* elf64-hppa.c (elf64_hppa_grok_prstatus): New function.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
67a4f2b7 3 2000, 2001, 2002, 2003, 2004, 2005, 2006
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
252b5132 22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
252b5132 35#include "opcode/i386.h"
d2b2c203 36#include "elf/x86-64.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
252b5132
RH
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
29b0f896
AM
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
246fcdee 56#endif
252b5132 57
edde18a5
AM
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
29b0f896
AM
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 75static int add_prefix PARAMS ((unsigned int));
3e73aa7c 76static void set_code_flag PARAMS ((int));
47926f60 77static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 78static void set_intel_syntax PARAMS ((int));
e413e4e9 79static void set_cpu_arch PARAMS ((int));
6482c264
NC
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
d182319b 83static void signed_cons PARAMS ((int));
29b0f896
AM
84static char *output_invalid PARAMS ((int c));
85static int i386_operand PARAMS ((char *operand_string));
86static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89static char *parse_insn PARAMS ((char *, char *));
90static char *parse_operands PARAMS ((char *, const char *));
91static void swap_operands PARAMS ((void));
92static void optimize_imm PARAMS ((void));
93static void optimize_disp PARAMS ((void));
94static int match_template PARAMS ((void));
95static int check_string PARAMS ((void));
96static int process_suffix PARAMS ((void));
97static int check_byte_reg PARAMS ((void));
98static int check_long_reg PARAMS ((void));
99static int check_qword_reg PARAMS ((void));
100static int check_word_reg PARAMS ((void));
101static int finalize_imm PARAMS ((void));
102static int process_operands PARAMS ((void));
103static const seg_entry *build_modrm_byte PARAMS ((void));
104static void output_insn PARAMS ((void));
105static void output_branch PARAMS ((void));
106static void output_jump PARAMS ((void));
107static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
108static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
29b0f896
AM
112#ifndef I386COFF
113static void s_bss PARAMS ((int));
252b5132 114#endif
17d4e2a2
L
115#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
116static void handle_large_common (int small ATTRIBUTE_UNUSED);
117#endif
252b5132 118
a847613f 119static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 120
252b5132 121/* 'md_assemble ()' gathers together information and puts it into a
47926f60 122 i386_insn. */
252b5132 123
520dc8e8
AM
124union i386_op
125 {
126 expressionS *disps;
127 expressionS *imms;
128 const reg_entry *regs;
129 };
130
252b5132
RH
131struct _i386_insn
132 {
47926f60 133 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
134 template tm;
135
136 /* SUFFIX holds the instruction mnemonic suffix if given.
137 (e.g. 'l' for 'movl') */
138 char suffix;
139
47926f60 140 /* OPERANDS gives the number of given operands. */
252b5132
RH
141 unsigned int operands;
142
143 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
144 of given register, displacement, memory operands and immediate
47926f60 145 operands. */
252b5132
RH
146 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
147
148 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 149 use OP[i] for the corresponding operand. */
252b5132
RH
150 unsigned int types[MAX_OPERANDS];
151
520dc8e8
AM
152 /* Displacement expression, immediate expression, or register for each
153 operand. */
154 union i386_op op[MAX_OPERANDS];
252b5132 155
3e73aa7c
JH
156 /* Flags for operands. */
157 unsigned int flags[MAX_OPERANDS];
158#define Operand_PCrel 1
159
252b5132 160 /* Relocation type for operand */
f86103b7 161 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 162
252b5132
RH
163 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
164 the base index byte below. */
165 const reg_entry *base_reg;
166 const reg_entry *index_reg;
167 unsigned int log2_scale_factor;
168
169 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 170 explicit segment overrides are given. */
ce8a8b2f 171 const seg_entry *seg[2];
252b5132
RH
172
173 /* PREFIX holds all the given prefix opcodes (usually null).
174 PREFIXES is the number of prefix opcodes. */
175 unsigned int prefixes;
176 unsigned char prefix[MAX_PREFIXES];
177
178 /* RM and SIB are the modrm byte and the sib byte where the
179 addressing modes of this insn are encoded. */
180
181 modrm_byte rm;
3e73aa7c 182 rex_byte rex;
252b5132
RH
183 sib_byte sib;
184 };
185
186typedef struct _i386_insn i386_insn;
187
188/* List of chars besides those in app.c:symbol_chars that can start an
189 operand. Used to prevent the scrubber eating vital white-space. */
32137342 190const char extra_symbol_chars[] = "*%-(["
252b5132 191#ifdef LEX_AT
32137342
NC
192 "@"
193#endif
194#ifdef LEX_QM
195 "?"
252b5132 196#endif
32137342 197 ;
252b5132 198
29b0f896
AM
199#if (defined (TE_I386AIX) \
200 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 201 && !defined (TE_GNU) \
29b0f896 202 && !defined (TE_LINUX) \
32137342 203 && !defined (TE_NETWARE) \
29b0f896
AM
204 && !defined (TE_FreeBSD) \
205 && !defined (TE_NetBSD)))
252b5132 206/* This array holds the chars that always start a comment. If the
b3b91714
AM
207 pre-processor is disabled, these aren't very useful. The option
208 --divide will remove '/' from this list. */
209const char *i386_comment_chars = "#/";
210#define SVR4_COMMENT_CHARS 1
252b5132 211#define PREFIX_SEPARATOR '\\'
252b5132 212
b3b91714
AM
213#else
214const char *i386_comment_chars = "#";
215#define PREFIX_SEPARATOR '/'
216#endif
217
252b5132
RH
218/* This array holds the chars that only start a comment at the beginning of
219 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
220 .line and .file directives will appear in the pre-processed output.
221 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 222 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
223 #NO_APP at the beginning of its output.
224 Also note that comments started like this one will always work if
252b5132 225 '/' isn't otherwise defined. */
b3b91714 226const char line_comment_chars[] = "#/";
252b5132 227
63a0b638 228const char line_separator_chars[] = ";";
252b5132 229
ce8a8b2f
AM
230/* Chars that can be used to separate mant from exp in floating point
231 nums. */
252b5132
RH
232const char EXP_CHARS[] = "eE";
233
ce8a8b2f
AM
234/* Chars that mean this number is a floating point constant
235 As in 0f12.456
236 or 0d1.2345e12. */
252b5132
RH
237const char FLT_CHARS[] = "fFdDxX";
238
ce8a8b2f 239/* Tables for lexical analysis. */
252b5132
RH
240static char mnemonic_chars[256];
241static char register_chars[256];
242static char operand_chars[256];
243static char identifier_chars[256];
244static char digit_chars[256];
245
ce8a8b2f 246/* Lexical macros. */
252b5132
RH
247#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
248#define is_operand_char(x) (operand_chars[(unsigned char) x])
249#define is_register_char(x) (register_chars[(unsigned char) x])
250#define is_space_char(x) ((x) == ' ')
251#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
252#define is_digit_char(x) (digit_chars[(unsigned char) x])
253
0234cb7c 254/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
255static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
256
257/* md_assemble() always leaves the strings it's passed unaltered. To
258 effect this we maintain a stack of saved characters that we've smashed
259 with '\0's (indicating end of strings for various sub-fields of the
47926f60 260 assembler instruction). */
252b5132 261static char save_stack[32];
ce8a8b2f 262static char *save_stack_p;
252b5132
RH
263#define END_STRING_AND_SAVE(s) \
264 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
265#define RESTORE_END_STRING(s) \
266 do { *(s) = *--save_stack_p; } while (0)
267
47926f60 268/* The instruction we're assembling. */
252b5132
RH
269static i386_insn i;
270
271/* Possible templates for current insn. */
272static const templates *current_templates;
273
47926f60 274/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
275static expressionS disp_expressions[2], im_expressions[2];
276
47926f60
KH
277/* Current operand we are working on. */
278static int this_operand;
252b5132 279
3e73aa7c
JH
280/* We support four different modes. FLAG_CODE variable is used to distinguish
281 these. */
282
283enum flag_code {
284 CODE_32BIT,
285 CODE_16BIT,
286 CODE_64BIT };
f3c180ae 287#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
288
289static enum flag_code flag_code;
4fa24527 290static unsigned int object_64bit;
3e73aa7c
JH
291static int use_rela_relocations = 0;
292
293/* The names used to print error messages. */
b77a7acd 294static const char *flag_code_names[] =
3e73aa7c
JH
295 {
296 "32",
297 "16",
298 "64"
299 };
252b5132 300
47926f60
KH
301/* 1 for intel syntax,
302 0 if att syntax. */
303static int intel_syntax = 0;
252b5132 304
47926f60
KH
305/* 1 if register prefix % not required. */
306static int allow_naked_reg = 0;
252b5132 307
47926f60
KH
308/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
309 leave, push, and pop instructions so that gcc has the same stack
310 frame as in 32 bit mode. */
311static char stackop_size = '\0';
eecb386c 312
12b55ccc
L
313/* Non-zero to optimize code alignment. */
314int optimize_align_code = 1;
315
47926f60
KH
316/* Non-zero to quieten some warnings. */
317static int quiet_warnings = 0;
a38cf1db 318
47926f60
KH
319/* CPU name. */
320static const char *cpu_arch_name = NULL;
5c6af06e 321static const char *cpu_sub_arch_name = NULL;
a38cf1db 322
47926f60 323/* CPU feature flags. */
29b0f896 324static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 325
fddf5b5b
AM
326/* If set, conditional jumps are not automatically promoted to handle
327 larger than a byte offset. */
328static unsigned int no_cond_jump_promotion = 0;
329
29b0f896 330/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 331static symbolS *GOT_symbol;
29b0f896 332
a4447b93
RH
333/* The dwarf2 return column, adjusted for 32 or 64 bit. */
334unsigned int x86_dwarf2_return_column;
335
336/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
337int x86_cie_data_alignment;
338
252b5132 339/* Interface to relax_segment.
fddf5b5b
AM
340 There are 3 major relax states for 386 jump insns because the
341 different types of jumps add different sizes to frags when we're
342 figuring out what sort of jump to choose to reach a given label. */
252b5132 343
47926f60 344/* Types. */
93c2a809
AM
345#define UNCOND_JUMP 0
346#define COND_JUMP 1
347#define COND_JUMP86 2
fddf5b5b 348
47926f60 349/* Sizes. */
252b5132
RH
350#define CODE16 1
351#define SMALL 0
29b0f896 352#define SMALL16 (SMALL | CODE16)
252b5132 353#define BIG 2
29b0f896 354#define BIG16 (BIG | CODE16)
252b5132
RH
355
356#ifndef INLINE
357#ifdef __GNUC__
358#define INLINE __inline__
359#else
360#define INLINE
361#endif
362#endif
363
fddf5b5b
AM
364#define ENCODE_RELAX_STATE(type, size) \
365 ((relax_substateT) (((type) << 2) | (size)))
366#define TYPE_FROM_RELAX_STATE(s) \
367 ((s) >> 2)
368#define DISP_SIZE_FROM_RELAX_STATE(s) \
369 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
370
371/* This table is used by relax_frag to promote short jumps to long
372 ones where necessary. SMALL (short) jumps may be promoted to BIG
373 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
374 don't allow a short jump in a 32 bit code segment to be promoted to
375 a 16 bit offset jump because it's slower (requires data size
376 prefix), and doesn't work, unless the destination is in the bottom
377 64k of the code segment (The top 16 bits of eip are zeroed). */
378
379const relax_typeS md_relax_table[] =
380{
24eab124
AM
381 /* The fields are:
382 1) most positive reach of this state,
383 2) most negative reach of this state,
93c2a809 384 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 385 4) which index into the table to try if we can't fit into this one. */
252b5132 386
fddf5b5b 387 /* UNCOND_JUMP states. */
93c2a809
AM
388 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
389 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
390 /* dword jmp adds 4 bytes to frag:
391 0 extra opcode bytes, 4 displacement bytes. */
252b5132 392 {0, 0, 4, 0},
93c2a809
AM
393 /* word jmp adds 2 byte2 to frag:
394 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
395 {0, 0, 2, 0},
396
93c2a809
AM
397 /* COND_JUMP states. */
398 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
399 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
400 /* dword conditionals adds 5 bytes to frag:
401 1 extra opcode byte, 4 displacement bytes. */
402 {0, 0, 5, 0},
fddf5b5b 403 /* word conditionals add 3 bytes to frag:
93c2a809
AM
404 1 extra opcode byte, 2 displacement bytes. */
405 {0, 0, 3, 0},
406
407 /* COND_JUMP86 states. */
408 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
409 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
410 /* dword conditionals adds 5 bytes to frag:
411 1 extra opcode byte, 4 displacement bytes. */
412 {0, 0, 5, 0},
413 /* word conditionals add 4 bytes to frag:
414 1 displacement byte and a 3 byte long branch insn. */
415 {0, 0, 4, 0}
252b5132
RH
416};
417
e413e4e9
AM
418static const arch_entry cpu_arch[] = {
419 {"i8086", Cpu086 },
420 {"i186", Cpu086|Cpu186 },
421 {"i286", Cpu086|Cpu186|Cpu286 },
422 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
423 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
5c6af06e
JB
424 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
425 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
426 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
427 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
428 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
429 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
430 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
431 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
432 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
433 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
434 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
435 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
30123838 436 {"opteron", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
5c6af06e
JB
437 {".mmx", CpuMMX },
438 {".sse", CpuMMX|CpuMMX2|CpuSSE },
439 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
bf50992e 440 {".sse3", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3 },
5c6af06e
JB
441 {".3dnow", CpuMMX|Cpu3dnow },
442 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
443 {".padlock", CpuPadLock },
30123838
JB
444 {".pacifica", CpuSVME },
445 {".svme", CpuSVME },
e413e4e9
AM
446 {NULL, 0 }
447};
448
29b0f896
AM
449const pseudo_typeS md_pseudo_table[] =
450{
451#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
452 {"align", s_align_bytes, 0},
453#else
454 {"align", s_align_ptwo, 0},
455#endif
456 {"arch", set_cpu_arch, 0},
457#ifndef I386COFF
458 {"bss", s_bss, 0},
459#endif
460 {"ffloat", float_cons, 'f'},
461 {"dfloat", float_cons, 'd'},
462 {"tfloat", float_cons, 'x'},
463 {"value", cons, 2},
d182319b 464 {"slong", signed_cons, 4},
29b0f896
AM
465 {"noopt", s_ignore, 0},
466 {"optim", s_ignore, 0},
467 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
468 {"code16", set_code_flag, CODE_16BIT},
469 {"code32", set_code_flag, CODE_32BIT},
470 {"code64", set_code_flag, CODE_64BIT},
471 {"intel_syntax", set_intel_syntax, 1},
472 {"att_syntax", set_intel_syntax, 0},
3b22753a
L
473#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
474 {"largecomm", handle_large_common, 0},
07a53e5c
RH
475#else
476 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
477 {"loc", dwarf2_directive_loc, 0},
478 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 479#endif
6482c264
NC
480#ifdef TE_PE
481 {"secrel32", pe_directive_secrel, 0},
482#endif
29b0f896
AM
483 {0, 0, 0}
484};
485
486/* For interface with expression (). */
487extern char *input_line_pointer;
488
489/* Hash table for instruction mnemonic lookup. */
490static struct hash_control *op_hash;
491
492/* Hash table for register lookup. */
493static struct hash_control *reg_hash;
494\f
252b5132
RH
495void
496i386_align_code (fragP, count)
497 fragS *fragP;
498 int count;
499{
ce8a8b2f
AM
500 /* Various efficient no-op patterns for aligning code labels.
501 Note: Don't try to assemble the instructions in the comments.
502 0L and 0w are not legal. */
252b5132
RH
503 static const char f32_1[] =
504 {0x90}; /* nop */
505 static const char f32_2[] =
506 {0x89,0xf6}; /* movl %esi,%esi */
507 static const char f32_3[] =
508 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
509 static const char f32_4[] =
510 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
511 static const char f32_5[] =
512 {0x90, /* nop */
513 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
514 static const char f32_6[] =
515 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
516 static const char f32_7[] =
517 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
518 static const char f32_8[] =
519 {0x90, /* nop */
520 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
521 static const char f32_9[] =
522 {0x89,0xf6, /* movl %esi,%esi */
523 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
524 static const char f32_10[] =
525 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
526 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
527 static const char f32_11[] =
528 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
529 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
530 static const char f32_12[] =
531 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
532 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
533 static const char f32_13[] =
534 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
535 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
536 static const char f32_14[] =
537 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
538 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
539 static const char f32_15[] =
540 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
541 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
542 static const char f16_3[] =
543 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
544 static const char f16_4[] =
545 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
546 static const char f16_5[] =
547 {0x90, /* nop */
548 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
549 static const char f16_6[] =
550 {0x89,0xf6, /* mov %si,%si */
551 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
552 static const char f16_7[] =
553 {0x8d,0x74,0x00, /* lea 0(%si),%si */
554 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
555 static const char f16_8[] =
556 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
557 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
558 static const char *const f32_patt[] = {
559 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
560 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
561 };
562 static const char *const f16_patt[] = {
c3332e24 563 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
564 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
565 };
566
33fef721
JH
567 if (count <= 0 || count > 15)
568 return;
3e73aa7c 569
33fef721
JH
570 /* The recommended way to pad 64bit code is to use NOPs preceded by
571 maximally four 0x66 prefixes. Balance the size of nops. */
572 if (flag_code == CODE_64BIT)
252b5132 573 {
33fef721
JH
574 int i;
575 int nnops = (count + 3) / 4;
576 int len = count / nnops;
577 int remains = count - nnops * len;
578 int pos = 0;
579
580 for (i = 0; i < remains; i++)
252b5132 581 {
33fef721
JH
582 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
583 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
584 pos += len + 1;
585 }
586 for (; i < nnops; i++)
587 {
588 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
589 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
590 pos += len;
252b5132 591 }
252b5132 592 }
33fef721
JH
593 else
594 if (flag_code == CODE_16BIT)
595 {
596 memcpy (fragP->fr_literal + fragP->fr_fix,
597 f16_patt[count - 1], count);
598 if (count > 8)
599 /* Adjust jump offset. */
600 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
601 }
602 else
603 memcpy (fragP->fr_literal + fragP->fr_fix,
604 f32_patt[count - 1], count);
605 fragP->fr_var = count;
252b5132
RH
606}
607
252b5132
RH
608static INLINE unsigned int
609mode_from_disp_size (t)
610 unsigned int t;
611{
3e73aa7c 612 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
613}
614
615static INLINE int
616fits_in_signed_byte (num)
847f7ad4 617 offsetT num;
252b5132
RH
618{
619 return (num >= -128) && (num <= 127);
47926f60 620}
252b5132
RH
621
622static INLINE int
623fits_in_unsigned_byte (num)
847f7ad4 624 offsetT num;
252b5132
RH
625{
626 return (num & 0xff) == num;
47926f60 627}
252b5132
RH
628
629static INLINE int
630fits_in_unsigned_word (num)
847f7ad4 631 offsetT num;
252b5132
RH
632{
633 return (num & 0xffff) == num;
47926f60 634}
252b5132
RH
635
636static INLINE int
637fits_in_signed_word (num)
847f7ad4 638 offsetT num;
252b5132
RH
639{
640 return (-32768 <= num) && (num <= 32767);
47926f60 641}
3e73aa7c
JH
642static INLINE int
643fits_in_signed_long (num)
644 offsetT num ATTRIBUTE_UNUSED;
645{
646#ifndef BFD64
647 return 1;
648#else
649 return (!(((offsetT) -1 << 31) & num)
650 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
651#endif
652} /* fits_in_signed_long() */
653static INLINE int
654fits_in_unsigned_long (num)
655 offsetT num ATTRIBUTE_UNUSED;
656{
657#ifndef BFD64
658 return 1;
659#else
660 return (num & (((offsetT) 2 << 31) - 1)) == num;
661#endif
662} /* fits_in_unsigned_long() */
252b5132
RH
663
664static int
665smallest_imm_type (num)
847f7ad4 666 offsetT num;
252b5132 667{
a847613f 668 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
669 {
670 /* This code is disabled on the 486 because all the Imm1 forms
671 in the opcode table are slower on the i486. They're the
672 versions with the implicitly specified single-position
673 displacement, which has another syntax if you really want to
674 use that form. */
675 if (num == 1)
3e73aa7c 676 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 677 }
252b5132 678 return (fits_in_signed_byte (num)
3e73aa7c 679 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 680 : fits_in_unsigned_byte (num)
3e73aa7c 681 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 682 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
683 ? (Imm16 | Imm32 | Imm32S | Imm64)
684 : fits_in_signed_long (num)
685 ? (Imm32 | Imm32S | Imm64)
686 : fits_in_unsigned_long (num)
687 ? (Imm32 | Imm64)
688 : Imm64);
47926f60 689}
252b5132 690
847f7ad4
AM
691static offsetT
692offset_in_range (val, size)
693 offsetT val;
694 int size;
695{
508866be 696 addressT mask;
ba2adb93 697
847f7ad4
AM
698 switch (size)
699 {
508866be
L
700 case 1: mask = ((addressT) 1 << 8) - 1; break;
701 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 702 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
703#ifdef BFD64
704 case 8: mask = ((addressT) 2 << 63) - 1; break;
705#endif
47926f60 706 default: abort ();
847f7ad4
AM
707 }
708
ba2adb93 709 /* If BFD64, sign extend val. */
3e73aa7c
JH
710 if (!use_rela_relocations)
711 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
712 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 713
47926f60 714 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
715 {
716 char buf1[40], buf2[40];
717
718 sprint_value (buf1, val);
719 sprint_value (buf2, val & mask);
720 as_warn (_("%s shortened to %s"), buf1, buf2);
721 }
722 return val & mask;
723}
724
252b5132
RH
725/* Returns 0 if attempting to add a prefix where one from the same
726 class already exists, 1 if non rep/repne added, 2 if rep/repne
727 added. */
728static int
729add_prefix (prefix)
730 unsigned int prefix;
731{
732 int ret = 1;
b1905489 733 unsigned int q;
252b5132 734
29b0f896
AM
735 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
736 && flag_code == CODE_64BIT)
b1905489
JB
737 {
738 if ((i.prefix[REX_PREFIX] & prefix & REX_MODE64)
739 || ((i.prefix[REX_PREFIX] & (REX_EXTX | REX_EXTY | REX_EXTZ))
740 && (prefix & (REX_EXTX | REX_EXTY | REX_EXTZ))))
741 ret = 0;
742 q = REX_PREFIX;
743 }
3e73aa7c 744 else
b1905489
JB
745 {
746 switch (prefix)
747 {
748 default:
749 abort ();
750
751 case CS_PREFIX_OPCODE:
752 case DS_PREFIX_OPCODE:
753 case ES_PREFIX_OPCODE:
754 case FS_PREFIX_OPCODE:
755 case GS_PREFIX_OPCODE:
756 case SS_PREFIX_OPCODE:
757 q = SEG_PREFIX;
758 break;
759
760 case REPNE_PREFIX_OPCODE:
761 case REPE_PREFIX_OPCODE:
762 ret = 2;
763 /* fall thru */
764 case LOCK_PREFIX_OPCODE:
765 q = LOCKREP_PREFIX;
766 break;
767
768 case FWAIT_OPCODE:
769 q = WAIT_PREFIX;
770 break;
771
772 case ADDR_PREFIX_OPCODE:
773 q = ADDR_PREFIX;
774 break;
775
776 case DATA_PREFIX_OPCODE:
777 q = DATA_PREFIX;
778 break;
779 }
780 if (i.prefix[q] != 0)
781 ret = 0;
782 }
252b5132 783
b1905489 784 if (ret)
252b5132 785 {
b1905489
JB
786 if (!i.prefix[q])
787 ++i.prefixes;
788 i.prefix[q] |= prefix;
252b5132 789 }
b1905489
JB
790 else
791 as_bad (_("same type of prefix used twice"));
252b5132 792
252b5132
RH
793 return ret;
794}
795
796static void
3e73aa7c 797set_code_flag (value)
e5cb08ac 798 int value;
eecb386c 799{
3e73aa7c
JH
800 flag_code = value;
801 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
802 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
803 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
804 {
805 as_bad (_("64bit mode not supported on this CPU."));
806 }
807 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
808 {
809 as_bad (_("32bit mode not supported on this CPU."));
810 }
eecb386c
AM
811 stackop_size = '\0';
812}
813
814static void
3e73aa7c
JH
815set_16bit_gcc_code_flag (new_code_flag)
816 int new_code_flag;
252b5132 817{
3e73aa7c
JH
818 flag_code = new_code_flag;
819 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
820 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
9306ca4a 821 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
822}
823
824static void
825set_intel_syntax (syntax_flag)
eecb386c 826 int syntax_flag;
252b5132
RH
827{
828 /* Find out if register prefixing is specified. */
829 int ask_naked_reg = 0;
830
831 SKIP_WHITESPACE ();
29b0f896 832 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
833 {
834 char *string = input_line_pointer;
835 int e = get_symbol_end ();
836
47926f60 837 if (strcmp (string, "prefix") == 0)
252b5132 838 ask_naked_reg = 1;
47926f60 839 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
840 ask_naked_reg = -1;
841 else
d0b47220 842 as_bad (_("bad argument to syntax directive."));
252b5132
RH
843 *input_line_pointer = e;
844 }
845 demand_empty_rest_of_line ();
c3332e24 846
252b5132
RH
847 intel_syntax = syntax_flag;
848
849 if (ask_naked_reg == 0)
f86103b7
AM
850 allow_naked_reg = (intel_syntax
851 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
852 else
853 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a
JB
854
855 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
856 identifier_chars['$'] = intel_syntax ? '$' : 0;
252b5132
RH
857}
858
e413e4e9
AM
859static void
860set_cpu_arch (dummy)
47926f60 861 int dummy ATTRIBUTE_UNUSED;
e413e4e9 862{
47926f60 863 SKIP_WHITESPACE ();
e413e4e9 864
29b0f896 865 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
866 {
867 char *string = input_line_pointer;
868 int e = get_symbol_end ();
869 int i;
870
871 for (i = 0; cpu_arch[i].name; i++)
872 {
873 if (strcmp (string, cpu_arch[i].name) == 0)
874 {
5c6af06e
JB
875 if (*string != '.')
