* xcofflink.c: More improvements, mostly to fix handling of
[deliverable/binutils-gdb.git] / gas / config / tc-i960.c
CommitLineData
542e1629 1/* tc-i960.c - All the i80960-specific stuff
5ac34ac3 2 Copyright (C) 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
355afbcd 3
a39116f1 4 This file is part of GAS.
355afbcd 5
a39116f1
RP
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
355afbcd 10
a39116f1
RP
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
355afbcd 15
a39116f1
RP
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
fecd2382 19
fecd2382
RP
20/* See comment on md_parse_option for 80960-specific invocation options. */
21
22/******************************************************************************
23 * i80690 NOTE!!!:
24 * Header, symbol, and relocation info will be used on the host machine
25 * only -- only executable code is actually downloaded to the i80960.
26 * Therefore, leave all such information in host byte order.
27 *
28 * (That's a slight lie -- we DO download some header information, but
29 * the downloader converts the file format and corrects the byte-ordering
30 * of the relevant fields while doing so.)
31 *
8ae35e59
ILT
32 * ==> THIS IS NO LONGER TRUE USING BFD. WE CAN GENERATE ANY BYTE ORDER
33 * FOR THE HEADER, AND READ ANY BYTE ORDER. PREFERENCE WOULD BE TO
34 * USE LITTLE-ENDIAN BYTE ORDER THROUGHOUT, REGARDLESS OF HOST. <==
35 *
fecd2382
RP
36 ***************************************************************************** */
37
38/* There are 4 different lengths of (potentially) symbol-based displacements
39 * in the 80960 instruction set, each of which could require address fix-ups
40 * and (in the case of external symbols) emission of relocation directives:
41 *
42 * 32-bit (MEMB)
43 * This is a standard length for the base assembler and requires no
44 * special action.
45 *
46 * 13-bit (COBR)
47 * This is a non-standard length, but the base assembler has a hook for
48 * bit field address fixups: the fixS structure can point to a descriptor
49 * of the field, in which case our md_number_to_field() routine gets called
50 * to process it.
51 *
52 * I made the hook a little cleaner by having fix_new() (in the base
53 * assembler) return a pointer to the fixS in question. And I made it a
54 * little simpler by storing the field size (in this case 13) instead of
55 * of a pointer to another structure: 80960 displacements are ALWAYS
56 * stored in the low-order bits of a 4-byte word.
57 *
58 * Since the target of a COBR cannot be external, no relocation directives
59 * for this size displacement have to be generated. But the base assembler
60 * had to be modified to issue error messages if the symbol did turn out
61 * to be external.
62 *
63 * 24-bit (CTRL)
64 * Fixups are handled as for the 13-bit case (except that 24 is stored
65 * in the fixS).
66 *
67 * The relocation directive generated is the same as that for the 32-bit
68 * displacement, except that it's PC-relative (the 32-bit displacement
69 * never is). The i80960 version of the linker needs a mod to
70 * distinguish and handle the 24-bit case.
71 *
72 * 12-bit (MEMA)
73 * MEMA formats are always promoted to MEMB (32-bit) if the displacement
74 * is based on a symbol, because it could be relocated at link time.
75 * The only time we use the 12-bit format is if an absolute value of
76 * less than 4096 is specified, in which case we need neither a fixup nor
77 * a relocation directive.
78 */
79
80#include <stdio.h>
81#include <ctype.h>
82
83#include "as.h"
84
85#include "obstack.h"
86
a39116f1 87#include "opcode/i960.h"
fecd2382 88
f3d817d8
DM
89extern char *strchr ();
90
fecd2382
RP
91extern char *input_line_pointer;
92extern struct hash_control *po_hash;
fecd2382
RP
93extern char *next_object_file_charP;
94
f3d817d8 95#if !defined (BFD_ASSEMBLER) && !defined (BFD)
fecd2382 96#ifdef OBJ_COFF
c47d388b 97const int md_reloc_size = sizeof (struct reloc);
fecd2382 98#else /* OBJ_COFF */
c47d388b 99const int md_reloc_size = sizeof (struct relocation_info);
fecd2382 100#endif /* OBJ_COFF */
f3d817d8 101#endif
fecd2382 102
a39116f1
RP
103/***************************
104 * Local i80960 routines *
105 ************************** */
fecd2382 106
355afbcd
KR
107static void brcnt_emit (); /* Emit branch-prediction instrumentation code */
108static char *brlab_next (); /* Return next branch local label */
109void brtab_emit (); /* Emit br-predict instrumentation table */
110static void cobr_fmt (); /* Generate COBR instruction */
111static void ctrl_fmt (); /* Generate CTRL instruction */
112static char *emit (); /* Emit (internally) binary */
113static int get_args (); /* Break arguments out of comma-separated list */
114static void get_cdisp (); /* Handle COBR or CTRL displacement */
115static char *get_ispec (); /* Find index specification string */
116static int get_regnum (); /* Translate text to register number */
117static int i_scan (); /* Lexical scan of instruction source */
118static void mem_fmt (); /* Generate MEMA or MEMB instruction */
119static void mema_to_memb (); /* Convert MEMA instruction to MEMB format */
5ac34ac3 120static void parse_expr (); /* Parse an expression */
355afbcd
KR
121static int parse_ldconst (); /* Parse and replace a 'ldconst' pseudo-op */
122static void parse_memop (); /* Parse a memory operand */
123static void parse_po (); /* Parse machine-dependent pseudo-op */
124static void parse_regop (); /* Parse a register operand */
125static void reg_fmt (); /* Generate a REG format instruction */
126void reloc_callj (); /* Relocate a 'callj' instruction */
127static void relax_cobr (); /* "De-optimize" cobr into compare/branch */
128static void s_leafproc (); /* Process '.leafproc' pseudo-op */
129static void s_sysproc (); /* Process '.sysproc' pseudo-op */
130static int shift_ok (); /* Will a 'shlo' substiture for a 'ldconst'? */
131static void syntax (); /* Give syntax error */
132static int targ_has_sfr (); /* Target chip supports spec-func register? */
133static int targ_has_iclass (); /* Target chip supports instruction set? */
134/* static void unlink_sym(); *//* Remove a symbol from the symbol list */
fecd2382
RP
135
136/* See md_parse_option() for meanings of these options */
09952cd9 137static char norelax; /* True if -norelax switch seen */
355afbcd 138static char instrument_branches;/* True if -b switch seen */
fecd2382
RP
139
140/* Characters that always start a comment.
141 * If the pre-processor is disabled, these aren't very useful.
142 */
355afbcd 143const char comment_chars[] = "#";
fecd2382
RP
144
145/* Characters that only start a comment at the beginning of
146 * a line. If the line seems to have the form '# 123 filename'
147 * .line and .file directives will appear in the pre-processed output.
148 *
149 * Note that input_file.c hand checks for '#' at the beginning of the
150 * first line of the input file. This is because the compiler outputs
151 * #NO_APP at the beginning of its output.
152 */
153
154/* Also note that comments started like this one will always work. */
155
c47d388b 156const char line_comment_chars[1];
355afbcd 157
c47d388b 158const char line_separator_chars[1];
fecd2382
RP
159
160/* Chars that can be used to separate mant from exp in floating point nums */
355afbcd 161const char EXP_CHARS[] = "eE";
fecd2382
RP
162
163/* Chars that mean this number is a floating point constant,
164 * as in 0f12.456 or 0d1.2345e12
165 */
355afbcd 166const char FLT_CHARS[] = "fFdDtT";
fecd2382
RP
167
168
169/* Table used by base assembler to relax addresses based on varying length
170 * instructions. The fields are:
171 * 1) most positive reach of this state,
172 * 2) most negative reach of this state,
173 * 3) how many bytes this mode will add to the size of the current frag
174 * 4) which index into the table to try if we can't fit into this one.
175 *
176 * For i80960, the only application is the (de-)optimization of cobr
177 * instructions into separate compare and branch instructions when a 13-bit
178 * displacement won't hack it.
179 */
180const relax_typeS
355afbcd
KR
181 md_relax_table[] =
182{
183 {0, 0, 0, 0}, /* State 0 => no more relaxation possible */
184 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */
185 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */
186};
fecd2382
RP
187
188
189/* These are the machine dependent pseudo-ops.
190 *
191 * This table describes all the machine specific pseudo-ops the assembler
192 * has to support. The fields are:
193 * pseudo-op name without dot
194 * function to call to execute this pseudo-op
195 * integer arg to pass to the function
196 */
197#define S_LEAFPROC 1
198#define S_SYSPROC 2
199
355afbcd
KR
200const pseudo_typeS md_pseudo_table[] =
201{
202 {"bss", s_lcomm, 1},
203 {"extended", float_cons, 't'},
204 {"leafproc", parse_po, S_LEAFPROC},
205 {"sysproc", parse_po, S_SYSPROC},
09952cd9 206
355afbcd 207 {"word", cons, 4},
80aab579 208 {"quad", cons, 16},
09952cd9 209
355afbcd 210 {0, 0, 0}
09952cd9 211};
fecd2382
RP
212\f
213/* Macros to extract info from an 'expressionS' structure 'e' */
214#define adds(e) e.X_add_symbol
fecd2382 215#define offs(e) e.X_add_number
355afbcd
KR
216
217
218/* Branch-prediction bits for CTRL/COBR format opcodes */
219#define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
220#define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
221#define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
222
223
224/* Some instruction opcodes that we need explicitly */
fecd2382
RP
225#define BE 0x12000000
226#define BG 0x11000000
227#define BGE 0x13000000
228#define BL 0x14000000
229#define BLE 0x16000000
230#define BNE 0x15000000
231#define BNO 0x10000000
232#define BO 0x17000000
233#define CHKBIT 0x5a002700
234#define CMPI 0x5a002080
235#define CMPO 0x5a002000
355afbcd 236
fecd2382
RP
237#define B 0x08000000
238#define BAL 0x0b000000
239#define CALL 0x09000000
240#define CALLS 0x66003800
241#define RET 0x0a000000
355afbcd
KR
242
243
244/* These masks are used to build up a set of MEMB mode bits. */
fecd2382
RP
245#define A_BIT 0x0400
246#define I_BIT 0x0800
247#define MEMB_BIT 0x1000
248#define D_BIT 0x2000
355afbcd
KR
249
250
c47d388b
ME
251/* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
252 used). */
fecd2382 253#define MEMA_ABASE 0x2000
355afbcd
KR
254
255/* Info from which a MEMA or MEMB format instruction can be generated */
256typedef struct
257 {
c47d388b
ME
258 /* (First) 32 bits of instruction */
259 long opcode;
260 /* 0-(none), 12- or, 32-bit displacement needed */
261 int disp;
262 /* The expression in the source instruction from which the
263 displacement should be determined. */
264 char *e;
355afbcd
KR
265 }
266
267memS;
fecd2382
RP
268
269
270/* The two pieces of info we need to generate a register operand */
355afbcd
KR
271struct regop
272 {
273 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
274 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
275 int n; /* Register number or literal value */
276 };
fecd2382
RP
277
278
279/* Number and assembler mnemonic for all registers that can appear in operands */
355afbcd
KR
280static struct
281 {
282 char *reg_name;
283 int reg_num;
284 }
285
286regnames[] =
287{
288 { "pfp", 0 },
289 { "sp", 1 },
290 { "rip", 2 },
291 { "r3", 3 },
292 { "r4", 4 },
293 { "r5", 5 },
294 { "r6", 6 },
295 { "r7", 7 },
296 { "r8", 8 },
297 { "r9", 9 },
298 { "r10", 10 },
299 { "r11", 11 },
300 { "r12", 12 },
301 { "r13", 13 },
302 { "r14", 14 },
303 { "r15", 15 },
304 { "g0", 16 },
305 { "g1", 17 },
306 { "g2", 18 },
307 { "g3", 19 },
308 { "g4", 20 },
309 { "g5", 21 },
310 { "g6", 22 },
311 { "g7", 23 },
312 { "g8", 24 },
313 { "g9", 25 },
314 { "g10", 26 },
315 { "g11", 27 },
316 { "g12", 28 },
317 { "g13", 29 },
318 { "g14", 30 },
319 { "fp", 31 },
320
321 /* Numbers for special-function registers are for assembler internal
322 use only: they are scaled back to range [0-31] for binary output. */
323#define SF0 32
324
325 { "sf0", 32 },
326 { "sf1", 33 },
327 { "sf2", 34 },
328 { "sf3", 35 },
329 { "sf4", 36 },
330 { "sf5", 37 },
331 { "sf6", 38 },
332 { "sf7", 39 },
333 { "sf8", 40 },
334 { "sf9", 41 },
335 { "sf10", 42 },
336 { "sf11", 43 },
337 { "sf12", 44 },
338 { "sf13", 45 },
339 { "sf14", 46 },
340 { "sf15", 47 },
341 { "sf16", 48 },
342 { "sf17", 49 },
343 { "sf18", 50 },
344 { "sf19", 51 },
345 { "sf20", 52 },
346 { "sf21", 53 },
347 { "sf22", 54 },
348 { "sf23", 55 },
349 { "sf24", 56 },
350 { "sf25", 57 },
351 { "sf26", 58 },
352 { "sf27", 59 },
353 { "sf28", 60 },
354 { "sf29", 61 },
355 { "sf30", 62 },
356 { "sf31", 63 },
357
358 /* Numbers for floating point registers are for assembler internal use
fecd2382
RP
359 * only: they are scaled back to [0-3] for binary output.
360 */
355afbcd
KR
361#define FP0 64
362
363 { "fp0", 64 },
364 { "fp1", 65 },
365 { "fp2", 66 },
366 { "fp3", 67 },
367
368 { NULL, 0 }, /* END OF LIST */
fecd2382
RP
369};
370
371#define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
372#define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
373#define IS_FP_REG(n) ((n) >= FP0)
374
375/* Number and assembler mnemonic for all registers that can appear as 'abase'
376 * (indirect addressing) registers.
