gas/
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
f7e42eb4 2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0f10071e 3 2000, 2001, 2002, 2003, 2004
47926f60 4 Free Software Foundation, Inc.
252b5132
RH
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
47926f60
KH
23/* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 25 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
252b5132 29
252b5132 30#include "as.h"
3882b010 31#include "safe-ctype.h"
252b5132 32#include "subsegs.h"
316e2c05 33#include "dwarf2dbg.h"
54cfded0 34#include "dw2gencfi.h"
252b5132 35#include "opcode/i386.h"
d2b2c203 36#include "elf/x86-64.h"
252b5132 37
252b5132
RH
38#ifndef REGISTER_WARNINGS
39#define REGISTER_WARNINGS 1
40#endif
41
c3332e24 42#ifndef INFER_ADDR_PREFIX
eecb386c 43#define INFER_ADDR_PREFIX 1
c3332e24
AM
44#endif
45
252b5132
RH
46#ifndef SCALE1_WHEN_NO_INDEX
47/* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51#define SCALE1_WHEN_NO_INDEX 1
52#endif
53
29b0f896
AM
54#ifndef DEFAULT_ARCH
55#define DEFAULT_ARCH "i386"
246fcdee 56#endif
252b5132 57
edde18a5
AM
58#ifndef INLINE
59#if __GNUC__ >= 2
60#define INLINE __inline__
61#else
62#define INLINE
63#endif
64#endif
65
29b0f896
AM
66static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70static INLINE int fits_in_signed_word PARAMS ((offsetT));
71static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72static INLINE int fits_in_signed_long PARAMS ((offsetT));
847f7ad4
AM
73static int smallest_imm_type PARAMS ((offsetT));
74static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132 75static int add_prefix PARAMS ((unsigned int));
3e73aa7c 76static void set_code_flag PARAMS ((int));
47926f60 77static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 78static void set_intel_syntax PARAMS ((int));
e413e4e9 79static void set_cpu_arch PARAMS ((int));
6482c264
NC
80#ifdef TE_PE
81static void pe_directive_secrel PARAMS ((int));
82#endif
29b0f896
AM
83static char *output_invalid PARAMS ((int c));
84static int i386_operand PARAMS ((char *operand_string));
85static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88static char *parse_insn PARAMS ((char *, char *));
89static char *parse_operands PARAMS ((char *, const char *));
90static void swap_operands PARAMS ((void));
91static void optimize_imm PARAMS ((void));
92static void optimize_disp PARAMS ((void));
93static int match_template PARAMS ((void));
94static int check_string PARAMS ((void));
95static int process_suffix PARAMS ((void));
96static int check_byte_reg PARAMS ((void));
97static int check_long_reg PARAMS ((void));
98static int check_qword_reg PARAMS ((void));
99static int check_word_reg PARAMS ((void));
100static int finalize_imm PARAMS ((void));
101static int process_operands PARAMS ((void));
102static const seg_entry *build_modrm_byte PARAMS ((void));
103static void output_insn PARAMS ((void));
104static void output_branch PARAMS ((void));
105static void output_jump PARAMS ((void));
106static void output_interseg_jump PARAMS ((void));
2bbd9c25
JJ
107static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
29b0f896
AM
111#ifndef I386COFF
112static void s_bss PARAMS ((int));
252b5132
RH
113#endif
114
a847613f 115static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 116
252b5132 117/* 'md_assemble ()' gathers together information and puts it into a
47926f60 118 i386_insn. */
252b5132 119
520dc8e8
AM
120union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
252b5132
RH
127struct _i386_insn
128 {
47926f60 129 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
47926f60 136 /* OPERANDS gives the number of given operands. */
252b5132
RH
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
47926f60 141 operands. */
252b5132
RH
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 145 use OP[i] for the corresponding operand. */
252b5132
RH
146 unsigned int types[MAX_OPERANDS];
147
520dc8e8
AM
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
252b5132 151
3e73aa7c
JH
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154#define Operand_PCrel 1
155
252b5132 156 /* Relocation type for operand */
f86103b7 157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 158
252b5132
RH
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 166 explicit segment overrides are given. */
ce8a8b2f 167 const seg_entry *seg[2];
252b5132
RH
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
3e73aa7c 178 rex_byte rex;
252b5132
RH
179 sib_byte sib;
180 };
181
182typedef struct _i386_insn i386_insn;
183
184/* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
32137342 186const char extra_symbol_chars[] = "*%-(["
252b5132 187#ifdef LEX_AT
32137342
NC
188 "@"
189#endif
190#ifdef LEX_QM
191 "?"
252b5132 192#endif
32137342 193 ;
252b5132 194
29b0f896
AM
195#if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
32137342 198 && !defined (TE_NETWARE) \
29b0f896
AM
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
252b5132 201/* This array holds the chars that always start a comment. If the
ce8a8b2f 202 pre-processor is disabled, these aren't very useful. */
252b5132
RH
203const char comment_chars[] = "#/";
204#define PREFIX_SEPARATOR '\\'
252b5132
RH
205
206/* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 210 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
252b5132 213 '/' isn't otherwise defined. */
0d9f6d04 214const char line_comment_chars[] = "#";
29b0f896 215
252b5132 216#else
29b0f896
AM
217/* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219const char comment_chars[] = "#";
220#define PREFIX_SEPARATOR '/'
221
0d9f6d04 222const char line_comment_chars[] = "/#";
252b5132
RH
223#endif
224
63a0b638 225const char line_separator_chars[] = ";";
252b5132 226
ce8a8b2f
AM
227/* Chars that can be used to separate mant from exp in floating point
228 nums. */
252b5132
RH
229const char EXP_CHARS[] = "eE";
230
ce8a8b2f
AM
231/* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
252b5132
RH
234const char FLT_CHARS[] = "fFdDxX";
235
ce8a8b2f 236/* Tables for lexical analysis. */
252b5132
RH
237static char mnemonic_chars[256];
238static char register_chars[256];
239static char operand_chars[256];
240static char identifier_chars[256];
241static char digit_chars[256];
242
ce8a8b2f 243/* Lexical macros. */
252b5132
RH
244#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245#define is_operand_char(x) (operand_chars[(unsigned char) x])
246#define is_register_char(x) (register_chars[(unsigned char) x])
247#define is_space_char(x) ((x) == ' ')
248#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249#define is_digit_char(x) (digit_chars[(unsigned char) x])
250
0234cb7c 251/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
252static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254/* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
47926f60 257 assembler instruction). */
252b5132 258static char save_stack[32];
ce8a8b2f 259static char *save_stack_p;
252b5132
RH
260#define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262#define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
47926f60 265/* The instruction we're assembling. */
252b5132
RH
266static i386_insn i;
267
268/* Possible templates for current insn. */
269static const templates *current_templates;
270
47926f60 271/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
272static expressionS disp_expressions[2], im_expressions[2];
273
47926f60
KH
274/* Current operand we are working on. */
275static int this_operand;
252b5132 276
3e73aa7c
JH
277/* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
f3c180ae 284#define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
3e73aa7c
JH
285
286static enum flag_code flag_code;
287static int use_rela_relocations = 0;
288
289/* The names used to print error messages. */
b77a7acd 290static const char *flag_code_names[] =
3e73aa7c
JH
291 {
292 "32",
293 "16",
294 "64"
295 };
252b5132 296
47926f60
KH
297/* 1 for intel syntax,
298 0 if att syntax. */
299static int intel_syntax = 0;
252b5132 300
47926f60
KH
301/* 1 if register prefix % not required. */
302static int allow_naked_reg = 0;
252b5132 303
47926f60
KH
304/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307static char stackop_size = '\0';
eecb386c 308
12b55ccc
L
309/* Non-zero to optimize code alignment. */
310int optimize_align_code = 1;
311
47926f60
KH
312/* Non-zero to quieten some warnings. */
313static int quiet_warnings = 0;
a38cf1db 314
47926f60
KH
315/* CPU name. */
316static const char *cpu_arch_name = NULL;
a38cf1db 317
47926f60 318/* CPU feature flags. */
29b0f896 319static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
a38cf1db 320
fddf5b5b
AM
321/* If set, conditional jumps are not automatically promoted to handle
322 larger than a byte offset. */
323static unsigned int no_cond_jump_promotion = 0;
324
29b0f896
AM
325/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
326symbolS *GOT_symbol;
327
a4447b93
RH
328/* The dwarf2 return column, adjusted for 32 or 64 bit. */
329unsigned int x86_dwarf2_return_column;
330
331/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
332int x86_cie_data_alignment;
333
252b5132 334/* Interface to relax_segment.
fddf5b5b
AM
335 There are 3 major relax states for 386 jump insns because the
336 different types of jumps add different sizes to frags when we're
337 figuring out what sort of jump to choose to reach a given label. */
252b5132 338
47926f60 339/* Types. */
93c2a809
AM
340#define UNCOND_JUMP 0
341#define COND_JUMP 1
342#define COND_JUMP86 2
fddf5b5b 343
47926f60 344/* Sizes. */
252b5132
RH
345#define CODE16 1
346#define SMALL 0
29b0f896 347#define SMALL16 (SMALL | CODE16)
252b5132 348#define BIG 2
29b0f896 349#define BIG16 (BIG | CODE16)
252b5132
RH
350
351#ifndef INLINE
352#ifdef __GNUC__
353#define INLINE __inline__
354#else
355#define INLINE
356#endif
357#endif
358
fddf5b5b
AM
359#define ENCODE_RELAX_STATE(type, size) \
360 ((relax_substateT) (((type) << 2) | (size)))
361#define TYPE_FROM_RELAX_STATE(s) \
362 ((s) >> 2)
363#define DISP_SIZE_FROM_RELAX_STATE(s) \
364 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
365
366/* This table is used by relax_frag to promote short jumps to long
367 ones where necessary. SMALL (short) jumps may be promoted to BIG
368 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
369 don't allow a short jump in a 32 bit code segment to be promoted to
370 a 16 bit offset jump because it's slower (requires data size
371 prefix), and doesn't work, unless the destination is in the bottom
372 64k of the code segment (The top 16 bits of eip are zeroed). */
373
374const relax_typeS md_relax_table[] =
375{
24eab124
AM
376 /* The fields are:
377 1) most positive reach of this state,
378 2) most negative reach of this state,
93c2a809 379 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 380 4) which index into the table to try if we can't fit into this one. */
252b5132 381
fddf5b5b 382 /* UNCOND_JUMP states. */
93c2a809
AM
383 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
385 /* dword jmp adds 4 bytes to frag:
386 0 extra opcode bytes, 4 displacement bytes. */
252b5132 387 {0, 0, 4, 0},
93c2a809
AM
388 /* word jmp adds 2 byte2 to frag:
389 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
390 {0, 0, 2, 0},
391
93c2a809
AM
392 /* COND_JUMP states. */
393 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
395 /* dword conditionals adds 5 bytes to frag:
396 1 extra opcode byte, 4 displacement bytes. */
397 {0, 0, 5, 0},
fddf5b5b 398 /* word conditionals add 3 bytes to frag:
93c2a809
AM
399 1 extra opcode byte, 2 displacement bytes. */
400 {0, 0, 3, 0},
401
402 /* COND_JUMP86 states. */
403 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
405 /* dword conditionals adds 5 bytes to frag:
406 1 extra opcode byte, 4 displacement bytes. */
407 {0, 0, 5, 0},
408 /* word conditionals add 4 bytes to frag:
409 1 displacement byte and a 3 byte long branch insn. */
410 {0, 0, 4, 0}
252b5132
RH
411};
412
e413e4e9
AM
413static const arch_entry cpu_arch[] = {
414 {"i8086", Cpu086 },
415 {"i186", Cpu086|Cpu186 },
416 {"i286", Cpu086|Cpu186|Cpu286 },
417 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
418 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
419 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
420 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
421 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
422 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
a167610d 423 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
3e73aa7c
JH
424 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
425 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
a167610d 426 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
e413e4e9
AM
427 {NULL, 0 }
428};
429
29b0f896
AM
430const pseudo_typeS md_pseudo_table[] =
431{
432#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
433 {"align", s_align_bytes, 0},
434#else
435 {"align", s_align_ptwo, 0},
436#endif
437 {"arch", set_cpu_arch, 0},
438#ifndef I386COFF
439 {"bss", s_bss, 0},
440#endif
441 {"ffloat", float_cons, 'f'},
442 {"dfloat", float_cons, 'd'},
443 {"tfloat", float_cons, 'x'},
444 {"value", cons, 2},
445 {"noopt", s_ignore, 0},
446 {"optim", s_ignore, 0},
447 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
448 {"code16", set_code_flag, CODE_16BIT},
449 {"code32", set_code_flag, CODE_32BIT},
450 {"code64", set_code_flag, CODE_64BIT},
451 {"intel_syntax", set_intel_syntax, 1},
452 {"att_syntax", set_intel_syntax, 0},
c6682705 453 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
29b0f896 454 {"loc", dwarf2_directive_loc, 0},
6482c264
NC
455#ifdef TE_PE
456 {"secrel32", pe_directive_secrel, 0},
457#endif
29b0f896
AM
458 {0, 0, 0}
459};
460
461/* For interface with expression (). */
462extern char *input_line_pointer;
463
464/* Hash table for instruction mnemonic lookup. */
465static struct hash_control *op_hash;
466
467/* Hash table for register lookup. */
468static struct hash_control *reg_hash;
469\f
252b5132
RH
470void
471i386_align_code (fragP, count)
472 fragS *fragP;
473 int count;
474{
ce8a8b2f
AM
475 /* Various efficient no-op patterns for aligning code labels.
476 Note: Don't try to assemble the instructions in the comments.
477 0L and 0w are not legal. */
252b5132
RH
478 static const char f32_1[] =
479 {0x90}; /* nop */
480 static const char f32_2[] =
481 {0x89,0xf6}; /* movl %esi,%esi */
482 static const char f32_3[] =
483 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
484 static const char f32_4[] =
485 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
486 static const char f32_5[] =
487 {0x90, /* nop */
488 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
489 static const char f32_6[] =
490 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
491 static const char f32_7[] =
492 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
493 static const char f32_8[] =
494 {0x90, /* nop */
495 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
496 static const char f32_9[] =
497 {0x89,0xf6, /* movl %esi,%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_10[] =
500 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
501 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
502 static const char f32_11[] =
503 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_12[] =
506 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
507 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
508 static const char f32_13[] =
509 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
510 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
511 static const char f32_14[] =
512 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
513 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
514 static const char f32_15[] =
515 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
516 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
517 static const char f16_3[] =
518 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
519 static const char f16_4[] =
520 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
521 static const char f16_5[] =
522 {0x90, /* nop */
523 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
524 static const char f16_6[] =
525 {0x89,0xf6, /* mov %si,%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char f16_7[] =
528 {0x8d,0x74,0x00, /* lea 0(%si),%si */
529 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
530 static const char f16_8[] =
531 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
532 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
533 static const char *const f32_patt[] = {
534 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
535 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
536 };
537 static const char *const f16_patt[] = {
c3332e24 538 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
539 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
540 };
541
33fef721
JH
542 if (count <= 0 || count > 15)
543 return;
3e73aa7c 544
33fef721
JH
545 /* The recommended way to pad 64bit code is to use NOPs preceded by
546 maximally four 0x66 prefixes. Balance the size of nops. */
547 if (flag_code == CODE_64BIT)
252b5132 548 {
33fef721
JH
549 int i;
550 int nnops = (count + 3) / 4;
551 int len = count / nnops;
552 int remains = count - nnops * len;
553 int pos = 0;
554
555 for (i = 0; i < remains; i++)
252b5132 556 {
33fef721
JH
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
558 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
559 pos += len + 1;
560 }
561 for (; i < nnops; i++)
562 {
563 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
564 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
565 pos += len;
252b5132 566 }
252b5132 567 }
33fef721
JH
568 else
569 if (flag_code == CODE_16BIT)
570 {
571 memcpy (fragP->fr_literal + fragP->fr_fix,
572 f16_patt[count - 1], count);
573 if (count > 8)
574 /* Adjust jump offset. */
575 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
576 }
577 else
578 memcpy (fragP->fr_literal + fragP->fr_fix,
579 f32_patt[count - 1], count);
580 fragP->fr_var = count;
252b5132
RH
581}
582
252b5132
RH
583static INLINE unsigned int
584mode_from_disp_size (t)
585 unsigned int t;
586{
3e73aa7c 587 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
252b5132
RH
588}
589
590static INLINE int
591fits_in_signed_byte (num)
847f7ad4 592 offsetT num;
252b5132
RH
593{
594 return (num >= -128) && (num <= 127);
47926f60 595}
252b5132
RH
596
597static INLINE int
598fits_in_unsigned_byte (num)
847f7ad4 599 offsetT num;
252b5132
RH
600{
601 return (num & 0xff) == num;
47926f60 602}
252b5132
RH
603
604static INLINE int
605fits_in_unsigned_word (num)
847f7ad4 606 offsetT num;
252b5132
RH
607{
608 return (num & 0xffff) == num;
47926f60 609}
252b5132
RH
610
611static INLINE int
612fits_in_signed_word (num)
847f7ad4 613 offsetT num;
252b5132
RH
614{
615 return (-32768 <= num) && (num <= 32767);
47926f60 616}
3e73aa7c
JH
617static INLINE int
618fits_in_signed_long (num)
619 offsetT num ATTRIBUTE_UNUSED;
620{
621#ifndef BFD64
622 return 1;
623#else
624 return (!(((offsetT) -1 << 31) & num)
625 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
626#endif
627} /* fits_in_signed_long() */
628static INLINE int
629fits_in_unsigned_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631{
632#ifndef BFD64
633 return 1;
634#else
635 return (num & (((offsetT) 2 << 31) - 1)) == num;
636#endif
637} /* fits_in_unsigned_long() */
252b5132
RH
638
639static int
640smallest_imm_type (num)
847f7ad4 641 offsetT num;
252b5132 642{
a847613f 643 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
e413e4e9
AM
644 {
645 /* This code is disabled on the 486 because all the Imm1 forms
646 in the opcode table are slower on the i486. They're the
647 versions with the implicitly specified single-position
648 displacement, which has another syntax if you really want to
649 use that form. */
650 if (num == 1)
3e73aa7c 651 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
e413e4e9 652 }
252b5132 653 return (fits_in_signed_byte (num)
3e73aa7c 654 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 655 : fits_in_unsigned_byte (num)
3e73aa7c 656 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
252b5132 657 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
3e73aa7c
JH
658 ? (Imm16 | Imm32 | Imm32S | Imm64)
659 : fits_in_signed_long (num)
660 ? (Imm32 | Imm32S | Imm64)
661 : fits_in_unsigned_long (num)
662 ? (Imm32 | Imm64)
663 : Imm64);
47926f60 664}
252b5132 665
847f7ad4
AM
666static offsetT
667offset_in_range (val, size)
668 offsetT val;
669 int size;
670{
508866be 671 addressT mask;
ba2adb93 672
847f7ad4
AM
673 switch (size)
674 {
508866be
L
675 case 1: mask = ((addressT) 1 << 8) - 1; break;
676 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 677 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
678#ifdef BFD64
679 case 8: mask = ((addressT) 2 << 63) - 1; break;
680#endif
47926f60 681 default: abort ();
847f7ad4
AM
682 }
683
ba2adb93 684 /* If BFD64, sign extend val. */
3e73aa7c
JH
685 if (!use_rela_relocations)
686 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
687 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 688
47926f60 689 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
690 {
691 char buf1[40], buf2[40];
692
693 sprint_value (buf1, val);
694 sprint_value (buf2, val & mask);
695 as_warn (_("%s shortened to %s"), buf1, buf2);
696 }
697 return val & mask;
698}
699
252b5132
RH
700/* Returns 0 if attempting to add a prefix where one from the same
701 class already exists, 1 if non rep/repne added, 2 if rep/repne
702 added. */
703static int
704add_prefix (prefix)
705 unsigned int prefix;
706{
707 int ret = 1;
708 int q;
709
29b0f896
AM
710 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
711 && flag_code == CODE_64BIT)
3e73aa7c
JH
712 q = REX_PREFIX;
713 else
714 switch (prefix)
715 {
716 default:
717 abort ();
718
719 case CS_PREFIX_OPCODE:
720 case DS_PREFIX_OPCODE:
721 case ES_PREFIX_OPCODE:
722 case FS_PREFIX_OPCODE:
723 case GS_PREFIX_OPCODE:
724 case SS_PREFIX_OPCODE:
725 q = SEG_PREFIX;
726 break;
252b5132 727
3e73aa7c
JH
728 case REPNE_PREFIX_OPCODE:
729 case REPE_PREFIX_OPCODE:
730 ret = 2;
731 /* fall thru */
732 case LOCK_PREFIX_OPCODE:
733 q = LOCKREP_PREFIX;
734 break;
252b5132 735
3e73aa7c
JH
736 case FWAIT_OPCODE:
737 q = WAIT_PREFIX;
738 break;
252b5132 739
3e73aa7c
JH
740 case ADDR_PREFIX_OPCODE:
741 q = ADDR_PREFIX;
742 break;
252b5132 743
3e73aa7c
JH
744 case DATA_PREFIX_OPCODE:
745 q = DATA_PREFIX;
746 break;
747 }
252b5132 748
29b0f896 749 if (i.prefix[q] != 0)
252b5132
RH
750 {
751 as_bad (_("same type of prefix used twice"));
752 return 0;
753 }
754
755 i.prefixes += 1;
756 i.prefix[q] = prefix;
757 return ret;
758}
759
760static void
3e73aa7c 761set_code_flag (value)
e5cb08ac 762 int value;
eecb386c 763{
3e73aa7c
JH
764 flag_code = value;
765 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
766 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
767 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
768 {
769 as_bad (_("64bit mode not supported on this CPU."));
770 }
771 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
772 {
773 as_bad (_("32bit mode not supported on this CPU."));
774 }
eecb386c
AM
775 stackop_size = '\0';
776}
777
778static void
3e73aa7c
JH
779set_16bit_gcc_code_flag (new_code_flag)
780 int new_code_flag;
252b5132 781{
3e73aa7c
JH
782 flag_code = new_code_flag;
783 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
784 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
9306ca4a 785 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
786}
787
788static void
789set_intel_syntax (syntax_flag)
eecb386c 790 int syntax_flag;
252b5132
RH
791{
792 /* Find out if register prefixing is specified. */
793 int ask_naked_reg = 0;
794
795 SKIP_WHITESPACE ();
29b0f896 796 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132
RH
797 {
798 char *string = input_line_pointer;
799 int e = get_symbol_end ();
800
47926f60 801 if (strcmp (string, "prefix") == 0)
252b5132 802 ask_naked_reg = 1;
47926f60 803 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
804 ask_naked_reg = -1;
805 else
d0b47220 806 as_bad (_("bad argument to syntax directive."));
252b5132
RH
807 *input_line_pointer = e;
808 }
809 demand_empty_rest_of_line ();
c3332e24 810
252b5132
RH
811 intel_syntax = syntax_flag;
812
813 if (ask_naked_reg == 0)
f86103b7
AM
814 allow_naked_reg = (intel_syntax
815 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
816 else
817 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a
JB
818
819 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
820 identifier_chars['$'] = intel_syntax ? '$' : 0;
252b5132
RH
821}
822
e413e4e9
AM
823static void
824set_cpu_arch (dummy)
47926f60 825 int dummy ATTRIBUTE_UNUSED;
e413e4e9 826{
47926f60 827 SKIP_WHITESPACE ();
e413e4e9 828
29b0f896 829 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9
AM
830 {
831 char *string = input_line_pointer;
832 int e = get_symbol_end ();
833 int i;
834
835 for (i = 0; cpu_arch[i].name; i++)
836 {
837 if (strcmp (string, cpu_arch[i].name) == 0)
838 {
839 cpu_arch_name = cpu_arch[i].name;
fddf5b5b
AM
840 cpu_arch_flags = (cpu_arch[i].flags
841 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
e413e4e9
