2007-05-14 Mei Ligang <ligang@sunnorth.com.cn>
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4dc85607 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
252b5132 22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
d2b2c203 35#include "elf/x86-64.h"
252b5132 36
252b5132
RH
37#ifndef REGISTER_WARNINGS
38#define REGISTER_WARNINGS 1
39#endif
40
c3332e24 41#ifndef INFER_ADDR_PREFIX
eecb386c 42#define INFER_ADDR_PREFIX 1
c3332e24
AM
43#endif
44
252b5132
RH
45#ifndef SCALE1_WHEN_NO_INDEX
46/* Specifying a scale factor besides 1 when there is no index is
47 futile. eg. `mov (%ebx,2),%al' does exactly the same as
48 `mov (%ebx),%al'. To slavishly follow what the programmer
49 specified, set SCALE1_WHEN_NO_INDEX to 0. */
50#define SCALE1_WHEN_NO_INDEX 1
51#endif
52
29b0f896
AM
53#ifndef DEFAULT_ARCH
54#define DEFAULT_ARCH "i386"
246fcdee 55#endif
252b5132 56
edde18a5
AM
57#ifndef INLINE
58#if __GNUC__ >= 2
59#define INLINE __inline__
60#else
61#define INLINE
62#endif
63#endif
64
e3bb37b5
L
65static void set_code_flag (int);
66static void set_16bit_gcc_code_flag (int);
67static void set_intel_syntax (int);
68static void set_cpu_arch (int);
6482c264 69#ifdef TE_PE
e3bb37b5 70static void pe_directive_secrel (int);
6482c264 71#endif
e3bb37b5
L
72static void signed_cons (int);
73static char *output_invalid (int c);
74static int i386_operand (char *);
75static int i386_intel_operand (char *, int);
76static const reg_entry *parse_register (char *, char **);
77static char *parse_insn (char *, char *);
78static char *parse_operands (char *, const char *);
79static void swap_operands (void);
4d456e3d 80static void swap_2_operands (int, int);
e3bb37b5
L
81static void optimize_imm (void);
82static void optimize_disp (void);
83static int match_template (void);
84static int check_string (void);
85static int process_suffix (void);
86static int check_byte_reg (void);
87static int check_long_reg (void);
88static int check_qword_reg (void);
89static int check_word_reg (void);
90static int finalize_imm (void);
91static int process_operands (void);
92static const seg_entry *build_modrm_byte (void);
93static void output_insn (void);
94static void output_imm (fragS *, offsetT);
95static void output_disp (fragS *, offsetT);
29b0f896 96#ifndef I386COFF
e3bb37b5 97static void s_bss (int);
252b5132 98#endif
17d4e2a2
L
99#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
100static void handle_large_common (int small ATTRIBUTE_UNUSED);
101#endif
252b5132 102
a847613f 103static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 104
252b5132 105/* 'md_assemble ()' gathers together information and puts it into a
47926f60 106 i386_insn. */
252b5132 107
520dc8e8
AM
108union i386_op
109 {
110 expressionS *disps;
111 expressionS *imms;
112 const reg_entry *regs;
113 };
114
252b5132
RH
115struct _i386_insn
116 {
47926f60 117 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
118 template tm;
119
120 /* SUFFIX holds the instruction mnemonic suffix if given.
121 (e.g. 'l' for 'movl') */
122 char suffix;
123
47926f60 124 /* OPERANDS gives the number of given operands. */
252b5132
RH
125 unsigned int operands;
126
127 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
128 of given register, displacement, memory operands and immediate
47926f60 129 operands. */
252b5132
RH
130 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
131
132 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 133 use OP[i] for the corresponding operand. */
252b5132
RH
134 unsigned int types[MAX_OPERANDS];
135
520dc8e8
AM
136 /* Displacement expression, immediate expression, or register for each
137 operand. */
138 union i386_op op[MAX_OPERANDS];
252b5132 139
3e73aa7c
JH
140 /* Flags for operands. */
141 unsigned int flags[MAX_OPERANDS];
142#define Operand_PCrel 1
143
252b5132 144 /* Relocation type for operand */
f86103b7 145 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 146
252b5132
RH
147 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
148 the base index byte below. */
149 const reg_entry *base_reg;
150 const reg_entry *index_reg;
151 unsigned int log2_scale_factor;
152
153 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 154 explicit segment overrides are given. */
ce8a8b2f 155 const seg_entry *seg[2];
252b5132
RH
156
157 /* PREFIX holds all the given prefix opcodes (usually null).
158 PREFIXES is the number of prefix opcodes. */
159 unsigned int prefixes;
160 unsigned char prefix[MAX_PREFIXES];
161
162 /* RM and SIB are the modrm byte and the sib byte where the
163 addressing modes of this insn are encoded. */
164
165 modrm_byte rm;
3e73aa7c 166 rex_byte rex;
252b5132
RH
167 sib_byte sib;
168 };
169
170typedef struct _i386_insn i386_insn;
171
172/* List of chars besides those in app.c:symbol_chars that can start an
173 operand. Used to prevent the scrubber eating vital white-space. */
32137342 174const char extra_symbol_chars[] = "*%-(["
252b5132 175#ifdef LEX_AT
32137342
NC
176 "@"
177#endif
178#ifdef LEX_QM
179 "?"
252b5132 180#endif
32137342 181 ;
252b5132 182
29b0f896
AM
183#if (defined (TE_I386AIX) \
184 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 185 && !defined (TE_GNU) \
29b0f896 186 && !defined (TE_LINUX) \
32137342 187 && !defined (TE_NETWARE) \
29b0f896
AM
188 && !defined (TE_FreeBSD) \
189 && !defined (TE_NetBSD)))
252b5132 190/* This array holds the chars that always start a comment. If the
b3b91714
AM
191 pre-processor is disabled, these aren't very useful. The option
192 --divide will remove '/' from this list. */
193const char *i386_comment_chars = "#/";
194#define SVR4_COMMENT_CHARS 1
252b5132 195#define PREFIX_SEPARATOR '\\'
252b5132 196
b3b91714
AM
197#else
198const char *i386_comment_chars = "#";
199#define PREFIX_SEPARATOR '/'
200#endif
201
252b5132
RH
202/* This array holds the chars that only start a comment at the beginning of
203 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
204 .line and .file directives will appear in the pre-processed output.
205 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 206 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
207 #NO_APP at the beginning of its output.
208 Also note that comments started like this one will always work if
252b5132 209 '/' isn't otherwise defined. */
b3b91714 210const char line_comment_chars[] = "#/";
252b5132 211
63a0b638 212const char line_separator_chars[] = ";";
252b5132 213
ce8a8b2f
AM
214/* Chars that can be used to separate mant from exp in floating point
215 nums. */
252b5132
RH
216const char EXP_CHARS[] = "eE";
217
ce8a8b2f
AM
218/* Chars that mean this number is a floating point constant
219 As in 0f12.456
220 or 0d1.2345e12. */
252b5132
RH
221const char FLT_CHARS[] = "fFdDxX";
222
ce8a8b2f 223/* Tables for lexical analysis. */
252b5132
RH
224static char mnemonic_chars[256];
225static char register_chars[256];
226static char operand_chars[256];
227static char identifier_chars[256];
228static char digit_chars[256];
229
ce8a8b2f 230/* Lexical macros. */
252b5132
RH
231#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
232#define is_operand_char(x) (operand_chars[(unsigned char) x])
233#define is_register_char(x) (register_chars[(unsigned char) x])
234#define is_space_char(x) ((x) == ' ')
235#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
236#define is_digit_char(x) (digit_chars[(unsigned char) x])
237
0234cb7c 238/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
239static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
240
241/* md_assemble() always leaves the strings it's passed unaltered. To
242 effect this we maintain a stack of saved characters that we've smashed
243 with '\0's (indicating end of strings for various sub-fields of the
47926f60 244 assembler instruction). */
252b5132 245static char save_stack[32];
ce8a8b2f 246static char *save_stack_p;
252b5132
RH
247#define END_STRING_AND_SAVE(s) \
248 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
249#define RESTORE_END_STRING(s) \
250 do { *(s) = *--save_stack_p; } while (0)
251
47926f60 252/* The instruction we're assembling. */
252b5132
RH
253static i386_insn i;
254
255/* Possible templates for current insn. */
256static const templates *current_templates;
257
31b2323c
L
258/* Per instruction expressionS buffers: max displacements & immediates. */
259static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
260static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 261
47926f60
KH
262/* Current operand we are working on. */
263static int this_operand;
252b5132 264
3e73aa7c
JH
265/* We support four different modes. FLAG_CODE variable is used to distinguish
266 these. */
267
268enum flag_code {
269 CODE_32BIT,
270 CODE_16BIT,
271 CODE_64BIT };
f3c180ae 272#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
273
274static enum flag_code flag_code;
4fa24527 275static unsigned int object_64bit;
3e73aa7c
JH
276static int use_rela_relocations = 0;
277
278/* The names used to print error messages. */
b77a7acd 279static const char *flag_code_names[] =
3e73aa7c
JH
280 {
281 "32",
282 "16",
283 "64"
284 };
252b5132 285
47926f60
KH
286/* 1 for intel syntax,
287 0 if att syntax. */
288static int intel_syntax = 0;
252b5132 289
47926f60
KH
290/* 1 if register prefix % not required. */
291static int allow_naked_reg = 0;
252b5132 292
2ca3ace5
L
293/* Register prefix used for error message. */
294static const char *register_prefix = "%";
295
47926f60
KH
296/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
297 leave, push, and pop instructions so that gcc has the same stack
298 frame as in 32 bit mode. */
299static char stackop_size = '\0';
eecb386c 300
12b55ccc
L
301/* Non-zero to optimize code alignment. */
302int optimize_align_code = 1;
303
47926f60
KH
304/* Non-zero to quieten some warnings. */
305static int quiet_warnings = 0;
a38cf1db 306
47926f60
KH
307/* CPU name. */
308static const char *cpu_arch_name = NULL;
5c6af06e 309static const char *cpu_sub_arch_name = NULL;
a38cf1db 310
47926f60 311/* CPU feature flags. */
29b0f896 312static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 313
ccc9c027
L
314/* If we have selected a cpu we are generating instructions for. */
315static int cpu_arch_tune_set = 0;
316
9103f4f4
L
317/* Cpu we are generating instructions for. */
318static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
319
320/* CPU feature flags of cpu we are generating instructions for. */
321static unsigned int cpu_arch_tune_flags = 0;
322
ccc9c027
L
323/* CPU instruction set architecture used. */
324static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
325
9103f4f4
L
326/* CPU feature flags of instruction set architecture used. */
327static unsigned int cpu_arch_isa_flags = 0;
328
fddf5b5b
AM
329/* If set, conditional jumps are not automatically promoted to handle
330 larger than a byte offset. */
331static unsigned int no_cond_jump_promotion = 0;
332
29b0f896 333/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 334static symbolS *GOT_symbol;
29b0f896 335
a4447b93
RH
336/* The dwarf2 return column, adjusted for 32 or 64 bit. */
337unsigned int x86_dwarf2_return_column;
338
339/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
340int x86_cie_data_alignment;
341
252b5132 342/* Interface to relax_segment.
fddf5b5b
AM
343 There are 3 major relax states for 386 jump insns because the
344 different types of jumps add different sizes to frags when we're
345 figuring out what sort of jump to choose to reach a given label. */
252b5132 346
47926f60 347/* Types. */
93c2a809
AM
348#define UNCOND_JUMP 0
349#define COND_JUMP 1
350#define COND_JUMP86 2
fddf5b5b 351
47926f60 352/* Sizes. */
252b5132
RH
353#define CODE16 1
354#define SMALL 0
29b0f896 355#define SMALL16 (SMALL | CODE16)
252b5132 356#define BIG 2
29b0f896 357#define BIG16 (BIG | CODE16)
252b5132
RH
358
359#ifndef INLINE
360#ifdef __GNUC__
361#define INLINE __inline__
362#else
363#define INLINE
364#endif
365#endif
366
fddf5b5b
AM
367#define ENCODE_RELAX_STATE(type, size) \
368 ((relax_substateT) (((type) << 2) | (size)))
369#define TYPE_FROM_RELAX_STATE(s) \
370 ((s) >> 2)
371#define DISP_SIZE_FROM_RELAX_STATE(s) \
372 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
373
374/* This table is used by relax_frag to promote short jumps to long
375 ones where necessary. SMALL (short) jumps may be promoted to BIG
376 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
377 don't allow a short jump in a 32 bit code segment to be promoted to
378 a 16 bit offset jump because it's slower (requires data size
379 prefix), and doesn't work, unless the destination is in the bottom
380 64k of the code segment (The top 16 bits of eip are zeroed). */
381
382const relax_typeS md_relax_table[] =
383{
24eab124
AM
384 /* The fields are:
385 1) most positive reach of this state,
386 2) most negative reach of this state,
93c2a809 387 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 388 4) which index into the table to try if we can't fit into this one. */
252b5132 389
fddf5b5b 390 /* UNCOND_JUMP states. */
93c2a809
AM
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
393 /* dword jmp adds 4 bytes to frag:
394 0 extra opcode bytes, 4 displacement bytes. */
252b5132 395 {0, 0, 4, 0},
93c2a809
AM
396 /* word jmp adds 2 byte2 to frag:
397 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
398 {0, 0, 2, 0},
399
93c2a809
AM
400 /* COND_JUMP states. */
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
403 /* dword conditionals adds 5 bytes to frag:
404 1 extra opcode byte, 4 displacement bytes. */
405 {0, 0, 5, 0},
fddf5b5b 406 /* word conditionals add 3 bytes to frag:
93c2a809
AM
407 1 extra opcode byte, 2 displacement bytes. */
408 {0, 0, 3, 0},
409
410 /* COND_JUMP86 states. */
411 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
412 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
413 /* dword conditionals adds 5 bytes to frag:
414 1 extra opcode byte, 4 displacement bytes. */
415 {0, 0, 5, 0},
416 /* word conditionals add 4 bytes to frag:
417 1 displacement byte and a 3 byte long branch insn. */
418 {0, 0, 4, 0}
252b5132
RH
419};
420
9103f4f4
L
421static const arch_entry cpu_arch[] =
422{
423 {"generic32", PROCESSOR_GENERIC32,
d32cad65 424 Cpu186|Cpu286|Cpu386},
9103f4f4 425 {"generic64", PROCESSOR_GENERIC64,
d32cad65 426 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
9103f4f4
L
427 |CpuMMX2|CpuSSE|CpuSSE2},
428 {"i8086", PROCESSOR_UNKNOWN,
d32cad65 429 0},
9103f4f4 430 {"i186", PROCESSOR_UNKNOWN,
d32cad65 431 Cpu186},
9103f4f4 432 {"i286", PROCESSOR_UNKNOWN,
d32cad65 433 Cpu186|Cpu286},
9103f4f4 434 {"i386", PROCESSOR_GENERIC32,
d32cad65 435 Cpu186|Cpu286|Cpu386},
9103f4f4 436 {"i486", PROCESSOR_I486,
d32cad65 437 Cpu186|Cpu286|Cpu386|Cpu486},
9103f4f4 438 {"i586", PROCESSOR_PENTIUM,
d32cad65 439 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
9103f4f4 440 {"i686", PROCESSOR_PENTIUMPRO,
d32cad65 441 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
9103f4f4 442 {"pentium", PROCESSOR_PENTIUM,
d32cad65 443 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
9103f4f4 444 {"pentiumpro",PROCESSOR_PENTIUMPRO,
d32cad65 445 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
9103f4f4 446 {"pentiumii", PROCESSOR_PENTIUMPRO,
d32cad65 447 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
9103f4f4 448 {"pentiumiii",PROCESSOR_PENTIUMPRO,
d32cad65 449 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
9103f4f4 450 {"pentium4", PROCESSOR_PENTIUM4,
d32cad65 451 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
9103f4f4
L
452 |CpuMMX2|CpuSSE|CpuSSE2},
453 {"prescott", PROCESSOR_NOCONA,
d32cad65 454 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
9103f4f4
L
455 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
456 {"nocona", PROCESSOR_NOCONA,
d32cad65 457 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
9103f4f4 458 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
ef05d495 459 {"yonah", PROCESSOR_CORE,
d32cad65 460 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
9103f4f4 461 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
ef05d495 462 {"core", PROCESSOR_CORE,
d32cad65 463 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
ef05d495
L
464 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
465 {"merom", PROCESSOR_CORE2,
466 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
467 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
468 {"core2", PROCESSOR_CORE2,
469 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
470 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
9103f4f4 471 {"k6", PROCESSOR_K6,
d32cad65 472 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
9103f4f4 473 {"k6_2", PROCESSOR_K6,
d32cad65 474 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
9103f4f4 475 {"athlon", PROCESSOR_ATHLON,
d32cad65 476 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
9103f4f4
L
477 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
478 {"sledgehammer", PROCESSOR_K8,
d32cad65 479 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
9103f4f4
L
480 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
481 {"opteron", PROCESSOR_K8,
d32cad65 482 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
9103f4f4
L
483 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
484 {"k8", PROCESSOR_K8,
d32cad65 485 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
9103f4f4 486 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
050dfa73 487 {"amdfam10", PROCESSOR_AMDFAM10,
d32cad65
L
488 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
489 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
490 |CpuABM},
9103f4f4
L
491 {".mmx", PROCESSOR_UNKNOWN,
492 CpuMMX},
493 {".sse", PROCESSOR_UNKNOWN,
494 CpuMMX|CpuMMX2|CpuSSE},
495 {".sse2", PROCESSOR_UNKNOWN,
496 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
497 {".sse3", PROCESSOR_UNKNOWN,
498 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
ef05d495
L
499 {".ssse3", PROCESSOR_UNKNOWN,
500 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
42903f7f
L
501 {".sse4.1", PROCESSOR_UNKNOWN,
502 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4_1},
381d071f
L
503 {".sse4.2", PROCESSOR_UNKNOWN,
504 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
505 {".sse4", PROCESSOR_UNKNOWN,
506 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
9103f4f4
L
507 {".3dnow", PROCESSOR_UNKNOWN,
508 CpuMMX|Cpu3dnow},
509 {".3dnowa", PROCESSOR_UNKNOWN,
510 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
511 {".padlock", PROCESSOR_UNKNOWN,
512 CpuPadLock},
513 {".pacifica", PROCESSOR_UNKNOWN,
514 CpuSVME},
515 {".svme", PROCESSOR_UNKNOWN,
050dfa73
MM
516 CpuSVME},
517 {".sse4a", PROCESSOR_UNKNOWN,
518 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
519 {".abm", PROCESSOR_UNKNOWN,
520 CpuABM}
e413e4e9
AM
521};
522
29b0f896
AM
523const pseudo_typeS md_pseudo_table[] =
524{
525#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
526 {"align", s_align_bytes, 0},
527#else
528 {"align", s_align_ptwo, 0},
529#endif
530 {"arch", set_cpu_arch, 0},
531#ifndef I386COFF
532 {"bss", s_bss, 0},
533#endif
534 {"ffloat", float_cons, 'f'},
535 {"dfloat", float_cons, 'd'},
536 {"tfloat", float_cons, 'x'},
537 {"value", cons, 2},
d182319b 538 {"slong", signed_cons, 4},
29b0f896
AM
539 {"noopt", s_ignore, 0},
540 {"optim", s_ignore, 0},
541 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
542 {"code16", set_code_flag, CODE_16BIT},
543 {"code32", set_code_flag, CODE_32BIT},
544 {"code64", set_code_flag, CODE_64BIT},
545 {"intel_syntax", set_intel_syntax, 1},
546 {"att_syntax", set_intel_syntax, 0},
3b22753a
L
547#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 {"largecomm", handle_large_common, 0},
07a53e5c 549#else
e3bb37b5 550 {"file", (void (*) (int)) dwarf2_directive_file, 0},
07a53e5c
RH
551 {"loc", dwarf2_directive_loc, 0},
552 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 553#endif
6482c264
NC
554#ifdef TE_PE
555 {"secrel32", pe_directive_secrel, 0},
556#endif
29b0f896
AM
557 {0, 0, 0}
558};
559
560/* For interface with expression (). */
561extern char *input_line_pointer;
562
563/* Hash table for instruction mnemonic lookup. */
564static struct hash_control *op_hash;
565
566/* Hash table for register lookup. */
567static struct hash_control *reg_hash;
568\f
252b5132 569void
e3bb37b5 570i386_align_code (fragS *fragP, int count)
252b5132 571{
ce8a8b2f
AM
572 /* Various efficient no-op patterns for aligning code labels.
573 Note: Don't try to assemble the instructions in the comments.
574 0L and 0w are not legal. */
252b5132
RH
575 static const char f32_1[] =
576 {0x90}; /* nop */
577 static const char f32_2[] =
ccc9c027 578 {0x66,0x90}; /* xchg %ax,%ax */
252b5132
RH
579 static const char f32_3[] =
580 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
581 static const char f32_4[] =
582 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
583 static const char f32_5[] =
584 {0x90, /* nop */
585 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
586 static const char f32_6[] =
587 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
588 static const char f32_7[] =
589 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
590 static const char f32_8[] =
591 {0x90, /* nop */
592 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
593 static const char f32_9[] =
594 {0x89,0xf6, /* movl %esi,%esi */
595 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
596 static const char f32_10[] =
597 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
598 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
599 static const char f32_11[] =
600 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
601 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
602 static const char f32_12[] =
603 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
604 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
605 static const char f32_13[] =
606 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
607 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
608 static const char f32_14[] =
609 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
610 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
611 static const char f32_15[] =
612 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
613 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
614 static const char f16_3[] =
615 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
616 static const char f16_4[] =
617 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
618 static const char f16_5[] =
619 {0x90, /* nop */
620 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
621 static const char f16_6[] =
622 {0x89,0xf6, /* mov %si,%si */
623 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
624 static const char f16_7[] =
625 {0x8d,0x74,0x00, /* lea 0(%si),%si */
626 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
627 static const char f16_8[] =
628 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
629 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
630 static const char *const f32_patt[] = {
631 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
632 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
633 };
634 static const char *const f16_patt[] = {
c3332e24 635 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
636 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
637 };
ccc9c027
L
638 /* nopl (%[re]ax) */
639 static const char alt_3[] =
640 {0x0f,0x1f,0x00};
641 /* nopl 0(%[re]ax) */
642 static const char alt_4[] =
643 {0x0f,0x1f,0x40,0x00};
644 /* nopl 0(%[re]ax,%[re]ax,1) */
645 static const char alt_5[] =
646 {0x0f,0x1f,0x44,0x00,0x00};
647 /* nopw 0(%[re]ax,%[re]ax,1) */
648 static const char alt_6[] =
649 {0x66,0x0f,0x1f,0x44,0x00,0x00};
650 /* nopl 0L(%[re]ax) */
651 static const char alt_7[] =
652 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
653 /* nopl 0L(%[re]ax,%[re]ax,1) */
654 static const char alt_8[] =
655 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
656 /* nopw 0L(%[re]ax,%[re]ax,1) */
657 static const char alt_9[] =
658 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
659 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
660 static const char alt_10[] =
661 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
662 /* data16
663 nopw %cs:0L(%[re]ax,%[re]ax,1) */
664 static const char alt_long_11[] =
665 {0x66,
666 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
667 /* data16
668 data16
669 nopw %cs:0L(%[re]ax,%[re]ax,1) */
670 static const char alt_long_12[] =
671 {0x66,
672 0x66,
673 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
674 /* data16
675 data16
676 data16
677 nopw %cs:0L(%[re]ax,%[re]ax,1) */
678 static const char alt_long_13[] =
679 {0x66,
680 0x66,
681 0x66,
682 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
683 /* data16
684 data16
685 data16
686 data16
687 nopw %cs:0L(%[re]ax,%[re]ax,1) */
688 static const char alt_long_14[] =
689 {0x66,
690 0x66,
691 0x66,
692 0x66,
693 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
694 /* data16
695 data16
696 data16
697 data16
698 data16
699 nopw %cs:0L(%[re]ax,%[re]ax,1) */
700 static const char alt_long_15[] =
701 {0x66,
702 0x66,
703 0x66,
704 0x66,
705 0x66,
706 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
707 /* nopl 0(%[re]ax,%[re]ax,1)
708 nopw 0(%[re]ax,%[re]ax,1) */
709 static const char alt_short_11[] =
710 {0x0f,0x1f,0x44,0x00,0x00,
711 0x66,0x0f,0x1f,0x44,0x00,0x00};
712 /* nopw 0(%[re]ax,%[re]ax,1)
713 nopw 0(%[re]ax,%[re]ax,1) */
714 static const char alt_short_12[] =
715 {0x66,0x0f,0x1f,0x44,0x00,0x00,
716 0x66,0x0f,0x1f,0x44,0x00,0x00};
717 /* nopw 0(%[re]ax,%[re]ax,1)
718 nopl 0L(%[re]ax) */
719 static const char alt_short_13[] =
720 {0x66,0x0f,0x1f,0x44,0x00,0x00,
721 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
722 /* nopl 0L(%[re]ax)
723 nopl 0L(%[re]ax) */
724 static const char alt_short_14[] =
725 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
726 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
727 /* nopl 0L(%[re]ax)
728 nopl 0L(%[re]ax,%[re]ax,1) */
729 static const char alt_short_15[] =
730 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
731 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
732 static const char *const alt_short_patt[] = {
733 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
734 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
735 alt_short_14, alt_short_15
736 };
737 static const char *const alt_long_patt[] = {
738 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
739 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
740 alt_long_14, alt_long_15
741 };
252b5132 742
33fef721
JH
743 if (count <= 0 || count > 15)
744 return;
3e73aa7c 745
ccc9c027
L
746 /* We need to decide which NOP sequence to use for 32bit and
747 64bit. When -mtune= is used:
4eed87de 748
ccc9c027
L
749 1. For PROCESSOR_I486, PROCESSOR_PENTIUM and PROCESSOR_GENERIC32,
750 f32_patt will be used.
4eed87de
AM
751 2. For PROCESSOR_K8 and PROCESSOR_AMDFAM10 in 64bit, NOPs with
752 0x66 prefix will be used.
ef05d495 753 3. For PROCESSOR_CORE2, alt_long_patt will be used.
ccc9c027 754 4. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
ef05d495 755 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_K6, PROCESSOR_ATHLON
ccc9c027
L
756 and PROCESSOR_GENERIC64, alt_short_patt will be used.
757
758 When -mtune= isn't used, alt_short_patt will be used if
759 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will be used.
760
761 When -march= or .arch is used, we can't use anything beyond
762 cpu_arch_isa_flags. */
763
764 if (flag_code == CODE_16BIT)
765 {
766 memcpy (fragP->fr_literal + fragP->fr_fix,
767 f16_patt[count - 1], count);
768 if (count > 8)
769 /* Adjust jump offset. */
770 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
771 }
772 else if (flag_code == CODE_64BIT && cpu_arch_tune == PROCESSOR_K8)
252b5132 773 {
33fef721
JH
774 int i;
775 int nnops = (count + 3) / 4;
776 int len = count / nnops;
777 int remains = count - nnops * len;
778 int pos = 0;
779
ccc9c027 780 /* The recommended way to pad 64bit code is to use NOPs preceded
4eed87de 781 by maximally four 0x66 prefixes. Balance the size of nops. */
33fef721 782 for (i = 0; i < remains; i++)
252b5132 783 {
33fef721
JH
784 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
785 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
786 pos += len + 1;
787 }
788 for (; i < nnops; i++)
789 {
790 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
791 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
792 pos += len;
252b5132 793 }
252b5132 794 }
33fef721 795 else
ccc9c027
L
796 {
797 const char *const *patt = NULL;
798
799 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
800 {
801 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
802 switch (cpu_arch_tune)
803 {
804 case PROCESSOR_UNKNOWN:
805 /* We use cpu_arch_isa_flags to check if we SHOULD
806 optimize for Cpu686. */
807 if ((cpu_arch_isa_flags & Cpu686) != 0)
808 patt = alt_short_patt;
809 else
810 patt = f32_patt;
811 break;
ef05d495 812 case PROCESSOR_CORE2:
ccc9c027
L
813 patt = alt_long_patt;
814 break;
815 case PROCESSOR_PENTIUMPRO:
816 case PROCESSOR_PENTIUM4:
817 case PROCESSOR_NOCONA:
ef05d495 818 case PROCESSOR_CORE:
ccc9c027
L
819 case PROCESSOR_K6:
820 case PROCESSOR_ATHLON:
821 case PROCESSOR_K8:
822 case PROCESSOR_GENERIC64:
4eed87de 823 case PROCESSOR_AMDFAM10:
ccc9c027
L
824 patt = alt_short_patt;
825 break;
826 case PROCESSOR_I486:
827 case PROCESSOR_PENTIUM:
828 case PROCESSOR_GENERIC32:
829 patt = f32_patt;
830 break;
4eed87de 831 }
ccc9c027
L
832 }
833 else
834 {
835 switch (cpu_arch_tune)
836 {
837 case PROCESSOR_UNKNOWN:
838 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
839 PROCESSOR_UNKNOWN. */
840 abort ();
841 break;
842
843 case PROCESSOR_I486:
844 case PROCESSOR_PENTIUM:
845 case PROCESSOR_PENTIUMPRO:
846 case PROCESSOR_PENTIUM4:
847 case PROCESSOR_NOCONA:
ef05d495 848 case PROCESSOR_CORE:
ccc9c027
L
849 case PROCESSOR_K6:
850 case PROCESSOR_ATHLON:
851 case PROCESSOR_K8:
4eed87de 852 case PROCESSOR_AMDFAM10:
ccc9c027
L
853 case PROCESSOR_GENERIC32:
854 /* We use cpu_arch_isa_flags to check if we CAN optimize
855 for Cpu686. */
856 if ((cpu_arch_isa_flags & Cpu686) != 0)
857 patt = alt_short_patt;
858 else
859 patt = f32_patt;
860 break;
ef05d495 861 case PROCESSOR_CORE2:
ccc9c027
L
862 if ((cpu_arch_isa_flags & Cpu686) != 0)
863 patt = alt_long_patt;
864 else
865 patt = f32_patt;
866 break;
867 case PROCESSOR_GENERIC64:
868 patt = alt_short_patt;
869 break;
4eed87de 870 }
ccc9c027
L
871 }
872
33fef721 873 memcpy (fragP->fr_literal + fragP->fr_fix,
ccc9c027
L
874 patt[count - 1], count);
875 }
33fef721 876 fragP->fr_var = count;
252b5132
RH
877}
878
252b5132 879static INLINE unsigned int
e3bb37b5 880mode_from_disp_size (unsigned int t)
252b5132 881{
3e73aa7c 882 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
883}
884
885static INLINE int
e3bb37b5 886fits_in_signed_byte (offsetT num)
252b5132
RH
887{
888 return (num >= -128) && (num <= 127);
47926f60 889}
252b5132
RH
890
891static INLINE int
e3bb37b5 892fits_in_unsigned_byte (offsetT num)
252b5132
RH
893{
894 return (num & 0xff) == num;
47926f60 895}
252b5132
RH
896
897static INLINE int
e3bb37b5 898fits_in_unsigned_word (offsetT num)
252b5132
RH
899{
900 return (num & 0xffff) == num;
47926f60 901}
252b5132
RH
902
903static INLINE int
e3bb37b5 904fits_in_signed_word (offsetT num)
252b5132
RH
905{
906 return (-32768 <= num) && (num <= 32767);
47926f60 907}
2a962e6d 908
3e73aa7c 909static INLINE int
e3bb37b5 910fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
911{
912#ifndef BFD64
913 return 1;
914#else
915 return (!(((offsetT) -1 << 31) & num)
916 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
917#endif
918} /* fits_in_signed_long() */
2a962e6d 919
3e73aa7c 920static INLINE int
e3bb37b5 921fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
922{
923#ifndef BFD64
924 return 1;
925#else
926 return (num & (((offsetT) 2 << 31) - 1)) == num;
927#endif
928} /* fits_in_unsigned_long() */
252b5132 929
1509aa9a 930static unsigned int
e3bb37b5 931smallest_imm_type (offsetT num)
252b5132 932{
d32cad65 933 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
934 {
935 /* This code is disabled on the 486 because all the Imm1 forms
936 in the opcode table are slower on the i486. They're the
937 versions with the implicitly specified single-position
938 displacement, which has another syntax if you really want to
939 use that form. */
940 if (num == 1)
3e73aa7c 941 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 942 }
252b5132 943 return (fits_in_signed_byte (num)
3e73aa7c 944 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 945 : fits_in_unsigned_byte (num)
3e73aa7c 946 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 947 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
948 ? (Imm16 | Imm32 | Imm32S | Imm64)
949 : fits_in_signed_long (num)
950 ? (Imm32 | Imm32S | Imm64)
951 : fits_in_unsigned_long (num)
952 ? (Imm32 | Imm64)
953 : Imm64);
47926f60 954}
252b5132 955
847f7ad4 956static offsetT
e3bb37b5 957offset_in_range (offsetT val, int size)
847f7ad4 958{
508866be 959 addressT mask;
ba2adb93 960
847f7ad4
AM
961 switch (size)
962 {
508866be
L
963 case 1: mask = ((addressT) 1 << 8) - 1; break;
964 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 965 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
966#ifdef BFD64
967 case 8: mask = ((addressT) 2 << 63) - 1; break;
968#endif
47926f60 969 default: abort ();
847f7ad4
AM
970 }
971
ba2adb93 972 /* If BFD64, sign extend val. */
3e73aa7c
JH
973 if (!use_rela_relocations)
974 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
975 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 976
47926f60 977 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
978 {
979 char buf1[40], buf2[40];
980
981 sprint_value (buf1, val);
982 sprint_value (buf2, val & mask);
983 as_warn (_("%s shortened to %s"), buf1, buf2);
984 }
985 return val & mask;
986}
987
252b5132
RH
988/* Returns 0 if attempting to add a prefix where one from the same
989 class already exists, 1 if non rep/repne added, 2 if rep/repne
990 added. */
991static int
e3bb37b5 992add_prefix (unsigned int prefix)
252b5132
RH
993{
994 int ret = 1;
b1905489 995 unsigned int q;
252b5132 996
29b0f896
AM
997 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
998 && flag_code == CODE_64BIT)
b1905489 999 {
161a04f6
L
1000 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1001 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1002 && (prefix & (REX_R | REX_X | REX_B))))
b1905489
JB
1003 ret = 0;
1004 q = REX_PREFIX;
1005 }
3e73aa7c 1006 else
b1905489
JB
1007 {
1008 switch (prefix)
1009 {
1010 default:
1011 abort ();
1012
1013 case CS_PREFIX_OPCODE:
1014 case DS_PREFIX_OPCODE:
1015 case ES_PREFIX_OPCODE:
1016 case FS_PREFIX_OPCODE:
1017 case GS_PREFIX_OPCODE:
1018 case SS_PREFIX_OPCODE:
1019 q = SEG_PREFIX;
1020 break;
1021
1022 case REPNE_PREFIX_OPCODE:
1023 case REPE_PREFIX_OPCODE:
1024 ret = 2;
1025 /* fall thru */
1026 case LOCK_PREFIX_OPCODE:
1027 q = LOCKREP_PREFIX;
1028 break;
1029
1030 case FWAIT_OPCODE:
1031 q = WAIT_PREFIX;
1032 break;
1033
1034 case ADDR_PREFIX_OPCODE:
1035 q = ADDR_PREFIX;
1036 break;
1037
1038 case DATA_PREFIX_OPCODE:
1039 q = DATA_PREFIX;
1040 break;
1041 }
1042 if (i.prefix[q] != 0)
1043 ret = 0;
1044 }
252b5132 1045
b1905489 1046 if (ret)
252b5132 1047 {
b1905489
JB
1048 if (!i.prefix[q])
1049 ++i.prefixes;
1050 i.prefix[q] |= prefix;
252b5132 1051 }
b1905489
JB
1052 else
1053 as_bad (_("same type of prefix used twice"));
252b5132 1054
252b5132
RH
1055 return ret;
1056}
1057
1058static void
e3bb37b5 1059set_code_flag (int value)
eecb386c 1060{
3e73aa7c
JH
1061 flag_code = value;
1062 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1063 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1064 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1065 {
1066 as_bad (_("64bit mode not supported on this CPU."));
1067 }
1068 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1069 {
1070 as_bad (_("32bit mode not supported on this CPU."));
1071 }
eecb386c
AM
1072 stackop_size = '\0';
1073}
1074
1075static void
e3bb37b5 1076set_16bit_gcc_code_flag (int new_code_flag)
252b5132 1077{
3e73aa7c
JH
1078 flag_code = new_code_flag;
1079 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1080 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
9306ca4a 1081 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
1082}
1083
1084static void
e3bb37b5 1085set_intel_syntax (int syntax_flag)
252b5132
RH
1086{
1087 /* Find out if register prefixing is specified. */
1088 int ask_naked_reg = 0;
1089
1090 SKIP_WHITESPACE ();
29b0f896 1091 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
1092 {
1093 char *string = input_line_pointer;
1094 int e = get_symbol_end ();
1095
47926f60 1096 if (strcmp (string, "prefix") == 0)
252b5132 1097 ask_naked_reg = 1;
47926f60 1098 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
1099 ask_naked_reg = -1;
1100 else
d0b47220 1101 as_bad (_("bad argument to syntax directive."));
252b5132
RH
1102 *input_line_pointer = e;
1103 }
1104 demand_empty_rest_of_line ();
c3332e24 1105
252b5132
RH
1106 intel_syntax = syntax_flag;
1107
1108 if (ask_naked_reg == 0)
f86103b7
AM
1109 allow_naked_reg = (intel_syntax
1110 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
1111 else
1112 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 1113
e4a3b5a4 1114 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 1115 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 1116 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
1117}
1118
e413e4e9 1119static void
e3bb37b5 1120set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 1121{
47926f60 1122 SKIP_WHITESPACE ();
e413e4e9 1123
29b0f896 1124 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
1125 {
1126 char *string = input_line_pointer;
1127 int e = get_symbol_end ();
9103f4f4 1128 unsigned int i;
e413e4e9 1129
9103f4f4 1130 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
e413e4e9
AM
1131 {
1132 if (strcmp (string, cpu_arch[i].name) == 0)
1133 {
5c6af06e
JB
1134 if (*string != '.')
