2000-11-30 Fernando Nasser <fnasser@redhat.com>
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
252b5132 1/* i386.c -- Assemble code for the Intel 80386
4c63da97 2 Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
47926f60 3 Free Software Foundation, Inc.
252b5132
RH
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
47926f60
KH
22/* Intel 80386 machine specific gas.
23 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
24 Bugs & suggestions are completely welcome. This is free software.
25 Please help us make it better. */
252b5132
RH
26
27#include <ctype.h>
28
29#include "as.h"
30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
252b5132
RH
32#include "opcode/i386.h"
33
252b5132
RH
34#ifndef REGISTER_WARNINGS
35#define REGISTER_WARNINGS 1
36#endif
37
c3332e24 38#ifndef INFER_ADDR_PREFIX
eecb386c 39#define INFER_ADDR_PREFIX 1
c3332e24
AM
40#endif
41
252b5132
RH
42#ifndef SCALE1_WHEN_NO_INDEX
43/* Specifying a scale factor besides 1 when there is no index is
44 futile. eg. `mov (%ebx,2),%al' does exactly the same as
45 `mov (%ebx),%al'. To slavishly follow what the programmer
46 specified, set SCALE1_WHEN_NO_INDEX to 0. */
47#define SCALE1_WHEN_NO_INDEX 1
48#endif
49
50#define true 1
51#define false 0
52
53static unsigned int mode_from_disp_size PARAMS ((unsigned int));
847f7ad4
AM
54static int fits_in_signed_byte PARAMS ((offsetT));
55static int fits_in_unsigned_byte PARAMS ((offsetT));
56static int fits_in_unsigned_word PARAMS ((offsetT));
57static int fits_in_signed_word PARAMS ((offsetT));
58static int smallest_imm_type PARAMS ((offsetT));
59static offsetT offset_in_range PARAMS ((offsetT, int));
252b5132
RH
60static int add_prefix PARAMS ((unsigned int));
61static void set_16bit_code_flag PARAMS ((int));
47926f60 62static void set_16bit_gcc_code_flag PARAMS ((int));
252b5132 63static void set_intel_syntax PARAMS ((int));
e413e4e9 64static void set_cpu_arch PARAMS ((int));
252b5132
RH
65
66#ifdef BFD_ASSEMBLER
67static bfd_reloc_code_real_type reloc
68 PARAMS ((int, int, bfd_reloc_code_real_type));
69#endif
70
71/* 'md_assemble ()' gathers together information and puts it into a
47926f60 72 i386_insn. */
252b5132 73
520dc8e8
AM
74union i386_op
75 {
76 expressionS *disps;
77 expressionS *imms;
78 const reg_entry *regs;
79 };
80
252b5132
RH
81struct _i386_insn
82 {
47926f60 83 /* TM holds the template for the insn were currently assembling. */
252b5132
RH
84 template tm;
85
86 /* SUFFIX holds the instruction mnemonic suffix if given.
87 (e.g. 'l' for 'movl') */
88 char suffix;
89
47926f60 90 /* OPERANDS gives the number of given operands. */
252b5132
RH
91 unsigned int operands;
92
93 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
94 of given register, displacement, memory operands and immediate
47926f60 95 operands. */
252b5132
RH
96 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
97
98 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 99 use OP[i] for the corresponding operand. */
252b5132
RH
100 unsigned int types[MAX_OPERANDS];
101
520dc8e8
AM
102 /* Displacement expression, immediate expression, or register for each
103 operand. */
104 union i386_op op[MAX_OPERANDS];
252b5132
RH
105
106 /* Relocation type for operand */
107#ifdef BFD_ASSEMBLER
108 enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
109#else
110 int disp_reloc[MAX_OPERANDS];
111#endif
112
252b5132
RH
113 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
114 the base index byte below. */
115 const reg_entry *base_reg;
116 const reg_entry *index_reg;
117 unsigned int log2_scale_factor;
118
119 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 120 explicit segment overrides are given. */
ce8a8b2f 121 const seg_entry *seg[2];
252b5132
RH
122
123 /* PREFIX holds all the given prefix opcodes (usually null).
124 PREFIXES is the number of prefix opcodes. */
125 unsigned int prefixes;
126 unsigned char prefix[MAX_PREFIXES];
127
128 /* RM and SIB are the modrm byte and the sib byte where the
129 addressing modes of this insn are encoded. */
130
131 modrm_byte rm;
132 sib_byte sib;
133 };
134
135typedef struct _i386_insn i386_insn;
136
137/* List of chars besides those in app.c:symbol_chars that can start an
138 operand. Used to prevent the scrubber eating vital white-space. */
139#ifdef LEX_AT
140const char extra_symbol_chars[] = "*%-(@";
141#else
142const char extra_symbol_chars[] = "*%-(";
143#endif
144
145/* This array holds the chars that always start a comment. If the
ce8a8b2f 146 pre-processor is disabled, these aren't very useful. */
60bcf0fa 147#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
252b5132
RH
148/* Putting '/' here makes it impossible to use the divide operator.
149 However, we need it for compatibility with SVR4 systems. */
150const char comment_chars[] = "#/";
151#define PREFIX_SEPARATOR '\\'
152#else
153const char comment_chars[] = "#";
154#define PREFIX_SEPARATOR '/'
155#endif
156
157/* This array holds the chars that only start a comment at the beginning of
158 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
159 .line and .file directives will appear in the pre-processed output.
160 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 161 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
162 #NO_APP at the beginning of its output.
163 Also note that comments started like this one will always work if
252b5132 164 '/' isn't otherwise defined. */
60bcf0fa 165#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
252b5132
RH
166const char line_comment_chars[] = "";
167#else
168const char line_comment_chars[] = "/";
169#endif
170
63a0b638 171const char line_separator_chars[] = ";";
252b5132 172
ce8a8b2f
AM
173/* Chars that can be used to separate mant from exp in floating point
174 nums. */
252b5132
RH
175const char EXP_CHARS[] = "eE";
176
ce8a8b2f
AM
177/* Chars that mean this number is a floating point constant
178 As in 0f12.456
179 or 0d1.2345e12. */
252b5132
RH
180const char FLT_CHARS[] = "fFdDxX";
181
ce8a8b2f 182/* Tables for lexical analysis. */
252b5132
RH
183static char mnemonic_chars[256];
184static char register_chars[256];
185static char operand_chars[256];
186static char identifier_chars[256];
187static char digit_chars[256];
188
ce8a8b2f 189/* Lexical macros. */
252b5132
RH
190#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
191#define is_operand_char(x) (operand_chars[(unsigned char) x])
192#define is_register_char(x) (register_chars[(unsigned char) x])
193#define is_space_char(x) ((x) == ' ')
194#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
195#define is_digit_char(x) (digit_chars[(unsigned char) x])
196
ce8a8b2f 197/* All non-digit non-letter charcters that may occur in an operand. */
252b5132
RH
198static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
199
200/* md_assemble() always leaves the strings it's passed unaltered. To
201 effect this we maintain a stack of saved characters that we've smashed
202 with '\0's (indicating end of strings for various sub-fields of the
47926f60 203 assembler instruction). */
252b5132 204static char save_stack[32];
ce8a8b2f 205static char *save_stack_p;
252b5132
RH
206#define END_STRING_AND_SAVE(s) \
207 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
208#define RESTORE_END_STRING(s) \
209 do { *(s) = *--save_stack_p; } while (0)
210
47926f60 211/* The instruction we're assembling. */
252b5132
RH
212static i386_insn i;
213
214/* Possible templates for current insn. */
215static const templates *current_templates;
216
47926f60 217/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
252b5132
RH
218static expressionS disp_expressions[2], im_expressions[2];
219
47926f60
KH
220/* Current operand we are working on. */
221static int this_operand;
252b5132 222
47926f60
KH
223/* 1 if we're writing 16-bit code,
224 0 if 32-bit. */
225static int flag_16bit_code;
252b5132 226
47926f60
KH
227/* 1 for intel syntax,
228 0 if att syntax. */
229static int intel_syntax = 0;
252b5132 230
47926f60
KH
231/* 1 if register prefix % not required. */
232static int allow_naked_reg = 0;
252b5132 233
47926f60
KH
234/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
235 leave, push, and pop instructions so that gcc has the same stack
236 frame as in 32 bit mode. */
237static char stackop_size = '\0';
eecb386c 238
47926f60
KH
239/* Non-zero to quieten some warnings. */
240static int quiet_warnings = 0;
a38cf1db 241
47926f60
KH
242/* CPU name. */
243static const char *cpu_arch_name = NULL;
a38cf1db 244
47926f60
KH
245/* CPU feature flags. */
246static unsigned int cpu_arch_flags = 0;
a38cf1db 247
252b5132
RH
248/* Interface to relax_segment.
249 There are 2 relax states for 386 jump insns: one for conditional &
a217f122
AM
250 one for unconditional jumps. This is because these two types of
251 jumps add different sizes to frags when we're figuring out what
252b5132
RH
252 sort of jump to choose to reach a given label. */
253
47926f60 254/* Types. */
ce8a8b2f
AM
255#define COND_JUMP 1
256#define UNCOND_JUMP 2
47926f60 257/* Sizes. */
252b5132
RH
258#define CODE16 1
259#define SMALL 0
260#define SMALL16 (SMALL|CODE16)
261#define BIG 2
262#define BIG16 (BIG|CODE16)
263
264#ifndef INLINE
265#ifdef __GNUC__
266#define INLINE __inline__
267#else
268#define INLINE
269#endif
270#endif
271
272#define ENCODE_RELAX_STATE(type,size) \
273 ((relax_substateT)((type<<2) | (size)))
274#define SIZE_FROM_RELAX_STATE(s) \
275 ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
276
277/* This table is used by relax_frag to promote short jumps to long
278 ones where necessary. SMALL (short) jumps may be promoted to BIG
279 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
280 don't allow a short jump in a 32 bit code segment to be promoted to
281 a 16 bit offset jump because it's slower (requires data size
282 prefix), and doesn't work, unless the destination is in the bottom
283 64k of the code segment (The top 16 bits of eip are zeroed). */
284
285const relax_typeS md_relax_table[] =
286{
24eab124
AM
287 /* The fields are:
288 1) most positive reach of this state,
289 2) most negative reach of this state,
290 3) how many bytes this mode will add to the size of the current frag
ce8a8b2f 291 4) which index into the table to try if we can't fit into this one. */
252b5132
RH
292 {1, 1, 0, 0},
293 {1, 1, 0, 0},
294 {1, 1, 0, 0},
295 {1, 1, 0, 0},
296
297 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
298 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
299 /* dword conditionals adds 4 bytes to frag:
300 1 extra opcode byte, 3 extra displacement bytes. */
301 {0, 0, 4, 0},
302 /* word conditionals add 2 bytes to frag:
303 1 extra opcode byte, 1 extra displacement byte. */
304 {0, 0, 2, 0},
305
306 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
307 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
308 /* dword jmp adds 3 bytes to frag:
309 0 extra opcode bytes, 3 extra displacement bytes. */
310 {0, 0, 3, 0},
311 /* word jmp adds 1 byte to frag:
312 0 extra opcode bytes, 1 extra displacement byte. */
313 {0, 0, 1, 0}
314
315};
316
e413e4e9
AM
317static const arch_entry cpu_arch[] = {
318 {"i8086", Cpu086 },
319 {"i186", Cpu086|Cpu186 },
320 {"i286", Cpu086|Cpu186|Cpu286 },
321 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
322 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
323 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
324 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
325 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
326 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
327 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX|Cpu3dnow },
328 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|Cpu3dnow },
329 {NULL, 0 }
330};
331
252b5132
RH
332void
333i386_align_code (fragP, count)
334 fragS *fragP;
335 int count;
336{
ce8a8b2f
AM
337 /* Various efficient no-op patterns for aligning code labels.
338 Note: Don't try to assemble the instructions in the comments.
339 0L and 0w are not legal. */
252b5132
RH
340 static const char f32_1[] =
341 {0x90}; /* nop */
342 static const char f32_2[] =
343 {0x89,0xf6}; /* movl %esi,%esi */
344 static const char f32_3[] =
345 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
346 static const char f32_4[] =
347 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
348 static const char f32_5[] =
349 {0x90, /* nop */
350 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
351 static const char f32_6[] =
352 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
353 static const char f32_7[] =
354 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
355 static const char f32_8[] =
356 {0x90, /* nop */
357 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
358 static const char f32_9[] =
359 {0x89,0xf6, /* movl %esi,%esi */
360 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
361 static const char f32_10[] =
362 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
363 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
364 static const char f32_11[] =
365 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
366 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
367 static const char f32_12[] =
368 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
369 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
370 static const char f32_13[] =
371 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
372 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
373 static const char f32_14[] =
374 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
375 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
376 static const char f32_15[] =
377 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
378 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
c3332e24
AM
379 static const char f16_3[] =
380 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
252b5132
RH
381 static const char f16_4[] =
382 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
383 static const char f16_5[] =
384 {0x90, /* nop */
385 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
386 static const char f16_6[] =
387 {0x89,0xf6, /* mov %si,%si */
388 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
389 static const char f16_7[] =
390 {0x8d,0x74,0x00, /* lea 0(%si),%si */
391 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
392 static const char f16_8[] =
393 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
394 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
395 static const char *const f32_patt[] = {
396 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
397 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
398 };
399 static const char *const f16_patt[] = {
c3332e24 400 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
252b5132
RH
401 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
402 };
403
404 if (count > 0 && count <= 15)
405 {
406 if (flag_16bit_code)
407 {
47926f60
KH
408 memcpy (fragP->fr_literal + fragP->fr_fix,
409 f16_patt[count - 1], count);
410 if (count > 8)
411 /* Adjust jump offset. */
252b5132
RH
412 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
413 }
414 else
47926f60
KH
415 memcpy (fragP->fr_literal + fragP->fr_fix,
416 f32_patt[count - 1], count);
252b5132
RH
417 fragP->fr_var = count;
418 }
419}
420
421static char *output_invalid PARAMS ((int c));
422static int i386_operand PARAMS ((char *operand_string));
423static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
424static const reg_entry *parse_register PARAMS ((char *reg_string,
425 char **end_op));
426
427#ifndef I386COFF
428static void s_bss PARAMS ((int));
429#endif
430
ce8a8b2f 431symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
252b5132
RH
432
433static INLINE unsigned int
434mode_from_disp_size (t)
435 unsigned int t;
436{
47926f60 437 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32)) ? 2 : 0;
252b5132
RH
438}
439
440static INLINE int
441fits_in_signed_byte (num)
847f7ad4 442 offsetT num;
252b5132
RH
443{
444 return (num >= -128) && (num <= 127);
47926f60 445}
252b5132
RH
446
447static INLINE int
448fits_in_unsigned_byte (num)
847f7ad4 449 offsetT num;
252b5132
RH
450{
451 return (num & 0xff) == num;
47926f60 452}
252b5132
RH
453
454static INLINE int
455fits_in_unsigned_word (num)
847f7ad4 456 offsetT num;
252b5132
RH
457{
458 return (num & 0xffff) == num;
47926f60 459}
252b5132
RH
460
461static INLINE int
462fits_in_signed_word (num)
847f7ad4 463 offsetT num;
252b5132
RH
464{
465 return (-32768 <= num) && (num <= 32767);
47926f60 466}
252b5132
RH
467
468static int
469smallest_imm_type (num)
847f7ad4 470 offsetT num;
252b5132 471{
e413e4e9 472 if (cpu_arch_flags != 0
47926f60 473 && cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486))
e413e4e9
AM
474 {
475 /* This code is disabled on the 486 because all the Imm1 forms
476 in the opcode table are slower on the i486. They're the
477 versions with the implicitly specified single-position
478 displacement, which has another syntax if you really want to
479 use that form. */
480 if (num == 1)
481 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
482 }
252b5132
RH
483 return (fits_in_signed_byte (num)
484 ? (Imm8S | Imm8 | Imm16 | Imm32)
485 : fits_in_unsigned_byte (num)
486 ? (Imm8 | Imm16 | Imm32)
487 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
488 ? (Imm16 | Imm32)
489 : (Imm32));
47926f60 490}
252b5132 491
847f7ad4
AM
492static offsetT
493offset_in_range (val, size)
494 offsetT val;
495 int size;
496{
508866be 497 addressT mask;
ba2adb93 498
847f7ad4
AM
499 switch (size)
500 {
508866be
L
501 case 1: mask = ((addressT) 1 << 8) - 1; break;
502 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 503 case 4: mask = ((addressT) 2 << 31) - 1; break;
47926f60 504 default: abort ();
847f7ad4
AM
505 }
506
ba2adb93 507 /* If BFD64, sign extend val. */
47926f60 508 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
508866be 509 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
ba2adb93 510
47926f60 511 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
512 {
513 char buf1[40], buf2[40];
514
515 sprint_value (buf1, val);
516 sprint_value (buf2, val & mask);
517 as_warn (_("%s shortened to %s"), buf1, buf2);
518 }
519 return val & mask;
520}
521
252b5132
RH
522/* Returns 0 if attempting to add a prefix where one from the same
523 class already exists, 1 if non rep/repne added, 2 if rep/repne
524 added. */
525static int
526add_prefix (prefix)
527 unsigned int prefix;
528{
529 int ret = 1;
530 int q;
531
532 switch (prefix)
533 {
534 default:
535 abort ();
536
537 case CS_PREFIX_OPCODE:
538 case DS_PREFIX_OPCODE:
539 case ES_PREFIX_OPCODE:
540 case FS_PREFIX_OPCODE:
541 case GS_PREFIX_OPCODE:
542 case SS_PREFIX_OPCODE:
543 q = SEG_PREFIX;
544 break;
545
546 case REPNE_PREFIX_OPCODE:
547 case REPE_PREFIX_OPCODE:
548 ret = 2;
549 /* fall thru */
550 case LOCK_PREFIX_OPCODE:
551 q = LOCKREP_PREFIX;
552 break;
553
554 case FWAIT_OPCODE:
555 q = WAIT_PREFIX;
556 break;
557
558 case ADDR_PREFIX_OPCODE:
559 q = ADDR_PREFIX;
560 break;
561
562 case DATA_PREFIX_OPCODE:
563 q = DATA_PREFIX;
564 break;
565 }
566
567 if (i.prefix[q])
568 {
569 as_bad (_("same type of prefix used twice"));
570 return 0;
571 }
572
573 i.prefixes += 1;
574 i.prefix[q] = prefix;
575 return ret;
576}
577
578static void
579set_16bit_code_flag (new_16bit_code_flag)
eecb386c
AM
580 int new_16bit_code_flag;
581{
582 flag_16bit_code = new_16bit_code_flag;
583 stackop_size = '\0';
584}
585
586static void
587set_16bit_gcc_code_flag (new_16bit_code_flag)
588 int new_16bit_code_flag;
252b5132
RH
589{
590 flag_16bit_code = new_16bit_code_flag;
eecb386c 591 stackop_size = new_16bit_code_flag ? 'l' : '\0';
252b5132
RH
592}
593
594static void
595set_intel_syntax (syntax_flag)
eecb386c 596 int syntax_flag;
252b5132
RH
597{
598 /* Find out if register prefixing is specified. */
599 int ask_naked_reg = 0;
600
601 SKIP_WHITESPACE ();
602 if (! is_end_of_line[(unsigned char) *input_line_pointer])
603 {
604 char *string = input_line_pointer;
