gas/
[deliverable/binutils-gdb.git] / gas / config / tc-i960.c
CommitLineData
252b5132 1/* tc-i960.c - All the i80960-specific stuff
4b95cf5c 2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
92774660 21/* See comment on md_parse_option for 80960-specific invocation options. */
252b5132
RH
22
23/* There are 4 different lengths of (potentially) symbol-based displacements
24 in the 80960 instruction set, each of which could require address fix-ups
25 and (in the case of external symbols) emission of relocation directives:
26
27 32-bit (MEMB)
28 This is a standard length for the base assembler and requires no
29 special action.
30
31 13-bit (COBR)
32 This is a non-standard length, but the base assembler has a
33 hook for bit field address fixups: the fixS structure can
34 point to a descriptor of the field, in which case our
35 md_number_to_field() routine gets called to process it.
36
37 I made the hook a little cleaner by having fix_new() (in the base
38 assembler) return a pointer to the fixS in question. And I made it a
39 little simpler by storing the field size (in this case 13) instead of
40 of a pointer to another structure: 80960 displacements are ALWAYS
41 stored in the low-order bits of a 4-byte word.
42
43 Since the target of a COBR cannot be external, no relocation
44 directives for this size displacement have to be generated.
45 But the base assembler had to be modified to issue error
46 messages if the symbol did turn out to be external.
47
48 24-bit (CTRL)
49 Fixups are handled as for the 13-bit case (except that 24 is stored
50 in the fixS).
51
52 The relocation directive generated is the same as that for the 32-bit
53 displacement, except that it's PC-relative (the 32-bit displacement
54 never is). The i80960 version of the linker needs a mod to
55 distinguish and handle the 24-bit case.
56
57 12-bit (MEMA)
58 MEMA formats are always promoted to MEMB (32-bit) if the displacement
59 is based on a symbol, because it could be relocated at link time.
60 The only time we use the 12-bit format is if an absolute value of
61 less than 4096 is specified, in which case we need neither a fixup nor
62 a relocation directive. */
63
252b5132
RH
64#include "as.h"
65
3882b010 66#include "safe-ctype.h"
252b5132
RH
67#include "obstack.h"
68
69#include "opcode/i960.h"
70
71#if defined (OBJ_AOUT) || defined (OBJ_BOUT)
72
ea1562b3
NC
73#define TC_S_IS_SYSPROC(s) ((1 <= S_GET_OTHER (s)) && (S_GET_OTHER (s) <= 32))
74#define TC_S_IS_BALNAME(s) (S_GET_OTHER (s) == N_BALNAME)
75#define TC_S_IS_CALLNAME(s) (S_GET_OTHER (s) == N_CALLNAME)
76#define TC_S_IS_BADPROC(s) ((S_GET_OTHER (s) != 0) && !TC_S_IS_CALLNAME (s) && !TC_S_IS_BALNAME (s) && !TC_S_IS_SYSPROC (s))
252b5132 77
ea1562b3
NC
78#define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER ((s), (p) + 1))
79#define TC_S_GET_SYSPROC(s) (S_GET_OTHER (s) - 1)
252b5132 80
ea1562b3
NC
81#define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER ((s), N_BALNAME))
82#define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER ((s), N_CALLNAME))
252b5132
RH
83#define TC_S_FORCE_TO_SYSPROC(s) {;}
84
85#else /* ! OBJ_A/BOUT */
86#ifdef OBJ_COFF
87
ea1562b3
NC
88#define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS (s) == C_SCALL)
89#define TC_S_IS_BALNAME(s) (SF_GET_BALNAME (s))
90#define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME (s))
91#define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC (s) && TC_S_GET_SYSPROC (s) < 0 && 31 < TC_S_GET_SYSPROC (s))
252b5132
RH
92
93#define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p))
94#define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx)
95
ea1562b3
NC
96#define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME (s))
97#define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME (s))
98#define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS ((s), C_SCALL))
252b5132
RH
99
100#else /* ! OBJ_COFF */
bedf545c
ILT
101#ifdef OBJ_ELF
102#define TC_S_IS_SYSPROC(s) 0
103
104#define TC_S_IS_BALNAME(s) 0
105#define TC_S_IS_CALLNAME(s) 0
106#define TC_S_IS_BADPROC(s) 0
107
108#define TC_S_SET_SYSPROC(s, p)
ea1562b3 109#define TC_S_GET_SYSPROC(s) 0
bedf545c
ILT
110
111#define TC_S_FORCE_TO_BALNAME(s)
112#define TC_S_FORCE_TO_CALLNAME(s)
113#define TC_S_FORCE_TO_SYSPROC(s)
114#else
115 #error COFF, a.out, b.out, and ELF are the only supported formats.
116#endif /* ! OBJ_ELF */
252b5132
RH
117#endif /* ! OBJ_COFF */
118#endif /* ! OBJ_A/BOUT */
119
120extern char *input_line_pointer;
121
252b5132 122/* Local i80960 routines. */
b9195351
AM
123struct memS;
124struct regop;
125
ea1562b3
NC
126/* See md_parse_option() for meanings of these options. */
127static char norelax; /* True if -norelax switch seen. */
128static char instrument_branches; /* True if -b switch seen. */
252b5132
RH
129
130/* Characters that always start a comment.
ea1562b3 131 If the pre-processor is disabled, these aren't very useful. */
252b5132
RH
132const char comment_chars[] = "#";
133
134/* Characters that only start a comment at the beginning of
135 a line. If the line seems to have the form '# 123 filename'
136 .line and .file directives will appear in the pre-processed output.
137
138 Note that input_file.c hand checks for '#' at the beginning of the
139 first line of the input file. This is because the compiler outputs
ea1562b3 140 #NO_APP at the beginning of its output. */
252b5132 141
92774660 142/* Also note that comments started like this one will always work. */
252b5132 143
ea1562b3 144const char line_comment_chars[] = "#";
63a0b638 145const char line_separator_chars[] = ";";
252b5132 146
ea1562b3 147/* Chars that can be used to separate mant from exp in floating point nums. */
252b5132
RH
148const char EXP_CHARS[] = "eE";
149
150/* Chars that mean this number is a floating point constant,
ea1562b3 151 as in 0f12.456 or 0d1.2345e12. */
252b5132
RH
152const char FLT_CHARS[] = "fFdDtT";
153
252b5132
RH
154/* Table used by base assembler to relax addresses based on varying length
155 instructions. The fields are:
156 1) most positive reach of this state,
157 2) most negative reach of this state,
158 3) how many bytes this mode will add to the size of the current frag
159 4) which index into the table to try if we can't fit into this one.
160
161 For i80960, the only application is the (de-)optimization of cobr
162 instructions into separate compare and branch instructions when a 13-bit
ea1562b3 163 displacement won't hack it. */
252b5132
RH
164const relax_typeS md_relax_table[] =
165{
ea1562b3
NC
166 {0, 0, 0, 0}, /* State 0 => no more relaxation possible. */
167 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr). */
168 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl). */
252b5132
RH
169};
170
252b5132
RH
171/* These are the machine dependent pseudo-ops.
172
173 This table describes all the machine specific pseudo-ops the assembler
174 has to support. The fields are:
175 pseudo-op name without dot
176 function to call to execute this pseudo-op
ea1562b3 177 integer arg to pass to the function. */
252b5132
RH
178#define S_LEAFPROC 1
179#define S_SYSPROC 2
180
ea1562b3 181/* Macros to extract info from an 'expressionS' structure 'e'. */
252b5132
RH
182#define adds(e) e.X_add_symbol
183#define offs(e) e.X_add_number
184
ea1562b3
NC
185/* Branch-prediction bits for CTRL/COBR format opcodes. */
186#define BP_MASK 0x00000002 /* Mask for branch-prediction bit. */
187#define BP_TAKEN 0x00000000 /* Value to OR in to predict branch. */
188#define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch. */
252b5132 189
ea1562b3 190/* Some instruction opcodes that we need explicitly. */
252b5132
RH
191#define BE 0x12000000
192#define BG 0x11000000
193#define BGE 0x13000000
194#define BL 0x14000000
195#define BLE 0x16000000
196#define BNE 0x15000000
197#define BNO 0x10000000
198#define BO 0x17000000
199#define CHKBIT 0x5a002700
200#define CMPI 0x5a002080
201#define CMPO 0x5a002000
202
203#define B 0x08000000
204#define BAL 0x0b000000
205#define CALL 0x09000000
206#define CALLS 0x66003800
207#define RET 0x0a000000
208
92774660 209/* These masks are used to build up a set of MEMB mode bits. */
252b5132
RH
210#define A_BIT 0x0400
211#define I_BIT 0x0800
212#define MEMB_BIT 0x1000
213#define D_BIT 0x2000
214
252b5132
RH
215/* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
216 used). */
217#define MEMA_ABASE 0x2000
218
ea1562b3 219/* Info from which a MEMA or MEMB format instruction can be generated. */
b9195351 220typedef struct memS
252b5132 221 {
ea1562b3 222 /* (First) 32 bits of instruction. */
252b5132 223 long opcode;
ea1562b3 224 /* 0-(none), 12- or, 32-bit displacement needed. */
252b5132
RH
225 int disp;
226 /* The expression in the source instruction from which the
227 displacement should be determined. */
228 char *e;
229 }
252b5132
RH
230memS;
231
ea1562b3 232/* The two pieces of info we need to generate a register operand. */
252b5132
RH
233struct regop
234 {
ea1562b3
NC
235 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg. */
236 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0). */
237 int n; /* Register number or literal value. */
252b5132
RH
238 };
239
252b5132
RH
240/* Number and assembler mnemonic for all registers that can appear in
241 operands. */
242static const struct
243 {
244 char *reg_name;
245 int reg_num;
246 }
247regnames[] =
248{
249 { "pfp", 0 },
250 { "sp", 1 },
251 { "rip", 2 },
252 { "r3", 3 },
253 { "r4", 4 },
254 { "r5", 5 },
255 { "r6", 6 },
256 { "r7", 7 },
257 { "r8", 8 },
258 { "r9", 9 },
259 { "r10", 10 },
260 { "r11", 11 },
261 { "r12", 12 },
262 { "r13", 13 },
263 { "r14", 14 },
264 { "r15", 15 },
265 { "g0", 16 },
266 { "g1", 17 },
267 { "g2", 18 },
268 { "g3", 19 },
269 { "g4", 20 },
270 { "g5", 21 },
271 { "g6", 22 },
272 { "g7", 23 },
273 { "g8", 24 },
274 { "g9", 25 },
275 { "g10", 26 },
276 { "g11", 27 },
277 { "g12", 28 },
278 { "g13", 29 },
279 { "g14", 30 },
280 { "fp", 31 },
281
282 /* Numbers for special-function registers are for assembler internal
283 use only: they are scaled back to range [0-31] for binary output. */
284#define SF0 32
285
286 { "sf0", 32 },
287 { "sf1", 33 },
288 { "sf2", 34 },
289 { "sf3", 35 },
290 { "sf4", 36 },
291 { "sf5", 37 },
292 { "sf6", 38 },
293 { "sf7", 39 },
294 { "sf8", 40 },
295 { "sf9", 41 },
296 { "sf10", 42 },
297 { "sf11", 43 },
298 { "sf12", 44 },
299 { "sf13", 45 },
300 { "sf14", 46 },
301 { "sf15", 47 },
302 { "sf16", 48 },
303 { "sf17", 49 },
304 { "sf18", 50 },
305 { "sf19", 51 },
306 { "sf20", 52 },
307 { "sf21", 53 },
308 { "sf22", 54 },
309 { "sf23", 55 },
310 { "sf24", 56 },
311 { "sf25", 57 },
312 { "sf26", 58 },
313 { "sf27", 59 },
314 { "sf28", 60 },
315 { "sf29", 61 },
316 { "sf30", 62 },
317 { "sf31", 63 },
318
319 /* Numbers for floating point registers are for assembler internal
320 use only: they are scaled back to [0-3] for binary output. */
321#define FP0 64
322
323 { "fp0", 64 },
324 { "fp1", 65 },
325 { "fp2", 66 },
326 { "fp3", 67 },
327
328 { NULL, 0 }, /* END OF LIST */
329};
330
331#define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
332#define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
333#define IS_FP_REG(n) ((n) >= FP0)
334
335/* Number and assembler mnemonic for all registers that can appear as
336 'abase' (indirect addressing) registers. */
337static const struct
ea1562b3
NC
338{
339 char *areg_name;
340 int areg_num;
341}
252b5132
RH
342aregs[] =
343{
344 { "(pfp)", 0 },
345 { "(sp)", 1 },
346 { "(rip)", 2 },
347 { "(r3)", 3 },
348 { "(r4)", 4 },
349 { "(r5)", 5 },
350 { "(r6)", 6 },
351 { "(r7)", 7 },
352 { "(r8)", 8 },
353 { "(r9)", 9 },
354 { "(r10)", 10 },
355 { "(r11)", 11 },
356 { "(r12)", 12 },
357 { "(r13)", 13 },
358 { "(r14)", 14 },
359 { "(r15)", 15 },
360 { "(g0)", 16 },
361 { "(g1)", 17 },
362 { "(g2)", 18 },
363 { "(g3)", 19 },
364 { "(g4)", 20 },
365 { "(g5)", 21 },
366 { "(g6)", 22 },
367 { "(g7)", 23 },
368 { "(g8)", 24 },
369 { "(g9)", 25 },
370 { "(g10)", 26 },
371 { "(g11)", 27 },
372 { "(g12)", 28 },
373 { "(g13)", 29 },
374 { "(g14)", 30 },
375 { "(fp)", 31 },
376
377#define IPREL 32
378 /* For assembler internal use only: this number never appears in binary
379 output. */
380 { "(ip)", IPREL },
381
382 { NULL, 0 }, /* END OF LIST */
383};
384
ea1562b3
NC
385/* Hash tables. */
386static struct hash_control *op_hash; /* Opcode mnemonics. */
387static struct hash_control *reg_hash; /* Register name hash table. */
388static struct hash_control *areg_hash; /* Abase register hash table. */
252b5132 389
ea1562b3
NC
390/* Architecture for which we are assembling. */
391#define ARCH_ANY 0 /* Default: no architecture checking done. */
252b5132
RH
392#define ARCH_KA 1
393#define ARCH_KB 2
394#define ARCH_MC 3
395#define ARCH_CA 4
396#define ARCH_JX 5
397#define ARCH_HX 6
ea1562b3 398int architecture = ARCH_ANY; /* Architecture requested on invocation line. */
252b5132 399int iclasses_seen; /* OR of instruction classes (I_* constants)
ea1562b3
NC
400 for which we've actually assembled
401 instructions. */
252b5132 402
252b5132
RH
403/* BRANCH-PREDICTION INSTRUMENTATION
404
405 The following supports generation of branch-prediction instrumentation
406 (turned on by -b switch). The instrumentation collects counts
407 of branches taken/not-taken for later input to a utility that will
408 set the branch prediction bits of the instructions in accordance with
409 the behavior observed. (Note that the KX series does not have
410 brach-prediction.)