AM
842 break;
843 }
844 }
845 if (!cpu_arch[i].name)
846 as_bad (_("no such architecture: `%s'"), string);
847
848 *input_line_pointer = e;
849 }
850 else
851 as_bad (_("missing cpu architecture"));
852
fddf5b5b
AM
853 no_cond_jump_promotion = 0;
854 if (*input_line_pointer == ','
29b0f896 855 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b
AM
856 {
857 char *string = ++input_line_pointer;
858 int e = get_symbol_end ();
859
860 if (strcmp (string, "nojumps") == 0)
861 no_cond_jump_promotion = 1;
862 else if (strcmp (string, "jumps") == 0)
863 ;
864 else
865 as_bad (_("no such architecture modifier: `%s'"), string);
866
867 *input_line_pointer = e;
868 }
869
e413e4e9
AM
870 demand_empty_rest_of_line ();
871}
872
b9d79e03
JH
873unsigned long
874i386_mach ()
875{
876 if (!strcmp (default_arch, "x86_64"))
877 return bfd_mach_x86_64;
878 else if (!strcmp (default_arch, "i386"))
879 return bfd_mach_i386_i386;
880 else
881 as_fatal (_("Unknown architecture"));
882}
b9d79e03 883\f
252b5132
RH
884void
885md_begin ()
886{
887 const char *hash_err;
888
47926f60 889 /* Initialize op_hash hash table. */
252b5132
RH
890 op_hash = hash_new ();
891
892 {
29b0f896
AM
893 const template *optab;
894 templates *core_optab;
252b5132 895
47926f60
KH
896 /* Setup for loop. */
897 optab = i386_optab;
252b5132
RH
898 core_optab = (templates *) xmalloc (sizeof (templates));
899 core_optab->start = optab;
900
901 while (1)
902 {
903 ++optab;
904 if (optab->name == NULL
905 || strcmp (optab->name, (optab - 1)->name) != 0)
906 {
907 /* different name --> ship out current template list;
47926f60 908 add to hash table; & begin anew. */
252b5132
RH
909 core_optab->end = optab;
910 hash_err = hash_insert (op_hash,
911 (optab - 1)->name,
912 (PTR) core_optab);
913 if (hash_err)
914 {
252b5132
RH
915 as_fatal (_("Internal Error: Can't hash %s: %s"),
916 (optab - 1)->name,
917 hash_err);
918 }
919 if (optab->name == NULL)
920 break;
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923 }
924 }
925 }
926
47926f60 927 /* Initialize reg_hash hash table. */
252b5132
RH
928 reg_hash = hash_new ();
929 {
29b0f896 930 const reg_entry *regtab;
252b5132
RH
931
932 for (regtab = i386_regtab;
933 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
934 regtab++)
935 {
936 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
937 if (hash_err)
3e73aa7c
JH
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 regtab->reg_name,
940 hash_err);
252b5132
RH
941 }
942 }
943
47926f60 944 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 945 {
29b0f896
AM
946 int c;
947 char *p;
252b5132
RH
948
949 for (c = 0; c < 256; c++)
950 {
3882b010 951 if (ISDIGIT (c))
252b5132
RH
952 {
953 digit_chars[c] = c;
954 mnemonic_chars[c] = c;
955 register_chars[c] = c;
956 operand_chars[c] = c;
957 }
3882b010 958 else if (ISLOWER (c))
252b5132
RH
959 {
960 mnemonic_chars[c] = c;
961 register_chars[c] = c;
962 operand_chars[c] = c;
963 }
3882b010 964 else if (ISUPPER (c))
252b5132 965 {
3882b010 966 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
967 register_chars[c] = mnemonic_chars[c];
968 operand_chars[c] = c;
969 }
970
3882b010 971 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
972 identifier_chars[c] = c;
973 else if (c >= 128)
974 {
975 identifier_chars[c] = c;
976 operand_chars[c] = c;
977 }
978 }
979
980#ifdef LEX_AT
981 identifier_chars['@'] = '@';
32137342
NC
982#endif
983#ifdef LEX_QM
984 identifier_chars['?'] = '?';
985 operand_chars['?'] = '?';
252b5132 986#endif
252b5132
RH
987 digit_chars['-'] = '-';
988 identifier_chars['_'] = '_';
989 identifier_chars['.'] = '.';
990
991 for (p = operand_special_chars; *p != '\0'; p++)
992 operand_chars[(unsigned char) *p] = *p;
993 }
994
995#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
996 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
997 {
998 record_alignment (text_section, 2);
999 record_alignment (data_section, 2);
1000 record_alignment (bss_section, 2);
1001 }
1002#endif
a4447b93
RH
1003
1004 if (flag_code == CODE_64BIT)
1005 {
1006 x86_dwarf2_return_column = 16;
1007 x86_cie_data_alignment = -8;
1008 }
1009 else
1010 {
1011 x86_dwarf2_return_column = 8;
1012 x86_cie_data_alignment = -4;
1013 }
252b5132
RH
1014}
1015
1016void
1017i386_print_statistics (file)
1018 FILE *file;
1019{
1020 hash_print_statistics (file, "i386 opcode", op_hash);
1021 hash_print_statistics (file, "i386 register", reg_hash);
1022}
1023\f
252b5132
RH
1024#ifdef DEBUG386
1025
ce8a8b2f 1026/* Debugging routines for md_assemble. */
252b5132
RH
1027static void pi PARAMS ((char *, i386_insn *));
1028static void pte PARAMS ((template *));
1029static void pt PARAMS ((unsigned int));
1030static void pe PARAMS ((expressionS *));
1031static void ps PARAMS ((symbolS *));
1032
1033static void
1034pi (line, x)
1035 char *line;
1036 i386_insn *x;
1037{
09f131f2 1038 unsigned int i;
252b5132
RH
1039
1040 fprintf (stdout, "%s: template ", line);
1041 pte (&x->tm);
09f131f2
JH
1042 fprintf (stdout, " address: base %s index %s scale %x\n",
1043 x->base_reg ? x->base_reg->reg_name : "none",
1044 x->index_reg ? x->index_reg->reg_name : "none",
1045 x->log2_scale_factor);
1046 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 1047 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
1048 fprintf (stdout, " sib: base %x index %x scale %x\n",
1049 x->sib.base, x->sib.index, x->sib.scale);
1050 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
29b0f896
AM
1051 (x->rex & REX_MODE64) != 0,
1052 (x->rex & REX_EXTX) != 0,
1053 (x->rex & REX_EXTY) != 0,
1054 (x->rex & REX_EXTZ) != 0);
252b5132
RH
1055 for (i = 0; i < x->operands; i++)
1056 {
1057 fprintf (stdout, " #%d: ", i + 1);
1058 pt (x->types[i]);
1059 fprintf (stdout, "\n");
1060 if (x->types[i]
3f4438ab 1061 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 1062 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 1063 if (x->types[i] & Imm)
520dc8e8 1064 pe (x->op[i].imms);
252b5132 1065 if (x->types[i] & Disp)
520dc8e8 1066 pe (x->op[i].disps);
252b5132
RH
1067 }
1068}
1069
1070static void
1071pte (t)
1072 template *t;
1073{
09f131f2 1074 unsigned int i;
252b5132 1075 fprintf (stdout, " %d operands ", t->operands);
47926f60 1076 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
1077 if (t->extension_opcode != None)
1078 fprintf (stdout, "ext %x ", t->extension_opcode);
1079 if (t->opcode_modifier & D)
1080 fprintf (stdout, "D");
1081 if (t->opcode_modifier & W)
1082 fprintf (stdout, "W");
1083 fprintf (stdout, "\n");
1084 for (i = 0; i < t->operands; i++)
1085 {
1086 fprintf (stdout, " #%d type ", i + 1);
1087 pt (t->operand_types[i]);
1088 fprintf (stdout, "\n");
1089 }
1090}
1091
1092static void
1093pe (e)
1094 expressionS *e;
1095{
24eab124 1096 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
1097 fprintf (stdout, " add_number %ld (%lx)\n",
1098 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
1099 if (e->X_add_symbol)
1100 {
1101 fprintf (stdout, " add_symbol ");
1102 ps (e->X_add_symbol);
1103 fprintf (stdout, "\n");
1104 }
1105 if (e->X_op_symbol)
1106 {
1107 fprintf (stdout, " op_symbol ");
1108 ps (e->X_op_symbol);
1109 fprintf (stdout, "\n");
1110 }
1111}
1112
1113static void
1114ps (s)
1115 symbolS *s;
1116{
1117 fprintf (stdout, "%s type %s%s",
1118 S_GET_NAME (s),
1119 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1120 segment_name (S_GET_SEGMENT (s)));
1121}
1122
1123struct type_name
1124 {
1125 unsigned int mask;
1126 char *tname;
1127 }
1128
29b0f896 1129static const type_names[] =
252b5132
RH
1130{
1131 { Reg8, "r8" },
1132 { Reg16, "r16" },
1133 { Reg32, "r32" },
09f131f2 1134 { Reg64, "r64" },
252b5132
RH
1135 { Imm8, "i8" },
1136 { Imm8S, "i8s" },
1137 { Imm16, "i16" },
1138 { Imm32, "i32" },
09f131f2
JH
1139 { Imm32S, "i32s" },
1140 { Imm64, "i64" },
252b5132
RH
1141 { Imm1, "i1" },
1142 { BaseIndex, "BaseIndex" },
1143 { Disp8, "d8" },
1144 { Disp16, "d16" },
1145 { Disp32, "d32" },
09f131f2
JH
1146 { Disp32S, "d32s" },
1147 { Disp64, "d64" },
252b5132
RH
1148 { InOutPortReg, "InOutPortReg" },
1149 { ShiftCount, "ShiftCount" },
1150 { Control, "control reg" },
1151 { Test, "test reg" },
1152 { Debug, "debug reg" },
1153 { FloatReg, "FReg" },
1154 { FloatAcc, "FAcc" },
1155 { SReg2, "SReg2" },
1156 { SReg3, "SReg3" },
1157 { Acc, "Acc" },
1158 { JumpAbsolute, "Jump Absolute" },
1159 { RegMMX, "rMMX" },
3f4438ab 1160 { RegXMM, "rXMM" },
252b5132
RH
1161 { EsSeg, "es" },
1162 { 0, "" }
1163};
1164
1165static void
1166pt (t)
1167 unsigned int t;
1168{
29b0f896 1169 const struct type_name *ty;
252b5132 1170
09f131f2
JH
1171 for (ty = type_names; ty->mask; ty++)
1172 if (t & ty->mask)
1173 fprintf (stdout, "%s, ", ty->tname);
252b5132
RH
1174 fflush (stdout);
1175}
1176
1177#endif /* DEBUG386 */
1178\f
29b0f896
AM
1179static bfd_reloc_code_real_type reloc
1180 PARAMS ((int, int, int, bfd_reloc_code_real_type));
252b5132
RH
1181
1182static bfd_reloc_code_real_type
3e73aa7c 1183reloc (size, pcrel, sign, other)
252b5132
RH
1184 int size;
1185 int pcrel;
3e73aa7c 1186 int sign;
252b5132
RH
1187 bfd_reloc_code_real_type other;
1188{
47926f60
KH
1189 if (other != NO_RELOC)
1190 return other;
252b5132
RH
1191
1192 if (pcrel)
1193 {
3e73aa7c 1194 if (!sign)
e5cb08ac 1195 as_bad (_("There are no unsigned pc-relative relocations"));
252b5132
RH
1196 switch (size)
1197 {
1198 case 1: return BFD_RELOC_8_PCREL;
1199 case 2: return BFD_RELOC_16_PCREL;
1200 case 4: return BFD_RELOC_32_PCREL;
1201 }
d0b47220 1202 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1203 }
1204 else
1205 {
3e73aa7c 1206 if (sign)
e5cb08ac 1207 switch (size)
3e73aa7c
JH
1208 {
1209 case 4: return BFD_RELOC_X86_64_32S;
1210 }
1211 else
1212 switch (size)
1213 {
1214 case 1: return BFD_RELOC_8;
1215 case 2: return BFD_RELOC_16;
1216 case 4: return BFD_RELOC_32;
1217 case 8: return BFD_RELOC_64;
1218 }
1219 as_bad (_("can not do %s %d byte relocation"),
1220 sign ? "signed" : "unsigned", size);
252b5132
RH
1221 }
1222
bfb32b52 1223 abort ();
252b5132
RH
1224 return BFD_RELOC_NONE;
1225}
1226
47926f60
KH
1227/* Here we decide which fixups can be adjusted to make them relative to
1228 the beginning of the section instead of the symbol. Basically we need
1229 to make sure that the dynamic relocations are done correctly, so in
1230 some cases we force the original symbol to be used. */
1231
252b5132 1232int
c0c949c7 1233tc_i386_fix_adjustable (fixP)
31312f95 1234 fixS *fixP ATTRIBUTE_UNUSED;
252b5132 1235{
6d249963 1236#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
1237 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1238 return 1;
1239
a161fe53
AM
1240 /* Don't adjust pc-relative references to merge sections in 64-bit
1241 mode. */
1242 if (use_rela_relocations
1243 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1244 && fixP->fx_pcrel)
252b5132 1245 return 0;
31312f95 1246
8d01d9a9
AJ
1247 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1248 and changed later by validate_fix. */
1249 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1250 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1251 return 0;
1252
ce8a8b2f 1253 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1254 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1255 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1256 || fixP->fx_r_type == BFD_RELOC_386_GOT32
13ae64f3
JJ
1257 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1258 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1259 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1260 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
1261 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1262 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
1263 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1264 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3e73aa7c
JH
1265 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1266 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 1267 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
bffbf940
JJ
1268 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1269 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1270 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1271 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1272 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
252b5132
RH
1273 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1274 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1275 return 0;
31312f95 1276#endif
252b5132
RH
1277 return 1;
1278}
252b5132 1279
29b0f896 1280static int intel_float_operand PARAMS ((const char *mnemonic));
b4cac588
AM
1281
1282static int
252b5132 1283intel_float_operand (mnemonic)
29b0f896 1284 const char *mnemonic;
252b5132 1285{
9306ca4a
JB
1286 /* Note that the value returned is meaningful only for opcodes with (memory)
1287 operands, hence the code here is free to improperly handle opcodes that
1288 have no operands (for better performance and smaller code). */
1289
1290 if (mnemonic[0] != 'f')
1291 return 0; /* non-math */
1292
1293 switch (mnemonic[1])
1294 {
1295 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1296 the fs segment override prefix not currently handled because no
1297 call path can make opcodes without operands get here */
1298 case 'i':
1299 return 2 /* integer op */;
1300 case 'l':
1301 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1302 return 3; /* fldcw/fldenv */
1303 break;
1304 case 'n':
1305 if (mnemonic[2] != 'o' /* fnop */)
1306 return 3; /* non-waiting control op */
1307 break;
1308 case 'r':
1309 if (mnemonic[2] == 's')
1310 return 3; /* frstor/frstpm */
1311 break;
1312 case 's':
1313 if (mnemonic[2] == 'a')
1314 return 3; /* fsave */
1315 if (mnemonic[2] == 't')
1316 {
1317 switch (mnemonic[3])
1318 {
1319 case 'c': /* fstcw */
1320 case 'd': /* fstdw */
1321 case 'e': /* fstenv */
1322 case 's': /* fsts[gw] */
1323 return 3;
1324 }
1325 }
1326 break;
1327 case 'x':
1328 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1329 return 0; /* fxsave/fxrstor are not really math ops */
1330 break;
1331 }
252b5132 1332
9306ca4a 1333 return 1;
252b5132
RH
1334}
1335
1336/* This is the guts of the machine-dependent assembler. LINE points to a
1337 machine dependent instruction. This function is supposed to emit
1338 the frags/bytes it assembles to. */
1339
1340void
1341md_assemble (line)
1342 char *line;
1343{
252b5132 1344 int j;
252b5132
RH
1345 char mnemonic[MAX_MNEM_SIZE];
1346
47926f60 1347 /* Initialize globals. */
252b5132
RH
1348 memset (&i, '\0', sizeof (i));
1349 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 1350 i.reloc[j] = NO_RELOC;
252b5132
RH
1351 memset (disp_expressions, '\0', sizeof (disp_expressions));
1352 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1353 save_stack_p = save_stack;
252b5132
RH
1354
1355 /* First parse an instruction mnemonic & call i386_operand for the operands.
1356 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1357 start of a (possibly prefixed) mnemonic. */
252b5132 1358
29b0f896
AM
1359 line = parse_insn (line, mnemonic);
1360 if (line == NULL)
1361 return;
252b5132 1362
29b0f896
AM
1363 line = parse_operands (line, mnemonic);
1364 if (line == NULL)
1365 return;
252b5132 1366
29b0f896
AM
1367 /* Now we've parsed the mnemonic into a set of templates, and have the
1368 operands at hand. */
1369
1370 /* All intel opcodes have reversed operands except for "bound" and
1371 "enter". We also don't reverse intersegment "jmp" and "call"
1372 instructions with 2 immediate operands so that the immediate segment
1373 precedes the offset, as it does when in AT&T mode. "enter" and the
1374 intersegment "jmp" and "call" instructions are the only ones that
1375 have two immediate operands. */
1376 if (intel_syntax && i.operands > 1
1377 && (strcmp (mnemonic, "bound") != 0)
1378 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1379 swap_operands ();
1380
1381 if (i.imm_operands)
1382 optimize_imm ();
1383
1384 if (i.disp_operands)
1385 optimize_disp ();
1386
1387 /* Next, we find a template that matches the given insn,
1388 making sure the overlap of the given operands types is consistent
1389 with the template operand types. */
252b5132 1390
29b0f896
AM
1391 if (!match_template ())
1392 return;
252b5132 1393
cd61ebfe
AM
1394 if (intel_syntax)
1395 {
1396 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1397 if (SYSV386_COMPAT
1398 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1399 i.tm.base_opcode ^= FloatR;
1400
1401 /* Zap movzx and movsx suffix. The suffix may have been set from
1402 "word ptr" or "byte ptr" on the source operand, but we'll use
1403 the suffix later to choose the destination register. */
1404 if ((i.tm.base_opcode & ~9) == 0x0fb6)
9306ca4a
JB
1405 {
1406 if (i.reg_operands < 2
1407 && !i.suffix
1408 && (~i.tm.opcode_modifier
1409 & (No_bSuf
1410 | No_wSuf
1411 | No_lSuf
1412 | No_sSuf
1413 | No_xSuf
1414 | No_qSuf)))
1415 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1416
1417 i.suffix = 0;
1418 }
cd61ebfe 1419 }
24eab124 1420
29b0f896
AM
1421 if (i.tm.opcode_modifier & FWait)
1422 if (!add_prefix (FWAIT_OPCODE))
1423 return;
252b5132 1424
29b0f896
AM
1425 /* Check string instruction segment overrides. */
1426 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1427 {
1428 if (!check_string ())
5dd0794d 1429 return;
29b0f896 1430 }
5dd0794d 1431
29b0f896
AM
1432 if (!process_suffix ())
1433 return;
e413e4e9 1434
29b0f896
AM
1435 /* Make still unresolved immediate matches conform to size of immediate
1436 given in i.suffix. */
1437 if (!finalize_imm ())
1438 return;
252b5132 1439
29b0f896
AM
1440 if (i.types[0] & Imm1)
1441 i.imm_operands = 0; /* kludge for shift insns. */
1442 if (i.types[0] & ImplicitRegister)
1443 i.reg_operands--;
1444 if (i.types[1] & ImplicitRegister)
1445 i.reg_operands--;
1446 if (i.types[2] & ImplicitRegister)
1447 i.reg_operands--;
252b5132 1448
29b0f896
AM
1449 if (i.tm.opcode_modifier & ImmExt)
1450 {
02fc3089
L
1451 expressionS *exp;
1452
ca164297
L
1453 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1454 {
67c1ffbe 1455 /* These Intel Prescott New Instructions have the fixed
ca164297
L
1456 operands with an opcode suffix which is coded in the same
1457 place as an 8-bit immediate field would be. Here we check
1458 those operands and remove them afterwards. */
1459 unsigned int x;
1460
a4622f40 1461 for (x = 0; x < i.operands; x++)
ca164297
L
1462 if (i.op[x].regs->reg_num != x)
1463 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1464 i.op[x].regs->reg_name, x + 1, i.tm.name);
1465 i.operands = 0;
1466 }
1467
29b0f896
AM
1468 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1469 opcode suffix which is coded in the same place as an 8-bit
1470 immediate field would be. Here we fake an 8-bit immediate
1471 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132 1472
29b0f896 1473 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132 1474
29b0f896
AM
1475 exp = &im_expressions[i.imm_operands++];
1476 i.op[i.operands].imms = exp;
1477 i.types[i.operands++] = Imm8;
1478 exp->X_op = O_constant;
1479 exp->X_add_number = i.tm.extension_opcode;
1480 i.tm.extension_opcode = None;
1481 }
252b5132 1482
29b0f896
AM
1483 /* For insns with operands there are more diddles to do to the opcode. */
1484 if (i.operands)
1485 {
1486 if (!process_operands ())
1487 return;
1488 }
1489 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1490 {
1491 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1492 as_warn (_("translating to `%sp'"), i.tm.name);
1493 }
252b5132 1494
29b0f896
AM
1495 /* Handle conversion of 'int $3' --> special int3 insn. */
1496 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1497 {
1498 i.tm.base_opcode = INT3_OPCODE;
1499 i.imm_operands = 0;
1500 }
252b5132 1501
29b0f896
AM
1502 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1503 && i.op[0].disps->X_op == O_constant)
1504 {
1505 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1506 the absolute address given by the constant. Since ix86 jumps and
1507 calls are pc relative, we need to generate a reloc. */
1508 i.op[0].disps->X_add_symbol = &abs_symbol;
1509 i.op[0].disps->X_op = O_symbol;
1510 }
252b5132 1511
29b0f896
AM
1512 if ((i.tm.opcode_modifier & Rex64) != 0)
1513 i.rex |= REX_MODE64;
252b5132 1514
29b0f896
AM
1515 /* For 8 bit registers we need an empty rex prefix. Also if the
1516 instruction already has a prefix, we need to convert old
1517 registers to new ones. */
773f551c 1518
29b0f896
AM
1519 if (((i.types[0] & Reg8) != 0
1520 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1521 || ((i.types[1] & Reg8) != 0
1522 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1523 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1524 && i.rex != 0))
1525 {
1526 int x;
726c5dcd 1527
29b0f896
AM
1528 i.rex |= REX_OPCODE;
1529 for (x = 0; x < 2; x++)
1530 {
1531 /* Look for 8 bit operand that uses old registers. */
1532 if ((i.types[x] & Reg8) != 0
1533 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 1534 {
29b0f896
AM
1535 /* In case it is "hi" register, give up. */
1536 if (i.op[x].regs->reg_num > 3)
0477af35 1537 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
29b0f896 1538 i.op[x].regs->reg_name);
773f551c 1539
29b0f896
AM
1540 /* Otherwise it is equivalent to the extended register.
1541 Since the encoding doesn't change this is merely
1542 cosmetic cleanup for debug output. */
1543
1544 i.op[x].regs = i.op[x].regs + 8;
773f551c 1545 }
29b0f896
AM
1546 }
1547 }
773f551c 1548
29b0f896
AM
1549 if (i.rex != 0)
1550 add_prefix (REX_OPCODE | i.rex);
1551
1552 /* We are ready to output the insn. */
1553 output_insn ();
1554}
1555
1556static char *
1557parse_insn (line, mnemonic)
1558 char *line;
1559 char *mnemonic;
1560{
1561 char *l = line;
1562 char *token_start = l;
1563 char *mnem_p;
1564
1565 /* Non-zero if we found a prefix only acceptable with string insns. */
1566 const char *expecting_string_instruction = NULL;
45288df1 1567
29b0f896
AM
1568 while (1)
1569 {
1570 mnem_p = mnemonic;
1571 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1572 {
1573 mnem_p++;
1574 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 1575 {
29b0f896
AM
1576 as_bad (_("no such instruction: `%s'"), token_start);
1577 return NULL;
1578 }
1579 l++;
1580 }
1581 if (!is_space_char (*l)
1582 && *l != END_OF_INSN
1583 && *l != PREFIX_SEPARATOR
1584 && *l != ',')
1585 {
1586 as_bad (_("invalid character %s in mnemonic"),
1587 output_invalid (*l));
1588 return NULL;
1589 }
1590 if (token_start == l)
1591 {
1592 if (*l == PREFIX_SEPARATOR)
1593 as_bad (_("expecting prefix; got nothing"));
1594 else
1595 as_bad (_("expecting mnemonic; got nothing"));
1596 return NULL;
1597 }
45288df1 1598
29b0f896
AM
1599 /* Look up instruction (or prefix) via hash table. */
1600 current_templates = hash_find (op_hash, mnemonic);
47926f60 1601
29b0f896
AM
1602 if (*l != END_OF_INSN
1603 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1604 && current_templates
1605 && (current_templates->start->opcode_modifier & IsPrefix))
1606 {
1607 /* If we are in 16-bit mode, do not allow addr16 or data16.
1608 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1609 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1610 && flag_code != CODE_64BIT
1611 && (((current_templates->start->opcode_modifier & Size32) != 0)
1612 ^ (flag_code == CODE_16BIT)))
1613 {
1614 as_bad (_("redundant %s prefix"),
1615 current_templates->start->name);
1616 return NULL;
45288df1 1617 }
29b0f896
AM
1618 /* Add prefix, checking for repeated prefixes. */
1619 switch (add_prefix (current_templates->start->base_opcode))
1620 {
1621 case 0:
1622 return NULL;
1623 case 2:
1624 expecting_string_instruction = current_templates->start->name;
1625 break;
1626 }
1627 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1628 token_start = ++l;
1629 }
1630 else
1631 break;
1632 }
45288df1 1633
29b0f896
AM
1634 if (!current_templates)
1635 {
1636 /* See if we can get a match by trimming off a suffix. */
1637 switch (mnem_p[-1])
1638 {
1639 case WORD_MNEM_SUFFIX:
9306ca4a
JB
1640 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1641 i.suffix = SHORT_MNEM_SUFFIX;
1642 else
29b0f896
AM
1643 case BYTE_MNEM_SUFFIX:
1644 case QWORD_MNEM_SUFFIX:
1645 i.suffix = mnem_p[-1];
1646 mnem_p[-1] = '\0';
1647 current_templates = hash_find (op_hash, mnemonic);
1648 break;
1649 case SHORT_MNEM_SUFFIX:
1650 case LONG_MNEM_SUFFIX:
1651 if (!intel_syntax)
1652 {
1653 i.suffix = mnem_p[-1];
1654 mnem_p[-1] = '\0';
1655 current_templates = hash_find (op_hash, mnemonic);
1656 }
1657 break;
252b5132 1658
29b0f896
AM
1659 /* Intel Syntax. */
1660 case 'd':
1661 if (intel_syntax)
1662 {
9306ca4a 1663 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
1664 i.suffix = SHORT_MNEM_SUFFIX;
1665 else
1666 i.suffix = LONG_MNEM_SUFFIX;
1667 mnem_p[-1] = '\0';
1668 current_templates = hash_find (op_hash, mnemonic);
1669 }
1670 break;
1671 }
1672 if (!current_templates)
1673 {
1674 as_bad (_("no such instruction: `%s'"), token_start);
1675 return NULL;
1676 }
1677 }
252b5132 1678
29b0f896
AM
1679 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1680 {
1681 /* Check for a branch hint. We allow ",pt" and ",pn" for
1682 predict taken and predict not taken respectively.