377 */
355afbcd
KR
378static struct
379 {
380 char *areg_name;
381 int areg_num;
382 }
383
384aregs[] =
385{
386 { "(pfp)", 0 },
387 { "(sp)", 1 },
388 { "(rip)", 2 },
389 { "(r3)", 3 },
390 { "(r4)", 4 },
391 { "(r5)", 5 },
392 { "(r6)", 6 },
393 { "(r7)", 7 },
394 { "(r8)", 8 },
395 { "(r9)", 9 },
396 { "(r10)", 10 },
397 { "(r11)", 11 },
398 { "(r12)", 12 },
399 { "(r13)", 13 },
400 { "(r14)", 14 },
401 { "(r15)", 15 },
402 { "(g0)", 16 },
403 { "(g1)", 17 },
404 { "(g2)", 18 },
405 { "(g3)", 19 },
406 { "(g4)", 20 },
407 { "(g5)", 21 },
408 { "(g6)", 22 },
409 { "(g7)", 23 },
410 { "(g8)", 24 },
411 { "(g9)", 25 },
412 { "(g10)", 26 },
413 { "(g11)", 27 },
414 { "(g12)", 28 },
415 { "(g13)", 29 },
416 { "(g14)", 30 },
417 { "(fp)", 31 },
418
419#define IPREL 32
420 /* For assembler internal use only: this number never appears in binary
421 output. */
422 { "(ip)", IPREL },
423
424 { NULL, 0 }, /* END OF LIST */
fecd2382
RP
425};
426
427
428/* Hash tables */
c47d388b
ME
429static struct hash_control *op_hash; /* Opcode mnemonics */
430static struct hash_control *reg_hash; /* Register name hash table */
431static struct hash_control *areg_hash; /* Abase register hash table */
fecd2382
RP
432
433
434/* Architecture for which we are assembling */
435#define ARCH_ANY 0 /* Default: no architecture checking done */
436#define ARCH_KA 1
437#define ARCH_KB 2
438#define ARCH_MC 3
439#define ARCH_CA 4
440int architecture = ARCH_ANY; /* Architecture requested on invocation line */
c47d388b 441int iclasses_seen; /* OR of instruction classes (I_* constants)
fecd2382
RP
442 * for which we've actually assembled
443 * instructions.
444 */
445
446
447/* BRANCH-PREDICTION INSTRUMENTATION
448 *
449 * The following supports generation of branch-prediction instrumentation
450 * (turned on by -b switch). The instrumentation collects counts
451 * of branches taken/not-taken for later input to a utility that will
452 * set the branch prediction bits of the instructions in accordance with
453 * the behavior observed. (Note that the KX series does not have
454 * brach-prediction.)
455 *
456 * The instrumentation consists of:
457 *
458 * (1) before and after each conditional branch, a call to an external
459 * routine that increments and steps over an inline counter. The
460 * counter itself, initialized to 0, immediately follows the call
461 * instruction. For each branch, the counter following the branch
462 * is the number of times the branch was not taken, and the difference
463 * between the counters is the number of times it was taken. An
464 * example of an instrumented conditional branch:
465 *
466 * call BR_CNT_FUNC
467 * .word 0
468 * LBRANCH23: be label
469 * call BR_CNT_FUNC
470 * .word 0
471 *
472 * (2) a table of pointers to the instrumented branches, so that an
473 * external postprocessing routine can locate all of the counters.
474 * the table begins with a 2-word header: a pointer to the next in
475 * a linked list of such tables (initialized to 0); and a count
476 * of the number of entries in the table (exclusive of the header.
477 *
478 * Note that input source code is expected to already contain calls
479 * an external routine that will link the branch local table into a
480 * list of such tables.
481 */
482
c47d388b 483static int br_cnt; /* Number of branches instrumented so far.
fecd2382
RP
484 * Also used to generate unique local labels
485 * for each instrumented branch
486 */
487
488#define BR_LABEL_BASE "LBRANCH"
a39116f1
RP
489/* Basename of local labels on instrumented
490 * branches, to avoid conflict with compiler-
491 * generated local labels.
492 */
fecd2382
RP
493
494#define BR_CNT_FUNC "__inc_branch"
a39116f1
RP
495/* Name of the external routine that will
496 * increment (and step over) an inline counter.
497 */
fecd2382
RP
498
499#define BR_TAB_NAME "__BRANCH_TABLE__"
a39116f1
RP
500/* Name of the table of pointers to branches.
501 * A local (i.e., non-external) symbol.
502 */
fecd2382
RP
503\f
504/*****************************************************************************
505 * md_begin: One-time initialization.
506 *
507 * Set up hash tables.
508 *
509 **************************************************************************** */
510void
355afbcd 511md_begin ()
fecd2382 512{
355afbcd
KR
513 int i; /* Loop counter */
514 const struct i960_opcode *oP; /* Pointer into opcode table */
80aab579 515 const char *retval; /* Value returned by hash functions */
355afbcd 516
f3d817d8
DM
517 op_hash = hash_new ();
518 reg_hash = hash_new ();
519 areg_hash = hash_new ();
355afbcd 520
c47d388b
ME
521 /* For some reason, the base assembler uses an empty string for "no
522 error message", instead of a NULL pointer. */
f3d817d8 523 retval = 0;
355afbcd 524
80aab579
ILT
525 for (oP = i960_opcodes; oP->name && !retval; oP++)
526 retval = hash_insert (op_hash, oP->name, (PTR) oP);
355afbcd 527
80aab579
ILT
528 for (i = 0; regnames[i].reg_name && !retval; i++)
529 retval = hash_insert (reg_hash, regnames[i].reg_name,
530 &regnames[i].reg_num);
355afbcd 531
80aab579
ILT
532 for (i = 0; aregs[i].areg_name && !retval; i++)
533 retval = hash_insert (areg_hash, aregs[i].areg_name,
534 &aregs[i].areg_num);
355afbcd 535
80aab579
ILT
536 if (retval)
537 as_fatal ("Hashing returned \"%s\".", retval);
538}
fecd2382 539
fecd2382
RP
540/*****************************************************************************
541 * md_assemble: Assemble an instruction
542 *
543 * Assumptions about the passed-in text:
544 * - all comments, labels removed
545 * - text is an instruction
546 * - all white space compressed to single blanks
547 * - all character constants have been replaced with decimal
548 *
549 **************************************************************************** */
550void
355afbcd
KR
551md_assemble (textP)
552 char *textP; /* Source text of instruction */
fecd2382 553{
c47d388b
ME
554 /* Parsed instruction text, containing NO whitespace:
555 * arg[0]->opcode mnemonic
556 * arg[1-3]->operands, with char constants
557 * replaced by decimal numbers
558 */
559 char *args[4];
560
355afbcd 561 int n_ops; /* Number of instruction operands */
355afbcd 562 /* Pointer to instruction description */
c47d388b 563 struct i960_opcode *oP;
355afbcd 564 /* TRUE iff opcode mnemonic included branch-prediction
c47d388b
ME
565 * suffix (".f" or ".t")
566 */
567 int branch_predict;
568 /* Setting of branch-prediction bit(s) to be OR'd
569 * into instruction opcode of CTRL/COBR format
570 * instructions.
571 */
572 long bp_bits;
573
355afbcd
KR
574 int n; /* Offset of last character in opcode mnemonic */
575
576 static const char bp_error_msg[] = "branch prediction invalid on this opcode";
577
578
579 /* Parse instruction into opcode and operands */
580 memset (args, '\0', sizeof (args));
581 n_ops = i_scan (textP, args);
582 if (n_ops == -1)
583 {
584 return; /* Error message already issued */
585 }
586
587 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
588 if (!strcmp (args[0], "ldconst"))
589 {
590 n_ops = parse_ldconst (args);
591 if (n_ops == -1)
592 {
593 return;
fecd2382 594 }
355afbcd 595 }
09952cd9
KR
596
597
355afbcd
KR
598
599 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
600 n = strlen (args[0]) - 1;
601 branch_predict = 0;
602 bp_bits = 0;
603 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
604 {
605 /* We could check here to see if the target architecture
c47d388b
ME
606 * supports branch prediction, but why bother? The bit
607 * will just be ignored by processors that don't use it.
608 */
355afbcd
KR
609 branch_predict = 1;
610 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
611 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
612 }
613
614 /* Look up opcode mnemonic in table and check number of operands.
c47d388b
ME
615 * Check that opcode is legal for the target architecture.
616 * If all looks good, assemble instruction.
617 */
355afbcd
KR
618 oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
619 if (!oP || !targ_has_iclass (oP->iclass))
620 {
621 as_bad ("invalid opcode, \"%s\".", args[0]);
622
623 }
624 else if (n_ops != oP->num_ops)
625 {
c47d388b
ME
626 as_bad ("improper number of operands. expecting %d, got %d",
627 oP->num_ops, n_ops);
355afbcd
KR
628 }
629 else
630 {
631 switch (oP->format)
632 {
633 case FBRA:
634 case CTRL:
635 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
636 if (oP->format == FBRA)
637 {
638 /* Now generate a 'bno' to same arg */
639 ctrl_fmt (args[1], BNO | bp_bits, 1);
640 }
641 break;
642 case COBR:
643 case COJ:
644 cobr_fmt (args, oP->opcode | bp_bits, oP);
645 break;
646 case REG:
647 if (branch_predict)
648 {
649 as_warn (bp_error_msg);
650 }
651 reg_fmt (args, oP);
652 break;
653 case MEM1:
654 if (args[0][0] == 'c' && args[0][1] == 'a')
655 {
656 if (branch_predict)
657 {
658 as_warn (bp_error_msg);
659 }
660 mem_fmt (args, oP, 1);
661 break;
662 }
663 case MEM2:
664 case MEM4:
665 case MEM8:
666 case MEM12:
667 case MEM16:
668 if (branch_predict)
669 {
670 as_warn (bp_error_msg);
671 }
672 mem_fmt (args, oP, 0);
673 break;
674 case CALLJ:
675 if (branch_predict)
676 {
677 as_warn (bp_error_msg);
678 }
f3d817d8
DM
679 /* Output opcode & set up "fixup" (relocation); flag
680 relocation as 'callj' type. */
355afbcd
KR
681 know (oP->num_ops == 1);
682 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
683 break;
684 default:
685 BAD_CASE (oP->format);
686 break;
fecd2382 687 }
355afbcd
KR
688 }
689} /* md_assemble() */
fecd2382
RP
690
691/*****************************************************************************
692 * md_number_to_chars: convert a number to target byte order
693 *
694 **************************************************************************** */
695void
355afbcd 696md_number_to_chars (buf, value, n)
f3d817d8
DM
697 char *buf;
698 valueT value;
699 int n;
fecd2382 700{
f3d817d8
DM
701 number_to_chars_littleendian (buf, value, n);
702}
fecd2382
RP
703
704/*****************************************************************************
705 * md_chars_to_number: convert from target byte order to host byte order.
706 *
707 **************************************************************************** */
708int
355afbcd
KR
709md_chars_to_number (val, n)
710 unsigned char *val; /* Value in target byte order */
711 int n; /* Number of bytes in the input */
fecd2382 712{
355afbcd
KR
713 int retval;
714
715 for (retval = 0; n--;)
716 {
717 retval <<= 8;
718 retval |= val[n];
719 }
720 return retval;
fecd2382
RP
721}
722
723
724#define MAX_LITTLENUMS 6
725#define LNUM_SIZE sizeof(LITTLENUM_TYPE)
726
727/*****************************************************************************
728 * md_atof: convert ascii to floating point
729 *
730 * Turn a string at input_line_pointer into a floating point constant of type
731 * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
732 * emitted is returned at 'sizeP'. An error message is returned, or a pointer
733 * to an empty message if OK.
734 *
735 * Note we call the i386 floating point routine, rather than complicating
736 * things with more files or symbolic links.
737 *
738 **************************************************************************** */
355afbcd
KR
739char *
740md_atof (type, litP, sizeP)
741 int type;
742 char *litP;
743 int *sizeP;
fecd2382 744{
355afbcd
KR
745 LITTLENUM_TYPE words[MAX_LITTLENUMS];
746 LITTLENUM_TYPE *wordP;
747 int prec;
748 char *t;
749 char *atof_ieee ();
750
751 switch (type)
752 {
753 case 'f':
754 case 'F':
755 prec = 2;
756 break;
757
758 case 'd':
759 case 'D':
760 prec = 4;
761 break;
762
763 case 't':
764 case 'T':
765 prec = 5;
766 type = 'x'; /* That's what atof_ieee() understands */
767 break;
768
769 default:
770 *sizeP = 0;
771 return "Bad call to md_atof()";
772 }
773
774 t = atof_ieee (input_line_pointer, type, words);
775 if (t)
776 {
777 input_line_pointer = t;
778 }
779
780 *sizeP = prec * LNUM_SIZE;
781
782 /* Output the LITTLENUMs in REVERSE order in accord with i80960
f3d817d8
DM
783 word-order. (Dunno why atof_ieee doesn't do it in the right
784 order in the first place -- probably because it's a hack of
785 atof_m68k.) */
355afbcd
KR
786
787 for (wordP = words + prec - 1; prec--;)
788 {
789 md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE);
790 litP += sizeof (LITTLENUM_TYPE);
791 }
792
f3d817d8 793 return 0;
fecd2382
RP
794}
795
796
797/*****************************************************************************
798 * md_number_to_imm
799 *
800 **************************************************************************** */
801void
355afbcd
KR
802md_number_to_imm (buf, val, n)
803 char *buf;
804 long val;
805 int n;
fecd2382 806{
355afbcd 807 md_number_to_chars (buf, val, n);
fecd2382
RP
808}
809
810
811/*****************************************************************************
812 * md_number_to_disp
813 *
814 **************************************************************************** */
815void
355afbcd
KR
816md_number_to_disp (buf, val, n)
817 char *buf;
818 long val;
819 int n;
fecd2382 820{
355afbcd 821 md_number_to_chars (buf, val, n);
fecd2382
RP
822}
823
824/*****************************************************************************
825 * md_number_to_field:
826 *
827 * Stick a value (an address fixup) into a bit field of
828 * previously-generated instruction.
