White space and comments only. The devo tree prior to this delta is
[deliverable/binutils-gdb.git] / gas / config / tc-i960.c
CommitLineData
fecd2382
RP
1/* i960.c - All the i80960-specific stuff
2 Copyright (C) 1989, 1990, 1991 Free Software Foundation, Inc.
a39116f1
RP
3
4 This file is part of GAS.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
fecd2382
RP
19
20/* $Id$ */
21
22/* See comment on md_parse_option for 80960-specific invocation options. */
23
24/******************************************************************************
25 * i80690 NOTE!!!:
26 * Header, symbol, and relocation info will be used on the host machine
27 * only -- only executable code is actually downloaded to the i80960.
28 * Therefore, leave all such information in host byte order.
29 *
30 * (That's a slight lie -- we DO download some header information, but
31 * the downloader converts the file format and corrects the byte-ordering
32 * of the relevant fields while doing so.)
33 *
34 ***************************************************************************** */
35
36/* There are 4 different lengths of (potentially) symbol-based displacements
37 * in the 80960 instruction set, each of which could require address fix-ups
38 * and (in the case of external symbols) emission of relocation directives:
39 *
40 * 32-bit (MEMB)
41 * This is a standard length for the base assembler and requires no
42 * special action.
43 *
44 * 13-bit (COBR)
45 * This is a non-standard length, but the base assembler has a hook for
46 * bit field address fixups: the fixS structure can point to a descriptor
47 * of the field, in which case our md_number_to_field() routine gets called
48 * to process it.
49 *
50 * I made the hook a little cleaner by having fix_new() (in the base
51 * assembler) return a pointer to the fixS in question. And I made it a
52 * little simpler by storing the field size (in this case 13) instead of
53 * of a pointer to another structure: 80960 displacements are ALWAYS
54 * stored in the low-order bits of a 4-byte word.
55 *
56 * Since the target of a COBR cannot be external, no relocation directives
57 * for this size displacement have to be generated. But the base assembler
58 * had to be modified to issue error messages if the symbol did turn out
59 * to be external.
60 *
61 * 24-bit (CTRL)
62 * Fixups are handled as for the 13-bit case (except that 24 is stored
63 * in the fixS).
64 *
65 * The relocation directive generated is the same as that for the 32-bit
66 * displacement, except that it's PC-relative (the 32-bit displacement
67 * never is). The i80960 version of the linker needs a mod to
68 * distinguish and handle the 24-bit case.
69 *
70 * 12-bit (MEMA)
71 * MEMA formats are always promoted to MEMB (32-bit) if the displacement
72 * is based on a symbol, because it could be relocated at link time.
73 * The only time we use the 12-bit format is if an absolute value of
74 * less than 4096 is specified, in which case we need neither a fixup nor
75 * a relocation directive.
76 */
77
78#include <stdio.h>
79#include <ctype.h>
80
81#include "as.h"
82
83#include "obstack.h"
84
a39116f1 85#include "opcode/i960.h"
fecd2382
RP
86
87extern char *input_line_pointer;
88extern struct hash_control *po_hash;
fecd2382
RP
89extern char *next_object_file_charP;
90
91#ifdef OBJ_COFF
92int md_reloc_size = sizeof(struct reloc);
93#else /* OBJ_COFF */
94int md_reloc_size = sizeof(struct relocation_info);
95#endif /* OBJ_COFF */
96
a39116f1
RP
97/***************************
98 * Local i80960 routines *
99 ************************** */
fecd2382
RP
100
101static void brcnt_emit(); /* Emit branch-prediction instrumentation code */
102static char * brlab_next(); /* Return next branch local label */
a39116f1 103void brtab_emit(); /* Emit br-predict instrumentation table */
fecd2382
RP
104static void cobr_fmt(); /* Generate COBR instruction */
105static void ctrl_fmt(); /* Generate CTRL instruction */
106static char * emit(); /* Emit (internally) binary */
107static int get_args(); /* Break arguments out of comma-separated list */
108static void get_cdisp(); /* Handle COBR or CTRL displacement */
109static char * get_ispec(); /* Find index specification string */
110static int get_regnum(); /* Translate text to register number */
111static int i_scan(); /* Lexical scan of instruction source */
112static void mem_fmt(); /* Generate MEMA or MEMB instruction */
113static void mema_to_memb(); /* Convert MEMA instruction to MEMB format */
114static segT parse_expr(); /* Parse an expression */
115static int parse_ldconst();/* Parse and replace a 'ldconst' pseudo-op */
116static void parse_memop(); /* Parse a memory operand */
117static void parse_po(); /* Parse machine-dependent pseudo-op */
118static void parse_regop(); /* Parse a register operand */
119static void reg_fmt(); /* Generate a REG format instruction */
a39116f1 120void reloc_callj(); /* Relocate a 'callj' instruction */
fecd2382
RP
121static void relax_cobr(); /* "De-optimize" cobr into compare/branch */
122static void s_leafproc(); /* Process '.leafproc' pseudo-op */
123static void s_sysproc(); /* Process '.sysproc' pseudo-op */
124static int shift_ok(); /* Will a 'shlo' substiture for a 'ldconst'? */
125static void syntax(); /* Give syntax error */
126static int targ_has_sfr(); /* Target chip supports spec-func register? */
127static int targ_has_iclass();/* Target chip supports instruction set? */
128/* static void unlink_sym(); */ /* Remove a symbol from the symbol list */
129
130/* See md_parse_option() for meanings of these options */
131static char norelax = 0; /* True if -norelax switch seen */
132static char instrument_branches = 0; /* True if -b switch seen */
133
134/* Characters that always start a comment.
135 * If the pre-processor is disabled, these aren't very useful.
136 */
137char comment_chars[] = "#";
138
139/* Characters that only start a comment at the beginning of
140 * a line. If the line seems to have the form '# 123 filename'
141 * .line and .file directives will appear in the pre-processed output.
142 *
143 * Note that input_file.c hand checks for '#' at the beginning of the
144 * first line of the input file. This is because the compiler outputs
145 * #NO_APP at the beginning of its output.
146 */
147
148/* Also note that comments started like this one will always work. */
149
150char line_comment_chars[] = "";
151
152/* Chars that can be used to separate mant from exp in floating point nums */
153char EXP_CHARS[] = "eE";
154
155/* Chars that mean this number is a floating point constant,
156 * as in 0f12.456 or 0d1.2345e12
157 */
158char FLT_CHARS[] = "fFdDtT";
159
160
161/* Table used by base assembler to relax addresses based on varying length
162 * instructions. The fields are:
163 * 1) most positive reach of this state,
164 * 2) most negative reach of this state,
165 * 3) how many bytes this mode will add to the size of the current frag
166 * 4) which index into the table to try if we can't fit into this one.
167 *
168 * For i80960, the only application is the (de-)optimization of cobr
169 * instructions into separate compare and branch instructions when a 13-bit
170 * displacement won't hack it.
171 */
172const relax_typeS
a39116f1
RP
173 md_relax_table[] = {
174 {0, 0, 0,0}, /* State 0 => no more relaxation possible */
175 {4088, -4096, 0,2}, /* State 1: conditional branch (cobr) */
176 {0x800000-8,-0x800000,4,0}, /* State 2: compare (reg) & branch (ctrl) */
177 };
fecd2382
RP
178
179
180/* These are the machine dependent pseudo-ops.
181 *
182 * This table describes all the machine specific pseudo-ops the assembler
183 * has to support. The fields are:
184 * pseudo-op name without dot
185 * function to call to execute this pseudo-op
186 * integer arg to pass to the function
187 */
188#define S_LEAFPROC 1
189#define S_SYSPROC 2
190
191const pseudo_typeS
a39116f1
RP
192 md_pseudo_table[] = {
193
194 { "bss", s_lcomm, 1 },
195 { "extended", float_cons, 't' },
196 { "leafproc", parse_po, S_LEAFPROC },
197 { "sysproc", parse_po, S_SYSPROC },
198
199 { "word", cons, 4 },
200 { "quad", big_cons, 16 },
201
202 { 0, 0, 0 }
203 };
fecd2382
RP
204\f
205/* Macros to extract info from an 'expressionS' structure 'e' */
206#define adds(e) e.X_add_symbol
207#define subs(e) e.X_subtract_symbol
208#define offs(e) e.X_add_number
209#define segs(e) e.X_seg
a39116f1
RP
210
211
212 /* Branch-prediction bits for CTRL/COBR format opcodes */
fecd2382
RP
213#define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
214#define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
215#define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
a39116f1
RP
216
217
218 /* Some instruction opcodes that we need explicitly */
fecd2382
RP
219#define BE 0x12000000
220#define BG 0x11000000
221#define BGE 0x13000000
222#define BL 0x14000000
223#define BLE 0x16000000
224#define BNE 0x15000000
225#define BNO 0x10000000
226#define BO 0x17000000
227#define CHKBIT 0x5a002700
228#define CMPI 0x5a002080
229#define CMPO 0x5a002000
a39116f1 230
fecd2382
RP
231#define B 0x08000000
232#define BAL 0x0b000000
233#define CALL 0x09000000
234#define CALLS 0x66003800
235#define RET 0x0a000000
a39116f1
RP
236
237
238 /* These masks are used to build up a set of MEMB mode bits. */
fecd2382
RP
239#define A_BIT 0x0400
240#define I_BIT 0x0800
241#define MEMB_BIT 0x1000
242#define D_BIT 0x2000
a39116f1
RP
243
244
245 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */
fecd2382 246#define MEMA_ABASE 0x2000
a39116f1
RP
247
248 /* Info from which a MEMA or MEMB format instruction can be generated */
249 typedef struct {
250 long opcode; /* (First) 32 bits of instruction */
251 int disp; /* 0-(none), 12- or, 32-bit displacement needed */
252 char *e; /* The expression in the source instruction from
fecd2382
RP
253 * which the displacement should be determined
254 */
a39116f1 255 } memS;
fecd2382
RP
256
257
258/* The two pieces of info we need to generate a register operand */
259struct regop {
260 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
261 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
262 int n; /* Register number or literal value */
263};
264
265
266/* Number and assembler mnemonic for all registers that can appear in operands */
267static struct {
268 char *reg_name;
269 int reg_num;
270} regnames[] = {
271 { "pfp", 0 }, { "sp", 1 }, { "rip", 2 }, { "r3", 3 },
272 { "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 },
273 { "r8", 8 }, { "r9", 9 }, { "r10", 10 }, { "r11", 11 },
274 { "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 },
275 { "g0", 16 }, { "g1", 17 }, { "g2", 18 }, { "g3", 19 },
276 { "g4", 20 }, { "g5", 21 }, { "g6", 22 }, { "g7", 23 },
277 { "g8", 24 }, { "g9", 25 }, { "g10", 26 }, { "g11", 27 },
278 { "g12", 28 }, { "g13", 29 }, { "g14", 30 }, { "fp", 31 },
a39116f1 279
fecd2382
RP
280 /* Numbers for special-function registers are for assembler internal
281 * use only: they are scaled back to range [0-31] for binary output.
282 */
283# define SF0 32
a39116f1 284
fecd2382
RP
285 { "sf0", 32 }, { "sf1", 33 }, { "sf2", 34 }, { "sf3", 35 },
286 { "sf4", 36 }, { "sf5", 37 }, { "sf6", 38 }, { "sf7", 39 },
287 { "sf8", 40 }, { "sf9", 41 }, { "sf10",42 }, { "sf11",43 },
288 { "sf12",44 }, { "sf13",45 }, { "sf14",46 }, { "sf15",47 },
289 { "sf16",48 }, { "sf17",49 }, { "sf18",50 }, { "sf19",51 },
290 { "sf20",52 }, { "sf21",53 }, { "sf22",54 }, { "sf23",55 },
291 { "sf24",56 }, { "sf25",57 }, { "sf26",58 }, { "sf27",59 },
292 { "sf28",60 }, { "sf29",61 }, { "sf30",62 }, { "sf31",63 },
a39116f1 293
fecd2382
RP
294 /* Numbers for floating point registers are for assembler internal use
295 * only: they are scaled back to [0-3] for binary output.
296 */
297# define FP0 64
a39116f1 298
fecd2382 299 { "fp0", 64 }, { "fp1", 65 }, { "fp2", 66 }, { "fp3", 67 },
a39116f1 300
fecd2382
RP
301 { NULL, 0 }, /* END OF LIST */
302};
303
304#define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
305#define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
306#define IS_FP_REG(n) ((n) >= FP0)
307
308/* Number and assembler mnemonic for all registers that can appear as 'abase'
309 * (indirect addressing) registers.