1683 I'm not sure that branch hints actually do anything on loop
1684 and jcxz insns (JumpByte) for current Pentium4 chips. They
1685 may work in the future and it doesn't hurt to accept them
1686 now. */
1687 if (l[0] == ',' && l[1] == 'p')
1688 {
1689 if (l[2] == 't')
1690 {
1691 if (!add_prefix (DS_PREFIX_OPCODE))
1692 return NULL;
1693 l += 3;
1694 }
1695 else if (l[2] == 'n')
1696 {
1697 if (!add_prefix (CS_PREFIX_OPCODE))
1698 return NULL;
1699 l += 3;
1700 }
1701 }
1702 }
1703 /* Any other comma loses. */
1704 if (*l == ',')
1705 {
1706 as_bad (_("invalid character %s in mnemonic"),
1707 output_invalid (*l));
1708 return NULL;
1709 }
252b5132 1710
29b0f896
AM
1711 /* Check if instruction is supported on specified architecture. */
1712 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1713 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1714 {
1715 as_warn (_("`%s' is not supported on `%s'"),
1716 current_templates->start->name, cpu_arch_name);
1717 }
1718 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1719 {
1720 as_warn (_("use .code16 to ensure correct addressing mode"));
1721 }
252b5132 1722
29b0f896
AM
1723 /* Check for rep/repne without a string instruction. */
1724 if (expecting_string_instruction
1725 && !(current_templates->start->opcode_modifier & IsString))
1726 {
1727 as_bad (_("expecting string instruction after `%s'"),
1728 expecting_string_instruction);
1729 return NULL;
1730 }
252b5132 1731
29b0f896
AM
1732 return l;
1733}
252b5132 1734
29b0f896
AM
1735static char *
1736parse_operands (l, mnemonic)
1737 char *l;
1738 const char *mnemonic;
1739{
1740 char *token_start;
3138f287 1741
29b0f896
AM
1742 /* 1 if operand is pending after ','. */
1743 unsigned int expecting_operand = 0;
252b5132 1744
29b0f896
AM
1745 /* Non-zero if operand parens not balanced. */
1746 unsigned int paren_not_balanced;
1747
1748 while (*l != END_OF_INSN)
1749 {
1750 /* Skip optional white space before operand. */
1751 if (is_space_char (*l))
1752 ++l;
1753 if (!is_operand_char (*l) && *l != END_OF_INSN)
1754 {
1755 as_bad (_("invalid character %s before operand %d"),
1756 output_invalid (*l),
1757 i.operands + 1);
1758 return NULL;
1759 }
1760 token_start = l; /* after white space */
1761 paren_not_balanced = 0;
1762 while (paren_not_balanced || *l != ',')
1763 {
1764 if (*l == END_OF_INSN)
1765 {
1766 if (paren_not_balanced)
1767 {
1768 if (!intel_syntax)
1769 as_bad (_("unbalanced parenthesis in operand %d."),
1770 i.operands + 1);
1771 else
1772 as_bad (_("unbalanced brackets in operand %d."),
1773 i.operands + 1);
1774 return NULL;
1775 }
1776 else
1777 break; /* we are done */
1778 }
1779 else if (!is_operand_char (*l) && !is_space_char (*l))
1780 {
1781 as_bad (_("invalid character %s in operand %d"),
1782 output_invalid (*l),
1783 i.operands + 1);
1784 return NULL;
1785 }
1786 if (!intel_syntax)
1787 {
1788 if (*l == '(')
1789 ++paren_not_balanced;
1790 if (*l == ')')
1791 --paren_not_balanced;
1792 }
1793 else
1794 {
1795 if (*l == '[')
1796 ++paren_not_balanced;
1797 if (*l == ']')
1798 --paren_not_balanced;
1799 }
1800 l++;
1801 }
1802 if (l != token_start)
1803 { /* Yes, we've read in another operand. */
1804 unsigned int operand_ok;
1805 this_operand = i.operands++;
1806 if (i.operands > MAX_OPERANDS)
1807 {
1808 as_bad (_("spurious operands; (%d operands/instruction max)"),
1809 MAX_OPERANDS);
1810 return NULL;
1811 }
1812 /* Now parse operand adding info to 'i' as we go along. */
1813 END_STRING_AND_SAVE (l);
1814
1815 if (intel_syntax)
1816 operand_ok =
1817 i386_intel_operand (token_start,
1818 intel_float_operand (mnemonic));
1819 else
1820 operand_ok = i386_operand (token_start);
1821
1822 RESTORE_END_STRING (l);
1823 if (!operand_ok)
1824 return NULL;
1825 }
1826 else
1827 {
1828 if (expecting_operand)
1829 {
1830 expecting_operand_after_comma:
1831 as_bad (_("expecting operand after ','; got nothing"));
1832 return NULL;
1833 }
1834 if (*l == ',')
1835 {
1836 as_bad (_("expecting operand before ','; got nothing"));
1837 return NULL;
1838 }
1839 }
7f3f1ea2 1840
29b0f896
AM
1841 /* Now *l must be either ',' or END_OF_INSN. */
1842 if (*l == ',')
1843 {
1844 if (*++l == END_OF_INSN)
1845 {
1846 /* Just skip it, if it's \n complain. */
1847 goto expecting_operand_after_comma;
1848 }
1849 expecting_operand = 1;
1850 }
1851 }
1852 return l;
1853}
7f3f1ea2 1854
29b0f896
AM
1855static void
1856swap_operands ()
1857{
1858 union i386_op temp_op;
1859 unsigned int temp_type;
f86103b7 1860 enum bfd_reloc_code_real temp_reloc;
29b0f896
AM
1861 int xchg1 = 0;
1862 int xchg2 = 0;
252b5132 1863
29b0f896
AM
1864 if (i.operands == 2)
1865 {
1866 xchg1 = 0;
1867 xchg2 = 1;
1868 }
1869 else if (i.operands == 3)
1870 {
1871 xchg1 = 0;
1872 xchg2 = 2;
1873 }
1874 temp_type = i.types[xchg2];
1875 i.types[xchg2] = i.types[xchg1];
1876 i.types[xchg1] = temp_type;
1877 temp_op = i.op[xchg2];
1878 i.op[xchg2] = i.op[xchg1];
1879 i.op[xchg1] = temp_op;
1880 temp_reloc = i.reloc[xchg2];
1881 i.reloc[xchg2] = i.reloc[xchg1];
1882 i.reloc[xchg1] = temp_reloc;
1883
1884 if (i.mem_operands == 2)
1885 {
1886 const seg_entry *temp_seg;
1887 temp_seg = i.seg[0];
1888 i.seg[0] = i.seg[1];
1889 i.seg[1] = temp_seg;
1890 }
1891}
252b5132 1892
29b0f896
AM
1893/* Try to ensure constant immediates are represented in the smallest
1894 opcode possible. */
1895static void
1896optimize_imm ()
1897{
1898 char guess_suffix = 0;
1899 int op;
252b5132 1900
29b0f896
AM
1901 if (i.suffix)
1902 guess_suffix = i.suffix;
1903 else if (i.reg_operands)
1904 {
1905 /* Figure out a suffix from the last register operand specified.
1906 We can't do this properly yet, ie. excluding InOutPortReg,
1907 but the following works for instructions with immediates.
1908 In any case, we can't set i.suffix yet. */
1909 for (op = i.operands; --op >= 0;)
1910 if (i.types[op] & Reg)
252b5132 1911 {
29b0f896
AM
1912 if (i.types[op] & Reg8)
1913 guess_suffix = BYTE_MNEM_SUFFIX;
1914 else if (i.types[op] & Reg16)
1915 guess_suffix = WORD_MNEM_SUFFIX;
1916 else if (i.types[op] & Reg32)
1917 guess_suffix = LONG_MNEM_SUFFIX;
1918 else if (i.types[op] & Reg64)
1919 guess_suffix = QWORD_MNEM_SUFFIX;
1920 break;
252b5132 1921 }
29b0f896
AM
1922 }
1923 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1924 guess_suffix = WORD_MNEM_SUFFIX;
1925
1926 for (op = i.operands; --op >= 0;)
1927 if (i.types[op] & Imm)
1928 {
1929 switch (i.op[op].imms->X_op)
252b5132 1930 {
29b0f896
AM
1931 case O_constant:
1932 /* If a suffix is given, this operand may be shortened. */
1933 switch (guess_suffix)
252b5132 1934 {
29b0f896
AM
1935 case LONG_MNEM_SUFFIX:
1936 i.types[op] |= Imm32 | Imm64;
1937 break;
1938 case WORD_MNEM_SUFFIX:
1939 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1940 break;
1941 case BYTE_MNEM_SUFFIX:
1942 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1943 break;
252b5132 1944 }
252b5132 1945
29b0f896
AM
1946 /* If this operand is at most 16 bits, convert it
1947 to a signed 16 bit number before trying to see
1948 whether it will fit in an even smaller size.
1949 This allows a 16-bit operand such as $0xffe0 to
1950 be recognised as within Imm8S range. */
1951 if ((i.types[op] & Imm16)
1952 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 1953 {
29b0f896
AM
1954 i.op[op].imms->X_add_number =
1955 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1956 }
1957 if ((i.types[op] & Imm32)
1958 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1959 == 0))
1960 {
1961 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1962 ^ ((offsetT) 1 << 31))
1963 - ((offsetT) 1 << 31));
1964 }
1965 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
252b5132 1966
29b0f896
AM
1967 /* We must avoid matching of Imm32 templates when 64bit
1968 only immediate is available. */
1969 if (guess_suffix == QWORD_MNEM_SUFFIX)
1970 i.types[op] &= ~Imm32;
1971 break;
252b5132 1972
29b0f896
AM
1973 case O_absent:
1974 case O_register:
1975 abort ();
1976
1977 /* Symbols and expressions. */
1978 default:
1979 /* Convert symbolic operand to proper sizes for matching. */
1980 switch (guess_suffix)
1981 {
1982 case QWORD_MNEM_SUFFIX:
1983 i.types[op] = Imm64 | Imm32S;
1984 break;
1985 case LONG_MNEM_SUFFIX:
20f0a1fc 1986 i.types[op] = Imm32;
29b0f896
AM
1987 break;
1988 case WORD_MNEM_SUFFIX:
20f0a1fc 1989 i.types[op] = Imm16;
29b0f896
AM
1990 break;
1991 case BYTE_MNEM_SUFFIX:
20f0a1fc 1992 i.types[op] = Imm8 | Imm8S;
29b0f896 1993 break;
252b5132 1994 }
29b0f896 1995 break;
252b5132 1996 }
29b0f896
AM
1997 }
1998}
47926f60 1999
29b0f896
AM
2000/* Try to use the smallest displacement type too. */
2001static void
2002optimize_disp ()
2003{
2004 int op;
3e73aa7c 2005
29b0f896
AM
2006 for (op = i.operands; --op >= 0;)
2007 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
252b5132 2008 {
29b0f896
AM
2009 offsetT disp = i.op[op].disps->X_add_number;
2010
2011 if (i.types[op] & Disp16)
252b5132 2012 {
29b0f896
AM
2013 /* We know this operand is at most 16 bits, so
2014 convert to a signed 16 bit number before trying
2015 to see whether it will fit in an even smaller
2016 size. */
2017
2018 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
252b5132 2019 }
29b0f896 2020 else if (i.types[op] & Disp32)
252b5132 2021 {
29b0f896
AM
2022 /* We know this operand is at most 32 bits, so convert to a
2023 signed 32 bit number before trying to see whether it will
2024 fit in an even smaller size. */
2025 disp &= (((offsetT) 2 << 31) - 1);
2026 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 2027 }
29b0f896 2028 if (flag_code == CODE_64BIT)
252b5132 2029 {
29b0f896
AM
2030 if (fits_in_signed_long (disp))
2031 i.types[op] |= Disp32S;
2032 if (fits_in_unsigned_long (disp))
2033 i.types[op] |= Disp32;
252b5132 2034 }
29b0f896
AM
2035 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2036 && fits_in_signed_byte (disp))
2037 i.types[op] |= Disp8;
252b5132 2038 }
29b0f896
AM
2039}
2040
2041static int
2042match_template ()
2043{
2044 /* Points to template once we've found it. */
2045 const template *t;
2046 unsigned int overlap0, overlap1, overlap2;
2047 unsigned int found_reverse_match;
2048 int suffix_check;
2049
2050#define MATCH(overlap, given, template) \
2051 ((overlap & ~JumpAbsolute) \
2052 && (((given) & (BaseIndex | JumpAbsolute)) \
2053 == ((overlap) & (BaseIndex | JumpAbsolute))))
2054
2055 /* If given types r0 and r1 are registers they must be of the same type
2056 unless the expected operand type register overlap is null.
2057 Note that Acc in a template matches every size of reg. */
2058#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2059 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2060 || ((g0) & Reg) == ((g1) & Reg) \
2061 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2062
2063 overlap0 = 0;
2064 overlap1 = 0;
2065 overlap2 = 0;
2066 found_reverse_match = 0;
2067 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2068 ? No_bSuf
2069 : (i.suffix == WORD_MNEM_SUFFIX
2070 ? No_wSuf
2071 : (i.suffix == SHORT_MNEM_SUFFIX
2072 ? No_sSuf
2073 : (i.suffix == LONG_MNEM_SUFFIX
2074 ? No_lSuf
2075 : (i.suffix == QWORD_MNEM_SUFFIX
2076 ? No_qSuf
2077 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2078 ? No_xSuf : 0))))));
2079
20f0a1fc
NC
2080 t = current_templates->start;
2081 if (i.suffix == QWORD_MNEM_SUFFIX
2082 && flag_code != CODE_64BIT
9306ca4a
JB
2083 && (intel_syntax
2084 ? !(t->opcode_modifier & IgnoreSize)
2085 && !intel_float_operand (t->name)
2086 : intel_float_operand (t->name) != 2)
20f0a1fc
NC
2087 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2088 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2089 && (t->base_opcode != 0x0fc7
2090 || t->extension_opcode != 1 /* cmpxchg8b */))
2091 t = current_templates->end;
2092 for (; t < current_templates->end; t++)
29b0f896
AM
2093 {
2094 /* Must have right number of operands. */
2095 if (i.operands != t->operands)
2096 continue;
2097
2098 /* Check the suffix, except for some instructions in intel mode. */
2099 if ((t->opcode_modifier & suffix_check)
2100 && !(intel_syntax
9306ca4a 2101 && (t->opcode_modifier & IgnoreSize)))
29b0f896
AM
2102 continue;
2103
2104 /* Do not verify operands when there are none. */
2105 else if (!t->operands)
2106 {
2107 if (t->cpu_flags & ~cpu_arch_flags)
2108 continue;
2109 /* We've found a match; break out of loop. */
2110 break;
2111 }
252b5132 2112
29b0f896
AM
2113 overlap0 = i.types[0] & t->operand_types[0];
2114 switch (t->operands)
2115 {
2116 case 1:
2117 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2118 continue;
2119 break;
2120 case 2:
2121 case 3:
2122 overlap1 = i.types[1] & t->operand_types[1];
2123 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2124 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2125 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2126 t->operand_types[0],
2127 overlap1, i.types[1],
2128 t->operand_types[1]))
2129 {
2130 /* Check if other direction is valid ... */
2131 if ((t->opcode_modifier & (D | FloatD)) == 0)
2132 continue;
2133
2134 /* Try reversing direction of operands. */
2135 overlap0 = i.types[0] & t->operand_types[1];
2136 overlap1 = i.types[1] & t->operand_types[0];
2137 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2138 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2139 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2140 t->operand_types[1],
2141 overlap1, i.types[1],
2142 t->operand_types[0]))
2143 {
2144 /* Does not match either direction. */
2145 continue;
2146 }
2147 /* found_reverse_match holds which of D or FloatDR
2148 we've found. */
2149 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2150 }
2151 /* Found a forward 2 operand match here. */
2152 else if (t->operands == 3)
2153 {
2154 /* Here we make use of the fact that there are no
2155 reverse match 3 operand instructions, and all 3
2156 operand instructions only need to be checked for
2157 register consistency between operands 2 and 3. */
2158 overlap2 = i.types[2] & t->operand_types[2];
2159 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2160 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2161 t->operand_types[1],
2162 overlap2, i.types[2],
2163 t->operand_types[2]))
2164
2165 continue;
2166 }
2167 /* Found either forward/reverse 2 or 3 operand match here:
2168 slip through to break. */
2169 }
2170 if (t->cpu_flags & ~cpu_arch_flags)
2171 {
2172 found_reverse_match = 0;
2173 continue;
2174 }
2175 /* We've found a match; break out of loop. */
2176 break;
2177 }
2178
2179 if (t == current_templates->end)
2180 {
2181 /* We found no match. */
2182 as_bad (_("suffix or operands invalid for `%s'"),
2183 current_templates->start->name);
2184 return 0;
2185 }
252b5132 2186
29b0f896
AM
2187 if (!quiet_warnings)
2188 {
2189 if (!intel_syntax
2190 && ((i.types[0] & JumpAbsolute)
2191 != (t->operand_types[0] & JumpAbsolute)))
2192 {
2193 as_warn (_("indirect %s without `*'"), t->name);
2194 }
2195
2196 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2197 == (IsPrefix | IgnoreSize))
2198 {
2199 /* Warn them that a data or address size prefix doesn't
2200 affect assembly of the next line of code. */
2201 as_warn (_("stand-alone `%s' prefix"), t->name);
2202 }
2203 }
2204
2205 /* Copy the template we found. */
2206 i.tm = *t;
2207 if (found_reverse_match)
2208 {
2209 /* If we found a reverse match we must alter the opcode
2210 direction bit. found_reverse_match holds bits to change
2211 (different for int & float insns). */
2212
2213 i.tm.base_opcode ^= found_reverse_match;
2214
2215 i.tm.operand_types[0] = t->operand_types[1];
2216 i.tm.operand_types[1] = t->operand_types[0];
2217 }
2218
2219 return 1;
2220}
2221
2222static int
2223check_string ()
2224{
2225 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2226 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2227 {
2228 if (i.seg[0] != NULL && i.seg[0] != &es)
2229 {
2230 as_bad (_("`%s' operand %d must use `%%es' segment"),
2231 i.tm.name,
2232 mem_op + 1);
2233 return 0;
2234 }
2235 /* There's only ever one segment override allowed per instruction.
2236 This instruction possibly has a legal segment override on the
2237 second operand, so copy the segment to where non-string
2238 instructions store it, allowing common code. */
2239 i.seg[0] = i.seg[1];
2240 }
2241 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2242 {
2243 if (i.seg[1] != NULL && i.seg[1] != &es)
2244 {
2245 as_bad (_("`%s' operand %d must use `%%es' segment"),
2246 i.tm.name,
2247 mem_op + 2);
2248 return 0;
2249 }
2250 }
2251 return 1;
2252}
2253
2254static int
543613e9 2255process_suffix (void)
29b0f896
AM
2256{
2257 /* If matched instruction specifies an explicit instruction mnemonic
2258 suffix, use it. */
2259 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2260 {
2261 if (i.tm.opcode_modifier & Size16)
2262 i.suffix = WORD_MNEM_SUFFIX;
2263 else if (i.tm.opcode_modifier & Size64)
2264 i.suffix = QWORD_MNEM_SUFFIX;
2265 else
2266 i.suffix = LONG_MNEM_SUFFIX;
2267 }
2268 else if (i.reg_operands)
2269 {
2270 /* If there's no instruction mnemonic suffix we try to invent one
2271 based on register operands. */
2272 if (!i.suffix)
2273 {
2274 /* We take i.suffix from the last register operand specified,
2275 Destination register type is more significant than source
2276 register type. */
2277 int op;
543613e9 2278
29b0f896
AM
2279 for (op = i.operands; --op >= 0;)
2280 if ((i.types[op] & Reg)
2281 && !(i.tm.operand_types[op] & InOutPortReg))
2282 {
2283 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2284 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2285 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2286 LONG_MNEM_SUFFIX);
2287 break;
2288 }
2289 }
2290 else if (i.suffix == BYTE_MNEM_SUFFIX)
2291 {
2292 if (!check_byte_reg ())
2293 return 0;
2294 }
2295 else if (i.suffix == LONG_MNEM_SUFFIX)
2296 {
2297 if (!check_long_reg ())
2298 return 0;
2299 }
2300 else if (i.suffix == QWORD_MNEM_SUFFIX)
2301 {
2302 if (!check_qword_reg ())
2303 return 0;
2304 }
2305 else if (i.suffix == WORD_MNEM_SUFFIX)
2306 {
2307 if (!check_word_reg ())
2308 return 0;
2309 }
2310 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2311 /* Do nothing if the instruction is going to ignore the prefix. */
2312 ;
2313 else
2314 abort ();
2315 }
9306ca4a
JB
2316 else if ((i.tm.opcode_modifier & DefaultSize)
2317 && !i.suffix
2318 /* exclude fldenv/frstor/fsave/fstenv */
2319 && (i.tm.opcode_modifier & No_sSuf))
29b0f896
AM
2320 {
2321 i.suffix = stackop_size;
543613e9
NC
2322 if (i.suffix == QWORD_MNEM_SUFFIX
2323 && (i.tm.opcode_modifier & No_qSuf))
2324 i.suffix = LONG_MNEM_SUFFIX;
29b0f896 2325 }
9306ca4a
JB
2326 else if (intel_syntax
2327 && !i.suffix
2328 && ((i.tm.operand_types[0] & JumpAbsolute)
2329 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2330 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2331 && i.tm.extension_opcode <= 3)))
2332 {
2333 switch (flag_code)
2334 {
2335 case CODE_64BIT:
2336 if (!(i.tm.opcode_modifier & No_qSuf))
2337 {
2338 i.suffix = QWORD_MNEM_SUFFIX;
2339 break;
2340 }
2341 case CODE_32BIT:
2342 if (!(i.tm.opcode_modifier & No_lSuf))
2343 i.suffix = LONG_MNEM_SUFFIX;
2344 break;
2345 case CODE_16BIT:
2346 if (!(i.tm.opcode_modifier & No_wSuf))
2347 i.suffix = WORD_MNEM_SUFFIX;
2348 break;
2349 }
2350 }
252b5132 2351
9306ca4a 2352 if (!i.suffix)
29b0f896 2353 {
9306ca4a
JB
2354 if (!intel_syntax)
2355 {
2356 if (i.tm.opcode_modifier & W)
2357 {
2358 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2359 return 0;
2360 }
2361 }
2362 else
2363 {
2364 unsigned int suffixes = ~i.tm.opcode_modifier
2365 & (No_bSuf
2366 | No_wSuf
2367 | No_lSuf
2368 | No_sSuf
2369 | No_xSuf
2370 | No_qSuf);
2371
2372 if ((i.tm.opcode_modifier & W)
2373 || ((suffixes & (suffixes - 1))
2374 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2375 {
2376 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2377 return 0;
2378 }
2379 }
29b0f896 2380 }
252b5132 2381
9306ca4a
JB
2382 /* Change the opcode based on the operand size given by i.suffix;
2383 We don't need to change things for byte insns. */
2384
29b0f896
AM
2385 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2386 {
2387 /* It's not a byte, select word/dword operation. */
2388 if (i.tm.opcode_modifier & W)
2389 {
2390 if (i.tm.opcode_modifier & ShortForm)
2391 i.tm.base_opcode |= 8;
2392 else
2393 i.tm.base_opcode |= 1;
2394 }
0f3f3d8b 2395
29b0f896
AM
2396 /* Now select between word & dword operations via the operand
2397 size prefix, except for instructions that will ignore this
2398 prefix anyway. */
2399 if (i.suffix != QWORD_MNEM_SUFFIX
9306ca4a
JB
2400 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2401 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
9146926a
AM
2402 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2403 || (flag_code == CODE_64BIT
2404 && (i.tm.opcode_modifier & JumpByte))))
24eab124
AM
2405 {
2406 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 2407
29b0f896
AM
2408 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2409 prefix = ADDR_PREFIX_OPCODE;
252b5132 2410
29b0f896
AM
2411 if (!add_prefix (prefix))
2412 return 0;
24eab124 2413 }
252b5132 2414
29b0f896
AM
2415 /* Set mode64 for an operand. */
2416 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 2417 && flag_code == CODE_64BIT
29b0f896 2418 && (i.tm.opcode_modifier & NoRex64) == 0)
9146926a 2419 i.rex |= REX_MODE64;
3e73aa7c 2420
29b0f896
AM
2421 /* Size floating point instruction. */
2422 if (i.suffix == LONG_MNEM_SUFFIX)
543613e9
NC
2423 if (i.tm.opcode_modifier & FloatMF)
2424 i.tm.base_opcode ^= 4;
29b0f896 2425 }
7ecd2f8b 2426
29b0f896
AM
2427 return 1;
2428}
3e73aa7c 2429
29b0f896 2430static int
543613e9 2431check_byte_reg (void)
29b0f896
AM
2432{
2433 int op;
543613e9 2434
29b0f896
AM
2435 for (op = i.operands; --op >= 0;)
2436 {
2437 /* If this is an eight bit register, it's OK. If it's the 16 or
2438 32 bit version of an eight bit register, we will just use the
2439 low portion, and that's OK too. */
2440 if (i.types[op] & Reg8)
2441 continue;
2442
2443 /* movzx and movsx should not generate this warning. */
2444 if (intel_syntax
2445 && (i.tm.base_opcode == 0xfb7
2446 || i.tm.base_opcode == 0xfb6
2447 || i.tm.base_opcode == 0x63
2448 || i.tm.base_opcode == 0xfbe
2449 || i.tm.base_opcode == 0xfbf))
2450 continue;
2451
2452 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2453#if 0
2454 /* Check that the template allows eight bit regs. This
2455 kills insns such as `orb $1,%edx', which maybe should be
2456 allowed. */
2457 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2458#endif
2459 )
2460 {
2461 /* Prohibit these changes in the 64bit mode, since the
2462 lowering is more complicated. */
2463 if (flag_code == CODE_64BIT
2464 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2465 {
0f3f3d8b 2466 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2467 i.op[op].regs->reg_name,
2468 i.suffix);
2469 return 0;
2470 }
2471#if REGISTER_WARNINGS
2472 if (!quiet_warnings
2473 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2474 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2475 (i.op[op].regs + (i.types[op] & Reg16
2476 ? REGNAM_AL - REGNAM_AX
2477 : REGNAM_AL - REGNAM_EAX))->reg_name,
2478 i.op[op].regs->reg_name,
2479 i.suffix);
2480#endif
2481 continue;
2482 }
2483 /* Any other register is bad. */
2484 if (i.types[op] & (Reg | RegMMX | RegXMM
2485 | SReg2 | SReg3
2486 | Control | Debug | Test
2487 | FloatReg | FloatAcc))
2488 {
2489 as_bad (_("`%%%s' not allowed with `%s%c'"),
2490 i.op[op].regs->reg_name,
2491 i.tm.name,
2492 i.suffix);
2493 return 0;
2494 }
2495 }
2496 return 1;
2497}
2498
2499static int
2500check_long_reg ()
2501{
2502 int op;
2503
2504 for (op = i.operands; --op >= 0;)
2505 /* Reject eight bit registers, except where the template requires
2506 them. (eg. movzb) */
2507 if ((i.types[op] & Reg8) != 0
2508 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2509 {
2510 as_bad (_("`%%%s' not allowed with `%s%c'"),
2511 i.op[op].regs->reg_name,
2512 i.tm.name,
2513 i.suffix);
2514 return 0;
2515 }
2516 /* Warn if the e prefix on a general reg is missing. */
2517 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2518 && (i.types[op] & Reg16) != 0
2519 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2520 {
2521 /* Prohibit these changes in the 64bit mode, since the
2522 lowering is more complicated. */
2523 if (flag_code == CODE_64BIT)
252b5132 2524 {
0f3f3d8b 2525 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2526 i.op[op].regs->reg_name,
2527 i.suffix);
2528 return 0;
252b5132 2529 }
29b0f896
AM
2530#if REGISTER_WARNINGS
2531 else
2532 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2533 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2534 i.op[op].regs->reg_name,
2535 i.suffix);
2536#endif
252b5132 2537 }
29b0f896
AM
2538 /* Warn if the r prefix on a general reg is missing. */
2539 else if ((i.types[op] & Reg64) != 0
2540 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
252b5132 2541 {
0f3f3d8b 2542 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2543 i.op[op].regs->reg_name,
2544 i.suffix);
2545 return 0;
2546 }
2547 return 1;
2548}
252b5132 2549
29b0f896
AM
2550static int
2551check_qword_reg ()
2552{
2553 int op;
252b5132 2554
29b0f896
AM
2555 for (op = i.operands; --op >= 0; )
2556 /* Reject eight bit registers, except where the template requires
2557 them. (eg. movzb) */
2558 if ((i.types[op] & Reg8) != 0
2559 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2560 {
2561 as_bad (_("`%%%s' not allowed with `%s%c'"),
2562 i.op[op].regs->reg_name,
2563 i.tm.name,
2564 i.suffix);
2565 return 0;
2566 }
2567 /* Warn if the e prefix on a general reg is missing. */
2568 else if (((i.types[op] & Reg16) != 0
2569 || (i.types[op] & Reg32) != 0)
2570 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2571 {
2572 /* Prohibit these changes in the 64bit mode, since the
2573 lowering is more complicated. */
0f3f3d8b 2574 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2575 i.op[op].regs->reg_name,
2576 i.suffix);
2577 return 0;
252b5132 2578 }
29b0f896
AM
2579 return 1;
2580}
252b5132 2581
29b0f896
AM
2582static int
2583check_word_reg ()
2584{
2585 int op;
2586 for (op = i.operands; --op >= 0;)
2587 /* Reject eight bit registers, except where the template requires
2588 them. (eg. movzb) */
2589 if ((i.types[op] & Reg8) != 0
2590 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2591 {
2592 as_bad (_("`%%%s' not allowed with `%s%c'"),
2593 i.op[op].regs->reg_name,
2594 i.tm.name,
2595 i.suffix);
2596 return 0;
2597 }
2598 /* Warn if the e prefix on a general reg is present. */
2599 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2600 && (i.types[op] & Reg32) != 0
2601 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
252b5132 2602 {
29b0f896
AM
2603 /* Prohibit these changes in the 64bit mode, since the
2604 lowering is more complicated. */
2605 if (flag_code == CODE_64BIT)
252b5132 2606 {
0f3f3d8b 2607 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
29b0f896
AM
2608 i.op[op].regs->reg_name,
2609 i.suffix);
2610 return 0;
252b5132 2611 }
29b0f896
AM
2612 else
2613#if REGISTER_WARNINGS
2614 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2615 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2616 i.op[op].regs->reg_name,
2617 i.suffix);
2618#endif
2619 }
2620 return 1;
2621}
252b5132 2622
29b0f896
AM
2623static int
2624finalize_imm ()
2625{
2626 unsigned int overlap0, overlap1, overlap2;
2627
2628 overlap0 = i.types[0] & i.tm.operand_types[0];
20f0a1fc 2629 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
29b0f896
AM
2630 && overlap0 != Imm8 && overlap0 != Imm8S
2631 && overlap0 != Imm16 && overlap0 != Imm32S
2632 && overlap0 != Imm32 && overlap0 != Imm64)
2633 {
2634 if (i.suffix)
2635 {
2636 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2637 ? Imm8 | Imm8S
2638 : (i.suffix == WORD_MNEM_SUFFIX
2639 ? Imm16
2640 : (i.suffix == QWORD_MNEM_SUFFIX
2641 ? Imm64 | Imm32S
2642 : Imm32)));
2643 }
2644 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2645 || overlap0 == (Imm16 | Imm32)
2646 || overlap0 == (Imm16 | Imm32S))
2647 {
2648 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2649 ? Imm16 : Imm32S);
2650 }
2651 if (overlap0 != Imm8 && overlap0 != Imm8S
2652 && overlap0 != Imm16 && overlap0 != Imm32S
2653 && overlap0 != Imm32 && overlap0 != Imm64)
2654 {
2655 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2656 return 0;
2657 }
2658 }
2659 i.types[0] = overlap0;
2660
2661 overlap1 = i.types[1] & i.tm.operand_types[1];
2662 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2663 && overlap1 != Imm8 && overlap1 != Imm8S
2664 && overlap1 != Imm16 && overlap1 != Imm32S
2665 && overlap1 != Imm32 && overlap1 != Imm64)
2666 {
2667 if (i.suffix)
2668 {
2669 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2670 ? Imm8 | Imm8S
2671 : (i.suffix == WORD_MNEM_SUFFIX
2672 ? Imm16
2673 : (i.suffix == QWORD_MNEM_SUFFIX
2674 ? Imm64 | Imm32S
2675 : Imm32)));
2676 }
2677 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2678 || overlap1 == (Imm16 | Imm32)
2679 || overlap1 == (Imm16 | Imm32S))
2680 {
2681 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2682 ? Imm16 : Imm32S);
2683 }
2684 if (overlap1 != Imm8 && overlap1 != Imm8S
2685 && overlap1 != Imm16 && overlap1 != Imm32S
2686 && overlap1 != Imm32 && overlap1 != Imm64)
2687 {
2688 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2689 return 0;
2690 }
2691 }
2692 i.types[1] = overlap1;
2693
2694 overlap2 = i.types[2] & i.tm.operand_types[2];
2695 assert ((overlap2 & Imm) == 0);
2696 i.types[2] = overlap2;
2697
2698 return 1;
2699}
2700
2701static int
2702process_operands ()
2703{
2704 /* Default segment register this instruction will use for memory
2705 accesses. 0 means unknown. This is only for optimizing out
2706 unnecessary segment overrides. */
2707 const seg_entry *default_seg = 0;
2708
2709 /* The imul $imm, %reg instruction is converted into
2710 imul $imm, %reg, %reg, and the clr %reg instruction
2711 is converted into xor %reg, %reg. */
2712 if (i.tm.opcode_modifier & regKludge)
2713 {
2714 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2715 /* Pretend we saw the extra register operand. */
2716 assert (i.op[first_reg_op + 1].regs == 0);
2717 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2718 i.types[first_reg_op + 1] = i.types[first_reg_op];
2719 i.reg_operands = 2;
2720 }
2721
2722 if (i.tm.opcode_modifier & ShortForm)
2723 {
2724 /* The register or float register operand is in operand 0 or 1. */
2725 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2726 /* Register goes in low 3 bits of opcode. */
2727 i.tm.base_opcode |= i.op[op].regs->reg_num;
2728 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2729 i.rex |= REX_EXTZ;
2730 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2731 {
2732 /* Warn about some common errors, but press on regardless.
