x86: Add SwapSources
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
c3332e24 47#ifndef INFER_ADDR_PREFIX
eecb386c 48#define INFER_ADDR_PREFIX 1
c3332e24
AM
49#endif
50
29b0f896
AM
51#ifndef DEFAULT_ARCH
52#define DEFAULT_ARCH "i386"
246fcdee 53#endif
252b5132 54
edde18a5
AM
55#ifndef INLINE
56#if __GNUC__ >= 2
57#define INLINE __inline__
58#else
59#define INLINE
60#endif
61#endif
62
6305a203
L
63/* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
68#define WAIT_PREFIX 0
69#define SEG_PREFIX 1
70#define ADDR_PREFIX 2
71#define DATA_PREFIX 3
c32fa91d 72#define REP_PREFIX 4
42164a71 73#define HLE_PREFIX REP_PREFIX
7e8b059b 74#define BND_PREFIX REP_PREFIX
c32fa91d 75#define LOCK_PREFIX 5
4e9ac44a
L
76#define REX_PREFIX 6 /* must come last. */
77#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
78
79/* we define the syntax here (modulo base,index,scale syntax) */
80#define REGISTER_PREFIX '%'
81#define IMMEDIATE_PREFIX '$'
82#define ABSOLUTE_PREFIX '*'
83
84/* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86#define WORD_MNEM_SUFFIX 'w'
87#define BYTE_MNEM_SUFFIX 'b'
88#define SHORT_MNEM_SUFFIX 's'
89#define LONG_MNEM_SUFFIX 'l'
90#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
91/* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93#define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95#define END_OF_INSN '\0'
96
79dec6b7
JB
97/* This matches the C -> StaticRounding alias in the opcode table. */
98#define commutative staticrounding
99
6305a203
L
100/*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107typedef struct
108{
d3ce72d0
NC
109 const insn_template *start;
110 const insn_template *end;
6305a203
L
111}
112templates;
113
114/* 386 operand encoding bytes: see 386 book for details of this. */
115typedef struct
116{
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120}
121modrm_byte;
122
123/* x86-64 extension prefix. */
124typedef int rex_byte;
125
6305a203
L
126/* 386 opcode byte to code indirect addressing. */
127typedef struct
128{
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132}
133sib_byte;
134
6305a203
L
135/* x86 arch names, types and features */
136typedef struct
137{
138 const char *name; /* arch name */
8a2c8fef 139 unsigned int len; /* arch string length */
6305a203
L
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 142 unsigned int skip; /* show_arch should skip this. */
6305a203
L
143}
144arch_entry;
145
293f5f65
L
146/* Used to turn off indicated flags. */
147typedef struct
148{
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152}
153noarch_entry;
154
78f12dd3 155static void update_code_flag (int, int);
e3bb37b5
L
156static void set_code_flag (int);
157static void set_16bit_gcc_code_flag (int);
158static void set_intel_syntax (int);
1efbbeb4 159static void set_intel_mnemonic (int);
db51cc60 160static void set_allow_index_reg (int);
7bab8ab5 161static void set_check (int);
e3bb37b5 162static void set_cpu_arch (int);
6482c264 163#ifdef TE_PE
e3bb37b5 164static void pe_directive_secrel (int);
6482c264 165#endif
e3bb37b5
L
166static void signed_cons (int);
167static char *output_invalid (int c);
ee86248c
JB
168static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
a7619375 172static int i386_att_operand (char *);
e3bb37b5 173static int i386_intel_operand (char *, int);
ee86248c
JB
174static int i386_intel_simplify (expressionS *);
175static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
176static const reg_entry *parse_register (char *, char **);
177static char *parse_insn (char *, char *);
178static char *parse_operands (char *, const char *);
179static void swap_operands (void);
4d456e3d 180static void swap_2_operands (int, int);
48bcea9f 181static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
8a6fb3f9
JB
213/* parse_register() returns this when a register alias cannot be used. */
214static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
215 { Dw2Inval, Dw2Inval } };
216
43234a1e
L
217/* This struct describes rounding control and SAE in the instruction. */
218struct RC_Operation
219{
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229};
230
231static struct RC_Operation rc_op;
232
233/* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236struct Mask_Operation
237{
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242};
243
244static struct Mask_Operation mask_op;
245
246/* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248struct Broadcast_Operation
249{
8e6e0792 250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
4a1b91ea
L
255
256 /* Number of bytes to broadcast. */
257 int bytes;
43234a1e
L
258};
259
260static struct Broadcast_Operation broadcast_op;
261
c0f3af97
L
262/* VEX prefix. */
263typedef struct
264{
43234a1e
L
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
c0f3af97
L
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270} vex_prefix;
271
252b5132 272/* 'md_assemble ()' gathers together information and puts it into a
47926f60 273 i386_insn. */
252b5132 274
520dc8e8
AM
275union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
a65babc9
L
282enum i386_error
283 {
86e026a4 284 operand_size_mismatch,
a65babc9
L
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
a65babc9
L
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
6c30d220
L
292 unsupported,
293 invalid_vsib_address,
7bab8ab5 294 invalid_vector_register_set,
43234a1e
L
295 unsupported_vector_index_register,
296 unsupported_broadcast,
43234a1e
L
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
a65babc9
L
304 };
305
252b5132
RH
306struct _i386_insn
307 {
47926f60 308 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 309 insn_template tm;
252b5132 310
7d5e4556
L
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
252b5132
RH
313 char suffix;
314
47926f60 315 /* OPERANDS gives the number of given operands. */
252b5132
RH
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
47926f60 320 operands. */
252b5132
RH
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 324 use OP[i] for the corresponding operand. */
40fb9820 325 i386_operand_type types[MAX_OPERANDS];
252b5132 326
520dc8e8
AM
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
252b5132 330
3e73aa7c
JH
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333#define Operand_PCrel 1
c48dadc9 334#define Operand_Mem 2
3e73aa7c 335
252b5132 336 /* Relocation type for operand */
f86103b7 337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 338
252b5132
RH
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 346 explicit segment overrides are given. */
ce8a8b2f 347 const seg_entry *seg[2];
252b5132 348
8325cc63
JB
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
252b5132
RH
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
50128d0c
JB
357 /* Register is in low 3 bits of opcode. */
358 bfd_boolean short_form;
359
6f2f06be
JB
360 /* The operand to a branch insn indicates an absolute branch. */
361 bfd_boolean jumpabsolute;
362
b4a3a7b4
L
363 /* Has MMX register operands. */
364 bfd_boolean has_regmmx;
365
366 /* Has XMM register operands. */
367 bfd_boolean has_regxmm;
368
369 /* Has YMM register operands. */
370 bfd_boolean has_regymm;
371
372 /* Has ZMM register operands. */
373 bfd_boolean has_regzmm;
374
e379e5f3
L
375 /* Has GOTPC or TLS relocation. */
376 bfd_boolean has_gotpc_tls_reloc;
377
252b5132 378 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 379 addressing modes of this insn are encoded. */
252b5132 380 modrm_byte rm;
3e73aa7c 381 rex_byte rex;
43234a1e 382 rex_byte vrex;
252b5132 383 sib_byte sib;
c0f3af97 384 vex_prefix vex;
b6169b20 385
43234a1e
L
386 /* Masking attributes. */
387 struct Mask_Operation *mask;
388
389 /* Rounding control and SAE attributes. */
390 struct RC_Operation *rounding;
391
392 /* Broadcasting attributes. */
393 struct Broadcast_Operation *broadcast;
394
395 /* Compressed disp8*N attribute. */
396 unsigned int memshift;
397
86fa6981
L
398 /* Prefer load or store in encoding. */
399 enum
400 {
401 dir_encoding_default = 0,
402 dir_encoding_load,
64c49ab3
JB
403 dir_encoding_store,
404 dir_encoding_swap
86fa6981 405 } dir_encoding;
891edac4 406
a501d77e
L
407 /* Prefer 8bit or 32bit displacement in encoding. */
408 enum
409 {
410 disp_encoding_default = 0,
411 disp_encoding_8bit,
412 disp_encoding_32bit
413 } disp_encoding;
f8a5c266 414
6b6b6807
L
415 /* Prefer the REX byte in encoding. */
416 bfd_boolean rex_encoding;
417
b6f8c7c4
L
418 /* Disable instruction size optimization. */
419 bfd_boolean no_optimize;
420
86fa6981
L
421 /* How to encode vector instructions. */
422 enum
423 {
424 vex_encoding_default = 0,
42e04b36 425 vex_encoding_vex,
86fa6981 426 vex_encoding_vex3,
da4977e0
JB
427 vex_encoding_evex,
428 vex_encoding_error
86fa6981
L
429 } vec_encoding;
430
d5de92cf
L
431 /* REP prefix. */
432 const char *rep_prefix;
433
165de32a
L
434 /* HLE prefix. */
435 const char *hle_prefix;
42164a71 436
7e8b059b
L
437 /* Have BND prefix. */
438 const char *bnd_prefix;
439
04ef582a
L
440 /* Have NOTRACK prefix. */
441 const char *notrack_prefix;
442
891edac4 443 /* Error message. */
a65babc9 444 enum i386_error error;
252b5132
RH
445 };
446
447typedef struct _i386_insn i386_insn;
448
43234a1e
L
449/* Link RC type with corresponding string, that'll be looked for in
450 asm. */
451struct RC_name
452{
453 enum rc_type type;
454 const char *name;
455 unsigned int len;
456};
457
458static const struct RC_name RC_NamesTable[] =
459{
460 { rne, STRING_COMMA_LEN ("rn-sae") },
461 { rd, STRING_COMMA_LEN ("rd-sae") },
462 { ru, STRING_COMMA_LEN ("ru-sae") },
463 { rz, STRING_COMMA_LEN ("rz-sae") },
464 { saeonly, STRING_COMMA_LEN ("sae") },
465};
466
252b5132
RH
467/* List of chars besides those in app.c:symbol_chars that can start an
468 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 469const char extra_symbol_chars[] = "*%-([{}"
252b5132 470#ifdef LEX_AT
32137342
NC
471 "@"
472#endif
473#ifdef LEX_QM
474 "?"
252b5132 475#endif
32137342 476 ;
252b5132 477
29b0f896
AM
478#if (defined (TE_I386AIX) \
479 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 480 && !defined (TE_GNU) \
29b0f896
AM
481 && !defined (TE_LINUX) \
482 && !defined (TE_FreeBSD) \
5b806d27 483 && !defined (TE_DragonFly) \
29b0f896 484 && !defined (TE_NetBSD)))
252b5132 485/* This array holds the chars that always start a comment. If the
b3b91714
AM
486 pre-processor is disabled, these aren't very useful. The option
487 --divide will remove '/' from this list. */
488const char *i386_comment_chars = "#/";
489#define SVR4_COMMENT_CHARS 1
252b5132 490#define PREFIX_SEPARATOR '\\'
252b5132 491
b3b91714
AM
492#else
493const char *i386_comment_chars = "#";
494#define PREFIX_SEPARATOR '/'
495#endif
496
252b5132
RH
497/* This array holds the chars that only start a comment at the beginning of
498 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
499 .line and .file directives will appear in the pre-processed output.
500 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 501 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
502 #NO_APP at the beginning of its output.
503 Also note that comments started like this one will always work if
252b5132 504 '/' isn't otherwise defined. */
b3b91714 505const char line_comment_chars[] = "#/";
252b5132 506
63a0b638 507const char line_separator_chars[] = ";";
252b5132 508
ce8a8b2f
AM
509/* Chars that can be used to separate mant from exp in floating point
510 nums. */
252b5132
RH
511const char EXP_CHARS[] = "eE";
512
ce8a8b2f
AM
513/* Chars that mean this number is a floating point constant
514 As in 0f12.456
515 or 0d1.2345e12. */
252b5132
RH
516const char FLT_CHARS[] = "fFdDxX";
517
ce8a8b2f 518/* Tables for lexical analysis. */
252b5132
RH
519static char mnemonic_chars[256];
520static char register_chars[256];
521static char operand_chars[256];
522static char identifier_chars[256];
523static char digit_chars[256];
524
ce8a8b2f 525/* Lexical macros. */
252b5132
RH
526#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
527#define is_operand_char(x) (operand_chars[(unsigned char) x])
528#define is_register_char(x) (register_chars[(unsigned char) x])
529#define is_space_char(x) ((x) == ' ')
530#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
531#define is_digit_char(x) (digit_chars[(unsigned char) x])
532
0234cb7c 533/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
534static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
535
536/* md_assemble() always leaves the strings it's passed unaltered. To
537 effect this we maintain a stack of saved characters that we've smashed
538 with '\0's (indicating end of strings for various sub-fields of the
47926f60 539 assembler instruction). */
252b5132 540static char save_stack[32];
ce8a8b2f 541static char *save_stack_p;
252b5132
RH
542#define END_STRING_AND_SAVE(s) \
543 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
544#define RESTORE_END_STRING(s) \
545 do { *(s) = *--save_stack_p; } while (0)
546
47926f60 547/* The instruction we're assembling. */
252b5132
RH
548static i386_insn i;
549
550/* Possible templates for current insn. */
551static const templates *current_templates;
552
31b2323c
L
553/* Per instruction expressionS buffers: max displacements & immediates. */
554static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
555static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 556
47926f60 557/* Current operand we are working on. */
ee86248c 558static int this_operand = -1;
252b5132 559
3e73aa7c
JH
560/* We support four different modes. FLAG_CODE variable is used to distinguish
561 these. */
562
563enum flag_code {
564 CODE_32BIT,
565 CODE_16BIT,
566 CODE_64BIT };
567
568static enum flag_code flag_code;
4fa24527 569static unsigned int object_64bit;
862be3fb 570static unsigned int disallow_64bit_reloc;
3e73aa7c 571static int use_rela_relocations = 0;
e379e5f3
L
572/* __tls_get_addr/___tls_get_addr symbol for TLS. */
573static const char *tls_get_addr;
3e73aa7c 574
7af8ed2d
NC
575#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
576 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
577 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
578
351f65ca
L
579/* The ELF ABI to use. */
580enum x86_elf_abi
581{
582 I386_ABI,
7f56bc95
L
583 X86_64_ABI,
584 X86_64_X32_ABI
351f65ca
L
585};
586
587static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 588#endif
351f65ca 589
167ad85b
TG
590#if defined (TE_PE) || defined (TE_PEP)
591/* Use big object file format. */
592static int use_big_obj = 0;
593#endif
594
8dcea932
L
595#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
596/* 1 if generating code for a shared library. */
597static int shared = 0;
598#endif
599
47926f60
KH
600/* 1 for intel syntax,
601 0 if att syntax. */
602static int intel_syntax = 0;
252b5132 603
4b5aaf5f
L
604static enum x86_64_isa
605{
606 amd64 = 1, /* AMD64 ISA. */
607 intel64 /* Intel64 ISA. */
608} isa64;
e89c5eaa 609
1efbbeb4
L
610/* 1 for intel mnemonic,
611 0 if att mnemonic. */
612static int intel_mnemonic = !SYSV386_COMPAT;
613
a60de03c
JB
614/* 1 if pseudo registers are permitted. */
615static int allow_pseudo_reg = 0;
616
47926f60
KH
617/* 1 if register prefix % not required. */
618static int allow_naked_reg = 0;
252b5132 619
33eaf5de 620/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
621 instructions supporting it, even if this prefix wasn't specified
622 explicitly. */
623static int add_bnd_prefix = 0;
624
ba104c83 625/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
626static int allow_index_reg = 0;
627
d022bddd
IT
628/* 1 if the assembler should ignore LOCK prefix, even if it was
629 specified explicitly. */
630static int omit_lock_prefix = 0;
631
e4e00185
AS
632/* 1 if the assembler should encode lfence, mfence, and sfence as
633 "lock addl $0, (%{re}sp)". */
634static int avoid_fence = 0;
635
ae531041
L
636/* 1 if lfence should be inserted after every load. */
637static int lfence_after_load = 0;
638
639/* Non-zero if lfence should be inserted before indirect branch. */
640static enum lfence_before_indirect_branch_kind
641 {
642 lfence_branch_none = 0,
643 lfence_branch_register,
644 lfence_branch_memory,
645 lfence_branch_all
646 }
647lfence_before_indirect_branch;
648
649/* Non-zero if lfence should be inserted before ret. */
650static enum lfence_before_ret_kind
651 {
652 lfence_before_ret_none = 0,
653 lfence_before_ret_not,
a09f656b 654 lfence_before_ret_or,
655 lfence_before_ret_shl
ae531041
L
656 }
657lfence_before_ret;
658
659/* Types of previous instruction is .byte or prefix. */
e379e5f3
L
660static struct
661 {
662 segT seg;
663 const char *file;
664 const char *name;
665 unsigned int line;
666 enum last_insn_kind
667 {
668 last_insn_other = 0,
669 last_insn_directive,
670 last_insn_prefix
671 } kind;
672 } last_insn;
673
0cb4071e
L
674/* 1 if the assembler should generate relax relocations. */
675
676static int generate_relax_relocations
677 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
678
7bab8ab5 679static enum check_kind
daf50ae7 680 {
7bab8ab5
JB
681 check_none = 0,
682 check_warning,
683 check_error
daf50ae7 684 }
7bab8ab5 685sse_check, operand_check = check_warning;
daf50ae7 686
e379e5f3
L
687/* Non-zero if branches should be aligned within power of 2 boundary. */
688static int align_branch_power = 0;
689
690/* Types of branches to align. */
691enum align_branch_kind
692 {
693 align_branch_none = 0,
694 align_branch_jcc = 1,
695 align_branch_fused = 2,
696 align_branch_jmp = 3,
697 align_branch_call = 4,
698 align_branch_indirect = 5,
699 align_branch_ret = 6
700 };
701
702/* Type bits of branches to align. */
703enum align_branch_bit
704 {
705 align_branch_jcc_bit = 1 << align_branch_jcc,
706 align_branch_fused_bit = 1 << align_branch_fused,
707 align_branch_jmp_bit = 1 << align_branch_jmp,
708 align_branch_call_bit = 1 << align_branch_call,
709 align_branch_indirect_bit = 1 << align_branch_indirect,
710 align_branch_ret_bit = 1 << align_branch_ret
711 };
712
713static unsigned int align_branch = (align_branch_jcc_bit
714 | align_branch_fused_bit
715 | align_branch_jmp_bit);
716
79d72f45
HL
717/* Types of condition jump used by macro-fusion. */
718enum mf_jcc_kind
719 {
720 mf_jcc_jo = 0, /* base opcode 0x70 */
721 mf_jcc_jc, /* base opcode 0x72 */
722 mf_jcc_je, /* base opcode 0x74 */
723 mf_jcc_jna, /* base opcode 0x76 */
724 mf_jcc_js, /* base opcode 0x78 */
725 mf_jcc_jp, /* base opcode 0x7a */
726 mf_jcc_jl, /* base opcode 0x7c */
727 mf_jcc_jle, /* base opcode 0x7e */
728 };
729
730/* Types of compare flag-modifying insntructions used by macro-fusion. */
731enum mf_cmp_kind
732 {
733 mf_cmp_test_and, /* test/cmp */
734 mf_cmp_alu_cmp, /* add/sub/cmp */
735 mf_cmp_incdec /* inc/dec */
736 };
737
e379e5f3
L
738/* The maximum padding size for fused jcc. CMP like instruction can
739 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
740 prefixes. */
741#define MAX_FUSED_JCC_PADDING_SIZE 20
742
743/* The maximum number of prefixes added for an instruction. */
744static unsigned int align_branch_prefix_size = 5;
745
b6f8c7c4
L
746/* Optimization:
747 1. Clear the REX_W bit with register operand if possible.
748 2. Above plus use 128bit vector instruction to clear the full vector
749 register.
750 */
751static int optimize = 0;
752
753/* Optimization:
754 1. Clear the REX_W bit with register operand if possible.
755 2. Above plus use 128bit vector instruction to clear the full vector
756 register.
757 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
758 "testb $imm7,%r8".
759 */
760static int optimize_for_space = 0;
761
2ca3ace5
L
762/* Register prefix used for error message. */
763static const char *register_prefix = "%";
764
47926f60
KH
765/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
766 leave, push, and pop instructions so that gcc has the same stack
767 frame as in 32 bit mode. */
768static char stackop_size = '\0';
eecb386c 769
12b55ccc
L
770/* Non-zero to optimize code alignment. */
771int optimize_align_code = 1;
772
47926f60
KH
773/* Non-zero to quieten some warnings. */
774static int quiet_warnings = 0;
a38cf1db 775
47926f60
KH
776/* CPU name. */
777static const char *cpu_arch_name = NULL;
6305a203 778static char *cpu_sub_arch_name = NULL;
a38cf1db 779
47926f60 780/* CPU feature flags. */
40fb9820
L
781static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
782
ccc9c027
L
783/* If we have selected a cpu we are generating instructions for. */
784static int cpu_arch_tune_set = 0;
785
9103f4f4 786/* Cpu we are generating instructions for. */
fbf3f584 787enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
788
789/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 790static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 791
ccc9c027 792/* CPU instruction set architecture used. */
fbf3f584 793enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 794
9103f4f4 795/* CPU feature flags of instruction set architecture used. */
fbf3f584 796i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 797
fddf5b5b
AM
798/* If set, conditional jumps are not automatically promoted to handle
799 larger than a byte offset. */
800static unsigned int no_cond_jump_promotion = 0;
801
c0f3af97
L
802/* Encode SSE instructions with VEX prefix. */
803static unsigned int sse2avx;
804
539f890d
L
805/* Encode scalar AVX instructions with specific vector length. */
806static enum
807 {
808 vex128 = 0,
809 vex256
810 } avxscalar;
811
03751133
L
812/* Encode VEX WIG instructions with specific vex.w. */
813static enum
814 {
815 vexw0 = 0,
816 vexw1
817 } vexwig;
818
43234a1e
L
819/* Encode scalar EVEX LIG instructions with specific vector length. */
820static enum
821 {
822 evexl128 = 0,
823 evexl256,
824 evexl512
825 } evexlig;
826
827/* Encode EVEX WIG instructions with specific evex.w. */
828static enum
829 {
830 evexw0 = 0,
831 evexw1
832 } evexwig;
833
d3d3c6db
IT
834/* Value to encode in EVEX RC bits, for SAE-only instructions. */
835static enum rc_type evexrcig = rne;
836
29b0f896 837/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 838static symbolS *GOT_symbol;
29b0f896 839
a4447b93
RH
840/* The dwarf2 return column, adjusted for 32 or 64 bit. */
841unsigned int x86_dwarf2_return_column;
842
843/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
844int x86_cie_data_alignment;
845
252b5132 846/* Interface to relax_segment.
fddf5b5b
AM
847 There are 3 major relax states for 386 jump insns because the
848 different types of jumps add different sizes to frags when we're
e379e5f3
L
849 figuring out what sort of jump to choose to reach a given label.
850
851 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
852 branches which are handled by md_estimate_size_before_relax() and
853 i386_generic_table_relax_frag(). */
252b5132 854
47926f60 855/* Types. */
93c2a809
AM
856#define UNCOND_JUMP 0
857#define COND_JUMP 1
858#define COND_JUMP86 2
e379e5f3
L
859#define BRANCH_PADDING 3
860#define BRANCH_PREFIX 4
861#define FUSED_JCC_PADDING 5
fddf5b5b 862
47926f60 863/* Sizes. */
252b5132
RH
864#define CODE16 1
865#define SMALL 0
29b0f896 866#define SMALL16 (SMALL | CODE16)
252b5132 867#define BIG 2
29b0f896 868#define BIG16 (BIG | CODE16)
252b5132
RH
869
870#ifndef INLINE
871#ifdef __GNUC__
872#define INLINE __inline__
873#else
874#define INLINE
875#endif
876#endif
877
fddf5b5b
AM
878#define ENCODE_RELAX_STATE(type, size) \
879 ((relax_substateT) (((type) << 2) | (size)))
880#define TYPE_FROM_RELAX_STATE(s) \
881 ((s) >> 2)
882#define DISP_SIZE_FROM_RELAX_STATE(s) \
883 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
884
885/* This table is used by relax_frag to promote short jumps to long
886 ones where necessary. SMALL (short) jumps may be promoted to BIG
887 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
888 don't allow a short jump in a 32 bit code segment to be promoted to
889 a 16 bit offset jump because it's slower (requires data size
890 prefix), and doesn't work, unless the destination is in the bottom
891 64k of the code segment (The top 16 bits of eip are zeroed). */
892
893const relax_typeS md_relax_table[] =
894{
24eab124
AM
895 /* The fields are:
896 1) most positive reach of this state,
897 2) most negative reach of this state,
93c2a809 898 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 899 4) which index into the table to try if we can't fit into this one. */
252b5132 900
fddf5b5b 901 /* UNCOND_JUMP states. */
93c2a809
AM
902 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
903 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
904 /* dword jmp adds 4 bytes to frag:
905 0 extra opcode bytes, 4 displacement bytes. */
252b5132 906 {0, 0, 4, 0},
93c2a809
AM
907 /* word jmp adds 2 byte2 to frag:
908 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
909 {0, 0, 2, 0},
910
93c2a809
AM
911 /* COND_JUMP states. */
912 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
913 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
914 /* dword conditionals adds 5 bytes to frag:
915 1 extra opcode byte, 4 displacement bytes. */
916 {0, 0, 5, 0},
fddf5b5b 917 /* word conditionals add 3 bytes to frag:
93c2a809
AM
918 1 extra opcode byte, 2 displacement bytes. */
919 {0, 0, 3, 0},
920
921 /* COND_JUMP86 states. */
922 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
923 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
924 /* dword conditionals adds 5 bytes to frag:
925 1 extra opcode byte, 4 displacement bytes. */
926 {0, 0, 5, 0},
927 /* word conditionals add 4 bytes to frag:
928 1 displacement byte and a 3 byte long branch insn. */
929 {0, 0, 4, 0}
252b5132
RH
930};
931
9103f4f4
L
932static const arch_entry cpu_arch[] =
933{
89507696
JB
934 /* Do not replace the first two entries - i386_target_format()
935 relies on them being there in this order. */
8a2c8fef 936 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 937 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 938 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 939 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 940 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 941 CPU_NONE_FLAGS, 0 },
8a2c8fef 942 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 943 CPU_I186_FLAGS, 0 },
8a2c8fef 944 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 945 CPU_I286_FLAGS, 0 },
8a2c8fef 946 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 947 CPU_I386_FLAGS, 0 },
8a2c8fef 948 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 949 CPU_I486_FLAGS, 0 },
8a2c8fef 950 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 951 CPU_I586_FLAGS, 0 },
8a2c8fef 952 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 953 CPU_I686_FLAGS, 0 },
8a2c8fef 954 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 955 CPU_I586_FLAGS, 0 },
8a2c8fef 956 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 957 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 958 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 959 CPU_P2_FLAGS, 0 },
8a2c8fef 960 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 961 CPU_P3_FLAGS, 0 },
8a2c8fef 962 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 963 CPU_P4_FLAGS, 0 },
8a2c8fef 964 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 965 CPU_CORE_FLAGS, 0 },
8a2c8fef 966 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 967 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 968 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 969 CPU_CORE_FLAGS, 1 },
8a2c8fef 970 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 971 CPU_CORE_FLAGS, 0 },
8a2c8fef 972 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 973 CPU_CORE2_FLAGS, 1 },
8a2c8fef 974 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 975 CPU_CORE2_FLAGS, 0 },
8a2c8fef 976 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 977 CPU_COREI7_FLAGS, 0 },
8a2c8fef 978 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 979 CPU_L1OM_FLAGS, 0 },
7a9068fe 980 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 981 CPU_K1OM_FLAGS, 0 },
81486035 982 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 983 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 984 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 985 CPU_K6_FLAGS, 0 },
8a2c8fef 986 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 987 CPU_K6_2_FLAGS, 0 },
8a2c8fef 988 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 989 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 990 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 991 CPU_K8_FLAGS, 1 },
8a2c8fef 992 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 993 CPU_K8_FLAGS, 0 },
8a2c8fef 994 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 995 CPU_K8_FLAGS, 0 },
8a2c8fef 996 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 997 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 998 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 999 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 1000 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 1001 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 1002 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 1003 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 1004 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 1005 CPU_BDVER4_FLAGS, 0 },
029f3522 1006 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 1007 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
1008 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1009 CPU_ZNVER2_FLAGS, 0 },
7b458c12 1010 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 1011 CPU_BTVER1_FLAGS, 0 },
7b458c12 1012 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 1013 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 1014 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 1015 CPU_8087_FLAGS, 0 },
8a2c8fef 1016 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 1017 CPU_287_FLAGS, 0 },
8a2c8fef 1018 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 1019 CPU_387_FLAGS, 0 },
1848e567
L
1020 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1021 CPU_687_FLAGS, 0 },
d871f3f4
L
1022 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1023 CPU_CMOV_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1025 CPU_FXSR_FLAGS, 0 },
8a2c8fef 1026 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 1027 CPU_MMX_FLAGS, 0 },
8a2c8fef 1028 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 1029 CPU_SSE_FLAGS, 0 },
8a2c8fef 1030 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 1031 CPU_SSE2_FLAGS, 0 },
8a2c8fef 1032 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 1033 CPU_SSE3_FLAGS, 0 },
af5c13b0
L
1034 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1035 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1036 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 1037 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 1038 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 1039 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 1040 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 1041 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1042 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 1043 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1044 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 1045 CPU_AVX_FLAGS, 0 },
6c30d220 1046 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 1047 CPU_AVX2_FLAGS, 0 },
43234a1e 1048 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 1049 CPU_AVX512F_FLAGS, 0 },
43234a1e 1050 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1051 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1052 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1053 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1054 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1055 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1056 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1057 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1058 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1059 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1060 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1061 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1062 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1063 CPU_VMX_FLAGS, 0 },
8729a6f6 1064 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1065 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1066 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1067 CPU_SMX_FLAGS, 0 },
8a2c8fef 1068 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1069 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1070 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1071 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1072 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1073 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1074 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1075 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1076 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1077 CPU_AES_FLAGS, 0 },
8a2c8fef 1078 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1079 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1080 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1081 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1082 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1083 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1084 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1085 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1086 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1087 CPU_F16C_FLAGS, 0 },
6c30d220 1088 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1089 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1090 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1091 CPU_FMA_FLAGS, 0 },
8a2c8fef 1092 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1093 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1094 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1095 CPU_XOP_FLAGS, 0 },
8a2c8fef 1096 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1097 CPU_LWP_FLAGS, 0 },
8a2c8fef 1098 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1099 CPU_MOVBE_FLAGS, 0 },
60aa667e 1100 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1101 CPU_CX16_FLAGS, 0 },
8a2c8fef 1102 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1103 CPU_EPT_FLAGS, 0 },
6c30d220 1104 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1105 CPU_LZCNT_FLAGS, 0 },
272a84b1
L
1106 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1107 CPU_POPCNT_FLAGS, 0 },
42164a71 1108 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1109 CPU_HLE_FLAGS, 0 },
42164a71 1110 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1111 CPU_RTM_FLAGS, 0 },
6c30d220 1112 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1113 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1114 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1115 CPU_CLFLUSH_FLAGS, 0 },
22109423 1116 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1117 CPU_NOP_FLAGS, 0 },
8a2c8fef 1118 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1119 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1120 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1121 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1122 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1123 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1124 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1125 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1126 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1127 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1128 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1129 CPU_SVME_FLAGS, 1 },
8a2c8fef 1130 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1131 CPU_SVME_FLAGS, 0 },
8a2c8fef 1132 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1133 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1134 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1135 CPU_ABM_FLAGS, 0 },
87973e9f 1136 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1137 CPU_BMI_FLAGS, 0 },
2a2a0f38 1138 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1139 CPU_TBM_FLAGS, 0 },
e2e1fcde 1140 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1141 CPU_ADX_FLAGS, 0 },
e2e1fcde 1142 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1143 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1144 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1145 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1146 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1147 CPU_SMAP_FLAGS, 0 },
7e8b059b 1148 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1149 CPU_MPX_FLAGS, 0 },
a0046408 1150 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1151 CPU_SHA_FLAGS, 0 },
963f3586 1152 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1153 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1154 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1155 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1156 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1157 CPU_SE1_FLAGS, 0 },
c5e7287a 1158 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1159 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1160 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1161 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1162 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1163 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1164 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1165 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1166 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1167 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1168 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1169 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1170 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1171 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1172 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1173 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1174 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1175 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1176 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1177 CPU_CLZERO_FLAGS, 0 },
9916071f 1178 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1179 CPU_MWAITX_FLAGS, 0 },
8eab4136 1180 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1181 CPU_OSPKE_FLAGS, 0 },
8bc52696 1182 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1183 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1184 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1185 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1186 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1187 CPU_IBT_FLAGS, 0 },
1188 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1189 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1190 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1191 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1192 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1193 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1194 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1195 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1196 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1197 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1198 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1199 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1200 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1201 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1202 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1203 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1204 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1205 CPU_MOVDIRI_FLAGS, 0 },
1206 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1207 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1208 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1209 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1210 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1211 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1212 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1213 CPU_ENQCMD_FLAGS, 0 },
4b27d27c
L
1214 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1215 CPU_SERIALIZE_FLAGS, 0 },
142861df
JB
1216 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1217 CPU_RDPRU_FLAGS, 0 },
1218 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1219 CPU_MCOMMIT_FLAGS, 0 },
a847e322
JB
1220 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1221 CPU_SEV_ES_FLAGS, 0 },
bb651e8b
CL
1222 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1223 CPU_TSXLDTRK_FLAGS, 0 },
293f5f65
L
1224};
1225
1226static const noarch_entry cpu_noarch[] =
1227{
1228 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1229 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1230 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1231 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1232 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1233 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1234 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1235 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1236 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1237 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
af5c13b0 1238 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1848e567
L
1239 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1240 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1241 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
af5c13b0 1242 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1243 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1244 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1245 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1246 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1247 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1248 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1249 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1250 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1251 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1252 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1253 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1254 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1255 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1256 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1257 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1258 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1259 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1260 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1261 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1262 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1263 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1264 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
708a2fff
CL
1265 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1266 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
dd455cf5 1267 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
4b27d27c 1268 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
bb651e8b 1269 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
e413e4e9
AM
1270};
1271
704209c0 1272#ifdef I386COFF
a6c24e68
NC
1273/* Like s_lcomm_internal in gas/read.c but the alignment string
1274 is allowed to be optional. */
1275
1276static symbolS *
1277pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1278{
1279 addressT align = 0;
1280
1281 SKIP_WHITESPACE ();
1282
7ab9ffdd 1283 if (needs_align
a6c24e68
NC
1284 && *input_line_pointer == ',')
1285 {
1286 align = parse_align (needs_align - 1);
7ab9ffdd 1287
a6c24e68
NC
1288 if (align == (addressT) -1)
1289 return NULL;
1290 }
1291 else
1292 {
1293 if (size >= 8)
1294 align = 3;
1295 else if (size >= 4)
1296 align = 2;
1297 else if (size >= 2)
1298 align = 1;
1299 else
1300 align = 0;
1301 }
1302
1303 bss_alloc (symbolP, size, align);
1304 return symbolP;
1305}
1306
704209c0 1307static void
a6c24e68
NC
1308pe_lcomm (int needs_align)
1309{
1310 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1311}
704209c0 1312#endif
a6c24e68 1313
29b0f896
AM
1314const pseudo_typeS md_pseudo_table[] =
1315{
1316#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1317 {"align", s_align_bytes, 0},
1318#else
1319 {"align", s_align_ptwo, 0},
1320#endif
1321 {"arch", set_cpu_arch, 0},
1322#ifndef I386COFF
1323 {"bss", s_bss, 0},
a6c24e68
NC
1324#else
1325 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1326#endif
1327 {"ffloat", float_cons, 'f'},
1328 {"dfloat", float_cons, 'd'},
1329 {"tfloat", float_cons, 'x'},
1330 {"value", cons, 2},
d182319b 1331 {"slong", signed_cons, 4},
29b0f896
AM
1332 {"noopt", s_ignore, 0},
1333 {"optim", s_ignore, 0},
1334 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1335 {"code16", set_code_flag, CODE_16BIT},
1336 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1337#ifdef BFD64
29b0f896 1338 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1339#endif
29b0f896
AM
1340 {"intel_syntax", set_intel_syntax, 1},
1341 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1342 {"intel_mnemonic", set_intel_mnemonic, 1},
1343 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1344 {"allow_index_reg", set_allow_index_reg, 1},
1345 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1346 {"sse_check", set_check, 0},
1347 {"operand_check", set_check, 1},
3b22753a
L
1348#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1349 {"largecomm", handle_large_common, 0},
07a53e5c 1350#else
68d20676 1351 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1352 {"loc", dwarf2_directive_loc, 0},
1353 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1354#endif
6482c264
NC
1355#ifdef TE_PE
1356 {"secrel32", pe_directive_secrel, 0},
1357#endif
29b0f896
AM
1358 {0, 0, 0}
1359};
1360
1361/* For interface with expression (). */
1362extern char *input_line_pointer;
1363
1364/* Hash table for instruction mnemonic lookup. */
1365static struct hash_control *op_hash;
1366
1367/* Hash table for register lookup. */
1368static struct hash_control *reg_hash;
1369\f
ce8a8b2f
AM
1370 /* Various efficient no-op patterns for aligning code labels.
1371 Note: Don't try to assemble the instructions in the comments.
1372 0L and 0w are not legal. */
62a02d25
L
1373static const unsigned char f32_1[] =
1374 {0x90}; /* nop */
1375static const unsigned char f32_2[] =
1376 {0x66,0x90}; /* xchg %ax,%ax */
1377static const unsigned char f32_3[] =
1378 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1379static const unsigned char f32_4[] =
1380 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1381static const unsigned char f32_6[] =
1382 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1383static const unsigned char f32_7[] =
1384 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1385static const unsigned char f16_3[] =
3ae729d5 1386 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1387static const unsigned char f16_4[] =
3ae729d5
L
1388 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1389static const unsigned char jump_disp8[] =
1390 {0xeb}; /* jmp disp8 */
1391static const unsigned char jump32_disp32[] =
1392 {0xe9}; /* jmp disp32 */
1393static const unsigned char jump16_disp32[] =
1394 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1395/* 32-bit NOPs patterns. */
1396static const unsigned char *const f32_patt[] = {
3ae729d5 1397 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1398};
1399/* 16-bit NOPs patterns. */
1400static const unsigned char *const f16_patt[] = {
3ae729d5 1401 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1402};
1403/* nopl (%[re]ax) */
1404static const unsigned char alt_3[] =
1405 {0x0f,0x1f,0x00};
1406/* nopl 0(%[re]ax) */
1407static const unsigned char alt_4[] =
1408 {0x0f,0x1f,0x40,0x00};
1409/* nopl 0(%[re]ax,%[re]ax,1) */
1410static const unsigned char alt_5[] =
1411 {0x0f,0x1f,0x44,0x00,0x00};
1412/* nopw 0(%[re]ax,%[re]ax,1) */
1413static const unsigned char alt_6[] =
1414 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1415/* nopl 0L(%[re]ax) */
1416static const unsigned char alt_7[] =
1417 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1418/* nopl 0L(%[re]ax,%[re]ax,1) */
1419static const unsigned char alt_8[] =
1420 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1421/* nopw 0L(%[re]ax,%[re]ax,1) */
1422static const unsigned char alt_9[] =
1423 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1424/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1425static const unsigned char alt_10[] =
1426 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1427/* data16 nopw %cs:0L(%eax,%eax,1) */
1428static const unsigned char alt_11[] =
1429 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1430/* 32-bit and 64-bit NOPs patterns. */
1431static const unsigned char *const alt_patt[] = {
1432 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1433 alt_9, alt_10, alt_11
62a02d25
L
1434};
1435
1436/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1437 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1438
1439static void
1440i386_output_nops (char *where, const unsigned char *const *patt,
1441 int count, int max_single_nop_size)
1442
1443{
3ae729d5
L
1444 /* Place the longer NOP first. */
1445 int last;
1446 int offset;
3076e594
NC
1447 const unsigned char *nops;
1448
1449 if (max_single_nop_size < 1)
1450 {
1451 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1452 max_single_nop_size);
1453 return;
1454 }
1455
1456 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1457
1458 /* Use the smaller one if the requsted one isn't available. */
1459 if (nops == NULL)
62a02d25 1460 {
3ae729d5
L
1461 max_single_nop_size--;
1462 nops = patt[max_single_nop_size - 1];
62a02d25
L
1463 }
1464
3ae729d5
L
1465 last = count % max_single_nop_size;
1466
1467 count -= last;
1468 for (offset = 0; offset < count; offset += max_single_nop_size)
1469 memcpy (where + offset, nops, max_single_nop_size);
1470
1471 if (last)
1472 {
1473 nops = patt[last - 1];
1474 if (nops == NULL)
1475 {
1476 /* Use the smaller one plus one-byte NOP if the needed one
1477 isn't available. */
1478 last--;
1479 nops = patt[last - 1];
1480 memcpy (where + offset, nops, last);
1481 where[offset + last] = *patt[0];
1482 }
1483 else
1484 memcpy (where + offset, nops, last);
1485 }
62a02d25
L
1486}
1487
3ae729d5
L
1488static INLINE int
1489fits_in_imm7 (offsetT num)
1490{
1491 return (num & 0x7f) == num;
1492}
1493
1494static INLINE int
1495fits_in_imm31 (offsetT num)
1496{
1497 return (num & 0x7fffffff) == num;
1498}
62a02d25
L
1499
1500/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1501 single NOP instruction LIMIT. */
1502
1503void
3ae729d5 1504i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1505{
3ae729d5 1506 const unsigned char *const *patt = NULL;
62a02d25 1507 int max_single_nop_size;
3ae729d5
L
1508 /* Maximum number of NOPs before switching to jump over NOPs. */
1509 int max_number_of_nops;
62a02d25 1510
3ae729d5 1511 switch (fragP->fr_type)
62a02d25 1512 {
3ae729d5
L
1513 case rs_fill_nop:
1514 case rs_align_code:
1515 break;
e379e5f3
L
1516 case rs_machine_dependent:
1517 /* Allow NOP padding for jumps and calls. */
1518 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1519 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1520 break;
1521 /* Fall through. */
3ae729d5 1522 default:
62a02d25
L
1523 return;
1524 }
1525
ccc9c027
L
1526 /* We need to decide which NOP sequence to use for 32bit and
1527 64bit. When -mtune= is used:
4eed87de 1528
76bc74dc
L
1529 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1530 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1531 2. For the rest, alt_patt will be used.
1532
1533 When -mtune= isn't used, alt_patt will be used if
22109423 1534 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1535 be used.
ccc9c027
L
1536
1537 When -march= or .arch is used, we can't use anything beyond
1538 cpu_arch_isa_flags. */
1539
1540 if (flag_code == CODE_16BIT)
1541 {
3ae729d5
L
1542 patt = f16_patt;
1543 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1544 /* Limit number of NOPs to 2 in 16-bit mode. */
1545 max_number_of_nops = 2;
252b5132 1546 }
33fef721 1547 else
ccc9c027 1548 {
fbf3f584 1549 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1550 {
1551 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1552 switch (cpu_arch_tune)
1553 {
1554 case PROCESSOR_UNKNOWN:
1555 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1556 optimize with nops. */
1557 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1558 patt = alt_patt;
ccc9c027
L
1559 else
1560 patt = f32_patt;
1561 break;
ccc9c027
L
1562 case PROCESSOR_PENTIUM4:
1563 case PROCESSOR_NOCONA:
ef05d495 1564 case PROCESSOR_CORE:
76bc74dc 1565 case PROCESSOR_CORE2:
bd5295b2 1566 case PROCESSOR_COREI7:
3632d14b 1567 case PROCESSOR_L1OM:
7a9068fe 1568 case PROCESSOR_K1OM:
76bc74dc 1569 case PROCESSOR_GENERIC64:
ccc9c027
L
1570 case PROCESSOR_K6:
1571 case PROCESSOR_ATHLON:
1572 case PROCESSOR_K8:
4eed87de 1573 case PROCESSOR_AMDFAM10:
8aedb9fe 1574 case PROCESSOR_BD:
029f3522 1575 case PROCESSOR_ZNVER:
7b458c12 1576 case PROCESSOR_BT:
80b8656c 1577 patt = alt_patt;
ccc9c027 1578 break;
76bc74dc 1579 case PROCESSOR_I386:
ccc9c027
L
1580 case PROCESSOR_I486:
1581 case PROCESSOR_PENTIUM:
2dde1948 1582 case PROCESSOR_PENTIUMPRO:
81486035 1583 case PROCESSOR_IAMCU:
ccc9c027
L
1584 case PROCESSOR_GENERIC32:
1585 patt = f32_patt;
1586 break;
4eed87de 1587 }
ccc9c027
L
1588 }
1589 else
1590 {
fbf3f584 1591 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1592 {
1593 case PROCESSOR_UNKNOWN:
e6a14101 1594 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1595 PROCESSOR_UNKNOWN. */
1596 abort ();
1597 break;
1598
76bc74dc 1599 case PROCESSOR_I386:
ccc9c027
L
1600 case PROCESSOR_I486:
1601 case PROCESSOR_PENTIUM:
81486035 1602 case PROCESSOR_IAMCU:
ccc9c027
L
1603 case PROCESSOR_K6:
1604 case PROCESSOR_ATHLON:
1605 case PROCESSOR_K8:
4eed87de 1606 case PROCESSOR_AMDFAM10:
8aedb9fe 1607 case PROCESSOR_BD:
029f3522 1608 case PROCESSOR_ZNVER:
7b458c12 1609 case PROCESSOR_BT:
ccc9c027
L
1610 case PROCESSOR_GENERIC32:
1611 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1612 with nops. */
1613 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1614 patt = alt_patt;
ccc9c027
L
1615 else
1616 patt = f32_patt;
1617 break;
76bc74dc
L
1618 case PROCESSOR_PENTIUMPRO:
1619 case PROCESSOR_PENTIUM4:
1620 case PROCESSOR_NOCONA:
1621 case PROCESSOR_CORE:
ef05d495 1622 case PROCESSOR_CORE2:
bd5295b2 1623 case PROCESSOR_COREI7:
3632d14b 1624 case PROCESSOR_L1OM:
7a9068fe 1625 case PROCESSOR_K1OM:
22109423 1626 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1627 patt = alt_patt;
ccc9c027
L
1628 else
1629 patt = f32_patt;
1630 break;
1631 case PROCESSOR_GENERIC64:
80b8656c 1632 patt = alt_patt;
ccc9c027 1633 break;
4eed87de 1634 }
ccc9c027
L
1635 }
1636
76bc74dc
L
1637 if (patt == f32_patt)
1638 {
3ae729d5
L
1639 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1640 /* Limit number of NOPs to 2 for older processors. */
1641 max_number_of_nops = 2;
76bc74dc
L
1642 }
1643 else
1644 {
3ae729d5
L
1645 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1646 /* Limit number of NOPs to 7 for newer processors. */
1647 max_number_of_nops = 7;
1648 }
1649 }
1650
1651 if (limit == 0)
1652 limit = max_single_nop_size;
1653
1654 if (fragP->fr_type == rs_fill_nop)
1655 {
1656 /* Output NOPs for .nop directive. */
1657 if (limit > max_single_nop_size)
1658 {
1659 as_bad_where (fragP->fr_file, fragP->fr_line,
1660 _("invalid single nop size: %d "
1661 "(expect within [0, %d])"),
1662 limit, max_single_nop_size);
1663 return;
1664 }
1665 }
e379e5f3 1666 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1667 fragP->fr_var = count;
1668
1669 if ((count / max_single_nop_size) > max_number_of_nops)
1670 {
1671 /* Generate jump over NOPs. */
1672 offsetT disp = count - 2;
1673 if (fits_in_imm7 (disp))
1674 {
1675 /* Use "jmp disp8" if possible. */
1676 count = disp;
1677 where[0] = jump_disp8[0];
1678 where[1] = count;
1679 where += 2;
1680 }
1681 else
1682 {
1683 unsigned int size_of_jump;
1684
1685 if (flag_code == CODE_16BIT)
1686 {
1687 where[0] = jump16_disp32[0];
1688 where[1] = jump16_disp32[1];
1689 size_of_jump = 2;
1690 }
1691 else
1692 {
1693 where[0] = jump32_disp32[0];
1694 size_of_jump = 1;
1695 }
1696
1697 count -= size_of_jump + 4;
1698 if (!fits_in_imm31 (count))
1699 {
1700 as_bad_where (fragP->fr_file, fragP->fr_line,
1701 _("jump over nop padding out of range"));
1702 return;
1703 }
1704
1705 md_number_to_chars (where + size_of_jump, count, 4);
1706 where += size_of_jump + 4;
76bc74dc 1707 }
ccc9c027 1708 }
3ae729d5
L
1709
1710 /* Generate multiple NOPs. */
1711 i386_output_nops (where, patt, count, limit);
252b5132
RH
1712}
1713
c6fb90c8 1714static INLINE int
0dfbf9d7 1715operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1716{
0dfbf9d7 1717 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1718 {
1719 case 3:
0dfbf9d7 1720 if (x->array[2])
c6fb90c8 1721 return 0;
1a0670f3 1722 /* Fall through. */
c6fb90c8 1723 case 2:
0dfbf9d7 1724 if (x->array[1])
c6fb90c8 1725 return 0;
1a0670f3 1726 /* Fall through. */
c6fb90c8 1727 case 1:
0dfbf9d7 1728 return !x->array[0];
c6fb90c8
L
1729 default:
1730 abort ();
1731 }
40fb9820
L
1732}
1733
c6fb90c8 1734static INLINE void
0dfbf9d7 1735operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1736{
0dfbf9d7 1737 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1738 {
1739 case 3:
0dfbf9d7 1740 x->array[2] = v;
1a0670f3 1741 /* Fall through. */
c6fb90c8 1742 case 2:
0dfbf9d7 1743 x->array[1] = v;
1a0670f3 1744 /* Fall through. */
c6fb90c8 1745 case 1:
0dfbf9d7 1746 x->array[0] = v;
1a0670f3 1747 /* Fall through. */
c6fb90c8
L
1748 break;
1749 default:
1750 abort ();
1751 }
bab6aec1
JB
1752
1753 x->bitfield.class = ClassNone;
75e5731b 1754 x->bitfield.instance = InstanceNone;
c6fb90c8 1755}
40fb9820 1756
c6fb90c8 1757static INLINE int
0dfbf9d7
L
1758operand_type_equal (const union i386_operand_type *x,
1759 const union i386_operand_type *y)
c6fb90c8 1760{
0dfbf9d7 1761 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1762 {
1763 case 3:
0dfbf9d7 1764 if (x->array[2] != y->array[2])
c6fb90c8 1765 return 0;
1a0670f3 1766 /* Fall through. */
c6fb90c8 1767 case 2:
0dfbf9d7 1768 if (x->array[1] != y->array[1])
c6fb90c8 1769 return 0;
1a0670f3 1770 /* Fall through. */
c6fb90c8 1771 case 1:
0dfbf9d7 1772 return x->array[0] == y->array[0];
c6fb90c8
L
1773 break;
1774 default:
1775 abort ();
1776 }
1777}
40fb9820 1778
0dfbf9d7
L
1779static INLINE int
1780cpu_flags_all_zero (const union i386_cpu_flags *x)
1781{
1782 switch (ARRAY_SIZE(x->array))
1783 {
53467f57
IT
1784 case 4:
1785 if (x->array[3])
1786 return 0;
1787 /* Fall through. */
0dfbf9d7
L
1788 case 3:
1789 if (x->array[2])
1790 return 0;
1a0670f3 1791 /* Fall through. */
0dfbf9d7
L
1792 case 2:
1793 if (x->array[1])
1794 return 0;
1a0670f3 1795 /* Fall through. */
0dfbf9d7
L
1796 case 1:
1797 return !x->array[0];
1798 default:
1799 abort ();
1800 }
1801}
1802
0dfbf9d7
L
1803static INLINE int
1804cpu_flags_equal (const union i386_cpu_flags *x,
1805 const union i386_cpu_flags *y)
1806{
1807 switch (ARRAY_SIZE(x->array))
1808 {
53467f57
IT
1809 case 4:
1810 if (x->array[3] != y->array[3])
1811 return 0;
1812 /* Fall through. */
0dfbf9d7
L
1813 case 3:
1814 if (x->array[2] != y->array[2])
1815 return 0;
1a0670f3 1816 /* Fall through. */
0dfbf9d7
L
1817 case 2:
1818 if (x->array[1] != y->array[1])
1819 return 0;
1a0670f3 1820 /* Fall through. */
0dfbf9d7
L
1821 case 1:
1822 return x->array[0] == y->array[0];
1823 break;
1824 default:
1825 abort ();
1826 }
1827}
c6fb90c8
L
1828
1829static INLINE int
1830cpu_flags_check_cpu64 (i386_cpu_flags f)
1831{
1832 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1833 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1834}
1835
c6fb90c8
L
1836static INLINE i386_cpu_flags
1837cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1838{
c6fb90c8
L
1839 switch (ARRAY_SIZE (x.array))
1840 {
53467f57
IT
1841 case 4:
1842 x.array [3] &= y.array [3];
1843 /* Fall through. */
c6fb90c8
L
1844 case 3:
1845 x.array [2] &= y.array [2];
1a0670f3 1846 /* Fall through. */
c6fb90c8
L
1847 case 2:
1848 x.array [1] &= y.array [1];
1a0670f3 1849 /* Fall through. */
c6fb90c8
L
1850 case 1:
1851 x.array [0] &= y.array [0];
1852 break;
1853 default:
1854 abort ();
1855 }
1856 return x;
1857}
40fb9820 1858
c6fb90c8
L
1859static INLINE i386_cpu_flags
1860cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1861{
c6fb90c8 1862 switch (ARRAY_SIZE (x.array))
40fb9820 1863 {
53467f57
IT
1864 case 4:
1865 x.array [3] |= y.array [3];
1866 /* Fall through. */
c6fb90c8
L
1867 case 3:
1868 x.array [2] |= y.array [2];
1a0670f3 1869 /* Fall through. */
c6fb90c8
L
1870 case 2:
1871 x.array [1] |= y.array [1];
1a0670f3 1872 /* Fall through. */
c6fb90c8
L
1873 case 1:
1874 x.array [0] |= y.array [0];
40fb9820
L
1875 break;
1876 default:
1877 abort ();
1878 }
40fb9820
L
1879 return x;
1880}
1881
309d3373
JB
1882static INLINE i386_cpu_flags
1883cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1884{
1885 switch (ARRAY_SIZE (x.array))
1886 {
53467f57
IT
1887 case 4:
1888 x.array [3] &= ~y.array [3];
1889 /* Fall through. */
309d3373
JB
1890 case 3:
1891 x.array [2] &= ~y.array [2];
1a0670f3 1892 /* Fall through. */
309d3373
JB
1893 case 2:
1894 x.array [1] &= ~y.array [1];
1a0670f3 1895 /* Fall through. */
309d3373
JB
1896 case 1:
1897 x.array [0] &= ~y.array [0];
1898 break;
1899 default:
1900 abort ();
1901 }
1902 return x;
1903}
1904
6c0946d0
JB
1905static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1906
c0f3af97
L
1907#define CPU_FLAGS_ARCH_MATCH 0x1
1908#define CPU_FLAGS_64BIT_MATCH 0x2
1909
c0f3af97 1910#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1911 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1912
1913/* Return CPU flags match bits. */
3629bb00 1914
40fb9820 1915static int
d3ce72d0 1916cpu_flags_match (const insn_template *t)
40fb9820 1917{
c0f3af97
L
1918 i386_cpu_flags x = t->cpu_flags;
1919 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1920
1921 x.bitfield.cpu64 = 0;
1922 x.bitfield.cpuno64 = 0;
1923
0dfbf9d7 1924 if (cpu_flags_all_zero (&x))
c0f3af97
L
1925 {
1926 /* This instruction is available on all archs. */
db12e14e 1927 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1928 }
3629bb00
L
1929 else
1930 {
c0f3af97 1931 /* This instruction is available only on some archs. */
3629bb00
L
1932 i386_cpu_flags cpu = cpu_arch_flags;
1933
ab592e75
JB
1934 /* AVX512VL is no standalone feature - match it and then strip it. */
1935 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1936 return match;
1937 x.bitfield.cpuavx512vl = 0;
1938
3629bb00 1939 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1940 if (!cpu_flags_all_zero (&cpu))
1941 {
a5ff0eb2
L
1942 if (x.bitfield.cpuavx)
1943 {
929f69fa 1944 /* We need to check a few extra flags with AVX. */
b9d49817 1945 if (cpu.bitfield.cpuavx
40d231b4
JB
1946 && (!t->opcode_modifier.sse2avx
1947 || (sse2avx && !i.prefix[DATA_PREFIX]))
b9d49817 1948 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1949 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1950 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1951 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1952 }
929f69fa
JB
1953 else if (x.bitfield.cpuavx512f)
1954 {
1955 /* We need to check a few extra flags with AVX512F. */
1956 if (cpu.bitfield.cpuavx512f
1957 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1958 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1959 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1960 match |= CPU_FLAGS_ARCH_MATCH;
1961 }
a5ff0eb2 1962 else
db12e14e 1963 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1964 }
3629bb00 1965 }
c0f3af97 1966 return match;
40fb9820
L
1967}
1968
c6fb90c8
L
1969static INLINE i386_operand_type
1970operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1971{
bab6aec1
JB
1972 if (x.bitfield.class != y.bitfield.class)
1973 x.bitfield.class = ClassNone;
75e5731b
JB
1974 if (x.bitfield.instance != y.bitfield.instance)
1975 x.bitfield.instance = InstanceNone;
bab6aec1 1976
c6fb90c8
L
1977 switch (ARRAY_SIZE (x.array))
1978 {
1979 case 3:
1980 x.array [2] &= y.array [2];
1a0670f3 1981 /* Fall through. */
c6fb90c8
L
1982 case 2:
1983 x.array [1] &= y.array [1];
1a0670f3 1984 /* Fall through. */
c6fb90c8
L
1985 case 1:
1986 x.array [0] &= y.array [0];
1987 break;
1988 default:
1989 abort ();
1990 }
1991 return x;
40fb9820
L
1992}
1993
73053c1f
JB
1994static INLINE i386_operand_type
1995operand_type_and_not (i386_operand_type x, i386_operand_type y)
1996{
bab6aec1 1997 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1998 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1999
73053c1f
JB
2000 switch (ARRAY_SIZE (x.array))
2001 {
2002 case 3:
2003 x.array [2] &= ~y.array [2];
2004 /* Fall through. */
2005 case 2:
2006 x.array [1] &= ~y.array [1];
2007 /* Fall through. */
2008 case 1:
2009 x.array [0] &= ~y.array [0];
2010 break;
2011 default:
2012 abort ();
2013 }
2014 return x;
2015}
2016
c6fb90c8
L
2017static INLINE i386_operand_type
2018operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 2019{
bab6aec1
JB
2020 gas_assert (x.bitfield.class == ClassNone ||
2021 y.bitfield.class == ClassNone ||
2022 x.bitfield.class == y.bitfield.class);
75e5731b
JB
2023 gas_assert (x.bitfield.instance == InstanceNone ||
2024 y.bitfield.instance == InstanceNone ||
2025 x.bitfield.instance == y.bitfield.instance);
bab6aec1 2026
c6fb90c8 2027 switch (ARRAY_SIZE (x.array))
40fb9820 2028 {
c6fb90c8
L
2029 case 3:
2030 x.array [2] |= y.array [2];
1a0670f3 2031 /* Fall through. */
c6fb90c8
L
2032 case 2:
2033 x.array [1] |= y.array [1];
1a0670f3 2034 /* Fall through. */
c6fb90c8
L
2035 case 1:
2036 x.array [0] |= y.array [0];
40fb9820
L
2037 break;
2038 default:
2039 abort ();
2040 }
c6fb90c8
L
2041 return x;
2042}
40fb9820 2043
c6fb90c8
L
2044static INLINE i386_operand_type
2045operand_type_xor (i386_operand_type x, i386_operand_type y)
2046{
bab6aec1 2047 gas_assert (y.bitfield.class == ClassNone);
75e5731b 2048 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 2049
c6fb90c8
L
2050 switch (ARRAY_SIZE (x.array))
2051 {
2052 case 3:
2053 x.array [2] ^= y.array [2];
1a0670f3 2054 /* Fall through. */
c6fb90c8
L
2055 case 2:
2056 x.array [1] ^= y.array [1];
1a0670f3 2057 /* Fall through. */
c6fb90c8
L
2058 case 1:
2059 x.array [0] ^= y.array [0];
2060 break;
2061 default:
2062 abort ();
2063 }
40fb9820
L
2064 return x;
2065}
2066
40fb9820
L
2067static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2068static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2069static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2070static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2071static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2072static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2073static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2074static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2075static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2076static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2077static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2078static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2079static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2080static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2081static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2082static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2083static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2084
2085enum operand_type
2086{
2087 reg,
40fb9820
L
2088 imm,
2089 disp,
2090 anymem
2091};
2092
c6fb90c8 2093static INLINE int
40fb9820
L
2094operand_type_check (i386_operand_type t, enum operand_type c)
2095{
2096 switch (c)
2097 {
2098 case reg:
bab6aec1 2099 return t.bitfield.class == Reg;
40fb9820 2100
40fb9820
L
2101 case imm:
2102 return (t.bitfield.imm8
2103 || t.bitfield.imm8s
2104 || t.bitfield.imm16
2105 || t.bitfield.imm32
2106 || t.bitfield.imm32s
2107 || t.bitfield.imm64);
2108
2109 case disp:
2110 return (t.bitfield.disp8
2111 || t.bitfield.disp16
2112 || t.bitfield.disp32
2113 || t.bitfield.disp32s
2114 || t.bitfield.disp64);
2115
2116 case anymem:
2117 return (t.bitfield.disp8
2118 || t.bitfield.disp16
2119 || t.bitfield.disp32
2120 || t.bitfield.disp32s
2121 || t.bitfield.disp64
2122 || t.bitfield.baseindex);
2123
2124 default:
2125 abort ();
2126 }
2cfe26b6
AM
2127
2128 return 0;
40fb9820
L
2129}
2130
7a54636a
L
2131/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2132 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2133
2134static INLINE int
7a54636a
L
2135match_operand_size (const insn_template *t, unsigned int wanted,
2136 unsigned int given)
5c07affc 2137{
3ac21baa
JB
2138 return !((i.types[given].bitfield.byte
2139 && !t->operand_types[wanted].bitfield.byte)
2140 || (i.types[given].bitfield.word
2141 && !t->operand_types[wanted].bitfield.word)
2142 || (i.types[given].bitfield.dword
2143 && !t->operand_types[wanted].bitfield.dword)
2144 || (i.types[given].bitfield.qword
2145 && !t->operand_types[wanted].bitfield.qword)
2146 || (i.types[given].bitfield.tbyte
2147 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2148}
2149
dd40ce22
L
2150/* Return 1 if there is no conflict in SIMD register between operand
2151 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2152
2153static INLINE int
dd40ce22
L
2154match_simd_size (const insn_template *t, unsigned int wanted,
2155 unsigned int given)
1b54b8d7 2156{
3ac21baa
JB
2157 return !((i.types[given].bitfield.xmmword
2158 && !t->operand_types[wanted].bitfield.xmmword)
2159 || (i.types[given].bitfield.ymmword
2160 && !t->operand_types[wanted].bitfield.ymmword)
2161 || (i.types[given].bitfield.zmmword
2162 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2163}
2164
7a54636a
L
2165/* Return 1 if there is no conflict in any size between operand GIVEN
2166 and opeand WANTED for instruction template T. */
5c07affc
L
2167
2168static INLINE int
dd40ce22
L
2169match_mem_size (const insn_template *t, unsigned int wanted,
2170 unsigned int given)
5c07affc 2171{
7a54636a 2172 return (match_operand_size (t, wanted, given)
3ac21baa 2173 && !((i.types[given].bitfield.unspecified
af508cb9 2174 && !i.broadcast
3ac21baa
JB
2175 && !t->operand_types[wanted].bitfield.unspecified)
2176 || (i.types[given].bitfield.fword
2177 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2178 /* For scalar opcode templates to allow register and memory
2179 operands at the same time, some special casing is needed
d6793fa1
JB
2180 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2181 down-conversion vpmov*. */
3528c362 2182 || ((t->operand_types[wanted].bitfield.class == RegSIMD
bc49bfd8
JB
2183 && t->operand_types[wanted].bitfield.byte
2184 + t->operand_types[wanted].bitfield.word
2185 + t->operand_types[wanted].bitfield.dword
2186 + t->operand_types[wanted].bitfield.qword
2187 > !!t->opcode_modifier.broadcast)
3ac21baa
JB
2188 ? (i.types[given].bitfield.xmmword
2189 || i.types[given].bitfield.ymmword
2190 || i.types[given].bitfield.zmmword)
2191 : !match_simd_size(t, wanted, given))));
5c07affc
L
2192}
2193
3ac21baa
JB
2194/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2195 operands for instruction template T, and it has MATCH_REVERSE set if there
2196 is no size conflict on any operands for the template with operands reversed
2197 (and the template allows for reversing in the first place). */
5c07affc 2198
3ac21baa
JB
2199#define MATCH_STRAIGHT 1
2200#define MATCH_REVERSE 2
2201
2202static INLINE unsigned int
d3ce72d0 2203operand_size_match (const insn_template *t)
5c07affc 2204{
3ac21baa 2205 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2206
0cfa3eb3 2207 /* Don't check non-absolute jump instructions. */
5c07affc 2208 if (t->opcode_modifier.jump
0cfa3eb3 2209 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2210 return match;
2211
2212 /* Check memory and accumulator operand size. */
2213 for (j = 0; j < i.operands; j++)
2214 {
3528c362
JB
2215 if (i.types[j].bitfield.class != Reg
2216 && i.types[j].bitfield.class != RegSIMD
601e8564 2217 && t->opcode_modifier.anysize)
5c07affc
L
2218 continue;
2219
bab6aec1 2220 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2221 && !match_operand_size (t, j, j))
5c07affc
L
2222 {
2223 match = 0;
2224 break;
2225 }
2226
3528c362 2227 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2228 && !match_simd_size (t, j, j))
1b54b8d7
JB
2229 {
2230 match = 0;
2231 break;
2232 }
2233
75e5731b 2234 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2235 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2236 {
2237 match = 0;
2238 break;
2239 }
2240
c48dadc9 2241 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2242 {
2243 match = 0;
2244 break;
2245 }
2246 }
2247
3ac21baa 2248 if (!t->opcode_modifier.d)
891edac4 2249 {
dc1e8a47 2250 mismatch:
3ac21baa
JB
2251 if (!match)
2252 i.error = operand_size_mismatch;
2253 return match;
891edac4 2254 }
5c07affc
L
2255
2256 /* Check reverse. */
f5eb1d70 2257 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2258
f5eb1d70 2259 for (j = 0; j < i.operands; j++)
5c07affc 2260 {
f5eb1d70
JB
2261 unsigned int given = i.operands - j - 1;
2262
bab6aec1 2263 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2264 && !match_operand_size (t, j, given))
891edac4 2265 goto mismatch;
5c07affc 2266
3528c362 2267 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2268 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2269 goto mismatch;
2270
75e5731b 2271 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2272 && (!match_operand_size (t, j, given)
2273 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2274 goto mismatch;
2275
f5eb1d70 2276 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2277 goto mismatch;
5c07affc
L
2278 }
2279
3ac21baa 2280 return match | MATCH_REVERSE;
5c07affc
L
2281}
2282
c6fb90c8 2283static INLINE int
40fb9820
L
2284operand_type_match (i386_operand_type overlap,
2285 i386_operand_type given)
2286{
2287 i386_operand_type temp = overlap;
2288
7d5e4556 2289 temp.bitfield.unspecified = 0;
5c07affc
L
2290 temp.bitfield.byte = 0;
2291 temp.bitfield.word = 0;
2292 temp.bitfield.dword = 0;
2293 temp.bitfield.fword = 0;
2294 temp.bitfield.qword = 0;
2295 temp.bitfield.tbyte = 0;
2296 temp.bitfield.xmmword = 0;
c0f3af97 2297 temp.bitfield.ymmword = 0;
43234a1e 2298 temp.bitfield.zmmword = 0;
0dfbf9d7 2299 if (operand_type_all_zero (&temp))
891edac4 2300 goto mismatch;
40fb9820 2301
6f2f06be 2302 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2303 return 1;
2304
dc1e8a47 2305 mismatch:
a65babc9 2306 i.error = operand_type_mismatch;
891edac4 2307 return 0;
40fb9820
L
2308}
2309
7d5e4556 2310/* If given types g0 and g1 are registers they must be of the same type
10c17abd 2311 unless the expected operand type register overlap is null.
