MIPS16/GAS: Fix forced size suffixes with argumentless instructions
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6 351#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 352 ((ABI) == N32_ABI \
707bfff6 353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
134c0c8b 1020 beq reg1, reg2, label
4a6a3df4
AO
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
8484fb75
MR
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
7bd374a4
MR
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
8484fb75
MR
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162#define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
7bd374a4 1163 uncond, compact, link, nods, \
40209cad
MR
1164 relax32, toofar16, toofar32) \
1165 (0x40000000 \
1166 | ((type) & 0xff) \
1167 | (((at) & 0x1f) << 8) \
8484fb75
MR
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
7bd374a4
MR
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
df58fc94
RS
1176#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
8484fb75
MR
1179#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182#define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
7bd374a4
MR
1183#define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
8484fb75 1185
7bd374a4
MR
1186#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
df58fc94 1192
43c0598f
RS
1193/* Sign-extend 16-bit value X. */
1194#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1195
885add95
CD
1196/* Is the given value a sign-extended 32-bit value? */
1197#define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1200
1201/* Is the given value a sign-extended 16-bit value? */
1202#define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1205
df58fc94
RS
1206/* Is the given value a sign-extended 12-bit value? */
1207#define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1209
7f3c4072
CM
1210/* Is the given value a sign-extended 9-bit value? */
1211#define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1213
2051e8c4
MR
1214/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215#define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1218
bf12938e
RS
1219/* Extract bits MASK << SHIFT from STRUCT and shift them right
1220 SHIFT places. */
1221#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1223
bf12938e 1224/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1225#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1226 (!(MICROMIPS) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1230#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
5c04167a
RS
1234
1235/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1237\f
df58fc94
RS
1238/* Whether or not we are emitting a branch-likely macro. */
1239static bfd_boolean emit_branch_likely_macro = FALSE;
1240
4d7206a2
RS
1241/* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1243 is used. */
1244static struct {
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1248 int sequence;
1249
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1252 fixS *first_fixup;
1253
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1257
1258 /* The symbol on which the choice of sequence depends. */
1259 symbolS *symbol;
1260} mips_relax;
252b5132 1261\f
584892a6
RS
1262/* Global variables used to decide whether a macro needs a warning. */
1263static struct {
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1266
df58fc94
RS
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1270
584892a6
RS
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1274 macro in bytes. */
1275 unsigned int sizes[2];
1276
df58fc94
RS
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1282
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1285
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1288 second alternative.
1289
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1293
584892a6
RS
1294 /* The first variant frag for this macro. */
1295 fragS *first_frag;
1296} mips_macro_warning;
1297\f
252b5132
RH
1298/* Prototypes for static functions. */
1299
252b5132
RH
1300enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1301
b34976b6 1302static void append_insn
df58fc94
RS
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
7d10b47d 1305static void mips_no_prev_insn (void);
c67a084a 1306static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1307static void mips16_macro_build
03ea81db 1308 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1309static void load_register (int, expressionS *, int);
584892a6
RS
1310static void macro_start (void);
1311static void macro_end (void);
833794fc 1312static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1313static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1314static void mips_ip (char *str, struct mips_cl_insn * ip);
1315static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1316static void mips16_immed
3b4dbbbf 1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1318 unsigned int, unsigned long *);
5e0116d5 1319static size_t my_getSmallExpression
17a2f251
TS
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321static void my_getExpression (expressionS *, char *);
1322static void s_align (int);
1323static void s_change_sec (int);
1324static void s_change_section (int);
1325static void s_cons (int);
1326static void s_float_cons (int);
1327static void s_mips_globl (int);
1328static void s_option (int);
1329static void s_mipsset (int);
1330static void s_abicalls (int);
1331static void s_cpload (int);
1332static void s_cpsetup (int);
1333static void s_cplocal (int);
1334static void s_cprestore (int);
1335static void s_cpreturn (int);
741d6ea8
JM
1336static void s_dtprelword (int);
1337static void s_dtpreldword (int);
d0f13682
CLT
1338static void s_tprelword (int);
1339static void s_tpreldword (int);
17a2f251
TS
1340static void s_gpvalue (int);
1341static void s_gpword (int);
1342static void s_gpdword (int);
a3f278e2 1343static void s_ehword (int);
17a2f251
TS
1344static void s_cpadd (int);
1345static void s_insn (int);
ba92f887 1346static void s_nan (int);
919731af 1347static void s_module (int);
17a2f251
TS
1348static void s_mips_ent (int);
1349static void s_mips_end (int);
1350static void s_mips_frame (int);
1351static void s_mips_mask (int reg_type);
1352static void s_mips_stab (int);
1353static void s_mips_weakext (int);
1354static void s_mips_file (int);
1355static void s_mips_loc (int);
1356static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1357static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1358static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1360static void file_mips_check_options (void);
e7af610e
NC
1361
1362/* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1364
e972090a
NC
1365struct mips_cpu_info
1366{
e7af610e 1367 const char *name; /* CPU or ISA name. */
d16afab6
RS
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1372};
1373
ad3fea08 1374#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1375
17a2f251
TS
1376static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1379\f
c31f3936
RS
1380/* Command-line options. */
1381const char *md_shortopts = "O::g::G:";
1382
1383enum options
1384 {
1385 OPTION_MARCH = OPTION_MD_BASE,
1386 OPTION_MTUNE,
1387 OPTION_MIPS1,
1388 OPTION_MIPS2,
1389 OPTION_MIPS3,
1390 OPTION_MIPS4,
1391 OPTION_MIPS5,
1392 OPTION_MIPS32,
1393 OPTION_MIPS64,
1394 OPTION_MIPS32R2,
ae52f483
AB
1395 OPTION_MIPS32R3,
1396 OPTION_MIPS32R5,
7361da2c 1397 OPTION_MIPS32R6,
c31f3936 1398 OPTION_MIPS64R2,
ae52f483
AB
1399 OPTION_MIPS64R3,
1400 OPTION_MIPS64R5,
7361da2c 1401 OPTION_MIPS64R6,
c31f3936
RS
1402 OPTION_MIPS16,
1403 OPTION_NO_MIPS16,
1404 OPTION_MIPS3D,
1405 OPTION_NO_MIPS3D,
1406 OPTION_MDMX,
1407 OPTION_NO_MDMX,
1408 OPTION_DSP,
1409 OPTION_NO_DSP,
1410 OPTION_MT,
1411 OPTION_NO_MT,
1412 OPTION_VIRT,
1413 OPTION_NO_VIRT,
56d438b1
CF
1414 OPTION_MSA,
1415 OPTION_NO_MSA,
c31f3936
RS
1416 OPTION_SMARTMIPS,
1417 OPTION_NO_SMARTMIPS,
1418 OPTION_DSPR2,
1419 OPTION_NO_DSPR2,
8f4f9071
MF
1420 OPTION_DSPR3,
1421 OPTION_NO_DSPR3,
c31f3936
RS
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
7d64c587
AB
1424 OPTION_XPA,
1425 OPTION_NO_XPA,
c31f3936
RS
1426 OPTION_MICROMIPS,
1427 OPTION_NO_MICROMIPS,
1428 OPTION_MCU,
1429 OPTION_NO_MCU,
1430 OPTION_COMPAT_ARCH_BASE,
1431 OPTION_M4650,
1432 OPTION_NO_M4650,
1433 OPTION_M4010,
1434 OPTION_NO_M4010,
1435 OPTION_M4100,
1436 OPTION_NO_M4100,
1437 OPTION_M3900,
1438 OPTION_NO_M3900,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1441 OPTION_FIX_24K,
1442 OPTION_NO_FIX_24K,
a8d14a88
CM
1443 OPTION_FIX_RM7000,
1444 OPTION_NO_FIX_RM7000,
c31f3936
RS
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1449 OPTION_FIX_VR4120,
1450 OPTION_NO_FIX_VR4120,
1451 OPTION_FIX_VR4130,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1455 OPTION_TRAP,
1456 OPTION_BREAK,
1457 OPTION_EB,
1458 OPTION_EL,
1459 OPTION_FP32,
1460 OPTION_GP32,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1463 OPTION_FP64,
351cdf24 1464 OPTION_FPXX,
c31f3936
RS
1465 OPTION_GP64,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1468 OPTION_INSN32,
1469 OPTION_NO_INSN32,
c31f3936
RS
1470 OPTION_MSHARED,
1471 OPTION_MNO_SHARED,
1472 OPTION_MSYM32,
1473 OPTION_MNO_SYM32,
1474 OPTION_SOFT_FLOAT,
1475 OPTION_HARD_FLOAT,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1478 OPTION_32,
c31f3936
RS
1479 OPTION_CALL_SHARED,
1480 OPTION_CALL_NONPIC,
1481 OPTION_NON_SHARED,
1482 OPTION_XGOT,
1483 OPTION_MABI,
1484 OPTION_N32,
1485 OPTION_64,
1486 OPTION_MDEBUG,
1487 OPTION_NO_MDEBUG,
1488 OPTION_PDR,
1489 OPTION_NO_PDR,
1490 OPTION_MVXWORKS_PIC,
ba92f887 1491 OPTION_NAN,
351cdf24
MF
1492 OPTION_ODD_SPREG,
1493 OPTION_NO_ODD_SPREG,
c31f3936
RS
1494 OPTION_END_OF_ENUM
1495 };
1496
1497struct option md_longopts[] =
1498{
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1518
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1548
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1558
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1577
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1606
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1611
1612 /* ELF-specific options. */
c31f3936
RS
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1626 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1627
1628 {NULL, no_argument, NULL, 0}
1629};
1630size_t md_longopts_size = sizeof (md_longopts);
1631\f
c6278170
RS
1632/* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1635struct mips_ase
1636{
1637 /* The name of the ASE, used in both the command-line and .set options. */
1638 const char *name;
1639
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1643 unsigned int flags;
1644
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1648
1649 /* The command-line options that turn the ASE on and off. */
1650 int option_on;
1651 int option_off;
1652
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1655 int mips32_rev;
1656 int mips64_rev;
1657 int micromips32_rev;
1658 int micromips64_rev;
7361da2c
AB
1659
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1661 been removed. */
1662 int rem_rev;
c6278170
RS
1663};
1664
1665/* A table of all supported ASEs. */
1666static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1669 2, 2, 2, 2,
1670 -1 },
c6278170
RS
1671
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1674 2, 2, 2, 2,
1675 -1 },
c6278170 1676
8f4f9071
MF
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1679 6, 6, -1, -1,
1680 -1 },
1681
c6278170
RS
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1684 2, 2, 2, 2,
1685 -1 },
c6278170
RS
1686
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1689 2, 2, 2, 2,
1690 -1 },
c6278170
RS
1691
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1695 -1, 1, -1, -1,
1696 6 },
c6278170
RS
1697
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1701 2, 1, -1, -1,
1702 6 },
c6278170
RS
1703
1704 { "mt", ASE_MT, 0,
1705 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1706 2, 2, -1, -1,
1707 -1 },
c6278170
RS
1708
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1711 1, -1, -1, -1,
1712 6 },
c6278170
RS
1713
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1716 2, 2, 2, 2,
1717 -1 },
56d438b1
CF
1718
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1721 2, 2, 2, 2,
1722 -1 },
7d64c587
AB
1723
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1726 2, 2, -1, -1,
1727 -1 },
c6278170
RS
1728};
1729
1730/* The set of ASEs that require -mfp64. */
82bda27b 1731#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1732
1733/* Groups of ASE_* flags that represent different revisions of an ASE. */
1734static const unsigned int mips_ase_groups[] = {
8f4f9071 1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
c6278170
RS
1736};
1737\f
252b5132
RH
1738/* Pseudo-op table.
1739
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1743
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1748 .vreg.
1749
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
d84bcf09 1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1754
e972090a
NC
1755static const pseudo_typeS mips_pseudo_table[] =
1756{
beae10d5 1757 /* MIPS specific pseudo-ops. */
252b5132
RH
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
6478892d
TS
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
252b5132 1767 {"cprestore", s_cprestore, 0},
6478892d 1768 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
6478892d 1773 {"gpvalue", s_gpvalue, 0},
252b5132 1774 {"gpword", s_gpword, 0},
10181a0d 1775 {"gpdword", s_gpdword, 0},
a3f278e2 1776 {"ehword", s_ehword, 0},
252b5132
RH
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
ba92f887 1779 {"nan", s_nan, 0},
919731af 1780 {"module", s_module, 0},
252b5132 1781
beae10d5 1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1783 chips. */
38a57ae7 1784 {"asciiz", stringer, 8 + 1},
252b5132
RH
1785 {"bss", s_change_sec, 'b'},
1786 {"err", s_err, 0},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
252b5132 1792
998b3c36
MR
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1795
beae10d5 1796 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1806 {"int", s_cons, 2},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
cca86cc8 1810 {"section", s_change_section, 0},
252b5132
RH
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
754e2bb9 1813 {"stabd", s_mips_stab, 'd'},
252b5132 1814 {"stabn", s_mips_stab, 'n'},
754e2bb9 1815 {"stabs", s_mips_stab, 's'},
252b5132
RH
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
add56521 1818
add56521 1819 { "extern", ecoff_directive_extern, 0},
add56521 1820
43841e91 1821 { NULL, NULL, 0 },
252b5132
RH
1822};
1823
e972090a
NC
1824static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1825{
beae10d5
KH
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
c5dd6aab 1833 {"file", s_mips_file, 0},
252b5132
RH
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
c5dd6aab 1836 {"loc", s_mips_loc, 0},
252b5132
RH
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
43841e91 1839 { NULL, NULL, 0 },
252b5132
RH
1840};
1841
3ae8dd8d
MR
1842/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1844
1845int
1846mips_address_bytes (void)
1847{
919731af 1848 file_mips_check_options ();
3ae8dd8d
MR
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1850}
1851
17a2f251 1852extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1853
1854void
17a2f251 1855mips_pop_insert (void)
252b5132
RH
1856{
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1860}
1861\f
1862/* Symbols labelling the current insn. */
1863
e972090a
NC
1864struct insn_label_list
1865{
252b5132
RH
1866 struct insn_label_list *next;
1867 symbolS *label;
1868};
1869
252b5132 1870static struct insn_label_list *free_insn_labels;
742a56fe 1871#define label_list tc_segment_info_data.labels
252b5132 1872
17a2f251 1873static void mips_clear_insn_labels (void);
df58fc94
RS
1874static void mips_mark_labels (void);
1875static void mips_compressed_mark_labels (void);
252b5132
RH
1876
1877static inline void
17a2f251 1878mips_clear_insn_labels (void)
252b5132 1879{
ed9e98c2 1880 struct insn_label_list **pl;
a8dbcb85 1881 segment_info_type *si;
252b5132 1882
a8dbcb85
TS
1883 if (now_seg)
1884 {
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1886 ;
3739860c 1887
a8dbcb85
TS
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1891 }
252b5132 1892}
a8dbcb85 1893
df58fc94
RS
1894/* Mark instruction labels in MIPS16/microMIPS mode. */
1895
1896static inline void
1897mips_mark_labels (void)
1898{
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1901}
252b5132
RH
1902\f
1903static char *expr_end;
1904
e423441d 1905/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1906 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1907
1908static expressionS imm_expr;
252b5132 1909
77bd4346
RS
1910/* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
252b5132 1914
77bd4346 1915static expressionS offset_expr;
f6688943
TS
1916static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1918
df58fc94
RS
1919/* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
252b5132 1922
df58fc94 1923static unsigned int forced_insn_length;
252b5132 1924
e1b47bd5
RS
1925/* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1927
1928static bfd_boolean mips_assembling_insn;
1929
ecb4347a
DJ
1930/* The pdr segment for per procedure frame/regmask info. Not used for
1931 ECOFF debugging. */
252b5132
RH
1932
1933static segT pdr_seg;
252b5132 1934
e013f690
TS
1935/* The default target format to use. */
1936
aeffff67
RS
1937#if defined (TE_FreeBSD)
1938#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939#elif defined (TE_TMIPS)
1940#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1941#else
1942#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1943#endif
1944
e013f690 1945const char *
17a2f251 1946mips_target_format (void)
e013f690
TS
1947{
1948 switch (OUTPUT_FLAVOR)
1949 {
e013f690 1950 case bfd_target_elf_flavour:
0a44bf69
RS
1951#ifdef TE_VXWORKS
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1956#endif
e013f690 1957 return (target_big_endian
cfe86eaa 1958 ? (HAVE_64BIT_OBJECTS
aeffff67 1959 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1960 : (HAVE_NEWABI
aeffff67
RS
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1963 : (HAVE_64BIT_OBJECTS
aeffff67 1964 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1965 : (HAVE_NEWABI
aeffff67
RS
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1968 default:
1969 abort ();
1970 return NULL;
1971 }
1972}
1973
c6278170
RS
1974/* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1976
1977static int
1978mips_isa_rev (void)
1979{
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1981 return 2;
1982
ae52f483
AB
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1984 return 3;
1985
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1987 return 5;
1988
7361da2c
AB
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1990 return 6;
1991
c6278170
RS
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1994 return 2;
1995
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1997 return 1;
1998
1999 return 0;
2000}
2001
2002/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2003
2004static unsigned int
2005mips_ase_mask (unsigned int flags)
2006{
2007 unsigned int i;
2008
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2012 return flags;
2013}
2014
2015/* Check whether the current ISA supports ASE. Issue a warning if
2016 appropriate. */
2017
2018static void
2019mips_check_isa_supports_ase (const struct mips_ase *ase)
2020{
2021 const char *base;
2022 int min_rev, size;
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2025
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2028 else
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2032 {
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2036 if (min_rev < 0)
1661c76c 2037 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2038 " `%s' extension"), size, base, ase->name);
2039 else
1661c76c 2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2041 ase->name, base, size, min_rev);
2042 }
7361da2c
AB
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2045 {
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2051 }
2052
c6278170 2053 if ((ase->flags & FP64_ASES)
0b35dfee 2054 && mips_opts.fp != 64
c6278170
RS
2055 && (warned_fp32 & ase->flags) != ase->flags)
2056 {
2057 warned_fp32 |= ase->flags;
1661c76c 2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2059 }
2060}
2061
2062/* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2064
2065static void
2066mips_check_isa_supports_ases (void)
2067{
2068 unsigned int i, mask;
2069
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2071 {
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2075 }
2076}
2077
2078/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2080
2081static unsigned int
919731af 2082mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
c6278170
RS
2084{
2085 unsigned int mask;
2086
2087 mask = mips_ase_mask (ase->flags);
919731af 2088 opts->ase &= ~mask;
c6278170 2089 if (enabled_p)
919731af 2090 opts->ase |= ase->flags;
c6278170
RS
2091 return mask;
2092}
2093
2094/* Return the ASE called NAME, or null if none. */
2095
2096static const struct mips_ase *
2097mips_lookup_ase (const char *name)
2098{
2099 unsigned int i;
2100
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2104 return NULL;
2105}
2106
df58fc94 2107/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
df58fc94
RS
2110
2111static inline unsigned int
2112micromips_insn_length (const struct mips_opcode *mo)
2113{
7fd53920 2114 return mips_opcode_32bit_p (mo) ? 4 : 2;
df58fc94
RS
2115}
2116
5c04167a
RS
2117/* Return the length of MIPS16 instruction OPCODE. */
2118
2119static inline unsigned int
2120mips16_opcode_length (unsigned long opcode)
2121{
2122 return (opcode >> 16) == 0 ? 2 : 4;
2123}
2124
1e915849
RS
2125/* Return the length of instruction INSN. */
2126
2127static inline unsigned int
2128insn_length (const struct mips_cl_insn *insn)
2129{
df58fc94
RS
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
5c04167a 2133 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2134 else
1e915849 2135 return 4;
1e915849
RS
2136}
2137
2138/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2139
2140static void
2141create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2142{
2143 size_t i;
2144
2145 insn->insn_mo = mo;
1e915849
RS
2146 insn->insn_opcode = mo->match;
2147 insn->frag = NULL;
2148 insn->where = 0;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
15be625d 2154 insn->complete_p = 0;
e407c74b 2155 insn->cleared_p = 0;
1e915849
RS
2156}
2157
fc76e730
RS
2158/* Get a list of all the operands in INSN. */
2159
2160static const struct mips_operand_array *
2161insn_operands (const struct mips_cl_insn *insn)
2162{
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2166
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2170
2171 if (insn->insn_mo >= &micromips_opcodes[0]
2172 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2173 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2174
2175 abort ();
2176}
2177
2178/* Get a description of operand OPNO of INSN. */
2179
2180static const struct mips_operand *
2181insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2182{
2183 const struct mips_operand_array *operands;
2184
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2187 abort ();
2188 return operands->operand[opno];
2189}
2190
e077a1c8
RS
2191/* Install UVAL as the value of OPERAND in INSN. */
2192
2193static inline void
2194insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2196{
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2198}
2199
fc76e730
RS
2200/* Extract the value of OPERAND from INSN. */
2201
2202static inline unsigned
2203insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2205{
2206 return mips_extract_operand (operand, insn->insn_opcode);
2207}
2208
df58fc94 2209/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2210
2211static void
df58fc94 2212mips_record_compressed_mode (void)
742a56fe
RS
2213{
2214 segment_info_type *si;
2215
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2221}
2222
4d68580a
RS
2223/* Read a standard MIPS instruction from BUF. */
2224
2225static unsigned long
2226read_insn (char *buf)
2227{
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2230 else
2231 return bfd_getl32 ((bfd_byte *) buf);
2232}
2233
2234/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2235 the next byte. */
2236
2237static char *
2238write_insn (char *buf, unsigned int insn)
2239{
2240 md_number_to_chars (buf, insn, 4);
2241 return buf + 4;
2242}
2243
2244/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2246
2247static unsigned long
2248read_compressed_insn (char *buf, unsigned int length)
2249{
2250 unsigned long insn;
2251 unsigned int i;
2252
2253 insn = 0;
2254 for (i = 0; i < length; i += 2)
2255 {
2256 insn <<= 16;
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2259 else
2260 insn |= bfd_getl16 ((char *) buf);
2261 buf += 2;
2262 }
2263 return insn;
2264}
2265
5c04167a
RS
2266/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2268
2269static char *
2270write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2271{
2272 unsigned int i;
2273
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2277}
2278
1e915849
RS
2279/* Install INSN at the location specified by its "frag" and "where" fields. */
2280
2281static void
2282install_insn (const struct mips_cl_insn *insn)
2283{
2284 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2287 else
4d68580a 2288 write_insn (f, insn->insn_opcode);
df58fc94 2289 mips_record_compressed_mode ();
1e915849
RS
2290}
2291
2292/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2294
2295static void
2296move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2297{
2298 size_t i;
2299
2300 insn->frag = frag;
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2304 {
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2307 }
2308 install_insn (insn);
2309}
2310
2311/* Add INSN to the end of the output. */
2312
2313static void
2314add_fixed_insn (struct mips_cl_insn *insn)
2315{
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2318}
2319
2320/* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2322
2323static void
2324add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2326{
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2329 insn->fixed_p = 1;
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2332}
2333
2334/* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2336
2337static void
2338insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2340{
2341 if (mips_relax.sequence != 2)
2342 {
2343 unsigned int i;
2344
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2346 if (i >= first + n)
2347 history[i] = history[i - n];
2348 else
2349 history[i] = *insn;
2350 }
2351}
2352
e3de51ce
RS
2353/* Clear the error in insn_error. */
2354
2355static void
2356clear_insn_error (void)
2357{
2358 memset (&insn_error, 0, sizeof (insn_error));
2359}
2360
2361/* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2365 was kept. */
2366
2367static bfd_boolean
2368set_insn_error_format (int argnum, enum mips_insn_error_format format,
2369 const char *msg)
2370{
2371 if (argnum == 0)
2372 {
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2375 if (insn_error.msg)
2376 return FALSE;
2377 }
2378 else
2379 {
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2382 return FALSE;
2383
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2388 && insn_error.msg
2389 && strcmp (insn_error.msg, msg) != 0)
2390 {
2391 insn_error.msg = 0;
2392 insn_error.min_argnum += 1;
2393 return FALSE;
2394 }
2395 }
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2399 return TRUE;
2400}
2401
2402/* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2404
2405static void
2406set_insn_error (int argnum, const char *msg)
2407{
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2409}
2410
2411/* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414static void
2415set_insn_error_i (int argnum, const char *msg, int i)
2416{
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2418 insn_error.u.i = i;
2419}
2420
2421/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2423
2424static void
2425set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2426{
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2428 {
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2431 }
2432}
2433
2434/* Report the error in insn_error, which is against assembly code STR. */
2435
2436static void
2437report_insn_error (const char *str)
2438{
e1fa0163 2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2440
e3de51ce
RS
2441 switch (insn_error.format)
2442 {
2443 case ERR_FMT_PLAIN:
2444 as_bad (msg, str);
2445 break;
2446
2447 case ERR_FMT_I:
2448 as_bad (msg, insn_error.u.i, str);
2449 break;
2450
2451 case ERR_FMT_SS:
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2453 break;
2454 }
e1fa0163
NC
2455
2456 free ((char *) msg);
e3de51ce
RS
2457}
2458
71400594
RS
2459/* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2461 included. */
2462
2463static void
2464init_vr4120_conflicts (void)
2465{
2466#define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2468
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2472
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2478
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2482
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2490
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2499
2500#undef CONFLICT
2501}
2502
707bfff6
TS
2503struct regname {
2504 const char *name;
2505 unsigned int num;
2506};
2507
14daeee3 2508#define RNUM_MASK 0x00000ff
56d438b1 2509#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2510#define RTYPE_NUM 0x0000100
2511#define RTYPE_FPU 0x0000200
2512#define RTYPE_FCC 0x0000400
2513#define RTYPE_VEC 0x0000800
2514#define RTYPE_GP 0x0001000
2515#define RTYPE_CP0 0x0002000
2516#define RTYPE_PC 0x0004000
2517#define RTYPE_ACC 0x0008000
2518#define RTYPE_CCC 0x0010000
2519#define RTYPE_VI 0x0020000
2520#define RTYPE_VF 0x0040000
2521#define RTYPE_R5900_I 0x0080000
2522#define RTYPE_R5900_Q 0x0100000
2523#define RTYPE_R5900_R 0x0200000
2524#define RTYPE_R5900_ACC 0x0400000
56d438b1 2525#define RTYPE_MSA 0x0800000
14daeee3 2526#define RWARN 0x8000000
707bfff6
TS
2527
2528#define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
3739860c 2560 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2561
2562#define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2595
2596#define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2605
2606#define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2615
2616#define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2629
2630#define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2643
2644/* Remaining symbolic register names */
2645#define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2674
2675#define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2677
2678#define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2711
14daeee3
RS
2712#define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2714
2715#define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2717
2718#define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2720
2721#define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2723
707bfff6
TS
2724#define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2729
2730static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2732 FPU_REGISTER_NAMES,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2735
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
3739860c 2738 one of the tables below once mips_abi is set after
707bfff6
TS
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2741
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2744 R5900_I_NAMES,
2745 R5900_Q_NAMES,
2746 R5900_R_NAMES,
2747 R5900_ACC_NAMES,
707bfff6
TS
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2749 {0, 0}
2750};
2751
2752static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2754 {0, 0}
2755};
2756
2757static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2759 {0, 0}
2760};
2761
a92713e6
RS
2762/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
df58fc94 2766
a92713e6
RS
2767static unsigned int
2768mips_prefer_vec_regno (unsigned int symval)
707bfff6 2769{
a92713e6
RS
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2772 return symval;
2773}
2774
14daeee3
RS
2775/* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2777
2778static bfd_boolean
14daeee3 2779mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2780{
707bfff6 2781 char save_c;
14daeee3 2782 symbolS *symbol;
707bfff6
TS
2783
2784 /* Terminate name. */
2785 save_c = *e;
2786 *e = '\0';
2787
a92713e6
RS
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2790 *e = save_c;
2791
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2793 return FALSE;
2794
14daeee3
RS
2795 *symval_ptr = S_GET_VALUE (symbol);
2796 return TRUE;
2797}
2798
2799/* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2801 is nonnull.
2802
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2808
2809static bfd_boolean
2810mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2812{
2813 char *s, *e, *m;
2814 const char *q;
2815 unsigned int channels, symval, bit;
2816
2817 /* Find end of name. */
2818 s = e = *sptr;
2819 if (is_name_beginner (*e))
2820 ++e;
2821 while (is_part_of_name (*e))
2822 ++e;
2823
2824 channels = 0;
2825 if (!mips_parse_register_1 (s, e, &symval))
2826 {
2827 if (!channels_ptr)
2828 return FALSE;
2829
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2833 bit = 1;
2834 m = e;
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2837 {
2838 --m;
2839 channels |= bit;
2840 }
2841
2842 if (channels == 0
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2845 return FALSE;
2846 }
2847
a92713e6 2848 *sptr = e;
14daeee3
RS
2849 *symval_ptr = symval;
2850 if (channels_ptr)
2851 *channels_ptr = channels;
a92713e6
RS
2852 return TRUE;
2853}
2854
2855/* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2858
2859static int
2860reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2861{
2862 unsigned int regno;
2863
14daeee3 2864 if (mips_parse_register (s, &regno, NULL))
707bfff6 2865 {
a92713e6
RS
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2868 if (regno & types)
2869 regno &= RNUM_MASK;
2870 else
2871 regno = ~0;
707bfff6 2872 }
a92713e6 2873 else
707bfff6 2874 {
a92713e6 2875 if (types & RWARN)
1661c76c 2876 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2877 regno = ~0;
707bfff6 2878 }
707bfff6 2879 if (regnop)
a92713e6
RS
2880 *regnop = regno;
2881 return regno <= RNUM_MASK;
707bfff6
TS
2882}
2883
14daeee3
RS
2884/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2886
2887static char *
2888mips_parse_vu0_channels (char *s, unsigned int *channels)
2889{
2890 unsigned int i;
2891
2892 *channels = 0;
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2895 {
2896 *channels |= 1 << (3 - i);
2897 ++s;
2898 }
2899 return s;
2900}
2901
a92713e6
RS
2902/* Token types for parsed operand lists. */
2903enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2905 OT_REG,
df58fc94 2906
14daeee3
RS
2907 /* A 4-bit XYZW channel mask. */
2908 OT_CHANNELS,
2909
56d438b1
CF
2910 /* A constant vector index, e.g. [1]. */
2911 OT_INTEGER_INDEX,
2912
2913 /* A register vector index, e.g. [$2]. */
2914 OT_REG_INDEX,
df58fc94 2915
a92713e6
RS
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2917 OT_REG_RANGE,
2918
2919 /* A (possibly relocated) expression. */
2920 OT_INTEGER,
2921
2922 /* A floating-point value. */
2923 OT_FLOAT,
2924
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2926 before OT_REGs. */
2927 OT_CHAR,
2928
14daeee3
RS
2929 /* A doubled character, either "--" or "++". */
2930 OT_DOUBLE_CHAR,
2931
a92713e6
RS
2932 /* The end of the operand list. */
2933 OT_END
2934};
2935
2936/* A parsed operand token. */
2937struct mips_operand_token
2938{
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2941 union
2942 {
56d438b1 2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2944 unsigned int regno;
2945
14daeee3
RS
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2948
56d438b1
CF
2949 /* The integer value of an OT_INTEGER_INDEX. */
2950 addressT index;
a92713e6
RS
2951
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2953 struct {
2954 unsigned int regno1;
2955 unsigned int regno2;
2956 } reg_range;
2957
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2962 struct {
2963 expressionS value;
2964 bfd_reloc_code_real_type relocs[3];
2965 } integer;
2966
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2968 in the constant. */
2969 struct {
2970 unsigned char data[8];
2971 int length;
2972 } flt;
2973
14daeee3 2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2975 char ch;
2976 } u;
2977};
2978
2979/* An obstack used to construct lists of mips_operand_tokens. */
2980static struct obstack mips_operand_tokens;
2981
2982/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2983
2984static void
2985mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2987{
2988 token->type = type;
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2990}
2991
2992/* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2995
2996static char *
2997mips_parse_base_start (char *s)
2998{
2999 struct mips_operand_token token;
14daeee3
RS
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
df58fc94 3002
a92713e6
RS
3003 if (*s != '(')
3004 return 0;
3005
3006 ++s;
3007 SKIP_SPACE_TABS (s);
14daeee3
RS
3008
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3012 if (decrement_p)
3013 {
3014 s += 2;
3015 SKIP_SPACE_TABS (s);
3016 }
3017
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3021 return 0;
3022
3023 token.u.ch = '(';
3024 mips_add_token (&token, OT_CHAR);
3025
14daeee3
RS
3026 if (decrement_p)
3027 {
3028 token.u.ch = '-';
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3030 }
3031
a92713e6
RS
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3034
14daeee3
RS
3035 if (channels)
3036 {
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3039 }
3040
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3044 {
3045 s += 2;
3046 token.u.ch = '+';
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3048 }
3049
a92713e6
RS
3050 return s;
3051}
3052
3053/* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3057
3058static char *
3059mips_parse_argument_token (char *s, char float_format)
3060{
6d4af3c2
AM
3061 char *end, *save_in;
3062 const char *err;
14daeee3 3063 unsigned int regno1, regno2, channels;
a92713e6
RS
3064 struct mips_operand_token token;
3065
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3069 if (end)
3070 return end;
3071
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3074 {
3075 token.u.ch = *s;
3076 mips_add_token (&token, OT_CHAR);
3077 ++s;
3078 return s;
3079 }
3080
3081 /* Handle tokens that start with a register. */
14daeee3 3082 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3083 {
14daeee3
RS
3084 if (channels)
3085 {
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3089
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3092 return s;
3093 }
3094
a92713e6
RS
3095 SKIP_SPACE_TABS (s);
3096 if (*s == '-')
df58fc94 3097 {
a92713e6
RS
3098 /* A register range. */
3099 ++s;
3100 SKIP_SPACE_TABS (s);
14daeee3 3101 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3102 {
1661c76c 3103 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3104 return 0;
3105 }
df58fc94 3106
a92713e6
RS
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3110 return s;
3111 }
a92713e6 3112
56d438b1
CF
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3116
3117 /* Check for a vector index. */
3118 if (*s == '[')
3119 {
a92713e6
RS
3120 ++s;
3121 SKIP_SPACE_TABS (s);
56d438b1
CF
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3124 else
a92713e6 3125 {
56d438b1
CF
3126 expressionS element;
3127
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3130 {
3131 set_insn_error (0, _("vector element must be constant"));
3132 return 0;
3133 }
3134 s = expr_end;
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3137 }
a92713e6
RS
3138 SKIP_SPACE_TABS (s);
3139 if (*s != ']')
3140 {
1661c76c 3141 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3142 return 0;
3143 }
3144 ++s;
df58fc94 3145 }
a92713e6 3146 return s;
df58fc94
RS
3147 }
3148
a92713e6
RS
3149 if (float_format)
3150 {
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3158 if (err && *err)
3159 {
e3de51ce 3160 set_insn_error (0, err);
a92713e6
RS
3161 return 0;
3162 }
3163 if (s != end)
3164 {
3165 mips_add_token (&token, OT_FLOAT);
3166 return end;
3167 }
3168 }
3169
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3175 s = expr_end;
3176 mips_add_token (&token, OT_INTEGER);
3177 return s;
3178}
3179
3180/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3184
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3187
3188static struct mips_operand_token *
3189mips_parse_arguments (char *s, char float_format)
3190{
3191 struct mips_operand_token token;
3192
3193 SKIP_SPACE_TABS (s);
3194 while (*s)
3195 {
3196 s = mips_parse_argument_token (s, float_format);
3197 if (!s)
3198 {
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3201 return 0;
3202 }
3203 SKIP_SPACE_TABS (s);
3204 }
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3207}
3208
d301a56b
RS
3209/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3211
3212static bfd_boolean
f79e2745 3213is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3214{
3215 int isa = mips_opts.isa;
846ef2d0 3216 int ase = mips_opts.ase;
037b32b9 3217 int fp_s, fp_d;
c6278170 3218 unsigned int i;
037b32b9 3219
be0fcbee 3220 if (ISA_HAS_64BIT_REGS (isa))
c6278170
RS
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
037b32b9 3224
d301a56b 3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3226 return FALSE;
3227
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3232 {
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3235 }
3236 else
3237 {
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3240 }
3241
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3243 return FALSE;
3244
3245 if (fp_s && mips_opts.soft_float)
3246 return FALSE;
3247
3248 return TRUE;
3249}
3250
3251/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3253
3254static bfd_boolean
3255is_opcode_valid_16 (const struct mips_opcode *mo)
3256{
d301a56b 3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3258}
3259
df58fc94 3260/* Return TRUE if the size of the microMIPS opcode MO matches one
7fd53920
MR
3261 explicitly requested. Always TRUE in the standard MIPS mode.
3262 Use is_size_valid_16 for MIPS16 opcodes. */
df58fc94
RS
3263
3264static bfd_boolean
3265is_size_valid (const struct mips_opcode *mo)
3266{
3267 if (!mips_opts.micromips)
3268 return TRUE;
3269
833794fc
MR
3270 if (mips_opts.insn32)
3271 {
3272 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3273 return FALSE;
3274 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3275 return FALSE;
3276 }
df58fc94
RS
3277 if (!forced_insn_length)
3278 return TRUE;
3279 if (mo->pinfo == INSN_MACRO)
3280 return FALSE;
3281 return forced_insn_length == micromips_insn_length (mo);
3282}
3283
7fd53920
MR
3284/* Return TRUE if the size of the MIPS16 opcode MO matches one
3285 explicitly requested. */
3286
3287static bfd_boolean
3288is_size_valid_16 (const struct mips_opcode *mo)
3289{
3290 if (!forced_insn_length)
3291 return TRUE;
3292 if (mo->pinfo == INSN_MACRO)
3293 return FALSE;
3294 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3295 return FALSE;
3296 return TRUE;
3297}
3298
df58fc94 3299/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3300 of the preceding instruction. Always TRUE in the standard MIPS mode.
3301
3302 We don't accept macros in 16-bit delay slots to avoid a case where
3303 a macro expansion fails because it relies on a preceding 32-bit real
3304 instruction to have matched and does not handle the operands correctly.
3305 The only macros that may expand to 16-bit instructions are JAL that
3306 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3307 and BGT (that likewise cannot be placed in a delay slot) that decay to
3308 a NOP. In all these cases the macros precede any corresponding real
3309 instruction definitions in the opcode table, so they will match in the
3310 second pass where the size of the delay slot is ignored and therefore
3311 produce correct code. */
df58fc94
RS
3312
3313static bfd_boolean
3314is_delay_slot_valid (const struct mips_opcode *mo)
3315{
3316 if (!mips_opts.micromips)
3317 return TRUE;
3318
3319 if (mo->pinfo == INSN_MACRO)
c06dec14 3320 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3321 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3322 && micromips_insn_length (mo) != 4)
3323 return FALSE;
3324 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3325 && micromips_insn_length (mo) != 2)
3326 return FALSE;
3327
3328 return TRUE;
3329}
3330
fc76e730
RS
3331/* For consistency checking, verify that all bits of OPCODE are specified
3332 either by the match/mask part of the instruction definition, or by the
3333 operand list. Also build up a list of operands in OPERANDS.
3334
3335 INSN_BITS says which bits of the instruction are significant.
3336 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3337 provides the mips_operand description of each operand. DECODE_OPERAND
3338 is null for MIPS16 instructions. */
ab902481
RS
3339
3340static int
3341validate_mips_insn (const struct mips_opcode *opcode,
3342 unsigned long insn_bits,
fc76e730
RS
3343 const struct mips_operand *(*decode_operand) (const char *),
3344 struct mips_operand_array *operands)
ab902481
RS
3345{
3346 const char *s;
fc76e730 3347 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3348 const struct mips_operand *operand;
3349
fc76e730
RS
3350 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3351 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3352 {
3353 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3354 opcode->name, opcode->args);
3355 return 0;
3356 }
3357 used_bits = 0;
fc76e730 3358 opno = 0;
14daeee3
RS
3359 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3360 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3361 for (s = opcode->args; *s; ++s)
3362 switch (*s)
3363 {
3364 case ',':
3365 case '(':
3366 case ')':
3367 break;
3368
14daeee3
RS
3369 case '#':
3370 s++;
3371 break;
3372
ab902481 3373 default:
fc76e730 3374 if (!decode_operand)
7fd53920 3375 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
fc76e730
RS
3376 else
3377 operand = decode_operand (s);
3378 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3379 {
3380 as_bad (_("internal: unknown operand type: %s %s"),
3381 opcode->name, opcode->args);
3382 return 0;
3383 }
fc76e730
RS
3384 gas_assert (opno < MAX_OPERANDS);
3385 operands->operand[opno] = operand;
14daeee3 3386 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3387 {
14daeee3 3388 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3389 if (operand->type == OP_MDMX_IMM_REG)
3390 /* Bit 5 is the format selector (OB vs QH). The opcode table
3391 has separate entries for each format. */
3392 used_bits &= ~(1 << (operand->lsb + 5));
3393 if (operand->type == OP_ENTRY_EXIT_LIST)
3394 used_bits &= ~(mask & 0x700);
3395 }
ab902481 3396 /* Skip prefix characters. */
7361da2c 3397 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3398 ++s;
fc76e730 3399 opno += 1;
ab902481
RS
3400 break;
3401 }
fc76e730 3402 doubled = used_bits & mask & insn_bits;
ab902481
RS
3403 if (doubled)
3404 {
3405 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3406 " %s %s"), doubled, opcode->name, opcode->args);
3407 return 0;
3408 }
fc76e730 3409 used_bits |= mask;
ab902481 3410 undefined = ~used_bits & insn_bits;
fc76e730 3411 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3412 {
3413 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3414 undefined, opcode->name, opcode->args);
3415 return 0;
3416 }
3417 used_bits &= ~insn_bits;
3418 if (used_bits)
3419 {
3420 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3421 used_bits, opcode->name, opcode->args);
3422 return 0;
3423 }
3424 return 1;
3425}
3426
fc76e730
RS
3427/* The MIPS16 version of validate_mips_insn. */
3428
3429static int
3430validate_mips16_insn (const struct mips_opcode *opcode,
3431 struct mips_operand_array *operands)
3432{
7fd53920 3433 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
fc76e730 3434
7fd53920 3435 return validate_mips_insn (opcode, insn_bits, 0, operands);
fc76e730
RS
3436}
3437
ab902481
RS
3438/* The microMIPS version of validate_mips_insn. */
3439
3440static int
fc76e730
RS
3441validate_micromips_insn (const struct mips_opcode *opc,
3442 struct mips_operand_array *operands)
ab902481
RS
3443{
3444 unsigned long insn_bits;
3445 unsigned long major;
3446 unsigned int length;
3447
fc76e730
RS
3448 if (opc->pinfo == INSN_MACRO)
3449 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3450 operands);
3451
ab902481
RS
3452 length = micromips_insn_length (opc);
3453 if (length != 2 && length != 4)
3454 {
1661c76c 3455 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3456 "%s %s"), length, opc->name, opc->args);
3457 return 0;
3458 }
3459 major = opc->match >> (10 + 8 * (length - 2));
3460 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3461 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3462 {
1661c76c 3463 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3464 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3465 return 0;
3466 }
3467
3468 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3469 insn_bits = 1 << 4 * length;
3470 insn_bits <<= 4 * length;
3471 insn_bits -= 1;
fc76e730
RS
3472 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3473 operands);
ab902481
RS
3474}
3475
707bfff6
TS
3476/* This function is called once, at assembler startup time. It should set up
3477 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3478
252b5132 3479void
17a2f251 3480md_begin (void)
252b5132 3481{
3994f87e 3482 const char *retval = NULL;
156c2f8b 3483 int i = 0;
252b5132 3484 int broken = 0;
1f25f5d3 3485
0a44bf69
RS
3486 if (mips_pic != NO_PIC)
3487 {
3488 if (g_switch_seen && g_switch_value != 0)
3489 as_bad (_("-G may not be used in position-independent code"));
3490 g_switch_value = 0;
3491 }
00acd688
CM
3492 else if (mips_abicalls)
3493 {
3494 if (g_switch_seen && g_switch_value != 0)
3495 as_bad (_("-G may not be used with abicalls"));
3496 g_switch_value = 0;
3497 }
0a44bf69 3498
0b35dfee 3499 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3500 as_warn (_("could not set architecture and machine"));
252b5132 3501
252b5132
RH
3502 op_hash = hash_new ();
3503
fc76e730 3504 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3505 for (i = 0; i < NUMOPCODES;)
3506 {
3507 const char *name = mips_opcodes[i].name;
3508
17a2f251 3509 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3510 if (retval != NULL)
3511 {
3512 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3513 mips_opcodes[i].name, retval);
3514 /* Probably a memory allocation problem? Give up now. */
1661c76c 3515 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3516 }
3517 do
3518 {
fc76e730
RS
3519 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3520 decode_mips_operand, &mips_operands[i]))
3521 broken = 1;
3522 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3523 {
fc76e730
RS
3524 create_insn (&nop_insn, mips_opcodes + i);
3525 if (mips_fix_loongson2f_nop)
3526 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3527 nop_insn.fixed_p = 1;
252b5132
RH
3528 }
3529 ++i;
3530 }
3531 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3532 }
3533
3534 mips16_op_hash = hash_new ();
fc76e730
RS
3535 mips16_operands = XCNEWVEC (struct mips_operand_array,
3536 bfd_mips16_num_opcodes);
252b5132
RH
3537
3538 i = 0;
3539 while (i < bfd_mips16_num_opcodes)
3540 {
3541 const char *name = mips16_opcodes[i].name;
3542
17a2f251 3543 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3544 if (retval != NULL)
3545 as_fatal (_("internal: can't hash `%s': %s"),
3546 mips16_opcodes[i].name, retval);
3547 do
3548 {
fc76e730
RS
3549 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3550 broken = 1;
1e915849
RS
3551 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3552 {
3553 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3554 mips16_nop_insn.fixed_p = 1;
3555 }
252b5132
RH
3556 ++i;
3557 }
3558 while (i < bfd_mips16_num_opcodes
3559 && strcmp (mips16_opcodes[i].name, name) == 0);
3560 }
3561
df58fc94 3562 micromips_op_hash = hash_new ();
fc76e730
RS
3563 micromips_operands = XCNEWVEC (struct mips_operand_array,
3564 bfd_micromips_num_opcodes);
df58fc94
RS
3565
3566 i = 0;
3567 while (i < bfd_micromips_num_opcodes)
3568 {
3569 const char *name = micromips_opcodes[i].name;
3570
3571 retval = hash_insert (micromips_op_hash, name,
3572 (void *) &micromips_opcodes[i]);
3573 if (retval != NULL)
3574 as_fatal (_("internal: can't hash `%s': %s"),
3575 micromips_opcodes[i].name, retval);
3576 do
fc76e730
RS
3577 {
3578 struct mips_cl_insn *micromips_nop_insn;
3579
3580 if (!validate_micromips_insn (&micromips_opcodes[i],
3581 &micromips_operands[i]))
3582 broken = 1;
3583
3584 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3585 {
3586 if (micromips_insn_length (micromips_opcodes + i) == 2)
3587 micromips_nop_insn = &micromips_nop16_insn;
3588 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3589 micromips_nop_insn = &micromips_nop32_insn;
3590 else
3591 continue;
3592
3593 if (micromips_nop_insn->insn_mo == NULL
3594 && strcmp (name, "nop") == 0)
3595 {
3596 create_insn (micromips_nop_insn, micromips_opcodes + i);
3597 micromips_nop_insn->fixed_p = 1;
3598 }
3599 }
3600 }
df58fc94
RS
3601 while (++i < bfd_micromips_num_opcodes
3602 && strcmp (micromips_opcodes[i].name, name) == 0);
3603 }
3604
252b5132 3605 if (broken)
1661c76c 3606 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3607
3608 /* We add all the general register names to the symbol table. This
3609 helps us detect invalid uses of them. */
3739860c 3610 for (i = 0; reg_names[i].name; i++)
707bfff6 3611 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3612 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3613 &zero_address_frag));
3614 if (HAVE_NEWABI)
3739860c 3615 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3616 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3617 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3618 &zero_address_frag));
707bfff6 3619 else
3739860c 3620 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3621 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3622 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3623 &zero_address_frag));
6047c971 3624
14daeee3
RS
3625 for (i = 0; i < 32; i++)
3626 {
92fce9bd 3627 char regname[6];
14daeee3
RS
3628
3629 /* R5900 VU0 floating-point register. */
92fce9bd 3630 sprintf (regname, "$vf%d", i);
14daeee3
RS
3631 symbol_table_insert (symbol_new (regname, reg_section,
3632 RTYPE_VF | i, &zero_address_frag));
3633
3634 /* R5900 VU0 integer register. */
92fce9bd 3635 sprintf (regname, "$vi%d", i);
14daeee3
RS
3636 symbol_table_insert (symbol_new (regname, reg_section,
3637 RTYPE_VI | i, &zero_address_frag));
3638
56d438b1 3639 /* MSA register. */
92fce9bd 3640 sprintf (regname, "$w%d", i);
56d438b1
CF
3641 symbol_table_insert (symbol_new (regname, reg_section,
3642 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3643 }
3644
a92713e6
RS
3645 obstack_init (&mips_operand_tokens);
3646
7d10b47d 3647 mips_no_prev_insn ();
252b5132
RH
3648
3649 mips_gprmask = 0;
3650 mips_cprmask[0] = 0;
3651 mips_cprmask[1] = 0;
3652 mips_cprmask[2] = 0;
3653 mips_cprmask[3] = 0;
3654
3655 /* set the default alignment for the text section (2**2) */
3656 record_alignment (text_section, 2);
3657
4d0d148d 3658 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3659
f3ded42a
RS
3660 /* On a native system other than VxWorks, sections must be aligned
3661 to 16 byte boundaries. When configured for an embedded ELF
3662 target, we don't bother. */
3663 if (strncmp (TARGET_OS, "elf", 3) != 0
3664 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3665 {
f3ded42a
RS
3666 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3667 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3668 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3669 }
252b5132 3670
f3ded42a
RS
3671 /* Create a .reginfo section for register masks and a .mdebug
3672 section for debugging information. */
3673 {
3674 segT seg;
3675 subsegT subseg;
3676 flagword flags;
3677 segT sec;
3678
3679 seg = now_seg;
3680 subseg = now_subseg;
3681
3682 /* The ABI says this section should be loaded so that the
3683 running program can access it. However, we don't load it
3684 if we are configured for an embedded target */
3685 flags = SEC_READONLY | SEC_DATA;
3686 if (strncmp (TARGET_OS, "elf", 3) != 0)
3687 flags |= SEC_ALLOC | SEC_LOAD;
3688
3689 if (mips_abi != N64_ABI)
252b5132 3690 {
f3ded42a 3691 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3692
f3ded42a
RS
3693 bfd_set_section_flags (stdoutput, sec, flags);
3694 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3695
f3ded42a
RS
3696 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3697 }
3698 else
3699 {
3700 /* The 64-bit ABI uses a .MIPS.options section rather than
3701 .reginfo section. */
3702 sec = subseg_new (".MIPS.options", (subsegT) 0);
3703 bfd_set_section_flags (stdoutput, sec, flags);
3704 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3705
f3ded42a
RS
3706 /* Set up the option header. */
3707 {
3708 Elf_Internal_Options opthdr;
3709 char *f;
3710
3711 opthdr.kind = ODK_REGINFO;
3712 opthdr.size = (sizeof (Elf_External_Options)
3713 + sizeof (Elf64_External_RegInfo));
3714 opthdr.section = 0;
3715 opthdr.info = 0;
3716 f = frag_more (sizeof (Elf_External_Options));
3717 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3718 (Elf_External_Options *) f);
3719
3720 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3721 }
3722 }
252b5132 3723
351cdf24
MF
3724 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3725 bfd_set_section_flags (stdoutput, sec,
3726 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3727 bfd_set_section_alignment (stdoutput, sec, 3);
3728 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3729
f3ded42a
RS
3730 if (ECOFF_DEBUGGING)
3731 {
3732 sec = subseg_new (".mdebug", (subsegT) 0);
3733 (void) bfd_set_section_flags (stdoutput, sec,
3734 SEC_HAS_CONTENTS | SEC_READONLY);
3735 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3736 }
f3ded42a
RS
3737 else if (mips_flag_pdr)
3738 {
3739 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3740 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3741 SEC_READONLY | SEC_RELOC
3742 | SEC_DEBUGGING);
3743 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3744 }
3745
3746 subseg_set (seg, subseg);
3747 }
252b5132 3748
71400594
RS
3749 if (mips_fix_vr4120)
3750 init_vr4120_conflicts ();
252b5132
RH
3751}
3752
351cdf24
MF
3753static inline void
3754fpabi_incompatible_with (int fpabi, const char *what)
3755{
3756 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3757 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3758}
3759
3760static inline void
3761fpabi_requires (int fpabi, const char *what)
3762{
3763 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3764 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3765}
3766
3767/* Check -mabi and register sizes against the specified FP ABI. */
3768static void
3769check_fpabi (int fpabi)
3770{
351cdf24
MF
3771 switch (fpabi)
3772 {
3773 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3774 if (file_mips_opts.soft_float)
3775 fpabi_incompatible_with (fpabi, "softfloat");
3776 else if (file_mips_opts.single_float)
3777 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3778 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3779 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3780 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3781 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3782 break;
3783
3784 case Val_GNU_MIPS_ABI_FP_XX:
3785 if (mips_abi != O32_ABI)
3786 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3787 else if (file_mips_opts.soft_float)
3788 fpabi_incompatible_with (fpabi, "softfloat");
3789 else if (file_mips_opts.single_float)
3790 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3791 else if (file_mips_opts.fp != 0)
3792 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_64A:
3796 case Val_GNU_MIPS_ABI_FP_64:
3797 if (mips_abi != O32_ABI)
3798 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3799 else if (file_mips_opts.soft_float)
3800 fpabi_incompatible_with (fpabi, "softfloat");
3801 else if (file_mips_opts.single_float)
3802 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3803 else if (file_mips_opts.fp != 64)
3804 fpabi_requires (fpabi, "fp=64");
3805 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3806 fpabi_incompatible_with (fpabi, "nooddspreg");
3807 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3808 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3809 break;
3810
3811 case Val_GNU_MIPS_ABI_FP_SINGLE:
3812 if (file_mips_opts.soft_float)
3813 fpabi_incompatible_with (fpabi, "softfloat");
3814 else if (!file_mips_opts.single_float)
3815 fpabi_requires (fpabi, "singlefloat");
3816 break;
3817
3818 case Val_GNU_MIPS_ABI_FP_SOFT:
3819 if (!file_mips_opts.soft_float)
3820 fpabi_requires (fpabi, "softfloat");
3821 break;
3822
3823 case Val_GNU_MIPS_ABI_FP_OLD_64:
3824 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3825 Tag_GNU_MIPS_ABI_FP, fpabi);
3826 break;
3827
3350cc01
CM
3828 case Val_GNU_MIPS_ABI_FP_NAN2008:
3829 /* Silently ignore compatibility value. */
3830 break;
3831
351cdf24
MF
3832 default:
3833 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3834 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3835 break;
3836 }
351cdf24
MF
3837}
3838
919731af 3839/* Perform consistency checks on the current options. */
3840
3841static void
3842mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3843{
3844 /* Check the size of integer registers agrees with the ABI and ISA. */
3845 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3846 as_bad (_("`gp=64' used with a 32-bit processor"));
3847 else if (abi_checks
3848 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3849 as_bad (_("`gp=32' used with a 64-bit ABI"));
3850 else if (abi_checks
3851 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3852 as_bad (_("`gp=64' used with a 32-bit ABI"));
3853
3854 /* Check the size of the float registers agrees with the ABI and ISA. */
3855 switch (opts->fp)
3856 {
351cdf24
MF
3857 case 0:
3858 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3859 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3860 else if (opts->single_float == 1)
3861 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3862 break;
919731af 3863 case 64:
3864 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3865 as_bad (_("`fp=64' used with a 32-bit fpu"));
3866 else if (abi_checks
3867 && ABI_NEEDS_32BIT_REGS (mips_abi)
3868 && !ISA_HAS_MXHC1 (opts->isa))
3869 as_warn (_("`fp=64' used with a 32-bit ABI"));
3870 break;
3871 case 32:
3872 if (abi_checks
3873 && ABI_NEEDS_64BIT_REGS (mips_abi))
3874 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3875 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3876 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3877 break;
3878 default:
3879 as_bad (_("Unknown size of floating point registers"));
3880 break;
3881 }
3882
351cdf24
MF
3883 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3884 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3885
919731af 3886 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3887 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3888 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3889 && (opts->micromips == 1
3890 || opts->mips16 == 1))
1357373c 3891 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3892 opts->micromips ? "micromips" : "mips16",
5f4678bb 3893 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3894
3895 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3896 as_fatal (_("branch relaxation is not supported in `%s'"),
3897 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3898}
3899
3900/* Perform consistency checks on the module level options exactly once.