2733 The first case can be generated by gcc (<= 2.8.1). */
2734 if (i.operands == 2)
2735 {
2736 /* Reversed arguments on faddp, fsubp, etc. */
2737 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2738 i.op[1].regs->reg_name,
2739 i.op[0].regs->reg_name);
2740 }
2741 else
2742 {
2743 /* Extraneous `l' suffix on fp insn. */
2744 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2745 i.op[0].regs->reg_name);
2746 }
2747 }
2748 }
2749 else if (i.tm.opcode_modifier & Modrm)
2750 {
2751 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
2752 must be put into the modrm byte). Now, we make the modrm and
2753 index base bytes based on all the info we've collected. */
29b0f896
AM
2754
2755 default_seg = build_modrm_byte ();
2756 }
2757 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2758 {
2759 if (i.tm.base_opcode == POP_SEG_SHORT
2760 && i.op[0].regs->reg_num == 1)
2761 {
2762 as_bad (_("you can't `pop %%cs'"));
2763 return 0;
2764 }
2765 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2766 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2767 i.rex |= REX_EXTZ;
2768 }
2769 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2770 {
2771 default_seg = &ds;
2772 }
2773 else if ((i.tm.opcode_modifier & IsString) != 0)
2774 {
2775 /* For the string instructions that allow a segment override
2776 on one of their operands, the default segment is ds. */
2777 default_seg = &ds;
2778 }
2779
52271982
AM
2780 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2781 as_warn (_("segment override on `lea' is ineffectual"));
2782
2783 /* If a segment was explicitly specified, and the specified segment
2784 is not the default, use an opcode prefix to select it. If we
2785 never figured out what the default segment is, then default_seg
2786 will be zero at this point, and the specified segment prefix will
2787 always be used. */
29b0f896
AM
2788 if ((i.seg[0]) && (i.seg[0] != default_seg))
2789 {
2790 if (!add_prefix (i.seg[0]->seg_prefix))
2791 return 0;
2792 }
2793 return 1;
2794}
2795
2796static const seg_entry *
2797build_modrm_byte ()
2798{
2799 const seg_entry *default_seg = 0;
2800
2801 /* i.reg_operands MUST be the number of real register operands;
2802 implicit registers do not count. */
2803 if (i.reg_operands == 2)
2804 {
2805 unsigned int source, dest;
2806 source = ((i.types[0]
2807 & (Reg | RegMMX | RegXMM
2808 | SReg2 | SReg3
2809 | Control | Debug | Test))
2810 ? 0 : 1);
2811 dest = source + 1;
2812
2813 i.rm.mode = 3;
2814 /* One of the register operands will be encoded in the i.tm.reg
2815 field, the other in the combined i.tm.mode and i.tm.regmem
2816 fields. If no form of this instruction supports a memory
2817 destination operand, then we assume the source operand may
2818 sometimes be a memory operand and so we need to store the
2819 destination in the i.rm.reg field. */
2820 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2821 {
2822 i.rm.reg = i.op[dest].regs->reg_num;
2823 i.rm.regmem = i.op[source].regs->reg_num;
2824 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2825 i.rex |= REX_EXTX;
2826 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2827 i.rex |= REX_EXTZ;
2828 }
2829 else
2830 {
2831 i.rm.reg = i.op[source].regs->reg_num;
2832 i.rm.regmem = i.op[dest].regs->reg_num;
2833 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2834 i.rex |= REX_EXTZ;
2835 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2836 i.rex |= REX_EXTX;
2837 }
2838 }
2839 else
2840 { /* If it's not 2 reg operands... */
2841 if (i.mem_operands)
2842 {
2843 unsigned int fake_zero_displacement = 0;
2844 unsigned int op = ((i.types[0] & AnyMem)
2845 ? 0
2846 : (i.types[1] & AnyMem) ? 1 : 2);
2847
2848 default_seg = &ds;
2849
2850 if (i.base_reg == 0)
2851 {
2852 i.rm.mode = 0;
2853 if (!i.disp_operands)
2854 fake_zero_displacement = 1;
2855 if (i.index_reg == 0)
2856 {
2857 /* Operand is just <disp> */
20f0a1fc 2858 if (flag_code == CODE_64BIT)
29b0f896
AM
2859 {
2860 /* 64bit mode overwrites the 32bit absolute
2861 addressing by RIP relative addressing and
2862 absolute addressing is encoded by one of the
2863 redundant SIB forms. */
2864 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2865 i.sib.base = NO_BASE_REGISTER;
2866 i.sib.index = NO_INDEX_REGISTER;
20f0a1fc
NC
2867 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2868 }
2869 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2870 {
2871 i.rm.regmem = NO_BASE_REGISTER_16;
2872 i.types[op] = Disp16;
2873 }
2874 else
2875 {
2876 i.rm.regmem = NO_BASE_REGISTER;
2877 i.types[op] = Disp32;
29b0f896
AM
2878 }
2879 }
2880 else /* !i.base_reg && i.index_reg */
2881 {
2882 i.sib.index = i.index_reg->reg_num;
2883 i.sib.base = NO_BASE_REGISTER;
2884 i.sib.scale = i.log2_scale_factor;
2885 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2886 i.types[op] &= ~Disp;
2887 if (flag_code != CODE_64BIT)
2888 i.types[op] |= Disp32; /* Must be 32 bit */
2889 else
2890 i.types[op] |= Disp32S;
2891 if ((i.index_reg->reg_flags & RegRex) != 0)
2892 i.rex |= REX_EXTY;
2893 }
2894 }
2895 /* RIP addressing for 64bit mode. */
2896 else if (i.base_reg->reg_type == BaseIndex)
2897 {
2898 i.rm.regmem = NO_BASE_REGISTER;
20f0a1fc 2899 i.types[op] &= ~ Disp;
29b0f896
AM
2900 i.types[op] |= Disp32S;
2901 i.flags[op] = Operand_PCrel;
20f0a1fc
NC
2902 if (! i.disp_operands)
2903 fake_zero_displacement = 1;
29b0f896
AM
2904 }
2905 else if (i.base_reg->reg_type & Reg16)
2906 {
2907 switch (i.base_reg->reg_num)
2908 {
2909 case 3: /* (%bx) */
2910 if (i.index_reg == 0)
2911 i.rm.regmem = 7;
2912 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2913 i.rm.regmem = i.index_reg->reg_num - 6;
2914 break;
2915 case 5: /* (%bp) */
2916 default_seg = &ss;
2917 if (i.index_reg == 0)
2918 {
2919 i.rm.regmem = 6;
2920 if ((i.types[op] & Disp) == 0)
2921 {
2922 /* fake (%bp) into 0(%bp) */
2923 i.types[op] |= Disp8;
252b5132 2924 fake_zero_displacement = 1;
29b0f896
AM
2925 }
2926 }
2927 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2928 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2929 break;
2930 default: /* (%si) -> 4 or (%di) -> 5 */
2931 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2932 }
2933 i.rm.mode = mode_from_disp_size (i.types[op]);
2934 }
2935 else /* i.base_reg and 32/64 bit mode */
2936 {
2937 if (flag_code == CODE_64BIT
2938 && (i.types[op] & Disp))
20f0a1fc
NC
2939 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
2940
29b0f896
AM
2941 i.rm.regmem = i.base_reg->reg_num;
2942 if ((i.base_reg->reg_flags & RegRex) != 0)
2943 i.rex |= REX_EXTZ;
2944 i.sib.base = i.base_reg->reg_num;
2945 /* x86-64 ignores REX prefix bit here to avoid decoder
2946 complications. */
2947 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2948 {
2949 default_seg = &ss;
2950 if (i.disp_operands == 0)
2951 {
2952 fake_zero_displacement = 1;
2953 i.types[op] |= Disp8;
2954 }
2955 }
2956 else if (i.base_reg->reg_num == ESP_REG_NUM)
2957 {
2958 default_seg = &ss;
2959 }
2960 i.sib.scale = i.log2_scale_factor;
2961 if (i.index_reg == 0)
2962 {
2963 /* <disp>(%esp) becomes two byte modrm with no index
2964 register. We've already stored the code for esp
2965 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2966 Any base register besides %esp will not use the
2967 extra modrm byte. */
2968 i.sib.index = NO_INDEX_REGISTER;
2969#if !SCALE1_WHEN_NO_INDEX
2970 /* Another case where we force the second modrm byte. */
2971 if (i.log2_scale_factor)
2972 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
252b5132 2973#endif
29b0f896
AM
2974 }
2975 else
2976 {
2977 i.sib.index = i.index_reg->reg_num;
2978 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2979 if ((i.index_reg->reg_flags & RegRex) != 0)
2980 i.rex |= REX_EXTY;
2981 }
2982 i.rm.mode = mode_from_disp_size (i.types[op]);
2983 }
252b5132 2984
29b0f896
AM
2985 if (fake_zero_displacement)
2986 {
2987 /* Fakes a zero displacement assuming that i.types[op]
2988 holds the correct displacement size. */
2989 expressionS *exp;
2990
2991 assert (i.op[op].disps == 0);
2992 exp = &disp_expressions[i.disp_operands++];
2993 i.op[op].disps = exp;
2994 exp->X_op = O_constant;
2995 exp->X_add_number = 0;
2996 exp->X_add_symbol = (symbolS *) 0;
2997 exp->X_op_symbol = (symbolS *) 0;
2998 }
2999 }
252b5132 3000
29b0f896
AM
3001 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3002 (if any) based on i.tm.extension_opcode. Again, we must be
3003 careful to make sure that segment/control/debug/test/MMX
3004 registers are coded into the i.rm.reg field. */
3005 if (i.reg_operands)
3006 {
3007 unsigned int op =
3008 ((i.types[0]
3009 & (Reg | RegMMX | RegXMM
3010 | SReg2 | SReg3
3011 | Control | Debug | Test))
3012 ? 0
3013 : ((i.types[1]
3014 & (Reg | RegMMX | RegXMM
3015 | SReg2 | SReg3
3016 | Control | Debug | Test))
3017 ? 1
3018 : 2));
3019 /* If there is an extension opcode to put here, the register
3020 number must be put into the regmem field. */
3021 if (i.tm.extension_opcode != None)
3022 {
3023 i.rm.regmem = i.op[op].regs->reg_num;
3024 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3025 i.rex |= REX_EXTZ;
3026 }
3027 else
3028 {
3029 i.rm.reg = i.op[op].regs->reg_num;
3030 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3031 i.rex |= REX_EXTX;
3032 }
252b5132 3033
29b0f896
AM
3034 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3035 must set it to 3 to indicate this is a register operand
3036 in the regmem field. */
3037 if (!i.mem_operands)
3038 i.rm.mode = 3;
3039 }
252b5132 3040
29b0f896
AM
3041 /* Fill in i.rm.reg field with extension opcode (if any). */
3042 if (i.tm.extension_opcode != None)
3043 i.rm.reg = i.tm.extension_opcode;
3044 }
3045 return default_seg;
3046}
252b5132 3047
29b0f896
AM
3048static void
3049output_branch ()
3050{
3051 char *p;
3052 int code16;
3053 int prefix;
3054 relax_substateT subtype;
3055 symbolS *sym;
3056 offsetT off;
3057
3058 code16 = 0;
3059 if (flag_code == CODE_16BIT)
3060 code16 = CODE16;
3061
3062 prefix = 0;
3063 if (i.prefix[DATA_PREFIX] != 0)
252b5132 3064 {
29b0f896
AM
3065 prefix = 1;
3066 i.prefixes -= 1;
3067 code16 ^= CODE16;
252b5132 3068 }
29b0f896
AM
3069 /* Pentium4 branch hints. */
3070 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3071 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 3072 {
29b0f896
AM
3073 prefix++;
3074 i.prefixes--;
3075 }
3076 if (i.prefix[REX_PREFIX] != 0)
3077 {
3078 prefix++;
3079 i.prefixes--;
2f66722d
AM
3080 }
3081
29b0f896
AM
3082 if (i.prefixes != 0 && !intel_syntax)
3083 as_warn (_("skipping prefixes on this instruction"));
3084
3085 /* It's always a symbol; End frag & setup for relax.
3086 Make sure there is enough room in this frag for the largest
3087 instruction we may generate in md_convert_frag. This is 2
3088 bytes for the opcode and room for the prefix and largest
3089 displacement. */
3090 frag_grow (prefix + 2 + 4);
3091 /* Prefix and 1 opcode byte go in fr_fix. */
3092 p = frag_more (prefix + 1);
3093 if (i.prefix[DATA_PREFIX] != 0)
3094 *p++ = DATA_PREFIX_OPCODE;
3095 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3096 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3097 *p++ = i.prefix[SEG_PREFIX];
3098 if (i.prefix[REX_PREFIX] != 0)
3099 *p++ = i.prefix[REX_PREFIX];
3100 *p = i.tm.base_opcode;
3101
3102 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3103 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3104 else if ((cpu_arch_flags & Cpu386) != 0)
3105 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3106 else
3107 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3108 subtype |= code16;
3e73aa7c 3109
29b0f896
AM
3110 sym = i.op[0].disps->X_add_symbol;
3111 off = i.op[0].disps->X_add_number;
3e73aa7c 3112
29b0f896
AM
3113 if (i.op[0].disps->X_op != O_constant
3114 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 3115 {
29b0f896
AM
3116 /* Handle complex expressions. */
3117 sym = make_expr_symbol (i.op[0].disps);
3118 off = 0;
3119 }
3e73aa7c 3120
29b0f896
AM
3121 /* 1 possible extra opcode + 4 byte displacement go in var part.
3122 Pass reloc in fr_var. */
3123 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3124}
3e73aa7c 3125
29b0f896
AM
3126static void
3127output_jump ()
3128{
3129 char *p;
3130 int size;
3e02c1cc 3131 fixS *fixP;
29b0f896
AM
3132
3133 if (i.tm.opcode_modifier & JumpByte)
3134 {
3135 /* This is a loop or jecxz type instruction. */
3136 size = 1;
3137 if (i.prefix[ADDR_PREFIX] != 0)
3138 {
3139 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3140 i.prefixes -= 1;
3141 }
3142 /* Pentium4 branch hints. */
3143 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3144 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3145 {
3146 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3147 i.prefixes--;
3e73aa7c
JH
3148 }
3149 }
29b0f896
AM
3150 else
3151 {
3152 int code16;
3e73aa7c 3153
29b0f896
AM
3154 code16 = 0;
3155 if (flag_code == CODE_16BIT)
3156 code16 = CODE16;
3e73aa7c 3157
29b0f896
AM
3158 if (i.prefix[DATA_PREFIX] != 0)
3159 {
3160 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3161 i.prefixes -= 1;
3162 code16 ^= CODE16;
3163 }
252b5132 3164
29b0f896
AM
3165 size = 4;
3166 if (code16)
3167 size = 2;
3168 }
9fcc94b6 3169
29b0f896
AM
3170 if (i.prefix[REX_PREFIX] != 0)
3171 {
3172 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3173 i.prefixes -= 1;
3174 }
252b5132 3175
29b0f896
AM
3176 if (i.prefixes != 0 && !intel_syntax)
3177 as_warn (_("skipping prefixes on this instruction"));
e0890092 3178
29b0f896
AM
3179 p = frag_more (1 + size);
3180 *p++ = i.tm.base_opcode;
e0890092 3181
3e02c1cc
AM
3182 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3183 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3184
3185 /* All jumps handled here are signed, but don't use a signed limit
3186 check for 32 and 16 bit jumps as we want to allow wrap around at
3187 4G and 64k respectively. */
3188 if (size == 1)
3189 fixP->fx_signed = 1;
29b0f896 3190}
e0890092 3191
29b0f896
AM
3192static void
3193output_interseg_jump ()
3194{
3195 char *p;
3196 int size;
3197 int prefix;
3198 int code16;
252b5132 3199
29b0f896
AM
3200 code16 = 0;
3201 if (flag_code == CODE_16BIT)
3202 code16 = CODE16;
a217f122 3203
29b0f896
AM
3204 prefix = 0;
3205 if (i.prefix[DATA_PREFIX] != 0)
3206 {
3207 prefix = 1;
3208 i.prefixes -= 1;
3209 code16 ^= CODE16;
3210 }
3211 if (i.prefix[REX_PREFIX] != 0)
3212 {
3213 prefix++;
3214 i.prefixes -= 1;
3215 }
252b5132 3216
29b0f896
AM
3217 size = 4;
3218 if (code16)
3219 size = 2;
252b5132 3220
29b0f896
AM
3221 if (i.prefixes != 0 && !intel_syntax)
3222 as_warn (_("skipping prefixes on this instruction"));
252b5132 3223
29b0f896
AM
3224 /* 1 opcode; 2 segment; offset */
3225 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 3226
29b0f896
AM
3227 if (i.prefix[DATA_PREFIX] != 0)
3228 *p++ = DATA_PREFIX_OPCODE;
252b5132 3229
29b0f896
AM
3230 if (i.prefix[REX_PREFIX] != 0)
3231 *p++ = i.prefix[REX_PREFIX];
252b5132 3232
29b0f896
AM
3233 *p++ = i.tm.base_opcode;
3234 if (i.op[1].imms->X_op == O_constant)
3235 {
3236 offsetT n = i.op[1].imms->X_add_number;
252b5132 3237
29b0f896
AM
3238 if (size == 2
3239 && !fits_in_unsigned_word (n)
3240 && !fits_in_signed_word (n))
3241 {
3242 as_bad (_("16-bit jump out of range"));
3243 return;
3244 }
3245 md_number_to_chars (p, n, size);
3246 }
3247 else
3248 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3249 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3250 if (i.op[0].imms->X_op != O_constant)
3251 as_bad (_("can't handle non absolute segment in `%s'"),
3252 i.tm.name);
3253 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3254}
a217f122 3255
29b0f896
AM
3256static void
3257output_insn ()
3258{
2bbd9c25
JJ
3259 fragS *insn_start_frag;
3260 offsetT insn_start_off;
3261
29b0f896
AM
3262 /* Tie dwarf2 debug info to the address at the start of the insn.
3263 We can't do this after the insn has been output as the current
3264 frag may have been closed off. eg. by frag_var. */
3265 dwarf2_emit_insn (0);
3266
2bbd9c25
JJ
3267 insn_start_frag = frag_now;
3268 insn_start_off = frag_now_fix ();
3269
29b0f896
AM
3270 /* Output jumps. */
3271 if (i.tm.opcode_modifier & Jump)
3272 output_branch ();
3273 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3274 output_jump ();
3275 else if (i.tm.opcode_modifier & JumpInterSegment)
3276 output_interseg_jump ();
3277 else
3278 {
3279 /* Output normal instructions here. */
3280 char *p;
3281 unsigned char *q;
252b5132 3282
0f10071e
ML
3283 /* All opcodes on i386 have either 1 or 2 bytes, PadLock instructions
3284 have 3 bytes. We may use one more higher byte to specify a prefix
3285 the instruction requires. */
3286 if ((i.tm.cpu_flags & CpuPadLock) != 0
3287 && (i.tm.base_opcode & 0xff000000) != 0)
3288 {
3289 unsigned int prefix;
3290 prefix = (i.tm.base_opcode >> 24) & 0xff;
3291
3292 if (prefix != REPE_PREFIX_OPCODE
3293 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3294 add_prefix (prefix);
3295 }
3296 else
3297 if ((i.tm.cpu_flags & CpuPadLock) == 0
3298 && (i.tm.base_opcode & 0xff0000) != 0)
3299 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
252b5132 3300
29b0f896
AM
3301 /* The prefix bytes. */
3302 for (q = i.prefix;
3303 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3304 q++)
3305 {
3306 if (*q)
3307 {
3308 p = frag_more (1);
3309 md_number_to_chars (p, (valueT) *q, 1);
3310 }
3311 }
252b5132 3312
29b0f896
AM
3313 /* Now the opcode; be careful about word order here! */
3314 if (fits_in_unsigned_byte (i.tm.base_opcode))
3315 {
3316 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3317 }
3318 else
3319 {
0f10071e
ML
3320 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3321 {
3322 p = frag_more (3);
3323 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3324 }
3325 else
3326 p = frag_more (2);
3327
29b0f896
AM
3328 /* Put out high byte first: can't use md_number_to_chars! */
3329 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3330 *p = i.tm.base_opcode & 0xff;
3331 }
3e73aa7c 3332
29b0f896
AM
3333 /* Now the modrm byte and sib byte (if present). */
3334 if (i.tm.opcode_modifier & Modrm)
3335 {
3336 p = frag_more (1);
3337 md_number_to_chars (p,
3338 (valueT) (i.rm.regmem << 0
3339 | i.rm.reg << 3
3340 | i.rm.mode << 6),
3341 1);
3342 /* If i.rm.regmem == ESP (4)
3343 && i.rm.mode != (Register mode)
3344 && not 16 bit
3345 ==> need second modrm byte. */
3346 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3347 && i.rm.mode != 3
3348 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3349 {
3350 p = frag_more (1);
3351 md_number_to_chars (p,
3352 (valueT) (i.sib.base << 0
3353 | i.sib.index << 3
3354 | i.sib.scale << 6),
3355 1);
3356 }
3357 }
3e73aa7c 3358
29b0f896 3359 if (i.disp_operands)
2bbd9c25 3360 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 3361
29b0f896 3362 if (i.imm_operands)
2bbd9c25 3363 output_imm (insn_start_frag, insn_start_off);
29b0f896 3364 }
252b5132 3365
29b0f896
AM
3366#ifdef DEBUG386
3367 if (flag_debug)
3368 {
3369 pi (line, &i);
3370 }
3371#endif /* DEBUG386 */
3372}
252b5132 3373
29b0f896 3374static void
2bbd9c25
JJ
3375output_disp (insn_start_frag, insn_start_off)
3376 fragS *insn_start_frag;
3377 offsetT insn_start_off;
29b0f896
AM
3378{
3379 char *p;
3380 unsigned int n;
252b5132 3381
29b0f896
AM
3382 for (n = 0; n < i.operands; n++)
3383 {
3384 if (i.types[n] & Disp)
3385 {
3386 if (i.op[n].disps->X_op == O_constant)
3387 {
3388 int size;
3389 offsetT val;
252b5132 3390
29b0f896
AM
3391 size = 4;
3392 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3393 {
3394 size = 2;
3395 if (i.types[n] & Disp8)
3396 size = 1;
3397 if (i.types[n] & Disp64)
3398 size = 8;
3399 }
3400 val = offset_in_range (i.op[n].disps->X_add_number,
3401 size);
3402 p = frag_more (size);
3403 md_number_to_chars (p, val, size);
3404 }
3405 else
3406 {
f86103b7 3407 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3408 int size = 4;
3409 int sign = 0;
3410 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3411
3412 /* The PC relative address is computed relative
3413 to the instruction boundary, so in case immediate
3414 fields follows, we need to adjust the value. */
3415 if (pcrel && i.imm_operands)
3416 {
3417 int imm_size = 4;
3418 unsigned int n1;
252b5132 3419
29b0f896
AM
3420 for (n1 = 0; n1 < i.operands; n1++)
3421 if (i.types[n1] & Imm)
252b5132 3422 {
29b0f896 3423 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
252b5132 3424 {
29b0f896
AM
3425 imm_size = 2;
3426 if (i.types[n1] & (Imm8 | Imm8S))
3427 imm_size = 1;
3428 if (i.types[n1] & Imm64)
3429 imm_size = 8;
252b5132 3430 }
29b0f896 3431 break;
252b5132 3432 }
29b0f896
AM
3433 /* We should find the immediate. */
3434 if (n1 == i.operands)
3435 abort ();
3436 i.op[n].disps->X_add_number -= imm_size;
3437 }
520dc8e8 3438
29b0f896
AM
3439 if (i.types[n] & Disp32S)
3440 sign = 1;
3e73aa7c 3441
29b0f896
AM
3442 if (i.types[n] & (Disp16 | Disp64))
3443 {
3444 size = 2;
3445 if (i.types[n] & Disp64)
3446 size = 8;
3447 }
520dc8e8 3448
29b0f896 3449 p = frag_more (size);
2bbd9c25 3450 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
2bbd9c25
JJ
3451 if (reloc_type == BFD_RELOC_32
3452 && GOT_symbol
3453 && GOT_symbol == i.op[n].disps->X_add_symbol
3454 && (i.op[n].disps->X_op == O_symbol
3455 || (i.op[n].disps->X_op == O_add
3456 && ((symbol_get_value_expression
3457 (i.op[n].disps->X_op_symbol)->X_op)
3458 == O_subtract))))
3459 {
3460 offsetT add;
3461
3462 if (insn_start_frag == frag_now)
3463 add = (p - frag_now->fr_literal) - insn_start_off;
3464 else
3465 {
3466 fragS *fr;
3467
3468 add = insn_start_frag->fr_fix - insn_start_off;
3469 for (fr = insn_start_frag->fr_next;
3470 fr && fr != frag_now; fr = fr->fr_next)
3471 add += fr->fr_fix;
3472 add += p - frag_now->fr_literal;
3473 }
3474
3475 /* We don't support dynamic linking on x86-64 yet. */
3476 if (flag_code == CODE_64BIT)
3477 abort ();
3478 reloc_type = BFD_RELOC_386_GOTPC;
3479 i.op[n].disps->X_add_number += add;
3480 }
062cd5e7 3481 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2bbd9c25 3482 i.op[n].disps, pcrel, reloc_type);
29b0f896
AM
3483 }
3484 }
3485 }
3486}
252b5132 3487
29b0f896 3488static void
2bbd9c25
JJ
3489output_imm (insn_start_frag, insn_start_off)
3490 fragS *insn_start_frag;
3491 offsetT insn_start_off;
29b0f896
AM
3492{
3493 char *p;
3494 unsigned int n;
252b5132 3495
29b0f896
AM
3496 for (n = 0; n < i.operands; n++)
3497 {
3498 if (i.types[n] & Imm)
3499 {
3500 if (i.op[n].imms->X_op == O_constant)
3501 {
3502 int size;
3503 offsetT val;
b4cac588 3504
29b0f896
AM
3505 size = 4;
3506 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3507 {
3508 size = 2;
3509 if (i.types[n] & (Imm8 | Imm8S))
3510 size = 1;
3511 else if (i.types[n] & Imm64)
3512 size = 8;
3513 }
3514 val = offset_in_range (i.op[n].imms->X_add_number,
3515 size);
3516 p = frag_more (size);
3517 md_number_to_chars (p, val, size);
3518 }
3519 else
3520 {
3521 /* Not absolute_section.