876 {
877 cpu_arch_name = cpu_arch[i].name;
878 cpu_sub_arch_name = NULL;
879 cpu_arch_flags = (cpu_arch[i].flags
880 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
881 break;
882 }
883 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
884 {
885 cpu_sub_arch_name = cpu_arch[i].name;
886 cpu_arch_flags |= cpu_arch[i].flags;
887 }
888 *input_line_pointer = e;
889 demand_empty_rest_of_line ();
890 return;
e413e4e9
AM
891 }
892 }
893 if (!cpu_arch[i].name)
894 as_bad (_("no such architecture: `%s'"), string);
895
896 *input_line_pointer = e;
897 }
898 else
899 as_bad (_("missing cpu architecture"));
900
fddf5b5b
AM
901 no_cond_jump_promotion = 0;
902 if (*input_line_pointer == ','
29b0f896 903 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
904 {
905 char *string = ++input_line_pointer;
906 int e = get_symbol_end ();
907
908 if (strcmp (string, "nojumps") == 0)
909 no_cond_jump_promotion = 1;
910 else if (strcmp (string, "jumps") == 0)
911 ;
912 else
913 as_bad (_("no such architecture modifier: `%s'"), string);
914
915 *input_line_pointer = e;
916 }
917
e413e4e9
AM
918 demand_empty_rest_of_line ();
919}
920
b9d79e03
JH
921unsigned long
922i386_mach ()
923{
924 if (!strcmp (default_arch, "x86_64"))
925 return bfd_mach_x86_64;
926 else if (!strcmp (default_arch, "i386"))
927 return bfd_mach_i386_i386;
928 else
929 as_fatal (_("Unknown architecture"));
930}
b9d79e03 931\f
252b5132
RH
932void
933md_begin ()
934{
935 const char *hash_err;
936
47926f60 937 /* Initialize op_hash hash table. */
252b5132
RH
938 op_hash = hash_new ();
939
940 {
29b0f896
AM
941 const template *optab;
942 templates *core_optab;
252b5132 943
47926f60
KH
944 /* Setup for loop. */
945 optab = i386_optab;
252b5132
RH
946 core_optab = (templates *) xmalloc (sizeof (templates));
947 core_optab->start = optab;
948
949 while (1)
950 {
951 ++optab;
952 if (optab->name == NULL
953 || strcmp (optab->name, (optab - 1)->name) != 0)
954 {
955 /* different name --> ship out current template list;
47926f60 956 add to hash table; & begin anew. */
252b5132
RH
957 core_optab->end = optab;
958 hash_err = hash_insert (op_hash,
959 (optab - 1)->name,
960 (PTR) core_optab);
961 if (hash_err)
962 {
252b5132
RH
963 as_fatal (_("Internal Error: Can't hash %s: %s"),
964 (optab - 1)->name,
965 hash_err);
966 }
967 if (optab->name == NULL)
968 break;
969 core_optab = (templates *) xmalloc (sizeof (templates));
970 core_optab->start = optab;
971 }
972 }
973 }
974
47926f60 975 /* Initialize reg_hash hash table. */
252b5132
RH
976 reg_hash = hash_new ();
977 {
29b0f896 978 const reg_entry *regtab;
252b5132
RH
979
980 for (regtab = i386_regtab;
981 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
982 regtab++)
983 {
984 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
985 if (hash_err)
3e73aa7c
JH
986 as_fatal (_("Internal Error: Can't hash %s: %s"),
987 regtab->reg_name,
988 hash_err);
252b5132
RH
989 }
990 }
991
47926f60 992 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 993 {
29b0f896
AM
994 int c;
995 char *p;
252b5132
RH
996
997 for (c = 0; c < 256; c++)
998 {
3882b010 999 if (ISDIGIT (c))
252b5132
RH
1000 {
1001 digit_chars[c] = c;
1002 mnemonic_chars[c] = c;
1003 register_chars[c] = c;
1004 operand_chars[c] = c;
1005 }
3882b010 1006 else if (ISLOWER (c))
252b5132
RH
1007 {
1008 mnemonic_chars[c] = c;
1009 register_chars[c] = c;
1010 operand_chars[c] = c;
1011 }
3882b010 1012 else if (ISUPPER (c))
252b5132 1013 {
3882b010 1014 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
1015 register_chars[c] = mnemonic_chars[c];
1016 operand_chars[c] = c;
1017 }
1018
3882b010 1019 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
1020 identifier_chars[c] = c;
1021 else if (c >= 128)
1022 {
1023 identifier_chars[c] = c;
1024 operand_chars[c] = c;
1025 }
1026 }
1027
1028#ifdef LEX_AT
1029 identifier_chars['@'] = '@';
32137342
NC
1030#endif
1031#ifdef LEX_QM
1032 identifier_chars['?'] = '?';
1033 operand_chars['?'] = '?';
252b5132 1034#endif
252b5132 1035 digit_chars['-'] = '-';
791fe849 1036 mnemonic_chars['-'] = '-';
252b5132
RH
1037 identifier_chars['_'] = '_';
1038 identifier_chars['.'] = '.';
1039
1040 for (p = operand_special_chars; *p != '\0'; p++)
1041 operand_chars[(unsigned char) *p] = *p;
1042 }
1043
1044#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 1045 if (IS_ELF)
252b5132
RH
1046 {
1047 record_alignment (text_section, 2);
1048 record_alignment (data_section, 2);
1049 record_alignment (bss_section, 2);
1050 }
1051#endif
a4447b93
RH
1052
1053 if (flag_code == CODE_64BIT)
1054 {
1055 x86_dwarf2_return_column = 16;
1056 x86_cie_data_alignment = -8;
1057 }
1058 else
1059 {
1060 x86_dwarf2_return_column = 8;
1061 x86_cie_data_alignment = -4;
1062 }
252b5132
RH
1063}
1064
1065void
1066i386_print_statistics (file)
1067 FILE *file;
1068{
1069 hash_print_statistics (file, "i386 opcode", op_hash);
1070 hash_print_statistics (file, "i386 register", reg_hash);
1071}
1072\f
252b5132
RH
1073#ifdef DEBUG386
1074
ce8a8b2f 1075/* Debugging routines for md_assemble. */
252b5132
RH
1076static void pi PARAMS ((char *, i386_insn *));
1077static void pte PARAMS ((template *));
1078static void pt PARAMS ((unsigned int));
1079static void pe PARAMS ((expressionS *));
1080static void ps PARAMS ((symbolS *));
1081
1082static void
1083pi (line, x)
1084 char *line;
1085 i386_insn *x;
1086{
09f131f2 1087 unsigned int i;
252b5132
RH
1088
1089 fprintf (stdout, "%s: template ", line);
1090 pte (&x->tm);
09f131f2
JH
1091 fprintf (stdout, " address: base %s index %s scale %x\n",
1092 x->base_reg ? x->base_reg->reg_name : "none",
1093 x->index_reg ? x->index_reg->reg_name : "none",
1094 x->log2_scale_factor);
1095 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1096 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1097 fprintf (stdout, " sib: base %x index %x scale %x\n",
1098 x->sib.base, x->sib.index, x->sib.scale);
1099 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1100 (x->rex & REX_MODE64) != 0,
1101 (x->rex & REX_EXTX) != 0,
1102 (x->rex & REX_EXTY) != 0,
1103 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1104 for (i = 0; i < x->operands; i++)
1105 {
1106 fprintf (stdout, " #%d: ", i + 1);
1107 pt (x->types[i]);
1108 fprintf (stdout, "\n");
1109 if (x->types[i]
3f4438ab 1110 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1111 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1112 if (x->types[i] & Imm)
520dc8e8 1113 pe (x->op[i].imms);
252b5132 1114 if (x->types[i] & Disp)
520dc8e8 1115 pe (x->op[i].disps);
252b5132
RH
1116 }
1117}
1118
1119static void
1120pte (t)
1121 template *t;
1122{
09f131f2 1123 unsigned int i;
252b5132 1124 fprintf (stdout, " %d operands ", t->operands);
47926f60 1125 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1126 if (t->extension_opcode != None)
1127 fprintf (stdout, "ext %x ", t->extension_opcode);
1128 if (t->opcode_modifier & D)
1129 fprintf (stdout, "D");
1130 if (t->opcode_modifier & W)
1131 fprintf (stdout, "W");
1132 fprintf (stdout, "\n");
1133 for (i = 0; i < t->operands; i++)
1134 {
1135 fprintf (stdout, " #%d type ", i + 1);
1136 pt (t->operand_types[i]);
1137 fprintf (stdout, "\n");
1138 }
1139}
1140
1141static void
1142pe (e)
1143 expressionS *e;
1144{
24eab124 1145 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1146 fprintf (stdout, " add_number %ld (%lx)\n",
1147 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1148 if (e->X_add_symbol)
1149 {
1150 fprintf (stdout, " add_symbol ");
1151 ps (e->X_add_symbol);
1152 fprintf (stdout, "\n");
1153 }
1154 if (e->X_op_symbol)
1155 {
1156 fprintf (stdout, " op_symbol ");
1157 ps (e->X_op_symbol);
1158 fprintf (stdout, "\n");
1159 }
1160}
1161
1162static void
1163ps (s)
1164 symbolS *s;
1165{
1166 fprintf (stdout, "%s type %s%s",
1167 S_GET_NAME (s),
1168 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1169 segment_name (S_GET_SEGMENT (s)));
1170}
1171
7b81dfbb 1172static struct type_name
252b5132
RH
1173 {
1174 unsigned int mask;
1175 char *tname;
1176 }
7b81dfbb 1177const type_names[] =
252b5132
RH
1178{
1179 { Reg8, "r8" },
1180 { Reg16, "r16" },
1181 { Reg32, "r32" },
09f131f2 1182 { Reg64, "r64" },
252b5132
RH
1183 { Imm8, "i8" },
1184 { Imm8S, "i8s" },
1185 { Imm16, "i16" },
1186 { Imm32, "i32" },
09f131f2
JH
1187 { Imm32S, "i32s" },
1188 { Imm64, "i64" },
252b5132
RH
1189 { Imm1, "i1" },
1190 { BaseIndex, "BaseIndex" },
1191 { Disp8, "d8" },
1192 { Disp16, "d16" },
1193 { Disp32, "d32" },
09f131f2
JH
1194 { Disp32S, "d32s" },
1195 { Disp64, "d64" },
252b5132
RH
1196 { InOutPortReg, "InOutPortReg" },
1197 { ShiftCount, "ShiftCount" },
1198 { Control, "control reg" },
1199 { Test, "test reg" },
1200 { Debug, "debug reg" },
1201 { FloatReg, "FReg" },
1202 { FloatAcc, "FAcc" },
1203 { SReg2, "SReg2" },
1204 { SReg3, "SReg3" },
1205 { Acc, "Acc" },
1206 { JumpAbsolute, "Jump Absolute" },
1207 { RegMMX, "rMMX" },
3f4438ab 1208 { RegXMM, "rXMM" },
252b5132
RH
1209 { EsSeg, "es" },
1210 { 0, "" }
1211};
1212
1213static void
1214pt (t)
1215 unsigned int t;
1216{
29b0f896 1217 const struct type_name *ty;
252b5132 1218
09f131f2
JH
1219 for (ty = type_names; ty->mask; ty++)
1220 if (t & ty->mask)
1221 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1222 fflush (stdout);
1223}
1224
1225#endif /* DEBUG386 */
1226\f
252b5132 1227static bfd_reloc_code_real_type
3956db08
JB
1228reloc (unsigned int size,
1229 int pcrel,
1230 int sign,
1231 bfd_reloc_code_real_type other)
252b5132 1232{
47926f60 1233 if (other != NO_RELOC)
3956db08
JB
1234 {
1235 reloc_howto_type *reloc;
1236
1237 if (size == 8)
1238 switch (other)
1239 {
7b81dfbb
AJ
1240 case BFD_RELOC_X86_64_GOT32:
1241 return BFD_RELOC_X86_64_GOT64;
1242 break;
1243 case BFD_RELOC_X86_64_PLTOFF64:
1244 return BFD_RELOC_X86_64_PLTOFF64;
1245 break;
1246 case BFD_RELOC_X86_64_GOTPC32:
1247 other = BFD_RELOC_X86_64_GOTPC64;
1248 break;
1249 case BFD_RELOC_X86_64_GOTPCREL:
1250 other = BFD_RELOC_X86_64_GOTPCREL64;
1251 break;
3956db08
JB
1252 case BFD_RELOC_X86_64_TPOFF32:
1253 other = BFD_RELOC_X86_64_TPOFF64;
1254 break;
1255 case BFD_RELOC_X86_64_DTPOFF32:
1256 other = BFD_RELOC_X86_64_DTPOFF64;
1257 break;
1258 default:
1259 break;
1260 }
e05278af
JB
1261
1262 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1263 if (size == 4 && flag_code != CODE_64BIT)
1264 sign = -1;
1265
3956db08
JB
1266 reloc = bfd_reloc_type_lookup (stdoutput, other);
1267 if (!reloc)
1268 as_bad (_("unknown relocation (%u)"), other);
1269 else if (size != bfd_get_reloc_size (reloc))
1270 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1271 bfd_get_reloc_size (reloc),
1272 size);
1273 else if (pcrel && !reloc->pc_relative)
1274 as_bad (_("non-pc-relative relocation for pc-relative field"));
1275 else if ((reloc->complain_on_overflow == complain_overflow_signed
1276 && !sign)
1277 || (reloc->complain_on_overflow == complain_overflow_unsigned
1278 && sign > 0))
1279 as_bad (_("relocated field and relocation type differ in signedness"));
1280 else
1281 return other;
1282 return NO_RELOC;
1283 }
252b5132
RH
1284
1285 if (pcrel)
1286 {
3e73aa7c 1287 if (!sign)
3956db08 1288 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
1289 switch (size)
1290 {
1291 case 1: return BFD_RELOC_8_PCREL;
1292 case 2: return BFD_RELOC_16_PCREL;
1293 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 1294 case 8: return BFD_RELOC_64_PCREL;
252b5132 1295 }
3956db08 1296 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
1297 }
1298 else
1299 {
3956db08 1300 if (sign > 0)
e5cb08ac 1301 switch (size)
3e73aa7c
JH
1302 {
1303 case 4: return BFD_RELOC_X86_64_32S;
1304 }
1305 else
1306 switch (size)
1307 {
1308 case 1: return BFD_RELOC_8;
1309 case 2: return BFD_RELOC_16;
1310 case 4: return BFD_RELOC_32;
1311 case 8: return BFD_RELOC_64;
1312 }
3956db08
JB
1313 as_bad (_("cannot do %s %u byte relocation"),
1314 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
1315 }
1316
bfb32b52 1317 abort ();
252b5132
RH
1318 return BFD_RELOC_NONE;
1319}
1320
47926f60
KH
1321/* Here we decide which fixups can be adjusted to make them relative to
1322 the beginning of the section instead of the symbol. Basically we need
1323 to make sure that the dynamic relocations are done correctly, so in
1324 some cases we force the original symbol to be used. */
1325
252b5132 1326int
c0c949c7 1327tc_i386_fix_adjustable (fixP)
31312f95 1328 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1329{
6d249963 1330#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 1331 if (!IS_ELF)
31312f95
AM
1332 return 1;
1333
a161fe53
AM
1334 /* Don't adjust pc-relative references to merge sections in 64-bit
1335 mode. */
1336 if (use_rela_relocations
1337 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1338 && fixP->fx_pcrel)
252b5132 1339 return 0;
31312f95 1340
8d01d9a9
AJ
1341 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1342 and changed later by validate_fix. */
1343 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1344 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1345 return 0;
1346
ce8a8b2f 1347 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1348 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1349 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1350 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1351 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1352 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1353 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1354 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1355 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1356 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1357 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1358 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
1359 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1360 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
1361 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1362 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1363 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1364 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1365 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1366 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 1367 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
1368 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1369 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
1370 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1371 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
1372 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1373 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
1374 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1375 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1376 return 0;
31312f95 1377#endif
252b5132
RH
1378 return 1;
1379}
252b5132 1380
29b0f896 1381static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1382
1383static int
252b5132 1384intel_float_operand (mnemonic)
29b0f896 1385 const char *mnemonic;
252b5132 1386{
9306ca4a
JB
1387 /* Note that the value returned is meaningful only for opcodes with (memory)
1388 operands, hence the code here is free to improperly handle opcodes that
1389 have no operands (for better performance and smaller code). */
1390
1391 if (mnemonic[0] != 'f')
1392 return 0; /* non-math */
1393
1394 switch (mnemonic[1])
1395 {
1396 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1397 the fs segment override prefix not currently handled because no
1398 call path can make opcodes without operands get here */
1399 case 'i':
1400 return 2 /* integer op */;
1401 case 'l':
1402 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1403 return 3; /* fldcw/fldenv */
1404 break;
1405 case 'n':
1406 if (mnemonic[2] != 'o' /* fnop */)
1407 return 3; /* non-waiting control op */
1408 break;
1409 case 'r':
1410 if (mnemonic[2] == 's')
1411 return 3; /* frstor/frstpm */
1412 break;
1413 case 's':
1414 if (mnemonic[2] == 'a')
1415 return 3; /* fsave */
1416 if (mnemonic[2] == 't')
1417 {
1418 switch (mnemonic[3])
1419 {
1420 case 'c': /* fstcw */
1421 case 'd': /* fstdw */
1422 case 'e': /* fstenv */
1423 case 's': /* fsts[gw] */
1424 return 3;
1425 }
1426 }
1427 break;
1428 case 'x':
1429 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1430 return 0; /* fxsave/fxrstor are not really math ops */
1431 break;
1432 }
252b5132 1433
9306ca4a 1434 return 1;
252b5132
RH
1435}
1436
1437/* This is the guts of the machine-dependent assembler. LINE points to a
1438 machine dependent instruction. This function is supposed to emit
1439 the frags/bytes it assembles to. */
1440
1441void
1442md_assemble (line)
1443 char *line;
1444{
252b5132 1445 int j;
252b5132
RH
1446 char mnemonic[MAX_MNEM_SIZE];
1447
47926f60 1448 /* Initialize globals. */
252b5132
RH
1449 memset (&i, '\0', sizeof (i));
1450 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1451 i.reloc[j] = NO_RELOC;
252b5132
RH
1452 memset (disp_expressions, '\0', sizeof (disp_expressions));
1453 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1454 save_stack_p = save_stack;
252b5132
RH
1455
1456 /* First parse an instruction mnemonic & call i386_operand for the operands.
1457 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1458 start of a (possibly prefixed) mnemonic. */
252b5132 1459
29b0f896
AM
1460 line = parse_insn (line, mnemonic);
1461 if (line == NULL)
1462 return;
252b5132 1463
29b0f896
AM
1464 line = parse_operands (line, mnemonic);
1465 if (line == NULL)
1466 return;
252b5132 1467
29b0f896
AM
1468 /* Now we've parsed the mnemonic into a set of templates, and have the
1469 operands at hand. */
1470
1471 /* All intel opcodes have reversed operands except for "bound" and
1472 "enter". We also don't reverse intersegment "jmp" and "call"
1473 instructions with 2 immediate operands so that the immediate segment
1474 precedes the offset, as it does when in AT&T mode. "enter" and the
1475 intersegment "jmp" and "call" instructions are the only ones that
1476 have two immediate operands. */
1477 if (intel_syntax && i.operands > 1
1478 && (strcmp (mnemonic, "bound") != 0)
30123838 1479 && (strcmp (mnemonic, "invlpga") != 0)
29b0f896
AM
1480 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1481 swap_operands ();
1482
1483 if (i.imm_operands)
1484 optimize_imm ();
1485
b300c311
L
1486 /* Don't optimize displacement for movabs since it only takes 64bit
1487 displacement. */
1488 if (i.disp_operands
1489 && (flag_code != CODE_64BIT
1490 || strcmp (mnemonic, "movabs") != 0))
29b0f896
AM
1491 optimize_disp ();
1492
1493 /* Next, we find a template that matches the given insn,
1494 making sure the overlap of the given operands types is consistent
1495 with the template operand types. */
252b5132 1496
29b0f896
AM
1497 if (!match_template ())
1498 return;
252b5132 1499
cd61ebfe
AM
1500 if (intel_syntax)
1501 {
1502 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1503 if (SYSV386_COMPAT
1504 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1505 i.tm.base_opcode ^= FloatR;
1506
1507 /* Zap movzx and movsx suffix. The suffix may have been set from
1508 "word ptr" or "byte ptr" on the source operand, but we'll use
1509 the suffix later to choose the destination register. */
1510 if ((i.tm.base_opcode & ~9) == 0x0fb6)
9306ca4a
JB
1511 {
1512 if (i.reg_operands < 2
1513 && !i.suffix
1514 && (~i.tm.opcode_modifier
1515 & (No_bSuf
1516 | No_wSuf
1517 | No_lSuf
1518 | No_sSuf
1519 | No_xSuf
1520 | No_qSuf)))
1521 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1522
1523 i.suffix = 0;
1524 }
cd61ebfe 1525 }
24eab124 1526
29b0f896
AM
1527 if (i.tm.opcode_modifier & FWait)
1528 if (!add_prefix (FWAIT_OPCODE))
1529 return;
252b5132 1530
29b0f896
AM
1531 /* Check string instruction segment overrides. */
1532 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1533 {
1534 if (!check_string ())
5dd0794d 1535 return;
29b0f896 1536 }
5dd0794d 1537
29b0f896
AM
1538 if (!process_suffix ())
1539 return;
e413e4e9 1540
29b0f896
AM
1541 /* Make still unresolved immediate matches conform to size of immediate
1542 given in i.suffix. */
1543 if (!finalize_imm ())
1544 return;
252b5132 1545
29b0f896
AM
1546 if (i.types[0] & Imm1)
1547 i.imm_operands = 0; /* kludge for shift insns. */
1548 if (i.types[0] & ImplicitRegister)
1549 i.reg_operands--;
1550 if (i.types[1] & ImplicitRegister)
1551 i.reg_operands--;
1552 if (i.types[2] & ImplicitRegister)
1553 i.reg_operands--;
252b5132 1554
29b0f896
AM
1555 if (i.tm.opcode_modifier & ImmExt)
1556 {
02fc3089
L
1557 expressionS *exp;
1558
ca164297
L
1559 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1560 {
67c1ffbe 1561 /* These Intel Prescott New Instructions have the fixed
ca164297
L
1562 operands with an opcode suffix which is coded in the same
1563 place as an 8-bit immediate field would be. Here we check
1564 those operands and remove them afterwards. */
1565 unsigned int x;
1566
a4622f40 1567 for (x = 0; x < i.operands; x++)
ca164297
L
1568 if (i.op[x].regs->reg_num != x)
1569 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1570 i.op[x].regs->reg_name, x + 1, i.tm.name);
1571 i.operands = 0;
1572 }
1573
29b0f896
AM
1574 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1575 opcode suffix which is coded in the same place as an 8-bit
1576 immediate field would be. Here we fake an 8-bit immediate
1577 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1578
29b0f896 1579 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1580
29b0f896
AM
1581 exp = &im_expressions[i.imm_operands++];
1582 i.op[i.operands].imms = exp;
1583 i.types[i.operands++] = Imm8;
1584 exp->X_op = O_constant;
1585 exp->X_add_number = i.tm.extension_opcode;
1586 i.tm.extension_opcode = None;
1587 }
252b5132 1588
29b0f896
AM
1589 /* For insns with operands there are more diddles to do to the opcode. */
1590 if (i.operands)
1591 {
1592 if (!process_operands ())
1593 return;
1594 }
1595 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1596 {
1597 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1598 as_warn (_("translating to `%sp'"), i.tm.name);
1599 }
252b5132 1600
29b0f896
AM
1601 /* Handle conversion of 'int $3' --> special int3 insn. */
1602 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1603 {
1604 i.tm.base_opcode = INT3_OPCODE;
1605 i.imm_operands = 0;
1606 }
252b5132 1607
29b0f896
AM
1608 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1609 && i.op[0].disps->X_op == O_constant)
1610 {
1611 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1612 the absolute address given by the constant. Since ix86 jumps and
1613 calls are pc relative, we need to generate a reloc. */
1614 i.op[0].disps->X_add_symbol = &abs_symbol;
1615 i.op[0].disps->X_op = O_symbol;
1616 }
252b5132 1617
29b0f896
AM
1618 if ((i.tm.opcode_modifier & Rex64) != 0)
1619 i.rex |= REX_MODE64;
252b5132 1620
29b0f896
AM
1621 /* For 8 bit registers we need an empty rex prefix. Also if the
1622 instruction already has a prefix, we need to convert old
1623 registers to new ones. */
773f551c 1624
29b0f896
AM
1625 if (((i.types[0] & Reg8) != 0
1626 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1627 || ((i.types[1] & Reg8) != 0
1628 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1629 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1630 && i.rex != 0))
1631 {
1632 int x;
726c5dcd 1633
29b0f896
AM
1634 i.rex |= REX_OPCODE;
1635 for (x = 0; x < 2; x++)
1636 {
1637 /* Look for 8 bit operand that uses old registers. */
1638 if ((i.types[x] & Reg8) != 0
1639 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1640 {
29b0f896
AM
1641 /* In case it is "hi" register, give up. */
1642 if (i.op[x].regs->reg_num > 3)
0477af35 1643 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
29b0f896 1644 i.op[x].regs->reg_name);
773f551c 1645
29b0f896
AM
1646 /* Otherwise it is equivalent to the extended register.
1647 Since the encoding doesn't change this is merely
1648 cosmetic cleanup for debug output. */
1649
1650 i.op[x].regs = i.op[x].regs + 8;
773f551c 1651 }
29b0f896
AM
1652 }
1653 }
773f551c 1654
29b0f896
AM
1655 if (i.rex != 0)
1656 add_prefix (REX_OPCODE | i.rex);
1657
1658 /* We are ready to output the insn. */
1659 output_insn ();
1660}
1661
1662static char *
1663parse_insn (line, mnemonic)
1664 char *line;
1665 char *mnemonic;
1666{
1667 char *l = line;
1668 char *token_start = l;
1669 char *mnem_p;
5c6af06e
JB
1670 int supported;
1671 const template *t;
29b0f896
AM
1672
1673 /* Non-zero if we found a prefix only acceptable with string insns. */
1674 const char *expecting_string_instruction = NULL;
45288df1 1675
29b0f896
AM
1676 while (1)
1677 {
1678 mnem_p = mnemonic;
1679 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1680 {
1681 mnem_p++;
1682 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1683 {
29b0f896
AM
1684 as_bad (_("no such instruction: `%s'"), token_start);
1685 return NULL;
1686 }
1687 l++;
1688 }
1689 if (!is_space_char (*l)
1690 && *l != END_OF_INSN
e44823cf
JB
1691 && (intel_syntax
1692 || (*l != PREFIX_SEPARATOR
1693 && *l != ',')))
29b0f896
AM
1694 {
1695 as_bad (_("invalid character %s in mnemonic"),
1696 output_invalid (*l));
1697 return NULL;
1698 }
1699 if (token_start == l)
1700 {
e44823cf 1701 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
1702 as_bad (_("expecting prefix; got nothing"));
1703 else
1704 as_bad (_("expecting mnemonic; got nothing"));
1705 return NULL;
1706 }
45288df1 1707
29b0f896
AM
1708 /* Look up instruction (or prefix) via hash table. */
1709 current_templates = hash_find (op_hash, mnemonic);
47926f60 1710
29b0f896
AM
1711 if (*l != END_OF_INSN
1712 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1713 && current_templates
1714 && (current_templates->start->opcode_modifier & IsPrefix))
1715 {
2dd88dca
JB
1716 if (current_templates->start->cpu_flags
1717 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
1718 {
1719 as_bad ((flag_code != CODE_64BIT
1720 ? _("`%s' is only supported in 64-bit mode")
1721 : _("`%s' is not supported in 64-bit mode")),
1722 current_templates->start->name);
1723 return NULL;
1724 }
29b0f896
AM
1725 /* If we are in 16-bit mode, do not allow addr16 or data16.
1726 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1727 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1728 && flag_code != CODE_64BIT
1729 && (((current_templates->start->opcode_modifier & Size32) != 0)
1730 ^ (flag_code == CODE_16BIT)))
1731 {
1732 as_bad (_("redundant %s prefix"),
1733 current_templates->start->name);
1734 return NULL;
45288df1 1735 }
29b0f896
AM
1736 /* Add prefix, checking for repeated prefixes. */
1737 switch (add_prefix (current_templates->start->base_opcode))
1738 {
1739 case 0:
1740 return NULL;
1741 case 2:
1742 expecting_string_instruction = current_templates->start->name;
1743 break;
1744 }
1745 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1746 token_start = ++l;
1747 }
1748 else
1749 break;
1750 }
45288df1 1751
29b0f896
AM
1752 if (!current_templates)
1753 {
1754 /* See if we can get a match by trimming off a suffix. */
1755 switch (mnem_p[-1])
1756 {
1757 case WORD_MNEM_SUFFIX:
9306ca4a
JB
1758 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1759 i.suffix = SHORT_MNEM_SUFFIX;
1760 else
29b0f896
AM
1761 case BYTE_MNEM_SUFFIX:
1762 case QWORD_MNEM_SUFFIX:
1763 i.suffix = mnem_p[-1];
1764 mnem_p[-1] = '\0';
1765 current_templates = hash_find (op_hash, mnemonic);
1766 break;
1767 case SHORT_MNEM_SUFFIX:
1768 case LONG_MNEM_SUFFIX:
1769 if (!intel_syntax)
1770 {
1771 i.suffix = mnem_p[-1];
1772 mnem_p[-1] = '\0';
1773 current_templates = hash_find (op_hash, mnemonic);
1774 }
1775 break;
252b5132 1776
29b0f896
AM
1777 /* Intel Syntax. */
1778 case 'd':
1779 if (intel_syntax)
1780 {
9306ca4a 1781 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
1782 i.suffix = SHORT_MNEM_SUFFIX;
1783 else
1784 i.suffix = LONG_MNEM_SUFFIX;
1785 mnem_p[-1] = '\0';
1786 current_templates = hash_find (op_hash, mnemonic);
1787 }
1788 break;
1789 }
1790 if (!current_templates)
1791 {
1792 as_bad (_("no such instruction: `%s'"), token_start);
1793 return NULL;
1794 }
1795 }
252b5132 1796
29b0f896
AM
1797 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1798 {
1799 /* Check for a branch hint. We allow ",pt" and ",pn" for
1800 predict taken and predict not taken respectively.
