Testsuite: Add gdb_simple_compile
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
219d1afa 2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
252b5132
RH
36#ifndef REGISTER_WARNINGS
37#define REGISTER_WARNINGS 1
38#endif
39
c3332e24 40#ifndef INFER_ADDR_PREFIX
eecb386c 41#define INFER_ADDR_PREFIX 1
c3332e24
AM
42#endif
43
29b0f896
AM
44#ifndef DEFAULT_ARCH
45#define DEFAULT_ARCH "i386"
246fcdee 46#endif
252b5132 47
edde18a5
AM
48#ifndef INLINE
49#if __GNUC__ >= 2
50#define INLINE __inline__
51#else
52#define INLINE
53#endif
54#endif
55
6305a203
L
56/* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
61#define WAIT_PREFIX 0
62#define SEG_PREFIX 1
63#define ADDR_PREFIX 2
64#define DATA_PREFIX 3
c32fa91d 65#define REP_PREFIX 4
42164a71 66#define HLE_PREFIX REP_PREFIX
7e8b059b 67#define BND_PREFIX REP_PREFIX
c32fa91d 68#define LOCK_PREFIX 5
4e9ac44a
L
69#define REX_PREFIX 6 /* must come last. */
70#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
71
72/* we define the syntax here (modulo base,index,scale syntax) */
73#define REGISTER_PREFIX '%'
74#define IMMEDIATE_PREFIX '$'
75#define ABSOLUTE_PREFIX '*'
76
77/* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79#define WORD_MNEM_SUFFIX 'w'
80#define BYTE_MNEM_SUFFIX 'b'
81#define SHORT_MNEM_SUFFIX 's'
82#define LONG_MNEM_SUFFIX 'l'
83#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
84/* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86#define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88#define END_OF_INSN '\0'
89
90/*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97typedef struct
98{
d3ce72d0
NC
99 const insn_template *start;
100 const insn_template *end;
6305a203
L
101}
102templates;
103
104/* 386 operand encoding bytes: see 386 book for details of this. */
105typedef struct
106{
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110}
111modrm_byte;
112
113/* x86-64 extension prefix. */
114typedef int rex_byte;
115
6305a203
L
116/* 386 opcode byte to code indirect addressing. */
117typedef struct
118{
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122}
123sib_byte;
124
6305a203
L
125/* x86 arch names, types and features */
126typedef struct
127{
128 const char *name; /* arch name */
8a2c8fef 129 unsigned int len; /* arch string length */
6305a203
L
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 132 unsigned int skip; /* show_arch should skip this. */
6305a203
L
133}
134arch_entry;
135
293f5f65
L
136/* Used to turn off indicated flags. */
137typedef struct
138{
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142}
143noarch_entry;
144
78f12dd3 145static void update_code_flag (int, int);
e3bb37b5
L
146static void set_code_flag (int);
147static void set_16bit_gcc_code_flag (int);
148static void set_intel_syntax (int);
1efbbeb4 149static void set_intel_mnemonic (int);
db51cc60 150static void set_allow_index_reg (int);
7bab8ab5 151static void set_check (int);
e3bb37b5 152static void set_cpu_arch (int);
6482c264 153#ifdef TE_PE
e3bb37b5 154static void pe_directive_secrel (int);
6482c264 155#endif
e3bb37b5
L
156static void signed_cons (int);
157static char *output_invalid (int c);
ee86248c
JB
158static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
a7619375 162static int i386_att_operand (char *);
e3bb37b5 163static int i386_intel_operand (char *, int);
ee86248c
JB
164static int i386_intel_simplify (expressionS *);
165static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
166static const reg_entry *parse_register (char *, char **);
167static char *parse_insn (char *, char *);
168static char *parse_operands (char *, const char *);
169static void swap_operands (void);
4d456e3d 170static void swap_2_operands (int, int);
e3bb37b5
L
171static void optimize_imm (void);
172static void optimize_disp (void);
83b16ac6 173static const insn_template *match_template (char);
e3bb37b5
L
174static int check_string (void);
175static int process_suffix (void);
176static int check_byte_reg (void);
177static int check_long_reg (void);
178static int check_qword_reg (void);
179static int check_word_reg (void);
180static int finalize_imm (void);
181static int process_operands (void);
182static const seg_entry *build_modrm_byte (void);
183static void output_insn (void);
184static void output_imm (fragS *, offsetT);
185static void output_disp (fragS *, offsetT);
29b0f896 186#ifndef I386COFF
e3bb37b5 187static void s_bss (int);
252b5132 188#endif
17d4e2a2
L
189#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
191
192/* GNU_PROPERTY_X86_ISA_1_USED. */
193static unsigned int x86_isa_1_used;
194/* GNU_PROPERTY_X86_FEATURE_2_USED. */
195static unsigned int x86_feature_2_used;
196/* Generate x86 used ISA and feature properties. */
197static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 198#endif
252b5132 199
a847613f 200static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 201
43234a1e
L
202/* This struct describes rounding control and SAE in the instruction. */
203struct RC_Operation
204{
205 enum rc_type
206 {
207 rne = 0,
208 rd,
209 ru,
210 rz,
211 saeonly
212 } type;
213 int operand;
214};
215
216static struct RC_Operation rc_op;
217
218/* The struct describes masking, applied to OPERAND in the instruction.
219 MASK is a pointer to the corresponding mask register. ZEROING tells
220 whether merging or zeroing mask is used. */
221struct Mask_Operation
222{
223 const reg_entry *mask;
224 unsigned int zeroing;
225 /* The operand where this operation is associated. */
226 int operand;
227};
228
229static struct Mask_Operation mask_op;
230
231/* The struct describes broadcasting, applied to OPERAND. FACTOR is
232 broadcast factor. */
233struct Broadcast_Operation
234{
8e6e0792 235 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
236 int type;
237
238 /* Index of broadcasted operand. */
239 int operand;
4a1b91ea
L
240
241 /* Number of bytes to broadcast. */
242 int bytes;
43234a1e
L
243};
244
245static struct Broadcast_Operation broadcast_op;
246
c0f3af97
L
247/* VEX prefix. */
248typedef struct
249{
43234a1e
L
250 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
251 unsigned char bytes[4];
c0f3af97
L
252 unsigned int length;
253 /* Destination or source register specifier. */
254 const reg_entry *register_specifier;
255} vex_prefix;
256
252b5132 257/* 'md_assemble ()' gathers together information and puts it into a
47926f60 258 i386_insn. */
252b5132 259
520dc8e8
AM
260union i386_op
261 {
262 expressionS *disps;
263 expressionS *imms;
264 const reg_entry *regs;
265 };
266
a65babc9
L
267enum i386_error
268 {
86e026a4 269 operand_size_mismatch,
a65babc9
L
270 operand_type_mismatch,
271 register_type_mismatch,
272 number_of_operands_mismatch,
273 invalid_instruction_suffix,
274 bad_imm4,
a65babc9
L
275 unsupported_with_intel_mnemonic,
276 unsupported_syntax,
6c30d220
L
277 unsupported,
278 invalid_vsib_address,
7bab8ab5 279 invalid_vector_register_set,
43234a1e
L
280 unsupported_vector_index_register,
281 unsupported_broadcast,
43234a1e
L
282 broadcast_needed,
283 unsupported_masking,
284 mask_not_on_destination,
285 no_default_mask,
286 unsupported_rc_sae,
287 rc_sae_operand_not_last_imm,
288 invalid_register_operand,
a65babc9
L
289 };
290
252b5132
RH
291struct _i386_insn
292 {
47926f60 293 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 294 insn_template tm;
252b5132 295
7d5e4556
L
296 /* SUFFIX holds the instruction size suffix for byte, word, dword
297 or qword, if given. */
252b5132
RH
298 char suffix;
299
47926f60 300 /* OPERANDS gives the number of given operands. */
252b5132
RH
301 unsigned int operands;
302
303 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
304 of given register, displacement, memory operands and immediate
47926f60 305 operands. */
252b5132
RH
306 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
307
308 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 309 use OP[i] for the corresponding operand. */
40fb9820 310 i386_operand_type types[MAX_OPERANDS];
252b5132 311
520dc8e8
AM
312 /* Displacement expression, immediate expression, or register for each
313 operand. */
314 union i386_op op[MAX_OPERANDS];
252b5132 315
3e73aa7c
JH
316 /* Flags for operands. */
317 unsigned int flags[MAX_OPERANDS];
318#define Operand_PCrel 1
c48dadc9 319#define Operand_Mem 2
3e73aa7c 320
252b5132 321 /* Relocation type for operand */
f86103b7 322 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 323
252b5132
RH
324 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
325 the base index byte below. */
326 const reg_entry *base_reg;
327 const reg_entry *index_reg;
328 unsigned int log2_scale_factor;
329
330 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 331 explicit segment overrides are given. */
ce8a8b2f 332 const seg_entry *seg[2];
252b5132 333
8325cc63
JB
334 /* Copied first memory operand string, for re-checking. */
335 char *memop1_string;
336
252b5132
RH
337 /* PREFIX holds all the given prefix opcodes (usually null).
338 PREFIXES is the number of prefix opcodes. */
339 unsigned int prefixes;
340 unsigned char prefix[MAX_PREFIXES];
341
b4a3a7b4
L
342 /* Has MMX register operands. */
343 bfd_boolean has_regmmx;
344
345 /* Has XMM register operands. */
346 bfd_boolean has_regxmm;
347
348 /* Has YMM register operands. */
349 bfd_boolean has_regymm;
350
351 /* Has ZMM register operands. */
352 bfd_boolean has_regzmm;
353
252b5132 354 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 355 addressing modes of this insn are encoded. */
252b5132 356 modrm_byte rm;
3e73aa7c 357 rex_byte rex;
43234a1e 358 rex_byte vrex;
252b5132 359 sib_byte sib;
c0f3af97 360 vex_prefix vex;
b6169b20 361
43234a1e
L
362 /* Masking attributes. */
363 struct Mask_Operation *mask;
364
365 /* Rounding control and SAE attributes. */
366 struct RC_Operation *rounding;
367
368 /* Broadcasting attributes. */
369 struct Broadcast_Operation *broadcast;
370
371 /* Compressed disp8*N attribute. */
372 unsigned int memshift;
373
86fa6981
L
374 /* Prefer load or store in encoding. */
375 enum
376 {
377 dir_encoding_default = 0,
378 dir_encoding_load,
64c49ab3
JB
379 dir_encoding_store,
380 dir_encoding_swap
86fa6981 381 } dir_encoding;
891edac4 382
a501d77e
L
383 /* Prefer 8bit or 32bit displacement in encoding. */
384 enum
385 {
386 disp_encoding_default = 0,
387 disp_encoding_8bit,
388 disp_encoding_32bit
389 } disp_encoding;
f8a5c266 390
6b6b6807
L
391 /* Prefer the REX byte in encoding. */
392 bfd_boolean rex_encoding;
393
b6f8c7c4
L
394 /* Disable instruction size optimization. */
395 bfd_boolean no_optimize;
396
86fa6981
L
397 /* How to encode vector instructions. */
398 enum
399 {
400 vex_encoding_default = 0,
401 vex_encoding_vex2,
402 vex_encoding_vex3,
403 vex_encoding_evex
404 } vec_encoding;
405
d5de92cf
L
406 /* REP prefix. */
407 const char *rep_prefix;
408
165de32a
L
409 /* HLE prefix. */
410 const char *hle_prefix;
42164a71 411
7e8b059b
L
412 /* Have BND prefix. */
413 const char *bnd_prefix;
414
04ef582a
L
415 /* Have NOTRACK prefix. */
416 const char *notrack_prefix;
417
891edac4 418 /* Error message. */
a65babc9 419 enum i386_error error;
252b5132
RH
420 };
421
422typedef struct _i386_insn i386_insn;
423
43234a1e
L
424/* Link RC type with corresponding string, that'll be looked for in
425 asm. */
426struct RC_name
427{
428 enum rc_type type;
429 const char *name;
430 unsigned int len;
431};
432
433static const struct RC_name RC_NamesTable[] =
434{
435 { rne, STRING_COMMA_LEN ("rn-sae") },
436 { rd, STRING_COMMA_LEN ("rd-sae") },
437 { ru, STRING_COMMA_LEN ("ru-sae") },
438 { rz, STRING_COMMA_LEN ("rz-sae") },
439 { saeonly, STRING_COMMA_LEN ("sae") },
440};
441
252b5132
RH
442/* List of chars besides those in app.c:symbol_chars that can start an
443 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 444const char extra_symbol_chars[] = "*%-([{}"
252b5132 445#ifdef LEX_AT
32137342
NC
446 "@"
447#endif
448#ifdef LEX_QM
449 "?"
252b5132 450#endif
32137342 451 ;
252b5132 452
29b0f896
AM
453#if (defined (TE_I386AIX) \
454 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 455 && !defined (TE_GNU) \
29b0f896 456 && !defined (TE_LINUX) \
8d63c93e 457 && !defined (TE_NACL) \
29b0f896 458 && !defined (TE_FreeBSD) \
5b806d27 459 && !defined (TE_DragonFly) \
29b0f896 460 && !defined (TE_NetBSD)))
252b5132 461/* This array holds the chars that always start a comment. If the
b3b91714
AM
462 pre-processor is disabled, these aren't very useful. The option
463 --divide will remove '/' from this list. */
464const char *i386_comment_chars = "#/";
465#define SVR4_COMMENT_CHARS 1
252b5132 466#define PREFIX_SEPARATOR '\\'
252b5132 467
b3b91714
AM
468#else
469const char *i386_comment_chars = "#";
470#define PREFIX_SEPARATOR '/'
471#endif
472
252b5132
RH
473/* This array holds the chars that only start a comment at the beginning of
474 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
475 .line and .file directives will appear in the pre-processed output.
476 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 477 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
478 #NO_APP at the beginning of its output.
479 Also note that comments started like this one will always work if
252b5132 480 '/' isn't otherwise defined. */
b3b91714 481const char line_comment_chars[] = "#/";
252b5132 482
63a0b638 483const char line_separator_chars[] = ";";
252b5132 484
ce8a8b2f
AM
485/* Chars that can be used to separate mant from exp in floating point
486 nums. */
252b5132
RH
487const char EXP_CHARS[] = "eE";
488
ce8a8b2f
AM
489/* Chars that mean this number is a floating point constant
490 As in 0f12.456
491 or 0d1.2345e12. */
252b5132
RH
492const char FLT_CHARS[] = "fFdDxX";
493
ce8a8b2f 494/* Tables for lexical analysis. */
252b5132
RH
495static char mnemonic_chars[256];
496static char register_chars[256];
497static char operand_chars[256];
498static char identifier_chars[256];
499static char digit_chars[256];
500
ce8a8b2f 501/* Lexical macros. */
252b5132
RH
502#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
503#define is_operand_char(x) (operand_chars[(unsigned char) x])
504#define is_register_char(x) (register_chars[(unsigned char) x])
505#define is_space_char(x) ((x) == ' ')
506#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
507#define is_digit_char(x) (digit_chars[(unsigned char) x])
508
0234cb7c 509/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
510static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
511
512/* md_assemble() always leaves the strings it's passed unaltered. To
513 effect this we maintain a stack of saved characters that we've smashed
514 with '\0's (indicating end of strings for various sub-fields of the
47926f60 515 assembler instruction). */
252b5132 516static char save_stack[32];
ce8a8b2f 517static char *save_stack_p;
252b5132
RH
518#define END_STRING_AND_SAVE(s) \
519 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
520#define RESTORE_END_STRING(s) \
521 do { *(s) = *--save_stack_p; } while (0)
522
47926f60 523/* The instruction we're assembling. */
252b5132
RH
524static i386_insn i;
525
526/* Possible templates for current insn. */
527static const templates *current_templates;
528
31b2323c
L
529/* Per instruction expressionS buffers: max displacements & immediates. */
530static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
531static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 532
47926f60 533/* Current operand we are working on. */
ee86248c 534static int this_operand = -1;
252b5132 535
3e73aa7c
JH
536/* We support four different modes. FLAG_CODE variable is used to distinguish
537 these. */
538
539enum flag_code {
540 CODE_32BIT,
541 CODE_16BIT,
542 CODE_64BIT };
543
544static enum flag_code flag_code;
4fa24527 545static unsigned int object_64bit;
862be3fb 546static unsigned int disallow_64bit_reloc;
3e73aa7c
JH
547static int use_rela_relocations = 0;
548
7af8ed2d
NC
549#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
550 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
551 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
552
351f65ca
L
553/* The ELF ABI to use. */
554enum x86_elf_abi
555{
556 I386_ABI,
7f56bc95
L
557 X86_64_ABI,
558 X86_64_X32_ABI
351f65ca
L
559};
560
561static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 562#endif
351f65ca 563
167ad85b
TG
564#if defined (TE_PE) || defined (TE_PEP)
565/* Use big object file format. */
566static int use_big_obj = 0;
567#endif
568
8dcea932
L
569#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570/* 1 if generating code for a shared library. */
571static int shared = 0;
572#endif
573
47926f60
KH
574/* 1 for intel syntax,
575 0 if att syntax. */
576static int intel_syntax = 0;
252b5132 577
e89c5eaa
L
578/* 1 for Intel64 ISA,
579 0 if AMD64 ISA. */
580static int intel64;
581
1efbbeb4
L
582/* 1 for intel mnemonic,
583 0 if att mnemonic. */
584static int intel_mnemonic = !SYSV386_COMPAT;
585
a60de03c
JB
586/* 1 if pseudo registers are permitted. */
587static int allow_pseudo_reg = 0;
588
47926f60
KH
589/* 1 if register prefix % not required. */
590static int allow_naked_reg = 0;
252b5132 591
33eaf5de 592/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
593 instructions supporting it, even if this prefix wasn't specified
594 explicitly. */
595static int add_bnd_prefix = 0;
596
ba104c83 597/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
598static int allow_index_reg = 0;
599
d022bddd
IT
600/* 1 if the assembler should ignore LOCK prefix, even if it was
601 specified explicitly. */
602static int omit_lock_prefix = 0;
603
e4e00185
AS
604/* 1 if the assembler should encode lfence, mfence, and sfence as
605 "lock addl $0, (%{re}sp)". */
606static int avoid_fence = 0;
607
0cb4071e
L
608/* 1 if the assembler should generate relax relocations. */
609
610static int generate_relax_relocations
611 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
612
7bab8ab5 613static enum check_kind
daf50ae7 614 {
7bab8ab5
JB
615 check_none = 0,
616 check_warning,
617 check_error
daf50ae7 618 }
7bab8ab5 619sse_check, operand_check = check_warning;
daf50ae7 620
b6f8c7c4
L
621/* Optimization:
622 1. Clear the REX_W bit with register operand if possible.
623 2. Above plus use 128bit vector instruction to clear the full vector
624 register.
625 */
626static int optimize = 0;
627
628/* Optimization:
629 1. Clear the REX_W bit with register operand if possible.
630 2. Above plus use 128bit vector instruction to clear the full vector
631 register.
632 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
633 "testb $imm7,%r8".
634 */
635static int optimize_for_space = 0;
636
2ca3ace5
L
637/* Register prefix used for error message. */
638static const char *register_prefix = "%";
639
47926f60
KH
640/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
641 leave, push, and pop instructions so that gcc has the same stack
642 frame as in 32 bit mode. */
643static char stackop_size = '\0';
eecb386c 644
12b55ccc
L
645/* Non-zero to optimize code alignment. */
646int optimize_align_code = 1;
647
47926f60
KH
648/* Non-zero to quieten some warnings. */
649static int quiet_warnings = 0;
a38cf1db 650
47926f60
KH
651/* CPU name. */
652static const char *cpu_arch_name = NULL;
6305a203 653static char *cpu_sub_arch_name = NULL;
a38cf1db 654
47926f60 655/* CPU feature flags. */
40fb9820
L
656static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
657
ccc9c027
L
658/* If we have selected a cpu we are generating instructions for. */
659static int cpu_arch_tune_set = 0;
660
9103f4f4 661/* Cpu we are generating instructions for. */
fbf3f584 662enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
663
664/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 665static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 666
ccc9c027 667/* CPU instruction set architecture used. */
fbf3f584 668enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 669
9103f4f4 670/* CPU feature flags of instruction set architecture used. */
fbf3f584 671i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 672
fddf5b5b
AM
673/* If set, conditional jumps are not automatically promoted to handle
674 larger than a byte offset. */
675static unsigned int no_cond_jump_promotion = 0;
676
c0f3af97
L
677/* Encode SSE instructions with VEX prefix. */
678static unsigned int sse2avx;
679
539f890d
L
680/* Encode scalar AVX instructions with specific vector length. */
681static enum
682 {
683 vex128 = 0,
684 vex256
685 } avxscalar;
686
43234a1e
L
687/* Encode scalar EVEX LIG instructions with specific vector length. */
688static enum
689 {
690 evexl128 = 0,
691 evexl256,
692 evexl512
693 } evexlig;
694
695/* Encode EVEX WIG instructions with specific evex.w. */
696static enum
697 {
698 evexw0 = 0,
699 evexw1
700 } evexwig;
701
d3d3c6db
IT
702/* Value to encode in EVEX RC bits, for SAE-only instructions. */
703static enum rc_type evexrcig = rne;
704
29b0f896 705/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 706static symbolS *GOT_symbol;
29b0f896 707
a4447b93
RH
708/* The dwarf2 return column, adjusted for 32 or 64 bit. */
709unsigned int x86_dwarf2_return_column;
710
711/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
712int x86_cie_data_alignment;
713
252b5132 714/* Interface to relax_segment.
fddf5b5b
AM
715 There are 3 major relax states for 386 jump insns because the
716 different types of jumps add different sizes to frags when we're
717 figuring out what sort of jump to choose to reach a given label. */
252b5132 718
47926f60 719/* Types. */
93c2a809
AM
720#define UNCOND_JUMP 0
721#define COND_JUMP 1
722#define COND_JUMP86 2
fddf5b5b 723
47926f60 724/* Sizes. */
252b5132
RH
725#define CODE16 1
726#define SMALL 0
29b0f896 727#define SMALL16 (SMALL | CODE16)
252b5132 728#define BIG 2
29b0f896 729#define BIG16 (BIG | CODE16)
252b5132
RH
730
731#ifndef INLINE
732#ifdef __GNUC__
733#define INLINE __inline__
734#else
735#define INLINE
736#endif
737#endif
738
fddf5b5b
AM
739#define ENCODE_RELAX_STATE(type, size) \
740 ((relax_substateT) (((type) << 2) | (size)))
741#define TYPE_FROM_RELAX_STATE(s) \
742 ((s) >> 2)
743#define DISP_SIZE_FROM_RELAX_STATE(s) \
744 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
745
746/* This table is used by relax_frag to promote short jumps to long
747 ones where necessary. SMALL (short) jumps may be promoted to BIG
748 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
749 don't allow a short jump in a 32 bit code segment to be promoted to
750 a 16 bit offset jump because it's slower (requires data size
751 prefix), and doesn't work, unless the destination is in the bottom
752 64k of the code segment (The top 16 bits of eip are zeroed). */
753
754const relax_typeS md_relax_table[] =
755{
24eab124
AM
756 /* The fields are:
757 1) most positive reach of this state,
758 2) most negative reach of this state,
93c2a809 759 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 760 4) which index into the table to try if we can't fit into this one. */
252b5132 761
fddf5b5b 762 /* UNCOND_JUMP states. */
93c2a809
AM
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
764 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
765 /* dword jmp adds 4 bytes to frag:
766 0 extra opcode bytes, 4 displacement bytes. */
252b5132 767 {0, 0, 4, 0},
93c2a809
AM
768 /* word jmp adds 2 byte2 to frag:
769 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
770 {0, 0, 2, 0},
771
93c2a809
AM
772 /* COND_JUMP states. */
773 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
774 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
775 /* dword conditionals adds 5 bytes to frag:
776 1 extra opcode byte, 4 displacement bytes. */
777 {0, 0, 5, 0},
fddf5b5b 778 /* word conditionals add 3 bytes to frag:
93c2a809
AM
779 1 extra opcode byte, 2 displacement bytes. */
780 {0, 0, 3, 0},
781
782 /* COND_JUMP86 states. */
783 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
785 /* dword conditionals adds 5 bytes to frag:
786 1 extra opcode byte, 4 displacement bytes. */
787 {0, 0, 5, 0},
788 /* word conditionals add 4 bytes to frag:
789 1 displacement byte and a 3 byte long branch insn. */
790 {0, 0, 4, 0}
252b5132
RH
791};
792
9103f4f4
L
793static const arch_entry cpu_arch[] =
794{
89507696
JB
795 /* Do not replace the first two entries - i386_target_format()
796 relies on them being there in this order. */
8a2c8fef 797 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 798 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 799 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 800 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 801 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 802 CPU_NONE_FLAGS, 0 },
8a2c8fef 803 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 804 CPU_I186_FLAGS, 0 },
8a2c8fef 805 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 806 CPU_I286_FLAGS, 0 },
8a2c8fef 807 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 808 CPU_I386_FLAGS, 0 },
8a2c8fef 809 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 810 CPU_I486_FLAGS, 0 },
8a2c8fef 811 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 812 CPU_I586_FLAGS, 0 },
8a2c8fef 813 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 814 CPU_I686_FLAGS, 0 },
8a2c8fef 815 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 816 CPU_I586_FLAGS, 0 },
8a2c8fef 817 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 818 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 819 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 820 CPU_P2_FLAGS, 0 },
8a2c8fef 821 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 822 CPU_P3_FLAGS, 0 },
8a2c8fef 823 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 824 CPU_P4_FLAGS, 0 },
8a2c8fef 825 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 826 CPU_CORE_FLAGS, 0 },
8a2c8fef 827 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 828 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 829 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 830 CPU_CORE_FLAGS, 1 },
8a2c8fef 831 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 832 CPU_CORE_FLAGS, 0 },
8a2c8fef 833 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 834 CPU_CORE2_FLAGS, 1 },
8a2c8fef 835 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 836 CPU_CORE2_FLAGS, 0 },
8a2c8fef 837 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 838 CPU_COREI7_FLAGS, 0 },
8a2c8fef 839 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 840 CPU_L1OM_FLAGS, 0 },
7a9068fe 841 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 842 CPU_K1OM_FLAGS, 0 },
81486035 843 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 844 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 845 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 846 CPU_K6_FLAGS, 0 },
8a2c8fef 847 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 848 CPU_K6_2_FLAGS, 0 },
8a2c8fef 849 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 850 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 851 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 852 CPU_K8_FLAGS, 1 },
8a2c8fef 853 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 854 CPU_K8_FLAGS, 0 },
8a2c8fef 855 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 856 CPU_K8_FLAGS, 0 },
8a2c8fef 857 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 858 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 859 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 860 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 861 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 862 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 863 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 864 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 865 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 866 CPU_BDVER4_FLAGS, 0 },
029f3522 867 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 868 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
869 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
870 CPU_ZNVER2_FLAGS, 0 },
7b458c12 871 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 872 CPU_BTVER1_FLAGS, 0 },
7b458c12 873 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 874 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 875 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 876 CPU_8087_FLAGS, 0 },
8a2c8fef 877 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 878 CPU_287_FLAGS, 0 },
8a2c8fef 879 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 880 CPU_387_FLAGS, 0 },
1848e567
L
881 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
882 CPU_687_FLAGS, 0 },
d871f3f4
L
883 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
884 CPU_CMOV_FLAGS, 0 },
885 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
886 CPU_FXSR_FLAGS, 0 },
8a2c8fef 887 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 888 CPU_MMX_FLAGS, 0 },
8a2c8fef 889 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 890 CPU_SSE_FLAGS, 0 },
8a2c8fef 891 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 892 CPU_SSE2_FLAGS, 0 },
8a2c8fef 893 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 894 CPU_SSE3_FLAGS, 0 },
8a2c8fef 895 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 896 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 897 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 898 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 899 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 900 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 901 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 902 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 903 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 904 CPU_AVX_FLAGS, 0 },
6c30d220 905 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 906 CPU_AVX2_FLAGS, 0 },
43234a1e 907 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 908 CPU_AVX512F_FLAGS, 0 },
43234a1e 909 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 910 CPU_AVX512CD_FLAGS, 0 },
43234a1e 911 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 912 CPU_AVX512ER_FLAGS, 0 },
43234a1e 913 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 915 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 917 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 919 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 920 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 922 CPU_VMX_FLAGS, 0 },
8729a6f6 923 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 924 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 926 CPU_SMX_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 928 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 929 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 930 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 931 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 932 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 933 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 934 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 936 CPU_AES_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 938 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 940 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 941 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 942 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 943 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 944 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 945 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 946 CPU_F16C_FLAGS, 0 },
6c30d220 947 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 948 CPU_BMI2_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 950 CPU_FMA_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 952 CPU_FMA4_FLAGS, 0 },
8a2c8fef 953 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 954 CPU_XOP_FLAGS, 0 },
8a2c8fef 955 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 956 CPU_LWP_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 958 CPU_MOVBE_FLAGS, 0 },
60aa667e 959 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 960 CPU_CX16_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 962 CPU_EPT_FLAGS, 0 },
6c30d220 963 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 964 CPU_LZCNT_FLAGS, 0 },
42164a71 965 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 966 CPU_HLE_FLAGS, 0 },
42164a71 967 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 968 CPU_RTM_FLAGS, 0 },
6c30d220 969 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 970 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 971 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 972 CPU_CLFLUSH_FLAGS, 0 },
22109423 973 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 974 CPU_NOP_FLAGS, 0 },
8a2c8fef 975 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 976 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 977 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 978 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 979 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 980 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 981 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 982 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 983 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 984 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 985 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 986 CPU_SVME_FLAGS, 1 },
8a2c8fef 987 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_SVME_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_ABM_FLAGS, 0 },
87973e9f 993 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 994 CPU_BMI_FLAGS, 0 },
2a2a0f38 995 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 996 CPU_TBM_FLAGS, 0 },
e2e1fcde 997 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 998 CPU_ADX_FLAGS, 0 },
e2e1fcde 999 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1001 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1003 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SMAP_FLAGS, 0 },
7e8b059b 1005 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_MPX_FLAGS, 0 },
a0046408 1007 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1008 CPU_SHA_FLAGS, 0 },
963f3586 1009 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1011 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1013 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_SE1_FLAGS, 0 },
c5e7287a 1015 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1017 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1019 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1021 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1022 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1023 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1024 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1025 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1026 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1027 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1028 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1029 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1030 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1031 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1032 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1033 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_CLZERO_FLAGS, 0 },
9916071f 1035 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_MWAITX_FLAGS, 0 },
8eab4136 1037 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_OSPKE_FLAGS, 0 },
8bc52696 1039 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1041 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1042 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1043 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1044 CPU_IBT_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1046 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1047 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1048 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1049 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1050 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1051 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1052 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1053 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1054 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1055 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1056 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1057 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1058 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1059 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1060 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1061 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1062 CPU_MOVDIRI_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1064 CPU_MOVDIR64B_FLAGS, 0 },
293f5f65
L
1065};
1066
1067static const noarch_entry cpu_noarch[] =
1068{
1069 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1070 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1071 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1072 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1073 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1074 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1075 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1076 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1077 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1078 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1079 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1080 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1081 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1082 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1083 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1084 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1085 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1086 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1087 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1088 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1089 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1090 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1091 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1092 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1093 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1094 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1095 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1096 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1097 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1098 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1099 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1100 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1101 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1102 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1103 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
e413e4e9
AM
1104};
1105
704209c0 1106#ifdef I386COFF
a6c24e68
NC
1107/* Like s_lcomm_internal in gas/read.c but the alignment string
1108 is allowed to be optional. */
1109
1110static symbolS *
1111pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1112{
1113 addressT align = 0;
1114
1115 SKIP_WHITESPACE ();
1116
7ab9ffdd 1117 if (needs_align
a6c24e68
NC
1118 && *input_line_pointer == ',')
1119 {
1120 align = parse_align (needs_align - 1);
7ab9ffdd 1121
a6c24e68
NC
1122 if (align == (addressT) -1)
1123 return NULL;
1124 }
1125 else
1126 {
1127 if (size >= 8)
1128 align = 3;
1129 else if (size >= 4)
1130 align = 2;
1131 else if (size >= 2)
1132 align = 1;
1133 else
1134 align = 0;
1135 }
1136
1137 bss_alloc (symbolP, size, align);
1138 return symbolP;
1139}
1140
704209c0 1141static void
a6c24e68
NC
1142pe_lcomm (int needs_align)
1143{
1144 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1145}
704209c0 1146#endif
a6c24e68 1147
29b0f896
AM
1148const pseudo_typeS md_pseudo_table[] =
1149{
1150#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1151 {"align", s_align_bytes, 0},
1152#else
1153 {"align", s_align_ptwo, 0},
1154#endif
1155 {"arch", set_cpu_arch, 0},
1156#ifndef I386COFF
1157 {"bss", s_bss, 0},
a6c24e68
NC
1158#else
1159 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1160#endif
1161 {"ffloat", float_cons, 'f'},
1162 {"dfloat", float_cons, 'd'},
1163 {"tfloat", float_cons, 'x'},
1164 {"value", cons, 2},
d182319b 1165 {"slong", signed_cons, 4},
29b0f896
AM
1166 {"noopt", s_ignore, 0},
1167 {"optim", s_ignore, 0},
1168 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1169 {"code16", set_code_flag, CODE_16BIT},
1170 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1171#ifdef BFD64
29b0f896 1172 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1173#endif
29b0f896
AM
1174 {"intel_syntax", set_intel_syntax, 1},
1175 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1176 {"intel_mnemonic", set_intel_mnemonic, 1},
1177 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1178 {"allow_index_reg", set_allow_index_reg, 1},
1179 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1180 {"sse_check", set_check, 0},
1181 {"operand_check", set_check, 1},
3b22753a
L
1182#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1183 {"largecomm", handle_large_common, 0},
07a53e5c 1184#else
68d20676 1185 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1186 {"loc", dwarf2_directive_loc, 0},
1187 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1188#endif
6482c264
NC
1189#ifdef TE_PE
1190 {"secrel32", pe_directive_secrel, 0},
1191#endif
29b0f896
AM
1192 {0, 0, 0}
1193};
1194
1195/* For interface with expression (). */
1196extern char *input_line_pointer;
1197
1198/* Hash table for instruction mnemonic lookup. */
1199static struct hash_control *op_hash;
1200
1201/* Hash table for register lookup. */
1202static struct hash_control *reg_hash;
1203\f
ce8a8b2f
AM
1204 /* Various efficient no-op patterns for aligning code labels.
1205 Note: Don't try to assemble the instructions in the comments.
1206 0L and 0w are not legal. */
62a02d25
L
1207static const unsigned char f32_1[] =
1208 {0x90}; /* nop */
1209static const unsigned char f32_2[] =
1210 {0x66,0x90}; /* xchg %ax,%ax */
1211static const unsigned char f32_3[] =
1212 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1213static const unsigned char f32_4[] =
1214 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1215static const unsigned char f32_6[] =
1216 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1217static const unsigned char f32_7[] =
1218 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1219static const unsigned char f16_3[] =
3ae729d5 1220 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1221static const unsigned char f16_4[] =
3ae729d5
L
1222 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1223static const unsigned char jump_disp8[] =
1224 {0xeb}; /* jmp disp8 */
1225static const unsigned char jump32_disp32[] =
1226 {0xe9}; /* jmp disp32 */
1227static const unsigned char jump16_disp32[] =
1228 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1229/* 32-bit NOPs patterns. */
1230static const unsigned char *const f32_patt[] = {
3ae729d5 1231 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1232};
1233/* 16-bit NOPs patterns. */
1234static const unsigned char *const f16_patt[] = {
3ae729d5 1235 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1236};
1237/* nopl (%[re]ax) */
1238static const unsigned char alt_3[] =
1239 {0x0f,0x1f,0x00};
1240/* nopl 0(%[re]ax) */
1241static const unsigned char alt_4[] =
1242 {0x0f,0x1f,0x40,0x00};
1243/* nopl 0(%[re]ax,%[re]ax,1) */
1244static const unsigned char alt_5[] =
1245 {0x0f,0x1f,0x44,0x00,0x00};
1246/* nopw 0(%[re]ax,%[re]ax,1) */
1247static const unsigned char alt_6[] =
1248 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1249/* nopl 0L(%[re]ax) */
1250static const unsigned char alt_7[] =
1251 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1252/* nopl 0L(%[re]ax,%[re]ax,1) */
1253static const unsigned char alt_8[] =
1254 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1255/* nopw 0L(%[re]ax,%[re]ax,1) */
1256static const unsigned char alt_9[] =
1257 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1258/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1259static const unsigned char alt_10[] =
1260 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1261/* data16 nopw %cs:0L(%eax,%eax,1) */
1262static const unsigned char alt_11[] =
1263 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1264/* 32-bit and 64-bit NOPs patterns. */
1265static const unsigned char *const alt_patt[] = {
1266 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1267 alt_9, alt_10, alt_11
62a02d25
L
1268};
1269
1270/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1271 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1272
1273static void
1274i386_output_nops (char *where, const unsigned char *const *patt,
1275 int count, int max_single_nop_size)
1276
1277{
3ae729d5
L
1278 /* Place the longer NOP first. */
1279 int last;
1280 int offset;
1281 const unsigned char *nops = patt[max_single_nop_size - 1];
1282
1283 /* Use the smaller one if the requsted one isn't available. */
1284 if (nops == NULL)
62a02d25 1285 {
3ae729d5
L
1286 max_single_nop_size--;
1287 nops = patt[max_single_nop_size - 1];
62a02d25
L
1288 }
1289
3ae729d5
L
1290 last = count % max_single_nop_size;
1291
1292 count -= last;
1293 for (offset = 0; offset < count; offset += max_single_nop_size)
1294 memcpy (where + offset, nops, max_single_nop_size);
1295
1296 if (last)
1297 {
1298 nops = patt[last - 1];
1299 if (nops == NULL)
1300 {
1301 /* Use the smaller one plus one-byte NOP if the needed one
1302 isn't available. */
1303 last--;
1304 nops = patt[last - 1];
1305 memcpy (where + offset, nops, last);
1306 where[offset + last] = *patt[0];
1307 }
1308 else
1309 memcpy (where + offset, nops, last);
1310 }
62a02d25
L
1311}
1312
3ae729d5
L
1313static INLINE int
1314fits_in_imm7 (offsetT num)
1315{
1316 return (num & 0x7f) == num;
1317}
1318
1319static INLINE int
1320fits_in_imm31 (offsetT num)
1321{
1322 return (num & 0x7fffffff) == num;
1323}
62a02d25
L
1324
1325/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1326 single NOP instruction LIMIT. */
1327
1328void
3ae729d5 1329i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1330{
3ae729d5 1331 const unsigned char *const *patt = NULL;
62a02d25 1332 int max_single_nop_size;
3ae729d5
L
1333 /* Maximum number of NOPs before switching to jump over NOPs. */
1334 int max_number_of_nops;
62a02d25 1335
3ae729d5 1336 switch (fragP->fr_type)
62a02d25 1337 {
3ae729d5
L
1338 case rs_fill_nop:
1339 case rs_align_code:
1340 break;
1341 default:
62a02d25
L
1342 return;
1343 }
1344
ccc9c027
L
1345 /* We need to decide which NOP sequence to use for 32bit and
1346 64bit. When -mtune= is used:
4eed87de 1347
76bc74dc
L
1348 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1349 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1350 2. For the rest, alt_patt will be used.
1351
1352 When -mtune= isn't used, alt_patt will be used if
22109423 1353 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1354 be used.