3522 Need a 32-bit fixup (don't support 8bit
3523 non-absolute imms). Try to support other
3524 sizes ... */
f86103b7 3525 enum bfd_reloc_code_real reloc_type;
29b0f896
AM
3526 int size = 4;
3527 int sign = 0;
3528
3529 if ((i.types[n] & (Imm32S))
3530 && i.suffix == QWORD_MNEM_SUFFIX)
3531 sign = 1;
3532 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3533 {
3534 size = 2;
3535 if (i.types[n] & (Imm8 | Imm8S))
3536 size = 1;
3537 if (i.types[n] & Imm64)
3538 size = 8;
3539 }
520dc8e8 3540
29b0f896
AM
3541 p = frag_more (size);
3542 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 3543
2bbd9c25
JJ
3544 /* This is tough to explain. We end up with this one if we
3545 * have operands that look like
3546 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3547 * obtain the absolute address of the GOT, and it is strongly
3548 * preferable from a performance point of view to avoid using
3549 * a runtime relocation for this. The actual sequence of
3550 * instructions often look something like:
3551 *
3552 * call .L66
3553 * .L66:
3554 * popl %ebx
3555 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3556 *
3557 * The call and pop essentially return the absolute address
3558 * of the label .L66 and store it in %ebx. The linker itself
3559 * will ultimately change the first operand of the addl so
3560 * that %ebx points to the GOT, but to keep things simple, the
3561 * .o file must have this operand set so that it generates not
3562 * the absolute address of .L66, but the absolute address of
3563 * itself. This allows the linker itself simply treat a GOTPC
3564 * relocation as asking for a pcrel offset to the GOT to be
3565 * added in, and the addend of the relocation is stored in the
3566 * operand field for the instruction itself.
3567 *
3568 * Our job here is to fix the operand so that it would add
3569 * the correct offset so that %ebx would point to itself. The
3570 * thing that is tricky is that .-.L66 will point to the
3571 * beginning of the instruction, so we need to further modify
3572 * the operand so that it will point to itself. There are
3573 * other cases where you have something like:
3574 *
3575 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3576 *
3577 * and here no correction would be required. Internally in
3578 * the assembler we treat operands of this form as not being
3579 * pcrel since the '.' is explicitly mentioned, and I wonder
3580 * whether it would simplify matters to do it this way. Who
3581 * knows. In earlier versions of the PIC patches, the
3582 * pcrel_adjust field was used to store the correction, but
3583 * since the expression is not pcrel, I felt it would be
3584 * confusing to do it this way. */
3585
29b0f896
AM
3586 if (reloc_type == BFD_RELOC_32
3587 && GOT_symbol
3588 && GOT_symbol == i.op[n].imms->X_add_symbol
3589 && (i.op[n].imms->X_op == O_symbol
3590 || (i.op[n].imms->X_op == O_add
3591 && ((symbol_get_value_expression
3592 (i.op[n].imms->X_op_symbol)->X_op)
3593 == O_subtract))))
3594 {
2bbd9c25
JJ
3595 offsetT add;
3596
3597 if (insn_start_frag == frag_now)
3598 add = (p - frag_now->fr_literal) - insn_start_off;
3599 else
3600 {
3601 fragS *fr;
3602
3603 add = insn_start_frag->fr_fix - insn_start_off;
3604 for (fr = insn_start_frag->fr_next;
3605 fr && fr != frag_now; fr = fr->fr_next)
3606 add += fr->fr_fix;
3607 add += p - frag_now->fr_literal;
3608 }
3609
29b0f896
AM
3610 /* We don't support dynamic linking on x86-64 yet. */
3611 if (flag_code == CODE_64BIT)
3612 abort ();
3613 reloc_type = BFD_RELOC_386_GOTPC;
2bbd9c25 3614 i.op[n].imms->X_add_number += add;
29b0f896 3615 }
29b0f896
AM
3616 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3617 i.op[n].imms, 0, reloc_type);
3618 }
3619 }
3620 }
252b5132
RH
3621}
3622\f
f3c180ae 3623#ifndef LEX_AT
f86103b7 3624static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
f3c180ae
AM
3625
3626/* Parse operands of the form
3627 <symbol>@GOTOFF+<nnn>
3628 and similar .plt or .got references.
3629
3630 If we find one, set up the correct relocation in RELOC and copy the
3631 input string, minus the `@GOTOFF' into a malloc'd buffer for
3632 parsing by the calling routine. Return this buffer, and if ADJUST
3633 is non-null set it to the length of the string we removed from the
3634 input line. Otherwise return NULL. */
3635static char *
3636lex_got (reloc, adjust)
f86103b7 3637 enum bfd_reloc_code_real *reloc;
f3c180ae
AM
3638 int *adjust;
3639{
3640 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3641 static const struct {
3642 const char *str;
f86103b7 3643 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
f3c180ae 3644 } gotrel[] = {
13ae64f3
JJ
3645 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3646 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3647 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
bffbf940 3648 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
13ae64f3 3649 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
bffbf940
JJ
3650 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3651 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3652 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
13ae64f3 3653 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
bffbf940 3654 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
37e55690
JJ
3655 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3656 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
13ae64f3 3657 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
f3c180ae
AM
3658 };
3659 char *cp;
3660 unsigned int j;
3661
3662 for (cp = input_line_pointer; *cp != '@'; cp++)
3663 if (is_end_of_line[(unsigned char) *cp])
3664 return NULL;
3665
3666 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3667 {
3668 int len;
3669
3670 len = strlen (gotrel[j].str);
28f81592 3671 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae
AM
3672 {
3673 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3674 {
28f81592
AM
3675 int first, second;
3676 char *tmpbuf, *past_reloc;
f3c180ae
AM
3677
3678 *reloc = gotrel[j].rel[(unsigned int) flag_code];
28f81592
AM
3679 if (adjust)
3680 *adjust = len;
f3c180ae
AM
3681
3682 if (GOT_symbol == NULL)
3683 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3684
3685 /* Replace the relocation token with ' ', so that
3686 errors like foo@GOTOFF1 will be detected. */
28f81592
AM
3687
3688 /* The length of the first part of our input line. */
f3c180ae 3689 first = cp - input_line_pointer;
28f81592
AM
3690
3691 /* The second part goes from after the reloc token until
3692 (and including) an end_of_line char. Don't use strlen
3693 here as the end_of_line char may not be a NUL. */
3694 past_reloc = cp + 1 + len;
3695 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3696 ;
3697 second = cp - past_reloc;
3698
3699 /* Allocate and copy string. The trailing NUL shouldn't
3700 be necessary, but be safe. */
3701 tmpbuf = xmalloc (first + second + 2);
f3c180ae
AM
3702 memcpy (tmpbuf, input_line_pointer, first);
3703 tmpbuf[first] = ' ';
28f81592
AM
3704 memcpy (tmpbuf + first + 1, past_reloc, second);
3705 tmpbuf[first + second + 1] = '\0';
f3c180ae
AM
3706 return tmpbuf;
3707 }
3708
3709 as_bad (_("@%s reloc is not supported in %s bit mode"),
3710 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3711 return NULL;
3712 }
3713 }
3714
3715 /* Might be a symbol version string. Don't as_bad here. */
3716 return NULL;
3717}
3718
3719/* x86_cons_fix_new is called via the expression parsing code when a
3720 reloc is needed. We use this hook to get the correct .got reloc. */
f86103b7 3721static enum bfd_reloc_code_real got_reloc = NO_RELOC;
f3c180ae
AM
3722
3723void
3724x86_cons_fix_new (frag, off, len, exp)
3725 fragS *frag;
3726 unsigned int off;
3727 unsigned int len;
3728 expressionS *exp;
3729{
f86103b7 3730 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
f3c180ae
AM
3731 got_reloc = NO_RELOC;
3732 fix_new_exp (frag, off, len, exp, 0, r);
3733}
3734
3735void
3736x86_cons (exp, size)
3737 expressionS *exp;
3738 int size;
3739{
3740 if (size == 4)
3741 {
3742 /* Handle @GOTOFF and the like in an expression. */
3743 char *save;
3744 char *gotfree_input_line;
3745 int adjust;
3746
3747 save = input_line_pointer;
3748 gotfree_input_line = lex_got (&got_reloc, &adjust);
3749 if (gotfree_input_line)
3750 input_line_pointer = gotfree_input_line;
3751
3752 expression (exp);
3753
3754 if (gotfree_input_line)
3755 {
3756 /* expression () has merrily parsed up to the end of line,
3757 or a comma - in the wrong buffer. Transfer how far
3758 input_line_pointer has moved to the right buffer. */
3759 input_line_pointer = (save
3760 + (input_line_pointer - gotfree_input_line)
3761 + adjust);
3762 free (gotfree_input_line);
3763 }
3764 }
3765 else
3766 expression (exp);
3767}
3768#endif
3769
6482c264
NC
3770#ifdef TE_PE
3771
6482c264
NC
3772void
3773x86_pe_cons_fix_new (frag, off, len, exp)
3774 fragS *frag;
3775 unsigned int off;
3776 unsigned int len;
3777 expressionS *exp;
3778{
3779 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3780
3781 if (exp->X_op == O_secrel)
3782 {
3783 exp->X_op = O_symbol;
3784 r = BFD_RELOC_32_SECREL;
3785 }
3786
3787 fix_new_exp (frag, off, len, exp, 0, r);
3788}
3789
3790static void
3791pe_directive_secrel (dummy)
3792 int dummy ATTRIBUTE_UNUSED;
3793{
3794 expressionS exp;
3795
3796 do
3797 {
3798 expression (&exp);
3799 if (exp.X_op == O_symbol)
3800 exp.X_op = O_secrel;
3801
3802 emit_expr (&exp, 4);
3803 }
3804 while (*input_line_pointer++ == ',');
3805
3806 input_line_pointer--;
3807 demand_empty_rest_of_line ();
3808}
3809
3810#endif
3811
252b5132
RH
3812static int i386_immediate PARAMS ((char *));
3813
3814static int
3815i386_immediate (imm_start)
3816 char *imm_start;
3817{
3818 char *save_input_line_pointer;
f3c180ae
AM
3819#ifndef LEX_AT
3820 char *gotfree_input_line;
3821#endif
252b5132 3822 segT exp_seg = 0;
47926f60 3823 expressionS *exp;
252b5132
RH
3824
3825 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3826 {
d0b47220 3827 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
3828 return 0;
3829 }
3830
3831 exp = &im_expressions[i.imm_operands++];
520dc8e8 3832 i.op[this_operand].imms = exp;
252b5132
RH
3833
3834 if (is_space_char (*imm_start))
3835 ++imm_start;
3836
3837 save_input_line_pointer = input_line_pointer;
3838 input_line_pointer = imm_start;
3839
3840#ifndef LEX_AT
f3c180ae
AM
3841 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3842 if (gotfree_input_line)
3843 input_line_pointer = gotfree_input_line;
252b5132
RH
3844#endif
3845
3846 exp_seg = expression (exp);
3847
83183c0c 3848 SKIP_WHITESPACE ();
252b5132 3849 if (*input_line_pointer)
f3c180ae 3850 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
3851
3852 input_line_pointer = save_input_line_pointer;
f3c180ae
AM
3853#ifndef LEX_AT
3854 if (gotfree_input_line)
3855 free (gotfree_input_line);
3856#endif
252b5132 3857
2daf4fd8 3858 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 3859 {
47926f60 3860 /* Missing or bad expr becomes absolute 0. */
d0b47220 3861 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 3862 imm_start);
252b5132
RH
3863 exp->X_op = O_constant;
3864 exp->X_add_number = 0;
3865 exp->X_add_symbol = (symbolS *) 0;
3866 exp->X_op_symbol = (symbolS *) 0;
252b5132 3867 }
3e73aa7c 3868 else if (exp->X_op == O_constant)
252b5132 3869 {
47926f60 3870 /* Size it properly later. */
3e73aa7c
JH
3871 i.types[this_operand] |= Imm64;
3872 /* If BFD64, sign extend val. */
3873 if (!use_rela_relocations)
3874 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3875 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 3876 }
4c63da97 3877#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 3878 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 3879 && exp_seg != absolute_section
47926f60 3880 && exp_seg != text_section
24eab124
AM
3881 && exp_seg != data_section
3882 && exp_seg != bss_section
3883 && exp_seg != undefined_section
f86103b7 3884 && !bfd_is_com_section (exp_seg))
252b5132 3885 {
d0b47220 3886 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
3887 return 0;
3888 }
3889#endif
3890 else
3891 {
3892 /* This is an address. The size of the address will be
24eab124 3893 determined later, depending on destination register,
3e73aa7c
JH
3894 suffix, or the default for the section. */
3895 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
252b5132
RH
3896 }
3897
3898 return 1;
3899}
3900
551c1ca1 3901static char *i386_scale PARAMS ((char *));
252b5132 3902
551c1ca1 3903static char *
252b5132
RH
3904i386_scale (scale)
3905 char *scale;
3906{
551c1ca1
AM
3907 offsetT val;
3908 char *save = input_line_pointer;
252b5132 3909
551c1ca1
AM
3910 input_line_pointer = scale;
3911 val = get_absolute_expression ();
3912
3913 switch (val)
252b5132 3914 {
551c1ca1
AM
3915 case 0:
3916 case 1:
252b5132
RH
3917 i.log2_scale_factor = 0;
3918 break;
551c1ca1 3919 case 2:
252b5132
RH
3920 i.log2_scale_factor = 1;
3921 break;
551c1ca1 3922 case 4:
252b5132
RH
3923 i.log2_scale_factor = 2;
3924 break;
551c1ca1 3925 case 8:
252b5132
RH
3926 i.log2_scale_factor = 3;
3927 break;
3928 default:
252b5132 3929 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 3930 scale);
551c1ca1
AM
3931 input_line_pointer = save;
3932 return NULL;
252b5132 3933 }
29b0f896 3934 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
3935 {
3936 as_warn (_("scale factor of %d without an index register"),
24eab124 3937 1 << i.log2_scale_factor);
252b5132
RH
3938#if SCALE1_WHEN_NO_INDEX
3939 i.log2_scale_factor = 0;
3940#endif
3941 }
551c1ca1
AM
3942 scale = input_line_pointer;
3943 input_line_pointer = save;
3944 return scale;
252b5132
RH
3945}
3946
3947static int i386_displacement PARAMS ((char *, char *));
3948
3949static int
3950i386_displacement (disp_start, disp_end)
3951 char *disp_start;
3952 char *disp_end;
3953{
29b0f896 3954 expressionS *exp;
252b5132
RH
3955 segT exp_seg = 0;
3956 char *save_input_line_pointer;
f3c180ae
AM
3957#ifndef LEX_AT
3958 char *gotfree_input_line;
3959#endif
252b5132
RH
3960 int bigdisp = Disp32;
3961
3e73aa7c 3962 if (flag_code == CODE_64BIT)
7ecd2f8b 3963 {
29b0f896
AM
3964 if (i.prefix[ADDR_PREFIX] == 0)
3965 bigdisp = Disp64;
7ecd2f8b
JH
3966 }
3967 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3968 bigdisp = Disp16;
252b5132
RH
3969 i.types[this_operand] |= bigdisp;
3970
3971 exp = &disp_expressions[i.disp_operands];
520dc8e8 3972 i.op[this_operand].disps = exp;
252b5132
RH
3973 i.disp_operands++;
3974 save_input_line_pointer = input_line_pointer;
3975 input_line_pointer = disp_start;
3976 END_STRING_AND_SAVE (disp_end);
3977
3978#ifndef GCC_ASM_O_HACK
3979#define GCC_ASM_O_HACK 0
3980#endif
3981#if GCC_ASM_O_HACK
3982 END_STRING_AND_SAVE (disp_end + 1);
3983 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 3984 && displacement_string_end[-1] == '+')
252b5132
RH
3985 {
3986 /* This hack is to avoid a warning when using the "o"
24eab124
AM
3987 constraint within gcc asm statements.
3988 For instance:
3989
3990 #define _set_tssldt_desc(n,addr,limit,type) \
3991 __asm__ __volatile__ ( \
3992 "movw %w2,%0\n\t" \
3993 "movw %w1,2+%0\n\t" \
3994 "rorl $16,%1\n\t" \
3995 "movb %b1,4+%0\n\t" \
3996 "movb %4,5+%0\n\t" \
3997 "movb $0,6+%0\n\t" \
3998 "movb %h1,7+%0\n\t" \
3999 "rorl $16,%1" \
4000 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4001
4002 This works great except that the output assembler ends
4003 up looking a bit weird if it turns out that there is
4004 no offset. You end up producing code that looks like:
4005
4006 #APP
4007 movw $235,(%eax)
4008 movw %dx,2+(%eax)
4009 rorl $16,%edx
4010 movb %dl,4+(%eax)
4011 movb $137,5+(%eax)
4012 movb $0,6+(%eax)
4013 movb %dh,7+(%eax)
4014 rorl $16,%edx
4015 #NO_APP
4016
47926f60 4017 So here we provide the missing zero. */
24eab124
AM
4018
4019 *displacement_string_end = '0';
252b5132
RH
4020 }
4021#endif
4022#ifndef LEX_AT
f3c180ae
AM
4023 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4024 if (gotfree_input_line)
4025 input_line_pointer = gotfree_input_line;
252b5132
RH
4026#endif
4027
24eab124 4028 exp_seg = expression (exp);
252b5132 4029
636c26b0
AM
4030 SKIP_WHITESPACE ();
4031 if (*input_line_pointer)
4032 as_bad (_("junk `%s' after expression"), input_line_pointer);
4033#if GCC_ASM_O_HACK
4034 RESTORE_END_STRING (disp_end + 1);
4035#endif
4036 RESTORE_END_STRING (disp_end);
4037 input_line_pointer = save_input_line_pointer;
4038#ifndef LEX_AT
4039 if (gotfree_input_line)
4040 free (gotfree_input_line);
4041#endif
4042
24eab124
AM
4043 /* We do this to make sure that the section symbol is in
4044 the symbol table. We will ultimately change the relocation
47926f60 4045 to be relative to the beginning of the section. */
1ae12ab7
AM
4046 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4047 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
24eab124 4048 {
636c26b0
AM
4049 if (exp->X_op != O_symbol)
4050 {
4051 as_bad (_("bad expression used with @%s"),
4052 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4053 ? "GOTPCREL"
4054 : "GOTOFF"));
4055 return 0;
4056 }
4057
e5cb08ac 4058 if (S_IS_LOCAL (exp->X_add_symbol)
24eab124
AM
4059 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4060 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
4061 exp->X_op = O_subtract;
4062 exp->X_op_symbol = GOT_symbol;
1ae12ab7 4063 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 4064 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
23df1078 4065 else
29b0f896 4066 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 4067 }
252b5132 4068
2daf4fd8
AM
4069 if (exp->X_op == O_absent || exp->X_op == O_big)
4070 {
47926f60 4071 /* Missing or bad expr becomes absolute 0. */
d0b47220 4072 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
4073 disp_start);
4074 exp->X_op = O_constant;
4075 exp->X_add_number = 0;
4076 exp->X_add_symbol = (symbolS *) 0;
4077 exp->X_op_symbol = (symbolS *) 0;
4078 }
4079
4c63da97 4080#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 4081 if (exp->X_op != O_constant
45288df1 4082 && OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 4083 && exp_seg != absolute_section
45288df1
AM
4084 && exp_seg != text_section
4085 && exp_seg != data_section
4086 && exp_seg != bss_section
31312f95 4087 && exp_seg != undefined_section
f86103b7 4088 && !bfd_is_com_section (exp_seg))
24eab124 4089 {
d0b47220 4090 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
24eab124
AM
4091 return 0;
4092 }
252b5132 4093#endif
3e73aa7c
JH
4094 else if (flag_code == CODE_64BIT)
4095 i.types[this_operand] |= Disp32S | Disp32;
252b5132
RH
4096 return 1;
4097}
4098
e5cb08ac 4099static int i386_index_check PARAMS ((const char *));
252b5132 4100
eecb386c 4101/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
4102 Return 1 on success, 0 on a failure. */
4103
252b5132 4104static int
eecb386c
AM
4105i386_index_check (operand_string)
4106 const char *operand_string;
252b5132 4107{
3e73aa7c 4108 int ok;
24eab124 4109#if INFER_ADDR_PREFIX
eecb386c
AM
4110 int fudged = 0;
4111
24eab124
AM
4112 tryprefix:
4113#endif
3e73aa7c 4114 ok = 1;
20f0a1fc
NC
4115 if (flag_code == CODE_64BIT)
4116 {
4117 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4118
4119 if ((i.base_reg
4120 && ((i.base_reg->reg_type & RegXX) == 0)
4121 && (i.base_reg->reg_type != BaseIndex
4122 || i.index_reg))
4123 || (i.index_reg
4124 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4125 != (RegXX | BaseIndex))))
4126 ok = 0;
3e73aa7c
JH
4127 }
4128 else
4129 {
4130 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4131 {
4132 /* 16bit checks. */
4133 if ((i.base_reg
29b0f896
AM
4134 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4135 != (Reg16 | BaseIndex)))
3e73aa7c 4136 || (i.index_reg
29b0f896
AM
4137 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4138 != (Reg16 | BaseIndex))
4139 || !(i.base_reg
4140 && i.base_reg->reg_num < 6
4141 && i.index_reg->reg_num >= 6
4142 && i.log2_scale_factor == 0))))
3e73aa7c
JH
4143 ok = 0;
4144 }
4145 else
e5cb08ac 4146 {
3e73aa7c
JH
4147 /* 32bit checks. */
4148 if ((i.base_reg
4149 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4150 || (i.index_reg
29b0f896
AM
4151 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4152 != (Reg32 | BaseIndex))))
e5cb08ac 4153 ok = 0;
3e73aa7c
JH
4154 }
4155 }
4156 if (!ok)
24eab124
AM
4157 {
4158#if INFER_ADDR_PREFIX
20f0a1fc 4159 if (i.prefix[ADDR_PREFIX] == 0)
24eab124
AM
4160 {
4161 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4162 i.prefixes += 1;