1801 I'm not sure that branch hints actually do anything on loop
1802 and jcxz insns (JumpByte) for current Pentium4 chips. They
1803 may work in the future and it doesn't hurt to accept them
1804 now. */
1805 if (l[0] == ',' && l[1] == 'p')
1806 {
1807 if (l[2] == 't')
1808 {
1809 if (!add_prefix (DS_PREFIX_OPCODE))
1810 return NULL;
1811 l += 3;
1812 }
1813 else if (l[2] == 'n')
1814 {
1815 if (!add_prefix (CS_PREFIX_OPCODE))
1816 return NULL;
1817 l += 3;
1818 }
1819 }
1820 }
1821 /* Any other comma loses. */
1822 if (*l == ',')
1823 {
1824 as_bad (_("invalid character %s in mnemonic"),
1825 output_invalid (*l));
1826 return NULL;
1827 }
252b5132 1828
29b0f896 1829 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
1830 supported = 0;
1831 for (t = current_templates->start; t < current_templates->end; ++t)
1832 {
1833 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1834 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1835 supported |= 1;
1836 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1837 supported |= 2;
1838 }
1839 if (!(supported & 2))
1840 {
1841 as_bad (flag_code == CODE_64BIT
1842 ? _("`%s' is not supported in 64-bit mode")
1843 : _("`%s' is only supported in 64-bit mode"),
1844 current_templates->start->name);
1845 return NULL;
1846 }
1847 if (!(supported & 1))
29b0f896 1848 {
5c6af06e
JB
1849 as_warn (_("`%s' is not supported on `%s%s'"),
1850 current_templates->start->name,
1851 cpu_arch_name,
1852 cpu_sub_arch_name ? cpu_sub_arch_name : "");
29b0f896
AM
1853 }
1854 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1855 {
1856 as_warn (_("use .code16 to ensure correct addressing mode"));
1857 }
252b5132 1858
29b0f896 1859 /* Check for rep/repne without a string instruction. */
f41bbced 1860 if (expecting_string_instruction)
29b0f896 1861 {
f41bbced
JB
1862 static templates override;
1863
1864 for (t = current_templates->start; t < current_templates->end; ++t)
1865 if (t->opcode_modifier & IsString)
1866 break;
1867 if (t >= current_templates->end)
1868 {
1869 as_bad (_("expecting string instruction after `%s'"),
1870 expecting_string_instruction);
1871 return NULL;
1872 }
1873 for (override.start = t; t < current_templates->end; ++t)
1874 if (!(t->opcode_modifier & IsString))
1875 break;
1876 override.end = t;
1877 current_templates = &override;
29b0f896 1878 }
252b5132 1879
29b0f896
AM
1880 return l;
1881}
252b5132 1882
29b0f896
AM
1883static char *
1884parse_operands (l, mnemonic)
1885 char *l;
1886 const char *mnemonic;
1887{
1888 char *token_start;
3138f287 1889
29b0f896
AM
1890 /* 1 if operand is pending after ','. */
1891 unsigned int expecting_operand = 0;
252b5132 1892
29b0f896
AM
1893 /* Non-zero if operand parens not balanced. */
1894 unsigned int paren_not_balanced;
1895
1896 while (*l != END_OF_INSN)
1897 {
1898 /* Skip optional white space before operand. */
1899 if (is_space_char (*l))
1900 ++l;
1901 if (!is_operand_char (*l) && *l != END_OF_INSN)
1902 {
1903 as_bad (_("invalid character %s before operand %d"),
1904 output_invalid (*l),
1905 i.operands + 1);
1906 return NULL;
1907 }
1908 token_start = l; /* after white space */
1909 paren_not_balanced = 0;
1910 while (paren_not_balanced || *l != ',')
1911 {
1912 if (*l == END_OF_INSN)
1913 {
1914 if (paren_not_balanced)
1915 {
1916 if (!intel_syntax)
1917 as_bad (_("unbalanced parenthesis in operand %d."),
1918 i.operands + 1);
1919 else
1920 as_bad (_("unbalanced brackets in operand %d."),
1921 i.operands + 1);
1922 return NULL;
1923 }
1924 else
1925 break; /* we are done */
1926 }
1927 else if (!is_operand_char (*l) && !is_space_char (*l))
1928 {
1929 as_bad (_("invalid character %s in operand %d"),
1930 output_invalid (*l),
1931 i.operands + 1);
1932 return NULL;
1933 }
1934 if (!intel_syntax)
1935 {
1936 if (*l == '(')
1937 ++paren_not_balanced;
1938 if (*l == ')')
1939 --paren_not_balanced;
1940 }
1941 else
1942 {
1943 if (*l == '[')
1944 ++paren_not_balanced;
1945 if (*l == ']')
1946 --paren_not_balanced;
1947 }
1948 l++;
1949 }
1950 if (l != token_start)
1951 { /* Yes, we've read in another operand. */
1952 unsigned int operand_ok;
1953 this_operand = i.operands++;
1954 if (i.operands > MAX_OPERANDS)
1955 {
1956 as_bad (_("spurious operands; (%d operands/instruction max)"),
1957 MAX_OPERANDS);
1958 return NULL;
1959 }
1960 /* Now parse operand adding info to 'i' as we go along. */
1961 END_STRING_AND_SAVE (l);
1962
1963 if (intel_syntax)
1964 operand_ok =
1965 i386_intel_operand (token_start,
1966 intel_float_operand (mnemonic));
1967 else
1968 operand_ok = i386_operand (token_start);
1969
1970 RESTORE_END_STRING (l);
1971 if (!operand_ok)
1972 return NULL;
1973 }
1974 else
1975 {
1976 if (expecting_operand)
1977 {
1978 expecting_operand_after_comma:
1979 as_bad (_("expecting operand after ','; got nothing"));
1980 return NULL;
1981 }
1982 if (*l == ',')
1983 {
1984 as_bad (_("expecting operand before ','; got nothing"));
1985 return NULL;
1986 }
1987 }
7f3f1ea2 1988
29b0f896
AM
1989 /* Now *l must be either ',' or END_OF_INSN. */
1990 if (*l == ',')
1991 {
1992 if (*++l == END_OF_INSN)
1993 {
1994 /* Just skip it, if it's \n complain. */
1995 goto expecting_operand_after_comma;
1996 }
1997 expecting_operand = 1;
1998 }
1999 }
2000 return l;
2001}
7f3f1ea2 2002
29b0f896
AM
2003static void
2004swap_operands ()
2005{
2006 union i386_op temp_op;
2007 unsigned int temp_type;
f86103b7 2008 enum bfd_reloc_code_real temp_reloc;
29b0f896
AM
2009 int xchg1 = 0;
2010 int xchg2 = 0;
252b5132 2011
29b0f896
AM
2012 if (i.operands == 2)
2013 {
2014 xchg1 = 0;
2015 xchg2 = 1;
2016 }
2017 else if (i.operands == 3)
2018 {
2019 xchg1 = 0;
2020 xchg2 = 2;
2021 }
2022 temp_type = i.types[xchg2];
2023 i.types[xchg2] = i.types[xchg1];
2024 i.types[xchg1] = temp_type;
2025 temp_op = i.op[xchg2];
2026 i.op[xchg2] = i.op[xchg1];
2027 i.op[xchg1] = temp_op;
2028 temp_reloc = i.reloc[xchg2];
2029 i.reloc[xchg2] = i.reloc[xchg1];
2030 i.reloc[xchg1] = temp_reloc;
2031
2032 if (i.mem_operands == 2)
2033 {
2034 const seg_entry *temp_seg;
2035 temp_seg = i.seg[0];
2036 i.seg[0] = i.seg[1];
2037 i.seg[1] = temp_seg;
2038 }
2039}
252b5132 2040
29b0f896
AM
2041/* Try to ensure constant immediates are represented in the smallest
2042 opcode possible. */
2043static void
2044optimize_imm ()
2045{
2046 char guess_suffix = 0;
2047 int op;
252b5132 2048
29b0f896
AM
2049 if (i.suffix)
2050 guess_suffix = i.suffix;
2051 else if (i.reg_operands)
2052 {
2053 /* Figure out a suffix from the last register operand specified.
2054 We can't do this properly yet, ie. excluding InOutPortReg,
2055 but the following works for instructions with immediates.
2056 In any case, we can't set i.suffix yet. */
2057 for (op = i.operands; --op >= 0;)
2058 if (i.types[op] & Reg)
252b5132 2059 {
29b0f896
AM
2060 if (i.types[op] & Reg8)
2061 guess_suffix = BYTE_MNEM_SUFFIX;
2062 else if (i.types[op] & Reg16)
2063 guess_suffix = WORD_MNEM_SUFFIX;
2064 else if (i.types[op] & Reg32)
2065 guess_suffix = LONG_MNEM_SUFFIX;
2066 else if (i.types[op] & Reg64)
2067 guess_suffix = QWORD_MNEM_SUFFIX;
2068 break;
252b5132 2069 }
29b0f896
AM
2070 }
2071 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2072 guess_suffix = WORD_MNEM_SUFFIX;
2073
2074 for (op = i.operands; --op >= 0;)
2075 if (i.types[op] & Imm)
2076 {
2077 switch (i.op[op].imms->X_op)
252b5132 2078 {
29b0f896
AM
2079 case O_constant:
2080 /* If a suffix is given, this operand may be shortened. */
2081 switch (guess_suffix)
252b5132 2082 {
29b0f896
AM
2083 case LONG_MNEM_SUFFIX:
2084 i.types[op] |= Imm32 | Imm64;
2085 break;
2086 case WORD_MNEM_SUFFIX:
2087 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2088 break;
2089 case BYTE_MNEM_SUFFIX:
2090 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2091 break;
252b5132 2092 }
252b5132 2093
29b0f896
AM
2094 /* If this operand is at most 16 bits, convert it
2095 to a signed 16 bit number before trying to see
2096 whether it will fit in an even smaller size.
2097 This allows a 16-bit operand such as $0xffe0 to
2098 be recognised as within Imm8S range. */
2099 if ((i.types[op] & Imm16)
2100 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 2101 {
29b0f896
AM
2102 i.op[op].imms->X_add_number =
2103 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2104 }
2105 if ((i.types[op] & Imm32)
2106 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2107 == 0))
2108 {
2109 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2110 ^ ((offsetT) 1 << 31))
2111 - ((offsetT) 1 << 31));
2112 }
2113 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 2114
29b0f896
AM
2115 /* We must avoid matching of Imm32 templates when 64bit
2116 only immediate is available. */
2117 if (guess_suffix == QWORD_MNEM_SUFFIX)
2118 i.types[op] &= ~Imm32;
2119 break;
252b5132 2120
29b0f896
AM
2121 case O_absent:
2122 case O_register:
2123 abort ();
2124
2125 /* Symbols and expressions. */
2126 default:
9cd96992
JB
2127 /* Convert symbolic operand to proper sizes for matching, but don't
2128 prevent matching a set of insns that only supports sizes other
2129 than those matching the insn suffix. */
2130 {
2131 unsigned int mask, allowed = 0;
2132 const template *t;
2133
2134 for (t = current_templates->start; t < current_templates->end; ++t)
2135 allowed |= t->operand_types[op];
2136 switch (guess_suffix)
2137 {
2138 case QWORD_MNEM_SUFFIX:
2139 mask = Imm64 | Imm32S;
2140 break;
2141 case LONG_MNEM_SUFFIX:
2142 mask = Imm32;
2143 break;
2144 case WORD_MNEM_SUFFIX:
2145 mask = Imm16;
2146 break;
2147 case BYTE_MNEM_SUFFIX:
2148 mask = Imm8;
2149 break;
2150 default:
2151 mask = 0;
2152 break;
2153 }
2154 if (mask & allowed)
2155 i.types[op] &= mask;
2156 }
29b0f896 2157 break;
252b5132 2158 }
29b0f896
AM
2159 }
2160}
47926f60 2161
29b0f896
AM
2162/* Try to use the smallest displacement type too. */
2163static void
2164optimize_disp ()
2165{
2166 int op;
3e73aa7c 2167
29b0f896 2168 for (op = i.operands; --op >= 0;)
b300c311 2169 if (i.types[op] & Disp)
252b5132 2170 {
b300c311 2171 if (i.op[op].disps->X_op == O_constant)
252b5132 2172 {
b300c311 2173 offsetT disp = i.op[op].disps->X_add_number;
29b0f896 2174
b300c311
L
2175 if ((i.types[op] & Disp16)
2176 && (disp & ~(offsetT) 0xffff) == 0)
2177 {
2178 /* If this operand is at most 16 bits, convert
2179 to a signed 16 bit number and don't use 64bit
2180 displacement. */
2181 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2182 i.types[op] &= ~Disp64;
2183 }
2184 if ((i.types[op] & Disp32)
2185 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2186 {
2187 /* If this operand is at most 32 bits, convert
2188 to a signed 32 bit number and don't use 64bit
2189 displacement. */
2190 disp &= (((offsetT) 2 << 31) - 1);
2191 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2192 i.types[op] &= ~Disp64;
2193 }
2194 if (!disp && (i.types[op] & BaseIndex))
2195 {
2196 i.types[op] &= ~Disp;
2197 i.op[op].disps = 0;
2198 i.disp_operands--;
2199 }
2200 else if (flag_code == CODE_64BIT)
2201 {
2202 if (fits_in_signed_long (disp))
28a9d8f5
L
2203 {
2204 i.types[op] &= ~Disp64;
2205 i.types[op] |= Disp32S;
2206 }
b300c311
L
2207 if (fits_in_unsigned_long (disp))
2208 i.types[op] |= Disp32;
2209 }
2210 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2211 && fits_in_signed_byte (disp))
2212 i.types[op] |= Disp8;
252b5132 2213 }
67a4f2b7
AO
2214 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2215 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2216 {
2217 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2218 i.op[op].disps, 0, i.reloc[op]);
2219 i.types[op] &= ~Disp;
2220 }
2221 else
b300c311
L
2222 /* We only support 64bit displacement on constants. */
2223 i.types[op] &= ~Disp64;
252b5132 2224 }
29b0f896
AM
2225}
2226
2227static int
2228match_template ()
2229{
2230 /* Points to template once we've found it. */
2231 const template *t;
2232 unsigned int overlap0, overlap1, overlap2;
2233 unsigned int found_reverse_match;
2234 int suffix_check;
2235
2236#define MATCH(overlap, given, template) \
2237 ((overlap & ~JumpAbsolute) \
2238 && (((given) & (BaseIndex | JumpAbsolute)) \
2239 == ((overlap) & (BaseIndex | JumpAbsolute))))
2240
2241 /* If given types r0 and r1 are registers they must be of the same type
2242 unless the expected operand type register overlap is null.
2243 Note that Acc in a template matches every size of reg. */
2244#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2245 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2246 || ((g0) & Reg) == ((g1) & Reg) \
2247 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2248
2249 overlap0 = 0;
2250 overlap1 = 0;
2251 overlap2 = 0;
2252 found_reverse_match = 0;
2253 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2254 ? No_bSuf
2255 : (i.suffix == WORD_MNEM_SUFFIX
2256 ? No_wSuf
2257 : (i.suffix == SHORT_MNEM_SUFFIX
2258 ? No_sSuf
2259 : (i.suffix == LONG_MNEM_SUFFIX
2260 ? No_lSuf
2261 : (i.suffix == QWORD_MNEM_SUFFIX
2262 ? No_qSuf
2263 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2264 ? No_xSuf : 0))))));
2265
45aa61fe 2266 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896
AM
2267 {
2268 /* Must have right number of operands. */
2269 if (i.operands != t->operands)
2270 continue;
2271
2272 /* Check the suffix, except for some instructions in intel mode. */
2273 if ((t->opcode_modifier & suffix_check)
2274 && !(intel_syntax
9306ca4a 2275 && (t->opcode_modifier & IgnoreSize)))
29b0f896
AM
2276 continue;
2277
45aa61fe
AM
2278 /* In general, don't allow 64-bit operands in 32-bit mode. */
2279 if (i.suffix == QWORD_MNEM_SUFFIX
2280 && flag_code != CODE_64BIT
2281 && (intel_syntax
2282 ? (!(t->opcode_modifier & IgnoreSize)
2283 && !intel_float_operand (t->name))
2284 : intel_float_operand (t->name) != 2)
2285 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2286 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2287 && (t->base_opcode != 0x0fc7
2288 || t->extension_opcode != 1 /* cmpxchg8b */))
2289 continue;
2290
29b0f896
AM
2291 /* Do not verify operands when there are none. */
2292 else if (!t->operands)
2293 {
2294 if (t->cpu_flags & ~cpu_arch_flags)
2295 continue;
2296 /* We've found a match; break out of loop. */
2297 break;
2298 }
252b5132 2299
29b0f896
AM
2300 overlap0 = i.types[0] & t->operand_types[0];
2301 switch (t->operands)
2302 {
2303 case 1:
2304 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2305 continue;
2306 break;
2307 case 2:
2308 case 3:
2309 overlap1 = i.types[1] & t->operand_types[1];
2310 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2311 || !MATCH (overlap1, i.types[1], t->operand_types[1])
cb712a9e
L
2312 /* monitor in SSE3 is a very special case. The first
2313 register and the second register may have differnet
2314 sizes. */
2315 || !((t->base_opcode == 0x0f01
2316 && t->extension_opcode == 0xc8)
2317 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2318 t->operand_types[0],
2319 overlap1, i.types[1],
2320 t->operand_types[1])))
29b0f896
AM
2321 {
2322 /* Check if other direction is valid ... */
2323 if ((t->opcode_modifier & (D | FloatD)) == 0)
2324 continue;
2325
2326 /* Try reversing direction of operands. */
2327 overlap0 = i.types[0] & t->operand_types[1];
2328 overlap1 = i.types[1] & t->operand_types[0];
2329 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2330 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2331 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2332 t->operand_types[1],
2333 overlap1, i.types[1],
2334 t->operand_types[0]))
2335 {
2336 /* Does not match either direction. */
2337 continue;
2338 }
2339 /* found_reverse_match holds which of D or FloatDR
2340 we've found. */
2341 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2342 }
2343 /* Found a forward 2 operand match here. */
2344 else if (t->operands == 3)
2345 {
2346 /* Here we make use of the fact that there are no
2347 reverse match 3 operand instructions, and all 3
2348 operand instructions only need to be checked for
2349 register consistency between operands 2 and 3. */
2350 overlap2 = i.types[2] & t->operand_types[2];
2351 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2352 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2353 t->operand_types[1],
2354 overlap2, i.types[2],
2355 t->operand_types[2]))
2356
2357 continue;
2358 }
2359 /* Found either forward/reverse 2 or 3 operand match here:
2360 slip through to break. */
2361 }
2362 if (t->cpu_flags & ~cpu_arch_flags)
2363 {
2364 found_reverse_match = 0;
2365 continue;
2366 }
2367 /* We've found a match; break out of loop. */
2368 break;
2369 }
2370
2371 if (t == current_templates->end)
2372 {
2373 /* We found no match. */
2374 as_bad (_("suffix or operands invalid for `%s'"),
2375 current_templates->start->name);
2376 return 0;
2377 }
252b5132 2378
29b0f896
AM
2379 if (!quiet_warnings)
2380 {
2381 if (!intel_syntax
2382 && ((i.types[0] & JumpAbsolute)
2383 != (t->operand_types[0] & JumpAbsolute)))
2384 {
2385 as_warn (_("indirect %s without `*'"), t->name);
2386 }
2387
2388 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2389 == (IsPrefix | IgnoreSize))
2390 {
2391 /* Warn them that a data or address size prefix doesn't
2392 affect assembly of the next line of code. */
2393 as_warn (_("stand-alone `%s' prefix"), t->name);
2394 }
2395 }
2396
2397 /* Copy the template we found. */
2398 i.tm = *t;
2399 if (found_reverse_match)
2400 {
2401 /* If we found a reverse match we must alter the opcode
2402 direction bit. found_reverse_match holds bits to change
2403 (different for int & float insns). */
2404
2405 i.tm.base_opcode ^= found_reverse_match;
2406
2407 i.tm.operand_types[0] = t->operand_types[1];
2408 i.tm.operand_types[1] = t->operand_types[0];
2409 }
2410
2411 return 1;
2412}
2413
2414static int
2415check_string ()
2416{
2417 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2418 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2419 {
2420 if (i.seg[0] != NULL && i.seg[0] != &es)
2421 {
2422 as_bad (_("`%s' operand %d must use `%%es' segment"),
2423 i.tm.name,
2424 mem_op + 1);
2425 return 0;
2426 }
2427 /* There's only ever one segment override allowed per instruction.
2428 This instruction possibly has a legal segment override on the
2429 second operand, so copy the segment to where non-string
2430 instructions store it, allowing common code. */
2431 i.seg[0] = i.seg[1];
2432 }
2433 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2434 {
2435 if (i.seg[1] != NULL && i.seg[1] != &es)
2436 {
2437 as_bad (_("`%s' operand %d must use `%%es' segment"),
2438 i.tm.name,
2439 mem_op + 2);
2440 return 0;
2441 }
2442 }
2443 return 1;
2444}
2445
2446static int
543613e9 2447process_suffix (void)
29b0f896
AM
2448{
2449 /* If matched instruction specifies an explicit instruction mnemonic
2450 suffix, use it. */
2451 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2452 {
2453 if (i.tm.opcode_modifier & Size16)
2454 i.suffix = WORD_MNEM_SUFFIX;
2455 else if (i.tm.opcode_modifier & Size64)
2456 i.suffix = QWORD_MNEM_SUFFIX;
2457 else
2458 i.suffix = LONG_MNEM_SUFFIX;
2459 }
2460 else if (i.reg_operands)
2461 {
2462 /* If there's no instruction mnemonic suffix we try to invent one
2463 based on register operands. */
2464 if (!i.suffix)
2465 {
2466 /* We take i.suffix from the last register operand specified,
2467 Destination register type is more significant than source
2468 register type. */
2469 int op;
543613e9 2470
29b0f896
AM
2471 for (op = i.operands; --op >= 0;)
2472 if ((i.types[op] & Reg)
2473 && !(i.tm.operand_types[op] & InOutPortReg))
2474 {
2475 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2476 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2477 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2478 LONG_MNEM_SUFFIX);
2479 break;
2480 }
2481 }
2482 else if (i.suffix == BYTE_MNEM_SUFFIX)
2483 {
2484 if (!check_byte_reg ())
2485 return 0;
2486 }
2487 else if (i.suffix == LONG_MNEM_SUFFIX)
2488 {
2489 if (!check_long_reg ())
2490 return 0;
2491 }
2492 else if (i.suffix == QWORD_MNEM_SUFFIX)
2493 {
2494 if (!check_qword_reg ())
2495 return 0;
2496 }
2497 else if (i.suffix == WORD_MNEM_SUFFIX)
2498 {
2499 if (!check_word_reg ())
2500 return 0;
2501 }
2502 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2503 /* Do nothing if the instruction is going to ignore the prefix. */
2504 ;
2505 else
2506 abort ();
2507 }
9306ca4a
JB
2508 else if ((i.tm.opcode_modifier & DefaultSize)
2509 && !i.suffix
2510 /* exclude fldenv/frstor/fsave/fstenv */
2511 && (i.tm.opcode_modifier & No_sSuf))
29b0f896
AM
2512 {
2513 i.suffix = stackop_size;
2514 }
9306ca4a
JB
2515 else if (intel_syntax
2516 && !i.suffix
2517 && ((i.tm.operand_types[0] & JumpAbsolute)
2518 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2519 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2520 && i.tm.extension_opcode <= 3)))
2521 {
2522 switch (flag_code)
2523 {
2524 case CODE_64BIT:
2525 if (!(i.tm.opcode_modifier & No_qSuf))
2526 {
2527 i.suffix = QWORD_MNEM_SUFFIX;
2528 break;
2529 }
2530 case CODE_32BIT:
2531 if (!(i.tm.opcode_modifier & No_lSuf))
2532 i.suffix = LONG_MNEM_SUFFIX;
2533 break;
2534 case CODE_16BIT:
2535 if (!(i.tm.opcode_modifier & No_wSuf))
2536 i.suffix = WORD_MNEM_SUFFIX;
2537 break;
2538 }
2539 }
252b5132 2540
9306ca4a 2541 if (!i.suffix)
29b0f896 2542 {
9306ca4a
JB
2543 if (!intel_syntax)
2544 {
2545 if (i.tm.opcode_modifier & W)
2546 {
2547 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2548 return 0;
2549 }
2550 }
2551 else
2552 {
2553 unsigned int suffixes = ~i.tm.opcode_modifier
2554 & (No_bSuf
2555 | No_wSuf
2556 | No_lSuf
2557 | No_sSuf
2558 | No_xSuf
2559 | No_qSuf);
2560
2561 if ((i.tm.opcode_modifier & W)
2562 || ((suffixes & (suffixes - 1))
2563 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2564 {
2565 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2566 return 0;
2567 }
2568 }
29b0f896 2569 }
252b5132 2570
9306ca4a
JB
2571 /* Change the opcode based on the operand size given by i.suffix;
2572 We don't need to change things for byte insns. */
2573
29b0f896
AM
2574 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2575 {
2576 /* It's not a byte, select word/dword operation. */
2577 if (i.tm.opcode_modifier & W)
2578 {
2579 if (i.tm.opcode_modifier & ShortForm)
2580 i.tm.base_opcode |= 8;
2581 else
2582 i.tm.base_opcode |= 1;
2583 }
0f3f3d8b 2584
29b0f896
AM
2585 /* Now select between word & dword operations via the operand
2586 size prefix, except for instructions that will ignore this
2587 prefix anyway. */
cb712a9e
L
2588 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2589 {
2590 /* monitor in SSE3 is a very special case. The default size
2591 of AX is the size of mode. The address size override
2592 prefix will change the size of AX. */
2593 if (i.op->regs[0].reg_type &
2594 (flag_code == CODE_32BIT ? Reg16 : Reg32))
2595 if (!add_prefix (ADDR_PREFIX_OPCODE))
2596 return 0;
2597 }
2598 else if (i.suffix != QWORD_MNEM_SUFFIX
2599 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2600 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2601 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2602 || (flag_code == CODE_64BIT
2603 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2604 {
2605 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 2606
29b0f896
AM
2607 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2608 prefix = ADDR_PREFIX_OPCODE;
252b5132 2609
29b0f896
AM
2610 if (!add_prefix (prefix))
2611 return 0;
24eab124 2612 }
252b5132 2613
29b0f896
AM
2614 /* Set mode64 for an operand. */
2615 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2616 && flag_code == CODE_64BIT
29b0f896 2617 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2618 i.rex |= REX_MODE64;
3e73aa7c 2619
29b0f896
AM
2620 /* Size floating point instruction. */
2621 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
2622 if (i.tm.opcode_modifier & FloatMF)
2623 i.tm.base_opcode ^= 4;
29b0f896 2624 }
7ecd2f8b 2625
29b0f896
AM
2626 return 1;
2627}
3e73aa7c 2628
29b0f896 2629static int
543613e9 2630check_byte_reg (void)
29b0f896
AM
2631{
2632 int op;
543613e9 2633
29b0f896
AM
2634 for (op = i.operands; --op >= 0;)
2635 {
2636 /* If this is an eight bit register, it's OK. If it's the 16 or
2637 32 bit version of an eight bit register, we will just use the
2638 low portion, and that's OK too. */
2639 if (i.types[op] & Reg8)
2640 continue;
2641
2642 /* movzx and movsx should not generate this warning. */
2643 if (intel_syntax
2644 && (i.tm.base_opcode == 0xfb7
2645 || i.tm.base_opcode == 0xfb6
2646 || i.tm.base_opcode == 0x63
2647 || i.tm.base_opcode == 0xfbe
2648 || i.tm.base_opcode == 0xfbf))
2649 continue;
2650
65ec77d2 2651 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
29b0f896
AM
2652 {
2653 /* Prohibit these changes in the 64bit mode, since the
2654 lowering is more complicated. */
2655 if (flag_code == CODE_64BIT
2656 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2657 {
0f3f3d8b 2658 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2659 i.op[op].regs->reg_name,
2660 i.suffix);
2661 return 0;
2662 }
2663#if REGISTER_WARNINGS
2664 if (!quiet_warnings
2665 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2666 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2667 (i.op[op].regs + (i.types[op] & Reg16
2668 ? REGNAM_AL - REGNAM_AX
2669 : REGNAM_AL - REGNAM_EAX))->reg_name,
2670 i.op[op].regs->reg_name,
2671 i.suffix);
2672#endif
2673 continue;
2674 }
2675 /* Any other register is bad. */
2676 if (i.types[op] & (Reg | RegMMX | RegXMM
2677 | SReg2 | SReg3
2678 | Control | Debug | Test
2679 | FloatReg | FloatAcc))
2680 {
2681 as_bad (_("`%%%s' not allowed with `%s%c'"),
2682 i.op[op].regs->reg_name,
2683 i.tm.name,
2684 i.suffix);
2685 return 0;
2686 }
2687 }
2688 return 1;
2689}
2690
2691static int
2692check_long_reg ()
2693{
2694 int op;
2695
2696 for (op = i.operands; --op >= 0;)
2697 /* Reject eight bit registers, except where the template requires
2698 them. (eg. movzb) */
2699 if ((i.types[op] & Reg8) != 0
2700 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2701 {
2702 as_bad (_("`%%%s' not allowed with `%s%c'"),
2703 i.op[op].regs->reg_name,
2704 i.tm.name,
2705 i.suffix);
2706 return 0;
2707 }
2708 /* Warn if the e prefix on a general reg is missing. */
2709 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2710 && (i.types[op] & Reg16) != 0
2711 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2712 {
2713 /* Prohibit these changes in the 64bit mode, since the
2714 lowering is more complicated. */
2715 if (flag_code == CODE_64BIT)
252b5132 2716 {
0f3f3d8b 2717 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2718 i.op[op].regs->reg_name,
2719 i.suffix);
2720 return 0;
252b5132 2721 }
29b0f896
AM
2722#if REGISTER_WARNINGS
2723 else
2724 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2725 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2726 i.op[op].regs->reg_name,
2727 i.suffix);
2728#endif
252b5132 2729 }
29b0f896
AM
2730 /* Warn if the r prefix on a general reg is missing. */
2731 else if ((i.types[op] & Reg64) != 0
2732 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2733 {
0f3f3d8b 2734 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2735 i.op[op].regs->reg_name,
2736 i.suffix);
2737 return 0;
2738 }
2739 return 1;
2740}
252b5132 2741
29b0f896
AM
2742static int
2743check_qword_reg ()
2744{
2745 int op;
252b5132 2746
29b0f896
AM
2747 for (op = i.operands; --op >= 0; )
2748 /* Reject eight bit registers, except where the template requires
2749 them. (eg. movzb) */
2750 if ((i.types[op] & Reg8) != 0
2751 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2752 {
2753 as_bad (_("`%%%s' not allowed with `%s%c'"),
2754 i.op[op].regs->reg_name,
2755 i.tm.name,
2756 i.suffix);
2757 return 0;
2758 }
2759 /* Warn if the e prefix on a general reg is missing. */
2760 else if (((i.types[op] & Reg16) != 0
2761 || (i.types[op] & Reg32) != 0)
2762 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2763 {
2764 /* Prohibit these changes in the 64bit mode, since the
2765 lowering is more complicated. */
0f3f3d8b 2766 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2767 i.op[op].regs->reg_name,
2768 i.suffix);
2769 return 0;
252b5132 2770 }
29b0f896
AM
2771 return 1;
2772}
252b5132 2773
29b0f896
AM
2774static int
2775check_word_reg ()
2776{
2777 int op;
2778 for (op = i.operands; --op >= 0;)
2779 /* Reject eight bit registers, except where the template requires
2780 them. (eg. movzb) */
2781 if ((i.types[op] & Reg8) != 0
2782 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2783 {
2784 as_bad (_("`%%%s' not allowed with `%s%c'"),
2785 i.op[op].regs->reg_name,
2786 i.tm.name,
2787 i.suffix);
2788 return 0;
2789 }
2790 /* Warn if the e prefix on a general reg is present. */
2791 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2792 && (i.types[op] & Reg32) != 0
2793 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2794 {
29b0f896
AM
2795 /* Prohibit these changes in the 64bit mode, since the
2796 lowering is more complicated. */
2797 if (flag_code == CODE_64BIT)
252b5132 2798 {
0f3f3d8b 2799 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2800 i.op[op].regs->reg_name,
2801 i.suffix);
2802 return 0;
252b5132 2803 }
29b0f896
AM
2804 else
2805#if REGISTER_WARNINGS
2806 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2807 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2808 i.op[op].regs->reg_name,
2809 i.suffix);
2810#endif
2811 }
2812 return 1;
2813}
252b5132 2814
29b0f896
AM
2815static int
2816finalize_imm ()
2817{
2818 unsigned int overlap0, overlap1, overlap2;
2819
2820 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 2821 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
2822 && overlap0 != Imm8 && overlap0 != Imm8S
2823 && overlap0 != Imm16 && overlap0 != Imm32S
2824 && overlap0 != Imm32 && overlap0 != Imm64)
2825 {
2826 if (i.suffix)
2827 {
2828 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2829 ? Imm8 | Imm8S
2830 : (i.suffix == WORD_MNEM_SUFFIX
2831 ? Imm16
2832 : (i.suffix == QWORD_MNEM_SUFFIX
2833 ? Imm64 | Imm32S
2834 : Imm32)));
2835 }
2836 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2837 || overlap0 == (Imm16 | Imm32)
2838 || overlap0 == (Imm16 | Imm32S))
2839 {
2840 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2841 ? Imm16 : Imm32S);
2842 }
2843 if (overlap0 != Imm8 && overlap0 != Imm8S
2844 && overlap0 != Imm16 && overlap0 != Imm32S
2845 && overlap0 != Imm32 && overlap0 != Imm64)
2846 {
2847 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2848 return 0;
2849 }
2850 }
2851 i.types[0] = overlap0;
2852
2853 overlap1 = i.types[1] & i.tm.operand_types[1];
37edbb65 2854 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
29b0f896
AM
2855 && overlap1 != Imm8 && overlap1 != Imm8S
2856 && overlap1 != Imm16 && overlap1 != Imm32S
2857 && overlap1 != Imm32 && overlap1 != Imm64)
2858 {
2859 if (i.suffix)
2860 {
2861 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2862 ? Imm8 | Imm8S
2863 : (i.suffix == WORD_MNEM_SUFFIX
2864 ? Imm16
2865 : (i.suffix == QWORD_MNEM_SUFFIX
2866 ? Imm64 | Imm32S
2867 : Imm32)));
2868 }
2869 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2870 || overlap1 == (Imm16 | Imm32)
2871 || overlap1 == (Imm16 | Imm32S))
2872 {
2873 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2874 ? Imm16 : Imm32S);
2875 }
2876 if (overlap1 != Imm8 && overlap1 != Imm8S
2877 && overlap1 != Imm16 && overlap1 != Imm32S
2878 && overlap1 != Imm32 && overlap1 != Imm64)
2879 {
2880 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2881 return 0;
2882 }
2883 }
2884 i.types[1] = overlap1;
2885
2886 overlap2 = i.types[2] & i.tm.operand_types[2];
2887 assert ((overlap2 & Imm) == 0);
2888 i.types[2] = overlap2;
2889
2890 return 1;
2891}
2892
2893static int
2894process_operands ()
2895{
2896 /* Default segment register this instruction will use for memory
2897 accesses. 0 means unknown. This is only for optimizing out
2898 unnecessary segment overrides. */
2899 const seg_entry *default_seg = 0;
2900
2901 /* The imul $imm, %reg instruction is converted into
2902 imul $imm, %reg, %reg, and the clr %reg instruction
2903 is converted into xor %reg, %reg. */
2904 if (i.tm.opcode_modifier & regKludge)
2905 {
2906 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2907 /* Pretend we saw the extra register operand. */
2908 assert (i.op[first_reg_op + 1].regs == 0);
2909 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2910 i.types[first_reg_op + 1] = i.types[first_reg_op];
2911 i.reg_operands = 2;
2912 }
2913
2914 if (i.tm.opcode_modifier & ShortForm)
2915 {
2916 /* The register or float register operand is in operand 0 or 1. */
2917 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2918 /* Register goes in low 3 bits of opcode. */
2919 i.tm.base_opcode |= i.op[op].regs->reg_num;
2920 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2921 i.rex |= REX_EXTZ;
2922 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2923 {
2924 /* Warn about some common errors, but press on regardless.