829 *
830 **************************************************************************** */
831void
355afbcd
KR
832md_number_to_field (instrP, val, bfixP)
833 char *instrP; /* Pointer to instruction to be fixed */
834 long val; /* Address fixup value */
835 bit_fixS *bfixP; /* Description of bit field to be fixed up */
fecd2382 836{
355afbcd
KR
837 int numbits; /* Length of bit field to be fixed */
838 long instr; /* 32-bit instruction to be fixed-up */
839 long sign; /* 0 or -1, according to sign bit of 'val' */
840
841 /* Convert instruction back to host byte order
fecd2382 842 */
355afbcd
KR
843 instr = md_chars_to_number (instrP, 4);
844
845 /* Surprise! -- we stored the number of bits
fecd2382
RP
846 * to be modified rather than a pointer to a structure.
847 */
355afbcd
KR
848 numbits = (int) bfixP;
849 if (numbits == 1)
850 {
851 /* This is a no-op, stuck here by reloc_callj() */
852 return;
853 }
854
855 know ((numbits == 13) || (numbits == 24));
856
857 /* Propagate sign bit of 'val' for the given number of bits.
fecd2382
RP
858 * Result should be all 0 or all 1
859 */
355afbcd
KR
860 sign = val >> ((int) numbits - 1);
861 if (((val < 0) && (sign != -1))
862 || ((val > 0) && (sign != 0)))
863 {
80aab579 864 as_bad ("Fixup of %ld too large for field width of %d",
355afbcd
KR
865 val, numbits);
866 }
867 else
868 {
869 /* Put bit field into instruction and write back in target
fecd2382
RP
870 * byte order.
871 */
355afbcd
KR
872 val &= ~(-1 << (int) numbits); /* Clear unused sign bits */
873 instr |= val;
874 md_number_to_chars (instrP, instr, 4);
875 }
876} /* md_number_to_field() */
fecd2382 877
f3d817d8 878\f
fecd2382
RP
879/*****************************************************************************
880 * md_parse_option
881 * Invocation line includes a switch not recognized by the base assembler.
882 * See if it's a processor-specific option. For the 960, these are:
883 *
884 * -norelax:
885 * Conditional branch instructions that require displacements
886 * greater than 13 bits (or that have external targets) should
887 * generate errors. The default is to replace each such
888 * instruction with the corresponding compare (or chkbit) and
889 * branch instructions. Note that the Intel "j" cobr directives
890 * are ALWAYS "de-optimized" in this way when necessary,
891 * regardless of the setting of this option.
892 *
893 * -b:
894 * Add code to collect information about branches taken, for
895 * later optimization of branch prediction bits by a separate
896 * tool. COBR and CNTL format instructions have branch
897 * prediction bits (in the CX architecture); if "BR" represents
898 * an instruction in one of these classes, the following rep-
899 * resents the code generated by the assembler:
900 *
901 * call <increment routine>
902 * .word 0 # pre-counter
903 * Label: BR
904 * call <increment routine>
905 * .word 0 # post-counter
906 *
907 * A table of all such "Labels" is also generated.
908 *
909 *
910 * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
911 * Select the 80960 architecture. Instructions or features not
912 * supported by the selected architecture cause fatal errors.
913 * The default is to generate code for any instruction or feature
914 * that is supported by SOME version of the 960 (even if this
915 * means mixing architectures!).
916 *
f3d817d8
DM
917 *****************************************************************************/
918
919CONST char *md_shortopts = "A:b";
920struct option md_longopts[] = {
921#define OPTION_LINKRELAX (OPTION_MD_BASE)
922 {"linkrelax", no_argument, NULL, OPTION_LINKRELAX},
923#define OPTION_NORELAX (OPTION_MD_BASE + 1)
924 {"norelax", no_argument, NULL, OPTION_NORELAX},
925 {NULL, no_argument, NULL, 0}
926};
927size_t md_longopts_size = sizeof(md_longopts);
928
fecd2382 929int
f3d817d8
DM
930md_parse_option (c, arg)
931 int c;
932 char *arg;
fecd2382 933{
355afbcd
KR
934 struct tabentry
935 {
936 char *flag;
937 int arch;
938 };
939 static struct tabentry arch_tab[] =
940 {
80aab579
ILT
941 { "KA", ARCH_KA },
942 { "KB", ARCH_KB },
943 { "SA", ARCH_KA }, /* Synonym for KA */
944 { "SB", ARCH_KB }, /* Synonym for KB */
945 { "KC", ARCH_MC }, /* Synonym for MC */
946 { "MC", ARCH_MC },
947 { "CA", ARCH_CA },
948 { NULL, 0 }
355afbcd 949 };
f3d817d8
DM
950
951 switch (c)
355afbcd 952 {
f3d817d8 953 case OPTION_LINKRELAX:
355afbcd
KR
954 linkrelax = 1;
955 flagseen['L'] = 1;
f3d817d8
DM
956 break;
957
958 case OPTION_NORELAX:
355afbcd 959 norelax = 1;
f3d817d8 960 break;
355afbcd 961
f3d817d8 962 case 'b':
355afbcd 963 instrument_branches = 1;
f3d817d8 964 break;
355afbcd 965
f3d817d8
DM
966 case 'A':
967 {
968 struct tabentry *tp;
969 char *p = arg;
970
971 for (tp = arch_tab; tp->flag != NULL; tp++)
972 {
973 if (!strcmp (p, tp->flag))
974 {
975 break;
976 }
977 }
978
979 if (tp->flag == NULL)
980 {
981 as_bad ("invalid architecture %s", p);
982 return 0;
983 }
984 else
985 {
986 architecture = tp->arch;
987 }
988 }
989 break;
355afbcd 990
f3d817d8 991 default:
355afbcd
KR
992 return 0;
993 }
f3d817d8 994
355afbcd 995 return 1;
fecd2382
RP
996}
997
f3d817d8
DM
998void
999md_show_usage (stream)
1000 FILE *stream;
1001{
1002 fprintf(stream, "\
1003I960 options:\n\
1004-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC\n\
1005 specify variant of 960 architecture\n\
1006-b add code to collect statistics about branches taken\n\
1007-linkrelax make relocatable instructions undefined (?)\n\
1008-norelax don't alter compare-and-branch instructions for\n\
1009 long displacements\n");
1010}
1011\f
1012
fecd2382
RP
1013/*****************************************************************************
1014 * md_convert_frag:
1015 * Called by base assembler after address relaxation is finished: modify
1016 * variable fragments according to how much relaxation was done.
1017 *
1018 * If the fragment substate is still 1, a 13-bit displacement was enough
1019 * to reach the symbol in question. Set up an address fixup, but otherwise
1020 * leave the cobr instruction alone.
1021 *
1022 * If the fragment substate is 2, a 13-bit displacement was not enough.
1023 * Replace the cobr with a two instructions (a compare and a branch).
1024 *
1025 **************************************************************************** */
1026void
355afbcd
KR
1027md_convert_frag (headers, fragP)
1028 object_headers *headers;
1029 fragS *fragP;
fecd2382 1030{
355afbcd
KR
1031 fixS *fixP; /* Structure describing needed address fix */
1032
1033 switch (fragP->fr_subtype)
1034 {
1035 case 1:
1036 /* LEAVE SINGLE COBR INSTRUCTION */
1037 fixP = fix_new (fragP,
1038 fragP->fr_opcode - fragP->fr_literal,
1039 4,
1040 fragP->fr_symbol,
355afbcd
KR
1041 fragP->fr_offset,
1042 1,
1043 NO_RELOC);
1044
1045 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
1046 break;
1047 case 2:
1048 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
1049 relax_cobr (fragP);
1050 break;
1051 default:
1052 BAD_CASE (fragP->fr_subtype);
1053 break;
1054 }
fecd2382
RP
1055}
1056
1057/*****************************************************************************
1058 * md_estimate_size_before_relax: How much does it look like *fragP will grow?
1059 *
1060 * Called by base assembler just before address relaxation.
1061 * Return the amount by which the fragment will grow.
1062 *
1063 * Any symbol that is now undefined will not become defined; cobr's
1064 * based on undefined symbols will have to be replaced with a compare
1065 * instruction and a branch instruction, and the code fragment will grow
1066 * by 4 bytes.
1067 *
1068 **************************************************************************** */
1069int
355afbcd
KR
1070md_estimate_size_before_relax (fragP, segment_type)
1071 register fragS *fragP;
1072 register segT segment_type;
fecd2382 1073{
355afbcd 1074 /* If symbol is undefined in this segment, go to "relaxed" state
fecd2382
RP
1075 * (compare and branch instructions instead of cobr) right now.
1076 */
355afbcd
KR
1077 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
1078 {
1079 relax_cobr (fragP);
1080 return 4;
1081 }
1082 return 0;
1083} /* md_estimate_size_before_relax() */
fecd2382
RP
1084
1085
1086/*****************************************************************************
1087 * md_ri_to_chars:
1088 * This routine exists in order to overcome machine byte-order problems
1089 * when dealing with bit-field entries in the relocation_info struct.
1090 *
1091 * But relocation info will be used on the host machine only (only
1092 * executable code is actually downloaded to the i80960). Therefore,
1093 * we leave it in host byte order.
1094 *
8ae35e59
ILT
1095 * The above comment is no longer true. This routine now really
1096 * does do the reordering (Ian Taylor 28 Aug 92).
1097 *
fecd2382 1098 **************************************************************************** */
355afbcd
KR
1099void
1100md_ri_to_chars (where, ri)
1101 char *where;
1102 struct relocation_info *ri;
fecd2382 1103{
355afbcd
KR
1104 md_number_to_chars (where, ri->r_address,
1105 sizeof (ri->r_address));
1106 where[4] = ri->r_index & 0x0ff;
1107 where[5] = (ri->r_index >> 8) & 0x0ff;
1108 where[6] = (ri->r_index >> 16) & 0x0ff;
1109 where[7] = ((ri->r_pcrel << 0)
1110 | (ri->r_length << 1)
1111 | (ri->r_extern << 3)
1112 | (ri->r_bsr << 4)
1113 | (ri->r_disp << 5)
1114 | (ri->r_callj << 6));
f3d817d8 1115}
fecd2382 1116
fecd2382
RP
1117#ifndef WORKING_DOT_WORD
1118
1119int md_short_jump_size = 0;
1120int md_long_jump_size = 0;
1121
355afbcd
KR
1122void
1123md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
1124 char *ptr;
c47d388b
ME
1125 addressT from_addr;
1126 addressT to_addr;
355afbcd
KR
1127 fragS *frag;
1128 symbolS *to_symbol;
fecd2382 1129{
355afbcd 1130 as_fatal ("failed sanity check.");
fecd2382
RP
1131}
1132
1133void
355afbcd
KR
1134md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
1135 char *ptr;
c47d388b 1136 addressT from_addr, to_addr;
355afbcd
KR
1137 fragS *frag;
1138 symbolS *to_symbol;
fecd2382 1139{
355afbcd 1140 as_fatal ("failed sanity check.");
fecd2382 1141}
355afbcd 1142
fecd2382
RP
1143#endif
1144\f
a39116f1
RP
1145/*************************************************************
1146 * *
1147 * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
1148 * *
1149 ************************************************************ */
fecd2382
RP
1150
1151
1152
1153/*****************************************************************************
1154 * brcnt_emit: Emit code to increment inline branch counter.
1155 *
1156 * See the comments above the declaration of 'br_cnt' for details on
1157 * branch-prediction instrumentation.
1158 **************************************************************************** */
1159static void
355afbcd 1160brcnt_emit ()
fecd2382 1161{
355afbcd
KR
1162 ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */
1163 emit (0); /* Emit inline counter to be incremented */
fecd2382
RP
1164}
1165
1166/*****************************************************************************
1167 * brlab_next: generate the next branch local label
1168 *
1169 * See the comments above the declaration of 'br_cnt' for details on
1170 * branch-prediction instrumentation.
1171 **************************************************************************** */
1172static char *
355afbcd 1173brlab_next ()
fecd2382 1174{
355afbcd
KR
1175 static char buf[20];
1176
1177 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1178 return buf;
fecd2382
RP
1179}
1180
1181/*****************************************************************************
1182 * brtab_emit: generate the fetch-prediction branch table.
1183 *
1184 * See the comments above the declaration of 'br_cnt' for details on
1185 * branch-prediction instrumentation.
1186 *
1187 * The code emitted here would be functionally equivalent to the following
1188 * example assembler source.
1189 *
1190 * .data
1191 * .align 2
1192 * BR_TAB_NAME:
1193 * .word 0 # link to next table
1194 * .word 3 # length of table
1195 * .word LBRANCH0 # 1st entry in table proper
1196 * .word LBRANCH1
1197 * .word LBRANCH2
1198 ***************************************************************************** */
1199void
355afbcd 1200brtab_emit ()
fecd2382 1201{
355afbcd
KR
1202 int i;
1203 char buf[20];
1204 char *p; /* Where the binary was output to */
1205 fixS *fixP; /*->description of deferred address fixup */
1206
1207 if (!instrument_branches)
1208 {
1209 return;
1210 }
1211
604633ae 1212 subseg_set (SEG_DATA, 0); /* .data */
355afbcd
KR
1213 frag_align (2, 0); /* .align 2 */
1214 record_alignment (now_seg, 2);
1215 colon (BR_TAB_NAME); /* BR_TAB_NAME: */
1216 emit (0); /* .word 0 #link to next table */
1217 emit (br_cnt); /* .word n #length of table */
1218
1219 for (i = 0; i < br_cnt; i++)
1220 {
1221 sprintf (buf, "%s%d", BR_LABEL_BASE, i);
1222 p = emit (0);
1223 fixP = fix_new (frag_now,
1224 p - frag_now->fr_literal,
1225 4,
1226 symbol_find (buf),
1227 0,
1228 0,
355afbcd
KR
1229 NO_RELOC);
1230 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1231 }
fecd2382
RP
1232}
1233
1234/*****************************************************************************
1235 * cobr_fmt: generate a COBR-format instruction
1236 *
1237 **************************************************************************** */
1238static
355afbcd
KR
1239void
1240cobr_fmt (arg, opcode, oP)
1241 char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1242 long opcode; /* Opcode, with branch-prediction bits already set
a39116f1
RP
1243 * if necessary.