310 */
311static struct {
312 char *areg_name;
313 int areg_num;
314} aregs[] = {
315 { "(pfp)", 0 }, { "(sp)", 1 }, { "(rip)", 2 }, { "(r3)", 3 },
316 { "(r4)", 4 }, { "(r5)", 5 }, { "(r6)", 6 }, { "(r7)", 7 },
317 { "(r8)", 8 }, { "(r9)", 9 }, { "(r10)", 10 }, { "(r11)", 11 },
318 { "(r12)", 12 }, { "(r13)", 13 }, { "(r14)", 14 }, { "(r15)", 15 },
319 { "(g0)", 16 }, { "(g1)", 17 }, { "(g2)", 18 }, { "(g3)", 19 },
320 { "(g4)", 20 }, { "(g5)", 21 }, { "(g6)", 22 }, { "(g7)", 23 },
321 { "(g8)", 24 }, { "(g9)", 25 }, { "(g10)", 26 }, { "(g11)", 27 },
322 { "(g12)", 28 }, { "(g13)", 29 }, { "(g14)", 30 }, { "(fp)", 31 },
a39116f1 323
fecd2382
RP
324# define IPREL 32
325 /* for assembler internal use only: this number never appears in binary
326 * output.
327 */
328 { "(ip)", IPREL },
a39116f1 329
fecd2382
RP
330 { NULL, 0 }, /* END OF LIST */
331};
332
333
334/* Hash tables */
335static struct hash_control *op_hash = NULL; /* Opcode mnemonics */
336static struct hash_control *reg_hash = NULL; /* Register name hash table */
337static struct hash_control *areg_hash = NULL; /* Abase register hash table */
338
339
340/* Architecture for which we are assembling */
341#define ARCH_ANY 0 /* Default: no architecture checking done */
342#define ARCH_KA 1
343#define ARCH_KB 2
344#define ARCH_MC 3
345#define ARCH_CA 4
346int architecture = ARCH_ANY; /* Architecture requested on invocation line */
347int iclasses_seen = 0; /* OR of instruction classes (I_* constants)
348 * for which we've actually assembled
349 * instructions.
350 */
351
352
353/* BRANCH-PREDICTION INSTRUMENTATION
354 *
355 * The following supports generation of branch-prediction instrumentation
356 * (turned on by -b switch). The instrumentation collects counts
357 * of branches taken/not-taken for later input to a utility that will
358 * set the branch prediction bits of the instructions in accordance with
359 * the behavior observed. (Note that the KX series does not have
360 * brach-prediction.)
361 *
362 * The instrumentation consists of:
363 *
364 * (1) before and after each conditional branch, a call to an external
365 * routine that increments and steps over an inline counter. The
366 * counter itself, initialized to 0, immediately follows the call
367 * instruction. For each branch, the counter following the branch
368 * is the number of times the branch was not taken, and the difference
369 * between the counters is the number of times it was taken. An
370 * example of an instrumented conditional branch:
371 *
372 * call BR_CNT_FUNC
373 * .word 0
374 * LBRANCH23: be label
375 * call BR_CNT_FUNC
376 * .word 0
377 *
378 * (2) a table of pointers to the instrumented branches, so that an
379 * external postprocessing routine can locate all of the counters.
380 * the table begins with a 2-word header: a pointer to the next in
381 * a linked list of such tables (initialized to 0); and a count
382 * of the number of entries in the table (exclusive of the header.
383 *
384 * Note that input source code is expected to already contain calls
385 * an external routine that will link the branch local table into a
386 * list of such tables.
387 */
388
389static int br_cnt = 0; /* Number of branches instrumented so far.
390 * Also used to generate unique local labels
391 * for each instrumented branch
392 */
393
394#define BR_LABEL_BASE "LBRANCH"
a39116f1
RP
395/* Basename of local labels on instrumented
396 * branches, to avoid conflict with compiler-
397 * generated local labels.
398 */
fecd2382
RP
399
400#define BR_CNT_FUNC "__inc_branch"
a39116f1
RP
401/* Name of the external routine that will
402 * increment (and step over) an inline counter.
403 */
fecd2382
RP
404
405#define BR_TAB_NAME "__BRANCH_TABLE__"
a39116f1
RP
406/* Name of the table of pointers to branches.
407 * A local (i.e., non-external) symbol.
408 */
fecd2382
RP
409\f
410/*****************************************************************************
411 * md_begin: One-time initialization.
412 *
413 * Set up hash tables.
414 *
415 **************************************************************************** */
416void
a39116f1 417 md_begin()
fecd2382
RP
418{
419 int i; /* Loop counter */
420 const struct i960_opcode *oP; /* Pointer into opcode table */
421 char *retval; /* Value returned by hash functions */
a39116f1 422
fecd2382
RP
423 if (((op_hash = hash_new()) == 0)
424 || ((reg_hash = hash_new()) == 0)
425 || ((areg_hash = hash_new()) == 0)) {
426 as_fatal("virtual memory exceeded");
427 }
a39116f1 428
fecd2382
RP
429 retval = ""; /* For some reason, the base assembler uses an empty
430 * string for "no error message", instead of a NULL
431 * pointer.
432 */
a39116f1 433
fecd2382
RP
434 for (oP=i960_opcodes; oP->name && !*retval; oP++) {
435 retval = hash_insert(op_hash, oP->name, oP);
436 }
a39116f1 437
fecd2382
RP
438 for (i=0; regnames[i].reg_name && !*retval; i++) {
439 retval = hash_insert(reg_hash, regnames[i].reg_name,
440 &regnames[i].reg_num);
441 }
a39116f1 442
fecd2382
RP
443 for (i=0; aregs[i].areg_name && !*retval; i++){
444 retval = hash_insert(areg_hash, aregs[i].areg_name,
445 &aregs[i].areg_num);
446 }
a39116f1 447
fecd2382
RP
448 if (*retval) {
449 as_fatal("Hashing returned \"%s\".", retval);
450 }
451} /* md_begin() */
452
453/*****************************************************************************
454 * md_end: One-time final cleanup
455 *
456 * None necessary
457 *
458 **************************************************************************** */
459void
a39116f1 460 md_end()
fecd2382
RP
461{
462}
463
464/*****************************************************************************
465 * md_assemble: Assemble an instruction
466 *
467 * Assumptions about the passed-in text:
468 * - all comments, labels removed
469 * - text is an instruction
470 * - all white space compressed to single blanks
471 * - all character constants have been replaced with decimal
472 *
473 **************************************************************************** */
474void
a39116f1
RP
475 md_assemble(textP)
476char *textP; /* Source text of instruction */
fecd2382
RP
477{
478 char *args[4]; /* Parsed instruction text, containing NO whitespace:
479 * arg[0]->opcode mnemonic
480 * arg[1-3]->operands, with char constants
481 * replaced by decimal numbers
482 */
483 int n_ops; /* Number of instruction operands */
a39116f1 484
fecd2382 485 struct i960_opcode *oP;
a39116f1 486 /* Pointer to instruction description */
fecd2382 487 int branch_predict;
a39116f1
RP
488 /* TRUE iff opcode mnemonic included branch-prediction
489 * suffix (".f" or ".t")
490 */
fecd2382
RP
491 long bp_bits; /* Setting of branch-prediction bit(s) to be OR'd
492 * into instruction opcode of CTRL/COBR format
493 * instructions.
494 */
495 int n; /* Offset of last character in opcode mnemonic */
a39116f1 496
fecd2382 497 static const char bp_error_msg[] = "branch prediction invalid on this opcode";
a39116f1
RP
498
499
fecd2382
RP
500 /* Parse instruction into opcode and operands */
501 bzero(args, sizeof(args));
502 n_ops = i_scan(textP, args);
503 if (n_ops == -1){
504 return; /* Error message already issued */
505 }
a39116f1 506
fecd2382
RP
507 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
508 if (!strcmp(args[0],"ldconst")){
509 n_ops = parse_ldconst(args);
510 if (n_ops == -1){
511 return;
512 }
513 }
a39116f1 514
fecd2382
RP
515 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
516 n = strlen(args[0]) - 1;
517 branch_predict = 0;
518 bp_bits = 0;
519 if (args[0][n-1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')){
520 /* We could check here to see if the target architecture
521 * supports branch prediction, but why bother? The bit
522 * will just be ignored by processors that don't use it.
523 */
524 branch_predict = 1;
525 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
526 args[0][n-1] = '\0'; /* Strip suffix from opcode mnemonic */
527 }
a39116f1 528
fecd2382
RP
529 /* Look up opcode mnemonic in table and check number of operands.
530 * Check that opcode is legal for the target architecture.
531 * If all looks good, assemble instruction.
532 */
533 oP = (struct i960_opcode *) hash_find(op_hash, args[0]);
534 if (!oP || !targ_has_iclass(oP->iclass)) {
535 as_bad("invalid opcode, \"%s\".", args[0]);
a39116f1 536
fecd2382
RP
537 } else if (n_ops != oP->num_ops) {
538 as_bad("improper number of operands. expecting %d, got %d", oP->num_ops, n_ops);
a39116f1 539
fecd2382
RP
540 } else {
541 switch (oP->format){
542 case FBRA:
543 case CTRL:
544 ctrl_fmt(args[1], oP->opcode | bp_bits, oP->num_ops);
545 if (oP->format == FBRA){
546 /* Now generate a 'bno' to same arg */
547 ctrl_fmt(args[1], BNO | bp_bits, 1);
548 }
549 break;
550 case COBR:
551 case COJ:
552 cobr_fmt(args, oP->opcode | bp_bits, oP);
553 break;
554 case REG:
555 if (branch_predict){
556 as_warn(bp_error_msg);
557 }
558 reg_fmt(args, oP);
559 break;
560 case MEM1:
561 case MEM2:
562 case MEM4:
563 case MEM8:
564 case MEM12:
565 case MEM16:
566 if (branch_predict){
567 as_warn(bp_error_msg);
568 }
569 mem_fmt(args, oP);
570 break;
571 case CALLJ:
572 if (branch_predict){
573 as_warn(bp_error_msg);
574 }
575 /* Output opcode & set up "fixup" (relocation);
576 * flag relocation as 'callj' type.
577 */
578 know(oP->num_ops == 1);
579 get_cdisp(args[1], "CTRL", oP->opcode, 24, 0, 1);
580 break;
581 default:
582 BAD_CASE(oP->format);
583 break;
584 }
585 }
586} /* md_assemble() */
587
588/*****************************************************************************
589 * md_number_to_chars: convert a number to target byte order
590 *
591 **************************************************************************** */
592void
a39116f1
RP
593 md_number_to_chars(buf, value, n)
594char *buf; /* Put output here */
595long value; /* The integer to be converted */
596int n; /* Number of bytes to output (significant bytes
597 * in 'value')
598 */
fecd2382
RP
599{
600 while (n--){
601 *buf++ = value;
602 value >>= 8;
603 }
a39116f1 604
fecd2382
RP
605 /* XXX line number probably botched for this warning message. */
606 if (value != 0 && value != -1){
607 as_bad("Displacement too long for instruction field length.");
608 }
a39116f1 609
a79c6033 610 return;
fecd2382
RP
611} /* md_number_to_chars() */
612
613/*****************************************************************************
614 * md_chars_to_number: convert from target byte order to host byte order.
615 *
616 **************************************************************************** */
617int
a39116f1
RP
618 md_chars_to_number(val, n)
619unsigned char *val; /* Value in target byte order */
620int n; /* Number of bytes in the input */
fecd2382
RP
621{
622 int retval;
a39116f1 623
fecd2382
RP
624 for (retval=0; n--;){
625 retval <<= 8;
626 retval |= val[n];
627 }
628 return retval;
629}
630
631
632#define MAX_LITTLENUMS 6
633#define LNUM_SIZE sizeof(LITTLENUM_TYPE)
634
635/*****************************************************************************
636 * md_atof: convert ascii to floating point
637 *
638 * Turn a string at input_line_pointer into a floating point constant of type
639 * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
640 * emitted is returned at 'sizeP'. An error message is returned, or a pointer
641 * to an empty message if OK.
642 *
643 * Note we call the i386 floating point routine, rather than complicating
644 * things with more files or symbolic links.
645 *
646 **************************************************************************** */
647char * md_atof(type, litP, sizeP)
648int type;
649char *litP;
650int *sizeP;
651{
652 LITTLENUM_TYPE words[MAX_LITTLENUMS];
653 LITTLENUM_TYPE *wordP;
654 int prec;
655 char *t;
656 char *atof_ieee();
a39116f1 657
fecd2382
RP
658 switch(type) {
659 case 'f':
660 case 'F':
661 prec = 2;
662 break;
a39116f1 663
fecd2382
RP
664 case 'd':
665 case 'D':
666 prec = 4;
667 break;
a39116f1 668
fecd2382
RP
669 case 't':
670 case 'T':
671 prec = 5;
672 type = 'x'; /* That's what atof_ieee() understands */
673 break;
a39116f1 674
fecd2382
RP
675 default:
676 *sizeP=0;
677 return "Bad call to md_atof()";
678 }
a39116f1 679
fecd2382
RP
680 t = atof_ieee(input_line_pointer, type, words);
681 if (t){
682 input_line_pointer = t;
683 }
a39116f1 684
fecd2382 685 *sizeP = prec * LNUM_SIZE;
a39116f1 686
fecd2382
RP
687 /* Output the LITTLENUMs in REVERSE order in accord with i80960
688 * word-order. (Dunno why atof_ieee doesn't do it in the right
689 * order in the first place -- probably because it's a hack of
690 * atof_m68k.)