5de4d9ef 2312 Some Intel syntax memory operand size checking also happens here. */
40fb9820 2313
c6fb90c8 2314static INLINE int
dc821c5f 2315operand_type_register_match (i386_operand_type g0,
40fb9820 2316 i386_operand_type t0,
40fb9820
L
2317 i386_operand_type g1,
2318 i386_operand_type t1)
2319{
bab6aec1 2320 if (g0.bitfield.class != Reg
3528c362 2321 && g0.bitfield.class != RegSIMD
10c17abd
JB
2322 && (!operand_type_check (g0, anymem)
2323 || g0.bitfield.unspecified
5de4d9ef
JB
2324 || (t0.bitfield.class != Reg
2325 && t0.bitfield.class != RegSIMD)))
40fb9820
L
2326 return 1;
2327
bab6aec1 2328 if (g1.bitfield.class != Reg
3528c362 2329 && g1.bitfield.class != RegSIMD
10c17abd
JB
2330 && (!operand_type_check (g1, anymem)
2331 || g1.bitfield.unspecified
5de4d9ef
JB
2332 || (t1.bitfield.class != Reg
2333 && t1.bitfield.class != RegSIMD)))
40fb9820
L
2334 return 1;
2335
dc821c5f
JB
2336 if (g0.bitfield.byte == g1.bitfield.byte
2337 && g0.bitfield.word == g1.bitfield.word
2338 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2339 && g0.bitfield.qword == g1.bitfield.qword
2340 && g0.bitfield.xmmword == g1.bitfield.xmmword
2341 && g0.bitfield.ymmword == g1.bitfield.ymmword
2342 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2343 return 1;
2344
dc821c5f
JB
2345 if (!(t0.bitfield.byte & t1.bitfield.byte)
2346 && !(t0.bitfield.word & t1.bitfield.word)
2347 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2348 && !(t0.bitfield.qword & t1.bitfield.qword)
2349 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2350 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2351 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2352 return 1;
2353
a65babc9 2354 i.error = register_type_mismatch;
891edac4
L
2355
2356 return 0;
40fb9820
L
2357}
2358
4c692bc7
JB
2359static INLINE unsigned int
2360register_number (const reg_entry *r)
2361{
2362 unsigned int nr = r->reg_num;
2363
2364 if (r->reg_flags & RegRex)
2365 nr += 8;
2366
200cbe0f
L
2367 if (r->reg_flags & RegVRex)
2368 nr += 16;
2369
4c692bc7
JB
2370 return nr;
2371}
2372
252b5132 2373static INLINE unsigned int
40fb9820 2374mode_from_disp_size (i386_operand_type t)
252b5132 2375{
b5014f7a 2376 if (t.bitfield.disp8)
40fb9820
L
2377 return 1;
2378 else if (t.bitfield.disp16
2379 || t.bitfield.disp32
2380 || t.bitfield.disp32s)
2381 return 2;
2382 else
2383 return 0;
252b5132
RH
2384}
2385
2386static INLINE int
65879393 2387fits_in_signed_byte (addressT num)
252b5132 2388{
65879393 2389 return num + 0x80 <= 0xff;
47926f60 2390}
252b5132
RH
2391
2392static INLINE int
65879393 2393fits_in_unsigned_byte (addressT num)
252b5132 2394{
65879393 2395 return num <= 0xff;
47926f60 2396}
252b5132
RH
2397
2398static INLINE int
65879393 2399fits_in_unsigned_word (addressT num)
252b5132 2400{
65879393 2401 return num <= 0xffff;
47926f60 2402}
252b5132
RH
2403
2404static INLINE int
65879393 2405fits_in_signed_word (addressT num)
252b5132 2406{
65879393 2407 return num + 0x8000 <= 0xffff;
47926f60 2408}
2a962e6d 2409
3e73aa7c 2410static INLINE int
65879393 2411fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2412{
2413#ifndef BFD64
2414 return 1;
2415#else
65879393 2416 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2417#endif
2418} /* fits_in_signed_long() */
2a962e6d 2419
3e73aa7c 2420static INLINE int
65879393 2421fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2422{
2423#ifndef BFD64
2424 return 1;
2425#else
65879393 2426 return num <= 0xffffffff;
3e73aa7c
JH
2427#endif
2428} /* fits_in_unsigned_long() */
252b5132 2429
43234a1e 2430static INLINE int
b5014f7a 2431fits_in_disp8 (offsetT num)
43234a1e
L
2432{
2433 int shift = i.memshift;
2434 unsigned int mask;
2435
2436 if (shift == -1)
2437 abort ();
2438
2439 mask = (1 << shift) - 1;
2440
2441 /* Return 0 if NUM isn't properly aligned. */
2442 if ((num & mask))
2443 return 0;
2444
2445 /* Check if NUM will fit in 8bit after shift. */
2446 return fits_in_signed_byte (num >> shift);
2447}
2448
a683cc34
SP
2449static INLINE int
2450fits_in_imm4 (offsetT num)
2451{
2452 return (num & 0xf) == num;
2453}
2454
40fb9820 2455static i386_operand_type
e3bb37b5 2456smallest_imm_type (offsetT num)
252b5132 2457{
40fb9820 2458 i386_operand_type t;
7ab9ffdd 2459
0dfbf9d7 2460 operand_type_set (&t, 0);
40fb9820
L
2461 t.bitfield.imm64 = 1;
2462
2463 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2464 {
2465 /* This code is disabled on the 486 because all the Imm1 forms
2466 in the opcode table are slower on the i486. They're the
2467 versions with the implicitly specified single-position
2468 displacement, which has another syntax if you really want to
2469 use that form. */
40fb9820
L
2470 t.bitfield.imm1 = 1;
2471 t.bitfield.imm8 = 1;
2472 t.bitfield.imm8s = 1;
2473 t.bitfield.imm16 = 1;
2474 t.bitfield.imm32 = 1;
2475 t.bitfield.imm32s = 1;
2476 }
2477 else if (fits_in_signed_byte (num))
2478 {
2479 t.bitfield.imm8 = 1;
2480 t.bitfield.imm8s = 1;
2481 t.bitfield.imm16 = 1;
2482 t.bitfield.imm32 = 1;
2483 t.bitfield.imm32s = 1;
2484 }
2485 else if (fits_in_unsigned_byte (num))
2486 {
2487 t.bitfield.imm8 = 1;
2488 t.bitfield.imm16 = 1;
2489 t.bitfield.imm32 = 1;
2490 t.bitfield.imm32s = 1;
2491 }
2492 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2493 {
2494 t.bitfield.imm16 = 1;
2495 t.bitfield.imm32 = 1;
2496 t.bitfield.imm32s = 1;
2497 }
2498 else if (fits_in_signed_long (num))
2499 {
2500 t.bitfield.imm32 = 1;
2501 t.bitfield.imm32s = 1;
2502 }
2503 else if (fits_in_unsigned_long (num))
2504 t.bitfield.imm32 = 1;
2505
2506 return t;
47926f60 2507}
252b5132 2508
847f7ad4 2509static offsetT
e3bb37b5 2510offset_in_range (offsetT val, int size)
847f7ad4 2511{
508866be 2512 addressT mask;
ba2adb93 2513
847f7ad4
AM
2514 switch (size)
2515 {
508866be
L
2516 case 1: mask = ((addressT) 1 << 8) - 1; break;
2517 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2518 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2519#ifdef BFD64
2520 case 8: mask = ((addressT) 2 << 63) - 1; break;
2521#endif
47926f60 2522 default: abort ();
847f7ad4
AM
2523 }
2524
9de868bf
L
2525#ifdef BFD64
2526 /* If BFD64, sign extend val for 32bit address mode. */
2527 if (flag_code != CODE_64BIT
2528 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2529 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2530 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2531#endif
ba2adb93 2532
47926f60 2533 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2534 {
2535 char buf1[40], buf2[40];
2536
2537 sprint_value (buf1, val);
2538 sprint_value (buf2, val & mask);
2539 as_warn (_("%s shortened to %s"), buf1, buf2);
2540 }
2541 return val & mask;
2542}
2543
c32fa91d
L
2544enum PREFIX_GROUP
2545{
2546 PREFIX_EXIST = 0,
2547 PREFIX_LOCK,
2548 PREFIX_REP,
04ef582a 2549 PREFIX_DS,
c32fa91d
L
2550 PREFIX_OTHER
2551};
2552
2553/* Returns
2554 a. PREFIX_EXIST if attempting to add a prefix where one from the
2555 same class already exists.
2556 b. PREFIX_LOCK if lock prefix is added.
2557 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2558 d. PREFIX_DS if ds prefix is added.
2559 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2560 */
2561
2562static enum PREFIX_GROUP
e3bb37b5 2563add_prefix (unsigned int prefix)
252b5132 2564{
c32fa91d 2565 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2566 unsigned int q;
252b5132 2567
29b0f896
AM
2568 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2569 && flag_code == CODE_64BIT)
b1905489 2570 {
161a04f6 2571 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2572 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2573 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2574 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2575 ret = PREFIX_EXIST;
b1905489
JB
2576 q = REX_PREFIX;
2577 }
3e73aa7c 2578 else
b1905489
JB
2579 {
2580 switch (prefix)
2581 {
2582 default:
2583 abort ();
2584
b1905489 2585 case DS_PREFIX_OPCODE:
04ef582a
L
2586 ret = PREFIX_DS;
2587 /* Fall through. */
2588 case CS_PREFIX_OPCODE:
b1905489
JB
2589 case ES_PREFIX_OPCODE:
2590 case FS_PREFIX_OPCODE:
2591 case GS_PREFIX_OPCODE:
2592 case SS_PREFIX_OPCODE:
2593 q = SEG_PREFIX;
2594 break;
2595
2596 case REPNE_PREFIX_OPCODE:
2597 case REPE_PREFIX_OPCODE:
c32fa91d
L
2598 q = REP_PREFIX;
2599 ret = PREFIX_REP;
2600 break;
2601
b1905489 2602 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2603 q = LOCK_PREFIX;
2604 ret = PREFIX_LOCK;
b1905489
JB
2605 break;
2606
2607 case FWAIT_OPCODE:
2608 q = WAIT_PREFIX;
2609 break;
2610
2611 case ADDR_PREFIX_OPCODE:
2612 q = ADDR_PREFIX;
2613 break;
2614
2615 case DATA_PREFIX_OPCODE:
2616 q = DATA_PREFIX;
2617 break;
2618 }
2619 if (i.prefix[q] != 0)
c32fa91d 2620 ret = PREFIX_EXIST;
b1905489 2621 }
252b5132 2622
b1905489 2623 if (ret)
252b5132 2624 {
b1905489
JB
2625 if (!i.prefix[q])
2626 ++i.prefixes;
2627 i.prefix[q] |= prefix;
252b5132 2628 }
b1905489
JB
2629 else
2630 as_bad (_("same type of prefix used twice"));
252b5132 2631
252b5132
RH
2632 return ret;
2633}
2634
2635static void
78f12dd3 2636update_code_flag (int value, int check)
eecb386c 2637{
78f12dd3
L
2638 PRINTF_LIKE ((*as_error));
2639
1e9cc1c2 2640 flag_code = (enum flag_code) value;
40fb9820
L
2641 if (flag_code == CODE_64BIT)
2642 {
2643 cpu_arch_flags.bitfield.cpu64 = 1;
2644 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2645 }
2646 else
2647 {
2648 cpu_arch_flags.bitfield.cpu64 = 0;
2649 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2650 }
2651 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2652 {
78f12dd3
L
2653 if (check)
2654 as_error = as_fatal;
2655 else
2656 as_error = as_bad;
2657 (*as_error) (_("64bit mode not supported on `%s'."),
2658 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2659 }
40fb9820 2660 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2661 {
78f12dd3
L
2662 if (check)
2663 as_error = as_fatal;
2664 else
2665 as_error = as_bad;
2666 (*as_error) (_("32bit mode not supported on `%s'."),
2667 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2668 }
eecb386c
AM
2669 stackop_size = '\0';
2670}
2671
78f12dd3
L
2672static void
2673set_code_flag (int value)
2674{
2675 update_code_flag (value, 0);
2676}
2677
eecb386c 2678static void
e3bb37b5 2679set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2680{
1e9cc1c2 2681 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2682 if (flag_code != CODE_16BIT)
2683 abort ();
2684 cpu_arch_flags.bitfield.cpu64 = 0;
2685 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2686 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2687}
2688
2689static void
e3bb37b5 2690set_intel_syntax (int syntax_flag)
252b5132
RH
2691{
2692 /* Find out if register prefixing is specified. */
2693 int ask_naked_reg = 0;
2694
2695 SKIP_WHITESPACE ();
29b0f896 2696 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2697 {
d02603dc
NC
2698 char *string;
2699 int e = get_symbol_name (&string);
252b5132 2700
47926f60 2701 if (strcmp (string, "prefix") == 0)
252b5132 2702 ask_naked_reg = 1;
47926f60 2703 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2704 ask_naked_reg = -1;
2705 else
d0b47220 2706 as_bad (_("bad argument to syntax directive."));
d02603dc 2707 (void) restore_line_pointer (e);
252b5132
RH
2708 }
2709 demand_empty_rest_of_line ();
c3332e24 2710
252b5132
RH
2711 intel_syntax = syntax_flag;
2712
2713 if (ask_naked_reg == 0)
f86103b7
AM
2714 allow_naked_reg = (intel_syntax
2715 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2716 else
2717 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2718
ee86248c 2719 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2720
e4a3b5a4 2721 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2722 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2723 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2724}
2725
1efbbeb4
L
2726static void
2727set_intel_mnemonic (int mnemonic_flag)
2728{
e1d4d893 2729 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2730}
2731
db51cc60
L
2732static void
2733set_allow_index_reg (int flag)
2734{
2735 allow_index_reg = flag;
2736}
2737
cb19c032 2738static void
7bab8ab5 2739set_check (int what)
cb19c032 2740{
7bab8ab5
JB
2741 enum check_kind *kind;
2742 const char *str;
2743
2744 if (what)
2745 {
2746 kind = &operand_check;
2747 str = "operand";
2748 }
2749 else
2750 {
2751 kind = &sse_check;
2752 str = "sse";
2753 }
2754
cb19c032
L
2755 SKIP_WHITESPACE ();
2756
2757 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2758 {
d02603dc
NC
2759 char *string;
2760 int e = get_symbol_name (&string);
cb19c032
L
2761
2762 if (strcmp (string, "none") == 0)
7bab8ab5 2763 *kind = check_none;
cb19c032 2764 else if (strcmp (string, "warning") == 0)
7bab8ab5 2765 *kind = check_warning;
cb19c032 2766 else if (strcmp (string, "error") == 0)
7bab8ab5 2767 *kind = check_error;
cb19c032 2768 else
7bab8ab5 2769 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2770 (void) restore_line_pointer (e);
cb19c032
L
2771 }
2772 else
7bab8ab5 2773 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2774
2775 demand_empty_rest_of_line ();
2776}
2777
8a9036a4
L
2778static void
2779check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2780 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2781{
2782#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2783 static const char *arch;
2784
2785 /* Intel LIOM is only supported on ELF. */
2786 if (!IS_ELF)
2787 return;
2788
2789 if (!arch)
2790 {
2791 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2792 use default_arch. */
2793 arch = cpu_arch_name;
2794 if (!arch)
2795 arch = default_arch;
2796 }
2797
81486035
L
2798 /* If we are targeting Intel MCU, we must enable it. */
2799 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2800 || new_flag.bitfield.cpuiamcu)
2801 return;
2802
3632d14b 2803 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2804 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2805 || new_flag.bitfield.cpul1om)
8a9036a4 2806 return;
76ba9986 2807
7a9068fe
L
2808 /* If we are targeting Intel K1OM, we must enable it. */
2809 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2810 || new_flag.bitfield.cpuk1om)
2811 return;
2812
8a9036a4
L
2813 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2814#endif
2815}
2816
e413e4e9 2817static void
e3bb37b5 2818set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2819{
47926f60 2820 SKIP_WHITESPACE ();
e413e4e9 2821
29b0f896 2822 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2823 {
d02603dc
NC
2824 char *string;
2825 int e = get_symbol_name (&string);
91d6fa6a 2826 unsigned int j;
40fb9820 2827 i386_cpu_flags flags;
e413e4e9 2828
91d6fa6a 2829 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2830 {
91d6fa6a 2831 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2832 {
91d6fa6a 2833 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2834
5c6af06e
JB
2835 if (*string != '.')
2836 {
91d6fa6a 2837 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2838 cpu_sub_arch_name = NULL;
91d6fa6a 2839 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2840 if (flag_code == CODE_64BIT)
2841 {
2842 cpu_arch_flags.bitfield.cpu64 = 1;
2843 cpu_arch_flags.bitfield.cpuno64 = 0;
2844 }
2845 else
2846 {
2847 cpu_arch_flags.bitfield.cpu64 = 0;
2848 cpu_arch_flags.bitfield.cpuno64 = 1;
2849 }
91d6fa6a
NC
2850 cpu_arch_isa = cpu_arch[j].type;
2851 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2852 if (!cpu_arch_tune_set)
2853 {
2854 cpu_arch_tune = cpu_arch_isa;
2855 cpu_arch_tune_flags = cpu_arch_isa_flags;
2856 }
5c6af06e
JB
2857 break;
2858 }
40fb9820 2859
293f5f65
L
2860 flags = cpu_flags_or (cpu_arch_flags,
2861 cpu_arch[j].flags);
81486035 2862
5b64d091 2863 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2864 {
6305a203
L
2865 if (cpu_sub_arch_name)
2866 {
2867 char *name = cpu_sub_arch_name;
2868 cpu_sub_arch_name = concat (name,
91d6fa6a 2869 cpu_arch[j].name,
1bf57e9f 2870 (const char *) NULL);
6305a203
L
2871 free (name);
2872 }
2873 else
91d6fa6a 2874 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2875 cpu_arch_flags = flags;
a586129e 2876 cpu_arch_isa_flags = flags;
5c6af06e 2877 }
0089dace
L
2878 else
2879 cpu_arch_isa_flags
2880 = cpu_flags_or (cpu_arch_isa_flags,
2881 cpu_arch[j].flags);
d02603dc 2882 (void) restore_line_pointer (e);
5c6af06e
JB
2883 demand_empty_rest_of_line ();
2884 return;
e413e4e9
AM
2885 }
2886 }
293f5f65
L
2887
2888 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2889 {
33eaf5de 2890 /* Disable an ISA extension. */
293f5f65
L
2891 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2892 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2893 {
2894 flags = cpu_flags_and_not (cpu_arch_flags,
2895 cpu_noarch[j].flags);
2896 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2897 {
2898 if (cpu_sub_arch_name)
2899 {
2900 char *name = cpu_sub_arch_name;
2901 cpu_sub_arch_name = concat (name, string,
2902 (const char *) NULL);
2903 free (name);
2904 }
2905 else
2906 cpu_sub_arch_name = xstrdup (string);
2907 cpu_arch_flags = flags;
2908 cpu_arch_isa_flags = flags;
2909 }
2910 (void) restore_line_pointer (e);
2911 demand_empty_rest_of_line ();
2912 return;
2913 }
2914
2915 j = ARRAY_SIZE (cpu_arch);
2916 }
2917
91d6fa6a 2918 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2919 as_bad (_("no such architecture: `%s'"), string);
2920
2921 *input_line_pointer = e;
2922 }
2923 else
2924 as_bad (_("missing cpu architecture"));
2925
fddf5b5b
AM
2926 no_cond_jump_promotion = 0;
2927 if (*input_line_pointer == ','
29b0f896 2928 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2929 {
d02603dc
NC
2930 char *string;
2931 char e;
2932
2933 ++input_line_pointer;
2934 e = get_symbol_name (&string);
fddf5b5b
AM
2935
2936 if (strcmp (string, "nojumps") == 0)
2937 no_cond_jump_promotion = 1;
2938 else if (strcmp (string, "jumps") == 0)
2939 ;
2940 else
2941 as_bad (_("no such architecture modifier: `%s'"), string);
2942
d02603dc 2943 (void) restore_line_pointer (e);
fddf5b5b
AM
2944 }
2945
e413e4e9
AM
2946 demand_empty_rest_of_line ();
2947}
2948
8a9036a4
L
2949enum bfd_architecture
2950i386_arch (void)
2951{
3632d14b 2952 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2953 {
2954 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2955 || flag_code != CODE_64BIT)
2956 as_fatal (_("Intel L1OM is 64bit ELF only"));
2957 return bfd_arch_l1om;
2958 }
7a9068fe
L
2959 else if (cpu_arch_isa == PROCESSOR_K1OM)
2960 {
2961 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2962 || flag_code != CODE_64BIT)
2963 as_fatal (_("Intel K1OM is 64bit ELF only"));
2964 return bfd_arch_k1om;
2965 }
81486035
L
2966 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2967 {
2968 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2969 || flag_code == CODE_64BIT)
2970 as_fatal (_("Intel MCU is 32bit ELF only"));
2971 return bfd_arch_iamcu;
2972 }
8a9036a4
L
2973 else
2974 return bfd_arch_i386;
2975}
2976
b9d79e03 2977unsigned long
7016a5d5 2978i386_mach (void)
b9d79e03 2979{
351f65ca 2980 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2981 {
3632d14b 2982 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2983 {
351f65ca
L
2984 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2985 || default_arch[6] != '\0')
8a9036a4
L
2986 as_fatal (_("Intel L1OM is 64bit ELF only"));
2987 return bfd_mach_l1om;
2988 }
7a9068fe
L
2989 else if (cpu_arch_isa == PROCESSOR_K1OM)
2990 {
2991 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2992 || default_arch[6] != '\0')
2993 as_fatal (_("Intel K1OM is 64bit ELF only"));
2994 return bfd_mach_k1om;
2995 }
351f65ca 2996 else if (default_arch[6] == '\0')
8a9036a4 2997 return bfd_mach_x86_64;
351f65ca
L
2998 else
2999 return bfd_mach_x64_32;
8a9036a4 3000 }
5197d474
L
3001 else if (!strcmp (default_arch, "i386")
3002 || !strcmp (default_arch, "iamcu"))
81486035
L
3003 {
3004 if (cpu_arch_isa == PROCESSOR_IAMCU)
3005 {
3006 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3007 as_fatal (_("Intel MCU is 32bit ELF only"));
3008 return bfd_mach_i386_iamcu;
3009 }
3010 else
3011 return bfd_mach_i386_i386;
3012 }
b9d79e03 3013 else
2b5d6a91 3014 as_fatal (_("unknown architecture"));
b9d79e03 3015}
b9d79e03 3016\f
252b5132 3017void
7016a5d5 3018md_begin (void)
252b5132
RH
3019{
3020 const char *hash_err;
3021
86fa6981
L
3022 /* Support pseudo prefixes like {disp32}. */
3023 lex_type ['{'] = LEX_BEGIN_NAME;
3024
47926f60 3025 /* Initialize op_hash hash table. */
252b5132
RH
3026 op_hash = hash_new ();
3027
3028 {
d3ce72d0 3029 const insn_template *optab;
29b0f896 3030 templates *core_optab;
252b5132 3031
47926f60
KH
3032 /* Setup for loop. */
3033 optab = i386_optab;
add39d23 3034 core_optab = XNEW (templates);
252b5132
RH
3035 core_optab->start = optab;
3036
3037 while (1)
3038 {
3039 ++optab;
3040 if (optab->name == NULL
3041 || strcmp (optab->name, (optab - 1)->name) != 0)
3042 {
3043 /* different name --> ship out current template list;
47926f60 3044 add to hash table; & begin anew. */
252b5132
RH
3045 core_optab->end = optab;
3046 hash_err = hash_insert (op_hash,
3047 (optab - 1)->name,
5a49b8ac 3048 (void *) core_optab);
252b5132
RH
3049 if (hash_err)
3050 {
b37df7c4 3051 as_fatal (_("can't hash %s: %s"),
252b5132
RH
3052 (optab - 1)->name,
3053 hash_err);
3054 }
3055 if (optab->name == NULL)
3056 break;
add39d23 3057 core_optab = XNEW (templates);
252b5132
RH
3058 core_optab->start = optab;
3059 }
3060 }
3061 }
3062
47926f60 3063 /* Initialize reg_hash hash table. */
252b5132
RH
3064 reg_hash = hash_new ();
3065 {
29b0f896 3066 const reg_entry *regtab;
c3fe08fa 3067 unsigned int regtab_size = i386_regtab_size;
252b5132 3068
c3fe08fa 3069 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3070 {
5a49b8ac 3071 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3072 if (hash_err)
b37df7c4 3073 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3074 regtab->reg_name,
3075 hash_err);
252b5132
RH
3076 }
3077 }
3078
47926f60 3079 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3080 {
29b0f896
AM
3081 int c;
3082 char *p;
252b5132
RH
3083
3084 for (c = 0; c < 256; c++)
3085 {
3882b010 3086 if (ISDIGIT (c))
252b5132
RH
3087 {
3088 digit_chars[c] = c;
3089 mnemonic_chars[c] = c;
3090 register_chars[c] = c;
3091 operand_chars[c] = c;
3092 }
3882b010 3093 else if (ISLOWER (c))
252b5132
RH
3094 {
3095 mnemonic_chars[c] = c;
3096 register_chars[c] = c;
3097 operand_chars[c] = c;
3098 }
3882b010 3099 else if (ISUPPER (c))
252b5132 3100 {
3882b010 3101 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3102 register_chars[c] = mnemonic_chars[c];
3103 operand_chars[c] = c;
3104 }
43234a1e 3105 else if (c == '{' || c == '}')
86fa6981
L
3106 {
3107 mnemonic_chars[c] = c;
3108 operand_chars[c] = c;
3109 }
252b5132 3110
3882b010 3111 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3112 identifier_chars[c] = c;
3113 else if (c >= 128)
3114 {
3115 identifier_chars[c] = c;
3116 operand_chars[c] = c;
3117 }
3118 }
3119
3120#ifdef LEX_AT
3121 identifier_chars['@'] = '@';
32137342
NC
3122#endif
3123#ifdef LEX_QM
3124 identifier_chars['?'] = '?';
3125 operand_chars['?'] = '?';
252b5132 3126#endif
252b5132 3127 digit_chars['-'] = '-';
c0f3af97 3128 mnemonic_chars['_'] = '_';
791fe849 3129 mnemonic_chars['-'] = '-';
0003779b 3130 mnemonic_chars['.'] = '.';
252b5132
RH
3131 identifier_chars['_'] = '_';
3132 identifier_chars['.'] = '.';
3133
3134 for (p = operand_special_chars; *p != '\0'; p++)
3135 operand_chars[(unsigned char) *p] = *p;
3136 }
3137
a4447b93
RH
3138 if (flag_code == CODE_64BIT)
3139 {
ca19b261
KT
3140#if defined (OBJ_COFF) && defined (TE_PE)
3141 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3142 ? 32 : 16);
3143#else
a4447b93 3144 x86_dwarf2_return_column = 16;
ca19b261 3145#endif
61ff971f 3146 x86_cie_data_alignment = -8;
a4447b93
RH
3147 }
3148 else
3149 {
3150 x86_dwarf2_return_column = 8;
3151 x86_cie_data_alignment = -4;
3152 }
e379e5f3
L
3153
3154 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3155 can be turned into BRANCH_PREFIX frag. */
3156 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3157 abort ();
252b5132
RH
3158}
3159
3160void
e3bb37b5 3161i386_print_statistics (FILE *file)
252b5132
RH
3162{
3163 hash_print_statistics (file, "i386 opcode", op_hash);
3164 hash_print_statistics (file, "i386 register", reg_hash);
3165}
3166\f
252b5132
RH
3167#ifdef DEBUG386
3168
ce8a8b2f 3169/* Debugging routines for md_assemble. */
d3ce72d0 3170static void pte (insn_template *);
40fb9820 3171static void pt (i386_operand_type);
e3bb37b5
L
3172static void pe (expressionS *);
3173static void ps (symbolS *);
252b5132
RH
3174
3175static void
2c703856 3176pi (const char *line, i386_insn *x)
252b5132 3177{
09137c09 3178 unsigned int j;
252b5132
RH
3179
3180 fprintf (stdout, "%s: template ", line);
3181 pte (&x->tm);
09f131f2
JH
3182 fprintf (stdout, " address: base %s index %s scale %x\n",
3183 x->base_reg ? x->base_reg->reg_name : "none",
3184 x->index_reg ? x->index_reg->reg_name : "none",
3185 x->log2_scale_factor);
3186 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3187 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3188 fprintf (stdout, " sib: base %x index %x scale %x\n",
3189 x->sib.base, x->sib.index, x->sib.scale);
3190 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3191 (x->rex & REX_W) != 0,
3192 (x->rex & REX_R) != 0,
3193 (x->rex & REX_X) != 0,
3194 (x->rex & REX_B) != 0);
09137c09 3195 for (j = 0; j < x->operands; j++)
252b5132 3196 {
09137c09
SP
3197 fprintf (stdout, " #%d: ", j + 1);
3198 pt (x->types[j]);
252b5132 3199 fprintf (stdout, "\n");
bab6aec1 3200 if (x->types[j].bitfield.class == Reg
3528c362
JB
3201 || x->types[j].bitfield.class == RegMMX
3202 || x->types[j].bitfield.class == RegSIMD
dd6b8a0b 3203 || x->types[j].bitfield.class == RegMask
00cee14f 3204 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3205 || x->types[j].bitfield.class == RegCR
3206 || x->types[j].bitfield.class == RegDR
dd6b8a0b
JB
3207 || x->types[j].bitfield.class == RegTR
3208 || x->types[j].bitfield.class == RegBND)
09137c09
SP
3209 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3210 if (operand_type_check (x->types[j], imm))
3211 pe (x->op[j].imms);
3212 if (operand_type_check (x->types[j], disp))
3213 pe (x->op[j].disps);
252b5132
RH
3214 }
3215}
3216
3217static void
d3ce72d0 3218pte (insn_template *t)
252b5132 3219{
09137c09 3220 unsigned int j;
252b5132 3221 fprintf (stdout, " %d operands ", t->operands);
47926f60 3222 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3223 if (t->extension_opcode != None)
3224 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3225 if (t->opcode_modifier.d)
252b5132 3226 fprintf (stdout, "D");
40fb9820 3227 if (t->opcode_modifier.w)
252b5132
RH
3228 fprintf (stdout, "W");
3229 fprintf (stdout, "\n");
09137c09 3230 for (j = 0; j < t->operands; j++)
252b5132 3231 {
09137c09
SP
3232 fprintf (stdout, " #%d type ", j + 1);
3233 pt (t->operand_types[j]);
252b5132
RH
3234 fprintf (stdout, "\n");
3235 }
3236}
3237
3238static void
e3bb37b5 3239pe (expressionS *e)
252b5132 3240{
24eab124 3241 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3242 fprintf (stdout, " add_number %ld (%lx)\n",
3243 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3244 if (e->X_add_symbol)
3245 {
3246 fprintf (stdout, " add_symbol ");
3247 ps (e->X_add_symbol);
3248 fprintf (stdout, "\n");
3249 }
3250 if (e->X_op_symbol)
3251 {
3252 fprintf (stdout, " op_symbol ");
3253 ps (e->X_op_symbol);
3254 fprintf (stdout, "\n");
3255 }
3256}
3257
3258static void
e3bb37b5 3259ps (symbolS *s)
252b5132
RH
3260{
3261 fprintf (stdout, "%s type %s%s",
3262 S_GET_NAME (s),
3263 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3264 segment_name (S_GET_SEGMENT (s)));
3265}
3266
7b81dfbb 3267static struct type_name
252b5132 3268 {
40fb9820
L
3269 i386_operand_type mask;
3270 const char *name;
252b5132 3271 }
7b81dfbb 3272const type_names[] =
252b5132 3273{
40fb9820
L
3274 { OPERAND_TYPE_REG8, "r8" },
3275 { OPERAND_TYPE_REG16, "r16" },
3276 { OPERAND_TYPE_REG32, "r32" },
3277 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3278 { OPERAND_TYPE_ACC8, "acc8" },
3279 { OPERAND_TYPE_ACC16, "acc16" },
3280 { OPERAND_TYPE_ACC32, "acc32" },
3281 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3282 { OPERAND_TYPE_IMM8, "i8" },
3283 { OPERAND_TYPE_IMM8, "i8s" },
3284 { OPERAND_TYPE_IMM16, "i16" },
3285 { OPERAND_TYPE_IMM32, "i32" },
3286 { OPERAND_TYPE_IMM32S, "i32s" },
3287 { OPERAND_TYPE_IMM64, "i64" },
3288 { OPERAND_TYPE_IMM1, "i1" },
3289 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3290 { OPERAND_TYPE_DISP8, "d8" },
3291 { OPERAND_TYPE_DISP16, "d16" },
3292 { OPERAND_TYPE_DISP32, "d32" },
3293 { OPERAND_TYPE_DISP32S, "d32s" },
3294 { OPERAND_TYPE_DISP64, "d64" },
3295 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3296 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3297 { OPERAND_TYPE_CONTROL, "control reg" },
3298 { OPERAND_TYPE_TEST, "test reg" },
3299 { OPERAND_TYPE_DEBUG, "debug reg" },
3300 { OPERAND_TYPE_FLOATREG, "FReg" },
3301 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3302 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3303 { OPERAND_TYPE_REGMMX, "rMMX" },
3304 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3305 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3306 { OPERAND_TYPE_REGZMM, "rZMM" },
3307 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3308};
3309
3310static void
40fb9820 3311pt (i386_operand_type t)
252b5132 3312{
40fb9820 3313 unsigned int j;
c6fb90c8 3314 i386_operand_type a;
252b5132 3315
40fb9820 3316 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3317 {
3318 a = operand_type_and (t, type_names[j].mask);
2c703856 3319 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3320 fprintf (stdout, "%s, ", type_names[j].name);
3321 }
252b5132
RH
3322 fflush (stdout);
3323}
3324
3325#endif /* DEBUG386 */
3326\f
252b5132 3327static bfd_reloc_code_real_type
3956db08 3328reloc (unsigned int size,
64e74474
AM
3329 int pcrel,
3330 int sign,
3331 bfd_reloc_code_real_type other)
252b5132 3332{
47926f60 3333 if (other != NO_RELOC)
3956db08 3334 {
91d6fa6a 3335 reloc_howto_type *rel;
3956db08
JB
3336
3337 if (size == 8)
3338 switch (other)
3339 {
64e74474
AM
3340 case BFD_RELOC_X86_64_GOT32:
3341 return BFD_RELOC_X86_64_GOT64;
3342 break;
553d1284
L
3343 case BFD_RELOC_X86_64_GOTPLT64:
3344 return BFD_RELOC_X86_64_GOTPLT64;
3345 break;
64e74474
AM
3346 case BFD_RELOC_X86_64_PLTOFF64:
3347 return BFD_RELOC_X86_64_PLTOFF64;
3348 break;
3349 case BFD_RELOC_X86_64_GOTPC32:
3350 other = BFD_RELOC_X86_64_GOTPC64;
3351 break;
3352 case BFD_RELOC_X86_64_GOTPCREL:
3353 other = BFD_RELOC_X86_64_GOTPCREL64;
3354 break;
3355 case BFD_RELOC_X86_64_TPOFF32:
3356 other = BFD_RELOC_X86_64_TPOFF64;
3357 break;
3358 case BFD_RELOC_X86_64_DTPOFF32:
3359 other = BFD_RELOC_X86_64_DTPOFF64;
3360 break;
3361 default:
3362 break;
3956db08 3363 }
e05278af 3364
8ce3d284 3365#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3366 if (other == BFD_RELOC_SIZE32)
3367 {
3368 if (size == 8)
1ab668bf 3369 other = BFD_RELOC_SIZE64;
8fd4256d 3370 if (pcrel)
1ab668bf
AM
3371 {
3372 as_bad (_("there are no pc-relative size relocations"));
3373 return NO_RELOC;
3374 }
8fd4256d 3375 }
8ce3d284 3376#endif
8fd4256d 3377
e05278af 3378 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3379 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3380 sign = -1;
3381
91d6fa6a
NC
3382 rel = bfd_reloc_type_lookup (stdoutput, other);
3383 if (!rel)
3956db08 3384 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3385 else if (size != bfd_get_reloc_size (rel))
3956db08 3386 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3387 bfd_get_reloc_size (rel),
3956db08 3388 size);
91d6fa6a 3389 else if (pcrel && !rel->pc_relative)
3956db08 3390 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3391 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3392 && !sign)
91d6fa6a 3393 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3394 && sign > 0))
3956db08
JB
3395 as_bad (_("relocated field and relocation type differ in signedness"));
3396 else
3397 return other;
3398 return NO_RELOC;
3399 }
252b5132
RH
3400
3401 if (pcrel)
3402 {
3e73aa7c 3403 if (!sign)
3956db08 3404 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3405 switch (size)
3406 {
3407 case 1: return BFD_RELOC_8_PCREL;
3408 case 2: return BFD_RELOC_16_PCREL;
d258b828 3409 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3410 case 8: return BFD_RELOC_64_PCREL;
252b5132 3411 }
3956db08 3412 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3413 }
3414 else
3415 {
3956db08 3416 if (sign > 0)
e5cb08ac 3417 switch (size)
3e73aa7c
JH
3418 {
3419 case 4: return BFD_RELOC_X86_64_32S;
3420 }
3421 else
3422 switch (size)
3423 {
3424 case 1: return BFD_RELOC_8;
3425 case 2: return BFD_RELOC_16;
3426 case 4: return BFD_RELOC_32;
3427 case 8: return BFD_RELOC_64;
3428 }
3956db08
JB
3429 as_bad (_("cannot do %s %u byte relocation"),
3430 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3431 }
3432
0cc9e1d3 3433 return NO_RELOC;
252b5132
RH
3434}
3435
47926f60
KH
3436/* Here we decide which fixups can be adjusted to make them relative to
3437 the beginning of the section instead of the symbol. Basically we need
3438 to make sure that the dynamic relocations are done correctly, so in
3439 some cases we force the original symbol to be used. */
3440
252b5132 3441int
e3bb37b5 3442tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3443{
6d249963 3444#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3445 if (!IS_ELF)
31312f95
AM
3446 return 1;
3447
a161fe53
AM
3448 /* Don't adjust pc-relative references to merge sections in 64-bit
3449 mode. */
3450 if (use_rela_relocations
3451 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3452 && fixP->fx_pcrel)
252b5132 3453 return 0;
31312f95 3454
8d01d9a9
AJ
3455 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3456 and changed later by validate_fix. */
3457 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3458 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3459 return 0;
3460
8fd4256d
L
3461 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3462 for size relocations. */
3463 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3464 || fixP->fx_r_type == BFD_RELOC_SIZE64
3465 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132 3466 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3467 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3468 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3469 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3470 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3471 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3472 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3473 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3474 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3475 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3476 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3477 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c 3478 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3479 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3480 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3481 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3482 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3483 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3484 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3485 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3486 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3487 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3488 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3489 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3490 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3491 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3492 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3493 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3494 return 0;
31312f95 3495#endif
252b5132
RH
3496 return 1;
3497}
252b5132 3498
b4cac588 3499static int
e3bb37b5 3500intel_float_operand (const char *mnemonic)
252b5132 3501{
9306ca4a
JB
3502 /* Note that the value returned is meaningful only for opcodes with (memory)
3503 operands, hence the code here is free to improperly handle opcodes that
3504 have no operands (for better performance and smaller code). */
3505
3506 if (mnemonic[0] != 'f')
3507 return 0; /* non-math */
3508
3509 switch (mnemonic[1])
3510 {
3511 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3512 the fs segment override prefix not currently handled because no
3513 call path can make opcodes without operands get here */
3514 case 'i':
3515 return 2 /* integer op */;
3516 case 'l':
3517 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3518 return 3; /* fldcw/fldenv */
3519 break;
3520 case 'n':
3521 if (mnemonic[2] != 'o' /* fnop */)
3522 return 3; /* non-waiting control op */
3523 break;
3524 case 'r':
3525 if (mnemonic[2] == 's')
3526 return 3; /* frstor/frstpm */
3527 break;
3528 case 's':
3529 if (mnemonic[2] == 'a')
3530 return 3; /* fsave */
3531 if (mnemonic[2] == 't')
3532 {
3533 switch (mnemonic[3])
3534 {
3535 case 'c': /* fstcw */
3536 case 'd': /* fstdw */
3537 case 'e': /* fstenv */
3538 case 's': /* fsts[gw] */
3539 return 3;
3540 }
3541 }
3542 break;
3543 case 'x':
3544 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3545 return 0; /* fxsave/fxrstor are not really math ops */
3546 break;
3547 }
252b5132 3548
9306ca4a 3549 return 1;
252b5132
RH
3550}
3551
c0f3af97
L
3552/* Build the VEX prefix. */
3553
3554static void
d3ce72d0 3555build_vex_prefix (const insn_template *t)
c0f3af97
L
3556{
3557 unsigned int register_specifier;
3558 unsigned int implied_prefix;
3559 unsigned int vector_length;
03751133 3560 unsigned int w;
c0f3af97
L
3561
3562 /* Check register specifier. */
3563 if (i.vex.register_specifier)
43234a1e
L
3564 {
3565 register_specifier =
3566 ~register_number (i.vex.register_specifier) & 0xf;
3567 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3568 }
c0f3af97
L
3569 else
3570 register_specifier = 0xf;
3571
79f0fa25
L
3572 /* Use 2-byte VEX prefix by swapping destination and source operand
3573 if there are more than 1 register operand. */
3574 if (i.reg_operands > 1
3575 && i.vec_encoding != vex_encoding_vex3
86fa6981 3576 && i.dir_encoding == dir_encoding_default
fa99fab2 3577 && i.operands == i.reg_operands
dbbc8b7e 3578 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3579 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3580 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3581 && i.rex == REX_B)
3582 {
3583 unsigned int xchg = i.operands - 1;
3584 union i386_op temp_op;
3585 i386_operand_type temp_type;
3586
3587 temp_type = i.types[xchg];
3588 i.types[xchg] = i.types[0];
3589 i.types[0] = temp_type;
3590 temp_op = i.op[xchg];
3591 i.op[xchg] = i.op[0];
3592 i.op[0] = temp_op;
3593
9c2799c2 3594 gas_assert (i.rm.mode == 3);
fa99fab2
L
3595
3596 i.rex = REX_R;
3597 xchg = i.rm.regmem;
3598 i.rm.regmem = i.rm.reg;
3599 i.rm.reg = xchg;
3600
dbbc8b7e
JB
3601 if (i.tm.opcode_modifier.d)
3602 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3603 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3604 else /* Use the next insn. */
3605 i.tm = t[1];
fa99fab2
L
3606 }
3607
79dec6b7
JB
3608 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3609 are no memory operands and at least 3 register ones. */
3610 if (i.reg_operands >= 3
3611 && i.vec_encoding != vex_encoding_vex3
3612 && i.reg_operands == i.operands - i.imm_operands
3613 && i.tm.opcode_modifier.vex
3614 && i.tm.opcode_modifier.commutative
3615 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3616 && i.rex == REX_B
3617 && i.vex.register_specifier
3618 && !(i.vex.register_specifier->reg_flags & RegRex))
3619 {
3620 unsigned int xchg = i.operands - i.reg_operands;
3621 union i386_op temp_op;
3622 i386_operand_type temp_type;
3623
3624 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3625 gas_assert (!i.tm.opcode_modifier.sae);
3626 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3627 &i.types[i.operands - 3]));
3628 gas_assert (i.rm.mode == 3);
3629
3630 temp_type = i.types[xchg];
3631 i.types[xchg] = i.types[xchg + 1];
3632 i.types[xchg + 1] = temp_type;
3633 temp_op = i.op[xchg];
3634 i.op[xchg] = i.op[xchg + 1];
3635 i.op[xchg + 1] = temp_op;
3636
3637 i.rex = 0;
3638 xchg = i.rm.regmem | 8;
3639 i.rm.regmem = ~register_specifier & 0xf;
3640 gas_assert (!(i.rm.regmem & 8));
3641 i.vex.register_specifier += xchg - i.rm.regmem;
3642 register_specifier = ~xchg & 0xf;
3643 }
3644
539f890d
L
3645 if (i.tm.opcode_modifier.vex == VEXScalar)
3646 vector_length = avxscalar;
10c17abd
JB
3647 else if (i.tm.opcode_modifier.vex == VEX256)
3648 vector_length = 1;
539f890d 3649 else
10c17abd 3650 {
56522fc5 3651 unsigned int op;
10c17abd 3652
c7213af9
L
3653 /* Determine vector length from the last multi-length vector
3654 operand. */
10c17abd 3655 vector_length = 0;
56522fc5 3656 for (op = t->operands; op--;)
10c17abd
JB
3657 if (t->operand_types[op].bitfield.xmmword
3658 && t->operand_types[op].bitfield.ymmword
3659 && i.types[op].bitfield.ymmword)
3660 {
3661 vector_length = 1;
3662 break;
3663 }
3664 }
c0f3af97 3665
8c190ce0 3666 switch ((i.tm.base_opcode >> (i.tm.opcode_length << 3)) & 0xff)
c0f3af97
L
3667 {
3668 case 0:
3669 implied_prefix = 0;
3670 break;
3671 case DATA_PREFIX_OPCODE:
3672 implied_prefix = 1;
3673 break;
3674 case REPE_PREFIX_OPCODE:
3675 implied_prefix = 2;
3676 break;
3677 case REPNE_PREFIX_OPCODE:
3678 implied_prefix = 3;
3679 break;
3680 default:
3681 abort ();
3682 }
3683
03751133
L
3684 /* Check the REX.W bit and VEXW. */
3685 if (i.tm.opcode_modifier.vexw == VEXWIG)
3686 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3687 else if (i.tm.opcode_modifier.vexw)
3688 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3689 else
931d03b7 3690 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3691
c0f3af97 3692 /* Use 2-byte VEX prefix if possible. */
03751133
L
3693 if (w == 0
3694 && i.vec_encoding != vex_encoding_vex3
86fa6981 3695 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3696 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3697 {
3698 /* 2-byte VEX prefix. */
3699 unsigned int r;
3700
3701 i.vex.length = 2;
3702 i.vex.bytes[0] = 0xc5;
3703
3704 /* Check the REX.R bit. */
3705 r = (i.rex & REX_R) ? 0 : 1;
3706 i.vex.bytes[1] = (r << 7
3707 | register_specifier << 3
3708 | vector_length << 2
3709 | implied_prefix);
3710 }
3711 else
3712 {
3713 /* 3-byte VEX prefix. */
03751133 3714 unsigned int m;
c0f3af97 3715
f88c9eb0 3716 i.vex.length = 3;
f88c9eb0 3717
7f399153 3718 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3719 {
7f399153
L
3720 case VEX0F:
3721 m = 0x1;
80de6e00 3722 i.vex.bytes[0] = 0xc4;
7f399153
L
3723 break;
3724 case VEX0F38:
3725 m = 0x2;
80de6e00 3726 i.vex.bytes[0] = 0xc4;
7f399153
L
3727 break;
3728 case VEX0F3A:
3729 m = 0x3;
80de6e00 3730 i.vex.bytes[0] = 0xc4;
7f399153
L
3731 break;
3732 case XOP08:
5dd85c99
SP
3733 m = 0x8;
3734 i.vex.bytes[0] = 0x8f;
7f399153
L
3735 break;
3736 case XOP09:
f88c9eb0
SP
3737 m = 0x9;
3738 i.vex.bytes[0] = 0x8f;
7f399153
L
3739 break;
3740 case XOP0A:
f88c9eb0
SP
3741 m = 0xa;
3742 i.vex.bytes[0] = 0x8f;
7f399153
L
3743 break;
3744 default:
3745 abort ();
f88c9eb0 3746 }
c0f3af97 3747
c0f3af97
L
3748 /* The high 3 bits of the second VEX byte are 1's compliment
3749 of RXB bits from REX. */
3750 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3751
c0f3af97
L
3752 i.vex.bytes[2] = (w << 7
3753 | register_specifier << 3
3754 | vector_length << 2
3755 | implied_prefix);
3756 }
3757}
3758
e771e7c9
JB
3759static INLINE bfd_boolean
3760is_evex_encoding (const insn_template *t)
3761{
7091c612 3762 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3763 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3764 || t->opcode_modifier.sae;
e771e7c9
JB
3765}
3766
7a8655d2
JB
3767static INLINE bfd_boolean
3768is_any_vex_encoding (const insn_template *t)
3769{
3770 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3771 || is_evex_encoding (t);
3772}
3773
43234a1e
L
3774/* Build the EVEX prefix. */
3775
3776static void
3777build_evex_prefix (void)
3778{
3779 unsigned int register_specifier;
3780 unsigned int implied_prefix;
3781 unsigned int m, w;
3782 rex_byte vrex_used = 0;
3783
3784 /* Check register specifier. */
3785 if (i.vex.register_specifier)
3786 {
3787 gas_assert ((i.vrex & REX_X) == 0);
3788
3789 register_specifier = i.vex.register_specifier->reg_num;
3790 if ((i.vex.register_specifier->reg_flags & RegRex))
3791 register_specifier += 8;
3792 /* The upper 16 registers are encoded in the fourth byte of the
3793 EVEX prefix. */
3794 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3795 i.vex.bytes[3] = 0x8;
3796 register_specifier = ~register_specifier & 0xf;
3797 }
3798 else
3799 {
3800 register_specifier = 0xf;
3801
3802 /* Encode upper 16 vector index register in the fourth byte of
3803 the EVEX prefix. */
3804 if (!(i.vrex & REX_X))
3805 i.vex.bytes[3] = 0x8;
3806 else
3807 vrex_used |= REX_X;
3808 }
3809
3810 switch ((i.tm.base_opcode >> 8) & 0xff)
3811 {
3812 case 0:
3813 implied_prefix = 0;
3814 break;
3815 case DATA_PREFIX_OPCODE:
3816 implied_prefix = 1;
3817 break;
3818 case REPE_PREFIX_OPCODE:
3819 implied_prefix = 2;
3820 break;
3821 case REPNE_PREFIX_OPCODE:
3822 implied_prefix = 3;
3823 break;
3824 default:
3825 abort ();
3826 }
3827
3828 /* 4 byte EVEX prefix. */
3829 i.vex.length = 4;
3830 i.vex.bytes[0] = 0x62;
3831
3832 /* mmmm bits. */
3833 switch (i.tm.opcode_modifier.vexopcode)
3834 {
3835 case VEX0F:
3836 m = 1;
3837 break;
3838 case VEX0F38:
3839 m = 2;
3840 break;
3841 case VEX0F3A:
3842 m = 3;
3843 break;
3844 default:
3845 abort ();
3846 break;
3847 }
3848
3849 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3850 bits from REX. */
3851 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3852
3853 /* The fifth bit of the second EVEX byte is 1's compliment of the
3854 REX_R bit in VREX. */
3855 if (!(i.vrex & REX_R))
3856 i.vex.bytes[1] |= 0x10;
3857 else
3858 vrex_used |= REX_R;
3859
3860 if ((i.reg_operands + i.imm_operands) == i.operands)
3861 {
3862 /* When all operands are registers, the REX_X bit in REX is not
3863 used. We reuse it to encode the upper 16 registers, which is
3864 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3865 as 1's compliment. */
3866 if ((i.vrex & REX_B))
3867 {
3868 vrex_used |= REX_B;
3869 i.vex.bytes[1] &= ~0x40;
3870 }
3871 }
3872
3873 /* EVEX instructions shouldn't need the REX prefix. */
3874 i.vrex &= ~vrex_used;
3875 gas_assert (i.vrex == 0);
3876
6865c043
L
3877 /* Check the REX.W bit and VEXW. */
3878 if (i.tm.opcode_modifier.vexw == VEXWIG)
3879 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3880 else if (i.tm.opcode_modifier.vexw)
3881 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3882 else
931d03b7 3883 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3884
3885 /* Encode the U bit. */
3886 implied_prefix |= 0x4;
3887
3888 /* The third byte of the EVEX prefix. */
3889 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3890
3891 /* The fourth byte of the EVEX prefix. */
3892 /* The zeroing-masking bit. */
3893 if (i.mask && i.mask->zeroing)
3894 i.vex.bytes[3] |= 0x80;
3895
3896 /* Don't always set the broadcast bit if there is no RC. */
3897 if (!i.rounding)
3898 {
3899 /* Encode the vector length. */
3900 unsigned int vec_length;
3901
e771e7c9
JB
3902 if (!i.tm.opcode_modifier.evex
3903 || i.tm.opcode_modifier.evex == EVEXDYN)
3904 {
56522fc5 3905 unsigned int op;
e771e7c9 3906
c7213af9
L
3907 /* Determine vector length from the last multi-length vector
3908 operand. */
56522fc5 3909 for (op = i.operands; op--;)
e771e7c9
JB
3910 if (i.tm.operand_types[op].bitfield.xmmword
3911 + i.tm.operand_types[op].bitfield.ymmword
3912 + i.tm.operand_types[op].bitfield.zmmword > 1)
3913 {
3914 if (i.types[op].bitfield.zmmword)
c7213af9
L
3915 {
3916 i.tm.opcode_modifier.evex = EVEX512;
3917 break;
3918 }
e771e7c9 3919 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3920 {
3921 i.tm.opcode_modifier.evex = EVEX256;
3922 break;
3923 }
e771e7c9 3924 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3925 {
3926 i.tm.opcode_modifier.evex = EVEX128;
3927 break;
3928 }
625cbd7a
JB
3929 else if (i.broadcast && (int) op == i.broadcast->operand)
3930 {
4a1b91ea 3931 switch (i.broadcast->bytes)
625cbd7a
JB
3932 {
3933 case 64:
3934 i.tm.opcode_modifier.evex = EVEX512;
3935 break;
3936 case 32:
3937 i.tm.opcode_modifier.evex = EVEX256;
3938 break;
3939 case 16:
3940 i.tm.opcode_modifier.evex = EVEX128;
3941 break;
3942 default:
c7213af9 3943 abort ();
625cbd7a 3944 }
c7213af9 3945 break;
625cbd7a 3946 }
e771e7c9 3947 }
c7213af9 3948
56522fc5 3949 if (op >= MAX_OPERANDS)
c7213af9 3950 abort ();
e771e7c9
JB
3951 }
3952
43234a1e
L
3953 switch (i.tm.opcode_modifier.evex)
3954 {
3955 case EVEXLIG: /* LL' is ignored */
3956 vec_length = evexlig << 5;
3957 break;
3958 case EVEX128:
3959 vec_length = 0 << 5;
3960 break;
3961 case EVEX256:
3962 vec_length = 1 << 5;
3963 break;
3964 case EVEX512:
3965 vec_length = 2 << 5;
3966 break;
3967 default:
3968 abort ();
3969 break;
3970 }
3971 i.vex.bytes[3] |= vec_length;
3972 /* Encode the broadcast bit. */
3973 if (i.broadcast)
3974 i.vex.bytes[3] |= 0x10;
3975 }
3976 else
3977 {
3978 if (i.rounding->type != saeonly)
3979 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3980 else
d3d3c6db 3981 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3982 }
3983
3984 if (i.mask && i.mask->mask)
3985 i.vex.bytes[3] |= i.mask->mask->reg_num;
3986}
3987
65da13b5
L
3988static void
3989process_immext (void)
3990{
3991 expressionS *exp;
3992
c0f3af97 3993 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3994 which is coded in the same place as an 8-bit immediate field
3995 would be. Here we fake an 8-bit immediate operand from the
3996 opcode suffix stored in tm.extension_opcode.