2925 The first case can be generated by gcc (<= 2.8.1). */
2926 if (i.operands == 2)
2927 {
2928 /* Reversed arguments on faddp, fsubp, etc. */
2929 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2930 i.op[1].regs->reg_name,
2931 i.op[0].regs->reg_name);
2932 }
2933 else
2934 {
2935 /* Extraneous `l' suffix on fp insn. */
2936 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2937 i.op[0].regs->reg_name);
2938 }
2939 }
2940 }
2941 else if (i.tm.opcode_modifier & Modrm)
2942 {
2943 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2944 must be put into the modrm byte). Now, we make the modrm and
2945 index base bytes based on all the info we've collected. */
29b0f896
AM
2946
2947 default_seg = build_modrm_byte ();
2948 }
2949 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2950 {
2951 if (i.tm.base_opcode == POP_SEG_SHORT
2952 && i.op[0].regs->reg_num == 1)
2953 {
2954 as_bad (_("you can't `pop %%cs'"));
2955 return 0;
2956 }
2957 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2958 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2959 i.rex |= REX_EXTZ;
2960 }
2961 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2962 {
2963 default_seg = &ds;
2964 }
2965 else if ((i.tm.opcode_modifier & IsString) != 0)
2966 {
2967 /* For the string instructions that allow a segment override
2968 on one of their operands, the default segment is ds. */
2969 default_seg = &ds;
2970 }
2971
30123838
JB
2972 if ((i.tm.base_opcode == 0x8d /* lea */
2973 || (i.tm.cpu_flags & CpuSVME))
2974 && i.seg[0] && !quiet_warnings)
2975 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
2976
2977 /* If a segment was explicitly specified, and the specified segment
2978 is not the default, use an opcode prefix to select it. If we
2979 never figured out what the default segment is, then default_seg
2980 will be zero at this point, and the specified segment prefix will
2981 always be used. */
29b0f896
AM
2982 if ((i.seg[0]) && (i.seg[0] != default_seg))
2983 {
2984 if (!add_prefix (i.seg[0]->seg_prefix))
2985 return 0;
2986 }
2987 return 1;
2988}
2989
2990static const seg_entry *
2991build_modrm_byte ()
2992{
2993 const seg_entry *default_seg = 0;
2994
2995 /* i.reg_operands MUST be the number of real register operands;
2996 implicit registers do not count. */
2997 if (i.reg_operands == 2)
2998 {
2999 unsigned int source, dest;
3000 source = ((i.types[0]
3001 & (Reg | RegMMX | RegXMM
3002 | SReg2 | SReg3
3003 | Control | Debug | Test))
3004 ? 0 : 1);
3005 dest = source + 1;
3006
3007 i.rm.mode = 3;
3008 /* One of the register operands will be encoded in the i.tm.reg
3009 field, the other in the combined i.tm.mode and i.tm.regmem
3010 fields. If no form of this instruction supports a memory
3011 destination operand, then we assume the source operand may
3012 sometimes be a memory operand and so we need to store the
3013 destination in the i.rm.reg field. */
3014 if ((i.tm.operand_types[dest] & AnyMem) == 0)
3015 {
3016 i.rm.reg = i.op[dest].regs->reg_num;
3017 i.rm.regmem = i.op[source].regs->reg_num;
3018 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3019 i.rex |= REX_EXTX;
3020 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3021 i.rex |= REX_EXTZ;
3022 }
3023 else
3024 {
3025 i.rm.reg = i.op[source].regs->reg_num;
3026 i.rm.regmem = i.op[dest].regs->reg_num;
3027 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3028 i.rex |= REX_EXTZ;
3029 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3030 i.rex |= REX_EXTX;
3031 }
c4a530c5
JB
3032 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
3033 {
3034 if (!((i.types[0] | i.types[1]) & Control))
3035 abort ();
3036 i.rex &= ~(REX_EXTX | REX_EXTZ);
3037 add_prefix (LOCK_PREFIX_OPCODE);
3038 }
29b0f896
AM
3039 }
3040 else
3041 { /* If it's not 2 reg operands... */
3042 if (i.mem_operands)
3043 {
3044 unsigned int fake_zero_displacement = 0;
3045 unsigned int op = ((i.types[0] & AnyMem)
3046 ? 0
3047 : (i.types[1] & AnyMem) ? 1 : 2);
3048
3049 default_seg = &ds;
3050
3051 if (i.base_reg == 0)
3052 {
3053 i.rm.mode = 0;
3054 if (!i.disp_operands)
3055 fake_zero_displacement = 1;
3056 if (i.index_reg == 0)
3057 {
3058 /* Operand is just <disp> */
20f0a1fc 3059 if (flag_code == CODE_64BIT)
29b0f896
AM
3060 {
3061 /* 64bit mode overwrites the 32bit absolute
3062 addressing by RIP relative addressing and
3063 absolute addressing is encoded by one of the
3064 redundant SIB forms. */
3065 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3066 i.sib.base = NO_BASE_REGISTER;
3067 i.sib.index = NO_INDEX_REGISTER;
20f0a1fc
NC
3068 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
3069 }
3070 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3071 {
3072 i.rm.regmem = NO_BASE_REGISTER_16;
3073 i.types[op] = Disp16;
3074 }
3075 else
3076 {
3077 i.rm.regmem = NO_BASE_REGISTER;
3078 i.types[op] = Disp32;
29b0f896
AM
3079 }
3080 }
3081 else /* !i.base_reg && i.index_reg */
3082 {
3083 i.sib.index = i.index_reg->reg_num;
3084 i.sib.base = NO_BASE_REGISTER;
3085 i.sib.scale = i.log2_scale_factor;
3086 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3087 i.types[op] &= ~Disp;
3088 if (flag_code != CODE_64BIT)
3089 i.types[op] |= Disp32; /* Must be 32 bit */
3090 else
3091 i.types[op] |= Disp32S;
3092 if ((i.index_reg->reg_flags & RegRex) != 0)
3093 i.rex |= REX_EXTY;
3094 }
3095 }
3096 /* RIP addressing for 64bit mode. */
3097 else if (i.base_reg->reg_type == BaseIndex)
3098 {
3099 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 3100 i.types[op] &= ~ Disp;
29b0f896
AM
3101 i.types[op] |= Disp32S;
3102 i.flags[op] = Operand_PCrel;
20f0a1fc
NC
3103 if (! i.disp_operands)
3104 fake_zero_displacement = 1;
29b0f896
AM
3105 }
3106 else if (i.base_reg->reg_type & Reg16)
3107 {
3108 switch (i.base_reg->reg_num)
3109 {
3110 case 3: /* (%bx) */
3111 if (i.index_reg == 0)
3112 i.rm.regmem = 7;
3113 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3114 i.rm.regmem = i.index_reg->reg_num - 6;
3115 break;
3116 case 5: /* (%bp) */
3117 default_seg = &ss;
3118 if (i.index_reg == 0)
3119 {
3120 i.rm.regmem = 6;
3121 if ((i.types[op] & Disp) == 0)
3122 {
3123 /* fake (%bp) into 0(%bp) */
3124 i.types[op] |= Disp8;
252b5132 3125 fake_zero_displacement = 1;
29b0f896
AM
3126 }
3127 }
3128 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3129 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3130 break;
3131 default: /* (%si) -> 4 or (%di) -> 5 */
3132 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3133 }
3134 i.rm.mode = mode_from_disp_size (i.types[op]);
3135 }
3136 else /* i.base_reg and 32/64 bit mode */
3137 {
3138 if (flag_code == CODE_64BIT
3139 && (i.types[op] & Disp))
20f0a1fc
NC
3140 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
3141
29b0f896
AM
3142 i.rm.regmem = i.base_reg->reg_num;
3143 if ((i.base_reg->reg_flags & RegRex) != 0)
3144 i.rex |= REX_EXTZ;
3145 i.sib.base = i.base_reg->reg_num;
3146 /* x86-64 ignores REX prefix bit here to avoid decoder
3147 complications. */
3148 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3149 {
3150 default_seg = &ss;
3151 if (i.disp_operands == 0)
3152 {
3153 fake_zero_displacement = 1;
3154 i.types[op] |= Disp8;
3155 }
3156 }
3157 else if (i.base_reg->reg_num == ESP_REG_NUM)
3158 {
3159 default_seg = &ss;
3160 }
3161 i.sib.scale = i.log2_scale_factor;
3162 if (i.index_reg == 0)
3163 {
3164 /* <disp>(%esp) becomes two byte modrm with no index
3165 register. We've already stored the code for esp
3166 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3167 Any base register besides %esp will not use the
3168 extra modrm byte. */
3169 i.sib.index = NO_INDEX_REGISTER;
3170#if !SCALE1_WHEN_NO_INDEX
3171 /* Another case where we force the second modrm byte. */
3172 if (i.log2_scale_factor)
3173 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 3174#endif
29b0f896
AM
3175 }
3176 else
3177 {
3178 i.sib.index = i.index_reg->reg_num;
3179 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3180 if ((i.index_reg->reg_flags & RegRex) != 0)
3181 i.rex |= REX_EXTY;
3182 }
67a4f2b7
AO
3183
3184 if (i.disp_operands
3185 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3186 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3187 i.rm.mode = 0;
3188 else
3189 i.rm.mode = mode_from_disp_size (i.types[op]);
29b0f896 3190 }
252b5132 3191
29b0f896
AM
3192 if (fake_zero_displacement)
3193 {
3194 /* Fakes a zero displacement assuming that i.types[op]
3195 holds the correct displacement size. */
3196 expressionS *exp;
3197
3198 assert (i.op[op].disps == 0);
3199 exp = &disp_expressions[i.disp_operands++];
3200 i.op[op].disps = exp;
3201 exp->X_op = O_constant;
3202 exp->X_add_number = 0;
3203 exp->X_add_symbol = (symbolS *) 0;
3204 exp->X_op_symbol = (symbolS *) 0;
3205 }
3206 }
252b5132 3207
29b0f896
AM
3208 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3209 (if any) based on i.tm.extension_opcode. Again, we must be
3210 careful to make sure that segment/control/debug/test/MMX
3211 registers are coded into the i.rm.reg field. */
3212 if (i.reg_operands)
3213 {
3214 unsigned int op =
3215 ((i.types[0]
3216 & (Reg | RegMMX | RegXMM
3217 | SReg2 | SReg3
3218 | Control | Debug | Test))
3219 ? 0
3220 : ((i.types[1]
3221 & (Reg | RegMMX | RegXMM
3222 | SReg2 | SReg3
3223 | Control | Debug | Test))
3224 ? 1
3225 : 2));
3226 /* If there is an extension opcode to put here, the register
3227 number must be put into the regmem field. */
3228 if (i.tm.extension_opcode != None)
3229 {
3230 i.rm.regmem = i.op[op].regs->reg_num;
3231 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3232 i.rex |= REX_EXTZ;
3233 }
3234 else
3235 {
3236 i.rm.reg = i.op[op].regs->reg_num;
3237 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3238 i.rex |= REX_EXTX;
3239 }
252b5132 3240
29b0f896
AM
3241 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3242 must set it to 3 to indicate this is a register operand
3243 in the regmem field. */
3244 if (!i.mem_operands)
3245 i.rm.mode = 3;
3246 }
252b5132 3247
29b0f896
AM
3248 /* Fill in i.rm.reg field with extension opcode (if any). */
3249 if (i.tm.extension_opcode != None)
3250 i.rm.reg = i.tm.extension_opcode;
3251 }
3252 return default_seg;
3253}
252b5132 3254
29b0f896
AM
3255static void
3256output_branch ()
3257{
3258 char *p;
3259 int code16;
3260 int prefix;
3261 relax_substateT subtype;
3262 symbolS *sym;
3263 offsetT off;
3264
3265 code16 = 0;
3266 if (flag_code == CODE_16BIT)
3267 code16 = CODE16;
3268
3269 prefix = 0;
3270 if (i.prefix[DATA_PREFIX] != 0)
252b5132 3271 {
29b0f896
AM
3272 prefix = 1;
3273 i.prefixes -= 1;
3274 code16 ^= CODE16;
252b5132 3275 }
29b0f896
AM
3276 /* Pentium4 branch hints. */
3277 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3278 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 3279 {
29b0f896
AM
3280 prefix++;
3281 i.prefixes--;
3282 }
3283 if (i.prefix[REX_PREFIX] != 0)
3284 {
3285 prefix++;
3286 i.prefixes--;
2f66722d
AM
3287 }
3288
29b0f896
AM
3289 if (i.prefixes != 0 && !intel_syntax)
3290 as_warn (_("skipping prefixes on this instruction"));
3291
3292 /* It's always a symbol; End frag & setup for relax.
3293 Make sure there is enough room in this frag for the largest
3294 instruction we may generate in md_convert_frag. This is 2
3295 bytes for the opcode and room for the prefix and largest
3296 displacement. */
3297 frag_grow (prefix + 2 + 4);
3298 /* Prefix and 1 opcode byte go in fr_fix. */
3299 p = frag_more (prefix + 1);
3300 if (i.prefix[DATA_PREFIX] != 0)
3301 *p++ = DATA_PREFIX_OPCODE;
3302 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3303 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3304 *p++ = i.prefix[SEG_PREFIX];
3305 if (i.prefix[REX_PREFIX] != 0)
3306 *p++ = i.prefix[REX_PREFIX];
3307 *p = i.tm.base_opcode;
3308
3309 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3310 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3311 else if ((cpu_arch_flags & Cpu386) != 0)
3312 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3313 else
3314 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3315 subtype |= code16;
3e73aa7c 3316
29b0f896
AM
3317 sym = i.op[0].disps->X_add_symbol;
3318 off = i.op[0].disps->X_add_number;
3e73aa7c 3319
29b0f896
AM
3320 if (i.op[0].disps->X_op != O_constant
3321 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3322 {
29b0f896
AM
3323 /* Handle complex expressions. */
3324 sym = make_expr_symbol (i.op[0].disps);
3325 off = 0;
3326 }
3e73aa7c 3327
29b0f896
AM
3328 /* 1 possible extra opcode + 4 byte displacement go in var part.
3329 Pass reloc in fr_var. */
3330 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3331}
3e73aa7c 3332
29b0f896
AM
3333static void
3334output_jump ()
3335{
3336 char *p;
3337 int size;
3e02c1cc 3338 fixS *fixP;
29b0f896
AM
3339
3340 if (i.tm.opcode_modifier & JumpByte)
3341 {
3342 /* This is a loop or jecxz type instruction. */
3343 size = 1;
3344 if (i.prefix[ADDR_PREFIX] != 0)
3345 {
3346 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3347 i.prefixes -= 1;
3348 }
3349 /* Pentium4 branch hints. */
3350 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3351 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3352 {
3353 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3354 i.prefixes--;
3e73aa7c
JH
3355 }
3356 }
29b0f896
AM
3357 else
3358 {
3359 int code16;
3e73aa7c 3360
29b0f896
AM
3361 code16 = 0;
3362 if (flag_code == CODE_16BIT)
3363 code16 = CODE16;
3e73aa7c 3364
29b0f896
AM
3365 if (i.prefix[DATA_PREFIX] != 0)
3366 {
3367 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3368 i.prefixes -= 1;
3369 code16 ^= CODE16;
3370 }
252b5132 3371
29b0f896
AM
3372 size = 4;
3373 if (code16)
3374 size = 2;
3375 }
9fcc94b6 3376
29b0f896
AM
3377 if (i.prefix[REX_PREFIX] != 0)
3378 {
3379 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3380 i.prefixes -= 1;
3381 }
252b5132 3382
29b0f896
AM
3383 if (i.prefixes != 0 && !intel_syntax)
3384 as_warn (_("skipping prefixes on this instruction"));
e0890092 3385
29b0f896
AM
3386 p = frag_more (1 + size);
3387 *p++ = i.tm.base_opcode;
e0890092 3388
3e02c1cc
AM
3389 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3390 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3391
3392 /* All jumps handled here are signed, but don't use a signed limit
3393 check for 32 and 16 bit jumps as we want to allow wrap around at
3394 4G and 64k respectively. */
3395 if (size == 1)
3396 fixP->fx_signed = 1;
29b0f896 3397}
e0890092 3398
29b0f896
AM
3399static void
3400output_interseg_jump ()
3401{
3402 char *p;
3403 int size;
3404 int prefix;
3405 int code16;
252b5132 3406
29b0f896
AM
3407 code16 = 0;
3408 if (flag_code == CODE_16BIT)
3409 code16 = CODE16;
a217f122 3410
29b0f896
AM
3411 prefix = 0;
3412 if (i.prefix[DATA_PREFIX] != 0)
3413 {
3414 prefix = 1;
3415 i.prefixes -= 1;
3416 code16 ^= CODE16;
3417 }
3418 if (i.prefix[REX_PREFIX] != 0)
3419 {
3420 prefix++;
3421 i.prefixes -= 1;
3422 }
252b5132 3423
29b0f896
AM
3424 size = 4;
3425 if (code16)
3426 size = 2;
252b5132 3427
29b0f896
AM
3428 if (i.prefixes != 0 && !intel_syntax)
3429 as_warn (_("skipping prefixes on this instruction"));
252b5132 3430
29b0f896
AM
3431 /* 1 opcode; 2 segment; offset */
3432 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3433
29b0f896
AM
3434 if (i.prefix[DATA_PREFIX] != 0)
3435 *p++ = DATA_PREFIX_OPCODE;
252b5132 3436
29b0f896
AM
3437 if (i.prefix[REX_PREFIX] != 0)
3438 *p++ = i.prefix[REX_PREFIX];
252b5132 3439
29b0f896
AM
3440 *p++ = i.tm.base_opcode;
3441 if (i.op[1].imms->X_op == O_constant)
3442 {
3443 offsetT n = i.op[1].imms->X_add_number;
252b5132 3444
29b0f896
AM
3445 if (size == 2
3446 && !fits_in_unsigned_word (n)
3447 && !fits_in_signed_word (n))
3448 {
3449 as_bad (_("16-bit jump out of range"));
3450 return;
3451 }
3452 md_number_to_chars (p, n, size);
3453 }
3454 else
3455 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3456 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3457 if (i.op[0].imms->X_op != O_constant)
3458 as_bad (_("can't handle non absolute segment in `%s'"),
3459 i.tm.name);
3460 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3461}
a217f122 3462
29b0f896
AM
3463static void
3464output_insn ()
3465{
2bbd9c25
JJ
3466 fragS *insn_start_frag;
3467 offsetT insn_start_off;
3468
29b0f896
AM
3469 /* Tie dwarf2 debug info to the address at the start of the insn.
3470 We can't do this after the insn has been output as the current
3471 frag may have been closed off. eg. by frag_var. */
3472 dwarf2_emit_insn (0);
3473
2bbd9c25
JJ
3474 insn_start_frag = frag_now;
3475 insn_start_off = frag_now_fix ();
3476
29b0f896
AM
3477 /* Output jumps. */
3478 if (i.tm.opcode_modifier & Jump)
3479 output_branch ();
3480 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3481 output_jump ();
3482 else if (i.tm.opcode_modifier & JumpInterSegment)
3483 output_interseg_jump ();
3484 else
3485 {
3486 /* Output normal instructions here. */
3487 char *p;
3488 unsigned char *q;
331d2d0d 3489 unsigned int prefix;
252b5132 3490
331d2d0d
L
3491 /* All opcodes on i386 have either 1 or 2 bytes. Merom New
3492 Instructions have 3 bytes. We may use one more higher byte
3493 to specify a prefix the instruction requires. */
3494 if ((i.tm.cpu_flags & CpuMNI) != 0)
bc4bd9ab 3495 {
331d2d0d
L
3496 if (i.tm.base_opcode & 0xff000000)
3497 {
3498 prefix = (i.tm.base_opcode >> 24) & 0xff;
3499 goto check_prefix;
3500 }
3501 }
3502 else if ((i.tm.base_opcode & 0xff0000) != 0)
3503 {
3504 prefix = (i.tm.base_opcode >> 16) & 0xff;
bc4bd9ab
MK
3505 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3506 {
331d2d0d 3507check_prefix:
bc4bd9ab
MK
3508 if (prefix != REPE_PREFIX_OPCODE
3509 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3510 add_prefix (prefix);
3511 }
3512 else
331d2d0d 3513 add_prefix (prefix);
0f10071e 3514 }
252b5132 3515
29b0f896
AM
3516 /* The prefix bytes. */
3517 for (q = i.prefix;
3518 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3519 q++)
3520 {
3521 if (*q)
3522 {
3523 p = frag_more (1);
3524 md_number_to_chars (p, (valueT) *q, 1);
3525 }
3526 }
252b5132 3527
29b0f896
AM
3528 /* Now the opcode; be careful about word order here! */
3529 if (fits_in_unsigned_byte (i.tm.base_opcode))
3530 {
3531 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3532 }
3533 else
3534 {
331d2d0d
L
3535 if ((i.tm.cpu_flags & CpuMNI) != 0)
3536 {
3537 p = frag_more (3);
3538 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3539 }
3540 else
3541 p = frag_more (2);
0f10071e 3542
29b0f896
AM
3543 /* Put out high byte first: can't use md_number_to_chars! */
3544 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3545 *p = i.tm.base_opcode & 0xff;
3546 }
3e73aa7c 3547
29b0f896
AM
3548 /* Now the modrm byte and sib byte (if present). */
3549 if (i.tm.opcode_modifier & Modrm)
3550 {
3551 p = frag_more (1);
3552 md_number_to_chars (p,
3553 (valueT) (i.rm.regmem << 0
3554 | i.rm.reg << 3
3555 | i.rm.mode << 6),
3556 1);
3557 /* If i.rm.regmem == ESP (4)
3558 && i.rm.mode != (Register mode)
3559 && not 16 bit
3560 ==> need second modrm byte. */
3561 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3562 && i.rm.mode != 3
3563 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3564 {
3565 p = frag_more (1);
3566 md_number_to_chars (p,
3567 (valueT) (i.sib.base << 0
3568 | i.sib.index << 3
3569 | i.sib.scale << 6),
3570 1);
3571 }
3572 }
3e73aa7c 3573
29b0f896 3574 if (i.disp_operands)
2bbd9c25 3575 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3576
29b0f896 3577 if (i.imm_operands)
2bbd9c25 3578 output_imm (insn_start_frag, insn_start_off);
29b0f896 3579 }
252b5132 3580
29b0f896
AM
3581#ifdef DEBUG386
3582 if (flag_debug)
3583 {
7b81dfbb 3584 pi ("" /*line*/, &i);
29b0f896
AM
3585 }
3586#endif /* DEBUG386 */
3587}
252b5132 3588
29b0f896 3589static void
2bbd9c25
JJ
3590output_disp (insn_start_frag, insn_start_off)
3591 fragS *insn_start_frag;
3592 offsetT insn_start_off;
29b0f896
AM
3593{
3594 char *p;
3595 unsigned int n;
252b5132 3596
29b0f896
AM
3597 for (n = 0; n < i.operands; n++)
3598 {
3599 if (i.types[n] & Disp)
3600 {
3601 if (i.op[n].disps->X_op == O_constant)
3602 {
3603 int size;
3604 offsetT val;
252b5132 3605
29b0f896
AM
3606 size = 4;
3607 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3608 {
3609 size = 2;
3610 if (i.types[n] & Disp8)
3611 size = 1;
3612 if (i.types[n] & Disp64)
3613 size = 8;
3614 }
3615 val = offset_in_range (i.op[n].disps->X_add_number,
3616 size);
3617 p = frag_more (size);
3618 md_number_to_chars (p, val, size);
3619 }
3620 else
3621 {
f86103b7 3622 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3623 int size = 4;
3624 int sign = 0;
3625 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3626
3627 /* The PC relative address is computed relative
3628 to the instruction boundary, so in case immediate
3629 fields follows, we need to adjust the value. */
3630 if (pcrel && i.imm_operands)
3631 {
3632 int imm_size = 4;
3633 unsigned int n1;
252b5132 3634
29b0f896
AM
3635 for (n1 = 0; n1 < i.operands; n1++)
3636 if (i.types[n1] & Imm)
252b5132 3637 {
29b0f896 3638 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3639 {
29b0f896
AM
3640 imm_size = 2;
3641 if (i.types[n1] & (Imm8 | Imm8S))
3642 imm_size = 1;
3643 if (i.types[n1] & Imm64)
3644 imm_size = 8;
252b5132 3645 }
29b0f896 3646 break;
252b5132 3647 }
29b0f896
AM
3648 /* We should find the immediate. */
3649 if (n1 == i.operands)
3650 abort ();
3651 i.op[n].disps->X_add_number -= imm_size;
3652 }
520dc8e8 3653
29b0f896
AM
3654 if (i.types[n] & Disp32S)
3655 sign = 1;
3e73aa7c 3656
29b0f896
AM
3657 if (i.types[n] & (Disp16 | Disp64))
3658 {
3659 size = 2;
3660 if (i.types[n] & Disp64)
3661 size = 8;
3662 }
520dc8e8 3663
29b0f896 3664 p = frag_more (size);
2bbd9c25 3665 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 3666 if (GOT_symbol
2bbd9c25 3667 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 3668 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
3669 || reloc_type == BFD_RELOC_X86_64_32S
3670 || (reloc_type == BFD_RELOC_64
3671 && object_64bit))
d6ab8113
JB
3672 && (i.op[n].disps->X_op == O_symbol
3673 || (i.op[n].disps->X_op == O_add
3674 && ((symbol_get_value_expression
3675 (i.op[n].disps->X_op_symbol)->X_op)
3676 == O_subtract))))
3677 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
3678 {
3679 offsetT add;
3680
3681 if (insn_start_frag == frag_now)
3682 add = (p - frag_now->fr_literal) - insn_start_off;
3683 else
3684 {
3685 fragS *fr;
3686
3687 add = insn_start_frag->fr_fix - insn_start_off;
3688 for (fr = insn_start_frag->fr_next;
3689 fr && fr != frag_now; fr = fr->fr_next)
3690 add += fr->fr_fix;
3691 add += p - frag_now->fr_literal;
3692 }
3693
4fa24527 3694 if (!object_64bit)
7b81dfbb
AJ
3695 {
3696 reloc_type = BFD_RELOC_386_GOTPC;
3697 i.op[n].imms->X_add_number += add;
3698 }
3699 else if (reloc_type == BFD_RELOC_64)
3700 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 3701 else
7b81dfbb
AJ
3702 /* Don't do the adjustment for x86-64, as there
3703 the pcrel addressing is relative to the _next_
3704 insn, and that is taken care of in other code. */
d6ab8113 3705 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 3706 }
062cd5e7 3707 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3708 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3709 }
3710 }
3711 }
3712}
252b5132 3713
29b0f896 3714static void
2bbd9c25
JJ
3715output_imm (insn_start_frag, insn_start_off)
3716 fragS *insn_start_frag;
3717 offsetT insn_start_off;
29b0f896
AM
3718{
3719 char *p;
3720 unsigned int n;
252b5132 3721
29b0f896
AM
3722 for (n = 0; n < i.operands; n++)
3723 {
3724 if (i.types[n] & Imm)
3725 {
3726 if (i.op[n].imms->X_op == O_constant)
3727 {
3728 int size;
3729 offsetT val;
b4cac588 3730
29b0f896
AM
3731 size = 4;
3732 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3733 {
3734 size = 2;
3735 if (i.types[n] & (Imm8 | Imm8S))
3736 size = 1;
3737 else if (i.types[n] & Imm64)
3738 size = 8;
3739 }
3740 val = offset_in_range (i.op[n].imms->X_add_number,
3741 size);
3742 p = frag_more (size);
3743 md_number_to_chars (p, val, size);
3744 }
3745 else
3746 {
3747 /* Not absolute_section.
