e8
AM
253union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
a65babc9
L
260enum i386_error
261 {
86e026a4 262 operand_size_mismatch,
a65babc9
L
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
6c30d220
L
271 unsupported,
272 invalid_vsib_address,
7bab8ab5 273 invalid_vector_register_set,
43234a1e
L
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
a65babc9
L
285 };
286
252b5132
RH
287struct _i386_insn
288 {
47926f60 289 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 290 insn_template tm;
252b5132 291
7d5e4556
L
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
252b5132
RH
294 char suffix;
295
47926f60 296 /* OPERANDS gives the number of given operands. */
252b5132
RH
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
47926f60 301 operands. */
252b5132
RH
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 305 use OP[i] for the corresponding operand. */
40fb9820 306 i386_operand_type types[MAX_OPERANDS];
252b5132 307
520dc8e8
AM
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
252b5132 311
3e73aa7c
JH
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314#define Operand_PCrel 1
315
252b5132 316 /* Relocation type for operand */
f86103b7 317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 318
252b5132
RH
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 326 explicit segment overrides are given. */
ce8a8b2f 327 const seg_entry *seg[2];
252b5132 328
8325cc63
JB
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
252b5132
RH
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 338 addressing modes of this insn are encoded. */
252b5132 339 modrm_byte rm;
3e73aa7c 340 rex_byte rex;
43234a1e 341 rex_byte vrex;
252b5132 342 sib_byte sib;
c0f3af97 343 vex_prefix vex;
b6169b20 344
43234a1e
L
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
b6169b20 357 /* Swap operand in encoding. */
4473e004 358 unsigned int swap_operand;
891edac4 359
a501d77e
L
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
f8a5c266 367
d5de92cf
L
368 /* REP prefix. */
369 const char *rep_prefix;
370
165de32a
L
371 /* HLE prefix. */
372 const char *hle_prefix;
42164a71 373
7e8b059b
L
374 /* Have BND prefix. */
375 const char *bnd_prefix;
376
43234a1e
L
377 /* Need VREX to support upper 16 registers. */
378 int need_vrex;
379
891edac4 380 /* Error message. */
a65babc9 381 enum i386_error error;
252b5132
RH
382 };
383
384typedef struct _i386_insn i386_insn;
385
43234a1e
L
386/* Link RC type with corresponding string, that'll be looked for in
387 asm. */
388struct RC_name
389{
390 enum rc_type type;
391 const char *name;
392 unsigned int len;
393};
394
395static const struct RC_name RC_NamesTable[] =
396{
397 { rne, STRING_COMMA_LEN ("rn-sae") },
398 { rd, STRING_COMMA_LEN ("rd-sae") },
399 { ru, STRING_COMMA_LEN ("ru-sae") },
400 { rz, STRING_COMMA_LEN ("rz-sae") },
401 { saeonly, STRING_COMMA_LEN ("sae") },
402};
403
252b5132
RH
404/* List of chars besides those in app.c:symbol_chars that can start an
405 operand. Used to prevent the scrubber eating vital white-space. */
43234a1e 406const char extra_symbol_chars[] = "*%-([{"
252b5132 407#ifdef LEX_AT
32137342
NC
408 "@"
409#endif
410#ifdef LEX_QM
411 "?"
252b5132 412#endif
32137342 413 ;
252b5132 414
29b0f896
AM
415#if (defined (TE_I386AIX) \
416 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 417 && !defined (TE_GNU) \
29b0f896 418 && !defined (TE_LINUX) \
8d63c93e
RM
419 && !defined (TE_NACL) \
420 && !defined (TE_NETWARE) \
29b0f896 421 && !defined (TE_FreeBSD) \
5b806d27 422 && !defined (TE_DragonFly) \
29b0f896 423 && !defined (TE_NetBSD)))
252b5132 424/* This array holds the chars that always start a comment. If the
b3b91714
AM
425 pre-processor is disabled, these aren't very useful. The option
426 --divide will remove '/' from this list. */
427const char *i386_comment_chars = "#/";
428#define SVR4_COMMENT_CHARS 1
252b5132 429#define PREFIX_SEPARATOR '\\'
252b5132 430
b3b91714
AM
431#else
432const char *i386_comment_chars = "#";
433#define PREFIX_SEPARATOR '/'
434#endif
435
252b5132
RH
436/* This array holds the chars that only start a comment at the beginning of
437 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
438 .line and .file directives will appear in the pre-processed output.
439 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 440 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
441 #NO_APP at the beginning of its output.
442 Also note that comments started like this one will always work if
252b5132 443 '/' isn't otherwise defined. */
b3b91714 444const char line_comment_chars[] = "#/";
252b5132 445
63a0b638 446const char line_separator_chars[] = ";";
252b5132 447
ce8a8b2f
AM
448/* Chars that can be used to separate mant from exp in floating point
449 nums. */
252b5132
RH
450const char EXP_CHARS[] = "eE";
451
ce8a8b2f
AM
452/* Chars that mean this number is a floating point constant
453 As in 0f12.456
454 or 0d1.2345e12. */
252b5132
RH
455const char FLT_CHARS[] = "fFdDxX";
456
ce8a8b2f 457/* Tables for lexical analysis. */
252b5132
RH
458static char mnemonic_chars[256];
459static char register_chars[256];
460static char operand_chars[256];
461static char identifier_chars[256];
462static char digit_chars[256];
463
ce8a8b2f 464/* Lexical macros. */
252b5132
RH
465#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
466#define is_operand_char(x) (operand_chars[(unsigned char) x])
467#define is_register_char(x) (register_chars[(unsigned char) x])
468#define is_space_char(x) ((x) == ' ')
469#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
470#define is_digit_char(x) (digit_chars[(unsigned char) x])
471
0234cb7c 472/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
473static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
474
475/* md_assemble() always leaves the strings it's passed unaltered. To
476 effect this we maintain a stack of saved characters that we've smashed
477 with '\0's (indicating end of strings for various sub-fields of the
47926f60 478 assembler instruction). */
252b5132 479static char save_stack[32];
ce8a8b2f 480static char *save_stack_p;
252b5132
RH
481#define END_STRING_AND_SAVE(s) \
482 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
483#define RESTORE_END_STRING(s) \
484 do { *(s) = *--save_stack_p; } while (0)
485
47926f60 486/* The instruction we're assembling. */
252b5132
RH
487static i386_insn i;
488
489/* Possible templates for current insn. */
490static const templates *current_templates;
491
31b2323c
L
492/* Per instruction expressionS buffers: max displacements & immediates. */
493static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
494static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 495
47926f60 496/* Current operand we are working on. */
ee86248c 497static int this_operand = -1;
252b5132 498
3e73aa7c
JH
499/* We support four different modes. FLAG_CODE variable is used to distinguish
500 these. */
501
502enum flag_code {
503 CODE_32BIT,
504 CODE_16BIT,
505 CODE_64BIT };
506
507static enum flag_code flag_code;
4fa24527 508static unsigned int object_64bit;
862be3fb 509static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
510static int use_rela_relocations = 0;
511
7af8ed2d
NC
512#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
513 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
514 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
515
351f65ca
L
516/* The ELF ABI to use. */
517enum x86_elf_abi
518{
519 I386_ABI,
7f56bc95
L
520 X86_64_ABI,
521 X86_64_X32_ABI
351f65ca
L
522};
523
524static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 525#endif
351f65ca 526
167ad85b
TG
527#if defined (TE_PE) || defined (TE_PEP)
528/* Use big object file format. */
529static int use_big_obj = 0;
530#endif
531
8dcea932
L
532#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
533/* 1 if generating code for a shared library. */
534static int shared = 0;
535#endif
536
47926f60
KH
537/* 1 for intel syntax,
538 0 if att syntax. */
539static int intel_syntax = 0;
252b5132 540
e89c5eaa
L
541/* 1 for Intel64 ISA,
542 0 if AMD64 ISA. */
543static int intel64;
544
1efbbeb4
L
545/* 1 for intel mnemonic,
546 0 if att mnemonic. */
547static int intel_mnemonic = !SYSV386_COMPAT;
548
5209009a 549/* 1 if support old (<= 2.8.1) versions of gcc. */
1efbbeb4
L
550static int old_gcc = OLDGCC_COMPAT;
551
a60de03c
JB
552/* 1 if pseudo registers are permitted. */
553static int allow_pseudo_reg = 0;
554
47926f60
KH
555/* 1 if register prefix % not required. */
556static int allow_naked_reg = 0;
252b5132 557
7e8b059b
L
558/* 1 if the assembler should add BND prefix for all control-tranferring
559 instructions supporting it, even if this prefix wasn't specified
560 explicitly. */
561static int add_bnd_prefix = 0;
562
ba104c83 563/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
564static int allow_index_reg = 0;
565
d022bddd
IT
566/* 1 if the assembler should ignore LOCK prefix, even if it was
567 specified explicitly. */
568static int omit_lock_prefix = 0;
569
e4e00185
AS
570/* 1 if the assembler should encode lfence, mfence, and sfence as
571 "lock addl $0, (%{re}sp)". */
572static int avoid_fence = 0;
573
0cb4071e
L
574/* 1 if the assembler should generate relax relocations. */
575
576static int generate_relax_relocations
577 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
578
7bab8ab5 579static enum check_kind
daf50ae7 580 {
7bab8ab5
JB
581 check_none = 0,
582 check_warning,
583 check_error
daf50ae7 584 }
7bab8ab5 585sse_check, operand_check = check_warning;
daf50ae7 586
2ca3ace5
L
587/* Register prefix used for error message. */
588static const char *register_prefix = "%";
589
47926f60
KH
590/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
591 leave, push, and pop instructions so that gcc has the same stack
592 frame as in 32 bit mode. */
593static char stackop_size = '\0';
eecb386c 594
12b55ccc
L
595/* Non-zero to optimize code alignment. */
596int optimize_align_code = 1;
597
47926f60
KH
598/* Non-zero to quieten some warnings. */
599static int quiet_warnings = 0;
a38cf1db 600
47926f60
KH
601/* CPU name. */
602static const char *cpu_arch_name = NULL;
6305a203 603static char *cpu_sub_arch_name = NULL;
a38cf1db 604
47926f60 605/* CPU feature flags. */
40fb9820
L
606static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
607
ccc9c027
L
608/* If we have selected a cpu we are generating instructions for. */
609static int cpu_arch_tune_set = 0;
610
9103f4f4 611/* Cpu we are generating instructions for. */
fbf3f584 612enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
613
614/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 615static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 616
ccc9c027 617/* CPU instruction set architecture used. */
fbf3f584 618enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 619
9103f4f4 620/* CPU feature flags of instruction set architecture used. */
fbf3f584 621i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 622
fddf5b5b
AM
623/* If set, conditional jumps are not automatically promoted to handle
624 larger than a byte offset. */
625static unsigned int no_cond_jump_promotion = 0;
626
c0f3af97
L
627/* Encode SSE instructions with VEX prefix. */
628static unsigned int sse2avx;
629
539f890d
L
630/* Encode scalar AVX instructions with specific vector length. */
631static enum
632 {
633 vex128 = 0,
634 vex256
635 } avxscalar;
636
43234a1e
L
637/* Encode scalar EVEX LIG instructions with specific vector length. */
638static enum
639 {
640 evexl128 = 0,
641 evexl256,
642 evexl512
643 } evexlig;
644
645/* Encode EVEX WIG instructions with specific evex.w. */
646static enum
647 {
648 evexw0 = 0,
649 evexw1
650 } evexwig;
651
d3d3c6db
IT
652/* Value to encode in EVEX RC bits, for SAE-only instructions. */
653static enum rc_type evexrcig = rne;
654
29b0f896 655/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 656static symbolS *GOT_symbol;
29b0f896 657
a4447b93
RH
658/* The dwarf2 return column, adjusted for 32 or 64 bit. */
659unsigned int x86_dwarf2_return_column;
660
661/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
662int x86_cie_data_alignment;
663
252b5132 664/* Interface to relax_segment.
fddf5b5b
AM
665 There are 3 major relax states for 386 jump insns because the
666 different types of jumps add different sizes to frags when we're
667 figuring out what sort of jump to choose to reach a given label. */
252b5132 668
47926f60 669/* Types. */
93c2a809
AM
670#define UNCOND_JUMP 0
671#define COND_JUMP 1
672#define COND_JUMP86 2
fddf5b5b 673
47926f60 674/* Sizes. */
252b5132
RH
675#define CODE16 1
676#define SMALL 0
29b0f896 677#define SMALL16 (SMALL | CODE16)
252b5132 678#define BIG 2
29b0f896 679#define BIG16 (BIG | CODE16)
252b5132
RH
680
681#ifndef INLINE
682#ifdef __GNUC__
683#define INLINE __inline__
684#else
685#define INLINE
686#endif
687#endif
688
fddf5b5b
AM
689#define ENCODE_RELAX_STATE(type, size) \
690 ((relax_substateT) (((type) << 2) | (size)))
691#define TYPE_FROM_RELAX_STATE(s) \
692 ((s) >> 2)
693#define DISP_SIZE_FROM_RELAX_STATE(s) \
694 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
695
696/* This table is used by relax_frag to promote short jumps to long
697 ones where necessary. SMALL (short) jumps may be promoted to BIG
698 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
699 don't allow a short jump in a 32 bit code segment to be promoted to
700 a 16 bit offset jump because it's slower (requires data size
701 prefix), and doesn't work, unless the destination is in the bottom
702 64k of the code segment (The top 16 bits of eip are zeroed). */
703
704const relax_typeS md_relax_table[] =
705{
24eab124
AM
706 /* The fields are:
707 1) most positive reach of this state,
708 2) most negative reach of this state,
93c2a809 709 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 710 4) which index into the table to try if we can't fit into this one. */
252b5132 711
fddf5b5b 712 /* UNCOND_JUMP states. */
93c2a809
AM
713 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
714 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
715 /* dword jmp adds 4 bytes to frag:
716 0 extra opcode bytes, 4 displacement bytes. */
252b5132 717 {0, 0, 4, 0},
93c2a809
AM
718 /* word jmp adds 2 byte2 to frag:
719 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
720 {0, 0, 2, 0},
721
93c2a809
AM
722 /* COND_JUMP states. */
723 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
724 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
725 /* dword conditionals adds 5 bytes to frag:
726 1 extra opcode byte, 4 displacement bytes. */
727 {0, 0, 5, 0},
fddf5b5b 728 /* word conditionals add 3 bytes to frag:
93c2a809
AM
729 1 extra opcode byte, 2 displacement bytes. */
730 {0, 0, 3, 0},
731
732 /* COND_JUMP86 states. */
733 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
734 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
735 /* dword conditionals adds 5 bytes to frag:
736 1 extra opcode byte, 4 displacement bytes. */
737 {0, 0, 5, 0},
738 /* word conditionals add 4 bytes to frag:
739 1 displacement byte and a 3 byte long branch insn. */
740 {0, 0, 4, 0}
252b5132
RH
741};
742
9103f4f4
L
743static const arch_entry cpu_arch[] =
744{
89507696
JB
745 /* Do not replace the first two entries - i386_target_format()
746 relies on them being there in this order. */
8a2c8fef 747 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 748 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 749 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 750 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 751 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 752 CPU_NONE_FLAGS, 0 },
8a2c8fef 753 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 754 CPU_I186_FLAGS, 0 },
8a2c8fef 755 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 756 CPU_I286_FLAGS, 0 },
8a2c8fef 757 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 758 CPU_I386_FLAGS, 0 },
8a2c8fef 759 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 760 CPU_I486_FLAGS, 0 },
8a2c8fef 761 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 762 CPU_I586_FLAGS, 0 },
8a2c8fef 763 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 764 CPU_I686_FLAGS, 0 },
8a2c8fef 765 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 766 CPU_I586_FLAGS, 0 },
8a2c8fef 767 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 768 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 769 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 770 CPU_P2_FLAGS, 0 },
8a2c8fef 771 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 772 CPU_P3_FLAGS, 0 },
8a2c8fef 773 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 774 CPU_P4_FLAGS, 0 },
8a2c8fef 775 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 776 CPU_CORE_FLAGS, 0 },
8a2c8fef 777 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 778 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 779 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 780 CPU_CORE_FLAGS, 1 },
8a2c8fef 781 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 782 CPU_CORE_FLAGS, 0 },
8a2c8fef 783 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 784 CPU_CORE2_FLAGS, 1 },
8a2c8fef 785 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 786 CPU_CORE2_FLAGS, 0 },
8a2c8fef 787 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 788 CPU_COREI7_FLAGS, 0 },
8a2c8fef 789 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 790 CPU_L1OM_FLAGS, 0 },
7a9068fe 791 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 792 CPU_K1OM_FLAGS, 0 },
81486035 793 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 794 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 795 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 796 CPU_K6_FLAGS, 0 },
8a2c8fef 797 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 798 CPU_K6_2_FLAGS, 0 },
8a2c8fef 799 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 800 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 801 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 802 CPU_K8_FLAGS, 1 },
8a2c8fef 803 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 804 CPU_K8_FLAGS, 0 },
8a2c8fef 805 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 806 CPU_K8_FLAGS, 0 },
8a2c8fef 807 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 808 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 809 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 810 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 811 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 812 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 813 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 814 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 815 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 816 CPU_BDVER4_FLAGS, 0 },
029f3522 817 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 818 CPU_ZNVER1_FLAGS, 0 },
7b458c12 819 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 820 CPU_BTVER1_FLAGS, 0 },
7b458c12 821 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 822 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 824 CPU_8087_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 826 CPU_287_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 828 CPU_387_FLAGS, 0 },
1848e567
L
829 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
830 CPU_687_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 832 CPU_MMX_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 834 CPU_SSE_FLAGS, 0 },
8a2c8fef 835 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 836 CPU_SSE2_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 838 CPU_SSE3_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 840 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 842 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 844 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 846 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 848 CPU_AVX_FLAGS, 0 },
6c30d220 849 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 850 CPU_AVX2_FLAGS, 0 },
43234a1e 851 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 852 CPU_AVX512F_FLAGS, 0 },
43234a1e 853 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 854 CPU_AVX512CD_FLAGS, 0 },
43234a1e 855 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 856 CPU_AVX512ER_FLAGS, 0 },
43234a1e 857 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 858 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 859 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 860 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 861 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 862 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 863 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 864 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 865 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 866 CPU_VMX_FLAGS, 0 },
8729a6f6 867 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 868 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 870 CPU_SMX_FLAGS, 0 },
8a2c8fef 871 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 872 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 873 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 874 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 875 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 876 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 877 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 878 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 879 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 880 CPU_AES_FLAGS, 0 },
8a2c8fef 881 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 882 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 883 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 884 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 885 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 886 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 887 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 888 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 889 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 890 CPU_F16C_FLAGS, 0 },
6c30d220 891 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_BMI2_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_FMA_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_FMA4_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_XOP_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_LWP_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_MOVBE_FLAGS, 0 },
60aa667e 903 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_CX16_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_EPT_FLAGS, 0 },
6c30d220 907 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_LZCNT_FLAGS, 0 },
42164a71 909 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_HLE_FLAGS, 0 },
42164a71 911 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_RTM_FLAGS, 0 },
6c30d220 913 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_CLFLUSH_FLAGS, 0 },
22109423 917 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_NOP_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_SVME_FLAGS, 1 },
8a2c8fef 931 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_SVME_FLAGS, 0 },
8a2c8fef 933 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_ABM_FLAGS, 0 },
87973e9f 937 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_BMI_FLAGS, 0 },
2a2a0f38 939 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_TBM_FLAGS, 0 },
e2e1fcde 941 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_ADX_FLAGS, 0 },
e2e1fcde 943 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 945 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_PRFCHW_FLAGS, 0 },
5c111e37 947 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_SMAP_FLAGS, 0 },
7e8b059b 949 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_MPX_FLAGS, 0 },
a0046408 951 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_SHA_FLAGS, 0 },
963f3586 953 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 955 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 957 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_SE1_FLAGS, 0 },
c5e7287a 959 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_CLWB_FLAGS, 0 },
9d8596f0 961 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_PCOMMIT_FLAGS, 0 },
2cc1b5aa 963 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 965 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_AVX512VBMI_FLAGS, 0 },
029f3522 967 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_CLZERO_FLAGS, 0 },
9916071f 969 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_MWAITX_FLAGS, 0 },
8eab4136 971 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_OSPKE_FLAGS, 0 },
8bc52696 973 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65
L
974 CPU_RDPID_FLAGS, 0 },
975};
976
977static const noarch_entry cpu_noarch[] =
978{
979 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
980 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
981 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
982 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
983 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
984 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
985 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
986 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
987 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
988 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
989 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
990 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 991 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 992 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
993 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
994 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
995 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
996 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
997 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
998 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
999 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1000 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1001 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
e413e4e9
AM
1002};
1003
704209c0 1004#ifdef I386COFF
a6c24e68
NC
1005/* Like s_lcomm_internal in gas/read.c but the alignment string
1006 is allowed to be optional. */
1007
1008static symbolS *
1009pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1010{
1011 addressT align = 0;
1012
1013 SKIP_WHITESPACE ();
1014
7ab9ffdd 1015 if (needs_align
a6c24e68
NC
1016 && *input_line_pointer == ',')
1017 {
1018 align = parse_align (needs_align - 1);
7ab9ffdd 1019
a6c24e68
NC
1020 if (align == (addressT) -1)
1021 return NULL;
1022 }
1023 else
1024 {
1025 if (size >= 8)
1026 align = 3;
1027 else if (size >= 4)
1028 align = 2;
1029 else if (size >= 2)
1030 align = 1;
1031 else
1032 align = 0;
1033 }
1034
1035 bss_alloc (symbolP, size, align);
1036 return symbolP;
1037}
1038
704209c0 1039static void
a6c24e68
NC
1040pe_lcomm (int needs_align)
1041{
1042 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1043}
704209c0 1044#endif
a6c24e68 1045
29b0f896
AM
1046const pseudo_typeS md_pseudo_table[] =
1047{
1048#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1049 {"align", s_align_bytes, 0},
1050#else
1051 {"align", s_align_ptwo, 0},
1052#endif
1053 {"arch", set_cpu_arch, 0},
1054#ifndef I386COFF
1055 {"bss", s_bss, 0},
a6c24e68
NC
1056#else
1057 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1058#endif
1059 {"ffloat", float_cons, 'f'},
1060 {"dfloat", float_cons, 'd'},
1061 {"tfloat", float_cons, 'x'},
1062 {"value", cons, 2},
d182319b 1063 {"slong", signed_cons, 4},
29b0f896
AM
1064 {"noopt", s_ignore, 0},
1065 {"optim", s_ignore, 0},
1066 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1067 {"code16", set_code_flag, CODE_16BIT},
1068 {"code32", set_code_flag, CODE_32BIT},
1069 {"code64", set_code_flag, CODE_64BIT},
1070 {"intel_syntax", set_intel_syntax, 1},
1071 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1072 {"intel_mnemonic", set_intel_mnemonic, 1},
1073 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1074 {"allow_index_reg", set_allow_index_reg, 1},
1075 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1076 {"sse_check", set_check, 0},
1077 {"operand_check", set_check, 1},
3b22753a
L
1078#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1079 {"largecomm", handle_large_common, 0},
07a53e5c 1080#else
e3bb37b5 1081 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
1082 {"loc", dwarf2_directive_loc, 0},
1083 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1084#endif
6482c264
NC
1085#ifdef TE_PE
1086 {"secrel32", pe_directive_secrel, 0},
1087#endif
29b0f896
AM
1088 {0, 0, 0}
1089};
1090
1091/* For interface with expression (). */
1092extern char *input_line_pointer;
1093
1094/* Hash table for instruction mnemonic lookup. */
1095static struct hash_control *op_hash;
1096
1097/* Hash table for register lookup. */
1098static struct hash_control *reg_hash;
1099\f
252b5132 1100void
e3bb37b5 1101i386_align_code (fragS *fragP, int count)
252b5132 1102{
ce8a8b2f
AM
1103 /* Various efficient no-op patterns for aligning code labels.
1104 Note: Don't try to assemble the instructions in the comments.
1105 0L and 0w are not legal. */
bad6e36d 1106 static const unsigned char f32_1[] =
252b5132 1107 {0x90}; /* nop */
bad6e36d 1108 static const unsigned char f32_2[] =
ccc9c027 1109 {0x66,0x90}; /* xchg %ax,%ax */
bad6e36d 1110 static const unsigned char f32_3[] =
252b5132 1111 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
bad6e36d 1112 static const unsigned char f32_4[] =
252b5132 1113 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
bad6e36d 1114 static const unsigned char f32_5[] =
252b5132
RH
1115 {0x90, /* nop */
1116 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
bad6e36d 1117 static const unsigned char f32_6[] =
252b5132 1118 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
bad6e36d 1119 static const unsigned char f32_7[] =
252b5132 1120 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
bad6e36d 1121 static const unsigned char f32_8[] =
252b5132
RH
1122 {0x90, /* nop */
1123 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
bad6e36d 1124 static const unsigned char f32_9[] =
252b5132
RH
1125 {0x89,0xf6, /* movl %esi,%esi */
1126 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1127 static const unsigned char f32_10[] =
252b5132
RH
1128 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1129 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1130 static const unsigned char f32_11[] =
252b5132
RH
1131 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1132 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1133 static const unsigned char f32_12[] =
252b5132
RH
1134 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1135 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
bad6e36d 1136 static const unsigned char f32_13[] =
252b5132
RH
1137 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1138 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1139 static const unsigned char f32_14[] =
252b5132
RH
1140 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1141 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
bad6e36d 1142 static const unsigned char f16_3[] =
c3332e24 1143 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
bad6e36d 1144 static const unsigned char f16_4[] =
252b5132 1145 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
bad6e36d 1146 static const unsigned char f16_5[] =
252b5132
RH
1147 {0x90, /* nop */
1148 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
bad6e36d 1149 static const unsigned char f16_6[] =
252b5132
RH
1150 {0x89,0xf6, /* mov %si,%si */
1151 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
bad6e36d 1152 static const unsigned char f16_7[] =
252b5132
RH
1153 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1154 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
bad6e36d 1155 static const unsigned char f16_8[] =
252b5132
RH
1156 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1157 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
bad6e36d 1158 static const unsigned char jump_31[] =
76bc74dc
L
1159 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1160 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1161 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1162 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
bad6e36d 1163 static const unsigned char *const f32_patt[] = {
252b5132 1164 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
76bc74dc 1165 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
252b5132 1166 };
bad6e36d 1167 static const unsigned char *const f16_patt[] = {
76bc74dc 1168 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
252b5132 1169 };
ccc9c027 1170 /* nopl (%[re]ax) */
bad6e36d 1171 static const unsigned char alt_3[] =
ccc9c027
L
1172 {0x0f,0x1f,0x00};
1173 /* nopl 0(%[re]ax) */
bad6e36d 1174 static const unsigned char alt_4[] =
ccc9c027
L
1175 {0x0f,0x1f,0x40,0x00};
1176 /* nopl 0(%[re]ax,%[re]ax,1) */
bad6e36d 1177 static const unsigned char alt_5[] =
ccc9c027
L
1178 {0x0f,0x1f,0x44,0x00,0x00};
1179 /* nopw 0(%[re]ax,%[re]ax,1) */
bad6e36d 1180 static const unsigned char alt_6[] =
ccc9c027
L
1181 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1182 /* nopl 0L(%[re]ax) */
bad6e36d 1183 static const unsigned char alt_7[] =
ccc9c027
L
1184 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1185 /* nopl 0L(%[re]ax,%[re]ax,1) */
bad6e36d 1186 static const unsigned char alt_8[] =
ccc9c027
L
1187 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1188 /* nopw 0L(%[re]ax,%[re]ax,1) */
bad6e36d 1189 static const unsigned char alt_9[] =
ccc9c027
L
1190 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1191 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
bad6e36d 1192 static const unsigned char alt_10[] =
ccc9c027 1193 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
bad6e36d 1194 static const unsigned char *const alt_patt[] = {
ccc9c027 1195 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
80b8656c 1196 alt_9, alt_10
ccc9c027 1197 };
252b5132 1198
76bc74dc
L
1199 /* Only align for at least a positive non-zero boundary. */
1200 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
33fef721 1201 return;
3e73aa7c 1202
ccc9c027
L
1203 /* We need to decide which NOP sequence to use for 32bit and
1204 64bit. When -mtune= is used:
4eed87de 1205
76bc74dc
L
1206 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1207 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1208 2. For the rest, alt_patt will be used.
1209
1210 When -mtune= isn't used, alt_patt will be used if
22109423 1211 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1212 be used.
ccc9c027
L
1213
1214 When -march= or .arch is used, we can't use anything beyond
1215 cpu_arch_isa_flags. */
1216
1217 if (flag_code == CODE_16BIT)
1218 {
ccc9c027 1219 if (count > 8)
33fef721 1220 {
76bc74dc
L
1221 memcpy (fragP->fr_literal + fragP->fr_fix,
1222 jump_31, count);
1223 /* Adjust jump offset. */
1224 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
252b5132 1225 }
76bc74dc
L
1226 else
1227 memcpy (fragP->fr_literal + fragP->fr_fix,
1228 f16_patt[count - 1], count);
252b5132 1229 }
33fef721 1230 else
ccc9c027 1231 {
bad6e36d 1232 const unsigned char *const *patt = NULL;
ccc9c027 1233
fbf3f584 1234 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1235 {
1236 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1237 switch (cpu_arch_tune)
1238 {
1239 case PROCESSOR_UNKNOWN:
1240 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1241 optimize with nops. */
1242 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1243 patt = alt_patt;
ccc9c027
L
1244 else
1245 patt = f32_patt;
1246 break;
ccc9c027
L
1247 case PROCESSOR_PENTIUM4:
1248 case PROCESSOR_NOCONA:
ef05d495 1249 case PROCESSOR_CORE:
76bc74dc 1250 case PROCESSOR_CORE2:
bd5295b2 1251 case PROCESSOR_COREI7:
3632d14b 1252 case PROCESSOR_L1OM:
7a9068fe 1253 case PROCESSOR_K1OM:
76bc74dc 1254 case PROCESSOR_GENERIC64:
ccc9c027
L
1255 case PROCESSOR_K6:
1256 case PROCESSOR_ATHLON:
1257 case PROCESSOR_K8:
4eed87de 1258 case PROCESSOR_AMDFAM10:
8aedb9fe 1259 case PROCESSOR_BD:
029f3522 1260 case PROCESSOR_ZNVER:
7b458c12 1261 case PROCESSOR_BT:
80b8656c 1262 patt = alt_patt;
ccc9c027 1263 break;
76bc74dc 1264 case PROCESSOR_I386:
ccc9c027
L
1265 case PROCESSOR_I486:
1266 case PROCESSOR_PENTIUM:
2dde1948 1267 case PROCESSOR_PENTIUMPRO:
81486035 1268 case PROCESSOR_IAMCU:
ccc9c027
L
1269 case PROCESSOR_GENERIC32:
1270 patt = f32_patt;
1271 break;
4eed87de 1272 }
ccc9c027
L
1273 }
1274 else
1275 {
fbf3f584 1276 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1277 {
1278 case PROCESSOR_UNKNOWN:
e6a14101 1279 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1280 PROCESSOR_UNKNOWN. */
1281 abort ();
1282 break;
1283
76bc74dc 1284 case PROCESSOR_I386:
ccc9c027
L
1285 case PROCESSOR_I486:
1286 case PROCESSOR_PENTIUM:
81486035 1287 case PROCESSOR_IAMCU:
ccc9c027
L
1288 case PROCESSOR_K6:
1289 case PROCESSOR_ATHLON:
1290 case PROCESSOR_K8:
4eed87de 1291 case PROCESSOR_AMDFAM10:
8aedb9fe 1292 case PROCESSOR_BD:
029f3522 1293 case PROCESSOR_ZNVER:
7b458c12 1294 case PROCESSOR_BT:
ccc9c027
L
1295 case PROCESSOR_GENERIC32:
1296 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1297 with nops. */
1298 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1299 patt = alt_patt;
ccc9c027
L
1300 else
1301 patt = f32_patt;
1302 break;
76bc74dc
L
1303 case PROCESSOR_PENTIUMPRO:
1304 case PROCESSOR_PENTIUM4:
1305 case PROCESSOR_NOCONA:
1306 case PROCESSOR_CORE:
ef05d495 1307 case PROCESSOR_CORE2:
bd5295b2 1308 case PROCESSOR_COREI7:
3632d14b 1309 case PROCESSOR_L1OM:
7a9068fe 1310 case PROCESSOR_K1OM:
22109423 1311 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1312 patt = alt_patt;
ccc9c027
L
1313 else
1314 patt = f32_patt;
1315 break;
1316 case PROCESSOR_GENERIC64:
80b8656c 1317 patt = alt_patt;
ccc9c027 1318 break;
4eed87de 1319 }
ccc9c027
L
1320 }
1321
76bc74dc
L
1322 if (patt == f32_patt)
1323 {
1324 /* If the padding is less than 15 bytes, we use the normal
1325 ones. Otherwise, we use a jump instruction and adjust
711eedef
L
1326 its offset. */
1327 int limit;
76ba9986 1328
711eedef
L
1329 /* For 64bit, the limit is 3 bytes. */
1330 if (flag_code == CODE_64BIT
1331 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1332 limit = 3;
1333 else
1334 limit = 15;
1335 if (count < limit)
76bc74dc
L
1336 memcpy (fragP->fr_literal + fragP->fr_fix,
1337 patt[count - 1], count);
1338 else
1339 {
1340 memcpy (fragP->fr_literal + fragP->fr_fix,
1341 jump_31, count);
1342 /* Adjust jump offset. */
1343 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1344 }
1345 }
1346 else
1347 {
80b8656c
L
1348 /* Maximum length of an instruction is 10 byte. If the
1349 padding is greater than 10 bytes and we don't use jump,
76bc74dc
L
1350 we have to break it into smaller pieces. */
1351 int padding = count;
80b8656c 1352 while (padding > 10)
76bc74dc 1353 {
80b8656c 1354 padding -= 10;
76bc74dc 1355 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
80b8656c 1356 patt [9], 10);
76bc74dc
L
1357 }
1358
1359 if (padding)
1360 memcpy (fragP->fr_literal + fragP->fr_fix,
1361 patt [padding - 1], padding);
1362 }
ccc9c027 1363 }
33fef721 1364 fragP->fr_var = count;
252b5132
RH
1365}
1366
c6fb90c8 1367static INLINE int
0dfbf9d7 1368operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1369{
0dfbf9d7 1370 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1371 {
1372 case 3:
0dfbf9d7 1373 if (x->array[2])
c6fb90c8
L
1374 return 0;
1375 case 2:
0dfbf9d7 1376 if (x->array[1])
c6fb90c8
L
1377 return 0;
1378 case 1:
0dfbf9d7 1379 return !x->array[0];
c6fb90c8
L
1380 default:
1381 abort ();
1382 }
40fb9820
L
1383}
1384
c6fb90c8 1385static INLINE void
0dfbf9d7 1386operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1387{
0dfbf9d7 1388 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1389 {
1390 case 3:
0dfbf9d7 1391 x->array[2] = v;
c6fb90c8 1392 case 2:
0dfbf9d7 1393 x->array[1] = v;
c6fb90c8 1394 case 1:
0dfbf9d7 1395 x->array[0] = v;
c6fb90c8
L
1396 break;
1397 default:
1398 abort ();
1399 }
1400}
40fb9820 1401
c6fb90c8 1402static INLINE int
0dfbf9d7
L
1403operand_type_equal (const union i386_operand_type *x,
1404 const union i386_operand_type *y)
c6fb90c8 1405{
0dfbf9d7 1406 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1407 {
1408 case 3:
0dfbf9d7 1409 if (x->array[2] != y->array[2])
c6fb90c8
L
1410 return 0;
1411 case 2:
0dfbf9d7 1412 if (x->array[1] != y->array[1])
c6fb90c8
L
1413 return 0;
1414 case 1:
0dfbf9d7 1415 return x->array[0] == y->array[0];
c6fb90c8
L
1416 break;
1417 default:
1418 abort ();
1419 }
1420}
40fb9820 1421
0dfbf9d7
L
1422static INLINE int
1423cpu_flags_all_zero (const union i386_cpu_flags *x)
1424{
1425 switch (ARRAY_SIZE(x->array))
1426 {
1427 case 3:
1428 if (x->array[2])
1429 return 0;
1430 case 2:
1431 if (x->array[1])
1432 return 0;
1433 case 1:
1434 return !x->array[0];
1435 default:
1436 abort ();
1437 }
1438}
1439
0dfbf9d7
L
1440static INLINE int
1441cpu_flags_equal (const union i386_cpu_flags *x,
1442 const union i386_cpu_flags *y)
1443{
1444 switch (ARRAY_SIZE(x->array))
1445 {
1446 case 3:
1447 if (x->array[2] != y->array[2])
1448 return 0;
1449 case 2:
1450 if (x->array[1] != y->array[1])
1451 return 0;
1452 case 1:
1453 return x->array[0] == y->array[0];
1454 break;
1455 default:
1456 abort ();
1457 }
1458}
c6fb90c8
L
1459
1460static INLINE int
1461cpu_flags_check_cpu64 (i386_cpu_flags f)
1462{
1463 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1464 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1465}
1466
c6fb90c8
L
1467static INLINE i386_cpu_flags
1468cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1469{
c6fb90c8
L
1470 switch (ARRAY_SIZE (x.array))
1471 {
1472 case 3:
1473 x.array [2] &= y.array [2];
1474 case 2:
1475 x.array [1] &= y.array [1];
1476 case 1:
1477 x.array [0] &= y.array [0];
1478 break;
1479 default:
1480 abort ();
1481 }
1482 return x;
1483}
40fb9820 1484
c6fb90c8
L
1485static INLINE i386_cpu_flags
1486cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1487{
c6fb90c8 1488 switch (ARRAY_SIZE (x.array))
40fb9820 1489 {
c6fb90c8
L
1490 case 3:
1491 x.array [2] |= y.array [2];
1492 case 2:
1493 x.array [1] |= y.array [1];
1494 case 1:
1495 x.array [0] |= y.array [0];
40fb9820
L
1496 break;
1497 default:
1498 abort ();
1499 }
40fb9820
L
1500 return x;
1501}
1502
309d3373
JB
1503static INLINE i386_cpu_flags
1504cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1505{
1506 switch (ARRAY_SIZE (x.array))
1507 {
1508 case 3:
1509 x.array [2] &= ~y.array [2];
1510 case 2:
1511 x.array [1] &= ~y.array [1];
1512 case 1:
1513 x.array [0] &= ~y.array [0];
1514 break;
1515 default:
1516 abort ();
1517 }
1518 return x;
1519}
1520
81486035
L
1521static int
1522valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1523{
1524 if (cpu_arch_isa == PROCESSOR_IAMCU)
1525 {
1526 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1527 i386_cpu_flags compat_flags;
1528 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1529 return cpu_flags_all_zero (&compat_flags);
1530 }
1531 else
1532 return 1;
1533}
1534
c0f3af97
L
1535#define CPU_FLAGS_ARCH_MATCH 0x1
1536#define CPU_FLAGS_64BIT_MATCH 0x2
a5ff0eb2 1537#define CPU_FLAGS_AES_MATCH 0x4
ce2f5b3c
L
1538#define CPU_FLAGS_PCLMUL_MATCH 0x8
1539#define CPU_FLAGS_AVX_MATCH 0x10
c0f3af97 1540
a5ff0eb2 1541#define CPU_FLAGS_32BIT_MATCH \
ce2f5b3c
L
1542 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1543 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
c0f3af97
L
1544#define CPU_FLAGS_PERFECT_MATCH \
1545 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1546
1547/* Return CPU flags match bits. */
3629bb00 1548
40fb9820 1549static int
d3ce72d0 1550cpu_flags_match (const insn_template *t)
40fb9820 1551{
c0f3af97
L
1552 i386_cpu_flags x = t->cpu_flags;
1553 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1554
1555 x.bitfield.cpu64 = 0;
1556 x.bitfield.cpuno64 = 0;
1557
0dfbf9d7 1558 if (cpu_flags_all_zero (&x))
c0f3af97
L
1559 {
1560 /* This instruction is available on all archs. */
1561 match |= CPU_FLAGS_32BIT_MATCH;
1562 }
3629bb00
L
1563 else
1564 {
c0f3af97 1565 /* This instruction is available only on some archs. */
3629bb00
L
1566 i386_cpu_flags cpu = cpu_arch_flags;
1567
3629bb00 1568 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1569 if (!cpu_flags_all_zero (&cpu))
1570 {
a5ff0eb2
L
1571 if (x.bitfield.cpuavx)
1572 {
ce2f5b3c 1573 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
a5ff0eb2
L
1574 if (cpu.bitfield.cpuavx)
1575 {
1576 /* Check SSE2AVX. */
1577 if (!t->opcode_modifier.sse2avx|| sse2avx)
1578 {
1579 match |= (CPU_FLAGS_ARCH_MATCH
1580 | CPU_FLAGS_AVX_MATCH);
1581 /* Check AES. */
1582 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1583 match |= CPU_FLAGS_AES_MATCH;
ce2f5b3c
L
1584 /* Check PCLMUL. */
1585 if (!x.bitfield.cpupclmul
1586 || cpu.bitfield.cpupclmul)
1587 match |= CPU_FLAGS_PCLMUL_MATCH;
a5ff0eb2
L
1588 }
1589 }
1590 else
1591 match |= CPU_FLAGS_ARCH_MATCH;
1592 }
73b090a9
L
1593 else if (x.bitfield.cpuavx512vl)
1594 {
1595 /* Match AVX512VL. */
1596 if (cpu.bitfield.cpuavx512vl)
1597 {
1598 /* Need another match. */
1599 cpu.bitfield.cpuavx512vl = 0;
1600 if (!cpu_flags_all_zero (&cpu))
1601 match |= CPU_FLAGS_32BIT_MATCH;
1602 else
1603 match |= CPU_FLAGS_ARCH_MATCH;
1604 }
1605 else
1606 match |= CPU_FLAGS_ARCH_MATCH;
1607 }
a5ff0eb2 1608 else
c0f3af97
L
1609 match |= CPU_FLAGS_32BIT_MATCH;
1610 }
3629bb00 1611 }
c0f3af97 1612 return match;
40fb9820
L
1613}
1614
c6fb90c8
L
1615static INLINE i386_operand_type
1616operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1617{
c6fb90c8
L
1618 switch (ARRAY_SIZE (x.array))
1619 {
1620 case 3:
1621 x.array [2] &= y.array [2];
1622 case 2:
1623 x.array [1] &= y.array [1];
1624 case 1:
1625 x.array [0] &= y.array [0];
1626 break;
1627 default:
1628 abort ();
1629 }
1630 return x;
40fb9820
L
1631}
1632
c6fb90c8
L
1633static INLINE i386_operand_type
1634operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1635{
c6fb90c8 1636 switch (ARRAY_SIZE (x.array))
40fb9820 1637 {
c6fb90c8
L
1638 case 3:
1639 x.array [2] |= y.array [2];
1640 case 2:
1641 x.array [1] |= y.array [1];
1642 case 1:
1643 x.array [0] |= y.array [0];
40fb9820
L
1644 break;
1645 default:
1646 abort ();
1647 }
c6fb90c8
L
1648 return x;
1649}
40fb9820 1650
c6fb90c8
L
1651static INLINE i386_operand_type
1652operand_type_xor (i386_operand_type x, i386_operand_type y)
1653{
1654 switch (ARRAY_SIZE (x.array))
1655 {
1656 case 3:
1657 x.array [2] ^= y.array [2];
1658 case 2:
1659 x.array [1] ^= y.array [1];
1660 case 1:
1661 x.array [0] ^= y.array [0];
1662 break;
1663 default:
1664 abort ();
1665 }
40fb9820
L
1666 return x;
1667}
1668
1669static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1670static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1671static const i386_operand_type control = OPERAND_TYPE_CONTROL;
65da13b5
L
1672static const i386_operand_type inoutportreg
1673 = OPERAND_TYPE_INOUTPORTREG;
40fb9820
L
1674static const i386_operand_type reg16_inoutportreg
1675 = OPERAND_TYPE_REG16_INOUTPORTREG;
1676static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1677static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1678static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1679static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1680static const i386_operand_type anydisp
1681 = OPERAND_TYPE_ANYDISP;
40fb9820 1682static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
c0f3af97 1683static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
43234a1e
L
1684static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1685static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1686static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1687static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1688static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1689static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1690static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1691static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1692static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1693static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1694static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1695static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1696
1697enum operand_type
1698{
1699 reg,
40fb9820
L
1700 imm,
1701 disp,
1702 anymem
1703};
1704
c6fb90c8 1705static INLINE int
40fb9820
L
1706operand_type_check (i386_operand_type t, enum operand_type c)
1707{
1708 switch (c)
1709 {
1710 case reg:
1711 return (t.bitfield.reg8
1712 || t.bitfield.reg16
1713 || t.bitfield.reg32
1714 || t.bitfield.reg64);
1715
40fb9820
L
1716 case imm:
1717 return (t.bitfield.imm8
1718 || t.bitfield.imm8s
1719 || t.bitfield.imm16
1720 || t.bitfield.imm32
1721 || t.bitfield.imm32s
1722 || t.bitfield.imm64);
1723
1724 case disp:
1725 return (t.bitfield.disp8
1726 || t.bitfield.disp16
1727 || t.bitfield.disp32
1728 || t.bitfield.disp32s
1729 || t.bitfield.disp64);
1730
1731 case anymem:
1732 return (t.bitfield.disp8
1733 || t.bitfield.disp16
1734 || t.bitfield.disp32
1735 || t.bitfield.disp32s
1736 || t.bitfield.disp64
1737 || t.bitfield.baseindex);
1738
1739 default:
1740 abort ();
1741 }
2cfe26b6
AM
1742
1743 return 0;
40fb9820
L
1744}
1745
5c07affc
L
1746/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1747 operand J for instruction template T. */
1748
1749static INLINE int
d3ce72d0 1750match_reg_size (const insn_template *t, unsigned int j)
5c07affc
L
1751{
1752 return !((i.types[j].bitfield.byte
1753 && !t->operand_types[j].bitfield.byte)
1754 || (i.types[j].bitfield.word
1755 && !t->operand_types[j].bitfield.word)
1756 || (i.types[j].bitfield.dword
1757 && !t->operand_types[j].bitfield.dword)
1758 || (i.types[j].bitfield.qword
1759 && !t->operand_types[j].bitfield.qword));
1760}
1761
1762/* Return 1 if there is no conflict in any size on operand J for
1763 instruction template T. */
1764
1765static INLINE int
d3ce72d0 1766match_mem_size (const insn_template *t, unsigned int j)
5c07affc
L
1767{
1768 return (match_reg_size (t, j)
1769 && !((i.types[j].bitfield.unspecified
af508cb9 1770 && !i.broadcast
5c07affc
L
1771 && !t->operand_types[j].bitfield.unspecified)
1772 || (i.types[j].bitfield.fword
1773 && !t->operand_types[j].bitfield.fword)
1774 || (i.types[j].bitfield.tbyte
1775 && !t->operand_types[j].bitfield.tbyte)
1776 || (i.types[j].bitfield.xmmword
c0f3af97
L
1777 && !t->operand_types[j].bitfield.xmmword)
1778 || (i.types[j].bitfield.ymmword
43234a1e
L
1779 && !t->operand_types[j].bitfield.ymmword)
1780 || (i.types[j].bitfield.zmmword
1781 && !t->operand_types[j].bitfield.zmmword)));
5c07affc
L
1782}
1783
1784/* Return 1 if there is no size conflict on any operands for
1785 instruction template T. */
1786
1787static INLINE int
d3ce72d0 1788operand_size_match (const insn_template *t)
5c07affc
L
1789{
1790 unsigned int j;
1791 int match = 1;
1792
1793 /* Don't check jump instructions. */
1794 if (t->opcode_modifier.jump
1795 || t->opcode_modifier.jumpbyte
1796 || t->opcode_modifier.jumpdword
1797 || t->opcode_modifier.jumpintersegment)
1798 return match;
1799
1800 /* Check memory and accumulator operand size. */
1801 for (j = 0; j < i.operands; j++)
1802 {
1803 if (t->operand_types[j].bitfield.anysize)
1804 continue;
1805
1806 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1807 {
1808 match = 0;
1809 break;
1810 }
1811
1812 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1813 {
1814 match = 0;
1815 break;
1816 }
1817 }
1818
891edac4 1819 if (match)
5c07affc 1820 return match;
891edac4
L
1821 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1822 {
1823mismatch:
86e026a4 1824 i.error = operand_size_mismatch;
891edac4
L
1825 return 0;
1826 }
5c07affc
L
1827
1828 /* Check reverse. */
9c2799c2 1829 gas_assert (i.operands == 2);
5c07affc
L
1830
1831 match = 1;
1832 for (j = 0; j < 2; j++)
1833 {
1834 if (t->operand_types[j].bitfield.acc
1835 && !match_reg_size (t, j ? 0 : 1))
891edac4 1836 goto mismatch;
5c07affc
L
1837
1838 if (i.types[j].bitfield.mem
1839 && !match_mem_size (t, j ? 0 : 1))
891edac4 1840 goto mismatch;
5c07affc
L
1841 }
1842
1843 return match;
1844}
1845
c6fb90c8 1846static INLINE int
40fb9820
L
1847operand_type_match (i386_operand_type overlap,
1848 i386_operand_type given)
1849{
1850 i386_operand_type temp = overlap;
1851
1852 temp.bitfield.jumpabsolute = 0;
7d5e4556 1853 temp.bitfield.unspecified = 0;
5c07affc
L
1854 temp.bitfield.byte = 0;
1855 temp.bitfield.word = 0;
1856 temp.bitfield.dword = 0;
1857 temp.bitfield.fword = 0;
1858 temp.bitfield.qword = 0;
1859 temp.bitfield.tbyte = 0;
1860 temp.bitfield.xmmword = 0;
c0f3af97 1861 temp.bitfield.ymmword = 0;
43234a1e 1862 temp.bitfield.zmmword = 0;
0dfbf9d7 1863 if (operand_type_all_zero (&temp))
891edac4 1864 goto mismatch;
40fb9820 1865
891edac4
L
1866 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1867 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1868 return 1;
1869
1870mismatch:
a65babc9 1871 i.error = operand_type_mismatch;
891edac4 1872 return 0;
40fb9820
L
1873}
1874
7d5e4556 1875/* If given types g0 and g1 are registers they must be of the same type
40fb9820
L
1876 unless the expected operand type register overlap is null.
