x86: Define GNU_PROPERTY_X86_ISA_1_AVX512_BF16
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
82704155 2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
252b5132
RH
47#ifndef REGISTER_WARNINGS
48#define REGISTER_WARNINGS 1
49#endif
50
c3332e24 51#ifndef INFER_ADDR_PREFIX
eecb386c 52#define INFER_ADDR_PREFIX 1
c3332e24
AM
53#endif
54
29b0f896
AM
55#ifndef DEFAULT_ARCH
56#define DEFAULT_ARCH "i386"
246fcdee 57#endif
252b5132 58
edde18a5
AM
59#ifndef INLINE
60#if __GNUC__ >= 2
61#define INLINE __inline__
62#else
63#define INLINE
64#endif
65#endif
66
6305a203
L
67/* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
72#define WAIT_PREFIX 0
73#define SEG_PREFIX 1
74#define ADDR_PREFIX 2
75#define DATA_PREFIX 3
c32fa91d 76#define REP_PREFIX 4
42164a71 77#define HLE_PREFIX REP_PREFIX
7e8b059b 78#define BND_PREFIX REP_PREFIX
c32fa91d 79#define LOCK_PREFIX 5
4e9ac44a
L
80#define REX_PREFIX 6 /* must come last. */
81#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
82
83/* we define the syntax here (modulo base,index,scale syntax) */
84#define REGISTER_PREFIX '%'
85#define IMMEDIATE_PREFIX '$'
86#define ABSOLUTE_PREFIX '*'
87
88/* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90#define WORD_MNEM_SUFFIX 'w'
91#define BYTE_MNEM_SUFFIX 'b'
92#define SHORT_MNEM_SUFFIX 's'
93#define LONG_MNEM_SUFFIX 'l'
94#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
95/* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97#define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99#define END_OF_INSN '\0'
100
101/*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108typedef struct
109{
d3ce72d0
NC
110 const insn_template *start;
111 const insn_template *end;
6305a203
L
112}
113templates;
114
115/* 386 operand encoding bytes: see 386 book for details of this. */
116typedef struct
117{
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121}
122modrm_byte;
123
124/* x86-64 extension prefix. */
125typedef int rex_byte;
126
6305a203
L
127/* 386 opcode byte to code indirect addressing. */
128typedef struct
129{
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133}
134sib_byte;
135
6305a203
L
136/* x86 arch names, types and features */
137typedef struct
138{
139 const char *name; /* arch name */
8a2c8fef 140 unsigned int len; /* arch string length */
6305a203
L
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 143 unsigned int skip; /* show_arch should skip this. */
6305a203
L
144}
145arch_entry;
146
293f5f65
L
147/* Used to turn off indicated flags. */
148typedef struct
149{
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153}
154noarch_entry;
155
78f12dd3 156static void update_code_flag (int, int);
e3bb37b5
L
157static void set_code_flag (int);
158static void set_16bit_gcc_code_flag (int);
159static void set_intel_syntax (int);
1efbbeb4 160static void set_intel_mnemonic (int);
db51cc60 161static void set_allow_index_reg (int);
7bab8ab5 162static void set_check (int);
e3bb37b5 163static void set_cpu_arch (int);
6482c264 164#ifdef TE_PE
e3bb37b5 165static void pe_directive_secrel (int);
6482c264 166#endif
e3bb37b5
L
167static void signed_cons (int);
168static char *output_invalid (int c);
ee86248c
JB
169static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
a7619375 173static int i386_att_operand (char *);
e3bb37b5 174static int i386_intel_operand (char *, int);
ee86248c
JB
175static int i386_intel_simplify (expressionS *);
176static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
177static const reg_entry *parse_register (char *, char **);
178static char *parse_insn (char *, char *);
179static char *parse_operands (char *, const char *);
180static void swap_operands (void);
4d456e3d 181static void swap_2_operands (int, int);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
43234a1e
L
213/* This struct describes rounding control and SAE in the instruction. */
214struct RC_Operation
215{
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225};
226
227static struct RC_Operation rc_op;
228
229/* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232struct Mask_Operation
233{
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238};
239
240static struct Mask_Operation mask_op;
241
242/* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244struct Broadcast_Operation
245{
8e6e0792 246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
4a1b91ea
L
251
252 /* Number of bytes to broadcast. */
253 int bytes;
43234a1e
L
254};
255
256static struct Broadcast_Operation broadcast_op;
257
c0f3af97
L
258/* VEX prefix. */
259typedef struct
260{
43234a1e
L
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
c0f3af97
L
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266} vex_prefix;
267
252b5132 268/* 'md_assemble ()' gathers together information and puts it into a
47926f60 269 i386_insn. */
252b5132 270
520dc8e8
AM
271union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
a65babc9
L
278enum i386_error
279 {
86e026a4 280 operand_size_mismatch,
a65babc9
L
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
a65babc9
L
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
6c30d220
L
288 unsupported,
289 invalid_vsib_address,
7bab8ab5 290 invalid_vector_register_set,
43234a1e
L
291 unsupported_vector_index_register,
292 unsupported_broadcast,
43234a1e
L
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
a65babc9
L
300 };
301
252b5132
RH
302struct _i386_insn
303 {
47926f60 304 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 305 insn_template tm;
252b5132 306
7d5e4556
L
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
252b5132
RH
309 char suffix;
310
47926f60 311 /* OPERANDS gives the number of given operands. */
252b5132
RH
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
47926f60 316 operands. */
252b5132
RH
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 320 use OP[i] for the corresponding operand. */
40fb9820 321 i386_operand_type types[MAX_OPERANDS];
252b5132 322
520dc8e8
AM
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
252b5132 326
3e73aa7c
JH
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329#define Operand_PCrel 1
c48dadc9 330#define Operand_Mem 2
3e73aa7c 331
252b5132 332 /* Relocation type for operand */
f86103b7 333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 334
252b5132
RH
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 342 explicit segment overrides are given. */
ce8a8b2f 343 const seg_entry *seg[2];
252b5132 344
8325cc63
JB
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
252b5132
RH
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
b4a3a7b4
L
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
252b5132 365 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 366 addressing modes of this insn are encoded. */
252b5132 367 modrm_byte rm;
3e73aa7c 368 rex_byte rex;
43234a1e 369 rex_byte vrex;
252b5132 370 sib_byte sib;
c0f3af97 371 vex_prefix vex;
b6169b20 372
43234a1e
L
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
86fa6981
L
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
64c49ab3
JB
390 dir_encoding_store,
391 dir_encoding_swap
86fa6981 392 } dir_encoding;
891edac4 393
a501d77e
L
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
f8a5c266 401
6b6b6807
L
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
b6f8c7c4
L
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
86fa6981
L
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
d5de92cf
L
417 /* REP prefix. */
418 const char *rep_prefix;
419
165de32a
L
420 /* HLE prefix. */
421 const char *hle_prefix;
42164a71 422
7e8b059b
L
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
04ef582a
L
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
891edac4 429 /* Error message. */
a65babc9 430 enum i386_error error;
252b5132
RH
431 };
432
433typedef struct _i386_insn i386_insn;
434
43234a1e
L
435/* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437struct RC_name
438{
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442};
443
444static const struct RC_name RC_NamesTable[] =
445{
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451};
452
252b5132
RH
453/* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 455const char extra_symbol_chars[] = "*%-([{}"
252b5132 456#ifdef LEX_AT
32137342
NC
457 "@"
458#endif
459#ifdef LEX_QM
460 "?"
252b5132 461#endif
32137342 462 ;
252b5132 463
29b0f896
AM
464#if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 466 && !defined (TE_GNU) \
29b0f896 467 && !defined (TE_LINUX) \
8d63c93e 468 && !defined (TE_NACL) \
29b0f896 469 && !defined (TE_FreeBSD) \
5b806d27 470 && !defined (TE_DragonFly) \
29b0f896 471 && !defined (TE_NetBSD)))
252b5132 472/* This array holds the chars that always start a comment. If the
b3b91714
AM
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475const char *i386_comment_chars = "#/";
476#define SVR4_COMMENT_CHARS 1
252b5132 477#define PREFIX_SEPARATOR '\\'
252b5132 478
b3b91714
AM
479#else
480const char *i386_comment_chars = "#";
481#define PREFIX_SEPARATOR '/'
482#endif
483
252b5132
RH
484/* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 488 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
252b5132 491 '/' isn't otherwise defined. */
b3b91714 492const char line_comment_chars[] = "#/";
252b5132 493
63a0b638 494const char line_separator_chars[] = ";";
252b5132 495
ce8a8b2f
AM
496/* Chars that can be used to separate mant from exp in floating point
497 nums. */
252b5132
RH
498const char EXP_CHARS[] = "eE";
499
ce8a8b2f
AM
500/* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
252b5132
RH
503const char FLT_CHARS[] = "fFdDxX";
504
ce8a8b2f 505/* Tables for lexical analysis. */
252b5132
RH
506static char mnemonic_chars[256];
507static char register_chars[256];
508static char operand_chars[256];
509static char identifier_chars[256];
510static char digit_chars[256];
511
ce8a8b2f 512/* Lexical macros. */
252b5132
RH
513#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514#define is_operand_char(x) (operand_chars[(unsigned char) x])
515#define is_register_char(x) (register_chars[(unsigned char) x])
516#define is_space_char(x) ((x) == ' ')
517#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518#define is_digit_char(x) (digit_chars[(unsigned char) x])
519
0234cb7c 520/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
521static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523/* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
47926f60 526 assembler instruction). */
252b5132 527static char save_stack[32];
ce8a8b2f 528static char *save_stack_p;
252b5132
RH
529#define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531#define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
47926f60 534/* The instruction we're assembling. */
252b5132
RH
535static i386_insn i;
536
537/* Possible templates for current insn. */
538static const templates *current_templates;
539
31b2323c
L
540/* Per instruction expressionS buffers: max displacements & immediates. */
541static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 543
47926f60 544/* Current operand we are working on. */
ee86248c 545static int this_operand = -1;
252b5132 546
3e73aa7c
JH
547/* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555static enum flag_code flag_code;
4fa24527 556static unsigned int object_64bit;
862be3fb 557static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
558static int use_rela_relocations = 0;
559
7af8ed2d
NC
560#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
351f65ca
L
564/* The ELF ABI to use. */
565enum x86_elf_abi
566{
567 I386_ABI,
7f56bc95
L
568 X86_64_ABI,
569 X86_64_X32_ABI
351f65ca
L
570};
571
572static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 573#endif
351f65ca 574
167ad85b
TG
575#if defined (TE_PE) || defined (TE_PEP)
576/* Use big object file format. */
577static int use_big_obj = 0;
578#endif
579
8dcea932
L
580#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581/* 1 if generating code for a shared library. */
582static int shared = 0;
583#endif
584
47926f60
KH
585/* 1 for intel syntax,
586 0 if att syntax. */
587static int intel_syntax = 0;
252b5132 588
e89c5eaa
L
589/* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591static int intel64;
592
1efbbeb4
L
593/* 1 for intel mnemonic,
594 0 if att mnemonic. */
595static int intel_mnemonic = !SYSV386_COMPAT;
596
a60de03c
JB
597/* 1 if pseudo registers are permitted. */
598static int allow_pseudo_reg = 0;
599
47926f60
KH
600/* 1 if register prefix % not required. */
601static int allow_naked_reg = 0;
252b5132 602
33eaf5de 603/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606static int add_bnd_prefix = 0;
607
ba104c83 608/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
609static int allow_index_reg = 0;
610
d022bddd
IT
611/* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613static int omit_lock_prefix = 0;
614
e4e00185
AS
615/* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617static int avoid_fence = 0;
618
0cb4071e
L
619/* 1 if the assembler should generate relax relocations. */
620
621static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
7bab8ab5 624static enum check_kind
daf50ae7 625 {
7bab8ab5
JB
626 check_none = 0,
627 check_warning,
628 check_error
daf50ae7 629 }
7bab8ab5 630sse_check, operand_check = check_warning;
daf50ae7 631
b6f8c7c4
L
632/* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637static int optimize = 0;
638
639/* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646static int optimize_for_space = 0;
647
2ca3ace5
L
648/* Register prefix used for error message. */
649static const char *register_prefix = "%";
650
47926f60
KH
651/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654static char stackop_size = '\0';
eecb386c 655
12b55ccc
L
656/* Non-zero to optimize code alignment. */
657int optimize_align_code = 1;
658
47926f60
KH
659/* Non-zero to quieten some warnings. */
660static int quiet_warnings = 0;
a38cf1db 661
47926f60
KH
662/* CPU name. */
663static const char *cpu_arch_name = NULL;
6305a203 664static char *cpu_sub_arch_name = NULL;
a38cf1db 665
47926f60 666/* CPU feature flags. */
40fb9820
L
667static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
ccc9c027
L
669/* If we have selected a cpu we are generating instructions for. */
670static int cpu_arch_tune_set = 0;
671
9103f4f4 672/* Cpu we are generating instructions for. */
fbf3f584 673enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
674
675/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 676static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 677
ccc9c027 678/* CPU instruction set architecture used. */
fbf3f584 679enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 680
9103f4f4 681/* CPU feature flags of instruction set architecture used. */
fbf3f584 682i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 683
fddf5b5b
AM
684/* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686static unsigned int no_cond_jump_promotion = 0;
687
c0f3af97
L
688/* Encode SSE instructions with VEX prefix. */
689static unsigned int sse2avx;
690
539f890d
L
691/* Encode scalar AVX instructions with specific vector length. */
692static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
03751133
L
698/* Encode VEX WIG instructions with specific vex.w. */
699static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
43234a1e
L
705/* Encode scalar EVEX LIG instructions with specific vector length. */
706static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713/* Encode EVEX WIG instructions with specific evex.w. */
714static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
d3d3c6db
IT
720/* Value to encode in EVEX RC bits, for SAE-only instructions. */
721static enum rc_type evexrcig = rne;
722
29b0f896 723/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 724static symbolS *GOT_symbol;
29b0f896 725
a4447b93
RH
726/* The dwarf2 return column, adjusted for 32 or 64 bit. */
727unsigned int x86_dwarf2_return_column;
728
729/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730int x86_cie_data_alignment;
731
252b5132 732/* Interface to relax_segment.
fddf5b5b
AM
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
252b5132 736
47926f60 737/* Types. */
93c2a809
AM
738#define UNCOND_JUMP 0
739#define COND_JUMP 1
740#define COND_JUMP86 2
fddf5b5b 741
47926f60 742/* Sizes. */
252b5132
RH
743#define CODE16 1
744#define SMALL 0
29b0f896 745#define SMALL16 (SMALL | CODE16)
252b5132 746#define BIG 2
29b0f896 747#define BIG16 (BIG | CODE16)
252b5132
RH
748
749#ifndef INLINE
750#ifdef __GNUC__
751#define INLINE __inline__
752#else
753#define INLINE
754#endif
755#endif
756
fddf5b5b
AM
757#define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759#define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761#define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
763
764/* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772const relax_typeS md_relax_table[] =
773{
24eab124
AM
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
93c2a809 777 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 778 4) which index into the table to try if we can't fit into this one. */
252b5132 779
fddf5b5b 780 /* UNCOND_JUMP states. */
93c2a809
AM
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
252b5132 785 {0, 0, 4, 0},
93c2a809
AM
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
788 {0, 0, 2, 0},
789
93c2a809
AM
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
fddf5b5b 796 /* word conditionals add 3 bytes to frag:
93c2a809
AM
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
252b5132
RH
809};
810
9103f4f4
L
811static const arch_entry cpu_arch[] =
812{
89507696
JB
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
8a2c8fef 815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 816 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 818 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 820 CPU_NONE_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 822 CPU_I186_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 824 CPU_I286_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 826 CPU_I386_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 828 CPU_I486_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 830 CPU_I586_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 832 CPU_I686_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 834 CPU_I586_FLAGS, 0 },
8a2c8fef 835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 836 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 838 CPU_P2_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 840 CPU_P3_FLAGS, 0 },
8a2c8fef 841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 842 CPU_P4_FLAGS, 0 },
8a2c8fef 843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 844 CPU_CORE_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 846 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 848 CPU_CORE_FLAGS, 1 },
8a2c8fef 849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 850 CPU_CORE_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 852 CPU_CORE2_FLAGS, 1 },
8a2c8fef 853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 854 CPU_CORE2_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 856 CPU_COREI7_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 858 CPU_L1OM_FLAGS, 0 },
7a9068fe 859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 860 CPU_K1OM_FLAGS, 0 },
81486035 861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 862 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 864 CPU_K6_FLAGS, 0 },
8a2c8fef 865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 866 CPU_K6_2_FLAGS, 0 },
8a2c8fef 867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 868 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 870 CPU_K8_FLAGS, 1 },
8a2c8fef 871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 872 CPU_K8_FLAGS, 0 },
8a2c8fef 873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 874 CPU_K8_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 876 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 878 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 880 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 882 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 884 CPU_BDVER4_FLAGS, 0 },
029f3522 885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 886 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
7b458c12 889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 890 CPU_BTVER1_FLAGS, 0 },
7b458c12 891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 892 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_8087_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_287_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_387_FLAGS, 0 },
1848e567
L
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
d871f3f4
L
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
8a2c8fef 905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_MMX_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_SSE_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_SSE2_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_SSE3_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_AVX_FLAGS, 0 },
6c30d220 923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_AVX2_FLAGS, 0 },
43234a1e 925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_AVX512F_FLAGS, 0 },
43234a1e 927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_AVX512CD_FLAGS, 0 },
43234a1e 929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_AVX512ER_FLAGS, 0 },
43234a1e 931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_VMX_FLAGS, 0 },
8729a6f6 941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_SMX_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_AES_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_F16C_FLAGS, 0 },
6c30d220 965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_BMI2_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_FMA_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_FMA4_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_XOP_FLAGS, 0 },
8a2c8fef 973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_LWP_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_MOVBE_FLAGS, 0 },
60aa667e 977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_CX16_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_EPT_FLAGS, 0 },
6c30d220 981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_LZCNT_FLAGS, 0 },
42164a71 983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_HLE_FLAGS, 0 },
42164a71 985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_RTM_FLAGS, 0 },
6c30d220 987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_CLFLUSH_FLAGS, 0 },
22109423 991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_NOP_FLAGS, 0 },
8a2c8fef 993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SVME_FLAGS, 1 },
8a2c8fef 1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_SVME_FLAGS, 0 },
8a2c8fef 1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_ABM_FLAGS, 0 },
87973e9f 1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_BMI_FLAGS, 0 },
2a2a0f38 1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_TBM_FLAGS, 0 },
e2e1fcde 1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_ADX_FLAGS, 0 },
e2e1fcde 1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_SMAP_FLAGS, 0 },
7e8b059b 1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_MPX_FLAGS, 0 },
a0046408 1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_SHA_FLAGS, 0 },
963f3586 1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_SE1_FLAGS, 0 },
c5e7287a 1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_CLZERO_FLAGS, 0 },
9916071f 1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_MWAITX_FLAGS, 0 },
8eab4136 1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_OSPKE_FLAGS, 0 },
8bc52696 1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
293f5f65
L
1085};
1086
1087static const noarch_entry cpu_noarch[] =
1088{
1089 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1090 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1091 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1092 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1093 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1094 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1095 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1096 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1097 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1098 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1099 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1100 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1101 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1103 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1104 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1105 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1106 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1107 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1108 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1109 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1114 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1115 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1116 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1117 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1118 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1119 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1120 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1121 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1122 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1123 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1124 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
e413e4e9
AM
1125};
1126
704209c0 1127#ifdef I386COFF
a6c24e68
NC
1128/* Like s_lcomm_internal in gas/read.c but the alignment string
1129 is allowed to be optional. */
1130
1131static symbolS *
1132pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1133{
1134 addressT align = 0;
1135
1136 SKIP_WHITESPACE ();
1137
7ab9ffdd 1138 if (needs_align
a6c24e68
NC
1139 && *input_line_pointer == ',')
1140 {
1141 align = parse_align (needs_align - 1);
7ab9ffdd 1142
a6c24e68
NC
1143 if (align == (addressT) -1)
1144 return NULL;
1145 }
1146 else
1147 {
1148 if (size >= 8)
1149 align = 3;
1150 else if (size >= 4)
1151 align = 2;
1152 else if (size >= 2)
1153 align = 1;
1154 else
1155 align = 0;
1156 }
1157
1158 bss_alloc (symbolP, size, align);
1159 return symbolP;
1160}
1161
704209c0 1162static void
a6c24e68
NC
1163pe_lcomm (int needs_align)
1164{
1165 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1166}
704209c0 1167#endif
a6c24e68 1168
29b0f896
AM
1169const pseudo_typeS md_pseudo_table[] =
1170{
1171#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1172 {"align", s_align_bytes, 0},
1173#else
1174 {"align", s_align_ptwo, 0},
1175#endif
1176 {"arch", set_cpu_arch, 0},
1177#ifndef I386COFF
1178 {"bss", s_bss, 0},
a6c24e68
NC
1179#else
1180 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1181#endif
1182 {"ffloat", float_cons, 'f'},
1183 {"dfloat", float_cons, 'd'},
1184 {"tfloat", float_cons, 'x'},
1185 {"value", cons, 2},
d182319b 1186 {"slong", signed_cons, 4},
29b0f896
AM
1187 {"noopt", s_ignore, 0},
1188 {"optim", s_ignore, 0},
1189 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1190 {"code16", set_code_flag, CODE_16BIT},
1191 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1192#ifdef BFD64
29b0f896 1193 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1194#endif
29b0f896
AM
1195 {"intel_syntax", set_intel_syntax, 1},
1196 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1197 {"intel_mnemonic", set_intel_mnemonic, 1},
1198 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1199 {"allow_index_reg", set_allow_index_reg, 1},
1200 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1201 {"sse_check", set_check, 0},
1202 {"operand_check", set_check, 1},
3b22753a
L
1203#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1204 {"largecomm", handle_large_common, 0},
07a53e5c 1205#else
68d20676 1206 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1207 {"loc", dwarf2_directive_loc, 0},
1208 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1209#endif
6482c264
NC
1210#ifdef TE_PE
1211 {"secrel32", pe_directive_secrel, 0},
1212#endif
29b0f896
AM
1213 {0, 0, 0}
1214};
1215
1216/* For interface with expression (). */
1217extern char *input_line_pointer;
1218
1219/* Hash table for instruction mnemonic lookup. */
1220static struct hash_control *op_hash;
1221
1222/* Hash table for register lookup. */
1223static struct hash_control *reg_hash;
1224\f
ce8a8b2f
AM
1225 /* Various efficient no-op patterns for aligning code labels.
1226 Note: Don't try to assemble the instructions in the comments.
1227 0L and 0w are not legal. */
62a02d25
L
1228static const unsigned char f32_1[] =
1229 {0x90}; /* nop */
1230static const unsigned char f32_2[] =
1231 {0x66,0x90}; /* xchg %ax,%ax */
1232static const unsigned char f32_3[] =
1233 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1234static const unsigned char f32_4[] =
1235 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1236static const unsigned char f32_6[] =
1237 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1238static const unsigned char f32_7[] =
1239 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1240static const unsigned char f16_3[] =
3ae729d5 1241 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1242static const unsigned char f16_4[] =
3ae729d5
L
1243 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1244static const unsigned char jump_disp8[] =
1245 {0xeb}; /* jmp disp8 */
1246static const unsigned char jump32_disp32[] =
1247 {0xe9}; /* jmp disp32 */
1248static const unsigned char jump16_disp32[] =
1249 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1250/* 32-bit NOPs patterns. */
1251static const unsigned char *const f32_patt[] = {
3ae729d5 1252 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1253};
1254/* 16-bit NOPs patterns. */
1255static const unsigned char *const f16_patt[] = {
3ae729d5 1256 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1257};
1258/* nopl (%[re]ax) */
1259static const unsigned char alt_3[] =
1260 {0x0f,0x1f,0x00};
1261/* nopl 0(%[re]ax) */
1262static const unsigned char alt_4[] =
1263 {0x0f,0x1f,0x40,0x00};
1264/* nopl 0(%[re]ax,%[re]ax,1) */
1265static const unsigned char alt_5[] =
1266 {0x0f,0x1f,0x44,0x00,0x00};
1267/* nopw 0(%[re]ax,%[re]ax,1) */
1268static const unsigned char alt_6[] =
1269 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1270/* nopl 0L(%[re]ax) */
1271static const unsigned char alt_7[] =
1272 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1273/* nopl 0L(%[re]ax,%[re]ax,1) */
1274static const unsigned char alt_8[] =
1275 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1276/* nopw 0L(%[re]ax,%[re]ax,1) */
1277static const unsigned char alt_9[] =
1278 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1279/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1280static const unsigned char alt_10[] =
1281 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1282/* data16 nopw %cs:0L(%eax,%eax,1) */
1283static const unsigned char alt_11[] =
1284 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1285/* 32-bit and 64-bit NOPs patterns. */
1286static const unsigned char *const alt_patt[] = {
1287 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1288 alt_9, alt_10, alt_11
62a02d25
L
1289};
1290
1291/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1292 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1293
1294static void
1295i386_output_nops (char *where, const unsigned char *const *patt,
1296 int count, int max_single_nop_size)
1297
1298{
3ae729d5
L
1299 /* Place the longer NOP first. */
1300 int last;
1301 int offset;
1302 const unsigned char *nops = patt[max_single_nop_size - 1];
1303
1304 /* Use the smaller one if the requsted one isn't available. */
1305 if (nops == NULL)
62a02d25 1306 {
3ae729d5
L
1307 max_single_nop_size--;
1308 nops = patt[max_single_nop_size - 1];
62a02d25
L
1309 }
1310
3ae729d5
L
1311 last = count % max_single_nop_size;
1312
1313 count -= last;
1314 for (offset = 0; offset < count; offset += max_single_nop_size)
1315 memcpy (where + offset, nops, max_single_nop_size);
1316
1317 if (last)
1318 {
1319 nops = patt[last - 1];
1320 if (nops == NULL)
1321 {
1322 /* Use the smaller one plus one-byte NOP if the needed one
1323 isn't available. */
1324 last--;
1325 nops = patt[last - 1];
1326 memcpy (where + offset, nops, last);
1327 where[offset + last] = *patt[0];
1328 }
1329 else
1330 memcpy (where + offset, nops, last);
1331 }
62a02d25
L
1332}
1333
3ae729d5
L
1334static INLINE int
1335fits_in_imm7 (offsetT num)
1336{
1337 return (num & 0x7f) == num;
1338}
1339
1340static INLINE int
1341fits_in_imm31 (offsetT num)
1342{
1343 return (num & 0x7fffffff) == num;
1344}
62a02d25
L
1345
1346/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1347 single NOP instruction LIMIT. */
1348
1349void
3ae729d5 1350i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1351{
3ae729d5 1352 const unsigned char *const *patt = NULL;
62a02d25 1353 int max_single_nop_size;
3ae729d5
L
1354 /* Maximum number of NOPs before switching to jump over NOPs. */
1355 int max_number_of_nops;
62a02d25 1356
3ae729d5 1357 switch (fragP->fr_type)
62a02d25 1358 {
3ae729d5
L
1359 case rs_fill_nop:
1360 case rs_align_code:
1361 break;
1362 default:
62a02d25
L
1363 return;
1364 }
1365
ccc9c027
L
1366 /* We need to decide which NOP sequence to use for 32bit and
1367 64bit. When -mtune= is used:
4eed87de 1368
76bc74dc
L
1369 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1370 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1371 2. For the rest, alt_patt will be used.
1372
1373 When -mtune= isn't used, alt_patt will be used if
22109423 1374 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1375 be used.
ccc9c027
L
1376
1377 When -march= or .arch is used, we can't use anything beyond
1378 cpu_arch_isa_flags. */
1379
1380 if (flag_code == CODE_16BIT)
1381 {
3ae729d5
L
1382 patt = f16_patt;
1383 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1384 /* Limit number of NOPs to 2 in 16-bit mode. */
1385 max_number_of_nops = 2;
252b5132 1386 }
33fef721 1387 else
ccc9c027 1388 {
fbf3f584 1389 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1390 {
1391 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1392 switch (cpu_arch_tune)
1393 {
1394 case PROCESSOR_UNKNOWN:
1395 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1396 optimize with nops. */
1397 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1398 patt = alt_patt;
ccc9c027
L
1399 else
1400 patt = f32_patt;
1401 break;
ccc9c027
L
1402 case PROCESSOR_PENTIUM4:
1403 case PROCESSOR_NOCONA:
ef05d495 1404 case PROCESSOR_CORE:
76bc74dc 1405 case PROCESSOR_CORE2:
bd5295b2 1406 case PROCESSOR_COREI7:
3632d14b 1407 case PROCESSOR_L1OM:
7a9068fe 1408 case PROCESSOR_K1OM:
76bc74dc 1409 case PROCESSOR_GENERIC64:
ccc9c027
L
1410 case PROCESSOR_K6:
1411 case PROCESSOR_ATHLON:
1412 case PROCESSOR_K8:
4eed87de 1413 case PROCESSOR_AMDFAM10:
8aedb9fe 1414 case PROCESSOR_BD:
029f3522 1415 case PROCESSOR_ZNVER:
7b458c12 1416 case PROCESSOR_BT:
80b8656c 1417 patt = alt_patt;
ccc9c027 1418 break;
76bc74dc 1419 case PROCESSOR_I386:
ccc9c027
L
1420 case PROCESSOR_I486:
1421 case PROCESSOR_PENTIUM:
2dde1948 1422 case PROCESSOR_PENTIUMPRO:
81486035 1423 case PROCESSOR_IAMCU:
ccc9c027
L
1424 case PROCESSOR_GENERIC32:
1425 patt = f32_patt;
1426 break;
4eed87de 1427 }
ccc9c027
L
1428 }
1429 else
1430 {
fbf3f584 1431 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1432 {
1433 case PROCESSOR_UNKNOWN:
e6a14101 1434 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1435 PROCESSOR_UNKNOWN. */
1436 abort ();
1437 break;
1438
76bc74dc 1439 case PROCESSOR_I386:
ccc9c027
L
1440 case PROCESSOR_I486:
1441 case PROCESSOR_PENTIUM:
81486035 1442 case PROCESSOR_IAMCU:
ccc9c027
L
1443 case PROCESSOR_K6:
1444 case PROCESSOR_ATHLON:
1445 case PROCESSOR_K8:
4eed87de 1446 case PROCESSOR_AMDFAM10:
8aedb9fe 1447 case PROCESSOR_BD:
029f3522 1448 case PROCESSOR_ZNVER:
7b458c12 1449 case PROCESSOR_BT:
ccc9c027
L
1450 case PROCESSOR_GENERIC32:
1451 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1452 with nops. */
1453 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1454 patt = alt_patt;
ccc9c027
L
1455 else
1456 patt = f32_patt;
1457 break;
76bc74dc
L
1458 case PROCESSOR_PENTIUMPRO:
1459 case PROCESSOR_PENTIUM4:
1460 case PROCESSOR_NOCONA:
1461 case PROCESSOR_CORE:
ef05d495 1462 case PROCESSOR_CORE2:
bd5295b2 1463 case PROCESSOR_COREI7:
3632d14b 1464 case PROCESSOR_L1OM:
7a9068fe 1465 case PROCESSOR_K1OM:
22109423 1466 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1467 patt = alt_patt;
ccc9c027
L
1468 else
1469 patt = f32_patt;
1470 break;
1471 case PROCESSOR_GENERIC64:
80b8656c 1472 patt = alt_patt;
ccc9c027 1473 break;
4eed87de 1474 }
ccc9c027
L
1475 }
1476
76bc74dc
L
1477 if (patt == f32_patt)
1478 {
3ae729d5
L
1479 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1480 /* Limit number of NOPs to 2 for older processors. */
1481 max_number_of_nops = 2;
76bc74dc
L
1482 }
1483 else
1484 {
3ae729d5
L
1485 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1486 /* Limit number of NOPs to 7 for newer processors. */
1487 max_number_of_nops = 7;
1488 }
1489 }
1490
1491 if (limit == 0)
1492 limit = max_single_nop_size;
1493
1494 if (fragP->fr_type == rs_fill_nop)
1495 {
1496 /* Output NOPs for .nop directive. */
1497 if (limit > max_single_nop_size)
1498 {
1499 as_bad_where (fragP->fr_file, fragP->fr_line,
1500 _("invalid single nop size: %d "
1501 "(expect within [0, %d])"),
1502 limit, max_single_nop_size);
1503 return;
1504 }
1505 }
1506 else
1507 fragP->fr_var = count;
1508
1509 if ((count / max_single_nop_size) > max_number_of_nops)
1510 {
1511 /* Generate jump over NOPs. */
1512 offsetT disp = count - 2;
1513 if (fits_in_imm7 (disp))
1514 {
1515 /* Use "jmp disp8" if possible. */
1516 count = disp;
1517 where[0] = jump_disp8[0];
1518 where[1] = count;
1519 where += 2;
1520 }
1521 else
1522 {
1523 unsigned int size_of_jump;
1524
1525 if (flag_code == CODE_16BIT)
1526 {
1527 where[0] = jump16_disp32[0];
1528 where[1] = jump16_disp32[1];
1529 size_of_jump = 2;
1530 }
1531 else
1532 {
1533 where[0] = jump32_disp32[0];
1534 size_of_jump = 1;
1535 }
1536
1537 count -= size_of_jump + 4;
1538 if (!fits_in_imm31 (count))
1539 {
1540 as_bad_where (fragP->fr_file, fragP->fr_line,
1541 _("jump over nop padding out of range"));
1542 return;
1543 }
1544
1545 md_number_to_chars (where + size_of_jump, count, 4);
1546 where += size_of_jump + 4;
76bc74dc 1547 }
ccc9c027 1548 }
3ae729d5
L
1549
1550 /* Generate multiple NOPs. */
1551 i386_output_nops (where, patt, count, limit);
252b5132
RH
1552}
1553
c6fb90c8 1554static INLINE int
0dfbf9d7 1555operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1556{
0dfbf9d7 1557 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1558 {
1559 case 3:
0dfbf9d7 1560 if (x->array[2])
c6fb90c8 1561 return 0;
1a0670f3 1562 /* Fall through. */
c6fb90c8 1563 case 2:
0dfbf9d7 1564 if (x->array[1])
c6fb90c8 1565 return 0;
1a0670f3 1566 /* Fall through. */
c6fb90c8 1567 case 1:
0dfbf9d7 1568 return !x->array[0];
c6fb90c8
L
1569 default:
1570 abort ();
1571 }
40fb9820
L
1572}
1573
c6fb90c8 1574static INLINE void
0dfbf9d7 1575operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1576{
0dfbf9d7 1577 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1578 {
1579 case 3:
0dfbf9d7 1580 x->array[2] = v;
1a0670f3 1581 /* Fall through. */
c6fb90c8 1582 case 2:
0dfbf9d7 1583 x->array[1] = v;
1a0670f3 1584 /* Fall through. */
c6fb90c8 1585 case 1:
0dfbf9d7 1586 x->array[0] = v;
1a0670f3 1587 /* Fall through. */
c6fb90c8
L
1588 break;
1589 default:
1590 abort ();
1591 }
1592}
40fb9820 1593
c6fb90c8 1594static INLINE int
0dfbf9d7
L
1595operand_type_equal (const union i386_operand_type *x,
1596 const union i386_operand_type *y)
c6fb90c8 1597{
0dfbf9d7 1598 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1599 {
1600 case 3:
0dfbf9d7 1601 if (x->array[2] != y->array[2])
c6fb90c8 1602 return 0;
1a0670f3 1603 /* Fall through. */
c6fb90c8 1604 case 2:
0dfbf9d7 1605 if (x->array[1] != y->array[1])
c6fb90c8 1606 return 0;
1a0670f3 1607 /* Fall through. */
c6fb90c8 1608 case 1:
0dfbf9d7 1609 return x->array[0] == y->array[0];
c6fb90c8
L
1610 break;
1611 default:
1612 abort ();
1613 }
1614}
40fb9820 1615
0dfbf9d7
L
1616static INLINE int
1617cpu_flags_all_zero (const union i386_cpu_flags *x)
1618{
1619 switch (ARRAY_SIZE(x->array))
1620 {
53467f57
IT
1621 case 4:
1622 if (x->array[3])
1623 return 0;
1624 /* Fall through. */
0dfbf9d7
L
1625 case 3:
1626 if (x->array[2])
1627 return 0;
1a0670f3 1628 /* Fall through. */
0dfbf9d7
L
1629 case 2:
1630 if (x->array[1])
1631 return 0;
1a0670f3 1632 /* Fall through. */
0dfbf9d7
L
1633 case 1:
1634 return !x->array[0];
1635 default:
1636 abort ();
1637 }
1638}
1639
0dfbf9d7
L
1640static INLINE int
1641cpu_flags_equal (const union i386_cpu_flags *x,
1642 const union i386_cpu_flags *y)
1643{
1644 switch (ARRAY_SIZE(x->array))
1645 {
53467f57
IT
1646 case 4:
1647 if (x->array[3] != y->array[3])
1648 return 0;
1649 /* Fall through. */
0dfbf9d7
L
1650 case 3:
1651 if (x->array[2] != y->array[2])
1652 return 0;
1a0670f3 1653 /* Fall through. */
0dfbf9d7
L
1654 case 2:
1655 if (x->array[1] != y->array[1])
1656 return 0;
1a0670f3 1657 /* Fall through. */
0dfbf9d7
L
1658 case 1:
1659 return x->array[0] == y->array[0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664}
c6fb90c8
L
1665
1666static INLINE int
1667cpu_flags_check_cpu64 (i386_cpu_flags f)
1668{
1669 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1670 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1671}
1672
c6fb90c8
L
1673static INLINE i386_cpu_flags
1674cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1675{
c6fb90c8
L
1676 switch (ARRAY_SIZE (x.array))
1677 {
53467f57
IT
1678 case 4:
1679 x.array [3] &= y.array [3];
1680 /* Fall through. */
c6fb90c8
L
1681 case 3:
1682 x.array [2] &= y.array [2];
1a0670f3 1683 /* Fall through. */
c6fb90c8
L
1684 case 2:
1685 x.array [1] &= y.array [1];
1a0670f3 1686 /* Fall through. */
c6fb90c8
L
1687 case 1:
1688 x.array [0] &= y.array [0];
1689 break;
1690 default:
1691 abort ();
1692 }
1693 return x;
1694}
40fb9820 1695
c6fb90c8
L
1696static INLINE i386_cpu_flags
1697cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1698{
c6fb90c8 1699 switch (ARRAY_SIZE (x.array))
40fb9820 1700 {
53467f57
IT
1701 case 4:
1702 x.array [3] |= y.array [3];
1703 /* Fall through. */
c6fb90c8
L
1704 case 3:
1705 x.array [2] |= y.array [2];
1a0670f3 1706 /* Fall through. */
c6fb90c8
L
1707 case 2:
1708 x.array [1] |= y.array [1];
1a0670f3 1709 /* Fall through. */
c6fb90c8
L
1710 case 1:
1711 x.array [0] |= y.array [0];
40fb9820
L
1712 break;
1713 default:
1714 abort ();
1715 }
40fb9820
L
1716 return x;
1717}
1718
309d3373
JB
1719static INLINE i386_cpu_flags
1720cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1721{
1722 switch (ARRAY_SIZE (x.array))
1723 {
53467f57
IT
1724 case 4:
1725 x.array [3] &= ~y.array [3];
1726 /* Fall through. */
309d3373
JB
1727 case 3:
1728 x.array [2] &= ~y.array [2];
1a0670f3 1729 /* Fall through. */
309d3373
JB
1730 case 2:
1731 x.array [1] &= ~y.array [1];
1a0670f3 1732 /* Fall through. */
309d3373
JB
1733 case 1:
1734 x.array [0] &= ~y.array [0];
1735 break;
1736 default:
1737 abort ();
1738 }
1739 return x;
1740}
1741
c0f3af97
L
1742#define CPU_FLAGS_ARCH_MATCH 0x1
1743#define CPU_FLAGS_64BIT_MATCH 0x2
1744
c0f3af97 1745#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1746 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1747
1748/* Return CPU flags match bits. */
3629bb00 1749
40fb9820 1750static int
d3ce72d0 1751cpu_flags_match (const insn_template *t)
40fb9820 1752{
c0f3af97
L
1753 i386_cpu_flags x = t->cpu_flags;
1754 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1755
1756 x.bitfield.cpu64 = 0;
1757 x.bitfield.cpuno64 = 0;
1758
0dfbf9d7 1759 if (cpu_flags_all_zero (&x))
c0f3af97
L
1760 {
1761 /* This instruction is available on all archs. */
db12e14e 1762 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1763 }
3629bb00
L
1764 else
1765 {
c0f3af97 1766 /* This instruction is available only on some archs. */
3629bb00
L
1767 i386_cpu_flags cpu = cpu_arch_flags;
1768
ab592e75
JB
1769 /* AVX512VL is no standalone feature - match it and then strip it. */
1770 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1771 return match;
1772 x.bitfield.cpuavx512vl = 0;
1773
3629bb00 1774 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1775 if (!cpu_flags_all_zero (&cpu))
1776 {
a5ff0eb2
L
1777 if (x.bitfield.cpuavx)
1778 {
929f69fa 1779 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1780 if (cpu.bitfield.cpuavx
1781 && (!t->opcode_modifier.sse2avx || sse2avx)
1782 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1783 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1784 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1785 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1786 }
929f69fa
JB
1787 else if (x.bitfield.cpuavx512f)
1788 {
1789 /* We need to check a few extra flags with AVX512F. */
1790 if (cpu.bitfield.cpuavx512f
1791 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1792 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1793 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1794 match |= CPU_FLAGS_ARCH_MATCH;
1795 }
a5ff0eb2 1796 else
db12e14e 1797 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1798 }
3629bb00 1799 }
c0f3af97 1800 return match;
40fb9820
L
1801}
1802
c6fb90c8
L
1803static INLINE i386_operand_type
1804operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1805{
c6fb90c8
L
1806 switch (ARRAY_SIZE (x.array))
1807 {
1808 case 3:
1809 x.array [2] &= y.array [2];
1a0670f3 1810 /* Fall through. */
c6fb90c8
L
1811 case 2:
1812 x.array [1] &= y.array [1];
1a0670f3 1813 /* Fall through. */
c6fb90c8
L
1814 case 1:
1815 x.array [0] &= y.array [0];
1816 break;
1817 default:
1818 abort ();
1819 }
1820 return x;
40fb9820
L
1821}
1822
73053c1f
JB
1823static INLINE i386_operand_type
1824operand_type_and_not (i386_operand_type x, i386_operand_type y)
1825{
1826 switch (ARRAY_SIZE (x.array))
1827 {
1828 case 3:
1829 x.array [2] &= ~y.array [2];
1830 /* Fall through. */
1831 case 2:
1832 x.array [1] &= ~y.array [1];
1833 /* Fall through. */
1834 case 1:
1835 x.array [0] &= ~y.array [0];
1836 break;
1837 default:
1838 abort ();
1839 }
1840 return x;
1841}
1842
c6fb90c8
L
1843static INLINE i386_operand_type
1844operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1845{
c6fb90c8 1846 switch (ARRAY_SIZE (x.array))
40fb9820 1847 {
c6fb90c8
L
1848 case 3:
1849 x.array [2] |= y.array [2];
1a0670f3 1850 /* Fall through. */
c6fb90c8
L
1851 case 2:
1852 x.array [1] |= y.array [1];
1a0670f3 1853 /* Fall through. */
c6fb90c8
L
1854 case 1:
1855 x.array [0] |= y.array [0];
40fb9820
L
1856 break;
1857 default:
1858 abort ();
1859 }
c6fb90c8
L
1860 return x;
1861}
40fb9820 1862
c6fb90c8
L
1863static INLINE i386_operand_type
1864operand_type_xor (i386_operand_type x, i386_operand_type y)
1865{
1866 switch (ARRAY_SIZE (x.array))
1867 {
1868 case 3:
1869 x.array [2] ^= y.array [2];
1a0670f3 1870 /* Fall through. */
c6fb90c8
L
1871 case 2:
1872 x.array [1] ^= y.array [1];
1a0670f3 1873 /* Fall through. */
c6fb90c8
L
1874 case 1:
1875 x.array [0] ^= y.array [0];
1876 break;
1877 default:
1878 abort ();
1879 }
40fb9820
L
1880 return x;
1881}
1882
1883static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1884static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1885static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1886static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1887static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1888static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1889static const i386_operand_type anydisp
1890 = OPERAND_TYPE_ANYDISP;
40fb9820 1891static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1892static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1893static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1894static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1895static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1896static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1897static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1898static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1899static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1900static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1901static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1902static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1903
1904enum operand_type
1905{
1906 reg,
40fb9820
L
1907 imm,
1908 disp,
1909 anymem
1910};
1911
c6fb90c8 1912static INLINE int
40fb9820
L
1913operand_type_check (i386_operand_type t, enum operand_type c)
1914{
1915 switch (c)
1916 {
1917 case reg:
dc821c5f 1918 return t.bitfield.reg;
40fb9820 1919
40fb9820
L
1920 case imm:
1921 return (t.bitfield.imm8
1922 || t.bitfield.imm8s
1923 || t.bitfield.imm16
1924 || t.bitfield.imm32
1925 || t.bitfield.imm32s
1926 || t.bitfield.imm64);
1927
1928 case disp:
1929 return (t.bitfield.disp8
1930 || t.bitfield.disp16
1931 || t.bitfield.disp32
1932 || t.bitfield.disp32s
1933 || t.bitfield.disp64);
1934
1935 case anymem:
1936 return (t.bitfield.disp8
1937 || t.bitfield.disp16
1938 || t.bitfield.disp32
1939 || t.bitfield.disp32s
1940 || t.bitfield.disp64
1941 || t.bitfield.baseindex);
1942
1943 default:
1944 abort ();
1945 }
2cfe26b6
AM
1946
1947 return 0;
40fb9820
L
1948}
1949
7a54636a
L
1950/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1951 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1952
1953static INLINE int
7a54636a
L
1954match_operand_size (const insn_template *t, unsigned int wanted,
1955 unsigned int given)
5c07affc 1956{
3ac21baa
JB
1957 return !((i.types[given].bitfield.byte
1958 && !t->operand_types[wanted].bitfield.byte)
1959 || (i.types[given].bitfield.word
1960 && !t->operand_types[wanted].bitfield.word)
1961 || (i.types[given].bitfield.dword
1962 && !t->operand_types[wanted].bitfield.dword)
1963 || (i.types[given].bitfield.qword
1964 && !t->operand_types[wanted].bitfield.qword)
1965 || (i.types[given].bitfield.tbyte
1966 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1967}
1968
dd40ce22
L
1969/* Return 1 if there is no conflict in SIMD register between operand
1970 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1971
1972static INLINE int
dd40ce22
L
1973match_simd_size (const insn_template *t, unsigned int wanted,
1974 unsigned int given)
1b54b8d7 1975{
3ac21baa
JB
1976 return !((i.types[given].bitfield.xmmword
1977 && !t->operand_types[wanted].bitfield.xmmword)
1978 || (i.types[given].bitfield.ymmword
1979 && !t->operand_types[wanted].bitfield.ymmword)
1980 || (i.types[given].bitfield.zmmword
1981 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1982}
1983
7a54636a
L
1984/* Return 1 if there is no conflict in any size between operand GIVEN
1985 and opeand WANTED for instruction template T. */
5c07affc
L
1986
1987static INLINE int
dd40ce22
L
1988match_mem_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
5c07affc 1990{
7a54636a 1991 return (match_operand_size (t, wanted, given)
3ac21baa 1992 && !((i.types[given].bitfield.unspecified
af508cb9 1993 && !i.broadcast
3ac21baa
JB
1994 && !t->operand_types[wanted].bitfield.unspecified)
1995 || (i.types[given].bitfield.fword
1996 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1997 /* For scalar opcode templates to allow register and memory
1998 operands at the same time, some special casing is needed
d6793fa1
JB
1999 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2000 down-conversion vpmov*. */
3ac21baa 2001 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 2002 && !t->opcode_modifier.broadcast
3ac21baa
JB
2003 && (t->operand_types[wanted].bitfield.byte
2004 || t->operand_types[wanted].bitfield.word
2005 || t->operand_types[wanted].bitfield.dword
2006 || t->operand_types[wanted].bitfield.qword))
2007 ? (i.types[given].bitfield.xmmword
2008 || i.types[given].bitfield.ymmword
2009 || i.types[given].bitfield.zmmword)
2010 : !match_simd_size(t, wanted, given))));
5c07affc
L
2011}
2012
3ac21baa
JB
2013/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2014 operands for instruction template T, and it has MATCH_REVERSE set if there
2015 is no size conflict on any operands for the template with operands reversed
2016 (and the template allows for reversing in the first place). */
5c07affc 2017
3ac21baa
JB
2018#define MATCH_STRAIGHT 1
2019#define MATCH_REVERSE 2
2020
2021static INLINE unsigned int
d3ce72d0 2022operand_size_match (const insn_template *t)
5c07affc 2023{
3ac21baa 2024 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2025
2026 /* Don't check jump instructions. */
2027 if (t->opcode_modifier.jump
2028 || t->opcode_modifier.jumpbyte
2029 || t->opcode_modifier.jumpdword
2030 || t->opcode_modifier.jumpintersegment)
2031 return match;
2032
2033 /* Check memory and accumulator operand size. */
2034 for (j = 0; j < i.operands; j++)
2035 {
1b54b8d7
JB
2036 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2037 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2038 continue;
2039
1b54b8d7 2040 if (t->operand_types[j].bitfield.reg
7a54636a 2041 && !match_operand_size (t, j, j))
5c07affc
L
2042 {
2043 match = 0;
2044 break;
2045 }
2046
1b54b8d7 2047 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2048 && !match_simd_size (t, j, j))
1b54b8d7
JB
2049 {
2050 match = 0;
2051 break;
2052 }
2053
2054 if (t->operand_types[j].bitfield.acc
7a54636a 2055 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2056 {
2057 match = 0;
2058 break;
2059 }
2060
c48dadc9 2061 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2062 {
2063 match = 0;
2064 break;
2065 }
2066 }
2067
3ac21baa 2068 if (!t->opcode_modifier.d)
891edac4
L
2069 {
2070mismatch:
3ac21baa
JB
2071 if (!match)
2072 i.error = operand_size_mismatch;
2073 return match;
891edac4 2074 }
5c07affc
L
2075
2076 /* Check reverse. */
f5eb1d70 2077 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2078
f5eb1d70 2079 for (j = 0; j < i.operands; j++)
5c07affc 2080 {
f5eb1d70
JB
2081 unsigned int given = i.operands - j - 1;
2082
dbbc8b7e 2083 if (t->operand_types[j].bitfield.reg
f5eb1d70 2084 && !match_operand_size (t, j, given))
891edac4 2085 goto mismatch;
5c07affc 2086
dbbc8b7e 2087 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2088 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2089 goto mismatch;
2090
2091 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2092 && (!match_operand_size (t, j, given)
2093 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2094 goto mismatch;
2095
f5eb1d70 2096 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2097 goto mismatch;
5c07affc
L
2098 }
2099
3ac21baa 2100 return match | MATCH_REVERSE;
5c07affc
L
2101}
2102
c6fb90c8 2103static INLINE int
40fb9820
L
2104operand_type_match (i386_operand_type overlap,
2105 i386_operand_type given)
2106{
2107 i386_operand_type temp = overlap;
2108
2109 temp.bitfield.jumpabsolute = 0;
7d5e4556 2110 temp.bitfield.unspecified = 0;
5c07affc
L
2111 temp.bitfield.byte = 0;
2112 temp.bitfield.word = 0;
2113 temp.bitfield.dword = 0;
2114 temp.bitfield.fword = 0;
2115 temp.bitfield.qword = 0;
2116 temp.bitfield.tbyte = 0;
2117 temp.bitfield.xmmword = 0;
c0f3af97 2118 temp.bitfield.ymmword = 0;
43234a1e 2119 temp.bitfield.zmmword = 0;
0dfbf9d7 2120 if (operand_type_all_zero (&temp))
891edac4 2121 goto mismatch;
40fb9820 2122
891edac4
L
2123 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2124 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2125 return 1;
2126
2127mismatch:
a65babc9 2128 i.error = operand_type_mismatch;
891edac4 2129 return 0;
40fb9820
L
2130}
2131
7d5e4556 2132/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2133 unless the expected operand type register overlap is null.