1135 {
1136 cpu_arch_name = cpu_arch[i].name;
1137 cpu_sub_arch_name = NULL;
1138 cpu_arch_flags = (cpu_arch[i].flags
4eed87de
AM
1139 | (flag_code == CODE_64BIT
1140 ? Cpu64 : CpuNo64));
ccc9c027 1141 cpu_arch_isa = cpu_arch[i].type;
9103f4f4 1142 cpu_arch_isa_flags = cpu_arch[i].flags;
ccc9c027
L
1143 if (!cpu_arch_tune_set)
1144 {
1145 cpu_arch_tune = cpu_arch_isa;
1146 cpu_arch_tune_flags = cpu_arch_isa_flags;
1147 }
5c6af06e
JB
1148 break;
1149 }
1150 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1151 {
1152 cpu_sub_arch_name = cpu_arch[i].name;
1153 cpu_arch_flags |= cpu_arch[i].flags;
1154 }
1155 *input_line_pointer = e;
1156 demand_empty_rest_of_line ();
1157 return;
e413e4e9
AM
1158 }
1159 }
9103f4f4 1160 if (i >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
1161 as_bad (_("no such architecture: `%s'"), string);
1162
1163 *input_line_pointer = e;
1164 }
1165 else
1166 as_bad (_("missing cpu architecture"));
1167
fddf5b5b
AM
1168 no_cond_jump_promotion = 0;
1169 if (*input_line_pointer == ','
29b0f896 1170 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
1171 {
1172 char *string = ++input_line_pointer;
1173 int e = get_symbol_end ();
1174
1175 if (strcmp (string, "nojumps") == 0)
1176 no_cond_jump_promotion = 1;
1177 else if (strcmp (string, "jumps") == 0)
1178 ;
1179 else
1180 as_bad (_("no such architecture modifier: `%s'"), string);
1181
1182 *input_line_pointer = e;
1183 }
1184
e413e4e9
AM
1185 demand_empty_rest_of_line ();
1186}
1187
b9d79e03
JH
1188unsigned long
1189i386_mach ()
1190{
1191 if (!strcmp (default_arch, "x86_64"))
1192 return bfd_mach_x86_64;
1193 else if (!strcmp (default_arch, "i386"))
1194 return bfd_mach_i386_i386;
1195 else
1196 as_fatal (_("Unknown architecture"));
1197}
b9d79e03 1198\f
252b5132
RH
1199void
1200md_begin ()
1201{
1202 const char *hash_err;
1203
47926f60 1204 /* Initialize op_hash hash table. */
252b5132
RH
1205 op_hash = hash_new ();
1206
1207 {
29b0f896
AM
1208 const template *optab;
1209 templates *core_optab;
252b5132 1210
47926f60
KH
1211 /* Setup for loop. */
1212 optab = i386_optab;
252b5132
RH
1213 core_optab = (templates *) xmalloc (sizeof (templates));
1214 core_optab->start = optab;
1215
1216 while (1)
1217 {
1218 ++optab;
1219 if (optab->name == NULL
1220 || strcmp (optab->name, (optab - 1)->name) != 0)
1221 {
1222 /* different name --> ship out current template list;
47926f60 1223 add to hash table; & begin anew. */
252b5132
RH
1224 core_optab->end = optab;
1225 hash_err = hash_insert (op_hash,
1226 (optab - 1)->name,
1227 (PTR) core_optab);
1228 if (hash_err)
1229 {
252b5132
RH
1230 as_fatal (_("Internal Error: Can't hash %s: %s"),
1231 (optab - 1)->name,
1232 hash_err);
1233 }
1234 if (optab->name == NULL)
1235 break;
1236 core_optab = (templates *) xmalloc (sizeof (templates));
1237 core_optab->start = optab;
1238 }
1239 }
1240 }
1241
47926f60 1242 /* Initialize reg_hash hash table. */
252b5132
RH
1243 reg_hash = hash_new ();
1244 {
29b0f896 1245 const reg_entry *regtab;
c3fe08fa 1246 unsigned int regtab_size = i386_regtab_size;
252b5132 1247
c3fe08fa 1248 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132
RH
1249 {
1250 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1251 if (hash_err)
3e73aa7c
JH
1252 as_fatal (_("Internal Error: Can't hash %s: %s"),
1253 regtab->reg_name,
1254 hash_err);
252b5132
RH
1255 }
1256 }
1257
47926f60 1258 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 1259 {
29b0f896
AM
1260 int c;
1261 char *p;
252b5132
RH
1262
1263 for (c = 0; c < 256; c++)
1264 {
3882b010 1265 if (ISDIGIT (c))
252b5132
RH
1266 {
1267 digit_chars[c] = c;
1268 mnemonic_chars[c] = c;
1269 register_chars[c] = c;
1270 operand_chars[c] = c;
1271 }
3882b010 1272 else if (ISLOWER (c))
252b5132
RH
1273 {
1274 mnemonic_chars[c] = c;
1275 register_chars[c] = c;
1276 operand_chars[c] = c;
1277 }
3882b010 1278 else if (ISUPPER (c))
252b5132 1279 {
3882b010 1280 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
1281 register_chars[c] = mnemonic_chars[c];
1282 operand_chars[c] = c;
1283 }
1284
3882b010 1285 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
1286 identifier_chars[c] = c;
1287 else if (c >= 128)
1288 {
1289 identifier_chars[c] = c;
1290 operand_chars[c] = c;
1291 }
1292 }
1293
1294#ifdef LEX_AT
1295 identifier_chars['@'] = '@';
32137342
NC
1296#endif
1297#ifdef LEX_QM
1298 identifier_chars['?'] = '?';
1299 operand_chars['?'] = '?';
252b5132 1300#endif
252b5132 1301 digit_chars['-'] = '-';
791fe849 1302 mnemonic_chars['-'] = '-';
0003779b 1303 mnemonic_chars['.'] = '.';
252b5132
RH
1304 identifier_chars['_'] = '_';
1305 identifier_chars['.'] = '.';
1306
1307 for (p = operand_special_chars; *p != '\0'; p++)
1308 operand_chars[(unsigned char) *p] = *p;
1309 }
1310
1311#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 1312 if (IS_ELF)
252b5132
RH
1313 {
1314 record_alignment (text_section, 2);
1315 record_alignment (data_section, 2);
1316 record_alignment (bss_section, 2);
1317 }
1318#endif
a4447b93
RH
1319
1320 if (flag_code == CODE_64BIT)
1321 {
1322 x86_dwarf2_return_column = 16;
1323 x86_cie_data_alignment = -8;
1324 }
1325 else
1326 {
1327 x86_dwarf2_return_column = 8;
1328 x86_cie_data_alignment = -4;
1329 }
252b5132
RH
1330}
1331
1332void
e3bb37b5 1333i386_print_statistics (FILE *file)
252b5132
RH
1334{
1335 hash_print_statistics (file, "i386 opcode", op_hash);
1336 hash_print_statistics (file, "i386 register", reg_hash);
1337}
1338\f
252b5132
RH
1339#ifdef DEBUG386
1340
ce8a8b2f 1341/* Debugging routines for md_assemble. */
e3bb37b5
L
1342static void pte (template *);
1343static void pt (unsigned int);
1344static void pe (expressionS *);
1345static void ps (symbolS *);
252b5132
RH
1346
1347static void
e3bb37b5 1348pi (char *line, i386_insn *x)
252b5132 1349{
09f131f2 1350 unsigned int i;
252b5132
RH
1351
1352 fprintf (stdout, "%s: template ", line);
1353 pte (&x->tm);
09f131f2
JH
1354 fprintf (stdout, " address: base %s index %s scale %x\n",
1355 x->base_reg ? x->base_reg->reg_name : "none",
1356 x->index_reg ? x->index_reg->reg_name : "none",
1357 x->log2_scale_factor);
1358 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1359 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1360 fprintf (stdout, " sib: base %x index %x scale %x\n",
1361 x->sib.base, x->sib.index, x->sib.scale);
1362 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
1363 (x->rex & REX_W) != 0,
1364 (x->rex & REX_R) != 0,
1365 (x->rex & REX_X) != 0,
1366 (x->rex & REX_B) != 0);
252b5132
RH
1367 for (i = 0; i < x->operands; i++)
1368 {
1369 fprintf (stdout, " #%d: ", i + 1);
1370 pt (x->types[i]);
1371 fprintf (stdout, "\n");
1372 if (x->types[i]
3f4438ab 1373 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1374 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1375 if (x->types[i] & Imm)
520dc8e8 1376 pe (x->op[i].imms);
252b5132 1377 if (x->types[i] & Disp)
520dc8e8 1378 pe (x->op[i].disps);
252b5132
RH
1379 }
1380}
1381
1382static void
e3bb37b5 1383pte (template *t)
252b5132 1384{
09f131f2 1385 unsigned int i;
252b5132 1386 fprintf (stdout, " %d operands ", t->operands);
47926f60 1387 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1388 if (t->extension_opcode != None)
1389 fprintf (stdout, "ext %x ", t->extension_opcode);
1390 if (t->opcode_modifier & D)
1391 fprintf (stdout, "D");
1392 if (t->opcode_modifier & W)
1393 fprintf (stdout, "W");
1394 fprintf (stdout, "\n");
1395 for (i = 0; i < t->operands; i++)
1396 {
1397 fprintf (stdout, " #%d type ", i + 1);
1398 pt (t->operand_types[i]);
1399 fprintf (stdout, "\n");
1400 }
1401}
1402
1403static void
e3bb37b5 1404pe (expressionS *e)
252b5132 1405{
24eab124 1406 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1407 fprintf (stdout, " add_number %ld (%lx)\n",
1408 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1409 if (e->X_add_symbol)
1410 {
1411 fprintf (stdout, " add_symbol ");
1412 ps (e->X_add_symbol);
1413 fprintf (stdout, "\n");
1414 }
1415 if (e->X_op_symbol)
1416 {
1417 fprintf (stdout, " op_symbol ");
1418 ps (e->X_op_symbol);
1419 fprintf (stdout, "\n");
1420 }
1421}
1422
1423static void
e3bb37b5 1424ps (symbolS *s)
252b5132
RH
1425{
1426 fprintf (stdout, "%s type %s%s",
1427 S_GET_NAME (s),
1428 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1429 segment_name (S_GET_SEGMENT (s)));
1430}
1431
7b81dfbb 1432static struct type_name
252b5132
RH
1433 {
1434 unsigned int mask;
1435 char *tname;
1436 }
7b81dfbb 1437const type_names[] =
252b5132
RH
1438{
1439 { Reg8, "r8" },
1440 { Reg16, "r16" },
1441 { Reg32, "r32" },
09f131f2 1442 { Reg64, "r64" },
252b5132
RH
1443 { Imm8, "i8" },
1444 { Imm8S, "i8s" },
1445 { Imm16, "i16" },
1446 { Imm32, "i32" },
09f131f2
JH
1447 { Imm32S, "i32s" },
1448 { Imm64, "i64" },
252b5132
RH
1449 { Imm1, "i1" },
1450 { BaseIndex, "BaseIndex" },
1451 { Disp8, "d8" },
1452 { Disp16, "d16" },
1453 { Disp32, "d32" },
09f131f2
JH
1454 { Disp32S, "d32s" },
1455 { Disp64, "d64" },
252b5132
RH
1456 { InOutPortReg, "InOutPortReg" },
1457 { ShiftCount, "ShiftCount" },
1458 { Control, "control reg" },
1459 { Test, "test reg" },
1460 { Debug, "debug reg" },
1461 { FloatReg, "FReg" },
1462 { FloatAcc, "FAcc" },
1463 { SReg2, "SReg2" },
1464 { SReg3, "SReg3" },
1465 { Acc, "Acc" },
1466 { JumpAbsolute, "Jump Absolute" },
1467 { RegMMX, "rMMX" },
3f4438ab 1468 { RegXMM, "rXMM" },
252b5132
RH
1469 { EsSeg, "es" },
1470 { 0, "" }
1471};
1472
1473static void
1474pt (t)
1475 unsigned int t;
1476{
29b0f896 1477 const struct type_name *ty;
252b5132 1478
09f131f2
JH
1479 for (ty = type_names; ty->mask; ty++)
1480 if (t & ty->mask)
1481 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1482 fflush (stdout);
1483}
1484
1485#endif /* DEBUG386 */
1486\f
252b5132 1487static bfd_reloc_code_real_type
3956db08 1488reloc (unsigned int size,
64e74474
AM
1489 int pcrel,
1490 int sign,
1491 bfd_reloc_code_real_type other)
252b5132 1492{
47926f60 1493 if (other != NO_RELOC)
3956db08
JB
1494 {
1495 reloc_howto_type *reloc;
1496
1497 if (size == 8)
1498 switch (other)
1499 {
64e74474
AM
1500 case BFD_RELOC_X86_64_GOT32:
1501 return BFD_RELOC_X86_64_GOT64;
1502 break;
1503 case BFD_RELOC_X86_64_PLTOFF64:
1504 return BFD_RELOC_X86_64_PLTOFF64;
1505 break;
1506 case BFD_RELOC_X86_64_GOTPC32:
1507 other = BFD_RELOC_X86_64_GOTPC64;
1508 break;
1509 case BFD_RELOC_X86_64_GOTPCREL:
1510 other = BFD_RELOC_X86_64_GOTPCREL64;
1511 break;
1512 case BFD_RELOC_X86_64_TPOFF32:
1513 other = BFD_RELOC_X86_64_TPOFF64;
1514 break;
1515 case BFD_RELOC_X86_64_DTPOFF32:
1516 other = BFD_RELOC_X86_64_DTPOFF64;
1517 break;
1518 default:
1519 break;
3956db08 1520 }
e05278af
JB
1521
1522 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1523 if (size == 4 && flag_code != CODE_64BIT)
1524 sign = -1;
1525
3956db08
JB
1526 reloc = bfd_reloc_type_lookup (stdoutput, other);
1527 if (!reloc)
1528 as_bad (_("unknown relocation (%u)"), other);
1529 else if (size != bfd_get_reloc_size (reloc))
1530 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1531 bfd_get_reloc_size (reloc),
1532 size);
1533 else if (pcrel && !reloc->pc_relative)
1534 as_bad (_("non-pc-relative relocation for pc-relative field"));
1535 else if ((reloc->complain_on_overflow == complain_overflow_signed
1536 && !sign)
1537 || (reloc->complain_on_overflow == complain_overflow_unsigned
64e74474 1538 && sign > 0))
3956db08
JB
1539 as_bad (_("relocated field and relocation type differ in signedness"));
1540 else
1541 return other;
1542 return NO_RELOC;
1543 }
252b5132
RH
1544
1545 if (pcrel)
1546 {
3e73aa7c 1547 if (!sign)
3956db08 1548 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
1549 switch (size)
1550 {
1551 case 1: return BFD_RELOC_8_PCREL;
1552 case 2: return BFD_RELOC_16_PCREL;
1553 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 1554 case 8: return BFD_RELOC_64_PCREL;
252b5132 1555 }
3956db08 1556 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
1557 }
1558 else
1559 {
3956db08 1560 if (sign > 0)
e5cb08ac 1561 switch (size)
3e73aa7c
JH
1562 {
1563 case 4: return BFD_RELOC_X86_64_32S;
1564 }
1565 else
1566 switch (size)
1567 {
1568 case 1: return BFD_RELOC_8;
1569 case 2: return BFD_RELOC_16;
1570 case 4: return BFD_RELOC_32;
1571 case 8: return BFD_RELOC_64;
1572 }
3956db08
JB
1573 as_bad (_("cannot do %s %u byte relocation"),
1574 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
1575 }
1576
bfb32b52 1577 abort ();
252b5132
RH
1578 return BFD_RELOC_NONE;
1579}
1580
47926f60
KH
1581/* Here we decide which fixups can be adjusted to make them relative to
1582 the beginning of the section instead of the symbol. Basically we need
1583 to make sure that the dynamic relocations are done correctly, so in
1584 some cases we force the original symbol to be used. */
1585
252b5132 1586int
e3bb37b5 1587tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 1588{
6d249963 1589#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 1590 if (!IS_ELF)
31312f95
AM
1591 return 1;
1592
a161fe53
AM
1593 /* Don't adjust pc-relative references to merge sections in 64-bit
1594 mode. */
1595 if (use_rela_relocations
1596 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1597 && fixP->fx_pcrel)
252b5132 1598 return 0;
31312f95 1599
8d01d9a9
AJ
1600 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1601 and changed later by validate_fix. */
1602 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1603 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1604 return 0;
1605
ce8a8b2f 1606 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1607 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1608 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1609 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1610 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1611 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1612 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1613 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1614 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1615 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1616 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1617 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
1618 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1619 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
1620 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1621 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1622 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1623 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1624 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1625 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 1626 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
1627 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1628 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
1629 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1630 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
1631 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1632 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
1633 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1634 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1635 return 0;
31312f95 1636#endif
252b5132
RH
1637 return 1;
1638}
252b5132 1639
b4cac588 1640static int
e3bb37b5 1641intel_float_operand (const char *mnemonic)
252b5132 1642{
9306ca4a
JB
1643 /* Note that the value returned is meaningful only for opcodes with (memory)
1644 operands, hence the code here is free to improperly handle opcodes that
1645 have no operands (for better performance and smaller code). */
1646
1647 if (mnemonic[0] != 'f')
1648 return 0; /* non-math */
1649
1650 switch (mnemonic[1])
1651 {
1652 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1653 the fs segment override prefix not currently handled because no
1654 call path can make opcodes without operands get here */
1655 case 'i':
1656 return 2 /* integer op */;
1657 case 'l':
1658 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1659 return 3; /* fldcw/fldenv */
1660 break;
1661 case 'n':
1662 if (mnemonic[2] != 'o' /* fnop */)
1663 return 3; /* non-waiting control op */
1664 break;
1665 case 'r':
1666 if (mnemonic[2] == 's')
1667 return 3; /* frstor/frstpm */
1668 break;
1669 case 's':
1670 if (mnemonic[2] == 'a')
1671 return 3; /* fsave */
1672 if (mnemonic[2] == 't')
1673 {
1674 switch (mnemonic[3])
1675 {
1676 case 'c': /* fstcw */
1677 case 'd': /* fstdw */
1678 case 'e': /* fstenv */
1679 case 's': /* fsts[gw] */
1680 return 3;
1681 }
1682 }
1683 break;
1684 case 'x':
1685 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1686 return 0; /* fxsave/fxrstor are not really math ops */
1687 break;
1688 }
252b5132 1689
9306ca4a 1690 return 1;
252b5132
RH
1691}
1692
1693/* This is the guts of the machine-dependent assembler. LINE points to a
1694 machine dependent instruction. This function is supposed to emit
1695 the frags/bytes it assembles to. */
1696
1697void
1698md_assemble (line)
1699 char *line;
1700{
252b5132 1701 int j;
252b5132
RH
1702 char mnemonic[MAX_MNEM_SIZE];
1703
47926f60 1704 /* Initialize globals. */
252b5132
RH
1705 memset (&i, '\0', sizeof (i));
1706 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1707 i.reloc[j] = NO_RELOC;
252b5132
RH
1708 memset (disp_expressions, '\0', sizeof (disp_expressions));
1709 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1710 save_stack_p = save_stack;
252b5132
RH
1711
1712 /* First parse an instruction mnemonic & call i386_operand for the operands.
1713 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1714 start of a (possibly prefixed) mnemonic. */
252b5132 1715
29b0f896
AM
1716 line = parse_insn (line, mnemonic);
1717 if (line == NULL)
1718 return;
252b5132 1719
29b0f896
AM
1720 line = parse_operands (line, mnemonic);
1721 if (line == NULL)
1722 return;
252b5132 1723
4eed87de 1724 /* The order of the immediates should be reversed
050dfa73 1725 for 2 immediates extrq and insertq instructions */
4d456e3d
L
1726 if ((i.imm_operands == 2)
1727 && ((strcmp (mnemonic, "extrq") == 0)
1728 || (strcmp (mnemonic, "insertq") == 0)))
050dfa73 1729 {
4eed87de
AM
1730 swap_2_operands (0, 1);
1731 /* "extrq" and insertq" are the only two instructions whose operands
050dfa73
MM
1732 have to be reversed even though they have two immediate operands.
1733 */
1734 if (intel_syntax)
1735 swap_operands ();
1736 }
1737
29b0f896
AM
1738 /* Now we've parsed the mnemonic into a set of templates, and have the
1739 operands at hand. */
1740
1741 /* All intel opcodes have reversed operands except for "bound" and
1742 "enter". We also don't reverse intersegment "jmp" and "call"
1743 instructions with 2 immediate operands so that the immediate segment
050dfa73 1744 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
1745 if (intel_syntax
1746 && i.operands > 1
29b0f896 1747 && (strcmp (mnemonic, "bound") != 0)
30123838 1748 && (strcmp (mnemonic, "invlpga") != 0)
29b0f896
AM
1749 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1750 swap_operands ();
1751
1752 if (i.imm_operands)
1753 optimize_imm ();
1754
b300c311
L
1755 /* Don't optimize displacement for movabs since it only takes 64bit
1756 displacement. */
1757 if (i.disp_operands
1758 && (flag_code != CODE_64BIT
1759 || strcmp (mnemonic, "movabs") != 0))
29b0f896
AM
1760 optimize_disp ();
1761
1762 /* Next, we find a template that matches the given insn,
1763 making sure the overlap of the given operands types is consistent
1764 with the template operand types. */
252b5132 1765
29b0f896
AM
1766 if (!match_template ())
1767 return;
252b5132 1768
cd61ebfe
AM
1769 if (intel_syntax)
1770 {
1771 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1772 if (SYSV386_COMPAT
1773 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
8a2ed489 1774 i.tm.base_opcode ^= Opcode_FloatR;
cd61ebfe
AM
1775
1776 /* Zap movzx and movsx suffix. The suffix may have been set from
1777 "word ptr" or "byte ptr" on the source operand, but we'll use
1778 the suffix later to choose the destination register. */
1779 if ((i.tm.base_opcode & ~9) == 0x0fb6)
9306ca4a
JB
1780 {
1781 if (i.reg_operands < 2
1782 && !i.suffix
1783 && (~i.tm.opcode_modifier
1784 & (No_bSuf
1785 | No_wSuf
1786 | No_lSuf
1787 | No_sSuf
1788 | No_xSuf
1789 | No_qSuf)))
1790 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1791
1792 i.suffix = 0;
1793 }
cd61ebfe 1794 }
24eab124 1795
29b0f896
AM
1796 if (i.tm.opcode_modifier & FWait)
1797 if (!add_prefix (FWAIT_OPCODE))
1798 return;
252b5132 1799
29b0f896
AM
1800 /* Check string instruction segment overrides. */
1801 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1802 {
1803 if (!check_string ())
5dd0794d 1804 return;
29b0f896 1805 }
5dd0794d 1806
29b0f896
AM
1807 if (!process_suffix ())
1808 return;
e413e4e9 1809
29b0f896
AM
1810 /* Make still unresolved immediate matches conform to size of immediate
1811 given in i.suffix. */
1812 if (!finalize_imm ())
1813 return;
252b5132 1814
29b0f896
AM
1815 if (i.types[0] & Imm1)
1816 i.imm_operands = 0; /* kludge for shift insns. */
1817 if (i.types[0] & ImplicitRegister)
1818 i.reg_operands--;
1819 if (i.types[1] & ImplicitRegister)
1820 i.reg_operands--;
1821 if (i.types[2] & ImplicitRegister)
1822 i.reg_operands--;
252b5132 1823
29b0f896
AM
1824 if (i.tm.opcode_modifier & ImmExt)
1825 {
02fc3089
L
1826 expressionS *exp;
1827
b7d9ef37 1828 if ((i.tm.cpu_flags & CpuSSE3) && i.operands > 0)
ca164297 1829 {
b7d9ef37 1830 /* Streaming SIMD extensions 3 Instructions have the fixed
ca164297
L
1831 operands with an opcode suffix which is coded in the same
1832 place as an 8-bit immediate field would be. Here we check
1833 those operands and remove them afterwards. */
1834 unsigned int x;
1835
a4622f40 1836 for (x = 0; x < i.operands; x++)
ca164297 1837 if (i.op[x].regs->reg_num != x)
a540244d
L
1838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1839 register_prefix,
1840 i.op[x].regs->reg_name,
1841 x + 1,
1842 i.tm.name);
ca164297
L
1843 i.operands = 0;
1844 }
1845
29b0f896
AM
1846 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1847 opcode suffix which is coded in the same place as an 8-bit
1848 immediate field would be. Here we fake an 8-bit immediate
1849 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1850
29b0f896 1851 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1852
29b0f896
AM
1853 exp = &im_expressions[i.imm_operands++];
1854 i.op[i.operands].imms = exp;
1855 i.types[i.operands++] = Imm8;
1856 exp->X_op = O_constant;
1857 exp->X_add_number = i.tm.extension_opcode;
1858 i.tm.extension_opcode = None;
1859 }
252b5132 1860
29b0f896
AM
1861 /* For insns with operands there are more diddles to do to the opcode. */
1862 if (i.operands)
1863 {
1864 if (!process_operands ())
1865 return;
1866 }
1867 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1868 {
1869 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1870 as_warn (_("translating to `%sp'"), i.tm.name);
1871 }
252b5132 1872
29b0f896
AM
1873 /* Handle conversion of 'int $3' --> special int3 insn. */
1874 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1875 {
1876 i.tm.base_opcode = INT3_OPCODE;
1877 i.imm_operands = 0;
1878 }
252b5132 1879
29b0f896
AM
1880 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1881 && i.op[0].disps->X_op == O_constant)
1882 {
1883 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1884 the absolute address given by the constant. Since ix86 jumps and
1885 calls are pc relative, we need to generate a reloc. */
1886 i.op[0].disps->X_add_symbol = &abs_symbol;
1887 i.op[0].disps->X_op = O_symbol;
1888 }
252b5132 1889
29b0f896 1890 if ((i.tm.opcode_modifier & Rex64) != 0)
161a04f6 1891 i.rex |= REX_W;
252b5132 1892
29b0f896
AM
1893 /* For 8 bit registers we need an empty rex prefix. Also if the
1894 instruction already has a prefix, we need to convert old
1895 registers to new ones. */
773f551c 1896
29b0f896
AM
1897 if (((i.types[0] & Reg8) != 0
1898 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1899 || ((i.types[1] & Reg8) != 0
1900 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1901 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1902 && i.rex != 0))
1903 {
1904 int x;
726c5dcd 1905
29b0f896
AM
1906 i.rex |= REX_OPCODE;
1907 for (x = 0; x < 2; x++)
1908 {
1909 /* Look for 8 bit operand that uses old registers. */
1910 if ((i.types[x] & Reg8) != 0
1911 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1912 {
29b0f896
AM
1913 /* In case it is "hi" register, give up. */
1914 if (i.op[x].regs->reg_num > 3)
a540244d 1915 as_bad (_("can't encode register '%s%s' in an "
4eed87de 1916 "instruction requiring REX prefix."),
a540244d 1917 register_prefix, i.op[x].regs->reg_name);
773f551c 1918
29b0f896
AM
1919 /* Otherwise it is equivalent to the extended register.
1920 Since the encoding doesn't change this is merely
1921 cosmetic cleanup for debug output. */
1922
1923 i.op[x].regs = i.op[x].regs + 8;
773f551c 1924 }
29b0f896
AM
1925 }
1926 }
773f551c 1927
29b0f896
AM
1928 if (i.rex != 0)
1929 add_prefix (REX_OPCODE | i.rex);
1930
1931 /* We are ready to output the insn. */
1932 output_insn ();
1933}
1934
1935static char *
e3bb37b5 1936parse_insn (char *line, char *mnemonic)
29b0f896
AM
1937{
1938 char *l = line;
1939 char *token_start = l;
1940 char *mnem_p;
5c6af06e
JB
1941 int supported;
1942 const template *t;
29b0f896
AM
1943
1944 /* Non-zero if we found a prefix only acceptable with string insns. */
1945 const char *expecting_string_instruction = NULL;
45288df1 1946
29b0f896
AM
1947 while (1)
1948 {
1949 mnem_p = mnemonic;
1950 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1951 {
1952 mnem_p++;
1953 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1954 {
29b0f896
AM
1955 as_bad (_("no such instruction: `%s'"), token_start);
1956 return NULL;
1957 }
1958 l++;
1959 }
1960 if (!is_space_char (*l)
1961 && *l != END_OF_INSN
e44823cf
JB
1962 && (intel_syntax
1963 || (*l != PREFIX_SEPARATOR
1964 && *l != ',')))
29b0f896
AM
1965 {
1966 as_bad (_("invalid character %s in mnemonic"),
1967 output_invalid (*l));
1968 return NULL;
1969 }
1970 if (token_start == l)
1971 {
e44823cf 1972 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
1973 as_bad (_("expecting prefix; got nothing"));
1974 else
1975 as_bad (_("expecting mnemonic; got nothing"));
1976 return NULL;
1977 }
45288df1 1978
29b0f896
AM
1979 /* Look up instruction (or prefix) via hash table. */
1980 current_templates = hash_find (op_hash, mnemonic);
47926f60 1981
29b0f896
AM
1982 if (*l != END_OF_INSN
1983 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1984 && current_templates
1985 && (current_templates->start->opcode_modifier & IsPrefix))
1986 {
2dd88dca
JB
1987 if (current_templates->start->cpu_flags
1988 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
1989 {
1990 as_bad ((flag_code != CODE_64BIT
1991 ? _("`%s' is only supported in 64-bit mode")
1992 : _("`%s' is not supported in 64-bit mode")),
1993 current_templates->start->name);
1994 return NULL;
1995 }
29b0f896
AM
1996 /* If we are in 16-bit mode, do not allow addr16 or data16.