1877 Note that Acc in a template matches every size of reg. */
1878
c6fb90c8 1879static INLINE int
40fb9820
L
1880operand_type_register_match (i386_operand_type m0,
1881 i386_operand_type g0,
1882 i386_operand_type t0,
1883 i386_operand_type m1,
1884 i386_operand_type g1,
1885 i386_operand_type t1)
1886{
1887 if (!operand_type_check (g0, reg))
1888 return 1;
1889
1890 if (!operand_type_check (g1, reg))
1891 return 1;
1892
1893 if (g0.bitfield.reg8 == g1.bitfield.reg8
1894 && g0.bitfield.reg16 == g1.bitfield.reg16
1895 && g0.bitfield.reg32 == g1.bitfield.reg32
1896 && g0.bitfield.reg64 == g1.bitfield.reg64)
1897 return 1;
1898
1899 if (m0.bitfield.acc)
1900 {
1901 t0.bitfield.reg8 = 1;
1902 t0.bitfield.reg16 = 1;
1903 t0.bitfield.reg32 = 1;
1904 t0.bitfield.reg64 = 1;
1905 }
1906
1907 if (m1.bitfield.acc)
1908 {
1909 t1.bitfield.reg8 = 1;
1910 t1.bitfield.reg16 = 1;
1911 t1.bitfield.reg32 = 1;
1912 t1.bitfield.reg64 = 1;
1913 }
1914
891edac4
L
1915 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1916 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1917 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1918 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1919 return 1;
1920
a65babc9 1921 i.error = register_type_mismatch;
891edac4
L
1922
1923 return 0;
40fb9820
L
1924}
1925
4c692bc7
JB
1926static INLINE unsigned int
1927register_number (const reg_entry *r)
1928{
1929 unsigned int nr = r->reg_num;
1930
1931 if (r->reg_flags & RegRex)
1932 nr += 8;
1933
200cbe0f
L
1934 if (r->reg_flags & RegVRex)
1935 nr += 16;
1936
4c692bc7
JB
1937 return nr;
1938}
1939
252b5132 1940static INLINE unsigned int
40fb9820 1941mode_from_disp_size (i386_operand_type t)
252b5132 1942{
43234a1e 1943 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
40fb9820
L
1944 return 1;
1945 else if (t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s)
1948 return 2;
1949 else
1950 return 0;
252b5132
RH
1951}
1952
1953static INLINE int
65879393 1954fits_in_signed_byte (addressT num)
252b5132 1955{
65879393 1956 return num + 0x80 <= 0xff;
47926f60 1957}
252b5132
RH
1958
1959static INLINE int
65879393 1960fits_in_unsigned_byte (addressT num)
252b5132 1961{
65879393 1962 return num <= 0xff;
47926f60 1963}
252b5132
RH
1964
1965static INLINE int
65879393 1966fits_in_unsigned_word (addressT num)
252b5132 1967{
65879393 1968 return num <= 0xffff;
47926f60 1969}
252b5132
RH
1970
1971static INLINE int
65879393 1972fits_in_signed_word (addressT num)
252b5132 1973{
65879393 1974 return num + 0x8000 <= 0xffff;
47926f60 1975}
2a962e6d 1976
3e73aa7c 1977static INLINE int
65879393 1978fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1979{
1980#ifndef BFD64
1981 return 1;
1982#else
65879393 1983 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
1984#endif
1985} /* fits_in_signed_long() */
2a962e6d 1986
3e73aa7c 1987static INLINE int
65879393 1988fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
1989{
1990#ifndef BFD64
1991 return 1;
1992#else
65879393 1993 return num <= 0xffffffff;
3e73aa7c
JH
1994#endif
1995} /* fits_in_unsigned_long() */
252b5132 1996
43234a1e
L
1997static INLINE int
1998fits_in_vec_disp8 (offsetT num)
1999{
2000 int shift = i.memshift;
2001 unsigned int mask;
2002
2003 if (shift == -1)
2004 abort ();
2005
2006 mask = (1 << shift) - 1;
2007
2008 /* Return 0 if NUM isn't properly aligned. */
2009 if ((num & mask))
2010 return 0;
2011
2012 /* Check if NUM will fit in 8bit after shift. */
2013 return fits_in_signed_byte (num >> shift);
2014}
2015
a683cc34
SP
2016static INLINE int
2017fits_in_imm4 (offsetT num)
2018{
2019 return (num & 0xf) == num;
2020}
2021
40fb9820 2022static i386_operand_type
e3bb37b5 2023smallest_imm_type (offsetT num)
252b5132 2024{
40fb9820 2025 i386_operand_type t;
7ab9ffdd 2026
0dfbf9d7 2027 operand_type_set (&t, 0);
40fb9820
L
2028 t.bitfield.imm64 = 1;
2029
2030 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2031 {
2032 /* This code is disabled on the 486 because all the Imm1 forms
2033 in the opcode table are slower on the i486. They're the
2034 versions with the implicitly specified single-position
2035 displacement, which has another syntax if you really want to
2036 use that form. */
40fb9820
L
2037 t.bitfield.imm1 = 1;
2038 t.bitfield.imm8 = 1;
2039 t.bitfield.imm8s = 1;
2040 t.bitfield.imm16 = 1;
2041 t.bitfield.imm32 = 1;
2042 t.bitfield.imm32s = 1;
2043 }
2044 else if (fits_in_signed_byte (num))
2045 {
2046 t.bitfield.imm8 = 1;
2047 t.bitfield.imm8s = 1;
2048 t.bitfield.imm16 = 1;
2049 t.bitfield.imm32 = 1;
2050 t.bitfield.imm32s = 1;
2051 }
2052 else if (fits_in_unsigned_byte (num))
2053 {
2054 t.bitfield.imm8 = 1;
2055 t.bitfield.imm16 = 1;
2056 t.bitfield.imm32 = 1;
2057 t.bitfield.imm32s = 1;
2058 }
2059 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2060 {
2061 t.bitfield.imm16 = 1;
2062 t.bitfield.imm32 = 1;
2063 t.bitfield.imm32s = 1;
2064 }
2065 else if (fits_in_signed_long (num))
2066 {
2067 t.bitfield.imm32 = 1;
2068 t.bitfield.imm32s = 1;
2069 }
2070 else if (fits_in_unsigned_long (num))
2071 t.bitfield.imm32 = 1;
2072
2073 return t;
47926f60 2074}
252b5132 2075
847f7ad4 2076static offsetT
e3bb37b5 2077offset_in_range (offsetT val, int size)
847f7ad4 2078{
508866be 2079 addressT mask;
ba2adb93 2080
847f7ad4
AM
2081 switch (size)
2082 {
508866be
L
2083 case 1: mask = ((addressT) 1 << 8) - 1; break;
2084 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2085 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2086#ifdef BFD64
2087 case 8: mask = ((addressT) 2 << 63) - 1; break;
2088#endif
47926f60 2089 default: abort ();
847f7ad4
AM
2090 }
2091
9de868bf
L
2092#ifdef BFD64
2093 /* If BFD64, sign extend val for 32bit address mode. */
2094 if (flag_code != CODE_64BIT
2095 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2096 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2097 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2098#endif
ba2adb93 2099
47926f60 2100 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2101 {
2102 char buf1[40], buf2[40];
2103
2104 sprint_value (buf1, val);
2105 sprint_value (buf2, val & mask);
2106 as_warn (_("%s shortened to %s"), buf1, buf2);
2107 }
2108 return val & mask;
2109}
2110
c32fa91d
L
2111enum PREFIX_GROUP
2112{
2113 PREFIX_EXIST = 0,
2114 PREFIX_LOCK,
2115 PREFIX_REP,
2116 PREFIX_OTHER
2117};
2118
2119/* Returns
2120 a. PREFIX_EXIST if attempting to add a prefix where one from the
2121 same class already exists.
2122 b. PREFIX_LOCK if lock prefix is added.
2123 c. PREFIX_REP if rep/repne prefix is added.
2124 d. PREFIX_OTHER if other prefix is added.
2125 */
2126
2127static enum PREFIX_GROUP
e3bb37b5 2128add_prefix (unsigned int prefix)
252b5132 2129{
c32fa91d 2130 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2131 unsigned int q;
252b5132 2132
29b0f896
AM
2133 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2134 && flag_code == CODE_64BIT)
b1905489 2135 {
161a04f6
L
2136 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2137 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2138 && (prefix & (REX_R | REX_X | REX_B))))
c32fa91d 2139 ret = PREFIX_EXIST;
b1905489
JB
2140 q = REX_PREFIX;
2141 }
3e73aa7c 2142 else
b1905489
JB
2143 {
2144 switch (prefix)
2145 {
2146 default:
2147 abort ();
2148
2149 case CS_PREFIX_OPCODE:
2150 case DS_PREFIX_OPCODE:
2151 case ES_PREFIX_OPCODE:
2152 case FS_PREFIX_OPCODE:
2153 case GS_PREFIX_OPCODE:
2154 case SS_PREFIX_OPCODE:
2155 q = SEG_PREFIX;
2156 break;
2157
2158 case REPNE_PREFIX_OPCODE:
2159 case REPE_PREFIX_OPCODE:
c32fa91d
L
2160 q = REP_PREFIX;
2161 ret = PREFIX_REP;
2162 break;
2163
b1905489 2164 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2165 q = LOCK_PREFIX;
2166 ret = PREFIX_LOCK;
b1905489
JB
2167 break;
2168
2169 case FWAIT_OPCODE:
2170 q = WAIT_PREFIX;
2171 break;
2172
2173 case ADDR_PREFIX_OPCODE:
2174 q = ADDR_PREFIX;
2175 break;
2176
2177 case DATA_PREFIX_OPCODE:
2178 q = DATA_PREFIX;
2179 break;
2180 }
2181 if (i.prefix[q] != 0)
c32fa91d 2182 ret = PREFIX_EXIST;
b1905489 2183 }
252b5132 2184
b1905489 2185 if (ret)
252b5132 2186 {
b1905489
JB
2187 if (!i.prefix[q])
2188 ++i.prefixes;
2189 i.prefix[q] |= prefix;
252b5132 2190 }
b1905489
JB
2191 else
2192 as_bad (_("same type of prefix used twice"));
252b5132 2193
252b5132
RH
2194 return ret;
2195}
2196
2197static void
78f12dd3 2198update_code_flag (int value, int check)
eecb386c 2199{
78f12dd3
L
2200 PRINTF_LIKE ((*as_error));
2201
1e9cc1c2 2202 flag_code = (enum flag_code) value;
40fb9820
L
2203 if (flag_code == CODE_64BIT)
2204 {
2205 cpu_arch_flags.bitfield.cpu64 = 1;
2206 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2207 }
2208 else
2209 {
2210 cpu_arch_flags.bitfield.cpu64 = 0;
2211 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2212 }
2213 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2214 {
78f12dd3
L
2215 if (check)
2216 as_error = as_fatal;
2217 else
2218 as_error = as_bad;
2219 (*as_error) (_("64bit mode not supported on `%s'."),
2220 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2221 }
40fb9820 2222 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2223 {
78f12dd3
L
2224 if (check)
2225 as_error = as_fatal;
2226 else
2227 as_error = as_bad;
2228 (*as_error) (_("32bit mode not supported on `%s'."),
2229 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2230 }
eecb386c
AM
2231 stackop_size = '\0';
2232}
2233
78f12dd3
L
2234static void
2235set_code_flag (int value)
2236{
2237 update_code_flag (value, 0);
2238}
2239
eecb386c 2240static void
e3bb37b5 2241set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2242{
1e9cc1c2 2243 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2244 if (flag_code != CODE_16BIT)
2245 abort ();
2246 cpu_arch_flags.bitfield.cpu64 = 0;
2247 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2248 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2249}
2250
2251static void
e3bb37b5 2252set_intel_syntax (int syntax_flag)
252b5132
RH
2253{
2254 /* Find out if register prefixing is specified. */
2255 int ask_naked_reg = 0;
2256
2257 SKIP_WHITESPACE ();
29b0f896 2258 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2259 {
d02603dc
NC
2260 char *string;
2261 int e = get_symbol_name (&string);
252b5132 2262
47926f60 2263 if (strcmp (string, "prefix") == 0)
252b5132 2264 ask_naked_reg = 1;
47926f60 2265 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2266 ask_naked_reg = -1;
2267 else
d0b47220 2268 as_bad (_("bad argument to syntax directive."));
d02603dc 2269 (void) restore_line_pointer (e);
252b5132
RH
2270 }
2271 demand_empty_rest_of_line ();
c3332e24 2272
252b5132
RH
2273 intel_syntax = syntax_flag;
2274
2275 if (ask_naked_reg == 0)
f86103b7
AM
2276 allow_naked_reg = (intel_syntax
2277 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2278 else
2279 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2280
ee86248c 2281 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2282
e4a3b5a4 2283 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2284 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2285 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2286}
2287
1efbbeb4
L
2288static void
2289set_intel_mnemonic (int mnemonic_flag)
2290{
e1d4d893 2291 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2292}
2293
db51cc60
L
2294static void
2295set_allow_index_reg (int flag)
2296{
2297 allow_index_reg = flag;
2298}
2299
cb19c032 2300static void
7bab8ab5 2301set_check (int what)
cb19c032 2302{
7bab8ab5
JB
2303 enum check_kind *kind;
2304 const char *str;
2305
2306 if (what)
2307 {
2308 kind = &operand_check;
2309 str = "operand";
2310 }
2311 else
2312 {
2313 kind = &sse_check;
2314 str = "sse";
2315 }
2316
cb19c032
L
2317 SKIP_WHITESPACE ();
2318
2319 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2320 {
d02603dc
NC
2321 char *string;
2322 int e = get_symbol_name (&string);
cb19c032
L
2323
2324 if (strcmp (string, "none") == 0)
7bab8ab5 2325 *kind = check_none;
cb19c032 2326 else if (strcmp (string, "warning") == 0)
7bab8ab5 2327 *kind = check_warning;
cb19c032 2328 else if (strcmp (string, "error") == 0)
7bab8ab5 2329 *kind = check_error;
cb19c032 2330 else
7bab8ab5 2331 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2332 (void) restore_line_pointer (e);
cb19c032
L
2333 }
2334 else
7bab8ab5 2335 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2336
2337 demand_empty_rest_of_line ();
2338}
2339
8a9036a4
L
2340static void
2341check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2342 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2343{
2344#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2345 static const char *arch;
2346
2347 /* Intel LIOM is only supported on ELF. */
2348 if (!IS_ELF)
2349 return;
2350
2351 if (!arch)
2352 {
2353 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2354 use default_arch. */
2355 arch = cpu_arch_name;
2356 if (!arch)
2357 arch = default_arch;
2358 }
2359
81486035
L
2360 /* If we are targeting Intel MCU, we must enable it. */
2361 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2362 || new_flag.bitfield.cpuiamcu)
2363 return;
2364
3632d14b 2365 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2366 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2367 || new_flag.bitfield.cpul1om)
8a9036a4 2368 return;
76ba9986 2369
7a9068fe
L
2370 /* If we are targeting Intel K1OM, we must enable it. */
2371 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2372 || new_flag.bitfield.cpuk1om)
2373 return;
2374
8a9036a4
L
2375 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2376#endif
2377}
2378
e413e4e9 2379static void
e3bb37b5 2380set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2381{
47926f60 2382 SKIP_WHITESPACE ();
e413e4e9 2383
29b0f896 2384 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2385 {
d02603dc
NC
2386 char *string;
2387 int e = get_symbol_name (&string);
91d6fa6a 2388 unsigned int j;
40fb9820 2389 i386_cpu_flags flags;
e413e4e9 2390
91d6fa6a 2391 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2392 {
91d6fa6a 2393 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2394 {
91d6fa6a 2395 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2396
5c6af06e
JB
2397 if (*string != '.')
2398 {
91d6fa6a 2399 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2400 cpu_sub_arch_name = NULL;
91d6fa6a 2401 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2402 if (flag_code == CODE_64BIT)
2403 {
2404 cpu_arch_flags.bitfield.cpu64 = 1;
2405 cpu_arch_flags.bitfield.cpuno64 = 0;
2406 }
2407 else
2408 {
2409 cpu_arch_flags.bitfield.cpu64 = 0;
2410 cpu_arch_flags.bitfield.cpuno64 = 1;
2411 }
91d6fa6a
NC
2412 cpu_arch_isa = cpu_arch[j].type;
2413 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2414 if (!cpu_arch_tune_set)
2415 {
2416 cpu_arch_tune = cpu_arch_isa;
2417 cpu_arch_tune_flags = cpu_arch_isa_flags;
2418 }
5c6af06e
JB
2419 break;
2420 }
40fb9820 2421
293f5f65
L
2422 flags = cpu_flags_or (cpu_arch_flags,
2423 cpu_arch[j].flags);
81486035
L
2424
2425 if (!valid_iamcu_cpu_flags (&flags))
2426 as_fatal (_("`%s' isn't valid for Intel MCU"),
2427 cpu_arch[j].name);
2428 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2429 {
6305a203
L
2430 if (cpu_sub_arch_name)
2431 {
2432 char *name = cpu_sub_arch_name;
2433 cpu_sub_arch_name = concat (name,
91d6fa6a 2434 cpu_arch[j].name,
1bf57e9f 2435 (const char *) NULL);
6305a203
L
2436 free (name);
2437 }
2438 else
91d6fa6a 2439 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2440 cpu_arch_flags = flags;
a586129e 2441 cpu_arch_isa_flags = flags;
5c6af06e 2442 }
d02603dc 2443 (void) restore_line_pointer (e);
5c6af06e
JB
2444 demand_empty_rest_of_line ();
2445 return;
e413e4e9
AM
2446 }
2447 }
293f5f65
L
2448
2449 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2450 {
2451 /* Disable an ISA entension. */
2452 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2453 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2454 {
2455 flags = cpu_flags_and_not (cpu_arch_flags,
2456 cpu_noarch[j].flags);
2457 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2458 {
2459 if (cpu_sub_arch_name)
2460 {
2461 char *name = cpu_sub_arch_name;
2462 cpu_sub_arch_name = concat (name, string,
2463 (const char *) NULL);
2464 free (name);
2465 }
2466 else
2467 cpu_sub_arch_name = xstrdup (string);
2468 cpu_arch_flags = flags;
2469 cpu_arch_isa_flags = flags;
2470 }
2471 (void) restore_line_pointer (e);
2472 demand_empty_rest_of_line ();
2473 return;
2474 }
2475
2476 j = ARRAY_SIZE (cpu_arch);
2477 }
2478
91d6fa6a 2479 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2480 as_bad (_("no such architecture: `%s'"), string);
2481
2482 *input_line_pointer = e;
2483 }
2484 else
2485 as_bad (_("missing cpu architecture"));
2486
fddf5b5b
AM
2487 no_cond_jump_promotion = 0;
2488 if (*input_line_pointer == ','
29b0f896 2489 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2490 {
d02603dc
NC
2491 char *string;
2492 char e;
2493
2494 ++input_line_pointer;
2495 e = get_symbol_name (&string);
fddf5b5b
AM
2496
2497 if (strcmp (string, "nojumps") == 0)
2498 no_cond_jump_promotion = 1;
2499 else if (strcmp (string, "jumps") == 0)
2500 ;
2501 else
2502 as_bad (_("no such architecture modifier: `%s'"), string);
2503
d02603dc 2504 (void) restore_line_pointer (e);
fddf5b5b
AM
2505 }
2506
e413e4e9
AM
2507 demand_empty_rest_of_line ();
2508}
2509
8a9036a4
L
2510enum bfd_architecture
2511i386_arch (void)
2512{
3632d14b 2513 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2514 {
2515 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2516 || flag_code != CODE_64BIT)
2517 as_fatal (_("Intel L1OM is 64bit ELF only"));
2518 return bfd_arch_l1om;
2519 }
7a9068fe
L
2520 else if (cpu_arch_isa == PROCESSOR_K1OM)
2521 {
2522 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2523 || flag_code != CODE_64BIT)
2524 as_fatal (_("Intel K1OM is 64bit ELF only"));
2525 return bfd_arch_k1om;
2526 }
81486035
L
2527 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2528 {
2529 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2530 || flag_code == CODE_64BIT)
2531 as_fatal (_("Intel MCU is 32bit ELF only"));
2532 return bfd_arch_iamcu;
2533 }
8a9036a4
L
2534 else
2535 return bfd_arch_i386;
2536}
2537
b9d79e03 2538unsigned long
7016a5d5 2539i386_mach (void)
b9d79e03 2540{
351f65ca 2541 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2542 {
3632d14b 2543 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2544 {
351f65ca
L
2545 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2546 || default_arch[6] != '\0')
8a9036a4
L
2547 as_fatal (_("Intel L1OM is 64bit ELF only"));
2548 return bfd_mach_l1om;
2549 }
7a9068fe
L
2550 else if (cpu_arch_isa == PROCESSOR_K1OM)
2551 {
2552 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2553 || default_arch[6] != '\0')
2554 as_fatal (_("Intel K1OM is 64bit ELF only"));
2555 return bfd_mach_k1om;
2556 }
351f65ca 2557 else if (default_arch[6] == '\0')
8a9036a4 2558 return bfd_mach_x86_64;
351f65ca
L
2559 else
2560 return bfd_mach_x64_32;
8a9036a4 2561 }
5197d474
L
2562 else if (!strcmp (default_arch, "i386")
2563 || !strcmp (default_arch, "iamcu"))
81486035
L
2564 {
2565 if (cpu_arch_isa == PROCESSOR_IAMCU)
2566 {
2567 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2568 as_fatal (_("Intel MCU is 32bit ELF only"));
2569 return bfd_mach_i386_iamcu;
2570 }
2571 else
2572 return bfd_mach_i386_i386;
2573 }
b9d79e03 2574 else
2b5d6a91 2575 as_fatal (_("unknown architecture"));
b9d79e03 2576}
b9d79e03 2577\f
252b5132 2578void
7016a5d5 2579md_begin (void)
252b5132
RH
2580{
2581 const char *hash_err;
2582
47926f60 2583 /* Initialize op_hash hash table. */
252b5132
RH
2584 op_hash = hash_new ();
2585
2586 {
d3ce72d0 2587 const insn_template *optab;
29b0f896 2588 templates *core_optab;
252b5132 2589
47926f60
KH
2590 /* Setup for loop. */
2591 optab = i386_optab;
add39d23 2592 core_optab = XNEW (templates);
252b5132
RH
2593 core_optab->start = optab;
2594
2595 while (1)
2596 {
2597 ++optab;
2598 if (optab->name == NULL
2599 || strcmp (optab->name, (optab - 1)->name) != 0)
2600 {
2601 /* different name --> ship out current template list;
47926f60 2602 add to hash table; & begin anew. */
252b5132
RH
2603 core_optab->end = optab;
2604 hash_err = hash_insert (op_hash,
2605 (optab - 1)->name,
5a49b8ac 2606 (void *) core_optab);
252b5132
RH
2607 if (hash_err)
2608 {
b37df7c4 2609 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2610 (optab - 1)->name,
2611 hash_err);
2612 }
2613 if (optab->name == NULL)
2614 break;
add39d23 2615 core_optab = XNEW (templates);
252b5132
RH
2616 core_optab->start = optab;
2617 }
2618 }
2619 }
2620
47926f60 2621 /* Initialize reg_hash hash table. */
252b5132
RH
2622 reg_hash = hash_new ();
2623 {
29b0f896 2624 const reg_entry *regtab;
c3fe08fa 2625 unsigned int regtab_size = i386_regtab_size;
252b5132 2626
c3fe08fa 2627 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2628 {
5a49b8ac 2629 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2630 if (hash_err)
b37df7c4 2631 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2632 regtab->reg_name,
2633 hash_err);
252b5132
RH
2634 }
2635 }
2636
47926f60 2637 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2638 {
29b0f896
AM
2639 int c;
2640 char *p;
252b5132
RH
2641
2642 for (c = 0; c < 256; c++)
2643 {
3882b010 2644 if (ISDIGIT (c))
252b5132
RH
2645 {
2646 digit_chars[c] = c;
2647 mnemonic_chars[c] = c;
2648 register_chars[c] = c;
2649 operand_chars[c] = c;
2650 }
3882b010 2651 else if (ISLOWER (c))
252b5132
RH
2652 {
2653 mnemonic_chars[c] = c;
2654 register_chars[c] = c;
2655 operand_chars[c] = c;
2656 }
3882b010 2657 else if (ISUPPER (c))
252b5132 2658 {
3882b010 2659 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2660 register_chars[c] = mnemonic_chars[c];
2661 operand_chars[c] = c;
2662 }
43234a1e
L
2663 else if (c == '{' || c == '}')
2664 operand_chars[c] = c;
252b5132 2665
3882b010 2666 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2667 identifier_chars[c] = c;
2668 else if (c >= 128)
2669 {
2670 identifier_chars[c] = c;
2671 operand_chars[c] = c;
2672 }
2673 }
2674
2675#ifdef LEX_AT
2676 identifier_chars['@'] = '@';
32137342
NC
2677#endif
2678#ifdef LEX_QM
2679 identifier_chars['?'] = '?';
2680 operand_chars['?'] = '?';
252b5132 2681#endif
252b5132 2682 digit_chars['-'] = '-';
c0f3af97 2683 mnemonic_chars['_'] = '_';
791fe849 2684 mnemonic_chars['-'] = '-';
0003779b 2685 mnemonic_chars['.'] = '.';
252b5132
RH
2686 identifier_chars['_'] = '_';
2687 identifier_chars['.'] = '.';
2688
2689 for (p = operand_special_chars; *p != '\0'; p++)
2690 operand_chars[(unsigned char) *p] = *p;
2691 }
2692
a4447b93
RH
2693 if (flag_code == CODE_64BIT)
2694 {
ca19b261
KT
2695#if defined (OBJ_COFF) && defined (TE_PE)
2696 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2697 ? 32 : 16);
2698#else
a4447b93 2699 x86_dwarf2_return_column = 16;
ca19b261 2700#endif
61ff971f 2701 x86_cie_data_alignment = -8;
a4447b93
RH
2702 }
2703 else
2704 {
2705 x86_dwarf2_return_column = 8;
2706 x86_cie_data_alignment = -4;
2707 }
252b5132
RH
2708}
2709
2710void
e3bb37b5 2711i386_print_statistics (FILE *file)
252b5132
RH
2712{
2713 hash_print_statistics (file, "i386 opcode", op_hash);
2714 hash_print_statistics (file, "i386 register", reg_hash);
2715}
2716\f
252b5132
RH
2717#ifdef DEBUG386
2718
ce8a8b2f 2719/* Debugging routines for md_assemble. */
d3ce72d0 2720static void pte (insn_template *);
40fb9820 2721static void pt (i386_operand_type);
e3bb37b5
L
2722static void pe (expressionS *);
2723static void ps (symbolS *);
252b5132
RH
2724
2725static void
e3bb37b5 2726pi (char *line, i386_insn *x)
252b5132 2727{
09137c09 2728 unsigned int j;
252b5132
RH
2729
2730 fprintf (stdout, "%s: template ", line);
2731 pte (&x->tm);
09f131f2
JH
2732 fprintf (stdout, " address: base %s index %s scale %x\n",
2733 x->base_reg ? x->base_reg->reg_name : "none",
2734 x->index_reg ? x->index_reg->reg_name : "none",
2735 x->log2_scale_factor);
2736 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2737 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2738 fprintf (stdout, " sib: base %x index %x scale %x\n",
2739 x->sib.base, x->sib.index, x->sib.scale);
2740 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2741 (x->rex & REX_W) != 0,
2742 (x->rex & REX_R) != 0,
2743 (x->rex & REX_X) != 0,
2744 (x->rex & REX_B) != 0);
09137c09 2745 for (j = 0; j < x->operands; j++)
252b5132 2746 {
09137c09
SP
2747 fprintf (stdout, " #%d: ", j + 1);
2748 pt (x->types[j]);
252b5132 2749 fprintf (stdout, "\n");
09137c09
SP
2750 if (x->types[j].bitfield.reg8
2751 || x->types[j].bitfield.reg16
2752 || x->types[j].bitfield.reg32
2753 || x->types[j].bitfield.reg64
2754 || x->types[j].bitfield.regmmx
2755 || x->types[j].bitfield.regxmm
2756 || x->types[j].bitfield.regymm
43234a1e 2757 || x->types[j].bitfield.regzmm
09137c09
SP
2758 || x->types[j].bitfield.sreg2
2759 || x->types[j].bitfield.sreg3
2760 || x->types[j].bitfield.control
2761 || x->types[j].bitfield.debug
2762 || x->types[j].bitfield.test)
2763 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2764 if (operand_type_check (x->types[j], imm))
2765 pe (x->op[j].imms);
2766 if (operand_type_check (x->types[j], disp))
2767 pe (x->op[j].disps);
252b5132
RH
2768 }
2769}
2770
2771static void
d3ce72d0 2772pte (insn_template *t)
252b5132 2773{
09137c09 2774 unsigned int j;
252b5132 2775 fprintf (stdout, " %d operands ", t->operands);
47926f60 2776 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2777 if (t->extension_opcode != None)
2778 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2779 if (t->opcode_modifier.d)
252b5132 2780 fprintf (stdout, "D");
40fb9820 2781 if (t->opcode_modifier.w)
252b5132
RH
2782 fprintf (stdout, "W");
2783 fprintf (stdout, "\n");
09137c09 2784 for (j = 0; j < t->operands; j++)
252b5132 2785 {
09137c09
SP
2786 fprintf (stdout, " #%d type ", j + 1);
2787 pt (t->operand_types[j]);
252b5132
RH
2788 fprintf (stdout, "\n");
2789 }
2790}
2791
2792static void
e3bb37b5 2793pe (expressionS *e)
252b5132 2794{
24eab124 2795 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2796 fprintf (stdout, " add_number %ld (%lx)\n",
2797 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2798 if (e->X_add_symbol)
2799 {
2800 fprintf (stdout, " add_symbol ");
2801 ps (e->X_add_symbol);
2802 fprintf (stdout, "\n");
2803 }
2804 if (e->X_op_symbol)
2805 {
2806 fprintf (stdout, " op_symbol ");
2807 ps (e->X_op_symbol);
2808 fprintf (stdout, "\n");
2809 }
2810}
2811
2812static void
e3bb37b5 2813ps (symbolS *s)
252b5132
RH
2814{
2815 fprintf (stdout, "%s type %s%s",
2816 S_GET_NAME (s),
2817 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2818 segment_name (S_GET_SEGMENT (s)));
2819}
2820
7b81dfbb 2821static struct type_name
252b5132 2822 {
40fb9820
L
2823 i386_operand_type mask;
2824 const char *name;
252b5132 2825 }
7b81dfbb 2826const type_names[] =
252b5132 2827{
40fb9820
L
2828 { OPERAND_TYPE_REG8, "r8" },
2829 { OPERAND_TYPE_REG16, "r16" },
2830 { OPERAND_TYPE_REG32, "r32" },
2831 { OPERAND_TYPE_REG64, "r64" },
2832 { OPERAND_TYPE_IMM8, "i8" },
2833 { OPERAND_TYPE_IMM8, "i8s" },
2834 { OPERAND_TYPE_IMM16, "i16" },
2835 { OPERAND_TYPE_IMM32, "i32" },
2836 { OPERAND_TYPE_IMM32S, "i32s" },
2837 { OPERAND_TYPE_IMM64, "i64" },
2838 { OPERAND_TYPE_IMM1, "i1" },
2839 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2840 { OPERAND_TYPE_DISP8, "d8" },
2841 { OPERAND_TYPE_DISP16, "d16" },
2842 { OPERAND_TYPE_DISP32, "d32" },
2843 { OPERAND_TYPE_DISP32S, "d32s" },
2844 { OPERAND_TYPE_DISP64, "d64" },
43234a1e 2845 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
40fb9820
L
2846 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2847 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2848 { OPERAND_TYPE_CONTROL, "control reg" },
2849 { OPERAND_TYPE_TEST, "test reg" },
2850 { OPERAND_TYPE_DEBUG, "debug reg" },
2851 { OPERAND_TYPE_FLOATREG, "FReg" },
2852 { OPERAND_TYPE_FLOATACC, "FAcc" },
2853 { OPERAND_TYPE_SREG2, "SReg2" },
2854 { OPERAND_TYPE_SREG3, "SReg3" },
2855 { OPERAND_TYPE_ACC, "Acc" },
2856 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2857 { OPERAND_TYPE_REGMMX, "rMMX" },
2858 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 2859 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
2860 { OPERAND_TYPE_REGZMM, "rZMM" },
2861 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 2862 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
2863};
2864
2865static void
40fb9820 2866pt (i386_operand_type t)
252b5132 2867{
40fb9820 2868 unsigned int j;
c6fb90c8 2869 i386_operand_type a;
252b5132 2870
40fb9820 2871 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
2872 {
2873 a = operand_type_and (t, type_names[j].mask);
0349dc08 2874 if (!operand_type_all_zero (&a))
c6fb90c8
L
2875 fprintf (stdout, "%s, ", type_names[j].name);
2876 }
252b5132
RH
2877 fflush (stdout);
2878}
2879
2880#endif /* DEBUG386 */
2881\f
252b5132 2882static bfd_reloc_code_real_type
3956db08 2883reloc (unsigned int size,
64e74474
AM
2884 int pcrel,
2885 int sign,
2886 bfd_reloc_code_real_type other)
252b5132 2887{
47926f60 2888 if (other != NO_RELOC)
3956db08 2889 {
91d6fa6a 2890 reloc_howto_type *rel;
3956db08
JB
2891
2892 if (size == 8)
2893 switch (other)
2894 {
64e74474
AM
2895 case BFD_RELOC_X86_64_GOT32:
2896 return BFD_RELOC_X86_64_GOT64;
2897 break;
553d1284
L
2898 case BFD_RELOC_X86_64_GOTPLT64:
2899 return BFD_RELOC_X86_64_GOTPLT64;
2900 break;
64e74474
AM
2901 case BFD_RELOC_X86_64_PLTOFF64:
2902 return BFD_RELOC_X86_64_PLTOFF64;
2903 break;
2904 case BFD_RELOC_X86_64_GOTPC32:
2905 other = BFD_RELOC_X86_64_GOTPC64;
2906 break;
2907 case BFD_RELOC_X86_64_GOTPCREL:
2908 other = BFD_RELOC_X86_64_GOTPCREL64;
2909 break;
2910 case BFD_RELOC_X86_64_TPOFF32:
2911 other = BFD_RELOC_X86_64_TPOFF64;
2912 break;
2913 case BFD_RELOC_X86_64_DTPOFF32:
2914 other = BFD_RELOC_X86_64_DTPOFF64;
2915 break;
2916 default:
2917 break;
3956db08 2918 }
e05278af 2919
8ce3d284 2920#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
2921 if (other == BFD_RELOC_SIZE32)
2922 {
2923 if (size == 8)
1ab668bf 2924 other = BFD_RELOC_SIZE64;
8fd4256d 2925 if (pcrel)
1ab668bf
AM
2926 {
2927 as_bad (_("there are no pc-relative size relocations"));
2928 return NO_RELOC;
2929 }
8fd4256d 2930 }
8ce3d284 2931#endif
8fd4256d 2932
e05278af 2933 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 2934 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
2935 sign = -1;
2936
91d6fa6a
NC
2937 rel = bfd_reloc_type_lookup (stdoutput, other);
2938 if (!rel)
3956db08 2939 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 2940 else if (size != bfd_get_reloc_size (rel))
3956db08 2941 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 2942 bfd_get_reloc_size (rel),
3956db08 2943 size);
91d6fa6a 2944 else if (pcrel && !rel->pc_relative)
3956db08 2945 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 2946 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 2947 && !sign)
91d6fa6a 2948 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 2949 && sign > 0))
3956db08
JB
2950 as_bad (_("relocated field and relocation type differ in signedness"));
2951 else
2952 return other;
2953 return NO_RELOC;
2954 }
252b5132
RH
2955
2956 if (pcrel)
2957 {
3e73aa7c 2958 if (!sign)
3956db08 2959 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
2960 switch (size)
2961 {
2962 case 1: return BFD_RELOC_8_PCREL;
2963 case 2: return BFD_RELOC_16_PCREL;
d258b828 2964 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 2965 case 8: return BFD_RELOC_64_PCREL;
252b5132 2966 }
3956db08 2967 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
2968 }
2969 else
2970 {
3956db08 2971 if (sign > 0)
e5cb08ac 2972 switch (size)
3e73aa7c
JH
2973 {
2974 case 4: return BFD_RELOC_X86_64_32S;
2975 }
2976 else
2977 switch (size)
2978 {
2979 case 1: return BFD_RELOC_8;
2980 case 2: return BFD_RELOC_16;
2981 case 4: return BFD_RELOC_32;
2982 case 8: return BFD_RELOC_64;
2983 }
3956db08
JB
2984 as_bad (_("cannot do %s %u byte relocation"),
2985 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
2986 }
2987
0cc9e1d3 2988 return NO_RELOC;
252b5132
RH
2989}
2990
47926f60
KH
2991/* Here we decide which fixups can be adjusted to make them relative to
2992 the beginning of the section instead of the symbol. Basically we need
2993 to make sure that the dynamic relocations are done correctly, so in
2994 some cases we force the original symbol to be used. */
2995
252b5132 2996int
e3bb37b5 2997tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 2998{
6d249963 2999#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3000 if (!IS_ELF)
31312f95
AM
3001 return 1;
3002
a161fe53
AM
3003 /* Don't adjust pc-relative references to merge sections in 64-bit
3004 mode. */
3005 if (use_rela_relocations
3006 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3007 && fixP->fx_pcrel)
252b5132 3008 return 0;
31312f95 3009
8d01d9a9
AJ
3010 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3011 and changed later by validate_fix. */
3012 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3013 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3014 return 0;
3015
8fd4256d
L
3016 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3017 for size relocations. */
3018 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3019 || fixP->fx_r_type == BFD_RELOC_SIZE64
3020 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3021 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3022 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3023 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3024 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3025 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3026 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3027 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3028 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3029 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3030 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3031 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3032 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3033 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3034 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3035 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3036 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3037 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3038 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3039 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3040 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3041 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3042 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3043 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3044 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3045 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3046 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3047 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3048 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3049 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3050 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3051 return 0;
31312f95 3052#endif
252b5132
RH
3053 return 1;
3054}
252b5132 3055
b4cac588 3056static int
e3bb37b5 3057intel_float_operand (const char *mnemonic)
252b5132 3058{
9306ca4a
JB
3059 /* Note that the value returned is meaningful only for opcodes with (memory)
3060 operands, hence the code here is free to improperly handle opcodes that
3061 have no operands (for better performance and smaller code). */
3062
3063 if (mnemonic[0] != 'f')
3064 return 0; /* non-math */
3065
3066 switch (mnemonic[1])
3067 {
3068 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3069 the fs segment override prefix not currently handled because no
3070 call path can make opcodes without operands get here */
3071 case 'i':
3072 return 2 /* integer op */;
3073 case 'l':
3074 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3075 return 3; /* fldcw/fldenv */
3076 break;
3077 case 'n':
3078 if (mnemonic[2] != 'o' /* fnop */)
3079 return 3; /* non-waiting control op */
3080 break;
3081 case 'r':
3082 if (mnemonic[2] == 's')
3083 return 3; /* frstor/frstpm */
3084 break;
3085 case 's':
3086 if (mnemonic[2] == 'a')
3087 return 3; /* fsave */
3088 if (mnemonic[2] == 't')
3089 {
3090 switch (mnemonic[3])
3091 {
3092 case 'c': /* fstcw */
3093 case 'd': /* fstdw */
3094 case 'e': /* fstenv */
3095 case 's': /* fsts[gw] */
3096 return 3;
3097 }
3098 }
3099 break;
3100 case 'x':
3101 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3102 return 0; /* fxsave/fxrstor are not really math ops */
3103 break;
3104 }
252b5132 3105
9306ca4a 3106 return 1;
252b5132
RH
3107}
3108
c0f3af97
L
3109/* Build the VEX prefix. */
3110
3111static void
d3ce72d0 3112build_vex_prefix (const insn_template *t)
c0f3af97
L
3113{
3114 unsigned int register_specifier;
3115 unsigned int implied_prefix;
3116 unsigned int vector_length;
3117
3118 /* Check register specifier. */
3119 if (i.vex.register_specifier)
43234a1e
L
3120 {
3121 register_specifier =
3122 ~register_number (i.vex.register_specifier) & 0xf;
3123 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3124 }
c0f3af97
L
3125 else
3126 register_specifier = 0xf;
3127
fa99fab2
L
3128 /* Use 2-byte VEX prefix by swappping destination and source
3129 operand. */
3130 if (!i.swap_operand
3131 && i.operands == i.reg_operands
7f399153 3132 && i.tm.opcode_modifier.vexopcode == VEX0F
fa99fab2
L
3133 && i.tm.opcode_modifier.s
3134 && i.rex == REX_B)
3135 {
3136 unsigned int xchg = i.operands - 1;
3137 union i386_op temp_op;
3138 i386_operand_type temp_type;
3139
3140 temp_type = i.types[xchg];
3141 i.types[xchg] = i.types[0];
3142 i.types[0] = temp_type;
3143 temp_op = i.op[xchg];
3144 i.op[xchg] = i.op[0];
3145 i.op[0] = temp_op;
3146
9c2799c2 3147 gas_assert (i.rm.mode == 3);
fa99fab2
L
3148
3149 i.rex = REX_R;
3150 xchg = i.rm.regmem;
3151 i.rm.regmem = i.rm.reg;
3152 i.rm.reg = xchg;
3153
3154 /* Use the next insn. */
3155 i.tm = t[1];
3156 }
3157
539f890d
L
3158 if (i.tm.opcode_modifier.vex == VEXScalar)
3159 vector_length = avxscalar;
3160 else
3161 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
c0f3af97
L
3162
3163 switch ((i.tm.base_opcode >> 8) & 0xff)
3164 {
3165 case 0:
3166 implied_prefix = 0;
3167 break;
3168 case DATA_PREFIX_OPCODE:
3169 implied_prefix = 1;
3170 break;
3171 case REPE_PREFIX_OPCODE:
3172 implied_prefix = 2;
3173 break;
3174 case REPNE_PREFIX_OPCODE:
3175 implied_prefix = 3;
3176 break;
3177 default:
3178 abort ();
3179 }
3180
3181 /* Use 2-byte VEX prefix if possible. */
7f399153 3182 if (i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3183 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3184 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3185 {
3186 /* 2-byte VEX prefix. */
3187 unsigned int r;
3188
3189 i.vex.length = 2;
3190 i.vex.bytes[0] = 0xc5;
3191
3192 /* Check the REX.R bit. */
3193 r = (i.rex & REX_R) ? 0 : 1;
3194 i.vex.bytes[1] = (r << 7
3195 | register_specifier << 3
3196 | vector_length << 2
3197 | implied_prefix);
3198 }
3199 else
3200 {
3201 /* 3-byte VEX prefix. */
3202 unsigned int m, w;
3203
f88c9eb0 3204 i.vex.length = 3;
f88c9eb0 3205
7f399153 3206 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3207 {
7f399153
L
3208 case VEX0F:
3209 m = 0x1;
80de6e00 3210 i.vex.bytes[0] = 0xc4;
7f399153
L
3211 break;
3212 case VEX0F38:
3213 m = 0x2;
80de6e00 3214 i.vex.bytes[0] = 0xc4;
7f399153
L
3215 break;
3216 case VEX0F3A:
3217 m = 0x3;
80de6e00 3218 i.vex.bytes[0] = 0xc4;
7f399153
L
3219 break;
3220 case XOP08:
5dd85c99
SP
3221 m = 0x8;
3222 i.vex.bytes[0] = 0x8f;
7f399153
L
3223 break;
3224 case XOP09:
f88c9eb0
SP
3225 m = 0x9;
3226 i.vex.bytes[0] = 0x8f;
7f399153
L
3227 break;
3228 case XOP0A:
f88c9eb0
SP
3229 m = 0xa;
3230 i.vex.bytes[0] = 0x8f;
7f399153
L
3231 break;
3232 default:
3233 abort ();
f88c9eb0 3234 }
c0f3af97 3235
c0f3af97
L
3236 /* The high 3 bits of the second VEX byte are 1's compliment
3237 of RXB bits from REX. */
3238 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3239
3240 /* Check the REX.W bit. */
3241 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3242 if (i.tm.opcode_modifier.vexw == VEXW1)
3243 w = 1;
c0f3af97
L
3244
3245 i.vex.bytes[2] = (w << 7
3246 | register_specifier << 3
3247 | vector_length << 2
3248 | implied_prefix);
3249 }
3250}
3251
43234a1e
L
3252/* Build the EVEX prefix. */
3253
3254static void
3255build_evex_prefix (void)
3256{
3257 unsigned int register_specifier;
3258 unsigned int implied_prefix;
3259 unsigned int m, w;
3260 rex_byte vrex_used = 0;
3261
3262 /* Check register specifier. */
3263 if (i.vex.register_specifier)
3264 {
3265 gas_assert ((i.vrex & REX_X) == 0);
3266
3267 register_specifier = i.vex.register_specifier->reg_num;
3268 if ((i.vex.register_specifier->reg_flags & RegRex))
3269 register_specifier += 8;
3270 /* The upper 16 registers are encoded in the fourth byte of the
3271 EVEX prefix. */
3272 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3273 i.vex.bytes[3] = 0x8;
3274 register_specifier = ~register_specifier & 0xf;
3275 }
3276 else
3277 {
3278 register_specifier = 0xf;
3279
3280 /* Encode upper 16 vector index register in the fourth byte of
3281 the EVEX prefix. */
3282 if (!(i.vrex & REX_X))
3283 i.vex.bytes[3] = 0x8;
3284 else
3285 vrex_used |= REX_X;
3286 }
3287
3288 switch ((i.tm.base_opcode >> 8) & 0xff)
3289 {
3290 case 0:
3291 implied_prefix = 0;
3292 break;
3293 case DATA_PREFIX_OPCODE:
3294 implied_prefix = 1;
3295 break;
3296 case REPE_PREFIX_OPCODE:
3297 implied_prefix = 2;
3298 break;
3299 case REPNE_PREFIX_OPCODE:
3300 implied_prefix = 3;
3301 break;
3302 default:
3303 abort ();
3304 }
3305
3306 /* 4 byte EVEX prefix. */
3307 i.vex.length = 4;
3308 i.vex.bytes[0] = 0x62;
3309
3310 /* mmmm bits. */
3311 switch (i.tm.opcode_modifier.vexopcode)
3312 {
3313 case VEX0F:
3314 m = 1;
3315 break;
3316 case VEX0F38:
3317 m = 2;
3318 break;
3319 case VEX0F3A:
3320 m = 3;
3321 break;
3322 default:
3323 abort ();
3324 break;
3325 }
3326
3327 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3328 bits from REX. */
3329 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3330
3331 /* The fifth bit of the second EVEX byte is 1's compliment of the
3332 REX_R bit in VREX. */
3333 if (!(i.vrex & REX_R))
3334 i.vex.bytes[1] |= 0x10;
3335 else
3336 vrex_used |= REX_R;
3337
3338 if ((i.reg_operands + i.imm_operands) == i.operands)
3339 {
3340 /* When all operands are registers, the REX_X bit in REX is not
3341 used. We reuse it to encode the upper 16 registers, which is
3342 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3343 as 1's compliment. */
3344 if ((i.vrex & REX_B))
3345 {
3346 vrex_used |= REX_B;
3347 i.vex.bytes[1] &= ~0x40;
3348 }
3349 }
3350
3351 /* EVEX instructions shouldn't need the REX prefix. */
3352 i.vrex &= ~vrex_used;
3353 gas_assert (i.vrex == 0);
3354
3355 /* Check the REX.W bit. */
3356 w = (i.rex & REX_W) ? 1 : 0;
3357 if (i.tm.opcode_modifier.vexw)
3358 {
3359 if (i.tm.opcode_modifier.vexw == VEXW1)
3360 w = 1;
3361 }
3362 /* If w is not set it means we are dealing with WIG instruction. */
3363 else if (!w)
3364 {
3365 if (evexwig == evexw1)
3366 w = 1;
3367 }
3368
3369 /* Encode the U bit. */
3370 implied_prefix |= 0x4;
3371
3372 /* The third byte of the EVEX prefix. */
3373 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3374
3375 /* The fourth byte of the EVEX prefix. */
3376 /* The zeroing-masking bit. */
3377 if (i.mask && i.mask->zeroing)
3378 i.vex.bytes[3] |= 0x80;
3379
3380 /* Don't always set the broadcast bit if there is no RC. */
3381 if (!i.rounding)
3382 {
3383 /* Encode the vector length. */
3384 unsigned int vec_length;
3385
3386 switch (i.tm.opcode_modifier.evex)
3387 {
3388 case EVEXLIG: /* LL' is ignored */
3389 vec_length = evexlig << 5;
3390 break;
3391 case EVEX128:
3392 vec_length = 0 << 5;
3393 break;
3394 case EVEX256:
3395 vec_length = 1 << 5;
3396 break;
3397 case EVEX512:
3398 vec_length = 2 << 5;
3399 break;
3400 default:
3401 abort ();
3402 break;
3403 }
3404 i.vex.bytes[3] |= vec_length;
3405 /* Encode the broadcast bit. */
3406 if (i.broadcast)
3407 i.vex.bytes[3] |= 0x10;
3408 }
3409 else
3410 {
3411 if (i.rounding->type != saeonly)
3412 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3413 else
d3d3c6db 3414 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3415 }
3416
3417 if (i.mask && i.mask->mask)
3418 i.vex.bytes[3] |= i.mask->mask->reg_num;
3419}
3420
65da13b5
L
3421static void
3422process_immext (void)
3423{
3424 expressionS *exp;
3425
4c692bc7
JB
3426 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3427 && i.operands > 0)
65da13b5 3428 {
4c692bc7
JB
3429 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3430 with an opcode suffix which is coded in the same place as an
3431 8-bit immediate field would be.