3901 This is a deferred check that happens:
3902 at the first .set directive
3903 or, at the first pseudo op that generates code (inc .dc.a)
3904 or, at the first instruction
3905 or, at the end. */
3906
3907static void
3908file_mips_check_options (void)
3909{
3910 const struct mips_cpu_info *arch_info = 0;
3911
3912 if (file_mips_opts_checked)
3913 return;
3914
3915 /* The following code determines the register size.
3916 Similar code was added to GCC 3.3 (see override_options() in
3917 config/mips/mips.c). The GAS and GCC code should be kept in sync
3918 as much as possible. */
3919
3920 if (file_mips_opts.gp < 0)
3921 {
3922 /* Infer the integer register size from the ABI and processor.
3923 Restrict ourselves to 32-bit registers if that's all the
3924 processor has, or if the ABI cannot handle 64-bit registers. */
3925 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3926 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3927 ? 32 : 64;
3928 }
3929
3930 if (file_mips_opts.fp < 0)
3931 {
3932 /* No user specified float register size.
3933 ??? GAS treats single-float processors as though they had 64-bit
3934 float registers (although it complains when double-precision
3935 instructions are used). As things stand, saying they have 32-bit
3936 registers would lead to spurious "register must be even" messages.
3937 So here we assume float registers are never smaller than the
3938 integer ones. */
3939 if (file_mips_opts.gp == 64)
3940 /* 64-bit integer registers implies 64-bit float registers. */
3941 file_mips_opts.fp = 64;
3942 else if ((file_mips_opts.ase & FP64_ASES)
3943 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3944 /* Handle ASEs that require 64-bit float registers, if possible. */
3945 file_mips_opts.fp = 64;
7361da2c
AB
3946 else if (ISA_IS_R6 (mips_opts.isa))
3947 /* R6 implies 64-bit float registers. */
3948 file_mips_opts.fp = 64;
919731af 3949 else
3950 /* 32-bit float registers. */
3951 file_mips_opts.fp = 32;
3952 }
3953
3954 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3955
351cdf24
MF
3956 /* Disable operations on odd-numbered floating-point registers by default
3957 when using the FPXX ABI. */
3958 if (file_mips_opts.oddspreg < 0)
3959 {
3960 if (file_mips_opts.fp == 0)
3961 file_mips_opts.oddspreg = 0;
3962 else
3963 file_mips_opts.oddspreg = 1;
3964 }
3965
919731af 3966 /* End of GCC-shared inference code. */
3967
3968 /* This flag is set when we have a 64-bit capable CPU but use only
3969 32-bit wide registers. Note that EABI does not use it. */
3970 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3971 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3972 || mips_abi == O32_ABI))
3973 mips_32bitmode = 1;
3974
3975 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3976 as_bad (_("trap exception not supported at ISA 1"));
3977
3978 /* If the selected architecture includes support for ASEs, enable
3979 generation of code for them. */
3980 if (file_mips_opts.mips16 == -1)
3981 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3982 if (file_mips_opts.micromips == -1)
3983 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3984 ? 1 : 0;
3985
7361da2c
AB
3986 if (mips_nan2008 == -1)
3987 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3988 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3989 as_fatal (_("`%s' does not support legacy NaN"),
3990 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3991
919731af 3992 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3993 being selected implicitly. */
3994 if (file_mips_opts.fp != 64)
3995 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3996
3997 /* If the user didn't explicitly select or deselect a particular ASE,
3998 use the default setting for the CPU. */
3999 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4000
4001 /* Set up the current options. These may change throughout assembly. */
4002 mips_opts = file_mips_opts;
4003
4004 mips_check_isa_supports_ases ();
4005 mips_check_options (&file_mips_opts, TRUE);
4006 file_mips_opts_checked = TRUE;
4007
4008 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4009 as_warn (_("could not set architecture and machine"));
4010}
4011
252b5132 4012void
17a2f251 4013md_assemble (char *str)
252b5132
RH
4014{
4015 struct mips_cl_insn insn;
f6688943
TS
4016 bfd_reloc_code_real_type unused_reloc[3]
4017 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4018
919731af 4019 file_mips_check_options ();
4020
252b5132 4021 imm_expr.X_op = O_absent;
252b5132 4022 offset_expr.X_op = O_absent;
f6688943
TS
4023 offset_reloc[0] = BFD_RELOC_UNUSED;
4024 offset_reloc[1] = BFD_RELOC_UNUSED;
4025 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4026
e1b47bd5
RS
4027 mips_mark_labels ();
4028 mips_assembling_insn = TRUE;
e3de51ce 4029 clear_insn_error ();
e1b47bd5 4030
252b5132
RH
4031 if (mips_opts.mips16)
4032 mips16_ip (str, &insn);
4033 else
4034 {
4035 mips_ip (str, &insn);
beae10d5
KH
4036 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4037 str, insn.insn_opcode));
252b5132
RH
4038 }
4039
e3de51ce
RS
4040 if (insn_error.msg)
4041 report_insn_error (str);
e1b47bd5 4042 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4043 {
584892a6 4044 macro_start ();
252b5132
RH
4045 if (mips_opts.mips16)
4046 mips16_macro (&insn);
4047 else
833794fc 4048 macro (&insn, str);
584892a6 4049 macro_end ();
252b5132
RH
4050 }
4051 else
4052 {
77bd4346 4053 if (offset_expr.X_op != O_absent)
df58fc94 4054 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4055 else
df58fc94 4056 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4057 }
e1b47bd5
RS
4058
4059 mips_assembling_insn = FALSE;
252b5132
RH
4060}
4061
738e5348
RS
4062/* Convenience functions for abstracting away the differences between
4063 MIPS16 and non-MIPS16 relocations. */
4064
4065static inline bfd_boolean
4066mips16_reloc_p (bfd_reloc_code_real_type reloc)
4067{
4068 switch (reloc)
4069 {
4070 case BFD_RELOC_MIPS16_JMP:
4071 case BFD_RELOC_MIPS16_GPREL:
4072 case BFD_RELOC_MIPS16_GOT16:
4073 case BFD_RELOC_MIPS16_CALL16:
4074 case BFD_RELOC_MIPS16_HI16_S:
4075 case BFD_RELOC_MIPS16_HI16:
4076 case BFD_RELOC_MIPS16_LO16:
c9775dde 4077 case BFD_RELOC_MIPS16_16_PCREL_S1:
738e5348
RS
4078 return TRUE;
4079
4080 default:
4081 return FALSE;
4082 }
4083}
4084
df58fc94
RS
4085static inline bfd_boolean
4086micromips_reloc_p (bfd_reloc_code_real_type reloc)
4087{
4088 switch (reloc)
4089 {
4090 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4091 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4092 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4093 case BFD_RELOC_MICROMIPS_GPREL16:
4094 case BFD_RELOC_MICROMIPS_JMP:
4095 case BFD_RELOC_MICROMIPS_HI16:
4096 case BFD_RELOC_MICROMIPS_HI16_S:
4097 case BFD_RELOC_MICROMIPS_LO16:
4098 case BFD_RELOC_MICROMIPS_LITERAL:
4099 case BFD_RELOC_MICROMIPS_GOT16:
4100 case BFD_RELOC_MICROMIPS_CALL16:
4101 case BFD_RELOC_MICROMIPS_GOT_HI16:
4102 case BFD_RELOC_MICROMIPS_GOT_LO16:
4103 case BFD_RELOC_MICROMIPS_CALL_HI16:
4104 case BFD_RELOC_MICROMIPS_CALL_LO16:
4105 case BFD_RELOC_MICROMIPS_SUB:
4106 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4107 case BFD_RELOC_MICROMIPS_GOT_OFST:
4108 case BFD_RELOC_MICROMIPS_GOT_DISP:
4109 case BFD_RELOC_MICROMIPS_HIGHEST:
4110 case BFD_RELOC_MICROMIPS_HIGHER:
4111 case BFD_RELOC_MICROMIPS_SCN_DISP:
4112 case BFD_RELOC_MICROMIPS_JALR:
4113 return TRUE;
4114
4115 default:
4116 return FALSE;
4117 }
4118}
4119
2309ddf2
MR
4120static inline bfd_boolean
4121jmp_reloc_p (bfd_reloc_code_real_type reloc)
4122{
4123 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4124}
4125
0e9c5a5c
MR
4126static inline bfd_boolean
4127b_reloc_p (bfd_reloc_code_real_type reloc)
4128{
4129 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4130 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4131 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4132 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4133 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4134 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4135 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4136}
4137
738e5348
RS
4138static inline bfd_boolean
4139got16_reloc_p (bfd_reloc_code_real_type reloc)
4140{
2309ddf2 4141 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4142 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4143}
4144
4145static inline bfd_boolean
4146hi16_reloc_p (bfd_reloc_code_real_type reloc)
4147{
2309ddf2 4148 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4149 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4150}
4151
4152static inline bfd_boolean
4153lo16_reloc_p (bfd_reloc_code_real_type reloc)
4154{
2309ddf2 4155 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4156 || reloc == BFD_RELOC_MICROMIPS_LO16);
4157}
4158
df58fc94
RS
4159static inline bfd_boolean
4160jalr_reloc_p (bfd_reloc_code_real_type reloc)
4161{
2309ddf2 4162 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4163}
4164
f2ae14a1
RS
4165static inline bfd_boolean
4166gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4167{
4168 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4169 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4170}
4171
2de39019
CM
4172/* Return true if RELOC is a PC-relative relocation that does not have
4173 full address range. */
4174
4175static inline bfd_boolean
4176limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4177{
4178 switch (reloc)
4179 {
4180 case BFD_RELOC_16_PCREL_S2:
c9775dde 4181 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4182 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4183 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4184 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4185 case BFD_RELOC_MIPS_21_PCREL_S2:
4186 case BFD_RELOC_MIPS_26_PCREL_S2:
4187 case BFD_RELOC_MIPS_18_PCREL_S3:
4188 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4189 return TRUE;
4190
b47468a6 4191 case BFD_RELOC_32_PCREL:
7361da2c
AB
4192 case BFD_RELOC_HI16_S_PCREL:
4193 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4194 return HAVE_64BIT_ADDRESSES;
4195
2de39019
CM
4196 default:
4197 return FALSE;
4198 }
4199}
b47468a6 4200
5919d012 4201/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4202 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4203 need a matching %lo() when applied to local symbols. */
5919d012
RS
4204
4205static inline bfd_boolean
17a2f251 4206reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4207{
3b91255e 4208 return (HAVE_IN_PLACE_ADDENDS
738e5348 4209 && (hi16_reloc_p (reloc)
0a44bf69
RS
4210 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4211 all GOT16 relocations evaluate to "G". */
738e5348
RS
4212 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4213}
4214
4215/* Return the type of %lo() reloc needed by RELOC, given that
4216 reloc_needs_lo_p. */
4217
4218static inline bfd_reloc_code_real_type
4219matching_lo_reloc (bfd_reloc_code_real_type reloc)
4220{
df58fc94
RS
4221 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4222 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4223 : BFD_RELOC_LO16));
5919d012
RS
4224}
4225
4226/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4227 relocation. */
4228
4229static inline bfd_boolean
17a2f251 4230fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4231{
4232 return (fixp->fx_next != NULL
738e5348 4233 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4234 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4235 && fixp->fx_offset == fixp->fx_next->fx_offset);
4236}
4237
462427c4
RS
4238/* Move all labels in LABELS to the current insertion point. TEXT_P
4239 says whether the labels refer to text or data. */
404a8071
RS
4240
4241static void
462427c4 4242mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4243{
4244 struct insn_label_list *l;
4245 valueT val;
4246
462427c4 4247 for (l = labels; l != NULL; l = l->next)
404a8071 4248 {
9c2799c2 4249 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4250 symbol_set_frag (l->label, frag_now);
4251 val = (valueT) frag_now_fix ();
df58fc94 4252 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4253 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4254 ++val;
4255 S_SET_VALUE (l->label, val);
4256 }
4257}
4258
462427c4
RS
4259/* Move all labels in insn_labels to the current insertion point
4260 and treat them as text labels. */
4261
4262static void
4263mips_move_text_labels (void)
4264{
4265 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4266}
4267
5f0fe04b
TS
4268static bfd_boolean
4269s_is_linkonce (symbolS *sym, segT from_seg)
4270{
4271 bfd_boolean linkonce = FALSE;
4272 segT symseg = S_GET_SEGMENT (sym);
4273
4274 if (symseg != from_seg && !S_IS_LOCAL (sym))
4275 {
4276 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4277 linkonce = TRUE;
5f0fe04b
TS
4278 /* The GNU toolchain uses an extension for ELF: a section
4279 beginning with the magic string .gnu.linkonce is a
4280 linkonce section. */
4281 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4282 sizeof ".gnu.linkonce" - 1) == 0)
4283 linkonce = TRUE;
5f0fe04b
TS
4284 }
4285 return linkonce;
4286}
4287
e1b47bd5 4288/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4289 linker to handle them specially, such as generating jalx instructions
4290 when needed. We also make them odd for the duration of the assembly,
4291 in order to generate the right sort of code. We will make them even
252b5132
RH
4292 in the adjust_symtab routine, while leaving them marked. This is
4293 convenient for the debugger and the disassembler. The linker knows
4294 to make them odd again. */
4295
4296static void
e1b47bd5 4297mips_compressed_mark_label (symbolS *label)
252b5132 4298{
df58fc94 4299 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4300
f3ded42a
RS
4301 if (mips_opts.mips16)
4302 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4303 else
4304 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4305 if ((S_GET_VALUE (label) & 1) == 0
4306 /* Don't adjust the address if the label is global or weak, or
4307 in a link-once section, since we'll be emitting symbol reloc
4308 references to it which will be patched up by the linker, and
4309 the final value of the symbol may or may not be MIPS16/microMIPS. */
4310 && !S_IS_WEAK (label)
4311 && !S_IS_EXTERNAL (label)
4312 && !s_is_linkonce (label, now_seg))
4313 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4314}
4315
4316/* Mark preceding MIPS16 or microMIPS instruction labels. */
4317
4318static void
4319mips_compressed_mark_labels (void)
4320{
4321 struct insn_label_list *l;
4322
4323 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4324 mips_compressed_mark_label (l->label);
252b5132
RH
4325}
4326
4d7206a2
RS
4327/* End the current frag. Make it a variant frag and record the
4328 relaxation info. */
4329
4330static void
4331relax_close_frag (void)
4332{
584892a6 4333 mips_macro_warning.first_frag = frag_now;
4d7206a2 4334 frag_var (rs_machine_dependent, 0, 0,
584892a6 4335 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4336 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4337
4338 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4339 mips_relax.first_fixup = 0;
4340}
4341
4342/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4343 See the comment above RELAX_ENCODE for more details. */
4344
4345static void
4346relax_start (symbolS *symbol)
4347{
9c2799c2 4348 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4349 mips_relax.sequence = 1;
4350 mips_relax.symbol = symbol;
4351}
4352
4353/* Start generating the second version of a relaxable sequence.
4354 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4355
4356static void
4d7206a2
RS
4357relax_switch (void)
4358{
9c2799c2 4359 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4360 mips_relax.sequence = 2;
4361}
4362
4363/* End the current relaxable sequence. */
4364
4365static void
4366relax_end (void)
4367{
9c2799c2 4368 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4369 relax_close_frag ();
4370 mips_relax.sequence = 0;
4371}
4372
11625dd8
RS
4373/* Return true if IP is a delayed branch or jump. */
4374
4375static inline bfd_boolean
4376delayed_branch_p (const struct mips_cl_insn *ip)
4377{
4378 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4379 | INSN_COND_BRANCH_DELAY
4380 | INSN_COND_BRANCH_LIKELY)) != 0;
4381}
4382
4383/* Return true if IP is a compact branch or jump. */
4384
4385static inline bfd_boolean
4386compact_branch_p (const struct mips_cl_insn *ip)
4387{
26545944
RS
4388 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4389 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4390}
4391
4392/* Return true if IP is an unconditional branch or jump. */
4393
4394static inline bfd_boolean
4395uncond_branch_p (const struct mips_cl_insn *ip)
4396{
4397 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4398 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4399}
4400
4401/* Return true if IP is a branch-likely instruction. */
4402
4403static inline bfd_boolean
4404branch_likely_p (const struct mips_cl_insn *ip)
4405{
4406 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4407}
4408
14fe068b
RS
4409/* Return the type of nop that should be used to fill the delay slot
4410 of delayed branch IP. */
4411
4412static struct mips_cl_insn *
4413get_delay_slot_nop (const struct mips_cl_insn *ip)
4414{
4415 if (mips_opts.micromips
4416 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4417 return &micromips_nop32_insn;
4418 return NOP_INSN;
4419}
4420
fc76e730
RS
4421/* Return a mask that has bit N set if OPCODE reads the register(s)
4422 in operand N. */
df58fc94
RS
4423
4424static unsigned int
fc76e730 4425insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4426{
fc76e730
RS
4427 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4428}
df58fc94 4429
fc76e730
RS
4430/* Return a mask that has bit N set if OPCODE writes to the register(s)
4431 in operand N. */
4432
4433static unsigned int
4434insn_write_mask (const struct mips_opcode *opcode)
4435{
4436 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4437}
4438
4439/* Return a mask of the registers specified by operand OPERAND of INSN.
4440 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4441 is set. */
4442
4443static unsigned int
4444operand_reg_mask (const struct mips_cl_insn *insn,
4445 const struct mips_operand *operand,
4446 unsigned int type_mask)
4447{
4448 unsigned int uval, vsel;
4449
4450 switch (operand->type)
df58fc94 4451 {
fc76e730
RS
4452 case OP_INT:
4453 case OP_MAPPED_INT:
4454 case OP_MSB:
4455 case OP_PCREL:
4456 case OP_PERF_REG:
4457 case OP_ADDIUSP_INT:
4458 case OP_ENTRY_EXIT_LIST:
4459 case OP_REPEAT_DEST_REG:
4460 case OP_REPEAT_PREV_REG:
4461 case OP_PC:
14daeee3
RS
4462 case OP_VU0_SUFFIX:
4463 case OP_VU0_MATCH_SUFFIX:
56d438b1 4464 case OP_IMM_INDEX:
fc76e730
RS
4465 abort ();
4466
4467 case OP_REG:
0f35dbc4 4468 case OP_OPTIONAL_REG:
fc76e730
RS
4469 {
4470 const struct mips_reg_operand *reg_op;
4471
4472 reg_op = (const struct mips_reg_operand *) operand;
4473 if (!(type_mask & (1 << reg_op->reg_type)))
4474 return 0;
4475 uval = insn_extract_operand (insn, operand);
4476 return 1 << mips_decode_reg_operand (reg_op, uval);
4477 }
4478
4479 case OP_REG_PAIR:
4480 {
4481 const struct mips_reg_pair_operand *pair_op;
4482
4483 pair_op = (const struct mips_reg_pair_operand *) operand;
4484 if (!(type_mask & (1 << pair_op->reg_type)))
4485 return 0;
4486 uval = insn_extract_operand (insn, operand);
4487 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4488 }
4489
4490 case OP_CLO_CLZ_DEST:
4491 if (!(type_mask & (1 << OP_REG_GP)))
4492 return 0;
4493 uval = insn_extract_operand (insn, operand);
4494 return (1 << (uval & 31)) | (1 << (uval >> 5));
4495
7361da2c
AB
4496 case OP_SAME_RS_RT:
4497 if (!(type_mask & (1 << OP_REG_GP)))
4498 return 0;
4499 uval = insn_extract_operand (insn, operand);
4500 gas_assert ((uval & 31) == (uval >> 5));
4501 return 1 << (uval & 31);
4502
4503 case OP_CHECK_PREV:
4504 case OP_NON_ZERO_REG:
4505 if (!(type_mask & (1 << OP_REG_GP)))
4506 return 0;
4507 uval = insn_extract_operand (insn, operand);
4508 return 1 << (uval & 31);
4509
fc76e730
RS
4510 case OP_LWM_SWM_LIST:
4511 abort ();
4512
4513 case OP_SAVE_RESTORE_LIST:
4514 abort ();
4515
4516 case OP_MDMX_IMM_REG:
4517 if (!(type_mask & (1 << OP_REG_VEC)))
4518 return 0;
4519 uval = insn_extract_operand (insn, operand);
4520 vsel = uval >> 5;
4521 if ((vsel & 0x18) == 0x18)
4522 return 0;
4523 return 1 << (uval & 31);
56d438b1
CF
4524
4525 case OP_REG_INDEX:
4526 if (!(type_mask & (1 << OP_REG_GP)))
4527 return 0;
4528 return 1 << insn_extract_operand (insn, operand);
df58fc94 4529 }
fc76e730
RS
4530 abort ();
4531}
4532
4533/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4534 where bit N of OPNO_MASK is set if operand N should be included.
4535 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4536 is set. */
4537
4538static unsigned int
4539insn_reg_mask (const struct mips_cl_insn *insn,
4540 unsigned int type_mask, unsigned int opno_mask)
4541{
4542 unsigned int opno, reg_mask;
4543
4544 opno = 0;
4545 reg_mask = 0;
4546 while (opno_mask != 0)
4547 {
4548 if (opno_mask & 1)
4549 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4550 opno_mask >>= 1;
4551 opno += 1;
4552 }
4553 return reg_mask;
df58fc94
RS
4554}
4555
4c260379
RS
4556/* Return the mask of core registers that IP reads. */
4557
4558static unsigned int
4559gpr_read_mask (const struct mips_cl_insn *ip)
4560{
4561 unsigned long pinfo, pinfo2;
4562 unsigned int mask;
4563
fc76e730 4564 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4565 pinfo = ip->insn_mo->pinfo;
4566 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4567 if (pinfo & INSN_UDI)
4c260379 4568 {
fc76e730
RS
4569 /* UDI instructions have traditionally been assumed to read RS
4570 and RT. */
4571 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4572 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4573 }
fc76e730
RS
4574 if (pinfo & INSN_READ_GPR_24)
4575 mask |= 1 << 24;
4576 if (pinfo2 & INSN2_READ_GPR_16)
4577 mask |= 1 << 16;
4578 if (pinfo2 & INSN2_READ_SP)
4579 mask |= 1 << SP;
26545944 4580 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4581 mask |= 1 << 31;
fe35f09f
RS
4582 /* Don't include register 0. */
4583 return mask & ~1;
4c260379
RS
4584}
4585
4586/* Return the mask of core registers that IP writes. */
4587
4588static unsigned int
4589gpr_write_mask (const struct mips_cl_insn *ip)
4590{
4591 unsigned long pinfo, pinfo2;
4592 unsigned int mask;
4593
fc76e730 4594 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4595 pinfo = ip->insn_mo->pinfo;
4596 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4597 if (pinfo & INSN_WRITE_GPR_24)
4598 mask |= 1 << 24;
4599 if (pinfo & INSN_WRITE_GPR_31)
4600 mask |= 1 << 31;
4601 if (pinfo & INSN_UDI)
4602 /* UDI instructions have traditionally been assumed to write to RD. */
4603 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4604 if (pinfo2 & INSN2_WRITE_SP)
4605 mask |= 1 << SP;
fe35f09f
RS
4606 /* Don't include register 0. */
4607 return mask & ~1;
4c260379
RS
4608}
4609
4610/* Return the mask of floating-point registers that IP reads. */
4611
4612static unsigned int
4613fpr_read_mask (const struct mips_cl_insn *ip)
4614{
fc76e730 4615 unsigned long pinfo;
4c260379
RS
4616 unsigned int mask;
4617
9d5de888
CF
4618 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4619 | (1 << OP_REG_MSA)),
fc76e730 4620 insn_read_mask (ip->insn_mo));
4c260379 4621 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4622 /* Conservatively treat all operands to an FP_D instruction are doubles.
4623 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4624 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4625 mask |= mask << 1;
4626 return mask;
4627}
4628
4629/* Return the mask of floating-point registers that IP writes. */
4630
4631static unsigned int
4632fpr_write_mask (const struct mips_cl_insn *ip)
4633{
fc76e730 4634 unsigned long pinfo;
4c260379
RS
4635 unsigned int mask;
4636
9d5de888
CF
4637 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4638 | (1 << OP_REG_MSA)),
fc76e730 4639 insn_write_mask (ip->insn_mo));
4c260379 4640 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4641 /* Conservatively treat all operands to an FP_D instruction are doubles.
4642 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4643 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4644 mask |= mask << 1;
4645 return mask;
4646}
4647
a1d78564
RS
4648/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4649 Check whether that is allowed. */
4650
4651static bfd_boolean
4652mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4653{
4654 const char *s = insn->name;
351cdf24
MF
4655 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4656 || FPR_SIZE == 64)
4657 && mips_opts.oddspreg;
a1d78564
RS
4658
4659 if (insn->pinfo == INSN_MACRO)
4660 /* Let a macro pass, we'll catch it later when it is expanded. */
4661 return TRUE;
4662
351cdf24
MF
4663 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4664 otherwise it depends on oddspreg. */
4665 if ((insn->pinfo & FP_S)
4666 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4667 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4668 return FPR_SIZE == 32 || oddspreg;
a1d78564 4669
351cdf24
MF
4670 /* Allow odd registers for single-precision ops and double-precision if the
4671 floating-point registers are 64-bit wide. */
4672 switch (insn->pinfo & (FP_S | FP_D))
4673 {
4674 case FP_S:
4675 case 0:
4676 return oddspreg;
4677 case FP_D:
4678 return FPR_SIZE == 64;
4679 default:
4680 break;
a1d78564
RS
4681 }
4682
351cdf24
MF
4683 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4684 s = strchr (insn->name, '.');
4685 if (s != NULL && opnum == 2)
4686 s = strchr (s + 1, '.');
4687 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4688 return oddspreg;
a1d78564 4689
351cdf24 4690 return FPR_SIZE == 64;
a1d78564
RS
4691}
4692
a1d78564
RS
4693/* Information about an instruction argument that we're trying to match. */
4694struct mips_arg_info
4695{
4696 /* The instruction so far. */
4697 struct mips_cl_insn *insn;
4698
a92713e6
RS
4699 /* The first unconsumed operand token. */
4700 struct mips_operand_token *token;
4701
a1d78564
RS
4702 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4703 int opnum;
4704
4705 /* The 1-based argument number, for error reporting. This does not
4706 count elided optional registers, etc.. */
4707 int argnum;
4708
4709 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4710 unsigned int last_regno;
4711
4712 /* If the first operand was an OP_REG, this is the register that it
4713 specified, otherwise it is ILLEGAL_REG. */
4714 unsigned int dest_regno;
4715
4716 /* The value of the last OP_INT operand. Only used for OP_MSB,
4717 where it gives the lsb position. */
4718 unsigned int last_op_int;
4719
60f20e8b 4720 /* If true, match routines should assume that no later instruction
2b0f3761 4721 alternative matches and should therefore be as accommodating as
60f20e8b
RS
4722 possible. Match routines should not report errors if something
4723 is only invalid for !LAX_MATCH. */
4724 bfd_boolean lax_match;
a1d78564 4725
a1d78564
RS
4726 /* True if a reference to the current AT register was seen. */
4727 bfd_boolean seen_at;
4728};
4729
1a00e612
RS
4730/* Record that the argument is out of range. */
4731
4732static void
4733match_out_of_range (struct mips_arg_info *arg)
4734{
4735 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4736}
4737
4738/* Record that the argument isn't constant but needs to be. */
4739
4740static void
4741match_not_constant (struct mips_arg_info *arg)
4742{
4743 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4744 arg->argnum);
4745}
4746
a92713e6
RS
4747/* Try to match an OT_CHAR token for character CH. Consume the token
4748 and return true on success, otherwise return false. */
a1d78564 4749
a92713e6
RS
4750static bfd_boolean
4751match_char (struct mips_arg_info *arg, char ch)
a1d78564 4752{
a92713e6
RS
4753 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4754 {
4755 ++arg->token;
4756 if (ch == ',')
4757 arg->argnum += 1;
4758 return TRUE;
4759 }
4760 return FALSE;
4761}
a1d78564 4762
a92713e6
RS
4763/* Try to get an expression from the next tokens in ARG. Consume the
4764 tokens and return true on success, storing the expression value in
4765 VALUE and relocation types in R. */
4766
4767static bfd_boolean
4768match_expression (struct mips_arg_info *arg, expressionS *value,
4769 bfd_reloc_code_real_type *r)
4770{
d436c1c2
RS
4771 /* If the next token is a '(' that was parsed as being part of a base
4772 expression, assume we have an elided offset. The later match will fail
4773 if this turns out to be wrong. */
4774 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4775 {
d436c1c2
RS
4776 value->X_op = O_constant;
4777 value->X_add_number = 0;
4778 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4779 return TRUE;
4780 }
4781
d436c1c2
RS
4782 /* Reject register-based expressions such as "0+$2" and "(($2))".
4783 For plain registers the default error seems more appropriate. */
4784 if (arg->token->type == OT_INTEGER
4785 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4786 {
d436c1c2
RS
4787 set_insn_error (arg->argnum, _("register value used as expression"));
4788 return FALSE;
a1d78564 4789 }
d436c1c2
RS
4790
4791 if (arg->token->type == OT_INTEGER)
a92713e6 4792 {
d436c1c2
RS
4793 *value = arg->token->u.integer.value;
4794 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4795 ++arg->token;
4796 return TRUE;
a92713e6 4797 }
a92713e6 4798
d436c1c2
RS
4799 set_insn_error_i
4800 (arg->argnum, _("operand %d must be an immediate expression"),
4801 arg->argnum);
4802 return FALSE;
a92713e6
RS
4803}
4804
4805/* Try to get a constant expression from the next tokens in ARG. Consume
4806 the tokens and return return true on success, storing the constant value
4807 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4808 error. */
4809
4810static bfd_boolean
1a00e612 4811match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4812{
4813 expressionS ex;
4814 bfd_reloc_code_real_type r[3];
a1d78564 4815
a92713e6
RS
4816 if (!match_expression (arg, &ex, r))
4817 return FALSE;
4818
4819 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4820 *value = ex.X_add_number;
4821 else
4822 {
1a00e612
RS
4823 match_not_constant (arg);
4824 return FALSE;
a1d78564 4825 }
a92713e6 4826 return TRUE;
a1d78564
RS
4827}
4828
4829/* Return the RTYPE_* flags for a register operand of type TYPE that
4830 appears in instruction OPCODE. */
4831
4832static unsigned int
4833convert_reg_type (const struct mips_opcode *opcode,
4834 enum mips_reg_operand_type type)
4835{
4836 switch (type)
4837 {
4838 case OP_REG_GP:
4839 return RTYPE_NUM | RTYPE_GP;
4840
4841 case OP_REG_FP:
4842 /* Allow vector register names for MDMX if the instruction is a 64-bit
4843 FPR load, store or move (including moves to and from GPRs). */
4844 if ((mips_opts.ase & ASE_MDMX)
4845 && (opcode->pinfo & FP_D)
43885403 4846 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4847 | INSN_COPROC_MEMORY_DELAY
43885403 4848 | INSN_LOAD_COPROC
67dc82bc 4849 | INSN_LOAD_MEMORY
a1d78564
RS
4850 | INSN_STORE_MEMORY)))
4851 return RTYPE_FPU | RTYPE_VEC;
4852 return RTYPE_FPU;
4853
4854 case OP_REG_CCC:
4855 if (opcode->pinfo & (FP_D | FP_S))
4856 return RTYPE_CCC | RTYPE_FCC;
4857 return RTYPE_CCC;
4858
4859 case OP_REG_VEC:
4860 if (opcode->membership & INSN_5400)
4861 return RTYPE_FPU;
4862 return RTYPE_FPU | RTYPE_VEC;
4863
4864 case OP_REG_ACC:
4865 return RTYPE_ACC;
4866
4867 case OP_REG_COPRO:
4868 if (opcode->name[strlen (opcode->name) - 1] == '0')
4869 return RTYPE_NUM | RTYPE_CP0;
4870 return RTYPE_NUM;
4871
4872 case OP_REG_HW:
4873 return RTYPE_NUM;
14daeee3
RS
4874
4875 case OP_REG_VI:
4876 return RTYPE_NUM | RTYPE_VI;
4877
4878 case OP_REG_VF:
4879 return RTYPE_NUM | RTYPE_VF;
4880
4881 case OP_REG_R5900_I:
4882 return RTYPE_R5900_I;
4883
4884 case OP_REG_R5900_Q:
4885 return RTYPE_R5900_Q;
4886
4887 case OP_REG_R5900_R:
4888 return RTYPE_R5900_R;
4889
4890 case OP_REG_R5900_ACC:
4891 return RTYPE_R5900_ACC;
56d438b1
CF
4892
4893 case OP_REG_MSA:
4894 return RTYPE_MSA;
4895
4896 case OP_REG_MSA_CTRL:
4897 return RTYPE_NUM;
a1d78564
RS
4898 }
4899 abort ();
4900}
4901
4902/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4903
4904static void
4905check_regno (struct mips_arg_info *arg,
4906 enum mips_reg_operand_type type, unsigned int regno)
4907{
4908 if (AT && type == OP_REG_GP && regno == AT)
4909 arg->seen_at = TRUE;
4910
4911 if (type == OP_REG_FP
4912 && (regno & 1) != 0
a1d78564 4913 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4914 {
4915 /* This was a warning prior to introducing O32 FPXX and FP64 support
4916 so maintain a warning for FP32 but raise an error for the new
4917 cases. */
4918 if (FPR_SIZE == 32)
4919 as_warn (_("float register should be even, was %d"), regno);
4920 else
4921 as_bad (_("float register should be even, was %d"), regno);
4922 }
a1d78564
RS
4923
4924 if (type == OP_REG_CCC)
4925 {
4926 const char *name;
4927 size_t length;
4928
4929 name = arg->insn->insn_mo->name;
4930 length = strlen (name);
4931 if ((regno & 1) != 0
4932 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4933 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4934 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4935 name, regno);
4936
4937 if ((regno & 3) != 0
4938 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4939 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4940 name, regno);
4941 }
4942}
4943
a92713e6
RS
4944/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4945 a register of type TYPE. Return true on success, storing the register
4946 number in *REGNO and warning about any dubious uses. */
4947
4948static bfd_boolean
4949match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4950 unsigned int symval, unsigned int *regno)
4951{
4952 if (type == OP_REG_VEC)
4953 symval = mips_prefer_vec_regno (symval);
4954 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4955 return FALSE;
4956
4957 *regno = symval & RNUM_MASK;
4958 check_regno (arg, type, *regno);
4959 return TRUE;
4960}
4961
4962/* Try to interpret the next token in ARG as a register of type TYPE.
4963 Consume the token and return true on success, storing the register
4964 number in *REGNO. Return false on failure. */
4965
4966static bfd_boolean
4967match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4968 unsigned int *regno)
4969{
4970 if (arg->token->type == OT_REG
4971 && match_regno (arg, type, arg->token->u.regno, regno))
4972 {
4973 ++arg->token;
4974 return TRUE;
4975 }
4976 return FALSE;
4977}
4978
4979/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4980 Consume the token and return true on success, storing the register numbers
4981 in *REGNO1 and *REGNO2. Return false on failure. */
4982
4983static bfd_boolean
4984match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4985 unsigned int *regno1, unsigned int *regno2)
4986{
4987 if (match_reg (arg, type, regno1))
4988 {
4989 *regno2 = *regno1;
4990 return TRUE;
4991 }
4992 if (arg->token->type == OT_REG_RANGE
4993 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4994 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4995 && *regno1 <= *regno2)
4996 {
4997 ++arg->token;
4998 return TRUE;
4999 }
5000 return FALSE;
5001}
5002
a1d78564
RS
5003/* OP_INT matcher. */
5004
a92713e6 5005static bfd_boolean
a1d78564 5006match_int_operand (struct mips_arg_info *arg,
a92713e6 5007 const struct mips_operand *operand_base)
a1d78564
RS
5008{
5009 const struct mips_int_operand *operand;
3ccad066 5010 unsigned int uval;
a1d78564
RS
5011 int min_val, max_val, factor;
5012 offsetT sval;
a1d78564
RS
5013
5014 operand = (const struct mips_int_operand *) operand_base;
5015 factor = 1 << operand->shift;
3ccad066
RS
5016 min_val = mips_int_operand_min (operand);
5017 max_val = mips_int_operand_max (operand);
a1d78564 5018
d436c1c2
RS
5019 if (operand_base->lsb == 0
5020 && operand_base->size == 16
5021 && operand->shift == 0
5022 && operand->bias == 0
5023 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5024 {
5025 /* The operand can be relocated. */
a92713e6
RS
5026 if (!match_expression (arg, &offset_expr, offset_reloc))
5027 return FALSE;
5028
5029 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
5030 /* Relocation operators were used. Accept the arguent and
5031 leave the relocation value in offset_expr and offset_relocs
5032 for the caller to process. */
a92713e6
RS
5033 return TRUE;
5034
5035 if (offset_expr.X_op != O_constant)
a1d78564 5036 {
60f20e8b
RS
5037 /* Accept non-constant operands if no later alternative matches,
5038 leaving it for the caller to process. */
5039 if (!arg->lax_match)
5040 return FALSE;
a92713e6
RS
5041 offset_reloc[0] = BFD_RELOC_LO16;
5042 return TRUE;
a1d78564 5043 }
a92713e6 5044
a1d78564
RS
5045 /* Clear the global state; we're going to install the operand
5046 ourselves. */
a92713e6 5047 sval = offset_expr.X_add_number;
a1d78564 5048 offset_expr.X_op = O_absent;
60f20e8b
RS
5049
5050 /* For compatibility with older assemblers, we accept
5051 0x8000-0xffff as signed 16-bit numbers when only
5052 signed numbers are allowed. */
5053 if (sval > max_val)
5054 {
5055 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5056 if (!arg->lax_match && sval <= max_val)
5057 return FALSE;
5058 }
a1d78564
RS
5059 }
5060 else
5061 {
1a00e612 5062 if (!match_const_int (arg, &sval))
a92713e6 5063 return FALSE;
a1d78564
RS
5064 }
5065
5066 arg->last_op_int = sval;
5067
1a00e612 5068 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5069 {
1a00e612
RS
5070 match_out_of_range (arg);
5071 return FALSE;
a1d78564
RS
5072 }
5073
5074 uval = (unsigned int) sval >> operand->shift;
5075 uval -= operand->bias;
5076
5077 /* Handle -mfix-cn63xxp1. */
5078 if (arg->opnum == 1
5079 && mips_fix_cn63xxp1
5080 && !mips_opts.micromips
5081 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5082 switch (uval)
5083 {
5084 case 5:
5085 case 25:
5086 case 26:
5087 case 27:
5088 case 28:
5089 case 29:
5090 case 30:
5091 case 31:
5092 /* These are ok. */
5093 break;
5094
5095 default:
5096 /* The rest must be changed to 28. */
5097 uval = 28;
5098 break;
5099 }
5100
5101 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5102 return TRUE;
a1d78564
RS
5103}
5104
5105/* OP_MAPPED_INT matcher. */
5106
a92713e6 5107static bfd_boolean
a1d78564 5108match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5109 const struct mips_operand *operand_base)
a1d78564
RS
5110{
5111 const struct mips_mapped_int_operand *operand;
5112 unsigned int uval, num_vals;
5113 offsetT sval;
5114
5115 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5116 if (!match_const_int (arg, &sval))
a92713e6 5117 return FALSE;
a1d78564
RS
5118
5119 num_vals = 1 << operand_base->size;
5120 for (uval = 0; uval < num_vals; uval++)
5121 if (operand->int_map[uval] == sval)
5122 break;
5123 if (uval == num_vals)
1a00e612
RS
5124 {
5125 match_out_of_range (arg);
5126 return FALSE;
5127 }
a1d78564
RS
5128
5129 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5130 return TRUE;
a1d78564
RS
5131}
5132
5133/* OP_MSB matcher. */
5134
a92713e6 5135static bfd_boolean
a1d78564 5136match_msb_operand (struct mips_arg_info *arg,
a92713e6 5137 const struct mips_operand *operand_base)
a1d78564
RS
5138{
5139 const struct mips_msb_operand *operand;
5140 int min_val, max_val, max_high;
5141 offsetT size, sval, high;
5142
5143 operand = (const struct mips_msb_operand *) operand_base;
5144 min_val = operand->bias;
5145 max_val = min_val + (1 << operand_base->size) - 1;
5146 max_high = operand->opsize;
5147
1a00e612 5148 if (!match_const_int (arg, &size))
a92713e6 5149 return FALSE;
a1d78564
RS
5150
5151 high = size + arg->last_op_int;
5152 sval = operand->add_lsb ? high : size;
5153
5154 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5155 {
1a00e612
RS
5156 match_out_of_range (arg);
5157 return FALSE;
a1d78564
RS
5158 }
5159 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5160 return TRUE;
a1d78564
RS
5161}
5162
5163/* OP_REG matcher. */
5164
a92713e6 5165static bfd_boolean
a1d78564 5166match_reg_operand (struct mips_arg_info *arg,
a92713e6 5167 const struct mips_operand *operand_base)
a1d78564
RS
5168{
5169 const struct mips_reg_operand *operand;
a92713e6 5170 unsigned int regno, uval, num_vals;
a1d78564
RS
5171
5172 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5173 if (!match_reg (arg, operand->reg_type, &regno))
5174 return FALSE;
a1d78564
RS
5175
5176 if (operand->reg_map)
5177 {
5178 num_vals = 1 << operand->root.size;
5179 for (uval = 0; uval < num_vals; uval++)
5180 if (operand->reg_map[uval] == regno)
5181 break;
5182 if (num_vals == uval)
a92713e6 5183 return FALSE;
a1d78564
RS
5184 }
5185 else
5186 uval = regno;
5187
a1d78564
RS
5188 arg->last_regno = regno;
5189 if (arg->opnum == 1)
5190 arg->dest_regno = regno;
5191 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5192 return TRUE;
a1d78564
RS
5193}
5194
5195/* OP_REG_PAIR matcher. */
5196
a92713e6 5197static bfd_boolean
a1d78564 5198match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5199 const struct mips_operand *operand_base)
a1d78564
RS
5200{
5201 const struct mips_reg_pair_operand *operand;
a92713e6 5202 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5203
5204 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5205 if (!match_reg (arg, operand->reg_type, &regno1)
5206 || !match_char (arg, ',')
5207 || !match_reg (arg, operand->reg_type, &regno2))
5208 return FALSE;
a1d78564
RS
5209
5210 num_vals = 1 << operand_base->size;
5211 for (uval = 0; uval < num_vals; uval++)
5212 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5213 break;
5214 if (uval == num_vals)
a92713e6 5215 return FALSE;
a1d78564 5216
a1d78564 5217 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5218 return TRUE;
a1d78564
RS
5219}
5220
5221/* OP_PCREL matcher. The caller chooses the relocation type. */
5222
a92713e6
RS
5223static bfd_boolean
5224match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5225{
a92713e6
RS
5226 bfd_reloc_code_real_type r[3];
5227
5228 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5229}
5230
5231/* OP_PERF_REG matcher. */
5232
a92713e6 5233static bfd_boolean
a1d78564 5234match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5235 const struct mips_operand *operand)
a1d78564
RS
5236{
5237 offsetT sval;
5238
1a00e612 5239 if (!match_const_int (arg, &sval))
a92713e6 5240 return FALSE;
a1d78564
RS
5241
5242 if (sval != 0
5243 && (sval != 1
5244 || (mips_opts.arch == CPU_R5900
5245 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5246 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5247 {
1a00e612
RS
5248 set_insn_error (arg->argnum, _("invalid performance register"));
5249 return FALSE;
a1d78564
RS
5250 }
5251
5252 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5253 return TRUE;
a1d78564
RS
5254}
5255
5256/* OP_ADDIUSP matcher. */
5257
a92713e6 5258static bfd_boolean
a1d78564 5259match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5260 const struct mips_operand *operand)
a1d78564
RS
5261{
5262 offsetT sval;
5263 unsigned int uval;
5264
1a00e612 5265 if (!match_const_int (arg, &sval))
a92713e6 5266 return FALSE;
a1d78564
RS
5267
5268 if (sval % 4)
1a00e612
RS
5269 {
5270 match_out_of_range (arg);
5271 return FALSE;
5272 }
a1d78564
RS
5273
5274 sval /= 4;
5275 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5276 {
5277 match_out_of_range (arg);
5278 return FALSE;
5279 }
a1d78564
RS
5280
5281 uval = (unsigned int) sval;
5282 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5283 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5284 return TRUE;
a1d78564
RS
5285}
5286
5287/* OP_CLO_CLZ_DEST matcher. */
5288
a92713e6 5289static bfd_boolean
a1d78564 5290match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5291 const struct mips_operand *operand)
a1d78564
RS
5292{
5293 unsigned int regno;
5294
a92713e6
RS
5295 if (!match_reg (arg, OP_REG_GP, &regno))
5296 return FALSE;
a1d78564 5297
a1d78564 5298 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5299 return TRUE;
a1d78564
RS
5300}
5301
7361da2c
AB
5302/* OP_CHECK_PREV matcher. */
5303
5304static bfd_boolean
5305match_check_prev_operand (struct mips_arg_info *arg,
5306 const struct mips_operand *operand_base)
5307{
5308 const struct mips_check_prev_operand *operand;
5309 unsigned int regno;
5310
5311 operand = (const struct mips_check_prev_operand *) operand_base;
5312
5313 if (!match_reg (arg, OP_REG_GP, &regno))
5314 return FALSE;
5315
5316 if (!operand->zero_ok && regno == 0)
5317 return FALSE;
5318
5319 if ((operand->less_than_ok && regno < arg->last_regno)
5320 || (operand->greater_than_ok && regno > arg->last_regno)
5321 || (operand->equal_ok && regno == arg->last_regno))
5322 {
5323 arg->last_regno = regno;
5324 insn_insert_operand (arg->insn, operand_base, regno);
5325 return TRUE;
5326 }
5327
5328 return FALSE;
5329}
5330
5331/* OP_SAME_RS_RT matcher. */
5332
5333static bfd_boolean
5334match_same_rs_rt_operand (struct mips_arg_info *arg,
5335 const struct mips_operand *operand)
5336{
5337 unsigned int regno;
5338
5339 if (!match_reg (arg, OP_REG_GP, &regno))
5340 return FALSE;
5341
5342 if (regno == 0)
5343 {
5344 set_insn_error (arg->argnum, _("the source register must not be $0"));
5345 return FALSE;
5346 }
5347
5348 arg->last_regno = regno;
5349
5350 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5351 return TRUE;
5352}
5353
a1d78564
RS
5354/* OP_LWM_SWM_LIST matcher. */
5355
a92713e6 5356static bfd_boolean
a1d78564 5357match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5358 const struct mips_operand *operand)
a1d78564 5359{
a92713e6
RS
5360 unsigned int reglist, sregs, ra, regno1, regno2;
5361 struct mips_arg_info reset;
a1d78564 5362
a92713e6
RS
5363 reglist = 0;
5364 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5365 return FALSE;
5366 do
5367 {
5368 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5369 {
5370 reglist |= 1 << FP;
5371 regno2 = S7;
5372 }
5373 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5374 reset = *arg;
5375 }
5376 while (match_char (arg, ',')
5377 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5378 *arg = reset;
a1d78564
RS
5379
5380 if (operand->size == 2)
5381 {
5382 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5383
5384 s0, ra
5385 s0, s1, ra, s2, s3
5386 s0-s2, ra
5387
5388 and any permutations of these. */
5389 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5390 return FALSE;
a1d78564
RS
5391
5392 sregs = (reglist >> 17) & 7;
5393 ra = 0;
5394 }
5395 else
5396 {
5397 /* The list must include at least one of ra and s0-sN,
5398 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5399 which are $23 and $30 respectively.) E.g.:
5400
5401 ra
5402 s0
5403 ra, s0, s1, s2
5404 s0-s8
5405 s0-s5, ra
5406
5407 and any permutations of these. */
5408 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5409 return FALSE;
a1d78564
RS
5410
5411 ra = (reglist >> 27) & 0x10;
5412 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5413 }
5414 sregs += 1;
5415 if ((sregs & -sregs) != sregs)
a92713e6 5416 return FALSE;
a1d78564
RS
5417
5418 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5419 return TRUE;
a1d78564
RS
5420}
5421
364215c8
RS
5422/* OP_ENTRY_EXIT_LIST matcher. */
5423
a92713e6 5424static unsigned int
364215c8 5425match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5426 const struct mips_operand *operand)
364215c8
RS
5427{
5428 unsigned int mask;
5429 bfd_boolean is_exit;
5430
5431 /* The format is the same for both ENTRY and EXIT, but the constraints
5432 are different. */
5433 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5434 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5435 do
364215c8
RS
5436 {
5437 unsigned int regno1, regno2;
5438 bfd_boolean is_freg;
5439
a92713e6 5440 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5441 is_freg = FALSE;
a92713e6 5442 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5443 is_freg = TRUE;
5444 else
a92713e6 5445 return FALSE;
364215c8
RS
5446
5447 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5448 {
5449 mask &= ~(7 << 3);
5450 mask |= (5 + regno2) << 3;
5451 }
5452 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5453 mask |= (regno2 - 3) << 3;
5454 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5455 mask |= (regno2 - 15) << 1;
5456 else if (regno1 == RA && regno2 == RA)
5457 mask |= 1;
5458 else
a92713e6 5459 return FALSE;
364215c8 5460 }
a92713e6
RS
5461 while (match_char (arg, ','));
5462
364215c8 5463 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5464 return TRUE;
364215c8
RS
5465}
5466
5467/* OP_SAVE_RESTORE_LIST matcher. */
5468
a92713e6
RS
5469static bfd_boolean
5470match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5471{
5472 unsigned int opcode, args, statics, sregs;
5473 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5474 offsetT frame_size;
364215c8 5475
364215c8
RS
5476 opcode = arg->insn->insn_opcode;
5477 frame_size = 0;
5478 num_frame_sizes = 0;
5479 args = 0;
5480 statics = 0;
5481 sregs = 0;
a92713e6 5482 do
364215c8
RS
5483 {
5484 unsigned int regno1, regno2;
5485
a92713e6 5486 if (arg->token->type == OT_INTEGER)
364215c8
RS
5487 {
5488 /* Handle the frame size. */
1a00e612 5489 if (!match_const_int (arg, &frame_size))
a92713e6 5490 return FALSE;
364215c8 5491 num_frame_sizes += 1;
364215c8
RS
5492 }
5493 else
5494 {
a92713e6
RS
5495 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5496 return FALSE;
364215c8
RS
5497
5498 while (regno1 <= regno2)
5499 {
5500 if (regno1 >= 4 && regno1 <= 7)
5501 {
5502 if (num_frame_sizes == 0)
5503 /* args $a0-$a3 */
5504 args |= 1 << (regno1 - 4);
5505 else
5506 /* statics $a0-$a3 */
5507 statics |= 1 << (regno1 - 4);
5508 }
5509 else if (regno1 >= 16 && regno1 <= 23)
5510 /* $s0-$s7 */
5511 sregs |= 1 << (regno1 - 16);
5512 else if (regno1 == 30)
5513 /* $s8 */
5514 sregs |= 1 << 8;
5515 else if (regno1 == 31)
5516 /* Add $ra to insn. */
5517 opcode |= 0x40;
5518 else
a92713e6 5519 return FALSE;
364215c8
RS
5520 regno1 += 1;
5521 if (regno1 == 24)
5522 regno1 = 30;
5523 }
5524 }
364215c8 5525 }
a92713e6 5526 while (match_char (arg, ','));
364215c8
RS
5527
5528 /* Encode args/statics combination. */
5529 if (args & statics)
a92713e6 5530 return FALSE;
364215c8
RS
5531 else if (args == 0xf)
5532 /* All $a0-$a3 are args. */
5533 opcode |= MIPS16_ALL_ARGS << 16;
5534 else if (statics == 0xf)
5535 /* All $a0-$a3 are statics. */
5536 opcode |= MIPS16_ALL_STATICS << 16;
5537 else
5538 {
5539 /* Count arg registers. */
5540 num_args = 0;
5541 while (args & 0x1)
5542 {
5543 args >>= 1;
5544 num_args += 1;
5545 }
5546 if (args != 0)
a92713e6 5547 return FALSE;
364215c8
RS
5548
5549 /* Count static registers. */
5550 num_statics = 0;
5551 while (statics & 0x8)
5552 {
5553 statics = (statics << 1) & 0xf;
5554 num_statics += 1;
5555 }
5556 if (statics != 0)
a92713e6 5557 return FALSE;
364215c8
RS
5558
5559 /* Encode args/statics. */
5560 opcode |= ((num_args << 2) | num_statics) << 16;
5561 }
5562
5563 /* Encode $s0/$s1. */
5564 if (sregs & (1 << 0)) /* $s0 */
5565 opcode |= 0x20;
5566 if (sregs & (1 << 1)) /* $s1 */
5567 opcode |= 0x10;
5568 sregs >>= 2;
5569
5570 /* Encode $s2-$s8. */
5571 num_sregs = 0;
5572 while (sregs & 1)
5573 {
5574 sregs >>= 1;
5575 num_sregs += 1;
5576 }
5577 if (sregs != 0)
a92713e6 5578 return FALSE;
364215c8
RS
5579 opcode |= num_sregs << 24;
5580
5581 /* Encode frame size. */
5582 if (num_frame_sizes == 0)
1a00e612
RS
5583 {
5584 set_insn_error (arg->argnum, _("missing frame size"));
5585 return FALSE;
5586 }
5587 if (num_frame_sizes > 1)
5588 {
5589 set_insn_error (arg->argnum, _("frame size specified twice"));
5590 return FALSE;
5591 }
5592 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5593 {
5594 set_insn_error (arg->argnum, _("invalid frame size"));
5595 return FALSE;
5596 }
5597 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5598 {
5599 frame_size /= 8;
5600 opcode |= (((frame_size & 0xf0) << 16)
5601 | (frame_size & 0x0f));
5602 }
5603
364215c8
RS
5604 /* Finally build the instruction. */
5605 if ((opcode >> 16) != 0 || frame_size == 0)
5606 opcode |= MIPS16_EXTEND;
5607 arg->insn->insn_opcode = opcode;
a92713e6 5608 return TRUE;
364215c8
RS
5609}
5610
a1d78564
RS
5611/* OP_MDMX_IMM_REG matcher. */
5612
a92713e6 5613static bfd_boolean
a1d78564 5614match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5615 const struct mips_operand *operand)
a1d78564 5616{
a92713e6 5617 unsigned int regno, uval;
a1d78564
RS
5618 bfd_boolean is_qh;
5619 const struct mips_opcode *opcode;
5620
5621 /* The mips_opcode records whether this is an octobyte or quadhalf
5622 instruction. Start out with that bit in place. */
5623 opcode = arg->insn->insn_mo;
5624 uval = mips_extract_operand (operand, opcode->match);
5625 is_qh = (uval != 0);
5626
56d438b1 5627 if (arg->token->type == OT_REG)
a1d78564
RS
5628 {
5629 if ((opcode->membership & INSN_5400)
5630 && strcmp (opcode->name, "rzu.ob") == 0)
5631 {
1a00e612
RS
5632 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5633 arg->argnum);
5634 return FALSE;
a1d78564
RS
5635 }
5636
56d438b1
CF
5637 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5638 return FALSE;
5639 ++arg->token;
5640
a1d78564
RS
5641 /* Check whether this is a vector register or a broadcast of
5642 a single element. */
56d438b1 5643 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5644 {
56d438b1 5645 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5646 {
1a00e612
RS
5647 set_insn_error (arg->argnum, _("invalid element selector"));
5648 return FALSE;
a1d78564 5649 }
56d438b1
CF
5650 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5651 ++arg->token;
a1d78564
RS
5652 }
5653 else
5654 {
5655 /* A full vector. */
5656 if ((opcode->membership & INSN_5400)
5657 && (strcmp (opcode->name, "sll.ob") == 0
5658 || strcmp (opcode->name, "srl.ob") == 0))
5659 {
1a00e612
RS
5660 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5661 arg->argnum);
5662 return FALSE;
a1d78564
RS
5663 }
5664
5665 if (is_qh)
5666 uval |= MDMX_FMTSEL_VEC_QH << 5;
5667 else
5668 uval |= MDMX_FMTSEL_VEC_OB << 5;
5669 }
a1d78564
RS
5670 uval |= regno;
5671 }
5672 else
5673 {
5674 offsetT sval;
5675
1a00e612 5676 if (!match_const_int (arg, &sval))
a92713e6 5677 return FALSE;
a1d78564
RS
5678 if (sval < 0 || sval > 31)
5679 {
1a00e612
RS
5680 match_out_of_range (arg);
5681 return FALSE;
a1d78564
RS
5682 }
5683 uval |= (sval & 31);
5684 if (is_qh)
5685 uval |= MDMX_FMTSEL_IMM_QH << 5;
5686 else
5687 uval |= MDMX_FMTSEL_IMM_OB << 5;
5688 }
5689 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5690 return TRUE;
a1d78564
RS
5691}
5692
56d438b1
CF
5693/* OP_IMM_INDEX matcher. */
5694
5695static bfd_boolean
5696match_imm_index_operand (struct mips_arg_info *arg,
5697 const struct mips_operand *operand)
5698{
5699 unsigned int max_val;
5700
5701 if (arg->token->type != OT_INTEGER_INDEX)
5702 return FALSE;
5703
5704 max_val = (1 << operand->size) - 1;
5705 if (arg->token->u.index > max_val)
5706 {
5707 match_out_of_range (arg);
5708 return FALSE;
5709 }
5710 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5711 ++arg->token;
5712 return TRUE;
5713}
5714
5715/* OP_REG_INDEX matcher. */
5716
5717static bfd_boolean
5718match_reg_index_operand (struct mips_arg_info *arg,
5719 const struct mips_operand *operand)
5720{
5721 unsigned int regno;
5722
5723 if (arg->token->type != OT_REG_INDEX)
5724 return FALSE;
5725
5726 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5727 return FALSE;
5728
5729 insn_insert_operand (arg->insn, operand, regno);
5730 ++arg->token;
5731 return TRUE;
5732}
5733
a1d78564
RS
5734/* OP_PC matcher. */
5735
a92713e6
RS
5736static bfd_boolean
5737match_pc_operand (struct mips_arg_info *arg)
a1d78564 5738{
a92713e6
RS
5739 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5740 {
5741 ++arg->token;
5742 return TRUE;
5743 }
5744 return FALSE;
a1d78564
RS
5745}
5746
7361da2c
AB
5747/* OP_NON_ZERO_REG matcher. */
5748
5749static bfd_boolean
5750match_non_zero_reg_operand (struct mips_arg_info *arg,
5751 const struct mips_operand *operand)
5752{
5753 unsigned int regno;
5754
5755 if (!match_reg (arg, OP_REG_GP, &regno))
5756 return FALSE;
5757
5758 if (regno == 0)
5759 return FALSE;
5760
5761 arg->last_regno = regno;
5762 insn_insert_operand (arg->insn, operand, regno);
5763 return TRUE;
5764}
5765
a1d78564
RS
5766/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5767 register that we need to match. */
5768
a92713e6
RS
5769static bfd_boolean
5770match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5771{
5772 unsigned int regno;
5773
a92713e6 5774 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5775}
5776
89565f1b
RS
5777/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5778 the length of the value in bytes (4 for float, 8 for double) and