1997 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1998 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1999 && flag_code != CODE_64BIT
2000 && (((current_templates->start->opcode_modifier & Size32) != 0)
2001 ^ (flag_code == CODE_16BIT)))
2002 {
2003 as_bad (_("redundant %s prefix"),
2004 current_templates->start->name);
2005 return NULL;
45288df1 2006 }
29b0f896
AM
2007 /* Add prefix, checking for repeated prefixes. */
2008 switch (add_prefix (current_templates->start->base_opcode))
2009 {
2010 case 0:
2011 return NULL;
2012 case 2:
2013 expecting_string_instruction = current_templates->start->name;
2014 break;
2015 }
2016 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2017 token_start = ++l;
2018 }
2019 else
2020 break;
2021 }
45288df1 2022
29b0f896
AM
2023 if (!current_templates)
2024 {
2025 /* See if we can get a match by trimming off a suffix. */
2026 switch (mnem_p[-1])
2027 {
2028 case WORD_MNEM_SUFFIX:
9306ca4a
JB
2029 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2030 i.suffix = SHORT_MNEM_SUFFIX;
2031 else
29b0f896
AM
2032 case BYTE_MNEM_SUFFIX:
2033 case QWORD_MNEM_SUFFIX:
2034 i.suffix = mnem_p[-1];
2035 mnem_p[-1] = '\0';
2036 current_templates = hash_find (op_hash, mnemonic);
2037 break;
2038 case SHORT_MNEM_SUFFIX:
2039 case LONG_MNEM_SUFFIX:
2040 if (!intel_syntax)
2041 {
2042 i.suffix = mnem_p[-1];
2043 mnem_p[-1] = '\0';
2044 current_templates = hash_find (op_hash, mnemonic);
2045 }
2046 break;
252b5132 2047
29b0f896
AM
2048 /* Intel Syntax. */
2049 case 'd':
2050 if (intel_syntax)
2051 {
9306ca4a 2052 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
2053 i.suffix = SHORT_MNEM_SUFFIX;
2054 else
2055 i.suffix = LONG_MNEM_SUFFIX;
2056 mnem_p[-1] = '\0';
2057 current_templates = hash_find (op_hash, mnemonic);
2058 }
2059 break;
2060 }
2061 if (!current_templates)
2062 {
2063 as_bad (_("no such instruction: `%s'"), token_start);
2064 return NULL;
2065 }
2066 }
252b5132 2067
29b0f896
AM
2068 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2069 {
2070 /* Check for a branch hint. We allow ",pt" and ",pn" for
2071 predict taken and predict not taken respectively.
2072 I'm not sure that branch hints actually do anything on loop
2073 and jcxz insns (JumpByte) for current Pentium4 chips. They
2074 may work in the future and it doesn't hurt to accept them
2075 now. */
2076 if (l[0] == ',' && l[1] == 'p')
2077 {
2078 if (l[2] == 't')
2079 {
2080 if (!add_prefix (DS_PREFIX_OPCODE))
2081 return NULL;
2082 l += 3;
2083 }
2084 else if (l[2] == 'n')
2085 {
2086 if (!add_prefix (CS_PREFIX_OPCODE))
2087 return NULL;
2088 l += 3;
2089 }
2090 }
2091 }
2092 /* Any other comma loses. */
2093 if (*l == ',')
2094 {
2095 as_bad (_("invalid character %s in mnemonic"),
2096 output_invalid (*l));
2097 return NULL;
2098 }
252b5132 2099
29b0f896 2100 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
2101 supported = 0;
2102 for (t = current_templates->start; t < current_templates->end; ++t)
2103 {
2104 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2105 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
64e74474 2106 supported |= 1;
5c6af06e 2107 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
64e74474 2108 supported |= 2;
5c6af06e
JB
2109 }
2110 if (!(supported & 2))
2111 {
2112 as_bad (flag_code == CODE_64BIT
2113 ? _("`%s' is not supported in 64-bit mode")
2114 : _("`%s' is only supported in 64-bit mode"),
2115 current_templates->start->name);
2116 return NULL;
2117 }
2118 if (!(supported & 1))
29b0f896 2119 {
5c6af06e
JB
2120 as_warn (_("`%s' is not supported on `%s%s'"),
2121 current_templates->start->name,
2122 cpu_arch_name,
2123 cpu_sub_arch_name ? cpu_sub_arch_name : "");
29b0f896
AM
2124 }
2125 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2126 {
2127 as_warn (_("use .code16 to ensure correct addressing mode"));
2128 }
252b5132 2129
29b0f896 2130 /* Check for rep/repne without a string instruction. */
f41bbced 2131 if (expecting_string_instruction)
29b0f896 2132 {
f41bbced
JB
2133 static templates override;
2134
2135 for (t = current_templates->start; t < current_templates->end; ++t)
2136 if (t->opcode_modifier & IsString)
2137 break;
2138 if (t >= current_templates->end)
2139 {
2140 as_bad (_("expecting string instruction after `%s'"),
64e74474 2141 expecting_string_instruction);
f41bbced
JB
2142 return NULL;
2143 }
2144 for (override.start = t; t < current_templates->end; ++t)
2145 if (!(t->opcode_modifier & IsString))
2146 break;
2147 override.end = t;
2148 current_templates = &override;
29b0f896 2149 }
252b5132 2150
29b0f896
AM
2151 return l;
2152}
252b5132 2153
29b0f896 2154static char *
e3bb37b5 2155parse_operands (char *l, const char *mnemonic)
29b0f896
AM
2156{
2157 char *token_start;
3138f287 2158
29b0f896
AM
2159 /* 1 if operand is pending after ','. */
2160 unsigned int expecting_operand = 0;
252b5132 2161
29b0f896
AM
2162 /* Non-zero if operand parens not balanced. */
2163 unsigned int paren_not_balanced;
2164
2165 while (*l != END_OF_INSN)
2166 {
2167 /* Skip optional white space before operand. */
2168 if (is_space_char (*l))
2169 ++l;
2170 if (!is_operand_char (*l) && *l != END_OF_INSN)
2171 {
2172 as_bad (_("invalid character %s before operand %d"),
2173 output_invalid (*l),
2174 i.operands + 1);
2175 return NULL;
2176 }
2177 token_start = l; /* after white space */
2178 paren_not_balanced = 0;
2179 while (paren_not_balanced || *l != ',')
2180 {
2181 if (*l == END_OF_INSN)
2182 {
2183 if (paren_not_balanced)
2184 {
2185 if (!intel_syntax)
2186 as_bad (_("unbalanced parenthesis in operand %d."),
2187 i.operands + 1);
2188 else
2189 as_bad (_("unbalanced brackets in operand %d."),
2190 i.operands + 1);
2191 return NULL;
2192 }
2193 else
2194 break; /* we are done */
2195 }
2196 else if (!is_operand_char (*l) && !is_space_char (*l))
2197 {
2198 as_bad (_("invalid character %s in operand %d"),
2199 output_invalid (*l),
2200 i.operands + 1);
2201 return NULL;
2202 }
2203 if (!intel_syntax)
2204 {
2205 if (*l == '(')
2206 ++paren_not_balanced;
2207 if (*l == ')')
2208 --paren_not_balanced;
2209 }
2210 else
2211 {
2212 if (*l == '[')
2213 ++paren_not_balanced;
2214 if (*l == ']')
2215 --paren_not_balanced;
2216 }
2217 l++;
2218 }
2219 if (l != token_start)
2220 { /* Yes, we've read in another operand. */
2221 unsigned int operand_ok;
2222 this_operand = i.operands++;
2223 if (i.operands > MAX_OPERANDS)
2224 {
2225 as_bad (_("spurious operands; (%d operands/instruction max)"),
2226 MAX_OPERANDS);
2227 return NULL;
2228 }
2229 /* Now parse operand adding info to 'i' as we go along. */
2230 END_STRING_AND_SAVE (l);
2231
2232 if (intel_syntax)
2233 operand_ok =
2234 i386_intel_operand (token_start,
2235 intel_float_operand (mnemonic));
2236 else
2237 operand_ok = i386_operand (token_start);
2238
2239 RESTORE_END_STRING (l);
2240 if (!operand_ok)
2241 return NULL;
2242 }
2243 else
2244 {
2245 if (expecting_operand)
2246 {
2247 expecting_operand_after_comma:
2248 as_bad (_("expecting operand after ','; got nothing"));
2249 return NULL;
2250 }
2251 if (*l == ',')
2252 {
2253 as_bad (_("expecting operand before ','; got nothing"));
2254 return NULL;
2255 }
2256 }
7f3f1ea2 2257
29b0f896
AM
2258 /* Now *l must be either ',' or END_OF_INSN. */
2259 if (*l == ',')
2260 {
2261 if (*++l == END_OF_INSN)
2262 {
2263 /* Just skip it, if it's \n complain. */
2264 goto expecting_operand_after_comma;
2265 }
2266 expecting_operand = 1;
2267 }
2268 }
2269 return l;
2270}
7f3f1ea2 2271
050dfa73 2272static void
4d456e3d 2273swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
2274{
2275 union i386_op temp_op;
2276 unsigned int temp_type;
2277 enum bfd_reloc_code_real temp_reloc;
4eed87de 2278
050dfa73
MM
2279 temp_type = i.types[xchg2];
2280 i.types[xchg2] = i.types[xchg1];
2281 i.types[xchg1] = temp_type;
2282 temp_op = i.op[xchg2];
2283 i.op[xchg2] = i.op[xchg1];
2284 i.op[xchg1] = temp_op;
2285 temp_reloc = i.reloc[xchg2];
2286 i.reloc[xchg2] = i.reloc[xchg1];
2287 i.reloc[xchg1] = temp_reloc;
2288}
2289
29b0f896 2290static void
e3bb37b5 2291swap_operands (void)
29b0f896 2292{
b7c61d9a 2293 switch (i.operands)
050dfa73 2294 {
b7c61d9a 2295 case 4:
4d456e3d 2296 swap_2_operands (1, i.operands - 2);
b7c61d9a
L
2297 case 3:
2298 case 2:
4d456e3d 2299 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
2300 break;
2301 default:
2302 abort ();
29b0f896 2303 }
29b0f896
AM
2304
2305 if (i.mem_operands == 2)
2306 {
2307 const seg_entry *temp_seg;
2308 temp_seg = i.seg[0];
2309 i.seg[0] = i.seg[1];
2310 i.seg[1] = temp_seg;
2311 }
2312}
252b5132 2313
29b0f896
AM
2314/* Try to ensure constant immediates are represented in the smallest
2315 opcode possible. */
2316static void
e3bb37b5 2317optimize_imm (void)
29b0f896
AM
2318{
2319 char guess_suffix = 0;
2320 int op;
252b5132 2321
29b0f896
AM
2322 if (i.suffix)
2323 guess_suffix = i.suffix;
2324 else if (i.reg_operands)
2325 {
2326 /* Figure out a suffix from the last register operand specified.
2327 We can't do this properly yet, ie. excluding InOutPortReg,
2328 but the following works for instructions with immediates.
2329 In any case, we can't set i.suffix yet. */
2330 for (op = i.operands; --op >= 0;)
2331 if (i.types[op] & Reg)
252b5132 2332 {
29b0f896
AM
2333 if (i.types[op] & Reg8)
2334 guess_suffix = BYTE_MNEM_SUFFIX;
2335 else if (i.types[op] & Reg16)
2336 guess_suffix = WORD_MNEM_SUFFIX;
2337 else if (i.types[op] & Reg32)
2338 guess_suffix = LONG_MNEM_SUFFIX;
2339 else if (i.types[op] & Reg64)
2340 guess_suffix = QWORD_MNEM_SUFFIX;
2341 break;
252b5132 2342 }
29b0f896
AM
2343 }
2344 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2345 guess_suffix = WORD_MNEM_SUFFIX;
2346
2347 for (op = i.operands; --op >= 0;)
2348 if (i.types[op] & Imm)
2349 {
2350 switch (i.op[op].imms->X_op)
252b5132 2351 {
29b0f896
AM
2352 case O_constant:
2353 /* If a suffix is given, this operand may be shortened. */
2354 switch (guess_suffix)
252b5132 2355 {
29b0f896
AM
2356 case LONG_MNEM_SUFFIX:
2357 i.types[op] |= Imm32 | Imm64;
2358 break;
2359 case WORD_MNEM_SUFFIX:
2360 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2361 break;
2362 case BYTE_MNEM_SUFFIX:
2363 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2364 break;
252b5132 2365 }
252b5132 2366
29b0f896
AM
2367 /* If this operand is at most 16 bits, convert it
2368 to a signed 16 bit number before trying to see
2369 whether it will fit in an even smaller size.
2370 This allows a 16-bit operand such as $0xffe0 to
2371 be recognised as within Imm8S range. */
2372 if ((i.types[op] & Imm16)
2373 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 2374 {
29b0f896
AM
2375 i.op[op].imms->X_add_number =
2376 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2377 }
2378 if ((i.types[op] & Imm32)
2379 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2380 == 0))
2381 {
2382 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2383 ^ ((offsetT) 1 << 31))
2384 - ((offsetT) 1 << 31));
2385 }
2386 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 2387
29b0f896
AM
2388 /* We must avoid matching of Imm32 templates when 64bit
2389 only immediate is available. */
2390 if (guess_suffix == QWORD_MNEM_SUFFIX)
2391 i.types[op] &= ~Imm32;
2392 break;
252b5132 2393
29b0f896
AM
2394 case O_absent:
2395 case O_register:
2396 abort ();
2397
2398 /* Symbols and expressions. */
2399 default:
9cd96992
JB
2400 /* Convert symbolic operand to proper sizes for matching, but don't
2401 prevent matching a set of insns that only supports sizes other
2402 than those matching the insn suffix. */
2403 {
2404 unsigned int mask, allowed = 0;
2405 const template *t;
2406
4eed87de
AM
2407 for (t = current_templates->start;
2408 t < current_templates->end;
2409 ++t)
2410 allowed |= t->operand_types[op];
9cd96992
JB
2411 switch (guess_suffix)
2412 {
2413 case QWORD_MNEM_SUFFIX:
2414 mask = Imm64 | Imm32S;
2415 break;
2416 case LONG_MNEM_SUFFIX:
2417 mask = Imm32;
2418 break;
2419 case WORD_MNEM_SUFFIX:
2420 mask = Imm16;
2421 break;
2422 case BYTE_MNEM_SUFFIX:
2423 mask = Imm8;
2424 break;
2425 default:
2426 mask = 0;
2427 break;
2428 }
64e74474
AM
2429 if (mask & allowed)
2430 i.types[op] &= mask;
9cd96992 2431 }
29b0f896 2432 break;
252b5132 2433 }
29b0f896
AM
2434 }
2435}
47926f60 2436
29b0f896
AM
2437/* Try to use the smallest displacement type too. */
2438static void
e3bb37b5 2439optimize_disp (void)
29b0f896
AM
2440{
2441 int op;
3e73aa7c 2442
29b0f896 2443 for (op = i.operands; --op >= 0;)
b300c311 2444 if (i.types[op] & Disp)
252b5132 2445 {
b300c311 2446 if (i.op[op].disps->X_op == O_constant)
252b5132 2447 {
b300c311 2448 offsetT disp = i.op[op].disps->X_add_number;
29b0f896 2449
b300c311
L
2450 if ((i.types[op] & Disp16)
2451 && (disp & ~(offsetT) 0xffff) == 0)
2452 {
2453 /* If this operand is at most 16 bits, convert
2454 to a signed 16 bit number and don't use 64bit
2455 displacement. */
2456 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2457 i.types[op] &= ~Disp64;
2458 }
2459 if ((i.types[op] & Disp32)
2460 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2461 {
2462 /* If this operand is at most 32 bits, convert
2463 to a signed 32 bit number and don't use 64bit
2464 displacement. */
2465 disp &= (((offsetT) 2 << 31) - 1);
2466 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2467 i.types[op] &= ~Disp64;
2468 }
2469 if (!disp && (i.types[op] & BaseIndex))
2470 {
2471 i.types[op] &= ~Disp;
2472 i.op[op].disps = 0;
2473 i.disp_operands--;
2474 }
2475 else if (flag_code == CODE_64BIT)
2476 {
2477 if (fits_in_signed_long (disp))
28a9d8f5
L
2478 {
2479 i.types[op] &= ~Disp64;
2480 i.types[op] |= Disp32S;
2481 }
b300c311
L
2482 if (fits_in_unsigned_long (disp))
2483 i.types[op] |= Disp32;
2484 }
2485 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2486 && fits_in_signed_byte (disp))
2487 i.types[op] |= Disp8;
252b5132 2488 }
67a4f2b7
AO
2489 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2490 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2491 {
2492 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2493 i.op[op].disps, 0, i.reloc[op]);
2494 i.types[op] &= ~Disp;
2495 }
2496 else
b300c311
L
2497 /* We only support 64bit displacement on constants. */
2498 i.types[op] &= ~Disp64;
252b5132 2499 }
29b0f896
AM
2500}
2501
2502static int
e3bb37b5 2503match_template (void)
29b0f896
AM
2504{
2505 /* Points to template once we've found it. */
2506 const template *t;
f48ff2ae 2507 unsigned int overlap0, overlap1, overlap2, overlap3;
29b0f896
AM
2508 unsigned int found_reverse_match;
2509 int suffix_check;
f48ff2ae 2510 unsigned int operand_types [MAX_OPERANDS];
539e75ad 2511 int addr_prefix_disp;
a5c311ca 2512 unsigned int j;
29b0f896 2513
f48ff2ae
L
2514#if MAX_OPERANDS != 4
2515# error "MAX_OPERANDS must be 4."
2516#endif
2517
29b0f896
AM
2518#define MATCH(overlap, given, template) \
2519 ((overlap & ~JumpAbsolute) \
2520 && (((given) & (BaseIndex | JumpAbsolute)) \
2521 == ((overlap) & (BaseIndex | JumpAbsolute))))
2522
2523 /* If given types r0 and r1 are registers they must be of the same type
2524 unless the expected operand type register overlap is null.
2525 Note that Acc in a template matches every size of reg. */
2526#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2527 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2528 || ((g0) & Reg) == ((g1) & Reg) \
2529 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2530
2531 overlap0 = 0;
2532 overlap1 = 0;
2533 overlap2 = 0;
f48ff2ae 2534 overlap3 = 0;
29b0f896 2535 found_reverse_match = 0;
a5c311ca
L
2536 for (j = 0; j < MAX_OPERANDS; j++)
2537 operand_types [j] = 0;
539e75ad 2538 addr_prefix_disp = -1;
29b0f896
AM
2539 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2540 ? No_bSuf
2541 : (i.suffix == WORD_MNEM_SUFFIX
2542 ? No_wSuf
2543 : (i.suffix == SHORT_MNEM_SUFFIX
2544 ? No_sSuf
2545 : (i.suffix == LONG_MNEM_SUFFIX
2546 ? No_lSuf
2547 : (i.suffix == QWORD_MNEM_SUFFIX
2548 ? No_qSuf
2549 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2550 ? No_xSuf : 0))))));
2551
45aa61fe 2552 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 2553 {
539e75ad
L
2554 addr_prefix_disp = -1;
2555
29b0f896
AM
2556 /* Must have right number of operands. */
2557 if (i.operands != t->operands)
2558 continue;
2559
20592a94 2560 /* Check the suffix, except for some instructions in intel mode. */
29b0f896
AM
2561 if ((t->opcode_modifier & suffix_check)
2562 && !(intel_syntax
9306ca4a 2563 && (t->opcode_modifier & IgnoreSize)))
29b0f896
AM
2564 continue;
2565
a5c311ca
L
2566 for (j = 0; j < MAX_OPERANDS; j++)
2567 operand_types [j] = t->operand_types [j];
539e75ad 2568
45aa61fe
AM
2569 /* In general, don't allow 64-bit operands in 32-bit mode. */
2570 if (i.suffix == QWORD_MNEM_SUFFIX
2571 && flag_code != CODE_64BIT
2572 && (intel_syntax
2573 ? (!(t->opcode_modifier & IgnoreSize)
2574 && !intel_float_operand (t->name))
2575 : intel_float_operand (t->name) != 2)
539e75ad
L
2576 && (!(operand_types[0] & (RegMMX | RegXMM))
2577 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
45aa61fe
AM
2578 && (t->base_opcode != 0x0fc7
2579 || t->extension_opcode != 1 /* cmpxchg8b */))
2580 continue;
2581
29b0f896
AM
2582 /* Do not verify operands when there are none. */
2583 else if (!t->operands)
2584 {
2585 if (t->cpu_flags & ~cpu_arch_flags)
2586 continue;
2587 /* We've found a match; break out of loop. */
2588 break;
2589 }
252b5132 2590
539e75ad
L
2591 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2592 into Disp32/Disp16/Disp32 operand. */
2593 if (i.prefix[ADDR_PREFIX] != 0)
2594 {
a5c311ca 2595 unsigned int DispOn = 0, DispOff = 0;
539e75ad
L
2596
2597 switch (flag_code)
2598 {
2599 case CODE_16BIT:
2600 DispOn = Disp32;
2601 DispOff = Disp16;
2602 break;
2603 case CODE_32BIT:
2604 DispOn = Disp16;
2605 DispOff = Disp32;
2606 break;
2607 case CODE_64BIT:
2608 DispOn = Disp32;
2609 DispOff = Disp64;
2610 break;
2611 }
2612
f48ff2ae 2613 for (j = 0; j < MAX_OPERANDS; j++)
539e75ad
L
2614 {
2615 /* There should be only one Disp operand. */
2616 if ((operand_types[j] & DispOff))
2617 {
2618 addr_prefix_disp = j;
2619 operand_types[j] |= DispOn;
2620 operand_types[j] &= ~DispOff;
2621 break;
2622 }
2623 }
2624 }
2625
2626 overlap0 = i.types[0] & operand_types[0];
29b0f896
AM
2627 switch (t->operands)
2628 {
2629 case 1:
539e75ad 2630 if (!MATCH (overlap0, i.types[0], operand_types[0]))
29b0f896
AM
2631 continue;
2632 break;
2633 case 2:
8b38ad71
L
2634 /* xchg %eax, %eax is a special case. It is an aliase for nop
2635 only in 32bit mode and we can use opcode 0x90. In 64bit
2636 mode, we can't use 0x90 for xchg %eax, %eax since it should
2637 zero-extend %eax to %rax. */
2638 if (flag_code == CODE_64BIT
2639 && t->base_opcode == 0x90
2640 && i.types [0] == (Acc | Reg32)
2641 && i.types [1] == (Acc | Reg32))
2642 continue;
29b0f896 2643 case 3:
f48ff2ae 2644 case 4:
539e75ad
L
2645 overlap1 = i.types[1] & operand_types[1];
2646 if (!MATCH (overlap0, i.types[0], operand_types[0])
2647 || !MATCH (overlap1, i.types[1], operand_types[1])
cb712a9e 2648 /* monitor in SSE3 is a very special case. The first
708587a4 2649 register and the second register may have different
381d071f 2650 sizes. The same applies to crc32 in SSE4.2. */
cb712a9e
L
2651 || !((t->base_opcode == 0x0f01
2652 && t->extension_opcode == 0xc8)
381d071f 2653 || t->base_opcode == 0xf20f38f1
cb712a9e 2654 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
539e75ad 2655 operand_types[0],
cb712a9e 2656 overlap1, i.types[1],
539e75ad 2657 operand_types[1])))
29b0f896
AM
2658 {
2659 /* Check if other direction is valid ... */
2660 if ((t->opcode_modifier & (D | FloatD)) == 0)
2661 continue;
2662
2663 /* Try reversing direction of operands. */
539e75ad
L
2664 overlap0 = i.types[0] & operand_types[1];
2665 overlap1 = i.types[1] & operand_types[0];
2666 if (!MATCH (overlap0, i.types[0], operand_types[1])
2667 || !MATCH (overlap1, i.types[1], operand_types[0])
29b0f896 2668 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
539e75ad 2669 operand_types[1],
29b0f896 2670 overlap1, i.types[1],
539e75ad 2671 operand_types[0]))
29b0f896
AM
2672 {
2673 /* Does not match either direction. */
2674 continue;
2675 }
2676 /* found_reverse_match holds which of D or FloatDR
2677 we've found. */
8a2ed489
L
2678 if ((t->opcode_modifier & D))
2679 found_reverse_match = Opcode_D;
2680 else if ((t->opcode_modifier & FloatD))
2681 found_reverse_match = Opcode_FloatD;
2682 else
2683 found_reverse_match = 0;
2684 if ((t->opcode_modifier & FloatR))
2685 found_reverse_match |= Opcode_FloatR;
29b0f896 2686 }
f48ff2ae 2687 else
29b0f896 2688 {
f48ff2ae 2689 /* Found a forward 2 operand match here. */
d1cbb4db
L
2690 switch (t->operands)
2691 {
2692 case 4:
2693 overlap3 = i.types[3] & operand_types[3];
2694 case 3:
2695 overlap2 = i.types[2] & operand_types[2];
2696 break;
2697 }
29b0f896 2698
f48ff2ae
L
2699 switch (t->operands)
2700 {
2701 case 4:
2702 if (!MATCH (overlap3, i.types[3], operand_types[3])
2703 || !CONSISTENT_REGISTER_MATCH (overlap2,
2704 i.types[2],
2705 operand_types[2],
2706 overlap3,
2707 i.types[3],
2708 operand_types[3]))
2709 continue;
2710 case 3:
2711 /* Here we make use of the fact that there are no
2712 reverse match 3 operand instructions, and all 3
2713 operand instructions only need to be checked for
2714 register consistency between operands 2 and 3. */
2715 if (!MATCH (overlap2, i.types[2], operand_types[2])
2716 || !CONSISTENT_REGISTER_MATCH (overlap1,
2717 i.types[1],
2718 operand_types[1],
2719 overlap2,
2720 i.types[2],
2721 operand_types[2]))
2722 continue;
2723 break;
2724 }
29b0f896 2725 }
f48ff2ae 2726 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
2727 slip through to break. */
2728 }
2729 if (t->cpu_flags & ~cpu_arch_flags)
2730 {
2731 found_reverse_match = 0;
2732 continue;
2733 }
2734 /* We've found a match; break out of loop. */
2735 break;
2736 }
2737
2738 if (t == current_templates->end)
2739 {
2740 /* We found no match. */
2741 as_bad (_("suffix or operands invalid for `%s'"),
2742 current_templates->start->name);
2743 return 0;
2744 }
252b5132 2745
29b0f896
AM
2746 if (!quiet_warnings)
2747 {
2748 if (!intel_syntax
2749 && ((i.types[0] & JumpAbsolute)
539e75ad 2750 != (operand_types[0] & JumpAbsolute)))
29b0f896
AM
2751 {
2752 as_warn (_("indirect %s without `*'"), t->name);
2753 }
2754
2755 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2756 == (IsPrefix | IgnoreSize))
2757 {
2758 /* Warn them that a data or address size prefix doesn't
2759 affect assembly of the next line of code. */
2760 as_warn (_("stand-alone `%s' prefix"), t->name);
2761 }
2762 }
2763
2764 /* Copy the template we found. */
2765 i.tm = *t;
539e75ad
L
2766
2767 if (addr_prefix_disp != -1)
2768 i.tm.operand_types[addr_prefix_disp]
2769 = operand_types[addr_prefix_disp];
2770
29b0f896
AM
2771 if (found_reverse_match)
2772 {
2773 /* If we found a reverse match we must alter the opcode
2774 direction bit. found_reverse_match holds bits to change
2775 (different for int & float insns). */
2776
2777 i.tm.base_opcode ^= found_reverse_match;
2778
539e75ad
L
2779 i.tm.operand_types[0] = operand_types[1];
2780 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
2781 }
2782
2783 return 1;
2784}
2785
2786static int
e3bb37b5 2787check_string (void)
29b0f896
AM
2788{
2789 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2790 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2791 {
2792 if (i.seg[0] != NULL && i.seg[0] != &es)
2793 {
2794 as_bad (_("`%s' operand %d must use `%%es' segment"),
2795 i.tm.name,
2796 mem_op + 1);
2797 return 0;
2798 }
2799 /* There's only ever one segment override allowed per instruction.