3432 Here we check those operands and remove them afterwards. */
65da13b5
L
3433 unsigned int x;
3434
3435 for (x = 0; x < i.operands; x++)
4c692bc7 3436 if (register_number (i.op[x].regs) != x)
65da13b5 3437 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3438 register_prefix, i.op[x].regs->reg_name, x + 1,
3439 i.tm.name);
3440
3441 i.operands = 0;
65da13b5
L
3442 }
3443
9916071f
AP
3444 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3445 {
3446 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3447 suffix which is coded in the same place as an 8-bit immediate
3448 field would be.
3449 Here we check those operands and remove them afterwards. */
3450 unsigned int x;
3451
3452 if (i.operands != 3)
3453 abort();
3454
3455 for (x = 0; x < 2; x++)
3456 if (register_number (i.op[x].regs) != x)
3457 goto bad_register_operand;
3458
3459 /* Check for third operand for mwaitx/monitorx insn. */
3460 if (register_number (i.op[x].regs)
3461 != (x + (i.tm.extension_opcode == 0xfb)))
3462 {
3463bad_register_operand:
3464 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3465 register_prefix, i.op[x].regs->reg_name, x+1,
3466 i.tm.name);
3467 }
3468
3469 i.operands = 0;
3470 }
3471
c0f3af97 3472 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3473 which is coded in the same place as an 8-bit immediate field
3474 would be. Here we fake an 8-bit immediate operand from the
3475 opcode suffix stored in tm.extension_opcode.
3476
c1e679ec 3477 AVX instructions also use this encoding, for some of
c0f3af97 3478 3 argument instructions. */
65da13b5 3479
43234a1e 3480 gas_assert (i.imm_operands <= 1
7ab9ffdd 3481 && (i.operands <= 2
43234a1e
L
3482 || ((i.tm.opcode_modifier.vex
3483 || i.tm.opcode_modifier.evex)
7ab9ffdd 3484 && i.operands <= 4)));
65da13b5
L
3485
3486 exp = &im_expressions[i.imm_operands++];
3487 i.op[i.operands].imms = exp;
3488 i.types[i.operands] = imm8;
3489 i.operands++;
3490 exp->X_op = O_constant;
3491 exp->X_add_number = i.tm.extension_opcode;
3492 i.tm.extension_opcode = None;
3493}
3494
42164a71
L
3495
3496static int
3497check_hle (void)
3498{
3499 switch (i.tm.opcode_modifier.hleprefixok)
3500 {
3501 default:
3502 abort ();
82c2def5 3503 case HLEPrefixNone:
165de32a
L
3504 as_bad (_("invalid instruction `%s' after `%s'"),
3505 i.tm.name, i.hle_prefix);
42164a71 3506 return 0;
82c2def5 3507 case HLEPrefixLock:
42164a71
L
3508 if (i.prefix[LOCK_PREFIX])
3509 return 1;
165de32a 3510 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3511 return 0;
82c2def5 3512 case HLEPrefixAny:
42164a71 3513 return 1;
82c2def5 3514 case HLEPrefixRelease:
42164a71
L
3515 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3516 {
3517 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3518 i.tm.name);
3519 return 0;
3520 }
3521 if (i.mem_operands == 0
3522 || !operand_type_check (i.types[i.operands - 1], anymem))
3523 {
3524 as_bad (_("memory destination needed for instruction `%s'"
3525 " after `xrelease'"), i.tm.name);
3526 return 0;
3527 }
3528 return 1;
3529 }
3530}
3531
252b5132
RH
3532/* This is the guts of the machine-dependent assembler. LINE points to a
3533 machine dependent instruction. This function is supposed to emit
3534 the frags/bytes it assembles to. */
3535
3536void
65da13b5 3537md_assemble (char *line)
252b5132 3538{
40fb9820 3539 unsigned int j;
83b16ac6 3540 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 3541 const insn_template *t;
252b5132 3542
47926f60 3543 /* Initialize globals. */
252b5132
RH
3544 memset (&i, '\0', sizeof (i));
3545 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 3546 i.reloc[j] = NO_RELOC;
252b5132
RH
3547 memset (disp_expressions, '\0', sizeof (disp_expressions));
3548 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 3549 save_stack_p = save_stack;
252b5132
RH
3550
3551 /* First parse an instruction mnemonic & call i386_operand for the operands.
3552 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 3553 start of a (possibly prefixed) mnemonic. */
252b5132 3554
29b0f896
AM
3555 line = parse_insn (line, mnemonic);
3556 if (line == NULL)
3557 return;
83b16ac6 3558 mnem_suffix = i.suffix;
252b5132 3559
29b0f896 3560 line = parse_operands (line, mnemonic);
ee86248c 3561 this_operand = -1;
8325cc63
JB
3562 xfree (i.memop1_string);
3563 i.memop1_string = NULL;
29b0f896
AM
3564 if (line == NULL)
3565 return;
252b5132 3566
29b0f896
AM
3567 /* Now we've parsed the mnemonic into a set of templates, and have the
3568 operands at hand. */
3569
3570 /* All intel opcodes have reversed operands except for "bound" and
3571 "enter". We also don't reverse intersegment "jmp" and "call"
3572 instructions with 2 immediate operands so that the immediate segment
050dfa73 3573 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
3574 if (intel_syntax
3575 && i.operands > 1
29b0f896 3576 && (strcmp (mnemonic, "bound") != 0)
30123838 3577 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
3578 && !(operand_type_check (i.types[0], imm)
3579 && operand_type_check (i.types[1], imm)))
29b0f896
AM
3580 swap_operands ();
3581
ec56d5c0
JB
3582 /* The order of the immediates should be reversed
3583 for 2 immediates extrq and insertq instructions */
3584 if (i.imm_operands == 2
3585 && (strcmp (mnemonic, "extrq") == 0
3586 || strcmp (mnemonic, "insertq") == 0))
3587 swap_2_operands (0, 1);
3588
29b0f896
AM
3589 if (i.imm_operands)
3590 optimize_imm ();
3591
b300c311
L
3592 /* Don't optimize displacement for movabs since it only takes 64bit
3593 displacement. */
3594 if (i.disp_operands
a501d77e 3595 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
3596 && (flag_code != CODE_64BIT
3597 || strcmp (mnemonic, "movabs") != 0))
3598 optimize_disp ();
29b0f896
AM
3599
3600 /* Next, we find a template that matches the given insn,
3601 making sure the overlap of the given operands types is consistent
3602 with the template operand types. */
252b5132 3603
83b16ac6 3604 if (!(t = match_template (mnem_suffix)))
29b0f896 3605 return;
252b5132 3606
7bab8ab5 3607 if (sse_check != check_none
81f8a913 3608 && !i.tm.opcode_modifier.noavx
daf50ae7
L
3609 && (i.tm.cpu_flags.bitfield.cpusse
3610 || i.tm.cpu_flags.bitfield.cpusse2
3611 || i.tm.cpu_flags.bitfield.cpusse3
3612 || i.tm.cpu_flags.bitfield.cpussse3
3613 || i.tm.cpu_flags.bitfield.cpusse4_1
3614 || i.tm.cpu_flags.bitfield.cpusse4_2))
3615 {
7bab8ab5 3616 (sse_check == check_warning
daf50ae7
L
3617 ? as_warn
3618 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3619 }
3620
321fd21e
L
3621 /* Zap movzx and movsx suffix. The suffix has been set from
3622 "word ptr" or "byte ptr" on the source operand in Intel syntax
3623 or extracted from mnemonic in AT&T syntax. But we'll use
3624 the destination register to choose the suffix for encoding. */
3625 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 3626 {
321fd21e
L
3627 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3628 there is no suffix, the default will be byte extension. */
3629 if (i.reg_operands != 2
3630 && !i.suffix
7ab9ffdd 3631 && intel_syntax)
321fd21e
L
3632 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3633
3634 i.suffix = 0;
cd61ebfe 3635 }
24eab124 3636
40fb9820 3637 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
3638 if (!add_prefix (FWAIT_OPCODE))
3639 return;
252b5132 3640
d5de92cf
L
3641 /* Check if REP prefix is OK. */
3642 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3643 {
3644 as_bad (_("invalid instruction `%s' after `%s'"),
3645 i.tm.name, i.rep_prefix);
3646 return;
3647 }
3648
c1ba0266
L
3649 /* Check for lock without a lockable instruction. Destination operand
3650 must be memory unless it is xchg (0x86). */
c32fa91d
L
3651 if (i.prefix[LOCK_PREFIX]
3652 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
3653 || i.mem_operands == 0
3654 || (i.tm.base_opcode != 0x86
3655 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
3656 {
3657 as_bad (_("expecting lockable instruction after `lock'"));
3658 return;
3659 }
3660
42164a71 3661 /* Check if HLE prefix is OK. */
165de32a 3662 if (i.hle_prefix && !check_hle ())
42164a71
L
3663 return;
3664
7e8b059b
L
3665 /* Check BND prefix. */
3666 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3667 as_bad (_("expecting valid branch instruction after `bnd'"));
3668
327e8c42
JB
3669 if (i.tm.cpu_flags.bitfield.cpumpx)
3670 {
3671 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3672 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3673 else if (flag_code != CODE_16BIT
3674 ? i.prefix[ADDR_PREFIX]
3675 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3676 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3677 }
7e8b059b
L
3678
3679 /* Insert BND prefix. */
3680 if (add_bnd_prefix
3681 && i.tm.opcode_modifier.bndprefixok
3682 && !i.prefix[BND_PREFIX])
3683 add_prefix (BND_PREFIX_OPCODE);
3684
29b0f896 3685 /* Check string instruction segment overrides. */
40fb9820 3686 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
3687 {
3688 if (!check_string ())
5dd0794d 3689 return;
fc0763e6 3690 i.disp_operands = 0;
29b0f896 3691 }
5dd0794d 3692
29b0f896
AM
3693 if (!process_suffix ())
3694 return;
e413e4e9 3695
bc0844ae
L
3696 /* Update operand types. */
3697 for (j = 0; j < i.operands; j++)
3698 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3699
29b0f896
AM
3700 /* Make still unresolved immediate matches conform to size of immediate
3701 given in i.suffix. */
3702 if (!finalize_imm ())
3703 return;
252b5132 3704
40fb9820 3705 if (i.types[0].bitfield.imm1)
29b0f896 3706 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 3707
9afe6eb8
L
3708 /* We only need to check those implicit registers for instructions
3709 with 3 operands or less. */
3710 if (i.operands <= 3)
3711 for (j = 0; j < i.operands; j++)
3712 if (i.types[j].bitfield.inoutportreg
3713 || i.types[j].bitfield.shiftcount
3714 || i.types[j].bitfield.acc
3715 || i.types[j].bitfield.floatacc)
3716 i.reg_operands--;
40fb9820 3717
c0f3af97
L
3718 /* ImmExt should be processed after SSE2AVX. */
3719 if (!i.tm.opcode_modifier.sse2avx
3720 && i.tm.opcode_modifier.immext)
65da13b5 3721 process_immext ();
252b5132 3722
29b0f896
AM
3723 /* For insns with operands there are more diddles to do to the opcode. */
3724 if (i.operands)
3725 {
3726 if (!process_operands ())
3727 return;
3728 }
40fb9820 3729 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
3730 {
3731 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3732 as_warn (_("translating to `%sp'"), i.tm.name);
3733 }
252b5132 3734
9e5e5283
L
3735 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3736 {
3737 if (flag_code == CODE_16BIT)
3738 {
3739 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3740 i.tm.name);
3741 return;
3742 }
c0f3af97 3743
9e5e5283
L
3744 if (i.tm.opcode_modifier.vex)
3745 build_vex_prefix (t);
3746 else
3747 build_evex_prefix ();
3748 }
43234a1e 3749
5dd85c99
SP
3750 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3751 instructions may define INT_OPCODE as well, so avoid this corner
3752 case for those instructions that use MODRM. */
3753 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
3754 && !i.tm.opcode_modifier.modrm
3755 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
3756 {
3757 i.tm.base_opcode = INT3_OPCODE;
3758 i.imm_operands = 0;
3759 }
252b5132 3760
40fb9820
L
3761 if ((i.tm.opcode_modifier.jump
3762 || i.tm.opcode_modifier.jumpbyte
3763 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
3764 && i.op[0].disps->X_op == O_constant)
3765 {
3766 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3767 the absolute address given by the constant. Since ix86 jumps and
3768 calls are pc relative, we need to generate a reloc. */
3769 i.op[0].disps->X_add_symbol = &abs_symbol;
3770 i.op[0].disps->X_op = O_symbol;
3771 }
252b5132 3772
40fb9820 3773 if (i.tm.opcode_modifier.rex64)
161a04f6 3774 i.rex |= REX_W;
252b5132 3775
29b0f896
AM
3776 /* For 8 bit registers we need an empty rex prefix. Also if the
3777 instruction already has a prefix, we need to convert old
3778 registers to new ones. */
773f551c 3779
40fb9820 3780 if ((i.types[0].bitfield.reg8
29b0f896 3781 && (i.op[0].regs->reg_flags & RegRex64) != 0)
40fb9820 3782 || (i.types[1].bitfield.reg8
29b0f896 3783 && (i.op[1].regs->reg_flags & RegRex64) != 0)
40fb9820
L
3784 || ((i.types[0].bitfield.reg8
3785 || i.types[1].bitfield.reg8)
29b0f896
AM
3786 && i.rex != 0))
3787 {
3788 int x;
726c5dcd 3789
29b0f896
AM
3790 i.rex |= REX_OPCODE;
3791 for (x = 0; x < 2; x++)
3792 {
3793 /* Look for 8 bit operand that uses old registers. */
40fb9820 3794 if (i.types[x].bitfield.reg8
29b0f896 3795 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 3796 {
29b0f896
AM
3797 /* In case it is "hi" register, give up. */
3798 if (i.op[x].regs->reg_num > 3)
a540244d 3799 as_bad (_("can't encode register '%s%s' in an "
4eed87de 3800 "instruction requiring REX prefix."),
a540244d 3801 register_prefix, i.op[x].regs->reg_name);
773f551c 3802
29b0f896
AM
3803 /* Otherwise it is equivalent to the extended register.
3804 Since the encoding doesn't change this is merely
3805 cosmetic cleanup for debug output. */
3806
3807 i.op[x].regs = i.op[x].regs + 8;
773f551c 3808 }
29b0f896
AM
3809 }
3810 }
773f551c 3811
7ab9ffdd 3812 if (i.rex != 0)
29b0f896
AM
3813 add_prefix (REX_OPCODE | i.rex);
3814
3815 /* We are ready to output the insn. */
3816 output_insn ();
3817}
3818
3819static char *
e3bb37b5 3820parse_insn (char *line, char *mnemonic)
29b0f896
AM
3821{
3822 char *l = line;
3823 char *token_start = l;
3824 char *mnem_p;
5c6af06e 3825 int supported;
d3ce72d0 3826 const insn_template *t;
b6169b20 3827 char *dot_p = NULL;
29b0f896 3828
29b0f896
AM
3829 while (1)
3830 {
3831 mnem_p = mnemonic;
3832 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3833 {
b6169b20
L
3834 if (*mnem_p == '.')
3835 dot_p = mnem_p;
29b0f896
AM
3836 mnem_p++;
3837 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 3838 {
29b0f896
AM
3839 as_bad (_("no such instruction: `%s'"), token_start);
3840 return NULL;
3841 }
3842 l++;
3843 }
3844 if (!is_space_char (*l)
3845 && *l != END_OF_INSN
e44823cf
JB
3846 && (intel_syntax
3847 || (*l != PREFIX_SEPARATOR
3848 && *l != ',')))
29b0f896
AM
3849 {
3850 as_bad (_("invalid character %s in mnemonic"),
3851 output_invalid (*l));
3852 return NULL;
3853 }
3854 if (token_start == l)
3855 {
e44823cf 3856 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
3857 as_bad (_("expecting prefix; got nothing"));
3858 else
3859 as_bad (_("expecting mnemonic; got nothing"));
3860 return NULL;
3861 }
45288df1 3862
29b0f896 3863 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 3864 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 3865
29b0f896
AM
3866 if (*l != END_OF_INSN
3867 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3868 && current_templates
40fb9820 3869 && current_templates->start->opcode_modifier.isprefix)
29b0f896 3870 {
c6fb90c8 3871 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
3872 {
3873 as_bad ((flag_code != CODE_64BIT
3874 ? _("`%s' is only supported in 64-bit mode")
3875 : _("`%s' is not supported in 64-bit mode")),
3876 current_templates->start->name);
3877 return NULL;
3878 }
29b0f896
AM
3879 /* If we are in 16-bit mode, do not allow addr16 or data16.
3880 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
3881 if ((current_templates->start->opcode_modifier.size16
3882 || current_templates->start->opcode_modifier.size32)
29b0f896 3883 && flag_code != CODE_64BIT
40fb9820 3884 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
3885 ^ (flag_code == CODE_16BIT)))
3886 {
3887 as_bad (_("redundant %s prefix"),
3888 current_templates->start->name);
3889 return NULL;
45288df1 3890 }
29b0f896
AM
3891 /* Add prefix, checking for repeated prefixes. */
3892 switch (add_prefix (current_templates->start->base_opcode))
3893 {
c32fa91d 3894 case PREFIX_EXIST:
29b0f896 3895 return NULL;
c32fa91d 3896 case PREFIX_REP:
42164a71 3897 if (current_templates->start->cpu_flags.bitfield.cpuhle)
165de32a 3898 i.hle_prefix = current_templates->start->name;
7e8b059b
L
3899 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3900 i.bnd_prefix = current_templates->start->name;
42164a71 3901 else
d5de92cf 3902 i.rep_prefix = current_templates->start->name;
29b0f896 3903 break;
c32fa91d
L
3904 default:
3905 break;
29b0f896
AM
3906 }
3907 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3908 token_start = ++l;
3909 }
3910 else
3911 break;
3912 }
45288df1 3913
30a55f88 3914 if (!current_templates)
b6169b20 3915 {
f8a5c266
L
3916 /* Check if we should swap operand or force 32bit displacement in
3917 encoding. */
30a55f88
L
3918 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3919 i.swap_operand = 1;
8d63c93e 3920 else if (mnem_p - 3 == dot_p
a501d77e
L
3921 && dot_p[1] == 'd'
3922 && dot_p[2] == '8')
3923 i.disp_encoding = disp_encoding_8bit;
8d63c93e 3924 else if (mnem_p - 4 == dot_p
f8a5c266
L
3925 && dot_p[1] == 'd'
3926 && dot_p[2] == '3'
3927 && dot_p[3] == '2')
a501d77e 3928 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
3929 else
3930 goto check_suffix;
3931 mnem_p = dot_p;
3932 *dot_p = '\0';
d3ce72d0 3933 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
3934 }
3935
29b0f896
AM
3936 if (!current_templates)
3937 {
b6169b20 3938check_suffix:
29b0f896
AM
3939 /* See if we can get a match by trimming off a suffix. */
3940 switch (mnem_p[-1])
3941 {
3942 case WORD_MNEM_SUFFIX:
9306ca4a
JB
3943 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3944 i.suffix = SHORT_MNEM_SUFFIX;
3945 else
29b0f896
AM
3946 case BYTE_MNEM_SUFFIX:
3947 case QWORD_MNEM_SUFFIX:
3948 i.suffix = mnem_p[-1];
3949 mnem_p[-1] = '\0';
d3ce72d0
NC
3950 current_templates = (const templates *) hash_find (op_hash,
3951 mnemonic);
29b0f896
AM
3952 break;
3953 case SHORT_MNEM_SUFFIX:
3954 case LONG_MNEM_SUFFIX:
3955 if (!intel_syntax)
3956 {
3957 i.suffix = mnem_p[-1];
3958 mnem_p[-1] = '\0';
d3ce72d0
NC
3959 current_templates = (const templates *) hash_find (op_hash,
3960 mnemonic);
29b0f896
AM
3961 }
3962 break;
252b5132 3963
29b0f896
AM
3964 /* Intel Syntax. */
3965 case 'd':
3966 if (intel_syntax)
3967 {
9306ca4a 3968 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
3969 i.suffix = SHORT_MNEM_SUFFIX;
3970 else
3971 i.suffix = LONG_MNEM_SUFFIX;
3972 mnem_p[-1] = '\0';
d3ce72d0
NC
3973 current_templates = (const templates *) hash_find (op_hash,
3974 mnemonic);
29b0f896
AM
3975 }
3976 break;
3977 }
3978 if (!current_templates)
3979 {
3980 as_bad (_("no such instruction: `%s'"), token_start);
3981 return NULL;
3982 }
3983 }
252b5132 3984
40fb9820
L
3985 if (current_templates->start->opcode_modifier.jump
3986 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
3987 {
3988 /* Check for a branch hint. We allow ",pt" and ",pn" for
3989 predict taken and predict not taken respectively.
3990 I'm not sure that branch hints actually do anything on loop
3991 and jcxz insns (JumpByte) for current Pentium4 chips. They
3992 may work in the future and it doesn't hurt to accept them
3993 now. */
3994 if (l[0] == ',' && l[1] == 'p')
3995 {
3996 if (l[2] == 't')
3997 {
3998 if (!add_prefix (DS_PREFIX_OPCODE))
3999 return NULL;
4000 l += 3;
4001 }
4002 else if (l[2] == 'n')
4003 {
4004 if (!add_prefix (CS_PREFIX_OPCODE))
4005 return NULL;
4006 l += 3;
4007 }
4008 }
4009 }
4010 /* Any other comma loses. */
4011 if (*l == ',')
4012 {
4013 as_bad (_("invalid character %s in mnemonic"),
4014 output_invalid (*l));
4015 return NULL;
4016 }
252b5132 4017
29b0f896 4018 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4019 supported = 0;
4020 for (t = current_templates->start; t < current_templates->end; ++t)
4021 {
c0f3af97
L
4022 supported |= cpu_flags_match (t);
4023 if (supported == CPU_FLAGS_PERFECT_MATCH)
3629bb00 4024 goto skip;
5c6af06e 4025 }
3629bb00 4026
c0f3af97 4027 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5c6af06e
JB
4028 {
4029 as_bad (flag_code == CODE_64BIT
4030 ? _("`%s' is not supported in 64-bit mode")
4031 : _("`%s' is only supported in 64-bit mode"),
4032 current_templates->start->name);
4033 return NULL;
4034 }
c0f3af97 4035 if (supported != CPU_FLAGS_PERFECT_MATCH)
29b0f896 4036 {
3629bb00 4037 as_bad (_("`%s' is not supported on `%s%s'"),
7ab9ffdd 4038 current_templates->start->name,
41aacd83 4039 cpu_arch_name ? cpu_arch_name : default_arch,
3629bb00
L
4040 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4041 return NULL;
29b0f896 4042 }
3629bb00
L
4043
4044skip:
4045 if (!cpu_arch_flags.bitfield.cpui386
40fb9820 4046 && (flag_code != CODE_16BIT))
29b0f896
AM
4047 {
4048 as_warn (_("use .code16 to ensure correct addressing mode"));
4049 }
252b5132 4050
29b0f896
AM
4051 return l;
4052}
252b5132 4053
29b0f896 4054static char *
e3bb37b5 4055parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4056{
4057 char *token_start;
3138f287 4058
29b0f896
AM
4059 /* 1 if operand is pending after ','. */
4060 unsigned int expecting_operand = 0;
252b5132 4061
29b0f896
AM
4062 /* Non-zero if operand parens not balanced. */
4063 unsigned int paren_not_balanced;
4064
4065 while (*l != END_OF_INSN)
4066 {
4067 /* Skip optional white space before operand. */
4068 if (is_space_char (*l))
4069 ++l;
d02603dc 4070 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4071 {
4072 as_bad (_("invalid character %s before operand %d"),
4073 output_invalid (*l),
4074 i.operands + 1);
4075 return NULL;
4076 }
d02603dc 4077 token_start = l; /* After white space. */
29b0f896
AM
4078 paren_not_balanced = 0;
4079 while (paren_not_balanced || *l != ',')
4080 {
4081 if (*l == END_OF_INSN)
4082 {
4083 if (paren_not_balanced)
4084 {
4085 if (!intel_syntax)
4086 as_bad (_("unbalanced parenthesis in operand %d."),
4087 i.operands + 1);
4088 else
4089 as_bad (_("unbalanced brackets in operand %d."),
4090 i.operands + 1);
4091 return NULL;
4092 }
4093 else
4094 break; /* we are done */
4095 }
d02603dc 4096 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4097 {
4098 as_bad (_("invalid character %s in operand %d"),
4099 output_invalid (*l),
4100 i.operands + 1);
4101 return NULL;
4102 }
4103 if (!intel_syntax)
4104 {
4105 if (*l == '(')
4106 ++paren_not_balanced;
4107 if (*l == ')')
4108 --paren_not_balanced;
4109 }
4110 else
4111 {
4112 if (*l == '[')
4113 ++paren_not_balanced;
4114 if (*l == ']')
4115 --paren_not_balanced;
4116 }
4117 l++;
4118 }
4119 if (l != token_start)
4120 { /* Yes, we've read in another operand. */
4121 unsigned int operand_ok;
4122 this_operand = i.operands++;
7d5e4556 4123 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4124 if (i.operands > MAX_OPERANDS)
4125 {
4126 as_bad (_("spurious operands; (%d operands/instruction max)"),
4127 MAX_OPERANDS);
4128 return NULL;
4129 }
4130 /* Now parse operand adding info to 'i' as we go along. */
4131 END_STRING_AND_SAVE (l);
4132
4133 if (intel_syntax)
4134 operand_ok =
4135 i386_intel_operand (token_start,
4136 intel_float_operand (mnemonic));
4137 else
a7619375 4138 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4139
4140 RESTORE_END_STRING (l);
4141 if (!operand_ok)
4142 return NULL;
4143 }
4144 else
4145 {
4146 if (expecting_operand)
4147 {
4148 expecting_operand_after_comma:
4149 as_bad (_("expecting operand after ','; got nothing"));
4150 return NULL;
4151 }
4152 if (*l == ',')
4153 {
4154 as_bad (_("expecting operand before ','; got nothing"));
4155 return NULL;
4156 }
4157 }
7f3f1ea2 4158
29b0f896
AM
4159 /* Now *l must be either ',' or END_OF_INSN. */
4160 if (*l == ',')
4161 {
4162 if (*++l == END_OF_INSN)
4163 {
4164 /* Just skip it, if it's \n complain. */
4165 goto expecting_operand_after_comma;
4166 }
4167 expecting_operand = 1;
4168 }
4169 }
4170 return l;
4171}
7f3f1ea2 4172
050dfa73 4173static void
4d456e3d 4174swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4175{
4176 union i386_op temp_op;
40fb9820 4177 i386_operand_type temp_type;
050dfa73 4178 enum bfd_reloc_code_real temp_reloc;
4eed87de 4179
050dfa73
MM
4180 temp_type = i.types[xchg2];
4181 i.types[xchg2] = i.types[xchg1];
4182 i.types[xchg1] = temp_type;
4183 temp_op = i.op[xchg2];
4184 i.op[xchg2] = i.op[xchg1];
4185 i.op[xchg1] = temp_op;
4186 temp_reloc = i.reloc[xchg2];
4187 i.reloc[xchg2] = i.reloc[xchg1];
4188 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4189
4190 if (i.mask)
4191 {
4192 if (i.mask->operand == xchg1)
4193 i.mask->operand = xchg2;
4194 else if (i.mask->operand == xchg2)
4195 i.mask->operand = xchg1;
4196 }
4197 if (i.broadcast)
4198 {
4199 if (i.broadcast->operand == xchg1)
4200 i.broadcast->operand = xchg2;
4201 else if (i.broadcast->operand == xchg2)
4202 i.broadcast->operand = xchg1;
4203 }
4204 if (i.rounding)
4205 {
4206 if (i.rounding->operand == xchg1)
4207 i.rounding->operand = xchg2;
4208 else if (i.rounding->operand == xchg2)
4209 i.rounding->operand = xchg1;
4210 }
050dfa73
MM
4211}
4212
29b0f896 4213static void
e3bb37b5 4214swap_operands (void)
29b0f896 4215{
b7c61d9a 4216 switch (i.operands)
050dfa73 4217 {
c0f3af97 4218 case 5:
b7c61d9a 4219 case 4:
4d456e3d 4220 swap_2_operands (1, i.operands - 2);
b7c61d9a
L
4221 case 3:
4222 case 2:
4d456e3d 4223 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4224 break;
4225 default:
4226 abort ();
29b0f896 4227 }
29b0f896
AM
4228
4229 if (i.mem_operands == 2)
4230 {
4231 const seg_entry *temp_seg;
4232 temp_seg = i.seg[0];
4233 i.seg[0] = i.seg[1];
4234 i.seg[1] = temp_seg;
4235 }
4236}
252b5132 4237
29b0f896
AM
4238/* Try to ensure constant immediates are represented in the smallest
4239 opcode possible. */
4240static void
e3bb37b5 4241optimize_imm (void)
29b0f896
AM
4242{
4243 char guess_suffix = 0;
4244 int op;
252b5132 4245
29b0f896
AM
4246 if (i.suffix)
4247 guess_suffix = i.suffix;
4248 else if (i.reg_operands)
4249 {
4250 /* Figure out a suffix from the last register operand specified.
4251 We can't do this properly yet, ie. excluding InOutPortReg,
4252 but the following works for instructions with immediates.
4253 In any case, we can't set i.suffix yet. */
4254 for (op = i.operands; --op >= 0;)
40fb9820 4255 if (i.types[op].bitfield.reg8)
7ab9ffdd 4256 {
40fb9820
L
4257 guess_suffix = BYTE_MNEM_SUFFIX;
4258 break;
4259 }
4260 else if (i.types[op].bitfield.reg16)
252b5132 4261 {
40fb9820
L
4262 guess_suffix = WORD_MNEM_SUFFIX;
4263 break;
4264 }
4265 else if (i.types[op].bitfield.reg32)
4266 {
4267 guess_suffix = LONG_MNEM_SUFFIX;
4268 break;
4269 }
4270 else if (i.types[op].bitfield.reg64)
4271 {
4272 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4273 break;
252b5132 4274 }
29b0f896
AM
4275 }
4276 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4277 guess_suffix = WORD_MNEM_SUFFIX;
4278
4279 for (op = i.operands; --op >= 0;)
40fb9820 4280 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4281 {
4282 switch (i.op[op].imms->X_op)
252b5132 4283 {
29b0f896
AM
4284 case O_constant:
4285 /* If a suffix is given, this operand may be shortened. */
4286 switch (guess_suffix)
252b5132 4287 {
29b0f896 4288 case LONG_MNEM_SUFFIX:
40fb9820
L
4289 i.types[op].bitfield.imm32 = 1;
4290 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4291 break;
4292 case WORD_MNEM_SUFFIX:
40fb9820
L
4293 i.types[op].bitfield.imm16 = 1;
4294 i.types[op].bitfield.imm32 = 1;
4295 i.types[op].bitfield.imm32s = 1;
4296 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4297 break;
4298 case BYTE_MNEM_SUFFIX:
40fb9820
L
4299 i.types[op].bitfield.imm8 = 1;
4300 i.types[op].bitfield.imm8s = 1;
4301 i.types[op].bitfield.imm16 = 1;
4302 i.types[op].bitfield.imm32 = 1;
4303 i.types[op].bitfield.imm32s = 1;
4304 i.types[op].bitfield.imm64 = 1;
29b0f896 4305 break;
252b5132 4306 }
252b5132 4307
29b0f896
AM
4308 /* If this operand is at most 16 bits, convert it
4309 to a signed 16 bit number before trying to see
4310 whether it will fit in an even smaller size.