691 */
a39116f1 692
fecd2382
RP
693 for(wordP = words + prec - 1; prec--;){
694 md_number_to_chars(litP, (long) (*wordP--), LNUM_SIZE);
695 litP += sizeof(LITTLENUM_TYPE);
696 }
a39116f1 697
fecd2382
RP
698 return ""; /* Someone should teach Dean about null pointers */
699}
700
701
702/*****************************************************************************
703 * md_number_to_imm
704 *
705 **************************************************************************** */
706void
a39116f1
RP
707 md_number_to_imm(buf, val, n)
708char *buf;
709long val;
710int n;
fecd2382
RP
711{
712 md_number_to_chars(buf, val, n);
713}
714
715
716/*****************************************************************************
717 * md_number_to_disp
718 *
719 **************************************************************************** */
720void
a39116f1
RP
721 md_number_to_disp(buf, val, n)
722char *buf;
723long val;
724int n;
fecd2382
RP
725{
726 md_number_to_chars(buf, val, n);
727}
728
729/*****************************************************************************
730 * md_number_to_field:
731 *
732 * Stick a value (an address fixup) into a bit field of
733 * previously-generated instruction.
734 *
735 **************************************************************************** */
736void
a39116f1
RP
737 md_number_to_field(instrP, val, bfixP)
738char *instrP; /* Pointer to instruction to be fixed */
739long val; /* Address fixup value */
740bit_fixS *bfixP; /* Description of bit field to be fixed up */
fecd2382
RP
741{
742 int numbits; /* Length of bit field to be fixed */
743 long instr; /* 32-bit instruction to be fixed-up */
744 long sign; /* 0 or -1, according to sign bit of 'val' */
a39116f1 745
fecd2382
RP
746 /* Convert instruction back to host byte order
747 */
748 instr = md_chars_to_number(instrP, 4);
a39116f1 749
fecd2382
RP
750 /* Surprise! -- we stored the number of bits
751 * to be modified rather than a pointer to a structure.
752 */
753 numbits = (int)bfixP;
754 if (numbits == 1){
755 /* This is a no-op, stuck here by reloc_callj() */
756 return;
757 }
a39116f1 758
fecd2382 759 know ((numbits==13) || (numbits==24));
a39116f1 760
fecd2382
RP
761 /* Propagate sign bit of 'val' for the given number of bits.
762 * Result should be all 0 or all 1
763 */
764 sign = val >> ((int)numbits - 1);
765 if (((val < 0) && (sign != -1))
a39116f1
RP
766 || ((val > 0) && (sign != 0))){
767 as_bad("Fixup of %d too large for field width of %d",
768 val, numbits);
fecd2382
RP
769 } else {
770 /* Put bit field into instruction and write back in target
771 * byte order.
772 */
773 val &= ~(-1 << (int)numbits); /* Clear unused sign bits */
774 instr |= val;
775 md_number_to_chars(instrP, instr, 4);
776 }
777} /* md_number_to_field() */
778
779
780/*****************************************************************************
781 * md_parse_option
782 * Invocation line includes a switch not recognized by the base assembler.
783 * See if it's a processor-specific option. For the 960, these are:
784 *
785 * -norelax:
786 * Conditional branch instructions that require displacements
787 * greater than 13 bits (or that have external targets) should
788 * generate errors. The default is to replace each such
789 * instruction with the corresponding compare (or chkbit) and
790 * branch instructions. Note that the Intel "j" cobr directives
791 * are ALWAYS "de-optimized" in this way when necessary,
792 * regardless of the setting of this option.
793 *
794 * -b:
795 * Add code to collect information about branches taken, for
796 * later optimization of branch prediction bits by a separate
797 * tool. COBR and CNTL format instructions have branch
798 * prediction bits (in the CX architecture); if "BR" represents
799 * an instruction in one of these classes, the following rep-
800 * resents the code generated by the assembler:
801 *
802 * call <increment routine>
803 * .word 0 # pre-counter
804 * Label: BR
805 * call <increment routine>
806 * .word 0 # post-counter
807 *
808 * A table of all such "Labels" is also generated.
809 *
810 *
811 * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
812 * Select the 80960 architecture. Instructions or features not
813 * supported by the selected architecture cause fatal errors.
814 * The default is to generate code for any instruction or feature
815 * that is supported by SOME version of the 960 (even if this
816 * means mixing architectures!).
817 *
818 **************************************************************************** */
819int
a39116f1
RP
820 md_parse_option(argP, cntP, vecP)
821char **argP;
822int *cntP;
823char ***vecP;
fecd2382
RP
824{
825 char *p;
826 struct tabentry { char *flag; int arch; };
827 static struct tabentry arch_tab[] = {
828 "KA", ARCH_KA,
829 "KB", ARCH_KB,
830 "SA", ARCH_KA, /* Synonym for KA */
831 "SB", ARCH_KB, /* Synonym for KB */
832 "KC", ARCH_MC, /* Synonym for MC */
833 "MC", ARCH_MC,
834 "CA", ARCH_CA,
835 NULL, 0
a39116f1 836 };
fecd2382 837 struct tabentry *tp;
a39116f1 838
fecd2382
RP
839 if (!strcmp(*argP,"norelax")){
840 norelax = 1;
a39116f1 841
fecd2382
RP
842 } else if (**argP == 'b'){
843 instrument_branches = 1;
a39116f1 844
fecd2382
RP
845 } else if (**argP == 'A'){
846 p = (*argP) + 1;
a39116f1 847
fecd2382
RP
848 for (tp = arch_tab; tp->flag != NULL; tp++){
849 if (!strcmp(p,tp->flag)){
850 break;
851 }
852 }
a39116f1 853
fecd2382
RP
854 if (tp->flag == NULL){
855 as_bad("unknown architecture: %s", p);
856 } else {
857 architecture = tp->arch;
858 }
859 } else {
860 /* Unknown option */
861 (*argP)++;
862 return 0;
863 }
864 **argP = '\0'; /* Done parsing this switch */
865 return 1;
866}
867
868/*****************************************************************************
869 * md_convert_frag:
870 * Called by base assembler after address relaxation is finished: modify
871 * variable fragments according to how much relaxation was done.
872 *
873 * If the fragment substate is still 1, a 13-bit displacement was enough
874 * to reach the symbol in question. Set up an address fixup, but otherwise
875 * leave the cobr instruction alone.
876 *
877 * If the fragment substate is 2, a 13-bit displacement was not enough.
878 * Replace the cobr with a two instructions (a compare and a branch).
879 *
880 **************************************************************************** */
881void
a39116f1 882 md_convert_frag(headers, fragP)
a79c6033 883object_headers *headers;
a39116f1 884fragS * fragP;
fecd2382
RP
885{
886 fixS *fixP; /* Structure describing needed address fix */
a39116f1 887
fecd2382
RP
888 switch (fragP->fr_subtype){
889 case 1:
890 /* LEAVE SINGLE COBR INSTRUCTION */
891 fixP = fix_new(fragP,
892 fragP->fr_opcode-fragP->fr_literal,
893 4,
894 fragP->fr_symbol,
895 0,
896 fragP->fr_offset,
897 1,
898 0);
a39116f1 899
fecd2382
RP
900 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
901 break;
902 case 2:
903 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
904 relax_cobr(fragP);
905 break;
906 default:
907 BAD_CASE(fragP->fr_subtype);
908 break;
909 }
910}
911
912/*****************************************************************************
913 * md_estimate_size_before_relax: How much does it look like *fragP will grow?
914 *
915 * Called by base assembler just before address relaxation.
916 * Return the amount by which the fragment will grow.
917 *
918 * Any symbol that is now undefined will not become defined; cobr's
919 * based on undefined symbols will have to be replaced with a compare
920 * instruction and a branch instruction, and the code fragment will grow
921 * by 4 bytes.
922 *
923 **************************************************************************** */
924int
a39116f1
RP
925 md_estimate_size_before_relax(fragP, segment_type)
926register fragS *fragP;
927register segT segment_type;
fecd2382
RP
928{
929 /* If symbol is undefined in this segment, go to "relaxed" state
930 * (compare and branch instructions instead of cobr) right now.
931 */
932 if (S_GET_SEGMENT(fragP->fr_symbol) != segment_type) {
933 relax_cobr(fragP);
934 return 4;
935 }
936 return 0;
937} /* md_estimate_size_before_relax() */
938
939
940/*****************************************************************************
941 * md_ri_to_chars:
942 * This routine exists in order to overcome machine byte-order problems
943 * when dealing with bit-field entries in the relocation_info struct.
944 *
945 * But relocation info will be used on the host machine only (only
946 * executable code is actually downloaded to the i80960). Therefore,
947 * we leave it in host byte order.
948 *
949 **************************************************************************** */
a79c6033
RP
950void md_ri_to_chars(where, ri)
951char *where;
952struct relocation_info *ri;
fecd2382 953{
a79c6033 954 *((struct relocation_info *) where) = *ri; /* structure assignment */
fecd2382
RP
955} /* md_ri_to_chars() */
956
fecd2382
RP
957#ifndef WORKING_DOT_WORD
958
959int md_short_jump_size = 0;
960int md_long_jump_size = 0;
961
962void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
963char *ptr;
964long from_addr;
965long to_addr;
966fragS *frag;
967symbolS *to_symbol;
968{
a39116f1 969 as_fatal("failed sanity check.");
fecd2382
RP
970}
971
972void
a39116f1
RP
973 md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol)
974char *ptr;
975long from_addr, to_addr;
976fragS *frag;
977symbolS *to_symbol;
fecd2382 978{
a39116f1 979 as_fatal("failed sanity check.");
fecd2382
RP
980}
981#endif
982\f
a39116f1
RP
983/*************************************************************
984 * *
985 * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
986 * *
987 ************************************************************ */
fecd2382
RP
988
989
990
991/*****************************************************************************
992 * brcnt_emit: Emit code to increment inline branch counter.
993 *
994 * See the comments above the declaration of 'br_cnt' for details on
995 * branch-prediction instrumentation.
996 **************************************************************************** */
997static void
a39116f1 998 brcnt_emit()
fecd2382
RP
999{
1000 ctrl_fmt(BR_CNT_FUNC,CALL,1);/* Emit call to "increment" routine */
1001 emit(0); /* Emit inline counter to be incremented */
1002}
1003
1004/*****************************************************************************
1005 * brlab_next: generate the next branch local label
1006 *
1007 * See the comments above the declaration of 'br_cnt' for details on
1008 * branch-prediction instrumentation.
1009 **************************************************************************** */
1010static char *
a39116f1 1011 brlab_next()
fecd2382
RP
1012{
1013 static char buf[20];
a39116f1 1014
fecd2382
RP
1015 sprintf(buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1016 return buf;
1017}
1018
1019/*****************************************************************************
1020 * brtab_emit: generate the fetch-prediction branch table.
1021 *
1022 * See the comments above the declaration of 'br_cnt' for details on
1023 * branch-prediction instrumentation.
1024 *
1025 * The code emitted here would be functionally equivalent to the following
1026 * example assembler source.
1027 *
1028 * .data
1029 * .align 2
1030 * BR_TAB_NAME:
1031 * .word 0 # link to next table
1032 * .word 3 # length of table
1033 * .word LBRANCH0 # 1st entry in table proper
1034 * .word LBRANCH1
1035 * .word LBRANCH2
1036 ***************************************************************************** */
1037void
a39116f1 1038 brtab_emit()
fecd2382
RP
1039{
1040 int i;
1041 char buf[20];
1042 char *p; /* Where the binary was output to */
1043 fixS *fixP; /*->description of deferred address fixup */
a39116f1 1044
fecd2382
RP
1045 if (!instrument_branches){
1046 return;
1047 }
a39116f1 1048
fecd2382
RP
1049 subseg_new(SEG_DATA,0); /* .data */
1050 frag_align(2,0); /* .align 2 */
1051 record_alignment(now_seg,2);
1052 colon(BR_TAB_NAME); /* BR_TAB_NAME: */
1053 emit(0); /* .word 0 #link to next table */
1054 emit(br_cnt); /* .word n #length of table */
a39116f1 1055
fecd2382
RP
1056 for (i=0; i<br_cnt; i++){
1057 sprintf(buf, "%s%d", BR_LABEL_BASE, i);
1058 p = emit(0);
1059 fixP = fix_new(frag_now,
1060 p - frag_now->fr_literal,
1061 4,
1062 symbol_find(buf),
1063 0,
1064 0,
1065 0,
1066 0);
1067 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1068 }
1069}
1070
1071/*****************************************************************************
1072 * cobr_fmt: generate a COBR-format instruction
1073 *
1074 **************************************************************************** */
1075static
a39116f1
RP
1076 void
1077 cobr_fmt(arg, opcode, oP)
1078char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1079long opcode; /* Opcode, with branch-prediction bits already set
1080 * if necessary.