b23bac36
AM
4163 /* Change the size of any displacement too. At most one of
4164 Disp16 or Disp32 is set.
4165 FIXME. There doesn't seem to be any real need for separate
4166 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 4167 Removing them would probably clean up the code quite a lot. */
20f0a1fc 4168 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
29b0f896 4169 i.types[this_operand] ^= (Disp16 | Disp32);
eecb386c 4170 fudged = 1;
24eab124
AM
4171 goto tryprefix;
4172 }
eecb386c
AM
4173 if (fudged)
4174 as_bad (_("`%s' is not a valid base/index expression"),
4175 operand_string);
4176 else
c388dee8 4177#endif
eecb386c
AM
4178 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4179 operand_string,
3e73aa7c 4180 flag_code_names[flag_code]);
24eab124 4181 }
20f0a1fc 4182 return ok;
24eab124 4183}
252b5132 4184
252b5132 4185/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 4186 on error. */
252b5132 4187
252b5132
RH
4188static int
4189i386_operand (operand_string)
4190 char *operand_string;
4191{
af6bdddf
AM
4192 const reg_entry *r;
4193 char *end_op;
24eab124 4194 char *op_string = operand_string;
252b5132 4195
24eab124 4196 if (is_space_char (*op_string))
252b5132
RH
4197 ++op_string;
4198
24eab124 4199 /* We check for an absolute prefix (differentiating,
47926f60 4200 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
4201 if (*op_string == ABSOLUTE_PREFIX)
4202 {
4203 ++op_string;
4204 if (is_space_char (*op_string))
4205 ++op_string;
4206 i.types[this_operand] |= JumpAbsolute;
4207 }
252b5132 4208
47926f60 4209 /* Check if operand is a register. */
af6bdddf
AM
4210 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4211 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 4212 {
24eab124
AM
4213 /* Check for a segment override by searching for ':' after a
4214 segment register. */
4215 op_string = end_op;
4216 if (is_space_char (*op_string))
4217 ++op_string;
4218 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4219 {
4220 switch (r->reg_num)
4221 {
4222 case 0:
4223 i.seg[i.mem_operands] = &es;
4224 break;
4225 case 1:
4226 i.seg[i.mem_operands] = &cs;
4227 break;
4228 case 2:
4229 i.seg[i.mem_operands] = &ss;
4230 break;
4231 case 3:
4232 i.seg[i.mem_operands] = &ds;
4233 break;
4234 case 4:
4235 i.seg[i.mem_operands] = &fs;
4236 break;
4237 case 5:
4238 i.seg[i.mem_operands] = &gs;
4239 break;
4240 }
252b5132 4241
24eab124 4242 /* Skip the ':' and whitespace. */
252b5132
RH
4243 ++op_string;
4244 if (is_space_char (*op_string))
24eab124 4245 ++op_string;
252b5132 4246
24eab124
AM
4247 if (!is_digit_char (*op_string)
4248 && !is_identifier_char (*op_string)
4249 && *op_string != '('
4250 && *op_string != ABSOLUTE_PREFIX)
4251 {
4252 as_bad (_("bad memory operand `%s'"), op_string);
4253 return 0;
4254 }
47926f60 4255 /* Handle case of %es:*foo. */
24eab124
AM
4256 if (*op_string == ABSOLUTE_PREFIX)
4257 {
4258 ++op_string;
4259 if (is_space_char (*op_string))
4260 ++op_string;
4261 i.types[this_operand] |= JumpAbsolute;
4262 }
4263 goto do_memory_reference;
4264 }
4265 if (*op_string)
4266 {
d0b47220 4267 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
4268 return 0;
4269 }
4270 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 4271 i.op[this_operand].regs = r;
24eab124
AM
4272 i.reg_operands++;
4273 }
af6bdddf
AM
4274 else if (*op_string == REGISTER_PREFIX)
4275 {
4276 as_bad (_("bad register name `%s'"), op_string);
4277 return 0;
4278 }
24eab124 4279 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 4280 {
24eab124
AM
4281 ++op_string;
4282 if (i.types[this_operand] & JumpAbsolute)
4283 {
d0b47220 4284 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
4285 return 0;
4286 }
4287 if (!i386_immediate (op_string))
4288 return 0;
4289 }
4290 else if (is_digit_char (*op_string)
4291 || is_identifier_char (*op_string)
e5cb08ac 4292 || *op_string == '(')
24eab124 4293 {
47926f60 4294 /* This is a memory reference of some sort. */
af6bdddf 4295 char *base_string;
252b5132 4296
47926f60 4297 /* Start and end of displacement string expression (if found). */
eecb386c
AM
4298 char *displacement_string_start;
4299 char *displacement_string_end;
252b5132 4300
24eab124 4301 do_memory_reference:
24eab124
AM
4302 if ((i.mem_operands == 1
4303 && (current_templates->start->opcode_modifier & IsString) == 0)
4304 || i.mem_operands == 2)
4305 {
4306 as_bad (_("too many memory references for `%s'"),
4307 current_templates->start->name);
4308 return 0;
4309 }
252b5132 4310
24eab124
AM
4311 /* Check for base index form. We detect the base index form by
4312 looking for an ')' at the end of the operand, searching
4313 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4314 after the '('. */
af6bdddf 4315 base_string = op_string + strlen (op_string);
c3332e24 4316
af6bdddf
AM
4317 --base_string;
4318 if (is_space_char (*base_string))
4319 --base_string;
252b5132 4320
47926f60 4321 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
4322 displacement_string_start = op_string;
4323 displacement_string_end = base_string + 1;
252b5132 4324
24eab124
AM
4325 if (*base_string == ')')
4326 {
af6bdddf 4327 char *temp_string;
24eab124
AM
4328 unsigned int parens_balanced = 1;
4329 /* We've already checked that the number of left & right ()'s are
47926f60 4330 equal, so this loop will not be infinite. */
24eab124
AM
4331 do
4332 {
4333 base_string--;
4334 if (*base_string == ')')
4335 parens_balanced++;
4336 if (*base_string == '(')
4337 parens_balanced--;
4338 }
4339 while (parens_balanced);
c3332e24 4340
af6bdddf 4341 temp_string = base_string;
c3332e24 4342
24eab124 4343 /* Skip past '(' and whitespace. */
252b5132
RH
4344 ++base_string;
4345 if (is_space_char (*base_string))
24eab124 4346 ++base_string;
252b5132 4347
af6bdddf
AM
4348 if (*base_string == ','
4349 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4350 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 4351 {
af6bdddf 4352 displacement_string_end = temp_string;
252b5132 4353
af6bdddf 4354 i.types[this_operand] |= BaseIndex;
252b5132 4355
af6bdddf 4356 if (i.base_reg)
24eab124 4357 {
24eab124
AM
4358 base_string = end_op;
4359 if (is_space_char (*base_string))
4360 ++base_string;
af6bdddf
AM
4361 }
4362
4363 /* There may be an index reg or scale factor here. */
4364 if (*base_string == ',')
4365 {
4366 ++base_string;
4367 if (is_space_char (*base_string))
4368 ++base_string;
4369
4370 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4371 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 4372 {
af6bdddf 4373 base_string = end_op;
24eab124
AM
4374 if (is_space_char (*base_string))
4375 ++base_string;
af6bdddf
AM
4376 if (*base_string == ',')
4377 {
4378 ++base_string;
4379 if (is_space_char (*base_string))
4380 ++base_string;
4381 }
e5cb08ac 4382 else if (*base_string != ')')
af6bdddf
AM
4383 {
4384 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4385 operand_string);
4386 return 0;
4387 }
24eab124 4388 }
af6bdddf 4389 else if (*base_string == REGISTER_PREFIX)
24eab124 4390 {
af6bdddf 4391 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
4392 return 0;
4393 }
252b5132 4394
47926f60 4395 /* Check for scale factor. */
551c1ca1 4396 if (*base_string != ')')
af6bdddf 4397 {
551c1ca1
AM
4398 char *end_scale = i386_scale (base_string);
4399
4400 if (!end_scale)
af6bdddf 4401 return 0;
24eab124 4402
551c1ca1 4403 base_string = end_scale;
af6bdddf
AM
4404 if (is_space_char (*base_string))
4405 ++base_string;
4406 if (*base_string != ')')
4407 {
4408 as_bad (_("expecting `)' after scale factor in `%s'"),
4409 operand_string);
4410 return 0;
4411 }
4412 }
4413 else if (!i.index_reg)
24eab124 4414 {
af6bdddf
AM
4415 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4416 *base_string);
24eab124
AM
4417 return 0;
4418 }
4419 }
af6bdddf 4420 else if (*base_string != ')')
24eab124 4421 {
af6bdddf
AM
4422 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4423 operand_string);
24eab124
AM
4424 return 0;
4425 }
c3332e24 4426 }
af6bdddf 4427 else if (*base_string == REGISTER_PREFIX)
c3332e24 4428 {
af6bdddf 4429 as_bad (_("bad register name `%s'"), base_string);
24eab124 4430 return 0;
c3332e24 4431 }
24eab124
AM
4432 }
4433
4434 /* If there's an expression beginning the operand, parse it,
4435 assuming displacement_string_start and
4436 displacement_string_end are meaningful. */
4437 if (displacement_string_start != displacement_string_end)
4438 {
4439 if (!i386_displacement (displacement_string_start,
4440 displacement_string_end))
4441 return 0;
4442 }
4443
4444 /* Special case for (%dx) while doing input/output op. */
4445 if (i.base_reg
4446 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4447 && i.index_reg == 0
4448 && i.log2_scale_factor == 0
4449 && i.seg[i.mem_operands] == 0
4450 && (i.types[this_operand] & Disp) == 0)
4451 {
4452 i.types[this_operand] = InOutPortReg;
4453 return 1;
4454 }
4455
eecb386c
AM
4456 if (i386_index_check (operand_string) == 0)
4457 return 0;
24eab124
AM
4458 i.mem_operands++;
4459 }
4460 else
ce8a8b2f
AM
4461 {
4462 /* It's not a memory operand; argh! */
24eab124
AM
4463 as_bad (_("invalid char %s beginning operand %d `%s'"),
4464 output_invalid (*op_string),
4465 this_operand + 1,
4466 op_string);
4467 return 0;
4468 }
47926f60 4469 return 1; /* Normal return. */
252b5132
RH
4470}
4471\f
ee7fcc42
AM
4472/* md_estimate_size_before_relax()
4473
4474 Called just before relax() for rs_machine_dependent frags. The x86
4475 assembler uses these frags to handle variable size jump
4476 instructions.
4477
4478 Any symbol that is now undefined will not become defined.
4479 Return the correct fr_subtype in the frag.
4480 Return the initial "guess for variable size of frag" to caller.
4481 The guess is actually the growth beyond the fixed part. Whatever
4482 we do to grow the fixed or variable part contributes to our
4483 returned value. */
4484
252b5132
RH
4485int
4486md_estimate_size_before_relax (fragP, segment)
29b0f896
AM
4487 fragS *fragP;
4488 segT segment;
252b5132 4489{
252b5132 4490 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
4491 check for un-relaxable symbols. On an ELF system, we can't relax
4492 an externally visible symbol, because it may be overridden by a
4493 shared library. */
4494 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 4495#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
31312f95
AM
4496 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4497 && (S_IS_EXTERNAL (fragP->fr_symbol)
4498 || S_IS_WEAK (fragP->fr_symbol)))
b98ef147
AM
4499#endif
4500 )
252b5132 4501 {
b98ef147
AM
4502 /* Symbol is undefined in this segment, or we need to keep a
4503 reloc so that weak symbols can be overridden. */
4504 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 4505 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
4506 unsigned char *opcode;
4507 int old_fr_fix;
f6af82bd 4508
ee7fcc42
AM
4509 if (fragP->fr_var != NO_RELOC)
4510 reloc_type = fragP->fr_var;
b98ef147 4511 else if (size == 2)
f6af82bd
AM
4512 reloc_type = BFD_RELOC_16_PCREL;
4513 else
4514 reloc_type = BFD_RELOC_32_PCREL;
252b5132 4515
ee7fcc42
AM
4516 old_fr_fix = fragP->fr_fix;
4517 opcode = (unsigned char *) fragP->fr_opcode;
4518
fddf5b5b 4519 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 4520 {
fddf5b5b
AM
4521 case UNCOND_JUMP:
4522 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 4523 opcode[0] = 0xe9;
252b5132 4524 fragP->fr_fix += size;
062cd5e7
AS
4525 fix_new (fragP, old_fr_fix, size,
4526 fragP->fr_symbol,
4527 fragP->fr_offset, 1,
4528 reloc_type);
252b5132
RH
4529 break;
4530
fddf5b5b 4531 case COND_JUMP86:
412167cb
AM
4532 if (size == 2
4533 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
4534 {
4535 /* Negate the condition, and branch past an
4536 unconditional jump. */
4537 opcode[0] ^= 1;
4538 opcode[1] = 3;
4539 /* Insert an unconditional jump. */
4540 opcode[2] = 0xe9;
4541 /* We added two extra opcode bytes, and have a two byte
4542 offset. */
4543 fragP->fr_fix += 2 + 2;
062cd5e7
AS
4544 fix_new (fragP, old_fr_fix + 2, 2,
4545 fragP->fr_symbol,
4546 fragP->fr_offset, 1,
4547 reloc_type);
fddf5b5b
AM
4548 break;
4549 }
4550 /* Fall through. */
4551
4552 case COND_JUMP:
412167cb
AM
4553 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4554 {
3e02c1cc
AM
4555 fixS *fixP;
4556
412167cb 4557 fragP->fr_fix += 1;
3e02c1cc
AM
4558 fixP = fix_new (fragP, old_fr_fix, 1,
4559 fragP->fr_symbol,
4560 fragP->fr_offset, 1,
4561 BFD_RELOC_8_PCREL);
4562 fixP->fx_signed = 1;
412167cb
AM
4563 break;
4564 }
93c2a809 4565
24eab124 4566 /* This changes the byte-displacement jump 0x7N
fddf5b5b 4567 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 4568 opcode[1] = opcode[0] + 0x10;
f6af82bd 4569 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
4570 /* We've added an opcode byte. */
4571 fragP->fr_fix += 1 + size;
062cd5e7
AS
4572 fix_new (fragP, old_fr_fix + 1, size,
4573 fragP->fr_symbol,
4574 fragP->fr_offset, 1,
4575 reloc_type);
252b5132 4576 break;
fddf5b5b
AM
4577
4578 default:
4579 BAD_CASE (fragP->fr_subtype);
4580 break;
252b5132
RH
4581 }
4582 frag_wane (fragP);
ee7fcc42 4583 return fragP->fr_fix - old_fr_fix;
252b5132 4584 }
93c2a809 4585
93c2a809
AM
4586 /* Guess size depending on current relax state. Initially the relax
4587 state will correspond to a short jump and we return 1, because
4588 the variable part of the frag (the branch offset) is one byte
4589 long. However, we can relax a section more than once and in that
4590 case we must either set fr_subtype back to the unrelaxed state,
4591 or return the value for the appropriate branch. */
4592 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
4593}
4594
47926f60
KH
4595/* Called after relax() is finished.
4596
4597 In: Address of frag.
4598 fr_type == rs_machine_dependent.
4599 fr_subtype is what the address relaxed to.
4600
4601 Out: Any fixSs and constants are set up.
4602 Caller will turn frag into a ".space 0". */
4603
252b5132
RH
4604void
4605md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
4606 bfd *abfd ATTRIBUTE_UNUSED;
4607 segT sec ATTRIBUTE_UNUSED;
29b0f896 4608 fragS *fragP;
252b5132 4609{
29b0f896 4610 unsigned char *opcode;
252b5132 4611 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
4612 offsetT target_address;
4613 offsetT opcode_address;
252b5132 4614 unsigned int extension = 0;
847f7ad4 4615 offsetT displacement_from_opcode_start;
252b5132
RH
4616
4617 opcode = (unsigned char *) fragP->fr_opcode;
4618
47926f60 4619 /* Address we want to reach in file space. */
252b5132 4620 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 4621
47926f60 4622 /* Address opcode resides at in file space. */
252b5132
RH
4623 opcode_address = fragP->fr_address + fragP->fr_fix;
4624
47926f60 4625 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
4626 displacement_from_opcode_start = target_address - opcode_address;
4627
fddf5b5b 4628 if ((fragP->fr_subtype & BIG) == 0)
252b5132 4629 {
47926f60
KH
4630 /* Don't have to change opcode. */
4631 extension = 1; /* 1 opcode + 1 displacement */
252b5132 4632 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
4633 }
4634 else
4635 {
4636 if (no_cond_jump_promotion
4637 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4638 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
252b5132 4639
fddf5b5b
AM
4640 switch (fragP->fr_subtype)
4641 {
4642 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4643 extension = 4; /* 1 opcode + 4 displacement */
4644 opcode[0] = 0xe9;
4645 where_to_put_displacement = &opcode[1];
4646 break;
252b5132 4647
fddf5b5b
AM
4648 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4649 extension = 2; /* 1 opcode + 2 displacement */
4650 opcode[0] = 0xe9;
4651 where_to_put_displacement = &opcode[1];
4652 break;
252b5132 4653
fddf5b5b
AM
4654 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4655 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4656 extension = 5; /* 2 opcode + 4 displacement */
4657 opcode[1] = opcode[0] + 0x10;
4658 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4659 where_to_put_displacement = &opcode[2];
4660 break;
252b5132 4661
fddf5b5b
AM
4662 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4663 extension = 3; /* 2 opcode + 2 displacement */
4664 opcode[1] = opcode[0] + 0x10;
4665 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4666 where_to_put_displacement = &opcode[2];
4667 break;
252b5132 4668
fddf5b5b
AM
4669 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4670 extension = 4;
4671 opcode[0] ^= 1;
4672 opcode[1] = 3;
4673 opcode[2] = 0xe9;
4674 where_to_put_displacement = &opcode[3];
4675 break;
4676
4677 default:
4678 BAD_CASE (fragP->fr_subtype);
4679 break;
4680 }
252b5132 4681 }
fddf5b5b 4682
47926f60 4683 /* Now put displacement after opcode. */
252b5132
RH
4684 md_number_to_chars ((char *) where_to_put_displacement,
4685 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 4686 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
4687 fragP->fr_fix += extension;
4688}
4689\f
47926f60
KH
4690/* Size of byte displacement jmp. */
4691int md_short_jump_size = 2;
4692
4693/* Size of dword displacement jmp. */
4694int md_long_jump_size = 5;
252b5132 4695
47926f60
KH
4696/* Size of relocation record. */
4697const int md_reloc_size = 8;
252b5132
RH
4698
4699void
4700md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4701 char *ptr;
4702 addressT from_addr, to_addr;
ab9da554
ILT
4703 fragS *frag ATTRIBUTE_UNUSED;
4704 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4705{
847f7ad4 4706 offsetT offset;
252b5132
RH
4707
4708 offset = to_addr - (from_addr + 2);
47926f60
KH
4709 /* Opcode for byte-disp jump. */
4710 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
4711 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4712}
4713
4714void
4715md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4716 char *ptr;
4717 addressT from_addr, to_addr;
a38cf1db
AM
4718 fragS *frag ATTRIBUTE_UNUSED;
4719 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 4720{
847f7ad4 4721 offsetT offset;
252b5132 4722
a38cf1db
AM
4723 offset = to_addr - (from_addr + 5);
4724 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4725 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
4726}
4727\f
4728/* Apply a fixup (fixS) to segment data, once it has been determined
4729 by our caller that we have all the info we need to fix it up.
4730
4731 On the 386, immediates, displacements, and data pointers are all in
4732 the same (little-endian) format, so we don't need to care about which
4733 we are handling. */
4734
94f592af
NC
4735void
4736md_apply_fix3 (fixP, valP, seg)
47926f60
KH
4737 /* The fix we're to put in. */
4738 fixS *fixP;
47926f60 4739 /* Pointer to the value of the bits. */
c6682705 4740 valueT *valP;
47926f60
KH
4741 /* Segment fix is from. */
4742 segT seg ATTRIBUTE_UNUSED;
252b5132 4743{
94f592af 4744 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 4745 valueT value = *valP;
252b5132 4746
f86103b7 4747#if !defined (TE_Mach)
93382f6d
AM
4748 if (fixP->fx_pcrel)
4749 {
4750 switch (fixP->fx_r_type)
4751 {
5865bb77
ILT
4752 default:
4753 break;
4754
93382f6d
AM
4755 case BFD_RELOC_32:
4756 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4757 break;
4758 case BFD_RELOC_16:
4759 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4760 break;
4761 case BFD_RELOC_8:
4762 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4763 break;
4764 }
4765 }
252b5132 4766
a161fe53 4767 if (fixP->fx_addsy != NULL
31312f95
AM
4768 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4769 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4770 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4771 && !use_rela_relocations)
252b5132 4772 {
31312f95
AM
4773 /* This is a hack. There should be a better way to handle this.
4774 This covers for the fact that bfd_install_relocation will
4775 subtract the current location (for partial_inplace, PC relative
4776 relocations); see more below. */
252b5132
RH
4777#ifndef OBJ_AOUT
4778 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4779#ifdef TE_PE
4780 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4781#endif
4782 )
4783 value += fixP->fx_where + fixP->fx_frag->fr_address;
4784#endif
4785#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 4786 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 4787 {
6539b54b 4788 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 4789
6539b54b 4790 if ((sym_seg == seg
2f66722d 4791 || (symbol_section_p (fixP->fx_addsy)
6539b54b 4792 && sym_seg != absolute_section))
ae6063d4 4793 && !generic_force_reloc (fixP))
2f66722d
AM
4794 {
4795 /* Yes, we add the values in twice. This is because
6539b54b
AM
4796 bfd_install_relocation subtracts them out again. I think
4797 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
4798 it. FIXME. */
4799 value += fixP->fx_where + fixP->fx_frag->fr_address;
4800 }
252b5132
RH
4801 }
4802#endif
4803#if defined (OBJ_COFF) && defined (TE_PE)
4804 /* For some reason, the PE format does not store a section
24eab124 4805 address offset for a PC relative symbol. */
252b5132
RH
4806 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4807 value += md_pcrel_from (fixP);
4808#endif
4809 }
4810
4811 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 4812 and we must not disappoint it. */
252b5132
RH
4813#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4814 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4815 && fixP->fx_addsy)
47926f60
KH
4816 switch (fixP->fx_r_type)
4817 {
4818 case BFD_RELOC_386_PLT32:
3e73aa7c 4819 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
4820 /* Make the jump instruction point to the address of the operand. At
4821 runtime we merely add the offset to the actual PLT entry. */
4822 value = -4;
4823 break;
31312f95 4824
13ae64f3
JJ
4825 case BFD_RELOC_386_TLS_GD:
4826 case BFD_RELOC_386_TLS_LDM:
13ae64f3 4827 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
4828 case BFD_RELOC_386_TLS_IE:
4829 case BFD_RELOC_386_TLS_GOTIE:
bffbf940
JJ
4830 case BFD_RELOC_X86_64_TLSGD:
4831 case BFD_RELOC_X86_64_TLSLD:
4832 case BFD_RELOC_X86_64_GOTTPOFF:
00f7efb6
JJ
4833 value = 0; /* Fully resolved at runtime. No addend. */
4834 /* Fallthrough */
4835 case BFD_RELOC_386_TLS_LE:
4836 case BFD_RELOC_386_TLS_LDO_32:
4837 case BFD_RELOC_386_TLS_LE_32:
4838 case BFD_RELOC_X86_64_DTPOFF32:
4839 case BFD_RELOC_X86_64_TPOFF32:
4840 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4841 break;
4842
4843 case BFD_RELOC_386_GOT32:
4844 case BFD_RELOC_X86_64_GOT32:
47926f60
KH
4845 value = 0; /* Fully resolved at runtime. No addend. */
4846 break;
47926f60
KH
4847
4848 case BFD_RELOC_VTABLE_INHERIT:
4849 case BFD_RELOC_VTABLE_ENTRY:
4850 fixP->fx_done = 0;
94f592af 4851 return;
47926f60
KH
4852
4853 default:
4854 break;
4855 }
4856#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 4857 *valP = value;
f86103b7 4858#endif /* !defined (TE_Mach) */
3e73aa7c 4859
3e73aa7c 4860 /* Are we finished with this relocation now? */
c6682705 4861 if (fixP->fx_addsy == NULL)
3e73aa7c
JH
4862 fixP->fx_done = 1;
4863 else if (use_rela_relocations)
4864 {
4865 fixP->fx_no_overflow = 1;
062cd5e7
AS
4866 /* Remember value for tc_gen_reloc. */
4867 fixP->fx_addnumber = value;
3e73aa7c
JH
4868 value = 0;
4869 }
f86103b7 4870
94f592af 4871 md_number_to_chars (p, value, fixP->fx_size);
252b5132 4872}
252b5132 4873\f
252b5132
RH
4874#define MAX_LITTLENUMS 6
4875
47926f60
KH
4876/* Turn the string pointed to by litP into a floating point constant
4877 of type TYPE, and emit the appropriate bytes. The number of
4878 LITTLENUMS emitted is stored in *SIZEP. An error message is
4879 returned, or NULL on OK. */
4880
252b5132
RH
4881char *
4882md_atof (type, litP, sizeP)
2ab9b79e 4883 int type;
252b5132
RH
4884 char *litP;
4885 int *sizeP;
4886{
4887 int prec;
4888 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4889 LITTLENUM_TYPE *wordP;
4890 char *t;
4891
4892 switch (type)
4893 {
4894 case 'f':
4895 case 'F':
4896 prec = 2;
4897 break;
4898
4899 case 'd':
4900 case 'D':
4901 prec = 4;
4902 break;
4903
4904 case 'x':
4905 case 'X':
4906 prec = 5;
4907 break;
4908
4909 default:
4910 *sizeP = 0;
4911 return _("Bad call to md_atof ()");
4912 }
4913 t = atof_ieee (input_line_pointer, type, words);
4914 if (t)
4915 input_line_pointer = t;
4916
4917 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4918 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4919 the bigendian 386. */
4920 for (wordP = words + prec - 1; prec--;)
4921 {
4922 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4923 litP += sizeof (LITTLENUM_TYPE);
4924 }
4925 return 0;
4926}
4927\f
4928char output_invalid_buf[8];
4929
252b5132
RH
4930static char *
4931output_invalid (c)
4932 int c;
4933{
3882b010 4934 if (ISPRINT (c))
252b5132
RH
4935 sprintf (output_invalid_buf, "'%c'", c);
4936 else
4937 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4938 return output_invalid_buf;
4939}
4940
af6bdddf 4941/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
4942
4943static const reg_entry *
4944parse_register (reg_string, end_op)
4945 char *reg_string;
4946 char **end_op;
4947{
af6bdddf
AM
4948 char *s = reg_string;
4949 char *p;
252b5132
RH
4950 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4951 const reg_entry *r;
4952
4953 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4954 if (*s == REGISTER_PREFIX)
4955 ++s;
4956
4957 if (is_space_char (*s))
4958 ++s;
4959
4960 p = reg_name_given;
af6bdddf 4961 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
4962 {
4963 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
4964 return (const reg_entry *) NULL;
4965 s++;
252b5132
RH
4966 }
4967
6588847e
DN
4968 /* For naked regs, make sure that we are not dealing with an identifier.