4311 This allows a 16-bit operand such as $0xffe0 to
4312 be recognised as within Imm8S range. */
40fb9820 4313 if ((i.types[op].bitfield.imm16)
29b0f896 4314 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4315 {
29b0f896
AM
4316 i.op[op].imms->X_add_number =
4317 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4318 }
a28def75
L
4319#ifdef BFD64
4320 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4321 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4322 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4323 == 0))
4324 {
4325 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4326 ^ ((offsetT) 1 << 31))
4327 - ((offsetT) 1 << 31));
4328 }
a28def75 4329#endif
40fb9820 4330 i.types[op]
c6fb90c8
L
4331 = operand_type_or (i.types[op],
4332 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4333
29b0f896
AM
4334 /* We must avoid matching of Imm32 templates when 64bit
4335 only immediate is available. */
4336 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4337 i.types[op].bitfield.imm32 = 0;
29b0f896 4338 break;
252b5132 4339
29b0f896
AM
4340 case O_absent:
4341 case O_register:
4342 abort ();
4343
4344 /* Symbols and expressions. */
4345 default:
9cd96992
JB
4346 /* Convert symbolic operand to proper sizes for matching, but don't
4347 prevent matching a set of insns that only supports sizes other
4348 than those matching the insn suffix. */
4349 {
40fb9820 4350 i386_operand_type mask, allowed;
d3ce72d0 4351 const insn_template *t;
9cd96992 4352
0dfbf9d7
L
4353 operand_type_set (&mask, 0);
4354 operand_type_set (&allowed, 0);
40fb9820 4355
4eed87de
AM
4356 for (t = current_templates->start;
4357 t < current_templates->end;
4358 ++t)
c6fb90c8
L
4359 allowed = operand_type_or (allowed,
4360 t->operand_types[op]);
9cd96992
JB
4361 switch (guess_suffix)
4362 {
4363 case QWORD_MNEM_SUFFIX:
40fb9820
L
4364 mask.bitfield.imm64 = 1;
4365 mask.bitfield.imm32s = 1;
9cd96992
JB
4366 break;
4367 case LONG_MNEM_SUFFIX:
40fb9820 4368 mask.bitfield.imm32 = 1;
9cd96992
JB
4369 break;
4370 case WORD_MNEM_SUFFIX:
40fb9820 4371 mask.bitfield.imm16 = 1;
9cd96992
JB
4372 break;
4373 case BYTE_MNEM_SUFFIX:
40fb9820 4374 mask.bitfield.imm8 = 1;
9cd96992
JB
4375 break;
4376 default:
9cd96992
JB
4377 break;
4378 }
c6fb90c8 4379 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4380 if (!operand_type_all_zero (&allowed))
c6fb90c8 4381 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4382 }
29b0f896 4383 break;
252b5132 4384 }
29b0f896
AM
4385 }
4386}
47926f60 4387
29b0f896
AM
4388/* Try to use the smallest displacement type too. */
4389static void
e3bb37b5 4390optimize_disp (void)
29b0f896
AM
4391{
4392 int op;
3e73aa7c 4393
29b0f896 4394 for (op = i.operands; --op >= 0;)
40fb9820 4395 if (operand_type_check (i.types[op], disp))
252b5132 4396 {
b300c311 4397 if (i.op[op].disps->X_op == O_constant)
252b5132 4398 {
91d6fa6a 4399 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4400
40fb9820 4401 if (i.types[op].bitfield.disp16
91d6fa6a 4402 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4403 {
4404 /* If this operand is at most 16 bits, convert
4405 to a signed 16 bit number and don't use 64bit
4406 displacement. */
91d6fa6a 4407 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4408 i.types[op].bitfield.disp64 = 0;
b300c311 4409 }
a28def75
L
4410#ifdef BFD64
4411 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4412 if (i.types[op].bitfield.disp32
91d6fa6a 4413 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4414 {
4415 /* If this operand is at most 32 bits, convert
4416 to a signed 32 bit number and don't use 64bit
4417 displacement. */
91d6fa6a
NC
4418 op_disp &= (((offsetT) 2 << 31) - 1);
4419 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4420 i.types[op].bitfield.disp64 = 0;
b300c311 4421 }
a28def75 4422#endif
91d6fa6a 4423 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4424 {
40fb9820
L
4425 i.types[op].bitfield.disp8 = 0;
4426 i.types[op].bitfield.disp16 = 0;
4427 i.types[op].bitfield.disp32 = 0;
4428 i.types[op].bitfield.disp32s = 0;
4429 i.types[op].bitfield.disp64 = 0;
b300c311
L
4430 i.op[op].disps = 0;
4431 i.disp_operands--;
4432 }
4433 else if (flag_code == CODE_64BIT)
4434 {
91d6fa6a 4435 if (fits_in_signed_long (op_disp))
28a9d8f5 4436 {
40fb9820
L
4437 i.types[op].bitfield.disp64 = 0;
4438 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4439 }
0e1147d9 4440 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4441 && fits_in_unsigned_long (op_disp))
40fb9820 4442 i.types[op].bitfield.disp32 = 1;
b300c311 4443 }
40fb9820
L
4444 if ((i.types[op].bitfield.disp32
4445 || i.types[op].bitfield.disp32s
4446 || i.types[op].bitfield.disp16)
91d6fa6a 4447 && fits_in_signed_byte (op_disp))
40fb9820 4448 i.types[op].bitfield.disp8 = 1;
252b5132 4449 }
67a4f2b7
AO
4450 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4451 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4452 {
4453 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4454 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4455 i.types[op].bitfield.disp8 = 0;
4456 i.types[op].bitfield.disp16 = 0;
4457 i.types[op].bitfield.disp32 = 0;
4458 i.types[op].bitfield.disp32s = 0;
4459 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
4460 }
4461 else
b300c311 4462 /* We only support 64bit displacement on constants. */
40fb9820 4463 i.types[op].bitfield.disp64 = 0;
252b5132 4464 }
29b0f896
AM
4465}
4466
6c30d220
L
4467/* Check if operands are valid for the instruction. */
4468
4469static int
4470check_VecOperands (const insn_template *t)
4471{
43234a1e
L
4472 unsigned int op;
4473
6c30d220
L
4474 /* Without VSIB byte, we can't have a vector register for index. */
4475 if (!t->opcode_modifier.vecsib
4476 && i.index_reg
4477 && (i.index_reg->reg_type.bitfield.regxmm
43234a1e
L
4478 || i.index_reg->reg_type.bitfield.regymm
4479 || i.index_reg->reg_type.bitfield.regzmm))
6c30d220
L
4480 {
4481 i.error = unsupported_vector_index_register;
4482 return 1;
4483 }
4484
ad8ecc81
MZ
4485 /* Check if default mask is allowed. */
4486 if (t->opcode_modifier.nodefmask
4487 && (!i.mask || i.mask->mask->reg_num == 0))
4488 {
4489 i.error = no_default_mask;
4490 return 1;
4491 }
4492
7bab8ab5
JB
4493 /* For VSIB byte, we need a vector register for index, and all vector
4494 registers must be distinct. */
4495 if (t->opcode_modifier.vecsib)
4496 {
4497 if (!i.index_reg
6c30d220
L
4498 || !((t->opcode_modifier.vecsib == VecSIB128
4499 && i.index_reg->reg_type.bitfield.regxmm)
4500 || (t->opcode_modifier.vecsib == VecSIB256
43234a1e
L
4501 && i.index_reg->reg_type.bitfield.regymm)
4502 || (t->opcode_modifier.vecsib == VecSIB512
4503 && i.index_reg->reg_type.bitfield.regzmm)))
7bab8ab5
JB
4504 {
4505 i.error = invalid_vsib_address;
4506 return 1;
4507 }
4508
43234a1e
L
4509 gas_assert (i.reg_operands == 2 || i.mask);
4510 if (i.reg_operands == 2 && !i.mask)
4511 {
4512 gas_assert (i.types[0].bitfield.regxmm
7c84a0ca 4513 || i.types[0].bitfield.regymm);
43234a1e 4514 gas_assert (i.types[2].bitfield.regxmm
7c84a0ca 4515 || i.types[2].bitfield.regymm);
43234a1e
L
4516 if (operand_check == check_none)
4517 return 0;
4518 if (register_number (i.op[0].regs)
4519 != register_number (i.index_reg)
4520 && register_number (i.op[2].regs)
4521 != register_number (i.index_reg)
4522 && register_number (i.op[0].regs)
4523 != register_number (i.op[2].regs))
4524 return 0;
4525 if (operand_check == check_error)
4526 {
4527 i.error = invalid_vector_register_set;
4528 return 1;
4529 }
4530 as_warn (_("mask, index, and destination registers should be distinct"));
4531 }
8444f82a
MZ
4532 else if (i.reg_operands == 1 && i.mask)
4533 {
4534 if ((i.types[1].bitfield.regymm
4535 || i.types[1].bitfield.regzmm)
4536 && (register_number (i.op[1].regs)
4537 == register_number (i.index_reg)))
4538 {
4539 if (operand_check == check_error)
4540 {
4541 i.error = invalid_vector_register_set;
4542 return 1;
4543 }
4544 if (operand_check != check_none)
4545 as_warn (_("index and destination registers should be distinct"));
4546 }
4547 }
43234a1e 4548 }
7bab8ab5 4549
43234a1e
L
4550 /* Check if broadcast is supported by the instruction and is applied
4551 to the memory operand. */
4552 if (i.broadcast)
4553 {
4554 int broadcasted_opnd_size;
4555
4556 /* Check if specified broadcast is supported in this instruction,
4557 and it's applied to memory operand of DWORD or QWORD type,
4558 depending on VecESize. */
4559 if (i.broadcast->type != t->opcode_modifier.broadcast
4560 || !i.types[i.broadcast->operand].bitfield.mem
4561 || (t->opcode_modifier.vecesize == 0
4562 && !i.types[i.broadcast->operand].bitfield.dword
4563 && !i.types[i.broadcast->operand].bitfield.unspecified)
4564 || (t->opcode_modifier.vecesize == 1
4565 && !i.types[i.broadcast->operand].bitfield.qword
4566 && !i.types[i.broadcast->operand].bitfield.unspecified))
4567 goto bad_broadcast;
4568
4569 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4570 if (i.broadcast->type == BROADCAST_1TO16)
4571 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4572 else if (i.broadcast->type == BROADCAST_1TO8)
4573 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
b28d1bda
IT
4574 else if (i.broadcast->type == BROADCAST_1TO4)
4575 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4576 else if (i.broadcast->type == BROADCAST_1TO2)
4577 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
43234a1e
L
4578 else
4579 goto bad_broadcast;
4580
4581 if ((broadcasted_opnd_size == 256
4582 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4583 || (broadcasted_opnd_size == 512
4584 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4585 {
4586 bad_broadcast:
4587 i.error = unsupported_broadcast;
4588 return 1;
4589 }
4590 }
4591 /* If broadcast is supported in this instruction, we need to check if
4592 operand of one-element size isn't specified without broadcast. */
4593 else if (t->opcode_modifier.broadcast && i.mem_operands)
4594 {
4595 /* Find memory operand. */
4596 for (op = 0; op < i.operands; op++)
4597 if (operand_type_check (i.types[op], anymem))
4598 break;
4599 gas_assert (op < i.operands);
4600 /* Check size of the memory operand. */
4601 if ((t->opcode_modifier.vecesize == 0
4602 && i.types[op].bitfield.dword)
4603 || (t->opcode_modifier.vecesize == 1
4604 && i.types[op].bitfield.qword))
4605 {
4606 i.error = broadcast_needed;
4607 return 1;
4608 }
4609 }
4610
4611 /* Check if requested masking is supported. */
4612 if (i.mask
4613 && (!t->opcode_modifier.masking
4614 || (i.mask->zeroing
4615 && t->opcode_modifier.masking == MERGING_MASKING)))
4616 {
4617 i.error = unsupported_masking;
4618 return 1;
4619 }
4620
4621 /* Check if masking is applied to dest operand. */
4622 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4623 {
4624 i.error = mask_not_on_destination;
4625 return 1;
4626 }
4627
43234a1e
L
4628 /* Check RC/SAE. */
4629 if (i.rounding)
4630 {
4631 if ((i.rounding->type != saeonly
4632 && !t->opcode_modifier.staticrounding)
4633 || (i.rounding->type == saeonly
4634 && (t->opcode_modifier.staticrounding
4635 || !t->opcode_modifier.sae)))
4636 {
4637 i.error = unsupported_rc_sae;
4638 return 1;
4639 }
4640 /* If the instruction has several immediate operands and one of
4641 them is rounding, the rounding operand should be the last
4642 immediate operand. */
4643 if (i.imm_operands > 1
4644 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 4645 {
43234a1e 4646 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
4647 return 1;
4648 }
6c30d220
L
4649 }
4650
43234a1e
L
4651 /* Check vector Disp8 operand. */
4652 if (t->opcode_modifier.disp8memshift)
4653 {
4654 if (i.broadcast)
4655 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4656 else
4657 i.memshift = t->opcode_modifier.disp8memshift;
4658
4659 for (op = 0; op < i.operands; op++)
4660 if (operand_type_check (i.types[op], disp)
4661 && i.op[op].disps->X_op == O_constant)
4662 {
4663 offsetT value = i.op[op].disps->X_add_number;
5be33403
L
4664 int vec_disp8_ok
4665 = (i.disp_encoding != disp_encoding_32bit
4666 && fits_in_vec_disp8 (value));
43234a1e
L
4667 if (t->operand_types [op].bitfield.vec_disp8)
4668 {
4669 if (vec_disp8_ok)
4670 i.types[op].bitfield.vec_disp8 = 1;
4671 else
4672 {
4673 /* Vector insn can only have Vec_Disp8/Disp32 in
4674 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4675 mode. */
4676 i.types[op].bitfield.disp8 = 0;
4677 if (flag_code != CODE_16BIT)
4678 i.types[op].bitfield.disp16 = 0;
4679 }
4680 }
4681 else if (flag_code != CODE_16BIT)
4682 {
4683 /* One form of this instruction supports vector Disp8.
4684 Try vector Disp8 if we need to use Disp32. */
4685 if (vec_disp8_ok && !fits_in_signed_byte (value))
4686 {
4687 i.error = try_vector_disp8;
4688 return 1;
4689 }
4690 }
4691 }
4692 }
4693 else
4694 i.memshift = -1;
4695
6c30d220
L
4696 return 0;
4697}
4698
43f3e2ee 4699/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
4700 operand types. */
4701
4702static int
4703VEX_check_operands (const insn_template *t)
4704{
43234a1e
L
4705 /* VREX is only valid with EVEX prefix. */
4706 if (i.need_vrex && !t->opcode_modifier.evex)
4707 {
4708 i.error = invalid_register_operand;
4709 return 1;
4710 }
4711
a683cc34
SP
4712 if (!t->opcode_modifier.vex)
4713 return 0;
4714
4715 /* Only check VEX_Imm4, which must be the first operand. */
4716 if (t->operand_types[0].bitfield.vec_imm4)
4717 {
4718 if (i.op[0].imms->X_op != O_constant
4719 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 4720 {
a65babc9 4721 i.error = bad_imm4;
891edac4
L
4722 return 1;
4723 }
a683cc34
SP
4724
4725 /* Turn off Imm8 so that update_imm won't complain. */
4726 i.types[0] = vec_imm4;
4727 }
4728
4729 return 0;
4730}
4731
d3ce72d0 4732static const insn_template *
83b16ac6 4733match_template (char mnem_suffix)
29b0f896
AM
4734{
4735 /* Points to template once we've found it. */
d3ce72d0 4736 const insn_template *t;
40fb9820 4737 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 4738 i386_operand_type overlap4;
29b0f896 4739 unsigned int found_reverse_match;
83b16ac6 4740 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 4741 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 4742 int addr_prefix_disp;
a5c311ca 4743 unsigned int j;
3629bb00 4744 unsigned int found_cpu_match;
45664ddb 4745 unsigned int check_register;
5614d22c 4746 enum i386_error specific_error = 0;
29b0f896 4747
c0f3af97
L
4748#if MAX_OPERANDS != 5
4749# error "MAX_OPERANDS must be 5."
f48ff2ae
L
4750#endif
4751
29b0f896 4752 found_reverse_match = 0;
539e75ad 4753 addr_prefix_disp = -1;
40fb9820
L
4754
4755 memset (&suffix_check, 0, sizeof (suffix_check));
4756 if (i.suffix == BYTE_MNEM_SUFFIX)
4757 suffix_check.no_bsuf = 1;
4758 else if (i.suffix == WORD_MNEM_SUFFIX)
4759 suffix_check.no_wsuf = 1;
4760 else if (i.suffix == SHORT_MNEM_SUFFIX)
4761 suffix_check.no_ssuf = 1;
4762 else if (i.suffix == LONG_MNEM_SUFFIX)
4763 suffix_check.no_lsuf = 1;
4764 else if (i.suffix == QWORD_MNEM_SUFFIX)
4765 suffix_check.no_qsuf = 1;
4766 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 4767 suffix_check.no_ldsuf = 1;
29b0f896 4768
83b16ac6
JB
4769 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4770 if (intel_syntax)
4771 {
4772 switch (mnem_suffix)
4773 {
4774 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4775 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4776 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4777 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4778 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4779 }
4780 }
4781
01559ecc
L
4782 /* Must have right number of operands. */
4783 i.error = number_of_operands_mismatch;
4784
45aa61fe 4785 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 4786 {
539e75ad
L
4787 addr_prefix_disp = -1;
4788
29b0f896
AM
4789 if (i.operands != t->operands)
4790 continue;
4791
50aecf8c 4792 /* Check processor support. */
a65babc9 4793 i.error = unsupported;
c0f3af97
L
4794 found_cpu_match = (cpu_flags_match (t)
4795 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
4796 if (!found_cpu_match)
4797 continue;
4798
e1d4d893 4799 /* Check old gcc support. */
a65babc9 4800 i.error = old_gcc_only;
e1d4d893
L
4801 if (!old_gcc && t->opcode_modifier.oldgcc)
4802 continue;
4803
4804 /* Check AT&T mnemonic. */
a65babc9 4805 i.error = unsupported_with_intel_mnemonic;
e1d4d893 4806 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
4807 continue;
4808
e92bae62 4809 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 4810 i.error = unsupported_syntax;
5c07affc 4811 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
4812 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4813 || (intel64 && t->opcode_modifier.amd64)
4814 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
4815 continue;
4816
20592a94 4817 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 4818 i.error = invalid_instruction_suffix;
567e4e96
L
4819 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4820 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4821 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4822 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4823 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4824 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4825 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 4826 continue;
83b16ac6
JB
4827 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4828 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4829 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4830 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4831 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4832 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4833 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4834 continue;
29b0f896 4835
5c07affc 4836 if (!operand_size_match (t))
7d5e4556 4837 continue;
539e75ad 4838
5c07affc
L
4839 for (j = 0; j < MAX_OPERANDS; j++)
4840 operand_types[j] = t->operand_types[j];
4841
45aa61fe
AM
4842 /* In general, don't allow 64-bit operands in 32-bit mode. */
4843 if (i.suffix == QWORD_MNEM_SUFFIX
4844 && flag_code != CODE_64BIT
4845 && (intel_syntax
40fb9820 4846 ? (!t->opcode_modifier.ignoresize
45aa61fe
AM
4847 && !intel_float_operand (t->name))
4848 : intel_float_operand (t->name) != 2)
40fb9820 4849 && ((!operand_types[0].bitfield.regmmx
c0f3af97 4850 && !operand_types[0].bitfield.regxmm
43234a1e
L
4851 && !operand_types[0].bitfield.regymm
4852 && !operand_types[0].bitfield.regzmm)
40fb9820 4853 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736
AM
4854 && operand_types[t->operands > 1].bitfield.regxmm
4855 && operand_types[t->operands > 1].bitfield.regymm
4856 && operand_types[t->operands > 1].bitfield.regzmm))
45aa61fe
AM
4857 && (t->base_opcode != 0x0fc7
4858 || t->extension_opcode != 1 /* cmpxchg8b */))
4859 continue;
4860
192dc9c6
JB
4861 /* In general, don't allow 32-bit operands on pre-386. */
4862 else if (i.suffix == LONG_MNEM_SUFFIX
4863 && !cpu_arch_flags.bitfield.cpui386
4864 && (intel_syntax
4865 ? (!t->opcode_modifier.ignoresize
4866 && !intel_float_operand (t->name))
4867 : intel_float_operand (t->name) != 2)
4868 && ((!operand_types[0].bitfield.regmmx
4869 && !operand_types[0].bitfield.regxmm)
4870 || (!operand_types[t->operands > 1].bitfield.regmmx
ac4eb736 4871 && operand_types[t->operands > 1].bitfield.regxmm)))
192dc9c6
JB
4872 continue;
4873
29b0f896 4874 /* Do not verify operands when there are none. */
50aecf8c 4875 else
29b0f896 4876 {
c6fb90c8 4877 if (!t->operands)
2dbab7d5
L
4878 /* We've found a match; break out of loop. */
4879 break;
29b0f896 4880 }
252b5132 4881
539e75ad
L
4882 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4883 into Disp32/Disp16/Disp32 operand. */
4884 if (i.prefix[ADDR_PREFIX] != 0)
4885 {
40fb9820 4886 /* There should be only one Disp operand. */
539e75ad
L
4887 switch (flag_code)
4888 {
4889 case CODE_16BIT:
40fb9820
L
4890 for (j = 0; j < MAX_OPERANDS; j++)
4891 {
4892 if (operand_types[j].bitfield.disp16)
4893 {
4894 addr_prefix_disp = j;
4895 operand_types[j].bitfield.disp32 = 1;
4896 operand_types[j].bitfield.disp16 = 0;
4897 break;
4898 }
4899 }
539e75ad
L
4900 break;
4901 case CODE_32BIT:
40fb9820
L
4902 for (j = 0; j < MAX_OPERANDS; j++)
4903 {
4904 if (operand_types[j].bitfield.disp32)
4905 {
4906 addr_prefix_disp = j;
4907 operand_types[j].bitfield.disp32 = 0;
4908 operand_types[j].bitfield.disp16 = 1;
4909 break;
4910 }
4911 }
539e75ad
L
4912 break;
4913 case CODE_64BIT:
40fb9820
L
4914 for (j = 0; j < MAX_OPERANDS; j++)
4915 {
4916 if (operand_types[j].bitfield.disp64)
4917 {
4918 addr_prefix_disp = j;
4919 operand_types[j].bitfield.disp64 = 0;
4920 operand_types[j].bitfield.disp32 = 1;
4921 break;
4922 }
4923 }
539e75ad
L
4924 break;
4925 }
539e75ad
L
4926 }
4927
02a86693
L
4928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4930 continue;
4931
56ffb741
L
4932 /* We check register size if needed. */
4933 check_register = t->opcode_modifier.checkregsize;
c6fb90c8 4934 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
4935 switch (t->operands)
4936 {
4937 case 1:
40fb9820 4938 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
4939 continue;
4940 break;
4941 case 2:
8b38ad71
L
4942 /* xchg %eax, %eax is a special case. It is an aliase for nop
4943 only in 32bit mode and we can use opcode 0x90. In 64bit
4944 mode, we can't use 0x90 for xchg %eax, %eax since it should
4945 zero-extend %eax to %rax. */
4946 if (flag_code == CODE_64BIT
4947 && t->base_opcode == 0x90
0dfbf9d7
L
4948 && operand_type_equal (&i.types [0], &acc32)
4949 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 4950 continue;
b6169b20
L
4951 if (i.swap_operand)
4952 {
4953 /* If we swap operand in encoding, we either match
4954 the next one or reverse direction of operands. */
4955 if (t->opcode_modifier.s)
4956 continue;
4957 else if (t->opcode_modifier.d)
4958 goto check_reverse;
4959 }
4960
29b0f896 4961 case 3:
fa99fab2
L
4962 /* If we swap operand in encoding, we match the next one. */
4963 if (i.swap_operand && t->opcode_modifier.s)
4964 continue;
f48ff2ae 4965 case 4:
c0f3af97 4966 case 5:
c6fb90c8 4967 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
4968 if (!operand_type_match (overlap0, i.types[0])
4969 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4970 || (check_register
4971 && !operand_type_register_match (overlap0, i.types[0],
40fb9820
L
4972 operand_types[0],
4973 overlap1, i.types[1],
4974 operand_types[1])))
29b0f896
AM
4975 {
4976 /* Check if other direction is valid ... */
40fb9820 4977 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
29b0f896
AM
4978 continue;
4979
b6169b20 4980check_reverse:
29b0f896 4981 /* Try reversing direction of operands. */
c6fb90c8
L
4982 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4983 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
4984 if (!operand_type_match (overlap0, i.types[0])
4985 || !operand_type_match (overlap1, i.types[1])
45664ddb
L
4986 || (check_register
4987 && !operand_type_register_match (overlap0,
4988 i.types[0],
4989 operand_types[1],
4990 overlap1,
4991 i.types[1],
4992 operand_types[0])))
29b0f896
AM
4993 {
4994 /* Does not match either direction. */
4995 continue;
4996 }
4997 /* found_reverse_match holds which of D or FloatDR
4998 we've found. */
40fb9820 4999 if (t->opcode_modifier.d)
8a2ed489 5000 found_reverse_match = Opcode_D;
40fb9820 5001 else if (t->opcode_modifier.floatd)
8a2ed489
L
5002 found_reverse_match = Opcode_FloatD;
5003 else
5004 found_reverse_match = 0;
40fb9820 5005 if (t->opcode_modifier.floatr)
8a2ed489 5006 found_reverse_match |= Opcode_FloatR;
29b0f896 5007 }
f48ff2ae 5008 else
29b0f896 5009 {
f48ff2ae 5010 /* Found a forward 2 operand match here. */
d1cbb4db
L
5011 switch (t->operands)
5012 {
c0f3af97
L
5013 case 5:
5014 overlap4 = operand_type_and (i.types[4],
5015 operand_types[4]);
d1cbb4db 5016 case 4:
c6fb90c8
L
5017 overlap3 = operand_type_and (i.types[3],
5018 operand_types[3]);
d1cbb4db 5019 case 3:
c6fb90c8
L
5020 overlap2 = operand_type_and (i.types[2],
5021 operand_types[2]);
d1cbb4db
L
5022 break;
5023 }
29b0f896 5024
f48ff2ae
L
5025 switch (t->operands)
5026 {
c0f3af97
L
5027 case 5:
5028 if (!operand_type_match (overlap4, i.types[4])
5029 || !operand_type_register_match (overlap3,
5030 i.types[3],
5031 operand_types[3],
5032 overlap4,
5033 i.types[4],
5034 operand_types[4]))
5035 continue;
f48ff2ae 5036 case 4:
40fb9820 5037 if (!operand_type_match (overlap3, i.types[3])
45664ddb
L
5038 || (check_register
5039 && !operand_type_register_match (overlap2,
5040 i.types[2],
5041 operand_types[2],
5042 overlap3,
5043 i.types[3],
5044 operand_types[3])))
f48ff2ae
L
5045 continue;
5046 case 3:
5047 /* Here we make use of the fact that there are no
5048 reverse match 3 operand instructions, and all 3
5049 operand instructions only need to be checked for
5050 register consistency between operands 2 and 3. */
40fb9820 5051 if (!operand_type_match (overlap2, i.types[2])
45664ddb
L
5052 || (check_register
5053 && !operand_type_register_match (overlap1,
5054 i.types[1],
5055 operand_types[1],
5056 overlap2,
5057 i.types[2],
5058 operand_types[2])))
f48ff2ae
L
5059 continue;
5060 break;
5061 }
29b0f896 5062 }
f48ff2ae 5063 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5064 slip through to break. */
5065 }
3629bb00 5066 if (!found_cpu_match)
29b0f896
AM
5067 {
5068 found_reverse_match = 0;
5069 continue;
5070 }
c0f3af97 5071
5614d22c
JB
5072 /* Check if vector and VEX operands are valid. */
5073 if (check_VecOperands (t) || VEX_check_operands (t))
5074 {
5075 specific_error = i.error;
5076 continue;
5077 }
a683cc34 5078
29b0f896
AM
5079 /* We've found a match; break out of loop. */
5080 break;
5081 }
5082
5083 if (t == current_templates->end)
5084 {
5085 /* We found no match. */
a65babc9 5086 const char *err_msg;
5614d22c 5087 switch (specific_error ? specific_error : i.error)
a65babc9
L
5088 {
5089 default:
5090 abort ();
86e026a4 5091 case operand_size_mismatch:
a65babc9
L
5092 err_msg = _("operand size mismatch");
5093 break;
5094 case operand_type_mismatch:
5095 err_msg = _("operand type mismatch");
5096 break;
5097 case register_type_mismatch:
5098 err_msg = _("register type mismatch");
5099 break;
5100 case number_of_operands_mismatch:
5101 err_msg = _("number of operands mismatch");
5102 break;
5103 case invalid_instruction_suffix:
5104 err_msg = _("invalid instruction suffix");
5105 break;
5106 case bad_imm4:
4a2608e3 5107 err_msg = _("constant doesn't fit in 4 bits");
a65babc9
L
5108 break;
5109 case old_gcc_only:
5110 err_msg = _("only supported with old gcc");
5111 break;
5112 case unsupported_with_intel_mnemonic:
5113 err_msg = _("unsupported with Intel mnemonic");
5114 break;
5115 case unsupported_syntax:
5116 err_msg = _("unsupported syntax");
5117 break;
5118 case unsupported:
35262a23 5119 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5120 current_templates->start->name);
5121 return NULL;
6c30d220
L
5122 case invalid_vsib_address:
5123 err_msg = _("invalid VSIB address");
5124 break;
7bab8ab5
JB
5125 case invalid_vector_register_set:
5126 err_msg = _("mask, index, and destination registers must be distinct");
5127 break;
6c30d220
L
5128 case unsupported_vector_index_register:
5129 err_msg = _("unsupported vector index register");
5130 break;
43234a1e
L
5131 case unsupported_broadcast:
5132 err_msg = _("unsupported broadcast");
5133 break;
5134 case broadcast_not_on_src_operand:
5135 err_msg = _("broadcast not on source memory operand");
5136 break;
5137 case broadcast_needed:
5138 err_msg = _("broadcast is needed for operand of such type");
5139 break;
5140 case unsupported_masking:
5141 err_msg = _("unsupported masking");
5142 break;
5143 case mask_not_on_destination:
5144 err_msg = _("mask not on destination operand");
5145 break;
5146 case no_default_mask:
5147 err_msg = _("default mask isn't allowed");
5148 break;
5149 case unsupported_rc_sae:
5150 err_msg = _("unsupported static rounding/sae");
5151 break;
5152 case rc_sae_operand_not_last_imm:
5153 if (intel_syntax)
5154 err_msg = _("RC/SAE operand must precede immediate operands");
5155 else
5156 err_msg = _("RC/SAE operand must follow immediate operands");
5157 break;
5158 case invalid_register_operand:
5159 err_msg = _("invalid register operand");
5160 break;
a65babc9
L
5161 }
5162 as_bad (_("%s for `%s'"), err_msg,
891edac4 5163 current_templates->start->name);
fa99fab2 5164 return NULL;
29b0f896 5165 }
252b5132 5166
29b0f896
AM
5167 if (!quiet_warnings)
5168 {
5169 if (!intel_syntax
40fb9820
L
5170 && (i.types[0].bitfield.jumpabsolute
5171 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5172 {
5173 as_warn (_("indirect %s without `*'"), t->name);
5174 }
5175
40fb9820
L
5176 if (t->opcode_modifier.isprefix
5177 && t->opcode_modifier.ignoresize)
29b0f896
AM
5178 {
5179 /* Warn them that a data or address size prefix doesn't
5180 affect assembly of the next line of code. */
5181 as_warn (_("stand-alone `%s' prefix"), t->name);
5182 }
5183 }
5184
5185 /* Copy the template we found. */
5186 i.tm = *t;
539e75ad
L
5187
5188 if (addr_prefix_disp != -1)
5189 i.tm.operand_types[addr_prefix_disp]
5190 = operand_types[addr_prefix_disp];
5191
29b0f896
AM
5192 if (found_reverse_match)
5193 {
5194 /* If we found a reverse match we must alter the opcode
5195 direction bit. found_reverse_match holds bits to change
5196 (different for int & float insns). */
5197
5198 i.tm.base_opcode ^= found_reverse_match;
5199
539e75ad
L
5200 i.tm.operand_types[0] = operand_types[1];
5201 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5202 }
5203
fa99fab2 5204 return t;
29b0f896
AM
5205}
5206
5207static int
e3bb37b5 5208check_string (void)
29b0f896 5209{
40fb9820
L
5210 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5211 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5212 {
5213 if (i.seg[0] != NULL && i.seg[0] != &es)
5214 {
a87af027 5215 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5216 i.tm.name,
a87af027
JB
5217 mem_op + 1,
5218 register_prefix);
29b0f896
AM
5219 return 0;
5220 }
5221 /* There's only ever one segment override allowed per instruction.
5222 This instruction possibly has a legal segment override on the
5223 second operand, so copy the segment to where non-string
5224 instructions store it, allowing common code. */
5225 i.seg[0] = i.seg[1];
5226 }
40fb9820 5227 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5228 {
5229 if (i.seg[1] != NULL && i.seg[1] != &es)
5230 {
a87af027 5231 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5232 i.tm.name,
a87af027
JB
5233 mem_op + 2,
5234 register_prefix);
29b0f896
AM
5235 return 0;
5236 }
5237 }
5238 return 1;
5239}
5240
5241static int
543613e9 5242process_suffix (void)
29b0f896
AM
5243{
5244 /* If matched instruction specifies an explicit instruction mnemonic
5245 suffix, use it. */
40fb9820
L
5246 if (i.tm.opcode_modifier.size16)
5247 i.suffix = WORD_MNEM_SUFFIX;
5248 else if (i.tm.opcode_modifier.size32)
5249 i.suffix = LONG_MNEM_SUFFIX;
5250 else if (i.tm.opcode_modifier.size64)
5251 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5252 else if (i.reg_operands)
5253 {
5254 /* If there's no instruction mnemonic suffix we try to invent one
5255 based on register operands. */
5256 if (!i.suffix)
5257 {
5258 /* We take i.suffix from the last register operand specified,
5259 Destination register type is more significant than source
381d071f
L
5260 register type. crc32 in SSE4.2 prefers source register
5261 type. */
5262 if (i.tm.base_opcode == 0xf20f38f1)
5263 {
40fb9820
L
5264 if (i.types[0].bitfield.reg16)
5265 i.suffix = WORD_MNEM_SUFFIX;
5266 else if (i.types[0].bitfield.reg32)
5267 i.suffix = LONG_MNEM_SUFFIX;
5268 else if (i.types[0].bitfield.reg64)
5269 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5270 }
9344ff29 5271 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5272 {
40fb9820 5273 if (i.types[0].bitfield.reg8)
20592a94
L
5274 i.suffix = BYTE_MNEM_SUFFIX;
5275 }
381d071f
L
5276
5277 if (!i.suffix)
5278 {
5279 int op;
5280
20592a94
L
5281 if (i.tm.base_opcode == 0xf20f38f1
5282 || i.tm.base_opcode == 0xf20f38f0)
5283 {
5284 /* We have to know the operand size for crc32. */
5285 as_bad (_("ambiguous memory operand size for `%s`"),
5286 i.tm.name);
5287 return 0;
5288 }
5289
381d071f 5290 for (op = i.operands; --op >= 0;)
40fb9820 5291 if (!i.tm.operand_types[op].bitfield.inoutportreg)
381d071f 5292 {
40fb9820
L
5293 if (i.types[op].bitfield.reg8)
5294 {
5295 i.suffix = BYTE_MNEM_SUFFIX;
5296 break;
5297 }
5298 else if (i.types[op].bitfield.reg16)
5299 {
5300 i.suffix = WORD_MNEM_SUFFIX;
5301 break;
5302 }
5303 else if (i.types[op].bitfield.reg32)
5304 {
5305 i.suffix = LONG_MNEM_SUFFIX;
5306 break;
5307 }
5308 else if (i.types[op].bitfield.reg64)
5309 {
5310 i.suffix = QWORD_MNEM_SUFFIX;
5311 break;
5312 }
381d071f
L
5313 }
5314 }
29b0f896
AM
5315 }
5316 else if (i.suffix == BYTE_MNEM_SUFFIX)
5317 {
2eb952a4
L
5318 if (intel_syntax
5319 && i.tm.opcode_modifier.ignoresize
5320 && i.tm.opcode_modifier.no_bsuf)
5321 i.suffix = 0;
5322 else if (!check_byte_reg ())
29b0f896
AM
5323 return 0;
5324 }
5325 else if (i.suffix == LONG_MNEM_SUFFIX)
5326 {
2eb952a4
L
5327 if (intel_syntax
5328 && i.tm.opcode_modifier.ignoresize
5329 && i.tm.opcode_modifier.no_lsuf)
5330 i.suffix = 0;
5331 else if (!check_long_reg ())
29b0f896
AM
5332 return 0;
5333 }
5334 else if (i.suffix == QWORD_MNEM_SUFFIX)
5335 {
955e1e6a
L
5336 if (intel_syntax
5337 && i.tm.opcode_modifier.ignoresize
5338 && i.tm.opcode_modifier.no_qsuf)
5339 i.suffix = 0;
5340 else if (!check_qword_reg ())
29b0f896
AM
5341 return 0;
5342 }
5343 else if (i.suffix == WORD_MNEM_SUFFIX)
5344 {
2eb952a4
L
5345 if (intel_syntax
5346 && i.tm.opcode_modifier.ignoresize
5347 && i.tm.opcode_modifier.no_wsuf)
5348 i.suffix = 0;
5349 else if (!check_word_reg ())
29b0f896
AM
5350 return 0;
5351 }
c0f3af97 5352 else if (i.suffix == XMMWORD_MNEM_SUFFIX
43234a1e
L
5353 || i.suffix == YMMWORD_MNEM_SUFFIX
5354 || i.suffix == ZMMWORD_MNEM_SUFFIX)
582d5edd 5355 {
43234a1e 5356 /* Skip if the instruction has x/y/z suffix. match_template
582d5edd
L
5357 should check if it is a valid suffix. */
5358 }
40fb9820 5359 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5360 /* Do nothing if the instruction is going to ignore the prefix. */
5361 ;
5362 else
5363 abort ();
5364 }
40fb9820 5365 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5366 && !i.suffix
5367 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5368 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5369 {
5370 i.suffix = stackop_size;
5371 }
9306ca4a
JB
5372 else if (intel_syntax
5373 && !i.suffix
40fb9820
L
5374 && (i.tm.operand_types[0].bitfield.jumpabsolute
5375 || i.tm.opcode_modifier.jumpbyte
5376 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
5377 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5378 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
5379 {
5380 switch (flag_code)
5381 {
5382 case CODE_64BIT:
40fb9820 5383 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
5384 {
5385 i.suffix = QWORD_MNEM_SUFFIX;
5386 break;
5387 }
5388 case CODE_32BIT:
40fb9820 5389 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
5390 i.suffix = LONG_MNEM_SUFFIX;
5391 break;
5392 case CODE_16BIT:
40fb9820 5393 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
5394 i.suffix = WORD_MNEM_SUFFIX;
5395 break;
5396 }
5397 }
252b5132 5398
9306ca4a 5399 if (!i.suffix)
29b0f896 5400 {
9306ca4a
JB
5401 if (!intel_syntax)
5402 {
40fb9820 5403 if (i.tm.opcode_modifier.w)
9306ca4a 5404 {
4eed87de
AM
5405 as_bad (_("no instruction mnemonic suffix given and "
5406 "no register operands; can't size instruction"));
9306ca4a
JB
5407 return 0;
5408 }
5409 }
5410 else
5411 {
40fb9820 5412 unsigned int suffixes;
7ab9ffdd 5413
40fb9820
L
5414 suffixes = !i.tm.opcode_modifier.no_bsuf;
5415 if (!i.tm.opcode_modifier.no_wsuf)
5416 suffixes |= 1 << 1;
5417 if (!i.tm.opcode_modifier.no_lsuf)
5418 suffixes |= 1 << 2;
fc4adea1 5419 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
5420 suffixes |= 1 << 3;
5421 if (!i.tm.opcode_modifier.no_ssuf)
5422 suffixes |= 1 << 4;
5423 if (!i.tm.opcode_modifier.no_qsuf)
5424 suffixes |= 1 << 5;
5425
5426 /* There are more than suffix matches. */
5427 if (i.tm.opcode_modifier.w
9306ca4a 5428 || ((suffixes & (suffixes - 1))
40fb9820
L
5429 && !i.tm.opcode_modifier.defaultsize
5430 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
5431 {
5432 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5433 return 0;
5434 }
5435 }
29b0f896 5436 }
252b5132 5437
9306ca4a
JB
5438 /* Change the opcode based on the operand size given by i.suffix;
5439 We don't need to change things for byte insns. */
5440
582d5edd
L
5441 if (i.suffix
5442 && i.suffix != BYTE_MNEM_SUFFIX
c0f3af97 5443 && i.suffix != XMMWORD_MNEM_SUFFIX
43234a1e
L
5444 && i.suffix != YMMWORD_MNEM_SUFFIX
5445 && i.suffix != ZMMWORD_MNEM_SUFFIX)
29b0f896
AM
5446 {
5447 /* It's not a byte, select word/dword operation. */
40fb9820 5448 if (i.tm.opcode_modifier.w)
29b0f896 5449 {
40fb9820 5450 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
5451 i.tm.base_opcode |= 8;
5452 else
5453 i.tm.base_opcode |= 1;
5454 }
0f3f3d8b 5455
29b0f896
AM
5456 /* Now select between word & dword operations via the operand
5457 size prefix, except for instructions that will ignore this
5458 prefix anyway. */
ca61edf2 5459 if (i.tm.opcode_modifier.addrprefixop0)
cb712a9e 5460 {
ca61edf2
L
5461 /* The address size override prefix changes the size of the
5462 first operand. */
40fb9820
L
5463 if ((flag_code == CODE_32BIT
5464 && i.op->regs[0].reg_type.bitfield.reg16)
5465 || (flag_code != CODE_32BIT
5466 && i.op->regs[0].reg_type.bitfield.reg32))
cb712a9e
L
5467 if (!add_prefix (ADDR_PREFIX_OPCODE))
5468 return 0;
5469 }
5470 else if (i.suffix != QWORD_MNEM_SUFFIX
5471 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
40fb9820
L
5472 && !i.tm.opcode_modifier.ignoresize
5473 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
5474 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5475 || (flag_code == CODE_64BIT
40fb9820 5476 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
5477 {
5478 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 5479
40fb9820 5480 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 5481 prefix = ADDR_PREFIX_OPCODE;
252b5132 5482
29b0f896
AM
5483 if (!add_prefix (prefix))
5484 return 0;
24eab124 5485 }
252b5132 5486
29b0f896
AM
5487 /* Set mode64 for an operand. */
5488 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 5489 && flag_code == CODE_64BIT
40fb9820 5490 && !i.tm.opcode_modifier.norex64)
46e883c5
L
5491 {
5492 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d9a5e5e5
L
5493 need rex64. cmpxchg8b is also a special case. */
5494 if (! (i.operands == 2
5495 && i.tm.base_opcode == 0x90
5496 && i.tm.extension_opcode == None
0dfbf9d7
L
5497 && operand_type_equal (&i.types [0], &acc64)
5498 && operand_type_equal (&i.types [1], &acc64))
d9a5e5e5
L
5499 && ! (i.operands == 1
5500 && i.tm.base_opcode == 0xfc7
5501 && i.tm.extension_opcode == 1
40fb9820
L
5502 && !operand_type_check (i.types [0], reg)
5503 && operand_type_check (i.types [0], anymem)))
f6bee062 5504 i.rex |= REX_W;
46e883c5 5505 }
3e73aa7c 5506
29b0f896
AM
5507 /* Size floating point instruction. */
5508 if (i.suffix == LONG_MNEM_SUFFIX)
40fb9820 5509 if (i.tm.opcode_modifier.floatmf)
543613e9 5510 i.tm.base_opcode ^= 4;
29b0f896 5511 }
7ecd2f8b 5512
29b0f896
AM
5513 return 1;
5514}
3e73aa7c 5515
29b0f896 5516static int
543613e9 5517check_byte_reg (void)
29b0f896
AM
5518{
5519 int op;
543613e9 5520
29b0f896
AM
5521 for (op = i.operands; --op >= 0;)
5522 {
5523 /* If this is an eight bit register, it's OK. If it's the 16 or
5524 32 bit version of an eight bit register, we will just use the
5525 low portion, and that's OK too. */
40fb9820 5526 if (i.types[op].bitfield.reg8)
29b0f896
AM
5527 continue;
5528
5a819eb9
JB
5529 /* I/O port address operands are OK too. */
5530 if (i.tm.operand_types[op].bitfield.inoutportreg)
5531 continue;
5532
9344ff29
L
5533 /* crc32 doesn't generate this warning. */
5534 if (i.tm.base_opcode == 0xf20f38f0)
5535 continue;
5536
40fb9820
L
5537 if ((i.types[op].bitfield.reg16
5538 || i.types[op].bitfield.reg32
5539 || i.types[op].bitfield.reg64)
5a819eb9
JB
5540 && i.op[op].regs->reg_num < 4
5541 /* Prohibit these changes in 64bit mode, since the lowering
5542 would be more complicated. */
5543 && flag_code != CODE_64BIT)
29b0f896 5544 {
29b0f896 5545#if REGISTER_WARNINGS
5a819eb9 5546 if (!quiet_warnings)
a540244d
L
5547 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5548 register_prefix,
40fb9820 5549 (i.op[op].regs + (i.types[op].bitfield.reg16
29b0f896
AM
5550 ? REGNAM_AL - REGNAM_AX
5551 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 5552 register_prefix,
29b0f896
AM
5553 i.op[op].regs->reg_name,
5554 i.suffix);
5555#endif
5556 continue;
5557 }
5558 /* Any other register is bad. */
40fb9820
L
5559 if (i.types[op].bitfield.reg16
5560 || i.types[op].bitfield.reg32
5561 || i.types[op].bitfield.reg64
5562 || i.types[op].bitfield.regmmx
5563 || i.types[op].bitfield.regxmm
c0f3af97 5564 || i.types[op].bitfield.regymm
43234a1e 5565 || i.types[op].bitfield.regzmm
40fb9820
L
5566 || i.types[op].bitfield.sreg2
5567 || i.types[op].bitfield.sreg3
5568 || i.types[op].bitfield.control
5569 || i.types[op].bitfield.debug
5570 || i.types[op].bitfield.test
5571 || i.types[op].bitfield.floatreg
5572 || i.types[op].bitfield.floatacc)
29b0f896 5573 {
a540244d
L
5574 as_bad (_("`%s%s' not allowed with `%s%c'"),
5575 register_prefix,
29b0f896
AM
5576 i.op[op].regs->reg_name,
5577 i.tm.name,
5578 i.suffix);
5579 return 0;
5580 }
5581 }
5582 return 1;
5583}
5584
5585static int
e3bb37b5 5586check_long_reg (void)
29b0f896
AM
5587{
5588 int op;
5589
5590 for (op = i.operands; --op >= 0;)
5591 /* Reject eight bit registers, except where the template requires
5592 them. (eg. movzb) */
40fb9820
L
5593 if (i.types[op].bitfield.reg8
5594 && (i.tm.operand_types[op].bitfield.reg16
5595 || i.tm.operand_types[op].bitfield.reg32
5596 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5597 {
a540244d
L
5598 as_bad (_("`%s%s' not allowed with `%s%c'"),
5599 register_prefix,
29b0f896
AM
5600 i.op[op].regs->reg_name,
5601 i.tm.name,
5602 i.suffix);
5603 return 0;
5604 }
e4630f71 5605 /* Warn if the e prefix on a general reg is missing. */
29b0f896 5606 else if ((!quiet_warnings || flag_code == CODE_64BIT)
40fb9820
L
5607 && i.types[op].bitfield.reg16
5608 && (i.tm.operand_types[op].bitfield.reg32
5609 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5610 {
5611 /* Prohibit these changes in the 64bit mode, since the
5612 lowering is more complicated. */
5613 if (flag_code == CODE_64BIT)
252b5132 5614 {
2b5d6a91 5615 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5616 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5617 i.suffix);
5618 return 0;
252b5132 5619 }
29b0f896 5620#if REGISTER_WARNINGS
cecf1424
JB
5621 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5622 register_prefix,
5623 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5624 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 5625#endif
252b5132 5626 }
e4630f71 5627 /* Warn if the r prefix on a general reg is present. */
40fb9820
L
5628 else if (i.types[op].bitfield.reg64
5629 && (i.tm.operand_types[op].bitfield.reg32
5630 || i.tm.operand_types[op].bitfield.acc))
252b5132 5631 {
34828aad 5632 if (intel_syntax
ca61edf2 5633 && i.tm.opcode_modifier.toqword
40fb9820 5634 && !i.types[0].bitfield.regxmm)
34828aad 5635 {
ca61edf2 5636 /* Convert to QWORD. We want REX byte. */
34828aad
L
5637 i.suffix = QWORD_MNEM_SUFFIX;
5638 }
5639 else
5640 {
2b5d6a91 5641 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5642 register_prefix, i.op[op].regs->reg_name,
5643 i.suffix);
5644 return 0;
5645 }
29b0f896
AM
5646 }
5647 return 1;
5648}
252b5132 5649
29b0f896 5650static int
e3bb37b5 5651check_qword_reg (void)
29b0f896
AM
5652{
5653 int op;
252b5132 5654
29b0f896
AM
5655 for (op = i.operands; --op >= 0; )
5656 /* Reject eight bit registers, except where the template requires
5657 them. (eg. movzb) */
40fb9820
L
5658 if (i.types[op].bitfield.reg8
5659 && (i.tm.operand_types[op].bitfield.reg16
5660 || i.tm.operand_types[op].bitfield.reg32
5661 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5662 {
a540244d
L
5663 as_bad (_("`%s%s' not allowed with `%s%c'"),
5664 register_prefix,
29b0f896
AM
5665 i.op[op].regs->reg_name,
5666 i.tm.name,
5667 i.suffix);
5668 return 0;
5669 }
e4630f71 5670 /* Warn if the r prefix on a general reg is missing. */
40fb9820
L
5671 else if ((i.types[op].bitfield.reg16
5672 || i.types[op].bitfield.reg32)
33d0ab95 5673 && (i.tm.operand_types[op].bitfield.reg64
40fb9820 5674 || i.tm.operand_types[op].bitfield.acc))
29b0f896
AM
5675 {
5676 /* Prohibit these changes in the 64bit mode, since the
5677 lowering is more complicated. */
34828aad 5678 if (intel_syntax
ca61edf2 5679 && i.tm.opcode_modifier.todword
40fb9820 5680 && !i.types[0].bitfield.regxmm)
34828aad 5681 {
ca61edf2 5682 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
5683 i.suffix = LONG_MNEM_SUFFIX;
5684 }
5685 else
5686 {
2b5d6a91 5687 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
5688 register_prefix, i.op[op].regs->reg_name,
5689 i.suffix);
5690 return 0;
5691 }
252b5132 5692 }
29b0f896
AM
5693 return 1;
5694}
252b5132 5695
29b0f896 5696static int
e3bb37b5 5697check_word_reg (void)
29b0f896
AM
5698{
5699 int op;
5700 for (op = i.operands; --op >= 0;)
5701 /* Reject eight bit registers, except where the template requires
5702 them. (eg. movzb) */
40fb9820
L
5703 if (i.types[op].bitfield.reg8
5704 && (i.tm.operand_types[op].bitfield.reg16
5705 || i.tm.operand_types[op].bitfield.reg32
5706 || i.tm.operand_types[op].bitfield.acc))
29b0f896 5707 {
a540244d
L
5708 as_bad (_("`%s%s' not allowed with `%s%c'"),
5709 register_prefix,
29b0f896
AM
5710 i.op[op].regs->reg_name,
5711 i.tm.name,
5712 i.suffix);
5713 return 0;
5714 }
e4630f71 5715 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 5716 else if ((!quiet_warnings || flag_code == CODE_64BIT)
e4630f71
JB
5717 && (i.types[op].bitfield.reg32
5718 || i.types[op].bitfield.reg64)
40fb9820
L
5719 && (i.tm.operand_types[op].bitfield.reg16
5720 || i.tm.operand_types[op].bitfield.acc))
252b5132 5721 {
29b0f896
AM
5722 /* Prohibit these changes in the 64bit mode, since the
5723 lowering is more complicated. */
5724 if (flag_code == CODE_64BIT)
252b5132 5725 {
2b5d6a91 5726 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 5727 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
5728 i.suffix);
5729 return 0;
252b5132 5730 }
29b0f896 5731#if REGISTER_WARNINGS
cecf1424
JB
5732 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5733 register_prefix,
5734 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5735 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
5736#endif
5737 }
5738 return 1;
5739}
252b5132 5740
29b0f896 5741static int
40fb9820 5742update_imm (unsigned int j)
29b0f896 5743{
bc0844ae 5744 i386_operand_type overlap = i.types[j];
40fb9820
L
5745 if ((overlap.bitfield.imm8
5746 || overlap.bitfield.imm8s
5747 || overlap.bitfield.imm16
5748 || overlap.bitfield.imm32
5749 || overlap.bitfield.imm32s
5750 || overlap.bitfield.imm64)
0dfbf9d7
L
5751 && !operand_type_equal (&overlap, &imm8)
5752 && !operand_type_equal (&overlap, &imm8s)
5753 && !operand_type_equal (&overlap, &imm16)
5754 && !operand_type_equal (&overlap, &imm32)
5755 && !operand_type_equal (&overlap, &imm32s)
5756 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
5757 {
5758 if (i.suffix)
5759 {
40fb9820
L
5760 i386_operand_type temp;
5761
0dfbf9d7 5762 operand_type_set (&temp, 0);
7ab9ffdd 5763 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5764 {
5765 temp.bitfield.imm8 = overlap.bitfield.imm8;
5766 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5767 }
5768 else if (i.suffix == WORD_MNEM_SUFFIX)
5769 temp.bitfield.imm16 = overlap.bitfield.imm16;
5770 else if (i.suffix == QWORD_MNEM_SUFFIX)
5771 {
5772 temp.bitfield.imm64 = overlap.bitfield.imm64;
5773 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5774 }
5775 else
5776 temp.bitfield.imm32 = overlap.bitfield.imm32;
5777 overlap = temp;
29b0f896 5778 }
0dfbf9d7
L
5779 else if (operand_type_equal (&overlap, &imm16_32_32s)
5780 || operand_type_equal (&overlap, &imm16_32)
5781 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 5782 {
40fb9820 5783 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 5784 overlap = imm16;
40fb9820 5785 else
65da13b5 5786 overlap = imm32s;
29b0f896 5787 }
0dfbf9d7
L
5788 if (!operand_type_equal (&overlap, &imm8)
5789 && !operand_type_equal (&overlap, &imm8s)
5790 && !operand_type_equal (&overlap, &imm16)
5791 && !operand_type_equal (&overlap, &imm32)
5792 && !operand_type_equal (&overlap, &imm32s)
5793 && !operand_type_equal (&overlap, &imm64))
29b0f896 5794 {
4eed87de
AM
5795 as_bad (_("no instruction mnemonic suffix given; "
5796 "can't determine immediate size"));
29b0f896
AM
5797 return 0;
5798 }
5799 }
40fb9820 5800 i.types[j] = overlap;
29b0f896 5801
40fb9820
L
5802 return 1;
5803}
5804
5805static int
5806finalize_imm (void)
5807{
bc0844ae 5808 unsigned int j, n;
29b0f896 5809
bc0844ae
L
5810 /* Update the first 2 immediate operands. */
5811 n = i.operands > 2 ? 2 : i.operands;
5812 if (n)
5813 {
5814 for (j = 0; j < n; j++)
5815 if (update_imm (j) == 0)
5816 return 0;
40fb9820 5817
bc0844ae
L
5818 /* The 3rd operand can't be immediate operand. */
5819 gas_assert (operand_type_check (i.types[2], imm) == 0);
5820 }
29b0f896
AM
5821
5822 return 1;
5823}
5824
c0f3af97
L
5825static int
5826bad_implicit_operand (int xmm)
5827{
91d6fa6a
NC
5828 const char *ireg = xmm ? "xmm0" : "ymm0";
5829
c0f3af97
L
5830 if (intel_syntax)
5831 as_bad (_("the last operand of `%s' must be `%s%s'"),
91d6fa6a 5832 i.tm.name, register_prefix, ireg);
c0f3af97
L
5833 else
5834 as_bad (_("the first operand of `%s' must be `%s%s'"),
91d6fa6a 5835 i.tm.name, register_prefix, ireg);
c0f3af97
L
5836 return 0;
5837}
5838
29b0f896 5839static int
e3bb37b5 5840process_operands (void)
29b0f896
AM
5841{
5842 /* Default segment register this instruction will use for memory
5843 accesses. 0 means unknown. This is only for optimizing out
5844 unnecessary segment overrides. */
5845 const seg_entry *default_seg = 0;
5846
2426c15f 5847 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 5848 {
91d6fa6a
NC
5849 unsigned int dupl = i.operands;
5850 unsigned int dest = dupl - 1;
9fcfb3d7
L
5851 unsigned int j;
5852
c0f3af97 5853 /* The destination must be an xmm register. */
9c2799c2 5854 gas_assert (i.reg_operands
91d6fa6a 5855 && MAX_OPERANDS > dupl
7ab9ffdd 5856 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97
L
5857
5858 if (i.tm.opcode_modifier.firstxmm0)
e2ec9d29 5859 {
c0f3af97 5860 /* The first operand is implicit and must be xmm0. */
9c2799c2 5861 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4c692bc7 5862 if (register_number (i.op[0].regs) != 0)
c0f3af97
L
5863 return bad_implicit_operand (1);
5864
8cd7925b 5865 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
5866 {
5867 /* Keep xmm0 for instructions with VEX prefix and 3
5868 sources. */
5869 goto duplicate;
5870 }
e2ec9d29 5871 else
c0f3af97
L
5872 {
5873 /* We remove the first xmm0 and keep the number of
5874 operands unchanged, which in fact duplicates the
5875 destination. */
5876 for (j = 1; j < i.operands; j++)
5877 {
5878 i.op[j - 1] = i.op[j];
5879 i.types[j - 1] = i.types[j];
5880 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5881 }
5882 }
5883 }
5884 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 5885 {
91d6fa6a 5886 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
5887 && (i.tm.opcode_modifier.vexsources
5888 == VEX3SOURCES));
c0f3af97
L
5889
5890 /* Add the implicit xmm0 for instructions with VEX prefix
5891 and 3 sources. */
5892 for (j = i.operands; j > 0; j--)
5893 {
5894 i.op[j] = i.op[j - 1];
5895 i.types[j] = i.types[j - 1];
5896 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5897 }
5898 i.op[0].regs
5899 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 5900 i.types[0] = regxmm;
c0f3af97
L
5901 i.tm.operand_types[0] = regxmm;
5902
5903 i.operands += 2;
5904 i.reg_operands += 2;
5905 i.tm.operands += 2;
5906
91d6fa6a 5907 dupl++;
c0f3af97 5908 dest++;
91d6fa6a
NC
5909 i.op[dupl] = i.op[dest];
5910 i.types[dupl] = i.types[dest];
5911 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 5912 }
c0f3af97
L
5913 else
5914 {
5915duplicate:
5916 i.operands++;
5917 i.reg_operands++;
5918 i.tm.operands++;
5919
91d6fa6a
NC
5920 i.op[dupl] = i.op[dest];
5921 i.types[dupl] = i.types[dest];
5922 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
5923 }
5924
5925 if (i.tm.opcode_modifier.immext)
5926 process_immext ();
5927 }
5928 else if (i.tm.opcode_modifier.firstxmm0)
5929 {
5930 unsigned int j;
5931
43234a1e 5932 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
9c2799c2 5933 gas_assert (i.reg_operands
7ab9ffdd 5934 && (operand_type_equal (&i.types[0], &regxmm)
43234a1e
L
5935 || operand_type_equal (&i.types[0], &regymm)
5936 || operand_type_equal (&i.types[0], &regzmm)));
4c692bc7 5937 if (register_number (i.op[0].regs) != 0)
c0f3af97 5938 return bad_implicit_operand (i.types[0].bitfield.regxmm);
9fcfb3d7
L
5939
5940 for (j = 1; j < i.operands; j++)
5941 {
5942 i.op[j - 1] = i.op[j];
5943 i.types[j - 1] = i.types[j];
5944
5945 /* We need to adjust fields in i.tm since they are used by
5946 build_modrm_byte. */
5947 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5948 }
5949
e2ec9d29
L
5950 i.operands--;
5951 i.reg_operands--;
e2ec9d29
L
5952 i.tm.operands--;
5953 }
5954 else if (i.tm.opcode_modifier.regkludge)
5955 {
5956 /* The imul $imm, %reg instruction is converted into
5957 imul $imm, %reg, %reg, and the clr %reg instruction
5958 is converted into xor %reg, %reg. */
5959
5960 unsigned int first_reg_op;
5961
5962 if (operand_type_check (i.types[0], reg))
5963 first_reg_op = 0;
5964 else
5965 first_reg_op = 1;
5966 /* Pretend we saw the extra register operand. */
9c2799c2 5967 gas_assert (i.reg_operands == 1
7ab9ffdd 5968 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
5969 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5970 i.types[first_reg_op + 1] = i.types[first_reg_op];
5971 i.operands++;
5972 i.reg_operands++;
29b0f896
AM
5973 }
5974
40fb9820 5975 if (i.tm.opcode_modifier.shortform)
29b0f896 5976 {
40fb9820
L
5977 if (i.types[0].bitfield.sreg2
5978 || i.types[0].bitfield.sreg3)
29b0f896 5979 {
4eed87de
AM
5980 if (i.tm.base_opcode == POP_SEG_SHORT
5981 && i.op[0].regs->reg_num == 1)
29b0f896 5982 {
a87af027 5983 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 5984 return 0;
29b0f896 5985 }
4eed87de
AM
5986 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5987 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 5988 i.rex |= REX_B;
4eed87de
AM
5989 }
5990 else
5991 {
7ab9ffdd 5992 /* The register or float register operand is in operand
85f10a01 5993 0 or 1. */
40fb9820 5994 unsigned int op;
7ab9ffdd
L
5995
5996 if (i.types[0].bitfield.floatreg
5997 || operand_type_check (i.types[0], reg))
5998 op = 0;
5999 else
6000 op = 1;
4eed87de
AM
6001 /* Register goes in low 3 bits of opcode. */
6002 i.tm.base_opcode |= i.op[op].regs->reg_num;
6003 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6004 i.rex |= REX_B;
40fb9820 6005 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6006 {
4eed87de
AM
6007 /* Warn about some common errors, but press on regardless.