605 int e = get_symbol_end ();
606
47926f60 607 if (strcmp (string, "prefix") == 0)
252b5132 608 ask_naked_reg = 1;
47926f60 609 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
610 ask_naked_reg = -1;
611 else
d0b47220 612 as_bad (_("bad argument to syntax directive."));
252b5132
RH
613 *input_line_pointer = e;
614 }
615 demand_empty_rest_of_line ();
c3332e24 616
252b5132
RH
617 intel_syntax = syntax_flag;
618
619 if (ask_naked_reg == 0)
620 {
621#ifdef BFD_ASSEMBLER
622 allow_naked_reg = (intel_syntax
24eab124 623 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132 624#else
47926f60
KH
625 /* Conservative default. */
626 allow_naked_reg = 0;
252b5132
RH
627#endif
628 }
629 else
630 allow_naked_reg = (ask_naked_reg < 0);
631}
632
e413e4e9
AM
633static void
634set_cpu_arch (dummy)
47926f60 635 int dummy ATTRIBUTE_UNUSED;
e413e4e9 636{
47926f60 637 SKIP_WHITESPACE ();
e413e4e9
AM
638
639 if (! is_end_of_line[(unsigned char) *input_line_pointer])
640 {
641 char *string = input_line_pointer;
642 int e = get_symbol_end ();
643 int i;
644
645 for (i = 0; cpu_arch[i].name; i++)
646 {
647 if (strcmp (string, cpu_arch[i].name) == 0)
648 {
649 cpu_arch_name = cpu_arch[i].name;
650 cpu_arch_flags = cpu_arch[i].flags;
651 break;
652 }
653 }
654 if (!cpu_arch[i].name)
655 as_bad (_("no such architecture: `%s'"), string);
656
657 *input_line_pointer = e;
658 }
659 else
660 as_bad (_("missing cpu architecture"));
661
662 demand_empty_rest_of_line ();
663}
664
252b5132
RH
665const pseudo_typeS md_pseudo_table[] =
666{
252b5132
RH
667#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
668 {"align", s_align_bytes, 0},
669#else
670 {"align", s_align_ptwo, 0},
e413e4e9
AM
671#endif
672 {"arch", set_cpu_arch, 0},
673#ifndef I386COFF
674 {"bss", s_bss, 0},
252b5132
RH
675#endif
676 {"ffloat", float_cons, 'f'},
677 {"dfloat", float_cons, 'd'},
678 {"tfloat", float_cons, 'x'},
679 {"value", cons, 2},
680 {"noopt", s_ignore, 0},
681 {"optim", s_ignore, 0},
eecb386c 682 {"code16gcc", set_16bit_gcc_code_flag, 1},
252b5132
RH
683 {"code16", set_16bit_code_flag, 1},
684 {"code32", set_16bit_code_flag, 0},
685 {"intel_syntax", set_intel_syntax, 1},
686 {"att_syntax", set_intel_syntax, 0},
316e2c05
RH
687 {"file", dwarf2_directive_file, 0},
688 {"loc", dwarf2_directive_loc, 0},
252b5132
RH
689 {0, 0, 0}
690};
691
47926f60 692/* For interface with expression (). */
252b5132
RH
693extern char *input_line_pointer;
694
47926f60 695/* Hash table for instruction mnemonic lookup. */
252b5132 696static struct hash_control *op_hash;
47926f60
KH
697
698/* Hash table for register lookup. */
252b5132
RH
699static struct hash_control *reg_hash;
700\f
252b5132
RH
701void
702md_begin ()
703{
704 const char *hash_err;
705
47926f60 706 /* Initialize op_hash hash table. */
252b5132
RH
707 op_hash = hash_new ();
708
709 {
710 register const template *optab;
711 register templates *core_optab;
712
47926f60
KH
713 /* Setup for loop. */
714 optab = i386_optab;
252b5132
RH
715 core_optab = (templates *) xmalloc (sizeof (templates));
716 core_optab->start = optab;
717
718 while (1)
719 {
720 ++optab;
721 if (optab->name == NULL
722 || strcmp (optab->name, (optab - 1)->name) != 0)
723 {
724 /* different name --> ship out current template list;
47926f60 725 add to hash table; & begin anew. */
252b5132
RH
726 core_optab->end = optab;
727 hash_err = hash_insert (op_hash,
728 (optab - 1)->name,
729 (PTR) core_optab);
730 if (hash_err)
731 {
732 hash_error:
733 as_fatal (_("Internal Error: Can't hash %s: %s"),
734 (optab - 1)->name,
735 hash_err);
736 }
737 if (optab->name == NULL)
738 break;
739 core_optab = (templates *) xmalloc (sizeof (templates));
740 core_optab->start = optab;
741 }
742 }
743 }
744
47926f60 745 /* Initialize reg_hash hash table. */
252b5132
RH
746 reg_hash = hash_new ();
747 {
748 register const reg_entry *regtab;
749
750 for (regtab = i386_regtab;
751 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
752 regtab++)
753 {
754 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
755 if (hash_err)
756 goto hash_error;
757 }
758 }
759
47926f60 760 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132
RH
761 {
762 register int c;
763 register char *p;
764
765 for (c = 0; c < 256; c++)
766 {
767 if (isdigit (c))
768 {
769 digit_chars[c] = c;
770 mnemonic_chars[c] = c;
771 register_chars[c] = c;
772 operand_chars[c] = c;
773 }
774 else if (islower (c))
775 {
776 mnemonic_chars[c] = c;
777 register_chars[c] = c;
778 operand_chars[c] = c;
779 }
780 else if (isupper (c))
781 {
782 mnemonic_chars[c] = tolower (c);
783 register_chars[c] = mnemonic_chars[c];
784 operand_chars[c] = c;
785 }
786
787 if (isalpha (c) || isdigit (c))
788 identifier_chars[c] = c;
789 else if (c >= 128)
790 {
791 identifier_chars[c] = c;
792 operand_chars[c] = c;
793 }
794 }
795
796#ifdef LEX_AT
797 identifier_chars['@'] = '@';
798#endif
252b5132
RH
799 digit_chars['-'] = '-';
800 identifier_chars['_'] = '_';
801 identifier_chars['.'] = '.';
802
803 for (p = operand_special_chars; *p != '\0'; p++)
804 operand_chars[(unsigned char) *p] = *p;
805 }
806
807#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
808 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
809 {
810 record_alignment (text_section, 2);
811 record_alignment (data_section, 2);
812 record_alignment (bss_section, 2);
813 }
814#endif
815}
816
817void
818i386_print_statistics (file)
819 FILE *file;
820{
821 hash_print_statistics (file, "i386 opcode", op_hash);
822 hash_print_statistics (file, "i386 register", reg_hash);
823}
824\f
252b5132
RH
825#ifdef DEBUG386
826
ce8a8b2f 827/* Debugging routines for md_assemble. */
252b5132
RH
828static void pi PARAMS ((char *, i386_insn *));
829static void pte PARAMS ((template *));
830static void pt PARAMS ((unsigned int));
831static void pe PARAMS ((expressionS *));
832static void ps PARAMS ((symbolS *));
833
834static void
835pi (line, x)
836 char *line;
837 i386_insn *x;
838{
839 register template *p;
840 int i;
841
842 fprintf (stdout, "%s: template ", line);
843 pte (&x->tm);
844 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
845 x->rm.mode, x->rm.reg, x->rm.regmem);
846 fprintf (stdout, " base %x index %x scale %x\n",
847 x->bi.base, x->bi.index, x->bi.scale);
848 for (i = 0; i < x->operands; i++)
849 {
850 fprintf (stdout, " #%d: ", i + 1);
851 pt (x->types[i]);
852 fprintf (stdout, "\n");
853 if (x->types[i]
3f4438ab 854 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
520dc8e8 855 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
252b5132 856 if (x->types[i] & Imm)
520dc8e8 857 pe (x->op[i].imms);
252b5132 858 if (x->types[i] & Disp)
520dc8e8 859 pe (x->op[i].disps);
252b5132
RH
860 }
861}
862
863static void
864pte (t)
865 template *t;
866{
867 int i;
868 fprintf (stdout, " %d operands ", t->operands);
47926f60 869 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
870 if (t->extension_opcode != None)
871 fprintf (stdout, "ext %x ", t->extension_opcode);
872 if (t->opcode_modifier & D)
873 fprintf (stdout, "D");
874 if (t->opcode_modifier & W)
875 fprintf (stdout, "W");
876 fprintf (stdout, "\n");
877 for (i = 0; i < t->operands; i++)
878 {
879 fprintf (stdout, " #%d type ", i + 1);
880 pt (t->operand_types[i]);
881 fprintf (stdout, "\n");
882 }
883}
884
885static void
886pe (e)
887 expressionS *e;
888{
24eab124 889 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
890 fprintf (stdout, " add_number %ld (%lx)\n",
891 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
892 if (e->X_add_symbol)
893 {
894 fprintf (stdout, " add_symbol ");
895 ps (e->X_add_symbol);
896 fprintf (stdout, "\n");
897 }
898 if (e->X_op_symbol)
899 {
900 fprintf (stdout, " op_symbol ");
901 ps (e->X_op_symbol);
902 fprintf (stdout, "\n");
903 }
904}
905
906static void
907ps (s)
908 symbolS *s;
909{
910 fprintf (stdout, "%s type %s%s",
911 S_GET_NAME (s),
912 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
913 segment_name (S_GET_SEGMENT (s)));
914}
915
916struct type_name
917 {
918 unsigned int mask;
919 char *tname;
920 }
921
922type_names[] =
923{
924 { Reg8, "r8" },
925 { Reg16, "r16" },
926 { Reg32, "r32" },
927 { Imm8, "i8" },
928 { Imm8S, "i8s" },
929 { Imm16, "i16" },
930 { Imm32, "i32" },
931 { Imm1, "i1" },
932 { BaseIndex, "BaseIndex" },
933 { Disp8, "d8" },
934 { Disp16, "d16" },
935 { Disp32, "d32" },
936 { InOutPortReg, "InOutPortReg" },
937 { ShiftCount, "ShiftCount" },
938 { Control, "control reg" },
939 { Test, "test reg" },
940 { Debug, "debug reg" },
941 { FloatReg, "FReg" },
942 { FloatAcc, "FAcc" },
943 { SReg2, "SReg2" },
944 { SReg3, "SReg3" },
945 { Acc, "Acc" },
946 { JumpAbsolute, "Jump Absolute" },
947 { RegMMX, "rMMX" },
3f4438ab 948 { RegXMM, "rXMM" },
252b5132
RH
949 { EsSeg, "es" },
950 { 0, "" }
951};
952
953static void
954pt (t)
955 unsigned int t;
956{
957 register struct type_name *ty;
958
959 if (t == Unknown)
960 {
961 fprintf (stdout, _("Unknown"));
962 }
963 else
964 {
965 for (ty = type_names; ty->mask; ty++)
966 if (t & ty->mask)
967 fprintf (stdout, "%s, ", ty->tname);
968 }
969 fflush (stdout);
970}
971
972#endif /* DEBUG386 */
973\f
974int
975tc_i386_force_relocation (fixp)
976 struct fix *fixp;
977{
978#ifdef BFD_ASSEMBLER
979 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
980 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
981 return 1;
982 return 0;
983#else
ce8a8b2f 984 /* For COFF. */
f6af82bd 985 return fixp->fx_r_type == 7;
252b5132
RH
986#endif
987}
988
989#ifdef BFD_ASSEMBLER
990static bfd_reloc_code_real_type reloc
991 PARAMS ((int, int, bfd_reloc_code_real_type));
992
993static bfd_reloc_code_real_type
994reloc (size, pcrel, other)
995 int size;
996 int pcrel;
997 bfd_reloc_code_real_type other;
998{
47926f60
KH
999 if (other != NO_RELOC)
1000 return other;
252b5132
RH
1001
1002 if (pcrel)
1003 {
1004 switch (size)
1005 {
1006 case 1: return BFD_RELOC_8_PCREL;
1007 case 2: return BFD_RELOC_16_PCREL;
1008 case 4: return BFD_RELOC_32_PCREL;
1009 }
d0b47220 1010 as_bad (_("can not do %d byte pc-relative relocation"), size);
252b5132
RH
1011 }
1012 else
1013 {
1014 switch (size)
1015 {
1016 case 1: return BFD_RELOC_8;
1017 case 2: return BFD_RELOC_16;
1018 case 4: return BFD_RELOC_32;
1019 }
d0b47220 1020 as_bad (_("can not do %d byte relocation"), size);
252b5132
RH
1021 }
1022
1023 return BFD_RELOC_NONE;
1024}
1025
47926f60
KH
1026/* Here we decide which fixups can be adjusted to make them relative to
1027 the beginning of the section instead of the symbol. Basically we need
1028 to make sure that the dynamic relocations are done correctly, so in
1029 some cases we force the original symbol to be used. */
1030
252b5132 1031int
c0c949c7 1032tc_i386_fix_adjustable (fixP)
47926f60 1033 fixS *fixP;
252b5132 1034{
6d249963 1035#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
79d292aa
ILT
1036 /* Prevent all adjustments to global symbols, or else dynamic
1037 linking will not work correctly. */
b98ef147
AM
1038 if (S_IS_EXTERNAL (fixP->fx_addsy)
1039 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
1040 return 0;
1041#endif
ce8a8b2f 1042 /* adjust_reloc_syms doesn't know about the GOT. */
252b5132
RH
1043 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1044 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1045 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1046 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1047 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1048 return 0;
1049 return 1;
1050}
1051#else
1052#define reloc(SIZE,PCREL,OTHER) 0
1053#define BFD_RELOC_16 0
1054#define BFD_RELOC_32 0
1055#define BFD_RELOC_16_PCREL 0
1056#define BFD_RELOC_32_PCREL 0
1057#define BFD_RELOC_386_PLT32 0
1058#define BFD_RELOC_386_GOT32 0
1059#define BFD_RELOC_386_GOTOFF 0
1060#endif
1061
47926f60 1062static int intel_float_operand PARAMS ((char *mnemonic));
b4cac588
AM
1063
1064static int
252b5132
RH
1065intel_float_operand (mnemonic)
1066 char *mnemonic;
1067{
47926f60 1068 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
cc5ca5ce 1069 return 2;
252b5132
RH
1070
1071 if (mnemonic[0] == 'f')
1072 return 1;
1073
1074 return 0;
1075}
1076
1077/* This is the guts of the machine-dependent assembler. LINE points to a
1078 machine dependent instruction. This function is supposed to emit
1079 the frags/bytes it assembles to. */
1080
1081void
1082md_assemble (line)
1083 char *line;
1084{
47926f60 1085 /* Points to template once we've found it. */
252b5132
RH
1086 const template *t;
1087
1088 /* Count the size of the instruction generated. */
1089 int insn_size = 0;
1090
1091 int j;
1092
1093 char mnemonic[MAX_MNEM_SIZE];
1094
47926f60 1095 /* Initialize globals. */
252b5132
RH
1096 memset (&i, '\0', sizeof (i));
1097 for (j = 0; j < MAX_OPERANDS; j++)
1098 i.disp_reloc[j] = NO_RELOC;
1099 memset (disp_expressions, '\0', sizeof (disp_expressions));
1100 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 1101 save_stack_p = save_stack;
252b5132
RH
1102
1103 /* First parse an instruction mnemonic & call i386_operand for the operands.
1104 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 1105 start of a (possibly prefixed) mnemonic. */
252b5132
RH
1106 {
1107 char *l = line;
1108 char *token_start = l;
1109 char *mnem_p;
1110
47926f60 1111 /* Non-zero if we found a prefix only acceptable with string insns. */
252b5132
RH
1112 const char *expecting_string_instruction = NULL;
1113
1114 while (1)
1115 {
1116 mnem_p = mnemonic;
1117 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1118 {
1119 mnem_p++;
1120 if (mnem_p >= mnemonic + sizeof (mnemonic))
1121 {
e413e4e9 1122 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1123 return;
1124 }
1125 l++;
1126 }
1127 if (!is_space_char (*l)
1128 && *l != END_OF_INSN
1129 && *l != PREFIX_SEPARATOR)
1130 {
1131 as_bad (_("invalid character %s in mnemonic"),
1132 output_invalid (*l));
1133 return;
1134 }
1135 if (token_start == l)
1136 {
1137 if (*l == PREFIX_SEPARATOR)
1138 as_bad (_("expecting prefix; got nothing"));
1139 else
1140 as_bad (_("expecting mnemonic; got nothing"));
1141 return;
1142 }
1143
1144 /* Look up instruction (or prefix) via hash table. */
1145 current_templates = hash_find (op_hash, mnemonic);
1146
1147 if (*l != END_OF_INSN
1148 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1149 && current_templates
1150 && (current_templates->start->opcode_modifier & IsPrefix))
1151 {
1152 /* If we are in 16-bit mode, do not allow addr16 or data16.
1153 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1154 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1155 && (((current_templates->start->opcode_modifier & Size32) != 0)
1156 ^ flag_16bit_code))
1157 {
1158 as_bad (_("redundant %s prefix"),
1159 current_templates->start->name);
1160 return;
1161 }
1162 /* Add prefix, checking for repeated prefixes. */
1163 switch (add_prefix (current_templates->start->base_opcode))
1164 {
1165 case 0:
1166 return;
1167 case 2:
47926f60 1168 expecting_string_instruction = current_templates->start->name;
252b5132
RH
1169 break;
1170 }
1171 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1172 token_start = ++l;
1173 }
1174 else
1175 break;
1176 }
1177
1178 if (!current_templates)
1179 {
24eab124 1180 /* See if we can get a match by trimming off a suffix. */
252b5132
RH
1181 switch (mnem_p[-1])
1182 {
252b5132
RH
1183 case WORD_MNEM_SUFFIX:
1184 case BYTE_MNEM_SUFFIX:
1185 case SHORT_MNEM_SUFFIX:
252b5132 1186 case LONG_MNEM_SUFFIX:
252b5132
RH
1187 i.suffix = mnem_p[-1];
1188 mnem_p[-1] = '\0';
1189 current_templates = hash_find (op_hash, mnemonic);
24eab124
AM
1190 break;
1191
ce8a8b2f 1192 /* Intel Syntax. */
add0c677 1193 case DWORD_MNEM_SUFFIX:
24eab124
AM
1194 if (intel_syntax)
1195 {
1196 i.suffix = mnem_p[-1];
1197 mnem_p[-1] = '\0';
1198 current_templates = hash_find (op_hash, mnemonic);
1199 break;
1200 }
252b5132
RH
1201 }
1202 if (!current_templates)
1203 {
e413e4e9 1204 as_bad (_("no such instruction: `%s'"), token_start);
252b5132
RH
1205 return;
1206 }
1207 }
1208
e413e4e9
AM
1209 /* Check if instruction is supported on specified architecture. */
1210 if (cpu_arch_flags != 0)
1211 {
47926f60 1212 if (current_templates->start->cpu_flags & ~cpu_arch_flags)
e413e4e9
AM
1213 {
1214 as_warn (_("`%s' is not supported on `%s'"),
1215 current_templates->start->name, cpu_arch_name);
1216 }
47926f60 1217 else if ((Cpu386 & ~cpu_arch_flags) && !flag_16bit_code)
e413e4e9
AM
1218 {
1219 as_warn (_("use .code16 to ensure correct addressing mode"));
1220 }
1221 }
1222
ce8a8b2f 1223 /* Check for rep/repne without a string instruction. */
252b5132
RH
1224 if (expecting_string_instruction
1225 && !(current_templates->start->opcode_modifier & IsString))
1226 {
1227 as_bad (_("expecting string instruction after `%s'"),
1228 expecting_string_instruction);
1229 return;
1230 }
1231
47926f60 1232 /* There may be operands to parse. */
252b5132
RH
1233 if (*l != END_OF_INSN)
1234 {
47926f60 1235 /* 1 if operand is pending after ','. */
252b5132
RH
1236 unsigned int expecting_operand = 0;
1237
47926f60 1238 /* Non-zero if operand parens not balanced. */
252b5132
RH
1239 unsigned int paren_not_balanced;
1240
1241 do
1242 {
ce8a8b2f 1243 /* Skip optional white space before operand. */
252b5132
RH
1244 if (is_space_char (*l))
1245 ++l;
1246 if (!is_operand_char (*l) && *l != END_OF_INSN)
1247 {
1248 as_bad (_("invalid character %s before operand %d"),
1249 output_invalid (*l),
1250 i.operands + 1);
1251 return;
1252 }
1253 token_start = l; /* after white space */
1254 paren_not_balanced = 0;
1255 while (paren_not_balanced || *l != ',')
1256 {
1257 if (*l == END_OF_INSN)
1258 {
1259 if (paren_not_balanced)
1260 {
24eab124 1261 if (!intel_syntax)
252b5132
RH
1262 as_bad (_("unbalanced parenthesis in operand %d."),
1263 i.operands + 1);
24eab124 1264 else
252b5132
RH
1265 as_bad (_("unbalanced brackets in operand %d."),
1266 i.operands + 1);
1267 return;
1268 }
1269 else
1270 break; /* we are done */
1271 }
1272 else if (!is_operand_char (*l) && !is_space_char (*l))
1273 {
1274 as_bad (_("invalid character %s in operand %d"),
1275 output_invalid (*l),
1276 i.operands + 1);
1277 return;
1278 }
24eab124
AM
1279 if (!intel_syntax)
1280 {
252b5132
RH
1281 if (*l == '(')
1282 ++paren_not_balanced;
1283 if (*l == ')')
1284 --paren_not_balanced;
24eab124
AM
1285 }
1286 else
1287 {
252b5132
RH
1288 if (*l == '[')
1289 ++paren_not_balanced;
1290 if (*l == ']')
1291 --paren_not_balanced;
24eab124 1292 }
252b5132
RH
1293 l++;
1294 }
1295 if (l != token_start)
47926f60 1296 { /* Yes, we've read in another operand. */
252b5132
RH
1297 unsigned int operand_ok;
1298 this_operand = i.operands++;
1299 if (i.operands > MAX_OPERANDS)
1300 {
1301 as_bad (_("spurious operands; (%d operands/instruction max)"),
1302 MAX_OPERANDS);
1303 return;
1304 }
47926f60 1305 /* Now parse operand adding info to 'i' as we go along. */
252b5132
RH
1306 END_STRING_AND_SAVE (l);
1307
24eab124 1308 if (intel_syntax)
47926f60
KH
1309 operand_ok =
1310 i386_intel_operand (token_start,
1311 intel_float_operand (mnemonic));
24eab124
AM
1312 else
1313 operand_ok = i386_operand (token_start);
252b5132 1314
ce8a8b2f 1315 RESTORE_END_STRING (l);
252b5132
RH
1316 if (!operand_ok)
1317 return;
1318 }
1319 else
1320 {
1321 if (expecting_operand)
1322 {
1323 expecting_operand_after_comma:
1324 as_bad (_("expecting operand after ','; got nothing"));
1325 return;
1326 }
1327 if (*l == ',')
1328 {
1329 as_bad (_("expecting operand before ','; got nothing"));
1330 return;
1331 }
1332 }
1333
ce8a8b2f 1334 /* Now *l must be either ',' or END_OF_INSN. */
252b5132
RH
1335 if (*l == ',')
1336 {
1337 if (*++l == END_OF_INSN)
ce8a8b2f
AM
1338 {
1339 /* Just skip it, if it's \n complain. */
252b5132
RH
1340 goto expecting_operand_after_comma;
1341 }
1342 expecting_operand = 1;
1343 }
1344 }
ce8a8b2f 1345 while (*l != END_OF_INSN);
252b5132
RH
1346 }
1347 }
1348
1349 /* Now we've parsed the mnemonic into a set of templates, and have the
1350 operands at hand.