411
412 The instrumentation consists of:
413
414 (1) before and after each conditional branch, a call to an external
415 routine that increments and steps over an inline counter. The
416 counter itself, initialized to 0, immediately follows the call
417 instruction. For each branch, the counter following the branch
418 is the number of times the branch was not taken, and the difference
419 between the counters is the number of times it was taken. An
420 example of an instrumented conditional branch:
421
422 call BR_CNT_FUNC
423 .word 0
424 LBRANCH23: be label
425 call BR_CNT_FUNC
426 .word 0
427
428 (2) a table of pointers to the instrumented branches, so that an
429 external postprocessing routine can locate all of the counters.
430 the table begins with a 2-word header: a pointer to the next in
431 a linked list of such tables (initialized to 0); and a count
432 of the number of entries in the table (exclusive of the header.
433
434 Note that input source code is expected to already contain calls
435 an external routine that will link the branch local table into a
ea1562b3 436 list of such tables. */
252b5132
RH
437
438/* Number of branches instrumented so far. Also used to generate
439 unique local labels for each instrumented branch. */
440static int br_cnt;
441
442#define BR_LABEL_BASE "LBRANCH"
443/* Basename of local labels on instrumented branches, to avoid
444 conflict with compiler- generated local labels. */
445
446#define BR_CNT_FUNC "__inc_branch"
447/* Name of the external routine that will increment (and step over) an
448 inline counter. */
449
450#define BR_TAB_NAME "__BRANCH_TABLE__"
451/* Name of the table of pointers to branches. A local (i.e.,
452 non-external) symbol. */
252b5132 453
ea1562b3 454static void ctrl_fmt (char *, long, int);
252b5132 455
ea1562b3 456\f
252b5132 457void
ea1562b3 458md_begin (void)
252b5132 459{
ea1562b3
NC
460 int i; /* Loop counter. */
461 const struct i960_opcode *oP; /* Pointer into opcode table. */
462 const char *retval; /* Value returned by hash functions. */
252b5132
RH
463
464 op_hash = hash_new ();
465 reg_hash = hash_new ();
466 areg_hash = hash_new ();
467
468 /* For some reason, the base assembler uses an empty string for "no
469 error message", instead of a NULL pointer. */
470 retval = 0;
471
472 for (oP = i960_opcodes; oP->name && !retval; oP++)
ea1562b3 473 retval = hash_insert (op_hash, oP->name, (void *) oP);
252b5132
RH
474
475 for (i = 0; regnames[i].reg_name && !retval; i++)
476 retval = hash_insert (reg_hash, regnames[i].reg_name,
477 (char *) &regnames[i].reg_num);
478
479 for (i = 0; aregs[i].areg_name && !retval; i++)
480 retval = hash_insert (areg_hash, aregs[i].areg_name,
481 (char *) &aregs[i].areg_num);
482
483 if (retval)
484 as_fatal (_("Hashing returned \"%s\"."), retval);
485}
486
ea1562b3 487/* parse_expr: parse an expression
252b5132 488
ea1562b3
NC
489 Use base assembler's expression parser to parse an expression.
490 It, unfortunately, runs off a global which we have to save/restore
491 in order to make it work for us.
252b5132 492
ea1562b3 493 An empty expression string is treated as an absolute 0.
252b5132 494
ea1562b3
NC
495 Sets O_illegal regardless of expression evaluation if entire input
496 string is not consumed in the evaluation -- tolerate no dangling junk! */
252b5132 497
ea1562b3
NC
498static void
499parse_expr (char *textP, /* Text of expression to be parsed. */
500 expressionS *expP) /* Where to put the results of parsing. */
501{
502 char *save_in; /* Save global here. */
503 symbolS *symP;
252b5132 504
ea1562b3 505 know (textP);
252b5132 506
ea1562b3 507 if (*textP == '\0')
252b5132 508 {
ea1562b3
NC
509 /* Treat empty string as absolute 0. */
510 expP->X_add_symbol = expP->X_op_symbol = NULL;
511 expP->X_add_number = 0;
512 expP->X_op = O_constant;
252b5132 513 }
ea1562b3 514 else
252b5132 515 {
ea1562b3
NC
516 save_in = input_line_pointer; /* Save global. */
517 input_line_pointer = textP; /* Make parser work for us. */
252b5132 518
ea1562b3
NC
519 (void) expression (expP);
520 if ((size_t) (input_line_pointer - textP) != strlen (textP))
521 /* Did not consume all of the input. */
522 expP->X_op = O_illegal;
252b5132 523
ea1562b3
NC
524 symP = expP->X_add_symbol;
525 if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
526 /* Register name in an expression. */
527 /* FIXME: this isn't much of a check any more. */
528 expP->X_op = O_illegal;
252b5132 529
ea1562b3 530 input_line_pointer = save_in; /* Restore global. */
252b5132 531 }
ea1562b3
NC
532}
533
534/* emit: output instruction binary
535
536 Output instruction binary, in target byte order, 4 bytes at a time.
537 Return pointer to where it was placed. */
538
539static char *
540emit (long instr) /* Word to be output, host byte order. */
541{
542 char *toP; /* Where to output it. */
543
544 toP = frag_more (4); /* Allocate storage. */
545 md_number_to_chars (toP, instr, 4); /* Convert to target byte order. */
546 return toP;
547}
548
549/* get_cdisp: handle displacement for a COBR or CTRL instruction.
550
551 Parse displacement for a COBR or CTRL instruction.
552
553 If successful, output the instruction opcode and set up for it,
554 depending on the arg 'var_frag', either:
555 o an address fixup to be done when all symbol values are known, or
556 o a varying length code fragment, with address fixup info. This
557 will be done for cobr instructions that may have to be relaxed
558 in to compare/branch instructions (8 bytes) if the final
559 address displacement is greater than 13 bits. */
560
561static void
562get_cdisp (char *dispP, /* Displacement as specified in source instruction. */
563 char *ifmtP, /* "COBR" or "CTRL" (for use in error message). */
564 long instr, /* Instruction needing the displacement. */
565 int numbits, /* # bits of displacement (13 for COBR, 24 for CTRL). */
566 int var_frag,/* 1 if varying length code fragment should be emitted;
567 0 if an address fix should be emitted. */
568 int callj) /* 1 if callj relocation should be done; else 0. */
569{
570 expressionS e; /* Parsed expression. */
571 fixS *fixP; /* Structure describing needed address fix. */
572 char *outP; /* Where instruction binary is output to. */
573
574 fixP = NULL;
575
576 parse_expr (dispP, &e);
577 switch (e.X_op)
252b5132 578 {
ea1562b3
NC
579 case O_illegal:
580 as_bad (_("expression syntax error"));
581
582 case O_symbol:
583 if (S_GET_SEGMENT (e.X_add_symbol) == now_seg
584 || S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
252b5132 585 {
ea1562b3 586 if (var_frag)
252b5132 587 {
ea1562b3
NC
588 outP = frag_more (8); /* Allocate worst-case storage. */
589 md_number_to_chars (outP, instr, 4);
590 frag_variant (rs_machine_dependent, 4, 4, 1,
591 adds (e), offs (e), outP);
252b5132 592 }
ea1562b3 593 else
252b5132 594 {
ea1562b3
NC
595 /* Set up a new fix structure, so address can be updated
596 when all symbol values are known. */
597 outP = emit (instr);
598 fixP = fix_new (frag_now,
599 outP - frag_now->fr_literal,
600 4,
601 adds (e),
602 offs (e),
603 1,
604 NO_RELOC);
605
606 fixP->fx_tcbit = callj;
607
608 /* We want to modify a bit field when the address is
609 known. But we don't need all the garbage in the
610 bit_fix structure. So we're going to lie and store
611 the number of bits affected instead of a pointer. */
612 fixP->fx_bit_fixP = (bit_fixS *) (size_t) numbits;
252b5132 613 }
252b5132 614 }
ea1562b3
NC
615 else
616 as_bad (_("attempt to branch into different segment"));
617 break;
252b5132 618
ea1562b3
NC
619 default:
620 as_bad (_("target of %s instruction must be a label"), ifmtP);
621 break;
622 }
252b5132
RH
623}
624
b9195351 625static int
ea1562b3
NC
626md_chars_to_number (char * val, /* Value in target byte order. */
627 int n) /* Number of bytes in the input. */
252b5132
RH
628{
629 int retval;
630
631 for (retval = 0; n--;)
632 {
633 retval <<= 8;
2132e3a3 634 retval |= (unsigned char) val[n];
252b5132
RH
635 }
636 return retval;
637}
638
ea1562b3 639/* mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
252b5132 640
ea1562b3
NC
641 There are 2 possible MEMA formats:
642 - displacement only
643 - displacement + abase
252b5132 644
ea1562b3 645 They are distinguished by the setting of the MEMA_ABASE bit. */
252b5132 646
ea1562b3
NC
647static void
648mema_to_memb (char * opcodeP) /* Where to find the opcode, in target byte order. */
252b5132 649{
ea1562b3
NC
650 long opcode; /* Opcode in host byte order. */
651 long mode; /* Mode bits for MEMB instruction. */
252b5132 652
ea1562b3
NC
653 opcode = md_chars_to_number (opcodeP, 4);
654 know (!(opcode & MEMB_BIT));
252b5132 655
ea1562b3
NC
656 mode = MEMB_BIT | D_BIT;
657 if (opcode & MEMA_ABASE)
658 mode |= A_BIT;
252b5132 659
ea1562b3
NC
660 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits. */
661 opcode |= mode; /* Set MEMB mode bits. */
252b5132 662
ea1562b3 663 md_number_to_chars (opcodeP, opcode, 4);
252b5132
RH
664}
665
ea1562b3 666/* targ_has_sfr:
252b5132 667
ea1562b3
NC
668 Return TRUE iff the target architecture supports the specified
669 special-function register (sfr). */
252b5132 670
ea1562b3
NC
671static int
672targ_has_sfr (int n) /* Number (0-31) of sfr. */
252b5132 673{
ea1562b3
NC
674 switch (architecture)
675 {
676 case ARCH_KA:
677 case ARCH_KB:
678 case ARCH_MC:
679 case ARCH_JX:
680 return 0;
681 case ARCH_HX:
682 return ((0 <= n) && (n <= 4));
683 case ARCH_CA:
684 default:
685 return ((0 <= n) && (n <= 2));
686 }
252b5132
RH
687}
688
ea1562b3
NC
689/* Look up a (suspected) register name in the register table and return the
690 associated register number (or -1 if not found). */
691
692static int
693get_regnum (char *regname) /* Suspected register name. */
694{
695 int *rP;
252b5132 696
ea1562b3
NC
697 rP = (int *) hash_find (reg_hash, regname);
698 return (rP == NULL) ? -1 : *rP;
699}
252b5132 700
ea1562b3 701/* syntax: Issue a syntax error. */
b9195351
AM
702
703static void
ea1562b3 704syntax (void)
252b5132 705{
ea1562b3
NC
706 as_bad (_("syntax error"));
707}
252b5132 708
ea1562b3 709/* parse_regop: parse a register operand.