6008 The first case can be generated by gcc (<= 2.8.1). */
6009 if (i.operands == 2)
6010 {
6011 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6012 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6013 register_prefix, i.op[!intel_syntax].regs->reg_name,
6014 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6015 }
6016 else
6017 {
6018 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6019 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6020 register_prefix, i.op[0].regs->reg_name);
4eed87de 6021 }
29b0f896
AM
6022 }
6023 }
6024 }
40fb9820 6025 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6026 {
6027 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6028 must be put into the modrm byte). Now, we make the modrm and
6029 index base bytes based on all the info we've collected. */
29b0f896
AM
6030
6031 default_seg = build_modrm_byte ();
6032 }
8a2ed489 6033 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6034 {
6035 default_seg = &ds;
6036 }
40fb9820 6037 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6038 {
6039 /* For the string instructions that allow a segment override
6040 on one of their operands, the default segment is ds. */
6041 default_seg = &ds;
6042 }
6043
75178d9d
L
6044 if (i.tm.base_opcode == 0x8d /* lea */
6045 && i.seg[0]
6046 && !quiet_warnings)
30123838 6047 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6048
6049 /* If a segment was explicitly specified, and the specified segment
6050 is not the default, use an opcode prefix to select it. If we
6051 never figured out what the default segment is, then default_seg
6052 will be zero at this point, and the specified segment prefix will
6053 always be used. */
29b0f896
AM
6054 if ((i.seg[0]) && (i.seg[0] != default_seg))
6055 {
6056 if (!add_prefix (i.seg[0]->seg_prefix))
6057 return 0;
6058 }
6059 return 1;
6060}
6061
6062static const seg_entry *
e3bb37b5 6063build_modrm_byte (void)
29b0f896
AM
6064{
6065 const seg_entry *default_seg = 0;
c0f3af97 6066 unsigned int source, dest;
8cd7925b 6067 int vex_3_sources;
c0f3af97
L
6068
6069 /* The first operand of instructions with VEX prefix and 3 sources
6070 must be VEX_Imm4. */
8cd7925b 6071 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6072 if (vex_3_sources)
6073 {
91d6fa6a 6074 unsigned int nds, reg_slot;
4c2c6516 6075 expressionS *exp;
c0f3af97 6076
922d8de8 6077 if (i.tm.opcode_modifier.veximmext
a683cc34
SP
6078 && i.tm.opcode_modifier.immext)
6079 {
6080 dest = i.operands - 2;
6081 gas_assert (dest == 3);
6082 }
922d8de8 6083 else
a683cc34 6084 dest = i.operands - 1;
c0f3af97 6085 nds = dest - 1;
922d8de8 6086
a683cc34
SP
6087 /* There are 2 kinds of instructions:
6088 1. 5 operands: 4 register operands or 3 register operands
6089 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
43234a1e
L
6090 VexW0 or VexW1. The destination must be either XMM, YMM or
6091 ZMM register.
a683cc34
SP
6092 2. 4 operands: 4 register operands or 3 register operands
6093 plus 1 memory operand, VexXDS, and VexImmExt */
922d8de8 6094 gas_assert ((i.reg_operands == 4
a683cc34
SP
6095 || (i.reg_operands == 3 && i.mem_operands == 1))
6096 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6097 && (i.tm.opcode_modifier.veximmext
6098 || (i.imm_operands == 1
6099 && i.types[0].bitfield.vec_imm4
6100 && (i.tm.opcode_modifier.vexw == VEXW0
6101 || i.tm.opcode_modifier.vexw == VEXW1)
6102 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
43234a1e
L
6103 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6104 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
a683cc34
SP
6105
6106 if (i.imm_operands == 0)
6107 {
6108 /* When there is no immediate operand, generate an 8bit
6109 immediate operand to encode the first operand. */
6110 exp = &im_expressions[i.imm_operands++];
6111 i.op[i.operands].imms = exp;
6112 i.types[i.operands] = imm8;
6113 i.operands++;
6114 /* If VexW1 is set, the first operand is the source and
6115 the second operand is encoded in the immediate operand. */
6116 if (i.tm.opcode_modifier.vexw == VEXW1)
6117 {
6118 source = 0;
6119 reg_slot = 1;
6120 }
6121 else
6122 {
6123 source = 1;
6124 reg_slot = 0;
6125 }
6126
6127 /* FMA swaps REG and NDS. */
6128 if (i.tm.cpu_flags.bitfield.cpufma)
6129 {
6130 unsigned int tmp;
6131 tmp = reg_slot;
6132 reg_slot = nds;
6133 nds = tmp;
6134 }
6135
24981e7b
L
6136 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6137 &regxmm)
a683cc34 6138 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6139 &regymm)
6140 || operand_type_equal (&i.tm.operand_types[reg_slot],
6141 &regzmm));
a683cc34 6142 exp->X_op = O_constant;
4c692bc7 6143 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6144 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6145 }
922d8de8 6146 else
a683cc34
SP
6147 {
6148 unsigned int imm_slot;
6149
6150 if (i.tm.opcode_modifier.vexw == VEXW0)
6151 {
6152 /* If VexW0 is set, the third operand is the source and
6153 the second operand is encoded in the immediate
6154 operand. */
6155 source = 2;
6156 reg_slot = 1;
6157 }
6158 else
6159 {
6160 /* VexW1 is set, the second operand is the source and
6161 the third operand is encoded in the immediate
6162 operand. */
6163 source = 1;
6164 reg_slot = 2;
6165 }
6166
6167 if (i.tm.opcode_modifier.immext)
6168 {
6169 /* When ImmExt is set, the immdiate byte is the last
6170 operand. */
6171 imm_slot = i.operands - 1;
6172 source--;
6173 reg_slot--;
6174 }
6175 else
6176 {
6177 imm_slot = 0;
6178
6179 /* Turn on Imm8 so that output_imm will generate it. */
6180 i.types[imm_slot].bitfield.imm8 = 1;
6181 }
6182
24981e7b
L
6183 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6184 &regxmm)
6185 || operand_type_equal (&i.tm.operand_types[reg_slot],
43234a1e
L
6186 &regymm)
6187 || operand_type_equal (&i.tm.operand_types[reg_slot],
6188 &regzmm));
a683cc34 6189 i.op[imm_slot].imms->X_add_number
4c692bc7 6190 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6191 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
a683cc34
SP
6192 }
6193
6194 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6195 || operand_type_equal (&i.tm.operand_types[nds],
43234a1e
L
6196 &regymm)
6197 || operand_type_equal (&i.tm.operand_types[nds],
6198 &regzmm));
dae39acc 6199 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6200 }
6201 else
6202 source = dest = 0;
29b0f896
AM
6203
6204 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6205 implicit registers do not count. If there are 3 register
6206 operands, it must be a instruction with VexNDS. For a
6207 instruction with VexNDD, the destination register is encoded
6208 in VEX prefix. If there are 4 register operands, it must be
6209 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6210 if (i.mem_operands == 0
6211 && ((i.reg_operands == 2
2426c15f 6212 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6213 || (i.reg_operands == 3
2426c15f 6214 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6215 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6216 {
cab737b9
L
6217 switch (i.operands)
6218 {
6219 case 2:
6220 source = 0;
6221 break;
6222 case 3:
c81128dc
L
6223 /* When there are 3 operands, one of them may be immediate,
6224 which may be the first or the last operand. Otherwise,
c0f3af97
L
6225 the first operand must be shift count register (cl) or it
6226 is an instruction with VexNDS. */
9c2799c2 6227 gas_assert (i.imm_operands == 1
7ab9ffdd 6228 || (i.imm_operands == 0
2426c15f 6229 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6230 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6231 if (operand_type_check (i.types[0], imm)
6232 || i.types[0].bitfield.shiftcount)
6233 source = 1;
6234 else
6235 source = 0;
cab737b9
L
6236 break;
6237 case 4:
368d64cc
L
6238 /* When there are 4 operands, the first two must be 8bit
6239 immediate operands. The source operand will be the 3rd
c0f3af97
L
6240 one.
6241
6242 For instructions with VexNDS, if the first operand
6243 an imm8, the source operand is the 2nd one. If the last
6244 operand is imm8, the source operand is the first one. */
9c2799c2 6245 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6246 && i.types[0].bitfield.imm8
6247 && i.types[1].bitfield.imm8)
2426c15f 6248 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6249 && i.imm_operands == 1
6250 && (i.types[0].bitfield.imm8
43234a1e
L
6251 || i.types[i.operands - 1].bitfield.imm8
6252 || i.rounding)));
9f2670f2
L
6253 if (i.imm_operands == 2)
6254 source = 2;
6255 else
c0f3af97
L
6256 {
6257 if (i.types[0].bitfield.imm8)
6258 source = 1;
6259 else
6260 source = 0;
6261 }
c0f3af97
L
6262 break;
6263 case 5:
43234a1e
L
6264 if (i.tm.opcode_modifier.evex)
6265 {
6266 /* For EVEX instructions, when there are 5 operands, the
6267 first one must be immediate operand. If the second one
6268 is immediate operand, the source operand is the 3th
6269 one. If the last one is immediate operand, the source
6270 operand is the 2nd one. */
6271 gas_assert (i.imm_operands == 2
6272 && i.tm.opcode_modifier.sae
6273 && operand_type_check (i.types[0], imm));
6274 if (operand_type_check (i.types[1], imm))
6275 source = 2;
6276 else if (operand_type_check (i.types[4], imm))
6277 source = 1;
6278 else
6279 abort ();
6280 }
cab737b9
L
6281 break;
6282 default:
6283 abort ();
6284 }
6285
c0f3af97
L
6286 if (!vex_3_sources)
6287 {
6288 dest = source + 1;
6289
43234a1e
L
6290 /* RC/SAE operand could be between DEST and SRC. That happens
6291 when one operand is GPR and the other one is XMM/YMM/ZMM
6292 register. */
6293 if (i.rounding && i.rounding->operand == (int) dest)
6294 dest++;
6295
2426c15f 6296 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6297 {
43234a1e
L
6298 /* For instructions with VexNDS, the register-only source
6299 operand must be 32/64bit integer, XMM, YMM or ZMM
6300 register. It is encoded in VEX prefix. We need to
6301 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6302
6303 i386_operand_type op;
6304 unsigned int vvvv;
6305
6306 /* Check register-only source operand when two source
6307 operands are swapped. */
6308 if (!i.tm.operand_types[source].bitfield.baseindex
6309 && i.tm.operand_types[dest].bitfield.baseindex)
6310 {
6311 vvvv = source;
6312 source = dest;
6313 }
6314 else
6315 vvvv = dest;
6316
6317 op = i.tm.operand_types[vvvv];
fa99fab2 6318 op.bitfield.regmem = 0;
c0f3af97 6319 if ((dest + 1) >= i.operands
ac4eb736
AM
6320 || (!op.bitfield.reg32
6321 && op.bitfield.reg64
f12dc422 6322 && !operand_type_equal (&op, &regxmm)
43234a1e
L
6323 && !operand_type_equal (&op, &regymm)
6324 && !operand_type_equal (&op, &regzmm)
6325 && !operand_type_equal (&op, &regmask)))
c0f3af97 6326 abort ();
f12dc422 6327 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6328 dest++;
6329 }
6330 }
29b0f896
AM
6331
6332 i.rm.mode = 3;
6333 /* One of the register operands will be encoded in the i.tm.reg
6334 field, the other in the combined i.tm.mode and i.tm.regmem
6335 fields. If no form of this instruction supports a memory
6336 destination operand, then we assume the source operand may
6337 sometimes be a memory operand and so we need to store the
6338 destination in the i.rm.reg field. */
40fb9820
L
6339 if (!i.tm.operand_types[dest].bitfield.regmem
6340 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6341 {
6342 i.rm.reg = i.op[dest].regs->reg_num;
6343 i.rm.regmem = i.op[source].regs->reg_num;
6344 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6345 i.rex |= REX_R;
43234a1e
L
6346 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6347 i.vrex |= REX_R;
29b0f896 6348 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6349 i.rex |= REX_B;
43234a1e
L
6350 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6351 i.vrex |= REX_B;
29b0f896
AM
6352 }
6353 else
6354 {
6355 i.rm.reg = i.op[source].regs->reg_num;
6356 i.rm.regmem = i.op[dest].regs->reg_num;
6357 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6358 i.rex |= REX_B;
43234a1e
L
6359 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6360 i.vrex |= REX_B;
29b0f896 6361 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6362 i.rex |= REX_R;
43234a1e
L
6363 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6364 i.vrex |= REX_R;
29b0f896 6365 }
161a04f6 6366 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5 6367 {
40fb9820
L
6368 if (!i.types[0].bitfield.control
6369 && !i.types[1].bitfield.control)
c4a530c5 6370 abort ();
161a04f6 6371 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
6372 add_prefix (LOCK_PREFIX_OPCODE);
6373 }
29b0f896
AM
6374 }
6375 else
6376 { /* If it's not 2 reg operands... */
c0f3af97
L
6377 unsigned int mem;
6378
29b0f896
AM
6379 if (i.mem_operands)
6380 {
6381 unsigned int fake_zero_displacement = 0;
99018f42 6382 unsigned int op;
4eed87de 6383
7ab9ffdd
L
6384 for (op = 0; op < i.operands; op++)
6385 if (operand_type_check (i.types[op], anymem))
6386 break;
7ab9ffdd 6387 gas_assert (op < i.operands);
29b0f896 6388
6c30d220
L
6389 if (i.tm.opcode_modifier.vecsib)
6390 {
6391 if (i.index_reg->reg_num == RegEiz
6392 || i.index_reg->reg_num == RegRiz)
6393 abort ();
6394
6395 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6396 if (!i.base_reg)
6397 {
6398 i.sib.base = NO_BASE_REGISTER;
6399 i.sib.scale = i.log2_scale_factor;
43234a1e
L
6400 /* No Vec_Disp8 if there is no base. */
6401 i.types[op].bitfield.vec_disp8 = 0;
6c30d220
L
6402 i.types[op].bitfield.disp8 = 0;
6403 i.types[op].bitfield.disp16 = 0;
6404 i.types[op].bitfield.disp64 = 0;
6405 if (flag_code != CODE_64BIT)
6406 {
6407 /* Must be 32 bit */
6408 i.types[op].bitfield.disp32 = 1;
6409 i.types[op].bitfield.disp32s = 0;
6410 }
6411 else
6412 {
6413 i.types[op].bitfield.disp32 = 0;
6414 i.types[op].bitfield.disp32s = 1;
6415 }
6416 }
6417 i.sib.index = i.index_reg->reg_num;
6418 if ((i.index_reg->reg_flags & RegRex) != 0)
6419 i.rex |= REX_X;
43234a1e
L
6420 if ((i.index_reg->reg_flags & RegVRex) != 0)
6421 i.vrex |= REX_X;
6c30d220
L
6422 }
6423
29b0f896
AM
6424 default_seg = &ds;
6425
6426 if (i.base_reg == 0)
6427 {
6428 i.rm.mode = 0;
6429 if (!i.disp_operands)
6c30d220
L
6430 {
6431 fake_zero_displacement = 1;
6432 /* Instructions with VSIB byte need 32bit displacement
6433 if there is no base register. */
6434 if (i.tm.opcode_modifier.vecsib)
6435 i.types[op].bitfield.disp32 = 1;
6436 }
29b0f896
AM
6437 if (i.index_reg == 0)
6438 {
6c30d220 6439 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6440 /* Operand is just <disp> */
20f0a1fc 6441 if (flag_code == CODE_64BIT)
29b0f896
AM
6442 {
6443 /* 64bit mode overwrites the 32bit absolute
6444 addressing by RIP relative addressing and
6445 absolute addressing is encoded by one of the
6446 redundant SIB forms. */
6447 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6448 i.sib.base = NO_BASE_REGISTER;
6449 i.sib.index = NO_INDEX_REGISTER;
fc225355 6450 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
40fb9820 6451 ? disp32s : disp32);
20f0a1fc 6452 }
fc225355
L
6453 else if ((flag_code == CODE_16BIT)
6454 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
6455 {
6456 i.rm.regmem = NO_BASE_REGISTER_16;
40fb9820 6457 i.types[op] = disp16;
20f0a1fc
NC
6458 }
6459 else
6460 {
6461 i.rm.regmem = NO_BASE_REGISTER;
40fb9820 6462 i.types[op] = disp32;
29b0f896
AM
6463 }
6464 }
6c30d220 6465 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6466 {
6c30d220 6467 /* !i.base_reg && i.index_reg */
db51cc60
L
6468 if (i.index_reg->reg_num == RegEiz
6469 || i.index_reg->reg_num == RegRiz)
6470 i.sib.index = NO_INDEX_REGISTER;
6471 else
6472 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6473 i.sib.base = NO_BASE_REGISTER;
6474 i.sib.scale = i.log2_scale_factor;
6475 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
43234a1e
L
6476 /* No Vec_Disp8 if there is no base. */
6477 i.types[op].bitfield.vec_disp8 = 0;
40fb9820
L
6478 i.types[op].bitfield.disp8 = 0;
6479 i.types[op].bitfield.disp16 = 0;
6480 i.types[op].bitfield.disp64 = 0;
29b0f896 6481 if (flag_code != CODE_64BIT)
40fb9820
L
6482 {
6483 /* Must be 32 bit */
6484 i.types[op].bitfield.disp32 = 1;
6485 i.types[op].bitfield.disp32s = 0;
6486 }
29b0f896 6487 else
40fb9820
L
6488 {
6489 i.types[op].bitfield.disp32 = 0;
6490 i.types[op].bitfield.disp32s = 1;
6491 }
29b0f896 6492 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6493 i.rex |= REX_X;
29b0f896
AM
6494 }
6495 }
6496 /* RIP addressing for 64bit mode. */
9a04903e
JB
6497 else if (i.base_reg->reg_num == RegRip ||
6498 i.base_reg->reg_num == RegEip)
29b0f896 6499 {
6c30d220 6500 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 6501 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
6502 i.types[op].bitfield.disp8 = 0;
6503 i.types[op].bitfield.disp16 = 0;
6504 i.types[op].bitfield.disp32 = 0;
6505 i.types[op].bitfield.disp32s = 1;
6506 i.types[op].bitfield.disp64 = 0;
43234a1e 6507 i.types[op].bitfield.vec_disp8 = 0;
71903a11 6508 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
6509 if (! i.disp_operands)
6510 fake_zero_displacement = 1;
29b0f896 6511 }
40fb9820 6512 else if (i.base_reg->reg_type.bitfield.reg16)
29b0f896 6513 {
6c30d220 6514 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6515 switch (i.base_reg->reg_num)
6516 {
6517 case 3: /* (%bx) */
6518 if (i.index_reg == 0)
6519 i.rm.regmem = 7;
6520 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6521 i.rm.regmem = i.index_reg->reg_num - 6;
6522 break;
6523 case 5: /* (%bp) */
6524 default_seg = &ss;
6525 if (i.index_reg == 0)
6526 {
6527 i.rm.regmem = 6;
40fb9820 6528 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
6529 {
6530 /* fake (%bp) into 0(%bp) */
43234a1e
L
6531 if (i.tm.operand_types[op].bitfield.vec_disp8)
6532 i.types[op].bitfield.vec_disp8 = 1;
6533 else
6534 i.types[op].bitfield.disp8 = 1;
252b5132 6535 fake_zero_displacement = 1;
29b0f896
AM
6536 }
6537 }
6538 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6539 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6540 break;
6541 default: /* (%si) -> 4 or (%di) -> 5 */
6542 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6543 }
6544 i.rm.mode = mode_from_disp_size (i.types[op]);
6545 }
6546 else /* i.base_reg and 32/64 bit mode */
6547 {
6548 if (flag_code == CODE_64BIT
40fb9820
L
6549 && operand_type_check (i.types[op], disp))
6550 {
6551 i386_operand_type temp;
0dfbf9d7 6552 operand_type_set (&temp, 0);
40fb9820 6553 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
43234a1e
L
6554 temp.bitfield.vec_disp8
6555 = i.types[op].bitfield.vec_disp8;
40fb9820
L
6556 i.types[op] = temp;
6557 if (i.prefix[ADDR_PREFIX] == 0)
6558 i.types[op].bitfield.disp32s = 1;
6559 else
6560 i.types[op].bitfield.disp32 = 1;
6561 }
20f0a1fc 6562
6c30d220
L
6563 if (!i.tm.opcode_modifier.vecsib)
6564 i.rm.regmem = i.base_reg->reg_num;
29b0f896 6565 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 6566 i.rex |= REX_B;
29b0f896
AM
6567 i.sib.base = i.base_reg->reg_num;
6568 /* x86-64 ignores REX prefix bit here to avoid decoder
6569 complications. */
848930b2
JB
6570 if (!(i.base_reg->reg_flags & RegRex)
6571 && (i.base_reg->reg_num == EBP_REG_NUM
6572 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 6573 default_seg = &ss;
848930b2 6574 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 6575 {
848930b2 6576 fake_zero_displacement = 1;
43234a1e
L
6577 if (i.tm.operand_types [op].bitfield.vec_disp8)
6578 i.types[op].bitfield.vec_disp8 = 1;
6579 else
6580 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
6581 }
6582 i.sib.scale = i.log2_scale_factor;
6583 if (i.index_reg == 0)
6584 {
6c30d220 6585 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
6586 /* <disp>(%esp) becomes two byte modrm with no index
6587 register. We've already stored the code for esp
6588 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6589 Any base register besides %esp will not use the
6590 extra modrm byte. */
6591 i.sib.index = NO_INDEX_REGISTER;
29b0f896 6592 }
6c30d220 6593 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 6594 {
db51cc60
L
6595 if (i.index_reg->reg_num == RegEiz
6596 || i.index_reg->reg_num == RegRiz)
6597 i.sib.index = NO_INDEX_REGISTER;
6598 else
6599 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
6600 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6601 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 6602 i.rex |= REX_X;
29b0f896 6603 }
67a4f2b7
AO
6604
6605 if (i.disp_operands
6606 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6607 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6608 i.rm.mode = 0;
6609 else
a501d77e
L
6610 {
6611 if (!fake_zero_displacement
6612 && !i.disp_operands
6613 && i.disp_encoding)
6614 {
6615 fake_zero_displacement = 1;
6616 if (i.disp_encoding == disp_encoding_8bit)
6617 i.types[op].bitfield.disp8 = 1;
6618 else
6619 i.types[op].bitfield.disp32 = 1;
6620 }
6621 i.rm.mode = mode_from_disp_size (i.types[op]);
6622 }
29b0f896 6623 }
252b5132 6624
29b0f896
AM
6625 if (fake_zero_displacement)
6626 {
6627 /* Fakes a zero displacement assuming that i.types[op]
6628 holds the correct displacement size. */
6629 expressionS *exp;
6630
9c2799c2 6631 gas_assert (i.op[op].disps == 0);
29b0f896
AM
6632 exp = &disp_expressions[i.disp_operands++];
6633 i.op[op].disps = exp;
6634 exp->X_op = O_constant;
6635 exp->X_add_number = 0;
6636 exp->X_add_symbol = (symbolS *) 0;
6637 exp->X_op_symbol = (symbolS *) 0;
6638 }
c0f3af97
L
6639
6640 mem = op;
29b0f896 6641 }
c0f3af97
L
6642 else
6643 mem = ~0;
252b5132 6644
8c43a48b 6645 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
6646 {
6647 if (operand_type_check (i.types[0], imm))
6648 i.vex.register_specifier = NULL;
6649 else
6650 {
6651 /* VEX.vvvv encodes one of the sources when the first
6652 operand is not an immediate. */
1ef99a7b 6653 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6654 i.vex.register_specifier = i.op[0].regs;
6655 else
6656 i.vex.register_specifier = i.op[1].regs;
6657 }
6658
6659 /* Destination is a XMM register encoded in the ModRM.reg
6660 and VEX.R bit. */
6661 i.rm.reg = i.op[2].regs->reg_num;
6662 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6663 i.rex |= REX_R;
6664
6665 /* ModRM.rm and VEX.B encodes the other source. */
6666 if (!i.mem_operands)
6667 {
6668 i.rm.mode = 3;
6669
1ef99a7b 6670 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
6671 i.rm.regmem = i.op[1].regs->reg_num;
6672 else
6673 i.rm.regmem = i.op[0].regs->reg_num;
6674
6675 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6676 i.rex |= REX_B;
6677 }
6678 }
2426c15f 6679 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
6680 {
6681 i.vex.register_specifier = i.op[2].regs;
6682 if (!i.mem_operands)
6683 {
6684 i.rm.mode = 3;
6685 i.rm.regmem = i.op[1].regs->reg_num;
6686 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6687 i.rex |= REX_B;
6688 }
6689 }
29b0f896
AM
6690 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6691 (if any) based on i.tm.extension_opcode. Again, we must be
6692 careful to make sure that segment/control/debug/test/MMX
6693 registers are coded into the i.rm.reg field. */
f88c9eb0 6694 else if (i.reg_operands)
29b0f896 6695 {
99018f42 6696 unsigned int op;
7ab9ffdd
L
6697 unsigned int vex_reg = ~0;
6698
6699 for (op = 0; op < i.operands; op++)
6700 if (i.types[op].bitfield.reg8
6701 || i.types[op].bitfield.reg16
6702 || i.types[op].bitfield.reg32
6703 || i.types[op].bitfield.reg64
6704 || i.types[op].bitfield.regmmx
6705 || i.types[op].bitfield.regxmm
6706 || i.types[op].bitfield.regymm
7e8b059b 6707 || i.types[op].bitfield.regbnd
43234a1e
L
6708 || i.types[op].bitfield.regzmm
6709 || i.types[op].bitfield.regmask
7ab9ffdd
L
6710 || i.types[op].bitfield.sreg2
6711 || i.types[op].bitfield.sreg3
6712 || i.types[op].bitfield.control
6713 || i.types[op].bitfield.debug
6714 || i.types[op].bitfield.test)
6715 break;
c0209578 6716
7ab9ffdd
L
6717 if (vex_3_sources)
6718 op = dest;
2426c15f 6719 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
6720 {
6721 /* For instructions with VexNDS, the register-only
6722 source operand is encoded in VEX prefix. */
6723 gas_assert (mem != (unsigned int) ~0);
c0f3af97 6724
7ab9ffdd 6725 if (op > mem)
c0f3af97 6726 {
7ab9ffdd
L
6727 vex_reg = op++;
6728 gas_assert (op < i.operands);
c0f3af97
L
6729 }
6730 else
c0f3af97 6731 {
f12dc422
L
6732 /* Check register-only source operand when two source
6733 operands are swapped. */
6734 if (!i.tm.operand_types[op].bitfield.baseindex
6735 && i.tm.operand_types[op + 1].bitfield.baseindex)
6736 {
6737 vex_reg = op;
6738 op += 2;
6739 gas_assert (mem == (vex_reg + 1)
6740 && op < i.operands);
6741 }
6742 else
6743 {
6744 vex_reg = op + 1;
6745 gas_assert (vex_reg < i.operands);
6746 }
c0f3af97 6747 }
7ab9ffdd 6748 }
2426c15f 6749 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 6750 {
f12dc422 6751 /* For instructions with VexNDD, the register destination
7ab9ffdd 6752 is encoded in VEX prefix. */
f12dc422
L
6753 if (i.mem_operands == 0)
6754 {
6755 /* There is no memory operand. */
6756 gas_assert ((op + 2) == i.operands);
6757 vex_reg = op + 1;
6758 }
6759 else
8d63c93e 6760 {
f12dc422
L
6761 /* There are only 2 operands. */
6762 gas_assert (op < 2 && i.operands == 2);
6763 vex_reg = 1;
6764 }
7ab9ffdd
L
6765 }
6766 else
6767 gas_assert (op < i.operands);
99018f42 6768
7ab9ffdd
L
6769 if (vex_reg != (unsigned int) ~0)
6770 {
f12dc422 6771 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 6772
f12dc422
L
6773 if (type->bitfield.reg32 != 1
6774 && type->bitfield.reg64 != 1
6775 && !operand_type_equal (type, &regxmm)
43234a1e
L
6776 && !operand_type_equal (type, &regymm)
6777 && !operand_type_equal (type, &regzmm)
6778 && !operand_type_equal (type, &regmask))
7ab9ffdd 6779 abort ();
f88c9eb0 6780
7ab9ffdd
L
6781 i.vex.register_specifier = i.op[vex_reg].regs;
6782 }
6783
1b9f0c97
L
6784 /* Don't set OP operand twice. */
6785 if (vex_reg != op)
7ab9ffdd 6786 {
1b9f0c97
L
6787 /* If there is an extension opcode to put here, the
6788 register number must be put into the regmem field. */
6789 if (i.tm.extension_opcode != None)
6790 {
6791 i.rm.regmem = i.op[op].regs->reg_num;
6792 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6793 i.rex |= REX_B;
43234a1e
L
6794 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6795 i.vrex |= REX_B;
1b9f0c97
L
6796 }
6797 else
6798 {
6799 i.rm.reg = i.op[op].regs->reg_num;
6800 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6801 i.rex |= REX_R;
43234a1e
L
6802 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6803 i.vrex |= REX_R;
1b9f0c97 6804 }
7ab9ffdd 6805 }
252b5132 6806
29b0f896
AM
6807 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6808 must set it to 3 to indicate this is a register operand
6809 in the regmem field. */
6810 if (!i.mem_operands)
6811 i.rm.mode = 3;
6812 }
252b5132 6813
29b0f896 6814 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 6815 if (i.tm.extension_opcode != None)
29b0f896
AM
6816 i.rm.reg = i.tm.extension_opcode;
6817 }
6818 return default_seg;
6819}
252b5132 6820
29b0f896 6821static void
e3bb37b5 6822output_branch (void)
29b0f896
AM
6823{
6824 char *p;
f8a5c266 6825 int size;
29b0f896
AM
6826 int code16;
6827 int prefix;
6828 relax_substateT subtype;
6829 symbolS *sym;
6830 offsetT off;
6831
f8a5c266 6832 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 6833 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
6834
6835 prefix = 0;
6836 if (i.prefix[DATA_PREFIX] != 0)
252b5132 6837 {
29b0f896
AM
6838 prefix = 1;
6839 i.prefixes -= 1;
6840 code16 ^= CODE16;
252b5132 6841 }
29b0f896
AM
6842 /* Pentium4 branch hints. */
6843 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6844 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 6845 {
29b0f896
AM
6846 prefix++;
6847 i.prefixes--;
6848 }
6849 if (i.prefix[REX_PREFIX] != 0)
6850 {
6851 prefix++;
6852 i.prefixes--;
2f66722d
AM
6853 }
6854
7e8b059b
L
6855 /* BND prefixed jump. */
6856 if (i.prefix[BND_PREFIX] != 0)
6857 {
6858 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6859 i.prefixes -= 1;
6860 }
6861
29b0f896
AM
6862 if (i.prefixes != 0 && !intel_syntax)
6863 as_warn (_("skipping prefixes on this instruction"));
6864
6865 /* It's always a symbol; End frag & setup for relax.
6866 Make sure there is enough room in this frag for the largest
6867 instruction we may generate in md_convert_frag. This is 2
6868 bytes for the opcode and room for the prefix and largest
6869 displacement. */
6870 frag_grow (prefix + 2 + 4);
6871 /* Prefix and 1 opcode byte go in fr_fix. */
6872 p = frag_more (prefix + 1);
6873 if (i.prefix[DATA_PREFIX] != 0)
6874 *p++ = DATA_PREFIX_OPCODE;
6875 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6876 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6877 *p++ = i.prefix[SEG_PREFIX];
6878 if (i.prefix[REX_PREFIX] != 0)
6879 *p++ = i.prefix[REX_PREFIX];
6880 *p = i.tm.base_opcode;
6881
6882 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 6883 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 6884 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 6885 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 6886 else
f8a5c266 6887 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 6888 subtype |= code16;
3e73aa7c 6889
29b0f896
AM
6890 sym = i.op[0].disps->X_add_symbol;
6891 off = i.op[0].disps->X_add_number;
3e73aa7c 6892
29b0f896
AM
6893 if (i.op[0].disps->X_op != O_constant
6894 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 6895 {
29b0f896
AM
6896 /* Handle complex expressions. */
6897 sym = make_expr_symbol (i.op[0].disps);
6898 off = 0;
6899 }
3e73aa7c 6900
29b0f896
AM
6901 /* 1 possible extra opcode + 4 byte displacement go in var part.