1244 */
355afbcd
KR
1245 struct i960_opcode *oP;
1246 /*->description of instruction */
fecd2382 1247{
355afbcd
KR
1248 long instr; /* 32-bit instruction */
1249 struct regop regop; /* Description of register operand */
1250 int n; /* Number of operands */
1251 int var_frag; /* 1 if varying length code fragment should
fecd2382
RP
1252 * be emitted; 0 if an address fix
1253 * should be emitted.
1254 */
355afbcd
KR
1255
1256 instr = opcode;
1257 n = oP->num_ops;
1258
1259 if (n >= 1)
1260 {
1261 /* First operand (if any) of a COBR is always a register
fecd2382
RP
1262 * operand. Parse it.
1263 */
355afbcd
KR
1264 parse_regop (&regop, arg[1], oP->operand[0]);
1265 instr |= (regop.n << 19) | (regop.mode << 13);
1266 }
1267 if (n >= 2)
1268 {
1269 /* Second operand (if any) of a COBR is always a register
fecd2382
RP
1270 * operand. Parse it.
1271 */
355afbcd
KR
1272 parse_regop (&regop, arg[2], oP->operand[1]);
1273 instr |= (regop.n << 14) | regop.special;
1274 }
1275
1276
1277 if (n < 3)
1278 {
1279 emit (instr);
1280
1281 }
1282 else
1283 {
1284 if (instrument_branches)
1285 {
1286 brcnt_emit ();
1287 colon (brlab_next ());
fecd2382 1288 }
355afbcd
KR
1289
1290 /* A third operand to a COBR is always a displacement.
fecd2382
RP
1291 * Parse it; if it's relaxable (a cobr "j" directive, or any
1292 * cobr other than bbs/bbc when the "-norelax" option is not in
1293 * use) set up a variable code fragment; otherwise set up an
1294 * address fix.
1295 */
355afbcd
KR
1296 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1297 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
1298
1299 if (instrument_branches)
1300 {
1301 brcnt_emit ();
fecd2382 1302 }
355afbcd
KR
1303 }
1304} /* cobr_fmt() */
fecd2382
RP
1305
1306
1307/*****************************************************************************
1308 * ctrl_fmt: generate a CTRL-format instruction
1309 *
1310 **************************************************************************** */
1311static
355afbcd
KR
1312void
1313ctrl_fmt (targP, opcode, num_ops)
1314 char *targP; /* Pointer to text of lone operand (if any) */
1315 long opcode; /* Template of instruction */
1316 int num_ops; /* Number of operands */
fecd2382 1317{
355afbcd 1318 int instrument; /* TRUE iff we should add instrumentation to track
fecd2382
RP
1319 * how often the branch is taken
1320 */
355afbcd
KR
1321
1322
1323 if (num_ops == 0)
1324 {
1325 emit (opcode); /* Output opcode */
1326 }
1327 else
1328 {
1329
1330 instrument = instrument_branches && (opcode != CALL)
1331 && (opcode != B) && (opcode != RET) && (opcode != BAL);
1332
1333 if (instrument)
1334 {
1335 brcnt_emit ();
1336 colon (brlab_next ());
1337 }
1338
1339 /* The operand MUST be an ip-relative displacment. Parse it
fecd2382
RP
1340 * and set up address fix for the instruction we just output.
1341 */
355afbcd
KR
1342 get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
1343
1344 if (instrument)
1345 {
1346 brcnt_emit ();
fecd2382 1347 }
355afbcd
KR
1348 }
1349
fecd2382
RP
1350}
1351
1352
1353/*****************************************************************************
1354 * emit: output instruction binary
1355 *
1356 * Output instruction binary, in target byte order, 4 bytes at a time.
1357 * Return pointer to where it was placed.
1358 *
1359 **************************************************************************** */
1360static
355afbcd
KR
1361char *
1362emit (instr)
1363 long instr; /* Word to be output, host byte order */
fecd2382 1364{
355afbcd
KR
1365 char *toP; /* Where to output it */
1366
1367 toP = frag_more (4); /* Allocate storage */
1368 md_number_to_chars (toP, instr, 4); /* Convert to target byte order */
1369 return toP;
fecd2382
RP
1370}
1371
1372
1373/*****************************************************************************
1374 * get_args: break individual arguments out of comma-separated list
1375 *
1376 * Input assumptions:
1377 * - all comments and labels have been removed
1378 * - all strings of whitespace have been collapsed to a single blank.
1379 * - all character constants ('x') have been replaced with decimal
1380 *
1381 * Output:
1382 * args[0] is untouched. args[1] points to first operand, etc. All args:
1383 * - are NULL-terminated
1384 * - contain no whitespace
1385 *
1386 * Return value:
1387 * Number of operands (0,1,2, or 3) or -1 on error.
1388 *
1389 **************************************************************************** */
355afbcd
KR
1390static int
1391get_args (p, args)
1392 register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
1393 char *args[]; /* Output arg: pointers to operands placed in args[1-3].
a39116f1
RP
1394 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
1395 */
fecd2382 1396{
355afbcd
KR
1397 register int n; /* Number of operands */
1398 register char *to;
1399 /* char buf[4]; */
1400 /* int len; */
1401
1402
1403 /* Skip lead white space */
1404 while (*p == ' ')
1405 {
1406 p++;
1407 }
1408
1409 if (*p == '\0')
1410 {
1411 return 0;
1412 }
1413
1414 n = 1;
1415 args[1] = p;
1416
1417 /* Squeze blanks out by moving non-blanks toward start of string.
fecd2382
RP
1418 * Isolate operands, whenever comma is found.
1419 */
355afbcd
KR
1420 to = p;
1421 while (*p != '\0')
1422 {
1423
1424 if (*p == ' ')
1425 {
1426 p++;
1427
1428 }
1429 else if (*p == ',')
1430 {
1431
1432 /* Start of operand */
1433 if (n == 3)
1434 {
1435 as_bad ("too many operands");
1436 return -1;
1437 }
1438 *to++ = '\0'; /* Terminate argument */
1439 args[++n] = to; /* Start next argument */
1440 p++;
1441
fecd2382 1442 }
355afbcd
KR
1443 else
1444 {
1445 *to++ = *p++;
1446 }
1447 }
1448 *to = '\0';
1449 return n;
fecd2382
RP
1450}
1451
1452
1453/*****************************************************************************
1454 * get_cdisp: handle displacement for a COBR or CTRL instruction.
1455 *
1456 * Parse displacement for a COBR or CTRL instruction.
1457 *
1458 * If successful, output the instruction opcode and set up for it,
1459 * depending on the arg 'var_frag', either:
1460 * o an address fixup to be done when all symbol values are known, or
1461 * o a varying length code fragment, with address fixup info. This
1462 * will be done for cobr instructions that may have to be relaxed
c47d388b
ME
1463 * in to compare/branch instructions (8 bytes) if the final
1464 * address displacement is greater than 13 bits.
fecd2382 1465 *
c47d388b 1466 *****************************************************************************/
fecd2382 1467static
355afbcd
KR
1468void
1469get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj)
c47d388b
ME
1470 /* displacement as specified in source instruction */
1471 char *dispP;
1472 /* "COBR" or "CTRL" (for use in error message) */
1473 char *ifmtP;
1474 /* Instruction needing the displacement */
1475 long instr;
1476 /* # bits of displacement (13 for COBR, 24 for CTRL) */
1477 int numbits;
1478 /* 1 if varying length code fragment should be emitted;
1479 * 0 if an address fix should be emitted.
1480 */
1481 int var_frag;
1482 /* 1 if callj relocation should be done; else 0 */
1483 int callj;
fecd2382 1484{
355afbcd
KR
1485 expressionS e; /* Parsed expression */
1486 fixS *fixP; /* Structure describing needed address fix */
1487 char *outP; /* Where instruction binary is output to */
1488
1489 fixP = NULL;
1490
5ac34ac3
ILT
1491 parse_expr (dispP, &e);
1492 switch (e.X_op)
355afbcd 1493 {
5ac34ac3 1494 case O_illegal:
355afbcd 1495 as_bad ("expression syntax error");
355afbcd 1496
5ac34ac3
ILT
1497 case O_symbol:
1498 if (S_GET_SEGMENT (e.X_add_symbol) == text_section
1499 || S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
1500 {
1501 if (var_frag)
1502 {
1503 outP = frag_more (8); /* Allocate worst-case storage */
1504 md_number_to_chars (outP, instr, 4);
1505 frag_variant (rs_machine_dependent, 4, 4, 1,
1506 adds (e), offs (e), outP, 0, 0);
1507 }
1508 else
1509 {
1510 /* Set up a new fix structure, so address can be updated
1511 * when all symbol values are known.
1512 */
1513 outP = emit (instr);
1514 fixP = fix_new (frag_now,
1515 outP - frag_now->fr_literal,
1516 4,
1517 adds (e),
1518 offs (e),
1519 1,
1520 NO_RELOC);
1521
f3d817d8 1522 fixP->fx_tcbit = callj;
5ac34ac3
ILT
1523
1524 /* We want to modify a bit field when the address is
1525 * known. But we don't need all the garbage in the
1526 * bit_fix structure. So we're going to lie and store
1527 * the number of bits affected instead of a pointer.
1528 */
1529 fixP->fx_bit_fixP = (bit_fixS *) numbits;
1530 }
355afbcd
KR
1531 }
1532 else
5ac34ac3 1533 as_bad ("attempt to branch into different segment");
355afbcd
KR
1534 break;
1535
1536 default:
1537 as_bad ("target of %s instruction must be a label", ifmtP);
1538 break;
1539 }
fecd2382
RP
1540}
1541
1542
1543/*****************************************************************************
1544 * get_ispec: parse a memory operand for an index specification
1545 *
1546 * Here, an "index specification" is taken to be anything surrounded
1547 * by square brackets and NOT followed by anything else.
1548 *
1549 * If it's found, detach it from the input string, remove the surrounding
1550 * square brackets, and return a pointer to it. Otherwise, return NULL.
1551 *
1552 **************************************************************************** */
1553static
355afbcd
KR
1554char *
1555get_ispec (textP)
1556 char *textP; /*->memory operand from source instruction, no white space */
fecd2382 1557{
355afbcd
KR
1558 char *start; /*->start of index specification */
1559 char *end; /*->end of index specification */
1560
1561 /* Find opening square bracket, if any
fecd2382 1562 */
355afbcd
KR
1563 start = strchr (textP, '[');
1564
1565 if (start != NULL)
1566 {
1567
1568 /* Eliminate '[', detach from rest of operand */
1569 *start++ = '\0';
1570
1571 end = strchr (start, ']');
1572
1573 if (end == NULL)
1574 {
1575 as_bad ("unmatched '['");
1576
1577 }
1578 else
1579 {
1580 /* Eliminate ']' and make sure it was the last thing
fecd2382
RP
1581 * in the string.
1582 */
355afbcd
KR
1583 *end = '\0';
1584 if (*(end + 1) != '\0')
1585 {
1586 as_bad ("garbage after index spec ignored");
1587 }
fecd2382 1588 }
355afbcd
KR
1589 }
1590 return start;
fecd2382
RP
1591}
1592
1593/*****************************************************************************
1594 * get_regnum:
1595 *
1596 * Look up a (suspected) register name in the register table and return the
1597 * associated register number (or -1 if not found).
1598 *
1599 **************************************************************************** */
1600static
355afbcd
KR
1601int
1602get_regnum (regname)
1603 char *regname; /* Suspected register name */
fecd2382 1604{
355afbcd
KR
1605 int *rP;
1606
1607 rP = (int *) hash_find (reg_hash, regname);
1608 return (rP == NULL) ? -1 : *rP;
fecd2382
RP
1609}
1610
1611
1612/*****************************************************************************
1613 * i_scan: perform lexical scan of ascii assembler instruction.
1614 *
1615 * Input assumptions:
1616 * - input string is an i80960 instruction (not a pseudo-op)
1617 * - all comments and labels have been removed
1618 * - all strings of whitespace have been collapsed to a single blank.
1619 *
1620 * Output:
1621 * args[0] points to opcode, other entries point to operands. All strings:
1622 * - are NULL-terminated
1623 * - contain no whitespace
1624 * - have character constants ('x') replaced with a decimal number
1625 *
1626 * Return value:
1627 * Number of operands (0,1,2, or 3) or -1 on error.
1628 *
1629 **************************************************************************** */
355afbcd
KR
1630static int
1631i_scan (iP, args)
1632 register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
1633 char *args[]; /* Output arg: pointers to opcode and operands placed
a39116f1
RP
1634 * here. MUST ACCOMMODATE 4 ENTRIES.