2800 This instruction possibly has a legal segment override on the
2801 second operand, so copy the segment to where non-string
2802 instructions store it, allowing common code. */
2803 i.seg[0] = i.seg[1];
2804 }
2805 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2806 {
2807 if (i.seg[1] != NULL && i.seg[1] != &es)
2808 {
2809 as_bad (_("`%s' operand %d must use `%%es' segment"),
2810 i.tm.name,
2811 mem_op + 2);
2812 return 0;
2813 }
2814 }
2815 return 1;
2816}
2817
2818static int
543613e9 2819process_suffix (void)
29b0f896
AM
2820{
2821 /* If matched instruction specifies an explicit instruction mnemonic
2822 suffix, use it. */
2823 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2824 {
2825 if (i.tm.opcode_modifier & Size16)
2826 i.suffix = WORD_MNEM_SUFFIX;
2827 else if (i.tm.opcode_modifier & Size64)
2828 i.suffix = QWORD_MNEM_SUFFIX;
2829 else
2830 i.suffix = LONG_MNEM_SUFFIX;
2831 }
2832 else if (i.reg_operands)
2833 {
2834 /* If there's no instruction mnemonic suffix we try to invent one
2835 based on register operands. */
2836 if (!i.suffix)
2837 {
2838 /* We take i.suffix from the last register operand specified,
2839 Destination register type is more significant than source
381d071f
L
2840 register type. crc32 in SSE4.2 prefers source register
2841 type. */
2842 if (i.tm.base_opcode == 0xf20f38f1)
2843 {
2844 if ((i.types[0] & Reg))
2845 i.suffix = ((i.types[0] & Reg16) ? WORD_MNEM_SUFFIX :
29b0f896 2846 LONG_MNEM_SUFFIX);
381d071f 2847 }
9344ff29 2848 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
2849 {
2850 if ((i.types[0] & Reg8))
2851 i.suffix = BYTE_MNEM_SUFFIX;
2852 }
381d071f
L
2853
2854 if (!i.suffix)
2855 {
2856 int op;
2857
20592a94
L
2858 if (i.tm.base_opcode == 0xf20f38f1
2859 || i.tm.base_opcode == 0xf20f38f0)
2860 {
2861 /* We have to know the operand size for crc32. */
2862 as_bad (_("ambiguous memory operand size for `%s`"),
2863 i.tm.name);
2864 return 0;
2865 }
2866
381d071f
L
2867 for (op = i.operands; --op >= 0;)
2868 if ((i.types[op] & Reg)
2869 && !(i.tm.operand_types[op] & InOutPortReg))
2870 {
2871 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2872 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2873 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2874 LONG_MNEM_SUFFIX);
2875 break;
2876 }
2877 }
29b0f896
AM
2878 }
2879 else if (i.suffix == BYTE_MNEM_SUFFIX)
2880 {
2881 if (!check_byte_reg ())
2882 return 0;
2883 }
2884 else if (i.suffix == LONG_MNEM_SUFFIX)
2885 {
2886 if (!check_long_reg ())
2887 return 0;
2888 }
2889 else if (i.suffix == QWORD_MNEM_SUFFIX)
2890 {
2891 if (!check_qword_reg ())
2892 return 0;
2893 }
2894 else if (i.suffix == WORD_MNEM_SUFFIX)
2895 {
2896 if (!check_word_reg ())
2897 return 0;
2898 }
2899 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2900 /* Do nothing if the instruction is going to ignore the prefix. */
2901 ;
2902 else
2903 abort ();
2904 }
9306ca4a
JB
2905 else if ((i.tm.opcode_modifier & DefaultSize)
2906 && !i.suffix
2907 /* exclude fldenv/frstor/fsave/fstenv */
2908 && (i.tm.opcode_modifier & No_sSuf))
29b0f896
AM
2909 {
2910 i.suffix = stackop_size;
2911 }
9306ca4a
JB
2912 else if (intel_syntax
2913 && !i.suffix
2914 && ((i.tm.operand_types[0] & JumpAbsolute)
64e74474
AM
2915 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2916 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2917 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
2918 {
2919 switch (flag_code)
2920 {
2921 case CODE_64BIT:
2922 if (!(i.tm.opcode_modifier & No_qSuf))
2923 {
2924 i.suffix = QWORD_MNEM_SUFFIX;
2925 break;
2926 }
2927 case CODE_32BIT:
2928 if (!(i.tm.opcode_modifier & No_lSuf))
2929 i.suffix = LONG_MNEM_SUFFIX;
2930 break;
2931 case CODE_16BIT:
2932 if (!(i.tm.opcode_modifier & No_wSuf))
2933 i.suffix = WORD_MNEM_SUFFIX;
2934 break;
2935 }
2936 }
252b5132 2937
9306ca4a 2938 if (!i.suffix)
29b0f896 2939 {
9306ca4a
JB
2940 if (!intel_syntax)
2941 {
2942 if (i.tm.opcode_modifier & W)
2943 {
4eed87de
AM
2944 as_bad (_("no instruction mnemonic suffix given and "
2945 "no register operands; can't size instruction"));
9306ca4a
JB
2946 return 0;
2947 }
2948 }
2949 else
2950 {
64e74474
AM
2951 unsigned int suffixes = (~i.tm.opcode_modifier
2952 & (No_bSuf
2953 | No_wSuf
2954 | No_lSuf
2955 | No_sSuf
2956 | No_xSuf
2957 | No_qSuf));
9306ca4a
JB
2958
2959 if ((i.tm.opcode_modifier & W)
2960 || ((suffixes & (suffixes - 1))
2961 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2962 {
2963 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2964 return 0;
2965 }
2966 }
29b0f896 2967 }
252b5132 2968
9306ca4a
JB
2969 /* Change the opcode based on the operand size given by i.suffix;
2970 We don't need to change things for byte insns. */
2971
29b0f896
AM
2972 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2973 {
2974 /* It's not a byte, select word/dword operation. */
2975 if (i.tm.opcode_modifier & W)
2976 {
2977 if (i.tm.opcode_modifier & ShortForm)
2978 i.tm.base_opcode |= 8;
2979 else
2980 i.tm.base_opcode |= 1;
2981 }
0f3f3d8b 2982
29b0f896
AM
2983 /* Now select between word & dword operations via the operand
2984 size prefix, except for instructions that will ignore this
2985 prefix anyway. */
cb712a9e
L
2986 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2987 {
2988 /* monitor in SSE3 is a very special case. The default size
2989 of AX is the size of mode. The address size override
2990 prefix will change the size of AX. */
2991 if (i.op->regs[0].reg_type &
2992 (flag_code == CODE_32BIT ? Reg16 : Reg32))
2993 if (!add_prefix (ADDR_PREFIX_OPCODE))
2994 return 0;
2995 }
2996 else if (i.suffix != QWORD_MNEM_SUFFIX
2997 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2998 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2999 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3000 || (flag_code == CODE_64BIT
3001 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
3002 {
3003 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 3004
29b0f896
AM
3005 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
3006 prefix = ADDR_PREFIX_OPCODE;
252b5132 3007
29b0f896
AM
3008 if (!add_prefix (prefix))
3009 return 0;
24eab124 3010 }
252b5132 3011
29b0f896
AM
3012 /* Set mode64 for an operand. */
3013 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 3014 && flag_code == CODE_64BIT
29b0f896 3015 && (i.tm.opcode_modifier & NoRex64) == 0)
46e883c5
L
3016 {
3017 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3018 need rex64. */
3019 if (i.operands != 2
3020 || i.types [0] != (Acc | Reg64)
3021 || i.types [1] != (Acc | Reg64)
13a1e313 3022 || i.tm.base_opcode != 0x90)
f6bee062 3023 i.rex |= REX_W;
46e883c5 3024 }
3e73aa7c 3025
29b0f896
AM
3026 /* Size floating point instruction. */
3027 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
3028 if (i.tm.opcode_modifier & FloatMF)
3029 i.tm.base_opcode ^= 4;
29b0f896 3030 }
7ecd2f8b 3031
29b0f896
AM
3032 return 1;
3033}
3e73aa7c 3034
29b0f896 3035static int
543613e9 3036check_byte_reg (void)
29b0f896
AM
3037{
3038 int op;
543613e9 3039
29b0f896
AM
3040 for (op = i.operands; --op >= 0;)
3041 {
3042 /* If this is an eight bit register, it's OK. If it's the 16 or
3043 32 bit version of an eight bit register, we will just use the
3044 low portion, and that's OK too. */
3045 if (i.types[op] & Reg8)
3046 continue;
3047
3048 /* movzx and movsx should not generate this warning. */
3049 if (intel_syntax
3050 && (i.tm.base_opcode == 0xfb7
3051 || i.tm.base_opcode == 0xfb6
3052 || i.tm.base_opcode == 0x63
3053 || i.tm.base_opcode == 0xfbe
3054 || i.tm.base_opcode == 0xfbf))
3055 continue;
3056
9344ff29
L
3057 /* crc32 doesn't generate this warning. */
3058 if (i.tm.base_opcode == 0xf20f38f0)
3059 continue;
3060
65ec77d2 3061 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
29b0f896
AM
3062 {
3063 /* Prohibit these changes in the 64bit mode, since the
3064 lowering is more complicated. */
3065 if (flag_code == CODE_64BIT
3066 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3067 {
2ca3ace5
L
3068 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3069 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
3070 i.suffix);
3071 return 0;
3072 }
3073#if REGISTER_WARNINGS
3074 if (!quiet_warnings
3075 && (i.tm.operand_types[op] & InOutPortReg) == 0)
a540244d
L
3076 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3077 register_prefix,
29b0f896
AM
3078 (i.op[op].regs + (i.types[op] & Reg16
3079 ? REGNAM_AL - REGNAM_AX
3080 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 3081 register_prefix,
29b0f896
AM
3082 i.op[op].regs->reg_name,
3083 i.suffix);
3084#endif
3085 continue;
3086 }
3087 /* Any other register is bad. */
3088 if (i.types[op] & (Reg | RegMMX | RegXMM
3089 | SReg2 | SReg3
3090 | Control | Debug | Test
3091 | FloatReg | FloatAcc))
3092 {
a540244d
L
3093 as_bad (_("`%s%s' not allowed with `%s%c'"),
3094 register_prefix,
29b0f896
AM
3095 i.op[op].regs->reg_name,
3096 i.tm.name,
3097 i.suffix);
3098 return 0;
3099 }
3100 }
3101 return 1;
3102}
3103
3104static int
e3bb37b5 3105check_long_reg (void)
29b0f896
AM
3106{
3107 int op;
3108
3109 for (op = i.operands; --op >= 0;)
3110 /* Reject eight bit registers, except where the template requires
3111 them. (eg. movzb) */
3112 if ((i.types[op] & Reg8) != 0
3113 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3114 {
a540244d
L
3115 as_bad (_("`%s%s' not allowed with `%s%c'"),
3116 register_prefix,
29b0f896
AM
3117 i.op[op].regs->reg_name,
3118 i.tm.name,
3119 i.suffix);
3120 return 0;
3121 }
3122 /* Warn if the e prefix on a general reg is missing. */
3123 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3124 && (i.types[op] & Reg16) != 0
3125 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3126 {
3127 /* Prohibit these changes in the 64bit mode, since the
3128 lowering is more complicated. */
3129 if (flag_code == CODE_64BIT)
252b5132 3130 {
2ca3ace5
L
3131 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3132 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
3133 i.suffix);
3134 return 0;
252b5132 3135 }
29b0f896
AM
3136#if REGISTER_WARNINGS
3137 else
a540244d
L
3138 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3139 register_prefix,
29b0f896 3140 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
a540244d 3141 register_prefix,
29b0f896
AM
3142 i.op[op].regs->reg_name,
3143 i.suffix);
3144#endif
252b5132 3145 }
29b0f896
AM
3146 /* Warn if the r prefix on a general reg is missing. */
3147 else if ((i.types[op] & Reg64) != 0
3148 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 3149 {
2ca3ace5
L
3150 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3151 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
3152 i.suffix);
3153 return 0;
3154 }
3155 return 1;
3156}
252b5132 3157
29b0f896 3158static int
e3bb37b5 3159check_qword_reg (void)
29b0f896
AM
3160{
3161 int op;
252b5132 3162
29b0f896
AM
3163 for (op = i.operands; --op >= 0; )
3164 /* Reject eight bit registers, except where the template requires
3165 them. (eg. movzb) */
3166 if ((i.types[op] & Reg8) != 0
3167 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3168 {
a540244d
L
3169 as_bad (_("`%s%s' not allowed with `%s%c'"),
3170 register_prefix,
29b0f896
AM
3171 i.op[op].regs->reg_name,
3172 i.tm.name,
3173 i.suffix);
3174 return 0;
3175 }
3176 /* Warn if the e prefix on a general reg is missing. */
3177 else if (((i.types[op] & Reg16) != 0
3178 || (i.types[op] & Reg32) != 0)
3179 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3180 {
3181 /* Prohibit these changes in the 64bit mode, since the
3182 lowering is more complicated. */
2ca3ace5
L
3183 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3184 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
3185 i.suffix);
3186 return 0;
252b5132 3187 }
29b0f896
AM
3188 return 1;
3189}
252b5132 3190
29b0f896 3191static int
e3bb37b5 3192check_word_reg (void)
29b0f896
AM
3193{
3194 int op;
3195 for (op = i.operands; --op >= 0;)
3196 /* Reject eight bit registers, except where the template requires
3197 them. (eg. movzb) */
3198 if ((i.types[op] & Reg8) != 0
3199 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3200 {
a540244d
L
3201 as_bad (_("`%s%s' not allowed with `%s%c'"),
3202 register_prefix,
29b0f896
AM
3203 i.op[op].regs->reg_name,
3204 i.tm.name,
3205 i.suffix);
3206 return 0;
3207 }
3208 /* Warn if the e prefix on a general reg is present. */
3209 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3210 && (i.types[op] & Reg32) != 0
3211 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 3212 {
29b0f896
AM
3213 /* Prohibit these changes in the 64bit mode, since the
3214 lowering is more complicated. */
3215 if (flag_code == CODE_64BIT)
252b5132 3216 {
2ca3ace5
L
3217 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3218 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
3219 i.suffix);
3220 return 0;
252b5132 3221 }
29b0f896
AM
3222 else
3223#if REGISTER_WARNINGS
a540244d
L
3224 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3225 register_prefix,
29b0f896 3226 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
a540244d 3227 register_prefix,
29b0f896
AM
3228 i.op[op].regs->reg_name,
3229 i.suffix);
3230#endif
3231 }
3232 return 1;
3233}
252b5132 3234
29b0f896 3235static int
e3bb37b5 3236finalize_imm (void)
29b0f896
AM
3237{
3238 unsigned int overlap0, overlap1, overlap2;
3239
3240 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 3241 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
3242 && overlap0 != Imm8 && overlap0 != Imm8S
3243 && overlap0 != Imm16 && overlap0 != Imm32S
3244 && overlap0 != Imm32 && overlap0 != Imm64)
3245 {
3246 if (i.suffix)
3247 {
3248 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3249 ? Imm8 | Imm8S
3250 : (i.suffix == WORD_MNEM_SUFFIX
3251 ? Imm16
3252 : (i.suffix == QWORD_MNEM_SUFFIX
3253 ? Imm64 | Imm32S
3254 : Imm32)));
3255 }
3256 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3257 || overlap0 == (Imm16 | Imm32)
3258 || overlap0 == (Imm16 | Imm32S))
3259 {
3260 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3261 ? Imm16 : Imm32S);
3262 }
3263 if (overlap0 != Imm8 && overlap0 != Imm8S
3264 && overlap0 != Imm16 && overlap0 != Imm32S
3265 && overlap0 != Imm32 && overlap0 != Imm64)
3266 {
4eed87de
AM
3267 as_bad (_("no instruction mnemonic suffix given; "
3268 "can't determine immediate size"));
29b0f896
AM
3269 return 0;
3270 }
3271 }
3272 i.types[0] = overlap0;
3273
3274 overlap1 = i.types[1] & i.tm.operand_types[1];
37edbb65 3275 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
29b0f896
AM
3276 && overlap1 != Imm8 && overlap1 != Imm8S
3277 && overlap1 != Imm16 && overlap1 != Imm32S
3278 && overlap1 != Imm32 && overlap1 != Imm64)
3279 {
3280 if (i.suffix)
3281 {
3282 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3283 ? Imm8 | Imm8S
3284 : (i.suffix == WORD_MNEM_SUFFIX
3285 ? Imm16
3286 : (i.suffix == QWORD_MNEM_SUFFIX
3287 ? Imm64 | Imm32S
3288 : Imm32)));
3289 }
3290 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3291 || overlap1 == (Imm16 | Imm32)
3292 || overlap1 == (Imm16 | Imm32S))
3293 {
3294 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3295 ? Imm16 : Imm32S);
3296 }
3297 if (overlap1 != Imm8 && overlap1 != Imm8S
3298 && overlap1 != Imm16 && overlap1 != Imm32S
3299 && overlap1 != Imm32 && overlap1 != Imm64)
3300 {
4eed87de
AM
3301 as_bad (_("no instruction mnemonic suffix given; "
3302 "can't determine immediate size %x %c"),
3303 overlap1, i.suffix);
29b0f896
AM
3304 return 0;
3305 }
3306 }
3307 i.types[1] = overlap1;
3308
3309 overlap2 = i.types[2] & i.tm.operand_types[2];
3310 assert ((overlap2 & Imm) == 0);
3311 i.types[2] = overlap2;
3312
3313 return 1;
3314}
3315
3316static int
e3bb37b5 3317process_operands (void)
29b0f896
AM
3318{
3319 /* Default segment register this instruction will use for memory
3320 accesses. 0 means unknown. This is only for optimizing out
3321 unnecessary segment overrides. */
3322 const seg_entry *default_seg = 0;
3323
3324 /* The imul $imm, %reg instruction is converted into
3325 imul $imm, %reg, %reg, and the clr %reg instruction
3326 is converted into xor %reg, %reg. */
3327 if (i.tm.opcode_modifier & regKludge)
3328 {
42903f7f
L
3329 if ((i.tm.cpu_flags & CpuSSE4_1))
3330 {
3331 /* The first operand in instruction blendvpd, blendvps and
3332 pblendvb in SSE4.1 is implicit and must be xmm0. */
3333 assert (i.operands == 3
3334 && i.reg_operands >= 2
3335 && i.types[0] == RegXMM);
3336 if (i.op[0].regs->reg_num != 0)
3337 {
3338 if (intel_syntax)
3339 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
3340 i.tm.name, register_prefix);
3341 else
3342 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
3343 i.tm.name, register_prefix);
3344 return 0;
3345 }
3346 i.op[0] = i.op[1];
3347 i.op[1] = i.op[2];
3348 i.types[0] = i.types[1];
3349 i.types[1] = i.types[2];
3350 i.operands--;
3351 i.reg_operands--;
3352
3353 /* We need to adjust fields in i.tm since they are used by
3354 build_modrm_byte. */
3355 i.tm.operand_types [0] = i.tm.operand_types [1];
3356 i.tm.operand_types [1] = i.tm.operand_types [2];
3357 i.tm.operands--;
3358 }
3359 else
3360 {
3361 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3362 /* Pretend we saw the extra register operand. */
3363 assert (i.reg_operands == 1
3364 && i.op[first_reg_op + 1].regs == 0);
3365 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3366 i.types[first_reg_op + 1] = i.types[first_reg_op];
3367 i.operands++;
3368 i.reg_operands++;
3369 }
29b0f896
AM
3370 }
3371
3372 if (i.tm.opcode_modifier & ShortForm)
3373 {
4eed87de 3374 if (i.types[0] & (SReg2 | SReg3))
29b0f896 3375 {
4eed87de
AM
3376 if (i.tm.base_opcode == POP_SEG_SHORT
3377 && i.op[0].regs->reg_num == 1)
29b0f896 3378 {
4eed87de
AM
3379 as_bad (_("you can't `pop %%cs'"));
3380 return 0;
29b0f896 3381 }
4eed87de
AM
3382 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3383 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 3384 i.rex |= REX_B;
4eed87de
AM
3385 }
3386 else
3387 {
3388 /* The register or float register operand is in operand 0 or 1. */
3389 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3390 /* Register goes in low 3 bits of opcode. */
3391 i.tm.base_opcode |= i.op[op].regs->reg_num;
3392 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 3393 i.rex |= REX_B;
4eed87de 3394 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
29b0f896 3395 {
4eed87de
AM
3396 /* Warn about some common errors, but press on regardless.
3397 The first case can be generated by gcc (<= 2.8.1). */
3398 if (i.operands == 2)
3399 {
3400 /* Reversed arguments on faddp, fsubp, etc. */
a540244d
L
3401 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
3402 register_prefix, i.op[1].regs->reg_name,
3403 register_prefix, i.op[0].regs->reg_name);
4eed87de
AM
3404 }
3405 else
3406 {
3407 /* Extraneous `l' suffix on fp insn. */
a540244d
L
3408 as_warn (_("translating to `%s %s%s'"), i.tm.name,
3409 register_prefix, i.op[0].regs->reg_name);
4eed87de 3410 }
29b0f896
AM
3411 }
3412 }
3413 }
3414 else if (i.tm.opcode_modifier & Modrm)
3415 {
3416 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
3417 must be put into the modrm byte). Now, we make the modrm and
3418 index base bytes based on all the info we've collected. */
29b0f896
AM
3419
3420 default_seg = build_modrm_byte ();
3421 }
8a2ed489 3422 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
3423 {
3424 default_seg = &ds;
3425 }
3426 else if ((i.tm.opcode_modifier & IsString) != 0)
3427 {
3428 /* For the string instructions that allow a segment override
3429 on one of their operands, the default segment is ds. */
3430 default_seg = &ds;
3431 }
3432
30123838
JB
3433 if ((i.tm.base_opcode == 0x8d /* lea */
3434 || (i.tm.cpu_flags & CpuSVME))
3435 && i.seg[0] && !quiet_warnings)
3436 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
3437
3438 /* If a segment was explicitly specified, and the specified segment
3439 is not the default, use an opcode prefix to select it. If we
3440 never figured out what the default segment is, then default_seg
3441 will be zero at this point, and the specified segment prefix will
3442 always be used. */
29b0f896
AM
3443 if ((i.seg[0]) && (i.seg[0] != default_seg))
3444 {
3445 if (!add_prefix (i.seg[0]->seg_prefix))
3446 return 0;
3447 }
3448 return 1;
3449}
3450
3451static const seg_entry *
e3bb37b5 3452build_modrm_byte (void)
29b0f896
AM
3453{
3454 const seg_entry *default_seg = 0;
3455
3456 /* i.reg_operands MUST be the number of real register operands;
3457 implicit registers do not count. */
3458 if (i.reg_operands == 2)
3459 {
3460 unsigned int source, dest;
cab737b9
L
3461
3462 switch (i.operands)
3463 {
3464 case 2:
3465 source = 0;
3466 break;
3467 case 3:
c81128dc
L
3468 /* When there are 3 operands, one of them may be immediate,
3469 which may be the first or the last operand. Otherwise,
3470 the first operand must be shift count register (cl). */
3471 assert (i.imm_operands == 1
3472 || (i.imm_operands == 0
3473 && (i.types[0] & ShiftCount)));
3474 source = (i.types[0] & (Imm | ShiftCount)) ? 1 : 0;
cab737b9
L
3475 break;
3476 case 4:
3477 /* When there are 4 operands, the first two must be immediate
3478 operands. The source operand will be the 3rd one. */
3479 assert (i.imm_operands == 2
3480 && (i.types[0] & Imm)
3481 && (i.types[1] & Imm));
3482 source = 2;
3483 break;
3484 default:
3485 abort ();
3486 }
3487
29b0f896
AM
3488 dest = source + 1;
3489
3490 i.rm.mode = 3;
3491 /* One of the register operands will be encoded in the i.tm.reg
3492 field, the other in the combined i.tm.mode and i.tm.regmem
3493 fields. If no form of this instruction supports a memory
3494 destination operand, then we assume the source operand may
3495 sometimes be a memory operand and so we need to store the
3496 destination in the i.rm.reg field. */
e72cf3ec 3497 if ((i.tm.operand_types[dest] & (AnyMem | RegMem)) == 0)
29b0f896
AM
3498 {
3499 i.rm.reg = i.op[dest].regs->reg_num;
3500 i.rm.regmem = i.op[source].regs->reg_num;
3501 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 3502 i.rex |= REX_R;
29b0f896 3503 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 3504 i.rex |= REX_B;
29b0f896
AM
3505 }
3506 else
3507 {
3508 i.rm.reg = i.op[source].regs->reg_num;
3509 i.rm.regmem = i.op[dest].regs->reg_num;
3510 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 3511 i.rex |= REX_B;
29b0f896 3512 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 3513 i.rex |= REX_R;
29b0f896 3514 }
161a04f6 3515 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
c4a530c5
JB
3516 {
3517 if (!((i.types[0] | i.types[1]) & Control))
3518 abort ();
161a04f6 3519 i.rex &= ~(REX_R | REX_B);
c4a530c5
JB
3520 add_prefix (LOCK_PREFIX_OPCODE);
3521 }
29b0f896
AM
3522 }
3523 else
3524 { /* If it's not 2 reg operands... */
3525 if (i.mem_operands)
3526 {
3527 unsigned int fake_zero_displacement = 0;
99018f42 3528 unsigned int op;
4eed87de 3529
99018f42
L
3530 for (op = 0; op < i.operands; op++)
3531 if ((i.types[op] & AnyMem))
3532 break;
3533 assert (op < i.operands);
29b0f896
AM
3534
3535 default_seg = &ds;
3536
3537 if (i.base_reg == 0)
3538 {
3539 i.rm.mode = 0;
3540 if (!i.disp_operands)
3541 fake_zero_displacement = 1;
3542 if (i.index_reg == 0)
3543 {
3544 /* Operand is just <disp> */
20f0a1fc 3545 if (flag_code == CODE_64BIT)
29b0f896
AM
3546 {
3547 /* 64bit mode overwrites the 32bit absolute
3548 addressing by RIP relative addressing and
3549 absolute addressing is encoded by one of the
3550 redundant SIB forms. */
3551 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3552 i.sib.base = NO_BASE_REGISTER;
3553 i.sib.index = NO_INDEX_REGISTER;
fc225355
L
3554 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
3555 ? Disp32S : Disp32);
20f0a1fc 3556 }
fc225355
L
3557 else if ((flag_code == CODE_16BIT)
3558 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
3559 {
3560 i.rm.regmem = NO_BASE_REGISTER_16;
3561 i.types[op] = Disp16;
3562 }
3563 else
3564 {
3565 i.rm.regmem = NO_BASE_REGISTER;
3566 i.types[op] = Disp32;
29b0f896
AM
3567 }
3568 }
3569 else /* !i.base_reg && i.index_reg */
3570 {
3571 i.sib.index = i.index_reg->reg_num;
3572 i.sib.base = NO_BASE_REGISTER;
3573 i.sib.scale = i.log2_scale_factor;
3574 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3575 i.types[op] &= ~Disp;
3576 if (flag_code != CODE_64BIT)
3577 i.types[op] |= Disp32; /* Must be 32 bit */
3578 else
3579 i.types[op] |= Disp32S;
3580 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 3581 i.rex |= REX_X;
29b0f896
AM
3582 }
3583 }
3584 /* RIP addressing for 64bit mode. */
3585 else if (i.base_reg->reg_type == BaseIndex)
3586 {
3587 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 3588 i.types[op] &= ~ Disp;
29b0f896 3589 i.types[op] |= Disp32S;
71903a11 3590 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
3591 if (! i.disp_operands)
3592 fake_zero_displacement = 1;
29b0f896
AM
3593 }
3594 else if (i.base_reg->reg_type & Reg16)
3595 {
3596 switch (i.base_reg->reg_num)
3597 {
3598 case 3: /* (%bx) */
3599 if (i.index_reg == 0)
3600 i.rm.regmem = 7;
3601 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3602 i.rm.regmem = i.index_reg->reg_num - 6;
3603 break;
3604 case 5: /* (%bp) */
3605 default_seg = &ss;
3606 if (i.index_reg == 0)
3607 {
3608 i.rm.regmem = 6;
3609 if ((i.types[op] & Disp) == 0)
3610 {
3611 /* fake (%bp) into 0(%bp) */
3612 i.types[op] |= Disp8;
252b5132 3613 fake_zero_displacement = 1;
29b0f896
AM
3614 }
3615 }
3616 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3617 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3618 break;
3619 default: /* (%si) -> 4 or (%di) -> 5 */
3620 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3621 }
3622 i.rm.mode = mode_from_disp_size (i.types[op]);
3623 }
3624 else /* i.base_reg and 32/64 bit mode */
3625 {
3626 if (flag_code == CODE_64BIT
3627 && (i.types[op] & Disp))
fc225355
L
3628 i.types[op] = ((i.types[op] & Disp8)
3629 | (i.prefix[ADDR_PREFIX] == 0
3630 ? Disp32S : Disp32));
20f0a1fc 3631
29b0f896
AM
3632 i.rm.regmem = i.base_reg->reg_num;
3633 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 3634 i.rex |= REX_B;
29b0f896
AM
3635 i.sib.base = i.base_reg->reg_num;
3636 /* x86-64 ignores REX prefix bit here to avoid decoder
3637 complications. */
3638 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3639 {
3640 default_seg = &ss;
3641 if (i.disp_operands == 0)
3642 {
3643 fake_zero_displacement = 1;
3644 i.types[op] |= Disp8;
3645 }
3646 }
3647 else if (i.base_reg->reg_num == ESP_REG_NUM)
3648 {
3649 default_seg = &ss;
3650 }
3651 i.sib.scale = i.log2_scale_factor;
3652 if (i.index_reg == 0)
3653 {
3654 /* <disp>(%esp) becomes two byte modrm with no index
3655 register. We've already stored the code for esp
3656 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3657 Any base register besides %esp will not use the
3658 extra modrm byte. */
3659 i.sib.index = NO_INDEX_REGISTER;
3660#if !SCALE1_WHEN_NO_INDEX
3661 /* Another case where we force the second modrm byte. */
3662 if (i.log2_scale_factor)
3663 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 3664#endif
29b0f896
AM
3665 }
3666 else
3667 {
3668 i.sib.index = i.index_reg->reg_num;
3669 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3670 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 3671 i.rex |= REX_X;
29b0f896 3672 }
67a4f2b7
AO
3673
3674 if (i.disp_operands
3675 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3676 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3677 i.rm.mode = 0;
3678 else
3679 i.rm.mode = mode_from_disp_size (i.types[op]);
29b0f896 3680 }
252b5132 3681
29b0f896
AM
3682 if (fake_zero_displacement)
3683 {
3684 /* Fakes a zero displacement assuming that i.types[op]
3685 holds the correct displacement size. */
3686 expressionS *exp;
3687
3688 assert (i.op[op].disps == 0);
3689 exp = &disp_expressions[i.disp_operands++];
3690 i.op[op].disps = exp;
3691 exp->X_op = O_constant;
3692 exp->X_add_number = 0;
3693 exp->X_add_symbol = (symbolS *) 0;
3694 exp->X_op_symbol = (symbolS *) 0;
3695 }
3696 }
252b5132 3697
29b0f896
AM
3698 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3699 (if any) based on i.tm.extension_opcode. Again, we must be
3700 careful to make sure that segment/control/debug/test/MMX
3701 registers are coded into the i.rm.reg field. */
3702 if (i.reg_operands)
3703 {
99018f42
L
3704 unsigned int op;
3705
3706 for (op = 0; op < i.operands; op++)
3707 if ((i.types[op] & (Reg | RegMMX | RegXMM
3708 | SReg2 | SReg3
3709 | Control | Debug | Test)))
3710 break;
3711 assert (op < i.operands);
3712
29b0f896
AM
3713 /* If there is an extension opcode to put here, the register
3714 number must be put into the regmem field. */
3715 if (i.tm.extension_opcode != None)
3716 {
3717 i.rm.regmem = i.op[op].regs->reg_num;
3718 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 3719 i.rex |= REX_B;
29b0f896
AM
3720 }
3721 else
3722 {
3723 i.rm.reg = i.op[op].regs->reg_num;
3724 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 3725 i.rex |= REX_R;
29b0f896 3726 }
252b5132 3727
29b0f896
AM
3728 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3729 must set it to 3 to indicate this is a register operand
3730 in the regmem field. */
3731 if (!i.mem_operands)
3732 i.rm.mode = 3;
3733 }
252b5132 3734
29b0f896
AM
3735 /* Fill in i.rm.reg field with extension opcode (if any). */
3736 if (i.tm.extension_opcode != None)
3737 i.rm.reg = i.tm.extension_opcode;
3738 }
3739 return default_seg;
3740}
252b5132 3741
29b0f896 3742static void
e3bb37b5 3743output_branch (void)
29b0f896
AM
3744{
3745 char *p;
3746 int code16;
3747 int prefix;
3748 relax_substateT subtype;
3749 symbolS *sym;
3750 offsetT off;
3751
3752 code16 = 0;
3753 if (flag_code == CODE_16BIT)
3754 code16 = CODE16;
3755
3756 prefix = 0;
3757 if (i.prefix[DATA_PREFIX] != 0)
252b5132 3758 {
29b0f896
AM
3759 prefix = 1;
3760 i.prefixes -= 1;
3761 code16 ^= CODE16;
252b5132 3762 }
29b0f896
AM
3763 /* Pentium4 branch hints. */
3764 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3765 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 3766 {
29b0f896
AM
3767 prefix++;
3768 i.prefixes--;
3769 }
3770 if (i.prefix[REX_PREFIX] != 0)
3771 {
3772 prefix++;
3773 i.prefixes--;
2f66722d
AM
3774 }
3775
29b0f896
AM
3776 if (i.prefixes != 0 && !intel_syntax)
3777 as_warn (_("skipping prefixes on this instruction"));
3778
3779 /* It's always a symbol; End frag & setup for relax.
3780 Make sure there is enough room in this frag for the largest
3781 instruction we may generate in md_convert_frag. This is 2
3782 bytes for the opcode and room for the prefix and largest
3783 displacement. */
3784 frag_grow (prefix + 2 + 4);
3785 /* Prefix and 1 opcode byte go in fr_fix. */
3786 p = frag_more (prefix + 1);
3787 if (i.prefix[DATA_PREFIX] != 0)
3788 *p++ = DATA_PREFIX_OPCODE;
3789 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3790 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3791 *p++ = i.prefix[SEG_PREFIX];
3792 if (i.prefix[REX_PREFIX] != 0)
3793 *p++ = i.prefix[REX_PREFIX];
3794 *p = i.tm.base_opcode;
3795
3796 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3797 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3798 else if ((cpu_arch_flags & Cpu386) != 0)
3799 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3800 else
3801 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3802 subtype |= code16;
3e73aa7c 3803
29b0f896
AM
3804 sym = i.op[0].disps->X_add_symbol;
3805 off = i.op[0].disps->X_add_number;
3e73aa7c 3806
29b0f896
AM
3807 if (i.op[0].disps->X_op != O_constant
3808 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3809 {
29b0f896
AM
3810 /* Handle complex expressions. */
3811 sym = make_expr_symbol (i.op[0].disps);
3812 off = 0;
3813 }
3e73aa7c 3814
29b0f896
AM
3815 /* 1 possible extra opcode + 4 byte displacement go in var part.
3816 Pass reloc in fr_var. */
3817 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3818}
3e73aa7c 3819
29b0f896 3820static void
e3bb37b5 3821output_jump (void)
29b0f896
AM
3822{
3823 char *p;
3824 int size;
3e02c1cc 3825 fixS *fixP;
29b0f896
AM
3826
3827 if (i.tm.opcode_modifier & JumpByte)
3828 {
3829 /* This is a loop or jecxz type instruction. */
3830 size = 1;
3831 if (i.prefix[ADDR_PREFIX] != 0)
3832 {
3833 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3834 i.prefixes -= 1;
3835 }
3836 /* Pentium4 branch hints. */
3837 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3838 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3839 {
3840 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3841 i.prefixes--;
3e73aa7c
JH
3842 }
3843 }
29b0f896
AM
3844 else
3845 {
3846 int code16;
3e73aa7c 3847
29b0f896
AM
3848 code16 = 0;
3849 if (flag_code == CODE_16BIT)
3850 code16 = CODE16;
3e73aa7c 3851
29b0f896
AM
3852 if (i.prefix[DATA_PREFIX] != 0)
3853 {
3854 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3855 i.prefixes -= 1;
3856 code16 ^= CODE16;
3857 }
252b5132 3858
29b0f896
AM
3859 size = 4;
3860 if (code16)
3861 size = 2;
3862 }
9fcc94b6 3863
29b0f896
AM
3864 if (i.prefix[REX_PREFIX] != 0)
3865 {
3866 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3867 i.prefixes -= 1;
3868 }
252b5132 3869
29b0f896
AM
3870 if (i.prefixes != 0 && !intel_syntax)
3871 as_warn (_("skipping prefixes on this instruction"));
e0890092 3872
29b0f896
AM
3873 p = frag_more (1 + size);
3874 *p++ = i.tm.base_opcode;
e0890092 3875
3e02c1cc
AM
3876 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3877 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3878
3879 /* All jumps handled here are signed, but don't use a signed limit
3880 check for 32 and 16 bit jumps as we want to allow wrap around at
3881 4G and 64k respectively. */
3882 if (size == 1)
3883 fixP->fx_signed = 1;
29b0f896 3884}
e0890092 3885
29b0f896 3886static void
e3bb37b5 3887output_interseg_jump (void)
29b0f896
AM
3888{
3889 char *p;
3890 int size;
3891 int prefix;
3892 int code16;
252b5132 3893
29b0f896
AM
3894 code16 = 0;
3895 if (flag_code == CODE_16BIT)
3896 code16 = CODE16;
a217f122 3897
29b0f896
AM
3898 prefix = 0;
3899 if (i.prefix[DATA_PREFIX] != 0)
3900 {
3901 prefix = 1;
3902 i.prefixes -= 1;
3903 code16 ^= CODE16;
3904 }
3905 if (i.prefix[REX_PREFIX] != 0)
3906 {
3907 prefix++;
3908 i.prefixes -= 1;
3909 }
252b5132 3910
29b0f896
AM
3911 size = 4;
3912 if (code16)
3913 size = 2;
252b5132 3914
29b0f896
AM
3915 if (i.prefixes != 0 && !intel_syntax)
3916 as_warn (_("skipping prefixes on this instruction"));
252b5132 3917
29b0f896
AM
3918 /* 1 opcode; 2 segment; offset */
3919 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3920
29b0f896
AM
3921 if (i.prefix[DATA_PREFIX] != 0)
3922 *p++ = DATA_PREFIX_OPCODE;
252b5132 3923
29b0f896
AM
3924 if (i.prefix[REX_PREFIX] != 0)
3925 *p++ = i.prefix[REX_PREFIX];
252b5132 3926
29b0f896
AM
3927 *p++ = i.tm.base_opcode;
3928 if (i.op[1].imms->X_op == O_constant)
3929 {
3930 offsetT n = i.op[1].imms->X_add_number;
252b5132 3931
29b0f896
AM
3932 if (size == 2
3933 && !fits_in_unsigned_word (n)
3934 && !fits_in_signed_word (n))
3935 {
3936 as_bad (_("16-bit jump out of range"));
3937 return;
3938 }
3939 md_number_to_chars (p, n, size);
3940 }
3941 else
3942 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3943 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3944 if (i.op[0].imms->X_op != O_constant)
3945 as_bad (_("can't handle non absolute segment in `%s'"),
3946 i.tm.name);
3947 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3948}
a217f122 3949
29b0f896 3950static void
e3bb37b5 3951output_insn (void)
29b0f896 3952{
2bbd9c25
JJ
3953 fragS *insn_start_frag;
3954 offsetT insn_start_off;
3955
29b0f896
AM
3956 /* Tie dwarf2 debug info to the address at the start of the insn.