5779 USING_GPRS says whether the destination is a GPR rather than an FPR.
5780
5781 Return the constant in IMM and OFFSET as follows:
5782
5783 - If the constant should be loaded via memory, set IMM to O_absent and
5784 OFFSET to the memory address.
5785
5786 - Otherwise, if the constant should be loaded into two 32-bit registers,
5787 set IMM to the O_constant to load into the high register and OFFSET
5788 to the corresponding value for the low register.
5789
5790 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5791
5792 These constants only appear as the last operand in an instruction,
5793 and every instruction that accepts them in any variant accepts them
5794 in all variants. This means we don't have to worry about backing out
5795 any changes if the instruction does not match. We just match
5796 unconditionally and report an error if the constant is invalid. */
5797
a92713e6
RS
5798static bfd_boolean
5799match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5800 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5801{
a92713e6 5802 char *p;
89565f1b
RS
5803 segT seg, new_seg;
5804 subsegT subseg;
5805 const char *newname;
a92713e6 5806 unsigned char *data;
89565f1b
RS
5807
5808 /* Where the constant is placed is based on how the MIPS assembler
5809 does things:
5810
5811 length == 4 && using_gprs -- immediate value only
5812 length == 8 && using_gprs -- .rdata or immediate value
5813 length == 4 && !using_gprs -- .lit4 or immediate value
5814 length == 8 && !using_gprs -- .lit8 or immediate value
5815
5816 The .lit4 and .lit8 sections are only used if permitted by the
5817 -G argument. */
a92713e6 5818 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5819 {
5820 set_insn_error (arg->argnum, _("floating-point expression required"));
5821 return FALSE;
5822 }
a92713e6
RS
5823
5824 gas_assert (arg->token->u.flt.length == length);
5825 data = arg->token->u.flt.data;
5826 ++arg->token;
89565f1b
RS
5827
5828 /* Handle 32-bit constants for which an immediate value is best. */
5829 if (length == 4
5830 && (using_gprs
5831 || g_switch_value < 4
5832 || (data[0] == 0 && data[1] == 0)
5833 || (data[2] == 0 && data[3] == 0)))
5834 {
5835 imm->X_op = O_constant;
5836 if (!target_big_endian)
5837 imm->X_add_number = bfd_getl32 (data);
5838 else
5839 imm->X_add_number = bfd_getb32 (data);
5840 offset->X_op = O_absent;
a92713e6 5841 return TRUE;
89565f1b
RS
5842 }
5843
5844 /* Handle 64-bit constants for which an immediate value is best. */
5845 if (length == 8
5846 && !mips_disable_float_construction
351cdf24
MF
5847 /* Constants can only be constructed in GPRs and copied to FPRs if the
5848 GPRs are at least as wide as the FPRs or MTHC1 is available.
5849 Unlike most tests for 32-bit floating-point registers this check
5850 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5851 permit 64-bit moves without MXHC1.
5852 Force the constant into memory otherwise. */
5853 && (using_gprs
5854 || GPR_SIZE == 64
5855 || ISA_HAS_MXHC1 (mips_opts.isa)
5856 || FPR_SIZE == 32)
89565f1b
RS
5857 && ((data[0] == 0 && data[1] == 0)
5858 || (data[2] == 0 && data[3] == 0))
5859 && ((data[4] == 0 && data[5] == 0)
5860 || (data[6] == 0 && data[7] == 0)))
5861 {
5862 /* The value is simple enough to load with a couple of instructions.
5863 If using 32-bit registers, set IMM to the high order 32 bits and
5864 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5865 64 bit constant. */
351cdf24 5866 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5867 {
5868 imm->X_op = O_constant;
5869 offset->X_op = O_constant;
5870 if (!target_big_endian)
5871 {
5872 imm->X_add_number = bfd_getl32 (data + 4);
5873 offset->X_add_number = bfd_getl32 (data);
5874 }
5875 else
5876 {
5877 imm->X_add_number = bfd_getb32 (data);
5878 offset->X_add_number = bfd_getb32 (data + 4);
5879 }
5880 if (offset->X_add_number == 0)
5881 offset->X_op = O_absent;
5882 }
5883 else
5884 {
5885 imm->X_op = O_constant;
5886 if (!target_big_endian)
5887 imm->X_add_number = bfd_getl64 (data);
5888 else
5889 imm->X_add_number = bfd_getb64 (data);
5890 offset->X_op = O_absent;
5891 }
a92713e6 5892 return TRUE;
89565f1b
RS
5893 }
5894
5895 /* Switch to the right section. */
5896 seg = now_seg;
5897 subseg = now_subseg;
5898 if (length == 4)
5899 {
5900 gas_assert (!using_gprs && g_switch_value >= 4);
5901 newname = ".lit4";
5902 }
5903 else
5904 {
5905 if (using_gprs || g_switch_value < 8)
5906 newname = RDATA_SECTION_NAME;
5907 else
5908 newname = ".lit8";
5909 }
5910
5911 new_seg = subseg_new (newname, (subsegT) 0);
5912 bfd_set_section_flags (stdoutput, new_seg,
5913 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5914 frag_align (length == 4 ? 2 : 3, 0, 0);
5915 if (strncmp (TARGET_OS, "elf", 3) != 0)
5916 record_alignment (new_seg, 4);
5917 else
5918 record_alignment (new_seg, length == 4 ? 2 : 3);
5919 if (seg == now_seg)
1661c76c 5920 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5921
5922 /* Set the argument to the current address in the section. */
5923 imm->X_op = O_absent;
5924 offset->X_op = O_symbol;
5925 offset->X_add_symbol = symbol_temp_new_now ();
5926 offset->X_add_number = 0;
5927
5928 /* Put the floating point number into the section. */
5929 p = frag_more (length);
5930 memcpy (p, data, length);
5931
5932 /* Switch back to the original section. */
5933 subseg_set (seg, subseg);
a92713e6 5934 return TRUE;
89565f1b
RS
5935}
5936
14daeee3
RS
5937/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5938 them. */
5939
5940static bfd_boolean
5941match_vu0_suffix_operand (struct mips_arg_info *arg,
5942 const struct mips_operand *operand,
5943 bfd_boolean match_p)
5944{
5945 unsigned int uval;
5946
5947 /* The operand can be an XYZW mask or a single 2-bit channel index
5948 (with X being 0). */
5949 gas_assert (operand->size == 2 || operand->size == 4);
5950
ee5734f0 5951 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5952 if (arg->token->type != OT_CHANNELS)
ee5734f0 5953 return match_p;
14daeee3
RS
5954
5955 uval = arg->token->u.channels;
5956 if (operand->size == 2)
5957 {
5958 /* Check that a single bit is set and convert it into a 2-bit index. */
5959 if ((uval & -uval) != uval)
5960 return FALSE;
5961 uval = 4 - ffs (uval);
5962 }
5963
5964 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5965 return FALSE;
5966
5967 ++arg->token;
5968 if (!match_p)
5969 insn_insert_operand (arg->insn, operand, uval);
5970 return TRUE;
5971}
5972
a1d78564
RS
5973/* S is the text seen for ARG. Match it against OPERAND. Return the end
5974 of the argument text if the match is successful, otherwise return null. */
5975
a92713e6 5976static bfd_boolean
a1d78564 5977match_operand (struct mips_arg_info *arg,
a92713e6 5978 const struct mips_operand *operand)
a1d78564
RS
5979{
5980 switch (operand->type)
5981 {
5982 case OP_INT:
a92713e6 5983 return match_int_operand (arg, operand);
a1d78564
RS
5984
5985 case OP_MAPPED_INT:
a92713e6 5986 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5987
5988 case OP_MSB:
a92713e6 5989 return match_msb_operand (arg, operand);
a1d78564
RS
5990
5991 case OP_REG:
0f35dbc4 5992 case OP_OPTIONAL_REG:
a92713e6 5993 return match_reg_operand (arg, operand);
a1d78564
RS
5994
5995 case OP_REG_PAIR:
a92713e6 5996 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5997
5998 case OP_PCREL:
a92713e6 5999 return match_pcrel_operand (arg);
a1d78564
RS
6000
6001 case OP_PERF_REG:
a92713e6 6002 return match_perf_reg_operand (arg, operand);
a1d78564
RS
6003
6004 case OP_ADDIUSP_INT:
a92713e6 6005 return match_addiusp_operand (arg, operand);
a1d78564
RS
6006
6007 case OP_CLO_CLZ_DEST:
a92713e6 6008 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
6009
6010 case OP_LWM_SWM_LIST:
a92713e6 6011 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
6012
6013 case OP_ENTRY_EXIT_LIST:
a92713e6 6014 return match_entry_exit_operand (arg, operand);
364215c8 6015
a1d78564 6016 case OP_SAVE_RESTORE_LIST:
a92713e6 6017 return match_save_restore_list_operand (arg);
a1d78564
RS
6018
6019 case OP_MDMX_IMM_REG:
a92713e6 6020 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6021
6022 case OP_REPEAT_DEST_REG:
a92713e6 6023 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6024
6025 case OP_REPEAT_PREV_REG:
a92713e6 6026 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6027
6028 case OP_PC:
a92713e6 6029 return match_pc_operand (arg);
14daeee3
RS
6030
6031 case OP_VU0_SUFFIX:
6032 return match_vu0_suffix_operand (arg, operand, FALSE);
6033
6034 case OP_VU0_MATCH_SUFFIX:
6035 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6036
6037 case OP_IMM_INDEX:
6038 return match_imm_index_operand (arg, operand);
6039
6040 case OP_REG_INDEX:
6041 return match_reg_index_operand (arg, operand);
7361da2c
AB
6042
6043 case OP_SAME_RS_RT:
6044 return match_same_rs_rt_operand (arg, operand);
6045
6046 case OP_CHECK_PREV:
6047 return match_check_prev_operand (arg, operand);
6048
6049 case OP_NON_ZERO_REG:
6050 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6051 }
6052 abort ();
6053}
6054
6055/* ARG is the state after successfully matching an instruction.
6056 Issue any queued-up warnings. */
6057
6058static void
6059check_completed_insn (struct mips_arg_info *arg)
6060{
6061 if (arg->seen_at)
6062 {
6063 if (AT == ATREG)
1661c76c 6064 as_warn (_("used $at without \".set noat\""));
a1d78564 6065 else
1661c76c 6066 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6067 }
6068}
a1d78564 6069
85fcb30f
RS
6070/* Return true if modifying general-purpose register REG needs a delay. */
6071
6072static bfd_boolean
6073reg_needs_delay (unsigned int reg)
6074{
6075 unsigned long prev_pinfo;
6076
6077 prev_pinfo = history[0].insn_mo->pinfo;
6078 if (!mips_opts.noreorder
67dc82bc 6079 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6080 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6081 && (gpr_write_mask (&history[0]) & (1 << reg)))
6082 return TRUE;
6083
6084 return FALSE;
6085}
6086
71400594
RS
6087/* Classify an instruction according to the FIX_VR4120_* enumeration.
6088 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6089 by VR4120 errata. */
4d7206a2 6090
71400594
RS
6091static unsigned int
6092classify_vr4120_insn (const char *name)
252b5132 6093{
71400594
RS
6094 if (strncmp (name, "macc", 4) == 0)
6095 return FIX_VR4120_MACC;
6096 if (strncmp (name, "dmacc", 5) == 0)
6097 return FIX_VR4120_DMACC;
6098 if (strncmp (name, "mult", 4) == 0)
6099 return FIX_VR4120_MULT;
6100 if (strncmp (name, "dmult", 5) == 0)
6101 return FIX_VR4120_DMULT;
6102 if (strstr (name, "div"))
6103 return FIX_VR4120_DIV;
6104 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6105 return FIX_VR4120_MTHILO;
6106 return NUM_FIX_VR4120_CLASSES;
6107}
252b5132 6108
a8d14a88
CM
6109#define INSN_ERET 0x42000018
6110#define INSN_DERET 0x4200001f
6111#define INSN_DMULT 0x1c
6112#define INSN_DMULTU 0x1d
ff239038 6113
71400594
RS
6114/* Return the number of instructions that must separate INSN1 and INSN2,
6115 where INSN1 is the earlier instruction. Return the worst-case value
6116 for any INSN2 if INSN2 is null. */
252b5132 6117
71400594
RS
6118static unsigned int
6119insns_between (const struct mips_cl_insn *insn1,
6120 const struct mips_cl_insn *insn2)
6121{
6122 unsigned long pinfo1, pinfo2;
4c260379 6123 unsigned int mask;
71400594 6124
85fcb30f
RS
6125 /* If INFO2 is null, pessimistically assume that all flags are set for
6126 the second instruction. */
71400594
RS
6127 pinfo1 = insn1->insn_mo->pinfo;
6128 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6129
71400594
RS
6130 /* For most targets, write-after-read dependencies on the HI and LO
6131 registers must be separated by at least two instructions. */
6132 if (!hilo_interlocks)
252b5132 6133 {
71400594
RS
6134 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6135 return 2;
6136 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6137 return 2;
6138 }
6139
6140 /* If we're working around r7000 errata, there must be two instructions
6141 between an mfhi or mflo and any instruction that uses the result. */
6142 if (mips_7000_hilo_fix
df58fc94 6143 && !mips_opts.micromips
71400594 6144 && MF_HILO_INSN (pinfo1)
85fcb30f 6145 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6146 return 2;
6147
ff239038
CM
6148 /* If we're working around 24K errata, one instruction is required
6149 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6150 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6151 {
6152 if (insn1->insn_opcode == INSN_ERET
6153 || insn1->insn_opcode == INSN_DERET)
6154 {
6155 if (insn2 == NULL
6156 || insn2->insn_opcode == INSN_ERET
6157 || insn2->insn_opcode == INSN_DERET
11625dd8 6158 || delayed_branch_p (insn2))
ff239038
CM
6159 return 1;
6160 }
6161 }
6162
a8d14a88
CM
6163 /* If we're working around PMC RM7000 errata, there must be three
6164 nops between a dmult and a load instruction. */
6165 if (mips_fix_rm7000 && !mips_opts.micromips)
6166 {
6167 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6168 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6169 {
6170 if (pinfo2 & INSN_LOAD_MEMORY)
6171 return 3;
6172 }
6173 }
6174
71400594
RS
6175 /* If working around VR4120 errata, check for combinations that need
6176 a single intervening instruction. */
df58fc94 6177 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6178 {
6179 unsigned int class1, class2;
252b5132 6180
71400594
RS
6181 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6182 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6183 {
71400594
RS
6184 if (insn2 == NULL)
6185 return 1;
6186 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6187 if (vr4120_conflicts[class1] & (1 << class2))
6188 return 1;
252b5132 6189 }
71400594
RS
6190 }
6191
df58fc94 6192 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6193 {
6194 /* Check for GPR or coprocessor load delays. All such delays
6195 are on the RT register. */
6196 /* Itbl support may require additional care here. */
67dc82bc 6197 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6198 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6199 {
85fcb30f 6200 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6201 return 1;
6202 }
6203
6204 /* Check for generic coprocessor hazards.
6205
6206 This case is not handled very well. There is no special
6207 knowledge of CP0 handling, and the coprocessors other than
6208 the floating point unit are not distinguished at all. */
6209 /* Itbl support may require additional care here. FIXME!
6210 Need to modify this to include knowledge about
6211 user specified delays! */
43885403 6212 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6213 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6214 {
6215 /* Handle cases where INSN1 writes to a known general coprocessor
6216 register. There must be a one instruction delay before INSN2
6217 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6218 mask = fpr_write_mask (insn1);
6219 if (mask != 0)
252b5132 6220 {
4c260379 6221 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6222 return 1;
252b5132
RH
6223 }
6224 else
6225 {
71400594
RS
6226 /* Read-after-write dependencies on the control registers
6227 require a two-instruction gap. */
6228 if ((pinfo1 & INSN_WRITE_COND_CODE)
6229 && (pinfo2 & INSN_READ_COND_CODE))
6230 return 2;
6231
6232 /* We don't know exactly what INSN1 does. If INSN2 is
6233 also a coprocessor instruction, assume there must be
6234 a one instruction gap. */
6235 if (pinfo2 & INSN_COP)
6236 return 1;
252b5132
RH
6237 }
6238 }
6b76fefe 6239
71400594
RS
6240 /* Check for read-after-write dependencies on the coprocessor
6241 control registers in cases where INSN1 does not need a general
6242 coprocessor delay. This means that INSN1 is a floating point
6243 comparison instruction. */
6244 /* Itbl support may require additional care here. */
6245 else if (!cop_interlocks
6246 && (pinfo1 & INSN_WRITE_COND_CODE)
6247 && (pinfo2 & INSN_READ_COND_CODE))
6248 return 1;
6249 }
6b76fefe 6250
7361da2c
AB
6251 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6252 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6253 and pause. */
6254 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6255 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6256 || (insn2 && delayed_branch_p (insn2))))
6257 return 1;
6258
71400594
RS
6259 return 0;
6260}
6b76fefe 6261
7d8e00cf
RS
6262/* Return the number of nops that would be needed to work around the
6263 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6264 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6265 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6266
6267static int
932d1a1b 6268nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6269 const struct mips_cl_insn *insn)
6270{
4c260379
RS
6271 int i, j;
6272 unsigned int mask;
7d8e00cf
RS
6273
6274 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6275 are not affected by the errata. */
6276 if (insn != 0
6277 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6278 || strcmp (insn->insn_mo->name, "mtlo") == 0
6279 || strcmp (insn->insn_mo->name, "mthi") == 0))
6280 return 0;
6281
6282 /* Search for the first MFLO or MFHI. */
6283 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6284 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6285 {
6286 /* Extract the destination register. */
4c260379 6287 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6288
6289 /* No nops are needed if INSN reads that register. */
4c260379 6290 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6291 return 0;
6292
6293 /* ...or if any of the intervening instructions do. */
6294 for (j = 0; j < i; j++)
4c260379 6295 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6296 return 0;
6297
932d1a1b
RS
6298 if (i >= ignore)
6299 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6300 }
6301 return 0;
6302}
6303
134c0c8b
MR
6304#define BASE_REG_EQ(INSN1, INSN2) \
6305 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6306 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6307
6308/* Return the minimum alignment for this store instruction. */
6309
6310static int
6311fix_24k_align_to (const struct mips_opcode *mo)
6312{
6313 if (strcmp (mo->name, "sh") == 0)
6314 return 2;
6315
6316 if (strcmp (mo->name, "swc1") == 0
6317 || strcmp (mo->name, "swc2") == 0
6318 || strcmp (mo->name, "sw") == 0
6319 || strcmp (mo->name, "sc") == 0
6320 || strcmp (mo->name, "s.s") == 0)
6321 return 4;
6322
6323 if (strcmp (mo->name, "sdc1") == 0
6324 || strcmp (mo->name, "sdc2") == 0
6325 || strcmp (mo->name, "s.d") == 0)
6326 return 8;
6327
6328 /* sb, swl, swr */
6329 return 1;
6330}
6331
6332struct fix_24k_store_info
6333 {
6334 /* Immediate offset, if any, for this store instruction. */
6335 short off;
6336 /* Alignment required by this store instruction. */
6337 int align_to;
6338 /* True for register offsets. */
6339 int register_offset;
6340 };
6341
6342/* Comparison function used by qsort. */
6343
6344static int
6345fix_24k_sort (const void *a, const void *b)
6346{
6347 const struct fix_24k_store_info *pos1 = a;
6348 const struct fix_24k_store_info *pos2 = b;
6349
6350 return (pos1->off - pos2->off);
6351}
6352
6353/* INSN is a store instruction. Try to record the store information
6354 in STINFO. Return false if the information isn't known. */
6355
6356static bfd_boolean
6357fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6358 const struct mips_cl_insn *insn)
15be625d
CM
6359{
6360 /* The instruction must have a known offset. */
6361 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6362 return FALSE;
6363
6364 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6365 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6366 return TRUE;
6367}
6368
932d1a1b
RS
6369/* Return the number of nops that would be needed to work around the 24k
6370 "lost data on stores during refill" errata if instruction INSN
6371 immediately followed the 2 instructions described by HIST.
6372 Ignore hazards that are contained within the first IGNORE
6373 instructions of HIST.
6374
6375 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6376 for the data cache refills and store data. The following describes
6377 the scenario where the store data could be lost.
6378
6379 * A data cache miss, due to either a load or a store, causing fill
6380 data to be supplied by the memory subsystem
6381 * The first three doublewords of fill data are returned and written
6382 into the cache
6383 * A sequence of four stores occurs in consecutive cycles around the
6384 final doubleword of the fill:
6385 * Store A
6386 * Store B
6387 * Store C
6388 * Zero, One or more instructions
6389 * Store D
6390
6391 The four stores A-D must be to different doublewords of the line that
6392 is being filled. The fourth instruction in the sequence above permits
6393 the fill of the final doubleword to be transferred from the FSB into
6394 the cache. In the sequence above, the stores may be either integer
6395 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6396 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6397 different doublewords on the line. If the floating point unit is
6398 running in 1:2 mode, it is not possible to create the sequence above
6399 using only floating point store instructions.
15be625d
CM
6400
6401 In this case, the cache line being filled is incorrectly marked
6402 invalid, thereby losing the data from any store to the line that
6403 occurs between the original miss and the completion of the five
6404 cycle sequence shown above.
6405
932d1a1b 6406 The workarounds are:
15be625d 6407
932d1a1b
RS
6408 * Run the data cache in write-through mode.
6409 * Insert a non-store instruction between
6410 Store A and Store B or Store B and Store C. */
3739860c 6411
15be625d 6412static int
932d1a1b 6413nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6414 const struct mips_cl_insn *insn)
6415{
6416 struct fix_24k_store_info pos[3];
6417 int align, i, base_offset;
6418
932d1a1b
RS
6419 if (ignore >= 2)
6420 return 0;
6421
ab9794cf
RS
6422 /* If the previous instruction wasn't a store, there's nothing to
6423 worry about. */
15be625d
CM
6424 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6425 return 0;
6426
ab9794cf
RS
6427 /* If the instructions after the previous one are unknown, we have
6428 to assume the worst. */
6429 if (!insn)
15be625d
CM
6430 return 1;
6431
ab9794cf
RS
6432 /* Check whether we are dealing with three consecutive stores. */
6433 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6434 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6435 return 0;
6436
6437 /* If we don't know the relationship between the store addresses,
6438 assume the worst. */
ab9794cf 6439 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6440 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6441 return 1;
6442
6443 if (!fix_24k_record_store_info (&pos[0], insn)
6444 || !fix_24k_record_store_info (&pos[1], &hist[0])
6445 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6446 return 1;
6447
6448 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6449
6450 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6451 X bytes and such that the base register + X is known to be aligned
6452 to align bytes. */
6453
6454 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6455 align = 8;
6456 else
6457 {
6458 align = pos[0].align_to;
6459 base_offset = pos[0].off;
6460 for (i = 1; i < 3; i++)
6461 if (align < pos[i].align_to)
6462 {
6463 align = pos[i].align_to;
6464 base_offset = pos[i].off;
6465 }
6466 for (i = 0; i < 3; i++)
6467 pos[i].off -= base_offset;
6468 }
6469
6470 pos[0].off &= ~align + 1;
6471 pos[1].off &= ~align + 1;
6472 pos[2].off &= ~align + 1;
6473
6474 /* If any two stores write to the same chunk, they also write to the
6475 same doubleword. The offsets are still sorted at this point. */
6476 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6477 return 0;
6478
6479 /* A range of at least 9 bytes is needed for the stores to be in
6480 non-overlapping doublewords. */
6481 if (pos[2].off - pos[0].off <= 8)
6482 return 0;
6483
6484 if (pos[2].off - pos[1].off >= 24
6485 || pos[1].off - pos[0].off >= 24
6486 || pos[2].off - pos[0].off >= 32)
6487 return 0;
6488
6489 return 1;
6490}
6491
71400594 6492/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6493 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6494 where HIST[0] is the most recent instruction. Ignore hazards
6495 between INSN and the first IGNORE instructions in HIST.
6496
6497 If INSN is null, return the worse-case number of nops for any
6498 instruction. */
bdaaa2e1 6499
71400594 6500static int
932d1a1b 6501nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6502 const struct mips_cl_insn *insn)
6503{
6504 int i, nops, tmp_nops;
bdaaa2e1 6505
71400594 6506 nops = 0;
932d1a1b 6507 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6508 {
91d6fa6a 6509 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6510 if (tmp_nops > nops)
6511 nops = tmp_nops;
6512 }
7d8e00cf 6513
df58fc94 6514 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6515 {
932d1a1b 6516 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6517 if (tmp_nops > nops)
6518 nops = tmp_nops;
6519 }
6520
df58fc94 6521 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6522 {
932d1a1b 6523 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6524 if (tmp_nops > nops)
6525 nops = tmp_nops;
6526 }
6527
71400594
RS
6528 return nops;
6529}
252b5132 6530
71400594 6531/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6532 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6533 would be needed after the extended sequence, ignoring hazards
6534 in the first IGNORE instructions. */
252b5132 6535
71400594 6536static int
932d1a1b
RS
6537nops_for_sequence (int num_insns, int ignore,
6538 const struct mips_cl_insn *hist, ...)
71400594
RS
6539{
6540 va_list args;
6541 struct mips_cl_insn buffer[MAX_NOPS];
6542 struct mips_cl_insn *cursor;
6543 int nops;
6544
91d6fa6a 6545 va_start (args, hist);
71400594 6546 cursor = buffer + num_insns;
91d6fa6a 6547 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6548 while (cursor > buffer)
6549 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6550
932d1a1b 6551 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6552 va_end (args);
6553 return nops;
6554}
252b5132 6555
71400594
RS
6556/* Like nops_for_insn, but if INSN is a branch, take into account the
6557 worst-case delay for the branch target. */
252b5132 6558
71400594 6559static int
932d1a1b 6560nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6561 const struct mips_cl_insn *insn)
6562{
6563 int nops, tmp_nops;
60b63b72 6564
932d1a1b 6565 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6566 if (delayed_branch_p (insn))
71400594 6567 {
932d1a1b 6568 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6569 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6570 if (tmp_nops > nops)
6571 nops = tmp_nops;
6572 }
11625dd8 6573 else if (compact_branch_p (insn))
71400594 6574 {
932d1a1b 6575 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6576 if (tmp_nops > nops)
6577 nops = tmp_nops;
6578 }
6579 return nops;
6580}
6581
c67a084a
NC
6582/* Fix NOP issue: Replace nops by "or at,at,zero". */
6583
6584static void
6585fix_loongson2f_nop (struct mips_cl_insn * ip)
6586{
df58fc94 6587 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6588 if (strcmp (ip->insn_mo->name, "nop") == 0)
6589 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6590}
6591
6592/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6593 jr target pc &= 'hffff_ffff_cfff_ffff. */
6594
6595static void
6596fix_loongson2f_jump (struct mips_cl_insn * ip)
6597{
df58fc94 6598 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6599 if (strcmp (ip->insn_mo->name, "j") == 0
6600 || strcmp (ip->insn_mo->name, "jr") == 0
6601 || strcmp (ip->insn_mo->name, "jalr") == 0)
6602 {
6603 int sreg;
6604 expressionS ep;
6605
6606 if (! mips_opts.at)
6607 return;
6608
df58fc94 6609 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6610 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6611 return;
6612
6613 ep.X_op = O_constant;
6614 ep.X_add_number = 0xcfff0000;
6615 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6616 ep.X_add_number = 0xffff;
6617 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6618 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6619 }
6620}
6621
6622static void
6623fix_loongson2f (struct mips_cl_insn * ip)
6624{
6625 if (mips_fix_loongson2f_nop)
6626 fix_loongson2f_nop (ip);
6627
6628 if (mips_fix_loongson2f_jump)
6629 fix_loongson2f_jump (ip);
6630}
6631
a4e06468
RS
6632/* IP is a branch that has a delay slot, and we need to fill it
6633 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6634 with the previous instruction.
6635 ADDRESS_EXPR is an operand of the instruction to be used with
6636 RELOC_TYPE. */
a4e06468
RS
6637
6638static bfd_boolean
e407c74b 6639can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6640 bfd_reloc_code_real_type *reloc_type)
a4e06468 6641{
2b0c8b40 6642 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6643 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6644 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6645
6646 /* -O2 and above is required for this optimization. */
6647 if (mips_optimize < 2)
6648 return FALSE;
6649
6650 /* If we have seen .set volatile or .set nomove, don't optimize. */
6651 if (mips_opts.nomove)
6652 return FALSE;
6653
6654 /* We can't swap if the previous instruction's position is fixed. */
6655 if (history[0].fixed_p)
6656 return FALSE;
6657
6658 /* If the previous previous insn was in a .set noreorder, we can't
6659 swap. Actually, the MIPS assembler will swap in this situation.
6660 However, gcc configured -with-gnu-as will generate code like
6661
6662 .set noreorder
6663 lw $4,XXX
6664 .set reorder
6665 INSN
6666 bne $4,$0,foo
6667
6668 in which we can not swap the bne and INSN. If gcc is not configured
6669 -with-gnu-as, it does not output the .set pseudo-ops. */
6670 if (history[1].noreorder_p)
6671 return FALSE;
6672
87333bb7
MR
6673 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6674 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6675 if (mips_opts.mips16 && history[0].fixp[0])
6676 return FALSE;
6677
6678 /* If the branch is itself the target of a branch, we can not swap.
6679 We cheat on this; all we check for is whether there is a label on
6680 this instruction. If there are any branches to anything other than
6681 a label, users must use .set noreorder. */
6682 if (seg_info (now_seg)->label_list)
6683 return FALSE;
6684
6685 /* If the previous instruction is in a variant frag other than this
2309ddf2 6686 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6687 MIPS16 code, which uses variant frags for different purposes. */
6688 if (!mips_opts.mips16
a4e06468
RS
6689 && history[0].frag
6690 && history[0].frag->fr_type == rs_machine_dependent)
6691 return FALSE;
6692
bcd530a7
RS
6693 /* We do not swap with instructions that cannot architecturally
6694 be placed in a branch delay slot, such as SYNC or ERET. We
6695 also refrain from swapping with a trap instruction, since it
6696 complicates trap handlers to have the trap instruction be in
6697 a delay slot. */
a4e06468 6698 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6699 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6700 return FALSE;
6701
6702 /* Check for conflicts between the branch and the instructions
6703 before the candidate delay slot. */
6704 if (nops_for_insn (0, history + 1, ip) > 0)
6705 return FALSE;
6706
6707 /* Check for conflicts between the swapped sequence and the
6708 target of the branch. */
6709 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6710 return FALSE;
6711
6712 /* If the branch reads a register that the previous
6713 instruction sets, we can not swap. */
6714 gpr_read = gpr_read_mask (ip);
6715 prev_gpr_write = gpr_write_mask (&history[0]);
6716 if (gpr_read & prev_gpr_write)
6717 return FALSE;
6718
9d5de888
CF
6719 fpr_read = fpr_read_mask (ip);
6720 prev_fpr_write = fpr_write_mask (&history[0]);
6721 if (fpr_read & prev_fpr_write)
6722 return FALSE;
6723
a4e06468
RS
6724 /* If the branch writes a register that the previous
6725 instruction sets, we can not swap. */
6726 gpr_write = gpr_write_mask (ip);
6727 if (gpr_write & prev_gpr_write)
6728 return FALSE;
6729
6730 /* If the branch writes a register that the previous
6731 instruction reads, we can not swap. */
6732 prev_gpr_read = gpr_read_mask (&history[0]);
6733 if (gpr_write & prev_gpr_read)
6734 return FALSE;
6735
6736 /* If one instruction sets a condition code and the
6737 other one uses a condition code, we can not swap. */
6738 pinfo = ip->insn_mo->pinfo;
6739 if ((pinfo & INSN_READ_COND_CODE)
6740 && (prev_pinfo & INSN_WRITE_COND_CODE))
6741 return FALSE;
6742 if ((pinfo & INSN_WRITE_COND_CODE)
6743 && (prev_pinfo & INSN_READ_COND_CODE))
6744 return FALSE;
6745
6746 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6747 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6748 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6749 return FALSE;
a4e06468 6750
df58fc94
RS
6751 /* If the previous instruction has an incorrect size for a fixed
6752 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6753 pinfo2 = ip->insn_mo->pinfo2;
6754 if (mips_opts.micromips
6755 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6756 && insn_length (history) != 2)
6757 return FALSE;
6758 if (mips_opts.micromips
6759 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6760 && insn_length (history) != 4)
6761 return FALSE;
6762
e407c74b
NC
6763 /* On R5900 short loops need to be fixed by inserting a nop in
6764 the branch delay slots.
6765 A short loop can be terminated too early. */
6766 if (mips_opts.arch == CPU_R5900
6767 /* Check if instruction has a parameter, ignore "j $31". */
6768 && (address_expr != NULL)
6769 /* Parameter must be 16 bit. */
6770 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6771 /* Branch to same segment. */
41065f5e 6772 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6773 /* Branch to same code fragment. */
41065f5e 6774 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6775 /* Can only calculate branch offset if value is known. */
41065f5e 6776 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6777 /* Check if branch is really conditional. */
6778 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6779 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6780 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6781 {
6782 int distance;
6783 /* Check if loop is shorter than 6 instructions including
6784 branch and delay slot. */
41065f5e 6785 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6786 if (distance <= 20)
6787 {
6788 int i;
6789 int rv;
6790
6791 rv = FALSE;
6792 /* When the loop includes branches or jumps,
6793 it is not a short loop. */
6794 for (i = 0; i < (distance / 4); i++)
6795 {
6796 if ((history[i].cleared_p)
41065f5e 6797 || delayed_branch_p (&history[i]))
e407c74b
NC
6798 {
6799 rv = TRUE;
6800 break;
6801 }
6802 }
6803 if (rv == FALSE)
6804 {
6805 /* Insert nop after branch to fix short loop. */
6806 return FALSE;
6807 }
6808 }
6809 }
6810
a4e06468
RS
6811 return TRUE;
6812}
6813
e407c74b
NC
6814/* Decide how we should add IP to the instruction stream.
6815 ADDRESS_EXPR is an operand of the instruction to be used with
6816 RELOC_TYPE. */
a4e06468
RS
6817
6818static enum append_method
e407c74b 6819get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6820 bfd_reloc_code_real_type *reloc_type)
a4e06468 6821{
a4e06468
RS
6822 /* The relaxed version of a macro sequence must be inherently
6823 hazard-free. */
6824 if (mips_relax.sequence == 2)
6825 return APPEND_ADD;
6826
3b821a28 6827 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
6828 if (mips_opts.noreorder)
6829 return APPEND_ADD;
6830
6831 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6832 if (delayed_branch_p (ip))
a4e06468 6833 {
e407c74b
NC
6834 if (!branch_likely_p (ip)
6835 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6836 return APPEND_SWAP;
6837
6838 if (mips_opts.mips16
6839 && ISA_SUPPORTS_MIPS16E
fc76e730 6840 && gpr_read_mask (ip) != 0)
a4e06468
RS
6841 return APPEND_ADD_COMPACT;
6842
7bd374a4
MR
6843 if (mips_opts.micromips
6844 && ((ip->insn_opcode & 0xffe0) == 0x4580
6845 || (!forced_insn_length
6846 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6847 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6848 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6849 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6850 return APPEND_ADD_COMPACT;
6851
a4e06468
RS
6852 return APPEND_ADD_WITH_NOP;
6853 }
6854
a4e06468
RS
6855 return APPEND_ADD;
6856}
6857
7bd374a4
MR
6858/* IP is an instruction whose opcode we have just changed, END points
6859 to the end of the opcode table processed. Point IP->insn_mo to the
6860 new opcode's definition. */
ceb94aa5
RS
6861
6862static void
7bd374a4 6863find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
ceb94aa5 6864{
7bd374a4 6865 const struct mips_opcode *mo;
ceb94aa5 6866
ceb94aa5 6867 for (mo = ip->insn_mo; mo < end; mo++)
7bd374a4
MR
6868 if (mo->pinfo != INSN_MACRO
6869 && (ip->insn_opcode & mo->mask) == mo->match)
ceb94aa5
RS
6870 {
6871 ip->insn_mo = mo;
6872 return;
6873 }
6874 abort ();
6875}
6876
7bd374a4
MR
6877/* IP is a MIPS16 instruction whose opcode we have just changed.
6878 Point IP->insn_mo to the new opcode's definition. */
6879
6880static void
6881find_altered_mips16_opcode (struct mips_cl_insn *ip)
6882{
6883 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6884}
6885
6886/* IP is a microMIPS instruction whose opcode we have just changed.
6887 Point IP->insn_mo to the new opcode's definition. */
6888
6889static void
6890find_altered_micromips_opcode (struct mips_cl_insn *ip)
6891{
6892 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6893}
6894
df58fc94
RS
6895/* For microMIPS macros, we need to generate a local number label
6896 as the target of branches. */
6897#define MICROMIPS_LABEL_CHAR '\037'
6898static unsigned long micromips_target_label;
6899static char micromips_target_name[32];
6900
6901static char *
6902micromips_label_name (void)
6903{
6904 char *p = micromips_target_name;
6905 char symbol_name_temporary[24];
6906 unsigned long l;
6907 int i;
6908
6909 if (*p)
6910 return p;
6911
6912 i = 0;
6913 l = micromips_target_label;
6914#ifdef LOCAL_LABEL_PREFIX
6915 *p++ = LOCAL_LABEL_PREFIX;
6916#endif
6917 *p++ = 'L';
6918 *p++ = MICROMIPS_LABEL_CHAR;
6919 do
6920 {
6921 symbol_name_temporary[i++] = l % 10 + '0';
6922 l /= 10;
6923 }
6924 while (l != 0);
6925 while (i > 0)
6926 *p++ = symbol_name_temporary[--i];
6927 *p = '\0';
6928
6929 return micromips_target_name;
6930}
6931
6932static void
6933micromips_label_expr (expressionS *label_expr)
6934{
6935 label_expr->X_op = O_symbol;
6936 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6937 label_expr->X_add_number = 0;
6938}
6939
6940static void
6941micromips_label_inc (void)
6942{
6943 micromips_target_label++;
6944 *micromips_target_name = '\0';
6945}
6946
6947static void
6948micromips_add_label (void)
6949{
6950 symbolS *s;
6951
6952 s = colon (micromips_label_name ());
6953 micromips_label_inc ();
f3ded42a 6954 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6955}
6956
6957/* If assembling microMIPS code, then return the microMIPS reloc
6958 corresponding to the requested one if any. Otherwise return
6959 the reloc unchanged. */
6960
6961static bfd_reloc_code_real_type
6962micromips_map_reloc (bfd_reloc_code_real_type reloc)
6963{
6964 static const bfd_reloc_code_real_type relocs[][2] =
6965 {
6966 /* Keep sorted incrementally by the left-hand key. */
6967 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6968 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6969 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6970 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6971 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6972 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6973 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6974 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6975 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6976 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6977 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6978 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6979 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6980 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6981 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6982 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6983 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6984 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6985 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6986 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6987 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6988 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6989 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6990 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6991 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6992 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6993 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6994 };
6995 bfd_reloc_code_real_type r;
6996 size_t i;
6997
6998 if (!mips_opts.micromips)
6999 return reloc;
7000 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7001 {
7002 r = relocs[i][0];
7003 if (r > reloc)
7004 return reloc;
7005 if (r == reloc)
7006 return relocs[i][1];
7007 }
7008 return reloc;
7009}
7010
b886a2ab
RS
7011/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7012 Return true on success, storing the resolved value in RESULT. */
7013
7014static bfd_boolean
7015calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7016 offsetT *result)
7017{
7018 switch (reloc)
7019 {
7020 case BFD_RELOC_MIPS_HIGHEST:
7021 case BFD_RELOC_MICROMIPS_HIGHEST:
7022 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7023 return TRUE;
7024
7025 case BFD_RELOC_MIPS_HIGHER:
7026 case BFD_RELOC_MICROMIPS_HIGHER:
7027 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7028 return TRUE;
7029
7030 case BFD_RELOC_HI16_S:
41947d9e 7031 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
7032 case BFD_RELOC_MICROMIPS_HI16_S:
7033 case BFD_RELOC_MIPS16_HI16_S:
7034 *result = ((operand + 0x8000) >> 16) & 0xffff;
7035 return TRUE;
7036
7037 case BFD_RELOC_HI16:
7038 case BFD_RELOC_MICROMIPS_HI16:
7039 case BFD_RELOC_MIPS16_HI16:
7040 *result = (operand >> 16) & 0xffff;
7041 return TRUE;
7042
7043 case BFD_RELOC_LO16:
41947d9e 7044 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7045 case BFD_RELOC_MICROMIPS_LO16:
7046 case BFD_RELOC_MIPS16_LO16:
7047 *result = operand & 0xffff;
7048 return TRUE;
7049
7050 case BFD_RELOC_UNUSED:
7051 *result = operand;
7052 return TRUE;
7053
7054 default:
7055 return FALSE;
7056 }
7057}
7058
71400594
RS
7059/* Output an instruction. IP is the instruction information.