1635 */
fecd2382 1636{
355afbcd
KR
1637
1638 /* Isolate opcode */
1639 if (*(iP) == ' ')
1640 {
1641 iP++;
1642 } /* Skip lead space, if any */
1643 args[0] = iP;
1644 for (; *iP != ' '; iP++)
1645 {
1646 if (*iP == '\0')
1647 {
1648 /* There are no operands */
1649 if (args[0] == iP)
1650 {
1651 /* We never moved: there was no opcode either! */
1652 as_bad ("missing opcode");
1653 return -1;
1654 }
1655 return 0;
fecd2382 1656 }
355afbcd
KR
1657 }
1658 *iP++ = '\0'; /* Terminate opcode */
1659 return (get_args (iP, args));
1660} /* i_scan() */
fecd2382
RP
1661
1662
1663/*****************************************************************************
1664 * mem_fmt: generate a MEMA- or MEMB-format instruction
1665 *
1666 **************************************************************************** */
355afbcd
KR
1667static void
1668mem_fmt (args, oP, callx)
1669 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1670 struct i960_opcode *oP; /* Pointer to description of instruction */
1671 int callx; /* Is this a callx opcode */
fecd2382 1672{
355afbcd
KR
1673 int i; /* Loop counter */
1674 struct regop regop; /* Description of register operand */
1675 char opdesc; /* Operand descriptor byte */
1676 memS instr; /* Description of binary to be output */
1677 char *outP; /* Where the binary was output to */
1678 expressionS expr; /* Parsed expression */
1679 fixS *fixP; /*->description of deferred address fixup */
1680
f3d817d8
DM
1681#ifdef OBJ_COFF
1682 /* COFF support isn't in place yet for callx relaxing. */
1683 callx = 0;
1684#endif
1685
355afbcd
KR
1686 memset (&instr, '\0', sizeof (memS));
1687 instr.opcode = oP->opcode;
1688
1689 /* Process operands. */
1690 for (i = 1; i <= oP->num_ops; i++)
1691 {
1692 opdesc = oP->operand[i - 1];
1693
1694 if (MEMOP (opdesc))
1695 {
1696 parse_memop (&instr, args[i], oP->format);
fecd2382 1697 }
355afbcd
KR
1698 else
1699 {
1700 parse_regop (&regop, args[i], opdesc);
1701 instr.opcode |= regop.n << 19;
fecd2382 1702 }
355afbcd
KR
1703 }
1704
1705 /* Output opcode */
1706 outP = emit (instr.opcode);
1707
1708 if (instr.disp == 0)
1709 {
1710 return;
1711 }
1712
1713 /* Parse and process the displacement */
5ac34ac3
ILT
1714 parse_expr (instr.e, &expr);
1715 switch (expr.X_op)
355afbcd 1716 {
5ac34ac3 1717 case O_illegal:
355afbcd
KR
1718 as_bad ("expression syntax error");
1719 break;
1720
5ac34ac3 1721 case O_constant:
355afbcd
KR
1722 if (instr.disp == 32)
1723 {
1724 (void) emit (offs (expr)); /* Output displacement */
1725 }
1726 else
1727 {
1728 /* 12-bit displacement */
1729 if (offs (expr) & ~0xfff)
1730 {
1731 /* Won't fit in 12 bits: convert already-output
5ac34ac3
ILT
1732 * instruction to MEMB format, output
1733 * displacement.
1734 */
355afbcd
KR
1735 mema_to_memb (outP);
1736 (void) emit (offs (expr));
1737 }
1738 else
1739 {
1740 /* WILL fit in 12 bits: OR into opcode and
5ac34ac3
ILT
1741 * overwrite the binary we already put out
1742 */
355afbcd
KR
1743 instr.opcode |= offs (expr);
1744 md_number_to_chars (outP, instr.opcode, 4);
1745 }
1746 }
1747 break;
1748
5ac34ac3 1749 default:
355afbcd
KR
1750 if (instr.disp == 12)
1751 {
1752 /* Displacement is dependent on a symbol, whose value
c47d388b
ME
1753 * may change at link time. We HAVE to reserve 32 bits.
1754 * Convert already-output opcode to MEMB format.
1755 */
355afbcd
KR
1756 mema_to_memb (outP);
1757 }
1758
1759 /* Output 0 displacement and set up address fixup for when
c47d388b
ME
1760 * this symbol's value becomes known.
1761 */
355afbcd 1762 outP = emit ((long) 0);
5ac34ac3
ILT
1763 fixP = fix_new_exp (frag_now,
1764 outP - frag_now->fr_literal,
1765 4,
1766 &expr,
1767 0,
1768 NO_RELOC);
355afbcd 1769 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
f3d817d8
DM
1770 /* Steve's linker relaxing hack. Mark this 32-bit relocation as
1771 being in the instruction stream, specifically as part of a callx
1772 instruction. */
1773 fixP->fx_bsr = callx;
355afbcd 1774 break;
355afbcd
KR
1775 }
1776} /* memfmt() */
fecd2382
RP
1777
1778
1779/*****************************************************************************
1780 * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1781 *
1782 * There are 2 possible MEMA formats:
1783 * - displacement only
1784 * - displacement + abase
1785 *
1786 * They are distinguished by the setting of the MEMA_ABASE bit.
1787 *
1788 **************************************************************************** */
355afbcd
KR
1789static void
1790mema_to_memb (opcodeP)
1791 char *opcodeP; /* Where to find the opcode, in target byte order */
fecd2382 1792{
355afbcd
KR
1793 long opcode; /* Opcode in host byte order */
1794 long mode; /* Mode bits for MEMB instruction */
1795
1796 opcode = md_chars_to_number (opcodeP, 4);
1797 know (!(opcode & MEMB_BIT));
1798
1799 mode = MEMB_BIT | D_BIT;
1800 if (opcode & MEMA_ABASE)
1801 {
1802 mode |= A_BIT;
1803 }
1804
1805 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1806 opcode |= mode; /* Set MEMB mode bits */
1807
1808 md_number_to_chars (opcodeP, opcode, 4);
1809} /* mema_to_memb() */
fecd2382
RP
1810
1811
1812/*****************************************************************************
1813 * parse_expr: parse an expression
1814 *
1815 * Use base assembler's expression parser to parse an expression.
1816 * It, unfortunately, runs off a global which we have to save/restore
1817 * in order to make it work for us.
1818 *
1819 * An empty expression string is treated as an absolute 0.
1820 *
5ac34ac3 1821 * Sets O_illegal regardless of expression evaluation if entire input
fecd2382
RP
1822 * string is not consumed in the evaluation -- tolerate no dangling junk!
1823 *
1824 **************************************************************************** */
5ac34ac3 1825static void
355afbcd
KR
1826parse_expr (textP, expP)
1827 char *textP; /* Text of expression to be parsed */
1828 expressionS *expP; /* Where to put the results of parsing */
fecd2382 1829{
355afbcd 1830 char *save_in; /* Save global here */
355afbcd
KR
1831 symbolS *symP;
1832
1833 know (textP);
1834
1835 if (*textP == '\0')
1836 {
1837 /* Treat empty string as absolute 0 */
5ac34ac3 1838 expP->X_add_symbol = expP->X_op_symbol = NULL;
355afbcd 1839 expP->X_add_number = 0;
604633ae 1840 expP->X_op = O_constant;
355afbcd
KR
1841 }
1842 else
1843 {
1844 save_in = input_line_pointer; /* Save global */
1845 input_line_pointer = textP; /* Make parser work for us */
1846
604633ae 1847 (void) expression (expP);
355afbcd
KR
1848 if (input_line_pointer - textP != strlen (textP))
1849 {
1850 /* Did not consume all of the input */
5ac34ac3 1851 expP->X_op = O_illegal;
355afbcd
KR
1852 }
1853 symP = expP->X_add_symbol;
1854 if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
1855 {
1856 /* Register name in an expression */
5ac34ac3
ILT
1857 /* FIXME: this isn't much of a check any more. */
1858 expP->X_op = O_illegal;
fecd2382 1859 }
355afbcd
KR
1860
1861 input_line_pointer = save_in; /* Restore global */
1862 }
fecd2382
RP
1863}
1864
1865
1866/*****************************************************************************
1867 * parse_ldcont:
1868 * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1869 * i80960 instruction.
1870 *
1871 * Assumes the input consists of:
1872 * arg[0] opcode mnemonic ('ldconst')
1873 * arg[1] first operand (constant)
1874 * arg[2] name of register to be loaded
1875 *
1876 * Replaces opcode and/or operands as appropriate.
1877 *
1878 * Returns the new number of arguments, or -1 on failure.
1879 *
1880 **************************************************************************** */
1881static
355afbcd
KR
1882int
1883parse_ldconst (arg)
1884 char *arg[]; /* See above */
fecd2382 1885{
355afbcd
KR
1886 int n; /* Constant to be loaded */
1887 int shift; /* Shift count for "shlo" instruction */
1888 static char buf[5]; /* Literal for first operand */
1889 static char buf2[5]; /* Literal for second operand */
1890 expressionS e; /* Parsed expression */
1891
1892
1893 arg[3] = NULL; /* So we can tell at the end if it got used or not */
1894
5ac34ac3
ILT
1895 parse_expr (arg[1], &e);
1896 switch (e.X_op)
355afbcd 1897 {
5ac34ac3 1898 default:
355afbcd
KR
1899 /* We're dependent on one or more symbols -- use "lda" */
1900 arg[0] = "lda";
1901 break;
1902
5ac34ac3 1903 case O_constant:
355afbcd 1904 /* Try the following mappings:
5ac34ac3
ILT
1905 * ldconst 0,<reg> ->mov 0,<reg>
1906 * ldconst 31,<reg> ->mov 31,<reg>
1907 * ldconst 32,<reg> ->addo 1,31,<reg>
1908 * ldconst 62,<reg> ->addo 31,31,<reg>
1909 * ldconst 64,<reg> ->shlo 8,3,<reg>
1910 * ldconst -1,<reg> ->subo 1,0,<reg>
1911 * ldconst -31,<reg>->subo 31,0,<reg>
1912 *
1913 * anthing else becomes:
1914 * lda xxx,<reg>
1915 */
355afbcd
KR
1916 n = offs (e);
1917 if ((0 <= n) && (n <= 31))
1918 {
1919 arg[0] = "mov";
1920
1921 }
1922 else if ((-31 <= n) && (n <= -1))
1923 {
1924 arg[0] = "subo";
1925 arg[3] = arg[2];
1926 sprintf (buf, "%d", -n);
1927 arg[1] = buf;
1928 arg[2] = "0";
1929
fecd2382 1930 }
355afbcd
KR
1931 else if ((32 <= n) && (n <= 62))
1932 {
1933 arg[0] = "addo";
1934 arg[3] = arg[2];
1935 arg[1] = "31";
1936 sprintf (buf, "%d", n - 31);
1937 arg[2] = buf;
1938
1939 }
1940 else if ((shift = shift_ok (n)) != 0)
1941 {
1942 arg[0] = "shlo";
1943 arg[3] = arg[2];
1944 sprintf (buf, "%d", shift);
1945 arg[1] = buf;
1946 sprintf (buf2, "%d", n >> shift);
1947 arg[2] = buf2;
1948
1949 }
1950 else
1951 {
1952 arg[0] = "lda";
1953 }
1954 break;
1955
5ac34ac3 1956 case O_illegal:
355afbcd
KR
1957 as_bad ("invalid constant");
1958 return -1;
1959 break;
1960 }
1961 return (arg[3] == 0) ? 2 : 3;
fecd2382
RP
1962}
1963
1964/*****************************************************************************
1965 * parse_memop: parse a memory operand
1966 *
1967 * This routine is based on the observation that the 4 mode bits of the
1968 * MEMB format, taken individually, have fairly consistent meaning:
1969 *
1970 * M3 (bit 13): 1 if displacement is present (D_BIT)
1971 * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1972 * M1 (bit 11): 1 if index is present (I_BIT)
1973 * M0 (bit 10): 1 if abase is present (A_BIT)
1974 *
1975 * So we parse the memory operand and set bits in the mode as we find
1976 * things. Then at the end, if we go to MEMB format, we need only set
1977 * the MEMB bit (M2) and our mode is built for us.
1978 *
1979 * Unfortunately, I said "fairly consistent". The exceptions:
1980 *
1981 * DBIA
1982 * 0100 Would seem illegal, but means "abase-only".
1983 *
1984 * 0101 Would seem to mean "abase-only" -- it means IP-relative.
1985 * Must be converted to 0100.
1986 *
1987 * 0110 Would seem to mean "index-only", but is reserved.
1988 * We turn on the D bit and provide a 0 displacement.
1989 *
1990 * The other thing to observe is that we parse from the right, peeling
1991 * things * off as we go: first any index spec, then any abase, then
1992 * the displacement.
1993 *
1994 **************************************************************************** */
1995static
355afbcd
KR
1996void
1997parse_memop (memP, argP, optype)
1998 memS *memP; /* Where to put the results */
1999 char *argP; /* Text of the operand to be parsed */
2000 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
fecd2382 2001{
355afbcd
KR
2002 char *indexP; /* Pointer to index specification with "[]" removed */
2003 char *p; /* Temp char pointer */
2004 char iprel_flag; /* True if this is an IP-relative operand */
2005 int regnum; /* Register number */
2006 int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
fecd2382
RP
2007 * to internal format (0,1,2,3,4 respectively).
2008 */
355afbcd
KR
2009 int mode; /* MEMB mode bits */
2010 int *intP; /* Pointer to register number */
2011
2012 /* The following table contains the default scale factors for each
c47d388b
ME
2013 * type of memory instruction. It is accessed using (optype-MEM1)
2014 * as an index -- thus it assumes the 'optype' constants are assigned
2015 * consecutive values, in the order they appear in this table
2016 */
355afbcd
KR
2017 static int def_scale[] =
2018 {
2019 1, /* MEM1 */
2020 2, /* MEM2 */
2021 4, /* MEM4 */
2022 8, /* MEM8 */
2023 -1, /* MEM12 -- no valid default */
2024 16 /* MEM16 */
2025 };
2026
2027
2028 iprel_flag = mode = 0;
2029
2030 /* Any index present? */
2031 indexP = get_ispec (argP);
2032 if (indexP)
2033 {
2034 p = strchr (indexP, '*');
2035 if (p == NULL)
2036 {
2037 /* No explicit scale -- use default for this
fecd2382
RP
2038 *instruction type.