ccc9c027
L
1355
1356 When -march= or .arch is used, we can't use anything beyond
1357 cpu_arch_isa_flags. */
1358
1359 if (flag_code == CODE_16BIT)
1360 {
3ae729d5
L
1361 patt = f16_patt;
1362 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1363 /* Limit number of NOPs to 2 in 16-bit mode. */
1364 max_number_of_nops = 2;
252b5132 1365 }
33fef721 1366 else
ccc9c027 1367 {
fbf3f584 1368 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1369 {
1370 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1371 switch (cpu_arch_tune)
1372 {
1373 case PROCESSOR_UNKNOWN:
1374 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1375 optimize with nops. */
1376 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1377 patt = alt_patt;
ccc9c027
L
1378 else
1379 patt = f32_patt;
1380 break;
ccc9c027
L
1381 case PROCESSOR_PENTIUM4:
1382 case PROCESSOR_NOCONA:
ef05d495 1383 case PROCESSOR_CORE:
76bc74dc 1384 case PROCESSOR_CORE2:
bd5295b2 1385 case PROCESSOR_COREI7:
3632d14b 1386 case PROCESSOR_L1OM:
7a9068fe 1387 case PROCESSOR_K1OM:
76bc74dc 1388 case PROCESSOR_GENERIC64:
ccc9c027
L
1389 case PROCESSOR_K6:
1390 case PROCESSOR_ATHLON:
1391 case PROCESSOR_K8:
4eed87de 1392 case PROCESSOR_AMDFAM10:
8aedb9fe 1393 case PROCESSOR_BD:
029f3522 1394 case PROCESSOR_ZNVER:
7b458c12 1395 case PROCESSOR_BT:
80b8656c 1396 patt = alt_patt;
ccc9c027 1397 break;
76bc74dc 1398 case PROCESSOR_I386:
ccc9c027
L
1399 case PROCESSOR_I486:
1400 case PROCESSOR_PENTIUM:
2dde1948 1401 case PROCESSOR_PENTIUMPRO:
81486035 1402 case PROCESSOR_IAMCU:
ccc9c027
L
1403 case PROCESSOR_GENERIC32:
1404 patt = f32_patt;
1405 break;
4eed87de 1406 }
ccc9c027
L
1407 }
1408 else
1409 {
fbf3f584 1410 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1411 {
1412 case PROCESSOR_UNKNOWN:
e6a14101 1413 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1414 PROCESSOR_UNKNOWN. */
1415 abort ();
1416 break;
1417
76bc74dc 1418 case PROCESSOR_I386:
ccc9c027
L
1419 case PROCESSOR_I486:
1420 case PROCESSOR_PENTIUM:
81486035 1421 case PROCESSOR_IAMCU:
ccc9c027
L
1422 case PROCESSOR_K6:
1423 case PROCESSOR_ATHLON:
1424 case PROCESSOR_K8:
4eed87de 1425 case PROCESSOR_AMDFAM10:
8aedb9fe 1426 case PROCESSOR_BD:
029f3522 1427 case PROCESSOR_ZNVER:
7b458c12 1428 case PROCESSOR_BT:
ccc9c027
L
1429 case PROCESSOR_GENERIC32:
1430 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1431 with nops. */
1432 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1433 patt = alt_patt;
ccc9c027
L
1434 else
1435 patt = f32_patt;
1436 break;
76bc74dc
L
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_PENTIUM4:
1439 case PROCESSOR_NOCONA:
1440 case PROCESSOR_CORE:
ef05d495 1441 case PROCESSOR_CORE2:
bd5295b2 1442 case PROCESSOR_COREI7:
3632d14b 1443 case PROCESSOR_L1OM:
7a9068fe 1444 case PROCESSOR_K1OM:
22109423 1445 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1446 patt = alt_patt;
ccc9c027
L
1447 else
1448 patt = f32_patt;
1449 break;
1450 case PROCESSOR_GENERIC64:
80b8656c 1451 patt = alt_patt;
ccc9c027 1452 break;
4eed87de 1453 }
ccc9c027
L
1454 }
1455
76bc74dc
L
1456 if (patt == f32_patt)
1457 {
3ae729d5
L
1458 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1459 /* Limit number of NOPs to 2 for older processors. */
1460 max_number_of_nops = 2;
76bc74dc
L
1461 }
1462 else
1463 {
3ae729d5
L
1464 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1465 /* Limit number of NOPs to 7 for newer processors. */
1466 max_number_of_nops = 7;
1467 }
1468 }
1469
1470 if (limit == 0)
1471 limit = max_single_nop_size;
1472
1473 if (fragP->fr_type == rs_fill_nop)
1474 {
1475 /* Output NOPs for .nop directive. */
1476 if (limit > max_single_nop_size)
1477 {
1478 as_bad_where (fragP->fr_file, fragP->fr_line,
1479 _("invalid single nop size: %d "
1480 "(expect within [0, %d])"),
1481 limit, max_single_nop_size);
1482 return;
1483 }
1484 }
1485 else
1486 fragP->fr_var = count;
1487
1488 if ((count / max_single_nop_size) > max_number_of_nops)
1489 {
1490 /* Generate jump over NOPs. */
1491 offsetT disp = count - 2;
1492 if (fits_in_imm7 (disp))
1493 {
1494 /* Use "jmp disp8" if possible. */
1495 count = disp;
1496 where[0] = jump_disp8[0];
1497 where[1] = count;
1498 where += 2;
1499 }
1500 else
1501 {
1502 unsigned int size_of_jump;
1503
1504 if (flag_code == CODE_16BIT)
1505 {
1506 where[0] = jump16_disp32[0];
1507 where[1] = jump16_disp32[1];
1508 size_of_jump = 2;
1509 }
1510 else
1511 {
1512 where[0] = jump32_disp32[0];
1513 size_of_jump = 1;
1514 }
1515
1516 count -= size_of_jump + 4;
1517 if (!fits_in_imm31 (count))
1518 {
1519 as_bad_where (fragP->fr_file, fragP->fr_line,
1520 _("jump over nop padding out of range"));
1521 return;
1522 }
1523
1524 md_number_to_chars (where + size_of_jump, count, 4);
1525 where += size_of_jump + 4;
76bc74dc 1526 }
ccc9c027 1527 }
3ae729d5
L
1528
1529 /* Generate multiple NOPs. */
1530 i386_output_nops (where, patt, count, limit);
252b5132
RH
1531}
1532
c6fb90c8 1533static INLINE int
0dfbf9d7 1534operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1535{
0dfbf9d7 1536 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1537 {
1538 case 3:
0dfbf9d7 1539 if (x->array[2])
c6fb90c8 1540 return 0;
1a0670f3 1541 /* Fall through. */
c6fb90c8 1542 case 2:
0dfbf9d7 1543 if (x->array[1])
c6fb90c8 1544 return 0;
1a0670f3 1545 /* Fall through. */
c6fb90c8 1546 case 1:
0dfbf9d7 1547 return !x->array[0];
c6fb90c8
L
1548 default:
1549 abort ();
1550 }
40fb9820
L
1551}
1552
c6fb90c8 1553static INLINE void
0dfbf9d7 1554operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1555{
0dfbf9d7 1556 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1557 {
1558 case 3:
0dfbf9d7 1559 x->array[2] = v;
1a0670f3 1560 /* Fall through. */
c6fb90c8 1561 case 2:
0dfbf9d7 1562 x->array[1] = v;
1a0670f3 1563 /* Fall through. */
c6fb90c8 1564 case 1:
0dfbf9d7 1565 x->array[0] = v;
1a0670f3 1566 /* Fall through. */
c6fb90c8
L
1567 break;
1568 default:
1569 abort ();
1570 }
1571}
40fb9820 1572
c6fb90c8 1573static INLINE int
0dfbf9d7
L
1574operand_type_equal (const union i386_operand_type *x,
1575 const union i386_operand_type *y)
c6fb90c8 1576{
0dfbf9d7 1577 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1578 {
1579 case 3:
0dfbf9d7 1580 if (x->array[2] != y->array[2])
c6fb90c8 1581 return 0;
1a0670f3 1582 /* Fall through. */
c6fb90c8 1583 case 2:
0dfbf9d7 1584 if (x->array[1] != y->array[1])
c6fb90c8 1585 return 0;
1a0670f3 1586 /* Fall through. */
c6fb90c8 1587 case 1:
0dfbf9d7 1588 return x->array[0] == y->array[0];
c6fb90c8
L
1589 break;
1590 default:
1591 abort ();
1592 }
1593}
40fb9820 1594
0dfbf9d7
L
1595static INLINE int
1596cpu_flags_all_zero (const union i386_cpu_flags *x)
1597{
1598 switch (ARRAY_SIZE(x->array))
1599 {
53467f57
IT
1600 case 4:
1601 if (x->array[3])
1602 return 0;
1603 /* Fall through. */
0dfbf9d7
L
1604 case 3:
1605 if (x->array[2])
1606 return 0;
1a0670f3 1607 /* Fall through. */
0dfbf9d7
L
1608 case 2:
1609 if (x->array[1])
1610 return 0;
1a0670f3 1611 /* Fall through. */
0dfbf9d7
L
1612 case 1:
1613 return !x->array[0];
1614 default:
1615 abort ();
1616 }
1617}
1618
0dfbf9d7
L
1619static INLINE int
1620cpu_flags_equal (const union i386_cpu_flags *x,
1621 const union i386_cpu_flags *y)
1622{
1623 switch (ARRAY_SIZE(x->array))
1624 {
53467f57
IT
1625 case 4:
1626 if (x->array[3] != y->array[3])
1627 return 0;
1628 /* Fall through. */
0dfbf9d7
L
1629 case 3:
1630 if (x->array[2] != y->array[2])
1631 return 0;
1a0670f3 1632 /* Fall through. */
0dfbf9d7
L
1633 case 2:
1634 if (x->array[1] != y->array[1])
1635 return 0;
1a0670f3 1636 /* Fall through. */
0dfbf9d7
L
1637 case 1:
1638 return x->array[0] == y->array[0];
1639 break;
1640 default:
1641 abort ();
1642 }
1643}
c6fb90c8
L
1644
1645static INLINE int
1646cpu_flags_check_cpu64 (i386_cpu_flags f)
1647{
1648 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1649 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1650}
1651
c6fb90c8
L
1652static INLINE i386_cpu_flags
1653cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1654{
c6fb90c8
L
1655 switch (ARRAY_SIZE (x.array))
1656 {
53467f57
IT
1657 case 4:
1658 x.array [3] &= y.array [3];
1659 /* Fall through. */
c6fb90c8
L
1660 case 3:
1661 x.array [2] &= y.array [2];
1a0670f3 1662 /* Fall through. */
c6fb90c8
L
1663 case 2:
1664 x.array [1] &= y.array [1];
1a0670f3 1665 /* Fall through. */
c6fb90c8
L
1666 case 1:
1667 x.array [0] &= y.array [0];
1668 break;
1669 default:
1670 abort ();
1671 }
1672 return x;
1673}
40fb9820 1674
c6fb90c8
L
1675static INLINE i386_cpu_flags
1676cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1677{
c6fb90c8 1678 switch (ARRAY_SIZE (x.array))
40fb9820 1679 {
53467f57
IT
1680 case 4:
1681 x.array [3] |= y.array [3];
1682 /* Fall through. */
c6fb90c8
L
1683 case 3:
1684 x.array [2] |= y.array [2];
1a0670f3 1685 /* Fall through. */
c6fb90c8
L
1686 case 2:
1687 x.array [1] |= y.array [1];
1a0670f3 1688 /* Fall through. */
c6fb90c8
L
1689 case 1:
1690 x.array [0] |= y.array [0];
40fb9820
L
1691 break;
1692 default:
1693 abort ();
1694 }
40fb9820
L
1695 return x;
1696}
1697
309d3373
JB
1698static INLINE i386_cpu_flags
1699cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1700{
1701 switch (ARRAY_SIZE (x.array))
1702 {
53467f57
IT
1703 case 4:
1704 x.array [3] &= ~y.array [3];
1705 /* Fall through. */
309d3373
JB
1706 case 3:
1707 x.array [2] &= ~y.array [2];
1a0670f3 1708 /* Fall through. */
309d3373
JB
1709 case 2:
1710 x.array [1] &= ~y.array [1];
1a0670f3 1711 /* Fall through. */
309d3373
JB
1712 case 1:
1713 x.array [0] &= ~y.array [0];
1714 break;
1715 default:
1716 abort ();
1717 }
1718 return x;
1719}
1720
c0f3af97
L
1721#define CPU_FLAGS_ARCH_MATCH 0x1
1722#define CPU_FLAGS_64BIT_MATCH 0x2
1723
c0f3af97 1724#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1725 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1726
1727/* Return CPU flags match bits. */
3629bb00 1728
40fb9820 1729static int
d3ce72d0 1730cpu_flags_match (const insn_template *t)
40fb9820 1731{
c0f3af97
L
1732 i386_cpu_flags x = t->cpu_flags;
1733 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1734
1735 x.bitfield.cpu64 = 0;
1736 x.bitfield.cpuno64 = 0;
1737
0dfbf9d7 1738 if (cpu_flags_all_zero (&x))
c0f3af97
L
1739 {
1740 /* This instruction is available on all archs. */
db12e14e 1741 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1742 }
3629bb00
L
1743 else
1744 {
c0f3af97 1745 /* This instruction is available only on some archs. */
3629bb00
L
1746 i386_cpu_flags cpu = cpu_arch_flags;
1747
ab592e75
JB
1748 /* AVX512VL is no standalone feature - match it and then strip it. */
1749 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1750 return match;
1751 x.bitfield.cpuavx512vl = 0;
1752
3629bb00 1753 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1754 if (!cpu_flags_all_zero (&cpu))
1755 {
a5ff0eb2
L
1756 if (x.bitfield.cpuavx)
1757 {
929f69fa 1758 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1759 if (cpu.bitfield.cpuavx
1760 && (!t->opcode_modifier.sse2avx || sse2avx)
1761 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1762 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1763 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1764 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1765 }
929f69fa
JB
1766 else if (x.bitfield.cpuavx512f)
1767 {
1768 /* We need to check a few extra flags with AVX512F. */
1769 if (cpu.bitfield.cpuavx512f
1770 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1771 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1772 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1773 match |= CPU_FLAGS_ARCH_MATCH;
1774 }
a5ff0eb2 1775 else
db12e14e 1776 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1777 }
3629bb00 1778 }
c0f3af97 1779 return match;
40fb9820
L
1780}
1781
c6fb90c8
L
1782static INLINE i386_operand_type
1783operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1784{
c6fb90c8
L
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] &= y.array [2];
1a0670f3 1789 /* Fall through. */
c6fb90c8
L
1790 case 2:
1791 x.array [1] &= y.array [1];
1a0670f3 1792 /* Fall through. */
c6fb90c8
L
1793 case 1:
1794 x.array [0] &= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
40fb9820
L
1800}
1801
73053c1f
JB
1802static INLINE i386_operand_type
1803operand_type_and_not (i386_operand_type x, i386_operand_type y)
1804{
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] &= ~y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] &= ~y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] &= ~y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820}
1821
c6fb90c8
L
1822static INLINE i386_operand_type
1823operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1824{
c6fb90c8 1825 switch (ARRAY_SIZE (x.array))
40fb9820 1826 {
c6fb90c8
L
1827 case 3:
1828 x.array [2] |= y.array [2];
1a0670f3 1829 /* Fall through. */
c6fb90c8
L
1830 case 2:
1831 x.array [1] |= y.array [1];
1a0670f3 1832 /* Fall through. */
c6fb90c8
L
1833 case 1:
1834 x.array [0] |= y.array [0];
40fb9820
L
1835 break;
1836 default:
1837 abort ();
1838 }
c6fb90c8
L
1839 return x;
1840}
40fb9820 1841
c6fb90c8
L
1842static INLINE i386_operand_type
1843operand_type_xor (i386_operand_type x, i386_operand_type y)
1844{
1845 switch (ARRAY_SIZE (x.array))
1846 {
1847 case 3:
1848 x.array [2] ^= y.array [2];
1a0670f3 1849 /* Fall through. */
c6fb90c8
L
1850 case 2:
1851 x.array [1] ^= y.array [1];
1a0670f3 1852 /* Fall through. */
c6fb90c8
L
1853 case 1:
1854 x.array [0] ^= y.array [0];
1855 break;
1856 default:
1857 abort ();
1858 }
40fb9820
L
1859 return x;
1860}
1861
1862static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1863static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
40fb9820
L
1864static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1865static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1866static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1867static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1868static const i386_operand_type anydisp
1869 = OPERAND_TYPE_ANYDISP;
40fb9820 1870static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 1871static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
1872static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1873static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1874static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1875static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1876static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1877static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1878static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1879static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1880static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
a683cc34 1881static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
40fb9820
L
1882
1883enum operand_type
1884{
1885 reg,
40fb9820
L
1886 imm,
1887 disp,
1888 anymem
1889};
1890
c6fb90c8 1891static INLINE int
40fb9820
L
1892operand_type_check (i386_operand_type t, enum operand_type c)
1893{
1894 switch (c)
1895 {
1896 case reg:
dc821c5f 1897 return t.bitfield.reg;
40fb9820 1898
40fb9820
L
1899 case imm:
1900 return (t.bitfield.imm8
1901 || t.bitfield.imm8s
1902 || t.bitfield.imm16
1903 || t.bitfield.imm32
1904 || t.bitfield.imm32s
1905 || t.bitfield.imm64);
1906
1907 case disp:
1908 return (t.bitfield.disp8
1909 || t.bitfield.disp16
1910 || t.bitfield.disp32
1911 || t.bitfield.disp32s
1912 || t.bitfield.disp64);
1913
1914 case anymem:
1915 return (t.bitfield.disp8
1916 || t.bitfield.disp16
1917 || t.bitfield.disp32
1918 || t.bitfield.disp32s
1919 || t.bitfield.disp64
1920 || t.bitfield.baseindex);
1921
1922 default:
1923 abort ();
1924 }
2cfe26b6
AM
1925
1926 return 0;
40fb9820
L
1927}
1928
7a54636a
L
1929/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1930 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
1931
1932static INLINE int
7a54636a
L
1933match_operand_size (const insn_template *t, unsigned int wanted,
1934 unsigned int given)
5c07affc 1935{
3ac21baa
JB
1936 return !((i.types[given].bitfield.byte
1937 && !t->operand_types[wanted].bitfield.byte)
1938 || (i.types[given].bitfield.word
1939 && !t->operand_types[wanted].bitfield.word)
1940 || (i.types[given].bitfield.dword
1941 && !t->operand_types[wanted].bitfield.dword)
1942 || (i.types[given].bitfield.qword
1943 && !t->operand_types[wanted].bitfield.qword)
1944 || (i.types[given].bitfield.tbyte
1945 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
1946}
1947
dd40ce22
L
1948/* Return 1 if there is no conflict in SIMD register between operand
1949 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
1950
1951static INLINE int
dd40ce22
L
1952match_simd_size (const insn_template *t, unsigned int wanted,
1953 unsigned int given)
1b54b8d7 1954{
3ac21baa
JB
1955 return !((i.types[given].bitfield.xmmword
1956 && !t->operand_types[wanted].bitfield.xmmword)
1957 || (i.types[given].bitfield.ymmword
1958 && !t->operand_types[wanted].bitfield.ymmword)
1959 || (i.types[given].bitfield.zmmword
1960 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
1961}
1962
7a54636a
L
1963/* Return 1 if there is no conflict in any size between operand GIVEN
1964 and opeand WANTED for instruction template T. */
5c07affc
L
1965
1966static INLINE int
dd40ce22
L
1967match_mem_size (const insn_template *t, unsigned int wanted,
1968 unsigned int given)
5c07affc 1969{
7a54636a 1970 return (match_operand_size (t, wanted, given)
3ac21baa 1971 && !((i.types[given].bitfield.unspecified
af508cb9 1972 && !i.broadcast
3ac21baa
JB
1973 && !t->operand_types[wanted].bitfield.unspecified)
1974 || (i.types[given].bitfield.fword
1975 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
1976 /* For scalar opcode templates to allow register and memory
1977 operands at the same time, some special casing is needed
d6793fa1
JB
1978 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1979 down-conversion vpmov*. */
3ac21baa 1980 || ((t->operand_types[wanted].bitfield.regsimd
1b54b8d7 1981 && !t->opcode_modifier.broadcast
3ac21baa
JB
1982 && (t->operand_types[wanted].bitfield.byte
1983 || t->operand_types[wanted].bitfield.word
1984 || t->operand_types[wanted].bitfield.dword
1985 || t->operand_types[wanted].bitfield.qword))
1986 ? (i.types[given].bitfield.xmmword
1987 || i.types[given].bitfield.ymmword
1988 || i.types[given].bitfield.zmmword)
1989 : !match_simd_size(t, wanted, given))));
5c07affc
L
1990}
1991
3ac21baa
JB
1992/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1993 operands for instruction template T, and it has MATCH_REVERSE set if there
1994 is no size conflict on any operands for the template with operands reversed
1995 (and the template allows for reversing in the first place). */
5c07affc 1996
3ac21baa
JB
1997#define MATCH_STRAIGHT 1
1998#define MATCH_REVERSE 2
1999
2000static INLINE unsigned int
d3ce72d0 2001operand_size_match (const insn_template *t)
5c07affc 2002{
3ac21baa 2003 unsigned int j, match = MATCH_STRAIGHT;
5c07affc
L
2004
2005 /* Don't check jump instructions. */
2006 if (t->opcode_modifier.jump
2007 || t->opcode_modifier.jumpbyte
2008 || t->opcode_modifier.jumpdword
2009 || t->opcode_modifier.jumpintersegment)
2010 return match;
2011
2012 /* Check memory and accumulator operand size. */
2013 for (j = 0; j < i.operands; j++)
2014 {
1b54b8d7
JB
2015 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2016 && t->operand_types[j].bitfield.anysize)
5c07affc
L
2017 continue;
2018
1b54b8d7 2019 if (t->operand_types[j].bitfield.reg
7a54636a 2020 && !match_operand_size (t, j, j))
5c07affc
L
2021 {
2022 match = 0;
2023 break;
2024 }
2025
1b54b8d7 2026 if (t->operand_types[j].bitfield.regsimd
3ac21baa 2027 && !match_simd_size (t, j, j))
1b54b8d7
JB
2028 {
2029 match = 0;
2030 break;
2031 }
2032
2033 if (t->operand_types[j].bitfield.acc
7a54636a 2034 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2035 {
2036 match = 0;
2037 break;
2038 }
2039
c48dadc9 2040 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2041 {
2042 match = 0;
2043 break;
2044 }
2045 }
2046
3ac21baa 2047 if (!t->opcode_modifier.d)
891edac4
L
2048 {
2049mismatch:
3ac21baa
JB
2050 if (!match)
2051 i.error = operand_size_mismatch;
2052 return match;
891edac4 2053 }
5c07affc
L
2054
2055 /* Check reverse. */
f5eb1d70 2056 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2057
f5eb1d70 2058 for (j = 0; j < i.operands; j++)
5c07affc 2059 {
f5eb1d70
JB
2060 unsigned int given = i.operands - j - 1;
2061
dbbc8b7e 2062 if (t->operand_types[j].bitfield.reg
f5eb1d70 2063 && !match_operand_size (t, j, given))
891edac4 2064 goto mismatch;
5c07affc 2065
dbbc8b7e 2066 if (t->operand_types[j].bitfield.regsimd
f5eb1d70 2067 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2068 goto mismatch;
2069
2070 if (t->operand_types[j].bitfield.acc
f5eb1d70
JB
2071 && (!match_operand_size (t, j, given)
2072 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2073 goto mismatch;
2074
f5eb1d70 2075 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2076 goto mismatch;
5c07affc
L
2077 }
2078
3ac21baa 2079 return match | MATCH_REVERSE;
5c07affc
L
2080}
2081
c6fb90c8 2082static INLINE int
40fb9820
L
2083operand_type_match (i386_operand_type overlap,
2084 i386_operand_type given)
2085{
2086 i386_operand_type temp = overlap;
2087
2088 temp.bitfield.jumpabsolute = 0;
7d5e4556 2089 temp.bitfield.unspecified = 0;
5c07affc
L
2090 temp.bitfield.byte = 0;
2091 temp.bitfield.word = 0;
2092 temp.bitfield.dword = 0;
2093 temp.bitfield.fword = 0;
2094 temp.bitfield.qword = 0;
2095 temp.bitfield.tbyte = 0;
2096 temp.bitfield.xmmword = 0;
c0f3af97 2097 temp.bitfield.ymmword = 0;
43234a1e 2098 temp.bitfield.zmmword = 0;
0dfbf9d7 2099 if (operand_type_all_zero (&temp))
891edac4 2100 goto mismatch;
40fb9820 2101
891edac4
L
2102 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2103 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2104 return 1;
2105
2106mismatch:
a65babc9 2107 i.error = operand_type_mismatch;
891edac4 2108 return 0;
40fb9820
L
2109}
2110
7d5e4556 2111/* If given types g0 and g1 are registers they must be of the same type
10c17abd
JB
2112 unless the expected operand type register overlap is null.
2113 Memory operand size of certain SIMD instructions is also being checked
2114 here. */
40fb9820 2115
c6fb90c8 2116static INLINE int
dc821c5f 2117operand_type_register_match (i386_operand_type g0,
40fb9820 2118 i386_operand_type t0,
40fb9820
L
2119 i386_operand_type g1,
2120 i386_operand_type t1)
2121{
10c17abd
JB
2122 if (!g0.bitfield.reg
2123 && !g0.bitfield.regsimd
2124 && (!operand_type_check (g0, anymem)
2125 || g0.bitfield.unspecified
2126 || !t0.bitfield.regsimd))
40fb9820
L
2127 return 1;
2128
10c17abd
JB
2129 if (!g1.bitfield.reg
2130 && !g1.bitfield.regsimd
2131 && (!operand_type_check (g1, anymem)
2132 || g1.bitfield.unspecified
2133 || !t1.bitfield.regsimd))
40fb9820
L
2134 return 1;
2135
dc821c5f
JB
2136 if (g0.bitfield.byte == g1.bitfield.byte
2137 && g0.bitfield.word == g1.bitfield.word
2138 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2139 && g0.bitfield.qword == g1.bitfield.qword
2140 && g0.bitfield.xmmword == g1.bitfield.xmmword
2141 && g0.bitfield.ymmword == g1.bitfield.ymmword
2142 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2143 return 1;
2144
dc821c5f
JB
2145 if (!(t0.bitfield.byte & t1.bitfield.byte)
2146 && !(t0.bitfield.word & t1.bitfield.word)
2147 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2148 && !(t0.bitfield.qword & t1.bitfield.qword)
2149 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2150 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2151 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2152 return 1;
2153
a65babc9 2154 i.error = register_type_mismatch;
891edac4
L
2155
2156 return 0;
40fb9820
L
2157}
2158
4c692bc7
JB
2159static INLINE unsigned int
2160register_number (const reg_entry *r)
2161{
2162 unsigned int nr = r->reg_num;
2163
2164 if (r->reg_flags & RegRex)
2165 nr += 8;
2166
200cbe0f
L
2167 if (r->reg_flags & RegVRex)
2168 nr += 16;
2169
4c692bc7
JB
2170 return nr;
2171}
2172
252b5132 2173static INLINE unsigned int
40fb9820 2174mode_from_disp_size (i386_operand_type t)
252b5132 2175{
b5014f7a 2176 if (t.bitfield.disp8)
40fb9820
L
2177 return 1;
2178 else if (t.bitfield.disp16
2179 || t.bitfield.disp32
2180 || t.bitfield.disp32s)
2181 return 2;
2182 else
2183 return 0;
252b5132
RH
2184}
2185
2186static INLINE int
65879393 2187fits_in_signed_byte (addressT num)
252b5132 2188{
65879393 2189 return num + 0x80 <= 0xff;
47926f60 2190}
252b5132
RH
2191
2192static INLINE int
65879393 2193fits_in_unsigned_byte (addressT num)
252b5132 2194{
65879393 2195 return num <= 0xff;
47926f60 2196}
252b5132
RH
2197
2198static INLINE int
65879393 2199fits_in_unsigned_word (addressT num)
252b5132 2200{
65879393 2201 return num <= 0xffff;
47926f60 2202}
252b5132
RH
2203
2204static INLINE int
65879393 2205fits_in_signed_word (addressT num)
252b5132 2206{
65879393 2207 return num + 0x8000 <= 0xffff;
47926f60 2208}
2a962e6d 2209
3e73aa7c 2210static INLINE int
65879393 2211fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2212{
2213#ifndef BFD64
2214 return 1;
2215#else
65879393 2216 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2217#endif
2218} /* fits_in_signed_long() */
2a962e6d 2219
3e73aa7c 2220static INLINE int
65879393 2221fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2222{
2223#ifndef BFD64
2224 return 1;
2225#else
65879393 2226 return num <= 0xffffffff;
3e73aa7c
JH
2227#endif
2228} /* fits_in_unsigned_long() */
252b5132 2229
43234a1e 2230static INLINE int
b5014f7a 2231fits_in_disp8 (offsetT num)
43234a1e
L
2232{
2233 int shift = i.memshift;
2234 unsigned int mask;
2235
2236 if (shift == -1)
2237 abort ();
2238
2239 mask = (1 << shift) - 1;
2240
2241 /* Return 0 if NUM isn't properly aligned. */
2242 if ((num & mask))
2243 return 0;
2244
2245 /* Check if NUM will fit in 8bit after shift. */
2246 return fits_in_signed_byte (num >> shift);
2247}
2248
a683cc34
SP
2249static INLINE int
2250fits_in_imm4 (offsetT num)
2251{
2252 return (num & 0xf) == num;
2253}
2254
40fb9820 2255static i386_operand_type
e3bb37b5 2256smallest_imm_type (offsetT num)
252b5132 2257{
40fb9820 2258 i386_operand_type t;
7ab9ffdd 2259
0dfbf9d7 2260 operand_type_set (&t, 0);
40fb9820
L
2261 t.bitfield.imm64 = 1;
2262
2263 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2264 {
2265 /* This code is disabled on the 486 because all the Imm1 forms
2266 in the opcode table are slower on the i486. They're the
2267 versions with the implicitly specified single-position
2268 displacement, which has another syntax if you really want to
2269 use that form. */
40fb9820
L
2270 t.bitfield.imm1 = 1;
2271 t.bitfield.imm8 = 1;
2272 t.bitfield.imm8s = 1;
2273 t.bitfield.imm16 = 1;
2274 t.bitfield.imm32 = 1;
2275 t.bitfield.imm32s = 1;
2276 }
2277 else if (fits_in_signed_byte (num))
2278 {
2279 t.bitfield.imm8 = 1;
2280 t.bitfield.imm8s = 1;
2281 t.bitfield.imm16 = 1;
2282 t.bitfield.imm32 = 1;
2283 t.bitfield.imm32s = 1;
2284 }
2285 else if (fits_in_unsigned_byte (num))
2286 {
2287 t.bitfield.imm8 = 1;
2288 t.bitfield.imm16 = 1;
2289 t.bitfield.imm32 = 1;
2290 t.bitfield.imm32s = 1;
2291 }
2292 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2293 {
2294 t.bitfield.imm16 = 1;
2295 t.bitfield.imm32 = 1;
2296 t.bitfield.imm32s = 1;
2297 }
2298 else if (fits_in_signed_long (num))
2299 {
2300 t.bitfield.imm32 = 1;
2301 t.bitfield.imm32s = 1;
2302 }
2303 else if (fits_in_unsigned_long (num))
2304 t.bitfield.imm32 = 1;
2305
2306 return t;
47926f60 2307}
252b5132 2308
847f7ad4 2309static offsetT
e3bb37b5 2310offset_in_range (offsetT val, int size)
847f7ad4 2311{
508866be 2312 addressT mask;
ba2adb93 2313
847f7ad4
AM
2314 switch (size)
2315 {
508866be
L
2316 case 1: mask = ((addressT) 1 << 8) - 1; break;
2317 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2318 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2319#ifdef BFD64
2320 case 8: mask = ((addressT) 2 << 63) - 1; break;
2321#endif
47926f60 2322 default: abort ();
847f7ad4
AM
2323 }
2324
9de868bf
L
2325#ifdef BFD64
2326 /* If BFD64, sign extend val for 32bit address mode. */
2327 if (flag_code != CODE_64BIT
2328 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2329 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2330 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2331#endif
ba2adb93 2332
47926f60 2333 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2334 {
2335 char buf1[40], buf2[40];
2336
2337 sprint_value (buf1, val);
2338 sprint_value (buf2, val & mask);
2339 as_warn (_("%s shortened to %s"), buf1, buf2);
2340 }
2341 return val & mask;
2342}
2343
c32fa91d
L
2344enum PREFIX_GROUP
2345{
2346 PREFIX_EXIST = 0,
2347 PREFIX_LOCK,
2348 PREFIX_REP,
04ef582a 2349 PREFIX_DS,
c32fa91d
L
2350 PREFIX_OTHER
2351};
2352
2353/* Returns
2354 a. PREFIX_EXIST if attempting to add a prefix where one from the
2355 same class already exists.
2356 b. PREFIX_LOCK if lock prefix is added.
2357 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2358 d. PREFIX_DS if ds prefix is added.
2359 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2360 */
2361
2362static enum PREFIX_GROUP
e3bb37b5 2363add_prefix (unsigned int prefix)
252b5132 2364{
c32fa91d 2365 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2366 unsigned int q;
252b5132 2367
29b0f896
AM
2368 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2369 && flag_code == CODE_64BIT)
b1905489 2370 {
161a04f6 2371 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2372 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2373 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2374 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2375 ret = PREFIX_EXIST;
b1905489
JB
2376 q = REX_PREFIX;
2377 }
3e73aa7c 2378 else
b1905489
JB
2379 {
2380 switch (prefix)
2381 {
2382 default:
2383 abort ();
2384
b1905489 2385 case DS_PREFIX_OPCODE:
04ef582a
L
2386 ret = PREFIX_DS;
2387 /* Fall through. */
2388 case CS_PREFIX_OPCODE:
b1905489
JB
2389 case ES_PREFIX_OPCODE:
2390 case FS_PREFIX_OPCODE:
2391 case GS_PREFIX_OPCODE:
2392 case SS_PREFIX_OPCODE:
2393 q = SEG_PREFIX;
2394 break;
2395
2396 case REPNE_PREFIX_OPCODE:
2397 case REPE_PREFIX_OPCODE:
c32fa91d
L
2398 q = REP_PREFIX;
2399 ret = PREFIX_REP;
2400 break;
2401
b1905489 2402 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2403 q = LOCK_PREFIX;
2404 ret = PREFIX_LOCK;
b1905489
JB
2405 break;
2406
2407 case FWAIT_OPCODE:
2408 q = WAIT_PREFIX;
2409 break;
2410
2411 case ADDR_PREFIX_OPCODE:
2412 q = ADDR_PREFIX;
2413 break;
2414
2415 case DATA_PREFIX_OPCODE:
2416 q = DATA_PREFIX;
2417 break;
2418 }
2419 if (i.prefix[q] != 0)
c32fa91d 2420 ret = PREFIX_EXIST;
b1905489 2421 }
252b5132 2422
b1905489 2423 if (ret)
252b5132 2424 {
b1905489
JB
2425 if (!i.prefix[q])
2426 ++i.prefixes;
2427 i.prefix[q] |= prefix;
252b5132 2428 }
b1905489
JB
2429 else
2430 as_bad (_("same type of prefix used twice"));
252b5132 2431
252b5132
RH
2432 return ret;
2433}
2434
2435static void
78f12dd3 2436update_code_flag (int value, int check)
eecb386c 2437{
78f12dd3
L
2438 PRINTF_LIKE ((*as_error));
2439
1e9cc1c2 2440 flag_code = (enum flag_code) value;
40fb9820
L
2441 if (flag_code == CODE_64BIT)
2442 {
2443 cpu_arch_flags.bitfield.cpu64 = 1;
2444 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2445 }
2446 else
2447 {
2448 cpu_arch_flags.bitfield.cpu64 = 0;
2449 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2450 }
2451 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2452 {
78f12dd3
L
2453 if (check)
2454 as_error = as_fatal;
2455 else
2456 as_error = as_bad;
2457 (*as_error) (_("64bit mode not supported on `%s'."),
2458 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2459 }
40fb9820 2460 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2461 {
78f12dd3
L
2462 if (check)
2463 as_error = as_fatal;
2464 else
2465 as_error = as_bad;
2466 (*as_error) (_("32bit mode not supported on `%s'."),
2467 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2468 }
eecb386c
AM
2469 stackop_size = '\0';
2470}
2471
78f12dd3
L
2472static void
2473set_code_flag (int value)
2474{
2475 update_code_flag (value, 0);
2476}
2477
eecb386c 2478static void
e3bb37b5 2479set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2480{
1e9cc1c2 2481 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2482 if (flag_code != CODE_16BIT)
2483 abort ();
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2486 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2487}
2488
2489static void
e3bb37b5 2490set_intel_syntax (int syntax_flag)
252b5132
RH
2491{
2492 /* Find out if register prefixing is specified. */
2493 int ask_naked_reg = 0;
2494
2495 SKIP_WHITESPACE ();
29b0f896 2496 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2497 {
d02603dc
NC
2498 char *string;
2499 int e = get_symbol_name (&string);
252b5132 2500
47926f60 2501 if (strcmp (string, "prefix") == 0)
252b5132 2502 ask_naked_reg = 1;
47926f60 2503 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2504 ask_naked_reg = -1;
2505 else
d0b47220 2506 as_bad (_("bad argument to syntax directive."));
d02603dc 2507 (void) restore_line_pointer (e);
252b5132
RH
2508 }
2509 demand_empty_rest_of_line ();
c3332e24 2510
252b5132
RH
2511 intel_syntax = syntax_flag;
2512
2513 if (ask_naked_reg == 0)
f86103b7
AM
2514 allow_naked_reg = (intel_syntax
2515 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2516 else
2517 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2518
ee86248c 2519 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2520
e4a3b5a4 2521 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2522 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2523 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2524}
2525
1efbbeb4
L
2526static void
2527set_intel_mnemonic (int mnemonic_flag)
2528{
e1d4d893 2529 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2530}
2531
db51cc60
L
2532static void
2533set_allow_index_reg (int flag)
2534{
2535 allow_index_reg = flag;
2536}
2537
cb19c032 2538static void
7bab8ab5 2539set_check (int what)
cb19c032 2540{
7bab8ab5
JB
2541 enum check_kind *kind;
2542 const char *str;
2543
2544 if (what)
2545 {
2546 kind = &operand_check;
2547 str = "operand";
2548 }
2549 else
2550 {
2551 kind = &sse_check;
2552 str = "sse";
2553 }
2554
cb19c032
L
2555 SKIP_WHITESPACE ();
2556
2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2558 {
d02603dc
NC
2559 char *string;
2560 int e = get_symbol_name (&string);
cb19c032
L
2561
2562 if (strcmp (string, "none") == 0)
7bab8ab5 2563 *kind = check_none;
cb19c032 2564 else if (strcmp (string, "warning") == 0)
7bab8ab5 2565 *kind = check_warning;
cb19c032 2566 else if (strcmp (string, "error") == 0)
7bab8ab5 2567 *kind = check_error;
cb19c032 2568 else
7bab8ab5 2569 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2570 (void) restore_line_pointer (e);
cb19c032
L
2571 }
2572 else
7bab8ab5 2573 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2574
2575 demand_empty_rest_of_line ();
2576}
2577
8a9036a4
L
2578static void
2579check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2580 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2581{
2582#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2583 static const char *arch;
2584
2585 /* Intel LIOM is only supported on ELF. */
2586 if (!IS_ELF)
2587 return;
2588
2589 if (!arch)
2590 {
2591 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2592 use default_arch. */
2593 arch = cpu_arch_name;
2594 if (!arch)
2595 arch = default_arch;
2596 }
2597
81486035
L
2598 /* If we are targeting Intel MCU, we must enable it. */
2599 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2600 || new_flag.bitfield.cpuiamcu)
2601 return;
2602
3632d14b 2603 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2604 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2605 || new_flag.bitfield.cpul1om)
8a9036a4 2606 return;
76ba9986 2607
7a9068fe
L
2608 /* If we are targeting Intel K1OM, we must enable it. */
2609 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2610 || new_flag.bitfield.cpuk1om)
2611 return;
2612
8a9036a4
L
2613 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2614#endif
2615}
2616
e413e4e9 2617static void
e3bb37b5 2618set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2619{
47926f60 2620 SKIP_WHITESPACE ();
e413e4e9 2621
29b0f896 2622 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2623 {
d02603dc
NC
2624 char *string;
2625 int e = get_symbol_name (&string);
91d6fa6a 2626 unsigned int j;
40fb9820 2627 i386_cpu_flags flags;
e413e4e9 2628
91d6fa6a 2629 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2630 {
91d6fa6a 2631 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2632 {
91d6fa6a 2633 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2634
5c6af06e
JB
2635 if (*string != '.')
2636 {
91d6fa6a 2637 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2638 cpu_sub_arch_name = NULL;
91d6fa6a 2639 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2640 if (flag_code == CODE_64BIT)
2641 {
2642 cpu_arch_flags.bitfield.cpu64 = 1;
2643 cpu_arch_flags.bitfield.cpuno64 = 0;
2644 }
2645 else
2646 {
2647 cpu_arch_flags.bitfield.cpu64 = 0;
2648 cpu_arch_flags.bitfield.cpuno64 = 1;
2649 }
91d6fa6a
NC
2650 cpu_arch_isa = cpu_arch[j].type;
2651 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2652 if (!cpu_arch_tune_set)
2653 {
2654 cpu_arch_tune = cpu_arch_isa;
2655 cpu_arch_tune_flags = cpu_arch_isa_flags;
2656 }
5c6af06e
JB
2657 break;
2658 }
40fb9820 2659
293f5f65
L
2660 flags = cpu_flags_or (cpu_arch_flags,
2661 cpu_arch[j].flags);
81486035 2662
5b64d091 2663 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2664 {
6305a203
L
2665 if (cpu_sub_arch_name)
2666 {
2667 char *name = cpu_sub_arch_name;
2668 cpu_sub_arch_name = concat (name,
91d6fa6a 2669 cpu_arch[j].name,
1bf57e9f 2670 (const char *) NULL);
6305a203
L
2671 free (name);
2672 }
2673 else
91d6fa6a 2674 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2675 cpu_arch_flags = flags;
a586129e 2676 cpu_arch_isa_flags = flags;
5c6af06e 2677 }
0089dace
L
2678 else
2679 cpu_arch_isa_flags
2680 = cpu_flags_or (cpu_arch_isa_flags,
2681 cpu_arch[j].flags);
d02603dc 2682 (void) restore_line_pointer (e);
5c6af06e
JB
2683 demand_empty_rest_of_line ();
2684 return;
e413e4e9
AM
2685 }
2686 }
293f5f65
L
2687
2688 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2689 {
33eaf5de 2690 /* Disable an ISA extension. */
293f5f65
L
2691 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2692 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2693 {
2694 flags = cpu_flags_and_not (cpu_arch_flags,
2695 cpu_noarch[j].flags);
2696 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2697 {
2698 if (cpu_sub_arch_name)
2699 {
2700 char *name = cpu_sub_arch_name;
2701 cpu_sub_arch_name = concat (name, string,
2702 (const char *) NULL);
2703 free (name);
2704 }
2705 else
2706 cpu_sub_arch_name = xstrdup (string);
2707 cpu_arch_flags = flags;
2708 cpu_arch_isa_flags = flags;
2709 }
2710 (void) restore_line_pointer (e);
2711 demand_empty_rest_of_line ();
2712 return;
2713 }
2714
2715 j = ARRAY_SIZE (cpu_arch);
2716 }
2717
91d6fa6a 2718 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2719 as_bad (_("no such architecture: `%s'"), string);
2720
2721 *input_line_pointer = e;
2722 }
2723 else
2724 as_bad (_("missing cpu architecture"));
2725
fddf5b5b
AM
2726 no_cond_jump_promotion = 0;
2727 if (*input_line_pointer == ','
29b0f896 2728 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2729 {
d02603dc
NC
2730 char *string;
2731 char e;
2732
2733 ++input_line_pointer;
2734 e = get_symbol_name (&string);
fddf5b5b
AM
2735
2736 if (strcmp (string, "nojumps") == 0)
2737 no_cond_jump_promotion = 1;
2738 else if (strcmp (string, "jumps") == 0)
2739 ;
2740 else
2741 as_bad (_("no such architecture modifier: `%s'"), string);
2742
d02603dc 2743 (void) restore_line_pointer (e);
fddf5b5b
AM
2744 }
2745
e413e4e9
AM
2746 demand_empty_rest_of_line ();
2747}
2748
8a9036a4
L
2749enum bfd_architecture
2750i386_arch (void)
2751{
3632d14b 2752 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2753 {
2754 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2755 || flag_code != CODE_64BIT)
2756 as_fatal (_("Intel L1OM is 64bit ELF only"));
2757 return bfd_arch_l1om;
2758 }
7a9068fe
L
2759 else if (cpu_arch_isa == PROCESSOR_K1OM)
2760 {
2761 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2762 || flag_code != CODE_64BIT)
2763 as_fatal (_("Intel K1OM is 64bit ELF only"));
2764 return bfd_arch_k1om;
2765 }
81486035
L
2766 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2767 {
2768 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2769 || flag_code == CODE_64BIT)
2770 as_fatal (_("Intel MCU is 32bit ELF only"));
2771 return bfd_arch_iamcu;
2772 }
8a9036a4
L
2773 else
2774 return bfd_arch_i386;
2775}
2776
b9d79e03 2777unsigned long
7016a5d5 2778i386_mach (void)
b9d79e03 2779{
351f65ca 2780 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2781 {
3632d14b 2782 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2783 {
351f65ca
L
2784 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2785 || default_arch[6] != '\0')
8a9036a4
L
2786 as_fatal (_("Intel L1OM is 64bit ELF only"));
2787 return bfd_mach_l1om;
2788 }
7a9068fe
L
2789 else if (cpu_arch_isa == PROCESSOR_K1OM)
2790 {
2791 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2792 || default_arch[6] != '\0')
2793 as_fatal (_("Intel K1OM is 64bit ELF only"));
2794 return bfd_mach_k1om;
2795 }
351f65ca 2796 else if (default_arch[6] == '\0')
8a9036a4 2797 return bfd_mach_x86_64;
351f65ca
L
2798 else
2799 return bfd_mach_x64_32;
8a9036a4 2800 }
5197d474
L
2801 else if (!strcmp (default_arch, "i386")
2802 || !strcmp (default_arch, "iamcu"))
81486035
L
2803 {
2804 if (cpu_arch_isa == PROCESSOR_IAMCU)
2805 {
2806 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2807 as_fatal (_("Intel MCU is 32bit ELF only"));
2808 return bfd_mach_i386_iamcu;
2809 }
2810 else
2811 return bfd_mach_i386_i386;
2812 }
b9d79e03 2813 else
2b5d6a91 2814 as_fatal (_("unknown architecture"));
b9d79e03 2815}
b9d79e03 2816\f
252b5132 2817void
7016a5d5 2818md_begin (void)
252b5132
RH
2819{
2820 const char *hash_err;
2821
86fa6981
L
2822 /* Support pseudo prefixes like {disp32}. */
2823 lex_type ['{'] = LEX_BEGIN_NAME;
2824
47926f60 2825 /* Initialize op_hash hash table. */
252b5132
RH
2826 op_hash = hash_new ();
2827
2828 {
d3ce72d0 2829 const insn_template *optab;
29b0f896 2830 templates *core_optab;
252b5132 2831
47926f60
KH
2832 /* Setup for loop. */
2833 optab = i386_optab;
add39d23 2834 core_optab = XNEW (templates);
252b5132
RH
2835 core_optab->start = optab;
2836
2837 while (1)
2838 {
2839 ++optab;
2840 if (optab->name == NULL
2841 || strcmp (optab->name, (optab - 1)->name) != 0)
2842 {
2843 /* different name --> ship out current template list;
47926f60 2844 add to hash table; & begin anew. */
252b5132
RH
2845 core_optab->end = optab;
2846 hash_err = hash_insert (op_hash,
2847 (optab - 1)->name,
5a49b8ac 2848 (void *) core_optab);
252b5132
RH
2849 if (hash_err)
2850 {
b37df7c4 2851 as_fatal (_("can't hash %s: %s"),
252b5132
RH
2852 (optab - 1)->name,
2853 hash_err);
2854 }
2855 if (optab->name == NULL)
2856 break;
add39d23 2857 core_optab = XNEW (templates);
252b5132
RH
2858 core_optab->start = optab;
2859 }
2860 }
2861 }
2862
47926f60 2863 /* Initialize reg_hash hash table. */
252b5132
RH
2864 reg_hash = hash_new ();
2865 {
29b0f896 2866 const reg_entry *regtab;
c3fe08fa 2867 unsigned int regtab_size = i386_regtab_size;
252b5132 2868
c3fe08fa 2869 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 2870 {
5a49b8ac 2871 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 2872 if (hash_err)
b37df7c4 2873 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
2874 regtab->reg_name,
2875 hash_err);
252b5132
RH
2876 }
2877 }
2878
47926f60 2879 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 2880 {
29b0f896
AM
2881 int c;
2882 char *p;
252b5132
RH
2883
2884 for (c = 0; c < 256; c++)
2885 {
3882b010 2886 if (ISDIGIT (c))
252b5132
RH
2887 {
2888 digit_chars[c] = c;
2889 mnemonic_chars[c] = c;
2890 register_chars[c] = c;
2891 operand_chars[c] = c;
2892 }
3882b010 2893 else if (ISLOWER (c))
252b5132
RH
2894 {
2895 mnemonic_chars[c] = c;
2896 register_chars[c] = c;
2897 operand_chars[c] = c;
2898 }
3882b010 2899 else if (ISUPPER (c))
252b5132 2900 {
3882b010 2901 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
2902 register_chars[c] = mnemonic_chars[c];
2903 operand_chars[c] = c;
2904 }
43234a1e 2905 else if (c == '{' || c == '}')
86fa6981
L
2906 {
2907 mnemonic_chars[c] = c;
2908 operand_chars[c] = c;
2909 }
252b5132 2910
3882b010 2911 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
2912 identifier_chars[c] = c;
2913 else if (c >= 128)
2914 {
2915 identifier_chars[c] = c;
2916 operand_chars[c] = c;
2917 }
2918 }
2919
2920#ifdef LEX_AT
2921 identifier_chars['@'] = '@';
32137342
NC
2922#endif
2923#ifdef LEX_QM
2924 identifier_chars['?'] = '?';
2925 operand_chars['?'] = '?';
252b5132 2926#endif
252b5132 2927 digit_chars['-'] = '-';
c0f3af97 2928 mnemonic_chars['_'] = '_';
791fe849 2929 mnemonic_chars['-'] = '-';
0003779b 2930 mnemonic_chars['.'] = '.';
252b5132
RH
2931 identifier_chars['_'] = '_';
2932 identifier_chars['.'] = '.';
2933
2934 for (p = operand_special_chars; *p != '\0'; p++)
2935 operand_chars[(unsigned char) *p] = *p;
2936 }
2937
a4447b93
RH
2938 if (flag_code == CODE_64BIT)
2939 {
ca19b261
KT
2940#if defined (OBJ_COFF) && defined (TE_PE)
2941 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2942 ? 32 : 16);
2943#else
a4447b93 2944 x86_dwarf2_return_column = 16;
ca19b261 2945#endif
61ff971f 2946 x86_cie_data_alignment = -8;
a4447b93
RH
2947 }
2948 else
2949 {
2950 x86_dwarf2_return_column = 8;
2951 x86_cie_data_alignment = -4;
2952 }
252b5132
RH
2953}
2954
2955void
e3bb37b5 2956i386_print_statistics (FILE *file)
252b5132
RH
2957{
2958 hash_print_statistics (file, "i386 opcode", op_hash);
2959 hash_print_statistics (file, "i386 register", reg_hash);
2960}
2961\f
252b5132
RH
2962#ifdef DEBUG386
2963
ce8a8b2f 2964/* Debugging routines for md_assemble. */
d3ce72d0 2965static void pte (insn_template *);
40fb9820 2966static void pt (i386_operand_type);
e3bb37b5
L
2967static void pe (expressionS *);
2968static void ps (symbolS *);
252b5132
RH
2969
2970static void
e3bb37b5 2971pi (char *line, i386_insn *x)
252b5132 2972{
09137c09 2973 unsigned int j;
252b5132
RH
2974
2975 fprintf (stdout, "%s: template ", line);
2976 pte (&x->tm);
09f131f2
JH
2977 fprintf (stdout, " address: base %s index %s scale %x\n",
2978 x->base_reg ? x->base_reg->reg_name : "none",
2979 x->index_reg ? x->index_reg->reg_name : "none",
2980 x->log2_scale_factor);
2981 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 2982 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
2983 fprintf (stdout, " sib: base %x index %x scale %x\n",
2984 x->sib.base, x->sib.index, x->sib.scale);
2985 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
2986 (x->rex & REX_W) != 0,
2987 (x->rex & REX_R) != 0,
2988 (x->rex & REX_X) != 0,
2989 (x->rex & REX_B) != 0);
09137c09 2990 for (j = 0; j < x->operands; j++)
252b5132 2991 {
09137c09
SP
2992 fprintf (stdout, " #%d: ", j + 1);
2993 pt (x->types[j]);
252b5132 2994 fprintf (stdout, "\n");
dc821c5f 2995 if (x->types[j].bitfield.reg
09137c09 2996 || x->types[j].bitfield.regmmx
1b54b8d7 2997 || x->types[j].bitfield.regsimd
09137c09
SP
2998 || x->types[j].bitfield.sreg2
2999 || x->types[j].bitfield.sreg3
3000 || x->types[j].bitfield.control
3001 || x->types[j].bitfield.debug
3002 || x->types[j].bitfield.test)
3003 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3004 if (operand_type_check (x->types[j], imm))
3005 pe (x->op[j].imms);
3006 if (operand_type_check (x->types[j], disp))
3007 pe (x->op[j].disps);
252b5132
RH
3008 }
3009}
3010
3011static void
d3ce72d0 3012pte (insn_template *t)
252b5132 3013{
09137c09 3014 unsigned int j;
252b5132 3015 fprintf (stdout, " %d operands ", t->operands);
47926f60 3016 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3017 if (t->extension_opcode != None)
3018 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3019 if (t->opcode_modifier.d)
252b5132 3020 fprintf (stdout, "D");
40fb9820 3021 if (t->opcode_modifier.w)
252b5132
RH
3022 fprintf (stdout, "W");
3023 fprintf (stdout, "\n");
09137c09 3024 for (j = 0; j < t->operands; j++)
252b5132 3025 {
09137c09
SP
3026 fprintf (stdout, " #%d type ", j + 1);
3027 pt (t->operand_types[j]);
252b5132
RH
3028 fprintf (stdout, "\n");
3029 }
3030}
3031
3032static void
e3bb37b5 3033pe (expressionS *e)
252b5132 3034{
24eab124 3035 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3036 fprintf (stdout, " add_number %ld (%lx)\n",
3037 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3038 if (e->X_add_symbol)
3039 {
3040 fprintf (stdout, " add_symbol ");
3041 ps (e->X_add_symbol);
3042 fprintf (stdout, "\n");
3043 }
3044 if (e->X_op_symbol)
3045 {
3046 fprintf (stdout, " op_symbol ");
3047 ps (e->X_op_symbol);
3048 fprintf (stdout, "\n");
3049 }
3050}
3051
3052static void
e3bb37b5 3053ps (symbolS *s)
252b5132
RH
3054{
3055 fprintf (stdout, "%s type %s%s",
3056 S_GET_NAME (s),