2134 Memory operand size of certain SIMD instructions is also being checked
2135 here. */
40fb9820 2136
c6fb90c8 2137static INLINE int
dc821c5f 2138operand_type_register_match (i386_operand_type g0,
40fb9820 2139 i386_operand_type t0,
40fb9820
L
2140 i386_operand_type g1,
2141 i386_operand_type t1)
2142{
10c17abd
JB
2143 if (!g0.bitfield.reg
2144 && !g0.bitfield.regsimd
2145 && (!operand_type_check (g0, anymem)
2146 || g0.bitfield.unspecified
2147 || !t0.bitfield.regsimd))
40fb9820
L
2148 return 1;
2149
10c17abd
JB
2150 if (!g1.bitfield.reg
2151 && !g1.bitfield.regsimd
2152 && (!operand_type_check (g1, anymem)
2153 || g1.bitfield.unspecified
2154 || !t1.bitfield.regsimd))
40fb9820
L
2155 return 1;
2156
dc821c5f
JB
2157 if (g0.bitfield.byte == g1.bitfield.byte
2158 && g0.bitfield.word == g1.bitfield.word
2159 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2160 && g0.bitfield.qword == g1.bitfield.qword
2161 && g0.bitfield.xmmword == g1.bitfield.xmmword
2162 && g0.bitfield.ymmword == g1.bitfield.ymmword
2163 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2164 return 1;
2165
dc821c5f
JB
2166 if (!(t0.bitfield.byte & t1.bitfield.byte)
2167 && !(t0.bitfield.word & t1.bitfield.word)
2168 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2169 && !(t0.bitfield.qword & t1.bitfield.qword)
2170 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2171 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2172 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2173 return 1;
2174
a65babc9 2175 i.error = register_type_mismatch;
891edac4
L
2176
2177 return 0;
40fb9820
L
2178}
2179
4c692bc7
JB
2180static INLINE unsigned int
2181register_number (const reg_entry *r)
2182{
2183 unsigned int nr = r->reg_num;
2184
2185 if (r->reg_flags & RegRex)
2186 nr += 8;
2187
200cbe0f
L
2188 if (r->reg_flags & RegVRex)
2189 nr += 16;
2190
4c692bc7
JB
2191 return nr;
2192}
2193
252b5132 2194static INLINE unsigned int
40fb9820 2195mode_from_disp_size (i386_operand_type t)
252b5132 2196{
b5014f7a 2197 if (t.bitfield.disp8)
40fb9820
L
2198 return 1;
2199 else if (t.bitfield.disp16
2200 || t.bitfield.disp32
2201 || t.bitfield.disp32s)
2202 return 2;
2203 else
2204 return 0;
252b5132
RH
2205}
2206
2207static INLINE int
65879393 2208fits_in_signed_byte (addressT num)
252b5132 2209{
65879393 2210 return num + 0x80 <= 0xff;
47926f60 2211}
252b5132
RH
2212
2213static INLINE int
65879393 2214fits_in_unsigned_byte (addressT num)
252b5132 2215{
65879393 2216 return num <= 0xff;
47926f60 2217}
252b5132
RH
2218
2219static INLINE int
65879393 2220fits_in_unsigned_word (addressT num)
252b5132 2221{
65879393 2222 return num <= 0xffff;
47926f60 2223}
252b5132
RH
2224
2225static INLINE int
65879393 2226fits_in_signed_word (addressT num)
252b5132 2227{
65879393 2228 return num + 0x8000 <= 0xffff;
47926f60 2229}
2a962e6d 2230
3e73aa7c 2231static INLINE int
65879393 2232fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2233{
2234#ifndef BFD64
2235 return 1;
2236#else
65879393 2237 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2238#endif
2239} /* fits_in_signed_long() */
2a962e6d 2240
3e73aa7c 2241static INLINE int
65879393 2242fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2243{
2244#ifndef BFD64
2245 return 1;
2246#else
65879393 2247 return num <= 0xffffffff;
3e73aa7c
JH
2248#endif
2249} /* fits_in_unsigned_long() */
252b5132 2250
43234a1e 2251static INLINE int
b5014f7a 2252fits_in_disp8 (offsetT num)
43234a1e
L
2253{
2254 int shift = i.memshift;
2255 unsigned int mask;
2256
2257 if (shift == -1)
2258 abort ();
2259
2260 mask = (1 << shift) - 1;
2261
2262 /* Return 0 if NUM isn't properly aligned. */
2263 if ((num & mask))
2264 return 0;
2265
2266 /* Check if NUM will fit in 8bit after shift. */
2267 return fits_in_signed_byte (num >> shift);
2268}
2269
a683cc34
SP
2270static INLINE int
2271fits_in_imm4 (offsetT num)
2272{
2273 return (num & 0xf) == num;
2274}
2275
40fb9820 2276static i386_operand_type
e3bb37b5 2277smallest_imm_type (offsetT num)
252b5132 2278{
40fb9820 2279 i386_operand_type t;
7ab9ffdd 2280
0dfbf9d7 2281 operand_type_set (&t, 0);
40fb9820
L
2282 t.bitfield.imm64 = 1;
2283
2284 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2285 {
2286 /* This code is disabled on the 486 because all the Imm1 forms
2287 in the opcode table are slower on the i486. They're the
2288 versions with the implicitly specified single-position
2289 displacement, which has another syntax if you really want to
2290 use that form. */
40fb9820
L
2291 t.bitfield.imm1 = 1;
2292 t.bitfield.imm8 = 1;
2293 t.bitfield.imm8s = 1;
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_byte (num))
2299 {
2300 t.bitfield.imm8 = 1;
2301 t.bitfield.imm8s = 1;
2302 t.bitfield.imm16 = 1;
2303 t.bitfield.imm32 = 1;
2304 t.bitfield.imm32s = 1;
2305 }
2306 else if (fits_in_unsigned_byte (num))
2307 {
2308 t.bitfield.imm8 = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2314 {
2315 t.bitfield.imm16 = 1;
2316 t.bitfield.imm32 = 1;
2317 t.bitfield.imm32s = 1;
2318 }
2319 else if (fits_in_signed_long (num))
2320 {
2321 t.bitfield.imm32 = 1;
2322 t.bitfield.imm32s = 1;
2323 }
2324 else if (fits_in_unsigned_long (num))
2325 t.bitfield.imm32 = 1;
2326
2327 return t;
47926f60 2328}
252b5132 2329
847f7ad4 2330static offsetT
e3bb37b5 2331offset_in_range (offsetT val, int size)
847f7ad4 2332{
508866be 2333 addressT mask;
ba2adb93 2334
847f7ad4
AM
2335 switch (size)
2336 {
508866be
L
2337 case 1: mask = ((addressT) 1 << 8) - 1; break;
2338 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2339 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2340#ifdef BFD64
2341 case 8: mask = ((addressT) 2 << 63) - 1; break;
2342#endif
47926f60 2343 default: abort ();
847f7ad4
AM
2344 }
2345
9de868bf
L
2346#ifdef BFD64
2347 /* If BFD64, sign extend val for 32bit address mode. */
2348 if (flag_code != CODE_64BIT
2349 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2350 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2351 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2352#endif
ba2adb93 2353
47926f60 2354 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2355 {
2356 char buf1[40], buf2[40];
2357
2358 sprint_value (buf1, val);
2359 sprint_value (buf2, val & mask);
2360 as_warn (_("%s shortened to %s"), buf1, buf2);
2361 }
2362 return val & mask;
2363}
2364
c32fa91d
L
2365enum PREFIX_GROUP
2366{
2367 PREFIX_EXIST = 0,
2368 PREFIX_LOCK,
2369 PREFIX_REP,
04ef582a 2370 PREFIX_DS,
c32fa91d
L
2371 PREFIX_OTHER
2372};
2373
2374/* Returns
2375 a. PREFIX_EXIST if attempting to add a prefix where one from the
2376 same class already exists.
2377 b. PREFIX_LOCK if lock prefix is added.
2378 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2379 d. PREFIX_DS if ds prefix is added.
2380 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2381 */
2382
2383static enum PREFIX_GROUP
e3bb37b5 2384add_prefix (unsigned int prefix)
252b5132 2385{
c32fa91d 2386 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2387 unsigned int q;
252b5132 2388
29b0f896
AM
2389 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2390 && flag_code == CODE_64BIT)
b1905489 2391 {
161a04f6 2392 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2393 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2394 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2395 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2396 ret = PREFIX_EXIST;
b1905489
JB
2397 q = REX_PREFIX;
2398 }
3e73aa7c 2399 else
b1905489
JB
2400 {
2401 switch (prefix)
2402 {
2403 default:
2404 abort ();
2405
b1905489 2406 case DS_PREFIX_OPCODE:
04ef582a
L
2407 ret = PREFIX_DS;
2408 /* Fall through. */
2409 case CS_PREFIX_OPCODE:
b1905489
JB
2410 case ES_PREFIX_OPCODE:
2411 case FS_PREFIX_OPCODE:
2412 case GS_PREFIX_OPCODE:
2413 case SS_PREFIX_OPCODE:
2414 q = SEG_PREFIX;
2415 break;
2416
2417 case REPNE_PREFIX_OPCODE:
2418 case REPE_PREFIX_OPCODE:
c32fa91d
L
2419 q = REP_PREFIX;
2420 ret = PREFIX_REP;
2421 break;
2422
b1905489 2423 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2424 q = LOCK_PREFIX;
2425 ret = PREFIX_LOCK;
b1905489
JB
2426 break;
2427
2428 case FWAIT_OPCODE:
2429 q = WAIT_PREFIX;
2430 break;
2431
2432 case ADDR_PREFIX_OPCODE:
2433 q = ADDR_PREFIX;
2434 break;
2435
2436 case DATA_PREFIX_OPCODE:
2437 q = DATA_PREFIX;
2438 break;
2439 }
2440 if (i.prefix[q] != 0)
c32fa91d 2441 ret = PREFIX_EXIST;
b1905489 2442 }
252b5132 2443
b1905489 2444 if (ret)
252b5132 2445 {
b1905489
JB
2446 if (!i.prefix[q])
2447 ++i.prefixes;
2448 i.prefix[q] |= prefix;
252b5132 2449 }
b1905489
JB
2450 else
2451 as_bad (_("same type of prefix used twice"));
252b5132 2452
252b5132
RH
2453 return ret;
2454}
2455
2456static void
78f12dd3 2457update_code_flag (int value, int check)
eecb386c 2458{
78f12dd3
L
2459 PRINTF_LIKE ((*as_error));
2460
1e9cc1c2 2461 flag_code = (enum flag_code) value;
40fb9820
L
2462 if (flag_code == CODE_64BIT)
2463 {
2464 cpu_arch_flags.bitfield.cpu64 = 1;
2465 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2466 }
2467 else
2468 {
2469 cpu_arch_flags.bitfield.cpu64 = 0;
2470 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2471 }
2472 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2473 {
78f12dd3
L
2474 if (check)
2475 as_error = as_fatal;
2476 else
2477 as_error = as_bad;
2478 (*as_error) (_("64bit mode not supported on `%s'."),
2479 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2480 }
40fb9820 2481 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2482 {
78f12dd3
L
2483 if (check)
2484 as_error = as_fatal;
2485 else
2486 as_error = as_bad;
2487 (*as_error) (_("32bit mode not supported on `%s'."),
2488 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2489 }
eecb386c
AM
2490 stackop_size = '\0';
2491}
2492
78f12dd3
L
2493static void
2494set_code_flag (int value)
2495{
2496 update_code_flag (value, 0);
2497}
2498
eecb386c 2499static void
e3bb37b5 2500set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2501{
1e9cc1c2 2502 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2503 if (flag_code != CODE_16BIT)
2504 abort ();
2505 cpu_arch_flags.bitfield.cpu64 = 0;
2506 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2507 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2508}
2509
2510static void
e3bb37b5 2511set_intel_syntax (int syntax_flag)
252b5132
RH
2512{
2513 /* Find out if register prefixing is specified. */
2514 int ask_naked_reg = 0;
2515
2516 SKIP_WHITESPACE ();
29b0f896 2517 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2518 {
d02603dc
NC
2519 char *string;
2520 int e = get_symbol_name (&string);
252b5132 2521
47926f60 2522 if (strcmp (string, "prefix") == 0)
252b5132 2523 ask_naked_reg = 1;
47926f60 2524 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2525 ask_naked_reg = -1;
2526 else
d0b47220 2527 as_bad (_("bad argument to syntax directive."));
d02603dc 2528 (void) restore_line_pointer (e);
252b5132
RH
2529 }
2530 demand_empty_rest_of_line ();
c3332e24 2531
252b5132
RH
2532 intel_syntax = syntax_flag;
2533
2534 if (ask_naked_reg == 0)
f86103b7
AM
2535 allow_naked_reg = (intel_syntax
2536 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2537 else
2538 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2539
ee86248c 2540 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2541
e4a3b5a4 2542 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2543 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2544 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2545}
2546
1efbbeb4
L
2547static void
2548set_intel_mnemonic (int mnemonic_flag)
2549{
e1d4d893 2550 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2551}
2552
db51cc60
L
2553static void
2554set_allow_index_reg (int flag)
2555{
2556 allow_index_reg = flag;
2557}
2558
cb19c032 2559static void
7bab8ab5 2560set_check (int what)
cb19c032 2561{
7bab8ab5
JB
2562 enum check_kind *kind;
2563 const char *str;
2564
2565 if (what)
2566 {
2567 kind = &operand_check;
2568 str = "operand";
2569 }
2570 else
2571 {
2572 kind = &sse_check;
2573 str = "sse";
2574 }
2575
cb19c032
L
2576 SKIP_WHITESPACE ();
2577
2578 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2579 {
d02603dc
NC
2580 char *string;
2581 int e = get_symbol_name (&string);
cb19c032
L
2582
2583 if (strcmp (string, "none") == 0)
7bab8ab5 2584 *kind = check_none;
cb19c032 2585 else if (strcmp (string, "warning") == 0)
7bab8ab5 2586 *kind = check_warning;
cb19c032 2587 else if (strcmp (string, "error") == 0)
7bab8ab5 2588 *kind = check_error;
cb19c032 2589 else
7bab8ab5 2590 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2591 (void) restore_line_pointer (e);
cb19c032
L
2592 }
2593 else
7bab8ab5 2594 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2595
2596 demand_empty_rest_of_line ();
2597}
2598
8a9036a4
L
2599static void
2600check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2601 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2602{
2603#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2604 static const char *arch;
2605
2606 /* Intel LIOM is only supported on ELF. */
2607 if (!IS_ELF)
2608 return;
2609
2610 if (!arch)
2611 {
2612 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2613 use default_arch. */
2614 arch = cpu_arch_name;
2615 if (!arch)
2616 arch = default_arch;
2617 }
2618
81486035
L
2619 /* If we are targeting Intel MCU, we must enable it. */
2620 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2621 || new_flag.bitfield.cpuiamcu)
2622 return;
2623
3632d14b 2624 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2625 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2626 || new_flag.bitfield.cpul1om)
8a9036a4 2627 return;
76ba9986 2628
7a9068fe
L
2629 /* If we are targeting Intel K1OM, we must enable it. */
2630 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2631 || new_flag.bitfield.cpuk1om)
2632 return;
2633
8a9036a4
L
2634 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2635#endif
2636}
2637
e413e4e9 2638static void
e3bb37b5 2639set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2640{
47926f60 2641 SKIP_WHITESPACE ();
e413e4e9 2642
29b0f896 2643 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2644 {
d02603dc
NC
2645 char *string;
2646 int e = get_symbol_name (&string);
91d6fa6a 2647 unsigned int j;
40fb9820 2648 i386_cpu_flags flags;
e413e4e9 2649
91d6fa6a 2650 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2651 {
91d6fa6a 2652 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2653 {
91d6fa6a 2654 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2655
5c6af06e
JB
2656 if (*string != '.')
2657 {
91d6fa6a 2658 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2659 cpu_sub_arch_name = NULL;
91d6fa6a 2660 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2661 if (flag_code == CODE_64BIT)
2662 {
2663 cpu_arch_flags.bitfield.cpu64 = 1;
2664 cpu_arch_flags.bitfield.cpuno64 = 0;
2665 }
2666 else
2667 {
2668 cpu_arch_flags.bitfield.cpu64 = 0;
2669 cpu_arch_flags.bitfield.cpuno64 = 1;
2670 }
91d6fa6a
NC
2671 cpu_arch_isa = cpu_arch[j].type;
2672 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2673 if (!cpu_arch_tune_set)
2674 {
2675 cpu_arch_tune = cpu_arch_isa;
2676 cpu_arch_tune_flags = cpu_arch_isa_flags;
2677 }
5c6af06e
JB
2678 break;
2679 }
40fb9820 2680
293f5f65
L
2681 flags = cpu_flags_or (cpu_arch_flags,
2682 cpu_arch[j].flags);
81486035 2683
5b64d091 2684 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2685 {
6305a203
L
2686 if (cpu_sub_arch_name)
2687 {
2688 char *name = cpu_sub_arch_name;
2689 cpu_sub_arch_name = concat (name,
91d6fa6a 2690 cpu_arch[j].name,
1bf57e9f 2691 (const char *) NULL);
6305a203
L
2692 free (name);
2693 }
2694 else
91d6fa6a 2695 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2696 cpu_arch_flags = flags;
a586129e 2697 cpu_arch_isa_flags = flags;
5c6af06e 2698 }
0089dace
L
2699 else
2700 cpu_arch_isa_flags
2701 = cpu_flags_or (cpu_arch_isa_flags,
2702 cpu_arch[j].flags);
d02603dc 2703 (void) restore_line_pointer (e);
5c6af06e
JB
2704 demand_empty_rest_of_line ();
2705 return;
e413e4e9
AM
2706 }
2707 }
293f5f65
L
2708
2709 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2710 {
33eaf5de 2711 /* Disable an ISA extension. */
293f5f65
L
2712 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2713 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2714 {
2715 flags = cpu_flags_and_not (cpu_arch_flags,
2716 cpu_noarch[j].flags);
2717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2718 {
2719 if (cpu_sub_arch_name)
2720 {
2721 char *name = cpu_sub_arch_name;
2722 cpu_sub_arch_name = concat (name, string,
2723 (const char *) NULL);
2724 free (name);
2725 }
2726 else
2727 cpu_sub_arch_name = xstrdup (string);
2728 cpu_arch_flags = flags;
2729 cpu_arch_isa_flags = flags;
2730 }
2731 (void) restore_line_pointer (e);
2732 demand_empty_rest_of_line ();
2733 return;
2734 }
2735
2736 j = ARRAY_SIZE (cpu_arch);
2737 }
2738
91d6fa6a 2739 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2740 as_bad (_("no such architecture: `%s'"), string);
2741
2742 *input_line_pointer = e;
2743 }
2744 else
2745 as_bad (_("missing cpu architecture"));
2746
fddf5b5b
AM
2747 no_cond_jump_promotion = 0;
2748 if (*input_line_pointer == ','
29b0f896 2749 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2750 {
d02603dc
NC
2751 char *string;
2752 char e;
2753
2754 ++input_line_pointer;
2755 e = get_symbol_name (&string);
fddf5b5b
AM
2756
2757 if (strcmp (string, "nojumps") == 0)
2758 no_cond_jump_promotion = 1;
2759 else if (strcmp (string, "jumps") == 0)
2760 ;
2761 else
2762 as_bad (_("no such architecture modifier: `%s'"), string);
2763
d02603dc 2764 (void) restore_line_pointer (e);
fddf5b5b
AM
2765 }
2766
e413e4e9
AM
2767 demand_empty_rest_of_line ();
2768}
2769
8a9036a4
L
2770enum bfd_architecture
2771i386_arch (void)
2772{
3632d14b 2773 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2774 {
2775 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2776 || flag_code != CODE_64BIT)
2777 as_fatal (_("Intel L1OM is 64bit ELF only"));
2778 return bfd_arch_l1om;
2779 }
7a9068fe
L
2780 else if (cpu_arch_isa == PROCESSOR_K1OM)
2781 {
2782 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2783 || flag_code != CODE_64BIT)
2784 as_fatal (_("Intel K1OM is 64bit ELF only"));
2785 return bfd_arch_k1om;
2786 }
81486035
L
2787 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2788 {
2789 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2790 || flag_code == CODE_64BIT)
2791 as_fatal (_("Intel MCU is 32bit ELF only"));
2792 return bfd_arch_iamcu;
2793 }
8a9036a4
L
2794 else
2795 return bfd_arch_i386;
2796}
2797
b9d79e03 2798unsigned long
7016a5d5 2799i386_mach (void)
b9d79e03 2800{
351f65ca 2801 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2802 {
3632d14b 2803 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2804 {
351f65ca
L
2805 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2806 || default_arch[6] != '\0')
8a9036a4
L
2807 as_fatal (_("Intel L1OM is 64bit ELF only"));
2808 return bfd_mach_l1om;
2809 }
7a9068fe
L
2810 else if (cpu_arch_isa == PROCESSOR_K1OM)
2811 {
2812 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2813 || default_arch[6] != '\0')
2814 as_fatal (_("Intel K1OM is 64bit ELF only"));
2815 return bfd_mach_k1om;
2816 }
351f65ca 2817 else if (default_arch[6] == '\0')
8a9036a4 2818 return bfd_mach_x86_64;
351f65ca
L
2819 else
2820 return bfd_mach_x64_32;
8a9036a4 2821 }
5197d474
L
2822 else if (!strcmp (default_arch, "i386")
2823 || !strcmp (default_arch, "iamcu"))
81486035
L
2824 {
2825 if (cpu_arch_isa == PROCESSOR_IAMCU)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2828 as_fatal (_("Intel MCU is 32bit ELF only"));
2829 return bfd_mach_i386_iamcu;
2830 }
2831 else
2832 return bfd_mach_i386_i386;
2833 }
b9d79e03 2834 else
2b5d6a91 2835 as_fatal (_("unknown architecture"));
b9d79e03 2836}
b9d79e03 2837\f
252b5132 2838void
7016a5d5 2839md_begin (void)
252b5132
RH
2840{
2841 const char *hash_err;
2842
86fa6981
L
2843 /* Support pseudo prefixes like {disp32}. */
2844 lex_type ['{'] = LEX_BEGIN_NAME;
2845
47926f60 2846 /* Initialize op_hash hash table. */
252b5132
RH
2847 op_hash = hash_new ();
2848
2849 {
d3ce72d0 2850 const insn_template *optab;
29b0f896 2851 templates *core_optab;
252b5132 2852
47926f60
KH
2853 /* Setup for loop. */
2854 optab = i386_optab;
add39d23 2855 core_optab = XNEW (templates);
252b5132
RH
2856 core_optab->start = optab;
2857
2858 while (1)
2859 {
2860 ++optab;
2861 if (optab->name == NULL
2862 || strcmp (optab->name, (optab - 1)->name) != 0)
2863 {
2864 /* different name --> ship out current template list;
47926f60 2865 add to hash table; & begin anew. */
252b5132
RH
2866 core_optab->end = optab;
2867 hash_err = hash_insert (op_hash,
2868 (optab - 1)->name,
5a49b8ac 2869 (void *) core_optab);
252b5132
RH
2870 if (hash_err)
2871 {
b37df7c4 2872 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2873 (optab - 1)->name,
2874 hash_err);
2875 }
2876 if (optab->name == NULL)
2877 break;
add39d23 2878 core_optab = XNEW (templates);
252b5132
RH
2879 core_optab->start = optab;
2880 }
2881 }
2882 }
2883
47926f60 2884 /* Initialize reg_hash hash table. */
252b5132
RH
2885 reg_hash = hash_new ();
2886 {
29b0f896 2887 const reg_entry *regtab;
c3fe08fa 2888 unsigned int regtab_size = i386_regtab_size;
252b5132 2889
c3fe08fa 2890 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2891 {
5a49b8ac 2892 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2893 if (hash_err)
b37df7c4 2894 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2895 regtab->reg_name,
2896 hash_err);
252b5132
RH
2897 }
2898 }
2899
47926f60 2900 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2901 {
29b0f896
AM
2902 int c;
2903 char *p;
252b5132
RH
2904
2905 for (c = 0; c < 256; c++)
2906 {
3882b010 2907 if (ISDIGIT (c))
252b5132
RH
2908 {
2909 digit_chars[c] = c;
2910 mnemonic_chars[c] = c;
2911 register_chars[c] = c;
2912 operand_chars[c] = c;
2913 }
3882b010 2914 else if (ISLOWER (c))
252b5132
RH
2915 {
2916 mnemonic_chars[c] = c;
2917 register_chars[c] = c;
2918 operand_chars[c] = c;
2919 }
3882b010 2920 else if (ISUPPER (c))
252b5132 2921 {
3882b010 2922 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2923 register_chars[c] = mnemonic_chars[c];
2924 operand_chars[c] = c;
2925 }
43234a1e 2926 else if (c == '{' || c == '}')
86fa6981
L
2927 {
2928 mnemonic_chars[c] = c;
2929 operand_chars[c] = c;
2930 }
252b5132 2931
3882b010 2932 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2933 identifier_chars[c] = c;
2934 else if (c >= 128)
2935 {
2936 identifier_chars[c] = c;
2937 operand_chars[c] = c;
2938 }
2939 }
2940
2941#ifdef LEX_AT
2942 identifier_chars['@'] = '@';
32137342
NC
2943#endif
2944#ifdef LEX_QM
2945 identifier_chars['?'] = '?';
2946 operand_chars['?'] = '?';
252b5132 2947#endif
252b5132 2948 digit_chars['-'] = '-';
c0f3af97 2949 mnemonic_chars['_'] = '_';
791fe849 2950 mnemonic_chars['-'] = '-';
0003779b 2951 mnemonic_chars['.'] = '.';
252b5132
RH
2952 identifier_chars['_'] = '_';
2953 identifier_chars['.'] = '.';
2954
2955 for (p = operand_special_chars; *p != '\0'; p++)
2956 operand_chars[(unsigned char) *p] = *p;
2957 }
2958
a4447b93
RH
2959 if (flag_code == CODE_64BIT)
2960 {
ca19b261
KT
2961#if defined (OBJ_COFF) && defined (TE_PE)
2962 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2963 ? 32 : 16);
2964#else
a4447b93 2965 x86_dwarf2_return_column = 16;
ca19b261 2966#endif
61ff971f 2967 x86_cie_data_alignment = -8;
a4447b93
RH
2968 }
2969 else
2970 {
2971 x86_dwarf2_return_column = 8;
2972 x86_cie_data_alignment = -4;
2973 }
252b5132
RH
2974}
2975
2976void
e3bb37b5 2977i386_print_statistics (FILE *file)
252b5132
RH
2978{
2979 hash_print_statistics (file, "i386 opcode", op_hash);
2980 hash_print_statistics (file, "i386 register", reg_hash);
2981}
2982\f
252b5132
RH
2983#ifdef DEBUG386
2984
ce8a8b2f 2985/* Debugging routines for md_assemble. */
d3ce72d0 2986static void pte (insn_template *);
40fb9820 2987static void pt (i386_operand_type);
e3bb37b5
L
2988static void pe (expressionS *);
2989static void ps (symbolS *);
252b5132
RH
2990
2991static void
e3bb37b5 2992pi (char *line, i386_insn *x)
252b5132 2993{
09137c09 2994 unsigned int j;
252b5132
RH
2995
2996 fprintf (stdout, "%s: template ", line);
2997 pte (&x->tm);
09f131f2
JH
2998 fprintf (stdout, " address: base %s index %s scale %x\n",
2999 x->base_reg ? x->base_reg->reg_name : "none",
3000 x->index_reg ? x->index_reg->reg_name : "none",
3001 x->log2_scale_factor);
3002 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3003 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3004 fprintf (stdout, " sib: base %x index %x scale %x\n",
3005 x->sib.base, x->sib.index, x->sib.scale);
3006 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3007 (x->rex & REX_W) != 0,
3008 (x->rex & REX_R) != 0,
3009 (x->rex & REX_X) != 0,
3010 (x->rex & REX_B) != 0);
09137c09 3011 for (j = 0; j < x->operands; j++)
252b5132 3012 {
09137c09
SP
3013 fprintf (stdout, " #%d: ", j + 1);
3014 pt (x->types[j]);
252b5132 3015 fprintf (stdout, "\n");
dc821c5f 3016 if (x->types[j].bitfield.reg
09137c09 3017 || x->types[j].bitfield.regmmx
1b54b8d7 3018 || x->types[j].bitfield.regsimd
09137c09
SP
3019 || x->types[j].bitfield.sreg2
3020 || x->types[j].bitfield.sreg3
3021 || x->types[j].bitfield.control
3022 || x->types[j].bitfield.debug
3023 || x->types[j].bitfield.test)
3024 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3025 if (operand_type_check (x->types[j], imm))
3026 pe (x->op[j].imms);
3027 if (operand_type_check (x->types[j], disp))
3028 pe (x->op[j].disps);
252b5132
RH
3029 }
3030}
3031
3032static void
d3ce72d0 3033pte (insn_template *t)
252b5132 3034{
09137c09 3035 unsigned int j;
252b5132 3036 fprintf (stdout, " %d operands ", t->operands);
47926f60 3037 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3038 if (t->extension_opcode != None)
3039 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3040 if (t->opcode_modifier.d)
252b5132 3041 fprintf (stdout, "D");
40fb9820 3042 if (t->opcode_modifier.w)
252b5132
RH
3043 fprintf (stdout, "W");
3044 fprintf (stdout, "\n");
09137c09 3045 for (j = 0; j < t->operands; j++)
252b5132 3046 {
09137c09
SP
3047 fprintf (stdout, " #%d type ", j + 1);
3048 pt (t->operand_types[j]);
252b5132
RH
3049 fprintf (stdout, "\n");
3050 }
3051}
3052
3053static void
e3bb37b5 3054pe (expressionS *e)
252b5132 3055{
24eab124 3056 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3057 fprintf (stdout, " add_number %ld (%lx)\n",
3058 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3059 if (e->X_add_symbol)
3060 {
3061 fprintf (stdout, " add_symbol ");
3062 ps (e->X_add_symbol);
3063 fprintf (stdout, "\n");
3064 }
3065 if (e->X_op_symbol)
3066 {
3067 fprintf (stdout, " op_symbol ");
3068 ps (e->X_op_symbol);
3069 fprintf (stdout, "\n");
3070 }
3071}
3072
3073static void
e3bb37b5 3074ps (symbolS *s)
252b5132
RH
3075{
3076 fprintf (stdout, "%s type %s%s",
3077 S_GET_NAME (s),
3078 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3079 segment_name (S_GET_SEGMENT (s)));
3080}
3081
7b81dfbb 3082static struct type_name
252b5132 3083 {
40fb9820
L
3084 i386_operand_type mask;
3085 const char *name;
252b5132 3086 }
7b81dfbb 3087const type_names[] =
252b5132 3088{
40fb9820
L
3089 { OPERAND_TYPE_REG8, "r8" },
3090 { OPERAND_TYPE_REG16, "r16" },
3091 { OPERAND_TYPE_REG32, "r32" },
3092 { OPERAND_TYPE_REG64, "r64" },
3093 { OPERAND_TYPE_IMM8, "i8" },
3094 { OPERAND_TYPE_IMM8, "i8s" },
3095 { OPERAND_TYPE_IMM16, "i16" },
3096 { OPERAND_TYPE_IMM32, "i32" },
3097 { OPERAND_TYPE_IMM32S, "i32s" },
3098 { OPERAND_TYPE_IMM64, "i64" },
3099 { OPERAND_TYPE_IMM1, "i1" },
3100 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3101 { OPERAND_TYPE_DISP8, "d8" },
3102 { OPERAND_TYPE_DISP16, "d16" },
3103 { OPERAND_TYPE_DISP32, "d32" },
3104 { OPERAND_TYPE_DISP32S, "d32s" },
3105 { OPERAND_TYPE_DISP64, "d64" },
3106 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3107 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3108 { OPERAND_TYPE_CONTROL, "control reg" },
3109 { OPERAND_TYPE_TEST, "test reg" },
3110 { OPERAND_TYPE_DEBUG, "debug reg" },
3111 { OPERAND_TYPE_FLOATREG, "FReg" },
3112 { OPERAND_TYPE_FLOATACC, "FAcc" },
3113 { OPERAND_TYPE_SREG2, "SReg2" },
3114 { OPERAND_TYPE_SREG3, "SReg3" },
3115 { OPERAND_TYPE_ACC, "Acc" },
3116 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3117 { OPERAND_TYPE_REGMMX, "rMMX" },
3118 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3119 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3120 { OPERAND_TYPE_REGZMM, "rZMM" },
3121 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3122 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3123};
3124
3125static void
40fb9820 3126pt (i386_operand_type t)
252b5132 3127{
40fb9820 3128 unsigned int j;
c6fb90c8 3129 i386_operand_type a;
252b5132 3130
40fb9820 3131 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3132 {
3133 a = operand_type_and (t, type_names[j].mask);
0349dc08 3134 if (!operand_type_all_zero (&a))
c6fb90c8
L
3135 fprintf (stdout, "%s, ", type_names[j].name);
3136 }
252b5132
RH
3137 fflush (stdout);
3138}
3139
3140#endif /* DEBUG386 */
3141\f
252b5132 3142static bfd_reloc_code_real_type
3956db08 3143reloc (unsigned int size,
64e74474
AM
3144 int pcrel,
3145 int sign,
3146 bfd_reloc_code_real_type other)
252b5132 3147{
47926f60 3148 if (other != NO_RELOC)
3956db08 3149 {
91d6fa6a 3150 reloc_howto_type *rel;
3956db08
JB
3151
3152 if (size == 8)
3153 switch (other)
3154 {
64e74474
AM
3155 case BFD_RELOC_X86_64_GOT32:
3156 return BFD_RELOC_X86_64_GOT64;
3157 break;
553d1284
L
3158 case BFD_RELOC_X86_64_GOTPLT64:
3159 return BFD_RELOC_X86_64_GOTPLT64;
3160 break;
64e74474
AM
3161 case BFD_RELOC_X86_64_PLTOFF64:
3162 return BFD_RELOC_X86_64_PLTOFF64;
3163 break;
3164 case BFD_RELOC_X86_64_GOTPC32:
3165 other = BFD_RELOC_X86_64_GOTPC64;
3166 break;
3167 case BFD_RELOC_X86_64_GOTPCREL:
3168 other = BFD_RELOC_X86_64_GOTPCREL64;
3169 break;
3170 case BFD_RELOC_X86_64_TPOFF32:
3171 other = BFD_RELOC_X86_64_TPOFF64;
3172 break;
3173 case BFD_RELOC_X86_64_DTPOFF32:
3174 other = BFD_RELOC_X86_64_DTPOFF64;
3175 break;
3176 default:
3177 break;
3956db08 3178 }
e05278af 3179
8ce3d284 3180#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3181 if (other == BFD_RELOC_SIZE32)
3182 {
3183 if (size == 8)
1ab668bf 3184 other = BFD_RELOC_SIZE64;
8fd4256d 3185 if (pcrel)
1ab668bf
AM
3186 {
3187 as_bad (_("there are no pc-relative size relocations"));
3188 return NO_RELOC;
3189 }
8fd4256d 3190 }
8ce3d284 3191#endif
8fd4256d 3192
e05278af 3193 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3194 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3195 sign = -1;
3196
91d6fa6a
NC
3197 rel = bfd_reloc_type_lookup (stdoutput, other);
3198 if (!rel)
3956db08 3199 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3200 else if (size != bfd_get_reloc_size (rel))
3956db08 3201 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3202 bfd_get_reloc_size (rel),
3956db08 3203 size);
91d6fa6a 3204 else if (pcrel && !rel->pc_relative)
3956db08 3205 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3206 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3207 && !sign)
91d6fa6a 3208 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3209 && sign > 0))
3956db08
JB
3210 as_bad (_("relocated field and relocation type differ in signedness"));
3211 else
3212 return other;
3213 return NO_RELOC;
3214 }
252b5132
RH
3215
3216 if (pcrel)
3217 {
3e73aa7c 3218 if (!sign)
3956db08 3219 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3220 switch (size)
3221 {
3222 case 1: return BFD_RELOC_8_PCREL;
3223 case 2: return BFD_RELOC_16_PCREL;
d258b828 3224 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3225 case 8: return BFD_RELOC_64_PCREL;
252b5132 3226 }
3956db08 3227 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3228 }
3229 else
3230 {
3956db08 3231 if (sign > 0)
e5cb08ac 3232 switch (size)
3e73aa7c
JH
3233 {
3234 case 4: return BFD_RELOC_X86_64_32S;
3235 }
3236 else
3237 switch (size)
3238 {
3239 case 1: return BFD_RELOC_8;
3240 case 2: return BFD_RELOC_16;
3241 case 4: return BFD_RELOC_32;
3242 case 8: return BFD_RELOC_64;
3243 }
3956db08
JB
3244 as_bad (_("cannot do %s %u byte relocation"),
3245 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3246 }
3247
0cc9e1d3 3248 return NO_RELOC;
252b5132
RH
3249}
3250
47926f60
KH
3251/* Here we decide which fixups can be adjusted to make them relative to
3252 the beginning of the section instead of the symbol. Basically we need
3253 to make sure that the dynamic relocations are done correctly, so in
3254 some cases we force the original symbol to be used. */
3255
252b5132 3256int
e3bb37b5 3257tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3258{
6d249963 3259#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3260 if (!IS_ELF)
31312f95
AM
3261 return 1;
3262
a161fe53
AM
3263 /* Don't adjust pc-relative references to merge sections in 64-bit
3264 mode. */
3265 if (use_rela_relocations
3266 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3267 && fixP->fx_pcrel)
252b5132 3268 return 0;
31312f95 3269
8d01d9a9
AJ
3270 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3271 and changed later by validate_fix. */
3272 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3273 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3274 return 0;
3275
8fd4256d
L
3276 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3277 for size relocations. */
3278 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3279 || fixP->fx_r_type == BFD_RELOC_SIZE64
3280 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3281 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3282 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3283 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3284 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3285 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3286 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3287 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3288 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3289 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3290 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3291 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3292 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3293 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3294 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3295 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3296 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3297 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3298 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3299 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3300 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3301 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3302 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3303 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3304 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3305 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3306 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3307 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3308 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3309 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3310 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3311 return 0;
31312f95 3312#endif
252b5132
RH
3313 return 1;
3314}
252b5132 3315
b4cac588 3316static int
e3bb37b5 3317intel_float_operand (const char *mnemonic)
252b5132 3318{
9306ca4a
JB
3319 /* Note that the value returned is meaningful only for opcodes with (memory)
3320 operands, hence the code here is free to improperly handle opcodes that
3321 have no operands (for better performance and smaller code). */
3322
3323 if (mnemonic[0] != 'f')
3324 return 0; /* non-math */
3325
3326 switch (mnemonic[1])
3327 {
3328 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3329 the fs segment override prefix not currently handled because no
3330 call path can make opcodes without operands get here */
3331 case 'i':
3332 return 2 /* integer op */;
3333 case 'l':
3334 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3335 return 3; /* fldcw/fldenv */
3336 break;
3337 case 'n':
3338 if (mnemonic[2] != 'o' /* fnop */)
3339 return 3; /* non-waiting control op */
3340 break;
3341 case 'r':
3342 if (mnemonic[2] == 's')
3343 return 3; /* frstor/frstpm */
3344 break;
3345 case 's':
3346 if (mnemonic[2] == 'a')
3347 return 3; /* fsave */
3348 if (mnemonic[2] == 't')
3349 {
3350 switch (mnemonic[3])
3351 {
3352 case 'c': /* fstcw */
3353 case 'd': /* fstdw */
3354 case 'e': /* fstenv */
3355 case 's': /* fsts[gw] */
3356 return 3;
3357 }
3358 }
3359 break;
3360 case 'x':
3361 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3362 return 0; /* fxsave/fxrstor are not really math ops */
3363 break;
3364 }
252b5132 3365
9306ca4a 3366 return 1;
252b5132
RH
3367}
3368
c0f3af97
L
3369/* Build the VEX prefix. */
3370
3371static void
d3ce72d0 3372build_vex_prefix (const insn_template *t)
c0f3af97
L
3373{
3374 unsigned int register_specifier;
3375 unsigned int implied_prefix;
3376 unsigned int vector_length;
03751133 3377 unsigned int w;
c0f3af97
L
3378
3379 /* Check register specifier. */
3380 if (i.vex.register_specifier)
43234a1e
L
3381 {
3382 register_specifier =
3383 ~register_number (i.vex.register_specifier) & 0xf;
3384 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3385 }
c0f3af97
L
3386 else
3387 register_specifier = 0xf;
3388
79f0fa25
L
3389 /* Use 2-byte VEX prefix by swapping destination and source operand
3390 if there are more than 1 register operand. */
3391 if (i.reg_operands > 1
3392 && i.vec_encoding != vex_encoding_vex3
86fa6981 3393 && i.dir_encoding == dir_encoding_default
fa99fab2 3394 && i.operands == i.reg_operands
dbbc8b7e 3395 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3396 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3397 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3398 && i.rex == REX_B)
3399 {
3400 unsigned int xchg = i.operands - 1;
3401 union i386_op temp_op;
3402 i386_operand_type temp_type;
3403
3404 temp_type = i.types[xchg];
3405 i.types[xchg] = i.types[0];
3406 i.types[0] = temp_type;
3407 temp_op = i.op[xchg];
3408 i.op[xchg] = i.op[0];
3409 i.op[0] = temp_op;
3410
9c2799c2 3411 gas_assert (i.rm.mode == 3);
fa99fab2
L
3412
3413 i.rex = REX_R;
3414 xchg = i.rm.regmem;
3415 i.rm.regmem = i.rm.reg;
3416 i.rm.reg = xchg;
3417
dbbc8b7e
JB
3418 if (i.tm.opcode_modifier.d)
3419 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3420 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3421 else /* Use the next insn. */
3422 i.tm = t[1];
fa99fab2
L
3423 }
3424
539f890d
L
3425 if (i.tm.opcode_modifier.vex == VEXScalar)
3426 vector_length = avxscalar;
10c17abd
JB
3427 else if (i.tm.opcode_modifier.vex == VEX256)
3428 vector_length = 1;
539f890d 3429 else
10c17abd 3430 {
56522fc5 3431 unsigned int op;
10c17abd 3432
c7213af9
L
3433 /* Determine vector length from the last multi-length vector
3434 operand. */
10c17abd 3435 vector_length = 0;
56522fc5 3436 for (op = t->operands; op--;)
10c17abd
JB
3437 if (t->operand_types[op].bitfield.xmmword
3438 && t->operand_types[op].bitfield.ymmword
3439 && i.types[op].bitfield.ymmword)
3440 {
3441 vector_length = 1;
3442 break;
3443 }
3444 }
c0f3af97
L
3445
3446 switch ((i.tm.base_opcode >> 8) & 0xff)
3447 {
3448 case 0:
3449 implied_prefix = 0;
3450 break;
3451 case DATA_PREFIX_OPCODE:
3452 implied_prefix = 1;
3453 break;
3454 case REPE_PREFIX_OPCODE:
3455 implied_prefix = 2;
3456 break;
3457 case REPNE_PREFIX_OPCODE:
3458 implied_prefix = 3;
3459 break;
3460 default:
3461 abort ();
3462 }
3463
03751133
L
3464 /* Check the REX.W bit and VEXW. */
3465 if (i.tm.opcode_modifier.vexw == VEXWIG)
3466 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3467 else if (i.tm.opcode_modifier.vexw)
3468 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3469 else
931d03b7 3470 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3471
c0f3af97 3472 /* Use 2-byte VEX prefix if possible. */
03751133
L
3473 if (w == 0
3474 && i.vec_encoding != vex_encoding_vex3
86fa6981 3475 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3476 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3477 {
3478 /* 2-byte VEX prefix. */
3479 unsigned int r;
3480
3481 i.vex.length = 2;
3482 i.vex.bytes[0] = 0xc5;
3483
3484 /* Check the REX.R bit. */
3485 r = (i.rex & REX_R) ? 0 : 1;
3486 i.vex.bytes[1] = (r << 7
3487 | register_specifier << 3
3488 | vector_length << 2
3489 | implied_prefix);
3490 }
3491 else
3492 {
3493 /* 3-byte VEX prefix. */
03751133 3494 unsigned int m;
c0f3af97 3495
f88c9eb0 3496 i.vex.length = 3;
f88c9eb0 3497
7f399153 3498 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3499 {
7f399153
L
3500 case VEX0F:
3501 m = 0x1;
80de6e00 3502 i.vex.bytes[0] = 0xc4;
7f399153
L
3503 break;
3504 case VEX0F38:
3505 m = 0x2;
80de6e00 3506 i.vex.bytes[0] = 0xc4;
7f399153
L
3507 break;
3508 case VEX0F3A:
3509 m = 0x3;
80de6e00 3510 i.vex.bytes[0] = 0xc4;
7f399153
L
3511 break;
3512 case XOP08:
5dd85c99
SP
3513 m = 0x8;
3514 i.vex.bytes[0] = 0x8f;
7f399153
L
3515 break;
3516 case XOP09:
f88c9eb0
SP
3517 m = 0x9;
3518 i.vex.bytes[0] = 0x8f;
7f399153
L
3519 break;
3520 case XOP0A:
f88c9eb0
SP
3521 m = 0xa;
3522 i.vex.bytes[0] = 0x8f;
7f399153
L
3523 break;
3524 default:
3525 abort ();
f88c9eb0 3526 }
c0f3af97 3527
c0f3af97
L
3528 /* The high 3 bits of the second VEX byte are 1's compliment
3529 of RXB bits from REX. */
3530 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3531
c0f3af97
L
3532 i.vex.bytes[2] = (w << 7
3533 | register_specifier << 3
3534 | vector_length << 2
3535 | implied_prefix);
3536 }
3537}
3538
e771e7c9
JB
3539static INLINE bfd_boolean
3540is_evex_encoding (const insn_template *t)
3541{
7091c612 3542 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3543 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3544 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3545}
3546
7a8655d2
JB
3547static INLINE bfd_boolean
3548is_any_vex_encoding (const insn_template *t)
3549{
3550 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3551 || is_evex_encoding (t);
3552}
3553
43234a1e
L
3554/* Build the EVEX prefix. */
3555
3556static void
3557build_evex_prefix (void)
3558{
3559 unsigned int register_specifier;
3560 unsigned int implied_prefix;
3561 unsigned int m, w;
3562 rex_byte vrex_used = 0;
3563
3564 /* Check register specifier. */
3565 if (i.vex.register_specifier)
3566 {
3567 gas_assert ((i.vrex & REX_X) == 0);
3568
3569 register_specifier = i.vex.register_specifier->reg_num;
3570 if ((i.vex.register_specifier->reg_flags & RegRex))
3571 register_specifier += 8;
3572 /* The upper 16 registers are encoded in the fourth byte of the
3573 EVEX prefix. */
3574 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3575 i.vex.bytes[3] = 0x8;
3576 register_specifier = ~register_specifier & 0xf;
3577 }
3578 else
3579 {
3580 register_specifier = 0xf;
3581
3582 /* Encode upper 16 vector index register in the fourth byte of
3583 the EVEX prefix. */
3584 if (!(i.vrex & REX_X))
3585 i.vex.bytes[3] = 0x8;
3586 else
3587 vrex_used |= REX_X;
3588 }
3589
3590 switch ((i.tm.base_opcode >> 8) & 0xff)
3591 {
3592 case 0:
3593 implied_prefix = 0;
3594 break;
3595 case DATA_PREFIX_OPCODE:
3596 implied_prefix = 1;
3597 break;
3598 case REPE_PREFIX_OPCODE:
3599 implied_prefix = 2;
3600 break;
3601 case REPNE_PREFIX_OPCODE:
3602 implied_prefix = 3;
3603 break;
3604 default:
3605 abort ();
3606 }
3607
3608 /* 4 byte EVEX prefix. */
3609 i.vex.length = 4;
3610 i.vex.bytes[0] = 0x62;
3611
3612 /* mmmm bits. */
3613 switch (i.tm.opcode_modifier.vexopcode)
3614 {
3615 case VEX0F:
3616 m = 1;
3617 break;
3618 case VEX0F38:
3619 m = 2;
3620 break;
3621 case VEX0F3A:
3622 m = 3;
3623 break;
3624 default:
3625 abort ();
3626 break;
3627 }
3628
3629 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3630 bits from REX. */
3631 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3632
3633 /* The fifth bit of the second EVEX byte is 1's compliment of the
3634 REX_R bit in VREX. */
3635 if (!(i.vrex & REX_R))
3636 i.vex.bytes[1] |= 0x10;
3637 else
3638 vrex_used |= REX_R;
3639
3640 if ((i.reg_operands + i.imm_operands) == i.operands)
3641 {
3642 /* When all operands are registers, the REX_X bit in REX is not
3643 used. We reuse it to encode the upper 16 registers, which is
3644 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3645 as 1's compliment. */
3646 if ((i.vrex & REX_B))
3647 {
3648 vrex_used |= REX_B;
3649 i.vex.bytes[1] &= ~0x40;
3650 }
3651 }
3652
3653 /* EVEX instructions shouldn't need the REX prefix. */
3654 i.vrex &= ~vrex_used;
3655 gas_assert (i.vrex == 0);
3656
6865c043
L
3657 /* Check the REX.W bit and VEXW. */
3658 if (i.tm.opcode_modifier.vexw == VEXWIG)
3659 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3660 else if (i.tm.opcode_modifier.vexw)
3661 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3662 else
931d03b7 3663 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3664
3665 /* Encode the U bit. */
3666 implied_prefix |= 0x4;
3667
3668 /* The third byte of the EVEX prefix. */
3669 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3670
3671 /* The fourth byte of the EVEX prefix. */
3672 /* The zeroing-masking bit. */
3673 if (i.mask && i.mask->zeroing)
3674 i.vex.bytes[3] |= 0x80;
3675
3676 /* Don't always set the broadcast bit if there is no RC. */
3677 if (!i.rounding)
3678 {
3679 /* Encode the vector length. */
3680 unsigned int vec_length;
3681
e771e7c9
JB
3682 if (!i.tm.opcode_modifier.evex
3683 || i.tm.opcode_modifier.evex == EVEXDYN)
3684 {
56522fc5 3685 unsigned int op;
e771e7c9 3686
c7213af9
L
3687 /* Determine vector length from the last multi-length vector
3688 operand. */
e771e7c9 3689 vec_length = 0;
56522fc5 3690 for (op = i.operands; op--;)
e771e7c9
JB
3691 if (i.tm.operand_types[op].bitfield.xmmword
3692 + i.tm.operand_types[op].bitfield.ymmword
3693 + i.tm.operand_types[op].bitfield.zmmword > 1)
3694 {
3695 if (i.types[op].bitfield.zmmword)
c7213af9
L
3696 {
3697 i.tm.opcode_modifier.evex = EVEX512;
3698 break;
3699 }
e771e7c9 3700 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3701 {
3702 i.tm.opcode_modifier.evex = EVEX256;
3703 break;
3704 }
e771e7c9 3705 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3706 {
3707 i.tm.opcode_modifier.evex = EVEX128;
3708 break;
3709 }
625cbd7a
JB
3710 else if (i.broadcast && (int) op == i.broadcast->operand)
3711 {
4a1b91ea 3712 switch (i.broadcast->bytes)
625cbd7a
JB
3713 {
3714 case 64:
3715 i.tm.opcode_modifier.evex = EVEX512;
3716 break;
3717 case 32:
3718 i.tm.opcode_modifier.evex = EVEX256;
3719 break;
3720 case 16:
3721 i.tm.opcode_modifier.evex = EVEX128;
3722 break;
3723 default:
c7213af9 3724 abort ();
625cbd7a 3725 }
c7213af9 3726 break;
625cbd7a 3727 }
e771e7c9 3728 }
c7213af9 3729
56522fc5 3730 if (op >= MAX_OPERANDS)
c7213af9 3731 abort ();
e771e7c9
JB
3732 }
3733
43234a1e
L
3734 switch (i.tm.opcode_modifier.evex)
3735 {
3736 case EVEXLIG: /* LL' is ignored */
3737 vec_length = evexlig << 5;
3738 break;
3739 case EVEX128:
3740 vec_length = 0 << 5;
3741 break;
3742 case EVEX256:
3743 vec_length = 1 << 5;
3744 break;
3745 case EVEX512:
3746 vec_length = 2 << 5;
3747 break;
3748 default:
3749 abort ();
3750 break;
3751 }
3752 i.vex.bytes[3] |= vec_length;
3753 /* Encode the broadcast bit. */
3754 if (i.broadcast)
3755 i.vex.bytes[3] |= 0x10;
3756 }
3757 else
3758 {
3759 if (i.rounding->type != saeonly)
3760 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3761 else
d3d3c6db 3762 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3763 }
3764
3765 if (i.mask && i.mask->mask)
3766 i.vex.bytes[3] |= i.mask->mask->reg_num;
3767}
3768
65da13b5
L
3769static void
3770process_immext (void)
3771{
3772 expressionS *exp;
3773
4c692bc7
JB
3774 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3775 && i.operands > 0)
65da13b5 3776 {
4c692bc7
JB
3777 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3778 with an opcode suffix which is coded in the same place as an
3779 8-bit immediate field would be.