3957 We can't do this after the insn has been output as the current
3958 frag may have been closed off. eg. by frag_var. */
3959 dwarf2_emit_insn (0);
3960
2bbd9c25
JJ
3961 insn_start_frag = frag_now;
3962 insn_start_off = frag_now_fix ();
3963
29b0f896
AM
3964 /* Output jumps. */
3965 if (i.tm.opcode_modifier & Jump)
3966 output_branch ();
3967 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3968 output_jump ();
3969 else if (i.tm.opcode_modifier & JumpInterSegment)
3970 output_interseg_jump ();
3971 else
3972 {
3973 /* Output normal instructions here. */
3974 char *p;
3975 unsigned char *q;
331d2d0d 3976 unsigned int prefix;
252b5132 3977
42903f7f 3978 /* All opcodes on i386 have either 1 or 2 bytes. SSSE3 and
381d071f
L
3979 SSE4 instructions have 3 bytes. We may use one more higher
3980 byte to specify a prefix the instruction requires. Exclude
3981 instructions which are in both SSE4 and ABM. */
3982 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
3983 && (i.tm.cpu_flags & CpuABM) == 0)
bc4bd9ab 3984 {
331d2d0d
L
3985 if (i.tm.base_opcode & 0xff000000)
3986 {
3987 prefix = (i.tm.base_opcode >> 24) & 0xff;
3988 goto check_prefix;
3989 }
3990 }
3991 else if ((i.tm.base_opcode & 0xff0000) != 0)
3992 {
3993 prefix = (i.tm.base_opcode >> 16) & 0xff;
bc4bd9ab
MK
3994 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3995 {
64e74474 3996 check_prefix:
bc4bd9ab
MK
3997 if (prefix != REPE_PREFIX_OPCODE
3998 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3999 add_prefix (prefix);
4000 }
4001 else
331d2d0d 4002 add_prefix (prefix);
0f10071e 4003 }
252b5132 4004
29b0f896
AM
4005 /* The prefix bytes. */
4006 for (q = i.prefix;
4007 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
4008 q++)
4009 {
4010 if (*q)
4011 {
4012 p = frag_more (1);
4013 md_number_to_chars (p, (valueT) *q, 1);
4014 }
4015 }
252b5132 4016
29b0f896
AM
4017 /* Now the opcode; be careful about word order here! */
4018 if (fits_in_unsigned_byte (i.tm.base_opcode))
4019 {
4020 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
4021 }
4022 else
4023 {
381d071f
L
4024 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
4025 && (i.tm.cpu_flags & CpuABM) == 0)
331d2d0d
L
4026 {
4027 p = frag_more (3);
4028 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4029 }
4030 else
4031 p = frag_more (2);
0f10071e 4032
29b0f896
AM
4033 /* Put out high byte first: can't use md_number_to_chars! */
4034 *p++ = (i.tm.base_opcode >> 8) & 0xff;
4035 *p = i.tm.base_opcode & 0xff;
4036 }
3e73aa7c 4037
29b0f896
AM
4038 /* Now the modrm byte and sib byte (if present). */
4039 if (i.tm.opcode_modifier & Modrm)
4040 {
4041 p = frag_more (1);
4042 md_number_to_chars (p,
4043 (valueT) (i.rm.regmem << 0
4044 | i.rm.reg << 3
4045 | i.rm.mode << 6),
4046 1);
4047 /* If i.rm.regmem == ESP (4)
4048 && i.rm.mode != (Register mode)
4049 && not 16 bit
4050 ==> need second modrm byte. */
4051 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
4052 && i.rm.mode != 3
4053 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
4054 {
4055 p = frag_more (1);
4056 md_number_to_chars (p,
4057 (valueT) (i.sib.base << 0
4058 | i.sib.index << 3
4059 | i.sib.scale << 6),
4060 1);
4061 }
4062 }
3e73aa7c 4063
29b0f896 4064 if (i.disp_operands)
2bbd9c25 4065 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 4066
29b0f896 4067 if (i.imm_operands)
2bbd9c25 4068 output_imm (insn_start_frag, insn_start_off);
29b0f896 4069 }
252b5132 4070
29b0f896
AM
4071#ifdef DEBUG386
4072 if (flag_debug)
4073 {
7b81dfbb 4074 pi ("" /*line*/, &i);
29b0f896
AM
4075 }
4076#endif /* DEBUG386 */
4077}
252b5132 4078
29b0f896 4079static void
64e74474 4080output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
4081{
4082 char *p;
4083 unsigned int n;
252b5132 4084
29b0f896
AM
4085 for (n = 0; n < i.operands; n++)
4086 {
4087 if (i.types[n] & Disp)
4088 {
4089 if (i.op[n].disps->X_op == O_constant)
4090 {
4091 int size;
4092 offsetT val;
252b5132 4093
29b0f896
AM
4094 size = 4;
4095 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4096 {
4097 size = 2;
4098 if (i.types[n] & Disp8)
4099 size = 1;
4100 if (i.types[n] & Disp64)
4101 size = 8;
4102 }
4103 val = offset_in_range (i.op[n].disps->X_add_number,
4104 size);
4105 p = frag_more (size);
4106 md_number_to_chars (p, val, size);
4107 }
4108 else
4109 {
f86103b7 4110 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
4111 int size = 4;
4112 int sign = 0;
4113 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4114
4115 /* The PC relative address is computed relative
4116 to the instruction boundary, so in case immediate
4117 fields follows, we need to adjust the value. */
4118 if (pcrel && i.imm_operands)
4119 {
4120 int imm_size = 4;
4121 unsigned int n1;
252b5132 4122
29b0f896
AM
4123 for (n1 = 0; n1 < i.operands; n1++)
4124 if (i.types[n1] & Imm)
252b5132 4125 {
29b0f896 4126 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 4127 {
29b0f896
AM
4128 imm_size = 2;
4129 if (i.types[n1] & (Imm8 | Imm8S))
4130 imm_size = 1;
4131 if (i.types[n1] & Imm64)
4132 imm_size = 8;
252b5132 4133 }
29b0f896 4134 break;
252b5132 4135 }
29b0f896
AM
4136 /* We should find the immediate. */
4137 if (n1 == i.operands)
4138 abort ();
4139 i.op[n].disps->X_add_number -= imm_size;
4140 }
520dc8e8 4141
29b0f896
AM
4142 if (i.types[n] & Disp32S)
4143 sign = 1;
3e73aa7c 4144
29b0f896
AM
4145 if (i.types[n] & (Disp16 | Disp64))
4146 {
4147 size = 2;
4148 if (i.types[n] & Disp64)
4149 size = 8;
4150 }
520dc8e8 4151
29b0f896 4152 p = frag_more (size);
2bbd9c25 4153 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 4154 if (GOT_symbol
2bbd9c25 4155 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 4156 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
4157 || reloc_type == BFD_RELOC_X86_64_32S
4158 || (reloc_type == BFD_RELOC_64
4159 && object_64bit))
d6ab8113
JB
4160 && (i.op[n].disps->X_op == O_symbol
4161 || (i.op[n].disps->X_op == O_add
4162 && ((symbol_get_value_expression
4163 (i.op[n].disps->X_op_symbol)->X_op)
4164 == O_subtract))))
4165 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
4166 {
4167 offsetT add;
4168
4169 if (insn_start_frag == frag_now)
4170 add = (p - frag_now->fr_literal) - insn_start_off;
4171 else
4172 {
4173 fragS *fr;
4174
4175 add = insn_start_frag->fr_fix - insn_start_off;
4176 for (fr = insn_start_frag->fr_next;
4177 fr && fr != frag_now; fr = fr->fr_next)
4178 add += fr->fr_fix;
4179 add += p - frag_now->fr_literal;
4180 }
4181
4fa24527 4182 if (!object_64bit)
7b81dfbb
AJ
4183 {
4184 reloc_type = BFD_RELOC_386_GOTPC;
4185 i.op[n].imms->X_add_number += add;
4186 }
4187 else if (reloc_type == BFD_RELOC_64)
4188 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 4189 else
7b81dfbb
AJ
4190 /* Don't do the adjustment for x86-64, as there
4191 the pcrel addressing is relative to the _next_
4192 insn, and that is taken care of in other code. */
d6ab8113 4193 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 4194 }
062cd5e7 4195 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 4196 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
4197 }
4198 }
4199 }
4200}
252b5132 4201
29b0f896 4202static void
64e74474 4203output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
4204{
4205 char *p;
4206 unsigned int n;
252b5132 4207
29b0f896
AM
4208 for (n = 0; n < i.operands; n++)
4209 {
4210 if (i.types[n] & Imm)
4211 {
4212 if (i.op[n].imms->X_op == O_constant)
4213 {
4214 int size;
4215 offsetT val;
b4cac588 4216
29b0f896
AM
4217 size = 4;
4218 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4219 {
4220 size = 2;
4221 if (i.types[n] & (Imm8 | Imm8S))
4222 size = 1;
4223 else if (i.types[n] & Imm64)
4224 size = 8;
4225 }
4226 val = offset_in_range (i.op[n].imms->X_add_number,
4227 size);
4228 p = frag_more (size);
4229 md_number_to_chars (p, val, size);
4230 }
4231 else
4232 {
4233 /* Not absolute_section.
4234 Need a 32-bit fixup (don't support 8bit
4235 non-absolute imms). Try to support other
4236 sizes ... */
f86103b7 4237 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
4238 int size = 4;
4239 int sign = 0;
4240
4241 if ((i.types[n] & (Imm32S))
a7d61044
JB
4242 && (i.suffix == QWORD_MNEM_SUFFIX
4243 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
29b0f896
AM
4244 sign = 1;
4245 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4246 {
4247 size = 2;
4248 if (i.types[n] & (Imm8 | Imm8S))
4249 size = 1;
4250 if (i.types[n] & Imm64)
4251 size = 8;
4252 }
520dc8e8 4253
29b0f896
AM
4254 p = frag_more (size);
4255 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 4256
2bbd9c25
JJ
4257 /* This is tough to explain. We end up with this one if we
4258 * have operands that look like
4259 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4260 * obtain the absolute address of the GOT, and it is strongly
4261 * preferable from a performance point of view to avoid using
4262 * a runtime relocation for this. The actual sequence of
4263 * instructions often look something like:
4264 *
4265 * call .L66
4266 * .L66:
4267 * popl %ebx
4268 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4269 *
4270 * The call and pop essentially return the absolute address
4271 * of the label .L66 and store it in %ebx. The linker itself
4272 * will ultimately change the first operand of the addl so
4273 * that %ebx points to the GOT, but to keep things simple, the
4274 * .o file must have this operand set so that it generates not
4275 * the absolute address of .L66, but the absolute address of
4276 * itself. This allows the linker itself simply treat a GOTPC
4277 * relocation as asking for a pcrel offset to the GOT to be
4278 * added in, and the addend of the relocation is stored in the
4279 * operand field for the instruction itself.
4280 *
4281 * Our job here is to fix the operand so that it would add
4282 * the correct offset so that %ebx would point to itself. The
4283 * thing that is tricky is that .-.L66 will point to the
4284 * beginning of the instruction, so we need to further modify
4285 * the operand so that it will point to itself. There are
4286 * other cases where you have something like:
4287 *
4288 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4289 *
4290 * and here no correction would be required. Internally in
4291 * the assembler we treat operands of this form as not being
4292 * pcrel since the '.' is explicitly mentioned, and I wonder
4293 * whether it would simplify matters to do it this way. Who
4294 * knows. In earlier versions of the PIC patches, the
4295 * pcrel_adjust field was used to store the correction, but
4296 * since the expression is not pcrel, I felt it would be
4297 * confusing to do it this way. */
4298
d6ab8113 4299 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
4300 || reloc_type == BFD_RELOC_X86_64_32S
4301 || reloc_type == BFD_RELOC_64)
29b0f896
AM
4302 && GOT_symbol
4303 && GOT_symbol == i.op[n].imms->X_add_symbol
4304 && (i.op[n].imms->X_op == O_symbol
4305 || (i.op[n].imms->X_op == O_add
4306 && ((symbol_get_value_expression
4307 (i.op[n].imms->X_op_symbol)->X_op)
4308 == O_subtract))))
4309 {
2bbd9c25
JJ
4310 offsetT add;
4311
4312 if (insn_start_frag == frag_now)
4313 add = (p - frag_now->fr_literal) - insn_start_off;
4314 else
4315 {
4316 fragS *fr;
4317
4318 add = insn_start_frag->fr_fix - insn_start_off;
4319 for (fr = insn_start_frag->fr_next;
4320 fr && fr != frag_now; fr = fr->fr_next)
4321 add += fr->fr_fix;
4322 add += p - frag_now->fr_literal;
4323 }
4324
4fa24527 4325 if (!object_64bit)
d6ab8113 4326 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 4327 else if (size == 4)
d6ab8113 4328 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
4329 else if (size == 8)
4330 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 4331 i.op[n].imms->X_add_number += add;
29b0f896 4332 }
29b0f896
AM
4333 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4334 i.op[n].imms, 0, reloc_type);
4335 }
4336 }
4337 }
252b5132
RH
4338}
4339\f
d182319b
JB
4340/* x86_cons_fix_new is called via the expression parsing code when a
4341 reloc is needed. We use this hook to get the correct .got reloc. */
4342static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4343static int cons_sign = -1;
4344
4345void
e3bb37b5 4346x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
64e74474 4347 expressionS *exp)
d182319b
JB
4348{
4349 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4350
4351 got_reloc = NO_RELOC;
4352
4353#ifdef TE_PE
4354 if (exp->X_op == O_secrel)
4355 {
4356 exp->X_op = O_symbol;
4357 r = BFD_RELOC_32_SECREL;
4358 }
4359#endif
4360
4361 fix_new_exp (frag, off, len, exp, 0, r);
4362}
4363
718ddfc0
JB
4364#if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4365# define lex_got(reloc, adjust, types) NULL
4366#else
f3c180ae
AM
4367/* Parse operands of the form
4368 <symbol>@GOTOFF+<nnn>
4369 and similar .plt or .got references.
4370
4371 If we find one, set up the correct relocation in RELOC and copy the
4372 input string, minus the `@GOTOFF' into a malloc'd buffer for
4373 parsing by the calling routine. Return this buffer, and if ADJUST
4374 is non-null set it to the length of the string we removed from the
4375 input line. Otherwise return NULL. */
4376static char *
3956db08 4377lex_got (enum bfd_reloc_code_real *reloc,
64e74474
AM
4378 int *adjust,
4379 unsigned int *types)
f3c180ae 4380{
7b81dfbb
AJ
4381 /* Some of the relocations depend on the size of what field is to
4382 be relocated. But in our callers i386_immediate and i386_displacement
4383 we don't yet know the operand size (this will be set by insn
4384 matching). Hence we record the word32 relocation here,
4385 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
4386 static const struct {
4387 const char *str;
4fa24527 4388 const enum bfd_reloc_code_real rel[2];
3956db08 4389 const unsigned int types64;
f3c180ae 4390 } gotrel[] = {
4eed87de
AM
4391 { "PLTOFF", { 0,
4392 BFD_RELOC_X86_64_PLTOFF64 },
4393 Imm64 },
4394 { "PLT", { BFD_RELOC_386_PLT32,
4395 BFD_RELOC_X86_64_PLT32 },
4396 Imm32 | Imm32S | Disp32 },
4397 { "GOTPLT", { 0,
4398 BFD_RELOC_X86_64_GOTPLT64 },
4399 Imm64 | Disp64 },
4400 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
4401 BFD_RELOC_X86_64_GOTOFF64 },
4402 Imm64 | Disp64 },
4403 { "GOTPCREL", { 0,
4404 BFD_RELOC_X86_64_GOTPCREL },
4405 Imm32 | Imm32S | Disp32 },
4406 { "TLSGD", { BFD_RELOC_386_TLS_GD,
4407 BFD_RELOC_X86_64_TLSGD },
4408 Imm32 | Imm32S | Disp32 },
4409 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
4410 0 },
4411 0 },
4412 { "TLSLD", { 0,
4413 BFD_RELOC_X86_64_TLSLD },
4414 Imm32 | Imm32S | Disp32 },
4415 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
4416 BFD_RELOC_X86_64_GOTTPOFF },
4417 Imm32 | Imm32S | Disp32 },
4418 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
4419 BFD_RELOC_X86_64_TPOFF32 },
4420 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4421 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
4422 0 },
4423 0 },
4424 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
4425 BFD_RELOC_X86_64_DTPOFF32 },
4426 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4427 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
4428 0 },
4429 0 },
4430 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
4431 0 },
4432 0 },
4433 { "GOT", { BFD_RELOC_386_GOT32,
4434 BFD_RELOC_X86_64_GOT32 },
4435 Imm32 | Imm32S | Disp32 | Imm64 },
4436 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
4437 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
4438 Imm32 | Imm32S | Disp32 },
4439 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
4440 BFD_RELOC_X86_64_TLSDESC_CALL },
4441 Imm32 | Imm32S | Disp32 }
f3c180ae
AM
4442 };
4443 char *cp;
4444 unsigned int j;
4445
718ddfc0
JB
4446 if (!IS_ELF)
4447 return NULL;
4448
f3c180ae
AM
4449 for (cp = input_line_pointer; *cp != '@'; cp++)
4450 if (is_end_of_line[(unsigned char) *cp])
4451 return NULL;
4452
4453 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4454 {
4455 int len;
4456
4457 len = strlen (gotrel[j].str);
28f81592 4458 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 4459 {
4fa24527 4460 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 4461 {
28f81592
AM
4462 int first, second;
4463 char *tmpbuf, *past_reloc;
f3c180ae 4464
4fa24527 4465 *reloc = gotrel[j].rel[object_64bit];
28f81592
AM
4466 if (adjust)
4467 *adjust = len;
f3c180ae 4468
3956db08
JB
4469 if (types)
4470 {
4471 if (flag_code != CODE_64BIT)
4eed87de 4472 *types = Imm32 | Disp32;
3956db08
JB
4473 else
4474 *types = gotrel[j].types64;
4475 }
4476
f3c180ae
AM
4477 if (GOT_symbol == NULL)
4478 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4479
28f81592 4480 /* The length of the first part of our input line. */
f3c180ae 4481 first = cp - input_line_pointer;
28f81592
AM
4482
4483 /* The second part goes from after the reloc token until
4484 (and including) an end_of_line char. Don't use strlen
4485 here as the end_of_line char may not be a NUL. */
4486 past_reloc = cp + 1 + len;
4487 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4488 ;
4489 second = cp - past_reloc;
4490
4491 /* Allocate and copy string. The trailing NUL shouldn't
4492 be necessary, but be safe. */
4493 tmpbuf = xmalloc (first + second + 2);
f3c180ae 4494 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
4495 if (second != 0 && *past_reloc != ' ')
4496 /* Replace the relocation token with ' ', so that
4497 errors like foo@GOTOFF1 will be detected. */
4498 tmpbuf[first++] = ' ';
4499 memcpy (tmpbuf + first, past_reloc, second);
4500 tmpbuf[first + second] = '\0';
f3c180ae
AM
4501 return tmpbuf;
4502 }
4503
4fa24527
JB
4504 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4505 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
4506 return NULL;
4507 }
4508 }
4509
4510 /* Might be a symbol version string. Don't as_bad here. */
4511 return NULL;
4512}
4513
f3c180ae 4514void
e3bb37b5 4515x86_cons (expressionS *exp, int size)
f3c180ae 4516{
4fa24527 4517 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
4518 {
4519 /* Handle @GOTOFF and the like in an expression. */
4520 char *save;
4521 char *gotfree_input_line;
4522 int adjust;
4523
4524 save = input_line_pointer;
3956db08 4525 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
4526 if (gotfree_input_line)
4527 input_line_pointer = gotfree_input_line;
4528
4529 expression (exp);
4530
4531 if (gotfree_input_line)
4532 {
4533 /* expression () has merrily parsed up to the end of line,
4534 or a comma - in the wrong buffer. Transfer how far
4535 input_line_pointer has moved to the right buffer. */
4536 input_line_pointer = (save
4537 + (input_line_pointer - gotfree_input_line)
4538 + adjust);
4539 free (gotfree_input_line);
4540 }
4541 }
4542 else
4543 expression (exp);
4544}
4545#endif
4546
d182319b 4547static void signed_cons (int size)
6482c264 4548{
d182319b
JB
4549 if (flag_code == CODE_64BIT)
4550 cons_sign = 1;
4551 cons (size);
4552 cons_sign = -1;
6482c264
NC
4553}
4554
d182319b 4555#ifdef TE_PE
6482c264
NC
4556static void
4557pe_directive_secrel (dummy)
4558 int dummy ATTRIBUTE_UNUSED;
4559{
4560 expressionS exp;
4561
4562 do
4563 {
4564 expression (&exp);
4565 if (exp.X_op == O_symbol)
4566 exp.X_op = O_secrel;
4567
4568 emit_expr (&exp, 4);
4569 }
4570 while (*input_line_pointer++ == ',');
4571
4572 input_line_pointer--;
4573 demand_empty_rest_of_line ();
4574}
6482c264
NC
4575#endif
4576
252b5132 4577static int
70e41ade 4578i386_immediate (char *imm_start)
252b5132
RH
4579{
4580 char *save_input_line_pointer;
f3c180ae 4581 char *gotfree_input_line;
252b5132 4582 segT exp_seg = 0;
47926f60 4583 expressionS *exp;
3956db08 4584 unsigned int types = ~0U;
252b5132
RH
4585
4586 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4587 {
31b2323c
L
4588 as_bad (_("at most %d immediate operands are allowed"),
4589 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
4590 return 0;
4591 }
4592
4593 exp = &im_expressions[i.imm_operands++];
520dc8e8 4594 i.op[this_operand].imms = exp;
252b5132
RH
4595
4596 if (is_space_char (*imm_start))
4597 ++imm_start;
4598
4599 save_input_line_pointer = input_line_pointer;
4600 input_line_pointer = imm_start;
4601
3956db08 4602 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
4603 if (gotfree_input_line)
4604 input_line_pointer = gotfree_input_line;
252b5132
RH
4605
4606 exp_seg = expression (exp);
4607
83183c0c 4608 SKIP_WHITESPACE ();
252b5132 4609 if (*input_line_pointer)
f3c180ae 4610 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
4611
4612 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
4613 if (gotfree_input_line)
4614 free (gotfree_input_line);
252b5132 4615
2daf4fd8 4616 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 4617 {
47926f60 4618 /* Missing or bad expr becomes absolute 0. */
d0b47220 4619 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 4620 imm_start);
252b5132
RH
4621 exp->X_op = O_constant;
4622 exp->X_add_number = 0;
4623 exp->X_add_symbol = (symbolS *) 0;
4624 exp->X_op_symbol = (symbolS *) 0;
252b5132 4625 }
3e73aa7c 4626 else if (exp->X_op == O_constant)
252b5132 4627 {
47926f60 4628 /* Size it properly later. */
3e73aa7c
JH
4629 i.types[this_operand] |= Imm64;
4630 /* If BFD64, sign extend val. */
4eed87de
AM
4631 if (!use_rela_relocations
4632 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4633 exp->X_add_number
4634 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 4635 }
4c63da97 4636#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 4637 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4638 && exp_seg != absolute_section
47926f60 4639 && exp_seg != text_section
24eab124
AM
4640 && exp_seg != data_section
4641 && exp_seg != bss_section
4642 && exp_seg != undefined_section
f86103b7 4643 && !bfd_is_com_section (exp_seg))
252b5132 4644 {
d0b47220 4645 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
4646 return 0;
4647 }
4648#endif
bb8f5920
L
4649 else if (!intel_syntax && exp->X_op == O_register)
4650 {
4651 as_bad (_("illegal immediate register operand %s"), imm_start);
4652 return 0;
4653 }
252b5132
RH
4654 else
4655 {
4656 /* This is an address. The size of the address will be
24eab124 4657 determined later, depending on destination register,
3e73aa7c
JH
4658 suffix, or the default for the section. */
4659 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3956db08 4660 i.types[this_operand] &= types;
252b5132
RH
4661 }
4662
4663 return 1;
4664}
4665
551c1ca1 4666static char *
e3bb37b5 4667i386_scale (char *scale)
252b5132 4668{
551c1ca1
AM
4669 offsetT val;
4670 char *save = input_line_pointer;
252b5132 4671
551c1ca1
AM
4672 input_line_pointer = scale;
4673 val = get_absolute_expression ();
4674
4675 switch (val)
252b5132 4676 {
551c1ca1 4677 case 1:
252b5132
RH
4678 i.log2_scale_factor = 0;
4679 break;
551c1ca1 4680 case 2:
252b5132
RH
4681 i.log2_scale_factor = 1;
4682 break;
551c1ca1 4683 case 4:
252b5132
RH
4684 i.log2_scale_factor = 2;
4685 break;
551c1ca1 4686 case 8:
252b5132
RH
4687 i.log2_scale_factor = 3;
4688 break;
4689 default:
a724f0f4
JB
4690 {
4691 char sep = *input_line_pointer;
4692
4693 *input_line_pointer = '\0';
4694 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4695 scale);
4696 *input_line_pointer = sep;
4697 input_line_pointer = save;
4698 return NULL;
4699 }
252b5132 4700 }
29b0f896 4701 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
4702 {
4703 as_warn (_("scale factor of %d without an index register"),
24eab124 4704 1 << i.log2_scale_factor);
252b5132
RH
4705#if SCALE1_WHEN_NO_INDEX
4706 i.log2_scale_factor = 0;
4707#endif
4708 }
551c1ca1
AM
4709 scale = input_line_pointer;
4710 input_line_pointer = save;
4711 return scale;
252b5132
RH
4712}
4713
252b5132 4714static int
e3bb37b5 4715i386_displacement (char *disp_start, char *disp_end)
252b5132 4716{
29b0f896 4717 expressionS *exp;
252b5132
RH
4718 segT exp_seg = 0;
4719 char *save_input_line_pointer;
f3c180ae 4720 char *gotfree_input_line;
e05278af 4721 int bigdisp, override;
3956db08 4722 unsigned int types = Disp;
252b5132 4723
31b2323c
L
4724 if (i.disp_operands == MAX_MEMORY_OPERANDS)
4725 {
4726 as_bad (_("at most %d displacement operands are allowed"),
4727 MAX_MEMORY_OPERANDS);
4728 return 0;
4729 }
4730
e05278af
JB
4731 if ((i.types[this_operand] & JumpAbsolute)
4732 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4733 {
4734 bigdisp = Disp32;
4735 override = (i.prefix[ADDR_PREFIX] != 0);
4736 }
4737 else
4738 {
4739 /* For PC-relative branches, the width of the displacement
4740 is dependent upon data size, not address size. */
4741 bigdisp = 0;
4742 override = (i.prefix[DATA_PREFIX] != 0);
4743 }
3e73aa7c 4744 if (flag_code == CODE_64BIT)
7ecd2f8b 4745 {
e05278af 4746 if (!bigdisp)
64e74474
AM
4747 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4748 ? Disp16
4749 : Disp32S | Disp32);
e05278af 4750 else if (!override)
3956db08 4751 bigdisp = Disp64 | Disp32S | Disp32;
7ecd2f8b 4752 }
e05278af
JB
4753 else
4754 {
4755 if (!bigdisp)
4756 {
4757 if (!override)
4758 override = (i.suffix == (flag_code != CODE_16BIT
4759 ? WORD_MNEM_SUFFIX
4760 : LONG_MNEM_SUFFIX));
4761 bigdisp = Disp32;
4762 }
4763 if ((flag_code == CODE_16BIT) ^ override)
4764 bigdisp = Disp16;
4765 }
252b5132
RH
4766 i.types[this_operand] |= bigdisp;
4767
4768 exp = &disp_expressions[i.disp_operands];
520dc8e8 4769 i.op[this_operand].disps = exp;
252b5132
RH
4770 i.disp_operands++;
4771 save_input_line_pointer = input_line_pointer;
4772 input_line_pointer = disp_start;
4773 END_STRING_AND_SAVE (disp_end);
4774
4775#ifndef GCC_ASM_O_HACK
4776#define GCC_ASM_O_HACK 0
4777#endif
4778#if GCC_ASM_O_HACK
4779 END_STRING_AND_SAVE (disp_end + 1);
4780 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 4781 && displacement_string_end[-1] == '+')
252b5132
RH
4782 {
4783 /* This hack is to avoid a warning when using the "o"
24eab124
AM
4784 constraint within gcc asm statements.