3057 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3058 segment_name (S_GET_SEGMENT (s)));
3059}
3060
7b81dfbb 3061static struct type_name
252b5132 3062 {
40fb9820
L
3063 i386_operand_type mask;
3064 const char *name;
252b5132 3065 }
7b81dfbb 3066const type_names[] =
252b5132 3067{
40fb9820
L
3068 { OPERAND_TYPE_REG8, "r8" },
3069 { OPERAND_TYPE_REG16, "r16" },
3070 { OPERAND_TYPE_REG32, "r32" },
3071 { OPERAND_TYPE_REG64, "r64" },
3072 { OPERAND_TYPE_IMM8, "i8" },
3073 { OPERAND_TYPE_IMM8, "i8s" },
3074 { OPERAND_TYPE_IMM16, "i16" },
3075 { OPERAND_TYPE_IMM32, "i32" },
3076 { OPERAND_TYPE_IMM32S, "i32s" },
3077 { OPERAND_TYPE_IMM64, "i64" },
3078 { OPERAND_TYPE_IMM1, "i1" },
3079 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3080 { OPERAND_TYPE_DISP8, "d8" },
3081 { OPERAND_TYPE_DISP16, "d16" },
3082 { OPERAND_TYPE_DISP32, "d32" },
3083 { OPERAND_TYPE_DISP32S, "d32s" },
3084 { OPERAND_TYPE_DISP64, "d64" },
3085 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3086 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3087 { OPERAND_TYPE_CONTROL, "control reg" },
3088 { OPERAND_TYPE_TEST, "test reg" },
3089 { OPERAND_TYPE_DEBUG, "debug reg" },
3090 { OPERAND_TYPE_FLOATREG, "FReg" },
3091 { OPERAND_TYPE_FLOATACC, "FAcc" },
3092 { OPERAND_TYPE_SREG2, "SReg2" },
3093 { OPERAND_TYPE_SREG3, "SReg3" },
3094 { OPERAND_TYPE_ACC, "Acc" },
3095 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3096 { OPERAND_TYPE_REGMMX, "rMMX" },
3097 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3098 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3099 { OPERAND_TYPE_REGZMM, "rZMM" },
3100 { OPERAND_TYPE_REGMASK, "Mask reg" },
40fb9820 3101 { OPERAND_TYPE_ESSEG, "es" },
252b5132
RH
3102};
3103
3104static void
40fb9820 3105pt (i386_operand_type t)
252b5132 3106{
40fb9820 3107 unsigned int j;
c6fb90c8 3108 i386_operand_type a;
252b5132 3109
40fb9820 3110 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3111 {
3112 a = operand_type_and (t, type_names[j].mask);
0349dc08 3113 if (!operand_type_all_zero (&a))
c6fb90c8
L
3114 fprintf (stdout, "%s, ", type_names[j].name);
3115 }
252b5132
RH
3116 fflush (stdout);
3117}
3118
3119#endif /* DEBUG386 */
3120\f
252b5132 3121static bfd_reloc_code_real_type
3956db08 3122reloc (unsigned int size,
64e74474
AM
3123 int pcrel,
3124 int sign,
3125 bfd_reloc_code_real_type other)
252b5132 3126{
47926f60 3127 if (other != NO_RELOC)
3956db08 3128 {
91d6fa6a 3129 reloc_howto_type *rel;
3956db08
JB
3130
3131 if (size == 8)
3132 switch (other)
3133 {
64e74474
AM
3134 case BFD_RELOC_X86_64_GOT32:
3135 return BFD_RELOC_X86_64_GOT64;
3136 break;
553d1284
L
3137 case BFD_RELOC_X86_64_GOTPLT64:
3138 return BFD_RELOC_X86_64_GOTPLT64;
3139 break;
64e74474
AM
3140 case BFD_RELOC_X86_64_PLTOFF64:
3141 return BFD_RELOC_X86_64_PLTOFF64;
3142 break;
3143 case BFD_RELOC_X86_64_GOTPC32:
3144 other = BFD_RELOC_X86_64_GOTPC64;
3145 break;
3146 case BFD_RELOC_X86_64_GOTPCREL:
3147 other = BFD_RELOC_X86_64_GOTPCREL64;
3148 break;
3149 case BFD_RELOC_X86_64_TPOFF32:
3150 other = BFD_RELOC_X86_64_TPOFF64;
3151 break;
3152 case BFD_RELOC_X86_64_DTPOFF32:
3153 other = BFD_RELOC_X86_64_DTPOFF64;
3154 break;
3155 default:
3156 break;
3956db08 3157 }
e05278af 3158
8ce3d284 3159#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3160 if (other == BFD_RELOC_SIZE32)
3161 {
3162 if (size == 8)
1ab668bf 3163 other = BFD_RELOC_SIZE64;
8fd4256d 3164 if (pcrel)
1ab668bf
AM
3165 {
3166 as_bad (_("there are no pc-relative size relocations"));
3167 return NO_RELOC;
3168 }
8fd4256d 3169 }
8ce3d284 3170#endif
8fd4256d 3171
e05278af 3172 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3173 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3174 sign = -1;
3175
91d6fa6a
NC
3176 rel = bfd_reloc_type_lookup (stdoutput, other);
3177 if (!rel)
3956db08 3178 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3179 else if (size != bfd_get_reloc_size (rel))
3956db08 3180 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3181 bfd_get_reloc_size (rel),
3956db08 3182 size);
91d6fa6a 3183 else if (pcrel && !rel->pc_relative)
3956db08 3184 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3185 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3186 && !sign)
91d6fa6a 3187 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3188 && sign > 0))
3956db08
JB
3189 as_bad (_("relocated field and relocation type differ in signedness"));
3190 else
3191 return other;
3192 return NO_RELOC;
3193 }
252b5132
RH
3194
3195 if (pcrel)
3196 {
3e73aa7c 3197 if (!sign)
3956db08 3198 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3199 switch (size)
3200 {
3201 case 1: return BFD_RELOC_8_PCREL;
3202 case 2: return BFD_RELOC_16_PCREL;
d258b828 3203 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3204 case 8: return BFD_RELOC_64_PCREL;
252b5132 3205 }
3956db08 3206 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3207 }
3208 else
3209 {
3956db08 3210 if (sign > 0)
e5cb08ac 3211 switch (size)
3e73aa7c
JH
3212 {
3213 case 4: return BFD_RELOC_X86_64_32S;
3214 }
3215 else
3216 switch (size)
3217 {
3218 case 1: return BFD_RELOC_8;
3219 case 2: return BFD_RELOC_16;
3220 case 4: return BFD_RELOC_32;
3221 case 8: return BFD_RELOC_64;
3222 }
3956db08
JB
3223 as_bad (_("cannot do %s %u byte relocation"),
3224 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3225 }
3226
0cc9e1d3 3227 return NO_RELOC;
252b5132
RH
3228}
3229
47926f60
KH
3230/* Here we decide which fixups can be adjusted to make them relative to
3231 the beginning of the section instead of the symbol. Basically we need
3232 to make sure that the dynamic relocations are done correctly, so in
3233 some cases we force the original symbol to be used. */
3234
252b5132 3235int
e3bb37b5 3236tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3237{
6d249963 3238#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3239 if (!IS_ELF)
31312f95
AM
3240 return 1;
3241
a161fe53
AM
3242 /* Don't adjust pc-relative references to merge sections in 64-bit
3243 mode. */
3244 if (use_rela_relocations
3245 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3246 && fixP->fx_pcrel)
252b5132 3247 return 0;
31312f95 3248
8d01d9a9
AJ
3249 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3250 and changed later by validate_fix. */
3251 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3252 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3253 return 0;
3254
8fd4256d
L
3255 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3256 for size relocations. */
3257 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3258 || fixP->fx_r_type == BFD_RELOC_SIZE64
3259 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132
RH
3260 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3261 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3262 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3263 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3264 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3265 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3266 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3267 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3268 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3269 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3270 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3271 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3272 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c
JH
3273 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3274 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3275 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3276 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3277 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3278 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3279 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3280 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3281 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3282 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3283 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3284 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3285 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3286 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3287 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3288 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3289 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3290 return 0;
31312f95 3291#endif
252b5132
RH
3292 return 1;
3293}
252b5132 3294
b4cac588 3295static int
e3bb37b5 3296intel_float_operand (const char *mnemonic)
252b5132 3297{
9306ca4a
JB
3298 /* Note that the value returned is meaningful only for opcodes with (memory)
3299 operands, hence the code here is free to improperly handle opcodes that
3300 have no operands (for better performance and smaller code). */
3301
3302 if (mnemonic[0] != 'f')
3303 return 0; /* non-math */
3304
3305 switch (mnemonic[1])
3306 {
3307 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3308 the fs segment override prefix not currently handled because no
3309 call path can make opcodes without operands get here */
3310 case 'i':
3311 return 2 /* integer op */;
3312 case 'l':
3313 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3314 return 3; /* fldcw/fldenv */
3315 break;
3316 case 'n':
3317 if (mnemonic[2] != 'o' /* fnop */)
3318 return 3; /* non-waiting control op */
3319 break;
3320 case 'r':
3321 if (mnemonic[2] == 's')
3322 return 3; /* frstor/frstpm */
3323 break;
3324 case 's':
3325 if (mnemonic[2] == 'a')
3326 return 3; /* fsave */
3327 if (mnemonic[2] == 't')
3328 {
3329 switch (mnemonic[3])
3330 {
3331 case 'c': /* fstcw */
3332 case 'd': /* fstdw */
3333 case 'e': /* fstenv */
3334 case 's': /* fsts[gw] */
3335 return 3;
3336 }
3337 }
3338 break;
3339 case 'x':
3340 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3341 return 0; /* fxsave/fxrstor are not really math ops */
3342 break;
3343 }
252b5132 3344
9306ca4a 3345 return 1;
252b5132
RH
3346}
3347
c0f3af97
L
3348/* Build the VEX prefix. */
3349
3350static void
d3ce72d0 3351build_vex_prefix (const insn_template *t)
c0f3af97
L
3352{
3353 unsigned int register_specifier;
3354 unsigned int implied_prefix;
3355 unsigned int vector_length;
3356
3357 /* Check register specifier. */
3358 if (i.vex.register_specifier)
43234a1e
L
3359 {
3360 register_specifier =
3361 ~register_number (i.vex.register_specifier) & 0xf;
3362 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3363 }
c0f3af97
L
3364 else
3365 register_specifier = 0xf;
3366
79f0fa25
L
3367 /* Use 2-byte VEX prefix by swapping destination and source operand
3368 if there are more than 1 register operand. */
3369 if (i.reg_operands > 1
3370 && i.vec_encoding != vex_encoding_vex3
86fa6981 3371 && i.dir_encoding == dir_encoding_default
fa99fab2 3372 && i.operands == i.reg_operands
dbbc8b7e 3373 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3374 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3375 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3376 && i.rex == REX_B)
3377 {
3378 unsigned int xchg = i.operands - 1;
3379 union i386_op temp_op;
3380 i386_operand_type temp_type;
3381
3382 temp_type = i.types[xchg];
3383 i.types[xchg] = i.types[0];
3384 i.types[0] = temp_type;
3385 temp_op = i.op[xchg];
3386 i.op[xchg] = i.op[0];
3387 i.op[0] = temp_op;
3388
9c2799c2 3389 gas_assert (i.rm.mode == 3);
fa99fab2
L
3390
3391 i.rex = REX_R;
3392 xchg = i.rm.regmem;
3393 i.rm.regmem = i.rm.reg;
3394 i.rm.reg = xchg;
3395
dbbc8b7e
JB
3396 if (i.tm.opcode_modifier.d)
3397 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3398 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3399 else /* Use the next insn. */
3400 i.tm = t[1];
fa99fab2
L
3401 }
3402
539f890d
L
3403 if (i.tm.opcode_modifier.vex == VEXScalar)
3404 vector_length = avxscalar;
10c17abd
JB
3405 else if (i.tm.opcode_modifier.vex == VEX256)
3406 vector_length = 1;
539f890d 3407 else
10c17abd 3408 {
56522fc5 3409 unsigned int op;
10c17abd 3410
c7213af9
L
3411 /* Determine vector length from the last multi-length vector
3412 operand. */
10c17abd 3413 vector_length = 0;
56522fc5 3414 for (op = t->operands; op--;)
10c17abd
JB
3415 if (t->operand_types[op].bitfield.xmmword
3416 && t->operand_types[op].bitfield.ymmword
3417 && i.types[op].bitfield.ymmword)
3418 {
3419 vector_length = 1;
3420 break;
3421 }
3422 }
c0f3af97
L
3423
3424 switch ((i.tm.base_opcode >> 8) & 0xff)
3425 {
3426 case 0:
3427 implied_prefix = 0;
3428 break;
3429 case DATA_PREFIX_OPCODE:
3430 implied_prefix = 1;
3431 break;
3432 case REPE_PREFIX_OPCODE:
3433 implied_prefix = 2;
3434 break;
3435 case REPNE_PREFIX_OPCODE:
3436 implied_prefix = 3;
3437 break;
3438 default:
3439 abort ();
3440 }
3441
3442 /* Use 2-byte VEX prefix if possible. */
86fa6981
L
3443 if (i.vec_encoding != vex_encoding_vex3
3444 && i.tm.opcode_modifier.vexopcode == VEX0F
04251de0 3445 && i.tm.opcode_modifier.vexw != VEXW1
c0f3af97
L
3446 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3447 {
3448 /* 2-byte VEX prefix. */
3449 unsigned int r;
3450
3451 i.vex.length = 2;
3452 i.vex.bytes[0] = 0xc5;
3453
3454 /* Check the REX.R bit. */
3455 r = (i.rex & REX_R) ? 0 : 1;
3456 i.vex.bytes[1] = (r << 7
3457 | register_specifier << 3
3458 | vector_length << 2
3459 | implied_prefix);
3460 }
3461 else
3462 {
3463 /* 3-byte VEX prefix. */
3464 unsigned int m, w;
3465
f88c9eb0 3466 i.vex.length = 3;
f88c9eb0 3467
7f399153 3468 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3469 {
7f399153
L
3470 case VEX0F:
3471 m = 0x1;
80de6e00 3472 i.vex.bytes[0] = 0xc4;
7f399153
L
3473 break;
3474 case VEX0F38:
3475 m = 0x2;
80de6e00 3476 i.vex.bytes[0] = 0xc4;
7f399153
L
3477 break;
3478 case VEX0F3A:
3479 m = 0x3;
80de6e00 3480 i.vex.bytes[0] = 0xc4;
7f399153
L
3481 break;
3482 case XOP08:
5dd85c99
SP
3483 m = 0x8;
3484 i.vex.bytes[0] = 0x8f;
7f399153
L
3485 break;
3486 case XOP09:
f88c9eb0
SP
3487 m = 0x9;
3488 i.vex.bytes[0] = 0x8f;
7f399153
L
3489 break;
3490 case XOP0A:
f88c9eb0
SP
3491 m = 0xa;
3492 i.vex.bytes[0] = 0x8f;
7f399153
L
3493 break;
3494 default:
3495 abort ();
f88c9eb0 3496 }
c0f3af97 3497
c0f3af97
L
3498 /* The high 3 bits of the second VEX byte are 1's compliment
3499 of RXB bits from REX. */
3500 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3501
3502 /* Check the REX.W bit. */
3503 w = (i.rex & REX_W) ? 1 : 0;
b28d1bda
IT
3504 if (i.tm.opcode_modifier.vexw == VEXW1)
3505 w = 1;
c0f3af97
L
3506
3507 i.vex.bytes[2] = (w << 7
3508 | register_specifier << 3
3509 | vector_length << 2
3510 | implied_prefix);
3511 }
3512}
3513
e771e7c9
JB
3514static INLINE bfd_boolean
3515is_evex_encoding (const insn_template *t)
3516{
7091c612 3517 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9
JB
3518 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3519 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3520}
3521
7a8655d2
JB
3522static INLINE bfd_boolean
3523is_any_vex_encoding (const insn_template *t)
3524{
3525 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3526 || is_evex_encoding (t);
3527}
3528
43234a1e
L
3529/* Build the EVEX prefix. */
3530
3531static void
3532build_evex_prefix (void)
3533{
3534 unsigned int register_specifier;
3535 unsigned int implied_prefix;
3536 unsigned int m, w;
3537 rex_byte vrex_used = 0;
3538
3539 /* Check register specifier. */
3540 if (i.vex.register_specifier)
3541 {
3542 gas_assert ((i.vrex & REX_X) == 0);
3543
3544 register_specifier = i.vex.register_specifier->reg_num;
3545 if ((i.vex.register_specifier->reg_flags & RegRex))
3546 register_specifier += 8;
3547 /* The upper 16 registers are encoded in the fourth byte of the
3548 EVEX prefix. */
3549 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3550 i.vex.bytes[3] = 0x8;
3551 register_specifier = ~register_specifier & 0xf;
3552 }
3553 else
3554 {
3555 register_specifier = 0xf;
3556
3557 /* Encode upper 16 vector index register in the fourth byte of
3558 the EVEX prefix. */
3559 if (!(i.vrex & REX_X))
3560 i.vex.bytes[3] = 0x8;
3561 else
3562 vrex_used |= REX_X;
3563 }
3564
3565 switch ((i.tm.base_opcode >> 8) & 0xff)
3566 {
3567 case 0:
3568 implied_prefix = 0;
3569 break;
3570 case DATA_PREFIX_OPCODE:
3571 implied_prefix = 1;
3572 break;
3573 case REPE_PREFIX_OPCODE:
3574 implied_prefix = 2;
3575 break;
3576 case REPNE_PREFIX_OPCODE:
3577 implied_prefix = 3;
3578 break;
3579 default:
3580 abort ();
3581 }
3582
3583 /* 4 byte EVEX prefix. */
3584 i.vex.length = 4;
3585 i.vex.bytes[0] = 0x62;
3586
3587 /* mmmm bits. */
3588 switch (i.tm.opcode_modifier.vexopcode)
3589 {
3590 case VEX0F:
3591 m = 1;
3592 break;
3593 case VEX0F38:
3594 m = 2;
3595 break;
3596 case VEX0F3A:
3597 m = 3;
3598 break;
3599 default:
3600 abort ();
3601 break;
3602 }
3603
3604 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3605 bits from REX. */
3606 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3607
3608 /* The fifth bit of the second EVEX byte is 1's compliment of the
3609 REX_R bit in VREX. */
3610 if (!(i.vrex & REX_R))
3611 i.vex.bytes[1] |= 0x10;
3612 else
3613 vrex_used |= REX_R;
3614
3615 if ((i.reg_operands + i.imm_operands) == i.operands)
3616 {
3617 /* When all operands are registers, the REX_X bit in REX is not
3618 used. We reuse it to encode the upper 16 registers, which is
3619 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3620 as 1's compliment. */
3621 if ((i.vrex & REX_B))
3622 {
3623 vrex_used |= REX_B;
3624 i.vex.bytes[1] &= ~0x40;
3625 }
3626 }
3627
3628 /* EVEX instructions shouldn't need the REX prefix. */
3629 i.vrex &= ~vrex_used;
3630 gas_assert (i.vrex == 0);
3631
3632 /* Check the REX.W bit. */
3633 w = (i.rex & REX_W) ? 1 : 0;
3634 if (i.tm.opcode_modifier.vexw)
3635 {
3636 if (i.tm.opcode_modifier.vexw == VEXW1)
3637 w = 1;
3638 }
3639 /* If w is not set it means we are dealing with WIG instruction. */
3640 else if (!w)
3641 {
3642 if (evexwig == evexw1)
3643 w = 1;
3644 }
3645
3646 /* Encode the U bit. */
3647 implied_prefix |= 0x4;
3648
3649 /* The third byte of the EVEX prefix. */
3650 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3651
3652 /* The fourth byte of the EVEX prefix. */
3653 /* The zeroing-masking bit. */
3654 if (i.mask && i.mask->zeroing)
3655 i.vex.bytes[3] |= 0x80;
3656
3657 /* Don't always set the broadcast bit if there is no RC. */
3658 if (!i.rounding)
3659 {
3660 /* Encode the vector length. */
3661 unsigned int vec_length;
3662
e771e7c9
JB
3663 if (!i.tm.opcode_modifier.evex
3664 || i.tm.opcode_modifier.evex == EVEXDYN)
3665 {
56522fc5 3666 unsigned int op;
e771e7c9 3667
c7213af9
L
3668 /* Determine vector length from the last multi-length vector
3669 operand. */
e771e7c9 3670 vec_length = 0;
56522fc5 3671 for (op = i.operands; op--;)
e771e7c9
JB
3672 if (i.tm.operand_types[op].bitfield.xmmword
3673 + i.tm.operand_types[op].bitfield.ymmword
3674 + i.tm.operand_types[op].bitfield.zmmword > 1)
3675 {
3676 if (i.types[op].bitfield.zmmword)
c7213af9
L
3677 {
3678 i.tm.opcode_modifier.evex = EVEX512;
3679 break;
3680 }
e771e7c9 3681 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3682 {
3683 i.tm.opcode_modifier.evex = EVEX256;
3684 break;
3685 }
e771e7c9 3686 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3687 {
3688 i.tm.opcode_modifier.evex = EVEX128;
3689 break;
3690 }
625cbd7a
JB
3691 else if (i.broadcast && (int) op == i.broadcast->operand)
3692 {
4a1b91ea 3693 switch (i.broadcast->bytes)
625cbd7a
JB
3694 {
3695 case 64:
3696 i.tm.opcode_modifier.evex = EVEX512;
3697 break;
3698 case 32:
3699 i.tm.opcode_modifier.evex = EVEX256;
3700 break;
3701 case 16:
3702 i.tm.opcode_modifier.evex = EVEX128;
3703 break;
3704 default:
c7213af9 3705 abort ();
625cbd7a 3706 }
c7213af9 3707 break;
625cbd7a 3708 }
e771e7c9 3709 }
c7213af9 3710
56522fc5 3711 if (op >= MAX_OPERANDS)
c7213af9 3712 abort ();
e771e7c9
JB
3713 }
3714
43234a1e
L
3715 switch (i.tm.opcode_modifier.evex)
3716 {
3717 case EVEXLIG: /* LL' is ignored */
3718 vec_length = evexlig << 5;
3719 break;
3720 case EVEX128:
3721 vec_length = 0 << 5;
3722 break;
3723 case EVEX256:
3724 vec_length = 1 << 5;
3725 break;
3726 case EVEX512:
3727 vec_length = 2 << 5;
3728 break;
3729 default:
3730 abort ();
3731 break;
3732 }
3733 i.vex.bytes[3] |= vec_length;
3734 /* Encode the broadcast bit. */
3735 if (i.broadcast)
3736 i.vex.bytes[3] |= 0x10;
3737 }
3738 else
3739 {
3740 if (i.rounding->type != saeonly)
3741 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3742 else
d3d3c6db 3743 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3744 }
3745
3746 if (i.mask && i.mask->mask)
3747 i.vex.bytes[3] |= i.mask->mask->reg_num;
3748}
3749
65da13b5
L
3750static void
3751process_immext (void)
3752{
3753 expressionS *exp;
3754
4c692bc7
JB
3755 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3756 && i.operands > 0)
65da13b5 3757 {
4c692bc7
JB
3758 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3759 with an opcode suffix which is coded in the same place as an
3760 8-bit immediate field would be.
3761 Here we check those operands and remove them afterwards. */
65da13b5
L
3762 unsigned int x;
3763
3764 for (x = 0; x < i.operands; x++)
4c692bc7 3765 if (register_number (i.op[x].regs) != x)
65da13b5 3766 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1fed0ba1
L
3767 register_prefix, i.op[x].regs->reg_name, x + 1,
3768 i.tm.name);
3769
3770 i.operands = 0;
65da13b5
L
3771 }
3772
9916071f
AP
3773 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3774 {
3775 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3776 suffix which is coded in the same place as an 8-bit immediate
3777 field would be.
3778 Here we check those operands and remove them afterwards. */
3779 unsigned int x;
3780
3781 if (i.operands != 3)
3782 abort();
3783
3784 for (x = 0; x < 2; x++)
3785 if (register_number (i.op[x].regs) != x)
3786 goto bad_register_operand;
3787
3788 /* Check for third operand for mwaitx/monitorx insn. */
3789 if (register_number (i.op[x].regs)
3790 != (x + (i.tm.extension_opcode == 0xfb)))
3791 {
3792bad_register_operand:
3793 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3794 register_prefix, i.op[x].regs->reg_name, x+1,
3795 i.tm.name);
3796 }
3797
3798 i.operands = 0;
3799 }
3800
c0f3af97 3801 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3802 which is coded in the same place as an 8-bit immediate field
3803 would be. Here we fake an 8-bit immediate operand from the
3804 opcode suffix stored in tm.extension_opcode.
3805
c1e679ec 3806 AVX instructions also use this encoding, for some of
c0f3af97 3807 3 argument instructions. */
65da13b5 3808
43234a1e 3809 gas_assert (i.imm_operands <= 1
7ab9ffdd 3810 && (i.operands <= 2
7a8655d2 3811 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3812 && i.operands <= 4)));
65da13b5
L
3813
3814 exp = &im_expressions[i.imm_operands++];
3815 i.op[i.operands].imms = exp;
3816 i.types[i.operands] = imm8;
3817 i.operands++;
3818 exp->X_op = O_constant;
3819 exp->X_add_number = i.tm.extension_opcode;
3820 i.tm.extension_opcode = None;
3821}
3822
42164a71
L
3823
3824static int
3825check_hle (void)
3826{
3827 switch (i.tm.opcode_modifier.hleprefixok)
3828 {
3829 default:
3830 abort ();
82c2def5 3831 case HLEPrefixNone:
165de32a
L
3832 as_bad (_("invalid instruction `%s' after `%s'"),
3833 i.tm.name, i.hle_prefix);
42164a71 3834 return 0;
82c2def5 3835 case HLEPrefixLock:
42164a71
L
3836 if (i.prefix[LOCK_PREFIX])
3837 return 1;
165de32a 3838 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3839 return 0;
82c2def5 3840 case HLEPrefixAny:
42164a71 3841 return 1;
82c2def5 3842 case HLEPrefixRelease:
42164a71
L
3843 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3844 {
3845 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3846 i.tm.name);
3847 return 0;
3848 }
3849 if (i.mem_operands == 0
3850 || !operand_type_check (i.types[i.operands - 1], anymem))
3851 {
3852 as_bad (_("memory destination needed for instruction `%s'"
3853 " after `xrelease'"), i.tm.name);
3854 return 0;
3855 }
3856 return 1;
3857 }
3858}
3859
b6f8c7c4
L
3860/* Try the shortest encoding by shortening operand size. */
3861
3862static void
3863optimize_encoding (void)
3864{
3865 int j;
3866
3867 if (optimize_for_space
3868 && i.reg_operands == 1
3869 && i.imm_operands == 1
3870 && !i.types[1].bitfield.byte
3871 && i.op[0].imms->X_op == O_constant
3872 && fits_in_imm7 (i.op[0].imms->X_add_number)
3873 && ((i.tm.base_opcode == 0xa8
3874 && i.tm.extension_opcode == None)
3875 || (i.tm.base_opcode == 0xf6
3876 && i.tm.extension_opcode == 0x0)))
3877 {
3878 /* Optimize: -Os:
3879 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3880 */
3881 unsigned int base_regnum = i.op[1].regs->reg_num;
3882 if (flag_code == CODE_64BIT || base_regnum < 4)
3883 {
3884 i.types[1].bitfield.byte = 1;
3885 /* Ignore the suffix. */
3886 i.suffix = 0;
3887 if (base_regnum >= 4
3888 && !(i.op[1].regs->reg_flags & RegRex))
3889 {
3890 /* Handle SP, BP, SI and DI registers. */
3891 if (i.types[1].bitfield.word)
3892 j = 16;
3893 else if (i.types[1].bitfield.dword)
3894 j = 32;
3895 else
3896 j = 48;
3897 i.op[1].regs -= j;
3898 }
3899 }
3900 }
3901 else if (flag_code == CODE_64BIT
d3d50934
L
3902 && ((i.types[1].bitfield.qword
3903 && i.reg_operands == 1
b6f8c7c4
L
3904 && i.imm_operands == 1
3905 && i.op[0].imms->X_op == O_constant
3906 && ((i.tm.base_opcode == 0xb0
3907 && i.tm.extension_opcode == None
3908 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3909 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3910 && (((i.tm.base_opcode == 0x24
3911 || i.tm.base_opcode == 0xa8)
3912 && i.tm.extension_opcode == None)
3913 || (i.tm.base_opcode == 0x80
3914 && i.tm.extension_opcode == 0x4)
3915 || ((i.tm.base_opcode == 0xf6
3916 || i.tm.base_opcode == 0xc6)
3917 && i.tm.extension_opcode == 0x0)))))
d3d50934
L
3918 || (i.types[0].bitfield.qword
3919 && ((i.reg_operands == 2
3920 && i.op[0].regs == i.op[1].regs
3921 && ((i.tm.base_opcode == 0x30
3922 || i.tm.base_opcode == 0x28)
3923 && i.tm.extension_opcode == None))
3924 || (i.reg_operands == 1
3925 && i.operands == 1
3926 && i.tm.base_opcode == 0x30
3927 && i.tm.extension_opcode == None)))))
b6f8c7c4
L
3928 {
3929 /* Optimize: -O:
3930 andq $imm31, %r64 -> andl $imm31, %r32
3931 testq $imm31, %r64 -> testl $imm31, %r32
3932 xorq %r64, %r64 -> xorl %r32, %r32
3933 subq %r64, %r64 -> subl %r32, %r32
3934 movq $imm31, %r64 -> movl $imm31, %r32
3935 movq $imm32, %r64 -> movl $imm32, %r32
3936 */
3937 i.tm.opcode_modifier.norex64 = 1;
3938 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3939 {
3940 /* Handle
3941 movq $imm31, %r64 -> movl $imm31, %r32
3942 movq $imm32, %r64 -> movl $imm32, %r32
3943 */
3944 i.tm.operand_types[0].bitfield.imm32 = 1;
3945 i.tm.operand_types[0].bitfield.imm32s = 0;
3946 i.tm.operand_types[0].bitfield.imm64 = 0;
3947 i.types[0].bitfield.imm32 = 1;
3948 i.types[0].bitfield.imm32s = 0;
3949 i.types[0].bitfield.imm64 = 0;
3950 i.types[1].bitfield.dword = 1;
3951 i.types[1].bitfield.qword = 0;
3952 if (i.tm.base_opcode == 0xc6)
3953 {
3954 /* Handle
3955 movq $imm31, %r64 -> movl $imm31, %r32
3956 */
3957 i.tm.base_opcode = 0xb0;
3958 i.tm.extension_opcode = None;
3959 i.tm.opcode_modifier.shortform = 1;
3960 i.tm.opcode_modifier.modrm = 0;
3961 }
3962 }
3963 }
3964 else if (optimize > 1
3965 && i.reg_operands == 3
3966 && i.op[0].regs == i.op[1].regs
3967 && !i.types[2].bitfield.xmmword
3968 && (i.tm.opcode_modifier.vex
7a69eac3 3969 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 3970 && !i.rounding
e771e7c9 3971 && is_evex_encoding (&i.tm)
80c34c38
L
3972 && (i.vec_encoding != vex_encoding_evex
3973 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612
JB
3974 || (i.tm.operand_types[2].bitfield.zmmword
3975 && i.types[2].bitfield.ymmword)
0089dace 3976 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
b6f8c7c4
L
3977 && ((i.tm.base_opcode == 0x55
3978 || i.tm.base_opcode == 0x6655
3979 || i.tm.base_opcode == 0x66df
3980 || i.tm.base_opcode == 0x57
3981 || i.tm.base_opcode == 0x6657
8305403a
L
3982 || i.tm.base_opcode == 0x66ef
3983 || i.tm.base_opcode == 0x66f8
3984 || i.tm.base_opcode == 0x66f9
3985 || i.tm.base_opcode == 0x66fa
1424ad86
JB
3986 || i.tm.base_opcode == 0x66fb
3987 || i.tm.base_opcode == 0x42
3988 || i.tm.base_opcode == 0x6642
3989 || i.tm.base_opcode == 0x47
3990 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
3991 && i.tm.extension_opcode == None))
3992 {
3993 /* Optimize: -O2:
8305403a
L
3994 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3995 vpsubq and vpsubw:
b6f8c7c4
L
3996 EVEX VOP %zmmM, %zmmM, %zmmN
3997 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3998 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3999 EVEX VOP %ymmM, %ymmM, %ymmN
4000 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4001 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4002 VEX VOP %ymmM, %ymmM, %ymmN
4003 -> VEX VOP %xmmM, %xmmM, %xmmN
4004 VOP, one of vpandn and vpxor:
4005 VEX VOP %ymmM, %ymmM, %ymmN
4006 -> VEX VOP %xmmM, %xmmM, %xmmN
4007 VOP, one of vpandnd and vpandnq:
4008 EVEX VOP %zmmM, %zmmM, %zmmN
4009 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4010 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4011 EVEX VOP %ymmM, %ymmM, %ymmN
4012 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4013 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4014 VOP, one of vpxord and vpxorq:
4015 EVEX VOP %zmmM, %zmmM, %zmmN
4016 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4017 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
4018 EVEX VOP %ymmM, %ymmM, %ymmN
4019 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4020 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
1424ad86
JB
4021 VOP, one of kxord and kxorq:
4022 VEX VOP %kM, %kM, %kN
4023 -> VEX kxorw %kM, %kM, %kN
4024 VOP, one of kandnd and kandnq:
4025 VEX VOP %kM, %kM, %kN
4026 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4027 */
e771e7c9 4028 if (is_evex_encoding (&i.tm))
b6f8c7c4 4029 {
0089dace 4030 if (i.vec_encoding == vex_encoding_evex)
b6f8c7c4
L
4031 i.tm.opcode_modifier.evex = EVEX128;
4032 else
4033 {
4034 i.tm.opcode_modifier.vex = VEX128;
4035 i.tm.opcode_modifier.vexw = VEXW0;
4036 i.tm.opcode_modifier.evex = 0;
4037 }
4038 }
1424ad86
JB
4039 else if (i.tm.operand_types[0].bitfield.regmask)
4040 {
4041 i.tm.base_opcode &= 0xff;
4042 i.tm.opcode_modifier.vexw = VEXW0;
4043 }
b6f8c7c4
L
4044 else
4045 i.tm.opcode_modifier.vex = VEX128;
4046
4047 if (i.tm.opcode_modifier.vex)
4048 for (j = 0; j < 3; j++)
4049 {
4050 i.types[j].bitfield.xmmword = 1;
4051 i.types[j].bitfield.ymmword = 0;
4052 }
4053 }
4054}
4055
252b5132
RH
4056/* This is the guts of the machine-dependent assembler. LINE points to a
4057 machine dependent instruction. This function is supposed to emit
4058 the frags/bytes it assembles to. */
4059
4060void
65da13b5 4061md_assemble (char *line)
252b5132 4062{
40fb9820 4063 unsigned int j;
83b16ac6 4064 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4065 const insn_template *t;
252b5132 4066
47926f60 4067 /* Initialize globals. */
252b5132
RH
4068 memset (&i, '\0', sizeof (i));
4069 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4070 i.reloc[j] = NO_RELOC;
252b5132
RH
4071 memset (disp_expressions, '\0', sizeof (disp_expressions));
4072 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4073 save_stack_p = save_stack;
252b5132
RH
4074
4075 /* First parse an instruction mnemonic & call i386_operand for the operands.
4076 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4077 start of a (possibly prefixed) mnemonic. */
252b5132 4078
29b0f896
AM
4079 line = parse_insn (line, mnemonic);
4080 if (line == NULL)
4081 return;
83b16ac6 4082 mnem_suffix = i.suffix;
252b5132 4083
29b0f896 4084 line = parse_operands (line, mnemonic);
ee86248c 4085 this_operand = -1;
8325cc63
JB
4086 xfree (i.memop1_string);
4087 i.memop1_string = NULL;
29b0f896
AM
4088 if (line == NULL)
4089 return;
252b5132 4090
29b0f896
AM
4091 /* Now we've parsed the mnemonic into a set of templates, and have the
4092 operands at hand. */
4093
4094 /* All intel opcodes have reversed operands except for "bound" and
4095 "enter". We also don't reverse intersegment "jmp" and "call"
4096 instructions with 2 immediate operands so that the immediate segment
050dfa73 4097 precedes the offset, as it does when in AT&T mode. */
4d456e3d
L
4098 if (intel_syntax
4099 && i.operands > 1
29b0f896 4100 && (strcmp (mnemonic, "bound") != 0)
30123838 4101 && (strcmp (mnemonic, "invlpga") != 0)
40fb9820
L
4102 && !(operand_type_check (i.types[0], imm)
4103 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4104 swap_operands ();
4105
ec56d5c0
JB
4106 /* The order of the immediates should be reversed
4107 for 2 immediates extrq and insertq instructions */
4108 if (i.imm_operands == 2
4109 && (strcmp (mnemonic, "extrq") == 0
4110 || strcmp (mnemonic, "insertq") == 0))
4111 swap_2_operands (0, 1);
4112
29b0f896
AM
4113 if (i.imm_operands)
4114 optimize_imm ();
4115
b300c311
L
4116 /* Don't optimize displacement for movabs since it only takes 64bit
4117 displacement. */
4118 if (i.disp_operands
a501d77e 4119 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4120 && (flag_code != CODE_64BIT
4121 || strcmp (mnemonic, "movabs") != 0))
4122 optimize_disp ();
29b0f896
AM
4123
4124 /* Next, we find a template that matches the given insn,
4125 making sure the overlap of the given operands types is consistent
4126 with the template operand types. */
252b5132 4127
83b16ac6 4128 if (!(t = match_template (mnem_suffix)))
29b0f896 4129 return;
252b5132 4130
7bab8ab5 4131 if (sse_check != check_none
81f8a913 4132 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4133 && !i.tm.cpu_flags.bitfield.cpuavx
daf50ae7
L
4134 && (i.tm.cpu_flags.bitfield.cpusse
4135 || i.tm.cpu_flags.bitfield.cpusse2
4136 || i.tm.cpu_flags.bitfield.cpusse3
4137 || i.tm.cpu_flags.bitfield.cpussse3
4138 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4139 || i.tm.cpu_flags.bitfield.cpusse4_2
4140 || i.tm.cpu_flags.bitfield.cpupclmul
4141 || i.tm.cpu_flags.bitfield.cpuaes
4142 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4143 {
7bab8ab5 4144 (sse_check == check_warning
daf50ae7
L
4145 ? as_warn
4146 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4147 }
4148
321fd21e
L
4149 /* Zap movzx and movsx suffix. The suffix has been set from
4150 "word ptr" or "byte ptr" on the source operand in Intel syntax
4151 or extracted from mnemonic in AT&T syntax. But we'll use
4152 the destination register to choose the suffix for encoding. */
4153 if ((i.tm.base_opcode & ~9) == 0x0fb6)
cd61ebfe 4154 {
321fd21e
L
4155 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4156 there is no suffix, the default will be byte extension. */
4157 if (i.reg_operands != 2
4158 && !i.suffix
7ab9ffdd 4159 && intel_syntax)
321fd21e
L
4160 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4161
4162 i.suffix = 0;
cd61ebfe 4163 }
24eab124 4164
40fb9820 4165 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4166 if (!add_prefix (FWAIT_OPCODE))
4167 return;
252b5132 4168
d5de92cf
L
4169 /* Check if REP prefix is OK. */
4170 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4171 {
4172 as_bad (_("invalid instruction `%s' after `%s'"),
4173 i.tm.name, i.rep_prefix);
4174 return;
4175 }
4176
c1ba0266
L
4177 /* Check for lock without a lockable instruction. Destination operand
4178 must be memory unless it is xchg (0x86). */
c32fa91d
L
4179 if (i.prefix[LOCK_PREFIX]
4180 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4181 || i.mem_operands == 0
4182 || (i.tm.base_opcode != 0x86
4183 && !operand_type_check (i.types[i.operands - 1], anymem))))
c32fa91d
L
4184 {
4185 as_bad (_("expecting lockable instruction after `lock'"));
4186 return;
4187 }
4188
7a8655d2
JB
4189 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4190 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4191 {
4192 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4193 return;
4194 }
4195
42164a71 4196 /* Check if HLE prefix is OK. */
165de32a 4197 if (i.hle_prefix && !check_hle ())
42164a71
L
4198 return;
4199
7e8b059b
L
4200 /* Check BND prefix. */
4201 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4202 as_bad (_("expecting valid branch instruction after `bnd'"));
4203
04ef582a 4204 /* Check NOTRACK prefix. */
9fef80d6
L
4205 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4206 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4207
327e8c42
JB
4208 if (i.tm.cpu_flags.bitfield.cpumpx)
4209 {
4210 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4211 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4212 else if (flag_code != CODE_16BIT
4213 ? i.prefix[ADDR_PREFIX]
4214 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4215 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4216 }
7e8b059b
L
4217
4218 /* Insert BND prefix. */
76d3a78a
JB
4219 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4220 {
4221 if (!i.prefix[BND_PREFIX])
4222 add_prefix (BND_PREFIX_OPCODE);
4223 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4224 {
4225 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4226 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4227 }
4228 }
7e8b059b 4229
29b0f896 4230 /* Check string instruction segment overrides. */
40fb9820 4231 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
29b0f896
AM
4232 {
4233 if (!check_string ())
5dd0794d 4234 return;
fc0763e6 4235 i.disp_operands = 0;
29b0f896 4236 }
5dd0794d 4237
b6f8c7c4
L
4238 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4239 optimize_encoding ();
4240
29b0f896
AM
4241 if (!process_suffix ())
4242 return;
e413e4e9 4243
bc0844ae
L
4244 /* Update operand types. */
4245 for (j = 0; j < i.operands; j++)
4246 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4247
29b0f896
AM
4248 /* Make still unresolved immediate matches conform to size of immediate
4249 given in i.suffix. */
4250 if (!finalize_imm ())
4251 return;
252b5132 4252
40fb9820 4253 if (i.types[0].bitfield.imm1)
29b0f896 4254 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4255
9afe6eb8
L
4256 /* We only need to check those implicit registers for instructions
4257 with 3 operands or less. */
4258 if (i.operands <= 3)
4259 for (j = 0; j < i.operands; j++)
4260 if (i.types[j].bitfield.inoutportreg
4261 || i.types[j].bitfield.shiftcount
1b54b8d7 4262 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
9afe6eb8 4263 i.reg_operands--;
40fb9820 4264
c0f3af97
L
4265 /* ImmExt should be processed after SSE2AVX. */
4266 if (!i.tm.opcode_modifier.sse2avx
4267 && i.tm.opcode_modifier.immext)
65da13b5 4268 process_immext ();
252b5132 4269
29b0f896
AM
4270 /* For insns with operands there are more diddles to do to the opcode. */
4271 if (i.operands)
4272 {
4273 if (!process_operands ())
4274 return;
4275 }
40fb9820 4276 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4277 {
4278 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4279 as_warn (_("translating to `%sp'"), i.tm.name);
4280 }
252b5132 4281
7a8655d2 4282 if (is_any_vex_encoding (&i.tm))
9e5e5283
L
4283 {
4284 if (flag_code == CODE_16BIT)
4285 {
4286 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4287 i.tm.name);
4288 return;
4289 }
c0f3af97 4290
9e5e5283
L
4291 if (i.tm.opcode_modifier.vex)
4292 build_vex_prefix (t);
4293 else
4294 build_evex_prefix ();
4295 }
43234a1e 4296
5dd85c99
SP
4297 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4298 instructions may define INT_OPCODE as well, so avoid this corner
4299 case for those instructions that use MODRM. */
4300 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4301 && !i.tm.opcode_modifier.modrm
4302 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4303 {
4304 i.tm.base_opcode = INT3_OPCODE;
4305 i.imm_operands = 0;
4306 }
252b5132 4307
40fb9820
L
4308 if ((i.tm.opcode_modifier.jump
4309 || i.tm.opcode_modifier.jumpbyte
4310 || i.tm.opcode_modifier.jumpdword)
29b0f896
AM
4311 && i.op[0].disps->X_op == O_constant)
4312 {
4313 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4314 the absolute address given by the constant. Since ix86 jumps and
4315 calls are pc relative, we need to generate a reloc. */
4316 i.op[0].disps->X_add_symbol = &abs_symbol;
4317 i.op[0].disps->X_op = O_symbol;
4318 }
252b5132 4319
40fb9820 4320 if (i.tm.opcode_modifier.rex64)
161a04f6 4321 i.rex |= REX_W;
252b5132 4322
29b0f896
AM
4323 /* For 8 bit registers we need an empty rex prefix. Also if the
4324 instruction already has a prefix, we need to convert old
4325 registers to new ones. */
773f551c 4326
dc821c5f 4327 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
29b0f896 4328 && (i.op[0].regs->reg_flags & RegRex64) != 0)
dc821c5f 4329 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
29b0f896 4330 && (i.op[1].regs->reg_flags & RegRex64) != 0)
dc821c5f
JB
4331 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4332 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
29b0f896
AM
4333 && i.rex != 0))
4334 {
4335 int x;
726c5dcd 4336
29b0f896
AM
4337 i.rex |= REX_OPCODE;
4338 for (x = 0; x < 2; x++)
4339 {
4340 /* Look for 8 bit operand that uses old registers. */
dc821c5f 4341 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
29b0f896 4342 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4343 {
29b0f896
AM
4344 /* In case it is "hi" register, give up. */
4345 if (i.op[x].regs->reg_num > 3)
a540244d 4346 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4347 "instruction requiring REX prefix."),
a540244d 4348 register_prefix, i.op[x].regs->reg_name);
773f551c 4349
29b0f896
AM
4350 /* Otherwise it is equivalent to the extended register.
4351 Since the encoding doesn't change this is merely
4352 cosmetic cleanup for debug output. */
4353
4354 i.op[x].regs = i.op[x].regs + 8;
773f551c 4355 }
29b0f896
AM
4356 }
4357 }
773f551c 4358
6b6b6807
L
4359 if (i.rex == 0 && i.rex_encoding)
4360 {
4361 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4362 that uses legacy register. If it is "hi" register, don't add
4363 the REX_OPCODE byte. */
4364 int x;
4365 for (x = 0; x < 2; x++)
4366 if (i.types[x].bitfield.reg
4367 && i.types[x].bitfield.byte
4368 && (i.op[x].regs->reg_flags & RegRex64) == 0
4369 && i.op[x].regs->reg_num > 3)
4370 {
4371 i.rex_encoding = FALSE;
4372 break;
4373 }
4374
4375 if (i.rex_encoding)
4376 i.rex = REX_OPCODE;
4377 }
4378
7ab9ffdd 4379 if (i.rex != 0)
29b0f896
AM
4380 add_prefix (REX_OPCODE | i.rex);
4381
4382 /* We are ready to output the insn. */
4383 output_insn ();
4384}
4385
4386static char *
e3bb37b5 4387parse_insn (char *line, char *mnemonic)
29b0f896
AM
4388{
4389 char *l = line;
4390 char *token_start = l;
4391 char *mnem_p;
5c6af06e 4392 int supported;
d3ce72d0 4393 const insn_template *t;
b6169b20 4394 char *dot_p = NULL;
29b0f896 4395
29b0f896
AM
4396 while (1)
4397 {
4398 mnem_p = mnemonic;
4399 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4400 {
b6169b20
L
4401 if (*mnem_p == '.')
4402 dot_p = mnem_p;
29b0f896
AM
4403 mnem_p++;
4404 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4405 {
29b0f896
AM
4406 as_bad (_("no such instruction: `%s'"), token_start);
4407 return NULL;
4408 }
4409 l++;
4410 }
4411 if (!is_space_char (*l)
4412 && *l != END_OF_INSN
e44823cf
JB
4413 && (intel_syntax
4414 || (*l != PREFIX_SEPARATOR
4415 && *l != ',')))
29b0f896
AM
4416 {
4417 as_bad (_("invalid character %s in mnemonic"),
4418 output_invalid (*l));
4419 return NULL;
4420 }
4421 if (token_start == l)
4422 {
e44823cf 4423 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4424 as_bad (_("expecting prefix; got nothing"));
4425 else
4426 as_bad (_("expecting mnemonic; got nothing"));
4427 return NULL;
4428 }
45288df1 4429
29b0f896 4430 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4431 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4432
29b0f896
AM
4433 if (*l != END_OF_INSN
4434 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4435 && current_templates
40fb9820 4436 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4437 {
c6fb90c8 4438 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4439 {
4440 as_bad ((flag_code != CODE_64BIT
4441 ? _("`%s' is only supported in 64-bit mode")
4442 : _("`%s' is not supported in 64-bit mode")),
4443 current_templates->start->name);
4444 return NULL;
4445 }
29b0f896
AM
4446 /* If we are in 16-bit mode, do not allow addr16 or data16.
4447 Similarly, in 32-bit mode, do not allow addr32 or data32. */
40fb9820
L
4448 if ((current_templates->start->opcode_modifier.size16
4449 || current_templates->start->opcode_modifier.size32)
29b0f896 4450 && flag_code != CODE_64BIT
40fb9820 4451 && (current_templates->start->opcode_modifier.size32
29b0f896
AM
4452 ^ (flag_code == CODE_16BIT)))
4453 {
4454 as_bad (_("redundant %s prefix"),
4455 current_templates->start->name);
4456 return NULL;
45288df1 4457 }
86fa6981 4458 if (current_templates->start->opcode_length == 0)
29b0f896 4459 {
86fa6981
L
4460 /* Handle pseudo prefixes. */
4461 switch (current_templates->start->base_opcode)
4462 {
4463 case 0x0:
4464 /* {disp8} */
4465 i.disp_encoding = disp_encoding_8bit;
4466 break;
4467 case 0x1:
4468 /* {disp32} */
4469 i.disp_encoding = disp_encoding_32bit;
4470 break;
4471 case 0x2:
4472 /* {load} */
4473 i.dir_encoding = dir_encoding_load;
4474 break;
4475 case 0x3:
4476 /* {store} */
4477 i.dir_encoding = dir_encoding_store;
4478 break;
4479 case 0x4:
4480 /* {vex2} */
4481 i.vec_encoding = vex_encoding_vex2;
4482 break;
4483 case 0x5:
4484 /* {vex3} */
4485 i.vec_encoding = vex_encoding_vex3;
4486 break;
4487 case 0x6:
4488 /* {evex} */
4489 i.vec_encoding = vex_encoding_evex;
4490 break;
6b6b6807
L
4491 case 0x7:
4492 /* {rex} */
4493 i.rex_encoding = TRUE;
4494 break;
b6f8c7c4
L
4495 case 0x8:
4496 /* {nooptimize} */
4497 i.no_optimize = TRUE;
4498 break;
86fa6981
L
4499 default:
4500 abort ();
4501 }
4502 }
4503 else
4504 {
4505 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4506 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4507 {
4e9ac44a
L
4508 case PREFIX_EXIST:
4509 return NULL;
4510 case PREFIX_DS:
d777820b 4511 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4512 i.notrack_prefix = current_templates->start->name;
4513 break;
4514 case PREFIX_REP:
4515 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4516 i.hle_prefix = current_templates->start->name;
4517 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4518 i.bnd_prefix = current_templates->start->name;
4519 else
4520 i.rep_prefix = current_templates->start->name;
4521 break;
4522 default:
4523 break;
86fa6981 4524 }
29b0f896
AM
4525 }
4526 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4527 token_start = ++l;
4528 }
4529 else
4530 break;
4531 }
45288df1 4532
30a55f88 4533 if (!current_templates)
b6169b20 4534 {
07d5e953
JB
4535 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4536 Check if we should swap operand or force 32bit displacement in
f8a5c266 4537 encoding. */
30a55f88 4538 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4539 i.dir_encoding = dir_encoding_swap;
8d63c93e 4540 else if (mnem_p - 3 == dot_p
a501d77e
L
4541 && dot_p[1] == 'd'
4542 && dot_p[2] == '8')
4543 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4544 else if (mnem_p - 4 == dot_p
f8a5c266
L
4545 && dot_p[1] == 'd'
4546 && dot_p[2] == '3'
4547 && dot_p[3] == '2')
a501d77e 4548 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4549 else
4550 goto check_suffix;
4551 mnem_p = dot_p;
4552 *dot_p = '\0';
d3ce72d0 4553 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4554 }
4555
29b0f896
AM
4556 if (!current_templates)
4557 {
b6169b20 4558check_suffix:
29b0f896
AM
4559 /* See if we can get a match by trimming off a suffix. */
4560 switch (mnem_p[-1])
4561 {
4562 case WORD_MNEM_SUFFIX:
9306ca4a
JB
4563 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4564 i.suffix = SHORT_MNEM_SUFFIX;
4565 else
1a0670f3 4566 /* Fall through. */
29b0f896
AM
4567 case BYTE_MNEM_SUFFIX:
4568 case QWORD_MNEM_SUFFIX:
4569 i.suffix = mnem_p[-1];
4570 mnem_p[-1] = '\0';
d3ce72d0
NC
4571 current_templates = (const templates *) hash_find (op_hash,
4572 mnemonic);
29b0f896
AM
4573 break;
4574 case SHORT_MNEM_SUFFIX:
4575 case LONG_MNEM_SUFFIX:
4576 if (!intel_syntax)
4577 {
4578 i.suffix = mnem_p[-1];
4579 mnem_p[-1] = '\0';
d3ce72d0
NC
4580 current_templates = (const templates *) hash_find (op_hash,
4581 mnemonic);
29b0f896
AM
4582 }
4583 break;
252b5132 4584
29b0f896
AM
4585 /* Intel Syntax. */
4586 case 'd':
4587 if (intel_syntax)
4588 {
9306ca4a 4589 if (intel_float_operand (mnemonic) == 1)
29b0f896
AM
4590 i.suffix = SHORT_MNEM_SUFFIX;
4591 else
4592 i.suffix = LONG_MNEM_SUFFIX;
4593 mnem_p[-1] = '\0';
d3ce72d0
NC
4594 current_templates = (const templates *) hash_find (op_hash,
4595 mnemonic);
29b0f896
AM
4596 }
4597 break;
4598 }
4599 if (!current_templates)
4600 {
4601 as_bad (_("no such instruction: `%s'"), token_start);
4602 return NULL;
4603 }
4604 }
252b5132 4605
40fb9820
L
4606 if (current_templates->start->opcode_modifier.jump
4607 || current_templates->start->opcode_modifier.jumpbyte)
29b0f896
AM
4608 {
4609 /* Check for a branch hint. We allow ",pt" and ",pn" for
4610 predict taken and predict not taken respectively.