3997
c1e679ec 3998 AVX instructions also use this encoding, for some of
c0f3af97 3999 3 argument instructions. */
65da13b5 4000
43234a1e 4001 gas_assert (i.imm_operands <= 1
7ab9ffdd 4002 && (i.operands <= 2
7a8655d2 4003 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 4004 && i.operands <= 4)));
65da13b5
L
4005
4006 exp = &im_expressions[i.imm_operands++];
4007 i.op[i.operands].imms = exp;
4008 i.types[i.operands] = imm8;
4009 i.operands++;
4010 exp->X_op = O_constant;
4011 exp->X_add_number = i.tm.extension_opcode;
4012 i.tm.extension_opcode = None;
4013}
4014
42164a71
L
4015
4016static int
4017check_hle (void)
4018{
4019 switch (i.tm.opcode_modifier.hleprefixok)
4020 {
4021 default:
4022 abort ();
82c2def5 4023 case HLEPrefixNone:
165de32a
L
4024 as_bad (_("invalid instruction `%s' after `%s'"),
4025 i.tm.name, i.hle_prefix);
42164a71 4026 return 0;
82c2def5 4027 case HLEPrefixLock:
42164a71
L
4028 if (i.prefix[LOCK_PREFIX])
4029 return 1;
165de32a 4030 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 4031 return 0;
82c2def5 4032 case HLEPrefixAny:
42164a71 4033 return 1;
82c2def5 4034 case HLEPrefixRelease:
42164a71
L
4035 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4036 {
4037 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4038 i.tm.name);
4039 return 0;
4040 }
8dc0818e 4041 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
4042 {
4043 as_bad (_("memory destination needed for instruction `%s'"
4044 " after `xrelease'"), i.tm.name);
4045 return 0;
4046 }
4047 return 1;
4048 }
4049}
4050
b6f8c7c4
L
4051/* Try the shortest encoding by shortening operand size. */
4052
4053static void
4054optimize_encoding (void)
4055{
a0a1771e 4056 unsigned int j;
b6f8c7c4
L
4057
4058 if (optimize_for_space
72aea328 4059 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
4060 && i.reg_operands == 1
4061 && i.imm_operands == 1
4062 && !i.types[1].bitfield.byte
4063 && i.op[0].imms->X_op == O_constant
4064 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 4065 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4066 || (i.tm.base_opcode == 0xf6
4067 && i.tm.extension_opcode == 0x0)))
4068 {
4069 /* Optimize: -Os:
4070 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4071 */
4072 unsigned int base_regnum = i.op[1].regs->reg_num;
4073 if (flag_code == CODE_64BIT || base_regnum < 4)
4074 {
4075 i.types[1].bitfield.byte = 1;
4076 /* Ignore the suffix. */
4077 i.suffix = 0;
7697afb6
JB
4078 /* Convert to byte registers. */
4079 if (i.types[1].bitfield.word)
4080 j = 16;
4081 else if (i.types[1].bitfield.dword)
4082 j = 32;
4083 else
4084 j = 48;
4085 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4086 j += 8;
4087 i.op[1].regs -= j;
b6f8c7c4
L
4088 }
4089 }
4090 else if (flag_code == CODE_64BIT
72aea328 4091 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4092 && ((i.types[1].bitfield.qword
4093 && i.reg_operands == 1
b6f8c7c4
L
4094 && i.imm_operands == 1
4095 && i.op[0].imms->X_op == O_constant
507916b8 4096 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4097 && i.tm.extension_opcode == None
4098 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4099 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4100 && ((i.tm.base_opcode == 0x24
4101 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4102 || (i.tm.base_opcode == 0x80
4103 && i.tm.extension_opcode == 0x4)
4104 || ((i.tm.base_opcode == 0xf6
507916b8 4105 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4106 && i.tm.extension_opcode == 0x0)))
4107 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4108 && i.tm.base_opcode == 0x83
4109 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4110 || (i.types[0].bitfield.qword
4111 && ((i.reg_operands == 2
4112 && i.op[0].regs == i.op[1].regs
72aea328
JB
4113 && (i.tm.base_opcode == 0x30
4114 || i.tm.base_opcode == 0x28))
d3d50934
L
4115 || (i.reg_operands == 1
4116 && i.operands == 1
72aea328 4117 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4118 {
4119 /* Optimize: -O:
4120 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4121 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4122 testq $imm31, %r64 -> testl $imm31, %r32
4123 xorq %r64, %r64 -> xorl %r32, %r32
4124 subq %r64, %r64 -> subl %r32, %r32
4125 movq $imm31, %r64 -> movl $imm31, %r32
4126 movq $imm32, %r64 -> movl $imm32, %r32
4127 */
4128 i.tm.opcode_modifier.norex64 = 1;
507916b8 4129 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4130 {
4131 /* Handle
4132 movq $imm31, %r64 -> movl $imm31, %r32
4133 movq $imm32, %r64 -> movl $imm32, %r32
4134 */
4135 i.tm.operand_types[0].bitfield.imm32 = 1;
4136 i.tm.operand_types[0].bitfield.imm32s = 0;
4137 i.tm.operand_types[0].bitfield.imm64 = 0;
4138 i.types[0].bitfield.imm32 = 1;
4139 i.types[0].bitfield.imm32s = 0;
4140 i.types[0].bitfield.imm64 = 0;
4141 i.types[1].bitfield.dword = 1;
4142 i.types[1].bitfield.qword = 0;
507916b8 4143 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4144 {
4145 /* Handle
4146 movq $imm31, %r64 -> movl $imm31, %r32
4147 */
507916b8 4148 i.tm.base_opcode = 0xb8;
b6f8c7c4 4149 i.tm.extension_opcode = None;
507916b8 4150 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4151 i.tm.opcode_modifier.modrm = 0;
4152 }
4153 }
4154 }
5641ec01
JB
4155 else if (optimize > 1
4156 && !optimize_for_space
72aea328 4157 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4158 && i.reg_operands == 2
4159 && i.op[0].regs == i.op[1].regs
4160 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4161 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4162 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4163 {
4164 /* Optimize: -O2:
4165 andb %rN, %rN -> testb %rN, %rN
4166 andw %rN, %rN -> testw %rN, %rN
4167 andq %rN, %rN -> testq %rN, %rN
4168 orb %rN, %rN -> testb %rN, %rN
4169 orw %rN, %rN -> testw %rN, %rN
4170 orq %rN, %rN -> testq %rN, %rN
4171
4172 and outside of 64-bit mode
4173
4174 andl %rN, %rN -> testl %rN, %rN
4175 orl %rN, %rN -> testl %rN, %rN
4176 */
4177 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4178 }
99112332 4179 else if (i.reg_operands == 3
b6f8c7c4
L
4180 && i.op[0].regs == i.op[1].regs
4181 && !i.types[2].bitfield.xmmword
4182 && (i.tm.opcode_modifier.vex
7a69eac3 4183 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4184 && !i.rounding
e771e7c9 4185 && is_evex_encoding (&i.tm)
80c34c38 4186 && (i.vec_encoding != vex_encoding_evex
dd22218c 4187 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4188 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4189 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4190 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4191 && ((i.tm.base_opcode == 0x55
4192 || i.tm.base_opcode == 0x6655
4193 || i.tm.base_opcode == 0x66df
4194 || i.tm.base_opcode == 0x57
4195 || i.tm.base_opcode == 0x6657
8305403a
L
4196 || i.tm.base_opcode == 0x66ef
4197 || i.tm.base_opcode == 0x66f8
4198 || i.tm.base_opcode == 0x66f9
4199 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4200 || i.tm.base_opcode == 0x66fb
4201 || i.tm.base_opcode == 0x42
4202 || i.tm.base_opcode == 0x6642
4203 || i.tm.base_opcode == 0x47
4204 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4205 && i.tm.extension_opcode == None))
4206 {
99112332 4207 /* Optimize: -O1:
8305403a
L
4208 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4209 vpsubq and vpsubw:
b6f8c7c4
L
4210 EVEX VOP %zmmM, %zmmM, %zmmN
4211 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4212 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4213 EVEX VOP %ymmM, %ymmM, %ymmN
4214 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4215 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4216 VEX VOP %ymmM, %ymmM, %ymmN
4217 -> VEX VOP %xmmM, %xmmM, %xmmN
4218 VOP, one of vpandn and vpxor:
4219 VEX VOP %ymmM, %ymmM, %ymmN
4220 -> VEX VOP %xmmM, %xmmM, %xmmN
4221 VOP, one of vpandnd and vpandnq:
4222 EVEX VOP %zmmM, %zmmM, %zmmN
4223 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4224 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4225 EVEX VOP %ymmM, %ymmM, %ymmN
4226 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4227 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4228 VOP, one of vpxord and vpxorq:
4229 EVEX VOP %zmmM, %zmmM, %zmmN
4230 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4231 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4232 EVEX VOP %ymmM, %ymmM, %ymmN
4233 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4234 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4235 VOP, one of kxord and kxorq:
4236 VEX VOP %kM, %kM, %kN
4237 -> VEX kxorw %kM, %kM, %kN
4238 VOP, one of kandnd and kandnq:
4239 VEX VOP %kM, %kM, %kN
4240 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4241 */
e771e7c9 4242 if (is_evex_encoding (&i.tm))
b6f8c7c4 4243 {
7b1d7ca1 4244 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4245 {
4246 i.tm.opcode_modifier.vex = VEX128;
4247 i.tm.opcode_modifier.vexw = VEXW0;
4248 i.tm.opcode_modifier.evex = 0;
4249 }
7b1d7ca1 4250 else if (optimize > 1)
dd22218c
L
4251 i.tm.opcode_modifier.evex = EVEX128;
4252 else
4253 return;
b6f8c7c4 4254 }
f74a6307 4255 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4256 {
4257 i.tm.base_opcode &= 0xff;
4258 i.tm.opcode_modifier.vexw = VEXW0;
4259 }
b6f8c7c4
L
4260 else
4261 i.tm.opcode_modifier.vex = VEX128;
4262
4263 if (i.tm.opcode_modifier.vex)
4264 for (j = 0; j < 3; j++)
4265 {
4266 i.types[j].bitfield.xmmword = 1;
4267 i.types[j].bitfield.ymmword = 0;
4268 }
4269 }
392a5972 4270 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4271 && !i.types[0].bitfield.zmmword
392a5972 4272 && !i.types[1].bitfield.zmmword
97ed31ae 4273 && !i.mask
a0a1771e 4274 && !i.broadcast
97ed31ae 4275 && is_evex_encoding (&i.tm)
392a5972
L
4276 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4277 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4278 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4279 || (i.tm.base_opcode & ~4) == 0x66db
4280 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4281 && i.tm.extension_opcode == None)
4282 {
4283 /* Optimize: -O1:
4284 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4285 vmovdqu32 and vmovdqu64:
4286 EVEX VOP %xmmM, %xmmN
4287 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4288 EVEX VOP %ymmM, %ymmN
4289 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4290 EVEX VOP %xmmM, mem
4291 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4292 EVEX VOP %ymmM, mem
4293 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4294 EVEX VOP mem, %xmmN
4295 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4296 EVEX VOP mem, %ymmN
4297 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4298 VOP, one of vpand, vpandn, vpor, vpxor:
4299 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4300 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4301 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4302 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4303 EVEX VOP{d,q} mem, %xmmM, %xmmN
4304 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4305 EVEX VOP{d,q} mem, %ymmM, %ymmN
4306 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4307 */
a0a1771e 4308 for (j = 0; j < i.operands; j++)
392a5972
L
4309 if (operand_type_check (i.types[j], disp)
4310 && i.op[j].disps->X_op == O_constant)
4311 {
4312 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4313 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4314 bytes, we choose EVEX Disp8 over VEX Disp32. */
4315 int evex_disp8, vex_disp8;
4316 unsigned int memshift = i.memshift;
4317 offsetT n = i.op[j].disps->X_add_number;
4318
4319 evex_disp8 = fits_in_disp8 (n);
4320 i.memshift = 0;
4321 vex_disp8 = fits_in_disp8 (n);
4322 if (evex_disp8 != vex_disp8)
4323 {
4324 i.memshift = memshift;
4325 return;
4326 }
4327
4328 i.types[j].bitfield.disp8 = vex_disp8;
4329 break;
4330 }
4331 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4332 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4333 i.tm.opcode_modifier.vex
4334 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4335 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4336 /* VPAND, VPOR, and VPXOR are commutative. */
4337 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4338 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4339 i.tm.opcode_modifier.evex = 0;
4340 i.tm.opcode_modifier.masking = 0;
a0a1771e 4341 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4342 i.tm.opcode_modifier.disp8memshift = 0;
4343 i.memshift = 0;
a0a1771e
JB
4344 if (j < i.operands)
4345 i.types[j].bitfield.disp8
4346 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4347 }
b6f8c7c4
L
4348}
4349
ae531041
L
4350/* Return non-zero for load instruction. */
4351
4352static int
4353load_insn_p (void)
4354{
4355 unsigned int dest;
4356 int any_vex_p = is_any_vex_encoding (&i.tm);
4357 unsigned int base_opcode = i.tm.base_opcode | 1;
4358
4359 if (!any_vex_p)
4360 {
a09f656b 4361 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4362 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4363 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4364 if (i.tm.opcode_modifier.anysize)
ae531041
L
4365 return 0;
4366
a09f656b 4367 /* pop, popf, popa. */
4368 if (strcmp (i.tm.name, "pop") == 0
4369 || i.tm.base_opcode == 0x9d
4370 || i.tm.base_opcode == 0x61)
ae531041
L
4371 return 1;
4372
4373 /* movs, cmps, lods, scas. */
4374 if ((i.tm.base_opcode | 0xb) == 0xaf)
4375 return 1;
4376
a09f656b 4377 /* outs, xlatb. */
4378 if (base_opcode == 0x6f
4379 || i.tm.base_opcode == 0xd7)
ae531041 4380 return 1;
a09f656b 4381 /* NB: For AMD-specific insns with implicit memory operands,
4382 they're intentionally not covered. */
ae531041
L
4383 }
4384
4385 /* No memory operand. */
4386 if (!i.mem_operands)
4387 return 0;
4388
4389 if (any_vex_p)
4390 {
4391 /* vldmxcsr. */
4392 if (i.tm.base_opcode == 0xae
4393 && i.tm.opcode_modifier.vex
4394 && i.tm.opcode_modifier.vexopcode == VEX0F
4395 && i.tm.extension_opcode == 2)
4396 return 1;
4397 }
4398 else
4399 {
4400 /* test, not, neg, mul, imul, div, idiv. */
4401 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4402 && i.tm.extension_opcode != 1)
4403 return 1;
4404
4405 /* inc, dec. */
4406 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4407 return 1;
4408
4409 /* add, or, adc, sbb, and, sub, xor, cmp. */
4410 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4411 return 1;
4412
4413 /* bt, bts, btr, btc. */
4414 if (i.tm.base_opcode == 0xfba
4415 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4416 return 1;
4417
4418 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4419 if ((base_opcode == 0xc1
4420 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4421 && i.tm.extension_opcode != 6)
4422 return 1;
4423
4424 /* cmpxchg8b, cmpxchg16b, xrstors. */
4425 if (i.tm.base_opcode == 0xfc7
4426 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3))
4427 return 1;
4428
4429 /* fxrstor, ldmxcsr, xrstor. */
4430 if (i.tm.base_opcode == 0xfae
4431 && (i.tm.extension_opcode == 1
4432 || i.tm.extension_opcode == 2
4433 || i.tm.extension_opcode == 5))
4434 return 1;
4435
4436 /* lgdt, lidt, lmsw. */
4437 if (i.tm.base_opcode == 0xf01
4438 && (i.tm.extension_opcode == 2
4439 || i.tm.extension_opcode == 3
4440 || i.tm.extension_opcode == 6))
4441 return 1;
4442
4443 /* vmptrld */
4444 if (i.tm.base_opcode == 0xfc7
4445 && i.tm.extension_opcode == 6)
4446 return 1;
4447
4448 /* Check for x87 instructions. */
4449 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4450 {
4451 /* Skip fst, fstp, fstenv, fstcw. */
4452 if (i.tm.base_opcode == 0xd9
4453 && (i.tm.extension_opcode == 2
4454 || i.tm.extension_opcode == 3
4455 || i.tm.extension_opcode == 6
4456 || i.tm.extension_opcode == 7))
4457 return 0;
4458
4459 /* Skip fisttp, fist, fistp, fstp. */
4460 if (i.tm.base_opcode == 0xdb
4461 && (i.tm.extension_opcode == 1
4462 || i.tm.extension_opcode == 2
4463 || i.tm.extension_opcode == 3
4464 || i.tm.extension_opcode == 7))
4465 return 0;
4466
4467 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4468 if (i.tm.base_opcode == 0xdd
4469 && (i.tm.extension_opcode == 1
4470 || i.tm.extension_opcode == 2
4471 || i.tm.extension_opcode == 3
4472 || i.tm.extension_opcode == 6
4473 || i.tm.extension_opcode == 7))
4474 return 0;
4475
4476 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4477 if (i.tm.base_opcode == 0xdf
4478 && (i.tm.extension_opcode == 1
4479 || i.tm.extension_opcode == 2
4480 || i.tm.extension_opcode == 3
4481 || i.tm.extension_opcode == 6
4482 || i.tm.extension_opcode == 7))
4483 return 0;
4484
4485 return 1;
4486 }
4487 }
4488
4489 dest = i.operands - 1;
4490
4491 /* Check fake imm8 operand and 3 source operands. */
4492 if ((i.tm.opcode_modifier.immext
4493 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4494 && i.types[dest].bitfield.imm8)
4495 dest--;
4496
4497 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4498 if (!any_vex_p
4499 && (base_opcode == 0x1
4500 || base_opcode == 0x9
4501 || base_opcode == 0x11
4502 || base_opcode == 0x19
4503 || base_opcode == 0x21
4504 || base_opcode == 0x29
4505 || base_opcode == 0x31
4506 || base_opcode == 0x39
4507 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4508 || base_opcode == 0xfc1))
4509 return 1;
4510
4511 /* Check for load instruction. */
4512 return (i.types[dest].bitfield.class != ClassNone
4513 || i.types[dest].bitfield.instance == Accum);
4514}
4515
4516/* Output lfence, 0xfaee8, after instruction. */
4517
4518static void
4519insert_lfence_after (void)
4520{
4521 if (lfence_after_load && load_insn_p ())
4522 {
a09f656b 4523 /* There are also two REP string instructions that require
4524 special treatment. Specifically, the compare string (CMPS)
4525 and scan string (SCAS) instructions set EFLAGS in a manner
4526 that depends on the data being compared/scanned. When used
4527 with a REP prefix, the number of iterations may therefore
4528 vary depending on this data. If the data is a program secret
4529 chosen by the adversary using an LVI method,
4530 then this data-dependent behavior may leak some aspect
4531 of the secret. */
4532 if (((i.tm.base_opcode | 0x1) == 0xa7
4533 || (i.tm.base_opcode | 0x1) == 0xaf)
4534 && i.prefix[REP_PREFIX])
4535 {
4536 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4537 i.tm.name);
4538 }
ae531041
L
4539 char *p = frag_more (3);
4540 *p++ = 0xf;
4541 *p++ = 0xae;
4542 *p = 0xe8;
4543 }
4544}
4545
4546/* Output lfence, 0xfaee8, before instruction. */
4547
4548static void
4549insert_lfence_before (void)
4550{
4551 char *p;
4552
4553 if (is_any_vex_encoding (&i.tm))
4554 return;
4555
4556 if (i.tm.base_opcode == 0xff
4557 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4558 {
4559 /* Insert lfence before indirect branch if needed. */
4560
4561 if (lfence_before_indirect_branch == lfence_branch_none)
4562 return;
4563
4564 if (i.operands != 1)
4565 abort ();
4566
4567 if (i.reg_operands == 1)
4568 {
4569 /* Indirect branch via register. Don't insert lfence with
4570 -mlfence-after-load=yes. */
4571 if (lfence_after_load
4572 || lfence_before_indirect_branch == lfence_branch_memory)
4573 return;
4574 }
4575 else if (i.mem_operands == 1
4576 && lfence_before_indirect_branch != lfence_branch_register)
4577 {
4578 as_warn (_("indirect `%s` with memory operand should be avoided"),
4579 i.tm.name);
4580 return;
4581 }
4582 else
4583 return;
4584
4585 if (last_insn.kind != last_insn_other
4586 && last_insn.seg == now_seg)
4587 {
4588 as_warn_where (last_insn.file, last_insn.line,
4589 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4590 last_insn.name, i.tm.name);
4591 return;
4592 }
4593
4594 p = frag_more (3);
4595 *p++ = 0xf;
4596 *p++ = 0xae;
4597 *p = 0xe8;
4598 return;
4599 }
4600
503648e4 4601 /* Output or/not/shl and lfence before near ret. */
ae531041
L
4602 if (lfence_before_ret != lfence_before_ret_none
4603 && (i.tm.base_opcode == 0xc2
503648e4 4604 || i.tm.base_opcode == 0xc3))
ae531041
L
4605 {
4606 if (last_insn.kind != last_insn_other
4607 && last_insn.seg == now_seg)
4608 {
4609 as_warn_where (last_insn.file, last_insn.line,
4610 _("`%s` skips -mlfence-before-ret on `%s`"),
4611 last_insn.name, i.tm.name);
4612 return;
4613 }
a09f656b 4614
a09f656b 4615 /* Near ret ingore operand size override under CPU64. */
503648e4 4616 char prefix = flag_code == CODE_64BIT
4617 ? 0x48
4618 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
a09f656b 4619
4620 if (lfence_before_ret == lfence_before_ret_not)
4621 {
4622 /* not: 0xf71424, may add prefix
4623 for operand size override or 64-bit code. */
4624 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4625 if (prefix)
4626 *p++ = prefix;
ae531041
L
4627 *p++ = 0xf7;
4628 *p++ = 0x14;
4629 *p++ = 0x24;
a09f656b 4630 if (prefix)
4631 *p++ = prefix;
ae531041
L
4632 *p++ = 0xf7;
4633 *p++ = 0x14;
4634 *p++ = 0x24;
4635 }
a09f656b 4636 else
4637 {
4638 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4639 if (prefix)
4640 *p++ = prefix;
4641 if (lfence_before_ret == lfence_before_ret_or)
4642 {
4643 /* or: 0x830c2400, may add prefix
4644 for operand size override or 64-bit code. */
4645 *p++ = 0x83;
4646 *p++ = 0x0c;
4647 }
4648 else
4649 {
4650 /* shl: 0xc1242400, may add prefix
4651 for operand size override or 64-bit code. */
4652 *p++ = 0xc1;
4653 *p++ = 0x24;
4654 }
4655
4656 *p++ = 0x24;
4657 *p++ = 0x0;
4658 }
4659
ae531041
L
4660 *p++ = 0xf;
4661 *p++ = 0xae;
4662 *p = 0xe8;
4663 }
4664}
4665
252b5132
RH
4666/* This is the guts of the machine-dependent assembler. LINE points to a
4667 machine dependent instruction. This function is supposed to emit
4668 the frags/bytes it assembles to. */
4669
4670void
65da13b5 4671md_assemble (char *line)
252b5132 4672{
40fb9820 4673 unsigned int j;
83b16ac6 4674 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4675 const insn_template *t;
252b5132 4676
47926f60 4677 /* Initialize globals. */
252b5132
RH
4678 memset (&i, '\0', sizeof (i));
4679 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4680 i.reloc[j] = NO_RELOC;
252b5132
RH
4681 memset (disp_expressions, '\0', sizeof (disp_expressions));
4682 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4683 save_stack_p = save_stack;
252b5132
RH
4684
4685 /* First parse an instruction mnemonic & call i386_operand for the operands.
4686 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4687 start of a (possibly prefixed) mnemonic. */
252b5132 4688
29b0f896
AM
4689 line = parse_insn (line, mnemonic);
4690 if (line == NULL)
4691 return;
83b16ac6 4692 mnem_suffix = i.suffix;
252b5132 4693
29b0f896 4694 line = parse_operands (line, mnemonic);
ee86248c 4695 this_operand = -1;
8325cc63
JB
4696 xfree (i.memop1_string);
4697 i.memop1_string = NULL;
29b0f896
AM
4698 if (line == NULL)
4699 return;
252b5132 4700
29b0f896
AM
4701 /* Now we've parsed the mnemonic into a set of templates, and have the
4702 operands at hand. */
4703
b630c145
JB
4704 /* All Intel opcodes have reversed operands except for "bound", "enter",
4705 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4706 intersegment "jmp" and "call" instructions with 2 immediate operands so
4707 that the immediate segment precedes the offset, as it does when in AT&T
4708 mode. */
4d456e3d
L
4709 if (intel_syntax
4710 && i.operands > 1
29b0f896 4711 && (strcmp (mnemonic, "bound") != 0)
30123838 4712 && (strcmp (mnemonic, "invlpga") != 0)
eedb0f2c
JB
4713 && (strncmp (mnemonic, "monitor", 7) != 0)
4714 && (strncmp (mnemonic, "mwait", 5) != 0)
b630c145
JB
4715 && (strcmp (mnemonic, "tpause") != 0)
4716 && (strcmp (mnemonic, "umwait") != 0)
40fb9820
L
4717 && !(operand_type_check (i.types[0], imm)
4718 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4719 swap_operands ();
4720
ec56d5c0
JB
4721 /* The order of the immediates should be reversed
4722 for 2 immediates extrq and insertq instructions */
4723 if (i.imm_operands == 2
4724 && (strcmp (mnemonic, "extrq") == 0
4725 || strcmp (mnemonic, "insertq") == 0))
4726 swap_2_operands (0, 1);
4727
29b0f896
AM
4728 if (i.imm_operands)
4729 optimize_imm ();
4730
b300c311
L
4731 /* Don't optimize displacement for movabs since it only takes 64bit
4732 displacement. */
4733 if (i.disp_operands
a501d77e 4734 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4735 && (flag_code != CODE_64BIT
4736 || strcmp (mnemonic, "movabs") != 0))
4737 optimize_disp ();
29b0f896
AM
4738
4739 /* Next, we find a template that matches the given insn,
4740 making sure the overlap of the given operands types is consistent
4741 with the template operand types. */
252b5132 4742
83b16ac6 4743 if (!(t = match_template (mnem_suffix)))
29b0f896 4744 return;
252b5132 4745
7bab8ab5 4746 if (sse_check != check_none
81f8a913 4747 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4748 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4749 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4750 && (i.tm.cpu_flags.bitfield.cpusse
4751 || i.tm.cpu_flags.bitfield.cpusse2
4752 || i.tm.cpu_flags.bitfield.cpusse3
4753 || i.tm.cpu_flags.bitfield.cpussse3
4754 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e
JB
4755 || i.tm.cpu_flags.bitfield.cpusse4_2
4756 || i.tm.cpu_flags.bitfield.cpupclmul
4757 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4758 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4759 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4760 {
7bab8ab5 4761 (sse_check == check_warning
daf50ae7
L
4762 ? as_warn
4763 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4764 }
4765
40fb9820 4766 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4767 if (!add_prefix (FWAIT_OPCODE))
4768 return;
252b5132 4769
d5de92cf
L
4770 /* Check if REP prefix is OK. */
4771 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4772 {
4773 as_bad (_("invalid instruction `%s' after `%s'"),
4774 i.tm.name, i.rep_prefix);
4775 return;
4776 }
4777
c1ba0266
L
4778 /* Check for lock without a lockable instruction. Destination operand
4779 must be memory unless it is xchg (0x86). */
c32fa91d
L
4780 if (i.prefix[LOCK_PREFIX]
4781 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4782 || i.mem_operands == 0
4783 || (i.tm.base_opcode != 0x86
8dc0818e 4784 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4785 {
4786 as_bad (_("expecting lockable instruction after `lock'"));
4787 return;
4788 }
4789
40d231b4
JB
4790 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4791 if (i.prefix[DATA_PREFIX]
4792 && (is_any_vex_encoding (&i.tm)
4793 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4794 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
7a8655d2
JB
4795 {
4796 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4797 return;
4798 }
4799
42164a71 4800 /* Check if HLE prefix is OK. */
165de32a 4801 if (i.hle_prefix && !check_hle ())
42164a71
L
4802 return;
4803
7e8b059b
L
4804 /* Check BND prefix. */
4805 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4806 as_bad (_("expecting valid branch instruction after `bnd'"));
4807
04ef582a 4808 /* Check NOTRACK prefix. */
9fef80d6
L
4809 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4810 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4811
327e8c42
JB
4812 if (i.tm.cpu_flags.bitfield.cpumpx)
4813 {
4814 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4815 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4816 else if (flag_code != CODE_16BIT
4817 ? i.prefix[ADDR_PREFIX]
4818 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4819 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4820 }
7e8b059b
L
4821
4822 /* Insert BND prefix. */
76d3a78a
JB
4823 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4824 {
4825 if (!i.prefix[BND_PREFIX])
4826 add_prefix (BND_PREFIX_OPCODE);
4827 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4828 {
4829 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4830 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4831 }
4832 }
7e8b059b 4833
29b0f896 4834 /* Check string instruction segment overrides. */
51c8edf6 4835 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4836 {
51c8edf6 4837 gas_assert (i.mem_operands);
29b0f896 4838 if (!check_string ())
5dd0794d 4839 return;
fc0763e6 4840 i.disp_operands = 0;
29b0f896 4841 }
5dd0794d 4842
b6f8c7c4
L
4843 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4844 optimize_encoding ();
4845
29b0f896
AM
4846 if (!process_suffix ())
4847 return;
e413e4e9 4848
bc0844ae
L
4849 /* Update operand types. */
4850 for (j = 0; j < i.operands; j++)
4851 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4852
29b0f896
AM
4853 /* Make still unresolved immediate matches conform to size of immediate
4854 given in i.suffix. */
4855 if (!finalize_imm ())
4856 return;
252b5132 4857
40fb9820 4858 if (i.types[0].bitfield.imm1)
29b0f896 4859 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4860
9afe6eb8
L
4861 /* We only need to check those implicit registers for instructions
4862 with 3 operands or less. */
4863 if (i.operands <= 3)
4864 for (j = 0; j < i.operands; j++)
75e5731b
JB
4865 if (i.types[j].bitfield.instance != InstanceNone
4866 && !i.types[j].bitfield.xmmword)
9afe6eb8 4867 i.reg_operands--;
40fb9820 4868
29b0f896
AM
4869 /* For insns with operands there are more diddles to do to the opcode. */
4870 if (i.operands)
4871 {
4872 if (!process_operands ())
4873 return;
4874 }
8c190ce0 4875 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4876 {
4877 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4878 as_warn (_("translating to `%sp'"), i.tm.name);
4879 }
252b5132 4880
7a8655d2 4881 if (is_any_vex_encoding (&i.tm))
9e5e5283 4882 {
c1dc7af5 4883 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4884 {
c1dc7af5 4885 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4886 i.tm.name);
4887 return;
4888 }
c0f3af97 4889
0b9404fd
JB
4890 /* Check for explicit REX prefix. */
4891 if (i.prefix[REX_PREFIX] || i.rex_encoding)
4892 {
4893 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
4894 return;
4895 }
4896
9e5e5283
L
4897 if (i.tm.opcode_modifier.vex)
4898 build_vex_prefix (t);
4899 else
4900 build_evex_prefix ();
0b9404fd
JB
4901
4902 /* The individual REX.RXBW bits got consumed. */
4903 i.rex &= REX_OPCODE;
9e5e5283 4904 }
43234a1e 4905
5dd85c99
SP
4906 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4907 instructions may define INT_OPCODE as well, so avoid this corner
4908 case for those instructions that use MODRM. */
4909 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4910 && !i.tm.opcode_modifier.modrm
4911 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4912 {
4913 i.tm.base_opcode = INT3_OPCODE;
4914 i.imm_operands = 0;
4915 }
252b5132 4916
0cfa3eb3
JB
4917 if ((i.tm.opcode_modifier.jump == JUMP
4918 || i.tm.opcode_modifier.jump == JUMP_BYTE
4919 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4920 && i.op[0].disps->X_op == O_constant)
4921 {
4922 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4923 the absolute address given by the constant. Since ix86 jumps and
4924 calls are pc relative, we need to generate a reloc. */
4925 i.op[0].disps->X_add_symbol = &abs_symbol;
4926 i.op[0].disps->X_op = O_symbol;
4927 }
252b5132 4928
29b0f896
AM
4929 /* For 8 bit registers we need an empty rex prefix. Also if the
4930 instruction already has a prefix, we need to convert old
4931 registers to new ones. */
773f551c 4932
bab6aec1 4933 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4934 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4935 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4936 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4937 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4938 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4939 && i.rex != 0))
4940 {
4941 int x;
726c5dcd 4942
29b0f896
AM
4943 i.rex |= REX_OPCODE;
4944 for (x = 0; x < 2; x++)
4945 {
4946 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4947 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4948 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4949 {
3f93af61 4950 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4951 /* In case it is "hi" register, give up. */
4952 if (i.op[x].regs->reg_num > 3)
a540244d 4953 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4954 "instruction requiring REX prefix."),
a540244d 4955 register_prefix, i.op[x].regs->reg_name);
773f551c 4956
29b0f896
AM
4957 /* Otherwise it is equivalent to the extended register.
4958 Since the encoding doesn't change this is merely
4959 cosmetic cleanup for debug output. */
4960
4961 i.op[x].regs = i.op[x].regs + 8;
773f551c 4962 }
29b0f896
AM
4963 }
4964 }
773f551c 4965
6b6b6807
L
4966 if (i.rex == 0 && i.rex_encoding)
4967 {
4968 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 4969 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
4970 the REX_OPCODE byte. */
4971 int x;
4972 for (x = 0; x < 2; x++)
bab6aec1 4973 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4974 && i.types[x].bitfield.byte
4975 && (i.op[x].regs->reg_flags & RegRex64) == 0
4976 && i.op[x].regs->reg_num > 3)
4977 {
3f93af61 4978 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
4979 i.rex_encoding = FALSE;
4980 break;
4981 }
4982
4983 if (i.rex_encoding)
4984 i.rex = REX_OPCODE;
4985 }
4986
7ab9ffdd 4987 if (i.rex != 0)
29b0f896
AM
4988 add_prefix (REX_OPCODE | i.rex);
4989
ae531041
L
4990 insert_lfence_before ();
4991
29b0f896
AM
4992 /* We are ready to output the insn. */
4993 output_insn ();
e379e5f3 4994
ae531041
L
4995 insert_lfence_after ();
4996
e379e5f3
L
4997 last_insn.seg = now_seg;
4998
4999 if (i.tm.opcode_modifier.isprefix)
5000 {
5001 last_insn.kind = last_insn_prefix;
5002 last_insn.name = i.tm.name;
5003 last_insn.file = as_where (&last_insn.line);
5004 }
5005 else
5006 last_insn.kind = last_insn_other;
29b0f896
AM
5007}
5008
5009static char *
e3bb37b5 5010parse_insn (char *line, char *mnemonic)
29b0f896
AM
5011{
5012 char *l = line;
5013 char *token_start = l;
5014 char *mnem_p;
5c6af06e 5015 int supported;
d3ce72d0 5016 const insn_template *t;
b6169b20 5017 char *dot_p = NULL;
29b0f896 5018
29b0f896
AM
5019 while (1)
5020 {
5021 mnem_p = mnemonic;
5022 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5023 {
b6169b20
L
5024 if (*mnem_p == '.')
5025 dot_p = mnem_p;
29b0f896
AM
5026 mnem_p++;
5027 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 5028 {
29b0f896
AM
5029 as_bad (_("no such instruction: `%s'"), token_start);
5030 return NULL;
5031 }
5032 l++;
5033 }
5034 if (!is_space_char (*l)
5035 && *l != END_OF_INSN
e44823cf
JB
5036 && (intel_syntax
5037 || (*l != PREFIX_SEPARATOR
5038 && *l != ',')))
29b0f896
AM
5039 {
5040 as_bad (_("invalid character %s in mnemonic"),
5041 output_invalid (*l));
5042 return NULL;
5043 }
5044 if (token_start == l)
5045 {
e44823cf 5046 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
5047 as_bad (_("expecting prefix; got nothing"));
5048 else
5049 as_bad (_("expecting mnemonic; got nothing"));
5050 return NULL;
5051 }
45288df1 5052
29b0f896 5053 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 5054 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 5055
29b0f896
AM
5056 if (*l != END_OF_INSN
5057 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5058 && current_templates
40fb9820 5059 && current_templates->start->opcode_modifier.isprefix)
29b0f896 5060 {
c6fb90c8 5061 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
5062 {
5063 as_bad ((flag_code != CODE_64BIT
5064 ? _("`%s' is only supported in 64-bit mode")
5065 : _("`%s' is not supported in 64-bit mode")),
5066 current_templates->start->name);
5067 return NULL;
5068 }
29b0f896
AM
5069 /* If we are in 16-bit mode, do not allow addr16 or data16.
5070 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
5071 if ((current_templates->start->opcode_modifier.size == SIZE16
5072 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 5073 && flag_code != CODE_64BIT
673fe0f0 5074 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
5075 ^ (flag_code == CODE_16BIT)))
5076 {
5077 as_bad (_("redundant %s prefix"),
5078 current_templates->start->name);
5079 return NULL;
45288df1 5080 }
86fa6981 5081 if (current_templates->start->opcode_length == 0)
29b0f896 5082 {
86fa6981
L
5083 /* Handle pseudo prefixes. */
5084 switch (current_templates->start->base_opcode)
5085 {
5086 case 0x0:
5087 /* {disp8} */
5088 i.disp_encoding = disp_encoding_8bit;
5089 break;
5090 case 0x1:
5091 /* {disp32} */
5092 i.disp_encoding = disp_encoding_32bit;
5093 break;
5094 case 0x2:
5095 /* {load} */
5096 i.dir_encoding = dir_encoding_load;
5097 break;
5098 case 0x3:
5099 /* {store} */
5100 i.dir_encoding = dir_encoding_store;
5101 break;
5102 case 0x4:
42e04b36
L
5103 /* {vex} */
5104 i.vec_encoding = vex_encoding_vex;
86fa6981
L
5105 break;
5106 case 0x5:
5107 /* {vex3} */
5108 i.vec_encoding = vex_encoding_vex3;
5109 break;
5110 case 0x6:
5111 /* {evex} */
5112 i.vec_encoding = vex_encoding_evex;
5113 break;
6b6b6807
L
5114 case 0x7:
5115 /* {rex} */
5116 i.rex_encoding = TRUE;
5117 break;
b6f8c7c4
L
5118 case 0x8:
5119 /* {nooptimize} */
5120 i.no_optimize = TRUE;
5121 break;
86fa6981
L
5122 default:
5123 abort ();
5124 }
5125 }
5126 else
5127 {
5128 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 5129 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 5130 {
4e9ac44a
L
5131 case PREFIX_EXIST:
5132 return NULL;
5133 case PREFIX_DS:
d777820b 5134 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
5135 i.notrack_prefix = current_templates->start->name;
5136 break;
5137 case PREFIX_REP:
5138 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5139 i.hle_prefix = current_templates->start->name;
5140 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5141 i.bnd_prefix = current_templates->start->name;
5142 else
5143 i.rep_prefix = current_templates->start->name;
5144 break;
5145 default:
5146 break;
86fa6981 5147 }
29b0f896
AM
5148 }
5149 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5150 token_start = ++l;
5151 }
5152 else
5153 break;
5154 }
45288df1 5155
30a55f88 5156 if (!current_templates)
b6169b20 5157 {
07d5e953
JB
5158 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5159 Check if we should swap operand or force 32bit displacement in
f8a5c266 5160 encoding. */
30a55f88 5161 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 5162 i.dir_encoding = dir_encoding_swap;
8d63c93e 5163 else if (mnem_p - 3 == dot_p
a501d77e
L
5164 && dot_p[1] == 'd'
5165 && dot_p[2] == '8')
5166 i.disp_encoding = disp_encoding_8bit;
8d63c93e 5167 else if (mnem_p - 4 == dot_p
f8a5c266
L
5168 && dot_p[1] == 'd'
5169 && dot_p[2] == '3'
5170 && dot_p[3] == '2')
a501d77e 5171 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
5172 else
5173 goto check_suffix;
5174 mnem_p = dot_p;
5175 *dot_p = '\0';
d3ce72d0 5176 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
5177 }
5178
29b0f896
AM
5179 if (!current_templates)
5180 {
dc1e8a47 5181 check_suffix:
1c529385 5182 if (mnem_p > mnemonic)
29b0f896 5183 {
1c529385
LH
5184 /* See if we can get a match by trimming off a suffix. */
5185 switch (mnem_p[-1])
29b0f896 5186 {
1c529385
LH
5187 case WORD_MNEM_SUFFIX:
5188 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
5189 i.suffix = SHORT_MNEM_SUFFIX;
5190 else
1c529385
LH
5191 /* Fall through. */
5192 case BYTE_MNEM_SUFFIX:
5193 case QWORD_MNEM_SUFFIX:
5194 i.suffix = mnem_p[-1];
29b0f896 5195 mnem_p[-1] = '\0';
d3ce72d0 5196 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
5197 mnemonic);
5198 break;
5199 case SHORT_MNEM_SUFFIX:
5200 case LONG_MNEM_SUFFIX:
5201 if (!intel_syntax)
5202 {
5203 i.suffix = mnem_p[-1];
5204 mnem_p[-1] = '\0';
5205 current_templates = (const templates *) hash_find (op_hash,
5206 mnemonic);
5207 }
5208 break;
5209
5210 /* Intel Syntax. */
5211 case 'd':
5212 if (intel_syntax)
5213 {
5214 if (intel_float_operand (mnemonic) == 1)
5215 i.suffix = SHORT_MNEM_SUFFIX;
5216 else
5217 i.suffix = LONG_MNEM_SUFFIX;
5218 mnem_p[-1] = '\0';
5219 current_templates = (const templates *) hash_find (op_hash,
5220 mnemonic);
5221 }
5222 break;
29b0f896 5223 }
29b0f896 5224 }
1c529385 5225
29b0f896
AM
5226 if (!current_templates)
5227 {
5228 as_bad (_("no such instruction: `%s'"), token_start);
5229 return NULL;
5230 }
5231 }
252b5132 5232
0cfa3eb3
JB
5233 if (current_templates->start->opcode_modifier.jump == JUMP
5234 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
5235 {
5236 /* Check for a branch hint. We allow ",pt" and ",pn" for
5237 predict taken and predict not taken respectively.
5238 I'm not sure that branch hints actually do anything on loop
5239 and jcxz insns (JumpByte) for current Pentium4 chips. They
5240 may work in the future and it doesn't hurt to accept them
5241 now. */
5242 if (l[0] == ',' && l[1] == 'p')
5243 {
5244 if (l[2] == 't')
5245 {
5246 if (!add_prefix (DS_PREFIX_OPCODE))
5247 return NULL;
5248 l += 3;
5249 }
5250 else if (l[2] == 'n')
5251 {
5252 if (!add_prefix (CS_PREFIX_OPCODE))
5253 return NULL;
5254 l += 3;
5255 }
5256 }
5257 }
5258 /* Any other comma loses. */
5259 if (*l == ',')
5260 {
5261 as_bad (_("invalid character %s in mnemonic"),
5262 output_invalid (*l));
5263 return NULL;
5264 }
252b5132 5265
29b0f896 5266 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
5267 supported = 0;
5268 for (t = current_templates->start; t < current_templates->end; ++t)
5269 {
c0f3af97
L
5270 supported |= cpu_flags_match (t);
5271 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
5272 {
5273 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5274 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 5275
548d0ee6
JB
5276 return l;
5277 }
29b0f896 5278 }
3629bb00 5279
548d0ee6
JB
5280 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5281 as_bad (flag_code == CODE_64BIT
5282 ? _("`%s' is not supported in 64-bit mode")
5283 : _("`%s' is only supported in 64-bit mode"),
5284 current_templates->start->name);
5285 else
5286 as_bad (_("`%s' is not supported on `%s%s'"),
5287 current_templates->start->name,
5288 cpu_arch_name ? cpu_arch_name : default_arch,
5289 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 5290
548d0ee6 5291 return NULL;
29b0f896 5292}
252b5132 5293
29b0f896 5294static char *
e3bb37b5 5295parse_operands (char *l, const char *mnemonic)
29b0f896
AM
5296{
5297 char *token_start;
3138f287 5298
29b0f896
AM
5299 /* 1 if operand is pending after ','. */
5300 unsigned int expecting_operand = 0;
252b5132 5301
29b0f896
AM
5302 /* Non-zero if operand parens not balanced. */
5303 unsigned int paren_not_balanced;
5304
5305 while (*l != END_OF_INSN)
5306 {
5307 /* Skip optional white space before operand. */
5308 if (is_space_char (*l))
5309 ++l;
d02603dc 5310 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
5311 {
5312 as_bad (_("invalid character %s before operand %d"),
5313 output_invalid (*l),
5314 i.operands + 1);
5315 return NULL;
5316 }
d02603dc 5317 token_start = l; /* After white space. */
29b0f896
AM
5318 paren_not_balanced = 0;
5319 while (paren_not_balanced || *l != ',')
5320 {
5321 if (*l == END_OF_INSN)
5322 {
5323 if (paren_not_balanced)
5324 {
5325 if (!intel_syntax)
5326 as_bad (_("unbalanced parenthesis in operand %d."),
5327 i.operands + 1);
5328 else
5329 as_bad (_("unbalanced brackets in operand %d."),
5330 i.operands + 1);
5331 return NULL;
5332 }
5333 else
5334 break; /* we are done */
5335 }
d02603dc 5336 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
5337 {
5338 as_bad (_("invalid character %s in operand %d"),
5339 output_invalid (*l),
5340 i.operands + 1);
5341 return NULL;
5342 }
5343 if (!intel_syntax)
5344 {
5345 if (*l == '(')
5346 ++paren_not_balanced;
5347 if (*l == ')')
5348 --paren_not_balanced;
5349 }
5350 else
5351 {
5352 if (*l == '[')
5353 ++paren_not_balanced;
5354 if (*l == ']')
5355 --paren_not_balanced;
5356 }
5357 l++;
5358 }
5359 if (l != token_start)
5360 { /* Yes, we've read in another operand. */
5361 unsigned int operand_ok;
5362 this_operand = i.operands++;
5363 if (i.operands > MAX_OPERANDS)
5364 {
5365 as_bad (_("spurious operands; (%d operands/instruction max)"),
5366 MAX_OPERANDS);
5367 return NULL;
5368 }
9d46ce34 5369 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
5370 /* Now parse operand adding info to 'i' as we go along. */
5371 END_STRING_AND_SAVE (l);
5372
1286ab78
L
5373 if (i.mem_operands > 1)
5374 {
5375 as_bad (_("too many memory references for `%s'"),
5376 mnemonic);
5377 return 0;
5378 }
5379
29b0f896
AM
5380 if (intel_syntax)
5381 operand_ok =
5382 i386_intel_operand (token_start,
5383 intel_float_operand (mnemonic));
5384 else
a7619375 5385 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5386
5387 RESTORE_END_STRING (l);
5388 if (!operand_ok)
5389 return NULL;
5390 }
5391 else
5392 {
5393 if (expecting_operand)
5394 {
5395 expecting_operand_after_comma:
5396 as_bad (_("expecting operand after ','; got nothing"));
5397 return NULL;
5398 }
5399 if (*l == ',')
5400 {
5401 as_bad (_("expecting operand before ','; got nothing"));
5402 return NULL;
5403 }
5404 }
7f3f1ea2 5405
29b0f896
AM
5406 /* Now *l must be either ',' or END_OF_INSN. */
5407 if (*l == ',')
5408 {
5409 if (*++l == END_OF_INSN)
5410 {
5411 /* Just skip it, if it's \n complain. */
5412 goto expecting_operand_after_comma;
5413 }
5414 expecting_operand = 1;
5415 }
5416 }
5417 return l;
5418}
7f3f1ea2 5419
050dfa73 5420static void
4d456e3d 5421swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5422{
5423 union i386_op temp_op;
40fb9820 5424 i386_operand_type temp_type;
c48dadc9 5425 unsigned int temp_flags;
050dfa73 5426 enum bfd_reloc_code_real temp_reloc;
4eed87de 5427
050dfa73
MM
5428 temp_type = i.types[xchg2];
5429 i.types[xchg2] = i.types[xchg1];
5430 i.types[xchg1] = temp_type;
c48dadc9
JB
5431
5432 temp_flags = i.flags[xchg2];
5433 i.flags[xchg2] = i.flags[xchg1];
5434 i.flags[xchg1] = temp_flags;
5435
050dfa73
MM
5436 temp_op = i.op[xchg2];
5437 i.op[xchg2] = i.op[xchg1];
5438 i.op[xchg1] = temp_op;
c48dadc9 5439
050dfa73
MM
5440 temp_reloc = i.reloc[xchg2];
5441 i.reloc[xchg2] = i.reloc[xchg1];
5442 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5443
5444 if (i.mask)
5445 {
5446 if (i.mask->operand == xchg1)
5447 i.mask->operand = xchg2;
5448 else if (i.mask->operand == xchg2)
5449 i.mask->operand = xchg1;
5450 }
5451 if (i.broadcast)
5452 {
5453 if (i.broadcast->operand == xchg1)
5454 i.broadcast->operand = xchg2;
5455 else if (i.broadcast->operand == xchg2)
5456 i.broadcast->operand = xchg1;
5457 }
5458 if (i.rounding)
5459 {
5460 if (i.rounding->operand == xchg1)
5461 i.rounding->operand = xchg2;
5462 else if (i.rounding->operand == xchg2)
5463 i.rounding->operand = xchg1;
5464 }
050dfa73
MM
5465}
5466
29b0f896 5467static void
e3bb37b5 5468swap_operands (void)
29b0f896 5469{
b7c61d9a 5470 switch (i.operands)
050dfa73 5471 {
c0f3af97 5472 case 5:
b7c61d9a 5473 case 4:
4d456e3d 5474 swap_2_operands (1, i.operands - 2);
1a0670f3 5475 /* Fall through. */
b7c61d9a
L
5476 case 3:
5477 case 2:
4d456e3d 5478 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5479 break;
5480 default:
5481 abort ();
29b0f896 5482 }
29b0f896
AM
5483
5484 if (i.mem_operands == 2)
5485 {
5486 const seg_entry *temp_seg;
5487 temp_seg = i.seg[0];
5488 i.seg[0] = i.seg[1];
5489 i.seg[1] = temp_seg;
5490 }
5491}
252b5132 5492
29b0f896
AM
5493/* Try to ensure constant immediates are represented in the smallest
5494 opcode possible. */
5495static void
e3bb37b5 5496optimize_imm (void)
29b0f896
AM
5497{
5498 char guess_suffix = 0;
5499 int op;
252b5132 5500
29b0f896
AM
5501 if (i.suffix)
5502 guess_suffix = i.suffix;
5503 else if (i.reg_operands)
5504 {
5505 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5506 We can't do this properly yet, i.e. excluding special register
5507 instances, but the following works for instructions with
5508 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5509 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5510 if (i.types[op].bitfield.class != Reg)
5511 continue;
5512 else if (i.types[op].bitfield.byte)
7ab9ffdd 5513 {
40fb9820
L
5514 guess_suffix = BYTE_MNEM_SUFFIX;
5515 break;
5516 }
bab6aec1 5517 else if (i.types[op].bitfield.word)
252b5132 5518 {
40fb9820
L
5519 guess_suffix = WORD_MNEM_SUFFIX;
5520 break;
5521 }
bab6aec1 5522 else if (i.types[op].bitfield.dword)
40fb9820
L
5523 {
5524 guess_suffix = LONG_MNEM_SUFFIX;
5525 break;
5526 }
bab6aec1 5527 else if (i.types[op].bitfield.qword)
40fb9820
L
5528 {
5529 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5530 break;
252b5132 5531 }
29b0f896
AM
5532 }
5533 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5534 guess_suffix = WORD_MNEM_SUFFIX;
5535
5536 for (op = i.operands; --op >= 0;)
40fb9820 5537 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5538 {
5539 switch (i.op[op].imms->X_op)
252b5132 5540 {
29b0f896
AM
5541 case O_constant:
5542 /* If a suffix is given, this operand may be shortened. */
5543 switch (guess_suffix)
252b5132 5544 {
29b0f896 5545 case LONG_MNEM_SUFFIX:
40fb9820
L
5546 i.types[op].bitfield.imm32 = 1;
5547 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5548 break;
5549 case WORD_MNEM_SUFFIX:
40fb9820
L
5550 i.types[op].bitfield.imm16 = 1;
5551 i.types[op].bitfield.imm32 = 1;
5552 i.types[op].bitfield.imm32s = 1;
5553 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5554 break;
5555 case BYTE_MNEM_SUFFIX:
40fb9820
L
5556 i.types[op].bitfield.imm8 = 1;
5557 i.types[op].bitfield.imm8s = 1;
5558 i.types[op].bitfield.imm16 = 1;
5559 i.types[op].bitfield.imm32 = 1;
5560 i.types[op].bitfield.imm32s = 1;
5561 i.types[op].bitfield.imm64 = 1;
29b0f896 5562 break;
252b5132 5563 }
252b5132 5564
29b0f896
AM
5565 /* If this operand is at most 16 bits, convert it
5566 to a signed 16 bit number before trying to see
5567 whether it will fit in an even smaller size.
