[gdb/symtab] Warn about unresolved DW_AT_upper_bound/DW_AT_count
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
191#endif
252b5132 192
a847613f 193static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 194
43234a1e
L
195/* This struct describes rounding control and SAE in the instruction. */
196struct RC_Operation
197{
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207};
208
209static struct RC_Operation rc_op;
210
211/* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214struct Mask_Operation
215{
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220};
221
222static struct Mask_Operation mask_op;
223
224/* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226struct Broadcast_Operation
227{
8e6e0792 228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233};
234
235static struct Broadcast_Operation broadcast_op;
236
c0f3af97
L
237/* VEX prefix. */
238typedef struct
239{
43234a1e
L
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
c0f3af97
L
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245} vex_prefix;
246
252b5132 247/* 'md_assemble ()' gathers together information and puts it into a
47926f60 248 i386_insn. */
252b5132 249
520dc8e8
AM
250union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
a65babc9
L
257enum i386_error
258 {
86e026a4 259 operand_size_mismatch,
a65babc9
L
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
a65babc9
L
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
6c30d220
L
267 unsupported,
268 invalid_vsib_address,
7bab8ab5 269 invalid_vector_register_set,
43234a1e
L
270 unsupported_vector_index_register,
271 unsupported_broadcast,
43234a1e
L
272 broadcast_needed,
273 unsupported_masking,
274 mask_not_on_destination,
275 no_default_mask,
276 unsupported_rc_sae,
277 rc_sae_operand_not_last_imm,
278 invalid_register_operand,
a65babc9
L
279 };
280
252b5132
RH
281struct _i386_insn
282 {
47926f60 283 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 284 insn_template tm;
252b5132 285
7d5e4556
L
286 /* SUFFIX holds the instruction size suffix for byte, word, dword
287 or qword, if given. */
252b5132
RH
288 char suffix;
289
47926f60 290 /* OPERANDS gives the number of given operands. */
252b5132
RH
291 unsigned int operands;
292
293 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
294 of given register, displacement, memory operands and immediate
47926f60 295 operands. */
252b5132
RH
296 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
297
298 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 299 use OP[i] for the corresponding operand. */
40fb9820 300 i386_operand_type types[MAX_OPERANDS];
252b5132 301
520dc8e8
AM
302 /* Displacement expression, immediate expression, or register for each
303 operand. */
304 union i386_op op[MAX_OPERANDS];
252b5132 305
3e73aa7c
JH
306 /* Flags for operands. */
307 unsigned int flags[MAX_OPERANDS];
308#define Operand_PCrel 1
309
252b5132 310 /* Relocation type for operand */
f86103b7 311 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 312
252b5132
RH
313 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
314 the base index byte below. */
315 const reg_entry *base_reg;
316 const reg_entry *index_reg;
317 unsigned int log2_scale_factor;
318
319 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 320 explicit segment overrides are given. */
ce8a8b2f 321 const seg_entry *seg[2];
252b5132 322
8325cc63
JB
323 /* Copied first memory operand string, for re-checking. */
324 char *memop1_string;
325
252b5132
RH
326 /* PREFIX holds all the given prefix opcodes (usually null).
327 PREFIXES is the number of prefix opcodes. */
328 unsigned int prefixes;
329 unsigned char prefix[MAX_PREFIXES];
330
331 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 332 addressing modes of this insn are encoded. */
252b5132 333 modrm_byte rm;
3e73aa7c 334 rex_byte rex;
43234a1e 335 rex_byte vrex;
252b5132 336 sib_byte sib;
c0f3af97 337 vex_prefix vex;
b6169b20 338
43234a1e
L
339 /* Masking attributes. */
340 struct Mask_Operation *mask;
341
342 /* Rounding control and SAE attributes. */
343 struct RC_Operation *rounding;
344
345 /* Broadcasting attributes. */
346 struct Broadcast_Operation *broadcast;
347
348 /* Compressed disp8*N attribute. */
349 unsigned int memshift;
350
86fa6981
L
351 /* Prefer load or store in encoding. */
352 enum
353 {
354 dir_encoding_default = 0,
355 dir_encoding_load,
356 dir_encoding_store
357 } dir_encoding;
891edac4 358
a501d77e
L
359 /* Prefer 8bit or 32bit displacement in encoding. */
360 enum
361 {
362 disp_encoding_default = 0,
363 disp_encoding_8bit,
364 disp_encoding_32bit
365 } disp_encoding;
f8a5c266 366
6b6b6807
L
367 /* Prefer the REX byte in encoding. */
368 bfd_boolean rex_encoding;
369
b6f8c7c4
L
370 /* Disable instruction size optimization. */
371 bfd_boolean no_optimize;
372
86fa6981
L
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
d5de92cf
L
382 /* REP prefix. */
383 const char *rep_prefix;
384
165de32a
L
385 /* HLE prefix. */
386 const char *hle_prefix;
42164a71 387
7e8b059b
L
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
04ef582a
L
391 /* Have NOTRACK prefix. */
392 const char *notrack_prefix;
393
891edac4 394 /* Error message. */
a65babc9 395 enum i386_error error;
252b5132
RH
396 };
397
398typedef struct _i386_insn i386_insn;
399
43234a1e
L
400/* Link RC type with corresponding string, that'll be looked for in
401 asm. */
402struct RC_name
403{
404 enum rc_type type;
405 const char *name;
406 unsigned int len;
407};
408
409static const struct RC_name RC_NamesTable[] =
410{
411 { rne, STRING_COMMA_LEN ("rn-sae") },
412 { rd, STRING_COMMA_LEN ("rd-sae") },
413 { ru, STRING_COMMA_LEN ("ru-sae") },
414 { rz, STRING_COMMA_LEN ("rz-sae") },
415 { saeonly, STRING_COMMA_LEN ("sae") },
416};
417
252b5132
RH
418/* List of chars besides those in app.c:symbol_chars that can start an
419 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 420const char extra_symbol_chars[] = "*%-([{}"
252b5132 421#ifdef LEX_AT
32137342
NC
422 "@"
423#endif
424#ifdef LEX_QM
425 "?"
252b5132 426#endif
32137342 427 ;
252b5132 428
29b0f896
AM
429#if (defined (TE_I386AIX) \
430 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 431 && !defined (TE_GNU) \
29b0f896 432 && !defined (TE_LINUX) \
8d63c93e 433 && !defined (TE_NACL) \
29b0f896 434 && !defined (TE_FreeBSD) \
5b806d27 435 && !defined (TE_DragonFly) \
29b0f896 436 && !defined (TE_NetBSD)))
252b5132 437/* This array holds the chars that always start a comment. If the
b3b91714
AM
438 pre-processor is disabled, these aren't very useful. The option
439 --divide will remove '/' from this list. */
440const char *i386_comment_chars = "#/";
441#define SVR4_COMMENT_CHARS 1
252b5132 442#define PREFIX_SEPARATOR '\\'
252b5132 443
b3b91714
AM
444#else
445const char *i386_comment_chars = "#";
446#define PREFIX_SEPARATOR '/'
447#endif
448
252b5132
RH
449/* This array holds the chars that only start a comment at the beginning of
450 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
451 .line and .file directives will appear in the pre-processed output.
452 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 453 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
454 #NO_APP at the beginning of its output.
455 Also note that comments started like this one will always work if
252b5132 456 '/' isn't otherwise defined. */
b3b91714 457const char line_comment_chars[] = "#/";
252b5132 458
63a0b638 459const char line_separator_chars[] = ";";
252b5132 460
ce8a8b2f
AM
461/* Chars that can be used to separate mant from exp in floating point
462 nums. */
252b5132
RH
463const char EXP_CHARS[] = "eE";
464
ce8a8b2f
AM
465/* Chars that mean this number is a floating point constant
466 As in 0f12.456
467 or 0d1.2345e12. */
252b5132
RH
468const char FLT_CHARS[] = "fFdDxX";
469
ce8a8b2f 470/* Tables for lexical analysis. */
252b5132
RH
471static char mnemonic_chars[256];
472static char register_chars[256];
473static char operand_chars[256];
474static char identifier_chars[256];
475static char digit_chars[256];
476
ce8a8b2f 477/* Lexical macros. */
252b5132
RH
478#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
479#define is_operand_char(x) (operand_chars[(unsigned char) x])
480#define is_register_char(x) (register_chars[(unsigned char) x])
481#define is_space_char(x) ((x) == ' ')
482#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
483#define is_digit_char(x) (digit_chars[(unsigned char) x])
484
0234cb7c 485/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
486static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
487
488/* md_assemble() always leaves the strings it's passed unaltered. To
489 effect this we maintain a stack of saved characters that we've smashed
490 with '\0's (indicating end of strings for various sub-fields of the
47926f60 491 assembler instruction). */
252b5132 492static char save_stack[32];
ce8a8b2f 493static char *save_stack_p;
252b5132
RH
494#define END_STRING_AND_SAVE(s) \
495 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
496#define RESTORE_END_STRING(s) \
497 do { *(s) = *--save_stack_p; } while (0)
498
47926f60 499/* The instruction we're assembling. */
252b5132
RH
500static i386_insn i;
501
502/* Possible templates for current insn. */
503static const templates *current_templates;
504
31b2323c
L
505/* Per instruction expressionS buffers: max displacements & immediates. */
506static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
507static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 508
47926f60 509/* Current operand we are working on. */
ee86248c 510static int this_operand = -1;
252b5132 511
3e73aa7c
JH
512/* We support four different modes. FLAG_CODE variable is used to distinguish
513 these. */
514
515enum flag_code {
516 CODE_32BIT,
517 CODE_16BIT,
518 CODE_64BIT };
519
520static enum flag_code flag_code;
4fa24527 521static unsigned int object_64bit;
862be3fb 522static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
523static int use_rela_relocations = 0;
524
7af8ed2d
NC
525#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
526 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
527 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
528
351f65ca
L
529/* The ELF ABI to use. */
530enum x86_elf_abi
531{
532 I386_ABI,
7f56bc95
L
533 X86_64_ABI,
534 X86_64_X32_ABI
351f65ca
L
535};
536
537static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 538#endif
351f65ca 539
167ad85b
TG
540#if defined (TE_PE) || defined (TE_PEP)
541/* Use big object file format. */
542static int use_big_obj = 0;
543#endif
544
8dcea932
L
545#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
546/* 1 if generating code for a shared library. */
547static int shared = 0;
548#endif
549
47926f60
KH
550/* 1 for intel syntax,
551 0 if att syntax. */
552static int intel_syntax = 0;
252b5132 553
e89c5eaa
L
554/* 1 for Intel64 ISA,
555 0 if AMD64 ISA. */
556static int intel64;
557
1efbbeb4
L
558/* 1 for intel mnemonic,
559 0 if att mnemonic. */
560static int intel_mnemonic = !SYSV386_COMPAT;
561
a60de03c
JB
562/* 1 if pseudo registers are permitted. */
563static int allow_pseudo_reg = 0;
564
47926f60
KH
565/* 1 if register prefix % not required. */
566static int allow_naked_reg = 0;
252b5132 567
33eaf5de 568/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
569 instructions supporting it, even if this prefix wasn't specified
570 explicitly. */
571static int add_bnd_prefix = 0;
572
ba104c83 573/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
574static int allow_index_reg = 0;
575
d022bddd
IT
576/* 1 if the assembler should ignore LOCK prefix, even if it was
577 specified explicitly. */
578static int omit_lock_prefix = 0;
579
e4e00185
AS
580/* 1 if the assembler should encode lfence, mfence, and sfence as
581 "lock addl $0, (%{re}sp)". */
582static int avoid_fence = 0;
583
0cb4071e
L
584/* 1 if the assembler should generate relax relocations. */
585
586static int generate_relax_relocations
587 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
588
7bab8ab5 589static enum check_kind
daf50ae7 590 {
7bab8ab5
JB
591 check_none = 0,
592 check_warning,
593 check_error
daf50ae7 594 }
7bab8ab5 595sse_check, operand_check = check_warning;
daf50ae7 596
b6f8c7c4
L
597/* Optimization:
598 1. Clear the REX_W bit with register operand if possible.
599 2. Above plus use 128bit vector instruction to clear the full vector
600 register.
601 */
602static int optimize = 0;
603
604/* Optimization:
605 1. Clear the REX_W bit with register operand if possible.
606 2. Above plus use 128bit vector instruction to clear the full vector
607 register.
608 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
609 "testb $imm7,%r8".
610 */
611static int optimize_for_space = 0;
612
2ca3ace5
L
613/* Register prefix used for error message. */
614static const char *register_prefix = "%";
615
47926f60
KH
616/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
617 leave, push, and pop instructions so that gcc has the same stack
618 frame as in 32 bit mode. */
619static char stackop_size = '\0';
eecb386c 620
12b55ccc
L
621/* Non-zero to optimize code alignment. */
622int optimize_align_code = 1;
623
47926f60
KH
624/* Non-zero to quieten some warnings. */
625static int quiet_warnings = 0;
a38cf1db 626
47926f60
KH
627/* CPU name. */
628static const char *cpu_arch_name = NULL;
6305a203 629static char *cpu_sub_arch_name = NULL;
a38cf1db 630
47926f60 631/* CPU feature flags. */
40fb9820
L
632static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
633
ccc9c027
L
634/* If we have selected a cpu we are generating instructions for. */
635static int cpu_arch_tune_set = 0;
636
9103f4f4 637/* Cpu we are generating instructions for. */
fbf3f584 638enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
639
640/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 641static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 642
ccc9c027 643/* CPU instruction set architecture used. */
fbf3f584 644enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 645
9103f4f4 646/* CPU feature flags of instruction set architecture used. */
fbf3f584 647i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 648
fddf5b5b
AM
649/* If set, conditional jumps are not automatically promoted to handle
650 larger than a byte offset. */
651static unsigned int no_cond_jump_promotion = 0;
652
c0f3af97
L
653/* Encode SSE instructions with VEX prefix. */
654static unsigned int sse2avx;
655
539f890d
L
656/* Encode scalar AVX instructions with specific vector length. */
657static enum
658 {
659 vex128 = 0,
660 vex256
661 } avxscalar;
662
43234a1e
L
663/* Encode scalar EVEX LIG instructions with specific vector length. */
664static enum
665 {
666 evexl128 = 0,
667 evexl256,
668 evexl512
669 } evexlig;
670
671/* Encode EVEX WIG instructions with specific evex.w. */
672static enum
673 {
674 evexw0 = 0,
675 evexw1
676 } evexwig;
677
d3d3c6db
IT
678/* Value to encode in EVEX RC bits, for SAE-only instructions. */
679static enum rc_type evexrcig = rne;
680
29b0f896 681/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 682static symbolS *GOT_symbol;
29b0f896 683
a4447b93
RH
684/* The dwarf2 return column, adjusted for 32 or 64 bit. */
685unsigned int x86_dwarf2_return_column;
686
687/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
688int x86_cie_data_alignment;
689
252b5132 690/* Interface to relax_segment.
fddf5b5b
AM
691 There are 3 major relax states for 386 jump insns because the
692 different types of jumps add different sizes to frags when we're
693 figuring out what sort of jump to choose to reach a given label. */
252b5132 694
47926f60 695/* Types. */
93c2a809
AM
696#define UNCOND_JUMP 0
697#define COND_JUMP 1
698#define COND_JUMP86 2
fddf5b5b 699
47926f60 700/* Sizes. */
252b5132
RH
701#define CODE16 1
702#define SMALL 0
29b0f896 703#define SMALL16 (SMALL | CODE16)
252b5132 704#define BIG 2
29b0f896 705#define BIG16 (BIG | CODE16)
252b5132
RH
706
707#ifndef INLINE
708#ifdef __GNUC__
709#define INLINE __inline__
710#else
711#define INLINE
712#endif
713#endif
714
fddf5b5b
AM
715#define ENCODE_RELAX_STATE(type, size) \
716 ((relax_substateT) (((type) << 2) | (size)))
717#define TYPE_FROM_RELAX_STATE(s) \
718 ((s) >> 2)
719#define DISP_SIZE_FROM_RELAX_STATE(s) \
720 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
721
722/* This table is used by relax_frag to promote short jumps to long
723 ones where necessary. SMALL (short) jumps may be promoted to BIG
724 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
725 don't allow a short jump in a 32 bit code segment to be promoted to
726 a 16 bit offset jump because it's slower (requires data size
727 prefix), and doesn't work, unless the destination is in the bottom
728 64k of the code segment (The top 16 bits of eip are zeroed). */
729
730const relax_typeS md_relax_table[] =
731{
24eab124
AM
732 /* The fields are:
733 1) most positive reach of this state,
734 2) most negative reach of this state,
93c2a809 735 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 736 4) which index into the table to try if we can't fit into this one. */
252b5132 737
fddf5b5b 738 /* UNCOND_JUMP states. */
93c2a809
AM
739 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
741 /* dword jmp adds 4 bytes to frag:
742 0 extra opcode bytes, 4 displacement bytes. */
252b5132 743 {0, 0, 4, 0},
93c2a809
AM
744 /* word jmp adds 2 byte2 to frag:
745 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
746 {0, 0, 2, 0},
747
93c2a809
AM
748 /* COND_JUMP states. */
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
751 /* dword conditionals adds 5 bytes to frag:
752 1 extra opcode byte, 4 displacement bytes. */
753 {0, 0, 5, 0},
fddf5b5b 754 /* word conditionals add 3 bytes to frag:
93c2a809
AM
755 1 extra opcode byte, 2 displacement bytes. */
756 {0, 0, 3, 0},
757
758 /* COND_JUMP86 states. */
759 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
761 /* dword conditionals adds 5 bytes to frag:
762 1 extra opcode byte, 4 displacement bytes. */
763 {0, 0, 5, 0},
764 /* word conditionals add 4 bytes to frag:
765 1 displacement byte and a 3 byte long branch insn. */
766 {0, 0, 4, 0}
252b5132
RH
767};
768
9103f4f4
L
769static const arch_entry cpu_arch[] =
770{
89507696
JB
771 /* Do not replace the first two entries - i386_target_format()
772 relies on them being there in this order. */
8a2c8fef 773 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 774 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 775 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 776 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 777 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 778 CPU_NONE_FLAGS, 0 },
8a2c8fef 779 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 780 CPU_I186_FLAGS, 0 },
8a2c8fef 781 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 782 CPU_I286_FLAGS, 0 },
8a2c8fef 783 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 784 CPU_I386_FLAGS, 0 },
8a2c8fef 785 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 786 CPU_I486_FLAGS, 0 },
8a2c8fef 787 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 788 CPU_I586_FLAGS, 0 },
8a2c8fef 789 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 790 CPU_I686_FLAGS, 0 },
8a2c8fef 791 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 792 CPU_I586_FLAGS, 0 },
8a2c8fef 793 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 794 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 795 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 796 CPU_P2_FLAGS, 0 },
8a2c8fef 797 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 798 CPU_P3_FLAGS, 0 },
8a2c8fef 799 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 800 CPU_P4_FLAGS, 0 },
8a2c8fef 801 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 802 CPU_CORE_FLAGS, 0 },
8a2c8fef 803 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 804 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 805 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 806 CPU_CORE_FLAGS, 1 },
8a2c8fef 807 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 808 CPU_CORE_FLAGS, 0 },
8a2c8fef 809 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 810 CPU_CORE2_FLAGS, 1 },
8a2c8fef 811 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 812 CPU_CORE2_FLAGS, 0 },
8a2c8fef 813 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 814 CPU_COREI7_FLAGS, 0 },
8a2c8fef 815 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 816 CPU_L1OM_FLAGS, 0 },
7a9068fe 817 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 818 CPU_K1OM_FLAGS, 0 },
81486035 819 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 820 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 822 CPU_K6_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 824 CPU_K6_2_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 826 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 828 CPU_K8_FLAGS, 1 },
8a2c8fef 829 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 830 CPU_K8_FLAGS, 0 },
8a2c8fef 831 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 832 CPU_K8_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 834 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 835 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 836 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 837 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 838 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 839 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 840 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 841 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 842 CPU_BDVER4_FLAGS, 0 },
029f3522 843 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 844 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
845 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
846 CPU_ZNVER2_FLAGS, 0 },
7b458c12 847 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 848 CPU_BTVER1_FLAGS, 0 },
7b458c12 849 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 850 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 852 CPU_8087_FLAGS, 0 },
8a2c8fef 853 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 854 CPU_287_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 856 CPU_387_FLAGS, 0 },
1848e567
L
857 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
858 CPU_687_FLAGS, 0 },
8a2c8fef 859 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 860 CPU_MMX_FLAGS, 0 },
8a2c8fef 861 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 862 CPU_SSE_FLAGS, 0 },
8a2c8fef 863 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 864 CPU_SSE2_FLAGS, 0 },
8a2c8fef 865 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 866 CPU_SSE3_FLAGS, 0 },
8a2c8fef 867 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 868 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 869 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 870 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 871 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 872 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 873 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 874 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 876 CPU_AVX_FLAGS, 0 },
6c30d220 877 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 878 CPU_AVX2_FLAGS, 0 },
43234a1e 879 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 880 CPU_AVX512F_FLAGS, 0 },
43234a1e 881 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 882 CPU_AVX512CD_FLAGS, 0 },
43234a1e 883 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 884 CPU_AVX512ER_FLAGS, 0 },
43234a1e 885 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 886 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 887 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 888 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 889 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 890 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 891 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_VMX_FLAGS, 0 },
8729a6f6 895 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_SMX_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 901 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 903 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 905 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 907 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_AES_FLAGS, 0 },
8a2c8fef 909 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 913 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 915 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 917 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_F16C_FLAGS, 0 },
6c30d220 919 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_BMI2_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_FMA_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_FMA4_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_XOP_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_LWP_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_MOVBE_FLAGS, 0 },
60aa667e 931 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_CX16_FLAGS, 0 },
8a2c8fef 933 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_EPT_FLAGS, 0 },
6c30d220 935 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_LZCNT_FLAGS, 0 },
42164a71 937 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_HLE_FLAGS, 0 },
42164a71 939 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_RTM_FLAGS, 0 },
6c30d220 941 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 943 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_CLFLUSH_FLAGS, 0 },
22109423 945 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_NOP_FLAGS, 0 },
8a2c8fef 947 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_SVME_FLAGS, 1 },
8a2c8fef 959 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_SVME_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 963 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_ABM_FLAGS, 0 },
87973e9f 965 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_BMI_FLAGS, 0 },
2a2a0f38 967 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_TBM_FLAGS, 0 },
e2e1fcde 969 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_ADX_FLAGS, 0 },
e2e1fcde 971 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 973 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_PRFCHW_FLAGS, 0 },
5c111e37 975 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_SMAP_FLAGS, 0 },
7e8b059b 977 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_MPX_FLAGS, 0 },
a0046408 979 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_SHA_FLAGS, 0 },
963f3586 981 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 983 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 985 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SE1_FLAGS, 0 },
c5e7287a 987 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 989 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 991 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
993 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
994 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
995 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
996 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
997 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
999 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1001 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1003 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1005 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_CLZERO_FLAGS, 0 },
9916071f 1007 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_MWAITX_FLAGS, 0 },
8eab4136 1009 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_OSPKE_FLAGS, 0 },
8bc52696 1011 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1013 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1014 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1015 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1016 CPU_IBT_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1018 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1019 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1020 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1021 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1022 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1023 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1024 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1025 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1026 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1027 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1028 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1029 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1030 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1031 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1032 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1033 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1034 CPU_MOVDIRI_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1036 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1037};
1038
1039static const noarch_entry cpu_noarch[] =
1040{
1041 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1042 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1043 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1044 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
293f5f65
L
1045 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1046 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1047 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1048 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1049 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1050 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1051 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1052 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1053 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1054 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1055 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1064 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1065 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1066 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1067 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1068 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1069 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1070 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1071 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1072 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1073 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1074};
1075
704209c0 1076#ifdef I386COFF
a6c24e68
NC
1077/* Like s_lcomm_internal in gas/read.c but the alignment string
1078 is allowed to be optional. */
1079
1080static symbolS *
1081pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1082{
1083 addressT align = 0;
1084
1085 SKIP_WHITESPACE ();
1086
7ab9ffdd 1087 if (needs_align
a6c24e68
NC
1088 && *input_line_pointer == ',')
1089 {
1090 align = parse_align (needs_align - 1);
7ab9ffdd 1091
a6c24e68
NC
1092 if (align == (addressT) -1)
1093 return NULL;
1094 }
1095 else
1096 {
1097 if (size >= 8)
1098 align = 3;
1099 else if (size >= 4)
1100 align = 2;
1101 else if (size >= 2)
1102 align = 1;
1103 else
1104 align = 0;
1105 }
1106
1107 bss_alloc (symbolP, size, align);
1108 return symbolP;
1109}
1110
704209c0 1111static void
a6c24e68
NC
1112pe_lcomm (int needs_align)
1113{
1114 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1115}
704209c0 1116#endif
a6c24e68 1117
29b0f896
AM
1118const pseudo_typeS md_pseudo_table[] =
1119{
1120#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1121 {"align", s_align_bytes, 0},
1122#else
1123 {"align", s_align_ptwo, 0},
1124#endif
1125 {"arch", set_cpu_arch, 0},
1126#ifndef I386COFF
1127 {"bss", s_bss, 0},
a6c24e68
NC
1128#else
1129 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1130#endif
1131 {"ffloat", float_cons, 'f'},
1132 {"dfloat", float_cons, 'd'},
1133 {"tfloat", float_cons, 'x'},
1134 {"value", cons, 2},
d182319b 1135 {"slong", signed_cons, 4},
29b0f896
AM
1136 {"noopt", s_ignore, 0},
1137 {"optim", s_ignore, 0},
1138 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1139 {"code16", set_code_flag, CODE_16BIT},
1140 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1141#ifdef BFD64
29b0f896 1142 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1143#endif
29b0f896
AM
1144 {"intel_syntax", set_intel_syntax, 1},
1145 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1146 {"intel_mnemonic", set_intel_mnemonic, 1},
1147 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1148 {"allow_index_reg", set_allow_index_reg, 1},
1149 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1150 {"sse_check", set_check, 0},
1151 {"operand_check", set_check, 1},
3b22753a
L
1152#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1153 {"largecomm", handle_large_common, 0},
07a53e5c 1154#else
68d20676 1155 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1156 {"loc", dwarf2_directive_loc, 0},
1157 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1158#endif
6482c264
NC
1159#ifdef TE_PE
1160 {"secrel32", pe_directive_secrel, 0},
1161#endif
29b0f896
AM
1162 {0, 0, 0}
1163};
1164
1165/* For interface with expression (). */
1166extern char *input_line_pointer;
1167
1168/* Hash table for instruction mnemonic lookup. */
1169static struct hash_control *op_hash;
1170
1171/* Hash table for register lookup. */
1172static struct hash_control *reg_hash;
1173\f
ce8a8b2f
AM
1174 /* Various efficient no-op patterns for aligning code labels.
1175 Note: Don't try to assemble the instructions in the comments.
1176 0L and 0w are not legal. */
62a02d25
L
1177static const unsigned char f32_1[] =
1178 {0x90}; /* nop */
1179static const unsigned char f32_2[] =
1180 {0x66,0x90}; /* xchg %ax,%ax */
1181static const unsigned char f32_3[] =
1182 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1183static const unsigned char f32_4[] =
1184 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1185static const unsigned char f32_6[] =
1186 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1187static const unsigned char f32_7[] =
1188 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1189static const unsigned char f16_3[] =
3ae729d5 1190 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1191static const unsigned char f16_4[] =
3ae729d5
L
1192 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1193static const unsigned char jump_disp8[] =
1194 {0xeb}; /* jmp disp8 */
1195static const unsigned char jump32_disp32[] =
1196 {0xe9}; /* jmp disp32 */
1197static const unsigned char jump16_disp32[] =
1198 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1199/* 32-bit NOPs patterns. */
1200static const unsigned char *const f32_patt[] = {
3ae729d5 1201 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1202};
1203/* 16-bit NOPs patterns. */
1204static const unsigned char *const f16_patt[] = {
3ae729d5 1205 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1206};
1207/* nopl (%[re]ax) */
1208static const unsigned char alt_3[] =
1209 {0x0f,0x1f,0x00};
1210/* nopl 0(%[re]ax) */
1211static const unsigned char alt_4[] =
1212 {0x0f,0x1f,0x40,0x00};
1213/* nopl 0(%[re]ax,%[re]ax,1) */
1214static const unsigned char alt_5[] =
1215 {0x0f,0x1f,0x44,0x00,0x00};
1216/* nopw 0(%[re]ax,%[re]ax,1) */
1217static const unsigned char alt_6[] =
1218 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1219/* nopl 0L(%[re]ax) */
1220static const unsigned char alt_7[] =
1221 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1222/* nopl 0L(%[re]ax,%[re]ax,1) */
1223static const unsigned char alt_8[] =
1224 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1225/* nopw 0L(%[re]ax,%[re]ax,1) */
1226static const unsigned char alt_9[] =
1227 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1228/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1229static const unsigned char alt_10[] =
1230 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1231/* data16 nopw %cs:0L(%eax,%eax,1) */
1232static const unsigned char alt_11[] =
1233 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1234/* 32-bit and 64-bit NOPs patterns. */
1235static const unsigned char *const alt_patt[] = {
1236 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1237 alt_9, alt_10, alt_11
62a02d25
L
1238};
1239
1240/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1241 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1242
1243static void
1244i386_output_nops (char *where, const unsigned char *const *patt,
1245 int count, int max_single_nop_size)
1246
1247{
3ae729d5
L
1248 /* Place the longer NOP first. */
1249 int last;
1250 int offset;
1251 const unsigned char *nops = patt[max_single_nop_size - 1];
1252
1253 /* Use the smaller one if the requsted one isn't available. */
1254 if (nops == NULL)
62a02d25 1255 {
3ae729d5
L
1256 max_single_nop_size--;
1257 nops = patt[max_single_nop_size - 1];
62a02d25
L
1258 }
1259
3ae729d5
L
1260 last = count % max_single_nop_size;
1261
1262 count -= last;
1263 for (offset = 0; offset < count; offset += max_single_nop_size)
1264 memcpy (where + offset, nops, max_single_nop_size);
1265
1266 if (last)
1267 {
1268 nops = patt[last - 1];
1269 if (nops == NULL)
1270 {
1271 /* Use the smaller one plus one-byte NOP if the needed one
1272 isn't available. */
1273 last--;
1274 nops = patt[last - 1];
1275 memcpy (where + offset, nops, last);
1276 where[offset + last] = *patt[0];
1277 }
1278 else
1279 memcpy (where + offset, nops, last);
1280 }
62a02d25
L
1281}
1282
3ae729d5
L
1283static INLINE int
1284fits_in_imm7 (offsetT num)
1285{
1286 return (num & 0x7f) == num;
1287}
1288
1289static INLINE int
1290fits_in_imm31 (offsetT num)
1291{
1292 return (num & 0x7fffffff) == num;
1293}
62a02d25
L
1294
1295/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1296 single NOP instruction LIMIT. */
1297
1298void
3ae729d5 1299i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1300{
3ae729d5 1301 const unsigned char *const *patt = NULL;
62a02d25 1302 int max_single_nop_size;
3ae729d5
L
1303 /* Maximum number of NOPs before switching to jump over NOPs. */
1304 int max_number_of_nops;
62a02d25 1305
3ae729d5 1306 switch (fragP->fr_type)
62a02d25 1307 {
3ae729d5
L
1308 case rs_fill_nop:
1309 case rs_align_code:
1310 break;
1311 default:
62a02d25
L
1312 return;
1313 }
1314
ccc9c027
L
1315 /* We need to decide which NOP sequence to use for 32bit and
1316 64bit. When -mtune= is used:
4eed87de 1317
76bc74dc
L
1318 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1319 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1320 2. For the rest, alt_patt will be used.
1321
1322 When -mtune= isn't used, alt_patt will be used if
22109423 1323 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1324 be used.
ccc9c027
L
1325
1326 When -march= or .arch is used, we can't use anything beyond
1327 cpu_arch_isa_flags. */
1328
1329 if (flag_code == CODE_16BIT)
1330 {
3ae729d5
L
1331 patt = f16_patt;
1332 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1333 /* Limit number of NOPs to 2 in 16-bit mode. */
1334 max_number_of_nops = 2;
252b5132 1335 }
33fef721 1336 else
ccc9c027 1337 {
fbf3f584 1338 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1339 {
1340 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1341 switch (cpu_arch_tune)
1342 {
1343 case PROCESSOR_UNKNOWN:
1344 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1345 optimize with nops. */
1346 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1347 patt = alt_patt;
ccc9c027
L
1348 else
1349 patt = f32_patt;
1350 break;
ccc9c027
L
1351 case PROCESSOR_PENTIUM4:
1352 case PROCESSOR_NOCONA:
ef05d495 1353 case PROCESSOR_CORE:
76bc74dc 1354 case PROCESSOR_CORE2:
bd5295b2 1355 case PROCESSOR_COREI7:
3632d14b 1356 case PROCESSOR_L1OM:
7a9068fe 1357 case PROCESSOR_K1OM:
76bc74dc 1358 case PROCESSOR_GENERIC64:
ccc9c027
L
1359 case PROCESSOR_K6:
1360 case PROCESSOR_ATHLON:
1361 case PROCESSOR_K8:
4eed87de 1362 case PROCESSOR_AMDFAM10:
8aedb9fe 1363 case PROCESSOR_BD:
029f3522 1364 case PROCESSOR_ZNVER:
7b458c12 1365 case PROCESSOR_BT:
80b8656c 1366 patt = alt_patt;
ccc9c027 1367 break;
76bc74dc 1368 case PROCESSOR_I386:
ccc9c027
L
1369 case PROCESSOR_I486:
1370 case PROCESSOR_PENTIUM:
2dde1948 1371 case PROCESSOR_PENTIUMPRO:
81486035 1372 case PROCESSOR_IAMCU:
ccc9c027
L
1373 case PROCESSOR_GENERIC32:
1374 patt = f32_patt;
1375 break;
4eed87de 1376 }
ccc9c027
L
1377 }
1378 else
1379 {
fbf3f584 1380 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1381 {
1382 case PROCESSOR_UNKNOWN:
e6a14101 1383 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1384 PROCESSOR_UNKNOWN. */
1385 abort ();
1386 break;
1387
76bc74dc 1388 case PROCESSOR_I386:
ccc9c027
L
1389 case PROCESSOR_I486:
1390 case PROCESSOR_PENTIUM:
81486035 1391 case PROCESSOR_IAMCU:
ccc9c027
L
1392 case PROCESSOR_K6:
1393 case PROCESSOR_ATHLON:
1394 case PROCESSOR_K8:
4eed87de 1395 case PROCESSOR_AMDFAM10:
8aedb9fe 1396 case PROCESSOR_BD:
029f3522 1397 case PROCESSOR_ZNVER:
7b458c12 1398 case PROCESSOR_BT:
ccc9c027
L
1399 case PROCESSOR_GENERIC32:
1400 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1401 with nops. */
1402 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1403 patt = alt_patt;
ccc9c027
L
1404 else
1405 patt = f32_patt;
1406 break;
76bc74dc
L
1407 case PROCESSOR_PENTIUMPRO:
1408 case PROCESSOR_PENTIUM4:
1409 case PROCESSOR_NOCONA:
1410 case PROCESSOR_CORE:
ef05d495 1411 case PROCESSOR_CORE2:
bd5295b2 1412 case PROCESSOR_COREI7:
3632d14b 1413 case PROCESSOR_L1OM:
7a9068fe 1414 case PROCESSOR_K1OM:
22109423 1415 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1416 patt = alt_patt;
ccc9c027
L
1417 else
1418 patt = f32_patt;
1419 break;
1420 case PROCESSOR_GENERIC64:
80b8656c 1421 patt = alt_patt;
ccc9c027 1422 break;
4eed87de 1423 }
ccc9c027
L
1424 }
1425
76bc74dc
L
1426 if (patt == f32_patt)
1427 {
3ae729d5
L
1428 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1429 /* Limit number of NOPs to 2 for older processors. */
1430 max_number_of_nops = 2;
76bc74dc
L
1431 }
1432 else
1433 {
3ae729d5
L
1434 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1435 /* Limit number of NOPs to 7 for newer processors. */
1436 max_number_of_nops = 7;
1437 }
1438 }
1439
1440 if (limit == 0)
1441 limit = max_single_nop_size;
1442
1443 if (fragP->fr_type == rs_fill_nop)
1444 {
1445 /* Output NOPs for .nop directive. */
1446 if (limit > max_single_nop_size)
1447 {
1448 as_bad_where (fragP->fr_file, fragP->fr_line,
1449 _("invalid single nop size: %d "
1450 "(expect within [0, %d])"),
1451 limit, max_single_nop_size);
1452 return;
1453 }
1454 }
1455 else
1456 fragP->fr_var = count;
1457
1458 if ((count / max_single_nop_size) > max_number_of_nops)
1459 {
1460 /* Generate jump over NOPs. */
1461 offsetT disp = count - 2;
1462 if (fits_in_imm7 (disp))
1463 {
1464 /* Use "jmp disp8" if possible. */
1465 count = disp;
1466 where[0] = jump_disp8[0];
1467 where[1] = count;
1468 where += 2;
1469 }
1470 else
1471 {
1472 unsigned int size_of_jump;
1473
1474 if (flag_code == CODE_16BIT)
1475 {
1476 where[0] = jump16_disp32[0];
1477 where[1] = jump16_disp32[1];
1478 size_of_jump = 2;
1479 }
1480 else
1481 {
1482 where[0] = jump32_disp32[0];
1483 size_of_jump = 1;
1484 }
1485
1486 count -= size_of_jump + 4;
1487 if (!fits_in_imm31 (count))
1488 {
1489 as_bad_where (fragP->fr_file, fragP->fr_line,
1490 _("jump over nop padding out of range"));
1491 return;
1492 }
1493
1494 md_number_to_chars (where + size_of_jump, count, 4);
1495 where += size_of_jump + 4;
76bc74dc 1496 }
ccc9c027 1497 }
3ae729d5
L
1498
1499 /* Generate multiple NOPs. */
1500 i386_output_nops (where, patt, count, limit);
252b5132
RH
1501}
1502
c6fb90c8 1503static INLINE int
0dfbf9d7 1504operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1505{
0dfbf9d7 1506 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1507 {
1508 case 3:
0dfbf9d7 1509 if (x->array[2])
c6fb90c8 1510 return 0;
1a0670f3 1511 /* Fall through. */
c6fb90c8 1512 case 2:
0dfbf9d7 1513 if (x->array[1])
c6fb90c8 1514 return 0;
1a0670f3 1515 /* Fall through. */
c6fb90c8 1516 case 1:
0dfbf9d7 1517 return !x->array[0];
c6fb90c8
L
1518 default:
1519 abort ();
1520 }
40fb9820
L
1521}
1522
c6fb90c8 1523static INLINE void
0dfbf9d7 1524operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1525{
0dfbf9d7 1526 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1527 {
1528 case 3:
0dfbf9d7 1529 x->array[2] = v;
1a0670f3 1530 /* Fall through. */
c6fb90c8 1531 case 2:
0dfbf9d7 1532 x->array[1] = v;
1a0670f3 1533 /* Fall through. */
c6fb90c8 1534 case 1:
0dfbf9d7 1535 x->array[0] = v;
1a0670f3 1536 /* Fall through. */
c6fb90c8
L
1537 break;
1538 default:
1539 abort ();
1540 }
1541}
40fb9820 1542
c6fb90c8 1543static INLINE int
0dfbf9d7
L
1544operand_type_equal (const union i386_operand_type *x,
1545 const union i386_operand_type *y)
c6fb90c8 1546{
0dfbf9d7 1547 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1548 {
1549 case 3:
0dfbf9d7 1550 if (x->array[2] != y->array[2])
c6fb90c8 1551 return 0;
1a0670f3 1552 /* Fall through. */
c6fb90c8 1553 case 2:
0dfbf9d7 1554 if (x->array[1] != y->array[1])
c6fb90c8 1555 return 0;
1a0670f3 1556 /* Fall through. */
c6fb90c8 1557 case 1:
0dfbf9d7 1558 return x->array[0] == y->array[0];
c6fb90c8
L
1559 break;
1560 default:
1561 abort ();
1562 }
1563}
40fb9820 1564
0dfbf9d7
L
1565static INLINE int
1566cpu_flags_all_zero (const union i386_cpu_flags *x)
1567{
1568 switch (ARRAY_SIZE(x->array))
1569 {
53467f57
IT
1570 case 4:
1571 if (x->array[3])
1572 return 0;
1573 /* Fall through. */
0dfbf9d7
L
1574 case 3:
1575 if (x->array[2])
1576 return 0;
1a0670f3 1577 /* Fall through. */
0dfbf9d7
L
1578 case 2:
1579 if (x->array[1])
1580 return 0;
1a0670f3 1581 /* Fall through. */
0dfbf9d7
L
1582 case 1:
1583 return !x->array[0];
1584 default:
1585 abort ();
1586 }
1587}
1588
0dfbf9d7
L
1589static INLINE int
1590cpu_flags_equal (const union i386_cpu_flags *x,
1591 const union i386_cpu_flags *y)
1592{
1593 switch (ARRAY_SIZE(x->array))
1594 {
53467f57
IT
1595 case 4:
1596 if (x->array[3] != y->array[3])
1597 return 0;
1598 /* Fall through. */
0dfbf9d7
L
1599 case 3:
1600 if (x->array[2] != y->array[2])
1601 return 0;
1a0670f3 1602 /* Fall through. */
0dfbf9d7
L
1603 case 2:
1604 if (x->array[1] != y->array[1])
1605 return 0;
1a0670f3 1606 /* Fall through. */
0dfbf9d7
L
1607 case 1:
1608 return x->array[0] == y->array[0];
1609 break;
1610 default:
1611 abort ();
1612 }
1613}
c6fb90c8
L
1614
1615static INLINE int
1616cpu_flags_check_cpu64 (i386_cpu_flags f)
1617{
1618 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1619 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1620}
1621
c6fb90c8
L
1622static INLINE i386_cpu_flags
1623cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1624{
c6fb90c8
L
1625 switch (ARRAY_SIZE (x.array))
1626 {
53467f57
IT
1627 case 4:
1628 x.array [3] &= y.array [3];
1629 /* Fall through. */
c6fb90c8
L
1630 case 3:
1631 x.array [2] &= y.array [2];
1a0670f3 1632 /* Fall through. */
c6fb90c8
L
1633 case 2:
1634 x.array [1] &= y.array [1];
1a0670f3 1635 /* Fall through. */
c6fb90c8
L
1636 case 1:
1637 x.array [0] &= y.array [0];
1638 break;
1639 default:
1640 abort ();
1641 }
1642 return x;
1643}
40fb9820 1644
c6fb90c8
L
1645static INLINE i386_cpu_flags
1646cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1647{
c6fb90c8 1648 switch (ARRAY_SIZE (x.array))
40fb9820 1649 {
53467f57
IT
1650 case 4:
1651 x.array [3] |= y.array [3];
1652 /* Fall through. */
c6fb90c8
L
1653 case 3:
1654 x.array [2] |= y.array [2];
1a0670f3 1655 /* Fall through. */
c6fb90c8
L
1656 case 2:
1657 x.array [1] |= y.array [1];
1a0670f3 1658 /* Fall through. */
c6fb90c8
L
1659 case 1:
1660 x.array [0] |= y.array [0];
40fb9820
L
1661 break;
1662 default:
1663 abort ();
1664 }
40fb9820
L
1665 return x;
1666}
1667
309d3373
JB
1668static INLINE i386_cpu_flags
1669cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1670{
1671 switch (ARRAY_SIZE (x.array))
1672 {
53467f57
IT
1673 case 4:
1674 x.array [3] &= ~y.array [3];
1675 /* Fall through. */
309d3373
JB
1676 case 3:
1677 x.array [2] &= ~y.array [2];
1a0670f3 1678 /* Fall through. */
309d3373
JB
1679 case 2:
1680 x.array [1] &= ~y.array [1];
1a0670f3 1681 /* Fall through. */
309d3373
JB
1682 case 1:
1683 x.array [0] &= ~y.array [0];
1684 break;
1685 default:
1686 abort ();
1687 }
1688 return x;
1689}
1690
c0f3af97
L
1691#define CPU_FLAGS_ARCH_MATCH 0x1
1692#define CPU_FLAGS_64BIT_MATCH 0x2
1693
c0f3af97 1694#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1695 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1696
1697/* Return CPU flags match bits. */
3629bb00 1698
40fb9820 1699static int
d3ce72d0 1700cpu_flags_match (const insn_template *t)
40fb9820 1701{
c0f3af97
L
1702 i386_cpu_flags x = t->cpu_flags;
1703 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1704
1705 x.bitfield.cpu64 = 0;
1706 x.bitfield.cpuno64 = 0;
1707
0dfbf9d7 1708 if (cpu_flags_all_zero (&x))
c0f3af97
L
1709 {
1710 /* This instruction is available on all archs. */
db12e14e 1711 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1712 }
3629bb00
L
1713 else
1714 {
c0f3af97 1715 /* This instruction is available only on some archs. */
3629bb00
L
1716 i386_cpu_flags cpu = cpu_arch_flags;
1717
ab592e75
JB
1718 /* AVX512VL is no standalone feature - match it and then strip it. */
1719 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1720 return match;
1721 x.bitfield.cpuavx512vl = 0;
1722
3629bb00 1723 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1724 if (!cpu_flags_all_zero (&cpu))
1725 {
a5ff0eb2
L
1726 if (x.bitfield.cpuavx)
1727 {
929f69fa 1728 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1729 if (cpu.bitfield.cpuavx
1730 && (!t->opcode_modifier.sse2avx || sse2avx)
1731 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1732 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1733 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1734 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1735 }
929f69fa
JB
1736 else if (x.bitfield.cpuavx512f)
1737 {
1738 /* We need to check a few extra flags with AVX512F. */
1739 if (cpu.bitfield.cpuavx512f
1740 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1741 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1742 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1743 match |= CPU_FLAGS_ARCH_MATCH;
1744 }
a5ff0eb2 1745 else
db12e14e 1746 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1747 }
3629bb00 1748 }
c0f3af97 1749 return match;
40fb9820
L
1750}
1751
c6fb90c8
L
1752static INLINE i386_operand_type
1753operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1754{
c6fb90c8
L
1755 switch (ARRAY_SIZE (x.array))
1756 {
1757 case 3:
1758 x.array [2] &= y.array [2];
1a0670f3 1759 /* Fall through. */
c6fb90c8
L
1760 case 2:
1761 x.array [1] &= y.array [1];
1a0670f3 1762 /* Fall through. */
c6fb90c8
L
1763 case 1:
1764 x.array [0] &= y.array [0];
1765 break;
1766 default:
1767 abort ();
1768 }
1769 return x;
40fb9820
L
1770}
1771
73053c1f
JB
1772static INLINE i386_operand_type
1773operand_type_and_not (i386_operand_type x, i386_operand_type y)
1774{
1775 switch (ARRAY_SIZE (x.array))
1776 {
1777 case 3:
1778 x.array [2] &= ~y.array [2];
1779 /* Fall through. */
1780 case 2:
1781 x.array [1] &= ~y.array [1];
1782 /* Fall through. */
1783 case 1:
1784 x.array [0] &= ~y.array [0];
1785 break;
1786 default:
1787 abort ();
1788 }
1789 return x;
1790}
1791
c6fb90c8
L
1792static INLINE i386_operand_type
1793operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1794{
c6fb90c8 1795 switch (ARRAY_SIZE (x.array))
40fb9820 1796 {
c6fb90c8
L
1797 case 3:
1798 x.array [2] |= y.array [2];
1a0670f3 1799 /* Fall through. */
c6fb90c8
L
1800 case 2:
1801 x.array [1] |= y.array [1];
1a0670f3 1802 /* Fall through. */
c6fb90c8
L
1803 case 1:
1804 x.array [0] |= y.array [0];
40fb9820
L
1805 break;
1806 default:
1807 abort ();
1808 }
c6fb90c8
L
1809 return x;
1810}
40fb9820 1811
c6fb90c8
L
1812static INLINE i386_operand_type
1813operand_type_xor (i386_operand_type x, i386_operand_type y)
1814{
1815 switch (ARRAY_SIZE (x.array))
1816 {
1817 case 3:
1818 x.array [2] ^= y.array [2];
1a0670f3 1819 /* Fall through. */
c6fb90c8
L
1820 case 2:
1821 x.array [1] ^= y.array [1];
1a0670f3 1822 /* Fall through. */
c6fb90c8
L
1823 case 1:
1824 x.array [0] ^= y.array [0];
1825 break;
1826 default:
1827 abort ();
1828 }
40fb9820
L
1829 return x;
1830}
1831
1832static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1833static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1834static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1835static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1836static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1837static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1838static const i386_operand_type anydisp
1839 = OPERAND_TYPE_ANYDISP;
40fb9820 1840static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1841static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1842static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1843static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1844static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1845static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1846static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1847static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1848static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1849static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1850static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1851static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1852
1853enum operand_type
1854{
1855 reg,
40fb9820
L
1856 imm,
1857 disp,
1858 anymem
1859};
1860
c6fb90c8 1861static INLINE int
40fb9820
L
1862operand_type_check (i386_operand_type t, enum operand_type c)
1863{
1864 switch (c)
1865 {
1866 case reg:
dc821c5f 1867 return t.bitfield.reg;
40fb9820 1868
40fb9820
L
1869 case imm:
1870 return (t.bitfield.imm8
1871 || t.bitfield.imm8s
1872 || t.bitfield.imm16
1873 || t.bitfield.imm32
1874 || t.bitfield.imm32s
1875 || t.bitfield.imm64);
1876
1877 case disp:
1878 return (t.bitfield.disp8
1879 || t.bitfield.disp16
1880 || t.bitfield.disp32
1881 || t.bitfield.disp32s
1882 || t.bitfield.disp64);
1883
1884 case anymem:
1885 return (t.bitfield.disp8
1886 || t.bitfield.disp16
1887 || t.bitfield.disp32
1888 || t.bitfield.disp32s
1889 || t.bitfield.disp64
1890 || t.bitfield.baseindex);
1891
1892 default:
1893 abort ();
1894 }
2cfe26b6
AM
1895
1896 return 0;
40fb9820
L
1897}
1898
7a54636a
L
1899/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1900 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1901
1902static INLINE int
7a54636a
L
1903match_operand_size (const insn_template *t, unsigned int wanted,
1904 unsigned int given)
5c07affc 1905{
3ac21baa
JB
1906 return !((i.types[given].bitfield.byte
1907 && !t->operand_types[wanted].bitfield.byte)
1908 || (i.types[given].bitfield.word
1909 && !t->operand_types[wanted].bitfield.word)
1910 || (i.types[given].bitfield.dword
1911 && !t->operand_types[wanted].bitfield.dword)
1912 || (i.types[given].bitfield.qword
1913 && !t->operand_types[wanted].bitfield.qword)
1914 || (i.types[given].bitfield.tbyte
1915 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1916}
1917
dd40ce22
L
1918/* Return 1 if there is no conflict in SIMD register between operand
1919 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1920
1921static INLINE int
dd40ce22
L
1922match_simd_size (const insn_template *t, unsigned int wanted,
1923 unsigned int given)
1b54b8d7 1924{
3ac21baa
JB
1925 return !((i.types[given].bitfield.xmmword
1926 && !t->operand_types[wanted].bitfield.xmmword)
1927 || (i.types[given].bitfield.ymmword
1928 && !t->operand_types[wanted].bitfield.ymmword)
1929 || (i.types[given].bitfield.zmmword
1930 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1931}
1932
7a54636a
L
1933/* Return 1 if there is no conflict in any size between operand GIVEN
1934 and opeand WANTED for instruction template T. */
5c07affc
L
1935
1936static INLINE int
dd40ce22
L
1937match_mem_size (const insn_template *t, unsigned int wanted,
1938 unsigned int given)
5c07affc 1939{
7a54636a 1940 return (match_operand_size (t, wanted, given)
3ac21baa 1941 && !((i.types[given].bitfield.unspecified
af508cb9 1942 && !i.broadcast
3ac21baa
JB
1943 && !t->operand_types[wanted].bitfield.unspecified)
1944 || (i.types[given].bitfield.fword
1945 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1946 /* For scalar opcode templates to allow register and memory
1947 operands at the same time, some special casing is needed
d6793fa1
JB
1948 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1949 down-conversion vpmov*. */
3ac21baa 1950 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1951 && !t->opcode_modifier.broadcast
3ac21baa
JB
1952 && (t->operand_types[wanted].bitfield.byte
1953 || t->operand_types[wanted].bitfield.word
1954 || t->operand_types[wanted].bitfield.dword
1955 || t->operand_types[wanted].bitfield.qword))
1956 ? (i.types[given].bitfield.xmmword
1957 || i.types[given].bitfield.ymmword
1958 || i.types[given].bitfield.zmmword)
1959 : !match_simd_size(t, wanted, given))));
5c07affc
L
1960}
1961
3ac21baa
JB
1962/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1963 operands for instruction template T, and it has MATCH_REVERSE set if there
1964 is no size conflict on any operands for the template with operands reversed
1965 (and the template allows for reversing in the first place). */
5c07affc 1966
3ac21baa
JB
1967#define MATCH_STRAIGHT 1
1968#define MATCH_REVERSE 2
1969
1970static INLINE unsigned int
d3ce72d0 1971operand_size_match (const insn_template *t)
5c07affc 1972{
3ac21baa 1973 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
1974
1975 /* Don't check jump instructions. */
1976 if (t->opcode_modifier.jump
1977 || t->opcode_modifier.jumpbyte
1978 || t->opcode_modifier.jumpdword
1979 || t->opcode_modifier.jumpintersegment)
1980 return match;
1981
1982 /* Check memory and accumulator operand size. */
1983 for (j = 0; j < i.operands; j++)
1984 {
1b54b8d7
JB
1985 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1986 && t->operand_types[j].bitfield.anysize)
5c07affc
L
1987 continue;
1988
1b54b8d7 1989 if (t->operand_types[j].bitfield.reg
7a54636a 1990 && !match_operand_size (t, j, j))
5c07affc
L
1991 {
1992 match = 0;
1993 break;
1994 }
1995
1b54b8d7 1996 if (t->operand_types[j].bitfield.regsimd
3ac21baa 1997 && !match_simd_size (t, j, j))
1b54b8d7
JB
1998 {
1999 match = 0;
2000 break;
2001 }
2002
2003 if (t->operand_types[j].bitfield.acc
7a54636a 2004 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2005 {
2006 match = 0;
2007 break;
2008 }
2009
3ac21baa 2010 if (i.types[j].bitfield.mem && !match_mem_size (t, j, j))
5c07affc
L
2011 {
2012 match = 0;
2013 break;
2014 }
2015 }
2016
3ac21baa 2017 if (!t->opcode_modifier.d)
891edac4
L
2018 {
2019mismatch:
3ac21baa
JB
2020 if (!match)
2021 i.error = operand_size_mismatch;
2022 return match;
891edac4 2023 }
5c07affc
L
2024
2025 /* Check reverse. */
9c2799c2 2026 gas_assert (i.operands == 2);
5c07affc 2027
5c07affc
L
2028 for (j = 0; j < 2; j++)
2029 {
dc821c5f
JB
2030 if ((t->operand_types[j].bitfield.reg
2031 || t->operand_types[j].bitfield.acc)
7a54636a 2032 && !match_operand_size (t, j, !j))
891edac4 2033 goto mismatch;
5c07affc 2034
3ac21baa
JB
2035 if (i.types[!j].bitfield.mem
2036 && !match_mem_size (t, j, !j))
891edac4 2037 goto mismatch;
5c07affc
L
2038 }
2039
3ac21baa 2040 return match | MATCH_REVERSE;
5c07affc
L
2041}
2042
c6fb90c8 2043static INLINE int
40fb9820
L
2044operand_type_match (i386_operand_type overlap,
2045 i386_operand_type given)
2046{
2047 i386_operand_type temp = overlap;
2048
2049 temp.bitfield.jumpabsolute = 0;
7d5e4556 2050 temp.bitfield.unspecified = 0;
5c07affc
L
2051 temp.bitfield.byte = 0;
2052 temp.bitfield.word = 0;
2053 temp.bitfield.dword = 0;
2054 temp.bitfield.fword = 0;
2055 temp.bitfield.qword = 0;
2056 temp.bitfield.tbyte = 0;
2057 temp.bitfield.xmmword = 0;
c0f3af97 2058 temp.bitfield.ymmword = 0;
43234a1e 2059 temp.bitfield.zmmword = 0;
0dfbf9d7 2060 if (operand_type_all_zero (&temp))
891edac4 2061 goto mismatch;
40fb9820 2062
891edac4
L
2063 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2064 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2065 return 1;
2066
2067mismatch:
a65babc9 2068 i.error = operand_type_mismatch;
891edac4 2069 return 0;
40fb9820
L
2070}
2071
7d5e4556 2072/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2073 unless the expected operand type register overlap is null.