1351
1352 Next, we find a template that matches the given insn,
1353 making sure the overlap of the given operands types is consistent
47926f60 1354 with the template operand types. */
252b5132
RH
1355
1356#define MATCH(overlap, given, template) \
3138f287
AM
1357 ((overlap & ~JumpAbsolute) \
1358 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
252b5132
RH
1359
1360 /* If given types r0 and r1 are registers they must be of the same type
1361 unless the expected operand type register overlap is null.
1362 Note that Acc in a template matches every size of reg. */
1363#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1364 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1365 ((g0) & Reg) == ((g1) & Reg) || \
1366 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1367
1368 {
1369 register unsigned int overlap0, overlap1;
252b5132
RH
1370 unsigned int overlap2;
1371 unsigned int found_reverse_match;
1372 int suffix_check;
1373
cc5ca5ce
AM
1374 /* All intel opcodes have reversed operands except for "bound" and
1375 "enter". We also don't reverse intersegment "jmp" and "call"
1376 instructions with 2 immediate operands so that the immediate segment
1377 precedes the offset, as it does when in AT&T mode. "enter" and the
1378 intersegment "jmp" and "call" instructions are the only ones that
1379 have two immediate operands. */
520dc8e8 1380 if (intel_syntax && i.operands > 1
cc5ca5ce
AM
1381 && (strcmp (mnemonic, "bound") != 0)
1382 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
252b5132 1383 {
520dc8e8 1384 union i386_op temp_op;
24eab124
AM
1385 unsigned int temp_type;
1386 int xchg1 = 0;
ab9da554 1387 int xchg2 = 0;
252b5132 1388
24eab124
AM
1389 if (i.operands == 2)
1390 {
1391 xchg1 = 0;
1392 xchg2 = 1;
1393 }
1394 else if (i.operands == 3)
1395 {
1396 xchg1 = 0;
1397 xchg2 = 2;
1398 }
520dc8e8
AM
1399 temp_type = i.types[xchg2];
1400 i.types[xchg2] = i.types[xchg1];
1401 i.types[xchg1] = temp_type;
1402 temp_op = i.op[xchg2];
1403 i.op[xchg2] = i.op[xchg1];
1404 i.op[xchg1] = temp_op;
36bf8ab9
AM
1405
1406 if (i.mem_operands == 2)
1407 {
1408 const seg_entry *temp_seg;
1409 temp_seg = i.seg[0];
1410 i.seg[0] = i.seg[1];
1411 i.seg[1] = temp_seg;
1412 }
24eab124 1413 }
773f551c
AM
1414
1415 if (i.imm_operands)
1416 {
1417 /* Try to ensure constant immediates are represented in the smallest
1418 opcode possible. */
1419 char guess_suffix = 0;
1420 int op;
1421
1422 if (i.suffix)
1423 guess_suffix = i.suffix;
1424 else if (i.reg_operands)
1425 {
1426 /* Figure out a suffix from the last register operand specified.
1427 We can't do this properly yet, ie. excluding InOutPortReg,
1428 but the following works for instructions with immediates.
1429 In any case, we can't set i.suffix yet. */
47926f60 1430 for (op = i.operands; --op >= 0;)
773f551c
AM
1431 if (i.types[op] & Reg)
1432 {
1433 if (i.types[op] & Reg8)
1434 guess_suffix = BYTE_MNEM_SUFFIX;
1435 else if (i.types[op] & Reg16)
1436 guess_suffix = WORD_MNEM_SUFFIX;
1437 break;
1438 }
1439 }
726c5dcd
AM
1440 else if (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0))
1441 guess_suffix = WORD_MNEM_SUFFIX;
1442
47926f60 1443 for (op = i.operands; --op >= 0;)
773f551c
AM
1444 if ((i.types[op] & Imm)
1445 && i.op[op].imms->X_op == O_constant)
1446 {
1447 /* If a suffix is given, this operand may be shortened. */
1448 switch (guess_suffix)
1449 {
1450 case WORD_MNEM_SUFFIX:
1451 i.types[op] |= Imm16;
1452 break;
1453 case BYTE_MNEM_SUFFIX:
1454 i.types[op] |= Imm16 | Imm8 | Imm8S;
1455 break;
1456 }
1457
1458 /* If this operand is at most 16 bits, convert it to a
1459 signed 16 bit number before trying to see whether it will
1460 fit in an even smaller size. This allows a 16-bit operand
1461 such as $0xffe0 to be recognised as within Imm8S range. */
1462 if ((i.types[op] & Imm16)
1463 && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
1464 {
1465 i.op[op].imms->X_add_number =
1466 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1467 }
1468 i.types[op] |= smallest_imm_type ((long) i.op[op].imms->X_add_number);
1469 }
1470 }
1471
45288df1
AM
1472 if (i.disp_operands)
1473 {
1474 /* Try to use the smallest displacement type too. */
1475 int op;
1476
47926f60 1477 for (op = i.operands; --op >= 0;)
45288df1
AM
1478 if ((i.types[op] & Disp)
1479 && i.op[op].imms->X_op == O_constant)
1480 {
1481 offsetT disp = i.op[op].disps->X_add_number;
1482
1483 if (i.types[op] & Disp16)
1484 {
1485 /* We know this operand is at most 16 bits, so
1486 convert to a signed 16 bit number before trying
1487 to see whether it will fit in an even smaller
1488 size. */
47926f60 1489
45288df1
AM
1490 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1491 }
1492 if (fits_in_signed_byte (disp))
1493 i.types[op] |= Disp8;
1494 }
1495 }
1496
252b5132
RH
1497 overlap0 = 0;
1498 overlap1 = 0;
1499 overlap2 = 0;
1500 found_reverse_match = 0;
1501 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1502 ? No_bSuf
1503 : (i.suffix == WORD_MNEM_SUFFIX
1504 ? No_wSuf
1505 : (i.suffix == SHORT_MNEM_SUFFIX
1506 ? No_sSuf
1507 : (i.suffix == LONG_MNEM_SUFFIX
24eab124 1508 ? No_lSuf
add0c677 1509 : (i.suffix == DWORD_MNEM_SUFFIX
24eab124
AM
1510 ? No_dSuf
1511 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
252b5132
RH
1512
1513 for (t = current_templates->start;
1514 t < current_templates->end;
1515 t++)
1516 {
47926f60 1517 /* Must have right number of operands. */
252b5132
RH
1518 if (i.operands != t->operands)
1519 continue;
1520
7f3f1ea2
AM
1521 /* Check the suffix, except for some instructions in intel mode. */
1522 if ((t->opcode_modifier & suffix_check)
fa2255cb
DN
1523 && !(intel_syntax
1524 && (t->opcode_modifier & IgnoreSize))
7f3f1ea2
AM
1525 && !(intel_syntax
1526 && t->base_opcode == 0xd9
ce8a8b2f
AM
1527 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1528 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
24eab124 1529 continue;
252b5132
RH
1530
1531 else if (!t->operands)
47926f60
KH
1532 /* 0 operands always matches. */
1533 break;
252b5132
RH
1534
1535 overlap0 = i.types[0] & t->operand_types[0];
1536 switch (t->operands)
1537 {
1538 case 1:
1539 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1540 continue;
1541 break;
1542 case 2:
1543 case 3:
1544 overlap1 = i.types[1] & t->operand_types[1];
1545 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1546 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1547 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1548 t->operand_types[0],
1549 overlap1, i.types[1],
1550 t->operand_types[1]))
1551 {
47926f60 1552 /* Check if other direction is valid ... */
252b5132
RH
1553 if ((t->opcode_modifier & (D|FloatD)) == 0)
1554 continue;
1555
47926f60 1556 /* Try reversing direction of operands. */
252b5132
RH
1557 overlap0 = i.types[0] & t->operand_types[1];
1558 overlap1 = i.types[1] & t->operand_types[0];
1559 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1560 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1561 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1562 t->operand_types[1],
1563 overlap1, i.types[1],
1564 t->operand_types[0]))
1565 {
47926f60 1566 /* Does not match either direction. */
252b5132
RH
1567 continue;
1568 }
1569 /* found_reverse_match holds which of D or FloatDR
1570 we've found. */
1571 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1572 break;
1573 }
47926f60 1574 /* Found a forward 2 operand match here. */
252b5132
RH
1575 if (t->operands == 3)
1576 {
1577 /* Here we make use of the fact that there are no
1578 reverse match 3 operand instructions, and all 3
1579 operand instructions only need to be checked for
1580 register consistency between operands 2 and 3. */
1581 overlap2 = i.types[2] & t->operand_types[2];
1582 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1583 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1584 t->operand_types[1],
1585 overlap2, i.types[2],
24eab124 1586 t->operand_types[2]))
252b5132 1587
24eab124 1588 continue;
252b5132 1589 }
47926f60 1590 /* Found either forward/reverse 2 or 3 operand match here:
ce8a8b2f 1591 slip through to break. */
252b5132 1592 }
47926f60
KH
1593 /* We've found a match; break out of loop. */
1594 break;
ce8a8b2f 1595 }
252b5132 1596 if (t == current_templates->end)
47926f60
KH
1597 {
1598 /* We found no match. */
252b5132
RH
1599 as_bad (_("suffix or operands invalid for `%s'"),
1600 current_templates->start->name);
1601 return;
1602 }
1603
a38cf1db 1604 if (!quiet_warnings)
3138f287 1605 {
a38cf1db
AM
1606 if (!intel_syntax
1607 && ((i.types[0] & JumpAbsolute)
1608 != (t->operand_types[0] & JumpAbsolute)))
1609 {
1610 as_warn (_("indirect %s without `*'"), t->name);
1611 }
3138f287 1612
a38cf1db
AM
1613 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1614 == (IsPrefix|IgnoreSize))
1615 {
1616 /* Warn them that a data or address size prefix doesn't
1617 affect assembly of the next line of code. */
1618 as_warn (_("stand-alone `%s' prefix"), t->name);
1619 }
252b5132
RH
1620 }
1621
1622 /* Copy the template we found. */
1623 i.tm = *t;
1624 if (found_reverse_match)
1625 {
7f3f1ea2
AM
1626 /* If we found a reverse match we must alter the opcode
1627 direction bit. found_reverse_match holds bits to change
1628 (different for int & float insns). */
1629
1630 i.tm.base_opcode ^= found_reverse_match;
1631
252b5132
RH
1632 i.tm.operand_types[0] = t->operand_types[1];
1633 i.tm.operand_types[1] = t->operand_types[0];
1634 }
1635
d0b47220
AM
1636 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1637 if (SYSV386_COMPAT
7f3f1ea2
AM
1638 && intel_syntax
1639 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1640 i.tm.base_opcode ^= FloatR;
252b5132
RH
1641
1642 if (i.tm.opcode_modifier & FWait)
1643 if (! add_prefix (FWAIT_OPCODE))
1644 return;
1645
ce8a8b2f 1646 /* Check string instruction segment overrides. */
252b5132
RH
1647 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1648 {
1649 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1650 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1651 {
1652 if (i.seg[0] != NULL && i.seg[0] != &es)
1653 {
1654 as_bad (_("`%s' operand %d must use `%%es' segment"),
1655 i.tm.name,
1656 mem_op + 1);
1657 return;
1658 }
1659 /* There's only ever one segment override allowed per instruction.
1660 This instruction possibly has a legal segment override on the
1661 second operand, so copy the segment to where non-string
1662 instructions store it, allowing common code. */
1663 i.seg[0] = i.seg[1];
1664 }
1665 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1666 {
1667 if (i.seg[1] != NULL && i.seg[1] != &es)
1668 {
1669 as_bad (_("`%s' operand %d must use `%%es' segment"),
1670 i.tm.name,
1671 mem_op + 2);
1672 return;
1673 }
1674 }
1675 }
1676
1677 /* If matched instruction specifies an explicit instruction mnemonic
1678 suffix, use it. */
1679 if (i.tm.opcode_modifier & (Size16 | Size32))
1680 {
1681 if (i.tm.opcode_modifier & Size16)
1682 i.suffix = WORD_MNEM_SUFFIX;
1683 else
add0c677 1684 i.suffix = LONG_MNEM_SUFFIX;
252b5132
RH
1685 }
1686 else if (i.reg_operands)
1687 {
1688 /* If there's no instruction mnemonic suffix we try to invent one
47926f60 1689 based on register operands. */
252b5132
RH
1690 if (!i.suffix)
1691 {
1692 /* We take i.suffix from the last register operand specified,
1693 Destination register type is more significant than source
1694 register type. */
1695 int op;
47926f60 1696 for (op = i.operands; --op >= 0;)
cc5ca5ce
AM
1697 if ((i.types[op] & Reg)
1698 && !(i.tm.operand_types[op] & InOutPortReg))
252b5132
RH
1699 {
1700 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1701 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
add0c677 1702 LONG_MNEM_SUFFIX);
252b5132
RH
1703 break;
1704 }
1705 }
1706 else if (i.suffix == BYTE_MNEM_SUFFIX)
1707 {
1708 int op;
47926f60 1709 for (op = i.operands; --op >= 0;)
252b5132
RH
1710 {
1711 /* If this is an eight bit register, it's OK. If it's
1712 the 16 or 32 bit version of an eight bit register,
47926f60 1713 we will just use the low portion, and that's OK too. */
252b5132
RH
1714 if (i.types[op] & Reg8)
1715 continue;
1716
47926f60 1717 /* movzx and movsx should not generate this warning. */
24eab124
AM
1718 if (intel_syntax
1719 && (i.tm.base_opcode == 0xfb7
1720 || i.tm.base_opcode == 0xfb6
1721 || i.tm.base_opcode == 0xfbe
1722 || i.tm.base_opcode == 0xfbf))
1723 continue;
252b5132 1724
520dc8e8 1725 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
252b5132
RH
1726#if 0
1727 /* Check that the template allows eight bit regs
1728 This kills insns such as `orb $1,%edx', which
1729 maybe should be allowed. */
1730 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1731#endif
1732 )
1733 {
1734#if REGISTER_WARNINGS
a38cf1db
AM
1735 if (!quiet_warnings
1736 && (i.tm.operand_types[op] & InOutPortReg) == 0)
252b5132 1737 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
520dc8e8
AM
1738 (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
1739 i.op[op].regs->reg_name,
252b5132
RH
1740 i.suffix);
1741#endif
1742 continue;
1743 }
ce8a8b2f 1744 /* Any other register is bad. */
3f4438ab
AM
1745 if (i.types[op] & (Reg | RegMMX | RegXMM
1746 | SReg2 | SReg3
1747 | Control | Debug | Test
1748 | FloatReg | FloatAcc))
252b5132
RH
1749 {
1750 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 1751 i.op[op].regs->reg_name,
252b5132
RH
1752 i.tm.name,
1753 i.suffix);
1754 return;
1755 }
1756 }
1757 }
add0c677 1758 else if (i.suffix == LONG_MNEM_SUFFIX)
252b5132
RH
1759 {
1760 int op;
47926f60
KH
1761
1762 for (op = i.operands; --op >= 0;)
252b5132
RH
1763 /* Reject eight bit registers, except where the template
1764 requires them. (eg. movzb) */
1765 if ((i.types[op] & Reg8) != 0
47926f60 1766 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
252b5132
RH
1767 {
1768 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 1769 i.op[op].regs->reg_name,
252b5132
RH
1770 i.tm.name,
1771 i.suffix);
1772 return;
1773 }
1774#if REGISTER_WARNINGS
1775 /* Warn if the e prefix on a general reg is missing. */
a38cf1db
AM
1776 else if (!quiet_warnings
1777 && (i.types[op] & Reg16) != 0
252b5132
RH
1778 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
1779 {
1780 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
520dc8e8
AM
1781 (i.op[op].regs + 8)->reg_name,
1782 i.op[op].regs->reg_name,
252b5132
RH
1783 i.suffix);
1784 }
1785#endif
1786 }
1787 else if (i.suffix == WORD_MNEM_SUFFIX)
1788 {
1789 int op;
47926f60 1790 for (op = i.operands; --op >= 0;)
252b5132
RH
1791 /* Reject eight bit registers, except where the template
1792 requires them. (eg. movzb) */
1793 if ((i.types[op] & Reg8) != 0
1794 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
1795 {
1796 as_bad (_("`%%%s' not allowed with `%s%c'"),
520dc8e8 1797 i.op[op].regs->reg_name,
252b5132
RH
1798 i.tm.name,
1799 i.suffix);
1800 return;
1801 }
1802#if REGISTER_WARNINGS
1803 /* Warn if the e prefix on a general reg is present. */
a38cf1db
AM
1804 else if (!quiet_warnings
1805 && (i.types[op] & Reg32) != 0
252b5132
RH
1806 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
1807 {
1808 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
520dc8e8
AM
1809 (i.op[op].regs - 8)->reg_name,
1810 i.op[op].regs->reg_name,
252b5132
RH
1811 i.suffix);
1812 }
1813#endif
1814 }
fa2255cb
DN
1815 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
1816 /* Do nothing if the instruction is going to ignore the prefix. */
1817 ;
252b5132 1818 else
47926f60 1819 abort ();
252b5132 1820 }
eecb386c
AM
1821 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
1822 {
1823 i.suffix = stackop_size;
1824 }
252b5132
RH
1825
1826 /* Make still unresolved immediate matches conform to size of immediate
1827 given in i.suffix. Note: overlap2 cannot be an immediate! */
1828 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
1829 && overlap0 != Imm8 && overlap0 != Imm8S
1830 && overlap0 != Imm16 && overlap0 != Imm32)
1831 {
1832 if (i.suffix)
1833 {
24eab124
AM
1834 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1835 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
252b5132
RH
1836 }
1837 else if (overlap0 == (Imm16 | Imm32))
1838 {
24eab124 1839 overlap0 =
252b5132
RH
1840 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1841 }
1842 else
1843 {
1844 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1845 return;
1846 }
1847 }
1848 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
1849 && overlap1 != Imm8 && overlap1 != Imm8S
1850 && overlap1 != Imm16 && overlap1 != Imm32)
1851 {
1852 if (i.suffix)
1853 {
24eab124
AM
1854 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1855 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
252b5132
RH
1856 }
1857 else if (overlap1 == (Imm16 | Imm32))
1858 {
24eab124 1859 overlap1 =
252b5132
RH
1860 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1861 }
1862 else
1863 {
1864 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1865 return;
1866 }
1867 }
1868 assert ((overlap2 & Imm) == 0);
1869
1870 i.types[0] = overlap0;
1871 if (overlap0 & ImplicitRegister)
1872 i.reg_operands--;
1873 if (overlap0 & Imm1)
ce8a8b2f 1874 i.imm_operands = 0; /* kludge for shift insns. */
252b5132
RH
1875
1876 i.types[1] = overlap1;
1877 if (overlap1 & ImplicitRegister)
1878 i.reg_operands--;
1879
1880 i.types[2] = overlap2;
1881 if (overlap2 & ImplicitRegister)
1882 i.reg_operands--;
1883
1884 /* Finalize opcode. First, we change the opcode based on the operand
1885 size given by i.suffix: We need not change things for byte insns. */
1886
1887 if (!i.suffix && (i.tm.opcode_modifier & W))
1888 {
1889 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
1890 return;
1891 }
1892
ce8a8b2f 1893 /* For movzx and movsx, need to check the register type. */
252b5132 1894 if (intel_syntax
24eab124 1895 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
252b5132 1896 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
24eab124
AM
1897 {
1898 unsigned int prefix = DATA_PREFIX_OPCODE;
252b5132 1899
520dc8e8 1900 if ((i.op[1].regs->reg_type & Reg16) != 0)
24eab124
AM
1901 if (!add_prefix (prefix))
1902 return;
1903 }
252b5132
RH
1904
1905 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
1906 {
1907 /* It's not a byte, select word/dword operation. */
1908 if (i.tm.opcode_modifier & W)
1909 {
1910 if (i.tm.opcode_modifier & ShortForm)
1911 i.tm.base_opcode |= 8;
1912 else
1913 i.tm.base_opcode |= 1;
1914 }
1915 /* Now select between word & dword operations via the operand
1916 size prefix, except for instructions that will ignore this
1917 prefix anyway. */
add0c677 1918 if (((intel_syntax && (i.suffix == DWORD_MNEM_SUFFIX))
252b5132
RH
1919 || i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code
1920 && !(i.tm.opcode_modifier & IgnoreSize))
1921 {
1922 unsigned int prefix = DATA_PREFIX_OPCODE;
1923 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
1924 prefix = ADDR_PREFIX_OPCODE;
1925
1926 if (! add_prefix (prefix))
1927 return;
1928 }
1929 /* Size floating point instruction. */
1930 if (i.suffix == LONG_MNEM_SUFFIX
add0c677 1931 || (intel_syntax && i.suffix == DWORD_MNEM_SUFFIX))
252b5132
RH
1932 {
1933 if (i.tm.opcode_modifier & FloatMF)
1934 i.tm.base_opcode ^= 4;
1935 }
252b5132
RH
1936 }
1937
3f4438ab 1938 if (i.tm.opcode_modifier & ImmExt)
252b5132 1939 {
3f4438ab
AM
1940 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1941 opcode suffix which is coded in the same place as an 8-bit
1942 immediate field would be. Here we fake an 8-bit immediate
1943 operand from the opcode suffix stored in tm.extension_opcode. */
252b5132
RH
1944
1945 expressionS *exp;
1946
47926f60 1947 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
252b5132
RH
1948
1949 exp = &im_expressions[i.imm_operands++];
520dc8e8 1950 i.op[i.operands].imms = exp;
252b5132
RH
1951 i.types[i.operands++] = Imm8;
1952 exp->X_op = O_constant;
1953 exp->X_add_number = i.tm.extension_opcode;
1954 i.tm.extension_opcode = None;
1955 }
1956
47926f60 1957 /* For insns with operands there are more diddles to do to the opcode. */
252b5132
RH
1958 if (i.operands)
1959 {
24eab124 1960 /* Default segment register this instruction will use
252b5132
RH
1961 for memory accesses. 0 means unknown.