4611 I'm not sure that branch hints actually do anything on loop
4612 and jcxz insns (JumpByte) for current Pentium4 chips. They
4613 may work in the future and it doesn't hurt to accept them
4614 now. */
4615 if (l[0] == ',' && l[1] == 'p')
4616 {
4617 if (l[2] == 't')
4618 {
4619 if (!add_prefix (DS_PREFIX_OPCODE))
4620 return NULL;
4621 l += 3;
4622 }
4623 else if (l[2] == 'n')
4624 {
4625 if (!add_prefix (CS_PREFIX_OPCODE))
4626 return NULL;
4627 l += 3;
4628 }
4629 }
4630 }
4631 /* Any other comma loses. */
4632 if (*l == ',')
4633 {
4634 as_bad (_("invalid character %s in mnemonic"),
4635 output_invalid (*l));
4636 return NULL;
4637 }
252b5132 4638
29b0f896 4639 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4640 supported = 0;
4641 for (t = current_templates->start; t < current_templates->end; ++t)
4642 {
c0f3af97
L
4643 supported |= cpu_flags_match (t);
4644 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4645 {
4646 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4647 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4648
548d0ee6
JB
4649 return l;
4650 }
29b0f896 4651 }
3629bb00 4652
548d0ee6
JB
4653 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4654 as_bad (flag_code == CODE_64BIT
4655 ? _("`%s' is not supported in 64-bit mode")
4656 : _("`%s' is only supported in 64-bit mode"),
4657 current_templates->start->name);
4658 else
4659 as_bad (_("`%s' is not supported on `%s%s'"),
4660 current_templates->start->name,
4661 cpu_arch_name ? cpu_arch_name : default_arch,
4662 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4663
548d0ee6 4664 return NULL;
29b0f896 4665}
252b5132 4666
29b0f896 4667static char *
e3bb37b5 4668parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4669{
4670 char *token_start;
3138f287 4671
29b0f896
AM
4672 /* 1 if operand is pending after ','. */
4673 unsigned int expecting_operand = 0;
252b5132 4674
29b0f896
AM
4675 /* Non-zero if operand parens not balanced. */
4676 unsigned int paren_not_balanced;
4677
4678 while (*l != END_OF_INSN)
4679 {
4680 /* Skip optional white space before operand. */
4681 if (is_space_char (*l))
4682 ++l;
d02603dc 4683 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4684 {
4685 as_bad (_("invalid character %s before operand %d"),
4686 output_invalid (*l),
4687 i.operands + 1);
4688 return NULL;
4689 }
d02603dc 4690 token_start = l; /* After white space. */
29b0f896
AM
4691 paren_not_balanced = 0;
4692 while (paren_not_balanced || *l != ',')
4693 {
4694 if (*l == END_OF_INSN)
4695 {
4696 if (paren_not_balanced)
4697 {
4698 if (!intel_syntax)
4699 as_bad (_("unbalanced parenthesis in operand %d."),
4700 i.operands + 1);
4701 else
4702 as_bad (_("unbalanced brackets in operand %d."),
4703 i.operands + 1);
4704 return NULL;
4705 }
4706 else
4707 break; /* we are done */
4708 }
d02603dc 4709 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4710 {
4711 as_bad (_("invalid character %s in operand %d"),
4712 output_invalid (*l),
4713 i.operands + 1);
4714 return NULL;
4715 }
4716 if (!intel_syntax)
4717 {
4718 if (*l == '(')
4719 ++paren_not_balanced;
4720 if (*l == ')')
4721 --paren_not_balanced;
4722 }
4723 else
4724 {
4725 if (*l == '[')
4726 ++paren_not_balanced;
4727 if (*l == ']')
4728 --paren_not_balanced;
4729 }
4730 l++;
4731 }
4732 if (l != token_start)
4733 { /* Yes, we've read in another operand. */
4734 unsigned int operand_ok;
4735 this_operand = i.operands++;
4736 if (i.operands > MAX_OPERANDS)
4737 {
4738 as_bad (_("spurious operands; (%d operands/instruction max)"),
4739 MAX_OPERANDS);
4740 return NULL;
4741 }
9d46ce34 4742 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
4743 /* Now parse operand adding info to 'i' as we go along. */
4744 END_STRING_AND_SAVE (l);
4745
1286ab78
L
4746 if (i.mem_operands > 1)
4747 {
4748 as_bad (_("too many memory references for `%s'"),
4749 mnemonic);
4750 return 0;
4751 }
4752
29b0f896
AM
4753 if (intel_syntax)
4754 operand_ok =
4755 i386_intel_operand (token_start,
4756 intel_float_operand (mnemonic));
4757 else
a7619375 4758 operand_ok = i386_att_operand (token_start);
29b0f896
AM
4759
4760 RESTORE_END_STRING (l);
4761 if (!operand_ok)
4762 return NULL;
4763 }
4764 else
4765 {
4766 if (expecting_operand)
4767 {
4768 expecting_operand_after_comma:
4769 as_bad (_("expecting operand after ','; got nothing"));
4770 return NULL;
4771 }
4772 if (*l == ',')
4773 {
4774 as_bad (_("expecting operand before ','; got nothing"));
4775 return NULL;
4776 }
4777 }
7f3f1ea2 4778
29b0f896
AM
4779 /* Now *l must be either ',' or END_OF_INSN. */
4780 if (*l == ',')
4781 {
4782 if (*++l == END_OF_INSN)
4783 {
4784 /* Just skip it, if it's \n complain. */
4785 goto expecting_operand_after_comma;
4786 }
4787 expecting_operand = 1;
4788 }
4789 }
4790 return l;
4791}
7f3f1ea2 4792
050dfa73 4793static void
4d456e3d 4794swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
4795{
4796 union i386_op temp_op;
40fb9820 4797 i386_operand_type temp_type;
c48dadc9 4798 unsigned int temp_flags;
050dfa73 4799 enum bfd_reloc_code_real temp_reloc;
4eed87de 4800
050dfa73
MM
4801 temp_type = i.types[xchg2];
4802 i.types[xchg2] = i.types[xchg1];
4803 i.types[xchg1] = temp_type;
c48dadc9
JB
4804
4805 temp_flags = i.flags[xchg2];
4806 i.flags[xchg2] = i.flags[xchg1];
4807 i.flags[xchg1] = temp_flags;
4808
050dfa73
MM
4809 temp_op = i.op[xchg2];
4810 i.op[xchg2] = i.op[xchg1];
4811 i.op[xchg1] = temp_op;
c48dadc9 4812
050dfa73
MM
4813 temp_reloc = i.reloc[xchg2];
4814 i.reloc[xchg2] = i.reloc[xchg1];
4815 i.reloc[xchg1] = temp_reloc;
43234a1e
L
4816
4817 if (i.mask)
4818 {
4819 if (i.mask->operand == xchg1)
4820 i.mask->operand = xchg2;
4821 else if (i.mask->operand == xchg2)
4822 i.mask->operand = xchg1;
4823 }
4824 if (i.broadcast)
4825 {
4826 if (i.broadcast->operand == xchg1)
4827 i.broadcast->operand = xchg2;
4828 else if (i.broadcast->operand == xchg2)
4829 i.broadcast->operand = xchg1;
4830 }
4831 if (i.rounding)
4832 {
4833 if (i.rounding->operand == xchg1)
4834 i.rounding->operand = xchg2;
4835 else if (i.rounding->operand == xchg2)
4836 i.rounding->operand = xchg1;
4837 }
050dfa73
MM
4838}
4839
29b0f896 4840static void
e3bb37b5 4841swap_operands (void)
29b0f896 4842{
b7c61d9a 4843 switch (i.operands)
050dfa73 4844 {
c0f3af97 4845 case 5:
b7c61d9a 4846 case 4:
4d456e3d 4847 swap_2_operands (1, i.operands - 2);
1a0670f3 4848 /* Fall through. */
b7c61d9a
L
4849 case 3:
4850 case 2:
4d456e3d 4851 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
4852 break;
4853 default:
4854 abort ();
29b0f896 4855 }
29b0f896
AM
4856
4857 if (i.mem_operands == 2)
4858 {
4859 const seg_entry *temp_seg;
4860 temp_seg = i.seg[0];
4861 i.seg[0] = i.seg[1];
4862 i.seg[1] = temp_seg;
4863 }
4864}
252b5132 4865
29b0f896
AM
4866/* Try to ensure constant immediates are represented in the smallest
4867 opcode possible. */
4868static void
e3bb37b5 4869optimize_imm (void)
29b0f896
AM
4870{
4871 char guess_suffix = 0;
4872 int op;
252b5132 4873
29b0f896
AM
4874 if (i.suffix)
4875 guess_suffix = i.suffix;
4876 else if (i.reg_operands)
4877 {
4878 /* Figure out a suffix from the last register operand specified.
4879 We can't do this properly yet, ie. excluding InOutPortReg,
4880 but the following works for instructions with immediates.
4881 In any case, we can't set i.suffix yet. */
4882 for (op = i.operands; --op >= 0;)
dc821c5f 4883 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
7ab9ffdd 4884 {
40fb9820
L
4885 guess_suffix = BYTE_MNEM_SUFFIX;
4886 break;
4887 }
dc821c5f 4888 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
252b5132 4889 {
40fb9820
L
4890 guess_suffix = WORD_MNEM_SUFFIX;
4891 break;
4892 }
dc821c5f 4893 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
40fb9820
L
4894 {
4895 guess_suffix = LONG_MNEM_SUFFIX;
4896 break;
4897 }
dc821c5f 4898 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
40fb9820
L
4899 {
4900 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 4901 break;
252b5132 4902 }
29b0f896
AM
4903 }
4904 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4905 guess_suffix = WORD_MNEM_SUFFIX;
4906
4907 for (op = i.operands; --op >= 0;)
40fb9820 4908 if (operand_type_check (i.types[op], imm))
29b0f896
AM
4909 {
4910 switch (i.op[op].imms->X_op)
252b5132 4911 {
29b0f896
AM
4912 case O_constant:
4913 /* If a suffix is given, this operand may be shortened. */
4914 switch (guess_suffix)
252b5132 4915 {
29b0f896 4916 case LONG_MNEM_SUFFIX:
40fb9820
L
4917 i.types[op].bitfield.imm32 = 1;
4918 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4919 break;
4920 case WORD_MNEM_SUFFIX:
40fb9820
L
4921 i.types[op].bitfield.imm16 = 1;
4922 i.types[op].bitfield.imm32 = 1;
4923 i.types[op].bitfield.imm32s = 1;
4924 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
4925 break;
4926 case BYTE_MNEM_SUFFIX:
40fb9820
L
4927 i.types[op].bitfield.imm8 = 1;
4928 i.types[op].bitfield.imm8s = 1;
4929 i.types[op].bitfield.imm16 = 1;
4930 i.types[op].bitfield.imm32 = 1;
4931 i.types[op].bitfield.imm32s = 1;
4932 i.types[op].bitfield.imm64 = 1;
29b0f896 4933 break;
252b5132 4934 }
252b5132 4935
29b0f896
AM
4936 /* If this operand is at most 16 bits, convert it
4937 to a signed 16 bit number before trying to see
4938 whether it will fit in an even smaller size.
4939 This allows a 16-bit operand such as $0xffe0 to
4940 be recognised as within Imm8S range. */
40fb9820 4941 if ((i.types[op].bitfield.imm16)
29b0f896 4942 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 4943 {
29b0f896
AM
4944 i.op[op].imms->X_add_number =
4945 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4946 }
a28def75
L
4947#ifdef BFD64
4948 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 4949 if ((i.types[op].bitfield.imm32)
29b0f896
AM
4950 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4951 == 0))
4952 {
4953 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4954 ^ ((offsetT) 1 << 31))
4955 - ((offsetT) 1 << 31));
4956 }
a28def75 4957#endif
40fb9820 4958 i.types[op]
c6fb90c8
L
4959 = operand_type_or (i.types[op],
4960 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 4961
29b0f896
AM
4962 /* We must avoid matching of Imm32 templates when 64bit
4963 only immediate is available. */
4964 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 4965 i.types[op].bitfield.imm32 = 0;
29b0f896 4966 break;
252b5132 4967
29b0f896
AM
4968 case O_absent:
4969 case O_register:
4970 abort ();
4971
4972 /* Symbols and expressions. */
4973 default:
9cd96992
JB
4974 /* Convert symbolic operand to proper sizes for matching, but don't
4975 prevent matching a set of insns that only supports sizes other
4976 than those matching the insn suffix. */
4977 {
40fb9820 4978 i386_operand_type mask, allowed;
d3ce72d0 4979 const insn_template *t;
9cd96992 4980
0dfbf9d7
L
4981 operand_type_set (&mask, 0);
4982 operand_type_set (&allowed, 0);
40fb9820 4983
4eed87de
AM
4984 for (t = current_templates->start;
4985 t < current_templates->end;
4986 ++t)
c6fb90c8
L
4987 allowed = operand_type_or (allowed,
4988 t->operand_types[op]);
9cd96992
JB
4989 switch (guess_suffix)
4990 {
4991 case QWORD_MNEM_SUFFIX:
40fb9820
L
4992 mask.bitfield.imm64 = 1;
4993 mask.bitfield.imm32s = 1;
9cd96992
JB
4994 break;
4995 case LONG_MNEM_SUFFIX:
40fb9820 4996 mask.bitfield.imm32 = 1;
9cd96992
JB
4997 break;
4998 case WORD_MNEM_SUFFIX:
40fb9820 4999 mask.bitfield.imm16 = 1;
9cd96992
JB
5000 break;
5001 case BYTE_MNEM_SUFFIX:
40fb9820 5002 mask.bitfield.imm8 = 1;
9cd96992
JB
5003 break;
5004 default:
9cd96992
JB
5005 break;
5006 }
c6fb90c8 5007 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5008 if (!operand_type_all_zero (&allowed))
c6fb90c8 5009 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5010 }
29b0f896 5011 break;
252b5132 5012 }
29b0f896
AM
5013 }
5014}
47926f60 5015
29b0f896
AM
5016/* Try to use the smallest displacement type too. */
5017static void
e3bb37b5 5018optimize_disp (void)
29b0f896
AM
5019{
5020 int op;
3e73aa7c 5021
29b0f896 5022 for (op = i.operands; --op >= 0;)
40fb9820 5023 if (operand_type_check (i.types[op], disp))
252b5132 5024 {
b300c311 5025 if (i.op[op].disps->X_op == O_constant)
252b5132 5026 {
91d6fa6a 5027 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5028
40fb9820 5029 if (i.types[op].bitfield.disp16
91d6fa6a 5030 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5031 {
5032 /* If this operand is at most 16 bits, convert
5033 to a signed 16 bit number and don't use 64bit
5034 displacement. */
91d6fa6a 5035 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5036 i.types[op].bitfield.disp64 = 0;
b300c311 5037 }
a28def75
L
5038#ifdef BFD64
5039 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5040 if (i.types[op].bitfield.disp32
91d6fa6a 5041 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5042 {
5043 /* If this operand is at most 32 bits, convert
5044 to a signed 32 bit number and don't use 64bit
5045 displacement. */
91d6fa6a
NC
5046 op_disp &= (((offsetT) 2 << 31) - 1);
5047 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5048 i.types[op].bitfield.disp64 = 0;
b300c311 5049 }
a28def75 5050#endif
91d6fa6a 5051 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5052 {
40fb9820
L
5053 i.types[op].bitfield.disp8 = 0;
5054 i.types[op].bitfield.disp16 = 0;
5055 i.types[op].bitfield.disp32 = 0;
5056 i.types[op].bitfield.disp32s = 0;
5057 i.types[op].bitfield.disp64 = 0;
b300c311
L
5058 i.op[op].disps = 0;
5059 i.disp_operands--;
5060 }
5061 else if (flag_code == CODE_64BIT)
5062 {
91d6fa6a 5063 if (fits_in_signed_long (op_disp))
28a9d8f5 5064 {
40fb9820
L
5065 i.types[op].bitfield.disp64 = 0;
5066 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5067 }
0e1147d9 5068 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5069 && fits_in_unsigned_long (op_disp))
40fb9820 5070 i.types[op].bitfield.disp32 = 1;
b300c311 5071 }
40fb9820
L
5072 if ((i.types[op].bitfield.disp32
5073 || i.types[op].bitfield.disp32s
5074 || i.types[op].bitfield.disp16)
b5014f7a 5075 && fits_in_disp8 (op_disp))
40fb9820 5076 i.types[op].bitfield.disp8 = 1;
252b5132 5077 }
67a4f2b7
AO
5078 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5079 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5080 {
5081 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5082 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5083 i.types[op].bitfield.disp8 = 0;
5084 i.types[op].bitfield.disp16 = 0;
5085 i.types[op].bitfield.disp32 = 0;
5086 i.types[op].bitfield.disp32s = 0;
5087 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5088 }
5089 else
b300c311 5090 /* We only support 64bit displacement on constants. */
40fb9820 5091 i.types[op].bitfield.disp64 = 0;
252b5132 5092 }
29b0f896
AM
5093}
5094
4a1b91ea
L
5095/* Return 1 if there is a match in broadcast bytes between operand
5096 GIVEN and instruction template T. */
5097
5098static INLINE int
5099match_broadcast_size (const insn_template *t, unsigned int given)
5100{
5101 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5102 && i.types[given].bitfield.byte)
5103 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5104 && i.types[given].bitfield.word)
5105 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5106 && i.types[given].bitfield.dword)
5107 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5108 && i.types[given].bitfield.qword));
5109}
5110
6c30d220
L
5111/* Check if operands are valid for the instruction. */
5112
5113static int
5114check_VecOperands (const insn_template *t)
5115{
43234a1e 5116 unsigned int op;
e2195274
JB
5117 i386_cpu_flags cpu;
5118 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5119
5120 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5121 any one operand are implicity requiring AVX512VL support if the actual
5122 operand size is YMMword or XMMword. Since this function runs after
5123 template matching, there's no need to check for YMMword/XMMword in
5124 the template. */
5125 cpu = cpu_flags_and (t->cpu_flags, avx512);
5126 if (!cpu_flags_all_zero (&cpu)
5127 && !t->cpu_flags.bitfield.cpuavx512vl
5128 && !cpu_arch_flags.bitfield.cpuavx512vl)
5129 {
5130 for (op = 0; op < t->operands; ++op)
5131 {
5132 if (t->operand_types[op].bitfield.zmmword
5133 && (i.types[op].bitfield.ymmword
5134 || i.types[op].bitfield.xmmword))
5135 {
5136 i.error = unsupported;
5137 return 1;
5138 }
5139 }
5140 }
43234a1e 5141
6c30d220
L
5142 /* Without VSIB byte, we can't have a vector register for index. */
5143 if (!t->opcode_modifier.vecsib
5144 && i.index_reg
1b54b8d7
JB
5145 && (i.index_reg->reg_type.bitfield.xmmword
5146 || i.index_reg->reg_type.bitfield.ymmword
5147 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5148 {
5149 i.error = unsupported_vector_index_register;
5150 return 1;
5151 }
5152
ad8ecc81
MZ
5153 /* Check if default mask is allowed. */
5154 if (t->opcode_modifier.nodefmask
5155 && (!i.mask || i.mask->mask->reg_num == 0))
5156 {
5157 i.error = no_default_mask;
5158 return 1;
5159 }
5160
7bab8ab5
JB
5161 /* For VSIB byte, we need a vector register for index, and all vector
5162 registers must be distinct. */
5163 if (t->opcode_modifier.vecsib)
5164 {
5165 if (!i.index_reg
6c30d220 5166 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5167 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5168 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5169 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5170 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5171 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5172 {
5173 i.error = invalid_vsib_address;
5174 return 1;
5175 }
5176
43234a1e
L
5177 gas_assert (i.reg_operands == 2 || i.mask);
5178 if (i.reg_operands == 2 && !i.mask)
5179 {
1b54b8d7
JB
5180 gas_assert (i.types[0].bitfield.regsimd);
5181 gas_assert (i.types[0].bitfield.xmmword
5182 || i.types[0].bitfield.ymmword);
5183 gas_assert (i.types[2].bitfield.regsimd);
5184 gas_assert (i.types[2].bitfield.xmmword
5185 || i.types[2].bitfield.ymmword);
43234a1e
L
5186 if (operand_check == check_none)
5187 return 0;
5188 if (register_number (i.op[0].regs)
5189 != register_number (i.index_reg)
5190 && register_number (i.op[2].regs)
5191 != register_number (i.index_reg)
5192 && register_number (i.op[0].regs)
5193 != register_number (i.op[2].regs))
5194 return 0;
5195 if (operand_check == check_error)
5196 {
5197 i.error = invalid_vector_register_set;
5198 return 1;
5199 }
5200 as_warn (_("mask, index, and destination registers should be distinct"));
5201 }
8444f82a
MZ
5202 else if (i.reg_operands == 1 && i.mask)
5203 {
1b54b8d7
JB
5204 if (i.types[1].bitfield.regsimd
5205 && (i.types[1].bitfield.xmmword
5206 || i.types[1].bitfield.ymmword
5207 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5208 && (register_number (i.op[1].regs)
5209 == register_number (i.index_reg)))
5210 {
5211 if (operand_check == check_error)
5212 {
5213 i.error = invalid_vector_register_set;
5214 return 1;
5215 }
5216 if (operand_check != check_none)
5217 as_warn (_("index and destination registers should be distinct"));
5218 }
5219 }
43234a1e 5220 }
7bab8ab5 5221
43234a1e
L
5222 /* Check if broadcast is supported by the instruction and is applied
5223 to the memory operand. */
5224 if (i.broadcast)
5225 {
8e6e0792 5226 i386_operand_type type, overlap;
43234a1e
L
5227
5228 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5229 and its broadcast bytes match the memory operand. */
32546502 5230 op = i.broadcast->operand;
8e6e0792 5231 if (!t->opcode_modifier.broadcast
c48dadc9 5232 || !(i.flags[op] & Operand_Mem)
c39e5b26 5233 || (!i.types[op].bitfield.unspecified
4a1b91ea 5234 && !match_broadcast_size (t, op)))
43234a1e
L
5235 {
5236 bad_broadcast:
5237 i.error = unsupported_broadcast;
5238 return 1;
5239 }
8e6e0792 5240
4a1b91ea
L
5241 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5242 * i.broadcast->type);
8e6e0792 5243 operand_type_set (&type, 0);
4a1b91ea 5244 switch (i.broadcast->bytes)
8e6e0792 5245 {
4a1b91ea
L
5246 case 2:
5247 type.bitfield.word = 1;
5248 break;
5249 case 4:
5250 type.bitfield.dword = 1;
5251 break;
8e6e0792
JB
5252 case 8:
5253 type.bitfield.qword = 1;
5254 break;
5255 case 16:
5256 type.bitfield.xmmword = 1;
5257 break;
5258 case 32:
5259 type.bitfield.ymmword = 1;
5260 break;
5261 case 64:
5262 type.bitfield.zmmword = 1;
5263 break;
5264 default:
5265 goto bad_broadcast;
5266 }
5267
5268 overlap = operand_type_and (type, t->operand_types[op]);
5269 if (operand_type_all_zero (&overlap))
5270 goto bad_broadcast;
5271
5272 if (t->opcode_modifier.checkregsize)
5273 {
5274 unsigned int j;
5275
e2195274 5276 type.bitfield.baseindex = 1;
8e6e0792
JB
5277 for (j = 0; j < i.operands; ++j)
5278 {
5279 if (j != op
5280 && !operand_type_register_match(i.types[j],
5281 t->operand_types[j],
5282 type,
5283 t->operand_types[op]))
5284 goto bad_broadcast;
5285 }
5286 }
43234a1e
L
5287 }
5288 /* If broadcast is supported in this instruction, we need to check if
5289 operand of one-element size isn't specified without broadcast. */
5290 else if (t->opcode_modifier.broadcast && i.mem_operands)
5291 {
5292 /* Find memory operand. */
5293 for (op = 0; op < i.operands; op++)
5294 if (operand_type_check (i.types[op], anymem))
5295 break;
5296 gas_assert (op < i.operands);
5297 /* Check size of the memory operand. */
4a1b91ea 5298 if (match_broadcast_size (t, op))
43234a1e
L
5299 {
5300 i.error = broadcast_needed;
5301 return 1;
5302 }
5303 }
c39e5b26
JB
5304 else
5305 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5306
5307 /* Check if requested masking is supported. */
ae2387fe 5308 if (i.mask)
43234a1e 5309 {
ae2387fe
JB
5310 switch (t->opcode_modifier.masking)
5311 {
5312 case BOTH_MASKING:
5313 break;
5314 case MERGING_MASKING:
5315 if (i.mask->zeroing)
5316 {
5317 case 0:
5318 i.error = unsupported_masking;
5319 return 1;
5320 }
5321 break;
5322 case DYNAMIC_MASKING:
5323 /* Memory destinations allow only merging masking. */
5324 if (i.mask->zeroing && i.mem_operands)
5325 {
5326 /* Find memory operand. */
5327 for (op = 0; op < i.operands; op++)
c48dadc9 5328 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5329 break;
5330 gas_assert (op < i.operands);
5331 if (op == i.operands - 1)
5332 {
5333 i.error = unsupported_masking;
5334 return 1;
5335 }
5336 }
5337 break;
5338 default:
5339 abort ();
5340 }
43234a1e
L
5341 }
5342
5343 /* Check if masking is applied to dest operand. */
5344 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5345 {
5346 i.error = mask_not_on_destination;
5347 return 1;
5348 }
5349
43234a1e
L
5350 /* Check RC/SAE. */
5351 if (i.rounding)
5352 {
5353 if ((i.rounding->type != saeonly
5354 && !t->opcode_modifier.staticrounding)
5355 || (i.rounding->type == saeonly
5356 && (t->opcode_modifier.staticrounding
5357 || !t->opcode_modifier.sae)))
5358 {
5359 i.error = unsupported_rc_sae;
5360 return 1;
5361 }
5362 /* If the instruction has several immediate operands and one of
5363 them is rounding, the rounding operand should be the last
5364 immediate operand. */
5365 if (i.imm_operands > 1
5366 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5367 {
43234a1e 5368 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5369 return 1;
5370 }
6c30d220
L
5371 }
5372
43234a1e 5373 /* Check vector Disp8 operand. */
b5014f7a
JB
5374 if (t->opcode_modifier.disp8memshift
5375 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5376 {
5377 if (i.broadcast)
4a1b91ea 5378 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5379 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5380 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5381 else
5382 {
5383 const i386_operand_type *type = NULL;
5384
5385 i.memshift = 0;
5386 for (op = 0; op < i.operands; op++)
5387 if (operand_type_check (i.types[op], anymem))
5388 {
4174bfff
JB
5389 if (t->opcode_modifier.evex == EVEXLIG)
5390 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5391 else if (t->operand_types[op].bitfield.xmmword
5392 + t->operand_types[op].bitfield.ymmword
5393 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5394 type = &t->operand_types[op];
5395 else if (!i.types[op].bitfield.unspecified)
5396 type = &i.types[op];
5397 }
4174bfff
JB
5398 else if (i.types[op].bitfield.regsimd
5399 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5400 {
5401 if (i.types[op].bitfield.zmmword)
5402 i.memshift = 6;
5403 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5404 i.memshift = 5;
5405 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5406 i.memshift = 4;
5407 }
5408
5409 if (type)
5410 {
5411 if (type->bitfield.zmmword)
5412 i.memshift = 6;
5413 else if (type->bitfield.ymmword)
5414 i.memshift = 5;
5415 else if (type->bitfield.xmmword)
5416 i.memshift = 4;
5417 }
5418
5419 /* For the check in fits_in_disp8(). */
5420 if (i.memshift == 0)
5421 i.memshift = -1;
5422 }
43234a1e
L
5423
5424 for (op = 0; op < i.operands; op++)
5425 if (operand_type_check (i.types[op], disp)
5426 && i.op[op].disps->X_op == O_constant)
5427 {
b5014f7a 5428 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5429 {
b5014f7a
JB
5430 i.types[op].bitfield.disp8 = 1;
5431 return 0;
43234a1e 5432 }
b5014f7a 5433 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5434 }
5435 }
b5014f7a
JB
5436
5437 i.memshift = 0;
43234a1e 5438
6c30d220
L
5439 return 0;
5440}
5441
43f3e2ee 5442/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5443 operand types. */
5444
5445static int
5446VEX_check_operands (const insn_template *t)
5447{
86fa6981 5448 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5449 {
86fa6981 5450 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5451 if (!is_evex_encoding (t))
86fa6981
L
5452 {
5453 i.error = unsupported;
5454 return 1;
5455 }
5456 return 0;
43234a1e
L
5457 }
5458
a683cc34 5459 if (!t->opcode_modifier.vex)
86fa6981
L
5460 {
5461 /* This instruction template doesn't have VEX prefix. */
5462 if (i.vec_encoding != vex_encoding_default)
5463 {
5464 i.error = unsupported;
5465 return 1;
5466 }
5467 return 0;
5468 }
a683cc34
SP
5469
5470 /* Only check VEX_Imm4, which must be the first operand. */
5471 if (t->operand_types[0].bitfield.vec_imm4)
5472 {
5473 if (i.op[0].imms->X_op != O_constant
5474 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5475 {
a65babc9 5476 i.error = bad_imm4;
891edac4
L
5477 return 1;
5478 }
a683cc34
SP
5479
5480 /* Turn off Imm8 so that update_imm won't complain. */
5481 i.types[0] = vec_imm4;
5482 }
5483
5484 return 0;
5485}
5486
d3ce72d0 5487static const insn_template *
83b16ac6 5488match_template (char mnem_suffix)
29b0f896
AM
5489{
5490 /* Points to template once we've found it. */
d3ce72d0 5491 const insn_template *t;
40fb9820 5492 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5493 i386_operand_type overlap4;
29b0f896 5494 unsigned int found_reverse_match;
83b16ac6 5495 i386_opcode_modifier suffix_check, mnemsuf_check;
40fb9820 5496 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5497 int addr_prefix_disp;
a5c311ca 5498 unsigned int j;
3ac21baa 5499 unsigned int found_cpu_match, size_match;
45664ddb 5500 unsigned int check_register;
5614d22c 5501 enum i386_error specific_error = 0;
29b0f896 5502
c0f3af97
L
5503#if MAX_OPERANDS != 5
5504# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5505#endif
5506
29b0f896 5507 found_reverse_match = 0;
539e75ad 5508 addr_prefix_disp = -1;
40fb9820
L
5509
5510 memset (&suffix_check, 0, sizeof (suffix_check));
e2195274
JB
5511 if (intel_syntax && i.broadcast)
5512 /* nothing */;
5513 else if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
5514 suffix_check.no_bsuf = 1;
5515 else if (i.suffix == WORD_MNEM_SUFFIX)
5516 suffix_check.no_wsuf = 1;
5517 else if (i.suffix == SHORT_MNEM_SUFFIX)
5518 suffix_check.no_ssuf = 1;
5519 else if (i.suffix == LONG_MNEM_SUFFIX)
5520 suffix_check.no_lsuf = 1;
5521 else if (i.suffix == QWORD_MNEM_SUFFIX)
5522 suffix_check.no_qsuf = 1;
5523 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
7ce189b3 5524 suffix_check.no_ldsuf = 1;
29b0f896 5525
83b16ac6
JB
5526 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5527 if (intel_syntax)
5528 {
5529 switch (mnem_suffix)
5530 {
5531 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5532 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5533 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5534 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5535 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5536 }
5537 }
5538
01559ecc
L
5539 /* Must have right number of operands. */
5540 i.error = number_of_operands_mismatch;
5541
45aa61fe 5542 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5543 {
539e75ad 5544 addr_prefix_disp = -1;
dbbc8b7e 5545 found_reverse_match = 0;
539e75ad 5546
29b0f896
AM
5547 if (i.operands != t->operands)
5548 continue;
5549
50aecf8c 5550 /* Check processor support. */
a65babc9 5551 i.error = unsupported;
c0f3af97
L
5552 found_cpu_match = (cpu_flags_match (t)
5553 == CPU_FLAGS_PERFECT_MATCH);
50aecf8c
L
5554 if (!found_cpu_match)
5555 continue;
5556
e1d4d893 5557 /* Check AT&T mnemonic. */
a65babc9 5558 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5559 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5560 continue;
5561
e92bae62 5562 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
a65babc9 5563 i.error = unsupported_syntax;
5c07affc 5564 if ((intel_syntax && t->opcode_modifier.attsyntax)
e92bae62
L
5565 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5566 || (intel64 && t->opcode_modifier.amd64)
5567 || (!intel64 && t->opcode_modifier.intel64))
1efbbeb4
L
5568 continue;
5569
20592a94 5570 /* Check the suffix, except for some instructions in intel mode. */
a65babc9 5571 i.error = invalid_instruction_suffix;
567e4e96
L
5572 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5573 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5574 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5575 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5576 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5577 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5578 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
29b0f896 5579 continue;
83b16ac6
JB
5580 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5581 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5582 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5583 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5584 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5585 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5586 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5587 continue;
29b0f896 5588
3ac21baa
JB
5589 size_match = operand_size_match (t);
5590 if (!size_match)
7d5e4556 5591 continue;
539e75ad 5592
5c07affc
L
5593 for (j = 0; j < MAX_OPERANDS; j++)
5594 operand_types[j] = t->operand_types[j];
5595
45aa61fe
AM
5596 /* In general, don't allow 64-bit operands in 32-bit mode. */
5597 if (i.suffix == QWORD_MNEM_SUFFIX
5598 && flag_code != CODE_64BIT
5599 && (intel_syntax
40fb9820 5600 ? (!t->opcode_modifier.ignoresize
625cbd7a 5601 && !t->opcode_modifier.broadcast
45aa61fe
AM
5602 && !intel_float_operand (t->name))
5603 : intel_float_operand (t->name) != 2)
40fb9820 5604 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5605 && !operand_types[0].bitfield.regsimd)
40fb9820 5606 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5607 && !operand_types[t->operands > 1].bitfield.regsimd))
45aa61fe
AM
5608 && (t->base_opcode != 0x0fc7
5609 || t->extension_opcode != 1 /* cmpxchg8b */))
5610 continue;
5611
192dc9c6
JB
5612 /* In general, don't allow 32-bit operands on pre-386. */
5613 else if (i.suffix == LONG_MNEM_SUFFIX
5614 && !cpu_arch_flags.bitfield.cpui386
5615 && (intel_syntax
5616 ? (!t->opcode_modifier.ignoresize
5617 && !intel_float_operand (t->name))
5618 : intel_float_operand (t->name) != 2)
5619 && ((!operand_types[0].bitfield.regmmx
1b54b8d7 5620 && !operand_types[0].bitfield.regsimd)
192dc9c6 5621 || (!operand_types[t->operands > 1].bitfield.regmmx
1b54b8d7 5622 && !operand_types[t->operands > 1].bitfield.regsimd)))
192dc9c6
JB
5623 continue;
5624
29b0f896 5625 /* Do not verify operands when there are none. */
50aecf8c 5626 else
29b0f896 5627 {
c6fb90c8 5628 if (!t->operands)
2dbab7d5
L
5629 /* We've found a match; break out of loop. */
5630 break;
29b0f896 5631 }
252b5132 5632
539e75ad
L
5633 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5634 into Disp32/Disp16/Disp32 operand. */
5635 if (i.prefix[ADDR_PREFIX] != 0)
5636 {
40fb9820 5637 /* There should be only one Disp operand. */
539e75ad
L
5638 switch (flag_code)
5639 {
5640 case CODE_16BIT:
40fb9820
L
5641 for (j = 0; j < MAX_OPERANDS; j++)
5642 {
5643 if (operand_types[j].bitfield.disp16)
5644 {
5645 addr_prefix_disp = j;
5646 operand_types[j].bitfield.disp32 = 1;
5647 operand_types[j].bitfield.disp16 = 0;
5648 break;
5649 }
5650 }
539e75ad
L
5651 break;
5652 case CODE_32BIT:
40fb9820
L
5653 for (j = 0; j < MAX_OPERANDS; j++)
5654 {
5655 if (operand_types[j].bitfield.disp32)
5656 {
5657 addr_prefix_disp = j;
5658 operand_types[j].bitfield.disp32 = 0;
5659 operand_types[j].bitfield.disp16 = 1;
5660 break;
5661 }
5662 }
539e75ad
L
5663 break;
5664 case CODE_64BIT:
40fb9820
L
5665 for (j = 0; j < MAX_OPERANDS; j++)
5666 {
5667 if (operand_types[j].bitfield.disp64)
5668 {
5669 addr_prefix_disp = j;
5670 operand_types[j].bitfield.disp64 = 0;
5671 operand_types[j].bitfield.disp32 = 1;
5672 break;
5673 }
5674 }
539e75ad
L
5675 break;
5676 }
539e75ad
L
5677 }
5678
02a86693
L
5679 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5680 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5681 continue;
5682
56ffb741 5683 /* We check register size if needed. */
e2195274
JB
5684 if (t->opcode_modifier.checkregsize)
5685 {
5686 check_register = (1 << t->operands) - 1;
5687 if (i.broadcast)
5688 check_register &= ~(1 << i.broadcast->operand);
5689 }
5690 else
5691 check_register = 0;
5692
c6fb90c8 5693 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5694 switch (t->operands)
5695 {
5696 case 1:
40fb9820 5697 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5698 continue;
5699 break;
5700 case 2:
33eaf5de 5701 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5702 only in 32bit mode and we can use opcode 0x90. In 64bit
5703 mode, we can't use 0x90 for xchg %eax, %eax since it should
5704 zero-extend %eax to %rax. */
5705 if (flag_code == CODE_64BIT
5706 && t->base_opcode == 0x90
0dfbf9d7
L
5707 && operand_type_equal (&i.types [0], &acc32)
5708 && operand_type_equal (&i.types [1], &acc32))
8b38ad71 5709 continue;
1212781b
JB
5710 /* xrelease mov %eax, <disp> is another special case. It must not
5711 match the accumulator-only encoding of mov. */
5712 if (flag_code != CODE_64BIT
5713 && i.hle_prefix
5714 && t->base_opcode == 0xa0
5715 && i.types[0].bitfield.acc
5716 && operand_type_check (i.types[1], anymem))
5717 continue;
f5eb1d70
JB
5718 /* Fall through. */
5719
5720 case 3:
3ac21baa
JB
5721 if (!(size_match & MATCH_STRAIGHT))
5722 goto check_reverse;
64c49ab3
JB
5723 /* Reverse direction of operands if swapping is possible in the first
5724 place (operands need to be symmetric) and
5725 - the load form is requested, and the template is a store form,
5726 - the store form is requested, and the template is a load form,
5727 - the non-default (swapped) form is requested. */
5728 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 5729 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
5730 && !operand_type_all_zero (&overlap1))
5731 switch (i.dir_encoding)
5732 {
5733 case dir_encoding_load:
5734 if (operand_type_check (operand_types[i.operands - 1], anymem)
5735 || operand_types[i.operands - 1].bitfield.regmem)
5736 goto check_reverse;
5737 break;
5738
5739 case dir_encoding_store:
5740 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5741 && !operand_types[i.operands - 1].bitfield.regmem)
5742 goto check_reverse;
5743 break;
5744
5745 case dir_encoding_swap:
5746 goto check_reverse;
5747
5748 case dir_encoding_default:
5749 break;
5750 }
86fa6981 5751 /* If we want store form, we skip the current load. */
64c49ab3
JB
5752 if ((i.dir_encoding == dir_encoding_store
5753 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
5754 && i.mem_operands == 0
5755 && t->opcode_modifier.load)
fa99fab2 5756 continue;
1a0670f3 5757 /* Fall through. */
f48ff2ae 5758 case 4:
c0f3af97 5759 case 5:
c6fb90c8 5760 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
5761 if (!operand_type_match (overlap0, i.types[0])
5762 || !operand_type_match (overlap1, i.types[1])
e2195274 5763 || ((check_register & 3) == 3
dc821c5f 5764 && !operand_type_register_match (i.types[0],
40fb9820 5765 operand_types[0],
dc821c5f 5766 i.types[1],
40fb9820 5767 operand_types[1])))
29b0f896
AM
5768 {
5769 /* Check if other direction is valid ... */
38e314eb 5770 if (!t->opcode_modifier.d)
29b0f896
AM
5771 continue;
5772
b6169b20 5773check_reverse:
3ac21baa
JB
5774 if (!(size_match & MATCH_REVERSE))
5775 continue;
29b0f896 5776 /* Try reversing direction of operands. */
f5eb1d70
JB
5777 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5778 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 5779 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 5780 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 5781 || (check_register
dc821c5f 5782 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
5783 operand_types[i.operands - 1],
5784 i.types[i.operands - 1],
45664ddb 5785 operand_types[0])))
29b0f896
AM
5786 {
5787 /* Does not match either direction. */
5788 continue;
5789 }
38e314eb 5790 /* found_reverse_match holds which of D or FloatR
29b0f896 5791 we've found. */
38e314eb
JB
5792 if (!t->opcode_modifier.d)
5793 found_reverse_match = 0;
5794 else if (operand_types[0].bitfield.tbyte)
8a2ed489 5795 found_reverse_match = Opcode_FloatD;
dbbc8b7e 5796 else if (operand_types[0].bitfield.xmmword
f5eb1d70 5797 || operand_types[i.operands - 1].bitfield.xmmword
dbbc8b7e 5798 || operand_types[0].bitfield.regmmx
f5eb1d70 5799 || operand_types[i.operands - 1].bitfield.regmmx
dbbc8b7e
JB
5800 || is_any_vex_encoding(t))
5801 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5802 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 5803 else
38e314eb 5804 found_reverse_match = Opcode_D;
40fb9820 5805 if (t->opcode_modifier.floatr)
8a2ed489 5806 found_reverse_match |= Opcode_FloatR;
29b0f896 5807 }
f48ff2ae 5808 else
29b0f896 5809 {
f48ff2ae 5810 /* Found a forward 2 operand match here. */
d1cbb4db
L
5811 switch (t->operands)
5812 {
c0f3af97
L
5813 case 5:
5814 overlap4 = operand_type_and (i.types[4],
5815 operand_types[4]);
1a0670f3 5816 /* Fall through. */
d1cbb4db 5817 case 4:
c6fb90c8
L
5818 overlap3 = operand_type_and (i.types[3],
5819 operand_types[3]);
1a0670f3 5820 /* Fall through. */
d1cbb4db 5821 case 3:
c6fb90c8
L
5822 overlap2 = operand_type_and (i.types[2],
5823 operand_types[2]);
d1cbb4db
L
5824 break;
5825 }
29b0f896 5826
f48ff2ae
L
5827 switch (t->operands)
5828 {
c0f3af97
L
5829 case 5:
5830 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 5831 || !operand_type_register_match (i.types[3],
c0f3af97 5832 operand_types[3],
c0f3af97
L
5833 i.types[4],
5834 operand_types[4]))
5835 continue;
1a0670f3 5836 /* Fall through. */
f48ff2ae 5837 case 4:
40fb9820 5838 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
5839 || ((check_register & 0xa) == 0xa
5840 && !operand_type_register_match (i.types[1],
f7768225
JB
5841 operand_types[1],
5842 i.types[3],
e2195274
JB
5843 operand_types[3]))
5844 || ((check_register & 0xc) == 0xc
5845 && !operand_type_register_match (i.types[2],
5846 operand_types[2],
5847 i.types[3],
5848 operand_types[3])))
f48ff2ae 5849 continue;
1a0670f3 5850 /* Fall through. */
f48ff2ae
L
5851 case 3:
5852 /* Here we make use of the fact that there are no
23e42951 5853 reverse match 3 operand instructions. */
40fb9820 5854 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
5855 || ((check_register & 5) == 5
5856 && !operand_type_register_match (i.types[0],
23e42951
JB
5857 operand_types[0],
5858 i.types[2],
e2195274
JB
5859 operand_types[2]))
5860 || ((check_register & 6) == 6
5861 && !operand_type_register_match (i.types[1],
5862 operand_types[1],
5863 i.types[2],
5864 operand_types[2])))
f48ff2ae
L
5865 continue;
5866 break;
5867 }
29b0f896 5868 }
f48ff2ae 5869 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
5870 slip through to break. */
5871 }
3629bb00 5872 if (!found_cpu_match)
dbbc8b7e 5873 continue;
c0f3af97 5874
5614d22c
JB
5875 /* Check if vector and VEX operands are valid. */
5876 if (check_VecOperands (t) || VEX_check_operands (t))
5877 {
5878 specific_error = i.error;
5879 continue;
5880 }
a683cc34 5881
29b0f896
AM
5882 /* We've found a match; break out of loop. */
5883 break;
5884 }
5885
5886 if (t == current_templates->end)
5887 {
5888 /* We found no match. */
a65babc9 5889 const char *err_msg;
5614d22c 5890 switch (specific_error ? specific_error : i.error)
a65babc9
L
5891 {
5892 default:
5893 abort ();
86e026a4 5894 case operand_size_mismatch:
a65babc9
L
5895 err_msg = _("operand size mismatch");
5896 break;
5897 case operand_type_mismatch:
5898 err_msg = _("operand type mismatch");
5899 break;
5900 case register_type_mismatch:
5901 err_msg = _("register type mismatch");
5902 break;
5903 case number_of_operands_mismatch:
5904 err_msg = _("number of operands mismatch");
5905 break;
5906 case invalid_instruction_suffix:
5907 err_msg = _("invalid instruction suffix");
5908 break;
5909 case bad_imm4:
4a2608e3 5910 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 5911 break;
a65babc9
L
5912 case unsupported_with_intel_mnemonic:
5913 err_msg = _("unsupported with Intel mnemonic");
5914 break;
5915 case unsupported_syntax:
5916 err_msg = _("unsupported syntax");
5917 break;
5918 case unsupported:
35262a23 5919 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
5920 current_templates->start->name);
5921 return NULL;
6c30d220
L
5922 case invalid_vsib_address:
5923 err_msg = _("invalid VSIB address");
5924 break;
7bab8ab5
JB
5925 case invalid_vector_register_set:
5926 err_msg = _("mask, index, and destination registers must be distinct");
5927 break;
6c30d220
L
5928 case unsupported_vector_index_register:
5929 err_msg = _("unsupported vector index register");
5930 break;
43234a1e
L
5931 case unsupported_broadcast:
5932 err_msg = _("unsupported broadcast");
5933 break;
43234a1e
L
5934 case broadcast_needed:
5935 err_msg = _("broadcast is needed for operand of such type");
5936 break;
5937 case unsupported_masking:
5938 err_msg = _("unsupported masking");
5939 break;
5940 case mask_not_on_destination:
5941 err_msg = _("mask not on destination operand");
5942 break;
5943 case no_default_mask:
5944 err_msg = _("default mask isn't allowed");
5945 break;
5946 case unsupported_rc_sae:
5947 err_msg = _("unsupported static rounding/sae");
5948 break;
5949 case rc_sae_operand_not_last_imm:
5950 if (intel_syntax)
5951 err_msg = _("RC/SAE operand must precede immediate operands");
5952 else
5953 err_msg = _("RC/SAE operand must follow immediate operands");
5954 break;
5955 case invalid_register_operand:
5956 err_msg = _("invalid register operand");
5957 break;
a65babc9
L
5958 }
5959 as_bad (_("%s for `%s'"), err_msg,
891edac4 5960 current_templates->start->name);
fa99fab2 5961 return NULL;
29b0f896 5962 }
252b5132 5963
29b0f896
AM
5964 if (!quiet_warnings)
5965 {
5966 if (!intel_syntax
40fb9820
L
5967 && (i.types[0].bitfield.jumpabsolute
5968 != operand_types[0].bitfield.jumpabsolute))
29b0f896
AM
5969 {
5970 as_warn (_("indirect %s without `*'"), t->name);
5971 }
5972
40fb9820
L
5973 if (t->opcode_modifier.isprefix
5974 && t->opcode_modifier.ignoresize)
29b0f896
AM
5975 {
5976 /* Warn them that a data or address size prefix doesn't
5977 affect assembly of the next line of code. */
5978 as_warn (_("stand-alone `%s' prefix"), t->name);
5979 }
5980 }
5981
5982 /* Copy the template we found. */
5983 i.tm = *t;
539e75ad
L
5984
5985 if (addr_prefix_disp != -1)
5986 i.tm.operand_types[addr_prefix_disp]
5987 = operand_types[addr_prefix_disp];
5988
29b0f896
AM
5989 if (found_reverse_match)
5990 {
5991 /* If we found a reverse match we must alter the opcode
5992 direction bit. found_reverse_match holds bits to change
5993 (different for int & float insns). */
5994
5995 i.tm.base_opcode ^= found_reverse_match;
5996
f5eb1d70
JB
5997 i.tm.operand_types[0] = operand_types[i.operands - 1];
5998 i.tm.operand_types[i.operands - 1] = operand_types[0];
29b0f896
AM
5999 }
6000
fa99fab2 6001 return t;
29b0f896
AM
6002}
6003
6004static int
e3bb37b5 6005check_string (void)
29b0f896 6006{
40fb9820
L
6007 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6008 if (i.tm.operand_types[mem_op].bitfield.esseg)
29b0f896
AM
6009 {
6010 if (i.seg[0] != NULL && i.seg[0] != &es)
6011 {
a87af027 6012 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6013 i.tm.name,
a87af027
JB
6014 mem_op + 1,
6015 register_prefix);
29b0f896
AM
6016 return 0;
6017 }
6018 /* There's only ever one segment override allowed per instruction.