4785 For instance:
4786
4787 #define _set_tssldt_desc(n,addr,limit,type) \
4788 __asm__ __volatile__ ( \
4789 "movw %w2,%0\n\t" \
4790 "movw %w1,2+%0\n\t" \
4791 "rorl $16,%1\n\t" \
4792 "movb %b1,4+%0\n\t" \
4793 "movb %4,5+%0\n\t" \
4794 "movb $0,6+%0\n\t" \
4795 "movb %h1,7+%0\n\t" \
4796 "rorl $16,%1" \
4797 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4798
4799 This works great except that the output assembler ends
4800 up looking a bit weird if it turns out that there is
4801 no offset. You end up producing code that looks like:
4802
4803 #APP
4804 movw $235,(%eax)
4805 movw %dx,2+(%eax)
4806 rorl $16,%edx
4807 movb %dl,4+(%eax)
4808 movb $137,5+(%eax)
4809 movb $0,6+(%eax)
4810 movb %dh,7+(%eax)
4811 rorl $16,%edx
4812 #NO_APP
4813
47926f60 4814 So here we provide the missing zero. */
24eab124
AM
4815
4816 *displacement_string_end = '0';
252b5132
RH
4817 }
4818#endif
3956db08 4819 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
4820 if (gotfree_input_line)
4821 input_line_pointer = gotfree_input_line;
252b5132 4822
24eab124 4823 exp_seg = expression (exp);
252b5132 4824
636c26b0
AM
4825 SKIP_WHITESPACE ();
4826 if (*input_line_pointer)
4827 as_bad (_("junk `%s' after expression"), input_line_pointer);
4828#if GCC_ASM_O_HACK
4829 RESTORE_END_STRING (disp_end + 1);
4830#endif
4831 RESTORE_END_STRING (disp_end);
4832 input_line_pointer = save_input_line_pointer;
636c26b0
AM
4833 if (gotfree_input_line)
4834 free (gotfree_input_line);
636c26b0 4835
24eab124
AM
4836 /* We do this to make sure that the section symbol is in
4837 the symbol table. We will ultimately change the relocation
47926f60 4838 to be relative to the beginning of the section. */
1ae12ab7 4839 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
4840 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4841 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 4842 {
636c26b0
AM
4843 if (exp->X_op != O_symbol)
4844 {
4845 as_bad (_("bad expression used with @%s"),
4846 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4847 ? "GOTPCREL"
4848 : "GOTOFF"));
4849 return 0;
4850 }
4851
e5cb08ac 4852 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
4853 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4854 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
4855 exp->X_op = O_subtract;
4856 exp->X_op_symbol = GOT_symbol;
1ae12ab7 4857 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 4858 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
4859 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4860 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 4861 else
29b0f896 4862 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 4863 }
252b5132 4864
2daf4fd8
AM
4865 if (exp->X_op == O_absent || exp->X_op == O_big)
4866 {
47926f60 4867 /* Missing or bad expr becomes absolute 0. */
d0b47220 4868 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
4869 disp_start);
4870 exp->X_op = O_constant;
4871 exp->X_add_number = 0;
4872 exp->X_add_symbol = (symbolS *) 0;
4873 exp->X_op_symbol = (symbolS *) 0;
4874 }
4875
4c63da97 4876#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 4877 if (exp->X_op != O_constant
45288df1 4878 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4879 && exp_seg != absolute_section
45288df1
AM
4880 && exp_seg != text_section
4881 && exp_seg != data_section
4882 && exp_seg != bss_section
31312f95 4883 && exp_seg != undefined_section
f86103b7 4884 && !bfd_is_com_section (exp_seg))
24eab124 4885 {
d0b47220 4886 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
4887 return 0;
4888 }
252b5132 4889#endif
3956db08
JB
4890
4891 if (!(i.types[this_operand] & ~Disp))
4892 i.types[this_operand] &= types;
4893
252b5132
RH
4894 return 1;
4895}
4896
eecb386c 4897/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
4898 Return 1 on success, 0 on a failure. */
4899
252b5132 4900static int
e3bb37b5 4901i386_index_check (const char *operand_string)
252b5132 4902{
3e73aa7c 4903 int ok;
24eab124 4904#if INFER_ADDR_PREFIX
eecb386c
AM
4905 int fudged = 0;
4906
24eab124
AM
4907 tryprefix:
4908#endif
3e73aa7c 4909 ok = 1;
30123838
JB
4910 if ((current_templates->start->cpu_flags & CpuSVME)
4911 && current_templates->end[-1].operand_types[0] == AnyMem)
4912 {
4913 /* Memory operands of SVME insns are special in that they only allow
4914 rAX as their memory address and ignore any segment override. */
4915 unsigned RegXX;
4916
4917 /* SKINIT is even more restrictive: it always requires EAX. */
4918 if (strcmp (current_templates->start->name, "skinit") == 0)
4919 RegXX = Reg32;
4920 else if (flag_code == CODE_64BIT)
4921 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4922 else
64e74474
AM
4923 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4924 ? Reg16
4925 : Reg32);
30123838
JB
4926 if (!i.base_reg
4927 || !(i.base_reg->reg_type & Acc)
4928 || !(i.base_reg->reg_type & RegXX)
4929 || i.index_reg
4930 || (i.types[0] & Disp))
4931 ok = 0;
4932 }
4933 else if (flag_code == CODE_64BIT)
64e74474
AM
4934 {
4935 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4936
4937 if ((i.base_reg
4938 && ((i.base_reg->reg_type & RegXX) == 0)
4939 && (i.base_reg->reg_type != BaseIndex
4940 || i.index_reg))
4941 || (i.index_reg
4942 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4943 != (RegXX | BaseIndex))))
4944 ok = 0;
3e73aa7c
JH
4945 }
4946 else
4947 {
4948 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4949 {
4950 /* 16bit checks. */
4951 if ((i.base_reg
29b0f896
AM
4952 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4953 != (Reg16 | BaseIndex)))
3e73aa7c 4954 || (i.index_reg
29b0f896
AM
4955 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4956 != (Reg16 | BaseIndex))
4957 || !(i.base_reg
4958 && i.base_reg->reg_num < 6
4959 && i.index_reg->reg_num >= 6
4960 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4961 ok = 0;
4962 }
4963 else
e5cb08ac 4964 {
3e73aa7c
JH
4965 /* 32bit checks. */
4966 if ((i.base_reg
4967 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4968 || (i.index_reg
29b0f896
AM
4969 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4970 != (Reg32 | BaseIndex))))
e5cb08ac 4971 ok = 0;
3e73aa7c
JH
4972 }
4973 }
4974 if (!ok)
24eab124
AM
4975 {
4976#if INFER_ADDR_PREFIX
20f0a1fc 4977 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4978 {
4979 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4980 i.prefixes += 1;
b23bac36
AM
4981 /* Change the size of any displacement too. At most one of
4982 Disp16 or Disp32 is set.
4983 FIXME. There doesn't seem to be any real need for separate
4984 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4985 Removing them would probably clean up the code quite a lot. */
4eed87de
AM
4986 if (flag_code != CODE_64BIT
4987 && (i.types[this_operand] & (Disp16 | Disp32)))
64e74474 4988 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4989 fudged = 1;
24eab124
AM
4990 goto tryprefix;
4991 }
eecb386c
AM
4992 if (fudged)
4993 as_bad (_("`%s' is not a valid base/index expression"),
4994 operand_string);
4995 else
c388dee8 4996#endif
eecb386c
AM
4997 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4998 operand_string,
3e73aa7c 4999 flag_code_names[flag_code]);
24eab124 5000 }
20f0a1fc 5001 return ok;
24eab124 5002}
252b5132 5003
252b5132 5004/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 5005 on error. */
252b5132 5006
252b5132 5007static int
e3bb37b5 5008i386_operand (char *operand_string)
252b5132 5009{
af6bdddf
AM
5010 const reg_entry *r;
5011 char *end_op;
24eab124 5012 char *op_string = operand_string;
252b5132 5013
24eab124 5014 if (is_space_char (*op_string))
252b5132
RH
5015 ++op_string;
5016
24eab124 5017 /* We check for an absolute prefix (differentiating,
47926f60 5018 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
5019 if (*op_string == ABSOLUTE_PREFIX)
5020 {
5021 ++op_string;
5022 if (is_space_char (*op_string))
5023 ++op_string;
5024 i.types[this_operand] |= JumpAbsolute;
5025 }
252b5132 5026
47926f60 5027 /* Check if operand is a register. */
4d1bb795 5028 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 5029 {
24eab124
AM
5030 /* Check for a segment override by searching for ':' after a
5031 segment register. */
5032 op_string = end_op;
5033 if (is_space_char (*op_string))
5034 ++op_string;
5035 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
5036 {
5037 switch (r->reg_num)
5038 {
5039 case 0:
5040 i.seg[i.mem_operands] = &es;
5041 break;
5042 case 1:
5043 i.seg[i.mem_operands] = &cs;
5044 break;
5045 case 2:
5046 i.seg[i.mem_operands] = &ss;
5047 break;
5048 case 3:
5049 i.seg[i.mem_operands] = &ds;
5050 break;
5051 case 4:
5052 i.seg[i.mem_operands] = &fs;
5053 break;
5054 case 5:
5055 i.seg[i.mem_operands] = &gs;
5056 break;
5057 }
252b5132 5058
24eab124 5059 /* Skip the ':' and whitespace. */
252b5132
RH
5060 ++op_string;
5061 if (is_space_char (*op_string))
24eab124 5062 ++op_string;
252b5132 5063
24eab124
AM
5064 if (!is_digit_char (*op_string)
5065 && !is_identifier_char (*op_string)
5066 && *op_string != '('
5067 && *op_string != ABSOLUTE_PREFIX)
5068 {
5069 as_bad (_("bad memory operand `%s'"), op_string);
5070 return 0;
5071 }
47926f60 5072 /* Handle case of %es:*foo. */
24eab124
AM
5073 if (*op_string == ABSOLUTE_PREFIX)
5074 {
5075 ++op_string;
5076 if (is_space_char (*op_string))
5077 ++op_string;
5078 i.types[this_operand] |= JumpAbsolute;
5079 }
5080 goto do_memory_reference;
5081 }
5082 if (*op_string)
5083 {
d0b47220 5084 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
5085 return 0;
5086 }
5087 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 5088 i.op[this_operand].regs = r;
24eab124
AM
5089 i.reg_operands++;
5090 }
af6bdddf
AM
5091 else if (*op_string == REGISTER_PREFIX)
5092 {
5093 as_bad (_("bad register name `%s'"), op_string);
5094 return 0;
5095 }
24eab124 5096 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 5097 {
24eab124
AM
5098 ++op_string;
5099 if (i.types[this_operand] & JumpAbsolute)
5100 {
d0b47220 5101 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
5102 return 0;
5103 }
5104 if (!i386_immediate (op_string))
5105 return 0;
5106 }
5107 else if (is_digit_char (*op_string)
5108 || is_identifier_char (*op_string)
e5cb08ac 5109 || *op_string == '(')
24eab124 5110 {
47926f60 5111 /* This is a memory reference of some sort. */
af6bdddf 5112 char *base_string;
252b5132 5113
47926f60 5114 /* Start and end of displacement string expression (if found). */
eecb386c
AM
5115 char *displacement_string_start;
5116 char *displacement_string_end;
252b5132 5117
24eab124 5118 do_memory_reference:
24eab124
AM
5119 if ((i.mem_operands == 1
5120 && (current_templates->start->opcode_modifier & IsString) == 0)
5121 || i.mem_operands == 2)
5122 {
5123 as_bad (_("too many memory references for `%s'"),
5124 current_templates->start->name);
5125 return 0;
5126 }
252b5132 5127
24eab124
AM
5128 /* Check for base index form. We detect the base index form by
5129 looking for an ')' at the end of the operand, searching
5130 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5131 after the '('. */
af6bdddf 5132 base_string = op_string + strlen (op_string);
c3332e24 5133
af6bdddf
AM
5134 --base_string;
5135 if (is_space_char (*base_string))
5136 --base_string;
252b5132 5137
47926f60 5138 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
5139 displacement_string_start = op_string;
5140 displacement_string_end = base_string + 1;
252b5132 5141
24eab124
AM
5142 if (*base_string == ')')
5143 {
af6bdddf 5144 char *temp_string;
24eab124
AM
5145 unsigned int parens_balanced = 1;
5146 /* We've already checked that the number of left & right ()'s are
47926f60 5147 equal, so this loop will not be infinite. */
24eab124
AM
5148 do
5149 {
5150 base_string--;
5151 if (*base_string == ')')
5152 parens_balanced++;
5153 if (*base_string == '(')
5154 parens_balanced--;
5155 }
5156 while (parens_balanced);
c3332e24 5157
af6bdddf 5158 temp_string = base_string;
c3332e24 5159
24eab124 5160 /* Skip past '(' and whitespace. */
252b5132
RH
5161 ++base_string;
5162 if (is_space_char (*base_string))
24eab124 5163 ++base_string;
252b5132 5164
af6bdddf 5165 if (*base_string == ','
4eed87de
AM
5166 || ((i.base_reg = parse_register (base_string, &end_op))
5167 != NULL))
252b5132 5168 {
af6bdddf 5169 displacement_string_end = temp_string;
252b5132 5170
af6bdddf 5171 i.types[this_operand] |= BaseIndex;
252b5132 5172
af6bdddf 5173 if (i.base_reg)
24eab124 5174 {
24eab124
AM
5175 base_string = end_op;
5176 if (is_space_char (*base_string))
5177 ++base_string;
af6bdddf
AM
5178 }
5179
5180 /* There may be an index reg or scale factor here. */
5181 if (*base_string == ',')
5182 {
5183 ++base_string;
5184 if (is_space_char (*base_string))
5185 ++base_string;
5186
4eed87de
AM
5187 if ((i.index_reg = parse_register (base_string, &end_op))
5188 != NULL)
24eab124 5189 {
af6bdddf 5190 base_string = end_op;
24eab124
AM
5191 if (is_space_char (*base_string))
5192 ++base_string;
af6bdddf
AM
5193 if (*base_string == ',')
5194 {
5195 ++base_string;
5196 if (is_space_char (*base_string))
5197 ++base_string;
5198 }
e5cb08ac 5199 else if (*base_string != ')')
af6bdddf 5200 {
4eed87de
AM
5201 as_bad (_("expecting `,' or `)' "
5202 "after index register in `%s'"),
af6bdddf
AM
5203 operand_string);
5204 return 0;
5205 }
24eab124 5206 }
af6bdddf 5207 else if (*base_string == REGISTER_PREFIX)
24eab124 5208 {
af6bdddf 5209 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
5210 return 0;
5211 }
252b5132 5212
47926f60 5213 /* Check for scale factor. */
551c1ca1 5214 if (*base_string != ')')
af6bdddf 5215 {
551c1ca1
AM
5216 char *end_scale = i386_scale (base_string);
5217
5218 if (!end_scale)
af6bdddf 5219 return 0;
24eab124 5220
551c1ca1 5221 base_string = end_scale;
af6bdddf
AM
5222 if (is_space_char (*base_string))
5223 ++base_string;
5224 if (*base_string != ')')
5225 {
4eed87de
AM
5226 as_bad (_("expecting `)' "
5227 "after scale factor in `%s'"),
af6bdddf
AM
5228 operand_string);
5229 return 0;
5230 }
5231 }
5232 else if (!i.index_reg)
24eab124 5233 {
4eed87de
AM
5234 as_bad (_("expecting index register or scale factor "
5235 "after `,'; got '%c'"),
af6bdddf 5236 *base_string);
24eab124
AM
5237 return 0;
5238 }
5239 }
af6bdddf 5240 else if (*base_string != ')')
24eab124 5241 {
4eed87de
AM
5242 as_bad (_("expecting `,' or `)' "
5243 "after base register in `%s'"),
af6bdddf 5244 operand_string);
24eab124
AM
5245 return 0;
5246 }
c3332e24 5247 }
af6bdddf 5248 else if (*base_string == REGISTER_PREFIX)
c3332e24 5249 {
af6bdddf 5250 as_bad (_("bad register name `%s'"), base_string);
24eab124 5251 return 0;
c3332e24 5252 }
24eab124
AM
5253 }
5254
5255 /* If there's an expression beginning the operand, parse it,
5256 assuming displacement_string_start and
5257 displacement_string_end are meaningful. */
5258 if (displacement_string_start != displacement_string_end)
5259 {
5260 if (!i386_displacement (displacement_string_start,
5261 displacement_string_end))
5262 return 0;
5263 }
5264
5265 /* Special case for (%dx) while doing input/output op. */
5266 if (i.base_reg
5267 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5268 && i.index_reg == 0
5269 && i.log2_scale_factor == 0
5270 && i.seg[i.mem_operands] == 0
5271 && (i.types[this_operand] & Disp) == 0)
5272 {
5273 i.types[this_operand] = InOutPortReg;
5274 return 1;
5275 }
5276
eecb386c
AM
5277 if (i386_index_check (operand_string) == 0)
5278 return 0;
24eab124
AM
5279 i.mem_operands++;
5280 }
5281 else
ce8a8b2f
AM
5282 {
5283 /* It's not a memory operand; argh! */
24eab124
AM
5284 as_bad (_("invalid char %s beginning operand %d `%s'"),
5285 output_invalid (*op_string),
5286 this_operand + 1,
5287 op_string);
5288 return 0;
5289 }
47926f60 5290 return 1; /* Normal return. */
252b5132
RH
5291}
5292\f
ee7fcc42
AM
5293/* md_estimate_size_before_relax()
5294
5295 Called just before relax() for rs_machine_dependent frags. The x86
5296 assembler uses these frags to handle variable size jump
5297 instructions.
5298
5299 Any symbol that is now undefined will not become defined.
5300 Return the correct fr_subtype in the frag.
5301 Return the initial "guess for variable size of frag" to caller.
5302 The guess is actually the growth beyond the fixed part. Whatever
5303 we do to grow the fixed or variable part contributes to our
5304 returned value. */
5305
252b5132
RH
5306int
5307md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
5308 fragS *fragP;
5309 segT segment;
252b5132 5310{
252b5132 5311 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
5312 check for un-relaxable symbols. On an ELF system, we can't relax
5313 an externally visible symbol, because it may be overridden by a
5314 shared library. */
5315 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 5316#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 5317 || (IS_ELF
31312f95
AM
5318 && (S_IS_EXTERNAL (fragP->fr_symbol)
5319 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
5320#endif
5321 )
252b5132 5322 {
b98ef147
AM
5323 /* Symbol is undefined in this segment, or we need to keep a
5324 reloc so that weak symbols can be overridden. */
5325 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 5326 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
5327 unsigned char *opcode;
5328 int old_fr_fix;
f6af82bd 5329
ee7fcc42
AM
5330 if (fragP->fr_var != NO_RELOC)
5331 reloc_type = fragP->fr_var;
b98ef147 5332 else if (size == 2)
f6af82bd
AM
5333 reloc_type = BFD_RELOC_16_PCREL;
5334 else
5335 reloc_type = BFD_RELOC_32_PCREL;
252b5132 5336
ee7fcc42
AM
5337 old_fr_fix = fragP->fr_fix;
5338 opcode = (unsigned char *) fragP->fr_opcode;
5339
fddf5b5b 5340 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 5341 {
fddf5b5b
AM
5342 case UNCOND_JUMP:
5343 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 5344 opcode[0] = 0xe9;
252b5132 5345 fragP->fr_fix += size;
062cd5e7
AS
5346 fix_new (fragP, old_fr_fix, size,
5347 fragP->fr_symbol,
5348 fragP->fr_offset, 1,
5349 reloc_type);
252b5132
RH
5350 break;
5351
fddf5b5b 5352 case COND_JUMP86:
412167cb
AM
5353 if (size == 2
5354 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
5355 {
5356 /* Negate the condition, and branch past an
5357 unconditional jump. */
5358 opcode[0] ^= 1;
5359 opcode[1] = 3;
5360 /* Insert an unconditional jump. */
5361 opcode[2] = 0xe9;
5362 /* We added two extra opcode bytes, and have a two byte
5363 offset. */
5364 fragP->fr_fix += 2 + 2;
062cd5e7
AS
5365 fix_new (fragP, old_fr_fix + 2, 2,
5366 fragP->fr_symbol,
5367 fragP->fr_offset, 1,
5368 reloc_type);
fddf5b5b
AM
5369 break;
5370 }
5371 /* Fall through. */
5372
5373 case COND_JUMP:
412167cb
AM
5374 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5375 {
3e02c1cc
AM
5376 fixS *fixP;
5377
412167cb 5378 fragP->fr_fix += 1;
3e02c1cc
AM
5379 fixP = fix_new (fragP, old_fr_fix, 1,
5380 fragP->fr_symbol,
5381 fragP->fr_offset, 1,
5382 BFD_RELOC_8_PCREL);
5383 fixP->fx_signed = 1;
412167cb
AM
5384 break;
5385 }
93c2a809 5386
24eab124 5387 /* This changes the byte-displacement jump 0x7N
fddf5b5b 5388 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 5389 opcode[1] = opcode[0] + 0x10;
f6af82bd 5390 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
5391 /* We've added an opcode byte. */
5392 fragP->fr_fix += 1 + size;
062cd5e7
AS
5393 fix_new (fragP, old_fr_fix + 1, size,
5394 fragP->fr_symbol,
5395 fragP->fr_offset, 1,
5396 reloc_type);
252b5132 5397 break;
fddf5b5b
AM
5398
5399 default:
5400 BAD_CASE (fragP->fr_subtype);
5401 break;
252b5132
RH
5402 }
5403 frag_wane (fragP);
ee7fcc42 5404 return fragP->fr_fix - old_fr_fix;
252b5132 5405 }
93c2a809 5406
93c2a809
AM
5407 /* Guess size depending on current relax state. Initially the relax
5408 state will correspond to a short jump and we return 1, because
5409 the variable part of the frag (the branch offset) is one byte
5410 long. However, we can relax a section more than once and in that
5411 case we must either set fr_subtype back to the unrelaxed state,
5412 or return the value for the appropriate branch. */
5413 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
5414}
5415
47926f60
KH
5416/* Called after relax() is finished.
5417
5418 In: Address of frag.
5419 fr_type == rs_machine_dependent.
5420 fr_subtype is what the address relaxed to.
5421
5422 Out: Any fixSs and constants are set up.
5423 Caller will turn frag into a ".space 0". */
5424
252b5132
RH
5425void
5426md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
5427 bfd *abfd ATTRIBUTE_UNUSED;
5428 segT sec ATTRIBUTE_UNUSED;
29b0f896 5429 fragS *fragP;
252b5132 5430{
29b0f896 5431 unsigned char *opcode;
252b5132 5432 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
5433 offsetT target_address;
5434 offsetT opcode_address;
252b5132 5435 unsigned int extension = 0;
847f7ad4 5436 offsetT displacement_from_opcode_start;
252b5132
RH
5437
5438 opcode = (unsigned char *) fragP->fr_opcode;
5439
47926f60 5440 /* Address we want to reach in file space. */
252b5132 5441 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 5442
47926f60 5443 /* Address opcode resides at in file space. */
252b5132
RH
5444 opcode_address = fragP->fr_address + fragP->fr_fix;
5445
47926f60 5446 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
5447 displacement_from_opcode_start = target_address - opcode_address;
5448
fddf5b5b 5449 if ((fragP->fr_subtype & BIG) == 0)
252b5132 5450 {
47926f60
KH
5451 /* Don't have to change opcode. */
5452 extension = 1; /* 1 opcode + 1 displacement */
252b5132 5453 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
5454 }
5455 else
5456 {
5457 if (no_cond_jump_promotion
5458 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
5459 as_warn_where (fragP->fr_file, fragP->fr_line,
5460 _("long jump required"));
252b5132 5461
fddf5b5b
AM
5462 switch (fragP->fr_subtype)
5463 {
5464 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5465 extension = 4; /* 1 opcode + 4 displacement */
5466 opcode[0] = 0xe9;
5467 where_to_put_displacement = &opcode[1];
5468 break;
252b5132 5469
fddf5b5b
AM
5470 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5471 extension = 2; /* 1 opcode + 2 displacement */
5472 opcode[0] = 0xe9;
5473 where_to_put_displacement = &opcode[1];
5474 break;
252b5132 5475
fddf5b5b
AM
5476 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5477 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5478 extension = 5; /* 2 opcode + 4 displacement */
5479 opcode[1] = opcode[0] + 0x10;
5480 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5481 where_to_put_displacement = &opcode[2];
5482 break;
252b5132 5483
fddf5b5b
AM
5484 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5485 extension = 3; /* 2 opcode + 2 displacement */
5486 opcode[1] = opcode[0] + 0x10;
5487 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5488 where_to_put_displacement = &opcode[2];
5489 break;
252b5132 5490
fddf5b5b
AM
5491 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5492 extension = 4;
5493 opcode[0] ^= 1;
5494 opcode[1] = 3;
5495 opcode[2] = 0xe9;
5496 where_to_put_displacement = &opcode[3];
5497 break;
5498
5499 default:
5500 BAD_CASE (fragP->fr_subtype);
5501 break;
5502 }
252b5132 5503 }
fddf5b5b 5504
7b81dfbb
AJ
5505 /* If size if less then four we are sure that the operand fits,
5506 but if it's 4, then it could be that the displacement is larger
5507 then -/+ 2GB. */
5508 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5509 && object_64bit
5510 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
5511 + ((addressT) 1 << 31))
5512 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
5513 {
5514 as_bad_where (fragP->fr_file, fragP->fr_line,
5515 _("jump target out of range"));
5516 /* Make us emit 0. */
5517 displacement_from_opcode_start = extension;
5518 }
47926f60 5519 /* Now put displacement after opcode. */
252b5132
RH
5520 md_number_to_chars ((char *) where_to_put_displacement,
5521 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 5522 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
5523 fragP->fr_fix += extension;
5524}
5525\f
47926f60
KH
5526/* Size of byte displacement jmp. */
5527int md_short_jump_size = 2;
5528
5529/* Size of dword displacement jmp. */
5530int md_long_jump_size = 5;
252b5132 5531
252b5132
RH
5532void
5533md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5534 char *ptr;
5535 addressT from_addr, to_addr;
ab9da554
ILT
5536 fragS *frag ATTRIBUTE_UNUSED;
5537 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 5538{
847f7ad4 5539 offsetT offset;
252b5132
RH
5540
5541 offset = to_addr - (from_addr + 2);
47926f60
KH
5542 /* Opcode for byte-disp jump. */
5543 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
5544 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5545}
5546
5547void
5548md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5549 char *ptr;
5550 addressT from_addr, to_addr;
a38cf1db
AM
5551 fragS *frag ATTRIBUTE_UNUSED;
5552 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 5553{
847f7ad4 5554 offsetT offset;
252b5132 5555
a38cf1db
AM
5556 offset = to_addr - (from_addr + 5);
5557 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5558 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
5559}
5560\f
5561/* Apply a fixup (fixS) to segment data, once it has been determined
5562 by our caller that we have all the info we need to fix it up.
5563
5564 On the 386, immediates, displacements, and data pointers are all in
5565 the same (little-endian) format, so we don't need to care about which
5566 we are handling. */
5567
94f592af 5568void
55cf6793 5569md_apply_fix (fixP, valP, seg)
47926f60
KH
5570 /* The fix we're to put in. */
5571 fixS *fixP;
47926f60 5572 /* Pointer to the value of the bits. */
c6682705 5573 valueT *valP;
47926f60
KH
5574 /* Segment fix is from. */
5575 segT seg ATTRIBUTE_UNUSED;
252b5132 5576{
94f592af 5577 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 5578 valueT value = *valP;
252b5132 5579
f86103b7 5580#if !defined (TE_Mach)
93382f6d
AM
5581 if (fixP->fx_pcrel)
5582 {
5583 switch (fixP->fx_r_type)
5584 {
5865bb77
ILT
5585 default:
5586 break;
5587
d6ab8113
JB
5588 case BFD_RELOC_64:
5589 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5590 break;
93382f6d 5591 case BFD_RELOC_32:
ae8887b5 5592 case BFD_RELOC_X86_64_32S:
93382f6d
AM
5593 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5594 break;
5595 case BFD_RELOC_16:
5596 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5597 break;
5598 case BFD_RELOC_8:
5599 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5600 break;
5601 }
5602 }
252b5132 5603
a161fe53 5604 if (fixP->fx_addsy != NULL
31312f95 5605 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 5606 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95
AM
5607 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5608 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5609 && !use_rela_relocations)
252b5132 5610 {
31312f95
AM
5611 /* This is a hack. There should be a better way to handle this.
5612 This covers for the fact that bfd_install_relocation will
5613 subtract the current location (for partial_inplace, PC relative
5614 relocations); see more below. */
252b5132 5615#ifndef OBJ_AOUT
718ddfc0 5616 if (IS_ELF
252b5132
RH
5617#ifdef TE_PE
5618 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5619#endif
5620 )
5621 value += fixP->fx_where + fixP->fx_frag->fr_address;
5622#endif
5623#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 5624 if (IS_ELF)
252b5132 5625 {
6539b54b 5626 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 5627
6539b54b 5628 if ((sym_seg == seg
2f66722d 5629 || (symbol_section_p (fixP->fx_addsy)
6539b54b 5630 && sym_seg != absolute_section))
ae6063d4 5631 && !generic_force_reloc (fixP))
2f66722d
AM
5632 {
5633 /* Yes, we add the values in twice. This is because
6539b54b
AM
5634 bfd_install_relocation subtracts them out again. I think
5635 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
5636 it. FIXME. */
5637 value += fixP->fx_where + fixP->fx_frag->fr_address;
5638 }
252b5132
RH
5639 }
5640#endif
5641#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
5642 /* For some reason, the PE format does not store a
5643 section address offset for a PC relative symbol. */
5644 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 5645 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
5646 value += md_pcrel_from (fixP);
5647#endif
5648 }
5649
5650 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 5651 and we must not disappoint it. */
252b5132 5652#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 5653 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
5654 switch (fixP->fx_r_type)
5655 {
5656 case BFD_RELOC_386_PLT32:
3e73aa7c 5657 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
5658 /* Make the jump instruction point to the address of the operand. At
5659 runtime we merely add the offset to the actual PLT entry. */
5660 value = -4;
5661 break;
31312f95 5662
13ae64f3
JJ
5663 case BFD_RELOC_386_TLS_GD:
5664 case BFD_RELOC_386_TLS_LDM:
13ae64f3 5665 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5666 case BFD_RELOC_386_TLS_IE:
5667 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 5668 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
5669 case BFD_RELOC_X86_64_TLSGD:
5670 case BFD_RELOC_X86_64_TLSLD:
5671 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 5672 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
5673 value = 0; /* Fully resolved at runtime. No addend. */
5674 /* Fallthrough */
5675 case BFD_RELOC_386_TLS_LE:
5676 case BFD_RELOC_386_TLS_LDO_32:
5677 case BFD_RELOC_386_TLS_LE_32:
5678 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 5679 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 5680 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 5681 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
5682 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5683 break;
5684
67a4f2b7
AO
5685 case BFD_RELOC_386_TLS_DESC_CALL:
5686 case BFD_RELOC_X86_64_TLSDESC_CALL:
5687 value = 0; /* Fully resolved at runtime. No addend. */
5688 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5689 fixP->fx_done = 0;
5690 return;
5691
00f7efb6
JJ
5692 case BFD_RELOC_386_GOT32:
5693 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
5694 value = 0; /* Fully resolved at runtime. No addend. */
5695 break;
47926f60
KH
5696
5697 case BFD_RELOC_VTABLE_INHERIT:
5698 case BFD_RELOC_VTABLE_ENTRY:
5699 fixP->fx_done = 0;
94f592af 5700 return;
47926f60
KH
5701
5702 default:
5703 break;
5704 }
5705#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 5706 *valP = value;
f86103b7 5707#endif /* !defined (TE_Mach) */
3e73aa7c 5708
3e73aa7c 5709 /* Are we finished with this relocation now? */
c6682705 5710 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
5711 fixP->fx_done = 1;
5712 else if (use_rela_relocations)
5713 {
5714 fixP->fx_no_overflow = 1;
062cd5e7
AS
5715 /* Remember value for tc_gen_reloc. */
5716 fixP->fx_addnumber = value;
3e73aa7c
JH
5717 value = 0;
5718 }
f86103b7 5719
94f592af 5720 md_number_to_chars (p, value, fixP->fx_size);
252b5132 5721}
252b5132 5722\f
252b5132
RH
5723#define MAX_LITTLENUMS 6
5724
47926f60
KH
5725/* Turn the string pointed to by litP into a floating point constant
5726 of type TYPE, and emit the appropriate bytes. The number of
5727 LITTLENUMS emitted is stored in *SIZEP. An error message is
5728 returned, or NULL on OK. */
5729
252b5132
RH
5730char *
5731md_atof (type, litP, sizeP)
2ab9b79e 5732 int type;
252b5132
RH
5733 char *litP;
5734 int *sizeP;
5735{
5736 int prec;
5737 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5738 LITTLENUM_TYPE *wordP;
5739 char *t;
5740
5741 switch (type)
5742 {
5743 case 'f':
5744 case 'F':
5745 prec = 2;
5746 break;
5747
5748 case 'd':
5749 case 'D':
5750 prec = 4;
5751 break;
5752
5753 case 'x':
5754 case 'X':
5755 prec = 5;
5756 break;
5757
5758 default:
5759 *sizeP = 0;
5760 return _("Bad call to md_atof ()");
5761 }
5762 t = atof_ieee (input_line_pointer, type, words);
5763 if (t)
5764 input_line_pointer = t;
5765
5766 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5767 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5768 the bigendian 386. */
5769 for (wordP = words + prec - 1; prec--;)
5770 {
5771 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5772 litP += sizeof (LITTLENUM_TYPE);
5773 }
5774 return 0;
5775}
5776\f
2d545b82 5777static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 5778
252b5132 5779static char *
e3bb37b5 5780output_invalid (int c)
252b5132 5781{
3882b010 5782 if (ISPRINT (c))
f9f21a03
L
5783 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5784 "'%c'", c);
252b5132 5785 else
f9f21a03 5786 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 5787 "(0x%x)", (unsigned char) c);
252b5132
RH
5788 return output_invalid_buf;
5789}
5790
af6bdddf 5791/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
5792
5793static const reg_entry *
4d1bb795 5794parse_real_register (char *reg_string, char **end_op)
252b5132 5795{
af6bdddf
AM
5796 char *s = reg_string;
5797 char *p;
252b5132
RH
5798 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5799 const reg_entry *r;
5800
5801 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5802 if (*s == REGISTER_PREFIX)
5803 ++s;
5804
5805 if (is_space_char (*s))
5806 ++s;
5807
5808 p = reg_name_given;
af6bdddf 5809 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
5810 {
5811 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
5812 return (const reg_entry *) NULL;
5813 s++;
252b5132
RH
5814 }
5815
6588847e
DN
5816 /* For naked regs, make sure that we are not dealing with an identifier.
5817 This prevents confusing an identifier like `eax_var' with register
5818 `eax'. */
5819 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5820 return (const reg_entry *) NULL;
5821
af6bdddf 5822 *end_op = s;
252b5132
RH
5823
5824 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5825
5f47d35b 5826 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 5827 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 5828 {
5f47d35b
AM
5829 if (is_space_char (*s))
5830 ++s;
5831 if (*s == '(')
5832 {
af6bdddf 5833 ++s;
5f47d35b
AM
5834 if (is_space_char (*s))
5835 ++s;
5836 if (*s >= '0' && *s <= '7')
5837 {
db557034 5838 int fpr = *s - '0';
af6bdddf 5839 ++s;
5f47d35b
AM
5840 if (is_space_char (*s))
5841 ++s;
5842 if (*s == ')')
5843 {
5844 *end_op = s + 1;
db557034
AM
5845 r = hash_find (reg_hash, "st(0)");
5846 know (r);
5847 return r + fpr;
5f47d35b 5848 }
5f47d35b 5849 }
47926f60 5850 /* We have "%st(" then garbage. */
5f47d35b
AM
5851 return (const reg_entry *) NULL;
5852 }
5853 }
5854
1ae00879 5855 if (r != NULL
20f0a1fc 5856 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
c4a530c5 5857 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
1ae00879 5858 && flag_code != CODE_64BIT)
20f0a1fc 5859 return (const reg_entry *) NULL;
1ae00879 5860
252b5132
RH
5861 return r;
5862}
4d1bb795
JB
5863
5864/* REG_STRING starts *before* REGISTER_PREFIX. */
5865
5866static const reg_entry *
5867parse_register (char *reg_string, char **end_op)
5868{
5869 const reg_entry *r;
5870
5871 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5872 r = parse_real_register (reg_string, end_op);
5873 else
5874 r = NULL;
5875 if (!r)
5876 {
5877 char *save = input_line_pointer;
5878 char c;
5879 symbolS *symbolP;
5880
5881 input_line_pointer = reg_string;
5882 c = get_symbol_end ();
5883 symbolP = symbol_find (reg_string);
5884 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5885 {
5886 const expressionS *e = symbol_get_value_expression (symbolP);
5887
5888 know (e->X_op == O_register);
4eed87de 5889 know (e->X_add_number >= 0
c3fe08fa 5890 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795
JB
5891 r = i386_regtab + e->X_add_number;
5892 *end_op = input_line_pointer;
5893 }
5894 *input_line_pointer = c;
5895 input_line_pointer = save;
5896 }
5897 return r;
5898}
5899
5900int
5901i386_parse_name (char *name, expressionS *e, char *nextcharP)
5902{
5903 const reg_entry *r;
5904 char *end = input_line_pointer;
5905
5906 *end = *nextcharP;
5907 r = parse_register (name, &input_line_pointer);
5908 if (r && end <= input_line_pointer)
5909 {
5910 *nextcharP = *input_line_pointer;
5911 *input_line_pointer = 0;
5912 e->X_op = O_register;
5913 e->X_add_number = r - i386_regtab;
5914 return 1;
5915 }
5916 input_line_pointer = end;
5917 *end = 0;
5918 return 0;
5919}
5920
5921void
5922md_operand (expressionS *e)
5923{
5924 if (*input_line_pointer == REGISTER_PREFIX)
5925 {
5926 char *end;
5927 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5928
5929 if (r)
5930 {
5931 e->X_op = O_register;
5932 e->X_add_number = r - i386_regtab;
5933 input_line_pointer = end;
5934 }
5935 }
5936}
5937
252b5132 5938\f
4cc782b5 5939#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 5940const char *md_shortopts = "kVQ:sqn";
252b5132 5941#else
12b55ccc 5942const char *md_shortopts = "qn";
252b5132 5943#endif
6e0b89ee 5944
3e73aa7c 5945#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
5946#define OPTION_64 (OPTION_MD_BASE + 1)
5947#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
5948#define OPTION_MARCH (OPTION_MD_BASE + 3)
5949#define OPTION_MTUNE (OPTION_MD_BASE + 4)
b3b91714 5950
99ad8390
NC
5951struct option md_longopts[] =
5952{
3e73aa7c 5953 {"32", no_argument, NULL, OPTION_32},
99ad8390 5954#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
3e73aa7c 5955 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 5956#endif
b3b91714 5957 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
5958 {"march", required_argument, NULL, OPTION_MARCH},
5959 {"mtune", required_argument, NULL, OPTION_MTUNE},
252b5132
RH
5960 {NULL, no_argument, NULL, 0}
5961};
5962size_t md_longopts_size = sizeof (md_longopts);
5963
5964int
9103f4f4 5965md_parse_option (int c, char *arg)
252b5132 5966{
9103f4f4
L
5967 unsigned int i;
5968
252b5132
RH
5969 switch (c)
5970 {
12b55ccc
L
5971 case 'n':
5972 optimize_align_code = 0;
5973 break;
5974
a38cf1db
AM
5975 case 'q':
5976 quiet_warnings = 1;
252b5132
RH
5977 break;
5978
5979#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
5980 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5981 should be emitted or not. FIXME: Not implemented. */
5982 case 'Q':
252b5132
RH
5983 break;
5984
5985 /* -V: SVR4 argument to print version ID. */
5986 case 'V':
5987 print_version_id ();
5988 break;
5989
a38cf1db
AM
5990 /* -k: Ignore for FreeBSD compatibility. */
5991 case 'k':
252b5132 5992 break;
4cc782b5
ILT
5993
5994 case 's':
5995 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 5996 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 5997 break;
99ad8390
NC
5998#endif
5999#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
3e73aa7c
JH
6000 case OPTION_64:
6001 {
6002 const char **list, **l;
6003
3e73aa7c
JH
6004 list = bfd_target_list ();
6005 for (l = list; *l != NULL; l++)
8620418b 6006 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
6007 || strcmp (*l, "coff-x86-64") == 0
6008 || strcmp (*l, "pe-x86-64") == 0
6009 || strcmp (*l, "pei-x86-64") == 0)
6e0b89ee
AM
6010 {
6011 default_arch = "x86_64";
6012 break;
6013 }
3e73aa7c 6014 if (*l == NULL)
6e0b89ee 6015 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
6016 free (list);
6017 }
6018 break;
6019#endif
252b5132 6020
6e0b89ee
AM
6021 case OPTION_32:
6022 default_arch = "i386";
6023 break;
6024
b3b91714
AM
6025 case OPTION_DIVIDE:
6026#ifdef SVR4_COMMENT_CHARS
6027 {
6028 char *n, *t;
6029 const char *s;
6030
6031 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
6032 t = n;
6033 for (s = i386_comment_chars; *s != '\0'; s++)
6034 if (*s != '/')
6035 *t++ = *s;
6036 *t = '\0';
6037 i386_comment_chars = n;
6038 }
6039#endif
6040 break;
6041
9103f4f4
L
6042 case OPTION_MARCH:
6043 if (*arg == '.')