252b5132 710
ea1562b3
NC
711 In case of illegal operand, issue a message and return some valid
712 information so instruction processing can continue. */
252b5132 713
ea1562b3
NC
714static void
715parse_regop (struct regop *regopP, /* Where to put description of register operand. */
716 char *optext, /* Text of operand. */
717 char opdesc) /* Descriptor byte: what's legal for this operand. */
718{
719 int n; /* Register number. */
720 expressionS e; /* Parsed expression. */
252b5132 721
ea1562b3
NC
722 /* See if operand is a register. */
723 n = get_regnum (optext);
724 if (n >= 0)
252b5132 725 {
ea1562b3
NC
726 if (IS_RG_REG (n))
727 {
728 /* Global or local register. */
729 if (!REG_ALIGN (opdesc, n))
730 as_bad (_("unaligned register"));
252b5132 731
ea1562b3
NC
732 regopP->n = n;
733 regopP->mode = 0;
734 regopP->special = 0;
735 return;
736 }
737 else if (IS_FP_REG (n) && FP_OK (opdesc))
738 {
739 /* Floating point register, and it's allowed. */
740 regopP->n = n - FP0;
741 regopP->mode = 1;
742 regopP->special = 0;
743 return;
744 }
745 else if (IS_SF_REG (n) && SFR_OK (opdesc))
746 {
747 /* Special-function register, and it's allowed. */
748 regopP->n = n - SF0;
749 regopP->mode = 0;
750 regopP->special = 1;
751 if (!targ_has_sfr (regopP->n))
752 as_bad (_("no such sfr in this architecture"));
252b5132 753
ea1562b3
NC
754 return;
755 }
756 }
757 else if (LIT_OK (opdesc))
758 {
759 /* How about a literal? */
760 regopP->mode = 1;
761 regopP->special = 0;
762 if (FP_OK (opdesc))
763 {
764 /* Floating point literal acceptable. */
765 /* Skip over 0f, 0d, or 0e prefix. */
766 if ((optext[0] == '0')
767 && (optext[1] >= 'd')
768 && (optext[1] <= 'f'))
769 optext += 2;
252b5132 770
ea1562b3
NC
771 if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
772 {
773 regopP->n = 0x10;
774 return;
775 }
252b5132 776
ea1562b3
NC
777 if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
778 {
779 regopP->n = 0x16;
780 return;
781 }
782 }
783 else
784 {
785 /* Fixed point literal acceptable. */
786 parse_expr (optext, &e);
787 if (e.X_op != O_constant
788 || (offs (e) < 0) || (offs (e) > 31))
789 {
790 as_bad (_("illegal literal"));
791 offs (e) = 0;
792 }
793 regopP->n = offs (e);
794 return;
795 }
796 }
252b5132 797
ea1562b3
NC
798 /* Nothing worked. */
799 syntax ();
800 regopP->mode = 0; /* Register r0 is always a good one. */
801 regopP->n = 0;
802 regopP->special = 0;
803}
252b5132 804
ea1562b3
NC
805/* get_ispec: parse a memory operand for an index specification
806
807 Here, an "index specification" is taken to be anything surrounded
808 by square brackets and NOT followed by anything else.
252b5132 809
ea1562b3
NC
810 If it's found, detach it from the input string, remove the surrounding
811 square brackets, and return a pointer to it. Otherwise, return NULL. */
252b5132 812
ea1562b3
NC
813static char *
814get_ispec (char *textP) /* Pointer to memory operand from source instruction, no white space. */
815
252b5132 816{
ea1562b3
NC
817 /* Points to start of index specification. */
818 char *start;
819 /* Points to end of index specification. */
820 char *end;
252b5132 821
ea1562b3
NC
822 /* Find opening square bracket, if any. */
823 start = strchr (textP, '[');
252b5132 824
ea1562b3 825 if (start != NULL)
252b5132 826 {
ea1562b3
NC
827 /* Eliminate '[', detach from rest of operand. */
828 *start++ = '\0';
252b5132 829
ea1562b3 830 end = strchr (start, ']');
252b5132 831
ea1562b3
NC
832 if (end == NULL)
833 as_bad (_("unmatched '['"));
834 else
835 {
836 /* Eliminate ']' and make sure it was the last thing
837 in the string. */
838 *end = '\0';
839 if (*(end + 1) != '\0')
840 as_bad (_("garbage after index spec ignored"));
841 }
842 }
843 return start;
844}
252b5132 845
ea1562b3 846/* parse_memop: parse a memory operand
252b5132 847
ea1562b3
NC
848 This routine is based on the observation that the 4 mode bits of the
849 MEMB format, taken individually, have fairly consistent meaning:
252b5132 850
ea1562b3
NC
851 M3 (bit 13): 1 if displacement is present (D_BIT)
852 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
853 M1 (bit 11): 1 if index is present (I_BIT)
854 M0 (bit 10): 1 if abase is present (A_BIT)
252b5132 855
ea1562b3
NC
856 So we parse the memory operand and set bits in the mode as we find
857 things. Then at the end, if we go to MEMB format, we need only set
858 the MEMB bit (M2) and our mode is built for us.
252b5132 859
ea1562b3 860 Unfortunately, I said "fairly consistent". The exceptions:
252b5132 861
ea1562b3
NC
862 DBIA
863 0100 Would seem illegal, but means "abase-only".
252b5132 864
ea1562b3
NC
865 0101 Would seem to mean "abase-only" -- it means IP-relative.
866 Must be converted to 0100.
252b5132 867
ea1562b3
NC
868 0110 Would seem to mean "index-only", but is reserved.
869 We turn on the D bit and provide a 0 displacement.
252b5132 870
ea1562b3
NC
871 The other thing to observe is that we parse from the right, peeling
872 things * off as we go: first any index spec, then any abase, then
873 the displacement. */
252b5132 874
ea1562b3
NC
875static void
876parse_memop (memS *memP, /* Where to put the results. */
877 char *argP, /* Text of the operand to be parsed. */
878 int optype) /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16. */
252b5132 879{
ea1562b3
NC
880 char *indexP; /* Pointer to index specification with "[]" removed. */
881 char *p; /* Temp char pointer. */
882 char iprel_flag; /* True if this is an IP-relative operand. */
883 int regnum; /* Register number. */
884 /* Scale factor: 1,2,4,8, or 16. Later converted to internal format
885 (0,1,2,3,4 respectively). */
886 int scale;
887 int mode; /* MEMB mode bits. */
888 int *intP; /* Pointer to register number. */
252b5132 889
ea1562b3
NC
890 /* The following table contains the default scale factors for each
891 type of memory instruction. It is accessed using (optype-MEM1)
892 as an index -- thus it assumes the 'optype' constants are
893 assigned consecutive values, in the order they appear in this
894 table. */
895 static const int def_scale[] =
896 {
897 1, /* MEM1 */
898 2, /* MEM2 */
899 4, /* MEM4 */
900 8, /* MEM8 */
901 -1, /* MEM12 -- no valid default */
902 16 /* MEM16 */
903 };
252b5132 904
ea1562b3 905 iprel_flag = mode = 0;
252b5132 906
ea1562b3
NC
907 /* Any index present? */
908 indexP = get_ispec (argP);
909 if (indexP)
252b5132 910 {
ea1562b3
NC
911 p = strchr (indexP, '*');
912 if (p == NULL)
913 {
914 /* No explicit scale -- use default for this instruction
915 type and assembler mode. */
916 if (flag_mri)
917 scale = 1;
918 else
919 /* GNU960 compatibility */
920 scale = def_scale[optype - MEM1];
921 }
922 else
923 {
924 *p++ = '\0'; /* Eliminate '*' */
252b5132 925
ea1562b3
NC
926 /* Now indexP->a '\0'-terminated register name,
927 and p->a scale factor. */
252b5132 928
ea1562b3
NC
929 if (!strcmp (p, "16"))
930 scale = 16;
931 else if (strchr ("1248", *p) && (p[1] == '\0'))
932 scale = *p - '0';
933 else
934 scale = -1;
935 }
252b5132 936
ea1562b3
NC
937 regnum = get_regnum (indexP); /* Get index reg. # */
938 if (!IS_RG_REG (regnum))
939 {
940 as_bad (_("invalid index register"));
941 return;
942 }
252b5132 943
ea1562b3
NC
944 /* Convert scale to its binary encoding. */
945 switch (scale)
946 {
947 case 1:
948 scale = 0 << 7;
949 break;
950 case 2:
951 scale = 1 << 7;
952 break;
953 case 4:
954 scale = 2 << 7;
955 break;
956 case 8:
957 scale = 3 << 7;
958 break;
959 case 16:
960 scale = 4 << 7;
961 break;
962 default:
963 as_bad (_("invalid scale factor"));
964 return;
965 };
bedf545c 966
ea1562b3
NC
967 memP->opcode |= scale | regnum; /* Set index bits in opcode. */
968 mode |= I_BIT; /* Found a valid index spec. */
969 }
252b5132 970
ea1562b3
NC
971 /* Any abase (Register Indirect) specification present? */
972 if ((p = strrchr (argP, '(')) != NULL)
973 {
974 /* "(" is there -- does it start a legal abase spec? If not, it
975 could be part of a displacement expression. */
976 intP = (int *) hash_find (areg_hash, p);
977 if (intP != NULL)
978 {
979 /* Got an abase here. */
980 regnum = *intP;
981 *p = '\0'; /* Discard register spec. */
982 if (regnum == IPREL)
983 /* We have to specialcase ip-rel mode. */
984 iprel_flag = 1;
985 else
986 {
987 memP->opcode |= regnum << 14;
988 mode |= A_BIT;
989 }
990 }
991 }
bedf545c 992
ea1562b3
NC
993 /* Any expression present? */
994 memP->e = argP;
995 if (*argP != '\0')
996 mode |= D_BIT;
252b5132 997
ea1562b3
NC
998 /* Special-case ip-relative addressing. */
999 if (iprel_flag)
1000 {
1001 if (mode & I_BIT)
1002 syntax ();
1003 else
1004 {
1005 memP->opcode |= 5 << 10; /* IP-relative mode. */
1006 memP->disp = 32;
1007 }
1008 return;
1009 }
252b5132 1010
ea1562b3
NC
1011 /* Handle all other modes. */
1012 switch (mode)
1013 {
1014 case D_BIT | A_BIT:
1015 /* Go with MEMA instruction format for now (grow to MEMB later
1016 if 12 bits is not enough for the displacement). MEMA format
1017 has a single mode bit: set it to indicate that abase is
1018 present. */
1019 memP->opcode |= MEMA_ABASE;
1020 memP->disp = 12;
1021 break;
252b5132 1022
ea1562b3
NC
1023 case D_BIT:
1024 /* Go with MEMA instruction format for now (grow to MEMB later
1025 if 12 bits is not enough for the displacement). */
1026 memP->disp = 12;
1027 break;
252b5132 1028
ea1562b3
NC
1029 case A_BIT:
1030 /* For some reason, the bit string for this mode is not
1031 consistent: it should be 0 (exclusive of the MEMB bit), so we
1032 set it "by hand" here. */
1033 memP->opcode |= MEMB_BIT;
1034 break;
252b5132 1035
ea1562b3
NC
1036 case A_BIT | I_BIT:
1037 /* set MEMB bit in mode, and OR in mode bits. */
1038 memP->opcode |= mode | MEMB_BIT;
1039 break;
252b5132 1040
ea1562b3
NC
1041 case I_BIT:
1042 /* Treat missing displacement as displacement of 0. */
1043 mode |= D_BIT;
1044 /* Fall into next case. */
1045 case D_BIT | A_BIT | I_BIT:
1046 case D_BIT | I_BIT:
1047 /* Set MEMB bit in mode, and OR in mode bits. */
1048 memP->opcode |= mode | MEMB_BIT;
1049 memP->disp = 32;
1050 break;
252b5132 1051
ea1562b3
NC
1052 default:
1053 syntax ();
1054 break;
1055 }
1056}
252b5132 1057
ea1562b3 1058/* Generate a MEMA- or MEMB-format instruction. */
252b5132 1059
ea1562b3
NC
1060static void
1061mem_fmt (char *args[], /* args[0]->opcode mnemonic, args[1-3]->operands. */
1062 struct i960_opcode *oP,/* Pointer to description of instruction. */
1063 int callx) /* Is this a callx opcode. */
252b5132 1064{
ea1562b3
NC
1065 int i; /* Loop counter. */
1066 struct regop regop; /* Description of register operand. */
1067 char opdesc; /* Operand descriptor byte. */
1068 memS instr; /* Description of binary to be output. */
1069 char *outP; /* Where the binary was output to. */
87975d2a 1070 expressionS exp; /* Parsed expression. */
ea1562b3 1071 /* ->description of deferred address fixup. */
252b5132
RH
1072 fixS *fixP;
1073
ea1562b3
NC
1074#ifdef OBJ_COFF
1075 /* COFF support isn't in place yet for callx relaxing. */
1076 callx = 0;
1077#endif
252b5132 1078
ea1562b3
NC
1079 memset (&instr, '\0', sizeof (memS));
1080 instr.opcode = oP->opcode;
252b5132 1081
ea1562b3
NC
1082 /* Process operands. */
1083 for (i = 1; i <= oP->num_ops; i++)
252b5132 1084 {
ea1562b3
NC
1085 opdesc = oP->operand[i - 1];
1086
1087 if (MEMOP (opdesc))
1088 parse_memop (&instr, args[i], oP->format);
1089 else
1090 {
1091 parse_regop (&regop, args[i], opdesc);
1092 instr.opcode |= regop.n << 19;
1093 }
252b5132 1094 }
252b5132 1095
ea1562b3
NC
1096 /* Parse the displacement; this must be done before emitting the
1097 opcode, in case it is an expression using `.'. */
87975d2a 1098 parse_expr (instr.e, &exp);
252b5132 1099
ea1562b3
NC
1100 /* Output opcode. */
1101 outP = emit (instr.opcode);
252b5132 1102
ea1562b3
NC
1103 if (instr.disp == 0)
1104 return;
252b5132 1105
ea1562b3 1106 /* Process the displacement. */
87975d2a 1107 switch (exp.X_op)
252b5132 1108 {
ea1562b3
NC
1109 case O_illegal:
1110 as_bad (_("expression syntax error"));
1111 break;
252b5132 1112
ea1562b3
NC
1113 case O_constant:
1114 if (instr.disp == 32)
87975d2a 1115 (void) emit (offs (exp)); /* Output displacement. */
ea1562b3
NC
1116 else
1117 {
1118 /* 12-bit displacement. */
87975d2a 1119 if (offs (exp) & ~0xfff)
ea1562b3
NC
1120 {
1121 /* Won't fit in 12 bits: convert already-output
1122 instruction to MEMB format, output
1123 displacement. */
1124 mema_to_memb (outP);
87975d2a 1125 (void) emit (offs (exp));
ea1562b3
NC
1126 }
1127 else
1128 {
1129 /* WILL fit in 12 bits: OR into opcode and
1130 overwrite the binary we already put out. */
87975d2a 1131 instr.opcode |= offs (exp);
ea1562b3
NC
1132 md_number_to_chars (outP, instr.opcode, 4);
1133 }
1134 }
1135 break;
252b5132 1136
ea1562b3
NC
1137 default:
1138 if (instr.disp == 12)
1139 /* Displacement is dependent on a symbol, whose value
1140 may change at link time. We HAVE to reserve 32 bits.
1141 Convert already-output opcode to MEMB format. */
1142 mema_to_memb (outP);
1143
1144 /* Output 0 displacement and set up address fixup for when
1145 this symbol's value becomes known. */
1146 outP = emit ((long) 0);
1147 fixP = fix_new_exp (frag_now,
1148 outP - frag_now->fr_literal,
87975d2a 1149 4, &exp, 0, NO_RELOC);
ea1562b3
NC
1150 /* Steve's linker relaxing hack. Mark this 32-bit relocation as
1151 being in the instruction stream, specifically as part of a callx
1152 instruction. */
1153 fixP->fx_bsr = callx;
1154 break;
252b5132 1155 }
ea1562b3
NC
1156}
1157
1158/* targ_has_iclass:
1159
1160 Return TRUE iff the target architecture supports the indicated
1161 class of instructions. */
1162
1163static int
1164targ_has_iclass (int ic) /* Instruction class; one of:
1165 I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2. */
1166{
1167 iclasses_seen |= ic;
1168
1169 switch (architecture)
252b5132 1170 {
ea1562b3
NC
1171 case ARCH_KA:
1172 return ic & (I_BASE | I_KX);
1173 case ARCH_KB:
1174 return ic & (I_BASE | I_KX | I_FP | I_DEC);
1175 case ARCH_MC:
1176 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
1177 case ARCH_CA:
1178 return ic & (I_BASE | I_CX | I_CX2 | I_CASIM);
1179 case ARCH_JX:
1180 return ic & (I_BASE | I_CX2 | I_JX);
1181 case ARCH_HX:
1182 return ic & (I_BASE | I_CX2 | I_JX | I_HX);
1183 default:
1184 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
1185 && (iclasses_seen & (I_CX | I_CX2)))
252b5132 1186 {
ea1562b3
NC
1187 as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)"));
1188 iclasses_seen &= ~ic;
252b5132 1189 }
ea1562b3
NC
1190 return 1;
1191 }
1192}
252b5132 1193
ea1562b3
NC
1194/* shift_ok:
1195 Determine if a "shlo" instruction can be used to implement a "ldconst".
1196 This means that some number X < 32 can be shifted left to produce the
1197 constant of interest.
252b5132 1198
ea1562b3
NC
1199 Return the shift count, or 0 if we can't do it.
1200 Caller calculates X by shifting original constant right 'shift' places. */
1201
1202static int
1203shift_ok (int n) /* The constant of interest. */
1204{
1205 int shift; /* The shift count. */
1206
1207 if (n <= 0)
1208 /* Can't do it for negative numbers. */
1209 return 0;
1210
1211 /* Shift 'n' right until a 1 is about to be lost. */
1212 for (shift = 0; (n & 1) == 0; shift++)
1213 n >>= 1;
1214
1215 if (n >= 32)
1216 return 0;
1217
1218 return shift;
1219}
1220
1221/* parse_ldcont:
1222 Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1223 i80960 instruction.
1224
1225 Assumes the input consists of:
1226 arg[0] opcode mnemonic ('ldconst')
1227 arg[1] first operand (constant)
1228 arg[2] name of register to be loaded
1229
1230 Replaces opcode and/or operands as appropriate.
1231
1232 Returns the new number of arguments, or -1 on failure. */
1233
1234static int
1235parse_ldconst (char *arg[]) /* See above. */
1236{
1237 int n; /* Constant to be loaded. */
1238 int shift; /* Shift count for "shlo" instruction. */
1239 static char buf[5]; /* Literal for first operand. */
1240 static char buf2[5]; /* Literal for second operand. */
1241 expressionS e; /* Parsed expression. */
1242
1243 arg[3] = NULL; /* So we can tell at the end if it got used or not. */
1244
1245 parse_expr (arg[1], &e);
1246 switch (e.X_op)
1247 {
1248 default:
1249 /* We're dependent on one or more symbols -- use "lda". */
1250 arg[0] = "lda";
1251 break;
1252
1253 case O_constant:
1254 /* Try the following mappings:
1255 ldconst 0,<reg> -> mov 0,<reg>
1256 ldconst 31,<reg> -> mov 31,<reg>
1257 ldconst 32,<reg> -> addo 1,31,<reg>
1258 ldconst 62,<reg> -> addo 31,31,<reg>
1259 ldconst 64,<reg> -> shlo 8,3,<reg>
1260 ldconst -1,<reg> -> subo 1,0,<reg>
1261 ldconst -31,<reg> -> subo 31,0,<reg>
1262
1263 Anything else becomes:
1264 lda xxx,<reg>. */
1265 n = offs (e);
1266 if ((0 <= n) && (n <= 31))
1267 arg[0] = "mov";
1268 else if ((-31 <= n) && (n <= -1))
252b5132 1269 {
ea1562b3
NC
1270 arg[0] = "subo";
1271 arg[3] = arg[2];
1272 sprintf (buf, "%d", -n);
1273 arg[1] = buf;
1274 arg[2] = "0";
1275 }
1276 else if ((32 <= n) && (n <= 62))
1277 {
1278 arg[0] = "addo";
1279 arg[3] = arg[2];
1280 arg[1] = "31";
1281 sprintf (buf, "%d", n - 31);
1282 arg[2] = buf;
252b5132 1283 }
ea1562b3
NC
1284 else if ((shift = shift_ok (n)) != 0)
1285 {
1286 arg[0] = "shlo";
1287 arg[3] = arg[2];
1288 sprintf (buf, "%d", shift);
1289 arg[1] = buf;
1290 sprintf (buf2, "%d", n >> shift);
1291 arg[2] = buf2;
1292 }
1293 else
1294 arg[0] = "lda";
1295 break;
1296
1297 case O_illegal:
1298 as_bad (_("invalid constant"));
1299 return -1;
1300 break;
252b5132 1301 }
ea1562b3
NC
1302 return (arg[3] == 0) ? 2 : 3;
1303}
252b5132 1304
ea1562b3 1305/* reg_fmt: generate a REG-format instruction. */
252b5132 1306
b9195351 1307static void
ea1562b3
NC
1308reg_fmt (char *args[], /* args[0]->opcode mnemonic, args[1-3]->operands. */
1309 struct i960_opcode *oP)/* Pointer to description of instruction. */
252b5132 1310{
ea1562b3
NC
1311 long instr; /* Binary to be output. */
1312 struct regop regop; /* Description of register operand. */
1313 int n_ops; /* Number of operands. */
252b5132 1314
ea1562b3
NC
1315 instr = oP->opcode;
1316 n_ops = oP->num_ops;
252b5132 1317
ea1562b3
NC
1318 if (n_ops >= 1)
1319 {
1320 parse_regop (&regop, args[1], oP->operand[0]);
252b5132 1321
ea1562b3 1322 if ((n_ops == 1) && !(instr & M3))
252b5132 1323 {
ea1562b3
NC
1324 /* 1-operand instruction in which the dst field should
1325 be used (instead of src1). */
1326 regop.n <<= 19;
1327 if (regop.special)
1328 regop.mode = regop.special;
1329 regop.mode <<= 13;
1330 regop.special = 0;
252b5132 1331 }
ea1562b3 1332 else
252b5132 1333 {
ea1562b3
NC
1334 /* regop.n goes in bit 0, needs no shifting. */
1335 regop.mode <<= 11;
1336 regop.special <<= 5;
252b5132 1337 }
ea1562b3 1338 instr |= regop.n | regop.mode | regop.special;
252b5132
RH
1339 }
1340
ea1562b3
NC
1341 if (n_ops >= 2)
1342 {
1343 parse_regop (&regop, args[2], oP->operand[1]);
252b5132 1344
ea1562b3
NC
1345 if ((n_ops == 2) && !(instr & M3))
1346 {
1347 /* 2-operand instruction in which the dst field should
1348 be used instead of src2). */
1349 regop.n <<= 19;
1350 if (regop.special)
1351 regop.mode = regop.special;
1352 regop.mode <<= 13;
1353 regop.special = 0;
1354 }
1355 else
1356 {
1357 regop.n <<= 14;
1358 regop.mode <<= 12;
1359 regop.special <<= 6;
1360 }
1361 instr |= regop.n | regop.mode | regop.special;
1362 }
1363 if (n_ops == 3)
1364 {
1365 parse_regop (&regop, args[3], oP->operand[2]);
1366 if (regop.special)
1367 regop.mode = regop.special;
1368 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
1369 }
1370 emit (instr);
252b5132
RH
1371}
1372
ea1562b3 1373/* get_args: break individual arguments out of comma-separated list
252b5132
RH
1374
1375 Input assumptions:
1376 - all comments and labels have been removed
1377 - all strings of whitespace have been collapsed to a single blank.