6019 This instruction possibly has a legal segment override on the
6020 second operand, so copy the segment to where non-string
6021 instructions store it, allowing common code. */
6022 i.seg[0] = i.seg[1];
6023 }
40fb9820 6024 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
29b0f896
AM
6025 {
6026 if (i.seg[1] != NULL && i.seg[1] != &es)
6027 {
a87af027 6028 as_bad (_("`%s' operand %d must use `%ses' segment"),
29b0f896 6029 i.tm.name,
a87af027
JB
6030 mem_op + 2,
6031 register_prefix);
29b0f896
AM
6032 return 0;
6033 }
6034 }
6035 return 1;
6036}
6037
6038static int
543613e9 6039process_suffix (void)
29b0f896
AM
6040{
6041 /* If matched instruction specifies an explicit instruction mnemonic
6042 suffix, use it. */
40fb9820
L
6043 if (i.tm.opcode_modifier.size16)
6044 i.suffix = WORD_MNEM_SUFFIX;
6045 else if (i.tm.opcode_modifier.size32)
6046 i.suffix = LONG_MNEM_SUFFIX;
6047 else if (i.tm.opcode_modifier.size64)
6048 i.suffix = QWORD_MNEM_SUFFIX;
29b0f896
AM
6049 else if (i.reg_operands)
6050 {
6051 /* If there's no instruction mnemonic suffix we try to invent one
6052 based on register operands. */
6053 if (!i.suffix)
6054 {
6055 /* We take i.suffix from the last register operand specified,
6056 Destination register type is more significant than source
381d071f
L
6057 register type. crc32 in SSE4.2 prefers source register
6058 type. */
6059 if (i.tm.base_opcode == 0xf20f38f1)
6060 {
dc821c5f 6061 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
40fb9820 6062 i.suffix = WORD_MNEM_SUFFIX;
dc821c5f 6063 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
40fb9820 6064 i.suffix = LONG_MNEM_SUFFIX;
dc821c5f 6065 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
40fb9820 6066 i.suffix = QWORD_MNEM_SUFFIX;
381d071f 6067 }
9344ff29 6068 else if (i.tm.base_opcode == 0xf20f38f0)
20592a94 6069 {
dc821c5f 6070 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
20592a94
L
6071 i.suffix = BYTE_MNEM_SUFFIX;
6072 }
381d071f
L
6073
6074 if (!i.suffix)
6075 {
6076 int op;
6077
20592a94
L
6078 if (i.tm.base_opcode == 0xf20f38f1
6079 || i.tm.base_opcode == 0xf20f38f0)
6080 {
6081 /* We have to know the operand size for crc32. */
6082 as_bad (_("ambiguous memory operand size for `%s`"),
6083 i.tm.name);
6084 return 0;
6085 }
6086
381d071f 6087 for (op = i.operands; --op >= 0;)
b76bc5d5
JB
6088 if (!i.tm.operand_types[op].bitfield.inoutportreg
6089 && !i.tm.operand_types[op].bitfield.shiftcount)
381d071f 6090 {
8819ada6
JB
6091 if (!i.types[op].bitfield.reg)
6092 continue;
6093 if (i.types[op].bitfield.byte)
6094 i.suffix = BYTE_MNEM_SUFFIX;
6095 else if (i.types[op].bitfield.word)
6096 i.suffix = WORD_MNEM_SUFFIX;
6097 else if (i.types[op].bitfield.dword)
6098 i.suffix = LONG_MNEM_SUFFIX;
6099 else if (i.types[op].bitfield.qword)
6100 i.suffix = QWORD_MNEM_SUFFIX;
6101 else
6102 continue;
6103 break;
381d071f
L
6104 }
6105 }
29b0f896
AM
6106 }
6107 else if (i.suffix == BYTE_MNEM_SUFFIX)
6108 {
2eb952a4
L
6109 if (intel_syntax
6110 && i.tm.opcode_modifier.ignoresize
6111 && i.tm.opcode_modifier.no_bsuf)
6112 i.suffix = 0;
6113 else if (!check_byte_reg ())
29b0f896
AM
6114 return 0;
6115 }
6116 else if (i.suffix == LONG_MNEM_SUFFIX)
6117 {
2eb952a4
L
6118 if (intel_syntax
6119 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6120 && i.tm.opcode_modifier.no_lsuf
6121 && !i.tm.opcode_modifier.todword
6122 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6123 i.suffix = 0;
6124 else if (!check_long_reg ())
29b0f896
AM
6125 return 0;
6126 }
6127 else if (i.suffix == QWORD_MNEM_SUFFIX)
6128 {
955e1e6a
L
6129 if (intel_syntax
6130 && i.tm.opcode_modifier.ignoresize
9f123b91
JB
6131 && i.tm.opcode_modifier.no_qsuf
6132 && !i.tm.opcode_modifier.todword
6133 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6134 i.suffix = 0;
6135 else if (!check_qword_reg ())
29b0f896
AM
6136 return 0;
6137 }
6138 else if (i.suffix == WORD_MNEM_SUFFIX)
6139 {
2eb952a4
L
6140 if (intel_syntax
6141 && i.tm.opcode_modifier.ignoresize
6142 && i.tm.opcode_modifier.no_wsuf)
6143 i.suffix = 0;
6144 else if (!check_word_reg ())
29b0f896
AM
6145 return 0;
6146 }
40fb9820 6147 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
29b0f896
AM
6148 /* Do nothing if the instruction is going to ignore the prefix. */
6149 ;
6150 else
6151 abort ();
6152 }
40fb9820 6153 else if (i.tm.opcode_modifier.defaultsize
9306ca4a
JB
6154 && !i.suffix
6155 /* exclude fldenv/frstor/fsave/fstenv */
40fb9820 6156 && i.tm.opcode_modifier.no_ssuf)
29b0f896
AM
6157 {
6158 i.suffix = stackop_size;
6159 }
9306ca4a
JB
6160 else if (intel_syntax
6161 && !i.suffix
40fb9820
L
6162 && (i.tm.operand_types[0].bitfield.jumpabsolute
6163 || i.tm.opcode_modifier.jumpbyte
6164 || i.tm.opcode_modifier.jumpintersegment
64e74474
AM
6165 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6166 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6167 {
6168 switch (flag_code)
6169 {
6170 case CODE_64BIT:
40fb9820 6171 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6172 {
6173 i.suffix = QWORD_MNEM_SUFFIX;
6174 break;
6175 }
1a0670f3 6176 /* Fall through. */
9306ca4a 6177 case CODE_32BIT:
40fb9820 6178 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6179 i.suffix = LONG_MNEM_SUFFIX;
6180 break;
6181 case CODE_16BIT:
40fb9820 6182 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6183 i.suffix = WORD_MNEM_SUFFIX;
6184 break;
6185 }
6186 }
252b5132 6187
9306ca4a 6188 if (!i.suffix)
29b0f896 6189 {
9306ca4a
JB
6190 if (!intel_syntax)
6191 {
40fb9820 6192 if (i.tm.opcode_modifier.w)
9306ca4a 6193 {
4eed87de
AM
6194 as_bad (_("no instruction mnemonic suffix given and "
6195 "no register operands; can't size instruction"));
9306ca4a
JB
6196 return 0;
6197 }
6198 }
6199 else
6200 {
40fb9820 6201 unsigned int suffixes;
7ab9ffdd 6202
40fb9820
L
6203 suffixes = !i.tm.opcode_modifier.no_bsuf;
6204 if (!i.tm.opcode_modifier.no_wsuf)
6205 suffixes |= 1 << 1;
6206 if (!i.tm.opcode_modifier.no_lsuf)
6207 suffixes |= 1 << 2;
fc4adea1 6208 if (!i.tm.opcode_modifier.no_ldsuf)
40fb9820
L
6209 suffixes |= 1 << 3;
6210 if (!i.tm.opcode_modifier.no_ssuf)
6211 suffixes |= 1 << 4;
c2b9da16 6212 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
40fb9820
L
6213 suffixes |= 1 << 5;
6214
6215 /* There are more than suffix matches. */
6216 if (i.tm.opcode_modifier.w
9306ca4a 6217 || ((suffixes & (suffixes - 1))
40fb9820
L
6218 && !i.tm.opcode_modifier.defaultsize
6219 && !i.tm.opcode_modifier.ignoresize))
9306ca4a
JB
6220 {
6221 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6222 return 0;
6223 }
6224 }
29b0f896 6225 }
252b5132 6226
d2224064
JB
6227 /* Change the opcode based on the operand size given by i.suffix. */
6228 switch (i.suffix)
29b0f896 6229 {
d2224064
JB
6230 /* Size floating point instruction. */
6231 case LONG_MNEM_SUFFIX:
6232 if (i.tm.opcode_modifier.floatmf)
6233 {
6234 i.tm.base_opcode ^= 4;
6235 break;
6236 }
6237 /* fall through */
6238 case WORD_MNEM_SUFFIX:
6239 case QWORD_MNEM_SUFFIX:
29b0f896 6240 /* It's not a byte, select word/dword operation. */
40fb9820 6241 if (i.tm.opcode_modifier.w)
29b0f896 6242 {
40fb9820 6243 if (i.tm.opcode_modifier.shortform)
29b0f896
AM
6244 i.tm.base_opcode |= 8;
6245 else
6246 i.tm.base_opcode |= 1;
6247 }
d2224064
JB
6248 /* fall through */
6249 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6250 /* Now select between word & dword operations via the operand
6251 size prefix, except for instructions that will ignore this
6252 prefix anyway. */
75c0a438
L
6253 if (i.reg_operands > 0
6254 && i.types[0].bitfield.reg
6255 && i.tm.opcode_modifier.addrprefixopreg
6256 && (i.tm.opcode_modifier.immext
6257 || i.operands == 1))
cb712a9e 6258 {
ca61edf2
L
6259 /* The address size override prefix changes the size of the
6260 first operand. */
40fb9820 6261 if ((flag_code == CODE_32BIT
75c0a438 6262 && i.op[0].regs->reg_type.bitfield.word)
40fb9820 6263 || (flag_code != CODE_32BIT
75c0a438 6264 && i.op[0].regs->reg_type.bitfield.dword))
cb712a9e
L
6265 if (!add_prefix (ADDR_PREFIX_OPCODE))
6266 return 0;
6267 }
6268 else if (i.suffix != QWORD_MNEM_SUFFIX
40fb9820
L
6269 && !i.tm.opcode_modifier.ignoresize
6270 && !i.tm.opcode_modifier.floatmf
7a8655d2
JB
6271 && !i.tm.opcode_modifier.vex
6272 && !i.tm.opcode_modifier.vexopcode
6273 && !is_evex_encoding (&i.tm)
cb712a9e
L
6274 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6275 || (flag_code == CODE_64BIT
40fb9820 6276 && i.tm.opcode_modifier.jumpbyte)))
24eab124
AM
6277 {
6278 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6279
40fb9820 6280 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
29b0f896 6281 prefix = ADDR_PREFIX_OPCODE;
252b5132 6282
29b0f896
AM
6283 if (!add_prefix (prefix))
6284 return 0;
24eab124 6285 }
252b5132 6286
29b0f896
AM
6287 /* Set mode64 for an operand. */
6288 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6289 && flag_code == CODE_64BIT
d2224064 6290 && !i.tm.opcode_modifier.norex64
46e883c5 6291 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6292 need rex64. */
6293 && ! (i.operands == 2
6294 && i.tm.base_opcode == 0x90
6295 && i.tm.extension_opcode == None
6296 && operand_type_equal (&i.types [0], &acc64)
6297 && operand_type_equal (&i.types [1], &acc64)))
6298 i.rex |= REX_W;
3e73aa7c 6299
d2224064 6300 break;
29b0f896 6301 }
7ecd2f8b 6302
c0a30a9f
L
6303 if (i.reg_operands != 0
6304 && i.operands > 1
6305 && i.tm.opcode_modifier.addrprefixopreg
6306 && !i.tm.opcode_modifier.immext)
6307 {
6308 /* Check invalid register operand when the address size override
6309 prefix changes the size of register operands. */
6310 unsigned int op;
6311 enum { need_word, need_dword, need_qword } need;
6312
6313 if (flag_code == CODE_32BIT)
6314 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6315 else
6316 {
6317 if (i.prefix[ADDR_PREFIX])
6318 need = need_dword;
6319 else
6320 need = flag_code == CODE_64BIT ? need_qword : need_word;
6321 }
6322
6323 for (op = 0; op < i.operands; op++)
6324 if (i.types[op].bitfield.reg
6325 && ((need == need_word
6326 && !i.op[op].regs->reg_type.bitfield.word)
6327 || (need == need_dword
6328 && !i.op[op].regs->reg_type.bitfield.dword)
6329 || (need == need_qword
6330 && !i.op[op].regs->reg_type.bitfield.qword)))
6331 {
6332 as_bad (_("invalid register operand size for `%s'"),
6333 i.tm.name);
6334 return 0;
6335 }
6336 }
6337
29b0f896
AM
6338 return 1;
6339}
3e73aa7c 6340
29b0f896 6341static int
543613e9 6342check_byte_reg (void)
29b0f896
AM
6343{
6344 int op;
543613e9 6345
29b0f896
AM
6346 for (op = i.operands; --op >= 0;)
6347 {
dc821c5f
JB
6348 /* Skip non-register operands. */
6349 if (!i.types[op].bitfield.reg)
6350 continue;
6351
29b0f896
AM
6352 /* If this is an eight bit register, it's OK. If it's the 16 or
6353 32 bit version of an eight bit register, we will just use the
6354 low portion, and that's OK too. */
dc821c5f 6355 if (i.types[op].bitfield.byte)
29b0f896
AM
6356 continue;
6357
5a819eb9
JB
6358 /* I/O port address operands are OK too. */
6359 if (i.tm.operand_types[op].bitfield.inoutportreg)
6360 continue;
6361
9344ff29
L
6362 /* crc32 doesn't generate this warning. */
6363 if (i.tm.base_opcode == 0xf20f38f0)
6364 continue;
6365
dc821c5f
JB
6366 if ((i.types[op].bitfield.word
6367 || i.types[op].bitfield.dword
6368 || i.types[op].bitfield.qword)
5a819eb9
JB
6369 && i.op[op].regs->reg_num < 4
6370 /* Prohibit these changes in 64bit mode, since the lowering
6371 would be more complicated. */
6372 && flag_code != CODE_64BIT)
29b0f896 6373 {
29b0f896 6374#if REGISTER_WARNINGS
5a819eb9 6375 if (!quiet_warnings)
a540244d
L
6376 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6377 register_prefix,
dc821c5f 6378 (i.op[op].regs + (i.types[op].bitfield.word
29b0f896
AM
6379 ? REGNAM_AL - REGNAM_AX
6380 : REGNAM_AL - REGNAM_EAX))->reg_name,
a540244d 6381 register_prefix,
29b0f896
AM
6382 i.op[op].regs->reg_name,
6383 i.suffix);
6384#endif
6385 continue;
6386 }
6387 /* Any other register is bad. */
dc821c5f 6388 if (i.types[op].bitfield.reg
40fb9820 6389 || i.types[op].bitfield.regmmx
1b54b8d7 6390 || i.types[op].bitfield.regsimd
40fb9820
L
6391 || i.types[op].bitfield.sreg2
6392 || i.types[op].bitfield.sreg3
6393 || i.types[op].bitfield.control
6394 || i.types[op].bitfield.debug
ca0d63fe 6395 || i.types[op].bitfield.test)
29b0f896 6396 {
a540244d
L
6397 as_bad (_("`%s%s' not allowed with `%s%c'"),
6398 register_prefix,
29b0f896
AM
6399 i.op[op].regs->reg_name,
6400 i.tm.name,
6401 i.suffix);
6402 return 0;
6403 }
6404 }
6405 return 1;
6406}
6407
6408static int
e3bb37b5 6409check_long_reg (void)
29b0f896
AM
6410{
6411 int op;
6412
6413 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6414 /* Skip non-register operands. */
6415 if (!i.types[op].bitfield.reg)
6416 continue;
29b0f896
AM
6417 /* Reject eight bit registers, except where the template requires
6418 them. (eg. movzb) */
dc821c5f
JB
6419 else if (i.types[op].bitfield.byte
6420 && (i.tm.operand_types[op].bitfield.reg
6421 || i.tm.operand_types[op].bitfield.acc)
6422 && (i.tm.operand_types[op].bitfield.word
6423 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6424 {
a540244d
L
6425 as_bad (_("`%s%s' not allowed with `%s%c'"),
6426 register_prefix,
29b0f896
AM
6427 i.op[op].regs->reg_name,
6428 i.tm.name,
6429 i.suffix);
6430 return 0;
6431 }
e4630f71 6432 /* Warn if the e prefix on a general reg is missing. */
29b0f896 6433 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6434 && i.types[op].bitfield.word
6435 && (i.tm.operand_types[op].bitfield.reg
6436 || i.tm.operand_types[op].bitfield.acc)
6437 && i.tm.operand_types[op].bitfield.dword)
29b0f896
AM
6438 {
6439 /* Prohibit these changes in the 64bit mode, since the
6440 lowering is more complicated. */
6441 if (flag_code == CODE_64BIT)
252b5132 6442 {
2b5d6a91 6443 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6444 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6445 i.suffix);
6446 return 0;
252b5132 6447 }
29b0f896 6448#if REGISTER_WARNINGS
cecf1424
JB
6449 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6450 register_prefix,
6451 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6452 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896 6453#endif
252b5132 6454 }
e4630f71 6455 /* Warn if the r prefix on a general reg is present. */
dc821c5f
JB
6456 else if (i.types[op].bitfield.qword
6457 && (i.tm.operand_types[op].bitfield.reg
6458 || i.tm.operand_types[op].bitfield.acc)
6459 && i.tm.operand_types[op].bitfield.dword)
252b5132 6460 {
34828aad 6461 if (intel_syntax
ca61edf2 6462 && i.tm.opcode_modifier.toqword
1b54b8d7 6463 && !i.types[0].bitfield.regsimd)
34828aad 6464 {
ca61edf2 6465 /* Convert to QWORD. We want REX byte. */
34828aad
L
6466 i.suffix = QWORD_MNEM_SUFFIX;
6467 }
6468 else
6469 {
2b5d6a91 6470 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6471 register_prefix, i.op[op].regs->reg_name,
6472 i.suffix);
6473 return 0;
6474 }
29b0f896
AM
6475 }
6476 return 1;
6477}
252b5132 6478
29b0f896 6479static int
e3bb37b5 6480check_qword_reg (void)
29b0f896
AM
6481{
6482 int op;
252b5132 6483
29b0f896 6484 for (op = i.operands; --op >= 0; )
dc821c5f
JB
6485 /* Skip non-register operands. */
6486 if (!i.types[op].bitfield.reg)
6487 continue;
29b0f896
AM
6488 /* Reject eight bit registers, except where the template requires
6489 them. (eg. movzb) */
dc821c5f
JB
6490 else if (i.types[op].bitfield.byte
6491 && (i.tm.operand_types[op].bitfield.reg
6492 || i.tm.operand_types[op].bitfield.acc)
6493 && (i.tm.operand_types[op].bitfield.word
6494 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6495 {
a540244d
L
6496 as_bad (_("`%s%s' not allowed with `%s%c'"),
6497 register_prefix,
29b0f896
AM
6498 i.op[op].regs->reg_name,
6499 i.tm.name,
6500 i.suffix);
6501 return 0;
6502 }
e4630f71 6503 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6504 else if ((i.types[op].bitfield.word
6505 || i.types[op].bitfield.dword)
6506 && (i.tm.operand_types[op].bitfield.reg
6507 || i.tm.operand_types[op].bitfield.acc)
6508 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6509 {
6510 /* Prohibit these changes in the 64bit mode, since the
6511 lowering is more complicated. */
34828aad 6512 if (intel_syntax
ca61edf2 6513 && i.tm.opcode_modifier.todword
1b54b8d7 6514 && !i.types[0].bitfield.regsimd)
34828aad 6515 {
ca61edf2 6516 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6517 i.suffix = LONG_MNEM_SUFFIX;
6518 }
6519 else
6520 {
2b5d6a91 6521 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6522 register_prefix, i.op[op].regs->reg_name,
6523 i.suffix);
6524 return 0;
6525 }
252b5132 6526 }
29b0f896
AM
6527 return 1;
6528}
252b5132 6529
29b0f896 6530static int
e3bb37b5 6531check_word_reg (void)
29b0f896
AM
6532{
6533 int op;
6534 for (op = i.operands; --op >= 0;)
dc821c5f
JB
6535 /* Skip non-register operands. */
6536 if (!i.types[op].bitfield.reg)
6537 continue;
29b0f896
AM
6538 /* Reject eight bit registers, except where the template requires
6539 them. (eg. movzb) */
dc821c5f
JB
6540 else if (i.types[op].bitfield.byte
6541 && (i.tm.operand_types[op].bitfield.reg
6542 || i.tm.operand_types[op].bitfield.acc)
6543 && (i.tm.operand_types[op].bitfield.word
6544 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6545 {
a540244d
L
6546 as_bad (_("`%s%s' not allowed with `%s%c'"),
6547 register_prefix,
29b0f896
AM
6548 i.op[op].regs->reg_name,
6549 i.tm.name,
6550 i.suffix);
6551 return 0;
6552 }
e4630f71 6553 /* Warn if the e or r prefix on a general reg is present. */
29b0f896 6554 else if ((!quiet_warnings || flag_code == CODE_64BIT)
dc821c5f
JB
6555 && (i.types[op].bitfield.dword
6556 || i.types[op].bitfield.qword)
6557 && (i.tm.operand_types[op].bitfield.reg
6558 || i.tm.operand_types[op].bitfield.acc)
6559 && i.tm.operand_types[op].bitfield.word)
252b5132 6560 {
29b0f896
AM
6561 /* Prohibit these changes in the 64bit mode, since the
6562 lowering is more complicated. */
6563 if (flag_code == CODE_64BIT)
252b5132 6564 {
2b5d6a91 6565 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
2ca3ace5 6566 register_prefix, i.op[op].regs->reg_name,
29b0f896
AM
6567 i.suffix);
6568 return 0;
252b5132 6569 }
29b0f896 6570#if REGISTER_WARNINGS
cecf1424
JB
6571 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6572 register_prefix,
6573 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6574 register_prefix, i.op[op].regs->reg_name, i.suffix);
29b0f896
AM
6575#endif
6576 }
6577 return 1;
6578}
252b5132 6579
29b0f896 6580static int
40fb9820 6581update_imm (unsigned int j)
29b0f896 6582{
bc0844ae 6583 i386_operand_type overlap = i.types[j];
40fb9820
L
6584 if ((overlap.bitfield.imm8
6585 || overlap.bitfield.imm8s
6586 || overlap.bitfield.imm16
6587 || overlap.bitfield.imm32
6588 || overlap.bitfield.imm32s
6589 || overlap.bitfield.imm64)
0dfbf9d7
L
6590 && !operand_type_equal (&overlap, &imm8)
6591 && !operand_type_equal (&overlap, &imm8s)
6592 && !operand_type_equal (&overlap, &imm16)
6593 && !operand_type_equal (&overlap, &imm32)
6594 && !operand_type_equal (&overlap, &imm32s)
6595 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6596 {
6597 if (i.suffix)
6598 {
40fb9820
L
6599 i386_operand_type temp;
6600
0dfbf9d7 6601 operand_type_set (&temp, 0);
7ab9ffdd 6602 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6603 {
6604 temp.bitfield.imm8 = overlap.bitfield.imm8;
6605 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6606 }
6607 else if (i.suffix == WORD_MNEM_SUFFIX)
6608 temp.bitfield.imm16 = overlap.bitfield.imm16;
6609 else if (i.suffix == QWORD_MNEM_SUFFIX)
6610 {
6611 temp.bitfield.imm64 = overlap.bitfield.imm64;
6612 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6613 }
6614 else
6615 temp.bitfield.imm32 = overlap.bitfield.imm32;
6616 overlap = temp;
29b0f896 6617 }
0dfbf9d7
L
6618 else if (operand_type_equal (&overlap, &imm16_32_32s)
6619 || operand_type_equal (&overlap, &imm16_32)
6620 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6621 {
40fb9820 6622 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6623 overlap = imm16;
40fb9820 6624 else
65da13b5 6625 overlap = imm32s;
29b0f896 6626 }
0dfbf9d7
L
6627 if (!operand_type_equal (&overlap, &imm8)
6628 && !operand_type_equal (&overlap, &imm8s)
6629 && !operand_type_equal (&overlap, &imm16)
6630 && !operand_type_equal (&overlap, &imm32)
6631 && !operand_type_equal (&overlap, &imm32s)
6632 && !operand_type_equal (&overlap, &imm64))
29b0f896 6633 {
4eed87de
AM
6634 as_bad (_("no instruction mnemonic suffix given; "
6635 "can't determine immediate size"));
29b0f896
AM
6636 return 0;
6637 }
6638 }
40fb9820 6639 i.types[j] = overlap;
29b0f896 6640
40fb9820
L
6641 return 1;
6642}
6643
6644static int
6645finalize_imm (void)
6646{
bc0844ae 6647 unsigned int j, n;
29b0f896 6648
bc0844ae
L
6649 /* Update the first 2 immediate operands. */
6650 n = i.operands > 2 ? 2 : i.operands;
6651 if (n)
6652 {
6653 for (j = 0; j < n; j++)
6654 if (update_imm (j) == 0)
6655 return 0;
40fb9820 6656
bc0844ae
L
6657 /* The 3rd operand can't be immediate operand. */
6658 gas_assert (operand_type_check (i.types[2], imm) == 0);
6659 }
29b0f896
AM
6660
6661 return 1;
6662}
6663
6664static int
e3bb37b5 6665process_operands (void)
29b0f896
AM
6666{
6667 /* Default segment register this instruction will use for memory
6668 accesses. 0 means unknown. This is only for optimizing out
6669 unnecessary segment overrides. */
6670 const seg_entry *default_seg = 0;
6671
2426c15f 6672 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 6673 {
91d6fa6a
NC
6674 unsigned int dupl = i.operands;
6675 unsigned int dest = dupl - 1;
9fcfb3d7
L
6676 unsigned int j;
6677
c0f3af97 6678 /* The destination must be an xmm register. */
9c2799c2 6679 gas_assert (i.reg_operands
91d6fa6a 6680 && MAX_OPERANDS > dupl
7ab9ffdd 6681 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 6682
1b54b8d7
JB
6683 if (i.tm.operand_types[0].bitfield.acc
6684 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 6685 {
8cd7925b 6686 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
6687 {
6688 /* Keep xmm0 for instructions with VEX prefix and 3
6689 sources. */
1b54b8d7
JB
6690 i.tm.operand_types[0].bitfield.acc = 0;
6691 i.tm.operand_types[0].bitfield.regsimd = 1;
c0f3af97
L
6692 goto duplicate;
6693 }
e2ec9d29 6694 else
c0f3af97
L
6695 {
6696 /* We remove the first xmm0 and keep the number of
6697 operands unchanged, which in fact duplicates the
6698 destination. */
6699 for (j = 1; j < i.operands; j++)
6700 {
6701 i.op[j - 1] = i.op[j];
6702 i.types[j - 1] = i.types[j];
6703 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6704 }
6705 }
6706 }
6707 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 6708 {
91d6fa6a 6709 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
6710 && (i.tm.opcode_modifier.vexsources
6711 == VEX3SOURCES));
c0f3af97
L
6712
6713 /* Add the implicit xmm0 for instructions with VEX prefix
6714 and 3 sources. */
6715 for (j = i.operands; j > 0; j--)
6716 {
6717 i.op[j] = i.op[j - 1];
6718 i.types[j] = i.types[j - 1];
6719 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6720 }
6721 i.op[0].regs
6722 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 6723 i.types[0] = regxmm;
c0f3af97
L
6724 i.tm.operand_types[0] = regxmm;
6725
6726 i.operands += 2;
6727 i.reg_operands += 2;
6728 i.tm.operands += 2;
6729
91d6fa6a 6730 dupl++;
c0f3af97 6731 dest++;
91d6fa6a
NC
6732 i.op[dupl] = i.op[dest];
6733 i.types[dupl] = i.types[dest];
6734 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
e2ec9d29 6735 }
c0f3af97
L
6736 else
6737 {
6738duplicate:
6739 i.operands++;
6740 i.reg_operands++;
6741 i.tm.operands++;
6742
91d6fa6a
NC
6743 i.op[dupl] = i.op[dest];
6744 i.types[dupl] = i.types[dest];
6745 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
c0f3af97
L
6746 }
6747
6748 if (i.tm.opcode_modifier.immext)
6749 process_immext ();
6750 }
1b54b8d7
JB
6751 else if (i.tm.operand_types[0].bitfield.acc
6752 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
6753 {
6754 unsigned int j;
6755
9fcfb3d7
L
6756 for (j = 1; j < i.operands; j++)
6757 {
6758 i.op[j - 1] = i.op[j];
6759 i.types[j - 1] = i.types[j];
6760
6761 /* We need to adjust fields in i.tm since they are used by
6762 build_modrm_byte. */
6763 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6764 }
6765
e2ec9d29
L
6766 i.operands--;
6767 i.reg_operands--;
e2ec9d29
L
6768 i.tm.operands--;
6769 }
920d2ddc
IT
6770 else if (i.tm.opcode_modifier.implicitquadgroup)
6771 {
a477a8c4
JB
6772 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6773
920d2ddc 6774 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
10c17abd 6775 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
a477a8c4
JB
6776 regnum = register_number (i.op[1].regs);
6777 first_reg_in_group = regnum & ~3;
6778 last_reg_in_group = first_reg_in_group + 3;
6779 if (regnum != first_reg_in_group)
6780 as_warn (_("source register `%s%s' implicitly denotes"
6781 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6782 register_prefix, i.op[1].regs->reg_name,
6783 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6784 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6785 i.tm.name);
6786 }
e2ec9d29
L
6787 else if (i.tm.opcode_modifier.regkludge)
6788 {
6789 /* The imul $imm, %reg instruction is converted into
6790 imul $imm, %reg, %reg, and the clr %reg instruction
6791 is converted into xor %reg, %reg. */
6792
6793 unsigned int first_reg_op;
6794
6795 if (operand_type_check (i.types[0], reg))
6796 first_reg_op = 0;
6797 else
6798 first_reg_op = 1;
6799 /* Pretend we saw the extra register operand. */
9c2799c2 6800 gas_assert (i.reg_operands == 1
7ab9ffdd 6801 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
6802 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6803 i.types[first_reg_op + 1] = i.types[first_reg_op];
6804 i.operands++;
6805 i.reg_operands++;
29b0f896
AM
6806 }
6807
40fb9820 6808 if (i.tm.opcode_modifier.shortform)
29b0f896 6809 {
40fb9820
L
6810 if (i.types[0].bitfield.sreg2
6811 || i.types[0].bitfield.sreg3)
29b0f896 6812 {
4eed87de
AM
6813 if (i.tm.base_opcode == POP_SEG_SHORT
6814 && i.op[0].regs->reg_num == 1)
29b0f896 6815 {
a87af027 6816 as_bad (_("you can't `pop %scs'"), register_prefix);
4eed87de 6817 return 0;
29b0f896 6818 }
4eed87de
AM
6819 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6820 if ((i.op[0].regs->reg_flags & RegRex) != 0)
161a04f6 6821 i.rex |= REX_B;
4eed87de
AM
6822 }
6823 else
6824 {
7ab9ffdd 6825 /* The register or float register operand is in operand
85f10a01 6826 0 or 1. */
40fb9820 6827 unsigned int op;
7ab9ffdd 6828
ca0d63fe 6829 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
7ab9ffdd
L
6830 || operand_type_check (i.types[0], reg))
6831 op = 0;
6832 else
6833 op = 1;
4eed87de
AM
6834 /* Register goes in low 3 bits of opcode. */
6835 i.tm.base_opcode |= i.op[op].regs->reg_num;
6836 if ((i.op[op].regs->reg_flags & RegRex) != 0)
161a04f6 6837 i.rex |= REX_B;
40fb9820 6838 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896 6839 {
4eed87de
AM
6840 /* Warn about some common errors, but press on regardless.
6841 The first case can be generated by gcc (<= 2.8.1). */
6842 if (i.operands == 2)
6843 {
6844 /* Reversed arguments on faddp, fsubp, etc. */
a540244d 6845 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
d8a1b51e
JB
6846 register_prefix, i.op[!intel_syntax].regs->reg_name,
6847 register_prefix, i.op[intel_syntax].regs->reg_name);
4eed87de
AM
6848 }
6849 else
6850 {
6851 /* Extraneous `l' suffix on fp insn. */
a540244d
L
6852 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6853 register_prefix, i.op[0].regs->reg_name);
4eed87de 6854 }
29b0f896
AM
6855 }
6856 }
6857 }
40fb9820 6858 else if (i.tm.opcode_modifier.modrm)
29b0f896
AM
6859 {
6860 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
6861 must be put into the modrm byte). Now, we make the modrm and
6862 index base bytes based on all the info we've collected. */
29b0f896
AM
6863
6864 default_seg = build_modrm_byte ();
6865 }
8a2ed489 6866 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
6867 {
6868 default_seg = &ds;
6869 }
40fb9820 6870 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
6871 {
6872 /* For the string instructions that allow a segment override
6873 on one of their operands, the default segment is ds. */
6874 default_seg = &ds;
6875 }
6876
75178d9d
L
6877 if (i.tm.base_opcode == 0x8d /* lea */
6878 && i.seg[0]
6879 && !quiet_warnings)
30123838 6880 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
52271982
AM
6881
6882 /* If a segment was explicitly specified, and the specified segment
6883 is not the default, use an opcode prefix to select it. If we
6884 never figured out what the default segment is, then default_seg
6885 will be zero at this point, and the specified segment prefix will
6886 always be used. */
29b0f896
AM
6887 if ((i.seg[0]) && (i.seg[0] != default_seg))
6888 {
6889 if (!add_prefix (i.seg[0]->seg_prefix))
6890 return 0;
6891 }
6892 return 1;
6893}
6894
6895static const seg_entry *
e3bb37b5 6896build_modrm_byte (void)
29b0f896
AM
6897{
6898 const seg_entry *default_seg = 0;
c0f3af97 6899 unsigned int source, dest;
8cd7925b 6900 int vex_3_sources;
c0f3af97 6901
8cd7925b 6902 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
6903 if (vex_3_sources)
6904 {
91d6fa6a 6905 unsigned int nds, reg_slot;
4c2c6516 6906 expressionS *exp;
c0f3af97 6907
6b8d3588 6908 dest = i.operands - 1;
c0f3af97 6909 nds = dest - 1;
922d8de8 6910
a683cc34 6911 /* There are 2 kinds of instructions:
bed3d976
JB
6912 1. 5 operands: 4 register operands or 3 register operands
6913 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6914 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 6915 ZMM register.
bed3d976 6916 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 6917 plus 1 memory operand, with VexXDS. */
922d8de8 6918 gas_assert ((i.reg_operands == 4
bed3d976
JB
6919 || (i.reg_operands == 3 && i.mem_operands == 1))
6920 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323
JB
6921 && i.tm.opcode_modifier.vexw
6922 && i.tm.operand_types[dest].bitfield.regsimd);
a683cc34 6923
48db9223
JB
6924 /* If VexW1 is set, the first non-immediate operand is the source and
6925 the second non-immediate one is encoded in the immediate operand. */
6926 if (i.tm.opcode_modifier.vexw == VEXW1)
6927 {
6928 source = i.imm_operands;
6929 reg_slot = i.imm_operands + 1;
6930 }
6931 else
6932 {
6933 source = i.imm_operands + 1;
6934 reg_slot = i.imm_operands;
6935 }
6936
a683cc34 6937 if (i.imm_operands == 0)
bed3d976
JB
6938 {
6939 /* When there is no immediate operand, generate an 8bit
6940 immediate operand to encode the first operand. */
6941 exp = &im_expressions[i.imm_operands++];
6942 i.op[i.operands].imms = exp;
6943 i.types[i.operands] = imm8;
6944 i.operands++;
6945
6946 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6947 exp->X_op = O_constant;
6948 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
6949 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6950 }
922d8de8 6951 else
bed3d976
JB
6952 {
6953 unsigned int imm_slot;
a683cc34 6954
2f1bada2
JB
6955 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6956
bed3d976
JB
6957 if (i.tm.opcode_modifier.immext)
6958 {
6959 /* When ImmExt is set, the immediate byte is the last
6960 operand. */
6961 imm_slot = i.operands - 1;
6962 source--;
6963 reg_slot--;
6964 }
6965 else
6966 {
6967 imm_slot = 0;
6968
6969 /* Turn on Imm8 so that output_imm will generate it. */
6970 i.types[imm_slot].bitfield.imm8 = 1;
6971 }
6972
6973 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6974 i.op[imm_slot].imms->X_add_number
6975 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 6976 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 6977 }
a683cc34 6978
10c17abd 6979 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
dae39acc 6980 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
6981 }
6982 else
6983 source = dest = 0;
29b0f896
AM
6984
6985 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
6986 implicit registers do not count. If there are 3 register
6987 operands, it must be a instruction with VexNDS. For a
6988 instruction with VexNDD, the destination register is encoded
6989 in VEX prefix. If there are 4 register operands, it must be
6990 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
6991 if (i.mem_operands == 0
6992 && ((i.reg_operands == 2
2426c15f 6993 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 6994 || (i.reg_operands == 3
2426c15f 6995 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 6996 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 6997 {
cab737b9
L
6998 switch (i.operands)
6999 {
7000 case 2:
7001 source = 0;
7002 break;
7003 case 3:
c81128dc
L
7004 /* When there are 3 operands, one of them may be immediate,
7005 which may be the first or the last operand. Otherwise,
c0f3af97
L
7006 the first operand must be shift count register (cl) or it
7007 is an instruction with VexNDS. */
9c2799c2 7008 gas_assert (i.imm_operands == 1
7ab9ffdd 7009 || (i.imm_operands == 0
2426c15f 7010 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd 7011 || i.types[0].bitfield.shiftcount)));
40fb9820
L
7012 if (operand_type_check (i.types[0], imm)
7013 || i.types[0].bitfield.shiftcount)
7014 source = 1;
7015 else
7016 source = 0;
cab737b9
L
7017 break;
7018 case 4:
368d64cc
L
7019 /* When there are 4 operands, the first two must be 8bit
7020 immediate operands. The source operand will be the 3rd
c0f3af97
L
7021 one.
7022
7023 For instructions with VexNDS, if the first operand
7024 an imm8, the source operand is the 2nd one. If the last
7025 operand is imm8, the source operand is the first one. */
9c2799c2 7026 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7027 && i.types[0].bitfield.imm8
7028 && i.types[1].bitfield.imm8)
2426c15f 7029 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7030 && i.imm_operands == 1
7031 && (i.types[0].bitfield.imm8
43234a1e
L
7032 || i.types[i.operands - 1].bitfield.imm8
7033 || i.rounding)));
9f2670f2
L
7034 if (i.imm_operands == 2)
7035 source = 2;
7036 else
c0f3af97
L
7037 {
7038 if (i.types[0].bitfield.imm8)
7039 source = 1;
7040 else
7041 source = 0;
7042 }
c0f3af97
L
7043 break;
7044 case 5:
e771e7c9 7045 if (is_evex_encoding (&i.tm))
43234a1e
L
7046 {
7047 /* For EVEX instructions, when there are 5 operands, the
7048 first one must be immediate operand. If the second one
7049 is immediate operand, the source operand is the 3th
7050 one. If the last one is immediate operand, the source
7051 operand is the 2nd one. */
7052 gas_assert (i.imm_operands == 2
7053 && i.tm.opcode_modifier.sae
7054 && operand_type_check (i.types[0], imm));
7055 if (operand_type_check (i.types[1], imm))
7056 source = 2;
7057 else if (operand_type_check (i.types[4], imm))
7058 source = 1;
7059 else
7060 abort ();
7061 }
cab737b9
L
7062 break;
7063 default:
7064 abort ();
7065 }
7066
c0f3af97
L
7067 if (!vex_3_sources)
7068 {
7069 dest = source + 1;
7070
43234a1e
L
7071 /* RC/SAE operand could be between DEST and SRC. That happens
7072 when one operand is GPR and the other one is XMM/YMM/ZMM
7073 register. */
7074 if (i.rounding && i.rounding->operand == (int) dest)
7075 dest++;
7076
2426c15f 7077 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7078 {
43234a1e 7079 /* For instructions with VexNDS, the register-only source
c5d0745b 7080 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
43234a1e
L
7081 register. It is encoded in VEX prefix. We need to
7082 clear RegMem bit before calling operand_type_equal. */
f12dc422
L
7083
7084 i386_operand_type op;
7085 unsigned int vvvv;
7086
7087 /* Check register-only source operand when two source
7088 operands are swapped. */
7089 if (!i.tm.operand_types[source].bitfield.baseindex
7090 && i.tm.operand_types[dest].bitfield.baseindex)
7091 {
7092 vvvv = source;
7093 source = dest;
7094 }
7095 else
7096 vvvv = dest;
7097
7098 op = i.tm.operand_types[vvvv];
fa99fab2 7099 op.bitfield.regmem = 0;
c0f3af97 7100 if ((dest + 1) >= i.operands
dc821c5f
JB
7101 || ((!op.bitfield.reg
7102 || (!op.bitfield.dword && !op.bitfield.qword))
10c17abd 7103 && !op.bitfield.regsimd
43234a1e 7104 && !operand_type_equal (&op, &regmask)))
c0f3af97 7105 abort ();
f12dc422 7106 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7107 dest++;
7108 }
7109 }
29b0f896
AM
7110
7111 i.rm.mode = 3;
7112 /* One of the register operands will be encoded in the i.tm.reg
7113 field, the other in the combined i.tm.mode and i.tm.regmem
7114 fields. If no form of this instruction supports a memory
7115 destination operand, then we assume the source operand may
7116 sometimes be a memory operand and so we need to store the
7117 destination in the i.rm.reg field. */
40fb9820
L
7118 if (!i.tm.operand_types[dest].bitfield.regmem
7119 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7120 {
7121 i.rm.reg = i.op[dest].regs->reg_num;
7122 i.rm.regmem = i.op[source].regs->reg_num;
b4a3a7b4
L
7123 if (i.op[dest].regs->reg_type.bitfield.regmmx
7124 || i.op[source].regs->reg_type.bitfield.regmmx)
7125 i.has_regmmx = TRUE;
7126 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7127 || i.op[source].regs->reg_type.bitfield.regsimd)
7128 {
7129 if (i.types[dest].bitfield.zmmword
7130 || i.types[source].bitfield.zmmword)
7131 i.has_regzmm = TRUE;
7132 else if (i.types[dest].bitfield.ymmword
7133 || i.types[source].bitfield.ymmword)
7134 i.has_regymm = TRUE;
7135 else
7136 i.has_regxmm = TRUE;
7137 }
29b0f896 7138 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7139 i.rex |= REX_R;
43234a1e
L
7140 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7141 i.vrex |= REX_R;
29b0f896 7142 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7143 i.rex |= REX_B;
43234a1e
L
7144 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7145 i.vrex |= REX_B;
29b0f896
AM
7146 }
7147 else
7148 {
7149 i.rm.reg = i.op[source].regs->reg_num;
7150 i.rm.regmem = i.op[dest].regs->reg_num;
7151 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7152 i.rex |= REX_B;
43234a1e
L
7153 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7154 i.vrex |= REX_B;
29b0f896 7155 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7156 i.rex |= REX_R;
43234a1e
L
7157 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7158 i.vrex |= REX_R;
29b0f896 7159 }
e0c7f900 7160 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7161 {
e0c7f900 7162 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
c4a530c5 7163 abort ();
e0c7f900 7164 i.rex &= ~REX_R;
c4a530c5
JB
7165 add_prefix (LOCK_PREFIX_OPCODE);
7166 }
29b0f896
AM
7167 }
7168 else
7169 { /* If it's not 2 reg operands... */
c0f3af97
L
7170 unsigned int mem;
7171
29b0f896
AM
7172 if (i.mem_operands)
7173 {
7174 unsigned int fake_zero_displacement = 0;
99018f42 7175 unsigned int op;
4eed87de 7176
7ab9ffdd
L
7177 for (op = 0; op < i.operands; op++)
7178 if (operand_type_check (i.types[op], anymem))
7179 break;
7ab9ffdd 7180 gas_assert (op < i.operands);
29b0f896 7181
6c30d220
L
7182 if (i.tm.opcode_modifier.vecsib)
7183 {
e968fc9b 7184 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7185 abort ();
7186
7187 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7188 if (!i.base_reg)
7189 {
7190 i.sib.base = NO_BASE_REGISTER;
7191 i.sib.scale = i.log2_scale_factor;
7192 i.types[op].bitfield.disp8 = 0;
7193 i.types[op].bitfield.disp16 = 0;
7194 i.types[op].bitfield.disp64 = 0;
43083a50 7195 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7196 {
7197 /* Must be 32 bit */
7198 i.types[op].bitfield.disp32 = 1;
7199 i.types[op].bitfield.disp32s = 0;
7200 }
7201 else
7202 {
7203 i.types[op].bitfield.disp32 = 0;
7204 i.types[op].bitfield.disp32s = 1;
7205 }
7206 }
7207 i.sib.index = i.index_reg->reg_num;
7208 if ((i.index_reg->reg_flags & RegRex) != 0)
7209 i.rex |= REX_X;
43234a1e
L
7210 if ((i.index_reg->reg_flags & RegVRex) != 0)
7211 i.vrex |= REX_X;
6c30d220
L
7212 }
7213
29b0f896
AM
7214 default_seg = &ds;
7215
7216 if (i.base_reg == 0)
7217 {
7218 i.rm.mode = 0;
7219 if (!i.disp_operands)
9bb129e8 7220 fake_zero_displacement = 1;
29b0f896
AM
7221 if (i.index_reg == 0)
7222 {
73053c1f
JB
7223 i386_operand_type newdisp;
7224
6c30d220 7225 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7226 /* Operand is just <disp> */
20f0a1fc 7227 if (flag_code == CODE_64BIT)
29b0f896
AM
7228 {
7229 /* 64bit mode overwrites the 32bit absolute
7230 addressing by RIP relative addressing and
7231 absolute addressing is encoded by one of the
7232 redundant SIB forms. */
7233 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7234 i.sib.base = NO_BASE_REGISTER;
7235 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7236 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7237 }
fc225355
L
7238 else if ((flag_code == CODE_16BIT)
7239 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7240 {
7241 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7242 newdisp = disp16;
20f0a1fc
NC
7243 }
7244 else
7245 {
7246 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7247 newdisp = disp32;
29b0f896 7248 }
73053c1f
JB
7249 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7250 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7251 }
6c30d220 7252 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7253 {
6c30d220 7254 /* !i.base_reg && i.index_reg */
e968fc9b 7255 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7256 i.sib.index = NO_INDEX_REGISTER;
7257 else
7258 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7259 i.sib.base = NO_BASE_REGISTER;
7260 i.sib.scale = i.log2_scale_factor;
7261 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7262 i.types[op].bitfield.disp8 = 0;
7263 i.types[op].bitfield.disp16 = 0;
7264 i.types[op].bitfield.disp64 = 0;
43083a50 7265 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7266 {
7267 /* Must be 32 bit */
7268 i.types[op].bitfield.disp32 = 1;
7269 i.types[op].bitfield.disp32s = 0;
7270 }
29b0f896 7271 else
40fb9820
L
7272 {
7273 i.types[op].bitfield.disp32 = 0;
7274 i.types[op].bitfield.disp32s = 1;
7275 }
29b0f896 7276 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7277 i.rex |= REX_X;
29b0f896
AM
7278 }
7279 }
7280 /* RIP addressing for 64bit mode. */
e968fc9b 7281 else if (i.base_reg->reg_num == RegIP)
29b0f896 7282 {
6c30d220 7283 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7284 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7285 i.types[op].bitfield.disp8 = 0;
7286 i.types[op].bitfield.disp16 = 0;
7287 i.types[op].bitfield.disp32 = 0;
7288 i.types[op].bitfield.disp32s = 1;
7289 i.types[op].bitfield.disp64 = 0;
71903a11 7290 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7291 if (! i.disp_operands)
7292 fake_zero_displacement = 1;
29b0f896 7293 }
dc821c5f 7294 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7295 {
6c30d220 7296 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7297 switch (i.base_reg->reg_num)
7298 {
7299 case 3: /* (%bx) */
7300 if (i.index_reg == 0)
7301 i.rm.regmem = 7;
7302 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7303 i.rm.regmem = i.index_reg->reg_num - 6;
7304 break;
7305 case 5: /* (%bp) */
7306 default_seg = &ss;
7307 if (i.index_reg == 0)
7308 {
7309 i.rm.regmem = 6;
40fb9820 7310 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7311 {
7312 /* fake (%bp) into 0(%bp) */
b5014f7a 7313 i.types[op].bitfield.disp8 = 1;
252b5132 7314 fake_zero_displacement = 1;
29b0f896
AM
7315 }
7316 }
7317 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7318 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7319 break;
7320 default: /* (%si) -> 4 or (%di) -> 5 */
7321 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7322 }
7323 i.rm.mode = mode_from_disp_size (i.types[op]);
7324 }
7325 else /* i.base_reg and 32/64 bit mode */
7326 {
7327 if (flag_code == CODE_64BIT
40fb9820
L
7328 && operand_type_check (i.types[op], disp))
7329 {
73053c1f
JB
7330 i.types[op].bitfield.disp16 = 0;
7331 i.types[op].bitfield.disp64 = 0;
40fb9820 7332 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7333 {
7334 i.types[op].bitfield.disp32 = 0;
7335 i.types[op].bitfield.disp32s = 1;
7336 }
40fb9820 7337 else
73053c1f
JB
7338 {
7339 i.types[op].bitfield.disp32 = 1;
7340 i.types[op].bitfield.disp32s = 0;
7341 }
40fb9820 7342 }
20f0a1fc 7343
6c30d220
L
7344 if (!i.tm.opcode_modifier.vecsib)
7345 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7346 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7347 i.rex |= REX_B;
29b0f896
AM
7348 i.sib.base = i.base_reg->reg_num;
7349 /* x86-64 ignores REX prefix bit here to avoid decoder
7350 complications. */
848930b2
JB
7351 if (!(i.base_reg->reg_flags & RegRex)
7352 && (i.base_reg->reg_num == EBP_REG_NUM
7353 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7354 default_seg = &ss;
848930b2 7355 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7356 {
848930b2 7357 fake_zero_displacement = 1;
b5014f7a 7358 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7359 }
7360 i.sib.scale = i.log2_scale_factor;
7361 if (i.index_reg == 0)
7362 {
6c30d220 7363 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7364 /* <disp>(%esp) becomes two byte modrm with no index
7365 register. We've already stored the code for esp
7366 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7367 Any base register besides %esp will not use the
7368 extra modrm byte. */
7369 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7370 }
6c30d220 7371 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7372 {
e968fc9b 7373 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7374 i.sib.index = NO_INDEX_REGISTER;
7375 else
7376 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7377 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7378 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7379 i.rex |= REX_X;
29b0f896 7380 }
67a4f2b7
AO
7381
7382 if (i.disp_operands
7383 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7384 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7385 i.rm.mode = 0;
7386 else
a501d77e
L
7387 {
7388 if (!fake_zero_displacement
7389 && !i.disp_operands
7390 && i.disp_encoding)
7391 {
7392 fake_zero_displacement = 1;
7393 if (i.disp_encoding == disp_encoding_8bit)
7394 i.types[op].bitfield.disp8 = 1;
7395 else
7396 i.types[op].bitfield.disp32 = 1;
7397 }
7398 i.rm.mode = mode_from_disp_size (i.types[op]);
7399 }
29b0f896 7400 }
252b5132 7401
29b0f896
AM
7402 if (fake_zero_displacement)
7403 {
7404 /* Fakes a zero displacement assuming that i.types[op]
7405 holds the correct displacement size. */
7406 expressionS *exp;
7407
9c2799c2 7408 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7409 exp = &disp_expressions[i.disp_operands++];
7410 i.op[op].disps = exp;
7411 exp->X_op = O_constant;
7412 exp->X_add_number = 0;
7413 exp->X_add_symbol = (symbolS *) 0;
7414 exp->X_op_symbol = (symbolS *) 0;
7415 }
c0f3af97
L
7416
7417 mem = op;
29b0f896 7418 }
c0f3af97
L
7419 else
7420 mem = ~0;
252b5132 7421
8c43a48b 7422 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7423 {
7424 if (operand_type_check (i.types[0], imm))
7425 i.vex.register_specifier = NULL;
7426 else
7427 {
7428 /* VEX.vvvv encodes one of the sources when the first
7429 operand is not an immediate. */
1ef99a7b 7430 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7431 i.vex.register_specifier = i.op[0].regs;
7432 else
7433 i.vex.register_specifier = i.op[1].regs;
7434 }
7435
7436 /* Destination is a XMM register encoded in the ModRM.reg
7437 and VEX.R bit. */
7438 i.rm.reg = i.op[2].regs->reg_num;
7439 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7440 i.rex |= REX_R;
7441
7442 /* ModRM.rm and VEX.B encodes the other source. */
7443 if (!i.mem_operands)
7444 {
7445 i.rm.mode = 3;
7446
1ef99a7b 7447 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7448 i.rm.regmem = i.op[1].regs->reg_num;
7449 else
7450 i.rm.regmem = i.op[0].regs->reg_num;
7451
7452 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7453 i.rex |= REX_B;
7454 }
7455 }
2426c15f 7456 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7457 {
7458 i.vex.register_specifier = i.op[2].regs;
7459 if (!i.mem_operands)
7460 {
7461 i.rm.mode = 3;
7462 i.rm.regmem = i.op[1].regs->reg_num;
7463 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7464 i.rex |= REX_B;
7465 }
7466 }
29b0f896
AM
7467 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7468 (if any) based on i.tm.extension_opcode. Again, we must be
7469 careful to make sure that segment/control/debug/test/MMX
7470 registers are coded into the i.rm.reg field. */
f88c9eb0 7471 else if (i.reg_operands)
29b0f896 7472 {
99018f42 7473 unsigned int op;
7ab9ffdd
L
7474 unsigned int vex_reg = ~0;
7475
7476 for (op = 0; op < i.operands; op++)
b4a3a7b4
L
7477 {
7478 if (i.types[op].bitfield.reg
7479 || i.types[op].bitfield.regbnd
7480 || i.types[op].bitfield.regmask
7481 || i.types[op].bitfield.sreg2
7482 || i.types[op].bitfield.sreg3
7483 || i.types[op].bitfield.control
7484 || i.types[op].bitfield.debug
7485 || i.types[op].bitfield.test)
7486 break;
7487 if (i.types[op].bitfield.regsimd)
7488 {
7489 if (i.types[op].bitfield.zmmword)
7490 i.has_regzmm = TRUE;
7491 else if (i.types[op].bitfield.ymmword)
7492 i.has_regymm = TRUE;
7493 else
7494 i.has_regxmm = TRUE;
7495 break;
7496 }
7497 if (i.types[op].bitfield.regmmx)
7498 {
7499 i.has_regmmx = TRUE;
7500 break;
7501 }
7502 }
c0209578 7503
7ab9ffdd
L
7504 if (vex_3_sources)
7505 op = dest;
2426c15f 7506 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7507 {
7508 /* For instructions with VexNDS, the register-only
7509 source operand is encoded in VEX prefix. */
7510 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7511
7ab9ffdd 7512 if (op > mem)
c0f3af97 7513 {
7ab9ffdd
L
7514 vex_reg = op++;
7515 gas_assert (op < i.operands);
c0f3af97
L
7516 }
7517 else
c0f3af97 7518 {
f12dc422
L
7519 /* Check register-only source operand when two source
7520 operands are swapped. */
7521 if (!i.tm.operand_types[op].bitfield.baseindex
7522 && i.tm.operand_types[op + 1].bitfield.baseindex)
7523 {
7524 vex_reg = op;
7525 op += 2;
7526 gas_assert (mem == (vex_reg + 1)
7527 && op < i.operands);
7528 }
7529 else
7530 {
7531 vex_reg = op + 1;
7532 gas_assert (vex_reg < i.operands);
7533 }
c0f3af97 7534 }
7ab9ffdd 7535 }
2426c15f 7536 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7537 {
f12dc422 7538 /* For instructions with VexNDD, the register destination
7ab9ffdd 7539 is encoded in VEX prefix. */
f12dc422
L
7540 if (i.mem_operands == 0)
7541 {
7542 /* There is no memory operand. */
7543 gas_assert ((op + 2) == i.operands);
7544 vex_reg = op + 1;
7545 }
7546 else
8d63c93e 7547 {
ed438a93
JB
7548 /* There are only 2 non-immediate operands. */
7549 gas_assert (op < i.imm_operands + 2
7550 && i.operands == i.imm_operands + 2);
7551 vex_reg = i.imm_operands + 1;
f12dc422 7552 }
7ab9ffdd
L
7553 }
7554 else
7555 gas_assert (op < i.operands);
99018f42 7556
7ab9ffdd
L
7557 if (vex_reg != (unsigned int) ~0)
7558 {
f12dc422 7559 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7560
dc821c5f
JB
7561 if ((!type->bitfield.reg
7562 || (!type->bitfield.dword && !type->bitfield.qword))
10c17abd 7563 && !type->bitfield.regsimd
43234a1e 7564 && !operand_type_equal (type, &regmask))
7ab9ffdd 7565 abort ();
f88c9eb0 7566
7ab9ffdd
L
7567 i.vex.register_specifier = i.op[vex_reg].regs;
7568 }
7569
1b9f0c97
L
7570 /* Don't set OP operand twice. */
7571 if (vex_reg != op)
7ab9ffdd 7572 {
1b9f0c97
L
7573 /* If there is an extension opcode to put here, the
7574 register number must be put into the regmem field. */
7575 if (i.tm.extension_opcode != None)
7576 {
7577 i.rm.regmem = i.op[op].regs->reg_num;
7578 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7579 i.rex |= REX_B;
43234a1e
L
7580 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7581 i.vrex |= REX_B;
1b9f0c97
L
7582 }
7583 else
7584 {
7585 i.rm.reg = i.op[op].regs->reg_num;
7586 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7587 i.rex |= REX_R;
43234a1e
L
7588 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7589 i.vrex |= REX_R;
1b9f0c97 7590 }
7ab9ffdd 7591 }
252b5132 7592
29b0f896
AM
7593 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7594 must set it to 3 to indicate this is a register operand
7595 in the regmem field. */
7596 if (!i.mem_operands)
7597 i.rm.mode = 3;
7598 }
252b5132 7599
29b0f896 7600 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7601 if (i.tm.extension_opcode != None)
29b0f896
AM
7602 i.rm.reg = i.tm.extension_opcode;
7603 }
7604 return default_seg;
7605}
252b5132 7606
29b0f896 7607static void
e3bb37b5 7608output_branch (void)
29b0f896
AM
7609{
7610 char *p;
f8a5c266 7611 int size;
29b0f896
AM
7612 int code16;
7613 int prefix;
7614 relax_substateT subtype;
7615 symbolS *sym;
7616 offsetT off;
7617
f8a5c266 7618 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7619 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
7620
7621 prefix = 0;
7622 if (i.prefix[DATA_PREFIX] != 0)
252b5132 7623 {
29b0f896
AM
7624 prefix = 1;
7625 i.prefixes -= 1;
7626 code16 ^= CODE16;
252b5132 7627 }
29b0f896
AM
7628 /* Pentium4 branch hints. */
7629 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7630 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 7631 {
29b0f896
AM
7632 prefix++;
7633 i.prefixes--;
7634 }
7635 if (i.prefix[REX_PREFIX] != 0)
7636 {
7637 prefix++;
7638 i.prefixes--;
2f66722d
AM
7639 }
7640
7e8b059b
L
7641 /* BND prefixed jump. */
7642 if (i.prefix[BND_PREFIX] != 0)
7643 {
7644 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7645 i.prefixes -= 1;
7646 }
7647
29b0f896
AM
7648 if (i.prefixes != 0 && !intel_syntax)
7649 as_warn (_("skipping prefixes on this instruction"));
7650
7651 /* It's always a symbol; End frag & setup for relax.