6044 as_fatal (_("Invalid -march= option: `%s'"), arg);
6045 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6046 {
6047 if (strcmp (arg, cpu_arch [i].name) == 0)
6048 {
ccc9c027 6049 cpu_arch_isa = cpu_arch[i].type;
9103f4f4 6050 cpu_arch_isa_flags = cpu_arch[i].flags;
ccc9c027
L
6051 if (!cpu_arch_tune_set)
6052 {
6053 cpu_arch_tune = cpu_arch_isa;
6054 cpu_arch_tune_flags = cpu_arch_isa_flags;
6055 }
9103f4f4
L
6056 break;
6057 }
6058 }
6059 if (i >= ARRAY_SIZE (cpu_arch))
6060 as_fatal (_("Invalid -march= option: `%s'"), arg);
6061 break;
6062
6063 case OPTION_MTUNE:
6064 if (*arg == '.')
6065 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6066 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6067 {
6068 if (strcmp (arg, cpu_arch [i].name) == 0)
6069 {
ccc9c027 6070 cpu_arch_tune_set = 1;
9103f4f4
L
6071 cpu_arch_tune = cpu_arch [i].type;
6072 cpu_arch_tune_flags = cpu_arch[i].flags;
6073 break;
6074 }
6075 }
6076 if (i >= ARRAY_SIZE (cpu_arch))
6077 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6078 break;
6079
252b5132
RH
6080 default:
6081 return 0;
6082 }
6083 return 1;
6084}
6085
6086void
6087md_show_usage (stream)
6088 FILE *stream;
6089{
4cc782b5
ILT
6090#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6091 fprintf (stream, _("\
a38cf1db
AM
6092 -Q ignored\n\
6093 -V print assembler version number\n\
b3b91714
AM
6094 -k ignored\n"));
6095#endif
6096 fprintf (stream, _("\
12b55ccc 6097 -n Do not optimize code alignment\n\
b3b91714
AM
6098 -q quieten some warnings\n"));
6099#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6100 fprintf (stream, _("\
a38cf1db 6101 -s ignored\n"));
b3b91714 6102#endif
751d281c
L
6103#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6104 fprintf (stream, _("\
6105 --32/--64 generate 32bit/64bit code\n"));
6106#endif
b3b91714
AM
6107#ifdef SVR4_COMMENT_CHARS
6108 fprintf (stream, _("\
6109 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
6110#else
6111 fprintf (stream, _("\
b3b91714 6112 --divide ignored\n"));
4cc782b5 6113#endif
9103f4f4
L
6114 fprintf (stream, _("\
6115 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
6116 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
4eed87de 6117 core, core2, k6, athlon, k8, generic32, generic64\n"));
9103f4f4 6118
252b5132
RH
6119}
6120
99ad8390
NC
6121#if defined(TE_PEP)
6122const char *
6123x86_64_target_format (void)
6124{
6125 if (strcmp (default_arch, "x86_64") == 0)
6126 {
6127 set_code_flag (CODE_64BIT);
6128 return COFF_TARGET_FORMAT;
6129 }
6130 else if (strcmp (default_arch, "i386") == 0)
6131 {
6132 set_code_flag (CODE_32BIT);
6133 return "coff-i386";
6134 }
6135
6136 as_fatal (_("Unknown architecture"));
6137 return NULL;
6138}
6139#endif
6140
3e73aa7c
JH
6141#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6142 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
6143
6144/* Pick the target format to use. */
6145
47926f60 6146const char *
e3bb37b5 6147i386_target_format (void)
252b5132 6148{
3e73aa7c 6149 if (!strcmp (default_arch, "x86_64"))
9103f4f4
L
6150 {
6151 set_code_flag (CODE_64BIT);
6152 if (cpu_arch_isa_flags == 0)
d32cad65 6153 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
9103f4f4
L
6154 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6155 |CpuSSE|CpuSSE2;
ccc9c027 6156 if (cpu_arch_tune_flags == 0)
d32cad65 6157 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
ccc9c027
L
6158 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6159 |CpuSSE|CpuSSE2;
9103f4f4 6160 }
3e73aa7c 6161 else if (!strcmp (default_arch, "i386"))
9103f4f4
L
6162 {
6163 set_code_flag (CODE_32BIT);
6164 if (cpu_arch_isa_flags == 0)
d32cad65 6165 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
ccc9c027 6166 if (cpu_arch_tune_flags == 0)
d32cad65 6167 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
9103f4f4 6168 }
3e73aa7c
JH
6169 else
6170 as_fatal (_("Unknown architecture"));
252b5132
RH
6171 switch (OUTPUT_FLAVOR)
6172 {
4c63da97
AM
6173#ifdef OBJ_MAYBE_AOUT
6174 case bfd_target_aout_flavour:
47926f60 6175 return AOUT_TARGET_FORMAT;
4c63da97
AM
6176#endif
6177#ifdef OBJ_MAYBE_COFF
252b5132
RH
6178 case bfd_target_coff_flavour:
6179 return "coff-i386";
4c63da97 6180#endif
3e73aa7c 6181#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 6182 case bfd_target_elf_flavour:
3e73aa7c 6183 {
e5cb08ac 6184 if (flag_code == CODE_64BIT)
4fa24527
JB
6185 {
6186 object_64bit = 1;
6187 use_rela_relocations = 1;
6188 }
9d7cbccd 6189 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
3e73aa7c 6190 }
4c63da97 6191#endif
252b5132
RH
6192 default:
6193 abort ();
6194 return NULL;
6195 }
6196}
6197
47926f60 6198#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
6199
6200#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
e3bb37b5
L
6201void
6202i386_elf_emit_arch_note (void)
a847613f 6203{
718ddfc0 6204 if (IS_ELF && cpu_arch_name != NULL)
a847613f
AM
6205 {
6206 char *p;
6207 asection *seg = now_seg;
6208 subsegT subseg = now_subseg;
6209 Elf_Internal_Note i_note;
6210 Elf_External_Note e_note;
6211 asection *note_secp;
6212 int len;
6213
6214 /* Create the .note section. */
6215 note_secp = subseg_new (".note", 0);
6216 bfd_set_section_flags (stdoutput,
6217 note_secp,
6218 SEC_HAS_CONTENTS | SEC_READONLY);
6219
6220 /* Process the arch string. */
6221 len = strlen (cpu_arch_name);
6222
6223 i_note.namesz = len + 1;
6224 i_note.descsz = 0;
6225 i_note.type = NT_ARCH;
6226 p = frag_more (sizeof (e_note.namesz));
6227 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6228 p = frag_more (sizeof (e_note.descsz));
6229 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6230 p = frag_more (sizeof (e_note.type));
6231 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6232 p = frag_more (len + 1);
6233 strcpy (p, cpu_arch_name);
6234
6235 frag_align (2, 0, 0);
6236
6237 subseg_set (seg, subseg);
6238 }
6239}
6240#endif
252b5132 6241\f
252b5132
RH
6242symbolS *
6243md_undefined_symbol (name)
6244 char *name;
6245{
18dc2407
ILT
6246 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6247 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6248 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6249 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
6250 {
6251 if (!GOT_symbol)
6252 {
6253 if (symbol_find (name))
6254 as_bad (_("GOT already in symbol table"));
6255 GOT_symbol = symbol_new (name, undefined_section,
6256 (valueT) 0, &zero_address_frag);
6257 };
6258 return GOT_symbol;
6259 }
252b5132
RH
6260 return 0;
6261}
6262
6263/* Round up a section size to the appropriate boundary. */
47926f60 6264
252b5132
RH
6265valueT
6266md_section_align (segment, size)
ab9da554 6267 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
6268 valueT size;
6269{
4c63da97
AM
6270#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6271 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6272 {
6273 /* For a.out, force the section size to be aligned. If we don't do
6274 this, BFD will align it for us, but it will not write out the
6275 final bytes of the section. This may be a bug in BFD, but it is
6276 easier to fix it here since that is how the other a.out targets
6277 work. */
6278 int align;
6279
6280 align = bfd_get_section_alignment (stdoutput, segment);
6281 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6282 }
252b5132
RH
6283#endif
6284
6285 return size;
6286}
6287
6288/* On the i386, PC-relative offsets are relative to the start of the
6289 next instruction. That is, the address of the offset, plus its
6290 size, since the offset is always the last part of the insn. */
6291
6292long
e3bb37b5 6293md_pcrel_from (fixS *fixP)
252b5132
RH
6294{
6295 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6296}
6297
6298#ifndef I386COFF
6299
6300static void
e3bb37b5 6301s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 6302{
29b0f896 6303 int temp;
252b5132 6304
8a75718c
JB
6305#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6306 if (IS_ELF)
6307 obj_elf_section_change_hook ();
6308#endif
252b5132
RH
6309 temp = get_absolute_expression ();
6310 subseg_set (bss_section, (subsegT) temp);
6311 demand_empty_rest_of_line ();
6312}
6313
6314#endif
6315
252b5132 6316void
e3bb37b5 6317i386_validate_fix (fixS *fixp)
252b5132
RH
6318{
6319 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6320 {
23df1078
JH
6321 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6322 {
4fa24527 6323 if (!object_64bit)
23df1078
JH
6324 abort ();
6325 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6326 }
6327 else
6328 {
4fa24527 6329 if (!object_64bit)
d6ab8113
JB
6330 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6331 else
6332 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
23df1078 6333 }
252b5132
RH
6334 fixp->fx_subsy = 0;
6335 }
6336}
6337
252b5132
RH
6338arelent *
6339tc_gen_reloc (section, fixp)
ab9da554 6340 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
6341 fixS *fixp;
6342{
6343 arelent *rel;
6344 bfd_reloc_code_real_type code;
6345
6346 switch (fixp->fx_r_type)
6347 {
3e73aa7c
JH
6348 case BFD_RELOC_X86_64_PLT32:
6349 case BFD_RELOC_X86_64_GOT32:
6350 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
6351 case BFD_RELOC_386_PLT32:
6352 case BFD_RELOC_386_GOT32:
6353 case BFD_RELOC_386_GOTOFF:
6354 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
6355 case BFD_RELOC_386_TLS_GD:
6356 case BFD_RELOC_386_TLS_LDM:
6357 case BFD_RELOC_386_TLS_LDO_32:
6358 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
6359 case BFD_RELOC_386_TLS_IE:
6360 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
6361 case BFD_RELOC_386_TLS_LE_32:
6362 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
6363 case BFD_RELOC_386_TLS_GOTDESC:
6364 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
6365 case BFD_RELOC_X86_64_TLSGD:
6366 case BFD_RELOC_X86_64_TLSLD:
6367 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 6368 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
6369 case BFD_RELOC_X86_64_GOTTPOFF:
6370 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
6371 case BFD_RELOC_X86_64_TPOFF64:
6372 case BFD_RELOC_X86_64_GOTOFF64:
6373 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
6374 case BFD_RELOC_X86_64_GOT64:
6375 case BFD_RELOC_X86_64_GOTPCREL64:
6376 case BFD_RELOC_X86_64_GOTPC64:
6377 case BFD_RELOC_X86_64_GOTPLT64:
6378 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
6379 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6380 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
6381 case BFD_RELOC_RVA:
6382 case BFD_RELOC_VTABLE_ENTRY:
6383 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
6384#ifdef TE_PE
6385 case BFD_RELOC_32_SECREL:
6386#endif
252b5132
RH
6387 code = fixp->fx_r_type;
6388 break;
dbbaec26
L
6389 case BFD_RELOC_X86_64_32S:
6390 if (!fixp->fx_pcrel)
6391 {
6392 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6393 code = fixp->fx_r_type;
6394 break;
6395 }
252b5132 6396 default:
93382f6d 6397 if (fixp->fx_pcrel)
252b5132 6398 {
93382f6d
AM
6399 switch (fixp->fx_size)
6400 {
6401 default:
b091f402
AM
6402 as_bad_where (fixp->fx_file, fixp->fx_line,
6403 _("can not do %d byte pc-relative relocation"),
6404 fixp->fx_size);
93382f6d
AM
6405 code = BFD_RELOC_32_PCREL;
6406 break;
6407 case 1: code = BFD_RELOC_8_PCREL; break;
6408 case 2: code = BFD_RELOC_16_PCREL; break;
6409 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
6410#ifdef BFD64
6411 case 8: code = BFD_RELOC_64_PCREL; break;
6412#endif
93382f6d
AM
6413 }
6414 }
6415 else
6416 {
6417 switch (fixp->fx_size)
6418 {
6419 default:
b091f402
AM
6420 as_bad_where (fixp->fx_file, fixp->fx_line,
6421 _("can not do %d byte relocation"),
6422 fixp->fx_size);
93382f6d
AM
6423 code = BFD_RELOC_32;
6424 break;
6425 case 1: code = BFD_RELOC_8; break;
6426 case 2: code = BFD_RELOC_16; break;
6427 case 4: code = BFD_RELOC_32; break;
937149dd 6428#ifdef BFD64
3e73aa7c 6429 case 8: code = BFD_RELOC_64; break;
937149dd 6430#endif
93382f6d 6431 }
252b5132
RH
6432 }
6433 break;
6434 }
252b5132 6435
d182319b
JB
6436 if ((code == BFD_RELOC_32
6437 || code == BFD_RELOC_32_PCREL
6438 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
6439 && GOT_symbol
6440 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 6441 {
4fa24527 6442 if (!object_64bit)
d6ab8113
JB
6443 code = BFD_RELOC_386_GOTPC;
6444 else
6445 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 6446 }
7b81dfbb
AJ
6447 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6448 && GOT_symbol
6449 && fixp->fx_addsy == GOT_symbol)
6450 {
6451 code = BFD_RELOC_X86_64_GOTPC64;
6452 }
252b5132
RH
6453
6454 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
6455 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6456 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
6457
6458 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 6459
3e73aa7c
JH
6460 if (!use_rela_relocations)
6461 {
6462 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6463 vtable entry to be used in the relocation's section offset. */
6464 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6465 rel->address = fixp->fx_offset;
252b5132 6466
c6682705 6467 rel->addend = 0;
3e73aa7c
JH
6468 }
6469 /* Use the rela in 64bit mode. */
252b5132 6470 else
3e73aa7c 6471 {
062cd5e7
AS
6472 if (!fixp->fx_pcrel)
6473 rel->addend = fixp->fx_offset;
6474 else
6475 switch (code)
6476 {
6477 case BFD_RELOC_X86_64_PLT32:
6478 case BFD_RELOC_X86_64_GOT32:
6479 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
6480 case BFD_RELOC_X86_64_TLSGD:
6481 case BFD_RELOC_X86_64_TLSLD:
6482 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
6483 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6484 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
6485 rel->addend = fixp->fx_offset - fixp->fx_size;
6486 break;
6487 default:
6488 rel->addend = (section->vma
6489 - fixp->fx_size
6490 + fixp->fx_addnumber
6491 + md_pcrel_from (fixp));
6492 break;
6493 }
3e73aa7c
JH
6494 }
6495
252b5132
RH
6496 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6497 if (rel->howto == NULL)
6498 {
6499 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 6500 _("cannot represent relocation type %s"),
252b5132
RH
6501 bfd_get_reloc_code_name (code));
6502 /* Set howto to a garbage value so that we can keep going. */
6503 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6504 assert (rel->howto != NULL);
6505 }
6506
6507 return rel;
6508}
6509
64a0c779
DN
6510\f
6511/* Parse operands using Intel syntax. This implements a recursive descent
6512 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6513 Programmer's Guide.
6514
6515 FIXME: We do not recognize the full operand grammar defined in the MASM
6516 documentation. In particular, all the structure/union and
6517 high-level macro operands are missing.
6518
6519 Uppercase words are terminals, lower case words are non-terminals.
6520 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6521 bars '|' denote choices. Most grammar productions are implemented in
6522 functions called 'intel_<production>'.
6523
6524 Initial production is 'expr'.
6525
9306ca4a 6526 addOp + | -
64a0c779
DN
6527
6528 alpha [a-zA-Z]
6529
9306ca4a
JB
6530 binOp & | AND | \| | OR | ^ | XOR
6531
64a0c779
DN
6532 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6533
6534 constant digits [[ radixOverride ]]
6535
9306ca4a 6536 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
64a0c779
DN
6537
6538 digits decdigit
b77a7acd
AJ
6539 | digits decdigit
6540 | digits hexdigit
64a0c779
DN
6541
6542 decdigit [0-9]
6543
9306ca4a
JB
6544 e04 e04 addOp e05
6545 | e05
6546
6547 e05 e05 binOp e06
b77a7acd 6548 | e06
64a0c779
DN
6549
6550 e06 e06 mulOp e09
b77a7acd 6551 | e09
64a0c779
DN
6552
6553 e09 OFFSET e10
a724f0f4
JB
6554 | SHORT e10
6555 | + e10
6556 | - e10
9306ca4a
JB
6557 | ~ e10
6558 | NOT e10
64a0c779
DN
6559 | e09 PTR e10
6560 | e09 : e10
6561 | e10
6562
6563 e10 e10 [ expr ]
b77a7acd 6564 | e11
64a0c779
DN
6565
6566 e11 ( expr )
b77a7acd 6567 | [ expr ]
64a0c779
DN
6568 | constant
6569 | dataType
6570 | id
6571 | $
6572 | register
6573
a724f0f4 6574 => expr expr cmpOp e04
9306ca4a 6575 | e04
64a0c779
DN
6576
6577 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 6578 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
6579
6580 hexdigit a | b | c | d | e | f
b77a7acd 6581 | A | B | C | D | E | F
64a0c779
DN
6582
6583 id alpha
b77a7acd 6584 | id alpha
64a0c779
DN
6585 | id decdigit
6586
9306ca4a 6587 mulOp * | / | % | MOD | << | SHL | >> | SHR
64a0c779
DN
6588
6589 quote " | '
6590
6591 register specialRegister
b77a7acd 6592 | gpRegister
64a0c779
DN
6593 | byteRegister
6594
6595 segmentRegister CS | DS | ES | FS | GS | SS
6596
9306ca4a 6597 specialRegister CR0 | CR2 | CR3 | CR4
b77a7acd 6598 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
6599 | TR3 | TR4 | TR5 | TR6 | TR7
6600
64a0c779
DN
6601 We simplify the grammar in obvious places (e.g., register parsing is
6602 done by calling parse_register) and eliminate immediate left recursion
6603 to implement a recursive-descent parser.
6604
a724f0f4
JB
6605 expr e04 expr'
6606
6607 expr' cmpOp e04 expr'
6608 | Empty
9306ca4a
JB
6609
6610 e04 e05 e04'
6611
6612 e04' addOp e05 e04'
6613 | Empty
64a0c779
DN
6614
6615 e05 e06 e05'
6616
9306ca4a 6617 e05' binOp e06 e05'
b77a7acd 6618 | Empty
64a0c779
DN
6619
6620 e06 e09 e06'
6621
6622 e06' mulOp e09 e06'
b77a7acd 6623 | Empty
64a0c779
DN
6624
6625 e09 OFFSET e10 e09'
a724f0f4
JB
6626 | SHORT e10'
6627 | + e10'
6628 | - e10'
6629 | ~ e10'
6630 | NOT e10'
b77a7acd 6631 | e10 e09'
64a0c779
DN
6632
6633 e09' PTR e10 e09'
b77a7acd 6634 | : e10 e09'
64a0c779
DN
6635 | Empty
6636
6637 e10 e11 e10'
6638
6639 e10' [ expr ] e10'
b77a7acd 6640 | Empty
64a0c779
DN
6641
6642 e11 ( expr )
b77a7acd 6643 | [ expr ]
64a0c779
DN
6644 | BYTE
6645 | WORD
6646 | DWORD
9306ca4a 6647 | FWORD
64a0c779 6648 | QWORD
9306ca4a
JB
6649 | TBYTE
6650 | OWORD
6651 | XMMWORD
64a0c779
DN
6652 | .
6653 | $
6654 | register
6655 | id
6656 | constant */
6657
6658/* Parsing structure for the intel syntax parser. Used to implement the
6659 semantic actions for the operand grammar. */
6660struct intel_parser_s
6661 {
6662 char *op_string; /* The string being parsed. */
6663 int got_a_float; /* Whether the operand is a float. */
4a1805b1 6664 int op_modifier; /* Operand modifier. */
64a0c779 6665 int is_mem; /* 1 if operand is memory reference. */
4eed87de
AM
6666 int in_offset; /* >=1 if parsing operand of offset. */
6667 int in_bracket; /* >=1 if parsing operand in brackets. */
64a0c779
DN
6668 const reg_entry *reg; /* Last register reference found. */
6669 char *disp; /* Displacement string being built. */
a724f0f4 6670 char *next_operand; /* Resume point when splitting operands. */
64a0c779
DN
6671 };
6672
6673static struct intel_parser_s intel_parser;
6674
6675/* Token structure for parsing intel syntax. */
6676struct intel_token
6677 {
6678 int code; /* Token code. */
6679 const reg_entry *reg; /* Register entry for register tokens. */
6680 char *str; /* String representation. */
6681 };
6682
6683static struct intel_token cur_token, prev_token;
6684
50705ef4
AM
6685/* Token codes for the intel parser. Since T_SHORT is already used
6686 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
6687#define T_NIL -1
6688#define T_CONST 1
6689#define T_REG 2
6690#define T_BYTE 3
6691#define T_WORD 4
9306ca4a
JB
6692#define T_DWORD 5
6693#define T_FWORD 6
6694#define T_QWORD 7
6695#define T_TBYTE 8
6696#define T_XMMWORD 9
50705ef4 6697#undef T_SHORT
9306ca4a
JB
6698#define T_SHORT 10
6699#define T_OFFSET 11
6700#define T_PTR 12
6701#define T_ID 13
6702#define T_SHL 14
6703#define T_SHR 15
64a0c779
DN
6704
6705/* Prototypes for intel parser functions. */
e3bb37b5
L
6706static int intel_match_token (int);
6707static void intel_putback_token (void);
6708static void intel_get_token (void);
6709static int intel_expr (void);
6710static int intel_e04 (void);
6711static int intel_e05 (void);
6712static int intel_e06 (void);
6713static int intel_e09 (void);
6714static int intel_e10 (void);
6715static int intel_e11 (void);
64a0c779 6716
64a0c779 6717static int
e3bb37b5 6718i386_intel_operand (char *operand_string, int got_a_float)
64a0c779
DN
6719{
6720 int ret;
6721 char *p;
6722
a724f0f4
JB
6723 p = intel_parser.op_string = xstrdup (operand_string);
6724 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6725
6726 for (;;)
64a0c779 6727 {
a724f0f4
JB
6728 /* Initialize token holders. */
6729 cur_token.code = prev_token.code = T_NIL;
6730 cur_token.reg = prev_token.reg = NULL;
6731 cur_token.str = prev_token.str = NULL;
6732
6733 /* Initialize parser structure. */
6734 intel_parser.got_a_float = got_a_float;
6735 intel_parser.op_modifier = 0;
6736 intel_parser.is_mem = 0;
6737 intel_parser.in_offset = 0;
6738 intel_parser.in_bracket = 0;
6739 intel_parser.reg = NULL;
6740 intel_parser.disp[0] = '\0';
6741 intel_parser.next_operand = NULL;
6742
6743 /* Read the first token and start the parser. */
6744 intel_get_token ();
6745 ret = intel_expr ();
6746
6747 if (!ret)
6748 break;
6749
9306ca4a
JB
6750 if (cur_token.code != T_NIL)
6751 {
6752 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6753 current_templates->start->name, cur_token.str);
6754 ret = 0;
6755 }
64a0c779
DN
6756 /* If we found a memory reference, hand it over to i386_displacement
6757 to fill in the rest of the operand fields. */
9306ca4a 6758 else if (intel_parser.is_mem)
64a0c779
DN
6759 {
6760 if ((i.mem_operands == 1
6761 && (current_templates->start->opcode_modifier & IsString) == 0)
6762 || i.mem_operands == 2)
6763 {
6764 as_bad (_("too many memory references for '%s'"),
6765 current_templates->start->name);
6766 ret = 0;
6767 }
6768 else
6769 {
6770 char *s = intel_parser.disp;
6771 i.mem_operands++;
6772
a724f0f4
JB
6773 if (!quiet_warnings && intel_parser.is_mem < 0)
6774 /* See the comments in intel_bracket_expr. */
6775 as_warn (_("Treating `%s' as memory reference"), operand_string);
6776
64a0c779
DN
6777 /* Add the displacement expression. */
6778 if (*s != '\0')
a4622f40
AM
6779 ret = i386_displacement (s, s + strlen (s));
6780 if (ret)
a724f0f4
JB
6781 {
6782 /* Swap base and index in 16-bit memory operands like
6783 [si+bx]. Since i386_index_check is also used in AT&T
6784 mode we have to do that here. */
6785 if (i.base_reg
6786 && i.index_reg
6787 && (i.base_reg->reg_type & Reg16)
6788 && (i.index_reg->reg_type & Reg16)
6789 && i.base_reg->reg_num >= 6
6790 && i.index_reg->reg_num < 6)
6791 {
6792 const reg_entry *base = i.index_reg;
6793
6794 i.index_reg = i.base_reg;
6795 i.base_reg = base;
6796 }
6797 ret = i386_index_check (operand_string);
6798 }
64a0c779
DN
6799 }
6800 }
6801
6802 /* Constant and OFFSET expressions are handled by i386_immediate. */
a724f0f4 6803 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
64a0c779
DN
6804 || intel_parser.reg == NULL)
6805 ret = i386_immediate (intel_parser.disp);
a724f0f4
JB
6806
6807 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
4eed87de 6808 ret = 0;
a724f0f4
JB
6809 if (!ret || !intel_parser.next_operand)
6810 break;
6811 intel_parser.op_string = intel_parser.next_operand;
6812 this_operand = i.operands++;
64a0c779
DN
6813 }
6814
6815 free (p);
6816 free (intel_parser.disp);
6817
6818 return ret;
6819}
6820
a724f0f4
JB
6821#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6822
6823/* expr e04 expr'
6824
6825 expr' cmpOp e04 expr'
6826 | Empty */
64a0c779 6827static int
e3bb37b5 6828intel_expr (void)
64a0c779 6829{
a724f0f4
JB
6830 /* XXX Implement the comparison operators. */
6831 return intel_e04 ();
9306ca4a
JB
6832}
6833
a724f0f4 6834/* e04 e05 e04'
9306ca4a 6835
a724f0f4 6836 e04' addOp e05 e04'
9306ca4a
JB
6837 | Empty */
6838static int
e3bb37b5 6839intel_e04 (void)
9306ca4a 6840{
a724f0f4 6841 int nregs = -1;
9306ca4a 6842
a724f0f4 6843 for (;;)
9306ca4a 6844 {
a724f0f4
JB
6845 if (!intel_e05())
6846 return 0;
9306ca4a 6847
a724f0f4
JB
6848 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6849 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
9306ca4a 6850
a724f0f4
JB
6851 if (cur_token.code == '+')
6852 nregs = -1;
6853 else if (cur_token.code == '-')
6854 nregs = NUM_ADDRESS_REGS;
6855 else
6856 return 1;
64a0c779 6857
a724f0f4
JB
6858 strcat (intel_parser.disp, cur_token.str);
6859 intel_match_token (cur_token.code);
6860 }
64a0c779
DN
6861}
6862
64a0c779
DN
6863/* e05 e06 e05'
6864
9306ca4a 6865 e05' binOp e06 e05'
64a0c779
DN
6866 | Empty */
6867static int
e3bb37b5 6868intel_e05 (void)
64a0c779 6869{
a724f0f4 6870 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 6871
a724f0f4 6872 for (;;)
64a0c779 6873 {
a724f0f4
JB
6874 if (!intel_e06())
6875 return 0;
6876
4eed87de
AM
6877 if (cur_token.code == '&'
6878 || cur_token.code == '|'
6879 || cur_token.code == '^')
a724f0f4
JB
6880 {
6881 char str[2];
6882
6883 str[0] = cur_token.code;
6884 str[1] = 0;
6885 strcat (intel_parser.disp, str);
6886 }
6887 else
6888 break;
9306ca4a 6889
64a0c779
DN
6890 intel_match_token (cur_token.code);
6891
a724f0f4
JB
6892 if (nregs < 0)
6893 nregs = ~nregs;
64a0c779 6894 }
a724f0f4
JB
6895 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6896 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6897 return 1;
4a1805b1 6898}
64a0c779
DN
6899
6900/* e06 e09 e06'
6901
6902 e06' mulOp e09 e06'
b77a7acd 6903 | Empty */
64a0c779 6904static int
e3bb37b5 6905intel_e06 (void)
64a0c779 6906{
a724f0f4 6907 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 6908
a724f0f4 6909 for (;;)
64a0c779 6910 {
a724f0f4
JB
6911 if (!intel_e09())
6912 return 0;
9306ca4a 6913
4eed87de
AM
6914 if (cur_token.code == '*'
6915 || cur_token.code == '/'
6916 || cur_token.code == '%')
a724f0f4
JB
6917 {
6918 char str[2];
9306ca4a 6919
a724f0f4
JB
6920 str[0] = cur_token.code;
6921 str[1] = 0;
6922 strcat (intel_parser.disp, str);
6923 }
6924 else if (cur_token.code == T_SHL)
6925 strcat (intel_parser.disp, "<<");
6926 else if (cur_token.code == T_SHR)
6927 strcat (intel_parser.disp, ">>");
6928 else
6929 break;
9306ca4a 6930
64e74474 6931 intel_match_token (cur_token.code);
64a0c779 6932
a724f0f4
JB
6933 if (nregs < 0)
6934 nregs = ~nregs;
64a0c779 6935 }
a724f0f4
JB
6936 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6937 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6938 return 1;
64a0c779
DN
6939}
6940
a724f0f4
JB
6941/* e09 OFFSET e09
6942 | SHORT e09
6943 | + e09
6944 | - e09
6945 | ~ e09
6946 | NOT e09
9306ca4a
JB
6947 | e10 e09'
6948
64a0c779 6949 e09' PTR e10 e09'
b77a7acd 6950 | : e10 e09'
64a0c779
DN
6951 | Empty */
6952static int
e3bb37b5 6953intel_e09 (void)
64a0c779 6954{
a724f0f4
JB
6955 int nregs = ~NUM_ADDRESS_REGS;
6956 int in_offset = 0;
6957
6958 for (;;)
64a0c779 6959 {
a724f0f4
JB
6960 /* Don't consume constants here. */
6961 if (cur_token.code == '+' || cur_token.code == '-')
6962 {
6963 /* Need to look one token ahead - if the next token
6964 is a constant, the current token is its sign. */
6965 int next_code;
6966
6967 intel_match_token (cur_token.code);
6968 next_code = cur_token.code;
6969 intel_putback_token ();
6970 if (next_code == T_CONST)
6971 break;
6972 }
6973
6974 /* e09 OFFSET e09 */
6975 if (cur_token.code == T_OFFSET)
6976 {
6977 if (!in_offset++)
6978 ++intel_parser.in_offset;
6979 }
6980
6981 /* e09 SHORT e09 */
6982 else if (cur_token.code == T_SHORT)
6983 intel_parser.op_modifier |= 1 << T_SHORT;
6984
6985 /* e09 + e09 */
6986 else if (cur_token.code == '+')
6987 strcat (intel_parser.disp, "+");
6988
6989 /* e09 - e09
6990 | ~ e09
6991 | NOT e09 */
6992 else if (cur_token.code == '-' || cur_token.code == '~')
6993 {
6994 char str[2];
64a0c779 6995
a724f0f4
JB
6996 if (nregs < 0)
6997 nregs = ~nregs;
6998 str[0] = cur_token.code;
6999 str[1] = 0;
7000 strcat (intel_parser.disp, str);
7001 }
7002
7003 /* e09 e10 e09' */
7004 else
7005 break;
7006
7007 intel_match_token (cur_token.code);
64a0c779
DN
7008 }
7009
a724f0f4 7010 for (;;)
9306ca4a 7011 {
a724f0f4
JB
7012 if (!intel_e10 ())
7013 return 0;
9306ca4a 7014
a724f0f4
JB
7015 /* e09' PTR e10 e09' */
7016 if (cur_token.code == T_PTR)
7017 {
7018 char suffix;
9306ca4a 7019
a724f0f4
JB
7020 if (prev_token.code == T_BYTE)
7021 suffix = BYTE_MNEM_SUFFIX;
9306ca4a 7022
a724f0f4
JB
7023 else if (prev_token.code == T_WORD)
7024 {
7025 if (current_templates->start->name[0] == 'l'
7026 && current_templates->start->name[2] == 's'
7027 && current_templates->start->name[3] == 0)
7028 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7029 else if (intel_parser.got_a_float == 2) /* "fi..." */
7030 suffix = SHORT_MNEM_SUFFIX;
7031 else
7032 suffix = WORD_MNEM_SUFFIX;
7033 }
64a0c779 7034
a724f0f4
JB
7035 else if (prev_token.code == T_DWORD)
7036 {
7037 if (current_templates->start->name[0] == 'l'
7038 && current_templates->start->name[2] == 's'
7039 && current_templates->start->name[3] == 0)
7040 suffix = WORD_MNEM_SUFFIX;
7041 else if (flag_code == CODE_16BIT
7042 && (current_templates->start->opcode_modifier
435acd52 7043 & (Jump | JumpDword)))
a724f0f4
JB
7044 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7045 else if (intel_parser.got_a_float == 1) /* "f..." */
7046 suffix = SHORT_MNEM_SUFFIX;
7047 else
7048 suffix = LONG_MNEM_SUFFIX;
7049 }
9306ca4a 7050
a724f0f4
JB
7051 else if (prev_token.code == T_FWORD)
7052 {
7053 if (current_templates->start->name[0] == 'l'
7054 && current_templates->start->name[2] == 's'
7055 && current_templates->start->name[3] == 0)
7056 suffix = LONG_MNEM_SUFFIX;
7057 else if (!intel_parser.got_a_float)
7058 {
7059 if (flag_code == CODE_16BIT)
7060 add_prefix (DATA_PREFIX_OPCODE);
7061 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7062 }
7063 else
7064 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7065 }
64a0c779 7066
a724f0f4
JB
7067 else if (prev_token.code == T_QWORD)
7068 {
7069 if (intel_parser.got_a_float == 1) /* "f..." */
7070 suffix = LONG_MNEM_SUFFIX;
7071 else
7072 suffix = QWORD_MNEM_SUFFIX;
7073 }
64a0c779 7074
a724f0f4
JB
7075 else if (prev_token.code == T_TBYTE)
7076 {
7077 if (intel_parser.got_a_float == 1)
7078 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7079 else
7080 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7081 }
9306ca4a 7082
a724f0f4 7083 else if (prev_token.code == T_XMMWORD)
9306ca4a 7084 {
a724f0f4
JB
7085 /* XXX ignored for now, but accepted since gcc uses it */
7086 suffix = 0;
9306ca4a 7087 }
64a0c779 7088
f16b83df 7089 else
a724f0f4
JB
7090 {
7091 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
7092 return 0;
7093 }
7094
435acd52
JB
7095 /* Operands for jump/call using 'ptr' notation denote absolute
7096 addresses. */
7097 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7098 i.types[this_operand] |= JumpAbsolute;
7099
a724f0f4
JB
7100 if (current_templates->start->base_opcode == 0x8d /* lea */)
7101 ;
7102 else if (!i.suffix)
7103 i.suffix = suffix;
7104 else if (i.suffix != suffix)
7105 {
7106 as_bad (_("Conflicting operand modifiers"));
7107 return 0;
7108 }
64a0c779 7109
9306ca4a
JB
7110 }
7111
a724f0f4
JB
7112 /* e09' : e10 e09' */
7113 else if (cur_token.code == ':')
9306ca4a 7114 {
a724f0f4
JB
7115 if (prev_token.code != T_REG)
7116 {
7117 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7118 segment/group identifier (which we don't have), using comma
7119 as the operand separator there is even less consistent, since
7120 there all branches only have a single operand. */
7121 if (this_operand != 0
7122 || intel_parser.in_offset
7123 || intel_parser.in_bracket
7124 || (!(current_templates->start->opcode_modifier
7125 & (Jump|JumpDword|JumpInterSegment))
7126 && !(current_templates->start->operand_types[0]
7127 & JumpAbsolute)))
7128 return intel_match_token (T_NIL);
7129 /* Remember the start of the 2nd operand and terminate 1st
7130 operand here.