5568 This allows a 16-bit operand such as $0xffe0 to
5569 be recognised as within Imm8S range. */
40fb9820 5570 if ((i.types[op].bitfield.imm16)
29b0f896 5571 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5572 {
29b0f896
AM
5573 i.op[op].imms->X_add_number =
5574 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5575 }
a28def75
L
5576#ifdef BFD64
5577 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5578 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5579 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5580 == 0))
5581 {
5582 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5583 ^ ((offsetT) 1 << 31))
5584 - ((offsetT) 1 << 31));
5585 }
a28def75 5586#endif
40fb9820 5587 i.types[op]
c6fb90c8
L
5588 = operand_type_or (i.types[op],
5589 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5590
29b0f896
AM
5591 /* We must avoid matching of Imm32 templates when 64bit
5592 only immediate is available. */
5593 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5594 i.types[op].bitfield.imm32 = 0;
29b0f896 5595 break;
252b5132 5596
29b0f896
AM
5597 case O_absent:
5598 case O_register:
5599 abort ();
5600
5601 /* Symbols and expressions. */
5602 default:
9cd96992
JB
5603 /* Convert symbolic operand to proper sizes for matching, but don't
5604 prevent matching a set of insns that only supports sizes other
5605 than those matching the insn suffix. */
5606 {
40fb9820 5607 i386_operand_type mask, allowed;
d3ce72d0 5608 const insn_template *t;
9cd96992 5609
0dfbf9d7
L
5610 operand_type_set (&mask, 0);
5611 operand_type_set (&allowed, 0);
40fb9820 5612
4eed87de
AM
5613 for (t = current_templates->start;
5614 t < current_templates->end;
5615 ++t)
bab6aec1
JB
5616 {
5617 allowed = operand_type_or (allowed, t->operand_types[op]);
5618 allowed = operand_type_and (allowed, anyimm);
5619 }
9cd96992
JB
5620 switch (guess_suffix)
5621 {
5622 case QWORD_MNEM_SUFFIX:
40fb9820
L
5623 mask.bitfield.imm64 = 1;
5624 mask.bitfield.imm32s = 1;
9cd96992
JB
5625 break;
5626 case LONG_MNEM_SUFFIX:
40fb9820 5627 mask.bitfield.imm32 = 1;
9cd96992
JB
5628 break;
5629 case WORD_MNEM_SUFFIX:
40fb9820 5630 mask.bitfield.imm16 = 1;
9cd96992
JB
5631 break;
5632 case BYTE_MNEM_SUFFIX:
40fb9820 5633 mask.bitfield.imm8 = 1;
9cd96992
JB
5634 break;
5635 default:
9cd96992
JB
5636 break;
5637 }
c6fb90c8 5638 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5639 if (!operand_type_all_zero (&allowed))
c6fb90c8 5640 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5641 }
29b0f896 5642 break;
252b5132 5643 }
29b0f896
AM
5644 }
5645}
47926f60 5646
29b0f896
AM
5647/* Try to use the smallest displacement type too. */
5648static void
e3bb37b5 5649optimize_disp (void)
29b0f896
AM
5650{
5651 int op;
3e73aa7c 5652
29b0f896 5653 for (op = i.operands; --op >= 0;)
40fb9820 5654 if (operand_type_check (i.types[op], disp))
252b5132 5655 {
b300c311 5656 if (i.op[op].disps->X_op == O_constant)
252b5132 5657 {
91d6fa6a 5658 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5659
40fb9820 5660 if (i.types[op].bitfield.disp16
91d6fa6a 5661 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5662 {
5663 /* If this operand is at most 16 bits, convert
5664 to a signed 16 bit number and don't use 64bit
5665 displacement. */
91d6fa6a 5666 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5667 i.types[op].bitfield.disp64 = 0;
b300c311 5668 }
a28def75
L
5669#ifdef BFD64
5670 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5671 if (i.types[op].bitfield.disp32
91d6fa6a 5672 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5673 {
5674 /* If this operand is at most 32 bits, convert
5675 to a signed 32 bit number and don't use 64bit
5676 displacement. */
91d6fa6a
NC
5677 op_disp &= (((offsetT) 2 << 31) - 1);
5678 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5679 i.types[op].bitfield.disp64 = 0;
b300c311 5680 }
a28def75 5681#endif
91d6fa6a 5682 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5683 {
40fb9820
L
5684 i.types[op].bitfield.disp8 = 0;
5685 i.types[op].bitfield.disp16 = 0;
5686 i.types[op].bitfield.disp32 = 0;
5687 i.types[op].bitfield.disp32s = 0;
5688 i.types[op].bitfield.disp64 = 0;
b300c311
L
5689 i.op[op].disps = 0;
5690 i.disp_operands--;
5691 }
5692 else if (flag_code == CODE_64BIT)
5693 {
91d6fa6a 5694 if (fits_in_signed_long (op_disp))
28a9d8f5 5695 {
40fb9820
L
5696 i.types[op].bitfield.disp64 = 0;
5697 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5698 }
0e1147d9 5699 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5700 && fits_in_unsigned_long (op_disp))
40fb9820 5701 i.types[op].bitfield.disp32 = 1;
b300c311 5702 }
40fb9820
L
5703 if ((i.types[op].bitfield.disp32
5704 || i.types[op].bitfield.disp32s
5705 || i.types[op].bitfield.disp16)
b5014f7a 5706 && fits_in_disp8 (op_disp))
40fb9820 5707 i.types[op].bitfield.disp8 = 1;
252b5132 5708 }
67a4f2b7
AO
5709 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5710 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5711 {
5712 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5713 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5714 i.types[op].bitfield.disp8 = 0;
5715 i.types[op].bitfield.disp16 = 0;
5716 i.types[op].bitfield.disp32 = 0;
5717 i.types[op].bitfield.disp32s = 0;
5718 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5719 }
5720 else
b300c311 5721 /* We only support 64bit displacement on constants. */
40fb9820 5722 i.types[op].bitfield.disp64 = 0;
252b5132 5723 }
29b0f896
AM
5724}
5725
4a1b91ea
L
5726/* Return 1 if there is a match in broadcast bytes between operand
5727 GIVEN and instruction template T. */
5728
5729static INLINE int
5730match_broadcast_size (const insn_template *t, unsigned int given)
5731{
5732 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5733 && i.types[given].bitfield.byte)
5734 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5735 && i.types[given].bitfield.word)
5736 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5737 && i.types[given].bitfield.dword)
5738 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5739 && i.types[given].bitfield.qword));
5740}
5741
6c30d220
L
5742/* Check if operands are valid for the instruction. */
5743
5744static int
5745check_VecOperands (const insn_template *t)
5746{
43234a1e 5747 unsigned int op;
e2195274 5748 i386_cpu_flags cpu;
e2195274
JB
5749
5750 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5751 any one operand are implicity requiring AVX512VL support if the actual
5752 operand size is YMMword or XMMword. Since this function runs after
5753 template matching, there's no need to check for YMMword/XMMword in
5754 the template. */
5755 cpu = cpu_flags_and (t->cpu_flags, avx512);
5756 if (!cpu_flags_all_zero (&cpu)
5757 && !t->cpu_flags.bitfield.cpuavx512vl
5758 && !cpu_arch_flags.bitfield.cpuavx512vl)
5759 {
5760 for (op = 0; op < t->operands; ++op)
5761 {
5762 if (t->operand_types[op].bitfield.zmmword
5763 && (i.types[op].bitfield.ymmword
5764 || i.types[op].bitfield.xmmword))
5765 {
5766 i.error = unsupported;
5767 return 1;
5768 }
5769 }
5770 }
43234a1e 5771
6c30d220 5772 /* Without VSIB byte, we can't have a vector register for index. */
63112cd6 5773 if (!t->opcode_modifier.sib
6c30d220 5774 && i.index_reg
1b54b8d7
JB
5775 && (i.index_reg->reg_type.bitfield.xmmword
5776 || i.index_reg->reg_type.bitfield.ymmword
5777 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5778 {
5779 i.error = unsupported_vector_index_register;
5780 return 1;
5781 }
5782
ad8ecc81
MZ
5783 /* Check if default mask is allowed. */
5784 if (t->opcode_modifier.nodefmask
5785 && (!i.mask || i.mask->mask->reg_num == 0))
5786 {
5787 i.error = no_default_mask;
5788 return 1;
5789 }
5790
7bab8ab5
JB
5791 /* For VSIB byte, we need a vector register for index, and all vector
5792 registers must be distinct. */
63112cd6 5793 if (t->opcode_modifier.sib)
7bab8ab5
JB
5794 {
5795 if (!i.index_reg
63112cd6 5796 || !((t->opcode_modifier.sib == VECSIB128
1b54b8d7 5797 && i.index_reg->reg_type.bitfield.xmmword)
63112cd6 5798 || (t->opcode_modifier.sib == VECSIB256
1b54b8d7 5799 && i.index_reg->reg_type.bitfield.ymmword)
63112cd6 5800 || (t->opcode_modifier.sib == VECSIB512
1b54b8d7 5801 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5802 {
5803 i.error = invalid_vsib_address;
5804 return 1;
5805 }
5806
43234a1e
L
5807 gas_assert (i.reg_operands == 2 || i.mask);
5808 if (i.reg_operands == 2 && !i.mask)
5809 {
3528c362 5810 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5811 gas_assert (i.types[0].bitfield.xmmword
5812 || i.types[0].bitfield.ymmword);
3528c362 5813 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5814 gas_assert (i.types[2].bitfield.xmmword
5815 || i.types[2].bitfield.ymmword);
43234a1e
L
5816 if (operand_check == check_none)
5817 return 0;
5818 if (register_number (i.op[0].regs)
5819 != register_number (i.index_reg)
5820 && register_number (i.op[2].regs)
5821 != register_number (i.index_reg)
5822 && register_number (i.op[0].regs)
5823 != register_number (i.op[2].regs))
5824 return 0;
5825 if (operand_check == check_error)
5826 {
5827 i.error = invalid_vector_register_set;
5828 return 1;
5829 }
5830 as_warn (_("mask, index, and destination registers should be distinct"));
5831 }
8444f82a
MZ
5832 else if (i.reg_operands == 1 && i.mask)
5833 {
3528c362 5834 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5835 && (i.types[1].bitfield.xmmword
5836 || i.types[1].bitfield.ymmword
5837 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5838 && (register_number (i.op[1].regs)
5839 == register_number (i.index_reg)))
5840 {
5841 if (operand_check == check_error)
5842 {
5843 i.error = invalid_vector_register_set;
5844 return 1;
5845 }
5846 if (operand_check != check_none)
5847 as_warn (_("index and destination registers should be distinct"));
5848 }
5849 }
43234a1e 5850 }
7bab8ab5 5851
43234a1e
L
5852 /* Check if broadcast is supported by the instruction and is applied
5853 to the memory operand. */
5854 if (i.broadcast)
5855 {
8e6e0792 5856 i386_operand_type type, overlap;
43234a1e
L
5857
5858 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5859 and its broadcast bytes match the memory operand. */
32546502 5860 op = i.broadcast->operand;
8e6e0792 5861 if (!t->opcode_modifier.broadcast
c48dadc9 5862 || !(i.flags[op] & Operand_Mem)
c39e5b26 5863 || (!i.types[op].bitfield.unspecified
4a1b91ea 5864 && !match_broadcast_size (t, op)))
43234a1e
L
5865 {
5866 bad_broadcast:
5867 i.error = unsupported_broadcast;
5868 return 1;
5869 }
8e6e0792 5870
4a1b91ea
L
5871 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5872 * i.broadcast->type);
8e6e0792 5873 operand_type_set (&type, 0);
4a1b91ea 5874 switch (i.broadcast->bytes)
8e6e0792 5875 {
4a1b91ea
L
5876 case 2:
5877 type.bitfield.word = 1;
5878 break;
5879 case 4:
5880 type.bitfield.dword = 1;
5881 break;
8e6e0792
JB
5882 case 8:
5883 type.bitfield.qword = 1;
5884 break;
5885 case 16:
5886 type.bitfield.xmmword = 1;
5887 break;
5888 case 32:
5889 type.bitfield.ymmword = 1;
5890 break;
5891 case 64:
5892 type.bitfield.zmmword = 1;
5893 break;
5894 default:
5895 goto bad_broadcast;
5896 }
5897
5898 overlap = operand_type_and (type, t->operand_types[op]);
bc49bfd8
JB
5899 if (t->operand_types[op].bitfield.class == RegSIMD
5900 && t->operand_types[op].bitfield.byte
5901 + t->operand_types[op].bitfield.word
5902 + t->operand_types[op].bitfield.dword
5903 + t->operand_types[op].bitfield.qword > 1)
5904 {
5905 overlap.bitfield.xmmword = 0;
5906 overlap.bitfield.ymmword = 0;
5907 overlap.bitfield.zmmword = 0;
5908 }
8e6e0792
JB
5909 if (operand_type_all_zero (&overlap))
5910 goto bad_broadcast;
5911
5912 if (t->opcode_modifier.checkregsize)
5913 {
5914 unsigned int j;
5915
e2195274 5916 type.bitfield.baseindex = 1;
8e6e0792
JB
5917 for (j = 0; j < i.operands; ++j)
5918 {
5919 if (j != op
5920 && !operand_type_register_match(i.types[j],
5921 t->operand_types[j],
5922 type,
5923 t->operand_types[op]))
5924 goto bad_broadcast;
5925 }
5926 }
43234a1e
L
5927 }
5928 /* If broadcast is supported in this instruction, we need to check if
5929 operand of one-element size isn't specified without broadcast. */
5930 else if (t->opcode_modifier.broadcast && i.mem_operands)
5931 {
5932 /* Find memory operand. */
5933 for (op = 0; op < i.operands; op++)
8dc0818e 5934 if (i.flags[op] & Operand_Mem)
43234a1e
L
5935 break;
5936 gas_assert (op < i.operands);
5937 /* Check size of the memory operand. */
4a1b91ea 5938 if (match_broadcast_size (t, op))
43234a1e
L
5939 {
5940 i.error = broadcast_needed;
5941 return 1;
5942 }
5943 }
c39e5b26
JB
5944 else
5945 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5946
5947 /* Check if requested masking is supported. */
ae2387fe 5948 if (i.mask)
43234a1e 5949 {
ae2387fe
JB
5950 switch (t->opcode_modifier.masking)
5951 {
5952 case BOTH_MASKING:
5953 break;
5954 case MERGING_MASKING:
5955 if (i.mask->zeroing)
5956 {
5957 case 0:
5958 i.error = unsupported_masking;
5959 return 1;
5960 }
5961 break;
5962 case DYNAMIC_MASKING:
5963 /* Memory destinations allow only merging masking. */
5964 if (i.mask->zeroing && i.mem_operands)
5965 {
5966 /* Find memory operand. */
5967 for (op = 0; op < i.operands; op++)
c48dadc9 5968 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5969 break;
5970 gas_assert (op < i.operands);
5971 if (op == i.operands - 1)
5972 {
5973 i.error = unsupported_masking;
5974 return 1;
5975 }
5976 }
5977 break;
5978 default:
5979 abort ();
5980 }
43234a1e
L
5981 }
5982
5983 /* Check if masking is applied to dest operand. */
5984 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5985 {
5986 i.error = mask_not_on_destination;
5987 return 1;
5988 }
5989
43234a1e
L
5990 /* Check RC/SAE. */
5991 if (i.rounding)
5992 {
a80195f1
JB
5993 if (!t->opcode_modifier.sae
5994 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5995 {
5996 i.error = unsupported_rc_sae;
5997 return 1;
5998 }
5999 /* If the instruction has several immediate operands and one of
6000 them is rounding, the rounding operand should be the last
6001 immediate operand. */
6002 if (i.imm_operands > 1
6003 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 6004 {
43234a1e 6005 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
6006 return 1;
6007 }
6c30d220
L
6008 }
6009
da4977e0
JB
6010 /* Check the special Imm4 cases; must be the first operand. */
6011 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6012 {
6013 if (i.op[0].imms->X_op != O_constant
6014 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6015 {
6016 i.error = bad_imm4;
6017 return 1;
6018 }
6019
6020 /* Turn off Imm<N> so that update_imm won't complain. */
6021 operand_type_set (&i.types[0], 0);
6022 }
6023
43234a1e 6024 /* Check vector Disp8 operand. */
b5014f7a
JB
6025 if (t->opcode_modifier.disp8memshift
6026 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
6027 {
6028 if (i.broadcast)
4a1b91ea 6029 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 6030 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 6031 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
6032 else
6033 {
6034 const i386_operand_type *type = NULL;
6035
6036 i.memshift = 0;
6037 for (op = 0; op < i.operands; op++)
8dc0818e 6038 if (i.flags[op] & Operand_Mem)
7091c612 6039 {
4174bfff
JB
6040 if (t->opcode_modifier.evex == EVEXLIG)
6041 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6042 else if (t->operand_types[op].bitfield.xmmword
6043 + t->operand_types[op].bitfield.ymmword
6044 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
6045 type = &t->operand_types[op];
6046 else if (!i.types[op].bitfield.unspecified)
6047 type = &i.types[op];
6048 }
3528c362 6049 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 6050 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
6051 {
6052 if (i.types[op].bitfield.zmmword)
6053 i.memshift = 6;
6054 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6055 i.memshift = 5;
6056 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6057 i.memshift = 4;
6058 }
6059
6060 if (type)
6061 {
6062 if (type->bitfield.zmmword)
6063 i.memshift = 6;
6064 else if (type->bitfield.ymmword)
6065 i.memshift = 5;
6066 else if (type->bitfield.xmmword)
6067 i.memshift = 4;
6068 }
6069
6070 /* For the check in fits_in_disp8(). */
6071 if (i.memshift == 0)
6072 i.memshift = -1;
6073 }
43234a1e
L
6074
6075 for (op = 0; op < i.operands; op++)
6076 if (operand_type_check (i.types[op], disp)
6077 && i.op[op].disps->X_op == O_constant)
6078 {
b5014f7a 6079 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 6080 {
b5014f7a
JB
6081 i.types[op].bitfield.disp8 = 1;
6082 return 0;
43234a1e 6083 }
b5014f7a 6084 i.types[op].bitfield.disp8 = 0;
43234a1e
L
6085 }
6086 }
b5014f7a
JB
6087
6088 i.memshift = 0;
43234a1e 6089
6c30d220
L
6090 return 0;
6091}
6092
da4977e0 6093/* Check if encoding requirements are met by the instruction. */
a683cc34
SP
6094
6095static int
da4977e0 6096VEX_check_encoding (const insn_template *t)
a683cc34 6097{
da4977e0
JB
6098 if (i.vec_encoding == vex_encoding_error)
6099 {
6100 i.error = unsupported;
6101 return 1;
6102 }
6103
86fa6981 6104 if (i.vec_encoding == vex_encoding_evex)
43234a1e 6105 {
86fa6981 6106 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 6107 if (!is_evex_encoding (t))
86fa6981
L
6108 {
6109 i.error = unsupported;
6110 return 1;
6111 }
6112 return 0;
43234a1e
L
6113 }
6114
a683cc34 6115 if (!t->opcode_modifier.vex)
86fa6981
L
6116 {
6117 /* This instruction template doesn't have VEX prefix. */
6118 if (i.vec_encoding != vex_encoding_default)
6119 {
6120 i.error = unsupported;
6121 return 1;
6122 }
6123 return 0;
6124 }
a683cc34 6125
a683cc34
SP
6126 return 0;
6127}
6128
d3ce72d0 6129static const insn_template *
83b16ac6 6130match_template (char mnem_suffix)
29b0f896
AM
6131{
6132 /* Points to template once we've found it. */
d3ce72d0 6133 const insn_template *t;
40fb9820 6134 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 6135 i386_operand_type overlap4;
29b0f896 6136 unsigned int found_reverse_match;
dc2be329 6137 i386_opcode_modifier suffix_check;
40fb9820 6138 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 6139 int addr_prefix_disp;
45a4bb20 6140 unsigned int j, size_match, check_register;
5614d22c 6141 enum i386_error specific_error = 0;
29b0f896 6142
c0f3af97
L
6143#if MAX_OPERANDS != 5
6144# error "MAX_OPERANDS must be 5."
f48ff2ae
L
6145#endif
6146
29b0f896 6147 found_reverse_match = 0;
539e75ad 6148 addr_prefix_disp = -1;
40fb9820 6149
dc2be329 6150 /* Prepare for mnemonic suffix check. */
40fb9820 6151 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
6152 switch (mnem_suffix)
6153 {
6154 case BYTE_MNEM_SUFFIX:
6155 suffix_check.no_bsuf = 1;
6156 break;
6157 case WORD_MNEM_SUFFIX:
6158 suffix_check.no_wsuf = 1;
6159 break;
6160 case SHORT_MNEM_SUFFIX:
6161 suffix_check.no_ssuf = 1;
6162 break;
6163 case LONG_MNEM_SUFFIX:
6164 suffix_check.no_lsuf = 1;
6165 break;
6166 case QWORD_MNEM_SUFFIX:
6167 suffix_check.no_qsuf = 1;
6168 break;
6169 default:
6170 /* NB: In Intel syntax, normally we can check for memory operand
6171 size when there is no mnemonic suffix. But jmp and call have
6172 2 different encodings with Dword memory operand size, one with
6173 No_ldSuf and the other without. i.suffix is set to
6174 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6175 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6176 suffix_check.no_ldsuf = 1;
83b16ac6
JB
6177 }
6178
01559ecc
L
6179 /* Must have right number of operands. */
6180 i.error = number_of_operands_mismatch;
6181
45aa61fe 6182 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 6183 {
539e75ad 6184 addr_prefix_disp = -1;
dbbc8b7e 6185 found_reverse_match = 0;
539e75ad 6186
29b0f896
AM
6187 if (i.operands != t->operands)
6188 continue;
6189
50aecf8c 6190 /* Check processor support. */
a65babc9 6191 i.error = unsupported;
45a4bb20 6192 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
6193 continue;
6194
e1d4d893 6195 /* Check AT&T mnemonic. */
a65babc9 6196 i.error = unsupported_with_intel_mnemonic;
e1d4d893 6197 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
6198 continue;
6199
4b5aaf5f 6200 /* Check AT&T/Intel syntax. */
a65babc9 6201 i.error = unsupported_syntax;
5c07affc 6202 if ((intel_syntax && t->opcode_modifier.attsyntax)
4b5aaf5f 6203 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
6204 continue;
6205
4b5aaf5f
L
6206 /* Check Intel64/AMD64 ISA. */
6207 switch (isa64)
6208 {
6209 default:
6210 /* Default: Don't accept Intel64. */
6211 if (t->opcode_modifier.isa64 == INTEL64)
6212 continue;
6213 break;
6214 case amd64:
6215 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6216 if (t->opcode_modifier.isa64 >= INTEL64)
6217 continue;
6218 break;
6219 case intel64:
6220 /* -mintel64: Don't accept AMD64. */
5990e377 6221 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
4b5aaf5f
L
6222 continue;
6223 break;
6224 }
6225
dc2be329 6226 /* Check the suffix. */
a65babc9 6227 i.error = invalid_instruction_suffix;
dc2be329
L
6228 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6229 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6230 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6231 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6232 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6233 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 6234 continue;
29b0f896 6235
3ac21baa
JB
6236 size_match = operand_size_match (t);
6237 if (!size_match)
7d5e4556 6238 continue;
539e75ad 6239
6f2f06be
JB
6240 /* This is intentionally not
6241
0cfa3eb3 6242 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
6243
6244 as the case of a missing * on the operand is accepted (perhaps with
6245 a warning, issued further down). */
0cfa3eb3 6246 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
6247 {
6248 i.error = operand_type_mismatch;
6249 continue;
6250 }
6251
5c07affc
L
6252 for (j = 0; j < MAX_OPERANDS; j++)
6253 operand_types[j] = t->operand_types[j];
6254
e365e234
JB
6255 /* In general, don't allow
6256 - 64-bit operands outside of 64-bit mode,
6257 - 32-bit operands on pre-386. */
4873e243 6258 j = i.imm_operands + (t->operands > i.imm_operands + 1);
e365e234
JB
6259 if (((i.suffix == QWORD_MNEM_SUFFIX
6260 && flag_code != CODE_64BIT
6261 && (t->base_opcode != 0x0fc7
6262 || t->extension_opcode != 1 /* cmpxchg8b */))
6263 || (i.suffix == LONG_MNEM_SUFFIX
6264 && !cpu_arch_flags.bitfield.cpui386))
45aa61fe 6265 && (intel_syntax
3cd7f3e3 6266 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
45aa61fe
AM
6267 && !intel_float_operand (t->name))
6268 : intel_float_operand (t->name) != 2)
4873e243
JB
6269 && (t->operands == i.imm_operands
6270 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6271 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6272 && operand_types[i.imm_operands].bitfield.class != RegMask)
6273 || (operand_types[j].bitfield.class != RegMMX
6274 && operand_types[j].bitfield.class != RegSIMD
6275 && operand_types[j].bitfield.class != RegMask))
63112cd6 6276 && !t->opcode_modifier.sib)
192dc9c6
JB
6277 continue;
6278
29b0f896 6279 /* Do not verify operands when there are none. */
e365e234 6280 if (!t->operands)
da4977e0
JB
6281 {
6282 if (VEX_check_encoding (t))
6283 {
6284 specific_error = i.error;
6285 continue;
6286 }
6287
6288 /* We've found a match; break out of loop. */
6289 break;
6290 }
252b5132 6291
48bcea9f
JB
6292 if (!t->opcode_modifier.jump
6293 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6294 {
6295 /* There should be only one Disp operand. */
6296 for (j = 0; j < MAX_OPERANDS; j++)
6297 if (operand_type_check (operand_types[j], disp))
539e75ad 6298 break;
48bcea9f
JB
6299 if (j < MAX_OPERANDS)
6300 {
6301 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6302
6303 addr_prefix_disp = j;
6304
6305 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6306 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6307 switch (flag_code)
40fb9820 6308 {
48bcea9f
JB
6309 case CODE_16BIT:
6310 override = !override;
6311 /* Fall through. */
6312 case CODE_32BIT:
6313 if (operand_types[j].bitfield.disp32
6314 && operand_types[j].bitfield.disp16)
40fb9820 6315 {
48bcea9f
JB
6316 operand_types[j].bitfield.disp16 = override;
6317 operand_types[j].bitfield.disp32 = !override;
40fb9820 6318 }
48bcea9f
JB
6319 operand_types[j].bitfield.disp32s = 0;
6320 operand_types[j].bitfield.disp64 = 0;
6321 break;
6322
6323 case CODE_64BIT:
6324 if (operand_types[j].bitfield.disp32s
6325 || operand_types[j].bitfield.disp64)
40fb9820 6326 {
48bcea9f
JB
6327 operand_types[j].bitfield.disp64 &= !override;
6328 operand_types[j].bitfield.disp32s &= !override;
6329 operand_types[j].bitfield.disp32 = override;
40fb9820 6330 }
48bcea9f
JB
6331 operand_types[j].bitfield.disp16 = 0;
6332 break;
40fb9820 6333 }
539e75ad 6334 }
48bcea9f 6335 }
539e75ad 6336
02a86693
L
6337 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6338 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6339 continue;
6340
56ffb741 6341 /* We check register size if needed. */
e2195274
JB
6342 if (t->opcode_modifier.checkregsize)
6343 {
6344 check_register = (1 << t->operands) - 1;
6345 if (i.broadcast)
6346 check_register &= ~(1 << i.broadcast->operand);
6347 }
6348 else
6349 check_register = 0;
6350
c6fb90c8 6351 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
6352 switch (t->operands)
6353 {
6354 case 1:
40fb9820 6355 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
6356 continue;
6357 break;
6358 case 2:
33eaf5de 6359 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
6360 only in 32bit mode and we can use opcode 0x90. In 64bit
6361 mode, we can't use 0x90 for xchg %eax, %eax since it should
6362 zero-extend %eax to %rax. */
6363 if (flag_code == CODE_64BIT
6364 && t->base_opcode == 0x90
75e5731b
JB
6365 && i.types[0].bitfield.instance == Accum
6366 && i.types[0].bitfield.dword
6367 && i.types[1].bitfield.instance == Accum
6368 && i.types[1].bitfield.dword)
8b38ad71 6369 continue;
1212781b
JB
6370 /* xrelease mov %eax, <disp> is another special case. It must not
6371 match the accumulator-only encoding of mov. */
6372 if (flag_code != CODE_64BIT
6373 && i.hle_prefix
6374 && t->base_opcode == 0xa0
75e5731b 6375 && i.types[0].bitfield.instance == Accum
8dc0818e 6376 && (i.flags[1] & Operand_Mem))
1212781b 6377 continue;
f5eb1d70
JB
6378 /* Fall through. */
6379
6380 case 3:
3ac21baa
JB
6381 if (!(size_match & MATCH_STRAIGHT))
6382 goto check_reverse;
64c49ab3
JB
6383 /* Reverse direction of operands if swapping is possible in the first
6384 place (operands need to be symmetric) and
6385 - the load form is requested, and the template is a store form,
6386 - the store form is requested, and the template is a load form,
6387 - the non-default (swapped) form is requested. */
6388 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 6389 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
6390 && !operand_type_all_zero (&overlap1))
6391 switch (i.dir_encoding)
6392 {
6393 case dir_encoding_load:
6394 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6395 || t->opcode_modifier.regmem)
64c49ab3
JB
6396 goto check_reverse;
6397 break;
6398
6399 case dir_encoding_store:
6400 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6401 && !t->opcode_modifier.regmem)
64c49ab3
JB
6402 goto check_reverse;
6403 break;
6404
6405 case dir_encoding_swap:
6406 goto check_reverse;
6407
6408 case dir_encoding_default:
6409 break;
6410 }
86fa6981 6411 /* If we want store form, we skip the current load. */
64c49ab3
JB
6412 if ((i.dir_encoding == dir_encoding_store
6413 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6414 && i.mem_operands == 0
6415 && t->opcode_modifier.load)
fa99fab2 6416 continue;
1a0670f3 6417 /* Fall through. */
f48ff2ae 6418 case 4:
c0f3af97 6419 case 5:
c6fb90c8 6420 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6421 if (!operand_type_match (overlap0, i.types[0])
6422 || !operand_type_match (overlap1, i.types[1])
e2195274 6423 || ((check_register & 3) == 3
dc821c5f 6424 && !operand_type_register_match (i.types[0],
40fb9820 6425 operand_types[0],
dc821c5f 6426 i.types[1],
40fb9820 6427 operand_types[1])))
29b0f896
AM
6428 {
6429 /* Check if other direction is valid ... */
38e314eb 6430 if (!t->opcode_modifier.d)
29b0f896
AM
6431 continue;
6432
dc1e8a47 6433 check_reverse:
3ac21baa
JB
6434 if (!(size_match & MATCH_REVERSE))
6435 continue;
29b0f896 6436 /* Try reversing direction of operands. */
f5eb1d70
JB
6437 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6438 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6439 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6440 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6441 || (check_register
dc821c5f 6442 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6443 operand_types[i.operands - 1],
6444 i.types[i.operands - 1],
45664ddb 6445 operand_types[0])))
29b0f896
AM
6446 {
6447 /* Does not match either direction. */
6448 continue;
6449 }
38e314eb 6450 /* found_reverse_match holds which of D or FloatR
29b0f896 6451 we've found. */
38e314eb
JB
6452 if (!t->opcode_modifier.d)
6453 found_reverse_match = 0;
6454 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6455 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6456 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6457 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6458 || operand_types[0].bitfield.class == RegMMX
6459 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6460 || is_any_vex_encoding(t))
6461 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6462 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6463 else
38e314eb 6464 found_reverse_match = Opcode_D;
40fb9820 6465 if (t->opcode_modifier.floatr)
8a2ed489 6466 found_reverse_match |= Opcode_FloatR;
29b0f896 6467 }
f48ff2ae 6468 else
29b0f896 6469 {
f48ff2ae 6470 /* Found a forward 2 operand match here. */
d1cbb4db
L
6471 switch (t->operands)
6472 {
c0f3af97
L
6473 case 5:
6474 overlap4 = operand_type_and (i.types[4],
6475 operand_types[4]);
1a0670f3 6476 /* Fall through. */
d1cbb4db 6477 case 4:
c6fb90c8
L
6478 overlap3 = operand_type_and (i.types[3],
6479 operand_types[3]);
1a0670f3 6480 /* Fall through. */
d1cbb4db 6481 case 3:
c6fb90c8
L
6482 overlap2 = operand_type_and (i.types[2],
6483 operand_types[2]);
d1cbb4db
L
6484 break;
6485 }
29b0f896 6486
f48ff2ae
L
6487 switch (t->operands)
6488 {
c0f3af97
L
6489 case 5:
6490 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6491 || !operand_type_register_match (i.types[3],
c0f3af97 6492 operand_types[3],
c0f3af97
L
6493 i.types[4],
6494 operand_types[4]))
6495 continue;
1a0670f3 6496 /* Fall through. */
f48ff2ae 6497 case 4:
40fb9820 6498 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6499 || ((check_register & 0xa) == 0xa
6500 && !operand_type_register_match (i.types[1],
f7768225
JB
6501 operand_types[1],
6502 i.types[3],
e2195274
JB
6503 operand_types[3]))
6504 || ((check_register & 0xc) == 0xc
6505 && !operand_type_register_match (i.types[2],
6506 operand_types[2],
6507 i.types[3],
6508 operand_types[3])))
f48ff2ae 6509 continue;
1a0670f3 6510 /* Fall through. */
f48ff2ae
L
6511 case 3:
6512 /* Here we make use of the fact that there are no
23e42951 6513 reverse match 3 operand instructions. */
40fb9820 6514 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6515 || ((check_register & 5) == 5
6516 && !operand_type_register_match (i.types[0],
23e42951
JB
6517 operand_types[0],
6518 i.types[2],
e2195274
JB
6519 operand_types[2]))
6520 || ((check_register & 6) == 6
6521 && !operand_type_register_match (i.types[1],
6522 operand_types[1],
6523 i.types[2],
6524 operand_types[2])))
f48ff2ae
L
6525 continue;
6526 break;
6527 }
29b0f896 6528 }
f48ff2ae 6529 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6530 slip through to break. */
6531 }
c0f3af97 6532
da4977e0
JB
6533 /* Check if vector operands are valid. */
6534 if (check_VecOperands (t))
6535 {
6536 specific_error = i.error;
6537 continue;
6538 }
6539
6540 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6541 if (VEX_check_encoding (t))
5614d22c
JB
6542 {
6543 specific_error = i.error;
6544 continue;
6545 }
a683cc34 6546
29b0f896
AM
6547 /* We've found a match; break out of loop. */
6548 break;
6549 }
6550
6551 if (t == current_templates->end)
6552 {
6553 /* We found no match. */
a65babc9 6554 const char *err_msg;
5614d22c 6555 switch (specific_error ? specific_error : i.error)
a65babc9
L
6556 {
6557 default:
6558 abort ();
86e026a4 6559 case operand_size_mismatch:
a65babc9
L
6560 err_msg = _("operand size mismatch");
6561 break;
6562 case operand_type_mismatch:
6563 err_msg = _("operand type mismatch");
6564 break;
6565 case register_type_mismatch:
6566 err_msg = _("register type mismatch");
6567 break;
6568 case number_of_operands_mismatch:
6569 err_msg = _("number of operands mismatch");
6570 break;
6571 case invalid_instruction_suffix:
6572 err_msg = _("invalid instruction suffix");
6573 break;
6574 case bad_imm4:
4a2608e3 6575 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6576 break;
a65babc9
L
6577 case unsupported_with_intel_mnemonic:
6578 err_msg = _("unsupported with Intel mnemonic");
6579 break;
6580 case unsupported_syntax:
6581 err_msg = _("unsupported syntax");
6582 break;
6583 case unsupported:
35262a23 6584 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6585 current_templates->start->name);
6586 return NULL;
6c30d220
L
6587 case invalid_vsib_address:
6588 err_msg = _("invalid VSIB address");
6589 break;
7bab8ab5
JB
6590 case invalid_vector_register_set:
6591 err_msg = _("mask, index, and destination registers must be distinct");
6592 break;
6c30d220
L
6593 case unsupported_vector_index_register:
6594 err_msg = _("unsupported vector index register");
6595 break;
43234a1e
L
6596 case unsupported_broadcast:
6597 err_msg = _("unsupported broadcast");
6598 break;
43234a1e
L
6599 case broadcast_needed:
6600 err_msg = _("broadcast is needed for operand of such type");
6601 break;
6602 case unsupported_masking:
6603 err_msg = _("unsupported masking");
6604 break;
6605 case mask_not_on_destination:
6606 err_msg = _("mask not on destination operand");
6607 break;
6608 case no_default_mask:
6609 err_msg = _("default mask isn't allowed");
6610 break;
6611 case unsupported_rc_sae:
6612 err_msg = _("unsupported static rounding/sae");
6613 break;
6614 case rc_sae_operand_not_last_imm:
6615 if (intel_syntax)
6616 err_msg = _("RC/SAE operand must precede immediate operands");
6617 else
6618 err_msg = _("RC/SAE operand must follow immediate operands");
6619 break;
6620 case invalid_register_operand:
6621 err_msg = _("invalid register operand");
6622 break;
a65babc9
L
6623 }
6624 as_bad (_("%s for `%s'"), err_msg,
891edac4 6625 current_templates->start->name);
fa99fab2 6626 return NULL;
29b0f896 6627 }
252b5132 6628
29b0f896
AM
6629 if (!quiet_warnings)
6630 {
6631 if (!intel_syntax
0cfa3eb3 6632 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6633 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6634
40fb9820 6635 if (t->opcode_modifier.isprefix
3cd7f3e3 6636 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6637 {
6638 /* Warn them that a data or address size prefix doesn't
6639 affect assembly of the next line of code. */
6640 as_warn (_("stand-alone `%s' prefix"), t->name);
6641 }
6642 }
6643
6644 /* Copy the template we found. */
6645 i.tm = *t;
539e75ad
L
6646
6647 if (addr_prefix_disp != -1)
6648 i.tm.operand_types[addr_prefix_disp]
6649 = operand_types[addr_prefix_disp];
6650
29b0f896
AM
6651 if (found_reverse_match)
6652 {
dfd69174
JB
6653 /* If we found a reverse match we must alter the opcode direction
6654 bit and clear/flip the regmem modifier one. found_reverse_match
6655 holds bits to change (different for int & float insns). */
29b0f896
AM
6656
6657 i.tm.base_opcode ^= found_reverse_match;
6658
f5eb1d70
JB
6659 i.tm.operand_types[0] = operand_types[i.operands - 1];
6660 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6661
6662 /* Certain SIMD insns have their load forms specified in the opcode
6663 table, and hence we need to _set_ RegMem instead of clearing it.
6664 We need to avoid setting the bit though on insns like KMOVW. */
6665 i.tm.opcode_modifier.regmem
6666 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6667 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6668 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6669 }
6670
fa99fab2 6671 return t;
29b0f896
AM
6672}
6673
6674static int
e3bb37b5 6675check_string (void)
29b0f896 6676{
51c8edf6
JB
6677 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6678 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6679
51c8edf6 6680 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6681 {
51c8edf6
JB
6682 as_bad (_("`%s' operand %u must use `%ses' segment"),
6683 i.tm.name,
6684 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6685 register_prefix);
6686 return 0;
29b0f896 6687 }
51c8edf6
JB
6688
6689 /* There's only ever one segment override allowed per instruction.