2039 */
355afbcd
KR
2040 scale = def_scale[optype - MEM1];
2041 }
2042 else
2043 {
2044 *p++ = '\0'; /* Eliminate '*' */
2045
2046 /* Now indexP->a '\0'-terminated register name,
fecd2382
RP
2047 * and p->a scale factor.
2048 */
355afbcd
KR
2049
2050 if (!strcmp (p, "16"))
2051 {
2052 scale = 16;
2053 }
2054 else if (strchr ("1248", *p) && (p[1] == '\0'))
2055 {
2056 scale = *p - '0';
2057 }
2058 else
2059 {
2060 scale = -1;
2061 }
2062 }
2063
2064 regnum = get_regnum (indexP); /* Get index reg. # */
2065 if (!IS_RG_REG (regnum))
2066 {
2067 as_bad ("invalid index register");
2068 return;
fecd2382 2069 }
355afbcd
KR
2070
2071 /* Convert scale to its binary encoding */
2072 switch (scale)
2073 {
2074 case 1:
2075 scale = 0 << 7;
2076 break;
2077 case 2:
2078 scale = 1 << 7;
2079 break;
2080 case 4:
2081 scale = 2 << 7;
2082 break;
2083 case 8:
2084 scale = 3 << 7;
2085 break;
2086 case 16:
2087 scale = 4 << 7;
2088 break;
2089 default:
2090 as_bad ("invalid scale factor");
2091 return;
2092 };
2093
2094 memP->opcode |= scale | regnum; /* Set index bits in opcode */
2095 mode |= I_BIT; /* Found a valid index spec */
2096 }
2097
2098 /* Any abase (Register Indirect) specification present? */
2099 if ((p = strrchr (argP, '(')) != NULL)
2100 {
2101 /* "(" is there -- does it start a legal abase spec?
fecd2382
RP
2102 * (If not it could be part of a displacement expression.)
2103 */
355afbcd
KR
2104 intP = (int *) hash_find (areg_hash, p);
2105 if (intP != NULL)
2106 {
2107 /* Got an abase here */
2108 regnum = *intP;
2109 *p = '\0'; /* discard register spec */
2110 if (regnum == IPREL)
2111 {
2112 /* We have to specialcase ip-rel mode */
2113 iprel_flag = 1;
2114 }
2115 else
2116 {
2117 memP->opcode |= regnum << 14;
2118 mode |= A_BIT;
2119 }
fecd2382 2120 }
355afbcd
KR
2121 }
2122
2123 /* Any expression present? */
2124 memP->e = argP;
2125 if (*argP != '\0')
2126 {
2127 mode |= D_BIT;
2128 }
2129
2130 /* Special-case ip-relative addressing */
2131 if (iprel_flag)
2132 {
2133 if (mode & I_BIT)
2134 {
2135 syntax ();
fecd2382 2136 }
355afbcd
KR
2137 else
2138 {
2139 memP->opcode |= 5 << 10; /* IP-relative mode */
2140 memP->disp = 32;
fecd2382 2141 }
355afbcd
KR
2142 return;
2143 }
2144
2145 /* Handle all other modes */
2146 switch (mode)
2147 {
2148 case D_BIT | A_BIT:
2149 /* Go with MEMA instruction format for now (grow to MEMB later
fecd2382
RP
2150 * if 12 bits is not enough for the displacement).
2151 * MEMA format has a single mode bit: set it to indicate
2152 * that abase is present.
2153 */
355afbcd
KR
2154 memP->opcode |= MEMA_ABASE;
2155 memP->disp = 12;
2156 break;
2157
2158 case D_BIT:
2159 /* Go with MEMA instruction format for now (grow to MEMB later
fecd2382
RP
2160 * if 12 bits is not enough for the displacement).
2161 */
355afbcd
KR
2162 memP->disp = 12;
2163 break;
2164
2165 case A_BIT:
2166 /* For some reason, the bit string for this mode is not
fecd2382
RP
2167 * consistent: it should be 0 (exclusive of the MEMB bit),
2168 * so we set it "by hand" here.
2169 */
355afbcd
KR
2170 memP->opcode |= MEMB_BIT;
2171 break;
2172
2173 case A_BIT | I_BIT:
2174 /* set MEMB bit in mode, and OR in mode bits */
2175 memP->opcode |= mode | MEMB_BIT;
2176 break;
2177
2178 case I_BIT:
2179 /* Treat missing displacement as displacement of 0 */
2180 mode |= D_BIT;
2181 /***********************
fecd2382
RP
2182 * Fall into next case *
2183 ********************** */
355afbcd
KR
2184 case D_BIT | A_BIT | I_BIT:
2185 case D_BIT | I_BIT:
2186 /* set MEMB bit in mode, and OR in mode bits */
2187 memP->opcode |= mode | MEMB_BIT;
2188 memP->disp = 32;
2189 break;
2190
2191 default:
2192 syntax ();
2193 break;
2194 }
fecd2382
RP
2195}
2196
2197/*****************************************************************************
2198 * parse_po: parse machine-dependent pseudo-op
2199 *
2200 * This is a top-level routine for machine-dependent pseudo-ops. It slurps
2201 * up the rest of the input line, breaks out the individual arguments,
2202 * and dispatches them to the correct handler.
2203 **************************************************************************** */
2204static
355afbcd
KR
2205void
2206parse_po (po_num)
2207 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
fecd2382 2208{
355afbcd 2209 char *args[4]; /* Pointers operands, with no embedded whitespace.
fecd2382
RP
2210 * arg[0] unused.
2211 * arg[1-3]->operands
2212 */
355afbcd
KR
2213 int n_ops; /* Number of operands */
2214 char *p; /* Pointer to beginning of unparsed argument string */
2215 char eol; /* Character that indicated end of line */
2216
2217 extern char is_end_of_line[];
2218
2219 /* Advance input pointer to end of line. */
2220 p = input_line_pointer;
80aab579 2221 while (!is_end_of_line[(unsigned char) *input_line_pointer])
355afbcd
KR
2222 {
2223 input_line_pointer++;
2224 }
2225 eol = *input_line_pointer; /* Save end-of-line char */
2226 *input_line_pointer = '\0'; /* Terminate argument list */
2227
2228 /* Parse out operands */
2229 n_ops = get_args (p, args);
2230 if (n_ops == -1)
2231 {
2232 return;
2233 }
2234
2235 /* Dispatch to correct handler */
2236 switch (po_num)
2237 {
2238 case S_SYSPROC:
2239 s_sysproc (n_ops, args);
2240 break;
2241 case S_LEAFPROC:
2242 s_leafproc (n_ops, args);
2243 break;
2244 default:
2245 BAD_CASE (po_num);
2246 break;
2247 }
2248
2249 /* Restore eol, so line numbers get updated correctly. Base assembler
fecd2382
RP
2250 * assumes we leave input pointer pointing at char following the eol.
2251 */
355afbcd 2252 *input_line_pointer++ = eol;
fecd2382
RP
2253}
2254
2255/*****************************************************************************
2256 * parse_regop: parse a register operand.
2257 *
2258 * In case of illegal operand, issue a message and return some valid
2259 * information so instruction processing can continue.
2260 **************************************************************************** */
2261static
355afbcd
KR
2262void
2263parse_regop (regopP, optext, opdesc)
2264 struct regop *regopP; /* Where to put description of register operand */
2265 char *optext; /* Text of operand */
2266 char opdesc; /* Descriptor byte: what's legal for this operand */
fecd2382 2267{
355afbcd
KR
2268 int n; /* Register number */
2269 expressionS e; /* Parsed expression */
2270
2271 /* See if operand is a register */
2272 n = get_regnum (optext);
2273 if (n >= 0)
2274 {
2275 if (IS_RG_REG (n))
2276 {
2277 /* global or local register */
2278 if (!REG_ALIGN (opdesc, n))
2279 {
2280 as_bad ("unaligned register");
2281 }
2282 regopP->n = n;
2283 regopP->mode = 0;
2284 regopP->special = 0;
2285 return;
2286 }
2287 else if (IS_FP_REG (n) && FP_OK (opdesc))
2288 {
2289 /* Floating point register, and it's allowed */
2290 regopP->n = n - FP0;
2291 regopP->mode = 1;
2292 regopP->special = 0;
2293 return;
2294 }
2295 else if (IS_SF_REG (n) && SFR_OK (opdesc))
2296 {
2297 /* Special-function register, and it's allowed */
2298 regopP->n = n - SF0;
2299 regopP->mode = 0;
2300 regopP->special = 1;
2301 if (!targ_has_sfr (regopP->n))
2302 {
2303 as_bad ("no such sfr in this architecture");
2304 }
2305 return;
2306 }
2307 }
2308 else if (LIT_OK (opdesc))
2309 {
2310 /*
fecd2382
RP
2311 * How about a literal?
2312 */
355afbcd
KR
2313 regopP->mode = 1;
2314 regopP->special = 0;
2315 if (FP_OK (opdesc))
2316 { /* floating point literal acceptable */
2317 /* Skip over 0f, 0d, or 0e prefix */
2318 if ((optext[0] == '0')
2319 && (optext[1] >= 'd')
2320 && (optext[1] <= 'f'))
2321 {
2322 optext += 2;
2323 }
2324
2325 if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
2326 {
2327 regopP->n = 0x10;
2328 return;
2329 }
2330 if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
2331 {
2332 regopP->n = 0x16;
2333 return;
2334 }
2335
fecd2382 2336 }
355afbcd
KR
2337 else
2338 { /* fixed point literal acceptable */
5ac34ac3
ILT
2339 parse_expr (optext, &e);
2340 if (e.X_op != O_constant
355afbcd
KR
2341 || (offs (e) < 0) || (offs (e) > 31))
2342 {
2343 as_bad ("illegal literal");
2344 offs (e) = 0;
2345 }
2346 regopP->n = offs (e);
2347 return;
2348 }
2349 }
2350
2351 /* Nothing worked */
2352 syntax ();
2353 regopP->mode = 0; /* Register r0 is always a good one */
2354 regopP->n = 0;
2355 regopP->special = 0;
2356} /* parse_regop() */
fecd2382
RP
2357
2358/*****************************************************************************
2359 * reg_fmt: generate a REG-format instruction
2360 *
2361 **************************************************************************** */
355afbcd
KR
2362static void
2363reg_fmt (args, oP)
2364 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2365 struct i960_opcode *oP; /* Pointer to description of instruction */
fecd2382 2366{
355afbcd
KR
2367 long instr; /* Binary to be output */
2368 struct regop regop; /* Description of register operand */
2369 int n_ops; /* Number of operands */
2370
2371
2372 instr = oP->opcode;
2373 n_ops = oP->num_ops;
2374
2375 if (n_ops >= 1)
2376 {
2377 parse_regop (&regop, args[1], oP->operand[0]);
2378
2379 if ((n_ops == 1) && !(instr & M3))
2380 {
2381 /* 1-operand instruction in which the dst field should
fecd2382
RP
2382 * be used (instead of src1).
2383 */
355afbcd
KR
2384 regop.n <<= 19;
2385 if (regop.special)
2386 {
2387 regop.mode = regop.special;
2388 }
2389 regop.mode <<= 13;
2390 regop.special = 0;
2391 }
2392 else
2393 {
2394 /* regop.n goes in bit 0, needs no shifting */
2395 regop.mode <<= 11;
2396 regop.special <<= 5;
fecd2382 2397 }
355afbcd
KR
2398 instr |= regop.n | regop.mode | regop.special;
2399 }
2400
2401 if (n_ops >= 2)
2402 {
2403 parse_regop (&regop, args[2], oP->operand[1]);
2404
2405 if ((n_ops == 2) && !(instr & M3))
2406 {
2407 /* 2-operand instruction in which the dst field should
fecd2382
RP
2408 * be used instead of src2).
2409 */
355afbcd
KR
2410 regop.n <<= 19;
2411 if (regop.special)
2412 {
2413 regop.mode = regop.special;
2414 }
2415 regop.mode <<= 13;
2416 regop.special = 0;
fecd2382 2417 }
355afbcd
KR
2418 else
2419 {
2420 regop.n <<= 14;
2421 regop.mode <<= 12;
2422 regop.special <<= 6;
fecd2382 2423 }
355afbcd
KR
2424 instr |= regop.n | regop.mode | regop.special;
2425 }
2426 if (n_ops == 3)
2427 {
2428 parse_regop (&regop, args[3], oP->operand[2]);
2429 if (regop.special)
2430 {
2431 regop.mode = regop.special;
2432 }
2433 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2434 }
2435 emit (instr);
fecd2382
RP
2436}
2437
2438
2439/*****************************************************************************
2440 * relax_cobr:
2441 * Replace cobr instruction in a code fragment with equivalent branch and
2442 * compare instructions, so it can reach beyond a 13-bit displacement.
2443 * Set up an address fix/relocation for the new branch instruction.
2444 *
2445 **************************************************************************** */
2446
2447/* This "conditional jump" table maps cobr instructions into equivalent
2448 * compare and branch opcodes.