7060 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7061 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7062 a macro expansion. */
71400594
RS
7063
7064static void
7065append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7066 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7067{
14fe068b 7068 unsigned long prev_pinfo2, pinfo;
71400594 7069 bfd_boolean relaxed_branch = FALSE;
a4e06468 7070 enum append_method method;
2309ddf2 7071 bfd_boolean relax32;
2b0c8b40 7072 int branch_disp;
71400594 7073
2309ddf2 7074 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7075 fix_loongson2f (ip);
7076
738f4d98 7077 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7078 file_ase_micromips |= mips_opts.micromips;
738f4d98 7079
df58fc94 7080 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7081 pinfo = ip->insn_mo->pinfo;
df58fc94 7082
7bd374a4
MR
7083 /* Don't raise alarm about `nods' frags as they'll fill in the right
7084 kind of nop in relaxation if required. */
df58fc94
RS
7085 if (mips_opts.micromips
7086 && !expansionp
7bd374a4
MR
7087 && !(history[0].frag
7088 && history[0].frag->fr_type == rs_machine_dependent
7089 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7090 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
df58fc94
RS
7091 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7092 && micromips_insn_length (ip->insn_mo) != 2)
7093 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7094 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7095 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7096 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7097
15be625d
CM
7098 if (address_expr == NULL)
7099 ip->complete_p = 1;
b886a2ab
RS
7100 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7101 && reloc_type[1] == BFD_RELOC_UNUSED
7102 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7103 && address_expr->X_op == O_constant)
7104 {
15be625d
CM
7105 switch (*reloc_type)
7106 {
15be625d 7107 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7108 {
7109 int shift;
7110
17c6c9d9
MR
7111 /* Shift is 2, unusually, for microMIPS JALX. */
7112 shift = (mips_opts.micromips
7113 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7114 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7115 as_bad (_("jump to misaligned address (0x%lx)"),
7116 (unsigned long) address_expr->X_add_number);
7117 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7118 & 0x3ffffff);
335574df 7119 ip->complete_p = 1;
df58fc94 7120 }
15be625d
CM
7121 break;
7122
7123 case BFD_RELOC_MIPS16_JMP:
7124 if ((address_expr->X_add_number & 3) != 0)
7125 as_bad (_("jump to misaligned address (0x%lx)"),
7126 (unsigned long) address_expr->X_add_number);
7127 ip->insn_opcode |=
7128 (((address_expr->X_add_number & 0x7c0000) << 3)
7129 | ((address_expr->X_add_number & 0xf800000) >> 7)
7130 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7131 ip->complete_p = 1;
15be625d
CM
7132 break;
7133
7134 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7135 {
7136 int shift;
7137
7138 shift = mips_opts.micromips ? 1 : 2;
7139 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7140 as_bad (_("branch to misaligned address (0x%lx)"),
7141 (unsigned long) address_expr->X_add_number);
7142 if (!mips_relax_branch)
7143 {
7144 if ((address_expr->X_add_number + (1 << (shift + 15)))
7145 & ~((1 << (shift + 16)) - 1))
7146 as_bad (_("branch address range overflow (0x%lx)"),
7147 (unsigned long) address_expr->X_add_number);
7148 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7149 & 0xffff);
7150 }
df58fc94 7151 }
15be625d
CM
7152 break;
7153
7361da2c
AB
7154 case BFD_RELOC_MIPS_21_PCREL_S2:
7155 {
7156 int shift;
7157
7158 shift = 2;
7159 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7160 as_bad (_("branch to misaligned address (0x%lx)"),
7161 (unsigned long) address_expr->X_add_number);
7162 if ((address_expr->X_add_number + (1 << (shift + 20)))
7163 & ~((1 << (shift + 21)) - 1))
7164 as_bad (_("branch address range overflow (0x%lx)"),
7165 (unsigned long) address_expr->X_add_number);
7166 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7167 & 0x1fffff);
7168 }
7169 break;
7170
7171 case BFD_RELOC_MIPS_26_PCREL_S2:
7172 {
7173 int shift;
7174
7175 shift = 2;
7176 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7177 as_bad (_("branch to misaligned address (0x%lx)"),
7178 (unsigned long) address_expr->X_add_number);
7179 if ((address_expr->X_add_number + (1 << (shift + 25)))
7180 & ~((1 << (shift + 26)) - 1))
7181 as_bad (_("branch address range overflow (0x%lx)"),
7182 (unsigned long) address_expr->X_add_number);
7183 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7184 & 0x3ffffff);
7185 }
7186 break;
7187
15be625d 7188 default:
b886a2ab
RS
7189 {
7190 offsetT value;
7191
7192 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7193 &value))
7194 {
7195 ip->insn_opcode |= value & 0xffff;
7196 ip->complete_p = 1;
7197 }
7198 }
7199 break;
7200 }
15be625d
CM
7201 }
7202
71400594
RS
7203 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7204 {
7205 /* There are a lot of optimizations we could do that we don't.
7206 In particular, we do not, in general, reorder instructions.
7207 If you use gcc with optimization, it will reorder
7208 instructions and generally do much more optimization then we
7209 do here; repeating all that work in the assembler would only
7210 benefit hand written assembly code, and does not seem worth
7211 it. */
7212 int nops = (mips_optimize == 0
932d1a1b
RS
7213 ? nops_for_insn (0, history, NULL)
7214 : nops_for_insn_or_target (0, history, ip));
71400594 7215 if (nops > 0)
252b5132
RH
7216 {
7217 fragS *old_frag;
7218 unsigned long old_frag_offset;
7219 int i;
252b5132
RH
7220
7221 old_frag = frag_now;
7222 old_frag_offset = frag_now_fix ();
7223
7224 for (i = 0; i < nops; i++)
14fe068b
RS
7225 add_fixed_insn (NOP_INSN);
7226 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7227
7228 if (listing)
7229 {
7230 listing_prev_line ();
7231 /* We may be at the start of a variant frag. In case we
7232 are, make sure there is enough space for the frag
7233 after the frags created by listing_prev_line. The
7234 argument to frag_grow here must be at least as large
7235 as the argument to all other calls to frag_grow in
7236 this file. We don't have to worry about being in the
7237 middle of a variant frag, because the variants insert
7238 all needed nop instructions themselves. */
7239 frag_grow (40);
7240 }
7241
462427c4 7242 mips_move_text_labels ();
252b5132
RH
7243
7244#ifndef NO_ECOFF_DEBUGGING
7245 if (ECOFF_DEBUGGING)
7246 ecoff_fix_loc (old_frag, old_frag_offset);
7247#endif
7248 }
71400594
RS
7249 }
7250 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7251 {
932d1a1b
RS
7252 int nops;
7253
7254 /* Work out how many nops in prev_nop_frag are needed by IP,
7255 ignoring hazards generated by the first prev_nop_frag_since
7256 instructions. */
7257 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7258 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7259
71400594
RS
7260 /* Enforce NOPS as a minimum. */
7261 if (nops > prev_nop_frag_required)
7262 prev_nop_frag_required = nops;
252b5132 7263
71400594
RS
7264 if (prev_nop_frag_holds == prev_nop_frag_required)
7265 {
7266 /* Settle for the current number of nops. Update the history
7267 accordingly (for the benefit of any future .set reorder code). */
7268 prev_nop_frag = NULL;
7269 insert_into_history (prev_nop_frag_since,
7270 prev_nop_frag_holds, NOP_INSN);
7271 }
7272 else
7273 {
7274 /* Allow this instruction to replace one of the nops that was
7275 tentatively added to prev_nop_frag. */
df58fc94 7276 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7277 prev_nop_frag_holds--;
7278 prev_nop_frag_since++;
252b5132
RH
7279 }
7280 }
7281
e407c74b 7282 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7283 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7284
e410add4
RS
7285 dwarf2_emit_insn (0);
7286 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7287 so "move" the instruction address accordingly.
7288
7289 Also, it doesn't seem appropriate for the assembler to reorder .loc
7290 entries. If this instruction is a branch that we are going to swap
7291 with the previous instruction, the two instructions should be
7292 treated as a unit, and the debug information for both instructions
7293 should refer to the start of the branch sequence. Using the
7294 current position is certainly wrong when swapping a 32-bit branch
7295 and a 16-bit delay slot, since the current position would then be
7296 in the middle of a branch. */
7297 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7298
df58fc94
RS
7299 relax32 = (mips_relax_branch
7300 /* Don't try branch relaxation within .set nomacro, or within
7301 .set noat if we use $at for PIC computations. If it turns
7302 out that the branch was out-of-range, we'll get an error. */
7303 && !mips_opts.warn_about_macros
7304 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7305 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7306 as they have no complementing branches. */
7307 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7308
7309 if (!HAVE_CODE_COMPRESSION
7310 && address_expr
7311 && relax32
0b25d3e6 7312 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7313 && delayed_branch_p (ip))
4a6a3df4 7314 {
895921c9 7315 relaxed_branch = TRUE;
1e915849
RS
7316 add_relaxed_insn (ip, (relaxed_branch_length
7317 (NULL, NULL,
11625dd8
RS
7318 uncond_branch_p (ip) ? -1
7319 : branch_likely_p (ip) ? 1
1e915849
RS
7320 : 0)), 4,
7321 RELAX_BRANCH_ENCODE
66b3e8da 7322 (AT,
11625dd8
RS
7323 uncond_branch_p (ip),
7324 branch_likely_p (ip),
1e915849
RS
7325 pinfo & INSN_WRITE_GPR_31,
7326 0),
7327 address_expr->X_add_symbol,
7328 address_expr->X_add_number);
4a6a3df4
AO
7329 *reloc_type = BFD_RELOC_UNUSED;
7330 }
df58fc94
RS
7331 else if (mips_opts.micromips
7332 && address_expr
7333 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7334 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7335 && (delayed_branch_p (ip) || compact_branch_p (ip))
7336 /* Don't try branch relaxation when users specify
7337 16-bit/32-bit instructions. */
7338 && !forced_insn_length)
df58fc94 7339 {
7bd374a4
MR
7340 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7341 && *reloc_type > BFD_RELOC_UNUSED);
df58fc94 7342 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8 7343 int uncond = uncond_branch_p (ip) ? -1 : 0;
7bd374a4
MR
7344 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7345 int nods = method == APPEND_ADD_WITH_NOP;
df58fc94 7346 int al = pinfo & INSN_WRITE_GPR_31;
7bd374a4 7347 int length32 = nods ? 8 : 4;
df58fc94
RS
7348
7349 gas_assert (address_expr != NULL);
7350 gas_assert (!mips_relax.sequence);
7351
2b0c8b40 7352 relaxed_branch = TRUE;
7bd374a4
MR
7353 if (nods)
7354 method = APPEND_ADD;
7355 if (relax32)
7356 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7357 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
8484fb75 7358 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7bd374a4 7359 uncond, compact, al, nods,
40209cad 7360 relax32, 0, 0),
df58fc94
RS
7361 address_expr->X_add_symbol,
7362 address_expr->X_add_number);
7363 *reloc_type = BFD_RELOC_UNUSED;
7364 }
7365 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7366 {
7fd53920
MR
7367 bfd_boolean require_unextended;
7368 bfd_boolean require_extended;
88a7ef16
MR
7369 symbolS *symbol;
7370 offsetT offset;
7371
7fd53920
MR
7372 if (forced_insn_length != 0)
7373 {
7374 require_unextended = forced_insn_length == 2;
7375 require_extended = forced_insn_length == 4;
7376 }
7377 else
7378 {
7379 require_unextended = (mips_opts.noautoextend
7380 && !mips_opcode_32bit_p (ip->insn_mo));
7381 require_extended = 0;
7382 }
7383
252b5132 7384 /* We need to set up a variant frag. */
df58fc94 7385 gas_assert (address_expr != NULL);
88a7ef16
MR
7386 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7387 symbol created by `make_expr_symbol' may not get a necessary
7388 external relocation produced. */
7389 if (address_expr->X_op == O_symbol)
7390 {
7391 symbol = address_expr->X_add_symbol;
7392 offset = address_expr->X_add_number;
7393 }
7394 else
7395 {
7396 symbol = make_expr_symbol (address_expr);
7397 offset = 0;
7398 }
1e915849
RS
7399 add_relaxed_insn (ip, 4, 0,
7400 RELAX_MIPS16_ENCODE
7401 (*reloc_type - BFD_RELOC_UNUSED,
7fd53920 7402 require_unextended, require_extended,
11625dd8 7403 delayed_branch_p (&history[0]),
1e915849 7404 history[0].mips16_absolute_jump_p),
88a7ef16 7405 symbol, offset);
252b5132 7406 }
5c04167a 7407 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7408 {
11625dd8 7409 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7410 /* Make sure there is enough room to swap this instruction with
7411 a following jump instruction. */
7412 frag_grow (6);
1e915849 7413 add_fixed_insn (ip);
252b5132
RH
7414 }
7415 else
7416 {
7417 if (mips_opts.mips16
7418 && mips_opts.noreorder
11625dd8 7419 && delayed_branch_p (&history[0]))
252b5132
RH
7420 as_warn (_("extended instruction in delay slot"));
7421
4d7206a2
RS
7422 if (mips_relax.sequence)
7423 {
7424 /* If we've reached the end of this frag, turn it into a variant
7425 frag and record the information for the instructions we've
7426 written so far. */
7427 if (frag_room () < 4)
7428 relax_close_frag ();
df58fc94 7429 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7430 }
7431
584892a6 7432 if (mips_relax.sequence != 2)
df58fc94
RS
7433 {
7434 if (mips_macro_warning.first_insn_sizes[0] == 0)
7435 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7436 mips_macro_warning.sizes[0] += insn_length (ip);
7437 mips_macro_warning.insns[0]++;
7438 }
584892a6 7439 if (mips_relax.sequence != 1)
df58fc94
RS
7440 {
7441 if (mips_macro_warning.first_insn_sizes[1] == 0)
7442 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7443 mips_macro_warning.sizes[1] += insn_length (ip);
7444 mips_macro_warning.insns[1]++;
7445 }
584892a6 7446
1e915849
RS
7447 if (mips_opts.mips16)
7448 {
7449 ip->fixed_p = 1;
7450 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7451 }
7452 add_fixed_insn (ip);
252b5132
RH
7453 }
7454
9fe77896 7455 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7456 {
df58fc94 7457 bfd_reloc_code_real_type final_type[3];
2309ddf2 7458 reloc_howto_type *howto0;
9fe77896
RS
7459 reloc_howto_type *howto;
7460 int i;
34ce925e 7461
df58fc94
RS
7462 /* Perform any necessary conversion to microMIPS relocations
7463 and find out how many relocations there actually are. */
7464 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7465 final_type[i] = micromips_map_reloc (reloc_type[i]);
7466
9fe77896
RS
7467 /* In a compound relocation, it is the final (outermost)
7468 operator that determines the relocated field. */
2309ddf2 7469 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7470 if (!howto)
7471 abort ();
2309ddf2
MR
7472
7473 if (i > 1)
7474 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7475 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7476 bfd_get_reloc_size (howto),
7477 address_expr,
2309ddf2
MR
7478 howto0 && howto0->pc_relative,
7479 final_type[0]);
9fe77896
RS
7480
7481 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7482 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7483 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7484
7485 /* These relocations can have an addend that won't fit in
7486 4 octets for 64bit assembly. */
bad1aba3 7487 if (GPR_SIZE == 64
9fe77896
RS
7488 && ! howto->partial_inplace
7489 && (reloc_type[0] == BFD_RELOC_16
7490 || reloc_type[0] == BFD_RELOC_32
7491 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7492 || reloc_type[0] == BFD_RELOC_GPREL16
7493 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7494 || reloc_type[0] == BFD_RELOC_GPREL32
7495 || reloc_type[0] == BFD_RELOC_64
7496 || reloc_type[0] == BFD_RELOC_CTOR
7497 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7498 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7499 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7500 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7501 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7502 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7503 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7504 || hi16_reloc_p (reloc_type[0])
7505 || lo16_reloc_p (reloc_type[0])))
7506 ip->fixp[0]->fx_no_overflow = 1;
7507
ddaf2c41
MR
7508 /* These relocations can have an addend that won't fit in 2 octets. */
7509 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7510 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7511 ip->fixp[0]->fx_no_overflow = 1;
7512
9fe77896
RS
7513 if (mips_relax.sequence)
7514 {
7515 if (mips_relax.first_fixup == 0)
7516 mips_relax.first_fixup = ip->fixp[0];
7517 }
7518 else if (reloc_needs_lo_p (*reloc_type))
7519 {
7520 struct mips_hi_fixup *hi_fixup;
7521
7522 /* Reuse the last entry if it already has a matching %lo. */
7523 hi_fixup = mips_hi_fixup_list;
7524 if (hi_fixup == 0
7525 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7526 {
325801bd 7527 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7528 hi_fixup->next = mips_hi_fixup_list;
7529 mips_hi_fixup_list = hi_fixup;
4d7206a2 7530 }
9fe77896
RS
7531 hi_fixup->fixp = ip->fixp[0];
7532 hi_fixup->seg = now_seg;
7533 }
252b5132 7534
9fe77896
RS
7535 /* Add fixups for the second and third relocations, if given.
7536 Note that the ABI allows the second relocation to be
7537 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7538 moment we only use RSS_UNDEF, but we could add support
7539 for the others if it ever becomes necessary. */
7540 for (i = 1; i < 3; i++)
7541 if (reloc_type[i] != BFD_RELOC_UNUSED)
7542 {
7543 ip->fixp[i] = fix_new (ip->frag, ip->where,
7544 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7545 FALSE, final_type[i]);
f6688943 7546
9fe77896
RS
7547 /* Use fx_tcbit to mark compound relocs. */
7548 ip->fixp[0]->fx_tcbit = 1;
7549 ip->fixp[i]->fx_tcbit = 1;
7550 }
252b5132 7551 }
252b5132
RH
7552
7553 /* Update the register mask information. */
4c260379
RS
7554 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7555 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7556
a4e06468 7557 switch (method)
252b5132 7558 {
a4e06468
RS
7559 case APPEND_ADD:
7560 insert_into_history (0, 1, ip);
7561 break;
7562
7563 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7564 {
7565 struct mips_cl_insn *nop;
7566
7567 insert_into_history (0, 1, ip);
7568 nop = get_delay_slot_nop (ip);
7569 add_fixed_insn (nop);
7570 insert_into_history (0, 1, nop);
7571 if (mips_relax.sequence)
7572 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7573 }
a4e06468
RS
7574 break;
7575
7576 case APPEND_ADD_COMPACT:
7577 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7bd374a4
MR
7578 if (mips_opts.mips16)
7579 {
7580 ip->insn_opcode |= 0x0080;
7581 find_altered_mips16_opcode (ip);
7582 }
7583 /* Convert microMIPS instructions. */
7584 else if (mips_opts.micromips)
7585 {
7586 /* jr16->jrc */
7587 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7588 ip->insn_opcode |= 0x0020;
7589 /* b16->bc */
7590 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7591 ip->insn_opcode = 0x40e00000;
7592 /* beqz16->beqzc, bnez16->bnezc */
7593 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7594 {
7595 unsigned long regno;
7596
7597 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7598 regno &= MICROMIPSOP_MASK_MD;
7599 regno = micromips_to_32_reg_d_map[regno];
7600 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7601 | (regno << MICROMIPSOP_SH_RS)
7602 | 0x40a00000) ^ 0x00400000;
7603 }
7604 /* beqz->beqzc, bnez->bnezc */
7605 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7606 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7607 | ((ip->insn_opcode >> 7) & 0x00400000)
7608 | 0x40a00000) ^ 0x00400000;
7609 /* beq $0->beqzc, bne $0->bnezc */
7610 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7611 ip->insn_opcode = (((ip->insn_opcode >>
7612 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7613 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7614 | ((ip->insn_opcode >> 7) & 0x00400000)
7615 | 0x40a00000) ^ 0x00400000;
7616 else
7617 abort ();
7618 find_altered_micromips_opcode (ip);
7619 }
7620 else
7621 abort ();
a4e06468
RS
7622 install_insn (ip);
7623 insert_into_history (0, 1, ip);
7624 break;
7625
7626 case APPEND_SWAP:
7627 {
7628 struct mips_cl_insn delay = history[0];
99e7978b
MF
7629
7630 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7631 {
7632 /* Add the delay slot instruction to the end of the
7633 current frag and shrink the fixed part of the
7634 original frag. If the branch occupies the tail of
7635 the latter, move it backwards to cover the gap. */
2b0c8b40 7636 delay.frag->fr_fix -= branch_disp;
a4e06468 7637 if (delay.frag == ip->frag)
2b0c8b40 7638 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7639 add_fixed_insn (&delay);
7640 }
7641 else
7642 {
5e35670b
MR
7643 /* If this is not a relaxed branch and we are in the
7644 same frag, then just swap the instructions. */
7645 move_insn (ip, delay.frag, delay.where);
7646 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
7647 }
7648 history[0] = *ip;
7649 delay.fixed_p = 1;
7650 insert_into_history (0, 1, &delay);
7651 }
7652 break;
252b5132
RH
7653 }
7654
13408f1e 7655 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7656 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7657 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7658 {
7659 unsigned int i;
7660
79850f26 7661 mips_no_prev_insn ();
13408f1e 7662
e407c74b 7663 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7664 history[i].cleared_p = 1;
e407c74b
NC
7665 }
7666
df58fc94
RS
7667 /* We need to emit a label at the end of branch-likely macros. */
7668 if (emit_branch_likely_macro)
7669 {
7670 emit_branch_likely_macro = FALSE;
7671 micromips_add_label ();
7672 }
7673
252b5132
RH
7674 /* We just output an insn, so the next one doesn't have a label. */
7675 mips_clear_insn_labels ();
252b5132
RH
7676}
7677
e407c74b
NC
7678/* Forget that there was any previous instruction or label.
7679 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7680
7681static void
7d10b47d 7682mips_no_prev_insn (void)
252b5132 7683{
7d10b47d
RS
7684 prev_nop_frag = NULL;
7685 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7686 mips_clear_insn_labels ();
7687}
7688
7d10b47d
RS
7689/* This function must be called before we emit something other than
7690 instructions. It is like mips_no_prev_insn except that it inserts
7691 any NOPS that might be needed by previous instructions. */
252b5132 7692
7d10b47d
RS
7693void
7694mips_emit_delays (void)
252b5132
RH
7695{
7696 if (! mips_opts.noreorder)
7697 {
932d1a1b 7698 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7699 if (nops > 0)
7700 {
7d10b47d
RS
7701 while (nops-- > 0)
7702 add_fixed_insn (NOP_INSN);
462427c4 7703 mips_move_text_labels ();
7d10b47d
RS
7704 }
7705 }
7706 mips_no_prev_insn ();
7707}
7708
7709/* Start a (possibly nested) noreorder block. */
7710
7711static void
7712start_noreorder (void)
7713{
7714 if (mips_opts.noreorder == 0)
7715 {
7716 unsigned int i;
7717 int nops;
7718
7719 /* None of the instructions before the .set noreorder can be moved. */
7720 for (i = 0; i < ARRAY_SIZE (history); i++)
7721 history[i].fixed_p = 1;
7722
7723 /* Insert any nops that might be needed between the .set noreorder
7724 block and the previous instructions. We will later remove any
7725 nops that turn out not to be needed. */
932d1a1b 7726 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7727 if (nops > 0)
7728 {
7729 if (mips_optimize != 0)
252b5132
RH
7730 {
7731 /* Record the frag which holds the nop instructions, so
7732 that we can remove them if we don't need them. */
df58fc94 7733 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7734 prev_nop_frag = frag_now;
7735 prev_nop_frag_holds = nops;
7736 prev_nop_frag_required = 0;
7737 prev_nop_frag_since = 0;
7738 }
7739
7740 for (; nops > 0; --nops)
1e915849 7741 add_fixed_insn (NOP_INSN);
252b5132 7742
7d10b47d
RS
7743 /* Move on to a new frag, so that it is safe to simply
7744 decrease the size of prev_nop_frag. */
7745 frag_wane (frag_now);
7746 frag_new (0);
462427c4 7747 mips_move_text_labels ();
252b5132 7748 }
df58fc94 7749 mips_mark_labels ();
7d10b47d 7750 mips_clear_insn_labels ();
252b5132 7751 }
7d10b47d
RS
7752 mips_opts.noreorder++;
7753 mips_any_noreorder = 1;
7754}
252b5132 7755
7d10b47d 7756/* End a nested noreorder block. */
252b5132 7757
7d10b47d
RS
7758static void
7759end_noreorder (void)
7760{
7761 mips_opts.noreorder--;
7762 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7763 {
7764 /* Commit to inserting prev_nop_frag_required nops and go back to
7765 handling nop insertion the .set reorder way. */
7766 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7767 * NOP_INSN_SIZE);
7d10b47d
RS
7768 insert_into_history (prev_nop_frag_since,
7769 prev_nop_frag_required, NOP_INSN);
7770 prev_nop_frag = NULL;
7771 }
252b5132
RH
7772}
7773
97d87491
RS
7774/* Sign-extend 32-bit mode constants that have bit 31 set and all
7775 higher bits unset. */
7776
7777static void
7778normalize_constant_expr (expressionS *ex)
7779{
7780 if (ex->X_op == O_constant
7781 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7782 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7783 - 0x80000000);
7784}
7785
7786/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7787 all higher bits unset. */
7788
7789static void
7790normalize_address_expr (expressionS *ex)
7791{
7792 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7793 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7794 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7795 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7796 - 0x80000000);
7797}
7798
7799/* Try to match TOKENS against OPCODE, storing the result in INSN.
7800 Return true if the match was successful.
7801
7802 OPCODE_EXTRA is a value that should be ORed into the opcode
7803 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7804 there are more alternatives after OPCODE and SOFT_MATCH is
7805 as for mips_arg_info. */
7806
7807static bfd_boolean
7808match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7809 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7810 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7811{
7812 const char *args;
7813 struct mips_arg_info arg;
7814 const struct mips_operand *operand;
7815 char c;
7816
7817 imm_expr.X_op = O_absent;
97d87491
RS
7818 offset_expr.X_op = O_absent;
7819 offset_reloc[0] = BFD_RELOC_UNUSED;
7820 offset_reloc[1] = BFD_RELOC_UNUSED;
7821 offset_reloc[2] = BFD_RELOC_UNUSED;
7822
7823 create_insn (insn, opcode);
60f20e8b
RS
7824 /* When no opcode suffix is specified, assume ".xyzw". */
7825 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7826 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7827 else
7828 insn->insn_opcode |= opcode_extra;
97d87491
RS
7829 memset (&arg, 0, sizeof (arg));
7830 arg.insn = insn;
7831 arg.token = tokens;
7832 arg.argnum = 1;
7833 arg.last_regno = ILLEGAL_REG;
7834 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7835 arg.lax_match = lax_match;
97d87491
RS
7836 for (args = opcode->args;; ++args)
7837 {
7838 if (arg.token->type == OT_END)
7839 {
7840 /* Handle unary instructions in which only one operand is given.
7841 The source is then the same as the destination. */
7842 if (arg.opnum == 1 && *args == ',')
7843 {
7844 operand = (mips_opts.micromips
7845 ? decode_micromips_operand (args + 1)
7846 : decode_mips_operand (args + 1));
7847 if (operand && mips_optional_operand_p (operand))
7848 {
7849 arg.token = tokens;
7850 arg.argnum = 1;
7851 continue;
7852 }
7853 }
7854
7855 /* Treat elided base registers as $0. */
7856 if (strcmp (args, "(b)") == 0)
7857 args += 3;
7858
7859 if (args[0] == '+')
7860 switch (args[1])
7861 {
7862 case 'K':
7863 case 'N':
7864 /* The register suffix is optional. */
7865 args += 2;
7866 break;
7867 }
7868
7869 /* Fail the match if there were too few operands. */
7870 if (*args)
7871 return FALSE;
7872
7873 /* Successful match. */
60f20e8b
RS
7874 if (!complete_p)
7875 return TRUE;
e3de51ce 7876 clear_insn_error ();
97d87491
RS
7877 if (arg.dest_regno == arg.last_regno
7878 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7879 {
7880 if (arg.opnum == 2)
e3de51ce 7881 set_insn_error
1661c76c 7882 (0, _("source and destination must be different"));
97d87491 7883 else if (arg.last_regno == 31)
e3de51ce 7884 set_insn_error
1661c76c 7885 (0, _("a destination register must be supplied"));
97d87491 7886 }
173d3447
CF
7887 else if (arg.last_regno == 31
7888 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7889 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7890 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7891 check_completed_insn (&arg);
7892 return TRUE;
7893 }
7894
7895 /* Fail the match if the line has too many operands. */
7896 if (*args == 0)
7897 return FALSE;
7898
7899 /* Handle characters that need to match exactly. */
7900 if (*args == '(' || *args == ')' || *args == ',')
7901 {
7902 if (match_char (&arg, *args))
7903 continue;
7904 return FALSE;
7905 }
7906 if (*args == '#')
7907 {
7908 ++args;
7909 if (arg.token->type == OT_DOUBLE_CHAR
7910 && arg.token->u.ch == *args)
7911 {
7912 ++arg.token;
7913 continue;
7914 }
7915 return FALSE;
7916 }
7917
7918 /* Handle special macro operands. Work out the properties of
7919 other operands. */
7920 arg.opnum += 1;
97d87491
RS
7921 switch (*args)
7922 {
7361da2c
AB
7923 case '-':
7924 switch (args[1])
7925 {
7926 case 'A':
7927 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7928 break;
7929
7930 case 'B':
7931 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7932 break;
7933 }
7934 break;
7935
97d87491
RS
7936 case '+':
7937 switch (args[1])
7938 {
97d87491
RS
7939 case 'i':
7940 *offset_reloc = BFD_RELOC_MIPS_JMP;
7941 break;
7361da2c
AB
7942
7943 case '\'':
7944 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7945 break;
7946
7947 case '\"':
7948 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7949 break;
97d87491
RS
7950 }
7951 break;
7952
97d87491 7953 case 'I':
1a00e612
RS
7954 if (!match_const_int (&arg, &imm_expr.X_add_number))
7955 return FALSE;
7956 imm_expr.X_op = O_constant;
bad1aba3 7957 if (GPR_SIZE == 32)
97d87491
RS
7958 normalize_constant_expr (&imm_expr);
7959 continue;
7960
7961 case 'A':
7962 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7963 {
7964 /* Assume that the offset has been elided and that what
7965 we saw was a base register. The match will fail later
7966 if that assumption turns out to be wrong. */
7967 offset_expr.X_op = O_constant;
7968 offset_expr.X_add_number = 0;
7969 }
97d87491 7970 else
1a00e612
RS
7971 {
7972 if (!match_expression (&arg, &offset_expr, offset_reloc))
7973 return FALSE;
7974 normalize_address_expr (&offset_expr);
7975 }
97d87491
RS
7976 continue;
7977
7978 case 'F':
7979 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7980 8, TRUE))
1a00e612 7981 return FALSE;
97d87491
RS
7982 continue;
7983
7984 case 'L':
7985 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7986 8, FALSE))
1a00e612 7987 return FALSE;
97d87491
RS
7988 continue;
7989
7990 case 'f':
7991 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7992 4, TRUE))
1a00e612 7993 return FALSE;
97d87491
RS
7994 continue;
7995
7996 case 'l':
7997 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7998 4, FALSE))
1a00e612 7999 return FALSE;
97d87491
RS
8000 continue;
8001
97d87491
RS
8002 case 'p':
8003 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8004 break;
8005
8006 case 'a':
8007 *offset_reloc = BFD_RELOC_MIPS_JMP;
8008 break;
8009
8010 case 'm':
8011 gas_assert (mips_opts.micromips);
8012 c = args[1];
8013 switch (c)
8014 {
8015 case 'D':
8016 case 'E':
8017 if (!forced_insn_length)
8018 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8019 else if (c == 'D')
8020 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8021 else
8022 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8023 break;
8024 }
8025 break;
8026 }
8027
8028 operand = (mips_opts.micromips
8029 ? decode_micromips_operand (args)
8030 : decode_mips_operand (args));
8031 if (!operand)
8032 abort ();
8033
8034 /* Skip prefixes. */
7361da2c 8035 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
8036 args++;
8037
8038 if (mips_optional_operand_p (operand)
8039 && args[1] == ','
8040 && (arg.token[0].type != OT_REG
8041 || arg.token[1].type == OT_END))
8042 {
8043 /* Assume that the register has been elided and is the
8044 same as the first operand. */
8045 arg.token = tokens;
8046 arg.argnum = 1;
8047 }
8048
8049 if (!match_operand (&arg, operand))
8050 return FALSE;
8051 }
8052}
8053
8054/* Like match_insn, but for MIPS16. */
8055
8056static bfd_boolean
8057match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 8058 struct mips_operand_token *tokens)
97d87491
RS
8059{
8060 const char *args;
8061 const struct mips_operand *operand;
8062 const struct mips_operand *ext_operand;
7fd53920 8063 int required_insn_length;
97d87491
RS
8064 struct mips_arg_info arg;
8065 int relax_char;
8066
7fd53920
MR
8067 if (forced_insn_length)
8068 required_insn_length = forced_insn_length;
8069 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8070 required_insn_length = 2;
8071 else
8072 required_insn_length = 0;
8073
97d87491
RS
8074 create_insn (insn, opcode);
8075 imm_expr.X_op = O_absent;
97d87491
RS
8076 offset_expr.X_op = O_absent;
8077 offset_reloc[0] = BFD_RELOC_UNUSED;
8078 offset_reloc[1] = BFD_RELOC_UNUSED;
8079 offset_reloc[2] = BFD_RELOC_UNUSED;
8080 relax_char = 0;
8081
8082 memset (&arg, 0, sizeof (arg));
8083 arg.insn = insn;
8084 arg.token = tokens;
8085 arg.argnum = 1;
8086 arg.last_regno = ILLEGAL_REG;
8087 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
8088 relax_char = 0;
8089 for (args = opcode->args;; ++args)
8090 {
8091 int c;
8092
8093 if (arg.token->type == OT_END)
8094 {
8095 offsetT value;
8096
8097 /* Handle unary instructions in which only one operand is given.
8098 The source is then the same as the destination. */
8099 if (arg.opnum == 1 && *args == ',')
8100 {
8101 operand = decode_mips16_operand (args[1], FALSE);
8102 if (operand && mips_optional_operand_p (operand))
8103 {
8104 arg.token = tokens;
8105 arg.argnum = 1;
8106 continue;
8107 }
8108 }
8109
8110 /* Fail the match if there were too few operands. */
8111 if (*args)
8112 return FALSE;
8113
8114 /* Successful match. Stuff the immediate value in now, if
8115 we can. */
e3de51ce 8116 clear_insn_error ();
97d87491
RS
8117 if (opcode->pinfo == INSN_MACRO)
8118 {
8119 gas_assert (relax_char == 0 || relax_char == 'p');
8120 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8121 }
8122 else if (relax_char
8123 && offset_expr.X_op == O_constant
8124 && calculate_reloc (*offset_reloc,
8125 offset_expr.X_add_number,
8126 &value))
8127 {
8128 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7fd53920 8129 required_insn_length, &insn->insn_opcode);
97d87491
RS
8130 offset_expr.X_op = O_absent;
8131 *offset_reloc = BFD_RELOC_UNUSED;
8132 }
8133 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8134 {
7fd53920 8135 if (required_insn_length == 2)
e3de51ce 8136 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
8137 forced_insn_length = 4;
8138 insn->insn_opcode |= MIPS16_EXTEND;
8139 }
8140 else if (relax_char)
8141 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8142
8143 check_completed_insn (&arg);
8144 return TRUE;
8145 }
8146
8147 /* Fail the match if the line has too many operands. */
8148 if (*args == 0)
8149 return FALSE;
8150
8151 /* Handle characters that need to match exactly. */
8152 if (*args == '(' || *args == ')' || *args == ',')
8153 {
8154 if (match_char (&arg, *args))
8155 continue;
8156 return FALSE;
8157 }
8158
8159 arg.opnum += 1;
8160 c = *args;
8161 switch (c)
8162 {
8163 case 'p':
8164 case 'q':
8165 case 'A':
8166 case 'B':
8167 case 'E':
8168 relax_char = c;
8169 break;
8170
8171 case 'I':
1a00e612
RS
8172 if (!match_const_int (&arg, &imm_expr.X_add_number))
8173 return FALSE;
8174 imm_expr.X_op = O_constant;
bad1aba3 8175 if (GPR_SIZE == 32)
97d87491
RS
8176 normalize_constant_expr (&imm_expr);
8177 continue;
8178
8179 case 'a':
8180 case 'i':
8181 *offset_reloc = BFD_RELOC_MIPS16_JMP;
97d87491
RS
8182 break;
8183 }
8184
7fd53920 8185 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
97d87491
RS
8186 if (!operand)
8187 abort ();
8188
8189 /* '6' is a special case. It is used for BREAK and SDBBP,
8190 whose operands are only meaningful to the software that decodes
8191 them. This means that there is no architectural reason why
8192 they cannot be prefixed by EXTEND, but in practice,
8193 exception handlers will only look at the instruction
8194 itself. We therefore allow '6' to be extended when
8195 disassembling but not when assembling. */
8196 if (operand->type != OP_PCREL && c != '6')
8197 {
8198 ext_operand = decode_mips16_operand (c, TRUE);
8199 if (operand != ext_operand)
8200 {
8201 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8202 {
8203 offset_expr.X_op = O_constant;
8204 offset_expr.X_add_number = 0;
8205 relax_char = c;
8206 continue;
8207 }
8208
8209 /* We need the OT_INTEGER check because some MIPS16
8210 immediate variants are listed before the register ones. */
8211 if (arg.token->type != OT_INTEGER
8212 || !match_expression (&arg, &offset_expr, offset_reloc))
8213 return FALSE;
8214
8215 /* '8' is used for SLTI(U) and has traditionally not
8216 been allowed to take relocation operators. */
8217 if (offset_reloc[0] != BFD_RELOC_UNUSED
8218 && (ext_operand->size != 16 || c == '8'))
8219 return FALSE;
8220
8221 relax_char = c;
8222 continue;
8223 }
8224 }
8225
8226 if (mips_optional_operand_p (operand)
8227 && args[1] == ','
8228 && (arg.token[0].type != OT_REG
8229 || arg.token[1].type == OT_END))
8230 {
8231 /* Assume that the register has been elided and is the
8232 same as the first operand. */
8233 arg.token = tokens;
8234 arg.argnum = 1;
8235 }
8236
8237 if (!match_operand (&arg, operand))
8238 return FALSE;
8239 }
8240}
8241
60f20e8b
RS
8242/* Record that the current instruction is invalid for the current ISA. */
8243
8244static void
8245match_invalid_for_isa (void)
8246{
8247 set_insn_error_ss
1661c76c 8248 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8249 mips_cpu_info_from_arch (mips_opts.arch)->name,
8250 mips_cpu_info_from_isa (mips_opts.isa)->name);
8251}
8252
8253/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8254 Return true if a definite match or failure was found, storing any match
8255 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8256 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8257 tried and failed to match under normal conditions and now want to try a
8258 more relaxed match. */
8259
8260static bfd_boolean
8261match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8262 const struct mips_opcode *past, struct mips_operand_token *tokens,
8263 int opcode_extra, bfd_boolean lax_match)
8264{
8265 const struct mips_opcode *opcode;
8266 const struct mips_opcode *invalid_delay_slot;
8267 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8268
8269 /* Search for a match, ignoring alternatives that don't satisfy the
8270 current ISA or forced_length. */
8271 invalid_delay_slot = 0;
8272 seen_valid_for_isa = FALSE;
8273 seen_valid_for_size = FALSE;
8274 opcode = first;
8275 do
8276 {
8277 gas_assert (strcmp (opcode->name, first->name) == 0);
8278 if (is_opcode_valid (opcode))
8279 {
8280 seen_valid_for_isa = TRUE;
8281 if (is_size_valid (opcode))
8282 {
8283 bfd_boolean delay_slot_ok;
8284
8285 seen_valid_for_size = TRUE;
8286 delay_slot_ok = is_delay_slot_valid (opcode);
8287 if (match_insn (insn, opcode, tokens, opcode_extra,
8288 lax_match, delay_slot_ok))
8289 {
8290 if (!delay_slot_ok)
8291 {
8292 if (!invalid_delay_slot)
8293 invalid_delay_slot = opcode;
8294 }
8295 else
8296 return TRUE;
8297 }
8298 }
8299 }
8300 ++opcode;
8301 }
8302 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8303
8304 /* If the only matches we found had the wrong length for the delay slot,
8305 pick the first such match. We'll issue an appropriate warning later. */
8306 if (invalid_delay_slot)
8307 {
8308 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8309 lax_match, TRUE))
8310 return TRUE;
8311 abort ();
8312 }
8313
8314 /* Handle the case where we didn't try to match an instruction because
8315 all the alternatives were incompatible with the current ISA. */
8316 if (!seen_valid_for_isa)
8317 {
8318 match_invalid_for_isa ();
8319 return TRUE;
8320 }
8321
8322 /* Handle the case where we didn't try to match an instruction because
8323 all the alternatives were of the wrong size. */
8324 if (!seen_valid_for_size)
8325 {
8326 if (mips_opts.insn32)
1661c76c 8327 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8328 else
8329 set_insn_error_i
1661c76c 8330 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8331 8 * forced_insn_length);
8332 return TRUE;
8333 }
8334
8335 return FALSE;
8336}
8337
8338/* Like match_insns, but for MIPS16. */
8339
8340static bfd_boolean
8341match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8342 struct mips_operand_token *tokens)
8343{
8344 const struct mips_opcode *opcode;
8345 bfd_boolean seen_valid_for_isa;
7fd53920 8346 bfd_boolean seen_valid_for_size;
60f20e8b
RS
8347
8348 /* Search for a match, ignoring alternatives that don't satisfy the
8349 current ISA. There are no separate entries for extended forms so
8350 we deal with forced_length later. */
8351 seen_valid_for_isa = FALSE;
7fd53920 8352 seen_valid_for_size = FALSE;
60f20e8b
RS
8353 opcode = first;
8354 do
8355 {
8356 gas_assert (strcmp (opcode->name, first->name) == 0);
8357 if (is_opcode_valid_16 (opcode))
8358 {
8359 seen_valid_for_isa = TRUE;
7fd53920
MR
8360 if (is_size_valid_16 (opcode))
8361 {
8362 seen_valid_for_size = TRUE;
8363 if (match_mips16_insn (insn, opcode, tokens))
8364 return TRUE;
8365 }
60f20e8b
RS
8366 }
8367 ++opcode;
8368 }
8369 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8370 && strcmp (opcode->name, first->name) == 0);
8371
8372 /* Handle the case where we didn't try to match an instruction because
8373 all the alternatives were incompatible with the current ISA. */
8374 if (!seen_valid_for_isa)
8375 {
8376 match_invalid_for_isa ();
8377 return TRUE;
8378 }
8379
7fd53920
MR
8380 /* Handle the case where we didn't try to match an instruction because
8381 all the alternatives were of the wrong size. */
8382 if (!seen_valid_for_size)
8383 {
8384 if (forced_insn_length == 2)
8385 set_insn_error
8386 (0, _("unrecognized unextended version of MIPS16 opcode"));
8387 else
8388 set_insn_error
8389 (0, _("unrecognized extended version of MIPS16 opcode"));
8390 return TRUE;
8391 }
8392
60f20e8b
RS
8393 return FALSE;
8394}
8395
584892a6
RS
8396/* Set up global variables for the start of a new macro. */
8397
8398static void
8399macro_start (void)
8400{
8401 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8402 memset (&mips_macro_warning.first_insn_sizes, 0,
8403 sizeof (mips_macro_warning.first_insn_sizes));
8404 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8405 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8406 && delayed_branch_p (&history[0]));
7bd374a4
MR
8407 if (history[0].frag
8408 && history[0].frag->fr_type == rs_machine_dependent
8409 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8410 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8411 mips_macro_warning.delay_slot_length = 0;
8412 else
8413 switch (history[0].insn_mo->pinfo2
8414 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8415 {
8416 case INSN2_BRANCH_DELAY_32BIT:
8417 mips_macro_warning.delay_slot_length = 4;
8418 break;
8419 case INSN2_BRANCH_DELAY_16BIT:
8420 mips_macro_warning.delay_slot_length = 2;
8421 break;
8422 default:
8423 mips_macro_warning.delay_slot_length = 0;
8424 break;
8425 }
df58fc94 8426 mips_macro_warning.first_frag = NULL;
584892a6
RS
8427}
8428
df58fc94
RS
8429/* Given that a macro is longer than one instruction or of the wrong size,
8430 return the appropriate warning for it. Return null if no warning is
8431 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8432 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8433 and RELAX_NOMACRO. */
584892a6
RS
8434
8435static const char *
8436macro_warning (relax_substateT subtype)
8437{
8438 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8439 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8440 " in a branch delay slot");
8441 else if (subtype & RELAX_NOMACRO)
1661c76c 8442 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8443 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8444 | RELAX_DELAY_SLOT_SIZE_SECOND))
8445 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8446 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8447 " in a 16-bit branch delay slot")
1661c76c 8448 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8449 " in a 32-bit branch delay slot"));
584892a6
RS
8450 else
8451 return 0;
8452}
8453
8454/* Finish up a macro. Emit warnings as appropriate. */
8455
8456static void
8457macro_end (void)
8458{
df58fc94
RS
8459 /* Relaxation warning flags. */
8460 relax_substateT subtype = 0;
8461
8462 /* Check delay slot size requirements. */
8463 if (mips_macro_warning.delay_slot_length == 2)
8464 subtype |= RELAX_DELAY_SLOT_16BIT;
8465 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8466 {
df58fc94
RS
8467 if (mips_macro_warning.delay_slot_length
8468 != mips_macro_warning.first_insn_sizes[0])
8469 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8470 if (mips_macro_warning.delay_slot_length
8471 != mips_macro_warning.first_insn_sizes[1])
8472 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8473 }
584892a6 8474
df58fc94
RS
8475 /* Check instruction count requirements. */
8476 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8477 {
8478 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8479 subtype |= RELAX_SECOND_LONGER;
8480 if (mips_opts.warn_about_macros)
8481 subtype |= RELAX_NOMACRO;
8482 if (mips_macro_warning.delay_slot_p)
8483 subtype |= RELAX_DELAY_SLOT;
df58fc94 8484 }
584892a6 8485
df58fc94
RS
8486 /* If both alternatives fail to fill a delay slot correctly,
8487 emit the warning now. */
8488 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8489 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8490 {
8491 relax_substateT s;
8492 const char *msg;
8493
8494 s = subtype & (RELAX_DELAY_SLOT_16BIT
8495 | RELAX_DELAY_SLOT_SIZE_FIRST
8496 | RELAX_DELAY_SLOT_SIZE_SECOND);
8497 msg = macro_warning (s);
8498 if (msg != NULL)
8499 as_warn ("%s", msg);
8500 subtype &= ~s;
8501 }
8502
8503 /* If both implementations are longer than 1 instruction, then emit the
8504 warning now. */
8505 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8506 {
8507 relax_substateT s;
8508 const char *msg;
8509
8510 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8511 msg = macro_warning (s);
8512 if (msg != NULL)
8513 as_warn ("%s", msg);
8514 subtype &= ~s;
584892a6 8515 }
df58fc94
RS
8516
8517 /* If any flags still set, then one implementation might need a warning
8518 and the other either will need one of a different kind or none at all.
8519 Pass any remaining flags over to relaxation. */
8520 if (mips_macro_warning.first_frag != NULL)
8521 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8522}
8523
df58fc94
RS
8524/* Instruction operand formats used in macros that vary between
8525 standard MIPS and microMIPS code. */
8526
833794fc 8527static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8528static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8529static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8530static const char * const lui_fmt[2] = { "t,u", "s,u" };
8531static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8532static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8533static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8534static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8535
833794fc 8536#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8537#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8538 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8539#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8540#define LUI_FMT (lui_fmt[mips_opts.micromips])
8541#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8542#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8543 : mem12_fmt[mips_opts.micromips])
833794fc 8544#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8545#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8546#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8547
6e1304d8
RS
8548/* Read a macro's relocation codes from *ARGS and store them in *R.
8549 The first argument in *ARGS will be either the code for a single
8550 relocation or -1 followed by the three codes that make up a
8551 composite relocation. */
8552
8553static void
8554macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8555{
8556 int i, next;
8557
8558 next = va_arg (*args, int);
8559 if (next >= 0)
8560 r[0] = (bfd_reloc_code_real_type) next;
8561 else
f2ae14a1
RS
8562 {
8563 for (i = 0; i < 3; i++)
8564 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8565 /* This function is only used for 16-bit relocation fields.
8566 To make the macro code simpler, treat an unrelocated value
8567 in the same way as BFD_RELOC_LO16. */
8568 if (r[0] == BFD_RELOC_UNUSED)
8569 r[0] = BFD_RELOC_LO16;
8570 }
6e1304d8
RS
8571}
8572
252b5132
RH
8573/* Build an instruction created by a macro expansion. This is passed
8574 a pointer to the count of instructions created so far, an
8575 expression, the name of the instruction to build, an operand format
8576 string, and corresponding arguments. */
8577
252b5132 8578static void
67c0d1eb 8579macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8580{
df58fc94 8581 const struct mips_opcode *mo = NULL;
f6688943 8582 bfd_reloc_code_real_type r[3];
df58fc94 8583 const struct mips_opcode *amo;
e077a1c8 8584 const struct mips_operand *operand;
df58fc94
RS
8585 struct hash_control *hash;
8586 struct mips_cl_insn insn;
252b5132 8587 va_list args;
e077a1c8 8588 unsigned int uval;
252b5132 8589
252b5132 8590 va_start (args, fmt);
252b5132 8591
252b5132
RH
8592 if (mips_opts.mips16)
8593 {
03ea81db 8594 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8595 va_end (args);
8596 return;
8597 }
8598
f6688943
TS
8599 r[0] = BFD_RELOC_UNUSED;
8600 r[1] = BFD_RELOC_UNUSED;
8601 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8602 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8603 amo = (struct mips_opcode *) hash_find (hash, name);
8604 gas_assert (amo);
8605 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8606
df58fc94 8607 do
8b082fb1
TS
8608 {
8609 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8610 macros will never generate MDMX, MIPS-3D, or MT instructions.