2074 Memory operand size of certain SIMD instructions is also being checked
2075 here. */
40fb9820 2076
c6fb90c8 2077static INLINE int
dc821c5f 2078operand_type_register_match (i386_operand_type g0,
40fb9820 2079 i386_operand_type t0,
40fb9820
L
2080 i386_operand_type g1,
2081 i386_operand_type t1)
2082{
10c17abd
JB
2083 if (!g0.bitfield.reg
2084 && !g0.bitfield.regsimd
2085 && (!operand_type_check (g0, anymem)
2086 || g0.bitfield.unspecified
2087 || !t0.bitfield.regsimd))
40fb9820
L
2088 return 1;
2089
10c17abd
JB
2090 if (!g1.bitfield.reg
2091 && !g1.bitfield.regsimd
2092 && (!operand_type_check (g1, anymem)
2093 || g1.bitfield.unspecified
2094 || !t1.bitfield.regsimd))
40fb9820
L
2095 return 1;
2096
dc821c5f
JB
2097 if (g0.bitfield.byte == g1.bitfield.byte
2098 && g0.bitfield.word == g1.bitfield.word
2099 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2100 && g0.bitfield.qword == g1.bitfield.qword
2101 && g0.bitfield.xmmword == g1.bitfield.xmmword
2102 && g0.bitfield.ymmword == g1.bitfield.ymmword
2103 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2104 return 1;
2105
dc821c5f
JB
2106 if (!(t0.bitfield.byte & t1.bitfield.byte)
2107 && !(t0.bitfield.word & t1.bitfield.word)
2108 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2109 && !(t0.bitfield.qword & t1.bitfield.qword)
2110 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2111 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2112 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2113 return 1;
2114
a65babc9 2115 i.error = register_type_mismatch;
891edac4
L
2116
2117 return 0;
40fb9820
L
2118}
2119
4c692bc7
JB
2120static INLINE unsigned int
2121register_number (const reg_entry *r)
2122{
2123 unsigned int nr = r->reg_num;
2124
2125 if (r->reg_flags & RegRex)
2126 nr += 8;
2127
200cbe0f
L
2128 if (r->reg_flags & RegVRex)
2129 nr += 16;
2130
4c692bc7
JB
2131 return nr;
2132}
2133
252b5132 2134static INLINE unsigned int
40fb9820 2135mode_from_disp_size (i386_operand_type t)
252b5132 2136{
b5014f7a 2137 if (t.bitfield.disp8)
40fb9820
L
2138 return 1;
2139 else if (t.bitfield.disp16
2140 || t.bitfield.disp32
2141 || t.bitfield.disp32s)
2142 return 2;
2143 else
2144 return 0;
252b5132
RH
2145}
2146
2147static INLINE int
65879393 2148fits_in_signed_byte (addressT num)
252b5132 2149{
65879393 2150 return num + 0x80 <= 0xff;
47926f60 2151}
252b5132
RH
2152
2153static INLINE int
65879393 2154fits_in_unsigned_byte (addressT num)
252b5132 2155{
65879393 2156 return num <= 0xff;
47926f60 2157}
252b5132
RH
2158
2159static INLINE int
65879393 2160fits_in_unsigned_word (addressT num)
252b5132 2161{
65879393 2162 return num <= 0xffff;
47926f60 2163}
252b5132
RH
2164
2165static INLINE int
65879393 2166fits_in_signed_word (addressT num)
252b5132 2167{
65879393 2168 return num + 0x8000 <= 0xffff;
47926f60 2169}
2a962e6d 2170
3e73aa7c 2171static INLINE int
65879393 2172fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2173{
2174#ifndef BFD64
2175 return 1;
2176#else
65879393 2177 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2178#endif
2179} /* fits_in_signed_long() */
2a962e6d 2180
3e73aa7c 2181static INLINE int
65879393 2182fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2183{
2184#ifndef BFD64
2185 return 1;
2186#else
65879393 2187 return num <= 0xffffffff;
3e73aa7c
JH
2188#endif
2189} /* fits_in_unsigned_long() */
252b5132 2190
43234a1e 2191static INLINE int
b5014f7a 2192fits_in_disp8 (offsetT num)
43234a1e
L
2193{
2194 int shift = i.memshift;
2195 unsigned int mask;
2196
2197 if (shift == -1)
2198 abort ();
2199
2200 mask = (1 << shift) - 1;
2201
2202 /* Return 0 if NUM isn't properly aligned. */
2203 if ((num & mask))
2204 return 0;
2205
2206 /* Check if NUM will fit in 8bit after shift. */
2207 return fits_in_signed_byte (num >> shift);
2208}
2209
a683cc34
SP
2210static INLINE int
2211fits_in_imm4 (offsetT num)
2212{
2213 return (num & 0xf) == num;
2214}
2215
40fb9820 2216static i386_operand_type
e3bb37b5 2217smallest_imm_type (offsetT num)
252b5132 2218{
40fb9820 2219 i386_operand_type t;
7ab9ffdd 2220
0dfbf9d7 2221 operand_type_set (&t, 0);
40fb9820
L
2222 t.bitfield.imm64 = 1;
2223
2224 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2225 {
2226 /* This code is disabled on the 486 because all the Imm1 forms
2227 in the opcode table are slower on the i486. They're the
2228 versions with the implicitly specified single-position
2229 displacement, which has another syntax if you really want to
2230 use that form. */
40fb9820
L
2231 t.bitfield.imm1 = 1;
2232 t.bitfield.imm8 = 1;
2233 t.bitfield.imm8s = 1;
2234 t.bitfield.imm16 = 1;
2235 t.bitfield.imm32 = 1;
2236 t.bitfield.imm32s = 1;
2237 }
2238 else if (fits_in_signed_byte (num))
2239 {
2240 t.bitfield.imm8 = 1;
2241 t.bitfield.imm8s = 1;
2242 t.bitfield.imm16 = 1;
2243 t.bitfield.imm32 = 1;
2244 t.bitfield.imm32s = 1;
2245 }
2246 else if (fits_in_unsigned_byte (num))
2247 {
2248 t.bitfield.imm8 = 1;
2249 t.bitfield.imm16 = 1;
2250 t.bitfield.imm32 = 1;
2251 t.bitfield.imm32s = 1;
2252 }
2253 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2254 {
2255 t.bitfield.imm16 = 1;
2256 t.bitfield.imm32 = 1;
2257 t.bitfield.imm32s = 1;
2258 }
2259 else if (fits_in_signed_long (num))
2260 {
2261 t.bitfield.imm32 = 1;
2262 t.bitfield.imm32s = 1;
2263 }
2264 else if (fits_in_unsigned_long (num))
2265 t.bitfield.imm32 = 1;
2266
2267 return t;
47926f60 2268}
252b5132 2269
847f7ad4 2270static offsetT
e3bb37b5 2271offset_in_range (offsetT val, int size)
847f7ad4 2272{
508866be 2273 addressT mask;
ba2adb93 2274
847f7ad4
AM
2275 switch (size)
2276 {
508866be
L
2277 case 1: mask = ((addressT) 1 << 8) - 1; break;
2278 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2279 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2280#ifdef BFD64
2281 case 8: mask = ((addressT) 2 << 63) - 1; break;
2282#endif
47926f60 2283 default: abort ();
847f7ad4
AM
2284 }
2285
9de868bf
L
2286#ifdef BFD64
2287 /* If BFD64, sign extend val for 32bit address mode. */
2288 if (flag_code != CODE_64BIT
2289 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2290 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2291 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2292#endif
ba2adb93 2293
47926f60 2294 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2295 {
2296 char buf1[40], buf2[40];
2297
2298 sprint_value (buf1, val);
2299 sprint_value (buf2, val & mask);
2300 as_warn (_("%s shortened to %s"), buf1, buf2);
2301 }
2302 return val & mask;
2303}
2304
c32fa91d
L
2305enum PREFIX_GROUP
2306{
2307 PREFIX_EXIST = 0,
2308 PREFIX_LOCK,
2309 PREFIX_REP,
04ef582a 2310 PREFIX_DS,
c32fa91d
L
2311 PREFIX_OTHER
2312};
2313
2314/* Returns
2315 a. PREFIX_EXIST if attempting to add a prefix where one from the
2316 same class already exists.
2317 b. PREFIX_LOCK if lock prefix is added.
2318 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2319 d. PREFIX_DS if ds prefix is added.
2320 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2321 */
2322
2323static enum PREFIX_GROUP
e3bb37b5 2324add_prefix (unsigned int prefix)
252b5132 2325{
c32fa91d 2326 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2327 unsigned int q;
252b5132 2328
29b0f896
AM
2329 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2330 && flag_code == CODE_64BIT)
b1905489 2331 {
161a04f6 2332 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2333 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2334 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2335 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2336 ret = PREFIX_EXIST;
b1905489
JB
2337 q = REX_PREFIX;
2338 }
3e73aa7c 2339 else
b1905489
JB
2340 {
2341 switch (prefix)
2342 {
2343 default:
2344 abort ();
2345
b1905489 2346 case DS_PREFIX_OPCODE:
04ef582a
L
2347 ret = PREFIX_DS;
2348 /* Fall through. */
2349 case CS_PREFIX_OPCODE:
b1905489
JB
2350 case ES_PREFIX_OPCODE:
2351 case FS_PREFIX_OPCODE:
2352 case GS_PREFIX_OPCODE:
2353 case SS_PREFIX_OPCODE:
2354 q = SEG_PREFIX;
2355 break;
2356
2357 case REPNE_PREFIX_OPCODE:
2358 case REPE_PREFIX_OPCODE:
c32fa91d
L
2359 q = REP_PREFIX;
2360 ret = PREFIX_REP;
2361 break;
2362
b1905489 2363 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2364 q = LOCK_PREFIX;
2365 ret = PREFIX_LOCK;
b1905489
JB
2366 break;
2367
2368 case FWAIT_OPCODE:
2369 q = WAIT_PREFIX;
2370 break;
2371
2372 case ADDR_PREFIX_OPCODE:
2373 q = ADDR_PREFIX;
2374 break;
2375
2376 case DATA_PREFIX_OPCODE:
2377 q = DATA_PREFIX;
2378 break;
2379 }
2380 if (i.prefix[q] != 0)
c32fa91d 2381 ret = PREFIX_EXIST;
b1905489 2382 }
252b5132 2383
b1905489 2384 if (ret)
252b5132 2385 {
b1905489
JB
2386 if (!i.prefix[q])
2387 ++i.prefixes;
2388 i.prefix[q] |= prefix;
252b5132 2389 }
b1905489
JB
2390 else
2391 as_bad (_("same type of prefix used twice"));
252b5132 2392
252b5132
RH
2393 return ret;
2394}
2395
2396static void
78f12dd3 2397update_code_flag (int value, int check)
eecb386c 2398{
78f12dd3
L
2399 PRINTF_LIKE ((*as_error));
2400
1e9cc1c2 2401 flag_code = (enum flag_code) value;
40fb9820
L
2402 if (flag_code == CODE_64BIT)
2403 {
2404 cpu_arch_flags.bitfield.cpu64 = 1;
2405 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2406 }
2407 else
2408 {
2409 cpu_arch_flags.bitfield.cpu64 = 0;
2410 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2411 }
2412 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2413 {
78f12dd3
L
2414 if (check)
2415 as_error = as_fatal;
2416 else
2417 as_error = as_bad;
2418 (*as_error) (_("64bit mode not supported on `%s'."),
2419 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2420 }
40fb9820 2421 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2422 {
78f12dd3
L
2423 if (check)
2424 as_error = as_fatal;
2425 else
2426 as_error = as_bad;
2427 (*as_error) (_("32bit mode not supported on `%s'."),
2428 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2429 }
eecb386c
AM
2430 stackop_size = '\0';
2431}
2432
78f12dd3
L
2433static void
2434set_code_flag (int value)
2435{
2436 update_code_flag (value, 0);
2437}
2438
eecb386c 2439static void
e3bb37b5 2440set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2441{
1e9cc1c2 2442 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2443 if (flag_code != CODE_16BIT)
2444 abort ();
2445 cpu_arch_flags.bitfield.cpu64 = 0;
2446 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2447 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2448}
2449
2450static void
e3bb37b5 2451set_intel_syntax (int syntax_flag)
252b5132
RH
2452{
2453 /* Find out if register prefixing is specified. */
2454 int ask_naked_reg = 0;
2455
2456 SKIP_WHITESPACE ();
29b0f896 2457 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2458 {
d02603dc
NC
2459 char *string;
2460 int e = get_symbol_name (&string);
252b5132 2461
47926f60 2462 if (strcmp (string, "prefix") == 0)
252b5132 2463 ask_naked_reg = 1;
47926f60 2464 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2465 ask_naked_reg = -1;
2466 else
d0b47220 2467 as_bad (_("bad argument to syntax directive."));
d02603dc 2468 (void) restore_line_pointer (e);
252b5132
RH
2469 }
2470 demand_empty_rest_of_line ();
c3332e24 2471
252b5132
RH
2472 intel_syntax = syntax_flag;
2473
2474 if (ask_naked_reg == 0)
f86103b7
AM
2475 allow_naked_reg = (intel_syntax
2476 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2477 else
2478 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2479
ee86248c 2480 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2481
e4a3b5a4 2482 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2483 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2484 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2485}
2486
1efbbeb4
L
2487static void
2488set_intel_mnemonic (int mnemonic_flag)
2489{
e1d4d893 2490 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2491}
2492
db51cc60
L
2493static void
2494set_allow_index_reg (int flag)
2495{
2496 allow_index_reg = flag;
2497}
2498
cb19c032 2499static void
7bab8ab5 2500set_check (int what)
cb19c032 2501{
7bab8ab5
JB
2502 enum check_kind *kind;
2503 const char *str;
2504
2505 if (what)
2506 {
2507 kind = &operand_check;
2508 str = "operand";
2509 }
2510 else
2511 {
2512 kind = &sse_check;
2513 str = "sse";
2514 }
2515
cb19c032
L
2516 SKIP_WHITESPACE ();
2517
2518 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2519 {
d02603dc
NC
2520 char *string;
2521 int e = get_symbol_name (&string);
cb19c032
L
2522
2523 if (strcmp (string, "none") == 0)
7bab8ab5 2524 *kind = check_none;
cb19c032 2525 else if (strcmp (string, "warning") == 0)
7bab8ab5 2526 *kind = check_warning;
cb19c032 2527 else if (strcmp (string, "error") == 0)
7bab8ab5 2528 *kind = check_error;
cb19c032 2529 else
7bab8ab5 2530 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2531 (void) restore_line_pointer (e);
cb19c032
L
2532 }
2533 else
7bab8ab5 2534 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2535
2536 demand_empty_rest_of_line ();
2537}
2538
8a9036a4
L
2539static void
2540check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2541 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2542{
2543#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2544 static const char *arch;
2545
2546 /* Intel LIOM is only supported on ELF. */
2547 if (!IS_ELF)
2548 return;
2549
2550 if (!arch)
2551 {
2552 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2553 use default_arch. */
2554 arch = cpu_arch_name;
2555 if (!arch)
2556 arch = default_arch;
2557 }
2558
81486035
L
2559 /* If we are targeting Intel MCU, we must enable it. */
2560 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2561 || new_flag.bitfield.cpuiamcu)
2562 return;
2563
3632d14b 2564 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2565 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2566 || new_flag.bitfield.cpul1om)
8a9036a4 2567 return;
76ba9986 2568
7a9068fe
L
2569 /* If we are targeting Intel K1OM, we must enable it. */
2570 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2571 || new_flag.bitfield.cpuk1om)
2572 return;
2573
8a9036a4
L
2574 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2575#endif
2576}
2577
e413e4e9 2578static void
e3bb37b5 2579set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2580{
47926f60 2581 SKIP_WHITESPACE ();
e413e4e9 2582
29b0f896 2583 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2584 {
d02603dc
NC
2585 char *string;
2586 int e = get_symbol_name (&string);
91d6fa6a 2587 unsigned int j;
40fb9820 2588 i386_cpu_flags flags;
e413e4e9 2589
91d6fa6a 2590 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2591 {
91d6fa6a 2592 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2593 {
91d6fa6a 2594 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2595
5c6af06e
JB
2596 if (*string != '.')
2597 {
91d6fa6a 2598 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2599 cpu_sub_arch_name = NULL;
91d6fa6a 2600 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2601 if (flag_code == CODE_64BIT)
2602 {
2603 cpu_arch_flags.bitfield.cpu64 = 1;
2604 cpu_arch_flags.bitfield.cpuno64 = 0;
2605 }
2606 else
2607 {
2608 cpu_arch_flags.bitfield.cpu64 = 0;
2609 cpu_arch_flags.bitfield.cpuno64 = 1;
2610 }
91d6fa6a
NC
2611 cpu_arch_isa = cpu_arch[j].type;
2612 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2613 if (!cpu_arch_tune_set)
2614 {
2615 cpu_arch_tune = cpu_arch_isa;
2616 cpu_arch_tune_flags = cpu_arch_isa_flags;
2617 }
5c6af06e
JB
2618 break;
2619 }
40fb9820 2620
293f5f65
L
2621 flags = cpu_flags_or (cpu_arch_flags,
2622 cpu_arch[j].flags);
81486035 2623
5b64d091 2624 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2625 {
6305a203
L
2626 if (cpu_sub_arch_name)
2627 {
2628 char *name = cpu_sub_arch_name;
2629 cpu_sub_arch_name = concat (name,
91d6fa6a 2630 cpu_arch[j].name,
1bf57e9f 2631 (const char *) NULL);
6305a203
L
2632 free (name);
2633 }
2634 else
91d6fa6a 2635 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2636 cpu_arch_flags = flags;
a586129e 2637 cpu_arch_isa_flags = flags;
5c6af06e 2638 }
0089dace
L
2639 else
2640 cpu_arch_isa_flags
2641 = cpu_flags_or (cpu_arch_isa_flags,
2642 cpu_arch[j].flags);
d02603dc 2643 (void) restore_line_pointer (e);
5c6af06e
JB
2644 demand_empty_rest_of_line ();
2645 return;
e413e4e9
AM
2646 }
2647 }
293f5f65
L
2648
2649 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2650 {
33eaf5de 2651 /* Disable an ISA extension. */
293f5f65
L
2652 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2653 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2654 {
2655 flags = cpu_flags_and_not (cpu_arch_flags,
2656 cpu_noarch[j].flags);
2657 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2658 {
2659 if (cpu_sub_arch_name)
2660 {
2661 char *name = cpu_sub_arch_name;
2662 cpu_sub_arch_name = concat (name, string,
2663 (const char *) NULL);
2664 free (name);
2665 }
2666 else
2667 cpu_sub_arch_name = xstrdup (string);
2668 cpu_arch_flags = flags;
2669 cpu_arch_isa_flags = flags;
2670 }
2671 (void) restore_line_pointer (e);
2672 demand_empty_rest_of_line ();
2673 return;
2674 }
2675
2676 j = ARRAY_SIZE (cpu_arch);
2677 }
2678
91d6fa6a 2679 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2680 as_bad (_("no such architecture: `%s'"), string);
2681
2682 *input_line_pointer = e;
2683 }
2684 else
2685 as_bad (_("missing cpu architecture"));
2686
fddf5b5b
AM
2687 no_cond_jump_promotion = 0;
2688 if (*input_line_pointer == ','
29b0f896 2689 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2690 {
d02603dc
NC
2691 char *string;
2692 char e;
2693
2694 ++input_line_pointer;
2695 e = get_symbol_name (&string);
fddf5b5b
AM
2696
2697 if (strcmp (string, "nojumps") == 0)
2698 no_cond_jump_promotion = 1;
2699 else if (strcmp (string, "jumps") == 0)
2700 ;
2701 else
2702 as_bad (_("no such architecture modifier: `%s'"), string);
2703
d02603dc 2704 (void) restore_line_pointer (e);
fddf5b5b
AM
2705 }
2706
e413e4e9
AM
2707 demand_empty_rest_of_line ();
2708}
2709
8a9036a4
L
2710enum bfd_architecture
2711i386_arch (void)
2712{
3632d14b 2713 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2714 {
2715 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2716 || flag_code != CODE_64BIT)
2717 as_fatal (_("Intel L1OM is 64bit ELF only"));
2718 return bfd_arch_l1om;
2719 }
7a9068fe
L
2720 else if (cpu_arch_isa == PROCESSOR_K1OM)
2721 {
2722 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2723 || flag_code != CODE_64BIT)
2724 as_fatal (_("Intel K1OM is 64bit ELF only"));
2725 return bfd_arch_k1om;
2726 }
81486035
L
2727 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2728 {
2729 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2730 || flag_code == CODE_64BIT)
2731 as_fatal (_("Intel MCU is 32bit ELF only"));
2732 return bfd_arch_iamcu;
2733 }
8a9036a4
L
2734 else
2735 return bfd_arch_i386;
2736}
2737
b9d79e03 2738unsigned long
7016a5d5 2739i386_mach (void)
b9d79e03 2740{
351f65ca 2741 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2742 {
3632d14b 2743 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2744 {
351f65ca
L
2745 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2746 || default_arch[6] != '\0')
8a9036a4
L
2747 as_fatal (_("Intel L1OM is 64bit ELF only"));
2748 return bfd_mach_l1om;
2749 }
7a9068fe
L
2750 else if (cpu_arch_isa == PROCESSOR_K1OM)
2751 {
2752 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2753 || default_arch[6] != '\0')
2754 as_fatal (_("Intel K1OM is 64bit ELF only"));
2755 return bfd_mach_k1om;
2756 }
351f65ca 2757 else if (default_arch[6] == '\0')
8a9036a4 2758 return bfd_mach_x86_64;
351f65ca
L
2759 else
2760 return bfd_mach_x64_32;
8a9036a4 2761 }
5197d474
L
2762 else if (!strcmp (default_arch, "i386")
2763 || !strcmp (default_arch, "iamcu"))
81486035
L
2764 {
2765 if (cpu_arch_isa == PROCESSOR_IAMCU)
2766 {
2767 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2768 as_fatal (_("Intel MCU is 32bit ELF only"));
2769 return bfd_mach_i386_iamcu;
2770 }
2771 else
2772 return bfd_mach_i386_i386;
2773 }
b9d79e03 2774 else
2b5d6a91 2775 as_fatal (_("unknown architecture"));
b9d79e03 2776}
b9d79e03 2777\f
252b5132 2778void
7016a5d5 2779md_begin (void)
252b5132
RH
2780{
2781 const char *hash_err;
2782
86fa6981
L
2783 /* Support pseudo prefixes like {disp32}. */
2784 lex_type ['{'] = LEX_BEGIN_NAME;
2785
47926f60 2786 /* Initialize op_hash hash table. */
252b5132
RH
2787 op_hash = hash_new ();
2788
2789 {
d3ce72d0 2790 const insn_template *optab;
29b0f896 2791 templates *core_optab;
252b5132 2792
47926f60
KH
2793 /* Setup for loop. */
2794 optab = i386_optab;
add39d23 2795 core_optab = XNEW (templates);
252b5132
RH
2796 core_optab->start = optab;
2797
2798 while (1)
2799 {
2800 ++optab;
2801 if (optab->name == NULL
2802 || strcmp (optab->name, (optab - 1)->name) != 0)
2803 {
2804 /* different name --> ship out current template list;
47926f60 2805 add to hash table; & begin anew. */
252b5132
RH
2806 core_optab->end = optab;
2807 hash_err = hash_insert (op_hash,
2808 (optab - 1)->name,
5a49b8ac 2809 (void *) core_optab);
252b5132
RH
2810 if (hash_err)
2811 {
b37df7c4 2812 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2813 (optab - 1)->name,
2814 hash_err);
2815 }
2816 if (optab->name == NULL)
2817 break;
add39d23 2818 core_optab = XNEW (templates);
252b5132
RH
2819 core_optab->start = optab;
2820 }
2821 }
2822 }
2823
47926f60 2824 /* Initialize reg_hash hash table. */
252b5132
RH
2825 reg_hash = hash_new ();
2826 {
29b0f896 2827 const reg_entry *regtab;
c3fe08fa 2828 unsigned int regtab_size = i386_regtab_size;
252b5132 2829
c3fe08fa 2830 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2831 {
5a49b8ac 2832 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2833 if (hash_err)
b37df7c4 2834 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2835 regtab->reg_name,
2836 hash_err);
252b5132
RH
2837 }
2838 }
2839
47926f60 2840 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2841 {
29b0f896
AM
2842 int c;
2843 char *p;
252b5132
RH
2844
2845 for (c = 0; c < 256; c++)
2846 {
3882b010 2847 if (ISDIGIT (c))
252b5132
RH
2848 {
2849 digit_chars[c] = c;
2850 mnemonic_chars[c] = c;
2851 register_chars[c] = c;
2852 operand_chars[c] = c;
2853 }
3882b010 2854 else if (ISLOWER (c))
252b5132
RH
2855 {
2856 mnemonic_chars[c] = c;
2857 register_chars[c] = c;
2858 operand_chars[c] = c;
2859 }
3882b010 2860 else if (ISUPPER (c))
252b5132 2861 {
3882b010 2862 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2863 register_chars[c] = mnemonic_chars[c];
2864 operand_chars[c] = c;
2865 }
43234a1e 2866 else if (c == '{' || c == '}')
86fa6981
L
2867 {
2868 mnemonic_chars[c] = c;
2869 operand_chars[c] = c;
2870 }
252b5132 2871
3882b010 2872 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2873 identifier_chars[c] = c;
2874 else if (c >= 128)
2875 {
2876 identifier_chars[c] = c;
2877 operand_chars[c] = c;
2878 }
2879 }
2880
2881#ifdef LEX_AT
2882 identifier_chars['@'] = '@';
32137342
NC
2883#endif
2884#ifdef LEX_QM
2885 identifier_chars['?'] = '?';
2886 operand_chars['?'] = '?';
252b5132 2887#endif
252b5132 2888 digit_chars['-'] = '-';
c0f3af97 2889 mnemonic_chars['_'] = '_';
791fe849 2890 mnemonic_chars['-'] = '-';
0003779b 2891 mnemonic_chars['.'] = '.';
252b5132
RH
2892 identifier_chars['_'] = '_';
2893 identifier_chars['.'] = '.';
2894
2895 for (p = operand_special_chars; *p != '\0'; p++)
2896 operand_chars[(unsigned char) *p] = *p;
2897 }
2898
a4447b93
RH
2899 if (flag_code == CODE_64BIT)
2900 {
ca19b261
KT
2901#if defined (OBJ_COFF) && defined (TE_PE)
2902 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2903 ? 32 : 16);
2904#else
a4447b93 2905 x86_dwarf2_return_column = 16;
ca19b261 2906#endif
61ff971f 2907 x86_cie_data_alignment = -8;
a4447b93
RH
2908 }
2909 else
2910 {
2911 x86_dwarf2_return_column = 8;
2912 x86_cie_data_alignment = -4;
2913 }
252b5132
RH
2914}
2915
2916void
e3bb37b5 2917i386_print_statistics (FILE *file)
252b5132
RH
2918{
2919 hash_print_statistics (file, "i386 opcode", op_hash);
2920 hash_print_statistics (file, "i386 register", reg_hash);
2921}
2922\f
252b5132
RH
2923#ifdef DEBUG386
2924
ce8a8b2f 2925/* Debugging routines for md_assemble. */
d3ce72d0 2926static void pte (insn_template *);
40fb9820 2927static void pt (i386_operand_type);
e3bb37b5
L
2928static void pe (expressionS *);
2929static void ps (symbolS *);
252b5132
RH
2930
2931static void
e3bb37b5 2932pi (char *line, i386_insn *x)
252b5132 2933{
09137c09 2934 unsigned int j;
252b5132
RH
2935
2936 fprintf (stdout, "%s: template ", line);
2937 pte (&x->tm);
09f131f2
JH
2938 fprintf (stdout, " address: base %s index %s scale %x\n",
2939 x->base_reg ? x->base_reg->reg_name : "none",
2940 x->index_reg ? x->index_reg->reg_name : "none",
2941 x->log2_scale_factor);
2942 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2943 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2944 fprintf (stdout, " sib: base %x index %x scale %x\n",
2945 x->sib.base, x->sib.index, x->sib.scale);
2946 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2947 (x->rex & REX_W) != 0,
2948 (x->rex & REX_R) != 0,
2949 (x->rex & REX_X) != 0,
2950 (x->rex & REX_B) != 0);
09137c09 2951 for (j = 0; j < x->operands; j++)
252b5132 2952 {
09137c09
SP
2953 fprintf (stdout, " #%d: ", j + 1);
2954 pt (x->types[j]);
252b5132 2955 fprintf (stdout, "\n");
dc821c5f 2956 if (x->types[j].bitfield.reg
09137c09 2957 || x->types[j].bitfield.regmmx
1b54b8d7 2958 || x->types[j].bitfield.regsimd
09137c09
SP
2959 || x->types[j].bitfield.sreg2
2960 || x->types[j].bitfield.sreg3
2961 || x->types[j].bitfield.control
2962 || x->types[j].bitfield.debug
2963 || x->types[j].bitfield.test)
2964 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2965 if (operand_type_check (x->types[j], imm))
2966 pe (x->op[j].imms);
2967 if (operand_type_check (x->types[j], disp))
2968 pe (x->op[j].disps);
252b5132
RH
2969 }
2970}
2971
2972static void
d3ce72d0 2973pte (insn_template *t)
252b5132 2974{
09137c09 2975 unsigned int j;
252b5132 2976 fprintf (stdout, " %d operands ", t->operands);
47926f60 2977 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
2978 if (t->extension_opcode != None)
2979 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 2980 if (t->opcode_modifier.d)
252b5132 2981 fprintf (stdout, "D");
40fb9820 2982 if (t->opcode_modifier.w)
252b5132
RH
2983 fprintf (stdout, "W");
2984 fprintf (stdout, "\n");
09137c09 2985 for (j = 0; j < t->operands; j++)
252b5132 2986 {
09137c09
SP
2987 fprintf (stdout, " #%d type ", j + 1);
2988 pt (t->operand_types[j]);
252b5132
RH
2989 fprintf (stdout, "\n");
2990 }
2991}
2992
2993static void
e3bb37b5 2994pe (expressionS *e)
252b5132 2995{
24eab124 2996 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
2997 fprintf (stdout, " add_number %ld (%lx)\n",
2998 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
2999 if (e->X_add_symbol)
3000 {
3001 fprintf (stdout, " add_symbol ");
3002 ps (e->X_add_symbol);
3003 fprintf (stdout, "\n");
3004 }
3005 if (e->X_op_symbol)
3006 {
3007 fprintf (stdout, " op_symbol ");
3008 ps (e->X_op_symbol);
3009 fprintf (stdout, "\n");
3010 }
3011}
3012
3013static void
e3bb37b5 3014ps (symbolS *s)
252b5132
RH
3015{
3016 fprintf (stdout, "%s type %s%s",
3017 S_GET_NAME (s),
3018 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3019 segment_name (S_GET_SEGMENT (s)));
3020}
3021
7b81dfbb 3022static struct type_name
252b5132 3023 {
40fb9820
L
3024 i386_operand_type mask;
3025 const char *name;
252b5132 3026 }
7b81dfbb 3027const type_names[] =
252b5132 3028{
40fb9820
L
3029 { OPERAND_TYPE_REG8, "r8" },
3030 { OPERAND_TYPE_REG16, "r16" },
3031 { OPERAND_TYPE_REG32, "r32" },
3032 { OPERAND_TYPE_REG64, "r64" },
3033 { OPERAND_TYPE_IMM8, "i8" },
3034 { OPERAND_TYPE_IMM8, "i8s" },
3035 { OPERAND_TYPE_IMM16, "i16" },
3036 { OPERAND_TYPE_IMM32, "i32" },
3037 { OPERAND_TYPE_IMM32S, "i32s" },
3038 { OPERAND_TYPE_IMM64, "i64" },
3039 { OPERAND_TYPE_IMM1, "i1" },
3040 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3041 { OPERAND_TYPE_DISP8, "d8" },
3042 { OPERAND_TYPE_DISP16, "d16" },
3043 { OPERAND_TYPE_DISP32, "d32" },
3044 { OPERAND_TYPE_DISP32S, "d32s" },
3045 { OPERAND_TYPE_DISP64, "d64" },
3046 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3047 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3048 { OPERAND_TYPE_CONTROL, "control reg" },
3049 { OPERAND_TYPE_TEST, "test reg" },
3050 { OPERAND_TYPE_DEBUG, "debug reg" },
3051 { OPERAND_TYPE_FLOATREG, "FReg" },
3052 { OPERAND_TYPE_FLOATACC, "FAcc" },
3053 { OPERAND_TYPE_SREG2, "SReg2" },
3054 { OPERAND_TYPE_SREG3, "SReg3" },
3055 { OPERAND_TYPE_ACC, "Acc" },
3056 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3057 { OPERAND_TYPE_REGMMX, "rMMX" },
3058 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3059 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3060 { OPERAND_TYPE_REGZMM, "rZMM" },
3061 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3062 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3063};
3064
3065static void
40fb9820 3066pt (i386_operand_type t)
252b5132 3067{
40fb9820 3068 unsigned int j;
c6fb90c8 3069 i386_operand_type a;
252b5132 3070
40fb9820 3071 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3072 {
3073 a = operand_type_and (t, type_names[j].mask);
0349dc08 3074 if (!operand_type_all_zero (&a))
c6fb90c8
L
3075 fprintf (stdout, "%s, ", type_names[j].name);
3076 }
252b5132
RH
3077 fflush (stdout);
3078}
3079
3080#endif /* DEBUG386 */
3081\f
252b5132 3082static bfd_reloc_code_real_type
3956db08 3083reloc (unsigned int size,
64e74474
AM
3084 int pcrel,
3085 int sign,
3086 bfd_reloc_code_real_type other)
252b5132 3087{
47926f60 3088 if (other != NO_RELOC)
3956db08 3089 {
91d6fa6a 3090 reloc_howto_type *rel;
3956db08
JB
3091
3092 if (size == 8)
3093 switch (other)
3094 {
64e74474
AM
3095 case BFD_RELOC_X86_64_GOT32:
3096 return BFD_RELOC_X86_64_GOT64;
3097 break;
553d1284
L
3098 case BFD_RELOC_X86_64_GOTPLT64:
3099 return BFD_RELOC_X86_64_GOTPLT64;
3100 break;
64e74474
AM
3101 case BFD_RELOC_X86_64_PLTOFF64:
3102 return BFD_RELOC_X86_64_PLTOFF64;
3103 break;
3104 case BFD_RELOC_X86_64_GOTPC32:
3105 other = BFD_RELOC_X86_64_GOTPC64;
3106 break;
3107 case BFD_RELOC_X86_64_GOTPCREL:
3108 other = BFD_RELOC_X86_64_GOTPCREL64;
3109 break;
3110 case BFD_RELOC_X86_64_TPOFF32:
3111 other = BFD_RELOC_X86_64_TPOFF64;
3112 break;
3113 case BFD_RELOC_X86_64_DTPOFF32:
3114 other = BFD_RELOC_X86_64_DTPOFF64;
3115 break;
3116 default:
3117 break;
3956db08 3118 }
e05278af 3119
8ce3d284 3120#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3121 if (other == BFD_RELOC_SIZE32)
3122 {
3123 if (size == 8)
1ab668bf 3124 other = BFD_RELOC_SIZE64;
8fd4256d 3125 if (pcrel)
1ab668bf
AM
3126 {
3127 as_bad (_("there are no pc-relative size relocations"));
3128 return NO_RELOC;
3129 }
8fd4256d 3130 }
8ce3d284 3131#endif
8fd4256d 3132
e05278af 3133 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3134 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3135 sign = -1;
3136
91d6fa6a
NC
3137 rel = bfd_reloc_type_lookup (stdoutput, other);
3138 if (!rel)
3956db08 3139 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3140 else if (size != bfd_get_reloc_size (rel))
3956db08 3141 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3142 bfd_get_reloc_size (rel),
3956db08 3143 size);
91d6fa6a 3144 else if (pcrel && !rel->pc_relative)
3956db08 3145 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3146 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3147 && !sign)
91d6fa6a 3148 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3149 && sign > 0))
3956db08
JB
3150 as_bad (_("relocated field and relocation type differ in signedness"));
3151 else
3152 return other;
3153 return NO_RELOC;
3154 }
252b5132
RH
3155
3156 if (pcrel)
3157 {
3e73aa7c 3158 if (!sign)
3956db08 3159 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3160 switch (size)
3161 {
3162 case 1: return BFD_RELOC_8_PCREL;
3163 case 2: return BFD_RELOC_16_PCREL;
d258b828 3164 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3165 case 8: return BFD_RELOC_64_PCREL;
252b5132 3166 }
3956db08 3167 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3168 }
3169 else
3170 {
3956db08 3171 if (sign > 0)
e5cb08ac 3172 switch (size)
3e73aa7c
JH
3173 {
3174 case 4: return BFD_RELOC_X86_64_32S;
3175 }
3176 else
3177 switch (size)
3178 {
3179 case 1: return BFD_RELOC_8;
3180 case 2: return BFD_RELOC_16;
3181 case 4: return BFD_RELOC_32;
3182 case 8: return BFD_RELOC_64;
3183 }
3956db08
JB
3184 as_bad (_("cannot do %s %u byte relocation"),
3185 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3186 }
3187
0cc9e1d3 3188 return NO_RELOC;
252b5132
RH
3189}
3190
47926f60
KH
3191/* Here we decide which fixups can be adjusted to make them relative to
3192 the beginning of the section instead of the symbol. Basically we need
3193 to make sure that the dynamic relocations are done correctly, so in
3194 some cases we force the original symbol to be used. */
3195
252b5132 3196int
e3bb37b5 3197tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3198{
6d249963 3199#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3200 if (!IS_ELF)
31312f95
AM
3201 return 1;
3202
a161fe53
AM
3203 /* Don't adjust pc-relative references to merge sections in 64-bit
3204 mode. */
3205 if (use_rela_relocations
3206 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3207 && fixP->fx_pcrel)
252b5132 3208 return 0;
31312f95 3209
8d01d9a9
AJ
3210 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3211 and changed later by validate_fix. */
3212 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3213 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3214 return 0;
3215
8fd4256d
L
3216 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3217 for size relocations. */
3218 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3219 || fixP->fx_r_type == BFD_RELOC_SIZE64
3220 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3221 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3222 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3223 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3226 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3236 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3242 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3249 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3250 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3251 return 0;
31312f95 3252#endif
252b5132
RH
3253 return 1;
3254}
252b5132 3255
b4cac588 3256static int
e3bb37b5 3257intel_float_operand (const char *mnemonic)
252b5132 3258{
9306ca4a
JB
3259 /* Note that the value returned is meaningful only for opcodes with (memory)
3260 operands, hence the code here is free to improperly handle opcodes that
3261 have no operands (for better performance and smaller code). */
3262
3263 if (mnemonic[0] != 'f')
3264 return 0; /* non-math */
3265
3266 switch (mnemonic[1])
3267 {
3268 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3269 the fs segment override prefix not currently handled because no
3270 call path can make opcodes without operands get here */
3271 case 'i':
3272 return 2 /* integer op */;
3273 case 'l':
3274 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3275 return 3; /* fldcw/fldenv */
3276 break;
3277 case 'n':
3278 if (mnemonic[2] != 'o' /* fnop */)
3279 return 3; /* non-waiting control op */
3280 break;
3281 case 'r':
3282 if (mnemonic[2] == 's')
3283 return 3; /* frstor/frstpm */
3284 break;
3285 case 's':
3286 if (mnemonic[2] == 'a')
3287 return 3; /* fsave */
3288 if (mnemonic[2] == 't')
3289 {
3290 switch (mnemonic[3])
3291 {
3292 case 'c': /* fstcw */
3293 case 'd': /* fstdw */
3294 case 'e': /* fstenv */
3295 case 's': /* fsts[gw] */
3296 return 3;
3297 }
3298 }
3299 break;
3300 case 'x':
3301 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3302 return 0; /* fxsave/fxrstor are not really math ops */
3303 break;
3304 }
252b5132 3305
9306ca4a 3306 return 1;
252b5132
RH
3307}
3308
c0f3af97
L
3309/* Build the VEX prefix. */
3310
3311static void
d3ce72d0 3312build_vex_prefix (const insn_template *t)
c0f3af97
L
3313{
3314 unsigned int register_specifier;
3315 unsigned int implied_prefix;
3316 unsigned int vector_length;
3317
3318 /* Check register specifier. */
3319 if (i.vex.register_specifier)
43234a1e
L
3320 {
3321 register_specifier =
3322 ~register_number (i.vex.register_specifier) & 0xf;
3323 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3324 }
c0f3af97
L
3325 else
3326 register_specifier = 0xf;
3327
33eaf5de 3328 /* Use 2-byte VEX prefix by swapping destination and source
fa99fab2 3329 operand. */
86fa6981
L
3330 if (i.vec_encoding != vex_encoding_vex3
3331 && i.dir_encoding == dir_encoding_default
fa99fab2 3332 && i.operands == i.reg_operands
7f399153 3333 && i.tm.opcode_modifier.vexopcode == VEX0F
86fa6981 3334 && i.tm.opcode_modifier.load
fa99fab2
L
3335 && i.rex == REX_B)
3336 {
3337 unsigned int xchg = i.operands - 1;
3338 union i386_op temp_op;
3339 i386_operand_type temp_type;
3340