7652 Make sure there is enough room in this frag for the largest
7653 instruction we may generate in md_convert_frag. This is 2
7654 bytes for the opcode and room for the prefix and largest
7655 displacement. */
7656 frag_grow (prefix + 2 + 4);
7657 /* Prefix and 1 opcode byte go in fr_fix. */
7658 p = frag_more (prefix + 1);
7659 if (i.prefix[DATA_PREFIX] != 0)
7660 *p++ = DATA_PREFIX_OPCODE;
7661 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7662 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7663 *p++ = i.prefix[SEG_PREFIX];
7664 if (i.prefix[REX_PREFIX] != 0)
7665 *p++ = i.prefix[REX_PREFIX];
7666 *p = i.tm.base_opcode;
7667
7668 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 7669 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 7670 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 7671 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 7672 else
f8a5c266 7673 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 7674 subtype |= code16;
3e73aa7c 7675
29b0f896
AM
7676 sym = i.op[0].disps->X_add_symbol;
7677 off = i.op[0].disps->X_add_number;
3e73aa7c 7678
29b0f896
AM
7679 if (i.op[0].disps->X_op != O_constant
7680 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 7681 {
29b0f896
AM
7682 /* Handle complex expressions. */
7683 sym = make_expr_symbol (i.op[0].disps);
7684 off = 0;
7685 }
3e73aa7c 7686
29b0f896
AM
7687 /* 1 possible extra opcode + 4 byte displacement go in var part.
7688 Pass reloc in fr_var. */
d258b828 7689 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 7690}
3e73aa7c 7691
bd7ab16b
L
7692#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7693/* Return TRUE iff PLT32 relocation should be used for branching to
7694 symbol S. */
7695
7696static bfd_boolean
7697need_plt32_p (symbolS *s)
7698{
7699 /* PLT32 relocation is ELF only. */
7700 if (!IS_ELF)
7701 return FALSE;
7702
7703 /* Since there is no need to prepare for PLT branch on x86-64, we
7704 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7705 be used as a marker for 32-bit PC-relative branches. */
7706 if (!object_64bit)
7707 return FALSE;
7708
7709 /* Weak or undefined symbol need PLT32 relocation. */
7710 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7711 return TRUE;
7712
7713 /* Non-global symbol doesn't need PLT32 relocation. */
7714 if (! S_IS_EXTERNAL (s))
7715 return FALSE;
7716
7717 /* Other global symbols need PLT32 relocation. NB: Symbol with
7718 non-default visibilities are treated as normal global symbol
7719 so that PLT32 relocation can be used as a marker for 32-bit
7720 PC-relative branches. It is useful for linker relaxation. */
7721 return TRUE;
7722}
7723#endif
7724
29b0f896 7725static void
e3bb37b5 7726output_jump (void)
29b0f896
AM
7727{
7728 char *p;
7729 int size;
3e02c1cc 7730 fixS *fixP;
bd7ab16b 7731 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 7732
40fb9820 7733 if (i.tm.opcode_modifier.jumpbyte)
29b0f896
AM
7734 {
7735 /* This is a loop or jecxz type instruction. */
7736 size = 1;
7737 if (i.prefix[ADDR_PREFIX] != 0)
7738 {
7739 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7740 i.prefixes -= 1;
7741 }
7742 /* Pentium4 branch hints. */
7743 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7744 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7745 {
7746 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7747 i.prefixes--;
3e73aa7c
JH
7748 }
7749 }
29b0f896
AM
7750 else
7751 {
7752 int code16;
3e73aa7c 7753
29b0f896
AM
7754 code16 = 0;
7755 if (flag_code == CODE_16BIT)
7756 code16 = CODE16;
3e73aa7c 7757
29b0f896
AM
7758 if (i.prefix[DATA_PREFIX] != 0)
7759 {
7760 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7761 i.prefixes -= 1;
7762 code16 ^= CODE16;
7763 }
252b5132 7764
29b0f896
AM
7765 size = 4;
7766 if (code16)
7767 size = 2;
7768 }
9fcc94b6 7769
29b0f896
AM
7770 if (i.prefix[REX_PREFIX] != 0)
7771 {
7772 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7773 i.prefixes -= 1;
7774 }
252b5132 7775
7e8b059b
L
7776 /* BND prefixed jump. */
7777 if (i.prefix[BND_PREFIX] != 0)
7778 {
7779 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7780 i.prefixes -= 1;
7781 }
7782
29b0f896
AM
7783 if (i.prefixes != 0 && !intel_syntax)
7784 as_warn (_("skipping prefixes on this instruction"));
e0890092 7785
42164a71
L
7786 p = frag_more (i.tm.opcode_length + size);
7787 switch (i.tm.opcode_length)
7788 {
7789 case 2:
7790 *p++ = i.tm.base_opcode >> 8;
1a0670f3 7791 /* Fall through. */
42164a71
L
7792 case 1:
7793 *p++ = i.tm.base_opcode;
7794 break;
7795 default:
7796 abort ();
7797 }
e0890092 7798
bd7ab16b
L
7799#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7800 if (size == 4
7801 && jump_reloc == NO_RELOC
7802 && need_plt32_p (i.op[0].disps->X_add_symbol))
7803 jump_reloc = BFD_RELOC_X86_64_PLT32;
7804#endif
7805
7806 jump_reloc = reloc (size, 1, 1, jump_reloc);
7807
3e02c1cc 7808 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 7809 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
7810
7811 /* All jumps handled here are signed, but don't use a signed limit
7812 check for 32 and 16 bit jumps as we want to allow wrap around at
7813 4G and 64k respectively. */
7814 if (size == 1)
7815 fixP->fx_signed = 1;
29b0f896 7816}
e0890092 7817
29b0f896 7818static void
e3bb37b5 7819output_interseg_jump (void)
29b0f896
AM
7820{
7821 char *p;
7822 int size;
7823 int prefix;
7824 int code16;
252b5132 7825
29b0f896
AM
7826 code16 = 0;
7827 if (flag_code == CODE_16BIT)
7828 code16 = CODE16;
a217f122 7829
29b0f896
AM
7830 prefix = 0;
7831 if (i.prefix[DATA_PREFIX] != 0)
7832 {
7833 prefix = 1;
7834 i.prefixes -= 1;
7835 code16 ^= CODE16;
7836 }
7837 if (i.prefix[REX_PREFIX] != 0)
7838 {
7839 prefix++;
7840 i.prefixes -= 1;
7841 }
252b5132 7842
29b0f896
AM
7843 size = 4;
7844 if (code16)
7845 size = 2;
252b5132 7846
29b0f896
AM
7847 if (i.prefixes != 0 && !intel_syntax)
7848 as_warn (_("skipping prefixes on this instruction"));
252b5132 7849
29b0f896
AM
7850 /* 1 opcode; 2 segment; offset */
7851 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 7852
29b0f896
AM
7853 if (i.prefix[DATA_PREFIX] != 0)
7854 *p++ = DATA_PREFIX_OPCODE;
252b5132 7855
29b0f896
AM
7856 if (i.prefix[REX_PREFIX] != 0)
7857 *p++ = i.prefix[REX_PREFIX];
252b5132 7858
29b0f896
AM
7859 *p++ = i.tm.base_opcode;
7860 if (i.op[1].imms->X_op == O_constant)
7861 {
7862 offsetT n = i.op[1].imms->X_add_number;
252b5132 7863
29b0f896
AM
7864 if (size == 2
7865 && !fits_in_unsigned_word (n)
7866 && !fits_in_signed_word (n))
7867 {
7868 as_bad (_("16-bit jump out of range"));
7869 return;
7870 }
7871 md_number_to_chars (p, n, size);
7872 }
7873 else
7874 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 7875 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
7876 if (i.op[0].imms->X_op != O_constant)
7877 as_bad (_("can't handle non absolute segment in `%s'"),
7878 i.tm.name);
7879 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7880}
a217f122 7881
b4a3a7b4
L
7882#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7883void
7884x86_cleanup (void)
7885{
7886 char *p;
7887 asection *seg = now_seg;
7888 subsegT subseg = now_subseg;
7889 asection *sec;
7890 unsigned int alignment, align_size_1;
7891 unsigned int isa_1_descsz, feature_2_descsz, descsz;
7892 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
7893 unsigned int padding;
7894
7895 if (!IS_ELF || !x86_used_note)
7896 return;
7897
7898 x86_isa_1_used |= GNU_PROPERTY_X86_UINT32_VALID;
7899 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
7900
7901 /* The .note.gnu.property section layout:
7902
7903 Field Length Contents
7904 ---- ---- ----
7905 n_namsz 4 4
7906 n_descsz 4 The note descriptor size
7907 n_type 4 NT_GNU_PROPERTY_TYPE_0
7908 n_name 4 "GNU"
7909 n_desc n_descsz The program property array
7910 .... .... ....
7911 */
7912
7913 /* Create the .note.gnu.property section. */
7914 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
7915 bfd_set_section_flags (stdoutput, sec,
7916 (SEC_ALLOC
7917 | SEC_LOAD
7918 | SEC_DATA
7919 | SEC_HAS_CONTENTS
7920 | SEC_READONLY));
7921
7922 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
7923 {
7924 align_size_1 = 7;
7925 alignment = 3;
7926 }
7927 else
7928 {
7929 align_size_1 = 3;
7930 alignment = 2;
7931 }
7932
7933 bfd_set_section_alignment (stdoutput, sec, alignment);
7934 elf_section_type (sec) = SHT_NOTE;
7935
7936 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
7937 + 4-byte data */
7938 isa_1_descsz_raw = 4 + 4 + 4;
7939 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
7940 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
7941
7942 feature_2_descsz_raw = isa_1_descsz;
7943 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
7944 + 4-byte data */
7945 feature_2_descsz_raw += 4 + 4 + 4;
7946 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
7947 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
7948 & ~align_size_1);
7949
7950 descsz = feature_2_descsz;
7951 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
7952 p = frag_more (4 + 4 + 4 + 4 + descsz);
7953
7954 /* Write n_namsz. */
7955 md_number_to_chars (p, (valueT) 4, 4);
7956
7957 /* Write n_descsz. */
7958 md_number_to_chars (p + 4, (valueT) descsz, 4);
7959
7960 /* Write n_type. */
7961 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
7962
7963 /* Write n_name. */
7964 memcpy (p + 4 * 3, "GNU", 4);
7965
7966 /* Write 4-byte type. */
7967 md_number_to_chars (p + 4 * 4,
7968 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
7969
7970 /* Write 4-byte data size. */
7971 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
7972
7973 /* Write 4-byte data. */
7974 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
7975
7976 /* Zero out paddings. */
7977 padding = isa_1_descsz - isa_1_descsz_raw;
7978 if (padding)
7979 memset (p + 4 * 7, 0, padding);
7980
7981 /* Write 4-byte type. */
7982 md_number_to_chars (p + isa_1_descsz + 4 * 4,
7983 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
7984
7985 /* Write 4-byte data size. */
7986 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
7987
7988 /* Write 4-byte data. */
7989 md_number_to_chars (p + isa_1_descsz + 4 * 6,
7990 (valueT) x86_feature_2_used, 4);
7991
7992 /* Zero out paddings. */
7993 padding = feature_2_descsz - feature_2_descsz_raw;
7994 if (padding)
7995 memset (p + isa_1_descsz + 4 * 7, 0, padding);
7996
7997 /* We probably can't restore the current segment, for there likely
7998 isn't one yet... */
7999 if (seg && subseg)
8000 subseg_set (seg, subseg);
8001}
8002#endif
8003
29b0f896 8004static void
e3bb37b5 8005output_insn (void)
29b0f896 8006{
2bbd9c25
JJ
8007 fragS *insn_start_frag;
8008 offsetT insn_start_off;
8009
b4a3a7b4
L
8010#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8011 if (IS_ELF && x86_used_note)
8012 {
8013 if (i.tm.cpu_flags.bitfield.cpucmov)
8014 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8015 if (i.tm.cpu_flags.bitfield.cpusse)
8016 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8017 if (i.tm.cpu_flags.bitfield.cpusse2)
8018 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8019 if (i.tm.cpu_flags.bitfield.cpusse3)
8020 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8021 if (i.tm.cpu_flags.bitfield.cpussse3)
8022 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8023 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8024 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8025 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8026 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8027 if (i.tm.cpu_flags.bitfield.cpuavx)
8028 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8029 if (i.tm.cpu_flags.bitfield.cpuavx2)
8030 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8031 if (i.tm.cpu_flags.bitfield.cpufma)
8032 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8033 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8034 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8035 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8036 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8037 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8038 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8039 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8040 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8041 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8042 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8043 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8044 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8045 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8046 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8047 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8048 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8049 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8050 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8051 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8052 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8053 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8054 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8055 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8056 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8057 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8058 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8059 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8060 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8061
8062 if (i.tm.cpu_flags.bitfield.cpu8087
8063 || i.tm.cpu_flags.bitfield.cpu287
8064 || i.tm.cpu_flags.bitfield.cpu387
8065 || i.tm.cpu_flags.bitfield.cpu687
8066 || i.tm.cpu_flags.bitfield.cpufisttp)
8067 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8068 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8069 Xfence instructions. */
8070 if (i.tm.base_opcode != 0xf18
8071 && i.tm.base_opcode != 0xf0d
8072 && i.tm.base_opcode != 0xfae
8073 && (i.has_regmmx
8074 || i.tm.cpu_flags.bitfield.cpummx
8075 || i.tm.cpu_flags.bitfield.cpua3dnow
8076 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8077 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8078 if (i.has_regxmm)
8079 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8080 if (i.has_regymm)
8081 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8082 if (i.has_regzmm)
8083 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8084 if (i.tm.cpu_flags.bitfield.cpufxsr)
8085 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8086 if (i.tm.cpu_flags.bitfield.cpuxsave)
8087 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8088 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8089 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8090 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8091 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8092 }
8093#endif
8094
29b0f896
AM
8095 /* Tie dwarf2 debug info to the address at the start of the insn.
8096 We can't do this after the insn has been output as the current
8097 frag may have been closed off. eg. by frag_var. */
8098 dwarf2_emit_insn (0);
8099
2bbd9c25
JJ
8100 insn_start_frag = frag_now;
8101 insn_start_off = frag_now_fix ();
8102
29b0f896 8103 /* Output jumps. */
40fb9820 8104 if (i.tm.opcode_modifier.jump)
29b0f896 8105 output_branch ();
40fb9820
L
8106 else if (i.tm.opcode_modifier.jumpbyte
8107 || i.tm.opcode_modifier.jumpdword)
29b0f896 8108 output_jump ();
40fb9820 8109 else if (i.tm.opcode_modifier.jumpintersegment)
29b0f896
AM
8110 output_interseg_jump ();
8111 else
8112 {
8113 /* Output normal instructions here. */
8114 char *p;
8115 unsigned char *q;
47465058 8116 unsigned int j;
331d2d0d 8117 unsigned int prefix;
4dffcebc 8118
e4e00185
AS
8119 if (avoid_fence
8120 && i.tm.base_opcode == 0xfae
8121 && i.operands == 1
8122 && i.imm_operands == 1
8123 && (i.op[0].imms->X_add_number == 0xe8
8124 || i.op[0].imms->X_add_number == 0xf0
8125 || i.op[0].imms->X_add_number == 0xf8))
8126 {
8127 /* Encode lfence, mfence, and sfence as
8128 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8129 offsetT val = 0x240483f0ULL;
8130 p = frag_more (5);
8131 md_number_to_chars (p, val, 5);
8132 return;
8133 }
8134
d022bddd
IT
8135 /* Some processors fail on LOCK prefix. This options makes
8136 assembler ignore LOCK prefix and serves as a workaround. */
8137 if (omit_lock_prefix)
8138 {
8139 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8140 return;
8141 i.prefix[LOCK_PREFIX] = 0;
8142 }
8143
43234a1e
L
8144 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8145 don't need the explicit prefix. */
8146 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8147 {
c0f3af97 8148 switch (i.tm.opcode_length)
bc4bd9ab 8149 {
c0f3af97
L
8150 case 3:
8151 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8152 {
c0f3af97 8153 prefix = (i.tm.base_opcode >> 24) & 0xff;
bd59a631 8154 add_prefix (prefix);
c0f3af97
L
8155 }
8156 break;
8157 case 2:
8158 if ((i.tm.base_opcode & 0xff0000) != 0)
8159 {
8160 prefix = (i.tm.base_opcode >> 16) & 0xff;
bd59a631
JB
8161 if (!i.tm.cpu_flags.bitfield.cpupadlock
8162 || prefix != REPE_PREFIX_OPCODE
8163 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
4dffcebc
L
8164 add_prefix (prefix);
8165 }
c0f3af97
L
8166 break;
8167 case 1:
8168 break;
390c91cf
L
8169 case 0:
8170 /* Check for pseudo prefixes. */
8171 as_bad_where (insn_start_frag->fr_file,
8172 insn_start_frag->fr_line,
8173 _("pseudo prefix without instruction"));
8174 return;
c0f3af97
L
8175 default:
8176 abort ();
bc4bd9ab 8177 }
c0f3af97 8178
6d19a37a 8179#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8180 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8181 R_X86_64_GOTTPOFF relocation so that linker can safely
8182 perform IE->LE optimization. */
8183 if (x86_elf_abi == X86_64_X32_ABI
8184 && i.operands == 2
8185 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8186 && i.prefix[REX_PREFIX] == 0)
8187 add_prefix (REX_OPCODE);
6d19a37a 8188#endif
cf61b747 8189
c0f3af97
L
8190 /* The prefix bytes. */
8191 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8192 if (*q)
8193 FRAG_APPEND_1_CHAR (*q);
0f10071e 8194 }
ae5c1c7b 8195 else
c0f3af97
L
8196 {
8197 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8198 if (*q)
8199 switch (j)
8200 {
8201 case REX_PREFIX:
8202 /* REX byte is encoded in VEX prefix. */
8203 break;
8204 case SEG_PREFIX:
8205 case ADDR_PREFIX:
8206 FRAG_APPEND_1_CHAR (*q);
8207 break;
8208 default:
8209 /* There should be no other prefixes for instructions
8210 with VEX prefix. */
8211 abort ();
8212 }
8213
43234a1e
L
8214 /* For EVEX instructions i.vrex should become 0 after
8215 build_evex_prefix. For VEX instructions upper 16 registers
8216 aren't available, so VREX should be 0. */
8217 if (i.vrex)
8218 abort ();
c0f3af97
L
8219 /* Now the VEX prefix. */
8220 p = frag_more (i.vex.length);
8221 for (j = 0; j < i.vex.length; j++)
8222 p[j] = i.vex.bytes[j];
8223 }
252b5132 8224
29b0f896 8225 /* Now the opcode; be careful about word order here! */
4dffcebc 8226 if (i.tm.opcode_length == 1)
29b0f896
AM
8227 {
8228 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8229 }
8230 else
8231 {
4dffcebc 8232 switch (i.tm.opcode_length)
331d2d0d 8233 {
43234a1e
L
8234 case 4:
8235 p = frag_more (4);
8236 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8237 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8238 break;
4dffcebc 8239 case 3:
331d2d0d
L
8240 p = frag_more (3);
8241 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8242 break;
8243 case 2:
8244 p = frag_more (2);
8245 break;
8246 default:
8247 abort ();
8248 break;
331d2d0d 8249 }
0f10071e 8250
29b0f896
AM
8251 /* Put out high byte first: can't use md_number_to_chars! */
8252 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8253 *p = i.tm.base_opcode & 0xff;
8254 }
3e73aa7c 8255
29b0f896 8256 /* Now the modrm byte and sib byte (if present). */
40fb9820 8257 if (i.tm.opcode_modifier.modrm)
29b0f896 8258 {
4a3523fa
L
8259 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8260 | i.rm.reg << 3
8261 | i.rm.mode << 6));
29b0f896
AM
8262 /* If i.rm.regmem == ESP (4)
8263 && i.rm.mode != (Register mode)
8264 && not 16 bit
8265 ==> need second modrm byte. */
8266 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8267 && i.rm.mode != 3
dc821c5f 8268 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8269 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8270 | i.sib.index << 3
8271 | i.sib.scale << 6));
29b0f896 8272 }
3e73aa7c 8273
29b0f896 8274 if (i.disp_operands)
2bbd9c25 8275 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8276
29b0f896 8277 if (i.imm_operands)
2bbd9c25 8278 output_imm (insn_start_frag, insn_start_off);
29b0f896 8279 }
252b5132 8280
29b0f896
AM
8281#ifdef DEBUG386
8282 if (flag_debug)
8283 {
7b81dfbb 8284 pi ("" /*line*/, &i);
29b0f896
AM
8285 }
8286#endif /* DEBUG386 */
8287}
252b5132 8288
e205caa7
L
8289/* Return the size of the displacement operand N. */
8290
8291static int
8292disp_size (unsigned int n)
8293{
8294 int size = 4;
43234a1e 8295
b5014f7a 8296 if (i.types[n].bitfield.disp64)
40fb9820
L
8297 size = 8;
8298 else if (i.types[n].bitfield.disp8)
8299 size = 1;
8300 else if (i.types[n].bitfield.disp16)
8301 size = 2;
e205caa7
L
8302 return size;
8303}
8304
8305/* Return the size of the immediate operand N. */
8306
8307static int
8308imm_size (unsigned int n)
8309{
8310 int size = 4;
40fb9820
L
8311 if (i.types[n].bitfield.imm64)
8312 size = 8;
8313 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8314 size = 1;
8315 else if (i.types[n].bitfield.imm16)
8316 size = 2;
e205caa7
L
8317 return size;
8318}
8319
29b0f896 8320static void
64e74474 8321output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8322{
8323 char *p;
8324 unsigned int n;
252b5132 8325
29b0f896
AM
8326 for (n = 0; n < i.operands; n++)
8327 {
b5014f7a 8328 if (operand_type_check (i.types[n], disp))
29b0f896
AM
8329 {
8330 if (i.op[n].disps->X_op == O_constant)
8331 {
e205caa7 8332 int size = disp_size (n);
43234a1e 8333 offsetT val = i.op[n].disps->X_add_number;
252b5132 8334
629cfaf1
JB
8335 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8336 size);
29b0f896
AM
8337 p = frag_more (size);
8338 md_number_to_chars (p, val, size);
8339 }
8340 else
8341 {
f86103b7 8342 enum bfd_reloc_code_real reloc_type;
e205caa7 8343 int size = disp_size (n);
40fb9820 8344 int sign = i.types[n].bitfield.disp32s;
29b0f896 8345 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 8346 fixS *fixP;
29b0f896 8347
e205caa7 8348 /* We can't have 8 bit displacement here. */
9c2799c2 8349 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 8350
29b0f896
AM
8351 /* The PC relative address is computed relative
8352 to the instruction boundary, so in case immediate
8353 fields follows, we need to adjust the value. */
8354 if (pcrel && i.imm_operands)
8355 {
29b0f896 8356 unsigned int n1;
e205caa7 8357 int sz = 0;
252b5132 8358
29b0f896 8359 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 8360 if (operand_type_check (i.types[n1], imm))
252b5132 8361 {
e205caa7
L
8362 /* Only one immediate is allowed for PC
8363 relative address. */
9c2799c2 8364 gas_assert (sz == 0);
e205caa7
L
8365 sz = imm_size (n1);
8366 i.op[n].disps->X_add_number -= sz;
252b5132 8367 }
29b0f896 8368 /* We should find the immediate. */
9c2799c2 8369 gas_assert (sz != 0);
29b0f896 8370 }
520dc8e8 8371
29b0f896 8372 p = frag_more (size);
d258b828 8373 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 8374 if (GOT_symbol
2bbd9c25 8375 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 8376 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8377 || reloc_type == BFD_RELOC_X86_64_32S
8378 || (reloc_type == BFD_RELOC_64
8379 && object_64bit))
d6ab8113
JB
8380 && (i.op[n].disps->X_op == O_symbol
8381 || (i.op[n].disps->X_op == O_add
8382 && ((symbol_get_value_expression
8383 (i.op[n].disps->X_op_symbol)->X_op)
8384 == O_subtract))))
8385 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25
JJ
8386 {
8387 offsetT add;
8388
8389 if (insn_start_frag == frag_now)
8390 add = (p - frag_now->fr_literal) - insn_start_off;
8391 else
8392 {
8393 fragS *fr;
8394
8395 add = insn_start_frag->fr_fix - insn_start_off;
8396 for (fr = insn_start_frag->fr_next;
8397 fr && fr != frag_now; fr = fr->fr_next)
8398 add += fr->fr_fix;
8399 add += p - frag_now->fr_literal;
8400 }
8401
4fa24527 8402 if (!object_64bit)
7b81dfbb
AJ
8403 {
8404 reloc_type = BFD_RELOC_386_GOTPC;
8405 i.op[n].imms->X_add_number += add;
8406 }
8407 else if (reloc_type == BFD_RELOC_64)
8408 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 8409 else
7b81dfbb
AJ
8410 /* Don't do the adjustment for x86-64, as there
8411 the pcrel addressing is relative to the _next_
8412 insn, and that is taken care of in other code. */
d6ab8113 8413 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 8414 }
02a86693
L
8415 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8416 size, i.op[n].disps, pcrel,
8417 reloc_type);
8418 /* Check for "call/jmp *mem", "mov mem, %reg",
8419 "test %reg, mem" and "binop mem, %reg" where binop
8420 is one of adc, add, and, cmp, or, sbb, sub, xor
0cb4071e
L
8421 instructions. Always generate R_386_GOT32X for
8422 "sym*GOT" operand in 32-bit mode. */
8423 if ((generate_relax_relocations
8424 || (!object_64bit
8425 && i.rm.mode == 0
8426 && i.rm.regmem == 5))
8427 && (i.rm.mode == 2
8428 || (i.rm.mode == 0 && i.rm.regmem == 5))
02a86693
L
8429 && ((i.operands == 1
8430 && i.tm.base_opcode == 0xff
8431 && (i.rm.reg == 2 || i.rm.reg == 4))
8432 || (i.operands == 2
8433 && (i.tm.base_opcode == 0x8b
8434 || i.tm.base_opcode == 0x85
8435 || (i.tm.base_opcode & 0xc7) == 0x03))))
8436 {
8437 if (object_64bit)
8438 {
8439 fixP->fx_tcbit = i.rex != 0;
8440 if (i.base_reg
e968fc9b 8441 && (i.base_reg->reg_num == RegIP))
02a86693
L
8442 fixP->fx_tcbit2 = 1;
8443 }
8444 else
8445 fixP->fx_tcbit2 = 1;
8446 }
29b0f896
AM
8447 }
8448 }
8449 }
8450}
252b5132 8451
29b0f896 8452static void
64e74474 8453output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
8454{
8455 char *p;
8456 unsigned int n;
252b5132 8457
29b0f896
AM
8458 for (n = 0; n < i.operands; n++)
8459 {
43234a1e
L
8460 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8461 if (i.rounding && (int) n == i.rounding->operand)
8462 continue;
8463
40fb9820 8464 if (operand_type_check (i.types[n], imm))
29b0f896
AM
8465 {
8466 if (i.op[n].imms->X_op == O_constant)
8467 {
e205caa7 8468 int size = imm_size (n);
29b0f896 8469 offsetT val;
b4cac588 8470
29b0f896
AM
8471 val = offset_in_range (i.op[n].imms->X_add_number,
8472 size);
8473 p = frag_more (size);
8474 md_number_to_chars (p, val, size);
8475 }
8476 else
8477 {
8478 /* Not absolute_section.
8479 Need a 32-bit fixup (don't support 8bit
8480 non-absolute imms). Try to support other
8481 sizes ... */
f86103b7 8482 enum bfd_reloc_code_real reloc_type;
e205caa7
L
8483 int size = imm_size (n);
8484 int sign;
29b0f896 8485
40fb9820 8486 if (i.types[n].bitfield.imm32s
a7d61044 8487 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 8488 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 8489 sign = 1;
e205caa7
L
8490 else
8491 sign = 0;
520dc8e8 8492
29b0f896 8493 p = frag_more (size);
d258b828 8494 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 8495
2bbd9c25
JJ
8496 /* This is tough to explain. We end up with this one if we
8497 * have operands that look like
8498 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8499 * obtain the absolute address of the GOT, and it is strongly
8500 * preferable from a performance point of view to avoid using
8501 * a runtime relocation for this. The actual sequence of
8502 * instructions often look something like:
8503 *
8504 * call .L66
8505 * .L66:
8506 * popl %ebx
8507 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8508 *
8509 * The call and pop essentially return the absolute address
8510 * of the label .L66 and store it in %ebx. The linker itself
8511 * will ultimately change the first operand of the addl so
8512 * that %ebx points to the GOT, but to keep things simple, the
8513 * .o file must have this operand set so that it generates not
8514 * the absolute address of .L66, but the absolute address of
8515 * itself. This allows the linker itself simply treat a GOTPC
8516 * relocation as asking for a pcrel offset to the GOT to be
8517 * added in, and the addend of the relocation is stored in the
8518 * operand field for the instruction itself.
8519 *
8520 * Our job here is to fix the operand so that it would add
8521 * the correct offset so that %ebx would point to itself. The
8522 * thing that is tricky is that .-.L66 will point to the
8523 * beginning of the instruction, so we need to further modify
8524 * the operand so that it will point to itself. There are
8525 * other cases where you have something like:
8526 *
8527 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8528 *
8529 * and here no correction would be required. Internally in
8530 * the assembler we treat operands of this form as not being
8531 * pcrel since the '.' is explicitly mentioned, and I wonder
8532 * whether it would simplify matters to do it this way. Who
8533 * knows. In earlier versions of the PIC patches, the
8534 * pcrel_adjust field was used to store the correction, but
8535 * since the expression is not pcrel, I felt it would be
8536 * confusing to do it this way. */
8537
d6ab8113 8538 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
8539 || reloc_type == BFD_RELOC_X86_64_32S
8540 || reloc_type == BFD_RELOC_64)
29b0f896
AM
8541 && GOT_symbol
8542 && GOT_symbol == i.op[n].imms->X_add_symbol
8543 && (i.op[n].imms->X_op == O_symbol
8544 || (i.op[n].imms->X_op == O_add
8545 && ((symbol_get_value_expression
8546 (i.op[n].imms->X_op_symbol)->X_op)
8547 == O_subtract))))
8548 {
2bbd9c25
JJ
8549 offsetT add;
8550
8551 if (insn_start_frag == frag_now)
8552 add = (p - frag_now->fr_literal) - insn_start_off;
8553 else
8554 {
8555 fragS *fr;
8556
8557 add = insn_start_frag->fr_fix - insn_start_off;
8558 for (fr = insn_start_frag->fr_next;
8559 fr && fr != frag_now; fr = fr->fr_next)
8560 add += fr->fr_fix;
8561 add += p - frag_now->fr_literal;
8562 }
8563
4fa24527 8564 if (!object_64bit)
d6ab8113 8565 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 8566 else if (size == 4)
d6ab8113 8567 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
8568 else if (size == 8)
8569 reloc_type = BFD_RELOC_X86_64_GOTPC64;
2bbd9c25 8570 i.op[n].imms->X_add_number += add;
29b0f896 8571 }
29b0f896
AM
8572 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8573 i.op[n].imms, 0, reloc_type);
8574 }
8575 }
8576 }
252b5132
RH
8577}
8578\f
d182319b
JB
8579/* x86_cons_fix_new is called via the expression parsing code when a
8580 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
8581static int cons_sign = -1;
8582
8583void
e3bb37b5 8584x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 8585 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 8586{
d258b828 8587 r = reloc (len, 0, cons_sign, r);
d182319b
JB
8588
8589#ifdef TE_PE
8590 if (exp->X_op == O_secrel)
8591 {
8592 exp->X_op = O_symbol;
8593 r = BFD_RELOC_32_SECREL;
8594 }
8595#endif
8596
8597 fix_new_exp (frag, off, len, exp, 0, r);
8598}
8599
357d1bd8
L
8600/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8601 purpose of the `.dc.a' internal pseudo-op. */
8602
8603int
8604x86_address_bytes (void)
8605{
8606 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8607 return 4;
8608 return stdoutput->arch_info->bits_per_address / 8;
8609}
8610
d382c579
TG
8611#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8612 || defined (LEX_AT)
d258b828 8613# define lex_got(reloc, adjust, types) NULL
718ddfc0 8614#else
f3c180ae
AM
8615/* Parse operands of the form
8616 <symbol>@GOTOFF+<nnn>
8617 and similar .plt or .got references.
8618
8619 If we find one, set up the correct relocation in RELOC and copy the
8620 input string, minus the `@GOTOFF' into a malloc'd buffer for
8621 parsing by the calling routine. Return this buffer, and if ADJUST
8622 is non-null set it to the length of the string we removed from the
8623 input line. Otherwise return NULL. */
8624static char *
91d6fa6a 8625lex_got (enum bfd_reloc_code_real *rel,
64e74474 8626 int *adjust,
d258b828 8627 i386_operand_type *types)
f3c180ae 8628{
7b81dfbb
AJ
8629 /* Some of the relocations depend on the size of what field is to
8630 be relocated. But in our callers i386_immediate and i386_displacement
8631 we don't yet know the operand size (this will be set by insn
8632 matching). Hence we record the word32 relocation here,
8633 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
8634 static const struct {
8635 const char *str;
cff8d58a 8636 int len;
4fa24527 8637 const enum bfd_reloc_code_real rel[2];
40fb9820 8638 const i386_operand_type types64;
f3c180ae 8639 } gotrel[] = {
8ce3d284 8640#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
8641 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8642 BFD_RELOC_SIZE32 },
8643 OPERAND_TYPE_IMM32_64 },
8ce3d284 8644#endif
cff8d58a
L
8645 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8646 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 8647 OPERAND_TYPE_IMM64 },
cff8d58a
L
8648 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8649 BFD_RELOC_X86_64_PLT32 },
40fb9820 8650 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8651 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8652 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 8653 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8654 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8655 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 8656 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
8657 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8658 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 8659 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8660 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8661 BFD_RELOC_X86_64_TLSGD },
40fb9820 8662 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8663 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8664 _dummy_first_bfd_reloc_code_real },
40fb9820 8665 OPERAND_TYPE_NONE },
cff8d58a
L
8666 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8667 BFD_RELOC_X86_64_TLSLD },
40fb9820 8668 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8669 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8670 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 8671 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8672 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8673 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 8674 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8675 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8676 _dummy_first_bfd_reloc_code_real },
40fb9820 8677 OPERAND_TYPE_NONE },
cff8d58a
L
8678 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8679 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 8680 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
8681 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8682 _dummy_first_bfd_reloc_code_real },
40fb9820 8683 OPERAND_TYPE_NONE },
cff8d58a
L
8684 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8685 _dummy_first_bfd_reloc_code_real },
40fb9820 8686 OPERAND_TYPE_NONE },
cff8d58a
L
8687 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8688 BFD_RELOC_X86_64_GOT32 },
40fb9820 8689 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
8690 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8691 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 8692 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
8693 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8694 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 8695 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
8696 };
8697 char *cp;
8698 unsigned int j;
8699
d382c579 8700#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
8701 if (!IS_ELF)
8702 return NULL;
d382c579 8703#endif
718ddfc0 8704
f3c180ae 8705 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 8706 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
8707 return NULL;
8708
47465058 8709 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 8710 {
cff8d58a 8711 int len = gotrel[j].len;
28f81592 8712 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 8713 {
4fa24527 8714 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 8715 {
28f81592
AM
8716 int first, second;
8717 char *tmpbuf, *past_reloc;
f3c180ae 8718
91d6fa6a 8719 *rel = gotrel[j].rel[object_64bit];
f3c180ae 8720
3956db08
JB
8721 if (types)
8722 {
8723 if (flag_code != CODE_64BIT)
40fb9820
L
8724 {
8725 types->bitfield.imm32 = 1;
8726 types->bitfield.disp32 = 1;
8727 }
3956db08
JB
8728 else
8729 *types = gotrel[j].types64;
8730 }
8731
8fd4256d 8732 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
8733 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8734
28f81592 8735 /* The length of the first part of our input line. */
f3c180ae 8736 first = cp - input_line_pointer;
28f81592
AM
8737
8738 /* The second part goes from after the reloc token until
67c11a9b 8739 (and including) an end_of_line char or comma. */
28f81592 8740 past_reloc = cp + 1 + len;
67c11a9b
AM
8741 cp = past_reloc;
8742 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8743 ++cp;
8744 second = cp + 1 - past_reloc;
28f81592
AM
8745
8746 /* Allocate and copy string. The trailing NUL shouldn't
8747 be necessary, but be safe. */
add39d23 8748 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 8749 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
8750 if (second != 0 && *past_reloc != ' ')
8751 /* Replace the relocation token with ' ', so that
8752 errors like foo@GOTOFF1 will be detected. */
8753 tmpbuf[first++] = ' ';
af89796a
L
8754 else
8755 /* Increment length by 1 if the relocation token is
8756 removed. */
8757 len++;
8758 if (adjust)
8759 *adjust = len;
0787a12d
AM
8760 memcpy (tmpbuf + first, past_reloc, second);
8761 tmpbuf[first + second] = '\0';
f3c180ae
AM
8762 return tmpbuf;
8763 }
8764
4fa24527
JB
8765 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8766 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
8767 return NULL;
8768 }
8769 }
8770
8771 /* Might be a symbol version string. Don't as_bad here. */
8772 return NULL;
8773}
4e4f7c87 8774#endif
f3c180ae 8775
a988325c
NC
8776#ifdef TE_PE
8777#ifdef lex_got
8778#undef lex_got
8779#endif
8780/* Parse operands of the form
8781 <symbol>@SECREL32+<nnn>
8782
8783 If we find one, set up the correct relocation in RELOC and copy the
8784 input string, minus the `@SECREL32' into a malloc'd buffer for
8785 parsing by the calling routine. Return this buffer, and if ADJUST
8786 is non-null set it to the length of the string we removed from the
34bca508
L
8787 input line. Otherwise return NULL.