4969 This prevents confusing an identifier like `eax_var' with register
4970 `eax'. */
4971 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4972 return (const reg_entry *) NULL;
4973
af6bdddf 4974 *end_op = s;
252b5132
RH
4975
4976 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4977
5f47d35b 4978 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 4979 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 4980 {
5f47d35b
AM
4981 if (is_space_char (*s))
4982 ++s;
4983 if (*s == '(')
4984 {
af6bdddf 4985 ++s;
5f47d35b
AM
4986 if (is_space_char (*s))
4987 ++s;
4988 if (*s >= '0' && *s <= '7')
4989 {
4990 r = &i386_float_regtab[*s - '0'];
af6bdddf 4991 ++s;
5f47d35b
AM
4992 if (is_space_char (*s))
4993 ++s;
4994 if (*s == ')')
4995 {
4996 *end_op = s + 1;
4997 return r;
4998 }
5f47d35b 4999 }
47926f60 5000 /* We have "%st(" then garbage. */
5f47d35b
AM
5001 return (const reg_entry *) NULL;
5002 }
5003 }
5004
1ae00879 5005 if (r != NULL
20f0a1fc 5006 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
1ae00879 5007 && flag_code != CODE_64BIT)
20f0a1fc 5008 return (const reg_entry *) NULL;
1ae00879 5009
252b5132
RH
5010 return r;
5011}
5012\f
4cc782b5 5013#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12b55ccc 5014const char *md_shortopts = "kVQ:sqn";
252b5132 5015#else
12b55ccc 5016const char *md_shortopts = "qn";
252b5132 5017#endif
6e0b89ee 5018
252b5132 5019struct option md_longopts[] = {
3e73aa7c
JH
5020#define OPTION_32 (OPTION_MD_BASE + 0)
5021 {"32", no_argument, NULL, OPTION_32},
6e0b89ee 5022#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3e73aa7c
JH
5023#define OPTION_64 (OPTION_MD_BASE + 1)
5024 {"64", no_argument, NULL, OPTION_64},
6e0b89ee 5025#endif
252b5132
RH
5026 {NULL, no_argument, NULL, 0}
5027};
5028size_t md_longopts_size = sizeof (md_longopts);
5029
5030int
5031md_parse_option (c, arg)
5032 int c;
ab9da554 5033 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
5034{
5035 switch (c)
5036 {
12b55ccc
L
5037 case 'n':
5038 optimize_align_code = 0;
5039 break;
5040
a38cf1db
AM
5041 case 'q':
5042 quiet_warnings = 1;
252b5132
RH
5043 break;
5044
5045#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
5046 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5047 should be emitted or not. FIXME: Not implemented. */
5048 case 'Q':
252b5132
RH
5049 break;
5050
5051 /* -V: SVR4 argument to print version ID. */
5052 case 'V':
5053 print_version_id ();
5054 break;
5055
a38cf1db
AM
5056 /* -k: Ignore for FreeBSD compatibility. */
5057 case 'k':
252b5132 5058 break;
4cc782b5
ILT
5059
5060 case 's':
5061 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 5062 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 5063 break;
6e0b89ee 5064
3e73aa7c
JH
5065 case OPTION_64:
5066 {
5067 const char **list, **l;
5068
3e73aa7c
JH
5069 list = bfd_target_list ();
5070 for (l = list; *l != NULL; l++)
6e0b89ee
AM
5071 if (strcmp (*l, "elf64-x86-64") == 0)
5072 {
5073 default_arch = "x86_64";
5074 break;
5075 }
3e73aa7c 5076 if (*l == NULL)
6e0b89ee 5077 as_fatal (_("No compiled in support for x86_64"));
3e73aa7c
JH
5078 free (list);
5079 }
5080 break;
5081#endif
252b5132 5082
6e0b89ee
AM
5083 case OPTION_32:
5084 default_arch = "i386";
5085 break;
5086
252b5132
RH
5087 default:
5088 return 0;
5089 }
5090 return 1;
5091}
5092
5093void
5094md_show_usage (stream)
5095 FILE *stream;
5096{
4cc782b5
ILT
5097#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5098 fprintf (stream, _("\
a38cf1db
AM
5099 -Q ignored\n\
5100 -V print assembler version number\n\
5101 -k ignored\n\
12b55ccc 5102 -n Do not optimize code alignment\n\
a38cf1db
AM
5103 -q quieten some warnings\n\
5104 -s ignored\n"));
5105#else
5106 fprintf (stream, _("\
12b55ccc 5107 -n Do not optimize code alignment\n\
a38cf1db 5108 -q quieten some warnings\n"));
4cc782b5 5109#endif
252b5132
RH
5110}
5111
3e73aa7c
JH
5112#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5113 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
252b5132
RH
5114
5115/* Pick the target format to use. */
5116
47926f60 5117const char *
252b5132
RH
5118i386_target_format ()
5119{
3e73aa7c
JH
5120 if (!strcmp (default_arch, "x86_64"))
5121 set_code_flag (CODE_64BIT);
5122 else if (!strcmp (default_arch, "i386"))
5123 set_code_flag (CODE_32BIT);
5124 else
5125 as_fatal (_("Unknown architecture"));
252b5132
RH
5126 switch (OUTPUT_FLAVOR)
5127 {
4c63da97
AM
5128#ifdef OBJ_MAYBE_AOUT
5129 case bfd_target_aout_flavour:
47926f60 5130 return AOUT_TARGET_FORMAT;
4c63da97
AM
5131#endif
5132#ifdef OBJ_MAYBE_COFF
252b5132
RH
5133 case bfd_target_coff_flavour:
5134 return "coff-i386";
4c63da97 5135#endif
3e73aa7c 5136#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 5137 case bfd_target_elf_flavour:
3e73aa7c 5138 {
e5cb08ac
KH
5139 if (flag_code == CODE_64BIT)
5140 use_rela_relocations = 1;
4ada7262 5141 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
3e73aa7c 5142 }
4c63da97 5143#endif
252b5132
RH
5144 default:
5145 abort ();
5146 return NULL;
5147 }
5148}
5149
47926f60 5150#endif /* OBJ_MAYBE_ more than one */
a847613f
AM
5151
5152#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5153void i386_elf_emit_arch_note ()
5154{
5155 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5156 && cpu_arch_name != NULL)
5157 {
5158 char *p;
5159 asection *seg = now_seg;
5160 subsegT subseg = now_subseg;
5161 Elf_Internal_Note i_note;
5162 Elf_External_Note e_note;
5163 asection *note_secp;
5164 int len;
5165
5166 /* Create the .note section. */
5167 note_secp = subseg_new (".note", 0);
5168 bfd_set_section_flags (stdoutput,
5169 note_secp,
5170 SEC_HAS_CONTENTS | SEC_READONLY);
5171
5172 /* Process the arch string. */
5173 len = strlen (cpu_arch_name);
5174
5175 i_note.namesz = len + 1;
5176 i_note.descsz = 0;
5177 i_note.type = NT_ARCH;
5178 p = frag_more (sizeof (e_note.namesz));
5179 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5180 p = frag_more (sizeof (e_note.descsz));
5181 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5182 p = frag_more (sizeof (e_note.type));
5183 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5184 p = frag_more (len + 1);
5185 strcpy (p, cpu_arch_name);
5186
5187 frag_align (2, 0, 0);
5188
5189 subseg_set (seg, subseg);
5190 }
5191}
5192#endif
252b5132 5193\f
252b5132
RH
5194symbolS *
5195md_undefined_symbol (name)
5196 char *name;
5197{
18dc2407
ILT
5198 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5199 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5200 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5201 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
5202 {
5203 if (!GOT_symbol)
5204 {
5205 if (symbol_find (name))
5206 as_bad (_("GOT already in symbol table"));
5207 GOT_symbol = symbol_new (name, undefined_section,
5208 (valueT) 0, &zero_address_frag);
5209 };
5210 return GOT_symbol;
5211 }
252b5132
RH
5212 return 0;
5213}
5214
5215/* Round up a section size to the appropriate boundary. */
47926f60 5216
252b5132
RH
5217valueT
5218md_section_align (segment, size)
ab9da554 5219 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
5220 valueT size;
5221{
4c63da97
AM
5222#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5223 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5224 {
5225 /* For a.out, force the section size to be aligned. If we don't do
5226 this, BFD will align it for us, but it will not write out the
5227 final bytes of the section. This may be a bug in BFD, but it is
5228 easier to fix it here since that is how the other a.out targets
5229 work. */
5230 int align;
5231
5232 align = bfd_get_section_alignment (stdoutput, segment);
5233 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5234 }
252b5132
RH
5235#endif
5236
5237 return size;
5238}
5239
5240/* On the i386, PC-relative offsets are relative to the start of the
5241 next instruction. That is, the address of the offset, plus its
5242 size, since the offset is always the last part of the insn. */
5243
5244long
5245md_pcrel_from (fixP)
5246 fixS *fixP;
5247{
5248 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5249}
5250
5251#ifndef I386COFF
5252
5253static void
5254s_bss (ignore)
ab9da554 5255 int ignore ATTRIBUTE_UNUSED;
252b5132 5256{
29b0f896 5257 int temp;
252b5132
RH
5258
5259 temp = get_absolute_expression ();
5260 subseg_set (bss_section, (subsegT) temp);
5261 demand_empty_rest_of_line ();
5262}
5263
5264#endif
5265
252b5132
RH
5266void
5267i386_validate_fix (fixp)
5268 fixS *fixp;
5269{
5270 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5271 {
3e73aa7c 5272 /* GOTOFF relocation are nonsense in 64bit mode. */
23df1078
JH
5273 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5274 {
5275 if (flag_code != CODE_64BIT)
5276 abort ();
5277 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5278 }
5279 else
5280 {
5281 if (flag_code == CODE_64BIT)
5282 abort ();
5283 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5284 }
252b5132
RH
5285 fixp->fx_subsy = 0;
5286 }
5287}
5288
252b5132
RH
5289arelent *
5290tc_gen_reloc (section, fixp)
ab9da554 5291 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
5292 fixS *fixp;
5293{
5294 arelent *rel;
5295 bfd_reloc_code_real_type code;
5296
5297 switch (fixp->fx_r_type)
5298 {
3e73aa7c
JH
5299 case BFD_RELOC_X86_64_PLT32:
5300 case BFD_RELOC_X86_64_GOT32:
5301 case BFD_RELOC_X86_64_GOTPCREL:
252b5132
RH
5302 case BFD_RELOC_386_PLT32:
5303 case BFD_RELOC_386_GOT32:
5304 case BFD_RELOC_386_GOTOFF:
5305 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
5306 case BFD_RELOC_386_TLS_GD:
5307 case BFD_RELOC_386_TLS_LDM:
5308 case BFD_RELOC_386_TLS_LDO_32:
5309 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
5310 case BFD_RELOC_386_TLS_IE:
5311 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
5312 case BFD_RELOC_386_TLS_LE_32:
5313 case BFD_RELOC_386_TLS_LE:
3e73aa7c 5314 case BFD_RELOC_X86_64_32S:
bffbf940
JJ
5315 case BFD_RELOC_X86_64_TLSGD:
5316 case BFD_RELOC_X86_64_TLSLD:
5317 case BFD_RELOC_X86_64_DTPOFF32:
5318 case BFD_RELOC_X86_64_GOTTPOFF:
5319 case BFD_RELOC_X86_64_TPOFF32:
252b5132
RH
5320 case BFD_RELOC_RVA:
5321 case BFD_RELOC_VTABLE_ENTRY:
5322 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
5323#ifdef TE_PE
5324 case BFD_RELOC_32_SECREL:
5325#endif
252b5132
RH
5326 code = fixp->fx_r_type;
5327 break;
5328 default:
93382f6d 5329 if (fixp->fx_pcrel)
252b5132 5330 {
93382f6d
AM
5331 switch (fixp->fx_size)
5332 {
5333 default:
b091f402
AM
5334 as_bad_where (fixp->fx_file, fixp->fx_line,
5335 _("can not do %d byte pc-relative relocation"),
5336 fixp->fx_size);
93382f6d
AM
5337 code = BFD_RELOC_32_PCREL;
5338 break;
5339 case 1: code = BFD_RELOC_8_PCREL; break;
5340 case 2: code = BFD_RELOC_16_PCREL; break;
5341 case 4: code = BFD_RELOC_32_PCREL; break;
5342 }
5343 }
5344 else
5345 {
5346 switch (fixp->fx_size)
5347 {
5348 default:
b091f402
AM
5349 as_bad_where (fixp->fx_file, fixp->fx_line,
5350 _("can not do %d byte relocation"),
5351 fixp->fx_size);
93382f6d
AM
5352 code = BFD_RELOC_32;
5353 break;
5354 case 1: code = BFD_RELOC_8; break;
5355 case 2: code = BFD_RELOC_16; break;
5356 case 4: code = BFD_RELOC_32; break;
937149dd 5357#ifdef BFD64
3e73aa7c 5358 case 8: code = BFD_RELOC_64; break;
937149dd 5359#endif
93382f6d 5360 }
252b5132
RH
5361 }
5362 break;
5363 }
252b5132
RH
5364
5365 if (code == BFD_RELOC_32
5366 && GOT_symbol
5367 && fixp->fx_addsy == GOT_symbol)
3e73aa7c
JH
5368 {
5369 /* We don't support GOTPC on 64bit targets. */
5370 if (flag_code == CODE_64BIT)
bfb32b52 5371 abort ();
3e73aa7c
JH
5372 code = BFD_RELOC_386_GOTPC;
5373 }
252b5132
RH
5374
5375 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
5376 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5377 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
5378
5379 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184
CF
5380
5381#ifdef TE_PE
5382 if (S_IS_WEAK (fixp->fx_addsy))
5383 rel->addend = rel->address - (*rel->sym_ptr_ptr)->value + 4;
5384 else
5385#endif
3e73aa7c
JH
5386 if (!use_rela_relocations)
5387 {
5388 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5389 vtable entry to be used in the relocation's section offset. */
5390 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5391 rel->address = fixp->fx_offset;
252b5132 5392
c6682705 5393 rel->addend = 0;
3e73aa7c
JH
5394 }
5395 /* Use the rela in 64bit mode. */
252b5132 5396 else
3e73aa7c 5397 {
062cd5e7
AS
5398 if (!fixp->fx_pcrel)
5399 rel->addend = fixp->fx_offset;
5400 else
5401 switch (code)
5402 {
5403 case BFD_RELOC_X86_64_PLT32:
5404 case BFD_RELOC_X86_64_GOT32:
5405 case BFD_RELOC_X86_64_GOTPCREL:
bffbf940
JJ
5406 case BFD_RELOC_X86_64_TLSGD:
5407 case BFD_RELOC_X86_64_TLSLD:
5408 case BFD_RELOC_X86_64_GOTTPOFF:
062cd5e7
AS
5409 rel->addend = fixp->fx_offset - fixp->fx_size;
5410 break;
5411 default:
5412 rel->addend = (section->vma
5413 - fixp->fx_size
5414 + fixp->fx_addnumber
5415 + md_pcrel_from (fixp));
5416 break;
5417 }
3e73aa7c
JH
5418 }
5419
252b5132
RH
5420 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5421 if (rel->howto == NULL)
5422 {
5423 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 5424 _("cannot represent relocation type %s"),
252b5132
RH
5425 bfd_get_reloc_code_name (code));
5426 /* Set howto to a garbage value so that we can keep going. */
5427 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5428 assert (rel->howto != NULL);
5429 }
5430
5431 return rel;
5432}
5433
64a0c779
DN
5434\f
5435/* Parse operands using Intel syntax. This implements a recursive descent
5436 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5437 Programmer's Guide.
5438
5439 FIXME: We do not recognize the full operand grammar defined in the MASM
5440 documentation. In particular, all the structure/union and
5441 high-level macro operands are missing.
5442
5443 Uppercase words are terminals, lower case words are non-terminals.
5444 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5445 bars '|' denote choices. Most grammar productions are implemented in
5446 functions called 'intel_<production>'.
5447
5448 Initial production is 'expr'.
5449
9306ca4a 5450 addOp + | -
64a0c779
DN
5451
5452 alpha [a-zA-Z]
5453
9306ca4a
JB
5454 binOp & | AND | \| | OR | ^ | XOR
5455
64a0c779
DN
5456 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5457
5458 constant digits [[ radixOverride ]]
5459
9306ca4a 5460 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
64a0c779
DN
5461
5462 digits decdigit
b77a7acd
AJ
5463 | digits decdigit
5464 | digits hexdigit
64a0c779
DN
5465
5466 decdigit [0-9]
5467
9306ca4a
JB
5468 e04 e04 addOp e05
5469 | e05
5470
5471 e05 e05 binOp e06
b77a7acd 5472 | e06
64a0c779
DN
5473
5474 e06 e06 mulOp e09
b77a7acd 5475 | e09
64a0c779
DN
5476
5477 e09 OFFSET e10
9306ca4a
JB
5478 | ~ e10
5479 | NOT e10
64a0c779
DN
5480 | e09 PTR e10
5481 | e09 : e10
5482 | e10
5483
5484 e10 e10 [ expr ]
b77a7acd 5485 | e11
64a0c779
DN
5486
5487 e11 ( expr )
b77a7acd 5488 | [ expr ]
64a0c779
DN
5489 | constant
5490 | dataType
5491 | id
5492 | $
5493 | register
5494
9306ca4a
JB
5495 => expr SHORT e04
5496 | e04
64a0c779
DN
5497
5498 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
b77a7acd 5499 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
64a0c779
DN
5500
5501 hexdigit a | b | c | d | e | f
b77a7acd 5502 | A | B | C | D | E | F
64a0c779
DN
5503
5504 id alpha
b77a7acd 5505 | id alpha
64a0c779
DN
5506 | id decdigit
5507
9306ca4a 5508 mulOp * | / | % | MOD | << | SHL | >> | SHR
64a0c779
DN
5509
5510 quote " | '
5511
5512 register specialRegister
b77a7acd 5513 | gpRegister
64a0c779
DN
5514 | byteRegister
5515
5516 segmentRegister CS | DS | ES | FS | GS | SS
5517
9306ca4a 5518 specialRegister CR0 | CR2 | CR3 | CR4
b77a7acd 5519 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
64a0c779
DN
5520 | TR3 | TR4 | TR5 | TR6 | TR7
5521
64a0c779
DN
5522 We simplify the grammar in obvious places (e.g., register parsing is
5523 done by calling parse_register) and eliminate immediate left recursion
5524 to implement a recursive-descent parser.
5525
9306ca4a
JB
5526 expr SHORT e04
5527 | e04
5528
5529 e04 e05 e04'
5530
5531 e04' addOp e05 e04'
5532 | Empty
64a0c779
DN
5533
5534 e05 e06 e05'
5535
9306ca4a 5536 e05' binOp e06 e05'
b77a7acd 5537 | Empty
64a0c779
DN
5538
5539 e06 e09 e06'
5540
5541 e06' mulOp e09 e06'
b77a7acd 5542 | Empty
64a0c779
DN
5543
5544 e09 OFFSET e10 e09'
9306ca4a
JB
5545 | ~ e10
5546 | NOT e10
b77a7acd 5547 | e10 e09'
64a0c779
DN
5548
5549 e09' PTR e10 e09'
b77a7acd 5550 | : e10 e09'
64a0c779
DN
5551 | Empty
5552
5553 e10 e11 e10'
5554
5555 e10' [ expr ] e10'
b77a7acd 5556 | Empty
64a0c779
DN
5557
5558 e11 ( expr )
b77a7acd 5559 | [ expr ]
64a0c779
DN
5560 | BYTE
5561 | WORD
5562 | DWORD
9306ca4a 5563 | FWORD
64a0c779 5564 | QWORD
9306ca4a
JB
5565 | TBYTE
5566 | OWORD
5567 | XMMWORD
64a0c779
DN
5568 | .
5569 | $
5570 | register
5571 | id
5572 | constant */
5573
5574/* Parsing structure for the intel syntax parser. Used to implement the
5575 semantic actions for the operand grammar. */
5576struct intel_parser_s
5577 {
5578 char *op_string; /* The string being parsed. */
5579 int got_a_float; /* Whether the operand is a float. */
4a1805b1 5580 int op_modifier; /* Operand modifier. */
64a0c779
DN
5581 int is_mem; /* 1 if operand is memory reference. */
5582 const reg_entry *reg; /* Last register reference found. */
5583 char *disp; /* Displacement string being built. */
5584 };
5585
5586static struct intel_parser_s intel_parser;
5587
5588/* Token structure for parsing intel syntax. */
5589struct intel_token
5590 {
5591 int code; /* Token code. */
5592 const reg_entry *reg; /* Register entry for register tokens. */
5593 char *str; /* String representation. */
5594 };
5595
5596static struct intel_token cur_token, prev_token;
5597
50705ef4
AM
5598/* Token codes for the intel parser. Since T_SHORT is already used
5599 by COFF, undefine it first to prevent a warning. */
64a0c779
DN
5600#define T_NIL -1
5601#define T_CONST 1
5602#define T_REG 2
5603#define T_BYTE 3
5604#define T_WORD 4
9306ca4a
JB
5605#define T_DWORD 5
5606#define T_FWORD 6
5607#define T_QWORD 7
5608#define T_TBYTE 8
5609#define T_XMMWORD 9
50705ef4 5610#undef T_SHORT
9306ca4a
JB
5611#define T_SHORT 10
5612#define T_OFFSET 11
5613#define T_PTR 12
5614#define T_ID 13
5615#define T_SHL 14
5616#define T_SHR 15
64a0c779
DN
5617
5618/* Prototypes for intel parser functions. */
5619static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
5620static void intel_get_token PARAMS ((void));
5621static void intel_putback_token PARAMS ((void));
5622static int intel_expr PARAMS ((void));
9306ca4a
JB
5623static int intel_e04 PARAMS ((void));
5624static int intel_e04_1 PARAMS ((void));
cce0cbdc
DN
5625static int intel_e05 PARAMS ((void));
5626static int intel_e05_1 PARAMS ((void));
5627static int intel_e06 PARAMS ((void));
5628static int intel_e06_1 PARAMS ((void));
5629static int intel_e09 PARAMS ((void));
5630static int intel_e09_1 PARAMS ((void));
5631static int intel_e10 PARAMS ((void));
5632static int intel_e10_1 PARAMS ((void));
5633static int intel_e11 PARAMS ((void));
64a0c779 5634
64a0c779
DN
5635static int
5636i386_intel_operand (operand_string, got_a_float)
5637 char *operand_string;
5638 int got_a_float;
5639{
5640 int ret;
5641 char *p;
5642
5643 /* Initialize token holders. */
5644 cur_token.code = prev_token.code = T_NIL;
5645 cur_token.reg = prev_token.reg = NULL;
5646 cur_token.str = prev_token.str = NULL;
5647
5648 /* Initialize parser structure. */
e5cb08ac 5649 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5650 if (p == NULL)
5651 abort ();
5652 strcpy (intel_parser.op_string, operand_string);
5653 intel_parser.got_a_float = got_a_float;
5654 intel_parser.op_modifier = -1;
5655 intel_parser.is_mem = 0;
5656 intel_parser.reg = NULL;
e5cb08ac 5657 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
64a0c779
DN
5658 if (intel_parser.disp == NULL)
5659 abort ();
5660 intel_parser.disp[0] = '\0';
5661
5662 /* Read the first token and start the parser. */
5663 intel_get_token ();
5664 ret = intel_expr ();
5665
5666 if (ret)
5667 {
9306ca4a
JB
5668 if (cur_token.code != T_NIL)
5669 {
5670 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5671 current_templates->start->name, cur_token.str);
5672 ret = 0;
5673 }
64a0c779
DN
5674 /* If we found a memory reference, hand it over to i386_displacement
5675 to fill in the rest of the operand fields. */
9306ca4a 5676 else if (intel_parser.is_mem)
64a0c779
DN
5677 {
5678 if ((i.mem_operands == 1
5679 && (current_templates->start->opcode_modifier & IsString) == 0)
5680 || i.mem_operands == 2)
5681 {
5682 as_bad (_("too many memory references for '%s'"),
5683 current_templates->start->name);
5684 ret = 0;
5685 }
5686 else
5687 {
5688 char *s = intel_parser.disp;
5689 i.mem_operands++;
5690
5691 /* Add the displacement expression. */
5692 if (*s != '\0')
a4622f40
AM
5693 ret = i386_displacement (s, s + strlen (s));
5694 if (ret)
5695 ret = i386_index_check (operand_string);
64a0c779
DN
5696 }
5697 }
5698
5699 /* Constant and OFFSET expressions are handled by i386_immediate. */
9306ca4a 5700 else if (intel_parser.op_modifier == T_OFFSET
64a0c779
DN
5701 || intel_parser.reg == NULL)
5702 ret = i386_immediate (intel_parser.disp);
5703 }
5704
5705 free (p);
5706 free (intel_parser.disp);
5707
5708 return ret;
5709}
5710
9306ca4a
JB
5711/* expr SHORT e04
5712 | e04 */
64a0c779
DN
5713static int
5714intel_expr ()
5715{
9306ca4a 5716 /* expr SHORT e04 */
64a0c779
DN
5717 if (cur_token.code == T_SHORT)
5718 {
9306ca4a 5719 intel_parser.op_modifier = T_SHORT;
64a0c779
DN
5720 intel_match_token (T_SHORT);
5721
9306ca4a
JB
5722 return (intel_e04 ());
5723 }
5724
5725 /* expr e04 */
5726 else
5727 return intel_e04 ();
5728}
5729
5730/* e04 e06 e04'
5731
5732 e04' addOp e06 e04'
5733 | Empty */
5734static int
5735intel_e04 ()
5736{
5737 return (intel_e05 () && intel_e04_1 ());
5738}
5739
5740static int
5741intel_e04_1 ()
5742{
5743 /* e04' addOp e05 e04' */
5744 if (cur_token.code == '+' || cur_token.code == '-')
5745 {
5746 char str[2];
5747
5748 str[0] = cur_token.code;
5749 str[1] = 0;
5750 strcat (intel_parser.disp, str);
5751 intel_match_token (cur_token.code);
5752
5753 return (intel_e05 () && intel_e04_1 ());
64a0c779
DN
5754 }
5755
9306ca4a 5756 /* e04' Empty */
64a0c779 5757 else
9306ca4a 5758 return 1;
64a0c779
DN
5759}
5760
64a0c779
DN
5761/* e05 e06 e05'
5762
9306ca4a 5763 e05' binOp e06 e05'
64a0c779
DN
5764 | Empty */
5765static int
5766intel_e05 ()
5767{
5768 return (intel_e06 () && intel_e05_1 ());
5769}
5770
5771static int
5772intel_e05_1 ()
5773{
9306ca4a
JB
5774 /* e05' binOp e06 e05' */
5775 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
64a0c779 5776 {
9306ca4a
JB
5777 char str[2];
5778
5779 str[0] = cur_token.code;
5780 str[1] = 0;
5781 strcat (intel_parser.disp, str);
64a0c779
DN
5782 intel_match_token (cur_token.code);
5783
5784 return (intel_e06 () && intel_e05_1 ());
5785 }
5786
5787 /* e05' Empty */
5788 else
5789 return 1;
4a1805b1 5790}
64a0c779
DN
5791
5792/* e06 e09 e06'
5793
5794 e06' mulOp e09 e06'
b77a7acd 5795 | Empty */
64a0c779
DN
5796static int
5797intel_e06 ()
5798{
5799 return (intel_e09 () && intel_e06_1 ());
5800}
5801
5802static int
5803intel_e06_1 ()
5804{
5805 /* e06' mulOp e09 e06' */
9306ca4a 5806 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
64a0c779 5807 {
9306ca4a
JB
5808 char str[2];
5809
5810 str[0] = cur_token.code;
5811 str[1] = 0;
5812 strcat (intel_parser.disp, str);
5813 intel_match_token (cur_token.code);
5814
5815 return (intel_e09 () && intel_e06_1 ());
5816 }
5817 else if (cur_token.code == T_SHL)
5818 {
5819 strcat (intel_parser.disp, "<<");
5820 intel_match_token (cur_token.code);
5821
5822 return (intel_e09 () && intel_e06_1 ());
5823 }
5824 else if (cur_token.code == T_SHR)
5825 {
5826 strcat (intel_parser.disp, ">>");
64a0c779
DN
5827 intel_match_token (cur_token.code);
5828
5829 return (intel_e09 () && intel_e06_1 ());
5830 }
4a1805b1 5831
64a0c779 5832 /* e06' Empty */
4a1805b1 5833 else
64a0c779
DN
5834 return 1;
5835}
5836
64a0c779 5837/* e09 OFFSET e10 e09'
b77a7acd 5838 | e10 e09'
64a0c779 5839
9306ca4a
JB
5840 e09 ~ e10 e09'
5841 | NOT e10 e09'
5842 | e10 e09'
5843
64a0c779 5844 e09' PTR e10 e09'
b77a7acd 5845 | : e10 e09'
64a0c779
DN
5846 | Empty */
5847static int
5848intel_e09 ()
5849{
5850 /* e09 OFFSET e10 e09' */
5851 if (cur_token.code == T_OFFSET)
5852 {
5853 intel_parser.is_mem = 0;
9306ca4a 5854 intel_parser.op_modifier = T_OFFSET;
64a0c779
DN
5855 intel_match_token (T_OFFSET);
5856
5857 return (intel_e10 () && intel_e09_1 ());
5858 }
5859
9306ca4a
JB
5860 /* e09 NOT e10 e09' */
5861 else if (cur_token.code == '~')
5862 {
5863 char str[2];
5864
5865 str[0] = cur_token.code;
5866 str[1] = 0;
5867 strcat (intel_parser.disp, str);
5868 intel_match_token (cur_token.code);
5869
5870 return (intel_e10 () && intel_e09_1 ());
5871 }
5872
64a0c779
DN
5873 /* e09 e10 e09' */
5874 else
5875 return (intel_e10 () && intel_e09_1 ());
5876}
5877
5878static int
5879intel_e09_1 ()
5880{
5881 /* e09' PTR e10 e09' */
5882 if (cur_token.code == T_PTR)
5883 {
9306ca4a
JB
5884 char suffix;
5885
64a0c779 5886 if (prev_token.code == T_BYTE)
9306ca4a 5887 suffix = BYTE_MNEM_SUFFIX;
64a0c779
DN
5888
5889 else if (prev_token.code == T_WORD)
5890 {
9306ca4a
JB
5891 if (current_templates->start->name[0] == 'l'
5892 && current_templates->start->name[2] == 's'
5893 && current_templates->start->name[3] == 0)
5894 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5895 else if (intel_parser.got_a_float == 2) /* "fi..." */
5896 suffix = SHORT_MNEM_SUFFIX;
64a0c779 5897 else
9306ca4a 5898 suffix = WORD_MNEM_SUFFIX;
64a0c779
DN
5899 }
5900
5901 else if (prev_token.code == T_DWORD)
5902 {
9306ca4a
JB
5903 if (current_templates->start->name[0] == 'l'
5904 && current_templates->start->name[2] == 's'
5905 && current_templates->start->name[3] == 0)
5906 suffix = WORD_MNEM_SUFFIX;
5907 else if (flag_code == CODE_16BIT
5908 && (current_templates->start->opcode_modifier
5909 & (Jump|JumpDword|JumpInterSegment)))
5910 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5911 else if (intel_parser.got_a_float == 1) /* "f..." */
5912 suffix = SHORT_MNEM_SUFFIX;
64a0c779 5913 else
9306ca4a
JB
5914 suffix = LONG_MNEM_SUFFIX;
5915 }
5916
5917 else if (prev_token.code == T_FWORD)
5918 {
5919 if (current_templates->start->name[0] == 'l'
5920 && current_templates->start->name[2] == 's'
5921 && current_templates->start->name[3] == 0)
5922 suffix = LONG_MNEM_SUFFIX;
5923 else if (!intel_parser.got_a_float)
5924 {
5925 if (flag_code == CODE_16BIT)
5926 add_prefix (DATA_PREFIX_OPCODE);
5927 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5928 }
5929 else
5930 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
64a0c779
DN
5931 }
5932
5933 else if (prev_token.code == T_QWORD)
f16b83df
JH
5934 {
5935 if (intel_parser.got_a_float == 1) /* "f..." */
9306ca4a 5936 suffix = LONG_MNEM_SUFFIX;
f16b83df 5937 else
9306ca4a 5938 suffix = QWORD_MNEM_SUFFIX;
f16b83df 5939 }
64a0c779 5940
9306ca4a
JB
5941 else if (prev_token.code == T_TBYTE)
5942 {
5943 if (intel_parser.got_a_float == 1)
5944 suffix = LONG_DOUBLE_MNEM_SUFFIX;
5945 else
5946 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
5947 }
5948
5949 else if (prev_token.code == T_XMMWORD)
5950 {
5951 /* XXX ignored for now, but accepted since gcc uses it */
5952 suffix = 0;
5953 }
64a0c779
DN
5954
5955 else
5956 {
0477af35 5957 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
64a0c779
DN
5958 return 0;
5959 }
5960
9306ca4a
JB
5961 if (current_templates->start->base_opcode == 0x8d /* lea */)
5962 ;
5963 else if (!i.suffix)
5964 i.suffix = suffix;
5965 else if (i.suffix != suffix)
5966 {
5967 as_bad (_("Conflicting operand modifiers"));
5968 return 0;
5969 }
5970
64a0c779
DN
5971 intel_match_token (T_PTR);
5972
5973 return (intel_e10 () && intel_e09_1 ());
5974 }
5975
5976 /* e09 : e10 e09' */
5977 else if (cur_token.code == ':')
5978 {
21d6c4af
DN
5979 /* Mark as a memory operand only if it's not already known to be an
5980 offset expression. */
9306ca4a 5981 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af 5982 intel_parser.is_mem = 1;
64a0c779
DN
5983
5984 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5985 }
5986
5987 /* e09' Empty */
5988 else
5989 return 1;
5990}
5991
5992/* e10 e11 e10'
5993
5994 e10' [ expr ] e10'
b77a7acd 5995 | Empty */
64a0c779
DN
5996static int
5997intel_e10 ()
5998{
5999 return (intel_e11 () && intel_e10_1 ());
6000}
6001
6002static int
6003intel_e10_1 ()
6004{
6005 /* e10' [ expr ] e10' */
6006 if (cur_token.code == '[')
6007 {
6008 intel_match_token ('[');
21d6c4af
DN
6009
6010 /* Mark as a memory operand only if it's not already known to be an
6011 offset expression. If it's an offset expression, we need to keep
6012 the brace in. */
9306ca4a 6013 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af
DN
6014 intel_parser.is_mem = 1;
6015 else
6016 strcat (intel_parser.disp, "[");
4a1805b1 6017
64a0c779 6018 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
6019 if (*intel_parser.disp != '\0'
6020 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
6021 strcat (intel_parser.disp, "+");
6022
21d6c4af
DN
6023 if (intel_expr () && intel_match_token (']'))
6024 {
6025 /* Preserve brackets when the operand is an offset expression. */
9306ca4a 6026 if (intel_parser.op_modifier == T_OFFSET)
21d6c4af
DN
6027 strcat (intel_parser.disp, "]");
6028
6029 return intel_e10_1 ();
6030 }
6031 else
6032 return 0;
64a0c779
DN
6033 }
6034
6035 /* e10' Empty */
6036 else
6037 return 1;
6038}
6039
64a0c779 6040/* e11 ( expr )
b77a7acd 6041 | [ expr ]
64a0c779
DN
6042 | BYTE
6043 | WORD
6044 | DWORD
9306ca4a 6045 | FWORD
64a0c779 6046 | QWORD
9306ca4a
JB
6047 | TBYTE
6048 | OWORD
6049 | XMMWORD
4a1805b1 6050 | $
64a0c779
DN
6051 | .