7131 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7132 another expression), but it gets at least the simplest case
7133 (a plain number or symbol on the left side) right. */
7134 intel_parser.next_operand = intel_parser.op_string;
7135 *--intel_parser.op_string = '\0';
7136 return intel_match_token (':');
7137 }
9306ca4a 7138 }
64a0c779 7139
a724f0f4 7140 /* e09' Empty */
64a0c779 7141 else
a724f0f4 7142 break;
64a0c779 7143
a724f0f4
JB
7144 intel_match_token (cur_token.code);
7145
7146 }
7147
7148 if (in_offset)
7149 {
7150 --intel_parser.in_offset;
7151 if (nregs < 0)
7152 nregs = ~nregs;
7153 if (NUM_ADDRESS_REGS > nregs)
9306ca4a 7154 {
a724f0f4 7155 as_bad (_("Invalid operand to `OFFSET'"));
9306ca4a
JB
7156 return 0;
7157 }
a724f0f4
JB
7158 intel_parser.op_modifier |= 1 << T_OFFSET;
7159 }
9306ca4a 7160
a724f0f4
JB
7161 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7162 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7163 return 1;
7164}
64a0c779 7165
a724f0f4 7166static int
e3bb37b5 7167intel_bracket_expr (void)
a724f0f4
JB
7168{
7169 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7170 const char *start = intel_parser.op_string;
7171 int len;
7172
7173 if (i.op[this_operand].regs)
7174 return intel_match_token (T_NIL);
7175
7176 intel_match_token ('[');
7177
7178 /* Mark as a memory operand only if it's not already known to be an
7179 offset expression. If it's an offset expression, we need to keep
7180 the brace in. */
7181 if (!intel_parser.in_offset)
7182 {
7183 ++intel_parser.in_bracket;
435acd52
JB
7184
7185 /* Operands for jump/call inside brackets denote absolute addresses. */
7186 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7187 i.types[this_operand] |= JumpAbsolute;
7188
a724f0f4
JB
7189 /* Unfortunately gas always diverged from MASM in a respect that can't
7190 be easily fixed without risking to break code sequences likely to be
7191 encountered (the testsuite even check for this): MASM doesn't consider
7192 an expression inside brackets unconditionally as a memory reference.
7193 When that is e.g. a constant, an offset expression, or the sum of the
7194 two, this is still taken as a constant load. gas, however, always
7195 treated these as memory references. As a compromise, we'll try to make
7196 offset expressions inside brackets work the MASM way (since that's
7197 less likely to be found in real world code), but make constants alone
7198 continue to work the traditional gas way. In either case, issue a
7199 warning. */
7200 intel_parser.op_modifier &= ~was_offset;
64a0c779 7201 }
a724f0f4 7202 else
64e74474 7203 strcat (intel_parser.disp, "[");
a724f0f4
JB
7204
7205 /* Add a '+' to the displacement string if necessary. */
7206 if (*intel_parser.disp != '\0'
7207 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7208 strcat (intel_parser.disp, "+");
64a0c779 7209
a724f0f4
JB
7210 if (intel_expr ()
7211 && (len = intel_parser.op_string - start - 1,
7212 intel_match_token (']')))
64a0c779 7213 {
a724f0f4
JB
7214 /* Preserve brackets when the operand is an offset expression. */
7215 if (intel_parser.in_offset)
7216 strcat (intel_parser.disp, "]");
7217 else
7218 {
7219 --intel_parser.in_bracket;
7220 if (i.base_reg || i.index_reg)
7221 intel_parser.is_mem = 1;
7222 if (!intel_parser.is_mem)
7223 {
7224 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7225 /* Defer the warning until all of the operand was parsed. */
7226 intel_parser.is_mem = -1;
7227 else if (!quiet_warnings)
4eed87de
AM
7228 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
7229 len, start, len, start);
a724f0f4
JB
7230 }
7231 }
7232 intel_parser.op_modifier |= was_offset;
64a0c779 7233
a724f0f4 7234 return 1;
64a0c779 7235 }
a724f0f4 7236 return 0;
64a0c779
DN
7237}
7238
7239/* e10 e11 e10'
7240
7241 e10' [ expr ] e10'
b77a7acd 7242 | Empty */
64a0c779 7243static int
e3bb37b5 7244intel_e10 (void)
64a0c779 7245{
a724f0f4
JB
7246 if (!intel_e11 ())
7247 return 0;
64a0c779 7248
a724f0f4 7249 while (cur_token.code == '[')
64a0c779 7250 {
a724f0f4 7251 if (!intel_bracket_expr ())
21d6c4af 7252 return 0;
64a0c779
DN
7253 }
7254
a724f0f4 7255 return 1;
64a0c779
DN
7256}
7257
64a0c779 7258/* e11 ( expr )
b77a7acd 7259 | [ expr ]
64a0c779
DN
7260 | BYTE
7261 | WORD
7262 | DWORD
9306ca4a 7263 | FWORD
64a0c779 7264 | QWORD
9306ca4a
JB
7265 | TBYTE
7266 | OWORD
7267 | XMMWORD
4a1805b1 7268 | $
64a0c779
DN
7269 | .
7270 | register
7271 | id
7272 | constant */
7273static int
e3bb37b5 7274intel_e11 (void)
64a0c779 7275{
a724f0f4 7276 switch (cur_token.code)
64a0c779 7277 {
a724f0f4
JB
7278 /* e11 ( expr ) */
7279 case '(':
64a0c779
DN
7280 intel_match_token ('(');
7281 strcat (intel_parser.disp, "(");
7282
7283 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
7284 {
7285 strcat (intel_parser.disp, ")");
7286 return 1;
7287 }
a724f0f4 7288 return 0;
4a1805b1 7289
a724f0f4
JB
7290 /* e11 [ expr ] */
7291 case '[':
a724f0f4 7292 return intel_bracket_expr ();
64a0c779 7293
a724f0f4
JB
7294 /* e11 $
7295 | . */
7296 case '.':
64a0c779
DN
7297 strcat (intel_parser.disp, cur_token.str);
7298 intel_match_token (cur_token.code);
21d6c4af
DN
7299
7300 /* Mark as a memory operand only if it's not already known to be an
7301 offset expression. */
a724f0f4 7302 if (!intel_parser.in_offset)
21d6c4af 7303 intel_parser.is_mem = 1;
64a0c779
DN
7304
7305 return 1;
64a0c779 7306
a724f0f4
JB
7307 /* e11 register */
7308 case T_REG:
7309 {
7310 const reg_entry *reg = intel_parser.reg = cur_token.reg;
64a0c779 7311
a724f0f4 7312 intel_match_token (T_REG);
64a0c779 7313
a724f0f4
JB
7314 /* Check for segment change. */
7315 if (cur_token.code == ':')
7316 {
7317 if (!(reg->reg_type & (SReg2 | SReg3)))
7318 {
4eed87de
AM
7319 as_bad (_("`%s' is not a valid segment register"),
7320 reg->reg_name);
a724f0f4
JB
7321 return 0;
7322 }
7323 else if (i.seg[i.mem_operands])
7324 as_warn (_("Extra segment override ignored"));
7325 else
7326 {
7327 if (!intel_parser.in_offset)
7328 intel_parser.is_mem = 1;
7329 switch (reg->reg_num)
7330 {
7331 case 0:
7332 i.seg[i.mem_operands] = &es;
7333 break;
7334 case 1:
7335 i.seg[i.mem_operands] = &cs;
7336 break;
7337 case 2:
7338 i.seg[i.mem_operands] = &ss;
7339 break;
7340 case 3:
7341 i.seg[i.mem_operands] = &ds;
7342 break;
7343 case 4:
7344 i.seg[i.mem_operands] = &fs;
7345 break;
7346 case 5:
7347 i.seg[i.mem_operands] = &gs;
7348 break;
7349 }
7350 }
7351 }
64a0c779 7352
a724f0f4
JB
7353 /* Not a segment register. Check for register scaling. */
7354 else if (cur_token.code == '*')
7355 {
7356 if (!intel_parser.in_bracket)
7357 {
7358 as_bad (_("Register scaling only allowed in memory operands"));
7359 return 0;
7360 }
64a0c779 7361
a724f0f4
JB
7362 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7363 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7364 else if (i.index_reg)
7365 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
64a0c779 7366
a724f0f4
JB
7367 /* What follows must be a valid scale. */
7368 intel_match_token ('*');
7369 i.index_reg = reg;
7370 i.types[this_operand] |= BaseIndex;
64a0c779 7371
a724f0f4
JB
7372 /* Set the scale after setting the register (otherwise,
7373 i386_scale will complain) */
7374 if (cur_token.code == '+' || cur_token.code == '-')
7375 {
7376 char *str, sign = cur_token.code;
7377 intel_match_token (cur_token.code);
7378 if (cur_token.code != T_CONST)
7379 {
7380 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7381 cur_token.str);
7382 return 0;
7383 }
7384 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7385 strcpy (str + 1, cur_token.str);
7386 *str = sign;
7387 if (!i386_scale (str))
7388 return 0;
7389 free (str);
7390 }
7391 else if (!i386_scale (cur_token.str))
64a0c779 7392 return 0;
a724f0f4
JB
7393 intel_match_token (cur_token.code);
7394 }
64a0c779 7395
a724f0f4
JB
7396 /* No scaling. If this is a memory operand, the register is either a
7397 base register (first occurrence) or an index register (second
7398 occurrence). */
7b0441f6 7399 else if (intel_parser.in_bracket)
a724f0f4 7400 {
64a0c779 7401
a724f0f4
JB
7402 if (!i.base_reg)
7403 i.base_reg = reg;
7404 else if (!i.index_reg)
7405 i.index_reg = reg;
7406 else
7407 {
7408 as_bad (_("Too many register references in memory operand"));
7409 return 0;
7410 }
64a0c779 7411
a724f0f4
JB
7412 i.types[this_operand] |= BaseIndex;
7413 }
4a1805b1 7414
4d1bb795
JB
7415 /* It's neither base nor index. */
7416 else if (!intel_parser.in_offset && !intel_parser.is_mem)
a724f0f4
JB
7417 {
7418 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7419 i.op[this_operand].regs = reg;
7420 i.reg_operands++;
7421 }
7422 else
7423 {
7424 as_bad (_("Invalid use of register"));
7425 return 0;
7426 }
64a0c779 7427
a724f0f4
JB
7428 /* Since registers are not part of the displacement string (except
7429 when we're parsing offset operands), we may need to remove any
7430 preceding '+' from the displacement string. */
7431 if (*intel_parser.disp != '\0'
7432 && !intel_parser.in_offset)
7433 {
7434 char *s = intel_parser.disp;
7435 s += strlen (s) - 1;
7436 if (*s == '+')
7437 *s = '\0';
7438 }
4a1805b1 7439
a724f0f4
JB
7440 return 1;
7441 }
7442
7443 /* e11 BYTE
7444 | WORD
7445 | DWORD
7446 | FWORD
7447 | QWORD
7448 | TBYTE
7449 | OWORD
7450 | XMMWORD */
7451 case T_BYTE:
7452 case T_WORD:
7453 case T_DWORD:
7454 case T_FWORD:
7455 case T_QWORD:
7456 case T_TBYTE:
7457 case T_XMMWORD:
7458 intel_match_token (cur_token.code);
64a0c779 7459
a724f0f4
JB
7460 if (cur_token.code == T_PTR)
7461 return 1;
7462
7463 /* It must have been an identifier. */
7464 intel_putback_token ();
7465 cur_token.code = T_ID;
7466 /* FALLTHRU */
7467
7468 /* e11 id
7469 | constant */
7470 case T_ID:
7471 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
9306ca4a
JB
7472 {
7473 symbolS *symbolP;
7474
a724f0f4
JB
7475 /* The identifier represents a memory reference only if it's not
7476 preceded by an offset modifier and if it's not an equate. */
9306ca4a
JB
7477 symbolP = symbol_find(cur_token.str);
7478 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7479 intel_parser.is_mem = 1;
7480 }
a724f0f4 7481 /* FALLTHRU */
64a0c779 7482
a724f0f4
JB
7483 case T_CONST:
7484 case '-':
7485 case '+':
7486 {
7487 char *save_str, sign = 0;
64a0c779 7488
a724f0f4
JB
7489 /* Allow constants that start with `+' or `-'. */
7490 if (cur_token.code == '-' || cur_token.code == '+')
7491 {
7492 sign = cur_token.code;
7493 intel_match_token (cur_token.code);
7494 if (cur_token.code != T_CONST)
7495 {
7496 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7497 cur_token.str);
7498 return 0;
7499 }
7500 }
64a0c779 7501
a724f0f4
JB
7502 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7503 strcpy (save_str + !!sign, cur_token.str);
7504 if (sign)
7505 *save_str = sign;
64a0c779 7506
a724f0f4
JB
7507 /* Get the next token to check for register scaling. */
7508 intel_match_token (cur_token.code);
64a0c779 7509
4eed87de
AM
7510 /* Check if this constant is a scaling factor for an
7511 index register. */
a724f0f4
JB
7512 if (cur_token.code == '*')
7513 {
7514 if (intel_match_token ('*') && cur_token.code == T_REG)
7515 {
7516 const reg_entry *reg = cur_token.reg;
7517
7518 if (!intel_parser.in_bracket)
7519 {
4eed87de
AM
7520 as_bad (_("Register scaling only allowed "
7521 "in memory operands"));
a724f0f4
JB
7522 return 0;
7523 }
7524
4eed87de
AM
7525 /* Disallow things like [1*si].
7526 sp and esp are invalid as index. */
7527 if (reg->reg_type & Reg16)
7528 reg = i386_regtab + REGNAM_AX + 4;
a724f0f4 7529 else if (i.index_reg)
4eed87de 7530 reg = i386_regtab + REGNAM_EAX + 4;
a724f0f4
JB
7531
7532 /* The constant is followed by `* reg', so it must be
7533 a valid scale. */
7534 i.index_reg = reg;
7535 i.types[this_operand] |= BaseIndex;
7536
7537 /* Set the scale after setting the register (otherwise,
7538 i386_scale will complain) */
7539 if (!i386_scale (save_str))
64a0c779 7540 return 0;
a724f0f4
JB
7541 intel_match_token (T_REG);
7542
7543 /* Since registers are not part of the displacement
7544 string, we may need to remove any preceding '+' from
7545 the displacement string. */
7546 if (*intel_parser.disp != '\0')
7547 {
7548 char *s = intel_parser.disp;
7549 s += strlen (s) - 1;
7550 if (*s == '+')
7551 *s = '\0';
7552 }
7553
7554 free (save_str);
7555
7556 return 1;
7557 }
64a0c779 7558
a724f0f4
JB
7559 /* The constant was not used for register scaling. Since we have
7560 already consumed the token following `*' we now need to put it
7561 back in the stream. */
64a0c779 7562 intel_putback_token ();
a724f0f4 7563 }
64a0c779 7564
a724f0f4
JB
7565 /* Add the constant to the displacement string. */
7566 strcat (intel_parser.disp, save_str);
7567 free (save_str);
64a0c779 7568
a724f0f4
JB
7569 return 1;
7570 }
64a0c779
DN
7571 }
7572
64a0c779
DN
7573 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7574 return 0;
7575}
7576
64a0c779
DN
7577/* Match the given token against cur_token. If they match, read the next
7578 token from the operand string. */
7579static int
e3bb37b5 7580intel_match_token (int code)
64a0c779
DN
7581{
7582 if (cur_token.code == code)
7583 {
7584 intel_get_token ();
7585 return 1;
7586 }
7587 else
7588 {
0477af35 7589 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
7590 return 0;
7591 }
7592}
7593
64a0c779
DN
7594/* Read a new token from intel_parser.op_string and store it in cur_token. */
7595static void
e3bb37b5 7596intel_get_token (void)
64a0c779
DN
7597{
7598 char *end_op;
7599 const reg_entry *reg;
7600 struct intel_token new_token;
7601
7602 new_token.code = T_NIL;
7603 new_token.reg = NULL;
7604 new_token.str = NULL;
7605
4a1805b1 7606 /* Free the memory allocated to the previous token and move
64a0c779
DN
7607 cur_token to prev_token. */
7608 if (prev_token.str)
7609 free (prev_token.str);
7610
7611 prev_token = cur_token;
7612
7613 /* Skip whitespace. */
7614 while (is_space_char (*intel_parser.op_string))
7615 intel_parser.op_string++;
7616
7617 /* Return an empty token if we find nothing else on the line. */
7618 if (*intel_parser.op_string == '\0')
7619 {
7620 cur_token = new_token;
7621 return;
7622 }
7623
7624 /* The new token cannot be larger than the remainder of the operand
7625 string. */
a724f0f4 7626 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
64a0c779
DN
7627 new_token.str[0] = '\0';
7628
7629 if (strchr ("0123456789", *intel_parser.op_string))
7630 {
7631 char *p = new_token.str;
7632 char *q = intel_parser.op_string;
7633 new_token.code = T_CONST;
7634
7635 /* Allow any kind of identifier char to encompass floating point and
7636 hexadecimal numbers. */
7637 while (is_identifier_char (*q))
7638 *p++ = *q++;
7639 *p = '\0';
7640
7641 /* Recognize special symbol names [0-9][bf]. */
7642 if (strlen (intel_parser.op_string) == 2
4a1805b1 7643 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
7644 || intel_parser.op_string[1] == 'f'))
7645 new_token.code = T_ID;
7646 }
7647
4d1bb795 7648 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
64a0c779 7649 {
4d1bb795
JB
7650 size_t len = end_op - intel_parser.op_string;
7651
64a0c779
DN
7652 new_token.code = T_REG;
7653 new_token.reg = reg;
7654
4d1bb795
JB
7655 memcpy (new_token.str, intel_parser.op_string, len);
7656 new_token.str[len] = '\0';
64a0c779
DN
7657 }
7658
7659 else if (is_identifier_char (*intel_parser.op_string))
7660 {
7661 char *p = new_token.str;
7662 char *q = intel_parser.op_string;
7663
7664 /* A '.' or '$' followed by an identifier char is an identifier.
7665 Otherwise, it's operator '.' followed by an expression. */
7666 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7667 {
9306ca4a
JB
7668 new_token.code = '.';
7669 new_token.str[0] = '.';
64a0c779
DN
7670 new_token.str[1] = '\0';
7671 }
7672 else
7673 {
7674 while (is_identifier_char (*q) || *q == '@')
7675 *p++ = *q++;
7676 *p = '\0';
7677
9306ca4a
JB
7678 if (strcasecmp (new_token.str, "NOT") == 0)
7679 new_token.code = '~';
7680
7681 else if (strcasecmp (new_token.str, "MOD") == 0)
7682 new_token.code = '%';
7683
7684 else if (strcasecmp (new_token.str, "AND") == 0)
7685 new_token.code = '&';
7686
7687 else if (strcasecmp (new_token.str, "OR") == 0)
7688 new_token.code = '|';
7689
7690 else if (strcasecmp (new_token.str, "XOR") == 0)
7691 new_token.code = '^';
7692
7693 else if (strcasecmp (new_token.str, "SHL") == 0)
7694 new_token.code = T_SHL;
7695
7696 else if (strcasecmp (new_token.str, "SHR") == 0)
7697 new_token.code = T_SHR;
7698
7699 else if (strcasecmp (new_token.str, "BYTE") == 0)
64a0c779
DN
7700 new_token.code = T_BYTE;
7701
7702 else if (strcasecmp (new_token.str, "WORD") == 0)
7703 new_token.code = T_WORD;
7704
7705 else if (strcasecmp (new_token.str, "DWORD") == 0)
7706 new_token.code = T_DWORD;
7707
9306ca4a
JB
7708 else if (strcasecmp (new_token.str, "FWORD") == 0)
7709 new_token.code = T_FWORD;
7710
64a0c779
DN
7711 else if (strcasecmp (new_token.str, "QWORD") == 0)
7712 new_token.code = T_QWORD;
7713
9306ca4a
JB
7714 else if (strcasecmp (new_token.str, "TBYTE") == 0
7715 /* XXX remove (gcc still uses it) */
7716 || strcasecmp (new_token.str, "XWORD") == 0)
7717 new_token.code = T_TBYTE;
7718
7719 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7720 || strcasecmp (new_token.str, "OWORD") == 0)
7721 new_token.code = T_XMMWORD;
64a0c779
DN
7722
7723 else if (strcasecmp (new_token.str, "PTR") == 0)
7724 new_token.code = T_PTR;
7725
7726 else if (strcasecmp (new_token.str, "SHORT") == 0)
7727 new_token.code = T_SHORT;
7728
7729 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7730 {
7731 new_token.code = T_OFFSET;
7732
7733 /* ??? This is not mentioned in the MASM grammar but gcc
7734 makes use of it with -mintel-syntax. OFFSET may be
7735 followed by FLAT: */
7736 if (strncasecmp (q, " FLAT:", 6) == 0)
7737 strcat (new_token.str, " FLAT:");
7738 }
7739
7740 /* ??? This is not mentioned in the MASM grammar. */
7741 else if (strcasecmp (new_token.str, "FLAT") == 0)
a724f0f4
JB
7742 {
7743 new_token.code = T_OFFSET;
7744 if (*q == ':')
7745 strcat (new_token.str, ":");
7746 else
7747 as_bad (_("`:' expected"));
7748 }
64a0c779
DN
7749
7750 else
7751 new_token.code = T_ID;
7752 }
7753 }
7754
9306ca4a
JB
7755 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7756 {
7757 new_token.code = *intel_parser.op_string;
7758 new_token.str[0] = *intel_parser.op_string;
7759 new_token.str[1] = '\0';
7760 }
7761
7762 else if (strchr ("<>", *intel_parser.op_string)
7763 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7764 {
7765 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7766 new_token.str[0] = *intel_parser.op_string;
7767 new_token.str[1] = *intel_parser.op_string;
7768 new_token.str[2] = '\0';
7769 }
7770
64a0c779 7771 else
0477af35 7772 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
7773
7774 intel_parser.op_string += strlen (new_token.str);
7775 cur_token = new_token;
7776}
7777
64a0c779
DN
7778/* Put cur_token back into the token stream and make cur_token point to
7779 prev_token. */
7780static void
e3bb37b5 7781intel_putback_token (void)
64a0c779 7782{
a724f0f4
JB
7783 if (cur_token.code != T_NIL)
7784 {
7785 intel_parser.op_string -= strlen (cur_token.str);
7786 free (cur_token.str);
7787 }
64a0c779 7788 cur_token = prev_token;
4a1805b1 7789
64a0c779
DN
7790 /* Forget prev_token. */
7791 prev_token.code = T_NIL;
7792 prev_token.reg = NULL;
7793 prev_token.str = NULL;
7794}
54cfded0 7795
a4447b93 7796int
1df69f4f 7797tc_x86_regname_to_dw2regnum (char *regname)
54cfded0
AM
7798{
7799 unsigned int regnum;
7800 unsigned int regnames_count;
089dfecd 7801 static const char *const regnames_32[] =
54cfded0 7802 {
a4447b93
RH
7803 "eax", "ecx", "edx", "ebx",
7804 "esp", "ebp", "esi", "edi",
089dfecd
JB
7805 "eip", "eflags", NULL,
7806 "st0", "st1", "st2", "st3",
7807 "st4", "st5", "st6", "st7",
7808 NULL, NULL,
7809 "xmm0", "xmm1", "xmm2", "xmm3",
7810 "xmm4", "xmm5", "xmm6", "xmm7",
7811 "mm0", "mm1", "mm2", "mm3",
43fd16e4
JB
7812 "mm4", "mm5", "mm6", "mm7",
7813 "fcw", "fsw", "mxcsr",
7814 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7815 "tr", "ldtr"
54cfded0 7816 };
089dfecd 7817 static const char *const regnames_64[] =
54cfded0 7818 {
089dfecd
JB
7819 "rax", "rdx", "rcx", "rbx",
7820 "rsi", "rdi", "rbp", "rsp",
7821 "r8", "r9", "r10", "r11",
54cfded0 7822 "r12", "r13", "r14", "r15",
089dfecd
JB
7823 "rip",
7824 "xmm0", "xmm1", "xmm2", "xmm3",
7825 "xmm4", "xmm5", "xmm6", "xmm7",
7826 "xmm8", "xmm9", "xmm10", "xmm11",
7827 "xmm12", "xmm13", "xmm14", "xmm15",
7828 "st0", "st1", "st2", "st3",
7829 "st4", "st5", "st6", "st7",
7830 "mm0", "mm1", "mm2", "mm3",
43fd16e4
JB
7831 "mm4", "mm5", "mm6", "mm7",
7832 "rflags",
7833 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7834 "fs.base", "gs.base", NULL, NULL,
7835 "tr", "ldtr",
7836 "mxcsr", "fcw", "fsw"
54cfded0 7837 };
089dfecd 7838 const char *const *regnames;
54cfded0
AM
7839
7840 if (flag_code == CODE_64BIT)
7841 {
7842 regnames = regnames_64;
0cea6190 7843 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
7844 }
7845 else
7846 {
7847 regnames = regnames_32;
0cea6190 7848 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
7849 }
7850
7851 for (regnum = 0; regnum < regnames_count; regnum++)
089dfecd
JB
7852 if (regnames[regnum] != NULL
7853 && strcmp (regname, regnames[regnum]) == 0)
54cfded0
AM
7854 return regnum;
7855
54cfded0
AM
7856 return -1;
7857}
7858
7859void
7860tc_x86_frame_initial_instructions (void)
7861{
a4447b93
RH
7862 static unsigned int sp_regno;
7863
7864 if (!sp_regno)
7865 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7866 ? "rsp" : "esp");
7867
7868 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7869 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 7870}
d2b2c203
DJ
7871
7872int
7873i386_elf_section_type (const char *str, size_t len)
7874{
7875 if (flag_code == CODE_64BIT
7876 && len == sizeof ("unwind") - 1
7877 && strncmp (str, "unwind", 6) == 0)
7878 return SHT_X86_64_UNWIND;
7879
7880 return -1;
7881}
bb41ade5
AM
7882
7883#ifdef TE_PE
7884void
7885tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7886{
7887 expressionS expr;
7888
7889 expr.X_op = O_secrel;
7890 expr.X_add_symbol = symbol;
7891 expr.X_add_number = 0;
7892 emit_expr (&expr, size);
7893}
7894#endif
3b22753a
L
7895
7896#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7897/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7898
7899int
7900x86_64_section_letter (int letter, char **ptr_msg)
7901{
7902 if (flag_code == CODE_64BIT)
7903 {
7904 if (letter == 'l')
7905 return SHF_X86_64_LARGE;
7906
7907 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 7908 }
3b22753a 7909 else
64e74474 7910 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
7911 return -1;
7912}
7913
7914int
7915x86_64_section_word (char *str, size_t len)
7916{
8620418b 7917 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
7918 return SHF_X86_64_LARGE;
7919
7920 return -1;
7921}
7922
7923static void
7924handle_large_common (int small ATTRIBUTE_UNUSED)
7925{
7926 if (flag_code != CODE_64BIT)
7927 {
7928 s_comm_internal (0, elf_common_parse);
7929 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7930 }
7931 else
7932 {
7933 static segT lbss_section;
7934 asection *saved_com_section_ptr = elf_com_section_ptr;
7935 asection *saved_bss_section = bss_section;
7936
7937 if (lbss_section == NULL)
7938 {
7939 flagword applicable;
7940 segT seg = now_seg;
7941 subsegT subseg = now_subseg;
7942
7943 /* The .lbss section is for local .largecomm symbols. */
7944 lbss_section = subseg_new (".lbss", 0);
7945 applicable = bfd_applicable_section_flags (stdoutput);
7946 bfd_set_section_flags (stdoutput, lbss_section,
7947 applicable & SEC_ALLOC);
7948 seg_info (lbss_section)->bss = 1;
7949
7950 subseg_set (seg, subseg);
7951 }
7952
7953 elf_com_section_ptr = &_bfd_elf_large_com_section;
7954 bss_section = lbss_section;
7955
7956 s_comm_internal (0, elf_common_parse);
7957
7958 elf_com_section_ptr = saved_com_section_ptr;
7959 bss_section = saved_bss_section;
7960 }
7961}
7962#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.906518 seconds and 4 git commands to generate.