3780 Here we check those operands and remove them afterwards. */
65da13b5
L
3781 unsigned int x;
3782
3783 for (x = 0; x < i.operands; x++)
4c692bc7 3784 if (register_number (i.op[x].regs) != x)
65da13b5 3785 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3786 register_prefix, i.op[x].regs->reg_name, x + 1,
3787 i.tm.name);
3788
3789 i.operands = 0;
65da13b5
L
3790 }
3791
9916071f
AP
3792 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3793 {
3794 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3795 suffix which is coded in the same place as an 8-bit immediate
3796 field would be.
3797 Here we check those operands and remove them afterwards. */
3798 unsigned int x;
3799
3800 if (i.operands != 3)
3801 abort();
3802
3803 for (x = 0; x < 2; x++)
3804 if (register_number (i.op[x].regs) != x)
3805 goto bad_register_operand;
3806
3807 /* Check for third operand for mwaitx/monitorx insn. */
3808 if (register_number (i.op[x].regs)
3809 != (x + (i.tm.extension_opcode == 0xfb)))
3810 {
3811bad_register_operand:
3812 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3813 register_prefix, i.op[x].regs->reg_name, x+1,
3814 i.tm.name);
3815 }
3816
3817 i.operands = 0;
3818 }
3819
c0f3af97 3820 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3821 which is coded in the same place as an 8-bit immediate field
3822 would be. Here we fake an 8-bit immediate operand from the
3823 opcode suffix stored in tm.extension_opcode.
3824
c1e679ec 3825 AVX instructions also use this encoding, for some of
c0f3af97 3826 3 argument instructions. */
65da13b5 3827
43234a1e 3828 gas_assert (i.imm_operands <= 1
7ab9ffdd 3829 && (i.operands <= 2
7a8655d2 3830 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3831 && i.operands <= 4)));
65da13b5
L
3832
3833 exp = &im_expressions[i.imm_operands++];
3834 i.op[i.operands].imms = exp;
3835 i.types[i.operands] = imm8;
3836 i.operands++;
3837 exp->X_op = O_constant;
3838 exp->X_add_number = i.tm.extension_opcode;
3839 i.tm.extension_opcode = None;
3840}
3841
42164a71
L
3842
3843static int
3844check_hle (void)
3845{
3846 switch (i.tm.opcode_modifier.hleprefixok)
3847 {
3848 default:
3849 abort ();
82c2def5 3850 case HLEPrefixNone:
165de32a
L
3851 as_bad (_("invalid instruction `%s' after `%s'"),
3852 i.tm.name, i.hle_prefix);
42164a71 3853 return 0;
82c2def5 3854 case HLEPrefixLock:
42164a71
L
3855 if (i.prefix[LOCK_PREFIX])
3856 return 1;
165de32a 3857 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3858 return 0;
82c2def5 3859 case HLEPrefixAny:
42164a71 3860 return 1;
82c2def5 3861 case HLEPrefixRelease:
42164a71
L
3862 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3863 {
3864 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3865 i.tm.name);
3866 return 0;
3867 }
3868 if (i.mem_operands == 0
3869 || !operand_type_check (i.types[i.operands - 1], anymem))
3870 {
3871 as_bad (_("memory destination needed for instruction `%s'"
3872 " after `xrelease'"), i.tm.name);
3873 return 0;
3874 }
3875 return 1;
3876 }
3877}
3878
b6f8c7c4
L
3879/* Try the shortest encoding by shortening operand size. */
3880
3881static void
3882optimize_encoding (void)
3883{
3884 int j;
3885
3886 if (optimize_for_space
3887 && i.reg_operands == 1
3888 && i.imm_operands == 1
3889 && !i.types[1].bitfield.byte
3890 && i.op[0].imms->X_op == O_constant
3891 && fits_in_imm7 (i.op[0].imms->X_add_number)
3892 && ((i.tm.base_opcode == 0xa8
3893 && i.tm.extension_opcode == None)
3894 || (i.tm.base_opcode == 0xf6
3895 && i.tm.extension_opcode == 0x0)))
3896 {
3897 /* Optimize: -Os:
3898 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3899 */
3900 unsigned int base_regnum = i.op[1].regs->reg_num;
3901 if (flag_code == CODE_64BIT || base_regnum < 4)
3902 {
3903 i.types[1].bitfield.byte = 1;
3904 /* Ignore the suffix. */
3905 i.suffix = 0;
3906 if (base_regnum >= 4
3907 && !(i.op[1].regs->reg_flags & RegRex))
3908 {
3909 /* Handle SP, BP, SI and DI registers. */
3910 if (i.types[1].bitfield.word)
3911 j = 16;
3912 else if (i.types[1].bitfield.dword)
3913 j = 32;
3914 else
3915 j = 48;
3916 i.op[1].regs -= j;
3917 }
3918 }
3919 }
3920 else if (flag_code == CODE_64BIT
d3d50934
L
3921 && ((i.types[1].bitfield.qword
3922 && i.reg_operands == 1
b6f8c7c4
L
3923 && i.imm_operands == 1
3924 && i.op[0].imms->X_op == O_constant
3925 && ((i.tm.base_opcode == 0xb0
3926 && i.tm.extension_opcode == None
3927 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3928 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3929 && (((i.tm.base_opcode == 0x24
3930 || i.tm.base_opcode == 0xa8)
3931 && i.tm.extension_opcode == None)
3932 || (i.tm.base_opcode == 0x80
3933 && i.tm.extension_opcode == 0x4)
3934 || ((i.tm.base_opcode == 0xf6
3935 || i.tm.base_opcode == 0xc6)
3936 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3937 || (i.types[0].bitfield.qword
3938 && ((i.reg_operands == 2
3939 && i.op[0].regs == i.op[1].regs
3940 && ((i.tm.base_opcode == 0x30
3941 || i.tm.base_opcode == 0x28)
3942 && i.tm.extension_opcode == None))
3943 || (i.reg_operands == 1
3944 && i.operands == 1
3945 && i.tm.base_opcode == 0x30
3946 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3947 {
3948 /* Optimize: -O:
3949 andq $imm31, %r64 -> andl $imm31, %r32
3950 testq $imm31, %r64 -> testl $imm31, %r32
3951 xorq %r64, %r64 -> xorl %r32, %r32
3952 subq %r64, %r64 -> subl %r32, %r32
3953 movq $imm31, %r64 -> movl $imm31, %r32
3954 movq $imm32, %r64 -> movl $imm32, %r32
3955 */
3956 i.tm.opcode_modifier.norex64 = 1;
3957 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3958 {
3959 /* Handle
3960 movq $imm31, %r64 -> movl $imm31, %r32
3961 movq $imm32, %r64 -> movl $imm32, %r32
3962 */
3963 i.tm.operand_types[0].bitfield.imm32 = 1;
3964 i.tm.operand_types[0].bitfield.imm32s = 0;
3965 i.tm.operand_types[0].bitfield.imm64 = 0;
3966 i.types[0].bitfield.imm32 = 1;
3967 i.types[0].bitfield.imm32s = 0;
3968 i.types[0].bitfield.imm64 = 0;
3969 i.types[1].bitfield.dword = 1;
3970 i.types[1].bitfield.qword = 0;
3971 if (i.tm.base_opcode == 0xc6)
3972 {
3973 /* Handle
3974 movq $imm31, %r64 -> movl $imm31, %r32
3975 */
3976 i.tm.base_opcode = 0xb0;
3977 i.tm.extension_opcode = None;
3978 i.tm.opcode_modifier.shortform = 1;
3979 i.tm.opcode_modifier.modrm = 0;
3980 }
3981 }
3982 }
99112332 3983 else if (i.reg_operands == 3
b6f8c7c4
L
3984 && i.op[0].regs == i.op[1].regs
3985 && !i.types[2].bitfield.xmmword
3986 && (i.tm.opcode_modifier.vex
7a69eac3 3987 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3988 && !i.rounding
e771e7c9 3989 && is_evex_encoding (&i.tm)
80c34c38 3990 && (i.vec_encoding != vex_encoding_evex
dd22218c 3991 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 3992 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 3993 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 3994 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
3995 && ((i.tm.base_opcode == 0x55
3996 || i.tm.base_opcode == 0x6655
3997 || i.tm.base_opcode == 0x66df
3998 || i.tm.base_opcode == 0x57
3999 || i.tm.base_opcode == 0x6657
8305403a
L
4000 || i.tm.base_opcode == 0x66ef
4001 || i.tm.base_opcode == 0x66f8
4002 || i.tm.base_opcode == 0x66f9
4003 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4004 || i.tm.base_opcode == 0x66fb
4005 || i.tm.base_opcode == 0x42
4006 || i.tm.base_opcode == 0x6642
4007 || i.tm.base_opcode == 0x47
4008 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4009 && i.tm.extension_opcode == None))
4010 {
99112332 4011 /* Optimize: -O1:
8305403a
L
4012 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4013 vpsubq and vpsubw:
b6f8c7c4
L
4014 EVEX VOP %zmmM, %zmmM, %zmmN
4015 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4016 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4017 EVEX VOP %ymmM, %ymmM, %ymmN
4018 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4019 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4020 VEX VOP %ymmM, %ymmM, %ymmN
4021 -> VEX VOP %xmmM, %xmmM, %xmmN
4022 VOP, one of vpandn and vpxor:
4023 VEX VOP %ymmM, %ymmM, %ymmN
4024 -> VEX VOP %xmmM, %xmmM, %xmmN
4025 VOP, one of vpandnd and vpandnq:
4026 EVEX VOP %zmmM, %zmmM, %zmmN
4027 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4028 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4029 EVEX VOP %ymmM, %ymmM, %ymmN
4030 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4031 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4032 VOP, one of vpxord and vpxorq:
4033 EVEX VOP %zmmM, %zmmM, %zmmN
4034 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4035 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4036 EVEX VOP %ymmM, %ymmM, %ymmN
4037 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4038 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4039 VOP, one of kxord and kxorq:
4040 VEX VOP %kM, %kM, %kN
4041 -> VEX kxorw %kM, %kM, %kN
4042 VOP, one of kandnd and kandnq:
4043 VEX VOP %kM, %kM, %kN
4044 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4045 */
e771e7c9 4046 if (is_evex_encoding (&i.tm))
b6f8c7c4 4047 {
7b1d7ca1 4048 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4049 {
4050 i.tm.opcode_modifier.vex = VEX128;
4051 i.tm.opcode_modifier.vexw = VEXW0;
4052 i.tm.opcode_modifier.evex = 0;
4053 }
7b1d7ca1 4054 else if (optimize > 1)
dd22218c
L
4055 i.tm.opcode_modifier.evex = EVEX128;
4056 else
4057 return;
b6f8c7c4 4058 }
1424ad86
JB
4059 else if (i.tm.operand_types[0].bitfield.regmask)
4060 {
4061 i.tm.base_opcode &= 0xff;
4062 i.tm.opcode_modifier.vexw = VEXW0;
4063 }
b6f8c7c4
L
4064 else
4065 i.tm.opcode_modifier.vex = VEX128;
4066
4067 if (i.tm.opcode_modifier.vex)
4068 for (j = 0; j < 3; j++)
4069 {
4070 i.types[j].bitfield.xmmword = 1;
4071 i.types[j].bitfield.ymmword = 0;
4072 }
4073 }
392a5972 4074 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4075 && !i.types[0].bitfield.zmmword
392a5972 4076 && !i.types[1].bitfield.zmmword
97ed31ae
L
4077 && !i.mask
4078 && is_evex_encoding (&i.tm)
392a5972
L
4079 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4080 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4081 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
97ed31ae
L
4082 && i.tm.extension_opcode == None)
4083 {
4084 /* Optimize: -O1:
4085 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4086 vmovdqu32 and vmovdqu64:
4087 EVEX VOP %xmmM, %xmmN
4088 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4089 EVEX VOP %ymmM, %ymmN
4090 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4091 EVEX VOP %xmmM, mem
4092 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4093 EVEX VOP %ymmM, mem
4094 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4095 EVEX VOP mem, %xmmN
4096 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4097 EVEX VOP mem, %ymmN
4098 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4099 */
392a5972
L
4100 for (j = 0; j < 2; j++)
4101 if (operand_type_check (i.types[j], disp)
4102 && i.op[j].disps->X_op == O_constant)
4103 {
4104 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4105 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4106 bytes, we choose EVEX Disp8 over VEX Disp32. */
4107 int evex_disp8, vex_disp8;
4108 unsigned int memshift = i.memshift;
4109 offsetT n = i.op[j].disps->X_add_number;
4110
4111 evex_disp8 = fits_in_disp8 (n);
4112 i.memshift = 0;
4113 vex_disp8 = fits_in_disp8 (n);
4114 if (evex_disp8 != vex_disp8)
4115 {
4116 i.memshift = memshift;
4117 return;
4118 }
4119
4120 i.types[j].bitfield.disp8 = vex_disp8;
4121 break;
4122 }
4123 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4124 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4125 i.tm.opcode_modifier.vex
4126 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4127 i.tm.opcode_modifier.vexw = VEXW0;
4128 i.tm.opcode_modifier.evex = 0;
4129 i.tm.opcode_modifier.masking = 0;
4130 i.tm.opcode_modifier.disp8memshift = 0;
4131 i.memshift = 0;
4132 for (j = 0; j < 2; j++)
4133 if (operand_type_check (i.types[j], disp)
4134 && i.op[j].disps->X_op == O_constant)
4135 {
4136 i.types[j].bitfield.disp8
4137 = fits_in_disp8 (i.op[j].disps->X_add_number);
4138 break;
4139 }
4140 }
b6f8c7c4
L
4141}
4142
252b5132
RH
4143/* This is the guts of the machine-dependent assembler. LINE points to a
4144 machine dependent instruction. This function is supposed to emit
4145 the frags/bytes it assembles to. */
4146
4147void
65da13b5 4148md_assemble (char *line)
252b5132 4149{
40fb9820 4150 unsigned int j;
83b16ac6 4151 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4152 const insn_template *t;
252b5132 4153
47926f60 4154 /* Initialize globals. */
252b5132
RH
4155 memset (&i, '\0', sizeof (i));
4156 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4157 i.reloc[j] = NO_RELOC;
252b5132
RH
4158 memset (disp_expressions, '\0', sizeof (disp_expressions));
4159 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4160 save_stack_p = save_stack;
252b5132
RH
4161
4162 /* First parse an instruction mnemonic & call i386_operand for the operands.
4163 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4164 start of a (possibly prefixed) mnemonic. */
252b5132 4165
29b0f896
AM
4166 line = parse_insn (line, mnemonic);
4167 if (line == NULL)
4168 return;
83b16ac6 4169 mnem_suffix = i.suffix;
252b5132 4170
29b0f896 4171 line = parse_operands (line, mnemonic);
ee86248c 4172 this_operand = -1;
8325cc63
JB
4173 xfree (i.memop1_string);
4174 i.memop1_string = NULL;
29b0f896
AM
4175 if (line == NULL)
4176 return;
252b5132 4177
29b0f896
AM
4178 /* Now we've parsed the mnemonic into a set of templates, and have the
4179 operands at hand. */
4180
4181 /* All intel opcodes have reversed operands except for "bound" and
4182 "enter". We also don't reverse intersegment "jmp" and "call"
4183 instructions with 2 immediate operands so that the immediate segment
050dfa73 4184 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4185 if (intel_syntax
4186 && i.operands > 1
29b0f896 4187 && (strcmp (mnemonic, "bound") != 0)
30123838 4188 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4189 && !(operand_type_check (i.types[0], imm)
4190 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4191 swap_operands ();
4192
ec56d5c0
JB
4193 /* The order of the immediates should be reversed
4194 for 2 immediates extrq and insertq instructions */
4195 if (i.imm_operands == 2
4196 && (strcmp (mnemonic, "extrq") == 0
4197 || strcmp (mnemonic, "insertq") == 0))
4198 swap_2_operands (0, 1);
4199
29b0f896
AM
4200 if (i.imm_operands)
4201 optimize_imm ();
4202
b300c311
L
4203 /* Don't optimize displacement for movabs since it only takes 64bit
4204 displacement. */
4205 if (i.disp_operands
a501d77e 4206 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4207 && (flag_code != CODE_64BIT
4208 || strcmp (mnemonic, "movabs") != 0))
4209 optimize_disp ();
29b0f896
AM
4210
4211 /* Next, we find a template that matches the given insn,
4212 making sure the overlap of the given operands types is consistent
4213 with the template operand types. */
252b5132 4214
83b16ac6 4215 if (!(t = match_template (mnem_suffix)))
29b0f896 4216 return;
252b5132 4217
7bab8ab5 4218 if (sse_check != check_none
81f8a913 4219 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4220 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4221 && (i.tm.cpu_flags.bitfield.cpusse
4222 || i.tm.cpu_flags.bitfield.cpusse2
4223 || i.tm.cpu_flags.bitfield.cpusse3
4224 || i.tm.cpu_flags.bitfield.cpussse3
4225 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4226 || i.tm.cpu_flags.bitfield.cpusse4_2
4227 || i.tm.cpu_flags.bitfield.cpupclmul
4228 || i.tm.cpu_flags.bitfield.cpuaes
4229 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4230 {
7bab8ab5 4231 (sse_check == check_warning
daf50ae7
L
4232 ? as_warn
4233 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4234 }
4235
321fd21e
L
4236 /* Zap movzx and movsx suffix. The suffix has been set from
4237 "word ptr" or "byte ptr" on the source operand in Intel syntax
4238 or extracted from mnemonic in AT&T syntax. But we'll use
4239 the destination register to choose the suffix for encoding. */
4240 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4241 {
321fd21e
L
4242 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4243 there is no suffix, the default will be byte extension. */
4244 if (i.reg_operands != 2
4245 && !i.suffix
7ab9ffdd 4246 && intel_syntax)
321fd21e
L
4247 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4248
4249 i.suffix = 0;
cd61ebfe 4250 }
24eab124 4251
40fb9820 4252 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4253 if (!add_prefix (FWAIT_OPCODE))
4254 return;
252b5132 4255
d5de92cf
L
4256 /* Check if REP prefix is OK. */
4257 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4258 {
4259 as_bad (_("invalid instruction `%s' after `%s'"),
4260 i.tm.name, i.rep_prefix);
4261 return;
4262 }
4263
c1ba0266
L
4264 /* Check for lock without a lockable instruction. Destination operand
4265 must be memory unless it is xchg (0x86). */
c32fa91d
L
4266 if (i.prefix[LOCK_PREFIX]
4267 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4268 || i.mem_operands == 0
4269 || (i.tm.base_opcode != 0x86
4270 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4271 {
4272 as_bad (_("expecting lockable instruction after `lock'"));
4273 return;
4274 }
4275
7a8655d2
JB
4276 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4277 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4278 {
4279 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4280 return;
4281 }
4282
42164a71 4283 /* Check if HLE prefix is OK. */
165de32a 4284 if (i.hle_prefix && !check_hle ())
42164a71
L
4285 return;
4286
7e8b059b
L
4287 /* Check BND prefix. */
4288 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4289 as_bad (_("expecting valid branch instruction after `bnd'"));
4290
04ef582a 4291 /* Check NOTRACK prefix. */
9fef80d6
L
4292 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4293 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4294
327e8c42
JB
4295 if (i.tm.cpu_flags.bitfield.cpumpx)
4296 {
4297 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4298 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4299 else if (flag_code != CODE_16BIT
4300 ? i.prefix[ADDR_PREFIX]
4301 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4302 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4303 }
7e8b059b
L
4304
4305 /* Insert BND prefix. */
76d3a78a
JB
4306 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4307 {
4308 if (!i.prefix[BND_PREFIX])
4309 add_prefix (BND_PREFIX_OPCODE);
4310 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4311 {
4312 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4313 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4314 }
4315 }
7e8b059b 4316
29b0f896 4317 /* Check string instruction segment overrides. */
40fb9820 4318 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4319 {
4320 if (!check_string ())
5dd0794d 4321 return;
fc0763e6 4322 i.disp_operands = 0;
29b0f896 4323 }
5dd0794d 4324
b6f8c7c4
L
4325 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4326 optimize_encoding ();
4327
29b0f896
AM
4328 if (!process_suffix ())
4329 return;
e413e4e9 4330
bc0844ae
L
4331 /* Update operand types. */
4332 for (j = 0; j < i.operands; j++)
4333 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4334
29b0f896
AM
4335 /* Make still unresolved immediate matches conform to size of immediate
4336 given in i.suffix. */
4337 if (!finalize_imm ())
4338 return;
252b5132 4339
40fb9820 4340 if (i.types[0].bitfield.imm1)
29b0f896 4341 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4342
9afe6eb8
L
4343 /* We only need to check those implicit registers for instructions
4344 with 3 operands or less. */
4345 if (i.operands <= 3)
4346 for (j = 0; j < i.operands; j++)
4347 if (i.types[j].bitfield.inoutportreg
4348 || i.types[j].bitfield.shiftcount
1b54b8d7 4349 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4350 i.reg_operands--;
40fb9820 4351
c0f3af97
L
4352 /* ImmExt should be processed after SSE2AVX. */
4353 if (!i.tm.opcode_modifier.sse2avx
4354 && i.tm.opcode_modifier.immext)
65da13b5 4355 process_immext ();
252b5132 4356
29b0f896
AM
4357 /* For insns with operands there are more diddles to do to the opcode. */
4358 if (i.operands)
4359 {
4360 if (!process_operands ())
4361 return;
4362 }
40fb9820 4363 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4364 {
4365 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4366 as_warn (_("translating to `%sp'"), i.tm.name);
4367 }
252b5132 4368
7a8655d2 4369 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4370 {
4371 if (flag_code == CODE_16BIT)
4372 {
4373 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4374 i.tm.name);
4375 return;
4376 }
c0f3af97 4377
9e5e5283
L
4378 if (i.tm.opcode_modifier.vex)
4379 build_vex_prefix (t);
4380 else
4381 build_evex_prefix ();
4382 }
43234a1e 4383
5dd85c99
SP
4384 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4385 instructions may define INT_OPCODE as well, so avoid this corner
4386 case for those instructions that use MODRM. */
4387 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4388 && !i.tm.opcode_modifier.modrm
4389 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4390 {
4391 i.tm.base_opcode = INT3_OPCODE;
4392 i.imm_operands = 0;
4393 }
252b5132 4394
40fb9820
L
4395 if ((i.tm.opcode_modifier.jump
4396 || i.tm.opcode_modifier.jumpbyte
4397 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4398 && i.op[0].disps->X_op == O_constant)
4399 {
4400 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4401 the absolute address given by the constant. Since ix86 jumps and
4402 calls are pc relative, we need to generate a reloc. */
4403 i.op[0].disps->X_add_symbol = &abs_symbol;
4404 i.op[0].disps->X_op = O_symbol;
4405 }
252b5132 4406
40fb9820 4407 if (i.tm.opcode_modifier.rex64)
161a04f6 4408 i.rex |= REX_W;
252b5132 4409
29b0f896
AM
4410 /* For 8 bit registers we need an empty rex prefix. Also if the
4411 instruction already has a prefix, we need to convert old
4412 registers to new ones. */
773f551c 4413
dc821c5f 4414 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4415 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4416 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4417 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4418 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4419 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4420 && i.rex != 0))
4421 {
4422 int x;
726c5dcd 4423
29b0f896
AM
4424 i.rex |= REX_OPCODE;
4425 for (x = 0; x < 2; x++)
4426 {
4427 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4428 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4429 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4430 {
29b0f896
AM
4431 /* In case it is "hi" register, give up. */
4432 if (i.op[x].regs->reg_num > 3)
a540244d 4433 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4434 "instruction requiring REX prefix."),
a540244d 4435 register_prefix, i.op[x].regs->reg_name);
773f551c 4436
29b0f896
AM
4437 /* Otherwise it is equivalent to the extended register.
4438 Since the encoding doesn't change this is merely
4439 cosmetic cleanup for debug output. */
4440
4441 i.op[x].regs = i.op[x].regs + 8;
773f551c 4442 }
29b0f896
AM
4443 }
4444 }
773f551c 4445
6b6b6807
L
4446 if (i.rex == 0 && i.rex_encoding)
4447 {
4448 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4449 that uses legacy register. If it is "hi" register, don't add
4450 the REX_OPCODE byte. */
4451 int x;
4452 for (x = 0; x < 2; x++)
4453 if (i.types[x].bitfield.reg
4454 && i.types[x].bitfield.byte
4455 && (i.op[x].regs->reg_flags & RegRex64) == 0
4456 && i.op[x].regs->reg_num > 3)
4457 {
4458 i.rex_encoding = FALSE;
4459 break;
4460 }
4461
4462 if (i.rex_encoding)
4463 i.rex = REX_OPCODE;
4464 }
4465
7ab9ffdd 4466 if (i.rex != 0)
29b0f896
AM
4467 add_prefix (REX_OPCODE | i.rex);
4468
4469 /* We are ready to output the insn. */
4470 output_insn ();
4471}
4472
4473static char *
e3bb37b5 4474parse_insn (char *line, char *mnemonic)
29b0f896
AM
4475{
4476 char *l = line;
4477 char *token_start = l;
4478 char *mnem_p;
5c6af06e 4479 int supported;
d3ce72d0 4480 const insn_template *t;
b6169b20 4481 char *dot_p = NULL;
29b0f896 4482
29b0f896
AM
4483 while (1)
4484 {
4485 mnem_p = mnemonic;
4486 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4487 {
b6169b20
L
4488 if (*mnem_p == '.')
4489 dot_p = mnem_p;
29b0f896
AM
4490 mnem_p++;
4491 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4492 {
29b0f896
AM
4493 as_bad (_("no such instruction: `%s'"), token_start);
4494 return NULL;
4495 }
4496 l++;
4497 }
4498 if (!is_space_char (*l)
4499 && *l != END_OF_INSN
e44823cf
JB
4500 && (intel_syntax
4501 || (*l != PREFIX_SEPARATOR
4502 && *l != ',')))
29b0f896
AM
4503 {
4504 as_bad (_("invalid character %s in mnemonic"),
4505 output_invalid (*l));
4506 return NULL;
4507 }
4508 if (token_start == l)
4509 {
e44823cf 4510 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4511 as_bad (_("expecting prefix; got nothing"));
4512 else
4513 as_bad (_("expecting mnemonic; got nothing"));
4514 return NULL;
4515 }
45288df1 4516
29b0f896 4517 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4518 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4519
29b0f896
AM
4520 if (*l != END_OF_INSN
4521 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4522 && current_templates
40fb9820 4523 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4524 {
c6fb90c8 4525 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4526 {
4527 as_bad ((flag_code != CODE_64BIT
4528 ? _("`%s' is only supported in 64-bit mode")
4529 : _("`%s' is not supported in 64-bit mode")),
4530 current_templates->start->name);
4531 return NULL;
4532 }
29b0f896
AM
4533 /* If we are in 16-bit mode, do not allow addr16 or data16.
4534 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4535 if ((current_templates->start->opcode_modifier.size == SIZE16
4536 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4537 && flag_code != CODE_64BIT
673fe0f0 4538 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4539 ^ (flag_code == CODE_16BIT)))
4540 {
4541 as_bad (_("redundant %s prefix"),
4542 current_templates->start->name);
4543 return NULL;
45288df1 4544 }
86fa6981 4545 if (current_templates->start->opcode_length == 0)
29b0f896 4546 {
86fa6981
L
4547 /* Handle pseudo prefixes. */
4548 switch (current_templates->start->base_opcode)
4549 {
4550 case 0x0:
4551 /* {disp8} */
4552 i.disp_encoding = disp_encoding_8bit;
4553 break;
4554 case 0x1:
4555 /* {disp32} */
4556 i.disp_encoding = disp_encoding_32bit;
4557 break;
4558 case 0x2:
4559 /* {load} */
4560 i.dir_encoding = dir_encoding_load;
4561 break;
4562 case 0x3:
4563 /* {store} */
4564 i.dir_encoding = dir_encoding_store;
4565 break;
4566 case 0x4:
4567 /* {vex2} */
4568 i.vec_encoding = vex_encoding_vex2;
4569 break;
4570 case 0x5:
4571 /* {vex3} */
4572 i.vec_encoding = vex_encoding_vex3;
4573 break;
4574 case 0x6:
4575 /* {evex} */
4576 i.vec_encoding = vex_encoding_evex;
4577 break;
6b6b6807
L
4578 case 0x7:
4579 /* {rex} */
4580 i.rex_encoding = TRUE;
4581 break;
b6f8c7c4
L
4582 case 0x8:
4583 /* {nooptimize} */
4584 i.no_optimize = TRUE;
4585 break;
86fa6981
L
4586 default:
4587 abort ();
4588 }
4589 }
4590 else
4591 {
4592 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4593 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4594 {
4e9ac44a
L
4595 case PREFIX_EXIST:
4596 return NULL;
4597 case PREFIX_DS:
d777820b 4598 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4599 i.notrack_prefix = current_templates->start->name;
4600 break;
4601 case PREFIX_REP:
4602 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4603 i.hle_prefix = current_templates->start->name;
4604 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4605 i.bnd_prefix = current_templates->start->name;
4606 else
4607 i.rep_prefix = current_templates->start->name;
4608 break;
4609 default:
4610 break;
86fa6981 4611 }
29b0f896
AM
4612 }
4613 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4614 token_start = ++l;
4615 }
4616 else
4617 break;
4618 }
45288df1 4619
30a55f88 4620 if (!current_templates)
b6169b20 4621 {
07d5e953
JB
4622 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4623 Check if we should swap operand or force 32bit displacement in
f8a5c266 4624 encoding. */
30a55f88 4625 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4626 i.dir_encoding = dir_encoding_swap;
8d63c93e 4627 else if (mnem_p - 3 == dot_p
a501d77e
L
4628 && dot_p[1] == 'd'
4629 && dot_p[2] == '8')
4630 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4631 else if (mnem_p - 4 == dot_p
f8a5c266
L
4632 && dot_p[1] == 'd'
4633 && dot_p[2] == '3'
4634 && dot_p[3] == '2')
a501d77e 4635 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4636 else
4637 goto check_suffix;
4638 mnem_p = dot_p;
4639 *dot_p = '\0';
d3ce72d0 4640 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4641 }
4642
29b0f896
AM
4643 if (!current_templates)
4644 {
b6169b20 4645check_suffix:
1c529385 4646 if (mnem_p > mnemonic)
29b0f896 4647 {
1c529385
LH
4648 /* See if we can get a match by trimming off a suffix. */
4649 switch (mnem_p[-1])
29b0f896 4650 {
1c529385
LH
4651 case WORD_MNEM_SUFFIX:
4652 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4653 i.suffix = SHORT_MNEM_SUFFIX;
4654 else
1c529385
LH
4655 /* Fall through. */
4656 case BYTE_MNEM_SUFFIX:
4657 case QWORD_MNEM_SUFFIX:
4658 i.suffix = mnem_p[-1];
29b0f896 4659 mnem_p[-1] = '\0';
d3ce72d0 4660 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4661 mnemonic);
4662 break;
4663 case SHORT_MNEM_SUFFIX:
4664 case LONG_MNEM_SUFFIX:
4665 if (!intel_syntax)
4666 {
4667 i.suffix = mnem_p[-1];
4668 mnem_p[-1] = '\0';
4669 current_templates = (const templates *) hash_find (op_hash,
4670 mnemonic);
4671 }
4672 break;
4673
4674 /* Intel Syntax. */
4675 case 'd':
4676 if (intel_syntax)
4677 {
4678 if (intel_float_operand (mnemonic) == 1)
4679 i.suffix = SHORT_MNEM_SUFFIX;
4680 else
4681 i.suffix = LONG_MNEM_SUFFIX;
4682 mnem_p[-1] = '\0';
4683 current_templates = (const templates *) hash_find (op_hash,
4684 mnemonic);
4685 }
4686 break;
29b0f896 4687 }
29b0f896 4688 }
1c529385 4689
29b0f896
AM
4690 if (!current_templates)
4691 {
4692 as_bad (_("no such instruction: `%s'"), token_start);
4693 return NULL;
4694 }
4695 }
252b5132 4696
40fb9820
L
4697 if (current_templates->start->opcode_modifier.jump
4698 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4699 {
4700 /* Check for a branch hint. We allow ",pt" and ",pn" for
4701 predict taken and predict not taken respectively.
4702 I'm not sure that branch hints actually do anything on loop
4703 and jcxz insns (JumpByte) for current Pentium4 chips. They
4704 may work in the future and it doesn't hurt to accept them
4705 now. */
4706 if (l[0] == ',' && l[1] == 'p')
4707 {
4708 if (l[2] == 't')
4709 {
4710 if (!add_prefix (DS_PREFIX_OPCODE))
4711 return NULL;
4712 l += 3;
4713 }
4714 else if (l[2] == 'n')
4715 {
4716 if (!add_prefix (CS_PREFIX_OPCODE))
4717 return NULL;
4718 l += 3;
4719 }
4720 }
4721 }
4722 /* Any other comma loses. */
4723 if (*l == ',')
4724 {
4725 as_bad (_("invalid character %s in mnemonic"),
4726 output_invalid (*l));
4727 return NULL;
4728 }
252b5132 4729
29b0f896 4730 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4731 supported = 0;
4732 for (t = current_templates->start; t < current_templates->end; ++t)
4733 {
c0f3af97
L
4734 supported |= cpu_flags_match (t);
4735 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4736 {
4737 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4738 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4739
548d0ee6
JB
4740 return l;
4741 }
29b0f896 4742 }
3629bb00 4743
548d0ee6
JB
4744 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4745 as_bad (flag_code == CODE_64BIT
4746 ? _("`%s' is not supported in 64-bit mode")
4747 : _("`%s' is only supported in 64-bit mode"),
4748 current_templates->start->name);
4749 else
4750 as_bad (_("`%s' is not supported on `%s%s'"),
4751 current_templates->start->name,
4752 cpu_arch_name ? cpu_arch_name : default_arch,
4753 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4754
548d0ee6 4755 return NULL;
29b0f896 4756}
252b5132 4757
29b0f896 4758static char *
e3bb37b5 4759parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4760{
4761 char *token_start;
3138f287 4762
29b0f896
AM
4763 /* 1 if operand is pending after ','. */
4764 unsigned int expecting_operand = 0;
252b5132 4765
29b0f896
AM
4766 /* Non-zero if operand parens not balanced. */
4767 unsigned int paren_not_balanced;
4768
4769 while (*l != END_OF_INSN)
4770 {
4771 /* Skip optional white space before operand. */
4772 if (is_space_char (*l))
4773 ++l;
d02603dc 4774 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4775 {
4776 as_bad (_("invalid character %s before operand %d"),
4777 output_invalid (*l),
4778 i.operands + 1);
4779 return NULL;
4780 }
d02603dc 4781 token_start = l; /* After white space. */
29b0f896
AM
4782 paren_not_balanced = 0;
4783 while (paren_not_balanced || *l != ',')
4784 {
4785 if (*l == END_OF_INSN)
4786 {
4787 if (paren_not_balanced)
4788 {
4789 if (!intel_syntax)
4790 as_bad (_("unbalanced parenthesis in operand %d."),
4791 i.operands + 1);
4792 else
4793 as_bad (_("unbalanced brackets in operand %d."),
4794 i.operands + 1);
4795 return NULL;
4796 }
4797 else
4798 break; /* we are done */
4799 }
d02603dc 4800 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4801 {
4802 as_bad (_("invalid character %s in operand %d"),
4803 output_invalid (*l),
4804 i.operands + 1);
4805 return NULL;
4806 }
4807 if (!intel_syntax)
4808 {
4809 if (*l == '(')
4810 ++paren_not_balanced;
4811 if (*l == ')')
4812 --paren_not_balanced;
4813 }
4814 else
4815 {
4816 if (*l == '[')
4817 ++paren_not_balanced;
4818 if (*l == ']')
4819 --paren_not_balanced;
4820 }
4821 l++;
4822 }
4823 if (l != token_start)
4824 { /* Yes, we've read in another operand. */
4825 unsigned int operand_ok;
4826 this_operand = i.operands++;
4827 if (i.operands > MAX_OPERANDS)
4828 {
4829 as_bad (_("spurious operands; (%d operands/instruction max)"),
4830 MAX_OPERANDS);
4831 return NULL;
4832 }
9d46ce34 4833 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4834 /* Now parse operand adding info to 'i' as we go along. */
4835 END_STRING_AND_SAVE (l);
4836
1286ab78
L
4837 if (i.mem_operands > 1)
4838 {
4839 as_bad (_("too many memory references for `%s'"),
4840 mnemonic);
4841 return 0;
4842 }
4843
29b0f896
AM
4844 if (intel_syntax)
4845 operand_ok =
4846 i386_intel_operand (token_start,
4847 intel_float_operand (mnemonic));
4848 else
a7619375 4849 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4850
4851 RESTORE_END_STRING (l);
4852 if (!operand_ok)
4853 return NULL;
4854 }
4855 else
4856 {
4857 if (expecting_operand)
4858 {
4859 expecting_operand_after_comma:
4860 as_bad (_("expecting operand after ','; got nothing"));
4861 return NULL;
4862 }
4863 if (*l == ',')
4864 {
4865 as_bad (_("expecting operand before ','; got nothing"));
4866 return NULL;
4867 }
4868 }
7f3f1ea2 4869
29b0f896
AM
4870 /* Now *l must be either ',' or END_OF_INSN. */
4871 if (*l == ',')
4872 {
4873 if (*++l == END_OF_INSN)
4874 {
4875 /* Just skip it, if it's \n complain. */
4876 goto expecting_operand_after_comma;
4877 }
4878 expecting_operand = 1;
4879 }
4880 }
4881 return l;
4882}
7f3f1ea2 4883
050dfa73 4884static void
4d456e3d 4885swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4886{
4887 union i386_op temp_op;
40fb9820 4888 i386_operand_type temp_type;
c48dadc9 4889 unsigned int temp_flags;
050dfa73 4890 enum bfd_reloc_code_real temp_reloc;
4eed87de 4891
050dfa73
MM
4892 temp_type = i.types[xchg2];
4893 i.types[xchg2] = i.types[xchg1];
4894 i.types[xchg1] = temp_type;
c48dadc9
JB
4895
4896 temp_flags = i.flags[xchg2];
4897 i.flags[xchg2] = i.flags[xchg1];
4898 i.flags[xchg1] = temp_flags;
4899
050dfa73
MM
4900 temp_op = i.op[xchg2];
4901 i.op[xchg2] = i.op[xchg1];
4902 i.op[xchg1] = temp_op;
c48dadc9 4903
050dfa73
MM
4904 temp_reloc = i.reloc[xchg2];
4905 i.reloc[xchg2] = i.reloc[xchg1];
4906 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4907
4908 if (i.mask)
4909 {
4910 if (i.mask->operand == xchg1)
4911 i.mask->operand = xchg2;
4912 else if (i.mask->operand == xchg2)
4913 i.mask->operand = xchg1;
4914 }
4915 if (i.broadcast)
4916 {
4917 if (i.broadcast->operand == xchg1)
4918 i.broadcast->operand = xchg2;
4919 else if (i.broadcast->operand == xchg2)
4920 i.broadcast->operand = xchg1;
4921 }
4922 if (i.rounding)
4923 {
4924 if (i.rounding->operand == xchg1)
4925 i.rounding->operand = xchg2;
4926 else if (i.rounding->operand == xchg2)
4927 i.rounding->operand = xchg1;
4928 }
050dfa73
MM
4929}
4930
29b0f896 4931static void
e3bb37b5 4932swap_operands (void)
29b0f896 4933{
b7c61d9a 4934 switch (i.operands)
050dfa73 4935 {
c0f3af97 4936 case 5:
b7c61d9a 4937 case 4:
4d456e3d 4938 swap_2_operands (1, i.operands - 2);
1a0670f3 4939 /* Fall through. */
b7c61d9a
L
4940 case 3:
4941 case 2:
4d456e3d 4942 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4943 break;
4944 default:
4945 abort ();
29b0f896 4946 }
29b0f896
AM
4947
4948 if (i.mem_operands == 2)
4949 {
4950 const seg_entry *temp_seg;
4951 temp_seg = i.seg[0];
4952 i.seg[0] = i.seg[1];
4953 i.seg[1] = temp_seg;
4954 }
4955}
252b5132 4956
29b0f896
AM
4957/* Try to ensure constant immediates are represented in the smallest
4958 opcode possible. */
4959static void
e3bb37b5 4960optimize_imm (void)
29b0f896
AM
4961{
4962 char guess_suffix = 0;
4963 int op;
252b5132 4964
29b0f896
AM
4965 if (i.suffix)
4966 guess_suffix = i.suffix;
4967 else if (i.reg_operands)
4968 {
4969 /* Figure out a suffix from the last register operand specified.