1081 */
1082struct i960_opcode *oP;
1083/*->description of instruction */
fecd2382
RP
1084{
1085 long instr; /* 32-bit instruction */
1086 struct regop regop; /* Description of register operand */
1087 int n; /* Number of operands */
1088 int var_frag; /* 1 if varying length code fragment should
1089 * be emitted; 0 if an address fix
1090 * should be emitted.
1091 */
a39116f1 1092
fecd2382
RP
1093 instr = opcode;
1094 n = oP->num_ops;
a39116f1 1095
fecd2382
RP
1096 if (n >= 1) {
1097 /* First operand (if any) of a COBR is always a register
1098 * operand. Parse it.
1099 */
1100 parse_regop(&regop, arg[1], oP->operand[0]);
1101 instr |= (regop.n << 19) | (regop.mode << 13);
1102 }
1103 if (n >= 2) {
1104 /* Second operand (if any) of a COBR is always a register
1105 * operand. Parse it.
1106 */
1107 parse_regop(&regop, arg[2], oP->operand[1]);
1108 instr |= (regop.n << 14) | regop.special;
1109 }
a39116f1
RP
1110
1111
fecd2382
RP
1112 if (n < 3){
1113 emit(instr);
a39116f1 1114
fecd2382
RP
1115 } else {
1116 if (instrument_branches){
1117 brcnt_emit();
1118 colon(brlab_next());
1119 }
a39116f1 1120
fecd2382
RP
1121 /* A third operand to a COBR is always a displacement.
1122 * Parse it; if it's relaxable (a cobr "j" directive, or any
1123 * cobr other than bbs/bbc when the "-norelax" option is not in
1124 * use) set up a variable code fragment; otherwise set up an
1125 * address fix.
1126 */
1127 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1128 get_cdisp(arg[3], "COBR", instr, 13, var_frag, 0);
a39116f1 1129
fecd2382
RP
1130 if (instrument_branches){
1131 brcnt_emit();
1132 }
1133 }
1134} /* cobr_fmt() */
1135
1136
1137/*****************************************************************************
1138 * ctrl_fmt: generate a CTRL-format instruction
1139 *
1140 **************************************************************************** */
1141static
a39116f1
RP
1142 void
1143 ctrl_fmt(targP, opcode, num_ops)
1144char *targP; /* Pointer to text of lone operand (if any) */
1145long opcode; /* Template of instruction */
1146int num_ops; /* Number of operands */
fecd2382
RP
1147{
1148 int instrument; /* TRUE iff we should add instrumentation to track
1149 * how often the branch is taken
1150 */
a39116f1
RP
1151
1152
fecd2382
RP
1153 if (num_ops == 0){
1154 emit(opcode); /* Output opcode */
1155 } else {
a39116f1 1156
fecd2382 1157 instrument = instrument_branches && (opcode!=CALL)
a39116f1
RP
1158 && (opcode!=B) && (opcode!=RET) && (opcode!=BAL);
1159
fecd2382
RP
1160 if (instrument){
1161 brcnt_emit();
1162 colon(brlab_next());
1163 }
a39116f1 1164
fecd2382
RP
1165 /* The operand MUST be an ip-relative displacment. Parse it
1166 * and set up address fix for the instruction we just output.
1167 */
1168 get_cdisp(targP, "CTRL", opcode, 24, 0, 0);
a39116f1 1169
fecd2382
RP
1170 if (instrument){
1171 brcnt_emit();
1172 }
1173 }
a39116f1 1174
fecd2382
RP
1175}
1176
1177
1178/*****************************************************************************
1179 * emit: output instruction binary
1180 *
1181 * Output instruction binary, in target byte order, 4 bytes at a time.
1182 * Return pointer to where it was placed.
1183 *
1184 **************************************************************************** */
1185static
a39116f1
RP
1186 char *
1187 emit(instr)
1188long instr; /* Word to be output, host byte order */
fecd2382
RP
1189{
1190 char *toP; /* Where to output it */
a39116f1 1191
fecd2382
RP
1192 toP = frag_more(4); /* Allocate storage */
1193 md_number_to_chars(toP, instr, 4); /* Convert to target byte order */
1194 return toP;
1195}
1196
1197
1198/*****************************************************************************
1199 * get_args: break individual arguments out of comma-separated list
1200 *
1201 * Input assumptions:
1202 * - all comments and labels have been removed
1203 * - all strings of whitespace have been collapsed to a single blank.
1204 * - all character constants ('x') have been replaced with decimal
1205 *
1206 * Output:
1207 * args[0] is untouched. args[1] points to first operand, etc. All args:
1208 * - are NULL-terminated
1209 * - contain no whitespace
1210 *
1211 * Return value:
1212 * Number of operands (0,1,2, or 3) or -1 on error.
1213 *
1214 **************************************************************************** */
1215static int get_args(p, args)
a39116f1
RP
1216register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
1217char *args[]; /* Output arg: pointers to operands placed in args[1-3].
1218 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
1219 */
fecd2382
RP
1220{
1221 register int n; /* Number of operands */
1222 register char *to;
a39116f1
RP
1223 /* char buf[4]; */
1224 /* int len; */
1225
1226
fecd2382
RP
1227 /* Skip lead white space */
1228 while (*p == ' '){
1229 p++;
1230 }
a39116f1 1231
fecd2382
RP
1232 if (*p == '\0'){
1233 return 0;
1234 }
a39116f1 1235
fecd2382
RP
1236 n = 1;
1237 args[1] = p;
a39116f1 1238
fecd2382
RP
1239 /* Squeze blanks out by moving non-blanks toward start of string.
1240 * Isolate operands, whenever comma is found.
1241 */
1242 to = p;
1243 while (*p != '\0'){
a39116f1 1244
fecd2382
RP
1245 if (*p == ' '){
1246 p++;
a39116f1 1247
fecd2382 1248 } else if (*p == ','){
a39116f1 1249
fecd2382
RP
1250 /* Start of operand */
1251 if (n == 3){
1252 as_bad("too many operands");
1253 return -1;
1254 }
1255 *to++ = '\0'; /* Terminate argument */
1256 args[++n] = to; /* Start next argument */
1257 p++;
a39116f1 1258
fecd2382
RP
1259 } else {
1260 *to++ = *p++;
1261 }
1262 }
1263 *to = '\0';
1264 return n;
1265}
1266
1267
1268/*****************************************************************************
1269 * get_cdisp: handle displacement for a COBR or CTRL instruction.
1270 *
1271 * Parse displacement for a COBR or CTRL instruction.
1272 *
1273 * If successful, output the instruction opcode and set up for it,
1274 * depending on the arg 'var_frag', either:
1275 * o an address fixup to be done when all symbol values are known, or
1276 * o a varying length code fragment, with address fixup info. This
1277 * will be done for cobr instructions that may have to be relaxed
1278 * in to compare/branch instructions (8 bytes) if the final address
1279 * displacement is greater than 13 bits.
1280 *
1281 **************************************************************************** */
1282static
a39116f1
RP
1283 void
1284 get_cdisp(dispP, ifmtP, instr, numbits, var_frag, callj)
1285char *dispP; /*->displacement as specified in source instruction */
1286char *ifmtP; /*->"COBR" or "CTRL" (for use in error message) */
1287long instr; /* Instruction needing the displacement */
1288int numbits; /* # bits of displacement (13 for COBR, 24 for CTRL) */
1289int var_frag; /* 1 if varying length code fragment should be emitted;
1290 * 0 if an address fix should be emitted.
1291 */
1292int callj; /* 1 if callj relocation should be done; else 0 */
fecd2382
RP
1293{
1294 expressionS e; /* Parsed expression */
1295 fixS *fixP; /* Structure describing needed address fix */
1296 char *outP; /* Where instruction binary is output to */
a39116f1 1297
fecd2382 1298 fixP = NULL;
a39116f1 1299
fecd2382 1300 switch (parse_expr(dispP,&e)) {
a39116f1 1301
fecd2382
RP
1302 case SEG_GOOF:
1303 as_bad("expression syntax error");
1304 break;
a39116f1 1305
fecd2382
RP
1306 case SEG_TEXT:
1307 case SEG_UNKNOWN:
1308 if (var_frag) {
1309 outP = frag_more(8); /* Allocate worst-case storage */
1310 md_number_to_chars(outP, instr, 4);
1311 frag_variant(rs_machine_dependent, 4, 4, 1,
a39116f1 1312 adds(e), offs(e), outP, 0, 0);
fecd2382
RP
1313 } else {
1314 /* Set up a new fix structure, so address can be updated
1315 * when all symbol values are known.
1316 */
1317 outP = emit(instr);
1318 fixP = fix_new(frag_now,
1319 outP - frag_now->fr_literal,
1320 4,
1321 adds(e),
1322 0,
1323 offs(e),
1324 1,
1325 0);
a39116f1 1326
fecd2382 1327 fixP->fx_callj = callj;
a39116f1 1328
fecd2382
RP
1329 /* We want to modify a bit field when the address is
1330 * known. But we don't need all the garbage in the
1331 * bit_fix structure. So we're going to lie and store
1332 * the number of bits affected instead of a pointer.
1333 */
1334 fixP->fx_bit_fixP = (bit_fixS *) numbits;
1335 }
1336 break;
a39116f1 1337
fecd2382
RP
1338 case SEG_DATA:
1339 case SEG_BSS:
1340 as_bad("attempt to branch into different segment");
1341 break;
a39116f1 1342
fecd2382
RP
1343 default:
1344 as_bad("target of %s instruction must be a label", ifmtP);
1345 break;
1346 }
1347}
1348
1349
1350/*****************************************************************************
1351 * get_ispec: parse a memory operand for an index specification
1352 *
1353 * Here, an "index specification" is taken to be anything surrounded
1354 * by square brackets and NOT followed by anything else.
1355 *
1356 * If it's found, detach it from the input string, remove the surrounding
1357 * square brackets, and return a pointer to it. Otherwise, return NULL.
1358 *
1359 **************************************************************************** */
1360static
a39116f1
RP
1361 char *
1362 get_ispec(textP)
1363char *textP; /*->memory operand from source instruction, no white space */
fecd2382
RP
1364{
1365 char *start; /*->start of index specification */
1366 char *end; /*->end of index specification */
a39116f1 1367
fecd2382
RP
1368 /* Find opening square bracket, if any
1369 */
a79c6033 1370 start = strchr(textP, '[');
a39116f1 1371
fecd2382 1372 if (start != NULL){
a39116f1 1373
fecd2382
RP
1374 /* Eliminate '[', detach from rest of operand */
1375 *start++ = '\0';
a39116f1 1376
a79c6033 1377 end = strchr(start, ']');
a39116f1 1378
fecd2382
RP
1379 if (end == NULL){
1380 as_bad("unmatched '['");
a39116f1 1381
fecd2382
RP
1382 } else {
1383 /* Eliminate ']' and make sure it was the last thing
1384 * in the string.
1385 */
1386 *end = '\0';
1387 if (*(end+1) != '\0'){
1388 as_bad("garbage after index spec ignored");
1389 }
1390 }
1391 }
1392 return start;
1393}
1394
1395/*****************************************************************************
1396 * get_regnum:
1397 *
1398 * Look up a (suspected) register name in the register table and return the
1399 * associated register number (or -1 if not found).
1400 *
1401 **************************************************************************** */
1402static
a39116f1
RP
1403 int
1404 get_regnum(regname)
1405char *regname; /* Suspected register name */
fecd2382
RP
1406{
1407 int *rP;
a39116f1 1408
fecd2382
RP
1409 rP = (int *) hash_find(reg_hash, regname);
1410 return (rP == NULL) ? -1 : *rP;
1411}
1412
1413
1414/*****************************************************************************
1415 * i_scan: perform lexical scan of ascii assembler instruction.
1416 *
1417 * Input assumptions:
1418 * - input string is an i80960 instruction (not a pseudo-op)
1419 * - all comments and labels have been removed
1420 * - all strings of whitespace have been collapsed to a single blank.
1421 *
1422 * Output:
1423 * args[0] points to opcode, other entries point to operands. All strings:
1424 * - are NULL-terminated
1425 * - contain no whitespace
1426 * - have character constants ('x') replaced with a decimal number
1427 *
1428 * Return value:
1429 * Number of operands (0,1,2, or 3) or -1 on error.