3748 Need a 32-bit fixup (don't support 8bit
3749 non-absolute imms). Try to support other
3750 sizes ... */
f86103b7 3751 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3752 int size = 4;
3753 int sign = 0;
3754
3755 if ((i.types[n] & (Imm32S))
a7d61044
JB
3756 && (i.suffix == QWORD_MNEM_SUFFIX
3757 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
29b0f896
AM
3758 sign = 1;
3759 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3760 {
3761 size = 2;
3762 if (i.types[n] & (Imm8 | Imm8S))
3763 size = 1;
3764 if (i.types[n] & Imm64)
3765 size = 8;
3766 }
520dc8e8 3767
29b0f896
AM
3768 p = frag_more (size);
3769 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 3770
2bbd9c25
JJ
3771 /* This is tough to explain. We end up with this one if we
3772 * have operands that look like
3773 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3774 * obtain the absolute address of the GOT, and it is strongly
3775 * preferable from a performance point of view to avoid using
3776 * a runtime relocation for this. The actual sequence of
3777 * instructions often look something like:
3778 *
3779 * call .L66
3780 * .L66:
3781 * popl %ebx
3782 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3783 *
3784 * The call and pop essentially return the absolute address
3785 * of the label .L66 and store it in %ebx. The linker itself
3786 * will ultimately change the first operand of the addl so
3787 * that %ebx points to the GOT, but to keep things simple, the
3788 * .o file must have this operand set so that it generates not
3789 * the absolute address of .L66, but the absolute address of
3790 * itself. This allows the linker itself simply treat a GOTPC
3791 * relocation as asking for a pcrel offset to the GOT to be
3792 * added in, and the addend of the relocation is stored in the
3793 * operand field for the instruction itself.
3794 *
3795 * Our job here is to fix the operand so that it would add
3796 * the correct offset so that %ebx would point to itself. The
3797 * thing that is tricky is that .-.L66 will point to the
3798 * beginning of the instruction, so we need to further modify
3799 * the operand so that it will point to itself. There are
3800 * other cases where you have something like:
3801 *
3802 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3803 *
3804 * and here no correction would be required. Internally in
3805 * the assembler we treat operands of this form as not being
3806 * pcrel since the '.' is explicitly mentioned, and I wonder
3807 * whether it would simplify matters to do it this way. Who
3808 * knows. In earlier versions of the PIC patches, the
3809 * pcrel_adjust field was used to store the correction, but
3810 * since the expression is not pcrel, I felt it would be
3811 * confusing to do it this way. */
3812
d6ab8113 3813 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
3814 || reloc_type == BFD_RELOC_X86_64_32S
3815 || reloc_type == BFD_RELOC_64)
29b0f896
AM
3816 && GOT_symbol
3817 && GOT_symbol == i.op[n].imms->X_add_symbol
3818 && (i.op[n].imms->X_op == O_symbol
3819 || (i.op[n].imms->X_op == O_add
3820 && ((symbol_get_value_expression
3821 (i.op[n].imms->X_op_symbol)->X_op)
3822 == O_subtract))))
3823 {
2bbd9c25
JJ
3824 offsetT add;
3825
3826 if (insn_start_frag == frag_now)
3827 add = (p - frag_now->fr_literal) - insn_start_off;
3828 else
3829 {
3830 fragS *fr;
3831
3832 add = insn_start_frag->fr_fix - insn_start_off;
3833 for (fr = insn_start_frag->fr_next;
3834 fr && fr != frag_now; fr = fr->fr_next)
3835 add += fr->fr_fix;
3836 add += p - frag_now->fr_literal;
3837 }
3838
4fa24527 3839 if (!object_64bit)
d6ab8113 3840 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 3841 else if (size == 4)
d6ab8113 3842 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
3843 else if (size == 8)
3844 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 3845 i.op[n].imms->X_add_number += add;
29b0f896 3846 }
29b0f896
AM
3847 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3848 i.op[n].imms, 0, reloc_type);
3849 }
3850 }
3851 }
252b5132
RH
3852}
3853\f
d182319b
JB
3854/* x86_cons_fix_new is called via the expression parsing code when a
3855 reloc is needed. We use this hook to get the correct .got reloc. */
3856static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3857static int cons_sign = -1;
3858
3859void
3860x86_cons_fix_new (fragS *frag,
3861 unsigned int off,
3862 unsigned int len,
3863 expressionS *exp)
3864{
3865 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
3866
3867 got_reloc = NO_RELOC;
3868
3869#ifdef TE_PE
3870 if (exp->X_op == O_secrel)
3871 {
3872 exp->X_op = O_symbol;
3873 r = BFD_RELOC_32_SECREL;
3874 }
3875#endif
3876
3877 fix_new_exp (frag, off, len, exp, 0, r);
3878}
3879
718ddfc0
JB
3880#if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
3881# define lex_got(reloc, adjust, types) NULL
3882#else
f3c180ae
AM
3883/* Parse operands of the form
3884 <symbol>@GOTOFF+<nnn>
3885 and similar .plt or .got references.
3886
3887 If we find one, set up the correct relocation in RELOC and copy the
3888 input string, minus the `@GOTOFF' into a malloc'd buffer for
3889 parsing by the calling routine. Return this buffer, and if ADJUST
3890 is non-null set it to the length of the string we removed from the
3891 input line. Otherwise return NULL. */
3892static char *
3956db08
JB
3893lex_got (enum bfd_reloc_code_real *reloc,
3894 int *adjust,
3895 unsigned int *types)
f3c180ae 3896{
7b81dfbb
AJ
3897 /* Some of the relocations depend on the size of what field is to
3898 be relocated. But in our callers i386_immediate and i386_displacement
3899 we don't yet know the operand size (this will be set by insn
3900 matching). Hence we record the word32 relocation here,
3901 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
3902 static const struct {
3903 const char *str;
4fa24527 3904 const enum bfd_reloc_code_real rel[2];
3956db08 3905 const unsigned int types64;
f3c180ae 3906 } gotrel[] = {
7b81dfbb 3907 { "PLTOFF", { 0, BFD_RELOC_X86_64_PLTOFF64 }, Imm64 },
4fa24527 3908 { "PLT", { BFD_RELOC_386_PLT32, BFD_RELOC_X86_64_PLT32 }, Imm32|Imm32S|Disp32 },
7b81dfbb 3909 { "GOTPLT", { 0, BFD_RELOC_X86_64_GOTPLT64 }, Imm64|Disp64 },
4fa24527
JB
3910 { "GOTOFF", { BFD_RELOC_386_GOTOFF, BFD_RELOC_X86_64_GOTOFF64 }, Imm64|Disp64 },
3911 { "GOTPCREL", { 0, BFD_RELOC_X86_64_GOTPCREL }, Imm32|Imm32S|Disp32 },
3912 { "TLSGD", { BFD_RELOC_386_TLS_GD, BFD_RELOC_X86_64_TLSGD }, Imm32|Imm32S|Disp32 },
3913 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0 }, 0 },
3914 { "TLSLD", { 0, BFD_RELOC_X86_64_TLSLD }, Imm32|Imm32S|Disp32 },
3915 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, BFD_RELOC_X86_64_GOTTPOFF }, Imm32|Imm32S|Disp32 },
3916 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, BFD_RELOC_X86_64_TPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
3917 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0 }, 0 },
3918 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, BFD_RELOC_X86_64_DTPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
3919 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0 }, 0 },
3920 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0 }, 0 },
7b81dfbb 3921 { "GOT", { BFD_RELOC_386_GOT32, BFD_RELOC_X86_64_GOT32 }, Imm32|Imm32S|Disp32|Imm64 },
67a4f2b7
AO
3922 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC, BFD_RELOC_X86_64_GOTPC32_TLSDESC }, Imm32|Imm32S|Disp32 },
3923 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL, BFD_RELOC_X86_64_TLSDESC_CALL }, Imm32|Imm32S|Disp32 }
f3c180ae
AM
3924 };
3925 char *cp;
3926 unsigned int j;
3927
718ddfc0
JB
3928 if (!IS_ELF)
3929 return NULL;
3930
f3c180ae
AM
3931 for (cp = input_line_pointer; *cp != '@'; cp++)
3932 if (is_end_of_line[(unsigned char) *cp])
3933 return NULL;
3934
3935 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3936 {
3937 int len;
3938
3939 len = strlen (gotrel[j].str);
28f81592 3940 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 3941 {
4fa24527 3942 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 3943 {
28f81592
AM
3944 int first, second;
3945 char *tmpbuf, *past_reloc;
f3c180ae 3946
4fa24527 3947 *reloc = gotrel[j].rel[object_64bit];
28f81592
AM
3948 if (adjust)
3949 *adjust = len;
f3c180ae 3950
3956db08
JB
3951 if (types)
3952 {
3953 if (flag_code != CODE_64BIT)
3954 *types = Imm32|Disp32;
3955 else
3956 *types = gotrel[j].types64;
3957 }
3958
f3c180ae
AM
3959 if (GOT_symbol == NULL)
3960 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3961
3962 /* Replace the relocation token with ' ', so that
3963 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3964
3965 /* The length of the first part of our input line. */
f3c180ae 3966 first = cp - input_line_pointer;
28f81592
AM
3967
3968 /* The second part goes from after the reloc token until
3969 (and including) an end_of_line char. Don't use strlen
3970 here as the end_of_line char may not be a NUL. */
3971 past_reloc = cp + 1 + len;
3972 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3973 ;
3974 second = cp - past_reloc;
3975
3976 /* Allocate and copy string. The trailing NUL shouldn't
3977 be necessary, but be safe. */
3978 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3979 memcpy (tmpbuf, input_line_pointer, first);
3980 tmpbuf[first] = ' ';
28f81592
AM
3981 memcpy (tmpbuf + first + 1, past_reloc, second);
3982 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3983 return tmpbuf;
3984 }
3985
4fa24527
JB
3986 as_bad (_("@%s reloc is not supported with %d-bit output format"),
3987 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
3988 return NULL;
3989 }
3990 }
3991
3992 /* Might be a symbol version string. Don't as_bad here. */
3993 return NULL;
3994}
3995
f3c180ae
AM
3996void
3997x86_cons (exp, size)
3998 expressionS *exp;
3999 int size;
4000{
4fa24527 4001 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
4002 {
4003 /* Handle @GOTOFF and the like in an expression. */
4004 char *save;
4005 char *gotfree_input_line;
4006 int adjust;
4007
4008 save = input_line_pointer;
3956db08 4009 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
4010 if (gotfree_input_line)
4011 input_line_pointer = gotfree_input_line;
4012
4013 expression (exp);
4014
4015 if (gotfree_input_line)
4016 {
4017 /* expression () has merrily parsed up to the end of line,
4018 or a comma - in the wrong buffer. Transfer how far
4019 input_line_pointer has moved to the right buffer. */
4020 input_line_pointer = (save
4021 + (input_line_pointer - gotfree_input_line)
4022 + adjust);
4023 free (gotfree_input_line);
4024 }
4025 }
4026 else
4027 expression (exp);
4028}
4029#endif
4030
d182319b 4031static void signed_cons (int size)
6482c264 4032{
d182319b
JB
4033 if (flag_code == CODE_64BIT)
4034 cons_sign = 1;
4035 cons (size);
4036 cons_sign = -1;
6482c264
NC
4037}
4038
d182319b 4039#ifdef TE_PE
6482c264
NC
4040static void
4041pe_directive_secrel (dummy)
4042 int dummy ATTRIBUTE_UNUSED;
4043{
4044 expressionS exp;
4045
4046 do
4047 {
4048 expression (&exp);
4049 if (exp.X_op == O_symbol)
4050 exp.X_op = O_secrel;
4051
4052 emit_expr (&exp, 4);
4053 }
4054 while (*input_line_pointer++ == ',');
4055
4056 input_line_pointer--;
4057 demand_empty_rest_of_line ();
4058}
6482c264
NC
4059#endif
4060
252b5132
RH
4061static int i386_immediate PARAMS ((char *));
4062
4063static int
4064i386_immediate (imm_start)
4065 char *imm_start;
4066{
4067 char *save_input_line_pointer;
f3c180ae 4068 char *gotfree_input_line;
252b5132 4069 segT exp_seg = 0;
47926f60 4070 expressionS *exp;
3956db08 4071 unsigned int types = ~0U;
252b5132
RH
4072
4073 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4074 {
d0b47220 4075 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
4076 return 0;
4077 }
4078
4079 exp = &im_expressions[i.imm_operands++];
520dc8e8 4080 i.op[this_operand].imms = exp;
252b5132
RH
4081
4082 if (is_space_char (*imm_start))
4083 ++imm_start;
4084
4085 save_input_line_pointer = input_line_pointer;
4086 input_line_pointer = imm_start;
4087
3956db08 4088 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
4089 if (gotfree_input_line)
4090 input_line_pointer = gotfree_input_line;
252b5132
RH
4091
4092 exp_seg = expression (exp);
4093
83183c0c 4094 SKIP_WHITESPACE ();
252b5132 4095 if (*input_line_pointer)
f3c180ae 4096 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
4097
4098 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
4099 if (gotfree_input_line)
4100 free (gotfree_input_line);
252b5132 4101
2daf4fd8 4102 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 4103 {
47926f60 4104 /* Missing or bad expr becomes absolute 0. */
d0b47220 4105 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 4106 imm_start);
252b5132
RH
4107 exp->X_op = O_constant;
4108 exp->X_add_number = 0;
4109 exp->X_add_symbol = (symbolS *) 0;
4110 exp->X_op_symbol = (symbolS *) 0;
252b5132 4111 }
3e73aa7c 4112 else if (exp->X_op == O_constant)
252b5132 4113 {
47926f60 4114 /* Size it properly later. */
3e73aa7c
JH
4115 i.types[this_operand] |= Imm64;
4116 /* If BFD64, sign extend val. */
4117 if (!use_rela_relocations)
4118 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4119 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 4120 }
4c63da97 4121#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 4122 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4123 && exp_seg != absolute_section
47926f60 4124 && exp_seg != text_section
24eab124
AM
4125 && exp_seg != data_section
4126 && exp_seg != bss_section
4127 && exp_seg != undefined_section
f86103b7 4128 && !bfd_is_com_section (exp_seg))
252b5132 4129 {
d0b47220 4130 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
4131 return 0;
4132 }
4133#endif
4134 else
4135 {
4136 /* This is an address. The size of the address will be
24eab124 4137 determined later, depending on destination register,
3e73aa7c
JH
4138 suffix, or the default for the section. */
4139 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3956db08 4140 i.types[this_operand] &= types;
252b5132
RH
4141 }
4142
4143 return 1;
4144}
4145
551c1ca1 4146static char *i386_scale PARAMS ((char *));
252b5132 4147
551c1ca1 4148static char *
252b5132
RH
4149i386_scale (scale)
4150 char *scale;
4151{
551c1ca1
AM
4152 offsetT val;
4153 char *save = input_line_pointer;
252b5132 4154
551c1ca1
AM
4155 input_line_pointer = scale;
4156 val = get_absolute_expression ();
4157
4158 switch (val)
252b5132 4159 {
551c1ca1 4160 case 1:
252b5132
RH
4161 i.log2_scale_factor = 0;
4162 break;
551c1ca1 4163 case 2:
252b5132
RH
4164 i.log2_scale_factor = 1;
4165 break;
551c1ca1 4166 case 4:
252b5132
RH
4167 i.log2_scale_factor = 2;
4168 break;
551c1ca1 4169 case 8:
252b5132
RH
4170 i.log2_scale_factor = 3;
4171 break;
4172 default:
a724f0f4
JB
4173 {
4174 char sep = *input_line_pointer;
4175
4176 *input_line_pointer = '\0';
4177 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4178 scale);
4179 *input_line_pointer = sep;
4180 input_line_pointer = save;
4181 return NULL;
4182 }
252b5132 4183 }
29b0f896 4184 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
4185 {
4186 as_warn (_("scale factor of %d without an index register"),
24eab124 4187 1 << i.log2_scale_factor);
252b5132
RH
4188#if SCALE1_WHEN_NO_INDEX
4189 i.log2_scale_factor = 0;
4190#endif
4191 }
551c1ca1
AM
4192 scale = input_line_pointer;
4193 input_line_pointer = save;
4194 return scale;
252b5132
RH
4195}
4196
4197static int i386_displacement PARAMS ((char *, char *));
4198
4199static int
4200i386_displacement (disp_start, disp_end)
4201 char *disp_start;
4202 char *disp_end;
4203{
29b0f896 4204 expressionS *exp;
252b5132
RH
4205 segT exp_seg = 0;
4206 char *save_input_line_pointer;
f3c180ae 4207 char *gotfree_input_line;
e05278af 4208 int bigdisp, override;
3956db08 4209 unsigned int types = Disp;
252b5132 4210
e05278af
JB
4211 if ((i.types[this_operand] & JumpAbsolute)
4212 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4213 {
4214 bigdisp = Disp32;
4215 override = (i.prefix[ADDR_PREFIX] != 0);
4216 }
4217 else
4218 {
4219 /* For PC-relative branches, the width of the displacement
4220 is dependent upon data size, not address size. */
4221 bigdisp = 0;
4222 override = (i.prefix[DATA_PREFIX] != 0);
4223 }
3e73aa7c 4224 if (flag_code == CODE_64BIT)
7ecd2f8b 4225 {
e05278af
JB
4226 if (!bigdisp)
4227 bigdisp = (override || i.suffix == WORD_MNEM_SUFFIX)
4228 ? Disp16
4229 : Disp32S | Disp32;
4230 else if (!override)
3956db08 4231 bigdisp = Disp64 | Disp32S | Disp32;
7ecd2f8b 4232 }
e05278af
JB
4233 else
4234 {
4235 if (!bigdisp)
4236 {
4237 if (!override)
4238 override = (i.suffix == (flag_code != CODE_16BIT
4239 ? WORD_MNEM_SUFFIX
4240 : LONG_MNEM_SUFFIX));
4241 bigdisp = Disp32;
4242 }
4243 if ((flag_code == CODE_16BIT) ^ override)
4244 bigdisp = Disp16;
4245 }
252b5132
RH
4246 i.types[this_operand] |= bigdisp;
4247
4248 exp = &disp_expressions[i.disp_operands];
520dc8e8 4249 i.op[this_operand].disps = exp;
252b5132
RH
4250 i.disp_operands++;
4251 save_input_line_pointer = input_line_pointer;
4252 input_line_pointer = disp_start;
4253 END_STRING_AND_SAVE (disp_end);
4254
4255#ifndef GCC_ASM_O_HACK
4256#define GCC_ASM_O_HACK 0
4257#endif
4258#if GCC_ASM_O_HACK
4259 END_STRING_AND_SAVE (disp_end + 1);
4260 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 4261 && displacement_string_end[-1] == '+')
252b5132
RH
4262 {
4263 /* This hack is to avoid a warning when using the "o"
24eab124
AM
4264 constraint within gcc asm statements.
4265 For instance:
4266
4267 #define _set_tssldt_desc(n,addr,limit,type) \
4268 __asm__ __volatile__ ( \
4269 "movw %w2,%0\n\t" \
4270 "movw %w1,2+%0\n\t" \
4271 "rorl $16,%1\n\t" \
4272 "movb %b1,4+%0\n\t" \
4273 "movb %4,5+%0\n\t" \
4274 "movb $0,6+%0\n\t" \
4275 "movb %h1,7+%0\n\t" \
4276 "rorl $16,%1" \
4277 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4278
4279 This works great except that the output assembler ends
4280 up looking a bit weird if it turns out that there is
4281 no offset. You end up producing code that looks like:
4282
4283 #APP
4284 movw $235,(%eax)
4285 movw %dx,2+(%eax)
4286 rorl $16,%edx
4287 movb %dl,4+(%eax)
4288 movb $137,5+(%eax)
4289 movb $0,6+(%eax)
4290 movb %dh,7+(%eax)
4291 rorl $16,%edx
4292 #NO_APP
4293
47926f60 4294 So here we provide the missing zero. */
24eab124
AM
4295
4296 *displacement_string_end = '0';
252b5132
RH
4297 }
4298#endif
3956db08 4299 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
4300 if (gotfree_input_line)
4301 input_line_pointer = gotfree_input_line;
252b5132 4302
24eab124 4303 exp_seg = expression (exp);
252b5132 4304
636c26b0
AM
4305 SKIP_WHITESPACE ();
4306 if (*input_line_pointer)
4307 as_bad (_("junk `%s' after expression"), input_line_pointer);
4308#if GCC_ASM_O_HACK
4309 RESTORE_END_STRING (disp_end + 1);
4310#endif
4311 RESTORE_END_STRING (disp_end);
4312 input_line_pointer = save_input_line_pointer;
636c26b0
AM
4313 if (gotfree_input_line)
4314 free (gotfree_input_line);
636c26b0 4315
24eab124
AM
4316 /* We do this to make sure that the section symbol is in
4317 the symbol table. We will ultimately change the relocation
47926f60 4318 to be relative to the beginning of the section. */
1ae12ab7 4319 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
4320 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4321 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 4322 {
636c26b0
AM
4323 if (exp->X_op != O_symbol)
4324 {
4325 as_bad (_("bad expression used with @%s"),
4326 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4327 ? "GOTPCREL"
4328 : "GOTOFF"));
4329 return 0;
4330 }
4331
e5cb08ac 4332 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
4333 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4334 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
4335 exp->X_op = O_subtract;
4336 exp->X_op_symbol = GOT_symbol;
1ae12ab7 4337 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 4338 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
4339 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4340 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 4341 else
29b0f896 4342 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 4343 }
252b5132 4344
2daf4fd8
AM
4345 if (exp->X_op == O_absent || exp->X_op == O_big)
4346 {
47926f60 4347 /* Missing or bad expr becomes absolute 0. */
d0b47220 4348 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
4349 disp_start);
4350 exp->X_op = O_constant;
4351 exp->X_add_number = 0;
4352 exp->X_add_symbol = (symbolS *) 0;
4353 exp->X_op_symbol = (symbolS *) 0;
4354 }
4355
4c63da97 4356#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 4357 if (exp->X_op != O_constant
45288df1 4358 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4359 && exp_seg != absolute_section
45288df1
AM
4360 && exp_seg != text_section
4361 && exp_seg != data_section
4362 && exp_seg != bss_section
31312f95 4363 && exp_seg != undefined_section
f86103b7 4364 && !bfd_is_com_section (exp_seg))
24eab124 4365 {
d0b47220 4366 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
4367 return 0;
4368 }
252b5132 4369#endif
3956db08
JB
4370
4371 if (!(i.types[this_operand] & ~Disp))
4372 i.types[this_operand] &= types;
4373
252b5132
RH
4374 return 1;
4375}
4376
e5cb08ac 4377static int i386_index_check PARAMS ((const char *));
252b5132 4378
eecb386c 4379/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
4380 Return 1 on success, 0 on a failure. */
4381
252b5132 4382static int
eecb386c
AM
4383i386_index_check (operand_string)
4384 const char *operand_string;
252b5132 4385{
3e73aa7c 4386 int ok;
24eab124 4387#if INFER_ADDR_PREFIX
eecb386c
AM
4388 int fudged = 0;
4389
24eab124
AM
4390 tryprefix:
4391#endif
3e73aa7c 4392 ok = 1;
30123838
JB
4393 if ((current_templates->start->cpu_flags & CpuSVME)
4394 && current_templates->end[-1].operand_types[0] == AnyMem)
4395 {
4396 /* Memory operands of SVME insns are special in that they only allow
4397 rAX as their memory address and ignore any segment override. */
4398 unsigned RegXX;
4399
4400 /* SKINIT is even more restrictive: it always requires EAX. */
4401 if (strcmp (current_templates->start->name, "skinit") == 0)
4402 RegXX = Reg32;
4403 else if (flag_code == CODE_64BIT)
4404 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4405 else
4406 RegXX = (flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4407 ? Reg16
4408 : Reg32;
4409 if (!i.base_reg
4410 || !(i.base_reg->reg_type & Acc)
4411 || !(i.base_reg->reg_type & RegXX)
4412 || i.index_reg
4413 || (i.types[0] & Disp))
4414 ok = 0;
4415 }
4416 else if (flag_code == CODE_64BIT)
20f0a1fc
NC
4417 {
4418 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4419
4420 if ((i.base_reg
4421 && ((i.base_reg->reg_type & RegXX) == 0)
4422 && (i.base_reg->reg_type != BaseIndex
4423 || i.index_reg))
4424 || (i.index_reg
4425 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4426 != (RegXX | BaseIndex))))
4427 ok = 0;
3e73aa7c
JH
4428 }
4429 else
4430 {
4431 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4432 {
4433 /* 16bit checks. */
4434 if ((i.base_reg
29b0f896
AM
4435 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4436 != (Reg16 | BaseIndex)))
3e73aa7c 4437 || (i.index_reg
29b0f896
AM
4438 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4439 != (Reg16 | BaseIndex))
4440 || !(i.base_reg
4441 && i.base_reg->reg_num < 6
4442 && i.index_reg->reg_num >= 6
4443 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4444 ok = 0;
4445 }
4446 else
e5cb08ac 4447 {
3e73aa7c
JH
4448 /* 32bit checks. */
4449 if ((i.base_reg
4450 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4451 || (i.index_reg
29b0f896
AM
4452 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4453 != (Reg32 | BaseIndex))))
e5cb08ac 4454 ok = 0;
3e73aa7c
JH
4455 }
4456 }
4457 if (!ok)
24eab124
AM
4458 {
4459#if INFER_ADDR_PREFIX
20f0a1fc 4460 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4461 {
4462 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4463 i.prefixes += 1;