3341 temp_type = i.types[xchg];
3342 i.types[xchg] = i.types[0];
3343 i.types[0] = temp_type;
3344 temp_op = i.op[xchg];
3345 i.op[xchg] = i.op[0];
3346 i.op[0] = temp_op;
3347
9c2799c2 3348 gas_assert (i.rm.mode == 3);
fa99fab2
L
3349
3350 i.rex = REX_R;
3351 xchg = i.rm.regmem;
3352 i.rm.regmem = i.rm.reg;
3353 i.rm.reg = xchg;
3354
3355 /* Use the next insn. */
3356 i.tm = t[1];
3357 }
3358
539f890d
L
3359 if (i.tm.opcode_modifier.vex == VEXScalar)
3360 vector_length = avxscalar;
10c17abd
JB
3361 else if (i.tm.opcode_modifier.vex == VEX256)
3362 vector_length = 1;
539f890d 3363 else
10c17abd 3364 {
56522fc5 3365 unsigned int op;
10c17abd 3366
c7213af9
L
3367 /* Determine vector length from the last multi-length vector
3368 operand. */
10c17abd 3369 vector_length = 0;
56522fc5 3370 for (op = t->operands; op--;)
10c17abd
JB
3371 if (t->operand_types[op].bitfield.xmmword
3372 && t->operand_types[op].bitfield.ymmword
3373 && i.types[op].bitfield.ymmword)
3374 {
3375 vector_length = 1;
3376 break;
3377 }
3378 }
c0f3af97
L
3379
3380 switch ((i.tm.base_opcode >> 8) & 0xff)
3381 {
3382 case 0:
3383 implied_prefix = 0;
3384 break;
3385 case DATA_PREFIX_OPCODE:
3386 implied_prefix = 1;
3387 break;
3388 case REPE_PREFIX_OPCODE:
3389 implied_prefix = 2;
3390 break;
3391 case REPNE_PREFIX_OPCODE:
3392 implied_prefix = 3;
3393 break;
3394 default:
3395 abort ();
3396 }
3397
3398 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3399 if (i.vec_encoding != vex_encoding_vex3
3400 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3401 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3402 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3403 {
3404 /* 2-byte VEX prefix. */
3405 unsigned int r;
3406
3407 i.vex.length = 2;
3408 i.vex.bytes[0] = 0xc5;
3409
3410 /* Check the REX.R bit. */
3411 r = (i.rex & REX_R) ? 0 : 1;
3412 i.vex.bytes[1] = (r << 7
3413 | register_specifier << 3
3414 | vector_length << 2
3415 | implied_prefix);
3416 }
3417 else
3418 {
3419 /* 3-byte VEX prefix. */
3420 unsigned int m, w;
3421
f88c9eb0 3422 i.vex.length = 3;
f88c9eb0 3423
7f399153 3424 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3425 {
7f399153
L
3426 case VEX0F:
3427 m = 0x1;
80de6e00 3428 i.vex.bytes[0] = 0xc4;
7f399153
L
3429 break;
3430 case VEX0F38:
3431 m = 0x2;
80de6e00 3432 i.vex.bytes[0] = 0xc4;
7f399153
L
3433 break;
3434 case VEX0F3A:
3435 m = 0x3;
80de6e00 3436 i.vex.bytes[0] = 0xc4;
7f399153
L
3437 break;
3438 case XOP08:
5dd85c99
SP
3439 m = 0x8;
3440 i.vex.bytes[0] = 0x8f;
7f399153
L
3441 break;
3442 case XOP09:
f88c9eb0
SP
3443 m = 0x9;
3444 i.vex.bytes[0] = 0x8f;
7f399153
L
3445 break;
3446 case XOP0A:
f88c9eb0
SP
3447 m = 0xa;
3448 i.vex.bytes[0] = 0x8f;
7f399153
L
3449 break;
3450 default:
3451 abort ();
f88c9eb0 3452 }
c0f3af97 3453
c0f3af97
L
3454 /* The high 3 bits of the second VEX byte are 1's compliment
3455 of RXB bits from REX. */
3456 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3457
3458 /* Check the REX.W bit. */
3459 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3460 if (i.tm.opcode_modifier.vexw == VEXW1)
3461 w = 1;
c0f3af97
L
3462
3463 i.vex.bytes[2] = (w << 7
3464 | register_specifier << 3
3465 | vector_length << 2
3466 | implied_prefix);
3467 }
3468}
3469
e771e7c9
JB
3470static INLINE bfd_boolean
3471is_evex_encoding (const insn_template *t)
3472{
7091c612 3473 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3474 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3475 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3476}
3477
43234a1e
L
3478/* Build the EVEX prefix. */
3479
3480static void
3481build_evex_prefix (void)
3482{
3483 unsigned int register_specifier;
3484 unsigned int implied_prefix;
3485 unsigned int m, w;
3486 rex_byte vrex_used = 0;
3487
3488 /* Check register specifier. */
3489 if (i.vex.register_specifier)
3490 {
3491 gas_assert ((i.vrex & REX_X) == 0);
3492
3493 register_specifier = i.vex.register_specifier->reg_num;
3494 if ((i.vex.register_specifier->reg_flags & RegRex))
3495 register_specifier += 8;
3496 /* The upper 16 registers are encoded in the fourth byte of the
3497 EVEX prefix. */
3498 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3499 i.vex.bytes[3] = 0x8;
3500 register_specifier = ~register_specifier & 0xf;
3501 }
3502 else
3503 {
3504 register_specifier = 0xf;
3505
3506 /* Encode upper 16 vector index register in the fourth byte of
3507 the EVEX prefix. */
3508 if (!(i.vrex & REX_X))
3509 i.vex.bytes[3] = 0x8;
3510 else
3511 vrex_used |= REX_X;
3512 }
3513
3514 switch ((i.tm.base_opcode >> 8) & 0xff)
3515 {
3516 case 0:
3517 implied_prefix = 0;
3518 break;
3519 case DATA_PREFIX_OPCODE:
3520 implied_prefix = 1;
3521 break;
3522 case REPE_PREFIX_OPCODE:
3523 implied_prefix = 2;
3524 break;
3525 case REPNE_PREFIX_OPCODE:
3526 implied_prefix = 3;
3527 break;
3528 default:
3529 abort ();
3530 }
3531
3532 /* 4 byte EVEX prefix. */
3533 i.vex.length = 4;
3534 i.vex.bytes[0] = 0x62;
3535
3536 /* mmmm bits. */
3537 switch (i.tm.opcode_modifier.vexopcode)
3538 {
3539 case VEX0F:
3540 m = 1;
3541 break;
3542 case VEX0F38:
3543 m = 2;
3544 break;
3545 case VEX0F3A:
3546 m = 3;
3547 break;
3548 default:
3549 abort ();
3550 break;
3551 }
3552
3553 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3554 bits from REX. */
3555 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3556
3557 /* The fifth bit of the second EVEX byte is 1's compliment of the
3558 REX_R bit in VREX. */
3559 if (!(i.vrex & REX_R))
3560 i.vex.bytes[1] |= 0x10;
3561 else
3562 vrex_used |= REX_R;
3563
3564 if ((i.reg_operands + i.imm_operands) == i.operands)
3565 {
3566 /* When all operands are registers, the REX_X bit in REX is not
3567 used. We reuse it to encode the upper 16 registers, which is
3568 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3569 as 1's compliment. */
3570 if ((i.vrex & REX_B))
3571 {
3572 vrex_used |= REX_B;
3573 i.vex.bytes[1] &= ~0x40;
3574 }
3575 }
3576
3577 /* EVEX instructions shouldn't need the REX prefix. */
3578 i.vrex &= ~vrex_used;
3579 gas_assert (i.vrex == 0);
3580
3581 /* Check the REX.W bit. */
3582 w = (i.rex & REX_W) ? 1 : 0;
3583 if (i.tm.opcode_modifier.vexw)
3584 {
3585 if (i.tm.opcode_modifier.vexw == VEXW1)
3586 w = 1;
3587 }
3588 /* If w is not set it means we are dealing with WIG instruction. */
3589 else if (!w)
3590 {
3591 if (evexwig == evexw1)
3592 w = 1;
3593 }
3594
3595 /* Encode the U bit. */
3596 implied_prefix |= 0x4;
3597
3598 /* The third byte of the EVEX prefix. */
3599 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3600
3601 /* The fourth byte of the EVEX prefix. */
3602 /* The zeroing-masking bit. */
3603 if (i.mask && i.mask->zeroing)
3604 i.vex.bytes[3] |= 0x80;
3605
3606 /* Don't always set the broadcast bit if there is no RC. */
3607 if (!i.rounding)
3608 {
3609 /* Encode the vector length. */
3610 unsigned int vec_length;
3611
e771e7c9
JB
3612 if (!i.tm.opcode_modifier.evex
3613 || i.tm.opcode_modifier.evex == EVEXDYN)
3614 {
56522fc5 3615 unsigned int op;
e771e7c9 3616
c7213af9
L
3617 /* Determine vector length from the last multi-length vector
3618 operand. */
e771e7c9 3619 vec_length = 0;
56522fc5 3620 for (op = i.operands; op--;)
e771e7c9
JB
3621 if (i.tm.operand_types[op].bitfield.xmmword
3622 + i.tm.operand_types[op].bitfield.ymmword
3623 + i.tm.operand_types[op].bitfield.zmmword > 1)
3624 {
3625 if (i.types[op].bitfield.zmmword)
c7213af9
L
3626 {
3627 i.tm.opcode_modifier.evex = EVEX512;
3628 break;
3629 }
e771e7c9 3630 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3631 {
3632 i.tm.opcode_modifier.evex = EVEX256;
3633 break;
3634 }
e771e7c9 3635 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3636 {
3637 i.tm.opcode_modifier.evex = EVEX128;
3638 break;
3639 }
625cbd7a
JB
3640 else if (i.broadcast && (int) op == i.broadcast->operand)
3641 {
3642 switch ((i.tm.operand_types[op].bitfield.dword ? 4 : 8)
3643 * i.broadcast->type)
3644 {
3645 case 64:
3646 i.tm.opcode_modifier.evex = EVEX512;
3647 break;
3648 case 32:
3649 i.tm.opcode_modifier.evex = EVEX256;
3650 break;
3651 case 16:
3652 i.tm.opcode_modifier.evex = EVEX128;
3653 break;
3654 default:
c7213af9 3655 abort ();
625cbd7a 3656 }
c7213af9 3657 break;
625cbd7a 3658 }
e771e7c9 3659 }
c7213af9 3660
56522fc5 3661 if (op >= MAX_OPERANDS)
c7213af9 3662 abort ();
e771e7c9
JB
3663 }
3664
43234a1e
L
3665 switch (i.tm.opcode_modifier.evex)
3666 {
3667 case EVEXLIG: /* LL' is ignored */
3668 vec_length = evexlig << 5;
3669 break;
3670 case EVEX128:
3671 vec_length = 0 << 5;
3672 break;
3673 case EVEX256:
3674 vec_length = 1 << 5;
3675 break;
3676 case EVEX512:
3677 vec_length = 2 << 5;
3678 break;
3679 default:
3680 abort ();
3681 break;
3682 }
3683 i.vex.bytes[3] |= vec_length;
3684 /* Encode the broadcast bit. */
3685 if (i.broadcast)
3686 i.vex.bytes[3] |= 0x10;
3687 }
3688 else
3689 {
3690 if (i.rounding->type != saeonly)
3691 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3692 else
d3d3c6db 3693 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3694 }
3695
3696 if (i.mask && i.mask->mask)
3697 i.vex.bytes[3] |= i.mask->mask->reg_num;
3698}
3699
65da13b5
L
3700static void
3701process_immext (void)
3702{
3703 expressionS *exp;
3704
4c692bc7
JB
3705 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3706 && i.operands > 0)
65da13b5 3707 {
4c692bc7
JB
3708 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3709 with an opcode suffix which is coded in the same place as an
3710 8-bit immediate field would be.
3711 Here we check those operands and remove them afterwards. */
65da13b5
L
3712 unsigned int x;
3713
3714 for (x = 0; x < i.operands; x++)
4c692bc7 3715 if (register_number (i.op[x].regs) != x)
65da13b5 3716 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3717 register_prefix, i.op[x].regs->reg_name, x + 1,
3718 i.tm.name);
3719
3720 i.operands = 0;
65da13b5
L
3721 }
3722
9916071f
AP
3723 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3724 {
3725 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3726 suffix which is coded in the same place as an 8-bit immediate
3727 field would be.
3728 Here we check those operands and remove them afterwards. */
3729 unsigned int x;
3730
3731 if (i.operands != 3)
3732 abort();
3733
3734 for (x = 0; x < 2; x++)
3735 if (register_number (i.op[x].regs) != x)
3736 goto bad_register_operand;
3737
3738 /* Check for third operand for mwaitx/monitorx insn. */
3739 if (register_number (i.op[x].regs)
3740 != (x + (i.tm.extension_opcode == 0xfb)))
3741 {
3742bad_register_operand:
3743 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3744 register_prefix, i.op[x].regs->reg_name, x+1,
3745 i.tm.name);
3746 }
3747
3748 i.operands = 0;
3749 }
3750
c0f3af97 3751 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3752 which is coded in the same place as an 8-bit immediate field
3753 would be. Here we fake an 8-bit immediate operand from the
3754 opcode suffix stored in tm.extension_opcode.
3755
c1e679ec 3756 AVX instructions also use this encoding, for some of
c0f3af97 3757 3 argument instructions. */
65da13b5 3758
43234a1e 3759 gas_assert (i.imm_operands <= 1
7ab9ffdd 3760 && (i.operands <= 2
43234a1e 3761 || ((i.tm.opcode_modifier.vex
e771e7c9
JB
3762 || i.tm.opcode_modifier.vexopcode
3763 || is_evex_encoding (&i.tm))
7ab9ffdd 3764 && i.operands <= 4)));
65da13b5
L
3765
3766 exp = &im_expressions[i.imm_operands++];
3767 i.op[i.operands].imms = exp;
3768 i.types[i.operands] = imm8;
3769 i.operands++;
3770 exp->X_op = O_constant;
3771 exp->X_add_number = i.tm.extension_opcode;
3772 i.tm.extension_opcode = None;
3773}
3774
42164a71
L
3775
3776static int
3777check_hle (void)
3778{
3779 switch (i.tm.opcode_modifier.hleprefixok)
3780 {
3781 default:
3782 abort ();
82c2def5 3783 case HLEPrefixNone:
165de32a
L
3784 as_bad (_("invalid instruction `%s' after `%s'"),
3785 i.tm.name, i.hle_prefix);
42164a71 3786 return 0;
82c2def5 3787 case HLEPrefixLock:
42164a71
L
3788 if (i.prefix[LOCK_PREFIX])
3789 return 1;
165de32a 3790 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3791 return 0;
82c2def5 3792 case HLEPrefixAny:
42164a71 3793 return 1;
82c2def5 3794 case HLEPrefixRelease:
42164a71
L
3795 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3796 {
3797 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3798 i.tm.name);
3799 return 0;
3800 }
3801 if (i.mem_operands == 0
3802 || !operand_type_check (i.types[i.operands - 1], anymem))
3803 {
3804 as_bad (_("memory destination needed for instruction `%s'"
3805 " after `xrelease'"), i.tm.name);
3806 return 0;
3807 }
3808 return 1;
3809 }
3810}
3811
b6f8c7c4
L
3812/* Try the shortest encoding by shortening operand size. */
3813
3814static void
3815optimize_encoding (void)
3816{
3817 int j;
3818
3819 if (optimize_for_space
3820 && i.reg_operands == 1
3821 && i.imm_operands == 1
3822 && !i.types[1].bitfield.byte
3823 && i.op[0].imms->X_op == O_constant
3824 && fits_in_imm7 (i.op[0].imms->X_add_number)
3825 && ((i.tm.base_opcode == 0xa8
3826 && i.tm.extension_opcode == None)
3827 || (i.tm.base_opcode == 0xf6
3828 && i.tm.extension_opcode == 0x0)))
3829 {
3830 /* Optimize: -Os:
3831 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3832 */
3833 unsigned int base_regnum = i.op[1].regs->reg_num;
3834 if (flag_code == CODE_64BIT || base_regnum < 4)
3835 {
3836 i.types[1].bitfield.byte = 1;
3837 /* Ignore the suffix. */
3838 i.suffix = 0;
3839 if (base_regnum >= 4
3840 && !(i.op[1].regs->reg_flags & RegRex))
3841 {
3842 /* Handle SP, BP, SI and DI registers. */
3843 if (i.types[1].bitfield.word)
3844 j = 16;
3845 else if (i.types[1].bitfield.dword)
3846 j = 32;
3847 else
3848 j = 48;
3849 i.op[1].regs -= j;
3850 }
3851 }
3852 }
3853 else if (flag_code == CODE_64BIT
d3d50934
L
3854 && ((i.types[1].bitfield.qword
3855 && i.reg_operands == 1
b6f8c7c4
L
3856 && i.imm_operands == 1
3857 && i.op[0].imms->X_op == O_constant
3858 && ((i.tm.base_opcode == 0xb0
3859 && i.tm.extension_opcode == None
3860 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3861 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3862 && (((i.tm.base_opcode == 0x24
3863 || i.tm.base_opcode == 0xa8)
3864 && i.tm.extension_opcode == None)
3865 || (i.tm.base_opcode == 0x80
3866 && i.tm.extension_opcode == 0x4)
3867 || ((i.tm.base_opcode == 0xf6
3868 || i.tm.base_opcode == 0xc6)
3869 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3870 || (i.types[0].bitfield.qword
3871 && ((i.reg_operands == 2
3872 && i.op[0].regs == i.op[1].regs
3873 && ((i.tm.base_opcode == 0x30
3874 || i.tm.base_opcode == 0x28)
3875 && i.tm.extension_opcode == None))
3876 || (i.reg_operands == 1
3877 && i.operands == 1
3878 && i.tm.base_opcode == 0x30
3879 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3880 {
3881 /* Optimize: -O:
3882 andq $imm31, %r64 -> andl $imm31, %r32
3883 testq $imm31, %r64 -> testl $imm31, %r32
3884 xorq %r64, %r64 -> xorl %r32, %r32
3885 subq %r64, %r64 -> subl %r32, %r32
3886 movq $imm31, %r64 -> movl $imm31, %r32
3887 movq $imm32, %r64 -> movl $imm32, %r32
3888 */
3889 i.tm.opcode_modifier.norex64 = 1;
3890 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3891 {
3892 /* Handle
3893 movq $imm31, %r64 -> movl $imm31, %r32
3894 movq $imm32, %r64 -> movl $imm32, %r32
3895 */
3896 i.tm.operand_types[0].bitfield.imm32 = 1;
3897 i.tm.operand_types[0].bitfield.imm32s = 0;
3898 i.tm.operand_types[0].bitfield.imm64 = 0;
3899 i.types[0].bitfield.imm32 = 1;
3900 i.types[0].bitfield.imm32s = 0;
3901 i.types[0].bitfield.imm64 = 0;
3902 i.types[1].bitfield.dword = 1;
3903 i.types[1].bitfield.qword = 0;
3904 if (i.tm.base_opcode == 0xc6)
3905 {
3906 /* Handle
3907 movq $imm31, %r64 -> movl $imm31, %r32
3908 */
3909 i.tm.base_opcode = 0xb0;
3910 i.tm.extension_opcode = None;
3911 i.tm.opcode_modifier.shortform = 1;
3912 i.tm.opcode_modifier.modrm = 0;
3913 }
3914 }
3915 }
3916 else if (optimize > 1
3917 && i.reg_operands == 3
3918 && i.op[0].regs == i.op[1].regs
3919 && !i.types[2].bitfield.xmmword
3920 && (i.tm.opcode_modifier.vex
7a69eac3 3921 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3922 && !i.rounding
e771e7c9 3923 && is_evex_encoding (&i.tm)
80c34c38
L
3924 && (i.vec_encoding != vex_encoding_evex
3925 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612
JB
3926 || (i.tm.operand_types[2].bitfield.zmmword
3927 && i.types[2].bitfield.ymmword)
0089dace 3928 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3929 && ((i.tm.base_opcode == 0x55
3930 || i.tm.base_opcode == 0x6655
3931 || i.tm.base_opcode == 0x66df
3932 || i.tm.base_opcode == 0x57
3933 || i.tm.base_opcode == 0x6657
8305403a
L
3934 || i.tm.base_opcode == 0x66ef
3935 || i.tm.base_opcode == 0x66f8
3936 || i.tm.base_opcode == 0x66f9
3937 || i.tm.base_opcode == 0x66fa
3938 || i.tm.base_opcode == 0x66fb)
b6f8c7c4
L
3939 && i.tm.extension_opcode == None))
3940 {
3941 /* Optimize: -O2:
8305403a
L
3942 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3943 vpsubq and vpsubw:
b6f8c7c4
L
3944 EVEX VOP %zmmM, %zmmM, %zmmN
3945 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3946 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3947 EVEX VOP %ymmM, %ymmM, %ymmN
3948 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3949 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3950 VEX VOP %ymmM, %ymmM, %ymmN
3951 -> VEX VOP %xmmM, %xmmM, %xmmN
3952 VOP, one of vpandn and vpxor:
3953 VEX VOP %ymmM, %ymmM, %ymmN
3954 -> VEX VOP %xmmM, %xmmM, %xmmN
3955 VOP, one of vpandnd and vpandnq:
3956 EVEX VOP %zmmM, %zmmM, %zmmN
3957 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3958 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3959 EVEX VOP %ymmM, %ymmM, %ymmN
3960 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3961 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3962 VOP, one of vpxord and vpxorq:
3963 EVEX VOP %zmmM, %zmmM, %zmmN
3964 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3965 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3966 EVEX VOP %ymmM, %ymmM, %ymmN
3967 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3968 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3969 */
e771e7c9 3970 if (is_evex_encoding (&i.tm))
b6f8c7c4 3971 {
0089dace 3972 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
3973 i.tm.opcode_modifier.evex = EVEX128;
3974 else
3975 {
3976 i.tm.opcode_modifier.vex = VEX128;
3977 i.tm.opcode_modifier.vexw = VEXW0;
3978 i.tm.opcode_modifier.evex = 0;
3979 }
3980 }
3981 else
3982 i.tm.opcode_modifier.vex = VEX128;
3983
3984 if (i.tm.opcode_modifier.vex)
3985 for (j = 0; j < 3; j++)
3986 {
3987 i.types[j].bitfield.xmmword = 1;
3988 i.types[j].bitfield.ymmword = 0;
3989 }
3990 }
3991}
3992
252b5132
RH
3993/* This is the guts of the machine-dependent assembler. LINE points to a
3994 machine dependent instruction. This function is supposed to emit
3995 the frags/bytes it assembles to. */
3996
3997void
65da13b5 3998md_assemble (char *line)
252b5132 3999{
40fb9820 4000 unsigned int j;
83b16ac6 4001 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4002 const insn_template *t;
252b5132 4003
47926f60 4004 /* Initialize globals. */
252b5132
RH
4005 memset (&i, '\0', sizeof (i));
4006 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4007 i.reloc[j] = NO_RELOC;
252b5132
RH
4008 memset (disp_expressions, '\0', sizeof (disp_expressions));
4009 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4010 save_stack_p = save_stack;
252b5132
RH
4011
4012 /* First parse an instruction mnemonic & call i386_operand for the operands.
4013 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4014 start of a (possibly prefixed) mnemonic. */
252b5132 4015
29b0f896
AM
4016 line = parse_insn (line, mnemonic);
4017 if (line == NULL)
4018 return;
83b16ac6 4019 mnem_suffix = i.suffix;
252b5132 4020
29b0f896 4021 line = parse_operands (line, mnemonic);
ee86248c 4022 this_operand = -1;
8325cc63
JB
4023 xfree (i.memop1_string);
4024 i.memop1_string = NULL;
29b0f896
AM
4025 if (line == NULL)
4026 return;
252b5132 4027
29b0f896
AM
4028 /* Now we've parsed the mnemonic into a set of templates, and have the
4029 operands at hand. */
4030
4031 /* All intel opcodes have reversed operands except for "bound" and
4032 "enter". We also don't reverse intersegment "jmp" and "call"
4033 instructions with 2 immediate operands so that the immediate segment
050dfa73 4034 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4035 if (intel_syntax
4036 && i.operands > 1
29b0f896 4037 && (strcmp (mnemonic, "bound") != 0)
30123838 4038 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4039 && !(operand_type_check (i.types[0], imm)
4040 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4041 swap_operands ();
4042
ec56d5c0
JB
4043 /* The order of the immediates should be reversed
4044 for 2 immediates extrq and insertq instructions */
4045 if (i.imm_operands == 2
4046 && (strcmp (mnemonic, "extrq") == 0
4047 || strcmp (mnemonic, "insertq") == 0))
4048 swap_2_operands (0, 1);
4049
29b0f896
AM
4050 if (i.imm_operands)
4051 optimize_imm ();
4052
b300c311
L
4053 /* Don't optimize displacement for movabs since it only takes 64bit
4054 displacement. */
4055 if (i.disp_operands
a501d77e 4056 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4057 && (flag_code != CODE_64BIT
4058 || strcmp (mnemonic, "movabs") != 0))
4059 optimize_disp ();
29b0f896
AM
4060
4061 /* Next, we find a template that matches the given insn,
4062 making sure the overlap of the given operands types is consistent
4063 with the template operand types. */
252b5132 4064
83b16ac6 4065 if (!(t = match_template (mnem_suffix)))
29b0f896 4066 return;
252b5132 4067
7bab8ab5 4068 if (sse_check != check_none
81f8a913 4069 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4070 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4071 && (i.tm.cpu_flags.bitfield.cpusse
4072 || i.tm.cpu_flags.bitfield.cpusse2
4073 || i.tm.cpu_flags.bitfield.cpusse3
4074 || i.tm.cpu_flags.bitfield.cpussse3
4075 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4076 || i.tm.cpu_flags.bitfield.cpusse4_2
4077 || i.tm.cpu_flags.bitfield.cpupclmul
4078 || i.tm.cpu_flags.bitfield.cpuaes
4079 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4080 {
7bab8ab5 4081 (sse_check == check_warning
daf50ae7
L
4082 ? as_warn
4083 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4084 }
4085
321fd21e
L
4086 /* Zap movzx and movsx suffix. The suffix has been set from
4087 "word ptr" or "byte ptr" on the source operand in Intel syntax
4088 or extracted from mnemonic in AT&T syntax. But we'll use
4089 the destination register to choose the suffix for encoding. */
4090 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4091 {
321fd21e
L
4092 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4093 there is no suffix, the default will be byte extension. */
4094 if (i.reg_operands != 2
4095 && !i.suffix
7ab9ffdd 4096 && intel_syntax)
321fd21e
L
4097 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4098
4099 i.suffix = 0;
cd61ebfe 4100 }
24eab124 4101
40fb9820 4102 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4103 if (!add_prefix (FWAIT_OPCODE))
4104 return;
252b5132 4105
d5de92cf
L
4106 /* Check if REP prefix is OK. */
4107 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4108 {
4109 as_bad (_("invalid instruction `%s' after `%s'"),
4110 i.tm.name, i.rep_prefix);
4111 return;
4112 }
4113
c1ba0266
L
4114 /* Check for lock without a lockable instruction. Destination operand
4115 must be memory unless it is xchg (0x86). */
c32fa91d
L
4116 if (i.prefix[LOCK_PREFIX]
4117 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4118 || i.mem_operands == 0
4119 || (i.tm.base_opcode != 0x86
4120 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4121 {
4122 as_bad (_("expecting lockable instruction after `lock'"));
4123 return;
4124 }
4125
42164a71 4126 /* Check if HLE prefix is OK. */
165de32a 4127 if (i.hle_prefix && !check_hle ())
42164a71
L
4128 return;
4129
7e8b059b
L
4130 /* Check BND prefix. */
4131 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4132 as_bad (_("expecting valid branch instruction after `bnd'"));
4133
04ef582a 4134 /* Check NOTRACK prefix. */
9fef80d6
L
4135 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4136 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4137
327e8c42
JB
4138 if (i.tm.cpu_flags.bitfield.cpumpx)
4139 {
4140 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4141 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4142 else if (flag_code != CODE_16BIT
4143 ? i.prefix[ADDR_PREFIX]
4144 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4145 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4146 }
7e8b059b
L
4147
4148 /* Insert BND prefix. */
76d3a78a
JB
4149 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4150 {
4151 if (!i.prefix[BND_PREFIX])
4152 add_prefix (BND_PREFIX_OPCODE);
4153 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4154 {
4155 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4156 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4157 }
4158 }
7e8b059b 4159
29b0f896 4160 /* Check string instruction segment overrides. */
40fb9820 4161 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4162 {
4163 if (!check_string ())
5dd0794d 4164 return;
fc0763e6 4165 i.disp_operands = 0;
29b0f896 4166 }
5dd0794d 4167
b6f8c7c4
L
4168 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4169 optimize_encoding ();
4170
29b0f896
AM
4171 if (!process_suffix ())
4172 return;
e413e4e9 4173
bc0844ae
L
4174 /* Update operand types. */
4175 for (j = 0; j < i.operands; j++)
4176 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4177
29b0f896
AM
4178 /* Make still unresolved immediate matches conform to size of immediate
4179 given in i.suffix. */
4180 if (!finalize_imm ())
4181 return;
252b5132 4182
40fb9820 4183 if (i.types[0].bitfield.imm1)
29b0f896 4184 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4185
9afe6eb8
L
4186 /* We only need to check those implicit registers for instructions
4187 with 3 operands or less. */
4188 if (i.operands <= 3)
4189 for (j = 0; j < i.operands; j++)
4190 if (i.types[j].bitfield.inoutportreg
4191 || i.types[j].bitfield.shiftcount
1b54b8d7 4192 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4193 i.reg_operands--;
40fb9820 4194
c0f3af97
L
4195 /* ImmExt should be processed after SSE2AVX. */
4196 if (!i.tm.opcode_modifier.sse2avx
4197 && i.tm.opcode_modifier.immext)
65da13b5 4198 process_immext ();
252b5132 4199
29b0f896
AM
4200 /* For insns with operands there are more diddles to do to the opcode. */
4201 if (i.operands)
4202 {
4203 if (!process_operands ())
4204 return;
4205 }
40fb9820 4206 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4207 {
4208 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4209 as_warn (_("translating to `%sp'"), i.tm.name);
4210 }
252b5132 4211
e771e7c9
JB
4212 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4213 || is_evex_encoding (&i.tm))
9e5e5283
L
4214 {
4215 if (flag_code == CODE_16BIT)
4216 {
4217 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4218 i.tm.name);
4219 return;
4220 }
c0f3af97 4221
9e5e5283
L
4222 if (i.tm.opcode_modifier.vex)
4223 build_vex_prefix (t);
4224 else
4225 build_evex_prefix ();
4226 }
43234a1e 4227
5dd85c99
SP
4228 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4229 instructions may define INT_OPCODE as well, so avoid this corner
4230 case for those instructions that use MODRM. */
4231 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4232 && !i.tm.opcode_modifier.modrm
4233 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4234 {
4235 i.tm.base_opcode = INT3_OPCODE;
4236 i.imm_operands = 0;
4237 }
252b5132 4238
40fb9820
L
4239 if ((i.tm.opcode_modifier.jump
4240 || i.tm.opcode_modifier.jumpbyte
4241 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4242 && i.op[0].disps->X_op == O_constant)
4243 {
4244 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4245 the absolute address given by the constant. Since ix86 jumps and
4246 calls are pc relative, we need to generate a reloc. */
4247 i.op[0].disps->X_add_symbol = &abs_symbol;
4248 i.op[0].disps->X_op = O_symbol;
4249 }
252b5132 4250
40fb9820 4251 if (i.tm.opcode_modifier.rex64)
161a04f6 4252 i.rex |= REX_W;
252b5132 4253
29b0f896
AM
4254 /* For 8 bit registers we need an empty rex prefix. Also if the
4255 instruction already has a prefix, we need to convert old
4256 registers to new ones. */
773f551c 4257
dc821c5f 4258 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4259 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4260 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4261 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4262 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4263 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4264 && i.rex != 0))
4265 {
4266 int x;
726c5dcd 4267
29b0f896
AM
4268 i.rex |= REX_OPCODE;
4269 for (x = 0; x < 2; x++)
4270 {
4271 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4272 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4273 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4274 {
29b0f896
AM
4275 /* In case it is "hi" register, give up. */
4276 if (i.op[x].regs->reg_num > 3)
a540244d 4277 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4278 "instruction requiring REX prefix."),
a540244d 4279 register_prefix, i.op[x].regs->reg_name);
773f551c 4280
29b0f896
AM
4281 /* Otherwise it is equivalent to the extended register.
4282 Since the encoding doesn't change this is merely
4283 cosmetic cleanup for debug output. */
4284
4285 i.op[x].regs = i.op[x].regs + 8;
773f551c 4286 }
29b0f896
AM
4287 }
4288 }
773f551c 4289
6b6b6807
L
4290 if (i.rex == 0 && i.rex_encoding)
4291 {
4292 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4293 that uses legacy register. If it is "hi" register, don't add
4294 the REX_OPCODE byte. */
4295 int x;
4296 for (x = 0; x < 2; x++)
4297 if (i.types[x].bitfield.reg
4298 && i.types[x].bitfield.byte
4299 && (i.op[x].regs->reg_flags & RegRex64) == 0
4300 && i.op[x].regs->reg_num > 3)
4301 {
4302 i.rex_encoding = FALSE;
4303 break;
4304 }
4305
4306 if (i.rex_encoding)
4307 i.rex = REX_OPCODE;
4308 }
4309
7ab9ffdd 4310 if (i.rex != 0)
29b0f896
AM
4311 add_prefix (REX_OPCODE | i.rex);
4312
4313 /* We are ready to output the insn. */
4314 output_insn ();
4315}
4316
4317static char *
e3bb37b5 4318parse_insn (char *line, char *mnemonic)
29b0f896
AM
4319{
4320 char *l = line;
4321 char *token_start = l;
4322 char *mnem_p;
5c6af06e 4323 int supported;
d3ce72d0 4324 const insn_template *t;
b6169b20 4325 char *dot_p = NULL;
29b0f896 4326
29b0f896
AM
4327 while (1)
4328 {
4329 mnem_p = mnemonic;
4330 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4331 {
b6169b20
L
4332 if (*mnem_p == '.')
4333 dot_p = mnem_p;
29b0f896
AM
4334 mnem_p++;
4335 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4336 {
29b0f896
AM
4337 as_bad (_("no such instruction: `%s'"), token_start);
4338 return NULL;
4339 }
4340 l++;
4341 }
4342 if (!is_space_char (*l)
4343 && *l != END_OF_INSN
e44823cf
JB
4344 && (intel_syntax
4345 || (*l != PREFIX_SEPARATOR
4346 && *l != ',')))
29b0f896
AM
4347 {
4348 as_bad (_("invalid character %s in mnemonic"),
4349 output_invalid (*l));
4350 return NULL;
4351 }
4352 if (token_start == l)
4353 {
e44823cf 4354 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4355 as_bad (_("expecting prefix; got nothing"));
4356 else
4357 as_bad (_("expecting mnemonic; got nothing"));
4358 return NULL;
4359 }
45288df1 4360
29b0f896 4361 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4362 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4363
29b0f896
AM
4364 if (*l != END_OF_INSN
4365 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4366 && current_templates
40fb9820 4367 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4368 {
c6fb90c8 4369 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4370 {
4371 as_bad ((flag_code != CODE_64BIT
4372 ? _("`%s' is only supported in 64-bit mode")
4373 : _("`%s' is not supported in 64-bit mode")),
4374 current_templates->start->name);
4375 return NULL;
4376 }
29b0f896
AM
4377 /* If we are in 16-bit mode, do not allow addr16 or data16.
4378 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4379 if ((current_templates->start->opcode_modifier.size16
4380 || current_templates->start->opcode_modifier.size32)
29b0f896 4381 && flag_code != CODE_64BIT
40fb9820 4382 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4383 ^ (flag_code == CODE_16BIT)))
4384 {
4385 as_bad (_("redundant %s prefix"),
4386 current_templates->start->name);
4387 return NULL;
45288df1 4388 }
86fa6981 4389 if (current_templates->start->opcode_length == 0)
29b0f896 4390 {
86fa6981
L
4391 /* Handle pseudo prefixes. */
4392 switch (current_templates->start->base_opcode)
4393 {
4394 case 0x0:
4395 /* {disp8} */
4396 i.disp_encoding = disp_encoding_8bit;
4397 break;
4398 case 0x1:
4399 /* {disp32} */
4400 i.disp_encoding = disp_encoding_32bit;
4401 break;
4402 case 0x2:
4403 /* {load} */
4404 i.dir_encoding = dir_encoding_load;
4405 break;
4406 case 0x3:
4407 /* {store} */
4408 i.dir_encoding = dir_encoding_store;
4409 break;
4410 case 0x4:
4411 /* {vex2} */
4412 i.vec_encoding = vex_encoding_vex2;
4413 break;
4414 case 0x5:
4415 /* {vex3} */
4416 i.vec_encoding = vex_encoding_vex3;
4417 break;
4418 case 0x6:
4419 /* {evex} */
4420 i.vec_encoding = vex_encoding_evex;
4421 break;
6b6b6807
L
4422 case 0x7:
4423 /* {rex} */
4424 i.rex_encoding = TRUE;
4425 break;
b6f8c7c4
L
4426 case 0x8:
4427 /* {nooptimize} */
4428 i.no_optimize = TRUE;
4429 break;
86fa6981
L
4430 default:
4431 abort ();
4432 }
4433 }
4434 else
4435 {
4436 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4437 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4438 {
4e9ac44a
L
4439 case PREFIX_EXIST:
4440 return NULL;
4441 case PREFIX_DS:
d777820b 4442 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4443 i.notrack_prefix = current_templates->start->name;
4444 break;
4445 case PREFIX_REP:
4446 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4447 i.hle_prefix = current_templates->start->name;
4448 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4449 i.bnd_prefix = current_templates->start->name;
4450 else
4451 i.rep_prefix = current_templates->start->name;
4452 break;
4453 default:
4454 break;
86fa6981 4455 }
29b0f896
AM
4456 }
4457 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4458 token_start = ++l;
4459 }
4460 else
4461 break;
4462 }
45288df1 4463
30a55f88 4464 if (!current_templates)
b6169b20 4465 {
f8a5c266
L
4466 /* Check if we should swap operand or force 32bit displacement in
4467 encoding. */
30a55f88 4468 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
86fa6981 4469 i.dir_encoding = dir_encoding_store;
8d63c93e 4470 else if (mnem_p - 3 == dot_p
a501d77e
L
4471 && dot_p[1] == 'd'
4472 && dot_p[2] == '8')
4473 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4474 else if (mnem_p - 4 == dot_p
f8a5c266
L
4475 && dot_p[1] == 'd'
4476 && dot_p[2] == '3'
4477 && dot_p[3] == '2')
a501d77e 4478 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4479 else
4480 goto check_suffix;
4481 mnem_p = dot_p;
4482 *dot_p = '\0';
d3ce72d0 4483 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4484 }
4485
29b0f896
AM
4486 if (!current_templates)
4487 {
b6169b20 4488check_suffix:
29b0f896
AM
4489 /* See if we can get a match by trimming off a suffix. */
4490 switch (mnem_p[-1])
4491 {
4492 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4493 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4494 i.suffix = SHORT_MNEM_SUFFIX;
4495 else
1a0670f3 4496 /* Fall through. */
29b0f896
AM
4497 case BYTE_MNEM_SUFFIX:
4498 case QWORD_MNEM_SUFFIX:
4499 i.suffix = mnem_p[-1];
4500 mnem_p[-1] = '\0';
d3ce72d0
NC
4501 current_templates = (const templates *) hash_find (op_hash,
4502 mnemonic);
29b0f896
AM
4503 break;
4504 case SHORT_MNEM_SUFFIX:
4505 case LONG_MNEM_SUFFIX:
4506 if (!intel_syntax)
4507 {
4508 i.suffix = mnem_p[-1];
4509 mnem_p[-1] = '\0';
d3ce72d0
NC
4510 current_templates = (const templates *) hash_find (op_hash,
4511 mnemonic);
29b0f896
AM
4512 }
4513 break;
252b5132 4514
29b0f896
AM
4515 /* Intel Syntax. */
4516 case 'd':
4517 if (intel_syntax)
4518 {
9306ca4a 4519 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4520 i.suffix = SHORT_MNEM_SUFFIX;
4521 else
4522 i.suffix = LONG_MNEM_SUFFIX;
4523 mnem_p[-1] = '\0';
d3ce72d0
NC
4524 current_templates = (const templates *) hash_find (op_hash,
4525 mnemonic);
29b0f896
AM
4526 }
4527 break;
4528 }
4529 if (!current_templates)
4530 {
4531 as_bad (_("no such instruction: `%s'"), token_start);
4532 return NULL;
4533 }
4534 }
252b5132 4535
40fb9820
L
4536 if (current_templates->start->opcode_modifier.jump
4537 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4538 {
4539 /* Check for a branch hint. We allow ",pt" and ",pn" for
4540 predict taken and predict not taken respectively.