1430 *
1431 **************************************************************************** */
1432static int i_scan(iP, args)
a39116f1
RP
1433register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
1434char *args[]; /* Output arg: pointers to opcode and operands placed
1435 * here. MUST ACCOMMODATE 4 ENTRIES.
1436 */
fecd2382 1437{
a39116f1 1438
fecd2382
RP
1439 /* Isolate opcode */
1440 if (*(iP) == ' ') {
1441 iP++;
1442 } /* Skip lead space, if any */
1443 args[0] = iP;
1444 for (; *iP != ' '; iP++) {
1445 if (*iP == '\0') {
1446 /* There are no operands */
1447 if (args[0] == iP) {
1448 /* We never moved: there was no opcode either! */
1449 as_bad("missing opcode");
1450 return -1;
1451 }
1452 return 0;
1453 }
1454 }
1455 *iP++ = '\0'; /* Terminate opcode */
1456 return(get_args(iP, args));
1457} /* i_scan() */
1458
1459
1460/*****************************************************************************
1461 * mem_fmt: generate a MEMA- or MEMB-format instruction
1462 *
1463 **************************************************************************** */
1464static void mem_fmt(args, oP)
a39116f1
RP
1465char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1466struct i960_opcode *oP; /* Pointer to description of instruction */
fecd2382
RP
1467{
1468 int i; /* Loop counter */
1469 struct regop regop; /* Description of register operand */
1470 char opdesc; /* Operand descriptor byte */
1471 memS instr; /* Description of binary to be output */
1472 char *outP; /* Where the binary was output to */
1473 expressionS expr; /* Parsed expression */
1474 fixS *fixP; /*->description of deferred address fixup */
a39116f1 1475
fecd2382
RP
1476 bzero(&instr, sizeof(memS));
1477 instr.opcode = oP->opcode;
a39116f1 1478
fecd2382
RP
1479 /* Process operands. */
1480 for (i = 1; i <= oP->num_ops; i++){
1481 opdesc = oP->operand[i-1];
a39116f1 1482
fecd2382
RP
1483 if (MEMOP(opdesc)){
1484 parse_memop(&instr, args[i], oP->format);
1485 } else {
1486 parse_regop(&regop, args[i], opdesc);
1487 instr.opcode |= regop.n << 19;
1488 }
1489 }
a39116f1 1490
fecd2382
RP
1491 /* Output opcode */
1492 outP = emit(instr.opcode);
a39116f1 1493
fecd2382
RP
1494 if (instr.disp == 0){
1495 return;
1496 }
a39116f1 1497
fecd2382
RP
1498 /* Parse and process the displacement */
1499 switch (parse_expr(instr.e,&expr)){
a39116f1 1500
fecd2382
RP
1501 case SEG_GOOF:
1502 as_bad("expression syntax error");
1503 break;
a39116f1 1504
fecd2382
RP
1505 case SEG_ABSOLUTE:
1506 if (instr.disp == 32){
1507 (void) emit(offs(expr)); /* Output displacement */
1508 } else {
1509 /* 12-bit displacement */
1510 if (offs(expr) & ~0xfff){
1511 /* Won't fit in 12 bits: convert already-output
1512 * instruction to MEMB format, output
1513 * displacement.
1514 */
1515 mema_to_memb(outP);
1516 (void) emit(offs(expr));
1517 } else {
1518 /* WILL fit in 12 bits: OR into opcode and
1519 * overwrite the binary we already put out
1520 */
1521 instr.opcode |= offs(expr);
1522 md_number_to_chars(outP, instr.opcode, 4);
1523 }
1524 }
1525 break;
a39116f1 1526
fecd2382
RP
1527 case SEG_DIFFERENCE:
1528 case SEG_TEXT:
1529 case SEG_DATA:
1530 case SEG_BSS:
1531 case SEG_UNKNOWN:
1532 if (instr.disp == 12){
1533 /* Displacement is dependent on a symbol, whose value
1534 * may change at link time. We HAVE to reserve 32 bits.
1535 * Convert already-output opcode to MEMB format.
1536 */
1537 mema_to_memb(outP);
1538 }
a39116f1 1539
fecd2382
RP
1540 /* Output 0 displacement and set up address fixup for when
1541 * this symbol's value becomes known.
1542 */
1543 outP = emit((long) 0);
1544 fixP = fix_new(frag_now,
1545 outP - frag_now->fr_literal,
1546 4,
1547 adds(expr),
1548 subs(expr),
1549 offs(expr),
1550 0,
1551 0);
1552 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1553 break;
a39116f1 1554
fecd2382
RP
1555 default:
1556 BAD_CASE(segs(expr));
1557 break;
1558 }
1559} /* memfmt() */
1560
1561
1562/*****************************************************************************
1563 * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1564 *
1565 * There are 2 possible MEMA formats:
1566 * - displacement only
1567 * - displacement + abase
1568 *
1569 * They are distinguished by the setting of the MEMA_ABASE bit.
1570 *
1571 **************************************************************************** */
1572static void mema_to_memb(opcodeP)
a39116f1 1573char *opcodeP; /* Where to find the opcode, in target byte order */
fecd2382
RP
1574{
1575 long opcode; /* Opcode in host byte order */
1576 long mode; /* Mode bits for MEMB instruction */
a39116f1 1577
fecd2382
RP
1578 opcode = md_chars_to_number(opcodeP, 4);
1579 know(!(opcode & MEMB_BIT));
a39116f1 1580
fecd2382
RP
1581 mode = MEMB_BIT | D_BIT;
1582 if (opcode & MEMA_ABASE){
1583 mode |= A_BIT;
1584 }
a39116f1 1585
fecd2382
RP
1586 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1587 opcode |= mode; /* Set MEMB mode bits */
a39116f1 1588
fecd2382
RP
1589 md_number_to_chars(opcodeP, opcode, 4);
1590} /* mema_to_memb() */
1591
1592
1593/*****************************************************************************
1594 * parse_expr: parse an expression
1595 *
1596 * Use base assembler's expression parser to parse an expression.
1597 * It, unfortunately, runs off a global which we have to save/restore
1598 * in order to make it work for us.
1599 *
1600 * An empty expression string is treated as an absolute 0.
1601 *
1602 * Return "segment" to which the expression evaluates.
1603 * Return SEG_GOOF regardless of expression evaluation if entire input
1604 * string is not consumed in the evaluation -- tolerate no dangling junk!
1605 *
1606 **************************************************************************** */
1607static
a39116f1
RP
1608 segT
1609 parse_expr(textP, expP)
1610char *textP; /* Text of expression to be parsed */
1611expressionS *expP; /* Where to put the results of parsing */
fecd2382
RP
1612{
1613 char *save_in; /* Save global here */
1614 segT seg; /* Segment to which expression evaluates */
1615 symbolS *symP;
a39116f1 1616
fecd2382 1617 know(textP);
a39116f1 1618
fecd2382
RP
1619 if (*textP == '\0') {
1620 /* Treat empty string as absolute 0 */
1621 expP->X_add_symbol = expP->X_subtract_symbol = NULL;
1622 expP->X_add_number = 0;
1623 seg = expP->X_seg = SEG_ABSOLUTE;
a39116f1 1624
fecd2382
RP
1625 } else {
1626 save_in = input_line_pointer; /* Save global */
1627 input_line_pointer = textP; /* Make parser work for us */
a39116f1 1628
fecd2382
RP
1629 seg = expression(expP);
1630 if (input_line_pointer - textP != strlen(textP)) {
1631 /* Did not consume all of the input */
1632 seg = SEG_GOOF;
1633 }
1634 symP = expP->X_add_symbol;
1635 if (symP && (hash_find(reg_hash, S_GET_NAME(symP)))) {
1636 /* Register name in an expression */
1637 seg = SEG_GOOF;
1638 }
a39116f1 1639
fecd2382
RP
1640 input_line_pointer = save_in; /* Restore global */
1641 }
1642 return seg;
1643}
1644
1645
1646/*****************************************************************************
1647 * parse_ldcont:
1648 * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1649 * i80960 instruction.
1650 *
1651 * Assumes the input consists of:
1652 * arg[0] opcode mnemonic ('ldconst')
1653 * arg[1] first operand (constant)
1654 * arg[2] name of register to be loaded
1655 *
1656 * Replaces opcode and/or operands as appropriate.
1657 *
1658 * Returns the new number of arguments, or -1 on failure.
1659 *
1660 **************************************************************************** */
1661static
a39116f1
RP
1662 int
1663 parse_ldconst(arg)
1664char *arg[]; /* See above */
fecd2382
RP
1665{
1666 int n; /* Constant to be loaded */
1667 int shift; /* Shift count for "shlo" instruction */
1668 static char buf[5]; /* Literal for first operand */
1669 static char buf2[5]; /* Literal for second operand */
1670 expressionS e; /* Parsed expression */
a39116f1
RP
1671
1672
fecd2382 1673 arg[3] = NULL; /* So we can tell at the end if it got used or not */
a39116f1 1674
fecd2382 1675 switch(parse_expr(arg[1],&e)){
a39116f1 1676
fecd2382
RP
1677 case SEG_TEXT:
1678 case SEG_DATA:
1679 case SEG_BSS:
1680 case SEG_UNKNOWN:
1681 case SEG_DIFFERENCE:
1682 /* We're dependent on one or more symbols -- use "lda" */
1683 arg[0] = "lda";
1684 break;
a39116f1 1685
fecd2382
RP
1686 case SEG_ABSOLUTE:
1687 /* Try the following mappings:
1688 * ldconst 0,<reg> ->mov 0,<reg>
1689 * ldconst 31,<reg> ->mov 31,<reg>
1690 * ldconst 32,<reg> ->addo 1,31,<reg>
1691 * ldconst 62,<reg> ->addo 31,31,<reg>
1692 * ldconst 64,<reg> ->shlo 8,3,<reg>
1693 * ldconst -1,<reg> ->subo 1,0,<reg>
1694 * ldconst -31,<reg>->subo 31,0,<reg>
1695 *
1696 * anthing else becomes:
1697 * lda xxx,<reg>
1698 */
1699 n = offs(e);
1700 if ((0 <= n) && (n <= 31)){
1701 arg[0] = "mov";
a39116f1 1702
fecd2382
RP
1703 } else if ((-31 <= n) && (n <= -1)){
1704 arg[0] = "subo";
1705 arg[3] = arg[2];
1706 sprintf(buf, "%d", -n);
1707 arg[1] = buf;
1708 arg[2] = "0";
a39116f1 1709
fecd2382
RP
1710 } else if ((32 <= n) && (n <= 62)){
1711 arg[0] = "addo";
1712 arg[3] = arg[2];
1713 arg[1] = "31";
1714 sprintf(buf, "%d", n-31);
1715 arg[2] = buf;
a39116f1 1716
fecd2382
RP
1717 } else if ((shift = shift_ok(n)) != 0){
1718 arg[0] = "shlo";
1719 arg[3] = arg[2];
1720 sprintf(buf, "%d", shift);
1721 arg[1] = buf;
1722 sprintf(buf2, "%d", n >> shift);
1723 arg[2] = buf2;
a39116f1 1724
fecd2382
RP
1725 } else {
1726 arg[0] = "lda";
1727 }
1728 break;
a39116f1 1729
fecd2382
RP
1730 default:
1731 as_bad("invalid constant");
1732 return -1;
1733 break;
1734 }
1735 return (arg[3] == 0) ? 2: 3;
1736}
1737
1738/*****************************************************************************
1739 * parse_memop: parse a memory operand
1740 *
1741 * This routine is based on the observation that the 4 mode bits of the
1742 * MEMB format, taken individually, have fairly consistent meaning:
1743 *
1744 * M3 (bit 13): 1 if displacement is present (D_BIT)
1745 * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1746 * M1 (bit 11): 1 if index is present (I_BIT)
1747 * M0 (bit 10): 1 if abase is present (A_BIT)
1748 *
1749 * So we parse the memory operand and set bits in the mode as we find
1750 * things. Then at the end, if we go to MEMB format, we need only set
1751 * the MEMB bit (M2) and our mode is built for us.
1752 *
1753 * Unfortunately, I said "fairly consistent". The exceptions:
1754 *
1755 * DBIA
1756 * 0100 Would seem illegal, but means "abase-only".
1757 *
1758 * 0101 Would seem to mean "abase-only" -- it means IP-relative.
1759 * Must be converted to 0100.
1760 *
1761 * 0110 Would seem to mean "index-only", but is reserved.
1762 * We turn on the D bit and provide a 0 displacement.
1763 *
1764 * The other thing to observe is that we parse from the right, peeling
1765 * things * off as we go: first any index spec, then any abase, then
1766 * the displacement.