1962 This is only for optimizing out unnecessary segment overrides. */
1963 const seg_entry *default_seg = 0;
1964
252b5132
RH
1965 /* The imul $imm, %reg instruction is converted into
1966 imul $imm, %reg, %reg, and the clr %reg instruction
1967 is converted into xor %reg, %reg. */
1968 if (i.tm.opcode_modifier & regKludge)
1969 {
1970 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
47926f60
KH
1971 /* Pretend we saw the extra register operand. */
1972 assert (i.op[first_reg_op + 1].regs == 0);
1973 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
1974 i.types[first_reg_op + 1] = i.types[first_reg_op];
252b5132
RH
1975 i.reg_operands = 2;
1976 }
1977
1978 if (i.tm.opcode_modifier & ShortForm)
1979 {
47926f60 1980 /* The register or float register operand is in operand 0 or 1. */
252b5132 1981 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
47926f60 1982 /* Register goes in low 3 bits of opcode. */
520dc8e8 1983 i.tm.base_opcode |= i.op[op].regs->reg_num;
a38cf1db 1984 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132
RH
1985 {
1986 /* Warn about some common errors, but press on regardless.
1987 The first case can be generated by gcc (<= 2.8.1). */
1988 if (i.operands == 2)
1989 {
47926f60 1990 /* Reversed arguments on faddp, fsubp, etc. */
252b5132 1991 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
520dc8e8
AM
1992 i.op[1].regs->reg_name,
1993 i.op[0].regs->reg_name);
252b5132
RH
1994 }
1995 else
1996 {
47926f60 1997 /* Extraneous `l' suffix on fp insn. */
252b5132 1998 as_warn (_("translating to `%s %%%s'"), i.tm.name,
520dc8e8 1999 i.op[0].regs->reg_name);
252b5132
RH
2000 }
2001 }
2002 }
2003 else if (i.tm.opcode_modifier & Modrm)
2004 {
2005 /* The opcode is completed (modulo i.tm.extension_opcode which
2006 must be put into the modrm byte).
2007 Now, we make the modrm & index base bytes based on all the
47926f60 2008 info we've collected. */
252b5132
RH
2009
2010 /* i.reg_operands MUST be the number of real register operands;
47926f60 2011 implicit registers do not count. */
252b5132
RH
2012 if (i.reg_operands == 2)
2013 {
2014 unsigned int source, dest;
2015 source = ((i.types[0]
3f4438ab
AM
2016 & (Reg | RegMMX | RegXMM
2017 | SReg2 | SReg3
2018 | Control | Debug | Test))
252b5132
RH
2019 ? 0 : 1);
2020 dest = source + 1;
2021
252b5132 2022 i.rm.mode = 3;
3f4438ab
AM
2023 /* One of the register operands will be encoded in the
2024 i.tm.reg field, the other in the combined i.tm.mode
2025 and i.tm.regmem fields. If no form of this
2026 instruction supports a memory destination operand,
2027 then we assume the source operand may sometimes be
2028 a memory operand and so we need to store the
2029 destination in the i.rm.reg field. */
2030 if ((i.tm.operand_types[dest] & AnyMem) == 0)
252b5132 2031 {
520dc8e8
AM
2032 i.rm.reg = i.op[dest].regs->reg_num;
2033 i.rm.regmem = i.op[source].regs->reg_num;
252b5132
RH
2034 }
2035 else
2036 {
520dc8e8
AM
2037 i.rm.reg = i.op[source].regs->reg_num;
2038 i.rm.regmem = i.op[dest].regs->reg_num;
252b5132
RH
2039 }
2040 }
2041 else
47926f60 2042 { /* If it's not 2 reg operands... */
252b5132
RH
2043 if (i.mem_operands)
2044 {
2045 unsigned int fake_zero_displacement = 0;
2046 unsigned int op = ((i.types[0] & AnyMem)
2047 ? 0
2048 : (i.types[1] & AnyMem) ? 1 : 2);
2049
2050 default_seg = &ds;
2051
2052 if (! i.base_reg)
2053 {
2054 i.rm.mode = 0;
2055 if (! i.disp_operands)
2056 fake_zero_displacement = 1;
2057 if (! i.index_reg)
2058 {
47926f60 2059 /* Operand is just <disp> */
252b5132
RH
2060 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2061 {
2062 i.rm.regmem = NO_BASE_REGISTER_16;
2063 i.types[op] &= ~Disp;
2064 i.types[op] |= Disp16;
2065 }
2066 else
2067 {
2068 i.rm.regmem = NO_BASE_REGISTER;
2069 i.types[op] &= ~Disp;
2070 i.types[op] |= Disp32;
2071 }
2072 }
47926f60 2073 else /* ! i.base_reg && i.index_reg */
252b5132
RH
2074 {
2075 i.sib.index = i.index_reg->reg_num;
2076 i.sib.base = NO_BASE_REGISTER;
2077 i.sib.scale = i.log2_scale_factor;
2078 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2079 i.types[op] &= ~Disp;
47926f60 2080 i.types[op] |= Disp32; /* Must be 32 bit. */
252b5132
RH
2081 }
2082 }
2083 else if (i.base_reg->reg_type & Reg16)
2084 {
2085 switch (i.base_reg->reg_num)
2086 {
47926f60 2087 case 3: /* (%bx) */
252b5132
RH
2088 if (! i.index_reg)
2089 i.rm.regmem = 7;
47926f60 2090 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
252b5132
RH
2091 i.rm.regmem = i.index_reg->reg_num - 6;
2092 break;
47926f60 2093 case 5: /* (%bp) */
252b5132
RH
2094 default_seg = &ss;
2095 if (! i.index_reg)
2096 {
2097 i.rm.regmem = 6;
2098 if ((i.types[op] & Disp) == 0)
2099 {
47926f60 2100 /* fake (%bp) into 0(%bp) */
252b5132
RH
2101 i.types[op] |= Disp8;
2102 fake_zero_displacement = 1;
2103 }
2104 }
47926f60 2105 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
252b5132
RH
2106 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2107 break;
47926f60 2108 default: /* (%si) -> 4 or (%di) -> 5 */
252b5132
RH
2109 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2110 }
2111 i.rm.mode = mode_from_disp_size (i.types[op]);
2112 }
47926f60 2113 else /* i.base_reg and 32 bit mode */
252b5132
RH
2114 {
2115 i.rm.regmem = i.base_reg->reg_num;
2116 i.sib.base = i.base_reg->reg_num;
2117 if (i.base_reg->reg_num == EBP_REG_NUM)
2118 {
2119 default_seg = &ss;
2120 if (i.disp_operands == 0)
2121 {
2122 fake_zero_displacement = 1;
2123 i.types[op] |= Disp8;
2124 }
2125 }
2126 else if (i.base_reg->reg_num == ESP_REG_NUM)
2127 {
2128 default_seg = &ss;
2129 }
2130 i.sib.scale = i.log2_scale_factor;
2131 if (! i.index_reg)
2132 {
2133 /* <disp>(%esp) becomes two byte modrm
2134 with no index register. We've already
2135 stored the code for esp in i.rm.regmem
2136 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2137 base register besides %esp will not use
2138 the extra modrm byte. */
2139 i.sib.index = NO_INDEX_REGISTER;
2140#if ! SCALE1_WHEN_NO_INDEX
2141 /* Another case where we force the second
2142 modrm byte. */
2143 if (i.log2_scale_factor)
2144 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2145#endif
2146 }
2147 else
2148 {
2149 i.sib.index = i.index_reg->reg_num;
2150 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2151 }
2152 i.rm.mode = mode_from_disp_size (i.types[op]);
2153 }
2154
2155 if (fake_zero_displacement)
2156 {
2157 /* Fakes a zero displacement assuming that i.types[op]
47926f60 2158 holds the correct displacement size. */
b4cac588
AM
2159 expressionS *exp;
2160
520dc8e8 2161 assert (i.op[op].disps == 0);
252b5132 2162 exp = &disp_expressions[i.disp_operands++];
520dc8e8 2163 i.op[op].disps = exp;
252b5132
RH
2164 exp->X_op = O_constant;
2165 exp->X_add_number = 0;
2166 exp->X_add_symbol = (symbolS *) 0;
2167 exp->X_op_symbol = (symbolS *) 0;
2168 }
2169 }
2170
2171 /* Fill in i.rm.reg or i.rm.regmem field with register
2172 operand (if any) based on i.tm.extension_opcode.
2173 Again, we must be careful to make sure that
2174 segment/control/debug/test/MMX registers are coded
47926f60 2175 into the i.rm.reg field. */
252b5132
RH
2176 if (i.reg_operands)
2177 {
2178 unsigned int op =
2179 ((i.types[0]
3f4438ab
AM
2180 & (Reg | RegMMX | RegXMM
2181 | SReg2 | SReg3
2182 | Control | Debug | Test))
252b5132
RH
2183 ? 0
2184 : ((i.types[1]
3f4438ab
AM
2185 & (Reg | RegMMX | RegXMM
2186 | SReg2 | SReg3
2187 | Control | Debug | Test))
252b5132
RH
2188 ? 1
2189 : 2));
2190 /* If there is an extension opcode to put here, the
47926f60 2191 register number must be put into the regmem field. */
252b5132 2192 if (i.tm.extension_opcode != None)
520dc8e8 2193 i.rm.regmem = i.op[op].regs->reg_num;
252b5132 2194 else
520dc8e8 2195 i.rm.reg = i.op[op].regs->reg_num;
252b5132
RH
2196
2197 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2198 we must set it to 3 to indicate this is a register
2199 operand in the regmem field. */
2200 if (!i.mem_operands)
2201 i.rm.mode = 3;
2202 }
2203
47926f60 2204 /* Fill in i.rm.reg field with extension opcode (if any). */
252b5132
RH
2205 if (i.tm.extension_opcode != None)
2206 i.rm.reg = i.tm.extension_opcode;
2207 }
2208 }
2209 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2210 {
47926f60
KH
2211 if (i.tm.base_opcode == POP_SEG_SHORT
2212 && i.op[0].regs->reg_num == 1)
252b5132
RH
2213 {
2214 as_bad (_("you can't `pop %%cs'"));
2215 return;
2216 }
520dc8e8 2217 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
252b5132
RH
2218 }
2219 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2220 {
2221 default_seg = &ds;
2222 }
2223 else if ((i.tm.opcode_modifier & IsString) != 0)
2224 {
2225 /* For the string instructions that allow a segment override
2226 on one of their operands, the default segment is ds. */
2227 default_seg = &ds;
2228 }
2229
2230 /* If a segment was explicitly specified,
2231 and the specified segment is not the default,
2232 use an opcode prefix to select it.
2233 If we never figured out what the default segment is,
2234 then default_seg will be zero at this point,
2235 and the specified segment prefix will always be used. */
2236 if ((i.seg[0]) && (i.seg[0] != default_seg))
2237 {
2238 if (! add_prefix (i.seg[0]->seg_prefix))
2239 return;
2240 }
2241 }
a38cf1db 2242 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
252b5132 2243 {
24eab124
AM
2244 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2245 as_warn (_("translating to `%sp'"), i.tm.name);
252b5132
RH
2246 }
2247 }
2248
47926f60 2249 /* Handle conversion of 'int $3' --> special int3 insn. */
520dc8e8 2250 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
252b5132
RH
2251 {
2252 i.tm.base_opcode = INT3_OPCODE;
2253 i.imm_operands = 0;
2254 }
2255
2f66722d 2256 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
520dc8e8 2257 && i.op[0].disps->X_op == O_constant)
2f66722d
AM
2258 {
2259 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2260 the absolute address given by the constant. Since ix86 jumps and
2261 calls are pc relative, we need to generate a reloc. */
520dc8e8
AM
2262 i.op[0].disps->X_add_symbol = &abs_symbol;
2263 i.op[0].disps->X_op = O_symbol;
2f66722d
AM
2264 }
2265
47926f60 2266 /* We are ready to output the insn. */
252b5132
RH
2267 {
2268 register char *p;
2269
47926f60 2270 /* Output jumps. */
252b5132
RH
2271 if (i.tm.opcode_modifier & Jump)
2272 {
a217f122
AM
2273 int size;
2274 int code16;
2275 int prefix;
252b5132 2276
a217f122
AM
2277 code16 = 0;
2278 if (flag_16bit_code)
2279 code16 = CODE16;
2280
2281 prefix = 0;
2282 if (i.prefix[DATA_PREFIX])
252b5132 2283 {
a217f122 2284 prefix = 1;
252b5132 2285 i.prefixes -= 1;
a217f122 2286 code16 ^= CODE16;
252b5132 2287 }
252b5132 2288
a217f122
AM
2289 size = 4;
2290 if (code16)
2291 size = 2;
2292
2293 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2294 as_warn (_("skipping prefixes on this instruction"));
2295
2f66722d
AM
2296 /* It's always a symbol; End frag & setup for relax.
2297 Make sure there is enough room in this frag for the largest
2298 instruction we may generate in md_convert_frag. This is 2
2299 bytes for the opcode and room for the prefix and largest
2300 displacement. */
2301 frag_grow (prefix + 2 + size);
2302 insn_size += prefix + 1;
2303 /* Prefix and 1 opcode byte go in fr_fix. */
2304 p = frag_more (prefix + 1);
2305 if (prefix)
2306 *p++ = DATA_PREFIX_OPCODE;
2307 *p = i.tm.base_opcode;
ee7fcc42
AM
2308 /* 1 possible extra opcode + displacement go in var part.
2309 Pass reloc in fr_var. */
2f66722d
AM
2310 frag_var (rs_machine_dependent,
2311 1 + size,
ee7fcc42 2312 i.disp_reloc[0],
2f66722d
AM
2313 ((unsigned char) *p == JUMP_PC_RELATIVE
2314 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2315 : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
520dc8e8
AM
2316 i.op[0].disps->X_add_symbol,
2317 i.op[0].disps->X_add_number,
2f66722d 2318 p);
252b5132
RH
2319 }
2320 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2321 {
a217f122 2322 int size;
252b5132 2323
a217f122 2324 if (i.tm.opcode_modifier & JumpByte)
252b5132 2325 {
a217f122
AM
2326 /* This is a loop or jecxz type instruction. */
2327 size = 1;
252b5132
RH
2328 if (i.prefix[ADDR_PREFIX])
2329 {
2330 insn_size += 1;
2331 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2332 i.prefixes -= 1;
2333 }
2334 }
2335 else
2336 {
a217f122
AM
2337 int code16;
2338
2339 code16 = 0;
2340 if (flag_16bit_code)
2341 code16 = CODE16;
252b5132
RH
2342
2343 if (i.prefix[DATA_PREFIX])
2344 {
2345 insn_size += 1;
2346 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2347 i.prefixes -= 1;
a217f122 2348 code16 ^= CODE16;
252b5132 2349 }
252b5132 2350
a217f122 2351 size = 4;
252b5132
RH
2352 if (code16)
2353 size = 2;
2354 }
2355
a217f122 2356 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2357 as_warn (_("skipping prefixes on this instruction"));
2358
2359 if (fits_in_unsigned_byte (i.tm.base_opcode))
2360 {
2361 insn_size += 1 + size;
2362 p = frag_more (1 + size);
2363 }
2364 else
2365 {
47926f60 2366 /* Opcode can be at most two bytes. */
a217f122 2367 insn_size += 2 + size;
252b5132
RH
2368 p = frag_more (2 + size);
2369 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2370 }
2371 *p++ = i.tm.base_opcode & 0xff;
2372
2f66722d 2373 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8 2374 i.op[0].disps, 1, reloc (size, 1, i.disp_reloc[0]));
252b5132
RH
2375 }
2376 else if (i.tm.opcode_modifier & JumpInterSegment)
2377 {
2378 int size;
a217f122
AM
2379 int prefix;
2380 int code16;
252b5132 2381
a217f122
AM
2382 code16 = 0;
2383 if (flag_16bit_code)
2384 code16 = CODE16;
2385
2386 prefix = 0;
2387 if (i.prefix[DATA_PREFIX])
252b5132 2388 {
a217f122 2389 prefix = 1;
252b5132 2390 i.prefixes -= 1;
a217f122 2391 code16 ^= CODE16;
252b5132 2392 }
252b5132
RH
2393
2394 size = 4;
252b5132 2395 if (code16)
f6af82bd 2396 size = 2;
252b5132 2397
a217f122 2398 if (i.prefixes != 0 && !intel_syntax)
252b5132
RH
2399 as_warn (_("skipping prefixes on this instruction"));
2400
47926f60
KH
2401 /* 1 opcode; 2 segment; offset */
2402 insn_size += prefix + 1 + 2 + size;
252b5132
RH
2403 p = frag_more (prefix + 1 + 2 + size);
2404 if (prefix)
2405 *p++ = DATA_PREFIX_OPCODE;
2406 *p++ = i.tm.base_opcode;
520dc8e8 2407 if (i.op[1].imms->X_op == O_constant)
252b5132 2408 {
847f7ad4 2409 offsetT n = i.op[1].imms->X_add_number;
252b5132 2410
773f551c
AM
2411 if (size == 2
2412 && !fits_in_unsigned_word (n)
2413 && !fits_in_signed_word (n))
252b5132
RH
2414 {
2415 as_bad (_("16-bit jump out of range"));
2416 return;
2417 }
847f7ad4 2418 md_number_to_chars (p, n, size);
252b5132
RH
2419 }
2420 else
2421 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8
AM
2422 i.op[1].imms, 0, reloc (size, 0, i.disp_reloc[0]));
2423 if (i.op[0].imms->X_op != O_constant)
252b5132
RH
2424 as_bad (_("can't handle non absolute segment in `%s'"),
2425 i.tm.name);
520dc8e8 2426 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
252b5132
RH
2427 }
2428 else
2429 {
47926f60 2430 /* Output normal instructions here. */
252b5132
RH
2431 unsigned char *q;
2432
47926f60 2433 /* The prefix bytes. */
252b5132
RH
2434 for (q = i.prefix;
2435 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2436 q++)
2437 {
2438 if (*q)
2439 {
2440 insn_size += 1;
2441 p = frag_more (1);
2442 md_number_to_chars (p, (valueT) *q, 1);
2443 }
2444 }
2445
47926f60 2446 /* Now the opcode; be careful about word order here! */
252b5132
RH
2447 if (fits_in_unsigned_byte (i.tm.base_opcode))
2448 {
2449 insn_size += 1;
2450 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2451 }
2452 else if (fits_in_unsigned_word (i.tm.base_opcode))
2453 {
2454 insn_size += 2;
2455 p = frag_more (2);
47926f60 2456 /* Put out high byte first: can't use md_number_to_chars! */
252b5132
RH
2457 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2458 *p = i.tm.base_opcode & 0xff;
2459 }
2460 else
47926f60 2461 { /* Opcode is either 3 or 4 bytes. */
252b5132
RH
2462 if (i.tm.base_opcode & 0xff000000)
2463 {
2464 insn_size += 4;
2465 p = frag_more (4);
2466 *p++ = (i.tm.base_opcode >> 24) & 0xff;
2467 }
2468 else
2469 {
2470 insn_size += 3;
2471 p = frag_more (3);
2472 }
2473 *p++ = (i.tm.base_opcode >> 16) & 0xff;
2474 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2475 *p = (i.tm.base_opcode) & 0xff;
2476 }
2477
2478 /* Now the modrm byte and sib byte (if present). */
2479 if (i.tm.opcode_modifier & Modrm)
2480 {
2481 insn_size += 1;
2482 p = frag_more (1);
2483 md_number_to_chars (p,
2484 (valueT) (i.rm.regmem << 0
2485 | i.rm.reg << 3
2486 | i.rm.mode << 6),
2487 1);
2488 /* If i.rm.regmem == ESP (4)
2489 && i.rm.mode != (Register mode)
2490 && not 16 bit
2491 ==> need second modrm byte. */
2492 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2493 && i.rm.mode != 3
2494 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2495 {
2496 insn_size += 1;
2497 p = frag_more (1);
2498 md_number_to_chars (p,
2499 (valueT) (i.sib.base << 0
2500 | i.sib.index << 3
2501 | i.sib.scale << 6),
2502 1);
2503 }
2504 }
2505
2506 if (i.disp_operands)
2507 {
2508 register unsigned int n;
2509
2510 for (n = 0; n < i.operands; n++)
2511 {
520dc8e8 2512 if (i.types[n] & Disp)
252b5132 2513 {
520dc8e8 2514 if (i.op[n].disps->X_op == O_constant)
252b5132 2515 {
847f7ad4
AM
2516 int size;
2517 offsetT val;
b4cac588 2518
847f7ad4 2519 size = 4;
b4cac588 2520 if (i.types[n] & (Disp8 | Disp16))
252b5132 2521 {
b4cac588 2522 size = 2;
b4cac588 2523 if (i.types[n] & Disp8)
847f7ad4 2524 size = 1;
252b5132 2525 }
847f7ad4
AM
2526 val = offset_in_range (i.op[n].disps->X_add_number,
2527 size);
b4cac588
AM
2528 insn_size += size;
2529 p = frag_more (size);
847f7ad4 2530 md_number_to_chars (p, val, size);
252b5132 2531 }
252b5132 2532 else
520dc8e8
AM
2533 {
2534 int size = 4;
2535
2536 if (i.types[n] & Disp16)
2537 size = 2;
2538
2539 insn_size += size;
2540 p = frag_more (size);
2541 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2542 i.op[n].disps, 0,
2543 reloc (size, 0, i.disp_reloc[n]));
252b5132
RH
2544 }
2545 }
2546 }
ce8a8b2f 2547 }
252b5132 2548
47926f60 2549 /* Output immediate. */
252b5132
RH
2550 if (i.imm_operands)
2551 {
2552 register unsigned int n;
2553
2554 for (n = 0; n < i.operands; n++)
2555 {
520dc8e8 2556 if (i.types[n] & Imm)
252b5132 2557 {
520dc8e8 2558 if (i.op[n].imms->X_op == O_constant)
252b5132 2559 {
847f7ad4
AM
2560 int size;
2561 offsetT val;
b4cac588 2562
847f7ad4 2563 size = 4;
b4cac588 2564 if (i.types[n] & (Imm8 | Imm8S | Imm16))
252b5132 2565 {
b4cac588 2566 size = 2;
b4cac588 2567 if (i.types[n] & (Imm8 | Imm8S))
847f7ad4 2568 size = 1;
252b5132 2569 }
847f7ad4
AM
2570 val = offset_in_range (i.op[n].imms->X_add_number,
2571 size);
b4cac588
AM
2572 insn_size += size;
2573 p = frag_more (size);
847f7ad4 2574 md_number_to_chars (p, val, size);
252b5132
RH
2575 }
2576 else
ce8a8b2f
AM
2577 {
2578 /* Not absolute_section.