6690 This instruction possibly has a legal segment override on the
6691 second operand, so copy the segment to where non-string
6692 instructions store it, allowing common code. */
6693 i.seg[op] = i.seg[1];
6694
29b0f896
AM
6695 return 1;
6696}
6697
6698static int
543613e9 6699process_suffix (void)
29b0f896
AM
6700{
6701 /* If matched instruction specifies an explicit instruction mnemonic
6702 suffix, use it. */
673fe0f0 6703 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6704 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6705 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6706 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6707 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6708 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0 6709 else if (i.reg_operands
c8f8eebc
JB
6710 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6711 && !i.tm.opcode_modifier.addrprefixopreg)
29b0f896 6712 {
65fca059
JB
6713 unsigned int numop = i.operands;
6714
6715 /* movsx/movzx want only their source operand considered here, for the
6716 ambiguity checking below. The suffix will be replaced afterwards
6717 to represent the destination (register). */
6718 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6719 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6720 --i.operands;
6721
643bb870
JB
6722 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6723 if (i.tm.base_opcode == 0xf20f38f0
6724 && i.tm.operand_types[1].bitfield.qword)
6725 i.rex |= REX_W;
6726
29b0f896 6727 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6728 based on GPR operands. */
29b0f896
AM
6729 if (!i.suffix)
6730 {
6731 /* We take i.suffix from the last register operand specified,
6732 Destination register type is more significant than source
381d071f
L
6733 register type. crc32 in SSE4.2 prefers source register
6734 type. */
1a035124 6735 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
20592a94 6736
1a035124
JB
6737 while (op--)
6738 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6739 || i.tm.operand_types[op].bitfield.instance == Accum)
6740 {
6741 if (i.types[op].bitfield.class != Reg)
6742 continue;
6743 if (i.types[op].bitfield.byte)
6744 i.suffix = BYTE_MNEM_SUFFIX;
6745 else if (i.types[op].bitfield.word)
6746 i.suffix = WORD_MNEM_SUFFIX;
6747 else if (i.types[op].bitfield.dword)
6748 i.suffix = LONG_MNEM_SUFFIX;
6749 else if (i.types[op].bitfield.qword)
6750 i.suffix = QWORD_MNEM_SUFFIX;
6751 else
6752 continue;
6753 break;
6754 }
65fca059
JB
6755
6756 /* As an exception, movsx/movzx silently default to a byte source
6757 in AT&T mode. */
6758 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6759 && !i.suffix && !intel_syntax)
6760 i.suffix = BYTE_MNEM_SUFFIX;
29b0f896
AM
6761 }
6762 else if (i.suffix == BYTE_MNEM_SUFFIX)
6763 {
2eb952a4 6764 if (intel_syntax
3cd7f3e3 6765 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6766 && i.tm.opcode_modifier.no_bsuf)
6767 i.suffix = 0;
6768 else if (!check_byte_reg ())
29b0f896
AM
6769 return 0;
6770 }
6771 else if (i.suffix == LONG_MNEM_SUFFIX)
6772 {
2eb952a4 6773 if (intel_syntax
3cd7f3e3 6774 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6775 && i.tm.opcode_modifier.no_lsuf
6776 && !i.tm.opcode_modifier.todword
6777 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6778 i.suffix = 0;
6779 else if (!check_long_reg ())
29b0f896
AM
6780 return 0;
6781 }
6782 else if (i.suffix == QWORD_MNEM_SUFFIX)
6783 {
955e1e6a 6784 if (intel_syntax
3cd7f3e3 6785 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6786 && i.tm.opcode_modifier.no_qsuf
6787 && !i.tm.opcode_modifier.todword
6788 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6789 i.suffix = 0;
6790 else if (!check_qword_reg ())
29b0f896
AM
6791 return 0;
6792 }
6793 else if (i.suffix == WORD_MNEM_SUFFIX)
6794 {
2eb952a4 6795 if (intel_syntax
3cd7f3e3 6796 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6797 && i.tm.opcode_modifier.no_wsuf)
6798 i.suffix = 0;
6799 else if (!check_word_reg ())
29b0f896
AM
6800 return 0;
6801 }
3cd7f3e3
L
6802 else if (intel_syntax
6803 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6804 /* Do nothing if the instruction is going to ignore the prefix. */
6805 ;
6806 else
6807 abort ();
65fca059
JB
6808
6809 /* Undo the movsx/movzx change done above. */
6810 i.operands = numop;
29b0f896 6811 }
3cd7f3e3
L
6812 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6813 && !i.suffix)
29b0f896 6814 {
13e600d0
JB
6815 i.suffix = stackop_size;
6816 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6817 {
6818 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6819 .code16gcc directive to support 16-bit mode with
6820 32-bit address. For IRET without a suffix, generate
6821 16-bit IRET (opcode 0xcf) to return from an interrupt
6822 handler. */
13e600d0
JB
6823 if (i.tm.base_opcode == 0xcf)
6824 {
6825 i.suffix = WORD_MNEM_SUFFIX;
6826 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6827 }
6828 /* Warn about changed behavior for segment register push/pop. */
6829 else if ((i.tm.base_opcode | 1) == 0x07)
6830 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6831 i.tm.name);
06f74c5c 6832 }
29b0f896 6833 }
c006a730 6834 else if (!i.suffix
0cfa3eb3
JB
6835 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6836 || i.tm.opcode_modifier.jump == JUMP_BYTE
6837 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6838 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6839 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6840 {
6841 switch (flag_code)
6842 {
6843 case CODE_64BIT:
40fb9820 6844 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a 6845 {
828c2a25
JB
6846 if (i.tm.opcode_modifier.jump == JUMP_BYTE
6847 || i.tm.opcode_modifier.no_lsuf)
6848 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a
JB
6849 break;
6850 }
1a0670f3 6851 /* Fall through. */
9306ca4a 6852 case CODE_32BIT:
40fb9820 6853 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6854 i.suffix = LONG_MNEM_SUFFIX;
6855 break;
6856 case CODE_16BIT:
40fb9820 6857 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6858 i.suffix = WORD_MNEM_SUFFIX;
6859 break;
6860 }
6861 }
252b5132 6862
c006a730 6863 if (!i.suffix
3cd7f3e3 6864 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8
JB
6865 /* Also cover lret/retf/iret in 64-bit mode. */
6866 || (flag_code == CODE_64BIT
6867 && !i.tm.opcode_modifier.no_lsuf
6868 && !i.tm.opcode_modifier.no_qsuf))
3cd7f3e3 6869 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
8bbb3ad8
JB
6870 /* Explicit sizing prefixes are assumed to disambiguate insns. */
6871 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
62b3f548
JB
6872 /* Accept FLDENV et al without suffix. */
6873 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
29b0f896 6874 {
6c0946d0 6875 unsigned int suffixes, evex = 0;
c006a730
JB
6876
6877 suffixes = !i.tm.opcode_modifier.no_bsuf;
6878 if (!i.tm.opcode_modifier.no_wsuf)
6879 suffixes |= 1 << 1;
6880 if (!i.tm.opcode_modifier.no_lsuf)
6881 suffixes |= 1 << 2;
6882 if (!i.tm.opcode_modifier.no_ldsuf)
6883 suffixes |= 1 << 3;
6884 if (!i.tm.opcode_modifier.no_ssuf)
6885 suffixes |= 1 << 4;
6886 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6887 suffixes |= 1 << 5;
6888
6c0946d0
JB
6889 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6890 also suitable for AT&T syntax mode, it was requested that this be
6891 restricted to just Intel syntax. */
b9915cbc 6892 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6c0946d0 6893 {
b9915cbc 6894 unsigned int op;
6c0946d0 6895
b9915cbc 6896 for (op = 0; op < i.tm.operands; ++op)
6c0946d0 6897 {
b9915cbc
JB
6898 if (is_evex_encoding (&i.tm)
6899 && !cpu_arch_flags.bitfield.cpuavx512vl)
6c0946d0 6900 {
b9915cbc
JB
6901 if (i.tm.operand_types[op].bitfield.ymmword)
6902 i.tm.operand_types[op].bitfield.xmmword = 0;
6903 if (i.tm.operand_types[op].bitfield.zmmword)
6904 i.tm.operand_types[op].bitfield.ymmword = 0;
6905 if (!i.tm.opcode_modifier.evex
6906 || i.tm.opcode_modifier.evex == EVEXDYN)
6907 i.tm.opcode_modifier.evex = EVEX512;
6908 }
6c0946d0 6909
b9915cbc
JB
6910 if (i.tm.operand_types[op].bitfield.xmmword
6911 + i.tm.operand_types[op].bitfield.ymmword
6912 + i.tm.operand_types[op].bitfield.zmmword < 2)
6913 continue;
6c0946d0 6914
b9915cbc
JB
6915 /* Any properly sized operand disambiguates the insn. */
6916 if (i.types[op].bitfield.xmmword
6917 || i.types[op].bitfield.ymmword
6918 || i.types[op].bitfield.zmmword)
6919 {
6920 suffixes &= ~(7 << 6);
6921 evex = 0;
6922 break;
6923 }
6c0946d0 6924
b9915cbc
JB
6925 if ((i.flags[op] & Operand_Mem)
6926 && i.tm.operand_types[op].bitfield.unspecified)
6927 {
6928 if (i.tm.operand_types[op].bitfield.xmmword)
6929 suffixes |= 1 << 6;
6930 if (i.tm.operand_types[op].bitfield.ymmword)
6931 suffixes |= 1 << 7;
6932 if (i.tm.operand_types[op].bitfield.zmmword)
6933 suffixes |= 1 << 8;
6934 if (is_evex_encoding (&i.tm))
6935 evex = EVEX512;
6c0946d0
JB
6936 }
6937 }
6938 }
6939
6940 /* Are multiple suffixes / operand sizes allowed? */
c006a730 6941 if (suffixes & (suffixes - 1))
9306ca4a 6942 {
873494c8 6943 if (intel_syntax
3cd7f3e3 6944 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8 6945 || operand_check == check_error))
9306ca4a 6946 {
c006a730 6947 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
9306ca4a
JB
6948 return 0;
6949 }
c006a730 6950 if (operand_check == check_error)
9306ca4a 6951 {
c006a730
JB
6952 as_bad (_("no instruction mnemonic suffix given and "
6953 "no register operands; can't size `%s'"), i.tm.name);
9306ca4a
JB
6954 return 0;
6955 }
c006a730 6956 if (operand_check == check_warning)
873494c8
JB
6957 as_warn (_("%s; using default for `%s'"),
6958 intel_syntax
6959 ? _("ambiguous operand size")
6960 : _("no instruction mnemonic suffix given and "
6961 "no register operands"),
6962 i.tm.name);
c006a730
JB
6963
6964 if (i.tm.opcode_modifier.floatmf)
6965 i.suffix = SHORT_MNEM_SUFFIX;
65fca059
JB
6966 else if ((i.tm.base_opcode | 8) == 0xfbe
6967 || (i.tm.base_opcode == 0x63
6968 && i.tm.cpu_flags.bitfield.cpu64))
6969 /* handled below */;
6c0946d0
JB
6970 else if (evex)
6971 i.tm.opcode_modifier.evex = evex;
c006a730
JB
6972 else if (flag_code == CODE_16BIT)
6973 i.suffix = WORD_MNEM_SUFFIX;
1a035124 6974 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 6975 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
6976 else
6977 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 6978 }
29b0f896 6979 }
252b5132 6980
65fca059
JB
6981 if ((i.tm.base_opcode | 8) == 0xfbe
6982 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6983 {
6984 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6985 In AT&T syntax, if there is no suffix (warned about above), the default
6986 will be byte extension. */
6987 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6988 i.tm.base_opcode |= 1;
6989
6990 /* For further processing, the suffix should represent the destination
6991 (register). This is already the case when one was used with
6992 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6993 no suffix to begin with. */
6994 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6995 {
6996 if (i.types[1].bitfield.word)
6997 i.suffix = WORD_MNEM_SUFFIX;
6998 else if (i.types[1].bitfield.qword)
6999 i.suffix = QWORD_MNEM_SUFFIX;
7000 else
7001 i.suffix = LONG_MNEM_SUFFIX;
7002
7003 i.tm.opcode_modifier.w = 0;
7004 }
7005 }
7006
50128d0c
JB
7007 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7008 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7009 != (i.tm.operand_types[1].bitfield.class == Reg);
7010
d2224064
JB
7011 /* Change the opcode based on the operand size given by i.suffix. */
7012 switch (i.suffix)
29b0f896 7013 {
d2224064
JB
7014 /* Size floating point instruction. */
7015 case LONG_MNEM_SUFFIX:
7016 if (i.tm.opcode_modifier.floatmf)
7017 {
7018 i.tm.base_opcode ^= 4;
7019 break;
7020 }
7021 /* fall through */
7022 case WORD_MNEM_SUFFIX:
7023 case QWORD_MNEM_SUFFIX:
29b0f896 7024 /* It's not a byte, select word/dword operation. */
40fb9820 7025 if (i.tm.opcode_modifier.w)
29b0f896 7026 {
50128d0c 7027 if (i.short_form)
29b0f896
AM
7028 i.tm.base_opcode |= 8;
7029 else
7030 i.tm.base_opcode |= 1;
7031 }
d2224064
JB
7032 /* fall through */
7033 case SHORT_MNEM_SUFFIX:
29b0f896
AM
7034 /* Now select between word & dword operations via the operand
7035 size prefix, except for instructions that will ignore this
7036 prefix anyway. */
c8f8eebc 7037 if (i.suffix != QWORD_MNEM_SUFFIX
3cd7f3e3 7038 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
c8f8eebc
JB
7039 && !i.tm.opcode_modifier.floatmf
7040 && !is_any_vex_encoding (&i.tm)
7041 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7042 || (flag_code == CODE_64BIT
7043 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
7044 {
7045 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 7046
0cfa3eb3 7047 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 7048 prefix = ADDR_PREFIX_OPCODE;
252b5132 7049
29b0f896
AM
7050 if (!add_prefix (prefix))
7051 return 0;
24eab124 7052 }
252b5132 7053
29b0f896
AM
7054 /* Set mode64 for an operand. */
7055 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 7056 && flag_code == CODE_64BIT
d2224064 7057 && !i.tm.opcode_modifier.norex64
4ed21b58 7058 && !i.tm.opcode_modifier.vexw
46e883c5 7059 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
7060 need rex64. */
7061 && ! (i.operands == 2
7062 && i.tm.base_opcode == 0x90
7063 && i.tm.extension_opcode == None
75e5731b
JB
7064 && i.types[0].bitfield.instance == Accum
7065 && i.types[0].bitfield.qword
7066 && i.types[1].bitfield.instance == Accum
7067 && i.types[1].bitfield.qword))
d2224064 7068 i.rex |= REX_W;
3e73aa7c 7069
d2224064 7070 break;
8bbb3ad8
JB
7071
7072 case 0:
7073 /* Select word/dword/qword operation with explict data sizing prefix
7074 when there are no suitable register operands. */
7075 if (i.tm.opcode_modifier.w
7076 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
7077 && (!i.reg_operands
7078 || (i.reg_operands == 1
7079 /* ShiftCount */
7080 && (i.tm.operand_types[0].bitfield.instance == RegC
7081 /* InOutPortReg */
7082 || i.tm.operand_types[0].bitfield.instance == RegD
7083 || i.tm.operand_types[1].bitfield.instance == RegD
7084 /* CRC32 */
7085 || i.tm.base_opcode == 0xf20f38f0))))
7086 i.tm.base_opcode |= 1;
7087 break;
29b0f896 7088 }
7ecd2f8b 7089
c8f8eebc 7090 if (i.tm.opcode_modifier.addrprefixopreg)
c0a30a9f 7091 {
c8f8eebc
JB
7092 gas_assert (!i.suffix);
7093 gas_assert (i.reg_operands);
c0a30a9f 7094
c8f8eebc
JB
7095 if (i.tm.operand_types[0].bitfield.instance == Accum
7096 || i.operands == 1)
7097 {
7098 /* The address size override prefix changes the size of the
7099 first operand. */
7100 if (flag_code == CODE_64BIT
7101 && i.op[0].regs->reg_type.bitfield.word)
7102 {
7103 as_bad (_("16-bit addressing unavailable for `%s'"),
7104 i.tm.name);
7105 return 0;
7106 }
7107
7108 if ((flag_code == CODE_32BIT
7109 ? i.op[0].regs->reg_type.bitfield.word
7110 : i.op[0].regs->reg_type.bitfield.dword)
7111 && !add_prefix (ADDR_PREFIX_OPCODE))
7112 return 0;
7113 }
c0a30a9f
L
7114 else
7115 {
c8f8eebc
JB
7116 /* Check invalid register operand when the address size override
7117 prefix changes the size of register operands. */
7118 unsigned int op;
7119 enum { need_word, need_dword, need_qword } need;
7120
7121 if (flag_code == CODE_32BIT)
7122 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7123 else if (i.prefix[ADDR_PREFIX])
c0a30a9f
L
7124 need = need_dword;
7125 else
7126 need = flag_code == CODE_64BIT ? need_qword : need_word;
c0a30a9f 7127
c8f8eebc
JB
7128 for (op = 0; op < i.operands; op++)
7129 {
7130 if (i.types[op].bitfield.class != Reg)
7131 continue;
7132
7133 switch (need)
7134 {
7135 case need_word:
7136 if (i.op[op].regs->reg_type.bitfield.word)
7137 continue;
7138 break;
7139 case need_dword:
7140 if (i.op[op].regs->reg_type.bitfield.dword)
7141 continue;
7142 break;
7143 case need_qword:
7144 if (i.op[op].regs->reg_type.bitfield.qword)
7145 continue;
7146 break;
7147 }
7148
7149 as_bad (_("invalid register operand size for `%s'"),
7150 i.tm.name);
7151 return 0;
7152 }
7153 }
c0a30a9f
L
7154 }
7155
29b0f896
AM
7156 return 1;
7157}
3e73aa7c 7158
29b0f896 7159static int
543613e9 7160check_byte_reg (void)
29b0f896
AM
7161{
7162 int op;
543613e9 7163
29b0f896
AM
7164 for (op = i.operands; --op >= 0;)
7165 {
dc821c5f 7166 /* Skip non-register operands. */
bab6aec1 7167 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
7168 continue;
7169
29b0f896
AM
7170 /* If this is an eight bit register, it's OK. If it's the 16 or
7171 32 bit version of an eight bit register, we will just use the
7172 low portion, and that's OK too. */
dc821c5f 7173 if (i.types[op].bitfield.byte)
29b0f896
AM
7174 continue;
7175
5a819eb9 7176 /* I/O port address operands are OK too. */
75e5731b
JB
7177 if (i.tm.operand_types[op].bitfield.instance == RegD
7178 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
7179 continue;
7180
9706160a
JB
7181 /* crc32 only wants its source operand checked here. */
7182 if (i.tm.base_opcode == 0xf20f38f0 && op)
9344ff29
L
7183 continue;
7184
29b0f896 7185 /* Any other register is bad. */
73c76375
JB
7186 as_bad (_("`%s%s' not allowed with `%s%c'"),
7187 register_prefix, i.op[op].regs->reg_name,
7188 i.tm.name, i.suffix);
7189 return 0;
29b0f896
AM
7190 }
7191 return 1;
7192}
7193
7194static int
e3bb37b5 7195check_long_reg (void)
29b0f896
AM
7196{
7197 int op;
7198
7199 for (op = i.operands; --op >= 0;)
dc821c5f 7200 /* Skip non-register operands. */
bab6aec1 7201 if (i.types[op].bitfield.class != Reg)
dc821c5f 7202 continue;
29b0f896
AM
7203 /* Reject eight bit registers, except where the template requires
7204 them. (eg. movzb) */
dc821c5f 7205 else if (i.types[op].bitfield.byte
bab6aec1 7206 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7207 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
7208 && (i.tm.operand_types[op].bitfield.word
7209 || i.tm.operand_types[op].bitfield.dword))
29b0f896 7210 {
a540244d
L
7211 as_bad (_("`%s%s' not allowed with `%s%c'"),
7212 register_prefix,
29b0f896
AM
7213 i.op[op].regs->reg_name,
7214 i.tm.name,
7215 i.suffix);
7216 return 0;
7217 }
be4c5e58
L
7218 /* Error if the e prefix on a general reg is missing. */
7219 else if (i.types[op].bitfield.word
bab6aec1 7220 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7221 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7222 && i.tm.operand_types[op].bitfield.dword)
29b0f896 7223 {
be4c5e58
L
7224 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7225 register_prefix, i.op[op].regs->reg_name,
7226 i.suffix);
7227 return 0;
252b5132 7228 }
e4630f71 7229 /* Warn if the r prefix on a general reg is present. */
dc821c5f 7230 else if (i.types[op].bitfield.qword
bab6aec1 7231 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7232 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7233 && i.tm.operand_types[op].bitfield.dword)
252b5132 7234 {
34828aad 7235 if (intel_syntax
65fca059 7236 && i.tm.opcode_modifier.toqword
3528c362 7237 && i.types[0].bitfield.class != RegSIMD)
34828aad 7238 {
ca61edf2 7239 /* Convert to QWORD. We want REX byte. */
34828aad
L
7240 i.suffix = QWORD_MNEM_SUFFIX;
7241 }
7242 else
7243 {
2b5d6a91 7244 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
7245 register_prefix, i.op[op].regs->reg_name,
7246 i.suffix);
7247 return 0;
7248 }
29b0f896
AM
7249 }
7250 return 1;
7251}
252b5132 7252
29b0f896 7253static int
e3bb37b5 7254check_qword_reg (void)
29b0f896
AM
7255{
7256 int op;
252b5132 7257
29b0f896 7258 for (op = i.operands; --op >= 0; )
dc821c5f 7259 /* Skip non-register operands. */
bab6aec1 7260 if (i.types[op].bitfield.class != Reg)
dc821c5f 7261 continue;
29b0f896
AM
7262 /* Reject eight bit registers, except where the template requires
7263 them. (eg. movzb) */
dc821c5f 7264 else if (i.types[op].bitfield.byte
bab6aec1 7265 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7266 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
7267 && (i.tm.operand_types[op].bitfield.word
7268 || i.tm.operand_types[op].bitfield.dword))
29b0f896 7269 {
a540244d
L
7270 as_bad (_("`%s%s' not allowed with `%s%c'"),
7271 register_prefix,
29b0f896
AM
7272 i.op[op].regs->reg_name,
7273 i.tm.name,
7274 i.suffix);
7275 return 0;
7276 }
e4630f71 7277 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
7278 else if ((i.types[op].bitfield.word
7279 || i.types[op].bitfield.dword)
bab6aec1 7280 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7281 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7282 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
7283 {
7284 /* Prohibit these changes in the 64bit mode, since the
7285 lowering is more complicated. */
34828aad 7286 if (intel_syntax
ca61edf2 7287 && i.tm.opcode_modifier.todword
3528c362 7288 && i.types[0].bitfield.class != RegSIMD)
34828aad 7289 {
ca61edf2 7290 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
7291 i.suffix = LONG_MNEM_SUFFIX;
7292 }
7293 else
7294 {
2b5d6a91 7295 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
7296 register_prefix, i.op[op].regs->reg_name,
7297 i.suffix);
7298 return 0;
7299 }
252b5132 7300 }
29b0f896
AM
7301 return 1;
7302}
252b5132 7303
29b0f896 7304static int
e3bb37b5 7305check_word_reg (void)
29b0f896
AM
7306{
7307 int op;
7308 for (op = i.operands; --op >= 0;)
dc821c5f 7309 /* Skip non-register operands. */
bab6aec1 7310 if (i.types[op].bitfield.class != Reg)
dc821c5f 7311 continue;
29b0f896
AM
7312 /* Reject eight bit registers, except where the template requires
7313 them. (eg. movzb) */
dc821c5f 7314 else if (i.types[op].bitfield.byte
bab6aec1 7315 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7316 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
7317 && (i.tm.operand_types[op].bitfield.word
7318 || i.tm.operand_types[op].bitfield.dword))
29b0f896 7319 {
a540244d
L
7320 as_bad (_("`%s%s' not allowed with `%s%c'"),
7321 register_prefix,
29b0f896
AM
7322 i.op[op].regs->reg_name,
7323 i.tm.name,
7324 i.suffix);
7325 return 0;
7326 }
9706160a
JB
7327 /* Error if the e or r prefix on a general reg is present. */
7328 else if ((i.types[op].bitfield.dword
dc821c5f 7329 || i.types[op].bitfield.qword)
bab6aec1 7330 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 7331 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 7332 && i.tm.operand_types[op].bitfield.word)
252b5132 7333 {
9706160a
JB
7334 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7335 register_prefix, i.op[op].regs->reg_name,
7336 i.suffix);
7337 return 0;
29b0f896
AM
7338 }
7339 return 1;
7340}
252b5132 7341
29b0f896 7342static int
40fb9820 7343update_imm (unsigned int j)
29b0f896 7344{
bc0844ae 7345 i386_operand_type overlap = i.types[j];
40fb9820
L
7346 if ((overlap.bitfield.imm8
7347 || overlap.bitfield.imm8s
7348 || overlap.bitfield.imm16
7349 || overlap.bitfield.imm32
7350 || overlap.bitfield.imm32s
7351 || overlap.bitfield.imm64)
0dfbf9d7
L
7352 && !operand_type_equal (&overlap, &imm8)
7353 && !operand_type_equal (&overlap, &imm8s)
7354 && !operand_type_equal (&overlap, &imm16)
7355 && !operand_type_equal (&overlap, &imm32)
7356 && !operand_type_equal (&overlap, &imm32s)
7357 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
7358 {
7359 if (i.suffix)
7360 {
40fb9820
L
7361 i386_operand_type temp;
7362
0dfbf9d7 7363 operand_type_set (&temp, 0);
7ab9ffdd 7364 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
7365 {
7366 temp.bitfield.imm8 = overlap.bitfield.imm8;
7367 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7368 }
7369 else if (i.suffix == WORD_MNEM_SUFFIX)
7370 temp.bitfield.imm16 = overlap.bitfield.imm16;
7371 else if (i.suffix == QWORD_MNEM_SUFFIX)
7372 {
7373 temp.bitfield.imm64 = overlap.bitfield.imm64;
7374 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7375 }
7376 else
7377 temp.bitfield.imm32 = overlap.bitfield.imm32;
7378 overlap = temp;
29b0f896 7379 }
0dfbf9d7
L
7380 else if (operand_type_equal (&overlap, &imm16_32_32s)
7381 || operand_type_equal (&overlap, &imm16_32)
7382 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 7383 {
40fb9820 7384 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 7385 overlap = imm16;
40fb9820 7386 else
65da13b5 7387 overlap = imm32s;
29b0f896 7388 }
8bbb3ad8
JB
7389 else if (i.prefix[REX_PREFIX] & REX_W)
7390 overlap = operand_type_and (overlap, imm32s);
7391 else if (i.prefix[DATA_PREFIX])
7392 overlap = operand_type_and (overlap,
7393 flag_code != CODE_16BIT ? imm16 : imm32);
0dfbf9d7
L
7394 if (!operand_type_equal (&overlap, &imm8)
7395 && !operand_type_equal (&overlap, &imm8s)
7396 && !operand_type_equal (&overlap, &imm16)
7397 && !operand_type_equal (&overlap, &imm32)
7398 && !operand_type_equal (&overlap, &imm32s)
7399 && !operand_type_equal (&overlap, &imm64))
29b0f896 7400 {
4eed87de
AM
7401 as_bad (_("no instruction mnemonic suffix given; "
7402 "can't determine immediate size"));
29b0f896
AM
7403 return 0;
7404 }
7405 }
40fb9820 7406 i.types[j] = overlap;
29b0f896 7407
40fb9820
L
7408 return 1;
7409}
7410
7411static int
7412finalize_imm (void)
7413{
bc0844ae 7414 unsigned int j, n;
29b0f896 7415
bc0844ae
L
7416 /* Update the first 2 immediate operands. */
7417 n = i.operands > 2 ? 2 : i.operands;
7418 if (n)
7419 {
7420 for (j = 0; j < n; j++)
7421 if (update_imm (j) == 0)
7422 return 0;
40fb9820 7423
bc0844ae
L
7424 /* The 3rd operand can't be immediate operand. */
7425 gas_assert (operand_type_check (i.types[2], imm) == 0);
7426 }
29b0f896
AM
7427
7428 return 1;
7429}
7430
7431static int
e3bb37b5 7432process_operands (void)
29b0f896
AM
7433{
7434 /* Default segment register this instruction will use for memory
7435 accesses. 0 means unknown. This is only for optimizing out
7436 unnecessary segment overrides. */
7437 const seg_entry *default_seg = 0;
7438
a5aeccd9
JB
7439 if (i.tm.opcode_modifier.sse2avx)
7440 {
7441 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7442 need converting. */
7443 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7444 i.prefix[REX_PREFIX] = 0;
7445 i.rex_encoding = 0;
7446 }
c423d21a
JB
7447 /* ImmExt should be processed after SSE2AVX. */
7448 else if (i.tm.opcode_modifier.immext)
7449 process_immext ();
a5aeccd9 7450
2426c15f 7451 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 7452 {
91d6fa6a
NC
7453 unsigned int dupl = i.operands;
7454 unsigned int dest = dupl - 1;
9fcfb3d7
L
7455 unsigned int j;
7456
c0f3af97 7457 /* The destination must be an xmm register. */
9c2799c2 7458 gas_assert (i.reg_operands
91d6fa6a 7459 && MAX_OPERANDS > dupl
7ab9ffdd 7460 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 7461
75e5731b 7462 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7463 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 7464 {
8cd7925b 7465 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
7466 {
7467 /* Keep xmm0 for instructions with VEX prefix and 3
7468 sources. */
75e5731b 7469 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 7470 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
7471 goto duplicate;
7472 }
e2ec9d29 7473 else
c0f3af97
L
7474 {
7475 /* We remove the first xmm0 and keep the number of
7476 operands unchanged, which in fact duplicates the
7477 destination. */
7478 for (j = 1; j < i.operands; j++)
7479 {
7480 i.op[j - 1] = i.op[j];
7481 i.types[j - 1] = i.types[j];
7482 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 7483 i.flags[j - 1] = i.flags[j];
c0f3af97
L
7484 }
7485 }
7486 }
7487 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 7488 {
91d6fa6a 7489 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
7490 && (i.tm.opcode_modifier.vexsources
7491 == VEX3SOURCES));
c0f3af97
L
7492
7493 /* Add the implicit xmm0 for instructions with VEX prefix
7494 and 3 sources. */
7495 for (j = i.operands; j > 0; j--)
7496 {
7497 i.op[j] = i.op[j - 1];
7498 i.types[j] = i.types[j - 1];
7499 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 7500 i.flags[j] = i.flags[j - 1];
c0f3af97
L
7501 }
7502 i.op[0].regs
7503 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 7504 i.types[0] = regxmm;
c0f3af97
L
7505 i.tm.operand_types[0] = regxmm;
7506
7507 i.operands += 2;
7508 i.reg_operands += 2;
7509 i.tm.operands += 2;
7510
91d6fa6a 7511 dupl++;
c0f3af97 7512 dest++;
91d6fa6a
NC
7513 i.op[dupl] = i.op[dest];
7514 i.types[dupl] = i.types[dest];
7515 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7516 i.flags[dupl] = i.flags[dest];
e2ec9d29 7517 }
c0f3af97
L
7518 else
7519 {
dc1e8a47 7520 duplicate:
c0f3af97
L
7521 i.operands++;
7522 i.reg_operands++;
7523 i.tm.operands++;
7524
91d6fa6a
NC
7525 i.op[dupl] = i.op[dest];
7526 i.types[dupl] = i.types[dest];
7527 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7528 i.flags[dupl] = i.flags[dest];
c0f3af97
L
7529 }
7530
7531 if (i.tm.opcode_modifier.immext)
7532 process_immext ();
7533 }
75e5731b 7534 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7535 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7536 {
7537 unsigned int j;
7538
9fcfb3d7
L
7539 for (j = 1; j < i.operands; j++)
7540 {
7541 i.op[j - 1] = i.op[j];
7542 i.types[j - 1] = i.types[j];
7543
7544 /* We need to adjust fields in i.tm since they are used by
7545 build_modrm_byte. */
7546 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7547
7548 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7549 }
7550
e2ec9d29
L
7551 i.operands--;
7552 i.reg_operands--;
e2ec9d29
L
7553 i.tm.operands--;
7554 }
920d2ddc
IT
7555 else if (i.tm.opcode_modifier.implicitquadgroup)
7556 {
a477a8c4
JB
7557 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7558
920d2ddc 7559 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7560 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7561 regnum = register_number (i.op[1].regs);
7562 first_reg_in_group = regnum & ~3;
7563 last_reg_in_group = first_reg_in_group + 3;
7564 if (regnum != first_reg_in_group)
7565 as_warn (_("source register `%s%s' implicitly denotes"
7566 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7567 register_prefix, i.op[1].regs->reg_name,
7568 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7569 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7570 i.tm.name);
7571 }
e2ec9d29
L
7572 else if (i.tm.opcode_modifier.regkludge)
7573 {
7574 /* The imul $imm, %reg instruction is converted into
7575 imul $imm, %reg, %reg, and the clr %reg instruction
7576 is converted into xor %reg, %reg. */
7577
7578 unsigned int first_reg_op;
7579
7580 if (operand_type_check (i.types[0], reg))
7581 first_reg_op = 0;
7582 else
7583 first_reg_op = 1;
7584 /* Pretend we saw the extra register operand. */
9c2799c2 7585 gas_assert (i.reg_operands == 1
7ab9ffdd 7586 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7587 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7588 i.types[first_reg_op + 1] = i.types[first_reg_op];
7589 i.operands++;
7590 i.reg_operands++;
29b0f896
AM
7591 }
7592
85b80b0f 7593 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7594 {
7595 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7596 must be put into the modrm byte). Now, we make the modrm and
7597 index base bytes based on all the info we've collected. */
29b0f896
AM
7598
7599 default_seg = build_modrm_byte ();
7600 }
00cee14f 7601 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7602 {
7603 if (flag_code != CODE_64BIT
7604 ? i.tm.base_opcode == POP_SEG_SHORT
7605 && i.op[0].regs->reg_num == 1
7606 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7607 && i.op[0].regs->reg_num < 4)
7608 {
7609 as_bad (_("you can't `%s %s%s'"),
7610 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7611 return 0;
7612 }
7613 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7614 {
7615 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7616 i.tm.opcode_length = 2;
7617 }
7618 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7619 }
8a2ed489 7620 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7621 {
7622 default_seg = &ds;
7623 }
40fb9820 7624 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7625 {
7626 /* For the string instructions that allow a segment override
7627 on one of their operands, the default segment is ds. */
7628 default_seg = &ds;
7629 }
50128d0c 7630 else if (i.short_form)
85b80b0f
JB
7631 {
7632 /* The register or float register operand is in operand
7633 0 or 1. */
bab6aec1 7634 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7635
7636 /* Register goes in low 3 bits of opcode. */
7637 i.tm.base_opcode |= i.op[op].regs->reg_num;
7638 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7639 i.rex |= REX_B;
7640 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7641 {
7642 /* Warn about some common errors, but press on regardless.
7643 The first case can be generated by gcc (<= 2.8.1). */
7644 if (i.operands == 2)
7645 {
7646 /* Reversed arguments on faddp, fsubp, etc. */
7647 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7648 register_prefix, i.op[!intel_syntax].regs->reg_name,
7649 register_prefix, i.op[intel_syntax].regs->reg_name);
7650 }
7651 else
7652 {
7653 /* Extraneous `l' suffix on fp insn. */
7654 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7655 register_prefix, i.op[0].regs->reg_name);
7656 }
7657 }
7658 }
29b0f896 7659
514a8bb0 7660 if ((i.seg[0] || i.prefix[SEG_PREFIX])
514a8bb0
JB
7661 && i.tm.base_opcode == 0x8d /* lea */
7662 && !is_any_vex_encoding(&i.tm))
92334ad2
JB
7663 {
7664 if (!quiet_warnings)
7665 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7666 if (optimize)
7667 {
7668 i.seg[0] = NULL;
7669 i.prefix[SEG_PREFIX] = 0;
7670 }
7671 }
52271982
AM
7672
7673 /* If a segment was explicitly specified, and the specified segment
b6773884
JB
7674 is neither the default nor the one already recorded from a prefix,
7675 use an opcode prefix to select it. If we never figured out what
7676 the default segment is, then default_seg will be zero at this
7677 point, and the specified segment prefix will always be used. */
7678 if (i.seg[0]
7679 && i.seg[0] != default_seg
7680 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
29b0f896
AM
7681 {
7682 if (!add_prefix (i.seg[0]->seg_prefix))
7683 return 0;
7684 }
7685 return 1;
7686}
7687
a5aeccd9
JB
7688static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7689 bfd_boolean do_sse2avx)
7690{
7691 if (r->reg_flags & RegRex)
7692 {
7693 if (i.rex & rex_bit)
7694 as_bad (_("same type of prefix used twice"));
7695 i.rex |= rex_bit;
7696 }
7697 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7698 {
7699 gas_assert (i.vex.register_specifier == r);
7700 i.vex.register_specifier += 8;
7701 }
7702
7703 if (r->reg_flags & RegVRex)
7704 i.vrex |= rex_bit;
7705}
7706
29b0f896 7707static const seg_entry *
e3bb37b5 7708build_modrm_byte (void)
29b0f896
AM
7709{
7710 const seg_entry *default_seg = 0;
c0f3af97 7711 unsigned int source, dest;
8cd7925b 7712 int vex_3_sources;
c0f3af97 7713
8cd7925b 7714 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7715 if (vex_3_sources)
7716 {
91d6fa6a 7717 unsigned int nds, reg_slot;
4c2c6516 7718 expressionS *exp;
c0f3af97 7719
6b8d3588 7720 dest = i.operands - 1;
c0f3af97 7721 nds = dest - 1;
922d8de8 7722
a683cc34 7723 /* There are 2 kinds of instructions:
bed3d976 7724 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7725 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7726 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7727 ZMM register.
bed3d976 7728 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7729 plus 1 memory operand, with VexXDS. */
922d8de8 7730 gas_assert ((i.reg_operands == 4
bed3d976
JB
7731 || (i.reg_operands == 3 && i.mem_operands == 1))
7732 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7733 && i.tm.opcode_modifier.vexw
3528c362 7734 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7735
48db9223
JB
7736 /* If VexW1 is set, the first non-immediate operand is the source and
7737 the second non-immediate one is encoded in the immediate operand. */
7738 if (i.tm.opcode_modifier.vexw == VEXW1)
7739 {
7740 source = i.imm_operands;
7741 reg_slot = i.imm_operands + 1;
7742 }
7743 else
7744 {
7745 source = i.imm_operands + 1;
7746 reg_slot = i.imm_operands;
7747 }
7748
a683cc34 7749 if (i.imm_operands == 0)
bed3d976
JB
7750 {
7751 /* When there is no immediate operand, generate an 8bit
7752 immediate operand to encode the first operand. */
7753 exp = &im_expressions[i.imm_operands++];
7754 i.op[i.operands].imms = exp;
7755 i.types[i.operands] = imm8;
7756 i.operands++;
7757
3528c362 7758 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7759 exp->X_op = O_constant;
7760 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7761 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7762 }
922d8de8 7763 else
bed3d976 7764 {
9d3bf266
JB
7765 gas_assert (i.imm_operands == 1);
7766 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7767 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7768
9d3bf266
JB
7769 /* Turn on Imm8 again so that output_imm will generate it. */
7770 i.types[0].bitfield.imm8 = 1;
bed3d976 7771
3528c362 7772 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7773 i.op[0].imms->X_add_number
bed3d976 7774 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7775 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7776 }
a683cc34 7777
3528c362 7778 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7779 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7780 }
7781 else
7782 source = dest = 0;
29b0f896
AM
7783
7784 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7785 implicit registers do not count. If there are 3 register
7786 operands, it must be a instruction with VexNDS. For a
7787 instruction with VexNDD, the destination register is encoded
7788 in VEX prefix. If there are 4 register operands, it must be
7789 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7790 if (i.mem_operands == 0
7791 && ((i.reg_operands == 2
2426c15f 7792 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7793 || (i.reg_operands == 3
2426c15f 7794 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7795 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7796 {
cab737b9
L
7797 switch (i.operands)
7798 {
7799 case 2:
7800 source = 0;
7801 break;
7802 case 3:
c81128dc
L
7803 /* When there are 3 operands, one of them may be immediate,
7804 which may be the first or the last operand. Otherwise,
c0f3af97
L
7805 the first operand must be shift count register (cl) or it
7806 is an instruction with VexNDS. */
9c2799c2 7807 gas_assert (i.imm_operands == 1
7ab9ffdd 7808 || (i.imm_operands == 0
2426c15f 7809 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7810 || (i.types[0].bitfield.instance == RegC
7811 && i.types[0].bitfield.byte))));
40fb9820 7812 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7813 || (i.types[0].bitfield.instance == RegC
7814 && i.types[0].bitfield.byte))
40fb9820
L
7815 source = 1;
7816 else
7817 source = 0;
cab737b9
L
7818 break;
7819 case 4:
368d64cc
L
7820 /* When there are 4 operands, the first two must be 8bit
7821 immediate operands. The source operand will be the 3rd
c0f3af97
L
7822 one.
7823
7824 For instructions with VexNDS, if the first operand
7825 an imm8, the source operand is the 2nd one. If the last
7826 operand is imm8, the source operand is the first one. */
9c2799c2 7827 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7828 && i.types[0].bitfield.imm8
7829 && i.types[1].bitfield.imm8)
2426c15f 7830 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7831 && i.imm_operands == 1
7832 && (i.types[0].bitfield.imm8
43234a1e
L
7833 || i.types[i.operands - 1].bitfield.imm8
7834 || i.rounding)));
9f2670f2
L
7835 if (i.imm_operands == 2)
7836 source = 2;
7837 else
c0f3af97
L
7838 {
7839 if (i.types[0].bitfield.imm8)
7840 source = 1;
7841 else
7842 source = 0;
7843 }
c0f3af97
L
7844 break;
7845 case 5:
e771e7c9 7846 if (is_evex_encoding (&i.tm))
43234a1e
L
7847 {
7848 /* For EVEX instructions, when there are 5 operands, the
7849 first one must be immediate operand. If the second one
7850 is immediate operand, the source operand is the 3th
7851 one. If the last one is immediate operand, the source
7852 operand is the 2nd one. */
7853 gas_assert (i.imm_operands == 2
7854 && i.tm.opcode_modifier.sae
7855 && operand_type_check (i.types[0], imm));
7856 if (operand_type_check (i.types[1], imm))
7857 source = 2;
7858 else if (operand_type_check (i.types[4], imm))
7859 source = 1;
7860 else
7861 abort ();
7862 }
cab737b9
L
7863 break;
7864 default:
7865 abort ();
7866 }
7867
c0f3af97
L
7868 if (!vex_3_sources)
7869 {
7870 dest = source + 1;
7871
43234a1e
L
7872 /* RC/SAE operand could be between DEST and SRC. That happens
7873 when one operand is GPR and the other one is XMM/YMM/ZMM
7874 register. */
7875 if (i.rounding && i.rounding->operand == (int) dest)
7876 dest++;
7877
2426c15f 7878 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7879 {
43234a1e 7880 /* For instructions with VexNDS, the register-only source
c5d0745b 7881 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7882 register. It is encoded in VEX prefix. */
f12dc422
L
7883
7884 i386_operand_type op;
7885 unsigned int vvvv;
7886
c2ecccb3
L
7887 /* Swap two source operands if needed. */
7888 if (i.tm.opcode_modifier.swapsources)
f12dc422
L
7889 {
7890 vvvv = source;
7891 source = dest;
7892 }
7893 else
7894 vvvv = dest;
7895
7896 op = i.tm.operand_types[vvvv];
c0f3af97 7897 if ((dest + 1) >= i.operands
bab6aec1 7898 || ((op.bitfield.class != Reg
dc821c5f 7899 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7900 && op.bitfield.class != RegSIMD
43234a1e 7901 && !operand_type_equal (&op, &regmask)))
c0f3af97 7902 abort ();
f12dc422 7903 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7904 dest++;
7905 }
7906 }
29b0f896
AM
7907
7908 i.rm.mode = 3;
dfd69174
JB
7909 /* One of the register operands will be encoded in the i.rm.reg
7910 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7911 fields. If no form of this instruction supports a memory
7912 destination operand, then we assume the source operand may
7913 sometimes be a memory operand and so we need to store the
7914 destination in the i.rm.reg field. */
dfd69174 7915 if (!i.tm.opcode_modifier.regmem
40fb9820 7916 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7917 {
7918 i.rm.reg = i.op[dest].regs->reg_num;
7919 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7920 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7921 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7922 i.has_regmmx = TRUE;
3528c362
JB
7923 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7924 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7925 {
7926 if (i.types[dest].bitfield.zmmword
7927 || i.types[source].bitfield.zmmword)
7928 i.has_regzmm = TRUE;
7929 else if (i.types[dest].bitfield.ymmword
7930 || i.types[source].bitfield.ymmword)
7931 i.has_regymm = TRUE;
7932 else
7933 i.has_regxmm = TRUE;
7934 }
a5aeccd9
JB
7935 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
7936 set_rex_vrex (i.op[source].regs, REX_B, FALSE);
29b0f896
AM
7937 }
7938 else
7939 {
7940 i.rm.reg = i.op[source].regs->reg_num;
7941 i.rm.regmem = i.op[dest].regs->reg_num;
a5aeccd9
JB
7942 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
7943 set_rex_vrex (i.op[source].regs, REX_R, FALSE);
29b0f896 7944 }
e0c7f900 7945 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7946 {
4a5c67ed 7947 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7948 abort ();
e0c7f900 7949 i.rex &= ~REX_R;
c4a530c5
JB
7950 add_prefix (LOCK_PREFIX_OPCODE);
7951 }
29b0f896
AM
7952 }
7953 else
7954 { /* If it's not 2 reg operands... */
c0f3af97
L
7955 unsigned int mem;
7956
29b0f896
AM
7957 if (i.mem_operands)
7958 {
7959 unsigned int fake_zero_displacement = 0;
99018f42 7960 unsigned int op;
4eed87de 7961
7ab9ffdd 7962 for (op = 0; op < i.operands; op++)
8dc0818e 7963 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7964 break;
7ab9ffdd 7965 gas_assert (op < i.operands);
29b0f896 7966
63112cd6 7967 if (i.tm.opcode_modifier.sib)
6c30d220 7968 {
e968fc9b 7969 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7970 abort ();
7971
7972 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7973 if (!i.base_reg)
7974 {
7975 i.sib.base = NO_BASE_REGISTER;
7976 i.sib.scale = i.log2_scale_factor;
7977 i.types[op].bitfield.disp8 = 0;
7978 i.types[op].bitfield.disp16 = 0;
7979 i.types[op].bitfield.disp64 = 0;
43083a50 7980 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7981 {
7982 /* Must be 32 bit */
7983 i.types[op].bitfield.disp32 = 1;
7984 i.types[op].bitfield.disp32s = 0;
7985 }
7986 else
7987 {
7988 i.types[op].bitfield.disp32 = 0;
7989 i.types[op].bitfield.disp32s = 1;
7990 }
7991 }
7992 i.sib.index = i.index_reg->reg_num;
a5aeccd9 7993 set_rex_vrex (i.index_reg, REX_X, FALSE);
6c30d220
L
7994 }
7995
29b0f896
AM
7996 default_seg = &ds;
7997
7998 if (i.base_reg == 0)
7999 {
8000 i.rm.mode = 0;
8001 if (!i.disp_operands)
9bb129e8 8002 fake_zero_displacement = 1;
29b0f896
AM
8003 if (i.index_reg == 0)
8004 {
73053c1f
JB
8005 i386_operand_type newdisp;
8006
63112cd6 8007 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896 8008 /* Operand is just <disp> */
20f0a1fc 8009 if (flag_code == CODE_64BIT)
29b0f896
AM
8010 {
8011 /* 64bit mode overwrites the 32bit absolute
8012 addressing by RIP relative addressing and
8013 absolute addressing is encoded by one of the
8014 redundant SIB forms. */
8015 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8016 i.sib.base = NO_BASE_REGISTER;
8017 i.sib.index = NO_INDEX_REGISTER;
73053c1f 8018 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 8019 }
fc225355
L
8020 else if ((flag_code == CODE_16BIT)
8021 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
8022 {
8023 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 8024 newdisp = disp16;
20f0a1fc
NC
8025 }
8026 else
8027 {
8028 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 8029 newdisp = disp32;
29b0f896 8030 }
73053c1f
JB
8031 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8032 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 8033 }
63112cd6 8034 else if (!i.tm.opcode_modifier.sib)
29b0f896 8035 {
6c30d220 8036 /* !i.base_reg && i.index_reg */
e968fc9b 8037 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
8038 i.sib.index = NO_INDEX_REGISTER;
8039 else
8040 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
8041 i.sib.base = NO_BASE_REGISTER;
8042 i.sib.scale = i.log2_scale_factor;
8043 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
8044 i.types[op].bitfield.disp8 = 0;
8045 i.types[op].bitfield.disp16 = 0;
8046 i.types[op].bitfield.disp64 = 0;
43083a50 8047 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
8048 {
8049 /* Must be 32 bit */
8050 i.types[op].bitfield.disp32 = 1;
8051 i.types[op].bitfield.disp32s = 0;
8052 }
29b0f896 8053 else
40fb9820
L
8054 {
8055 i.types[op].bitfield.disp32 = 0;
8056 i.types[op].bitfield.disp32s = 1;
8057 }
29b0f896 8058 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 8059 i.rex |= REX_X;
29b0f896
AM
8060 }
8061 }
8062 /* RIP addressing for 64bit mode. */
e968fc9b 8063 else if (i.base_reg->reg_num == RegIP)
29b0f896 8064 {
63112cd6 8065 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896 8066 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
8067 i.types[op].bitfield.disp8 = 0;
8068 i.types[op].bitfield.disp16 = 0;
8069 i.types[op].bitfield.disp32 = 0;
8070 i.types[op].bitfield.disp32s = 1;
8071 i.types[op].bitfield.disp64 = 0;
71903a11 8072 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
8073 if (! i.disp_operands)
8074 fake_zero_displacement = 1;
29b0f896 8075 }
dc821c5f 8076 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 8077 {
63112cd6 8078 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896
AM
8079 switch (i.base_reg->reg_num)
8080 {
8081 case 3: /* (%bx) */
8082 if (i.index_reg == 0)
8083 i.rm.regmem = 7;
8084 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8085 i.rm.regmem = i.index_reg->reg_num - 6;
8086 break;
8087 case 5: /* (%bp) */
8088 default_seg = &ss;
8089 if (i.index_reg == 0)
8090 {
8091 i.rm.regmem = 6;
40fb9820 8092 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
8093 {
8094 /* fake (%bp) into 0(%bp) */
b5014f7a 8095 i.types[op].bitfield.disp8 = 1;
252b5132 8096 fake_zero_displacement = 1;
29b0f896
AM
8097 }
8098 }
8099 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8100 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8101 break;
8102 default: /* (%si) -> 4 or (%di) -> 5 */
8103 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8104 }
8105 i.rm.mode = mode_from_disp_size (i.types[op]);
8106 }
8107 else /* i.base_reg and 32/64 bit mode */
8108 {
8109 if (flag_code == CODE_64BIT
40fb9820
L
8110 && operand_type_check (i.types[op], disp))
8111 {
73053c1f
JB
8112 i.types[op].bitfield.disp16 = 0;
8113 i.types[op].bitfield.disp64 = 0;
40fb9820 8114 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
8115 {
8116 i.types[op].bitfield.disp32 = 0;
8117 i.types[op].bitfield.disp32s = 1;
8118 }
40fb9820 8119 else
73053c1f
JB
8120 {
8121 i.types[op].bitfield.disp32 = 1;
8122 i.types[op].bitfield.disp32s = 0;
8123 }
40fb9820 8124 }
20f0a1fc 8125
63112cd6 8126 if (!i.tm.opcode_modifier.sib)
6c30d220 8127 i.rm.regmem = i.base_reg->reg_num;
29b0f896 8128 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 8129 i.rex |= REX_B;
29b0f896
AM
8130 i.sib.base = i.base_reg->reg_num;
8131 /* x86-64 ignores REX prefix bit here to avoid decoder
8132 complications. */
848930b2
JB
8133 if (!(i.base_reg->reg_flags & RegRex)
8134 && (i.base_reg->reg_num == EBP_REG_NUM
8135 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 8136 default_seg = &ss;
848930b2 8137 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 8138 {
848930b2 8139 fake_zero_displacement = 1;
b5014f7a 8140 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
8141 }
8142 i.sib.scale = i.log2_scale_factor;
8143 if (i.index_reg == 0)
8144 {
63112cd6 8145 gas_assert (!i.tm.opcode_modifier.sib);
29b0f896
AM
8146 /* <disp>(%esp) becomes two byte modrm with no index
8147 register. We've already stored the code for esp
8148 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8149 Any base register besides %esp will not use the
8150 extra modrm byte. */
8151 i.sib.index = NO_INDEX_REGISTER;
29b0f896 8152 }
63112cd6 8153 else if (!i.tm.opcode_modifier.sib)
29b0f896 8154 {
e968fc9b 8155 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
8156 i.sib.index = NO_INDEX_REGISTER;
8157 else
8158 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
8159 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8160 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 8161 i.rex |= REX_X;
29b0f896 8162 }
67a4f2b7
AO
8163
8164 if (i.disp_operands
8165 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8166 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8167 i.rm.mode = 0;
8168 else
a501d77e
L
8169 {
8170 if (!fake_zero_displacement
8171 && !i.disp_operands
8172 && i.disp_encoding)
8173 {
8174 fake_zero_displacement = 1;
8175 if (i.disp_encoding == disp_encoding_8bit)
8176 i.types[op].bitfield.disp8 = 1;
8177 else
8178 i.types[op].bitfield.disp32 = 1;
8179 }
8180 i.rm.mode = mode_from_disp_size (i.types[op]);
8181 }
29b0f896 8182 }
252b5132 8183
29b0f896
AM
8184 if (fake_zero_displacement)
8185 {
8186 /* Fakes a zero displacement assuming that i.types[op]
8187 holds the correct displacement size. */
8188 expressionS *exp;
8189
9c2799c2 8190 gas_assert (i.op[op].disps == 0);
29b0f896
AM
8191 exp = &disp_expressions[i.disp_operands++];
8192 i.op[op].disps = exp;
8193 exp->X_op = O_constant;
8194 exp->X_add_number = 0;
8195 exp->X_add_symbol = (symbolS *) 0;
8196 exp->X_op_symbol = (symbolS *) 0;
8197 }
c0f3af97
L
8198
8199 mem = op;
29b0f896 8200 }
c0f3af97
L
8201 else
8202 mem = ~0;
252b5132 8203
8c43a48b 8204 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
8205 {
8206 if (operand_type_check (i.types[0], imm))
8207 i.vex.register_specifier = NULL;
8208 else
8209 {
8210 /* VEX.vvvv encodes one of the sources when the first
8211 operand is not an immediate. */
1ef99a7b 8212 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
8213 i.vex.register_specifier = i.op[0].regs;
8214 else
8215 i.vex.register_specifier = i.op[1].regs;
8216 }
8217
8218 /* Destination is a XMM register encoded in the ModRM.reg
8219 and VEX.R bit. */
8220 i.rm.reg = i.op[2].regs->reg_num;
8221 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8222 i.rex |= REX_R;
8223
8224 /* ModRM.rm and VEX.B encodes the other source. */
8225 if (!i.mem_operands)
8226 {
8227 i.rm.mode = 3;
8228
1ef99a7b 8229 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
8230 i.rm.regmem = i.op[1].regs->reg_num;
8231 else
8232 i.rm.regmem = i.op[0].regs->reg_num;
8233
8234 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8235 i.rex |= REX_B;
8236 }
8237 }
2426c15f 8238 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
8239 {
8240 i.vex.register_specifier = i.op[2].regs;
8241 if (!i.mem_operands)
8242 {
8243 i.rm.mode = 3;
8244 i.rm.regmem = i.op[1].regs->reg_num;
8245 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8246 i.rex |= REX_B;
8247 }
8248 }
29b0f896
AM
8249 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8250 (if any) based on i.tm.extension_opcode. Again, we must be
8251 careful to make sure that segment/control/debug/test/MMX
8252 registers are coded into the i.rm.reg field. */
f88c9eb0 8253 else if (i.reg_operands)
29b0f896 8254 {
99018f42 8255 unsigned int op;
7ab9ffdd
L
8256 unsigned int vex_reg = ~0;
8257
8258 for (op = 0; op < i.operands; op++)
b4a3a7b4 8259 {
bab6aec1 8260 if (i.types[op].bitfield.class == Reg
f74a6307
JB
8261 || i.types[op].bitfield.class == RegBND
8262 || i.types[op].bitfield.class == RegMask
00cee14f 8263 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
8264 || i.types[op].bitfield.class == RegCR
8265 || i.types[op].bitfield.class == RegDR
8266 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 8267 break;
3528c362 8268 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
8269 {
8270 if (i.types[op].bitfield.zmmword)
8271 i.has_regzmm = TRUE;
8272 else if (i.types[op].bitfield.ymmword)
8273 i.has_regymm = TRUE;
8274 else
8275 i.has_regxmm = TRUE;
8276 break;
8277 }
3528c362 8278 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
8279 {
8280 i.has_regmmx = TRUE;
8281 break;
8282 }
8283 }
c0209578 8284
7ab9ffdd
L
8285 if (vex_3_sources)
8286 op = dest;
2426c15f 8287 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
8288 {
8289 /* For instructions with VexNDS, the register-only
8290 source operand is encoded in VEX prefix. */
8291 gas_assert (mem != (unsigned int) ~0);
c0f3af97 8292
7ab9ffdd 8293 if (op > mem)
c0f3af97 8294 {
7ab9ffdd
L
8295 vex_reg = op++;
8296 gas_assert (op < i.operands);
c0f3af97
L
8297 }
8298 else
c0f3af97 8299 {
f12dc422
L
8300 /* Check register-only source operand when two source
8301 operands are swapped. */
8302 if (!i.tm.operand_types[op].bitfield.baseindex
8303 && i.tm.operand_types[op + 1].bitfield.baseindex)
8304 {
8305 vex_reg = op;
8306 op += 2;
8307 gas_assert (mem == (vex_reg + 1)
8308 && op < i.operands);
8309 }
8310 else
8311 {
8312 vex_reg = op + 1;
8313 gas_assert (vex_reg < i.operands);
8314 }
c0f3af97 8315 }
7ab9ffdd 8316 }
2426c15f 8317 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 8318 {
f12dc422 8319 /* For instructions with VexNDD, the register destination
7ab9ffdd 8320 is encoded in VEX prefix. */
f12dc422
L
8321 if (i.mem_operands == 0)
8322 {
8323 /* There is no memory operand. */
8324 gas_assert ((op + 2) == i.operands);
8325 vex_reg = op + 1;
8326 }
8327 else
8d63c93e 8328 {
ed438a93
JB
8329 /* There are only 2 non-immediate operands. */
8330 gas_assert (op < i.imm_operands + 2
8331 && i.operands == i.imm_operands + 2);
8332 vex_reg = i.imm_operands + 1;
f12dc422 8333 }
7ab9ffdd
L
8334 }
8335 else
8336 gas_assert (op < i.operands);
99018f42 8337
7ab9ffdd
L
8338 if (vex_reg != (unsigned int) ~0)
8339 {
f12dc422 8340 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 8341
bab6aec1 8342 if ((type->bitfield.class != Reg
dc821c5f 8343 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 8344 && type->bitfield.class != RegSIMD
43234a1e 8345 && !operand_type_equal (type, &regmask))
7ab9ffdd 8346 abort ();
f88c9eb0 8347
7ab9ffdd
L
8348 i.vex.register_specifier = i.op[vex_reg].regs;
8349 }
8350
1b9f0c97
L
8351 /* Don't set OP operand twice. */
8352 if (vex_reg != op)
7ab9ffdd 8353 {
1b9f0c97
L
8354 /* If there is an extension opcode to put here, the
8355 register number must be put into the regmem field. */
8356 if (i.tm.extension_opcode != None)
8357 {
8358 i.rm.regmem = i.op[op].regs->reg_num;
a5aeccd9
JB
8359 set_rex_vrex (i.op[op].regs, REX_B,
8360 i.tm.opcode_modifier.sse2avx);
1b9f0c97
L
8361 }
8362 else
8363 {
8364 i.rm.reg = i.op[op].regs->reg_num;
a5aeccd9
JB
8365 set_rex_vrex (i.op[op].regs, REX_R,
8366 i.tm.opcode_modifier.sse2avx);
1b9f0c97 8367 }
7ab9ffdd 8368 }
252b5132 8369
29b0f896
AM
8370 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8371 must set it to 3 to indicate this is a register operand
8372 in the regmem field. */
8373 if (!i.mem_operands)
8374 i.rm.mode = 3;
8375 }
252b5132 8376
29b0f896 8377 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 8378 if (i.tm.extension_opcode != None)
29b0f896
AM
8379 i.rm.reg = i.tm.extension_opcode;
8380 }
8381 return default_seg;
8382}
252b5132 8383
376cd056
JB
8384static unsigned int
8385flip_code16 (unsigned int code16)
8386{
8387 gas_assert (i.tm.operands == 1);
8388
8389 return !(i.prefix[REX_PREFIX] & REX_W)
8390 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8391 || i.tm.operand_types[0].bitfield.disp32s
8392 : i.tm.operand_types[0].bitfield.disp16)
8393 ? CODE16 : 0;
8394}
8395
29b0f896 8396static void
e3bb37b5 8397output_branch (void)
29b0f896
AM
8398{
8399 char *p;
f8a5c266 8400 int size;
29b0f896
AM
8401 int code16;
8402 int prefix;
8403 relax_substateT subtype;
8404 symbolS *sym;
8405 offsetT off;
8406
f8a5c266 8407 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 8408 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
8409
8410 prefix = 0;
8411 if (i.prefix[DATA_PREFIX] != 0)
252b5132 8412 {
29b0f896
AM
8413 prefix = 1;
8414 i.prefixes -= 1;
376cd056 8415 code16 ^= flip_code16(code16);
252b5132 8416 }
29b0f896
AM
8417 /* Pentium4 branch hints. */
8418 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8419 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 8420 {
29b0f896
AM
8421 prefix++;
8422 i.prefixes--;
8423 }
8424 if (i.prefix[REX_PREFIX] != 0)
8425 {
8426 prefix++;
8427 i.prefixes--;
2f66722d
AM
8428 }
8429
7e8b059b
L
8430 /* BND prefixed jump. */
8431 if (i.prefix[BND_PREFIX] != 0)
8432 {
6cb0a70e
JB
8433 prefix++;
8434 i.prefixes--;
7e8b059b
L
8435 }
8436
f2810fe0
JB
8437 if (i.prefixes != 0)
8438 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
8439
8440 /* It's always a symbol; End frag & setup for relax.
8441 Make sure there is enough room in this frag for the largest
8442 instruction we may generate in md_convert_frag. This is 2
8443 bytes for the opcode and room for the prefix and largest
8444 displacement. */
8445 frag_grow (prefix + 2 + 4);
8446 /* Prefix and 1 opcode byte go in fr_fix. */
8447 p = frag_more (prefix + 1);
8448 if (i.prefix[DATA_PREFIX] != 0)
8449 *p++ = DATA_PREFIX_OPCODE;
8450 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8451 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8452 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
8453 if (i.prefix[BND_PREFIX] != 0)
8454 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
8455 if (i.prefix[REX_PREFIX] != 0)
8456 *p++ = i.prefix[REX_PREFIX];
8457 *p = i.tm.base_opcode;
8458
8459 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 8460 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 8461 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 8462 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 8463 else
f8a5c266 8464 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 8465 subtype |= code16;
3e73aa7c 8466
29b0f896
AM
8467 sym = i.op[0].disps->X_add_symbol;
8468 off = i.op[0].disps->X_add_number;
3e73aa7c 8469
29b0f896
AM
8470 if (i.op[0].disps->X_op != O_constant
8471 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 8472 {
29b0f896
AM
8473 /* Handle complex expressions. */
8474 sym = make_expr_symbol (i.op[0].disps);
8475 off = 0;
8476 }
3e73aa7c 8477
29b0f896
AM
8478 /* 1 possible extra opcode + 4 byte displacement go in var part.
8479 Pass reloc in fr_var. */
d258b828 8480 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 8481}
3e73aa7c 8482
bd7ab16b
L
8483#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8484/* Return TRUE iff PLT32 relocation should be used for branching to
8485 symbol S. */
8486
8487static bfd_boolean
8488need_plt32_p (symbolS *s)
8489{
8490 /* PLT32 relocation is ELF only. */
8491 if (!IS_ELF)
8492 return FALSE;
8493
a5def729
RO
8494#ifdef TE_SOLARIS
8495 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8496 krtld support it. */
8497 return FALSE;
8498#endif
8499
bd7ab16b
L
8500 /* Since there is no need to prepare for PLT branch on x86-64, we
8501 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8502 be used as a marker for 32-bit PC-relative branches. */
8503 if (!object_64bit)
8504 return FALSE;
8505
8506 /* Weak or undefined symbol need PLT32 relocation. */
8507 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8508 return TRUE;
8509
8510 /* Non-global symbol doesn't need PLT32 relocation. */
8511 if (! S_IS_EXTERNAL (s))
8512 return FALSE;
8513
8514 /* Other global symbols need PLT32 relocation. NB: Symbol with
8515 non-default visibilities are treated as normal global symbol
8516 so that PLT32 relocation can be used as a marker for 32-bit
8517 PC-relative branches. It is useful for linker relaxation. */
8518 return TRUE;
8519}
8520#endif
8521
29b0f896 8522static void
e3bb37b5 8523output_jump (void)
29b0f896
AM
8524{
8525 char *p;
8526 int size;
3e02c1cc 8527 fixS *fixP;
bd7ab16b 8528 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 8529
0cfa3eb3 8530 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
8531 {
8532 /* This is a loop or jecxz type instruction. */
8533 size = 1;
8534 if (i.prefix[ADDR_PREFIX] != 0)
8535 {
8536 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8537 i.prefixes -= 1;
8538 }
8539 /* Pentium4 branch hints. */
8540 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8541 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8542 {
8543 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8544 i.prefixes--;
3e73aa7c
JH
8545 }
8546 }
29b0f896
AM
8547 else
8548 {
8549 int code16;
3e73aa7c 8550
29b0f896
AM
8551 code16 = 0;
8552 if (flag_code == CODE_16BIT)
8553 code16 = CODE16;
3e73aa7c 8554
29b0f896
AM
8555 if (i.prefix[DATA_PREFIX] != 0)
8556 {
8557 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8558 i.prefixes -= 1;
376cd056 8559 code16 ^= flip_code16(code16);
29b0f896 8560 }
252b5132 8561
29b0f896
AM
8562 size = 4;
8563 if (code16)
8564 size = 2;
8565 }
9fcc94b6 8566
6cb0a70e
JB
8567 /* BND prefixed jump. */
8568 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8569 {
6cb0a70e 8570 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
29b0f896
AM
8571 i.prefixes -= 1;
8572 }
252b5132 8573
6cb0a70e 8574 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8575 {
6cb0a70e 8576 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7e8b059b
L
8577 i.prefixes -= 1;
8578 }
8579
f2810fe0
JB
8580 if (i.prefixes != 0)
8581 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8582
42164a71
L
8583 p = frag_more (i.tm.opcode_length + size);
8584 switch (i.tm.opcode_length)
8585 {
8586 case 2:
8587 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8588 /* Fall through. */
42164a71
L
8589 case 1:
8590 *p++ = i.tm.base_opcode;
8591 break;
8592 default:
8593 abort ();
8594 }
e0890092 8595
bd7ab16b
L
8596#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8597 if (size == 4
8598 && jump_reloc == NO_RELOC
8599 && need_plt32_p (i.op[0].disps->X_add_symbol))
8600 jump_reloc = BFD_RELOC_X86_64_PLT32;
8601#endif
8602
8603 jump_reloc = reloc (size, 1, 1, jump_reloc);
8604
3e02c1cc 8605 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8606 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8607
8608 /* All jumps handled here are signed, but don't use a signed limit
8609 check for 32 and 16 bit jumps as we want to allow wrap around at
8610 4G and 64k respectively. */
8611 if (size == 1)
8612 fixP->fx_signed = 1;
29b0f896 8613}
e0890092 8614
29b0f896 8615static void
e3bb37b5 8616output_interseg_jump (void)
29b0f896
AM
8617{
8618 char *p;
8619 int size;
8620 int prefix;
8621 int code16;
252b5132 8622
29b0f896
AM
8623 code16 = 0;
8624 if (flag_code == CODE_16BIT)
8625 code16 = CODE16;
a217f122 8626
29b0f896
AM
8627 prefix = 0;
8628 if (i.prefix[DATA_PREFIX] != 0)
8629 {
8630 prefix = 1;
8631 i.prefixes -= 1;
8632 code16 ^= CODE16;
8633 }
6cb0a70e
JB
8634
8635 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8636
29b0f896
AM
8637 size = 4;
8638 if (code16)
8639 size = 2;
252b5132 8640
f2810fe0
JB
8641 if (i.prefixes != 0)
8642 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8643
29b0f896
AM
8644 /* 1 opcode; 2 segment; offset */
8645 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8646
29b0f896
AM
8647 if (i.prefix[DATA_PREFIX] != 0)
8648 *p++ = DATA_PREFIX_OPCODE;
252b5132 8649
29b0f896
AM
8650 if (i.prefix[REX_PREFIX] != 0)
8651 *p++ = i.prefix[REX_PREFIX];
252b5132 8652
29b0f896
AM
8653 *p++ = i.tm.base_opcode;
8654 if (i.op[1].imms->X_op == O_constant)
8655 {
8656 offsetT n = i.op[1].imms->X_add_number;
252b5132 8657
29b0f896
AM
8658 if (size == 2
8659 && !fits_in_unsigned_word (n)
8660 && !fits_in_signed_word (n))
8661 {
8662 as_bad (_("16-bit jump out of range"));
8663 return;
8664 }
8665 md_number_to_chars (p, n, size);
8666 }
8667 else
8668 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8669 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8670 if (i.op[0].imms->X_op != O_constant)
8671 as_bad (_("can't handle non absolute segment in `%s'"),
8672 i.tm.name);
8673 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8674}
a217f122 8675
b4a3a7b4
L
8676#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8677void
8678x86_cleanup (void)
8679{
8680 char *p;
8681 asection *seg = now_seg;
8682 subsegT subseg = now_subseg;
8683 asection *sec;
8684 unsigned int alignment, align_size_1;
8685 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8686 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8687 unsigned int padding;
8688
8689 if (!IS_ELF || !x86_used_note)
8690 return;
8691
b4a3a7b4
L
8692 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8693
8694 /* The .note.gnu.property section layout:
8695
8696 Field Length Contents
8697 ---- ---- ----
8698 n_namsz 4 4
8699 n_descsz 4 The note descriptor size
8700 n_type 4 NT_GNU_PROPERTY_TYPE_0
8701 n_name 4 "GNU"
8702 n_desc n_descsz The program property array
8703 .... .... ....
8704 */
8705
8706 /* Create the .note.gnu.property section. */
8707 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8708 bfd_set_section_flags (sec,
b4a3a7b4
L
8709 (SEC_ALLOC
8710 | SEC_LOAD
8711 | SEC_DATA
8712 | SEC_HAS_CONTENTS
8713 | SEC_READONLY));
8714
8715 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8716 {
8717 align_size_1 = 7;
8718 alignment = 3;
8719 }
8720 else
8721 {
8722 align_size_1 = 3;
8723 alignment = 2;
8724 }
8725
fd361982 8726 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8727 elf_section_type (sec) = SHT_NOTE;
8728
8729 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8730 + 4-byte data */
8731 isa_1_descsz_raw = 4 + 4 + 4;
8732 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8733 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8734
8735 feature_2_descsz_raw = isa_1_descsz;
8736 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8737 + 4-byte data */
8738 feature_2_descsz_raw += 4 + 4 + 4;
8739 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8740 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8741 & ~align_size_1);
8742
8743 descsz = feature_2_descsz;
8744 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8745 p = frag_more (4 + 4 + 4 + 4 + descsz);
8746
8747 /* Write n_namsz. */
8748 md_number_to_chars (p, (valueT) 4, 4);
8749
8750 /* Write n_descsz. */
8751 md_number_to_chars (p + 4, (valueT) descsz, 4);
8752
8753 /* Write n_type. */
8754 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8755
8756 /* Write n_name. */
8757 memcpy (p + 4 * 3, "GNU", 4);
8758
8759 /* Write 4-byte type. */
8760 md_number_to_chars (p + 4 * 4,
8761 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8762
8763 /* Write 4-byte data size. */
8764 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8765
8766 /* Write 4-byte data. */
8767 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8768
8769 /* Zero out paddings. */
8770 padding = isa_1_descsz - isa_1_descsz_raw;
8771 if (padding)
8772 memset (p + 4 * 7, 0, padding);
8773
8774 /* Write 4-byte type. */
8775 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8776 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8777
8778 /* Write 4-byte data size. */
8779 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8780
8781 /* Write 4-byte data. */
8782 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8783 (valueT) x86_feature_2_used, 4);
8784
8785 /* Zero out paddings. */
8786 padding = feature_2_descsz - feature_2_descsz_raw;
8787 if (padding)
8788 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8789
8790 /* We probably can't restore the current segment, for there likely
8791 isn't one yet... */
8792 if (seg && subseg)
8793 subseg_set (seg, subseg);
8794}
8795#endif
8796
9c33702b
JB
8797static unsigned int
8798encoding_length (const fragS *start_frag, offsetT start_off,
8799 const char *frag_now_ptr)
8800{
8801 unsigned int len = 0;
8802
8803 if (start_frag != frag_now)
8804 {
8805 const fragS *fr = start_frag;
8806
8807 do {
8808 len += fr->fr_fix;
8809 fr = fr->fr_next;
8810 } while (fr && fr != frag_now);
8811 }
8812
8813 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8814}
8815
e379e5f3 8816/* Return 1 for test, and, cmp, add, sub, inc and dec which may
79d72f45
HL
8817 be macro-fused with conditional jumps.