1767 *
1768 **************************************************************************** */
1769static
a39116f1
RP
1770 void
1771 parse_memop(memP, argP, optype)
1772memS *memP; /* Where to put the results */
1773char *argP; /* Text of the operand to be parsed */
1774int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
fecd2382
RP
1775{
1776 char *indexP; /* Pointer to index specification with "[]" removed */
1777 char *p; /* Temp char pointer */
1778 char iprel_flag;/* True if this is an IP-relative operand */
1779 int regnum; /* Register number */
1780 int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
1781 * to internal format (0,1,2,3,4 respectively).
1782 */
1783 int mode; /* MEMB mode bits */
1784 int *intP; /* Pointer to register number */
a39116f1 1785
fecd2382
RP
1786 /* The following table contains the default scale factors for each
1787 * type of memory instruction. It is accessed using (optype-MEM1)
1788 * as an index -- thus it assumes the 'optype' constants are assigned
1789 * consecutive values, in the order they appear in this table
1790 */
1791 static int def_scale[] = {
1792 1, /* MEM1 */
1793 2, /* MEM2 */
1794 4, /* MEM4 */
1795 8, /* MEM8 */
1796 -1, /* MEM12 -- no valid default */
1797 16 /* MEM16 */
a39116f1
RP
1798 };
1799
1800
fecd2382 1801 iprel_flag = mode = 0;
a39116f1 1802
fecd2382
RP
1803 /* Any index present? */
1804 indexP = get_ispec(argP);
1805 if (indexP) {
1806 p = strchr(indexP, '*');
1807 if (p == NULL) {
1808 /* No explicit scale -- use default for this
1809 *instruction type.
1810 */
1811 scale = def_scale[ optype - MEM1 ];
1812 } else {
1813 *p++ = '\0'; /* Eliminate '*' */
a39116f1 1814
fecd2382
RP
1815 /* Now indexP->a '\0'-terminated register name,
1816 * and p->a scale factor.
1817 */
a39116f1 1818
fecd2382
RP
1819 if (!strcmp(p,"16")){
1820 scale = 16;
1821 } else if (strchr("1248",*p) && (p[1] == '\0')){
1822 scale = *p - '0';
1823 } else {
1824 scale = -1;
1825 }
1826 }
a39116f1 1827
fecd2382
RP
1828 regnum = get_regnum(indexP); /* Get index reg. # */
1829 if (!IS_RG_REG(regnum)){
1830 as_bad("invalid index register");
1831 return;
1832 }
a39116f1 1833
fecd2382
RP
1834 /* Convert scale to its binary encoding */
1835 switch (scale){
1836 case 1: scale = 0 << 7; break;
1837 case 2: scale = 1 << 7; break;
1838 case 4: scale = 2 << 7; break;
1839 case 8: scale = 3 << 7; break;
1840 case 16: scale = 4 << 7; break;
1841 default: as_bad("invalid scale factor"); return;
1842 };
a39116f1 1843
fecd2382
RP
1844 memP->opcode |= scale | regnum; /* Set index bits in opcode */
1845 mode |= I_BIT; /* Found a valid index spec */
1846 }
a39116f1 1847
fecd2382
RP
1848 /* Any abase (Register Indirect) specification present? */
1849 if ((p = strrchr(argP,'(')) != NULL) {
1850 /* "(" is there -- does it start a legal abase spec?
1851 * (If not it could be part of a displacement expression.)
1852 */
1853 intP = (int *) hash_find(areg_hash, p);
1854 if (intP != NULL){
1855 /* Got an abase here */
1856 regnum = *intP;
1857 *p = '\0'; /* discard register spec */
1858 if (regnum == IPREL){
1859 /* We have to specialcase ip-rel mode */
1860 iprel_flag = 1;
1861 } else {
1862 memP->opcode |= regnum << 14;
1863 mode |= A_BIT;
1864 }
1865 }
1866 }
a39116f1 1867
fecd2382
RP
1868 /* Any expression present? */
1869 memP->e = argP;
1870 if (*argP != '\0'){
1871 mode |= D_BIT;
1872 }
a39116f1 1873
fecd2382
RP
1874 /* Special-case ip-relative addressing */
1875 if (iprel_flag){
1876 if (mode & I_BIT){
1877 syntax();
1878 } else {
1879 memP->opcode |= 5 << 10; /* IP-relative mode */
1880 memP->disp = 32;
1881 }
1882 return;
1883 }
a39116f1 1884
fecd2382
RP
1885 /* Handle all other modes */
1886 switch (mode){
1887 case D_BIT | A_BIT:
1888 /* Go with MEMA instruction format for now (grow to MEMB later
1889 * if 12 bits is not enough for the displacement).
1890 * MEMA format has a single mode bit: set it to indicate
1891 * that abase is present.
1892 */
1893 memP->opcode |= MEMA_ABASE;
1894 memP->disp = 12;
1895 break;
a39116f1 1896
fecd2382
RP
1897 case D_BIT:
1898 /* Go with MEMA instruction format for now (grow to MEMB later
1899 * if 12 bits is not enough for the displacement).
1900 */
1901 memP->disp = 12;
1902 break;
a39116f1 1903
fecd2382
RP
1904 case A_BIT:
1905 /* For some reason, the bit string for this mode is not
1906 * consistent: it should be 0 (exclusive of the MEMB bit),
1907 * so we set it "by hand" here.
1908 */
1909 memP->opcode |= MEMB_BIT;
1910 break;
a39116f1 1911
fecd2382
RP
1912 case A_BIT | I_BIT:
1913 /* set MEMB bit in mode, and OR in mode bits */
1914 memP->opcode |= mode | MEMB_BIT;
1915 break;
a39116f1 1916
fecd2382
RP
1917 case I_BIT:
1918 /* Treat missing displacement as displacement of 0 */
1919 mode |= D_BIT;
1920 /***********************
1921 * Fall into next case *
1922 ********************** */
1923 case D_BIT | A_BIT | I_BIT:
1924 case D_BIT | I_BIT:
1925 /* set MEMB bit in mode, and OR in mode bits */
1926 memP->opcode |= mode | MEMB_BIT;
1927 memP->disp = 32;
1928 break;
a39116f1 1929
fecd2382
RP
1930 default:
1931 syntax();
1932 break;
1933 }
1934}
1935
1936/*****************************************************************************
1937 * parse_po: parse machine-dependent pseudo-op
1938 *
1939 * This is a top-level routine for machine-dependent pseudo-ops. It slurps
1940 * up the rest of the input line, breaks out the individual arguments,
1941 * and dispatches them to the correct handler.
1942 **************************************************************************** */
1943static
a39116f1
RP
1944 void
1945 parse_po(po_num)
1946int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
fecd2382
RP
1947{
1948 char *args[4]; /* Pointers operands, with no embedded whitespace.
1949 * arg[0] unused.
1950 * arg[1-3]->operands
1951 */
1952 int n_ops; /* Number of operands */
1953 char *p; /* Pointer to beginning of unparsed argument string */
1954 char eol; /* Character that indicated end of line */
a39116f1 1955
fecd2382 1956 extern char is_end_of_line[];
a39116f1 1957
fecd2382
RP
1958 /* Advance input pointer to end of line. */
1959 p = input_line_pointer;
1960 while (!is_end_of_line[ *input_line_pointer ]){
1961 input_line_pointer++;
1962 }
1963 eol = *input_line_pointer; /* Save end-of-line char */
1964 *input_line_pointer = '\0'; /* Terminate argument list */
a39116f1 1965
fecd2382
RP
1966 /* Parse out operands */
1967 n_ops = get_args(p, args);
1968 if (n_ops == -1){
1969 return;
1970 }
a39116f1 1971
fecd2382
RP
1972 /* Dispatch to correct handler */
1973 switch(po_num){
1974 case S_SYSPROC: s_sysproc(n_ops, args); break;
1975 case S_LEAFPROC: s_leafproc(n_ops, args); break;
1976 default: BAD_CASE(po_num); break;
1977 }
a39116f1 1978
fecd2382
RP
1979 /* Restore eol, so line numbers get updated correctly. Base assembler
1980 * assumes we leave input pointer pointing at char following the eol.
1981 */
1982 *input_line_pointer++ = eol;
1983}
1984
1985/*****************************************************************************
1986 * parse_regop: parse a register operand.
1987 *
1988 * In case of illegal operand, issue a message and return some valid
1989 * information so instruction processing can continue.
1990 **************************************************************************** */
1991static
a39116f1
RP
1992 void
1993 parse_regop(regopP, optext, opdesc)
1994struct regop *regopP; /* Where to put description of register operand */
1995char *optext; /* Text of operand */
1996char opdesc; /* Descriptor byte: what's legal for this operand */
fecd2382
RP
1997{
1998 int n; /* Register number */
1999 expressionS e; /* Parsed expression */
a39116f1 2000
fecd2382
RP
2001 /* See if operand is a register */
2002 n = get_regnum(optext);
2003 if (n >= 0){
2004 if (IS_RG_REG(n)){
2005 /* global or local register */
2006 if (!REG_ALIGN(opdesc,n)){
2007 as_bad("unaligned register");
2008 }
2009 regopP->n = n;
2010 regopP->mode = 0;
2011 regopP->special = 0;
2012 return;
2013 } else if (IS_FP_REG(n) && FP_OK(opdesc)){
2014 /* Floating point register, and it's allowed */
2015 regopP->n = n - FP0;
2016 regopP->mode = 1;
2017 regopP->special = 0;
2018 return;
2019 } else if (IS_SF_REG(n) && SFR_OK(opdesc)){
2020 /* Special-function register, and it's allowed */
2021 regopP->n = n - SF0;
2022 regopP->mode = 0;
2023 regopP->special = 1;
2024 if (!targ_has_sfr(regopP->n)){
2025 as_bad("no such sfr in this architecture");
2026 }
2027 return;
2028 }
2029 } else if (LIT_OK(opdesc)){
2030 /*
2031 * How about a literal?
2032 */
2033 regopP->mode = 1;
2034 regopP->special = 0;
2035 if (FP_OK(opdesc)){ /* floating point literal acceptable */
2036 /* Skip over 0f, 0d, or 0e prefix */
2037 if ( (optext[0] == '0')
a39116f1
RP
2038 && (optext[1] >= 'd')
2039 && (optext[1] <= 'f') ){
fecd2382
RP
2040 optext += 2;
2041 }
a39116f1 2042
fecd2382
RP
2043 if (!strcmp(optext,"0.0") || !strcmp(optext,"0") ){
2044 regopP->n = 0x10;
2045 return;
2046 }
2047 if (!strcmp(optext,"1.0") || !strcmp(optext,"1") ){
2048 regopP->n = 0x16;
2049 return;
2050 }
a39116f1 2051
fecd2382
RP
2052 } else { /* fixed point literal acceptable */
2053 if ((parse_expr(optext,&e) != SEG_ABSOLUTE)
a39116f1 2054 || (offs(e) < 0) || (offs(e) > 31)){
fecd2382
RP
2055 as_bad("illegal literal");
2056 offs(e) = 0;
2057 }
2058 regopP->n = offs(e);
2059 return;
2060 }
2061 }
a39116f1 2062
fecd2382
RP
2063 /* Nothing worked */
2064 syntax();
2065 regopP->mode = 0; /* Register r0 is always a good one */
2066 regopP->n = 0;
2067 regopP->special = 0;
2068} /* parse_regop() */
2069
2070/*****************************************************************************
2071 * reg_fmt: generate a REG-format instruction
2072 *
2073 **************************************************************************** */
2074static void reg_fmt(args, oP)
a39116f1
RP
2075char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2076struct i960_opcode *oP; /* Pointer to description of instruction */
fecd2382
RP
2077{
2078 long instr; /* Binary to be output */
2079 struct regop regop; /* Description of register operand */
2080 int n_ops; /* Number of operands */
a39116f1
RP
2081
2082
fecd2382
RP
2083 instr = oP->opcode;
2084 n_ops = oP->num_ops;
a39116f1 2085
fecd2382
RP
2086 if (n_ops >= 1){
2087 parse_regop(&regop, args[1], oP->operand[0]);
a39116f1 2088
fecd2382
RP
2089 if ((n_ops == 1) && !(instr & M3)){
2090 /* 1-operand instruction in which the dst field should
2091 * be used (instead of src1).
2092 */
2093 regop.n <<= 19;
2094 if (regop.special){
2095 regop.mode = regop.special;
2096 }
2097 regop.mode <<= 13;
2098 regop.special = 0;
2099 } else {
2100 /* regop.n goes in bit 0, needs no shifting */
2101 regop.mode <<= 11;
2102 regop.special <<= 5;
2103 }
2104 instr |= regop.n | regop.mode | regop.special;
2105 }
a39116f1 2106
fecd2382
RP
2107 if (n_ops >= 2) {
2108 parse_regop(&regop, args[2], oP->operand[1]);
a39116f1 2109
fecd2382
RP
2110 if ((n_ops == 2) && !(instr & M3)){
2111 /* 2-operand instruction in which the dst field should
2112 * be used instead of src2).