6902 Pass reloc in fr_var. */
d258b828 6903 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 6904}
3e73aa7c 6905
29b0f896 6906static void
e3bb37b5 6907output_jump (void)
29b0f896
AM
6908{
6909 char *p;
6910 int size;
3e02c1cc 6911 fixS *fixP;
29b0f896 6912
40fb9820 6913 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
6914 {
6915 /* This is a loop or jecxz type instruction. */
6916 size = 1;
6917 if (i.prefix[ADDR_PREFIX] != 0)
6918 {
6919 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6920 i.prefixes -= 1;
6921 }
6922 /* Pentium4 branch hints. */
6923 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6924 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6925 {
6926 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6927 i.prefixes--;
3e73aa7c
JH
6928 }
6929 }
29b0f896
AM
6930 else
6931 {
6932 int code16;
3e73aa7c 6933
29b0f896
AM
6934 code16 = 0;
6935 if (flag_code == CODE_16BIT)
6936 code16 = CODE16;
3e73aa7c 6937
29b0f896
AM
6938 if (i.prefix[DATA_PREFIX] != 0)
6939 {
6940 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6941 i.prefixes -= 1;
6942 code16 ^= CODE16;
6943 }
252b5132 6944
29b0f896
AM
6945 size = 4;
6946 if (code16)
6947 size = 2;
6948 }
9fcc94b6 6949
29b0f896
AM
6950 if (i.prefix[REX_PREFIX] != 0)
6951 {
6952 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6953 i.prefixes -= 1;
6954 }
252b5132 6955
7e8b059b
L
6956 /* BND prefixed jump. */
6957 if (i.prefix[BND_PREFIX] != 0)
6958 {
6959 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6960 i.prefixes -= 1;
6961 }
6962
29b0f896
AM
6963 if (i.prefixes != 0 && !intel_syntax)
6964 as_warn (_("skipping prefixes on this instruction"));
e0890092 6965
42164a71
L
6966 p = frag_more (i.tm.opcode_length + size);
6967 switch (i.tm.opcode_length)
6968 {
6969 case 2:
6970 *p++ = i.tm.base_opcode >> 8;
6971 case 1:
6972 *p++ = i.tm.base_opcode;
6973 break;
6974 default:
6975 abort ();
6976 }
e0890092 6977
3e02c1cc 6978 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 6979 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3e02c1cc
AM
6980
6981 /* All jumps handled here are signed, but don't use a signed limit
6982 check for 32 and 16 bit jumps as we want to allow wrap around at
6983 4G and 64k respectively. */
6984 if (size == 1)
6985 fixP->fx_signed = 1;
29b0f896 6986}
e0890092 6987
29b0f896 6988static void
e3bb37b5 6989output_interseg_jump (void)
29b0f896
AM
6990{
6991 char *p;
6992 int size;
6993 int prefix;
6994 int code16;
252b5132 6995
29b0f896
AM
6996 code16 = 0;
6997 if (flag_code == CODE_16BIT)
6998 code16 = CODE16;
a217f122 6999
29b0f896
AM
7000 prefix = 0;
7001 if (i.prefix[DATA_PREFIX] != 0)
7002 {
7003 prefix = 1;
7004 i.prefixes -= 1;
7005 code16 ^= CODE16;
7006 }
7007 if (i.prefix[REX_PREFIX] != 0)
7008 {
7009 prefix++;
7010 i.prefixes -= 1;
7011 }
252b5132 7012
29b0f896
AM
7013 size = 4;
7014 if (code16)
7015 size = 2;
252b5132 7016
29b0f896
AM
7017 if (i.prefixes != 0 && !intel_syntax)
7018 as_warn (_("skipping prefixes on this instruction"));
252b5132 7019
29b0f896
AM
7020 /* 1 opcode; 2 segment; offset */
7021 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7022
29b0f896
AM
7023 if (i.prefix[DATA_PREFIX] != 0)
7024 *p++ = DATA_PREFIX_OPCODE;
252b5132 7025
29b0f896
AM
7026 if (i.prefix[REX_PREFIX] != 0)
7027 *p++ = i.prefix[REX_PREFIX];
252b5132 7028
29b0f896
AM
7029 *p++ = i.tm.base_opcode;
7030 if (i.op[1].imms->X_op == O_constant)
7031 {
7032 offsetT n = i.op[1].imms->X_add_number;
252b5132 7033
29b0f896
AM
7034 if (size == 2
7035 && !fits_in_unsigned_word (n)
7036 && !fits_in_signed_word (n))
7037 {
7038 as_bad (_("16-bit jump out of range"));
7039 return;
7040 }
7041 md_number_to_chars (p, n, size);
7042 }
7043 else
7044 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7045 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7046 if (i.op[0].imms->X_op != O_constant)
7047 as_bad (_("can't handle non absolute segment in `%s'"),
7048 i.tm.name);
7049 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7050}
a217f122 7051
29b0f896 7052static void
e3bb37b5 7053output_insn (void)
29b0f896 7054{
2bbd9c25
JJ
7055 fragS *insn_start_frag;
7056 offsetT insn_start_off;
7057
29b0f896
AM
7058 /* Tie dwarf2 debug info to the address at the start of the insn.
7059 We can't do this after the insn has been output as the current
7060 frag may have been closed off. eg. by frag_var. */
7061 dwarf2_emit_insn (0);
7062
2bbd9c25
JJ
7063 insn_start_frag = frag_now;
7064 insn_start_off = frag_now_fix ();
7065
29b0f896 7066 /* Output jumps. */
40fb9820 7067 if (i.tm.opcode_modifier.jump)
29b0f896 7068 output_branch ();
40fb9820
L
7069 else if (i.tm.opcode_modifier.jumpbyte
7070 || i.tm.opcode_modifier.jumpdword)
29b0f896 7071 output_jump ();
40fb9820 7072 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7073 output_interseg_jump ();
7074 else
7075 {
7076 /* Output normal instructions here. */
7077 char *p;
7078 unsigned char *q;
47465058 7079 unsigned int j;
331d2d0d 7080 unsigned int prefix;
4dffcebc 7081
e4e00185
AS
7082 if (avoid_fence
7083 && i.tm.base_opcode == 0xfae
7084 && i.operands == 1
7085 && i.imm_operands == 1
7086 && (i.op[0].imms->X_add_number == 0xe8
7087 || i.op[0].imms->X_add_number == 0xf0
7088 || i.op[0].imms->X_add_number == 0xf8))
7089 {
7090 /* Encode lfence, mfence, and sfence as
7091 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7092 offsetT val = 0x240483f0ULL;
7093 p = frag_more (5);
7094 md_number_to_chars (p, val, 5);
7095 return;
7096 }
7097
d022bddd
IT
7098 /* Some processors fail on LOCK prefix. This options makes
7099 assembler ignore LOCK prefix and serves as a workaround. */
7100 if (omit_lock_prefix)
7101 {
7102 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7103 return;
7104 i.prefix[LOCK_PREFIX] = 0;
7105 }
7106
43234a1e
L
7107 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7108 don't need the explicit prefix. */
7109 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7110 {
c0f3af97 7111 switch (i.tm.opcode_length)
bc4bd9ab 7112 {
c0f3af97
L
7113 case 3:
7114 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7115 {
c0f3af97
L
7116 prefix = (i.tm.base_opcode >> 24) & 0xff;
7117 goto check_prefix;
7118 }
7119 break;
7120 case 2:
7121 if ((i.tm.base_opcode & 0xff0000) != 0)
7122 {
7123 prefix = (i.tm.base_opcode >> 16) & 0xff;
7124 if (i.tm.cpu_flags.bitfield.cpupadlock)
7125 {
4dffcebc 7126check_prefix:
c0f3af97 7127 if (prefix != REPE_PREFIX_OPCODE
c32fa91d 7128 || (i.prefix[REP_PREFIX]
c0f3af97
L
7129 != REPE_PREFIX_OPCODE))
7130 add_prefix (prefix);
7131 }
7132 else
4dffcebc
L
7133 add_prefix (prefix);
7134 }
c0f3af97
L
7135 break;
7136 case 1:
7137 break;
7138 default:
7139 abort ();
bc4bd9ab 7140 }
c0f3af97 7141
6d19a37a 7142#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7143 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7144 R_X86_64_GOTTPOFF relocation so that linker can safely
7145 perform IE->LE optimization. */
7146 if (x86_elf_abi == X86_64_X32_ABI
7147 && i.operands == 2
7148 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7149 && i.prefix[REX_PREFIX] == 0)
7150 add_prefix (REX_OPCODE);
6d19a37a 7151#endif
cf61b747 7152
c0f3af97
L
7153 /* The prefix bytes. */
7154 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7155 if (*q)
7156 FRAG_APPEND_1_CHAR (*q);
0f10071e 7157 }
ae5c1c7b 7158 else
c0f3af97
L
7159 {
7160 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7161 if (*q)
7162 switch (j)
7163 {
7164 case REX_PREFIX:
7165 /* REX byte is encoded in VEX prefix. */
7166 break;
7167 case SEG_PREFIX:
7168 case ADDR_PREFIX:
7169 FRAG_APPEND_1_CHAR (*q);
7170 break;
7171 default:
7172 /* There should be no other prefixes for instructions
7173 with VEX prefix. */
7174 abort ();
7175 }
7176
43234a1e
L
7177 /* For EVEX instructions i.vrex should become 0 after
7178 build_evex_prefix. For VEX instructions upper 16 registers
7179 aren't available, so VREX should be 0. */
7180 if (i.vrex)
7181 abort ();
c0f3af97
L
7182 /* Now the VEX prefix. */
7183 p = frag_more (i.vex.length);
7184 for (j = 0; j < i.vex.length; j++)
7185 p[j] = i.vex.bytes[j];
7186 }
252b5132 7187
29b0f896 7188 /* Now the opcode; be careful about word order here! */
4dffcebc 7189 if (i.tm.opcode_length == 1)
29b0f896
AM
7190 {
7191 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7192 }
7193 else
7194 {
4dffcebc 7195 switch (i.tm.opcode_length)
331d2d0d 7196 {
43234a1e
L
7197 case 4:
7198 p = frag_more (4);
7199 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7200 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7201 break;
4dffcebc 7202 case 3:
331d2d0d
L
7203 p = frag_more (3);
7204 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7205 break;
7206 case 2:
7207 p = frag_more (2);
7208 break;
7209 default:
7210 abort ();
7211 break;
331d2d0d 7212 }
0f10071e 7213
29b0f896
AM
7214 /* Put out high byte first: can't use md_number_to_chars! */
7215 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7216 *p = i.tm.base_opcode & 0xff;
7217 }
3e73aa7c 7218
29b0f896 7219 /* Now the modrm byte and sib byte (if present). */
40fb9820 7220 if (i.tm.opcode_modifier.modrm)
29b0f896 7221 {
4a3523fa
L
7222 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7223 | i.rm.reg << 3
7224 | i.rm.mode << 6));
29b0f896
AM
7225 /* If i.rm.regmem == ESP (4)
7226 && i.rm.mode != (Register mode)
7227 && not 16 bit
7228 ==> need second modrm byte. */
7229 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7230 && i.rm.mode != 3
40fb9820 7231 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
4a3523fa
L
7232 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7233 | i.sib.index << 3
7234 | i.sib.scale << 6));
29b0f896 7235 }
3e73aa7c 7236
29b0f896 7237 if (i.disp_operands)
2bbd9c25 7238 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7239
29b0f896 7240 if (i.imm_operands)
2bbd9c25 7241 output_imm (insn_start_frag, insn_start_off);
29b0f896 7242 }
252b5132 7243
29b0f896
AM
7244#ifdef DEBUG386
7245 if (flag_debug)
7246 {
7b81dfbb 7247 pi ("" /*line*/, &i);
29b0f896
AM
7248 }
7249#endif /* DEBUG386 */
7250}
252b5132 7251
e205caa7
L
7252/* Return the size of the displacement operand N. */
7253
7254static int
7255disp_size (unsigned int n)
7256{
7257 int size = 4;
43234a1e
L
7258
7259 /* Vec_Disp8 has to be 8bit. */
7260 if (i.types[n].bitfield.vec_disp8)
7261 size = 1;
7262 else if (i.types[n].bitfield.disp64)
40fb9820
L
7263 size = 8;
7264 else if (i.types[n].bitfield.disp8)
7265 size = 1;
7266 else if (i.types[n].bitfield.disp16)
7267 size = 2;
e205caa7
L
7268 return size;
7269}
7270
7271/* Return the size of the immediate operand N. */
7272
7273static int
7274imm_size (unsigned int n)
7275{
7276 int size = 4;
40fb9820
L
7277 if (i.types[n].bitfield.imm64)
7278 size = 8;
7279 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7280 size = 1;
7281 else if (i.types[n].bitfield.imm16)
7282 size = 2;
e205caa7
L
7283 return size;
7284}
7285
29b0f896 7286static void
64e74474 7287output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7288{
7289 char *p;
7290 unsigned int n;
252b5132 7291
29b0f896
AM
7292 for (n = 0; n < i.operands; n++)
7293 {
43234a1e
L
7294 if (i.types[n].bitfield.vec_disp8
7295 || operand_type_check (i.types[n], disp))
29b0f896
AM
7296 {
7297 if (i.op[n].disps->X_op == O_constant)
7298 {
e205caa7 7299 int size = disp_size (n);
43234a1e 7300 offsetT val = i.op[n].disps->X_add_number;
252b5132 7301
43234a1e
L
7302 if (i.types[n].bitfield.vec_disp8)
7303 val >>= i.memshift;
7304 val = offset_in_range (val, size);
29b0f896
AM
7305 p = frag_more (size);
7306 md_number_to_chars (p, val, size);
7307 }
7308 else
7309 {
f86103b7 7310 enum bfd_reloc_code_real reloc_type;
e205caa7 7311 int size = disp_size (n);
40fb9820 7312 int sign = i.types[n].bitfield.disp32s;
29b0f896 7313 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7314 fixS *fixP;
29b0f896 7315
e205caa7 7316 /* We can't have 8 bit displacement here. */
9c2799c2 7317 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7318
29b0f896
AM
7319 /* The PC relative address is computed relative
7320 to the instruction boundary, so in case immediate
7321 fields follows, we need to adjust the value. */
7322 if (pcrel && i.imm_operands)
7323 {
29b0f896 7324 unsigned int n1;
e205caa7 7325 int sz = 0;
252b5132 7326
29b0f896 7327 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7328 if (operand_type_check (i.types[n1], imm))
252b5132 7329 {
e205caa7
L
7330 /* Only one immediate is allowed for PC
7331 relative address. */
9c2799c2 7332 gas_assert (sz == 0);
e205caa7
L
7333 sz = imm_size (n1);
7334 i.op[n].disps->X_add_number -= sz;
252b5132 7335 }
29b0f896 7336 /* We should find the immediate. */
9c2799c2 7337 gas_assert (sz != 0);
29b0f896 7338 }
520dc8e8 7339
29b0f896 7340 p = frag_more (size);
d258b828 7341 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7342 if (GOT_symbol
2bbd9c25 7343 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7344 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7345 || reloc_type == BFD_RELOC_X86_64_32S
7346 || (reloc_type == BFD_RELOC_64
7347 && object_64bit))
d6ab8113
JB
7348 && (i.op[n].disps->X_op == O_symbol
7349 || (i.op[n].disps->X_op == O_add
7350 && ((symbol_get_value_expression
7351 (i.op[n].disps->X_op_symbol)->X_op)
7352 == O_subtract))))
7353 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7354 {
7355 offsetT add;
7356
7357 if (insn_start_frag == frag_now)
7358 add = (p - frag_now->fr_literal) - insn_start_off;
7359 else
7360 {
7361 fragS *fr;
7362
7363 add = insn_start_frag->fr_fix - insn_start_off;
7364 for (fr = insn_start_frag->fr_next;
7365 fr && fr != frag_now; fr = fr->fr_next)
7366 add += fr->fr_fix;
7367 add += p - frag_now->fr_literal;
7368 }
7369
4fa24527 7370 if (!object_64bit)
7b81dfbb
AJ
7371 {
7372 reloc_type = BFD_RELOC_386_GOTPC;
7373 i.op[n].imms->X_add_number += add;
7374 }
7375 else if (reloc_type == BFD_RELOC_64)
7376 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 7377 else
7b81dfbb
AJ
7378 /* Don't do the adjustment for x86-64, as there
7379 the pcrel addressing is relative to the _next_
7380 insn, and that is taken care of in other code. */
d6ab8113 7381 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 7382 }
02a86693
L
7383 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7384 size, i.op[n].disps, pcrel,
7385 reloc_type);
7386 /* Check for "call/jmp *mem", "mov mem, %reg",
7387 "test %reg, mem" and "binop mem, %reg" where binop
7388 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
7389 instructions. Always generate R_386_GOT32X for
7390 "sym*GOT" operand in 32-bit mode. */
7391 if ((generate_relax_relocations
7392 || (!object_64bit
7393 && i.rm.mode == 0
7394 && i.rm.regmem == 5))
7395 && (i.rm.mode == 2
7396 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
7397 && ((i.operands == 1
7398 && i.tm.base_opcode == 0xff
7399 && (i.rm.reg == 2 || i.rm.reg == 4))
7400 || (i.operands == 2
7401 && (i.tm.base_opcode == 0x8b
7402 || i.tm.base_opcode == 0x85
7403 || (i.tm.base_opcode & 0xc7) == 0x03))))
7404 {
7405 if (object_64bit)
7406 {
7407 fixP->fx_tcbit = i.rex != 0;
7408 if (i.base_reg
7409 && (i.base_reg->reg_num == RegRip
7410 || i.base_reg->reg_num == RegEip))
7411 fixP->fx_tcbit2 = 1;
7412 }
7413 else
7414 fixP->fx_tcbit2 = 1;
7415 }
29b0f896
AM
7416 }
7417 }
7418 }
7419}
252b5132 7420
29b0f896 7421static void
64e74474 7422output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7423{
7424 char *p;
7425 unsigned int n;
252b5132 7426
29b0f896
AM
7427 for (n = 0; n < i.operands; n++)
7428 {
43234a1e
L
7429 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7430 if (i.rounding && (int) n == i.rounding->operand)
7431 continue;
7432
40fb9820 7433 if (operand_type_check (i.types[n], imm))
29b0f896
AM
7434 {
7435 if (i.op[n].imms->X_op == O_constant)
7436 {
e205caa7 7437 int size = imm_size (n);
29b0f896 7438 offsetT val;
b4cac588 7439
29b0f896
AM
7440 val = offset_in_range (i.op[n].imms->X_add_number,
7441 size);
7442 p = frag_more (size);
7443 md_number_to_chars (p, val, size);
7444 }
7445 else
7446 {
7447 /* Not absolute_section.
7448 Need a 32-bit fixup (don't support 8bit
7449 non-absolute imms). Try to support other
7450 sizes ... */
f86103b7 7451 enum bfd_reloc_code_real reloc_type;
e205caa7
L
7452 int size = imm_size (n);
7453 int sign;
29b0f896 7454
40fb9820 7455 if (i.types[n].bitfield.imm32s
a7d61044 7456 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 7457 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 7458 sign = 1;
e205caa7
L
7459 else
7460 sign = 0;
520dc8e8 7461
29b0f896 7462 p = frag_more (size);
d258b828 7463 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 7464
2bbd9c25
JJ
7465 /* This is tough to explain. We end up with this one if we
7466 * have operands that look like
7467 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7468 * obtain the absolute address of the GOT, and it is strongly
7469 * preferable from a performance point of view to avoid using
7470 * a runtime relocation for this. The actual sequence of
7471 * instructions often look something like:
7472 *
7473 * call .L66
7474 * .L66:
7475 * popl %ebx
7476 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7477 *
7478 * The call and pop essentially return the absolute address
7479 * of the label .L66 and store it in %ebx. The linker itself
7480 * will ultimately change the first operand of the addl so
7481 * that %ebx points to the GOT, but to keep things simple, the
7482 * .o file must have this operand set so that it generates not
7483 * the absolute address of .L66, but the absolute address of
7484 * itself. This allows the linker itself simply treat a GOTPC
7485 * relocation as asking for a pcrel offset to the GOT to be
7486 * added in, and the addend of the relocation is stored in the
7487 * operand field for the instruction itself.
7488 *
7489 * Our job here is to fix the operand so that it would add
7490 * the correct offset so that %ebx would point to itself. The
7491 * thing that is tricky is that .-.L66 will point to the
7492 * beginning of the instruction, so we need to further modify
7493 * the operand so that it will point to itself. There are
7494 * other cases where you have something like:
7495 *
7496 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7497 *
7498 * and here no correction would be required. Internally in
7499 * the assembler we treat operands of this form as not being
7500 * pcrel since the '.' is explicitly mentioned, and I wonder
7501 * whether it would simplify matters to do it this way. Who
7502 * knows. In earlier versions of the PIC patches, the
7503 * pcrel_adjust field was used to store the correction, but
7504 * since the expression is not pcrel, I felt it would be
7505 * confusing to do it this way. */
7506
d6ab8113 7507 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7508 || reloc_type == BFD_RELOC_X86_64_32S
7509 || reloc_type == BFD_RELOC_64)
29b0f896
AM
7510 && GOT_symbol
7511 && GOT_symbol == i.op[n].imms->X_add_symbol
7512 && (i.op[n].imms->X_op == O_symbol
7513 || (i.op[n].imms->X_op == O_add
7514 && ((symbol_get_value_expression
7515 (i.op[n].imms->X_op_symbol)->X_op)
7516 == O_subtract))))
7517 {
2bbd9c25
JJ
7518 offsetT add;
7519
7520 if (insn_start_frag == frag_now)
7521 add = (p - frag_now->fr_literal) - insn_start_off;
7522 else
7523 {
7524 fragS *fr;
7525
7526 add = insn_start_frag->fr_fix - insn_start_off;
7527 for (fr = insn_start_frag->fr_next;
7528 fr && fr != frag_now; fr = fr->fr_next)
7529 add += fr->fr_fix;
7530 add += p - frag_now->fr_literal;
7531 }
7532
4fa24527 7533 if (!object_64bit)
d6ab8113 7534 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 7535 else if (size == 4)
d6ab8113 7536 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
7537 else if (size == 8)
7538 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 7539 i.op[n].imms->X_add_number += add;
29b0f896 7540 }
29b0f896
AM
7541 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7542 i.op[n].imms, 0, reloc_type);
7543 }
7544 }
7545 }
252b5132
RH
7546}
7547\f
d182319b
JB
7548/* x86_cons_fix_new is called via the expression parsing code when a
7549 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
7550static int cons_sign = -1;
7551
7552void
e3bb37b5 7553x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 7554 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 7555{
d258b828 7556 r = reloc (len, 0, cons_sign, r);
d182319b
JB
7557
7558#ifdef TE_PE
7559 if (exp->X_op == O_secrel)
7560 {
7561 exp->X_op = O_symbol;
7562 r = BFD_RELOC_32_SECREL;
7563 }
7564#endif
7565
7566 fix_new_exp (frag, off, len, exp, 0, r);
7567}
7568
357d1bd8
L
7569/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7570 purpose of the `.dc.a' internal pseudo-op. */
7571
7572int
7573x86_address_bytes (void)
7574{
7575 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7576 return 4;
7577 return stdoutput->arch_info->bits_per_address / 8;
7578}
7579
d382c579
TG
7580#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7581 || defined (LEX_AT)
d258b828 7582# define lex_got(reloc, adjust, types) NULL
718ddfc0 7583#else
f3c180ae
AM
7584/* Parse operands of the form
7585 <symbol>@GOTOFF+<nnn>
7586 and similar .plt or .got references.
7587
7588 If we find one, set up the correct relocation in RELOC and copy the
7589 input string, minus the `@GOTOFF' into a malloc'd buffer for
7590 parsing by the calling routine. Return this buffer, and if ADJUST
7591 is non-null set it to the length of the string we removed from the
7592 input line. Otherwise return NULL. */
7593static char *
91d6fa6a 7594lex_got (enum bfd_reloc_code_real *rel,
64e74474 7595 int *adjust,
d258b828 7596 i386_operand_type *types)
f3c180ae 7597{
7b81dfbb
AJ
7598 /* Some of the relocations depend on the size of what field is to
7599 be relocated. But in our callers i386_immediate and i386_displacement
7600 we don't yet know the operand size (this will be set by insn
7601 matching). Hence we record the word32 relocation here,
7602 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
7603 static const struct {
7604 const char *str;
cff8d58a 7605 int len;
4fa24527 7606 const enum bfd_reloc_code_real rel[2];
40fb9820 7607 const i386_operand_type types64;
f3c180ae 7608 } gotrel[] = {
8ce3d284 7609#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
7610 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7611 BFD_RELOC_SIZE32 },
7612 OPERAND_TYPE_IMM32_64 },
8ce3d284 7613#endif
cff8d58a
L
7614 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7615 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 7616 OPERAND_TYPE_IMM64 },
cff8d58a
L
7617 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7618 BFD_RELOC_X86_64_PLT32 },
40fb9820 7619 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7620 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7621 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 7622 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7623 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7624 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 7625 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
7626 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7627 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 7628 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7629 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7630 BFD_RELOC_X86_64_TLSGD },
40fb9820 7631 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7632 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7633 _dummy_first_bfd_reloc_code_real },
40fb9820 7634 OPERAND_TYPE_NONE },
cff8d58a
L
7635 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7636 BFD_RELOC_X86_64_TLSLD },
40fb9820 7637 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7638 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7639 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 7640 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7641 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7642 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 7643 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7644 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7645 _dummy_first_bfd_reloc_code_real },
40fb9820 7646 OPERAND_TYPE_NONE },
cff8d58a
L
7647 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7648 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 7649 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
7650 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7651 _dummy_first_bfd_reloc_code_real },
40fb9820 7652 OPERAND_TYPE_NONE },
cff8d58a
L
7653 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7654 _dummy_first_bfd_reloc_code_real },
40fb9820 7655 OPERAND_TYPE_NONE },
cff8d58a
L
7656 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7657 BFD_RELOC_X86_64_GOT32 },
40fb9820 7658 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
7659 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7660 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 7661 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
7662 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7663 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 7664 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
7665 };
7666 char *cp;
7667 unsigned int j;
7668
d382c579 7669#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
7670 if (!IS_ELF)
7671 return NULL;
d382c579 7672#endif
718ddfc0 7673
f3c180ae 7674 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 7675 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
7676 return NULL;
7677
47465058 7678 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 7679 {
cff8d58a 7680 int len = gotrel[j].len;
28f81592 7681 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 7682 {
4fa24527 7683 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 7684 {
28f81592
AM
7685 int first, second;
7686 char *tmpbuf, *past_reloc;
f3c180ae 7687
91d6fa6a 7688 *rel = gotrel[j].rel[object_64bit];
f3c180ae 7689
3956db08
JB
7690 if (types)
7691 {
7692 if (flag_code != CODE_64BIT)
40fb9820
L
7693 {
7694 types->bitfield.imm32 = 1;
7695 types->bitfield.disp32 = 1;
7696 }
3956db08
JB
7697 else
7698 *types = gotrel[j].types64;
7699 }
7700
8fd4256d 7701 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
7702 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7703
28f81592 7704 /* The length of the first part of our input line. */
f3c180ae 7705 first = cp - input_line_pointer;
28f81592
AM
7706
7707 /* The second part goes from after the reloc token until
67c11a9b 7708 (and including) an end_of_line char or comma. */
28f81592 7709 past_reloc = cp + 1 + len;
67c11a9b
AM
7710 cp = past_reloc;
7711 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7712 ++cp;
7713 second = cp + 1 - past_reloc;
28f81592
AM
7714
7715 /* Allocate and copy string. The trailing NUL shouldn't
7716 be necessary, but be safe. */
add39d23 7717 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 7718 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
7719 if (second != 0 && *past_reloc != ' ')
7720 /* Replace the relocation token with ' ', so that
7721 errors like foo@GOTOFF1 will be detected. */
7722 tmpbuf[first++] = ' ';
af89796a
L
7723 else
7724 /* Increment length by 1 if the relocation token is
7725 removed. */
7726 len++;
7727 if (adjust)
7728 *adjust = len;
0787a12d
AM
7729 memcpy (tmpbuf + first, past_reloc, second);
7730 tmpbuf[first + second] = '\0';
f3c180ae
AM
7731 return tmpbuf;
7732 }
7733
4fa24527
JB
7734 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7735 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
7736 return NULL;
7737 }
7738 }
7739
7740 /* Might be a symbol version string. Don't as_bad here. */
7741 return NULL;
7742}
4e4f7c87 7743#endif
f3c180ae 7744
a988325c
NC
7745#ifdef TE_PE
7746#ifdef lex_got
7747#undef lex_got
7748#endif
7749/* Parse operands of the form
7750 <symbol>@SECREL32+<nnn>
7751
7752 If we find one, set up the correct relocation in RELOC and copy the
7753 input string, minus the `@SECREL32' into a malloc'd buffer for
7754 parsing by the calling routine. Return this buffer, and if ADJUST
7755 is non-null set it to the length of the string we removed from the
34bca508
L
7756 input line. Otherwise return NULL.
7757
a988325c
NC
7758 This function is copied from the ELF version above adjusted for PE targets. */
7759
7760static char *
7761lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7762 int *adjust ATTRIBUTE_UNUSED,
d258b828 7763 i386_operand_type *types)
a988325c
NC
7764{
7765 static const struct
7766 {
7767 const char *str;
7768 int len;
7769 const enum bfd_reloc_code_real rel[2];
7770 const i386_operand_type types64;
7771 }
7772 gotrel[] =
7773 {
7774 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7775 BFD_RELOC_32_SECREL },
7776 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7777 };
7778
7779 char *cp;
7780 unsigned j;
7781
7782 for (cp = input_line_pointer; *cp != '@'; cp++)
7783 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7784 return NULL;
7785
7786 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7787 {
7788 int len = gotrel[j].len;
7789
7790 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7791 {
7792 if (gotrel[j].rel[object_64bit] != 0)
7793 {
7794 int first, second;
7795 char *tmpbuf, *past_reloc;
7796
7797 *rel = gotrel[j].rel[object_64bit];
7798 if (adjust)
7799 *adjust = len;
7800
7801 if (types)
7802 {
7803 if (flag_code != CODE_64BIT)
7804 {
7805 types->bitfield.imm32 = 1;
7806 types->bitfield.disp32 = 1;
7807 }
7808 else
7809 *types = gotrel[j].types64;
7810 }
7811
7812 /* The length of the first part of our input line. */
7813 first = cp - input_line_pointer;
7814
7815 /* The second part goes from after the reloc token until
7816 (and including) an end_of_line char or comma. */
7817 past_reloc = cp + 1 + len;
7818 cp = past_reloc;
7819 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7820 ++cp;
7821 second = cp + 1 - past_reloc;
7822
7823 /* Allocate and copy string. The trailing NUL shouldn't
7824 be necessary, but be safe. */
add39d23 7825 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
7826 memcpy (tmpbuf, input_line_pointer, first);
7827 if (second != 0 && *past_reloc != ' ')
7828 /* Replace the relocation token with ' ', so that
7829 errors like foo@SECLREL321 will be detected. */
7830 tmpbuf[first++] = ' ';
7831 memcpy (tmpbuf + first, past_reloc, second);
7832 tmpbuf[first + second] = '\0';
7833 return tmpbuf;
7834 }
7835
7836 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7837 gotrel[j].str, 1 << (5 + object_64bit));
7838 return NULL;
7839 }
7840 }
7841
7842 /* Might be a symbol version string. Don't as_bad here. */
7843 return NULL;
7844}
7845
7846#endif /* TE_PE */
7847
62ebcb5c 7848bfd_reloc_code_real_type
e3bb37b5 7849x86_cons (expressionS *exp, int size)
f3c180ae 7850{
62ebcb5c
AM
7851 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7852
ee86248c
JB
7853 intel_syntax = -intel_syntax;
7854
3c7b9c2c 7855 exp->X_md = 0;
4fa24527 7856 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
7857 {
7858 /* Handle @GOTOFF and the like in an expression. */
7859 char *save;
7860 char *gotfree_input_line;
4a57f2cf 7861 int adjust = 0;
f3c180ae
AM
7862
7863 save = input_line_pointer;
d258b828 7864 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
7865 if (gotfree_input_line)
7866 input_line_pointer = gotfree_input_line;
7867
7868 expression (exp);
7869
7870 if (gotfree_input_line)
7871 {
7872 /* expression () has merrily parsed up to the end of line,
7873 or a comma - in the wrong buffer. Transfer how far
7874 input_line_pointer has moved to the right buffer. */
7875 input_line_pointer = (save
7876 + (input_line_pointer - gotfree_input_line)
7877 + adjust);
7878 free (gotfree_input_line);
3992d3b7
AM
7879 if (exp->X_op == O_constant
7880 || exp->X_op == O_absent
7881 || exp->X_op == O_illegal
0398aac5 7882 || exp->X_op == O_register
3992d3b7
AM
7883 || exp->X_op == O_big)
7884 {
7885 char c = *input_line_pointer;
7886 *input_line_pointer = 0;
7887 as_bad (_("missing or invalid expression `%s'"), save);
7888 *input_line_pointer = c;
7889 }
f3c180ae
AM
7890 }
7891 }
7892 else
7893 expression (exp);
ee86248c
JB
7894
7895 intel_syntax = -intel_syntax;
7896
7897 if (intel_syntax)
7898 i386_intel_simplify (exp);
62ebcb5c
AM
7899
7900 return got_reloc;
f3c180ae 7901}
f3c180ae 7902
9f32dd5b
L
7903static void
7904signed_cons (int size)
6482c264 7905{
d182319b
JB
7906 if (flag_code == CODE_64BIT)
7907 cons_sign = 1;
7908 cons (size);
7909 cons_sign = -1;
6482c264
NC
7910}
7911
d182319b 7912#ifdef TE_PE
6482c264 7913static void
7016a5d5 7914pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
7915{
7916 expressionS exp;
7917
7918 do
7919 {
7920 expression (&exp);
7921 if (exp.X_op == O_symbol)
7922 exp.X_op = O_secrel;
7923
7924 emit_expr (&exp, 4);
7925 }
7926 while (*input_line_pointer++ == ',');
7927
7928 input_line_pointer--;
7929 demand_empty_rest_of_line ();
7930}
6482c264
NC
7931#endif
7932
43234a1e
L
7933/* Handle Vector operations. */
7934
7935static char *
7936check_VecOperations (char *op_string, char *op_end)
7937{
7938 const reg_entry *mask;
7939 const char *saved;
7940 char *end_op;
7941
7942 while (*op_string
7943 && (op_end == NULL || op_string < op_end))
7944 {
7945 saved = op_string;
7946 if (*op_string == '{')
7947 {
7948 op_string++;
7949
7950 /* Check broadcasts. */
7951 if (strncmp (op_string, "1to", 3) == 0)
7952 {
7953 int bcst_type;
7954
7955 if (i.broadcast)
7956 goto duplicated_vec_op;
7957
7958 op_string += 3;
7959 if (*op_string == '8')
7960 bcst_type = BROADCAST_1TO8;
b28d1bda
IT
7961 else if (*op_string == '4')
7962 bcst_type = BROADCAST_1TO4;
7963 else if (*op_string == '2')
7964 bcst_type = BROADCAST_1TO2;
43234a1e
L
7965 else if (*op_string == '1'
7966 && *(op_string+1) == '6')
7967 {
7968 bcst_type = BROADCAST_1TO16;
7969 op_string++;
7970 }
7971 else
7972 {
7973 as_bad (_("Unsupported broadcast: `%s'"), saved);
7974 return NULL;
7975 }
7976 op_string++;
7977
7978 broadcast_op.type = bcst_type;
7979 broadcast_op.operand = this_operand;
7980 i.broadcast = &broadcast_op;
7981 }
7982 /* Check masking operation. */
7983 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7984 {
7985 /* k0 can't be used for write mask. */
7986 if (mask->reg_num == 0)
7987 {
7988 as_bad (_("`%s' can't be used for write mask"),
7989 op_string);
7990 return NULL;
7991 }
7992
7993 if (!i.mask)
7994 {
7995 mask_op.mask = mask;
7996 mask_op.zeroing = 0;
7997 mask_op.operand = this_operand;
7998 i.mask = &mask_op;
7999 }
8000 else
8001 {
8002 if (i.mask->mask)
8003 goto duplicated_vec_op;
8004
8005 i.mask->mask = mask;
8006
8007 /* Only "{z}" is allowed here. No need to check
8008 zeroing mask explicitly. */
8009 if (i.mask->operand != this_operand)
8010 {
8011 as_bad (_("invalid write mask `%s'"), saved);
8012 return NULL;
8013 }
8014 }
8015
8016 op_string = end_op;
8017 }
8018 /* Check zeroing-flag for masking operation. */
8019 else if (*op_string == 'z')
8020 {
8021 if (!i.mask)
8022 {
8023 mask_op.mask = NULL;
8024 mask_op.zeroing = 1;
8025 mask_op.operand = this_operand;
8026 i.mask = &mask_op;
8027 }
8028 else
8029 {
8030 if (i.mask->zeroing)
8031 {
8032 duplicated_vec_op:
8033 as_bad (_("duplicated `%s'"), saved);
8034 return NULL;
8035 }
8036
8037 i.mask->zeroing = 1;
8038
8039 /* Only "{%k}" is allowed here. No need to check mask
8040 register explicitly. */
8041 if (i.mask->operand != this_operand)
8042 {
8043 as_bad (_("invalid zeroing-masking `%s'"),
8044 saved);
8045 return NULL;
8046 }
8047 }
8048
8049 op_string++;
8050 }
8051 else
8052 goto unknown_vec_op;
8053
8054 if (*op_string != '}')
8055 {
8056 as_bad (_("missing `}' in `%s'"), saved);
8057 return NULL;
8058 }
8059 op_string++;
8060 continue;
8061 }
8062 unknown_vec_op:
8063 /* We don't know this one. */
8064 as_bad (_("unknown vector operation: `%s'"), saved);
8065 return NULL;
8066 }
8067
8068 return op_string;
8069}
8070
252b5132 8071static int
70e41ade 8072i386_immediate (char *imm_start)
252b5132
RH
8073{
8074 char *save_input_line_pointer;
f3c180ae 8075 char *gotfree_input_line;
252b5132 8076 segT exp_seg = 0;
47926f60 8077 expressionS *exp;
40fb9820
L
8078 i386_operand_type types;
8079
0dfbf9d7 8080 operand_type_set (&types, ~0);
252b5132
RH
8081
8082 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8083 {
31b2323c
L
8084 as_bad (_("at most %d immediate operands are allowed"),
8085 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8086 return 0;
8087 }
8088
8089 exp = &im_expressions[i.imm_operands++];
520dc8e8 8090 i.op[this_operand].imms = exp;
252b5132
RH
8091
8092 if (is_space_char (*imm_start))
8093 ++imm_start;
8094
8095 save_input_line_pointer = input_line_pointer;
8096 input_line_pointer = imm_start;
8097
d258b828 8098 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8099 if (gotfree_input_line)
8100 input_line_pointer = gotfree_input_line;
252b5132
RH
8101
8102 exp_seg = expression (exp);
8103
83183c0c 8104 SKIP_WHITESPACE ();
43234a1e
L
8105
8106 /* Handle vector operations. */
8107 if (*input_line_pointer == '{')
8108 {
8109 input_line_pointer = check_VecOperations (input_line_pointer,
8110 NULL);
8111 if (input_line_pointer == NULL)
8112 return 0;
8113 }
8114
252b5132 8115 if (*input_line_pointer)
f3c180ae 8116 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8117
8118 input_line_pointer = save_input_line_pointer;
f3c180ae 8119 if (gotfree_input_line)
ee86248c
JB
8120 {
8121 free (gotfree_input_line);
8122
8123 if (exp->X_op == O_constant || exp->X_op == O_register)
8124 exp->X_op = O_illegal;
8125 }
8126
8127 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8128}
252b5132 8129
ee86248c
JB
8130static int
8131i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8132 i386_operand_type types, const char *imm_start)
8133{
8134 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8135 {
313c53d1
L
8136 if (imm_start)
8137 as_bad (_("missing or invalid immediate expression `%s'"),
8138 imm_start);
3992d3b7 8139 return 0;
252b5132 8140 }
3e73aa7c 8141 else if (exp->X_op == O_constant)
252b5132 8142 {
47926f60 8143 /* Size it properly later. */
40fb9820 8144 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8145 /* If not 64bit, sign extend val. */
8146 if (flag_code != CODE_64BIT
4eed87de
AM
8147 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8148 exp->X_add_number
8149 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8150 }
4c63da97 8151#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8152 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8153 && exp_seg != absolute_section
47926f60 8154 && exp_seg != text_section
24eab124
AM
8155 && exp_seg != data_section
8156 && exp_seg != bss_section
8157 && exp_seg != undefined_section
f86103b7 8158 && !bfd_is_com_section (exp_seg))
252b5132 8159 {
d0b47220 8160 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8161 return 0;
8162 }
8163#endif
a841bdf5 8164 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8165 {
313c53d1
L
8166 if (imm_start)
8167 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8168 return 0;
8169 }
252b5132
RH
8170 else
8171 {
8172 /* This is an address. The size of the address will be
24eab124 8173 determined later, depending on destination register,
3e73aa7c 8174 suffix, or the default for the section. */
40fb9820
L
8175 i.types[this_operand].bitfield.imm8 = 1;
8176 i.types[this_operand].bitfield.imm16 = 1;
8177 i.types[this_operand].bitfield.imm32 = 1;
8178 i.types[this_operand].bitfield.imm32s = 1;
8179 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8180 i.types[this_operand] = operand_type_and (i.types[this_operand],
8181 types);
252b5132
RH
8182 }
8183
8184 return 1;
8185}
8186
551c1ca1 8187static char *
e3bb37b5 8188i386_scale (char *scale)
252b5132 8189{
551c1ca1
AM
8190 offsetT val;
8191 char *save = input_line_pointer;
252b5132 8192
551c1ca1
AM
8193 input_line_pointer = scale;
8194 val = get_absolute_expression ();
8195
8196 switch (val)
252b5132 8197 {
551c1ca1 8198 case 1:
252b5132
RH
8199 i.log2_scale_factor = 0;
8200 break;
551c1ca1 8201 case 2:
252b5132
RH
8202 i.log2_scale_factor = 1;
8203 break;
551c1ca1 8204 case 4:
252b5132
RH
8205 i.log2_scale_factor = 2;
8206 break;
551c1ca1 8207 case 8:
252b5132
RH
8208 i.log2_scale_factor = 3;
8209 break;
8210 default:
a724f0f4
JB
8211 {
8212 char sep = *input_line_pointer;
8213
8214 *input_line_pointer = '\0';
8215 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8216 scale);
8217 *input_line_pointer = sep;
8218 input_line_pointer = save;
8219 return NULL;
8220 }
252b5132 8221 }
29b0f896 8222 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8223 {
8224 as_warn (_("scale factor of %d without an index register"),
24eab124 8225 1 << i.log2_scale_factor);
252b5132 8226 i.log2_scale_factor = 0;
252b5132 8227 }
551c1ca1
AM
8228 scale = input_line_pointer;
8229 input_line_pointer = save;
8230 return scale;
252b5132
RH
8231}
8232
252b5132 8233static int
e3bb37b5 8234i386_displacement (char *disp_start, char *disp_end)
252b5132 8235{
29b0f896 8236 expressionS *exp;
252b5132
RH
8237 segT exp_seg = 0;
8238 char *save_input_line_pointer;
f3c180ae 8239 char *gotfree_input_line;
40fb9820
L
8240 int override;
8241 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8242 int ret;
252b5132 8243
31b2323c
L
8244 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8245 {
8246 as_bad (_("at most %d displacement operands are allowed"),
8247 MAX_MEMORY_OPERANDS);
8248 return 0;
8249 }
8250
0dfbf9d7 8251 operand_type_set (&bigdisp, 0);
40fb9820
L
8252 if ((i.types[this_operand].bitfield.jumpabsolute)
8253 || (!current_templates->start->opcode_modifier.jump
8254 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8255 {
40fb9820 8256 bigdisp.bitfield.disp32 = 1;
e05278af 8257 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8258 if (flag_code == CODE_64BIT)
8259 {
8260 if (!override)
8261 {
8262 bigdisp.bitfield.disp32s = 1;
8263 bigdisp.bitfield.disp64 = 1;
8264 }
8265 }
8266 else if ((flag_code == CODE_16BIT) ^ override)
8267 {
8268 bigdisp.bitfield.disp32 = 0;
8269 bigdisp.bitfield.disp16 = 1;
8270 }
e05278af
JB
8271 }
8272 else
8273 {
8274 /* For PC-relative branches, the width of the displacement
8275 is dependent upon data size, not address size. */
e05278af 8276 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8277 if (flag_code == CODE_64BIT)
8278 {
8279 if (override || i.suffix == WORD_MNEM_SUFFIX)
8280 bigdisp.bitfield.disp16 = 1;
8281 else
8282 {
8283 bigdisp.bitfield.disp32 = 1;
8284 bigdisp.bitfield.disp32s = 1;
8285 }
8286 }
8287 else
e05278af
JB
8288 {
8289 if (!override)
8290 override = (i.suffix == (flag_code != CODE_16BIT
8291 ? WORD_MNEM_SUFFIX
8292 : LONG_MNEM_SUFFIX));
40fb9820
L
8293 bigdisp.bitfield.disp32 = 1;
8294 if ((flag_code == CODE_16BIT) ^ override)
8295 {
8296 bigdisp.bitfield.disp32 = 0;
8297 bigdisp.bitfield.disp16 = 1;
8298 }
e05278af 8299 }
e05278af 8300 }
c6fb90c8
L
8301 i.types[this_operand] = operand_type_or (i.types[this_operand],
8302 bigdisp);
252b5132
RH
8303
8304 exp = &disp_expressions[i.disp_operands];
520dc8e8 8305 i.op[this_operand].disps = exp;
252b5132
RH
8306 i.disp_operands++;
8307 save_input_line_pointer = input_line_pointer;
8308 input_line_pointer = disp_start;
8309 END_STRING_AND_SAVE (disp_end);
8310
8311#ifndef GCC_ASM_O_HACK
8312#define GCC_ASM_O_HACK 0
8313#endif
8314#if GCC_ASM_O_HACK
8315 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8316 if (i.types[this_operand].bitfield.baseIndex
24eab124 8317 && displacement_string_end[-1] == '+')
252b5132
RH
8318 {
8319 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8320 constraint within gcc asm statements.