b23bac36
AM
4464 /* Change the size of any displacement too. At most one of
4465 Disp16 or Disp32 is set.
4466 FIXME. There doesn't seem to be any real need for separate
4467 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4468 Removing them would probably clean up the code quite a lot. */
20f0a1fc 4469 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
29b0f896 4470 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4471 fudged = 1;
24eab124
AM
4472 goto tryprefix;
4473 }
eecb386c
AM
4474 if (fudged)
4475 as_bad (_("`%s' is not a valid base/index expression"),
4476 operand_string);
4477 else
c388dee8 4478#endif
eecb386c
AM
4479 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4480 operand_string,
3e73aa7c 4481 flag_code_names[flag_code]);
24eab124 4482 }
20f0a1fc 4483 return ok;
24eab124 4484}
252b5132 4485
252b5132 4486/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4487 on error. */
252b5132 4488
252b5132
RH
4489static int
4490i386_operand (operand_string)
4491 char *operand_string;
4492{
af6bdddf
AM
4493 const reg_entry *r;
4494 char *end_op;
24eab124 4495 char *op_string = operand_string;
252b5132 4496
24eab124 4497 if (is_space_char (*op_string))
252b5132
RH
4498 ++op_string;
4499
24eab124 4500 /* We check for an absolute prefix (differentiating,
47926f60 4501 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4502 if (*op_string == ABSOLUTE_PREFIX)
4503 {
4504 ++op_string;
4505 if (is_space_char (*op_string))
4506 ++op_string;
4507 i.types[this_operand] |= JumpAbsolute;
4508 }
252b5132 4509
47926f60 4510 /* Check if operand is a register. */
4d1bb795 4511 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 4512 {
24eab124
AM
4513 /* Check for a segment override by searching for ':' after a
4514 segment register. */
4515 op_string = end_op;
4516 if (is_space_char (*op_string))
4517 ++op_string;
4518 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4519 {
4520 switch (r->reg_num)
4521 {
4522 case 0:
4523 i.seg[i.mem_operands] = &es;
4524 break;
4525 case 1:
4526 i.seg[i.mem_operands] = &cs;
4527 break;
4528 case 2:
4529 i.seg[i.mem_operands] = &ss;
4530 break;
4531 case 3:
4532 i.seg[i.mem_operands] = &ds;
4533 break;
4534 case 4:
4535 i.seg[i.mem_operands] = &fs;
4536 break;
4537 case 5:
4538 i.seg[i.mem_operands] = &gs;
4539 break;
4540 }
252b5132 4541
24eab124 4542 /* Skip the ':' and whitespace. */
252b5132
RH
4543 ++op_string;
4544 if (is_space_char (*op_string))
24eab124 4545 ++op_string;
252b5132 4546
24eab124
AM
4547 if (!is_digit_char (*op_string)
4548 && !is_identifier_char (*op_string)
4549 && *op_string != '('
4550 && *op_string != ABSOLUTE_PREFIX)
4551 {
4552 as_bad (_("bad memory operand `%s'"), op_string);
4553 return 0;
4554 }
47926f60 4555 /* Handle case of %es:*foo. */
24eab124
AM
4556 if (*op_string == ABSOLUTE_PREFIX)
4557 {
4558 ++op_string;
4559 if (is_space_char (*op_string))
4560 ++op_string;
4561 i.types[this_operand] |= JumpAbsolute;
4562 }
4563 goto do_memory_reference;
4564 }
4565 if (*op_string)
4566 {
d0b47220 4567 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4568 return 0;
4569 }
4570 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4571 i.op[this_operand].regs = r;
24eab124
AM
4572 i.reg_operands++;
4573 }
af6bdddf
AM
4574 else if (*op_string == REGISTER_PREFIX)
4575 {
4576 as_bad (_("bad register name `%s'"), op_string);
4577 return 0;
4578 }
24eab124 4579 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4580 {
24eab124
AM
4581 ++op_string;
4582 if (i.types[this_operand] & JumpAbsolute)
4583 {
d0b47220 4584 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4585 return 0;
4586 }
4587 if (!i386_immediate (op_string))
4588 return 0;
4589 }
4590 else if (is_digit_char (*op_string)
4591 || is_identifier_char (*op_string)
e5cb08ac 4592 || *op_string == '(')
24eab124 4593 {
47926f60 4594 /* This is a memory reference of some sort. */
af6bdddf 4595 char *base_string;
252b5132 4596
47926f60 4597 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4598 char *displacement_string_start;
4599 char *displacement_string_end;
252b5132 4600
24eab124 4601 do_memory_reference:
24eab124
AM
4602 if ((i.mem_operands == 1
4603 && (current_templates->start->opcode_modifier & IsString) == 0)
4604 || i.mem_operands == 2)
4605 {
4606 as_bad (_("too many memory references for `%s'"),
4607 current_templates->start->name);
4608 return 0;
4609 }
252b5132 4610
24eab124
AM
4611 /* Check for base index form. We detect the base index form by
4612 looking for an ')' at the end of the operand, searching
4613 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4614 after the '('. */
af6bdddf 4615 base_string = op_string + strlen (op_string);
c3332e24 4616
af6bdddf
AM
4617 --base_string;
4618 if (is_space_char (*base_string))
4619 --base_string;
252b5132 4620
47926f60 4621 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4622 displacement_string_start = op_string;
4623 displacement_string_end = base_string + 1;
252b5132 4624
24eab124
AM
4625 if (*base_string == ')')
4626 {
af6bdddf 4627 char *temp_string;
24eab124
AM
4628 unsigned int parens_balanced = 1;
4629 /* We've already checked that the number of left & right ()'s are
47926f60 4630 equal, so this loop will not be infinite. */
24eab124
AM
4631 do
4632 {
4633 base_string--;
4634 if (*base_string == ')')
4635 parens_balanced++;
4636 if (*base_string == '(')
4637 parens_balanced--;
4638 }
4639 while (parens_balanced);
c3332e24 4640
af6bdddf 4641 temp_string = base_string;
c3332e24 4642
24eab124 4643 /* Skip past '(' and whitespace. */
252b5132
RH
4644 ++base_string;
4645 if (is_space_char (*base_string))
24eab124 4646 ++base_string;
252b5132 4647
af6bdddf 4648 if (*base_string == ','
4d1bb795 4649 || ((i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4650 {
af6bdddf 4651 displacement_string_end = temp_string;
252b5132 4652
af6bdddf 4653 i.types[this_operand] |= BaseIndex;
252b5132 4654
af6bdddf 4655 if (i.base_reg)
24eab124 4656 {
24eab124
AM
4657 base_string = end_op;
4658 if (is_space_char (*base_string))
4659 ++base_string;
af6bdddf
AM
4660 }
4661
4662 /* There may be an index reg or scale factor here. */
4663 if (*base_string == ',')
4664 {
4665 ++base_string;
4666 if (is_space_char (*base_string))
4667 ++base_string;
4668
4d1bb795 4669 if ((i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4670 {
af6bdddf 4671 base_string = end_op;
24eab124
AM
4672 if (is_space_char (*base_string))
4673 ++base_string;
af6bdddf
AM
4674 if (*base_string == ',')
4675 {
4676 ++base_string;
4677 if (is_space_char (*base_string))
4678 ++base_string;
4679 }
e5cb08ac 4680 else if (*base_string != ')')
af6bdddf
AM
4681 {
4682 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4683 operand_string);
4684 return 0;
4685 }
24eab124 4686 }
af6bdddf 4687 else if (*base_string == REGISTER_PREFIX)
24eab124 4688 {
af6bdddf 4689 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4690 return 0;
4691 }
252b5132 4692
47926f60 4693 /* Check for scale factor. */
551c1ca1 4694 if (*base_string != ')')
af6bdddf 4695 {
551c1ca1
AM
4696 char *end_scale = i386_scale (base_string);
4697
4698 if (!end_scale)
af6bdddf 4699 return 0;
24eab124 4700
551c1ca1 4701 base_string = end_scale;
af6bdddf
AM
4702 if (is_space_char (*base_string))
4703 ++base_string;
4704 if (*base_string != ')')
4705 {
4706 as_bad (_("expecting `)' after scale factor in `%s'"),
4707 operand_string);
4708 return 0;
4709 }
4710 }
4711 else if (!i.index_reg)
24eab124 4712 {
af6bdddf
AM
4713 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4714 *base_string);
24eab124
AM
4715 return 0;
4716 }
4717 }
af6bdddf 4718 else if (*base_string != ')')
24eab124 4719 {
af6bdddf
AM
4720 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4721 operand_string);
24eab124
AM
4722 return 0;
4723 }
c3332e24 4724 }
af6bdddf 4725 else if (*base_string == REGISTER_PREFIX)
c3332e24 4726 {
af6bdddf 4727 as_bad (_("bad register name `%s'"), base_string);
24eab124 4728 return 0;
c3332e24 4729 }
24eab124
AM
4730 }
4731
4732 /* If there's an expression beginning the operand, parse it,
4733 assuming displacement_string_start and
4734 displacement_string_end are meaningful. */
4735 if (displacement_string_start != displacement_string_end)
4736 {
4737 if (!i386_displacement (displacement_string_start,
4738 displacement_string_end))
4739 return 0;
4740 }
4741
4742 /* Special case for (%dx) while doing input/output op. */
4743 if (i.base_reg
4744 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4745 && i.index_reg == 0
4746 && i.log2_scale_factor == 0
4747 && i.seg[i.mem_operands] == 0
4748 && (i.types[this_operand] & Disp) == 0)
4749 {
4750 i.types[this_operand] = InOutPortReg;
4751 return 1;
4752 }
4753
eecb386c
AM
4754 if (i386_index_check (operand_string) == 0)
4755 return 0;
24eab124
AM
4756 i.mem_operands++;
4757 }
4758 else
ce8a8b2f
AM
4759 {
4760 /* It's not a memory operand; argh! */
24eab124
AM
4761 as_bad (_("invalid char %s beginning operand %d `%s'"),
4762 output_invalid (*op_string),
4763 this_operand + 1,
4764 op_string);
4765 return 0;
4766 }
47926f60 4767 return 1; /* Normal return. */
252b5132
RH
4768}
4769\f
ee7fcc42
AM
4770/* md_estimate_size_before_relax()
4771
4772 Called just before relax() for rs_machine_dependent frags. The x86
4773 assembler uses these frags to handle variable size jump
4774 instructions.
4775
4776 Any symbol that is now undefined will not become defined.
4777 Return the correct fr_subtype in the frag.
4778 Return the initial "guess for variable size of frag" to caller.
4779 The guess is actually the growth beyond the fixed part. Whatever
4780 we do to grow the fixed or variable part contributes to our
4781 returned value. */
4782
252b5132
RH
4783int
4784md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4785 fragS *fragP;
4786 segT segment;
252b5132 4787{
252b5132 4788 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4789 check for un-relaxable symbols. On an ELF system, we can't relax
4790 an externally visible symbol, because it may be overridden by a
4791 shared library. */
4792 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4793#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 4794 || (IS_ELF
31312f95
AM
4795 && (S_IS_EXTERNAL (fragP->fr_symbol)
4796 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4797#endif
4798 )
252b5132 4799 {
b98ef147
AM
4800 /* Symbol is undefined in this segment, or we need to keep a
4801 reloc so that weak symbols can be overridden. */
4802 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 4803 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
4804 unsigned char *opcode;
4805 int old_fr_fix;
f6af82bd 4806
ee7fcc42
AM
4807 if (fragP->fr_var != NO_RELOC)
4808 reloc_type = fragP->fr_var;
b98ef147 4809 else if (size == 2)
f6af82bd
AM
4810 reloc_type = BFD_RELOC_16_PCREL;
4811 else
4812 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4813
ee7fcc42
AM
4814 old_fr_fix = fragP->fr_fix;
4815 opcode = (unsigned char *) fragP->fr_opcode;
4816
fddf5b5b 4817 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4818 {
fddf5b5b
AM
4819 case UNCOND_JUMP:
4820 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4821 opcode[0] = 0xe9;
252b5132 4822 fragP->fr_fix += size;
062cd5e7
AS
4823 fix_new (fragP, old_fr_fix, size,
4824 fragP->fr_symbol,
4825 fragP->fr_offset, 1,
4826 reloc_type);
252b5132
RH
4827 break;
4828
fddf5b5b 4829 case COND_JUMP86:
412167cb
AM
4830 if (size == 2
4831 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4832 {
4833 /* Negate the condition, and branch past an
4834 unconditional jump. */
4835 opcode[0] ^= 1;
4836 opcode[1] = 3;
4837 /* Insert an unconditional jump. */
4838 opcode[2] = 0xe9;
4839 /* We added two extra opcode bytes, and have a two byte
4840 offset. */
4841 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4842 fix_new (fragP, old_fr_fix + 2, 2,
4843 fragP->fr_symbol,
4844 fragP->fr_offset, 1,
4845 reloc_type);
fddf5b5b
AM
4846 break;
4847 }
4848 /* Fall through. */
4849
4850 case COND_JUMP:
412167cb
AM
4851 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4852 {
3e02c1cc
AM
4853 fixS *fixP;
4854
412167cb 4855 fragP->fr_fix += 1;
3e02c1cc
AM
4856 fixP = fix_new (fragP, old_fr_fix, 1,
4857 fragP->fr_symbol,
4858 fragP->fr_offset, 1,
4859 BFD_RELOC_8_PCREL);
4860 fixP->fx_signed = 1;
412167cb
AM
4861 break;
4862 }
93c2a809 4863
24eab124 4864 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4865 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4866 opcode[1] = opcode[0] + 0x10;
f6af82bd 4867 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4868 /* We've added an opcode byte. */
4869 fragP->fr_fix += 1 + size;
062cd5e7
AS
4870 fix_new (fragP, old_fr_fix + 1, size,
4871 fragP->fr_symbol,
4872 fragP->fr_offset, 1,
4873 reloc_type);
252b5132 4874 break;
fddf5b5b
AM
4875
4876 default:
4877 BAD_CASE (fragP->fr_subtype);
4878 break;
252b5132
RH
4879 }
4880 frag_wane (fragP);
ee7fcc42 4881 return fragP->fr_fix - old_fr_fix;
252b5132 4882 }
93c2a809 4883
93c2a809
AM
4884 /* Guess size depending on current relax state. Initially the relax
4885 state will correspond to a short jump and we return 1, because
4886 the variable part of the frag (the branch offset) is one byte
4887 long. However, we can relax a section more than once and in that
4888 case we must either set fr_subtype back to the unrelaxed state,
4889 or return the value for the appropriate branch. */
4890 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4891}
4892
47926f60
KH
4893/* Called after relax() is finished.
4894
4895 In: Address of frag.
4896 fr_type == rs_machine_dependent.
4897 fr_subtype is what the address relaxed to.
4898
4899 Out: Any fixSs and constants are set up.
4900 Caller will turn frag into a ".space 0". */
4901
252b5132
RH
4902void
4903md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4904 bfd *abfd ATTRIBUTE_UNUSED;
4905 segT sec ATTRIBUTE_UNUSED;
29b0f896 4906 fragS *fragP;
252b5132 4907{
29b0f896 4908 unsigned char *opcode;
252b5132 4909 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4910 offsetT target_address;
4911 offsetT opcode_address;
252b5132 4912 unsigned int extension = 0;
847f7ad4 4913 offsetT displacement_from_opcode_start;
252b5132
RH
4914
4915 opcode = (unsigned char *) fragP->fr_opcode;
4916
47926f60 4917 /* Address we want to reach in file space. */
252b5132 4918 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4919
47926f60 4920 /* Address opcode resides at in file space. */
252b5132
RH
4921 opcode_address = fragP->fr_address + fragP->fr_fix;
4922
47926f60 4923 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4924 displacement_from_opcode_start = target_address - opcode_address;
4925
fddf5b5b 4926 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4927 {
47926f60
KH
4928 /* Don't have to change opcode. */
4929 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4930 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4931 }
4932 else
4933 {
4934 if (no_cond_jump_promotion
4935 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4936 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4937
fddf5b5b
AM
4938 switch (fragP->fr_subtype)
4939 {
4940 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4941 extension = 4; /* 1 opcode + 4 displacement */
4942 opcode[0] = 0xe9;
4943 where_to_put_displacement = &opcode[1];
4944 break;
252b5132 4945
fddf5b5b
AM
4946 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4947 extension = 2; /* 1 opcode + 2 displacement */
4948 opcode[0] = 0xe9;
4949 where_to_put_displacement = &opcode[1];
4950 break;
252b5132 4951
fddf5b5b
AM
4952 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4953 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4954 extension = 5; /* 2 opcode + 4 displacement */
4955 opcode[1] = opcode[0] + 0x10;
4956 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4957 where_to_put_displacement = &opcode[2];
4958 break;
252b5132 4959
fddf5b5b
AM
4960 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4961 extension = 3; /* 2 opcode + 2 displacement */
4962 opcode[1] = opcode[0] + 0x10;
4963 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4964 where_to_put_displacement = &opcode[2];
4965 break;
252b5132 4966
fddf5b5b
AM
4967 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4968 extension = 4;
4969 opcode[0] ^= 1;
4970 opcode[1] = 3;
4971 opcode[2] = 0xe9;
4972 where_to_put_displacement = &opcode[3];
4973 break;
4974
4975 default:
4976 BAD_CASE (fragP->fr_subtype);
4977 break;
4978 }
252b5132 4979 }
fddf5b5b 4980
7b81dfbb
AJ
4981 /* If size if less then four we are sure that the operand fits,
4982 but if it's 4, then it could be that the displacement is larger
4983 then -/+ 2GB. */
4984 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
4985 && object_64bit
4986 && ((addressT) (displacement_from_opcode_start - extension
4987 + ((addressT) 1 << 31))
4988 > (((addressT) 2 << 31) - 1)))
4989 {
4990 as_bad_where (fragP->fr_file, fragP->fr_line,
4991 _("jump target out of range"));
4992 /* Make us emit 0. */
4993 displacement_from_opcode_start = extension;
4994 }
47926f60 4995 /* Now put displacement after opcode. */
252b5132
RH
4996 md_number_to_chars ((char *) where_to_put_displacement,
4997 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4998 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4999 fragP->fr_fix += extension;
5000}
5001\f
47926f60
KH
5002/* Size of byte displacement jmp. */
5003int md_short_jump_size = 2;
5004
5005/* Size of dword displacement jmp. */
5006int md_long_jump_size = 5;
252b5132 5007
252b5132
RH
5008void
5009md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5010 char *ptr;
5011 addressT from_addr, to_addr;
ab9da554
ILT
5012 fragS *frag ATTRIBUTE_UNUSED;
5013 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 5014{
847f7ad4 5015 offsetT offset;
252b5132
RH
5016
5017 offset = to_addr - (from_addr + 2);
47926f60
KH
5018 /* Opcode for byte-disp jump. */
5019 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
5020 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5021}
5022
5023void
5024md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5025 char *ptr;
5026 addressT from_addr, to_addr;
a38cf1db
AM
5027 fragS *frag ATTRIBUTE_UNUSED;
5028 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 5029{
847f7ad4 5030 offsetT offset;
252b5132 5031
a38cf1db
AM
5032 offset = to_addr - (from_addr + 5);
5033 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5034 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
5035}
5036\f
5037/* Apply a fixup (fixS) to segment data, once it has been determined
5038 by our caller that we have all the info we need to fix it up.
5039
5040 On the 386, immediates, displacements, and data pointers are all in
5041 the same (little-endian) format, so we don't need to care about which
5042 we are handling. */
5043
94f592af 5044void
55cf6793 5045md_apply_fix (fixP, valP, seg)
47926f60
KH
5046 /* The fix we're to put in. */
5047 fixS *fixP;
47926f60 5048 /* Pointer to the value of the bits. */
c6682705 5049 valueT *valP;
47926f60
KH
5050 /* Segment fix is from. */
5051 segT seg ATTRIBUTE_UNUSED;
252b5132 5052{
94f592af 5053 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 5054 valueT value = *valP;
252b5132 5055
f86103b7 5056#if !defined (TE_Mach)
93382f6d
AM
5057 if (fixP->fx_pcrel)
5058 {
5059 switch (fixP->fx_r_type)
5060 {
5865bb77
ILT
5061 default:
5062 break;
5063
d6ab8113
JB
5064 case BFD_RELOC_64:
5065 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5066 break;
93382f6d 5067 case BFD_RELOC_32:
ae8887b5 5068 case BFD_RELOC_X86_64_32S:
93382f6d
AM
5069 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5070 break;
5071 case BFD_RELOC_16:
5072 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5073 break;
5074 case BFD_RELOC_8:
5075 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5076 break;
5077 }
5078 }
252b5132 5079
a161fe53 5080 if (fixP->fx_addsy != NULL
31312f95 5081 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 5082 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95
AM
5083 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5084 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5085 && !use_rela_relocations)
252b5132 5086 {
31312f95
AM
5087 /* This is a hack. There should be a better way to handle this.
5088 This covers for the fact that bfd_install_relocation will
5089 subtract the current location (for partial_inplace, PC relative
5090 relocations); see more below. */
252b5132 5091#ifndef OBJ_AOUT
718ddfc0 5092 if (IS_ELF
252b5132
RH
5093#ifdef TE_PE
5094 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5095#endif
5096 )
5097 value += fixP->fx_where + fixP->fx_frag->fr_address;
5098#endif
5099#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 5100 if (IS_ELF)
252b5132 5101 {
6539b54b 5102 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 5103
6539b54b 5104 if ((sym_seg == seg
2f66722d 5105 || (symbol_section_p (fixP->fx_addsy)
6539b54b 5106 && sym_seg != absolute_section))
ae6063d4 5107 && !generic_force_reloc (fixP))
2f66722d
AM
5108 {
5109 /* Yes, we add the values in twice. This is because
6539b54b
AM
5110 bfd_install_relocation subtracts them out again. I think
5111 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
5112 it. FIXME. */
5113 value += fixP->fx_where + fixP->fx_frag->fr_address;
5114 }
252b5132
RH
5115 }
5116#endif
5117#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
5118 /* For some reason, the PE format does not store a
5119 section address offset for a PC relative symbol. */
5120 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 5121 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
5122 value += md_pcrel_from (fixP);
5123#endif
5124 }
5125
5126 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 5127 and we must not disappoint it. */
252b5132 5128#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 5129 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
5130 switch (fixP->fx_r_type)
5131 {
5132 case BFD_RELOC_386_PLT32:
3e73aa7c 5133 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
5134 /* Make the jump instruction point to the address of the operand. At
5135 runtime we merely add the offset to the actual PLT entry. */
5136 value = -4;
5137 break;
31312f95 5138
13ae64f3
JJ
5139 case BFD_RELOC_386_TLS_GD:
5140 case BFD_RELOC_386_TLS_LDM:
13ae64f3 5141 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5142 case BFD_RELOC_386_TLS_IE:
5143 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 5144 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
5145 case BFD_RELOC_X86_64_TLSGD:
5146 case BFD_RELOC_X86_64_TLSLD:
5147 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 5148 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
5149 value = 0; /* Fully resolved at runtime. No addend. */
5150 /* Fallthrough */
5151 case BFD_RELOC_386_TLS_LE:
5152 case BFD_RELOC_386_TLS_LDO_32:
5153 case BFD_RELOC_386_TLS_LE_32:
5154 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 5155 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 5156 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 5157 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
5158 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5159 break;
5160
67a4f2b7
AO
5161 case BFD_RELOC_386_TLS_DESC_CALL:
5162 case BFD_RELOC_X86_64_TLSDESC_CALL:
5163 value = 0; /* Fully resolved at runtime. No addend. */
5164 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5165 fixP->fx_done = 0;
5166 return;
5167
00f7efb6
JJ
5168 case BFD_RELOC_386_GOT32:
5169 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
5170 value = 0; /* Fully resolved at runtime. No addend. */
5171 break;
47926f60
KH
5172
5173 case BFD_RELOC_VTABLE_INHERIT:
5174 case BFD_RELOC_VTABLE_ENTRY:
5175 fixP->fx_done = 0;
94f592af 5176 return;
47926f60
KH
5177
5178 default:
5179 break;
5180 }
5181#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 5182 *valP = value;
f86103b7 5183#endif /* !defined (TE_Mach) */
3e73aa7c 5184
3e73aa7c 5185 /* Are we finished with this relocation now? */
c6682705 5186 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
5187 fixP->fx_done = 1;
5188 else if (use_rela_relocations)
5189 {
5190 fixP->fx_no_overflow = 1;
062cd5e7
AS
5191 /* Remember value for tc_gen_reloc. */
5192 fixP->fx_addnumber = value;
3e73aa7c
JH
5193 value = 0;
5194 }
f86103b7 5195
94f592af 5196 md_number_to_chars (p, value, fixP->fx_size);
252b5132 5197}
252b5132 5198\f
252b5132
RH
5199#define MAX_LITTLENUMS 6
5200
47926f60
KH
5201/* Turn the string pointed to by litP into a floating point constant
5202 of type TYPE, and emit the appropriate bytes. The number of
5203 LITTLENUMS emitted is stored in *SIZEP. An error message is
5204 returned, or NULL on OK. */
5205
252b5132
RH
5206char *
5207md_atof (type, litP, sizeP)
2ab9b79e 5208 int type;
252b5132
RH
5209 char *litP;
5210 int *sizeP;
5211{
5212 int prec;
5213 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5214 LITTLENUM_TYPE *wordP;
5215 char *t;
5216
5217 switch (type)
5218 {
5219 case 'f':
5220 case 'F':
5221 prec = 2;
5222 break;
5223
5224 case 'd':
5225 case 'D':
5226 prec = 4;
5227 break;
5228
5229 case 'x':
5230 case 'X':
5231 prec = 5;
5232 break;
5233
5234 default:
5235 *sizeP = 0;
5236 return _("Bad call to md_atof ()");
5237 }
5238 t = atof_ieee (input_line_pointer, type, words);
5239 if (t)
5240 input_line_pointer = t;
5241
5242 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5243 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5244 the bigendian 386. */
5245 for (wordP = words + prec - 1; prec--;)
5246 {
5247 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5248 litP += sizeof (LITTLENUM_TYPE);
5249 }
5250 return 0;
5251}
5252\f
87c245cc 5253static char output_invalid_buf[8];
252b5132 5254
252b5132
RH
5255static char *
5256output_invalid (c)
5257 int c;
5258{
3882b010 5259 if (ISPRINT (c))
252b5132
RH
5260 sprintf (output_invalid_buf, "'%c'", c);
5261 else
5262 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
5263 return output_invalid_buf;
5264}
5265
af6bdddf 5266/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
5267
5268static const reg_entry *
4d1bb795 5269parse_real_register (char *reg_string, char **end_op)
252b5132 5270{
af6bdddf
AM
5271 char *s = reg_string;
5272 char *p;
252b5132
RH
5273 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5274 const reg_entry *r;
5275
5276 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5277 if (*s == REGISTER_PREFIX)
5278 ++s;
5279
5280 if (is_space_char (*s))
5281 ++s;
5282
5283 p = reg_name_given;
af6bdddf 5284 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
5285 {
5286 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
5287 return (const reg_entry *) NULL;
5288 s++;
252b5132
RH
5289 }
5290
6588847e
DN
5291 /* For naked regs, make sure that we are not dealing with an identifier.