4970 We can't do this properly yet, ie. excluding InOutPortReg,
4971 but the following works for instructions with immediates.
4972 In any case, we can't set i.suffix yet. */
4973 for (op = i.operands; --op >= 0;)
dc821c5f 4974 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4975 {
40fb9820
L
4976 guess_suffix = BYTE_MNEM_SUFFIX;
4977 break;
4978 }
dc821c5f 4979 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4980 {
40fb9820
L
4981 guess_suffix = WORD_MNEM_SUFFIX;
4982 break;
4983 }
dc821c5f 4984 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4985 {
4986 guess_suffix = LONG_MNEM_SUFFIX;
4987 break;
4988 }
dc821c5f 4989 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4990 {
4991 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4992 break;
252b5132 4993 }
29b0f896
AM
4994 }
4995 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4996 guess_suffix = WORD_MNEM_SUFFIX;
4997
4998 for (op = i.operands; --op >= 0;)
40fb9820 4999 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5000 {
5001 switch (i.op[op].imms->X_op)
252b5132 5002 {
29b0f896
AM
5003 case O_constant:
5004 /* If a suffix is given, this operand may be shortened. */
5005 switch (guess_suffix)
252b5132 5006 {
29b0f896 5007 case LONG_MNEM_SUFFIX:
40fb9820
L
5008 i.types[op].bitfield.imm32 = 1;
5009 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5010 break;
5011 case WORD_MNEM_SUFFIX:
40fb9820
L
5012 i.types[op].bitfield.imm16 = 1;
5013 i.types[op].bitfield.imm32 = 1;
5014 i.types[op].bitfield.imm32s = 1;
5015 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5016 break;
5017 case BYTE_MNEM_SUFFIX:
40fb9820
L
5018 i.types[op].bitfield.imm8 = 1;
5019 i.types[op].bitfield.imm8s = 1;
5020 i.types[op].bitfield.imm16 = 1;
5021 i.types[op].bitfield.imm32 = 1;
5022 i.types[op].bitfield.imm32s = 1;
5023 i.types[op].bitfield.imm64 = 1;
29b0f896 5024 break;
252b5132 5025 }
252b5132 5026
29b0f896
AM
5027 /* If this operand is at most 16 bits, convert it
5028 to a signed 16 bit number before trying to see
5029 whether it will fit in an even smaller size.
5030 This allows a 16-bit operand such as $0xffe0 to
5031 be recognised as within Imm8S range. */
40fb9820 5032 if ((i.types[op].bitfield.imm16)
29b0f896 5033 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5034 {
29b0f896
AM
5035 i.op[op].imms->X_add_number =
5036 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5037 }
a28def75
L
5038#ifdef BFD64
5039 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5040 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5041 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5042 == 0))
5043 {
5044 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5045 ^ ((offsetT) 1 << 31))
5046 - ((offsetT) 1 << 31));
5047 }
a28def75 5048#endif
40fb9820 5049 i.types[op]
c6fb90c8
L
5050 = operand_type_or (i.types[op],
5051 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5052
29b0f896
AM
5053 /* We must avoid matching of Imm32 templates when 64bit
5054 only immediate is available. */
5055 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5056 i.types[op].bitfield.imm32 = 0;
29b0f896 5057 break;
252b5132 5058
29b0f896
AM
5059 case O_absent:
5060 case O_register:
5061 abort ();
5062
5063 /* Symbols and expressions. */
5064 default:
9cd96992
JB
5065 /* Convert symbolic operand to proper sizes for matching, but don't
5066 prevent matching a set of insns that only supports sizes other
5067 than those matching the insn suffix. */
5068 {
40fb9820 5069 i386_operand_type mask, allowed;
d3ce72d0 5070 const insn_template *t;
9cd96992 5071
0dfbf9d7
L
5072 operand_type_set (&mask, 0);
5073 operand_type_set (&allowed, 0);
40fb9820 5074
4eed87de
AM
5075 for (t = current_templates->start;
5076 t < current_templates->end;
5077 ++t)
c6fb90c8
L
5078 allowed = operand_type_or (allowed,
5079 t->operand_types[op]);
9cd96992
JB
5080 switch (guess_suffix)
5081 {
5082 case QWORD_MNEM_SUFFIX:
40fb9820
L
5083 mask.bitfield.imm64 = 1;
5084 mask.bitfield.imm32s = 1;
9cd96992
JB
5085 break;
5086 case LONG_MNEM_SUFFIX:
40fb9820 5087 mask.bitfield.imm32 = 1;
9cd96992
JB
5088 break;
5089 case WORD_MNEM_SUFFIX:
40fb9820 5090 mask.bitfield.imm16 = 1;
9cd96992
JB
5091 break;
5092 case BYTE_MNEM_SUFFIX:
40fb9820 5093 mask.bitfield.imm8 = 1;
9cd96992
JB
5094 break;
5095 default:
9cd96992
JB
5096 break;
5097 }
c6fb90c8 5098 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5099 if (!operand_type_all_zero (&allowed))
c6fb90c8 5100 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5101 }
29b0f896 5102 break;
252b5132 5103 }
29b0f896
AM
5104 }
5105}
47926f60 5106
29b0f896
AM
5107/* Try to use the smallest displacement type too. */
5108static void
e3bb37b5 5109optimize_disp (void)
29b0f896
AM
5110{
5111 int op;
3e73aa7c 5112
29b0f896 5113 for (op = i.operands; --op >= 0;)
40fb9820 5114 if (operand_type_check (i.types[op], disp))
252b5132 5115 {
b300c311 5116 if (i.op[op].disps->X_op == O_constant)
252b5132 5117 {
91d6fa6a 5118 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5119
40fb9820 5120 if (i.types[op].bitfield.disp16
91d6fa6a 5121 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5122 {
5123 /* If this operand is at most 16 bits, convert
5124 to a signed 16 bit number and don't use 64bit
5125 displacement. */
91d6fa6a 5126 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5127 i.types[op].bitfield.disp64 = 0;
b300c311 5128 }
a28def75
L
5129#ifdef BFD64
5130 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5131 if (i.types[op].bitfield.disp32
91d6fa6a 5132 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5133 {
5134 /* If this operand is at most 32 bits, convert
5135 to a signed 32 bit number and don't use 64bit
5136 displacement. */
91d6fa6a
NC
5137 op_disp &= (((offsetT) 2 << 31) - 1);
5138 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5139 i.types[op].bitfield.disp64 = 0;
b300c311 5140 }
a28def75 5141#endif
91d6fa6a 5142 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5143 {
40fb9820
L
5144 i.types[op].bitfield.disp8 = 0;
5145 i.types[op].bitfield.disp16 = 0;
5146 i.types[op].bitfield.disp32 = 0;
5147 i.types[op].bitfield.disp32s = 0;
5148 i.types[op].bitfield.disp64 = 0;
b300c311
L
5149 i.op[op].disps = 0;
5150 i.disp_operands--;
5151 }
5152 else if (flag_code == CODE_64BIT)
5153 {
91d6fa6a 5154 if (fits_in_signed_long (op_disp))
28a9d8f5 5155 {
40fb9820
L
5156 i.types[op].bitfield.disp64 = 0;
5157 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5158 }
0e1147d9 5159 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5160 && fits_in_unsigned_long (op_disp))
40fb9820 5161 i.types[op].bitfield.disp32 = 1;
b300c311 5162 }
40fb9820
L
5163 if ((i.types[op].bitfield.disp32
5164 || i.types[op].bitfield.disp32s
5165 || i.types[op].bitfield.disp16)
b5014f7a 5166 && fits_in_disp8 (op_disp))
40fb9820 5167 i.types[op].bitfield.disp8 = 1;
252b5132 5168 }
67a4f2b7
AO
5169 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5170 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5171 {
5172 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5173 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5174 i.types[op].bitfield.disp8 = 0;
5175 i.types[op].bitfield.disp16 = 0;
5176 i.types[op].bitfield.disp32 = 0;
5177 i.types[op].bitfield.disp32s = 0;
5178 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5179 }
5180 else
b300c311 5181 /* We only support 64bit displacement on constants. */
40fb9820 5182 i.types[op].bitfield.disp64 = 0;
252b5132 5183 }
29b0f896
AM
5184}
5185
4a1b91ea
L
5186/* Return 1 if there is a match in broadcast bytes between operand
5187 GIVEN and instruction template T. */
5188
5189static INLINE int
5190match_broadcast_size (const insn_template *t, unsigned int given)
5191{
5192 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5193 && i.types[given].bitfield.byte)
5194 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5195 && i.types[given].bitfield.word)
5196 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5197 && i.types[given].bitfield.dword)
5198 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5199 && i.types[given].bitfield.qword));
5200}
5201
6c30d220
L
5202/* Check if operands are valid for the instruction. */
5203
5204static int
5205check_VecOperands (const insn_template *t)
5206{
43234a1e 5207 unsigned int op;
e2195274
JB
5208 i386_cpu_flags cpu;
5209 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5210
5211 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5212 any one operand are implicity requiring AVX512VL support if the actual
5213 operand size is YMMword or XMMword. Since this function runs after
5214 template matching, there's no need to check for YMMword/XMMword in
5215 the template. */
5216 cpu = cpu_flags_and (t->cpu_flags, avx512);
5217 if (!cpu_flags_all_zero (&cpu)
5218 && !t->cpu_flags.bitfield.cpuavx512vl
5219 && !cpu_arch_flags.bitfield.cpuavx512vl)
5220 {
5221 for (op = 0; op < t->operands; ++op)
5222 {
5223 if (t->operand_types[op].bitfield.zmmword
5224 && (i.types[op].bitfield.ymmword
5225 || i.types[op].bitfield.xmmword))
5226 {
5227 i.error = unsupported;
5228 return 1;
5229 }
5230 }
5231 }
43234a1e 5232
6c30d220
L
5233 /* Without VSIB byte, we can't have a vector register for index. */
5234 if (!t->opcode_modifier.vecsib
5235 && i.index_reg
1b54b8d7
JB
5236 && (i.index_reg->reg_type.bitfield.xmmword
5237 || i.index_reg->reg_type.bitfield.ymmword
5238 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5239 {
5240 i.error = unsupported_vector_index_register;
5241 return 1;
5242 }
5243
ad8ecc81
MZ
5244 /* Check if default mask is allowed. */
5245 if (t->opcode_modifier.nodefmask
5246 && (!i.mask || i.mask->mask->reg_num == 0))
5247 {
5248 i.error = no_default_mask;
5249 return 1;
5250 }
5251
7bab8ab5
JB
5252 /* For VSIB byte, we need a vector register for index, and all vector
5253 registers must be distinct. */
5254 if (t->opcode_modifier.vecsib)
5255 {
5256 if (!i.index_reg
6c30d220 5257 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5258 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5259 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5260 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5261 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5262 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5263 {
5264 i.error = invalid_vsib_address;
5265 return 1;
5266 }
5267
43234a1e
L
5268 gas_assert (i.reg_operands == 2 || i.mask);
5269 if (i.reg_operands == 2 && !i.mask)
5270 {
1b54b8d7
JB
5271 gas_assert (i.types[0].bitfield.regsimd);
5272 gas_assert (i.types[0].bitfield.xmmword
5273 || i.types[0].bitfield.ymmword);
5274 gas_assert (i.types[2].bitfield.regsimd);
5275 gas_assert (i.types[2].bitfield.xmmword
5276 || i.types[2].bitfield.ymmword);
43234a1e
L
5277 if (operand_check == check_none)
5278 return 0;
5279 if (register_number (i.op[0].regs)
5280 != register_number (i.index_reg)
5281 && register_number (i.op[2].regs)
5282 != register_number (i.index_reg)
5283 && register_number (i.op[0].regs)
5284 != register_number (i.op[2].regs))
5285 return 0;
5286 if (operand_check == check_error)
5287 {
5288 i.error = invalid_vector_register_set;
5289 return 1;
5290 }
5291 as_warn (_("mask, index, and destination registers should be distinct"));
5292 }
8444f82a
MZ
5293 else if (i.reg_operands == 1 && i.mask)
5294 {
1b54b8d7
JB
5295 if (i.types[1].bitfield.regsimd
5296 && (i.types[1].bitfield.xmmword
5297 || i.types[1].bitfield.ymmword
5298 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5299 && (register_number (i.op[1].regs)
5300 == register_number (i.index_reg)))
5301 {
5302 if (operand_check == check_error)
5303 {
5304 i.error = invalid_vector_register_set;
5305 return 1;
5306 }
5307 if (operand_check != check_none)
5308 as_warn (_("index and destination registers should be distinct"));
5309 }
5310 }
43234a1e 5311 }
7bab8ab5 5312
43234a1e
L
5313 /* Check if broadcast is supported by the instruction and is applied
5314 to the memory operand. */
5315 if (i.broadcast)
5316 {
8e6e0792 5317 i386_operand_type type, overlap;
43234a1e
L
5318
5319 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5320 and its broadcast bytes match the memory operand. */
32546502 5321 op = i.broadcast->operand;
8e6e0792 5322 if (!t->opcode_modifier.broadcast
c48dadc9 5323 || !(i.flags[op] & Operand_Mem)
c39e5b26 5324 || (!i.types[op].bitfield.unspecified
4a1b91ea 5325 && !match_broadcast_size (t, op)))
43234a1e
L
5326 {
5327 bad_broadcast:
5328 i.error = unsupported_broadcast;
5329 return 1;
5330 }
8e6e0792 5331
4a1b91ea
L
5332 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5333 * i.broadcast->type);
8e6e0792 5334 operand_type_set (&type, 0);
4a1b91ea 5335 switch (i.broadcast->bytes)
8e6e0792 5336 {
4a1b91ea
L
5337 case 2:
5338 type.bitfield.word = 1;
5339 break;
5340 case 4:
5341 type.bitfield.dword = 1;
5342 break;
8e6e0792
JB
5343 case 8:
5344 type.bitfield.qword = 1;
5345 break;
5346 case 16:
5347 type.bitfield.xmmword = 1;
5348 break;
5349 case 32:
5350 type.bitfield.ymmword = 1;
5351 break;
5352 case 64:
5353 type.bitfield.zmmword = 1;
5354 break;
5355 default:
5356 goto bad_broadcast;
5357 }
5358
5359 overlap = operand_type_and (type, t->operand_types[op]);
5360 if (operand_type_all_zero (&overlap))
5361 goto bad_broadcast;
5362
5363 if (t->opcode_modifier.checkregsize)
5364 {
5365 unsigned int j;
5366
e2195274 5367 type.bitfield.baseindex = 1;
8e6e0792
JB
5368 for (j = 0; j < i.operands; ++j)
5369 {
5370 if (j != op
5371 && !operand_type_register_match(i.types[j],
5372 t->operand_types[j],
5373 type,
5374 t->operand_types[op]))
5375 goto bad_broadcast;
5376 }
5377 }
43234a1e
L
5378 }
5379 /* If broadcast is supported in this instruction, we need to check if
5380 operand of one-element size isn't specified without broadcast. */
5381 else if (t->opcode_modifier.broadcast && i.mem_operands)
5382 {
5383 /* Find memory operand. */
5384 for (op = 0; op < i.operands; op++)
5385 if (operand_type_check (i.types[op], anymem))
5386 break;
5387 gas_assert (op < i.operands);
5388 /* Check size of the memory operand. */
4a1b91ea 5389 if (match_broadcast_size (t, op))
43234a1e
L
5390 {
5391 i.error = broadcast_needed;
5392 return 1;
5393 }
5394 }
c39e5b26
JB
5395 else
5396 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5397
5398 /* Check if requested masking is supported. */
ae2387fe 5399 if (i.mask)
43234a1e 5400 {
ae2387fe
JB
5401 switch (t->opcode_modifier.masking)
5402 {
5403 case BOTH_MASKING:
5404 break;
5405 case MERGING_MASKING:
5406 if (i.mask->zeroing)
5407 {
5408 case 0:
5409 i.error = unsupported_masking;
5410 return 1;
5411 }
5412 break;
5413 case DYNAMIC_MASKING:
5414 /* Memory destinations allow only merging masking. */
5415 if (i.mask->zeroing && i.mem_operands)
5416 {
5417 /* Find memory operand. */
5418 for (op = 0; op < i.operands; op++)
c48dadc9 5419 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5420 break;
5421 gas_assert (op < i.operands);
5422 if (op == i.operands - 1)
5423 {
5424 i.error = unsupported_masking;
5425 return 1;
5426 }
5427 }
5428 break;
5429 default:
5430 abort ();
5431 }
43234a1e
L
5432 }
5433
5434 /* Check if masking is applied to dest operand. */
5435 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5436 {
5437 i.error = mask_not_on_destination;
5438 return 1;
5439 }
5440
43234a1e
L
5441 /* Check RC/SAE. */
5442 if (i.rounding)
5443 {
5444 if ((i.rounding->type != saeonly
5445 && !t->opcode_modifier.staticrounding)
5446 || (i.rounding->type == saeonly
5447 && (t->opcode_modifier.staticrounding
5448 || !t->opcode_modifier.sae)))
5449 {
5450 i.error = unsupported_rc_sae;
5451 return 1;
5452 }
5453 /* If the instruction has several immediate operands and one of
5454 them is rounding, the rounding operand should be the last
5455 immediate operand. */
5456 if (i.imm_operands > 1
5457 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5458 {
43234a1e 5459 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5460 return 1;
5461 }
6c30d220
L
5462 }
5463
43234a1e 5464 /* Check vector Disp8 operand. */
b5014f7a
JB
5465 if (t->opcode_modifier.disp8memshift
5466 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5467 {
5468 if (i.broadcast)
4a1b91ea 5469 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5470 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5471 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5472 else
5473 {
5474 const i386_operand_type *type = NULL;
5475
5476 i.memshift = 0;
5477 for (op = 0; op < i.operands; op++)
5478 if (operand_type_check (i.types[op], anymem))
5479 {
4174bfff
JB
5480 if (t->opcode_modifier.evex == EVEXLIG)
5481 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5482 else if (t->operand_types[op].bitfield.xmmword
5483 + t->operand_types[op].bitfield.ymmword
5484 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5485 type = &t->operand_types[op];
5486 else if (!i.types[op].bitfield.unspecified)
5487 type = &i.types[op];
5488 }
4174bfff
JB
5489 else if (i.types[op].bitfield.regsimd
5490 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5491 {
5492 if (i.types[op].bitfield.zmmword)
5493 i.memshift = 6;
5494 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5495 i.memshift = 5;
5496 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5497 i.memshift = 4;
5498 }
5499
5500 if (type)
5501 {
5502 if (type->bitfield.zmmword)
5503 i.memshift = 6;
5504 else if (type->bitfield.ymmword)
5505 i.memshift = 5;
5506 else if (type->bitfield.xmmword)
5507 i.memshift = 4;
5508 }
5509
5510 /* For the check in fits_in_disp8(). */
5511 if (i.memshift == 0)
5512 i.memshift = -1;
5513 }
43234a1e
L
5514
5515 for (op = 0; op < i.operands; op++)
5516 if (operand_type_check (i.types[op], disp)
5517 && i.op[op].disps->X_op == O_constant)
5518 {
b5014f7a 5519 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5520 {
b5014f7a
JB
5521 i.types[op].bitfield.disp8 = 1;
5522 return 0;
43234a1e 5523 }
b5014f7a 5524 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5525 }
5526 }
b5014f7a
JB
5527
5528 i.memshift = 0;
43234a1e 5529
6c30d220
L
5530 return 0;
5531}
5532
43f3e2ee 5533/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5534 operand types. */
5535
5536static int
5537VEX_check_operands (const insn_template *t)
5538{
86fa6981 5539 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5540 {
86fa6981 5541 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5542 if (!is_evex_encoding (t))
86fa6981
L
5543 {
5544 i.error = unsupported;
5545 return 1;
5546 }
5547 return 0;
43234a1e
L
5548 }
5549
a683cc34 5550 if (!t->opcode_modifier.vex)
86fa6981
L
5551 {
5552 /* This instruction template doesn't have VEX prefix. */
5553 if (i.vec_encoding != vex_encoding_default)
5554 {
5555 i.error = unsupported;
5556 return 1;
5557 }
5558 return 0;
5559 }
a683cc34
SP
5560
5561 /* Only check VEX_Imm4, which must be the first operand. */
5562 if (t->operand_types[0].bitfield.vec_imm4)
5563 {
5564 if (i.op[0].imms->X_op != O_constant
5565 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5566 {
a65babc9 5567 i.error = bad_imm4;
891edac4
L
5568 return 1;
5569 }
a683cc34
SP
5570
5571 /* Turn off Imm8 so that update_imm won't complain. */
5572 i.types[0] = vec_imm4;
5573 }
5574
5575 return 0;
5576}
5577
d3ce72d0 5578static const insn_template *
83b16ac6 5579match_template (char mnem_suffix)
29b0f896
AM
5580{
5581 /* Points to template once we've found it. */
d3ce72d0 5582 const insn_template *t;
40fb9820 5583 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5584 i386_operand_type overlap4;
29b0f896 5585 unsigned int found_reverse_match;
83b16ac6 5586 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5587 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5588 int addr_prefix_disp;
a5c311ca 5589 unsigned int j;
3ac21baa 5590 unsigned int found_cpu_match, size_match;
45664ddb 5591 unsigned int check_register;
5614d22c 5592 enum i386_error specific_error = 0;
29b0f896 5593
c0f3af97
L
5594#if MAX_OPERANDS != 5
5595# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5596#endif
5597
29b0f896 5598 found_reverse_match = 0;
539e75ad 5599 addr_prefix_disp = -1;
40fb9820
L
5600
5601 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5602 if (intel_syntax && i.broadcast)
5603 /* nothing */;
5604 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5605 suffix_check.no_bsuf = 1;
5606 else if (i.suffix == WORD_MNEM_SUFFIX)
5607 suffix_check.no_wsuf = 1;
5608 else if (i.suffix == SHORT_MNEM_SUFFIX)
5609 suffix_check.no_ssuf = 1;
5610 else if (i.suffix == LONG_MNEM_SUFFIX)
5611 suffix_check.no_lsuf = 1;
5612 else if (i.suffix == QWORD_MNEM_SUFFIX)
5613 suffix_check.no_qsuf = 1;
5614 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5615 suffix_check.no_ldsuf = 1;
29b0f896 5616
83b16ac6
JB
5617 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5618 if (intel_syntax)
5619 {
5620 switch (mnem_suffix)
5621 {
5622 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5623 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5624 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5625 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5626 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5627 }
5628 }
5629
01559ecc
L
5630 /* Must have right number of operands. */
5631 i.error = number_of_operands_mismatch;
5632
45aa61fe 5633 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5634 {
539e75ad 5635 addr_prefix_disp = -1;
dbbc8b7e 5636 found_reverse_match = 0;
539e75ad 5637
29b0f896
AM
5638 if (i.operands != t->operands)
5639 continue;
5640
50aecf8c 5641 /* Check processor support. */
a65babc9 5642 i.error = unsupported;
c0f3af97
L
5643 found_cpu_match = (cpu_flags_match (t)
5644 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5645 if (!found_cpu_match)
5646 continue;
5647
e1d4d893 5648 /* Check AT&T mnemonic. */
a65babc9 5649 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5650 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5651 continue;
5652
e92bae62 5653 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5654 i.error = unsupported_syntax;
5c07affc 5655 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5656 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5657 || (intel64 && t->opcode_modifier.amd64)
5658 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5659 continue;
5660
20592a94 5661 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5662 i.error = invalid_instruction_suffix;
567e4e96
L
5663 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5664 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5665 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5666 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5667 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5668 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5669 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5670 continue;
83b16ac6
JB
5671 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5672 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5673 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5674 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5675 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5676 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5677 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5678 continue;
29b0f896 5679
3ac21baa
JB
5680 size_match = operand_size_match (t);
5681 if (!size_match)
7d5e4556 5682 continue;
539e75ad 5683
5c07affc
L
5684 for (j = 0; j < MAX_OPERANDS; j++)
5685 operand_types[j] = t->operand_types[j];
5686
45aa61fe
AM
5687 /* In general, don't allow 64-bit operands in 32-bit mode. */
5688 if (i.suffix == QWORD_MNEM_SUFFIX
5689 && flag_code != CODE_64BIT
5690 && (intel_syntax
40fb9820 5691 ? (!t->opcode_modifier.ignoresize
625cbd7a 5692 && !t->opcode_modifier.broadcast
45aa61fe
AM
5693 && !intel_float_operand (t->name))
5694 : intel_float_operand (t->name) != 2)
40fb9820 5695 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5696 && !operand_types[0].bitfield.regsimd)
40fb9820 5697 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5698 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5699 && (t->base_opcode != 0x0fc7
5700 || t->extension_opcode != 1 /* cmpxchg8b */))
5701 continue;
5702
192dc9c6
JB
5703 /* In general, don't allow 32-bit operands on pre-386. */
5704 else if (i.suffix == LONG_MNEM_SUFFIX
5705 && !cpu_arch_flags.bitfield.cpui386
5706 && (intel_syntax
5707 ? (!t->opcode_modifier.ignoresize
5708 && !intel_float_operand (t->name))
5709 : intel_float_operand (t->name) != 2)
5710 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5711 && !operand_types[0].bitfield.regsimd)
192dc9c6 5712 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5713 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5714 continue;
5715
29b0f896 5716 /* Do not verify operands when there are none. */
50aecf8c 5717 else
29b0f896 5718 {
c6fb90c8 5719 if (!t->operands)
2dbab7d5
L
5720 /* We've found a match; break out of loop. */
5721 break;
29b0f896 5722 }
252b5132 5723
539e75ad
L
5724 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5725 into Disp32/Disp16/Disp32 operand. */
5726 if (i.prefix[ADDR_PREFIX] != 0)
5727 {
40fb9820 5728 /* There should be only one Disp operand. */
539e75ad
L
5729 switch (flag_code)
5730 {
5731 case CODE_16BIT:
40fb9820
L
5732 for (j = 0; j < MAX_OPERANDS; j++)
5733 {
5734 if (operand_types[j].bitfield.disp16)
5735 {
5736 addr_prefix_disp = j;
5737 operand_types[j].bitfield.disp32 = 1;
5738 operand_types[j].bitfield.disp16 = 0;
5739 break;
5740 }
5741 }
539e75ad
L
5742 break;
5743 case CODE_32BIT:
40fb9820
L
5744 for (j = 0; j < MAX_OPERANDS; j++)
5745 {
5746 if (operand_types[j].bitfield.disp32)
5747 {
5748 addr_prefix_disp = j;
5749 operand_types[j].bitfield.disp32 = 0;
5750 operand_types[j].bitfield.disp16 = 1;
5751 break;
5752 }
5753 }
539e75ad
L
5754 break;
5755 case CODE_64BIT:
40fb9820
L
5756 for (j = 0; j < MAX_OPERANDS; j++)
5757 {
5758 if (operand_types[j].bitfield.disp64)
5759 {
5760 addr_prefix_disp = j;
5761 operand_types[j].bitfield.disp64 = 0;
5762 operand_types[j].bitfield.disp32 = 1;
5763 break;
5764 }
5765 }
539e75ad
L
5766 break;
5767 }
539e75ad
L
5768 }
5769
02a86693
L
5770 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5771 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5772 continue;
5773
56ffb741 5774 /* We check register size if needed. */
e2195274
JB
5775 if (t->opcode_modifier.checkregsize)
5776 {
5777 check_register = (1 << t->operands) - 1;
5778 if (i.broadcast)
5779 check_register &= ~(1 << i.broadcast->operand);
5780 }
5781 else
5782 check_register = 0;
5783
c6fb90c8 5784 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5785 switch (t->operands)
5786 {
5787 case 1:
40fb9820 5788 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5789 continue;
5790 break;
5791 case 2:
33eaf5de 5792 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5793 only in 32bit mode and we can use opcode 0x90. In 64bit
5794 mode, we can't use 0x90 for xchg %eax, %eax since it should
5795 zero-extend %eax to %rax. */
5796 if (flag_code == CODE_64BIT
5797 && t->base_opcode == 0x90
0dfbf9d7
L
5798 && operand_type_equal (&i.types [0], &acc32)
5799 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5800 continue;
1212781b
JB
5801 /* xrelease mov %eax, <disp> is another special case. It must not
5802 match the accumulator-only encoding of mov. */
5803 if (flag_code != CODE_64BIT
5804 && i.hle_prefix
5805 && t->base_opcode == 0xa0
5806 && i.types[0].bitfield.acc
5807 && operand_type_check (i.types[1], anymem))
5808 continue;
f5eb1d70
JB
5809 /* Fall through. */
5810
5811 case 3:
3ac21baa
JB
5812 if (!(size_match & MATCH_STRAIGHT))
5813 goto check_reverse;
64c49ab3
JB
5814 /* Reverse direction of operands if swapping is possible in the first
5815 place (operands need to be symmetric) and
5816 - the load form is requested, and the template is a store form,
5817 - the store form is requested, and the template is a load form,
5818 - the non-default (swapped) form is requested. */
5819 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5820 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5821 && !operand_type_all_zero (&overlap1))
5822 switch (i.dir_encoding)
5823 {
5824 case dir_encoding_load:
5825 if (operand_type_check (operand_types[i.operands - 1], anymem)
5826 || operand_types[i.operands - 1].bitfield.regmem)
5827 goto check_reverse;
5828 break;
5829
5830 case dir_encoding_store:
5831 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5832 && !operand_types[i.operands - 1].bitfield.regmem)
5833 goto check_reverse;
5834 break;
5835
5836 case dir_encoding_swap:
5837 goto check_reverse;
5838
5839 case dir_encoding_default:
5840 break;
5841 }
86fa6981 5842 /* If we want store form, we skip the current load. */
64c49ab3
JB
5843 if ((i.dir_encoding == dir_encoding_store
5844 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5845 && i.mem_operands == 0
5846 && t->opcode_modifier.load)
fa99fab2 5847 continue;
1a0670f3 5848 /* Fall through. */
f48ff2ae 5849 case 4:
c0f3af97 5850 case 5:
c6fb90c8 5851 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5852 if (!operand_type_match (overlap0, i.types[0])
5853 || !operand_type_match (overlap1, i.types[1])
e2195274 5854 || ((check_register & 3) == 3
dc821c5f 5855 && !operand_type_register_match (i.types[0],
40fb9820 5856 operand_types[0],
dc821c5f 5857 i.types[1],
40fb9820 5858 operand_types[1])))
29b0f896
AM
5859 {
5860 /* Check if other direction is valid ... */
38e314eb 5861 if (!t->opcode_modifier.d)
29b0f896
AM
5862 continue;
5863
b6169b20 5864check_reverse:
3ac21baa
JB
5865 if (!(size_match & MATCH_REVERSE))
5866 continue;
29b0f896 5867 /* Try reversing direction of operands. */
f5eb1d70
JB
5868 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5869 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5870 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5871 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5872 || (check_register
dc821c5f 5873 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5874 operand_types[i.operands - 1],
5875 i.types[i.operands - 1],
45664ddb 5876 operand_types[0])))
29b0f896
AM
5877 {
5878 /* Does not match either direction. */
5879 continue;
5880 }
38e314eb 5881 /* found_reverse_match holds which of D or FloatR
29b0f896 5882 we've found. */
38e314eb
JB
5883 if (!t->opcode_modifier.d)
5884 found_reverse_match = 0;
5885 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5886 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5887 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5888 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5889 || operand_types[0].bitfield.regmmx
f5eb1d70 5890 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5891 || is_any_vex_encoding(t))
5892 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5893 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5894 else
38e314eb 5895 found_reverse_match = Opcode_D;
40fb9820 5896 if (t->opcode_modifier.floatr)
8a2ed489 5897 found_reverse_match |= Opcode_FloatR;
29b0f896 5898 }
f48ff2ae 5899 else
29b0f896 5900 {
f48ff2ae 5901 /* Found a forward 2 operand match here. */
d1cbb4db
L
5902 switch (t->operands)
5903 {
c0f3af97
L
5904 case 5:
5905 overlap4 = operand_type_and (i.types[4],
5906 operand_types[4]);
1a0670f3 5907 /* Fall through. */
d1cbb4db 5908 case 4:
c6fb90c8
L
5909 overlap3 = operand_type_and (i.types[3],
5910 operand_types[3]);
1a0670f3 5911 /* Fall through. */
d1cbb4db 5912 case 3:
c6fb90c8
L
5913 overlap2 = operand_type_and (i.types[2],
5914 operand_types[2]);
d1cbb4db
L
5915 break;
5916 }
29b0f896 5917
f48ff2ae
L
5918 switch (t->operands)
5919 {
c0f3af97
L
5920 case 5:
5921 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5922 || !operand_type_register_match (i.types[3],
c0f3af97 5923 operand_types[3],
c0f3af97
L
5924 i.types[4],
5925 operand_types[4]))
5926 continue;
1a0670f3 5927 /* Fall through. */
f48ff2ae 5928 case 4:
40fb9820 5929 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5930 || ((check_register & 0xa) == 0xa
5931 && !operand_type_register_match (i.types[1],
f7768225
JB
5932 operand_types[1],
5933 i.types[3],
e2195274
JB
5934 operand_types[3]))
5935 || ((check_register & 0xc) == 0xc
5936 && !operand_type_register_match (i.types[2],
5937 operand_types[2],
5938 i.types[3],
5939 operand_types[3])))
f48ff2ae 5940 continue;
1a0670f3 5941 /* Fall through. */
f48ff2ae
L
5942 case 3:
5943 /* Here we make use of the fact that there are no
23e42951 5944 reverse match 3 operand instructions. */
40fb9820 5945 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5946 || ((check_register & 5) == 5
5947 && !operand_type_register_match (i.types[0],
23e42951
JB
5948 operand_types[0],
5949 i.types[2],
e2195274
JB
5950 operand_types[2]))
5951 || ((check_register & 6) == 6
5952 && !operand_type_register_match (i.types[1],
5953 operand_types[1],
5954 i.types[2],
5955 operand_types[2])))
f48ff2ae
L
5956 continue;
5957 break;
5958 }
29b0f896 5959 }
f48ff2ae 5960 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5961 slip through to break. */
5962 }
3629bb00 5963 if (!found_cpu_match)
dbbc8b7e 5964 continue;
c0f3af97 5965
5614d22c
JB
5966 /* Check if vector and VEX operands are valid. */
5967 if (check_VecOperands (t) || VEX_check_operands (t))
5968 {
5969 specific_error = i.error;
5970 continue;
5971 }
a683cc34 5972
29b0f896
AM
5973 /* We've found a match; break out of loop. */
5974 break;
5975 }
5976
5977 if (t == current_templates->end)
5978 {
5979 /* We found no match. */
a65babc9 5980 const char *err_msg;
5614d22c 5981 switch (specific_error ? specific_error : i.error)
a65babc9
L
5982 {
5983 default:
5984 abort ();
86e026a4 5985 case operand_size_mismatch:
a65babc9
L
5986 err_msg = _("operand size mismatch");
5987 break;
5988 case operand_type_mismatch:
5989 err_msg = _("operand type mismatch");
5990 break;
5991 case register_type_mismatch:
5992 err_msg = _("register type mismatch");
5993 break;
5994 case number_of_operands_mismatch:
5995 err_msg = _("number of operands mismatch");
5996 break;
5997 case invalid_instruction_suffix:
5998 err_msg = _("invalid instruction suffix");
5999 break;
6000 case bad_imm4:
4a2608e3 6001 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6002 break;
a65babc9
L
6003 case unsupported_with_intel_mnemonic:
6004 err_msg = _("unsupported with Intel mnemonic");
6005 break;
6006 case unsupported_syntax:
6007 err_msg = _("unsupported syntax");
6008 break;
6009 case unsupported:
35262a23 6010 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6011 current_templates->start->name);
6012 return NULL;
6c30d220
L
6013 case invalid_vsib_address:
6014 err_msg = _("invalid VSIB address");
6015 break;
7bab8ab5
JB
6016 case invalid_vector_register_set:
6017 err_msg = _("mask, index, and destination registers must be distinct");
6018 break;
6c30d220
L
6019 case unsupported_vector_index_register:
6020 err_msg = _("unsupported vector index register");
6021 break;
43234a1e
L
6022 case unsupported_broadcast:
6023 err_msg = _("unsupported broadcast");
6024 break;
43234a1e
L
6025 case broadcast_needed:
6026 err_msg = _("broadcast is needed for operand of such type");
6027 break;
6028 case unsupported_masking:
6029 err_msg = _("unsupported masking");
6030 break;
6031 case mask_not_on_destination:
6032 err_msg = _("mask not on destination operand");
6033 break;
6034 case no_default_mask:
6035 err_msg = _("default mask isn't allowed");
6036 break;
6037 case unsupported_rc_sae:
6038 err_msg = _("unsupported static rounding/sae");
6039 break;
6040 case rc_sae_operand_not_last_imm:
6041 if (intel_syntax)
6042 err_msg = _("RC/SAE operand must precede immediate operands");
6043 else
6044 err_msg = _("RC/SAE operand must follow immediate operands");
6045 break;
6046 case invalid_register_operand:
6047 err_msg = _("invalid register operand");
6048 break;
a65babc9
L
6049 }
6050 as_bad (_("%s for `%s'"), err_msg,
891edac4 6051 current_templates->start->name);
fa99fab2 6052 return NULL;
29b0f896 6053 }
252b5132 6054
29b0f896
AM
6055 if (!quiet_warnings)
6056 {
6057 if (!intel_syntax
40fb9820
L
6058 && (i.types[0].bitfield.jumpabsolute
6059 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
6060 {
6061 as_warn (_("indirect %s without `*'"), t->name);
6062 }
6063
40fb9820
L
6064 if (t->opcode_modifier.isprefix
6065 && t->opcode_modifier.ignoresize)
29b0f896
AM
6066 {
6067 /* Warn them that a data or address size prefix doesn't
6068 affect assembly of the next line of code. */
6069 as_warn (_("stand-alone `%s' prefix"), t->name);
6070 }
6071 }
6072
6073 /* Copy the template we found. */
6074 i.tm = *t;
539e75ad
L
6075
6076 if (addr_prefix_disp != -1)
6077 i.tm.operand_types[addr_prefix_disp]
6078 = operand_types[addr_prefix_disp];
6079
29b0f896
AM
6080 if (found_reverse_match)
6081 {
6082 /* If we found a reverse match we must alter the opcode
6083 direction bit. found_reverse_match holds bits to change
6084 (different for int & float insns). */
6085
6086 i.tm.base_opcode ^= found_reverse_match;
6087
f5eb1d70
JB
6088 i.tm.operand_types[0] = operand_types[i.operands - 1];
6089 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
6090 }
6091
fa99fab2 6092 return t;
29b0f896
AM
6093}
6094
6095static int
e3bb37b5 6096check_string (void)
29b0f896 6097{
40fb9820
L
6098 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6099 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6100 {
6101 if (i.seg[0] != NULL && i.seg[0] != &es)
6102 {
a87af027 6103 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6104 i.tm.name,
a87af027
JB
6105 mem_op + 1,
6106 register_prefix);
29b0f896
AM
6107 return 0;
6108 }
6109 /* There's only ever one segment override allowed per instruction.