8788
a988325c
NC
8789 This function is copied from the ELF version above adjusted for PE targets. */
8790
8791static char *
8792lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8793 int *adjust ATTRIBUTE_UNUSED,
d258b828 8794 i386_operand_type *types)
a988325c
NC
8795{
8796 static const struct
8797 {
8798 const char *str;
8799 int len;
8800 const enum bfd_reloc_code_real rel[2];
8801 const i386_operand_type types64;
8802 }
8803 gotrel[] =
8804 {
8805 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8806 BFD_RELOC_32_SECREL },
8807 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8808 };
8809
8810 char *cp;
8811 unsigned j;
8812
8813 for (cp = input_line_pointer; *cp != '@'; cp++)
8814 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8815 return NULL;
8816
8817 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8818 {
8819 int len = gotrel[j].len;
8820
8821 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8822 {
8823 if (gotrel[j].rel[object_64bit] != 0)
8824 {
8825 int first, second;
8826 char *tmpbuf, *past_reloc;
8827
8828 *rel = gotrel[j].rel[object_64bit];
8829 if (adjust)
8830 *adjust = len;
8831
8832 if (types)
8833 {
8834 if (flag_code != CODE_64BIT)
8835 {
8836 types->bitfield.imm32 = 1;
8837 types->bitfield.disp32 = 1;
8838 }
8839 else
8840 *types = gotrel[j].types64;
8841 }
8842
8843 /* The length of the first part of our input line. */
8844 first = cp - input_line_pointer;
8845
8846 /* The second part goes from after the reloc token until
8847 (and including) an end_of_line char or comma. */
8848 past_reloc = cp + 1 + len;
8849 cp = past_reloc;
8850 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8851 ++cp;
8852 second = cp + 1 - past_reloc;
8853
8854 /* Allocate and copy string. The trailing NUL shouldn't
8855 be necessary, but be safe. */
add39d23 8856 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
8857 memcpy (tmpbuf, input_line_pointer, first);
8858 if (second != 0 && *past_reloc != ' ')
8859 /* Replace the relocation token with ' ', so that
8860 errors like foo@SECLREL321 will be detected. */
8861 tmpbuf[first++] = ' ';
8862 memcpy (tmpbuf + first, past_reloc, second);
8863 tmpbuf[first + second] = '\0';
8864 return tmpbuf;
8865 }
8866
8867 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8868 gotrel[j].str, 1 << (5 + object_64bit));
8869 return NULL;
8870 }
8871 }
8872
8873 /* Might be a symbol version string. Don't as_bad here. */
8874 return NULL;
8875}
8876
8877#endif /* TE_PE */
8878
62ebcb5c 8879bfd_reloc_code_real_type
e3bb37b5 8880x86_cons (expressionS *exp, int size)
f3c180ae 8881{
62ebcb5c
AM
8882 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8883
ee86248c
JB
8884 intel_syntax = -intel_syntax;
8885
3c7b9c2c 8886 exp->X_md = 0;
4fa24527 8887 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
8888 {
8889 /* Handle @GOTOFF and the like in an expression. */
8890 char *save;
8891 char *gotfree_input_line;
4a57f2cf 8892 int adjust = 0;
f3c180ae
AM
8893
8894 save = input_line_pointer;
d258b828 8895 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
8896 if (gotfree_input_line)
8897 input_line_pointer = gotfree_input_line;
8898
8899 expression (exp);
8900
8901 if (gotfree_input_line)
8902 {
8903 /* expression () has merrily parsed up to the end of line,
8904 or a comma - in the wrong buffer. Transfer how far
8905 input_line_pointer has moved to the right buffer. */
8906 input_line_pointer = (save
8907 + (input_line_pointer - gotfree_input_line)
8908 + adjust);
8909 free (gotfree_input_line);
3992d3b7
AM
8910 if (exp->X_op == O_constant
8911 || exp->X_op == O_absent
8912 || exp->X_op == O_illegal
0398aac5 8913 || exp->X_op == O_register
3992d3b7
AM
8914 || exp->X_op == O_big)
8915 {
8916 char c = *input_line_pointer;
8917 *input_line_pointer = 0;
8918 as_bad (_("missing or invalid expression `%s'"), save);
8919 *input_line_pointer = c;
8920 }
f3c180ae
AM
8921 }
8922 }
8923 else
8924 expression (exp);
ee86248c
JB
8925
8926 intel_syntax = -intel_syntax;
8927
8928 if (intel_syntax)
8929 i386_intel_simplify (exp);
62ebcb5c
AM
8930
8931 return got_reloc;
f3c180ae 8932}
f3c180ae 8933
9f32dd5b
L
8934static void
8935signed_cons (int size)
6482c264 8936{
d182319b
JB
8937 if (flag_code == CODE_64BIT)
8938 cons_sign = 1;
8939 cons (size);
8940 cons_sign = -1;
6482c264
NC
8941}
8942
d182319b 8943#ifdef TE_PE
6482c264 8944static void
7016a5d5 8945pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
8946{
8947 expressionS exp;
8948
8949 do
8950 {
8951 expression (&exp);
8952 if (exp.X_op == O_symbol)
8953 exp.X_op = O_secrel;
8954
8955 emit_expr (&exp, 4);
8956 }
8957 while (*input_line_pointer++ == ',');
8958
8959 input_line_pointer--;
8960 demand_empty_rest_of_line ();
8961}
6482c264
NC
8962#endif
8963
43234a1e
L
8964/* Handle Vector operations. */
8965
8966static char *
8967check_VecOperations (char *op_string, char *op_end)
8968{
8969 const reg_entry *mask;
8970 const char *saved;
8971 char *end_op;
8972
8973 while (*op_string
8974 && (op_end == NULL || op_string < op_end))
8975 {
8976 saved = op_string;
8977 if (*op_string == '{')
8978 {
8979 op_string++;
8980
8981 /* Check broadcasts. */
8982 if (strncmp (op_string, "1to", 3) == 0)
8983 {
8984 int bcst_type;
8985
8986 if (i.broadcast)
8987 goto duplicated_vec_op;
8988
8989 op_string += 3;
8990 if (*op_string == '8')
8e6e0792 8991 bcst_type = 8;
b28d1bda 8992 else if (*op_string == '4')
8e6e0792 8993 bcst_type = 4;
b28d1bda 8994 else if (*op_string == '2')
8e6e0792 8995 bcst_type = 2;
43234a1e
L
8996 else if (*op_string == '1'
8997 && *(op_string+1) == '6')
8998 {
8e6e0792 8999 bcst_type = 16;
43234a1e
L
9000 op_string++;
9001 }
9002 else
9003 {
9004 as_bad (_("Unsupported broadcast: `%s'"), saved);
9005 return NULL;
9006 }
9007 op_string++;
9008
9009 broadcast_op.type = bcst_type;
9010 broadcast_op.operand = this_operand;
1f75763a 9011 broadcast_op.bytes = 0;
43234a1e
L
9012 i.broadcast = &broadcast_op;
9013 }
9014 /* Check masking operation. */
9015 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9016 {
9017 /* k0 can't be used for write mask. */
6d2cd6b2 9018 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
43234a1e 9019 {
6d2cd6b2
JB
9020 as_bad (_("`%s%s' can't be used for write mask"),
9021 register_prefix, mask->reg_name);
43234a1e
L
9022 return NULL;
9023 }
9024
9025 if (!i.mask)
9026 {
9027 mask_op.mask = mask;
9028 mask_op.zeroing = 0;
9029 mask_op.operand = this_operand;
9030 i.mask = &mask_op;
9031 }
9032 else
9033 {
9034 if (i.mask->mask)
9035 goto duplicated_vec_op;
9036
9037 i.mask->mask = mask;
9038
9039 /* Only "{z}" is allowed here. No need to check
9040 zeroing mask explicitly. */
9041 if (i.mask->operand != this_operand)
9042 {
9043 as_bad (_("invalid write mask `%s'"), saved);
9044 return NULL;
9045 }
9046 }
9047
9048 op_string = end_op;
9049 }
9050 /* Check zeroing-flag for masking operation. */
9051 else if (*op_string == 'z')
9052 {
9053 if (!i.mask)
9054 {
9055 mask_op.mask = NULL;
9056 mask_op.zeroing = 1;
9057 mask_op.operand = this_operand;
9058 i.mask = &mask_op;
9059 }
9060 else
9061 {
9062 if (i.mask->zeroing)
9063 {
9064 duplicated_vec_op:
9065 as_bad (_("duplicated `%s'"), saved);
9066 return NULL;
9067 }
9068
9069 i.mask->zeroing = 1;
9070
9071 /* Only "{%k}" is allowed here. No need to check mask
9072 register explicitly. */
9073 if (i.mask->operand != this_operand)
9074 {
9075 as_bad (_("invalid zeroing-masking `%s'"),
9076 saved);
9077 return NULL;
9078 }
9079 }
9080
9081 op_string++;
9082 }
9083 else
9084 goto unknown_vec_op;
9085
9086 if (*op_string != '}')
9087 {
9088 as_bad (_("missing `}' in `%s'"), saved);
9089 return NULL;
9090 }
9091 op_string++;
0ba3a731
L
9092
9093 /* Strip whitespace since the addition of pseudo prefixes
9094 changed how the scrubber treats '{'. */
9095 if (is_space_char (*op_string))
9096 ++op_string;
9097
43234a1e
L
9098 continue;
9099 }
9100 unknown_vec_op:
9101 /* We don't know this one. */
9102 as_bad (_("unknown vector operation: `%s'"), saved);
9103 return NULL;
9104 }
9105
6d2cd6b2
JB
9106 if (i.mask && i.mask->zeroing && !i.mask->mask)
9107 {
9108 as_bad (_("zeroing-masking only allowed with write mask"));
9109 return NULL;
9110 }
9111
43234a1e
L
9112 return op_string;
9113}
9114
252b5132 9115static int
70e41ade 9116i386_immediate (char *imm_start)
252b5132
RH
9117{
9118 char *save_input_line_pointer;
f3c180ae 9119 char *gotfree_input_line;
252b5132 9120 segT exp_seg = 0;
47926f60 9121 expressionS *exp;
40fb9820
L
9122 i386_operand_type types;
9123
0dfbf9d7 9124 operand_type_set (&types, ~0);
252b5132
RH
9125
9126 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9127 {
31b2323c
L
9128 as_bad (_("at most %d immediate operands are allowed"),
9129 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9130 return 0;
9131 }
9132
9133 exp = &im_expressions[i.imm_operands++];
520dc8e8 9134 i.op[this_operand].imms = exp;
252b5132
RH
9135
9136 if (is_space_char (*imm_start))
9137 ++imm_start;
9138
9139 save_input_line_pointer = input_line_pointer;
9140 input_line_pointer = imm_start;
9141
d258b828 9142 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9143 if (gotfree_input_line)
9144 input_line_pointer = gotfree_input_line;
252b5132
RH
9145
9146 exp_seg = expression (exp);
9147
83183c0c 9148 SKIP_WHITESPACE ();
43234a1e
L
9149
9150 /* Handle vector operations. */
9151 if (*input_line_pointer == '{')
9152 {
9153 input_line_pointer = check_VecOperations (input_line_pointer,
9154 NULL);
9155 if (input_line_pointer == NULL)
9156 return 0;
9157 }
9158
252b5132 9159 if (*input_line_pointer)
f3c180ae 9160 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9161
9162 input_line_pointer = save_input_line_pointer;
f3c180ae 9163 if (gotfree_input_line)
ee86248c
JB
9164 {
9165 free (gotfree_input_line);
9166
9167 if (exp->X_op == O_constant || exp->X_op == O_register)
9168 exp->X_op = O_illegal;
9169 }
9170
9171 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9172}
252b5132 9173
ee86248c
JB
9174static int
9175i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9176 i386_operand_type types, const char *imm_start)
9177{
9178 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9179 {
313c53d1
L
9180 if (imm_start)
9181 as_bad (_("missing or invalid immediate expression `%s'"),
9182 imm_start);
3992d3b7 9183 return 0;
252b5132 9184 }
3e73aa7c 9185 else if (exp->X_op == O_constant)
252b5132 9186 {
47926f60 9187 /* Size it properly later. */
40fb9820 9188 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
9189 /* If not 64bit, sign extend val. */
9190 if (flag_code != CODE_64BIT
4eed87de
AM
9191 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9192 exp->X_add_number
9193 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 9194 }
4c63da97 9195#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 9196 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 9197 && exp_seg != absolute_section
47926f60 9198 && exp_seg != text_section
24eab124
AM
9199 && exp_seg != data_section
9200 && exp_seg != bss_section
9201 && exp_seg != undefined_section
f86103b7 9202 && !bfd_is_com_section (exp_seg))
252b5132 9203 {
d0b47220 9204 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
9205 return 0;
9206 }
9207#endif
a841bdf5 9208 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 9209 {
313c53d1
L
9210 if (imm_start)
9211 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
9212 return 0;
9213 }
252b5132
RH
9214 else
9215 {
9216 /* This is an address. The size of the address will be
24eab124 9217 determined later, depending on destination register,
3e73aa7c 9218 suffix, or the default for the section. */
40fb9820
L
9219 i.types[this_operand].bitfield.imm8 = 1;
9220 i.types[this_operand].bitfield.imm16 = 1;
9221 i.types[this_operand].bitfield.imm32 = 1;
9222 i.types[this_operand].bitfield.imm32s = 1;
9223 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
9224 i.types[this_operand] = operand_type_and (i.types[this_operand],
9225 types);
252b5132
RH
9226 }
9227
9228 return 1;
9229}
9230
551c1ca1 9231static char *
e3bb37b5 9232i386_scale (char *scale)
252b5132 9233{
551c1ca1
AM
9234 offsetT val;
9235 char *save = input_line_pointer;
252b5132 9236
551c1ca1
AM
9237 input_line_pointer = scale;
9238 val = get_absolute_expression ();
9239
9240 switch (val)
252b5132 9241 {
551c1ca1 9242 case 1:
252b5132
RH
9243 i.log2_scale_factor = 0;
9244 break;
551c1ca1 9245 case 2:
252b5132
RH
9246 i.log2_scale_factor = 1;
9247 break;
551c1ca1 9248 case 4:
252b5132
RH
9249 i.log2_scale_factor = 2;
9250 break;
551c1ca1 9251 case 8:
252b5132
RH
9252 i.log2_scale_factor = 3;
9253 break;
9254 default:
a724f0f4
JB
9255 {
9256 char sep = *input_line_pointer;
9257
9258 *input_line_pointer = '\0';
9259 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9260 scale);
9261 *input_line_pointer = sep;
9262 input_line_pointer = save;
9263 return NULL;
9264 }
252b5132 9265 }
29b0f896 9266 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
9267 {
9268 as_warn (_("scale factor of %d without an index register"),
24eab124 9269 1 << i.log2_scale_factor);
252b5132 9270 i.log2_scale_factor = 0;
252b5132 9271 }
551c1ca1
AM
9272 scale = input_line_pointer;
9273 input_line_pointer = save;
9274 return scale;
252b5132
RH
9275}
9276
252b5132 9277static int
e3bb37b5 9278i386_displacement (char *disp_start, char *disp_end)
252b5132 9279{
29b0f896 9280 expressionS *exp;
252b5132
RH
9281 segT exp_seg = 0;
9282 char *save_input_line_pointer;
f3c180ae 9283 char *gotfree_input_line;
40fb9820
L
9284 int override;
9285 i386_operand_type bigdisp, types = anydisp;
3992d3b7 9286 int ret;
252b5132 9287
31b2323c
L
9288 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9289 {
9290 as_bad (_("at most %d displacement operands are allowed"),
9291 MAX_MEMORY_OPERANDS);
9292 return 0;
9293 }
9294
0dfbf9d7 9295 operand_type_set (&bigdisp, 0);
40fb9820
L
9296 if ((i.types[this_operand].bitfield.jumpabsolute)
9297 || (!current_templates->start->opcode_modifier.jump
9298 && !current_templates->start->opcode_modifier.jumpdword))
e05278af 9299 {
40fb9820 9300 bigdisp.bitfield.disp32 = 1;
e05278af 9301 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
9302 if (flag_code == CODE_64BIT)
9303 {
9304 if (!override)
9305 {
9306 bigdisp.bitfield.disp32s = 1;
9307 bigdisp.bitfield.disp64 = 1;
9308 }
9309 }
9310 else if ((flag_code == CODE_16BIT) ^ override)
9311 {
9312 bigdisp.bitfield.disp32 = 0;
9313 bigdisp.bitfield.disp16 = 1;
9314 }
e05278af
JB
9315 }
9316 else
9317 {
9318 /* For PC-relative branches, the width of the displacement
9319 is dependent upon data size, not address size. */
e05278af 9320 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
9321 if (flag_code == CODE_64BIT)
9322 {
9323 if (override || i.suffix == WORD_MNEM_SUFFIX)
9324 bigdisp.bitfield.disp16 = 1;
9325 else
9326 {
9327 bigdisp.bitfield.disp32 = 1;
9328 bigdisp.bitfield.disp32s = 1;
9329 }
9330 }
9331 else
e05278af
JB
9332 {
9333 if (!override)
9334 override = (i.suffix == (flag_code != CODE_16BIT
9335 ? WORD_MNEM_SUFFIX
9336 : LONG_MNEM_SUFFIX));
40fb9820
L
9337 bigdisp.bitfield.disp32 = 1;
9338 if ((flag_code == CODE_16BIT) ^ override)
9339 {
9340 bigdisp.bitfield.disp32 = 0;
9341 bigdisp.bitfield.disp16 = 1;
9342 }
e05278af 9343 }
e05278af 9344 }
c6fb90c8
L
9345 i.types[this_operand] = operand_type_or (i.types[this_operand],
9346 bigdisp);
252b5132
RH
9347
9348 exp = &disp_expressions[i.disp_operands];
520dc8e8 9349 i.op[this_operand].disps = exp;
252b5132
RH
9350 i.disp_operands++;
9351 save_input_line_pointer = input_line_pointer;
9352 input_line_pointer = disp_start;
9353 END_STRING_AND_SAVE (disp_end);
9354
9355#ifndef GCC_ASM_O_HACK
9356#define GCC_ASM_O_HACK 0
9357#endif
9358#if GCC_ASM_O_HACK
9359 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 9360 if (i.types[this_operand].bitfield.baseIndex
24eab124 9361 && displacement_string_end[-1] == '+')
252b5132
RH
9362 {
9363 /* This hack is to avoid a warning when using the "o"
24eab124
AM
9364 constraint within gcc asm statements.
9365 For instance:
9366
9367 #define _set_tssldt_desc(n,addr,limit,type) \
9368 __asm__ __volatile__ ( \
9369 "movw %w2,%0\n\t" \
9370 "movw %w1,2+%0\n\t" \
9371 "rorl $16,%1\n\t" \
9372 "movb %b1,4+%0\n\t" \
9373 "movb %4,5+%0\n\t" \
9374 "movb $0,6+%0\n\t" \
9375 "movb %h1,7+%0\n\t" \
9376 "rorl $16,%1" \
9377 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9378
9379 This works great except that the output assembler ends
9380 up looking a bit weird if it turns out that there is
9381 no offset. You end up producing code that looks like:
9382
9383 #APP
9384 movw $235,(%eax)
9385 movw %dx,2+(%eax)
9386 rorl $16,%edx
9387 movb %dl,4+(%eax)
9388 movb $137,5+(%eax)
9389 movb $0,6+(%eax)
9390 movb %dh,7+(%eax)
9391 rorl $16,%edx
9392 #NO_APP
9393
47926f60 9394 So here we provide the missing zero. */
24eab124
AM
9395
9396 *displacement_string_end = '0';
252b5132
RH
9397 }
9398#endif
d258b828 9399 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9400 if (gotfree_input_line)
9401 input_line_pointer = gotfree_input_line;
252b5132 9402
24eab124 9403 exp_seg = expression (exp);
252b5132 9404
636c26b0
AM
9405 SKIP_WHITESPACE ();
9406 if (*input_line_pointer)
9407 as_bad (_("junk `%s' after expression"), input_line_pointer);
9408#if GCC_ASM_O_HACK
9409 RESTORE_END_STRING (disp_end + 1);
9410#endif
636c26b0 9411 input_line_pointer = save_input_line_pointer;
636c26b0 9412 if (gotfree_input_line)
ee86248c
JB
9413 {
9414 free (gotfree_input_line);
9415
9416 if (exp->X_op == O_constant || exp->X_op == O_register)
9417 exp->X_op = O_illegal;
9418 }
9419
9420 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9421
9422 RESTORE_END_STRING (disp_end);
9423
9424 return ret;
9425}
9426
9427static int
9428i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9429 i386_operand_type types, const char *disp_start)
9430{
9431 i386_operand_type bigdisp;
9432 int ret = 1;
636c26b0 9433
24eab124
AM
9434 /* We do this to make sure that the section symbol is in
9435 the symbol table. We will ultimately change the relocation
47926f60 9436 to be relative to the beginning of the section. */
1ae12ab7 9437 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
9438 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9439 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 9440 {
636c26b0 9441 if (exp->X_op != O_symbol)
3992d3b7 9442 goto inv_disp;
636c26b0 9443
e5cb08ac 9444 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
9445 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9446 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 9447 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
9448 exp->X_op = O_subtract;
9449 exp->X_op_symbol = GOT_symbol;
1ae12ab7 9450 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 9451 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
9452 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9453 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 9454 else
29b0f896 9455 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 9456 }
252b5132 9457
3992d3b7
AM
9458 else if (exp->X_op == O_absent
9459 || exp->X_op == O_illegal
ee86248c 9460 || exp->X_op == O_big)
2daf4fd8 9461 {
3992d3b7
AM
9462 inv_disp:
9463 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 9464 disp_start);
3992d3b7 9465 ret = 0;
2daf4fd8
AM
9466 }
9467
0e1147d9
L
9468 else if (flag_code == CODE_64BIT
9469 && !i.prefix[ADDR_PREFIX]
9470 && exp->X_op == O_constant)
9471 {
9472 /* Since displacement is signed extended to 64bit, don't allow
9473 disp32 and turn off disp32s if they are out of range. */
9474 i.types[this_operand].bitfield.disp32 = 0;
9475 if (!fits_in_signed_long (exp->X_add_number))
9476 {
9477 i.types[this_operand].bitfield.disp32s = 0;
9478 if (i.types[this_operand].bitfield.baseindex)
9479 {
9480 as_bad (_("0x%lx out range of signed 32bit displacement"),
9481 (long) exp->X_add_number);
9482 ret = 0;
9483 }
9484 }
9485 }
9486
4c63da97 9487#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
9488 else if (exp->X_op != O_constant
9489 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9490 && exp_seg != absolute_section
9491 && exp_seg != text_section
9492 && exp_seg != data_section
9493 && exp_seg != bss_section
9494 && exp_seg != undefined_section
9495 && !bfd_is_com_section (exp_seg))
24eab124 9496 {
d0b47220 9497 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 9498 ret = 0;
24eab124 9499 }
252b5132 9500#endif
3956db08 9501
40fb9820
L
9502 /* Check if this is a displacement only operand. */
9503 bigdisp = i.types[this_operand];
9504 bigdisp.bitfield.disp8 = 0;
9505 bigdisp.bitfield.disp16 = 0;
9506 bigdisp.bitfield.disp32 = 0;
9507 bigdisp.bitfield.disp32s = 0;
9508 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 9509 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
9510 i.types[this_operand] = operand_type_and (i.types[this_operand],
9511 types);
3956db08 9512
3992d3b7 9513 return ret;
252b5132
RH
9514}
9515
2abc2bec
JB
9516/* Return the active addressing mode, taking address override and
9517 registers forming the address into consideration. Update the
9518 address override prefix if necessary. */
47926f60 9519
2abc2bec
JB
9520static enum flag_code
9521i386_addressing_mode (void)
252b5132 9522{
be05d201
L
9523 enum flag_code addr_mode;
9524
9525 if (i.prefix[ADDR_PREFIX])
9526 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9527 else
9528 {
9529 addr_mode = flag_code;
9530
24eab124 9531#if INFER_ADDR_PREFIX
be05d201
L
9532 if (i.mem_operands == 0)
9533 {
9534 /* Infer address prefix from the first memory operand. */
9535 const reg_entry *addr_reg = i.base_reg;
9536
9537 if (addr_reg == NULL)
9538 addr_reg = i.index_reg;
eecb386c 9539
be05d201
L
9540 if (addr_reg)
9541 {
e968fc9b 9542 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
9543 addr_mode = CODE_32BIT;
9544 else if (flag_code != CODE_64BIT
dc821c5f 9545 && addr_reg->reg_type.bitfield.word)
be05d201
L
9546 addr_mode = CODE_16BIT;
9547
9548 if (addr_mode != flag_code)
9549 {
9550 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9551 i.prefixes += 1;
9552 /* Change the size of any displacement too. At most one
9553 of Disp16 or Disp32 is set.
9554 FIXME. There doesn't seem to be any real need for
9555 separate Disp16 and Disp32 flags. The same goes for
9556 Imm16 and Imm32. Removing them would probably clean
9557 up the code quite a lot. */
9558 if (flag_code != CODE_64BIT
9559 && (i.types[this_operand].bitfield.disp16
9560 || i.types[this_operand].bitfield.disp32))
9561 i.types[this_operand]
9562 = operand_type_xor (i.types[this_operand], disp16_32);
9563 }
9564 }
9565 }
24eab124 9566#endif
be05d201
L
9567 }
9568
2abc2bec
JB
9569 return addr_mode;
9570}
9571
9572/* Make sure the memory operand we've been dealt is valid.
9573 Return 1 on success, 0 on a failure. */
9574
9575static int
9576i386_index_check (const char *operand_string)
9577{
9578 const char *kind = "base/index";
9579 enum flag_code addr_mode = i386_addressing_mode ();
9580
fc0763e6
JB
9581 if (current_templates->start->opcode_modifier.isstring
9582 && !current_templates->start->opcode_modifier.immext
9583 && (current_templates->end[-1].opcode_modifier.isstring
9584 || i.mem_operands))
9585 {
9586 /* Memory operands of string insns are special in that they only allow
9587 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
9588 const reg_entry *expected_reg;
9589 static const char *di_si[][2] =
9590 {
9591 { "esi", "edi" },
9592 { "si", "di" },
9593 { "rsi", "rdi" }
9594 };
9595 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
9596
9597 kind = "string address";
9598
8325cc63 9599 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6
JB
9600 {
9601 i386_operand_type type = current_templates->end[-1].operand_types[0];
9602
9603 if (!type.bitfield.baseindex
9604 || ((!i.mem_operands != !intel_syntax)
9605 && current_templates->end[-1].operand_types[1]
9606 .bitfield.baseindex))
9607 type = current_templates->end[-1].operand_types[1];
be05d201
L
9608 expected_reg = hash_find (reg_hash,
9609 di_si[addr_mode][type.bitfield.esseg]);
9610
fc0763e6
JB
9611 }
9612 else
be05d201 9613 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 9614
be05d201
L
9615 if (i.base_reg != expected_reg
9616 || i.index_reg
fc0763e6 9617 || operand_type_check (i.types[this_operand], disp))
fc0763e6 9618 {
be05d201
L
9619 /* The second memory operand must have the same size as
9620 the first one. */
9621 if (i.mem_operands
9622 && i.base_reg
9623 && !((addr_mode == CODE_64BIT
dc821c5f 9624 && i.base_reg->reg_type.bitfield.qword)
be05d201 9625 || (addr_mode == CODE_32BIT
dc821c5f
JB
9626 ? i.base_reg->reg_type.bitfield.dword
9627 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
9628 goto bad_address;
9629
fc0763e6
JB
9630 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9631 operand_string,
9632 intel_syntax ? '[' : '(',
9633 register_prefix,
be05d201 9634 expected_reg->reg_name,
fc0763e6 9635 intel_syntax ? ']' : ')');
be05d201 9636 return 1;
fc0763e6 9637 }
be05d201
L
9638 else
9639 return 1;
9640
9641bad_address:
9642 as_bad (_("`%s' is not a valid %s expression"),
9643 operand_string, kind);
9644 return 0;
3e73aa7c
JH
9645 }
9646 else
9647 {
be05d201
L
9648 if (addr_mode != CODE_16BIT)
9649 {
9650 /* 32-bit/64-bit checks. */
9651 if ((i.base_reg
e968fc9b
JB
9652 && ((addr_mode == CODE_64BIT
9653 ? !i.base_reg->reg_type.bitfield.qword
9654 : !i.base_reg->reg_type.bitfield.dword)
9655 || (i.index_reg && i.base_reg->reg_num == RegIP)
9656 || i.base_reg->reg_num == RegIZ))
be05d201 9657 || (i.index_reg
1b54b8d7
JB
9658 && !i.index_reg->reg_type.bitfield.xmmword
9659 && !i.index_reg->reg_type.bitfield.ymmword
9660 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 9661 && ((addr_mode == CODE_64BIT
e968fc9b
JB
9662 ? !i.index_reg->reg_type.bitfield.qword
9663 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
9664 || !i.index_reg->reg_type.bitfield.baseindex)))
9665 goto bad_address;
8178be5b
JB
9666
9667 /* bndmk, bndldx, and bndstx have special restrictions. */
9668 if (current_templates->start->base_opcode == 0xf30f1b
9669 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9670 {
9671 /* They cannot use RIP-relative addressing. */
e968fc9b 9672 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
9673 {
9674 as_bad (_("`%s' cannot be used here"), operand_string);
9675 return 0;
9676 }
9677
9678 /* bndldx and bndstx ignore their scale factor. */
9679 if (current_templates->start->base_opcode != 0xf30f1b
9680 && i.log2_scale_factor)
9681 as_warn (_("register scaling is being ignored here"));
9682 }
be05d201
L
9683 }
9684 else
3e73aa7c 9685 {
be05d201 9686 /* 16-bit checks. */
3e73aa7c 9687 if ((i.base_reg
dc821c5f 9688 && (!i.base_reg->reg_type.bitfield.word
40fb9820 9689 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 9690 || (i.index_reg
dc821c5f 9691 && (!i.index_reg->reg_type.bitfield.word
40fb9820 9692 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
9693 || !(i.base_reg
9694 && i.base_reg->reg_num < 6
9695 && i.index_reg->reg_num >= 6
9696 && i.log2_scale_factor == 0))))
be05d201 9697 goto bad_address;
3e73aa7c
JH
9698 }
9699 }
be05d201 9700 return 1;
24eab124 9701}
252b5132 9702
43234a1e
L
9703/* Handle vector immediates. */
9704
9705static int
9706RC_SAE_immediate (const char *imm_start)
9707{
9708 unsigned int match_found, j;
9709 const char *pstr = imm_start;
9710 expressionS *exp;
9711
9712 if (*pstr != '{')
9713 return 0;
9714
9715 pstr++;
9716 match_found = 0;
9717 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9718 {
9719 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9720 {
9721 if (!i.rounding)
9722 {
9723 rc_op.type = RC_NamesTable[j].type;
9724 rc_op.operand = this_operand;
9725 i.rounding = &rc_op;
9726 }
9727 else
9728 {
9729 as_bad (_("duplicated `%s'"), imm_start);
9730 return 0;
9731 }
9732 pstr += RC_NamesTable[j].len;
9733 match_found = 1;
9734 break;
9735 }
9736 }
9737 if (!match_found)
9738 return 0;
9739
9740 if (*pstr++ != '}')
9741 {
9742 as_bad (_("Missing '}': '%s'"), imm_start);
9743 return 0;
9744 }
9745 /* RC/SAE immediate string should contain nothing more. */;
9746 if (*pstr != 0)
9747 {
9748 as_bad (_("Junk after '}': '%s'"), imm_start);
9749 return 0;
9750 }
9751
9752 exp = &im_expressions[i.imm_operands++];
9753 i.op[this_operand].imms = exp;
9754
9755 exp->X_op = O_constant;
9756 exp->X_add_number = 0;
9757 exp->X_add_symbol = (symbolS *) 0;
9758 exp->X_op_symbol = (symbolS *) 0;
9759
9760 i.types[this_operand].bitfield.imm8 = 1;
9761 return 1;
9762}
9763
8325cc63
JB
9764/* Only string instructions can have a second memory operand, so
9765 reduce current_templates to just those if it contains any. */
9766static int
9767maybe_adjust_templates (void)
9768{
9769 const insn_template *t;
9770
9771 gas_assert (i.mem_operands == 1);
9772
9773 for (t = current_templates->start; t < current_templates->end; ++t)
9774 if (t->opcode_modifier.isstring)
9775 break;
9776
9777 if (t < current_templates->end)
9778 {
9779 static templates aux_templates;
9780 bfd_boolean recheck;
9781
9782 aux_templates.start = t;
9783 for (; t < current_templates->end; ++t)
9784 if (!t->opcode_modifier.isstring)
9785 break;
9786 aux_templates.end = t;
9787
9788 /* Determine whether to re-check the first memory operand. */
9789 recheck = (aux_templates.start != current_templates->start
9790 || t != current_templates->end);
9791
9792 current_templates = &aux_templates;
9793
9794 if (recheck)
9795 {
9796 i.mem_operands = 0;
9797 if (i.memop1_string != NULL
9798 && i386_index_check (i.memop1_string) == 0)
9799 return 0;
9800 i.mem_operands = 1;
9801 }
9802 }
9803
9804 return 1;
9805}
9806
fc0763e6 9807/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 9808 on error. */
252b5132 9809
252b5132 9810static int
a7619375 9811i386_att_operand (char *operand_string)
252b5132 9812{
af6bdddf
AM
9813 const reg_entry *r;
9814 char *end_op;
24eab124 9815 char *op_string = operand_string;
252b5132 9816
24eab124 9817 if (is_space_char (*op_string))
252b5132
RH
9818 ++op_string;
9819
24eab124 9820 /* We check for an absolute prefix (differentiating,
47926f60 9821 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
9822 if (*op_string == ABSOLUTE_PREFIX)
9823 {
9824 ++op_string;
9825 if (is_space_char (*op_string))
9826 ++op_string;
40fb9820 9827 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124 9828 }
252b5132 9829
47926f60 9830 /* Check if operand is a register. */
4d1bb795 9831 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 9832 {
40fb9820
L
9833 i386_operand_type temp;
9834
24eab124
AM
9835 /* Check for a segment override by searching for ':' after a
9836 segment register. */
9837 op_string = end_op;
9838 if (is_space_char (*op_string))
9839 ++op_string;
40fb9820
L
9840 if (*op_string == ':'
9841 && (r->reg_type.bitfield.sreg2
9842 || r->reg_type.bitfield.sreg3))
24eab124
AM
9843 {
9844 switch (r->reg_num)
9845 {
9846 case 0:
9847 i.seg[i.mem_operands] = &es;
9848 break;
9849 case 1:
9850 i.seg[i.mem_operands] = &cs;
9851 break;
9852 case 2:
9853 i.seg[i.mem_operands] = &ss;
9854 break;
9855 case 3:
9856 i.seg[i.mem_operands] = &ds;
9857 break;
9858 case 4:
9859 i.seg[i.mem_operands] = &fs;
9860 break;
9861 case 5:
9862 i.seg[i.mem_operands] = &gs;
9863 break;
9864 }
252b5132 9865
24eab124 9866 /* Skip the ':' and whitespace. */
252b5132
RH
9867 ++op_string;
9868 if (is_space_char (*op_string))
24eab124 9869 ++op_string;
252b5132 9870
24eab124
AM
9871 if (!is_digit_char (*op_string)
9872 && !is_identifier_char (*op_string)
9873 && *op_string != '('
9874 && *op_string != ABSOLUTE_PREFIX)
9875 {
9876 as_bad (_("bad memory operand `%s'"), op_string);
9877 return 0;
9878 }
47926f60 9879 /* Handle case of %es:*foo. */
24eab124
AM
9880 if (*op_string == ABSOLUTE_PREFIX)
9881 {
9882 ++op_string;
9883 if (is_space_char (*op_string))
9884 ++op_string;
40fb9820 9885 i.types[this_operand].bitfield.jumpabsolute = 1;
24eab124
AM
9886 }
9887 goto do_memory_reference;
9888 }
43234a1e
L
9889
9890 /* Handle vector operations. */
9891 if (*op_string == '{')
9892 {
9893 op_string = check_VecOperations (op_string, NULL);
9894 if (op_string == NULL)
9895 return 0;
9896 }
9897
24eab124
AM
9898 if (*op_string)
9899 {
d0b47220 9900 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
9901 return 0;
9902 }
40fb9820
L
9903 temp = r->reg_type;
9904 temp.bitfield.baseindex = 0;
c6fb90c8
L
9905 i.types[this_operand] = operand_type_or (i.types[this_operand],
9906 temp);
7d5e4556 9907 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 9908 i.op[this_operand].regs = r;
24eab124
AM
9909 i.reg_operands++;
9910 }
af6bdddf
AM
9911 else if (*op_string == REGISTER_PREFIX)
9912 {
9913 as_bad (_("bad register name `%s'"), op_string);
9914 return 0;
9915 }
24eab124 9916 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 9917 {
24eab124 9918 ++op_string;
40fb9820 9919 if (i.types[this_operand].bitfield.jumpabsolute)
24eab124 9920 {
d0b47220 9921 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
9922 return 0;
9923 }
9924 if (!i386_immediate (op_string))
9925 return 0;
9926 }
43234a1e
L
9927 else if (RC_SAE_immediate (operand_string))
9928 {
9929 /* If it is a RC or SAE immediate, do nothing. */
9930 ;
9931 }
24eab124
AM
9932 else if (is_digit_char (*op_string)
9933 || is_identifier_char (*op_string)
d02603dc 9934 || *op_string == '"'
e5cb08ac 9935 || *op_string == '(')
24eab124 9936 {
47926f60 9937 /* This is a memory reference of some sort. */
af6bdddf 9938 char *base_string;
252b5132 9939
47926f60 9940 /* Start and end of displacement string expression (if found). */
eecb386c
AM
9941 char *displacement_string_start;
9942 char *displacement_string_end;
43234a1e 9943 char *vop_start;
252b5132 9944
24eab124 9945 do_memory_reference:
8325cc63
JB
9946 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9947 return 0;
24eab124 9948 if ((i.mem_operands == 1
40fb9820 9949 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
9950 || i.mem_operands == 2)
9951 {
9952 as_bad (_("too many memory references for `%s'"),
9953 current_templates->start->name);
9954 return 0;
9955 }
252b5132 9956
24eab124
AM
9957 /* Check for base index form. We detect the base index form by
9958 looking for an ')' at the end of the operand, searching
9959 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9960 after the '('. */
af6bdddf 9961 base_string = op_string + strlen (op_string);
c3332e24 9962
43234a1e
L
9963 /* Handle vector operations. */
9964 vop_start = strchr (op_string, '{');
9965 if (vop_start && vop_start < base_string)
9966 {
9967 if (check_VecOperations (vop_start, base_string) == NULL)
9968 return 0;
9969 base_string = vop_start;
9970 }
9971
af6bdddf
AM
9972 --base_string;
9973 if (is_space_char (*base_string))
9974 --base_string;
252b5132 9975
47926f60 9976 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
9977 displacement_string_start = op_string;
9978 displacement_string_end = base_string + 1;
252b5132 9979
24eab124
AM
9980 if (*base_string == ')')
9981 {
af6bdddf 9982 char *temp_string;
24eab124
AM
9983 unsigned int parens_balanced = 1;
9984 /* We've already checked that the number of left & right ()'s are
47926f60 9985 equal, so this loop will not be infinite. */
24eab124
AM
9986 do
9987 {
9988 base_string--;
9989 if (*base_string == ')')
9990 parens_balanced++;
9991 if (*base_string == '(')
9992 parens_balanced--;
9993 }
9994 while (parens_balanced);
c3332e24 9995
af6bdddf 9996 temp_string = base_string;
c3332e24 9997
24eab124 9998 /* Skip past '(' and whitespace. */
252b5132
RH
9999 ++base_string;
10000 if (is_space_char (*base_string))
24eab124 10001 ++base_string;
252b5132 10002
af6bdddf 10003 if (*base_string == ','
4eed87de
AM
10004 || ((i.base_reg = parse_register (base_string, &end_op))
10005 != NULL))
252b5132 10006 {
af6bdddf 10007 displacement_string_end = temp_string;
252b5132 10008
40fb9820 10009 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10010
af6bdddf 10011 if (i.base_reg)
24eab124 10012 {
24eab124
AM
10013 base_string = end_op;
10014 if (is_space_char (*base_string))
10015 ++base_string;
af6bdddf
AM
10016 }
10017
10018 /* There may be an index reg or scale factor here. */
10019 if (*base_string == ',')
10020 {
10021 ++base_string;
10022 if (is_space_char (*base_string))
10023 ++base_string;
10024
4eed87de
AM
10025 if ((i.index_reg = parse_register (base_string, &end_op))
10026 != NULL)
24eab124 10027 {
af6bdddf 10028 base_string = end_op;
24eab124
AM
10029 if (is_space_char (*base_string))
10030 ++base_string;
af6bdddf
AM
10031 if (*base_string == ',')
10032 {
10033 ++base_string;
10034 if (is_space_char (*base_string))
10035 ++base_string;
10036 }
e5cb08ac 10037 else if (*base_string != ')')
af6bdddf 10038 {
4eed87de
AM
10039 as_bad (_("expecting `,' or `)' "
10040 "after index register in `%s'"),
af6bdddf
AM
10041 operand_string);
10042 return 0;
10043 }
24eab124 10044 }
af6bdddf 10045 else if (*base_string == REGISTER_PREFIX)
24eab124 10046 {
f76bf5e0
L
10047 end_op = strchr (base_string, ',');
10048 if (end_op)
10049 *end_op = '\0';
af6bdddf 10050 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10051 return 0;
10052 }
252b5132 10053
47926f60 10054 /* Check for scale factor. */
551c1ca1 10055 if (*base_string != ')')
af6bdddf 10056 {
551c1ca1
AM
10057 char *end_scale = i386_scale (base_string);
10058
10059 if (!end_scale)
af6bdddf 10060 return 0;
24eab124 10061
551c1ca1 10062 base_string = end_scale;
af6bdddf
AM
10063 if (is_space_char (*base_string))
10064 ++base_string;
10065 if (*base_string != ')')
10066 {
4eed87de
AM
10067 as_bad (_("expecting `)' "
10068 "after scale factor in `%s'"),
af6bdddf
AM
10069 operand_string);
10070 return 0;
10071 }
10072 }
10073 else if (!i.index_reg)
24eab124 10074 {
4eed87de
AM
10075 as_bad (_("expecting index register or scale factor "
10076 "after `,'; got '%c'"),
af6bdddf 10077 *base_string);
24eab124
AM
10078 return 0;
10079 }
10080 }
af6bdddf 10081 else if (*base_string != ')')
24eab124 10082 {
4eed87de
AM
10083 as_bad (_("expecting `,' or `)' "
10084 "after base register in `%s'"),
af6bdddf 10085 operand_string);
24eab124
AM
10086 return 0;
10087 }
c3332e24 10088 }
af6bdddf 10089 else if (*base_string == REGISTER_PREFIX)
c3332e24 10090 {
f76bf5e0
L
10091 end_op = strchr (base_string, ',');
10092 if (end_op)
10093 *end_op = '\0';
af6bdddf 10094 as_bad (_("bad register name `%s'"), base_string);
24eab124 10095 return 0;
c3332e24 10096 }
24eab124
AM
10097 }
10098
10099 /* If there's an expression beginning the operand, parse it,
10100 assuming displacement_string_start and
10101 displacement_string_end are meaningful. */
10102 if (displacement_string_start != displacement_string_end)
10103 {
10104 if (!i386_displacement (displacement_string_start,
10105 displacement_string_end))
10106 return 0;
10107 }
10108
10109 /* Special case for (%dx) while doing input/output op. */
10110 if (i.base_reg
2fb5be8d 10111 && i.base_reg->reg_type.bitfield.inoutportreg
24eab124
AM
10112 && i.index_reg == 0
10113 && i.log2_scale_factor == 0
10114 && i.seg[i.mem_operands] == 0
40fb9820 10115 && !operand_type_check (i.types[this_operand], disp))
24eab124 10116 {
2fb5be8d 10117 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10118 return 1;
10119 }
10120
eecb386c
AM
10121 if (i386_index_check (operand_string) == 0)
10122 return 0;
c48dadc9 10123 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10124 if (i.mem_operands == 0)
10125 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10126 i.mem_operands++;
10127 }
10128 else
ce8a8b2f
AM
10129 {
10130 /* It's not a memory operand; argh! */
24eab124
AM
10131 as_bad (_("invalid char %s beginning operand %d `%s'"),
10132 output_invalid (*op_string),
10133 this_operand + 1,
10134 op_string);
10135 return 0;
10136 }
47926f60 10137 return 1; /* Normal return. */
252b5132
RH
10138}
10139\f
fa94de6b
RM
10140/* Calculate the maximum variable size (i.e., excluding fr_fix)
10141 that an rs_machine_dependent frag may reach. */
10142
10143unsigned int
10144i386_frag_max_var (fragS *frag)
10145{
10146 /* The only relaxable frags are for jumps.
10147 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10148 gas_assert (frag->fr_type == rs_machine_dependent);
10149 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10150}
10151
b084df0b
L
10152#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10153static int
8dcea932 10154elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
10155{
10156 /* STT_GNU_IFUNC symbol must go through PLT. */
10157 if ((symbol_get_bfdsym (fr_symbol)->flags
10158 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10159 return 0;
10160
10161 if (!S_IS_EXTERNAL (fr_symbol))
10162 /* Symbol may be weak or local. */
10163 return !S_IS_WEAK (fr_symbol);
10164
8dcea932
L
10165 /* Global symbols with non-default visibility can't be preempted. */
10166 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10167 return 1;
10168
10169 if (fr_var != NO_RELOC)
10170 switch ((enum bfd_reloc_code_real) fr_var)
10171 {
10172 case BFD_RELOC_386_PLT32:
10173 case BFD_RELOC_X86_64_PLT32:
33eaf5de 10174 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
10175 return 0;
10176 default:
10177 abort ();
10178 }
10179
b084df0b
L
10180 /* Global symbols with default visibility in a shared library may be
10181 preempted by another definition. */
8dcea932 10182 return !shared;
b084df0b
L
10183}
10184#endif
10185
ee7fcc42
AM
10186/* md_estimate_size_before_relax()
10187
10188 Called just before relax() for rs_machine_dependent frags. The x86
10189 assembler uses these frags to handle variable size jump
10190 instructions.
10191
10192 Any symbol that is now undefined will not become defined.
10193 Return the correct fr_subtype in the frag.
10194 Return the initial "guess for variable size of frag" to caller.
10195 The guess is actually the growth beyond the fixed part. Whatever
10196 we do to grow the fixed or variable part contributes to our
10197 returned value. */
10198
252b5132 10199int
7016a5d5 10200md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 10201{
252b5132 10202 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
10203 check for un-relaxable symbols. On an ELF system, we can't relax
10204 an externally visible symbol, because it may be overridden by a
10205 shared library. */
10206 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 10207#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10208 || (IS_ELF
8dcea932
L
10209 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10210 fragP->fr_var))
fbeb56a4
DK
10211#endif
10212#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 10213 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 10214 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
10215#endif
10216 )
252b5132 10217 {
b98ef147
AM
10218 /* Symbol is undefined in this segment, or we need to keep a
10219 reloc so that weak symbols can be overridden. */
10220 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 10221 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
10222 unsigned char *opcode;
10223 int old_fr_fix;
f6af82bd 10224
ee7fcc42 10225 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 10226 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 10227 else if (size == 2)
f6af82bd 10228 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
10229#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10230 else if (need_plt32_p (fragP->fr_symbol))
10231 reloc_type = BFD_RELOC_X86_64_PLT32;
10232#endif
f6af82bd
AM
10233 else
10234 reloc_type = BFD_RELOC_32_PCREL;
252b5132 10235
ee7fcc42
AM
10236 old_fr_fix = fragP->fr_fix;
10237 opcode = (unsigned char *) fragP->fr_opcode;
10238
fddf5b5b 10239 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 10240 {
fddf5b5b
AM
10241 case UNCOND_JUMP:
10242 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 10243 opcode[0] = 0xe9;
252b5132 10244 fragP->fr_fix += size;
062cd5e7
AS
10245 fix_new (fragP, old_fr_fix, size,
10246 fragP->fr_symbol,
10247 fragP->fr_offset, 1,
10248 reloc_type);
252b5132
RH
10249 break;
10250
fddf5b5b 10251 case COND_JUMP86:
412167cb
AM
10252 if (size == 2
10253 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
10254 {
10255 /* Negate the condition, and branch past an
10256 unconditional jump. */
10257 opcode[0] ^= 1;
10258 opcode[1] = 3;
10259 /* Insert an unconditional jump. */
10260 opcode[2] = 0xe9;
10261 /* We added two extra opcode bytes, and have a two byte
10262 offset. */
10263 fragP->fr_fix += 2 + 2;
062cd5e7
AS
10264 fix_new (fragP, old_fr_fix + 2, 2,
10265 fragP->fr_symbol,
10266 fragP->fr_offset, 1,
10267 reloc_type);
fddf5b5b
AM
10268 break;
10269 }
10270 /* Fall through. */
10271
10272 case COND_JUMP:
412167cb
AM
10273 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10274 {
3e02c1cc
AM
10275 fixS *fixP;
10276
412167cb 10277 fragP->fr_fix += 1;
3e02c1cc
AM
10278 fixP = fix_new (fragP, old_fr_fix, 1,
10279 fragP->fr_symbol,
10280 fragP->fr_offset, 1,
10281 BFD_RELOC_8_PCREL);
10282 fixP->fx_signed = 1;
412167cb
AM
10283 break;
10284 }
93c2a809 10285
24eab124 10286 /* This changes the byte-displacement jump 0x7N
fddf5b5b 10287 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 10288 opcode[1] = opcode[0] + 0x10;
f6af82bd 10289 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
10290 /* We've added an opcode byte. */
10291 fragP->fr_fix += 1 + size;
062cd5e7
AS
10292 fix_new (fragP, old_fr_fix + 1, size,
10293 fragP->fr_symbol,
10294 fragP->fr_offset, 1,
10295 reloc_type);
252b5132 10296 break;
fddf5b5b
AM
10297
10298 default:
10299 BAD_CASE (fragP->fr_subtype);
10300 break;
252b5132
RH
10301 }
10302 frag_wane (fragP);
ee7fcc42 10303 return fragP->fr_fix - old_fr_fix;
252b5132 10304 }
93c2a809 10305
93c2a809
AM
10306 /* Guess size depending on current relax state. Initially the relax
10307 state will correspond to a short jump and we return 1, because
10308 the variable part of the frag (the branch offset) is one byte
10309 long. However, we can relax a section more than once and in that
10310 case we must either set fr_subtype back to the unrelaxed state,
10311 or return the value for the appropriate branch. */
10312 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
10313}
10314
47926f60
KH
10315/* Called after relax() is finished.
10316
10317 In: Address of frag.
10318 fr_type == rs_machine_dependent.
10319 fr_subtype is what the address relaxed to.
10320
10321 Out: Any fixSs and constants are set up.
10322 Caller will turn frag into a ".space 0". */
10323
252b5132 10324void
7016a5d5
TG
10325md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10326 fragS *fragP)
252b5132 10327{
29b0f896 10328 unsigned char *opcode;
252b5132 10329 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
10330 offsetT target_address;
10331 offsetT opcode_address;
252b5132 10332 unsigned int extension = 0;
847f7ad4 10333 offsetT displacement_from_opcode_start;
252b5132
RH
10334
10335 opcode = (unsigned char *) fragP->fr_opcode;
10336
47926f60 10337 /* Address we want to reach in file space. */
252b5132 10338 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 10339
47926f60 10340 /* Address opcode resides at in file space. */
252b5132
RH
10341 opcode_address = fragP->fr_address + fragP->fr_fix;
10342
47926f60 10343 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
10344 displacement_from_opcode_start = target_address - opcode_address;
10345
fddf5b5b 10346 if ((fragP->fr_subtype & BIG) == 0)
252b5132 10347 {
47926f60
KH
10348 /* Don't have to change opcode. */
10349 extension = 1; /* 1 opcode + 1 displacement */
252b5132 10350 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
10351 }
10352 else
10353 {
10354 if (no_cond_jump_promotion
10355 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
10356 as_warn_where (fragP->fr_file, fragP->fr_line,
10357 _("long jump required"));
252b5132 10358
fddf5b5b
AM
10359 switch (fragP->fr_subtype)
10360 {
10361 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10362 extension = 4; /* 1 opcode + 4 displacement */
10363 opcode[0] = 0xe9;
10364 where_to_put_displacement = &opcode[1];
10365 break;
252b5132 10366
fddf5b5b
AM
10367 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10368 extension = 2; /* 1 opcode + 2 displacement */
10369 opcode[0] = 0xe9;
10370 where_to_put_displacement = &opcode[1];
10371 break;
252b5132 10372
fddf5b5b
AM
10373 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10374 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10375 extension = 5; /* 2 opcode + 4 displacement */
10376 opcode[1] = opcode[0] + 0x10;
10377 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10378 where_to_put_displacement = &opcode[2];
10379 break;
252b5132 10380
fddf5b5b
AM
10381 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10382 extension = 3; /* 2 opcode + 2 displacement */
10383 opcode[1] = opcode[0] + 0x10;
10384 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10385 where_to_put_displacement = &opcode[2];
10386 break;
252b5132 10387
fddf5b5b
AM
10388 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10389 extension = 4;
10390 opcode[0] ^= 1;
10391 opcode[1] = 3;
10392 opcode[2] = 0xe9;
10393 where_to_put_displacement = &opcode[3];
10394 break;
10395
10396 default:
10397 BAD_CASE (fragP->fr_subtype);
10398 break;
10399 }
252b5132 10400 }
fddf5b5b 10401
7b81dfbb
AJ
10402 /* If size if less then four we are sure that the operand fits,
10403 but if it's 4, then it could be that the displacement is larger
10404 then -/+ 2GB. */
10405 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10406 && object_64bit
10407 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
10408 + ((addressT) 1 << 31))
10409 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
10410 {
10411 as_bad_where (fragP->fr_file, fragP->fr_line,
10412 _("jump target out of range"));
10413 /* Make us emit 0. */
10414 displacement_from_opcode_start = extension;
10415 }
47926f60 10416 /* Now put displacement after opcode. */
252b5132
RH
10417 md_number_to_chars ((char *) where_to_put_displacement,
10418 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 10419 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
10420 fragP->fr_fix += extension;
10421}
10422\f
7016a5d5 10423/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
10424 by our caller that we have all the info we need to fix it up.
10425
7016a5d5
TG
10426 Parameter valP is the pointer to the value of the bits.
10427
252b5132
RH
10428 On the 386, immediates, displacements, and data pointers are all in
10429 the same (little-endian) format, so we don't need to care about which
10430 we are handling. */
10431
94f592af 10432void
7016a5d5 10433md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 10434{
94f592af 10435 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 10436 valueT value = *valP;
252b5132 10437
f86103b7 10438#if !defined (TE_Mach)
93382f6d
AM
10439 if (fixP->fx_pcrel)
10440 {
10441 switch (fixP->fx_r_type)
10442 {
5865bb77
ILT
10443 default:
10444 break;
10445
d6ab8113
JB
10446 case BFD_RELOC_64:
10447 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10448 break;
93382f6d 10449 case BFD_RELOC_32:
ae8887b5 10450 case BFD_RELOC_X86_64_32S:
93382f6d
AM
10451 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10452 break;
10453 case BFD_RELOC_16:
10454 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10455 break;
10456 case BFD_RELOC_8:
10457 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10458 break;
10459 }
10460 }
252b5132 10461
a161fe53 10462 if (fixP->fx_addsy != NULL
31312f95 10463 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 10464 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 10465 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 10466 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 10467 && !use_rela_relocations)
252b5132 10468 {
31312f95
AM
10469 /* This is a hack. There should be a better way to handle this.
10470 This covers for the fact that bfd_install_relocation will
10471 subtract the current location (for partial_inplace, PC relative
10472 relocations); see more below. */
252b5132 10473#ifndef OBJ_AOUT
718ddfc0 10474 if (IS_ELF
252b5132
RH
10475#ifdef TE_PE
10476 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10477#endif
10478 )
10479 value += fixP->fx_where + fixP->fx_frag->fr_address;
10480#endif
10481#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10482 if (IS_ELF)
252b5132 10483 {
6539b54b 10484 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 10485
6539b54b 10486 if ((sym_seg == seg
2f66722d 10487 || (symbol_section_p (fixP->fx_addsy)
6539b54b 10488 && sym_seg != absolute_section))
af65af87 10489 && !generic_force_reloc (fixP))
2f66722d
AM
10490 {
10491 /* Yes, we add the values in twice. This is because
6539b54b
AM
10492 bfd_install_relocation subtracts them out again. I think
10493 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
10494 it. FIXME. */
10495 value += fixP->fx_where + fixP->fx_frag->fr_address;
10496 }
252b5132
RH
10497 }
10498#endif
10499#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
10500 /* For some reason, the PE format does not store a
10501 section address offset for a PC relative symbol. */
10502 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 10503 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
10504 value += md_pcrel_from (fixP);
10505#endif
10506 }
fbeb56a4 10507#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
10508 if (fixP->fx_addsy != NULL
10509 && S_IS_WEAK (fixP->fx_addsy)
10510 /* PR 16858: Do not modify weak function references. */
10511 && ! fixP->fx_pcrel)
fbeb56a4 10512 {
296a8689
NC
10513#if !defined (TE_PEP)
10514 /* For x86 PE weak function symbols are neither PC-relative
10515 nor do they set S_IS_FUNCTION. So the only reliable way
10516 to detect them is to check the flags of their containing
10517 section. */
10518 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10519 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10520 ;
10521 else
10522#endif
fbeb56a4
DK
10523 value -= S_GET_VALUE (fixP->fx_addsy);
10524 }
10525#endif
252b5132
RH
10526
10527 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 10528 and we must not disappoint it. */
252b5132 10529#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 10530 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
10531 switch (fixP->fx_r_type)
10532 {
10533 case BFD_RELOC_386_PLT32:
3e73aa7c 10534 case BFD_RELOC_X86_64_PLT32:
47926f60
KH
10535 /* Make the jump instruction point to the address of the operand. At
10536 runtime we merely add the offset to the actual PLT entry. */
10537 value = -4;
10538 break;
31312f95 10539
13ae64f3
JJ
10540 case BFD_RELOC_386_TLS_GD:
10541 case BFD_RELOC_386_TLS_LDM:
13ae64f3 10542 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
10543 case BFD_RELOC_386_TLS_IE:
10544 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 10545 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
10546 case BFD_RELOC_X86_64_TLSGD:
10547 case BFD_RELOC_X86_64_TLSLD:
10548 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 10549 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
10550 value = 0; /* Fully resolved at runtime. No addend. */
10551 /* Fallthrough */
10552 case BFD_RELOC_386_TLS_LE:
10553 case BFD_RELOC_386_TLS_LDO_32:
10554 case BFD_RELOC_386_TLS_LE_32:
10555 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 10556 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 10557 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 10558 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
10559 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10560 break;
10561
67a4f2b7
AO
10562 case BFD_RELOC_386_TLS_DESC_CALL:
10563 case BFD_RELOC_X86_64_TLSDESC_CALL:
10564 value = 0; /* Fully resolved at runtime. No addend. */
10565 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10566 fixP->fx_done = 0;
10567 return;
10568
47926f60
KH
10569 case BFD_RELOC_VTABLE_INHERIT:
10570 case BFD_RELOC_VTABLE_ENTRY:
10571 fixP->fx_done = 0;
94f592af 10572 return;
47926f60
KH
10573
10574 default:
10575 break;
10576 }
10577#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 10578 *valP = value;
f86103b7 10579#endif /* !defined (TE_Mach) */
3e73aa7c 10580
3e73aa7c 10581 /* Are we finished with this relocation now? */
c6682705 10582 if (fixP->fx_addsy == NULL)
3e73aa7c 10583 fixP->fx_done = 1;
fbeb56a4
DK
10584#if defined (OBJ_COFF) && defined (TE_PE)
10585 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10586 {
10587 fixP->fx_done = 0;
10588 /* Remember value for tc_gen_reloc. */
10589 fixP->fx_addnumber = value;
10590 /* Clear out the frag for now. */
10591 value = 0;
10592 }
10593#endif
3e73aa7c
JH
10594 else if (use_rela_relocations)
10595 {
10596 fixP->fx_no_overflow = 1;
062cd5e7
AS
10597 /* Remember value for tc_gen_reloc. */
10598 fixP->fx_addnumber = value;
3e73aa7c
JH
10599 value = 0;
10600 }
f86103b7 10601
94f592af 10602 md_number_to_chars (p, value, fixP->fx_size);
252b5132 10603}
252b5132 10604\f
6d4af3c2 10605const char *
499ac353 10606md_atof (int type, char *litP, int *sizeP)
252b5132 10607{
499ac353
NC
10608 /* This outputs the LITTLENUMs in REVERSE order;
10609 in accord with the bigendian 386. */
10610 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
10611}
10612\f
2d545b82 10613static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 10614
252b5132 10615static char *
e3bb37b5 10616output_invalid (int c)
252b5132 10617{
3882b010 10618 if (ISPRINT (c))
f9f21a03
L
10619 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10620 "'%c'", c);
252b5132 10621 else
f9f21a03 10622 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 10623 "(0x%x)", (unsigned char) c);
252b5132
RH
10624 return output_invalid_buf;
10625}
10626
af6bdddf 10627/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
10628
10629static const reg_entry *
4d1bb795 10630parse_real_register (char *reg_string, char **end_op)
252b5132 10631{
af6bdddf
AM
10632 char *s = reg_string;
10633 char *p;
252b5132
RH
10634 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10635 const reg_entry *r;
10636
10637 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10638 if (*s == REGISTER_PREFIX)
10639 ++s;
10640
10641 if (is_space_char (*s))
10642 ++s;
10643
10644 p = reg_name_given;
af6bdddf 10645 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
10646 {
10647 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
10648 return (const reg_entry *) NULL;
10649 s++;
252b5132
RH
10650 }
10651
6588847e
DN
10652 /* For naked regs, make sure that we are not dealing with an identifier.