2579 Need a 32-bit fixup (don't support 8bit
520dc8e8 2580 non-absolute imms). Try to support other
47926f60 2581 sizes ... */
f6af82bd
AM
2582#ifdef BFD_ASSEMBLER
2583 enum bfd_reloc_code_real reloc_type;
2584#else
2585 int reloc_type;
2586#endif
520dc8e8 2587 int size = 4;
252b5132 2588
520dc8e8 2589 if (i.types[n] & Imm16)
252b5132 2590 size = 2;
520dc8e8
AM
2591 else if (i.types[n] & (Imm8 | Imm8S))
2592 size = 1;
2593
252b5132
RH
2594 insn_size += size;
2595 p = frag_more (size);
f6af82bd 2596 reloc_type = reloc (size, 0, i.disp_reloc[0]);
252b5132 2597#ifdef BFD_ASSEMBLER
f6af82bd 2598 if (reloc_type == BFD_RELOC_32
252b5132 2599 && GOT_symbol
520dc8e8
AM
2600 && GOT_symbol == i.op[n].imms->X_add_symbol
2601 && (i.op[n].imms->X_op == O_symbol
2602 || (i.op[n].imms->X_op == O_add
49309057 2603 && ((symbol_get_value_expression
520dc8e8 2604 (i.op[n].imms->X_op_symbol)->X_op)
252b5132
RH
2605 == O_subtract))))
2606 {
f6af82bd 2607 reloc_type = BFD_RELOC_386_GOTPC;
520dc8e8 2608 i.op[n].imms->X_add_number += 3;
252b5132
RH
2609 }
2610#endif
2611 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
520dc8e8 2612 i.op[n].imms, 0, reloc_type);
252b5132
RH
2613 }
2614 }
2615 }
ce8a8b2f 2616 }
252b5132
RH
2617 }
2618
e346e481
RH
2619 dwarf2_emit_insn (insn_size);
2620
252b5132
RH
2621#ifdef DEBUG386
2622 if (flag_debug)
2623 {
2624 pi (line, &i);
2625 }
47926f60 2626#endif /* DEBUG386 */
252b5132
RH
2627 }
2628}
2629\f
252b5132
RH
2630static int i386_immediate PARAMS ((char *));
2631
2632static int
2633i386_immediate (imm_start)
2634 char *imm_start;
2635{
2636 char *save_input_line_pointer;
2637 segT exp_seg = 0;
47926f60 2638 expressionS *exp;
252b5132
RH
2639
2640 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
2641 {
d0b47220 2642 as_bad (_("only 1 or 2 immediate operands are allowed"));
252b5132
RH
2643 return 0;
2644 }
2645
2646 exp = &im_expressions[i.imm_operands++];
520dc8e8 2647 i.op[this_operand].imms = exp;
252b5132
RH
2648
2649 if (is_space_char (*imm_start))
2650 ++imm_start;
2651
2652 save_input_line_pointer = input_line_pointer;
2653 input_line_pointer = imm_start;
2654
2655#ifndef LEX_AT
24eab124 2656 {
47926f60
KH
2657 /* We can have operands of the form
2658 <symbol>@GOTOFF+<nnn>
2659 Take the easy way out here and copy everything
2660 into a temporary buffer... */
24eab124
AM
2661 register char *cp;
2662
2663 cp = strchr (input_line_pointer, '@');
2664 if (cp != NULL)
2665 {
2666 char *tmpbuf;
2667 int len = 0;
2668 int first;
2669
47926f60 2670 /* GOT relocations are not supported in 16 bit mode. */
24eab124
AM
2671 if (flag_16bit_code)
2672 as_bad (_("GOT relocations not supported in 16 bit mode"));
2673
2674 if (GOT_symbol == NULL)
2675 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2676
2677 if (strncmp (cp + 1, "PLT", 3) == 0)
2678 {
2679 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2680 len = 3;
2681 }
2682 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2683 {
2684 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2685 len = 6;
2686 }
2687 else if (strncmp (cp + 1, "GOT", 3) == 0)
2688 {
2689 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2690 len = 3;
2691 }
2692 else
d0b47220 2693 as_bad (_("bad reloc specifier in expression"));
24eab124
AM
2694
2695 /* Replace the relocation token with ' ', so that errors like
2696 foo@GOTOFF1 will be detected. */
2697 first = cp - input_line_pointer;
47926f60 2698 tmpbuf = (char *) alloca (strlen (input_line_pointer));
24eab124
AM
2699 memcpy (tmpbuf, input_line_pointer, first);
2700 tmpbuf[first] = ' ';
2701 strcpy (tmpbuf + first + 1, cp + 1 + len);
2702 input_line_pointer = tmpbuf;
2703 }
2704 }
252b5132
RH
2705#endif
2706
2707 exp_seg = expression (exp);
2708
83183c0c 2709 SKIP_WHITESPACE ();
252b5132 2710 if (*input_line_pointer)
d0b47220 2711 as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);
252b5132
RH
2712
2713 input_line_pointer = save_input_line_pointer;
2714
2daf4fd8 2715 if (exp->X_op == O_absent || exp->X_op == O_big)
252b5132 2716 {
47926f60 2717 /* Missing or bad expr becomes absolute 0. */
d0b47220 2718 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
24eab124 2719 imm_start);
252b5132
RH
2720 exp->X_op = O_constant;
2721 exp->X_add_number = 0;
2722 exp->X_add_symbol = (symbolS *) 0;
2723 exp->X_op_symbol = (symbolS *) 0;
252b5132 2724 }
2daf4fd8
AM
2725
2726 if (exp->X_op == O_constant)
252b5132 2727 {
47926f60
KH
2728 /* Size it properly later. */
2729 i.types[this_operand] |= Imm32;
252b5132 2730 }
4c63da97 2731#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
47926f60 2732 else if (1
4c63da97 2733#ifdef BFD_ASSEMBLER
47926f60 2734 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 2735#endif
47926f60 2736 && exp_seg != text_section
24eab124
AM
2737 && exp_seg != data_section
2738 && exp_seg != bss_section
2739 && exp_seg != undefined_section
252b5132 2740#ifdef BFD_ASSEMBLER
24eab124 2741 && !bfd_is_com_section (exp_seg)
252b5132 2742#endif
24eab124 2743 )
252b5132 2744 {
4c63da97 2745#ifdef BFD_ASSEMBLER
d0b47220 2746 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 2747#else
d0b47220 2748 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 2749#endif
252b5132
RH
2750 return 0;
2751 }
2752#endif
2753 else
2754 {
2755 /* This is an address. The size of the address will be
24eab124
AM
2756 determined later, depending on destination register,
2757 suffix, or the default for the section. We exclude
2758 Imm8S here so that `push $foo' and other instructions
2759 with an Imm8S form will use Imm16 or Imm32. */
252b5132
RH
2760 i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
2761 }
2762
2763 return 1;
2764}
2765
2766static int i386_scale PARAMS ((char *));
2767
2768static int
2769i386_scale (scale)
2770 char *scale;
2771{
2772 if (!isdigit (*scale))
2773 goto bad_scale;
2774
2775 switch (*scale)
2776 {
2777 case '0':
2778 case '1':
2779 i.log2_scale_factor = 0;
2780 break;
2781 case '2':
2782 i.log2_scale_factor = 1;
2783 break;
2784 case '4':
2785 i.log2_scale_factor = 2;
2786 break;
2787 case '8':
2788 i.log2_scale_factor = 3;
2789 break;
2790 default:
2791 bad_scale:
2792 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
24eab124 2793 scale);
252b5132
RH
2794 return 0;
2795 }
2796 if (i.log2_scale_factor != 0 && ! i.index_reg)
2797 {
2798 as_warn (_("scale factor of %d without an index register"),
24eab124 2799 1 << i.log2_scale_factor);
252b5132
RH
2800#if SCALE1_WHEN_NO_INDEX
2801 i.log2_scale_factor = 0;
2802#endif
2803 }
2804 return 1;
2805}
2806
2807static int i386_displacement PARAMS ((char *, char *));
2808
2809static int
2810i386_displacement (disp_start, disp_end)
2811 char *disp_start;
2812 char *disp_end;
2813{
2814 register expressionS *exp;
2815 segT exp_seg = 0;
2816 char *save_input_line_pointer;
2817 int bigdisp = Disp32;
2818
252b5132
RH
2819 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2820 bigdisp = Disp16;
2821 i.types[this_operand] |= bigdisp;
2822
2823 exp = &disp_expressions[i.disp_operands];
520dc8e8 2824 i.op[this_operand].disps = exp;
252b5132
RH
2825 i.disp_operands++;
2826 save_input_line_pointer = input_line_pointer;
2827 input_line_pointer = disp_start;
2828 END_STRING_AND_SAVE (disp_end);
2829
2830#ifndef GCC_ASM_O_HACK
2831#define GCC_ASM_O_HACK 0
2832#endif
2833#if GCC_ASM_O_HACK
2834 END_STRING_AND_SAVE (disp_end + 1);
2835 if ((i.types[this_operand] & BaseIndex) != 0
24eab124 2836 && displacement_string_end[-1] == '+')
252b5132
RH
2837 {
2838 /* This hack is to avoid a warning when using the "o"
24eab124
AM
2839 constraint within gcc asm statements.
2840 For instance:
2841
2842 #define _set_tssldt_desc(n,addr,limit,type) \
2843 __asm__ __volatile__ ( \
2844 "movw %w2,%0\n\t" \
2845 "movw %w1,2+%0\n\t" \
2846 "rorl $16,%1\n\t" \
2847 "movb %b1,4+%0\n\t" \
2848 "movb %4,5+%0\n\t" \
2849 "movb $0,6+%0\n\t" \
2850 "movb %h1,7+%0\n\t" \
2851 "rorl $16,%1" \
2852 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
2853
2854 This works great except that the output assembler ends
2855 up looking a bit weird if it turns out that there is
2856 no offset. You end up producing code that looks like:
2857
2858 #APP
2859 movw $235,(%eax)
2860 movw %dx,2+(%eax)
2861 rorl $16,%edx
2862 movb %dl,4+(%eax)
2863 movb $137,5+(%eax)
2864 movb $0,6+(%eax)
2865 movb %dh,7+(%eax)
2866 rorl $16,%edx
2867 #NO_APP
2868
47926f60 2869 So here we provide the missing zero. */
24eab124
AM
2870
2871 *displacement_string_end = '0';
252b5132
RH
2872 }
2873#endif
2874#ifndef LEX_AT
24eab124 2875 {
47926f60
KH
2876 /* We can have operands of the form
2877 <symbol>@GOTOFF+<nnn>
2878 Take the easy way out here and copy everything
2879 into a temporary buffer... */
24eab124
AM
2880 register char *cp;
2881
2882 cp = strchr (input_line_pointer, '@');
2883 if (cp != NULL)
2884 {
2885 char *tmpbuf;
2886 int len = 0;
2887 int first;
2888
47926f60 2889 /* GOT relocations are not supported in 16 bit mode. */
24eab124
AM
2890 if (flag_16bit_code)
2891 as_bad (_("GOT relocations not supported in 16 bit mode"));
2892
2893 if (GOT_symbol == NULL)
2894 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2895
2896 if (strncmp (cp + 1, "PLT", 3) == 0)
2897 {
2898 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2899 len = 3;
2900 }
2901 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2902 {
2903 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2904 len = 6;
2905 }
2906 else if (strncmp (cp + 1, "GOT", 3) == 0)
2907 {
2908 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2909 len = 3;
2910 }
2911 else
d0b47220 2912 as_bad (_("bad reloc specifier in expression"));
24eab124
AM
2913
2914 /* Replace the relocation token with ' ', so that errors like
2915 foo@GOTOFF1 will be detected. */
2916 first = cp - input_line_pointer;
47926f60 2917 tmpbuf = (char *) alloca (strlen (input_line_pointer));
24eab124
AM
2918 memcpy (tmpbuf, input_line_pointer, first);
2919 tmpbuf[first] = ' ';
2920 strcpy (tmpbuf + first + 1, cp + 1 + len);
2921 input_line_pointer = tmpbuf;
2922 }
2923 }
252b5132
RH
2924#endif
2925
24eab124 2926 exp_seg = expression (exp);
252b5132
RH
2927
2928#ifdef BFD_ASSEMBLER
24eab124
AM
2929 /* We do this to make sure that the section symbol is in
2930 the symbol table. We will ultimately change the relocation
47926f60 2931 to be relative to the beginning of the section. */
24eab124
AM
2932 if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
2933 {
2934 if (S_IS_LOCAL(exp->X_add_symbol)
2935 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
2936 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
2937 assert (exp->X_op == O_symbol);
2938 exp->X_op = O_subtract;
2939 exp->X_op_symbol = GOT_symbol;
2940 i.disp_reloc[this_operand] = BFD_RELOC_32;
2941 }
252b5132
RH
2942#endif
2943
24eab124
AM
2944 SKIP_WHITESPACE ();
2945 if (*input_line_pointer)
d0b47220 2946 as_bad (_("ignoring junk `%s' after expression"),
24eab124 2947 input_line_pointer);
252b5132 2948#if GCC_ASM_O_HACK
24eab124 2949 RESTORE_END_STRING (disp_end + 1);
252b5132 2950#endif
24eab124
AM
2951 RESTORE_END_STRING (disp_end);
2952 input_line_pointer = save_input_line_pointer;
2953
2daf4fd8
AM
2954 if (exp->X_op == O_absent || exp->X_op == O_big)
2955 {
47926f60 2956 /* Missing or bad expr becomes absolute 0. */
d0b47220 2957 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2daf4fd8
AM
2958 disp_start);
2959 exp->X_op = O_constant;
2960 exp->X_add_number = 0;
2961 exp->X_add_symbol = (symbolS *) 0;
2962 exp->X_op_symbol = (symbolS *) 0;
2963 }
2964
4c63da97 2965#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
45288df1 2966 if (exp->X_op != O_constant
4c63da97 2967#ifdef BFD_ASSEMBLER
45288df1 2968 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4c63da97 2969#endif
45288df1
AM
2970 && exp_seg != text_section
2971 && exp_seg != data_section
2972 && exp_seg != bss_section
2973 && exp_seg != undefined_section)
24eab124 2974 {
4c63da97 2975#ifdef BFD_ASSEMBLER
d0b47220 2976 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4c63da97 2977#else
d0b47220 2978 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
4c63da97 2979#endif
24eab124
AM
2980 return 0;
2981 }
252b5132
RH
2982#endif
2983 return 1;
2984}
2985
eecb386c 2986static int i386_index_check PARAMS((const char *));
252b5132 2987
eecb386c 2988/* Make sure the memory operand we've been dealt is valid.
47926f60
KH
2989 Return 1 on success, 0 on a failure. */
2990
252b5132 2991static int
eecb386c
AM
2992i386_index_check (operand_string)
2993 const char *operand_string;
252b5132 2994{
24eab124 2995#if INFER_ADDR_PREFIX
eecb386c
AM
2996 int fudged = 0;
2997
24eab124
AM
2998 tryprefix:
2999#endif
d0b47220 3000 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)
47926f60 3001 /* 16 bit mode checks. */
d0b47220
AM
3002 ? ((i.base_reg
3003 && ((i.base_reg->reg_type & (Reg16|BaseIndex))
3004 != (Reg16|BaseIndex)))
3005 || (i.index_reg
3006 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3007 != (Reg16|BaseIndex))
3008 || ! (i.base_reg
3009 && i.base_reg->reg_num < 6
3010 && i.index_reg->reg_num >= 6
3011 && i.log2_scale_factor == 0))))
47926f60 3012 /* 32 bit mode checks. */
d0b47220
AM
3013 : ((i.base_reg
3014 && (i.base_reg->reg_type & Reg32) == 0)
3015 || (i.index_reg
3016 && ((i.index_reg->reg_type & (Reg32|BaseIndex))
3017 != (Reg32|BaseIndex)))))
24eab124
AM
3018 {
3019#if INFER_ADDR_PREFIX
eecb386c 3020 if (i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
24eab124
AM
3021 {
3022 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3023 i.prefixes += 1;