5292 This prevents confusing an identifier like `eax_var' with register
5293 `eax'. */
5294 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5295 return (const reg_entry *) NULL;
5296
af6bdddf 5297 *end_op = s;
252b5132
RH
5298
5299 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5300
5f47d35b 5301 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 5302 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 5303 {
5f47d35b
AM
5304 if (is_space_char (*s))
5305 ++s;
5306 if (*s == '(')
5307 {
af6bdddf 5308 ++s;
5f47d35b
AM
5309 if (is_space_char (*s))
5310 ++s;
5311 if (*s >= '0' && *s <= '7')
5312 {
5313 r = &i386_float_regtab[*s - '0'];
af6bdddf 5314 ++s;
5f47d35b
AM
5315 if (is_space_char (*s))
5316 ++s;
5317 if (*s == ')')
5318 {
5319 *end_op = s + 1;
5320 return r;
5321 }
5f47d35b 5322 }
47926f60 5323 /* We have "%st(" then garbage. */
5f47d35b
AM
5324 return (const reg_entry *) NULL;
5325 }
5326 }
5327
1ae00879 5328 if (r != NULL
20f0a1fc 5329 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
c4a530c5 5330 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
1ae00879 5331 && flag_code != CODE_64BIT)
20f0a1fc 5332 return (const reg_entry *) NULL;
1ae00879 5333
252b5132
RH
5334 return r;
5335}
4d1bb795
JB
5336
5337/* REG_STRING starts *before* REGISTER_PREFIX. */
5338
5339static const reg_entry *
5340parse_register (char *reg_string, char **end_op)
5341{
5342 const reg_entry *r;
5343
5344 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5345 r = parse_real_register (reg_string, end_op);
5346 else
5347 r = NULL;
5348 if (!r)
5349 {
5350 char *save = input_line_pointer;
5351 char c;
5352 symbolS *symbolP;
5353
5354 input_line_pointer = reg_string;
5355 c = get_symbol_end ();
5356 symbolP = symbol_find (reg_string);
5357 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5358 {
5359 const expressionS *e = symbol_get_value_expression (symbolP);
5360
5361 know (e->X_op == O_register);
5362 know (e->X_add_number >= 0 && (valueT) e->X_add_number < ARRAY_SIZE (i386_regtab));
5363 r = i386_regtab + e->X_add_number;
5364 *end_op = input_line_pointer;
5365 }
5366 *input_line_pointer = c;
5367 input_line_pointer = save;
5368 }
5369 return r;
5370}
5371
5372int
5373i386_parse_name (char *name, expressionS *e, char *nextcharP)
5374{
5375 const reg_entry *r;
5376 char *end = input_line_pointer;
5377
5378 *end = *nextcharP;
5379 r = parse_register (name, &input_line_pointer);
5380 if (r && end <= input_line_pointer)
5381 {
5382 *nextcharP = *input_line_pointer;
5383 *input_line_pointer = 0;
5384 e->X_op = O_register;
5385 e->X_add_number = r - i386_regtab;
5386 return 1;
5387 }
5388 input_line_pointer = end;
5389 *end = 0;
5390 return 0;
5391}
5392
5393void
5394md_operand (expressionS *e)
5395{
5396 if (*input_line_pointer == REGISTER_PREFIX)
5397 {
5398 char *end;
5399 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5400
5401 if (r)
5402 {
5403 e->X_op = O_register;
5404 e->X_add_number = r - i386_regtab;
5405 input_line_pointer = end;
5406 }
5407 }
5408}
5409
252b5132 5410\f
4cc782b5 5411#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 5412const char *md_shortopts = "kVQ:sqn";
252b5132 5413#else
12b55ccc 5414const char *md_shortopts = "qn";
252b5132 5415#endif
6e0b89ee 5416
3e73aa7c 5417#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
5418#define OPTION_64 (OPTION_MD_BASE + 1)
5419#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5420
5421struct option md_longopts[] = {
3e73aa7c 5422 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 5423#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c 5424 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 5425#endif
b3b91714 5426 {"divide", no_argument, NULL, OPTION_DIVIDE},
252b5132
RH
5427 {NULL, no_argument, NULL, 0}
5428};
5429size_t md_longopts_size = sizeof (md_longopts);
5430
5431int
5432md_parse_option (c, arg)
5433 int c;
ab9da554 5434 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
5435{
5436 switch (c)
5437 {
12b55ccc
L
5438 case 'n':
5439 optimize_align_code = 0;
5440 break;
5441
a38cf1db
AM
5442 case 'q':
5443 quiet_warnings = 1;
252b5132
RH
5444 break;
5445
5446#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
5447 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5448 should be emitted or not. FIXME: Not implemented. */
5449 case 'Q':
252b5132
RH
5450 break;
5451
5452 /* -V: SVR4 argument to print version ID. */
5453 case 'V':
5454 print_version_id ();
5455 break;
5456
a38cf1db
AM
5457 /* -k: Ignore for FreeBSD compatibility. */
5458 case 'k':
252b5132 5459 break;
4cc782b5
ILT
5460
5461 case 's':
5462 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 5463 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 5464 break;
6e0b89ee 5465
3e73aa7c
JH
5466 case OPTION_64:
5467 {
5468 const char **list, **l;
5469
3e73aa7c
JH
5470 list = bfd_target_list ();
5471 for (l = list; *l != NULL; l++)
6e0b89ee
AM
5472 if (strcmp (*l, "elf64-x86-64") == 0)
5473 {
5474 default_arch = "x86_64";
5475 break;
5476 }
3e73aa7c 5477 if (*l == NULL)
6e0b89ee 5478 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
5479 free (list);
5480 }
5481 break;
5482#endif
252b5132 5483
6e0b89ee
AM
5484 case OPTION_32:
5485 default_arch = "i386";
5486 break;
5487
b3b91714
AM
5488 case OPTION_DIVIDE:
5489#ifdef SVR4_COMMENT_CHARS
5490 {
5491 char *n, *t;
5492 const char *s;
5493
5494 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
5495 t = n;
5496 for (s = i386_comment_chars; *s != '\0'; s++)
5497 if (*s != '/')
5498 *t++ = *s;
5499 *t = '\0';
5500 i386_comment_chars = n;
5501 }
5502#endif
5503 break;
5504
252b5132
RH
5505 default:
5506 return 0;
5507 }
5508 return 1;
5509}
5510
5511void
5512md_show_usage (stream)
5513 FILE *stream;
5514{
4cc782b5
ILT
5515#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5516 fprintf (stream, _("\
a38cf1db
AM
5517 -Q ignored\n\
5518 -V print assembler version number\n\
b3b91714
AM
5519 -k ignored\n"));
5520#endif
5521 fprintf (stream, _("\
12b55ccc 5522 -n Do not optimize code alignment\n\
b3b91714
AM
5523 -q quieten some warnings\n"));
5524#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5525 fprintf (stream, _("\
a38cf1db 5526 -s ignored\n"));
b3b91714
AM
5527#endif
5528#ifdef SVR4_COMMENT_CHARS
5529 fprintf (stream, _("\
5530 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
5531#else
5532 fprintf (stream, _("\
b3b91714 5533 --divide ignored\n"));
4cc782b5 5534#endif
252b5132
RH
5535}
5536
3e73aa7c
JH
5537#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5538 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5539
5540/* Pick the target format to use. */
5541
47926f60 5542const char *
252b5132
RH
5543i386_target_format ()
5544{
3e73aa7c
JH
5545 if (!strcmp (default_arch, "x86_64"))
5546 set_code_flag (CODE_64BIT);
5547 else if (!strcmp (default_arch, "i386"))
5548 set_code_flag (CODE_32BIT);
5549 else
5550 as_fatal (_("Unknown architecture"));
252b5132
RH
5551 switch (OUTPUT_FLAVOR)
5552 {
4c63da97
AM
5553#ifdef OBJ_MAYBE_AOUT
5554 case bfd_target_aout_flavour:
47926f60 5555 return AOUT_TARGET_FORMAT;
4c63da97
AM
5556#endif
5557#ifdef OBJ_MAYBE_COFF
252b5132
RH
5558 case bfd_target_coff_flavour:
5559 return "coff-i386";
4c63da97 5560#endif
3e73aa7c 5561#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5562 case bfd_target_elf_flavour:
3e73aa7c 5563 {
e5cb08ac 5564 if (flag_code == CODE_64BIT)
4fa24527
JB
5565 {
5566 object_64bit = 1;
5567 use_rela_relocations = 1;
5568 }
4ada7262 5569 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5570 }
4c63da97 5571#endif
252b5132
RH
5572 default:
5573 abort ();
5574 return NULL;
5575 }
5576}
5577
47926f60 5578#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5579
5580#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5581void i386_elf_emit_arch_note ()
5582{
718ddfc0 5583 if (IS_ELF && cpu_arch_name != NULL)
a847613f
AM
5584 {
5585 char *p;
5586 asection *seg = now_seg;
5587 subsegT subseg = now_subseg;
5588 Elf_Internal_Note i_note;
5589 Elf_External_Note e_note;
5590 asection *note_secp;
5591 int len;
5592
5593 /* Create the .note section. */
5594 note_secp = subseg_new (".note", 0);
5595 bfd_set_section_flags (stdoutput,
5596 note_secp,
5597 SEC_HAS_CONTENTS | SEC_READONLY);
5598
5599 /* Process the arch string. */
5600 len = strlen (cpu_arch_name);
5601
5602 i_note.namesz = len + 1;
5603 i_note.descsz = 0;
5604 i_note.type = NT_ARCH;
5605 p = frag_more (sizeof (e_note.namesz));
5606 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5607 p = frag_more (sizeof (e_note.descsz));
5608 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5609 p = frag_more (sizeof (e_note.type));
5610 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5611 p = frag_more (len + 1);
5612 strcpy (p, cpu_arch_name);
5613
5614 frag_align (2, 0, 0);
5615
5616 subseg_set (seg, subseg);
5617 }
5618}
5619#endif
252b5132 5620\f
252b5132
RH
5621symbolS *
5622md_undefined_symbol (name)
5623 char *name;
5624{
18dc2407
ILT
5625 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5626 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5627 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5628 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5629 {
5630 if (!GOT_symbol)
5631 {
5632 if (symbol_find (name))
5633 as_bad (_("GOT already in symbol table"));
5634 GOT_symbol = symbol_new (name, undefined_section,
5635 (valueT) 0, &zero_address_frag);
5636 };
5637 return GOT_symbol;
5638 }
252b5132
RH
5639 return 0;
5640}
5641
5642/* Round up a section size to the appropriate boundary. */
47926f60 5643
252b5132
RH
5644valueT
5645md_section_align (segment, size)
ab9da554 5646 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5647 valueT size;
5648{
4c63da97
AM
5649#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5650 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5651 {
5652 /* For a.out, force the section size to be aligned. If we don't do
5653 this, BFD will align it for us, but it will not write out the
5654 final bytes of the section. This may be a bug in BFD, but it is
5655 easier to fix it here since that is how the other a.out targets
5656 work. */
5657 int align;
5658
5659 align = bfd_get_section_alignment (stdoutput, segment);
5660 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5661 }
252b5132
RH
5662#endif
5663
5664 return size;
5665}
5666
5667/* On the i386, PC-relative offsets are relative to the start of the
5668 next instruction. That is, the address of the offset, plus its
5669 size, since the offset is always the last part of the insn. */
5670
5671long
5672md_pcrel_from (fixP)
5673 fixS *fixP;
5674{
5675 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5676}
5677
5678#ifndef I386COFF
5679
5680static void
5681s_bss (ignore)
ab9da554 5682 int ignore ATTRIBUTE_UNUSED;
252b5132 5683{
29b0f896 5684 int temp;
252b5132 5685
8a75718c
JB
5686#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5687 if (IS_ELF)
5688 obj_elf_section_change_hook ();
5689#endif
252b5132
RH
5690 temp = get_absolute_expression ();
5691 subseg_set (bss_section, (subsegT) temp);
5692 demand_empty_rest_of_line ();
5693}
5694
5695#endif
5696
252b5132
RH
5697void
5698i386_validate_fix (fixp)
5699 fixS *fixp;
5700{
5701 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5702 {
23df1078
JH
5703 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5704 {
4fa24527 5705 if (!object_64bit)
23df1078
JH
5706 abort ();
5707 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5708 }
5709 else
5710 {
4fa24527 5711 if (!object_64bit)
d6ab8113
JB
5712 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5713 else
5714 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
23df1078 5715 }
252b5132
RH
5716 fixp->fx_subsy = 0;
5717 }
5718}
5719
252b5132
RH
5720arelent *
5721tc_gen_reloc (section, fixp)
ab9da554 5722 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5723 fixS *fixp;
5724{
5725 arelent *rel;
5726 bfd_reloc_code_real_type code;
5727
5728 switch (fixp->fx_r_type)
5729 {
3e73aa7c
JH
5730 case BFD_RELOC_X86_64_PLT32:
5731 case BFD_RELOC_X86_64_GOT32:
5732 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5733 case BFD_RELOC_386_PLT32:
5734 case BFD_RELOC_386_GOT32:
5735 case BFD_RELOC_386_GOTOFF:
5736 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5737 case BFD_RELOC_386_TLS_GD:
5738 case BFD_RELOC_386_TLS_LDM:
5739 case BFD_RELOC_386_TLS_LDO_32:
5740 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5741 case BFD_RELOC_386_TLS_IE:
5742 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5743 case BFD_RELOC_386_TLS_LE_32:
5744 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
5745 case BFD_RELOC_386_TLS_GOTDESC:
5746 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
5747 case BFD_RELOC_X86_64_TLSGD:
5748 case BFD_RELOC_X86_64_TLSLD:
5749 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 5750 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
5751 case BFD_RELOC_X86_64_GOTTPOFF:
5752 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
5753 case BFD_RELOC_X86_64_TPOFF64:
5754 case BFD_RELOC_X86_64_GOTOFF64:
5755 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
5756 case BFD_RELOC_X86_64_GOT64:
5757 case BFD_RELOC_X86_64_GOTPCREL64:
5758 case BFD_RELOC_X86_64_GOTPC64:
5759 case BFD_RELOC_X86_64_GOTPLT64:
5760 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
5761 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5762 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
5763 case BFD_RELOC_RVA:
5764 case BFD_RELOC_VTABLE_ENTRY:
5765 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
5766#ifdef TE_PE
5767 case BFD_RELOC_32_SECREL:
5768#endif
252b5132
RH
5769 code = fixp->fx_r_type;
5770 break;
dbbaec26
L
5771 case BFD_RELOC_X86_64_32S:
5772 if (!fixp->fx_pcrel)
5773 {
5774 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
5775 code = fixp->fx_r_type;
5776 break;
5777 }
252b5132 5778 default:
93382f6d 5779 if (fixp->fx_pcrel)
252b5132 5780 {
93382f6d
AM
5781 switch (fixp->fx_size)
5782 {
5783 default:
b091f402
AM
5784 as_bad_where (fixp->fx_file, fixp->fx_line,
5785 _("can not do %d byte pc-relative relocation"),
5786 fixp->fx_size);
93382f6d
AM
5787 code = BFD_RELOC_32_PCREL;
5788 break;
5789 case 1: code = BFD_RELOC_8_PCREL; break;
5790 case 2: code = BFD_RELOC_16_PCREL; break;
5791 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
5792#ifdef BFD64
5793 case 8: code = BFD_RELOC_64_PCREL; break;
5794#endif
93382f6d
AM
5795 }
5796 }
5797 else
5798 {
5799 switch (fixp->fx_size)
5800 {
5801 default:
b091f402
AM
5802 as_bad_where (fixp->fx_file, fixp->fx_line,
5803 _("can not do %d byte relocation"),
5804 fixp->fx_size);
93382f6d
AM
5805 code = BFD_RELOC_32;
5806 break;
5807 case 1: code = BFD_RELOC_8; break;
5808 case 2: code = BFD_RELOC_16; break;
5809 case 4: code = BFD_RELOC_32; break;
937149dd 5810#ifdef BFD64
3e73aa7c 5811 case 8: code = BFD_RELOC_64; break;
937149dd 5812#endif
93382f6d 5813 }
252b5132
RH
5814 }
5815 break;
5816 }
252b5132 5817
d182319b
JB
5818 if ((code == BFD_RELOC_32
5819 || code == BFD_RELOC_32_PCREL
5820 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
5821 && GOT_symbol
5822 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 5823 {
4fa24527 5824 if (!object_64bit)
d6ab8113
JB
5825 code = BFD_RELOC_386_GOTPC;
5826 else
5827 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 5828 }
7b81dfbb
AJ
5829 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
5830 && GOT_symbol
5831 && fixp->fx_addsy == GOT_symbol)
5832 {
5833 code = BFD_RELOC_X86_64_GOTPC64;
5834 }
252b5132
RH
5835
5836 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5837 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5838 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5839
5840 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 5841
3e73aa7c
JH
5842 if (!use_rela_relocations)
5843 {
5844 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5845 vtable entry to be used in the relocation's section offset. */
5846 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5847 rel->address = fixp->fx_offset;
252b5132 5848
c6682705 5849 rel->addend = 0;
3e73aa7c
JH
5850 }
5851 /* Use the rela in 64bit mode. */
252b5132 5852 else
3e73aa7c 5853 {
062cd5e7
AS
5854 if (!fixp->fx_pcrel)
5855 rel->addend = fixp->fx_offset;
5856 else
5857 switch (code)
5858 {
5859 case BFD_RELOC_X86_64_PLT32:
5860 case BFD_RELOC_X86_64_GOT32:
5861 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5862 case BFD_RELOC_X86_64_TLSGD:
5863 case BFD_RELOC_X86_64_TLSLD:
5864 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
5865 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5866 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
5867 rel->addend = fixp->fx_offset - fixp->fx_size;
5868 break;
5869 default:
5870 rel->addend = (section->vma
5871 - fixp->fx_size
5872 + fixp->fx_addnumber
5873 + md_pcrel_from (fixp));
5874 break;
5875 }
3e73aa7c
JH
5876 }
5877
252b5132
RH
5878 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5879 if (rel->howto == NULL)
5880 {
5881 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5882 _("cannot represent relocation type %s"),
252b5132
RH
5883 bfd_get_reloc_code_name (code));
5884 /* Set howto to a garbage value so that we can keep going. */
5885 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5886 assert (rel->howto != NULL);
5887 }
5888
5889 return rel;
5890}
5891
64a0c779
DN
5892\f
5893/* Parse operands using Intel syntax. This implements a recursive descent
5894 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5895 Programmer's Guide.
5896
5897 FIXME: We do not recognize the full operand grammar defined in the MASM
5898 documentation. In particular, all the structure/union and
5899 high-level macro operands are missing.
5900
5901 Uppercase words are terminals, lower case words are non-terminals.
5902 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5903 bars '|' denote choices. Most grammar productions are implemented in
5904 functions called 'intel_<production>'.
5905
5906 Initial production is 'expr'.
5907
9306ca4a 5908 addOp + | -
64a0c779
DN
5909
5910 alpha [a-zA-Z]
5911
9306ca4a
JB
5912 binOp & | AND | \| | OR | ^ | XOR
5913
64a0c779
DN
5914 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5915
5916 constant digits [[ radixOverride ]]
5917
9306ca4a 5918 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
64a0c779
DN
5919
5920 digits decdigit
b77a7acd
AJ
5921 | digits decdigit
5922 | digits hexdigit
64a0c779
DN
5923
5924 decdigit [0-9]
5925
9306ca4a
JB
5926 e04 e04 addOp e05
5927 | e05
5928
5929 e05 e05 binOp e06
b77a7acd 5930 | e06
64a0c779
DN
5931
5932 e06 e06 mulOp e09
b77a7acd 5933 | e09
64a0c779
DN
5934
5935 e09 OFFSET e10
a724f0f4
JB
5936 | SHORT e10
5937 | + e10
5938 | - e10
9306ca4a
JB
5939 | ~ e10
5940 | NOT e10
64a0c779
DN
5941 | e09 PTR e10
5942 | e09 : e10
5943 | e10
5944
5945 e10 e10 [ expr ]
b77a7acd 5946 | e11
64a0c779
DN
5947
5948 e11 ( expr )
b77a7acd 5949 | [ expr ]
64a0c779
DN
5950 | constant
5951 | dataType
5952 | id
5953 | $
5954 | register
5955
a724f0f4 5956 => expr expr cmpOp e04
9306ca4a 5957 | e04
64a0c779
DN
5958
5959 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5960 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5961
5962 hexdigit a | b | c | d | e | f
b77a7acd 5963 | A | B | C | D | E | F
64a0c779
DN
5964
5965 id alpha
b77a7acd 5966 | id alpha
64a0c779
DN
5967 | id decdigit
5968
9306ca4a 5969 mulOp * | / | % | MOD | << | SHL | >> | SHR
64a0c779
DN
5970
5971 quote " | '
5972
5973 register specialRegister
b77a7acd 5974 | gpRegister
64a0c779
DN
5975 | byteRegister
5976
5977 segmentRegister CS | DS | ES | FS | GS | SS
5978
9306ca4a 5979 specialRegister CR0 | CR2 | CR3 | CR4
b77a7acd 5980 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5981 | TR3 | TR4 | TR5 | TR6 | TR7
5982
64a0c779
DN
5983 We simplify the grammar in obvious places (e.g., register parsing is
5984 done by calling parse_register) and eliminate immediate left recursion
5985 to implement a recursive-descent parser.
5986
a724f0f4
JB
5987 expr e04 expr'
5988
5989 expr' cmpOp e04 expr'
5990 | Empty
9306ca4a
JB
5991
5992 e04 e05 e04'
5993
5994 e04' addOp e05 e04'
5995 | Empty
64a0c779
DN
5996
5997 e05 e06 e05'
5998
9306ca4a 5999 e05' binOp e06 e05'
b77a7acd 6000 | Empty
64a0c779
DN
6001
6002 e06 e09 e06'
6003
6004 e06' mulOp e09 e06'
b77a7acd 6005 | Empty
64a0c779
DN
6006
6007 e09 OFFSET e10 e09'
a724f0f4
JB
6008 | SHORT e10'
6009 | + e10'
6010 | - e10'
6011 | ~ e10'
6012 | NOT e10'
b77a7acd 6013 | e10 e09'
64a0c779
DN
6014
6015 e09' PTR e10 e09'
b77a7acd 6016 | : e10 e09'
64a0c779
DN
6017 | Empty
6018
6019 e10 e11 e10'
6020
6021 e10' [ expr ] e10'
b77a7acd 6022 | Empty
64a0c779
DN
6023
6024 e11 ( expr )
b77a7acd 6025 | [ expr ]
64a0c779
DN
6026 | BYTE
6027 | WORD
6028 | DWORD
9306ca4a 6029 | FWORD
64a0c779 6030 | QWORD
9306ca4a
JB
6031 | TBYTE
6032 | OWORD
6033 | XMMWORD
64a0c779
DN
6034 | .
6035 | $
6036 | register
6037 | id
6038 | constant */
6039
6040/* Parsing structure for the intel syntax parser. Used to implement the
6041 semantic actions for the operand grammar. */
6042struct intel_parser_s
6043 {
6044 char *op_string; /* The string being parsed. */
6045 int got_a_float; /* Whether the operand is a float. */
4a1805b1 6046 int op_modifier; /* Operand modifier. */
64a0c779 6047 int is_mem; /* 1 if operand is memory reference. */
a724f0f4
JB
6048 int in_offset; /* >=1 if parsing operand of offset. */
6049 int in_bracket; /* >=1 if parsing operand in brackets. */
64a0c779
DN
6050 const reg_entry *reg; /* Last register reference found. */
6051 char *disp; /* Displacement string being built. */
a724f0f4 6052 char *next_operand; /* Resume point when splitting operands. */
64a0c779
DN
6053 };
6054
6055static struct intel_parser_s intel_parser;
6056
6057/* Token structure for parsing intel syntax. */
6058struct intel_token
6059 {
6060 int code; /* Token code. */
6061 const reg_entry *reg; /* Register entry for register tokens. */
6062 char *str; /* String representation. */
6063 };
6064
6065static struct intel_token cur_token, prev_token;
6066
50705ef4
AM
6067/* Token codes for the intel parser. Since T_SHORT is already used
6068 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
6069#define T_NIL -1
6070#define T_CONST 1
6071#define T_REG 2
6072#define T_BYTE 3
6073#define T_WORD 4
9306ca4a
JB
6074#define T_DWORD 5
6075#define T_FWORD 6
6076#define T_QWORD 7
6077#define T_TBYTE 8
6078#define T_XMMWORD 9
50705ef4 6079#undef T_SHORT
9306ca4a
JB
6080#define T_SHORT 10
6081#define T_OFFSET 11
6082#define T_PTR 12
6083#define T_ID 13
6084#define T_SHL 14
6085#define T_SHR 15
64a0c779
DN
6086
6087/* Prototypes for intel parser functions. */
6088static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
6089static void intel_get_token PARAMS ((void));
6090static void intel_putback_token PARAMS ((void));
6091static int intel_expr PARAMS ((void));
9306ca4a 6092static int intel_e04 PARAMS ((void));
cce0cbdc 6093static int intel_e05 PARAMS ((void));
cce0cbdc 6094static int intel_e06 PARAMS ((void));
cce0cbdc 6095static int intel_e09 PARAMS ((void));
a724f0f4 6096static int intel_bracket_expr PARAMS ((void));
cce0cbdc 6097static int intel_e10 PARAMS ((void));
cce0cbdc 6098static int intel_e11 PARAMS ((void));
64a0c779 6099
64a0c779
DN
6100static int
6101i386_intel_operand (operand_string, got_a_float)
6102 char *operand_string;
6103 int got_a_float;
6104{
6105 int ret;
6106 char *p;
6107
a724f0f4
JB
6108 p = intel_parser.op_string = xstrdup (operand_string);
6109 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6110
6111 for (;;)
64a0c779 6112 {
a724f0f4
JB
6113 /* Initialize token holders. */
6114 cur_token.code = prev_token.code = T_NIL;
6115 cur_token.reg = prev_token.reg = NULL;
6116 cur_token.str = prev_token.str = NULL;
6117
6118 /* Initialize parser structure. */
6119 intel_parser.got_a_float = got_a_float;
6120 intel_parser.op_modifier = 0;
6121 intel_parser.is_mem = 0;
6122 intel_parser.in_offset = 0;
6123 intel_parser.in_bracket = 0;
6124 intel_parser.reg = NULL;
6125 intel_parser.disp[0] = '\0';
6126 intel_parser.next_operand = NULL;
6127
6128 /* Read the first token and start the parser. */
6129 intel_get_token ();
6130 ret = intel_expr ();
6131
6132 if (!ret)
6133 break;
6134
9306ca4a
JB
6135 if (cur_token.code != T_NIL)
6136 {
6137 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6138 current_templates->start->name, cur_token.str);
6139 ret = 0;
6140 }
64a0c779
DN
6141 /* If we found a memory reference, hand it over to i386_displacement
6142 to fill in the rest of the operand fields. */
9306ca4a 6143 else if (intel_parser.is_mem)
64a0c779
DN
6144 {
6145 if ((i.mem_operands == 1
6146 && (current_templates->start->opcode_modifier & IsString) == 0)
6147 || i.mem_operands == 2)
6148 {
6149 as_bad (_("too many memory references for '%s'"),
6150 current_templates->start->name);
6151 ret = 0;
6152 }
6153 else
6154 {
6155 char *s = intel_parser.disp;
6156 i.mem_operands++;
6157
a724f0f4
JB
6158 if (!quiet_warnings && intel_parser.is_mem < 0)
6159 /* See the comments in intel_bracket_expr. */
6160 as_warn (_("Treating `%s' as memory reference"), operand_string);
6161
64a0c779
DN
6162 /* Add the displacement expression. */
6163 if (*s != '\0')
a4622f40
AM
6164 ret = i386_displacement (s, s + strlen (s));
6165 if (ret)
a724f0f4
JB
6166 {
6167 /* Swap base and index in 16-bit memory operands like
6168 [si+bx]. Since i386_index_check is also used in AT&T
6169 mode we have to do that here. */
6170 if (i.base_reg
6171 && i.index_reg
6172 && (i.base_reg->reg_type & Reg16)
6173 && (i.index_reg->reg_type & Reg16)
6174 && i.base_reg->reg_num >= 6
6175 && i.index_reg->reg_num < 6)
6176 {
6177 const reg_entry *base = i.index_reg;
6178
6179 i.index_reg = i.base_reg;
6180 i.base_reg = base;
6181 }
6182 ret = i386_index_check (operand_string);
6183 }
64a0c779
DN
6184 }
6185 }
6186
6187 /* Constant and OFFSET expressions are handled by i386_immediate. */
a724f0f4 6188 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
64a0c779
DN
6189 || intel_parser.reg == NULL)
6190 ret = i386_immediate (intel_parser.disp);
a724f0f4
JB
6191
6192 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6193 ret = 0;
6194 if (!ret || !intel_parser.next_operand)
6195 break;
6196 intel_parser.op_string = intel_parser.next_operand;
6197 this_operand = i.operands++;
64a0c779
DN
6198 }
6199
6200 free (p);
6201 free (intel_parser.disp);
6202
6203 return ret;
6204}
6205
a724f0f4
JB
6206#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6207
6208/* expr e04 expr'
6209
6210 expr' cmpOp e04 expr'
6211 | Empty */
64a0c779
DN
6212static int
6213intel_expr ()
6214{
a724f0f4
JB
6215 /* XXX Implement the comparison operators. */
6216 return intel_e04 ();
9306ca4a
JB
6217}
6218
a724f0f4 6219/* e04 e05 e04'
9306ca4a 6220
a724f0f4 6221 e04' addOp e05 e04'
9306ca4a
JB
6222 | Empty */
6223static int
6224intel_e04 ()
6225{
a724f0f4 6226 int nregs = -1;
9306ca4a 6227
a724f0f4 6228 for (;;)
9306ca4a 6229 {
a724f0f4
JB
6230 if (!intel_e05())
6231 return 0;
9306ca4a 6232
a724f0f4
JB
6233 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6234 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
9306ca4a 6235
a724f0f4
JB
6236 if (cur_token.code == '+')
6237 nregs = -1;
6238 else if (cur_token.code == '-')
6239 nregs = NUM_ADDRESS_REGS;
6240 else
6241 return 1;
64a0c779 6242
a724f0f4
JB
6243 strcat (intel_parser.disp, cur_token.str);
6244 intel_match_token (cur_token.code);
6245 }
64a0c779
DN
6246}
6247
64a0c779
DN
6248/* e05 e06 e05'
6249
9306ca4a 6250 e05' binOp e06 e05'
64a0c779
DN
6251 | Empty */
6252static int
6253intel_e05 ()
6254{
a724f0f4 6255 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 6256
a724f0f4 6257 for (;;)
64a0c779 6258 {
a724f0f4
JB
6259 if (!intel_e06())
6260 return 0;
6261
6262 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
6263 {
6264 char str[2];
6265
6266 str[0] = cur_token.code;
6267 str[1] = 0;
6268 strcat (intel_parser.disp, str);
6269 }
6270 else
6271 break;
9306ca4a 6272
64a0c779
DN
6273 intel_match_token (cur_token.code);
6274
a724f0f4
JB
6275 if (nregs < 0)
6276 nregs = ~nregs;
64a0c779 6277 }
a724f0f4
JB
6278 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6279 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6280 return 1;
4a1805b1 6281}
64a0c779
DN
6282
6283/* e06 e09 e06'
6284
6285 e06' mulOp e09 e06'
b77a7acd 6286 | Empty */
64a0c779
DN
6287static int
6288intel_e06 ()
6289{
a724f0f4 6290 int nregs = ~NUM_ADDRESS_REGS;
64a0c779 6291
a724f0f4 6292 for (;;)
64a0c779 6293 {
a724f0f4
JB
6294 if (!intel_e09())
6295 return 0;
9306ca4a 6296
a724f0f4
JB
6297 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
6298 {
6299 char str[2];
9306ca4a 6300
a724f0f4
JB
6301 str[0] = cur_token.code;
6302 str[1] = 0;
6303 strcat (intel_parser.disp, str);
6304 }
6305 else if (cur_token.code == T_SHL)
6306 strcat (intel_parser.disp, "<<");
6307 else if (cur_token.code == T_SHR)
6308 strcat (intel_parser.disp, ">>");
6309 else
6310 break;
9306ca4a 6311
a724f0f4 6312 intel_match_token (cur_token.code);
64a0c779 6313
a724f0f4
JB
6314 if (nregs < 0)
6315 nregs = ~nregs;
64a0c779 6316 }
a724f0f4
JB
6317 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6318 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6319 return 1;
64a0c779
DN
6320}
6321
a724f0f4
JB
6322/* e09 OFFSET e09
6323 | SHORT e09
6324 | + e09
6325 | - e09
6326 | ~ e09
6327 | NOT e09
9306ca4a
JB
6328 | e10 e09'
6329
64a0c779 6330 e09' PTR e10 e09'
b77a7acd 6331 | : e10 e09'
64a0c779
DN
6332 | Empty */
6333static int
6334intel_e09 ()
6335{
a724f0f4
JB
6336 int nregs = ~NUM_ADDRESS_REGS;
6337 int in_offset = 0;
6338
6339 for (;;)
64a0c779 6340 {
a724f0f4
JB
6341 /* Don't consume constants here. */
6342 if (cur_token.code == '+' || cur_token.code == '-')
6343 {
6344 /* Need to look one token ahead - if the next token
6345 is a constant, the current token is its sign. */
6346 int next_code;
6347
6348 intel_match_token (cur_token.code);
6349 next_code = cur_token.code;
6350 intel_putback_token ();
6351 if (next_code == T_CONST)
6352 break;
6353 }
6354
6355 /* e09 OFFSET e09 */
6356 if (cur_token.code == T_OFFSET)
6357 {
6358 if (!in_offset++)
6359 ++intel_parser.in_offset;
6360 }
6361
6362 /* e09 SHORT e09 */
6363 else if (cur_token.code == T_SHORT)
6364 intel_parser.op_modifier |= 1 << T_SHORT;
6365
6366 /* e09 + e09 */
6367 else if (cur_token.code == '+')
6368 strcat (intel_parser.disp, "+");
6369
6370 /* e09 - e09
6371 | ~ e09
6372 | NOT e09 */
6373 else if (cur_token.code == '-' || cur_token.code == '~')
6374 {
6375 char str[2];
64a0c779 6376
a724f0f4
JB
6377 if (nregs < 0)
6378 nregs = ~nregs;
6379 str[0] = cur_token.code;
6380 str[1] = 0;
6381 strcat (intel_parser.disp, str);
6382 }
6383
6384 /* e09 e10 e09' */
6385 else
6386 break;
6387
6388 intel_match_token (cur_token.code);
64a0c779
DN
6389 }
6390
a724f0f4 6391 for (;;)
9306ca4a 6392 {
a724f0f4
JB
6393 if (!intel_e10 ())
6394 return 0;
9306ca4a 6395
a724f0f4
JB
6396 /* e09' PTR e10 e09' */
6397 if (cur_token.code == T_PTR)
6398 {
6399 char suffix;
9306ca4a 6400
a724f0f4
JB
6401 if (prev_token.code == T_BYTE)
6402 suffix = BYTE_MNEM_SUFFIX;
9306ca4a 6403
a724f0f4
JB
6404 else if (prev_token.code == T_WORD)
6405 {
6406 if (current_templates->start->name[0] == 'l'
6407 && current_templates->start->name[2] == 's'
6408 && current_templates->start->name[3] == 0)
6409 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6410 else if (intel_parser.got_a_float == 2) /* "fi..." */
6411 suffix = SHORT_MNEM_SUFFIX;
6412 else
6413 suffix = WORD_MNEM_SUFFIX;
6414 }
64a0c779 6415
a724f0f4
JB
6416 else if (prev_token.code == T_DWORD)
6417 {
6418 if (current_templates->start->name[0] == 'l'
6419 && current_templates->start->name[2] == 's'
6420 && current_templates->start->name[3] == 0)
6421 suffix = WORD_MNEM_SUFFIX;
6422 else if (flag_code == CODE_16BIT
6423 && (current_templates->start->opcode_modifier
435acd52 6424 & (Jump | JumpDword)))
a724f0f4
JB
6425 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6426 else if (intel_parser.got_a_float == 1) /* "f..." */
6427 suffix = SHORT_MNEM_SUFFIX;
6428 else
6429 suffix = LONG_MNEM_SUFFIX;
6430 }
9306ca4a 6431
a724f0f4
JB
6432 else if (prev_token.code == T_FWORD)
6433 {
6434 if (current_templates->start->name[0] == 'l'
6435 && current_templates->start->name[2] == 's'
6436 && current_templates->start->name[3] == 0)
6437 suffix = LONG_MNEM_SUFFIX;
6438 else if (!intel_parser.got_a_float)
6439 {
6440 if (flag_code == CODE_16BIT)
6441 add_prefix (DATA_PREFIX_OPCODE);
6442 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6443 }
6444 else
6445 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6446 }
64a0c779 6447
a724f0f4
JB
6448 else if (prev_token.code == T_QWORD)
6449 {
6450 if (intel_parser.got_a_float == 1) /* "f..." */
6451 suffix = LONG_MNEM_SUFFIX;
6452 else
6453 suffix = QWORD_MNEM_SUFFIX;
6454 }
64a0c779 6455
a724f0f4
JB
6456 else if (prev_token.code == T_TBYTE)
6457 {
6458 if (intel_parser.got_a_float == 1)
6459 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6460 else
6461 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6462 }
9306ca4a 6463
a724f0f4 6464 else if (prev_token.code == T_XMMWORD)
9306ca4a 6465 {
a724f0f4
JB
6466 /* XXX ignored for now, but accepted since gcc uses it */
6467 suffix = 0;
9306ca4a 6468 }
64a0c779 6469
f16b83df 6470 else
a724f0f4
JB
6471 {
6472 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6473 return 0;
6474 }
6475
435acd52
JB
6476 /* Operands for jump/call using 'ptr' notation denote absolute
6477 addresses. */
6478 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
6479 i.types[this_operand] |= JumpAbsolute;
6480
a724f0f4
JB
6481 if (current_templates->start->base_opcode == 0x8d /* lea */)
6482 ;
6483 else if (!i.suffix)
6484 i.suffix = suffix;
6485 else if (i.suffix != suffix)
6486 {
6487 as_bad (_("Conflicting operand modifiers"));
6488 return 0;
6489 }
64a0c779 6490
9306ca4a
JB
6491 }
6492
a724f0f4
JB
6493 /* e09' : e10 e09' */
6494 else if (cur_token.code == ':')
9306ca4a 6495 {
a724f0f4
JB
6496 if (prev_token.code != T_REG)
6497 {
6498 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6499 segment/group identifier (which we don't have), using comma
6500 as the operand separator there is even less consistent, since
6501 there all branches only have a single operand. */
6502 if (this_operand != 0
6503 || intel_parser.in_offset
6504 || intel_parser.in_bracket
6505 || (!(current_templates->start->opcode_modifier
6506 & (Jump|JumpDword|JumpInterSegment))
6507 && !(current_templates->start->operand_types[0]
6508 & JumpAbsolute)))
6509 return intel_match_token (T_NIL);
6510 /* Remember the start of the 2nd operand and terminate 1st
6511 operand here.