2449 */
2450static
355afbcd
KR
2451struct
2452 {
2453 long compare;
2454 long branch;
2455 }
2456
2457coj[] =
2458{ /* COBR OPCODE: */
80aab579
ILT
2459 { CHKBIT, BNO }, /* 0x30 - bbc */
2460 { CMPO, BG }, /* 0x31 - cmpobg */
2461 { CMPO, BE }, /* 0x32 - cmpobe */
2462 { CMPO, BGE }, /* 0x33 - cmpobge */
2463 { CMPO, BL }, /* 0x34 - cmpobl */
2464 { CMPO, BNE }, /* 0x35 - cmpobne */
2465 { CMPO, BLE }, /* 0x36 - cmpoble */
2466 { CHKBIT, BO }, /* 0x37 - bbs */
2467 { CMPI, BNO }, /* 0x38 - cmpibno */
2468 { CMPI, BG }, /* 0x39 - cmpibg */
2469 { CMPI, BE }, /* 0x3a - cmpibe */
2470 { CMPI, BGE }, /* 0x3b - cmpibge */
2471 { CMPI, BL }, /* 0x3c - cmpibl */
2472 { CMPI, BNE }, /* 0x3d - cmpibne */
2473 { CMPI, BLE }, /* 0x3e - cmpible */
2474 { CMPI, BO }, /* 0x3f - cmpibo */
355afbcd 2475};
fecd2382
RP
2476
2477static
355afbcd
KR
2478void
2479relax_cobr (fragP)
2480 register fragS *fragP; /* fragP->fr_opcode is assumed to point to
c47d388b
ME
2481 * the cobr instruction, which comes at the
2482 * end of the code fragment.
2483 */
fecd2382 2484{
355afbcd
KR
2485 int opcode, src1, src2, m1, s2;
2486 /* Bit fields from cobr instruction */
2487 long bp_bits; /* Branch prediction bits from cobr instruction */
2488 long instr; /* A single i960 instruction */
2489 char *iP; /*->instruction to be replaced */
2490 fixS *fixP; /* Relocation that can be done at assembly time */
2491
2492 /* PICK UP & PARSE COBR INSTRUCTION */
2493 iP = fragP->fr_opcode;
2494 instr = md_chars_to_number (iP, 4);
2495 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2496 src1 = (instr >> 19) & 0x1f;
2497 m1 = (instr >> 13) & 1;
2498 s2 = instr & 1;
2499 src2 = (instr >> 14) & 0x1f;
2500 bp_bits = instr & BP_MASK;
2501
2502 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2503 instr = coj[opcode].compare
2504 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
2505 md_number_to_chars (iP, instr, 4);
2506
2507 /* OUTPUT BRANCH INSTRUCTION */
2508 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
2509
2510 /* SET UP ADDRESS FIXUP/RELOCATION */
2511 fixP = fix_new (fragP,
2512 iP + 4 - fragP->fr_literal,
2513 4,
2514 fragP->fr_symbol,
355afbcd
KR
2515 fragP->fr_offset,
2516 1,
2517 NO_RELOC);
2518
2519 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
2520
2521 fragP->fr_fix += 4;
2522 frag_wane (fragP);
fecd2382
RP
2523}
2524
2525
2526/*****************************************************************************
2527 * reloc_callj: Relocate a 'callj' instruction
2528 *
2529 * This is a "non-(GNU)-standard" machine-dependent hook. The base
2530 * assembler calls it when it decides it can relocate an address at
2531 * assembly time instead of emitting a relocation directive.
2532 *
2533 * Check to see if the relocation involves a 'callj' instruction to a:
2534 * sysproc: Replace the default 'call' instruction with a 'calls'
2535 * leafproc: Replace the default 'call' instruction with a 'bal'.
2536 * other proc: Do nothing.
2537 *
2538 * See b.out.h for details on the 'n_other' field in a symbol structure.
2539 *
2540 * IMPORTANT!:
2541 * Assumes the caller has already figured out, in the case of a leafproc,
2542 * to use the 'bal' entry point, and has substituted that symbol into the
2543 * passed fixup structure.
2544 *
2545 **************************************************************************** */
355afbcd
KR
2546void
2547reloc_callj (fixP)
2548 fixS *fixP; /* Relocation that can be done at assembly time */
fecd2382 2549{
355afbcd
KR
2550 char *where; /*->the binary for the instruction being relocated */
2551
f3d817d8 2552 if (!fixP->fx_tcbit)
355afbcd
KR
2553 {
2554 return;
2555 } /* This wasn't a callj instruction in the first place */
2556
2557 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2558
2559 if (TC_S_IS_SYSPROC (fixP->fx_addsy))
2560 {
2561 /* Symbol is a .sysproc: replace 'call' with 'calls'.
fecd2382
RP
2562 * System procedure number is (other-1).
2563 */
355afbcd
KR
2564 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
2565
2566 /* Nothing else needs to be done for this instruction.
fecd2382
RP
2567 * Make sure 'md_number_to_field()' will perform a no-op.
2568 */
355afbcd
KR
2569 fixP->fx_bit_fixP = (bit_fixS *) 1;
2570
2571 }
2572 else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
2573 {
2574 /* Should not happen: see block comment above */
2575 as_fatal ("Trying to 'bal' to %s", S_GET_NAME (fixP->fx_addsy));
2576
2577 }
2578 else if (TC_S_IS_BALNAME (fixP->fx_addsy))
2579 {
2580 /* Replace 'call' with 'bal'; both instructions have
fecd2382
RP
2581 * the same format, so calling code should complete
2582 * relocation as if nothing happened here.
2583 */
355afbcd
KR
2584 md_number_to_chars (where, BAL, 4);
2585 }
2586 else if (TC_S_IS_BADPROC (fixP->fx_addsy))
2587 {
2588 as_bad ("Looks like a proc, but can't tell what kind.\n");
2589 } /* switch on proc type */
2590
2591 /* else Symbol is neither a sysproc nor a leafproc */
f3d817d8 2592}
fecd2382
RP
2593
2594
2595/*****************************************************************************
2596 * s_leafproc: process .leafproc pseudo-op
2597 *
2598 * .leafproc takes two arguments, the second one is optional:
2599 * arg[1]: name of 'call' entry point to leaf procedure
2600 * arg[2]: name of 'bal' entry point to leaf procedure
2601 *
2602 * If the two arguments are identical, or if the second one is missing,
2603 * the first argument is taken to be the 'bal' entry point.
2604 *
2605 * If there are 2 distinct arguments, we must make sure that the 'bal'
2606 * entry point immediately follows the 'call' entry point in the linked
2607 * list of symbols.
2608 *
2609 **************************************************************************** */
355afbcd
KR
2610static void
2611s_leafproc (n_ops, args)
2612 int n_ops; /* Number of operands */
2613 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
fecd2382 2614{
355afbcd
KR
2615 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2616 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
2617
2618 if ((n_ops != 1) && (n_ops != 2))
2619 {
2620 as_bad ("should have 1 or 2 operands");
2621 return;
2622 } /* Check number of arguments */
2623
2624 /* Find or create symbol for 'call' entry point. */
2625 callP = symbol_find_or_make (args[1]);
2626
2627 if (TC_S_IS_CALLNAME (callP))
2628 {
2629 as_warn ("Redefining leafproc %s", S_GET_NAME (callP));
2630 } /* is leafproc */
2631
2632 /* If that was the only argument, use it as the 'bal' entry point.
fecd2382
RP
2633 * Otherwise, mark it as the 'call' entry point and find or create
2634 * another symbol for the 'bal' entry point.
2635 */
355afbcd
KR
2636 if ((n_ops == 1) || !strcmp (args[1], args[2]))
2637 {
2638 TC_S_FORCE_TO_BALNAME (callP);
2639
2640 }
2641 else
2642 {
2643 TC_S_FORCE_TO_CALLNAME (callP);
2644
2645 balP = symbol_find_or_make (args[2]);
2646 if (TC_S_IS_CALLNAME (balP))
2647 {
2648 as_warn ("Redefining leafproc %s", S_GET_NAME (balP));
2649 }
2650 TC_S_FORCE_TO_BALNAME (balP);
2651
2652 tc_set_bal_of_call (callP, balP);
2653 } /* if only one arg, or the args are the same */
f3d817d8 2654}
fecd2382
RP
2655
2656
2657/*
2658 * s_sysproc: process .sysproc pseudo-op
2659 *
2660 * .sysproc takes two arguments:
2661 * arg[1]: name of entry point to system procedure
2662 * arg[2]: 'entry_num' (index) of system procedure in the range
2663 * [0,31] inclusive.
2664 *
2665 * For [ab].out, we store the 'entrynum' in the 'n_other' field of
2666 * the symbol. Since that entry is normally 0, we bias 'entrynum'
2667 * by adding 1 to it. It must be unbiased before it is used.
2668 */
355afbcd
KR
2669static void
2670s_sysproc (n_ops, args)
2671 int n_ops; /* Number of operands */
2672 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
fecd2382 2673{
355afbcd
KR
2674 expressionS exp;
2675 symbolS *symP;
2676
2677 if (n_ops != 2)
2678 {
2679 as_bad ("should have two operands");
2680 return;
2681 } /* bad arg count */
2682
2683 /* Parse "entry_num" argument and check it for validity. */
5ac34ac3
ILT
2684 parse_expr (args[2], &exp);
2685 if (exp.X_op != O_constant
355afbcd
KR
2686 || (offs (exp) < 0)
2687 || (offs (exp) > 31))
2688 {
2689 as_bad ("'entry_num' must be absolute number in [0,31]");
2690 return;
2691 }
2692
2693 /* Find/make symbol and stick entry number (biased by +1) into it */
2694 symP = symbol_find_or_make (args[1]);
2695
2696 if (TC_S_IS_SYSPROC (symP))
2697 {
2698 as_warn ("Redefining entrynum for sysproc %s", S_GET_NAME (symP));
2699 } /* redefining */
2700
2701 TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */
2702 TC_S_FORCE_TO_SYSPROC (symP);
f3d817d8 2703}
fecd2382
RP
2704
2705
2706/*****************************************************************************
2707 * shift_ok:
2708 * Determine if a "shlo" instruction can be used to implement a "ldconst".
2709 * This means that some number X < 32 can be shifted left to produce the
2710 * constant of interest.
2711 *
2712 * Return the shift count, or 0 if we can't do it.
2713 * Caller calculates X by shifting original constant right 'shift' places.
2714 *
2715 **************************************************************************** */
2716static
355afbcd
KR
2717int
2718shift_ok (n)
2719 int n; /* The constant of interest */
fecd2382 2720{
355afbcd
KR
2721 int shift; /* The shift count */
2722
2723 if (n <= 0)
2724 {
2725 /* Can't do it for negative numbers */
2726 return 0;
2727 }
2728
2729 /* Shift 'n' right until a 1 is about to be lost */
2730 for (shift = 0; (n & 1) == 0; shift++)
2731 {
2732 n >>= 1;
2733 }
2734
2735 if (n >= 32)
2736 {
2737 return 0;
2738 }
2739 return shift;
fecd2382
RP
2740}
2741
2742
2743/*****************************************************************************
2744 * syntax: issue syntax error
2745 *
2746 **************************************************************************** */
355afbcd
KR
2747static void
2748syntax ()
2749{
2750 as_bad ("syntax error");
2751} /* syntax() */
fecd2382
RP
2752
2753
2754/*****************************************************************************
2755 * targ_has_sfr:
2756 * Return TRUE iff the target architecture supports the specified
2757 * special-function register (sfr).
2758 *
f3d817d8 2759 *****************************************************************************/
fecd2382 2760static
355afbcd
KR
2761int
2762targ_has_sfr (n)
2763 int n; /* Number (0-31) of sfr */
fecd2382 2764{
355afbcd
KR
2765 switch (architecture)
2766 {
2767 case ARCH_KA:
2768 case ARCH_KB:
2769 case ARCH_MC:
2770 return 0;
2771 case ARCH_CA:
2772 default:
2773 return ((0 <= n) && (n <= 2));
2774 }
fecd2382
RP
2775}
2776
2777
2778/*****************************************************************************
2779 * targ_has_iclass:
2780 * Return TRUE iff the target architecture supports the indicated
2781 * class of instructions.
2782 *
f3d817d8 2783 *****************************************************************************/
fecd2382 2784static
355afbcd
KR
2785int
2786targ_has_iclass (ic)
2787 int ic; /* Instruction class; one of:
a39116f1
RP
2788 * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
2789 */
fecd2382 2790{
355afbcd
KR
2791 iclasses_seen |= ic;
2792 switch (architecture)
2793 {
2794 case ARCH_KA:
2795 return ic & (I_BASE | I_KX);
2796 case ARCH_KB:
2797 return ic & (I_BASE | I_KX | I_FP | I_DEC);
2798 case ARCH_MC:
2799 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2800 case ARCH_CA:
2801 return ic & (I_BASE | I_CX | I_CASIM);
2802 default:
2803 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
2804 && (iclasses_seen & I_CX))
2805 {
2806 as_warn ("architecture of opcode conflicts with that of earlier instruction(s)");
2807 iclasses_seen &= ~ic;
fecd2382 2808 }
355afbcd
KR
2809 return 1;
2810 }
fecd2382
RP
2811}
2812
2813
2814/* Parse an operand that is machine-specific.
2815 We just return without modifying the expression if we have nothing
2816 to do. */
2817
2818/* ARGSUSED */
2819void
355afbcd
KR
2820md_operand (expressionP)
2821 expressionS *expressionP;
fecd2382
RP
2822{
2823}
2824
2825/* We have no need to default values of symbols. */
2826
2827/* ARGSUSED */
355afbcd
KR
2828symbolS *
2829md_undefined_symbol (name)
2830 char *name;
fecd2382 2831{
355afbcd 2832 return 0;
f3d817d8 2833}
fecd2382
RP
2834
2835/* Exactly what point is a PC-relative offset relative TO?