6052 | register
6053 | id
6054 | constant */
6055static int
6056intel_e11 ()
6057{
6058 /* e11 ( expr ) */
6059 if (cur_token.code == '(')
6060 {
6061 intel_match_token ('(');
6062 strcat (intel_parser.disp, "(");
6063
6064 if (intel_expr () && intel_match_token (')'))
e5cb08ac
KH
6065 {
6066 strcat (intel_parser.disp, ")");
6067 return 1;
6068 }
64a0c779
DN
6069 else
6070 return 0;
6071 }
6072
6073 /* e11 [ expr ] */
6074 else if (cur_token.code == '[')
6075 {
6076 intel_match_token ('[');
21d6c4af
DN
6077
6078 /* Mark as a memory operand only if it's not already known to be an
6079 offset expression. If it's an offset expression, we need to keep
6080 the brace in. */
9306ca4a 6081 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af
DN
6082 intel_parser.is_mem = 1;
6083 else
6084 strcat (intel_parser.disp, "[");
4a1805b1 6085
64a0c779 6086 /* Operands for jump/call inside brackets denote absolute addresses. */
9306ca4a
JB
6087 if (current_templates->start->opcode_modifier
6088 & (Jump|JumpDword|JumpByte|JumpInterSegment))
64a0c779
DN
6089 i.types[this_operand] |= JumpAbsolute;
6090
6091 /* Add a '+' to the displacement string if necessary. */
21d6c4af
DN
6092 if (*intel_parser.disp != '\0'
6093 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
64a0c779
DN
6094 strcat (intel_parser.disp, "+");
6095
21d6c4af
DN
6096 if (intel_expr () && intel_match_token (']'))
6097 {
6098 /* Preserve brackets when the operand is an offset expression. */
9306ca4a 6099 if (intel_parser.op_modifier == T_OFFSET)
21d6c4af
DN
6100 strcat (intel_parser.disp, "]");
6101
6102 return 1;
6103 }
6104 else
6105 return 0;
64a0c779
DN
6106 }
6107
4a1805b1 6108 /* e11 BYTE
64a0c779
DN
6109 | WORD
6110 | DWORD
9306ca4a 6111 | FWORD
64a0c779 6112 | QWORD
9306ca4a
JB
6113 | TBYTE
6114 | OWORD
6115 | XMMWORD */
64a0c779
DN
6116 else if (cur_token.code == T_BYTE
6117 || cur_token.code == T_WORD
6118 || cur_token.code == T_DWORD
9306ca4a 6119 || cur_token.code == T_FWORD
64a0c779 6120 || cur_token.code == T_QWORD
9306ca4a
JB
6121 || cur_token.code == T_TBYTE
6122 || cur_token.code == T_XMMWORD)
64a0c779
DN
6123 {
6124 intel_match_token (cur_token.code);
6125
6126 return 1;
6127 }
6128
6129 /* e11 $
6130 | . */
9306ca4a 6131 else if (cur_token.code == '.')
64a0c779
DN
6132 {
6133 strcat (intel_parser.disp, cur_token.str);
6134 intel_match_token (cur_token.code);
21d6c4af
DN
6135
6136 /* Mark as a memory operand only if it's not already known to be an
6137 offset expression. */
9306ca4a 6138 if (intel_parser.op_modifier != T_OFFSET)
21d6c4af 6139 intel_parser.is_mem = 1;
64a0c779
DN
6140
6141 return 1;
6142 }
6143
6144 /* e11 register */
6145 else if (cur_token.code == T_REG)
6146 {
6147 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6148
6149 intel_match_token (T_REG);
6150
6151 /* Check for segment change. */
6152 if (cur_token.code == ':')
6153 {
6154 if (reg->reg_type & (SReg2 | SReg3))
6155 {
6156 switch (reg->reg_num)
6157 {
6158 case 0:
6159 i.seg[i.mem_operands] = &es;
6160 break;
6161 case 1:
6162 i.seg[i.mem_operands] = &cs;
6163 break;
6164 case 2:
6165 i.seg[i.mem_operands] = &ss;
6166 break;
6167 case 3:
6168 i.seg[i.mem_operands] = &ds;
6169 break;
6170 case 4:
6171 i.seg[i.mem_operands] = &fs;
6172 break;
6173 case 5:
6174 i.seg[i.mem_operands] = &gs;
6175 break;
6176 }
6177 }
6178 else
6179 {
6180 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6181 return 0;
6182 }
6183 }
6184
6185 /* Not a segment register. Check for register scaling. */
6186 else if (cur_token.code == '*')
6187 {
6188 if (!intel_parser.is_mem)
6189 {
6190 as_bad (_("Register scaling only allowed in memory operands."));
6191 return 0;
6192 }
6193
4a1805b1 6194 /* What follows must be a valid scale. */
64a0c779
DN
6195 if (intel_match_token ('*')
6196 && strchr ("01248", *cur_token.str))
6197 {
6198 i.index_reg = reg;
6199 i.types[this_operand] |= BaseIndex;
6200
6201 /* Set the scale after setting the register (otherwise,
6202 i386_scale will complain) */
6203 i386_scale (cur_token.str);
6204 intel_match_token (T_CONST);
6205 }
6206 else
6207 {
6208 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6209 cur_token.str);
6210 return 0;
6211 }
6212 }
6213
6214 /* No scaling. If this is a memory operand, the register is either a
6215 base register (first occurrence) or an index register (second
6216 occurrence). */
6217 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6218 {
6219 if (i.base_reg && i.index_reg)
6220 {
0477af35 6221 as_bad (_("Too many register references in memory operand."));
64a0c779
DN
6222 return 0;
6223 }
6224
6225 if (i.base_reg == NULL)
6226 i.base_reg = reg;
6227 else
6228 i.index_reg = reg;
6229
6230 i.types[this_operand] |= BaseIndex;
6231 }
6232
6233 /* Offset modifier. Add the register to the displacement string to be
6234 parsed as an immediate expression after we're done. */
9306ca4a 6235 else if (intel_parser.op_modifier == T_OFFSET)
64a0c779 6236 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 6237
64a0c779
DN
6238 /* It's neither base nor index nor offset. */
6239 else
6240 {
6241 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6242 i.op[this_operand].regs = reg;
6243 i.reg_operands++;
6244 }
6245
6246 /* Since registers are not part of the displacement string (except
6247 when we're parsing offset operands), we may need to remove any
6248 preceding '+' from the displacement string. */
6249 if (*intel_parser.disp != '\0'
9306ca4a 6250 && intel_parser.op_modifier != T_OFFSET)
64a0c779
DN
6251 {
6252 char *s = intel_parser.disp;
6253 s += strlen (s) - 1;
6254 if (*s == '+')
6255 *s = '\0';
6256 }
6257
6258 return 1;
6259 }
4a1805b1 6260
64a0c779
DN
6261 /* e11 id */
6262 else if (cur_token.code == T_ID)
6263 {
6264 /* Add the identifier to the displacement string. */
6265 strcat (intel_parser.disp, cur_token.str);
64a0c779
DN
6266
6267 /* The identifier represents a memory reference only if it's not
9306ca4a
JB
6268 preceded by an offset modifier and if it's not an equate. */
6269 if (intel_parser.op_modifier != T_OFFSET)
6270 {
6271 symbolS *symbolP;
6272
6273 symbolP = symbol_find(cur_token.str);
6274 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6275 intel_parser.is_mem = 1;
6276 }
64a0c779 6277
9306ca4a 6278 intel_match_token (T_ID);
64a0c779
DN
6279 return 1;
6280 }
6281
6282 /* e11 constant */
6283 else if (cur_token.code == T_CONST
e5cb08ac 6284 || cur_token.code == '-'
64a0c779
DN
6285 || cur_token.code == '+')
6286 {
6287 char *save_str;
6288
6289 /* Allow constants that start with `+' or `-'. */
6290 if (cur_token.code == '-' || cur_token.code == '+')
6291 {
6292 strcat (intel_parser.disp, cur_token.str);
6293 intel_match_token (cur_token.code);
6294 if (cur_token.code != T_CONST)
6295 {
0477af35 6296 as_bad (_("Syntax error. Expecting a constant. Got `%s'."),
64a0c779
DN
6297 cur_token.str);
6298 return 0;
6299 }
6300 }
6301
e5cb08ac 6302 save_str = (char *) malloc (strlen (cur_token.str) + 1);
64a0c779 6303 if (save_str == NULL)
bc805888 6304 abort ();
64a0c779
DN
6305 strcpy (save_str, cur_token.str);
6306
6307 /* Get the next token to check for register scaling. */
6308 intel_match_token (cur_token.code);
6309
6310 /* Check if this constant is a scaling factor for an index register. */
6311 if (cur_token.code == '*')
6312 {
6313 if (intel_match_token ('*') && cur_token.code == T_REG)
6314 {
6315 if (!intel_parser.is_mem)
6316 {
6317 as_bad (_("Register scaling only allowed in memory operands."));
6318 return 0;
6319 }
6320
4a1805b1 6321 /* The constant is followed by `* reg', so it must be
64a0c779
DN
6322 a valid scale. */
6323 if (strchr ("01248", *save_str))
6324 {
6325 i.index_reg = cur_token.reg;
6326 i.types[this_operand] |= BaseIndex;
6327
6328 /* Set the scale after setting the register (otherwise,
6329 i386_scale will complain) */
6330 i386_scale (save_str);
6331 intel_match_token (T_REG);
6332
6333 /* Since registers are not part of the displacement
6334 string, we may need to remove any preceding '+' from
6335 the displacement string. */
6336 if (*intel_parser.disp != '\0')
6337 {
6338 char *s = intel_parser.disp;
6339 s += strlen (s) - 1;
6340 if (*s == '+')
6341 *s = '\0';
6342 }
6343
6344 free (save_str);
6345
6346 return 1;
6347 }
6348 else
6349 return 0;
6350 }
6351
6352 /* The constant was not used for register scaling. Since we have
6353 already consumed the token following `*' we now need to put it
6354 back in the stream. */
6355 else
6356 intel_putback_token ();
6357 }
6358
6359 /* Add the constant to the displacement string. */
6360 strcat (intel_parser.disp, save_str);
6361 free (save_str);
6362
6363 return 1;
6364 }
6365
64a0c779
DN
6366 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6367 return 0;
6368}
6369
64a0c779
DN
6370/* Match the given token against cur_token. If they match, read the next
6371 token from the operand string. */
6372static int
6373intel_match_token (code)
e5cb08ac 6374 int code;
64a0c779
DN
6375{
6376 if (cur_token.code == code)
6377 {
6378 intel_get_token ();
6379 return 1;
6380 }
6381 else
6382 {
0477af35 6383 as_bad (_("Unexpected token `%s'"), cur_token.str);
64a0c779
DN
6384 return 0;
6385 }
6386}
6387
64a0c779
DN
6388/* Read a new token from intel_parser.op_string and store it in cur_token. */
6389static void
6390intel_get_token ()
6391{
6392 char *end_op;
6393 const reg_entry *reg;
6394 struct intel_token new_token;
6395
6396 new_token.code = T_NIL;
6397 new_token.reg = NULL;
6398 new_token.str = NULL;
6399
4a1805b1 6400 /* Free the memory allocated to the previous token and move
64a0c779
DN
6401 cur_token to prev_token. */
6402 if (prev_token.str)
6403 free (prev_token.str);
6404
6405 prev_token = cur_token;
6406
6407 /* Skip whitespace. */
6408 while (is_space_char (*intel_parser.op_string))
6409 intel_parser.op_string++;
6410
6411 /* Return an empty token if we find nothing else on the line. */
6412 if (*intel_parser.op_string == '\0')
6413 {
6414 cur_token = new_token;
6415 return;
6416 }
6417
6418 /* The new token cannot be larger than the remainder of the operand
6419 string. */
e5cb08ac 6420 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
64a0c779 6421 if (new_token.str == NULL)
bc805888 6422 abort ();
64a0c779
DN
6423 new_token.str[0] = '\0';
6424
6425 if (strchr ("0123456789", *intel_parser.op_string))
6426 {
6427 char *p = new_token.str;
6428 char *q = intel_parser.op_string;
6429 new_token.code = T_CONST;
6430
6431 /* Allow any kind of identifier char to encompass floating point and
6432 hexadecimal numbers. */
6433 while (is_identifier_char (*q))
6434 *p++ = *q++;
6435 *p = '\0';
6436
6437 /* Recognize special symbol names [0-9][bf]. */
6438 if (strlen (intel_parser.op_string) == 2
4a1805b1 6439 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
6440 || intel_parser.op_string[1] == 'f'))
6441 new_token.code = T_ID;
6442 }
6443
64a0c779
DN
6444 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6445 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6446 {
6447 new_token.code = T_REG;
6448 new_token.reg = reg;
6449
6450 if (*intel_parser.op_string == REGISTER_PREFIX)
6451 {
6452 new_token.str[0] = REGISTER_PREFIX;
6453 new_token.str[1] = '\0';
6454 }
6455
6456 strcat (new_token.str, reg->reg_name);
6457 }
6458
6459 else if (is_identifier_char (*intel_parser.op_string))
6460 {
6461 char *p = new_token.str;
6462 char *q = intel_parser.op_string;
6463
6464 /* A '.' or '$' followed by an identifier char is an identifier.
6465 Otherwise, it's operator '.' followed by an expression. */
6466 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6467 {
9306ca4a
JB
6468 new_token.code = '.';
6469 new_token.str[0] = '.';
64a0c779
DN
6470 new_token.str[1] = '\0';
6471 }
6472 else
6473 {
6474 while (is_identifier_char (*q) || *q == '@')
6475 *p++ = *q++;
6476 *p = '\0';
6477
9306ca4a
JB
6478 if (strcasecmp (new_token.str, "NOT") == 0)
6479 new_token.code = '~';
6480
6481 else if (strcasecmp (new_token.str, "MOD") == 0)
6482 new_token.code = '%';
6483
6484 else if (strcasecmp (new_token.str, "AND") == 0)
6485 new_token.code = '&';
6486
6487 else if (strcasecmp (new_token.str, "OR") == 0)
6488 new_token.code = '|';
6489
6490 else if (strcasecmp (new_token.str, "XOR") == 0)
6491 new_token.code = '^';
6492
6493 else if (strcasecmp (new_token.str, "SHL") == 0)
6494 new_token.code = T_SHL;
6495
6496 else if (strcasecmp (new_token.str, "SHR") == 0)
6497 new_token.code = T_SHR;
6498
6499 else if (strcasecmp (new_token.str, "BYTE") == 0)
64a0c779
DN
6500 new_token.code = T_BYTE;
6501
6502 else if (strcasecmp (new_token.str, "WORD") == 0)
6503 new_token.code = T_WORD;
6504
6505 else if (strcasecmp (new_token.str, "DWORD") == 0)
6506 new_token.code = T_DWORD;
6507
9306ca4a
JB
6508 else if (strcasecmp (new_token.str, "FWORD") == 0)
6509 new_token.code = T_FWORD;
6510
64a0c779
DN
6511 else if (strcasecmp (new_token.str, "QWORD") == 0)
6512 new_token.code = T_QWORD;
6513
9306ca4a
JB
6514 else if (strcasecmp (new_token.str, "TBYTE") == 0
6515 /* XXX remove (gcc still uses it) */
6516 || strcasecmp (new_token.str, "XWORD") == 0)
6517 new_token.code = T_TBYTE;
6518
6519 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6520 || strcasecmp (new_token.str, "OWORD") == 0)
6521 new_token.code = T_XMMWORD;
64a0c779
DN
6522
6523 else if (strcasecmp (new_token.str, "PTR") == 0)
6524 new_token.code = T_PTR;
6525
6526 else if (strcasecmp (new_token.str, "SHORT") == 0)
6527 new_token.code = T_SHORT;
6528
6529 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6530 {
6531 new_token.code = T_OFFSET;
6532
6533 /* ??? This is not mentioned in the MASM grammar but gcc
6534 makes use of it with -mintel-syntax. OFFSET may be
6535 followed by FLAT: */
6536 if (strncasecmp (q, " FLAT:", 6) == 0)
6537 strcat (new_token.str, " FLAT:");
6538 }
6539
6540 /* ??? This is not mentioned in the MASM grammar. */
6541 else if (strcasecmp (new_token.str, "FLAT") == 0)
6542 new_token.code = T_OFFSET;
6543
6544 else
6545 new_token.code = T_ID;
6546 }
6547 }
6548
9306ca4a
JB
6549 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6550 {
6551 new_token.code = *intel_parser.op_string;
6552 new_token.str[0] = *intel_parser.op_string;
6553 new_token.str[1] = '\0';
6554 }
6555
6556 else if (strchr ("<>", *intel_parser.op_string)
6557 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6558 {
6559 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6560 new_token.str[0] = *intel_parser.op_string;
6561 new_token.str[1] = *intel_parser.op_string;
6562 new_token.str[2] = '\0';
6563 }
6564
64a0c779 6565 else
0477af35 6566 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
64a0c779
DN
6567
6568 intel_parser.op_string += strlen (new_token.str);
6569 cur_token = new_token;
6570}
6571
64a0c779
DN
6572/* Put cur_token back into the token stream and make cur_token point to
6573 prev_token. */
6574static void
6575intel_putback_token ()
6576{
6577 intel_parser.op_string -= strlen (cur_token.str);
6578 free (cur_token.str);
6579 cur_token = prev_token;
4a1805b1 6580
64a0c779
DN
6581 /* Forget prev_token. */
6582 prev_token.code = T_NIL;
6583 prev_token.reg = NULL;
6584 prev_token.str = NULL;
6585}
54cfded0 6586
a4447b93 6587int
54cfded0
AM
6588tc_x86_regname_to_dw2regnum (const char *regname)
6589{
6590 unsigned int regnum;
6591 unsigned int regnames_count;
6592 char *regnames_32[] =
6593 {
a4447b93
RH
6594 "eax", "ecx", "edx", "ebx",
6595 "esp", "ebp", "esi", "edi",
54cfded0
AM
6596 "eip"
6597 };
6598 char *regnames_64[] =
6599 {
6600 "rax", "rbx", "rcx", "rdx",
6601 "rdi", "rsi", "rbp", "rsp",
6602 "r8", "r9", "r10", "r11",
6603 "r12", "r13", "r14", "r15",
6604 "rip"
6605 };
6606 char **regnames;
6607
6608 if (flag_code == CODE_64BIT)
6609 {
6610 regnames = regnames_64;
0cea6190 6611 regnames_count = ARRAY_SIZE (regnames_64);
54cfded0
AM
6612 }
6613 else
6614 {
6615 regnames = regnames_32;
0cea6190 6616 regnames_count = ARRAY_SIZE (regnames_32);
54cfded0
AM
6617 }
6618
6619 for (regnum = 0; regnum < regnames_count; regnum++)
6620 if (strcmp (regname, regnames[regnum]) == 0)
6621 return regnum;
6622
54cfded0
AM
6623 return -1;
6624}
6625
6626void
6627tc_x86_frame_initial_instructions (void)
6628{
a4447b93
RH
6629 static unsigned int sp_regno;
6630
6631 if (!sp_regno)
6632 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6633 ? "rsp" : "esp");
6634
6635 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6636 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 6637}
d2b2c203
DJ
6638
6639int
6640i386_elf_section_type (const char *str, size_t len)
6641{
6642 if (flag_code == CODE_64BIT
6643 && len == sizeof ("unwind") - 1
6644 && strncmp (str, "unwind", 6) == 0)
6645 return SHT_X86_64_UNWIND;
6646
6647 return -1;
6648}
bb41ade5
AM
6649
6650#ifdef TE_PE
6651void
6652tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6653{
6654 expressionS expr;
6655
6656 expr.X_op = O_secrel;
6657 expr.X_add_symbol = symbol;
6658 expr.X_add_number = 0;
6659 emit_expr (&expr, size);
6660}
6661#endif
This page took 0.648164 seconds and 4 git commands to generate.