8321 For instance:
8322
8323 #define _set_tssldt_desc(n,addr,limit,type) \
8324 __asm__ __volatile__ ( \
8325 "movw %w2,%0\n\t" \
8326 "movw %w1,2+%0\n\t" \
8327 "rorl $16,%1\n\t" \
8328 "movb %b1,4+%0\n\t" \
8329 "movb %4,5+%0\n\t" \
8330 "movb $0,6+%0\n\t" \
8331 "movb %h1,7+%0\n\t" \
8332 "rorl $16,%1" \
8333 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8334
8335 This works great except that the output assembler ends
8336 up looking a bit weird if it turns out that there is
8337 no offset. You end up producing code that looks like:
8338
8339 #APP
8340 movw $235,(%eax)
8341 movw %dx,2+(%eax)
8342 rorl $16,%edx
8343 movb %dl,4+(%eax)
8344 movb $137,5+(%eax)
8345 movb $0,6+(%eax)
8346 movb %dh,7+(%eax)
8347 rorl $16,%edx
8348 #NO_APP
8349
47926f60 8350 So here we provide the missing zero. */
24eab124
AM
8351
8352 *displacement_string_end = '0';
252b5132
RH
8353 }
8354#endif
d258b828 8355 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8356 if (gotfree_input_line)
8357 input_line_pointer = gotfree_input_line;
252b5132 8358
24eab124 8359 exp_seg = expression (exp);
252b5132 8360
636c26b0
AM
8361 SKIP_WHITESPACE ();
8362 if (*input_line_pointer)
8363 as_bad (_("junk `%s' after expression"), input_line_pointer);
8364#if GCC_ASM_O_HACK
8365 RESTORE_END_STRING (disp_end + 1);
8366#endif
636c26b0 8367 input_line_pointer = save_input_line_pointer;
636c26b0 8368 if (gotfree_input_line)
ee86248c
JB
8369 {
8370 free (gotfree_input_line);
8371
8372 if (exp->X_op == O_constant || exp->X_op == O_register)
8373 exp->X_op = O_illegal;
8374 }
8375
8376 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8377
8378 RESTORE_END_STRING (disp_end);
8379
8380 return ret;
8381}
8382
8383static int
8384i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8385 i386_operand_type types, const char *disp_start)
8386{
8387 i386_operand_type bigdisp;
8388 int ret = 1;
636c26b0 8389
24eab124
AM
8390 /* We do this to make sure that the section symbol is in
8391 the symbol table. We will ultimately change the relocation
47926f60 8392 to be relative to the beginning of the section. */
1ae12ab7 8393 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
8394 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8395 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 8396 {
636c26b0 8397 if (exp->X_op != O_symbol)
3992d3b7 8398 goto inv_disp;
636c26b0 8399
e5cb08ac 8400 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
8401 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8402 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 8403 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
8404 exp->X_op = O_subtract;
8405 exp->X_op_symbol = GOT_symbol;
1ae12ab7 8406 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 8407 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
8408 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8409 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 8410 else
29b0f896 8411 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 8412 }
252b5132 8413
3992d3b7
AM
8414 else if (exp->X_op == O_absent
8415 || exp->X_op == O_illegal
ee86248c 8416 || exp->X_op == O_big)
2daf4fd8 8417 {
3992d3b7
AM
8418 inv_disp:
8419 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 8420 disp_start);
3992d3b7 8421 ret = 0;
2daf4fd8
AM
8422 }
8423
0e1147d9
L
8424 else if (flag_code == CODE_64BIT
8425 && !i.prefix[ADDR_PREFIX]
8426 && exp->X_op == O_constant)
8427 {
8428 /* Since displacement is signed extended to 64bit, don't allow
8429 disp32 and turn off disp32s if they are out of range. */
8430 i.types[this_operand].bitfield.disp32 = 0;
8431 if (!fits_in_signed_long (exp->X_add_number))
8432 {
8433 i.types[this_operand].bitfield.disp32s = 0;
8434 if (i.types[this_operand].bitfield.baseindex)
8435 {
8436 as_bad (_("0x%lx out range of signed 32bit displacement"),
8437 (long) exp->X_add_number);
8438 ret = 0;
8439 }
8440 }
8441 }
8442
4c63da97 8443#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
8444 else if (exp->X_op != O_constant
8445 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8446 && exp_seg != absolute_section
8447 && exp_seg != text_section
8448 && exp_seg != data_section
8449 && exp_seg != bss_section
8450 && exp_seg != undefined_section
8451 && !bfd_is_com_section (exp_seg))
24eab124 8452 {
d0b47220 8453 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 8454 ret = 0;
24eab124 8455 }
252b5132 8456#endif
3956db08 8457
40fb9820
L
8458 /* Check if this is a displacement only operand. */
8459 bigdisp = i.types[this_operand];
8460 bigdisp.bitfield.disp8 = 0;
8461 bigdisp.bitfield.disp16 = 0;
8462 bigdisp.bitfield.disp32 = 0;
8463 bigdisp.bitfield.disp32s = 0;
8464 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 8465 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
8466 i.types[this_operand] = operand_type_and (i.types[this_operand],
8467 types);
3956db08 8468
3992d3b7 8469 return ret;
252b5132
RH
8470}
8471
eecb386c 8472/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
8473 Return 1 on success, 0 on a failure. */
8474
252b5132 8475static int
e3bb37b5 8476i386_index_check (const char *operand_string)
252b5132 8477{
fc0763e6 8478 const char *kind = "base/index";
be05d201
L
8479 enum flag_code addr_mode;
8480
8481 if (i.prefix[ADDR_PREFIX])
8482 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8483 else
8484 {
8485 addr_mode = flag_code;
8486
24eab124 8487#if INFER_ADDR_PREFIX
be05d201
L
8488 if (i.mem_operands == 0)
8489 {
8490 /* Infer address prefix from the first memory operand. */
8491 const reg_entry *addr_reg = i.base_reg;
8492
8493 if (addr_reg == NULL)
8494 addr_reg = i.index_reg;
eecb386c 8495
be05d201
L
8496 if (addr_reg)
8497 {
8498 if (addr_reg->reg_num == RegEip
8499 || addr_reg->reg_num == RegEiz
8500 || addr_reg->reg_type.bitfield.reg32)
8501 addr_mode = CODE_32BIT;
8502 else if (flag_code != CODE_64BIT
8503 && addr_reg->reg_type.bitfield.reg16)
8504 addr_mode = CODE_16BIT;
8505
8506 if (addr_mode != flag_code)
8507 {
8508 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8509 i.prefixes += 1;
8510 /* Change the size of any displacement too. At most one
8511 of Disp16 or Disp32 is set.
8512 FIXME. There doesn't seem to be any real need for
8513 separate Disp16 and Disp32 flags. The same goes for
8514 Imm16 and Imm32. Removing them would probably clean
8515 up the code quite a lot. */
8516 if (flag_code != CODE_64BIT
8517 && (i.types[this_operand].bitfield.disp16
8518 || i.types[this_operand].bitfield.disp32))
8519 i.types[this_operand]
8520 = operand_type_xor (i.types[this_operand], disp16_32);
8521 }
8522 }
8523 }
24eab124 8524#endif
be05d201
L
8525 }
8526
fc0763e6
JB
8527 if (current_templates->start->opcode_modifier.isstring
8528 && !current_templates->start->opcode_modifier.immext
8529 && (current_templates->end[-1].opcode_modifier.isstring
8530 || i.mem_operands))
8531 {
8532 /* Memory operands of string insns are special in that they only allow
8533 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
8534 const reg_entry *expected_reg;
8535 static const char *di_si[][2] =
8536 {
8537 { "esi", "edi" },
8538 { "si", "di" },
8539 { "rsi", "rdi" }
8540 };
8541 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
8542
8543 kind = "string address";
8544
8325cc63 8545 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
8546 {
8547 i386_operand_type type = current_templates->end[-1].operand_types[0];
8548
8549 if (!type.bitfield.baseindex
8550 || ((!i.mem_operands != !intel_syntax)
8551 && current_templates->end[-1].operand_types[1]
8552 .bitfield.baseindex))
8553 type = current_templates->end[-1].operand_types[1];
be05d201
L
8554 expected_reg = hash_find (reg_hash,
8555 di_si[addr_mode][type.bitfield.esseg]);
8556
fc0763e6
JB
8557 }
8558 else
be05d201 8559 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 8560
be05d201
L
8561 if (i.base_reg != expected_reg
8562 || i.index_reg
fc0763e6 8563 || operand_type_check (i.types[this_operand], disp))
fc0763e6 8564 {
be05d201
L
8565 /* The second memory operand must have the same size as
8566 the first one. */
8567 if (i.mem_operands
8568 && i.base_reg
8569 && !((addr_mode == CODE_64BIT
8570 && i.base_reg->reg_type.bitfield.reg64)
8571 || (addr_mode == CODE_32BIT
8572 ? i.base_reg->reg_type.bitfield.reg32
8573 : i.base_reg->reg_type.bitfield.reg16)))
8574 goto bad_address;
8575
fc0763e6
JB
8576 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8577 operand_string,
8578 intel_syntax ? '[' : '(',
8579 register_prefix,
be05d201 8580 expected_reg->reg_name,
fc0763e6 8581 intel_syntax ? ']' : ')');
be05d201 8582 return 1;
fc0763e6 8583 }
be05d201
L
8584 else
8585 return 1;
8586
8587bad_address:
8588 as_bad (_("`%s' is not a valid %s expression"),
8589 operand_string, kind);
8590 return 0;
3e73aa7c
JH
8591 }
8592 else
8593 {
be05d201
L
8594 if (addr_mode != CODE_16BIT)
8595 {
8596 /* 32-bit/64-bit checks. */
8597 if ((i.base_reg
8598 && (addr_mode == CODE_64BIT
8599 ? !i.base_reg->reg_type.bitfield.reg64
8600 : !i.base_reg->reg_type.bitfield.reg32)
8601 && (i.index_reg
8602 || (i.base_reg->reg_num
8603 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8604 || (i.index_reg
8605 && !i.index_reg->reg_type.bitfield.regxmm
8606 && !i.index_reg->reg_type.bitfield.regymm
43234a1e 8607 && !i.index_reg->reg_type.bitfield.regzmm
be05d201
L
8608 && ((addr_mode == CODE_64BIT
8609 ? !(i.index_reg->reg_type.bitfield.reg64
8610 || i.index_reg->reg_num == RegRiz)
8611 : !(i.index_reg->reg_type.bitfield.reg32
8612 || i.index_reg->reg_num == RegEiz))
8613 || !i.index_reg->reg_type.bitfield.baseindex)))
8614 goto bad_address;
8178be5b
JB
8615
8616 /* bndmk, bndldx, and bndstx have special restrictions. */
8617 if (current_templates->start->base_opcode == 0xf30f1b
8618 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8619 {
8620 /* They cannot use RIP-relative addressing. */
8621 if (i.base_reg && i.base_reg->reg_num == RegRip)
8622 {
8623 as_bad (_("`%s' cannot be used here"), operand_string);
8624 return 0;
8625 }
8626
8627 /* bndldx and bndstx ignore their scale factor. */
8628 if (current_templates->start->base_opcode != 0xf30f1b
8629 && i.log2_scale_factor)
8630 as_warn (_("register scaling is being ignored here"));
8631 }
be05d201
L
8632 }
8633 else
3e73aa7c 8634 {
be05d201 8635 /* 16-bit checks. */
3e73aa7c 8636 if ((i.base_reg
40fb9820
L
8637 && (!i.base_reg->reg_type.bitfield.reg16
8638 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 8639 || (i.index_reg
40fb9820
L
8640 && (!i.index_reg->reg_type.bitfield.reg16
8641 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
8642 || !(i.base_reg
8643 && i.base_reg->reg_num < 6
8644 && i.index_reg->reg_num >= 6
8645 && i.log2_scale_factor == 0))))
be05d201 8646 goto bad_address;
3e73aa7c
JH
8647 }
8648 }
be05d201 8649 return 1;
24eab124 8650}
252b5132 8651
43234a1e
L
8652/* Handle vector immediates. */
8653
8654static int
8655RC_SAE_immediate (const char *imm_start)
8656{
8657 unsigned int match_found, j;
8658 const char *pstr = imm_start;
8659 expressionS *exp;
8660
8661 if (*pstr != '{')
8662 return 0;
8663
8664 pstr++;
8665 match_found = 0;
8666 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8667 {
8668 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8669 {
8670 if (!i.rounding)
8671 {
8672 rc_op.type = RC_NamesTable[j].type;
8673 rc_op.operand = this_operand;
8674 i.rounding = &rc_op;
8675 }
8676 else
8677 {
8678 as_bad (_("duplicated `%s'"), imm_start);
8679 return 0;
8680 }
8681 pstr += RC_NamesTable[j].len;
8682 match_found = 1;
8683 break;
8684 }
8685 }
8686 if (!match_found)
8687 return 0;
8688
8689 if (*pstr++ != '}')
8690 {
8691 as_bad (_("Missing '}': '%s'"), imm_start);
8692 return 0;
8693 }
8694 /* RC/SAE immediate string should contain nothing more. */;
8695 if (*pstr != 0)
8696 {
8697 as_bad (_("Junk after '}': '%s'"), imm_start);
8698 return 0;
8699 }
8700
8701 exp = &im_expressions[i.imm_operands++];
8702 i.op[this_operand].imms = exp;
8703
8704 exp->X_op = O_constant;
8705 exp->X_add_number = 0;
8706 exp->X_add_symbol = (symbolS *) 0;
8707 exp->X_op_symbol = (symbolS *) 0;
8708
8709 i.types[this_operand].bitfield.imm8 = 1;
8710 return 1;
8711}
8712
8325cc63
JB
8713/* Only string instructions can have a second memory operand, so
8714 reduce current_templates to just those if it contains any. */
8715static int
8716maybe_adjust_templates (void)
8717{
8718 const insn_template *t;
8719
8720 gas_assert (i.mem_operands == 1);
8721
8722 for (t = current_templates->start; t < current_templates->end; ++t)
8723 if (t->opcode_modifier.isstring)
8724 break;
8725
8726 if (t < current_templates->end)
8727 {
8728 static templates aux_templates;
8729 bfd_boolean recheck;
8730
8731 aux_templates.start = t;
8732 for (; t < current_templates->end; ++t)
8733 if (!t->opcode_modifier.isstring)
8734 break;
8735 aux_templates.end = t;
8736
8737 /* Determine whether to re-check the first memory operand. */
8738 recheck = (aux_templates.start != current_templates->start
8739 || t != current_templates->end);
8740
8741 current_templates = &aux_templates;
8742
8743 if (recheck)
8744 {
8745 i.mem_operands = 0;
8746 if (i.memop1_string != NULL
8747 && i386_index_check (i.memop1_string) == 0)
8748 return 0;
8749 i.mem_operands = 1;
8750 }
8751 }
8752
8753 return 1;
8754}
8755
fc0763e6 8756/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 8757 on error. */
252b5132 8758
252b5132 8759static int
a7619375 8760i386_att_operand (char *operand_string)
252b5132 8761{
af6bdddf
AM
8762 const reg_entry *r;
8763 char *end_op;
24eab124 8764 char *op_string = operand_string;
252b5132 8765
24eab124 8766 if (is_space_char (*op_string))
252b5132
RH
8767 ++op_string;
8768
24eab124 8769 /* We check for an absolute prefix (differentiating,
47926f60 8770 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
8771 if (*op_string == ABSOLUTE_PREFIX)
8772 {
8773 ++op_string;
8774 if (is_space_char (*op_string))
8775 ++op_string;
40fb9820 8776 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 8777 }
252b5132 8778
47926f60 8779 /* Check if operand is a register. */
4d1bb795 8780 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 8781 {
40fb9820
L
8782 i386_operand_type temp;
8783
24eab124
AM
8784 /* Check for a segment override by searching for ':' after a
8785 segment register. */
8786 op_string = end_op;
8787 if (is_space_char (*op_string))
8788 ++op_string;
40fb9820
L
8789 if (*op_string == ':'
8790 && (r->reg_type.bitfield.sreg2
8791 || r->reg_type.bitfield.sreg3))
24eab124
AM
8792 {
8793 switch (r->reg_num)
8794 {
8795 case 0:
8796 i.seg[i.mem_operands] = &es;
8797 break;
8798 case 1:
8799 i.seg[i.mem_operands] = &cs;
8800 break;
8801 case 2:
8802 i.seg[i.mem_operands] = &ss;
8803 break;
8804 case 3:
8805 i.seg[i.mem_operands] = &ds;
8806 break;
8807 case 4:
8808 i.seg[i.mem_operands] = &fs;
8809 break;
8810 case 5:
8811 i.seg[i.mem_operands] = &gs;
8812 break;
8813 }
252b5132 8814
24eab124 8815 /* Skip the ':' and whitespace. */
252b5132
RH
8816 ++op_string;
8817 if (is_space_char (*op_string))
24eab124 8818 ++op_string;
252b5132 8819
24eab124
AM
8820 if (!is_digit_char (*op_string)
8821 && !is_identifier_char (*op_string)
8822 && *op_string != '('
8823 && *op_string != ABSOLUTE_PREFIX)
8824 {
8825 as_bad (_("bad memory operand `%s'"), op_string);
8826 return 0;
8827 }
47926f60 8828 /* Handle case of %es:*foo. */
24eab124
AM
8829 if (*op_string == ABSOLUTE_PREFIX)
8830 {
8831 ++op_string;
8832 if (is_space_char (*op_string))
8833 ++op_string;
40fb9820 8834 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
8835 }
8836 goto do_memory_reference;
8837 }
43234a1e
L
8838
8839 /* Handle vector operations. */
8840 if (*op_string == '{')
8841 {
8842 op_string = check_VecOperations (op_string, NULL);
8843 if (op_string == NULL)
8844 return 0;
8845 }
8846
24eab124
AM
8847 if (*op_string)
8848 {
d0b47220 8849 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
8850 return 0;
8851 }
40fb9820
L
8852 temp = r->reg_type;
8853 temp.bitfield.baseindex = 0;
c6fb90c8
L
8854 i.types[this_operand] = operand_type_or (i.types[this_operand],
8855 temp);
7d5e4556 8856 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 8857 i.op[this_operand].regs = r;
24eab124
AM
8858 i.reg_operands++;
8859 }
af6bdddf
AM
8860 else if (*op_string == REGISTER_PREFIX)
8861 {
8862 as_bad (_("bad register name `%s'"), op_string);
8863 return 0;
8864 }
24eab124 8865 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 8866 {
24eab124 8867 ++op_string;
40fb9820 8868 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 8869 {
d0b47220 8870 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
8871 return 0;
8872 }
8873 if (!i386_immediate (op_string))
8874 return 0;
8875 }
43234a1e
L
8876 else if (RC_SAE_immediate (operand_string))
8877 {
8878 /* If it is a RC or SAE immediate, do nothing. */
8879 ;
8880 }
24eab124
AM
8881 else if (is_digit_char (*op_string)
8882 || is_identifier_char (*op_string)
d02603dc 8883 || *op_string == '"'
e5cb08ac 8884 || *op_string == '(')
24eab124 8885 {
47926f60 8886 /* This is a memory reference of some sort. */
af6bdddf 8887 char *base_string;
252b5132 8888
47926f60 8889 /* Start and end of displacement string expression (if found). */
eecb386c
AM
8890 char *displacement_string_start;
8891 char *displacement_string_end;
43234a1e 8892 char *vop_start;
252b5132 8893
24eab124 8894 do_memory_reference:
8325cc63
JB
8895 if (i.mem_operands == 1 && !maybe_adjust_templates ())
8896 return 0;
24eab124 8897 if ((i.mem_operands == 1
40fb9820 8898 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
8899 || i.mem_operands == 2)
8900 {
8901 as_bad (_("too many memory references for `%s'"),
8902 current_templates->start->name);
8903 return 0;
8904 }
252b5132 8905
24eab124
AM
8906 /* Check for base index form. We detect the base index form by
8907 looking for an ')' at the end of the operand, searching
8908 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8909 after the '('. */
af6bdddf 8910 base_string = op_string + strlen (op_string);
c3332e24 8911
43234a1e
L
8912 /* Handle vector operations. */
8913 vop_start = strchr (op_string, '{');
8914 if (vop_start && vop_start < base_string)
8915 {
8916 if (check_VecOperations (vop_start, base_string) == NULL)
8917 return 0;
8918 base_string = vop_start;
8919 }
8920
af6bdddf
AM
8921 --base_string;
8922 if (is_space_char (*base_string))
8923 --base_string;
252b5132 8924
47926f60 8925 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
8926 displacement_string_start = op_string;
8927 displacement_string_end = base_string + 1;
252b5132 8928
24eab124
AM
8929 if (*base_string == ')')
8930 {
af6bdddf 8931 char *temp_string;
24eab124
AM
8932 unsigned int parens_balanced = 1;
8933 /* We've already checked that the number of left & right ()'s are
47926f60 8934 equal, so this loop will not be infinite. */
24eab124
AM
8935 do
8936 {
8937 base_string--;
8938 if (*base_string == ')')
8939 parens_balanced++;
8940 if (*base_string == '(')
8941 parens_balanced--;
8942 }
8943 while (parens_balanced);
c3332e24 8944
af6bdddf 8945 temp_string = base_string;
c3332e24 8946
24eab124 8947 /* Skip past '(' and whitespace. */
252b5132
RH
8948 ++base_string;
8949 if (is_space_char (*base_string))
24eab124 8950 ++base_string;
252b5132 8951
af6bdddf 8952 if (*base_string == ','
4eed87de
AM
8953 || ((i.base_reg = parse_register (base_string, &end_op))
8954 != NULL))
252b5132 8955 {
af6bdddf 8956 displacement_string_end = temp_string;
252b5132 8957
40fb9820 8958 i.types[this_operand].bitfield.baseindex = 1;
252b5132 8959
af6bdddf 8960 if (i.base_reg)
24eab124 8961 {
24eab124
AM
8962 base_string = end_op;
8963 if (is_space_char (*base_string))
8964 ++base_string;
af6bdddf
AM
8965 }
8966
8967 /* There may be an index reg or scale factor here. */
8968 if (*base_string == ',')
8969 {
8970 ++base_string;
8971 if (is_space_char (*base_string))
8972 ++base_string;
8973
4eed87de
AM
8974 if ((i.index_reg = parse_register (base_string, &end_op))
8975 != NULL)
24eab124 8976 {
af6bdddf 8977 base_string = end_op;
24eab124
AM
8978 if (is_space_char (*base_string))
8979 ++base_string;
af6bdddf
AM
8980 if (*base_string == ',')
8981 {
8982 ++base_string;
8983 if (is_space_char (*base_string))
8984 ++base_string;
8985 }
e5cb08ac 8986 else if (*base_string != ')')
af6bdddf 8987 {
4eed87de
AM
8988 as_bad (_("expecting `,' or `)' "
8989 "after index register in `%s'"),
af6bdddf
AM
8990 operand_string);
8991 return 0;
8992 }
24eab124 8993 }
af6bdddf 8994 else if (*base_string == REGISTER_PREFIX)
24eab124 8995 {
f76bf5e0
L
8996 end_op = strchr (base_string, ',');
8997 if (end_op)
8998 *end_op = '\0';
af6bdddf 8999 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9000 return 0;
9001 }
252b5132 9002
47926f60 9003 /* Check for scale factor. */
551c1ca1 9004 if (*base_string != ')')
af6bdddf 9005 {
551c1ca1
AM
9006 char *end_scale = i386_scale (base_string);
9007
9008 if (!end_scale)
af6bdddf 9009 return 0;
24eab124 9010
551c1ca1 9011 base_string = end_scale;
af6bdddf
AM
9012 if (is_space_char (*base_string))
9013 ++base_string;
9014 if (*base_string != ')')
9015 {
4eed87de
AM
9016 as_bad (_("expecting `)' "
9017 "after scale factor in `%s'"),
af6bdddf
AM
9018 operand_string);
9019 return 0;
9020 }
9021 }
9022 else if (!i.index_reg)
24eab124 9023 {
4eed87de
AM
9024 as_bad (_("expecting index register or scale factor "
9025 "after `,'; got '%c'"),
af6bdddf 9026 *base_string);
24eab124
AM
9027 return 0;
9028 }
9029 }
af6bdddf 9030 else if (*base_string != ')')
24eab124 9031 {
4eed87de
AM
9032 as_bad (_("expecting `,' or `)' "
9033 "after base register in `%s'"),
af6bdddf 9034 operand_string);
24eab124
AM
9035 return 0;
9036 }
c3332e24 9037 }
af6bdddf 9038 else if (*base_string == REGISTER_PREFIX)
c3332e24 9039 {
f76bf5e0
L
9040 end_op = strchr (base_string, ',');
9041 if (end_op)
9042 *end_op = '\0';
af6bdddf 9043 as_bad (_("bad register name `%s'"), base_string);
24eab124 9044 return 0;
c3332e24 9045 }
24eab124
AM
9046 }
9047
9048 /* If there's an expression beginning the operand, parse it,
9049 assuming displacement_string_start and
9050 displacement_string_end are meaningful. */
9051 if (displacement_string_start != displacement_string_end)
9052 {
9053 if (!i386_displacement (displacement_string_start,
9054 displacement_string_end))
9055 return 0;
9056 }
9057
9058 /* Special case for (%dx) while doing input/output op. */
9059 if (i.base_reg
0dfbf9d7
L
9060 && operand_type_equal (&i.base_reg->reg_type,
9061 &reg16_inoutportreg)
24eab124
AM
9062 && i.index_reg == 0
9063 && i.log2_scale_factor == 0
9064 && i.seg[i.mem_operands] == 0
40fb9820 9065 && !operand_type_check (i.types[this_operand], disp))
24eab124 9066 {
65da13b5 9067 i.types[this_operand] = inoutportreg;
24eab124
AM
9068 return 1;
9069 }
9070
eecb386c
AM
9071 if (i386_index_check (operand_string) == 0)
9072 return 0;
5c07affc 9073 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9074 if (i.mem_operands == 0)
9075 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9076 i.mem_operands++;
9077 }
9078 else
ce8a8b2f
AM
9079 {
9080 /* It's not a memory operand; argh! */
24eab124
AM
9081 as_bad (_("invalid char %s beginning operand %d `%s'"),
9082 output_invalid (*op_string),
9083 this_operand + 1,
9084 op_string);
9085 return 0;
9086 }
47926f60 9087 return 1; /* Normal return. */
252b5132
RH
9088}
9089\f
fa94de6b
RM
9090/* Calculate the maximum variable size (i.e., excluding fr_fix)
9091 that an rs_machine_dependent frag may reach. */
9092
9093unsigned int
9094i386_frag_max_var (fragS *frag)
9095{
9096 /* The only relaxable frags are for jumps.
9097 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9098 gas_assert (frag->fr_type == rs_machine_dependent);
9099 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9100}
9101
b084df0b
L
9102#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9103static int
8dcea932 9104elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9105{
9106 /* STT_GNU_IFUNC symbol must go through PLT. */
9107 if ((symbol_get_bfdsym (fr_symbol)->flags
9108 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9109 return 0;
9110
9111 if (!S_IS_EXTERNAL (fr_symbol))
9112 /* Symbol may be weak or local. */
9113 return !S_IS_WEAK (fr_symbol);
9114
8dcea932
L
9115 /* Global symbols with non-default visibility can't be preempted. */
9116 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9117 return 1;
9118
9119 if (fr_var != NO_RELOC)
9120 switch ((enum bfd_reloc_code_real) fr_var)
9121 {
9122 case BFD_RELOC_386_PLT32:
9123 case BFD_RELOC_X86_64_PLT32:
9124 /* Symbol with PLT relocatin may be preempted. */
9125 return 0;
9126 default:
9127 abort ();
9128 }
9129
b084df0b
L
9130 /* Global symbols with default visibility in a shared library may be
9131 preempted by another definition. */
8dcea932 9132 return !shared;
b084df0b
L
9133}
9134#endif
9135
ee7fcc42
AM
9136/* md_estimate_size_before_relax()
9137
9138 Called just before relax() for rs_machine_dependent frags. The x86
9139 assembler uses these frags to handle variable size jump
9140 instructions.
9141
9142 Any symbol that is now undefined will not become defined.
9143 Return the correct fr_subtype in the frag.
9144 Return the initial "guess for variable size of frag" to caller.
9145 The guess is actually the growth beyond the fixed part. Whatever
9146 we do to grow the fixed or variable part contributes to our
9147 returned value. */
9148
252b5132 9149int
7016a5d5 9150md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9151{
252b5132 9152 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9153 check for un-relaxable symbols. On an ELF system, we can't relax
9154 an externally visible symbol, because it may be overridden by a
9155 shared library. */
9156 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9157#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9158 || (IS_ELF
8dcea932
L
9159 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9160 fragP->fr_var))
fbeb56a4
DK
9161#endif
9162#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9163 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9164 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9165#endif
9166 )
252b5132 9167 {
b98ef147
AM
9168 /* Symbol is undefined in this segment, or we need to keep a
9169 reloc so that weak symbols can be overridden. */
9170 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9171 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9172 unsigned char *opcode;
9173 int old_fr_fix;
f6af82bd 9174
ee7fcc42 9175 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9176 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9177 else if (size == 2)
f6af82bd
AM
9178 reloc_type = BFD_RELOC_16_PCREL;
9179 else
9180 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9181
ee7fcc42
AM
9182 old_fr_fix = fragP->fr_fix;
9183 opcode = (unsigned char *) fragP->fr_opcode;
9184
fddf5b5b 9185 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9186 {
fddf5b5b
AM
9187 case UNCOND_JUMP:
9188 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9189 opcode[0] = 0xe9;
252b5132 9190 fragP->fr_fix += size;
062cd5e7
AS
9191 fix_new (fragP, old_fr_fix, size,
9192 fragP->fr_symbol,
9193 fragP->fr_offset, 1,
9194 reloc_type);
252b5132
RH
9195 break;
9196
fddf5b5b 9197 case COND_JUMP86:
412167cb
AM
9198 if (size == 2
9199 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9200 {
9201 /* Negate the condition, and branch past an
9202 unconditional jump. */
9203 opcode[0] ^= 1;
9204 opcode[1] = 3;
9205 /* Insert an unconditional jump. */
9206 opcode[2] = 0xe9;
9207 /* We added two extra opcode bytes, and have a two byte
9208 offset. */
9209 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9210 fix_new (fragP, old_fr_fix + 2, 2,
9211 fragP->fr_symbol,
9212 fragP->fr_offset, 1,
9213 reloc_type);
fddf5b5b
AM
9214 break;
9215 }
9216 /* Fall through. */
9217
9218 case COND_JUMP:
412167cb
AM
9219 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9220 {
3e02c1cc
AM
9221 fixS *fixP;
9222
412167cb 9223 fragP->fr_fix += 1;
3e02c1cc
AM
9224 fixP = fix_new (fragP, old_fr_fix, 1,
9225 fragP->fr_symbol,
9226 fragP->fr_offset, 1,
9227 BFD_RELOC_8_PCREL);
9228 fixP->fx_signed = 1;
412167cb
AM
9229 break;
9230 }
93c2a809 9231
24eab124 9232 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9233 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9234 opcode[1] = opcode[0] + 0x10;
f6af82bd 9235 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9236 /* We've added an opcode byte. */
9237 fragP->fr_fix += 1 + size;
062cd5e7
AS
9238 fix_new (fragP, old_fr_fix + 1, size,
9239 fragP->fr_symbol,
9240 fragP->fr_offset, 1,
9241 reloc_type);
252b5132 9242 break;
fddf5b5b
AM
9243
9244 default:
9245 BAD_CASE (fragP->fr_subtype);
9246 break;
252b5132
RH
9247 }
9248 frag_wane (fragP);
ee7fcc42 9249 return fragP->fr_fix - old_fr_fix;
252b5132 9250 }
93c2a809 9251
93c2a809
AM
9252 /* Guess size depending on current relax state. Initially the relax
9253 state will correspond to a short jump and we return 1, because
9254 the variable part of the frag (the branch offset) is one byte
9255 long. However, we can relax a section more than once and in that
9256 case we must either set fr_subtype back to the unrelaxed state,
9257 or return the value for the appropriate branch. */
9258 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9259}
9260
47926f60
KH
9261/* Called after relax() is finished.
9262
9263 In: Address of frag.
9264 fr_type == rs_machine_dependent.
9265 fr_subtype is what the address relaxed to.
9266
9267 Out: Any fixSs and constants are set up.
9268 Caller will turn frag into a ".space 0". */
9269
252b5132 9270void
7016a5d5
TG
9271md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9272 fragS *fragP)
252b5132 9273{
29b0f896 9274 unsigned char *opcode;
252b5132 9275 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9276 offsetT target_address;
9277 offsetT opcode_address;
252b5132 9278 unsigned int extension = 0;
847f7ad4 9279 offsetT displacement_from_opcode_start;
252b5132
RH
9280
9281 opcode = (unsigned char *) fragP->fr_opcode;
9282
47926f60 9283 /* Address we want to reach in file space. */
252b5132 9284 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9285
47926f60 9286 /* Address opcode resides at in file space. */
252b5132
RH
9287 opcode_address = fragP->fr_address + fragP->fr_fix;
9288
47926f60 9289 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9290 displacement_from_opcode_start = target_address - opcode_address;
9291
fddf5b5b 9292 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9293 {
47926f60
KH
9294 /* Don't have to change opcode. */
9295 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9296 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9297 }
9298 else
9299 {
9300 if (no_cond_jump_promotion
9301 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9302 as_warn_where (fragP->fr_file, fragP->fr_line,
9303 _("long jump required"));
252b5132 9304
fddf5b5b
AM
9305 switch (fragP->fr_subtype)
9306 {
9307 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9308 extension = 4; /* 1 opcode + 4 displacement */
9309 opcode[0] = 0xe9;
9310 where_to_put_displacement = &opcode[1];
9311 break;
252b5132 9312
fddf5b5b
AM
9313 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9314 extension = 2; /* 1 opcode + 2 displacement */
9315 opcode[0] = 0xe9;
9316 where_to_put_displacement = &opcode[1];
9317 break;
252b5132 9318
fddf5b5b
AM
9319 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9320 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9321 extension = 5; /* 2 opcode + 4 displacement */
9322 opcode[1] = opcode[0] + 0x10;
9323 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9324 where_to_put_displacement = &opcode[2];
9325 break;
252b5132 9326
fddf5b5b
AM
9327 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9328 extension = 3; /* 2 opcode + 2 displacement */
9329 opcode[1] = opcode[0] + 0x10;
9330 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9331 where_to_put_displacement = &opcode[2];
9332 break;
252b5132 9333
fddf5b5b
AM
9334 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9335 extension = 4;
9336 opcode[0] ^= 1;
9337 opcode[1] = 3;
9338 opcode[2] = 0xe9;
9339 where_to_put_displacement = &opcode[3];
9340 break;
9341
9342 default:
9343 BAD_CASE (fragP->fr_subtype);
9344 break;
9345 }
252b5132 9346 }
fddf5b5b 9347
7b81dfbb
AJ
9348 /* If size if less then four we are sure that the operand fits,
9349 but if it's 4, then it could be that the displacement is larger
9350 then -/+ 2GB. */
9351 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9352 && object_64bit
9353 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
9354 + ((addressT) 1 << 31))
9355 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
9356 {
9357 as_bad_where (fragP->fr_file, fragP->fr_line,
9358 _("jump target out of range"));
9359 /* Make us emit 0. */
9360 displacement_from_opcode_start = extension;
9361 }
47926f60 9362 /* Now put displacement after opcode. */
252b5132
RH
9363 md_number_to_chars ((char *) where_to_put_displacement,
9364 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 9365 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
9366 fragP->fr_fix += extension;
9367}
9368\f
7016a5d5 9369/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
9370 by our caller that we have all the info we need to fix it up.
9371
7016a5d5
TG
9372 Parameter valP is the pointer to the value of the bits.
9373
252b5132
RH
9374 On the 386, immediates, displacements, and data pointers are all in
9375 the same (little-endian) format, so we don't need to care about which
9376 we are handling. */
9377
94f592af 9378void
7016a5d5 9379md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 9380{
94f592af 9381 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 9382 valueT value = *valP;
252b5132 9383
f86103b7 9384#if !defined (TE_Mach)
93382f6d
AM
9385 if (fixP->fx_pcrel)
9386 {
9387 switch (fixP->fx_r_type)
9388 {
5865bb77
ILT
9389 default:
9390 break;
9391
d6ab8113
JB
9392 case BFD_RELOC_64:
9393 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9394 break;
93382f6d 9395 case BFD_RELOC_32:
ae8887b5 9396 case BFD_RELOC_X86_64_32S:
93382f6d
AM
9397 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9398 break;
9399 case BFD_RELOC_16:
9400 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9401 break;
9402 case BFD_RELOC_8:
9403 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9404 break;
9405 }
9406 }
252b5132 9407
a161fe53 9408 if (fixP->fx_addsy != NULL
31312f95 9409 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 9410 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 9411 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 9412 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 9413 && !use_rela_relocations)
252b5132 9414 {
31312f95
AM
9415 /* This is a hack. There should be a better way to handle this.
9416 This covers for the fact that bfd_install_relocation will
9417 subtract the current location (for partial_inplace, PC relative
9418 relocations); see more below. */
252b5132 9419#ifndef OBJ_AOUT
718ddfc0 9420 if (IS_ELF
252b5132
RH
9421#ifdef TE_PE
9422 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9423#endif
9424 )
9425 value += fixP->fx_where + fixP->fx_frag->fr_address;
9426#endif
9427#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9428 if (IS_ELF)
252b5132 9429 {
6539b54b 9430 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 9431
6539b54b 9432 if ((sym_seg == seg
2f66722d 9433 || (symbol_section_p (fixP->fx_addsy)
6539b54b 9434 && sym_seg != absolute_section))
af65af87 9435 && !generic_force_reloc (fixP))
2f66722d
AM
9436 {
9437 /* Yes, we add the values in twice. This is because
6539b54b
AM
9438 bfd_install_relocation subtracts them out again. I think
9439 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
9440 it. FIXME. */
9441 value += fixP->fx_where + fixP->fx_frag->fr_address;
9442 }
252b5132
RH
9443 }
9444#endif
9445#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
9446 /* For some reason, the PE format does not store a
9447 section address offset for a PC relative symbol. */
9448 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 9449 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
9450 value += md_pcrel_from (fixP);
9451#endif
9452 }
fbeb56a4 9453#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
9454 if (fixP->fx_addsy != NULL
9455 && S_IS_WEAK (fixP->fx_addsy)
9456 /* PR 16858: Do not modify weak function references. */
9457 && ! fixP->fx_pcrel)
fbeb56a4 9458 {
296a8689
NC
9459#if !defined (TE_PEP)
9460 /* For x86 PE weak function symbols are neither PC-relative
9461 nor do they set S_IS_FUNCTION. So the only reliable way
9462 to detect them is to check the flags of their containing
9463 section. */
9464 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9465 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9466 ;
9467 else
9468#endif
fbeb56a4
DK
9469 value -= S_GET_VALUE (fixP->fx_addsy);
9470 }
9471#endif
252b5132
RH
9472
9473 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 9474 and we must not disappoint it. */
252b5132 9475#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9476 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
9477 switch (fixP->fx_r_type)
9478 {
9479 case BFD_RELOC_386_PLT32:
3e73aa7c 9480 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
9481 /* Make the jump instruction point to the address of the operand. At
9482 runtime we merely add the offset to the actual PLT entry. */
9483 value = -4;
9484 break;
31312f95 9485
13ae64f3
JJ
9486 case BFD_RELOC_386_TLS_GD:
9487 case BFD_RELOC_386_TLS_LDM:
13ae64f3 9488 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
9489 case BFD_RELOC_386_TLS_IE:
9490 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 9491 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
9492 case BFD_RELOC_X86_64_TLSGD:
9493 case BFD_RELOC_X86_64_TLSLD:
9494 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 9495 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
9496 value = 0; /* Fully resolved at runtime. No addend. */
9497 /* Fallthrough */
9498 case BFD_RELOC_386_TLS_LE:
9499 case BFD_RELOC_386_TLS_LDO_32:
9500 case BFD_RELOC_386_TLS_LE_32:
9501 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 9502 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 9503 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 9504 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
9505 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9506 break;
9507
67a4f2b7
AO
9508 case BFD_RELOC_386_TLS_DESC_CALL:
9509 case BFD_RELOC_X86_64_TLSDESC_CALL:
9510 value = 0; /* Fully resolved at runtime. No addend. */
9511 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9512 fixP->fx_done = 0;
9513 return;
9514
47926f60
KH
9515 case BFD_RELOC_VTABLE_INHERIT:
9516 case BFD_RELOC_VTABLE_ENTRY:
9517 fixP->fx_done = 0;
94f592af 9518 return;
47926f60
KH
9519
9520 default:
9521 break;
9522 }
9523#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 9524 *valP = value;
f86103b7 9525#endif /* !defined (TE_Mach) */
3e73aa7c 9526
3e73aa7c 9527 /* Are we finished with this relocation now? */
c6682705 9528 if (fixP->fx_addsy == NULL)
3e73aa7c 9529 fixP->fx_done = 1;
fbeb56a4
DK
9530#if defined (OBJ_COFF) && defined (TE_PE)
9531 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9532 {
9533 fixP->fx_done = 0;
9534 /* Remember value for tc_gen_reloc. */
9535 fixP->fx_addnumber = value;
9536 /* Clear out the frag for now. */
9537 value = 0;
9538 }
9539#endif
3e73aa7c
JH
9540 else if (use_rela_relocations)
9541 {
9542 fixP->fx_no_overflow = 1;
062cd5e7
AS
9543 /* Remember value for tc_gen_reloc. */
9544 fixP->fx_addnumber = value;
3e73aa7c
JH
9545 value = 0;
9546 }
f86103b7 9547
94f592af 9548 md_number_to_chars (p, value, fixP->fx_size);
252b5132 9549}
252b5132 9550\f
6d4af3c2 9551const char *
499ac353 9552md_atof (int type, char *litP, int *sizeP)
252b5132 9553{
499ac353
NC
9554 /* This outputs the LITTLENUMs in REVERSE order;
9555 in accord with the bigendian 386. */
9556 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
9557}
9558\f
2d545b82 9559static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 9560
252b5132 9561static char *
e3bb37b5 9562output_invalid (int c)
252b5132 9563{
3882b010 9564 if (ISPRINT (c))
f9f21a03
L
9565 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9566 "'%c'", c);
252b5132 9567 else
f9f21a03 9568 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 9569 "(0x%x)", (unsigned char) c);
252b5132
RH
9570 return output_invalid_buf;
9571}
9572
af6bdddf 9573/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
9574
9575static const reg_entry *
4d1bb795 9576parse_real_register (char *reg_string, char **end_op)
252b5132 9577{
af6bdddf
AM
9578 char *s = reg_string;
9579 char *p;
252b5132
RH
9580 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9581 const reg_entry *r;
9582
9583 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9584 if (*s == REGISTER_PREFIX)
9585 ++s;
9586
9587 if (is_space_char (*s))
9588 ++s;
9589
9590 p = reg_name_given;
af6bdddf 9591 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
9592 {
9593 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
9594 return (const reg_entry *) NULL;
9595 s++;
252b5132
RH
9596 }
9597
6588847e
DN
9598 /* For naked regs, make sure that we are not dealing with an identifier.