2836 On the i960, they're relative to the address of the instruction,
2837 which we have set up as the address of the fixup too. */
2838long
355afbcd
KR
2839md_pcrel_from (fixP)
2840 fixS *fixP;
fecd2382 2841{
355afbcd 2842 return fixP->fx_where + fixP->fx_frag->fr_address;
fecd2382
RP
2843}
2844
2845void
355afbcd
KR
2846md_apply_fix (fixP, val)
2847 fixS *fixP;
2848 long val;
fecd2382 2849{
355afbcd
KR
2850 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2851
2852 if (!fixP->fx_bit_fixP)
f3d817d8
DM
2853 switch (fixP->fx_im_disp)
2854 {
2855 case 0:
2856 /* For callx, we always want to write out zero, and emit a
2857 symbolic relocation. */
2858 if (fixP->fx_bsr)
2859 val = 0;
2860
2861 fixP->fx_addnumber = val;
2862 md_number_to_imm (place, val, fixP->fx_size, fixP);
2863 break;
2864 case 1:
2865 md_number_to_disp (place,
2866 (fixP->fx_pcrel
2867 ? val + fixP->fx_pcrel_adjust
2868 : val),
2869 fixP->fx_size);
2870 break;
2871 case 2: /* fix requested for .long .word etc */
2872 md_number_to_chars (place, val, fixP->fx_size);
2873 break;
2874 default:
2875 as_fatal ("Internal error in md_apply_fix() in file \"%s\"",
2876 __FILE__);
2877 }
355afbcd 2878 else
f3d817d8
DM
2879 md_number_to_field (place, val, fixP->fx_bit_fixP);
2880}
fecd2382
RP
2881
2882#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
355afbcd
KR
2883void
2884tc_bout_fix_to_chars (where, fixP, segment_address_in_file)
2885 char *where;
2886 fixS *fixP;
2887 relax_addressT segment_address_in_file;
fecd2382 2888{
f3d817d8 2889 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
355afbcd
KR
2890 struct relocation_info ri;
2891 symbolS *symbolP;
2892
355afbcd
KR
2893 memset ((char *) &ri, '\0', sizeof (ri));
2894 symbolP = fixP->fx_addsy;
2895 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2896 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2897 /* These two 'cuz of NS32K */
f3d817d8 2898 ri.r_callj = fixP->fx_tcbit;
355afbcd 2899 if (fixP->fx_bit_fixP)
f3d817d8 2900 ri.r_length = 2;
355afbcd 2901 else
f3d817d8 2902 ri.r_length = nbytes_r_length[fixP->fx_size];
355afbcd
KR
2903 ri.r_pcrel = fixP->fx_pcrel;
2904 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2905
2906 if (fixP->fx_r_type != NO_RELOC)
2907 {
2908 switch (fixP->fx_r_type)
2909 {
2910 case rs_align:
2911 ri.r_index = -2;
2912 ri.r_pcrel = 1;
2913 ri.r_length = fixP->fx_size - 1;
2914 break;
2915 case rs_org:
2916 ri.r_index = -2;
2917 ri.r_pcrel = 0;
2918 break;
2919 case rs_fill:
2920 ri.r_index = -1;
2921 break;
2922 default:
2923 abort ();
fecd2382 2924 }
355afbcd
KR
2925 ri.r_extern = 0;
2926 }
f3d817d8 2927 else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr)
355afbcd
KR
2928 {
2929 ri.r_extern = 1;
2930 ri.r_index = symbolP->sy_number;
2931 }
2932 else
2933 {
2934 ri.r_extern = 0;
2935 ri.r_index = S_GET_TYPE (symbolP);
2936 }
2937
2938 /* Output the relocation information in machine-dependent form. */
2939 md_ri_to_chars (where, &ri);
f3d817d8 2940}
fecd2382 2941
fecd2382
RP
2942#endif /* OBJ_AOUT or OBJ_BOUT */
2943
f3d817d8
DM
2944#if defined (OBJ_COFF) && defined (BFD)
2945short
2946tc_coff_fix2rtype (fixP)
2947 fixS *fixP;
2948{
2949 if (fixP->fx_bsr)
2950 abort ();
2951
2952 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
2953 return R_RELLONG;
2954
2955 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
2956 return R_IPRMED;
2957
2958 abort ();
2959}
2960
2961int
2962tc_coff_sizemachdep (frag)
2963 fragS *frag;
2964{
2965 if (frag->fr_next)
2966 return frag->fr_next->fr_address - frag->fr_address;
2967 else
2968 return 0;
2969}
2970#endif
2971
2972/* Align an address by rounding it up to the specified boundary. */
c47d388b 2973valueT
355afbcd
KR
2974md_section_align (seg, addr)
2975 segT seg;
c47d388b 2976 valueT addr; /* Address to be rounded up */
fecd2382 2977{
355afbcd
KR
2978 return ((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
2979} /* md_section_align() */
fecd2382
RP
2980
2981#ifdef OBJ_COFF
355afbcd
KR
2982void
2983tc_headers_hook (headers)
2984 object_headers *headers;
fecd2382 2985{
355afbcd
KR
2986 if (iclasses_seen == I_BASE)
2987 {
2988 headers->filehdr.f_flags |= F_I960CORE;
2989 }
2990 else if (iclasses_seen & I_CX)
2991 {
2992 headers->filehdr.f_flags |= F_I960CA;
2993 }
2994 else if (iclasses_seen & I_MIL)
2995 {
2996 headers->filehdr.f_flags |= F_I960MC;
2997 }
2998 else if (iclasses_seen & (I_DEC | I_FP))
2999 {
3000 headers->filehdr.f_flags |= F_I960KB;
3001 }
3002 else
3003 {
3004 headers->filehdr.f_flags |= F_I960KA;
3005 } /* set arch flag */
3006
3007 if (flagseen['R'])
3008 {
3009 headers->filehdr.f_magic = I960RWMAGIC;
3010 headers->aouthdr.magic = OMAGIC;
3011 }
3012 else
3013 {
3014 headers->filehdr.f_magic = I960ROMAGIC;
3015 headers->aouthdr.magic = NMAGIC;
3016 } /* set magic numbers */
f3d817d8 3017}
355afbcd 3018
fecd2382
RP
3019#endif /* OBJ_COFF */
3020
3021/*
3022 * Things going on here:
3023 *
3024 * For bout, We need to assure a couple of simplifying
3025 * assumptions about leafprocs for the linker: the leafproc
3026 * entry symbols will be defined in the same assembly in
3027 * which they're declared with the '.leafproc' directive;
3028 * and if a leafproc has both 'call' and 'bal' entry points
3029 * they are both global or both local.
3030 *
3031 * For coff, the call symbol has a second aux entry that
3032 * contains the bal entry point. The bal symbol becomes a
3033 * label.
3034 *
3035 * For coff representation, the call symbol has a second aux entry that
3036 * contains the bal entry point. The bal symbol becomes a label.
3037 *
3038 */
3039
355afbcd
KR
3040void
3041tc_crawl_symbol_chain (headers)
3042 object_headers *headers;
fecd2382 3043{
355afbcd
KR
3044 symbolS *symbolP;
3045
3046 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP))
3047 {
fecd2382 3048#ifdef OBJ_COFF
355afbcd
KR
3049 if (TC_S_IS_SYSPROC (symbolP))
3050 {
3051 /* second aux entry already contains the sysproc number */
3052 S_SET_NUMBER_AUXILIARY (symbolP, 2);
3053 S_SET_STORAGE_CLASS (symbolP, C_SCALL);
3054 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3055 continue;
3056 } /* rewrite sysproc */
fecd2382 3057#endif /* OBJ_COFF */
355afbcd
KR
3058
3059 if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP))
3060 {
3061 continue;
3062 } /* Not a leafproc symbol */
3063
3064 if (!S_IS_DEFINED (symbolP))
3065 {
3066 as_bad ("leafproc symbol '%s' undefined", S_GET_NAME (symbolP));
3067 } /* undefined leaf */
3068
3069 if (TC_S_IS_CALLNAME (symbolP))
3070 {
3071 symbolS *balP = tc_get_bal_of_call (symbolP);
3072 if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP))
3073 {
3074 S_SET_EXTERNAL (symbolP);
3075 S_SET_EXTERNAL (balP);
3076 as_warn ("Warning: making leafproc entries %s and %s both global\n",
3077 S_GET_NAME (symbolP), S_GET_NAME (balP));
3078 } /* externality mismatch */
3079 } /* if callname */
3080 } /* walk the symbol chain */
f3d817d8 3081}
fecd2382
RP
3082
3083/*
3084 * For aout or bout, the bal immediately follows the call.
3085 *
3086 * For coff, we cheat and store a pointer to the bal symbol
3087 * in the second aux entry of the call.
3088 */
3089
355afbcd
KR
3090#undef OBJ_ABOUT
3091#ifdef OBJ_AOUT
3092#define OBJ_ABOUT
3093#endif
3094#ifdef OBJ_BOUT
3095#define OBJ_ABOUT
3096#endif
3097
3098void
3099tc_set_bal_of_call (callP, balP)
3100 symbolS *callP;
3101 symbolS *balP;
fecd2382 3102{
355afbcd
KR
3103 know (TC_S_IS_CALLNAME (callP));
3104 know (TC_S_IS_BALNAME (balP));
3105
fecd2382 3106#ifdef OBJ_COFF
355afbcd
KR
3107
3108 callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
3109 S_SET_NUMBER_AUXILIARY (callP, 2);
3110
3111#else /* ! OBJ_COFF */
3112#ifdef OBJ_ABOUT
3113
3114 /* If the 'bal' entry doesn't immediately follow the 'call'
fecd2382
RP
3115 * symbol, unlink it from the symbol list and re-insert it.
3116 */
355afbcd
KR
3117 if (symbol_next (callP) != balP)
3118 {
3119 symbol_remove (balP, &symbol_rootP, &symbol_lastP);
3120 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
3121 } /* if not in order */
3122
3123#else /* ! OBJ_ABOUT */
3124 (as yet unwritten.);
3125#endif /* ! OBJ_ABOUT */
3126#endif /* ! OBJ_COFF */
f3d817d8 3127}
355afbcd
KR
3128
3129char *
3130_tc_get_bal_of_call (callP)
3131 symbolS *callP;
fecd2382 3132{
355afbcd
KR
3133 symbolS *retval;
3134
3135 know (TC_S_IS_CALLNAME (callP));
3136
fecd2382 3137#ifdef OBJ_COFF
355afbcd 3138 retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
fecd2382 3139#else
355afbcd
KR
3140#ifdef OBJ_ABOUT
3141 retval = symbol_next (callP);
3142#else
3143 (as yet unwritten.);
3144#endif /* ! OBJ_ABOUT */
3145#endif /* ! OBJ_COFF */
3146
3147 know (TC_S_IS_BALNAME (retval));
3148 return ((char *) retval);
3149} /* _tc_get_bal_of_call() */
3150
3151void
3152tc_coff_symbol_emit_hook (symbolP)
3153 symbolS *symbolP;
fecd2382 3154{
355afbcd
KR
3155 if (TC_S_IS_CALLNAME (symbolP))
3156 {
fecd2382 3157#ifdef OBJ_COFF
355afbcd
KR
3158 symbolS *balP = tc_get_bal_of_call (symbolP);
3159
3160 /* second aux entry contains the bal entry point */
3161 /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
3162 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
3163 S_SET_STORAGE_CLASS (symbolP, (!SF_GET_LOCAL (symbolP) ? C_LEAFEXT : C_LEAFSTAT));
3164 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3165 /* fix up the bal symbol */
3166 S_SET_STORAGE_CLASS (balP, C_LABEL);
fecd2382 3167#endif /* OBJ_COFF */
355afbcd 3168 } /* only on calls */
f3d817d8 3169}
fecd2382 3170
09952cd9
KR
3171void
3172i960_handle_align (fragp)
3173 fragS *fragp;
3174{
3175 fixS *fixp;
09952cd9
KR
3176
3177 if (!linkrelax)
3178 return;
3179
f3d817d8
DM
3180#ifndef OBJ_BOUT
3181
3182 as_bad ("option --link-relax is only supported in b.out format");
3183 linkrelax = 0;
3184 return;
3185
3186#else
3187
09952cd9
KR
3188 /* The text section "ends" with another alignment reloc, to which we
3189 aren't adding padding. */
3190 if (fragp->fr_next == text_last_frag
3191 || fragp->fr_next == data_last_frag)
f3d817d8 3192 return;
09952cd9
KR
3193
3194 /* alignment directive */
5ac34ac3 3195 fixp = fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
09952cd9 3196 (int) fragp->fr_type);
f3d817d8
DM
3197#endif /* OBJ_BOUT */
3198}
3199
3200int
3201i960_validate_fix (fixP, this_segment_type, add_symbolPP)
3202 fixS *fixP;
3203 segT this_segment_type;
3204 symbolS **add_symbolPP;
3205{
3206#define add_symbolP (*add_symbolPP)
3207 if (fixP->fx_tcbit && TC_S_IS_CALLNAME (add_symbolP))
3208 {
3209 /* Relocation should be done via the associated 'bal'
3210 entry point symbol. */
3211
3212 if (!TC_S_IS_BALNAME (tc_get_bal_of_call (add_symbolP)))
3213 {
3214 as_bad ("No 'bal' entry point for leafproc %s",
3215 S_GET_NAME (add_symbolP));
3216 return 1;
3217 }
3218 fixP->fx_addsy = add_symbolP = tc_get_bal_of_call (add_symbolP);
3219 }
3220#if 0
3221 /* Still have to work out other conditions for these tests. */
3222 {
3223 if (fixP->fx_tcbit)
3224 {
3225 as_bad ("callj to difference of two symbols");
3226 return 1;
3227 }
3228 reloc_callj (fixP);
3229 if ((int) fixP->fx_bit_fixP == 13)
3230 {
3231 /* This is a COBR instruction. They have only a 13-bit
3232 displacement and are only to be used for local branches:
3233 flag as error, don't generate relocation. */
3234 as_bad ("can't use COBR format with external label");
3235 fixP->fx_addsy = NULL; /* No relocations please. */
3236 return 1;
3237 }
3238 }
3239#endif
3240#undef add_symbolP
3241 return 0;
09952cd9
KR
3242}
3243
8b228fe9 3244/* end of tc-i960.c */
This page took 0.297217 seconds and 4 git commands to generate.