10653 This prevents confusing an identifier like `eax_var' with register
10654 `eax'. */
10655 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10656 return (const reg_entry *) NULL;
10657
af6bdddf 10658 *end_op = s;
252b5132
RH
10659
10660 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10661
5f47d35b 10662 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 10663 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 10664 {
0e0eea78
JB
10665 if (!cpu_arch_flags.bitfield.cpu8087
10666 && !cpu_arch_flags.bitfield.cpu287
10667 && !cpu_arch_flags.bitfield.cpu387)
10668 return (const reg_entry *) NULL;
10669
5f47d35b
AM
10670 if (is_space_char (*s))
10671 ++s;
10672 if (*s == '(')
10673 {
af6bdddf 10674 ++s;
5f47d35b
AM
10675 if (is_space_char (*s))
10676 ++s;
10677 if (*s >= '0' && *s <= '7')
10678 {
db557034 10679 int fpr = *s - '0';
af6bdddf 10680 ++s;
5f47d35b
AM
10681 if (is_space_char (*s))
10682 ++s;
10683 if (*s == ')')
10684 {
10685 *end_op = s + 1;
1e9cc1c2 10686 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
10687 know (r);
10688 return r + fpr;
5f47d35b 10689 }
5f47d35b 10690 }
47926f60 10691 /* We have "%st(" then garbage. */
5f47d35b
AM
10692 return (const reg_entry *) NULL;
10693 }
10694 }
10695
a60de03c
JB
10696 if (r == NULL || allow_pseudo_reg)
10697 return r;
10698
0dfbf9d7 10699 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
10700 return (const reg_entry *) NULL;
10701
dc821c5f 10702 if ((r->reg_type.bitfield.dword
192dc9c6
JB
10703 || r->reg_type.bitfield.sreg3
10704 || r->reg_type.bitfield.control
10705 || r->reg_type.bitfield.debug
10706 || r->reg_type.bitfield.test)
10707 && !cpu_arch_flags.bitfield.cpui386)
10708 return (const reg_entry *) NULL;
10709
6e041cf4 10710 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
10711 return (const reg_entry *) NULL;
10712
6e041cf4
JB
10713 if (!cpu_arch_flags.bitfield.cpuavx512f)
10714 {
10715 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10716 return (const reg_entry *) NULL;
40f12533 10717
6e041cf4
JB
10718 if (!cpu_arch_flags.bitfield.cpuavx)
10719 {
10720 if (r->reg_type.bitfield.ymmword)
10721 return (const reg_entry *) NULL;
1848e567 10722
6e041cf4
JB
10723 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10724 return (const reg_entry *) NULL;
10725 }
10726 }
43234a1e 10727
1adf7f56
JB
10728 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10729 return (const reg_entry *) NULL;
10730
db51cc60 10731 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 10732 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
10733 return (const reg_entry *) NULL;
10734
1d3f8286
JB
10735 /* Upper 16 vector registers are only available with VREX in 64bit
10736 mode, and require EVEX encoding. */
10737 if (r->reg_flags & RegVRex)
43234a1e 10738 {
e951d5ca 10739 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
10740 || flag_code != CODE_64BIT)
10741 return (const reg_entry *) NULL;
1d3f8286
JB
10742
10743 i.vec_encoding = vex_encoding_evex;
43234a1e
L
10744 }
10745
4787f4a5
JB
10746 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10747 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
1ae00879 10748 && flag_code != CODE_64BIT)
20f0a1fc 10749 return (const reg_entry *) NULL;
1ae00879 10750
b7240065
JB
10751 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10752 return (const reg_entry *) NULL;
10753
252b5132
RH
10754 return r;
10755}
4d1bb795
JB
10756
10757/* REG_STRING starts *before* REGISTER_PREFIX. */
10758
10759static const reg_entry *
10760parse_register (char *reg_string, char **end_op)
10761{
10762 const reg_entry *r;
10763
10764 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10765 r = parse_real_register (reg_string, end_op);
10766 else
10767 r = NULL;
10768 if (!r)
10769 {
10770 char *save = input_line_pointer;
10771 char c;
10772 symbolS *symbolP;
10773
10774 input_line_pointer = reg_string;
d02603dc 10775 c = get_symbol_name (&reg_string);
4d1bb795
JB
10776 symbolP = symbol_find (reg_string);
10777 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10778 {
10779 const expressionS *e = symbol_get_value_expression (symbolP);
10780
0398aac5 10781 know (e->X_op == O_register);
4eed87de 10782 know (e->X_add_number >= 0
c3fe08fa 10783 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 10784 r = i386_regtab + e->X_add_number;
d3bb6b49 10785 if ((r->reg_flags & RegVRex))
86fa6981 10786 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
10787 *end_op = input_line_pointer;
10788 }
10789 *input_line_pointer = c;
10790 input_line_pointer = save;
10791 }
10792 return r;
10793}
10794
10795int
10796i386_parse_name (char *name, expressionS *e, char *nextcharP)
10797{
10798 const reg_entry *r;
10799 char *end = input_line_pointer;
10800
10801 *end = *nextcharP;
10802 r = parse_register (name, &input_line_pointer);
10803 if (r && end <= input_line_pointer)
10804 {
10805 *nextcharP = *input_line_pointer;
10806 *input_line_pointer = 0;
10807 e->X_op = O_register;
10808 e->X_add_number = r - i386_regtab;
10809 return 1;
10810 }
10811 input_line_pointer = end;
10812 *end = 0;
ee86248c 10813 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
10814}
10815
10816void
10817md_operand (expressionS *e)
10818{
ee86248c
JB
10819 char *end;
10820 const reg_entry *r;
4d1bb795 10821
ee86248c
JB
10822 switch (*input_line_pointer)
10823 {
10824 case REGISTER_PREFIX:
10825 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
10826 if (r)
10827 {
10828 e->X_op = O_register;
10829 e->X_add_number = r - i386_regtab;
10830 input_line_pointer = end;
10831 }
ee86248c
JB
10832 break;
10833
10834 case '[':
9c2799c2 10835 gas_assert (intel_syntax);
ee86248c
JB
10836 end = input_line_pointer++;
10837 expression (e);
10838 if (*input_line_pointer == ']')
10839 {
10840 ++input_line_pointer;
10841 e->X_op_symbol = make_expr_symbol (e);
10842 e->X_add_symbol = NULL;
10843 e->X_add_number = 0;
10844 e->X_op = O_index;
10845 }
10846 else
10847 {
10848 e->X_op = O_absent;
10849 input_line_pointer = end;
10850 }
10851 break;
4d1bb795
JB
10852 }
10853}
10854
252b5132 10855\f
4cc782b5 10856#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 10857const char *md_shortopts = "kVQ:sqnO::";
252b5132 10858#else
b6f8c7c4 10859const char *md_shortopts = "qnO::";
252b5132 10860#endif
6e0b89ee 10861
3e73aa7c 10862#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
10863#define OPTION_64 (OPTION_MD_BASE + 1)
10864#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
10865#define OPTION_MARCH (OPTION_MD_BASE + 3)
10866#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
10867#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10868#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10869#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10870#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 10871#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 10872#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 10873#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
10874#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10875#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10876#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 10877#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
10878#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10879#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 10880#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 10881#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 10882#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 10883#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
10884#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10885#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 10886#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 10887#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
b3b91714 10888
99ad8390
NC
10889struct option md_longopts[] =
10890{
3e73aa7c 10891 {"32", no_argument, NULL, OPTION_32},
321098a5 10892#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10893 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 10894 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
10895#endif
10896#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 10897 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 10898 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 10899 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 10900#endif
b3b91714 10901 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
10902 {"march", required_argument, NULL, OPTION_MARCH},
10903 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
10904 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10905 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10906 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10907 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 10908 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 10909 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 10910 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 10911 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
7e8b059b 10912 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
10913 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10914 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
10915# if defined (TE_PE) || defined (TE_PEP)
10916 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10917#endif
d1982f93 10918 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 10919 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 10920 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 10921 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
5db04b09
L
10922 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10923 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
10924 {NULL, no_argument, NULL, 0}
10925};
10926size_t md_longopts_size = sizeof (md_longopts);
10927
10928int
17b9d67d 10929md_parse_option (int c, const char *arg)
252b5132 10930{
91d6fa6a 10931 unsigned int j;
293f5f65 10932 char *arch, *next, *saved;
9103f4f4 10933
252b5132
RH
10934 switch (c)
10935 {
12b55ccc
L
10936 case 'n':
10937 optimize_align_code = 0;
10938 break;
10939
a38cf1db
AM
10940 case 'q':
10941 quiet_warnings = 1;
252b5132
RH
10942 break;
10943
10944#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
10945 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10946 should be emitted or not. FIXME: Not implemented. */
10947 case 'Q':
252b5132
RH
10948 break;
10949
10950 /* -V: SVR4 argument to print version ID. */
10951 case 'V':
10952 print_version_id ();
10953 break;
10954
a38cf1db
AM
10955 /* -k: Ignore for FreeBSD compatibility. */
10956 case 'k':
252b5132 10957 break;
4cc782b5
ILT
10958
10959 case 's':
10960 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 10961 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 10962 break;
8dcea932
L
10963
10964 case OPTION_MSHARED:
10965 shared = 1;
10966 break;
b4a3a7b4
L
10967
10968 case OPTION_X86_USED_NOTE:
10969 if (strcasecmp (arg, "yes") == 0)
10970 x86_used_note = 1;
10971 else if (strcasecmp (arg, "no") == 0)
10972 x86_used_note = 0;
10973 else
10974 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
10975 break;
10976
10977
99ad8390 10978#endif
321098a5 10979#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 10980 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
10981 case OPTION_64:
10982 {
10983 const char **list, **l;
10984
3e73aa7c
JH
10985 list = bfd_target_list ();
10986 for (l = list; *l != NULL; l++)
8620418b 10987 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
10988 || strcmp (*l, "coff-x86-64") == 0
10989 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
10990 || strcmp (*l, "pei-x86-64") == 0
10991 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
10992 {
10993 default_arch = "x86_64";
10994 break;
10995 }
3e73aa7c 10996 if (*l == NULL)
2b5d6a91 10997 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
10998 free (list);
10999 }
11000 break;
11001#endif
252b5132 11002
351f65ca 11003#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 11004 case OPTION_X32:
351f65ca
L
11005 if (IS_ELF)
11006 {
11007 const char **list, **l;
11008
11009 list = bfd_target_list ();
11010 for (l = list; *l != NULL; l++)
11011 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11012 {
11013 default_arch = "x86_64:32";
11014 break;
11015 }
11016 if (*l == NULL)
2b5d6a91 11017 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
11018 free (list);
11019 }
11020 else
11021 as_fatal (_("32bit x86_64 is only supported for ELF"));
11022 break;
11023#endif
11024
6e0b89ee
AM
11025 case OPTION_32:
11026 default_arch = "i386";
11027 break;
11028
b3b91714
AM
11029 case OPTION_DIVIDE:
11030#ifdef SVR4_COMMENT_CHARS
11031 {
11032 char *n, *t;
11033 const char *s;
11034
add39d23 11035 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
11036 t = n;
11037 for (s = i386_comment_chars; *s != '\0'; s++)
11038 if (*s != '/')
11039 *t++ = *s;
11040 *t = '\0';
11041 i386_comment_chars = n;
11042 }
11043#endif
11044 break;
11045
9103f4f4 11046 case OPTION_MARCH:
293f5f65
L
11047 saved = xstrdup (arg);
11048 arch = saved;
11049 /* Allow -march=+nosse. */
11050 if (*arch == '+')
11051 arch++;
6305a203 11052 do
9103f4f4 11053 {
6305a203 11054 if (*arch == '.')
2b5d6a91 11055 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11056 next = strchr (arch, '+');
11057 if (next)
11058 *next++ = '\0';
91d6fa6a 11059 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11060 {
91d6fa6a 11061 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 11062 {
6305a203 11063 /* Processor. */
1ded5609
JB
11064 if (! cpu_arch[j].flags.bitfield.cpui386)
11065 continue;
11066
91d6fa6a 11067 cpu_arch_name = cpu_arch[j].name;
6305a203 11068 cpu_sub_arch_name = NULL;
91d6fa6a
NC
11069 cpu_arch_flags = cpu_arch[j].flags;
11070 cpu_arch_isa = cpu_arch[j].type;
11071 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
11072 if (!cpu_arch_tune_set)
11073 {
11074 cpu_arch_tune = cpu_arch_isa;
11075 cpu_arch_tune_flags = cpu_arch_isa_flags;
11076 }
11077 break;
11078 }
91d6fa6a
NC
11079 else if (*cpu_arch [j].name == '.'
11080 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 11081 {
33eaf5de 11082 /* ISA extension. */
6305a203 11083 i386_cpu_flags flags;
309d3373 11084
293f5f65
L
11085 flags = cpu_flags_or (cpu_arch_flags,
11086 cpu_arch[j].flags);
81486035 11087
5b64d091 11088 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
11089 {
11090 if (cpu_sub_arch_name)
11091 {
11092 char *name = cpu_sub_arch_name;
11093 cpu_sub_arch_name = concat (name,
91d6fa6a 11094 cpu_arch[j].name,
1bf57e9f 11095 (const char *) NULL);
6305a203
L
11096 free (name);
11097 }
11098 else
91d6fa6a 11099 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 11100 cpu_arch_flags = flags;
a586129e 11101 cpu_arch_isa_flags = flags;
6305a203 11102 }
0089dace
L
11103 else
11104 cpu_arch_isa_flags
11105 = cpu_flags_or (cpu_arch_isa_flags,
11106 cpu_arch[j].flags);
6305a203 11107 break;
ccc9c027 11108 }
9103f4f4 11109 }
6305a203 11110
293f5f65
L
11111 if (j >= ARRAY_SIZE (cpu_arch))
11112 {
33eaf5de 11113 /* Disable an ISA extension. */
293f5f65
L
11114 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11115 if (strcmp (arch, cpu_noarch [j].name) == 0)
11116 {
11117 i386_cpu_flags flags;
11118
11119 flags = cpu_flags_and_not (cpu_arch_flags,
11120 cpu_noarch[j].flags);
11121 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11122 {
11123 if (cpu_sub_arch_name)
11124 {
11125 char *name = cpu_sub_arch_name;
11126 cpu_sub_arch_name = concat (arch,
11127 (const char *) NULL);
11128 free (name);
11129 }
11130 else
11131 cpu_sub_arch_name = xstrdup (arch);
11132 cpu_arch_flags = flags;
11133 cpu_arch_isa_flags = flags;
11134 }
11135 break;
11136 }
11137
11138 if (j >= ARRAY_SIZE (cpu_noarch))
11139 j = ARRAY_SIZE (cpu_arch);
11140 }
11141
91d6fa6a 11142 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11143 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
11144
11145 arch = next;
9103f4f4 11146 }
293f5f65
L
11147 while (next != NULL);
11148 free (saved);
9103f4f4
L
11149 break;
11150
11151 case OPTION_MTUNE:
11152 if (*arg == '.')
2b5d6a91 11153 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 11154 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 11155 {
91d6fa6a 11156 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 11157 {
ccc9c027 11158 cpu_arch_tune_set = 1;
91d6fa6a
NC
11159 cpu_arch_tune = cpu_arch [j].type;
11160 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
11161 break;
11162 }
11163 }
91d6fa6a 11164 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 11165 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
11166 break;
11167
1efbbeb4
L
11168 case OPTION_MMNEMONIC:
11169 if (strcasecmp (arg, "att") == 0)
11170 intel_mnemonic = 0;
11171 else if (strcasecmp (arg, "intel") == 0)
11172 intel_mnemonic = 1;
11173 else
2b5d6a91 11174 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
11175 break;
11176
11177 case OPTION_MSYNTAX:
11178 if (strcasecmp (arg, "att") == 0)
11179 intel_syntax = 0;
11180 else if (strcasecmp (arg, "intel") == 0)
11181 intel_syntax = 1;
11182 else
2b5d6a91 11183 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
11184 break;
11185
11186 case OPTION_MINDEX_REG:
11187 allow_index_reg = 1;
11188 break;
11189
11190 case OPTION_MNAKED_REG:
11191 allow_naked_reg = 1;
11192 break;
11193
c0f3af97
L
11194 case OPTION_MSSE2AVX:
11195 sse2avx = 1;
11196 break;
11197
daf50ae7
L
11198 case OPTION_MSSE_CHECK:
11199 if (strcasecmp (arg, "error") == 0)
7bab8ab5 11200 sse_check = check_error;
daf50ae7 11201 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 11202 sse_check = check_warning;
daf50ae7 11203 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 11204 sse_check = check_none;
daf50ae7 11205 else
2b5d6a91 11206 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
11207 break;
11208
7bab8ab5
JB
11209 case OPTION_MOPERAND_CHECK:
11210 if (strcasecmp (arg, "error") == 0)
11211 operand_check = check_error;
11212 else if (strcasecmp (arg, "warning") == 0)
11213 operand_check = check_warning;
11214 else if (strcasecmp (arg, "none") == 0)
11215 operand_check = check_none;
11216 else
11217 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11218 break;
11219
539f890d
L
11220 case OPTION_MAVXSCALAR:
11221 if (strcasecmp (arg, "128") == 0)
11222 avxscalar = vex128;
11223 else if (strcasecmp (arg, "256") == 0)
11224 avxscalar = vex256;
11225 else
2b5d6a91 11226 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
11227 break;
11228
7e8b059b
L
11229 case OPTION_MADD_BND_PREFIX:
11230 add_bnd_prefix = 1;
11231 break;
11232
43234a1e
L
11233 case OPTION_MEVEXLIG:
11234 if (strcmp (arg, "128") == 0)
11235 evexlig = evexl128;
11236 else if (strcmp (arg, "256") == 0)
11237 evexlig = evexl256;
11238 else if (strcmp (arg, "512") == 0)
11239 evexlig = evexl512;
11240 else
11241 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11242 break;
11243
d3d3c6db
IT
11244 case OPTION_MEVEXRCIG:
11245 if (strcmp (arg, "rne") == 0)
11246 evexrcig = rne;
11247 else if (strcmp (arg, "rd") == 0)
11248 evexrcig = rd;
11249 else if (strcmp (arg, "ru") == 0)
11250 evexrcig = ru;
11251 else if (strcmp (arg, "rz") == 0)
11252 evexrcig = rz;
11253 else
11254 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11255 break;
11256
43234a1e
L
11257 case OPTION_MEVEXWIG:
11258 if (strcmp (arg, "0") == 0)
11259 evexwig = evexw0;
11260 else if (strcmp (arg, "1") == 0)
11261 evexwig = evexw1;
11262 else
11263 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11264 break;
11265
167ad85b
TG
11266# if defined (TE_PE) || defined (TE_PEP)
11267 case OPTION_MBIG_OBJ:
11268 use_big_obj = 1;
11269 break;
11270#endif
11271
d1982f93 11272 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
11273 if (strcasecmp (arg, "yes") == 0)
11274 omit_lock_prefix = 1;
11275 else if (strcasecmp (arg, "no") == 0)
11276 omit_lock_prefix = 0;
11277 else
11278 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11279 break;
11280
e4e00185
AS
11281 case OPTION_MFENCE_AS_LOCK_ADD:
11282 if (strcasecmp (arg, "yes") == 0)
11283 avoid_fence = 1;
11284 else if (strcasecmp (arg, "no") == 0)
11285 avoid_fence = 0;
11286 else
11287 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11288 break;
11289
0cb4071e
L
11290 case OPTION_MRELAX_RELOCATIONS:
11291 if (strcasecmp (arg, "yes") == 0)
11292 generate_relax_relocations = 1;
11293 else if (strcasecmp (arg, "no") == 0)
11294 generate_relax_relocations = 0;
11295 else
11296 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11297 break;
11298
5db04b09 11299 case OPTION_MAMD64:
e89c5eaa 11300 intel64 = 0;
5db04b09
L
11301 break;
11302
11303 case OPTION_MINTEL64:
e89c5eaa 11304 intel64 = 1;
5db04b09
L
11305 break;
11306
b6f8c7c4
L
11307 case 'O':
11308 if (arg == NULL)
11309 {
11310 optimize = 1;
11311 /* Turn off -Os. */
11312 optimize_for_space = 0;
11313 }
11314 else if (*arg == 's')
11315 {
11316 optimize_for_space = 1;
11317 /* Turn on all encoding optimizations. */
11318 optimize = -1;
11319 }
11320 else
11321 {
11322 optimize = atoi (arg);
11323 /* Turn off -Os. */
11324 optimize_for_space = 0;
11325 }
11326 break;
11327
252b5132
RH
11328 default:
11329 return 0;
11330 }
11331 return 1;
11332}
11333
8a2c8fef
L
11334#define MESSAGE_TEMPLATE \
11335" "
11336
293f5f65
L
11337static char *
11338output_message (FILE *stream, char *p, char *message, char *start,
11339 int *left_p, const char *name, int len)
11340{
11341 int size = sizeof (MESSAGE_TEMPLATE);
11342 int left = *left_p;
11343
11344 /* Reserve 2 spaces for ", " or ",\0" */
11345 left -= len + 2;
11346
11347 /* Check if there is any room. */
11348 if (left >= 0)
11349 {
11350 if (p != start)
11351 {
11352 *p++ = ',';
11353 *p++ = ' ';
11354 }
11355 p = mempcpy (p, name, len);
11356 }
11357 else
11358 {
11359 /* Output the current message now and start a new one. */
11360 *p++ = ',';
11361 *p = '\0';
11362 fprintf (stream, "%s\n", message);
11363 p = start;
11364 left = size - (start - message) - len - 2;
11365
11366 gas_assert (left >= 0);
11367
11368 p = mempcpy (p, name, len);
11369 }
11370
11371 *left_p = left;
11372 return p;
11373}
11374
8a2c8fef 11375static void
1ded5609 11376show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
11377{
11378 static char message[] = MESSAGE_TEMPLATE;
11379 char *start = message + 27;
11380 char *p;
11381 int size = sizeof (MESSAGE_TEMPLATE);
11382 int left;
11383 const char *name;
11384 int len;
11385 unsigned int j;
11386
11387 p = start;
11388 left = size - (start - message);
11389 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11390 {
11391 /* Should it be skipped? */
11392 if (cpu_arch [j].skip)
11393 continue;
11394
11395 name = cpu_arch [j].name;
11396 len = cpu_arch [j].len;
11397 if (*name == '.')
11398 {
11399 /* It is an extension. Skip if we aren't asked to show it. */
11400 if (ext)
11401 {
11402 name++;
11403 len--;
11404 }
11405 else
11406 continue;
11407 }
11408 else if (ext)
11409 {
11410 /* It is an processor. Skip if we show only extension. */
11411 continue;
11412 }
1ded5609
JB
11413 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11414 {
11415 /* It is an impossible processor - skip. */
11416 continue;
11417 }
8a2c8fef 11418
293f5f65 11419 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
11420 }
11421
293f5f65
L
11422 /* Display disabled extensions. */
11423 if (ext)
11424 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11425 {
11426 name = cpu_noarch [j].name;
11427 len = cpu_noarch [j].len;
11428 p = output_message (stream, p, message, start, &left, name,
11429 len);
11430 }
11431
8a2c8fef
L
11432 *p = '\0';
11433 fprintf (stream, "%s\n", message);
11434}
11435
252b5132 11436void
8a2c8fef 11437md_show_usage (FILE *stream)
252b5132 11438{
4cc782b5
ILT
11439#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11440 fprintf (stream, _("\
a38cf1db
AM
11441 -Q ignored\n\
11442 -V print assembler version number\n\
b3b91714
AM
11443 -k ignored\n"));
11444#endif
11445 fprintf (stream, _("\
12b55ccc 11446 -n Do not optimize code alignment\n\
b3b91714
AM
11447 -q quieten some warnings\n"));
11448#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11449 fprintf (stream, _("\
a38cf1db 11450 -s ignored\n"));
b3b91714 11451#endif
d7f449c0
L
11452#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11453 || defined (TE_PE) || defined (TE_PEP))
751d281c 11454 fprintf (stream, _("\
570561f7 11455 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 11456#endif
b3b91714
AM
11457#ifdef SVR4_COMMENT_CHARS
11458 fprintf (stream, _("\
11459 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
11460#else
11461 fprintf (stream, _("\
b3b91714 11462 --divide ignored\n"));
4cc782b5 11463#endif
9103f4f4 11464 fprintf (stream, _("\
6305a203 11465 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 11466 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 11467 show_arch (stream, 0, 1);
8a2c8fef
L
11468 fprintf (stream, _("\
11469 EXTENSION is combination of:\n"));
1ded5609 11470 show_arch (stream, 1, 0);
6305a203 11471 fprintf (stream, _("\
8a2c8fef 11472 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 11473 show_arch (stream, 0, 0);
ba104c83 11474 fprintf (stream, _("\
c0f3af97
L
11475 -msse2avx encode SSE instructions with VEX prefix\n"));
11476 fprintf (stream, _("\
7c5c05ef 11477 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
11478 check SSE instructions\n"));
11479 fprintf (stream, _("\
7c5c05ef 11480 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
11481 check operand combinations for validity\n"));
11482 fprintf (stream, _("\
7c5c05ef
L
11483 -mavxscalar=[128|256] (default: 128)\n\
11484 encode scalar AVX instructions with specific vector\n\
539f890d
L
11485 length\n"));
11486 fprintf (stream, _("\
7c5c05ef
L
11487 -mevexlig=[128|256|512] (default: 128)\n\
11488 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
11489 length\n"));
11490 fprintf (stream, _("\
7c5c05ef
L
11491 -mevexwig=[0|1] (default: 0)\n\
11492 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
11493 for EVEX.W bit ignored instructions\n"));
11494 fprintf (stream, _("\
7c5c05ef 11495 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
11496 encode EVEX instructions with specific EVEX.RC value\n\
11497 for SAE-only ignored instructions\n"));
11498 fprintf (stream, _("\
7c5c05ef
L
11499 -mmnemonic=[att|intel] "));
11500 if (SYSV386_COMPAT)
11501 fprintf (stream, _("(default: att)\n"));
11502 else
11503 fprintf (stream, _("(default: intel)\n"));
11504 fprintf (stream, _("\
11505 use AT&T/Intel mnemonic\n"));
ba104c83 11506 fprintf (stream, _("\
7c5c05ef
L
11507 -msyntax=[att|intel] (default: att)\n\
11508 use AT&T/Intel syntax\n"));
ba104c83
L
11509 fprintf (stream, _("\
11510 -mindex-reg support pseudo index registers\n"));
11511 fprintf (stream, _("\
11512 -mnaked-reg don't require `%%' prefix for registers\n"));
11513 fprintf (stream, _("\
7e8b059b 11514 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 11515#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
11516 fprintf (stream, _("\
11517 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
11518 fprintf (stream, _("\
11519 -mx86-used-note=[no|yes] "));
11520 if (DEFAULT_X86_USED_NOTE)
11521 fprintf (stream, _("(default: yes)\n"));
11522 else
11523 fprintf (stream, _("(default: no)\n"));
11524 fprintf (stream, _("\
11525 generate x86 used ISA and feature properties\n"));
11526#endif
11527#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
11528 fprintf (stream, _("\
11529 -mbig-obj generate big object files\n"));
11530#endif
d022bddd 11531 fprintf (stream, _("\
7c5c05ef 11532 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 11533 strip all lock prefixes\n"));
5db04b09 11534 fprintf (stream, _("\
7c5c05ef 11535 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
11536 encode lfence, mfence and sfence as\n\
11537 lock addl $0x0, (%%{re}sp)\n"));
11538 fprintf (stream, _("\
7c5c05ef
L
11539 -mrelax-relocations=[no|yes] "));
11540 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11541 fprintf (stream, _("(default: yes)\n"));
11542 else
11543 fprintf (stream, _("(default: no)\n"));
11544 fprintf (stream, _("\
0cb4071e
L
11545 generate relax relocations\n"));
11546 fprintf (stream, _("\
7c5c05ef 11547 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
11548 fprintf (stream, _("\
11549 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
11550}
11551
3e73aa7c 11552#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 11553 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 11554 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
11555
11556/* Pick the target format to use. */
11557
47926f60 11558const char *
e3bb37b5 11559i386_target_format (void)
252b5132 11560{
351f65ca
L
11561 if (!strncmp (default_arch, "x86_64", 6))
11562 {
11563 update_code_flag (CODE_64BIT, 1);
11564 if (default_arch[6] == '\0')
7f56bc95 11565 x86_elf_abi = X86_64_ABI;
351f65ca 11566 else
7f56bc95 11567 x86_elf_abi = X86_64_X32_ABI;
351f65ca 11568 }
3e73aa7c 11569 else if (!strcmp (default_arch, "i386"))
78f12dd3 11570 update_code_flag (CODE_32BIT, 1);
5197d474
L
11571 else if (!strcmp (default_arch, "iamcu"))
11572 {
11573 update_code_flag (CODE_32BIT, 1);
11574 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11575 {
11576 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11577 cpu_arch_name = "iamcu";
11578 cpu_sub_arch_name = NULL;
11579 cpu_arch_flags = iamcu_flags;
11580 cpu_arch_isa = PROCESSOR_IAMCU;
11581 cpu_arch_isa_flags = iamcu_flags;
11582 if (!cpu_arch_tune_set)
11583 {
11584 cpu_arch_tune = cpu_arch_isa;
11585 cpu_arch_tune_flags = cpu_arch_isa_flags;
11586 }
11587 }
8d471ec1 11588 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
11589 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11590 cpu_arch_name);
11591 }
3e73aa7c 11592 else
2b5d6a91 11593 as_fatal (_("unknown architecture"));
89507696
JB
11594
11595 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11596 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11597 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11598 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11599
252b5132
RH
11600 switch (OUTPUT_FLAVOR)
11601 {
9384f2ff 11602#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 11603 case bfd_target_aout_flavour:
47926f60 11604 return AOUT_TARGET_FORMAT;
4c63da97 11605#endif
9384f2ff
AM
11606#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11607# if defined (TE_PE) || defined (TE_PEP)
11608 case bfd_target_coff_flavour:
167ad85b
TG
11609 if (flag_code == CODE_64BIT)
11610 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11611 else
11612 return "pe-i386";
9384f2ff 11613# elif defined (TE_GO32)
0561d57c
JK
11614 case bfd_target_coff_flavour:
11615 return "coff-go32";
9384f2ff 11616# else
252b5132
RH
11617 case bfd_target_coff_flavour:
11618 return "coff-i386";
9384f2ff 11619# endif
4c63da97 11620#endif
3e73aa7c 11621#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 11622 case bfd_target_elf_flavour:
3e73aa7c 11623 {
351f65ca
L
11624 const char *format;
11625
11626 switch (x86_elf_abi)
4fa24527 11627 {
351f65ca
L
11628 default:
11629 format = ELF_TARGET_FORMAT;
11630 break;
7f56bc95 11631 case X86_64_ABI:
351f65ca 11632 use_rela_relocations = 1;
4fa24527 11633 object_64bit = 1;
351f65ca
L
11634 format = ELF_TARGET_FORMAT64;
11635 break;
7f56bc95 11636 case X86_64_X32_ABI:
4fa24527 11637 use_rela_relocations = 1;
351f65ca 11638 object_64bit = 1;
862be3fb 11639 disallow_64bit_reloc = 1;
351f65ca
L
11640 format = ELF_TARGET_FORMAT32;
11641 break;
4fa24527 11642 }
3632d14b 11643 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 11644 {
7f56bc95 11645 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
11646 as_fatal (_("Intel L1OM is 64bit only"));
11647 return ELF_TARGET_L1OM_FORMAT;
11648 }
b49f93f6 11649 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
11650 {
11651 if (x86_elf_abi != X86_64_ABI)
11652 as_fatal (_("Intel K1OM is 64bit only"));
11653 return ELF_TARGET_K1OM_FORMAT;
11654 }
81486035
L
11655 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11656 {
11657 if (x86_elf_abi != I386_ABI)
11658 as_fatal (_("Intel MCU is 32bit only"));
11659 return ELF_TARGET_IAMCU_FORMAT;
11660 }
8a9036a4 11661 else
351f65ca 11662 return format;
3e73aa7c 11663 }
e57f8c65
TG
11664#endif
11665#if defined (OBJ_MACH_O)
11666 case bfd_target_mach_o_flavour:
d382c579
TG
11667 if (flag_code == CODE_64BIT)
11668 {
11669 use_rela_relocations = 1;
11670 object_64bit = 1;
11671 return "mach-o-x86-64";
11672 }
11673 else
11674 return "mach-o-i386";
4c63da97 11675#endif
252b5132
RH
11676 default:
11677 abort ();
11678 return NULL;
11679 }
11680}
11681
47926f60 11682#endif /* OBJ_MAYBE_ more than one */
252b5132 11683\f
252b5132 11684symbolS *
7016a5d5 11685md_undefined_symbol (char *name)
252b5132 11686{
18dc2407
ILT
11687 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11688 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11689 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11690 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
11691 {
11692 if (!GOT_symbol)
11693 {
11694 if (symbol_find (name))
11695 as_bad (_("GOT already in symbol table"));
11696 GOT_symbol = symbol_new (name, undefined_section,
11697 (valueT) 0, &zero_address_frag);
11698 };
11699 return GOT_symbol;
11700 }
252b5132
RH
11701 return 0;
11702}
11703
11704/* Round up a section size to the appropriate boundary. */
47926f60 11705
252b5132 11706valueT
7016a5d5 11707md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 11708{
4c63da97
AM
11709#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11710 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11711 {
11712 /* For a.out, force the section size to be aligned. If we don't do
11713 this, BFD will align it for us, but it will not write out the
11714 final bytes of the section. This may be a bug in BFD, but it is
11715 easier to fix it here since that is how the other a.out targets
11716 work. */
11717 int align;
11718
11719 align = bfd_get_section_alignment (stdoutput, segment);
8d3842cd 11720 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 11721 }
252b5132
RH
11722#endif
11723
11724 return size;
11725}
11726
11727/* On the i386, PC-relative offsets are relative to the start of the
11728 next instruction. That is, the address of the offset, plus its
11729 size, since the offset is always the last part of the insn. */
11730
11731long
e3bb37b5 11732md_pcrel_from (fixS *fixP)
252b5132
RH
11733{
11734 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11735}
11736
11737#ifndef I386COFF
11738
11739static void
e3bb37b5 11740s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 11741{
29b0f896 11742 int temp;
252b5132 11743
8a75718c
JB
11744#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11745 if (IS_ELF)
11746 obj_elf_section_change_hook ();
11747#endif
252b5132
RH
11748 temp = get_absolute_expression ();
11749 subseg_set (bss_section, (subsegT) temp);
11750 demand_empty_rest_of_line ();
11751}
11752
11753#endif
11754
252b5132 11755void
e3bb37b5 11756i386_validate_fix (fixS *fixp)
252b5132 11757{
02a86693 11758 if (fixp->fx_subsy)
252b5132 11759 {
02a86693 11760 if (fixp->fx_subsy == GOT_symbol)
23df1078 11761 {
02a86693
L
11762 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11763 {
11764 if (!object_64bit)
11765 abort ();
11766#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11767 if (fixp->fx_tcbit2)
56ceb5b5
L
11768 fixp->fx_r_type = (fixp->fx_tcbit
11769 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11770 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
11771 else
11772#endif
11773 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11774 }
d6ab8113 11775 else
02a86693
L
11776 {
11777 if (!object_64bit)
11778 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11779 else
11780 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11781 }
11782 fixp->fx_subsy = 0;
23df1078 11783 }
252b5132 11784 }
02a86693
L
11785#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11786 else if (!object_64bit)
11787 {
11788 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11789 && fixp->fx_tcbit2)
11790 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11791 }
11792#endif
252b5132
RH
11793}
11794
252b5132 11795arelent *
7016a5d5 11796tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
11797{
11798 arelent *rel;
11799 bfd_reloc_code_real_type code;
11800
11801 switch (fixp->fx_r_type)
11802 {
8ce3d284 11803#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
11804 case BFD_RELOC_SIZE32:
11805 case BFD_RELOC_SIZE64:
11806 if (S_IS_DEFINED (fixp->fx_addsy)
11807 && !S_IS_EXTERNAL (fixp->fx_addsy))
11808 {
11809 /* Resolve size relocation against local symbol to size of
11810 the symbol plus addend. */
11811 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11812 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11813 && !fits_in_unsigned_long (value))
11814 as_bad_where (fixp->fx_file, fixp->fx_line,
11815 _("symbol size computation overflow"));
11816 fixp->fx_addsy = NULL;
11817 fixp->fx_subsy = NULL;
11818 md_apply_fix (fixp, (valueT *) &value, NULL);
11819 return NULL;
11820 }
8ce3d284 11821#endif
1a0670f3 11822 /* Fall through. */
8fd4256d 11823
3e73aa7c
JH
11824 case BFD_RELOC_X86_64_PLT32:
11825 case BFD_RELOC_X86_64_GOT32:
11826 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11827 case BFD_RELOC_X86_64_GOTPCRELX:
11828 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
11829 case BFD_RELOC_386_PLT32:
11830 case BFD_RELOC_386_GOT32:
02a86693 11831 case BFD_RELOC_386_GOT32X:
252b5132
RH
11832 case BFD_RELOC_386_GOTOFF:
11833 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
11834 case BFD_RELOC_386_TLS_GD:
11835 case BFD_RELOC_386_TLS_LDM:
11836 case BFD_RELOC_386_TLS_LDO_32:
11837 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11838 case BFD_RELOC_386_TLS_IE:
11839 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
11840 case BFD_RELOC_386_TLS_LE_32:
11841 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
11842 case BFD_RELOC_386_TLS_GOTDESC:
11843 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
11844 case BFD_RELOC_X86_64_TLSGD:
11845 case BFD_RELOC_X86_64_TLSLD:
11846 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11847 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
11848 case BFD_RELOC_X86_64_GOTTPOFF:
11849 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
11850 case BFD_RELOC_X86_64_TPOFF64:
11851 case BFD_RELOC_X86_64_GOTOFF64:
11852 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
11853 case BFD_RELOC_X86_64_GOT64:
11854 case BFD_RELOC_X86_64_GOTPCREL64:
11855 case BFD_RELOC_X86_64_GOTPC64:
11856 case BFD_RELOC_X86_64_GOTPLT64:
11857 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
11858 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11859 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
11860 case BFD_RELOC_RVA:
11861 case BFD_RELOC_VTABLE_ENTRY:
11862 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
11863#ifdef TE_PE
11864 case BFD_RELOC_32_SECREL:
11865#endif
252b5132
RH
11866 code = fixp->fx_r_type;
11867 break;
dbbaec26
L
11868 case BFD_RELOC_X86_64_32S:
11869 if (!fixp->fx_pcrel)
11870 {
11871 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11872 code = fixp->fx_r_type;
11873 break;
11874 }
1a0670f3 11875 /* Fall through. */
252b5132 11876 default:
93382f6d 11877 if (fixp->fx_pcrel)
252b5132 11878 {
93382f6d
AM
11879 switch (fixp->fx_size)
11880 {
11881 default:
b091f402
AM
11882 as_bad_where (fixp->fx_file, fixp->fx_line,
11883 _("can not do %d byte pc-relative relocation"),
11884 fixp->fx_size);
93382f6d
AM
11885 code = BFD_RELOC_32_PCREL;
11886 break;
11887 case 1: code = BFD_RELOC_8_PCREL; break;
11888 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 11889 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
11890#ifdef BFD64
11891 case 8: code = BFD_RELOC_64_PCREL; break;
11892#endif
93382f6d
AM
11893 }
11894 }
11895 else
11896 {
11897 switch (fixp->fx_size)
11898 {
11899 default:
b091f402
AM
11900 as_bad_where (fixp->fx_file, fixp->fx_line,
11901 _("can not do %d byte relocation"),
11902 fixp->fx_size);
93382f6d
AM
11903 code = BFD_RELOC_32;
11904 break;
11905 case 1: code = BFD_RELOC_8; break;
11906 case 2: code = BFD_RELOC_16; break;
11907 case 4: code = BFD_RELOC_32; break;
937149dd 11908#ifdef BFD64
3e73aa7c 11909 case 8: code = BFD_RELOC_64; break;
937149dd 11910#endif
93382f6d 11911 }
252b5132
RH
11912 }
11913 break;
11914 }
252b5132 11915
d182319b
JB
11916 if ((code == BFD_RELOC_32
11917 || code == BFD_RELOC_32_PCREL
11918 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
11919 && GOT_symbol
11920 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 11921 {
4fa24527 11922 if (!object_64bit)
d6ab8113
JB
11923 code = BFD_RELOC_386_GOTPC;
11924 else
11925 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 11926 }
7b81dfbb
AJ
11927 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11928 && GOT_symbol
11929 && fixp->fx_addsy == GOT_symbol)
11930 {
11931 code = BFD_RELOC_X86_64_GOTPC64;
11932 }
252b5132 11933
add39d23
TS
11934 rel = XNEW (arelent);
11935 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 11936 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
11937
11938 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 11939
3e73aa7c
JH
11940 if (!use_rela_relocations)
11941 {
11942 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11943 vtable entry to be used in the relocation's section offset. */
11944 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11945 rel->address = fixp->fx_offset;
fbeb56a4
DK
11946#if defined (OBJ_COFF) && defined (TE_PE)
11947 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11948 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11949 else
11950#endif
c6682705 11951 rel->addend = 0;
3e73aa7c
JH
11952 }
11953 /* Use the rela in 64bit mode. */
252b5132 11954 else
3e73aa7c 11955 {
862be3fb
L
11956 if (disallow_64bit_reloc)
11957 switch (code)
11958 {
862be3fb
L
11959 case BFD_RELOC_X86_64_DTPOFF64:
11960 case BFD_RELOC_X86_64_TPOFF64:
11961 case BFD_RELOC_64_PCREL:
11962 case BFD_RELOC_X86_64_GOTOFF64:
11963 case BFD_RELOC_X86_64_GOT64:
11964 case BFD_RELOC_X86_64_GOTPCREL64:
11965 case BFD_RELOC_X86_64_GOTPC64:
11966 case BFD_RELOC_X86_64_GOTPLT64:
11967 case BFD_RELOC_X86_64_PLTOFF64:
11968 as_bad_where (fixp->fx_file, fixp->fx_line,
11969 _("cannot represent relocation type %s in x32 mode"),
11970 bfd_get_reloc_code_name (code));
11971 break;
11972 default:
11973 break;
11974 }
11975
062cd5e7
AS
11976 if (!fixp->fx_pcrel)
11977 rel->addend = fixp->fx_offset;
11978 else
11979 switch (code)
11980 {
11981 case BFD_RELOC_X86_64_PLT32:
11982 case BFD_RELOC_X86_64_GOT32:
11983 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
11984 case BFD_RELOC_X86_64_GOTPCRELX:
11985 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
11986 case BFD_RELOC_X86_64_TLSGD:
11987 case BFD_RELOC_X86_64_TLSLD:
11988 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
11989 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11990 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
11991 rel->addend = fixp->fx_offset - fixp->fx_size;
11992 break;
11993 default:
11994 rel->addend = (section->vma
11995 - fixp->fx_size
11996 + fixp->fx_addnumber
11997 + md_pcrel_from (fixp));
11998 break;
11999 }
3e73aa7c
JH
12000 }
12001
252b5132
RH
12002 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12003 if (rel->howto == NULL)
12004 {
12005 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 12006 _("cannot represent relocation type %s"),
252b5132
RH
12007 bfd_get_reloc_code_name (code));
12008 /* Set howto to a garbage value so that we can keep going. */
12009 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 12010 gas_assert (rel->howto != NULL);
252b5132
RH
12011 }
12012
12013 return rel;
12014}
12015
ee86248c 12016#include "tc-i386-intel.c"
54cfded0 12017
a60de03c
JB
12018void
12019tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 12020{
a60de03c
JB
12021 int saved_naked_reg;
12022 char saved_register_dot;
54cfded0 12023
a60de03c
JB
12024 saved_naked_reg = allow_naked_reg;
12025 allow_naked_reg = 1;
12026 saved_register_dot = register_chars['.'];
12027 register_chars['.'] = '.';
12028 allow_pseudo_reg = 1;
12029 expression_and_evaluate (exp);
12030 allow_pseudo_reg = 0;
12031 register_chars['.'] = saved_register_dot;
12032 allow_naked_reg = saved_naked_reg;
12033
e96d56a1 12034 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 12035 {
a60de03c
JB
12036 if ((addressT) exp->X_add_number < i386_regtab_size)
12037 {
12038 exp->X_op = O_constant;
12039 exp->X_add_number = i386_regtab[exp->X_add_number]
12040 .dw2_regnum[flag_code >> 1];
12041 }
12042 else
12043 exp->X_op = O_illegal;
54cfded0 12044 }
54cfded0
AM
12045}
12046
12047void
12048tc_x86_frame_initial_instructions (void)
12049{
a60de03c
JB
12050 static unsigned int sp_regno[2];
12051
12052 if (!sp_regno[flag_code >> 1])
12053 {
12054 char *saved_input = input_line_pointer;
12055 char sp[][4] = {"esp", "rsp"};
12056 expressionS exp;
a4447b93 12057
a60de03c
JB
12058 input_line_pointer = sp[flag_code >> 1];
12059 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 12060 gas_assert (exp.X_op == O_constant);
a60de03c
JB
12061 sp_regno[flag_code >> 1] = exp.X_add_number;
12062 input_line_pointer = saved_input;
12063 }
a4447b93 12064
61ff971f
L
12065 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12066 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 12067}
d2b2c203 12068
d7921315
L
12069int
12070x86_dwarf2_addr_size (void)
12071{
12072#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12073 if (x86_elf_abi == X86_64_X32_ABI)
12074 return 4;
12075#endif
12076 return bfd_arch_bits_per_address (stdoutput) / 8;
12077}
12078
d2b2c203
DJ
12079int
12080i386_elf_section_type (const char *str, size_t len)
12081{
12082 if (flag_code == CODE_64BIT
12083 && len == sizeof ("unwind") - 1
12084 && strncmp (str, "unwind", 6) == 0)
12085 return SHT_X86_64_UNWIND;
12086
12087 return -1;
12088}
bb41ade5 12089
ad5fec3b
EB
12090#ifdef TE_SOLARIS
12091void
12092i386_solaris_fix_up_eh_frame (segT sec)
12093{
12094 if (flag_code == CODE_64BIT)
12095 elf_section_type (sec) = SHT_X86_64_UNWIND;
12096}
12097#endif
12098
bb41ade5
AM
12099#ifdef TE_PE
12100void
12101tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12102{
91d6fa6a 12103 expressionS exp;
bb41ade5 12104
91d6fa6a
NC
12105 exp.X_op = O_secrel;
12106 exp.X_add_symbol = symbol;
12107 exp.X_add_number = 0;
12108 emit_expr (&exp, size);
bb41ade5
AM
12109}
12110#endif
3b22753a
L
12111
12112#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12113/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12114
01e1a5bc 12115bfd_vma
6d4af3c2 12116x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
12117{
12118 if (flag_code == CODE_64BIT)
12119 {
12120 if (letter == 'l')
12121 return SHF_X86_64_LARGE;
12122
8f3bae45 12123 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 12124 }
3b22753a 12125 else
8f3bae45 12126 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
12127 return -1;
12128}
12129
01e1a5bc 12130bfd_vma
3b22753a
L
12131x86_64_section_word (char *str, size_t len)
12132{
8620418b 12133 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
12134 return SHF_X86_64_LARGE;
12135
12136 return -1;
12137}
12138
12139static void
12140handle_large_common (int small ATTRIBUTE_UNUSED)
12141{
12142 if (flag_code != CODE_64BIT)
12143 {
12144 s_comm_internal (0, elf_common_parse);
12145 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12146 }
12147 else
12148 {
12149 static segT lbss_section;
12150 asection *saved_com_section_ptr = elf_com_section_ptr;
12151 asection *saved_bss_section = bss_section;
12152
12153 if (lbss_section == NULL)
12154 {
12155 flagword applicable;
12156 segT seg = now_seg;
12157 subsegT subseg = now_subseg;
12158
12159 /* The .lbss section is for local .largecomm symbols. */
12160 lbss_section = subseg_new (".lbss", 0);
12161 applicable = bfd_applicable_section_flags (stdoutput);
12162 bfd_set_section_flags (stdoutput, lbss_section,
12163 applicable & SEC_ALLOC);
12164 seg_info (lbss_section)->bss = 1;
12165
12166 subseg_set (seg, subseg);
12167 }
12168
12169 elf_com_section_ptr = &_bfd_elf_large_com_section;
12170 bss_section = lbss_section;
12171
12172 s_comm_internal (0, elf_common_parse);
12173
12174 elf_com_section_ptr = saved_com_section_ptr;
12175 bss_section = saved_bss_section;
12176 }
12177}
12178#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 4.33388 seconds and 4 git commands to generate.