8818 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8819 or is one of the following format:
8820
8821 cmp m, imm
8822 add m, imm
8823 sub m, imm
8824 test m, imm
8825 and m, imm
8826 inc m
8827 dec m
8828
8829 it is unfusible. */
e379e5f3
L
8830
8831static int
79d72f45 8832maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
8833{
8834 /* No RIP address. */
8835 if (i.base_reg && i.base_reg->reg_num == RegIP)
8836 return 0;
8837
8838 /* No VEX/EVEX encoding. */
8839 if (is_any_vex_encoding (&i.tm))
8840 return 0;
8841
79d72f45
HL
8842 /* add, sub without add/sub m, imm. */
8843 if (i.tm.base_opcode <= 5
e379e5f3
L
8844 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8845 || ((i.tm.base_opcode | 3) == 0x83
79d72f45 8846 && (i.tm.extension_opcode == 0x5
e379e5f3 8847 || i.tm.extension_opcode == 0x0)))
79d72f45
HL
8848 {
8849 *mf_cmp_p = mf_cmp_alu_cmp;
8850 return !(i.mem_operands && i.imm_operands);
8851 }
e379e5f3 8852
79d72f45
HL
8853 /* and without and m, imm. */
8854 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8855 || ((i.tm.base_opcode | 3) == 0x83
8856 && i.tm.extension_opcode == 0x4))
8857 {
8858 *mf_cmp_p = mf_cmp_test_and;
8859 return !(i.mem_operands && i.imm_operands);
8860 }
8861
8862 /* test without test m imm. */
e379e5f3
L
8863 if ((i.tm.base_opcode | 1) == 0x85
8864 || (i.tm.base_opcode | 1) == 0xa9
8865 || ((i.tm.base_opcode | 1) == 0xf7
79d72f45
HL
8866 && i.tm.extension_opcode == 0))
8867 {
8868 *mf_cmp_p = mf_cmp_test_and;
8869 return !(i.mem_operands && i.imm_operands);
8870 }
8871
8872 /* cmp without cmp m, imm. */
8873 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
e379e5f3
L
8874 || ((i.tm.base_opcode | 3) == 0x83
8875 && (i.tm.extension_opcode == 0x7)))
79d72f45
HL
8876 {
8877 *mf_cmp_p = mf_cmp_alu_cmp;
8878 return !(i.mem_operands && i.imm_operands);
8879 }
e379e5f3 8880
79d72f45 8881 /* inc, dec without inc/dec m. */
e379e5f3
L
8882 if ((i.tm.cpu_flags.bitfield.cpuno64
8883 && (i.tm.base_opcode | 0xf) == 0x4f)
8884 || ((i.tm.base_opcode | 1) == 0xff
8885 && i.tm.extension_opcode <= 0x1))
79d72f45
HL
8886 {
8887 *mf_cmp_p = mf_cmp_incdec;
8888 return !i.mem_operands;
8889 }
e379e5f3
L
8890
8891 return 0;
8892}
8893
8894/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8895
8896static int
79d72f45 8897add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
8898{
8899 /* NB: Don't work with COND_JUMP86 without i386. */
8900 if (!align_branch_power
8901 || now_seg == absolute_section
8902 || !cpu_arch_flags.bitfield.cpui386
8903 || !(align_branch & align_branch_fused_bit))
8904 return 0;
8905
79d72f45 8906 if (maybe_fused_with_jcc_p (mf_cmp_p))
e379e5f3
L
8907 {
8908 if (last_insn.kind == last_insn_other
8909 || last_insn.seg != now_seg)
8910 return 1;
8911 if (flag_debug)
8912 as_warn_where (last_insn.file, last_insn.line,
8913 _("`%s` skips -malign-branch-boundary on `%s`"),
8914 last_insn.name, i.tm.name);
8915 }
8916
8917 return 0;
8918}
8919
8920/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8921
8922static int
8923add_branch_prefix_frag_p (void)
8924{
8925 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8926 to PadLock instructions since they include prefixes in opcode. */
8927 if (!align_branch_power
8928 || !align_branch_prefix_size
8929 || now_seg == absolute_section
8930 || i.tm.cpu_flags.bitfield.cpupadlock
8931 || !cpu_arch_flags.bitfield.cpui386)
8932 return 0;
8933
8934 /* Don't add prefix if it is a prefix or there is no operand in case
8935 that segment prefix is special. */
8936 if (!i.operands || i.tm.opcode_modifier.isprefix)
8937 return 0;
8938
8939 if (last_insn.kind == last_insn_other
8940 || last_insn.seg != now_seg)
8941 return 1;
8942
8943 if (flag_debug)
8944 as_warn_where (last_insn.file, last_insn.line,
8945 _("`%s` skips -malign-branch-boundary on `%s`"),
8946 last_insn.name, i.tm.name);
8947
8948 return 0;
8949}
8950
8951/* Return 1 if a BRANCH_PADDING frag should be generated. */
8952
8953static int
79d72f45
HL
8954add_branch_padding_frag_p (enum align_branch_kind *branch_p,
8955 enum mf_jcc_kind *mf_jcc_p)
e379e5f3
L
8956{
8957 int add_padding;
8958
8959 /* NB: Don't work with COND_JUMP86 without i386. */
8960 if (!align_branch_power
8961 || now_seg == absolute_section
8962 || !cpu_arch_flags.bitfield.cpui386)
8963 return 0;
8964
8965 add_padding = 0;
8966
8967 /* Check for jcc and direct jmp. */
8968 if (i.tm.opcode_modifier.jump == JUMP)
8969 {
8970 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8971 {
8972 *branch_p = align_branch_jmp;
8973 add_padding = align_branch & align_branch_jmp_bit;
8974 }
8975 else
8976 {
79d72f45
HL
8977 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
8978 igore the lowest bit. */
8979 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
e379e5f3
L
8980 *branch_p = align_branch_jcc;
8981 if ((align_branch & align_branch_jcc_bit))
8982 add_padding = 1;
8983 }
8984 }
8985 else if (is_any_vex_encoding (&i.tm))
8986 return 0;
8987 else if ((i.tm.base_opcode | 1) == 0xc3)
8988 {
8989 /* Near ret. */
8990 *branch_p = align_branch_ret;
8991 if ((align_branch & align_branch_ret_bit))
8992 add_padding = 1;
8993 }
8994 else
8995 {
8996 /* Check for indirect jmp, direct and indirect calls. */
8997 if (i.tm.base_opcode == 0xe8)
8998 {
8999 /* Direct call. */
9000 *branch_p = align_branch_call;
9001 if ((align_branch & align_branch_call_bit))
9002 add_padding = 1;
9003 }
9004 else if (i.tm.base_opcode == 0xff
9005 && (i.tm.extension_opcode == 2
9006 || i.tm.extension_opcode == 4))
9007 {
9008 /* Indirect call and jmp. */
9009 *branch_p = align_branch_indirect;
9010 if ((align_branch & align_branch_indirect_bit))
9011 add_padding = 1;
9012 }
9013
9014 if (add_padding
9015 && i.disp_operands
9016 && tls_get_addr
9017 && (i.op[0].disps->X_op == O_symbol
9018 || (i.op[0].disps->X_op == O_subtract
9019 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9020 {
9021 symbolS *s = i.op[0].disps->X_add_symbol;
9022 /* No padding to call to global or undefined tls_get_addr. */
9023 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9024 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9025 return 0;
9026 }
9027 }
9028
9029 if (add_padding
9030 && last_insn.kind != last_insn_other
9031 && last_insn.seg == now_seg)
9032 {
9033 if (flag_debug)
9034 as_warn_where (last_insn.file, last_insn.line,
9035 _("`%s` skips -malign-branch-boundary on `%s`"),
9036 last_insn.name, i.tm.name);
9037 return 0;
9038 }
9039
9040 return add_padding;
9041}
9042
29b0f896 9043static void
e3bb37b5 9044output_insn (void)
29b0f896 9045{
2bbd9c25
JJ
9046 fragS *insn_start_frag;
9047 offsetT insn_start_off;
e379e5f3
L
9048 fragS *fragP = NULL;
9049 enum align_branch_kind branch = align_branch_none;
79d72f45
HL
9050 /* The initializer is arbitrary just to avoid uninitialized error.
9051 it's actually either assigned in add_branch_padding_frag_p
9052 or never be used. */
9053 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
2bbd9c25 9054
b4a3a7b4
L
9055#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9056 if (IS_ELF && x86_used_note)
9057 {
9058 if (i.tm.cpu_flags.bitfield.cpucmov)
9059 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
9060 if (i.tm.cpu_flags.bitfield.cpusse)
9061 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
9062 if (i.tm.cpu_flags.bitfield.cpusse2)
9063 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
9064 if (i.tm.cpu_flags.bitfield.cpusse3)
9065 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
9066 if (i.tm.cpu_flags.bitfield.cpussse3)
9067 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
9068 if (i.tm.cpu_flags.bitfield.cpusse4_1)
9069 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
9070 if (i.tm.cpu_flags.bitfield.cpusse4_2)
9071 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
9072 if (i.tm.cpu_flags.bitfield.cpuavx)
9073 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
9074 if (i.tm.cpu_flags.bitfield.cpuavx2)
9075 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
9076 if (i.tm.cpu_flags.bitfield.cpufma)
9077 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
9078 if (i.tm.cpu_flags.bitfield.cpuavx512f)
9079 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
9080 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
9081 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
9082 if (i.tm.cpu_flags.bitfield.cpuavx512er)
9083 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
9084 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
9085 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
9086 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
9087 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
9088 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
9089 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
9090 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
9091 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
9092 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
9093 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
9094 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
9095 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
9096 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
9097 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
9098 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
9099 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
9100 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
9101 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
9102 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
9103 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
9104 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
9105 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
9106 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
9107 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
9108
9109 if (i.tm.cpu_flags.bitfield.cpu8087
9110 || i.tm.cpu_flags.bitfield.cpu287
9111 || i.tm.cpu_flags.bitfield.cpu387
9112 || i.tm.cpu_flags.bitfield.cpu687
9113 || i.tm.cpu_flags.bitfield.cpufisttp)
9114 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
9115 if (i.has_regmmx
9116 || i.tm.base_opcode == 0xf77 /* emms */
a7e12755
L
9117 || i.tm.base_opcode == 0xf0e /* femms */
9118 || i.tm.base_opcode == 0xf2a /* cvtpi2ps */
9119 || i.tm.base_opcode == 0x660f2a /* cvtpi2pd */)
b4a3a7b4
L
9120 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
9121 if (i.has_regxmm)
9122 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
9123 if (i.has_regymm)
9124 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
9125 if (i.has_regzmm)
9126 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
9127 if (i.tm.cpu_flags.bitfield.cpufxsr)
9128 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9129 if (i.tm.cpu_flags.bitfield.cpuxsave)
9130 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9131 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9132 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9133 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9134 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9135 }
9136#endif
9137
29b0f896
AM
9138 /* Tie dwarf2 debug info to the address at the start of the insn.
9139 We can't do this after the insn has been output as the current
9140 frag may have been closed off. eg. by frag_var. */
9141 dwarf2_emit_insn (0);
9142
2bbd9c25
JJ
9143 insn_start_frag = frag_now;
9144 insn_start_off = frag_now_fix ();
9145
79d72f45 9146 if (add_branch_padding_frag_p (&branch, &mf_jcc))
e379e5f3
L
9147 {
9148 char *p;
9149 /* Branch can be 8 bytes. Leave some room for prefixes. */
9150 unsigned int max_branch_padding_size = 14;
9151
9152 /* Align section to boundary. */
9153 record_alignment (now_seg, align_branch_power);
9154
9155 /* Make room for padding. */
9156 frag_grow (max_branch_padding_size);
9157
9158 /* Start of the padding. */
9159 p = frag_more (0);
9160
9161 fragP = frag_now;
9162
9163 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9164 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9165 NULL, 0, p);
9166
79d72f45 9167 fragP->tc_frag_data.mf_type = mf_jcc;
e379e5f3
L
9168 fragP->tc_frag_data.branch_type = branch;
9169 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9170 }
9171
29b0f896 9172 /* Output jumps. */
0cfa3eb3 9173 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 9174 output_branch ();
0cfa3eb3
JB
9175 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9176 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 9177 output_jump ();
0cfa3eb3 9178 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
9179 output_interseg_jump ();
9180 else
9181 {
9182 /* Output normal instructions here. */
9183 char *p;
9184 unsigned char *q;
47465058 9185 unsigned int j;
331d2d0d 9186 unsigned int prefix;
79d72f45 9187 enum mf_cmp_kind mf_cmp;
4dffcebc 9188
e4e00185 9189 if (avoid_fence
c3949f43
JB
9190 && (i.tm.base_opcode == 0xfaee8
9191 || i.tm.base_opcode == 0xfaef0
9192 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
9193 {
9194 /* Encode lfence, mfence, and sfence as
9195 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9196 offsetT val = 0x240483f0ULL;
9197 p = frag_more (5);
9198 md_number_to_chars (p, val, 5);
9199 return;
9200 }
9201
d022bddd
IT
9202 /* Some processors fail on LOCK prefix. This options makes
9203 assembler ignore LOCK prefix and serves as a workaround. */
9204 if (omit_lock_prefix)
9205 {
9206 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9207 return;
9208 i.prefix[LOCK_PREFIX] = 0;
9209 }
9210
e379e5f3
L
9211 if (branch)
9212 /* Skip if this is a branch. */
9213 ;
79d72f45 9214 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
e379e5f3
L
9215 {
9216 /* Make room for padding. */
9217 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9218 p = frag_more (0);
9219
9220 fragP = frag_now;
9221
9222 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9223 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9224 NULL, 0, p);
9225
79d72f45 9226 fragP->tc_frag_data.mf_type = mf_cmp;
e379e5f3
L
9227 fragP->tc_frag_data.branch_type = align_branch_fused;
9228 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9229 }
9230 else if (add_branch_prefix_frag_p ())
9231 {
9232 unsigned int max_prefix_size = align_branch_prefix_size;
9233
9234 /* Make room for padding. */
9235 frag_grow (max_prefix_size);
9236 p = frag_more (0);
9237
9238 fragP = frag_now;
9239
9240 frag_var (rs_machine_dependent, max_prefix_size, 0,
9241 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9242 NULL, 0, p);
9243
9244 fragP->tc_frag_data.max_bytes = max_prefix_size;
9245 }
9246
43234a1e
L
9247 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9248 don't need the explicit prefix. */
9249 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 9250 {
c0f3af97 9251 switch (i.tm.opcode_length)
bc4bd9ab 9252 {
c0f3af97
L
9253 case 3:
9254 if (i.tm.base_opcode & 0xff000000)
4dffcebc 9255 {
c0f3af97 9256 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
9257 if (!i.tm.cpu_flags.bitfield.cpupadlock
9258 || prefix != REPE_PREFIX_OPCODE
9259 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
9260 add_prefix (prefix);
c0f3af97
L
9261 }
9262 break;
9263 case 2:
9264 if ((i.tm.base_opcode & 0xff0000) != 0)
9265 {
9266 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 9267 add_prefix (prefix);
4dffcebc 9268 }
c0f3af97
L
9269 break;
9270 case 1:
9271 break;
390c91cf
L
9272 case 0:
9273 /* Check for pseudo prefixes. */
9274 as_bad_where (insn_start_frag->fr_file,
9275 insn_start_frag->fr_line,
9276 _("pseudo prefix without instruction"));
9277 return;
c0f3af97
L
9278 default:
9279 abort ();
bc4bd9ab 9280 }
c0f3af97 9281
6d19a37a 9282#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
9283 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9284 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
9285 perform IE->LE optimization. A dummy REX_OPCODE prefix
9286 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9287 relocation for GDesc -> IE/LE optimization. */
cf61b747
L
9288 if (x86_elf_abi == X86_64_X32_ABI
9289 && i.operands == 2
14470f07
L
9290 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9291 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
9292 && i.prefix[REX_PREFIX] == 0)
9293 add_prefix (REX_OPCODE);
6d19a37a 9294#endif
cf61b747 9295
c0f3af97
L
9296 /* The prefix bytes. */
9297 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9298 if (*q)
9299 FRAG_APPEND_1_CHAR (*q);
0f10071e 9300 }
ae5c1c7b 9301 else
c0f3af97
L
9302 {
9303 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9304 if (*q)
9305 switch (j)
9306 {
c0f3af97
L
9307 case SEG_PREFIX:
9308 case ADDR_PREFIX:
9309 FRAG_APPEND_1_CHAR (*q);
9310 break;
9311 default:
9312 /* There should be no other prefixes for instructions
9313 with VEX prefix. */
9314 abort ();
9315 }
9316
43234a1e
L
9317 /* For EVEX instructions i.vrex should become 0 after
9318 build_evex_prefix. For VEX instructions upper 16 registers
9319 aren't available, so VREX should be 0. */
9320 if (i.vrex)
9321 abort ();
c0f3af97
L
9322 /* Now the VEX prefix. */
9323 p = frag_more (i.vex.length);
9324 for (j = 0; j < i.vex.length; j++)
9325 p[j] = i.vex.bytes[j];
9326 }
252b5132 9327
29b0f896 9328 /* Now the opcode; be careful about word order here! */
4dffcebc 9329 if (i.tm.opcode_length == 1)
29b0f896
AM
9330 {
9331 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9332 }
9333 else
9334 {
4dffcebc 9335 switch (i.tm.opcode_length)
331d2d0d 9336 {
43234a1e
L
9337 case 4:
9338 p = frag_more (4);
9339 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9340 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9341 break;
4dffcebc 9342 case 3:
331d2d0d
L
9343 p = frag_more (3);
9344 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
9345 break;
9346 case 2:
9347 p = frag_more (2);
9348 break;
9349 default:
9350 abort ();
9351 break;
331d2d0d 9352 }
0f10071e 9353
29b0f896
AM
9354 /* Put out high byte first: can't use md_number_to_chars! */
9355 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9356 *p = i.tm.base_opcode & 0xff;
9357 }
3e73aa7c 9358
29b0f896 9359 /* Now the modrm byte and sib byte (if present). */
40fb9820 9360 if (i.tm.opcode_modifier.modrm)
29b0f896 9361 {
4a3523fa
L
9362 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
9363 | i.rm.reg << 3
9364 | i.rm.mode << 6));
29b0f896
AM
9365 /* If i.rm.regmem == ESP (4)
9366 && i.rm.mode != (Register mode)
9367 && not 16 bit
9368 ==> need second modrm byte. */
9369 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9370 && i.rm.mode != 3
dc821c5f 9371 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
9372 FRAG_APPEND_1_CHAR ((i.sib.base << 0
9373 | i.sib.index << 3
9374 | i.sib.scale << 6));
29b0f896 9375 }
3e73aa7c 9376
29b0f896 9377 if (i.disp_operands)
2bbd9c25 9378 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 9379
29b0f896 9380 if (i.imm_operands)
2bbd9c25 9381 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
9382
9383 /*
9384 * frag_now_fix () returning plain abs_section_offset when we're in the
9385 * absolute section, and abs_section_offset not getting updated as data
9386 * gets added to the frag breaks the logic below.
9387 */
9388 if (now_seg != absolute_section)
9389 {
9390 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9391 if (j > 15)
9392 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9393 j);
e379e5f3
L
9394 else if (fragP)
9395 {
9396 /* NB: Don't add prefix with GOTPC relocation since
9397 output_disp() above depends on the fixed encoding
9398 length. Can't add prefix with TLS relocation since
9399 it breaks TLS linker optimization. */
9400 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9401 /* Prefix count on the current instruction. */
9402 unsigned int count = i.vex.length;
9403 unsigned int k;
9404 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9405 /* REX byte is encoded in VEX/EVEX prefix. */
9406 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9407 count++;
9408
9409 /* Count prefixes for extended opcode maps. */
9410 if (!i.vex.length)
9411 switch (i.tm.opcode_length)
9412 {
9413 case 3:
9414 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9415 {
9416 count++;
9417 switch ((i.tm.base_opcode >> 8) & 0xff)
9418 {
9419 case 0x38:
9420 case 0x3a:
9421 count++;
9422 break;
9423 default:
9424 break;
9425 }
9426 }
9427 break;
9428 case 2:
9429 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9430 count++;
9431 break;
9432 case 1:
9433 break;
9434 default:
9435 abort ();
9436 }
9437
9438 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9439 == BRANCH_PREFIX)
9440 {
9441 /* Set the maximum prefix size in BRANCH_PREFIX
9442 frag. */
9443 if (fragP->tc_frag_data.max_bytes > max)
9444 fragP->tc_frag_data.max_bytes = max;
9445 if (fragP->tc_frag_data.max_bytes > count)
9446 fragP->tc_frag_data.max_bytes -= count;
9447 else
9448 fragP->tc_frag_data.max_bytes = 0;
9449 }
9450 else
9451 {
9452 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9453 frag. */
9454 unsigned int max_prefix_size;
9455 if (align_branch_prefix_size > max)
9456 max_prefix_size = max;
9457 else
9458 max_prefix_size = align_branch_prefix_size;
9459 if (max_prefix_size > count)
9460 fragP->tc_frag_data.max_prefix_length
9461 = max_prefix_size - count;
9462 }
9463
9464 /* Use existing segment prefix if possible. Use CS
9465 segment prefix in 64-bit mode. In 32-bit mode, use SS
9466 segment prefix with ESP/EBP base register and use DS
9467 segment prefix without ESP/EBP base register. */
9468 if (i.prefix[SEG_PREFIX])
9469 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9470 else if (flag_code == CODE_64BIT)
9471 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9472 else if (i.base_reg
9473 && (i.base_reg->reg_num == 4
9474 || i.base_reg->reg_num == 5))
9475 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9476 else
9477 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9478 }
9c33702b 9479 }
29b0f896 9480 }
252b5132 9481
e379e5f3
L
9482 /* NB: Don't work with COND_JUMP86 without i386. */
9483 if (align_branch_power
9484 && now_seg != absolute_section
9485 && cpu_arch_flags.bitfield.cpui386)
9486 {
9487 /* Terminate each frag so that we can add prefix and check for
9488 fused jcc. */
9489 frag_wane (frag_now);
9490 frag_new (0);
9491 }
9492
29b0f896
AM
9493#ifdef DEBUG386
9494 if (flag_debug)
9495 {
7b81dfbb 9496 pi ("" /*line*/, &i);
29b0f896
AM
9497 }
9498#endif /* DEBUG386 */
9499}
252b5132 9500
e205caa7
L
9501/* Return the size of the displacement operand N. */
9502
9503static int
9504disp_size (unsigned int n)
9505{
9506 int size = 4;
43234a1e 9507
b5014f7a 9508 if (i.types[n].bitfield.disp64)
40fb9820
L
9509 size = 8;
9510 else if (i.types[n].bitfield.disp8)
9511 size = 1;
9512 else if (i.types[n].bitfield.disp16)
9513 size = 2;
e205caa7
L
9514 return size;
9515}
9516
9517/* Return the size of the immediate operand N. */
9518
9519static int
9520imm_size (unsigned int n)
9521{
9522 int size = 4;
40fb9820
L
9523 if (i.types[n].bitfield.imm64)
9524 size = 8;
9525 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9526 size = 1;
9527 else if (i.types[n].bitfield.imm16)
9528 size = 2;
e205caa7
L
9529 return size;
9530}
9531
29b0f896 9532static void
64e74474 9533output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9534{
9535 char *p;
9536 unsigned int n;
252b5132 9537
29b0f896
AM
9538 for (n = 0; n < i.operands; n++)
9539 {
b5014f7a 9540 if (operand_type_check (i.types[n], disp))
29b0f896
AM
9541 {
9542 if (i.op[n].disps->X_op == O_constant)
9543 {
e205caa7 9544 int size = disp_size (n);
43234a1e 9545 offsetT val = i.op[n].disps->X_add_number;
252b5132 9546
629cfaf1
JB
9547 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9548 size);
29b0f896
AM
9549 p = frag_more (size);
9550 md_number_to_chars (p, val, size);
9551 }
9552 else
9553 {
f86103b7 9554 enum bfd_reloc_code_real reloc_type;
e205caa7 9555 int size = disp_size (n);
40fb9820 9556 int sign = i.types[n].bitfield.disp32s;
29b0f896 9557 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 9558 fixS *fixP;
29b0f896 9559
e205caa7 9560 /* We can't have 8 bit displacement here. */
9c2799c2 9561 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 9562
29b0f896
AM
9563 /* The PC relative address is computed relative
9564 to the instruction boundary, so in case immediate
9565 fields follows, we need to adjust the value. */
9566 if (pcrel && i.imm_operands)
9567 {
29b0f896 9568 unsigned int n1;
e205caa7 9569 int sz = 0;
252b5132 9570
29b0f896 9571 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 9572 if (operand_type_check (i.types[n1], imm))
252b5132 9573 {
e205caa7
L
9574 /* Only one immediate is allowed for PC
9575 relative address. */
9c2799c2 9576 gas_assert (sz == 0);
e205caa7
L
9577 sz = imm_size (n1);
9578 i.op[n].disps->X_add_number -= sz;
252b5132 9579 }
29b0f896 9580 /* We should find the immediate. */
9c2799c2 9581 gas_assert (sz != 0);
29b0f896 9582 }
520dc8e8 9583
29b0f896 9584 p = frag_more (size);
d258b828 9585 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9586 if (GOT_symbol
2bbd9c25 9587 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9588 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9589 || reloc_type == BFD_RELOC_X86_64_32S
9590 || (reloc_type == BFD_RELOC_64
9591 && object_64bit))
d6ab8113
JB
9592 && (i.op[n].disps->X_op == O_symbol
9593 || (i.op[n].disps->X_op == O_add
9594 && ((symbol_get_value_expression
9595 (i.op[n].disps->X_op_symbol)->X_op)
9596 == O_subtract))))
9597 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9598 {
4fa24527 9599 if (!object_64bit)
7b81dfbb
AJ
9600 {
9601 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9602 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9603 i.op[n].imms->X_add_number +=
9604 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9605 }
9606 else if (reloc_type == BFD_RELOC_64)
9607 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9608 else
7b81dfbb
AJ
9609 /* Don't do the adjustment for x86-64, as there
9610 the pcrel addressing is relative to the _next_
9611 insn, and that is taken care of in other code. */
d6ab8113 9612 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9613 }
e379e5f3
L
9614 else if (align_branch_power)
9615 {
9616 switch (reloc_type)
9617 {
9618 case BFD_RELOC_386_TLS_GD:
9619 case BFD_RELOC_386_TLS_LDM:
9620 case BFD_RELOC_386_TLS_IE:
9621 case BFD_RELOC_386_TLS_IE_32:
9622 case BFD_RELOC_386_TLS_GOTIE:
9623 case BFD_RELOC_386_TLS_GOTDESC:
9624 case BFD_RELOC_386_TLS_DESC_CALL:
9625 case BFD_RELOC_X86_64_TLSGD:
9626 case BFD_RELOC_X86_64_TLSLD:
9627 case BFD_RELOC_X86_64_GOTTPOFF:
9628 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9629 case BFD_RELOC_X86_64_TLSDESC_CALL:
9630 i.has_gotpc_tls_reloc = TRUE;
9631 default:
9632 break;
9633 }
9634 }
02a86693
L
9635 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9636 size, i.op[n].disps, pcrel,
9637 reloc_type);
9638 /* Check for "call/jmp *mem", "mov mem, %reg",
9639 "test %reg, mem" and "binop mem, %reg" where binop
9640 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9641 instructions without data prefix. Always generate
9642 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9643 if (i.prefix[DATA_PREFIX] == 0
9644 && (generate_relax_relocations
9645 || (!object_64bit
9646 && i.rm.mode == 0
9647 && i.rm.regmem == 5))
0cb4071e
L
9648 && (i.rm.mode == 2
9649 || (i.rm.mode == 0 && i.rm.regmem == 5))
2ae4c703 9650 && !is_any_vex_encoding(&i.tm)
02a86693
L
9651 && ((i.operands == 1
9652 && i.tm.base_opcode == 0xff
9653 && (i.rm.reg == 2 || i.rm.reg == 4))
9654 || (i.operands == 2
9655 && (i.tm.base_opcode == 0x8b
9656 || i.tm.base_opcode == 0x85
2ae4c703 9657 || (i.tm.base_opcode & ~0x38) == 0x03))))
02a86693
L
9658 {
9659 if (object_64bit)
9660 {
9661 fixP->fx_tcbit = i.rex != 0;
9662 if (i.base_reg
e968fc9b 9663 && (i.base_reg->reg_num == RegIP))
02a86693
L
9664 fixP->fx_tcbit2 = 1;
9665 }
9666 else
9667 fixP->fx_tcbit2 = 1;
9668 }
29b0f896
AM
9669 }
9670 }
9671 }
9672}
252b5132 9673
29b0f896 9674static void
64e74474 9675output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9676{
9677 char *p;
9678 unsigned int n;
252b5132 9679
29b0f896
AM
9680 for (n = 0; n < i.operands; n++)
9681 {
43234a1e
L
9682 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9683 if (i.rounding && (int) n == i.rounding->operand)
9684 continue;
9685
40fb9820 9686 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9687 {
9688 if (i.op[n].imms->X_op == O_constant)
9689 {
e205caa7 9690 int size = imm_size (n);
29b0f896 9691 offsetT val;
b4cac588 9692
29b0f896
AM
9693 val = offset_in_range (i.op[n].imms->X_add_number,
9694 size);
9695 p = frag_more (size);
9696 md_number_to_chars (p, val, size);
9697 }
9698 else
9699 {
9700 /* Not absolute_section.
9701 Need a 32-bit fixup (don't support 8bit
9702 non-absolute imms). Try to support other
9703 sizes ... */
f86103b7 9704 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9705 int size = imm_size (n);
9706 int sign;
29b0f896 9707
40fb9820 9708 if (i.types[n].bitfield.imm32s
a7d61044 9709 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9710 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9711 sign = 1;
e205caa7
L
9712 else
9713 sign = 0;
520dc8e8 9714
29b0f896 9715 p = frag_more (size);
d258b828 9716 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9717
2bbd9c25
JJ
9718 /* This is tough to explain. We end up with this one if we
9719 * have operands that look like
9720 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9721 * obtain the absolute address of the GOT, and it is strongly
9722 * preferable from a performance point of view to avoid using
9723 * a runtime relocation for this. The actual sequence of
9724 * instructions often look something like:
9725 *
9726 * call .L66
9727 * .L66:
9728 * popl %ebx
9729 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9730 *
9731 * The call and pop essentially return the absolute address
9732 * of the label .L66 and store it in %ebx. The linker itself
9733 * will ultimately change the first operand of the addl so
9734 * that %ebx points to the GOT, but to keep things simple, the
9735 * .o file must have this operand set so that it generates not
9736 * the absolute address of .L66, but the absolute address of
9737 * itself. This allows the linker itself simply treat a GOTPC
9738 * relocation as asking for a pcrel offset to the GOT to be
9739 * added in, and the addend of the relocation is stored in the
9740 * operand field for the instruction itself.
9741 *
9742 * Our job here is to fix the operand so that it would add
9743 * the correct offset so that %ebx would point to itself. The
9744 * thing that is tricky is that .-.L66 will point to the
9745 * beginning of the instruction, so we need to further modify
9746 * the operand so that it will point to itself. There are
9747 * other cases where you have something like:
9748 *
9749 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9750 *
9751 * and here no correction would be required. Internally in
9752 * the assembler we treat operands of this form as not being
9753 * pcrel since the '.' is explicitly mentioned, and I wonder
9754 * whether it would simplify matters to do it this way. Who
9755 * knows. In earlier versions of the PIC patches, the
9756 * pcrel_adjust field was used to store the correction, but
9757 * since the expression is not pcrel, I felt it would be
9758 * confusing to do it this way. */
9759
d6ab8113 9760 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9761 || reloc_type == BFD_RELOC_X86_64_32S
9762 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9763 && GOT_symbol
9764 && GOT_symbol == i.op[n].imms->X_add_symbol
9765 && (i.op[n].imms->X_op == O_symbol
9766 || (i.op[n].imms->X_op == O_add
9767 && ((symbol_get_value_expression
9768 (i.op[n].imms->X_op_symbol)->X_op)
9769 == O_subtract))))
9770 {
4fa24527 9771 if (!object_64bit)
d6ab8113 9772 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9773 else if (size == 4)
d6ab8113 9774 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9775 else if (size == 8)
9776 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9777 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9778 i.op[n].imms->X_add_number +=
9779 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9780 }
29b0f896
AM
9781 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9782 i.op[n].imms, 0, reloc_type);
9783 }
9784 }
9785 }
252b5132
RH
9786}
9787\f
d182319b
JB
9788/* x86_cons_fix_new is called via the expression parsing code when a
9789 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9790static int cons_sign = -1;
9791
9792void
e3bb37b5 9793x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9794 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9795{
d258b828 9796 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9797
9798#ifdef TE_PE
9799 if (exp->X_op == O_secrel)
9800 {
9801 exp->X_op = O_symbol;
9802 r = BFD_RELOC_32_SECREL;
9803 }
9804#endif
9805
9806 fix_new_exp (frag, off, len, exp, 0, r);
9807}
9808
357d1bd8
L
9809/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9810 purpose of the `.dc.a' internal pseudo-op. */
9811
9812int
9813x86_address_bytes (void)
9814{
9815 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9816 return 4;
9817 return stdoutput->arch_info->bits_per_address / 8;
9818}
9819
d382c579
TG
9820#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9821 || defined (LEX_AT)
d258b828 9822# define lex_got(reloc, adjust, types) NULL
718ddfc0 9823#else
f3c180ae
AM
9824/* Parse operands of the form
9825 <symbol>@GOTOFF+<nnn>
9826 and similar .plt or .got references.
9827
9828 If we find one, set up the correct relocation in RELOC and copy the
9829 input string, minus the `@GOTOFF' into a malloc'd buffer for
9830 parsing by the calling routine. Return this buffer, and if ADJUST
9831 is non-null set it to the length of the string we removed from the
9832 input line. Otherwise return NULL. */
9833static char *
91d6fa6a 9834lex_got (enum bfd_reloc_code_real *rel,
64e74474 9835 int *adjust,
d258b828 9836 i386_operand_type *types)
f3c180ae 9837{
7b81dfbb
AJ
9838 /* Some of the relocations depend on the size of what field is to
9839 be relocated. But in our callers i386_immediate and i386_displacement
9840 we don't yet know the operand size (this will be set by insn
9841 matching). Hence we record the word32 relocation here,
9842 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9843 static const struct {
9844 const char *str;
cff8d58a 9845 int len;
4fa24527 9846 const enum bfd_reloc_code_real rel[2];
40fb9820 9847 const i386_operand_type types64;
f3c180ae 9848 } gotrel[] = {
8ce3d284 9849#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9850 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9851 BFD_RELOC_SIZE32 },
9852 OPERAND_TYPE_IMM32_64 },
8ce3d284 9853#endif
cff8d58a
L
9854 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9855 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9856 OPERAND_TYPE_IMM64 },
cff8d58a
L
9857 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9858 BFD_RELOC_X86_64_PLT32 },
40fb9820 9859 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9860 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9861 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9862 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9863 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9864 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9865 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9866 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9867 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9868 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9869 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9870 BFD_RELOC_X86_64_TLSGD },
40fb9820 9871 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9872 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9873 _dummy_first_bfd_reloc_code_real },
40fb9820 9874 OPERAND_TYPE_NONE },
cff8d58a
L
9875 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9876 BFD_RELOC_X86_64_TLSLD },
40fb9820 9877 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9878 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9879 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9880 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9881 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9882 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9883 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9884 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9885 _dummy_first_bfd_reloc_code_real },
40fb9820 9886 OPERAND_TYPE_NONE },
cff8d58a
L
9887 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9888 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9889 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9890 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9891 _dummy_first_bfd_reloc_code_real },
40fb9820 9892 OPERAND_TYPE_NONE },
cff8d58a
L
9893 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9894 _dummy_first_bfd_reloc_code_real },
40fb9820 9895 OPERAND_TYPE_NONE },
cff8d58a
L
9896 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9897 BFD_RELOC_X86_64_GOT32 },
40fb9820 9898 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9899 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9900 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9901 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9902 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9903 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9904 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9905 };
9906 char *cp;
9907 unsigned int j;
9908
d382c579 9909#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9910 if (!IS_ELF)
9911 return NULL;
d382c579 9912#endif
718ddfc0 9913
f3c180ae 9914 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9915 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9916 return NULL;
9917
47465058 9918 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9919 {
cff8d58a 9920 int len = gotrel[j].len;
28f81592 9921 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9922 {
4fa24527 9923 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9924 {
28f81592
AM
9925 int first, second;
9926 char *tmpbuf, *past_reloc;
f3c180ae 9927
91d6fa6a 9928 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9929
3956db08
JB
9930 if (types)
9931 {
9932 if (flag_code != CODE_64BIT)
40fb9820
L
9933 {
9934 types->bitfield.imm32 = 1;
9935 types->bitfield.disp32 = 1;
9936 }
3956db08
JB
9937 else
9938 *types = gotrel[j].types64;
9939 }
9940
8fd4256d 9941 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9942 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9943
28f81592 9944 /* The length of the first part of our input line. */
f3c180ae 9945 first = cp - input_line_pointer;
28f81592
AM
9946
9947 /* The second part goes from after the reloc token until
67c11a9b 9948 (and including) an end_of_line char or comma. */
28f81592 9949 past_reloc = cp + 1 + len;
67c11a9b
AM
9950 cp = past_reloc;
9951 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9952 ++cp;
9953 second = cp + 1 - past_reloc;
28f81592
AM
9954
9955 /* Allocate and copy string. The trailing NUL shouldn't
9956 be necessary, but be safe. */
add39d23 9957 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9958 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9959 if (second != 0 && *past_reloc != ' ')
9960 /* Replace the relocation token with ' ', so that
9961 errors like foo@GOTOFF1 will be detected. */
9962 tmpbuf[first++] = ' ';
af89796a
L
9963 else
9964 /* Increment length by 1 if the relocation token is
9965 removed. */
9966 len++;
9967 if (adjust)
9968 *adjust = len;
0787a12d
AM
9969 memcpy (tmpbuf + first, past_reloc, second);
9970 tmpbuf[first + second] = '\0';
f3c180ae
AM
9971 return tmpbuf;
9972 }
9973
4fa24527
JB
9974 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9975 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9976 return NULL;
9977 }
9978 }
9979
9980 /* Might be a symbol version string. Don't as_bad here. */
9981 return NULL;
9982}
4e4f7c87 9983#endif
f3c180ae 9984
a988325c
NC
9985#ifdef TE_PE
9986#ifdef lex_got
9987#undef lex_got
9988#endif
9989/* Parse operands of the form
9990 <symbol>@SECREL32+<nnn>
9991
9992 If we find one, set up the correct relocation in RELOC and copy the
9993 input string, minus the `@SECREL32' into a malloc'd buffer for
9994 parsing by the calling routine. Return this buffer, and if ADJUST
9995 is non-null set it to the length of the string we removed from the
34bca508
L
9996 input line. Otherwise return NULL.
9997
a988325c
NC
9998 This function is copied from the ELF version above adjusted for PE targets. */
9999
10000static char *
10001lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
10002 int *adjust ATTRIBUTE_UNUSED,
d258b828 10003 i386_operand_type *types)
a988325c
NC
10004{
10005 static const struct
10006 {
10007 const char *str;
10008 int len;
10009 const enum bfd_reloc_code_real rel[2];
10010 const i386_operand_type types64;
10011 }
10012 gotrel[] =
10013 {
10014 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
10015 BFD_RELOC_32_SECREL },
10016 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10017 };
10018
10019 char *cp;
10020 unsigned j;
10021
10022 for (cp = input_line_pointer; *cp != '@'; cp++)
10023 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10024 return NULL;
10025
10026 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10027 {
10028 int len = gotrel[j].len;
10029
10030 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10031 {
10032 if (gotrel[j].rel[object_64bit] != 0)
10033 {
10034 int first, second;
10035 char *tmpbuf, *past_reloc;
10036
10037 *rel = gotrel[j].rel[object_64bit];
10038 if (adjust)
10039 *adjust = len;
10040
10041 if (types)
10042 {
10043 if (flag_code != CODE_64BIT)
10044 {
10045 types->bitfield.imm32 = 1;
10046 types->bitfield.disp32 = 1;
10047 }
10048 else
10049 *types = gotrel[j].types64;
10050 }
10051
10052 /* The length of the first part of our input line. */
10053 first = cp - input_line_pointer;
10054
10055 /* The second part goes from after the reloc token until
10056 (and including) an end_of_line char or comma. */
10057 past_reloc = cp + 1 + len;
10058 cp = past_reloc;
10059 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10060 ++cp;
10061 second = cp + 1 - past_reloc;
10062
10063 /* Allocate and copy string. The trailing NUL shouldn't
10064 be necessary, but be safe. */
add39d23 10065 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
10066 memcpy (tmpbuf, input_line_pointer, first);
10067 if (second != 0 && *past_reloc != ' ')
10068 /* Replace the relocation token with ' ', so that
10069 errors like foo@SECLREL321 will be detected. */
10070 tmpbuf[first++] = ' ';
10071 memcpy (tmpbuf + first, past_reloc, second);
10072 tmpbuf[first + second] = '\0';
10073 return tmpbuf;
10074 }
10075
10076 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10077 gotrel[j].str, 1 << (5 + object_64bit));
10078 return NULL;
10079 }
10080 }
10081
10082 /* Might be a symbol version string. Don't as_bad here. */
10083 return NULL;
10084}
10085
10086#endif /* TE_PE */
10087
62ebcb5c 10088bfd_reloc_code_real_type
e3bb37b5 10089x86_cons (expressionS *exp, int size)
f3c180ae 10090{
62ebcb5c
AM
10091 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10092
ee86248c
JB
10093 intel_syntax = -intel_syntax;
10094
3c7b9c2c 10095 exp->X_md = 0;
4fa24527 10096 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
10097 {
10098 /* Handle @GOTOFF and the like in an expression. */
10099 char *save;
10100 char *gotfree_input_line;
4a57f2cf 10101 int adjust = 0;
f3c180ae
AM
10102
10103 save = input_line_pointer;
d258b828 10104 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
10105 if (gotfree_input_line)
10106 input_line_pointer = gotfree_input_line;
10107
10108 expression (exp);
10109
10110 if (gotfree_input_line)
10111 {
10112 /* expression () has merrily parsed up to the end of line,
10113 or a comma - in the wrong buffer. Transfer how far
10114 input_line_pointer has moved to the right buffer. */
10115 input_line_pointer = (save
10116 + (input_line_pointer - gotfree_input_line)
10117 + adjust);
10118 free (gotfree_input_line);
3992d3b7
AM
10119 if (exp->X_op == O_constant
10120 || exp->X_op == O_absent
10121 || exp->X_op == O_illegal
0398aac5 10122 || exp->X_op == O_register
3992d3b7
AM
10123 || exp->X_op == O_big)
10124 {
10125 char c = *input_line_pointer;
10126 *input_line_pointer = 0;
10127 as_bad (_("missing or invalid expression `%s'"), save);
10128 *input_line_pointer = c;
10129 }
b9519cfe
L
10130 else if ((got_reloc == BFD_RELOC_386_PLT32
10131 || got_reloc == BFD_RELOC_X86_64_PLT32)
10132 && exp->X_op != O_symbol)
10133 {
10134 char c = *input_line_pointer;
10135 *input_line_pointer = 0;
10136 as_bad (_("invalid PLT expression `%s'"), save);
10137 *input_line_pointer = c;
10138 }
f3c180ae
AM
10139 }
10140 }
10141 else
10142 expression (exp);
ee86248c
JB
10143
10144 intel_syntax = -intel_syntax;
10145
10146 if (intel_syntax)
10147 i386_intel_simplify (exp);
62ebcb5c
AM
10148
10149 return got_reloc;
f3c180ae 10150}
f3c180ae 10151
9f32dd5b
L
10152static void
10153signed_cons (int size)
6482c264 10154{
d182319b
JB
10155 if (flag_code == CODE_64BIT)
10156 cons_sign = 1;
10157 cons (size);
10158 cons_sign = -1;
6482c264
NC
10159}
10160
d182319b 10161#ifdef TE_PE
6482c264 10162static void
7016a5d5 10163pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
10164{
10165 expressionS exp;
10166
10167 do
10168 {
10169 expression (&exp);
10170 if (exp.X_op == O_symbol)
10171 exp.X_op = O_secrel;
10172
10173 emit_expr (&exp, 4);
10174 }
10175 while (*input_line_pointer++ == ',');
10176
10177 input_line_pointer--;
10178 demand_empty_rest_of_line ();
10179}
6482c264
NC
10180#endif
10181
43234a1e
L
10182/* Handle Vector operations. */
10183
10184static char *
10185check_VecOperations (char *op_string, char *op_end)
10186{
10187 const reg_entry *mask;
10188 const char *saved;
10189 char *end_op;
10190
10191 while (*op_string
10192 && (op_end == NULL || op_string < op_end))
10193 {
10194 saved = op_string;
10195 if (*op_string == '{')
10196 {
10197 op_string++;
10198
10199 /* Check broadcasts. */
10200 if (strncmp (op_string, "1to", 3) == 0)
10201 {
10202 int bcst_type;
10203
10204 if (i.broadcast)
10205 goto duplicated_vec_op;
10206
10207 op_string += 3;
10208 if (*op_string == '8')
8e6e0792 10209 bcst_type = 8;
b28d1bda 10210 else if (*op_string == '4')
8e6e0792 10211 bcst_type = 4;
b28d1bda 10212 else if (*op_string == '2')
8e6e0792 10213 bcst_type = 2;
43234a1e
L
10214 else if (*op_string == '1'
10215 && *(op_string+1) == '6')
10216 {
8e6e0792 10217 bcst_type = 16;
43234a1e
L
10218 op_string++;
10219 }
10220 else
10221 {
10222 as_bad (_("Unsupported broadcast: `%s'"), saved);
10223 return NULL;
10224 }
10225 op_string++;
10226
10227 broadcast_op.type = bcst_type;
10228 broadcast_op.operand = this_operand;
1f75763a 10229 broadcast_op.bytes = 0;
43234a1e
L
10230 i.broadcast = &broadcast_op;
10231 }
10232 /* Check masking operation. */
10233 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10234 {
8a6fb3f9
JB
10235 if (mask == &bad_reg)
10236 return NULL;
10237
43234a1e 10238 /* k0 can't be used for write mask. */
f74a6307 10239 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 10240 {
6d2cd6b2
JB
10241 as_bad (_("`%s%s' can't be used for write mask"),
10242 register_prefix, mask->reg_name);
43234a1e
L
10243 return NULL;
10244 }
10245
10246 if (!i.mask)
10247 {
10248 mask_op.mask = mask;
10249 mask_op.zeroing = 0;
10250 mask_op.operand = this_operand;
10251 i.mask = &mask_op;
10252 }
10253 else
10254 {
10255 if (i.mask->mask)
10256 goto duplicated_vec_op;
10257
10258 i.mask->mask = mask;
10259
10260 /* Only "{z}" is allowed here. No need to check
10261 zeroing mask explicitly. */
10262 if (i.mask->operand != this_operand)
10263 {
10264 as_bad (_("invalid write mask `%s'"), saved);
10265 return NULL;
10266 }
10267 }
10268
10269 op_string = end_op;
10270 }
10271 /* Check zeroing-flag for masking operation. */
10272 else if (*op_string == 'z')
10273 {
10274 if (!i.mask)
10275 {
10276 mask_op.mask = NULL;
10277 mask_op.zeroing = 1;
10278 mask_op.operand = this_operand;
10279 i.mask = &mask_op;
10280 }
10281 else
10282 {
10283 if (i.mask->zeroing)
10284 {
10285 duplicated_vec_op:
10286 as_bad (_("duplicated `%s'"), saved);
10287 return NULL;
10288 }
10289
10290 i.mask->zeroing = 1;
10291
10292 /* Only "{%k}" is allowed here. No need to check mask
10293 register explicitly. */
10294 if (i.mask->operand != this_operand)
10295 {
10296 as_bad (_("invalid zeroing-masking `%s'"),
10297 saved);
10298 return NULL;
10299 }
10300 }
10301
10302 op_string++;
10303 }
10304 else
10305 goto unknown_vec_op;
10306
10307 if (*op_string != '}')
10308 {
10309 as_bad (_("missing `}' in `%s'"), saved);
10310 return NULL;
10311 }
10312 op_string++;
0ba3a731
L
10313
10314 /* Strip whitespace since the addition of pseudo prefixes
10315 changed how the scrubber treats '{'. */
10316 if (is_space_char (*op_string))
10317 ++op_string;
10318
43234a1e
L
10319 continue;
10320 }
10321 unknown_vec_op:
10322 /* We don't know this one. */
10323 as_bad (_("unknown vector operation: `%s'"), saved);
10324 return NULL;
10325 }
10326
6d2cd6b2
JB
10327 if (i.mask && i.mask->zeroing && !i.mask->mask)
10328 {
10329 as_bad (_("zeroing-masking only allowed with write mask"));
10330 return NULL;
10331 }
10332
43234a1e
L
10333 return op_string;
10334}
10335
252b5132 10336static int
70e41ade 10337i386_immediate (char *imm_start)
252b5132
RH
10338{
10339 char *save_input_line_pointer;
f3c180ae 10340 char *gotfree_input_line;
252b5132 10341 segT exp_seg = 0;
47926f60 10342 expressionS *exp;
40fb9820
L
10343 i386_operand_type types;
10344
0dfbf9d7 10345 operand_type_set (&types, ~0);
252b5132
RH
10346
10347 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10348 {
31b2323c
L
10349 as_bad (_("at most %d immediate operands are allowed"),
10350 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
10351 return 0;
10352 }
10353
10354 exp = &im_expressions[i.imm_operands++];
520dc8e8 10355 i.op[this_operand].imms = exp;
252b5132
RH
10356
10357 if (is_space_char (*imm_start))
10358 ++imm_start;
10359
10360 save_input_line_pointer = input_line_pointer;
10361 input_line_pointer = imm_start;
10362
d258b828 10363 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10364 if (gotfree_input_line)
10365 input_line_pointer = gotfree_input_line;
252b5132
RH
10366
10367 exp_seg = expression (exp);
10368
83183c0c 10369 SKIP_WHITESPACE ();
43234a1e
L
10370
10371 /* Handle vector operations. */
10372 if (*input_line_pointer == '{')
10373 {
10374 input_line_pointer = check_VecOperations (input_line_pointer,
10375 NULL);
10376 if (input_line_pointer == NULL)
10377 return 0;
10378 }
10379
252b5132 10380 if (*input_line_pointer)
f3c180ae 10381 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
10382
10383 input_line_pointer = save_input_line_pointer;
f3c180ae 10384 if (gotfree_input_line)
ee86248c
JB
10385 {
10386 free (gotfree_input_line);
10387
10388 if (exp->X_op == O_constant || exp->X_op == O_register)
10389 exp->X_op = O_illegal;
10390 }
10391
10392 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10393}
252b5132 10394
ee86248c
JB
10395static int
10396i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10397 i386_operand_type types, const char *imm_start)
10398{
10399 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 10400 {
313c53d1
L
10401 if (imm_start)
10402 as_bad (_("missing or invalid immediate expression `%s'"),
10403 imm_start);
3992d3b7 10404 return 0;
252b5132 10405 }
3e73aa7c 10406 else if (exp->X_op == O_constant)
252b5132 10407 {
47926f60 10408 /* Size it properly later. */
40fb9820 10409 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
10410 /* If not 64bit, sign extend val. */
10411 if (flag_code != CODE_64BIT
4eed87de
AM
10412 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10413 exp->X_add_number
10414 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 10415 }
4c63da97 10416#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 10417 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 10418 && exp_seg != absolute_section
47926f60 10419 && exp_seg != text_section
24eab124
AM
10420 && exp_seg != data_section
10421 && exp_seg != bss_section
10422 && exp_seg != undefined_section
f86103b7 10423 && !bfd_is_com_section (exp_seg))
252b5132 10424 {
d0b47220 10425 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
10426 return 0;
10427 }
10428#endif
a841bdf5 10429 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 10430 {
313c53d1
L
10431 if (imm_start)
10432 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
10433 return 0;
10434 }
252b5132
RH
10435 else
10436 {
10437 /* This is an address. The size of the address will be
24eab124 10438 determined later, depending on destination register,
3e73aa7c 10439 suffix, or the default for the section. */
40fb9820
L
10440 i.types[this_operand].bitfield.imm8 = 1;
10441 i.types[this_operand].bitfield.imm16 = 1;
10442 i.types[this_operand].bitfield.imm32 = 1;
10443 i.types[this_operand].bitfield.imm32s = 1;
10444 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
10445 i.types[this_operand] = operand_type_and (i.types[this_operand],
10446 types);
252b5132
RH
10447 }
10448
10449 return 1;
10450}
10451
551c1ca1 10452static char *
e3bb37b5 10453i386_scale (char *scale)
252b5132 10454{
551c1ca1
AM
10455 offsetT val;
10456 char *save = input_line_pointer;
252b5132 10457
551c1ca1
AM
10458 input_line_pointer = scale;
10459 val = get_absolute_expression ();
10460
10461 switch (val)
252b5132 10462 {
551c1ca1 10463 case 1:
252b5132
RH
10464 i.log2_scale_factor = 0;
10465 break;
551c1ca1 10466 case 2:
252b5132
RH
10467 i.log2_scale_factor = 1;
10468 break;
551c1ca1 10469 case 4:
252b5132
RH
10470 i.log2_scale_factor = 2;
10471 break;
551c1ca1 10472 case 8:
252b5132
RH
10473 i.log2_scale_factor = 3;
10474 break;
10475 default:
a724f0f4
JB
10476 {
10477 char sep = *input_line_pointer;
10478
10479 *input_line_pointer = '\0';
10480 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10481 scale);
10482 *input_line_pointer = sep;
10483 input_line_pointer = save;
10484 return NULL;
10485 }
252b5132 10486 }
29b0f896 10487 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
10488 {
10489 as_warn (_("scale factor of %d without an index register"),
24eab124 10490 1 << i.log2_scale_factor);
252b5132 10491 i.log2_scale_factor = 0;
252b5132 10492 }
551c1ca1
AM
10493 scale = input_line_pointer;
10494 input_line_pointer = save;
10495 return scale;
252b5132
RH
10496}
10497
252b5132 10498static int
e3bb37b5 10499i386_displacement (char *disp_start, char *disp_end)
252b5132 10500{
29b0f896 10501 expressionS *exp;
252b5132
RH
10502 segT exp_seg = 0;
10503 char *save_input_line_pointer;
f3c180ae 10504 char *gotfree_input_line;
40fb9820
L
10505 int override;
10506 i386_operand_type bigdisp, types = anydisp;
3992d3b7 10507 int ret;
252b5132 10508
31b2323c
L
10509 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10510 {
10511 as_bad (_("at most %d displacement operands are allowed"),
10512 MAX_MEMORY_OPERANDS);
10513 return 0;
10514 }
10515
0dfbf9d7 10516 operand_type_set (&bigdisp, 0);
6f2f06be 10517 if (i.jumpabsolute
48bcea9f 10518 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
10519 || (current_templates->start->opcode_modifier.jump != JUMP
10520 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 10521 {
48bcea9f 10522 i386_addressing_mode ();
e05278af 10523 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
10524 if (flag_code == CODE_64BIT)
10525 {
10526 if (!override)
10527 {
10528 bigdisp.bitfield.disp32s = 1;
10529 bigdisp.bitfield.disp64 = 1;
10530 }
48bcea9f
JB
10531 else
10532 bigdisp.bitfield.disp32 = 1;
40fb9820
L
10533 }
10534 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 10535 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
10536 else
10537 bigdisp.bitfield.disp32 = 1;
e05278af
JB
10538 }
10539 else
10540 {
376cd056
JB
10541 /* For PC-relative branches, the width of the displacement may be
10542 dependent upon data size, but is never dependent upon address size.
10543 Also make sure to not unintentionally match against a non-PC-relative
10544 branch template. */
10545 static templates aux_templates;
10546 const insn_template *t = current_templates->start;
10547 bfd_boolean has_intel64 = FALSE;
10548
10549 aux_templates.start = t;
10550 while (++t < current_templates->end)
10551 {
10552 if (t->opcode_modifier.jump
10553 != current_templates->start->opcode_modifier.jump)
10554 break;
4b5aaf5f 10555 if ((t->opcode_modifier.isa64 >= INTEL64))
376cd056
JB
10556 has_intel64 = TRUE;
10557 }
10558 if (t < current_templates->end)
10559 {
10560 aux_templates.end = t;
10561 current_templates = &aux_templates;
10562 }
10563
e05278af 10564 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
10565 if (flag_code == CODE_64BIT)
10566 {
376cd056
JB
10567 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10568 && (!intel64 || !has_intel64))
40fb9820
L
10569 bigdisp.bitfield.disp16 = 1;
10570 else
48bcea9f 10571 bigdisp.bitfield.disp32s = 1;
40fb9820
L
10572 }
10573 else
e05278af
JB
10574 {
10575 if (!override)
10576 override = (i.suffix == (flag_code != CODE_16BIT
10577 ? WORD_MNEM_SUFFIX
10578 : LONG_MNEM_SUFFIX));
40fb9820
L
10579 bigdisp.bitfield.disp32 = 1;
10580 if ((flag_code == CODE_16BIT) ^ override)
10581 {
10582 bigdisp.bitfield.disp32 = 0;
10583 bigdisp.bitfield.disp16 = 1;
10584 }
e05278af 10585 }
e05278af 10586 }
c6fb90c8
L
10587 i.types[this_operand] = operand_type_or (i.types[this_operand],
10588 bigdisp);
252b5132
RH
10589
10590 exp = &disp_expressions[i.disp_operands];
520dc8e8 10591 i.op[this_operand].disps = exp;
252b5132
RH
10592 i.disp_operands++;
10593 save_input_line_pointer = input_line_pointer;
10594 input_line_pointer = disp_start;
10595 END_STRING_AND_SAVE (disp_end);
10596
10597#ifndef GCC_ASM_O_HACK
10598#define GCC_ASM_O_HACK 0
10599#endif
10600#if GCC_ASM_O_HACK
10601 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10602 if (i.types[this_operand].bitfield.baseIndex
24eab124 10603 && displacement_string_end[-1] == '+')
252b5132
RH
10604 {
10605 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10606 constraint within gcc asm statements.