4541 I'm not sure that branch hints actually do anything on loop
4542 and jcxz insns (JumpByte) for current Pentium4 chips. They
4543 may work in the future and it doesn't hurt to accept them
4544 now. */
4545 if (l[0] == ',' && l[1] == 'p')
4546 {
4547 if (l[2] == 't')
4548 {
4549 if (!add_prefix (DS_PREFIX_OPCODE))
4550 return NULL;
4551 l += 3;
4552 }
4553 else if (l[2] == 'n')
4554 {
4555 if (!add_prefix (CS_PREFIX_OPCODE))
4556 return NULL;
4557 l += 3;
4558 }
4559 }
4560 }
4561 /* Any other comma loses. */
4562 if (*l == ',')
4563 {
4564 as_bad (_("invalid character %s in mnemonic"),
4565 output_invalid (*l));
4566 return NULL;
4567 }
252b5132 4568
29b0f896 4569 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4570 supported = 0;
4571 for (t = current_templates->start; t < current_templates->end; ++t)
4572 {
c0f3af97
L
4573 supported |= cpu_flags_match (t);
4574 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4575 {
4576 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4577 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4578
548d0ee6
JB
4579 return l;
4580 }
29b0f896 4581 }
3629bb00 4582
548d0ee6
JB
4583 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4584 as_bad (flag_code == CODE_64BIT
4585 ? _("`%s' is not supported in 64-bit mode")
4586 : _("`%s' is only supported in 64-bit mode"),
4587 current_templates->start->name);
4588 else
4589 as_bad (_("`%s' is not supported on `%s%s'"),
4590 current_templates->start->name,
4591 cpu_arch_name ? cpu_arch_name : default_arch,
4592 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4593
548d0ee6 4594 return NULL;
29b0f896 4595}
252b5132 4596
29b0f896 4597static char *
e3bb37b5 4598parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4599{
4600 char *token_start;
3138f287 4601
29b0f896
AM
4602 /* 1 if operand is pending after ','. */
4603 unsigned int expecting_operand = 0;
252b5132 4604
29b0f896
AM
4605 /* Non-zero if operand parens not balanced. */
4606 unsigned int paren_not_balanced;
4607
4608 while (*l != END_OF_INSN)
4609 {
4610 /* Skip optional white space before operand. */
4611 if (is_space_char (*l))
4612 ++l;
d02603dc 4613 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4614 {
4615 as_bad (_("invalid character %s before operand %d"),
4616 output_invalid (*l),
4617 i.operands + 1);
4618 return NULL;
4619 }
d02603dc 4620 token_start = l; /* After white space. */
29b0f896
AM
4621 paren_not_balanced = 0;
4622 while (paren_not_balanced || *l != ',')
4623 {
4624 if (*l == END_OF_INSN)
4625 {
4626 if (paren_not_balanced)
4627 {
4628 if (!intel_syntax)
4629 as_bad (_("unbalanced parenthesis in operand %d."),
4630 i.operands + 1);
4631 else
4632 as_bad (_("unbalanced brackets in operand %d."),
4633 i.operands + 1);
4634 return NULL;
4635 }
4636 else
4637 break; /* we are done */
4638 }
d02603dc 4639 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4640 {
4641 as_bad (_("invalid character %s in operand %d"),
4642 output_invalid (*l),
4643 i.operands + 1);
4644 return NULL;
4645 }
4646 if (!intel_syntax)
4647 {
4648 if (*l == '(')
4649 ++paren_not_balanced;
4650 if (*l == ')')
4651 --paren_not_balanced;
4652 }
4653 else
4654 {
4655 if (*l == '[')
4656 ++paren_not_balanced;
4657 if (*l == ']')
4658 --paren_not_balanced;
4659 }
4660 l++;
4661 }
4662 if (l != token_start)
4663 { /* Yes, we've read in another operand. */
4664 unsigned int operand_ok;
4665 this_operand = i.operands++;
4666 if (i.operands > MAX_OPERANDS)
4667 {
4668 as_bad (_("spurious operands; (%d operands/instruction max)"),
4669 MAX_OPERANDS);
4670 return NULL;
4671 }
9d46ce34 4672 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4673 /* Now parse operand adding info to 'i' as we go along. */
4674 END_STRING_AND_SAVE (l);
4675
4676 if (intel_syntax)
4677 operand_ok =
4678 i386_intel_operand (token_start,
4679 intel_float_operand (mnemonic));
4680 else
a7619375 4681 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4682
4683 RESTORE_END_STRING (l);
4684 if (!operand_ok)
4685 return NULL;
4686 }
4687 else
4688 {
4689 if (expecting_operand)
4690 {
4691 expecting_operand_after_comma:
4692 as_bad (_("expecting operand after ','; got nothing"));
4693 return NULL;
4694 }
4695 if (*l == ',')
4696 {
4697 as_bad (_("expecting operand before ','; got nothing"));
4698 return NULL;
4699 }
4700 }
7f3f1ea2 4701
29b0f896
AM
4702 /* Now *l must be either ',' or END_OF_INSN. */
4703 if (*l == ',')
4704 {
4705 if (*++l == END_OF_INSN)
4706 {
4707 /* Just skip it, if it's \n complain. */
4708 goto expecting_operand_after_comma;
4709 }
4710 expecting_operand = 1;
4711 }
4712 }
4713 return l;
4714}
7f3f1ea2 4715
050dfa73 4716static void
4d456e3d 4717swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4718{
4719 union i386_op temp_op;
40fb9820 4720 i386_operand_type temp_type;
050dfa73 4721 enum bfd_reloc_code_real temp_reloc;
4eed87de 4722
050dfa73
MM
4723 temp_type = i.types[xchg2];
4724 i.types[xchg2] = i.types[xchg1];
4725 i.types[xchg1] = temp_type;
4726 temp_op = i.op[xchg2];
4727 i.op[xchg2] = i.op[xchg1];
4728 i.op[xchg1] = temp_op;
4729 temp_reloc = i.reloc[xchg2];
4730 i.reloc[xchg2] = i.reloc[xchg1];
4731 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4732
4733 if (i.mask)
4734 {
4735 if (i.mask->operand == xchg1)
4736 i.mask->operand = xchg2;
4737 else if (i.mask->operand == xchg2)
4738 i.mask->operand = xchg1;
4739 }
4740 if (i.broadcast)
4741 {
4742 if (i.broadcast->operand == xchg1)
4743 i.broadcast->operand = xchg2;
4744 else if (i.broadcast->operand == xchg2)
4745 i.broadcast->operand = xchg1;
4746 }
4747 if (i.rounding)
4748 {
4749 if (i.rounding->operand == xchg1)
4750 i.rounding->operand = xchg2;
4751 else if (i.rounding->operand == xchg2)
4752 i.rounding->operand = xchg1;
4753 }
050dfa73
MM
4754}
4755
29b0f896 4756static void
e3bb37b5 4757swap_operands (void)
29b0f896 4758{
b7c61d9a 4759 switch (i.operands)
050dfa73 4760 {
c0f3af97 4761 case 5:
b7c61d9a 4762 case 4:
4d456e3d 4763 swap_2_operands (1, i.operands - 2);
1a0670f3 4764 /* Fall through. */
b7c61d9a
L
4765 case 3:
4766 case 2:
4d456e3d 4767 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4768 break;
4769 default:
4770 abort ();
29b0f896 4771 }
29b0f896
AM
4772
4773 if (i.mem_operands == 2)
4774 {
4775 const seg_entry *temp_seg;
4776 temp_seg = i.seg[0];
4777 i.seg[0] = i.seg[1];
4778 i.seg[1] = temp_seg;
4779 }
4780}
252b5132 4781
29b0f896
AM
4782/* Try to ensure constant immediates are represented in the smallest
4783 opcode possible. */
4784static void
e3bb37b5 4785optimize_imm (void)
29b0f896
AM
4786{
4787 char guess_suffix = 0;
4788 int op;
252b5132 4789
29b0f896
AM
4790 if (i.suffix)
4791 guess_suffix = i.suffix;
4792 else if (i.reg_operands)
4793 {
4794 /* Figure out a suffix from the last register operand specified.
4795 We can't do this properly yet, ie. excluding InOutPortReg,
4796 but the following works for instructions with immediates.
4797 In any case, we can't set i.suffix yet. */
4798 for (op = i.operands; --op >= 0;)
dc821c5f 4799 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4800 {
40fb9820
L
4801 guess_suffix = BYTE_MNEM_SUFFIX;
4802 break;
4803 }
dc821c5f 4804 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4805 {
40fb9820
L
4806 guess_suffix = WORD_MNEM_SUFFIX;
4807 break;
4808 }
dc821c5f 4809 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4810 {
4811 guess_suffix = LONG_MNEM_SUFFIX;
4812 break;
4813 }
dc821c5f 4814 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4815 {
4816 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4817 break;
252b5132 4818 }
29b0f896
AM
4819 }
4820 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4821 guess_suffix = WORD_MNEM_SUFFIX;
4822
4823 for (op = i.operands; --op >= 0;)
40fb9820 4824 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4825 {
4826 switch (i.op[op].imms->X_op)
252b5132 4827 {
29b0f896
AM
4828 case O_constant:
4829 /* If a suffix is given, this operand may be shortened. */
4830 switch (guess_suffix)
252b5132 4831 {
29b0f896 4832 case LONG_MNEM_SUFFIX:
40fb9820
L
4833 i.types[op].bitfield.imm32 = 1;
4834 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4835 break;
4836 case WORD_MNEM_SUFFIX:
40fb9820
L
4837 i.types[op].bitfield.imm16 = 1;
4838 i.types[op].bitfield.imm32 = 1;
4839 i.types[op].bitfield.imm32s = 1;
4840 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4841 break;
4842 case BYTE_MNEM_SUFFIX:
40fb9820
L
4843 i.types[op].bitfield.imm8 = 1;
4844 i.types[op].bitfield.imm8s = 1;
4845 i.types[op].bitfield.imm16 = 1;
4846 i.types[op].bitfield.imm32 = 1;
4847 i.types[op].bitfield.imm32s = 1;
4848 i.types[op].bitfield.imm64 = 1;
29b0f896 4849 break;
252b5132 4850 }
252b5132 4851
29b0f896
AM
4852 /* If this operand is at most 16 bits, convert it
4853 to a signed 16 bit number before trying to see
4854 whether it will fit in an even smaller size.
4855 This allows a 16-bit operand such as $0xffe0 to
4856 be recognised as within Imm8S range. */
40fb9820 4857 if ((i.types[op].bitfield.imm16)
29b0f896 4858 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4859 {
29b0f896
AM
4860 i.op[op].imms->X_add_number =
4861 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4862 }
a28def75
L
4863#ifdef BFD64
4864 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4865 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4866 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4867 == 0))
4868 {
4869 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4870 ^ ((offsetT) 1 << 31))
4871 - ((offsetT) 1 << 31));
4872 }
a28def75 4873#endif
40fb9820 4874 i.types[op]
c6fb90c8
L
4875 = operand_type_or (i.types[op],
4876 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4877
29b0f896
AM
4878 /* We must avoid matching of Imm32 templates when 64bit
4879 only immediate is available. */
4880 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4881 i.types[op].bitfield.imm32 = 0;
29b0f896 4882 break;
252b5132 4883
29b0f896
AM
4884 case O_absent:
4885 case O_register:
4886 abort ();
4887
4888 /* Symbols and expressions. */
4889 default:
9cd96992
JB
4890 /* Convert symbolic operand to proper sizes for matching, but don't
4891 prevent matching a set of insns that only supports sizes other
4892 than those matching the insn suffix. */
4893 {
40fb9820 4894 i386_operand_type mask, allowed;
d3ce72d0 4895 const insn_template *t;
9cd96992 4896
0dfbf9d7
L
4897 operand_type_set (&mask, 0);
4898 operand_type_set (&allowed, 0);
40fb9820 4899
4eed87de
AM
4900 for (t = current_templates->start;
4901 t < current_templates->end;
4902 ++t)
c6fb90c8
L
4903 allowed = operand_type_or (allowed,
4904 t->operand_types[op]);
9cd96992
JB
4905 switch (guess_suffix)
4906 {
4907 case QWORD_MNEM_SUFFIX:
40fb9820
L
4908 mask.bitfield.imm64 = 1;
4909 mask.bitfield.imm32s = 1;
9cd96992
JB
4910 break;
4911 case LONG_MNEM_SUFFIX:
40fb9820 4912 mask.bitfield.imm32 = 1;
9cd96992
JB
4913 break;
4914 case WORD_MNEM_SUFFIX:
40fb9820 4915 mask.bitfield.imm16 = 1;
9cd96992
JB
4916 break;
4917 case BYTE_MNEM_SUFFIX:
40fb9820 4918 mask.bitfield.imm8 = 1;
9cd96992
JB
4919 break;
4920 default:
9cd96992
JB
4921 break;
4922 }
c6fb90c8 4923 allowed = operand_type_and (mask, allowed);
0dfbf9d7 4924 if (!operand_type_all_zero (&allowed))
c6fb90c8 4925 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 4926 }
29b0f896 4927 break;
252b5132 4928 }
29b0f896
AM
4929 }
4930}
47926f60 4931
29b0f896
AM
4932/* Try to use the smallest displacement type too. */
4933static void
e3bb37b5 4934optimize_disp (void)
29b0f896
AM
4935{
4936 int op;
3e73aa7c 4937
29b0f896 4938 for (op = i.operands; --op >= 0;)
40fb9820 4939 if (operand_type_check (i.types[op], disp))
252b5132 4940 {
b300c311 4941 if (i.op[op].disps->X_op == O_constant)
252b5132 4942 {
91d6fa6a 4943 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 4944
40fb9820 4945 if (i.types[op].bitfield.disp16
91d6fa6a 4946 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
4947 {
4948 /* If this operand is at most 16 bits, convert
4949 to a signed 16 bit number and don't use 64bit
4950 displacement. */
91d6fa6a 4951 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 4952 i.types[op].bitfield.disp64 = 0;
b300c311 4953 }
a28def75
L
4954#ifdef BFD64
4955 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 4956 if (i.types[op].bitfield.disp32
91d6fa6a 4957 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
4958 {
4959 /* If this operand is at most 32 bits, convert
4960 to a signed 32 bit number and don't use 64bit
4961 displacement. */
91d6fa6a
NC
4962 op_disp &= (((offsetT) 2 << 31) - 1);
4963 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 4964 i.types[op].bitfield.disp64 = 0;
b300c311 4965 }
a28def75 4966#endif
91d6fa6a 4967 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 4968 {
40fb9820
L
4969 i.types[op].bitfield.disp8 = 0;
4970 i.types[op].bitfield.disp16 = 0;
4971 i.types[op].bitfield.disp32 = 0;
4972 i.types[op].bitfield.disp32s = 0;
4973 i.types[op].bitfield.disp64 = 0;
b300c311
L
4974 i.op[op].disps = 0;
4975 i.disp_operands--;
4976 }
4977 else if (flag_code == CODE_64BIT)
4978 {
91d6fa6a 4979 if (fits_in_signed_long (op_disp))
28a9d8f5 4980 {
40fb9820
L
4981 i.types[op].bitfield.disp64 = 0;
4982 i.types[op].bitfield.disp32s = 1;
28a9d8f5 4983 }
0e1147d9 4984 if (i.prefix[ADDR_PREFIX]
91d6fa6a 4985 && fits_in_unsigned_long (op_disp))
40fb9820 4986 i.types[op].bitfield.disp32 = 1;
b300c311 4987 }
40fb9820
L
4988 if ((i.types[op].bitfield.disp32
4989 || i.types[op].bitfield.disp32s
4990 || i.types[op].bitfield.disp16)
b5014f7a 4991 && fits_in_disp8 (op_disp))
40fb9820 4992 i.types[op].bitfield.disp8 = 1;
252b5132 4993 }
67a4f2b7
AO
4994 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4995 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4996 {
4997 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4998 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
4999 i.types[op].bitfield.disp8 = 0;
5000 i.types[op].bitfield.disp16 = 0;
5001 i.types[op].bitfield.disp32 = 0;
5002 i.types[op].bitfield.disp32s = 0;
5003 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5004 }
5005 else
b300c311 5006 /* We only support 64bit displacement on constants. */
40fb9820 5007 i.types[op].bitfield.disp64 = 0;
252b5132 5008 }
29b0f896
AM
5009}
5010
6c30d220
L
5011/* Check if operands are valid for the instruction. */
5012
5013static int
5014check_VecOperands (const insn_template *t)
5015{
43234a1e 5016 unsigned int op;
e2195274
JB
5017 i386_cpu_flags cpu;
5018 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5019
5020 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5021 any one operand are implicity requiring AVX512VL support if the actual
5022 operand size is YMMword or XMMword. Since this function runs after
5023 template matching, there's no need to check for YMMword/XMMword in
5024 the template. */
5025 cpu = cpu_flags_and (t->cpu_flags, avx512);
5026 if (!cpu_flags_all_zero (&cpu)
5027 && !t->cpu_flags.bitfield.cpuavx512vl
5028 && !cpu_arch_flags.bitfield.cpuavx512vl)
5029 {
5030 for (op = 0; op < t->operands; ++op)
5031 {
5032 if (t->operand_types[op].bitfield.zmmword
5033 && (i.types[op].bitfield.ymmword
5034 || i.types[op].bitfield.xmmword))
5035 {
5036 i.error = unsupported;
5037 return 1;
5038 }
5039 }
5040 }
43234a1e 5041
6c30d220
L
5042 /* Without VSIB byte, we can't have a vector register for index. */
5043 if (!t->opcode_modifier.vecsib
5044 && i.index_reg
1b54b8d7
JB
5045 && (i.index_reg->reg_type.bitfield.xmmword
5046 || i.index_reg->reg_type.bitfield.ymmword
5047 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5048 {
5049 i.error = unsupported_vector_index_register;
5050 return 1;
5051 }
5052
ad8ecc81
MZ
5053 /* Check if default mask is allowed. */
5054 if (t->opcode_modifier.nodefmask
5055 && (!i.mask || i.mask->mask->reg_num == 0))
5056 {
5057 i.error = no_default_mask;
5058 return 1;
5059 }
5060
7bab8ab5
JB
5061 /* For VSIB byte, we need a vector register for index, and all vector
5062 registers must be distinct. */
5063 if (t->opcode_modifier.vecsib)
5064 {
5065 if (!i.index_reg
6c30d220 5066 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5067 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5068 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5069 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5070 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5071 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5072 {
5073 i.error = invalid_vsib_address;
5074 return 1;
5075 }
5076
43234a1e
L
5077 gas_assert (i.reg_operands == 2 || i.mask);
5078 if (i.reg_operands == 2 && !i.mask)
5079 {
1b54b8d7
JB
5080 gas_assert (i.types[0].bitfield.regsimd);
5081 gas_assert (i.types[0].bitfield.xmmword
5082 || i.types[0].bitfield.ymmword);
5083 gas_assert (i.types[2].bitfield.regsimd);
5084 gas_assert (i.types[2].bitfield.xmmword
5085 || i.types[2].bitfield.ymmword);
43234a1e
L
5086 if (operand_check == check_none)
5087 return 0;
5088 if (register_number (i.op[0].regs)
5089 != register_number (i.index_reg)
5090 && register_number (i.op[2].regs)
5091 != register_number (i.index_reg)
5092 && register_number (i.op[0].regs)
5093 != register_number (i.op[2].regs))
5094 return 0;
5095 if (operand_check == check_error)
5096 {
5097 i.error = invalid_vector_register_set;
5098 return 1;
5099 }
5100 as_warn (_("mask, index, and destination registers should be distinct"));
5101 }
8444f82a
MZ
5102 else if (i.reg_operands == 1 && i.mask)
5103 {
1b54b8d7
JB
5104 if (i.types[1].bitfield.regsimd
5105 && (i.types[1].bitfield.xmmword
5106 || i.types[1].bitfield.ymmword
5107 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5108 && (register_number (i.op[1].regs)
5109 == register_number (i.index_reg)))
5110 {
5111 if (operand_check == check_error)
5112 {
5113 i.error = invalid_vector_register_set;
5114 return 1;
5115 }
5116 if (operand_check != check_none)
5117 as_warn (_("index and destination registers should be distinct"));
5118 }
5119 }
43234a1e 5120 }
7bab8ab5 5121
43234a1e
L
5122 /* Check if broadcast is supported by the instruction and is applied
5123 to the memory operand. */
5124 if (i.broadcast)
5125 {
8e6e0792 5126 i386_operand_type type, overlap;
43234a1e
L
5127
5128 /* Check if specified broadcast is supported in this instruction,
c39e5b26 5129 and it's applied to memory operand of DWORD or QWORD type. */
32546502 5130 op = i.broadcast->operand;
8e6e0792 5131 if (!t->opcode_modifier.broadcast
32546502 5132 || !i.types[op].bitfield.mem
c39e5b26
JB
5133 || (!i.types[op].bitfield.unspecified
5134 && (t->operand_types[op].bitfield.dword
5135 ? !i.types[op].bitfield.dword
5136 : !i.types[op].bitfield.qword)))
43234a1e
L
5137 {
5138 bad_broadcast:
5139 i.error = unsupported_broadcast;
5140 return 1;
5141 }
8e6e0792
JB
5142
5143 operand_type_set (&type, 0);
c39e5b26 5144 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
8e6e0792
JB
5145 {
5146 case 8:
5147 type.bitfield.qword = 1;
5148 break;
5149 case 16:
5150 type.bitfield.xmmword = 1;
5151 break;
5152 case 32:
5153 type.bitfield.ymmword = 1;
5154 break;
5155 case 64:
5156 type.bitfield.zmmword = 1;
5157 break;
5158 default:
5159 goto bad_broadcast;
5160 }
5161
5162 overlap = operand_type_and (type, t->operand_types[op]);
5163 if (operand_type_all_zero (&overlap))
5164 goto bad_broadcast;
5165
5166 if (t->opcode_modifier.checkregsize)
5167 {
5168 unsigned int j;
5169
e2195274 5170 type.bitfield.baseindex = 1;
8e6e0792
JB
5171 for (j = 0; j < i.operands; ++j)
5172 {
5173 if (j != op
5174 && !operand_type_register_match(i.types[j],
5175 t->operand_types[j],
5176 type,
5177 t->operand_types[op]))
5178 goto bad_broadcast;
5179 }
5180 }
43234a1e
L
5181 }
5182 /* If broadcast is supported in this instruction, we need to check if
5183 operand of one-element size isn't specified without broadcast. */
5184 else if (t->opcode_modifier.broadcast && i.mem_operands)
5185 {
5186 /* Find memory operand. */
5187 for (op = 0; op < i.operands; op++)
5188 if (operand_type_check (i.types[op], anymem))
5189 break;
5190 gas_assert (op < i.operands);
5191 /* Check size of the memory operand. */
c39e5b26
JB
5192 if (t->operand_types[op].bitfield.dword
5193 ? i.types[op].bitfield.dword
5194 : i.types[op].bitfield.qword)
43234a1e
L
5195 {
5196 i.error = broadcast_needed;
5197 return 1;
5198 }
5199 }
c39e5b26
JB
5200 else
5201 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5202
5203 /* Check if requested masking is supported. */
5204 if (i.mask
5205 && (!t->opcode_modifier.masking
5206 || (i.mask->zeroing
5207 && t->opcode_modifier.masking == MERGING_MASKING)))
5208 {
5209 i.error = unsupported_masking;
5210 return 1;
5211 }
5212
5213 /* Check if masking is applied to dest operand. */
5214 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5215 {
5216 i.error = mask_not_on_destination;
5217 return 1;
5218 }
5219
43234a1e
L
5220 /* Check RC/SAE. */
5221 if (i.rounding)
5222 {
5223 if ((i.rounding->type != saeonly
5224 && !t->opcode_modifier.staticrounding)
5225 || (i.rounding->type == saeonly
5226 && (t->opcode_modifier.staticrounding
5227 || !t->opcode_modifier.sae)))
5228 {
5229 i.error = unsupported_rc_sae;
5230 return 1;
5231 }
5232 /* If the instruction has several immediate operands and one of
5233 them is rounding, the rounding operand should be the last
5234 immediate operand. */
5235 if (i.imm_operands > 1
5236 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5237 {
43234a1e 5238 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5239 return 1;
5240 }
6c30d220
L
5241 }
5242
43234a1e 5243 /* Check vector Disp8 operand. */
b5014f7a
JB
5244 if (t->opcode_modifier.disp8memshift
5245 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5246 {
5247 if (i.broadcast)
c39e5b26 5248 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
7091c612 5249 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5250 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5251 else
5252 {
5253 const i386_operand_type *type = NULL;
5254
5255 i.memshift = 0;
5256 for (op = 0; op < i.operands; op++)
5257 if (operand_type_check (i.types[op], anymem))
5258 {
4174bfff
JB
5259 if (t->opcode_modifier.evex == EVEXLIG)
5260 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5261 else if (t->operand_types[op].bitfield.xmmword
5262 + t->operand_types[op].bitfield.ymmword
5263 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5264 type = &t->operand_types[op];
5265 else if (!i.types[op].bitfield.unspecified)
5266 type = &i.types[op];
5267 }
4174bfff
JB
5268 else if (i.types[op].bitfield.regsimd
5269 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5270 {
5271 if (i.types[op].bitfield.zmmword)
5272 i.memshift = 6;
5273 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5274 i.memshift = 5;
5275 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5276 i.memshift = 4;
5277 }
5278
5279 if (type)
5280 {
5281 if (type->bitfield.zmmword)
5282 i.memshift = 6;
5283 else if (type->bitfield.ymmword)
5284 i.memshift = 5;
5285 else if (type->bitfield.xmmword)
5286 i.memshift = 4;
5287 }
5288
5289 /* For the check in fits_in_disp8(). */
5290 if (i.memshift == 0)
5291 i.memshift = -1;
5292 }
43234a1e
L
5293
5294 for (op = 0; op < i.operands; op++)
5295 if (operand_type_check (i.types[op], disp)
5296 && i.op[op].disps->X_op == O_constant)
5297 {
b5014f7a 5298 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5299 {
b5014f7a
JB
5300 i.types[op].bitfield.disp8 = 1;
5301 return 0;
43234a1e 5302 }
b5014f7a 5303 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5304 }
5305 }
b5014f7a
JB
5306
5307 i.memshift = 0;
43234a1e 5308
6c30d220
L
5309 return 0;
5310}
5311
43f3e2ee 5312/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5313 operand types. */
5314
5315static int
5316VEX_check_operands (const insn_template *t)
5317{
86fa6981 5318 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5319 {
86fa6981 5320 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5321 if (!is_evex_encoding (t))
86fa6981
L
5322 {
5323 i.error = unsupported;
5324 return 1;
5325 }
5326 return 0;
43234a1e
L
5327 }
5328
a683cc34 5329 if (!t->opcode_modifier.vex)
86fa6981
L
5330 {
5331 /* This instruction template doesn't have VEX prefix. */
5332 if (i.vec_encoding != vex_encoding_default)
5333 {
5334 i.error = unsupported;
5335 return 1;
5336 }
5337 return 0;
5338 }
a683cc34
SP
5339
5340 /* Only check VEX_Imm4, which must be the first operand. */
5341 if (t->operand_types[0].bitfield.vec_imm4)
5342 {
5343 if (i.op[0].imms->X_op != O_constant
5344 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5345 {
a65babc9 5346 i.error = bad_imm4;
891edac4
L
5347 return 1;
5348 }
a683cc34
SP
5349
5350 /* Turn off Imm8 so that update_imm won't complain. */
5351 i.types[0] = vec_imm4;
5352 }
5353
5354 return 0;
5355}
5356
d3ce72d0 5357static const insn_template *
83b16ac6 5358match_template (char mnem_suffix)
29b0f896
AM
5359{
5360 /* Points to template once we've found it. */
d3ce72d0 5361 const insn_template *t;
40fb9820 5362 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5363 i386_operand_type overlap4;
29b0f896 5364 unsigned int found_reverse_match;
83b16ac6 5365 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5366 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5367 int addr_prefix_disp;
a5c311ca 5368 unsigned int j;
3ac21baa 5369 unsigned int found_cpu_match, size_match;
45664ddb 5370 unsigned int check_register;
5614d22c 5371 enum i386_error specific_error = 0;
29b0f896 5372
c0f3af97
L
5373#if MAX_OPERANDS != 5
5374# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5375#endif
5376
29b0f896 5377 found_reverse_match = 0;
539e75ad 5378 addr_prefix_disp = -1;
40fb9820
L
5379
5380 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5381 if (intel_syntax && i.broadcast)
5382 /* nothing */;
5383 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5384 suffix_check.no_bsuf = 1;
5385 else if (i.suffix == WORD_MNEM_SUFFIX)
5386 suffix_check.no_wsuf = 1;
5387 else if (i.suffix == SHORT_MNEM_SUFFIX)
5388 suffix_check.no_ssuf = 1;
5389 else if (i.suffix == LONG_MNEM_SUFFIX)
5390 suffix_check.no_lsuf = 1;
5391 else if (i.suffix == QWORD_MNEM_SUFFIX)
5392 suffix_check.no_qsuf = 1;
5393 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5394 suffix_check.no_ldsuf = 1;
29b0f896 5395
83b16ac6
JB
5396 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5397 if (intel_syntax)
5398 {
5399 switch (mnem_suffix)
5400 {
5401 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5402 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5403 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5404 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5405 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5406 }
5407 }
5408
01559ecc
L
5409 /* Must have right number of operands. */
5410 i.error = number_of_operands_mismatch;
5411
45aa61fe 5412 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5413 {
539e75ad
L
5414 addr_prefix_disp = -1;
5415
29b0f896
AM
5416 if (i.operands != t->operands)
5417 continue;
5418
50aecf8c 5419 /* Check processor support. */
a65babc9 5420 i.error = unsupported;
c0f3af97
L
5421 found_cpu_match = (cpu_flags_match (t)
5422 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5423 if (!found_cpu_match)
5424 continue;
5425
e1d4d893 5426 /* Check AT&T mnemonic. */
a65babc9 5427 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5428 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5429 continue;
5430
e92bae62 5431 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5432 i.error = unsupported_syntax;
5c07affc 5433 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5434 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5435 || (intel64 && t->opcode_modifier.amd64)
5436 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5437 continue;
5438
20592a94 5439 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5440 i.error = invalid_instruction_suffix;
567e4e96
L
5441 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5442 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5443 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5444 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5445 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5446 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5447 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5448 continue;
83b16ac6
JB
5449 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5450 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5451 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5452 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5453 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5454 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5455 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5456 continue;
29b0f896 5457
3ac21baa
JB
5458 size_match = operand_size_match (t);
5459 if (!size_match)
7d5e4556 5460 continue;
539e75ad 5461
5c07affc
L
5462 for (j = 0; j < MAX_OPERANDS; j++)
5463 operand_types[j] = t->operand_types[j];
5464
45aa61fe
AM
5465 /* In general, don't allow 64-bit operands in 32-bit mode. */
5466 if (i.suffix == QWORD_MNEM_SUFFIX
5467 && flag_code != CODE_64BIT
5468 && (intel_syntax
40fb9820 5469 ? (!t->opcode_modifier.ignoresize
625cbd7a 5470 && !t->opcode_modifier.broadcast
45aa61fe
AM
5471 && !intel_float_operand (t->name))
5472 : intel_float_operand (t->name) != 2)
40fb9820 5473 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5474 && !operand_types[0].bitfield.regsimd)
40fb9820 5475 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5476 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5477 && (t->base_opcode != 0x0fc7
5478 || t->extension_opcode != 1 /* cmpxchg8b */))
5479 continue;
5480
192dc9c6
JB
5481 /* In general, don't allow 32-bit operands on pre-386. */
5482 else if (i.suffix == LONG_MNEM_SUFFIX
5483 && !cpu_arch_flags.bitfield.cpui386
5484 && (intel_syntax
5485 ? (!t->opcode_modifier.ignoresize
5486 && !intel_float_operand (t->name))
5487 : intel_float_operand (t->name) != 2)
5488 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5489 && !operand_types[0].bitfield.regsimd)
192dc9c6 5490 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5491 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5492 continue;
5493
29b0f896 5494 /* Do not verify operands when there are none. */
50aecf8c 5495 else
29b0f896 5496 {
c6fb90c8 5497 if (!t->operands)
2dbab7d5
L
5498 /* We've found a match; break out of loop. */
5499 break;
29b0f896 5500 }
252b5132 5501
539e75ad
L
5502 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5503 into Disp32/Disp16/Disp32 operand. */
5504 if (i.prefix[ADDR_PREFIX] != 0)
5505 {
40fb9820 5506 /* There should be only one Disp operand. */
539e75ad
L
5507 switch (flag_code)
5508 {
5509 case CODE_16BIT:
40fb9820
L
5510 for (j = 0; j < MAX_OPERANDS; j++)
5511 {
5512 if (operand_types[j].bitfield.disp16)
5513 {
5514 addr_prefix_disp = j;
5515 operand_types[j].bitfield.disp32 = 1;
5516 operand_types[j].bitfield.disp16 = 0;
5517 break;
5518 }
5519 }
539e75ad
L
5520 break;
5521 case CODE_32BIT:
40fb9820
L
5522 for (j = 0; j < MAX_OPERANDS; j++)
5523 {
5524 if (operand_types[j].bitfield.disp32)
5525 {
5526 addr_prefix_disp = j;
5527 operand_types[j].bitfield.disp32 = 0;
5528 operand_types[j].bitfield.disp16 = 1;
5529 break;
5530 }
5531 }
539e75ad
L
5532 break;
5533 case CODE_64BIT:
40fb9820
L
5534 for (j = 0; j < MAX_OPERANDS; j++)
5535 {
5536 if (operand_types[j].bitfield.disp64)
5537 {
5538 addr_prefix_disp = j;
5539 operand_types[j].bitfield.disp64 = 0;
5540 operand_types[j].bitfield.disp32 = 1;
5541 break;
5542 }
5543 }
539e75ad
L
5544 break;
5545 }
539e75ad
L
5546 }
5547
02a86693
L
5548 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5549 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5550 continue;
5551
56ffb741 5552 /* We check register size if needed. */
e2195274
JB
5553 if (t->opcode_modifier.checkregsize)
5554 {
5555 check_register = (1 << t->operands) - 1;
5556 if (i.broadcast)
5557 check_register &= ~(1 << i.broadcast->operand);
5558 }
5559 else
5560 check_register = 0;
5561
c6fb90c8 5562 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5563 switch (t->operands)
5564 {
5565 case 1:
40fb9820 5566 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5567 continue;
5568 break;
5569 case 2:
33eaf5de 5570 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5571 only in 32bit mode and we can use opcode 0x90. In 64bit
5572 mode, we can't use 0x90 for xchg %eax, %eax since it should
5573 zero-extend %eax to %rax. */
5574 if (flag_code == CODE_64BIT
5575 && t->base_opcode == 0x90
0dfbf9d7
L
5576 && operand_type_equal (&i.types [0], &acc32)
5577 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5578 continue;
1212781b
JB
5579 /* xrelease mov %eax, <disp> is another special case. It must not
5580 match the accumulator-only encoding of mov. */
5581 if (flag_code != CODE_64BIT
5582 && i.hle_prefix
5583 && t->base_opcode == 0xa0
5584 && i.types[0].bitfield.acc
5585 && operand_type_check (i.types[1], anymem))
5586 continue;
3ac21baa
JB
5587 if (!(size_match & MATCH_STRAIGHT))
5588 goto check_reverse;
86fa6981
L
5589 /* If we want store form, we reverse direction of operands. */
5590 if (i.dir_encoding == dir_encoding_store
5591 && t->opcode_modifier.d)
5592 goto check_reverse;
1a0670f3 5593 /* Fall through. */
b6169b20 5594
29b0f896 5595 case 3:
86fa6981
L
5596 /* If we want store form, we skip the current load. */
5597 if (i.dir_encoding == dir_encoding_store
5598 && i.mem_operands == 0
5599 && t->opcode_modifier.load)
fa99fab2 5600 continue;
1a0670f3 5601 /* Fall through. */
f48ff2ae 5602 case 4:
c0f3af97 5603 case 5:
c6fb90c8 5604 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5605 if (!operand_type_match (overlap0, i.types[0])
5606 || !operand_type_match (overlap1, i.types[1])
e2195274 5607 || ((check_register & 3) == 3
dc821c5f 5608 && !operand_type_register_match (i.types[0],
40fb9820 5609 operand_types[0],
dc821c5f 5610 i.types[1],
40fb9820 5611 operand_types[1])))
29b0f896
AM
5612 {
5613 /* Check if other direction is valid ... */
38e314eb 5614 if (!t->opcode_modifier.d)
29b0f896
AM
5615 continue;
5616
b6169b20 5617check_reverse:
3ac21baa
JB
5618 if (!(size_match & MATCH_REVERSE))
5619 continue;
29b0f896 5620 /* Try reversing direction of operands. */
c6fb90c8
L
5621 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5622 overlap1 = operand_type_and (i.types[1], operand_types[0]);
40fb9820
L
5623 if (!operand_type_match (overlap0, i.types[0])
5624 || !operand_type_match (overlap1, i.types[1])
45664ddb 5625 || (check_register
dc821c5f 5626 && !operand_type_register_match (i.types[0],
45664ddb 5627 operand_types[1],
45664ddb
L
5628 i.types[1],
5629 operand_types[0])))
29b0f896
AM
5630 {
5631 /* Does not match either direction. */
5632 continue;
5633 }
38e314eb 5634 /* found_reverse_match holds which of D or FloatR
29b0f896 5635 we've found. */
38e314eb
JB
5636 if (!t->opcode_modifier.d)
5637 found_reverse_match = 0;
5638 else if (operand_types[0].bitfield.tbyte)
8a2ed489
L
5639 found_reverse_match = Opcode_FloatD;
5640 else
38e314eb 5641 found_reverse_match = Opcode_D;
40fb9820 5642 if (t->opcode_modifier.floatr)
8a2ed489 5643 found_reverse_match |= Opcode_FloatR;
29b0f896 5644 }
f48ff2ae 5645 else
29b0f896 5646 {
f48ff2ae 5647 /* Found a forward 2 operand match here. */
d1cbb4db
L
5648 switch (t->operands)
5649 {
c0f3af97
L
5650 case 5:
5651 overlap4 = operand_type_and (i.types[4],
5652 operand_types[4]);
1a0670f3 5653 /* Fall through. */
d1cbb4db 5654 case 4:
c6fb90c8
L
5655 overlap3 = operand_type_and (i.types[3],
5656 operand_types[3]);
1a0670f3 5657 /* Fall through. */
d1cbb4db 5658 case 3:
c6fb90c8
L
5659 overlap2 = operand_type_and (i.types[2],
5660 operand_types[2]);
d1cbb4db
L
5661 break;
5662 }
29b0f896 5663
f48ff2ae
L
5664 switch (t->operands)
5665 {
c0f3af97
L
5666 case 5:
5667 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5668 || !operand_type_register_match (i.types[3],
c0f3af97 5669 operand_types[3],
c0f3af97
L
5670 i.types[4],
5671 operand_types[4]))
5672 continue;
1a0670f3 5673 /* Fall through. */
f48ff2ae 5674 case 4:
40fb9820 5675 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5676 || ((check_register & 0xa) == 0xa
5677 && !operand_type_register_match (i.types[1],
f7768225
JB
5678 operand_types[1],
5679 i.types[3],
e2195274
JB
5680 operand_types[3]))
5681 || ((check_register & 0xc) == 0xc
5682 && !operand_type_register_match (i.types[2],
5683 operand_types[2],
5684 i.types[3],
5685 operand_types[3])))
f48ff2ae 5686 continue;
1a0670f3 5687 /* Fall through. */
f48ff2ae
L
5688 case 3:
5689 /* Here we make use of the fact that there are no
23e42951 5690 reverse match 3 operand instructions. */
40fb9820 5691 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5692 || ((check_register & 5) == 5
5693 && !operand_type_register_match (i.types[0],
23e42951
JB
5694 operand_types[0],
5695 i.types[2],
e2195274
JB
5696 operand_types[2]))
5697 || ((check_register & 6) == 6
5698 && !operand_type_register_match (i.types[1],
5699 operand_types[1],
5700 i.types[2],
5701 operand_types[2])))
f48ff2ae
L
5702 continue;
5703 break;
5704 }
29b0f896 5705 }
f48ff2ae 5706 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5707 slip through to break. */
5708 }
3629bb00 5709 if (!found_cpu_match)
29b0f896
AM
5710 {
5711 found_reverse_match = 0;
5712 continue;
5713 }
c0f3af97 5714
5614d22c
JB
5715 /* Check if vector and VEX operands are valid. */
5716 if (check_VecOperands (t) || VEX_check_operands (t))
5717 {
5718 specific_error = i.error;
5719 continue;
5720 }
a683cc34 5721
29b0f896
AM
5722 /* We've found a match; break out of loop. */
5723 break;
5724 }
5725
5726 if (t == current_templates->end)
5727 {
5728 /* We found no match. */
a65babc9 5729 const char *err_msg;
5614d22c 5730 switch (specific_error ? specific_error : i.error)
a65babc9
L
5731 {
5732 default:
5733 abort ();
86e026a4 5734 case operand_size_mismatch:
a65babc9
L
5735 err_msg = _("operand size mismatch");
5736 break;
5737 case operand_type_mismatch:
5738 err_msg = _("operand type mismatch");
5739 break;
5740 case register_type_mismatch:
5741 err_msg = _("register type mismatch");
5742 break;
5743 case number_of_operands_mismatch:
5744 err_msg = _("number of operands mismatch");
5745 break;
5746 case invalid_instruction_suffix:
5747 err_msg = _("invalid instruction suffix");
5748 break;
5749 case bad_imm4:
4a2608e3 5750 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5751 break;
a65babc9
L
5752 case unsupported_with_intel_mnemonic:
5753 err_msg = _("unsupported with Intel mnemonic");
5754 break;
5755 case unsupported_syntax:
5756 err_msg = _("unsupported syntax");
5757 break;
5758 case unsupported:
35262a23 5759 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5760 current_templates->start->name);
5761 return NULL;
6c30d220
L
5762 case invalid_vsib_address:
5763 err_msg = _("invalid VSIB address");
5764 break;
7bab8ab5
JB
5765 case invalid_vector_register_set:
5766 err_msg = _("mask, index, and destination registers must be distinct");
5767 break;
6c30d220
L
5768 case unsupported_vector_index_register:
5769 err_msg = _("unsupported vector index register");
5770 break;
43234a1e
L
5771 case unsupported_broadcast:
5772 err_msg = _("unsupported broadcast");
5773 break;
43234a1e
L
5774 case broadcast_needed:
5775 err_msg = _("broadcast is needed for operand of such type");
5776 break;
5777 case unsupported_masking:
5778 err_msg = _("unsupported masking");
5779 break;
5780 case mask_not_on_destination:
5781 err_msg = _("mask not on destination operand");
5782 break;
5783 case no_default_mask:
5784 err_msg = _("default mask isn't allowed");
5785 break;
5786 case unsupported_rc_sae:
5787 err_msg = _("unsupported static rounding/sae");
5788 break;
5789 case rc_sae_operand_not_last_imm:
5790 if (intel_syntax)
5791 err_msg = _("RC/SAE operand must precede immediate operands");
5792 else
5793 err_msg = _("RC/SAE operand must follow immediate operands");
5794 break;
5795 case invalid_register_operand:
5796 err_msg = _("invalid register operand");
5797 break;
a65babc9
L
5798 }
5799 as_bad (_("%s for `%s'"), err_msg,
891edac4 5800 current_templates->start->name);
fa99fab2 5801 return NULL;
29b0f896 5802 }
252b5132 5803
29b0f896
AM
5804 if (!quiet_warnings)
5805 {
5806 if (!intel_syntax
40fb9820
L
5807 && (i.types[0].bitfield.jumpabsolute
5808 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5809 {
5810 as_warn (_("indirect %s without `*'"), t->name);
5811 }
5812
40fb9820
L
5813 if (t->opcode_modifier.isprefix
5814 && t->opcode_modifier.ignoresize)
29b0f896
AM
5815 {
5816 /* Warn them that a data or address size prefix doesn't
5817 affect assembly of the next line of code. */
5818 as_warn (_("stand-alone `%s' prefix"), t->name);
5819 }
5820 }
5821
5822 /* Copy the template we found. */
5823 i.tm = *t;
539e75ad
L
5824
5825 if (addr_prefix_disp != -1)
5826 i.tm.operand_types[addr_prefix_disp]
5827 = operand_types[addr_prefix_disp];
5828
29b0f896
AM
5829 if (found_reverse_match)
5830 {
5831 /* If we found a reverse match we must alter the opcode
5832 direction bit. found_reverse_match holds bits to change
5833 (different for int & float insns). */
5834
5835 i.tm.base_opcode ^= found_reverse_match;
5836
539e75ad
L
5837 i.tm.operand_types[0] = operand_types[1];
5838 i.tm.operand_types[1] = operand_types[0];
29b0f896
AM
5839 }
5840
fa99fab2 5841 return t;
29b0f896
AM
5842}
5843
5844static int
e3bb37b5 5845check_string (void)
29b0f896 5846{
40fb9820
L
5847 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5848 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
5849 {
5850 if (i.seg[0] != NULL && i.seg[0] != &es)
5851 {
a87af027 5852 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5853 i.tm.name,
a87af027
JB
5854 mem_op + 1,
5855 register_prefix);
29b0f896
AM
5856 return 0;
5857 }
5858 /* There's only ever one segment override allowed per instruction.