1378 - all character constants ('x') have been replaced with decimal
1379
1380 Output:
1381 args[0] is untouched. args[1] points to first operand, etc. All args:
1382 - are NULL-terminated
1383 - contain no whitespace
1384
1385 Return value:
ea1562b3 1386 Number of operands (0,1,2, or 3) or -1 on error. */
252b5132 1387
252b5132 1388static int
ea1562b3
NC
1389get_args (char *p, /* Pointer to comma-separated operands; Mucked by us. */
1390 char *args[]) /* Output arg: pointers to operands placed in args[1-3].
1391 Must accommodate 4 entries (args[0-3]). */
1392
252b5132 1393{
ea1562b3
NC
1394 int n; /* Number of operands. */
1395 char *to;
252b5132 1396
ea1562b3 1397 /* Skip lead white space. */
252b5132 1398 while (*p == ' ')
ea1562b3 1399 p++;
252b5132
RH
1400
1401 if (*p == '\0')
ea1562b3 1402 return 0;
252b5132
RH
1403
1404 n = 1;
1405 args[1] = p;
1406
1407 /* Squeze blanks out by moving non-blanks toward start of string.
ea1562b3 1408 Isolate operands, whenever comma is found. */
252b5132
RH
1409 to = p;
1410 while (*p != '\0')
1411 {
252b5132 1412 if (*p == ' '
3882b010
L
1413 && (! ISALNUM (p[1])
1414 || ! ISALNUM (p[-1])))
ea1562b3 1415 p++;
252b5132
RH
1416 else if (*p == ',')
1417 {
ea1562b3 1418 /* Start of operand. */
252b5132
RH
1419 if (n == 3)
1420 {
1421 as_bad (_("too many operands"));
1422 return -1;
1423 }
ea1562b3
NC
1424 *to++ = '\0'; /* Terminate argument. */
1425 args[++n] = to; /* Start next argument. */
252b5132 1426 p++;
252b5132
RH
1427 }
1428 else
ea1562b3 1429 *to++ = *p++;
252b5132
RH
1430 }
1431 *to = '\0';
1432 return n;
1433}
1434
ea1562b3 1435/* i_scan: perform lexical scan of ascii assembler instruction.
252b5132 1436
ea1562b3
NC
1437 Input assumptions:
1438 - input string is an i80960 instruction (not a pseudo-op)
1439 - all comments and labels have been removed
1440 - all strings of whitespace have been collapsed to a single blank.
252b5132 1441
ea1562b3
NC
1442 Output:
1443 args[0] points to opcode, other entries point to operands. All strings:
1444 - are NULL-terminated
1445 - contain no whitespace
1446 - have character constants ('x') replaced with a decimal number
252b5132
RH
1447
1448 Return value:
ea1562b3 1449 Number of operands (0,1,2, or 3) or -1 on error. */
252b5132 1450
252b5132 1451static int
ea1562b3
NC
1452i_scan (char *iP, /* Pointer to ascii instruction; Mucked by us. */
1453 char *args[]) /* Output arg: pointers to opcode and operands placed here.
1454 Must accommodate 4 entries. */
252b5132 1455{
ea1562b3 1456 /* Isolate opcode. */
252b5132 1457 if (*(iP) == ' ')
ea1562b3
NC
1458 iP++;
1459
252b5132
RH
1460 args[0] = iP;
1461 for (; *iP != ' '; iP++)
1462 {
1463 if (*iP == '\0')
1464 {
ea1562b3 1465 /* There are no operands. */
252b5132
RH
1466 if (args[0] == iP)
1467 {
ea1562b3 1468 /* We never moved: there was no opcode either! */
252b5132
RH
1469 as_bad (_("missing opcode"));
1470 return -1;
1471 }
1472 return 0;
1473 }
1474 }
ea1562b3 1475 *iP++ = '\0';
252b5132 1476 return (get_args (iP, args));
ea1562b3 1477}
252b5132 1478
252b5132 1479static void
ea1562b3
NC
1480brcnt_emit (void)
1481{
1482 /* Emit call to "increment" routine. */
1483 ctrl_fmt (BR_CNT_FUNC, CALL, 1);
1484 /* Emit inline counter to be incremented. */
1485 emit (0);
1486}
252b5132 1487
ea1562b3
NC
1488static char *
1489brlab_next (void)
1490{
1491 static char buf[20];
252b5132 1492
ea1562b3
NC
1493 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1494 return buf;
1495}
252b5132 1496
ea1562b3
NC
1497static void
1498ctrl_fmt (char *targP, /* Pointer to text of lone operand (if any). */
1499 long opcode, /* Template of instruction. */
1500 int num_ops) /* Number of operands. */
1501{
1502 int instrument; /* TRUE iff we should add instrumentation to track
1503 how often the branch is taken. */
1504
1505 if (num_ops == 0)
1506 emit (opcode); /* Output opcode. */
1507 else
252b5132 1508 {
ea1562b3
NC
1509 instrument = instrument_branches && (opcode != CALL)
1510 && (opcode != B) && (opcode != RET) && (opcode != BAL);
252b5132 1511
ea1562b3 1512 if (instrument)
252b5132 1513 {
ea1562b3
NC
1514 brcnt_emit ();
1515 colon (brlab_next ());
252b5132 1516 }
ea1562b3
NC
1517
1518 /* The operand MUST be an ip-relative displacement. Parse it
1519 and set up address fix for the instruction we just output. */
1520 get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
1521
1522 if (instrument)
1523 brcnt_emit ();
252b5132 1524 }
ea1562b3 1525}
252b5132 1526
ea1562b3
NC
1527static void
1528cobr_fmt (/* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1529 char *arg[],
1530 /* Opcode, with branch-prediction bits already set if necessary. */
1531 long opcode,
1532 /* Pointer to description of instruction. */
1533 struct i960_opcode *oP)
1534{
1535 long instr; /* 32-bit instruction. */
1536 struct regop regop; /* Description of register operand. */
1537 int n; /* Number of operands. */
1538 int var_frag; /* 1 if varying length code fragment should
1539 be emitted; 0 if an address fix
1540 should be emitted. */
252b5132 1541
ea1562b3
NC
1542 instr = opcode;
1543 n = oP->num_ops;
252b5132 1544
ea1562b3 1545 if (n >= 1)
252b5132 1546 {
ea1562b3
NC
1547 /* First operand (if any) of a COBR is always a register
1548 operand. Parse it. */
1549 parse_regop (&regop, arg[1], oP->operand[0]);
1550 instr |= (regop.n << 19) | (regop.mode << 13);
252b5132
RH
1551 }
1552
ea1562b3 1553 if (n >= 2)
252b5132 1554 {
ea1562b3
NC
1555 /* Second operand (if any) of a COBR is always a register
1556 operand. Parse it. */
1557 parse_regop (&regop, arg[2], oP->operand[1]);
1558 instr |= (regop.n << 14) | regop.special;
1559 }
252b5132 1560
ea1562b3
NC
1561 if (n < 3)
1562 emit (instr);
1563 else
1564 {
1565 if (instrument_branches)
252b5132 1566 {
ea1562b3
NC
1567 brcnt_emit ();
1568 colon (brlab_next ());
252b5132 1569 }
252b5132 1570
ea1562b3
NC
1571 /* A third operand to a COBR is always a displacement. Parse
1572 it; if it's relaxable (a cobr "j" directive, or any cobr
1573 other than bbs/bbc when the "-norelax" option is not in use)
1574 set up a variable code fragment; otherwise set up an address
1575 fix. */
1576 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1577 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
252b5132 1578
ea1562b3
NC
1579 if (instrument_branches)
1580 brcnt_emit ();
252b5132 1581 }
ea1562b3 1582}
252b5132 1583
ea1562b3
NC
1584/* Assumptions about the passed-in text:
1585 - all comments, labels removed
1586 - text is an instruction
1587 - all white space compressed to single blanks
1588 - all character constants have been replaced with decimal. */
252b5132 1589
ea1562b3
NC
1590void
1591md_assemble (char *textP)
1592{
1593 /* Parsed instruction text, containing NO whitespace: arg[0]->opcode
1594 mnemonic arg[1-3]->operands, with char constants replaced by
1595 decimal numbers. */
1596 char *args[4];
1597 /* Number of instruction operands. */
1598 int n_ops;
1599 /* Pointer to instruction description. */
1600 struct i960_opcode *oP;
1601 /* TRUE iff opcode mnemonic included branch-prediction suffix (".f"
1602 or ".t"). */
1603 int branch_predict;
1604 /* Setting of branch-prediction bit(s) to be OR'd into instruction
1605 opcode of CTRL/COBR format instructions. */
1606 long bp_bits;
1607 /* Offset of last character in opcode mnemonic. */
1608 int n;
1609 const char *bp_error_msg = _("branch prediction invalid on this opcode");
252b5132 1610
ea1562b3
NC
1611 /* Parse instruction into opcode and operands. */
1612 memset (args, '\0', sizeof (args));
252b5132 1613
ea1562b3 1614 n_ops = i_scan (textP, args);
252b5132 1615
ea1562b3
NC
1616 if (n_ops == -1)
1617 return; /* Error message already issued. */
252b5132 1618
ea1562b3
NC
1619 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction. */
1620 if (!strcmp (args[0], "ldconst"))
252b5132 1621 {
ea1562b3
NC
1622 n_ops = parse_ldconst (args);
1623 if (n_ops == -1)
1624 return;
252b5132
RH
1625 }
1626
ea1562b3
NC
1627 /* Check for branch-prediction suffix on opcode mnemonic, strip it off. */
1628 n = strlen (args[0]) - 1;
1629 branch_predict = 0;
1630 bp_bits = 0;
252b5132 1631
ea1562b3 1632 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
252b5132 1633 {
ea1562b3
NC
1634 /* We could check here to see if the target architecture
1635 supports branch prediction, but why bother? The bit will
1636 just be ignored by processors that don't use it. */
1637 branch_predict = 1;
1638 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
1639 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
252b5132 1640 }
252b5132 1641
ea1562b3
NC
1642 /* Look up opcode mnemonic in table and check number of operands.