b23bac36
AM
3024 /* Change the size of any displacement too. At most one of
3025 Disp16 or Disp32 is set.
3026 FIXME. There doesn't seem to be any real need for separate
3027 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
47926f60 3028 Removing them would probably clean up the code quite a lot. */
b23bac36
AM
3029 if (i.types[this_operand] & (Disp16|Disp32))
3030 i.types[this_operand] ^= (Disp16|Disp32);
eecb386c 3031 fudged = 1;
24eab124
AM
3032 goto tryprefix;
3033 }
eecb386c
AM
3034 if (fudged)
3035 as_bad (_("`%s' is not a valid base/index expression"),
3036 operand_string);
3037 else
c388dee8 3038#endif
eecb386c
AM
3039 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3040 operand_string,
3041 flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ? "16" : "32");
3042 return 0;
24eab124
AM
3043 }
3044 return 1;
3045}
252b5132 3046
252b5132 3047/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
47926f60 3048 on error. */
252b5132 3049
252b5132
RH
3050static int
3051i386_operand (operand_string)
3052 char *operand_string;
3053{
af6bdddf
AM
3054 const reg_entry *r;
3055 char *end_op;
24eab124 3056 char *op_string = operand_string;
252b5132 3057
24eab124 3058 if (is_space_char (*op_string))
252b5132
RH
3059 ++op_string;
3060
24eab124 3061 /* We check for an absolute prefix (differentiating,
47926f60 3062 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
3063 if (*op_string == ABSOLUTE_PREFIX)
3064 {
3065 ++op_string;
3066 if (is_space_char (*op_string))
3067 ++op_string;
3068 i.types[this_operand] |= JumpAbsolute;
3069 }
252b5132 3070
47926f60 3071 /* Check if operand is a register. */
af6bdddf
AM
3072 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3073 && (r = parse_register (op_string, &end_op)) != NULL)
24eab124 3074 {
24eab124
AM
3075 /* Check for a segment override by searching for ':' after a
3076 segment register. */
3077 op_string = end_op;
3078 if (is_space_char (*op_string))
3079 ++op_string;
3080 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3081 {
3082 switch (r->reg_num)
3083 {
3084 case 0:
3085 i.seg[i.mem_operands] = &es;
3086 break;
3087 case 1:
3088 i.seg[i.mem_operands] = &cs;
3089 break;
3090 case 2:
3091 i.seg[i.mem_operands] = &ss;
3092 break;
3093 case 3:
3094 i.seg[i.mem_operands] = &ds;
3095 break;
3096 case 4:
3097 i.seg[i.mem_operands] = &fs;
3098 break;
3099 case 5:
3100 i.seg[i.mem_operands] = &gs;
3101 break;
3102 }
252b5132 3103
24eab124 3104 /* Skip the ':' and whitespace. */
252b5132
RH
3105 ++op_string;
3106 if (is_space_char (*op_string))
24eab124 3107 ++op_string;
252b5132 3108
24eab124
AM
3109 if (!is_digit_char (*op_string)
3110 && !is_identifier_char (*op_string)
3111 && *op_string != '('
3112 && *op_string != ABSOLUTE_PREFIX)
3113 {
3114 as_bad (_("bad memory operand `%s'"), op_string);
3115 return 0;
3116 }
47926f60 3117 /* Handle case of %es:*foo. */
24eab124
AM
3118 if (*op_string == ABSOLUTE_PREFIX)
3119 {
3120 ++op_string;
3121 if (is_space_char (*op_string))
3122 ++op_string;
3123 i.types[this_operand] |= JumpAbsolute;
3124 }
3125 goto do_memory_reference;
3126 }
3127 if (*op_string)
3128 {
d0b47220 3129 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
3130 return 0;
3131 }
3132 i.types[this_operand] |= r->reg_type & ~BaseIndex;
520dc8e8 3133 i.op[this_operand].regs = r;
24eab124
AM
3134 i.reg_operands++;
3135 }
af6bdddf
AM
3136 else if (*op_string == REGISTER_PREFIX)
3137 {
3138 as_bad (_("bad register name `%s'"), op_string);
3139 return 0;
3140 }
24eab124 3141 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 3142 {
24eab124
AM
3143 ++op_string;
3144 if (i.types[this_operand] & JumpAbsolute)
3145 {
d0b47220 3146 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
3147 return 0;
3148 }
3149 if (!i386_immediate (op_string))
3150 return 0;
3151 }
3152 else if (is_digit_char (*op_string)
3153 || is_identifier_char (*op_string)
3154 || *op_string == '(' )
3155 {
47926f60 3156 /* This is a memory reference of some sort. */
af6bdddf 3157 char *base_string;
252b5132 3158
47926f60 3159 /* Start and end of displacement string expression (if found). */
eecb386c
AM
3160 char *displacement_string_start;
3161 char *displacement_string_end;
252b5132 3162
24eab124 3163 do_memory_reference:
24eab124
AM
3164 if ((i.mem_operands == 1
3165 && (current_templates->start->opcode_modifier & IsString) == 0)
3166 || i.mem_operands == 2)
3167 {
3168 as_bad (_("too many memory references for `%s'"),
3169 current_templates->start->name);
3170 return 0;
3171 }
252b5132 3172
24eab124
AM
3173 /* Check for base index form. We detect the base index form by
3174 looking for an ')' at the end of the operand, searching
3175 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3176 after the '('. */
af6bdddf 3177 base_string = op_string + strlen (op_string);
c3332e24 3178
af6bdddf
AM
3179 --base_string;
3180 if (is_space_char (*base_string))
3181 --base_string;
252b5132 3182
47926f60 3183 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
3184 displacement_string_start = op_string;
3185 displacement_string_end = base_string + 1;
252b5132 3186
24eab124
AM
3187 if (*base_string == ')')
3188 {
af6bdddf 3189 char *temp_string;
24eab124
AM
3190 unsigned int parens_balanced = 1;
3191 /* We've already checked that the number of left & right ()'s are
47926f60 3192 equal, so this loop will not be infinite. */
24eab124
AM
3193 do
3194 {
3195 base_string--;
3196 if (*base_string == ')')
3197 parens_balanced++;
3198 if (*base_string == '(')
3199 parens_balanced--;
3200 }
3201 while (parens_balanced);
c3332e24 3202
af6bdddf 3203 temp_string = base_string;
c3332e24 3204
24eab124 3205 /* Skip past '(' and whitespace. */
252b5132
RH
3206 ++base_string;
3207 if (is_space_char (*base_string))
24eab124 3208 ++base_string;
252b5132 3209
af6bdddf
AM
3210 if (*base_string == ','
3211 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3212 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
252b5132 3213 {
af6bdddf 3214 displacement_string_end = temp_string;
252b5132 3215
af6bdddf 3216 i.types[this_operand] |= BaseIndex;
252b5132 3217
af6bdddf 3218 if (i.base_reg)
24eab124 3219 {
24eab124
AM
3220 base_string = end_op;
3221 if (is_space_char (*base_string))
3222 ++base_string;
af6bdddf
AM
3223 }
3224
3225 /* There may be an index reg or scale factor here. */
3226 if (*base_string == ',')
3227 {
3228 ++base_string;
3229 if (is_space_char (*base_string))
3230 ++base_string;
3231
3232 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3233 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
24eab124 3234 {
af6bdddf 3235 base_string = end_op;
24eab124
AM
3236 if (is_space_char (*base_string))
3237 ++base_string;
af6bdddf
AM
3238 if (*base_string == ',')
3239 {
3240 ++base_string;
3241 if (is_space_char (*base_string))
3242 ++base_string;
3243 }
3244 else if (*base_string != ')' )
3245 {
3246 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3247 operand_string);
3248 return 0;
3249 }
24eab124 3250 }
af6bdddf 3251 else if (*base_string == REGISTER_PREFIX)
24eab124 3252 {
af6bdddf 3253 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
3254 return 0;
3255 }
252b5132 3256
47926f60 3257 /* Check for scale factor. */
af6bdddf
AM
3258 if (isdigit ((unsigned char) *base_string))
3259 {
3260 if (!i386_scale (base_string))
3261 return 0;
24eab124 3262
af6bdddf
AM
3263 ++base_string;
3264 if (is_space_char (*base_string))
3265 ++base_string;
3266 if (*base_string != ')')
3267 {
3268 as_bad (_("expecting `)' after scale factor in `%s'"),
3269 operand_string);
3270 return 0;
3271 }
3272 }
3273 else if (!i.index_reg)
24eab124 3274 {
af6bdddf
AM
3275 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3276 *base_string);
24eab124
AM
3277 return 0;
3278 }
3279 }
af6bdddf 3280 else if (*base_string != ')')
24eab124 3281 {
af6bdddf
AM
3282 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3283 operand_string);
24eab124
AM
3284 return 0;
3285 }
c3332e24 3286 }
af6bdddf 3287 else if (*base_string == REGISTER_PREFIX)
c3332e24 3288 {
af6bdddf 3289 as_bad (_("bad register name `%s'"), base_string);
24eab124 3290 return 0;
c3332e24 3291 }
24eab124
AM
3292 }
3293
3294 /* If there's an expression beginning the operand, parse it,
3295 assuming displacement_string_start and
3296 displacement_string_end are meaningful. */
3297 if (displacement_string_start != displacement_string_end)
3298 {
3299 if (!i386_displacement (displacement_string_start,
3300 displacement_string_end))
3301 return 0;
3302 }
3303
3304 /* Special case for (%dx) while doing input/output op. */
3305 if (i.base_reg
3306 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3307 && i.index_reg == 0
3308 && i.log2_scale_factor == 0
3309 && i.seg[i.mem_operands] == 0
3310 && (i.types[this_operand] & Disp) == 0)
3311 {
3312 i.types[this_operand] = InOutPortReg;
3313 return 1;
3314 }
3315
eecb386c
AM
3316 if (i386_index_check (operand_string) == 0)
3317 return 0;
24eab124
AM
3318 i.mem_operands++;
3319 }
3320 else
ce8a8b2f
AM
3321 {
3322 /* It's not a memory operand; argh! */
24eab124
AM
3323 as_bad (_("invalid char %s beginning operand %d `%s'"),
3324 output_invalid (*op_string),
3325 this_operand + 1,
3326 op_string);
3327 return 0;
3328 }
47926f60 3329 return 1; /* Normal return. */
252b5132
RH
3330}
3331\f
ee7fcc42
AM
3332/* md_estimate_size_before_relax()
3333
3334 Called just before relax() for rs_machine_dependent frags. The x86
3335 assembler uses these frags to handle variable size jump
3336 instructions.
3337
3338 Any symbol that is now undefined will not become defined.
3339 Return the correct fr_subtype in the frag.
3340 Return the initial "guess for variable size of frag" to caller.
3341 The guess is actually the growth beyond the fixed part. Whatever
3342 we do to grow the fixed or variable part contributes to our
3343 returned value. */
3344
252b5132
RH
3345int
3346md_estimate_size_before_relax (fragP, segment)
3347 register fragS *fragP;
3348 register segT segment;
3349{
252b5132 3350 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
3351 check for un-relaxable symbols. On an ELF system, we can't relax
3352 an externally visible symbol, because it may be overridden by a
3353 shared library. */
3354 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 3355#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b98ef147
AM
3356 || S_IS_EXTERNAL (fragP->fr_symbol)
3357 || S_IS_WEAK (fragP->fr_symbol)
3358#endif
3359 )
252b5132 3360 {
b98ef147
AM
3361 /* Symbol is undefined in this segment, or we need to keep a
3362 reloc so that weak symbols can be overridden. */
3363 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f6af82bd
AM
3364#ifdef BFD_ASSEMBLER
3365 enum bfd_reloc_code_real reloc_type;
3366#else
3367 int reloc_type;
3368#endif
ee7fcc42
AM
3369 unsigned char *opcode;
3370 int old_fr_fix;
f6af82bd 3371
ee7fcc42
AM
3372 if (fragP->fr_var != NO_RELOC)
3373 reloc_type = fragP->fr_var;
b98ef147 3374 else if (size == 2)
f6af82bd
AM
3375 reloc_type = BFD_RELOC_16_PCREL;
3376 else
3377 reloc_type = BFD_RELOC_32_PCREL;
252b5132 3378
ee7fcc42
AM
3379 old_fr_fix = fragP->fr_fix;
3380 opcode = (unsigned char *) fragP->fr_opcode;
3381
252b5132
RH
3382 switch (opcode[0])
3383 {
47926f60
KH
3384 case JUMP_PC_RELATIVE:
3385 /* Make jmp (0xeb) a dword displacement jump. */
47926f60 3386 opcode[0] = 0xe9;
252b5132
RH
3387 fragP->fr_fix += size;
3388 fix_new (fragP, old_fr_fix, size,
3389 fragP->fr_symbol,
3390 fragP->fr_offset, 1,
f6af82bd 3391 reloc_type);
252b5132
RH
3392 break;
3393
3394 default:
24eab124 3395 /* This changes the byte-displacement jump 0x7N
f6af82bd 3396 to the dword-displacement jump 0x0f,0x8N. */
252b5132 3397 opcode[1] = opcode[0] + 0x10;
f6af82bd 3398 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
3399 /* We've added an opcode byte. */
3400 fragP->fr_fix += 1 + size;
252b5132
RH
3401 fix_new (fragP, old_fr_fix + 1, size,
3402 fragP->fr_symbol,
3403 fragP->fr_offset, 1,
f6af82bd 3404 reloc_type);
252b5132
RH
3405 break;
3406 }
3407 frag_wane (fragP);
ee7fcc42 3408 return fragP->fr_fix - old_fr_fix;
252b5132 3409 }
47926f60
KH
3410 /* Guess a short jump. */
3411 return 1;
ee7fcc42
AM
3412}
3413
47926f60
KH
3414/* Called after relax() is finished.
3415
3416 In: Address of frag.
3417 fr_type == rs_machine_dependent.
3418 fr_subtype is what the address relaxed to.
3419
3420 Out: Any fixSs and constants are set up.
3421 Caller will turn frag into a ".space 0". */
3422
252b5132
RH
3423#ifndef BFD_ASSEMBLER
3424void
3425md_convert_frag (headers, sec, fragP)
a04b544b
ILT
3426 object_headers *headers ATTRIBUTE_UNUSED;
3427 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
3428 register fragS *fragP;
3429#else
3430void
3431md_convert_frag (abfd, sec, fragP)
ab9da554
ILT
3432 bfd *abfd ATTRIBUTE_UNUSED;
3433 segT sec ATTRIBUTE_UNUSED;
252b5132
RH
3434 register fragS *fragP;
3435#endif
3436{
3437 register unsigned char *opcode;
3438 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
3439 offsetT target_address;
3440 offsetT opcode_address;
252b5132 3441 unsigned int extension = 0;
847f7ad4 3442 offsetT displacement_from_opcode_start;
252b5132
RH
3443
3444 opcode = (unsigned char *) fragP->fr_opcode;
3445
47926f60 3446 /* Address we want to reach in file space. */
252b5132 3447 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
47926f60
KH
3448#ifdef BFD_ASSEMBLER
3449 /* Not needed otherwise? */
49309057 3450 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
252b5132
RH
3451#endif
3452
47926f60 3453 /* Address opcode resides at in file space. */
252b5132
RH
3454 opcode_address = fragP->fr_address + fragP->fr_fix;
3455
47926f60 3456 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
3457 displacement_from_opcode_start = target_address - opcode_address;
3458
3459 switch (fragP->fr_subtype)
3460 {
3461 case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
3462 case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
3463 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
3464 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
47926f60
KH
3465 /* Don't have to change opcode. */
3466 extension = 1; /* 1 opcode + 1 displacement */
252b5132
RH
3467 where_to_put_displacement = &opcode[1];
3468 break;
3469
3470 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
47926f60 3471 extension = 5; /* 2 opcode + 4 displacement */
252b5132
RH
3472 opcode[1] = opcode[0] + 0x10;
3473 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3474 where_to_put_displacement = &opcode[2];
3475 break;
3476
3477 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
47926f60 3478 extension = 4; /* 1 opcode + 4 displacement */
252b5132
RH
3479 opcode[0] = 0xe9;
3480 where_to_put_displacement = &opcode[1];
3481 break;
3482
3483 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
47926f60 3484 extension = 3; /* 2 opcode + 2 displacement */
252b5132
RH
3485 opcode[1] = opcode[0] + 0x10;
3486 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3487 where_to_put_displacement = &opcode[2];
3488 break;
3489
3490 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
47926f60 3491 extension = 2; /* 1 opcode + 2 displacement */
252b5132
RH
3492 opcode[0] = 0xe9;
3493 where_to_put_displacement = &opcode[1];
3494 break;
3495
3496 default:
3497 BAD_CASE (fragP->fr_subtype);
3498 break;
3499 }
47926f60 3500 /* Now put displacement after opcode. */
252b5132
RH
3501 md_number_to_chars ((char *) where_to_put_displacement,
3502 (valueT) (displacement_from_opcode_start - extension),
3503 SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
3504 fragP->fr_fix += extension;
3505}
3506\f
47926f60
KH
3507/* Size of byte displacement jmp. */
3508int md_short_jump_size = 2;
3509
3510/* Size of dword displacement jmp. */
3511int md_long_jump_size = 5;
252b5132 3512
47926f60
KH
3513/* Size of relocation record. */
3514const int md_reloc_size = 8;
252b5132
RH
3515
3516void
3517md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3518 char *ptr;
3519 addressT from_addr, to_addr;
ab9da554
ILT
3520 fragS *frag ATTRIBUTE_UNUSED;
3521 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 3522{
847f7ad4 3523 offsetT offset;
252b5132
RH
3524
3525 offset = to_addr - (from_addr + 2);
47926f60
KH
3526 /* Opcode for byte-disp jump. */
3527 md_number_to_chars (ptr, (valueT) 0xeb, 1);
252b5132
RH
3528 md_number_to_chars (ptr + 1, (valueT) offset, 1);
3529}
3530
3531void
3532md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3533 char *ptr;
3534 addressT from_addr, to_addr;
a38cf1db
AM
3535 fragS *frag ATTRIBUTE_UNUSED;
3536 symbolS *to_symbol ATTRIBUTE_UNUSED;
252b5132 3537{
847f7ad4 3538 offsetT offset;
252b5132 3539
a38cf1db
AM
3540 offset = to_addr - (from_addr + 5);
3541 md_number_to_chars (ptr, (valueT) 0xe9, 1);
3542 md_number_to_chars (ptr + 1, (valueT) offset, 4);
252b5132
RH
3543}
3544\f
3545/* Apply a fixup (fixS) to segment data, once it has been determined
3546 by our caller that we have all the info we need to fix it up.
3547
3548 On the 386, immediates, displacements, and data pointers are all in
3549 the same (little-endian) format, so we don't need to care about which
3550 we are handling. */
3551
3552int
3553md_apply_fix3 (fixP, valp, seg)
47926f60
KH
3554 /* The fix we're to put in. */
3555 fixS *fixP;
3556
3557 /* Pointer to the value of the bits. */
3558 valueT *valp;
3559
3560 /* Segment fix is from. */
3561 segT seg ATTRIBUTE_UNUSED;
252b5132
RH
3562{
3563 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
3564 valueT value = *valp;
3565
e1b283bb 3566#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
93382f6d
AM
3567 if (fixP->fx_pcrel)
3568 {
3569 switch (fixP->fx_r_type)
3570 {
5865bb77
ILT
3571 default:
3572 break;
3573
93382f6d
AM
3574 case BFD_RELOC_32:
3575 fixP->fx_r_type = BFD_RELOC_32_PCREL;
3576 break;
3577 case BFD_RELOC_16:
3578 fixP->fx_r_type = BFD_RELOC_16_PCREL;
3579 break;
3580 case BFD_RELOC_8:
3581 fixP->fx_r_type = BFD_RELOC_8_PCREL;
3582 break;
3583 }
3584 }
252b5132 3585
0723899b
ILT
3586 /* This is a hack. There should be a better way to handle this.
3587 This covers for the fact that bfd_install_relocation will
3588 subtract the current location (for partial_inplace, PC relative
3589 relocations); see more below. */
93382f6d
AM
3590 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
3591 || fixP->fx_r_type == BFD_RELOC_16_PCREL
3592 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
3593 && fixP->fx_addsy)
252b5132
RH
3594 {
3595#ifndef OBJ_AOUT
3596 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3597#ifdef TE_PE
3598 || OUTPUT_FLAVOR == bfd_target_coff_flavour
3599#endif
3600 )
3601 value += fixP->fx_where + fixP->fx_frag->fr_address;
3602#endif
3603#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2f66722d 3604 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
252b5132 3605 {
2f66722d
AM
3606 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
3607
3608 if ((fseg == seg
3609 || (symbol_section_p (fixP->fx_addsy)
3610 && fseg != absolute_section))
3611 && ! S_IS_EXTERNAL (fixP->fx_addsy)
3612 && ! S_IS_WEAK (fixP->fx_addsy)
3613 && S_IS_DEFINED (fixP->fx_addsy)
3614 && ! S_IS_COMMON (fixP->fx_addsy))
3615 {
3616 /* Yes, we add the values in twice. This is because
3617 bfd_perform_relocation subtracts them out again. I think
3618 bfd_perform_relocation is broken, but I don't dare change
3619 it. FIXME. */
3620 value += fixP->fx_where + fixP->fx_frag->fr_address;
3621 }
252b5132
RH
3622 }
3623#endif
3624#if defined (OBJ_COFF) && defined (TE_PE)
3625 /* For some reason, the PE format does not store a section
24eab124 3626 address offset for a PC relative symbol. */
252b5132
RH
3627 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
3628 value += md_pcrel_from (fixP);
3629#endif
3630 }
3631
3632 /* Fix a few things - the dynamic linker expects certain values here,
47926f60 3633 and we must not dissappoint it. */
252b5132
RH
3634#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3635 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3636 && fixP->fx_addsy)
47926f60
KH
3637 switch (fixP->fx_r_type)
3638 {
3639 case BFD_RELOC_386_PLT32:
3640 /* Make the jump instruction point to the address of the operand. At
3641 runtime we merely add the offset to the actual PLT entry. */
3642 value = -4;
3643 break;
3644 case BFD_RELOC_386_GOTPC:
3645
3646/* This is tough to explain. We end up with this one if we have
252b5132
RH
3647 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
3648 * here is to obtain the absolute address of the GOT, and it is strongly
3649 * preferable from a performance point of view to avoid using a runtime
c3332e24 3650 * relocation for this. The actual sequence of instructions often look
252b5132 3651 * something like:
c3332e24 3652 *
24eab124 3653 * call .L66
252b5132 3654 * .L66:
24eab124
AM
3655 * popl %ebx
3656 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
c3332e24 3657 *
24eab124 3658 * The call and pop essentially return the absolute address of
252b5132
RH
3659 * the label .L66 and store it in %ebx. The linker itself will
3660 * ultimately change the first operand of the addl so that %ebx points to
3661 * the GOT, but to keep things simple, the .o file must have this operand
3662 * set so that it generates not the absolute address of .L66, but the
3663 * absolute address of itself. This allows the linker itself simply
3664 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
3665 * added in, and the addend of the relocation is stored in the operand
3666 * field for the instruction itself.
c3332e24 3667 *
24eab124 3668 * Our job here is to fix the operand so that it would add the correct
252b5132
RH
3669 * offset so that %ebx would point to itself. The thing that is tricky is
3670 * that .-.L66 will point to the beginning of the instruction, so we need
3671 * to further modify the operand so that it will point to itself.