5859 This instruction possibly has a legal segment override on the
5860 second operand, so copy the segment to where non-string
5861 instructions store it, allowing common code. */
5862 i.seg[0] = i.seg[1];
5863 }
40fb9820 5864 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
5865 {
5866 if (i.seg[1] != NULL && i.seg[1] != &es)
5867 {
a87af027 5868 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 5869 i.tm.name,
a87af027
JB
5870 mem_op + 2,
5871 register_prefix);
29b0f896
AM
5872 return 0;
5873 }
5874 }
5875 return 1;
5876}
5877
5878static int
543613e9 5879process_suffix (void)
29b0f896
AM
5880{
5881 /* If matched instruction specifies an explicit instruction mnemonic
5882 suffix, use it. */
40fb9820
L
5883 if (i.tm.opcode_modifier.size16)
5884 i.suffix = WORD_MNEM_SUFFIX;
5885 else if (i.tm.opcode_modifier.size32)
5886 i.suffix = LONG_MNEM_SUFFIX;
5887 else if (i.tm.opcode_modifier.size64)
5888 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
5889 else if (i.reg_operands)
5890 {
5891 /* If there's no instruction mnemonic suffix we try to invent one
5892 based on register operands. */
5893 if (!i.suffix)
5894 {
5895 /* We take i.suffix from the last register operand specified,
5896 Destination register type is more significant than source
381d071f
L
5897 register type. crc32 in SSE4.2 prefers source register
5898 type. */
5899 if (i.tm.base_opcode == 0xf20f38f1)
5900 {
dc821c5f 5901 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 5902 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 5903 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 5904 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 5905 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 5906 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 5907 }
9344ff29 5908 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 5909 {
dc821c5f 5910 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
5911 i.suffix = BYTE_MNEM_SUFFIX;
5912 }
381d071f
L
5913
5914 if (!i.suffix)
5915 {
5916 int op;
5917
20592a94
L
5918 if (i.tm.base_opcode == 0xf20f38f1
5919 || i.tm.base_opcode == 0xf20f38f0)
5920 {
5921 /* We have to know the operand size for crc32. */
5922 as_bad (_("ambiguous memory operand size for `%s`"),
5923 i.tm.name);
5924 return 0;
5925 }
5926
381d071f 5927 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
5928 if (!i.tm.operand_types[op].bitfield.inoutportreg
5929 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 5930 {
8819ada6
JB
5931 if (!i.types[op].bitfield.reg)
5932 continue;
5933 if (i.types[op].bitfield.byte)
5934 i.suffix = BYTE_MNEM_SUFFIX;
5935 else if (i.types[op].bitfield.word)
5936 i.suffix = WORD_MNEM_SUFFIX;
5937 else if (i.types[op].bitfield.dword)
5938 i.suffix = LONG_MNEM_SUFFIX;
5939 else if (i.types[op].bitfield.qword)
5940 i.suffix = QWORD_MNEM_SUFFIX;
5941 else
5942 continue;
5943 break;
381d071f
L
5944 }
5945 }
29b0f896
AM
5946 }
5947 else if (i.suffix == BYTE_MNEM_SUFFIX)
5948 {
2eb952a4
L
5949 if (intel_syntax
5950 && i.tm.opcode_modifier.ignoresize
5951 && i.tm.opcode_modifier.no_bsuf)
5952 i.suffix = 0;
5953 else if (!check_byte_reg ())
29b0f896
AM
5954 return 0;
5955 }
5956 else if (i.suffix == LONG_MNEM_SUFFIX)
5957 {
2eb952a4
L
5958 if (intel_syntax
5959 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5960 && i.tm.opcode_modifier.no_lsuf
5961 && !i.tm.opcode_modifier.todword
5962 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
5963 i.suffix = 0;
5964 else if (!check_long_reg ())
29b0f896
AM
5965 return 0;
5966 }
5967 else if (i.suffix == QWORD_MNEM_SUFFIX)
5968 {
955e1e6a
L
5969 if (intel_syntax
5970 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
5971 && i.tm.opcode_modifier.no_qsuf
5972 && !i.tm.opcode_modifier.todword
5973 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
5974 i.suffix = 0;
5975 else if (!check_qword_reg ())
29b0f896
AM
5976 return 0;
5977 }
5978 else if (i.suffix == WORD_MNEM_SUFFIX)
5979 {
2eb952a4
L
5980 if (intel_syntax
5981 && i.tm.opcode_modifier.ignoresize
5982 && i.tm.opcode_modifier.no_wsuf)
5983 i.suffix = 0;
5984 else if (!check_word_reg ())
29b0f896
AM
5985 return 0;
5986 }
40fb9820 5987 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
5988 /* Do nothing if the instruction is going to ignore the prefix. */
5989 ;
5990 else
5991 abort ();
5992 }
40fb9820 5993 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
5994 && !i.suffix
5995 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 5996 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
5997 {
5998 i.suffix = stackop_size;
5999 }
9306ca4a
JB
6000 else if (intel_syntax
6001 && !i.suffix
40fb9820
L
6002 && (i.tm.operand_types[0].bitfield.jumpabsolute
6003 || i.tm.opcode_modifier.jumpbyte
6004 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6005 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6006 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6007 {
6008 switch (flag_code)
6009 {
6010 case CODE_64BIT:
40fb9820 6011 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6012 {
6013 i.suffix = QWORD_MNEM_SUFFIX;
6014 break;
6015 }
1a0670f3 6016 /* Fall through. */
9306ca4a 6017 case CODE_32BIT:
40fb9820 6018 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6019 i.suffix = LONG_MNEM_SUFFIX;
6020 break;
6021 case CODE_16BIT:
40fb9820 6022 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6023 i.suffix = WORD_MNEM_SUFFIX;
6024 break;
6025 }
6026 }
252b5132 6027
9306ca4a 6028 if (!i.suffix)
29b0f896 6029 {
9306ca4a
JB
6030 if (!intel_syntax)
6031 {
40fb9820 6032 if (i.tm.opcode_modifier.w)
9306ca4a 6033 {
4eed87de
AM
6034 as_bad (_("no instruction mnemonic suffix given and "
6035 "no register operands; can't size instruction"));
9306ca4a
JB
6036 return 0;
6037 }
6038 }
6039 else
6040 {
40fb9820 6041 unsigned int suffixes;
7ab9ffdd 6042
40fb9820
L
6043 suffixes = !i.tm.opcode_modifier.no_bsuf;
6044 if (!i.tm.opcode_modifier.no_wsuf)
6045 suffixes |= 1 << 1;
6046 if (!i.tm.opcode_modifier.no_lsuf)
6047 suffixes |= 1 << 2;
fc4adea1 6048 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6049 suffixes |= 1 << 3;
6050 if (!i.tm.opcode_modifier.no_ssuf)
6051 suffixes |= 1 << 4;
c2b9da16 6052 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6053 suffixes |= 1 << 5;
6054
6055 /* There are more than suffix matches. */
6056 if (i.tm.opcode_modifier.w
9306ca4a 6057 || ((suffixes & (suffixes - 1))
40fb9820
L
6058 && !i.tm.opcode_modifier.defaultsize
6059 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6060 {
6061 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6062 return 0;
6063 }
6064 }
29b0f896 6065 }
252b5132 6066
d2224064
JB
6067 /* Change the opcode based on the operand size given by i.suffix. */
6068 switch (i.suffix)
29b0f896 6069 {
d2224064
JB
6070 /* Size floating point instruction. */
6071 case LONG_MNEM_SUFFIX:
6072 if (i.tm.opcode_modifier.floatmf)
6073 {
6074 i.tm.base_opcode ^= 4;
6075 break;
6076 }
6077 /* fall through */
6078 case WORD_MNEM_SUFFIX:
6079 case QWORD_MNEM_SUFFIX:
29b0f896 6080 /* It's not a byte, select word/dword operation. */
40fb9820 6081 if (i.tm.opcode_modifier.w)
29b0f896 6082 {
40fb9820 6083 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6084 i.tm.base_opcode |= 8;
6085 else
6086 i.tm.base_opcode |= 1;
6087 }
d2224064
JB
6088 /* fall through */
6089 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6090 /* Now select between word & dword operations via the operand
6091 size prefix, except for instructions that will ignore this
6092 prefix anyway. */
75c0a438
L
6093 if (i.reg_operands > 0
6094 && i.types[0].bitfield.reg
6095 && i.tm.opcode_modifier.addrprefixopreg
6096 && (i.tm.opcode_modifier.immext
6097 || i.operands == 1))
cb712a9e 6098 {
ca61edf2
L
6099 /* The address size override prefix changes the size of the
6100 first operand. */
40fb9820 6101 if ((flag_code == CODE_32BIT
75c0a438 6102 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6103 || (flag_code != CODE_32BIT
75c0a438 6104 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6105 if (!add_prefix (ADDR_PREFIX_OPCODE))
6106 return 0;
6107 }
6108 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6109 && !i.tm.opcode_modifier.ignoresize
6110 && !i.tm.opcode_modifier.floatmf
cb712a9e
L
6111 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6112 || (flag_code == CODE_64BIT
40fb9820 6113 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6114 {
6115 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6116
40fb9820 6117 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6118 prefix = ADDR_PREFIX_OPCODE;
252b5132 6119
29b0f896
AM
6120 if (!add_prefix (prefix))
6121 return 0;
24eab124 6122 }
252b5132 6123
29b0f896
AM
6124 /* Set mode64 for an operand. */
6125 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6126 && flag_code == CODE_64BIT
d2224064 6127 && !i.tm.opcode_modifier.norex64
46e883c5 6128 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6129 need rex64. */
6130 && ! (i.operands == 2
6131 && i.tm.base_opcode == 0x90
6132 && i.tm.extension_opcode == None
6133 && operand_type_equal (&i.types [0], &acc64)
6134 && operand_type_equal (&i.types [1], &acc64)))
6135 i.rex |= REX_W;
3e73aa7c 6136
d2224064 6137 break;
29b0f896 6138 }
7ecd2f8b 6139
c0a30a9f
L
6140 if (i.reg_operands != 0
6141 && i.operands > 1
6142 && i.tm.opcode_modifier.addrprefixopreg
6143 && !i.tm.opcode_modifier.immext)
6144 {
6145 /* Check invalid register operand when the address size override
6146 prefix changes the size of register operands. */
6147 unsigned int op;
6148 enum { need_word, need_dword, need_qword } need;
6149
6150 if (flag_code == CODE_32BIT)
6151 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6152 else
6153 {
6154 if (i.prefix[ADDR_PREFIX])
6155 need = need_dword;
6156 else
6157 need = flag_code == CODE_64BIT ? need_qword : need_word;
6158 }
6159
6160 for (op = 0; op < i.operands; op++)
6161 if (i.types[op].bitfield.reg
6162 && ((need == need_word
6163 && !i.op[op].regs->reg_type.bitfield.word)
6164 || (need == need_dword
6165 && !i.op[op].regs->reg_type.bitfield.dword)
6166 || (need == need_qword
6167 && !i.op[op].regs->reg_type.bitfield.qword)))
6168 {
6169 as_bad (_("invalid register operand size for `%s'"),
6170 i.tm.name);
6171 return 0;
6172 }
6173 }
6174
29b0f896
AM
6175 return 1;
6176}
3e73aa7c 6177
29b0f896 6178static int
543613e9 6179check_byte_reg (void)
29b0f896
AM
6180{
6181 int op;
543613e9 6182
29b0f896
AM
6183 for (op = i.operands; --op >= 0;)
6184 {
dc821c5f
JB
6185 /* Skip non-register operands. */
6186 if (!i.types[op].bitfield.reg)
6187 continue;
6188
29b0f896
AM
6189 /* If this is an eight bit register, it's OK. If it's the 16 or
6190 32 bit version of an eight bit register, we will just use the
6191 low portion, and that's OK too. */
dc821c5f 6192 if (i.types[op].bitfield.byte)
29b0f896
AM
6193 continue;
6194
5a819eb9
JB
6195 /* I/O port address operands are OK too. */
6196 if (i.tm.operand_types[op].bitfield.inoutportreg)
6197 continue;
6198
9344ff29
L
6199 /* crc32 doesn't generate this warning. */
6200 if (i.tm.base_opcode == 0xf20f38f0)
6201 continue;
6202
dc821c5f
JB
6203 if ((i.types[op].bitfield.word
6204 || i.types[op].bitfield.dword
6205 || i.types[op].bitfield.qword)
5a819eb9
JB
6206 && i.op[op].regs->reg_num < 4
6207 /* Prohibit these changes in 64bit mode, since the lowering
6208 would be more complicated. */
6209 && flag_code != CODE_64BIT)
29b0f896 6210 {
29b0f896 6211#if REGISTER_WARNINGS
5a819eb9 6212 if (!quiet_warnings)
a540244d
L
6213 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6214 register_prefix,
dc821c5f 6215 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6216 ? REGNAM_AL - REGNAM_AX
6217 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6218 register_prefix,
29b0f896
AM
6219 i.op[op].regs->reg_name,
6220 i.suffix);
6221#endif
6222 continue;
6223 }
6224 /* Any other register is bad. */
dc821c5f 6225 if (i.types[op].bitfield.reg
40fb9820 6226 || i.types[op].bitfield.regmmx
1b54b8d7 6227 || i.types[op].bitfield.regsimd
40fb9820
L
6228 || i.types[op].bitfield.sreg2
6229 || i.types[op].bitfield.sreg3
6230 || i.types[op].bitfield.control
6231 || i.types[op].bitfield.debug
ca0d63fe 6232 || i.types[op].bitfield.test)
29b0f896 6233 {
a540244d
L
6234 as_bad (_("`%s%s' not allowed with `%s%c'"),
6235 register_prefix,
29b0f896
AM
6236 i.op[op].regs->reg_name,
6237 i.tm.name,
6238 i.suffix);
6239 return 0;
6240 }
6241 }
6242 return 1;
6243}
6244
6245static int
e3bb37b5 6246check_long_reg (void)
29b0f896
AM
6247{
6248 int op;
6249
6250 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6251 /* Skip non-register operands. */
6252 if (!i.types[op].bitfield.reg)
6253 continue;
29b0f896
AM
6254 /* Reject eight bit registers, except where the template requires
6255 them. (eg. movzb) */
dc821c5f
JB
6256 else if (i.types[op].bitfield.byte
6257 && (i.tm.operand_types[op].bitfield.reg
6258 || i.tm.operand_types[op].bitfield.acc)
6259 && (i.tm.operand_types[op].bitfield.word
6260 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6261 {
a540244d
L
6262 as_bad (_("`%s%s' not allowed with `%s%c'"),
6263 register_prefix,
29b0f896
AM
6264 i.op[op].regs->reg_name,
6265 i.tm.name,
6266 i.suffix);
6267 return 0;
6268 }
e4630f71 6269 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6270 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6271 && i.types[op].bitfield.word
6272 && (i.tm.operand_types[op].bitfield.reg
6273 || i.tm.operand_types[op].bitfield.acc)
6274 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6275 {
6276 /* Prohibit these changes in the 64bit mode, since the
6277 lowering is more complicated. */
6278 if (flag_code == CODE_64BIT)
252b5132 6279 {
2b5d6a91 6280 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6281 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6282 i.suffix);
6283 return 0;
252b5132 6284 }
29b0f896 6285#if REGISTER_WARNINGS
cecf1424
JB
6286 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6287 register_prefix,
6288 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6289 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6290#endif
252b5132 6291 }
e4630f71 6292 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6293 else if (i.types[op].bitfield.qword
6294 && (i.tm.operand_types[op].bitfield.reg
6295 || i.tm.operand_types[op].bitfield.acc)
6296 && i.tm.operand_types[op].bitfield.dword)
252b5132 6297 {
34828aad 6298 if (intel_syntax
ca61edf2 6299 && i.tm.opcode_modifier.toqword
1b54b8d7 6300 && !i.types[0].bitfield.regsimd)
34828aad 6301 {
ca61edf2 6302 /* Convert to QWORD. We want REX byte. */
34828aad
L
6303 i.suffix = QWORD_MNEM_SUFFIX;
6304 }
6305 else
6306 {
2b5d6a91 6307 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6308 register_prefix, i.op[op].regs->reg_name,
6309 i.suffix);
6310 return 0;
6311 }
29b0f896
AM
6312 }
6313 return 1;
6314}
252b5132 6315
29b0f896 6316static int
e3bb37b5 6317check_qword_reg (void)
29b0f896
AM
6318{
6319 int op;
252b5132 6320
29b0f896 6321 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6322 /* Skip non-register operands. */
6323 if (!i.types[op].bitfield.reg)
6324 continue;
29b0f896
AM
6325 /* Reject eight bit registers, except where the template requires
6326 them. (eg. movzb) */
dc821c5f
JB
6327 else if (i.types[op].bitfield.byte
6328 && (i.tm.operand_types[op].bitfield.reg
6329 || i.tm.operand_types[op].bitfield.acc)
6330 && (i.tm.operand_types[op].bitfield.word
6331 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6332 {
a540244d
L
6333 as_bad (_("`%s%s' not allowed with `%s%c'"),
6334 register_prefix,
29b0f896
AM
6335 i.op[op].regs->reg_name,
6336 i.tm.name,
6337 i.suffix);
6338 return 0;
6339 }
e4630f71 6340 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6341 else if ((i.types[op].bitfield.word
6342 || i.types[op].bitfield.dword)
6343 && (i.tm.operand_types[op].bitfield.reg
6344 || i.tm.operand_types[op].bitfield.acc)
6345 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6346 {
6347 /* Prohibit these changes in the 64bit mode, since the
6348 lowering is more complicated. */
34828aad 6349 if (intel_syntax
ca61edf2 6350 && i.tm.opcode_modifier.todword
1b54b8d7 6351 && !i.types[0].bitfield.regsimd)
34828aad 6352 {
ca61edf2 6353 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6354 i.suffix = LONG_MNEM_SUFFIX;
6355 }
6356 else
6357 {
2b5d6a91 6358 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6359 register_prefix, i.op[op].regs->reg_name,
6360 i.suffix);
6361 return 0;
6362 }
252b5132 6363 }
29b0f896
AM
6364 return 1;
6365}
252b5132 6366
29b0f896 6367static int
e3bb37b5 6368check_word_reg (void)
29b0f896
AM
6369{
6370 int op;
6371 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6372 /* Skip non-register operands. */
6373 if (!i.types[op].bitfield.reg)
6374 continue;
29b0f896
AM
6375 /* Reject eight bit registers, except where the template requires
6376 them. (eg. movzb) */
dc821c5f
JB
6377 else if (i.types[op].bitfield.byte
6378 && (i.tm.operand_types[op].bitfield.reg
6379 || i.tm.operand_types[op].bitfield.acc)
6380 && (i.tm.operand_types[op].bitfield.word
6381 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6382 {
a540244d
L
6383 as_bad (_("`%s%s' not allowed with `%s%c'"),
6384 register_prefix,
29b0f896
AM
6385 i.op[op].regs->reg_name,
6386 i.tm.name,
6387 i.suffix);
6388 return 0;
6389 }
e4630f71 6390 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6391 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6392 && (i.types[op].bitfield.dword
6393 || i.types[op].bitfield.qword)
6394 && (i.tm.operand_types[op].bitfield.reg
6395 || i.tm.operand_types[op].bitfield.acc)
6396 && i.tm.operand_types[op].bitfield.word)
252b5132 6397 {
29b0f896
AM
6398 /* Prohibit these changes in the 64bit mode, since the
6399 lowering is more complicated. */
6400 if (flag_code == CODE_64BIT)
252b5132 6401 {
2b5d6a91 6402 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6403 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6404 i.suffix);
6405 return 0;
252b5132 6406 }
29b0f896 6407#if REGISTER_WARNINGS
cecf1424
JB
6408 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6409 register_prefix,
6410 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6411 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6412#endif
6413 }
6414 return 1;
6415}
252b5132 6416
29b0f896 6417static int
40fb9820 6418update_imm (unsigned int j)
29b0f896 6419{
bc0844ae 6420 i386_operand_type overlap = i.types[j];
40fb9820
L
6421 if ((overlap.bitfield.imm8
6422 || overlap.bitfield.imm8s
6423 || overlap.bitfield.imm16
6424 || overlap.bitfield.imm32
6425 || overlap.bitfield.imm32s
6426 || overlap.bitfield.imm64)
0dfbf9d7
L
6427 && !operand_type_equal (&overlap, &imm8)
6428 && !operand_type_equal (&overlap, &imm8s)
6429 && !operand_type_equal (&overlap, &imm16)
6430 && !operand_type_equal (&overlap, &imm32)
6431 && !operand_type_equal (&overlap, &imm32s)
6432 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6433 {
6434 if (i.suffix)
6435 {
40fb9820
L
6436 i386_operand_type temp;
6437
0dfbf9d7 6438 operand_type_set (&temp, 0);
7ab9ffdd 6439 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6440 {
6441 temp.bitfield.imm8 = overlap.bitfield.imm8;
6442 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6443 }
6444 else if (i.suffix == WORD_MNEM_SUFFIX)
6445 temp.bitfield.imm16 = overlap.bitfield.imm16;
6446 else if (i.suffix == QWORD_MNEM_SUFFIX)
6447 {
6448 temp.bitfield.imm64 = overlap.bitfield.imm64;
6449 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6450 }
6451 else
6452 temp.bitfield.imm32 = overlap.bitfield.imm32;
6453 overlap = temp;
29b0f896 6454 }
0dfbf9d7
L
6455 else if (operand_type_equal (&overlap, &imm16_32_32s)
6456 || operand_type_equal (&overlap, &imm16_32)
6457 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6458 {
40fb9820 6459 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6460 overlap = imm16;
40fb9820 6461 else
65da13b5 6462 overlap = imm32s;
29b0f896 6463 }
0dfbf9d7
L
6464 if (!operand_type_equal (&overlap, &imm8)
6465 && !operand_type_equal (&overlap, &imm8s)
6466 && !operand_type_equal (&overlap, &imm16)
6467 && !operand_type_equal (&overlap, &imm32)
6468 && !operand_type_equal (&overlap, &imm32s)
6469 && !operand_type_equal (&overlap, &imm64))
29b0f896 6470 {
4eed87de
AM
6471 as_bad (_("no instruction mnemonic suffix given; "
6472 "can't determine immediate size"));
29b0f896
AM
6473 return 0;
6474 }
6475 }
40fb9820 6476 i.types[j] = overlap;
29b0f896 6477
40fb9820
L
6478 return 1;
6479}
6480
6481static int
6482finalize_imm (void)
6483{
bc0844ae 6484 unsigned int j, n;
29b0f896 6485
bc0844ae
L
6486 /* Update the first 2 immediate operands. */
6487 n = i.operands > 2 ? 2 : i.operands;
6488 if (n)
6489 {
6490 for (j = 0; j < n; j++)
6491 if (update_imm (j) == 0)
6492 return 0;
40fb9820 6493
bc0844ae
L
6494 /* The 3rd operand can't be immediate operand. */
6495 gas_assert (operand_type_check (i.types[2], imm) == 0);
6496 }
29b0f896
AM
6497
6498 return 1;
6499}
6500
6501static int
e3bb37b5 6502process_operands (void)
29b0f896
AM
6503{
6504 /* Default segment register this instruction will use for memory
6505 accesses. 0 means unknown. This is only for optimizing out
6506 unnecessary segment overrides. */
6507 const seg_entry *default_seg = 0;
6508
2426c15f 6509 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6510 {
91d6fa6a
NC
6511 unsigned int dupl = i.operands;
6512 unsigned int dest = dupl - 1;
9fcfb3d7
L
6513 unsigned int j;
6514
c0f3af97 6515 /* The destination must be an xmm register. */
9c2799c2 6516 gas_assert (i.reg_operands
91d6fa6a 6517 && MAX_OPERANDS > dupl
7ab9ffdd 6518 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6519
1b54b8d7
JB
6520 if (i.tm.operand_types[0].bitfield.acc
6521 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6522 {
8cd7925b 6523 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6524 {
6525 /* Keep xmm0 for instructions with VEX prefix and 3
6526 sources. */
1b54b8d7
JB
6527 i.tm.operand_types[0].bitfield.acc = 0;
6528 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6529 goto duplicate;
6530 }
e2ec9d29 6531 else
c0f3af97
L
6532 {
6533 /* We remove the first xmm0 and keep the number of
6534 operands unchanged, which in fact duplicates the
6535 destination. */
6536 for (j = 1; j < i.operands; j++)
6537 {
6538 i.op[j - 1] = i.op[j];
6539 i.types[j - 1] = i.types[j];
6540 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6541 }
6542 }
6543 }
6544 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6545 {
91d6fa6a 6546 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6547 && (i.tm.opcode_modifier.vexsources
6548 == VEX3SOURCES));
c0f3af97
L
6549
6550 /* Add the implicit xmm0 for instructions with VEX prefix
6551 and 3 sources. */
6552 for (j = i.operands; j > 0; j--)
6553 {
6554 i.op[j] = i.op[j - 1];
6555 i.types[j] = i.types[j - 1];
6556 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6557 }
6558 i.op[0].regs
6559 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6560 i.types[0] = regxmm;
c0f3af97
L
6561 i.tm.operand_types[0] = regxmm;
6562
6563 i.operands += 2;
6564 i.reg_operands += 2;
6565 i.tm.operands += 2;
6566
91d6fa6a 6567 dupl++;
c0f3af97 6568 dest++;
91d6fa6a
NC
6569 i.op[dupl] = i.op[dest];
6570 i.types[dupl] = i.types[dest];
6571 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6572 }
c0f3af97
L
6573 else
6574 {
6575duplicate:
6576 i.operands++;
6577 i.reg_operands++;
6578 i.tm.operands++;
6579
91d6fa6a
NC
6580 i.op[dupl] = i.op[dest];
6581 i.types[dupl] = i.types[dest];
6582 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6583 }
6584
6585 if (i.tm.opcode_modifier.immext)
6586 process_immext ();
6587 }
1b54b8d7
JB
6588 else if (i.tm.operand_types[0].bitfield.acc
6589 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6590 {
6591 unsigned int j;
6592
9fcfb3d7
L
6593 for (j = 1; j < i.operands; j++)
6594 {
6595 i.op[j - 1] = i.op[j];
6596 i.types[j - 1] = i.types[j];
6597
6598 /* We need to adjust fields in i.tm since they are used by
6599 build_modrm_byte. */
6600 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6601 }
6602
e2ec9d29
L
6603 i.operands--;
6604 i.reg_operands--;
e2ec9d29
L
6605 i.tm.operands--;
6606 }
920d2ddc
IT
6607 else if (i.tm.opcode_modifier.implicitquadgroup)
6608 {
a477a8c4
JB
6609 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6610
920d2ddc 6611 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6612 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6613 regnum = register_number (i.op[1].regs);
6614 first_reg_in_group = regnum & ~3;
6615 last_reg_in_group = first_reg_in_group + 3;
6616 if (regnum != first_reg_in_group)
6617 as_warn (_("source register `%s%s' implicitly denotes"
6618 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6619 register_prefix, i.op[1].regs->reg_name,
6620 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6621 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6622 i.tm.name);
6623 }
e2ec9d29
L
6624 else if (i.tm.opcode_modifier.regkludge)
6625 {
6626 /* The imul $imm, %reg instruction is converted into
6627 imul $imm, %reg, %reg, and the clr %reg instruction
6628 is converted into xor %reg, %reg. */
6629
6630 unsigned int first_reg_op;
6631
6632 if (operand_type_check (i.types[0], reg))
6633 first_reg_op = 0;
6634 else
6635 first_reg_op = 1;
6636 /* Pretend we saw the extra register operand. */
9c2799c2 6637 gas_assert (i.reg_operands == 1
7ab9ffdd 6638 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6639 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6640 i.types[first_reg_op + 1] = i.types[first_reg_op];
6641 i.operands++;
6642 i.reg_operands++;
29b0f896
AM
6643 }
6644
40fb9820 6645 if (i.tm.opcode_modifier.shortform)
29b0f896 6646 {
40fb9820
L
6647 if (i.types[0].bitfield.sreg2
6648 || i.types[0].bitfield.sreg3)
29b0f896 6649 {
4eed87de
AM
6650 if (i.tm.base_opcode == POP_SEG_SHORT
6651 && i.op[0].regs->reg_num == 1)
29b0f896 6652 {
a87af027 6653 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6654 return 0;
29b0f896 6655 }
4eed87de
AM
6656 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6657 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6658 i.rex |= REX_B;
4eed87de
AM
6659 }
6660 else
6661 {
7ab9ffdd 6662 /* The register or float register operand is in operand
85f10a01 6663 0 or 1. */
40fb9820 6664 unsigned int op;
7ab9ffdd 6665
ca0d63fe 6666 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6667 || operand_type_check (i.types[0], reg))
6668 op = 0;
6669 else
6670 op = 1;
4eed87de
AM
6671 /* Register goes in low 3 bits of opcode. */
6672 i.tm.base_opcode |= i.op[op].regs->reg_num;
6673 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6674 i.rex |= REX_B;
40fb9820 6675 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6676 {
4eed87de
AM
6677 /* Warn about some common errors, but press on regardless.
6678 The first case can be generated by gcc (<= 2.8.1). */
6679 if (i.operands == 2)
6680 {
6681 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6682 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6683 register_prefix, i.op[!intel_syntax].regs->reg_name,
6684 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6685 }
6686 else
6687 {
6688 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6689 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6690 register_prefix, i.op[0].regs->reg_name);
4eed87de 6691 }
29b0f896
AM
6692 }
6693 }
6694 }
40fb9820 6695 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6696 {
6697 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6698 must be put into the modrm byte). Now, we make the modrm and
6699 index base bytes based on all the info we've collected. */
29b0f896
AM
6700
6701 default_seg = build_modrm_byte ();
6702 }
8a2ed489 6703 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6704 {
6705 default_seg = &ds;
6706 }
40fb9820 6707 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6708 {
6709 /* For the string instructions that allow a segment override
6710 on one of their operands, the default segment is ds. */
6711 default_seg = &ds;
6712 }
6713
75178d9d
L
6714 if (i.tm.base_opcode == 0x8d /* lea */
6715 && i.seg[0]
6716 && !quiet_warnings)
30123838 6717 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6718
6719 /* If a segment was explicitly specified, and the specified segment
6720 is not the default, use an opcode prefix to select it. If we
6721 never figured out what the default segment is, then default_seg
6722 will be zero at this point, and the specified segment prefix will
6723 always be used. */
29b0f896
AM
6724 if ((i.seg[0]) && (i.seg[0] != default_seg))
6725 {
6726 if (!add_prefix (i.seg[0]->seg_prefix))
6727 return 0;
6728 }
6729 return 1;
6730}
6731
6732static const seg_entry *
e3bb37b5 6733build_modrm_byte (void)
29b0f896
AM
6734{
6735 const seg_entry *default_seg = 0;
c0f3af97 6736 unsigned int source, dest;
8cd7925b 6737 int vex_3_sources;
c0f3af97 6738
8cd7925b 6739 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6740 if (vex_3_sources)
6741 {
91d6fa6a 6742 unsigned int nds, reg_slot;
4c2c6516 6743 expressionS *exp;
c0f3af97 6744
6b8d3588 6745 dest = i.operands - 1;
c0f3af97 6746 nds = dest - 1;
922d8de8 6747
a683cc34 6748 /* There are 2 kinds of instructions:
bed3d976
JB
6749 1. 5 operands: 4 register operands or 3 register operands
6750 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6751 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6752 ZMM register.
bed3d976 6753 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6754 plus 1 memory operand, with VexXDS. */
922d8de8 6755 gas_assert ((i.reg_operands == 4
bed3d976
JB
6756 || (i.reg_operands == 3 && i.mem_operands == 1))
6757 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6758 && i.tm.opcode_modifier.vexw
6759 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6760
48db9223
JB
6761 /* If VexW1 is set, the first non-immediate operand is the source and
6762 the second non-immediate one is encoded in the immediate operand. */
6763 if (i.tm.opcode_modifier.vexw == VEXW1)
6764 {
6765 source = i.imm_operands;
6766 reg_slot = i.imm_operands + 1;
6767 }
6768 else
6769 {
6770 source = i.imm_operands + 1;
6771 reg_slot = i.imm_operands;
6772 }
6773
a683cc34 6774 if (i.imm_operands == 0)
bed3d976
JB
6775 {
6776 /* When there is no immediate operand, generate an 8bit
6777 immediate operand to encode the first operand. */
6778 exp = &im_expressions[i.imm_operands++];
6779 i.op[i.operands].imms = exp;
6780 i.types[i.operands] = imm8;
6781 i.operands++;
6782
6783 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6784 exp->X_op = O_constant;
6785 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6786 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6787 }
922d8de8 6788 else
bed3d976
JB
6789 {
6790 unsigned int imm_slot;
a683cc34 6791
2f1bada2
JB
6792 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6793
bed3d976
JB
6794 if (i.tm.opcode_modifier.immext)
6795 {
6796 /* When ImmExt is set, the immediate byte is the last
6797 operand. */
6798 imm_slot = i.operands - 1;
6799 source--;
6800 reg_slot--;
6801 }
6802 else
6803 {
6804 imm_slot = 0;
6805
6806 /* Turn on Imm8 so that output_imm will generate it. */
6807 i.types[imm_slot].bitfield.imm8 = 1;
6808 }
6809
6810 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6811 i.op[imm_slot].imms->X_add_number
6812 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6813 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6814 }
a683cc34 6815
10c17abd 6816 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6817 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6818 }
6819 else
6820 source = dest = 0;
29b0f896
AM
6821
6822 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6823 implicit registers do not count. If there are 3 register
6824 operands, it must be a instruction with VexNDS. For a
6825 instruction with VexNDD, the destination register is encoded
6826 in VEX prefix. If there are 4 register operands, it must be
6827 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6828 if (i.mem_operands == 0
6829 && ((i.reg_operands == 2
2426c15f 6830 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6831 || (i.reg_operands == 3
2426c15f 6832 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6833 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6834 {
cab737b9
L
6835 switch (i.operands)
6836 {
6837 case 2:
6838 source = 0;
6839 break;
6840 case 3:
c81128dc
L
6841 /* When there are 3 operands, one of them may be immediate,
6842 which may be the first or the last operand. Otherwise,
c0f3af97
L
6843 the first operand must be shift count register (cl) or it
6844 is an instruction with VexNDS. */
9c2799c2 6845 gas_assert (i.imm_operands == 1
7ab9ffdd 6846 || (i.imm_operands == 0
2426c15f 6847 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 6848 || i.types[0].bitfield.shiftcount)));
40fb9820
L
6849 if (operand_type_check (i.types[0], imm)
6850 || i.types[0].bitfield.shiftcount)
6851 source = 1;
6852 else
6853 source = 0;
cab737b9
L
6854 break;
6855 case 4:
368d64cc
L
6856 /* When there are 4 operands, the first two must be 8bit
6857 immediate operands. The source operand will be the 3rd
c0f3af97
L
6858 one.
6859
6860 For instructions with VexNDS, if the first operand
6861 an imm8, the source operand is the 2nd one. If the last
6862 operand is imm8, the source operand is the first one. */
9c2799c2 6863 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
6864 && i.types[0].bitfield.imm8
6865 && i.types[1].bitfield.imm8)
2426c15f 6866 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
6867 && i.imm_operands == 1
6868 && (i.types[0].bitfield.imm8
43234a1e
L
6869 || i.types[i.operands - 1].bitfield.imm8
6870 || i.rounding)));
9f2670f2
L
6871 if (i.imm_operands == 2)
6872 source = 2;
6873 else
c0f3af97
L
6874 {
6875 if (i.types[0].bitfield.imm8)
6876 source = 1;
6877 else
6878 source = 0;
6879 }
c0f3af97
L
6880 break;
6881 case 5:
e771e7c9 6882 if (is_evex_encoding (&i.tm))
43234a1e
L
6883 {
6884 /* For EVEX instructions, when there are 5 operands, the
6885 first one must be immediate operand. If the second one
6886 is immediate operand, the source operand is the 3th
6887 one. If the last one is immediate operand, the source
6888 operand is the 2nd one. */
6889 gas_assert (i.imm_operands == 2
6890 && i.tm.opcode_modifier.sae
6891 && operand_type_check (i.types[0], imm));
6892 if (operand_type_check (i.types[1], imm))
6893 source = 2;
6894 else if (operand_type_check (i.types[4], imm))
6895 source = 1;
6896 else
6897 abort ();
6898 }
cab737b9
L
6899 break;
6900 default:
6901 abort ();
6902 }
6903
c0f3af97
L
6904 if (!vex_3_sources)
6905 {
6906 dest = source + 1;
6907
43234a1e
L
6908 /* RC/SAE operand could be between DEST and SRC. That happens
6909 when one operand is GPR and the other one is XMM/YMM/ZMM
6910 register. */
6911 if (i.rounding && i.rounding->operand == (int) dest)
6912 dest++;
6913
2426c15f 6914 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 6915 {
43234a1e 6916 /* For instructions with VexNDS, the register-only source
c5d0745b 6917 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
6918 register. It is encoded in VEX prefix. We need to
6919 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
6920
6921 i386_operand_type op;
6922 unsigned int vvvv;
6923
6924 /* Check register-only source operand when two source
6925 operands are swapped. */
6926 if (!i.tm.operand_types[source].bitfield.baseindex
6927 && i.tm.operand_types[dest].bitfield.baseindex)
6928 {
6929 vvvv = source;
6930 source = dest;
6931 }
6932 else
6933 vvvv = dest;
6934
6935 op = i.tm.operand_types[vvvv];
fa99fab2 6936 op.bitfield.regmem = 0;
c0f3af97 6937 if ((dest + 1) >= i.operands
dc821c5f
JB
6938 || ((!op.bitfield.reg
6939 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 6940 && !op.bitfield.regsimd
43234a1e 6941 && !operand_type_equal (&op, &regmask)))
c0f3af97 6942 abort ();
f12dc422 6943 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
6944 dest++;
6945 }
6946 }
29b0f896
AM
6947
6948 i.rm.mode = 3;
6949 /* One of the register operands will be encoded in the i.tm.reg
6950 field, the other in the combined i.tm.mode and i.tm.regmem
6951 fields. If no form of this instruction supports a memory
6952 destination operand, then we assume the source operand may
6953 sometimes be a memory operand and so we need to store the
6954 destination in the i.rm.reg field. */
40fb9820
L
6955 if (!i.tm.operand_types[dest].bitfield.regmem
6956 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
6957 {
6958 i.rm.reg = i.op[dest].regs->reg_num;
6959 i.rm.regmem = i.op[source].regs->reg_num;
6960 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6961 i.rex |= REX_R;
43234a1e
L
6962 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6963 i.vrex |= REX_R;
29b0f896 6964 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6965 i.rex |= REX_B;
43234a1e
L
6966 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6967 i.vrex |= REX_B;
29b0f896
AM
6968 }
6969 else
6970 {
6971 i.rm.reg = i.op[source].regs->reg_num;
6972 i.rm.regmem = i.op[dest].regs->reg_num;
6973 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 6974 i.rex |= REX_B;
43234a1e
L
6975 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6976 i.vrex |= REX_B;
29b0f896 6977 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 6978 i.rex |= REX_R;
43234a1e
L
6979 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6980 i.vrex |= REX_R;
29b0f896 6981 }
e0c7f900 6982 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 6983 {
e0c7f900 6984 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 6985 abort ();
e0c7f900 6986 i.rex &= ~REX_R;
c4a530c5
JB
6987 add_prefix (LOCK_PREFIX_OPCODE);
6988 }
29b0f896
AM
6989 }
6990 else
6991 { /* If it's not 2 reg operands... */
c0f3af97
L
6992 unsigned int mem;
6993
29b0f896
AM
6994 if (i.mem_operands)
6995 {
6996 unsigned int fake_zero_displacement = 0;
99018f42 6997 unsigned int op;
4eed87de 6998
7ab9ffdd
L
6999 for (op = 0; op < i.operands; op++)
7000 if (operand_type_check (i.types[op], anymem))
7001 break;
7ab9ffdd 7002 gas_assert (op < i.operands);
29b0f896 7003
6c30d220
L
7004 if (i.tm.opcode_modifier.vecsib)
7005 {
7006 if (i.index_reg->reg_num == RegEiz
7007 || i.index_reg->reg_num == RegRiz)
7008 abort ();
7009
7010 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7011 if (!i.base_reg)
7012 {
7013 i.sib.base = NO_BASE_REGISTER;
7014 i.sib.scale = i.log2_scale_factor;
7015 i.types[op].bitfield.disp8 = 0;
7016 i.types[op].bitfield.disp16 = 0;
7017 i.types[op].bitfield.disp64 = 0;
43083a50 7018 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7019 {
7020 /* Must be 32 bit */
7021 i.types[op].bitfield.disp32 = 1;
7022 i.types[op].bitfield.disp32s = 0;
7023 }
7024 else
7025 {
7026 i.types[op].bitfield.disp32 = 0;
7027 i.types[op].bitfield.disp32s = 1;
7028 }
7029 }
7030 i.sib.index = i.index_reg->reg_num;
7031 if ((i.index_reg->reg_flags & RegRex) != 0)
7032 i.rex |= REX_X;
43234a1e
L
7033 if ((i.index_reg->reg_flags & RegVRex) != 0)
7034 i.vrex |= REX_X;
6c30d220
L
7035 }
7036
29b0f896
AM
7037 default_seg = &ds;
7038
7039 if (i.base_reg == 0)
7040 {
7041 i.rm.mode = 0;
7042 if (!i.disp_operands)
9bb129e8 7043 fake_zero_displacement = 1;
29b0f896
AM
7044 if (i.index_reg == 0)
7045 {
73053c1f
JB
7046 i386_operand_type newdisp;
7047
6c30d220 7048 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7049 /* Operand is just <disp> */
20f0a1fc 7050 if (flag_code == CODE_64BIT)
29b0f896
AM
7051 {
7052 /* 64bit mode overwrites the 32bit absolute
7053 addressing by RIP relative addressing and
7054 absolute addressing is encoded by one of the
7055 redundant SIB forms. */
7056 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7057 i.sib.base = NO_BASE_REGISTER;
7058 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7059 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7060 }
fc225355
L
7061 else if ((flag_code == CODE_16BIT)
7062 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7063 {
7064 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7065 newdisp = disp16;
20f0a1fc
NC
7066 }
7067 else
7068 {
7069 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7070 newdisp = disp32;
29b0f896 7071 }
73053c1f
JB
7072 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7073 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7074 }
6c30d220 7075 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7076 {
6c30d220 7077 /* !i.base_reg && i.index_reg */
db51cc60
L
7078 if (i.index_reg->reg_num == RegEiz
7079 || i.index_reg->reg_num == RegRiz)
7080 i.sib.index = NO_INDEX_REGISTER;
7081 else
7082 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7083 i.sib.base = NO_BASE_REGISTER;
7084 i.sib.scale = i.log2_scale_factor;
7085 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7086 i.types[op].bitfield.disp8 = 0;
7087 i.types[op].bitfield.disp16 = 0;
7088 i.types[op].bitfield.disp64 = 0;
43083a50 7089 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7090 {
7091 /* Must be 32 bit */
7092 i.types[op].bitfield.disp32 = 1;
7093 i.types[op].bitfield.disp32s = 0;
7094 }
29b0f896 7095 else
40fb9820
L
7096 {
7097 i.types[op].bitfield.disp32 = 0;
7098 i.types[op].bitfield.disp32s = 1;
7099 }
29b0f896 7100 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7101 i.rex |= REX_X;
29b0f896
AM
7102 }
7103 }
7104 /* RIP addressing for 64bit mode. */
9a04903e
JB
7105 else if (i.base_reg->reg_num == RegRip ||
7106 i.base_reg->reg_num == RegEip)
29b0f896 7107 {
6c30d220 7108 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7109 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7110 i.types[op].bitfield.disp8 = 0;
7111 i.types[op].bitfield.disp16 = 0;
7112 i.types[op].bitfield.disp32 = 0;
7113 i.types[op].bitfield.disp32s = 1;
7114 i.types[op].bitfield.disp64 = 0;
71903a11 7115 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7116 if (! i.disp_operands)
7117 fake_zero_displacement = 1;
29b0f896 7118 }
dc821c5f 7119 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7120 {
6c30d220 7121 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7122 switch (i.base_reg->reg_num)
7123 {
7124 case 3: /* (%bx) */
7125 if (i.index_reg == 0)
7126 i.rm.regmem = 7;
7127 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7128 i.rm.regmem = i.index_reg->reg_num - 6;
7129 break;
7130 case 5: /* (%bp) */
7131 default_seg = &ss;
7132 if (i.index_reg == 0)
7133 {
7134 i.rm.regmem = 6;
40fb9820 7135 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7136 {
7137 /* fake (%bp) into 0(%bp) */
b5014f7a 7138 i.types[op].bitfield.disp8 = 1;
252b5132 7139 fake_zero_displacement = 1;
29b0f896
AM
7140 }
7141 }
7142 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7143 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7144 break;
7145 default: /* (%si) -> 4 or (%di) -> 5 */
7146 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7147 }
7148 i.rm.mode = mode_from_disp_size (i.types[op]);
7149 }
7150 else /* i.base_reg and 32/64 bit mode */
7151 {
7152 if (flag_code == CODE_64BIT
40fb9820
L
7153 && operand_type_check (i.types[op], disp))
7154 {
73053c1f
JB
7155 i.types[op].bitfield.disp16 = 0;
7156 i.types[op].bitfield.disp64 = 0;
40fb9820 7157 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7158 {
7159 i.types[op].bitfield.disp32 = 0;
7160 i.types[op].bitfield.disp32s = 1;
7161 }
40fb9820 7162 else
73053c1f
JB
7163 {
7164 i.types[op].bitfield.disp32 = 1;
7165 i.types[op].bitfield.disp32s = 0;
7166 }
40fb9820 7167 }
20f0a1fc 7168
6c30d220
L
7169 if (!i.tm.opcode_modifier.vecsib)
7170 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7171 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7172 i.rex |= REX_B;
29b0f896
AM
7173 i.sib.base = i.base_reg->reg_num;
7174 /* x86-64 ignores REX prefix bit here to avoid decoder
7175 complications. */
848930b2
JB
7176 if (!(i.base_reg->reg_flags & RegRex)
7177 && (i.base_reg->reg_num == EBP_REG_NUM
7178 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7179 default_seg = &ss;
848930b2 7180 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7181 {
848930b2 7182 fake_zero_displacement = 1;
b5014f7a 7183 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7184 }
7185 i.sib.scale = i.log2_scale_factor;
7186 if (i.index_reg == 0)
7187 {
6c30d220 7188 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7189 /* <disp>(%esp) becomes two byte modrm with no index
7190 register. We've already stored the code for esp
7191 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7192 Any base register besides %esp will not use the
7193 extra modrm byte. */
7194 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7195 }
6c30d220 7196 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7197 {
db51cc60
L
7198 if (i.index_reg->reg_num == RegEiz
7199 || i.index_reg->reg_num == RegRiz)
7200 i.sib.index = NO_INDEX_REGISTER;
7201 else
7202 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7203 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7204 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7205 i.rex |= REX_X;
29b0f896 7206 }
67a4f2b7
AO
7207
7208 if (i.disp_operands
7209 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7210 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7211 i.rm.mode = 0;
7212 else
a501d77e
L
7213 {
7214 if (!fake_zero_displacement
7215 && !i.disp_operands
7216 && i.disp_encoding)
7217 {
7218 fake_zero_displacement = 1;
7219 if (i.disp_encoding == disp_encoding_8bit)
7220 i.types[op].bitfield.disp8 = 1;
7221 else
7222 i.types[op].bitfield.disp32 = 1;
7223 }
7224 i.rm.mode = mode_from_disp_size (i.types[op]);
7225 }
29b0f896 7226 }
252b5132 7227
29b0f896
AM
7228 if (fake_zero_displacement)
7229 {
7230 /* Fakes a zero displacement assuming that i.types[op]
7231 holds the correct displacement size. */
7232 expressionS *exp;
7233
9c2799c2 7234 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7235 exp = &disp_expressions[i.disp_operands++];
7236 i.op[op].disps = exp;
7237 exp->X_op = O_constant;
7238 exp->X_add_number = 0;
7239 exp->X_add_symbol = (symbolS *) 0;
7240 exp->X_op_symbol = (symbolS *) 0;
7241 }
c0f3af97
L
7242
7243 mem = op;
29b0f896 7244 }
c0f3af97
L
7245 else
7246 mem = ~0;
252b5132 7247
8c43a48b 7248 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7249 {
7250 if (operand_type_check (i.types[0], imm))
7251 i.vex.register_specifier = NULL;
7252 else
7253 {
7254 /* VEX.vvvv encodes one of the sources when the first
7255 operand is not an immediate. */
1ef99a7b 7256 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7257 i.vex.register_specifier = i.op[0].regs;
7258 else
7259 i.vex.register_specifier = i.op[1].regs;
7260 }
7261
7262 /* Destination is a XMM register encoded in the ModRM.reg
7263 and VEX.R bit. */
7264 i.rm.reg = i.op[2].regs->reg_num;
7265 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7266 i.rex |= REX_R;
7267
7268 /* ModRM.rm and VEX.B encodes the other source. */
7269 if (!i.mem_operands)
7270 {
7271 i.rm.mode = 3;
7272
1ef99a7b 7273 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7274 i.rm.regmem = i.op[1].regs->reg_num;
7275 else
7276 i.rm.regmem = i.op[0].regs->reg_num;
7277
7278 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7279 i.rex |= REX_B;
7280 }
7281 }
2426c15f 7282 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7283 {
7284 i.vex.register_specifier = i.op[2].regs;
7285 if (!i.mem_operands)
7286 {
7287 i.rm.mode = 3;
7288 i.rm.regmem = i.op[1].regs->reg_num;
7289 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7290 i.rex |= REX_B;
7291 }
7292 }
29b0f896
AM
7293 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7294 (if any) based on i.tm.extension_opcode. Again, we must be
7295 careful to make sure that segment/control/debug/test/MMX
7296 registers are coded into the i.rm.reg field. */
f88c9eb0 7297 else if (i.reg_operands)
29b0f896 7298 {
99018f42 7299 unsigned int op;
7ab9ffdd
L
7300 unsigned int vex_reg = ~0;
7301
7302 for (op = 0; op < i.operands; op++)
dc821c5f 7303 if (i.types[op].bitfield.reg
7ab9ffdd 7304 || i.types[op].bitfield.regmmx
1b54b8d7 7305 || i.types[op].bitfield.regsimd
7e8b059b 7306 || i.types[op].bitfield.regbnd
43234a1e 7307 || i.types[op].bitfield.regmask
7ab9ffdd
L
7308 || i.types[op].bitfield.sreg2
7309 || i.types[op].bitfield.sreg3
7310 || i.types[op].bitfield.control
7311 || i.types[op].bitfield.debug
7312 || i.types[op].bitfield.test)
7313 break;
c0209578 7314
7ab9ffdd
L
7315 if (vex_3_sources)
7316 op = dest;
2426c15f 7317 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7318 {
7319 /* For instructions with VexNDS, the register-only
7320 source operand is encoded in VEX prefix. */
7321 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7322
7ab9ffdd 7323 if (op > mem)
c0f3af97 7324 {
7ab9ffdd
L
7325 vex_reg = op++;
7326 gas_assert (op < i.operands);
c0f3af97
L
7327 }
7328 else
c0f3af97 7329 {
f12dc422
L
7330 /* Check register-only source operand when two source
7331 operands are swapped. */
7332 if (!i.tm.operand_types[op].bitfield.baseindex
7333 && i.tm.operand_types[op + 1].bitfield.baseindex)
7334 {
7335 vex_reg = op;
7336 op += 2;
7337 gas_assert (mem == (vex_reg + 1)
7338 && op < i.operands);
7339 }
7340 else
7341 {
7342 vex_reg = op + 1;
7343 gas_assert (vex_reg < i.operands);
7344 }
c0f3af97 7345 }
7ab9ffdd 7346 }
2426c15f 7347 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7348 {
f12dc422 7349 /* For instructions with VexNDD, the register destination
7ab9ffdd 7350 is encoded in VEX prefix. */
f12dc422
L
7351 if (i.mem_operands == 0)
7352 {
7353 /* There is no memory operand. */
7354 gas_assert ((op + 2) == i.operands);
7355 vex_reg = op + 1;
7356 }
7357 else
8d63c93e 7358 {
ed438a93
JB
7359 /* There are only 2 non-immediate operands. */
7360 gas_assert (op < i.imm_operands + 2
7361 && i.operands == i.imm_operands + 2);
7362 vex_reg = i.imm_operands + 1;
f12dc422 7363 }
7ab9ffdd
L
7364 }
7365 else
7366 gas_assert (op < i.operands);
99018f42 7367
7ab9ffdd
L
7368 if (vex_reg != (unsigned int) ~0)
7369 {
f12dc422 7370 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7371
dc821c5f
JB
7372 if ((!type->bitfield.reg
7373 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7374 && !type->bitfield.regsimd
43234a1e 7375 && !operand_type_equal (type, &regmask))
7ab9ffdd 7376 abort ();
f88c9eb0 7377
7ab9ffdd
L
7378 i.vex.register_specifier = i.op[vex_reg].regs;
7379 }
7380
1b9f0c97
L
7381 /* Don't set OP operand twice. */
7382 if (vex_reg != op)
7ab9ffdd 7383 {
1b9f0c97
L
7384 /* If there is an extension opcode to put here, the
7385 register number must be put into the regmem field. */
7386 if (i.tm.extension_opcode != None)
7387 {
7388 i.rm.regmem = i.op[op].regs->reg_num;
7389 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7390 i.rex |= REX_B;
43234a1e
L
7391 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7392 i.vrex |= REX_B;
1b9f0c97
L
7393 }
7394 else
7395 {
7396 i.rm.reg = i.op[op].regs->reg_num;
7397 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7398 i.rex |= REX_R;
43234a1e
L
7399 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7400 i.vrex |= REX_R;
1b9f0c97 7401 }
7ab9ffdd 7402 }
252b5132 7403
29b0f896
AM
7404 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7405 must set it to 3 to indicate this is a register operand
7406 in the regmem field. */
7407 if (!i.mem_operands)
7408 i.rm.mode = 3;
7409 }
252b5132 7410
29b0f896 7411 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7412 if (i.tm.extension_opcode != None)
29b0f896
AM
7413 i.rm.reg = i.tm.extension_opcode;
7414 }
7415 return default_seg;
7416}
252b5132 7417
29b0f896 7418static void
e3bb37b5 7419output_branch (void)
29b0f896
AM
7420{
7421 char *p;
f8a5c266 7422 int size;
29b0f896
AM
7423 int code16;
7424 int prefix;
7425 relax_substateT subtype;
7426 symbolS *sym;
7427 offsetT off;
7428
f8a5c266 7429 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7430 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7431
7432 prefix = 0;
7433 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7434 {
29b0f896
AM
7435 prefix = 1;
7436 i.prefixes -= 1;
7437 code16 ^= CODE16;
252b5132 7438 }
29b0f896
AM
7439 /* Pentium4 branch hints. */
7440 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7441 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7442 {
29b0f896
AM
7443 prefix++;
7444 i.prefixes--;
7445 }
7446 if (i.prefix[REX_PREFIX] != 0)
7447 {
7448 prefix++;
7449 i.prefixes--;
2f66722d
AM
7450 }
7451
7e8b059b
L
7452 /* BND prefixed jump. */
7453 if (i.prefix[BND_PREFIX] != 0)
7454 {
7455 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7456 i.prefixes -= 1;
7457 }
7458
29b0f896
AM
7459 if (i.prefixes != 0 && !intel_syntax)
7460 as_warn (_("skipping prefixes on this instruction"));
7461
7462 /* It's always a symbol; End frag & setup for relax.