1643 Check that opcode is legal for the target architecture. If all
1644 looks good, assemble instruction. */
1645 oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
1646 if (!oP || !targ_has_iclass (oP->iclass))
1647 as_bad (_("invalid opcode, \"%s\"."), args[0]);
1648 else if (n_ops != oP->num_ops)
1649 as_bad (_("improper number of operands. expecting %d, got %d"),
1650 oP->num_ops, n_ops);
1651 else
252b5132 1652 {
ea1562b3 1653 switch (oP->format)
252b5132 1654 {
ea1562b3
NC
1655 case FBRA:
1656 case CTRL:
1657 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
1658 if (oP->format == FBRA)
1659 /* Now generate a 'bno' to same arg */
1660 ctrl_fmt (args[1], BNO | bp_bits, 1);
252b5132 1661 break;
ea1562b3
NC
1662 case COBR:
1663 case COJ:
1664 cobr_fmt (args, oP->opcode | bp_bits, oP);
252b5132 1665 break;
ea1562b3
NC
1666 case REG:
1667 if (branch_predict)
20203fb9 1668 as_warn ("%s", bp_error_msg);
ea1562b3 1669 reg_fmt (args, oP);
252b5132 1670 break;
ea1562b3
NC
1671 case MEM1:
1672 if (args[0][0] == 'c' && args[0][1] == 'a')
1673 {
1674 if (branch_predict)
20203fb9 1675 as_warn ("%s", bp_error_msg);
ea1562b3
NC
1676 mem_fmt (args, oP, 1);
1677 break;
1678 }
1679 case MEM2:
1680 case MEM4:
1681 case MEM8:
1682 case MEM12:
1683 case MEM16:
1684 if (branch_predict)
20203fb9 1685 as_warn ("%s", bp_error_msg);
ea1562b3 1686 mem_fmt (args, oP, 0);
252b5132 1687 break;
ea1562b3
NC
1688 case CALLJ:
1689 if (branch_predict)
20203fb9 1690 as_warn ("%s", bp_error_msg);
ea1562b3
NC
1691 /* Output opcode & set up "fixup" (relocation); flag
1692 relocation as 'callj' type. */
1693 know (oP->num_ops == 1);
1694 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
252b5132
RH
1695 break;
1696 default:
ea1562b3
NC
1697 BAD_CASE (oP->format);
1698 break;
252b5132 1699 }
252b5132 1700 }
ea1562b3 1701}
252b5132 1702
ea1562b3
NC
1703void
1704md_number_to_chars (char *buf,
1705 valueT value,
1706 int n)
1707{
1708 number_to_chars_littleendian (buf, value, n);
1709}
252b5132 1710
ea1562b3
NC
1711char *
1712md_atof (int type, char *litP, int *sizeP)
252b5132 1713{
499ac353 1714 return ieee_md_atof (type, litP, sizeP, FALSE);
ea1562b3 1715}
252b5132 1716
ea1562b3
NC
1717static void
1718md_number_to_imm (char *buf, long val, int n)
1719{
1720 md_number_to_chars (buf, val, n);
1721}
252b5132 1722
252b5132 1723static void
ea1562b3
NC
1724md_number_to_field (char *instrP, /* Pointer to instruction to be fixed. */
1725 long val, /* Address fixup value. */
1726 bit_fixS *bfixP) /* Description of bit field to be fixed up. */
252b5132 1727{
ea1562b3
NC
1728 int numbits; /* Length of bit field to be fixed. */
1729 long instr; /* 32-bit instruction to be fixed-up. */
1730 long sign; /* 0 or -1, according to sign bit of 'val'. */
252b5132 1731
ea1562b3
NC
1732 /* Convert instruction back to host byte order. */
1733 instr = md_chars_to_number (instrP, 4);
252b5132 1734
ea1562b3
NC
1735 /* Surprise! -- we stored the number of bits to be modified rather
1736 than a pointer to a structure. */
1737 numbits = (int) (size_t) bfixP;
1738 if (numbits == 1)
1739 /* This is a no-op, stuck here by reloc_callj(). */
1740 return;
252b5132 1741
ea1562b3 1742 know ((numbits == 13) || (numbits == 24));
252b5132 1743
ea1562b3
NC
1744 /* Propagate sign bit of 'val' for the given number of bits. Result
1745 should be all 0 or all 1. */
1746 sign = val >> ((int) numbits - 1);
1747 if (((val < 0) && (sign != -1))
1748 || ((val > 0) && (sign != 0)))
1749 as_bad (_("Fixup of %ld too large for field width of %d"),
1750 val, numbits);
1751 else
252b5132 1752 {
ea1562b3
NC
1753 /* Put bit field into instruction and write back in target
1754 * byte order. */
1755 val &= ~(-1 << (int) numbits); /* Clear unused sign bits. */
1756 instr |= val;
1757 md_number_to_chars (instrP, instr, 4);
252b5132 1758 }
ea1562b3
NC
1759}
1760\f
1761
1762/* md_parse_option
1763 Invocation line includes a switch not recognized by the base assembler.
1764 See if it's a processor-specific option. For the 960, these are:
1765
1766 -norelax:
1767 Conditional branch instructions that require displacements
1768 greater than 13 bits (or that have external targets) should
1769 generate errors. The default is to replace each such
1770 instruction with the corresponding compare (or chkbit) and
1771 branch instructions. Note that the Intel "j" cobr directives
1772 are ALWAYS "de-optimized" in this way when necessary,
1773 regardless of the setting of this option.
1774
1775 -b:
1776 Add code to collect information about branches taken, for
1777 later optimization of branch prediction bits by a separate
1778 tool. COBR and CNTL format instructions have branch
1779 prediction bits (in the CX architecture); if "BR" represents
1780 an instruction in one of these classes, the following rep-
1781 resents the code generated by the assembler:
1782
1783 call <increment routine>
1784 .word 0 # pre-counter
1785 Label: BR
1786 call <increment routine>
1787 .word 0 # post-counter
1788
1789 A table of all such "Labels" is also generated.
1790
1791 -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
1792 Select the 80960 architecture. Instructions or features not
1793 supported by the selected architecture cause fatal errors.
1794 The default is to generate code for any instruction or feature
1795 that is supported by SOME version of the 960 (even if this
1796 means mixing architectures!). */
1797
1798const char *md_shortopts = "A:b";
1799struct option md_longopts[] =
1800{
1801#define OPTION_LINKRELAX (OPTION_MD_BASE)
1802 {"linkrelax", no_argument, NULL, OPTION_LINKRELAX},
1803 {"link-relax", no_argument, NULL, OPTION_LINKRELAX},
1804#define OPTION_NORELAX (OPTION_MD_BASE + 1)
1805 {"norelax", no_argument, NULL, OPTION_NORELAX},
1806 {"no-relax", no_argument, NULL, OPTION_NORELAX},
1807 {NULL, no_argument, NULL, 0}
1808};
1809size_t md_longopts_size = sizeof (md_longopts);
1810
1811struct tabentry
1812{
1813 char *flag;
1814 int arch;
1815};
1816static const struct tabentry arch_tab[] =
1817{
1818 {"KA", ARCH_KA},
1819 {"KB", ARCH_KB},
1820 {"SA", ARCH_KA}, /* Synonym for KA. */
1821 {"SB", ARCH_KB}, /* Synonym for KB. */
1822 {"KC", ARCH_MC}, /* Synonym for MC. */
1823 {"MC", ARCH_MC},
1824 {"CA", ARCH_CA},
1825 {"JX", ARCH_JX},
1826 {"HX", ARCH_HX},
1827 {NULL, 0}
1828};
1829
1830int
1831md_parse_option (int c, char *arg)
1832{
1833 switch (c)
252b5132 1834 {
ea1562b3
NC
1835 case OPTION_LINKRELAX:
1836 linkrelax = 1;
1837 flag_keep_locals = 1;
1838 break;
1839
1840 case OPTION_NORELAX:
1841 norelax = 1;
1842 break;
1843
1844 case 'b':
1845 instrument_branches = 1;
1846 break;
1847
1848 case 'A':
1849 {
1850 const struct tabentry *tp;
1851 char *p = arg;
1852
1853 for (tp = arch_tab; tp->flag != NULL; tp++)
1854 if (!strcmp (p, tp->flag))
1855 break;
1856
1857 if (tp->flag == NULL)
1858 {
1859 as_bad (_("invalid architecture %s"), p);
1860 return 0;
1861 }
1862 else
1863 architecture = tp->arch;
1864 }
1865 break;
1866
1867 default:
1868 return 0;
252b5132 1869 }
ea1562b3
NC
1870
1871 return 1;
252b5132
RH
1872}
1873
ea1562b3
NC
1874void
1875md_show_usage (FILE *stream)
1876{
1877 int i;
252b5132 1878
ea1562b3
NC
1879 fprintf (stream, _("I960 options:\n"));
1880 for (i = 0; arch_tab[i].flag; i++)
1881 fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag);
1882 fprintf (stream, _("\n\
1883 specify variant of 960 architecture\n\
1884-b add code to collect statistics about branches taken\n\
1885-link-relax preserve individual alignment directives so linker\n\
1886 can do relaxing (b.out format only)\n\
1887-no-relax don't alter compare-and-branch instructions for\n\
1888 long displacements\n"));
1889}
1890\f
1891/* relax_cobr:
1892 Replace cobr instruction in a code fragment with equivalent branch and
1893 compare instructions, so it can reach beyond a 13-bit displacement.
1894 Set up an address fix/relocation for the new branch instruction. */
252b5132
RH
1895
1896/* This "conditional jump" table maps cobr instructions into
1897 equivalent compare and branch opcodes. */
ea1562b3 1898
252b5132
RH
1899static const
1900struct
1901{
1902 long compare;
1903 long branch;
1904}
1905
1906coj[] =
1907{ /* COBR OPCODE: */
1908 { CHKBIT, BNO }, /* 0x30 - bbc */
1909 { CMPO, BG }, /* 0x31 - cmpobg */
1910 { CMPO, BE }, /* 0x32 - cmpobe */
1911 { CMPO, BGE }, /* 0x33 - cmpobge */
1912 { CMPO, BL }, /* 0x34 - cmpobl */
1913 { CMPO, BNE }, /* 0x35 - cmpobne */
1914 { CMPO, BLE }, /* 0x36 - cmpoble */
1915 { CHKBIT, BO }, /* 0x37 - bbs */
1916 { CMPI, BNO }, /* 0x38 - cmpibno */
1917 { CMPI, BG }, /* 0x39 - cmpibg */
1918 { CMPI, BE }, /* 0x3a - cmpibe */
1919 { CMPI, BGE }, /* 0x3b - cmpibge */
1920 { CMPI, BL }, /* 0x3c - cmpibl */
1921 { CMPI, BNE }, /* 0x3d - cmpibne */
1922 { CMPI, BLE }, /* 0x3e - cmpible */
1923 { CMPI, BO }, /* 0x3f - cmpibo */
1924};
1925
b9195351 1926static void
ea1562b3
NC
1927relax_cobr (fragS *fragP) /* fragP->fr_opcode is assumed to point to
1928 the cobr instruction, which comes at the
1929 end of the code fragment. */
252b5132
RH
1930{
1931 int opcode, src1, src2, m1, s2;
ea1562b3
NC
1932 /* Bit fields from cobr instruction. */
1933 long bp_bits; /* Branch prediction bits from cobr instruction. */
1934 long instr; /* A single i960 instruction. */
1935 /* ->instruction to be replaced. */
252b5132 1936 char *iP;
ea1562b3 1937 fixS *fixP; /* Relocation that can be done at assembly time. */
252b5132 1938
ea1562b3 1939 /* Pick up & parse cobr instruction. */
252b5132
RH
1940 iP = fragP->fr_opcode;
1941 instr = md_chars_to_number (iP, 4);
ea1562b3 1942 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index. */
252b5132
RH
1943 src1 = (instr >> 19) & 0x1f;
1944 m1 = (instr >> 13) & 1;
1945 s2 = instr & 1;
1946 src2 = (instr >> 14) & 0x1f;
1947 bp_bits = instr & BP_MASK;
1948
ea1562b3 1949 /* Generate and output compare instruction. */
252b5132
RH
1950 instr = coj[opcode].compare
1951 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
1952 md_number_to_chars (iP, instr, 4);
1953
ea1562b3 1954 /* Output branch instruction. */
252b5132
RH
1955 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
1956
ea1562b3 1957 /* Set up address fixup/relocation. */
252b5132
RH
1958 fixP = fix_new (fragP,
1959 iP + 4 - fragP->fr_literal,
1960 4,
1961 fragP->fr_symbol,
1962 fragP->fr_offset,
1963 1,
1964 NO_RELOC);
1965
ea1562b3
NC
1966 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field. */
1967
1968 fragP->fr_fix += 4;
1969 frag_wane (fragP);
1970}
1971
1972/* md_convert_frag:
1973
1974 Called by base assembler after address relaxation is finished: modify
1975 variable fragments according to how much relaxation was done.
1976
1977 If the fragment substate is still 1, a 13-bit displacement was enough
1978 to reach the symbol in question. Set up an address fixup, but otherwise
1979 leave the cobr instruction alone.
1980
1981 If the fragment substate is 2, a 13-bit displacement was not enough.
1982 Replace the cobr with a two instructions (a compare and a branch). */
1983
ea1562b3
NC
1984void
1985md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
1986 segT sec ATTRIBUTE_UNUSED,
1987 fragS *fragP)
ea1562b3
NC
1988{
1989 /* Structure describing needed address fix. */
1990 fixS *fixP;
1991
1992 switch (fragP->fr_subtype)
1993 {
1994 case 1:
1995 /* Leave single cobr instruction. */
1996 fixP = fix_new (fragP,
1997 fragP->fr_opcode - fragP->fr_literal,
1998 4,
1999 fragP->fr_symbol,
2000 fragP->fr_offset,
2001 1,
2002 NO_RELOC);
2003
2004 fixP->fx_bit_fixP = (bit_fixS *) 13; /* Size of bit field. */
2005 break;
2006 case 2:
2007 /* Replace cobr with compare/branch instructions. */
2008 relax_cobr (fragP);
2009 break;
2010 default:
2011 BAD_CASE (fragP->fr_subtype);
2012 break;
2013 }
2014}
2015
2016/* md_estimate_size_before_relax: How much does it look like *fragP will grow?