2113 */
2114 regop.n <<= 19;
2115 if (regop.special){
2116 regop.mode = regop.special;
2117 }
2118 regop.mode <<= 13;
2119 regop.special = 0;
2120 } else {
2121 regop.n <<= 14;
2122 regop.mode <<= 12;
2123 regop.special <<= 6;
2124 }
2125 instr |= regop.n | regop.mode | regop.special;
2126 }
2127 if (n_ops == 3){
2128 parse_regop(&regop, args[3], oP->operand[2]);
2129 if (regop.special){
2130 regop.mode = regop.special;
2131 }
2132 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2133 }
2134 emit(instr);
2135}
2136
2137
2138/*****************************************************************************
2139 * relax_cobr:
2140 * Replace cobr instruction in a code fragment with equivalent branch and
2141 * compare instructions, so it can reach beyond a 13-bit displacement.
2142 * Set up an address fix/relocation for the new branch instruction.
2143 *
2144 **************************************************************************** */
2145
2146/* This "conditional jump" table maps cobr instructions into equivalent
2147 * compare and branch opcodes.
2148 */
2149static
a39116f1
RP
2150 struct {
2151 long compare;
2152 long branch;
2153 } coj[] = { /* COBR OPCODE: */
2154 CHKBIT, BNO, /* 0x30 - bbc */
2155 CMPO, BG, /* 0x31 - cmpobg */
2156 CMPO, BE, /* 0x32 - cmpobe */
2157 CMPO, BGE, /* 0x33 - cmpobge */
2158 CMPO, BL, /* 0x34 - cmpobl */
2159 CMPO, BNE, /* 0x35 - cmpobne */
2160 CMPO, BLE, /* 0x36 - cmpoble */
2161 CHKBIT, BO, /* 0x37 - bbs */
2162 CMPI, BNO, /* 0x38 - cmpibno */
2163 CMPI, BG, /* 0x39 - cmpibg */
2164 CMPI, BE, /* 0x3a - cmpibe */
2165 CMPI, BGE, /* 0x3b - cmpibge */
2166 CMPI, BL, /* 0x3c - cmpibl */
2167 CMPI, BNE, /* 0x3d - cmpibne */
2168 CMPI, BLE, /* 0x3e - cmpible */
2169 CMPI, BO, /* 0x3f - cmpibo */
2170 };
fecd2382
RP
2171
2172static
a39116f1
RP
2173 void
2174 relax_cobr(fragP)
2175register fragS *fragP; /* fragP->fr_opcode is assumed to point to
2176 * the cobr instruction, which comes at the
2177 * end of the code fragment.
2178 */
fecd2382
RP
2179{
2180 int opcode, src1, src2, m1, s2;
a39116f1 2181 /* Bit fields from cobr instruction */
fecd2382
RP
2182 long bp_bits; /* Branch prediction bits from cobr instruction */
2183 long instr; /* A single i960 instruction */
2184 char *iP; /*->instruction to be replaced */
2185 fixS *fixP; /* Relocation that can be done at assembly time */
a39116f1 2186
fecd2382
RP
2187 /* PICK UP & PARSE COBR INSTRUCTION */
2188 iP = fragP->fr_opcode;
2189 instr = md_chars_to_number(iP, 4);
2190 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2191 src1 = (instr >> 19) & 0x1f;
2192 m1 = (instr >> 13) & 1;
2193 s2 = instr & 1;
2194 src2 = (instr >> 14) & 0x1f;
2195 bp_bits= instr & BP_MASK;
a39116f1 2196
fecd2382
RP
2197 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2198 instr = coj[opcode].compare
a39116f1 2199 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
fecd2382 2200 md_number_to_chars(iP, instr, 4);
a39116f1 2201
fecd2382
RP
2202 /* OUTPUT BRANCH INSTRUCTION */
2203 md_number_to_chars(iP+4, coj[opcode].branch | bp_bits, 4);
a39116f1 2204
fecd2382
RP
2205 /* SET UP ADDRESS FIXUP/RELOCATION */
2206 fixP = fix_new(fragP,
2207 iP+4 - fragP->fr_literal,
2208 4,
2209 fragP->fr_symbol,
2210 0,
2211 fragP->fr_offset,
2212 1,
2213 0);
a39116f1 2214
fecd2382 2215 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
a39116f1 2216
fecd2382
RP
2217 fragP->fr_fix += 4;
2218 frag_wane(fragP);
2219}
2220
2221
2222/*****************************************************************************
2223 * reloc_callj: Relocate a 'callj' instruction
2224 *
2225 * This is a "non-(GNU)-standard" machine-dependent hook. The base
2226 * assembler calls it when it decides it can relocate an address at
2227 * assembly time instead of emitting a relocation directive.
2228 *
2229 * Check to see if the relocation involves a 'callj' instruction to a:
2230 * sysproc: Replace the default 'call' instruction with a 'calls'
2231 * leafproc: Replace the default 'call' instruction with a 'bal'.
2232 * other proc: Do nothing.
2233 *
2234 * See b.out.h for details on the 'n_other' field in a symbol structure.
2235 *
2236 * IMPORTANT!:
2237 * Assumes the caller has already figured out, in the case of a leafproc,
2238 * to use the 'bal' entry point, and has substituted that symbol into the
2239 * passed fixup structure.
2240 *
2241 **************************************************************************** */
2242void reloc_callj(fixP)
2243fixS *fixP; /* Relocation that can be done at assembly time */
2244{
2245 char *where; /*->the binary for the instruction being relocated */
a39116f1 2246
fecd2382
RP
2247 if (!fixP->fx_callj) {
2248 return;
2249 } /* This wasn't a callj instruction in the first place */
a39116f1 2250
fecd2382 2251 where = fixP->fx_frag->fr_literal + fixP->fx_where;
a39116f1 2252
fecd2382
RP
2253 if (TC_S_IS_SYSPROC(fixP->fx_addsy)) {
2254 /* Symbol is a .sysproc: replace 'call' with 'calls'.
2255 * System procedure number is (other-1).
2256 */
2257 md_number_to_chars(where, CALLS|TC_S_GET_SYSPROC(fixP->fx_addsy), 4);
a39116f1 2258
fecd2382
RP
2259 /* Nothing else needs to be done for this instruction.
2260 * Make sure 'md_number_to_field()' will perform a no-op.
2261 */
2262 fixP->fx_bit_fixP = (bit_fixS *) 1;
a39116f1 2263
fecd2382
RP
2264 } else if (TC_S_IS_CALLNAME(fixP->fx_addsy)) {
2265 /* Should not happen: see block comment above */
2266 as_fatal("Trying to 'bal' to %s", S_GET_NAME(fixP->fx_addsy));
a39116f1 2267
fecd2382
RP
2268 } else if (TC_S_IS_BALNAME(fixP->fx_addsy)) {
2269 /* Replace 'call' with 'bal'; both instructions have
2270 * the same format, so calling code should complete
2271 * relocation as if nothing happened here.
2272 */
2273 md_number_to_chars(where, BAL, 4);
2274 } else if (TC_S_IS_BADPROC(fixP->fx_addsy)) {
2275 as_bad("Looks like a proc, but can't tell what kind.\n");
2276 } /* switch on proc type */
2277
2278 /* else Symbol is neither a sysproc nor a leafproc */
2279
2280 return;
2281} /* reloc_callj() */
2282
2283
2284/*****************************************************************************
2285 * s_leafproc: process .leafproc pseudo-op
2286 *
2287 * .leafproc takes two arguments, the second one is optional:
2288 * arg[1]: name of 'call' entry point to leaf procedure
2289 * arg[2]: name of 'bal' entry point to leaf procedure
2290 *
2291 * If the two arguments are identical, or if the second one is missing,
2292 * the first argument is taken to be the 'bal' entry point.
2293 *
2294 * If there are 2 distinct arguments, we must make sure that the 'bal'
2295 * entry point immediately follows the 'call' entry point in the linked
2296 * list of symbols.
2297 *
2298 **************************************************************************** */
2299static void s_leafproc(n_ops, args)
2300int n_ops; /* Number of operands */
2301char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2302{
2303 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2304 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
a39116f1 2305
fecd2382
RP
2306 if ((n_ops != 1) && (n_ops != 2)) {
2307 as_bad("should have 1 or 2 operands");
2308 return;
2309 } /* Check number of arguments */
a39116f1 2310
fecd2382
RP
2311 /* Find or create symbol for 'call' entry point. */
2312 callP = symbol_find_or_make(args[1]);
a39116f1 2313
fecd2382
RP
2314 if (TC_S_IS_CALLNAME(callP)) {
2315 as_warn("Redefining leafproc %s", S_GET_NAME(callP));
2316 } /* is leafproc */
a39116f1 2317
fecd2382
RP
2318 /* If that was the only argument, use it as the 'bal' entry point.
2319 * Otherwise, mark it as the 'call' entry point and find or create
2320 * another symbol for the 'bal' entry point.
2321 */
2322 if ((n_ops == 1) || !strcmp(args[1],args[2])) {
2323 TC_S_FORCE_TO_BALNAME(callP);
a39116f1 2324
fecd2382
RP
2325 } else {
2326 TC_S_FORCE_TO_CALLNAME(callP);
a39116f1 2327
fecd2382
RP
2328 balP = symbol_find_or_make(args[2]);
2329 if (TC_S_IS_CALLNAME(balP)) {
2330 as_warn("Redefining leafproc %s", S_GET_NAME(balP));
2331 }
2332 TC_S_FORCE_TO_BALNAME(balP);
a39116f1 2333
fecd2382
RP
2334 tc_set_bal_of_call(callP, balP);
2335 } /* if only one arg, or the args are the same */
a39116f1 2336
fecd2382
RP
2337 return;
2338} /* s_leafproc() */
2339
2340
2341/*
2342 * s_sysproc: process .sysproc pseudo-op
2343 *
2344 * .sysproc takes two arguments:
2345 * arg[1]: name of entry point to system procedure
2346 * arg[2]: 'entry_num' (index) of system procedure in the range
2347 * [0,31] inclusive.
2348 *
2349 * For [ab].out, we store the 'entrynum' in the 'n_other' field of
2350 * the symbol. Since that entry is normally 0, we bias 'entrynum'
2351 * by adding 1 to it. It must be unbiased before it is used.
2352 */
2353static void s_sysproc(n_ops, args)
2354int n_ops; /* Number of operands */
2355char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2356{
2357 expressionS exp;
2358 symbolS *symP;
a39116f1 2359
fecd2382
RP
2360 if (n_ops != 2) {
2361 as_bad("should have two operands");
2362 return;
2363 } /* bad arg count */
a39116f1 2364
fecd2382
RP
2365 /* Parse "entry_num" argument and check it for validity. */
2366 if ((parse_expr(args[2],&exp) != SEG_ABSOLUTE)
2367 || (offs(exp) < 0)
2368 || (offs(exp) > 31)) {
2369 as_bad("'entry_num' must be absolute number in [0,31]");
2370 return;
2371 }
a39116f1 2372
fecd2382
RP
2373 /* Find/make symbol and stick entry number (biased by +1) into it */
2374 symP = symbol_find_or_make(args[1]);
a39116f1 2375
fecd2382
RP
2376 if (TC_S_IS_SYSPROC(symP)) {
2377 as_warn("Redefining entrynum for sysproc %s", S_GET_NAME(symP));
2378 } /* redefining */
a39116f1 2379
fecd2382
RP
2380 TC_S_SET_SYSPROC(symP, offs(exp)); /* encode entry number */
2381 TC_S_FORCE_TO_SYSPROC(symP);
a39116f1 2382
fecd2382
RP
2383 return;
2384} /* s_sysproc() */
2385
2386
2387/*****************************************************************************
2388 * shift_ok:
2389 * Determine if a "shlo" instruction can be used to implement a "ldconst".
2390 * This means that some number X < 32 can be shifted left to produce the
2391 * constant of interest.
2392 *
2393 * Return the shift count, or 0 if we can't do it.
2394 * Caller calculates X by shifting original constant right 'shift' places.
2395 *
2396 **************************************************************************** */
2397static
a39116f1
RP
2398 int
2399 shift_ok(n)
2400int n; /* The constant of interest */
fecd2382
RP
2401{
2402 int shift; /* The shift count */
a39116f1 2403
fecd2382
RP
2404 if (n <= 0){
2405 /* Can't do it for negative numbers */
2406 return 0;
2407 }
a39116f1 2408
fecd2382
RP
2409 /* Shift 'n' right until a 1 is about to be lost */
2410 for (shift = 0; (n & 1) == 0; shift++){
2411 n >>= 1;
2412 }
a39116f1 2413
fecd2382
RP
2414 if (n >= 32){
2415 return 0;
2416 }
2417 return shift;
2418}
2419
2420
2421/*****************************************************************************
2422 * syntax: issue syntax error
2423 *
2424 **************************************************************************** */
2425static void syntax() {
2426 as_bad("syntax error");
2427} /* syntax() */
2428
2429
2430/*****************************************************************************
2431 * targ_has_sfr:
2432 * Return TRUE iff the target architecture supports the specified
2433 * special-function register (sfr).