7463 Make sure there is enough room in this frag for the largest
7464 instruction we may generate in md_convert_frag. This is 2
7465 bytes for the opcode and room for the prefix and largest
7466 displacement. */
7467 frag_grow (prefix + 2 + 4);
7468 /* Prefix and 1 opcode byte go in fr_fix. */
7469 p = frag_more (prefix + 1);
7470 if (i.prefix[DATA_PREFIX] != 0)
7471 *p++ = DATA_PREFIX_OPCODE;
7472 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7473 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7474 *p++ = i.prefix[SEG_PREFIX];
7475 if (i.prefix[REX_PREFIX] != 0)
7476 *p++ = i.prefix[REX_PREFIX];
7477 *p = i.tm.base_opcode;
7478
7479 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7480 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7481 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7482 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7483 else
f8a5c266 7484 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7485 subtype |= code16;
3e73aa7c 7486
29b0f896
AM
7487 sym = i.op[0].disps->X_add_symbol;
7488 off = i.op[0].disps->X_add_number;
3e73aa7c 7489
29b0f896
AM
7490 if (i.op[0].disps->X_op != O_constant
7491 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7492 {
29b0f896
AM
7493 /* Handle complex expressions. */
7494 sym = make_expr_symbol (i.op[0].disps);
7495 off = 0;
7496 }
3e73aa7c 7497
29b0f896
AM
7498 /* 1 possible extra opcode + 4 byte displacement go in var part.
7499 Pass reloc in fr_var. */
d258b828 7500 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7501}
3e73aa7c 7502
bd7ab16b
L
7503#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7504/* Return TRUE iff PLT32 relocation should be used for branching to
7505 symbol S. */
7506
7507static bfd_boolean
7508need_plt32_p (symbolS *s)
7509{
7510 /* PLT32 relocation is ELF only. */
7511 if (!IS_ELF)
7512 return FALSE;
7513
7514 /* Since there is no need to prepare for PLT branch on x86-64, we
7515 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7516 be used as a marker for 32-bit PC-relative branches. */
7517 if (!object_64bit)
7518 return FALSE;
7519
7520 /* Weak or undefined symbol need PLT32 relocation. */
7521 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7522 return TRUE;
7523
7524 /* Non-global symbol doesn't need PLT32 relocation. */
7525 if (! S_IS_EXTERNAL (s))
7526 return FALSE;
7527
7528 /* Other global symbols need PLT32 relocation. NB: Symbol with
7529 non-default visibilities are treated as normal global symbol
7530 so that PLT32 relocation can be used as a marker for 32-bit
7531 PC-relative branches. It is useful for linker relaxation. */
7532 return TRUE;
7533}
7534#endif
7535
29b0f896 7536static void
e3bb37b5 7537output_jump (void)
29b0f896
AM
7538{
7539 char *p;
7540 int size;
3e02c1cc 7541 fixS *fixP;
bd7ab16b 7542 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7543
40fb9820 7544 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7545 {
7546 /* This is a loop or jecxz type instruction. */
7547 size = 1;
7548 if (i.prefix[ADDR_PREFIX] != 0)
7549 {
7550 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7551 i.prefixes -= 1;
7552 }
7553 /* Pentium4 branch hints. */
7554 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7555 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7556 {
7557 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7558 i.prefixes--;
3e73aa7c
JH
7559 }
7560 }
29b0f896
AM
7561 else
7562 {
7563 int code16;
3e73aa7c 7564
29b0f896
AM
7565 code16 = 0;
7566 if (flag_code == CODE_16BIT)
7567 code16 = CODE16;
3e73aa7c 7568
29b0f896
AM
7569 if (i.prefix[DATA_PREFIX] != 0)
7570 {
7571 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7572 i.prefixes -= 1;
7573 code16 ^= CODE16;
7574 }
252b5132 7575
29b0f896
AM
7576 size = 4;
7577 if (code16)
7578 size = 2;
7579 }
9fcc94b6 7580
29b0f896
AM
7581 if (i.prefix[REX_PREFIX] != 0)
7582 {
7583 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7584 i.prefixes -= 1;
7585 }
252b5132 7586
7e8b059b
L
7587 /* BND prefixed jump. */
7588 if (i.prefix[BND_PREFIX] != 0)
7589 {
7590 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7591 i.prefixes -= 1;
7592 }
7593
29b0f896
AM
7594 if (i.prefixes != 0 && !intel_syntax)
7595 as_warn (_("skipping prefixes on this instruction"));
e0890092 7596
42164a71
L
7597 p = frag_more (i.tm.opcode_length + size);
7598 switch (i.tm.opcode_length)
7599 {
7600 case 2:
7601 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7602 /* Fall through. */
42164a71
L
7603 case 1:
7604 *p++ = i.tm.base_opcode;
7605 break;
7606 default:
7607 abort ();
7608 }
e0890092 7609
bd7ab16b
L
7610#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7611 if (size == 4
7612 && jump_reloc == NO_RELOC
7613 && need_plt32_p (i.op[0].disps->X_add_symbol))
7614 jump_reloc = BFD_RELOC_X86_64_PLT32;
7615#endif
7616
7617 jump_reloc = reloc (size, 1, 1, jump_reloc);
7618
3e02c1cc 7619 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7620 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7621
7622 /* All jumps handled here are signed, but don't use a signed limit
7623 check for 32 and 16 bit jumps as we want to allow wrap around at
7624 4G and 64k respectively. */
7625 if (size == 1)
7626 fixP->fx_signed = 1;
29b0f896 7627}
e0890092 7628
29b0f896 7629static void
e3bb37b5 7630output_interseg_jump (void)
29b0f896
AM
7631{
7632 char *p;
7633 int size;
7634 int prefix;
7635 int code16;
252b5132 7636
29b0f896
AM
7637 code16 = 0;
7638 if (flag_code == CODE_16BIT)
7639 code16 = CODE16;
a217f122 7640
29b0f896
AM
7641 prefix = 0;
7642 if (i.prefix[DATA_PREFIX] != 0)
7643 {
7644 prefix = 1;
7645 i.prefixes -= 1;
7646 code16 ^= CODE16;
7647 }
7648 if (i.prefix[REX_PREFIX] != 0)
7649 {
7650 prefix++;
7651 i.prefixes -= 1;
7652 }
252b5132 7653
29b0f896
AM
7654 size = 4;
7655 if (code16)
7656 size = 2;
252b5132 7657
29b0f896
AM
7658 if (i.prefixes != 0 && !intel_syntax)
7659 as_warn (_("skipping prefixes on this instruction"));
252b5132 7660
29b0f896
AM
7661 /* 1 opcode; 2 segment; offset */
7662 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7663
29b0f896
AM
7664 if (i.prefix[DATA_PREFIX] != 0)
7665 *p++ = DATA_PREFIX_OPCODE;
252b5132 7666
29b0f896
AM
7667 if (i.prefix[REX_PREFIX] != 0)
7668 *p++ = i.prefix[REX_PREFIX];
252b5132 7669
29b0f896
AM
7670 *p++ = i.tm.base_opcode;
7671 if (i.op[1].imms->X_op == O_constant)
7672 {
7673 offsetT n = i.op[1].imms->X_add_number;
252b5132 7674
29b0f896
AM
7675 if (size == 2
7676 && !fits_in_unsigned_word (n)
7677 && !fits_in_signed_word (n))
7678 {
7679 as_bad (_("16-bit jump out of range"));
7680 return;
7681 }
7682 md_number_to_chars (p, n, size);
7683 }
7684 else
7685 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7686 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7687 if (i.op[0].imms->X_op != O_constant)
7688 as_bad (_("can't handle non absolute segment in `%s'"),
7689 i.tm.name);
7690 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7691}
a217f122 7692
29b0f896 7693static void
e3bb37b5 7694output_insn (void)
29b0f896 7695{
2bbd9c25
JJ
7696 fragS *insn_start_frag;
7697 offsetT insn_start_off;
7698
29b0f896
AM
7699 /* Tie dwarf2 debug info to the address at the start of the insn.
7700 We can't do this after the insn has been output as the current
7701 frag may have been closed off. eg. by frag_var. */
7702 dwarf2_emit_insn (0);
7703
2bbd9c25
JJ
7704 insn_start_frag = frag_now;
7705 insn_start_off = frag_now_fix ();
7706
29b0f896 7707 /* Output jumps. */
40fb9820 7708 if (i.tm.opcode_modifier.jump)
29b0f896 7709 output_branch ();
40fb9820
L
7710 else if (i.tm.opcode_modifier.jumpbyte
7711 || i.tm.opcode_modifier.jumpdword)
29b0f896 7712 output_jump ();
40fb9820 7713 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
7714 output_interseg_jump ();
7715 else
7716 {
7717 /* Output normal instructions here. */
7718 char *p;
7719 unsigned char *q;
47465058 7720 unsigned int j;
331d2d0d 7721 unsigned int prefix;
4dffcebc 7722
e4e00185
AS
7723 if (avoid_fence
7724 && i.tm.base_opcode == 0xfae
7725 && i.operands == 1
7726 && i.imm_operands == 1
7727 && (i.op[0].imms->X_add_number == 0xe8
7728 || i.op[0].imms->X_add_number == 0xf0
7729 || i.op[0].imms->X_add_number == 0xf8))
7730 {
7731 /* Encode lfence, mfence, and sfence as
7732 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7733 offsetT val = 0x240483f0ULL;
7734 p = frag_more (5);
7735 md_number_to_chars (p, val, 5);
7736 return;
7737 }
7738
d022bddd
IT
7739 /* Some processors fail on LOCK prefix. This options makes
7740 assembler ignore LOCK prefix and serves as a workaround. */
7741 if (omit_lock_prefix)
7742 {
7743 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7744 return;
7745 i.prefix[LOCK_PREFIX] = 0;
7746 }
7747
43234a1e
L
7748 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7749 don't need the explicit prefix. */
7750 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 7751 {
c0f3af97 7752 switch (i.tm.opcode_length)
bc4bd9ab 7753 {
c0f3af97
L
7754 case 3:
7755 if (i.tm.base_opcode & 0xff000000)
4dffcebc 7756 {
c0f3af97 7757 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 7758 add_prefix (prefix);
c0f3af97
L
7759 }
7760 break;
7761 case 2:
7762 if ((i.tm.base_opcode & 0xff0000) != 0)
7763 {
7764 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
7765 if (!i.tm.cpu_flags.bitfield.cpupadlock
7766 || prefix != REPE_PREFIX_OPCODE
7767 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
7768 add_prefix (prefix);
7769 }
c0f3af97
L
7770 break;
7771 case 1:
7772 break;
390c91cf
L
7773 case 0:
7774 /* Check for pseudo prefixes. */
7775 as_bad_where (insn_start_frag->fr_file,
7776 insn_start_frag->fr_line,
7777 _("pseudo prefix without instruction"));
7778 return;
c0f3af97
L
7779 default:
7780 abort ();
bc4bd9ab 7781 }
c0f3af97 7782
6d19a37a 7783#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
7784 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7785 R_X86_64_GOTTPOFF relocation so that linker can safely
7786 perform IE->LE optimization. */
7787 if (x86_elf_abi == X86_64_X32_ABI
7788 && i.operands == 2
7789 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7790 && i.prefix[REX_PREFIX] == 0)
7791 add_prefix (REX_OPCODE);
6d19a37a 7792#endif
cf61b747 7793
c0f3af97
L
7794 /* The prefix bytes. */
7795 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7796 if (*q)
7797 FRAG_APPEND_1_CHAR (*q);
0f10071e 7798 }
ae5c1c7b 7799 else
c0f3af97
L
7800 {
7801 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7802 if (*q)
7803 switch (j)
7804 {
7805 case REX_PREFIX:
7806 /* REX byte is encoded in VEX prefix. */
7807 break;
7808 case SEG_PREFIX:
7809 case ADDR_PREFIX:
7810 FRAG_APPEND_1_CHAR (*q);
7811 break;
7812 default:
7813 /* There should be no other prefixes for instructions
7814 with VEX prefix. */
7815 abort ();
7816 }
7817
43234a1e
L
7818 /* For EVEX instructions i.vrex should become 0 after
7819 build_evex_prefix. For VEX instructions upper 16 registers
7820 aren't available, so VREX should be 0. */
7821 if (i.vrex)
7822 abort ();
c0f3af97
L
7823 /* Now the VEX prefix. */
7824 p = frag_more (i.vex.length);
7825 for (j = 0; j < i.vex.length; j++)
7826 p[j] = i.vex.bytes[j];
7827 }
252b5132 7828
29b0f896 7829 /* Now the opcode; be careful about word order here! */
4dffcebc 7830 if (i.tm.opcode_length == 1)
29b0f896
AM
7831 {
7832 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7833 }
7834 else
7835 {
4dffcebc 7836 switch (i.tm.opcode_length)
331d2d0d 7837 {
43234a1e
L
7838 case 4:
7839 p = frag_more (4);
7840 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7841 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7842 break;
4dffcebc 7843 case 3:
331d2d0d
L
7844 p = frag_more (3);
7845 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
7846 break;
7847 case 2:
7848 p = frag_more (2);
7849 break;
7850 default:
7851 abort ();
7852 break;
331d2d0d 7853 }
0f10071e 7854
29b0f896
AM
7855 /* Put out high byte first: can't use md_number_to_chars! */
7856 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7857 *p = i.tm.base_opcode & 0xff;
7858 }
3e73aa7c 7859
29b0f896 7860 /* Now the modrm byte and sib byte (if present). */
40fb9820 7861 if (i.tm.opcode_modifier.modrm)
29b0f896 7862 {
4a3523fa
L
7863 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7864 | i.rm.reg << 3
7865 | i.rm.mode << 6));
29b0f896
AM
7866 /* If i.rm.regmem == ESP (4)
7867 && i.rm.mode != (Register mode)
7868 && not 16 bit
7869 ==> need second modrm byte. */
7870 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7871 && i.rm.mode != 3
dc821c5f 7872 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
7873 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7874 | i.sib.index << 3
7875 | i.sib.scale << 6));
29b0f896 7876 }
3e73aa7c 7877
29b0f896 7878 if (i.disp_operands)
2bbd9c25 7879 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 7880
29b0f896 7881 if (i.imm_operands)
2bbd9c25 7882 output_imm (insn_start_frag, insn_start_off);
29b0f896 7883 }
252b5132 7884
29b0f896
AM
7885#ifdef DEBUG386
7886 if (flag_debug)
7887 {
7b81dfbb 7888 pi ("" /*line*/, &i);
29b0f896
AM
7889 }
7890#endif /* DEBUG386 */
7891}
252b5132 7892
e205caa7
L
7893/* Return the size of the displacement operand N. */
7894
7895static int
7896disp_size (unsigned int n)
7897{
7898 int size = 4;
43234a1e 7899
b5014f7a 7900 if (i.types[n].bitfield.disp64)
40fb9820
L
7901 size = 8;
7902 else if (i.types[n].bitfield.disp8)
7903 size = 1;
7904 else if (i.types[n].bitfield.disp16)
7905 size = 2;
e205caa7
L
7906 return size;
7907}
7908
7909/* Return the size of the immediate operand N. */
7910
7911static int
7912imm_size (unsigned int n)
7913{
7914 int size = 4;
40fb9820
L
7915 if (i.types[n].bitfield.imm64)
7916 size = 8;
7917 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7918 size = 1;
7919 else if (i.types[n].bitfield.imm16)
7920 size = 2;
e205caa7
L
7921 return size;
7922}
7923
29b0f896 7924static void
64e74474 7925output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
7926{
7927 char *p;
7928 unsigned int n;
252b5132 7929
29b0f896
AM
7930 for (n = 0; n < i.operands; n++)
7931 {
b5014f7a 7932 if (operand_type_check (i.types[n], disp))
29b0f896
AM
7933 {
7934 if (i.op[n].disps->X_op == O_constant)
7935 {
e205caa7 7936 int size = disp_size (n);
43234a1e 7937 offsetT val = i.op[n].disps->X_add_number;
252b5132 7938
b5014f7a 7939 val = offset_in_range (val >> i.memshift, size);
29b0f896
AM
7940 p = frag_more (size);
7941 md_number_to_chars (p, val, size);
7942 }
7943 else
7944 {
f86103b7 7945 enum bfd_reloc_code_real reloc_type;
e205caa7 7946 int size = disp_size (n);
40fb9820 7947 int sign = i.types[n].bitfield.disp32s;
29b0f896 7948 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 7949 fixS *fixP;
29b0f896 7950
e205caa7 7951 /* We can't have 8 bit displacement here. */
9c2799c2 7952 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 7953
29b0f896
AM
7954 /* The PC relative address is computed relative
7955 to the instruction boundary, so in case immediate
7956 fields follows, we need to adjust the value. */
7957 if (pcrel && i.imm_operands)
7958 {
29b0f896 7959 unsigned int n1;
e205caa7 7960 int sz = 0;
252b5132 7961
29b0f896 7962 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 7963 if (operand_type_check (i.types[n1], imm))
252b5132 7964 {
e205caa7
L
7965 /* Only one immediate is allowed for PC
7966 relative address. */
9c2799c2 7967 gas_assert (sz == 0);
e205caa7
L
7968 sz = imm_size (n1);
7969 i.op[n].disps->X_add_number -= sz;
252b5132 7970 }
29b0f896 7971 /* We should find the immediate. */
9c2799c2 7972 gas_assert (sz != 0);
29b0f896 7973 }
520dc8e8 7974
29b0f896 7975 p = frag_more (size);
d258b828 7976 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 7977 if (GOT_symbol
2bbd9c25 7978 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 7979 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
7980 || reloc_type == BFD_RELOC_X86_64_32S
7981 || (reloc_type == BFD_RELOC_64
7982 && object_64bit))
d6ab8113
JB
7983 && (i.op[n].disps->X_op == O_symbol
7984 || (i.op[n].disps->X_op == O_add
7985 && ((symbol_get_value_expression
7986 (i.op[n].disps->X_op_symbol)->X_op)
7987 == O_subtract))))
7988 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
7989 {
7990 offsetT add;
7991
7992 if (insn_start_frag == frag_now)
7993 add = (p - frag_now->fr_literal) - insn_start_off;
7994 else
7995 {
7996 fragS *fr;
7997
7998 add = insn_start_frag->fr_fix - insn_start_off;
7999 for (fr = insn_start_frag->fr_next;
8000 fr && fr != frag_now; fr = fr->fr_next)
8001 add += fr->fr_fix;
8002 add += p - frag_now->fr_literal;
8003 }
8004
4fa24527 8005 if (!object_64bit)
7b81dfbb
AJ
8006 {
8007 reloc_type = BFD_RELOC_386_GOTPC;
8008 i.op[n].imms->X_add_number += add;
8009 }
8010 else if (reloc_type == BFD_RELOC_64)
8011 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8012 else
7b81dfbb
AJ
8013 /* Don't do the adjustment for x86-64, as there
8014 the pcrel addressing is relative to the _next_
8015 insn, and that is taken care of in other code. */
d6ab8113 8016 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8017 }
02a86693
L
8018 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8019 size, i.op[n].disps, pcrel,
8020 reloc_type);
8021 /* Check for "call/jmp *mem", "mov mem, %reg",
8022 "test %reg, mem" and "binop mem, %reg" where binop
8023 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
8024 instructions. Always generate R_386_GOT32X for
8025 "sym*GOT" operand in 32-bit mode. */
8026 if ((generate_relax_relocations
8027 || (!object_64bit
8028 && i.rm.mode == 0
8029 && i.rm.regmem == 5))
8030 && (i.rm.mode == 2
8031 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8032 && ((i.operands == 1
8033 && i.tm.base_opcode == 0xff
8034 && (i.rm.reg == 2 || i.rm.reg == 4))
8035 || (i.operands == 2
8036 && (i.tm.base_opcode == 0x8b
8037 || i.tm.base_opcode == 0x85
8038 || (i.tm.base_opcode & 0xc7) == 0x03))))
8039 {
8040 if (object_64bit)
8041 {
8042 fixP->fx_tcbit = i.rex != 0;
8043 if (i.base_reg
8044 && (i.base_reg->reg_num == RegRip
8045 || i.base_reg->reg_num == RegEip))
8046 fixP->fx_tcbit2 = 1;
8047 }
8048 else
8049 fixP->fx_tcbit2 = 1;
8050 }
29b0f896
AM
8051 }
8052 }
8053 }
8054}
252b5132 8055
29b0f896 8056static void
64e74474 8057output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8058{
8059 char *p;
8060 unsigned int n;
252b5132 8061
29b0f896
AM
8062 for (n = 0; n < i.operands; n++)
8063 {
43234a1e
L
8064 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8065 if (i.rounding && (int) n == i.rounding->operand)
8066 continue;
8067
40fb9820 8068 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8069 {
8070 if (i.op[n].imms->X_op == O_constant)
8071 {
e205caa7 8072 int size = imm_size (n);
29b0f896 8073 offsetT val;
b4cac588 8074
29b0f896
AM
8075 val = offset_in_range (i.op[n].imms->X_add_number,
8076 size);
8077 p = frag_more (size);
8078 md_number_to_chars (p, val, size);
8079 }
8080 else
8081 {
8082 /* Not absolute_section.
8083 Need a 32-bit fixup (don't support 8bit
8084 non-absolute imms). Try to support other
8085 sizes ... */
f86103b7 8086 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8087 int size = imm_size (n);
8088 int sign;
29b0f896 8089
40fb9820 8090 if (i.types[n].bitfield.imm32s
a7d61044 8091 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8092 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8093 sign = 1;
e205caa7
L
8094 else
8095 sign = 0;
520dc8e8 8096
29b0f896 8097 p = frag_more (size);
d258b828 8098 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8099
2bbd9c25
JJ
8100 /* This is tough to explain. We end up with this one if we
8101 * have operands that look like
8102 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8103 * obtain the absolute address of the GOT, and it is strongly
8104 * preferable from a performance point of view to avoid using
8105 * a runtime relocation for this. The actual sequence of
8106 * instructions often look something like:
8107 *
8108 * call .L66
8109 * .L66:
8110 * popl %ebx
8111 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8112 *
8113 * The call and pop essentially return the absolute address
8114 * of the label .L66 and store it in %ebx. The linker itself
8115 * will ultimately change the first operand of the addl so
8116 * that %ebx points to the GOT, but to keep things simple, the
8117 * .o file must have this operand set so that it generates not
8118 * the absolute address of .L66, but the absolute address of
8119 * itself. This allows the linker itself simply treat a GOTPC
8120 * relocation as asking for a pcrel offset to the GOT to be
8121 * added in, and the addend of the relocation is stored in the
8122 * operand field for the instruction itself.
8123 *
8124 * Our job here is to fix the operand so that it would add
8125 * the correct offset so that %ebx would point to itself. The
8126 * thing that is tricky is that .-.L66 will point to the
8127 * beginning of the instruction, so we need to further modify
8128 * the operand so that it will point to itself. There are
8129 * other cases where you have something like:
8130 *
8131 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8132 *
8133 * and here no correction would be required. Internally in
8134 * the assembler we treat operands of this form as not being
8135 * pcrel since the '.' is explicitly mentioned, and I wonder
8136 * whether it would simplify matters to do it this way. Who
8137 * knows. In earlier versions of the PIC patches, the
8138 * pcrel_adjust field was used to store the correction, but
8139 * since the expression is not pcrel, I felt it would be
8140 * confusing to do it this way. */
8141
d6ab8113 8142 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8143 || reloc_type == BFD_RELOC_X86_64_32S
8144 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8145 && GOT_symbol
8146 && GOT_symbol == i.op[n].imms->X_add_symbol
8147 && (i.op[n].imms->X_op == O_symbol
8148 || (i.op[n].imms->X_op == O_add
8149 && ((symbol_get_value_expression
8150 (i.op[n].imms->X_op_symbol)->X_op)
8151 == O_subtract))))
8152 {
2bbd9c25
JJ
8153 offsetT add;
8154
8155 if (insn_start_frag == frag_now)
8156 add = (p - frag_now->fr_literal) - insn_start_off;
8157 else
8158 {
8159 fragS *fr;
8160
8161 add = insn_start_frag->fr_fix - insn_start_off;
8162 for (fr = insn_start_frag->fr_next;
8163 fr && fr != frag_now; fr = fr->fr_next)
8164 add += fr->fr_fix;
8165 add += p - frag_now->fr_literal;
8166 }
8167
4fa24527 8168 if (!object_64bit)
d6ab8113 8169 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8170 else if (size == 4)
d6ab8113 8171 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8172 else if (size == 8)
8173 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8174 i.op[n].imms->X_add_number += add;
29b0f896 8175 }
29b0f896
AM
8176 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8177 i.op[n].imms, 0, reloc_type);
8178 }
8179 }
8180 }
252b5132
RH
8181}
8182\f
d182319b
JB
8183/* x86_cons_fix_new is called via the expression parsing code when a
8184 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8185static int cons_sign = -1;
8186
8187void
e3bb37b5 8188x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8189 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8190{
d258b828 8191 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8192
8193#ifdef TE_PE
8194 if (exp->X_op == O_secrel)
8195 {
8196 exp->X_op = O_symbol;
8197 r = BFD_RELOC_32_SECREL;
8198 }
8199#endif
8200
8201 fix_new_exp (frag, off, len, exp, 0, r);
8202}
8203
357d1bd8
L
8204/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8205 purpose of the `.dc.a' internal pseudo-op. */
8206
8207int
8208x86_address_bytes (void)
8209{
8210 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8211 return 4;
8212 return stdoutput->arch_info->bits_per_address / 8;
8213}
8214
d382c579
TG
8215#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8216 || defined (LEX_AT)
d258b828 8217# define lex_got(reloc, adjust, types) NULL
718ddfc0 8218#else
f3c180ae
AM
8219/* Parse operands of the form
8220 <symbol>@GOTOFF+<nnn>
8221 and similar .plt or .got references.
8222
8223 If we find one, set up the correct relocation in RELOC and copy the
8224 input string, minus the `@GOTOFF' into a malloc'd buffer for
8225 parsing by the calling routine. Return this buffer, and if ADJUST
8226 is non-null set it to the length of the string we removed from the
8227 input line. Otherwise return NULL. */
8228static char *
91d6fa6a 8229lex_got (enum bfd_reloc_code_real *rel,
64e74474 8230 int *adjust,
d258b828 8231 i386_operand_type *types)
f3c180ae 8232{
7b81dfbb
AJ
8233 /* Some of the relocations depend on the size of what field is to
8234 be relocated. But in our callers i386_immediate and i386_displacement
8235 we don't yet know the operand size (this will be set by insn
8236 matching). Hence we record the word32 relocation here,
8237 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8238 static const struct {
8239 const char *str;
cff8d58a 8240 int len;
4fa24527 8241 const enum bfd_reloc_code_real rel[2];
40fb9820 8242 const i386_operand_type types64;
f3c180ae 8243 } gotrel[] = {
8ce3d284 8244#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8245 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8246 BFD_RELOC_SIZE32 },
8247 OPERAND_TYPE_IMM32_64 },
8ce3d284 8248#endif
cff8d58a
L
8249 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8250 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8251 OPERAND_TYPE_IMM64 },
cff8d58a
L
8252 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8253 BFD_RELOC_X86_64_PLT32 },
40fb9820 8254 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8255 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8256 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8257 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8258 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8259 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8260 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8261 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8262 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8263 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8264 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8265 BFD_RELOC_X86_64_TLSGD },
40fb9820 8266 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8267 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8268 _dummy_first_bfd_reloc_code_real },
40fb9820 8269 OPERAND_TYPE_NONE },
cff8d58a
L
8270 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8271 BFD_RELOC_X86_64_TLSLD },
40fb9820 8272 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8273 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8274 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8275 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8276 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8277 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8278 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8279 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8280 _dummy_first_bfd_reloc_code_real },
40fb9820 8281 OPERAND_TYPE_NONE },
cff8d58a
L
8282 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8283 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8284 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8285 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8286 _dummy_first_bfd_reloc_code_real },
40fb9820 8287 OPERAND_TYPE_NONE },
cff8d58a
L
8288 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8289 _dummy_first_bfd_reloc_code_real },
40fb9820 8290 OPERAND_TYPE_NONE },
cff8d58a
L
8291 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8292 BFD_RELOC_X86_64_GOT32 },
40fb9820 8293 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8294 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8295 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8296 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8297 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8298 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8299 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8300 };
8301 char *cp;
8302 unsigned int j;
8303
d382c579 8304#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8305 if (!IS_ELF)
8306 return NULL;
d382c579 8307#endif
718ddfc0 8308
f3c180ae 8309 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8310 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8311 return NULL;
8312
47465058 8313 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8314 {
cff8d58a 8315 int len = gotrel[j].len;
28f81592 8316 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8317 {
4fa24527 8318 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8319 {
28f81592
AM
8320 int first, second;
8321 char *tmpbuf, *past_reloc;
f3c180ae 8322
91d6fa6a 8323 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8324
3956db08
JB
8325 if (types)
8326 {
8327 if (flag_code != CODE_64BIT)
40fb9820
L
8328 {
8329 types->bitfield.imm32 = 1;
8330 types->bitfield.disp32 = 1;
8331 }
3956db08
JB
8332 else
8333 *types = gotrel[j].types64;
8334 }
8335
8fd4256d 8336 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8337 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8338
28f81592 8339 /* The length of the first part of our input line. */
f3c180ae 8340 first = cp - input_line_pointer;
28f81592
AM
8341
8342 /* The second part goes from after the reloc token until
67c11a9b 8343 (and including) an end_of_line char or comma. */
28f81592 8344 past_reloc = cp + 1 + len;
67c11a9b
AM
8345 cp = past_reloc;
8346 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8347 ++cp;
8348 second = cp + 1 - past_reloc;
28f81592
AM
8349
8350 /* Allocate and copy string. The trailing NUL shouldn't
8351 be necessary, but be safe. */
add39d23 8352 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8353 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8354 if (second != 0 && *past_reloc != ' ')
8355 /* Replace the relocation token with ' ', so that
8356 errors like foo@GOTOFF1 will be detected. */
8357 tmpbuf[first++] = ' ';
af89796a
L
8358 else
8359 /* Increment length by 1 if the relocation token is
8360 removed. */
8361 len++;
8362 if (adjust)
8363 *adjust = len;
0787a12d
AM
8364 memcpy (tmpbuf + first, past_reloc, second);
8365 tmpbuf[first + second] = '\0';
f3c180ae
AM
8366 return tmpbuf;
8367 }
8368
4fa24527
JB
8369 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8370 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8371 return NULL;
8372 }
8373 }
8374
8375 /* Might be a symbol version string. Don't as_bad here. */
8376 return NULL;
8377}
4e4f7c87 8378#endif
f3c180ae 8379
a988325c
NC
8380#ifdef TE_PE
8381#ifdef lex_got
8382#undef lex_got
8383#endif
8384/* Parse operands of the form
8385 <symbol>@SECREL32+<nnn>
8386
8387 If we find one, set up the correct relocation in RELOC and copy the
8388 input string, minus the `@SECREL32' into a malloc'd buffer for
8389 parsing by the calling routine. Return this buffer, and if ADJUST
8390 is non-null set it to the length of the string we removed from the
34bca508
L
8391 input line. Otherwise return NULL.
8392
a988325c
NC
8393 This function is copied from the ELF version above adjusted for PE targets. */
8394
8395static char *
8396lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8397 int *adjust ATTRIBUTE_UNUSED,
d258b828 8398 i386_operand_type *types)
a988325c
NC
8399{
8400 static const struct
8401 {
8402 const char *str;
8403 int len;
8404 const enum bfd_reloc_code_real rel[2];
8405 const i386_operand_type types64;
8406 }
8407 gotrel[] =
8408 {
8409 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8410 BFD_RELOC_32_SECREL },
8411 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8412 };
8413
8414 char *cp;
8415 unsigned j;
8416
8417 for (cp = input_line_pointer; *cp != '@'; cp++)
8418 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8419 return NULL;
8420
8421 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8422 {
8423 int len = gotrel[j].len;
8424
8425 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8426 {
8427 if (gotrel[j].rel[object_64bit] != 0)
8428 {
8429 int first, second;
8430 char *tmpbuf, *past_reloc;
8431
8432 *rel = gotrel[j].rel[object_64bit];
8433 if (adjust)
8434 *adjust = len;
8435
8436 if (types)
8437 {
8438 if (flag_code != CODE_64BIT)
8439 {
8440 types->bitfield.imm32 = 1;
8441 types->bitfield.disp32 = 1;
8442 }
8443 else
8444 *types = gotrel[j].types64;
8445 }
8446
8447 /* The length of the first part of our input line. */
8448 first = cp - input_line_pointer;
8449
8450 /* The second part goes from after the reloc token until
8451 (and including) an end_of_line char or comma. */
8452 past_reloc = cp + 1 + len;
8453 cp = past_reloc;
8454 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8455 ++cp;
8456 second = cp + 1 - past_reloc;
8457
8458 /* Allocate and copy string. The trailing NUL shouldn't
8459 be necessary, but be safe. */
add39d23 8460 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8461 memcpy (tmpbuf, input_line_pointer, first);
8462 if (second != 0 && *past_reloc != ' ')
8463 /* Replace the relocation token with ' ', so that
8464 errors like foo@SECLREL321 will be detected. */
8465 tmpbuf[first++] = ' ';
8466 memcpy (tmpbuf + first, past_reloc, second);
8467 tmpbuf[first + second] = '\0';
8468 return tmpbuf;
8469 }
8470
8471 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8472 gotrel[j].str, 1 << (5 + object_64bit));
8473 return NULL;
8474 }
8475 }
8476
8477 /* Might be a symbol version string. Don't as_bad here. */
8478 return NULL;
8479}
8480
8481#endif /* TE_PE */
8482
62ebcb5c 8483bfd_reloc_code_real_type
e3bb37b5 8484x86_cons (expressionS *exp, int size)
f3c180ae 8485{
62ebcb5c
AM
8486 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8487
ee86248c
JB
8488 intel_syntax = -intel_syntax;
8489
3c7b9c2c 8490 exp->X_md = 0;
4fa24527 8491 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8492 {
8493 /* Handle @GOTOFF and the like in an expression. */
8494 char *save;
8495 char *gotfree_input_line;
4a57f2cf 8496 int adjust = 0;
f3c180ae
AM
8497
8498 save = input_line_pointer;
d258b828 8499 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8500 if (gotfree_input_line)
8501 input_line_pointer = gotfree_input_line;
8502
8503 expression (exp);
8504
8505 if (gotfree_input_line)
8506 {
8507 /* expression () has merrily parsed up to the end of line,
8508 or a comma - in the wrong buffer. Transfer how far
8509 input_line_pointer has moved to the right buffer. */
8510 input_line_pointer = (save
8511 + (input_line_pointer - gotfree_input_line)
8512 + adjust);
8513 free (gotfree_input_line);
3992d3b7
AM
8514 if (exp->X_op == O_constant
8515 || exp->X_op == O_absent
8516 || exp->X_op == O_illegal
0398aac5 8517 || exp->X_op == O_register
3992d3b7
AM
8518 || exp->X_op == O_big)
8519 {
8520 char c = *input_line_pointer;
8521 *input_line_pointer = 0;
8522 as_bad (_("missing or invalid expression `%s'"), save);
8523 *input_line_pointer = c;
8524 }
f3c180ae
AM
8525 }
8526 }
8527 else
8528 expression (exp);
ee86248c
JB
8529
8530 intel_syntax = -intel_syntax;
8531
8532 if (intel_syntax)
8533 i386_intel_simplify (exp);
62ebcb5c
AM
8534
8535 return got_reloc;
f3c180ae 8536}
f3c180ae 8537
9f32dd5b
L
8538static void
8539signed_cons (int size)
6482c264 8540{
d182319b
JB
8541 if (flag_code == CODE_64BIT)
8542 cons_sign = 1;
8543 cons (size);
8544 cons_sign = -1;
6482c264
NC
8545}
8546
d182319b 8547#ifdef TE_PE
6482c264 8548static void
7016a5d5 8549pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8550{
8551 expressionS exp;
8552
8553 do
8554 {
8555 expression (&exp);
8556 if (exp.X_op == O_symbol)
8557 exp.X_op = O_secrel;
8558
8559 emit_expr (&exp, 4);
8560 }
8561 while (*input_line_pointer++ == ',');
8562
8563 input_line_pointer--;
8564 demand_empty_rest_of_line ();
8565}
6482c264
NC
8566#endif
8567
43234a1e
L
8568/* Handle Vector operations. */
8569
8570static char *
8571check_VecOperations (char *op_string, char *op_end)
8572{
8573 const reg_entry *mask;
8574 const char *saved;
8575 char *end_op;
8576
8577 while (*op_string
8578 && (op_end == NULL || op_string < op_end))
8579 {
8580 saved = op_string;
8581 if (*op_string == '{')
8582 {
8583 op_string++;
8584
8585 /* Check broadcasts. */
8586 if (strncmp (op_string, "1to", 3) == 0)
8587 {
8588 int bcst_type;
8589
8590 if (i.broadcast)
8591 goto duplicated_vec_op;
8592
8593 op_string += 3;
8594 if (*op_string == '8')
8e6e0792 8595 bcst_type = 8;
b28d1bda 8596 else if (*op_string == '4')
8e6e0792 8597 bcst_type = 4;
b28d1bda 8598 else if (*op_string == '2')
8e6e0792 8599 bcst_type = 2;
43234a1e
L
8600 else if (*op_string == '1'
8601 && *(op_string+1) == '6')
8602 {
8e6e0792 8603 bcst_type = 16;
43234a1e
L
8604 op_string++;
8605 }
8606 else
8607 {
8608 as_bad (_("Unsupported broadcast: `%s'"), saved);
8609 return NULL;
8610 }
8611 op_string++;
8612
8613 broadcast_op.type = bcst_type;
8614 broadcast_op.operand = this_operand;
8615 i.broadcast = &broadcast_op;
8616 }
8617 /* Check masking operation. */
8618 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8619 {
8620 /* k0 can't be used for write mask. */
6d2cd6b2 8621 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 8622 {
6d2cd6b2
JB
8623 as_bad (_("`%s%s' can't be used for write mask"),
8624 register_prefix, mask->reg_name);
43234a1e
L
8625 return NULL;
8626 }
8627
8628 if (!i.mask)
8629 {
8630 mask_op.mask = mask;
8631 mask_op.zeroing = 0;
8632 mask_op.operand = this_operand;
8633 i.mask = &mask_op;
8634 }
8635 else
8636 {
8637 if (i.mask->mask)
8638 goto duplicated_vec_op;
8639
8640 i.mask->mask = mask;
8641
8642 /* Only "{z}" is allowed here. No need to check
8643 zeroing mask explicitly. */
8644 if (i.mask->operand != this_operand)
8645 {
8646 as_bad (_("invalid write mask `%s'"), saved);
8647 return NULL;
8648 }
8649 }
8650
8651 op_string = end_op;
8652 }
8653 /* Check zeroing-flag for masking operation. */
8654 else if (*op_string == 'z')
8655 {
8656 if (!i.mask)
8657 {
8658 mask_op.mask = NULL;
8659 mask_op.zeroing = 1;
8660 mask_op.operand = this_operand;
8661 i.mask = &mask_op;
8662 }
8663 else
8664 {
8665 if (i.mask->zeroing)
8666 {
8667 duplicated_vec_op:
8668 as_bad (_("duplicated `%s'"), saved);
8669 return NULL;
8670 }
8671
8672 i.mask->zeroing = 1;
8673
8674 /* Only "{%k}" is allowed here. No need to check mask
8675 register explicitly. */
8676 if (i.mask->operand != this_operand)
8677 {
8678 as_bad (_("invalid zeroing-masking `%s'"),
8679 saved);
8680 return NULL;
8681 }
8682 }
8683
8684 op_string++;
8685 }
8686 else
8687 goto unknown_vec_op;
8688
8689 if (*op_string != '}')
8690 {
8691 as_bad (_("missing `}' in `%s'"), saved);
8692 return NULL;
8693 }
8694 op_string++;
0ba3a731
L
8695
8696 /* Strip whitespace since the addition of pseudo prefixes
8697 changed how the scrubber treats '{'. */
8698 if (is_space_char (*op_string))
8699 ++op_string;
8700
43234a1e
L
8701 continue;
8702 }
8703 unknown_vec_op:
8704 /* We don't know this one. */
8705 as_bad (_("unknown vector operation: `%s'"), saved);
8706 return NULL;
8707 }
8708
6d2cd6b2
JB
8709 if (i.mask && i.mask->zeroing && !i.mask->mask)
8710 {
8711 as_bad (_("zeroing-masking only allowed with write mask"));
8712 return NULL;
8713 }
8714
43234a1e
L
8715 return op_string;
8716}
8717
252b5132 8718static int
70e41ade 8719i386_immediate (char *imm_start)
252b5132
RH
8720{
8721 char *save_input_line_pointer;
f3c180ae 8722 char *gotfree_input_line;
252b5132 8723 segT exp_seg = 0;
47926f60 8724 expressionS *exp;
40fb9820
L
8725 i386_operand_type types;
8726
0dfbf9d7 8727 operand_type_set (&types, ~0);
252b5132
RH
8728
8729 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8730 {
31b2323c
L
8731 as_bad (_("at most %d immediate operands are allowed"),
8732 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
8733 return 0;
8734 }
8735
8736 exp = &im_expressions[i.imm_operands++];
520dc8e8 8737 i.op[this_operand].imms = exp;
252b5132
RH
8738
8739 if (is_space_char (*imm_start))
8740 ++imm_start;
8741
8742 save_input_line_pointer = input_line_pointer;
8743 input_line_pointer = imm_start;
8744
d258b828 8745 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
8746 if (gotfree_input_line)
8747 input_line_pointer = gotfree_input_line;
252b5132
RH
8748
8749 exp_seg = expression (exp);
8750
83183c0c 8751 SKIP_WHITESPACE ();
43234a1e
L
8752
8753 /* Handle vector operations. */
8754 if (*input_line_pointer == '{')
8755 {
8756 input_line_pointer = check_VecOperations (input_line_pointer,
8757 NULL);
8758 if (input_line_pointer == NULL)
8759 return 0;
8760 }
8761
252b5132 8762 if (*input_line_pointer)
f3c180ae 8763 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
8764
8765 input_line_pointer = save_input_line_pointer;
f3c180ae 8766 if (gotfree_input_line)
ee86248c
JB
8767 {
8768 free (gotfree_input_line);
8769
8770 if (exp->X_op == O_constant || exp->X_op == O_register)
8771 exp->X_op = O_illegal;
8772 }
8773
8774 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8775}
252b5132 8776
ee86248c
JB
8777static int
8778i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8779 i386_operand_type types, const char *imm_start)
8780{
8781 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 8782 {
313c53d1
L
8783 if (imm_start)
8784 as_bad (_("missing or invalid immediate expression `%s'"),
8785 imm_start);
3992d3b7 8786 return 0;
252b5132 8787 }
3e73aa7c 8788 else if (exp->X_op == O_constant)
252b5132 8789 {
47926f60 8790 /* Size it properly later. */
40fb9820 8791 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
8792 /* If not 64bit, sign extend val. */
8793 if (flag_code != CODE_64BIT
4eed87de
AM
8794 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8795 exp->X_add_number
8796 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 8797 }
4c63da97 8798#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 8799 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 8800 && exp_seg != absolute_section
47926f60 8801 && exp_seg != text_section
24eab124
AM
8802 && exp_seg != data_section
8803 && exp_seg != bss_section
8804 && exp_seg != undefined_section
f86103b7 8805 && !bfd_is_com_section (exp_seg))
252b5132 8806 {
d0b47220 8807 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
8808 return 0;
8809 }
8810#endif
a841bdf5 8811 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 8812 {
313c53d1
L
8813 if (imm_start)
8814 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
8815 return 0;
8816 }
252b5132
RH
8817 else
8818 {
8819 /* This is an address. The size of the address will be
24eab124 8820 determined later, depending on destination register,
3e73aa7c 8821 suffix, or the default for the section. */
40fb9820
L
8822 i.types[this_operand].bitfield.imm8 = 1;
8823 i.types[this_operand].bitfield.imm16 = 1;
8824 i.types[this_operand].bitfield.imm32 = 1;
8825 i.types[this_operand].bitfield.imm32s = 1;
8826 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
8827 i.types[this_operand] = operand_type_and (i.types[this_operand],
8828 types);
252b5132
RH
8829 }
8830
8831 return 1;
8832}
8833
551c1ca1 8834static char *
e3bb37b5 8835i386_scale (char *scale)
252b5132 8836{
551c1ca1
AM
8837 offsetT val;
8838 char *save = input_line_pointer;
252b5132 8839
551c1ca1
AM
8840 input_line_pointer = scale;
8841 val = get_absolute_expression ();
8842
8843 switch (val)
252b5132 8844 {
551c1ca1 8845 case 1:
252b5132
RH
8846 i.log2_scale_factor = 0;
8847 break;
551c1ca1 8848 case 2:
252b5132
RH
8849 i.log2_scale_factor = 1;
8850 break;
551c1ca1 8851 case 4:
252b5132
RH
8852 i.log2_scale_factor = 2;
8853 break;
551c1ca1 8854 case 8:
252b5132
RH
8855 i.log2_scale_factor = 3;
8856 break;
8857 default:
a724f0f4
JB
8858 {
8859 char sep = *input_line_pointer;
8860
8861 *input_line_pointer = '\0';
8862 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8863 scale);
8864 *input_line_pointer = sep;
8865 input_line_pointer = save;
8866 return NULL;
8867 }
252b5132 8868 }
29b0f896 8869 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
8870 {
8871 as_warn (_("scale factor of %d without an index register"),
24eab124 8872 1 << i.log2_scale_factor);
252b5132 8873 i.log2_scale_factor = 0;
252b5132 8874 }
551c1ca1
AM
8875 scale = input_line_pointer;
8876 input_line_pointer = save;
8877 return scale;
252b5132
RH
8878}
8879
252b5132 8880static int
e3bb37b5 8881i386_displacement (char *disp_start, char *disp_end)
252b5132 8882{
29b0f896 8883 expressionS *exp;
252b5132
RH
8884 segT exp_seg = 0;
8885 char *save_input_line_pointer;
f3c180ae 8886 char *gotfree_input_line;
40fb9820
L
8887 int override;
8888 i386_operand_type bigdisp, types = anydisp;
3992d3b7 8889 int ret;
252b5132 8890
31b2323c
L
8891 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8892 {
8893 as_bad (_("at most %d displacement operands are allowed"),
8894 MAX_MEMORY_OPERANDS);
8895 return 0;
8896 }
8897
0dfbf9d7 8898 operand_type_set (&bigdisp, 0);
40fb9820
L
8899 if ((i.types[this_operand].bitfield.jumpabsolute)
8900 || (!current_templates->start->opcode_modifier.jump
8901 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 8902 {
40fb9820 8903 bigdisp.bitfield.disp32 = 1;
e05278af 8904 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
8905 if (flag_code == CODE_64BIT)
8906 {
8907 if (!override)
8908 {
8909 bigdisp.bitfield.disp32s = 1;
8910 bigdisp.bitfield.disp64 = 1;
8911 }
8912 }
8913 else if ((flag_code == CODE_16BIT) ^ override)
8914 {
8915 bigdisp.bitfield.disp32 = 0;
8916 bigdisp.bitfield.disp16 = 1;
8917 }
e05278af
JB
8918 }
8919 else
8920 {
8921 /* For PC-relative branches, the width of the displacement
8922 is dependent upon data size, not address size. */
e05278af 8923 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
8924 if (flag_code == CODE_64BIT)
8925 {
8926 if (override || i.suffix == WORD_MNEM_SUFFIX)
8927 bigdisp.bitfield.disp16 = 1;
8928 else
8929 {
8930 bigdisp.bitfield.disp32 = 1;
8931 bigdisp.bitfield.disp32s = 1;
8932 }
8933 }
8934 else
e05278af
JB
8935 {
8936 if (!override)
8937 override = (i.suffix == (flag_code != CODE_16BIT
8938 ? WORD_MNEM_SUFFIX
8939 : LONG_MNEM_SUFFIX));
40fb9820
L
8940 bigdisp.bitfield.disp32 = 1;
8941 if ((flag_code == CODE_16BIT) ^ override)
8942 {
8943 bigdisp.bitfield.disp32 = 0;
8944 bigdisp.bitfield.disp16 = 1;
8945 }
e05278af 8946 }
e05278af 8947 }
c6fb90c8
L
8948 i.types[this_operand] = operand_type_or (i.types[this_operand],
8949 bigdisp);
252b5132
RH
8950
8951 exp = &disp_expressions[i.disp_operands];
520dc8e8 8952 i.op[this_operand].disps = exp;
252b5132
RH
8953 i.disp_operands++;
8954 save_input_line_pointer = input_line_pointer;
8955 input_line_pointer = disp_start;
8956 END_STRING_AND_SAVE (disp_end);
8957
8958#ifndef GCC_ASM_O_HACK
8959#define GCC_ASM_O_HACK 0
8960#endif
8961#if GCC_ASM_O_HACK
8962 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 8963 if (i.types[this_operand].bitfield.baseIndex
24eab124 8964 && displacement_string_end[-1] == '+')
252b5132
RH
8965 {
8966 /* This hack is to avoid a warning when using the "o"
24eab124
AM
8967 constraint within gcc asm statements.