8611 We try to match an instruction that fulfils the branch delay
8612 slot instruction length requirement (if any) of the previous
8613 instruction. While doing this we record the first instruction
8614 seen that matches all the other conditions and use it anyway
8615 if the requirement cannot be met; we will issue an appropriate
8616 warning later on. */
8617 if (strcmp (fmt, amo->args) == 0
8618 && amo->pinfo != INSN_MACRO
8619 && is_opcode_valid (amo)
8620 && is_size_valid (amo))
8621 {
8622 if (is_delay_slot_valid (amo))
8623 {
8624 mo = amo;
8625 break;
8626 }
8627 else if (!mo)
8628 mo = amo;
8629 }
8b082fb1 8630
df58fc94
RS
8631 ++amo;
8632 gas_assert (amo->name);
252b5132 8633 }
df58fc94 8634 while (strcmp (name, amo->name) == 0);
252b5132 8635
df58fc94 8636 gas_assert (mo);
1e915849 8637 create_insn (&insn, mo);
e077a1c8 8638 for (; *fmt; ++fmt)
252b5132 8639 {
e077a1c8 8640 switch (*fmt)
252b5132 8641 {
252b5132
RH
8642 case ',':
8643 case '(':
8644 case ')':
252b5132 8645 case 'z':
e077a1c8 8646 break;
252b5132
RH
8647
8648 case 'i':
8649 case 'j':
6e1304d8 8650 macro_read_relocs (&args, r);
9c2799c2 8651 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8652 || *r == BFD_RELOC_MIPS_HIGHER
8653 || *r == BFD_RELOC_HI16_S
8654 || *r == BFD_RELOC_LO16
8655 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8656 break;
e391c024
RS
8657
8658 case 'o':
8659 macro_read_relocs (&args, r);
e077a1c8 8660 break;
252b5132
RH
8661
8662 case 'u':
6e1304d8 8663 macro_read_relocs (&args, r);
9c2799c2 8664 gas_assert (ep != NULL
90ecf173
MR
8665 && (ep->X_op == O_constant
8666 || (ep->X_op == O_symbol
8667 && (*r == BFD_RELOC_MIPS_HIGHEST
8668 || *r == BFD_RELOC_HI16_S
8669 || *r == BFD_RELOC_HI16
8670 || *r == BFD_RELOC_GPREL16
8671 || *r == BFD_RELOC_MIPS_GOT_HI16
8672 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8673 break;
252b5132
RH
8674
8675 case 'p':
9c2799c2 8676 gas_assert (ep != NULL);
bad36eac 8677
252b5132
RH
8678 /*
8679 * This allows macro() to pass an immediate expression for
8680 * creating short branches without creating a symbol.
bad36eac
DJ
8681 *
8682 * We don't allow branch relaxation for these branches, as
8683 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8684 */
8685 if (ep->X_op == O_constant)
8686 {
df58fc94
RS
8687 /* For microMIPS we always use relocations for branches.
8688 So we should not resolve immediate values. */
8689 gas_assert (!mips_opts.micromips);
8690
bad36eac
DJ
8691 if ((ep->X_add_number & 3) != 0)
8692 as_bad (_("branch to misaligned address (0x%lx)"),
8693 (unsigned long) ep->X_add_number);
8694 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8695 as_bad (_("branch address range overflow (0x%lx)"),
8696 (unsigned long) ep->X_add_number);
252b5132
RH
8697 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8698 ep = NULL;
8699 }
8700 else
0b25d3e6 8701 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8702 break;
252b5132
RH
8703
8704 case 'a':
9c2799c2 8705 gas_assert (ep != NULL);
f6688943 8706 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8707 break;
d43b4baf 8708
252b5132 8709 default:
e077a1c8
RS
8710 operand = (mips_opts.micromips
8711 ? decode_micromips_operand (fmt)
8712 : decode_mips_operand (fmt));
8713 if (!operand)
8714 abort ();
8715
8716 uval = va_arg (args, int);
8717 if (operand->type == OP_CLO_CLZ_DEST)
8718 uval |= (uval << 5);
8719 insn_insert_operand (&insn, operand, uval);
8720
7361da2c 8721 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8722 ++fmt;
8723 break;
252b5132 8724 }
252b5132
RH
8725 }
8726 va_end (args);
9c2799c2 8727 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8728
df58fc94 8729 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8730}
8731
8732static void
67c0d1eb 8733mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8734 va_list *args)
252b5132 8735{
1e915849 8736 struct mips_opcode *mo;
252b5132 8737 struct mips_cl_insn insn;
e077a1c8 8738 const struct mips_operand *operand;
f6688943
TS
8739 bfd_reloc_code_real_type r[3]
8740 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8741
1e915849 8742 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8743 gas_assert (mo);
8744 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8745
1e915849 8746 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8747 {
1e915849 8748 ++mo;
9c2799c2
NC
8749 gas_assert (mo->name);
8750 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8751 }
8752
1e915849 8753 create_insn (&insn, mo);
e077a1c8 8754 for (; *fmt; ++fmt)
252b5132
RH
8755 {
8756 int c;
8757
e077a1c8 8758 c = *fmt;
252b5132
RH
8759 switch (c)
8760 {
252b5132
RH
8761 case ',':
8762 case '(':
8763 case ')':
e077a1c8 8764 break;
252b5132
RH
8765
8766 case '0':
8767 case 'S':
8768 case 'P':
8769 case 'R':
e077a1c8 8770 break;
252b5132
RH
8771
8772 case '<':
252b5132
RH
8773 case '4':
8774 case '5':
8775 case 'H':
8776 case 'W':
8777 case 'D':
8778 case 'j':
8779 case '8':
8780 case 'V':
8781 case 'C':
8782 case 'U':
8783 case 'k':
8784 case 'K':
8785 case 'p':
8786 case 'q':
8787 {
b886a2ab
RS
8788 offsetT value;
8789
9c2799c2 8790 gas_assert (ep != NULL);
252b5132
RH
8791
8792 if (ep->X_op != O_constant)
874e8986 8793 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8794 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8795 {
b886a2ab 8796 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8797 ep = NULL;
f6688943 8798 *r = BFD_RELOC_UNUSED;
252b5132
RH
8799 }
8800 }
e077a1c8 8801 break;
252b5132 8802
e077a1c8
RS
8803 default:
8804 operand = decode_mips16_operand (c, FALSE);
8805 if (!operand)
8806 abort ();
252b5132 8807
4a06e5a2 8808 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8809 break;
8810 }
252b5132
RH
8811 }
8812
9c2799c2 8813 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8814
df58fc94 8815 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8816}
8817
438c16b8
TS
8818/*
8819 * Generate a "jalr" instruction with a relocation hint to the called
8820 * function. This occurs in NewABI PIC code.
8821 */
8822static void
df58fc94 8823macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8824{
df58fc94
RS
8825 static const bfd_reloc_code_real_type jalr_relocs[2]
8826 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8827 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8828 const char *jalr;
685736be 8829 char *f = NULL;
b34976b6 8830
1180b5a4 8831 if (MIPS_JALR_HINT_P (ep))
f21f8242 8832 {
cc3d92a5 8833 frag_grow (8);
f21f8242
AO
8834 f = frag_more (0);
8835 }
2906b037 8836 if (mips_opts.micromips)
df58fc94 8837 {
833794fc
MR
8838 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8839 ? "jalr" : "jalrs");
e64af278 8840 if (MIPS_JALR_HINT_P (ep)
833794fc 8841 || mips_opts.insn32
e64af278 8842 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8843 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8844 else
8845 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8846 }
2906b037
MR
8847 else
8848 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8849 if (MIPS_JALR_HINT_P (ep))
df58fc94 8850 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8851}
8852
252b5132
RH
8853/*
8854 * Generate a "lui" instruction.
8855 */
8856static void
67c0d1eb 8857macro_build_lui (expressionS *ep, int regnum)
252b5132 8858{
9c2799c2 8859 gas_assert (! mips_opts.mips16);
252b5132 8860
df58fc94 8861 if (ep->X_op != O_constant)
252b5132 8862 {
9c2799c2 8863 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8864 /* _gp_disp is a special case, used from s_cpload.
8865 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8866 gas_assert (mips_pic == NO_PIC
78e1bb40 8867 || (! HAVE_NEWABI
aa6975fb
ILT
8868 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8869 || (! mips_in_shared
bbe506e8
TS
8870 && strcmp (S_GET_NAME (ep->X_add_symbol),
8871 "__gnu_local_gp") == 0));
252b5132
RH
8872 }
8873
df58fc94 8874 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8875}
8876
885add95
CD
8877/* Generate a sequence of instructions to do a load or store from a constant
8878 offset off of a base register (breg) into/from a target register (treg),
8879 using AT if necessary. */
8880static void
67c0d1eb
RS
8881macro_build_ldst_constoffset (expressionS *ep, const char *op,
8882 int treg, int breg, int dbl)
885add95 8883{
9c2799c2 8884 gas_assert (ep->X_op == O_constant);
885add95 8885
256ab948 8886 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8887 if (!dbl)
8888 normalize_constant_expr (ep);
256ab948 8889
67c1ffbe 8890 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8891 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8892 as_warn (_("operand overflow"));
8893
8894 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8895 {
8896 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8897 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8898 }
8899 else
8900 {
8901 /* 32-bit offset, need multiple instructions and AT, like:
8902 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8903 addu $tempreg,$tempreg,$breg
8904 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8905 to handle the complete offset. */
67c0d1eb
RS
8906 macro_build_lui (ep, AT);
8907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8908 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8909
741fe287 8910 if (!mips_opts.at)
1661c76c 8911 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8912 }
8913}
8914
252b5132
RH
8915/* set_at()
8916 * Generates code to set the $at register to true (one)
8917 * if reg is less than the immediate expression.
8918 */
8919static void
67c0d1eb 8920set_at (int reg, int unsignedp)
252b5132 8921{
b0e6f033 8922 if (imm_expr.X_add_number >= -0x8000
252b5132 8923 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8924 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8925 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8926 else
8927 {
bad1aba3 8928 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8929 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8930 }
8931}
8932
252b5132
RH
8933/* Count the leading zeroes by performing a binary chop. This is a
8934 bulky bit of source, but performance is a LOT better for the
8935 majority of values than a simple loop to count the bits:
8936 for (lcnt = 0; (lcnt < 32); lcnt++)
8937 if ((v) & (1 << (31 - lcnt)))
8938 break;
8939 However it is not code size friendly, and the gain will drop a bit
8940 on certain cached systems.
8941*/
8942#define COUNT_TOP_ZEROES(v) \
8943 (((v) & ~0xffff) == 0 \
8944 ? ((v) & ~0xff) == 0 \
8945 ? ((v) & ~0xf) == 0 \
8946 ? ((v) & ~0x3) == 0 \
8947 ? ((v) & ~0x1) == 0 \
8948 ? !(v) \
8949 ? 32 \
8950 : 31 \
8951 : 30 \
8952 : ((v) & ~0x7) == 0 \
8953 ? 29 \
8954 : 28 \
8955 : ((v) & ~0x3f) == 0 \
8956 ? ((v) & ~0x1f) == 0 \
8957 ? 27 \
8958 : 26 \
8959 : ((v) & ~0x7f) == 0 \
8960 ? 25 \
8961 : 24 \
8962 : ((v) & ~0xfff) == 0 \
8963 ? ((v) & ~0x3ff) == 0 \
8964 ? ((v) & ~0x1ff) == 0 \
8965 ? 23 \
8966 : 22 \
8967 : ((v) & ~0x7ff) == 0 \
8968 ? 21 \
8969 : 20 \
8970 : ((v) & ~0x3fff) == 0 \
8971 ? ((v) & ~0x1fff) == 0 \
8972 ? 19 \
8973 : 18 \
8974 : ((v) & ~0x7fff) == 0 \
8975 ? 17 \
8976 : 16 \
8977 : ((v) & ~0xffffff) == 0 \
8978 ? ((v) & ~0xfffff) == 0 \
8979 ? ((v) & ~0x3ffff) == 0 \
8980 ? ((v) & ~0x1ffff) == 0 \
8981 ? 15 \
8982 : 14 \
8983 : ((v) & ~0x7ffff) == 0 \
8984 ? 13 \
8985 : 12 \
8986 : ((v) & ~0x3fffff) == 0 \
8987 ? ((v) & ~0x1fffff) == 0 \
8988 ? 11 \
8989 : 10 \
8990 : ((v) & ~0x7fffff) == 0 \
8991 ? 9 \
8992 : 8 \
8993 : ((v) & ~0xfffffff) == 0 \
8994 ? ((v) & ~0x3ffffff) == 0 \
8995 ? ((v) & ~0x1ffffff) == 0 \
8996 ? 7 \
8997 : 6 \
8998 : ((v) & ~0x7ffffff) == 0 \
8999 ? 5 \
9000 : 4 \
9001 : ((v) & ~0x3fffffff) == 0 \
9002 ? ((v) & ~0x1fffffff) == 0 \
9003 ? 3 \
9004 : 2 \
9005 : ((v) & ~0x7fffffff) == 0 \
9006 ? 1 \
9007 : 0)
9008
9009/* load_register()
67c1ffbe 9010 * This routine generates the least number of instructions necessary to load
252b5132
RH
9011 * an absolute expression value into a register.
9012 */
9013static void
67c0d1eb 9014load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
9015{
9016 int freg;
9017 expressionS hi32, lo32;
9018
9019 if (ep->X_op != O_big)
9020 {
9c2799c2 9021 gas_assert (ep->X_op == O_constant);
256ab948
TS
9022
9023 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9024 if (!dbl)
9025 normalize_constant_expr (ep);
256ab948
TS
9026
9027 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
9028 {
9029 /* We can handle 16 bit signed values with an addiu to
9030 $zero. No need to ever use daddiu here, since $zero and
9031 the result are always correct in 32 bit mode. */
67c0d1eb 9032 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9033 return;
9034 }
9035 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9036 {
9037 /* We can handle 16 bit unsigned values with an ori to
9038 $zero. */
67c0d1eb 9039 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9040 return;
9041 }
256ab948 9042 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
9043 {
9044 /* 32 bit values require an lui. */
df58fc94 9045 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9046 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 9047 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
9048 return;
9049 }
9050 }
9051
9052 /* The value is larger than 32 bits. */
9053
bad1aba3 9054 if (!dbl || GPR_SIZE == 32)
252b5132 9055 {
55e08f71
NC
9056 char value[32];
9057
9058 sprintf_vma (value, ep->X_add_number);
1661c76c 9059 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 9060 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9061 return;
9062 }
9063
9064 if (ep->X_op != O_big)
9065 {
9066 hi32 = *ep;
9067 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9068 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9069 hi32.X_add_number &= 0xffffffff;
9070 lo32 = *ep;
9071 lo32.X_add_number &= 0xffffffff;
9072 }
9073 else
9074 {
9c2799c2 9075 gas_assert (ep->X_add_number > 2);
252b5132
RH
9076 if (ep->X_add_number == 3)
9077 generic_bignum[3] = 0;
9078 else if (ep->X_add_number > 4)
1661c76c 9079 as_bad (_("number larger than 64 bits"));
252b5132
RH
9080 lo32.X_op = O_constant;
9081 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9082 hi32.X_op = O_constant;
9083 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9084 }
9085
9086 if (hi32.X_add_number == 0)
9087 freg = 0;
9088 else
9089 {
9090 int shift, bit;
9091 unsigned long hi, lo;
9092
956cd1d6 9093 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
9094 {
9095 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9096 {
67c0d1eb 9097 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9098 return;
9099 }
9100 if (lo32.X_add_number & 0x80000000)
9101 {
df58fc94 9102 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9103 if (lo32.X_add_number & 0xffff)
67c0d1eb 9104 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
9105 return;
9106 }
9107 }
252b5132
RH
9108
9109 /* Check for 16bit shifted constant. We know that hi32 is
9110 non-zero, so start the mask on the first bit of the hi32
9111 value. */
9112 shift = 17;
9113 do
beae10d5
KH
9114 {
9115 unsigned long himask, lomask;
9116
9117 if (shift < 32)
9118 {
9119 himask = 0xffff >> (32 - shift);
9120 lomask = (0xffff << shift) & 0xffffffff;
9121 }
9122 else
9123 {
9124 himask = 0xffff << (shift - 32);
9125 lomask = 0;
9126 }
9127 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9128 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9129 {
9130 expressionS tmp;
9131
9132 tmp.X_op = O_constant;
9133 if (shift < 32)
9134 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9135 | (lo32.X_add_number >> shift));
9136 else
9137 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 9138 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 9139 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9140 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9141 return;
9142 }
f9419b05 9143 ++shift;
beae10d5
KH
9144 }
9145 while (shift <= (64 - 16));
252b5132
RH
9146
9147 /* Find the bit number of the lowest one bit, and store the
9148 shifted value in hi/lo. */
9149 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9150 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9151 if (lo != 0)
9152 {
9153 bit = 0;
9154 while ((lo & 1) == 0)
9155 {
9156 lo >>= 1;
9157 ++bit;
9158 }
9159 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9160 hi >>= bit;
9161 }
9162 else
9163 {
9164 bit = 32;
9165 while ((hi & 1) == 0)
9166 {
9167 hi >>= 1;
9168 ++bit;
9169 }
9170 lo = hi;
9171 hi = 0;
9172 }
9173
9174 /* Optimize if the shifted value is a (power of 2) - 1. */
9175 if ((hi == 0 && ((lo + 1) & lo) == 0)
9176 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9177 {
9178 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9179 if (shift != 0)
beae10d5 9180 {
252b5132
RH
9181 expressionS tmp;
9182
9183 /* This instruction will set the register to be all
9184 ones. */
beae10d5
KH
9185 tmp.X_op = O_constant;
9186 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9187 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9188 if (bit != 0)
9189 {
9190 bit += shift;
df58fc94 9191 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9192 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9193 }
df58fc94 9194 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9195 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9196 return;
9197 }
9198 }
252b5132
RH
9199
9200 /* Sign extend hi32 before calling load_register, because we can
9201 generally get better code when we load a sign extended value. */
9202 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9203 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9204 load_register (reg, &hi32, 0);
252b5132
RH
9205 freg = reg;
9206 }
9207 if ((lo32.X_add_number & 0xffff0000) == 0)
9208 {
9209 if (freg != 0)
9210 {
df58fc94 9211 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9212 freg = reg;
9213 }
9214 }
9215 else
9216 {
9217 expressionS mid16;
9218
956cd1d6 9219 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9220 {
df58fc94
RS
9221 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9222 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9223 return;
9224 }
252b5132
RH
9225
9226 if (freg != 0)
9227 {
df58fc94 9228 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9229 freg = reg;
9230 }
9231 mid16 = lo32;
9232 mid16.X_add_number >>= 16;
67c0d1eb 9233 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9234 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9235 freg = reg;
9236 }
9237 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9238 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9239}
9240
269137b2
TS
9241static inline void
9242load_delay_nop (void)
9243{
9244 if (!gpr_interlocks)
9245 macro_build (NULL, "nop", "");
9246}
9247
252b5132
RH
9248/* Load an address into a register. */
9249
9250static void
67c0d1eb 9251load_address (int reg, expressionS *ep, int *used_at)
252b5132 9252{
252b5132
RH
9253 if (ep->X_op != O_constant
9254 && ep->X_op != O_symbol)
9255 {
9256 as_bad (_("expression too complex"));
9257 ep->X_op = O_constant;
9258 }
9259
9260 if (ep->X_op == O_constant)
9261 {
67c0d1eb 9262 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9263 return;
9264 }
9265
9266 if (mips_pic == NO_PIC)
9267 {
9268 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9269 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9270 Otherwise we want
9271 lui $reg,<sym> (BFD_RELOC_HI16_S)
9272 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9273 If we have an addend, we always use the latter form.
76b3015f 9274
d6bc6245
TS
9275 With 64bit address space and a usable $at we want
9276 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9277 lui $at,<sym> (BFD_RELOC_HI16_S)
9278 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9279 daddiu $at,<sym> (BFD_RELOC_LO16)
9280 dsll32 $reg,0
3a482fd5 9281 daddu $reg,$reg,$at
76b3015f 9282
c03099e6 9283 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9284 on superscalar processors.
9285 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9286 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9287 dsll $reg,16
9288 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9289 dsll $reg,16
9290 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9291
9292 For GP relative symbols in 64bit address space we can use
9293 the same sequence as in 32bit address space. */
aed1a261 9294 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9295 {
6caf9ef4
TS
9296 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9297 && !nopic_need_relax (ep->X_add_symbol, 1))
9298 {
9299 relax_start (ep->X_add_symbol);
9300 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9301 mips_gp_register, BFD_RELOC_GPREL16);
9302 relax_switch ();
9303 }
d6bc6245 9304
741fe287 9305 if (*used_at == 0 && mips_opts.at)
d6bc6245 9306 {
df58fc94
RS
9307 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9308 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9309 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9310 BFD_RELOC_MIPS_HIGHER);
9311 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9312 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9313 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9314 *used_at = 1;
9315 }
9316 else
9317 {
df58fc94 9318 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9319 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9320 BFD_RELOC_MIPS_HIGHER);
df58fc94 9321 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9322 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9323 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9324 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9325 }
6caf9ef4
TS
9326
9327 if (mips_relax.sequence)
9328 relax_end ();
d6bc6245 9329 }
252b5132
RH
9330 else
9331 {
d6bc6245 9332 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9333 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9334 {
4d7206a2 9335 relax_start (ep->X_add_symbol);
67c0d1eb 9336 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9337 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9338 relax_switch ();
d6bc6245 9339 }
67c0d1eb
RS
9340 macro_build_lui (ep, reg);
9341 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9342 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9343 if (mips_relax.sequence)
9344 relax_end ();
d6bc6245 9345 }
252b5132 9346 }
0a44bf69 9347 else if (!mips_big_got)
252b5132
RH
9348 {
9349 expressionS ex;
9350
9351 /* If this is a reference to an external symbol, we want
9352 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9353 Otherwise we want
9354 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9355 nop
9356 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9357 If there is a constant, it must be added in after.
9358
ed6fb7bd 9359 If we have NewABI, we want
f5040a92
AO
9360 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9361 unless we're referencing a global symbol with a non-zero
9362 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9363 if (HAVE_NEWABI)
9364 {
f5040a92
AO
9365 if (ep->X_add_number)
9366 {
4d7206a2 9367 ex.X_add_number = ep->X_add_number;
f5040a92 9368 ep->X_add_number = 0;
4d7206a2 9369 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9370 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9371 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9372 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9373 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9374 ex.X_op = O_constant;
67c0d1eb 9375 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9376 reg, reg, BFD_RELOC_LO16);
f5040a92 9377 ep->X_add_number = ex.X_add_number;
4d7206a2 9378 relax_switch ();
f5040a92 9379 }
67c0d1eb 9380 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9381 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9382 if (mips_relax.sequence)
9383 relax_end ();
ed6fb7bd
SC
9384 }
9385 else
9386 {
f5040a92
AO
9387 ex.X_add_number = ep->X_add_number;
9388 ep->X_add_number = 0;
67c0d1eb
RS
9389 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9390 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9391 load_delay_nop ();
4d7206a2
RS
9392 relax_start (ep->X_add_symbol);
9393 relax_switch ();
67c0d1eb 9394 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9395 BFD_RELOC_LO16);
4d7206a2 9396 relax_end ();
ed6fb7bd 9397
f5040a92
AO
9398 if (ex.X_add_number != 0)
9399 {
9400 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9401 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9402 ex.X_op = O_constant;
67c0d1eb 9403 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9404 reg, reg, BFD_RELOC_LO16);
f5040a92 9405 }
252b5132
RH
9406 }
9407 }
0a44bf69 9408 else if (mips_big_got)
252b5132
RH
9409 {
9410 expressionS ex;
252b5132
RH
9411
9412 /* This is the large GOT case. If this is a reference to an
9413 external symbol, we want
9414 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9415 addu $reg,$reg,$gp
9416 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9417
9418 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9419 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9420 nop
9421 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9422 If there is a constant, it must be added in after.
f5040a92
AO
9423
9424 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9425 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9426 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9427 */
438c16b8
TS
9428 if (HAVE_NEWABI)
9429 {
4d7206a2 9430 ex.X_add_number = ep->X_add_number;
f5040a92 9431 ep->X_add_number = 0;
4d7206a2 9432 relax_start (ep->X_add_symbol);
df58fc94 9433 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9434 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9435 reg, reg, mips_gp_register);
9436 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9437 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9438 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9439 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9440 else if (ex.X_add_number)
9441 {
9442 ex.X_op = O_constant;
67c0d1eb
RS
9443 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9444 BFD_RELOC_LO16);
f5040a92
AO
9445 }
9446
9447 ep->X_add_number = ex.X_add_number;
4d7206a2 9448 relax_switch ();
67c0d1eb 9449 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9450 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9451 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9452 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9453 relax_end ();
438c16b8 9454 }
252b5132 9455 else
438c16b8 9456 {
f5040a92
AO
9457 ex.X_add_number = ep->X_add_number;
9458 ep->X_add_number = 0;
4d7206a2 9459 relax_start (ep->X_add_symbol);
df58fc94 9460 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9462 reg, reg, mips_gp_register);
9463 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9464 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9465 relax_switch ();
9466 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9467 {
9468 /* We need a nop before loading from $gp. This special
9469 check is required because the lui which starts the main
9470 instruction stream does not refer to $gp, and so will not
9471 insert the nop which may be required. */
67c0d1eb 9472 macro_build (NULL, "nop", "");
438c16b8 9473 }
67c0d1eb 9474 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9475 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9476 load_delay_nop ();
67c0d1eb 9477 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9478 BFD_RELOC_LO16);
4d7206a2 9479 relax_end ();
438c16b8 9480
f5040a92
AO
9481 if (ex.X_add_number != 0)
9482 {
9483 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9484 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9485 ex.X_op = O_constant;
67c0d1eb
RS
9486 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9487 BFD_RELOC_LO16);
f5040a92 9488 }
252b5132
RH
9489 }
9490 }
252b5132
RH
9491 else
9492 abort ();
8fc2e39e 9493
741fe287 9494 if (!mips_opts.at && *used_at == 1)
1661c76c 9495 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9496}
9497
ea1fb5dc
RS
9498/* Move the contents of register SOURCE into register DEST. */
9499
9500static void
67c0d1eb 9501move_register (int dest, int source)
ea1fb5dc 9502{
df58fc94
RS
9503 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9504 instruction specifically requires a 32-bit one. */
9505 if (mips_opts.micromips
833794fc 9506 && !mips_opts.insn32
df58fc94 9507 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9508 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9509 else
40fc1451 9510 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9511}
9512
4d7206a2 9513/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9514 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9515 The two alternatives are:
4d7206a2
RS
9516
9517 Global symbol Local sybmol
9518 ------------- ------------
9519 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9520 ... ...
9521 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9522
9523 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9524 emits the second for a 16-bit offset or add_got_offset_hilo emits
9525 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9526
9527static void
67c0d1eb 9528load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9529{
9530 expressionS global;
9531
9532 global = *local;
9533 global.X_add_number = 0;
9534
9535 relax_start (local->X_add_symbol);
67c0d1eb
RS
9536 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9537 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9538 relax_switch ();
67c0d1eb
RS
9539 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9540 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9541 relax_end ();
9542}
9543
9544static void
67c0d1eb 9545add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9546{
9547 expressionS global;
9548
9549 global.X_op = O_constant;
9550 global.X_op_symbol = NULL;
9551 global.X_add_symbol = NULL;
9552 global.X_add_number = local->X_add_number;
9553
9554 relax_start (local->X_add_symbol);
67c0d1eb 9555 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9556 dest, dest, BFD_RELOC_LO16);
9557 relax_switch ();
67c0d1eb 9558 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9559 relax_end ();
9560}
9561
f6a22291
MR
9562static void
9563add_got_offset_hilo (int dest, expressionS *local, int tmp)
9564{
9565 expressionS global;
9566 int hold_mips_optimize;
9567
9568 global.X_op = O_constant;
9569 global.X_op_symbol = NULL;
9570 global.X_add_symbol = NULL;
9571 global.X_add_number = local->X_add_number;
9572
9573 relax_start (local->X_add_symbol);
9574 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9575 relax_switch ();
9576 /* Set mips_optimize around the lui instruction to avoid
9577 inserting an unnecessary nop after the lw. */
9578 hold_mips_optimize = mips_optimize;
9579 mips_optimize = 2;
9580 macro_build_lui (&global, tmp);
9581 mips_optimize = hold_mips_optimize;
9582 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9583 relax_end ();
9584
9585 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9586}
9587
df58fc94
RS
9588/* Emit a sequence of instructions to emulate a branch likely operation.
9589 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9590 is its complementing branch with the original condition negated.
9591 CALL is set if the original branch specified the link operation.
9592 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9593
9594 Code like this is produced in the noreorder mode:
9595
9596 BRNEG <args>, 1f
9597 nop
9598 b <sym>
9599 delay slot (executed only if branch taken)
9600 1:
9601
9602 or, if CALL is set:
9603
9604 BRNEG <args>, 1f
9605 nop
9606 bal <sym>
9607 delay slot (executed only if branch taken)
9608 1:
9609
9610 In the reorder mode the delay slot would be filled with a nop anyway,
9611 so code produced is simply:
9612
9613 BR <args>, <sym>
9614 nop
9615
9616 This function is used when producing code for the microMIPS ASE that
9617 does not implement branch likely instructions in hardware. */
9618
9619static void
9620macro_build_branch_likely (const char *br, const char *brneg,
9621 int call, expressionS *ep, const char *fmt,
9622 unsigned int sreg, unsigned int treg)
9623{
9624 int noreorder = mips_opts.noreorder;
9625 expressionS expr1;
9626
9627 gas_assert (mips_opts.micromips);
9628 start_noreorder ();
9629 if (noreorder)
9630 {
9631 micromips_label_expr (&expr1);
9632 macro_build (&expr1, brneg, fmt, sreg, treg);
9633 macro_build (NULL, "nop", "");
9634 macro_build (ep, call ? "bal" : "b", "p");
9635
9636 /* Set to true so that append_insn adds a label. */
9637 emit_branch_likely_macro = TRUE;
9638 }
9639 else
9640 {
9641 macro_build (ep, br, fmt, sreg, treg);
9642 macro_build (NULL, "nop", "");
9643 }
9644 end_noreorder ();
9645}
9646
9647/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9648 the condition code tested. EP specifies the branch target. */
9649
9650static void
9651macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9652{
9653 const int call = 0;
9654 const char *brneg;
9655 const char *br;
9656
9657 switch (type)
9658 {
9659 case M_BC1FL:
9660 br = "bc1f";
9661 brneg = "bc1t";
9662 break;
9663 case M_BC1TL:
9664 br = "bc1t";
9665 brneg = "bc1f";
9666 break;
9667 case M_BC2FL:
9668 br = "bc2f";
9669 brneg = "bc2t";
9670 break;
9671 case M_BC2TL:
9672 br = "bc2t";
9673 brneg = "bc2f";
9674 break;
9675 default:
9676 abort ();
9677 }
9678 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9679}
9680
9681/* Emit a two-argument branch macro specified by TYPE, using SREG as
9682 the register tested. EP specifies the branch target. */
9683
9684static void
9685macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9686{
9687 const char *brneg = NULL;
9688 const char *br;
9689 int call = 0;
9690
9691 switch (type)
9692 {
9693 case M_BGEZ:
9694 br = "bgez";
9695 break;
9696 case M_BGEZL:
9697 br = mips_opts.micromips ? "bgez" : "bgezl";
9698 brneg = "bltz";
9699 break;
9700 case M_BGEZALL:
9701 gas_assert (mips_opts.micromips);
833794fc 9702 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9703 brneg = "bltz";
9704 call = 1;
9705 break;
9706 case M_BGTZ:
9707 br = "bgtz";
9708 break;
9709 case M_BGTZL:
9710 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9711 brneg = "blez";
9712 break;
9713 case M_BLEZ:
9714 br = "blez";
9715 break;
9716 case M_BLEZL:
9717 br = mips_opts.micromips ? "blez" : "blezl";
9718 brneg = "bgtz";
9719 break;
9720 case M_BLTZ:
9721 br = "bltz";
9722 break;
9723 case M_BLTZL:
9724 br = mips_opts.micromips ? "bltz" : "bltzl";
9725 brneg = "bgez";
9726 break;
9727 case M_BLTZALL:
9728 gas_assert (mips_opts.micromips);
833794fc 9729 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9730 brneg = "bgez";
9731 call = 1;
9732 break;
9733 default:
9734 abort ();
9735 }
9736 if (mips_opts.micromips && brneg)
9737 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9738 else
9739 macro_build (ep, br, "s,p", sreg);
9740}
9741
9742/* Emit a three-argument branch macro specified by TYPE, using SREG and
9743 TREG as the registers tested. EP specifies the branch target. */
9744
9745static void
9746macro_build_branch_rsrt (int type, expressionS *ep,
9747 unsigned int sreg, unsigned int treg)
9748{
9749 const char *brneg = NULL;
9750 const int call = 0;
9751 const char *br;
9752
9753 switch (type)
9754 {
9755 case M_BEQ:
9756 case M_BEQ_I:
9757 br = "beq";
9758 break;
9759 case M_BEQL:
9760 case M_BEQL_I:
9761 br = mips_opts.micromips ? "beq" : "beql";
9762 brneg = "bne";
9763 break;
9764 case M_BNE:
9765 case M_BNE_I:
9766 br = "bne";
9767 break;
9768 case M_BNEL:
9769 case M_BNEL_I:
9770 br = mips_opts.micromips ? "bne" : "bnel";
9771 brneg = "beq";
9772 break;
9773 default:
9774 abort ();
9775 }
9776 if (mips_opts.micromips && brneg)
9777 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9778 else
9779 macro_build (ep, br, "s,t,p", sreg, treg);
9780}
9781
f2ae14a1
RS
9782/* Return the high part that should be loaded in order to make the low
9783 part of VALUE accessible using an offset of OFFBITS bits. */
9784
9785static offsetT
9786offset_high_part (offsetT value, unsigned int offbits)
9787{
9788 offsetT bias;
9789 addressT low_mask;
9790
9791 if (offbits == 0)
9792 return value;
9793 bias = 1 << (offbits - 1);
9794 low_mask = bias * 2 - 1;
9795 return (value + bias) & ~low_mask;
9796}
9797
9798/* Return true if the value stored in offset_expr and offset_reloc
9799 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9800 amount that the caller wants to add without inducing overflow
9801 and ALIGN is the known alignment of the value in bytes. */
9802
9803static bfd_boolean
9804small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9805{
9806 if (offbits == 16)
9807 {
9808 /* Accept any relocation operator if overflow isn't a concern. */
9809 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9810 return TRUE;
9811
9812 /* These relocations are guaranteed not to overflow in correct links. */
9813 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9814 || gprel16_reloc_p (*offset_reloc))
9815 return TRUE;
9816 }
9817 if (offset_expr.X_op == O_constant
9818 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9819 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9820 return TRUE;
9821 return FALSE;
9822}
9823
252b5132
RH
9824/*
9825 * Build macros
9826 * This routine implements the seemingly endless macro or synthesized
9827 * instructions and addressing modes in the mips assembly language. Many
9828 * of these macros are simple and are similar to each other. These could
67c1ffbe 9829 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9830 * this verbose method. Others are not simple macros but are more like
9831 * optimizing code generation.
9832 * One interesting optimization is when several store macros appear
67c1ffbe 9833 * consecutively that would load AT with the upper half of the same address.
2b0f3761 9834 * The ensuing load upper instructions are omitted. This implies some kind
252b5132
RH
9835 * of global optimization. We currently only optimize within a single macro.
9836 * For many of the load and store macros if the address is specified as a
9837 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9838 * first load register 'at' with zero and use it as the base register. The
9839 * mips assembler simply uses register $zero. Just one tiny optimization
9840 * we're missing.
9841 */
9842static void
833794fc 9843macro (struct mips_cl_insn *ip, char *str)
252b5132 9844{
c0ebe874
RS
9845 const struct mips_operand_array *operands;
9846 unsigned int breg, i;
741fe287 9847 unsigned int tempreg;
252b5132 9848 int mask;
43841e91 9849 int used_at = 0;
df58fc94 9850 expressionS label_expr;
252b5132 9851 expressionS expr1;
df58fc94 9852 expressionS *ep;
252b5132
RH
9853 const char *s;
9854 const char *s2;
9855 const char *fmt;
9856 int likely = 0;
252b5132 9857 int coproc = 0;
7f3c4072 9858 int offbits = 16;
1abe91b1 9859 int call = 0;
df58fc94
RS
9860 int jals = 0;
9861 int dbl = 0;
9862 int imm = 0;
9863 int ust = 0;
9864 int lp = 0;
f2ae14a1 9865 bfd_boolean large_offset;
252b5132 9866 int off;
252b5132 9867 int hold_mips_optimize;
f2ae14a1 9868 unsigned int align;
c0ebe874 9869 unsigned int op[MAX_OPERANDS];
252b5132 9870
9c2799c2 9871 gas_assert (! mips_opts.mips16);
252b5132 9872
c0ebe874
RS
9873 operands = insn_operands (ip);
9874 for (i = 0; i < MAX_OPERANDS; i++)
9875 if (operands->operand[i])
9876 op[i] = insn_extract_operand (ip, operands->operand[i]);
9877 else
9878 op[i] = -1;
9879
252b5132
RH
9880 mask = ip->insn_mo->mask;
9881
df58fc94
RS
9882 label_expr.X_op = O_constant;
9883 label_expr.X_op_symbol = NULL;
9884 label_expr.X_add_symbol = NULL;
9885 label_expr.X_add_number = 0;
9886
252b5132
RH
9887 expr1.X_op = O_constant;
9888 expr1.X_op_symbol = NULL;
9889 expr1.X_add_symbol = NULL;
9890 expr1.X_add_number = 1;
f2ae14a1 9891 align = 1;
252b5132
RH
9892
9893 switch (mask)
9894 {
9895 case M_DABS:
9896 dbl = 1;
1a0670f3 9897 /* Fall through. */
252b5132 9898 case M_ABS:
df58fc94
RS
9899 /* bgez $a0,1f
9900 move v0,$a0
9901 sub v0,$zero,$a0
9902 1:
9903 */
252b5132 9904
7d10b47d 9905 start_noreorder ();
252b5132 9906
df58fc94
RS
9907 if (mips_opts.micromips)
9908 micromips_label_expr (&label_expr);
9909 else
9910 label_expr.X_add_number = 8;
c0ebe874
RS
9911 macro_build (&label_expr, "bgez", "s,p", op[1]);
9912 if (op[0] == op[1])
a605d2b3 9913 macro_build (NULL, "nop", "");
252b5132 9914 else
c0ebe874
RS
9915 move_register (op[0], op[1]);
9916 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9917 if (mips_opts.micromips)
9918 micromips_add_label ();
252b5132 9919
7d10b47d 9920 end_noreorder ();
8fc2e39e 9921 break;
252b5132
RH
9922
9923 case M_ADD_I:
9924 s = "addi";
9925 s2 = "add";
9926 goto do_addi;
9927 case M_ADDU_I:
9928 s = "addiu";
9929 s2 = "addu";
9930 goto do_addi;
9931 case M_DADD_I:
9932 dbl = 1;
9933 s = "daddi";
9934 s2 = "dadd";
df58fc94
RS
9935 if (!mips_opts.micromips)
9936 goto do_addi;
b0e6f033 9937 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9938 && imm_expr.X_add_number < 0x200)
9939 {
b0e6f033
RS
9940 macro_build (NULL, s, "t,r,.", op[0], op[1],
9941 (int) imm_expr.X_add_number);
df58fc94
RS
9942 break;
9943 }
9944 goto do_addi_i;
252b5132
RH
9945 case M_DADDU_I:
9946 dbl = 1;
9947 s = "daddiu";
9948 s2 = "daddu";
9949 do_addi:
b0e6f033 9950 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9951 && imm_expr.X_add_number < 0x8000)
9952 {
c0ebe874 9953 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9954 break;
252b5132 9955 }
df58fc94 9956 do_addi_i:
8fc2e39e 9957 used_at = 1;
67c0d1eb 9958 load_register (AT, &imm_expr, dbl);
c0ebe874 9959 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9960 break;
9961
9962 case M_AND_I:
9963 s = "andi";
9964 s2 = "and";
9965 goto do_bit;
9966 case M_OR_I:
9967 s = "ori";
9968 s2 = "or";
9969 goto do_bit;
9970 case M_NOR_I:
9971 s = "";
9972 s2 = "nor";
9973 goto do_bit;
9974 case M_XOR_I:
9975 s = "xori";
9976 s2 = "xor";
9977 do_bit:
b0e6f033 9978 if (imm_expr.X_add_number >= 0
252b5132
RH
9979 && imm_expr.X_add_number < 0x10000)
9980 {
9981 if (mask != M_NOR_I)
c0ebe874 9982 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9983 else
9984 {
67c0d1eb 9985 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9986 op[0], op[1], BFD_RELOC_LO16);
9987 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9988 }
8fc2e39e 9989 break;
252b5132
RH
9990 }
9991
8fc2e39e 9992 used_at = 1;
bad1aba3 9993 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9994 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9995 break;
9996
8b082fb1
TS
9997 case M_BALIGN:
9998 switch (imm_expr.X_add_number)
9999 {
10000 case 0:
10001 macro_build (NULL, "nop", "");
10002 break;
10003 case 2:
c0ebe874 10004 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 10005 break;
03f66e8a
MR
10006 case 1:
10007 case 3:
c0ebe874 10008 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 10009 (int) imm_expr.X_add_number);
8b082fb1 10010 break;
03f66e8a
MR
10011 default:
10012 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10013 (unsigned long) imm_expr.X_add_number);
10014 break;
8b082fb1
TS
10015 }
10016 break;
10017
df58fc94
RS
10018 case M_BC1FL:
10019 case M_BC1TL:
10020 case M_BC2FL:
10021 case M_BC2TL:
10022 gas_assert (mips_opts.micromips);
10023 macro_build_branch_ccl (mask, &offset_expr,
10024 EXTRACT_OPERAND (1, BCC, *ip));
10025 break;
10026
252b5132 10027 case M_BEQ_I:
252b5132 10028 case M_BEQL_I:
252b5132 10029 case M_BNE_I:
252b5132 10030 case M_BNEL_I:
b0e6f033 10031 if (imm_expr.X_add_number == 0)
c0ebe874 10032 op[1] = 0;
df58fc94 10033 else
252b5132 10034 {
c0ebe874 10035 op[1] = AT;
df58fc94 10036 used_at = 1;
bad1aba3 10037 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 10038 }
df58fc94
RS
10039 /* Fall through. */
10040 case M_BEQL:
10041 case M_BNEL:
c0ebe874 10042 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
10043 break;
10044
10045 case M_BGEL:
10046 likely = 1;
1a0670f3 10047 /* Fall through. */
252b5132 10048 case M_BGE:
c0ebe874
RS
10049 if (op[1] == 0)
10050 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10051 else if (op[0] == 0)
10052 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 10053 else
252b5132 10054 {
df58fc94 10055 used_at = 1;
c0ebe874 10056 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10057 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10058 &offset_expr, AT, ZERO);
252b5132 10059 }
df58fc94
RS
10060 break;
10061
10062 case M_BGEZL:
10063 case M_BGEZALL:
10064 case M_BGTZL:
10065 case M_BLEZL:
10066 case M_BLTZL:
10067 case M_BLTZALL:
c0ebe874 10068 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
10069 break;
10070
10071 case M_BGTL_I:
10072 likely = 1;
1a0670f3 10073 /* Fall through. */
252b5132 10074 case M_BGT_I:
90ecf173 10075 /* Check for > max integer. */
b0e6f033 10076 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
10077 {
10078 do_false:
90ecf173 10079 /* Result is always false. */
252b5132 10080 if (! likely)
a605d2b3 10081 macro_build (NULL, "nop", "");
252b5132 10082 else
df58fc94 10083 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 10084 break;
252b5132 10085 }
f9419b05 10086 ++imm_expr.X_add_number;
252b5132
RH
10087 /* FALLTHROUGH */
10088 case M_BGE_I:
10089 case M_BGEL_I:
10090 if (mask == M_BGEL_I)
10091 likely = 1;
b0e6f033 10092 if (imm_expr.X_add_number == 0)
252b5132 10093 {
df58fc94 10094 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 10095 &offset_expr, op[0]);
8fc2e39e 10096 break;
252b5132 10097 }
b0e6f033 10098 if (imm_expr.X_add_number == 1)
252b5132 10099 {
df58fc94 10100 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 10101 &offset_expr, op[0]);
8fc2e39e 10102 break;
252b5132 10103 }
b0e6f033 10104 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
10105 {
10106 do_true:
10107 /* result is always true */
1661c76c 10108 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 10109 macro_build (&offset_expr, "b", "p");
8fc2e39e 10110 break;
252b5132 10111 }
8fc2e39e 10112 used_at = 1;
c0ebe874 10113 set_at (op[0], 0);
df58fc94
RS
10114 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10115 &offset_expr, AT, ZERO);
252b5132
RH
10116 break;
10117
10118 case M_BGEUL:
10119 likely = 1;
1a0670f3 10120 /* Fall through. */
252b5132 10121 case M_BGEU:
c0ebe874 10122 if (op[1] == 0)
252b5132 10123 goto do_true;
c0ebe874 10124 else if (op[0] == 0)
df58fc94 10125 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10126 &offset_expr, ZERO, op[1]);
df58fc94 10127 else
252b5132 10128 {
df58fc94 10129 used_at = 1;
c0ebe874 10130 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10131 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10132 &offset_expr, AT, ZERO);
252b5132 10133 }
252b5132
RH
10134 break;
10135
10136 case M_BGTUL_I:
10137 likely = 1;
1a0670f3 10138 /* Fall through. */
252b5132 10139 case M_BGTU_I:
c0ebe874 10140 if (op[0] == 0
bad1aba3 10141 || (GPR_SIZE == 32
f01dc953 10142 && imm_expr.X_add_number == -1))
252b5132 10143 goto do_false;
f9419b05 10144 ++imm_expr.X_add_number;
252b5132
RH
10145 /* FALLTHROUGH */
10146 case M_BGEU_I:
10147 case M_BGEUL_I:
10148 if (mask == M_BGEUL_I)
10149 likely = 1;
b0e6f033 10150 if (imm_expr.X_add_number == 0)
252b5132 10151 goto do_true;
b0e6f033 10152 else if (imm_expr.X_add_number == 1)
df58fc94 10153 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10154 &offset_expr, op[0], ZERO);
df58fc94 10155 else
252b5132 10156 {
df58fc94 10157 used_at = 1;
c0ebe874 10158 set_at (op[0], 1);
df58fc94
RS
10159 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10160 &offset_expr, AT, ZERO);
252b5132 10161 }
252b5132
RH
10162 break;
10163
10164 case M_BGTL:
10165 likely = 1;
1a0670f3 10166 /* Fall through. */
252b5132 10167 case M_BGT:
c0ebe874
RS
10168 if (op[1] == 0)
10169 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10170 else if (op[0] == 0)
10171 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10172 else
252b5132 10173 {
df58fc94 10174 used_at = 1;
c0ebe874 10175 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10176 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10177 &offset_expr, AT, ZERO);
252b5132 10178 }
252b5132
RH
10179 break;
10180
10181 case M_BGTUL:
10182 likely = 1;
1a0670f3 10183 /* Fall through. */
252b5132 10184 case M_BGTU:
c0ebe874 10185 if (op[1] == 0)
df58fc94 10186 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10187 &offset_expr, op[0], ZERO);
10188 else if (op[0] == 0)
df58fc94
RS
10189 goto do_false;
10190 else
252b5132 10191 {
df58fc94 10192 used_at = 1;
c0ebe874 10193 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10194 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10195 &offset_expr, AT, ZERO);
252b5132 10196 }
252b5132
RH
10197 break;
10198
10199 case M_BLEL:
10200 likely = 1;
1a0670f3 10201 /* Fall through. */
252b5132 10202 case M_BLE:
c0ebe874
RS
10203 if (op[1] == 0)
10204 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10205 else if (op[0] == 0)
10206 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10207 else
252b5132 10208 {
df58fc94 10209 used_at = 1;
c0ebe874 10210 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10211 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10212 &offset_expr, AT, ZERO);
252b5132 10213 }
252b5132
RH
10214 break;
10215
10216 case M_BLEL_I:
10217 likely = 1;
1a0670f3 10218 /* Fall through. */
252b5132 10219 case M_BLE_I:
b0e6f033 10220 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10221 goto do_true;
f9419b05 10222 ++imm_expr.X_add_number;
252b5132
RH
10223 /* FALLTHROUGH */
10224 case M_BLT_I:
10225 case M_BLTL_I:
10226 if (mask == M_BLTL_I)
10227 likely = 1;
b0e6f033 10228 if (imm_expr.X_add_number == 0)
c0ebe874 10229 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10230 else if (imm_expr.X_add_number == 1)
c0ebe874 10231 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10232 else
252b5132 10233 {
df58fc94 10234 used_at = 1;
c0ebe874 10235 set_at (op[0], 0);
df58fc94
RS
10236 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10237 &offset_expr, AT, ZERO);
252b5132 10238 }
252b5132
RH
10239 break;
10240
10241 case M_BLEUL:
10242 likely = 1;
1a0670f3 10243 /* Fall through. */
252b5132 10244 case M_BLEU:
c0ebe874 10245 if (op[1] == 0)
df58fc94 10246 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10247 &offset_expr, op[0], ZERO);
10248 else if (op[0] == 0)
df58fc94
RS
10249 goto do_true;
10250 else
252b5132 10251 {
df58fc94 10252 used_at = 1;
c0ebe874 10253 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10254 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10255 &offset_expr, AT, ZERO);
252b5132 10256 }
252b5132
RH
10257 break;
10258
10259 case M_BLEUL_I:
10260 likely = 1;
1a0670f3 10261 /* Fall through. */
252b5132 10262 case M_BLEU_I:
c0ebe874 10263 if (op[0] == 0
bad1aba3 10264 || (GPR_SIZE == 32
f01dc953 10265 && imm_expr.X_add_number == -1))
252b5132 10266 goto do_true;
f9419b05 10267 ++imm_expr.X_add_number;
252b5132
RH
10268 /* FALLTHROUGH */
10269 case M_BLTU_I:
10270 case M_BLTUL_I:
10271 if (mask == M_BLTUL_I)
10272 likely = 1;
b0e6f033 10273 if (imm_expr.X_add_number == 0)
252b5132 10274 goto do_false;
b0e6f033 10275 else if (imm_expr.X_add_number == 1)
df58fc94 10276 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10277 &offset_expr, op[0], ZERO);
df58fc94 10278 else
252b5132 10279 {
df58fc94 10280 used_at = 1;
c0ebe874 10281 set_at (op[0], 1);
df58fc94
RS
10282 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10283 &offset_expr, AT, ZERO);
252b5132 10284 }
252b5132
RH
10285 break;
10286
10287 case M_BLTL:
10288 likely = 1;
1a0670f3 10289 /* Fall through. */
252b5132 10290 case M_BLT:
c0ebe874
RS
10291 if (op[1] == 0)
10292 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10293 else if (op[0] == 0)
10294 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10295 else
252b5132 10296 {
df58fc94 10297 used_at = 1;
c0ebe874 10298 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10299 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10300 &offset_expr, AT, ZERO);
252b5132 10301 }
252b5132
RH
10302 break;
10303
10304 case M_BLTUL:
10305 likely = 1;
1a0670f3 10306 /* Fall through. */
252b5132 10307 case M_BLTU:
c0ebe874 10308 if (op[1] == 0)
252b5132 10309 goto do_false;
c0ebe874 10310 else if (op[0] == 0)
df58fc94 10311 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10312 &offset_expr, ZERO, op[1]);
df58fc94 10313 else
252b5132 10314 {
df58fc94 10315 used_at = 1;
c0ebe874 10316 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10317 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10318 &offset_expr, AT, ZERO);
252b5132 10319 }
252b5132
RH
10320 break;
10321
10322 case M_DDIV_3:
10323 dbl = 1;
1a0670f3 10324 /* Fall through. */
252b5132
RH
10325 case M_DIV_3:
10326 s = "mflo";
10327 goto do_div3;
10328 case M_DREM_3:
10329 dbl = 1;
1a0670f3 10330 /* Fall through. */
252b5132
RH
10331 case M_REM_3:
10332 s = "mfhi";
10333 do_div3:
c0ebe874 10334 if (op[2] == 0)
252b5132 10335 {
1661c76c 10336 as_warn (_("divide by zero"));
252b5132 10337 if (mips_trap)
df58fc94 10338 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10339 else
df58fc94 10340 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10341 break;
252b5132
RH
10342 }
10343
7d10b47d 10344 start_noreorder ();
252b5132
RH
10345 if (mips_trap)
10346 {
c0ebe874
RS
10347 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10348 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10349 }
10350 else
10351 {
df58fc94
RS
10352 if (mips_opts.micromips)
10353 micromips_label_expr (&label_expr);
10354 else
10355 label_expr.X_add_number = 8;
c0ebe874
RS
10356 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10357 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10358 macro_build (NULL, "break", BRK_FMT, 7);
10359 if (mips_opts.micromips)
10360 micromips_add_label ();
252b5132
RH
10361 }
10362 expr1.X_add_number = -1;
8fc2e39e 10363 used_at = 1;
f6a22291 10364 load_register (AT, &expr1, dbl);
df58fc94
RS
10365 if (mips_opts.micromips)
10366 micromips_label_expr (&label_expr);
10367 else
10368 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10369 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10370 if (dbl)
10371 {
10372 expr1.X_add_number = 1;
f6a22291 10373 load_register (AT, &expr1, dbl);
df58fc94 10374 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10375 }
10376 else
10377 {
10378 expr1.X_add_number = 0x80000000;
df58fc94 10379 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10380 }
10381 if (mips_trap)
10382 {
c0ebe874 10383 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10384 /* We want to close the noreorder block as soon as possible, so
10385 that later insns are available for delay slot filling. */
7d10b47d 10386 end_noreorder ();
252b5132
RH
10387 }
10388 else
10389 {
df58fc94
RS
10390 if (mips_opts.micromips)
10391 micromips_label_expr (&label_expr);
10392 else
10393 label_expr.X_add_number = 8;
c0ebe874 10394 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10395 macro_build (NULL, "nop", "");
252b5132
RH
10396
10397 /* We want to close the noreorder block as soon as possible, so
10398 that later insns are available for delay slot filling. */
7d10b47d 10399 end_noreorder ();
252b5132 10400
df58fc94 10401 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10402 }
df58fc94
RS
10403 if (mips_opts.micromips)
10404 micromips_add_label ();
c0ebe874 10405 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10406 break;
10407
10408 case M_DIV_3I:
10409 s = "div";
10410 s2 = "mflo";
10411 goto do_divi;
10412 case M_DIVU_3I:
10413 s = "divu";
10414 s2 = "mflo";
10415 goto do_divi;
10416 case M_REM_3I:
10417 s = "div";
10418 s2 = "mfhi";
10419 goto do_divi;
10420 case M_REMU_3I:
10421 s = "divu";
10422 s2 = "mfhi";
10423 goto do_divi;
10424 case M_DDIV_3I:
10425 dbl = 1;
10426 s = "ddiv";
10427 s2 = "mflo";
10428 goto do_divi;
10429 case M_DDIVU_3I:
10430 dbl = 1;
10431 s = "ddivu";
10432 s2 = "mflo";
10433 goto do_divi;
10434 case M_DREM_3I:
10435 dbl = 1;
10436 s = "ddiv";
10437 s2 = "mfhi";
10438 goto do_divi;
10439 case M_DREMU_3I:
10440 dbl = 1;
10441 s = "ddivu";
10442 s2 = "mfhi";
10443 do_divi:
b0e6f033 10444 if (imm_expr.X_add_number == 0)
252b5132 10445 {
1661c76c 10446 as_warn (_("divide by zero"));
252b5132 10447 if (mips_trap)
df58fc94 10448 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10449 else
df58fc94 10450 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10451 break;
252b5132 10452 }
b0e6f033 10453 if (imm_expr.X_add_number == 1)
252b5132
RH
10454 {
10455 if (strcmp (s2, "mflo") == 0)
c0ebe874 10456 move_register (op[0], op[1]);
252b5132 10457 else
c0ebe874 10458 move_register (op[0], ZERO);
8fc2e39e 10459 break;
252b5132 10460 }
b0e6f033 10461 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10462 {
10463 if (strcmp (s2, "mflo") == 0)
c0ebe874 10464 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10465 else
c0ebe874 10466 move_register (op[0], ZERO);
8fc2e39e 10467 break;
252b5132
RH
10468 }
10469
8fc2e39e 10470 used_at = 1;
67c0d1eb 10471 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10472 macro_build (NULL, s, "z,s,t", op[1], AT);
10473 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10474 break;
10475
10476 case M_DIVU_3:
10477 s = "divu";
10478 s2 = "mflo";
10479 goto do_divu3;
10480 case M_REMU_3:
10481 s = "divu";
10482 s2 = "mfhi";
10483 goto do_divu3;
10484 case M_DDIVU_3:
10485 s = "ddivu";
10486 s2 = "mflo";
10487 goto do_divu3;
10488 case M_DREMU_3:
10489 s = "ddivu";
10490 s2 = "mfhi";
10491 do_divu3:
7d10b47d 10492 start_noreorder ();
252b5132
RH
10493 if (mips_trap)
10494 {
c0ebe874
RS
10495 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10496 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10497 /* We want to close the noreorder block as soon as possible, so
10498 that later insns are available for delay slot filling. */
7d10b47d 10499 end_noreorder ();
252b5132
RH
10500 }
10501 else
10502 {
df58fc94
RS
10503 if (mips_opts.micromips)
10504 micromips_label_expr (&label_expr);
10505 else
10506 label_expr.X_add_number = 8;
c0ebe874
RS
10507 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10508 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10509
10510 /* We want to close the noreorder block as soon as possible, so
10511 that later insns are available for delay slot filling. */
7d10b47d 10512 end_noreorder ();
df58fc94
RS
10513 macro_build (NULL, "break", BRK_FMT, 7);
10514 if (mips_opts.micromips)
10515 micromips_add_label ();
252b5132 10516 }
c0ebe874 10517 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10518 break;
252b5132 10519
1abe91b1
MR
10520 case M_DLCA_AB:
10521 dbl = 1;
1a0670f3 10522 /* Fall through. */
1abe91b1
MR
10523 case M_LCA_AB:
10524 call = 1;
10525 goto do_la;
252b5132
RH
10526 case M_DLA_AB:
10527 dbl = 1;
1a0670f3 10528 /* Fall through. */
252b5132 10529 case M_LA_AB:
1abe91b1 10530 do_la:
252b5132
RH
10531 /* Load the address of a symbol into a register. If breg is not
10532 zero, we then add a base register to it. */
10533
c0ebe874 10534 breg = op[2];
bad1aba3 10535 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10536 as_warn (_("dla used to load 32-bit register; recommend using la "
10537 "instead"));
3bec30a8 10538
90ecf173 10539 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10540 as_warn (_("la used to load 64-bit address; recommend using dla "
10541 "instead"));
3bec30a8 10542
f2ae14a1 10543 if (small_offset_p (0, align, 16))
0c11417f 10544 {
c0ebe874 10545 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10546 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10547 break;
0c11417f
MR
10548 }
10549
c0ebe874 10550 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10551 {
10552 tempreg = AT;
10553 used_at = 1;
10554 }
10555 else
c0ebe874 10556 tempreg = op[0];
afdbd6d0 10557
252b5132
RH
10558 if (offset_expr.X_op != O_symbol
10559 && offset_expr.X_op != O_constant)
10560 {
1661c76c 10561 as_bad (_("expression too complex"));
252b5132
RH
10562 offset_expr.X_op = O_constant;
10563 }
10564
252b5132 10565 if (offset_expr.X_op == O_constant)
aed1a261 10566 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10567 else if (mips_pic == NO_PIC)
10568 {
d6bc6245 10569 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10570 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10571 Otherwise we want
10572 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10573 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10574 If we have a constant, we need two instructions anyhow,
d6bc6245 10575 so we may as well always use the latter form.