2434 *
2435 **************************************************************************** */
2436static
a39116f1
RP
2437 int
2438 targ_has_sfr(n)
2439int n; /* Number (0-31) of sfr */
fecd2382
RP
2440{
2441 switch (architecture){
2442 case ARCH_KA:
2443 case ARCH_KB:
2444 case ARCH_MC:
2445 return 0;
2446 case ARCH_CA:
2447 default:
2448 return ((0<=n) && (n<=2));
2449 }
2450}
2451
2452
2453/*****************************************************************************
2454 * targ_has_iclass:
2455 * Return TRUE iff the target architecture supports the indicated
2456 * class of instructions.
2457 *
2458 **************************************************************************** */
2459static
a39116f1
RP
2460 int
2461 targ_has_iclass(ic)
2462int ic; /* Instruction class; one of:
2463 * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
2464 */
fecd2382
RP
2465{
2466 iclasses_seen |= ic;
2467 switch (architecture){
2468 case ARCH_KA: return ic & (I_BASE | I_KX);
2469 case ARCH_KB: return ic & (I_BASE | I_KX | I_FP | I_DEC);
2470 case ARCH_MC: return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2471 case ARCH_CA: return ic & (I_BASE | I_CX | I_CASIM);
2472 default:
2473 if ((iclasses_seen & (I_KX|I_FP|I_DEC|I_MIL))
a39116f1 2474 && (iclasses_seen & I_CX)){
fecd2382
RP
2475 as_warn("architecture of opcode conflicts with that of earlier instruction(s)");
2476 iclasses_seen &= ~ic;
2477 }
2478 return 1;
2479 }
2480}
2481
2482
2483/* Parse an operand that is machine-specific.
2484 We just return without modifying the expression if we have nothing
2485 to do. */
2486
2487/* ARGSUSED */
2488void
a39116f1
RP
2489 md_operand (expressionP)
2490expressionS *expressionP;
fecd2382
RP
2491{
2492}
2493
2494/* We have no need to default values of symbols. */
2495
2496/* ARGSUSED */
2497symbolS *md_undefined_symbol(name)
2498char *name;
2499{
2500 return 0;
2501} /* md_undefined_symbol() */
2502
2503/* Exactly what point is a PC-relative offset relative TO?
2504 On the i960, they're relative to the address of the instruction,
2505 which we have set up as the address of the fixup too. */
2506long
a39116f1
RP
2507 md_pcrel_from (fixP)
2508fixS *fixP;
fecd2382 2509{
a39116f1 2510 return fixP->fx_where + fixP->fx_frag->fr_address;
fecd2382
RP
2511}
2512
2513void
a39116f1
RP
2514 md_apply_fix(fixP, val)
2515fixS *fixP;
2516long val;
fecd2382
RP
2517{
2518 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
a39116f1 2519
fecd2382 2520 if (!fixP->fx_bit_fixP) {
a39116f1 2521
fecd2382
RP
2522 switch (fixP->fx_im_disp) {
2523 case 0:
2524 fixP->fx_addnumber = val;
2525 md_number_to_imm(place, val, fixP->fx_size, fixP);
2526 break;
2527 case 1:
2528 md_number_to_disp(place,
a39116f1
RP
2529 fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
2530 fixP->fx_size);
fecd2382
RP
2531 break;
2532 case 2: /* fix requested for .long .word etc */
2533 md_number_to_chars(place, val, fixP->fx_size);
2534 break;
2535 default:
2536 as_fatal("Internal error in md_apply_fix() in file \"%s\"", __FILE__);
2537 } /* OVE: maybe one ought to put _imm _disp _chars in one md-func */
2538 } else {
2539 md_number_to_field(place, val, fixP->fx_bit_fixP);
2540 }
a39116f1 2541
fecd2382
RP
2542 return;
2543} /* md_apply_fix() */
2544
2545#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
a79c6033
RP
2546void tc_bout_fix_to_chars(where, fixP, segment_address_in_file)
2547char *where;
2548fixS *fixP;
2549relax_addressT segment_address_in_file;
fecd2382 2550{
a79c6033
RP
2551 static unsigned char nbytes_r_length [] = { 42, 0, 1, 42, 2 };
2552 struct relocation_info ri;
2553 symbolS *symbolP;
2554
fecd2382 2555 /* JF this is for paranoia */
a79c6033
RP
2556 bzero((char *)&ri, sizeof(ri));
2557
2558 know((symbolP = fixP->fx_addsy) != 0);
2559
2560 /* These two 'cuz of NS32K */
2561 ri.r_callj = fixP->fx_callj;
2562
2563 ri.r_length = nbytes_r_length[fixP->fx_size];
2564 ri.r_pcrel = fixP->fx_pcrel;
2565 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2566
2567 if (!S_IS_DEFINED(symbolP)) {
2568 ri.r_extern = 1;
2569 ri.r_index = symbolP->sy_number;
2570 } else {
2571 ri.r_extern = 0;
2572 ri.r_index = S_GET_TYPE(symbolP);
fecd2382 2573 }
a79c6033
RP
2574
2575 /* Output the relocation information in machine-dependent form. */
2576 md_ri_to_chars(where, &ri);
2577
2578 return;
2579} /* tc_bout_fix_to_chars() */
fecd2382 2580
fecd2382
RP
2581#endif /* OBJ_AOUT or OBJ_BOUT */
2582
2583/* Align an address by rounding it up to the specified boundary.
2584 */
2585long md_section_align(seg, addr)
2586segT seg;
2587long addr; /* Address to be rounded up */
2588{
2589 return((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
2590} /* md_section_align() */
2591
2592#ifdef OBJ_COFF
2593void tc_headers_hook(headers)
2594object_headers *headers;
2595{
a39116f1
RP
2596 /* FIXME: remove this line */ /* unsigned short arch_flag = 0; */
2597
fecd2382
RP
2598 if (iclasses_seen == I_BASE){
2599 headers->filehdr.f_flags |= F_I960CORE;
2600 } else if (iclasses_seen & I_CX){
2601 headers->filehdr.f_flags |= F_I960CA;
2602 } else if (iclasses_seen & I_MIL){
2603 headers->filehdr.f_flags |= F_I960MC;
2604 } else if (iclasses_seen & (I_DEC|I_FP)){
2605 headers->filehdr.f_flags |= F_I960KB;
2606 } else {
2607 headers->filehdr.f_flags |= F_I960KA;
2608 } /* set arch flag */
a39116f1 2609
fecd2382
RP
2610 if (flagseen['R']) {
2611 headers->filehdr.f_magic = I960RWMAGIC;
2612 headers->aouthdr.magic = OMAGIC;
2613 } else {
2614 headers->filehdr.f_magic = I960ROMAGIC;
2615 headers->aouthdr.magic = NMAGIC;
2616 } /* set magic numbers */
2617
2618 return;
2619} /* tc_headers_hook() */
2620#endif /* OBJ_COFF */
2621
2622/*
2623 * Things going on here:
2624 *
2625 * For bout, We need to assure a couple of simplifying
2626 * assumptions about leafprocs for the linker: the leafproc
2627 * entry symbols will be defined in the same assembly in
2628 * which they're declared with the '.leafproc' directive;
2629 * and if a leafproc has both 'call' and 'bal' entry points
2630 * they are both global or both local.
2631 *
2632 * For coff, the call symbol has a second aux entry that
2633 * contains the bal entry point. The bal symbol becomes a
2634 * label.
2635 *
2636 * For coff representation, the call symbol has a second aux entry that
2637 * contains the bal entry point. The bal symbol becomes a label.
2638 *
2639 */
2640
2641void tc_crawl_symbol_chain(headers)
2642object_headers *headers;
2643{
2644 symbolS *symbolP;
a39116f1 2645
fecd2382
RP
2646 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) {
2647#ifdef OBJ_COFF
2648 if (TC_S_IS_SYSPROC(symbolP)) {
2649 /* second aux entry already contains the sysproc number */
2650 S_SET_NUMBER_AUXILIARY(symbolP, 2);
2651 S_SET_STORAGE_CLASS(symbolP, C_SCALL);
2652 S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
2653 continue;
2654 } /* rewrite sysproc */
2655#endif /* OBJ_COFF */
a39116f1 2656
fecd2382
RP
2657 if (!TC_S_IS_BALNAME(symbolP) && !TC_S_IS_CALLNAME(symbolP)) {
2658 continue;
2659 } /* Not a leafproc symbol */
a39116f1 2660
fecd2382
RP
2661 if (!S_IS_DEFINED(symbolP)) {
2662 as_bad("leafproc symbol '%s' undefined", S_GET_NAME(symbolP));
2663 } /* undefined leaf */
a39116f1 2664
fecd2382
RP
2665 if (TC_S_IS_CALLNAME(symbolP)) {
2666 symbolS *balP = tc_get_bal_of_call(symbolP);
2667 if (S_IS_EXTERNAL(symbolP) != S_IS_EXTERNAL(balP)) {
2668 S_SET_EXTERNAL(symbolP);
2669 S_SET_EXTERNAL(balP);
2670 as_warn("Warning: making leafproc entries %s and %s both global\n",
2671 S_GET_NAME(symbolP), S_GET_NAME(balP));
2672 } /* externality mismatch */
2673 } /* if callname */
2674 } /* walk the symbol chain */
a39116f1 2675
fecd2382
RP
2676 return;
2677} /* tc_crawl_symbol_chain() */
2678
2679/*
2680 * For aout or bout, the bal immediately follows the call.
2681 *
2682 * For coff, we cheat and store a pointer to the bal symbol
2683 * in the second aux entry of the call.
2684 */
2685
2686void tc_set_bal_of_call(callP, balP)
2687symbolS *callP;
2688symbolS *balP;
2689{
2690 know(TC_S_IS_CALLNAME(callP));
2691 know(TC_S_IS_BALNAME(balP));
2692
2693#ifdef OBJ_COFF
a39116f1 2694
fecd2382
RP
2695 callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
2696 S_SET_NUMBER_AUXILIARY(callP,2);
a39116f1 2697
fecd2382 2698#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
a39116f1 2699
fecd2382
RP
2700 /* If the 'bal' entry doesn't immediately follow the 'call'
2701 * symbol, unlink it from the symbol list and re-insert it.
2702 */
2703 if (symbol_next(callP) != balP) {
2704 symbol_remove(balP, &symbol_rootP, &symbol_lastP);
2705 symbol_append(balP, callP, &symbol_rootP, &symbol_lastP);
2706 } /* if not in order */
a39116f1 2707
fecd2382
RP
2708#else
2709 (as yet unwritten.);
2710#endif /* switch on OBJ_FORMAT */
2711
2712 return;
2713} /* tc_set_bal_of_call() */
2714
2715char *_tc_get_bal_of_call(callP)
2716symbolS *callP;
2717{
2718 symbolS *retval;
a39116f1 2719
fecd2382 2720 know(TC_S_IS_CALLNAME(callP));
a39116f1 2721
fecd2382
RP
2722#ifdef OBJ_COFF
2723 retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
2724#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
2725 retval = symbol_next(callP);
2726#else
2727 (as yet unwritten.);
2728#endif /* switch on OBJ_FORMAT */
a39116f1 2729
fecd2382
RP
2730 know(TC_S_IS_BALNAME(retval));
2731 return((char *) retval);
2732} /* _tc_get_bal_of_call() */
2733
2734void tc_coff_symbol_emit_hook(symbolP)
2735symbolS *symbolP;
2736{
2737 if (TC_S_IS_CALLNAME(symbolP)) {
2738#ifdef OBJ_COFF
2739 symbolS *balP = tc_get_bal_of_call(symbolP);
2740
2741 /* second aux entry contains the bal entry point */
a39116f1 2742 /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
fecd2382
RP
2743 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE(balP);
2744 S_SET_STORAGE_CLASS(symbolP, (!SF_GET_LOCAL(symbolP) ? C_LEAFEXT : C_LEAFSTAT));
2745 S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
2746 /* fix up the bal symbol */
2747 S_SET_STORAGE_CLASS(balP, C_LABEL);
2748#endif /* OBJ_COFF */
2749 } /* only on calls */
2750
2751 return;
2752} /* tc_coff_symbol_emit_hook() */
2753
2754/*
2755 * Local Variables:
2756 * comment-column: 0
2757 * fill-column: 131
2758 * End:
2759 */
2760
2761/* end of i960.c */
This page took 0.155436 seconds and 4 git commands to generate.