6110 This instruction possibly has a legal segment override on the
6111 second operand, so copy the segment to where non-string
6112 instructions store it, allowing common code. */
6113 i.seg[0] = i.seg[1];
6114 }
40fb9820 6115 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6116 {
6117 if (i.seg[1] != NULL && i.seg[1] != &es)
6118 {
a87af027 6119 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6120 i.tm.name,
a87af027
JB
6121 mem_op + 2,
6122 register_prefix);
29b0f896
AM
6123 return 0;
6124 }
6125 }
6126 return 1;
6127}
6128
6129static int
543613e9 6130process_suffix (void)
29b0f896
AM
6131{
6132 /* If matched instruction specifies an explicit instruction mnemonic
6133 suffix, use it. */
673fe0f0 6134 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6135 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6136 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6137 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6138 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6139 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6140 else if (i.reg_operands)
6141 {
6142 /* If there's no instruction mnemonic suffix we try to invent one
6143 based on register operands. */
6144 if (!i.suffix)
6145 {
6146 /* We take i.suffix from the last register operand specified,
6147 Destination register type is more significant than source
381d071f
L
6148 register type. crc32 in SSE4.2 prefers source register
6149 type. */
556059dd 6150 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
381d071f 6151 {
556059dd
JB
6152 if (i.types[0].bitfield.byte)
6153 i.suffix = BYTE_MNEM_SUFFIX;
6154 else if (i.types[0].bitfield.word)
40fb9820 6155 i.suffix = WORD_MNEM_SUFFIX;
556059dd 6156 else if (i.types[0].bitfield.dword)
40fb9820 6157 i.suffix = LONG_MNEM_SUFFIX;
556059dd 6158 else if (i.types[0].bitfield.qword)
40fb9820 6159 i.suffix = QWORD_MNEM_SUFFIX;
381d071f
L
6160 }
6161
6162 if (!i.suffix)
6163 {
6164 int op;
6165
556059dd 6166 if (i.tm.base_opcode == 0xf20f38f0)
20592a94
L
6167 {
6168 /* We have to know the operand size for crc32. */
6169 as_bad (_("ambiguous memory operand size for `%s`"),
6170 i.tm.name);
6171 return 0;
6172 }
6173
381d071f 6174 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6175 if (!i.tm.operand_types[op].bitfield.inoutportreg
6176 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6177 {
8819ada6
JB
6178 if (!i.types[op].bitfield.reg)
6179 continue;
6180 if (i.types[op].bitfield.byte)
6181 i.suffix = BYTE_MNEM_SUFFIX;
6182 else if (i.types[op].bitfield.word)
6183 i.suffix = WORD_MNEM_SUFFIX;
6184 else if (i.types[op].bitfield.dword)
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 else if (i.types[op].bitfield.qword)
6187 i.suffix = QWORD_MNEM_SUFFIX;
6188 else
6189 continue;
6190 break;
381d071f
L
6191 }
6192 }
29b0f896
AM
6193 }
6194 else if (i.suffix == BYTE_MNEM_SUFFIX)
6195 {
2eb952a4
L
6196 if (intel_syntax
6197 && i.tm.opcode_modifier.ignoresize
6198 && i.tm.opcode_modifier.no_bsuf)
6199 i.suffix = 0;
6200 else if (!check_byte_reg ())
29b0f896
AM
6201 return 0;
6202 }
6203 else if (i.suffix == LONG_MNEM_SUFFIX)
6204 {
2eb952a4
L
6205 if (intel_syntax
6206 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6207 && i.tm.opcode_modifier.no_lsuf
6208 && !i.tm.opcode_modifier.todword
6209 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6210 i.suffix = 0;
6211 else if (!check_long_reg ())
29b0f896
AM
6212 return 0;
6213 }
6214 else if (i.suffix == QWORD_MNEM_SUFFIX)
6215 {
955e1e6a
L
6216 if (intel_syntax
6217 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6218 && i.tm.opcode_modifier.no_qsuf
6219 && !i.tm.opcode_modifier.todword
6220 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6221 i.suffix = 0;
6222 else if (!check_qword_reg ())
29b0f896
AM
6223 return 0;
6224 }
6225 else if (i.suffix == WORD_MNEM_SUFFIX)
6226 {
2eb952a4
L
6227 if (intel_syntax
6228 && i.tm.opcode_modifier.ignoresize
6229 && i.tm.opcode_modifier.no_wsuf)
6230 i.suffix = 0;
6231 else if (!check_word_reg ())
29b0f896
AM
6232 return 0;
6233 }
40fb9820 6234 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6235 /* Do nothing if the instruction is going to ignore the prefix. */
6236 ;
6237 else
6238 abort ();
6239 }
40fb9820 6240 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6241 && !i.suffix
6242 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6243 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
6244 {
6245 i.suffix = stackop_size;
6246 }
9306ca4a
JB
6247 else if (intel_syntax
6248 && !i.suffix
40fb9820
L
6249 && (i.tm.operand_types[0].bitfield.jumpabsolute
6250 || i.tm.opcode_modifier.jumpbyte
6251 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6252 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6253 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6254 {
6255 switch (flag_code)
6256 {
6257 case CODE_64BIT:
40fb9820 6258 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6259 {
6260 i.suffix = QWORD_MNEM_SUFFIX;
6261 break;
6262 }
1a0670f3 6263 /* Fall through. */
9306ca4a 6264 case CODE_32BIT:
40fb9820 6265 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6266 i.suffix = LONG_MNEM_SUFFIX;
6267 break;
6268 case CODE_16BIT:
40fb9820 6269 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6270 i.suffix = WORD_MNEM_SUFFIX;
6271 break;
6272 }
6273 }
252b5132 6274
9306ca4a 6275 if (!i.suffix)
29b0f896 6276 {
9306ca4a
JB
6277 if (!intel_syntax)
6278 {
40fb9820 6279 if (i.tm.opcode_modifier.w)
9306ca4a 6280 {
4eed87de
AM
6281 as_bad (_("no instruction mnemonic suffix given and "
6282 "no register operands; can't size instruction"));
9306ca4a
JB
6283 return 0;
6284 }
6285 }
6286 else
6287 {
40fb9820 6288 unsigned int suffixes;
7ab9ffdd 6289
40fb9820
L
6290 suffixes = !i.tm.opcode_modifier.no_bsuf;
6291 if (!i.tm.opcode_modifier.no_wsuf)
6292 suffixes |= 1 << 1;
6293 if (!i.tm.opcode_modifier.no_lsuf)
6294 suffixes |= 1 << 2;
fc4adea1 6295 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6296 suffixes |= 1 << 3;
6297 if (!i.tm.opcode_modifier.no_ssuf)
6298 suffixes |= 1 << 4;
c2b9da16 6299 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6300 suffixes |= 1 << 5;
6301
6302 /* There are more than suffix matches. */
6303 if (i.tm.opcode_modifier.w
9306ca4a 6304 || ((suffixes & (suffixes - 1))
40fb9820
L
6305 && !i.tm.opcode_modifier.defaultsize
6306 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6307 {
6308 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6309 return 0;
6310 }
6311 }
29b0f896 6312 }
252b5132 6313
d2224064
JB
6314 /* Change the opcode based on the operand size given by i.suffix. */
6315 switch (i.suffix)
29b0f896 6316 {
d2224064
JB
6317 /* Size floating point instruction. */
6318 case LONG_MNEM_SUFFIX:
6319 if (i.tm.opcode_modifier.floatmf)
6320 {
6321 i.tm.base_opcode ^= 4;
6322 break;
6323 }
6324 /* fall through */
6325 case WORD_MNEM_SUFFIX:
6326 case QWORD_MNEM_SUFFIX:
29b0f896 6327 /* It's not a byte, select word/dword operation. */
40fb9820 6328 if (i.tm.opcode_modifier.w)
29b0f896 6329 {
40fb9820 6330 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6331 i.tm.base_opcode |= 8;
6332 else
6333 i.tm.base_opcode |= 1;
6334 }
d2224064
JB
6335 /* fall through */
6336 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6337 /* Now select between word & dword operations via the operand
6338 size prefix, except for instructions that will ignore this
6339 prefix anyway. */
75c0a438
L
6340 if (i.reg_operands > 0
6341 && i.types[0].bitfield.reg
6342 && i.tm.opcode_modifier.addrprefixopreg
6343 && (i.tm.opcode_modifier.immext
6344 || i.operands == 1))
cb712a9e 6345 {
ca61edf2
L
6346 /* The address size override prefix changes the size of the
6347 first operand. */
40fb9820 6348 if ((flag_code == CODE_32BIT
75c0a438 6349 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6350 || (flag_code != CODE_32BIT
75c0a438 6351 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6352 if (!add_prefix (ADDR_PREFIX_OPCODE))
6353 return 0;
6354 }
6355 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6356 && !i.tm.opcode_modifier.ignoresize
6357 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6358 && !i.tm.opcode_modifier.vex
6359 && !i.tm.opcode_modifier.vexopcode
6360 && !is_evex_encoding (&i.tm)
cb712a9e
L
6361 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6362 || (flag_code == CODE_64BIT
40fb9820 6363 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6364 {
6365 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6366
40fb9820 6367 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6368 prefix = ADDR_PREFIX_OPCODE;
252b5132 6369
29b0f896
AM
6370 if (!add_prefix (prefix))
6371 return 0;
24eab124 6372 }
252b5132 6373
29b0f896
AM
6374 /* Set mode64 for an operand. */
6375 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6376 && flag_code == CODE_64BIT
d2224064 6377 && !i.tm.opcode_modifier.norex64
46e883c5 6378 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6379 need rex64. */
6380 && ! (i.operands == 2
6381 && i.tm.base_opcode == 0x90
6382 && i.tm.extension_opcode == None
6383 && operand_type_equal (&i.types [0], &acc64)
6384 && operand_type_equal (&i.types [1], &acc64)))
6385 i.rex |= REX_W;
3e73aa7c 6386
d2224064 6387 break;
29b0f896 6388 }
7ecd2f8b 6389
c0a30a9f
L
6390 if (i.reg_operands != 0
6391 && i.operands > 1
6392 && i.tm.opcode_modifier.addrprefixopreg
6393 && !i.tm.opcode_modifier.immext)
6394 {
6395 /* Check invalid register operand when the address size override
6396 prefix changes the size of register operands. */
6397 unsigned int op;
6398 enum { need_word, need_dword, need_qword } need;
6399
6400 if (flag_code == CODE_32BIT)
6401 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6402 else
6403 {
6404 if (i.prefix[ADDR_PREFIX])
6405 need = need_dword;
6406 else
6407 need = flag_code == CODE_64BIT ? need_qword : need_word;
6408 }
6409
6410 for (op = 0; op < i.operands; op++)
6411 if (i.types[op].bitfield.reg
6412 && ((need == need_word
6413 && !i.op[op].regs->reg_type.bitfield.word)
6414 || (need == need_dword
6415 && !i.op[op].regs->reg_type.bitfield.dword)
6416 || (need == need_qword
6417 && !i.op[op].regs->reg_type.bitfield.qword)))
6418 {
6419 as_bad (_("invalid register operand size for `%s'"),
6420 i.tm.name);
6421 return 0;
6422 }
6423 }
6424
29b0f896
AM
6425 return 1;
6426}
3e73aa7c 6427
29b0f896 6428static int
543613e9 6429check_byte_reg (void)
29b0f896
AM
6430{
6431 int op;
543613e9 6432
29b0f896
AM
6433 for (op = i.operands; --op >= 0;)
6434 {
dc821c5f
JB
6435 /* Skip non-register operands. */
6436 if (!i.types[op].bitfield.reg)
6437 continue;
6438
29b0f896
AM
6439 /* If this is an eight bit register, it's OK. If it's the 16 or
6440 32 bit version of an eight bit register, we will just use the
6441 low portion, and that's OK too. */
dc821c5f 6442 if (i.types[op].bitfield.byte)
29b0f896
AM
6443 continue;
6444
5a819eb9
JB
6445 /* I/O port address operands are OK too. */
6446 if (i.tm.operand_types[op].bitfield.inoutportreg)
6447 continue;
6448
9344ff29
L
6449 /* crc32 doesn't generate this warning. */
6450 if (i.tm.base_opcode == 0xf20f38f0)
6451 continue;
6452
dc821c5f
JB
6453 if ((i.types[op].bitfield.word
6454 || i.types[op].bitfield.dword
6455 || i.types[op].bitfield.qword)
5a819eb9
JB
6456 && i.op[op].regs->reg_num < 4
6457 /* Prohibit these changes in 64bit mode, since the lowering
6458 would be more complicated. */
6459 && flag_code != CODE_64BIT)
29b0f896 6460 {
29b0f896 6461#if REGISTER_WARNINGS
5a819eb9 6462 if (!quiet_warnings)
a540244d
L
6463 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6464 register_prefix,
dc821c5f 6465 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6466 ? REGNAM_AL - REGNAM_AX
6467 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6468 register_prefix,
29b0f896
AM
6469 i.op[op].regs->reg_name,
6470 i.suffix);
6471#endif
6472 continue;
6473 }
6474 /* Any other register is bad. */
dc821c5f 6475 if (i.types[op].bitfield.reg
40fb9820 6476 || i.types[op].bitfield.regmmx
1b54b8d7 6477 || i.types[op].bitfield.regsimd
40fb9820
L
6478 || i.types[op].bitfield.sreg2
6479 || i.types[op].bitfield.sreg3
6480 || i.types[op].bitfield.control
6481 || i.types[op].bitfield.debug
ca0d63fe 6482 || i.types[op].bitfield.test)
29b0f896 6483 {
a540244d
L
6484 as_bad (_("`%s%s' not allowed with `%s%c'"),
6485 register_prefix,
29b0f896
AM
6486 i.op[op].regs->reg_name,
6487 i.tm.name,
6488 i.suffix);
6489 return 0;
6490 }
6491 }
6492 return 1;
6493}
6494
6495static int
e3bb37b5 6496check_long_reg (void)
29b0f896
AM
6497{
6498 int op;
6499
6500 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6501 /* Skip non-register operands. */
6502 if (!i.types[op].bitfield.reg)
6503 continue;
29b0f896
AM
6504 /* Reject eight bit registers, except where the template requires
6505 them. (eg. movzb) */
dc821c5f
JB
6506 else if (i.types[op].bitfield.byte
6507 && (i.tm.operand_types[op].bitfield.reg
6508 || i.tm.operand_types[op].bitfield.acc)
6509 && (i.tm.operand_types[op].bitfield.word
6510 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6511 {
a540244d
L
6512 as_bad (_("`%s%s' not allowed with `%s%c'"),
6513 register_prefix,
29b0f896
AM
6514 i.op[op].regs->reg_name,
6515 i.tm.name,
6516 i.suffix);
6517 return 0;
6518 }
e4630f71 6519 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6520 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6521 && i.types[op].bitfield.word
6522 && (i.tm.operand_types[op].bitfield.reg
6523 || i.tm.operand_types[op].bitfield.acc)
6524 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6525 {
6526 /* Prohibit these changes in the 64bit mode, since the
6527 lowering is more complicated. */
6528 if (flag_code == CODE_64BIT)
252b5132 6529 {
2b5d6a91 6530 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6531 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6532 i.suffix);
6533 return 0;
252b5132 6534 }
29b0f896 6535#if REGISTER_WARNINGS
cecf1424
JB
6536 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6537 register_prefix,
6538 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6539 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6540#endif
252b5132 6541 }
e4630f71 6542 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6543 else if (i.types[op].bitfield.qword
6544 && (i.tm.operand_types[op].bitfield.reg
6545 || i.tm.operand_types[op].bitfield.acc)
6546 && i.tm.operand_types[op].bitfield.dword)
252b5132 6547 {
34828aad 6548 if (intel_syntax
ca61edf2 6549 && i.tm.opcode_modifier.toqword
1b54b8d7 6550 && !i.types[0].bitfield.regsimd)
34828aad 6551 {
ca61edf2 6552 /* Convert to QWORD. We want REX byte. */
34828aad
L
6553 i.suffix = QWORD_MNEM_SUFFIX;
6554 }
6555 else
6556 {
2b5d6a91 6557 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6558 register_prefix, i.op[op].regs->reg_name,
6559 i.suffix);
6560 return 0;
6561 }
29b0f896
AM
6562 }
6563 return 1;
6564}
252b5132 6565
29b0f896 6566static int
e3bb37b5 6567check_qword_reg (void)
29b0f896
AM
6568{
6569 int op;
252b5132 6570
29b0f896 6571 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6572 /* Skip non-register operands. */
6573 if (!i.types[op].bitfield.reg)
6574 continue;
29b0f896
AM
6575 /* Reject eight bit registers, except where the template requires
6576 them. (eg. movzb) */
dc821c5f
JB
6577 else if (i.types[op].bitfield.byte
6578 && (i.tm.operand_types[op].bitfield.reg
6579 || i.tm.operand_types[op].bitfield.acc)
6580 && (i.tm.operand_types[op].bitfield.word
6581 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6582 {
a540244d
L
6583 as_bad (_("`%s%s' not allowed with `%s%c'"),
6584 register_prefix,
29b0f896
AM
6585 i.op[op].regs->reg_name,
6586 i.tm.name,
6587 i.suffix);
6588 return 0;
6589 }
e4630f71 6590 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6591 else if ((i.types[op].bitfield.word
6592 || i.types[op].bitfield.dword)
6593 && (i.tm.operand_types[op].bitfield.reg
6594 || i.tm.operand_types[op].bitfield.acc)
6595 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6596 {
6597 /* Prohibit these changes in the 64bit mode, since the
6598 lowering is more complicated. */
34828aad 6599 if (intel_syntax
ca61edf2 6600 && i.tm.opcode_modifier.todword
1b54b8d7 6601 && !i.types[0].bitfield.regsimd)
34828aad 6602 {
ca61edf2 6603 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6604 i.suffix = LONG_MNEM_SUFFIX;
6605 }
6606 else
6607 {
2b5d6a91 6608 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6609 register_prefix, i.op[op].regs->reg_name,
6610 i.suffix);
6611 return 0;
6612 }
252b5132 6613 }
29b0f896
AM
6614 return 1;
6615}
252b5132 6616
29b0f896 6617static int
e3bb37b5 6618check_word_reg (void)
29b0f896
AM
6619{
6620 int op;
6621 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6622 /* Skip non-register operands. */
6623 if (!i.types[op].bitfield.reg)
6624 continue;
29b0f896
AM
6625 /* Reject eight bit registers, except where the template requires
6626 them. (eg. movzb) */
dc821c5f
JB
6627 else if (i.types[op].bitfield.byte
6628 && (i.tm.operand_types[op].bitfield.reg
6629 || i.tm.operand_types[op].bitfield.acc)
6630 && (i.tm.operand_types[op].bitfield.word
6631 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6632 {
a540244d
L
6633 as_bad (_("`%s%s' not allowed with `%s%c'"),
6634 register_prefix,
29b0f896
AM
6635 i.op[op].regs->reg_name,
6636 i.tm.name,
6637 i.suffix);
6638 return 0;
6639 }
e4630f71 6640 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6641 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6642 && (i.types[op].bitfield.dword
6643 || i.types[op].bitfield.qword)
6644 && (i.tm.operand_types[op].bitfield.reg
6645 || i.tm.operand_types[op].bitfield.acc)
6646 && i.tm.operand_types[op].bitfield.word)
252b5132 6647 {
29b0f896
AM
6648 /* Prohibit these changes in the 64bit mode, since the
6649 lowering is more complicated. */
6650 if (flag_code == CODE_64BIT)
252b5132 6651 {
2b5d6a91 6652 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6653 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6654 i.suffix);
6655 return 0;
252b5132 6656 }
29b0f896 6657#if REGISTER_WARNINGS
cecf1424
JB
6658 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6659 register_prefix,
6660 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6661 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6662#endif
6663 }
6664 return 1;
6665}
252b5132 6666
29b0f896 6667static int
40fb9820 6668update_imm (unsigned int j)
29b0f896 6669{
bc0844ae 6670 i386_operand_type overlap = i.types[j];
40fb9820
L
6671 if ((overlap.bitfield.imm8
6672 || overlap.bitfield.imm8s
6673 || overlap.bitfield.imm16
6674 || overlap.bitfield.imm32
6675 || overlap.bitfield.imm32s
6676 || overlap.bitfield.imm64)
0dfbf9d7
L
6677 && !operand_type_equal (&overlap, &imm8)
6678 && !operand_type_equal (&overlap, &imm8s)
6679 && !operand_type_equal (&overlap, &imm16)
6680 && !operand_type_equal (&overlap, &imm32)
6681 && !operand_type_equal (&overlap, &imm32s)
6682 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6683 {
6684 if (i.suffix)
6685 {
40fb9820
L
6686 i386_operand_type temp;
6687
0dfbf9d7 6688 operand_type_set (&temp, 0);
7ab9ffdd 6689 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6690 {
6691 temp.bitfield.imm8 = overlap.bitfield.imm8;
6692 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6693 }
6694 else if (i.suffix == WORD_MNEM_SUFFIX)
6695 temp.bitfield.imm16 = overlap.bitfield.imm16;
6696 else if (i.suffix == QWORD_MNEM_SUFFIX)
6697 {
6698 temp.bitfield.imm64 = overlap.bitfield.imm64;
6699 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6700 }
6701 else
6702 temp.bitfield.imm32 = overlap.bitfield.imm32;
6703 overlap = temp;
29b0f896 6704 }
0dfbf9d7
L
6705 else if (operand_type_equal (&overlap, &imm16_32_32s)
6706 || operand_type_equal (&overlap, &imm16_32)
6707 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6708 {
40fb9820 6709 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6710 overlap = imm16;
40fb9820 6711 else
65da13b5 6712 overlap = imm32s;
29b0f896 6713 }
0dfbf9d7
L
6714 if (!operand_type_equal (&overlap, &imm8)
6715 && !operand_type_equal (&overlap, &imm8s)
6716 && !operand_type_equal (&overlap, &imm16)
6717 && !operand_type_equal (&overlap, &imm32)
6718 && !operand_type_equal (&overlap, &imm32s)
6719 && !operand_type_equal (&overlap, &imm64))
29b0f896 6720 {
4eed87de
AM
6721 as_bad (_("no instruction mnemonic suffix given; "
6722 "can't determine immediate size"));
29b0f896
AM
6723 return 0;
6724 }
6725 }
40fb9820 6726 i.types[j] = overlap;
29b0f896 6727
40fb9820
L
6728 return 1;
6729}
6730
6731static int
6732finalize_imm (void)
6733{
bc0844ae 6734 unsigned int j, n;
29b0f896 6735
bc0844ae
L
6736 /* Update the first 2 immediate operands. */
6737 n = i.operands > 2 ? 2 : i.operands;
6738 if (n)
6739 {
6740 for (j = 0; j < n; j++)
6741 if (update_imm (j) == 0)
6742 return 0;
40fb9820 6743
bc0844ae
L
6744 /* The 3rd operand can't be immediate operand. */
6745 gas_assert (operand_type_check (i.types[2], imm) == 0);
6746 }
29b0f896
AM
6747
6748 return 1;
6749}
6750
6751static int
e3bb37b5 6752process_operands (void)
29b0f896
AM
6753{
6754 /* Default segment register this instruction will use for memory
6755 accesses. 0 means unknown. This is only for optimizing out
6756 unnecessary segment overrides. */
6757 const seg_entry *default_seg = 0;
6758
2426c15f 6759 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6760 {
91d6fa6a
NC
6761 unsigned int dupl = i.operands;
6762 unsigned int dest = dupl - 1;
9fcfb3d7
L
6763 unsigned int j;
6764
c0f3af97 6765 /* The destination must be an xmm register. */
9c2799c2 6766 gas_assert (i.reg_operands
91d6fa6a 6767 && MAX_OPERANDS > dupl
7ab9ffdd 6768 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6769
1b54b8d7
JB
6770 if (i.tm.operand_types[0].bitfield.acc
6771 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6772 {
8cd7925b 6773 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6774 {
6775 /* Keep xmm0 for instructions with VEX prefix and 3
6776 sources. */
1b54b8d7
JB
6777 i.tm.operand_types[0].bitfield.acc = 0;
6778 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6779 goto duplicate;
6780 }
e2ec9d29 6781 else
c0f3af97
L
6782 {
6783 /* We remove the first xmm0 and keep the number of
6784 operands unchanged, which in fact duplicates the
6785 destination. */
6786 for (j = 1; j < i.operands; j++)
6787 {
6788 i.op[j - 1] = i.op[j];
6789 i.types[j - 1] = i.types[j];
6790 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6791 }
6792 }
6793 }
6794 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6795 {
91d6fa6a 6796 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6797 && (i.tm.opcode_modifier.vexsources
6798 == VEX3SOURCES));
c0f3af97
L
6799
6800 /* Add the implicit xmm0 for instructions with VEX prefix
6801 and 3 sources. */
6802 for (j = i.operands; j > 0; j--)
6803 {
6804 i.op[j] = i.op[j - 1];
6805 i.types[j] = i.types[j - 1];
6806 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6807 }
6808 i.op[0].regs
6809 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6810 i.types[0] = regxmm;
c0f3af97
L
6811 i.tm.operand_types[0] = regxmm;
6812
6813 i.operands += 2;
6814 i.reg_operands += 2;
6815 i.tm.operands += 2;
6816
91d6fa6a 6817 dupl++;
c0f3af97 6818 dest++;
91d6fa6a
NC
6819 i.op[dupl] = i.op[dest];
6820 i.types[dupl] = i.types[dest];
6821 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6822 }
c0f3af97
L
6823 else
6824 {
6825duplicate:
6826 i.operands++;
6827 i.reg_operands++;
6828 i.tm.operands++;
6829
91d6fa6a
NC
6830 i.op[dupl] = i.op[dest];
6831 i.types[dupl] = i.types[dest];
6832 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6833 }
6834
6835 if (i.tm.opcode_modifier.immext)
6836 process_immext ();
6837 }
1b54b8d7
JB
6838 else if (i.tm.operand_types[0].bitfield.acc
6839 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6840 {
6841 unsigned int j;
6842
9fcfb3d7
L
6843 for (j = 1; j < i.operands; j++)
6844 {
6845 i.op[j - 1] = i.op[j];
6846 i.types[j - 1] = i.types[j];
6847
6848 /* We need to adjust fields in i.tm since they are used by
6849 build_modrm_byte. */
6850 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6851 }
6852
e2ec9d29
L
6853 i.operands--;
6854 i.reg_operands--;
e2ec9d29
L
6855 i.tm.operands--;
6856 }
920d2ddc
IT
6857 else if (i.tm.opcode_modifier.implicitquadgroup)
6858 {
a477a8c4
JB
6859 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6860
920d2ddc 6861 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6862 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6863 regnum = register_number (i.op[1].regs);
6864 first_reg_in_group = regnum & ~3;
6865 last_reg_in_group = first_reg_in_group + 3;
6866 if (regnum != first_reg_in_group)
6867 as_warn (_("source register `%s%s' implicitly denotes"
6868 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6869 register_prefix, i.op[1].regs->reg_name,
6870 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6871 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6872 i.tm.name);
6873 }
e2ec9d29
L
6874 else if (i.tm.opcode_modifier.regkludge)
6875 {
6876 /* The imul $imm, %reg instruction is converted into
6877 imul $imm, %reg, %reg, and the clr %reg instruction
6878 is converted into xor %reg, %reg. */
6879
6880 unsigned int first_reg_op;
6881
6882 if (operand_type_check (i.types[0], reg))
6883 first_reg_op = 0;
6884 else
6885 first_reg_op = 1;
6886 /* Pretend we saw the extra register operand. */
9c2799c2 6887 gas_assert (i.reg_operands == 1
7ab9ffdd 6888 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6889 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6890 i.types[first_reg_op + 1] = i.types[first_reg_op];
6891 i.operands++;
6892 i.reg_operands++;
29b0f896
AM
6893 }
6894
40fb9820 6895 if (i.tm.opcode_modifier.shortform)
29b0f896 6896 {
40fb9820
L
6897 if (i.types[0].bitfield.sreg2
6898 || i.types[0].bitfield.sreg3)
29b0f896 6899 {
4eed87de
AM
6900 if (i.tm.base_opcode == POP_SEG_SHORT
6901 && i.op[0].regs->reg_num == 1)
29b0f896 6902 {
a87af027 6903 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6904 return 0;
29b0f896 6905 }
4eed87de
AM
6906 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6907 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6908 i.rex |= REX_B;
4eed87de
AM
6909 }
6910 else
6911 {
7ab9ffdd 6912 /* The register or float register operand is in operand
85f10a01 6913 0 or 1. */
40fb9820 6914 unsigned int op;
7ab9ffdd 6915
ca0d63fe 6916 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6917 || operand_type_check (i.types[0], reg))
6918 op = 0;
6919 else
6920 op = 1;
4eed87de
AM
6921 /* Register goes in low 3 bits of opcode. */
6922 i.tm.base_opcode |= i.op[op].regs->reg_num;
6923 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6924 i.rex |= REX_B;
40fb9820 6925 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6926 {
4eed87de
AM
6927 /* Warn about some common errors, but press on regardless.
6928 The first case can be generated by gcc (<= 2.8.1). */
6929 if (i.operands == 2)
6930 {
6931 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6932 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6933 register_prefix, i.op[!intel_syntax].regs->reg_name,
6934 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6935 }
6936 else
6937 {
6938 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6939 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6940 register_prefix, i.op[0].regs->reg_name);
4eed87de 6941 }
29b0f896
AM
6942 }
6943 }
6944 }
40fb9820 6945 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6946 {
6947 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6948 must be put into the modrm byte). Now, we make the modrm and
6949 index base bytes based on all the info we've collected. */
29b0f896
AM
6950
6951 default_seg = build_modrm_byte ();
6952 }
8a2ed489 6953 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6954 {
6955 default_seg = &ds;
6956 }
40fb9820 6957 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6958 {
6959 /* For the string instructions that allow a segment override
6960 on one of their operands, the default segment is ds. */
6961 default_seg = &ds;
6962 }
6963
75178d9d
L
6964 if (i.tm.base_opcode == 0x8d /* lea */
6965 && i.seg[0]
6966 && !quiet_warnings)
30123838 6967 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6968
6969 /* If a segment was explicitly specified, and the specified segment
6970 is not the default, use an opcode prefix to select it. If we
6971 never figured out what the default segment is, then default_seg
6972 will be zero at this point, and the specified segment prefix will
6973 always be used. */
29b0f896
AM
6974 if ((i.seg[0]) && (i.seg[0] != default_seg))
6975 {
6976 if (!add_prefix (i.seg[0]->seg_prefix))
6977 return 0;
6978 }
6979 return 1;
6980}
6981
6982static const seg_entry *
e3bb37b5 6983build_modrm_byte (void)
29b0f896
AM
6984{
6985 const seg_entry *default_seg = 0;
c0f3af97 6986 unsigned int source, dest;
8cd7925b 6987 int vex_3_sources;
c0f3af97 6988
8cd7925b 6989 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6990 if (vex_3_sources)
6991 {
91d6fa6a 6992 unsigned int nds, reg_slot;
4c2c6516 6993 expressionS *exp;
c0f3af97 6994
6b8d3588 6995 dest = i.operands - 1;
c0f3af97 6996 nds = dest - 1;
922d8de8 6997
a683cc34 6998 /* There are 2 kinds of instructions:
bed3d976
JB
6999 1. 5 operands: 4 register operands or 3 register operands
7000 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7001 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7002 ZMM register.
bed3d976 7003 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7004 plus 1 memory operand, with VexXDS. */
922d8de8 7005 gas_assert ((i.reg_operands == 4
bed3d976
JB
7006 || (i.reg_operands == 3 && i.mem_operands == 1))
7007 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
7008 && i.tm.opcode_modifier.vexw
7009 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 7010
48db9223
JB
7011 /* If VexW1 is set, the first non-immediate operand is the source and
7012 the second non-immediate one is encoded in the immediate operand. */
7013 if (i.tm.opcode_modifier.vexw == VEXW1)
7014 {
7015 source = i.imm_operands;
7016 reg_slot = i.imm_operands + 1;
7017 }
7018 else
7019 {
7020 source = i.imm_operands + 1;
7021 reg_slot = i.imm_operands;
7022 }
7023
a683cc34 7024 if (i.imm_operands == 0)
bed3d976
JB
7025 {
7026 /* When there is no immediate operand, generate an 8bit
7027 immediate operand to encode the first operand. */
7028 exp = &im_expressions[i.imm_operands++];
7029 i.op[i.operands].imms = exp;
7030 i.types[i.operands] = imm8;
7031 i.operands++;
7032
7033 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7034 exp->X_op = O_constant;
7035 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7036 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7037 }
922d8de8 7038 else
bed3d976
JB
7039 {
7040 unsigned int imm_slot;
a683cc34 7041
2f1bada2
JB
7042 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7043
bed3d976
JB
7044 if (i.tm.opcode_modifier.immext)
7045 {
7046 /* When ImmExt is set, the immediate byte is the last
7047 operand. */
7048 imm_slot = i.operands - 1;
7049 source--;
7050 reg_slot--;
7051 }
7052 else
7053 {
7054 imm_slot = 0;
7055
7056 /* Turn on Imm8 so that output_imm will generate it. */
7057 i.types[imm_slot].bitfield.imm8 = 1;
7058 }
7059
7060 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7061 i.op[imm_slot].imms->X_add_number
7062 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7063 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7064 }
a683cc34 7065
10c17abd 7066 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 7067 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7068 }
7069 else
7070 source = dest = 0;
29b0f896
AM
7071
7072 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7073 implicit registers do not count. If there are 3 register
7074 operands, it must be a instruction with VexNDS. For a
7075 instruction with VexNDD, the destination register is encoded
7076 in VEX prefix. If there are 4 register operands, it must be
7077 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7078 if (i.mem_operands == 0
7079 && ((i.reg_operands == 2
2426c15f 7080 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7081 || (i.reg_operands == 3
2426c15f 7082 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7083 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7084 {
cab737b9
L
7085 switch (i.operands)
7086 {
7087 case 2:
7088 source = 0;
7089 break;
7090 case 3:
c81128dc
L
7091 /* When there are 3 operands, one of them may be immediate,
7092 which may be the first or the last operand. Otherwise,
c0f3af97
L
7093 the first operand must be shift count register (cl) or it
7094 is an instruction with VexNDS. */
9c2799c2 7095 gas_assert (i.imm_operands == 1
7ab9ffdd 7096 || (i.imm_operands == 0
2426c15f 7097 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7098 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7099 if (operand_type_check (i.types[0], imm)
7100 || i.types[0].bitfield.shiftcount)
7101 source = 1;
7102 else
7103 source = 0;
cab737b9
L
7104 break;
7105 case 4:
368d64cc
L
7106 /* When there are 4 operands, the first two must be 8bit
7107 immediate operands. The source operand will be the 3rd
c0f3af97
L
7108 one.
7109
7110 For instructions with VexNDS, if the first operand
7111 an imm8, the source operand is the 2nd one. If the last
7112 operand is imm8, the source operand is the first one. */
9c2799c2 7113 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7114 && i.types[0].bitfield.imm8
7115 && i.types[1].bitfield.imm8)
2426c15f 7116 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7117 && i.imm_operands == 1
7118 && (i.types[0].bitfield.imm8
43234a1e
L
7119 || i.types[i.operands - 1].bitfield.imm8
7120 || i.rounding)));
9f2670f2
L
7121 if (i.imm_operands == 2)
7122 source = 2;
7123 else
c0f3af97
L
7124 {
7125 if (i.types[0].bitfield.imm8)
7126 source = 1;
7127 else
7128 source = 0;
7129 }
c0f3af97
L
7130 break;
7131 case 5:
e771e7c9 7132 if (is_evex_encoding (&i.tm))
43234a1e
L
7133 {
7134 /* For EVEX instructions, when there are 5 operands, the
7135 first one must be immediate operand. If the second one
7136 is immediate operand, the source operand is the 3th
7137 one. If the last one is immediate operand, the source
7138 operand is the 2nd one. */
7139 gas_assert (i.imm_operands == 2
7140 && i.tm.opcode_modifier.sae
7141 && operand_type_check (i.types[0], imm));
7142 if (operand_type_check (i.types[1], imm))
7143 source = 2;
7144 else if (operand_type_check (i.types[4], imm))
7145 source = 1;
7146 else
7147 abort ();
7148 }
cab737b9
L
7149 break;
7150 default:
7151 abort ();
7152 }
7153
c0f3af97
L
7154 if (!vex_3_sources)
7155 {
7156 dest = source + 1;
7157
43234a1e
L
7158 /* RC/SAE operand could be between DEST and SRC. That happens
7159 when one operand is GPR and the other one is XMM/YMM/ZMM
7160 register. */
7161 if (i.rounding && i.rounding->operand == (int) dest)
7162 dest++;
7163
2426c15f 7164 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7165 {
43234a1e 7166 /* For instructions with VexNDS, the register-only source
c5d0745b 7167 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7168 register. It is encoded in VEX prefix. We need to
7169 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7170
7171 i386_operand_type op;
7172 unsigned int vvvv;
7173
7174 /* Check register-only source operand when two source
7175 operands are swapped. */
7176 if (!i.tm.operand_types[source].bitfield.baseindex
7177 && i.tm.operand_types[dest].bitfield.baseindex)
7178 {
7179 vvvv = source;
7180 source = dest;
7181 }
7182 else
7183 vvvv = dest;
7184
7185 op = i.tm.operand_types[vvvv];
fa99fab2 7186 op.bitfield.regmem = 0;
c0f3af97 7187 if ((dest + 1) >= i.operands
dc821c5f
JB
7188 || ((!op.bitfield.reg
7189 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7190 && !op.bitfield.regsimd
43234a1e 7191 && !operand_type_equal (&op, &regmask)))
c0f3af97 7192 abort ();
f12dc422 7193 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7194 dest++;
7195 }
7196 }
29b0f896
AM
7197
7198 i.rm.mode = 3;
7199 /* One of the register operands will be encoded in the i.tm.reg
7200 field, the other in the combined i.tm.mode and i.tm.regmem
7201 fields. If no form of this instruction supports a memory
7202 destination operand, then we assume the source operand may
7203 sometimes be a memory operand and so we need to store the
7204 destination in the i.rm.reg field. */
40fb9820
L
7205 if (!i.tm.operand_types[dest].bitfield.regmem
7206 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7207 {
7208 i.rm.reg = i.op[dest].regs->reg_num;
7209 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7210 if (i.op[dest].regs->reg_type.bitfield.regmmx
7211 || i.op[source].regs->reg_type.bitfield.regmmx)
7212 i.has_regmmx = TRUE;
7213 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7214 || i.op[source].regs->reg_type.bitfield.regsimd)
7215 {
7216 if (i.types[dest].bitfield.zmmword
7217 || i.types[source].bitfield.zmmword)
7218 i.has_regzmm = TRUE;
7219 else if (i.types[dest].bitfield.ymmword
7220 || i.types[source].bitfield.ymmword)
7221 i.has_regymm = TRUE;
7222 else
7223 i.has_regxmm = TRUE;
7224 }
29b0f896 7225 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7226 i.rex |= REX_R;
43234a1e
L
7227 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7228 i.vrex |= REX_R;
29b0f896 7229 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7230 i.rex |= REX_B;
43234a1e
L
7231 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7232 i.vrex |= REX_B;
29b0f896
AM
7233 }
7234 else
7235 {
7236 i.rm.reg = i.op[source].regs->reg_num;
7237 i.rm.regmem = i.op[dest].regs->reg_num;
7238 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7239 i.rex |= REX_B;
43234a1e
L
7240 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7241 i.vrex |= REX_B;
29b0f896 7242 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7243 i.rex |= REX_R;
43234a1e
L
7244 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7245 i.vrex |= REX_R;
29b0f896 7246 }
e0c7f900 7247 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7248 {
e0c7f900 7249 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7250 abort ();
e0c7f900 7251 i.rex &= ~REX_R;
c4a530c5
JB
7252 add_prefix (LOCK_PREFIX_OPCODE);
7253 }
29b0f896
AM
7254 }
7255 else
7256 { /* If it's not 2 reg operands... */
c0f3af97
L
7257 unsigned int mem;
7258
29b0f896
AM
7259 if (i.mem_operands)
7260 {
7261 unsigned int fake_zero_displacement = 0;
99018f42 7262 unsigned int op;
4eed87de 7263
7ab9ffdd
L
7264 for (op = 0; op < i.operands; op++)
7265 if (operand_type_check (i.types[op], anymem))
7266 break;
7ab9ffdd 7267 gas_assert (op < i.operands);
29b0f896 7268
6c30d220
L
7269 if (i.tm.opcode_modifier.vecsib)
7270 {
e968fc9b 7271 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7272 abort ();
7273
7274 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7275 if (!i.base_reg)
7276 {
7277 i.sib.base = NO_BASE_REGISTER;
7278 i.sib.scale = i.log2_scale_factor;
7279 i.types[op].bitfield.disp8 = 0;
7280 i.types[op].bitfield.disp16 = 0;
7281 i.types[op].bitfield.disp64 = 0;
43083a50 7282 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7283 {
7284 /* Must be 32 bit */
7285 i.types[op].bitfield.disp32 = 1;
7286 i.types[op].bitfield.disp32s = 0;
7287 }
7288 else
7289 {
7290 i.types[op].bitfield.disp32 = 0;
7291 i.types[op].bitfield.disp32s = 1;
7292 }
7293 }
7294 i.sib.index = i.index_reg->reg_num;
7295 if ((i.index_reg->reg_flags & RegRex) != 0)
7296 i.rex |= REX_X;
43234a1e
L
7297 if ((i.index_reg->reg_flags & RegVRex) != 0)
7298 i.vrex |= REX_X;
6c30d220
L
7299 }
7300
29b0f896
AM
7301 default_seg = &ds;
7302
7303 if (i.base_reg == 0)
7304 {
7305 i.rm.mode = 0;
7306 if (!i.disp_operands)
9bb129e8 7307 fake_zero_displacement = 1;
29b0f896
AM
7308 if (i.index_reg == 0)
7309 {
73053c1f
JB
7310 i386_operand_type newdisp;
7311
6c30d220 7312 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7313 /* Operand is just <disp> */
20f0a1fc 7314 if (flag_code == CODE_64BIT)
29b0f896
AM
7315 {
7316 /* 64bit mode overwrites the 32bit absolute
7317 addressing by RIP relative addressing and
7318 absolute addressing is encoded by one of the
7319 redundant SIB forms. */
7320 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7321 i.sib.base = NO_BASE_REGISTER;
7322 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7323 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7324 }
fc225355
L
7325 else if ((flag_code == CODE_16BIT)
7326 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7327 {
7328 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7329 newdisp = disp16;
20f0a1fc
NC
7330 }
7331 else
7332 {
7333 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7334 newdisp = disp32;
29b0f896 7335 }
73053c1f
JB
7336 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7337 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7338 }
6c30d220 7339 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7340 {
6c30d220 7341 /* !i.base_reg && i.index_reg */
e968fc9b 7342 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7343 i.sib.index = NO_INDEX_REGISTER;
7344 else
7345 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7346 i.sib.base = NO_BASE_REGISTER;
7347 i.sib.scale = i.log2_scale_factor;
7348 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7349 i.types[op].bitfield.disp8 = 0;
7350 i.types[op].bitfield.disp16 = 0;
7351 i.types[op].bitfield.disp64 = 0;
43083a50 7352 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7353 {
7354 /* Must be 32 bit */
7355 i.types[op].bitfield.disp32 = 1;
7356 i.types[op].bitfield.disp32s = 0;
7357 }
29b0f896 7358 else
40fb9820
L
7359 {
7360 i.types[op].bitfield.disp32 = 0;
7361 i.types[op].bitfield.disp32s = 1;
7362 }
29b0f896 7363 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7364 i.rex |= REX_X;
29b0f896
AM
7365 }
7366 }
7367 /* RIP addressing for 64bit mode. */
e968fc9b 7368 else if (i.base_reg->reg_num == RegIP)
29b0f896 7369 {
6c30d220 7370 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7371 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7372 i.types[op].bitfield.disp8 = 0;
7373 i.types[op].bitfield.disp16 = 0;
7374 i.types[op].bitfield.disp32 = 0;
7375 i.types[op].bitfield.disp32s = 1;
7376 i.types[op].bitfield.disp64 = 0;
71903a11 7377 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7378 if (! i.disp_operands)
7379 fake_zero_displacement = 1;
29b0f896 7380 }
dc821c5f 7381 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7382 {
6c30d220 7383 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7384 switch (i.base_reg->reg_num)
7385 {
7386 case 3: /* (%bx) */
7387 if (i.index_reg == 0)
7388 i.rm.regmem = 7;
7389 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7390 i.rm.regmem = i.index_reg->reg_num - 6;
7391 break;
7392 case 5: /* (%bp) */
7393 default_seg = &ss;
7394 if (i.index_reg == 0)
7395 {
7396 i.rm.regmem = 6;
40fb9820 7397 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7398 {
7399 /* fake (%bp) into 0(%bp) */
b5014f7a 7400 i.types[op].bitfield.disp8 = 1;
252b5132 7401 fake_zero_displacement = 1;
29b0f896
AM
7402 }
7403 }
7404 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7405 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7406 break;
7407 default: /* (%si) -> 4 or (%di) -> 5 */
7408 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7409 }
7410 i.rm.mode = mode_from_disp_size (i.types[op]);
7411 }
7412 else /* i.base_reg and 32/64 bit mode */
7413 {
7414 if (flag_code == CODE_64BIT
40fb9820
L
7415 && operand_type_check (i.types[op], disp))
7416 {
73053c1f
JB
7417 i.types[op].bitfield.disp16 = 0;
7418 i.types[op].bitfield.disp64 = 0;
40fb9820 7419 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7420 {
7421 i.types[op].bitfield.disp32 = 0;
7422 i.types[op].bitfield.disp32s = 1;
7423 }
40fb9820 7424 else
73053c1f
JB
7425 {
7426 i.types[op].bitfield.disp32 = 1;
7427 i.types[op].bitfield.disp32s = 0;
7428 }
40fb9820 7429 }
20f0a1fc 7430
6c30d220
L
7431 if (!i.tm.opcode_modifier.vecsib)
7432 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7433 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7434 i.rex |= REX_B;
29b0f896
AM
7435 i.sib.base = i.base_reg->reg_num;
7436 /* x86-64 ignores REX prefix bit here to avoid decoder
7437 complications. */
848930b2
JB
7438 if (!(i.base_reg->reg_flags & RegRex)
7439 && (i.base_reg->reg_num == EBP_REG_NUM
7440 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7441 default_seg = &ss;
848930b2 7442 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7443 {
848930b2 7444 fake_zero_displacement = 1;
b5014f7a 7445 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7446 }
7447 i.sib.scale = i.log2_scale_factor;
7448 if (i.index_reg == 0)
7449 {
6c30d220 7450 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7451 /* <disp>(%esp) becomes two byte modrm with no index
7452 register. We've already stored the code for esp
7453 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7454 Any base register besides %esp will not use the
7455 extra modrm byte. */
7456 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7457 }
6c30d220 7458 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7459 {
e968fc9b 7460 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7461 i.sib.index = NO_INDEX_REGISTER;
7462 else
7463 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7464 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7465 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7466 i.rex |= REX_X;
29b0f896 7467 }
67a4f2b7
AO
7468
7469 if (i.disp_operands
7470 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7471 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7472 i.rm.mode = 0;
7473 else
a501d77e
L
7474 {
7475 if (!fake_zero_displacement
7476 && !i.disp_operands
7477 && i.disp_encoding)
7478 {
7479 fake_zero_displacement = 1;
7480 if (i.disp_encoding == disp_encoding_8bit)
7481 i.types[op].bitfield.disp8 = 1;
7482 else
7483 i.types[op].bitfield.disp32 = 1;
7484 }
7485 i.rm.mode = mode_from_disp_size (i.types[op]);
7486 }
29b0f896 7487 }
252b5132 7488
29b0f896
AM
7489 if (fake_zero_displacement)
7490 {
7491 /* Fakes a zero displacement assuming that i.types[op]
7492 holds the correct displacement size. */
7493 expressionS *exp;
7494
9c2799c2 7495 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7496 exp = &disp_expressions[i.disp_operands++];
7497 i.op[op].disps = exp;
7498 exp->X_op = O_constant;
7499 exp->X_add_number = 0;
7500 exp->X_add_symbol = (symbolS *) 0;
7501 exp->X_op_symbol = (symbolS *) 0;
7502 }
c0f3af97
L
7503
7504 mem = op;
29b0f896 7505 }
c0f3af97
L
7506 else
7507 mem = ~0;
252b5132 7508
8c43a48b 7509 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7510 {
7511 if (operand_type_check (i.types[0], imm))
7512 i.vex.register_specifier = NULL;
7513 else
7514 {
7515 /* VEX.vvvv encodes one of the sources when the first
7516 operand is not an immediate. */
1ef99a7b 7517 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7518 i.vex.register_specifier = i.op[0].regs;
7519 else
7520 i.vex.register_specifier = i.op[1].regs;
7521 }
7522
7523 /* Destination is a XMM register encoded in the ModRM.reg
7524 and VEX.R bit. */
7525 i.rm.reg = i.op[2].regs->reg_num;
7526 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7527 i.rex |= REX_R;
7528
7529 /* ModRM.rm and VEX.B encodes the other source. */
7530 if (!i.mem_operands)
7531 {
7532 i.rm.mode = 3;
7533
1ef99a7b 7534 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7535 i.rm.regmem = i.op[1].regs->reg_num;
7536 else
7537 i.rm.regmem = i.op[0].regs->reg_num;
7538
7539 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7540 i.rex |= REX_B;
7541 }
7542 }
2426c15f 7543 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7544 {
7545 i.vex.register_specifier = i.op[2].regs;
7546 if (!i.mem_operands)
7547 {
7548 i.rm.mode = 3;
7549 i.rm.regmem = i.op[1].regs->reg_num;
7550 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7551 i.rex |= REX_B;
7552 }
7553 }
29b0f896
AM
7554 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7555 (if any) based on i.tm.extension_opcode. Again, we must be
7556 careful to make sure that segment/control/debug/test/MMX
7557 registers are coded into the i.rm.reg field. */
f88c9eb0 7558 else if (i.reg_operands)
29b0f896 7559 {
99018f42 7560 unsigned int op;
7ab9ffdd
L
7561 unsigned int vex_reg = ~0;
7562
7563 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7564 {
7565 if (i.types[op].bitfield.reg
7566 || i.types[op].bitfield.regbnd
7567 || i.types[op].bitfield.regmask
7568 || i.types[op].bitfield.sreg2
7569 || i.types[op].bitfield.sreg3
7570 || i.types[op].bitfield.control
7571 || i.types[op].bitfield.debug
7572 || i.types[op].bitfield.test)
7573 break;
7574 if (i.types[op].bitfield.regsimd)
7575 {
7576 if (i.types[op].bitfield.zmmword)
7577 i.has_regzmm = TRUE;
7578 else if (i.types[op].bitfield.ymmword)
7579 i.has_regymm = TRUE;
7580 else
7581 i.has_regxmm = TRUE;
7582 break;
7583 }
7584 if (i.types[op].bitfield.regmmx)
7585 {
7586 i.has_regmmx = TRUE;
7587 break;
7588 }
7589 }
c0209578 7590
7ab9ffdd
L
7591 if (vex_3_sources)
7592 op = dest;
2426c15f 7593 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7594 {
7595 /* For instructions with VexNDS, the register-only
7596 source operand is encoded in VEX prefix. */
7597 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7598
7ab9ffdd 7599 if (op > mem)
c0f3af97 7600 {
7ab9ffdd
L
7601 vex_reg = op++;
7602 gas_assert (op < i.operands);
c0f3af97
L
7603 }
7604 else
c0f3af97 7605 {
f12dc422
L
7606 /* Check register-only source operand when two source
7607 operands are swapped. */
7608 if (!i.tm.operand_types[op].bitfield.baseindex
7609 && i.tm.operand_types[op + 1].bitfield.baseindex)
7610 {
7611 vex_reg = op;
7612 op += 2;
7613 gas_assert (mem == (vex_reg + 1)
7614 && op < i.operands);
7615 }
7616 else
7617 {
7618 vex_reg = op + 1;
7619 gas_assert (vex_reg < i.operands);
7620 }
c0f3af97 7621 }
7ab9ffdd 7622 }
2426c15f 7623 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7624 {
f12dc422 7625 /* For instructions with VexNDD, the register destination
7ab9ffdd 7626 is encoded in VEX prefix. */
f12dc422
L
7627 if (i.mem_operands == 0)
7628 {
7629 /* There is no memory operand. */
7630 gas_assert ((op + 2) == i.operands);
7631 vex_reg = op + 1;
7632 }
7633 else
8d63c93e 7634 {
ed438a93
JB
7635 /* There are only 2 non-immediate operands. */
7636 gas_assert (op < i.imm_operands + 2
7637 && i.operands == i.imm_operands + 2);
7638 vex_reg = i.imm_operands + 1;
f12dc422 7639 }
7ab9ffdd
L
7640 }
7641 else
7642 gas_assert (op < i.operands);
99018f42 7643
7ab9ffdd
L
7644 if (vex_reg != (unsigned int) ~0)
7645 {
f12dc422 7646 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7647
dc821c5f
JB
7648 if ((!type->bitfield.reg
7649 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7650 && !type->bitfield.regsimd
43234a1e 7651 && !operand_type_equal (type, &regmask))
7ab9ffdd 7652 abort ();
f88c9eb0 7653
7ab9ffdd
L
7654 i.vex.register_specifier = i.op[vex_reg].regs;
7655 }
7656
1b9f0c97
L
7657 /* Don't set OP operand twice. */
7658 if (vex_reg != op)
7ab9ffdd 7659 {
1b9f0c97
L
7660 /* If there is an extension opcode to put here, the
7661 register number must be put into the regmem field. */
7662 if (i.tm.extension_opcode != None)
7663 {
7664 i.rm.regmem = i.op[op].regs->reg_num;
7665 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7666 i.rex |= REX_B;
43234a1e
L
7667 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7668 i.vrex |= REX_B;
1b9f0c97
L
7669 }
7670 else
7671 {
7672 i.rm.reg = i.op[op].regs->reg_num;
7673 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7674 i.rex |= REX_R;
43234a1e
L
7675 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7676 i.vrex |= REX_R;
1b9f0c97 7677 }
7ab9ffdd 7678 }
252b5132 7679
29b0f896
AM
7680 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7681 must set it to 3 to indicate this is a register operand
7682 in the regmem field. */
7683 if (!i.mem_operands)
7684 i.rm.mode = 3;
7685 }
252b5132 7686
29b0f896 7687 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7688 if (i.tm.extension_opcode != None)
29b0f896
AM
7689 i.rm.reg = i.tm.extension_opcode;
7690 }
7691 return default_seg;
7692}
252b5132 7693
29b0f896 7694static void
e3bb37b5 7695output_branch (void)
29b0f896
AM
7696{
7697 char *p;
f8a5c266 7698 int size;
29b0f896
AM
7699 int code16;
7700 int prefix;
7701 relax_substateT subtype;
7702 symbolS *sym;
7703 offsetT off;
7704
f8a5c266 7705 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7706 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7707
7708 prefix = 0;
7709 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7710 {
29b0f896
AM
7711 prefix = 1;
7712 i.prefixes -= 1;
7713 code16 ^= CODE16;
252b5132 7714 }
29b0f896
AM
7715 /* Pentium4 branch hints. */
7716 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7717 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7718 {
29b0f896
AM
7719 prefix++;
7720 i.prefixes--;
7721 }
7722 if (i.prefix[REX_PREFIX] != 0)
7723 {
7724 prefix++;
7725 i.prefixes--;
2f66722d
AM
7726 }
7727
7e8b059b
L
7728 /* BND prefixed jump. */
7729 if (i.prefix[BND_PREFIX] != 0)
7730 {
7731 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7732 i.prefixes -= 1;
7733 }
7734
29b0f896
AM
7735 if (i.prefixes != 0 && !intel_syntax)
7736 as_warn (_("skipping prefixes on this instruction"));
7737
7738 /* It's always a symbol; End frag & setup for relax.