76b3015f 10576
6caf9ef4
TS
10577 With 64bit address space and a usable $at we want
10578 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10579 lui $at,<sym> (BFD_RELOC_HI16_S)
10580 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10581 daddiu $at,<sym> (BFD_RELOC_LO16)
10582 dsll32 $tempreg,0
10583 daddu $tempreg,$tempreg,$at
10584
10585 If $at is already in use, we use a path which is suboptimal
10586 on superscalar processors.
10587 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10588 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10589 dsll $tempreg,16
10590 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10591 dsll $tempreg,16
10592 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10593
10594 For GP relative symbols in 64bit address space we can use
10595 the same sequence as in 32bit address space. */
aed1a261 10596 if (HAVE_64BIT_SYMBOLS)
252b5132 10597 {
6caf9ef4
TS
10598 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10599 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10600 {
10601 relax_start (offset_expr.X_add_symbol);
10602 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10603 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10604 relax_switch ();
10605 }
d6bc6245 10606
741fe287 10607 if (used_at == 0 && mips_opts.at)
98d3f06f 10608 {
df58fc94 10609 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10610 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10611 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10612 AT, BFD_RELOC_HI16_S);
67c0d1eb 10613 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10614 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10615 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10616 AT, AT, BFD_RELOC_LO16);
df58fc94 10617 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10618 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10619 used_at = 1;
10620 }
10621 else
10622 {
df58fc94 10623 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10624 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10625 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10626 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10627 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10628 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10629 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10630 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10631 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10632 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10633 }
6caf9ef4
TS
10634
10635 if (mips_relax.sequence)
10636 relax_end ();
98d3f06f
KH
10637 }
10638 else
10639 {
10640 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10641 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10642 {
4d7206a2 10643 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10644 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10645 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10646 relax_switch ();
98d3f06f 10647 }
6943caf0 10648 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10649 as_bad (_("offset too large"));
67c0d1eb
RS
10650 macro_build_lui (&offset_expr, tempreg);
10651 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10652 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10653 if (mips_relax.sequence)
10654 relax_end ();
98d3f06f 10655 }
252b5132 10656 }
0a44bf69 10657 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10658 {
9117d219
NC
10659 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10660
252b5132
RH
10661 /* If this is a reference to an external symbol, and there
10662 is no constant, we want
10663 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10664 or for lca or if tempreg is PIC_CALL_REG
9117d219 10665 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10666 For a local symbol, we want
10667 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10668 nop
10669 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10670
10671 If we have a small constant, and this is a reference to
10672 an external symbol, we want
10673 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10674 nop
10675 addiu $tempreg,$tempreg,<constant>
10676 For a local symbol, we want the same instruction
10677 sequence, but we output a BFD_RELOC_LO16 reloc on the
10678 addiu instruction.
10679
10680 If we have a large constant, and this is a reference to
10681 an external symbol, we want
10682 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10683 lui $at,<hiconstant>
10684 addiu $at,$at,<loconstant>
10685 addu $tempreg,$tempreg,$at
10686 For a local symbol, we want the same instruction
10687 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10688 addiu instruction.
ed6fb7bd
SC
10689 */
10690
4d7206a2 10691 if (offset_expr.X_add_number == 0)
252b5132 10692 {
0a44bf69
RS
10693 if (mips_pic == SVR4_PIC
10694 && breg == 0
10695 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10696 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10697
10698 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10699 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10700 lw_reloc_type, mips_gp_register);
4d7206a2 10701 if (breg != 0)
252b5132
RH
10702 {
10703 /* We're going to put in an addu instruction using
10704 tempreg, so we may as well insert the nop right
10705 now. */
269137b2 10706 load_delay_nop ();
252b5132 10707 }
4d7206a2 10708 relax_switch ();
67c0d1eb
RS
10709 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10710 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10711 load_delay_nop ();
67c0d1eb
RS
10712 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10713 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10714 relax_end ();
252b5132
RH
10715 /* FIXME: If breg == 0, and the next instruction uses
10716 $tempreg, then if this variant case is used an extra
10717 nop will be generated. */
10718 }
4d7206a2
RS
10719 else if (offset_expr.X_add_number >= -0x8000
10720 && offset_expr.X_add_number < 0x8000)
252b5132 10721 {
67c0d1eb 10722 load_got_offset (tempreg, &offset_expr);
269137b2 10723 load_delay_nop ();
67c0d1eb 10724 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10725 }
10726 else
10727 {
4d7206a2
RS
10728 expr1.X_add_number = offset_expr.X_add_number;
10729 offset_expr.X_add_number =
43c0598f 10730 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10731 load_got_offset (tempreg, &offset_expr);
f6a22291 10732 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10733 /* If we are going to add in a base register, and the
10734 target register and the base register are the same,
10735 then we are using AT as a temporary register. Since
10736 we want to load the constant into AT, we add our
10737 current AT (from the global offset table) and the
10738 register into the register now, and pretend we were
10739 not using a base register. */
c0ebe874 10740 if (breg == op[0])
252b5132 10741 {
269137b2 10742 load_delay_nop ();
67c0d1eb 10743 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10744 op[0], AT, breg);
252b5132 10745 breg = 0;
c0ebe874 10746 tempreg = op[0];
252b5132 10747 }
f6a22291 10748 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10749 used_at = 1;
10750 }
10751 }
0a44bf69 10752 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10753 {
67c0d1eb 10754 int add_breg_early = 0;
f5040a92
AO
10755
10756 /* If this is a reference to an external, and there is no
10757 constant, or local symbol (*), with or without a
10758 constant, we want
10759 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10760 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10761 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10762
10763 If we have a small constant, and this is a reference to
10764 an external symbol, we want
10765 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10766 addiu $tempreg,$tempreg,<constant>
10767
10768 If we have a large constant, and this is a reference to
10769 an external symbol, we want
10770 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10771 lui $at,<hiconstant>
10772 addiu $at,$at,<loconstant>
10773 addu $tempreg,$tempreg,$at
10774
10775 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10776 local symbols, even though it introduces an additional
10777 instruction. */
10778
f5040a92
AO
10779 if (offset_expr.X_add_number)
10780 {
4d7206a2 10781 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10782 offset_expr.X_add_number = 0;
10783
4d7206a2 10784 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10785 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10786 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10787
10788 if (expr1.X_add_number >= -0x8000
10789 && expr1.X_add_number < 0x8000)
10790 {
67c0d1eb
RS
10791 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10792 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10793 }
ecd13cd3 10794 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10795 {
c0ebe874
RS
10796 unsigned int dreg;
10797
f5040a92
AO
10798 /* If we are going to add in a base register, and the
10799 target register and the base register are the same,
10800 then we are using AT as a temporary register. Since
10801 we want to load the constant into AT, we add our
10802 current AT (from the global offset table) and the
10803 register into the register now, and pretend we were
10804 not using a base register. */
c0ebe874 10805 if (breg != op[0])
f5040a92
AO
10806 dreg = tempreg;
10807 else
10808 {
9c2799c2 10809 gas_assert (tempreg == AT);
67c0d1eb 10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10811 op[0], AT, breg);
10812 dreg = op[0];
67c0d1eb 10813 add_breg_early = 1;
f5040a92
AO
10814 }
10815
f6a22291 10816 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10817 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10818 dreg, dreg, AT);
f5040a92 10819
f5040a92
AO
10820 used_at = 1;
10821 }
10822 else
10823 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10824
4d7206a2 10825 relax_switch ();
f5040a92
AO
10826 offset_expr.X_add_number = expr1.X_add_number;
10827
67c0d1eb
RS
10828 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10829 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10830 if (add_breg_early)
f5040a92 10831 {
67c0d1eb 10832 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10833 op[0], tempreg, breg);
f5040a92 10834 breg = 0;
c0ebe874 10835 tempreg = op[0];
f5040a92 10836 }
4d7206a2 10837 relax_end ();
f5040a92 10838 }
4d7206a2 10839 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10840 {
4d7206a2 10841 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10842 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10843 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10844 relax_switch ();
67c0d1eb
RS
10845 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10846 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10847 relax_end ();
f5040a92 10848 }
4d7206a2 10849 else
f5040a92 10850 {
67c0d1eb
RS
10851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10852 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10853 }
10854 }
0a44bf69 10855 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10856 {
67c0d1eb 10857 int gpdelay;
9117d219
NC
10858 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10859 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10860 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10861
10862 /* This is the large GOT case. If this is a reference to an
10863 external symbol, and there is no constant, we want
10864 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10865 addu $tempreg,$tempreg,$gp
10866 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10867 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10868 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10869 addu $tempreg,$tempreg,$gp
10870 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10871 For a local symbol, we want
10872 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10873 nop
10874 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10875
10876 If we have a small constant, and this is a reference to
10877 an external symbol, we want
10878 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10879 addu $tempreg,$tempreg,$gp
10880 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10881 nop
10882 addiu $tempreg,$tempreg,<constant>
10883 For a local symbol, we want
10884 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10885 nop
10886 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10887
10888 If we have a large constant, and this is a reference to
10889 an external symbol, we want
10890 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10891 addu $tempreg,$tempreg,$gp
10892 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10893 lui $at,<hiconstant>
10894 addiu $at,$at,<loconstant>
10895 addu $tempreg,$tempreg,$at
10896 For a local symbol, we want
10897 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10898 lui $at,<hiconstant>
10899 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10900 addu $tempreg,$tempreg,$at
f5040a92 10901 */
438c16b8 10902
252b5132
RH
10903 expr1.X_add_number = offset_expr.X_add_number;
10904 offset_expr.X_add_number = 0;
4d7206a2 10905 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10906 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10907 if (expr1.X_add_number == 0 && breg == 0
10908 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10909 {
10910 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10911 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10912 }
df58fc94 10913 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10915 tempreg, tempreg, mips_gp_register);
67c0d1eb 10916 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10917 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10918 if (expr1.X_add_number == 0)
10919 {
67c0d1eb 10920 if (breg != 0)
252b5132
RH
10921 {
10922 /* We're going to put in an addu instruction using
10923 tempreg, so we may as well insert the nop right
10924 now. */
269137b2 10925 load_delay_nop ();
252b5132 10926 }
252b5132
RH
10927 }
10928 else if (expr1.X_add_number >= -0x8000
10929 && expr1.X_add_number < 0x8000)
10930 {
269137b2 10931 load_delay_nop ();
67c0d1eb 10932 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10933 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10934 }
10935 else
10936 {
c0ebe874
RS
10937 unsigned int dreg;
10938
252b5132
RH
10939 /* If we are going to add in a base register, and the
10940 target register and the base register are the same,
10941 then we are using AT as a temporary register. Since
10942 we want to load the constant into AT, we add our
10943 current AT (from the global offset table) and the
10944 register into the register now, and pretend we were
10945 not using a base register. */
c0ebe874 10946 if (breg != op[0])
67c0d1eb 10947 dreg = tempreg;
252b5132
RH
10948 else
10949 {
9c2799c2 10950 gas_assert (tempreg == AT);
269137b2 10951 load_delay_nop ();
67c0d1eb 10952 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10953 op[0], AT, breg);
10954 dreg = op[0];
252b5132
RH
10955 }
10956
f6a22291 10957 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10958 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10959
252b5132
RH
10960 used_at = 1;
10961 }
43c0598f 10962 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10963 relax_switch ();
252b5132 10964
67c0d1eb 10965 if (gpdelay)
252b5132
RH
10966 {
10967 /* This is needed because this instruction uses $gp, but
f5040a92 10968 the first instruction on the main stream does not. */
67c0d1eb 10969 macro_build (NULL, "nop", "");
252b5132 10970 }
ed6fb7bd 10971
67c0d1eb
RS
10972 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10973 local_reloc_type, mips_gp_register);
f5040a92 10974 if (expr1.X_add_number >= -0x8000
252b5132
RH
10975 && expr1.X_add_number < 0x8000)
10976 {
269137b2 10977 load_delay_nop ();
67c0d1eb
RS
10978 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10979 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10980 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10981 register, the external symbol case ended with a load,
10982 so if the symbol turns out to not be external, and
10983 the next instruction uses tempreg, an unnecessary nop
10984 will be inserted. */
252b5132
RH
10985 }
10986 else
10987 {
c0ebe874 10988 if (breg == op[0])
252b5132
RH
10989 {
10990 /* We must add in the base register now, as in the
f5040a92 10991 external symbol case. */
9c2799c2 10992 gas_assert (tempreg == AT);
269137b2 10993 load_delay_nop ();
67c0d1eb 10994 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10995 op[0], AT, breg);
10996 tempreg = op[0];
252b5132 10997 /* We set breg to 0 because we have arranged to add
f5040a92 10998 it in in both cases. */
252b5132
RH
10999 breg = 0;
11000 }
11001
67c0d1eb
RS
11002 macro_build_lui (&expr1, AT);
11003 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11004 AT, AT, BFD_RELOC_LO16);
67c0d1eb 11005 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11006 tempreg, tempreg, AT);
8fc2e39e 11007 used_at = 1;
252b5132 11008 }
4d7206a2 11009 relax_end ();
252b5132 11010 }
0a44bf69 11011 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11012 {
f5040a92
AO
11013 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11014 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 11015 int add_breg_early = 0;
f5040a92
AO
11016
11017 /* This is the large GOT case. If this is a reference to an
11018 external symbol, and there is no constant, we want
11019 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11020 add $tempreg,$tempreg,$gp
11021 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11022 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11023 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11024 add $tempreg,$tempreg,$gp
11025 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11026
11027 If we have a small constant, and this is a reference to
11028 an external symbol, we want
11029 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11030 add $tempreg,$tempreg,$gp
11031 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11032 addi $tempreg,$tempreg,<constant>
11033
11034 If we have a large constant, and this is a reference to
11035 an external symbol, we want
11036 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11037 addu $tempreg,$tempreg,$gp
11038 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11039 lui $at,<hiconstant>
11040 addi $at,$at,<loconstant>
11041 add $tempreg,$tempreg,$at
11042
11043 If we have NewABI, and we know it's a local symbol, we want
11044 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11045 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11046 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11047
4d7206a2 11048 relax_start (offset_expr.X_add_symbol);
f5040a92 11049
4d7206a2 11050 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11051 offset_expr.X_add_number = 0;
11052
1abe91b1
MR
11053 if (expr1.X_add_number == 0 && breg == 0
11054 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
11055 {
11056 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11057 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11058 }
df58fc94 11059 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11060 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11061 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
11062 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11063 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
11064
11065 if (expr1.X_add_number == 0)
4d7206a2 11066 ;
f5040a92
AO
11067 else if (expr1.X_add_number >= -0x8000
11068 && expr1.X_add_number < 0x8000)
11069 {
67c0d1eb 11070 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11071 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11072 }
ecd13cd3 11073 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11074 {
c0ebe874
RS
11075 unsigned int dreg;
11076
f5040a92
AO
11077 /* If we are going to add in a base register, and the
11078 target register and the base register are the same,
11079 then we are using AT as a temporary register. Since
11080 we want to load the constant into AT, we add our
11081 current AT (from the global offset table) and the
11082 register into the register now, and pretend we were
11083 not using a base register. */
c0ebe874 11084 if (breg != op[0])
f5040a92
AO
11085 dreg = tempreg;
11086 else
11087 {
9c2799c2 11088 gas_assert (tempreg == AT);
67c0d1eb 11089 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11090 op[0], AT, breg);
11091 dreg = op[0];
67c0d1eb 11092 add_breg_early = 1;
f5040a92
AO
11093 }
11094
f6a22291 11095 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11096 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 11097
f5040a92
AO
11098 used_at = 1;
11099 }
11100 else
11101 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11102
4d7206a2 11103 relax_switch ();
f5040a92 11104 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11105 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11106 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11107 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11108 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11109 if (add_breg_early)
f5040a92 11110 {
67c0d1eb 11111 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11112 op[0], tempreg, breg);
f5040a92 11113 breg = 0;
c0ebe874 11114 tempreg = op[0];
f5040a92 11115 }
4d7206a2 11116 relax_end ();
f5040a92 11117 }
252b5132
RH
11118 else
11119 abort ();
11120
11121 if (breg != 0)
c0ebe874 11122 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
11123 break;
11124
52b6b6b9 11125 case M_MSGSND:
df58fc94 11126 gas_assert (!mips_opts.micromips);
c0ebe874 11127 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 11128 break;
52b6b6b9
JM
11129
11130 case M_MSGLD:
df58fc94 11131 gas_assert (!mips_opts.micromips);
c8276761 11132 macro_build (NULL, "c2", "C", 0x02);
c7af4273 11133 break;
52b6b6b9
JM
11134
11135 case M_MSGLD_T:
df58fc94 11136 gas_assert (!mips_opts.micromips);
c0ebe874 11137 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 11138 break;
52b6b6b9
JM
11139
11140 case M_MSGWAIT:
df58fc94 11141 gas_assert (!mips_opts.micromips);
52b6b6b9 11142 macro_build (NULL, "c2", "C", 3);
c7af4273 11143 break;
52b6b6b9
JM
11144
11145 case M_MSGWAIT_T:
df58fc94 11146 gas_assert (!mips_opts.micromips);
c0ebe874 11147 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 11148 break;
52b6b6b9 11149
252b5132
RH
11150 case M_J_A:
11151 /* The j instruction may not be used in PIC code, since it
11152 requires an absolute address. We convert it to a b
11153 instruction. */
11154 if (mips_pic == NO_PIC)
67c0d1eb 11155 macro_build (&offset_expr, "j", "a");
252b5132 11156 else
67c0d1eb 11157 macro_build (&offset_expr, "b", "p");
8fc2e39e 11158 break;
252b5132
RH
11159
11160 /* The jal instructions must be handled as macros because when
11161 generating PIC code they expand to multi-instruction
11162 sequences. Normally they are simple instructions. */
df58fc94 11163 case M_JALS_1:
c0ebe874
RS
11164 op[1] = op[0];
11165 op[0] = RA;
df58fc94
RS
11166 /* Fall through. */
11167 case M_JALS_2:
11168 gas_assert (mips_opts.micromips);
833794fc
MR
11169 if (mips_opts.insn32)
11170 {
1661c76c 11171 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11172 break;
11173 }
df58fc94
RS
11174 jals = 1;
11175 goto jal;
252b5132 11176 case M_JAL_1:
c0ebe874
RS
11177 op[1] = op[0];
11178 op[0] = RA;
252b5132
RH
11179 /* Fall through. */
11180 case M_JAL_2:
df58fc94 11181 jal:
3e722fb5 11182 if (mips_pic == NO_PIC)
df58fc94
RS
11183 {
11184 s = jals ? "jalrs" : "jalr";
e64af278 11185 if (mips_opts.micromips
833794fc 11186 && !mips_opts.insn32
c0ebe874 11187 && op[0] == RA
e64af278 11188 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11189 macro_build (NULL, s, "mj", op[1]);
df58fc94 11190 else
c0ebe874 11191 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11192 }
0a44bf69 11193 else
252b5132 11194 {
df58fc94
RS
11195 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11196 && mips_cprestore_offset >= 0);
11197
c0ebe874 11198 if (op[1] != PIC_CALL_REG)
252b5132 11199 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11200
833794fc
MR
11201 s = ((mips_opts.micromips
11202 && !mips_opts.insn32
11203 && (!mips_opts.noreorder || cprestore))
df58fc94 11204 ? "jalrs" : "jalr");
e64af278 11205 if (mips_opts.micromips
833794fc 11206 && !mips_opts.insn32
c0ebe874 11207 && op[0] == RA
e64af278 11208 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11209 macro_build (NULL, s, "mj", op[1]);
df58fc94 11210 else
c0ebe874 11211 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11212 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11213 {
6478892d 11214 if (mips_cprestore_offset < 0)
1661c76c 11215 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11216 else
11217 {
90ecf173 11218 if (!mips_frame_reg_valid)
7a621144 11219 {
1661c76c 11220 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11221 /* Quiet this warning. */
11222 mips_frame_reg_valid = 1;
11223 }
90ecf173 11224 if (!mips_cprestore_valid)
7a621144 11225 {
1661c76c 11226 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11227 /* Quiet this warning. */
11228 mips_cprestore_valid = 1;
11229 }
d3fca0b5
MR
11230 if (mips_opts.noreorder)
11231 macro_build (NULL, "nop", "");
6478892d 11232 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11233 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11234 mips_gp_register,
256ab948
TS
11235 mips_frame_reg,
11236 HAVE_64BIT_ADDRESSES);
6478892d 11237 }
252b5132
RH
11238 }
11239 }
252b5132 11240
8fc2e39e 11241 break;
252b5132 11242
df58fc94
RS
11243 case M_JALS_A:
11244 gas_assert (mips_opts.micromips);
833794fc
MR
11245 if (mips_opts.insn32)
11246 {
1661c76c 11247 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11248 break;
11249 }
df58fc94
RS
11250 jals = 1;
11251 /* Fall through. */
252b5132
RH
11252 case M_JAL_A:
11253 if (mips_pic == NO_PIC)
df58fc94 11254 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11255 else if (mips_pic == SVR4_PIC)
11256 {
11257 /* If this is a reference to an external symbol, and we are
11258 using a small GOT, we want
11259 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11260 nop
f9419b05 11261 jalr $ra,$25
252b5132
RH
11262 nop
11263 lw $gp,cprestore($sp)
11264 The cprestore value is set using the .cprestore
11265 pseudo-op. If we are using a big GOT, we want
11266 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11267 addu $25,$25,$gp
11268 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11269 nop
f9419b05 11270 jalr $ra,$25
252b5132
RH
11271 nop
11272 lw $gp,cprestore($sp)
11273 If the symbol is not external, we want
11274 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11275 nop
11276 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11277 jalr $ra,$25
252b5132 11278 nop
438c16b8 11279 lw $gp,cprestore($sp)
f5040a92
AO
11280
11281 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11282 sequences above, minus nops, unless the symbol is local,
11283 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11284 GOT_DISP. */
438c16b8 11285 if (HAVE_NEWABI)
252b5132 11286 {
90ecf173 11287 if (!mips_big_got)
f5040a92 11288 {
4d7206a2 11289 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11290 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11291 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11292 mips_gp_register);
4d7206a2 11293 relax_switch ();
67c0d1eb
RS
11294 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11295 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11296 mips_gp_register);
11297 relax_end ();
f5040a92
AO
11298 }
11299 else
11300 {
4d7206a2 11301 relax_start (offset_expr.X_add_symbol);
df58fc94 11302 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11303 BFD_RELOC_MIPS_CALL_HI16);
11304 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11305 PIC_CALL_REG, mips_gp_register);
11306 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11307 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11308 PIC_CALL_REG);
4d7206a2 11309 relax_switch ();
67c0d1eb
RS
11310 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11311 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11312 mips_gp_register);
11313 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11314 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11315 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11316 relax_end ();
f5040a92 11317 }
684022ea 11318
df58fc94 11319 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11320 }
11321 else
11322 {
4d7206a2 11323 relax_start (offset_expr.X_add_symbol);
90ecf173 11324 if (!mips_big_got)
438c16b8 11325 {
67c0d1eb
RS
11326 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11327 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11328 mips_gp_register);
269137b2 11329 load_delay_nop ();
4d7206a2 11330 relax_switch ();
438c16b8 11331 }
252b5132 11332 else
252b5132 11333 {
67c0d1eb
RS
11334 int gpdelay;
11335
11336 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11337 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11338 BFD_RELOC_MIPS_CALL_HI16);
11339 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11340 PIC_CALL_REG, mips_gp_register);
11341 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11342 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11343 PIC_CALL_REG);
269137b2 11344 load_delay_nop ();
4d7206a2 11345 relax_switch ();
67c0d1eb
RS
11346 if (gpdelay)
11347 macro_build (NULL, "nop", "");
252b5132 11348 }
67c0d1eb
RS
11349 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11350 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11351 mips_gp_register);
269137b2 11352 load_delay_nop ();
67c0d1eb
RS
11353 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11354 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11355 relax_end ();
df58fc94 11356 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11357
6478892d 11358 if (mips_cprestore_offset < 0)
1661c76c 11359 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11360 else
11361 {
90ecf173 11362 if (!mips_frame_reg_valid)
7a621144 11363 {
1661c76c 11364 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11365 /* Quiet this warning. */
11366 mips_frame_reg_valid = 1;
11367 }
90ecf173 11368 if (!mips_cprestore_valid)
7a621144 11369 {
1661c76c 11370 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11371 /* Quiet this warning. */
11372 mips_cprestore_valid = 1;
11373 }
6478892d 11374 if (mips_opts.noreorder)
67c0d1eb 11375 macro_build (NULL, "nop", "");
6478892d 11376 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11377 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11378 mips_gp_register,
256ab948
TS
11379 mips_frame_reg,
11380 HAVE_64BIT_ADDRESSES);
6478892d 11381 }
252b5132
RH
11382 }
11383 }
0a44bf69 11384 else if (mips_pic == VXWORKS_PIC)
1661c76c 11385 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11386 else
11387 abort ();
11388
8fc2e39e 11389 break;
252b5132 11390
7f3c4072 11391 case M_LBUE_AB:
7f3c4072
CM
11392 s = "lbue";
11393 fmt = "t,+j(b)";
11394 offbits = 9;
11395 goto ld_st;
11396 case M_LHUE_AB:
7f3c4072
CM
11397 s = "lhue";
11398 fmt = "t,+j(b)";
11399 offbits = 9;
11400 goto ld_st;
11401 case M_LBE_AB:
7f3c4072
CM
11402 s = "lbe";
11403 fmt = "t,+j(b)";
11404 offbits = 9;
11405 goto ld_st;
11406 case M_LHE_AB:
7f3c4072
CM
11407 s = "lhe";
11408 fmt = "t,+j(b)";
11409 offbits = 9;
11410 goto ld_st;
11411 case M_LLE_AB:
7f3c4072
CM
11412 s = "lle";
11413 fmt = "t,+j(b)";
11414 offbits = 9;
11415 goto ld_st;
11416 case M_LWE_AB:
7f3c4072
CM
11417 s = "lwe";
11418 fmt = "t,+j(b)";
11419 offbits = 9;
11420 goto ld_st;
11421 case M_LWLE_AB:
7f3c4072
CM
11422 s = "lwle";
11423 fmt = "t,+j(b)";
11424 offbits = 9;
11425 goto ld_st;
11426 case M_LWRE_AB:
7f3c4072
CM
11427 s = "lwre";
11428 fmt = "t,+j(b)";
11429 offbits = 9;
11430 goto ld_st;
11431 case M_SBE_AB:
7f3c4072
CM
11432 s = "sbe";
11433 fmt = "t,+j(b)";
11434 offbits = 9;
11435 goto ld_st;
11436 case M_SCE_AB:
7f3c4072
CM
11437 s = "sce";
11438 fmt = "t,+j(b)";
11439 offbits = 9;
11440 goto ld_st;
11441 case M_SHE_AB:
7f3c4072
CM
11442 s = "she";
11443 fmt = "t,+j(b)";
11444 offbits = 9;
11445 goto ld_st;
11446 case M_SWE_AB:
7f3c4072
CM
11447 s = "swe";
11448 fmt = "t,+j(b)";
11449 offbits = 9;
11450 goto ld_st;
11451 case M_SWLE_AB:
7f3c4072
CM
11452 s = "swle";
11453 fmt = "t,+j(b)";
11454 offbits = 9;
11455 goto ld_st;
11456 case M_SWRE_AB:
7f3c4072
CM
11457 s = "swre";
11458 fmt = "t,+j(b)";
11459 offbits = 9;
11460 goto ld_st;
dec0624d 11461 case M_ACLR_AB:
dec0624d 11462 s = "aclr";
dec0624d 11463 fmt = "\\,~(b)";
7f3c4072 11464 offbits = 12;
dec0624d
MR
11465 goto ld_st;
11466 case M_ASET_AB:
dec0624d 11467 s = "aset";
dec0624d 11468 fmt = "\\,~(b)";
7f3c4072 11469 offbits = 12;
dec0624d 11470 goto ld_st;
252b5132
RH
11471 case M_LB_AB:
11472 s = "lb";
df58fc94 11473 fmt = "t,o(b)";
252b5132
RH
11474 goto ld;
11475 case M_LBU_AB:
11476 s = "lbu";
df58fc94 11477 fmt = "t,o(b)";
252b5132
RH
11478 goto ld;
11479 case M_LH_AB:
11480 s = "lh";
df58fc94 11481 fmt = "t,o(b)";
252b5132
RH
11482 goto ld;
11483 case M_LHU_AB:
11484 s = "lhu";
df58fc94 11485 fmt = "t,o(b)";
252b5132
RH
11486 goto ld;
11487 case M_LW_AB:
11488 s = "lw";
df58fc94 11489 fmt = "t,o(b)";
252b5132
RH
11490 goto ld;
11491 case M_LWC0_AB:
df58fc94 11492 gas_assert (!mips_opts.micromips);
252b5132 11493 s = "lwc0";
df58fc94 11494 fmt = "E,o(b)";
bdaaa2e1 11495 /* Itbl support may require additional care here. */
252b5132 11496 coproc = 1;
df58fc94 11497 goto ld_st;
252b5132
RH
11498 case M_LWC1_AB:
11499 s = "lwc1";
df58fc94 11500 fmt = "T,o(b)";
bdaaa2e1 11501 /* Itbl support may require additional care here. */
252b5132 11502 coproc = 1;
df58fc94 11503 goto ld_st;
252b5132
RH
11504 case M_LWC2_AB:
11505 s = "lwc2";
df58fc94 11506 fmt = COP12_FMT;
7361da2c
AB
11507 offbits = (mips_opts.micromips ? 12
11508 : ISA_IS_R6 (mips_opts.isa) ? 11
11509 : 16);
bdaaa2e1 11510 /* Itbl support may require additional care here. */
252b5132 11511 coproc = 1;
df58fc94 11512 goto ld_st;
252b5132 11513 case M_LWC3_AB:
df58fc94 11514 gas_assert (!mips_opts.micromips);
252b5132 11515 s = "lwc3";
df58fc94 11516 fmt = "E,o(b)";
bdaaa2e1 11517 /* Itbl support may require additional care here. */
252b5132 11518 coproc = 1;
df58fc94 11519 goto ld_st;
252b5132
RH
11520 case M_LWL_AB:
11521 s = "lwl";
df58fc94 11522 fmt = MEM12_FMT;
7f3c4072 11523 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11524 goto ld_st;
252b5132
RH
11525 case M_LWR_AB:
11526 s = "lwr";
df58fc94 11527 fmt = MEM12_FMT;
7f3c4072 11528 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11529 goto ld_st;
252b5132 11530 case M_LDC1_AB:
252b5132 11531 s = "ldc1";
df58fc94 11532 fmt = "T,o(b)";
bdaaa2e1 11533 /* Itbl support may require additional care here. */
252b5132 11534 coproc = 1;
df58fc94 11535 goto ld_st;
252b5132
RH
11536 case M_LDC2_AB:
11537 s = "ldc2";
df58fc94 11538 fmt = COP12_FMT;
7361da2c
AB
11539 offbits = (mips_opts.micromips ? 12
11540 : ISA_IS_R6 (mips_opts.isa) ? 11
11541 : 16);
bdaaa2e1 11542 /* Itbl support may require additional care here. */
252b5132 11543 coproc = 1;
df58fc94 11544 goto ld_st;
c77c0862 11545 case M_LQC2_AB:
c77c0862 11546 s = "lqc2";
14daeee3 11547 fmt = "+7,o(b)";
c77c0862
RS
11548 /* Itbl support may require additional care here. */
11549 coproc = 1;
11550 goto ld_st;
252b5132
RH
11551 case M_LDC3_AB:
11552 s = "ldc3";
df58fc94 11553 fmt = "E,o(b)";
bdaaa2e1 11554 /* Itbl support may require additional care here. */
252b5132 11555 coproc = 1;
df58fc94 11556 goto ld_st;
252b5132
RH
11557 case M_LDL_AB:
11558 s = "ldl";
df58fc94 11559 fmt = MEM12_FMT;
7f3c4072 11560 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11561 goto ld_st;
252b5132
RH
11562 case M_LDR_AB:
11563 s = "ldr";
df58fc94 11564 fmt = MEM12_FMT;
7f3c4072 11565 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11566 goto ld_st;
252b5132
RH
11567 case M_LL_AB:
11568 s = "ll";
7361da2c
AB
11569 fmt = LL_SC_FMT;
11570 offbits = (mips_opts.micromips ? 12
11571 : ISA_IS_R6 (mips_opts.isa) ? 9
11572 : 16);
252b5132
RH
11573 goto ld;
11574 case M_LLD_AB:
11575 s = "lld";
7361da2c
AB
11576 fmt = LL_SC_FMT;
11577 offbits = (mips_opts.micromips ? 12
11578 : ISA_IS_R6 (mips_opts.isa) ? 9
11579 : 16);
252b5132
RH
11580 goto ld;
11581 case M_LWU_AB:
11582 s = "lwu";
df58fc94 11583 fmt = MEM12_FMT;
7f3c4072 11584 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11585 goto ld;
11586 case M_LWP_AB:
df58fc94
RS
11587 gas_assert (mips_opts.micromips);
11588 s = "lwp";
11589 fmt = "t,~(b)";
7f3c4072 11590 offbits = 12;
df58fc94
RS
11591 lp = 1;
11592 goto ld;
11593 case M_LDP_AB:
df58fc94
RS
11594 gas_assert (mips_opts.micromips);
11595 s = "ldp";
11596 fmt = "t,~(b)";
7f3c4072 11597 offbits = 12;
df58fc94
RS
11598 lp = 1;
11599 goto ld;
11600 case M_LWM_AB:
df58fc94
RS
11601 gas_assert (mips_opts.micromips);
11602 s = "lwm";
11603 fmt = "n,~(b)";
7f3c4072 11604 offbits = 12;
df58fc94
RS
11605 goto ld_st;
11606 case M_LDM_AB:
df58fc94
RS
11607 gas_assert (mips_opts.micromips);
11608 s = "ldm";
11609 fmt = "n,~(b)";
7f3c4072 11610 offbits = 12;
df58fc94
RS
11611 goto ld_st;
11612
252b5132 11613 ld:
f19ccbda 11614 /* We don't want to use $0 as tempreg. */
c0ebe874 11615 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11616 goto ld_st;
252b5132 11617 else
c0ebe874 11618 tempreg = op[0] + lp;
df58fc94
RS
11619 goto ld_noat;
11620
252b5132
RH
11621 case M_SB_AB:
11622 s = "sb";
df58fc94
RS
11623 fmt = "t,o(b)";
11624 goto ld_st;
252b5132
RH
11625 case M_SH_AB:
11626 s = "sh";
df58fc94
RS
11627 fmt = "t,o(b)";
11628 goto ld_st;
252b5132
RH
11629 case M_SW_AB:
11630 s = "sw";
df58fc94
RS
11631 fmt = "t,o(b)";
11632 goto ld_st;
252b5132 11633 case M_SWC0_AB:
df58fc94 11634 gas_assert (!mips_opts.micromips);
252b5132 11635 s = "swc0";
df58fc94 11636 fmt = "E,o(b)";
bdaaa2e1 11637 /* Itbl support may require additional care here. */
252b5132 11638 coproc = 1;
df58fc94 11639 goto ld_st;
252b5132
RH
11640 case M_SWC1_AB:
11641 s = "swc1";
df58fc94 11642 fmt = "T,o(b)";
bdaaa2e1 11643 /* Itbl support may require additional care here. */
252b5132 11644 coproc = 1;
df58fc94 11645 goto ld_st;
252b5132
RH
11646 case M_SWC2_AB:
11647 s = "swc2";
df58fc94 11648 fmt = COP12_FMT;
7361da2c
AB
11649 offbits = (mips_opts.micromips ? 12
11650 : ISA_IS_R6 (mips_opts.isa) ? 11
11651 : 16);
bdaaa2e1 11652 /* Itbl support may require additional care here. */
252b5132 11653 coproc = 1;
df58fc94 11654 goto ld_st;
252b5132 11655 case M_SWC3_AB:
df58fc94 11656 gas_assert (!mips_opts.micromips);
252b5132 11657 s = "swc3";
df58fc94 11658 fmt = "E,o(b)";
bdaaa2e1 11659 /* Itbl support may require additional care here. */
252b5132 11660 coproc = 1;
df58fc94 11661 goto ld_st;
252b5132
RH
11662 case M_SWL_AB:
11663 s = "swl";
df58fc94 11664 fmt = MEM12_FMT;
7f3c4072 11665 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11666 goto ld_st;
252b5132
RH
11667 case M_SWR_AB:
11668 s = "swr";
df58fc94 11669 fmt = MEM12_FMT;
7f3c4072 11670 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11671 goto ld_st;
252b5132
RH
11672 case M_SC_AB:
11673 s = "sc";
7361da2c
AB
11674 fmt = LL_SC_FMT;
11675 offbits = (mips_opts.micromips ? 12
11676 : ISA_IS_R6 (mips_opts.isa) ? 9
11677 : 16);
df58fc94 11678 goto ld_st;
252b5132
RH
11679 case M_SCD_AB:
11680 s = "scd";
7361da2c
AB
11681 fmt = LL_SC_FMT;
11682 offbits = (mips_opts.micromips ? 12
11683 : ISA_IS_R6 (mips_opts.isa) ? 9
11684 : 16);
df58fc94 11685 goto ld_st;
d43b4baf
TS
11686 case M_CACHE_AB:
11687 s = "cache";
7361da2c
AB
11688 fmt = (mips_opts.micromips ? "k,~(b)"
11689 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11690 : "k,o(b)");
11691 offbits = (mips_opts.micromips ? 12
11692 : ISA_IS_R6 (mips_opts.isa) ? 9
11693 : 16);
7f3c4072
CM
11694 goto ld_st;
11695 case M_CACHEE_AB:
7f3c4072
CM
11696 s = "cachee";
11697 fmt = "k,+j(b)";
11698 offbits = 9;
df58fc94 11699 goto ld_st;
3eebd5eb
MR
11700 case M_PREF_AB:
11701 s = "pref";
7361da2c
AB
11702 fmt = (mips_opts.micromips ? "k,~(b)"
11703 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11704 : "k,o(b)");
11705 offbits = (mips_opts.micromips ? 12
11706 : ISA_IS_R6 (mips_opts.isa) ? 9
11707 : 16);
7f3c4072
CM
11708 goto ld_st;
11709 case M_PREFE_AB:
7f3c4072
CM
11710 s = "prefe";
11711 fmt = "k,+j(b)";
11712 offbits = 9;
df58fc94 11713 goto ld_st;
252b5132 11714 case M_SDC1_AB:
252b5132 11715 s = "sdc1";
df58fc94 11716 fmt = "T,o(b)";
252b5132 11717 coproc = 1;
bdaaa2e1 11718 /* Itbl support may require additional care here. */
df58fc94 11719 goto ld_st;
252b5132
RH
11720 case M_SDC2_AB:
11721 s = "sdc2";
df58fc94 11722 fmt = COP12_FMT;
7361da2c
AB
11723 offbits = (mips_opts.micromips ? 12
11724 : ISA_IS_R6 (mips_opts.isa) ? 11
11725 : 16);
c77c0862
RS
11726 /* Itbl support may require additional care here. */
11727 coproc = 1;
11728 goto ld_st;
11729 case M_SQC2_AB:
c77c0862 11730 s = "sqc2";
14daeee3 11731 fmt = "+7,o(b)";
bdaaa2e1 11732 /* Itbl support may require additional care here. */
252b5132 11733 coproc = 1;
df58fc94 11734 goto ld_st;
252b5132 11735 case M_SDC3_AB:
df58fc94 11736 gas_assert (!mips_opts.micromips);
252b5132 11737 s = "sdc3";
df58fc94 11738 fmt = "E,o(b)";
bdaaa2e1 11739 /* Itbl support may require additional care here. */
252b5132 11740 coproc = 1;
df58fc94 11741 goto ld_st;
252b5132
RH
11742 case M_SDL_AB:
11743 s = "sdl";
df58fc94 11744 fmt = MEM12_FMT;
7f3c4072 11745 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11746 goto ld_st;
252b5132
RH
11747 case M_SDR_AB:
11748 s = "sdr";
df58fc94 11749 fmt = MEM12_FMT;
7f3c4072 11750 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11751 goto ld_st;
11752 case M_SWP_AB:
df58fc94
RS
11753 gas_assert (mips_opts.micromips);
11754 s = "swp";
11755 fmt = "t,~(b)";
7f3c4072 11756 offbits = 12;
df58fc94
RS
11757 goto ld_st;
11758 case M_SDP_AB:
df58fc94
RS
11759 gas_assert (mips_opts.micromips);
11760 s = "sdp";
11761 fmt = "t,~(b)";
7f3c4072 11762 offbits = 12;
df58fc94
RS
11763 goto ld_st;
11764 case M_SWM_AB:
df58fc94
RS
11765 gas_assert (mips_opts.micromips);
11766 s = "swm";
11767 fmt = "n,~(b)";
7f3c4072 11768 offbits = 12;
df58fc94
RS
11769 goto ld_st;
11770 case M_SDM_AB:
df58fc94
RS
11771 gas_assert (mips_opts.micromips);
11772 s = "sdm";
11773 fmt = "n,~(b)";
7f3c4072 11774 offbits = 12;
df58fc94
RS
11775
11776 ld_st:
8fc2e39e 11777 tempreg = AT;
df58fc94 11778 ld_noat:
c0ebe874 11779 breg = op[2];
f2ae14a1
RS
11780 if (small_offset_p (0, align, 16))
11781 {
11782 /* The first case exists for M_LD_AB and M_SD_AB, which are
11783 macros for o32 but which should act like normal instructions
11784 otherwise. */
11785 if (offbits == 16)
c0ebe874 11786 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11787 offset_reloc[1], offset_reloc[2], breg);
11788 else if (small_offset_p (0, align, offbits))
11789 {
11790 if (offbits == 0)
c0ebe874 11791 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11792 else
c0ebe874 11793 macro_build (NULL, s, fmt, op[0],
c8276761 11794 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11795 }
11796 else
11797 {
11798 if (tempreg == AT)
11799 used_at = 1;
11800 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11801 tempreg, breg, -1, offset_reloc[0],
11802 offset_reloc[1], offset_reloc[2]);
11803 if (offbits == 0)
c0ebe874 11804 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11805 else
c0ebe874 11806 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11807 }
11808 break;
11809 }
11810
11811 if (tempreg == AT)
11812 used_at = 1;
11813
252b5132
RH
11814 if (offset_expr.X_op != O_constant
11815 && offset_expr.X_op != O_symbol)
11816 {
1661c76c 11817 as_bad (_("expression too complex"));
252b5132
RH
11818 offset_expr.X_op = O_constant;
11819 }
11820
2051e8c4
MR
11821 if (HAVE_32BIT_ADDRESSES
11822 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11823 {
11824 char value [32];
11825
11826 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11827 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11828 }
2051e8c4 11829
252b5132
RH
11830 /* A constant expression in PIC code can be handled just as it
11831 is in non PIC code. */
aed1a261
RS
11832 if (offset_expr.X_op == O_constant)
11833 {
f2ae14a1
RS
11834 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11835 offbits == 0 ? 16 : offbits);
11836 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11837
f2ae14a1
RS
11838 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11839 if (breg != 0)
11840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11841 tempreg, tempreg, breg);
7f3c4072 11842 if (offbits == 0)
dd6a37e7 11843 {
f2ae14a1 11844 if (offset_expr.X_add_number != 0)
dd6a37e7 11845 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11846 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11847 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11848 }
7f3c4072 11849 else if (offbits == 16)
c0ebe874 11850 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11851 else
c0ebe874 11852 macro_build (NULL, s, fmt, op[0],
c8276761 11853 (int) offset_expr.X_add_number, tempreg);
df58fc94 11854 }
7f3c4072 11855 else if (offbits != 16)
df58fc94 11856 {
7f3c4072 11857 /* The offset field is too narrow to be used for a low-part
2b0f3761 11858 relocation, so load the whole address into the auxiliary
f2ae14a1
RS
11859 register. */
11860 load_address (tempreg, &offset_expr, &used_at);
11861 if (breg != 0)
11862 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11863 tempreg, tempreg, breg);
7f3c4072 11864 if (offbits == 0)
c0ebe874 11865 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11866 else
c0ebe874 11867 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11868 }
11869 else if (mips_pic == NO_PIC)
252b5132
RH
11870 {
11871 /* If this is a reference to a GP relative symbol, and there
11872 is no base register, we want
c0ebe874 11873 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11874 Otherwise, if there is no base register, we want
11875 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11876 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11877 If we have a constant, we need two instructions anyhow,
11878 so we always use the latter form.
11879
11880 If we have a base register, and this is a reference to a
11881 GP relative symbol, we want
11882 addu $tempreg,$breg,$gp
c0ebe874 11883 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11884 Otherwise we want
11885 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11886 addu $tempreg,$tempreg,$breg
c0ebe874 11887 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11888 With a constant we always use the latter case.