10607 For instance:
10608
10609 #define _set_tssldt_desc(n,addr,limit,type) \
10610 __asm__ __volatile__ ( \
10611 "movw %w2,%0\n\t" \
10612 "movw %w1,2+%0\n\t" \
10613 "rorl $16,%1\n\t" \
10614 "movb %b1,4+%0\n\t" \
10615 "movb %4,5+%0\n\t" \
10616 "movb $0,6+%0\n\t" \
10617 "movb %h1,7+%0\n\t" \
10618 "rorl $16,%1" \
10619 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10620
10621 This works great except that the output assembler ends
10622 up looking a bit weird if it turns out that there is
10623 no offset. You end up producing code that looks like:
10624
10625 #APP
10626 movw $235,(%eax)
10627 movw %dx,2+(%eax)
10628 rorl $16,%edx
10629 movb %dl,4+(%eax)
10630 movb $137,5+(%eax)
10631 movb $0,6+(%eax)
10632 movb %dh,7+(%eax)
10633 rorl $16,%edx
10634 #NO_APP
10635
47926f60 10636 So here we provide the missing zero. */
24eab124
AM
10637
10638 *displacement_string_end = '0';
252b5132
RH
10639 }
10640#endif
d258b828 10641 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10642 if (gotfree_input_line)
10643 input_line_pointer = gotfree_input_line;
252b5132 10644
24eab124 10645 exp_seg = expression (exp);
252b5132 10646
636c26b0
AM
10647 SKIP_WHITESPACE ();
10648 if (*input_line_pointer)
10649 as_bad (_("junk `%s' after expression"), input_line_pointer);
10650#if GCC_ASM_O_HACK
10651 RESTORE_END_STRING (disp_end + 1);
10652#endif
636c26b0 10653 input_line_pointer = save_input_line_pointer;
636c26b0 10654 if (gotfree_input_line)
ee86248c
JB
10655 {
10656 free (gotfree_input_line);
10657
10658 if (exp->X_op == O_constant || exp->X_op == O_register)
10659 exp->X_op = O_illegal;
10660 }
10661
10662 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10663
10664 RESTORE_END_STRING (disp_end);
10665
10666 return ret;
10667}
10668
10669static int
10670i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10671 i386_operand_type types, const char *disp_start)
10672{
10673 i386_operand_type bigdisp;
10674 int ret = 1;
636c26b0 10675
24eab124
AM
10676 /* We do this to make sure that the section symbol is in
10677 the symbol table. We will ultimately change the relocation
47926f60 10678 to be relative to the beginning of the section. */
1ae12ab7 10679 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10680 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10681 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10682 {
636c26b0 10683 if (exp->X_op != O_symbol)
3992d3b7 10684 goto inv_disp;
636c26b0 10685
e5cb08ac 10686 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10687 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10688 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10689 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10690 exp->X_op = O_subtract;
10691 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10692 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10693 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10694 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10695 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10696 else
29b0f896 10697 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10698 }
252b5132 10699
3992d3b7
AM
10700 else if (exp->X_op == O_absent
10701 || exp->X_op == O_illegal
ee86248c 10702 || exp->X_op == O_big)
2daf4fd8 10703 {
3992d3b7
AM
10704 inv_disp:
10705 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10706 disp_start);
3992d3b7 10707 ret = 0;
2daf4fd8
AM
10708 }
10709
0e1147d9
L
10710 else if (flag_code == CODE_64BIT
10711 && !i.prefix[ADDR_PREFIX]
10712 && exp->X_op == O_constant)
10713 {
10714 /* Since displacement is signed extended to 64bit, don't allow
10715 disp32 and turn off disp32s if they are out of range. */
10716 i.types[this_operand].bitfield.disp32 = 0;
10717 if (!fits_in_signed_long (exp->X_add_number))
10718 {
10719 i.types[this_operand].bitfield.disp32s = 0;
10720 if (i.types[this_operand].bitfield.baseindex)
10721 {
10722 as_bad (_("0x%lx out range of signed 32bit displacement"),
10723 (long) exp->X_add_number);
10724 ret = 0;
10725 }
10726 }
10727 }
10728
4c63da97 10729#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10730 else if (exp->X_op != O_constant
10731 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10732 && exp_seg != absolute_section
10733 && exp_seg != text_section
10734 && exp_seg != data_section
10735 && exp_seg != bss_section
10736 && exp_seg != undefined_section
10737 && !bfd_is_com_section (exp_seg))
24eab124 10738 {
d0b47220 10739 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10740 ret = 0;
24eab124 10741 }
252b5132 10742#endif
3956db08 10743
48bcea9f
JB
10744 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10745 /* Constants get taken care of by optimize_disp(). */
10746 && exp->X_op != O_constant)
10747 i.types[this_operand].bitfield.disp8 = 1;
10748
40fb9820
L
10749 /* Check if this is a displacement only operand. */
10750 bigdisp = i.types[this_operand];
10751 bigdisp.bitfield.disp8 = 0;
10752 bigdisp.bitfield.disp16 = 0;
10753 bigdisp.bitfield.disp32 = 0;
10754 bigdisp.bitfield.disp32s = 0;
10755 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10756 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10757 i.types[this_operand] = operand_type_and (i.types[this_operand],
10758 types);
3956db08 10759
3992d3b7 10760 return ret;
252b5132
RH
10761}
10762
2abc2bec
JB
10763/* Return the active addressing mode, taking address override and
10764 registers forming the address into consideration. Update the
10765 address override prefix if necessary. */
47926f60 10766
2abc2bec
JB
10767static enum flag_code
10768i386_addressing_mode (void)
252b5132 10769{
be05d201
L
10770 enum flag_code addr_mode;
10771
10772 if (i.prefix[ADDR_PREFIX])
10773 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
a23b33b3
JB
10774 else if (flag_code == CODE_16BIT
10775 && current_templates->start->cpu_flags.bitfield.cpumpx
10776 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10777 from md_assemble() by "is not a valid base/index expression"
10778 when there is a base and/or index. */
10779 && !i.types[this_operand].bitfield.baseindex)
10780 {
10781 /* MPX insn memory operands with neither base nor index must be forced
10782 to use 32-bit addressing in 16-bit mode. */
10783 addr_mode = CODE_32BIT;
10784 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10785 ++i.prefixes;
10786 gas_assert (!i.types[this_operand].bitfield.disp16);
10787 gas_assert (!i.types[this_operand].bitfield.disp32);
10788 }
be05d201
L
10789 else
10790 {
10791 addr_mode = flag_code;
10792
24eab124 10793#if INFER_ADDR_PREFIX
be05d201
L
10794 if (i.mem_operands == 0)
10795 {
10796 /* Infer address prefix from the first memory operand. */
10797 const reg_entry *addr_reg = i.base_reg;
10798
10799 if (addr_reg == NULL)
10800 addr_reg = i.index_reg;
eecb386c 10801
be05d201
L
10802 if (addr_reg)
10803 {
e968fc9b 10804 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10805 addr_mode = CODE_32BIT;
10806 else if (flag_code != CODE_64BIT
dc821c5f 10807 && addr_reg->reg_type.bitfield.word)
be05d201
L
10808 addr_mode = CODE_16BIT;
10809
10810 if (addr_mode != flag_code)
10811 {
10812 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10813 i.prefixes += 1;
10814 /* Change the size of any displacement too. At most one
10815 of Disp16 or Disp32 is set.
10816 FIXME. There doesn't seem to be any real need for
10817 separate Disp16 and Disp32 flags. The same goes for
10818 Imm16 and Imm32. Removing them would probably clean
10819 up the code quite a lot. */
10820 if (flag_code != CODE_64BIT
10821 && (i.types[this_operand].bitfield.disp16
10822 || i.types[this_operand].bitfield.disp32))
10823 i.types[this_operand]
10824 = operand_type_xor (i.types[this_operand], disp16_32);
10825 }
10826 }
10827 }
24eab124 10828#endif
be05d201
L
10829 }
10830
2abc2bec
JB
10831 return addr_mode;
10832}
10833
10834/* Make sure the memory operand we've been dealt is valid.
10835 Return 1 on success, 0 on a failure. */
10836
10837static int
10838i386_index_check (const char *operand_string)
10839{
10840 const char *kind = "base/index";
10841 enum flag_code addr_mode = i386_addressing_mode ();
10842
fc0763e6 10843 if (current_templates->start->opcode_modifier.isstring
c3949f43 10844 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10845 && (current_templates->end[-1].opcode_modifier.isstring
10846 || i.mem_operands))
10847 {
10848 /* Memory operands of string insns are special in that they only allow
10849 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10850 const reg_entry *expected_reg;
10851 static const char *di_si[][2] =
10852 {
10853 { "esi", "edi" },
10854 { "si", "di" },
10855 { "rsi", "rdi" }
10856 };
10857 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10858
10859 kind = "string address";
10860
8325cc63 10861 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10862 {
51c8edf6
JB
10863 int es_op = current_templates->end[-1].opcode_modifier.isstring
10864 - IS_STRING_ES_OP0;
10865 int op = 0;
fc0763e6 10866
51c8edf6 10867 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10868 || ((!i.mem_operands != !intel_syntax)
10869 && current_templates->end[-1].operand_types[1]
10870 .bitfield.baseindex))
51c8edf6
JB
10871 op = 1;
10872 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10873 }
10874 else
be05d201 10875 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10876
be05d201
L
10877 if (i.base_reg != expected_reg
10878 || i.index_reg
fc0763e6 10879 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10880 {
be05d201
L
10881 /* The second memory operand must have the same size as
10882 the first one. */
10883 if (i.mem_operands
10884 && i.base_reg
10885 && !((addr_mode == CODE_64BIT
dc821c5f 10886 && i.base_reg->reg_type.bitfield.qword)
be05d201 10887 || (addr_mode == CODE_32BIT
dc821c5f
JB
10888 ? i.base_reg->reg_type.bitfield.dword
10889 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10890 goto bad_address;
10891
fc0763e6
JB
10892 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10893 operand_string,
10894 intel_syntax ? '[' : '(',
10895 register_prefix,
be05d201 10896 expected_reg->reg_name,
fc0763e6 10897 intel_syntax ? ']' : ')');
be05d201 10898 return 1;
fc0763e6 10899 }
be05d201
L
10900 else
10901 return 1;
10902
dc1e8a47 10903 bad_address:
be05d201
L
10904 as_bad (_("`%s' is not a valid %s expression"),
10905 operand_string, kind);
10906 return 0;
3e73aa7c
JH
10907 }
10908 else
10909 {
be05d201
L
10910 if (addr_mode != CODE_16BIT)
10911 {
10912 /* 32-bit/64-bit checks. */
10913 if ((i.base_reg
e968fc9b
JB
10914 && ((addr_mode == CODE_64BIT
10915 ? !i.base_reg->reg_type.bitfield.qword
10916 : !i.base_reg->reg_type.bitfield.dword)
10917 || (i.index_reg && i.base_reg->reg_num == RegIP)
10918 || i.base_reg->reg_num == RegIZ))
be05d201 10919 || (i.index_reg
1b54b8d7
JB
10920 && !i.index_reg->reg_type.bitfield.xmmword
10921 && !i.index_reg->reg_type.bitfield.ymmword
10922 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10923 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10924 ? !i.index_reg->reg_type.bitfield.qword
10925 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10926 || !i.index_reg->reg_type.bitfield.baseindex)))
10927 goto bad_address;
8178be5b
JB
10928
10929 /* bndmk, bndldx, and bndstx have special restrictions. */
10930 if (current_templates->start->base_opcode == 0xf30f1b
10931 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10932 {
10933 /* They cannot use RIP-relative addressing. */
e968fc9b 10934 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10935 {
10936 as_bad (_("`%s' cannot be used here"), operand_string);
10937 return 0;
10938 }
10939
10940 /* bndldx and bndstx ignore their scale factor. */
10941 if (current_templates->start->base_opcode != 0xf30f1b
10942 && i.log2_scale_factor)
10943 as_warn (_("register scaling is being ignored here"));
10944 }
be05d201
L
10945 }
10946 else
3e73aa7c 10947 {
be05d201 10948 /* 16-bit checks. */
3e73aa7c 10949 if ((i.base_reg
dc821c5f 10950 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10951 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10952 || (i.index_reg
dc821c5f 10953 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10954 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10955 || !(i.base_reg
10956 && i.base_reg->reg_num < 6
10957 && i.index_reg->reg_num >= 6
10958 && i.log2_scale_factor == 0))))
be05d201 10959 goto bad_address;
3e73aa7c
JH
10960 }
10961 }
be05d201 10962 return 1;
24eab124 10963}
252b5132 10964
43234a1e
L
10965/* Handle vector immediates. */
10966
10967static int
10968RC_SAE_immediate (const char *imm_start)
10969{
10970 unsigned int match_found, j;
10971 const char *pstr = imm_start;
10972 expressionS *exp;
10973
10974 if (*pstr != '{')
10975 return 0;
10976
10977 pstr++;
10978 match_found = 0;
10979 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10980 {
10981 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10982 {
10983 if (!i.rounding)
10984 {
10985 rc_op.type = RC_NamesTable[j].type;
10986 rc_op.operand = this_operand;
10987 i.rounding = &rc_op;
10988 }
10989 else
10990 {
10991 as_bad (_("duplicated `%s'"), imm_start);
10992 return 0;
10993 }
10994 pstr += RC_NamesTable[j].len;
10995 match_found = 1;
10996 break;
10997 }
10998 }
10999 if (!match_found)
11000 return 0;
11001
11002 if (*pstr++ != '}')
11003 {
11004 as_bad (_("Missing '}': '%s'"), imm_start);
11005 return 0;
11006 }
11007 /* RC/SAE immediate string should contain nothing more. */;
11008 if (*pstr != 0)
11009 {
11010 as_bad (_("Junk after '}': '%s'"), imm_start);
11011 return 0;
11012 }
11013
11014 exp = &im_expressions[i.imm_operands++];
11015 i.op[this_operand].imms = exp;
11016
11017 exp->X_op = O_constant;
11018 exp->X_add_number = 0;
11019 exp->X_add_symbol = (symbolS *) 0;
11020 exp->X_op_symbol = (symbolS *) 0;
11021
11022 i.types[this_operand].bitfield.imm8 = 1;
11023 return 1;
11024}
11025
8325cc63
JB
11026/* Only string instructions can have a second memory operand, so
11027 reduce current_templates to just those if it contains any. */
11028static int
11029maybe_adjust_templates (void)
11030{
11031 const insn_template *t;
11032
11033 gas_assert (i.mem_operands == 1);
11034
11035 for (t = current_templates->start; t < current_templates->end; ++t)
11036 if (t->opcode_modifier.isstring)
11037 break;
11038
11039 if (t < current_templates->end)
11040 {
11041 static templates aux_templates;
11042 bfd_boolean recheck;
11043
11044 aux_templates.start = t;
11045 for (; t < current_templates->end; ++t)
11046 if (!t->opcode_modifier.isstring)
11047 break;
11048 aux_templates.end = t;
11049
11050 /* Determine whether to re-check the first memory operand. */
11051 recheck = (aux_templates.start != current_templates->start
11052 || t != current_templates->end);
11053
11054 current_templates = &aux_templates;
11055
11056 if (recheck)
11057 {
11058 i.mem_operands = 0;
11059 if (i.memop1_string != NULL
11060 && i386_index_check (i.memop1_string) == 0)
11061 return 0;
11062 i.mem_operands = 1;
11063 }
11064 }
11065
11066 return 1;
11067}
11068
fc0763e6 11069/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 11070 on error. */
252b5132 11071
252b5132 11072static int
a7619375 11073i386_att_operand (char *operand_string)
252b5132 11074{
af6bdddf
AM
11075 const reg_entry *r;
11076 char *end_op;
24eab124 11077 char *op_string = operand_string;
252b5132 11078
24eab124 11079 if (is_space_char (*op_string))
252b5132
RH
11080 ++op_string;
11081
24eab124 11082 /* We check for an absolute prefix (differentiating,
47926f60 11083 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
11084 if (*op_string == ABSOLUTE_PREFIX)
11085 {
11086 ++op_string;
11087 if (is_space_char (*op_string))
11088 ++op_string;
6f2f06be 11089 i.jumpabsolute = TRUE;
24eab124 11090 }
252b5132 11091
47926f60 11092 /* Check if operand is a register. */
4d1bb795 11093 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 11094 {
40fb9820
L
11095 i386_operand_type temp;
11096
8a6fb3f9
JB
11097 if (r == &bad_reg)
11098 return 0;
11099
24eab124
AM
11100 /* Check for a segment override by searching for ':' after a
11101 segment register. */
11102 op_string = end_op;
11103 if (is_space_char (*op_string))
11104 ++op_string;
00cee14f 11105 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
11106 {
11107 switch (r->reg_num)
11108 {
11109 case 0:
11110 i.seg[i.mem_operands] = &es;
11111 break;
11112 case 1:
11113 i.seg[i.mem_operands] = &cs;
11114 break;
11115 case 2:
11116 i.seg[i.mem_operands] = &ss;
11117 break;
11118 case 3:
11119 i.seg[i.mem_operands] = &ds;
11120 break;
11121 case 4:
11122 i.seg[i.mem_operands] = &fs;
11123 break;
11124 case 5:
11125 i.seg[i.mem_operands] = &gs;
11126 break;
11127 }
252b5132 11128
24eab124 11129 /* Skip the ':' and whitespace. */
252b5132
RH
11130 ++op_string;
11131 if (is_space_char (*op_string))
24eab124 11132 ++op_string;
252b5132 11133
24eab124
AM
11134 if (!is_digit_char (*op_string)
11135 && !is_identifier_char (*op_string)
11136 && *op_string != '('
11137 && *op_string != ABSOLUTE_PREFIX)
11138 {
11139 as_bad (_("bad memory operand `%s'"), op_string);
11140 return 0;
11141 }
47926f60 11142 /* Handle case of %es:*foo. */
24eab124
AM
11143 if (*op_string == ABSOLUTE_PREFIX)
11144 {
11145 ++op_string;
11146 if (is_space_char (*op_string))
11147 ++op_string;
6f2f06be 11148 i.jumpabsolute = TRUE;
24eab124
AM
11149 }
11150 goto do_memory_reference;
11151 }
43234a1e
L
11152
11153 /* Handle vector operations. */
11154 if (*op_string == '{')
11155 {
11156 op_string = check_VecOperations (op_string, NULL);
11157 if (op_string == NULL)
11158 return 0;
11159 }
11160
24eab124
AM
11161 if (*op_string)
11162 {
d0b47220 11163 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
11164 return 0;
11165 }
40fb9820
L
11166 temp = r->reg_type;
11167 temp.bitfield.baseindex = 0;
c6fb90c8
L
11168 i.types[this_operand] = operand_type_or (i.types[this_operand],
11169 temp);
7d5e4556 11170 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 11171 i.op[this_operand].regs = r;
24eab124
AM
11172 i.reg_operands++;
11173 }
af6bdddf
AM
11174 else if (*op_string == REGISTER_PREFIX)
11175 {
11176 as_bad (_("bad register name `%s'"), op_string);
11177 return 0;
11178 }
24eab124 11179 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 11180 {
24eab124 11181 ++op_string;
6f2f06be 11182 if (i.jumpabsolute)
24eab124 11183 {
d0b47220 11184 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
11185 return 0;
11186 }
11187 if (!i386_immediate (op_string))
11188 return 0;
11189 }
43234a1e
L
11190 else if (RC_SAE_immediate (operand_string))
11191 {
11192 /* If it is a RC or SAE immediate, do nothing. */
11193 ;
11194 }
24eab124
AM
11195 else if (is_digit_char (*op_string)
11196 || is_identifier_char (*op_string)
d02603dc 11197 || *op_string == '"'
e5cb08ac 11198 || *op_string == '(')
24eab124 11199 {
47926f60 11200 /* This is a memory reference of some sort. */
af6bdddf 11201 char *base_string;
252b5132 11202
47926f60 11203 /* Start and end of displacement string expression (if found). */
eecb386c
AM
11204 char *displacement_string_start;
11205 char *displacement_string_end;
43234a1e 11206 char *vop_start;
252b5132 11207
24eab124 11208 do_memory_reference:
8325cc63
JB
11209 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11210 return 0;
24eab124 11211 if ((i.mem_operands == 1
40fb9820 11212 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
11213 || i.mem_operands == 2)
11214 {
11215 as_bad (_("too many memory references for `%s'"),
11216 current_templates->start->name);
11217 return 0;
11218 }
252b5132 11219
24eab124
AM
11220 /* Check for base index form. We detect the base index form by
11221 looking for an ')' at the end of the operand, searching
11222 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11223 after the '('. */
af6bdddf 11224 base_string = op_string + strlen (op_string);
c3332e24 11225
43234a1e
L
11226 /* Handle vector operations. */
11227 vop_start = strchr (op_string, '{');
11228 if (vop_start && vop_start < base_string)
11229 {
11230 if (check_VecOperations (vop_start, base_string) == NULL)
11231 return 0;
11232 base_string = vop_start;
11233 }
11234
af6bdddf
AM
11235 --base_string;
11236 if (is_space_char (*base_string))
11237 --base_string;
252b5132 11238
47926f60 11239 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
11240 displacement_string_start = op_string;
11241 displacement_string_end = base_string + 1;
252b5132 11242
24eab124
AM
11243 if (*base_string == ')')
11244 {
af6bdddf 11245 char *temp_string;
24eab124
AM
11246 unsigned int parens_balanced = 1;
11247 /* We've already checked that the number of left & right ()'s are
47926f60 11248 equal, so this loop will not be infinite. */
24eab124
AM
11249 do
11250 {
11251 base_string--;
11252 if (*base_string == ')')
11253 parens_balanced++;
11254 if (*base_string == '(')
11255 parens_balanced--;
11256 }
11257 while (parens_balanced);
c3332e24 11258
af6bdddf 11259 temp_string = base_string;
c3332e24 11260
24eab124 11261 /* Skip past '(' and whitespace. */
252b5132
RH
11262 ++base_string;
11263 if (is_space_char (*base_string))
24eab124 11264 ++base_string;
252b5132 11265
af6bdddf 11266 if (*base_string == ','
4eed87de
AM
11267 || ((i.base_reg = parse_register (base_string, &end_op))
11268 != NULL))
252b5132 11269 {
af6bdddf 11270 displacement_string_end = temp_string;
252b5132 11271
40fb9820 11272 i.types[this_operand].bitfield.baseindex = 1;
252b5132 11273
af6bdddf 11274 if (i.base_reg)
24eab124 11275 {
8a6fb3f9
JB
11276 if (i.base_reg == &bad_reg)
11277 return 0;
24eab124
AM
11278 base_string = end_op;
11279 if (is_space_char (*base_string))
11280 ++base_string;
af6bdddf
AM
11281 }
11282
11283 /* There may be an index reg or scale factor here. */
11284 if (*base_string == ',')
11285 {
11286 ++base_string;
11287 if (is_space_char (*base_string))
11288 ++base_string;
11289
4eed87de
AM
11290 if ((i.index_reg = parse_register (base_string, &end_op))
11291 != NULL)
24eab124 11292 {
8a6fb3f9
JB
11293 if (i.index_reg == &bad_reg)
11294 return 0;
af6bdddf 11295 base_string = end_op;
24eab124
AM
11296 if (is_space_char (*base_string))
11297 ++base_string;
af6bdddf
AM
11298 if (*base_string == ',')
11299 {
11300 ++base_string;
11301 if (is_space_char (*base_string))
11302 ++base_string;
11303 }
e5cb08ac 11304 else if (*base_string != ')')
af6bdddf 11305 {
4eed87de
AM
11306 as_bad (_("expecting `,' or `)' "
11307 "after index register in `%s'"),
af6bdddf
AM
11308 operand_string);
11309 return 0;
11310 }
24eab124 11311 }
af6bdddf 11312 else if (*base_string == REGISTER_PREFIX)
24eab124 11313 {
f76bf5e0
L
11314 end_op = strchr (base_string, ',');
11315 if (end_op)
11316 *end_op = '\0';
af6bdddf 11317 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
11318 return 0;
11319 }
252b5132 11320
47926f60 11321 /* Check for scale factor. */
551c1ca1 11322 if (*base_string != ')')
af6bdddf 11323 {
551c1ca1
AM
11324 char *end_scale = i386_scale (base_string);
11325
11326 if (!end_scale)
af6bdddf 11327 return 0;
24eab124 11328
551c1ca1 11329 base_string = end_scale;
af6bdddf
AM
11330 if (is_space_char (*base_string))
11331 ++base_string;
11332 if (*base_string != ')')
11333 {
4eed87de
AM
11334 as_bad (_("expecting `)' "
11335 "after scale factor in `%s'"),
af6bdddf
AM
11336 operand_string);
11337 return 0;
11338 }
11339 }
11340 else if (!i.index_reg)
24eab124 11341 {
4eed87de
AM
11342 as_bad (_("expecting index register or scale factor "
11343 "after `,'; got '%c'"),
af6bdddf 11344 *base_string);
24eab124
AM
11345 return 0;
11346 }
11347 }
af6bdddf 11348 else if (*base_string != ')')
24eab124 11349 {
4eed87de
AM
11350 as_bad (_("expecting `,' or `)' "
11351 "after base register in `%s'"),
af6bdddf 11352 operand_string);
24eab124
AM
11353 return 0;
11354 }
c3332e24 11355 }
af6bdddf 11356 else if (*base_string == REGISTER_PREFIX)
c3332e24 11357 {
f76bf5e0
L
11358 end_op = strchr (base_string, ',');
11359 if (end_op)
11360 *end_op = '\0';
af6bdddf 11361 as_bad (_("bad register name `%s'"), base_string);
24eab124 11362 return 0;
c3332e24 11363 }
24eab124
AM
11364 }
11365
11366 /* If there's an expression beginning the operand, parse it,
11367 assuming displacement_string_start and
11368 displacement_string_end are meaningful. */
11369 if (displacement_string_start != displacement_string_end)
11370 {
11371 if (!i386_displacement (displacement_string_start,
11372 displacement_string_end))
11373 return 0;
11374 }
11375
11376 /* Special case for (%dx) while doing input/output op. */
11377 if (i.base_reg
75e5731b
JB
11378 && i.base_reg->reg_type.bitfield.instance == RegD
11379 && i.base_reg->reg_type.bitfield.word
24eab124
AM
11380 && i.index_reg == 0
11381 && i.log2_scale_factor == 0
11382 && i.seg[i.mem_operands] == 0
40fb9820 11383 && !operand_type_check (i.types[this_operand], disp))
24eab124 11384 {
2fb5be8d 11385 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
11386 return 1;
11387 }
11388
eecb386c
AM
11389 if (i386_index_check (operand_string) == 0)
11390 return 0;
c48dadc9 11391 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
11392 if (i.mem_operands == 0)
11393 i.memop1_string = xstrdup (operand_string);
24eab124
AM
11394 i.mem_operands++;
11395 }
11396 else
ce8a8b2f
AM
11397 {
11398 /* It's not a memory operand; argh! */
24eab124
AM
11399 as_bad (_("invalid char %s beginning operand %d `%s'"),
11400 output_invalid (*op_string),
11401 this_operand + 1,
11402 op_string);
11403 return 0;
11404 }
47926f60 11405 return 1; /* Normal return. */
252b5132
RH
11406}
11407\f
fa94de6b
RM
11408/* Calculate the maximum variable size (i.e., excluding fr_fix)
11409 that an rs_machine_dependent frag may reach. */
11410
11411unsigned int
11412i386_frag_max_var (fragS *frag)
11413{
11414 /* The only relaxable frags are for jumps.
11415 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11416 gas_assert (frag->fr_type == rs_machine_dependent);
11417 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11418}
11419
b084df0b
L
11420#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11421static int
8dcea932 11422elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
11423{
11424 /* STT_GNU_IFUNC symbol must go through PLT. */
11425 if ((symbol_get_bfdsym (fr_symbol)->flags
11426 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11427 return 0;
11428
11429 if (!S_IS_EXTERNAL (fr_symbol))
11430 /* Symbol may be weak or local. */
11431 return !S_IS_WEAK (fr_symbol);
11432
8dcea932
L
11433 /* Global symbols with non-default visibility can't be preempted. */
11434 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11435 return 1;
11436
11437 if (fr_var != NO_RELOC)
11438 switch ((enum bfd_reloc_code_real) fr_var)
11439 {
11440 case BFD_RELOC_386_PLT32:
11441 case BFD_RELOC_X86_64_PLT32:
33eaf5de 11442 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
11443 return 0;
11444 default:
11445 abort ();
11446 }
11447
b084df0b
L
11448 /* Global symbols with default visibility in a shared library may be
11449 preempted by another definition. */
8dcea932 11450 return !shared;
b084df0b
L
11451}
11452#endif
11453
79d72f45
HL
11454/* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11455 Note also work for Skylake and Cascadelake.
11456---------------------------------------------------------------------
11457| JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11458| ------ | ----------- | ------- | -------- |
11459| Jo | N | N | Y |
11460| Jno | N | N | Y |
11461| Jc/Jb | Y | N | Y |
11462| Jae/Jnb | Y | N | Y |
11463| Je/Jz | Y | Y | Y |
11464| Jne/Jnz | Y | Y | Y |
11465| Jna/Jbe | Y | N | Y |
11466| Ja/Jnbe | Y | N | Y |
11467| Js | N | N | Y |
11468| Jns | N | N | Y |
11469| Jp/Jpe | N | N | Y |
11470| Jnp/Jpo | N | N | Y |
11471| Jl/Jnge | Y | Y | Y |
11472| Jge/Jnl | Y | Y | Y |
11473| Jle/Jng | Y | Y | Y |
11474| Jg/Jnle | Y | Y | Y |
11475--------------------------------------------------------------------- */
11476static int
11477i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11478{
11479 if (mf_cmp == mf_cmp_alu_cmp)
11480 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11481 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11482 if (mf_cmp == mf_cmp_incdec)
11483 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11484 || mf_jcc == mf_jcc_jle);
11485 if (mf_cmp == mf_cmp_test_and)
11486 return 1;
11487 return 0;
11488}
11489
e379e5f3
L
11490/* Return the next non-empty frag. */
11491
11492static fragS *
11493i386_next_non_empty_frag (fragS *fragP)
11494{
11495 /* There may be a frag with a ".fill 0" when there is no room in
11496 the current frag for frag_grow in output_insn. */
11497 for (fragP = fragP->fr_next;
11498 (fragP != NULL
11499 && fragP->fr_type == rs_fill
11500 && fragP->fr_fix == 0);
11501 fragP = fragP->fr_next)
11502 ;
11503 return fragP;
11504}
11505
11506/* Return the next jcc frag after BRANCH_PADDING. */
11507
11508static fragS *
79d72f45 11509i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
e379e5f3 11510{
79d72f45
HL
11511 fragS *branch_fragP;
11512 if (!pad_fragP)
e379e5f3
L
11513 return NULL;
11514
79d72f45
HL
11515 if (pad_fragP->fr_type == rs_machine_dependent
11516 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
e379e5f3
L
11517 == BRANCH_PADDING))
11518 {
79d72f45
HL
11519 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11520 if (branch_fragP->fr_type != rs_machine_dependent)
e379e5f3 11521 return NULL;
79d72f45
HL
11522 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11523 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11524 pad_fragP->tc_frag_data.mf_type))
11525 return branch_fragP;
e379e5f3
L
11526 }
11527
11528 return NULL;
11529}
11530
11531/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11532
11533static void
11534i386_classify_machine_dependent_frag (fragS *fragP)
11535{
11536 fragS *cmp_fragP;
11537 fragS *pad_fragP;
11538 fragS *branch_fragP;
11539 fragS *next_fragP;
11540 unsigned int max_prefix_length;
11541
11542 if (fragP->tc_frag_data.classified)
11543 return;
11544
11545 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11546 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11547 for (next_fragP = fragP;
11548 next_fragP != NULL;
11549 next_fragP = next_fragP->fr_next)
11550 {
11551 next_fragP->tc_frag_data.classified = 1;
11552 if (next_fragP->fr_type == rs_machine_dependent)
11553 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11554 {
11555 case BRANCH_PADDING:
11556 /* The BRANCH_PADDING frag must be followed by a branch
11557 frag. */
11558 branch_fragP = i386_next_non_empty_frag (next_fragP);
11559 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11560 break;
11561 case FUSED_JCC_PADDING:
11562 /* Check if this is a fused jcc:
11563 FUSED_JCC_PADDING
11564 CMP like instruction
11565 BRANCH_PADDING
11566 COND_JUMP
11567 */
11568 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11569 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
79d72f45 11570 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
e379e5f3
L
11571 if (branch_fragP)
11572 {
11573 /* The BRANCH_PADDING frag is merged with the
11574 FUSED_JCC_PADDING frag. */
11575 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11576 /* CMP like instruction size. */
11577 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11578 frag_wane (pad_fragP);
11579 /* Skip to branch_fragP. */
11580 next_fragP = branch_fragP;
11581 }
11582 else if (next_fragP->tc_frag_data.max_prefix_length)
11583 {
11584 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11585 a fused jcc. */
11586 next_fragP->fr_subtype
11587 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11588 next_fragP->tc_frag_data.max_bytes
11589 = next_fragP->tc_frag_data.max_prefix_length;
11590 /* This will be updated in the BRANCH_PREFIX scan. */
11591 next_fragP->tc_frag_data.max_prefix_length = 0;
11592 }
11593 else
11594 frag_wane (next_fragP);
11595 break;
11596 }
11597 }
11598
11599 /* Stop if there is no BRANCH_PREFIX. */
11600 if (!align_branch_prefix_size)
11601 return;
11602
11603 /* Scan for BRANCH_PREFIX. */
11604 for (; fragP != NULL; fragP = fragP->fr_next)
11605 {
11606 if (fragP->fr_type != rs_machine_dependent
11607 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11608 != BRANCH_PREFIX))
11609 continue;
11610
11611 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11612 COND_JUMP_PREFIX. */
11613 max_prefix_length = 0;
11614 for (next_fragP = fragP;
11615 next_fragP != NULL;
11616 next_fragP = next_fragP->fr_next)
11617 {
11618 if (next_fragP->fr_type == rs_fill)
11619 /* Skip rs_fill frags. */
11620 continue;
11621 else if (next_fragP->fr_type != rs_machine_dependent)
11622 /* Stop for all other frags. */
11623 break;
11624
11625 /* rs_machine_dependent frags. */
11626 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11627 == BRANCH_PREFIX)
11628 {
11629 /* Count BRANCH_PREFIX frags. */
11630 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11631 {
11632 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11633 frag_wane (next_fragP);
11634 }
11635 else
11636 max_prefix_length
11637 += next_fragP->tc_frag_data.max_bytes;
11638 }
11639 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11640 == BRANCH_PADDING)
11641 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11642 == FUSED_JCC_PADDING))
11643 {
11644 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11645 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11646 break;
11647 }
11648 else
11649 /* Stop for other rs_machine_dependent frags. */
11650 break;
11651 }
11652
11653 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11654
11655 /* Skip to the next frag. */
11656 fragP = next_fragP;
11657 }
11658}
11659
11660/* Compute padding size for
11661
11662 FUSED_JCC_PADDING
11663 CMP like instruction
11664 BRANCH_PADDING
11665 COND_JUMP/UNCOND_JUMP
11666
11667 or
11668
11669 BRANCH_PADDING
11670 COND_JUMP/UNCOND_JUMP
11671 */
11672
11673static int
11674i386_branch_padding_size (fragS *fragP, offsetT address)
11675{
11676 unsigned int offset, size, padding_size;
11677 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11678
11679 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11680 if (!address)
11681 address = fragP->fr_address;
11682 address += fragP->fr_fix;
11683
11684 /* CMP like instrunction size. */
11685 size = fragP->tc_frag_data.cmp_size;
11686
11687 /* The base size of the branch frag. */
11688 size += branch_fragP->fr_fix;
11689
11690 /* Add opcode and displacement bytes for the rs_machine_dependent
11691 branch frag. */
11692 if (branch_fragP->fr_type == rs_machine_dependent)
11693 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11694
11695 /* Check if branch is within boundary and doesn't end at the last
11696 byte. */
11697 offset = address & ((1U << align_branch_power) - 1);
11698 if ((offset + size) >= (1U << align_branch_power))
11699 /* Padding needed to avoid crossing boundary. */
11700 padding_size = (1U << align_branch_power) - offset;
11701 else
11702 /* No padding needed. */
11703 padding_size = 0;
11704
11705 /* The return value may be saved in tc_frag_data.length which is
11706 unsigned byte. */
11707 if (!fits_in_unsigned_byte (padding_size))
11708 abort ();
11709
11710 return padding_size;
11711}
11712
11713/* i386_generic_table_relax_frag()
11714
11715 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11716 grow/shrink padding to align branch frags. Hand others to
11717 relax_frag(). */
11718
11719long
11720i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11721{
11722 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11723 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11724 {
11725 long padding_size = i386_branch_padding_size (fragP, 0);
11726 long grow = padding_size - fragP->tc_frag_data.length;
11727
11728 /* When the BRANCH_PREFIX frag is used, the computed address
11729 must match the actual address and there should be no padding. */
11730 if (fragP->tc_frag_data.padding_address
11731 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11732 || padding_size))
11733 abort ();
11734
11735 /* Update the padding size. */
11736 if (grow)
11737 fragP->tc_frag_data.length = padding_size;
11738
11739 return grow;
11740 }
11741 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11742 {
11743 fragS *padding_fragP, *next_fragP;
11744 long padding_size, left_size, last_size;
11745
11746 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11747 if (!padding_fragP)
11748 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11749 return (fragP->tc_frag_data.length
11750 - fragP->tc_frag_data.last_length);
11751
11752 /* Compute the relative address of the padding frag in the very
11753 first time where the BRANCH_PREFIX frag sizes are zero. */
11754 if (!fragP->tc_frag_data.padding_address)
11755 fragP->tc_frag_data.padding_address
11756 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11757
11758 /* First update the last length from the previous interation. */
11759 left_size = fragP->tc_frag_data.prefix_length;
11760 for (next_fragP = fragP;
11761 next_fragP != padding_fragP;
11762 next_fragP = next_fragP->fr_next)
11763 if (next_fragP->fr_type == rs_machine_dependent
11764 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11765 == BRANCH_PREFIX))
11766 {
11767 if (left_size)
11768 {
11769 int max = next_fragP->tc_frag_data.max_bytes;
11770 if (max)
11771 {
11772 int size;
11773 if (max > left_size)
11774 size = left_size;
11775 else
11776 size = max;
11777 left_size -= size;
11778 next_fragP->tc_frag_data.last_length = size;
11779 }
11780 }
11781 else
11782 next_fragP->tc_frag_data.last_length = 0;
11783 }
11784
11785 /* Check the padding size for the padding frag. */
11786 padding_size = i386_branch_padding_size
11787 (padding_fragP, (fragP->fr_address
11788 + fragP->tc_frag_data.padding_address));
11789
11790 last_size = fragP->tc_frag_data.prefix_length;
11791 /* Check if there is change from the last interation. */
11792 if (padding_size == last_size)
11793 {
11794 /* Update the expected address of the padding frag. */
11795 padding_fragP->tc_frag_data.padding_address
11796 = (fragP->fr_address + padding_size
11797 + fragP->tc_frag_data.padding_address);
11798 return 0;
11799 }
11800
11801 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11802 {
11803 /* No padding if there is no sufficient room. Clear the
11804 expected address of the padding frag. */
11805 padding_fragP->tc_frag_data.padding_address = 0;
11806 padding_size = 0;
11807 }
11808 else
11809 /* Store the expected address of the padding frag. */
11810 padding_fragP->tc_frag_data.padding_address
11811 = (fragP->fr_address + padding_size
11812 + fragP->tc_frag_data.padding_address);
11813
11814 fragP->tc_frag_data.prefix_length = padding_size;
11815
11816 /* Update the length for the current interation. */
11817 left_size = padding_size;
11818 for (next_fragP = fragP;
11819 next_fragP != padding_fragP;
11820 next_fragP = next_fragP->fr_next)
11821 if (next_fragP->fr_type == rs_machine_dependent
11822 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11823 == BRANCH_PREFIX))
11824 {
11825 if (left_size)
11826 {
11827 int max = next_fragP->tc_frag_data.max_bytes;
11828 if (max)
11829 {
11830 int size;
11831 if (max > left_size)
11832 size = left_size;
11833 else
11834 size = max;
11835 left_size -= size;
11836 next_fragP->tc_frag_data.length = size;
11837 }
11838 }
11839 else
11840 next_fragP->tc_frag_data.length = 0;
11841 }
11842
11843 return (fragP->tc_frag_data.length
11844 - fragP->tc_frag_data.last_length);
11845 }
11846 return relax_frag (segment, fragP, stretch);
11847}
11848
ee7fcc42
AM
11849/* md_estimate_size_before_relax()
11850
11851 Called just before relax() for rs_machine_dependent frags. The x86
11852 assembler uses these frags to handle variable size jump
11853 instructions.
11854
11855 Any symbol that is now undefined will not become defined.
11856 Return the correct fr_subtype in the frag.
11857 Return the initial "guess for variable size of frag" to caller.
11858 The guess is actually the growth beyond the fixed part. Whatever
11859 we do to grow the fixed or variable part contributes to our
11860 returned value. */
11861
252b5132 11862int
7016a5d5 11863md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11864{
e379e5f3
L
11865 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11866 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11867 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11868 {
11869 i386_classify_machine_dependent_frag (fragP);
11870 return fragP->tc_frag_data.length;
11871 }
11872
252b5132 11873 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11874 check for un-relaxable symbols. On an ELF system, we can't relax
11875 an externally visible symbol, because it may be overridden by a
11876 shared library. */
11877 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11878#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11879 || (IS_ELF
8dcea932
L
11880 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11881 fragP->fr_var))
fbeb56a4
DK
11882#endif
11883#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11884 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11885 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11886#endif
11887 )
252b5132 11888 {
b98ef147
AM
11889 /* Symbol is undefined in this segment, or we need to keep a
11890 reloc so that weak symbols can be overridden. */
11891 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11892 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11893 unsigned char *opcode;
11894 int old_fr_fix;
f6af82bd 11895
ee7fcc42 11896 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11897 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11898 else if (size == 2)
f6af82bd 11899 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11900#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11901 else if (need_plt32_p (fragP->fr_symbol))
11902 reloc_type = BFD_RELOC_X86_64_PLT32;
11903#endif
f6af82bd
AM
11904 else
11905 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11906
ee7fcc42
AM
11907 old_fr_fix = fragP->fr_fix;
11908 opcode = (unsigned char *) fragP->fr_opcode;
11909
fddf5b5b 11910 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11911 {
fddf5b5b
AM
11912 case UNCOND_JUMP:
11913 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11914 opcode[0] = 0xe9;
252b5132 11915 fragP->fr_fix += size;
062cd5e7
AS
11916 fix_new (fragP, old_fr_fix, size,
11917 fragP->fr_symbol,
11918 fragP->fr_offset, 1,
11919 reloc_type);
252b5132
RH
11920 break;
11921
fddf5b5b 11922 case COND_JUMP86:
412167cb
AM
11923 if (size == 2
11924 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11925 {
11926 /* Negate the condition, and branch past an
11927 unconditional jump. */
11928 opcode[0] ^= 1;
11929 opcode[1] = 3;
11930 /* Insert an unconditional jump. */
11931 opcode[2] = 0xe9;
11932 /* We added two extra opcode bytes, and have a two byte
11933 offset. */
11934 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11935 fix_new (fragP, old_fr_fix + 2, 2,
11936 fragP->fr_symbol,
11937 fragP->fr_offset, 1,
11938 reloc_type);
fddf5b5b
AM
11939 break;
11940 }
11941 /* Fall through. */
11942
11943 case COND_JUMP:
412167cb
AM
11944 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11945 {
3e02c1cc
AM
11946 fixS *fixP;
11947
412167cb 11948 fragP->fr_fix += 1;
3e02c1cc
AM
11949 fixP = fix_new (fragP, old_fr_fix, 1,
11950 fragP->fr_symbol,
11951 fragP->fr_offset, 1,
11952 BFD_RELOC_8_PCREL);
11953 fixP->fx_signed = 1;
412167cb
AM
11954 break;
11955 }
93c2a809 11956
24eab124 11957 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11958 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11959 opcode[1] = opcode[0] + 0x10;
f6af82bd 11960 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11961 /* We've added an opcode byte. */
11962 fragP->fr_fix += 1 + size;
062cd5e7
AS
11963 fix_new (fragP, old_fr_fix + 1, size,
11964 fragP->fr_symbol,
11965 fragP->fr_offset, 1,
11966 reloc_type);
252b5132 11967 break;
fddf5b5b
AM
11968
11969 default:
11970 BAD_CASE (fragP->fr_subtype);
11971 break;
252b5132
RH
11972 }
11973 frag_wane (fragP);
ee7fcc42 11974 return fragP->fr_fix - old_fr_fix;
252b5132 11975 }
93c2a809 11976
93c2a809
AM
11977 /* Guess size depending on current relax state. Initially the relax
11978 state will correspond to a short jump and we return 1, because
11979 the variable part of the frag (the branch offset) is one byte
11980 long. However, we can relax a section more than once and in that
11981 case we must either set fr_subtype back to the unrelaxed state,
11982 or return the value for the appropriate branch. */
11983 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11984}
11985
47926f60
KH
11986/* Called after relax() is finished.
11987
11988 In: Address of frag.
11989 fr_type == rs_machine_dependent.
11990 fr_subtype is what the address relaxed to.
11991
11992 Out: Any fixSs and constants are set up.
11993 Caller will turn frag into a ".space 0". */
11994
252b5132 11995void
7016a5d5
TG
11996md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11997 fragS *fragP)
252b5132 11998{
29b0f896 11999 unsigned char *opcode;
252b5132 12000 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
12001 offsetT target_address;
12002 offsetT opcode_address;
252b5132 12003 unsigned int extension = 0;
847f7ad4 12004 offsetT displacement_from_opcode_start;
252b5132 12005
e379e5f3
L
12006 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12007 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
12008 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12009 {
12010 /* Generate nop padding. */
12011 unsigned int size = fragP->tc_frag_data.length;
12012 if (size)
12013 {
12014 if (size > fragP->tc_frag_data.max_bytes)
12015 abort ();
12016
12017 if (flag_debug)
12018 {
12019 const char *msg;
12020 const char *branch = "branch";
12021 const char *prefix = "";
12022 fragS *padding_fragP;
12023 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12024 == BRANCH_PREFIX)
12025 {
12026 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12027 switch (fragP->tc_frag_data.default_prefix)
12028 {
12029 default:
12030 abort ();
12031 break;
12032 case CS_PREFIX_OPCODE:
12033 prefix = " cs";
12034 break;
12035 case DS_PREFIX_OPCODE:
12036 prefix = " ds";
12037 break;
12038 case ES_PREFIX_OPCODE:
12039 prefix = " es";
12040 break;
12041 case FS_PREFIX_OPCODE:
12042 prefix = " fs";
12043 break;
12044 case GS_PREFIX_OPCODE:
12045 prefix = " gs";
12046 break;
12047 case SS_PREFIX_OPCODE:
12048 prefix = " ss";
12049 break;
12050 }
12051 if (padding_fragP)
12052 msg = _("%s:%u: add %d%s at 0x%llx to align "
12053 "%s within %d-byte boundary\n");
12054 else
12055 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12056 "align %s within %d-byte boundary\n");
12057 }
12058 else
12059 {
12060 padding_fragP = fragP;
12061 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12062 "%s within %d-byte boundary\n");
12063 }
12064
12065 if (padding_fragP)
12066 switch (padding_fragP->tc_frag_data.branch_type)
12067 {
12068 case align_branch_jcc:
12069 branch = "jcc";
12070 break;
12071 case align_branch_fused:
12072 branch = "fused jcc";
12073 break;
12074 case align_branch_jmp:
12075 branch = "jmp";
12076 break;
12077 case align_branch_call:
12078 branch = "call";
12079 break;
12080 case align_branch_indirect:
12081 branch = "indiret branch";
12082 break;
12083 case align_branch_ret:
12084 branch = "ret";
12085 break;
12086 default:
12087 break;
12088 }
12089
12090 fprintf (stdout, msg,
12091 fragP->fr_file, fragP->fr_line, size, prefix,
12092 (long long) fragP->fr_address, branch,
12093 1 << align_branch_power);
12094 }
12095 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12096 memset (fragP->fr_opcode,
12097 fragP->tc_frag_data.default_prefix, size);
12098 else
12099 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12100 size, 0);
12101 fragP->fr_fix += size;
12102 }
12103 return;
12104 }
12105
252b5132
RH
12106 opcode = (unsigned char *) fragP->fr_opcode;
12107
47926f60 12108 /* Address we want to reach in file space. */
252b5132 12109 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 12110
47926f60 12111 /* Address opcode resides at in file space. */
252b5132
RH
12112 opcode_address = fragP->fr_address + fragP->fr_fix;
12113
47926f60 12114 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
12115 displacement_from_opcode_start = target_address - opcode_address;
12116
fddf5b5b 12117 if ((fragP->fr_subtype & BIG) == 0)
252b5132 12118 {
47926f60
KH
12119 /* Don't have to change opcode. */
12120 extension = 1; /* 1 opcode + 1 displacement */
252b5132 12121 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
12122 }
12123 else
12124 {
12125 if (no_cond_jump_promotion
12126 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
12127 as_warn_where (fragP->fr_file, fragP->fr_line,
12128 _("long jump required"));
252b5132 12129
fddf5b5b
AM
12130 switch (fragP->fr_subtype)
12131 {
12132 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12133 extension = 4; /* 1 opcode + 4 displacement */
12134 opcode[0] = 0xe9;
12135 where_to_put_displacement = &opcode[1];
12136 break;
252b5132 12137
fddf5b5b
AM
12138 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12139 extension = 2; /* 1 opcode + 2 displacement */
12140 opcode[0] = 0xe9;
12141 where_to_put_displacement = &opcode[1];
12142 break;
252b5132 12143
fddf5b5b
AM
12144 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12145 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12146 extension = 5; /* 2 opcode + 4 displacement */
12147 opcode[1] = opcode[0] + 0x10;
12148 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12149 where_to_put_displacement = &opcode[2];
12150 break;
252b5132 12151
fddf5b5b
AM
12152 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12153 extension = 3; /* 2 opcode + 2 displacement */
12154 opcode[1] = opcode[0] + 0x10;
12155 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12156 where_to_put_displacement = &opcode[2];
12157 break;
252b5132 12158
fddf5b5b
AM
12159 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12160 extension = 4;
12161 opcode[0] ^= 1;
12162 opcode[1] = 3;
12163 opcode[2] = 0xe9;
12164 where_to_put_displacement = &opcode[3];
12165 break;
12166
12167 default:
12168 BAD_CASE (fragP->fr_subtype);
12169 break;
12170 }
252b5132 12171 }
fddf5b5b 12172
7b81dfbb
AJ
12173 /* If size if less then four we are sure that the operand fits,
12174 but if it's 4, then it could be that the displacement is larger
12175 then -/+ 2GB. */
12176 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12177 && object_64bit
12178 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
12179 + ((addressT) 1 << 31))
12180 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
12181 {
12182 as_bad_where (fragP->fr_file, fragP->fr_line,
12183 _("jump target out of range"));
12184 /* Make us emit 0. */
12185 displacement_from_opcode_start = extension;
12186 }
47926f60 12187 /* Now put displacement after opcode. */
252b5132
RH
12188 md_number_to_chars ((char *) where_to_put_displacement,
12189 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 12190 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
12191 fragP->fr_fix += extension;
12192}
12193\f
7016a5d5 12194/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
12195 by our caller that we have all the info we need to fix it up.
12196
7016a5d5
TG
12197 Parameter valP is the pointer to the value of the bits.
12198
252b5132
RH
12199 On the 386, immediates, displacements, and data pointers are all in
12200 the same (little-endian) format, so we don't need to care about which
12201 we are handling. */
12202
94f592af 12203void
7016a5d5 12204md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 12205{
94f592af 12206 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 12207 valueT value = *valP;
252b5132 12208
f86103b7 12209#if !defined (TE_Mach)
93382f6d
AM
12210 if (fixP->fx_pcrel)
12211 {
12212 switch (fixP->fx_r_type)
12213 {
5865bb77
ILT
12214 default:
12215 break;
12216
d6ab8113
JB
12217 case BFD_RELOC_64:
12218 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12219 break;
93382f6d 12220 case BFD_RELOC_32:
ae8887b5 12221 case BFD_RELOC_X86_64_32S:
93382f6d
AM
12222 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12223 break;
12224 case BFD_RELOC_16:
12225 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12226 break;
12227 case BFD_RELOC_8:
12228 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12229 break;
12230 }
12231 }
252b5132 12232
a161fe53 12233 if (fixP->fx_addsy != NULL
31312f95 12234 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 12235 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 12236 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 12237 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 12238 && !use_rela_relocations)
252b5132 12239 {
31312f95
AM
12240 /* This is a hack. There should be a better way to handle this.
12241 This covers for the fact that bfd_install_relocation will
12242 subtract the current location (for partial_inplace, PC relative
12243 relocations); see more below. */
252b5132 12244#ifndef OBJ_AOUT
718ddfc0 12245 if (IS_ELF
252b5132
RH
12246#ifdef TE_PE
12247 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12248#endif
12249 )
12250 value += fixP->fx_where + fixP->fx_frag->fr_address;
12251#endif
12252#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 12253 if (IS_ELF)
252b5132 12254 {
6539b54b 12255 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 12256
6539b54b 12257 if ((sym_seg == seg
2f66722d 12258 || (symbol_section_p (fixP->fx_addsy)
6539b54b 12259 && sym_seg != absolute_section))
af65af87 12260 && !generic_force_reloc (fixP))
2f66722d
AM
12261 {
12262 /* Yes, we add the values in twice. This is because
6539b54b
AM
12263 bfd_install_relocation subtracts them out again. I think
12264 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
12265 it. FIXME. */
12266 value += fixP->fx_where + fixP->fx_frag->fr_address;
12267 }
252b5132
RH
12268 }
12269#endif
12270#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
12271 /* For some reason, the PE format does not store a
12272 section address offset for a PC relative symbol. */
12273 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 12274 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
12275 value += md_pcrel_from (fixP);
12276#endif
12277 }
fbeb56a4 12278#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
12279 if (fixP->fx_addsy != NULL
12280 && S_IS_WEAK (fixP->fx_addsy)
12281 /* PR 16858: Do not modify weak function references. */
12282 && ! fixP->fx_pcrel)
fbeb56a4 12283 {
296a8689
NC
12284#if !defined (TE_PEP)
12285 /* For x86 PE weak function symbols are neither PC-relative
12286 nor do they set S_IS_FUNCTION. So the only reliable way
12287 to detect them is to check the flags of their containing
12288 section. */
12289 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12290 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12291 ;
12292 else
12293#endif
fbeb56a4
DK
12294 value -= S_GET_VALUE (fixP->fx_addsy);
12295 }
12296#endif
252b5132
RH
12297
12298 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 12299 and we must not disappoint it. */
252b5132 12300#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 12301 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
12302 switch (fixP->fx_r_type)
12303 {
12304 case BFD_RELOC_386_PLT32:
3e73aa7c 12305 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
12306 /* Make the jump instruction point to the address of the operand.