7739 Make sure there is enough room in this frag for the largest
7740 instruction we may generate in md_convert_frag. This is 2
7741 bytes for the opcode and room for the prefix and largest
7742 displacement. */
7743 frag_grow (prefix + 2 + 4);
7744 /* Prefix and 1 opcode byte go in fr_fix. */
7745 p = frag_more (prefix + 1);
7746 if (i.prefix[DATA_PREFIX] != 0)
7747 *p++ = DATA_PREFIX_OPCODE;
7748 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7749 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7750 *p++ = i.prefix[SEG_PREFIX];
7751 if (i.prefix[REX_PREFIX] != 0)
7752 *p++ = i.prefix[REX_PREFIX];
7753 *p = i.tm.base_opcode;
7754
7755 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7756 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7757 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7758 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7759 else
f8a5c266 7760 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7761 subtype |= code16;
3e73aa7c 7762
29b0f896
AM
7763 sym = i.op[0].disps->X_add_symbol;
7764 off = i.op[0].disps->X_add_number;
3e73aa7c 7765
29b0f896
AM
7766 if (i.op[0].disps->X_op != O_constant
7767 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7768 {
29b0f896
AM
7769 /* Handle complex expressions. */
7770 sym = make_expr_symbol (i.op[0].disps);
7771 off = 0;
7772 }
3e73aa7c 7773
29b0f896
AM
7774 /* 1 possible extra opcode + 4 byte displacement go in var part.
7775 Pass reloc in fr_var. */
d258b828 7776 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7777}
3e73aa7c 7778
bd7ab16b
L
7779#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7780/* Return TRUE iff PLT32 relocation should be used for branching to
7781 symbol S. */
7782
7783static bfd_boolean
7784need_plt32_p (symbolS *s)
7785{
7786 /* PLT32 relocation is ELF only. */
7787 if (!IS_ELF)
7788 return FALSE;
7789
7790 /* Since there is no need to prepare for PLT branch on x86-64, we
7791 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7792 be used as a marker for 32-bit PC-relative branches. */
7793 if (!object_64bit)
7794 return FALSE;
7795
7796 /* Weak or undefined symbol need PLT32 relocation. */
7797 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7798 return TRUE;
7799
7800 /* Non-global symbol doesn't need PLT32 relocation. */
7801 if (! S_IS_EXTERNAL (s))
7802 return FALSE;
7803
7804 /* Other global symbols need PLT32 relocation. NB: Symbol with
7805 non-default visibilities are treated as normal global symbol
7806 so that PLT32 relocation can be used as a marker for 32-bit
7807 PC-relative branches. It is useful for linker relaxation. */
7808 return TRUE;
7809}
7810#endif
7811
29b0f896 7812static void
e3bb37b5 7813output_jump (void)
29b0f896
AM
7814{
7815 char *p;
7816 int size;
3e02c1cc 7817 fixS *fixP;
bd7ab16b 7818 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7819
40fb9820 7820 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7821 {
7822 /* This is a loop or jecxz type instruction. */
7823 size = 1;
7824 if (i.prefix[ADDR_PREFIX] != 0)
7825 {
7826 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7827 i.prefixes -= 1;
7828 }
7829 /* Pentium4 branch hints. */
7830 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7831 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7832 {
7833 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7834 i.prefixes--;
3e73aa7c
JH
7835 }
7836 }
29b0f896
AM
7837 else
7838 {
7839 int code16;
3e73aa7c 7840
29b0f896
AM
7841 code16 = 0;
7842 if (flag_code == CODE_16BIT)
7843 code16 = CODE16;
3e73aa7c 7844
29b0f896
AM
7845 if (i.prefix[DATA_PREFIX] != 0)
7846 {
7847 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7848 i.prefixes -= 1;
7849 code16 ^= CODE16;
7850 }
252b5132 7851
29b0f896
AM
7852 size = 4;
7853 if (code16)
7854 size = 2;
7855 }
9fcc94b6 7856
29b0f896
AM
7857 if (i.prefix[REX_PREFIX] != 0)
7858 {
7859 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7860 i.prefixes -= 1;
7861 }
252b5132 7862
7e8b059b
L
7863 /* BND prefixed jump. */
7864 if (i.prefix[BND_PREFIX] != 0)
7865 {
7866 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7867 i.prefixes -= 1;
7868 }
7869
29b0f896
AM
7870 if (i.prefixes != 0 && !intel_syntax)
7871 as_warn (_("skipping prefixes on this instruction"));
e0890092 7872
42164a71
L
7873 p = frag_more (i.tm.opcode_length + size);
7874 switch (i.tm.opcode_length)
7875 {
7876 case 2:
7877 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7878 /* Fall through. */
42164a71
L
7879 case 1:
7880 *p++ = i.tm.base_opcode;
7881 break;
7882 default:
7883 abort ();
7884 }
e0890092 7885
bd7ab16b
L
7886#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7887 if (size == 4
7888 && jump_reloc == NO_RELOC
7889 && need_plt32_p (i.op[0].disps->X_add_symbol))
7890 jump_reloc = BFD_RELOC_X86_64_PLT32;
7891#endif
7892
7893 jump_reloc = reloc (size, 1, 1, jump_reloc);
7894
3e02c1cc 7895 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7896 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7897
7898 /* All jumps handled here are signed, but don't use a signed limit
7899 check for 32 and 16 bit jumps as we want to allow wrap around at
7900 4G and 64k respectively. */
7901 if (size == 1)
7902 fixP->fx_signed = 1;
29b0f896 7903}
e0890092 7904
29b0f896 7905static void
e3bb37b5 7906output_interseg_jump (void)
29b0f896
AM
7907{
7908 char *p;
7909 int size;
7910 int prefix;
7911 int code16;
252b5132 7912
29b0f896
AM
7913 code16 = 0;
7914 if (flag_code == CODE_16BIT)
7915 code16 = CODE16;
a217f122 7916
29b0f896
AM
7917 prefix = 0;
7918 if (i.prefix[DATA_PREFIX] != 0)
7919 {
7920 prefix = 1;
7921 i.prefixes -= 1;
7922 code16 ^= CODE16;
7923 }
7924 if (i.prefix[REX_PREFIX] != 0)
7925 {
7926 prefix++;
7927 i.prefixes -= 1;
7928 }
252b5132 7929
29b0f896
AM
7930 size = 4;
7931 if (code16)
7932 size = 2;
252b5132 7933
29b0f896
AM
7934 if (i.prefixes != 0 && !intel_syntax)
7935 as_warn (_("skipping prefixes on this instruction"));
252b5132 7936
29b0f896
AM
7937 /* 1 opcode; 2 segment; offset */
7938 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7939
29b0f896
AM
7940 if (i.prefix[DATA_PREFIX] != 0)
7941 *p++ = DATA_PREFIX_OPCODE;
252b5132 7942
29b0f896
AM
7943 if (i.prefix[REX_PREFIX] != 0)
7944 *p++ = i.prefix[REX_PREFIX];
252b5132 7945
29b0f896
AM
7946 *p++ = i.tm.base_opcode;
7947 if (i.op[1].imms->X_op == O_constant)
7948 {
7949 offsetT n = i.op[1].imms->X_add_number;
252b5132 7950
29b0f896
AM
7951 if (size == 2
7952 && !fits_in_unsigned_word (n)
7953 && !fits_in_signed_word (n))
7954 {
7955 as_bad (_("16-bit jump out of range"));
7956 return;
7957 }
7958 md_number_to_chars (p, n, size);
7959 }
7960 else
7961 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7962 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7963 if (i.op[0].imms->X_op != O_constant)
7964 as_bad (_("can't handle non absolute segment in `%s'"),
7965 i.tm.name);
7966 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7967}
a217f122 7968
b4a3a7b4
L
7969#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7970void
7971x86_cleanup (void)
7972{
7973 char *p;
7974 asection *seg = now_seg;
7975 subsegT subseg = now_subseg;
7976 asection *sec;
7977 unsigned int alignment, align_size_1;
7978 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7979 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7980 unsigned int padding;
7981
7982 if (!IS_ELF || !x86_used_note)
7983 return;
7984
b4a3a7b4
L
7985 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7986
7987 /* The .note.gnu.property section layout:
7988
7989 Field Length Contents
7990 ---- ---- ----
7991 n_namsz 4 4
7992 n_descsz 4 The note descriptor size
7993 n_type 4 NT_GNU_PROPERTY_TYPE_0
7994 n_name 4 "GNU"
7995 n_desc n_descsz The program property array
7996 .... .... ....
7997 */
7998
7999 /* Create the .note.gnu.property section. */
8000 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8001 bfd_set_section_flags (stdoutput, sec,
8002 (SEC_ALLOC
8003 | SEC_LOAD
8004 | SEC_DATA
8005 | SEC_HAS_CONTENTS
8006 | SEC_READONLY));
8007
8008 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8009 {
8010 align_size_1 = 7;
8011 alignment = 3;
8012 }
8013 else
8014 {
8015 align_size_1 = 3;
8016 alignment = 2;
8017 }
8018
8019 bfd_set_section_alignment (stdoutput, sec, alignment);
8020 elf_section_type (sec) = SHT_NOTE;
8021
8022 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8023 + 4-byte data */
8024 isa_1_descsz_raw = 4 + 4 + 4;
8025 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8026 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8027
8028 feature_2_descsz_raw = isa_1_descsz;
8029 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8030 + 4-byte data */
8031 feature_2_descsz_raw += 4 + 4 + 4;
8032 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8033 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8034 & ~align_size_1);
8035
8036 descsz = feature_2_descsz;
8037 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8038 p = frag_more (4 + 4 + 4 + 4 + descsz);
8039
8040 /* Write n_namsz. */
8041 md_number_to_chars (p, (valueT) 4, 4);
8042
8043 /* Write n_descsz. */
8044 md_number_to_chars (p + 4, (valueT) descsz, 4);
8045
8046 /* Write n_type. */
8047 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8048
8049 /* Write n_name. */
8050 memcpy (p + 4 * 3, "GNU", 4);
8051
8052 /* Write 4-byte type. */
8053 md_number_to_chars (p + 4 * 4,
8054 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8055
8056 /* Write 4-byte data size. */
8057 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8058
8059 /* Write 4-byte data. */
8060 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8061
8062 /* Zero out paddings. */
8063 padding = isa_1_descsz - isa_1_descsz_raw;
8064 if (padding)
8065 memset (p + 4 * 7, 0, padding);
8066
8067 /* Write 4-byte type. */
8068 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8069 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8070
8071 /* Write 4-byte data size. */
8072 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8073
8074 /* Write 4-byte data. */
8075 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8076 (valueT) x86_feature_2_used, 4);
8077
8078 /* Zero out paddings. */
8079 padding = feature_2_descsz - feature_2_descsz_raw;
8080 if (padding)
8081 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8082
8083 /* We probably can't restore the current segment, for there likely
8084 isn't one yet... */
8085 if (seg && subseg)
8086 subseg_set (seg, subseg);
8087}
8088#endif
8089
29b0f896 8090static void
e3bb37b5 8091output_insn (void)
29b0f896 8092{
2bbd9c25
JJ
8093 fragS *insn_start_frag;
8094 offsetT insn_start_off;
8095
b4a3a7b4
L
8096#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8097 if (IS_ELF && x86_used_note)
8098 {
8099 if (i.tm.cpu_flags.bitfield.cpucmov)
8100 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8101 if (i.tm.cpu_flags.bitfield.cpusse)
8102 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8103 if (i.tm.cpu_flags.bitfield.cpusse2)
8104 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8105 if (i.tm.cpu_flags.bitfield.cpusse3)
8106 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8107 if (i.tm.cpu_flags.bitfield.cpussse3)
8108 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8109 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8110 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8111 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8112 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8113 if (i.tm.cpu_flags.bitfield.cpuavx)
8114 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8115 if (i.tm.cpu_flags.bitfield.cpuavx2)
8116 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8117 if (i.tm.cpu_flags.bitfield.cpufma)
8118 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8119 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8120 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8121 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8122 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8123 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8124 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8125 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8126 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8127 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8128 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8129 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8130 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8131 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8132 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8133 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8134 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8135 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8136 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8137 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8138 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8139 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8140 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8141 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8142 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8143 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8144 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8145 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8146 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8147 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8148 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8149
8150 if (i.tm.cpu_flags.bitfield.cpu8087
8151 || i.tm.cpu_flags.bitfield.cpu287
8152 || i.tm.cpu_flags.bitfield.cpu387
8153 || i.tm.cpu_flags.bitfield.cpu687
8154 || i.tm.cpu_flags.bitfield.cpufisttp)
8155 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8156 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8157 Xfence instructions. */
8158 if (i.tm.base_opcode != 0xf18
8159 && i.tm.base_opcode != 0xf0d
8160 && i.tm.base_opcode != 0xfae
8161 && (i.has_regmmx
8162 || i.tm.cpu_flags.bitfield.cpummx
8163 || i.tm.cpu_flags.bitfield.cpua3dnow
8164 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8165 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8166 if (i.has_regxmm)
8167 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8168 if (i.has_regymm)
8169 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8170 if (i.has_regzmm)
8171 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8172 if (i.tm.cpu_flags.bitfield.cpufxsr)
8173 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8174 if (i.tm.cpu_flags.bitfield.cpuxsave)
8175 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8176 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8177 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8178 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8179 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8180 }
8181#endif
8182
29b0f896
AM
8183 /* Tie dwarf2 debug info to the address at the start of the insn.
8184 We can't do this after the insn has been output as the current
8185 frag may have been closed off. eg. by frag_var. */
8186 dwarf2_emit_insn (0);
8187
2bbd9c25
JJ
8188 insn_start_frag = frag_now;
8189 insn_start_off = frag_now_fix ();
8190
29b0f896 8191 /* Output jumps. */
40fb9820 8192 if (i.tm.opcode_modifier.jump)
29b0f896 8193 output_branch ();
40fb9820
L
8194 else if (i.tm.opcode_modifier.jumpbyte
8195 || i.tm.opcode_modifier.jumpdword)
29b0f896 8196 output_jump ();
40fb9820 8197 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8198 output_interseg_jump ();
8199 else
8200 {
8201 /* Output normal instructions here. */
8202 char *p;
8203 unsigned char *q;
47465058 8204 unsigned int j;
331d2d0d 8205 unsigned int prefix;
4dffcebc 8206
e4e00185
AS
8207 if (avoid_fence
8208 && i.tm.base_opcode == 0xfae
8209 && i.operands == 1
8210 && i.imm_operands == 1
8211 && (i.op[0].imms->X_add_number == 0xe8
8212 || i.op[0].imms->X_add_number == 0xf0
8213 || i.op[0].imms->X_add_number == 0xf8))
8214 {
8215 /* Encode lfence, mfence, and sfence as
8216 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8217 offsetT val = 0x240483f0ULL;
8218 p = frag_more (5);
8219 md_number_to_chars (p, val, 5);
8220 return;
8221 }
8222
d022bddd
IT
8223 /* Some processors fail on LOCK prefix. This options makes
8224 assembler ignore LOCK prefix and serves as a workaround. */
8225 if (omit_lock_prefix)
8226 {
8227 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8228 return;
8229 i.prefix[LOCK_PREFIX] = 0;
8230 }
8231
43234a1e
L
8232 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8233 don't need the explicit prefix. */
8234 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8235 {
c0f3af97 8236 switch (i.tm.opcode_length)
bc4bd9ab 8237 {
c0f3af97
L
8238 case 3:
8239 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8240 {
c0f3af97 8241 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8242 add_prefix (prefix);
c0f3af97
L
8243 }
8244 break;
8245 case 2:
8246 if ((i.tm.base_opcode & 0xff0000) != 0)
8247 {
8248 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8249 if (!i.tm.cpu_flags.bitfield.cpupadlock
8250 || prefix != REPE_PREFIX_OPCODE
8251 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8252 add_prefix (prefix);
8253 }
c0f3af97
L
8254 break;
8255 case 1:
8256 break;
390c91cf
L
8257 case 0:
8258 /* Check for pseudo prefixes. */
8259 as_bad_where (insn_start_frag->fr_file,
8260 insn_start_frag->fr_line,
8261 _("pseudo prefix without instruction"));
8262 return;
c0f3af97
L
8263 default:
8264 abort ();
bc4bd9ab 8265 }
c0f3af97 8266
6d19a37a 8267#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8268 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8269 R_X86_64_GOTTPOFF relocation so that linker can safely
8270 perform IE->LE optimization. */
8271 if (x86_elf_abi == X86_64_X32_ABI
8272 && i.operands == 2
8273 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8274 && i.prefix[REX_PREFIX] == 0)
8275 add_prefix (REX_OPCODE);
6d19a37a 8276#endif
cf61b747 8277
c0f3af97
L
8278 /* The prefix bytes. */
8279 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8280 if (*q)
8281 FRAG_APPEND_1_CHAR (*q);
0f10071e 8282 }
ae5c1c7b 8283 else
c0f3af97
L
8284 {
8285 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8286 if (*q)
8287 switch (j)
8288 {
8289 case REX_PREFIX:
8290 /* REX byte is encoded in VEX prefix. */
8291 break;
8292 case SEG_PREFIX:
8293 case ADDR_PREFIX:
8294 FRAG_APPEND_1_CHAR (*q);
8295 break;
8296 default:
8297 /* There should be no other prefixes for instructions
8298 with VEX prefix. */
8299 abort ();
8300 }
8301
43234a1e
L
8302 /* For EVEX instructions i.vrex should become 0 after
8303 build_evex_prefix. For VEX instructions upper 16 registers
8304 aren't available, so VREX should be 0. */
8305 if (i.vrex)
8306 abort ();
c0f3af97
L
8307 /* Now the VEX prefix. */
8308 p = frag_more (i.vex.length);
8309 for (j = 0; j < i.vex.length; j++)
8310 p[j] = i.vex.bytes[j];
8311 }
252b5132 8312
29b0f896 8313 /* Now the opcode; be careful about word order here! */
4dffcebc 8314 if (i.tm.opcode_length == 1)
29b0f896
AM
8315 {
8316 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8317 }
8318 else
8319 {
4dffcebc 8320 switch (i.tm.opcode_length)
331d2d0d 8321 {
43234a1e
L
8322 case 4:
8323 p = frag_more (4);
8324 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8325 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8326 break;
4dffcebc 8327 case 3:
331d2d0d
L
8328 p = frag_more (3);
8329 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8330 break;
8331 case 2:
8332 p = frag_more (2);
8333 break;
8334 default:
8335 abort ();
8336 break;
331d2d0d 8337 }
0f10071e 8338
29b0f896
AM
8339 /* Put out high byte first: can't use md_number_to_chars! */
8340 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8341 *p = i.tm.base_opcode & 0xff;
8342 }
3e73aa7c 8343
29b0f896 8344 /* Now the modrm byte and sib byte (if present). */
40fb9820 8345 if (i.tm.opcode_modifier.modrm)
29b0f896 8346 {
4a3523fa
L
8347 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8348 | i.rm.reg << 3
8349 | i.rm.mode << 6));
29b0f896
AM
8350 /* If i.rm.regmem == ESP (4)
8351 && i.rm.mode != (Register mode)
8352 && not 16 bit
8353 ==> need second modrm byte. */
8354 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8355 && i.rm.mode != 3
dc821c5f 8356 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8357 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8358 | i.sib.index << 3
8359 | i.sib.scale << 6));
29b0f896 8360 }
3e73aa7c 8361
29b0f896 8362 if (i.disp_operands)
2bbd9c25 8363 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8364
29b0f896 8365 if (i.imm_operands)
2bbd9c25 8366 output_imm (insn_start_frag, insn_start_off);
29b0f896 8367 }
252b5132 8368
29b0f896
AM
8369#ifdef DEBUG386
8370 if (flag_debug)
8371 {
7b81dfbb 8372 pi ("" /*line*/, &i);
29b0f896
AM
8373 }
8374#endif /* DEBUG386 */
8375}
252b5132 8376
e205caa7
L
8377/* Return the size of the displacement operand N. */
8378
8379static int
8380disp_size (unsigned int n)
8381{
8382 int size = 4;
43234a1e 8383
b5014f7a 8384 if (i.types[n].bitfield.disp64)
40fb9820
L
8385 size = 8;
8386 else if (i.types[n].bitfield.disp8)
8387 size = 1;
8388 else if (i.types[n].bitfield.disp16)
8389 size = 2;
e205caa7
L
8390 return size;
8391}
8392
8393/* Return the size of the immediate operand N. */
8394
8395static int
8396imm_size (unsigned int n)
8397{
8398 int size = 4;
40fb9820
L
8399 if (i.types[n].bitfield.imm64)
8400 size = 8;
8401 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8402 size = 1;
8403 else if (i.types[n].bitfield.imm16)
8404 size = 2;
e205caa7
L
8405 return size;
8406}
8407
29b0f896 8408static void
64e74474 8409output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8410{
8411 char *p;
8412 unsigned int n;
252b5132 8413
29b0f896
AM
8414 for (n = 0; n < i.operands; n++)
8415 {
b5014f7a 8416 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8417 {
8418 if (i.op[n].disps->X_op == O_constant)
8419 {
e205caa7 8420 int size = disp_size (n);
43234a1e 8421 offsetT val = i.op[n].disps->X_add_number;
252b5132 8422
629cfaf1
JB
8423 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8424 size);
29b0f896
AM
8425 p = frag_more (size);
8426 md_number_to_chars (p, val, size);
8427 }
8428 else
8429 {
f86103b7 8430 enum bfd_reloc_code_real reloc_type;
e205caa7 8431 int size = disp_size (n);
40fb9820 8432 int sign = i.types[n].bitfield.disp32s;
29b0f896 8433 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8434 fixS *fixP;
29b0f896 8435
e205caa7 8436 /* We can't have 8 bit displacement here. */
9c2799c2 8437 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8438
29b0f896
AM
8439 /* The PC relative address is computed relative
8440 to the instruction boundary, so in case immediate
8441 fields follows, we need to adjust the value. */
8442 if (pcrel && i.imm_operands)
8443 {
29b0f896 8444 unsigned int n1;
e205caa7 8445 int sz = 0;
252b5132 8446
29b0f896 8447 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8448 if (operand_type_check (i.types[n1], imm))
252b5132 8449 {
e205caa7
L
8450 /* Only one immediate is allowed for PC
8451 relative address. */
9c2799c2 8452 gas_assert (sz == 0);
e205caa7
L
8453 sz = imm_size (n1);
8454 i.op[n].disps->X_add_number -= sz;
252b5132 8455 }
29b0f896 8456 /* We should find the immediate. */
9c2799c2 8457 gas_assert (sz != 0);
29b0f896 8458 }
520dc8e8 8459
29b0f896 8460 p = frag_more (size);
d258b828 8461 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8462 if (GOT_symbol
2bbd9c25 8463 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8464 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8465 || reloc_type == BFD_RELOC_X86_64_32S
8466 || (reloc_type == BFD_RELOC_64
8467 && object_64bit))
d6ab8113
JB
8468 && (i.op[n].disps->X_op == O_symbol
8469 || (i.op[n].disps->X_op == O_add
8470 && ((symbol_get_value_expression
8471 (i.op[n].disps->X_op_symbol)->X_op)
8472 == O_subtract))))
8473 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8474 {
8475 offsetT add;
8476
8477 if (insn_start_frag == frag_now)
8478 add = (p - frag_now->fr_literal) - insn_start_off;
8479 else
8480 {
8481 fragS *fr;
8482
8483 add = insn_start_frag->fr_fix - insn_start_off;
8484 for (fr = insn_start_frag->fr_next;
8485 fr && fr != frag_now; fr = fr->fr_next)
8486 add += fr->fr_fix;
8487 add += p - frag_now->fr_literal;
8488 }
8489
4fa24527 8490 if (!object_64bit)
7b81dfbb
AJ
8491 {
8492 reloc_type = BFD_RELOC_386_GOTPC;
8493 i.op[n].imms->X_add_number += add;
8494 }
8495 else if (reloc_type == BFD_RELOC_64)
8496 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8497 else
7b81dfbb
AJ
8498 /* Don't do the adjustment for x86-64, as there
8499 the pcrel addressing is relative to the _next_
8500 insn, and that is taken care of in other code. */
d6ab8113 8501 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8502 }
02a86693
L
8503 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8504 size, i.op[n].disps, pcrel,
8505 reloc_type);
8506 /* Check for "call/jmp *mem", "mov mem, %reg",
8507 "test %reg, mem" and "binop mem, %reg" where binop
8508 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
8509 instructions without data prefix. Always generate
8510 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8511 if (i.prefix[DATA_PREFIX] == 0
8512 && (generate_relax_relocations
8513 || (!object_64bit
8514 && i.rm.mode == 0
8515 && i.rm.regmem == 5))
0cb4071e
L
8516 && (i.rm.mode == 2
8517 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8518 && ((i.operands == 1
8519 && i.tm.base_opcode == 0xff
8520 && (i.rm.reg == 2 || i.rm.reg == 4))
8521 || (i.operands == 2
8522 && (i.tm.base_opcode == 0x8b
8523 || i.tm.base_opcode == 0x85
8524 || (i.tm.base_opcode & 0xc7) == 0x03))))
8525 {
8526 if (object_64bit)
8527 {
8528 fixP->fx_tcbit = i.rex != 0;
8529 if (i.base_reg
e968fc9b 8530 && (i.base_reg->reg_num == RegIP))
02a86693
L
8531 fixP->fx_tcbit2 = 1;
8532 }
8533 else
8534 fixP->fx_tcbit2 = 1;
8535 }
29b0f896
AM
8536 }
8537 }
8538 }
8539}
252b5132 8540
29b0f896 8541static void
64e74474 8542output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8543{
8544 char *p;
8545 unsigned int n;
252b5132 8546
29b0f896
AM
8547 for (n = 0; n < i.operands; n++)
8548 {
43234a1e
L
8549 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8550 if (i.rounding && (int) n == i.rounding->operand)
8551 continue;
8552
40fb9820 8553 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8554 {
8555 if (i.op[n].imms->X_op == O_constant)
8556 {
e205caa7 8557 int size = imm_size (n);
29b0f896 8558 offsetT val;
b4cac588 8559
29b0f896
AM
8560 val = offset_in_range (i.op[n].imms->X_add_number,
8561 size);
8562 p = frag_more (size);
8563 md_number_to_chars (p, val, size);
8564 }
8565 else
8566 {
8567 /* Not absolute_section.
8568 Need a 32-bit fixup (don't support 8bit
8569 non-absolute imms). Try to support other
8570 sizes ... */
f86103b7 8571 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8572 int size = imm_size (n);
8573 int sign;
29b0f896 8574
40fb9820 8575 if (i.types[n].bitfield.imm32s
a7d61044 8576 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8577 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8578 sign = 1;
e205caa7
L
8579 else
8580 sign = 0;
520dc8e8 8581
29b0f896 8582 p = frag_more (size);
d258b828 8583 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8584
2bbd9c25
JJ
8585 /* This is tough to explain. We end up with this one if we
8586 * have operands that look like
8587 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8588 * obtain the absolute address of the GOT, and it is strongly
8589 * preferable from a performance point of view to avoid using
8590 * a runtime relocation for this. The actual sequence of
8591 * instructions often look something like:
8592 *
8593 * call .L66
8594 * .L66:
8595 * popl %ebx
8596 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8597 *
8598 * The call and pop essentially return the absolute address
8599 * of the label .L66 and store it in %ebx. The linker itself
8600 * will ultimately change the first operand of the addl so
8601 * that %ebx points to the GOT, but to keep things simple, the
8602 * .o file must have this operand set so that it generates not
8603 * the absolute address of .L66, but the absolute address of
8604 * itself. This allows the linker itself simply treat a GOTPC
8605 * relocation as asking for a pcrel offset to the GOT to be
8606 * added in, and the addend of the relocation is stored in the
8607 * operand field for the instruction itself.
8608 *
8609 * Our job here is to fix the operand so that it would add
8610 * the correct offset so that %ebx would point to itself. The
8611 * thing that is tricky is that .-.L66 will point to the
8612 * beginning of the instruction, so we need to further modify
8613 * the operand so that it will point to itself. There are
8614 * other cases where you have something like:
8615 *
8616 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8617 *
8618 * and here no correction would be required. Internally in
8619 * the assembler we treat operands of this form as not being
8620 * pcrel since the '.' is explicitly mentioned, and I wonder
8621 * whether it would simplify matters to do it this way. Who
8622 * knows. In earlier versions of the PIC patches, the
8623 * pcrel_adjust field was used to store the correction, but
8624 * since the expression is not pcrel, I felt it would be
8625 * confusing to do it this way. */
8626
d6ab8113 8627 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8628 || reloc_type == BFD_RELOC_X86_64_32S
8629 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8630 && GOT_symbol
8631 && GOT_symbol == i.op[n].imms->X_add_symbol
8632 && (i.op[n].imms->X_op == O_symbol
8633 || (i.op[n].imms->X_op == O_add
8634 && ((symbol_get_value_expression
8635 (i.op[n].imms->X_op_symbol)->X_op)
8636 == O_subtract))))
8637 {
2bbd9c25
JJ
8638 offsetT add;
8639
8640 if (insn_start_frag == frag_now)
8641 add = (p - frag_now->fr_literal) - insn_start_off;
8642 else
8643 {
8644 fragS *fr;
8645
8646 add = insn_start_frag->fr_fix - insn_start_off;
8647 for (fr = insn_start_frag->fr_next;
8648 fr && fr != frag_now; fr = fr->fr_next)
8649 add += fr->fr_fix;
8650 add += p - frag_now->fr_literal;
8651 }
8652
4fa24527 8653 if (!object_64bit)
d6ab8113 8654 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8655 else if (size == 4)
d6ab8113 8656 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8657 else if (size == 8)
8658 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8659 i.op[n].imms->X_add_number += add;
29b0f896 8660 }
29b0f896
AM
8661 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8662 i.op[n].imms, 0, reloc_type);
8663 }
8664 }
8665 }
252b5132
RH
8666}
8667\f
d182319b
JB
8668/* x86_cons_fix_new is called via the expression parsing code when a
8669 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8670static int cons_sign = -1;
8671
8672void
e3bb37b5 8673x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8674 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8675{
d258b828 8676 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8677
8678#ifdef TE_PE
8679 if (exp->X_op == O_secrel)
8680 {
8681 exp->X_op = O_symbol;
8682 r = BFD_RELOC_32_SECREL;
8683 }
8684#endif
8685
8686 fix_new_exp (frag, off, len, exp, 0, r);
8687}
8688
357d1bd8
L
8689/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8690 purpose of the `.dc.a' internal pseudo-op. */
8691
8692int
8693x86_address_bytes (void)
8694{
8695 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8696 return 4;
8697 return stdoutput->arch_info->bits_per_address / 8;
8698}
8699
d382c579
TG
8700#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8701 || defined (LEX_AT)
d258b828 8702# define lex_got(reloc, adjust, types) NULL
718ddfc0 8703#else
f3c180ae
AM
8704/* Parse operands of the form
8705 <symbol>@GOTOFF+<nnn>
8706 and similar .plt or .got references.
8707
8708 If we find one, set up the correct relocation in RELOC and copy the
8709 input string, minus the `@GOTOFF' into a malloc'd buffer for
8710 parsing by the calling routine. Return this buffer, and if ADJUST
8711 is non-null set it to the length of the string we removed from the
8712 input line. Otherwise return NULL. */
8713static char *
91d6fa6a 8714lex_got (enum bfd_reloc_code_real *rel,
64e74474 8715 int *adjust,
d258b828 8716 i386_operand_type *types)
f3c180ae 8717{
7b81dfbb
AJ
8718 /* Some of the relocations depend on the size of what field is to
8719 be relocated. But in our callers i386_immediate and i386_displacement
8720 we don't yet know the operand size (this will be set by insn
8721 matching). Hence we record the word32 relocation here,
8722 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8723 static const struct {
8724 const char *str;
cff8d58a 8725 int len;
4fa24527 8726 const enum bfd_reloc_code_real rel[2];
40fb9820 8727 const i386_operand_type types64;
f3c180ae 8728 } gotrel[] = {
8ce3d284 8729#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8730 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8731 BFD_RELOC_SIZE32 },
8732 OPERAND_TYPE_IMM32_64 },
8ce3d284 8733#endif
cff8d58a
L
8734 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8735 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8736 OPERAND_TYPE_IMM64 },
cff8d58a
L
8737 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8738 BFD_RELOC_X86_64_PLT32 },
40fb9820 8739 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8740 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8741 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8742 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8743 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8744 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8745 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8746 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8747 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8748 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8749 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8750 BFD_RELOC_X86_64_TLSGD },
40fb9820 8751 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8752 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8753 _dummy_first_bfd_reloc_code_real },
40fb9820 8754 OPERAND_TYPE_NONE },
cff8d58a
L
8755 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8756 BFD_RELOC_X86_64_TLSLD },
40fb9820 8757 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8758 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8759 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8760 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8761 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8762 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8763 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8764 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8765 _dummy_first_bfd_reloc_code_real },
40fb9820 8766 OPERAND_TYPE_NONE },
cff8d58a
L
8767 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8768 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8769 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8770 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8771 _dummy_first_bfd_reloc_code_real },
40fb9820 8772 OPERAND_TYPE_NONE },
cff8d58a
L
8773 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8774 _dummy_first_bfd_reloc_code_real },
40fb9820 8775 OPERAND_TYPE_NONE },
cff8d58a
L
8776 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8777 BFD_RELOC_X86_64_GOT32 },
40fb9820 8778 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8779 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8780 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8781 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8782 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8783 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8784 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8785 };
8786 char *cp;
8787 unsigned int j;
8788
d382c579 8789#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8790 if (!IS_ELF)
8791 return NULL;
d382c579 8792#endif
718ddfc0 8793
f3c180ae 8794 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8795 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8796 return NULL;
8797
47465058 8798 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8799 {
cff8d58a 8800 int len = gotrel[j].len;
28f81592 8801 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8802 {
4fa24527 8803 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8804 {
28f81592
AM
8805 int first, second;
8806 char *tmpbuf, *past_reloc;
f3c180ae 8807
91d6fa6a 8808 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8809
3956db08
JB
8810 if (types)
8811 {
8812 if (flag_code != CODE_64BIT)
40fb9820
L
8813 {
8814 types->bitfield.imm32 = 1;
8815 types->bitfield.disp32 = 1;
8816 }
3956db08
JB
8817 else
8818 *types = gotrel[j].types64;
8819 }
8820
8fd4256d 8821 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8822 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8823
28f81592 8824 /* The length of the first part of our input line. */
f3c180ae 8825 first = cp - input_line_pointer;
28f81592
AM
8826
8827 /* The second part goes from after the reloc token until
67c11a9b 8828 (and including) an end_of_line char or comma. */
28f81592 8829 past_reloc = cp + 1 + len;
67c11a9b
AM
8830 cp = past_reloc;
8831 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8832 ++cp;
8833 second = cp + 1 - past_reloc;
28f81592
AM
8834
8835 /* Allocate and copy string. The trailing NUL shouldn't
8836 be necessary, but be safe. */
add39d23 8837 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8838 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8839 if (second != 0 && *past_reloc != ' ')
8840 /* Replace the relocation token with ' ', so that
8841 errors like foo@GOTOFF1 will be detected. */
8842 tmpbuf[first++] = ' ';
af89796a
L
8843 else
8844 /* Increment length by 1 if the relocation token is
8845 removed. */
8846 len++;
8847 if (adjust)
8848 *adjust = len;
0787a12d
AM
8849 memcpy (tmpbuf + first, past_reloc, second);
8850 tmpbuf[first + second] = '\0';
f3c180ae
AM
8851 return tmpbuf;
8852 }
8853
4fa24527
JB
8854 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8855 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8856 return NULL;
8857 }
8858 }
8859
8860 /* Might be a symbol version string. Don't as_bad here. */
8861 return NULL;
8862}
4e4f7c87 8863#endif
f3c180ae 8864
a988325c
NC
8865#ifdef TE_PE
8866#ifdef lex_got
8867#undef lex_got
8868#endif
8869/* Parse operands of the form
8870 <symbol>@SECREL32+<nnn>
8871
8872 If we find one, set up the correct relocation in RELOC and copy the
8873 input string, minus the `@SECREL32' into a malloc'd buffer for
8874 parsing by the calling routine. Return this buffer, and if ADJUST
8875 is non-null set it to the length of the string we removed from the
34bca508
L
8876 input line. Otherwise return NULL.
8877
a988325c
NC
8878 This function is copied from the ELF version above adjusted for PE targets. */
8879
8880static char *
8881lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8882 int *adjust ATTRIBUTE_UNUSED,
d258b828 8883 i386_operand_type *types)
a988325c
NC
8884{
8885 static const struct
8886 {
8887 const char *str;
8888 int len;
8889 const enum bfd_reloc_code_real rel[2];
8890 const i386_operand_type types64;
8891 }
8892 gotrel[] =
8893 {
8894 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8895 BFD_RELOC_32_SECREL },
8896 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8897 };
8898
8899 char *cp;
8900 unsigned j;
8901
8902 for (cp = input_line_pointer; *cp != '@'; cp++)
8903 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8904 return NULL;
8905
8906 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8907 {
8908 int len = gotrel[j].len;
8909
8910 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8911 {
8912 if (gotrel[j].rel[object_64bit] != 0)
8913 {
8914 int first, second;
8915 char *tmpbuf, *past_reloc;
8916
8917 *rel = gotrel[j].rel[object_64bit];
8918 if (adjust)
8919 *adjust = len;
8920
8921 if (types)
8922 {
8923 if (flag_code != CODE_64BIT)
8924 {
8925 types->bitfield.imm32 = 1;
8926 types->bitfield.disp32 = 1;
8927 }
8928 else
8929 *types = gotrel[j].types64;
8930 }
8931
8932 /* The length of the first part of our input line. */
8933 first = cp - input_line_pointer;
8934
8935 /* The second part goes from after the reloc token until
8936 (and including) an end_of_line char or comma. */
8937 past_reloc = cp + 1 + len;
8938 cp = past_reloc;
8939 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8940 ++cp;
8941 second = cp + 1 - past_reloc;
8942
8943 /* Allocate and copy string. The trailing NUL shouldn't
8944 be necessary, but be safe. */
add39d23 8945 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8946 memcpy (tmpbuf, input_line_pointer, first);
8947 if (second != 0 && *past_reloc != ' ')
8948 /* Replace the relocation token with ' ', so that
8949 errors like foo@SECLREL321 will be detected. */
8950 tmpbuf[first++] = ' ';
8951 memcpy (tmpbuf + first, past_reloc, second);
8952 tmpbuf[first + second] = '\0';
8953 return tmpbuf;
8954 }
8955
8956 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8957 gotrel[j].str, 1 << (5 + object_64bit));
8958 return NULL;
8959 }
8960 }
8961
8962 /* Might be a symbol version string. Don't as_bad here. */
8963 return NULL;
8964}
8965
8966#endif /* TE_PE */
8967
62ebcb5c 8968bfd_reloc_code_real_type
e3bb37b5 8969x86_cons (expressionS *exp, int size)
f3c180ae 8970{
62ebcb5c
AM
8971 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8972
ee86248c
JB
8973 intel_syntax = -intel_syntax;
8974
3c7b9c2c 8975 exp->X_md = 0;
4fa24527 8976 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8977 {
8978 /* Handle @GOTOFF and the like in an expression. */
8979 char *save;
8980 char *gotfree_input_line;
4a57f2cf 8981 int adjust = 0;
f3c180ae
AM
8982
8983 save = input_line_pointer;
d258b828 8984 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8985 if (gotfree_input_line)
8986 input_line_pointer = gotfree_input_line;
8987
8988 expression (exp);
8989
8990 if (gotfree_input_line)
8991 {
8992 /* expression () has merrily parsed up to the end of line,
8993 or a comma - in the wrong buffer. Transfer how far
8994 input_line_pointer has moved to the right buffer. */
8995 input_line_pointer = (save
8996 + (input_line_pointer - gotfree_input_line)
8997 + adjust);
8998 free (gotfree_input_line);
3992d3b7
AM
8999 if (exp->X_op == O_constant
9000 || exp->X_op == O_absent
9001 || exp->X_op == O_illegal
0398aac5 9002 || exp->X_op == O_register
3992d3b7
AM
9003 || exp->X_op == O_big)
9004 {
9005 char c = *input_line_pointer;
9006 *input_line_pointer = 0;
9007 as_bad (_("missing or invalid expression `%s'"), save);
9008 *input_line_pointer = c;
9009 }
b9519cfe
L
9010 else if ((got_reloc == BFD_RELOC_386_PLT32
9011 || got_reloc == BFD_RELOC_X86_64_PLT32)
9012 && exp->X_op != O_symbol)
9013 {
9014 char c = *input_line_pointer;
9015 *input_line_pointer = 0;
9016 as_bad (_("invalid PLT expression `%s'"), save);
9017 *input_line_pointer = c;
9018 }
f3c180ae
AM
9019 }
9020 }
9021 else
9022 expression (exp);
ee86248c
JB
9023
9024 intel_syntax = -intel_syntax;
9025
9026 if (intel_syntax)
9027 i386_intel_simplify (exp);
62ebcb5c
AM
9028
9029 return got_reloc;
f3c180ae 9030}
f3c180ae 9031
9f32dd5b
L
9032static void
9033signed_cons (int size)
6482c264 9034{
d182319b
JB
9035 if (flag_code == CODE_64BIT)
9036 cons_sign = 1;
9037 cons (size);
9038 cons_sign = -1;
6482c264
NC
9039}
9040
d182319b 9041#ifdef TE_PE
6482c264 9042static void
7016a5d5 9043pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9044{
9045 expressionS exp;
9046
9047 do
9048 {
9049 expression (&exp);
9050 if (exp.X_op == O_symbol)
9051 exp.X_op = O_secrel;
9052
9053 emit_expr (&exp, 4);
9054 }
9055 while (*input_line_pointer++ == ',');
9056
9057 input_line_pointer--;
9058 demand_empty_rest_of_line ();
9059}
6482c264
NC
9060#endif
9061
43234a1e
L
9062/* Handle Vector operations. */
9063
9064static char *
9065check_VecOperations (char *op_string, char *op_end)
9066{
9067 const reg_entry *mask;
9068 const char *saved;
9069 char *end_op;
9070
9071 while (*op_string
9072 && (op_end == NULL || op_string < op_end))
9073 {
9074 saved = op_string;
9075 if (*op_string == '{')
9076 {
9077 op_string++;
9078
9079 /* Check broadcasts. */
9080 if (strncmp (op_string, "1to", 3) == 0)
9081 {
9082 int bcst_type;
9083
9084 if (i.broadcast)
9085 goto duplicated_vec_op;
9086
9087 op_string += 3;
9088 if (*op_string == '8')
8e6e0792 9089 bcst_type = 8;
b28d1bda 9090 else if (*op_string == '4')
8e6e0792 9091 bcst_type = 4;
b28d1bda 9092 else if (*op_string == '2')
8e6e0792 9093 bcst_type = 2;
43234a1e
L
9094 else if (*op_string == '1'
9095 && *(op_string+1) == '6')
9096 {
8e6e0792 9097 bcst_type = 16;
43234a1e
L
9098 op_string++;
9099 }
9100 else
9101 {
9102 as_bad (_("Unsupported broadcast: `%s'"), saved);
9103 return NULL;
9104 }
9105 op_string++;
9106
9107 broadcast_op.type = bcst_type;
9108 broadcast_op.operand = this_operand;
1f75763a 9109 broadcast_op.bytes = 0;
43234a1e
L
9110 i.broadcast = &broadcast_op;
9111 }
9112 /* Check masking operation. */
9113 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9114 {
9115 /* k0 can't be used for write mask. */
6d2cd6b2 9116 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9117 {
6d2cd6b2
JB
9118 as_bad (_("`%s%s' can't be used for write mask"),
9119 register_prefix, mask->reg_name);
43234a1e
L
9120 return NULL;
9121 }
9122
9123 if (!i.mask)
9124 {
9125 mask_op.mask = mask;
9126 mask_op.zeroing = 0;
9127 mask_op.operand = this_operand;
9128 i.mask = &mask_op;
9129 }
9130 else
9131 {
9132 if (i.mask->mask)
9133 goto duplicated_vec_op;
9134
9135 i.mask->mask = mask;
9136
9137 /* Only "{z}" is allowed here. No need to check
9138 zeroing mask explicitly. */
9139 if (i.mask->operand != this_operand)
9140 {
9141 as_bad (_("invalid write mask `%s'"), saved);
9142 return NULL;
9143 }
9144 }
9145
9146 op_string = end_op;
9147 }
9148 /* Check zeroing-flag for masking operation. */
9149 else if (*op_string == 'z')
9150 {
9151 if (!i.mask)
9152 {
9153 mask_op.mask = NULL;
9154 mask_op.zeroing = 1;
9155 mask_op.operand = this_operand;
9156 i.mask = &mask_op;
9157 }
9158 else
9159 {
9160 if (i.mask->zeroing)
9161 {
9162 duplicated_vec_op:
9163 as_bad (_("duplicated `%s'"), saved);
9164 return NULL;
9165 }
9166
9167 i.mask->zeroing = 1;
9168
9169 /* Only "{%k}" is allowed here. No need to check mask
9170 register explicitly. */
9171 if (i.mask->operand != this_operand)
9172 {
9173 as_bad (_("invalid zeroing-masking `%s'"),
9174 saved);
9175 return NULL;
9176 }
9177 }
9178
9179 op_string++;
9180 }
9181 else
9182 goto unknown_vec_op;
9183
9184 if (*op_string != '}')
9185 {
9186 as_bad (_("missing `}' in `%s'"), saved);
9187 return NULL;
9188 }
9189 op_string++;
0ba3a731
L
9190
9191 /* Strip whitespace since the addition of pseudo prefixes
9192 changed how the scrubber treats '{'. */
9193 if (is_space_char (*op_string))
9194 ++op_string;
9195
43234a1e
L
9196 continue;
9197 }
9198 unknown_vec_op:
9199 /* We don't know this one. */
9200 as_bad (_("unknown vector operation: `%s'"), saved);
9201 return NULL;
9202 }
9203
6d2cd6b2
JB
9204 if (i.mask && i.mask->zeroing && !i.mask->mask)
9205 {
9206 as_bad (_("zeroing-masking only allowed with write mask"));
9207 return NULL;
9208 }
9209
43234a1e
L
9210 return op_string;
9211}
9212
252b5132 9213static int
70e41ade 9214i386_immediate (char *imm_start)
252b5132
RH
9215{
9216 char *save_input_line_pointer;
f3c180ae 9217 char *gotfree_input_line;
252b5132 9218 segT exp_seg = 0;
47926f60 9219 expressionS *exp;
40fb9820
L
9220 i386_operand_type types;
9221
0dfbf9d7 9222 operand_type_set (&types, ~0);
252b5132
RH
9223
9224 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9225 {
31b2323c
L
9226 as_bad (_("at most %d immediate operands are allowed"),
9227 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9228 return 0;
9229 }
9230
9231 exp = &im_expressions[i.imm_operands++];
520dc8e8 9232 i.op[this_operand].imms = exp;
252b5132
RH
9233
9234 if (is_space_char (*imm_start))
9235 ++imm_start;
9236
9237 save_input_line_pointer = input_line_pointer;
9238 input_line_pointer = imm_start;
9239
d258b828 9240 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9241 if (gotfree_input_line)
9242 input_line_pointer = gotfree_input_line;
252b5132
RH
9243
9244 exp_seg = expression (exp);
9245
83183c0c 9246 SKIP_WHITESPACE ();
43234a1e
L
9247
9248 /* Handle vector operations. */
9249 if (*input_line_pointer == '{')
9250 {
9251 input_line_pointer = check_VecOperations (input_line_pointer,
9252 NULL);
9253 if (input_line_pointer == NULL)
9254 return 0;
9255 }
9256
252b5132 9257 if (*input_line_pointer)
f3c180ae 9258 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9259
9260 input_line_pointer = save_input_line_pointer;
f3c180ae 9261 if (gotfree_input_line)
ee86248c
JB
9262 {
9263 free (gotfree_input_line);
9264
9265 if (exp->X_op == O_constant || exp->X_op == O_register)
9266 exp->X_op = O_illegal;
9267 }
9268
9269 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9270}
252b5132 9271
ee86248c
JB
9272static int
9273i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9274 i386_operand_type types, const char *imm_start)
9275{
9276 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9277 {
313c53d1
L
9278 if (imm_start)
9279 as_bad (_("missing or invalid immediate expression `%s'"),
9280 imm_start);
3992d3b7 9281 return 0;
252b5132 9282 }
3e73aa7c 9283 else if (exp->X_op == O_constant)
252b5132 9284 {
47926f60 9285 /* Size it properly later. */
40fb9820 9286 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9287 /* If not 64bit, sign extend val. */
9288 if (flag_code != CODE_64BIT
4eed87de
AM
9289 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9290 exp->X_add_number
9291 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9292 }
4c63da97 9293#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9294 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9295 && exp_seg != absolute_section
47926f60 9296 && exp_seg != text_section
24eab124
AM
9297 && exp_seg != data_section
9298 && exp_seg != bss_section
9299 && exp_seg != undefined_section
f86103b7 9300 && !bfd_is_com_section (exp_seg))
252b5132 9301 {
d0b47220 9302 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9303 return 0;
9304 }
9305#endif
a841bdf5 9306 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9307 {
313c53d1
L
9308 if (imm_start)
9309 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9310 return 0;
9311 }
252b5132
RH
9312 else
9313 {
9314 /* This is an address. The size of the address will be
24eab124 9315 determined later, depending on destination register,
3e73aa7c 9316 suffix, or the default for the section. */
40fb9820
L
9317 i.types[this_operand].bitfield.imm8 = 1;
9318 i.types[this_operand].bitfield.imm16 = 1;
9319 i.types[this_operand].bitfield.imm32 = 1;
9320 i.types[this_operand].bitfield.imm32s = 1;
9321 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9322 i.types[this_operand] = operand_type_and (i.types[this_operand],
9323 types);
252b5132
RH
9324 }
9325
9326 return 1;
9327}
9328
551c1ca1 9329static char *
e3bb37b5 9330i386_scale (char *scale)
252b5132 9331{
551c1ca1
AM
9332 offsetT val;
9333 char *save = input_line_pointer;
252b5132 9334
551c1ca1
AM
9335 input_line_pointer = scale;
9336 val = get_absolute_expression ();
9337
9338 switch (val)
252b5132 9339 {
551c1ca1 9340 case 1:
252b5132
RH
9341 i.log2_scale_factor = 0;
9342 break;
551c1ca1 9343 case 2:
252b5132
RH
9344 i.log2_scale_factor = 1;
9345 break;
551c1ca1 9346 case 4:
252b5132
RH
9347 i.log2_scale_factor = 2;
9348 break;
551c1ca1 9349 case 8:
252b5132
RH
9350 i.log2_scale_factor = 3;
9351 break;
9352 default:
a724f0f4
JB
9353 {
9354 char sep = *input_line_pointer;
9355
9356 *input_line_pointer = '\0';
9357 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9358 scale);
9359 *input_line_pointer = sep;
9360 input_line_pointer = save;
9361 return NULL;
9362 }
252b5132 9363 }
29b0f896 9364 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9365 {
9366 as_warn (_("scale factor of %d without an index register"),
24eab124 9367 1 << i.log2_scale_factor);
252b5132 9368 i.log2_scale_factor = 0;
252b5132 9369 }
551c1ca1
AM
9370 scale = input_line_pointer;
9371 input_line_pointer = save;
9372 return scale;
252b5132
RH
9373}
9374
252b5132 9375static int
e3bb37b5 9376i386_displacement (char *disp_start, char *disp_end)
252b5132 9377{
29b0f896 9378 expressionS *exp;
252b5132
RH
9379 segT exp_seg = 0;
9380 char *save_input_line_pointer;
f3c180ae 9381 char *gotfree_input_line;
40fb9820
L
9382 int override;
9383 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9384 int ret;
252b5132 9385
31b2323c
L
9386 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9387 {
9388 as_bad (_("at most %d displacement operands are allowed"),
9389 MAX_MEMORY_OPERANDS);
9390 return 0;
9391 }
9392
0dfbf9d7 9393 operand_type_set (&bigdisp, 0);
40fb9820
L
9394 if ((i.types[this_operand].bitfield.jumpabsolute)
9395 || (!current_templates->start->opcode_modifier.jump
9396 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9397 {
40fb9820 9398 bigdisp.bitfield.disp32 = 1;
e05278af 9399 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9400 if (flag_code == CODE_64BIT)
9401 {
9402 if (!override)
9403 {
9404 bigdisp.bitfield.disp32s = 1;
9405 bigdisp.bitfield.disp64 = 1;
9406 }
9407 }
9408 else if ((flag_code == CODE_16BIT) ^ override)
9409 {
9410 bigdisp.bitfield.disp32 = 0;
9411 bigdisp.bitfield.disp16 = 1;
9412 }
e05278af
JB
9413 }
9414 else
9415 {
9416 /* For PC-relative branches, the width of the displacement
9417 is dependent upon data size, not address size. */
e05278af 9418 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9419 if (flag_code == CODE_64BIT)
9420 {
9421 if (override || i.suffix == WORD_MNEM_SUFFIX)
9422 bigdisp.bitfield.disp16 = 1;
9423 else
9424 {
9425 bigdisp.bitfield.disp32 = 1;
9426 bigdisp.bitfield.disp32s = 1;
9427 }
9428 }
9429 else
e05278af
JB
9430 {
9431 if (!override)
9432 override = (i.suffix == (flag_code != CODE_16BIT
9433 ? WORD_MNEM_SUFFIX
9434 : LONG_MNEM_SUFFIX));
40fb9820
L
9435 bigdisp.bitfield.disp32 = 1;
9436 if ((flag_code == CODE_16BIT) ^ override)
9437 {
9438 bigdisp.bitfield.disp32 = 0;
9439 bigdisp.bitfield.disp16 = 1;
9440 }
e05278af 9441 }
e05278af 9442 }
c6fb90c8
L
9443 i.types[this_operand] = operand_type_or (i.types[this_operand],
9444 bigdisp);
252b5132
RH
9445
9446 exp = &disp_expressions[i.disp_operands];
520dc8e8 9447 i.op[this_operand].disps = exp;
252b5132
RH
9448 i.disp_operands++;
9449 save_input_line_pointer = input_line_pointer;
9450 input_line_pointer = disp_start;
9451 END_STRING_AND_SAVE (disp_end);
9452
9453#ifndef GCC_ASM_O_HACK
9454#define GCC_ASM_O_HACK 0
9455#endif
9456#if GCC_ASM_O_HACK
9457 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9458 if (i.types[this_operand].bitfield.baseIndex
24eab124 9459 && displacement_string_end[-1] == '+')
252b5132
RH
9460 {
9461 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9462 constraint within gcc asm statements.