3672 * There are other cases where you have something like:
c3332e24 3673 *
24eab124 3674 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
c3332e24 3675 *
252b5132 3676 * and here no correction would be required. Internally in the assembler
c3332e24 3677 * we treat operands of this form as not being pcrel since the '.' is
252b5132
RH
3678 * explicitly mentioned, and I wonder whether it would simplify matters
3679 * to do it this way. Who knows. In earlier versions of the PIC patches,
3680 * the pcrel_adjust field was used to store the correction, but since the
47926f60
KH
3681 * expression is not pcrel, I felt it would be confusing to do it this
3682 * way. */
3683
3684 value -= 1;
3685 break;
3686 case BFD_RELOC_386_GOT32:
3687 value = 0; /* Fully resolved at runtime. No addend. */
3688 break;
3689 case BFD_RELOC_386_GOTOFF:
3690 break;
3691
3692 case BFD_RELOC_VTABLE_INHERIT:
3693 case BFD_RELOC_VTABLE_ENTRY:
3694 fixP->fx_done = 0;
3695 return 1;
3696
3697 default:
3698 break;
3699 }
3700#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
93382f6d 3701 *valp = value;
47926f60 3702#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
252b5132
RH
3703 md_number_to_chars (p, value, fixP->fx_size);
3704
3705 return 1;
3706}
252b5132 3707\f
252b5132
RH
3708#define MAX_LITTLENUMS 6
3709
47926f60
KH
3710/* Turn the string pointed to by litP into a floating point constant
3711 of type TYPE, and emit the appropriate bytes. The number of
3712 LITTLENUMS emitted is stored in *SIZEP. An error message is
3713 returned, or NULL on OK. */
3714
252b5132
RH
3715char *
3716md_atof (type, litP, sizeP)
2ab9b79e 3717 int type;
252b5132
RH
3718 char *litP;
3719 int *sizeP;
3720{
3721 int prec;
3722 LITTLENUM_TYPE words[MAX_LITTLENUMS];
3723 LITTLENUM_TYPE *wordP;
3724 char *t;
3725
3726 switch (type)
3727 {
3728 case 'f':
3729 case 'F':
3730 prec = 2;
3731 break;
3732
3733 case 'd':
3734 case 'D':
3735 prec = 4;
3736 break;
3737
3738 case 'x':
3739 case 'X':
3740 prec = 5;
3741 break;
3742
3743 default:
3744 *sizeP = 0;
3745 return _("Bad call to md_atof ()");
3746 }
3747 t = atof_ieee (input_line_pointer, type, words);
3748 if (t)
3749 input_line_pointer = t;
3750
3751 *sizeP = prec * sizeof (LITTLENUM_TYPE);
3752 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
3753 the bigendian 386. */
3754 for (wordP = words + prec - 1; prec--;)
3755 {
3756 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
3757 litP += sizeof (LITTLENUM_TYPE);
3758 }
3759 return 0;
3760}
3761\f
3762char output_invalid_buf[8];
3763
252b5132
RH
3764static char *
3765output_invalid (c)
3766 int c;
3767{
3768 if (isprint (c))
3769 sprintf (output_invalid_buf, "'%c'", c);
3770 else
3771 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
3772 return output_invalid_buf;
3773}
3774
af6bdddf 3775/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
3776
3777static const reg_entry *
3778parse_register (reg_string, end_op)
3779 char *reg_string;
3780 char **end_op;
3781{
af6bdddf
AM
3782 char *s = reg_string;
3783 char *p;
252b5132
RH
3784 char reg_name_given[MAX_REG_NAME_SIZE + 1];
3785 const reg_entry *r;
3786
3787 /* Skip possible REGISTER_PREFIX and possible whitespace. */
3788 if (*s == REGISTER_PREFIX)
3789 ++s;
3790
3791 if (is_space_char (*s))
3792 ++s;
3793
3794 p = reg_name_given;
af6bdddf 3795 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
3796 {
3797 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
3798 return (const reg_entry *) NULL;
3799 s++;
252b5132
RH
3800 }
3801
6588847e
DN
3802 /* For naked regs, make sure that we are not dealing with an identifier.
3803 This prevents confusing an identifier like `eax_var' with register
3804 `eax'. */
3805 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
3806 return (const reg_entry *) NULL;
3807
af6bdddf 3808 *end_op = s;
252b5132
RH
3809
3810 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
3811
5f47d35b 3812 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 3813 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 3814 {
5f47d35b
AM
3815 if (is_space_char (*s))
3816 ++s;
3817 if (*s == '(')
3818 {
af6bdddf 3819 ++s;
5f47d35b
AM
3820 if (is_space_char (*s))
3821 ++s;
3822 if (*s >= '0' && *s <= '7')
3823 {
3824 r = &i386_float_regtab[*s - '0'];
af6bdddf 3825 ++s;
5f47d35b
AM
3826 if (is_space_char (*s))
3827 ++s;
3828 if (*s == ')')
3829 {
3830 *end_op = s + 1;
3831 return r;
3832 }
5f47d35b 3833 }
47926f60 3834 /* We have "%st(" then garbage. */
5f47d35b
AM
3835 return (const reg_entry *) NULL;
3836 }
3837 }
3838
252b5132
RH
3839 return r;
3840}
3841\f
4cc782b5 3842#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
65172ab8 3843const char *md_shortopts = "kVQ:sq";
252b5132 3844#else
65172ab8 3845const char *md_shortopts = "q";
252b5132
RH
3846#endif
3847struct option md_longopts[] = {
3848 {NULL, no_argument, NULL, 0}
3849};
3850size_t md_longopts_size = sizeof (md_longopts);
3851
3852int
3853md_parse_option (c, arg)
3854 int c;
ab9da554 3855 char *arg ATTRIBUTE_UNUSED;
252b5132
RH
3856{
3857 switch (c)
3858 {
a38cf1db
AM
3859 case 'q':
3860 quiet_warnings = 1;
252b5132
RH
3861 break;
3862
3863#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
3864 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
3865 should be emitted or not. FIXME: Not implemented. */
3866 case 'Q':
252b5132
RH
3867 break;
3868
3869 /* -V: SVR4 argument to print version ID. */
3870 case 'V':
3871 print_version_id ();
3872 break;
3873
a38cf1db
AM
3874 /* -k: Ignore for FreeBSD compatibility. */
3875 case 'k':
252b5132 3876 break;
4cc782b5
ILT
3877
3878 case 's':
3879 /* -s: On i386 Solaris, this tells the native assembler to use
3880 .stab instead of .stab.excl. We always use .stab anyhow. */
3881 break;
252b5132
RH
3882#endif
3883
3884 default:
3885 return 0;
3886 }
3887 return 1;
3888}
3889
3890void
3891md_show_usage (stream)
3892 FILE *stream;
3893{
4cc782b5
ILT
3894#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3895 fprintf (stream, _("\
a38cf1db
AM
3896 -Q ignored\n\
3897 -V print assembler version number\n\
3898 -k ignored\n\
3899 -q quieten some warnings\n\
3900 -s ignored\n"));
3901#else
3902 fprintf (stream, _("\
3903 -q quieten some warnings\n"));
4cc782b5 3904#endif
252b5132
RH
3905}
3906
3907#ifdef BFD_ASSEMBLER
4c63da97
AM
3908#if ((defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_COFF)) \
3909 || (defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_AOUT)) \
3910 || (defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)))
252b5132
RH
3911
3912/* Pick the target format to use. */
3913
47926f60 3914const char *
252b5132
RH
3915i386_target_format ()
3916{
3917 switch (OUTPUT_FLAVOR)
3918 {
4c63da97
AM
3919#ifdef OBJ_MAYBE_AOUT
3920 case bfd_target_aout_flavour:
47926f60 3921 return AOUT_TARGET_FORMAT;
4c63da97
AM
3922#endif
3923#ifdef OBJ_MAYBE_COFF
252b5132
RH
3924 case bfd_target_coff_flavour:
3925 return "coff-i386";
4c63da97
AM
3926#endif
3927#ifdef OBJ_MAYBE_ELF
252b5132
RH
3928 case bfd_target_elf_flavour:
3929 return "elf32-i386";
4c63da97 3930#endif
252b5132
RH
3931 default:
3932 abort ();
3933 return NULL;
3934 }
3935}
3936
47926f60
KH
3937#endif /* OBJ_MAYBE_ more than one */
3938#endif /* BFD_ASSEMBLER */
252b5132 3939\f
252b5132
RH
3940symbolS *
3941md_undefined_symbol (name)
3942 char *name;
3943{
18dc2407
ILT
3944 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
3945 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
3946 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
3947 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
3948 {
3949 if (!GOT_symbol)
3950 {
3951 if (symbol_find (name))
3952 as_bad (_("GOT already in symbol table"));
3953 GOT_symbol = symbol_new (name, undefined_section,
3954 (valueT) 0, &zero_address_frag);
3955 };
3956 return GOT_symbol;
3957 }
252b5132
RH
3958 return 0;
3959}
3960
3961/* Round up a section size to the appropriate boundary. */
47926f60 3962
252b5132
RH
3963valueT
3964md_section_align (segment, size)
ab9da554 3965 segT segment ATTRIBUTE_UNUSED;
252b5132
RH
3966 valueT size;
3967{
252b5132 3968#ifdef BFD_ASSEMBLER
4c63da97
AM
3969#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3970 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
3971 {
3972 /* For a.out, force the section size to be aligned. If we don't do
3973 this, BFD will align it for us, but it will not write out the
3974 final bytes of the section. This may be a bug in BFD, but it is
3975 easier to fix it here since that is how the other a.out targets
3976 work. */
3977 int align;
3978
3979 align = bfd_get_section_alignment (stdoutput, segment);
3980 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
3981 }
252b5132
RH
3982#endif
3983#endif
3984
3985 return size;
3986}
3987
3988/* On the i386, PC-relative offsets are relative to the start of the
3989 next instruction. That is, the address of the offset, plus its
3990 size, since the offset is always the last part of the insn. */
3991
3992long
3993md_pcrel_from (fixP)
3994 fixS *fixP;
3995{
3996 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
3997}
3998
3999#ifndef I386COFF
4000
4001static void
4002s_bss (ignore)
ab9da554 4003 int ignore ATTRIBUTE_UNUSED;
252b5132
RH
4004{
4005 register int temp;
4006
4007 temp = get_absolute_expression ();
4008 subseg_set (bss_section, (subsegT) temp);
4009 demand_empty_rest_of_line ();
4010}
4011
4012#endif
4013
252b5132
RH
4014#ifdef BFD_ASSEMBLER
4015
4016void
4017i386_validate_fix (fixp)
4018 fixS *fixp;
4019{
4020 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4021 {
4022 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4023 fixp->fx_subsy = 0;
4024 }
4025}
4026
252b5132
RH
4027arelent *
4028tc_gen_reloc (section, fixp)
ab9da554 4029 asection *section ATTRIBUTE_UNUSED;
252b5132
RH
4030 fixS *fixp;
4031{
4032 arelent *rel;
4033 bfd_reloc_code_real_type code;
4034
4035 switch (fixp->fx_r_type)
4036 {
4037 case BFD_RELOC_386_PLT32:
4038 case BFD_RELOC_386_GOT32:
4039 case BFD_RELOC_386_GOTOFF:
4040 case BFD_RELOC_386_GOTPC:
4041 case BFD_RELOC_RVA:
4042 case BFD_RELOC_VTABLE_ENTRY:
4043 case BFD_RELOC_VTABLE_INHERIT:
4044 code = fixp->fx_r_type;
4045 break;
4046 default:
93382f6d 4047 if (fixp->fx_pcrel)
252b5132 4048 {
93382f6d
AM
4049 switch (fixp->fx_size)
4050 {
4051 default:
d0b47220 4052 as_bad (_("can not do %d byte pc-relative relocation"),
93382f6d
AM
4053 fixp->fx_size);
4054 code = BFD_RELOC_32_PCREL;
4055 break;
4056 case 1: code = BFD_RELOC_8_PCREL; break;
4057 case 2: code = BFD_RELOC_16_PCREL; break;
4058 case 4: code = BFD_RELOC_32_PCREL; break;
4059 }
4060 }
4061 else
4062 {
4063 switch (fixp->fx_size)
4064 {
4065 default:
d0b47220 4066 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
93382f6d
AM
4067 code = BFD_RELOC_32;
4068 break;
4069 case 1: code = BFD_RELOC_8; break;
4070 case 2: code = BFD_RELOC_16; break;
4071 case 4: code = BFD_RELOC_32; break;
4072 }
252b5132
RH
4073 }
4074 break;
4075 }
252b5132
RH
4076
4077 if (code == BFD_RELOC_32
4078 && GOT_symbol
4079 && fixp->fx_addsy == GOT_symbol)
4080 code = BFD_RELOC_386_GOTPC;
4081
4082 rel = (arelent *) xmalloc (sizeof (arelent));
49309057
ILT
4083 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4084 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
4085
4086 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4087 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4088 vtable entry to be used in the relocation's section offset. */
4089 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4090 rel->address = fixp->fx_offset;
4091
4092 if (fixp->fx_pcrel)
4093 rel->addend = fixp->fx_addnumber;
4094 else
4095 rel->addend = 0;
4096
4097 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4098 if (rel->howto == NULL)
4099 {
4100 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 4101 _("cannot represent relocation type %s"),
252b5132
RH
4102 bfd_get_reloc_code_name (code));
4103 /* Set howto to a garbage value so that we can keep going. */
4104 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4105 assert (rel->howto != NULL);
4106 }
4107
4108 return rel;
4109}
4110
47926f60 4111#else /* ! BFD_ASSEMBLER */
252b5132
RH
4112
4113#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4114void
4115tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4116 char *where;
4117 fixS *fixP;
4118 relax_addressT segment_address_in_file;
4119{
47926f60
KH
4120 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4121 Out: GNU LD relocation length code: 0, 1, or 2. */
252b5132 4122
47926f60 4123 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
252b5132
RH
4124 long r_symbolnum;
4125
4126 know (fixP->fx_addsy != NULL);
4127
4128 md_number_to_chars (where,
4129 (valueT) (fixP->fx_frag->fr_address
4130 + fixP->fx_where - segment_address_in_file),
4131 4);
4132
4133 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4134 ? S_GET_TYPE (fixP->fx_addsy)
4135 : fixP->fx_addsy->sy_number);
4136
4137 where[6] = (r_symbolnum >> 16) & 0x0ff;
4138 where[5] = (r_symbolnum >> 8) & 0x0ff;
4139 where[4] = r_symbolnum & 0x0ff;
4140 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4141 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4142 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4143}
4144
47926f60 4145#endif /* OBJ_AOUT or OBJ_BOUT. */
252b5132
RH
4146
4147#if defined (I386COFF)
4148
4149short
4150tc_coff_fix2rtype (fixP)
4151 fixS *fixP;
4152{
4153 if (fixP->fx_r_type == R_IMAGEBASE)
4154 return R_IMAGEBASE;
4155
4156 return (fixP->fx_pcrel ?
4157 (fixP->fx_size == 1 ? R_PCRBYTE :
4158 fixP->fx_size == 2 ? R_PCRWORD :
4159 R_PCRLONG) :
4160 (fixP->fx_size == 1 ? R_RELBYTE :
4161 fixP->fx_size == 2 ? R_RELWORD :
4162 R_DIR32));
4163}
4164
4165int
4166tc_coff_sizemachdep (frag)
4167 fragS *frag;
4168{
4169 if (frag->fr_next)
4170 return (frag->fr_next->fr_address - frag->fr_address);
4171 else
4172 return 0;
4173}
4174
47926f60 4175#endif /* I386COFF */
252b5132 4176
47926f60 4177#endif /* ! BFD_ASSEMBLER */
64a0c779
DN
4178\f
4179/* Parse operands using Intel syntax. This implements a recursive descent
4180 parser based on the BNF grammar published in Appendix B of the MASM 6.1
4181 Programmer's Guide.
4182
4183 FIXME: We do not recognize the full operand grammar defined in the MASM
4184 documentation. In particular, all the structure/union and
4185 high-level macro operands are missing.
4186
4187 Uppercase words are terminals, lower case words are non-terminals.
4188 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
4189 bars '|' denote choices. Most grammar productions are implemented in
4190 functions called 'intel_<production>'.
4191
4192 Initial production is 'expr'.
4193
64a0c779
DN
4194 addOp + | -
4195
4196 alpha [a-zA-Z]
4197
4198 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
4199
4200 constant digits [[ radixOverride ]]
4201
4202 dataType BYTE | WORD | DWORD | QWORD | XWORD
4203
4204 digits decdigit
4205 | digits decdigit
4206 | digits hexdigit
4207
4208 decdigit [0-9]
4209
4210 e05 e05 addOp e06
4211 | e06
4212
4213 e06 e06 mulOp e09
4214 | e09
4215
4216 e09 OFFSET e10
4217 | e09 PTR e10
4218 | e09 : e10
4219 | e10
4220
4221 e10 e10 [ expr ]
4222 | e11
4223
4224 e11 ( expr )
4225 | [ expr ]
4226 | constant
4227 | dataType
4228 | id
4229 | $
4230 | register
4231
4232 => expr SHORT e05
4233 | e05
4234
4235 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
4236 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
4237
4238 hexdigit a | b | c | d | e | f
4239 | A | B | C | D | E | F
4240
4241 id alpha
4242 | id alpha
4243 | id decdigit
4244
4245 mulOp * | / | MOD
4246
4247 quote " | '
4248
4249 register specialRegister
4250 | gpRegister
4251 | byteRegister
4252
4253 segmentRegister CS | DS | ES | FS | GS | SS
4254
4255 specialRegister CR0 | CR2 | CR3
4256 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
4257 | TR3 | TR4 | TR5 | TR6 | TR7
4258
64a0c779
DN
4259 We simplify the grammar in obvious places (e.g., register parsing is
4260 done by calling parse_register) and eliminate immediate left recursion
4261 to implement a recursive-descent parser.
4262
4263 expr SHORT e05
4264 | e05
4265
4266 e05 e06 e05'
4267
4268 e05' addOp e06 e05'
4269 | Empty
4270
4271 e06 e09 e06'
4272
4273 e06' mulOp e09 e06'
4274 | Empty
4275
4276 e09 OFFSET e10 e09'
4277 | e10 e09'
4278
4279 e09' PTR e10 e09'
4280 | : e10 e09'
4281 | Empty
4282
4283 e10 e11 e10'
4284
4285 e10' [ expr ] e10'
4286 | Empty
4287
4288 e11 ( expr )
4289 | [ expr ]
4290 | BYTE
4291 | WORD
4292 | DWORD
4293 | QWORD
4294 | XWORD
4295 | .