6512 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6513 another expression), but it gets at least the simplest case
6514 (a plain number or symbol on the left side) right. */
6515 intel_parser.next_operand = intel_parser.op_string;
6516 *--intel_parser.op_string = '\0';
6517 return intel_match_token (':');
6518 }
9306ca4a 6519 }
64a0c779 6520
a724f0f4 6521 /* e09' Empty */
64a0c779 6522 else
a724f0f4 6523 break;
64a0c779 6524
a724f0f4
JB
6525 intel_match_token (cur_token.code);
6526
6527 }
6528
6529 if (in_offset)
6530 {
6531 --intel_parser.in_offset;
6532 if (nregs < 0)
6533 nregs = ~nregs;
6534 if (NUM_ADDRESS_REGS > nregs)
9306ca4a 6535 {
a724f0f4 6536 as_bad (_("Invalid operand to `OFFSET'"));
9306ca4a
JB
6537 return 0;
6538 }
a724f0f4
JB
6539 intel_parser.op_modifier |= 1 << T_OFFSET;
6540 }
9306ca4a 6541
a724f0f4
JB
6542 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6543 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
6544 return 1;
6545}
64a0c779 6546
a724f0f4
JB
6547static int
6548intel_bracket_expr ()
6549{
6550 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
6551 const char *start = intel_parser.op_string;
6552 int len;
6553
6554 if (i.op[this_operand].regs)
6555 return intel_match_token (T_NIL);
6556
6557 intel_match_token ('[');
6558
6559 /* Mark as a memory operand only if it's not already known to be an
6560 offset expression. If it's an offset expression, we need to keep
6561 the brace in. */
6562 if (!intel_parser.in_offset)
6563 {
6564 ++intel_parser.in_bracket;
435acd52
JB
6565
6566 /* Operands for jump/call inside brackets denote absolute addresses. */
6567 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
6568 i.types[this_operand] |= JumpAbsolute;
6569
a724f0f4
JB
6570 /* Unfortunately gas always diverged from MASM in a respect that can't
6571 be easily fixed without risking to break code sequences likely to be
6572 encountered (the testsuite even check for this): MASM doesn't consider
6573 an expression inside brackets unconditionally as a memory reference.
6574 When that is e.g. a constant, an offset expression, or the sum of the
6575 two, this is still taken as a constant load. gas, however, always
6576 treated these as memory references. As a compromise, we'll try to make
6577 offset expressions inside brackets work the MASM way (since that's
6578 less likely to be found in real world code), but make constants alone
6579 continue to work the traditional gas way. In either case, issue a
6580 warning. */
6581 intel_parser.op_modifier &= ~was_offset;
64a0c779 6582 }
a724f0f4
JB
6583 else
6584 strcat (intel_parser.disp, "[");
6585
6586 /* Add a '+' to the displacement string if necessary. */
6587 if (*intel_parser.disp != '\0'
6588 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6589 strcat (intel_parser.disp, "+");
64a0c779 6590
a724f0f4
JB
6591 if (intel_expr ()
6592 && (len = intel_parser.op_string - start - 1,
6593 intel_match_token (']')))
64a0c779 6594 {
a724f0f4
JB
6595 /* Preserve brackets when the operand is an offset expression. */
6596 if (intel_parser.in_offset)
6597 strcat (intel_parser.disp, "]");
6598 else
6599 {
6600 --intel_parser.in_bracket;
6601 if (i.base_reg || i.index_reg)
6602 intel_parser.is_mem = 1;
6603 if (!intel_parser.is_mem)
6604 {
6605 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
6606 /* Defer the warning until all of the operand was parsed. */
6607 intel_parser.is_mem = -1;
6608 else if (!quiet_warnings)
6609 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
6610 }
6611 }
6612 intel_parser.op_modifier |= was_offset;
64a0c779 6613
a724f0f4 6614 return 1;
64a0c779 6615 }
a724f0f4 6616 return 0;
64a0c779
DN
6617}
6618
6619/* e10 e11 e10'
6620
6621 e10' [ expr ] e10'
b77a7acd 6622 | Empty */
64a0c779
DN
6623static int
6624intel_e10 ()
6625{
a724f0f4
JB
6626 if (!intel_e11 ())
6627 return 0;
64a0c779 6628
a724f0f4 6629 while (cur_token.code == '[')
64a0c779 6630 {
a724f0f4 6631 if (!intel_bracket_expr ())
21d6c4af 6632 return 0;
64a0c779
DN
6633 }
6634
a724f0f4 6635 return 1;
64a0c779
DN
6636}
6637
64a0c779 6638/* e11 ( expr )
b77a7acd 6639 | [ expr ]
64a0c779
DN
6640 | BYTE
6641 | WORD
6642 | DWORD
9306ca4a 6643 | FWORD
64a0c779 6644 | QWORD
9306ca4a
JB
6645 | TBYTE
6646 | OWORD
6647 | XMMWORD
4a1805b1 6648 | $
64a0c779
DN
6649 | .
6650 | register
6651 | id
6652 | constant */
6653static int
6654intel_e11 ()
6655{
a724f0f4 6656 switch (cur_token.code)
64a0c779 6657 {
a724f0f4
JB
6658 /* e11 ( expr ) */
6659 case '(':
64a0c779
DN
6660 intel_match_token ('(');
6661 strcat (intel_parser.disp, "(");
6662
6663 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
6664 {
6665 strcat (intel_parser.disp, ")");
6666 return 1;
6667 }
a724f0f4 6668 return 0;
4a1805b1 6669
a724f0f4
JB
6670 /* e11 [ expr ] */
6671 case '[':
a724f0f4 6672 return intel_bracket_expr ();
64a0c779 6673
a724f0f4
JB
6674 /* e11 $
6675 | . */
6676 case '.':
64a0c779
DN
6677 strcat (intel_parser.disp, cur_token.str);
6678 intel_match_token (cur_token.code);
21d6c4af
DN
6679
6680 /* Mark as a memory operand only if it's not already known to be an
6681 offset expression. */
a724f0f4 6682 if (!intel_parser.in_offset)
21d6c4af 6683 intel_parser.is_mem = 1;
64a0c779
DN
6684
6685 return 1;
64a0c779 6686
a724f0f4
JB
6687 /* e11 register */
6688 case T_REG:
6689 {
6690 const reg_entry *reg = intel_parser.reg = cur_token.reg;
64a0c779 6691
a724f0f4 6692 intel_match_token (T_REG);
64a0c779 6693
a724f0f4
JB
6694 /* Check for segment change. */
6695 if (cur_token.code == ':')
6696 {
6697 if (!(reg->reg_type & (SReg2 | SReg3)))
6698 {
6699 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6700 return 0;
6701 }
6702 else if (i.seg[i.mem_operands])
6703 as_warn (_("Extra segment override ignored"));
6704 else
6705 {
6706 if (!intel_parser.in_offset)
6707 intel_parser.is_mem = 1;
6708 switch (reg->reg_num)
6709 {
6710 case 0:
6711 i.seg[i.mem_operands] = &es;
6712 break;
6713 case 1:
6714 i.seg[i.mem_operands] = &cs;
6715 break;
6716 case 2:
6717 i.seg[i.mem_operands] = &ss;
6718 break;
6719 case 3:
6720 i.seg[i.mem_operands] = &ds;
6721 break;
6722 case 4:
6723 i.seg[i.mem_operands] = &fs;
6724 break;
6725 case 5:
6726 i.seg[i.mem_operands] = &gs;
6727 break;
6728 }
6729 }
6730 }
64a0c779 6731
a724f0f4
JB
6732 /* Not a segment register. Check for register scaling. */
6733 else if (cur_token.code == '*')
6734 {
6735 if (!intel_parser.in_bracket)
6736 {
6737 as_bad (_("Register scaling only allowed in memory operands"));
6738 return 0;
6739 }
64a0c779 6740
a724f0f4
JB
6741 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
6742 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6743 else if (i.index_reg)
6744 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
64a0c779 6745
a724f0f4
JB
6746 /* What follows must be a valid scale. */
6747 intel_match_token ('*');
6748 i.index_reg = reg;
6749 i.types[this_operand] |= BaseIndex;
64a0c779 6750
a724f0f4
JB
6751 /* Set the scale after setting the register (otherwise,
6752 i386_scale will complain) */
6753 if (cur_token.code == '+' || cur_token.code == '-')
6754 {
6755 char *str, sign = cur_token.code;
6756 intel_match_token (cur_token.code);
6757 if (cur_token.code != T_CONST)
6758 {
6759 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6760 cur_token.str);
6761 return 0;
6762 }
6763 str = (char *) xmalloc (strlen (cur_token.str) + 2);
6764 strcpy (str + 1, cur_token.str);
6765 *str = sign;
6766 if (!i386_scale (str))
6767 return 0;
6768 free (str);
6769 }
6770 else if (!i386_scale (cur_token.str))
64a0c779 6771 return 0;
a724f0f4
JB
6772 intel_match_token (cur_token.code);
6773 }
64a0c779 6774
a724f0f4
JB
6775 /* No scaling. If this is a memory operand, the register is either a
6776 base register (first occurrence) or an index register (second
6777 occurrence). */
7b0441f6 6778 else if (intel_parser.in_bracket)
a724f0f4 6779 {
64a0c779 6780
a724f0f4
JB
6781 if (!i.base_reg)
6782 i.base_reg = reg;
6783 else if (!i.index_reg)
6784 i.index_reg = reg;
6785 else
6786 {
6787 as_bad (_("Too many register references in memory operand"));
6788 return 0;
6789 }
64a0c779 6790
a724f0f4
JB
6791 i.types[this_operand] |= BaseIndex;
6792 }
4a1805b1 6793
4d1bb795
JB
6794 /* It's neither base nor index. */
6795 else if (!intel_parser.in_offset && !intel_parser.is_mem)
a724f0f4
JB
6796 {
6797 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6798 i.op[this_operand].regs = reg;
6799 i.reg_operands++;
6800 }
6801 else
6802 {
6803 as_bad (_("Invalid use of register"));
6804 return 0;
6805 }
64a0c779 6806
a724f0f4
JB
6807 /* Since registers are not part of the displacement string (except
6808 when we're parsing offset operands), we may need to remove any
6809 preceding '+' from the displacement string. */
6810 if (*intel_parser.disp != '\0'
6811 && !intel_parser.in_offset)
6812 {
6813 char *s = intel_parser.disp;
6814 s += strlen (s) - 1;
6815 if (*s == '+')
6816 *s = '\0';
6817 }
4a1805b1 6818
a724f0f4
JB
6819 return 1;
6820 }
6821
6822 /* e11 BYTE
6823 | WORD
6824 | DWORD
6825 | FWORD
6826 | QWORD
6827 | TBYTE
6828 | OWORD
6829 | XMMWORD */
6830 case T_BYTE:
6831 case T_WORD:
6832 case T_DWORD:
6833 case T_FWORD:
6834 case T_QWORD:
6835 case T_TBYTE:
6836 case T_XMMWORD:
6837 intel_match_token (cur_token.code);
64a0c779 6838
a724f0f4
JB
6839 if (cur_token.code == T_PTR)
6840 return 1;
6841
6842 /* It must have been an identifier. */
6843 intel_putback_token ();
6844 cur_token.code = T_ID;
6845 /* FALLTHRU */
6846
6847 /* e11 id
6848 | constant */
6849 case T_ID:
6850 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
9306ca4a
JB
6851 {
6852 symbolS *symbolP;
6853
a724f0f4
JB
6854 /* The identifier represents a memory reference only if it's not
6855 preceded by an offset modifier and if it's not an equate. */
9306ca4a
JB
6856 symbolP = symbol_find(cur_token.str);
6857 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6858 intel_parser.is_mem = 1;
6859 }
a724f0f4 6860 /* FALLTHRU */
64a0c779 6861
a724f0f4
JB
6862 case T_CONST:
6863 case '-':
6864 case '+':
6865 {
6866 char *save_str, sign = 0;
64a0c779 6867
a724f0f4
JB
6868 /* Allow constants that start with `+' or `-'. */
6869 if (cur_token.code == '-' || cur_token.code == '+')
6870 {
6871 sign = cur_token.code;
6872 intel_match_token (cur_token.code);
6873 if (cur_token.code != T_CONST)
6874 {
6875 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6876 cur_token.str);
6877 return 0;
6878 }
6879 }
64a0c779 6880
a724f0f4
JB
6881 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
6882 strcpy (save_str + !!sign, cur_token.str);
6883 if (sign)
6884 *save_str = sign;
64a0c779 6885
a724f0f4
JB
6886 /* Get the next token to check for register scaling. */
6887 intel_match_token (cur_token.code);
64a0c779 6888
a724f0f4
JB
6889 /* Check if this constant is a scaling factor for an index register. */
6890 if (cur_token.code == '*')
6891 {
6892 if (intel_match_token ('*') && cur_token.code == T_REG)
6893 {
6894 const reg_entry *reg = cur_token.reg;
6895
6896 if (!intel_parser.in_bracket)
6897 {
6898 as_bad (_("Register scaling only allowed in memory operands"));
6899 return 0;
6900 }
6901
6902 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
6903 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6904 else if (i.index_reg)
6905 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6906
6907 /* The constant is followed by `* reg', so it must be
6908 a valid scale. */
6909 i.index_reg = reg;
6910 i.types[this_operand] |= BaseIndex;
6911
6912 /* Set the scale after setting the register (otherwise,
6913 i386_scale will complain) */
6914 if (!i386_scale (save_str))
64a0c779 6915 return 0;
a724f0f4
JB
6916 intel_match_token (T_REG);
6917
6918 /* Since registers are not part of the displacement
6919 string, we may need to remove any preceding '+' from
6920 the displacement string. */
6921 if (*intel_parser.disp != '\0')
6922 {
6923 char *s = intel_parser.disp;
6924 s += strlen (s) - 1;
6925 if (*s == '+')
6926 *s = '\0';
6927 }
6928
6929 free (save_str);
6930
6931 return 1;
6932 }
64a0c779 6933
a724f0f4
JB
6934 /* The constant was not used for register scaling. Since we have
6935 already consumed the token following `*' we now need to put it
6936 back in the stream. */
64a0c779 6937 intel_putback_token ();
a724f0f4 6938 }
64a0c779 6939
a724f0f4
JB
6940 /* Add the constant to the displacement string. */
6941 strcat (intel_parser.disp, save_str);
6942 free (save_str);
64a0c779 6943
a724f0f4
JB
6944 return 1;
6945 }
64a0c779
DN
6946 }
6947
64a0c779
DN
6948 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6949 return 0;
6950}
6951
64a0c779
DN
6952/* Match the given token against cur_token. If they match, read the next
6953 token from the operand string. */
6954static int
6955intel_match_token (code)
e5cb08ac 6956 int code;
64a0c779
DN
6957{
6958 if (cur_token.code == code)
6959 {
6960 intel_get_token ();
6961 return 1;
6962 }
6963 else
6964 {
0477af35 6965 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
6966 return 0;
6967 }
6968}
6969
64a0c779
DN
6970/* Read a new token from intel_parser.op_string and store it in cur_token. */
6971static void
6972intel_get_token ()
6973{
6974 char *end_op;
6975 const reg_entry *reg;
6976 struct intel_token new_token;
6977
6978 new_token.code = T_NIL;
6979 new_token.reg = NULL;
6980 new_token.str = NULL;
6981
4a1805b1 6982 /* Free the memory allocated to the previous token and move
64a0c779
DN
6983 cur_token to prev_token. */
6984 if (prev_token.str)
6985 free (prev_token.str);
6986
6987 prev_token = cur_token;
6988
6989 /* Skip whitespace. */
6990 while (is_space_char (*intel_parser.op_string))
6991 intel_parser.op_string++;
6992
6993 /* Return an empty token if we find nothing else on the line. */
6994 if (*intel_parser.op_string == '\0')
6995 {
6996 cur_token = new_token;
6997 return;
6998 }
6999
7000 /* The new token cannot be larger than the remainder of the operand
7001 string. */
a724f0f4 7002 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
64a0c779
DN
7003 new_token.str[0] = '\0';
7004
7005 if (strchr ("0123456789", *intel_parser.op_string))
7006 {
7007 char *p = new_token.str;
7008 char *q = intel_parser.op_string;
7009 new_token.code = T_CONST;
7010
7011 /* Allow any kind of identifier char to encompass floating point and
7012 hexadecimal numbers. */
7013 while (is_identifier_char (*q))
7014 *p++ = *q++;
7015 *p = '\0';
7016
7017 /* Recognize special symbol names [0-9][bf]. */
7018 if (strlen (intel_parser.op_string) == 2
4a1805b1 7019 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
7020 || intel_parser.op_string[1] == 'f'))
7021 new_token.code = T_ID;
7022 }
7023
4d1bb795 7024 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
64a0c779 7025 {
4d1bb795
JB
7026 size_t len = end_op - intel_parser.op_string;
7027
64a0c779
DN
7028 new_token.code = T_REG;
7029 new_token.reg = reg;
7030
4d1bb795
JB
7031 memcpy (new_token.str, intel_parser.op_string, len);
7032 new_token.str[len] = '\0';
64a0c779
DN
7033 }
7034
7035 else if (is_identifier_char (*intel_parser.op_string))
7036 {
7037 char *p = new_token.str;
7038 char *q = intel_parser.op_string;
7039
7040 /* A '.' or '$' followed by an identifier char is an identifier.
7041 Otherwise, it's operator '.' followed by an expression. */
7042 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7043 {
9306ca4a
JB
7044 new_token.code = '.';
7045 new_token.str[0] = '.';
64a0c779
DN
7046 new_token.str[1] = '\0';
7047 }
7048 else
7049 {
7050 while (is_identifier_char (*q) || *q == '@')
7051 *p++ = *q++;
7052 *p = '\0';
7053
9306ca4a
JB
7054 if (strcasecmp (new_token.str, "NOT") == 0)
7055 new_token.code = '~';
7056
7057 else if (strcasecmp (new_token.str, "MOD") == 0)
7058 new_token.code = '%';
7059
7060 else if (strcasecmp (new_token.str, "AND") == 0)
7061 new_token.code = '&';
7062
7063 else if (strcasecmp (new_token.str, "OR") == 0)
7064 new_token.code = '|';
7065
7066 else if (strcasecmp (new_token.str, "XOR") == 0)
7067 new_token.code = '^';
7068
7069 else if (strcasecmp (new_token.str, "SHL") == 0)
7070 new_token.code = T_SHL;
7071
7072 else if (strcasecmp (new_token.str, "SHR") == 0)
7073 new_token.code = T_SHR;
7074
7075 else if (strcasecmp (new_token.str, "BYTE") == 0)
64a0c779
DN
7076 new_token.code = T_BYTE;
7077
7078 else if (strcasecmp (new_token.str, "WORD") == 0)
7079 new_token.code = T_WORD;
7080
7081 else if (strcasecmp (new_token.str, "DWORD") == 0)
7082 new_token.code = T_DWORD;
7083
9306ca4a
JB
7084 else if (strcasecmp (new_token.str, "FWORD") == 0)
7085 new_token.code = T_FWORD;
7086
64a0c779
DN
7087 else if (strcasecmp (new_token.str, "QWORD") == 0)
7088 new_token.code = T_QWORD;
7089
9306ca4a
JB
7090 else if (strcasecmp (new_token.str, "TBYTE") == 0
7091 /* XXX remove (gcc still uses it) */
7092 || strcasecmp (new_token.str, "XWORD") == 0)
7093 new_token.code = T_TBYTE;
7094
7095 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7096 || strcasecmp (new_token.str, "OWORD") == 0)
7097 new_token.code = T_XMMWORD;
64a0c779
DN
7098
7099 else if (strcasecmp (new_token.str, "PTR") == 0)
7100 new_token.code = T_PTR;
7101
7102 else if (strcasecmp (new_token.str, "SHORT") == 0)
7103 new_token.code = T_SHORT;
7104
7105 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7106 {
7107 new_token.code = T_OFFSET;
7108
7109 /* ??? This is not mentioned in the MASM grammar but gcc
7110 makes use of it with -mintel-syntax. OFFSET may be
7111 followed by FLAT: */
7112 if (strncasecmp (q, " FLAT:", 6) == 0)
7113 strcat (new_token.str, " FLAT:");
7114 }
7115
7116 /* ??? This is not mentioned in the MASM grammar. */
7117 else if (strcasecmp (new_token.str, "FLAT") == 0)
a724f0f4
JB
7118 {
7119 new_token.code = T_OFFSET;
7120 if (*q == ':')
7121 strcat (new_token.str, ":");
7122 else
7123 as_bad (_("`:' expected"));
7124 }
64a0c779
DN
7125
7126 else
7127 new_token.code = T_ID;
7128 }
7129 }
7130
9306ca4a
JB
7131 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7132 {
7133 new_token.code = *intel_parser.op_string;
7134 new_token.str[0] = *intel_parser.op_string;
7135 new_token.str[1] = '\0';
7136 }
7137
7138 else if (strchr ("<>", *intel_parser.op_string)
7139 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7140 {
7141 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7142 new_token.str[0] = *intel_parser.op_string;
7143 new_token.str[1] = *intel_parser.op_string;
7144 new_token.str[2] = '\0';
7145 }
7146
64a0c779 7147 else
0477af35 7148 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
7149
7150 intel_parser.op_string += strlen (new_token.str);
7151 cur_token = new_token;
7152}
7153
64a0c779
DN
7154/* Put cur_token back into the token stream and make cur_token point to
7155 prev_token. */
7156static void
7157intel_putback_token ()
7158{
a724f0f4
JB
7159 if (cur_token.code != T_NIL)
7160 {
7161 intel_parser.op_string -= strlen (cur_token.str);
7162 free (cur_token.str);
7163 }
64a0c779 7164 cur_token = prev_token;
4a1805b1 7165
64a0c779
DN
7166 /* Forget prev_token. */
7167 prev_token.code = T_NIL;
7168 prev_token.reg = NULL;
7169 prev_token.str = NULL;
7170}
54cfded0 7171
a4447b93 7172int
54cfded0
AM
7173tc_x86_regname_to_dw2regnum (const char *regname)
7174{
7175 unsigned int regnum;
7176 unsigned int regnames_count;
089dfecd 7177 static const char *const regnames_32[] =
54cfded0 7178 {
a4447b93
RH
7179 "eax", "ecx", "edx", "ebx",
7180 "esp", "ebp", "esi", "edi",
089dfecd
JB
7181 "eip", "eflags", NULL,
7182 "st0", "st1", "st2", "st3",
7183 "st4", "st5", "st6", "st7",
7184 NULL, NULL,
7185 "xmm0", "xmm1", "xmm2", "xmm3",
7186 "xmm4", "xmm5", "xmm6", "xmm7",
7187 "mm0", "mm1", "mm2", "mm3",
43fd16e4
JB
7188 "mm4", "mm5", "mm6", "mm7",
7189 "fcw", "fsw", "mxcsr",
7190 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7191 "tr", "ldtr"
54cfded0 7192 };
089dfecd 7193 static const char *const regnames_64[] =
54cfded0 7194 {
089dfecd
JB
7195 "rax", "rdx", "rcx", "rbx",
7196 "rsi", "rdi", "rbp", "rsp",
7197 "r8", "r9", "r10", "r11",
54cfded0 7198 "r12", "r13", "r14", "r15",
089dfecd
JB
7199 "rip",
7200 "xmm0", "xmm1", "xmm2", "xmm3",
7201 "xmm4", "xmm5", "xmm6", "xmm7",
7202 "xmm8", "xmm9", "xmm10", "xmm11",
7203 "xmm12", "xmm13", "xmm14", "xmm15",
7204 "st0", "st1", "st2", "st3",
7205 "st4", "st5", "st6", "st7",
7206 "mm0", "mm1", "mm2", "mm3",
43fd16e4
JB
7207 "mm4", "mm5", "mm6", "mm7",
7208 "rflags",
7209 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7210 "fs.base", "gs.base", NULL, NULL,
7211 "tr", "ldtr",
7212 "mxcsr", "fcw", "fsw"
54cfded0 7213 };
089dfecd 7214 const char *const *regnames;
54cfded0
AM
7215
7216 if (flag_code == CODE_64BIT)
7217 {
7218 regnames = regnames_64;
0cea6190 7219 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
7220 }
7221 else
7222 {
7223 regnames = regnames_32;
0cea6190 7224 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
7225 }
7226
7227 for (regnum = 0; regnum < regnames_count; regnum++)
089dfecd
JB
7228 if (regnames[regnum] != NULL
7229 && strcmp (regname, regnames[regnum]) == 0)
54cfded0
AM
7230 return regnum;
7231
54cfded0
AM
7232 return -1;
7233}
7234
7235void
7236tc_x86_frame_initial_instructions (void)
7237{
a4447b93
RH
7238 static unsigned int sp_regno;
7239
7240 if (!sp_regno)
7241 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7242 ? "rsp" : "esp");
7243
7244 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7245 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 7246}
d2b2c203
DJ
7247
7248int
7249i386_elf_section_type (const char *str, size_t len)
7250{
7251 if (flag_code == CODE_64BIT
7252 && len == sizeof ("unwind") - 1
7253 && strncmp (str, "unwind", 6) == 0)
7254 return SHT_X86_64_UNWIND;
7255
7256 return -1;
7257}
bb41ade5
AM
7258
7259#ifdef TE_PE
7260void
7261tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7262{
7263 expressionS expr;
7264
7265 expr.X_op = O_secrel;
7266 expr.X_add_symbol = symbol;
7267 expr.X_add_number = 0;
7268 emit_expr (&expr, size);
7269}
7270#endif
3b22753a
L
7271
7272#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7273/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7274
7275int
7276x86_64_section_letter (int letter, char **ptr_msg)
7277{
7278 if (flag_code == CODE_64BIT)
7279 {
7280 if (letter == 'l')
7281 return SHF_X86_64_LARGE;
7282
7283 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7284 }
7285 else
7286 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7287 return -1;
7288}
7289
7290int
7291x86_64_section_word (char *str, size_t len)
7292{
7293 if (len == 5 && flag_code == CODE_64BIT && strncmp (str, "large", 5) == 0)
7294 return SHF_X86_64_LARGE;
7295
7296 return -1;
7297}
7298
7299static void
7300handle_large_common (int small ATTRIBUTE_UNUSED)
7301{
7302 if (flag_code != CODE_64BIT)
7303 {
7304 s_comm_internal (0, elf_common_parse);
7305 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7306 }
7307 else
7308 {
7309 static segT lbss_section;
7310 asection *saved_com_section_ptr = elf_com_section_ptr;
7311 asection *saved_bss_section = bss_section;
7312
7313 if (lbss_section == NULL)
7314 {
7315 flagword applicable;
7316 segT seg = now_seg;
7317 subsegT subseg = now_subseg;
7318
7319 /* The .lbss section is for local .largecomm symbols. */
7320 lbss_section = subseg_new (".lbss", 0);
7321 applicable = bfd_applicable_section_flags (stdoutput);
7322 bfd_set_section_flags (stdoutput, lbss_section,
7323 applicable & SEC_ALLOC);
7324 seg_info (lbss_section)->bss = 1;
7325
7326 subseg_set (seg, subseg);
7327 }
7328
7329 elf_com_section_ptr = &_bfd_elf_large_com_section;
7330 bss_section = lbss_section;
7331
7332 s_comm_internal (0, elf_common_parse);
7333
7334 elf_com_section_ptr = saved_com_section_ptr;
7335 bss_section = saved_bss_section;
7336 }
7337}
7338#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.743199 seconds and 4 git commands to generate.