9463 For instance:
9464
9465 #define _set_tssldt_desc(n,addr,limit,type) \
9466 __asm__ __volatile__ ( \
9467 "movw %w2,%0\n\t" \
9468 "movw %w1,2+%0\n\t" \
9469 "rorl $16,%1\n\t" \
9470 "movb %b1,4+%0\n\t" \
9471 "movb %4,5+%0\n\t" \
9472 "movb $0,6+%0\n\t" \
9473 "movb %h1,7+%0\n\t" \
9474 "rorl $16,%1" \
9475 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9476
9477 This works great except that the output assembler ends
9478 up looking a bit weird if it turns out that there is
9479 no offset. You end up producing code that looks like:
9480
9481 #APP
9482 movw $235,(%eax)
9483 movw %dx,2+(%eax)
9484 rorl $16,%edx
9485 movb %dl,4+(%eax)
9486 movb $137,5+(%eax)
9487 movb $0,6+(%eax)
9488 movb %dh,7+(%eax)
9489 rorl $16,%edx
9490 #NO_APP
9491
47926f60 9492 So here we provide the missing zero. */
24eab124
AM
9493
9494 *displacement_string_end = '0';
252b5132
RH
9495 }
9496#endif
d258b828 9497 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9498 if (gotfree_input_line)
9499 input_line_pointer = gotfree_input_line;
252b5132 9500
24eab124 9501 exp_seg = expression (exp);
252b5132 9502
636c26b0
AM
9503 SKIP_WHITESPACE ();
9504 if (*input_line_pointer)
9505 as_bad (_("junk `%s' after expression"), input_line_pointer);
9506#if GCC_ASM_O_HACK
9507 RESTORE_END_STRING (disp_end + 1);
9508#endif
636c26b0 9509 input_line_pointer = save_input_line_pointer;
636c26b0 9510 if (gotfree_input_line)
ee86248c
JB
9511 {
9512 free (gotfree_input_line);
9513
9514 if (exp->X_op == O_constant || exp->X_op == O_register)
9515 exp->X_op = O_illegal;
9516 }
9517
9518 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9519
9520 RESTORE_END_STRING (disp_end);
9521
9522 return ret;
9523}
9524
9525static int
9526i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9527 i386_operand_type types, const char *disp_start)
9528{
9529 i386_operand_type bigdisp;
9530 int ret = 1;
636c26b0 9531
24eab124
AM
9532 /* We do this to make sure that the section symbol is in
9533 the symbol table. We will ultimately change the relocation
47926f60 9534 to be relative to the beginning of the section. */
1ae12ab7 9535 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9536 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9537 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9538 {
636c26b0 9539 if (exp->X_op != O_symbol)
3992d3b7 9540 goto inv_disp;
636c26b0 9541
e5cb08ac 9542 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9543 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9544 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9545 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9546 exp->X_op = O_subtract;
9547 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9548 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9549 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9550 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9551 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9552 else
29b0f896 9553 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9554 }
252b5132 9555
3992d3b7
AM
9556 else if (exp->X_op == O_absent
9557 || exp->X_op == O_illegal
ee86248c 9558 || exp->X_op == O_big)
2daf4fd8 9559 {
3992d3b7
AM
9560 inv_disp:
9561 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9562 disp_start);
3992d3b7 9563 ret = 0;
2daf4fd8
AM
9564 }
9565
0e1147d9
L
9566 else if (flag_code == CODE_64BIT
9567 && !i.prefix[ADDR_PREFIX]
9568 && exp->X_op == O_constant)
9569 {
9570 /* Since displacement is signed extended to 64bit, don't allow
9571 disp32 and turn off disp32s if they are out of range. */
9572 i.types[this_operand].bitfield.disp32 = 0;
9573 if (!fits_in_signed_long (exp->X_add_number))
9574 {
9575 i.types[this_operand].bitfield.disp32s = 0;
9576 if (i.types[this_operand].bitfield.baseindex)
9577 {
9578 as_bad (_("0x%lx out range of signed 32bit displacement"),
9579 (long) exp->X_add_number);
9580 ret = 0;
9581 }
9582 }
9583 }
9584
4c63da97 9585#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9586 else if (exp->X_op != O_constant
9587 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9588 && exp_seg != absolute_section
9589 && exp_seg != text_section
9590 && exp_seg != data_section
9591 && exp_seg != bss_section
9592 && exp_seg != undefined_section
9593 && !bfd_is_com_section (exp_seg))
24eab124 9594 {
d0b47220 9595 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9596 ret = 0;
24eab124 9597 }
252b5132 9598#endif
3956db08 9599
40fb9820
L
9600 /* Check if this is a displacement only operand. */
9601 bigdisp = i.types[this_operand];
9602 bigdisp.bitfield.disp8 = 0;
9603 bigdisp.bitfield.disp16 = 0;
9604 bigdisp.bitfield.disp32 = 0;
9605 bigdisp.bitfield.disp32s = 0;
9606 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9607 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9608 i.types[this_operand] = operand_type_and (i.types[this_operand],
9609 types);
3956db08 9610
3992d3b7 9611 return ret;
252b5132
RH
9612}
9613
2abc2bec
JB
9614/* Return the active addressing mode, taking address override and
9615 registers forming the address into consideration. Update the
9616 address override prefix if necessary. */
47926f60 9617
2abc2bec
JB
9618static enum flag_code
9619i386_addressing_mode (void)
252b5132 9620{
be05d201
L
9621 enum flag_code addr_mode;
9622
9623 if (i.prefix[ADDR_PREFIX])
9624 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9625 else
9626 {
9627 addr_mode = flag_code;
9628
24eab124 9629#if INFER_ADDR_PREFIX
be05d201
L
9630 if (i.mem_operands == 0)
9631 {
9632 /* Infer address prefix from the first memory operand. */
9633 const reg_entry *addr_reg = i.base_reg;
9634
9635 if (addr_reg == NULL)
9636 addr_reg = i.index_reg;
eecb386c 9637
be05d201
L
9638 if (addr_reg)
9639 {
e968fc9b 9640 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9641 addr_mode = CODE_32BIT;
9642 else if (flag_code != CODE_64BIT
dc821c5f 9643 && addr_reg->reg_type.bitfield.word)
be05d201
L
9644 addr_mode = CODE_16BIT;
9645
9646 if (addr_mode != flag_code)
9647 {
9648 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9649 i.prefixes += 1;
9650 /* Change the size of any displacement too. At most one
9651 of Disp16 or Disp32 is set.
9652 FIXME. There doesn't seem to be any real need for
9653 separate Disp16 and Disp32 flags. The same goes for
9654 Imm16 and Imm32. Removing them would probably clean
9655 up the code quite a lot. */
9656 if (flag_code != CODE_64BIT
9657 && (i.types[this_operand].bitfield.disp16
9658 || i.types[this_operand].bitfield.disp32))
9659 i.types[this_operand]
9660 = operand_type_xor (i.types[this_operand], disp16_32);
9661 }
9662 }
9663 }
24eab124 9664#endif
be05d201
L
9665 }
9666
2abc2bec
JB
9667 return addr_mode;
9668}
9669
9670/* Make sure the memory operand we've been dealt is valid.
9671 Return 1 on success, 0 on a failure. */
9672
9673static int
9674i386_index_check (const char *operand_string)
9675{
9676 const char *kind = "base/index";
9677 enum flag_code addr_mode = i386_addressing_mode ();
9678
fc0763e6
JB
9679 if (current_templates->start->opcode_modifier.isstring
9680 && !current_templates->start->opcode_modifier.immext
9681 && (current_templates->end[-1].opcode_modifier.isstring
9682 || i.mem_operands))
9683 {
9684 /* Memory operands of string insns are special in that they only allow
9685 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9686 const reg_entry *expected_reg;
9687 static const char *di_si[][2] =
9688 {
9689 { "esi", "edi" },
9690 { "si", "di" },
9691 { "rsi", "rdi" }
9692 };
9693 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9694
9695 kind = "string address";
9696
8325cc63 9697 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9698 {
9699 i386_operand_type type = current_templates->end[-1].operand_types[0];
9700
9701 if (!type.bitfield.baseindex
9702 || ((!i.mem_operands != !intel_syntax)
9703 && current_templates->end[-1].operand_types[1]
9704 .bitfield.baseindex))
9705 type = current_templates->end[-1].operand_types[1];
be05d201
L
9706 expected_reg = hash_find (reg_hash,
9707 di_si[addr_mode][type.bitfield.esseg]);
9708
fc0763e6
JB
9709 }
9710 else
be05d201 9711 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9712
be05d201
L
9713 if (i.base_reg != expected_reg
9714 || i.index_reg
fc0763e6 9715 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9716 {
be05d201
L
9717 /* The second memory operand must have the same size as
9718 the first one. */
9719 if (i.mem_operands
9720 && i.base_reg
9721 && !((addr_mode == CODE_64BIT
dc821c5f 9722 && i.base_reg->reg_type.bitfield.qword)
be05d201 9723 || (addr_mode == CODE_32BIT
dc821c5f
JB
9724 ? i.base_reg->reg_type.bitfield.dword
9725 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9726 goto bad_address;
9727
fc0763e6
JB
9728 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9729 operand_string,
9730 intel_syntax ? '[' : '(',
9731 register_prefix,
be05d201 9732 expected_reg->reg_name,
fc0763e6 9733 intel_syntax ? ']' : ')');
be05d201 9734 return 1;
fc0763e6 9735 }
be05d201
L
9736 else
9737 return 1;
9738
9739bad_address:
9740 as_bad (_("`%s' is not a valid %s expression"),
9741 operand_string, kind);
9742 return 0;
3e73aa7c
JH
9743 }
9744 else
9745 {
be05d201
L
9746 if (addr_mode != CODE_16BIT)
9747 {
9748 /* 32-bit/64-bit checks. */
9749 if ((i.base_reg
e968fc9b
JB
9750 && ((addr_mode == CODE_64BIT
9751 ? !i.base_reg->reg_type.bitfield.qword
9752 : !i.base_reg->reg_type.bitfield.dword)
9753 || (i.index_reg && i.base_reg->reg_num == RegIP)
9754 || i.base_reg->reg_num == RegIZ))
be05d201 9755 || (i.index_reg
1b54b8d7
JB
9756 && !i.index_reg->reg_type.bitfield.xmmword
9757 && !i.index_reg->reg_type.bitfield.ymmword
9758 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9759 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9760 ? !i.index_reg->reg_type.bitfield.qword
9761 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9762 || !i.index_reg->reg_type.bitfield.baseindex)))
9763 goto bad_address;
8178be5b
JB
9764
9765 /* bndmk, bndldx, and bndstx have special restrictions. */
9766 if (current_templates->start->base_opcode == 0xf30f1b
9767 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9768 {
9769 /* They cannot use RIP-relative addressing. */
e968fc9b 9770 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9771 {
9772 as_bad (_("`%s' cannot be used here"), operand_string);
9773 return 0;
9774 }
9775
9776 /* bndldx and bndstx ignore their scale factor. */
9777 if (current_templates->start->base_opcode != 0xf30f1b
9778 && i.log2_scale_factor)
9779 as_warn (_("register scaling is being ignored here"));
9780 }
be05d201
L
9781 }
9782 else
3e73aa7c 9783 {
be05d201 9784 /* 16-bit checks. */
3e73aa7c 9785 if ((i.base_reg
dc821c5f 9786 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9787 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9788 || (i.index_reg
dc821c5f 9789 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9790 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9791 || !(i.base_reg
9792 && i.base_reg->reg_num < 6
9793 && i.index_reg->reg_num >= 6
9794 && i.log2_scale_factor == 0))))
be05d201 9795 goto bad_address;
3e73aa7c
JH
9796 }
9797 }
be05d201 9798 return 1;
24eab124 9799}
252b5132 9800
43234a1e
L
9801/* Handle vector immediates. */
9802
9803static int
9804RC_SAE_immediate (const char *imm_start)
9805{
9806 unsigned int match_found, j;
9807 const char *pstr = imm_start;
9808 expressionS *exp;
9809
9810 if (*pstr != '{')
9811 return 0;
9812
9813 pstr++;
9814 match_found = 0;
9815 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9816 {
9817 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9818 {
9819 if (!i.rounding)
9820 {
9821 rc_op.type = RC_NamesTable[j].type;
9822 rc_op.operand = this_operand;
9823 i.rounding = &rc_op;
9824 }
9825 else
9826 {
9827 as_bad (_("duplicated `%s'"), imm_start);
9828 return 0;
9829 }
9830 pstr += RC_NamesTable[j].len;
9831 match_found = 1;
9832 break;
9833 }
9834 }
9835 if (!match_found)
9836 return 0;
9837
9838 if (*pstr++ != '}')
9839 {
9840 as_bad (_("Missing '}': '%s'"), imm_start);
9841 return 0;
9842 }
9843 /* RC/SAE immediate string should contain nothing more. */;
9844 if (*pstr != 0)
9845 {
9846 as_bad (_("Junk after '}': '%s'"), imm_start);
9847 return 0;
9848 }
9849
9850 exp = &im_expressions[i.imm_operands++];
9851 i.op[this_operand].imms = exp;
9852
9853 exp->X_op = O_constant;
9854 exp->X_add_number = 0;
9855 exp->X_add_symbol = (symbolS *) 0;
9856 exp->X_op_symbol = (symbolS *) 0;
9857
9858 i.types[this_operand].bitfield.imm8 = 1;
9859 return 1;
9860}
9861
8325cc63
JB
9862/* Only string instructions can have a second memory operand, so
9863 reduce current_templates to just those if it contains any. */
9864static int
9865maybe_adjust_templates (void)
9866{
9867 const insn_template *t;
9868
9869 gas_assert (i.mem_operands == 1);
9870
9871 for (t = current_templates->start; t < current_templates->end; ++t)
9872 if (t->opcode_modifier.isstring)
9873 break;
9874
9875 if (t < current_templates->end)
9876 {
9877 static templates aux_templates;
9878 bfd_boolean recheck;
9879
9880 aux_templates.start = t;
9881 for (; t < current_templates->end; ++t)
9882 if (!t->opcode_modifier.isstring)
9883 break;
9884 aux_templates.end = t;
9885
9886 /* Determine whether to re-check the first memory operand. */
9887 recheck = (aux_templates.start != current_templates->start
9888 || t != current_templates->end);
9889
9890 current_templates = &aux_templates;
9891
9892 if (recheck)
9893 {
9894 i.mem_operands = 0;
9895 if (i.memop1_string != NULL
9896 && i386_index_check (i.memop1_string) == 0)
9897 return 0;
9898 i.mem_operands = 1;
9899 }
9900 }
9901
9902 return 1;
9903}
9904
fc0763e6 9905/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9906 on error. */
252b5132 9907
252b5132 9908static int
a7619375 9909i386_att_operand (char *operand_string)
252b5132 9910{
af6bdddf
AM
9911 const reg_entry *r;
9912 char *end_op;
24eab124 9913 char *op_string = operand_string;
252b5132 9914
24eab124 9915 if (is_space_char (*op_string))
252b5132
RH
9916 ++op_string;
9917
24eab124 9918 /* We check for an absolute prefix (differentiating,
47926f60 9919 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9920 if (*op_string == ABSOLUTE_PREFIX)
9921 {
9922 ++op_string;
9923 if (is_space_char (*op_string))
9924 ++op_string;
40fb9820 9925 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9926 }
252b5132 9927
47926f60 9928 /* Check if operand is a register. */
4d1bb795 9929 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9930 {
40fb9820
L
9931 i386_operand_type temp;
9932
24eab124
AM
9933 /* Check for a segment override by searching for ':' after a
9934 segment register. */
9935 op_string = end_op;
9936 if (is_space_char (*op_string))
9937 ++op_string;
40fb9820
L
9938 if (*op_string == ':'
9939 && (r->reg_type.bitfield.sreg2
9940 || r->reg_type.bitfield.sreg3))
24eab124
AM
9941 {
9942 switch (r->reg_num)
9943 {
9944 case 0:
9945 i.seg[i.mem_operands] = &es;
9946 break;
9947 case 1:
9948 i.seg[i.mem_operands] = &cs;
9949 break;
9950 case 2:
9951 i.seg[i.mem_operands] = &ss;
9952 break;
9953 case 3:
9954 i.seg[i.mem_operands] = &ds;
9955 break;
9956 case 4:
9957 i.seg[i.mem_operands] = &fs;
9958 break;
9959 case 5:
9960 i.seg[i.mem_operands] = &gs;
9961 break;
9962 }
252b5132 9963
24eab124 9964 /* Skip the ':' and whitespace. */
252b5132
RH
9965 ++op_string;
9966 if (is_space_char (*op_string))
24eab124 9967 ++op_string;
252b5132 9968
24eab124
AM
9969 if (!is_digit_char (*op_string)
9970 && !is_identifier_char (*op_string)
9971 && *op_string != '('
9972 && *op_string != ABSOLUTE_PREFIX)
9973 {
9974 as_bad (_("bad memory operand `%s'"), op_string);
9975 return 0;
9976 }
47926f60 9977 /* Handle case of %es:*foo. */
24eab124
AM
9978 if (*op_string == ABSOLUTE_PREFIX)
9979 {
9980 ++op_string;
9981 if (is_space_char (*op_string))
9982 ++op_string;
40fb9820 9983 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9984 }
9985 goto do_memory_reference;
9986 }
43234a1e
L
9987
9988 /* Handle vector operations. */
9989 if (*op_string == '{')
9990 {
9991 op_string = check_VecOperations (op_string, NULL);
9992 if (op_string == NULL)
9993 return 0;
9994 }
9995
24eab124
AM
9996 if (*op_string)
9997 {
d0b47220 9998 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9999 return 0;
10000 }
40fb9820
L
10001 temp = r->reg_type;
10002 temp.bitfield.baseindex = 0;
c6fb90c8
L
10003 i.types[this_operand] = operand_type_or (i.types[this_operand],
10004 temp);
7d5e4556 10005 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10006 i.op[this_operand].regs = r;
24eab124
AM
10007 i.reg_operands++;
10008 }
af6bdddf
AM
10009 else if (*op_string == REGISTER_PREFIX)
10010 {
10011 as_bad (_("bad register name `%s'"), op_string);
10012 return 0;
10013 }
24eab124 10014 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10015 {
24eab124 10016 ++op_string;
40fb9820 10017 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 10018 {
d0b47220 10019 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10020 return 0;
10021 }
10022 if (!i386_immediate (op_string))
10023 return 0;
10024 }
43234a1e
L
10025 else if (RC_SAE_immediate (operand_string))
10026 {
10027 /* If it is a RC or SAE immediate, do nothing. */
10028 ;
10029 }
24eab124
AM
10030 else if (is_digit_char (*op_string)
10031 || is_identifier_char (*op_string)
d02603dc 10032 || *op_string == '"'
e5cb08ac 10033 || *op_string == '(')
24eab124 10034 {
47926f60 10035 /* This is a memory reference of some sort. */
af6bdddf 10036 char *base_string;
252b5132 10037
47926f60 10038 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10039 char *displacement_string_start;
10040 char *displacement_string_end;
43234a1e 10041 char *vop_start;
252b5132 10042
24eab124 10043 do_memory_reference:
8325cc63
JB
10044 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10045 return 0;
24eab124 10046 if ((i.mem_operands == 1
40fb9820 10047 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10048 || i.mem_operands == 2)
10049 {
10050 as_bad (_("too many memory references for `%s'"),
10051 current_templates->start->name);
10052 return 0;
10053 }
252b5132 10054
24eab124
AM
10055 /* Check for base index form. We detect the base index form by
10056 looking for an ')' at the end of the operand, searching
10057 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10058 after the '('. */
af6bdddf 10059 base_string = op_string + strlen (op_string);
c3332e24 10060
43234a1e
L
10061 /* Handle vector operations. */
10062 vop_start = strchr (op_string, '{');
10063 if (vop_start && vop_start < base_string)
10064 {
10065 if (check_VecOperations (vop_start, base_string) == NULL)
10066 return 0;
10067 base_string = vop_start;
10068 }
10069
af6bdddf
AM
10070 --base_string;
10071 if (is_space_char (*base_string))
10072 --base_string;
252b5132 10073
47926f60 10074 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10075 displacement_string_start = op_string;
10076 displacement_string_end = base_string + 1;
252b5132 10077
24eab124
AM
10078 if (*base_string == ')')
10079 {
af6bdddf 10080 char *temp_string;
24eab124
AM
10081 unsigned int parens_balanced = 1;
10082 /* We've already checked that the number of left & right ()'s are
47926f60 10083 equal, so this loop will not be infinite. */
24eab124
AM
10084 do
10085 {
10086 base_string--;
10087 if (*base_string == ')')
10088 parens_balanced++;
10089 if (*base_string == '(')
10090 parens_balanced--;
10091 }
10092 while (parens_balanced);
c3332e24 10093
af6bdddf 10094 temp_string = base_string;
c3332e24 10095
24eab124 10096 /* Skip past '(' and whitespace. */
252b5132
RH
10097 ++base_string;
10098 if (is_space_char (*base_string))
24eab124 10099 ++base_string;
252b5132 10100
af6bdddf 10101 if (*base_string == ','
4eed87de
AM
10102 || ((i.base_reg = parse_register (base_string, &end_op))
10103 != NULL))
252b5132 10104 {
af6bdddf 10105 displacement_string_end = temp_string;
252b5132 10106
40fb9820 10107 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10108
af6bdddf 10109 if (i.base_reg)
24eab124 10110 {
24eab124
AM
10111 base_string = end_op;
10112 if (is_space_char (*base_string))
10113 ++base_string;
af6bdddf
AM
10114 }
10115
10116 /* There may be an index reg or scale factor here. */
10117 if (*base_string == ',')
10118 {
10119 ++base_string;
10120 if (is_space_char (*base_string))
10121 ++base_string;
10122
4eed87de
AM
10123 if ((i.index_reg = parse_register (base_string, &end_op))
10124 != NULL)
24eab124 10125 {
af6bdddf 10126 base_string = end_op;
24eab124
AM
10127 if (is_space_char (*base_string))
10128 ++base_string;
af6bdddf
AM
10129 if (*base_string == ',')
10130 {
10131 ++base_string;
10132 if (is_space_char (*base_string))
10133 ++base_string;
10134 }
e5cb08ac 10135 else if (*base_string != ')')
af6bdddf 10136 {
4eed87de
AM
10137 as_bad (_("expecting `,' or `)' "
10138 "after index register in `%s'"),
af6bdddf
AM
10139 operand_string);
10140 return 0;
10141 }
24eab124 10142 }
af6bdddf 10143 else if (*base_string == REGISTER_PREFIX)
24eab124 10144 {
f76bf5e0
L
10145 end_op = strchr (base_string, ',');
10146 if (end_op)
10147 *end_op = '\0';
af6bdddf 10148 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10149 return 0;
10150 }
252b5132 10151
47926f60 10152 /* Check for scale factor. */
551c1ca1 10153 if (*base_string != ')')
af6bdddf 10154 {
551c1ca1
AM
10155 char *end_scale = i386_scale (base_string);
10156
10157 if (!end_scale)
af6bdddf 10158 return 0;
24eab124 10159
551c1ca1 10160 base_string = end_scale;
af6bdddf
AM
10161 if (is_space_char (*base_string))
10162 ++base_string;
10163 if (*base_string != ')')
10164 {
4eed87de
AM
10165 as_bad (_("expecting `)' "
10166 "after scale factor in `%s'"),
af6bdddf
AM
10167 operand_string);
10168 return 0;
10169 }
10170 }
10171 else if (!i.index_reg)
24eab124 10172 {
4eed87de
AM
10173 as_bad (_("expecting index register or scale factor "
10174 "after `,'; got '%c'"),
af6bdddf 10175 *base_string);
24eab124
AM
10176 return 0;
10177 }
10178 }
af6bdddf 10179 else if (*base_string != ')')
24eab124 10180 {
4eed87de
AM
10181 as_bad (_("expecting `,' or `)' "
10182 "after base register in `%s'"),
af6bdddf 10183 operand_string);
24eab124
AM
10184 return 0;
10185 }
c3332e24 10186 }
af6bdddf 10187 else if (*base_string == REGISTER_PREFIX)
c3332e24 10188 {
f76bf5e0
L
10189 end_op = strchr (base_string, ',');
10190 if (end_op)
10191 *end_op = '\0';
af6bdddf 10192 as_bad (_("bad register name `%s'"), base_string);
24eab124 10193 return 0;
c3332e24 10194 }
24eab124
AM
10195 }
10196
10197 /* If there's an expression beginning the operand, parse it,
10198 assuming displacement_string_start and
10199 displacement_string_end are meaningful. */
10200 if (displacement_string_start != displacement_string_end)
10201 {
10202 if (!i386_displacement (displacement_string_start,
10203 displacement_string_end))
10204 return 0;
10205 }
10206
10207 /* Special case for (%dx) while doing input/output op. */
10208 if (i.base_reg
2fb5be8d 10209 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10210 && i.index_reg == 0
10211 && i.log2_scale_factor == 0
10212 && i.seg[i.mem_operands] == 0
40fb9820 10213 && !operand_type_check (i.types[this_operand], disp))
24eab124 10214 {
2fb5be8d 10215 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10216 return 1;
10217 }
10218
eecb386c
AM
10219 if (i386_index_check (operand_string) == 0)
10220 return 0;
c48dadc9 10221 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10222 if (i.mem_operands == 0)
10223 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10224 i.mem_operands++;
10225 }
10226 else
ce8a8b2f
AM
10227 {
10228 /* It's not a memory operand; argh! */
24eab124
AM
10229 as_bad (_("invalid char %s beginning operand %d `%s'"),
10230 output_invalid (*op_string),
10231 this_operand + 1,
10232 op_string);
10233 return 0;
10234 }
47926f60 10235 return 1; /* Normal return. */
252b5132
RH
10236}
10237\f
fa94de6b
RM
10238/* Calculate the maximum variable size (i.e., excluding fr_fix)
10239 that an rs_machine_dependent frag may reach. */
10240
10241unsigned int
10242i386_frag_max_var (fragS *frag)
10243{
10244 /* The only relaxable frags are for jumps.
10245 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10246 gas_assert (frag->fr_type == rs_machine_dependent);
10247 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10248}
10249
b084df0b
L
10250#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10251static int
8dcea932 10252elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10253{
10254 /* STT_GNU_IFUNC symbol must go through PLT. */
10255 if ((symbol_get_bfdsym (fr_symbol)->flags
10256 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10257 return 0;
10258
10259 if (!S_IS_EXTERNAL (fr_symbol))
10260 /* Symbol may be weak or local. */
10261 return !S_IS_WEAK (fr_symbol);
10262
8dcea932
L
10263 /* Global symbols with non-default visibility can't be preempted. */
10264 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10265 return 1;
10266
10267 if (fr_var != NO_RELOC)
10268 switch ((enum bfd_reloc_code_real) fr_var)
10269 {
10270 case BFD_RELOC_386_PLT32:
10271 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10272 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10273 return 0;
10274 default:
10275 abort ();
10276 }
10277
b084df0b
L
10278 /* Global symbols with default visibility in a shared library may be
10279 preempted by another definition. */
8dcea932 10280 return !shared;
b084df0b
L
10281}
10282#endif
10283
ee7fcc42
AM
10284/* md_estimate_size_before_relax()
10285
10286 Called just before relax() for rs_machine_dependent frags. The x86
10287 assembler uses these frags to handle variable size jump
10288 instructions.
10289
10290 Any symbol that is now undefined will not become defined.
10291 Return the correct fr_subtype in the frag.
10292 Return the initial "guess for variable size of frag" to caller.
10293 The guess is actually the growth beyond the fixed part. Whatever
10294 we do to grow the fixed or variable part contributes to our
10295 returned value. */
10296
252b5132 10297int
7016a5d5 10298md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10299{
252b5132 10300 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10301 check for un-relaxable symbols. On an ELF system, we can't relax
10302 an externally visible symbol, because it may be overridden by a
10303 shared library. */
10304 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10305#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10306 || (IS_ELF
8dcea932
L
10307 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10308 fragP->fr_var))
fbeb56a4
DK
10309#endif
10310#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10311 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10312 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10313#endif
10314 )
252b5132 10315 {
b98ef147
AM
10316 /* Symbol is undefined in this segment, or we need to keep a
10317 reloc so that weak symbols can be overridden. */
10318 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10319 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10320 unsigned char *opcode;
10321 int old_fr_fix;
f6af82bd 10322
ee7fcc42 10323 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10324 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10325 else if (size == 2)
f6af82bd 10326 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10327#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10328 else if (need_plt32_p (fragP->fr_symbol))
10329 reloc_type = BFD_RELOC_X86_64_PLT32;
10330#endif
f6af82bd
AM
10331 else
10332 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10333
ee7fcc42
AM
10334 old_fr_fix = fragP->fr_fix;
10335 opcode = (unsigned char *) fragP->fr_opcode;
10336
fddf5b5b 10337 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10338 {
fddf5b5b
AM
10339 case UNCOND_JUMP:
10340 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10341 opcode[0] = 0xe9;
252b5132 10342 fragP->fr_fix += size;
062cd5e7
AS
10343 fix_new (fragP, old_fr_fix, size,
10344 fragP->fr_symbol,
10345 fragP->fr_offset, 1,
10346 reloc_type);
252b5132
RH
10347 break;
10348
fddf5b5b 10349 case COND_JUMP86:
412167cb
AM
10350 if (size == 2
10351 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10352 {
10353 /* Negate the condition, and branch past an
10354 unconditional jump. */
10355 opcode[0] ^= 1;
10356 opcode[1] = 3;
10357 /* Insert an unconditional jump. */
10358 opcode[2] = 0xe9;
10359 /* We added two extra opcode bytes, and have a two byte
10360 offset. */
10361 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10362 fix_new (fragP, old_fr_fix + 2, 2,
10363 fragP->fr_symbol,
10364 fragP->fr_offset, 1,
10365 reloc_type);
fddf5b5b
AM
10366 break;
10367 }
10368 /* Fall through. */
10369
10370 case COND_JUMP:
412167cb
AM
10371 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10372 {
3e02c1cc
AM
10373 fixS *fixP;
10374
412167cb 10375 fragP->fr_fix += 1;
3e02c1cc
AM
10376 fixP = fix_new (fragP, old_fr_fix, 1,
10377 fragP->fr_symbol,
10378 fragP->fr_offset, 1,
10379 BFD_RELOC_8_PCREL);
10380 fixP->fx_signed = 1;
412167cb
AM
10381 break;
10382 }
93c2a809 10383
24eab124 10384 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10385 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10386 opcode[1] = opcode[0] + 0x10;
f6af82bd 10387 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10388 /* We've added an opcode byte. */
10389 fragP->fr_fix += 1 + size;
062cd5e7
AS
10390 fix_new (fragP, old_fr_fix + 1, size,
10391 fragP->fr_symbol,
10392 fragP->fr_offset, 1,
10393 reloc_type);
252b5132 10394 break;
fddf5b5b
AM
10395
10396 default:
10397 BAD_CASE (fragP->fr_subtype);
10398 break;
252b5132
RH
10399 }
10400 frag_wane (fragP);
ee7fcc42 10401 return fragP->fr_fix - old_fr_fix;
252b5132 10402 }
93c2a809 10403
93c2a809
AM
10404 /* Guess size depending on current relax state. Initially the relax
10405 state will correspond to a short jump and we return 1, because
10406 the variable part of the frag (the branch offset) is one byte
10407 long. However, we can relax a section more than once and in that
10408 case we must either set fr_subtype back to the unrelaxed state,
10409 or return the value for the appropriate branch. */
10410 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10411}
10412
47926f60
KH
10413/* Called after relax() is finished.
10414
10415 In: Address of frag.
10416 fr_type == rs_machine_dependent.
10417 fr_subtype is what the address relaxed to.
10418
10419 Out: Any fixSs and constants are set up.
10420 Caller will turn frag into a ".space 0". */
10421
252b5132 10422void
7016a5d5
TG
10423md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10424 fragS *fragP)
252b5132 10425{
29b0f896 10426 unsigned char *opcode;
252b5132 10427 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10428 offsetT target_address;
10429 offsetT opcode_address;
252b5132 10430 unsigned int extension = 0;
847f7ad4 10431 offsetT displacement_from_opcode_start;
252b5132
RH
10432
10433 opcode = (unsigned char *) fragP->fr_opcode;
10434
47926f60 10435 /* Address we want to reach in file space. */
252b5132 10436 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10437
47926f60 10438 /* Address opcode resides at in file space. */
252b5132
RH
10439 opcode_address = fragP->fr_address + fragP->fr_fix;
10440
47926f60 10441 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10442 displacement_from_opcode_start = target_address - opcode_address;
10443
fddf5b5b 10444 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10445 {
47926f60
KH
10446 /* Don't have to change opcode. */
10447 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10448 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10449 }
10450 else
10451 {
10452 if (no_cond_jump_promotion
10453 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10454 as_warn_where (fragP->fr_file, fragP->fr_line,
10455 _("long jump required"));
252b5132 10456
fddf5b5b
AM
10457 switch (fragP->fr_subtype)
10458 {
10459 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10460 extension = 4; /* 1 opcode + 4 displacement */
10461 opcode[0] = 0xe9;
10462 where_to_put_displacement = &opcode[1];
10463 break;
252b5132 10464
fddf5b5b
AM
10465 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10466 extension = 2; /* 1 opcode + 2 displacement */
10467 opcode[0] = 0xe9;
10468 where_to_put_displacement = &opcode[1];
10469 break;
252b5132 10470
fddf5b5b
AM
10471 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10472 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10473 extension = 5; /* 2 opcode + 4 displacement */
10474 opcode[1] = opcode[0] + 0x10;
10475 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10476 where_to_put_displacement = &opcode[2];
10477 break;
252b5132 10478
fddf5b5b
AM
10479 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10480 extension = 3; /* 2 opcode + 2 displacement */
10481 opcode[1] = opcode[0] + 0x10;
10482 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10483 where_to_put_displacement = &opcode[2];
10484 break;
252b5132 10485
fddf5b5b
AM
10486 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10487 extension = 4;
10488 opcode[0] ^= 1;
10489 opcode[1] = 3;
10490 opcode[2] = 0xe9;
10491 where_to_put_displacement = &opcode[3];
10492 break;
10493
10494 default:
10495 BAD_CASE (fragP->fr_subtype);
10496 break;
10497 }
252b5132 10498 }
fddf5b5b 10499
7b81dfbb
AJ
10500 /* If size if less then four we are sure that the operand fits,
10501 but if it's 4, then it could be that the displacement is larger
10502 then -/+ 2GB. */
10503 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10504 && object_64bit
10505 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10506 + ((addressT) 1 << 31))
10507 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10508 {
10509 as_bad_where (fragP->fr_file, fragP->fr_line,
10510 _("jump target out of range"));
10511 /* Make us emit 0. */
10512 displacement_from_opcode_start = extension;
10513 }
47926f60 10514 /* Now put displacement after opcode. */
252b5132
RH
10515 md_number_to_chars ((char *) where_to_put_displacement,
10516 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10517 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10518 fragP->fr_fix += extension;
10519}
10520\f
7016a5d5 10521/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10522 by our caller that we have all the info we need to fix it up.
10523
7016a5d5
TG
10524 Parameter valP is the pointer to the value of the bits.
10525
252b5132
RH
10526 On the 386, immediates, displacements, and data pointers are all in
10527 the same (little-endian) format, so we don't need to care about which
10528 we are handling. */
10529
94f592af 10530void
7016a5d5 10531md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10532{
94f592af 10533 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10534 valueT value = *valP;
252b5132 10535
f86103b7 10536#if !defined (TE_Mach)
93382f6d
AM
10537 if (fixP->fx_pcrel)
10538 {
10539 switch (fixP->fx_r_type)
10540 {
5865bb77
ILT
10541 default:
10542 break;
10543
d6ab8113
JB
10544 case BFD_RELOC_64:
10545 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10546 break;
93382f6d 10547 case BFD_RELOC_32:
ae8887b5 10548 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10549 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10550 break;
10551 case BFD_RELOC_16:
10552 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10553 break;
10554 case BFD_RELOC_8:
10555 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10556 break;
10557 }
10558 }
252b5132 10559
a161fe53 10560 if (fixP->fx_addsy != NULL
31312f95 10561 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10562 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10563 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10564 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10565 && !use_rela_relocations)
252b5132 10566 {
31312f95
AM
10567 /* This is a hack. There should be a better way to handle this.
10568 This covers for the fact that bfd_install_relocation will
10569 subtract the current location (for partial_inplace, PC relative
10570 relocations); see more below. */
252b5132 10571#ifndef OBJ_AOUT
718ddfc0 10572 if (IS_ELF
252b5132
RH
10573#ifdef TE_PE
10574 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10575#endif
10576 )
10577 value += fixP->fx_where + fixP->fx_frag->fr_address;
10578#endif
10579#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10580 if (IS_ELF)
252b5132 10581 {
6539b54b 10582 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10583
6539b54b 10584 if ((sym_seg == seg
2f66722d 10585 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10586 && sym_seg != absolute_section))
af65af87 10587 && !generic_force_reloc (fixP))
2f66722d
AM
10588 {
10589 /* Yes, we add the values in twice. This is because
6539b54b
AM
10590 bfd_install_relocation subtracts them out again. I think
10591 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10592 it. FIXME. */
10593 value += fixP->fx_where + fixP->fx_frag->fr_address;
10594 }
252b5132
RH
10595 }
10596#endif
10597#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10598 /* For some reason, the PE format does not store a
10599 section address offset for a PC relative symbol. */
10600 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10601 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10602 value += md_pcrel_from (fixP);
10603#endif
10604 }
fbeb56a4 10605#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10606 if (fixP->fx_addsy != NULL
10607 && S_IS_WEAK (fixP->fx_addsy)
10608 /* PR 16858: Do not modify weak function references. */
10609 && ! fixP->fx_pcrel)
fbeb56a4 10610 {
296a8689
NC
10611#if !defined (TE_PEP)
10612 /* For x86 PE weak function symbols are neither PC-relative
10613 nor do they set S_IS_FUNCTION. So the only reliable way
10614 to detect them is to check the flags of their containing
10615 section. */
10616 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10617 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10618 ;
10619 else
10620#endif
fbeb56a4
DK
10621 value -= S_GET_VALUE (fixP->fx_addsy);
10622 }
10623#endif
252b5132
RH
10624
10625 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10626 and we must not disappoint it. */
252b5132 10627#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10628 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10629 switch (fixP->fx_r_type)
10630 {
10631 case BFD_RELOC_386_PLT32:
3e73aa7c 10632 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
10633 /* Make the jump instruction point to the address of the operand.
10634 At runtime we merely add the offset to the actual PLT entry.
10635 NB: Subtract the offset size only for jump instructions. */
10636 if (fixP->fx_pcrel)
10637 value = -4;
47926f60 10638 break;
31312f95 10639
13ae64f3
JJ
10640 case BFD_RELOC_386_TLS_GD:
10641 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10642 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10643 case BFD_RELOC_386_TLS_IE:
10644 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10645 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10646 case BFD_RELOC_X86_64_TLSGD:
10647 case BFD_RELOC_X86_64_TLSLD:
10648 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10649 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10650 value = 0; /* Fully resolved at runtime. No addend. */
10651 /* Fallthrough */
10652 case BFD_RELOC_386_TLS_LE:
10653 case BFD_RELOC_386_TLS_LDO_32:
10654 case BFD_RELOC_386_TLS_LE_32:
10655 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10656 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10657 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10658 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10659 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10660 break;
10661
67a4f2b7
AO
10662 case BFD_RELOC_386_TLS_DESC_CALL:
10663 case BFD_RELOC_X86_64_TLSDESC_CALL:
10664 value = 0; /* Fully resolved at runtime. No addend. */
10665 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10666 fixP->fx_done = 0;
10667 return;
10668
47926f60
KH
10669 case BFD_RELOC_VTABLE_INHERIT:
10670 case BFD_RELOC_VTABLE_ENTRY:
10671 fixP->fx_done = 0;
94f592af 10672 return;
47926f60
KH
10673
10674 default:
10675 break;
10676 }
10677#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10678 *valP = value;
f86103b7 10679#endif /* !defined (TE_Mach) */
3e73aa7c 10680
3e73aa7c 10681 /* Are we finished with this relocation now? */
c6682705 10682 if (fixP->fx_addsy == NULL)
3e73aa7c 10683 fixP->fx_done = 1;
fbeb56a4
DK
10684#if defined (OBJ_COFF) && defined (TE_PE)
10685 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10686 {
10687 fixP->fx_done = 0;
10688 /* Remember value for tc_gen_reloc. */
10689 fixP->fx_addnumber = value;
10690 /* Clear out the frag for now. */
10691 value = 0;
10692 }
10693#endif
3e73aa7c
JH
10694 else if (use_rela_relocations)
10695 {
10696 fixP->fx_no_overflow = 1;
062cd5e7
AS
10697 /* Remember value for tc_gen_reloc. */
10698 fixP->fx_addnumber = value;
3e73aa7c
JH
10699 value = 0;
10700 }
f86103b7 10701
94f592af 10702 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10703}
252b5132 10704\f
6d4af3c2 10705const char *
499ac353 10706md_atof (int type, char *litP, int *sizeP)
252b5132 10707{
499ac353
NC
10708 /* This outputs the LITTLENUMs in REVERSE order;
10709 in accord with the bigendian 386. */
10710 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10711}
10712\f
2d545b82 10713static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10714
252b5132 10715static char *
e3bb37b5 10716output_invalid (int c)
252b5132 10717{
3882b010 10718 if (ISPRINT (c))
f9f21a03
L
10719 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10720 "'%c'", c);
252b5132 10721 else
f9f21a03 10722 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10723 "(0x%x)", (unsigned char) c);
252b5132
RH
10724 return output_invalid_buf;
10725}
10726
af6bdddf 10727/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10728
10729static const reg_entry *
4d1bb795 10730parse_real_register (char *reg_string, char **end_op)
252b5132 10731{
af6bdddf
AM
10732 char *s = reg_string;
10733 char *p;
252b5132
RH
10734 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10735 const reg_entry *r;
10736
10737 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10738 if (*s == REGISTER_PREFIX)
10739 ++s;
10740
10741 if (is_space_char (*s))
10742 ++s;
10743
10744 p = reg_name_given;
af6bdddf 10745 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10746 {
10747 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10748 return (const reg_entry *) NULL;
10749 s++;
252b5132
RH
10750 }
10751
6588847e
DN
10752 /* For naked regs, make sure that we are not dealing with an identifier.