9599 This prevents confusing an identifier like `eax_var' with register
9600 `eax'. */
9601 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9602 return (const reg_entry *) NULL;
9603
af6bdddf 9604 *end_op = s;
252b5132
RH
9605
9606 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9607
5f47d35b 9608 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 9609 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 9610 {
5f47d35b
AM
9611 if (is_space_char (*s))
9612 ++s;
9613 if (*s == '(')
9614 {
af6bdddf 9615 ++s;
5f47d35b
AM
9616 if (is_space_char (*s))
9617 ++s;
9618 if (*s >= '0' && *s <= '7')
9619 {
db557034 9620 int fpr = *s - '0';
af6bdddf 9621 ++s;
5f47d35b
AM
9622 if (is_space_char (*s))
9623 ++s;
9624 if (*s == ')')
9625 {
9626 *end_op = s + 1;
1e9cc1c2 9627 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
9628 know (r);
9629 return r + fpr;
5f47d35b 9630 }
5f47d35b 9631 }
47926f60 9632 /* We have "%st(" then garbage. */
5f47d35b
AM
9633 return (const reg_entry *) NULL;
9634 }
9635 }
9636
a60de03c
JB
9637 if (r == NULL || allow_pseudo_reg)
9638 return r;
9639
0dfbf9d7 9640 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
9641 return (const reg_entry *) NULL;
9642
192dc9c6
JB
9643 if ((r->reg_type.bitfield.reg32
9644 || r->reg_type.bitfield.sreg3
9645 || r->reg_type.bitfield.control
9646 || r->reg_type.bitfield.debug
9647 || r->reg_type.bitfield.test)
9648 && !cpu_arch_flags.bitfield.cpui386)
9649 return (const reg_entry *) NULL;
9650
309d3373
JB
9651 if (r->reg_type.bitfield.floatreg
9652 && !cpu_arch_flags.bitfield.cpu8087
9653 && !cpu_arch_flags.bitfield.cpu287
9654 && !cpu_arch_flags.bitfield.cpu387)
9655 return (const reg_entry *) NULL;
9656
1848e567 9657 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
192dc9c6
JB
9658 return (const reg_entry *) NULL;
9659
1848e567 9660 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
192dc9c6
JB
9661 return (const reg_entry *) NULL;
9662
1848e567 9663 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
40f12533
L
9664 return (const reg_entry *) NULL;
9665
1848e567
L
9666 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9667 return (const reg_entry *) NULL;
9668
9669 if (r->reg_type.bitfield.regmask
9670 && !cpu_arch_flags.bitfield.cpuregmask)
43234a1e
L
9671 return (const reg_entry *) NULL;
9672
db51cc60 9673 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 9674 if (!allow_index_reg
db51cc60
L
9675 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9676 return (const reg_entry *) NULL;
9677
43234a1e
L
9678 /* Upper 16 vector register is only available with VREX in 64bit
9679 mode. */
9680 if ((r->reg_flags & RegVRex))
9681 {
9682 if (!cpu_arch_flags.bitfield.cpuvrex
9683 || flag_code != CODE_64BIT)
9684 return (const reg_entry *) NULL;
9685
9686 i.need_vrex = 1;
9687 }
9688
a60de03c
JB
9689 if (((r->reg_flags & (RegRex64 | RegRex))
9690 || r->reg_type.bitfield.reg64)
40fb9820 9691 && (!cpu_arch_flags.bitfield.cpulm
0dfbf9d7 9692 || !operand_type_equal (&r->reg_type, &control))
1ae00879 9693 && flag_code != CODE_64BIT)
20f0a1fc 9694 return (const reg_entry *) NULL;
1ae00879 9695
b7240065
JB
9696 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9697 return (const reg_entry *) NULL;
9698
252b5132
RH
9699 return r;
9700}
4d1bb795
JB
9701
9702/* REG_STRING starts *before* REGISTER_PREFIX. */
9703
9704static const reg_entry *
9705parse_register (char *reg_string, char **end_op)
9706{
9707 const reg_entry *r;
9708
9709 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9710 r = parse_real_register (reg_string, end_op);
9711 else
9712 r = NULL;
9713 if (!r)
9714 {
9715 char *save = input_line_pointer;
9716 char c;
9717 symbolS *symbolP;
9718
9719 input_line_pointer = reg_string;
d02603dc 9720 c = get_symbol_name (&reg_string);
4d1bb795
JB
9721 symbolP = symbol_find (reg_string);
9722 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9723 {
9724 const expressionS *e = symbol_get_value_expression (symbolP);
9725
0398aac5 9726 know (e->X_op == O_register);
4eed87de 9727 know (e->X_add_number >= 0
c3fe08fa 9728 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 9729 r = i386_regtab + e->X_add_number;
d3bb6b49
IT
9730 if ((r->reg_flags & RegVRex))
9731 i.need_vrex = 1;
4d1bb795
JB
9732 *end_op = input_line_pointer;
9733 }
9734 *input_line_pointer = c;
9735 input_line_pointer = save;
9736 }
9737 return r;
9738}
9739
9740int
9741i386_parse_name (char *name, expressionS *e, char *nextcharP)
9742{
9743 const reg_entry *r;
9744 char *end = input_line_pointer;
9745
9746 *end = *nextcharP;
9747 r = parse_register (name, &input_line_pointer);
9748 if (r && end <= input_line_pointer)
9749 {
9750 *nextcharP = *input_line_pointer;
9751 *input_line_pointer = 0;
9752 e->X_op = O_register;
9753 e->X_add_number = r - i386_regtab;
9754 return 1;
9755 }
9756 input_line_pointer = end;
9757 *end = 0;
ee86248c 9758 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
9759}
9760
9761void
9762md_operand (expressionS *e)
9763{
ee86248c
JB
9764 char *end;
9765 const reg_entry *r;
4d1bb795 9766
ee86248c
JB
9767 switch (*input_line_pointer)
9768 {
9769 case REGISTER_PREFIX:
9770 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
9771 if (r)
9772 {
9773 e->X_op = O_register;
9774 e->X_add_number = r - i386_regtab;
9775 input_line_pointer = end;
9776 }
ee86248c
JB
9777 break;
9778
9779 case '[':
9c2799c2 9780 gas_assert (intel_syntax);
ee86248c
JB
9781 end = input_line_pointer++;
9782 expression (e);
9783 if (*input_line_pointer == ']')
9784 {
9785 ++input_line_pointer;
9786 e->X_op_symbol = make_expr_symbol (e);
9787 e->X_add_symbol = NULL;
9788 e->X_add_number = 0;
9789 e->X_op = O_index;
9790 }
9791 else
9792 {
9793 e->X_op = O_absent;
9794 input_line_pointer = end;
9795 }
9796 break;
4d1bb795
JB
9797 }
9798}
9799
252b5132 9800\f
4cc782b5 9801#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 9802const char *md_shortopts = "kVQ:sqn";
252b5132 9803#else
12b55ccc 9804const char *md_shortopts = "qn";
252b5132 9805#endif
6e0b89ee 9806
3e73aa7c 9807#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
9808#define OPTION_64 (OPTION_MD_BASE + 1)
9809#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
9810#define OPTION_MARCH (OPTION_MD_BASE + 3)
9811#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
9812#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9813#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9814#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9815#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9816#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
c0f3af97 9817#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 9818#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
9819#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9820#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9821#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 9822#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
9823#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9824#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 9825#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 9826#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 9827#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 9828#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
9829#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9830#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 9831#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
0cb4071e 9832#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
b3b91714 9833
99ad8390
NC
9834struct option md_longopts[] =
9835{
3e73aa7c 9836 {"32", no_argument, NULL, OPTION_32},
321098a5 9837#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9838 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 9839 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
9840#endif
9841#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9842 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 9843 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 9844#endif
b3b91714 9845 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
9846 {"march", required_argument, NULL, OPTION_MARCH},
9847 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
9848 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9849 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9850 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9851 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9852 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
c0f3af97 9853 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 9854 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 9855 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 9856 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 9857 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
9858 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9859 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
9860# if defined (TE_PE) || defined (TE_PEP)
9861 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9862#endif
d1982f93 9863 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 9864 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 9865 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 9866 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
9867 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9868 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
9869 {NULL, no_argument, NULL, 0}
9870};
9871size_t md_longopts_size = sizeof (md_longopts);
9872
9873int
17b9d67d 9874md_parse_option (int c, const char *arg)
252b5132 9875{
91d6fa6a 9876 unsigned int j;
293f5f65 9877 char *arch, *next, *saved;
9103f4f4 9878
252b5132
RH
9879 switch (c)
9880 {
12b55ccc
L
9881 case 'n':
9882 optimize_align_code = 0;
9883 break;
9884
a38cf1db
AM
9885 case 'q':
9886 quiet_warnings = 1;
252b5132
RH
9887 break;
9888
9889#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
9890 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9891 should be emitted or not. FIXME: Not implemented. */
9892 case 'Q':
252b5132
RH
9893 break;
9894
9895 /* -V: SVR4 argument to print version ID. */
9896 case 'V':
9897 print_version_id ();
9898 break;
9899
a38cf1db
AM
9900 /* -k: Ignore for FreeBSD compatibility. */
9901 case 'k':
252b5132 9902 break;
4cc782b5
ILT
9903
9904 case 's':
9905 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 9906 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 9907 break;
8dcea932
L
9908
9909 case OPTION_MSHARED:
9910 shared = 1;
9911 break;
99ad8390 9912#endif
321098a5 9913#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 9914 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
9915 case OPTION_64:
9916 {
9917 const char **list, **l;
9918
3e73aa7c
JH
9919 list = bfd_target_list ();
9920 for (l = list; *l != NULL; l++)
8620418b 9921 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
9922 || strcmp (*l, "coff-x86-64") == 0
9923 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
9924 || strcmp (*l, "pei-x86-64") == 0
9925 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
9926 {
9927 default_arch = "x86_64";
9928 break;
9929 }
3e73aa7c 9930 if (*l == NULL)
2b5d6a91 9931 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
9932 free (list);
9933 }
9934 break;
9935#endif
252b5132 9936
351f65ca 9937#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 9938 case OPTION_X32:
351f65ca
L
9939 if (IS_ELF)
9940 {
9941 const char **list, **l;
9942
9943 list = bfd_target_list ();
9944 for (l = list; *l != NULL; l++)
9945 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9946 {
9947 default_arch = "x86_64:32";
9948 break;
9949 }
9950 if (*l == NULL)
2b5d6a91 9951 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
9952 free (list);
9953 }
9954 else
9955 as_fatal (_("32bit x86_64 is only supported for ELF"));
9956 break;
9957#endif
9958
6e0b89ee
AM
9959 case OPTION_32:
9960 default_arch = "i386";
9961 break;
9962
b3b91714
AM
9963 case OPTION_DIVIDE:
9964#ifdef SVR4_COMMENT_CHARS
9965 {
9966 char *n, *t;
9967 const char *s;
9968
add39d23 9969 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
9970 t = n;
9971 for (s = i386_comment_chars; *s != '\0'; s++)
9972 if (*s != '/')
9973 *t++ = *s;
9974 *t = '\0';
9975 i386_comment_chars = n;
9976 }
9977#endif
9978 break;
9979
9103f4f4 9980 case OPTION_MARCH:
293f5f65
L
9981 saved = xstrdup (arg);
9982 arch = saved;
9983 /* Allow -march=+nosse. */
9984 if (*arch == '+')
9985 arch++;
6305a203 9986 do
9103f4f4 9987 {
6305a203 9988 if (*arch == '.')
2b5d6a91 9989 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
9990 next = strchr (arch, '+');
9991 if (next)
9992 *next++ = '\0';
91d6fa6a 9993 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 9994 {
91d6fa6a 9995 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 9996 {
6305a203 9997 /* Processor. */
1ded5609
JB
9998 if (! cpu_arch[j].flags.bitfield.cpui386)
9999 continue;
10000
91d6fa6a 10001 cpu_arch_name = cpu_arch[j].name;
6305a203 10002 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10003 cpu_arch_flags = cpu_arch[j].flags;
10004 cpu_arch_isa = cpu_arch[j].type;
10005 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10006 if (!cpu_arch_tune_set)
10007 {
10008 cpu_arch_tune = cpu_arch_isa;
10009 cpu_arch_tune_flags = cpu_arch_isa_flags;
10010 }
10011 break;
10012 }
91d6fa6a
NC
10013 else if (*cpu_arch [j].name == '.'
10014 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203
L
10015 {
10016 /* ISA entension. */
10017 i386_cpu_flags flags;
309d3373 10018
293f5f65
L
10019 flags = cpu_flags_or (cpu_arch_flags,
10020 cpu_arch[j].flags);
81486035
L
10021
10022 if (!valid_iamcu_cpu_flags (&flags))
10023 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
10024 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10025 {
10026 if (cpu_sub_arch_name)
10027 {
10028 char *name = cpu_sub_arch_name;
10029 cpu_sub_arch_name = concat (name,
91d6fa6a 10030 cpu_arch[j].name,
1bf57e9f 10031 (const char *) NULL);
6305a203
L
10032 free (name);
10033 }
10034 else
91d6fa6a 10035 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10036 cpu_arch_flags = flags;
a586129e 10037 cpu_arch_isa_flags = flags;
6305a203
L
10038 }
10039 break;
ccc9c027 10040 }
9103f4f4 10041 }
6305a203 10042
293f5f65
L
10043 if (j >= ARRAY_SIZE (cpu_arch))
10044 {
10045 /* Disable an ISA entension. */
10046 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10047 if (strcmp (arch, cpu_noarch [j].name) == 0)
10048 {
10049 i386_cpu_flags flags;
10050
10051 flags = cpu_flags_and_not (cpu_arch_flags,
10052 cpu_noarch[j].flags);
10053 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10054 {
10055 if (cpu_sub_arch_name)
10056 {
10057 char *name = cpu_sub_arch_name;
10058 cpu_sub_arch_name = concat (arch,
10059 (const char *) NULL);
10060 free (name);
10061 }
10062 else
10063 cpu_sub_arch_name = xstrdup (arch);
10064 cpu_arch_flags = flags;
10065 cpu_arch_isa_flags = flags;
10066 }
10067 break;
10068 }
10069
10070 if (j >= ARRAY_SIZE (cpu_noarch))
10071 j = ARRAY_SIZE (cpu_arch);
10072 }
10073
91d6fa6a 10074 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10075 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10076
10077 arch = next;
9103f4f4 10078 }
293f5f65
L
10079 while (next != NULL);
10080 free (saved);
9103f4f4
L
10081 break;
10082
10083 case OPTION_MTUNE:
10084 if (*arg == '.')
2b5d6a91 10085 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10086 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10087 {
91d6fa6a 10088 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10089 {
ccc9c027 10090 cpu_arch_tune_set = 1;
91d6fa6a
NC
10091 cpu_arch_tune = cpu_arch [j].type;
10092 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10093 break;
10094 }
10095 }
91d6fa6a 10096 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10097 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10098 break;
10099
1efbbeb4
L
10100 case OPTION_MMNEMONIC:
10101 if (strcasecmp (arg, "att") == 0)
10102 intel_mnemonic = 0;
10103 else if (strcasecmp (arg, "intel") == 0)
10104 intel_mnemonic = 1;
10105 else
2b5d6a91 10106 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10107 break;
10108
10109 case OPTION_MSYNTAX:
10110 if (strcasecmp (arg, "att") == 0)
10111 intel_syntax = 0;
10112 else if (strcasecmp (arg, "intel") == 0)
10113 intel_syntax = 1;
10114 else
2b5d6a91 10115 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10116 break;
10117
10118 case OPTION_MINDEX_REG:
10119 allow_index_reg = 1;
10120 break;
10121
10122 case OPTION_MNAKED_REG:
10123 allow_naked_reg = 1;
10124 break;
10125
10126 case OPTION_MOLD_GCC:
10127 old_gcc = 1;
1efbbeb4
L
10128 break;
10129
c0f3af97
L
10130 case OPTION_MSSE2AVX:
10131 sse2avx = 1;
10132 break;
10133
daf50ae7
L
10134 case OPTION_MSSE_CHECK:
10135 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10136 sse_check = check_error;
daf50ae7 10137 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10138 sse_check = check_warning;
daf50ae7 10139 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10140 sse_check = check_none;
daf50ae7 10141 else
2b5d6a91 10142 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10143 break;
10144
7bab8ab5
JB
10145 case OPTION_MOPERAND_CHECK:
10146 if (strcasecmp (arg, "error") == 0)
10147 operand_check = check_error;
10148 else if (strcasecmp (arg, "warning") == 0)
10149 operand_check = check_warning;
10150 else if (strcasecmp (arg, "none") == 0)
10151 operand_check = check_none;
10152 else
10153 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10154 break;
10155
539f890d
L
10156 case OPTION_MAVXSCALAR:
10157 if (strcasecmp (arg, "128") == 0)
10158 avxscalar = vex128;
10159 else if (strcasecmp (arg, "256") == 0)
10160 avxscalar = vex256;
10161 else
2b5d6a91 10162 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10163 break;
10164
7e8b059b
L
10165 case OPTION_MADD_BND_PREFIX:
10166 add_bnd_prefix = 1;
10167 break;
10168
43234a1e
L
10169 case OPTION_MEVEXLIG:
10170 if (strcmp (arg, "128") == 0)
10171 evexlig = evexl128;
10172 else if (strcmp (arg, "256") == 0)
10173 evexlig = evexl256;
10174 else if (strcmp (arg, "512") == 0)
10175 evexlig = evexl512;
10176 else
10177 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10178 break;
10179
d3d3c6db
IT
10180 case OPTION_MEVEXRCIG:
10181 if (strcmp (arg, "rne") == 0)
10182 evexrcig = rne;
10183 else if (strcmp (arg, "rd") == 0)
10184 evexrcig = rd;
10185 else if (strcmp (arg, "ru") == 0)
10186 evexrcig = ru;
10187 else if (strcmp (arg, "rz") == 0)
10188 evexrcig = rz;
10189 else
10190 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10191 break;
10192
43234a1e
L
10193 case OPTION_MEVEXWIG:
10194 if (strcmp (arg, "0") == 0)
10195 evexwig = evexw0;
10196 else if (strcmp (arg, "1") == 0)
10197 evexwig = evexw1;
10198 else
10199 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10200 break;
10201
167ad85b
TG
10202# if defined (TE_PE) || defined (TE_PEP)
10203 case OPTION_MBIG_OBJ:
10204 use_big_obj = 1;
10205 break;
10206#endif
10207
d1982f93 10208 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10209 if (strcasecmp (arg, "yes") == 0)
10210 omit_lock_prefix = 1;
10211 else if (strcasecmp (arg, "no") == 0)
10212 omit_lock_prefix = 0;
10213 else
10214 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10215 break;
10216
e4e00185
AS
10217 case OPTION_MFENCE_AS_LOCK_ADD:
10218 if (strcasecmp (arg, "yes") == 0)
10219 avoid_fence = 1;
10220 else if (strcasecmp (arg, "no") == 0)
10221 avoid_fence = 0;
10222 else
10223 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10224 break;
10225
0cb4071e
L
10226 case OPTION_MRELAX_RELOCATIONS:
10227 if (strcasecmp (arg, "yes") == 0)
10228 generate_relax_relocations = 1;
10229 else if (strcasecmp (arg, "no") == 0)
10230 generate_relax_relocations = 0;
10231 else
10232 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10233 break;
10234
5db04b09 10235 case OPTION_MAMD64:
e89c5eaa 10236 intel64 = 0;
5db04b09
L
10237 break;
10238
10239 case OPTION_MINTEL64:
e89c5eaa 10240 intel64 = 1;
5db04b09
L
10241 break;
10242
252b5132
RH
10243 default:
10244 return 0;
10245 }
10246 return 1;
10247}
10248
8a2c8fef
L
10249#define MESSAGE_TEMPLATE \
10250" "
10251
293f5f65
L
10252static char *
10253output_message (FILE *stream, char *p, char *message, char *start,
10254 int *left_p, const char *name, int len)
10255{
10256 int size = sizeof (MESSAGE_TEMPLATE);
10257 int left = *left_p;
10258
10259 /* Reserve 2 spaces for ", " or ",\0" */
10260 left -= len + 2;
10261
10262 /* Check if there is any room. */
10263 if (left >= 0)
10264 {
10265 if (p != start)
10266 {
10267 *p++ = ',';
10268 *p++ = ' ';
10269 }
10270 p = mempcpy (p, name, len);
10271 }
10272 else
10273 {
10274 /* Output the current message now and start a new one. */
10275 *p++ = ',';
10276 *p = '\0';
10277 fprintf (stream, "%s\n", message);
10278 p = start;
10279 left = size - (start - message) - len - 2;
10280
10281 gas_assert (left >= 0);
10282
10283 p = mempcpy (p, name, len);
10284 }
10285
10286 *left_p = left;
10287 return p;
10288}
10289
8a2c8fef 10290static void
1ded5609 10291show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10292{
10293 static char message[] = MESSAGE_TEMPLATE;
10294 char *start = message + 27;
10295 char *p;
10296 int size = sizeof (MESSAGE_TEMPLATE);
10297 int left;
10298 const char *name;
10299 int len;
10300 unsigned int j;
10301
10302 p = start;
10303 left = size - (start - message);
10304 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10305 {
10306 /* Should it be skipped? */
10307 if (cpu_arch [j].skip)
10308 continue;
10309
10310 name = cpu_arch [j].name;
10311 len = cpu_arch [j].len;
10312 if (*name == '.')
10313 {
10314 /* It is an extension. Skip if we aren't asked to show it. */
10315 if (ext)
10316 {
10317 name++;
10318 len--;
10319 }
10320 else
10321 continue;
10322 }
10323 else if (ext)
10324 {
10325 /* It is an processor. Skip if we show only extension. */
10326 continue;
10327 }
1ded5609
JB
10328 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10329 {
10330 /* It is an impossible processor - skip. */
10331 continue;
10332 }
8a2c8fef 10333
293f5f65 10334 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
10335 }
10336
293f5f65
L
10337 /* Display disabled extensions. */
10338 if (ext)
10339 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10340 {
10341 name = cpu_noarch [j].name;
10342 len = cpu_noarch [j].len;
10343 p = output_message (stream, p, message, start, &left, name,
10344 len);
10345 }
10346
8a2c8fef
L
10347 *p = '\0';
10348 fprintf (stream, "%s\n", message);
10349}
10350
252b5132 10351void
8a2c8fef 10352md_show_usage (FILE *stream)
252b5132 10353{
4cc782b5
ILT
10354#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10355 fprintf (stream, _("\
a38cf1db
AM
10356 -Q ignored\n\
10357 -V print assembler version number\n\
b3b91714
AM
10358 -k ignored\n"));
10359#endif
10360 fprintf (stream, _("\
12b55ccc 10361 -n Do not optimize code alignment\n\
b3b91714
AM
10362 -q quieten some warnings\n"));
10363#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10364 fprintf (stream, _("\
a38cf1db 10365 -s ignored\n"));
b3b91714 10366#endif
321098a5
L
10367#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10368 || defined (TE_PE) || defined (TE_PEP))
751d281c 10369 fprintf (stream, _("\
570561f7 10370 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 10371#endif
b3b91714
AM
10372#ifdef SVR4_COMMENT_CHARS
10373 fprintf (stream, _("\
10374 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
10375#else
10376 fprintf (stream, _("\
b3b91714 10377 --divide ignored\n"));
4cc782b5 10378#endif
9103f4f4 10379 fprintf (stream, _("\
6305a203 10380 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 10381 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 10382 show_arch (stream, 0, 1);
8a2c8fef
L
10383 fprintf (stream, _("\
10384 EXTENSION is combination of:\n"));
1ded5609 10385 show_arch (stream, 1, 0);
6305a203 10386 fprintf (stream, _("\
8a2c8fef 10387 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 10388 show_arch (stream, 0, 0);
ba104c83 10389 fprintf (stream, _("\
c0f3af97
L
10390 -msse2avx encode SSE instructions with VEX prefix\n"));
10391 fprintf (stream, _("\
daf50ae7
L
10392 -msse-check=[none|error|warning]\n\
10393 check SSE instructions\n"));
10394 fprintf (stream, _("\
7bab8ab5
JB
10395 -moperand-check=[none|error|warning]\n\
10396 check operand combinations for validity\n"));
10397 fprintf (stream, _("\
539f890d
L
10398 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10399 length\n"));
10400 fprintf (stream, _("\
43234a1e
L
10401 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10402 length\n"));
10403 fprintf (stream, _("\
10404 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10405 for EVEX.W bit ignored instructions\n"));
10406 fprintf (stream, _("\
d3d3c6db
IT
10407 -mevexrcig=[rne|rd|ru|rz]\n\
10408 encode EVEX instructions with specific EVEX.RC value\n\
10409 for SAE-only ignored instructions\n"));
10410 fprintf (stream, _("\
ba104c83
L
10411 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10412 fprintf (stream, _("\
10413 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10414 fprintf (stream, _("\
10415 -mindex-reg support pseudo index registers\n"));
10416 fprintf (stream, _("\
10417 -mnaked-reg don't require `%%' prefix for registers\n"));
10418 fprintf (stream, _("\
10419 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7e8b059b
L
10420 fprintf (stream, _("\
10421 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
10422 fprintf (stream, _("\
10423 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
10424# if defined (TE_PE) || defined (TE_PEP)
10425 fprintf (stream, _("\
10426 -mbig-obj generate big object files\n"));
10427#endif
d022bddd
IT
10428 fprintf (stream, _("\
10429 -momit-lock-prefix=[no|yes]\n\
10430 strip all lock prefixes\n"));
5db04b09 10431 fprintf (stream, _("\
e4e00185
AS
10432 -mfence-as-lock-add=[no|yes]\n\
10433 encode lfence, mfence and sfence as\n\
10434 lock addl $0x0, (%%{re}sp)\n"));
10435 fprintf (stream, _("\
0cb4071e
L
10436 -mrelax-relocations=[no|yes]\n\
10437 generate relax relocations\n"));
10438 fprintf (stream, _("\
5db04b09
L
10439 -mamd64 accept only AMD64 ISA\n"));
10440 fprintf (stream, _("\
10441 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
10442}
10443
3e73aa7c 10444#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 10445 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 10446 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
10447
10448/* Pick the target format to use. */
10449
47926f60 10450const char *
e3bb37b5 10451i386_target_format (void)
252b5132 10452{
351f65ca
L
10453 if (!strncmp (default_arch, "x86_64", 6))
10454 {
10455 update_code_flag (CODE_64BIT, 1);
10456 if (default_arch[6] == '\0')
7f56bc95 10457 x86_elf_abi = X86_64_ABI;
351f65ca 10458 else
7f56bc95 10459 x86_elf_abi = X86_64_X32_ABI;
351f65ca 10460 }
3e73aa7c 10461 else if (!strcmp (default_arch, "i386"))
78f12dd3 10462 update_code_flag (CODE_32BIT, 1);
5197d474
L
10463 else if (!strcmp (default_arch, "iamcu"))
10464 {
10465 update_code_flag (CODE_32BIT, 1);
10466 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10467 {
10468 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10469 cpu_arch_name = "iamcu";
10470 cpu_sub_arch_name = NULL;
10471 cpu_arch_flags = iamcu_flags;
10472 cpu_arch_isa = PROCESSOR_IAMCU;
10473 cpu_arch_isa_flags = iamcu_flags;
10474 if (!cpu_arch_tune_set)
10475 {
10476 cpu_arch_tune = cpu_arch_isa;
10477 cpu_arch_tune_flags = cpu_arch_isa_flags;
10478 }
10479 }
10480 else
10481 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10482 cpu_arch_name);
10483 }
3e73aa7c 10484 else
2b5d6a91 10485 as_fatal (_("unknown architecture"));
89507696
JB
10486
10487 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10488 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10489 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10490 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10491
252b5132
RH
10492 switch (OUTPUT_FLAVOR)
10493 {
9384f2ff 10494#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 10495 case bfd_target_aout_flavour:
47926f60 10496 return AOUT_TARGET_FORMAT;
4c63da97 10497#endif
9384f2ff
AM
10498#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10499# if defined (TE_PE) || defined (TE_PEP)
10500 case bfd_target_coff_flavour:
167ad85b
TG
10501 if (flag_code == CODE_64BIT)
10502 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10503 else
10504 return "pe-i386";
9384f2ff 10505# elif defined (TE_GO32)
0561d57c
JK
10506 case bfd_target_coff_flavour:
10507 return "coff-go32";
9384f2ff 10508# else
252b5132
RH
10509 case bfd_target_coff_flavour:
10510 return "coff-i386";
9384f2ff 10511# endif
4c63da97 10512#endif
3e73aa7c 10513#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 10514 case bfd_target_elf_flavour:
3e73aa7c 10515 {
351f65ca
L
10516 const char *format;
10517
10518 switch (x86_elf_abi)
4fa24527 10519 {
351f65ca
L
10520 default:
10521 format = ELF_TARGET_FORMAT;
10522 break;
7f56bc95 10523 case X86_64_ABI:
351f65ca 10524 use_rela_relocations = 1;
4fa24527 10525 object_64bit = 1;
351f65ca
L
10526 format = ELF_TARGET_FORMAT64;
10527 break;
7f56bc95 10528 case X86_64_X32_ABI:
4fa24527 10529 use_rela_relocations = 1;
351f65ca 10530 object_64bit = 1;
862be3fb 10531 disallow_64bit_reloc = 1;
351f65ca
L
10532 format = ELF_TARGET_FORMAT32;
10533 break;
4fa24527 10534 }
3632d14b 10535 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 10536 {
7f56bc95 10537 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
10538 as_fatal (_("Intel L1OM is 64bit only"));
10539 return ELF_TARGET_L1OM_FORMAT;
10540 }
b49f93f6 10541 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
10542 {
10543 if (x86_elf_abi != X86_64_ABI)
10544 as_fatal (_("Intel K1OM is 64bit only"));
10545 return ELF_TARGET_K1OM_FORMAT;
10546 }
81486035
L
10547 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10548 {
10549 if (x86_elf_abi != I386_ABI)
10550 as_fatal (_("Intel MCU is 32bit only"));
10551 return ELF_TARGET_IAMCU_FORMAT;
10552 }
8a9036a4 10553 else
351f65ca 10554 return format;
3e73aa7c 10555 }
e57f8c65
TG
10556#endif
10557#if defined (OBJ_MACH_O)
10558 case bfd_target_mach_o_flavour:
d382c579
TG
10559 if (flag_code == CODE_64BIT)
10560 {
10561 use_rela_relocations = 1;
10562 object_64bit = 1;
10563 return "mach-o-x86-64";
10564 }
10565 else
10566 return "mach-o-i386";
4c63da97 10567#endif
252b5132
RH
10568 default:
10569 abort ();
10570 return NULL;
10571 }
10572}
10573
47926f60 10574#endif /* OBJ_MAYBE_ more than one */
252b5132 10575\f
252b5132 10576symbolS *
7016a5d5 10577md_undefined_symbol (char *name)
252b5132 10578{
18dc2407
ILT
10579 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10580 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10581 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10582 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
10583 {
10584 if (!GOT_symbol)
10585 {
10586 if (symbol_find (name))
10587 as_bad (_("GOT already in symbol table"));
10588 GOT_symbol = symbol_new (name, undefined_section,
10589 (valueT) 0, &zero_address_frag);
10590 };
10591 return GOT_symbol;
10592 }
252b5132
RH
10593 return 0;
10594}
10595
10596/* Round up a section size to the appropriate boundary. */
47926f60 10597
252b5132 10598valueT
7016a5d5 10599md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 10600{
4c63da97
AM
10601#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10602 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10603 {
10604 /* For a.out, force the section size to be aligned. If we don't do
10605 this, BFD will align it for us, but it will not write out the
10606 final bytes of the section. This may be a bug in BFD, but it is
10607 easier to fix it here since that is how the other a.out targets
10608 work. */
10609 int align;
10610
10611 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 10612 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 10613 }
252b5132
RH
10614#endif
10615
10616 return size;
10617}
10618
10619/* On the i386, PC-relative offsets are relative to the start of the
10620 next instruction. That is, the address of the offset, plus its
10621 size, since the offset is always the last part of the insn. */
10622
10623long
e3bb37b5 10624md_pcrel_from (fixS *fixP)
252b5132
RH
10625{
10626 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10627}
10628
10629#ifndef I386COFF
10630
10631static void
e3bb37b5 10632s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 10633{
29b0f896 10634 int temp;
252b5132 10635
8a75718c
JB
10636#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10637 if (IS_ELF)
10638 obj_elf_section_change_hook ();
10639#endif
252b5132
RH
10640 temp = get_absolute_expression ();
10641 subseg_set (bss_section, (subsegT) temp);
10642 demand_empty_rest_of_line ();
10643}
10644
10645#endif
10646
252b5132 10647void
e3bb37b5 10648i386_validate_fix (fixS *fixp)
252b5132 10649{
02a86693 10650 if (fixp->fx_subsy)
252b5132 10651 {
02a86693 10652 if (fixp->fx_subsy == GOT_symbol)
23df1078 10653 {
02a86693
L
10654 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10655 {
10656 if (!object_64bit)
10657 abort ();
10658#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10659 if (fixp->fx_tcbit2)
56ceb5b5
L
10660 fixp->fx_r_type = (fixp->fx_tcbit
10661 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10662 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
10663 else
10664#endif
10665 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10666 }
d6ab8113 10667 else
02a86693
L
10668 {
10669 if (!object_64bit)
10670 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10671 else
10672 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10673 }
10674 fixp->fx_subsy = 0;
23df1078 10675 }
252b5132 10676 }
02a86693
L
10677#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10678 else if (!object_64bit)
10679 {
10680 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10681 && fixp->fx_tcbit2)
10682 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10683 }
10684#endif
252b5132
RH
10685}
10686
252b5132 10687arelent *
7016a5d5 10688tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
10689{
10690 arelent *rel;
10691 bfd_reloc_code_real_type code;
10692
10693 switch (fixp->fx_r_type)
10694 {
8ce3d284 10695#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
10696 case BFD_RELOC_SIZE32:
10697 case BFD_RELOC_SIZE64:
10698 if (S_IS_DEFINED (fixp->fx_addsy)
10699 && !S_IS_EXTERNAL (fixp->fx_addsy))
10700 {
10701 /* Resolve size relocation against local symbol to size of
10702 the symbol plus addend. */
10703 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10704 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10705 && !fits_in_unsigned_long (value))
10706 as_bad_where (fixp->fx_file, fixp->fx_line,
10707 _("symbol size computation overflow"));
10708 fixp->fx_addsy = NULL;
10709 fixp->fx_subsy = NULL;
10710 md_apply_fix (fixp, (valueT *) &value, NULL);
10711 return NULL;
10712 }
8ce3d284 10713#endif
8fd4256d 10714
3e73aa7c
JH
10715 case BFD_RELOC_X86_64_PLT32:
10716 case BFD_RELOC_X86_64_GOT32:
10717 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
10718 case BFD_RELOC_X86_64_GOTPCRELX:
10719 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
10720 case BFD_RELOC_386_PLT32:
10721 case BFD_RELOC_386_GOT32:
02a86693 10722 case BFD_RELOC_386_GOT32X:
252b5132
RH
10723 case BFD_RELOC_386_GOTOFF:
10724 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
10725 case BFD_RELOC_386_TLS_GD:
10726 case BFD_RELOC_386_TLS_LDM:
10727 case BFD_RELOC_386_TLS_LDO_32:
10728 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10729 case BFD_RELOC_386_TLS_IE:
10730 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
10731 case BFD_RELOC_386_TLS_LE_32:
10732 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
10733 case BFD_RELOC_386_TLS_GOTDESC:
10734 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
10735 case BFD_RELOC_X86_64_TLSGD:
10736 case BFD_RELOC_X86_64_TLSLD:
10737 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10738 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
10739 case BFD_RELOC_X86_64_GOTTPOFF:
10740 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
10741 case BFD_RELOC_X86_64_TPOFF64:
10742 case BFD_RELOC_X86_64_GOTOFF64:
10743 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
10744 case BFD_RELOC_X86_64_GOT64:
10745 case BFD_RELOC_X86_64_GOTPCREL64:
10746 case BFD_RELOC_X86_64_GOTPC64:
10747 case BFD_RELOC_X86_64_GOTPLT64:
10748 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
10749 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10750 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
10751 case BFD_RELOC_RVA:
10752 case BFD_RELOC_VTABLE_ENTRY:
10753 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
10754#ifdef TE_PE
10755 case BFD_RELOC_32_SECREL:
10756#endif
252b5132
RH
10757 code = fixp->fx_r_type;
10758 break;
dbbaec26
L
10759 case BFD_RELOC_X86_64_32S:
10760 if (!fixp->fx_pcrel)
10761 {
10762 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10763 code = fixp->fx_r_type;
10764 break;
10765 }
252b5132 10766 default:
93382f6d 10767 if (fixp->fx_pcrel)
252b5132 10768 {
93382f6d
AM
10769 switch (fixp->fx_size)
10770 {
10771 default:
b091f402
AM
10772 as_bad_where (fixp->fx_file, fixp->fx_line,
10773 _("can not do %d byte pc-relative relocation"),
10774 fixp->fx_size);
93382f6d
AM
10775 code = BFD_RELOC_32_PCREL;
10776 break;
10777 case 1: code = BFD_RELOC_8_PCREL; break;
10778 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 10779 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
10780#ifdef BFD64
10781 case 8: code = BFD_RELOC_64_PCREL; break;
10782#endif
93382f6d
AM
10783 }
10784 }
10785 else
10786 {
10787 switch (fixp->fx_size)
10788 {
10789 default:
b091f402
AM
10790 as_bad_where (fixp->fx_file, fixp->fx_line,
10791 _("can not do %d byte relocation"),
10792 fixp->fx_size);
93382f6d
AM
10793 code = BFD_RELOC_32;
10794 break;
10795 case 1: code = BFD_RELOC_8; break;
10796 case 2: code = BFD_RELOC_16; break;
10797 case 4: code = BFD_RELOC_32; break;
937149dd 10798#ifdef BFD64
3e73aa7c 10799 case 8: code = BFD_RELOC_64; break;
937149dd 10800#endif
93382f6d 10801 }
252b5132
RH
10802 }
10803 break;
10804 }
252b5132 10805
d182319b
JB
10806 if ((code == BFD_RELOC_32
10807 || code == BFD_RELOC_32_PCREL
10808 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
10809 && GOT_symbol
10810 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 10811 {
4fa24527 10812 if (!object_64bit)
d6ab8113
JB
10813 code = BFD_RELOC_386_GOTPC;
10814 else
10815 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 10816 }
7b81dfbb
AJ
10817 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10818 && GOT_symbol
10819 && fixp->fx_addsy == GOT_symbol)
10820 {
10821 code = BFD_RELOC_X86_64_GOTPC64;
10822 }
252b5132 10823
add39d23
TS
10824 rel = XNEW (arelent);
10825 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 10826 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
10827
10828 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 10829
3e73aa7c
JH
10830 if (!use_rela_relocations)
10831 {
10832 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10833 vtable entry to be used in the relocation's section offset. */
10834 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10835 rel->address = fixp->fx_offset;
fbeb56a4
DK
10836#if defined (OBJ_COFF) && defined (TE_PE)
10837 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10838 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10839 else
10840#endif
c6682705 10841 rel->addend = 0;
3e73aa7c
JH
10842 }
10843 /* Use the rela in 64bit mode. */
252b5132 10844 else
3e73aa7c 10845 {
862be3fb
L
10846 if (disallow_64bit_reloc)
10847 switch (code)
10848 {
862be3fb
L
10849 case BFD_RELOC_X86_64_DTPOFF64:
10850 case BFD_RELOC_X86_64_TPOFF64:
10851 case BFD_RELOC_64_PCREL:
10852 case BFD_RELOC_X86_64_GOTOFF64:
10853 case BFD_RELOC_X86_64_GOT64:
10854 case BFD_RELOC_X86_64_GOTPCREL64:
10855 case BFD_RELOC_X86_64_GOTPC64:
10856 case BFD_RELOC_X86_64_GOTPLT64:
10857 case BFD_RELOC_X86_64_PLTOFF64:
10858 as_bad_where (fixp->fx_file, fixp->fx_line,
10859 _("cannot represent relocation type %s in x32 mode"),
10860 bfd_get_reloc_code_name (code));
10861 break;
10862 default:
10863 break;
10864 }
10865
062cd5e7
AS
10866 if (!fixp->fx_pcrel)
10867 rel->addend = fixp->fx_offset;
10868 else
10869 switch (code)
10870 {
10871 case BFD_RELOC_X86_64_PLT32:
10872 case BFD_RELOC_X86_64_GOT32:
10873 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
10874 case BFD_RELOC_X86_64_GOTPCRELX:
10875 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
10876 case BFD_RELOC_X86_64_TLSGD:
10877 case BFD_RELOC_X86_64_TLSLD:
10878 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
10879 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10880 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
10881 rel->addend = fixp->fx_offset - fixp->fx_size;
10882 break;
10883 default:
10884 rel->addend = (section->vma
10885 - fixp->fx_size
10886 + fixp->fx_addnumber
10887 + md_pcrel_from (fixp));
10888 break;
10889 }
3e73aa7c
JH
10890 }
10891
252b5132
RH
10892 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10893 if (rel->howto == NULL)
10894 {
10895 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 10896 _("cannot represent relocation type %s"),
252b5132
RH
10897 bfd_get_reloc_code_name (code));
10898 /* Set howto to a garbage value so that we can keep going. */
10899 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 10900 gas_assert (rel->howto != NULL);
252b5132
RH
10901 }
10902
10903 return rel;
10904}
10905
ee86248c 10906#include "tc-i386-intel.c"
54cfded0 10907
a60de03c
JB
10908void
10909tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 10910{
a60de03c
JB
10911 int saved_naked_reg;
10912 char saved_register_dot;
54cfded0 10913
a60de03c
JB
10914 saved_naked_reg = allow_naked_reg;
10915 allow_naked_reg = 1;
10916 saved_register_dot = register_chars['.'];
10917 register_chars['.'] = '.';
10918 allow_pseudo_reg = 1;
10919 expression_and_evaluate (exp);
10920 allow_pseudo_reg = 0;
10921 register_chars['.'] = saved_register_dot;
10922 allow_naked_reg = saved_naked_reg;
10923
e96d56a1 10924 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 10925 {
a60de03c
JB
10926 if ((addressT) exp->X_add_number < i386_regtab_size)
10927 {
10928 exp->X_op = O_constant;
10929 exp->X_add_number = i386_regtab[exp->X_add_number]
10930 .dw2_regnum[flag_code >> 1];
10931 }
10932 else
10933 exp->X_op = O_illegal;
54cfded0 10934 }
54cfded0
AM
10935}
10936
10937void
10938tc_x86_frame_initial_instructions (void)
10939{
a60de03c
JB
10940 static unsigned int sp_regno[2];
10941
10942 if (!sp_regno[flag_code >> 1])
10943 {
10944 char *saved_input = input_line_pointer;
10945 char sp[][4] = {"esp", "rsp"};
10946 expressionS exp;
a4447b93 10947
a60de03c
JB
10948 input_line_pointer = sp[flag_code >> 1];
10949 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 10950 gas_assert (exp.X_op == O_constant);
a60de03c
JB
10951 sp_regno[flag_code >> 1] = exp.X_add_number;
10952 input_line_pointer = saved_input;
10953 }
a4447b93 10954
61ff971f
L
10955 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10956 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 10957}
d2b2c203 10958
d7921315
L
10959int
10960x86_dwarf2_addr_size (void)
10961{
10962#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10963 if (x86_elf_abi == X86_64_X32_ABI)
10964 return 4;
10965#endif
10966 return bfd_arch_bits_per_address (stdoutput) / 8;
10967}
10968
d2b2c203
DJ
10969int
10970i386_elf_section_type (const char *str, size_t len)
10971{
10972 if (flag_code == CODE_64BIT
10973 && len == sizeof ("unwind") - 1
10974 && strncmp (str, "unwind", 6) == 0)
10975 return SHT_X86_64_UNWIND;
10976
10977 return -1;
10978}
bb41ade5 10979
ad5fec3b
EB
10980#ifdef TE_SOLARIS
10981void
10982i386_solaris_fix_up_eh_frame (segT sec)
10983{
10984 if (flag_code == CODE_64BIT)
10985 elf_section_type (sec) = SHT_X86_64_UNWIND;
10986}
10987#endif
10988
bb41ade5
AM
10989#ifdef TE_PE
10990void
10991tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10992{
91d6fa6a 10993 expressionS exp;
bb41ade5 10994
91d6fa6a
NC
10995 exp.X_op = O_secrel;
10996 exp.X_add_symbol = symbol;
10997 exp.X_add_number = 0;
10998 emit_expr (&exp, size);
bb41ade5
AM
10999}
11000#endif
3b22753a
L
11001
11002#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11003/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11004
01e1a5bc 11005bfd_vma
6d4af3c2 11006x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11007{
11008 if (flag_code == CODE_64BIT)
11009 {
11010 if (letter == 'l')
11011 return SHF_X86_64_LARGE;
11012
8f3bae45 11013 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11014 }
3b22753a 11015 else
8f3bae45 11016 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11017 return -1;
11018}
11019
01e1a5bc 11020bfd_vma
3b22753a
L
11021x86_64_section_word (char *str, size_t len)
11022{
8620418b 11023 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11024 return SHF_X86_64_LARGE;
11025
11026 return -1;
11027}
11028
11029static void
11030handle_large_common (int small ATTRIBUTE_UNUSED)
11031{
11032 if (flag_code != CODE_64BIT)
11033 {
11034 s_comm_internal (0, elf_common_parse);
11035 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11036 }
11037 else
11038 {
11039 static segT lbss_section;
11040 asection *saved_com_section_ptr = elf_com_section_ptr;
11041 asection *saved_bss_section = bss_section;
11042
11043 if (lbss_section == NULL)
11044 {
11045 flagword applicable;
11046 segT seg = now_seg;
11047 subsegT subseg = now_subseg;
11048
11049 /* The .lbss section is for local .largecomm symbols. */
11050 lbss_section = subseg_new (".lbss", 0);
11051 applicable = bfd_applicable_section_flags (stdoutput);
11052 bfd_set_section_flags (stdoutput, lbss_section,
11053 applicable & SEC_ALLOC);
11054 seg_info (lbss_section)->bss = 1;
11055
11056 subseg_set (seg, subseg);
11057 }
11058
11059 elf_com_section_ptr = &_bfd_elf_large_com_section;
11060 bss_section = lbss_section;
11061
11062 s_comm_internal (0, elf_common_parse);
11063
11064 elf_com_section_ptr = saved_com_section_ptr;
11065 bss_section = saved_bss_section;
11066 }
11067}
11068#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.877641 seconds and 4 git commands to generate.