8968 For instance:
8969
8970 #define _set_tssldt_desc(n,addr,limit,type) \
8971 __asm__ __volatile__ ( \
8972 "movw %w2,%0\n\t" \
8973 "movw %w1,2+%0\n\t" \
8974 "rorl $16,%1\n\t" \
8975 "movb %b1,4+%0\n\t" \
8976 "movb %4,5+%0\n\t" \
8977 "movb $0,6+%0\n\t" \
8978 "movb %h1,7+%0\n\t" \
8979 "rorl $16,%1" \
8980 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8981
8982 This works great except that the output assembler ends
8983 up looking a bit weird if it turns out that there is
8984 no offset. You end up producing code that looks like:
8985
8986 #APP
8987 movw $235,(%eax)
8988 movw %dx,2+(%eax)
8989 rorl $16,%edx
8990 movb %dl,4+(%eax)
8991 movb $137,5+(%eax)
8992 movb $0,6+(%eax)
8993 movb %dh,7+(%eax)
8994 rorl $16,%edx
8995 #NO_APP
8996
47926f60 8997 So here we provide the missing zero. */
24eab124
AM
8998
8999 *displacement_string_end = '0';
252b5132
RH
9000 }
9001#endif
d258b828 9002 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9003 if (gotfree_input_line)
9004 input_line_pointer = gotfree_input_line;
252b5132 9005
24eab124 9006 exp_seg = expression (exp);
252b5132 9007
636c26b0
AM
9008 SKIP_WHITESPACE ();
9009 if (*input_line_pointer)
9010 as_bad (_("junk `%s' after expression"), input_line_pointer);
9011#if GCC_ASM_O_HACK
9012 RESTORE_END_STRING (disp_end + 1);
9013#endif
636c26b0 9014 input_line_pointer = save_input_line_pointer;
636c26b0 9015 if (gotfree_input_line)
ee86248c
JB
9016 {
9017 free (gotfree_input_line);
9018
9019 if (exp->X_op == O_constant || exp->X_op == O_register)
9020 exp->X_op = O_illegal;
9021 }
9022
9023 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9024
9025 RESTORE_END_STRING (disp_end);
9026
9027 return ret;
9028}
9029
9030static int
9031i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9032 i386_operand_type types, const char *disp_start)
9033{
9034 i386_operand_type bigdisp;
9035 int ret = 1;
636c26b0 9036
24eab124
AM
9037 /* We do this to make sure that the section symbol is in
9038 the symbol table. We will ultimately change the relocation
47926f60 9039 to be relative to the beginning of the section. */
1ae12ab7 9040 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9041 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9042 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9043 {
636c26b0 9044 if (exp->X_op != O_symbol)
3992d3b7 9045 goto inv_disp;
636c26b0 9046
e5cb08ac 9047 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9048 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9049 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9050 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9051 exp->X_op = O_subtract;
9052 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9053 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9054 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9055 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9056 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9057 else
29b0f896 9058 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9059 }
252b5132 9060
3992d3b7
AM
9061 else if (exp->X_op == O_absent
9062 || exp->X_op == O_illegal
ee86248c 9063 || exp->X_op == O_big)
2daf4fd8 9064 {
3992d3b7
AM
9065 inv_disp:
9066 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9067 disp_start);
3992d3b7 9068 ret = 0;
2daf4fd8
AM
9069 }
9070
0e1147d9
L
9071 else if (flag_code == CODE_64BIT
9072 && !i.prefix[ADDR_PREFIX]
9073 && exp->X_op == O_constant)
9074 {
9075 /* Since displacement is signed extended to 64bit, don't allow
9076 disp32 and turn off disp32s if they are out of range. */
9077 i.types[this_operand].bitfield.disp32 = 0;
9078 if (!fits_in_signed_long (exp->X_add_number))
9079 {
9080 i.types[this_operand].bitfield.disp32s = 0;
9081 if (i.types[this_operand].bitfield.baseindex)
9082 {
9083 as_bad (_("0x%lx out range of signed 32bit displacement"),
9084 (long) exp->X_add_number);
9085 ret = 0;
9086 }
9087 }
9088 }
9089
4c63da97 9090#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9091 else if (exp->X_op != O_constant
9092 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9093 && exp_seg != absolute_section
9094 && exp_seg != text_section
9095 && exp_seg != data_section
9096 && exp_seg != bss_section
9097 && exp_seg != undefined_section
9098 && !bfd_is_com_section (exp_seg))
24eab124 9099 {
d0b47220 9100 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9101 ret = 0;
24eab124 9102 }
252b5132 9103#endif
3956db08 9104
40fb9820
L
9105 /* Check if this is a displacement only operand. */
9106 bigdisp = i.types[this_operand];
9107 bigdisp.bitfield.disp8 = 0;
9108 bigdisp.bitfield.disp16 = 0;
9109 bigdisp.bitfield.disp32 = 0;
9110 bigdisp.bitfield.disp32s = 0;
9111 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9112 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9113 i.types[this_operand] = operand_type_and (i.types[this_operand],
9114 types);
3956db08 9115
3992d3b7 9116 return ret;
252b5132
RH
9117}
9118
2abc2bec
JB
9119/* Return the active addressing mode, taking address override and
9120 registers forming the address into consideration. Update the
9121 address override prefix if necessary. */
47926f60 9122
2abc2bec
JB
9123static enum flag_code
9124i386_addressing_mode (void)
252b5132 9125{
be05d201
L
9126 enum flag_code addr_mode;
9127
9128 if (i.prefix[ADDR_PREFIX])
9129 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9130 else
9131 {
9132 addr_mode = flag_code;
9133
24eab124 9134#if INFER_ADDR_PREFIX
be05d201
L
9135 if (i.mem_operands == 0)
9136 {
9137 /* Infer address prefix from the first memory operand. */
9138 const reg_entry *addr_reg = i.base_reg;
9139
9140 if (addr_reg == NULL)
9141 addr_reg = i.index_reg;
eecb386c 9142
be05d201
L
9143 if (addr_reg)
9144 {
9145 if (addr_reg->reg_num == RegEip
9146 || addr_reg->reg_num == RegEiz
dc821c5f 9147 || addr_reg->reg_type.bitfield.dword)
be05d201
L
9148 addr_mode = CODE_32BIT;
9149 else if (flag_code != CODE_64BIT
dc821c5f 9150 && addr_reg->reg_type.bitfield.word)
be05d201
L
9151 addr_mode = CODE_16BIT;
9152
9153 if (addr_mode != flag_code)
9154 {
9155 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9156 i.prefixes += 1;
9157 /* Change the size of any displacement too. At most one
9158 of Disp16 or Disp32 is set.
9159 FIXME. There doesn't seem to be any real need for
9160 separate Disp16 and Disp32 flags. The same goes for
9161 Imm16 and Imm32. Removing them would probably clean
9162 up the code quite a lot. */
9163 if (flag_code != CODE_64BIT
9164 && (i.types[this_operand].bitfield.disp16
9165 || i.types[this_operand].bitfield.disp32))
9166 i.types[this_operand]
9167 = operand_type_xor (i.types[this_operand], disp16_32);
9168 }
9169 }
9170 }
24eab124 9171#endif
be05d201
L
9172 }
9173
2abc2bec
JB
9174 return addr_mode;
9175}
9176
9177/* Make sure the memory operand we've been dealt is valid.
9178 Return 1 on success, 0 on a failure. */
9179
9180static int
9181i386_index_check (const char *operand_string)
9182{
9183 const char *kind = "base/index";
9184 enum flag_code addr_mode = i386_addressing_mode ();
9185
fc0763e6
JB
9186 if (current_templates->start->opcode_modifier.isstring
9187 && !current_templates->start->opcode_modifier.immext
9188 && (current_templates->end[-1].opcode_modifier.isstring
9189 || i.mem_operands))
9190 {
9191 /* Memory operands of string insns are special in that they only allow
9192 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9193 const reg_entry *expected_reg;
9194 static const char *di_si[][2] =
9195 {
9196 { "esi", "edi" },
9197 { "si", "di" },
9198 { "rsi", "rdi" }
9199 };
9200 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9201
9202 kind = "string address";
9203
8325cc63 9204 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9205 {
9206 i386_operand_type type = current_templates->end[-1].operand_types[0];
9207
9208 if (!type.bitfield.baseindex
9209 || ((!i.mem_operands != !intel_syntax)
9210 && current_templates->end[-1].operand_types[1]
9211 .bitfield.baseindex))
9212 type = current_templates->end[-1].operand_types[1];
be05d201
L
9213 expected_reg = hash_find (reg_hash,
9214 di_si[addr_mode][type.bitfield.esseg]);
9215
fc0763e6
JB
9216 }
9217 else
be05d201 9218 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9219
be05d201
L
9220 if (i.base_reg != expected_reg
9221 || i.index_reg
fc0763e6 9222 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9223 {
be05d201
L
9224 /* The second memory operand must have the same size as
9225 the first one. */
9226 if (i.mem_operands
9227 && i.base_reg
9228 && !((addr_mode == CODE_64BIT
dc821c5f 9229 && i.base_reg->reg_type.bitfield.qword)
be05d201 9230 || (addr_mode == CODE_32BIT
dc821c5f
JB
9231 ? i.base_reg->reg_type.bitfield.dword
9232 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9233 goto bad_address;
9234
fc0763e6
JB
9235 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9236 operand_string,
9237 intel_syntax ? '[' : '(',
9238 register_prefix,
be05d201 9239 expected_reg->reg_name,
fc0763e6 9240 intel_syntax ? ']' : ')');
be05d201 9241 return 1;
fc0763e6 9242 }
be05d201
L
9243 else
9244 return 1;
9245
9246bad_address:
9247 as_bad (_("`%s' is not a valid %s expression"),
9248 operand_string, kind);
9249 return 0;
3e73aa7c
JH
9250 }
9251 else
9252 {
be05d201
L
9253 if (addr_mode != CODE_16BIT)
9254 {
9255 /* 32-bit/64-bit checks. */
9256 if ((i.base_reg
9257 && (addr_mode == CODE_64BIT
dc821c5f
JB
9258 ? !i.base_reg->reg_type.bitfield.qword
9259 : !i.base_reg->reg_type.bitfield.dword)
be05d201
L
9260 && (i.index_reg
9261 || (i.base_reg->reg_num
9262 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9263 || (i.index_reg
1b54b8d7
JB
9264 && !i.index_reg->reg_type.bitfield.xmmword
9265 && !i.index_reg->reg_type.bitfield.ymmword
9266 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9267 && ((addr_mode == CODE_64BIT
dc821c5f 9268 ? !(i.index_reg->reg_type.bitfield.qword
be05d201 9269 || i.index_reg->reg_num == RegRiz)
dc821c5f 9270 : !(i.index_reg->reg_type.bitfield.dword
be05d201
L
9271 || i.index_reg->reg_num == RegEiz))
9272 || !i.index_reg->reg_type.bitfield.baseindex)))
9273 goto bad_address;
8178be5b
JB
9274
9275 /* bndmk, bndldx, and bndstx have special restrictions. */
9276 if (current_templates->start->base_opcode == 0xf30f1b
9277 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9278 {
9279 /* They cannot use RIP-relative addressing. */
9280 if (i.base_reg && i.base_reg->reg_num == RegRip)
9281 {
9282 as_bad (_("`%s' cannot be used here"), operand_string);
9283 return 0;
9284 }
9285
9286 /* bndldx and bndstx ignore their scale factor. */
9287 if (current_templates->start->base_opcode != 0xf30f1b
9288 && i.log2_scale_factor)
9289 as_warn (_("register scaling is being ignored here"));
9290 }
be05d201
L
9291 }
9292 else
3e73aa7c 9293 {
be05d201 9294 /* 16-bit checks. */
3e73aa7c 9295 if ((i.base_reg
dc821c5f 9296 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9297 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9298 || (i.index_reg
dc821c5f 9299 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9300 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9301 || !(i.base_reg
9302 && i.base_reg->reg_num < 6
9303 && i.index_reg->reg_num >= 6
9304 && i.log2_scale_factor == 0))))
be05d201 9305 goto bad_address;
3e73aa7c
JH
9306 }
9307 }
be05d201 9308 return 1;
24eab124 9309}
252b5132 9310
43234a1e
L
9311/* Handle vector immediates. */
9312
9313static int
9314RC_SAE_immediate (const char *imm_start)
9315{
9316 unsigned int match_found, j;
9317 const char *pstr = imm_start;
9318 expressionS *exp;
9319
9320 if (*pstr != '{')
9321 return 0;
9322
9323 pstr++;
9324 match_found = 0;
9325 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9326 {
9327 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9328 {
9329 if (!i.rounding)
9330 {
9331 rc_op.type = RC_NamesTable[j].type;
9332 rc_op.operand = this_operand;
9333 i.rounding = &rc_op;
9334 }
9335 else
9336 {
9337 as_bad (_("duplicated `%s'"), imm_start);
9338 return 0;
9339 }
9340 pstr += RC_NamesTable[j].len;
9341 match_found = 1;
9342 break;
9343 }
9344 }
9345 if (!match_found)
9346 return 0;
9347
9348 if (*pstr++ != '}')
9349 {
9350 as_bad (_("Missing '}': '%s'"), imm_start);
9351 return 0;
9352 }
9353 /* RC/SAE immediate string should contain nothing more. */;
9354 if (*pstr != 0)
9355 {
9356 as_bad (_("Junk after '}': '%s'"), imm_start);
9357 return 0;
9358 }
9359
9360 exp = &im_expressions[i.imm_operands++];
9361 i.op[this_operand].imms = exp;
9362
9363 exp->X_op = O_constant;
9364 exp->X_add_number = 0;
9365 exp->X_add_symbol = (symbolS *) 0;
9366 exp->X_op_symbol = (symbolS *) 0;
9367
9368 i.types[this_operand].bitfield.imm8 = 1;
9369 return 1;
9370}
9371
8325cc63
JB
9372/* Only string instructions can have a second memory operand, so
9373 reduce current_templates to just those if it contains any. */
9374static int
9375maybe_adjust_templates (void)
9376{
9377 const insn_template *t;
9378
9379 gas_assert (i.mem_operands == 1);
9380
9381 for (t = current_templates->start; t < current_templates->end; ++t)
9382 if (t->opcode_modifier.isstring)
9383 break;
9384
9385 if (t < current_templates->end)
9386 {
9387 static templates aux_templates;
9388 bfd_boolean recheck;
9389
9390 aux_templates.start = t;
9391 for (; t < current_templates->end; ++t)
9392 if (!t->opcode_modifier.isstring)
9393 break;
9394 aux_templates.end = t;
9395
9396 /* Determine whether to re-check the first memory operand. */
9397 recheck = (aux_templates.start != current_templates->start
9398 || t != current_templates->end);
9399
9400 current_templates = &aux_templates;
9401
9402 if (recheck)
9403 {
9404 i.mem_operands = 0;
9405 if (i.memop1_string != NULL
9406 && i386_index_check (i.memop1_string) == 0)
9407 return 0;
9408 i.mem_operands = 1;
9409 }
9410 }
9411
9412 return 1;
9413}
9414
fc0763e6 9415/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9416 on error. */
252b5132 9417
252b5132 9418static int
a7619375 9419i386_att_operand (char *operand_string)
252b5132 9420{
af6bdddf
AM
9421 const reg_entry *r;
9422 char *end_op;
24eab124 9423 char *op_string = operand_string;
252b5132 9424
24eab124 9425 if (is_space_char (*op_string))
252b5132
RH
9426 ++op_string;
9427
24eab124 9428 /* We check for an absolute prefix (differentiating,
47926f60 9429 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9430 if (*op_string == ABSOLUTE_PREFIX)
9431 {
9432 ++op_string;
9433 if (is_space_char (*op_string))
9434 ++op_string;
40fb9820 9435 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9436 }
252b5132 9437
47926f60 9438 /* Check if operand is a register. */
4d1bb795 9439 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9440 {
40fb9820
L
9441 i386_operand_type temp;
9442
24eab124
AM
9443 /* Check for a segment override by searching for ':' after a
9444 segment register. */
9445 op_string = end_op;
9446 if (is_space_char (*op_string))
9447 ++op_string;
40fb9820
L
9448 if (*op_string == ':'
9449 && (r->reg_type.bitfield.sreg2
9450 || r->reg_type.bitfield.sreg3))
24eab124
AM
9451 {
9452 switch (r->reg_num)
9453 {
9454 case 0:
9455 i.seg[i.mem_operands] = &es;
9456 break;
9457 case 1:
9458 i.seg[i.mem_operands] = &cs;
9459 break;
9460 case 2:
9461 i.seg[i.mem_operands] = &ss;
9462 break;
9463 case 3:
9464 i.seg[i.mem_operands] = &ds;
9465 break;
9466 case 4:
9467 i.seg[i.mem_operands] = &fs;
9468 break;
9469 case 5:
9470 i.seg[i.mem_operands] = &gs;
9471 break;
9472 }
252b5132 9473
24eab124 9474 /* Skip the ':' and whitespace. */
252b5132
RH
9475 ++op_string;
9476 if (is_space_char (*op_string))
24eab124 9477 ++op_string;
252b5132 9478
24eab124
AM
9479 if (!is_digit_char (*op_string)
9480 && !is_identifier_char (*op_string)
9481 && *op_string != '('
9482 && *op_string != ABSOLUTE_PREFIX)
9483 {
9484 as_bad (_("bad memory operand `%s'"), op_string);
9485 return 0;
9486 }
47926f60 9487 /* Handle case of %es:*foo. */
24eab124
AM
9488 if (*op_string == ABSOLUTE_PREFIX)
9489 {
9490 ++op_string;
9491 if (is_space_char (*op_string))
9492 ++op_string;
40fb9820 9493 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9494 }
9495 goto do_memory_reference;
9496 }
43234a1e
L
9497
9498 /* Handle vector operations. */
9499 if (*op_string == '{')
9500 {
9501 op_string = check_VecOperations (op_string, NULL);
9502 if (op_string == NULL)
9503 return 0;
9504 }
9505
24eab124
AM
9506 if (*op_string)
9507 {
d0b47220 9508 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9509 return 0;
9510 }
40fb9820
L
9511 temp = r->reg_type;
9512 temp.bitfield.baseindex = 0;
c6fb90c8
L
9513 i.types[this_operand] = operand_type_or (i.types[this_operand],
9514 temp);
7d5e4556 9515 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9516 i.op[this_operand].regs = r;
24eab124
AM
9517 i.reg_operands++;
9518 }
af6bdddf
AM
9519 else if (*op_string == REGISTER_PREFIX)
9520 {
9521 as_bad (_("bad register name `%s'"), op_string);
9522 return 0;
9523 }
24eab124 9524 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9525 {
24eab124 9526 ++op_string;
40fb9820 9527 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9528 {
d0b47220 9529 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9530 return 0;
9531 }
9532 if (!i386_immediate (op_string))
9533 return 0;
9534 }
43234a1e
L
9535 else if (RC_SAE_immediate (operand_string))
9536 {
9537 /* If it is a RC or SAE immediate, do nothing. */
9538 ;
9539 }
24eab124
AM
9540 else if (is_digit_char (*op_string)
9541 || is_identifier_char (*op_string)
d02603dc 9542 || *op_string == '"'
e5cb08ac 9543 || *op_string == '(')
24eab124 9544 {
47926f60 9545 /* This is a memory reference of some sort. */
af6bdddf 9546 char *base_string;
252b5132 9547
47926f60 9548 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9549 char *displacement_string_start;
9550 char *displacement_string_end;
43234a1e 9551 char *vop_start;
252b5132 9552
24eab124 9553 do_memory_reference:
8325cc63
JB
9554 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9555 return 0;
24eab124 9556 if ((i.mem_operands == 1
40fb9820 9557 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9558 || i.mem_operands == 2)
9559 {
9560 as_bad (_("too many memory references for `%s'"),
9561 current_templates->start->name);
9562 return 0;
9563 }
252b5132 9564
24eab124
AM
9565 /* Check for base index form. We detect the base index form by
9566 looking for an ')' at the end of the operand, searching
9567 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9568 after the '('. */
af6bdddf 9569 base_string = op_string + strlen (op_string);
c3332e24 9570
43234a1e
L
9571 /* Handle vector operations. */
9572 vop_start = strchr (op_string, '{');
9573 if (vop_start && vop_start < base_string)
9574 {
9575 if (check_VecOperations (vop_start, base_string) == NULL)
9576 return 0;
9577 base_string = vop_start;
9578 }
9579
af6bdddf
AM
9580 --base_string;
9581 if (is_space_char (*base_string))
9582 --base_string;
252b5132 9583
47926f60 9584 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9585 displacement_string_start = op_string;
9586 displacement_string_end = base_string + 1;
252b5132 9587
24eab124
AM
9588 if (*base_string == ')')
9589 {
af6bdddf 9590 char *temp_string;
24eab124
AM
9591 unsigned int parens_balanced = 1;
9592 /* We've already checked that the number of left & right ()'s are
47926f60 9593 equal, so this loop will not be infinite. */
24eab124
AM
9594 do
9595 {
9596 base_string--;
9597 if (*base_string == ')')
9598 parens_balanced++;
9599 if (*base_string == '(')
9600 parens_balanced--;
9601 }
9602 while (parens_balanced);
c3332e24 9603
af6bdddf 9604 temp_string = base_string;
c3332e24 9605
24eab124 9606 /* Skip past '(' and whitespace. */
252b5132
RH
9607 ++base_string;
9608 if (is_space_char (*base_string))
24eab124 9609 ++base_string;
252b5132 9610
af6bdddf 9611 if (*base_string == ','
4eed87de
AM
9612 || ((i.base_reg = parse_register (base_string, &end_op))
9613 != NULL))
252b5132 9614 {
af6bdddf 9615 displacement_string_end = temp_string;
252b5132 9616
40fb9820 9617 i.types[this_operand].bitfield.baseindex = 1;
252b5132 9618
af6bdddf 9619 if (i.base_reg)
24eab124 9620 {
24eab124
AM
9621 base_string = end_op;
9622 if (is_space_char (*base_string))
9623 ++base_string;
af6bdddf
AM
9624 }
9625
9626 /* There may be an index reg or scale factor here. */
9627 if (*base_string == ',')
9628 {
9629 ++base_string;
9630 if (is_space_char (*base_string))
9631 ++base_string;
9632
4eed87de
AM
9633 if ((i.index_reg = parse_register (base_string, &end_op))
9634 != NULL)
24eab124 9635 {
af6bdddf 9636 base_string = end_op;
24eab124
AM
9637 if (is_space_char (*base_string))
9638 ++base_string;
af6bdddf
AM
9639 if (*base_string == ',')
9640 {
9641 ++base_string;
9642 if (is_space_char (*base_string))
9643 ++base_string;
9644 }
e5cb08ac 9645 else if (*base_string != ')')
af6bdddf 9646 {
4eed87de
AM
9647 as_bad (_("expecting `,' or `)' "
9648 "after index register in `%s'"),
af6bdddf
AM
9649 operand_string);
9650 return 0;
9651 }
24eab124 9652 }
af6bdddf 9653 else if (*base_string == REGISTER_PREFIX)
24eab124 9654 {
f76bf5e0
L
9655 end_op = strchr (base_string, ',');
9656 if (end_op)
9657 *end_op = '\0';
af6bdddf 9658 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
9659 return 0;
9660 }
252b5132 9661
47926f60 9662 /* Check for scale factor. */
551c1ca1 9663 if (*base_string != ')')
af6bdddf 9664 {
551c1ca1
AM
9665 char *end_scale = i386_scale (base_string);
9666
9667 if (!end_scale)
af6bdddf 9668 return 0;
24eab124 9669
551c1ca1 9670 base_string = end_scale;
af6bdddf
AM
9671 if (is_space_char (*base_string))
9672 ++base_string;
9673 if (*base_string != ')')
9674 {
4eed87de
AM
9675 as_bad (_("expecting `)' "
9676 "after scale factor in `%s'"),
af6bdddf
AM
9677 operand_string);
9678 return 0;
9679 }
9680 }
9681 else if (!i.index_reg)
24eab124 9682 {
4eed87de
AM
9683 as_bad (_("expecting index register or scale factor "
9684 "after `,'; got '%c'"),
af6bdddf 9685 *base_string);
24eab124
AM
9686 return 0;
9687 }
9688 }
af6bdddf 9689 else if (*base_string != ')')
24eab124 9690 {
4eed87de
AM
9691 as_bad (_("expecting `,' or `)' "
9692 "after base register in `%s'"),
af6bdddf 9693 operand_string);
24eab124
AM
9694 return 0;
9695 }
c3332e24 9696 }
af6bdddf 9697 else if (*base_string == REGISTER_PREFIX)
c3332e24 9698 {
f76bf5e0
L
9699 end_op = strchr (base_string, ',');
9700 if (end_op)
9701 *end_op = '\0';
af6bdddf 9702 as_bad (_("bad register name `%s'"), base_string);
24eab124 9703 return 0;
c3332e24 9704 }
24eab124
AM
9705 }
9706
9707 /* If there's an expression beginning the operand, parse it,
9708 assuming displacement_string_start and
9709 displacement_string_end are meaningful. */
9710 if (displacement_string_start != displacement_string_end)
9711 {
9712 if (!i386_displacement (displacement_string_start,
9713 displacement_string_end))
9714 return 0;
9715 }
9716
9717 /* Special case for (%dx) while doing input/output op. */
9718 if (i.base_reg
2fb5be8d 9719 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
9720 && i.index_reg == 0
9721 && i.log2_scale_factor == 0
9722 && i.seg[i.mem_operands] == 0
40fb9820 9723 && !operand_type_check (i.types[this_operand], disp))
24eab124 9724 {
2fb5be8d 9725 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
9726 return 1;
9727 }
9728
eecb386c
AM
9729 if (i386_index_check (operand_string) == 0)
9730 return 0;
5c07affc 9731 i.types[this_operand].bitfield.mem = 1;
8325cc63
JB
9732 if (i.mem_operands == 0)
9733 i.memop1_string = xstrdup (operand_string);
24eab124
AM
9734 i.mem_operands++;
9735 }
9736 else
ce8a8b2f
AM
9737 {
9738 /* It's not a memory operand; argh! */
24eab124
AM
9739 as_bad (_("invalid char %s beginning operand %d `%s'"),
9740 output_invalid (*op_string),
9741 this_operand + 1,
9742 op_string);
9743 return 0;
9744 }
47926f60 9745 return 1; /* Normal return. */
252b5132
RH
9746}
9747\f
fa94de6b
RM
9748/* Calculate the maximum variable size (i.e., excluding fr_fix)
9749 that an rs_machine_dependent frag may reach. */
9750
9751unsigned int
9752i386_frag_max_var (fragS *frag)
9753{
9754 /* The only relaxable frags are for jumps.
9755 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9756 gas_assert (frag->fr_type == rs_machine_dependent);
9757 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9758}
9759
b084df0b
L
9760#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9761static int
8dcea932 9762elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
9763{
9764 /* STT_GNU_IFUNC symbol must go through PLT. */
9765 if ((symbol_get_bfdsym (fr_symbol)->flags
9766 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9767 return 0;
9768
9769 if (!S_IS_EXTERNAL (fr_symbol))
9770 /* Symbol may be weak or local. */
9771 return !S_IS_WEAK (fr_symbol);
9772
8dcea932
L
9773 /* Global symbols with non-default visibility can't be preempted. */
9774 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9775 return 1;
9776
9777 if (fr_var != NO_RELOC)
9778 switch ((enum bfd_reloc_code_real) fr_var)
9779 {
9780 case BFD_RELOC_386_PLT32:
9781 case BFD_RELOC_X86_64_PLT32:
33eaf5de 9782 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
9783 return 0;
9784 default:
9785 abort ();
9786 }
9787
b084df0b
L
9788 /* Global symbols with default visibility in a shared library may be
9789 preempted by another definition. */
8dcea932 9790 return !shared;
b084df0b
L
9791}
9792#endif
9793
ee7fcc42
AM
9794/* md_estimate_size_before_relax()
9795
9796 Called just before relax() for rs_machine_dependent frags. The x86
9797 assembler uses these frags to handle variable size jump
9798 instructions.
9799
9800 Any symbol that is now undefined will not become defined.
9801 Return the correct fr_subtype in the frag.
9802 Return the initial "guess for variable size of frag" to caller.
9803 The guess is actually the growth beyond the fixed part. Whatever
9804 we do to grow the fixed or variable part contributes to our
9805 returned value. */
9806
252b5132 9807int
7016a5d5 9808md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 9809{
252b5132 9810 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
9811 check for un-relaxable symbols. On an ELF system, we can't relax
9812 an externally visible symbol, because it may be overridden by a
9813 shared library. */
9814 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 9815#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 9816 || (IS_ELF
8dcea932
L
9817 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9818 fragP->fr_var))
fbeb56a4
DK
9819#endif
9820#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 9821 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 9822 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
9823#endif
9824 )
252b5132 9825 {
b98ef147
AM
9826 /* Symbol is undefined in this segment, or we need to keep a
9827 reloc so that weak symbols can be overridden. */
9828 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 9829 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
9830 unsigned char *opcode;
9831 int old_fr_fix;
f6af82bd 9832
ee7fcc42 9833 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 9834 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 9835 else if (size == 2)
f6af82bd 9836 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
9837#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9838 else if (need_plt32_p (fragP->fr_symbol))
9839 reloc_type = BFD_RELOC_X86_64_PLT32;
9840#endif
f6af82bd
AM
9841 else
9842 reloc_type = BFD_RELOC_32_PCREL;
252b5132 9843
ee7fcc42
AM
9844 old_fr_fix = fragP->fr_fix;
9845 opcode = (unsigned char *) fragP->fr_opcode;
9846
fddf5b5b 9847 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 9848 {
fddf5b5b
AM
9849 case UNCOND_JUMP:
9850 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 9851 opcode[0] = 0xe9;
252b5132 9852 fragP->fr_fix += size;
062cd5e7
AS
9853 fix_new (fragP, old_fr_fix, size,
9854 fragP->fr_symbol,
9855 fragP->fr_offset, 1,
9856 reloc_type);
252b5132
RH
9857 break;
9858
fddf5b5b 9859 case COND_JUMP86:
412167cb
AM
9860 if (size == 2
9861 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
9862 {
9863 /* Negate the condition, and branch past an
9864 unconditional jump. */
9865 opcode[0] ^= 1;
9866 opcode[1] = 3;
9867 /* Insert an unconditional jump. */
9868 opcode[2] = 0xe9;
9869 /* We added two extra opcode bytes, and have a two byte
9870 offset. */
9871 fragP->fr_fix += 2 + 2;
062cd5e7
AS
9872 fix_new (fragP, old_fr_fix + 2, 2,
9873 fragP->fr_symbol,
9874 fragP->fr_offset, 1,
9875 reloc_type);
fddf5b5b
AM
9876 break;
9877 }
9878 /* Fall through. */
9879
9880 case COND_JUMP:
412167cb
AM
9881 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9882 {
3e02c1cc
AM
9883 fixS *fixP;
9884
412167cb 9885 fragP->fr_fix += 1;
3e02c1cc
AM
9886 fixP = fix_new (fragP, old_fr_fix, 1,
9887 fragP->fr_symbol,
9888 fragP->fr_offset, 1,
9889 BFD_RELOC_8_PCREL);
9890 fixP->fx_signed = 1;
412167cb
AM
9891 break;
9892 }
93c2a809 9893
24eab124 9894 /* This changes the byte-displacement jump 0x7N
fddf5b5b 9895 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 9896 opcode[1] = opcode[0] + 0x10;
f6af82bd 9897 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
9898 /* We've added an opcode byte. */
9899 fragP->fr_fix += 1 + size;
062cd5e7
AS
9900 fix_new (fragP, old_fr_fix + 1, size,
9901 fragP->fr_symbol,
9902 fragP->fr_offset, 1,
9903 reloc_type);
252b5132 9904 break;
fddf5b5b
AM
9905
9906 default:
9907 BAD_CASE (fragP->fr_subtype);
9908 break;
252b5132
RH
9909 }
9910 frag_wane (fragP);
ee7fcc42 9911 return fragP->fr_fix - old_fr_fix;
252b5132 9912 }
93c2a809 9913
93c2a809
AM
9914 /* Guess size depending on current relax state. Initially the relax
9915 state will correspond to a short jump and we return 1, because
9916 the variable part of the frag (the branch offset) is one byte
9917 long. However, we can relax a section more than once and in that
9918 case we must either set fr_subtype back to the unrelaxed state,
9919 or return the value for the appropriate branch. */
9920 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
9921}
9922
47926f60
KH
9923/* Called after relax() is finished.
9924
9925 In: Address of frag.
9926 fr_type == rs_machine_dependent.
9927 fr_subtype is what the address relaxed to.
9928
9929 Out: Any fixSs and constants are set up.
9930 Caller will turn frag into a ".space 0". */
9931
252b5132 9932void
7016a5d5
TG
9933md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9934 fragS *fragP)
252b5132 9935{
29b0f896 9936 unsigned char *opcode;
252b5132 9937 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
9938 offsetT target_address;
9939 offsetT opcode_address;
252b5132 9940 unsigned int extension = 0;
847f7ad4 9941 offsetT displacement_from_opcode_start;
252b5132
RH
9942
9943 opcode = (unsigned char *) fragP->fr_opcode;
9944
47926f60 9945 /* Address we want to reach in file space. */
252b5132 9946 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 9947
47926f60 9948 /* Address opcode resides at in file space. */
252b5132
RH
9949 opcode_address = fragP->fr_address + fragP->fr_fix;
9950
47926f60 9951 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
9952 displacement_from_opcode_start = target_address - opcode_address;
9953
fddf5b5b 9954 if ((fragP->fr_subtype & BIG) == 0)
252b5132 9955 {
47926f60
KH
9956 /* Don't have to change opcode. */
9957 extension = 1; /* 1 opcode + 1 displacement */
252b5132 9958 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
9959 }
9960 else
9961 {
9962 if (no_cond_jump_promotion
9963 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
9964 as_warn_where (fragP->fr_file, fragP->fr_line,
9965 _("long jump required"));
252b5132 9966
fddf5b5b
AM
9967 switch (fragP->fr_subtype)
9968 {
9969 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9970 extension = 4; /* 1 opcode + 4 displacement */
9971 opcode[0] = 0xe9;
9972 where_to_put_displacement = &opcode[1];
9973 break;
252b5132 9974
fddf5b5b
AM
9975 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9976 extension = 2; /* 1 opcode + 2 displacement */
9977 opcode[0] = 0xe9;
9978 where_to_put_displacement = &opcode[1];
9979 break;
252b5132 9980
fddf5b5b
AM
9981 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9982 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9983 extension = 5; /* 2 opcode + 4 displacement */
9984 opcode[1] = opcode[0] + 0x10;
9985 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9986 where_to_put_displacement = &opcode[2];
9987 break;
252b5132 9988
fddf5b5b
AM
9989 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9990 extension = 3; /* 2 opcode + 2 displacement */
9991 opcode[1] = opcode[0] + 0x10;
9992 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9993 where_to_put_displacement = &opcode[2];
9994 break;
252b5132 9995
fddf5b5b
AM
9996 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9997 extension = 4;
9998 opcode[0] ^= 1;
9999 opcode[1] = 3;
10000 opcode[2] = 0xe9;
10001 where_to_put_displacement = &opcode[3];
10002 break;
10003
10004 default:
10005 BAD_CASE (fragP->fr_subtype);
10006 break;
10007 }
252b5132 10008 }
fddf5b5b 10009
7b81dfbb
AJ
10010 /* If size if less then four we are sure that the operand fits,
10011 but if it's 4, then it could be that the displacement is larger
10012 then -/+ 2GB. */
10013 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10014 && object_64bit
10015 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10016 + ((addressT) 1 << 31))
10017 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10018 {
10019 as_bad_where (fragP->fr_file, fragP->fr_line,
10020 _("jump target out of range"));
10021 /* Make us emit 0. */
10022 displacement_from_opcode_start = extension;
10023 }
47926f60 10024 /* Now put displacement after opcode. */
252b5132
RH
10025 md_number_to_chars ((char *) where_to_put_displacement,
10026 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10027 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10028 fragP->fr_fix += extension;
10029}
10030\f
7016a5d5 10031/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10032 by our caller that we have all the info we need to fix it up.
10033
7016a5d5
TG
10034 Parameter valP is the pointer to the value of the bits.
10035
252b5132
RH
10036 On the 386, immediates, displacements, and data pointers are all in
10037 the same (little-endian) format, so we don't need to care about which
10038 we are handling. */
10039
94f592af 10040void
7016a5d5 10041md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10042{
94f592af 10043 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10044 valueT value = *valP;
252b5132 10045
f86103b7 10046#if !defined (TE_Mach)
93382f6d
AM
10047 if (fixP->fx_pcrel)
10048 {
10049 switch (fixP->fx_r_type)
10050 {
5865bb77
ILT
10051 default:
10052 break;
10053
d6ab8113
JB
10054 case BFD_RELOC_64:
10055 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10056 break;
93382f6d 10057 case BFD_RELOC_32:
ae8887b5 10058 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10059 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10060 break;
10061 case BFD_RELOC_16:
10062 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10063 break;
10064 case BFD_RELOC_8:
10065 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10066 break;
10067 }
10068 }
252b5132 10069
a161fe53 10070 if (fixP->fx_addsy != NULL
31312f95 10071 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10072 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10073 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10074 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10075 && !use_rela_relocations)
252b5132 10076 {
31312f95
AM
10077 /* This is a hack. There should be a better way to handle this.
10078 This covers for the fact that bfd_install_relocation will
10079 subtract the current location (for partial_inplace, PC relative
10080 relocations); see more below. */
252b5132 10081#ifndef OBJ_AOUT
718ddfc0 10082 if (IS_ELF
252b5132
RH
10083#ifdef TE_PE
10084 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10085#endif
10086 )
10087 value += fixP->fx_where + fixP->fx_frag->fr_address;
10088#endif
10089#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10090 if (IS_ELF)
252b5132 10091 {
6539b54b 10092 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10093
6539b54b 10094 if ((sym_seg == seg
2f66722d 10095 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10096 && sym_seg != absolute_section))
af65af87 10097 && !generic_force_reloc (fixP))
2f66722d
AM
10098 {
10099 /* Yes, we add the values in twice. This is because
6539b54b
AM
10100 bfd_install_relocation subtracts them out again. I think
10101 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10102 it. FIXME. */
10103 value += fixP->fx_where + fixP->fx_frag->fr_address;
10104 }
252b5132
RH
10105 }
10106#endif
10107#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10108 /* For some reason, the PE format does not store a
10109 section address offset for a PC relative symbol. */
10110 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10111 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10112 value += md_pcrel_from (fixP);
10113#endif
10114 }
fbeb56a4 10115#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10116 if (fixP->fx_addsy != NULL
10117 && S_IS_WEAK (fixP->fx_addsy)
10118 /* PR 16858: Do not modify weak function references. */
10119 && ! fixP->fx_pcrel)
fbeb56a4 10120 {
296a8689
NC
10121#if !defined (TE_PEP)
10122 /* For x86 PE weak function symbols are neither PC-relative
10123 nor do they set S_IS_FUNCTION. So the only reliable way
10124 to detect them is to check the flags of their containing
10125 section. */
10126 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10127 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10128 ;
10129 else
10130#endif
fbeb56a4
DK
10131 value -= S_GET_VALUE (fixP->fx_addsy);
10132 }
10133#endif
252b5132
RH
10134
10135 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10136 and we must not disappoint it. */
252b5132 10137#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10138 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10139 switch (fixP->fx_r_type)
10140 {
10141 case BFD_RELOC_386_PLT32:
3e73aa7c 10142 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
10143 /* Make the jump instruction point to the address of the operand. At
10144 runtime we merely add the offset to the actual PLT entry. */
10145 value = -4;
10146 break;
31312f95 10147
13ae64f3
JJ
10148 case BFD_RELOC_386_TLS_GD:
10149 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10150 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10151 case BFD_RELOC_386_TLS_IE:
10152 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10153 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10154 case BFD_RELOC_X86_64_TLSGD:
10155 case BFD_RELOC_X86_64_TLSLD:
10156 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10157 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10158 value = 0; /* Fully resolved at runtime. No addend. */
10159 /* Fallthrough */
10160 case BFD_RELOC_386_TLS_LE:
10161 case BFD_RELOC_386_TLS_LDO_32:
10162 case BFD_RELOC_386_TLS_LE_32:
10163 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10164 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10165 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10166 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10167 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10168 break;
10169
67a4f2b7
AO
10170 case BFD_RELOC_386_TLS_DESC_CALL:
10171 case BFD_RELOC_X86_64_TLSDESC_CALL:
10172 value = 0; /* Fully resolved at runtime. No addend. */
10173 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10174 fixP->fx_done = 0;
10175 return;
10176
47926f60
KH
10177 case BFD_RELOC_VTABLE_INHERIT:
10178 case BFD_RELOC_VTABLE_ENTRY:
10179 fixP->fx_done = 0;
94f592af 10180 return;
47926f60
KH
10181
10182 default:
10183 break;
10184 }
10185#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10186 *valP = value;
f86103b7 10187#endif /* !defined (TE_Mach) */
3e73aa7c 10188
3e73aa7c 10189 /* Are we finished with this relocation now? */
c6682705 10190 if (fixP->fx_addsy == NULL)
3e73aa7c 10191 fixP->fx_done = 1;
fbeb56a4
DK
10192#if defined (OBJ_COFF) && defined (TE_PE)
10193 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10194 {
10195 fixP->fx_done = 0;
10196 /* Remember value for tc_gen_reloc. */
10197 fixP->fx_addnumber = value;
10198 /* Clear out the frag for now. */
10199 value = 0;
10200 }
10201#endif
3e73aa7c
JH
10202 else if (use_rela_relocations)
10203 {
10204 fixP->fx_no_overflow = 1;
062cd5e7
AS
10205 /* Remember value for tc_gen_reloc. */
10206 fixP->fx_addnumber = value;
3e73aa7c
JH
10207 value = 0;
10208 }
f86103b7 10209
94f592af 10210 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10211}
252b5132 10212\f
6d4af3c2 10213const char *
499ac353 10214md_atof (int type, char *litP, int *sizeP)
252b5132 10215{
499ac353
NC
10216 /* This outputs the LITTLENUMs in REVERSE order;
10217 in accord with the bigendian 386. */
10218 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10219}
10220\f
2d545b82 10221static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10222
252b5132 10223static char *
e3bb37b5 10224output_invalid (int c)
252b5132 10225{
3882b010 10226 if (ISPRINT (c))
f9f21a03
L
10227 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10228 "'%c'", c);
252b5132 10229 else
f9f21a03 10230 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10231 "(0x%x)", (unsigned char) c);
252b5132
RH
10232 return output_invalid_buf;
10233}
10234
af6bdddf 10235/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10236
10237static const reg_entry *
4d1bb795 10238parse_real_register (char *reg_string, char **end_op)
252b5132 10239{
af6bdddf
AM
10240 char *s = reg_string;
10241 char *p;
252b5132
RH
10242 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10243 const reg_entry *r;
10244
10245 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10246 if (*s == REGISTER_PREFIX)
10247 ++s;
10248
10249 if (is_space_char (*s))
10250 ++s;
10251
10252 p = reg_name_given;
af6bdddf 10253 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10254 {
10255 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10256 return (const reg_entry *) NULL;
10257 s++;
252b5132
RH
10258 }
10259
6588847e
DN
10260 /* For naked regs, make sure that we are not dealing with an identifier.