2017
2018 Called by base assembler just before address relaxation.
2019 Return the amount by which the fragment will grow.
2020
2021 Any symbol that is now undefined will not become defined; cobr's
2022 based on undefined symbols will have to be replaced with a compare
2023 instruction and a branch instruction, and the code fragment will grow
2024 by 4 bytes. */
2025
2026int
2027md_estimate_size_before_relax (fragS *fragP, segT segment_type)
2028{
2029 /* If symbol is undefined in this segment, go to "relaxed" state
2030 (compare and branch instructions instead of cobr) right now. */
2031 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
2032 {
2033 relax_cobr (fragP);
2034 return 4;
2035 }
2036
2037 return md_relax_table[fragP->fr_subtype].rlx_length;
2038}
2039
2040#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2041
2042/* md_ri_to_chars:
2043 This routine exists in order to overcome machine byte-order problems
2044 when dealing with bit-field entries in the relocation_info struct.
252b5132 2045
ea1562b3
NC
2046 But relocation info will be used on the host machine only (only
2047 executable code is actually downloaded to the i80960). Therefore,
2048 we leave it in host byte order. */
2049
2050static void
2051md_ri_to_chars (char *where, struct relocation_info *ri)
2052{
2053 host_number_to_chars (where, ri->r_address, 4);
2054 host_number_to_chars (where + 4, ri->r_index, 3);
2055#if WORDS_BIGENDIAN
2056 where[7] = (ri->r_pcrel << 7
2057 | ri->r_length << 5
2058 | ri->r_extern << 4
2059 | ri->r_bsr << 3
2060 | ri->r_disp << 2
2061 | ri->r_callj << 1
2062 | ri->nuthin << 0);
2063#else
2064 where[7] = (ri->r_pcrel << 0
2065 | ri->r_length << 1
2066 | ri->r_extern << 3
2067 | ri->r_bsr << 4
2068 | ri->r_disp << 5
2069 | ri->r_callj << 6
2070 | ri->nuthin << 7);
2071#endif
252b5132
RH
2072}
2073
ea1562b3 2074#endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */
252b5132 2075
ea1562b3
NC
2076\f
2077/* brtab_emit: generate the fetch-prediction branch table.
252b5132 2078
ea1562b3
NC
2079 See the comments above the declaration of 'br_cnt' for details on
2080 branch-prediction instrumentation.
252b5132 2081
ea1562b3
NC
2082 The code emitted here would be functionally equivalent to the following
2083 example assembler source.
252b5132 2084
ea1562b3
NC
2085 .data
2086 .align 2
2087 BR_TAB_NAME:
2088 .word 0 # link to next table
2089 .word 3 # length of table
2090 .word LBRANCH0 # 1st entry in table proper
2091 .word LBRANCH1
2092 .word LBRANCH2 */
252b5132 2093
ea1562b3
NC
2094void
2095brtab_emit (void)
252b5132 2096{
ea1562b3
NC
2097 int i;
2098 char buf[20];
2099 /* Where the binary was output to. */
2100 char *p;
252b5132 2101
ea1562b3
NC
2102 if (!instrument_branches)
2103 return;
252b5132 2104
ea1562b3
NC
2105 subseg_set (data_section, 0); /* .data */
2106 frag_align (2, 0, 0); /* .align 2 */
2107 record_alignment (now_seg, 2);
2108 colon (BR_TAB_NAME); /* BR_TAB_NAME: */
2109 emit (0); /* .word 0 #link to next table */
2110 emit (br_cnt); /* .word n #length of table */
252b5132 2111
ea1562b3 2112 for (i = 0; i < br_cnt; i++)
252b5132 2113 {
ea1562b3
NC
2114 sprintf (buf, "%s%d", BR_LABEL_BASE, i);
2115 p = emit (0);
87975d2a
AM
2116 fix_new (frag_now,
2117 p - frag_now->fr_literal,
2118 4, symbol_find (buf), 0, 0, NO_RELOC);
252b5132 2119 }
252b5132
RH
2120}
2121
ea1562b3 2122/* s_leafproc: process .leafproc pseudo-op
252b5132
RH
2123
2124 .leafproc takes two arguments, the second one is optional:
2125 arg[1]: name of 'call' entry point to leaf procedure
2126 arg[2]: name of 'bal' entry point to leaf procedure
2127
2128 If the two arguments are identical, or if the second one is missing,
2129 the first argument is taken to be the 'bal' entry point.
2130
2131 If there are 2 distinct arguments, we must make sure that the 'bal'
2132 entry point immediately follows the 'call' entry point in the linked
ea1562b3 2133 list of symbols. */
252b5132 2134
252b5132 2135static void
ea1562b3
NC
2136s_leafproc (int n_ops, /* Number of operands. */
2137 char *args[]) /* args[1]->1st operand, args[2]->2nd operand. */
252b5132 2138{
ea1562b3
NC
2139 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol. */
2140 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol. */
252b5132
RH
2141
2142 if ((n_ops != 1) && (n_ops != 2))
2143 {
2144 as_bad (_("should have 1 or 2 operands"));
2145 return;
ea1562b3 2146 }
252b5132 2147
92774660 2148 /* Find or create symbol for 'call' entry point. */
252b5132
RH
2149 callP = symbol_find_or_make (args[1]);
2150
2151 if (TC_S_IS_CALLNAME (callP))
ea1562b3 2152 as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP));
252b5132
RH
2153
2154 /* If that was the only argument, use it as the 'bal' entry point.
ea1562b3
NC
2155 Otherwise, mark it as the 'call' entry point and find or create
2156 another symbol for the 'bal' entry point. */
252b5132
RH
2157 if ((n_ops == 1) || !strcmp (args[1], args[2]))
2158 {
2159 TC_S_FORCE_TO_BALNAME (callP);
252b5132
RH
2160 }
2161 else
2162 {
2163 TC_S_FORCE_TO_CALLNAME (callP);
2164
2165 balP = symbol_find_or_make (args[2]);
2166 if (TC_S_IS_CALLNAME (balP))
ea1562b3
NC
2167 as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP));
2168
252b5132
RH
2169 TC_S_FORCE_TO_BALNAME (balP);
2170
76171f81 2171#ifndef OBJ_ELF
252b5132 2172 tc_set_bal_of_call (callP, balP);
76171f81 2173#endif
ea1562b3 2174 }
252b5132
RH
2175}
2176
ea1562b3 2177/* s_sysproc: process .sysproc pseudo-op
252b5132 2178
ea1562b3
NC
2179 .sysproc takes two arguments:
2180 arg[1]: name of entry point to system procedure
2181 arg[2]: 'entry_num' (index) of system procedure in the range
2182 [0,31] inclusive.
2183
2184 For [ab].out, we store the 'entrynum' in the 'n_other' field of
2185 the symbol. Since that entry is normally 0, we bias 'entrynum'
2186 by adding 1 to it. It must be unbiased before it is used. */
252b5132 2187
252b5132 2188static void
ea1562b3
NC
2189s_sysproc (int n_ops, /* Number of operands. */
2190 char *args[]) /* args[1]->1st operand, args[2]->2nd operand. */
252b5132
RH
2191{
2192 expressionS exp;
2193 symbolS *symP;
2194
2195 if (n_ops != 2)
2196 {
2197 as_bad (_("should have two operands"));
2198 return;
ea1562b3 2199 }
252b5132 2200
92774660 2201 /* Parse "entry_num" argument and check it for validity. */
252b5132
RH
2202 parse_expr (args[2], &exp);
2203 if (exp.X_op != O_constant
2204 || (offs (exp) < 0)
2205 || (offs (exp) > 31))
2206 {
2207 as_bad (_("'entry_num' must be absolute number in [0,31]"));
2208 return;
2209 }
2210
ea1562b3 2211 /* Find/make symbol and stick entry number (biased by +1) into it. */
252b5132
RH
2212 symP = symbol_find_or_make (args[1]);
2213
2214 if (TC_S_IS_SYSPROC (symP))
ea1562b3 2215 as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP));
252b5132 2216
ea1562b3 2217 TC_S_SET_SYSPROC (symP, offs (exp)); /* Encode entry number. */
252b5132
RH
2218 TC_S_FORCE_TO_SYSPROC (symP);
2219}
2220
ea1562b3 2221/* parse_po: parse machine-dependent pseudo-op
252b5132 2222
ea1562b3
NC
2223 This is a top-level routine for machine-dependent pseudo-ops. It slurps
2224 up the rest of the input line, breaks out the individual arguments,
2225 and dispatches them to the correct handler. */
252b5132 2226
ea1562b3
NC
2227static void
2228parse_po (int po_num) /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC. */
252b5132 2229{
ea1562b3
NC
2230 /* Pointers operands, with no embedded whitespace.
2231 arg[0] unused, arg[1-3]->operands. */
2232 char *args[4];
2233 int n_ops; /* Number of operands. */
2234 char *p; /* Pointer to beginning of unparsed argument string. */
2235 char eol; /* Character that indicated end of line. */
252b5132 2236
ea1562b3 2237 extern char is_end_of_line[];
252b5132 2238
ea1562b3
NC
2239 /* Advance input pointer to end of line. */
2240 p = input_line_pointer;
2241 while (!is_end_of_line[(unsigned char) *input_line_pointer])
2242 input_line_pointer++;
252b5132 2243
ea1562b3
NC
2244 eol = *input_line_pointer; /* Save end-of-line char. */
2245 *input_line_pointer = '\0'; /* Terminate argument list. */
2246
2247 /* Parse out operands. */
2248 n_ops = get_args (p, args);
2249 if (n_ops == -1)
2250 return;
2251
2252 /* Dispatch to correct handler. */
2253 switch (po_num)
252b5132 2254 {
ea1562b3
NC
2255 case S_SYSPROC:
2256 s_sysproc (n_ops, args);
2257 break;
2258 case S_LEAFPROC:
2259 s_leafproc (n_ops, args);
2260 break;
2261 default:
2262 BAD_CASE (po_num);
2263 break;
252b5132 2264 }
ea1562b3
NC
2265
2266 /* Restore eol, so line numbers get updated correctly. Base
2267 assembler assumes we leave input pointer pointing at char
2268 following the eol. */
2269 *input_line_pointer++ = eol;
252b5132
RH
2270}
2271
ea1562b3 2272/* reloc_callj: Relocate a 'callj' instruction
252b5132 2273
ea1562b3
NC
2274 This is a "non-(GNU)-standard" machine-dependent hook. The base
2275 assembler calls it when it decides it can relocate an address at
2276 assembly time instead of emitting a relocation directive.
252b5132 2277
ea1562b3
NC
2278 Check to see if the relocation involves a 'callj' instruction to a:
2279 sysproc: Replace the default 'call' instruction with a 'calls'
2280 leafproc: Replace the default 'call' instruction with a 'bal'.
2281 other proc: Do nothing.
252b5132 2282
ea1562b3 2283 See b.out.h for details on the 'n_other' field in a symbol structure.
252b5132 2284
ea1562b3
NC
2285 IMPORTANT!:
2286 Assumes the caller has already figured out, in the case of a leafproc,
2287 to use the 'bal' entry point, and has substituted that symbol into the
2288 passed fixup structure. */
2289
2290int
2291reloc_callj (fixS *fixP) /* Relocation that can be done at assembly time. */
252b5132 2292{
ea1562b3
NC
2293 /* Points to the binary for the instruction being relocated. */
2294 char *where;
252b5132 2295
ea1562b3
NC
2296 if (!fixP->fx_tcbit)
2297 /* This wasn't a callj instruction in the first place. */
2298 return 0;
252b5132 2299
ea1562b3
NC
2300 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2301
2302 if (TC_S_IS_SYSPROC (fixP->fx_addsy))
252b5132 2303 {
ea1562b3
NC
2304 /* Symbol is a .sysproc: replace 'call' with 'calls'. System
2305 procedure number is (other-1). */
2306 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
2307
2308 /* Nothing else needs to be done for this instruction. Make
2309 sure 'md_number_to_field()' will perform a no-op. */
2310 fixP->fx_bit_fixP = (bit_fixS *) 1;
2311 }
2312 else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
2313 {
2314 /* Should not happen: see block comment above. */
2315 as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy));
2316 }
2317 else if (TC_S_IS_BALNAME (fixP->fx_addsy))
2318 {
2319 /* Replace 'call' with 'bal'; both instructions have the same
2320 format, so calling code should complete relocation as if
2321 nothing happened here. */
2322 md_number_to_chars (where, BAL, 4);
252b5132 2323 }
ea1562b3
NC
2324 else if (TC_S_IS_BADPROC (fixP->fx_addsy))
2325 as_bad (_("Looks like a proc, but can't tell what kind.\n"));
2326
2327 /* Otherwise Symbol is neither a sysproc nor a leafproc. */
2328 return 0;
252b5132
RH
2329}
2330
2331/* Handle the MRI .endian pseudo-op. */
2332
2333static void
ea1562b3 2334s_endian (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
2335{
2336 char *name;
2337 char c;
2338
2339 name = input_line_pointer;
2340 c = get_symbol_end ();
2341 if (strcasecmp (name, "little") == 0)
2342 ;
2343 else if (strcasecmp (name, "big") == 0)
2344 as_bad (_("big endian mode is not supported"));
2345 else
2346 as_warn (_("ignoring unrecognized .endian type `%s'"), name);
2347
2348 *input_line_pointer = c;
2349
2350 demand_empty_rest_of_line ();
2351}
2352
92774660 2353/* We have no need to default values of symbols. */
252b5132 2354
252b5132 2355symbolS *
ea1562b3 2356md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
252b5132
RH
2357{
2358 return 0;
2359}
2360
2361/* Exactly what point is a PC-relative offset relative TO?