10753 This prevents confusing an identifier like `eax_var' with register
10754 `eax'. */
10755 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10756 return (const reg_entry *) NULL;
10757
af6bdddf 10758 *end_op = s;
252b5132
RH
10759
10760 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10761
5f47d35b 10762 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10763 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10764 {
0e0eea78
JB
10765 if (!cpu_arch_flags.bitfield.cpu8087
10766 && !cpu_arch_flags.bitfield.cpu287
10767 && !cpu_arch_flags.bitfield.cpu387)
10768 return (const reg_entry *) NULL;
10769
5f47d35b
AM
10770 if (is_space_char (*s))
10771 ++s;
10772 if (*s == '(')
10773 {
af6bdddf 10774 ++s;
5f47d35b
AM
10775 if (is_space_char (*s))
10776 ++s;
10777 if (*s >= '0' && *s <= '7')
10778 {
db557034 10779 int fpr = *s - '0';
af6bdddf 10780 ++s;
5f47d35b
AM
10781 if (is_space_char (*s))
10782 ++s;
10783 if (*s == ')')
10784 {
10785 *end_op = s + 1;
1e9cc1c2 10786 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10787 know (r);
10788 return r + fpr;
5f47d35b 10789 }
5f47d35b 10790 }
47926f60 10791 /* We have "%st(" then garbage. */
5f47d35b
AM
10792 return (const reg_entry *) NULL;
10793 }
10794 }
10795
a60de03c
JB
10796 if (r == NULL || allow_pseudo_reg)
10797 return r;
10798
0dfbf9d7 10799 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10800 return (const reg_entry *) NULL;
10801
dc821c5f 10802 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10803 || r->reg_type.bitfield.sreg3
10804 || r->reg_type.bitfield.control
10805 || r->reg_type.bitfield.debug
10806 || r->reg_type.bitfield.test)
10807 && !cpu_arch_flags.bitfield.cpui386)
10808 return (const reg_entry *) NULL;
10809
6e041cf4 10810 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10811 return (const reg_entry *) NULL;
10812
6e041cf4
JB
10813 if (!cpu_arch_flags.bitfield.cpuavx512f)
10814 {
10815 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10816 return (const reg_entry *) NULL;
40f12533 10817
6e041cf4
JB
10818 if (!cpu_arch_flags.bitfield.cpuavx)
10819 {
10820 if (r->reg_type.bitfield.ymmword)
10821 return (const reg_entry *) NULL;
1848e567 10822
6e041cf4
JB
10823 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10824 return (const reg_entry *) NULL;
10825 }
10826 }
43234a1e 10827
1adf7f56
JB
10828 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10829 return (const reg_entry *) NULL;
10830
db51cc60 10831 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10832 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10833 return (const reg_entry *) NULL;
10834
1d3f8286
JB
10835 /* Upper 16 vector registers are only available with VREX in 64bit
10836 mode, and require EVEX encoding. */
10837 if (r->reg_flags & RegVRex)
43234a1e 10838 {
e951d5ca 10839 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10840 || flag_code != CODE_64BIT)
10841 return (const reg_entry *) NULL;
1d3f8286
JB
10842
10843 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10844 }
10845
4787f4a5
JB
10846 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10847 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10848 && flag_code != CODE_64BIT)
20f0a1fc 10849 return (const reg_entry *) NULL;
1ae00879 10850
b7240065
JB
10851 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10852 return (const reg_entry *) NULL;
10853
252b5132
RH
10854 return r;
10855}
4d1bb795
JB
10856
10857/* REG_STRING starts *before* REGISTER_PREFIX. */
10858
10859static const reg_entry *
10860parse_register (char *reg_string, char **end_op)
10861{
10862 const reg_entry *r;
10863
10864 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10865 r = parse_real_register (reg_string, end_op);
10866 else
10867 r = NULL;
10868 if (!r)
10869 {
10870 char *save = input_line_pointer;
10871 char c;
10872 symbolS *symbolP;
10873
10874 input_line_pointer = reg_string;
d02603dc 10875 c = get_symbol_name (&reg_string);
4d1bb795
JB
10876 symbolP = symbol_find (reg_string);
10877 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10878 {
10879 const expressionS *e = symbol_get_value_expression (symbolP);
10880
0398aac5 10881 know (e->X_op == O_register);
4eed87de 10882 know (e->X_add_number >= 0
c3fe08fa 10883 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10884 r = i386_regtab + e->X_add_number;
d3bb6b49 10885 if ((r->reg_flags & RegVRex))
86fa6981 10886 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10887 *end_op = input_line_pointer;
10888 }
10889 *input_line_pointer = c;
10890 input_line_pointer = save;
10891 }
10892 return r;
10893}
10894
10895int
10896i386_parse_name (char *name, expressionS *e, char *nextcharP)
10897{
10898 const reg_entry *r;
10899 char *end = input_line_pointer;
10900
10901 *end = *nextcharP;
10902 r = parse_register (name, &input_line_pointer);
10903 if (r && end <= input_line_pointer)
10904 {
10905 *nextcharP = *input_line_pointer;
10906 *input_line_pointer = 0;
10907 e->X_op = O_register;
10908 e->X_add_number = r - i386_regtab;
10909 return 1;
10910 }
10911 input_line_pointer = end;
10912 *end = 0;
ee86248c 10913 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10914}
10915
10916void
10917md_operand (expressionS *e)
10918{
ee86248c
JB
10919 char *end;
10920 const reg_entry *r;
4d1bb795 10921
ee86248c
JB
10922 switch (*input_line_pointer)
10923 {
10924 case REGISTER_PREFIX:
10925 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10926 if (r)
10927 {
10928 e->X_op = O_register;
10929 e->X_add_number = r - i386_regtab;
10930 input_line_pointer = end;
10931 }
ee86248c
JB
10932 break;
10933
10934 case '[':
9c2799c2 10935 gas_assert (intel_syntax);
ee86248c
JB
10936 end = input_line_pointer++;
10937 expression (e);
10938 if (*input_line_pointer == ']')
10939 {
10940 ++input_line_pointer;
10941 e->X_op_symbol = make_expr_symbol (e);
10942 e->X_add_symbol = NULL;
10943 e->X_add_number = 0;
10944 e->X_op = O_index;
10945 }
10946 else
10947 {
10948 e->X_op = O_absent;
10949 input_line_pointer = end;
10950 }
10951 break;
4d1bb795
JB
10952 }
10953}
10954
252b5132 10955\f
4cc782b5 10956#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10957const char *md_shortopts = "kVQ:sqnO::";
252b5132 10958#else
b6f8c7c4 10959const char *md_shortopts = "qnO::";
252b5132 10960#endif
6e0b89ee 10961
3e73aa7c 10962#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10963#define OPTION_64 (OPTION_MD_BASE + 1)
10964#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10965#define OPTION_MARCH (OPTION_MD_BASE + 3)
10966#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10967#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10968#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10969#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10970#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10971#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10972#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10973#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10974#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10975#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10976#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10977#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10978#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10979#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10980#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10981#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10982#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10983#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10984#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10985#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10986#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 10987#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 10988#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
b3b91714 10989
99ad8390
NC
10990struct option md_longopts[] =
10991{
3e73aa7c 10992 {"32", no_argument, NULL, OPTION_32},
321098a5 10993#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10994 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10995 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10996#endif
10997#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10998 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10999 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 11000 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 11001#endif
b3b91714 11002 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
11003 {"march", required_argument, NULL, OPTION_MARCH},
11004 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
11005 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11006 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11007 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11008 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 11009 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 11010 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 11011 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 11012 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 11013 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 11014 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
11015 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11016 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
11017# if defined (TE_PE) || defined (TE_PEP)
11018 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11019#endif
d1982f93 11020 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 11021 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 11022 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 11023 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
11024 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11025 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
11026 {NULL, no_argument, NULL, 0}
11027};
11028size_t md_longopts_size = sizeof (md_longopts);
11029
11030int
17b9d67d 11031md_parse_option (int c, const char *arg)
252b5132 11032{
91d6fa6a 11033 unsigned int j;
293f5f65 11034 char *arch, *next, *saved;
9103f4f4 11035
252b5132
RH
11036 switch (c)
11037 {
12b55ccc
L
11038 case 'n':
11039 optimize_align_code = 0;
11040 break;
11041
a38cf1db
AM
11042 case 'q':
11043 quiet_warnings = 1;
252b5132
RH
11044 break;
11045
11046#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
11047 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11048 should be emitted or not. FIXME: Not implemented. */
11049 case 'Q':
252b5132
RH
11050 break;
11051
11052 /* -V: SVR4 argument to print version ID. */
11053 case 'V':
11054 print_version_id ();
11055 break;
11056
a38cf1db
AM
11057 /* -k: Ignore for FreeBSD compatibility. */
11058 case 'k':
252b5132 11059 break;
4cc782b5
ILT
11060
11061 case 's':
11062 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 11063 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 11064 break;
8dcea932
L
11065
11066 case OPTION_MSHARED:
11067 shared = 1;
11068 break;
b4a3a7b4
L
11069
11070 case OPTION_X86_USED_NOTE:
11071 if (strcasecmp (arg, "yes") == 0)
11072 x86_used_note = 1;
11073 else if (strcasecmp (arg, "no") == 0)
11074 x86_used_note = 0;
11075 else
11076 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11077 break;
11078
11079
99ad8390 11080#endif
321098a5 11081#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 11082 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
11083 case OPTION_64:
11084 {
11085 const char **list, **l;
11086
3e73aa7c
JH
11087 list = bfd_target_list ();
11088 for (l = list; *l != NULL; l++)
8620418b 11089 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
11090 || strcmp (*l, "coff-x86-64") == 0
11091 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
11092 || strcmp (*l, "pei-x86-64") == 0
11093 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
11094 {
11095 default_arch = "x86_64";
11096 break;
11097 }
3e73aa7c 11098 if (*l == NULL)
2b5d6a91 11099 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
11100 free (list);
11101 }
11102 break;
11103#endif
252b5132 11104
351f65ca 11105#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11106 case OPTION_X32:
351f65ca
L
11107 if (IS_ELF)
11108 {
11109 const char **list, **l;
11110
11111 list = bfd_target_list ();
11112 for (l = list; *l != NULL; l++)
11113 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11114 {
11115 default_arch = "x86_64:32";
11116 break;
11117 }
11118 if (*l == NULL)
2b5d6a91 11119 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11120 free (list);
11121 }
11122 else
11123 as_fatal (_("32bit x86_64 is only supported for ELF"));
11124 break;
11125#endif
11126
6e0b89ee
AM
11127 case OPTION_32:
11128 default_arch = "i386";
11129 break;
11130
b3b91714
AM
11131 case OPTION_DIVIDE:
11132#ifdef SVR4_COMMENT_CHARS
11133 {
11134 char *n, *t;
11135 const char *s;
11136
add39d23 11137 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11138 t = n;
11139 for (s = i386_comment_chars; *s != '\0'; s++)
11140 if (*s != '/')
11141 *t++ = *s;
11142 *t = '\0';
11143 i386_comment_chars = n;
11144 }
11145#endif
11146 break;
11147
9103f4f4 11148 case OPTION_MARCH:
293f5f65
L
11149 saved = xstrdup (arg);
11150 arch = saved;
11151 /* Allow -march=+nosse. */
11152 if (*arch == '+')
11153 arch++;
6305a203 11154 do
9103f4f4 11155 {
6305a203 11156 if (*arch == '.')
2b5d6a91 11157 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11158 next = strchr (arch, '+');
11159 if (next)
11160 *next++ = '\0';
91d6fa6a 11161 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11162 {
91d6fa6a 11163 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11164 {
6305a203 11165 /* Processor. */
1ded5609
JB
11166 if (! cpu_arch[j].flags.bitfield.cpui386)
11167 continue;
11168
91d6fa6a 11169 cpu_arch_name = cpu_arch[j].name;
6305a203 11170 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11171 cpu_arch_flags = cpu_arch[j].flags;
11172 cpu_arch_isa = cpu_arch[j].type;
11173 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11174 if (!cpu_arch_tune_set)
11175 {
11176 cpu_arch_tune = cpu_arch_isa;
11177 cpu_arch_tune_flags = cpu_arch_isa_flags;
11178 }
11179 break;
11180 }
91d6fa6a
NC
11181 else if (*cpu_arch [j].name == '.'
11182 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11183 {
33eaf5de 11184 /* ISA extension. */
6305a203 11185 i386_cpu_flags flags;
309d3373 11186
293f5f65
L
11187 flags = cpu_flags_or (cpu_arch_flags,
11188 cpu_arch[j].flags);
81486035 11189
5b64d091 11190 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11191 {
11192 if (cpu_sub_arch_name)
11193 {
11194 char *name = cpu_sub_arch_name;
11195 cpu_sub_arch_name = concat (name,
91d6fa6a 11196 cpu_arch[j].name,
1bf57e9f 11197 (const char *) NULL);
6305a203
L
11198 free (name);
11199 }
11200 else
91d6fa6a 11201 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11202 cpu_arch_flags = flags;
a586129e 11203 cpu_arch_isa_flags = flags;
6305a203 11204 }
0089dace
L
11205 else
11206 cpu_arch_isa_flags
11207 = cpu_flags_or (cpu_arch_isa_flags,
11208 cpu_arch[j].flags);
6305a203 11209 break;
ccc9c027 11210 }
9103f4f4 11211 }
6305a203 11212
293f5f65
L
11213 if (j >= ARRAY_SIZE (cpu_arch))
11214 {
33eaf5de 11215 /* Disable an ISA extension. */
293f5f65
L
11216 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11217 if (strcmp (arch, cpu_noarch [j].name) == 0)
11218 {
11219 i386_cpu_flags flags;
11220
11221 flags = cpu_flags_and_not (cpu_arch_flags,
11222 cpu_noarch[j].flags);
11223 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11224 {
11225 if (cpu_sub_arch_name)
11226 {
11227 char *name = cpu_sub_arch_name;
11228 cpu_sub_arch_name = concat (arch,
11229 (const char *) NULL);
11230 free (name);
11231 }
11232 else
11233 cpu_sub_arch_name = xstrdup (arch);
11234 cpu_arch_flags = flags;
11235 cpu_arch_isa_flags = flags;
11236 }
11237 break;
11238 }
11239
11240 if (j >= ARRAY_SIZE (cpu_noarch))
11241 j = ARRAY_SIZE (cpu_arch);
11242 }
11243
91d6fa6a 11244 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11245 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11246
11247 arch = next;
9103f4f4 11248 }
293f5f65
L
11249 while (next != NULL);
11250 free (saved);
9103f4f4
L
11251 break;
11252
11253 case OPTION_MTUNE:
11254 if (*arg == '.')
2b5d6a91 11255 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11256 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11257 {
91d6fa6a 11258 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11259 {
ccc9c027 11260 cpu_arch_tune_set = 1;
91d6fa6a
NC
11261 cpu_arch_tune = cpu_arch [j].type;
11262 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11263 break;
11264 }
11265 }
91d6fa6a 11266 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11267 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11268 break;
11269
1efbbeb4
L
11270 case OPTION_MMNEMONIC:
11271 if (strcasecmp (arg, "att") == 0)
11272 intel_mnemonic = 0;
11273 else if (strcasecmp (arg, "intel") == 0)
11274 intel_mnemonic = 1;
11275 else
2b5d6a91 11276 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11277 break;
11278
11279 case OPTION_MSYNTAX:
11280 if (strcasecmp (arg, "att") == 0)
11281 intel_syntax = 0;
11282 else if (strcasecmp (arg, "intel") == 0)
11283 intel_syntax = 1;
11284 else
2b5d6a91 11285 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11286 break;
11287
11288 case OPTION_MINDEX_REG:
11289 allow_index_reg = 1;
11290 break;
11291
11292 case OPTION_MNAKED_REG:
11293 allow_naked_reg = 1;
11294 break;
11295
c0f3af97
L
11296 case OPTION_MSSE2AVX:
11297 sse2avx = 1;
11298 break;
11299
daf50ae7
L
11300 case OPTION_MSSE_CHECK:
11301 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11302 sse_check = check_error;
daf50ae7 11303 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11304 sse_check = check_warning;
daf50ae7 11305 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11306 sse_check = check_none;
daf50ae7 11307 else
2b5d6a91 11308 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11309 break;
11310
7bab8ab5
JB
11311 case OPTION_MOPERAND_CHECK:
11312 if (strcasecmp (arg, "error") == 0)
11313 operand_check = check_error;
11314 else if (strcasecmp (arg, "warning") == 0)
11315 operand_check = check_warning;
11316 else if (strcasecmp (arg, "none") == 0)
11317 operand_check = check_none;
11318 else
11319 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11320 break;
11321
539f890d
L
11322 case OPTION_MAVXSCALAR:
11323 if (strcasecmp (arg, "128") == 0)
11324 avxscalar = vex128;
11325 else if (strcasecmp (arg, "256") == 0)
11326 avxscalar = vex256;
11327 else
2b5d6a91 11328 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11329 break;
11330
03751133
L
11331 case OPTION_MVEXWIG:
11332 if (strcmp (arg, "0") == 0)
11333 vexwig = evexw0;
11334 else if (strcmp (arg, "1") == 0)
11335 vexwig = evexw1;
11336 else
11337 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11338 break;
11339
7e8b059b
L
11340 case OPTION_MADD_BND_PREFIX:
11341 add_bnd_prefix = 1;
11342 break;
11343
43234a1e
L
11344 case OPTION_MEVEXLIG:
11345 if (strcmp (arg, "128") == 0)
11346 evexlig = evexl128;
11347 else if (strcmp (arg, "256") == 0)
11348 evexlig = evexl256;
11349 else if (strcmp (arg, "512") == 0)
11350 evexlig = evexl512;
11351 else
11352 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11353 break;
11354
d3d3c6db
IT
11355 case OPTION_MEVEXRCIG:
11356 if (strcmp (arg, "rne") == 0)
11357 evexrcig = rne;
11358 else if (strcmp (arg, "rd") == 0)
11359 evexrcig = rd;
11360 else if (strcmp (arg, "ru") == 0)
11361 evexrcig = ru;
11362 else if (strcmp (arg, "rz") == 0)
11363 evexrcig = rz;
11364 else
11365 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11366 break;
11367
43234a1e
L
11368 case OPTION_MEVEXWIG:
11369 if (strcmp (arg, "0") == 0)
11370 evexwig = evexw0;
11371 else if (strcmp (arg, "1") == 0)
11372 evexwig = evexw1;
11373 else
11374 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11375 break;
11376
167ad85b
TG
11377# if defined (TE_PE) || defined (TE_PEP)
11378 case OPTION_MBIG_OBJ:
11379 use_big_obj = 1;
11380 break;
11381#endif
11382
d1982f93 11383 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11384 if (strcasecmp (arg, "yes") == 0)
11385 omit_lock_prefix = 1;
11386 else if (strcasecmp (arg, "no") == 0)
11387 omit_lock_prefix = 0;
11388 else
11389 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11390 break;
11391
e4e00185
AS
11392 case OPTION_MFENCE_AS_LOCK_ADD:
11393 if (strcasecmp (arg, "yes") == 0)
11394 avoid_fence = 1;
11395 else if (strcasecmp (arg, "no") == 0)
11396 avoid_fence = 0;
11397 else
11398 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11399 break;
11400
0cb4071e
L
11401 case OPTION_MRELAX_RELOCATIONS:
11402 if (strcasecmp (arg, "yes") == 0)
11403 generate_relax_relocations = 1;
11404 else if (strcasecmp (arg, "no") == 0)
11405 generate_relax_relocations = 0;
11406 else
11407 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11408 break;
11409
5db04b09 11410 case OPTION_MAMD64:
e89c5eaa 11411 intel64 = 0;
5db04b09
L
11412 break;
11413
11414 case OPTION_MINTEL64:
e89c5eaa 11415 intel64 = 1;
5db04b09
L
11416 break;
11417
b6f8c7c4
L
11418 case 'O':
11419 if (arg == NULL)
11420 {
11421 optimize = 1;
11422 /* Turn off -Os. */
11423 optimize_for_space = 0;
11424 }
11425 else if (*arg == 's')
11426 {
11427 optimize_for_space = 1;
11428 /* Turn on all encoding optimizations. */
41fd2579 11429 optimize = INT_MAX;
b6f8c7c4
L
11430 }
11431 else
11432 {
11433 optimize = atoi (arg);
11434 /* Turn off -Os. */
11435 optimize_for_space = 0;
11436 }
11437 break;
11438
252b5132
RH
11439 default:
11440 return 0;
11441 }
11442 return 1;
11443}
11444
8a2c8fef
L
11445#define MESSAGE_TEMPLATE \
11446" "
11447
293f5f65
L
11448static char *
11449output_message (FILE *stream, char *p, char *message, char *start,
11450 int *left_p, const char *name, int len)
11451{
11452 int size = sizeof (MESSAGE_TEMPLATE);
11453 int left = *left_p;
11454
11455 /* Reserve 2 spaces for ", " or ",\0" */
11456 left -= len + 2;
11457
11458 /* Check if there is any room. */
11459 if (left >= 0)
11460 {
11461 if (p != start)
11462 {
11463 *p++ = ',';
11464 *p++ = ' ';
11465 }
11466 p = mempcpy (p, name, len);
11467 }
11468 else
11469 {
11470 /* Output the current message now and start a new one. */
11471 *p++ = ',';
11472 *p = '\0';
11473 fprintf (stream, "%s\n", message);
11474 p = start;
11475 left = size - (start - message) - len - 2;
11476
11477 gas_assert (left >= 0);
11478
11479 p = mempcpy (p, name, len);
11480 }
11481
11482 *left_p = left;
11483 return p;
11484}
11485
8a2c8fef 11486static void
1ded5609 11487show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11488{
11489 static char message[] = MESSAGE_TEMPLATE;
11490 char *start = message + 27;
11491 char *p;
11492 int size = sizeof (MESSAGE_TEMPLATE);
11493 int left;
11494 const char *name;
11495 int len;
11496 unsigned int j;
11497
11498 p = start;
11499 left = size - (start - message);
11500 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11501 {
11502 /* Should it be skipped? */
11503 if (cpu_arch [j].skip)
11504 continue;
11505
11506 name = cpu_arch [j].name;
11507 len = cpu_arch [j].len;
11508 if (*name == '.')
11509 {
11510 /* It is an extension. Skip if we aren't asked to show it. */
11511 if (ext)
11512 {
11513 name++;
11514 len--;
11515 }
11516 else
11517 continue;
11518 }
11519 else if (ext)
11520 {
11521 /* It is an processor. Skip if we show only extension. */
11522 continue;
11523 }
1ded5609
JB
11524 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11525 {
11526 /* It is an impossible processor - skip. */
11527 continue;
11528 }
8a2c8fef 11529
293f5f65 11530 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11531 }
11532
293f5f65
L
11533 /* Display disabled extensions. */
11534 if (ext)
11535 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11536 {
11537 name = cpu_noarch [j].name;
11538 len = cpu_noarch [j].len;
11539 p = output_message (stream, p, message, start, &left, name,
11540 len);
11541 }
11542
8a2c8fef
L
11543 *p = '\0';
11544 fprintf (stream, "%s\n", message);
11545}
11546
252b5132 11547void
8a2c8fef 11548md_show_usage (FILE *stream)
252b5132 11549{
4cc782b5
ILT
11550#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11551 fprintf (stream, _("\
a38cf1db
AM
11552 -Q ignored\n\
11553 -V print assembler version number\n\
b3b91714
AM
11554 -k ignored\n"));
11555#endif
11556 fprintf (stream, _("\
12b55ccc 11557 -n Do not optimize code alignment\n\
b3b91714
AM
11558 -q quieten some warnings\n"));
11559#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11560 fprintf (stream, _("\
a38cf1db 11561 -s ignored\n"));
b3b91714 11562#endif
d7f449c0
L
11563#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11564 || defined (TE_PE) || defined (TE_PEP))
751d281c 11565 fprintf (stream, _("\
570561f7 11566 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11567#endif
b3b91714
AM
11568#ifdef SVR4_COMMENT_CHARS
11569 fprintf (stream, _("\
11570 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11571#else
11572 fprintf (stream, _("\
b3b91714 11573 --divide ignored\n"));
4cc782b5 11574#endif
9103f4f4 11575 fprintf (stream, _("\
6305a203 11576 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11577 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11578 show_arch (stream, 0, 1);
8a2c8fef
L
11579 fprintf (stream, _("\
11580 EXTENSION is combination of:\n"));
1ded5609 11581 show_arch (stream, 1, 0);
6305a203 11582 fprintf (stream, _("\
8a2c8fef 11583 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11584 show_arch (stream, 0, 0);
ba104c83 11585 fprintf (stream, _("\
c0f3af97
L
11586 -msse2avx encode SSE instructions with VEX prefix\n"));
11587 fprintf (stream, _("\
7c5c05ef 11588 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11589 check SSE instructions\n"));
11590 fprintf (stream, _("\
7c5c05ef 11591 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11592 check operand combinations for validity\n"));
11593 fprintf (stream, _("\
7c5c05ef
L
11594 -mavxscalar=[128|256] (default: 128)\n\
11595 encode scalar AVX instructions with specific vector\n\
539f890d
L
11596 length\n"));
11597 fprintf (stream, _("\
03751133
L
11598 -mvexwig=[0|1] (default: 0)\n\
11599 encode VEX instructions with specific VEX.W value\n\
11600 for VEX.W bit ignored instructions\n"));
11601 fprintf (stream, _("\
7c5c05ef
L
11602 -mevexlig=[128|256|512] (default: 128)\n\
11603 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11604 length\n"));
11605 fprintf (stream, _("\
7c5c05ef
L
11606 -mevexwig=[0|1] (default: 0)\n\
11607 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11608 for EVEX.W bit ignored instructions\n"));
11609 fprintf (stream, _("\
7c5c05ef 11610 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11611 encode EVEX instructions with specific EVEX.RC value\n\
11612 for SAE-only ignored instructions\n"));
11613 fprintf (stream, _("\
7c5c05ef
L
11614 -mmnemonic=[att|intel] "));
11615 if (SYSV386_COMPAT)
11616 fprintf (stream, _("(default: att)\n"));
11617 else
11618 fprintf (stream, _("(default: intel)\n"));
11619 fprintf (stream, _("\
11620 use AT&T/Intel mnemonic\n"));
ba104c83 11621 fprintf (stream, _("\
7c5c05ef
L
11622 -msyntax=[att|intel] (default: att)\n\
11623 use AT&T/Intel syntax\n"));
ba104c83
L
11624 fprintf (stream, _("\
11625 -mindex-reg support pseudo index registers\n"));
11626 fprintf (stream, _("\
11627 -mnaked-reg don't require `%%' prefix for registers\n"));
11628 fprintf (stream, _("\
7e8b059b 11629 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11630#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11631 fprintf (stream, _("\
11632 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11633 fprintf (stream, _("\
11634 -mx86-used-note=[no|yes] "));
11635 if (DEFAULT_X86_USED_NOTE)
11636 fprintf (stream, _("(default: yes)\n"));
11637 else
11638 fprintf (stream, _("(default: no)\n"));
11639 fprintf (stream, _("\
11640 generate x86 used ISA and feature properties\n"));
11641#endif
11642#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11643 fprintf (stream, _("\
11644 -mbig-obj generate big object files\n"));
11645#endif
d022bddd 11646 fprintf (stream, _("\
7c5c05ef 11647 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11648 strip all lock prefixes\n"));
5db04b09 11649 fprintf (stream, _("\
7c5c05ef 11650 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11651 encode lfence, mfence and sfence as\n\
11652 lock addl $0x0, (%%{re}sp)\n"));
11653 fprintf (stream, _("\
7c5c05ef
L
11654 -mrelax-relocations=[no|yes] "));
11655 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11656 fprintf (stream, _("(default: yes)\n"));
11657 else
11658 fprintf (stream, _("(default: no)\n"));
11659 fprintf (stream, _("\
0cb4071e
L
11660 generate relax relocations\n"));
11661 fprintf (stream, _("\
7c5c05ef 11662 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11663 fprintf (stream, _("\
11664 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11665}
11666
3e73aa7c 11667#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11668 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11669 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11670
11671/* Pick the target format to use. */
11672
47926f60 11673const char *
e3bb37b5 11674i386_target_format (void)
252b5132 11675{
351f65ca
L
11676 if (!strncmp (default_arch, "x86_64", 6))
11677 {
11678 update_code_flag (CODE_64BIT, 1);
11679 if (default_arch[6] == '\0')
7f56bc95 11680 x86_elf_abi = X86_64_ABI;
351f65ca 11681 else
7f56bc95 11682 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11683 }
3e73aa7c 11684 else if (!strcmp (default_arch, "i386"))
78f12dd3 11685 update_code_flag (CODE_32BIT, 1);
5197d474
L
11686 else if (!strcmp (default_arch, "iamcu"))
11687 {
11688 update_code_flag (CODE_32BIT, 1);
11689 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11690 {
11691 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11692 cpu_arch_name = "iamcu";
11693 cpu_sub_arch_name = NULL;
11694 cpu_arch_flags = iamcu_flags;
11695 cpu_arch_isa = PROCESSOR_IAMCU;
11696 cpu_arch_isa_flags = iamcu_flags;
11697 if (!cpu_arch_tune_set)
11698 {
11699 cpu_arch_tune = cpu_arch_isa;
11700 cpu_arch_tune_flags = cpu_arch_isa_flags;
11701 }
11702 }
8d471ec1 11703 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11704 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11705 cpu_arch_name);
11706 }
3e73aa7c 11707 else
2b5d6a91 11708 as_fatal (_("unknown architecture"));
89507696
JB
11709
11710 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11711 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11712 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11713 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11714
252b5132
RH
11715 switch (OUTPUT_FLAVOR)
11716 {
9384f2ff 11717#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11718 case bfd_target_aout_flavour:
47926f60 11719 return AOUT_TARGET_FORMAT;
4c63da97 11720#endif
9384f2ff
AM
11721#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11722# if defined (TE_PE) || defined (TE_PEP)
11723 case bfd_target_coff_flavour:
167ad85b
TG
11724 if (flag_code == CODE_64BIT)
11725 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11726 else
11727 return "pe-i386";
9384f2ff 11728# elif defined (TE_GO32)
0561d57c
JK
11729 case bfd_target_coff_flavour:
11730 return "coff-go32";
9384f2ff 11731# else
252b5132
RH
11732 case bfd_target_coff_flavour:
11733 return "coff-i386";
9384f2ff 11734# endif
4c63da97 11735#endif
3e73aa7c 11736#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11737 case bfd_target_elf_flavour:
3e73aa7c 11738 {
351f65ca
L
11739 const char *format;
11740
11741 switch (x86_elf_abi)
4fa24527 11742 {
351f65ca
L
11743 default:
11744 format = ELF_TARGET_FORMAT;
11745 break;
7f56bc95 11746 case X86_64_ABI:
351f65ca 11747 use_rela_relocations = 1;
4fa24527 11748 object_64bit = 1;
351f65ca
L
11749 format = ELF_TARGET_FORMAT64;
11750 break;
7f56bc95 11751 case X86_64_X32_ABI:
4fa24527 11752 use_rela_relocations = 1;
351f65ca 11753 object_64bit = 1;
862be3fb 11754 disallow_64bit_reloc = 1;
351f65ca
L
11755 format = ELF_TARGET_FORMAT32;
11756 break;
4fa24527 11757 }
3632d14b 11758 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11759 {
7f56bc95 11760 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11761 as_fatal (_("Intel L1OM is 64bit only"));
11762 return ELF_TARGET_L1OM_FORMAT;
11763 }
b49f93f6 11764 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11765 {
11766 if (x86_elf_abi != X86_64_ABI)
11767 as_fatal (_("Intel K1OM is 64bit only"));
11768 return ELF_TARGET_K1OM_FORMAT;
11769 }
81486035
L
11770 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11771 {
11772 if (x86_elf_abi != I386_ABI)
11773 as_fatal (_("Intel MCU is 32bit only"));
11774 return ELF_TARGET_IAMCU_FORMAT;
11775 }
8a9036a4 11776 else
351f65ca 11777 return format;
3e73aa7c 11778 }
e57f8c65
TG
11779#endif
11780#if defined (OBJ_MACH_O)
11781 case bfd_target_mach_o_flavour:
d382c579
TG
11782 if (flag_code == CODE_64BIT)
11783 {
11784 use_rela_relocations = 1;
11785 object_64bit = 1;
11786 return "mach-o-x86-64";
11787 }
11788 else
11789 return "mach-o-i386";
4c63da97 11790#endif
252b5132
RH
11791 default:
11792 abort ();
11793 return NULL;
11794 }
11795}
11796
47926f60 11797#endif /* OBJ_MAYBE_ more than one */
252b5132 11798\f
252b5132 11799symbolS *
7016a5d5 11800md_undefined_symbol (char *name)
252b5132 11801{
18dc2407
ILT
11802 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11803 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11804 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11805 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11806 {
11807 if (!GOT_symbol)
11808 {
11809 if (symbol_find (name))
11810 as_bad (_("GOT already in symbol table"));
11811 GOT_symbol = symbol_new (name, undefined_section,
11812 (valueT) 0, &zero_address_frag);
11813 };
11814 return GOT_symbol;
11815 }
252b5132
RH
11816 return 0;
11817}
11818
11819/* Round up a section size to the appropriate boundary. */
47926f60 11820
252b5132 11821valueT
7016a5d5 11822md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11823{
4c63da97
AM
11824#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11825 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11826 {
11827 /* For a.out, force the section size to be aligned. If we don't do
11828 this, BFD will align it for us, but it will not write out the
11829 final bytes of the section. This may be a bug in BFD, but it is
11830 easier to fix it here since that is how the other a.out targets
11831 work. */
11832 int align;
11833
11834 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11835 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11836 }
252b5132
RH
11837#endif
11838
11839 return size;
11840}
11841
11842/* On the i386, PC-relative offsets are relative to the start of the
11843 next instruction. That is, the address of the offset, plus its
11844 size, since the offset is always the last part of the insn. */
11845
11846long
e3bb37b5 11847md_pcrel_from (fixS *fixP)
252b5132
RH
11848{
11849 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11850}
11851
11852#ifndef I386COFF
11853
11854static void
e3bb37b5 11855s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11856{
29b0f896 11857 int temp;
252b5132 11858
8a75718c
JB
11859#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11860 if (IS_ELF)
11861 obj_elf_section_change_hook ();
11862#endif
252b5132
RH
11863 temp = get_absolute_expression ();
11864 subseg_set (bss_section, (subsegT) temp);
11865 demand_empty_rest_of_line ();
11866}
11867
11868#endif
11869
252b5132 11870void
e3bb37b5 11871i386_validate_fix (fixS *fixp)
252b5132 11872{
02a86693 11873 if (fixp->fx_subsy)
252b5132 11874 {
02a86693 11875 if (fixp->fx_subsy == GOT_symbol)
23df1078 11876 {
02a86693
L
11877 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11878 {
11879 if (!object_64bit)
11880 abort ();
11881#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11882 if (fixp->fx_tcbit2)
56ceb5b5
L
11883 fixp->fx_r_type = (fixp->fx_tcbit
11884 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11885 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11886 else
11887#endif
11888 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11889 }
d6ab8113 11890 else
02a86693
L
11891 {
11892 if (!object_64bit)
11893 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11894 else
11895 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11896 }
11897 fixp->fx_subsy = 0;
23df1078 11898 }
252b5132 11899 }
02a86693
L
11900#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11901 else if (!object_64bit)
11902 {
11903 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11904 && fixp->fx_tcbit2)
11905 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11906 }
11907#endif
252b5132
RH
11908}
11909
252b5132 11910arelent *
7016a5d5 11911tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11912{
11913 arelent *rel;
11914 bfd_reloc_code_real_type code;
11915
11916 switch (fixp->fx_r_type)
11917 {
8ce3d284 11918#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11919 case BFD_RELOC_SIZE32:
11920 case BFD_RELOC_SIZE64:
11921 if (S_IS_DEFINED (fixp->fx_addsy)
11922 && !S_IS_EXTERNAL (fixp->fx_addsy))
11923 {
11924 /* Resolve size relocation against local symbol to size of
11925 the symbol plus addend. */
11926 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11927 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11928 && !fits_in_unsigned_long (value))
11929 as_bad_where (fixp->fx_file, fixp->fx_line,
11930 _("symbol size computation overflow"));
11931 fixp->fx_addsy = NULL;
11932 fixp->fx_subsy = NULL;
11933 md_apply_fix (fixp, (valueT *) &value, NULL);
11934 return NULL;
11935 }
8ce3d284 11936#endif
1a0670f3 11937 /* Fall through. */
8fd4256d 11938
3e73aa7c
JH
11939 case BFD_RELOC_X86_64_PLT32:
11940 case BFD_RELOC_X86_64_GOT32:
11941 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11942 case BFD_RELOC_X86_64_GOTPCRELX:
11943 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11944 case BFD_RELOC_386_PLT32:
11945 case BFD_RELOC_386_GOT32:
02a86693 11946 case BFD_RELOC_386_GOT32X:
252b5132
RH
11947 case BFD_RELOC_386_GOTOFF:
11948 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11949 case BFD_RELOC_386_TLS_GD:
11950 case BFD_RELOC_386_TLS_LDM:
11951 case BFD_RELOC_386_TLS_LDO_32:
11952 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11953 case BFD_RELOC_386_TLS_IE:
11954 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11955 case BFD_RELOC_386_TLS_LE_32:
11956 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11957 case BFD_RELOC_386_TLS_GOTDESC:
11958 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11959 case BFD_RELOC_X86_64_TLSGD:
11960 case BFD_RELOC_X86_64_TLSLD:
11961 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11962 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11963 case BFD_RELOC_X86_64_GOTTPOFF:
11964 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11965 case BFD_RELOC_X86_64_TPOFF64:
11966 case BFD_RELOC_X86_64_GOTOFF64:
11967 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11968 case BFD_RELOC_X86_64_GOT64:
11969 case BFD_RELOC_X86_64_GOTPCREL64:
11970 case BFD_RELOC_X86_64_GOTPC64:
11971 case BFD_RELOC_X86_64_GOTPLT64:
11972 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11973 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11974 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11975 case BFD_RELOC_RVA:
11976 case BFD_RELOC_VTABLE_ENTRY:
11977 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11978#ifdef TE_PE
11979 case BFD_RELOC_32_SECREL:
11980#endif
252b5132
RH
11981 code = fixp->fx_r_type;
11982 break;
dbbaec26
L
11983 case BFD_RELOC_X86_64_32S:
11984 if (!fixp->fx_pcrel)
11985 {
11986 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11987 code = fixp->fx_r_type;
11988 break;
11989 }
1a0670f3 11990 /* Fall through. */
252b5132 11991 default:
93382f6d 11992 if (fixp->fx_pcrel)
252b5132 11993 {
93382f6d
AM
11994 switch (fixp->fx_size)
11995 {
11996 default:
b091f402
AM
11997 as_bad_where (fixp->fx_file, fixp->fx_line,
11998 _("can not do %d byte pc-relative relocation"),
11999 fixp->fx_size);
93382f6d
AM
12000 code = BFD_RELOC_32_PCREL;
12001 break;
12002 case 1: code = BFD_RELOC_8_PCREL; break;
12003 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 12004 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
12005#ifdef BFD64
12006 case 8: code = BFD_RELOC_64_PCREL; break;
12007#endif
93382f6d
AM
12008 }
12009 }
12010 else
12011 {
12012 switch (fixp->fx_size)
12013 {
12014 default:
b091f402
AM
12015 as_bad_where (fixp->fx_file, fixp->fx_line,
12016 _("can not do %d byte relocation"),
12017 fixp->fx_size);
93382f6d
AM
12018 code = BFD_RELOC_32;
12019 break;
12020 case 1: code = BFD_RELOC_8; break;
12021 case 2: code = BFD_RELOC_16; break;
12022 case 4: code = BFD_RELOC_32; break;
937149dd 12023#ifdef BFD64
3e73aa7c 12024 case 8: code = BFD_RELOC_64; break;
937149dd 12025#endif
93382f6d 12026 }
252b5132
RH
12027 }
12028 break;
12029 }
252b5132 12030
d182319b
JB
12031 if ((code == BFD_RELOC_32
12032 || code == BFD_RELOC_32_PCREL
12033 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
12034 && GOT_symbol
12035 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 12036 {
4fa24527 12037 if (!object_64bit)
d6ab8113
JB
12038 code = BFD_RELOC_386_GOTPC;
12039 else
12040 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 12041 }
7b81dfbb
AJ
12042 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12043 && GOT_symbol
12044 && fixp->fx_addsy == GOT_symbol)
12045 {
12046 code = BFD_RELOC_X86_64_GOTPC64;
12047 }
252b5132 12048
add39d23
TS
12049 rel = XNEW (arelent);
12050 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 12051 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
12052
12053 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 12054
3e73aa7c
JH
12055 if (!use_rela_relocations)
12056 {
12057 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12058 vtable entry to be used in the relocation's section offset. */
12059 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12060 rel->address = fixp->fx_offset;
fbeb56a4
DK
12061#if defined (OBJ_COFF) && defined (TE_PE)
12062 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12063 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12064 else
12065#endif
c6682705 12066 rel->addend = 0;
3e73aa7c
JH
12067 }
12068 /* Use the rela in 64bit mode. */
252b5132 12069 else
3e73aa7c 12070 {
862be3fb
L
12071 if (disallow_64bit_reloc)
12072 switch (code)
12073 {
862be3fb
L
12074 case BFD_RELOC_X86_64_DTPOFF64:
12075 case BFD_RELOC_X86_64_TPOFF64:
12076 case BFD_RELOC_64_PCREL:
12077 case BFD_RELOC_X86_64_GOTOFF64:
12078 case BFD_RELOC_X86_64_GOT64:
12079 case BFD_RELOC_X86_64_GOTPCREL64:
12080 case BFD_RELOC_X86_64_GOTPC64:
12081 case BFD_RELOC_X86_64_GOTPLT64:
12082 case BFD_RELOC_X86_64_PLTOFF64:
12083 as_bad_where (fixp->fx_file, fixp->fx_line,
12084 _("cannot represent relocation type %s in x32 mode"),
12085 bfd_get_reloc_code_name (code));
12086 break;
12087 default:
12088 break;
12089 }
12090
062cd5e7
AS
12091 if (!fixp->fx_pcrel)
12092 rel->addend = fixp->fx_offset;
12093 else
12094 switch (code)
12095 {
12096 case BFD_RELOC_X86_64_PLT32:
12097 case BFD_RELOC_X86_64_GOT32:
12098 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
12099 case BFD_RELOC_X86_64_GOTPCRELX:
12100 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
12101 case BFD_RELOC_X86_64_TLSGD:
12102 case BFD_RELOC_X86_64_TLSLD:
12103 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
12104 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12105 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
12106 rel->addend = fixp->fx_offset - fixp->fx_size;
12107 break;
12108 default:
12109 rel->addend = (section->vma
12110 - fixp->fx_size
12111 + fixp->fx_addnumber
12112 + md_pcrel_from (fixp));
12113 break;
12114 }
3e73aa7c
JH
12115 }
12116
252b5132
RH
12117 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12118 if (rel->howto == NULL)
12119 {
12120 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12121 _("cannot represent relocation type %s"),
252b5132
RH
12122 bfd_get_reloc_code_name (code));
12123 /* Set howto to a garbage value so that we can keep going. */
12124 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12125 gas_assert (rel->howto != NULL);
252b5132
RH
12126 }
12127
12128 return rel;
12129}
12130
ee86248c 12131#include "tc-i386-intel.c"
54cfded0 12132
a60de03c
JB
12133void
12134tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12135{
a60de03c
JB
12136 int saved_naked_reg;
12137 char saved_register_dot;
54cfded0 12138
a60de03c
JB
12139 saved_naked_reg = allow_naked_reg;
12140 allow_naked_reg = 1;
12141 saved_register_dot = register_chars['.'];
12142 register_chars['.'] = '.';
12143 allow_pseudo_reg = 1;
12144 expression_and_evaluate (exp);
12145 allow_pseudo_reg = 0;
12146 register_chars['.'] = saved_register_dot;
12147 allow_naked_reg = saved_naked_reg;
12148
e96d56a1 12149 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12150 {
a60de03c
JB
12151 if ((addressT) exp->X_add_number < i386_regtab_size)
12152 {
12153 exp->X_op = O_constant;
12154 exp->X_add_number = i386_regtab[exp->X_add_number]
12155 .dw2_regnum[flag_code >> 1];
12156 }
12157 else
12158 exp->X_op = O_illegal;
54cfded0 12159 }
54cfded0
AM
12160}
12161
12162void
12163tc_x86_frame_initial_instructions (void)
12164{
a60de03c
JB
12165 static unsigned int sp_regno[2];
12166
12167 if (!sp_regno[flag_code >> 1])
12168 {
12169 char *saved_input = input_line_pointer;
12170 char sp[][4] = {"esp", "rsp"};
12171 expressionS exp;
a4447b93 12172
a60de03c
JB
12173 input_line_pointer = sp[flag_code >> 1];
12174 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12175 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12176 sp_regno[flag_code >> 1] = exp.X_add_number;
12177 input_line_pointer = saved_input;
12178 }
a4447b93 12179
61ff971f
L
12180 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12181 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12182}
d2b2c203 12183
d7921315
L
12184int
12185x86_dwarf2_addr_size (void)
12186{
12187#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12188 if (x86_elf_abi == X86_64_X32_ABI)
12189 return 4;
12190#endif
12191 return bfd_arch_bits_per_address (stdoutput) / 8;
12192}
12193
d2b2c203
DJ
12194int
12195i386_elf_section_type (const char *str, size_t len)
12196{
12197 if (flag_code == CODE_64BIT
12198 && len == sizeof ("unwind") - 1
12199 && strncmp (str, "unwind", 6) == 0)
12200 return SHT_X86_64_UNWIND;
12201
12202 return -1;
12203}
bb41ade5 12204
ad5fec3b
EB
12205#ifdef TE_SOLARIS
12206void
12207i386_solaris_fix_up_eh_frame (segT sec)
12208{
12209 if (flag_code == CODE_64BIT)
12210 elf_section_type (sec) = SHT_X86_64_UNWIND;
12211}
12212#endif
12213
bb41ade5
AM
12214#ifdef TE_PE
12215void
12216tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12217{
91d6fa6a 12218 expressionS exp;
bb41ade5 12219
91d6fa6a
NC
12220 exp.X_op = O_secrel;
12221 exp.X_add_symbol = symbol;
12222 exp.X_add_number = 0;
12223 emit_expr (&exp, size);
bb41ade5
AM
12224}
12225#endif
3b22753a
L
12226
12227#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12228/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12229
01e1a5bc 12230bfd_vma
6d4af3c2 12231x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12232{
12233 if (flag_code == CODE_64BIT)
12234 {
12235 if (letter == 'l')
12236 return SHF_X86_64_LARGE;
12237
8f3bae45 12238 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12239 }
3b22753a 12240 else
8f3bae45 12241 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12242 return -1;
12243}
12244
01e1a5bc 12245bfd_vma
3b22753a
L
12246x86_64_section_word (char *str, size_t len)
12247{
8620418b 12248 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12249 return SHF_X86_64_LARGE;
12250
12251 return -1;
12252}
12253
12254static void
12255handle_large_common (int small ATTRIBUTE_UNUSED)
12256{
12257 if (flag_code != CODE_64BIT)
12258 {
12259 s_comm_internal (0, elf_common_parse);
12260 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12261 }
12262 else
12263 {
12264 static segT lbss_section;
12265 asection *saved_com_section_ptr = elf_com_section_ptr;
12266 asection *saved_bss_section = bss_section;
12267
12268 if (lbss_section == NULL)
12269 {
12270 flagword applicable;
12271 segT seg = now_seg;
12272 subsegT subseg = now_subseg;
12273
12274 /* The .lbss section is for local .largecomm symbols. */
12275 lbss_section = subseg_new (".lbss", 0);
12276 applicable = bfd_applicable_section_flags (stdoutput);
12277 bfd_set_section_flags (stdoutput, lbss_section,
12278 applicable & SEC_ALLOC);
12279 seg_info (lbss_section)->bss = 1;
12280
12281 subseg_set (seg, subseg);
12282 }
12283
12284 elf_com_section_ptr = &_bfd_elf_large_com_section;
12285 bss_section = lbss_section;
12286
12287 s_comm_internal (0, elf_common_parse);
12288
12289 elf_com_section_ptr = saved_com_section_ptr;
12290 bss_section = saved_bss_section;
12291 }
12292}
12293#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.071764 seconds and 4 git commands to generate.