4296 | $
4297 | register
4298 | id
4299 | constant */
4300
4301/* Parsing structure for the intel syntax parser. Used to implement the
4302 semantic actions for the operand grammar. */
4303struct intel_parser_s
4304 {
4305 char *op_string; /* The string being parsed. */
4306 int got_a_float; /* Whether the operand is a float. */
4a1805b1 4307 int op_modifier; /* Operand modifier. */
64a0c779
DN
4308 int is_mem; /* 1 if operand is memory reference. */
4309 const reg_entry *reg; /* Last register reference found. */
4310 char *disp; /* Displacement string being built. */
4311 };
4312
4313static struct intel_parser_s intel_parser;
4314
4315/* Token structure for parsing intel syntax. */
4316struct intel_token
4317 {
4318 int code; /* Token code. */
4319 const reg_entry *reg; /* Register entry for register tokens. */
4320 char *str; /* String representation. */
4321 };
4322
4323static struct intel_token cur_token, prev_token;
4324
4325/* Token codes for the intel parser. */
4326#define T_NIL -1
4327#define T_CONST 1
4328#define T_REG 2
4329#define T_BYTE 3
4330#define T_WORD 4
4331#define T_DWORD 5
4332#define T_QWORD 6
4333#define T_XWORD 7
4334#define T_SHORT 8
4335#define T_OFFSET 9
4336#define T_PTR 10
4337#define T_ID 11
4338
4339/* Prototypes for intel parser functions. */
4340static int intel_match_token PARAMS ((int code));
cce0cbdc
DN
4341static void intel_get_token PARAMS ((void));
4342static void intel_putback_token PARAMS ((void));
4343static int intel_expr PARAMS ((void));
4344static int intel_e05 PARAMS ((void));
4345static int intel_e05_1 PARAMS ((void));
4346static int intel_e06 PARAMS ((void));
4347static int intel_e06_1 PARAMS ((void));
4348static int intel_e09 PARAMS ((void));
4349static int intel_e09_1 PARAMS ((void));
4350static int intel_e10 PARAMS ((void));
4351static int intel_e10_1 PARAMS ((void));
4352static int intel_e11 PARAMS ((void));
64a0c779 4353
64a0c779
DN
4354static int
4355i386_intel_operand (operand_string, got_a_float)
4356 char *operand_string;
4357 int got_a_float;
4358{
4359 int ret;
4360 char *p;
4361
4362 /* Initialize token holders. */
4363 cur_token.code = prev_token.code = T_NIL;
4364 cur_token.reg = prev_token.reg = NULL;
4365 cur_token.str = prev_token.str = NULL;
4366
4367 /* Initialize parser structure. */
4368 p = intel_parser.op_string = (char *)malloc (strlen (operand_string) + 1);
4369 if (p == NULL)
4370 abort ();
4371 strcpy (intel_parser.op_string, operand_string);
4372 intel_parser.got_a_float = got_a_float;
4373 intel_parser.op_modifier = -1;
4374 intel_parser.is_mem = 0;
4375 intel_parser.reg = NULL;
4376 intel_parser.disp = (char *)malloc (strlen (operand_string) + 1);
4377 if (intel_parser.disp == NULL)
4378 abort ();
4379 intel_parser.disp[0] = '\0';
4380
4381 /* Read the first token and start the parser. */
4382 intel_get_token ();
4383 ret = intel_expr ();
4384
4385 if (ret)
4386 {
4387 /* If we found a memory reference, hand it over to i386_displacement
4388 to fill in the rest of the operand fields. */
4389 if (intel_parser.is_mem)
4390 {
4391 if ((i.mem_operands == 1
4392 && (current_templates->start->opcode_modifier & IsString) == 0)
4393 || i.mem_operands == 2)
4394 {
4395 as_bad (_("too many memory references for '%s'"),
4396 current_templates->start->name);
4397 ret = 0;
4398 }
4399 else
4400 {
4401 char *s = intel_parser.disp;
4402 i.mem_operands++;
4403
4404 /* Add the displacement expression. */
4405 if (*s != '\0')
4406 ret = i386_displacement (s, s + strlen (s))
4407 && i386_index_check (s);
4408 }
4409 }
4410
4411 /* Constant and OFFSET expressions are handled by i386_immediate. */
4412 else if (intel_parser.op_modifier == OFFSET_FLAT
4413 || intel_parser.reg == NULL)
4414 ret = i386_immediate (intel_parser.disp);
4415 }
4416
4417 free (p);
4418 free (intel_parser.disp);
4419
4420 return ret;
4421}
4422
64a0c779
DN
4423/* expr SHORT e05
4424 | e05 */
4425static int
4426intel_expr ()
4427{
4428 /* expr SHORT e05 */
4429 if (cur_token.code == T_SHORT)
4430 {
4431 intel_parser.op_modifier = SHORT;
4432 intel_match_token (T_SHORT);
4433
4434 return (intel_e05 ());
4435 }
4436
4437 /* expr e05 */
4438 else
4439 return intel_e05 ();
4440}
4441
64a0c779
DN
4442/* e05 e06 e05'
4443
4a1805b1 4444 e05' addOp e06 e05'
64a0c779
DN
4445 | Empty */
4446static int
4447intel_e05 ()
4448{
4449 return (intel_e06 () && intel_e05_1 ());
4450}
4451
4452static int
4453intel_e05_1 ()
4454{
4455 /* e05' addOp e06 e05' */
4456 if (cur_token.code == '+' || cur_token.code == '-')
4457 {
4458 strcat (intel_parser.disp, cur_token.str);
4459 intel_match_token (cur_token.code);
4460
4461 return (intel_e06 () && intel_e05_1 ());
4462 }
4463
4464 /* e05' Empty */
4465 else
4466 return 1;
4a1805b1 4467}
64a0c779
DN
4468
4469/* e06 e09 e06'
4470
4471 e06' mulOp e09 e06'
4472 | Empty */
4473static int
4474intel_e06 ()
4475{
4476 return (intel_e09 () && intel_e06_1 ());
4477}
4478
4479static int
4480intel_e06_1 ()
4481{
4482 /* e06' mulOp e09 e06' */
4483 if (cur_token.code == '*' || cur_token.code == '/')
4484 {
4485 strcat (intel_parser.disp, cur_token.str);
4486 intel_match_token (cur_token.code);
4487
4488 return (intel_e09 () && intel_e06_1 ());
4489 }
4a1805b1 4490
64a0c779 4491 /* e06' Empty */
4a1805b1 4492 else
64a0c779
DN
4493 return 1;
4494}
4495
64a0c779
DN
4496/* e09 OFFSET e10 e09'
4497 | e10 e09'
4498
4499 e09' PTR e10 e09'
4500 | : e10 e09'
4501 | Empty */
4502static int
4503intel_e09 ()
4504{
4505 /* e09 OFFSET e10 e09' */
4506 if (cur_token.code == T_OFFSET)
4507 {
4508 intel_parser.is_mem = 0;
4509 intel_parser.op_modifier = OFFSET_FLAT;
4510 intel_match_token (T_OFFSET);
4511
4512 return (intel_e10 () && intel_e09_1 ());
4513 }
4514
4515 /* e09 e10 e09' */
4516 else
4517 return (intel_e10 () && intel_e09_1 ());
4518}
4519
4520static int
4521intel_e09_1 ()
4522{
4523 /* e09' PTR e10 e09' */
4524 if (cur_token.code == T_PTR)
4525 {
4526 if (prev_token.code == T_BYTE)
4527 i.suffix = BYTE_MNEM_SUFFIX;
4528
4529 else if (prev_token.code == T_WORD)
4530 {
4531 if (intel_parser.got_a_float == 2) /* "fi..." */
4532 i.suffix = SHORT_MNEM_SUFFIX;
4533 else
4534 i.suffix = WORD_MNEM_SUFFIX;
4535 }
4536
4537 else if (prev_token.code == T_DWORD)
4538 {
4539 if (intel_parser.got_a_float == 1) /* "f..." */
4540 i.suffix = SHORT_MNEM_SUFFIX;
4541 else
4542 i.suffix = LONG_MNEM_SUFFIX;
4543 }
4544
4545 else if (prev_token.code == T_QWORD)
4546 i.suffix = DWORD_MNEM_SUFFIX;
4547
4548 else if (prev_token.code == T_XWORD)
4549 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
4550
4551 else
4552 {
4553 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
4554 return 0;
4555 }
4556
4557 intel_match_token (T_PTR);
4558
4559 return (intel_e10 () && intel_e09_1 ());
4560 }
4561
4562 /* e09 : e10 e09' */
4563 else if (cur_token.code == ':')
4564 {
4565 intel_parser.is_mem = 1;
4566
4567 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
4568 }
4569
4570 /* e09' Empty */
4571 else
4572 return 1;
4573}
4574
4575/* e10 e11 e10'
4576
4577 e10' [ expr ] e10'
4578 | Empty */
4579static int
4580intel_e10 ()
4581{
4582 return (intel_e11 () && intel_e10_1 ());
4583}
4584
4585static int
4586intel_e10_1 ()
4587{
4588 /* e10' [ expr ] e10' */
4589 if (cur_token.code == '[')
4590 {
4591 intel_match_token ('[');
4592 intel_parser.is_mem = 1;
4a1805b1 4593
64a0c779
DN
4594 /* Add a '+' to the displacement string if necessary. */
4595 if (*intel_parser.disp != '\0')
4596 strcat (intel_parser.disp, "+");
4597
4598 return (intel_expr () && intel_match_token (']') && intel_e10_1 ());
4599 }
4600
4601 /* e10' Empty */
4602 else
4603 return 1;
4604}
4605
64a0c779
DN
4606/* e11 ( expr )
4607 | [ expr ]
4608 | BYTE
4609 | WORD
4610 | DWORD
4611 | QWORD
4612 | XWORD
4a1805b1 4613 | $
64a0c779
DN
4614 | .
4615 | register
4616 | id
4617 | constant */
4618static int
4619intel_e11 ()
4620{
4621 /* e11 ( expr ) */
4622 if (cur_token.code == '(')
4623 {
4624 intel_match_token ('(');
4625 strcat (intel_parser.disp, "(");
4626
4627 if (intel_expr () && intel_match_token (')'))
4628 {
4629 strcat (intel_parser.disp, ")");
4630 return 1;
4631 }
4632 else
4633 return 0;
4634 }
4635
4636 /* e11 [ expr ] */
4637 else if (cur_token.code == '[')
4638 {
4639 intel_match_token ('[');
4640 intel_parser.is_mem = 1;
4a1805b1 4641
64a0c779
DN
4642 /* Operands for jump/call inside brackets denote absolute addresses. */
4643 if (current_templates->start->opcode_modifier & Jump
4644 || current_templates->start->opcode_modifier & JumpDword
4645 || current_templates->start->opcode_modifier & JumpByte
4646 || current_templates->start->opcode_modifier & JumpInterSegment)
4647 i.types[this_operand] |= JumpAbsolute;
4648
4649 /* Add a '+' to the displacement string if necessary. */
4650 if (*intel_parser.disp != '\0')
4651 strcat (intel_parser.disp, "+");
4652
4653 return (intel_expr () && intel_match_token (']'));
4654 }
4655
4a1805b1 4656 /* e11 BYTE
64a0c779
DN
4657 | WORD
4658 | DWORD
4659 | QWORD
4660 | XWORD */
4661 else if (cur_token.code == T_BYTE
4662 || cur_token.code == T_WORD
4663 || cur_token.code == T_DWORD
4664 || cur_token.code == T_QWORD
4665 || cur_token.code == T_XWORD)
4666 {
4667 intel_match_token (cur_token.code);
4668
4669 return 1;
4670 }
4671
4672 /* e11 $
4673 | . */
4674 else if (cur_token.code == '$' || cur_token.code == '.')
4675 {
4676 strcat (intel_parser.disp, cur_token.str);
4677 intel_match_token (cur_token.code);
4678 intel_parser.is_mem = 1;
4679
4680 return 1;
4681 }
4682
4683 /* e11 register */
4684 else if (cur_token.code == T_REG)
4685 {
4686 const reg_entry *reg = intel_parser.reg = cur_token.reg;
4687
4688 intel_match_token (T_REG);
4689
4690 /* Check for segment change. */
4691 if (cur_token.code == ':')
4692 {
4693 if (reg->reg_type & (SReg2 | SReg3))
4694 {
4695 switch (reg->reg_num)
4696 {
4697 case 0:
4698 i.seg[i.mem_operands] = &es;
4699 break;
4700 case 1:
4701 i.seg[i.mem_operands] = &cs;
4702 break;
4703 case 2:
4704 i.seg[i.mem_operands] = &ss;
4705 break;
4706 case 3:
4707 i.seg[i.mem_operands] = &ds;
4708 break;
4709 case 4:
4710 i.seg[i.mem_operands] = &fs;
4711 break;
4712 case 5:
4713 i.seg[i.mem_operands] = &gs;
4714 break;
4715 }
4716 }
4717 else
4718 {
4719 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
4720 return 0;
4721 }
4722 }
4723
4724 /* Not a segment register. Check for register scaling. */
4725 else if (cur_token.code == '*')
4726 {
4727 if (!intel_parser.is_mem)
4728 {
4729 as_bad (_("Register scaling only allowed in memory operands."));
4730 return 0;
4731 }
4732
4a1805b1 4733 /* What follows must be a valid scale. */
64a0c779
DN
4734 if (intel_match_token ('*')
4735 && strchr ("01248", *cur_token.str))
4736 {
4737 i.index_reg = reg;
4738 i.types[this_operand] |= BaseIndex;
4739
4740 /* Set the scale after setting the register (otherwise,
4741 i386_scale will complain) */
4742 i386_scale (cur_token.str);
4743 intel_match_token (T_CONST);
4744 }
4745 else
4746 {
4747 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4748 cur_token.str);
4749 return 0;
4750 }
4751 }
4752
4753 /* No scaling. If this is a memory operand, the register is either a
4754 base register (first occurrence) or an index register (second
4755 occurrence). */
4756 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
4757 {
4758 if (i.base_reg && i.index_reg)
4759 {
4760 as_bad (_("Too many register references in memory operand.\n"));
4761 return 0;
4762 }
4763
4764 if (i.base_reg == NULL)
4765 i.base_reg = reg;
4766 else
4767 i.index_reg = reg;
4768
4769 i.types[this_operand] |= BaseIndex;
4770 }
4771
4772 /* Offset modifier. Add the register to the displacement string to be
4773 parsed as an immediate expression after we're done. */
4774 else if (intel_parser.op_modifier == OFFSET_FLAT)
4775 strcat (intel_parser.disp, reg->reg_name);
4a1805b1 4776
64a0c779
DN
4777 /* It's neither base nor index nor offset. */
4778 else
4779 {
4780 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
4781 i.op[this_operand].regs = reg;
4782 i.reg_operands++;
4783 }
4784
4785 /* Since registers are not part of the displacement string (except
4786 when we're parsing offset operands), we may need to remove any
4787 preceding '+' from the displacement string. */
4788 if (*intel_parser.disp != '\0'
4789 && intel_parser.op_modifier != OFFSET_FLAT)
4790 {
4791 char *s = intel_parser.disp;
4792 s += strlen (s) - 1;
4793 if (*s == '+')
4794 *s = '\0';
4795 }
4796
4797 return 1;
4798 }
4a1805b1 4799
64a0c779
DN
4800 /* e11 id */
4801 else if (cur_token.code == T_ID)
4802 {
4803 /* Add the identifier to the displacement string. */
4804 strcat (intel_parser.disp, cur_token.str);
4805 intel_match_token (T_ID);
4806
4807 /* The identifier represents a memory reference only if it's not
4808 preceded by an offset modifier. */
4809 if (intel_parser.op_modifier != OFFSET_FLAT
4810 && intel_parser.op_modifier != FLAT)
4811 intel_parser.is_mem = 1;
4812
4813 return 1;
4814 }
4815
4816 /* e11 constant */
4817 else if (cur_token.code == T_CONST
4818 || cur_token.code == '-'
4819 || cur_token.code == '+')
4820 {
4821 char *save_str;
4822
4823 /* Allow constants that start with `+' or `-'. */
4824 if (cur_token.code == '-' || cur_token.code == '+')
4825 {
4826 strcat (intel_parser.disp, cur_token.str);
4827 intel_match_token (cur_token.code);
4828 if (cur_token.code != T_CONST)
4829 {
4830 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
4831 cur_token.str);
4832 return 0;
4833 }
4834 }
4835
4836 save_str = (char *)malloc (strlen (cur_token.str) + 1);
4837 if (save_str == NULL)
4838 abort();
4839 strcpy (save_str, cur_token.str);
4840
4841 /* Get the next token to check for register scaling. */
4842 intel_match_token (cur_token.code);
4843
4844 /* Check if this constant is a scaling factor for an index register. */
4845 if (cur_token.code == '*')
4846 {
4847 if (intel_match_token ('*') && cur_token.code == T_REG)
4848 {
4849 if (!intel_parser.is_mem)
4850 {
4851 as_bad (_("Register scaling only allowed in memory operands."));
4852 return 0;
4853 }
4854
4a1805b1 4855 /* The constant is followed by `* reg', so it must be
64a0c779
DN
4856 a valid scale. */
4857 if (strchr ("01248", *save_str))
4858 {
4859 i.index_reg = cur_token.reg;
4860 i.types[this_operand] |= BaseIndex;
4861
4862 /* Set the scale after setting the register (otherwise,
4863 i386_scale will complain) */
4864 i386_scale (save_str);
4865 intel_match_token (T_REG);
4866
4867 /* Since registers are not part of the displacement
4868 string, we may need to remove any preceding '+' from
4869 the displacement string. */
4870 if (*intel_parser.disp != '\0')
4871 {
4872 char *s = intel_parser.disp;
4873 s += strlen (s) - 1;
4874 if (*s == '+')
4875 *s = '\0';
4876 }
4877
4878 free (save_str);
4879
4880 return 1;
4881 }
4882 else
4883 return 0;
4884 }
4885
4886 /* The constant was not used for register scaling. Since we have
4887 already consumed the token following `*' we now need to put it
4888 back in the stream. */
4889 else
4890 intel_putback_token ();
4891 }
4892
4893 /* Add the constant to the displacement string. */
4894 strcat (intel_parser.disp, save_str);
4895 free (save_str);
4896
4897 return 1;
4898 }
4899
64a0c779
DN
4900 as_bad (_("Unrecognized token '%s'"), cur_token.str);
4901 return 0;
4902}
4903
64a0c779
DN
4904/* Match the given token against cur_token. If they match, read the next
4905 token from the operand string. */
4906static int
4907intel_match_token (code)
4908 int code;
4909{
4910 if (cur_token.code == code)
4911 {
4912 intel_get_token ();
4913 return 1;
4914 }
4915 else
4916 {
4917 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
4918 return 0;
4919 }
4920}
4921
64a0c779
DN
4922/* Read a new token from intel_parser.op_string and store it in cur_token. */
4923static void
4924intel_get_token ()
4925{
4926 char *end_op;
4927 const reg_entry *reg;
4928 struct intel_token new_token;
4929
4930 new_token.code = T_NIL;
4931 new_token.reg = NULL;
4932 new_token.str = NULL;
4933
4a1805b1 4934 /* Free the memory allocated to the previous token and move
64a0c779
DN
4935 cur_token to prev_token. */
4936 if (prev_token.str)
4937 free (prev_token.str);
4938
4939 prev_token = cur_token;
4940
4941 /* Skip whitespace. */
4942 while (is_space_char (*intel_parser.op_string))
4943 intel_parser.op_string++;
4944
4945 /* Return an empty token if we find nothing else on the line. */
4946 if (*intel_parser.op_string == '\0')
4947 {
4948 cur_token = new_token;
4949 return;
4950 }
4951
4952 /* The new token cannot be larger than the remainder of the operand
4953 string. */
4954 new_token.str = (char *)malloc (strlen (intel_parser.op_string) + 1);
4955 if (new_token.str == NULL)
4956 abort();
4957 new_token.str[0] = '\0';
4958
4959 if (strchr ("0123456789", *intel_parser.op_string))
4960 {
4961 char *p = new_token.str;
4962 char *q = intel_parser.op_string;
4963 new_token.code = T_CONST;
4964
4965 /* Allow any kind of identifier char to encompass floating point and
4966 hexadecimal numbers. */
4967 while (is_identifier_char (*q))
4968 *p++ = *q++;
4969 *p = '\0';
4970
4971 /* Recognize special symbol names [0-9][bf]. */
4972 if (strlen (intel_parser.op_string) == 2
4a1805b1 4973 && (intel_parser.op_string[1] == 'b'
64a0c779
DN
4974 || intel_parser.op_string[1] == 'f'))
4975 new_token.code = T_ID;
4976 }
4977
4978 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
4979 {
4980 new_token.code = *intel_parser.op_string;
4981 new_token.str[0] = *intel_parser.op_string;
4982 new_token.str[1] = '\0';
4983 }
4984
4985 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
4986 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
4987 {
4988 new_token.code = T_REG;
4989 new_token.reg = reg;
4990
4991 if (*intel_parser.op_string == REGISTER_PREFIX)
4992 {
4993 new_token.str[0] = REGISTER_PREFIX;
4994 new_token.str[1] = '\0';
4995 }
4996
4997 strcat (new_token.str, reg->reg_name);
4998 }
4999
5000 else if (is_identifier_char (*intel_parser.op_string))
5001 {
5002 char *p = new_token.str;
5003 char *q = intel_parser.op_string;
5004
5005 /* A '.' or '$' followed by an identifier char is an identifier.
5006 Otherwise, it's operator '.' followed by an expression. */
5007 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
5008 {
5009 new_token.code = *q;
5010 new_token.str[0] = *q;
5011 new_token.str[1] = '\0';
5012 }
5013 else
5014 {
5015 while (is_identifier_char (*q) || *q == '@')
5016 *p++ = *q++;
5017 *p = '\0';
5018
5019 if (strcasecmp (new_token.str, "BYTE") == 0)
5020 new_token.code = T_BYTE;
5021
5022 else if (strcasecmp (new_token.str, "WORD") == 0)
5023 new_token.code = T_WORD;
5024
5025 else if (strcasecmp (new_token.str, "DWORD") == 0)
5026 new_token.code = T_DWORD;
5027
5028 else if (strcasecmp (new_token.str, "QWORD") == 0)
5029 new_token.code = T_QWORD;
5030
5031 else if (strcasecmp (new_token.str, "XWORD") == 0)
5032 new_token.code = T_XWORD;
5033
5034 else if (strcasecmp (new_token.str, "PTR") == 0)
5035 new_token.code = T_PTR;
5036
5037 else if (strcasecmp (new_token.str, "SHORT") == 0)
5038 new_token.code = T_SHORT;
5039
5040 else if (strcasecmp (new_token.str, "OFFSET") == 0)
5041 {
5042 new_token.code = T_OFFSET;
5043
5044 /* ??? This is not mentioned in the MASM grammar but gcc
5045 makes use of it with -mintel-syntax. OFFSET may be
5046 followed by FLAT: */
5047 if (strncasecmp (q, " FLAT:", 6) == 0)
5048 strcat (new_token.str, " FLAT:");
5049 }
5050
5051 /* ??? This is not mentioned in the MASM grammar. */
5052 else if (strcasecmp (new_token.str, "FLAT") == 0)
5053 new_token.code = T_OFFSET;
5054
5055 else
5056 new_token.code = T_ID;
5057 }
5058 }
5059
5060 else
5061 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
5062
5063 intel_parser.op_string += strlen (new_token.str);
5064 cur_token = new_token;
5065}
5066
64a0c779
DN
5067/* Put cur_token back into the token stream and make cur_token point to
5068 prev_token. */
5069static void
5070intel_putback_token ()
5071{
5072 intel_parser.op_string -= strlen (cur_token.str);
5073 free (cur_token.str);
5074 cur_token = prev_token;
4a1805b1 5075
64a0c779
DN
5076 /* Forget prev_token. */
5077 prev_token.code = T_NIL;
5078 prev_token.reg = NULL;
5079 prev_token.str = NULL;
5080}
This page took 0.337026 seconds and 4 git commands to generate.