76b3015f 11889
d6bc6245
TS
11890 With 64bit address space and no base register and $at usable,
11891 we want
11892 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11893 lui $at,<sym> (BFD_RELOC_HI16_S)
11894 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11895 dsll32 $tempreg,0
11896 daddu $tempreg,$at
c0ebe874 11897 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11898 If we have a base register, we want
11899 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11900 lui $at,<sym> (BFD_RELOC_HI16_S)
11901 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11902 daddu $at,$breg
11903 dsll32 $tempreg,0
11904 daddu $tempreg,$at
c0ebe874 11905 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11906
11907 Without $at we can't generate the optimal path for superscalar
11908 processors here since this would require two temporary registers.
11909 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11910 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11911 dsll $tempreg,16
11912 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11913 dsll $tempreg,16
c0ebe874 11914 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11915 If we have a base register, we want
11916 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11917 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11918 dsll $tempreg,16
11919 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11920 dsll $tempreg,16
11921 daddu $tempreg,$tempreg,$breg
c0ebe874 11922 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11923
6caf9ef4 11924 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11925 the same sequence as in 32bit address space. */
11926 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11927 {
aed1a261 11928 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11929 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11930 {
11931 relax_start (offset_expr.X_add_symbol);
11932 if (breg == 0)
11933 {
c0ebe874 11934 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11935 BFD_RELOC_GPREL16, mips_gp_register);
11936 }
11937 else
11938 {
11939 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11940 tempreg, breg, mips_gp_register);
c0ebe874 11941 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11942 BFD_RELOC_GPREL16, tempreg);
11943 }
11944 relax_switch ();
11945 }
d6bc6245 11946
741fe287 11947 if (used_at == 0 && mips_opts.at)
d6bc6245 11948 {
df58fc94 11949 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11950 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11951 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11952 BFD_RELOC_HI16_S);
11953 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11954 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11955 if (breg != 0)
67c0d1eb 11956 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11957 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11958 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11959 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11960 tempreg);
d6bc6245
TS
11961 used_at = 1;
11962 }
11963 else
11964 {
df58fc94 11965 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11966 BFD_RELOC_MIPS_HIGHEST);
11967 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11968 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11969 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11970 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11971 tempreg, BFD_RELOC_HI16_S);
df58fc94 11972 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11973 if (breg != 0)
67c0d1eb 11974 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11975 tempreg, tempreg, breg);
c0ebe874 11976 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11977 BFD_RELOC_LO16, tempreg);
d6bc6245 11978 }
6caf9ef4
TS
11979
11980 if (mips_relax.sequence)
11981 relax_end ();
8fc2e39e 11982 break;
d6bc6245 11983 }
256ab948 11984
252b5132
RH
11985 if (breg == 0)
11986 {
67c0d1eb 11987 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11988 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11989 {
4d7206a2 11990 relax_start (offset_expr.X_add_symbol);
c0ebe874 11991 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11992 mips_gp_register);
4d7206a2 11993 relax_switch ();
252b5132 11994 }
67c0d1eb 11995 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11996 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11997 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11998 if (mips_relax.sequence)
11999 relax_end ();
252b5132
RH
12000 }
12001 else
12002 {
67c0d1eb 12003 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12004 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12005 {
4d7206a2 12006 relax_start (offset_expr.X_add_symbol);
67c0d1eb 12007 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12008 tempreg, breg, mips_gp_register);
c0ebe874 12009 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12010 BFD_RELOC_GPREL16, tempreg);
4d7206a2 12011 relax_switch ();
252b5132 12012 }
67c0d1eb
RS
12013 macro_build_lui (&offset_expr, tempreg);
12014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12015 tempreg, tempreg, breg);
c0ebe874 12016 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12017 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12018 if (mips_relax.sequence)
12019 relax_end ();
252b5132
RH
12020 }
12021 }
0a44bf69 12022 else if (!mips_big_got)
252b5132 12023 {
ed6fb7bd 12024 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 12025
252b5132
RH
12026 /* If this is a reference to an external symbol, we want
12027 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12028 nop
c0ebe874 12029 <op> op[0],0($tempreg)
252b5132
RH
12030 Otherwise we want
12031 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12032 nop
12033 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12034 <op> op[0],0($tempreg)
f5040a92
AO
12035
12036 For NewABI, we want
12037 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12038 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 12039
252b5132
RH
12040 If there is a base register, we add it to $tempreg before
12041 the <op>. If there is a constant, we stick it in the
12042 <op> instruction. We don't handle constants larger than
12043 16 bits, because we have no way to load the upper 16 bits
12044 (actually, we could handle them for the subset of cases
12045 in which we are not using $at). */
9c2799c2 12046 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
12047 if (HAVE_NEWABI)
12048 {
67c0d1eb
RS
12049 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12050 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12051 if (breg != 0)
67c0d1eb 12052 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12053 tempreg, tempreg, breg);
c0ebe874 12054 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12055 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
12056 break;
12057 }
252b5132
RH
12058 expr1.X_add_number = offset_expr.X_add_number;
12059 offset_expr.X_add_number = 0;
12060 if (expr1.X_add_number < -0x8000
12061 || expr1.X_add_number >= 0x8000)
12062 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
12063 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12064 lw_reloc_type, mips_gp_register);
269137b2 12065 load_delay_nop ();
4d7206a2
RS
12066 relax_start (offset_expr.X_add_symbol);
12067 relax_switch ();
67c0d1eb
RS
12068 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12069 tempreg, BFD_RELOC_LO16);
4d7206a2 12070 relax_end ();
252b5132 12071 if (breg != 0)
67c0d1eb 12072 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12073 tempreg, tempreg, breg);
c0ebe874 12074 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12075 }
0a44bf69 12076 else if (mips_big_got && !HAVE_NEWABI)
252b5132 12077 {
67c0d1eb 12078 int gpdelay;
252b5132
RH
12079
12080 /* If this is a reference to an external symbol, we want
12081 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12082 addu $tempreg,$tempreg,$gp
12083 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12084 <op> op[0],0($tempreg)
252b5132
RH
12085 Otherwise we want
12086 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12087 nop
12088 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12089 <op> op[0],0($tempreg)
252b5132
RH
12090 If there is a base register, we add it to $tempreg before
12091 the <op>. If there is a constant, we stick it in the
12092 <op> instruction. We don't handle constants larger than
12093 16 bits, because we have no way to load the upper 16 bits
12094 (actually, we could handle them for the subset of cases
f5040a92 12095 in which we are not using $at). */
9c2799c2 12096 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
12097 expr1.X_add_number = offset_expr.X_add_number;
12098 offset_expr.X_add_number = 0;
12099 if (expr1.X_add_number < -0x8000
12100 || expr1.X_add_number >= 0x8000)
12101 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12102 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12103 relax_start (offset_expr.X_add_symbol);
df58fc94 12104 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12105 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12107 mips_gp_register);
12108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12109 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 12110 relax_switch ();
67c0d1eb
RS
12111 if (gpdelay)
12112 macro_build (NULL, "nop", "");
12113 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12114 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12115 load_delay_nop ();
67c0d1eb
RS
12116 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12117 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
12118 relax_end ();
12119
252b5132 12120 if (breg != 0)
67c0d1eb 12121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12122 tempreg, tempreg, breg);
c0ebe874 12123 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12124 }
0a44bf69 12125 else if (mips_big_got && HAVE_NEWABI)
f5040a92 12126 {
f5040a92
AO
12127 /* If this is a reference to an external symbol, we want
12128 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12129 add $tempreg,$tempreg,$gp
12130 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12131 <op> op[0],<ofst>($tempreg)
f5040a92
AO
12132 Otherwise, for local symbols, we want:
12133 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12134 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 12135 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 12136 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
12137 offset_expr.X_add_number = 0;
12138 if (expr1.X_add_number < -0x8000
12139 || expr1.X_add_number >= 0x8000)
12140 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 12141 relax_start (offset_expr.X_add_symbol);
df58fc94 12142 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12143 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12145 mips_gp_register);
12146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12147 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 12148 if (breg != 0)
67c0d1eb 12149 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12150 tempreg, tempreg, breg);
c0ebe874 12151 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 12152
4d7206a2 12153 relax_switch ();
f5040a92 12154 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12156 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12157 if (breg != 0)
67c0d1eb 12158 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12159 tempreg, tempreg, breg);
c0ebe874 12160 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12161 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12162 relax_end ();
f5040a92 12163 }
252b5132
RH
12164 else
12165 abort ();
12166
252b5132
RH
12167 break;
12168
833794fc
MR
12169 case M_JRADDIUSP:
12170 gas_assert (mips_opts.micromips);
12171 gas_assert (mips_opts.insn32);
12172 start_noreorder ();
12173 macro_build (NULL, "jr", "s", RA);
c0ebe874 12174 expr1.X_add_number = op[0] << 2;
833794fc
MR
12175 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12176 end_noreorder ();
12177 break;
12178
12179 case M_JRC:
12180 gas_assert (mips_opts.micromips);
12181 gas_assert (mips_opts.insn32);
c0ebe874 12182 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12183 if (mips_opts.noreorder)
12184 macro_build (NULL, "nop", "");
12185 break;
12186
252b5132
RH
12187 case M_LI:
12188 case M_LI_S:
c0ebe874 12189 load_register (op[0], &imm_expr, 0);
8fc2e39e 12190 break;
252b5132
RH
12191
12192 case M_DLI:
c0ebe874 12193 load_register (op[0], &imm_expr, 1);
8fc2e39e 12194 break;
252b5132
RH
12195
12196 case M_LI_SS:
12197 if (imm_expr.X_op == O_constant)
12198 {
8fc2e39e 12199 used_at = 1;
67c0d1eb 12200 load_register (AT, &imm_expr, 0);
c0ebe874 12201 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12202 break;
12203 }
12204 else
12205 {
b0e6f033
RS
12206 gas_assert (imm_expr.X_op == O_absent
12207 && offset_expr.X_op == O_symbol
90ecf173
MR
12208 && strcmp (segment_name (S_GET_SEGMENT
12209 (offset_expr.X_add_symbol)),
12210 ".lit4") == 0
12211 && offset_expr.X_add_number == 0);
c0ebe874 12212 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12213 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12214 break;
252b5132
RH
12215 }
12216
12217 case M_LI_D:
ca4e0257
RS
12218 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12219 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12220 order 32 bits of the value and the low order 32 bits are either
12221 zero or in OFFSET_EXPR. */
b0e6f033 12222 if (imm_expr.X_op == O_constant)
252b5132 12223 {
bad1aba3 12224 if (GPR_SIZE == 64)
c0ebe874 12225 load_register (op[0], &imm_expr, 1);
252b5132
RH
12226 else
12227 {
12228 int hreg, lreg;
12229
12230 if (target_big_endian)
12231 {
c0ebe874
RS
12232 hreg = op[0];
12233 lreg = op[0] + 1;
252b5132
RH
12234 }
12235 else
12236 {
c0ebe874
RS
12237 hreg = op[0] + 1;
12238 lreg = op[0];
252b5132
RH
12239 }
12240
12241 if (hreg <= 31)
67c0d1eb 12242 load_register (hreg, &imm_expr, 0);
252b5132
RH
12243 if (lreg <= 31)
12244 {
12245 if (offset_expr.X_op == O_absent)
67c0d1eb 12246 move_register (lreg, 0);
252b5132
RH
12247 else
12248 {
9c2799c2 12249 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12250 load_register (lreg, &offset_expr, 0);
252b5132
RH
12251 }
12252 }
12253 }
8fc2e39e 12254 break;
252b5132 12255 }
b0e6f033 12256 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12257
12258 /* We know that sym is in the .rdata section. First we get the
12259 upper 16 bits of the address. */
12260 if (mips_pic == NO_PIC)
12261 {
67c0d1eb 12262 macro_build_lui (&offset_expr, AT);
8fc2e39e 12263 used_at = 1;
252b5132 12264 }
0a44bf69 12265 else
252b5132 12266 {
67c0d1eb
RS
12267 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12268 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12269 used_at = 1;
252b5132 12270 }
bdaaa2e1 12271
252b5132 12272 /* Now we load the register(s). */
bad1aba3 12273 if (GPR_SIZE == 64)
8fc2e39e
TS
12274 {
12275 used_at = 1;
c0ebe874
RS
12276 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12277 BFD_RELOC_LO16, AT);
8fc2e39e 12278 }
252b5132
RH
12279 else
12280 {
8fc2e39e 12281 used_at = 1;
c0ebe874
RS
12282 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12283 BFD_RELOC_LO16, AT);
12284 if (op[0] != RA)
252b5132
RH
12285 {
12286 /* FIXME: How in the world do we deal with the possible
12287 overflow here? */
12288 offset_expr.X_add_number += 4;
67c0d1eb 12289 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12290 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12291 }
12292 }
252b5132
RH
12293 break;
12294
12295 case M_LI_DD:
ca4e0257
RS
12296 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12297 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12298 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12299 the value and the low order 32 bits are either zero or in
12300 OFFSET_EXPR. */
b0e6f033 12301 if (imm_expr.X_op == O_constant)
252b5132 12302 {
8fc2e39e 12303 used_at = 1;
bad1aba3 12304 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12305 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12306 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12307 else
12308 {
351cdf24
MF
12309 if (ISA_HAS_MXHC1 (mips_opts.isa))
12310 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12311 else if (FPR_SIZE != 32)
12312 as_bad (_("Unable to generate `%s' compliant code "
12313 "without mthc1"),
12314 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12315 else
12316 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12317 if (offset_expr.X_op == O_absent)
c0ebe874 12318 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12319 else
12320 {
9c2799c2 12321 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12322 load_register (AT, &offset_expr, 0);
c0ebe874 12323 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12324 }
12325 }
12326 break;
12327 }
12328
b0e6f033
RS
12329 gas_assert (imm_expr.X_op == O_absent
12330 && offset_expr.X_op == O_symbol
90ecf173 12331 && offset_expr.X_add_number == 0);
252b5132
RH
12332 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12333 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12334 {
12335 op[2] = mips_gp_register;
f2ae14a1
RS
12336 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12337 offset_reloc[1] = BFD_RELOC_UNUSED;
12338 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12339 }
12340 else
12341 {
9c2799c2 12342 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12343 used_at = 1;
0a44bf69 12344 if (mips_pic != NO_PIC)
67c0d1eb
RS
12345 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12346 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12347 else
12348 {
12349 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12350 macro_build_lui (&offset_expr, AT);
252b5132 12351 }
bdaaa2e1 12352
c0ebe874 12353 op[2] = AT;
f2ae14a1
RS
12354 offset_reloc[0] = BFD_RELOC_LO16;
12355 offset_reloc[1] = BFD_RELOC_UNUSED;
12356 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12357 }
f2ae14a1
RS
12358 align = 8;
12359 /* Fall through */
c4a68bea 12360
252b5132
RH
12361 case M_L_DAB:
12362 /*
12363 * The MIPS assembler seems to check for X_add_number not
12364 * being double aligned and generating:
12365 * lui at,%hi(foo+1)
12366 * addu at,at,v1
12367 * addiu at,at,%lo(foo+1)
12368 * lwc1 f2,0(at)
12369 * lwc1 f3,4(at)
12370 * But, the resulting address is the same after relocation so why
12371 * generate the extra instruction?
12372 */
bdaaa2e1 12373 /* Itbl support may require additional care here. */
252b5132 12374 coproc = 1;
df58fc94 12375 fmt = "T,o(b)";
0aa27725 12376 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12377 {
12378 s = "ldc1";
df58fc94 12379 goto ld_st;
252b5132 12380 }
252b5132 12381 s = "lwc1";
252b5132
RH
12382 goto ldd_std;
12383
12384 case M_S_DAB:
df58fc94
RS
12385 gas_assert (!mips_opts.micromips);
12386 /* Itbl support may require additional care here. */
12387 coproc = 1;
12388 fmt = "T,o(b)";
0aa27725 12389 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12390 {
12391 s = "sdc1";
df58fc94 12392 goto ld_st;
252b5132 12393 }
252b5132 12394 s = "swc1";
252b5132
RH
12395 goto ldd_std;
12396
e407c74b
NC
12397 case M_LQ_AB:
12398 fmt = "t,o(b)";
12399 s = "lq";
12400 goto ld;
12401
12402 case M_SQ_AB:
12403 fmt = "t,o(b)";
12404 s = "sq";
12405 goto ld_st;
12406
252b5132 12407 case M_LD_AB:
df58fc94 12408 fmt = "t,o(b)";
bad1aba3 12409 if (GPR_SIZE == 64)
252b5132
RH
12410 {
12411 s = "ld";
12412 goto ld;
12413 }
252b5132 12414 s = "lw";
252b5132
RH
12415 goto ldd_std;
12416
12417 case M_SD_AB:
df58fc94 12418 fmt = "t,o(b)";
bad1aba3 12419 if (GPR_SIZE == 64)
252b5132
RH
12420 {
12421 s = "sd";
df58fc94 12422 goto ld_st;
252b5132 12423 }
252b5132 12424 s = "sw";
252b5132
RH
12425
12426 ldd_std:
f2ae14a1
RS
12427 /* Even on a big endian machine $fn comes before $fn+1. We have
12428 to adjust when loading from memory. We set coproc if we must
12429 load $fn+1 first. */
12430 /* Itbl support may require additional care here. */
12431 if (!target_big_endian)
12432 coproc = 0;
12433
c0ebe874 12434 breg = op[2];
f2ae14a1
RS
12435 if (small_offset_p (0, align, 16))
12436 {
12437 ep = &offset_expr;
12438 if (!small_offset_p (4, align, 16))
12439 {
12440 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12441 -1, offset_reloc[0], offset_reloc[1],
12442 offset_reloc[2]);
12443 expr1.X_add_number = 0;
12444 ep = &expr1;
12445 breg = AT;
12446 used_at = 1;
12447 offset_reloc[0] = BFD_RELOC_LO16;
12448 offset_reloc[1] = BFD_RELOC_UNUSED;
12449 offset_reloc[2] = BFD_RELOC_UNUSED;
12450 }
c0ebe874 12451 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12452 {
12453 ep->X_add_number += 4;
c0ebe874 12454 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12455 offset_reloc[1], offset_reloc[2], breg);
12456 ep->X_add_number -= 4;
c0ebe874 12457 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12458 offset_reloc[1], offset_reloc[2], breg);
12459 }
12460 else
12461 {
c0ebe874 12462 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12463 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12464 breg);
12465 ep->X_add_number += 4;
c0ebe874 12466 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12467 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12468 breg);
12469 }
12470 break;
12471 }
12472
252b5132
RH
12473 if (offset_expr.X_op != O_symbol
12474 && offset_expr.X_op != O_constant)
12475 {
1661c76c 12476 as_bad (_("expression too complex"));
252b5132
RH
12477 offset_expr.X_op = O_constant;
12478 }
12479
2051e8c4
MR
12480 if (HAVE_32BIT_ADDRESSES
12481 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12482 {
12483 char value [32];
12484
12485 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12486 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12487 }
2051e8c4 12488
90ecf173 12489 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12490 {
12491 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12492 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12493 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12494 If we have a base register, we use this
12495 addu $at,$breg,$gp
c0ebe874
RS
12496 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12497 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12498 If this is not a GP relative symbol, we want
12499 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12500 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12501 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12502 If there is a base register, we add it to $at after the
12503 lui instruction. If there is a constant, we always use
12504 the last case. */
39a59cf8
MR
12505 if (offset_expr.X_op == O_symbol
12506 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12507 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12508 {
4d7206a2 12509 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12510 if (breg == 0)
12511 {
c9914766 12512 tempreg = mips_gp_register;
252b5132
RH
12513 }
12514 else
12515 {
67c0d1eb 12516 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12517 AT, breg, mips_gp_register);
252b5132 12518 tempreg = AT;
252b5132
RH
12519 used_at = 1;
12520 }
12521
beae10d5 12522 /* Itbl support may require additional care here. */
c0ebe874 12523 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12524 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12525 offset_expr.X_add_number += 4;
12526
12527 /* Set mips_optimize to 2 to avoid inserting an
12528 undesired nop. */
12529 hold_mips_optimize = mips_optimize;
12530 mips_optimize = 2;
beae10d5 12531 /* Itbl support may require additional care here. */
c0ebe874 12532 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12533 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12534 mips_optimize = hold_mips_optimize;
12535
4d7206a2 12536 relax_switch ();
252b5132 12537
0970e49e 12538 offset_expr.X_add_number -= 4;
252b5132 12539 }
8fc2e39e 12540 used_at = 1;
f2ae14a1
RS
12541 if (offset_high_part (offset_expr.X_add_number, 16)
12542 != offset_high_part (offset_expr.X_add_number + 4, 16))
12543 {
12544 load_address (AT, &offset_expr, &used_at);
12545 offset_expr.X_op = O_constant;
12546 offset_expr.X_add_number = 0;
12547 }
12548 else
12549 macro_build_lui (&offset_expr, AT);
252b5132 12550 if (breg != 0)
67c0d1eb 12551 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12552 /* Itbl support may require additional care here. */
c0ebe874 12553 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12554 BFD_RELOC_LO16, AT);
252b5132
RH
12555 /* FIXME: How do we handle overflow here? */
12556 offset_expr.X_add_number += 4;
beae10d5 12557 /* Itbl support may require additional care here. */
c0ebe874 12558 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12559 BFD_RELOC_LO16, AT);
4d7206a2
RS
12560 if (mips_relax.sequence)
12561 relax_end ();
bdaaa2e1 12562 }
0a44bf69 12563 else if (!mips_big_got)
252b5132 12564 {
252b5132
RH
12565 /* If this is a reference to an external symbol, we want
12566 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12567 nop
c0ebe874
RS
12568 <op> op[0],0($at)
12569 <op> op[0]+1,4($at)
252b5132
RH
12570 Otherwise we want
12571 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12572 nop
c0ebe874
RS
12573 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12574 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12575 If there is a base register we add it to $at before the
12576 lwc1 instructions. If there is a constant we include it
12577 in the lwc1 instructions. */
12578 used_at = 1;
12579 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12580 if (expr1.X_add_number < -0x8000
12581 || expr1.X_add_number >= 0x8000 - 4)
12582 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12583 load_got_offset (AT, &offset_expr);
269137b2 12584 load_delay_nop ();
252b5132 12585 if (breg != 0)
67c0d1eb 12586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12587
12588 /* Set mips_optimize to 2 to avoid inserting an undesired
12589 nop. */
12590 hold_mips_optimize = mips_optimize;
12591 mips_optimize = 2;
4d7206a2 12592
beae10d5 12593 /* Itbl support may require additional care here. */
4d7206a2 12594 relax_start (offset_expr.X_add_symbol);
c0ebe874 12595 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12596 BFD_RELOC_LO16, AT);
4d7206a2 12597 expr1.X_add_number += 4;
c0ebe874 12598 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12599 BFD_RELOC_LO16, AT);
4d7206a2 12600 relax_switch ();
c0ebe874 12601 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12602 BFD_RELOC_LO16, AT);
4d7206a2 12603 offset_expr.X_add_number += 4;
c0ebe874 12604 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12605 BFD_RELOC_LO16, AT);
4d7206a2 12606 relax_end ();
252b5132 12607
4d7206a2 12608 mips_optimize = hold_mips_optimize;
252b5132 12609 }
0a44bf69 12610 else if (mips_big_got)
252b5132 12611 {
67c0d1eb 12612 int gpdelay;
252b5132
RH
12613
12614 /* If this is a reference to an external symbol, we want
12615 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12616 addu $at,$at,$gp
12617 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12618 nop
c0ebe874
RS
12619 <op> op[0],0($at)
12620 <op> op[0]+1,4($at)
252b5132
RH
12621 Otherwise we want
12622 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12623 nop
c0ebe874
RS
12624 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12625 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12626 If there is a base register we add it to $at before the
12627 lwc1 instructions. If there is a constant we include it
12628 in the lwc1 instructions. */
12629 used_at = 1;
12630 expr1.X_add_number = offset_expr.X_add_number;
12631 offset_expr.X_add_number = 0;
12632 if (expr1.X_add_number < -0x8000
12633 || expr1.X_add_number >= 0x8000 - 4)
12634 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12635 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12636 relax_start (offset_expr.X_add_symbol);
df58fc94 12637 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12638 AT, BFD_RELOC_MIPS_GOT_HI16);
12639 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12640 AT, AT, mips_gp_register);
67c0d1eb 12641 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12642 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12643 load_delay_nop ();
252b5132 12644 if (breg != 0)
67c0d1eb 12645 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12646 /* Itbl support may require additional care here. */
c0ebe874 12647 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12648 BFD_RELOC_LO16, AT);
252b5132
RH
12649 expr1.X_add_number += 4;
12650
12651 /* Set mips_optimize to 2 to avoid inserting an undesired
12652 nop. */
12653 hold_mips_optimize = mips_optimize;
12654 mips_optimize = 2;
beae10d5 12655 /* Itbl support may require additional care here. */
c0ebe874 12656 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12657 BFD_RELOC_LO16, AT);
252b5132
RH
12658 mips_optimize = hold_mips_optimize;
12659 expr1.X_add_number -= 4;
12660
4d7206a2
RS
12661 relax_switch ();
12662 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12663 if (gpdelay)
12664 macro_build (NULL, "nop", "");
12665 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12666 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12667 load_delay_nop ();
252b5132 12668 if (breg != 0)
67c0d1eb 12669 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12670 /* Itbl support may require additional care here. */
c0ebe874 12671 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12672 BFD_RELOC_LO16, AT);
4d7206a2 12673 offset_expr.X_add_number += 4;
252b5132
RH
12674
12675 /* Set mips_optimize to 2 to avoid inserting an undesired
12676 nop. */
12677 hold_mips_optimize = mips_optimize;
12678 mips_optimize = 2;
beae10d5 12679 /* Itbl support may require additional care here. */
c0ebe874 12680 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12681 BFD_RELOC_LO16, AT);
252b5132 12682 mips_optimize = hold_mips_optimize;
4d7206a2 12683 relax_end ();
252b5132 12684 }
252b5132
RH
12685 else
12686 abort ();
12687
252b5132 12688 break;
3739860c 12689
dd6a37e7 12690 case M_SAA_AB:
dd6a37e7 12691 s = "saa";
0db377d0 12692 goto saa_saad;
dd6a37e7 12693 case M_SAAD_AB:
dd6a37e7 12694 s = "saad";
0db377d0
MR
12695 saa_saad:
12696 gas_assert (!mips_opts.micromips);
7f3c4072 12697 offbits = 0;
dd6a37e7
AP
12698 fmt = "t,(b)";
12699 goto ld_st;
12700
252b5132
RH
12701 /* New code added to support COPZ instructions.
12702 This code builds table entries out of the macros in mip_opcodes.
12703 R4000 uses interlocks to handle coproc delays.
12704 Other chips (like the R3000) require nops to be inserted for delays.
12705
f72c8c98 12706 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12707 In order to fill delay slots for non-interlocked chips,
12708 we must have a way to specify delays based on the coprocessor.
12709 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12710 What are the side-effects of the cop instruction?
12711 What cache support might we have and what are its effects?
12712 Both coprocessor & memory require delays. how long???
bdaaa2e1 12713 What registers are read/set/modified?
252b5132
RH
12714
12715 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12716 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12717
12718 case M_COP0:
12719 s = "c0";
12720 goto copz;
12721 case M_COP1:
12722 s = "c1";
12723 goto copz;
12724 case M_COP2:
12725 s = "c2";
12726 goto copz;
12727 case M_COP3:
12728 s = "c3";
12729 copz:
df58fc94 12730 gas_assert (!mips_opts.micromips);
252b5132
RH
12731 /* For now we just do C (same as Cz). The parameter will be
12732 stored in insn_opcode by mips_ip. */
c8276761 12733 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12734 break;
252b5132 12735
ea1fb5dc 12736 case M_MOVE:
c0ebe874 12737 move_register (op[0], op[1]);
8fc2e39e 12738 break;
ea1fb5dc 12739
833794fc
MR
12740 case M_MOVEP:
12741 gas_assert (mips_opts.micromips);
12742 gas_assert (mips_opts.insn32);
c0ebe874
RS
12743 move_register (micromips_to_32_reg_h_map1[op[0]],
12744 micromips_to_32_reg_m_map[op[1]]);
12745 move_register (micromips_to_32_reg_h_map2[op[0]],
12746 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12747 break;
12748
252b5132
RH
12749 case M_DMUL:
12750 dbl = 1;
1a0670f3 12751 /* Fall through. */
252b5132 12752 case M_MUL:
e407c74b 12753 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12754 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12755 op[2]);
e407c74b
NC
12756 else
12757 {
c0ebe874
RS
12758 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12759 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12760 }
8fc2e39e 12761 break;
252b5132
RH
12762
12763 case M_DMUL_I:
12764 dbl = 1;
1a0670f3 12765 /* Fall through. */
252b5132
RH
12766 case M_MUL_I:
12767 /* The MIPS assembler some times generates shifts and adds. I'm
12768 not trying to be that fancy. GCC should do this for us
12769 anyway. */
8fc2e39e 12770 used_at = 1;
67c0d1eb 12771 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12772 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12773 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12774 break;
12775
12776 case M_DMULO_I:
12777 dbl = 1;
1a0670f3 12778 /* Fall through. */
252b5132
RH
12779 case M_MULO_I:
12780 imm = 1;
12781 goto do_mulo;
12782
12783 case M_DMULO:
12784 dbl = 1;
1a0670f3 12785 /* Fall through. */
252b5132
RH
12786 case M_MULO:
12787 do_mulo:
7d10b47d 12788 start_noreorder ();
8fc2e39e 12789 used_at = 1;
252b5132 12790 if (imm)
67c0d1eb 12791 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12792 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12793 op[1], imm ? AT : op[2]);
12794 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12795 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12796 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12797 if (mips_trap)
c0ebe874 12798 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12799 else
12800 {
df58fc94
RS
12801 if (mips_opts.micromips)
12802 micromips_label_expr (&label_expr);
12803 else
12804 label_expr.X_add_number = 8;
c0ebe874 12805 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12806 macro_build (NULL, "nop", "");
df58fc94
RS
12807 macro_build (NULL, "break", BRK_FMT, 6);
12808 if (mips_opts.micromips)
12809 micromips_add_label ();
252b5132 12810 }
7d10b47d 12811 end_noreorder ();
c0ebe874 12812 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12813 break;
12814
12815 case M_DMULOU_I:
12816 dbl = 1;
1a0670f3 12817 /* Fall through. */
252b5132
RH
12818 case M_MULOU_I:
12819 imm = 1;
12820 goto do_mulou;
12821
12822 case M_DMULOU:
12823 dbl = 1;
1a0670f3 12824 /* Fall through. */
252b5132
RH
12825 case M_MULOU:
12826 do_mulou:
7d10b47d 12827 start_noreorder ();
8fc2e39e 12828 used_at = 1;
252b5132 12829 if (imm)
67c0d1eb
RS
12830 load_register (AT, &imm_expr, dbl);
12831 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12832 op[1], imm ? AT : op[2]);
df58fc94 12833 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12834 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12835 if (mips_trap)
df58fc94 12836 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12837 else
12838 {
df58fc94
RS
12839 if (mips_opts.micromips)
12840 micromips_label_expr (&label_expr);
12841 else
12842 label_expr.X_add_number = 8;
12843 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12844 macro_build (NULL, "nop", "");
df58fc94
RS
12845 macro_build (NULL, "break", BRK_FMT, 6);
12846 if (mips_opts.micromips)
12847 micromips_add_label ();
252b5132 12848 }
7d10b47d 12849 end_noreorder ();
252b5132
RH
12850 break;
12851
771c7ce4 12852 case M_DROL:
fef14a42 12853 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12854 {
c0ebe874 12855 if (op[0] == op[1])
82dd0097
CD
12856 {
12857 tempreg = AT;
12858 used_at = 1;
12859 }
12860 else
c0ebe874
RS
12861 tempreg = op[0];
12862 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12863 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12864 break;
82dd0097 12865 }
8fc2e39e 12866 used_at = 1;
c0ebe874
RS
12867 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12868 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12869 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12870 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12871 break;
12872
252b5132 12873 case M_ROL:
fef14a42 12874 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12875 {
c0ebe874 12876 if (op[0] == op[1])
82dd0097
CD
12877 {
12878 tempreg = AT;
12879 used_at = 1;
12880 }
12881 else
c0ebe874
RS
12882 tempreg = op[0];
12883 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12884 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12885 break;
82dd0097 12886 }
8fc2e39e 12887 used_at = 1;
c0ebe874
RS
12888 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12889 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12890 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12891 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12892 break;
12893
771c7ce4
TS
12894 case M_DROL_I:
12895 {
12896 unsigned int rot;
e0471c16
TS
12897 const char *l;
12898 const char *rr;
771c7ce4 12899
771c7ce4 12900 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12901 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12902 {
12903 rot = (64 - rot) & 0x3f;
12904 if (rot >= 32)
c0ebe874 12905 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12906 else
c0ebe874 12907 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12908 break;
60b63b72 12909 }
483fc7cd 12910 if (rot == 0)
483fc7cd 12911 {
c0ebe874 12912 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12913 break;
483fc7cd 12914 }
82dd0097 12915 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12916 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12917 rot &= 0x1f;
8fc2e39e 12918 used_at = 1;
c0ebe874
RS
12919 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12920 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12921 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12922 }
12923 break;
12924
252b5132 12925 case M_ROL_I:
771c7ce4
TS
12926 {
12927 unsigned int rot;
12928
771c7ce4 12929 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12930 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12931 {
c0ebe874
RS
12932 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12933 (32 - rot) & 0x1f);
8fc2e39e 12934 break;
60b63b72 12935 }
483fc7cd 12936 if (rot == 0)
483fc7cd 12937 {
c0ebe874 12938 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12939 break;
483fc7cd 12940 }
8fc2e39e 12941 used_at = 1;
c0ebe874
RS
12942 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12943 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12944 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12945 }
12946 break;
12947
12948 case M_DROR:
fef14a42 12949 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12950 {
c0ebe874 12951 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12952 break;
82dd0097 12953 }
8fc2e39e 12954 used_at = 1;
c0ebe874
RS
12955 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12956 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12957 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12958 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12959 break;
12960
12961 case M_ROR:
fef14a42 12962 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12963 {
c0ebe874 12964 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12965 break;
82dd0097 12966 }
8fc2e39e 12967 used_at = 1;
c0ebe874
RS
12968 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12969 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12970 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12971 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12972 break;
12973
771c7ce4
TS
12974 case M_DROR_I:
12975 {
12976 unsigned int rot;
e0471c16
TS
12977 const char *l;
12978 const char *rr;
771c7ce4 12979
771c7ce4 12980 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12981 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12982 {
12983 if (rot >= 32)
c0ebe874 12984 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12985 else
c0ebe874 12986 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12987 break;
82dd0097 12988 }
483fc7cd 12989 if (rot == 0)
483fc7cd 12990 {
c0ebe874 12991 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12992 break;
483fc7cd 12993 }
91d6fa6a 12994 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12995 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12996 rot &= 0x1f;
8fc2e39e 12997 used_at = 1;
c0ebe874
RS
12998 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12999 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13000 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13001 }
13002 break;
13003
252b5132 13004 case M_ROR_I:
771c7ce4
TS
13005 {
13006 unsigned int rot;
13007
771c7ce4 13008 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13009 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13010 {
c0ebe874 13011 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13012 break;
82dd0097 13013 }
483fc7cd 13014 if (rot == 0)
483fc7cd 13015 {
c0ebe874 13016 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13017 break;
483fc7cd 13018 }
8fc2e39e 13019 used_at = 1;
c0ebe874
RS
13020 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13021 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13022 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 13023 }
252b5132
RH
13024 break;
13025
252b5132 13026 case M_SEQ:
c0ebe874
RS
13027 if (op[1] == 0)
13028 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13029 else if (op[2] == 0)
13030 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13031 else
13032 {
c0ebe874
RS
13033 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13034 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 13035 }
8fc2e39e 13036 break;
252b5132
RH
13037
13038 case M_SEQ_I:
b0e6f033 13039 if (imm_expr.X_add_number == 0)
252b5132 13040 {
c0ebe874 13041 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13042 break;
252b5132 13043 }
c0ebe874 13044 if (op[1] == 0)
252b5132 13045 {
1661c76c 13046 as_warn (_("instruction %s: result is always false"),
252b5132 13047 ip->insn_mo->name);
c0ebe874 13048 move_register (op[0], 0);
8fc2e39e 13049 break;
252b5132 13050 }
dd3cbb7e
NC
13051 if (CPU_HAS_SEQ (mips_opts.arch)
13052 && -512 <= imm_expr.X_add_number
13053 && imm_expr.X_add_number < 512)
13054 {
c0ebe874 13055 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 13056 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13057 break;
13058 }
b0e6f033 13059 if (imm_expr.X_add_number >= 0
252b5132 13060 && imm_expr.X_add_number < 0x10000)
c0ebe874 13061 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 13062 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13063 && imm_expr.X_add_number < 0)
13064 {
13065 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13066 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13067 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13068 }
dd3cbb7e
NC
13069 else if (CPU_HAS_SEQ (mips_opts.arch))
13070 {
13071 used_at = 1;
bad1aba3 13072 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13073 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13074 break;
13075 }
252b5132
RH
13076 else
13077 {
bad1aba3 13078 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13079 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13080 used_at = 1;
13081 }
c0ebe874 13082 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13083 break;
252b5132 13084
c0ebe874 13085 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
13086 s = "slt";
13087 goto sge;
13088 case M_SGEU:
13089 s = "sltu";
13090 sge:
c0ebe874
RS
13091 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13092 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13093 break;
252b5132 13094
c0ebe874 13095 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 13096 case M_SGEU_I:
b0e6f033 13097 if (imm_expr.X_add_number >= -0x8000
252b5132 13098 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
13099 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13100 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13101 else
13102 {
bad1aba3 13103 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 13104 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 13105 op[0], op[1], AT);
252b5132
RH
13106 used_at = 1;
13107 }
c0ebe874 13108 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13109 break;
252b5132 13110
c0ebe874 13111 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
13112 s = "slt";
13113 goto sgt;
13114 case M_SGTU:
13115 s = "sltu";
13116 sgt:
c0ebe874 13117 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 13118 break;
252b5132 13119
c0ebe874 13120 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
13121 s = "slt";
13122 goto sgti;
13123 case M_SGTU_I:
13124 s = "sltu";
13125 sgti:
8fc2e39e 13126 used_at = 1;
bad1aba3 13127 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13128 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
13129 break;
13130
c0ebe874 13131 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
13132 s = "slt";
13133 goto sle;
13134 case M_SLEU:
13135 s = "sltu";
13136 sle:
c0ebe874
RS
13137 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13138 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13139 break;
252b5132 13140
c0ebe874 13141 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
13142 s = "slt";
13143 goto slei;
13144 case M_SLEU_I:
13145 s = "sltu";
13146 slei:
8fc2e39e 13147 used_at = 1;
bad1aba3 13148 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
13149 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13150 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
13151 break;
13152
13153 case M_SLT_I:
b0e6f033 13154 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13155 && imm_expr.X_add_number < 0x8000)
13156 {
c0ebe874
RS
13157 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13158 BFD_RELOC_LO16);
8fc2e39e 13159 break;
252b5132 13160 }
8fc2e39e 13161 used_at = 1;
bad1aba3 13162 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13163 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13164 break;
13165
13166 case M_SLTU_I:
b0e6f033 13167 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13168 && imm_expr.X_add_number < 0x8000)
13169 {
c0ebe874 13170 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13171 BFD_RELOC_LO16);
8fc2e39e 13172 break;
252b5132 13173 }
8fc2e39e 13174 used_at = 1;
bad1aba3 13175 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13176 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13177 break;
13178
13179 case M_SNE:
c0ebe874
RS
13180 if (op[1] == 0)
13181 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13182 else if (op[2] == 0)
13183 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13184 else
13185 {
c0ebe874
RS
13186 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13187 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13188 }
8fc2e39e 13189 break;
252b5132
RH
13190
13191 case M_SNE_I:
b0e6f033 13192 if (imm_expr.X_add_number == 0)
252b5132 13193 {
c0ebe874 13194 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13195 break;
252b5132 13196 }
c0ebe874 13197 if (op[1] == 0)
252b5132 13198 {
1661c76c 13199 as_warn (_("instruction %s: result is always true"),
252b5132 13200 ip->insn_mo->name);
bad1aba3 13201 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13202 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13203 break;
252b5132 13204 }
dd3cbb7e
NC
13205 if (CPU_HAS_SEQ (mips_opts.arch)
13206 && -512 <= imm_expr.X_add_number
13207 && imm_expr.X_add_number < 512)
13208 {
c0ebe874 13209 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13210 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13211 break;
13212 }
b0e6f033 13213 if (imm_expr.X_add_number >= 0
252b5132
RH
13214 && imm_expr.X_add_number < 0x10000)
13215 {
c0ebe874
RS
13216 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13217 BFD_RELOC_LO16);
252b5132 13218 }
b0e6f033 13219 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13220 && imm_expr.X_add_number < 0)
13221 {
13222 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13223 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13224 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13225 }
dd3cbb7e
NC
13226 else if (CPU_HAS_SEQ (mips_opts.arch))
13227 {
13228 used_at = 1;
bad1aba3 13229 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13230 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13231 break;
13232 }
252b5132
RH
13233 else
13234 {
bad1aba3 13235 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13236 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13237 used_at = 1;
13238 }
c0ebe874 13239 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13240 break;
252b5132 13241
df58fc94
RS
13242 case M_SUB_I:
13243 s = "addi";
13244 s2 = "sub";
13245 goto do_subi;
13246 case M_SUBU_I:
13247 s = "addiu";
13248 s2 = "subu";
13249 goto do_subi;
252b5132
RH
13250 case M_DSUB_I:
13251 dbl = 1;
df58fc94
RS
13252 s = "daddi";
13253 s2 = "dsub";
13254 if (!mips_opts.micromips)
13255 goto do_subi;
b0e6f033 13256 if (imm_expr.X_add_number > -0x200
df58fc94 13257 && imm_expr.X_add_number <= 0x200)
252b5132 13258 {
b0e6f033
RS
13259 macro_build (NULL, s, "t,r,.", op[0], op[1],
13260 (int) -imm_expr.X_add_number);
8fc2e39e 13261 break;
252b5132 13262 }
df58fc94 13263 goto do_subi_i;
252b5132
RH
13264 case M_DSUBU_I:
13265 dbl = 1;
df58fc94
RS
13266 s = "daddiu";
13267 s2 = "dsubu";
13268 do_subi:
b0e6f033 13269 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13270 && imm_expr.X_add_number <= 0x8000)
13271 {
13272 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13273 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13274 break;
252b5132 13275 }
df58fc94 13276 do_subi_i:
8fc2e39e 13277 used_at = 1;
67c0d1eb 13278 load_register (AT, &imm_expr, dbl);
c0ebe874 13279 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13280 break;
13281
13282 case M_TEQ_I:
13283 s = "teq";
13284 goto trap;
13285 case M_TGE_I:
13286 s = "tge";
13287 goto trap;
13288 case M_TGEU_I:
13289 s = "tgeu";
13290 goto trap;
13291 case M_TLT_I:
13292 s = "tlt";
13293 goto trap;
13294 case M_TLTU_I:
13295 s = "tltu";
13296 goto trap;
13297 case M_TNE_I:
13298 s = "tne";
13299 trap:
8fc2e39e 13300 used_at = 1;
bad1aba3 13301 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13302 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13303 break;
13304
252b5132 13305 case M_TRUNCWS:
43841e91 13306 case M_TRUNCWD:
df58fc94 13307 gas_assert (!mips_opts.micromips);
0aa27725 13308 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13309 used_at = 1;
252b5132
RH
13310
13311 /*
13312 * Is the double cfc1 instruction a bug in the mips assembler;
13313 * or is there a reason for it?
13314 */
7d10b47d 13315 start_noreorder ();
c0ebe874
RS
13316 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13317 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13318 macro_build (NULL, "nop", "");
252b5132 13319 expr1.X_add_number = 3;
c0ebe874 13320 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13321 expr1.X_add_number = 2;
67c0d1eb
RS
13322 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13323 macro_build (NULL, "ctc1", "t,G", AT, RA);
13324 macro_build (NULL, "nop", "");
13325 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13326 op[0], op[1]);
13327 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13328 macro_build (NULL, "nop", "");
7d10b47d 13329 end_noreorder ();
252b5132
RH
13330 break;
13331
f2ae14a1 13332 case M_ULH_AB:
252b5132 13333 s = "lb";
df58fc94
RS
13334 s2 = "lbu";
13335 off = 1;
13336 goto uld_st;
f2ae14a1 13337 case M_ULHU_AB:
252b5132 13338 s = "lbu";
df58fc94
RS
13339 s2 = "lbu";
13340 off = 1;
13341 goto uld_st;
f2ae14a1 13342 case M_ULW_AB:
df58fc94
RS
13343 s = "lwl";
13344 s2 = "lwr";
7f3c4072 13345 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13346 off = 3;
13347 goto uld_st;
f2ae14a1 13348 case M_ULD_AB:
252b5132
RH
13349 s = "ldl";
13350 s2 = "ldr";
7f3c4072 13351 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13352 off = 7;
df58fc94 13353 goto uld_st;
f2ae14a1 13354 case M_USH_AB:
df58fc94
RS
13355 s = "sb";
13356 s2 = "sb";
13357 off = 1;
13358 ust = 1;
13359 goto uld_st;
f2ae14a1 13360 case M_USW_AB:
df58fc94
RS
13361 s = "swl";
13362 s2 = "swr";
7f3c4072 13363 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13364 off = 3;
df58fc94
RS
13365 ust = 1;
13366 goto uld_st;
f2ae14a1 13367 case M_USD_AB:
df58fc94
RS
13368 s = "sdl";
13369 s2 = "sdr";
7f3c4072 13370 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13371 off = 7;
13372 ust = 1;
13373
13374 uld_st:
c0ebe874 13375 breg = op[2];
f2ae14a1 13376 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13377 ep = &offset_expr;
13378 expr1.X_add_number = 0;
f2ae14a1 13379 if (large_offset)
df58fc94
RS
13380 {
13381 used_at = 1;
13382 tempreg = AT;
f2ae14a1
RS
13383 if (small_offset_p (0, align, 16))
13384 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13385 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13386 else
13387 {
13388 load_address (tempreg, ep, &used_at);
13389 if (breg != 0)
13390 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13391 tempreg, tempreg, breg);
13392 }
13393 offset_reloc[0] = BFD_RELOC_LO16;
13394 offset_reloc[1] = BFD_RELOC_UNUSED;
13395 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13396 breg = tempreg;
c0ebe874 13397 tempreg = op[0];
df58fc94
RS
13398 ep = &expr1;
13399 }
c0ebe874 13400 else if (!ust && op[0] == breg)
8fc2e39e
TS
13401 {
13402 used_at = 1;
13403 tempreg = AT;
13404 }
252b5132 13405 else
c0ebe874 13406 tempreg = op[0];
af22f5b2 13407
df58fc94
RS
13408 if (off == 1)
13409 goto ulh_sh;
252b5132 13410
90ecf173 13411 if (!target_big_endian)
df58fc94 13412 ep->X_add_number += off;
f2ae14a1 13413 if (offbits == 12)
c8276761 13414 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13415 else
13416 macro_build (ep, s, "t,o(b)", tempreg, -1,
13417 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13418
90ecf173 13419 if (!target_big_endian)
df58fc94 13420 ep->X_add_number -= off;
252b5132 13421 else
df58fc94 13422 ep->X_add_number += off;
f2ae14a1 13423 if (offbits == 12)
df58fc94 13424 macro_build (NULL, s2, "t,~(b)",
c8276761 13425 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13426 else
13427 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13428 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13429
df58fc94 13430 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13431 if (!ust && op[0] != tempreg)
df58fc94
RS
13432 {
13433 /* Protect second load's delay slot. */
13434 load_delay_nop ();
c0ebe874 13435 move_register (op[0], tempreg);
df58fc94 13436 }
8fc2e39e 13437 break;
252b5132 13438
df58fc94 13439 ulh_sh:
d6bc6245 13440 used_at = 1;
df58fc94
RS
13441 if (target_big_endian == ust)
13442 ep->X_add_number += off;
c0ebe874 13443 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13444 macro_build (ep, s, "t,o(b)", tempreg, -1,
13445 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13446
13447 /* For halfword transfers we need a temporary register to shuffle
13448 bytes. Unfortunately for M_USH_A we have none available before
13449 the next store as AT holds the base address. We deal with this
13450 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13451 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13452 if (ust)
c0ebe874 13453 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13454
13455 if (target_big_endian == ust)
13456 ep->X_add_number -= off;
252b5132 13457 else
df58fc94 13458 ep->X_add_number += off;
f2ae14a1
RS
13459 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13460 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13461
df58fc94 13462 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13463 if (ust && large_offset)
df58fc94
RS
13464 {
13465 if (target_big_endian)
13466 ep->X_add_number += off;
13467 else
13468 ep->X_add_number -= off;
f2ae14a1
RS
13469 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13470 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13471 }
13472 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13473 if (!ust || large_offset)
df58fc94 13474 {
c0ebe874 13475 tempreg = !large_offset ? AT : op[0];
df58fc94 13476 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13477 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13478 }
252b5132
RH
13479 break;
13480
13481 default:
13482 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13483 are added dynamically. */
1661c76c 13484 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13485 break;
13486 }
741fe287 13487 if (!mips_opts.at && used_at)
1661c76c 13488 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13489}
13490
13491/* Implement macros in mips16 mode. */
13492
13493static void
17a2f251 13494mips16_macro (struct mips_cl_insn *ip)
252b5132 13495{
c0ebe874 13496 const struct mips_operand_array *operands;
252b5132 13497 int mask;
c0ebe874 13498 int tmp;
252b5132
RH
13499 expressionS expr1;
13500 int dbl;
13501 const char *s, *s2, *s3;
c0ebe874
RS
13502 unsigned int op[MAX_OPERANDS];
13503 unsigned int i;
252b5132
RH
13504
13505 mask = ip->insn_mo->mask;
13506
c0ebe874
RS
13507 operands = insn_operands (ip);
13508 for (i = 0; i < MAX_OPERANDS; i++)
13509 if (operands->operand[i])
13510 op[i] = insn_extract_operand (ip, operands->operand[i]);
13511 else
13512 op[i] = -1;
252b5132 13513
252b5132
RH
13514 expr1.X_op = O_constant;
13515 expr1.X_op_symbol = NULL;
13516 expr1.X_add_symbol = NULL;
13517 expr1.X_add_number = 1;
13518
13519 dbl = 0;
13520
13521 switch (mask)
13522 {
13523 default:
b37df7c4 13524 abort ();
252b5132
RH
13525
13526 case M_DDIV_3:
13527 dbl = 1;
1a0670f3 13528 /* Fall through. */
252b5132
RH
13529 case M_DIV_3:
13530 s = "mflo";
13531 goto do_div3;
13532 case M_DREM_3:
13533 dbl = 1;
1a0670f3 13534 /* Fall through. */
252b5132
RH
13535 case M_REM_3:
13536 s = "mfhi";
13537 do_div3:
7d10b47d 13538 start_noreorder ();
c0ebe874 13539 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13540 expr1.X_add_number = 2;
c0ebe874 13541 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13542 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13543
252b5132
RH
13544 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13545 since that causes an overflow. We should do that as well,
13546 but I don't see how to do the comparisons without a temporary
13547 register. */
7d10b47d 13548 end_noreorder ();
c0ebe874 13549 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13550 break;
13551
13552 case M_DIVU_3:
13553 s = "divu";
13554 s2 = "mflo";
13555 goto do_divu3;
13556 case M_REMU_3:
13557 s = "divu";
13558 s2 = "mfhi";
13559 goto do_divu3;
13560 case M_DDIVU_3:
13561 s = "ddivu";
13562 s2 = "mflo";
13563 goto do_divu3;
13564 case M_DREMU_3:
13565 s = "ddivu";
13566 s2 = "mfhi";
13567 do_divu3:
7d10b47d 13568 start_noreorder ();
c0ebe874 13569 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13570 expr1.X_add_number = 2;
c0ebe874 13571 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13572 macro_build (NULL, "break", "6", 7);
7d10b47d 13573 end_noreorder ();
c0ebe874 13574 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13575 break;
13576
13577 case M_DMUL:
13578 dbl = 1;
1a0670f3 13579 /* Fall through. */
252b5132 13580 case M_MUL:
c0ebe874
RS
13581 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13582 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13583 break;
252b5132
RH
13584
13585 case M_DSUBU_I:
13586 dbl = 1;
13587 goto do_subu;
13588 case M_SUBU_I:
13589 do_subu:
252b5132 13590 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13591 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13592 break;
13593
13594 case M_SUBU_I_2:
252b5132 13595 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13596 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13597 break;
13598
13599 case M_DSUBU_I_2:
252b5132 13600 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13601 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13602 break;
13603
13604 case M_BEQ:
13605 s = "cmp";
13606 s2 = "bteqz";
13607 goto do_branch;
13608 case M_BNE:
13609 s = "cmp";
13610 s2 = "btnez";
13611 goto do_branch;
13612 case M_BLT:
13613 s = "slt";
13614 s2 = "btnez";
13615 goto do_branch;
13616 case M_BLTU:
13617 s = "sltu";
13618 s2 = "btnez";
13619 goto do_branch;
13620 case M_BLE:
13621 s = "slt";
13622 s2 = "bteqz";
13623 goto do_reverse_branch;
13624 case M_BLEU:
13625 s = "sltu";
13626 s2 = "bteqz";
13627 goto do_reverse_branch;
13628 case M_BGE:
13629 s = "slt";
13630 s2 = "bteqz";
13631 goto do_branch;
13632 case M_BGEU:
13633 s = "sltu";
13634 s2 = "bteqz";
13635 goto do_branch;
13636 case M_BGT:
13637 s = "slt";
13638 s2 = "btnez";
13639 goto do_reverse_branch;
13640 case M_BGTU:
13641 s = "sltu";
13642 s2 = "btnez";
13643
13644 do_reverse_branch:
c0ebe874
RS
13645 tmp = op[1];
13646 op[1] = op[0];
13647 op[0] = tmp;
252b5132
RH
13648
13649 do_branch:
c0ebe874 13650 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13651 macro_build (&offset_expr, s2, "p");
252b5132
RH
13652 break;
13653
13654 case M_BEQ_I:
13655 s = "cmpi";
13656 s2 = "bteqz";
13657 s3 = "x,U";
13658 goto do_branch_i;
13659 case M_BNE_I:
13660 s = "cmpi";
13661 s2 = "btnez";
13662 s3 = "x,U";
13663 goto do_branch_i;
13664 case M_BLT_I:
13665 s = "slti";
13666 s2 = "btnez";
13667 s3 = "x,8";
13668 goto do_branch_i;
13669 case M_BLTU_I:
13670 s = "sltiu";
13671 s2 = "btnez";
13672 s3 = "x,8";
13673 goto do_branch_i;
13674 case M_BLE_I:
13675 s = "slti";
13676 s2 = "btnez";
13677 s3 = "x,8";
13678 goto do_addone_branch_i;
13679 case M_BLEU_I:
13680 s = "sltiu";
13681 s2 = "btnez";
13682 s3 = "x,8";
13683 goto do_addone_branch_i;
13684 case M_BGE_I:
13685 s = "slti";
13686 s2 = "bteqz";
13687 s3 = "x,8";
13688 goto do_branch_i;
13689 case M_BGEU_I:
13690 s = "sltiu";
13691 s2 = "bteqz";
13692 s3 = "x,8";
13693 goto do_branch_i;
13694 case M_BGT_I:
13695 s = "slti";
13696 s2 = "bteqz";
13697 s3 = "x,8";
13698 goto do_addone_branch_i;
13699 case M_BGTU_I:
13700 s = "sltiu";
13701 s2 = "bteqz";
13702 s3 = "x,8";
13703
13704 do_addone_branch_i:
252b5132
RH
13705 ++imm_expr.X_add_number;
13706
13707 do_branch_i:
c0ebe874 13708 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13709 macro_build (&offset_expr, s2, "p");
252b5132
RH
13710 break;
13711
13712 case M_ABS:
13713 expr1.X_add_number = 0;
c0ebe874
RS
13714 macro_build (&expr1, "slti", "x,8", op[1]);
13715 if (op[0] != op[1])
13716 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13717 expr1.X_add_number = 2;
67c0d1eb 13718 macro_build (&expr1, "bteqz", "p");
c0ebe874 13719 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13720 break;
252b5132
RH
13721 }
13722}
13723
14daeee3
RS
13724/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13725 opcode bits in *OPCODE_EXTRA. */
13726
13727static struct mips_opcode *
13728mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13729 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13730{
13731 char *name, *dot, *p;
13732 unsigned int mask, suffix;
da8bca91 13733 ssize_t opend;
14daeee3
RS
13734 struct mips_opcode *insn;
13735
13736 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13737 name = xstrndup (start, length);
14daeee3
RS
13738
13739 /* Look up the instruction as-is. */
13740 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13741 if (insn)
e1fa0163 13742 goto end;
14daeee3
RS
13743
13744 dot = strchr (name, '.');
13745 if (dot && dot[1])
13746 {
13747 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13748 p = mips_parse_vu0_channels (dot + 1, &mask);
13749 if (*p == 0 && mask != 0)
13750 {
13751 *dot = 0;
13752 insn = (struct mips_opcode *) hash_find (hash, name);
13753 *dot = '.';
13754 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13755 {
13756 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13757 goto end;
14daeee3
RS
13758 }
13759 }
13760 }
13761
13762 if (mips_opts.micromips)
13763 {
13764 /* See if there's an instruction size override suffix,
13765 either `16' or `32', at the end of the mnemonic proper,
13766 that defines the operation, i.e. before the first `.'