10261 This prevents confusing an identifier like `eax_var' with register
10262 `eax'. */
10263 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10264 return (const reg_entry *) NULL;
10265
af6bdddf 10266 *end_op = s;
252b5132
RH
10267
10268 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10269
5f47d35b 10270 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10271 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10272 {
0e0eea78
JB
10273 if (!cpu_arch_flags.bitfield.cpu8087
10274 && !cpu_arch_flags.bitfield.cpu287
10275 && !cpu_arch_flags.bitfield.cpu387)
10276 return (const reg_entry *) NULL;
10277
5f47d35b
AM
10278 if (is_space_char (*s))
10279 ++s;
10280 if (*s == '(')
10281 {
af6bdddf 10282 ++s;
5f47d35b
AM
10283 if (is_space_char (*s))
10284 ++s;
10285 if (*s >= '0' && *s <= '7')
10286 {
db557034 10287 int fpr = *s - '0';
af6bdddf 10288 ++s;
5f47d35b
AM
10289 if (is_space_char (*s))
10290 ++s;
10291 if (*s == ')')
10292 {
10293 *end_op = s + 1;
1e9cc1c2 10294 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10295 know (r);
10296 return r + fpr;
5f47d35b 10297 }
5f47d35b 10298 }
47926f60 10299 /* We have "%st(" then garbage. */
5f47d35b
AM
10300 return (const reg_entry *) NULL;
10301 }
10302 }
10303
a60de03c
JB
10304 if (r == NULL || allow_pseudo_reg)
10305 return r;
10306
0dfbf9d7 10307 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10308 return (const reg_entry *) NULL;
10309
dc821c5f 10310 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10311 || r->reg_type.bitfield.sreg3
10312 || r->reg_type.bitfield.control
10313 || r->reg_type.bitfield.debug
10314 || r->reg_type.bitfield.test)
10315 && !cpu_arch_flags.bitfield.cpui386)
10316 return (const reg_entry *) NULL;
10317
6e041cf4 10318 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10319 return (const reg_entry *) NULL;
10320
6e041cf4
JB
10321 if (!cpu_arch_flags.bitfield.cpuavx512f)
10322 {
10323 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10324 return (const reg_entry *) NULL;
40f12533 10325
6e041cf4
JB
10326 if (!cpu_arch_flags.bitfield.cpuavx)
10327 {
10328 if (r->reg_type.bitfield.ymmword)
10329 return (const reg_entry *) NULL;
1848e567 10330
6e041cf4
JB
10331 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10332 return (const reg_entry *) NULL;
10333 }
10334 }
43234a1e 10335
1adf7f56
JB
10336 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10337 return (const reg_entry *) NULL;
10338
db51cc60 10339 /* Don't allow fake index register unless allow_index_reg isn't 0. */
a60de03c 10340 if (!allow_index_reg
db51cc60
L
10341 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10342 return (const reg_entry *) NULL;
10343
1d3f8286
JB
10344 /* Upper 16 vector registers are only available with VREX in 64bit
10345 mode, and require EVEX encoding. */
10346 if (r->reg_flags & RegVRex)
43234a1e
L
10347 {
10348 if (!cpu_arch_flags.bitfield.cpuvrex
10349 || flag_code != CODE_64BIT)
10350 return (const reg_entry *) NULL;
1d3f8286
JB
10351
10352 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10353 }
10354
4787f4a5
JB
10355 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10356 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10357 && flag_code != CODE_64BIT)
20f0a1fc 10358 return (const reg_entry *) NULL;
1ae00879 10359
b7240065
JB
10360 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10361 return (const reg_entry *) NULL;
10362
252b5132
RH
10363 return r;
10364}
4d1bb795
JB
10365
10366/* REG_STRING starts *before* REGISTER_PREFIX. */
10367
10368static const reg_entry *
10369parse_register (char *reg_string, char **end_op)
10370{
10371 const reg_entry *r;
10372
10373 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10374 r = parse_real_register (reg_string, end_op);
10375 else
10376 r = NULL;
10377 if (!r)
10378 {
10379 char *save = input_line_pointer;
10380 char c;
10381 symbolS *symbolP;
10382
10383 input_line_pointer = reg_string;
d02603dc 10384 c = get_symbol_name (&reg_string);
4d1bb795
JB
10385 symbolP = symbol_find (reg_string);
10386 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10387 {
10388 const expressionS *e = symbol_get_value_expression (symbolP);
10389
0398aac5 10390 know (e->X_op == O_register);
4eed87de 10391 know (e->X_add_number >= 0
c3fe08fa 10392 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10393 r = i386_regtab + e->X_add_number;
d3bb6b49 10394 if ((r->reg_flags & RegVRex))
86fa6981 10395 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10396 *end_op = input_line_pointer;
10397 }
10398 *input_line_pointer = c;
10399 input_line_pointer = save;
10400 }
10401 return r;
10402}
10403
10404int
10405i386_parse_name (char *name, expressionS *e, char *nextcharP)
10406{
10407 const reg_entry *r;
10408 char *end = input_line_pointer;
10409
10410 *end = *nextcharP;
10411 r = parse_register (name, &input_line_pointer);
10412 if (r && end <= input_line_pointer)
10413 {
10414 *nextcharP = *input_line_pointer;
10415 *input_line_pointer = 0;
10416 e->X_op = O_register;
10417 e->X_add_number = r - i386_regtab;
10418 return 1;
10419 }
10420 input_line_pointer = end;
10421 *end = 0;
ee86248c 10422 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10423}
10424
10425void
10426md_operand (expressionS *e)
10427{
ee86248c
JB
10428 char *end;
10429 const reg_entry *r;
4d1bb795 10430
ee86248c
JB
10431 switch (*input_line_pointer)
10432 {
10433 case REGISTER_PREFIX:
10434 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10435 if (r)
10436 {
10437 e->X_op = O_register;
10438 e->X_add_number = r - i386_regtab;
10439 input_line_pointer = end;
10440 }
ee86248c
JB
10441 break;
10442
10443 case '[':
9c2799c2 10444 gas_assert (intel_syntax);
ee86248c
JB
10445 end = input_line_pointer++;
10446 expression (e);
10447 if (*input_line_pointer == ']')
10448 {
10449 ++input_line_pointer;
10450 e->X_op_symbol = make_expr_symbol (e);
10451 e->X_add_symbol = NULL;
10452 e->X_add_number = 0;
10453 e->X_op = O_index;
10454 }
10455 else
10456 {
10457 e->X_op = O_absent;
10458 input_line_pointer = end;
10459 }
10460 break;
4d1bb795
JB
10461 }
10462}
10463
252b5132 10464\f
4cc782b5 10465#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10466const char *md_shortopts = "kVQ:sqnO::";
252b5132 10467#else
b6f8c7c4 10468const char *md_shortopts = "qnO::";
252b5132 10469#endif
6e0b89ee 10470
3e73aa7c 10471#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10472#define OPTION_64 (OPTION_MD_BASE + 1)
10473#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10474#define OPTION_MARCH (OPTION_MD_BASE + 3)
10475#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10476#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10477#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10478#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10479#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10480#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10481#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10482#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10483#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10484#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10485#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10486#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10487#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10488#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10489#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10490#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10491#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10492#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10493#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10494#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10495#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b3b91714 10496
99ad8390
NC
10497struct option md_longopts[] =
10498{
3e73aa7c 10499 {"32", no_argument, NULL, OPTION_32},
321098a5 10500#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10501 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10502 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10503#endif
10504#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10505 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10506 {"mshared", no_argument, NULL, OPTION_MSHARED},
6e0b89ee 10507#endif
b3b91714 10508 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10509 {"march", required_argument, NULL, OPTION_MARCH},
10510 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10511 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10512 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10513 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10514 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10515 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10516 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10517 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10518 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10519 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10520 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10521 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10522# if defined (TE_PE) || defined (TE_PEP)
10523 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10524#endif
d1982f93 10525 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10526 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10527 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10528 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10529 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10530 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10531 {NULL, no_argument, NULL, 0}
10532};
10533size_t md_longopts_size = sizeof (md_longopts);
10534
10535int
17b9d67d 10536md_parse_option (int c, const char *arg)
252b5132 10537{
91d6fa6a 10538 unsigned int j;
293f5f65 10539 char *arch, *next, *saved;
9103f4f4 10540
252b5132
RH
10541 switch (c)
10542 {
12b55ccc
L
10543 case 'n':
10544 optimize_align_code = 0;
10545 break;
10546
a38cf1db
AM
10547 case 'q':
10548 quiet_warnings = 1;
252b5132
RH
10549 break;
10550
10551#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10552 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10553 should be emitted or not. FIXME: Not implemented. */
10554 case 'Q':
252b5132
RH
10555 break;
10556
10557 /* -V: SVR4 argument to print version ID. */
10558 case 'V':
10559 print_version_id ();
10560 break;
10561
a38cf1db
AM
10562 /* -k: Ignore for FreeBSD compatibility. */
10563 case 'k':
252b5132 10564 break;
4cc782b5
ILT
10565
10566 case 's':
10567 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10568 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10569 break;
8dcea932
L
10570
10571 case OPTION_MSHARED:
10572 shared = 1;
10573 break;
99ad8390 10574#endif
321098a5 10575#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10576 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10577 case OPTION_64:
10578 {
10579 const char **list, **l;
10580
3e73aa7c
JH
10581 list = bfd_target_list ();
10582 for (l = list; *l != NULL; l++)
8620418b 10583 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10584 || strcmp (*l, "coff-x86-64") == 0
10585 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10586 || strcmp (*l, "pei-x86-64") == 0
10587 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10588 {
10589 default_arch = "x86_64";
10590 break;
10591 }
3e73aa7c 10592 if (*l == NULL)
2b5d6a91 10593 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10594 free (list);
10595 }
10596 break;
10597#endif
252b5132 10598
351f65ca 10599#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10600 case OPTION_X32:
351f65ca
L
10601 if (IS_ELF)
10602 {
10603 const char **list, **l;
10604
10605 list = bfd_target_list ();
10606 for (l = list; *l != NULL; l++)
10607 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10608 {
10609 default_arch = "x86_64:32";
10610 break;
10611 }
10612 if (*l == NULL)
2b5d6a91 10613 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
10614 free (list);
10615 }
10616 else
10617 as_fatal (_("32bit x86_64 is only supported for ELF"));
10618 break;
10619#endif
10620
6e0b89ee
AM
10621 case OPTION_32:
10622 default_arch = "i386";
10623 break;
10624
b3b91714
AM
10625 case OPTION_DIVIDE:
10626#ifdef SVR4_COMMENT_CHARS
10627 {
10628 char *n, *t;
10629 const char *s;
10630
add39d23 10631 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
10632 t = n;
10633 for (s = i386_comment_chars; *s != '\0'; s++)
10634 if (*s != '/')
10635 *t++ = *s;
10636 *t = '\0';
10637 i386_comment_chars = n;
10638 }
10639#endif
10640 break;
10641
9103f4f4 10642 case OPTION_MARCH:
293f5f65
L
10643 saved = xstrdup (arg);
10644 arch = saved;
10645 /* Allow -march=+nosse. */
10646 if (*arch == '+')
10647 arch++;
6305a203 10648 do
9103f4f4 10649 {
6305a203 10650 if (*arch == '.')
2b5d6a91 10651 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10652 next = strchr (arch, '+');
10653 if (next)
10654 *next++ = '\0';
91d6fa6a 10655 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10656 {
91d6fa6a 10657 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 10658 {
6305a203 10659 /* Processor. */
1ded5609
JB
10660 if (! cpu_arch[j].flags.bitfield.cpui386)
10661 continue;
10662
91d6fa6a 10663 cpu_arch_name = cpu_arch[j].name;
6305a203 10664 cpu_sub_arch_name = NULL;
91d6fa6a
NC
10665 cpu_arch_flags = cpu_arch[j].flags;
10666 cpu_arch_isa = cpu_arch[j].type;
10667 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
10668 if (!cpu_arch_tune_set)
10669 {
10670 cpu_arch_tune = cpu_arch_isa;
10671 cpu_arch_tune_flags = cpu_arch_isa_flags;
10672 }
10673 break;
10674 }
91d6fa6a
NC
10675 else if (*cpu_arch [j].name == '.'
10676 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 10677 {
33eaf5de 10678 /* ISA extension. */
6305a203 10679 i386_cpu_flags flags;
309d3373 10680
293f5f65
L
10681 flags = cpu_flags_or (cpu_arch_flags,
10682 cpu_arch[j].flags);
81486035 10683
5b64d091 10684 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
10685 {
10686 if (cpu_sub_arch_name)
10687 {
10688 char *name = cpu_sub_arch_name;
10689 cpu_sub_arch_name = concat (name,
91d6fa6a 10690 cpu_arch[j].name,
1bf57e9f 10691 (const char *) NULL);
6305a203
L
10692 free (name);
10693 }
10694 else
91d6fa6a 10695 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 10696 cpu_arch_flags = flags;
a586129e 10697 cpu_arch_isa_flags = flags;
6305a203 10698 }
0089dace
L
10699 else
10700 cpu_arch_isa_flags
10701 = cpu_flags_or (cpu_arch_isa_flags,
10702 cpu_arch[j].flags);
6305a203 10703 break;
ccc9c027 10704 }
9103f4f4 10705 }
6305a203 10706
293f5f65
L
10707 if (j >= ARRAY_SIZE (cpu_arch))
10708 {
33eaf5de 10709 /* Disable an ISA extension. */
293f5f65
L
10710 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10711 if (strcmp (arch, cpu_noarch [j].name) == 0)
10712 {
10713 i386_cpu_flags flags;
10714
10715 flags = cpu_flags_and_not (cpu_arch_flags,
10716 cpu_noarch[j].flags);
10717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10718 {
10719 if (cpu_sub_arch_name)
10720 {
10721 char *name = cpu_sub_arch_name;
10722 cpu_sub_arch_name = concat (arch,
10723 (const char *) NULL);
10724 free (name);
10725 }
10726 else
10727 cpu_sub_arch_name = xstrdup (arch);
10728 cpu_arch_flags = flags;
10729 cpu_arch_isa_flags = flags;
10730 }
10731 break;
10732 }
10733
10734 if (j >= ARRAY_SIZE (cpu_noarch))
10735 j = ARRAY_SIZE (cpu_arch);
10736 }
10737
91d6fa6a 10738 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10739 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
10740
10741 arch = next;
9103f4f4 10742 }
293f5f65
L
10743 while (next != NULL);
10744 free (saved);
9103f4f4
L
10745 break;
10746
10747 case OPTION_MTUNE:
10748 if (*arg == '.')
2b5d6a91 10749 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 10750 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 10751 {
91d6fa6a 10752 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 10753 {
ccc9c027 10754 cpu_arch_tune_set = 1;
91d6fa6a
NC
10755 cpu_arch_tune = cpu_arch [j].type;
10756 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
10757 break;
10758 }
10759 }
91d6fa6a 10760 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 10761 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
10762 break;
10763
1efbbeb4
L
10764 case OPTION_MMNEMONIC:
10765 if (strcasecmp (arg, "att") == 0)
10766 intel_mnemonic = 0;
10767 else if (strcasecmp (arg, "intel") == 0)
10768 intel_mnemonic = 1;
10769 else
2b5d6a91 10770 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
10771 break;
10772
10773 case OPTION_MSYNTAX:
10774 if (strcasecmp (arg, "att") == 0)
10775 intel_syntax = 0;
10776 else if (strcasecmp (arg, "intel") == 0)
10777 intel_syntax = 1;
10778 else
2b5d6a91 10779 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
10780 break;
10781
10782 case OPTION_MINDEX_REG:
10783 allow_index_reg = 1;
10784 break;
10785
10786 case OPTION_MNAKED_REG:
10787 allow_naked_reg = 1;
10788 break;
10789
c0f3af97
L
10790 case OPTION_MSSE2AVX:
10791 sse2avx = 1;
10792 break;
10793
daf50ae7
L
10794 case OPTION_MSSE_CHECK:
10795 if (strcasecmp (arg, "error") == 0)
7bab8ab5 10796 sse_check = check_error;
daf50ae7 10797 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 10798 sse_check = check_warning;
daf50ae7 10799 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 10800 sse_check = check_none;
daf50ae7 10801 else
2b5d6a91 10802 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
10803 break;
10804
7bab8ab5
JB
10805 case OPTION_MOPERAND_CHECK:
10806 if (strcasecmp (arg, "error") == 0)
10807 operand_check = check_error;
10808 else if (strcasecmp (arg, "warning") == 0)
10809 operand_check = check_warning;
10810 else if (strcasecmp (arg, "none") == 0)
10811 operand_check = check_none;
10812 else
10813 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10814 break;
10815
539f890d
L
10816 case OPTION_MAVXSCALAR:
10817 if (strcasecmp (arg, "128") == 0)
10818 avxscalar = vex128;
10819 else if (strcasecmp (arg, "256") == 0)
10820 avxscalar = vex256;
10821 else
2b5d6a91 10822 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
10823 break;
10824
7e8b059b
L
10825 case OPTION_MADD_BND_PREFIX:
10826 add_bnd_prefix = 1;
10827 break;
10828
43234a1e
L
10829 case OPTION_MEVEXLIG:
10830 if (strcmp (arg, "128") == 0)
10831 evexlig = evexl128;
10832 else if (strcmp (arg, "256") == 0)
10833 evexlig = evexl256;
10834 else if (strcmp (arg, "512") == 0)
10835 evexlig = evexl512;
10836 else
10837 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10838 break;
10839
d3d3c6db
IT
10840 case OPTION_MEVEXRCIG:
10841 if (strcmp (arg, "rne") == 0)
10842 evexrcig = rne;
10843 else if (strcmp (arg, "rd") == 0)
10844 evexrcig = rd;
10845 else if (strcmp (arg, "ru") == 0)
10846 evexrcig = ru;
10847 else if (strcmp (arg, "rz") == 0)
10848 evexrcig = rz;
10849 else
10850 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10851 break;
10852
43234a1e
L
10853 case OPTION_MEVEXWIG:
10854 if (strcmp (arg, "0") == 0)
10855 evexwig = evexw0;
10856 else if (strcmp (arg, "1") == 0)
10857 evexwig = evexw1;
10858 else
10859 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10860 break;
10861
167ad85b
TG
10862# if defined (TE_PE) || defined (TE_PEP)
10863 case OPTION_MBIG_OBJ:
10864 use_big_obj = 1;
10865 break;
10866#endif
10867
d1982f93 10868 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
10869 if (strcasecmp (arg, "yes") == 0)
10870 omit_lock_prefix = 1;
10871 else if (strcasecmp (arg, "no") == 0)
10872 omit_lock_prefix = 0;
10873 else
10874 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10875 break;
10876
e4e00185
AS
10877 case OPTION_MFENCE_AS_LOCK_ADD:
10878 if (strcasecmp (arg, "yes") == 0)
10879 avoid_fence = 1;
10880 else if (strcasecmp (arg, "no") == 0)
10881 avoid_fence = 0;
10882 else
10883 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10884 break;
10885
0cb4071e
L
10886 case OPTION_MRELAX_RELOCATIONS:
10887 if (strcasecmp (arg, "yes") == 0)
10888 generate_relax_relocations = 1;
10889 else if (strcasecmp (arg, "no") == 0)
10890 generate_relax_relocations = 0;
10891 else
10892 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10893 break;
10894
5db04b09 10895 case OPTION_MAMD64:
e89c5eaa 10896 intel64 = 0;
5db04b09
L
10897 break;
10898
10899 case OPTION_MINTEL64:
e89c5eaa 10900 intel64 = 1;
5db04b09
L
10901 break;
10902
b6f8c7c4
L
10903 case 'O':
10904 if (arg == NULL)
10905 {
10906 optimize = 1;
10907 /* Turn off -Os. */
10908 optimize_for_space = 0;
10909 }
10910 else if (*arg == 's')
10911 {
10912 optimize_for_space = 1;
10913 /* Turn on all encoding optimizations. */
10914 optimize = -1;
10915 }
10916 else
10917 {
10918 optimize = atoi (arg);
10919 /* Turn off -Os. */
10920 optimize_for_space = 0;
10921 }
10922 break;
10923
252b5132
RH
10924 default:
10925 return 0;
10926 }
10927 return 1;
10928}
10929
8a2c8fef
L
10930#define MESSAGE_TEMPLATE \
10931" "
10932
293f5f65
L
10933static char *
10934output_message (FILE *stream, char *p, char *message, char *start,
10935 int *left_p, const char *name, int len)
10936{
10937 int size = sizeof (MESSAGE_TEMPLATE);
10938 int left = *left_p;
10939
10940 /* Reserve 2 spaces for ", " or ",\0" */
10941 left -= len + 2;
10942
10943 /* Check if there is any room. */
10944 if (left >= 0)
10945 {
10946 if (p != start)
10947 {
10948 *p++ = ',';
10949 *p++ = ' ';
10950 }
10951 p = mempcpy (p, name, len);
10952 }
10953 else
10954 {
10955 /* Output the current message now and start a new one. */
10956 *p++ = ',';
10957 *p = '\0';
10958 fprintf (stream, "%s\n", message);
10959 p = start;
10960 left = size - (start - message) - len - 2;
10961
10962 gas_assert (left >= 0);
10963
10964 p = mempcpy (p, name, len);
10965 }
10966
10967 *left_p = left;
10968 return p;
10969}
10970
8a2c8fef 10971static void
1ded5609 10972show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
10973{
10974 static char message[] = MESSAGE_TEMPLATE;
10975 char *start = message + 27;
10976 char *p;
10977 int size = sizeof (MESSAGE_TEMPLATE);
10978 int left;
10979 const char *name;
10980 int len;
10981 unsigned int j;
10982
10983 p = start;
10984 left = size - (start - message);
10985 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10986 {
10987 /* Should it be skipped? */
10988 if (cpu_arch [j].skip)
10989 continue;
10990
10991 name = cpu_arch [j].name;
10992 len = cpu_arch [j].len;
10993 if (*name == '.')
10994 {
10995 /* It is an extension. Skip if we aren't asked to show it. */
10996 if (ext)
10997 {
10998 name++;
10999 len--;
11000 }
11001 else
11002 continue;
11003 }
11004 else if (ext)
11005 {
11006 /* It is an processor. Skip if we show only extension. */
11007 continue;
11008 }
1ded5609
JB
11009 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11010 {
11011 /* It is an impossible processor - skip. */
11012 continue;
11013 }
8a2c8fef 11014
293f5f65 11015 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11016 }
11017
293f5f65
L
11018 /* Display disabled extensions. */
11019 if (ext)
11020 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11021 {
11022 name = cpu_noarch [j].name;
11023 len = cpu_noarch [j].len;
11024 p = output_message (stream, p, message, start, &left, name,
11025 len);
11026 }
11027
8a2c8fef
L
11028 *p = '\0';
11029 fprintf (stream, "%s\n", message);
11030}
11031
252b5132 11032void
8a2c8fef 11033md_show_usage (FILE *stream)
252b5132 11034{
4cc782b5
ILT
11035#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11036 fprintf (stream, _("\
a38cf1db
AM
11037 -Q ignored\n\
11038 -V print assembler version number\n\
b3b91714
AM
11039 -k ignored\n"));
11040#endif
11041 fprintf (stream, _("\
12b55ccc 11042 -n Do not optimize code alignment\n\
b3b91714
AM
11043 -q quieten some warnings\n"));
11044#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11045 fprintf (stream, _("\
a38cf1db 11046 -s ignored\n"));
b3b91714 11047#endif
321098a5
L
11048#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11049 || defined (TE_PE) || defined (TE_PEP))
751d281c 11050 fprintf (stream, _("\
570561f7 11051 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11052#endif
b3b91714
AM
11053#ifdef SVR4_COMMENT_CHARS
11054 fprintf (stream, _("\
11055 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11056#else
11057 fprintf (stream, _("\
b3b91714 11058 --divide ignored\n"));
4cc782b5 11059#endif
9103f4f4 11060 fprintf (stream, _("\
6305a203 11061 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11062 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11063 show_arch (stream, 0, 1);
8a2c8fef
L
11064 fprintf (stream, _("\
11065 EXTENSION is combination of:\n"));
1ded5609 11066 show_arch (stream, 1, 0);
6305a203 11067 fprintf (stream, _("\
8a2c8fef 11068 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11069 show_arch (stream, 0, 0);
ba104c83 11070 fprintf (stream, _("\
c0f3af97
L
11071 -msse2avx encode SSE instructions with VEX prefix\n"));
11072 fprintf (stream, _("\
daf50ae7
L
11073 -msse-check=[none|error|warning]\n\
11074 check SSE instructions\n"));
11075 fprintf (stream, _("\
7bab8ab5
JB
11076 -moperand-check=[none|error|warning]\n\
11077 check operand combinations for validity\n"));
11078 fprintf (stream, _("\
539f890d
L
11079 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11080 length\n"));
11081 fprintf (stream, _("\
43234a1e
L
11082 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11083 length\n"));
11084 fprintf (stream, _("\
11085 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11086 for EVEX.W bit ignored instructions\n"));
11087 fprintf (stream, _("\
d3d3c6db
IT
11088 -mevexrcig=[rne|rd|ru|rz]\n\
11089 encode EVEX instructions with specific EVEX.RC value\n\
11090 for SAE-only ignored instructions\n"));
11091 fprintf (stream, _("\
ba104c83
L
11092 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11093 fprintf (stream, _("\
11094 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11095 fprintf (stream, _("\
11096 -mindex-reg support pseudo index registers\n"));
11097 fprintf (stream, _("\
11098 -mnaked-reg don't require `%%' prefix for registers\n"));
11099 fprintf (stream, _("\
7e8b059b 11100 -madd-bnd-prefix add BND prefix for all valid branches\n"));
8dcea932
L
11101 fprintf (stream, _("\
11102 -mshared disable branch optimization for shared code\n"));
167ad85b
TG
11103# if defined (TE_PE) || defined (TE_PEP)
11104 fprintf (stream, _("\
11105 -mbig-obj generate big object files\n"));
11106#endif
d022bddd
IT
11107 fprintf (stream, _("\
11108 -momit-lock-prefix=[no|yes]\n\
11109 strip all lock prefixes\n"));
5db04b09 11110 fprintf (stream, _("\
e4e00185
AS
11111 -mfence-as-lock-add=[no|yes]\n\
11112 encode lfence, mfence and sfence as\n\
11113 lock addl $0x0, (%%{re}sp)\n"));
11114 fprintf (stream, _("\
0cb4071e
L
11115 -mrelax-relocations=[no|yes]\n\
11116 generate relax relocations\n"));
11117 fprintf (stream, _("\
5db04b09
L
11118 -mamd64 accept only AMD64 ISA\n"));
11119 fprintf (stream, _("\
11120 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11121}
11122
3e73aa7c 11123#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11124 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11125 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11126
11127/* Pick the target format to use. */
11128
47926f60 11129const char *
e3bb37b5 11130i386_target_format (void)
252b5132 11131{
351f65ca
L
11132 if (!strncmp (default_arch, "x86_64", 6))
11133 {
11134 update_code_flag (CODE_64BIT, 1);
11135 if (default_arch[6] == '\0')
7f56bc95 11136 x86_elf_abi = X86_64_ABI;
351f65ca 11137 else
7f56bc95 11138 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11139 }
3e73aa7c 11140 else if (!strcmp (default_arch, "i386"))
78f12dd3 11141 update_code_flag (CODE_32BIT, 1);
5197d474
L
11142 else if (!strcmp (default_arch, "iamcu"))
11143 {
11144 update_code_flag (CODE_32BIT, 1);
11145 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11146 {
11147 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11148 cpu_arch_name = "iamcu";
11149 cpu_sub_arch_name = NULL;
11150 cpu_arch_flags = iamcu_flags;
11151 cpu_arch_isa = PROCESSOR_IAMCU;
11152 cpu_arch_isa_flags = iamcu_flags;
11153 if (!cpu_arch_tune_set)
11154 {
11155 cpu_arch_tune = cpu_arch_isa;
11156 cpu_arch_tune_flags = cpu_arch_isa_flags;
11157 }
11158 }
8d471ec1 11159 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11160 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11161 cpu_arch_name);
11162 }
3e73aa7c 11163 else
2b5d6a91 11164 as_fatal (_("unknown architecture"));
89507696
JB
11165
11166 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11167 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11168 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11169 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11170
252b5132
RH
11171 switch (OUTPUT_FLAVOR)
11172 {
9384f2ff 11173#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11174 case bfd_target_aout_flavour:
47926f60 11175 return AOUT_TARGET_FORMAT;
4c63da97 11176#endif
9384f2ff
AM
11177#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11178# if defined (TE_PE) || defined (TE_PEP)
11179 case bfd_target_coff_flavour:
167ad85b
TG
11180 if (flag_code == CODE_64BIT)
11181 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11182 else
11183 return "pe-i386";
9384f2ff 11184# elif defined (TE_GO32)
0561d57c
JK
11185 case bfd_target_coff_flavour:
11186 return "coff-go32";
9384f2ff 11187# else
252b5132
RH
11188 case bfd_target_coff_flavour:
11189 return "coff-i386";
9384f2ff 11190# endif
4c63da97 11191#endif
3e73aa7c 11192#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11193 case bfd_target_elf_flavour:
3e73aa7c 11194 {
351f65ca
L
11195 const char *format;
11196
11197 switch (x86_elf_abi)
4fa24527 11198 {
351f65ca
L
11199 default:
11200 format = ELF_TARGET_FORMAT;
11201 break;
7f56bc95 11202 case X86_64_ABI:
351f65ca 11203 use_rela_relocations = 1;
4fa24527 11204 object_64bit = 1;
351f65ca
L
11205 format = ELF_TARGET_FORMAT64;
11206 break;
7f56bc95 11207 case X86_64_X32_ABI:
4fa24527 11208 use_rela_relocations = 1;
351f65ca 11209 object_64bit = 1;
862be3fb 11210 disallow_64bit_reloc = 1;
351f65ca
L
11211 format = ELF_TARGET_FORMAT32;
11212 break;
4fa24527 11213 }
3632d14b 11214 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11215 {
7f56bc95 11216 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11217 as_fatal (_("Intel L1OM is 64bit only"));
11218 return ELF_TARGET_L1OM_FORMAT;
11219 }
b49f93f6 11220 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11221 {
11222 if (x86_elf_abi != X86_64_ABI)
11223 as_fatal (_("Intel K1OM is 64bit only"));
11224 return ELF_TARGET_K1OM_FORMAT;
11225 }
81486035
L
11226 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11227 {
11228 if (x86_elf_abi != I386_ABI)
11229 as_fatal (_("Intel MCU is 32bit only"));
11230 return ELF_TARGET_IAMCU_FORMAT;
11231 }
8a9036a4 11232 else
351f65ca 11233 return format;
3e73aa7c 11234 }
e57f8c65
TG
11235#endif
11236#if defined (OBJ_MACH_O)
11237 case bfd_target_mach_o_flavour:
d382c579
TG
11238 if (flag_code == CODE_64BIT)
11239 {
11240 use_rela_relocations = 1;
11241 object_64bit = 1;
11242 return "mach-o-x86-64";
11243 }
11244 else
11245 return "mach-o-i386";
4c63da97 11246#endif
252b5132
RH
11247 default:
11248 abort ();
11249 return NULL;
11250 }
11251}
11252
47926f60 11253#endif /* OBJ_MAYBE_ more than one */
252b5132 11254\f
252b5132 11255symbolS *
7016a5d5 11256md_undefined_symbol (char *name)
252b5132 11257{
18dc2407
ILT
11258 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11259 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11260 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11261 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11262 {
11263 if (!GOT_symbol)
11264 {
11265 if (symbol_find (name))
11266 as_bad (_("GOT already in symbol table"));
11267 GOT_symbol = symbol_new (name, undefined_section,
11268 (valueT) 0, &zero_address_frag);
11269 };
11270 return GOT_symbol;
11271 }
252b5132
RH
11272 return 0;
11273}
11274
11275/* Round up a section size to the appropriate boundary. */
47926f60 11276
252b5132 11277valueT
7016a5d5 11278md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11279{
4c63da97
AM
11280#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11281 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11282 {
11283 /* For a.out, force the section size to be aligned. If we don't do
11284 this, BFD will align it for us, but it will not write out the
11285 final bytes of the section. This may be a bug in BFD, but it is
11286 easier to fix it here since that is how the other a.out targets
11287 work. */
11288 int align;
11289
11290 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11291 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11292 }
252b5132
RH
11293#endif
11294
11295 return size;
11296}
11297
11298/* On the i386, PC-relative offsets are relative to the start of the
11299 next instruction. That is, the address of the offset, plus its
11300 size, since the offset is always the last part of the insn. */
11301
11302long
e3bb37b5 11303md_pcrel_from (fixS *fixP)
252b5132
RH
11304{
11305 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11306}
11307
11308#ifndef I386COFF
11309
11310static void
e3bb37b5 11311s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11312{
29b0f896 11313 int temp;
252b5132 11314
8a75718c
JB
11315#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11316 if (IS_ELF)
11317 obj_elf_section_change_hook ();
11318#endif
252b5132
RH
11319 temp = get_absolute_expression ();
11320 subseg_set (bss_section, (subsegT) temp);
11321 demand_empty_rest_of_line ();
11322}
11323
11324#endif
11325
252b5132 11326void
e3bb37b5 11327i386_validate_fix (fixS *fixp)
252b5132 11328{
02a86693 11329 if (fixp->fx_subsy)
252b5132 11330 {
02a86693 11331 if (fixp->fx_subsy == GOT_symbol)
23df1078 11332 {
02a86693
L
11333 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11334 {
11335 if (!object_64bit)
11336 abort ();
11337#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11338 if (fixp->fx_tcbit2)
56ceb5b5
L
11339 fixp->fx_r_type = (fixp->fx_tcbit
11340 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11341 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11342 else
11343#endif
11344 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11345 }
d6ab8113 11346 else
02a86693
L
11347 {
11348 if (!object_64bit)
11349 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11350 else
11351 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11352 }
11353 fixp->fx_subsy = 0;
23df1078 11354 }
252b5132 11355 }
02a86693
L
11356#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11357 else if (!object_64bit)
11358 {
11359 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11360 && fixp->fx_tcbit2)
11361 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11362 }
11363#endif
252b5132
RH
11364}
11365
252b5132 11366arelent *
7016a5d5 11367tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11368{
11369 arelent *rel;
11370 bfd_reloc_code_real_type code;
11371
11372 switch (fixp->fx_r_type)
11373 {
8ce3d284 11374#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11375 case BFD_RELOC_SIZE32:
11376 case BFD_RELOC_SIZE64:
11377 if (S_IS_DEFINED (fixp->fx_addsy)
11378 && !S_IS_EXTERNAL (fixp->fx_addsy))
11379 {
11380 /* Resolve size relocation against local symbol to size of
11381 the symbol plus addend. */
11382 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11383 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11384 && !fits_in_unsigned_long (value))
11385 as_bad_where (fixp->fx_file, fixp->fx_line,
11386 _("symbol size computation overflow"));
11387 fixp->fx_addsy = NULL;
11388 fixp->fx_subsy = NULL;
11389 md_apply_fix (fixp, (valueT *) &value, NULL);
11390 return NULL;
11391 }
8ce3d284 11392#endif
1a0670f3 11393 /* Fall through. */
8fd4256d 11394
3e73aa7c
JH
11395 case BFD_RELOC_X86_64_PLT32:
11396 case BFD_RELOC_X86_64_GOT32:
11397 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11398 case BFD_RELOC_X86_64_GOTPCRELX:
11399 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11400 case BFD_RELOC_386_PLT32:
11401 case BFD_RELOC_386_GOT32:
02a86693 11402 case BFD_RELOC_386_GOT32X:
252b5132
RH
11403 case BFD_RELOC_386_GOTOFF:
11404 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11405 case BFD_RELOC_386_TLS_GD:
11406 case BFD_RELOC_386_TLS_LDM:
11407 case BFD_RELOC_386_TLS_LDO_32:
11408 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11409 case BFD_RELOC_386_TLS_IE:
11410 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11411 case BFD_RELOC_386_TLS_LE_32:
11412 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11413 case BFD_RELOC_386_TLS_GOTDESC:
11414 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11415 case BFD_RELOC_X86_64_TLSGD:
11416 case BFD_RELOC_X86_64_TLSLD:
11417 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11418 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11419 case BFD_RELOC_X86_64_GOTTPOFF:
11420 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11421 case BFD_RELOC_X86_64_TPOFF64:
11422 case BFD_RELOC_X86_64_GOTOFF64:
11423 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11424 case BFD_RELOC_X86_64_GOT64:
11425 case BFD_RELOC_X86_64_GOTPCREL64:
11426 case BFD_RELOC_X86_64_GOTPC64:
11427 case BFD_RELOC_X86_64_GOTPLT64:
11428 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11429 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11430 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11431 case BFD_RELOC_RVA:
11432 case BFD_RELOC_VTABLE_ENTRY:
11433 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11434#ifdef TE_PE
11435 case BFD_RELOC_32_SECREL:
11436#endif
252b5132
RH
11437 code = fixp->fx_r_type;
11438 break;
dbbaec26
L
11439 case BFD_RELOC_X86_64_32S:
11440 if (!fixp->fx_pcrel)
11441 {
11442 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11443 code = fixp->fx_r_type;
11444 break;
11445 }
1a0670f3 11446 /* Fall through. */
252b5132 11447 default:
93382f6d 11448 if (fixp->fx_pcrel)
252b5132 11449 {
93382f6d
AM
11450 switch (fixp->fx_size)
11451 {
11452 default:
b091f402
AM
11453 as_bad_where (fixp->fx_file, fixp->fx_line,
11454 _("can not do %d byte pc-relative relocation"),
11455 fixp->fx_size);
93382f6d
AM
11456 code = BFD_RELOC_32_PCREL;
11457 break;
11458 case 1: code = BFD_RELOC_8_PCREL; break;
11459 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11460 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11461#ifdef BFD64
11462 case 8: code = BFD_RELOC_64_PCREL; break;
11463#endif
93382f6d
AM
11464 }
11465 }
11466 else
11467 {
11468 switch (fixp->fx_size)
11469 {
11470 default:
b091f402
AM
11471 as_bad_where (fixp->fx_file, fixp->fx_line,
11472 _("can not do %d byte relocation"),
11473 fixp->fx_size);
93382f6d
AM
11474 code = BFD_RELOC_32;
11475 break;
11476 case 1: code = BFD_RELOC_8; break;
11477 case 2: code = BFD_RELOC_16; break;
11478 case 4: code = BFD_RELOC_32; break;
937149dd 11479#ifdef BFD64
3e73aa7c 11480 case 8: code = BFD_RELOC_64; break;
937149dd 11481#endif
93382f6d 11482 }
252b5132
RH
11483 }
11484 break;
11485 }
252b5132 11486
d182319b
JB
11487 if ((code == BFD_RELOC_32
11488 || code == BFD_RELOC_32_PCREL
11489 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11490 && GOT_symbol
11491 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11492 {
4fa24527 11493 if (!object_64bit)
d6ab8113
JB
11494 code = BFD_RELOC_386_GOTPC;
11495 else
11496 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11497 }
7b81dfbb
AJ
11498 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11499 && GOT_symbol
11500 && fixp->fx_addsy == GOT_symbol)
11501 {
11502 code = BFD_RELOC_X86_64_GOTPC64;
11503 }
252b5132 11504
add39d23
TS
11505 rel = XNEW (arelent);
11506 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11507 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11508
11509 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11510
3e73aa7c
JH
11511 if (!use_rela_relocations)
11512 {
11513 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11514 vtable entry to be used in the relocation's section offset. */
11515 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11516 rel->address = fixp->fx_offset;
fbeb56a4
DK
11517#if defined (OBJ_COFF) && defined (TE_PE)
11518 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11519 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11520 else
11521#endif
c6682705 11522 rel->addend = 0;
3e73aa7c
JH
11523 }
11524 /* Use the rela in 64bit mode. */
252b5132 11525 else
3e73aa7c 11526 {
862be3fb
L
11527 if (disallow_64bit_reloc)
11528 switch (code)
11529 {
862be3fb
L
11530 case BFD_RELOC_X86_64_DTPOFF64:
11531 case BFD_RELOC_X86_64_TPOFF64:
11532 case BFD_RELOC_64_PCREL:
11533 case BFD_RELOC_X86_64_GOTOFF64:
11534 case BFD_RELOC_X86_64_GOT64:
11535 case BFD_RELOC_X86_64_GOTPCREL64:
11536 case BFD_RELOC_X86_64_GOTPC64:
11537 case BFD_RELOC_X86_64_GOTPLT64:
11538 case BFD_RELOC_X86_64_PLTOFF64:
11539 as_bad_where (fixp->fx_file, fixp->fx_line,
11540 _("cannot represent relocation type %s in x32 mode"),
11541 bfd_get_reloc_code_name (code));
11542 break;
11543 default:
11544 break;
11545 }
11546
062cd5e7
AS
11547 if (!fixp->fx_pcrel)
11548 rel->addend = fixp->fx_offset;
11549 else
11550 switch (code)
11551 {
11552 case BFD_RELOC_X86_64_PLT32:
11553 case BFD_RELOC_X86_64_GOT32:
11554 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11555 case BFD_RELOC_X86_64_GOTPCRELX:
11556 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11557 case BFD_RELOC_X86_64_TLSGD:
11558 case BFD_RELOC_X86_64_TLSLD:
11559 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11560 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11561 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11562 rel->addend = fixp->fx_offset - fixp->fx_size;
11563 break;
11564 default:
11565 rel->addend = (section->vma
11566 - fixp->fx_size
11567 + fixp->fx_addnumber
11568 + md_pcrel_from (fixp));
11569 break;
11570 }
3e73aa7c
JH
11571 }
11572
252b5132
RH
11573 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11574 if (rel->howto == NULL)
11575 {
11576 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 11577 _("cannot represent relocation type %s"),
252b5132
RH
11578 bfd_get_reloc_code_name (code));
11579 /* Set howto to a garbage value so that we can keep going. */
11580 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 11581 gas_assert (rel->howto != NULL);
252b5132
RH
11582 }
11583
11584 return rel;
11585}
11586
ee86248c 11587#include "tc-i386-intel.c"
54cfded0 11588
a60de03c
JB
11589void
11590tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 11591{
a60de03c
JB
11592 int saved_naked_reg;
11593 char saved_register_dot;
54cfded0 11594
a60de03c
JB
11595 saved_naked_reg = allow_naked_reg;
11596 allow_naked_reg = 1;
11597 saved_register_dot = register_chars['.'];
11598 register_chars['.'] = '.';
11599 allow_pseudo_reg = 1;
11600 expression_and_evaluate (exp);
11601 allow_pseudo_reg = 0;
11602 register_chars['.'] = saved_register_dot;
11603 allow_naked_reg = saved_naked_reg;
11604
e96d56a1 11605 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 11606 {
a60de03c
JB
11607 if ((addressT) exp->X_add_number < i386_regtab_size)
11608 {
11609 exp->X_op = O_constant;
11610 exp->X_add_number = i386_regtab[exp->X_add_number]
11611 .dw2_regnum[flag_code >> 1];
11612 }
11613 else
11614 exp->X_op = O_illegal;
54cfded0 11615 }
54cfded0
AM
11616}
11617
11618void
11619tc_x86_frame_initial_instructions (void)
11620{
a60de03c
JB
11621 static unsigned int sp_regno[2];
11622
11623 if (!sp_regno[flag_code >> 1])
11624 {
11625 char *saved_input = input_line_pointer;
11626 char sp[][4] = {"esp", "rsp"};
11627 expressionS exp;
a4447b93 11628
a60de03c
JB
11629 input_line_pointer = sp[flag_code >> 1];
11630 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 11631 gas_assert (exp.X_op == O_constant);
a60de03c
JB
11632 sp_regno[flag_code >> 1] = exp.X_add_number;
11633 input_line_pointer = saved_input;
11634 }
a4447b93 11635
61ff971f
L
11636 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11637 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 11638}
d2b2c203 11639
d7921315
L
11640int
11641x86_dwarf2_addr_size (void)
11642{
11643#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11644 if (x86_elf_abi == X86_64_X32_ABI)
11645 return 4;
11646#endif
11647 return bfd_arch_bits_per_address (stdoutput) / 8;
11648}
11649
d2b2c203
DJ
11650int
11651i386_elf_section_type (const char *str, size_t len)
11652{
11653 if (flag_code == CODE_64BIT
11654 && len == sizeof ("unwind") - 1
11655 && strncmp (str, "unwind", 6) == 0)
11656 return SHT_X86_64_UNWIND;
11657
11658 return -1;
11659}
bb41ade5 11660
ad5fec3b
EB
11661#ifdef TE_SOLARIS
11662void
11663i386_solaris_fix_up_eh_frame (segT sec)
11664{
11665 if (flag_code == CODE_64BIT)
11666 elf_section_type (sec) = SHT_X86_64_UNWIND;
11667}
11668#endif
11669
bb41ade5
AM
11670#ifdef TE_PE
11671void
11672tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11673{
91d6fa6a 11674 expressionS exp;
bb41ade5 11675
91d6fa6a
NC
11676 exp.X_op = O_secrel;
11677 exp.X_add_symbol = symbol;
11678 exp.X_add_number = 0;
11679 emit_expr (&exp, size);
bb41ade5
AM
11680}
11681#endif
3b22753a
L
11682
11683#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11684/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11685
01e1a5bc 11686bfd_vma
6d4af3c2 11687x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
11688{
11689 if (flag_code == CODE_64BIT)
11690 {
11691 if (letter == 'l')
11692 return SHF_X86_64_LARGE;
11693
8f3bae45 11694 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 11695 }
3b22753a 11696 else
8f3bae45 11697 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
11698 return -1;
11699}
11700
01e1a5bc 11701bfd_vma
3b22753a
L
11702x86_64_section_word (char *str, size_t len)
11703{
8620418b 11704 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
11705 return SHF_X86_64_LARGE;
11706
11707 return -1;
11708}
11709
11710static void
11711handle_large_common (int small ATTRIBUTE_UNUSED)
11712{
11713 if (flag_code != CODE_64BIT)
11714 {
11715 s_comm_internal (0, elf_common_parse);
11716 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11717 }
11718 else
11719 {
11720 static segT lbss_section;
11721 asection *saved_com_section_ptr = elf_com_section_ptr;
11722 asection *saved_bss_section = bss_section;
11723
11724 if (lbss_section == NULL)
11725 {
11726 flagword applicable;
11727 segT seg = now_seg;
11728 subsegT subseg = now_subseg;
11729
11730 /* The .lbss section is for local .largecomm symbols. */
11731 lbss_section = subseg_new (".lbss", 0);
11732 applicable = bfd_applicable_section_flags (stdoutput);
11733 bfd_set_section_flags (stdoutput, lbss_section,
11734 applicable & SEC_ALLOC);
11735 seg_info (lbss_section)->bss = 1;
11736
11737 subseg_set (seg, subseg);
11738 }
11739
11740 elf_com_section_ptr = &_bfd_elf_large_com_section;
11741 bss_section = lbss_section;
11742
11743 s_comm_internal (0, elf_common_parse);
11744
11745 elf_com_section_ptr = saved_com_section_ptr;
11746 bss_section = saved_bss_section;
11747 }
11748}
11749#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 1.986767 seconds and 4 git commands to generate.