2362 On the i960, they're relative to the address of the instruction,
92774660 2363 which we have set up as the address of the fixup too. */
252b5132 2364long
ea1562b3 2365md_pcrel_from (fixS *fixP)
252b5132
RH
2366{
2367 return fixP->fx_where + fixP->fx_frag->fr_address;
2368}
2369
2370void
55cf6793 2371md_apply_fix (fixS *fixP,
ea1562b3
NC
2372 valueT *valP,
2373 segT seg ATTRIBUTE_UNUSED)
252b5132 2374{
a161fe53 2375 long val = *valP;
252b5132
RH
2376 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2377
2378 if (!fixP->fx_bit_fixP)
2379 {
b9195351 2380 md_number_to_imm (place, val, fixP->fx_size);
252b5132 2381 }
44f2f9d2 2382 else if ((int) (size_t) fixP->fx_bit_fixP == 13
a161fe53
AM
2383 && fixP->fx_addsy != NULL
2384 && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section)
2385 {
2386 /* This is a COBR instruction. They have only a
2387 13-bit displacement and are only to be used
2388 for local branches: flag as error, don't generate
2389 relocation. */
2390 as_bad_where (fixP->fx_file, fixP->fx_line,
2391 _("can't use COBR format with external label"));
2392 fixP->fx_addsy = NULL;
2393 }
252b5132
RH
2394 else
2395 md_number_to_field (place, val, fixP->fx_bit_fixP);
bedf545c 2396
a161fe53 2397 if (fixP->fx_addsy == NULL)
94f592af 2398 fixP->fx_done = 1;
252b5132
RH
2399}
2400
2401#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2402void
ea1562b3
NC
2403tc_bout_fix_to_chars (char *where,
2404 fixS *fixP,
2405 relax_addressT segment_address_in_file)
252b5132
RH
2406{
2407 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
2408 struct relocation_info ri;
2409 symbolS *symbolP;
2410
2411 memset ((char *) &ri, '\0', sizeof (ri));
2412 symbolP = fixP->fx_addsy;
2413 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2414 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2415 /* These two 'cuz of NS32K */
2416 ri.r_callj = fixP->fx_tcbit;
2417 if (fixP->fx_bit_fixP)
2418 ri.r_length = 2;
2419 else
2420 ri.r_length = nbytes_r_length[fixP->fx_size];
2421 ri.r_pcrel = fixP->fx_pcrel;
2422 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2423
2424 if (fixP->fx_r_type != NO_RELOC)
2425 {
2426 switch (fixP->fx_r_type)
2427 {
2428 case rs_align:
2429 ri.r_index = -2;
2430 ri.r_pcrel = 1;
2431 ri.r_length = fixP->fx_size - 1;
2432 break;
2433 case rs_org:
2434 ri.r_index = -2;
2435 ri.r_pcrel = 0;
2436 break;
2437 case rs_fill:
2438 ri.r_index = -1;
2439 break;
2440 default:
2441 abort ();
2442 }
2443 ri.r_extern = 0;
2444 }
2445 else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr)
2446 {
2447 ri.r_extern = 1;
2448 ri.r_index = symbolP->sy_number;
2449 }
2450 else
2451 {
2452 ri.r_extern = 0;
2453 ri.r_index = S_GET_TYPE (symbolP);
2454 }
2455
92774660 2456 /* Output the relocation information in machine-dependent form. */
252b5132
RH
2457 md_ri_to_chars (where, &ri);
2458}
2459
2460#endif /* OBJ_AOUT or OBJ_BOUT */
2461
252b5132 2462/* Align an address by rounding it up to the specified boundary. */
ea1562b3 2463
252b5132 2464valueT
ea1562b3
NC
2465md_section_align (segT seg,
2466 valueT addr) /* Address to be rounded up. */
252b5132 2467{
bedf545c 2468 int align;
ea1562b3 2469
bedf545c 2470 align = bfd_get_section_alignment (stdoutput, seg);
bedf545c
ILT
2471 return (addr + (1 << align) - 1) & (-1 << align);
2472}
252b5132
RH
2473
2474extern int coff_flags;
2475
252b5132
RH
2476/* For aout or bout, the bal immediately follows the call.
2477
2478 For coff, we cheat and store a pointer to the bal symbol in the
2479 second aux entry of the call. */
2480
2481#undef OBJ_ABOUT
2482#ifdef OBJ_AOUT
2483#define OBJ_ABOUT
2484#endif
2485#ifdef OBJ_BOUT
2486#define OBJ_ABOUT
2487#endif
2488
2489void
ea1562b3
NC
2490tc_set_bal_of_call (symbolS *callP ATTRIBUTE_UNUSED,
2491 symbolS *balP ATTRIBUTE_UNUSED)
252b5132
RH
2492{
2493 know (TC_S_IS_CALLNAME (callP));
2494 know (TC_S_IS_BALNAME (balP));
2495
2496#ifdef OBJ_COFF
2497
2498 callP->sy_tc = balP;
2499 S_SET_NUMBER_AUXILIARY (callP, 2);
2500
2501#else /* ! OBJ_COFF */
2502#ifdef OBJ_ABOUT
2503
2504 /* If the 'bal' entry doesn't immediately follow the 'call'
ea1562b3 2505 symbol, unlink it from the symbol list and re-insert it. */
252b5132
RH
2506 if (symbol_next (callP) != balP)
2507 {
2508 symbol_remove (balP, &symbol_rootP, &symbol_lastP);
2509 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
2510 } /* if not in order */
2511
2512#else /* ! OBJ_ABOUT */
bedf545c 2513 as_fatal ("Only supported for a.out, b.out, or COFF");
252b5132
RH
2514#endif /* ! OBJ_ABOUT */
2515#endif /* ! OBJ_COFF */
2516}
2517
2518symbolS *
ea1562b3 2519tc_get_bal_of_call (symbolS *callP ATTRIBUTE_UNUSED)
252b5132
RH
2520{
2521 symbolS *retval;
2522
2523 know (TC_S_IS_CALLNAME (callP));
2524
2525#ifdef OBJ_COFF
2526 retval = callP->sy_tc;
2527#else
2528#ifdef OBJ_ABOUT
2529 retval = symbol_next (callP);
2530#else
bedf545c 2531 as_fatal ("Only supported for a.out, b.out, or COFF");
252b5132
RH
2532#endif /* ! OBJ_ABOUT */
2533#endif /* ! OBJ_COFF */
2534
2535 know (TC_S_IS_BALNAME (retval));
2536 return retval;
ea1562b3 2537}
252b5132 2538
b9195351 2539#ifdef OBJ_COFF
252b5132 2540void
ea1562b3 2541tc_coff_symbol_emit_hook (symbolS *symbolP ATTRIBUTE_UNUSED)
252b5132
RH
2542{
2543 if (TC_S_IS_CALLNAME (symbolP))
2544 {
252b5132
RH
2545 symbolS *balP = tc_get_bal_of_call (symbolP);
2546
252b5132
RH
2547 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
2548 if (S_GET_STORAGE_CLASS (symbolP) == C_EXT)
2549 S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT);
2550 else
2551 S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT);
2552 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
ea1562b3 2553 /* Fix up the bal symbol. */
252b5132 2554 S_SET_STORAGE_CLASS (balP, C_LABEL);
ea1562b3 2555 }
252b5132 2556}
b9195351 2557#endif /* OBJ_COFF */
252b5132
RH
2558
2559void
ea1562b3 2560i960_handle_align (fragS *fragp ATTRIBUTE_UNUSED)
252b5132
RH
2561{
2562 if (!linkrelax)
2563 return;
2564
2565#ifndef OBJ_BOUT
252b5132
RH
2566 as_bad (_("option --link-relax is only supported in b.out format"));
2567 linkrelax = 0;
2568 return;
252b5132
RH
2569#else
2570
2571 /* The text section "ends" with another alignment reloc, to which we
2572 aren't adding padding. */
2573 if (fragp->fr_next == text_last_frag
2574 || fragp->fr_next == data_last_frag)
2575 return;
2576
2577 /* alignment directive */
2578 fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
2579 (int) fragp->fr_type);
2580#endif /* OBJ_BOUT */
2581}
2582
2583int
ea1562b3 2584i960_validate_fix (fixS *fixP, segT this_segment_type ATTRIBUTE_UNUSED)
252b5132 2585{
a161fe53 2586 if (fixP->fx_tcbit && TC_S_IS_CALLNAME (fixP->fx_addsy))
252b5132
RH
2587 {
2588 /* Relocation should be done via the associated 'bal'
92774660 2589 entry point symbol. */
a161fe53 2590 if (!TC_S_IS_BALNAME (tc_get_bal_of_call (fixP->fx_addsy)))
252b5132 2591 {
a161fe53
AM
2592 as_bad_where (fixP->fx_file, fixP->fx_line,
2593 _("No 'bal' entry point for leafproc %s"),
2594 S_GET_NAME (fixP->fx_addsy));
2595 return 0;
252b5132 2596 }
a161fe53 2597 fixP->fx_addsy = tc_get_bal_of_call (fixP->fx_addsy);
252b5132 2598 }
a161fe53
AM
2599
2600 return 1;
252b5132
RH
2601}
2602
bedf545c
ILT
2603/* From cgen.c: */
2604
2605static short
ea1562b3 2606tc_bfd_fix2rtype (fixS *fixP)
bedf545c 2607{
bedf545c
ILT
2608 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4)
2609 return BFD_RELOC_32;
2610
2611 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4)
2612 return BFD_RELOC_24_PCREL;
2613
2614 abort ();
2615 return 0;
2616}
2617
2618/* Translate internal representation of relocation info to BFD target
2619 format.
2620
2621 FIXME: To what extent can we get all relevant targets to use this? */
2622
2623arelent *
ea1562b3 2624tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixP)
bedf545c
ILT
2625{
2626 arelent * reloc;
2627
ea1562b3 2628 reloc = xmalloc (sizeof (arelent));
bedf545c 2629
ea1562b3 2630 /* HACK: Is this right? */
bedf545c
ILT
2631 fixP->fx_r_type = tc_bfd_fix2rtype (fixP);
2632
2633 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
ea1562b3 2634 if (reloc->howto == NULL)
bedf545c
ILT
2635 {
2636 as_bad_where (fixP->fx_file, fixP->fx_line,
20203fb9 2637 _("internal error: can't export reloc type %d (`%s')"),
bedf545c
ILT
2638 fixP->fx_r_type,
2639 bfd_get_reloc_code_name (fixP->fx_r_type));
2640 return NULL;
2641 }
2642
9c2799c2 2643 gas_assert (!fixP->fx_pcrel == !reloc->howto->pc_relative);
bedf545c 2644
ea1562b3 2645 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
49309057 2646 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
bedf545c
ILT
2647 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where;
2648 reloc->addend = fixP->fx_addnumber;
2649
2650 return reloc;
2651}
2652
2653/* end from cgen.c */
2654
ea1562b3
NC
2655const pseudo_typeS md_pseudo_table[] =
2656{
2657 {"bss", s_lcomm, 1},
2658 {"endian", s_endian, 0},
2659 {"extended", float_cons, 't'},
2660 {"leafproc", parse_po, S_LEAFPROC},
2661 {"sysproc", parse_po, S_SYSPROC},
2662
2663 {"word", cons, 4},
2664 {"quad", cons, 16},
2665
2666 {0, 0, 0}
2667};
This page took 1.19987 seconds and 4 git commands to generate.