12307 At runtime we merely add the offset to the actual PLT entry.
12308 NB: Subtract the offset size only for jump instructions. */
12309 if (fixP->fx_pcrel)
12310 value = -4;
47926f60 12311 break;
31312f95 12312
13ae64f3
JJ
12313 case BFD_RELOC_386_TLS_GD:
12314 case BFD_RELOC_386_TLS_LDM:
13ae64f3 12315 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
12316 case BFD_RELOC_386_TLS_IE:
12317 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 12318 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
12319 case BFD_RELOC_X86_64_TLSGD:
12320 case BFD_RELOC_X86_64_TLSLD:
12321 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 12322 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
12323 value = 0; /* Fully resolved at runtime. No addend. */
12324 /* Fallthrough */
12325 case BFD_RELOC_386_TLS_LE:
12326 case BFD_RELOC_386_TLS_LDO_32:
12327 case BFD_RELOC_386_TLS_LE_32:
12328 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 12329 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 12330 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 12331 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
12332 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12333 break;
12334
67a4f2b7
AO
12335 case BFD_RELOC_386_TLS_DESC_CALL:
12336 case BFD_RELOC_X86_64_TLSDESC_CALL:
12337 value = 0; /* Fully resolved at runtime. No addend. */
12338 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12339 fixP->fx_done = 0;
12340 return;
12341
47926f60
KH
12342 case BFD_RELOC_VTABLE_INHERIT:
12343 case BFD_RELOC_VTABLE_ENTRY:
12344 fixP->fx_done = 0;
94f592af 12345 return;
47926f60
KH
12346
12347 default:
12348 break;
12349 }
12350#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 12351 *valP = value;
f86103b7 12352#endif /* !defined (TE_Mach) */
3e73aa7c 12353
3e73aa7c 12354 /* Are we finished with this relocation now? */
c6682705 12355 if (fixP->fx_addsy == NULL)
3e73aa7c 12356 fixP->fx_done = 1;
fbeb56a4
DK
12357#if defined (OBJ_COFF) && defined (TE_PE)
12358 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12359 {
12360 fixP->fx_done = 0;
12361 /* Remember value for tc_gen_reloc. */
12362 fixP->fx_addnumber = value;
12363 /* Clear out the frag for now. */
12364 value = 0;
12365 }
12366#endif
3e73aa7c
JH
12367 else if (use_rela_relocations)
12368 {
12369 fixP->fx_no_overflow = 1;
062cd5e7
AS
12370 /* Remember value for tc_gen_reloc. */
12371 fixP->fx_addnumber = value;
3e73aa7c
JH
12372 value = 0;
12373 }
f86103b7 12374
94f592af 12375 md_number_to_chars (p, value, fixP->fx_size);
252b5132 12376}
252b5132 12377\f
6d4af3c2 12378const char *
499ac353 12379md_atof (int type, char *litP, int *sizeP)
252b5132 12380{
499ac353
NC
12381 /* This outputs the LITTLENUMs in REVERSE order;
12382 in accord with the bigendian 386. */
12383 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
12384}
12385\f
2d545b82 12386static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 12387
252b5132 12388static char *
e3bb37b5 12389output_invalid (int c)
252b5132 12390{
3882b010 12391 if (ISPRINT (c))
f9f21a03
L
12392 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12393 "'%c'", c);
252b5132 12394 else
f9f21a03 12395 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 12396 "(0x%x)", (unsigned char) c);
252b5132
RH
12397 return output_invalid_buf;
12398}
12399
8a6fb3f9
JB
12400/* Verify that @r can be used in the current context. */
12401
12402static bfd_boolean check_register (const reg_entry *r)
12403{
12404 if (allow_pseudo_reg)
12405 return TRUE;
12406
12407 if (operand_type_all_zero (&r->reg_type))
12408 return FALSE;
12409
12410 if ((r->reg_type.bitfield.dword
12411 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12412 || r->reg_type.bitfield.class == RegCR
22e00a3f 12413 || r->reg_type.bitfield.class == RegDR)
8a6fb3f9
JB
12414 && !cpu_arch_flags.bitfield.cpui386)
12415 return FALSE;
12416
22e00a3f
JB
12417 if (r->reg_type.bitfield.class == RegTR
12418 && (flag_code == CODE_64BIT
12419 || !cpu_arch_flags.bitfield.cpui386
12420 || cpu_arch_isa_flags.bitfield.cpui586
12421 || cpu_arch_isa_flags.bitfield.cpui686))
12422 return FALSE;
12423
8a6fb3f9
JB
12424 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12425 return FALSE;
12426
12427 if (!cpu_arch_flags.bitfield.cpuavx512f)
12428 {
12429 if (r->reg_type.bitfield.zmmword
12430 || r->reg_type.bitfield.class == RegMask)
12431 return FALSE;
12432
12433 if (!cpu_arch_flags.bitfield.cpuavx)
12434 {
12435 if (r->reg_type.bitfield.ymmword)
12436 return FALSE;
12437
12438 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12439 return FALSE;
12440 }
12441 }
12442
12443 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12444 return FALSE;
12445
12446 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12447 if (!allow_index_reg && r->reg_num == RegIZ)
12448 return FALSE;
12449
12450 /* Upper 16 vector registers are only available with VREX in 64bit
12451 mode, and require EVEX encoding. */
12452 if (r->reg_flags & RegVRex)
12453 {
12454 if (!cpu_arch_flags.bitfield.cpuavx512f
12455 || flag_code != CODE_64BIT)
12456 return FALSE;
12457
da4977e0
JB
12458 if (i.vec_encoding == vex_encoding_default)
12459 i.vec_encoding = vex_encoding_evex;
12460 else if (i.vec_encoding != vex_encoding_evex)
12461 i.vec_encoding = vex_encoding_error;
8a6fb3f9
JB
12462 }
12463
12464 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12465 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12466 && flag_code != CODE_64BIT)
12467 return FALSE;
12468
12469 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12470 && !intel_syntax)
12471 return FALSE;
12472
12473 return TRUE;
12474}
12475
af6bdddf 12476/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
12477
12478static const reg_entry *
4d1bb795 12479parse_real_register (char *reg_string, char **end_op)
252b5132 12480{
af6bdddf
AM
12481 char *s = reg_string;
12482 char *p;
252b5132
RH
12483 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12484 const reg_entry *r;
12485
12486 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12487 if (*s == REGISTER_PREFIX)
12488 ++s;
12489
12490 if (is_space_char (*s))
12491 ++s;
12492
12493 p = reg_name_given;
af6bdddf 12494 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
12495 {
12496 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
12497 return (const reg_entry *) NULL;
12498 s++;
252b5132
RH
12499 }
12500
6588847e
DN
12501 /* For naked regs, make sure that we are not dealing with an identifier.
12502 This prevents confusing an identifier like `eax_var' with register
12503 `eax'. */
12504 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12505 return (const reg_entry *) NULL;
12506
af6bdddf 12507 *end_op = s;
252b5132
RH
12508
12509 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
12510
5f47d35b 12511 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 12512 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 12513 {
0e0eea78
JB
12514 if (!cpu_arch_flags.bitfield.cpu8087
12515 && !cpu_arch_flags.bitfield.cpu287
af32b722
JB
12516 && !cpu_arch_flags.bitfield.cpu387
12517 && !allow_pseudo_reg)
0e0eea78
JB
12518 return (const reg_entry *) NULL;
12519
5f47d35b
AM
12520 if (is_space_char (*s))
12521 ++s;
12522 if (*s == '(')
12523 {
af6bdddf 12524 ++s;
5f47d35b
AM
12525 if (is_space_char (*s))
12526 ++s;
12527 if (*s >= '0' && *s <= '7')
12528 {
db557034 12529 int fpr = *s - '0';
af6bdddf 12530 ++s;
5f47d35b
AM
12531 if (is_space_char (*s))
12532 ++s;
12533 if (*s == ')')
12534 {
12535 *end_op = s + 1;
1e9cc1c2 12536 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
12537 know (r);
12538 return r + fpr;
5f47d35b 12539 }
5f47d35b 12540 }
47926f60 12541 /* We have "%st(" then garbage. */
5f47d35b
AM
12542 return (const reg_entry *) NULL;
12543 }
12544 }
12545
8a6fb3f9 12546 return r && check_register (r) ? r : NULL;
252b5132 12547}
4d1bb795
JB
12548
12549/* REG_STRING starts *before* REGISTER_PREFIX. */
12550
12551static const reg_entry *
12552parse_register (char *reg_string, char **end_op)
12553{
12554 const reg_entry *r;
12555
12556 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12557 r = parse_real_register (reg_string, end_op);
12558 else
12559 r = NULL;
12560 if (!r)
12561 {
12562 char *save = input_line_pointer;
12563 char c;
12564 symbolS *symbolP;
12565
12566 input_line_pointer = reg_string;
d02603dc 12567 c = get_symbol_name (&reg_string);
4d1bb795
JB
12568 symbolP = symbol_find (reg_string);
12569 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12570 {
12571 const expressionS *e = symbol_get_value_expression (symbolP);
12572
0398aac5 12573 know (e->X_op == O_register);
4eed87de 12574 know (e->X_add_number >= 0
c3fe08fa 12575 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 12576 r = i386_regtab + e->X_add_number;
8a6fb3f9
JB
12577 if (!check_register (r))
12578 {
12579 as_bad (_("register '%s%s' cannot be used here"),
12580 register_prefix, r->reg_name);
12581 r = &bad_reg;
12582 }
4d1bb795
JB
12583 *end_op = input_line_pointer;
12584 }
12585 *input_line_pointer = c;
12586 input_line_pointer = save;
12587 }
12588 return r;
12589}
12590
12591int
12592i386_parse_name (char *name, expressionS *e, char *nextcharP)
12593{
12594 const reg_entry *r;
12595 char *end = input_line_pointer;
12596
12597 *end = *nextcharP;
12598 r = parse_register (name, &input_line_pointer);
12599 if (r && end <= input_line_pointer)
12600 {
12601 *nextcharP = *input_line_pointer;
12602 *input_line_pointer = 0;
8a6fb3f9
JB
12603 if (r != &bad_reg)
12604 {
12605 e->X_op = O_register;
12606 e->X_add_number = r - i386_regtab;
12607 }
12608 else
12609 e->X_op = O_illegal;
4d1bb795
JB
12610 return 1;
12611 }
12612 input_line_pointer = end;
12613 *end = 0;
ee86248c 12614 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
12615}
12616
12617void
12618md_operand (expressionS *e)
12619{
ee86248c
JB
12620 char *end;
12621 const reg_entry *r;
4d1bb795 12622
ee86248c
JB
12623 switch (*input_line_pointer)
12624 {
12625 case REGISTER_PREFIX:
12626 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
12627 if (r)
12628 {
12629 e->X_op = O_register;
12630 e->X_add_number = r - i386_regtab;
12631 input_line_pointer = end;
12632 }
ee86248c
JB
12633 break;
12634
12635 case '[':
9c2799c2 12636 gas_assert (intel_syntax);
ee86248c
JB
12637 end = input_line_pointer++;
12638 expression (e);
12639 if (*input_line_pointer == ']')
12640 {
12641 ++input_line_pointer;
12642 e->X_op_symbol = make_expr_symbol (e);
12643 e->X_add_symbol = NULL;
12644 e->X_add_number = 0;
12645 e->X_op = O_index;
12646 }
12647 else
12648 {
12649 e->X_op = O_absent;
12650 input_line_pointer = end;
12651 }
12652 break;
4d1bb795
JB
12653 }
12654}
12655
252b5132 12656\f
4cc782b5 12657#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 12658const char *md_shortopts = "kVQ:sqnO::";
252b5132 12659#else
b6f8c7c4 12660const char *md_shortopts = "qnO::";
252b5132 12661#endif
6e0b89ee 12662
3e73aa7c 12663#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
12664#define OPTION_64 (OPTION_MD_BASE + 1)
12665#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
12666#define OPTION_MARCH (OPTION_MD_BASE + 3)
12667#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
12668#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12669#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12670#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12671#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 12672#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 12673#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 12674#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
12675#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12676#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12677#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12678#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12679#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12680#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12681#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12682#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12683#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12684#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12685#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12686#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12687#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12688#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12689#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12690#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12691#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12692#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12693#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
ae531041
L
12694#define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12695#define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12696#define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
b3b91714 12697
99ad8390
NC
12698struct option md_longopts[] =
12699{
3e73aa7c 12700 {"32", no_argument, NULL, OPTION_32},
321098a5 12701#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12702 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12703 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12704#endif
12705#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12706 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12707 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12708 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12709#endif
b3b91714 12710 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12711 {"march", required_argument, NULL, OPTION_MARCH},
12712 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12713 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12714 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12715 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12716 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12717 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12718 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12719 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12720 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12721 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12722 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12723 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12724 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12725# if defined (TE_PE) || defined (TE_PEP)
12726 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12727#endif
d1982f93 12728 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12729 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12730 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12731 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12732 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12733 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12734 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12735 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
ae531041
L
12736 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12737 {"mlfence-before-indirect-branch", required_argument, NULL,
12738 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12739 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
5db04b09
L
12740 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12741 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12742 {NULL, no_argument, NULL, 0}
12743};
12744size_t md_longopts_size = sizeof (md_longopts);
12745
12746int
17b9d67d 12747md_parse_option (int c, const char *arg)
252b5132 12748{
91d6fa6a 12749 unsigned int j;
e379e5f3 12750 char *arch, *next, *saved, *type;
9103f4f4 12751
252b5132
RH
12752 switch (c)
12753 {
12b55ccc
L
12754 case 'n':
12755 optimize_align_code = 0;
12756 break;
12757
a38cf1db
AM
12758 case 'q':
12759 quiet_warnings = 1;
252b5132
RH
12760 break;
12761
12762#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12763 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12764 should be emitted or not. FIXME: Not implemented. */
12765 case 'Q':
d4693039
JB
12766 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12767 return 0;
252b5132
RH
12768 break;
12769
12770 /* -V: SVR4 argument to print version ID. */
12771 case 'V':
12772 print_version_id ();
12773 break;
12774
a38cf1db
AM
12775 /* -k: Ignore for FreeBSD compatibility. */
12776 case 'k':
252b5132 12777 break;
4cc782b5
ILT
12778
12779 case 's':
12780 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12781 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12782 break;
8dcea932
L
12783
12784 case OPTION_MSHARED:
12785 shared = 1;
12786 break;
b4a3a7b4
L
12787
12788 case OPTION_X86_USED_NOTE:
12789 if (strcasecmp (arg, "yes") == 0)
12790 x86_used_note = 1;
12791 else if (strcasecmp (arg, "no") == 0)
12792 x86_used_note = 0;
12793 else
12794 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12795 break;
12796
12797
99ad8390 12798#endif
321098a5 12799#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12800 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12801 case OPTION_64:
12802 {
12803 const char **list, **l;
12804
3e73aa7c
JH
12805 list = bfd_target_list ();
12806 for (l = list; *l != NULL; l++)
8620418b 12807 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12808 || strcmp (*l, "coff-x86-64") == 0
12809 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12810 || strcmp (*l, "pei-x86-64") == 0
12811 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12812 {
12813 default_arch = "x86_64";
12814 break;
12815 }
3e73aa7c 12816 if (*l == NULL)
2b5d6a91 12817 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12818 free (list);
12819 }
12820 break;
12821#endif
252b5132 12822
351f65ca 12823#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12824 case OPTION_X32:
351f65ca
L
12825 if (IS_ELF)
12826 {
12827 const char **list, **l;
12828
12829 list = bfd_target_list ();
12830 for (l = list; *l != NULL; l++)
12831 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12832 {
12833 default_arch = "x86_64:32";
12834 break;
12835 }
12836 if (*l == NULL)
2b5d6a91 12837 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12838 free (list);
12839 }
12840 else
12841 as_fatal (_("32bit x86_64 is only supported for ELF"));
12842 break;
12843#endif
12844
6e0b89ee
AM
12845 case OPTION_32:
12846 default_arch = "i386";
12847 break;
12848
b3b91714
AM
12849 case OPTION_DIVIDE:
12850#ifdef SVR4_COMMENT_CHARS
12851 {
12852 char *n, *t;
12853 const char *s;
12854
add39d23 12855 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12856 t = n;
12857 for (s = i386_comment_chars; *s != '\0'; s++)
12858 if (*s != '/')
12859 *t++ = *s;
12860 *t = '\0';
12861 i386_comment_chars = n;
12862 }
12863#endif
12864 break;
12865
9103f4f4 12866 case OPTION_MARCH:
293f5f65
L
12867 saved = xstrdup (arg);
12868 arch = saved;
12869 /* Allow -march=+nosse. */
12870 if (*arch == '+')
12871 arch++;
6305a203 12872 do
9103f4f4 12873 {
6305a203 12874 if (*arch == '.')
2b5d6a91 12875 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12876 next = strchr (arch, '+');
12877 if (next)
12878 *next++ = '\0';
91d6fa6a 12879 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12880 {
91d6fa6a 12881 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12882 {
6305a203 12883 /* Processor. */
1ded5609
JB
12884 if (! cpu_arch[j].flags.bitfield.cpui386)
12885 continue;
12886
91d6fa6a 12887 cpu_arch_name = cpu_arch[j].name;
6305a203 12888 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12889 cpu_arch_flags = cpu_arch[j].flags;
12890 cpu_arch_isa = cpu_arch[j].type;
12891 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12892 if (!cpu_arch_tune_set)
12893 {
12894 cpu_arch_tune = cpu_arch_isa;
12895 cpu_arch_tune_flags = cpu_arch_isa_flags;
12896 }
12897 break;
12898 }
91d6fa6a
NC
12899 else if (*cpu_arch [j].name == '.'
12900 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12901 {
33eaf5de 12902 /* ISA extension. */
6305a203 12903 i386_cpu_flags flags;
309d3373 12904
293f5f65
L
12905 flags = cpu_flags_or (cpu_arch_flags,
12906 cpu_arch[j].flags);
81486035 12907
5b64d091 12908 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12909 {
12910 if (cpu_sub_arch_name)
12911 {
12912 char *name = cpu_sub_arch_name;
12913 cpu_sub_arch_name = concat (name,
91d6fa6a 12914 cpu_arch[j].name,
1bf57e9f 12915 (const char *) NULL);
6305a203
L
12916 free (name);
12917 }
12918 else
91d6fa6a 12919 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12920 cpu_arch_flags = flags;
a586129e 12921 cpu_arch_isa_flags = flags;
6305a203 12922 }
0089dace
L
12923 else
12924 cpu_arch_isa_flags
12925 = cpu_flags_or (cpu_arch_isa_flags,
12926 cpu_arch[j].flags);
6305a203 12927 break;
ccc9c027 12928 }
9103f4f4 12929 }
6305a203 12930
293f5f65
L
12931 if (j >= ARRAY_SIZE (cpu_arch))
12932 {
33eaf5de 12933 /* Disable an ISA extension. */
293f5f65
L
12934 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12935 if (strcmp (arch, cpu_noarch [j].name) == 0)
12936 {
12937 i386_cpu_flags flags;
12938
12939 flags = cpu_flags_and_not (cpu_arch_flags,
12940 cpu_noarch[j].flags);
12941 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12942 {
12943 if (cpu_sub_arch_name)
12944 {
12945 char *name = cpu_sub_arch_name;
12946 cpu_sub_arch_name = concat (arch,
12947 (const char *) NULL);
12948 free (name);
12949 }
12950 else
12951 cpu_sub_arch_name = xstrdup (arch);
12952 cpu_arch_flags = flags;
12953 cpu_arch_isa_flags = flags;
12954 }
12955 break;
12956 }
12957
12958 if (j >= ARRAY_SIZE (cpu_noarch))
12959 j = ARRAY_SIZE (cpu_arch);
12960 }
12961
91d6fa6a 12962 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12963 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12964
12965 arch = next;
9103f4f4 12966 }
293f5f65
L
12967 while (next != NULL);
12968 free (saved);
9103f4f4
L
12969 break;
12970
12971 case OPTION_MTUNE:
12972 if (*arg == '.')
2b5d6a91 12973 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12974 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12975 {
91d6fa6a 12976 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12977 {
ccc9c027 12978 cpu_arch_tune_set = 1;
91d6fa6a
NC
12979 cpu_arch_tune = cpu_arch [j].type;
12980 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12981 break;
12982 }
12983 }
91d6fa6a 12984 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12985 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12986 break;
12987
1efbbeb4
L
12988 case OPTION_MMNEMONIC:
12989 if (strcasecmp (arg, "att") == 0)
12990 intel_mnemonic = 0;
12991 else if (strcasecmp (arg, "intel") == 0)
12992 intel_mnemonic = 1;
12993 else
2b5d6a91 12994 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12995 break;
12996
12997 case OPTION_MSYNTAX:
12998 if (strcasecmp (arg, "att") == 0)
12999 intel_syntax = 0;
13000 else if (strcasecmp (arg, "intel") == 0)
13001 intel_syntax = 1;
13002 else
2b5d6a91 13003 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
13004 break;
13005
13006 case OPTION_MINDEX_REG:
13007 allow_index_reg = 1;
13008 break;
13009
13010 case OPTION_MNAKED_REG:
13011 allow_naked_reg = 1;
13012 break;
13013
c0f3af97
L
13014 case OPTION_MSSE2AVX:
13015 sse2avx = 1;
13016 break;
13017
daf50ae7
L
13018 case OPTION_MSSE_CHECK:
13019 if (strcasecmp (arg, "error") == 0)
7bab8ab5 13020 sse_check = check_error;
daf50ae7 13021 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 13022 sse_check = check_warning;
daf50ae7 13023 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 13024 sse_check = check_none;
daf50ae7 13025 else
2b5d6a91 13026 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
13027 break;
13028
7bab8ab5
JB
13029 case OPTION_MOPERAND_CHECK:
13030 if (strcasecmp (arg, "error") == 0)
13031 operand_check = check_error;
13032 else if (strcasecmp (arg, "warning") == 0)
13033 operand_check = check_warning;
13034 else if (strcasecmp (arg, "none") == 0)
13035 operand_check = check_none;
13036 else
13037 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13038 break;
13039
539f890d
L
13040 case OPTION_MAVXSCALAR:
13041 if (strcasecmp (arg, "128") == 0)
13042 avxscalar = vex128;
13043 else if (strcasecmp (arg, "256") == 0)
13044 avxscalar = vex256;
13045 else
2b5d6a91 13046 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
13047 break;
13048
03751133
L
13049 case OPTION_MVEXWIG:
13050 if (strcmp (arg, "0") == 0)
40c9c8de 13051 vexwig = vexw0;
03751133 13052 else if (strcmp (arg, "1") == 0)
40c9c8de 13053 vexwig = vexw1;
03751133
L
13054 else
13055 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13056 break;
13057
7e8b059b
L
13058 case OPTION_MADD_BND_PREFIX:
13059 add_bnd_prefix = 1;
13060 break;
13061
43234a1e
L
13062 case OPTION_MEVEXLIG:
13063 if (strcmp (arg, "128") == 0)
13064 evexlig = evexl128;
13065 else if (strcmp (arg, "256") == 0)
13066 evexlig = evexl256;
13067 else if (strcmp (arg, "512") == 0)
13068 evexlig = evexl512;
13069 else
13070 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13071 break;
13072
d3d3c6db
IT
13073 case OPTION_MEVEXRCIG:
13074 if (strcmp (arg, "rne") == 0)
13075 evexrcig = rne;
13076 else if (strcmp (arg, "rd") == 0)
13077 evexrcig = rd;
13078 else if (strcmp (arg, "ru") == 0)
13079 evexrcig = ru;
13080 else if (strcmp (arg, "rz") == 0)
13081 evexrcig = rz;
13082 else
13083 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13084 break;
13085
43234a1e
L
13086 case OPTION_MEVEXWIG:
13087 if (strcmp (arg, "0") == 0)
13088 evexwig = evexw0;
13089 else if (strcmp (arg, "1") == 0)
13090 evexwig = evexw1;
13091 else
13092 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13093 break;
13094
167ad85b
TG
13095# if defined (TE_PE) || defined (TE_PEP)
13096 case OPTION_MBIG_OBJ:
13097 use_big_obj = 1;
13098 break;
13099#endif
13100
d1982f93 13101 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
13102 if (strcasecmp (arg, "yes") == 0)
13103 omit_lock_prefix = 1;
13104 else if (strcasecmp (arg, "no") == 0)
13105 omit_lock_prefix = 0;
13106 else
13107 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13108 break;
13109
e4e00185
AS
13110 case OPTION_MFENCE_AS_LOCK_ADD:
13111 if (strcasecmp (arg, "yes") == 0)
13112 avoid_fence = 1;
13113 else if (strcasecmp (arg, "no") == 0)
13114 avoid_fence = 0;
13115 else
13116 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13117 break;
13118
ae531041
L
13119 case OPTION_MLFENCE_AFTER_LOAD:
13120 if (strcasecmp (arg, "yes") == 0)
13121 lfence_after_load = 1;
13122 else if (strcasecmp (arg, "no") == 0)
13123 lfence_after_load = 0;
13124 else
13125 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13126 break;
13127
13128 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13129 if (strcasecmp (arg, "all") == 0)
a09f656b 13130 {
13131 lfence_before_indirect_branch = lfence_branch_all;
13132 if (lfence_before_ret == lfence_before_ret_none)
13133 lfence_before_ret = lfence_before_ret_shl;
13134 }
ae531041
L
13135 else if (strcasecmp (arg, "memory") == 0)
13136 lfence_before_indirect_branch = lfence_branch_memory;
13137 else if (strcasecmp (arg, "register") == 0)
13138 lfence_before_indirect_branch = lfence_branch_register;
13139 else if (strcasecmp (arg, "none") == 0)
13140 lfence_before_indirect_branch = lfence_branch_none;
13141 else
13142 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13143 arg);
13144 break;
13145
13146 case OPTION_MLFENCE_BEFORE_RET:
13147 if (strcasecmp (arg, "or") == 0)
13148 lfence_before_ret = lfence_before_ret_or;
13149 else if (strcasecmp (arg, "not") == 0)
13150 lfence_before_ret = lfence_before_ret_not;
a09f656b 13151 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13152 lfence_before_ret = lfence_before_ret_shl;
ae531041
L
13153 else if (strcasecmp (arg, "none") == 0)
13154 lfence_before_ret = lfence_before_ret_none;
13155 else
13156 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13157 arg);
13158 break;
13159
0cb4071e
L
13160 case OPTION_MRELAX_RELOCATIONS:
13161 if (strcasecmp (arg, "yes") == 0)
13162 generate_relax_relocations = 1;
13163 else if (strcasecmp (arg, "no") == 0)
13164 generate_relax_relocations = 0;
13165 else
13166 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13167 break;
13168
e379e5f3
L
13169 case OPTION_MALIGN_BRANCH_BOUNDARY:
13170 {
13171 char *end;
13172 long int align = strtoul (arg, &end, 0);
13173 if (*end == '\0')
13174 {
13175 if (align == 0)
13176 {
13177 align_branch_power = 0;
13178 break;
13179 }
13180 else if (align >= 16)
13181 {
13182 int align_power;
13183 for (align_power = 0;
13184 (align & 1) == 0;
13185 align >>= 1, align_power++)
13186 continue;
13187 /* Limit alignment power to 31. */
13188 if (align == 1 && align_power < 32)
13189 {
13190 align_branch_power = align_power;
13191 break;
13192 }
13193 }
13194 }
13195 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13196 }
13197 break;
13198
13199 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13200 {
13201 char *end;
13202 int align = strtoul (arg, &end, 0);
13203 /* Some processors only support 5 prefixes. */
13204 if (*end == '\0' && align >= 0 && align < 6)
13205 {
13206 align_branch_prefix_size = align;
13207 break;
13208 }
13209 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13210 arg);
13211 }
13212 break;
13213
13214 case OPTION_MALIGN_BRANCH:
13215 align_branch = 0;
13216 saved = xstrdup (arg);
13217 type = saved;
13218 do
13219 {
13220 next = strchr (type, '+');
13221 if (next)
13222 *next++ = '\0';
13223 if (strcasecmp (type, "jcc") == 0)
13224 align_branch |= align_branch_jcc_bit;
13225 else if (strcasecmp (type, "fused") == 0)
13226 align_branch |= align_branch_fused_bit;
13227 else if (strcasecmp (type, "jmp") == 0)
13228 align_branch |= align_branch_jmp_bit;
13229 else if (strcasecmp (type, "call") == 0)
13230 align_branch |= align_branch_call_bit;
13231 else if (strcasecmp (type, "ret") == 0)
13232 align_branch |= align_branch_ret_bit;
13233 else if (strcasecmp (type, "indirect") == 0)
13234 align_branch |= align_branch_indirect_bit;
13235 else
13236 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13237 type = next;
13238 }
13239 while (next != NULL);
13240 free (saved);
13241 break;
13242
76cf450b
L
13243 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13244 align_branch_power = 5;
13245 align_branch_prefix_size = 5;
13246 align_branch = (align_branch_jcc_bit
13247 | align_branch_fused_bit
13248 | align_branch_jmp_bit);
13249 break;
13250
5db04b09 13251 case OPTION_MAMD64:
4b5aaf5f 13252 isa64 = amd64;
5db04b09
L
13253 break;
13254
13255 case OPTION_MINTEL64:
4b5aaf5f 13256 isa64 = intel64;
5db04b09
L
13257 break;
13258
b6f8c7c4
L
13259 case 'O':
13260 if (arg == NULL)
13261 {
13262 optimize = 1;
13263 /* Turn off -Os. */
13264 optimize_for_space = 0;
13265 }
13266 else if (*arg == 's')
13267 {
13268 optimize_for_space = 1;
13269 /* Turn on all encoding optimizations. */
41fd2579 13270 optimize = INT_MAX;
b6f8c7c4
L
13271 }
13272 else
13273 {
13274 optimize = atoi (arg);
13275 /* Turn off -Os. */
13276 optimize_for_space = 0;
13277 }
13278 break;
13279
252b5132
RH
13280 default:
13281 return 0;
13282 }
13283 return 1;
13284}
13285
8a2c8fef
L
13286#define MESSAGE_TEMPLATE \
13287" "
13288
293f5f65
L
13289static char *
13290output_message (FILE *stream, char *p, char *message, char *start,
13291 int *left_p, const char *name, int len)
13292{
13293 int size = sizeof (MESSAGE_TEMPLATE);
13294 int left = *left_p;
13295
13296 /* Reserve 2 spaces for ", " or ",\0" */
13297 left -= len + 2;
13298
13299 /* Check if there is any room. */
13300 if (left >= 0)
13301 {
13302 if (p != start)
13303 {
13304 *p++ = ',';
13305 *p++ = ' ';
13306 }
13307 p = mempcpy (p, name, len);
13308 }
13309 else
13310 {
13311 /* Output the current message now and start a new one. */
13312 *p++ = ',';
13313 *p = '\0';
13314 fprintf (stream, "%s\n", message);
13315 p = start;
13316 left = size - (start - message) - len - 2;
13317
13318 gas_assert (left >= 0);
13319
13320 p = mempcpy (p, name, len);
13321 }
13322
13323 *left_p = left;
13324 return p;
13325}
13326
8a2c8fef 13327static void
1ded5609 13328show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
13329{
13330 static char message[] = MESSAGE_TEMPLATE;
13331 char *start = message + 27;
13332 char *p;
13333 int size = sizeof (MESSAGE_TEMPLATE);
13334 int left;
13335 const char *name;
13336 int len;
13337 unsigned int j;
13338
13339 p = start;
13340 left = size - (start - message);
13341 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13342 {
13343 /* Should it be skipped? */
13344 if (cpu_arch [j].skip)
13345 continue;
13346
13347 name = cpu_arch [j].name;
13348 len = cpu_arch [j].len;
13349 if (*name == '.')
13350 {
13351 /* It is an extension. Skip if we aren't asked to show it. */
13352 if (ext)
13353 {
13354 name++;
13355 len--;
13356 }
13357 else
13358 continue;
13359 }
13360 else if (ext)
13361 {
13362 /* It is an processor. Skip if we show only extension. */
13363 continue;
13364 }
1ded5609
JB
13365 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13366 {
13367 /* It is an impossible processor - skip. */
13368 continue;
13369 }
8a2c8fef 13370
293f5f65 13371 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
13372 }
13373
293f5f65
L
13374 /* Display disabled extensions. */
13375 if (ext)
13376 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13377 {
13378 name = cpu_noarch [j].name;
13379 len = cpu_noarch [j].len;
13380 p = output_message (stream, p, message, start, &left, name,
13381 len);
13382 }
13383
8a2c8fef
L
13384 *p = '\0';
13385 fprintf (stream, "%s\n", message);
13386}
13387
252b5132 13388void
8a2c8fef 13389md_show_usage (FILE *stream)
252b5132 13390{
4cc782b5
ILT
13391#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13392 fprintf (stream, _("\
d4693039 13393 -Qy, -Qn ignored\n\
a38cf1db 13394 -V print assembler version number\n\
b3b91714
AM
13395 -k ignored\n"));
13396#endif
13397 fprintf (stream, _("\
12b55ccc 13398 -n Do not optimize code alignment\n\
b3b91714
AM
13399 -q quieten some warnings\n"));
13400#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13401 fprintf (stream, _("\
a38cf1db 13402 -s ignored\n"));
b3b91714 13403#endif
d7f449c0
L
13404#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13405 || defined (TE_PE) || defined (TE_PEP))
751d281c 13406 fprintf (stream, _("\
570561f7 13407 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 13408#endif
b3b91714
AM
13409#ifdef SVR4_COMMENT_CHARS
13410 fprintf (stream, _("\
13411 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
13412#else
13413 fprintf (stream, _("\
b3b91714 13414 --divide ignored\n"));
4cc782b5 13415#endif
9103f4f4 13416 fprintf (stream, _("\
6305a203 13417 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 13418 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 13419 show_arch (stream, 0, 1);
8a2c8fef
L
13420 fprintf (stream, _("\
13421 EXTENSION is combination of:\n"));
1ded5609 13422 show_arch (stream, 1, 0);
6305a203 13423 fprintf (stream, _("\
8a2c8fef 13424 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 13425 show_arch (stream, 0, 0);
ba104c83 13426 fprintf (stream, _("\
c0f3af97
L
13427 -msse2avx encode SSE instructions with VEX prefix\n"));
13428 fprintf (stream, _("\
7c5c05ef 13429 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
13430 check SSE instructions\n"));
13431 fprintf (stream, _("\
7c5c05ef 13432 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
13433 check operand combinations for validity\n"));
13434 fprintf (stream, _("\
7c5c05ef
L
13435 -mavxscalar=[128|256] (default: 128)\n\
13436 encode scalar AVX instructions with specific vector\n\
539f890d
L
13437 length\n"));
13438 fprintf (stream, _("\
03751133
L
13439 -mvexwig=[0|1] (default: 0)\n\
13440 encode VEX instructions with specific VEX.W value\n\
13441 for VEX.W bit ignored instructions\n"));
13442 fprintf (stream, _("\
7c5c05ef
L
13443 -mevexlig=[128|256|512] (default: 128)\n\
13444 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
13445 length\n"));
13446 fprintf (stream, _("\
7c5c05ef
L
13447 -mevexwig=[0|1] (default: 0)\n\
13448 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
13449 for EVEX.W bit ignored instructions\n"));
13450 fprintf (stream, _("\
7c5c05ef 13451 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
13452 encode EVEX instructions with specific EVEX.RC value\n\
13453 for SAE-only ignored instructions\n"));
13454 fprintf (stream, _("\
7c5c05ef
L
13455 -mmnemonic=[att|intel] "));
13456 if (SYSV386_COMPAT)
13457 fprintf (stream, _("(default: att)\n"));
13458 else
13459 fprintf (stream, _("(default: intel)\n"));
13460 fprintf (stream, _("\
13461 use AT&T/Intel mnemonic\n"));
ba104c83 13462 fprintf (stream, _("\
7c5c05ef
L
13463 -msyntax=[att|intel] (default: att)\n\
13464 use AT&T/Intel syntax\n"));
ba104c83
L
13465 fprintf (stream, _("\
13466 -mindex-reg support pseudo index registers\n"));
13467 fprintf (stream, _("\
13468 -mnaked-reg don't require `%%' prefix for registers\n"));
13469 fprintf (stream, _("\
7e8b059b 13470 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 13471#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
13472 fprintf (stream, _("\
13473 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
13474 fprintf (stream, _("\
13475 -mx86-used-note=[no|yes] "));
13476 if (DEFAULT_X86_USED_NOTE)
13477 fprintf (stream, _("(default: yes)\n"));
13478 else
13479 fprintf (stream, _("(default: no)\n"));
13480 fprintf (stream, _("\
13481 generate x86 used ISA and feature properties\n"));
13482#endif
13483#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
13484 fprintf (stream, _("\
13485 -mbig-obj generate big object files\n"));
13486#endif
d022bddd 13487 fprintf (stream, _("\
7c5c05ef 13488 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 13489 strip all lock prefixes\n"));
5db04b09 13490 fprintf (stream, _("\
7c5c05ef 13491 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
13492 encode lfence, mfence and sfence as\n\
13493 lock addl $0x0, (%%{re}sp)\n"));
13494 fprintf (stream, _("\
7c5c05ef
L
13495 -mrelax-relocations=[no|yes] "));
13496 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13497 fprintf (stream, _("(default: yes)\n"));
13498 else
13499 fprintf (stream, _("(default: no)\n"));
13500 fprintf (stream, _("\
0cb4071e
L
13501 generate relax relocations\n"));
13502 fprintf (stream, _("\
e379e5f3
L
13503 -malign-branch-boundary=NUM (default: 0)\n\
13504 align branches within NUM byte boundary\n"));
13505 fprintf (stream, _("\
13506 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13507 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13508 indirect\n\
13509 specify types of branches to align\n"));
13510 fprintf (stream, _("\
13511 -malign-branch-prefix-size=NUM (default: 5)\n\
13512 align branches with NUM prefixes per instruction\n"));
13513 fprintf (stream, _("\
76cf450b
L
13514 -mbranches-within-32B-boundaries\n\
13515 align branches within 32 byte boundary\n"));
13516 fprintf (stream, _("\
ae531041
L
13517 -mlfence-after-load=[no|yes] (default: no)\n\
13518 generate lfence after load\n"));
13519 fprintf (stream, _("\
13520 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13521 generate lfence before indirect near branch\n"));
13522 fprintf (stream, _("\
a09f656b 13523 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
ae531041
L
13524 generate lfence before ret\n"));
13525 fprintf (stream, _("\
7c5c05ef 13526 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
13527 fprintf (stream, _("\
13528 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
13529}
13530
3e73aa7c 13531#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 13532 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 13533 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
13534
13535/* Pick the target format to use. */
13536
47926f60 13537const char *
e3bb37b5 13538i386_target_format (void)
252b5132 13539{
351f65ca
L
13540 if (!strncmp (default_arch, "x86_64", 6))
13541 {
13542 update_code_flag (CODE_64BIT, 1);
13543 if (default_arch[6] == '\0')
7f56bc95 13544 x86_elf_abi = X86_64_ABI;
351f65ca 13545 else
7f56bc95 13546 x86_elf_abi = X86_64_X32_ABI;
351f65ca 13547 }
3e73aa7c 13548 else if (!strcmp (default_arch, "i386"))
78f12dd3 13549 update_code_flag (CODE_32BIT, 1);
5197d474
L
13550 else if (!strcmp (default_arch, "iamcu"))
13551 {
13552 update_code_flag (CODE_32BIT, 1);
13553 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13554 {
13555 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13556 cpu_arch_name = "iamcu";
13557 cpu_sub_arch_name = NULL;
13558 cpu_arch_flags = iamcu_flags;
13559 cpu_arch_isa = PROCESSOR_IAMCU;
13560 cpu_arch_isa_flags = iamcu_flags;
13561 if (!cpu_arch_tune_set)
13562 {
13563 cpu_arch_tune = cpu_arch_isa;
13564 cpu_arch_tune_flags = cpu_arch_isa_flags;
13565 }
13566 }
8d471ec1 13567 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
13568 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13569 cpu_arch_name);
13570 }
3e73aa7c 13571 else
2b5d6a91 13572 as_fatal (_("unknown architecture"));
89507696
JB
13573
13574 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13575 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13576 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13577 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13578
252b5132
RH
13579 switch (OUTPUT_FLAVOR)
13580 {
9384f2ff 13581#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 13582 case bfd_target_aout_flavour:
47926f60 13583 return AOUT_TARGET_FORMAT;
4c63da97 13584#endif
9384f2ff
AM
13585#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13586# if defined (TE_PE) || defined (TE_PEP)
13587 case bfd_target_coff_flavour:
167ad85b
TG
13588 if (flag_code == CODE_64BIT)
13589 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13590 else
251dae91 13591 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
9384f2ff 13592# elif defined (TE_GO32)
0561d57c
JK
13593 case bfd_target_coff_flavour:
13594 return "coff-go32";
9384f2ff 13595# else
252b5132
RH
13596 case bfd_target_coff_flavour:
13597 return "coff-i386";
9384f2ff 13598# endif
4c63da97 13599#endif
3e73aa7c 13600#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 13601 case bfd_target_elf_flavour:
3e73aa7c 13602 {
351f65ca
L
13603 const char *format;
13604
13605 switch (x86_elf_abi)
4fa24527 13606 {
351f65ca
L
13607 default:
13608 format = ELF_TARGET_FORMAT;
e379e5f3
L
13609#ifndef TE_SOLARIS
13610 tls_get_addr = "___tls_get_addr";
13611#endif
351f65ca 13612 break;
7f56bc95 13613 case X86_64_ABI:
351f65ca 13614 use_rela_relocations = 1;
4fa24527 13615 object_64bit = 1;
e379e5f3
L
13616#ifndef TE_SOLARIS
13617 tls_get_addr = "__tls_get_addr";
13618#endif
351f65ca
L
13619 format = ELF_TARGET_FORMAT64;
13620 break;
7f56bc95 13621 case X86_64_X32_ABI:
4fa24527 13622 use_rela_relocations = 1;
351f65ca 13623 object_64bit = 1;
e379e5f3
L
13624#ifndef TE_SOLARIS
13625 tls_get_addr = "__tls_get_addr";
13626#endif
862be3fb 13627 disallow_64bit_reloc = 1;
351f65ca
L
13628 format = ELF_TARGET_FORMAT32;
13629 break;
4fa24527 13630 }
3632d14b 13631 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 13632 {
7f56bc95 13633 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
13634 as_fatal (_("Intel L1OM is 64bit only"));
13635 return ELF_TARGET_L1OM_FORMAT;
13636 }
b49f93f6 13637 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
13638 {
13639 if (x86_elf_abi != X86_64_ABI)
13640 as_fatal (_("Intel K1OM is 64bit only"));
13641 return ELF_TARGET_K1OM_FORMAT;
13642 }
81486035
L
13643 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13644 {
13645 if (x86_elf_abi != I386_ABI)
13646 as_fatal (_("Intel MCU is 32bit only"));
13647 return ELF_TARGET_IAMCU_FORMAT;
13648 }
8a9036a4 13649 else
351f65ca 13650 return format;
3e73aa7c 13651 }
e57f8c65
TG
13652#endif
13653#if defined (OBJ_MACH_O)
13654 case bfd_target_mach_o_flavour:
d382c579
TG
13655 if (flag_code == CODE_64BIT)
13656 {
13657 use_rela_relocations = 1;
13658 object_64bit = 1;
13659 return "mach-o-x86-64";
13660 }
13661 else
13662 return "mach-o-i386";
4c63da97 13663#endif
252b5132
RH
13664 default:
13665 abort ();
13666 return NULL;
13667 }
13668}
13669
47926f60 13670#endif /* OBJ_MAYBE_ more than one */
252b5132 13671\f
252b5132 13672symbolS *
7016a5d5 13673md_undefined_symbol (char *name)
252b5132 13674{
18dc2407
ILT
13675 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13676 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13677 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13678 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
13679 {
13680 if (!GOT_symbol)
13681 {
13682 if (symbol_find (name))
13683 as_bad (_("GOT already in symbol table"));
13684 GOT_symbol = symbol_new (name, undefined_section,
13685 (valueT) 0, &zero_address_frag);
13686 };
13687 return GOT_symbol;
13688 }
252b5132
RH
13689 return 0;
13690}
13691
13692/* Round up a section size to the appropriate boundary. */
47926f60 13693
252b5132 13694valueT
7016a5d5 13695md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 13696{
4c63da97
AM
13697#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13698 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13699 {
13700 /* For a.out, force the section size to be aligned. If we don't do
13701 this, BFD will align it for us, but it will not write out the
13702 final bytes of the section. This may be a bug in BFD, but it is
13703 easier to fix it here since that is how the other a.out targets
13704 work. */
13705 int align;
13706
fd361982 13707 align = bfd_section_alignment (segment);
8d3842cd 13708 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 13709 }
252b5132
RH
13710#endif
13711
13712 return size;
13713}
13714
13715/* On the i386, PC-relative offsets are relative to the start of the
13716 next instruction. That is, the address of the offset, plus its
13717 size, since the offset is always the last part of the insn. */
13718
13719long
e3bb37b5 13720md_pcrel_from (fixS *fixP)
252b5132
RH
13721{
13722 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13723}
13724
13725#ifndef I386COFF
13726
13727static void
e3bb37b5 13728s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 13729{
29b0f896 13730 int temp;
252b5132 13731
8a75718c
JB
13732#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13733 if (IS_ELF)
13734 obj_elf_section_change_hook ();
13735#endif
252b5132
RH
13736 temp = get_absolute_expression ();
13737 subseg_set (bss_section, (subsegT) temp);
13738 demand_empty_rest_of_line ();
13739}
13740
13741#endif
13742
e379e5f3
L
13743/* Remember constant directive. */
13744
13745void
13746i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13747{
13748 if (last_insn.kind != last_insn_directive
13749 && (bfd_section_flags (now_seg) & SEC_CODE))
13750 {
13751 last_insn.seg = now_seg;
13752 last_insn.kind = last_insn_directive;
13753 last_insn.name = "constant directive";
13754 last_insn.file = as_where (&last_insn.line);
ae531041
L
13755 if (lfence_before_ret != lfence_before_ret_none)
13756 {
13757 if (lfence_before_indirect_branch != lfence_branch_none)
13758 as_warn (_("constant directive skips -mlfence-before-ret "
13759 "and -mlfence-before-indirect-branch"));
13760 else
13761 as_warn (_("constant directive skips -mlfence-before-ret"));
13762 }
13763 else if (lfence_before_indirect_branch != lfence_branch_none)
13764 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
e379e5f3
L
13765 }
13766}
13767
252b5132 13768void
e3bb37b5 13769i386_validate_fix (fixS *fixp)
252b5132 13770{
02a86693 13771 if (fixp->fx_subsy)
252b5132 13772 {
02a86693 13773 if (fixp->fx_subsy == GOT_symbol)
23df1078 13774 {
02a86693
L
13775 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13776 {
13777 if (!object_64bit)
13778 abort ();
13779#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13780 if (fixp->fx_tcbit2)
56ceb5b5
L
13781 fixp->fx_r_type = (fixp->fx_tcbit
13782 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13783 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13784 else
13785#endif
13786 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13787 }
d6ab8113 13788 else
02a86693
L
13789 {
13790 if (!object_64bit)
13791 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13792 else
13793 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13794 }
13795 fixp->fx_subsy = 0;
23df1078 13796 }
252b5132 13797 }
02a86693
L
13798#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13799 else if (!object_64bit)
13800 {
13801 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13802 && fixp->fx_tcbit2)
13803 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13804 }
13805#endif
252b5132
RH
13806}
13807
252b5132 13808arelent *
7016a5d5 13809tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13810{
13811 arelent *rel;
13812 bfd_reloc_code_real_type code;
13813
13814 switch (fixp->fx_r_type)
13815 {
8ce3d284 13816#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13817 case BFD_RELOC_SIZE32:
13818 case BFD_RELOC_SIZE64:
13819 if (S_IS_DEFINED (fixp->fx_addsy)
13820 && !S_IS_EXTERNAL (fixp->fx_addsy))
13821 {
13822 /* Resolve size relocation against local symbol to size of
13823 the symbol plus addend. */
13824 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13825 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13826 && !fits_in_unsigned_long (value))
13827 as_bad_where (fixp->fx_file, fixp->fx_line,
13828 _("symbol size computation overflow"));
13829 fixp->fx_addsy = NULL;
13830 fixp->fx_subsy = NULL;
13831 md_apply_fix (fixp, (valueT *) &value, NULL);
13832 return NULL;
13833 }
8ce3d284 13834#endif
1a0670f3 13835 /* Fall through. */
8fd4256d 13836
3e73aa7c
JH
13837 case BFD_RELOC_X86_64_PLT32:
13838 case BFD_RELOC_X86_64_GOT32:
13839 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13840 case BFD_RELOC_X86_64_GOTPCRELX:
13841 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13842 case BFD_RELOC_386_PLT32:
13843 case BFD_RELOC_386_GOT32:
02a86693 13844 case BFD_RELOC_386_GOT32X:
252b5132
RH
13845 case BFD_RELOC_386_GOTOFF:
13846 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13847 case BFD_RELOC_386_TLS_GD:
13848 case BFD_RELOC_386_TLS_LDM:
13849 case BFD_RELOC_386_TLS_LDO_32:
13850 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13851 case BFD_RELOC_386_TLS_IE:
13852 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13853 case BFD_RELOC_386_TLS_LE_32:
13854 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13855 case BFD_RELOC_386_TLS_GOTDESC:
13856 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13857 case BFD_RELOC_X86_64_TLSGD:
13858 case BFD_RELOC_X86_64_TLSLD:
13859 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13860 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13861 case BFD_RELOC_X86_64_GOTTPOFF:
13862 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13863 case BFD_RELOC_X86_64_TPOFF64:
13864 case BFD_RELOC_X86_64_GOTOFF64:
13865 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13866 case BFD_RELOC_X86_64_GOT64:
13867 case BFD_RELOC_X86_64_GOTPCREL64:
13868 case BFD_RELOC_X86_64_GOTPC64:
13869 case BFD_RELOC_X86_64_GOTPLT64:
13870 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13871 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13872 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13873 case BFD_RELOC_RVA:
13874 case BFD_RELOC_VTABLE_ENTRY:
13875 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13876#ifdef TE_PE
13877 case BFD_RELOC_32_SECREL:
13878#endif
252b5132
RH
13879 code = fixp->fx_r_type;
13880 break;
dbbaec26
L
13881 case BFD_RELOC_X86_64_32S:
13882 if (!fixp->fx_pcrel)
13883 {
13884 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13885 code = fixp->fx_r_type;
13886 break;
13887 }
1a0670f3 13888 /* Fall through. */
252b5132 13889 default:
93382f6d 13890 if (fixp->fx_pcrel)
252b5132 13891 {
93382f6d
AM
13892 switch (fixp->fx_size)
13893 {
13894 default:
b091f402
AM
13895 as_bad_where (fixp->fx_file, fixp->fx_line,
13896 _("can not do %d byte pc-relative relocation"),
13897 fixp->fx_size);
93382f6d
AM
13898 code = BFD_RELOC_32_PCREL;
13899 break;
13900 case 1: code = BFD_RELOC_8_PCREL; break;
13901 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13902 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13903#ifdef BFD64
13904 case 8: code = BFD_RELOC_64_PCREL; break;
13905#endif
93382f6d
AM
13906 }
13907 }
13908 else
13909 {
13910 switch (fixp->fx_size)
13911 {
13912 default:
b091f402
AM
13913 as_bad_where (fixp->fx_file, fixp->fx_line,
13914 _("can not do %d byte relocation"),
13915 fixp->fx_size);
93382f6d
AM
13916 code = BFD_RELOC_32;
13917 break;
13918 case 1: code = BFD_RELOC_8; break;
13919 case 2: code = BFD_RELOC_16; break;
13920 case 4: code = BFD_RELOC_32; break;
937149dd 13921#ifdef BFD64
3e73aa7c 13922 case 8: code = BFD_RELOC_64; break;
937149dd 13923#endif
93382f6d 13924 }
252b5132
RH
13925 }
13926 break;
13927 }
252b5132 13928
d182319b
JB
13929 if ((code == BFD_RELOC_32
13930 || code == BFD_RELOC_32_PCREL
13931 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13932 && GOT_symbol
13933 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13934 {
4fa24527 13935 if (!object_64bit)
d6ab8113
JB
13936 code = BFD_RELOC_386_GOTPC;
13937 else
13938 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13939 }
7b81dfbb
AJ
13940 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13941 && GOT_symbol
13942 && fixp->fx_addsy == GOT_symbol)
13943 {
13944 code = BFD_RELOC_X86_64_GOTPC64;
13945 }
252b5132 13946
add39d23
TS
13947 rel = XNEW (arelent);
13948 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13949 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13950
13951 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13952
3e73aa7c
JH
13953 if (!use_rela_relocations)
13954 {
13955 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13956 vtable entry to be used in the relocation's section offset. */
13957 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13958 rel->address = fixp->fx_offset;
fbeb56a4
DK
13959#if defined (OBJ_COFF) && defined (TE_PE)
13960 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13961 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13962 else
13963#endif
c6682705 13964 rel->addend = 0;
3e73aa7c
JH
13965 }
13966 /* Use the rela in 64bit mode. */
252b5132 13967 else
3e73aa7c 13968 {
862be3fb
L
13969 if (disallow_64bit_reloc)
13970 switch (code)
13971 {
862be3fb
L
13972 case BFD_RELOC_X86_64_DTPOFF64:
13973 case BFD_RELOC_X86_64_TPOFF64:
13974 case BFD_RELOC_64_PCREL:
13975 case BFD_RELOC_X86_64_GOTOFF64:
13976 case BFD_RELOC_X86_64_GOT64:
13977 case BFD_RELOC_X86_64_GOTPCREL64:
13978 case BFD_RELOC_X86_64_GOTPC64:
13979 case BFD_RELOC_X86_64_GOTPLT64:
13980 case BFD_RELOC_X86_64_PLTOFF64:
13981 as_bad_where (fixp->fx_file, fixp->fx_line,
13982 _("cannot represent relocation type %s in x32 mode"),
13983 bfd_get_reloc_code_name (code));
13984 break;
13985 default:
13986 break;
13987 }
13988
062cd5e7
AS
13989 if (!fixp->fx_pcrel)
13990 rel->addend = fixp->fx_offset;
13991 else
13992 switch (code)
13993 {
13994 case BFD_RELOC_X86_64_PLT32:
13995 case BFD_RELOC_X86_64_GOT32:
13996 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13997 case BFD_RELOC_X86_64_GOTPCRELX:
13998 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13999 case BFD_RELOC_X86_64_TLSGD:
14000 case BFD_RELOC_X86_64_TLSLD:
14001 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
14002 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14003 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
14004 rel->addend = fixp->fx_offset - fixp->fx_size;
14005 break;
14006 default:
14007 rel->addend = (section->vma
14008 - fixp->fx_size
14009 + fixp->fx_addnumber
14010 + md_pcrel_from (fixp));
14011 break;
14012 }
3e73aa7c
JH
14013 }
14014
252b5132
RH
14015 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
14016 if (rel->howto == NULL)
14017 {
14018 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 14019 _("cannot represent relocation type %s"),
252b5132
RH
14020 bfd_get_reloc_code_name (code));
14021 /* Set howto to a garbage value so that we can keep going. */
14022 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 14023 gas_assert (rel->howto != NULL);
252b5132
RH
14024 }
14025
14026 return rel;
14027}
14028
ee86248c 14029#include "tc-i386-intel.c"
54cfded0 14030
a60de03c
JB
14031void
14032tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 14033{
a60de03c
JB
14034 int saved_naked_reg;
14035 char saved_register_dot;
54cfded0 14036
a60de03c
JB
14037 saved_naked_reg = allow_naked_reg;
14038 allow_naked_reg = 1;
14039 saved_register_dot = register_chars['.'];
14040 register_chars['.'] = '.';
14041 allow_pseudo_reg = 1;
14042 expression_and_evaluate (exp);
14043 allow_pseudo_reg = 0;
14044 register_chars['.'] = saved_register_dot;
14045 allow_naked_reg = saved_naked_reg;
14046
e96d56a1 14047 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 14048 {
a60de03c
JB
14049 if ((addressT) exp->X_add_number < i386_regtab_size)
14050 {
14051 exp->X_op = O_constant;
14052 exp->X_add_number = i386_regtab[exp->X_add_number]
14053 .dw2_regnum[flag_code >> 1];
14054 }
14055 else
14056 exp->X_op = O_illegal;
54cfded0 14057 }
54cfded0
AM
14058}
14059
14060void
14061tc_x86_frame_initial_instructions (void)
14062{
a60de03c
JB
14063 static unsigned int sp_regno[2];
14064
14065 if (!sp_regno[flag_code >> 1])
14066 {
14067 char *saved_input = input_line_pointer;
14068 char sp[][4] = {"esp", "rsp"};
14069 expressionS exp;
a4447b93 14070
a60de03c
JB
14071 input_line_pointer = sp[flag_code >> 1];
14072 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 14073 gas_assert (exp.X_op == O_constant);
a60de03c
JB
14074 sp_regno[flag_code >> 1] = exp.X_add_number;
14075 input_line_pointer = saved_input;
14076 }
a4447b93 14077
61ff971f
L
14078 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14079 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 14080}
d2b2c203 14081
d7921315
L
14082int
14083x86_dwarf2_addr_size (void)
14084{
14085#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14086 if (x86_elf_abi == X86_64_X32_ABI)
14087 return 4;
14088#endif
14089 return bfd_arch_bits_per_address (stdoutput) / 8;
14090}
14091
d2b2c203
DJ
14092int
14093i386_elf_section_type (const char *str, size_t len)
14094{
14095 if (flag_code == CODE_64BIT
14096 && len == sizeof ("unwind") - 1
14097 && strncmp (str, "unwind", 6) == 0)
14098 return SHT_X86_64_UNWIND;
14099
14100 return -1;
14101}
bb41ade5 14102
ad5fec3b
EB
14103#ifdef TE_SOLARIS
14104void
14105i386_solaris_fix_up_eh_frame (segT sec)
14106{
14107 if (flag_code == CODE_64BIT)
14108 elf_section_type (sec) = SHT_X86_64_UNWIND;
14109}
14110#endif
14111
bb41ade5
AM
14112#ifdef TE_PE
14113void
14114tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14115{
91d6fa6a 14116 expressionS exp;
bb41ade5 14117
91d6fa6a
NC
14118 exp.X_op = O_secrel;
14119 exp.X_add_symbol = symbol;
14120 exp.X_add_number = 0;
14121 emit_expr (&exp, size);
bb41ade5
AM
14122}
14123#endif
3b22753a
L
14124
14125#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14126/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14127
01e1a5bc 14128bfd_vma
6d4af3c2 14129x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
14130{
14131 if (flag_code == CODE_64BIT)
14132 {
14133 if (letter == 'l')
14134 return SHF_X86_64_LARGE;
14135
8f3bae45 14136 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 14137 }
3b22753a 14138 else
8f3bae45 14139 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
14140 return -1;
14141}
14142
01e1a5bc 14143bfd_vma
3b22753a
L
14144x86_64_section_word (char *str, size_t len)
14145{
8620418b 14146 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
14147 return SHF_X86_64_LARGE;
14148
14149 return -1;
14150}
14151
14152static void
14153handle_large_common (int small ATTRIBUTE_UNUSED)
14154{
14155 if (flag_code != CODE_64BIT)
14156 {
14157 s_comm_internal (0, elf_common_parse);
14158 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14159 }
14160 else
14161 {
14162 static segT lbss_section;
14163 asection *saved_com_section_ptr = elf_com_section_ptr;
14164 asection *saved_bss_section = bss_section;
14165
14166 if (lbss_section == NULL)
14167 {
14168 flagword applicable;
14169 segT seg = now_seg;
14170 subsegT subseg = now_subseg;
14171
14172 /* The .lbss section is for local .largecomm symbols. */
14173 lbss_section = subseg_new (".lbss", 0);
14174 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 14175 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
14176 seg_info (lbss_section)->bss = 1;
14177
14178 subseg_set (seg, subseg);
14179 }
14180
14181 elf_com_section_ptr = &_bfd_elf_large_com_section;
14182 bss_section = lbss_section;
14183
14184 s_comm_internal (0, elf_common_parse);
14185
14186 elf_com_section_ptr = saved_com_section_ptr;
14187 bss_section = saved_bss_section;
14188 }
14189}
14190#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.485232 seconds and 4 git commands to generate.