13767 character if any. Strip it and retry. */
13768 opend = dot != NULL ? dot - name : length;
13769 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13770 suffix = 2;
13771 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13772 suffix = 4;
13773 else
13774 suffix = 0;
13775 if (suffix)
13776 {
13777 memcpy (name + opend - 2, name + opend, length - opend + 1);
13778 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13779 if (insn)
14daeee3
RS
13780 {
13781 forced_insn_length = suffix;
e1fa0163 13782 goto end;
14daeee3
RS
13783 }
13784 }
13785 }
13786
e1fa0163
NC
13787 insn = NULL;
13788 end:
13789 free (name);
13790 return insn;
14daeee3
RS
13791}
13792
77bd4346 13793/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13794 is a macro, set imm_expr and offset_expr to the values associated
13795 with "I" and "A" operands respectively. Otherwise store the value
13796 of the relocatable field (if any) in offset_expr. In both cases
13797 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13798
13799static void
60f20e8b 13800mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13801{
60f20e8b 13802 const struct mips_opcode *first, *past;
df58fc94 13803 struct hash_control *hash;
a92713e6 13804 char format;
14daeee3 13805 size_t end;
a92713e6 13806 struct mips_operand_token *tokens;
14daeee3 13807 unsigned int opcode_extra;
252b5132 13808
df58fc94
RS
13809 if (mips_opts.micromips)
13810 {
13811 hash = micromips_op_hash;
13812 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13813 }
13814 else
13815 {
13816 hash = op_hash;
13817 past = &mips_opcodes[NUMOPCODES];
13818 }
13819 forced_insn_length = 0;
14daeee3 13820 opcode_extra = 0;
252b5132 13821
df58fc94 13822 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13823 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13824 continue;
bdaaa2e1 13825
60f20e8b
RS
13826 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13827 if (first == NULL)
252b5132 13828 {
1661c76c 13829 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13830 return;
252b5132
RH
13831 }
13832
60f20e8b 13833 if (strcmp (first->name, "li.s") == 0)
a92713e6 13834 format = 'f';
60f20e8b 13835 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13836 format = 'd';
13837 else
13838 format = 0;
13839 tokens = mips_parse_arguments (str + end, format);
13840 if (!tokens)
13841 return;
13842
60f20e8b
RS
13843 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13844 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13845 set_insn_error (0, _("invalid operands"));
df58fc94 13846
e3de51ce 13847 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13848}
13849
77bd4346
RS
13850/* As for mips_ip, but used when assembling MIPS16 code.
13851 Also set forced_insn_length to the resulting instruction size in
13852 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13853
13854static void
60f20e8b 13855mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13856{
1a00e612 13857 char *end, *s, c;
60f20e8b 13858 struct mips_opcode *first;
a92713e6 13859 struct mips_operand_token *tokens;
3fb49709 13860 unsigned int l;
252b5132 13861
3882b010 13862 for (s = str; ISLOWER (*s); ++s)
252b5132 13863 ;
1a00e612
RS
13864 end = s;
13865 c = *end;
3fb49709
MR
13866
13867 l = 0;
1a00e612 13868 switch (c)
252b5132
RH
13869 {
13870 case '\0':
13871 break;
13872
13873 case ' ':
1a00e612 13874 s++;
252b5132
RH
13875 break;
13876
13877 case '.':
3fb49709
MR
13878 s++;
13879 if (*s == 't')
252b5132 13880 {
3fb49709
MR
13881 l = 2;
13882 s++;
252b5132 13883 }
3fb49709 13884 else if (*s == 'e')
252b5132 13885 {
3fb49709
MR
13886 l = 4;
13887 s++;
252b5132 13888 }
3fb49709
MR
13889 if (*s == '\0')
13890 break;
13891 else if (*s++ == ' ')
13892 break;
252b5132
RH
13893 /* Fall through. */
13894 default:
1661c76c 13895 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13896 return;
13897 }
3fb49709 13898 forced_insn_length = l;
252b5132 13899
1a00e612 13900 *end = 0;
60f20e8b 13901 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13902 *end = c;
13903
60f20e8b 13904 if (!first)
252b5132 13905 {
1661c76c 13906 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13907 return;
13908 }
13909
a92713e6
RS
13910 tokens = mips_parse_arguments (s, 0);
13911 if (!tokens)
13912 return;
13913
60f20e8b 13914 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13915 set_insn_error (0, _("invalid operands"));
252b5132 13916
e3de51ce 13917 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13918}
13919
b886a2ab
RS
13920/* Marshal immediate value VAL for an extended MIPS16 instruction.
13921 NBITS is the number of significant bits in VAL. */
13922
13923static unsigned long
13924mips16_immed_extend (offsetT val, unsigned int nbits)
13925{
13926 int extval;
13927 if (nbits == 16)
13928 {
13929 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13930 val &= 0x1f;
13931 }
13932 else if (nbits == 15)
13933 {
13934 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13935 val &= 0xf;
13936 }
13937 else
13938 {
13939 extval = ((val & 0x1f) << 6) | (val & 0x20);
13940 val = 0;
13941 }
13942 return (extval << 16) | val;
13943}
13944
3ccad066
RS
13945/* Like decode_mips16_operand, but require the operand to be defined and
13946 require it to be an integer. */
13947
13948static const struct mips_int_operand *
13949mips16_immed_operand (int type, bfd_boolean extended_p)
13950{
13951 const struct mips_operand *operand;
13952
13953 operand = decode_mips16_operand (type, extended_p);
13954 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13955 abort ();
13956 return (const struct mips_int_operand *) operand;
13957}
13958
13959/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13960
13961static bfd_boolean
13962mips16_immed_in_range_p (const struct mips_int_operand *operand,
13963 bfd_reloc_code_real_type reloc, offsetT sval)
13964{
13965 int min_val, max_val;
13966
13967 min_val = mips_int_operand_min (operand);
13968 max_val = mips_int_operand_max (operand);
13969 if (reloc != BFD_RELOC_UNUSED)
13970 {
13971 if (min_val < 0)
13972 sval = SEXT_16BIT (sval);
13973 else
13974 sval &= 0xffff;
13975 }
13976
13977 return (sval >= min_val
13978 && sval <= max_val
13979 && (sval & ((1 << operand->shift) - 1)) == 0);
13980}
13981
5c04167a
RS
13982/* Install immediate value VAL into MIPS16 instruction *INSN,
13983 extending it if necessary. The instruction in *INSN may
13984 already be extended.
13985
43c0598f
RS
13986 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13987 if none. In the former case, VAL is a 16-bit number with no
13988 defined signedness.
13989
13990 TYPE is the type of the immediate field. USER_INSN_LENGTH
13991 is the length that the user requested, or 0 if none. */
252b5132
RH
13992
13993static void
3b4dbbbf 13994mips16_immed (const char *file, unsigned int line, int type,
43c0598f 13995 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13996 unsigned int user_insn_length, unsigned long *insn)
252b5132 13997{
3ccad066
RS
13998 const struct mips_int_operand *operand;
13999 unsigned int uval, length;
252b5132 14000
3ccad066
RS
14001 operand = mips16_immed_operand (type, FALSE);
14002 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
14003 {
14004 /* We need an extended instruction. */
14005 if (user_insn_length == 2)
14006 as_bad_where (file, line, _("invalid unextended operand value"));
14007 else
14008 *insn |= MIPS16_EXTEND;
14009 }
14010 else if (user_insn_length == 4)
14011 {
14012 /* The operand doesn't force an unextended instruction to be extended.
14013 Warn if the user wanted an extended instruction anyway. */
14014 *insn |= MIPS16_EXTEND;
14015 as_warn_where (file, line,
14016 _("extended operand requested but not required"));
14017 }
252b5132 14018
3ccad066
RS
14019 length = mips16_opcode_length (*insn);
14020 if (length == 4)
252b5132 14021 {
3ccad066
RS
14022 operand = mips16_immed_operand (type, TRUE);
14023 if (!mips16_immed_in_range_p (operand, reloc, val))
14024 as_bad_where (file, line,
14025 _("operand value out of range for instruction"));
252b5132 14026 }
3ccad066
RS
14027 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14028 if (length == 2)
14029 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 14030 else
3ccad066 14031 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
14032}
14033\f
d6f16593 14034struct percent_op_match
ad8d3bb3 14035{
5e0116d5
RS
14036 const char *str;
14037 bfd_reloc_code_real_type reloc;
d6f16593
MR
14038};
14039
14040static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 14041{
5e0116d5 14042 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
14043 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14044 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14045 {"%call16", BFD_RELOC_MIPS_CALL16},
14046 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14047 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14048 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14049 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14050 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14051 {"%got", BFD_RELOC_MIPS_GOT16},
14052 {"%gp_rel", BFD_RELOC_GPREL16},
14053 {"%half", BFD_RELOC_16},
14054 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14055 {"%higher", BFD_RELOC_MIPS_HIGHER},
14056 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
14057 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14058 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14059 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14060 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14061 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14062 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14063 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
14064 {"%hi", BFD_RELOC_HI16_S},
14065 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14066 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
14067};
14068
d6f16593
MR
14069static const struct percent_op_match mips16_percent_op[] =
14070{
14071 {"%lo", BFD_RELOC_MIPS16_LO16},
14072 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
14073 {"%got", BFD_RELOC_MIPS16_GOT16},
14074 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
14075 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14076 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14077 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14078 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14079 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14080 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14081 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14082 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
14083};
14084
252b5132 14085
5e0116d5
RS
14086/* Return true if *STR points to a relocation operator. When returning true,
14087 move *STR over the operator and store its relocation code in *RELOC.
14088 Leave both *STR and *RELOC alone when returning false. */
14089
14090static bfd_boolean
17a2f251 14091parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 14092{
d6f16593
MR
14093 const struct percent_op_match *percent_op;
14094 size_t limit, i;
14095
14096 if (mips_opts.mips16)
14097 {
14098 percent_op = mips16_percent_op;
14099 limit = ARRAY_SIZE (mips16_percent_op);
14100 }
14101 else
14102 {
14103 percent_op = mips_percent_op;
14104 limit = ARRAY_SIZE (mips_percent_op);
14105 }
76b3015f 14106
d6f16593 14107 for (i = 0; i < limit; i++)
5e0116d5 14108 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 14109 {
3f98094e
DJ
14110 int len = strlen (percent_op[i].str);
14111
14112 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14113 continue;
14114
5e0116d5
RS
14115 *str += strlen (percent_op[i].str);
14116 *reloc = percent_op[i].reloc;
394f9b3a 14117
5e0116d5
RS
14118 /* Check whether the output BFD supports this relocation.
14119 If not, issue an error and fall back on something safe. */
14120 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 14121 {
20203fb9 14122 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 14123 percent_op[i].str);
01a3f561 14124 *reloc = BFD_RELOC_UNUSED;
394f9b3a 14125 }
5e0116d5 14126 return TRUE;
394f9b3a 14127 }
5e0116d5 14128 return FALSE;
394f9b3a 14129}
ad8d3bb3 14130
ad8d3bb3 14131
5e0116d5
RS
14132/* Parse string STR as a 16-bit relocatable operand. Store the
14133 expression in *EP and the relocations in the array starting
14134 at RELOC. Return the number of relocation operators used.
ad8d3bb3 14135
01a3f561 14136 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 14137
5e0116d5 14138static size_t
17a2f251
TS
14139my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14140 char *str)
ad8d3bb3 14141{
5e0116d5
RS
14142 bfd_reloc_code_real_type reversed_reloc[3];
14143 size_t reloc_index, i;
09b8f35a
RS
14144 int crux_depth, str_depth;
14145 char *crux;
5e0116d5
RS
14146
14147 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
14148 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14149 of the main expression and with CRUX_DEPTH containing the number
14150 of open brackets at that point. */
14151 reloc_index = -1;
14152 str_depth = 0;
14153 do
fb1b3232 14154 {
09b8f35a
RS
14155 reloc_index++;
14156 crux = str;
14157 crux_depth = str_depth;
14158
14159 /* Skip over whitespace and brackets, keeping count of the number
14160 of brackets. */
14161 while (*str == ' ' || *str == '\t' || *str == '(')
14162 if (*str++ == '(')
14163 str_depth++;
5e0116d5 14164 }
09b8f35a
RS
14165 while (*str == '%'
14166 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14167 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14168
09b8f35a 14169 my_getExpression (ep, crux);
5e0116d5 14170 str = expr_end;
394f9b3a 14171
5e0116d5 14172 /* Match every open bracket. */
09b8f35a 14173 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14174 if (*str++ == ')')
09b8f35a 14175 crux_depth--;
394f9b3a 14176
09b8f35a 14177 if (crux_depth > 0)
20203fb9 14178 as_bad (_("unclosed '('"));
394f9b3a 14179
5e0116d5 14180 expr_end = str;
252b5132 14181
01a3f561 14182 if (reloc_index != 0)
64bdfcaf
RS
14183 {
14184 prev_reloc_op_frag = frag_now;
14185 for (i = 0; i < reloc_index; i++)
14186 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14187 }
fb1b3232 14188
5e0116d5 14189 return reloc_index;
252b5132
RH
14190}
14191
14192static void
17a2f251 14193my_getExpression (expressionS *ep, char *str)
252b5132
RH
14194{
14195 char *save_in;
14196
14197 save_in = input_line_pointer;
14198 input_line_pointer = str;
14199 expression (ep);
14200 expr_end = input_line_pointer;
14201 input_line_pointer = save_in;
252b5132
RH
14202}
14203
6d4af3c2 14204const char *
17a2f251 14205md_atof (int type, char *litP, int *sizeP)
252b5132 14206{
499ac353 14207 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14208}
14209
14210void
17a2f251 14211md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14212{
14213 if (target_big_endian)
14214 number_to_chars_bigendian (buf, val, n);
14215 else
14216 number_to_chars_littleendian (buf, val, n);
14217}
14218\f
e013f690
TS
14219static int support_64bit_objects(void)
14220{
14221 const char **list, **l;
aa3d8fdf 14222 int yes;
e013f690
TS
14223
14224 list = bfd_target_list ();
14225 for (l = list; *l != NULL; l++)
aeffff67
RS
14226 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14227 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14228 break;
aa3d8fdf 14229 yes = (*l != NULL);
e013f690 14230 free (list);
aa3d8fdf 14231 return yes;
e013f690
TS
14232}
14233
316f5878
RS
14234/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14235 NEW_VALUE. Warn if another value was already specified. Note:
14236 we have to defer parsing the -march and -mtune arguments in order
14237 to handle 'from-abi' correctly, since the ABI might be specified
14238 in a later argument. */
14239
14240static void
17a2f251 14241mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14242{
14243 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14244 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14245 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14246 new_value);
14247
14248 *string_ptr = new_value;
14249}
14250
252b5132 14251int
17b9d67d 14252md_parse_option (int c, const char *arg)
252b5132 14253{
c6278170
RS
14254 unsigned int i;
14255
14256 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14257 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14258 {
919731af 14259 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14260 c == mips_ases[i].option_on);
14261 return 1;
14262 }
14263
252b5132
RH
14264 switch (c)
14265 {
119d663a
NC
14266 case OPTION_CONSTRUCT_FLOATS:
14267 mips_disable_float_construction = 0;
14268 break;
bdaaa2e1 14269
119d663a
NC
14270 case OPTION_NO_CONSTRUCT_FLOATS:
14271 mips_disable_float_construction = 1;
14272 break;
bdaaa2e1 14273
252b5132
RH
14274 case OPTION_TRAP:
14275 mips_trap = 1;
14276 break;
14277
14278 case OPTION_BREAK:
14279 mips_trap = 0;
14280 break;
14281
14282 case OPTION_EB:
14283 target_big_endian = 1;
14284 break;
14285
14286 case OPTION_EL:
14287 target_big_endian = 0;
14288 break;
14289
14290 case 'O':
4ffff32f
TS
14291 if (arg == NULL)
14292 mips_optimize = 1;
14293 else if (arg[0] == '0')
14294 mips_optimize = 0;
14295 else if (arg[0] == '1')
252b5132
RH
14296 mips_optimize = 1;
14297 else
14298 mips_optimize = 2;
14299 break;
14300
14301 case 'g':
14302 if (arg == NULL)
14303 mips_debug = 2;
14304 else
14305 mips_debug = atoi (arg);
252b5132
RH
14306 break;
14307
14308 case OPTION_MIPS1:
0b35dfee 14309 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14310 break;
14311
14312 case OPTION_MIPS2:
0b35dfee 14313 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14314 break;
14315
14316 case OPTION_MIPS3:
0b35dfee 14317 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14318 break;
14319
14320 case OPTION_MIPS4:
0b35dfee 14321 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14322 break;
14323
84ea6cf2 14324 case OPTION_MIPS5:
0b35dfee 14325 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14326 break;
14327
e7af610e 14328 case OPTION_MIPS32:
0b35dfee 14329 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14330 break;
14331
af7ee8bf 14332 case OPTION_MIPS32R2:
0b35dfee 14333 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14334 break;
14335
ae52f483 14336 case OPTION_MIPS32R3:
0ae19f05 14337 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14338 break;
14339
14340 case OPTION_MIPS32R5:
0ae19f05 14341 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14342 break;
14343
7361da2c
AB
14344 case OPTION_MIPS32R6:
14345 file_mips_opts.isa = ISA_MIPS32R6;
14346 break;
14347
5f74bc13 14348 case OPTION_MIPS64R2:
0b35dfee 14349 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14350 break;
14351
ae52f483 14352 case OPTION_MIPS64R3:
0ae19f05 14353 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14354 break;
14355
14356 case OPTION_MIPS64R5:
0ae19f05 14357 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14358 break;
14359
7361da2c
AB
14360 case OPTION_MIPS64R6:
14361 file_mips_opts.isa = ISA_MIPS64R6;
14362 break;
14363
84ea6cf2 14364 case OPTION_MIPS64:
0b35dfee 14365 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14366 break;
14367
ec68c924 14368 case OPTION_MTUNE:
316f5878
RS
14369 mips_set_option_string (&mips_tune_string, arg);
14370 break;
ec68c924 14371
316f5878
RS
14372 case OPTION_MARCH:
14373 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14374 break;
14375
14376 case OPTION_M4650:
316f5878
RS
14377 mips_set_option_string (&mips_arch_string, "4650");
14378 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14379 break;
14380
14381 case OPTION_NO_M4650:
14382 break;
14383
14384 case OPTION_M4010:
316f5878
RS
14385 mips_set_option_string (&mips_arch_string, "4010");
14386 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14387 break;
14388
14389 case OPTION_NO_M4010:
14390 break;
14391
14392 case OPTION_M4100:
316f5878
RS
14393 mips_set_option_string (&mips_arch_string, "4100");
14394 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14395 break;
14396
14397 case OPTION_NO_M4100:
14398 break;
14399
252b5132 14400 case OPTION_M3900:
316f5878
RS
14401 mips_set_option_string (&mips_arch_string, "3900");
14402 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14403 break;
bdaaa2e1 14404
252b5132
RH
14405 case OPTION_NO_M3900:
14406 break;
14407
df58fc94 14408 case OPTION_MICROMIPS:
919731af 14409 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14410 {
14411 as_bad (_("-mmicromips cannot be used with -mips16"));
14412 return 0;
14413 }
919731af 14414 file_mips_opts.micromips = 1;
df58fc94
RS
14415 mips_no_prev_insn ();
14416 break;
14417
14418 case OPTION_NO_MICROMIPS:
919731af 14419 file_mips_opts.micromips = 0;
df58fc94
RS
14420 mips_no_prev_insn ();
14421 break;
14422
252b5132 14423 case OPTION_MIPS16:
919731af 14424 if (file_mips_opts.micromips == 1)
df58fc94
RS
14425 {
14426 as_bad (_("-mips16 cannot be used with -micromips"));
14427 return 0;
14428 }
919731af 14429 file_mips_opts.mips16 = 1;
7d10b47d 14430 mips_no_prev_insn ();
252b5132
RH
14431 break;
14432
14433 case OPTION_NO_MIPS16:
919731af 14434 file_mips_opts.mips16 = 0;
7d10b47d 14435 mips_no_prev_insn ();
252b5132
RH
14436 break;
14437
6a32d874
CM
14438 case OPTION_FIX_24K:
14439 mips_fix_24k = 1;
14440 break;
14441
14442 case OPTION_NO_FIX_24K:
14443 mips_fix_24k = 0;
14444 break;
14445
a8d14a88
CM
14446 case OPTION_FIX_RM7000:
14447 mips_fix_rm7000 = 1;
14448 break;
14449
14450 case OPTION_NO_FIX_RM7000:
14451 mips_fix_rm7000 = 0;
14452 break;
14453
c67a084a
NC
14454 case OPTION_FIX_LOONGSON2F_JUMP:
14455 mips_fix_loongson2f_jump = TRUE;
14456 break;
14457
14458 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14459 mips_fix_loongson2f_jump = FALSE;
14460 break;
14461
14462 case OPTION_FIX_LOONGSON2F_NOP:
14463 mips_fix_loongson2f_nop = TRUE;
14464 break;
14465
14466 case OPTION_NO_FIX_LOONGSON2F_NOP:
14467 mips_fix_loongson2f_nop = FALSE;
14468 break;
14469
d766e8ec
RS
14470 case OPTION_FIX_VR4120:
14471 mips_fix_vr4120 = 1;
60b63b72
RS
14472 break;
14473
d766e8ec
RS
14474 case OPTION_NO_FIX_VR4120:
14475 mips_fix_vr4120 = 0;
60b63b72
RS
14476 break;
14477
7d8e00cf
RS
14478 case OPTION_FIX_VR4130:
14479 mips_fix_vr4130 = 1;
14480 break;
14481
14482 case OPTION_NO_FIX_VR4130:
14483 mips_fix_vr4130 = 0;
14484 break;
14485
d954098f
DD
14486 case OPTION_FIX_CN63XXP1:
14487 mips_fix_cn63xxp1 = TRUE;
14488 break;
14489
14490 case OPTION_NO_FIX_CN63XXP1:
14491 mips_fix_cn63xxp1 = FALSE;
14492 break;
14493
4a6a3df4
AO
14494 case OPTION_RELAX_BRANCH:
14495 mips_relax_branch = 1;
14496 break;
14497
14498 case OPTION_NO_RELAX_BRANCH:
14499 mips_relax_branch = 0;
14500 break;
14501
833794fc 14502 case OPTION_INSN32:
919731af 14503 file_mips_opts.insn32 = TRUE;
833794fc
MR
14504 break;
14505
14506 case OPTION_NO_INSN32:
919731af 14507 file_mips_opts.insn32 = FALSE;
833794fc
MR
14508 break;
14509
aa6975fb
ILT
14510 case OPTION_MSHARED:
14511 mips_in_shared = TRUE;
14512 break;
14513
14514 case OPTION_MNO_SHARED:
14515 mips_in_shared = FALSE;
14516 break;
14517
aed1a261 14518 case OPTION_MSYM32:
919731af 14519 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14520 break;
14521
14522 case OPTION_MNO_SYM32:
919731af 14523 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14524 break;
14525
252b5132
RH
14526 /* When generating ELF code, we permit -KPIC and -call_shared to
14527 select SVR4_PIC, and -non_shared to select no PIC. This is
14528 intended to be compatible with Irix 5. */
14529 case OPTION_CALL_SHARED:
252b5132 14530 mips_pic = SVR4_PIC;
143d77c5 14531 mips_abicalls = TRUE;
252b5132
RH
14532 break;
14533
861fb55a 14534 case OPTION_CALL_NONPIC:
861fb55a
DJ
14535 mips_pic = NO_PIC;
14536 mips_abicalls = TRUE;
14537 break;
14538
252b5132 14539 case OPTION_NON_SHARED:
252b5132 14540 mips_pic = NO_PIC;
143d77c5 14541 mips_abicalls = FALSE;
252b5132
RH
14542 break;
14543
44075ae2
TS
14544 /* The -xgot option tells the assembler to use 32 bit offsets
14545 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14546 compatibility. */
14547 case OPTION_XGOT:
14548 mips_big_got = 1;
14549 break;
14550
14551 case 'G':
6caf9ef4
TS
14552 g_switch_value = atoi (arg);
14553 g_switch_seen = 1;
252b5132
RH
14554 break;
14555
34ba82a8
TS
14556 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14557 and -mabi=64. */
252b5132 14558 case OPTION_32:
f3ded42a 14559 mips_abi = O32_ABI;
252b5132
RH
14560 break;
14561
e013f690 14562 case OPTION_N32:
316f5878 14563 mips_abi = N32_ABI;
e013f690 14564 break;
252b5132 14565
e013f690 14566 case OPTION_64:
316f5878 14567 mips_abi = N64_ABI;
f43abd2b 14568 if (!support_64bit_objects())
1661c76c 14569 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14570 break;
14571
c97ef257 14572 case OPTION_GP32:
bad1aba3 14573 file_mips_opts.gp = 32;
c97ef257
AH
14574 break;
14575
14576 case OPTION_GP64:
bad1aba3 14577 file_mips_opts.gp = 64;
c97ef257 14578 break;
252b5132 14579
ca4e0257 14580 case OPTION_FP32:
0b35dfee 14581 file_mips_opts.fp = 32;
316f5878
RS
14582 break;
14583
351cdf24
MF
14584 case OPTION_FPXX:
14585 file_mips_opts.fp = 0;
14586 break;
14587
316f5878 14588 case OPTION_FP64:
0b35dfee 14589 file_mips_opts.fp = 64;
ca4e0257
RS
14590 break;
14591
351cdf24
MF
14592 case OPTION_ODD_SPREG:
14593 file_mips_opts.oddspreg = 1;
14594 break;
14595
14596 case OPTION_NO_ODD_SPREG:
14597 file_mips_opts.oddspreg = 0;
14598 break;
14599
037b32b9 14600 case OPTION_SINGLE_FLOAT:
0b35dfee 14601 file_mips_opts.single_float = 1;
037b32b9
AN
14602 break;
14603
14604 case OPTION_DOUBLE_FLOAT:
0b35dfee 14605 file_mips_opts.single_float = 0;
037b32b9
AN
14606 break;
14607
14608 case OPTION_SOFT_FLOAT:
0b35dfee 14609 file_mips_opts.soft_float = 1;
037b32b9
AN
14610 break;
14611
14612 case OPTION_HARD_FLOAT:
0b35dfee 14613 file_mips_opts.soft_float = 0;
037b32b9
AN
14614 break;
14615
252b5132 14616 case OPTION_MABI:
e013f690 14617 if (strcmp (arg, "32") == 0)
316f5878 14618 mips_abi = O32_ABI;
e013f690 14619 else if (strcmp (arg, "o64") == 0)
316f5878 14620 mips_abi = O64_ABI;
e013f690 14621 else if (strcmp (arg, "n32") == 0)
316f5878 14622 mips_abi = N32_ABI;
e013f690
TS
14623 else if (strcmp (arg, "64") == 0)
14624 {
316f5878 14625 mips_abi = N64_ABI;
e013f690 14626 if (! support_64bit_objects())
1661c76c 14627 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14628 "format"));
14629 }
14630 else if (strcmp (arg, "eabi") == 0)
316f5878 14631 mips_abi = EABI_ABI;
e013f690 14632 else
da0e507f
TS
14633 {
14634 as_fatal (_("invalid abi -mabi=%s"), arg);
14635 return 0;
14636 }
252b5132
RH
14637 break;
14638
6b76fefe 14639 case OPTION_M7000_HILO_FIX:
b34976b6 14640 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14641 break;
14642
9ee72ff1 14643 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14644 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14645 break;
14646
ecb4347a 14647 case OPTION_MDEBUG:
b34976b6 14648 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14649 break;
14650
14651 case OPTION_NO_MDEBUG:
b34976b6 14652 mips_flag_mdebug = FALSE;
ecb4347a 14653 break;
dcd410fe
RO
14654
14655 case OPTION_PDR:
14656 mips_flag_pdr = TRUE;
14657 break;
14658
14659 case OPTION_NO_PDR:
14660 mips_flag_pdr = FALSE;
14661 break;
0a44bf69
RS
14662
14663 case OPTION_MVXWORKS_PIC:
14664 mips_pic = VXWORKS_PIC;
14665 break;
ecb4347a 14666
ba92f887
MR
14667 case OPTION_NAN:
14668 if (strcmp (arg, "2008") == 0)
7361da2c 14669 mips_nan2008 = 1;
ba92f887 14670 else if (strcmp (arg, "legacy") == 0)
7361da2c 14671 mips_nan2008 = 0;
ba92f887
MR
14672 else
14673 {
1661c76c 14674 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14675 return 0;
14676 }
14677 break;
14678
252b5132
RH
14679 default:
14680 return 0;
14681 }
14682
c67a084a
NC
14683 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14684
252b5132
RH
14685 return 1;
14686}
316f5878 14687\f
919731af 14688/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14689
316f5878 14690static void
17a2f251 14691mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14692{
14693 if (info != 0)
fef14a42 14694 mips_tune = info->cpu;
316f5878 14695}
80cc45a5 14696
34ba82a8 14697
252b5132 14698void
17a2f251 14699mips_after_parse_args (void)
e9670677 14700{
fef14a42
TS
14701 const struct mips_cpu_info *arch_info = 0;
14702 const struct mips_cpu_info *tune_info = 0;
14703
e9670677 14704 /* GP relative stuff not working for PE */
6caf9ef4 14705 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14706 {
6caf9ef4 14707 if (g_switch_seen && g_switch_value != 0)
1661c76c 14708 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14709 g_switch_value = 0;
14710 }
14711
cac012d6
AO
14712 if (mips_abi == NO_ABI)
14713 mips_abi = MIPS_DEFAULT_ABI;
14714
919731af 14715 /* The following code determines the architecture.
22923709
RS
14716 Similar code was added to GCC 3.3 (see override_options() in
14717 config/mips/mips.c). The GAS and GCC code should be kept in sync
14718 as much as possible. */
e9670677 14719
316f5878 14720 if (mips_arch_string != 0)
fef14a42 14721 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14722
0b35dfee 14723 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14724 {
0b35dfee 14725 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14726 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14727 the -march selection (if any). */
fef14a42 14728 if (arch_info != 0)
e9670677 14729 {
316f5878
RS
14730 /* -march takes precedence over -mipsN, since it is more descriptive.
14731 There's no harm in specifying both as long as the ISA levels
14732 are the same. */
0b35dfee 14733 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14734 as_bad (_("-%s conflicts with the other architecture options,"
14735 " which imply -%s"),
0b35dfee 14736 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14737 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14738 }
316f5878 14739 else
0b35dfee 14740 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14741 }
14742
fef14a42 14743 if (arch_info == 0)
95bfe26e
MF
14744 {
14745 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14746 gas_assert (arch_info);
14747 }
e9670677 14748
fef14a42 14749 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14750 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14751 arch_info->name);
14752
919731af 14753 file_mips_opts.arch = arch_info->cpu;
14754 file_mips_opts.isa = arch_info->isa;
14755
14756 /* Set up initial mips_opts state. */
14757 mips_opts = file_mips_opts;
14758
14759 /* The register size inference code is now placed in
14760 file_mips_check_options. */
fef14a42 14761
0b35dfee 14762 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14763 processor. */
fef14a42
TS
14764 if (mips_tune_string != 0)
14765 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14766
fef14a42
TS
14767 if (tune_info == 0)
14768 mips_set_tune (arch_info);
14769 else
14770 mips_set_tune (tune_info);
e9670677 14771
ecb4347a 14772 if (mips_flag_mdebug < 0)
e8044f35 14773 mips_flag_mdebug = 0;
e9670677
MR
14774}
14775\f
14776void
17a2f251 14777mips_init_after_args (void)
252b5132
RH
14778{
14779 /* initialize opcodes */
14780 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14781 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14782}
14783
14784long
17a2f251 14785md_pcrel_from (fixS *fixP)
252b5132 14786{
a7ebbfdf
TS
14787 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14788 switch (fixP->fx_r_type)
14789 {
df58fc94
RS
14790 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14791 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14792 /* Return the address of the delay slot. */
14793 return addr + 2;
14794
14795 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14796 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 14797 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 14798 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14799 case BFD_RELOC_MIPS_21_PCREL_S2:
14800 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14801 case BFD_RELOC_MIPS_JMP:
14802 /* Return the address of the delay slot. */
14803 return addr + 4;
df58fc94 14804
51f6035b
MR
14805 case BFD_RELOC_MIPS_18_PCREL_S3:
14806 /* Return the aligned address of the doubleword containing
14807 the instruction. */
14808 return addr & ~7;
14809
a7ebbfdf
TS
14810 default:
14811 return addr;
14812 }
252b5132
RH
14813}
14814
252b5132
RH
14815/* This is called before the symbol table is processed. In order to
14816 work with gcc when using mips-tfile, we must keep all local labels.
14817 However, in other cases, we want to discard them. If we were
14818 called with -g, but we didn't see any debugging information, it may
14819 mean that gcc is smuggling debugging information through to
14820 mips-tfile, in which case we must generate all local labels. */
14821
14822void
17a2f251 14823mips_frob_file_before_adjust (void)
252b5132
RH
14824{
14825#ifndef NO_ECOFF_DEBUGGING
14826 if (ECOFF_DEBUGGING
14827 && mips_debug != 0
14828 && ! ecoff_debugging_seen)
14829 flag_keep_locals = 1;
14830#endif
14831}
14832
3b91255e 14833/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14834 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14835 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14836 relocation operators.
14837
14838 For our purposes, a %lo() expression matches a %got() or %hi()
14839 expression if:
14840
14841 (a) it refers to the same symbol; and
14842 (b) the offset applied in the %lo() expression is no lower than
14843 the offset applied in the %got() or %hi().
14844
14845 (b) allows us to cope with code like:
14846
14847 lui $4,%hi(foo)
14848 lh $4,%lo(foo+2)($4)
14849
14850 ...which is legal on RELA targets, and has a well-defined behaviour
14851 if the user knows that adding 2 to "foo" will not induce a carry to
14852 the high 16 bits.
14853
14854 When several %lo()s match a particular %got() or %hi(), we use the
14855 following rules to distinguish them:
14856
14857 (1) %lo()s with smaller offsets are a better match than %lo()s with
14858 higher offsets.
14859
14860 (2) %lo()s with no matching %got() or %hi() are better than those
14861 that already have a matching %got() or %hi().
14862
14863 (3) later %lo()s are better than earlier %lo()s.
14864
14865 These rules are applied in order.
14866
14867 (1) means, among other things, that %lo()s with identical offsets are
14868 chosen if they exist.
14869
14870 (2) means that we won't associate several high-part relocations with
14871 the same low-part relocation unless there's no alternative. Having
14872 several high parts for the same low part is a GNU extension; this rule
14873 allows careful users to avoid it.
14874
14875 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14876 with the last high-part relocation being at the front of the list.
14877 It therefore makes sense to choose the last matching low-part
14878 relocation, all other things being equal. It's also easier
14879 to code that way. */
252b5132
RH
14880
14881void
17a2f251 14882mips_frob_file (void)
252b5132
RH
14883{
14884 struct mips_hi_fixup *l;
35903be0 14885 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14886
14887 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14888 {
14889 segment_info_type *seginfo;
3b91255e
RS
14890 bfd_boolean matched_lo_p;
14891 fixS **hi_pos, **lo_pos, **pos;
252b5132 14892
9c2799c2 14893 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14894
5919d012 14895 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14896 there isn't supposed to be a matching LO. Ignore %gots against
14897 constants; we'll report an error for those later. */
738e5348 14898 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14899 && !(l->fixp->fx_addsy
14900 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14901 continue;
14902
14903 /* Check quickly whether the next fixup happens to be a matching %lo. */
14904 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14905 continue;
14906
252b5132 14907 seginfo = seg_info (l->seg);
252b5132 14908
3b91255e
RS
14909 /* Set HI_POS to the position of this relocation in the chain.
14910 Set LO_POS to the position of the chosen low-part relocation.
14911 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14912 relocation that matches an immediately-preceding high-part
14913 relocation. */
14914 hi_pos = NULL;
14915 lo_pos = NULL;
14916 matched_lo_p = FALSE;
738e5348 14917 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14918
3b91255e
RS
14919 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14920 {
14921 if (*pos == l->fixp)
14922 hi_pos = pos;
14923
35903be0 14924 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14925 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14926 && (*pos)->fx_offset >= l->fixp->fx_offset
14927 && (lo_pos == NULL
14928 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14929 || (!matched_lo_p
14930 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14931 lo_pos = pos;
14932
14933 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14934 && fixup_has_matching_lo_p (*pos));
14935 }
14936
14937 /* If we found a match, remove the high-part relocation from its
14938 current position and insert it before the low-part relocation.
14939 Make the offsets match so that fixup_has_matching_lo_p()
14940 will return true.
14941
14942 We don't warn about unmatched high-part relocations since some
14943 versions of gcc have been known to emit dead "lui ...%hi(...)"
14944 instructions. */
14945 if (lo_pos != NULL)
14946 {
14947 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14948 if (l->fixp->fx_next != *lo_pos)
252b5132 14949 {
3b91255e
RS
14950 *hi_pos = l->fixp->fx_next;
14951 l->fixp->fx_next = *lo_pos;
14952 *lo_pos = l->fixp;
252b5132 14953 }
252b5132
RH
14954 }
14955 }
14956}
14957
252b5132 14958int
17a2f251 14959mips_force_relocation (fixS *fixp)
252b5132 14960{
ae6063d4 14961 if (generic_force_reloc (fixp))
252b5132
RH
14962 return 1;
14963
df58fc94
RS
14964 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14965 so that the linker relaxation can update targets. */
14966 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14967 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14968 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14969 return 1;
14970
5caa2b07
MR
14971 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14972 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14973 microMIPS symbols so that we can do cross-mode branch diagnostics
14974 and BAL to JALX conversion by the linker. */
14975 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
9d862524
MR
14976 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14977 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14978 && fixp->fx_addsy
14979 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14980 return 1;
14981
7361da2c 14982 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 14983 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
14984 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14985 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14986 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14987 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14988 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14989 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14990 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14991 return 1;
14992
3e722fb5 14993 return 0;
252b5132
RH
14994}
14995
b416ba9b
MR
14996/* Implement TC_FORCE_RELOCATION_ABS. */
14997
14998bfd_boolean
14999mips_force_relocation_abs (fixS *fixp)
15000{
15001 if (generic_force_reloc (fixp))
15002 return TRUE;
15003
15004 /* These relocations do not have enough bits in the in-place addend
15005 to hold an arbitrary absolute section's offset. */
15006 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15007 return TRUE;
15008
15009 return FALSE;
15010}
15011
b886a2ab
RS
15012/* Read the instruction associated with RELOC from BUF. */
15013
15014static unsigned int
15015read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15016{
15017 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15018 return read_compressed_insn (buf, 4);
15019 else
15020 return read_insn (buf);
15021}
15022
15023/* Write instruction INSN to BUF, given that it has been relocated
15024 by RELOC. */
15025
15026static void
15027write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15028 unsigned long insn)
15029{
15030 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15031 write_compressed_insn (buf, insn, 4);
15032 else
15033 write_insn (buf, insn);
15034}
15035
9d862524
MR
15036/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15037 to a symbol in another ISA mode, which cannot be converted to JALX. */
15038
15039static bfd_boolean
15040fix_bad_cross_mode_jump_p (fixS *fixP)
15041{
15042 unsigned long opcode;
15043 int other;
15044 char *buf;
15045
15046 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15047 return FALSE;
15048
15049 other = S_GET_OTHER (fixP->fx_addsy);
15050 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15051 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15052 switch (fixP->fx_r_type)
15053 {
15054 case BFD_RELOC_MIPS_JMP:
15055 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15056 case BFD_RELOC_MICROMIPS_JMP:
15057 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15058 default:
15059 return FALSE;
15060 }
15061}
15062
15063/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15064 jump to a symbol in the same ISA mode. */
15065
15066static bfd_boolean
15067fix_bad_same_mode_jalx_p (fixS *fixP)
15068{
15069 unsigned long opcode;
15070 int other;
15071 char *buf;
15072
15073 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15074 return FALSE;
15075
15076 other = S_GET_OTHER (fixP->fx_addsy);
15077 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15078 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15079 switch (fixP->fx_r_type)
15080 {
15081 case BFD_RELOC_MIPS_JMP:
15082 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15083 case BFD_RELOC_MIPS16_JMP:
15084 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15085 case BFD_RELOC_MICROMIPS_JMP:
15086 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15087 default:
15088 return FALSE;
15089 }
15090}
15091
15092/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15093 to a symbol whose value plus addend is not aligned according to the
15094 ultimate (after linker relaxation) jump instruction's immediate field
15095 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15096 regular MIPS code, to (1 << 2). */
15097
15098static bfd_boolean
15099fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15100{
15101 bfd_boolean micro_to_mips_p;
15102 valueT val;
15103 int other;
15104
15105 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15106 return FALSE;
15107
15108 other = S_GET_OTHER (fixP->fx_addsy);
15109 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15110 val += fixP->fx_offset;
15111 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15112 && !ELF_ST_IS_MICROMIPS (other));
15113 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15114 != ELF_ST_IS_COMPRESSED (other));
15115}
15116
15117/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15118 to a symbol whose annotation indicates another ISA mode. For absolute
a6ebf616
MR
15119 symbols check the ISA bit instead.
15120
15121 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15122 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15123 MIPS symbols and associated with BAL instructions as these instructions
15124 may be be converted to JALX by the linker. */
9d862524
MR
15125
15126static bfd_boolean
15127fix_bad_cross_mode_branch_p (fixS *fixP)
15128{
15129 bfd_boolean absolute_p;
15130 unsigned long opcode;
15131 asection *symsec;
15132 valueT val;
15133 int other;
15134 char *buf;
15135
15136 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15137 return FALSE;
15138
15139 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15140 absolute_p = bfd_is_abs_section (symsec);
15141
15142 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15143 other = S_GET_OTHER (fixP->fx_addsy);
15144
15145 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15146 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15147 switch (fixP->fx_r_type)
15148 {
15149 case BFD_RELOC_16_PCREL_S2:
a6ebf616
MR
15150 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15151 && opcode != 0x0411);
15152 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15153 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15154 && opcode != 0x4060);
9d862524
MR
15155 case BFD_RELOC_MIPS_21_PCREL_S2:
15156 case BFD_RELOC_MIPS_26_PCREL_S2:
15157 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15158 case BFD_RELOC_MIPS16_16_PCREL_S1:
15159 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15160 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15161 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
9d862524
MR
15162 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15163 default:
15164 abort ();
15165 }
15166}
15167
15168/* Return TRUE if the symbol plus addend associated with a regular MIPS
15169 branch instruction pointed to by FIXP is not aligned according to the
15170 branch instruction's immediate field requirement. We need the addend
15171 to preserve the ISA bit and also the sum must not have bit 2 set. We
15172 must explicitly OR in the ISA bit from symbol annotation as the bit
15173 won't be set in the symbol's value then. */
15174
15175static bfd_boolean
15176fix_bad_misaligned_branch_p (fixS *fixP)
15177{
15178 bfd_boolean absolute_p;
15179 asection *symsec;
15180 valueT isa_bit;
15181 valueT val;
15182 valueT off;
15183 int other;
15184
15185 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15186 return FALSE;
15187
15188 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15189 absolute_p = bfd_is_abs_section (symsec);
15190
15191 val = S_GET_VALUE (fixP->fx_addsy);
15192 other = S_GET_OTHER (fixP->fx_addsy);
15193 off = fixP->fx_offset;
15194
15195 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15196 val |= ELF_ST_IS_COMPRESSED (other);
15197 val += off;
15198 return (val & 0x3) != isa_bit;
15199}
15200
15201/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15202 and its calculated value VAL. */
15203
15204static void
15205fix_validate_branch (fixS *fixP, valueT val)
15206{
15207 if (fixP->fx_done && (val & 0x3) != 0)
15208 as_bad_where (fixP->fx_file, fixP->fx_line,
15209 _("branch to misaligned address (0x%lx)"),
15210 (long) (val + md_pcrel_from (fixP)));
15211 else if (fix_bad_cross_mode_branch_p (fixP))
15212 as_bad_where (fixP->fx_file, fixP->fx_line,
15213 _("branch to a symbol in another ISA mode"));
15214 else if (fix_bad_misaligned_branch_p (fixP))
15215 as_bad_where (fixP->fx_file, fixP->fx_line,
15216 _("branch to misaligned address (0x%lx)"),
15217 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15218 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15219 as_bad_where (fixP->fx_file, fixP->fx_line,
15220 _("cannot encode misaligned addend "
15221 "in the relocatable field (0x%lx)"),
15222 (long) fixP->fx_offset);
15223}
15224
252b5132
RH
15225/* Apply a fixup to the object file. */
15226
94f592af 15227void
55cf6793 15228md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15229{
4d68580a 15230 char *buf;
b886a2ab 15231 unsigned long insn;
a7ebbfdf 15232 reloc_howto_type *howto;
252b5132 15233
d56a8dda
RS
15234 if (fixP->fx_pcrel)
15235 switch (fixP->fx_r_type)
15236 {
15237 case BFD_RELOC_16_PCREL_S2:
c9775dde 15238 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
15239 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15240 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15241 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15242 case BFD_RELOC_32_PCREL:
7361da2c
AB
15243 case BFD_RELOC_MIPS_21_PCREL_S2:
15244 case BFD_RELOC_MIPS_26_PCREL_S2:
15245 case BFD_RELOC_MIPS_18_PCREL_S3:
15246 case BFD_RELOC_MIPS_19_PCREL_S2:
15247 case BFD_RELOC_HI16_S_PCREL:
15248 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
15249 break;
15250
15251 case BFD_RELOC_32:
15252 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15253 break;
15254
15255 default:
15256 as_bad_where (fixP->fx_file, fixP->fx_line,
15257 _("PC-relative reference to a different section"));
15258 break;
15259 }
15260
15261 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15262 that have no MIPS ELF equivalent. */
15263 if (fixP->fx_r_type != BFD_RELOC_8)
15264 {
15265 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15266 if (!howto)
15267 return;
15268 }
65551fa4 15269
df58fc94
RS
15270 gas_assert (fixP->fx_size == 2
15271 || fixP->fx_size == 4
d56a8dda 15272 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
15273 || fixP->fx_r_type == BFD_RELOC_16
15274 || fixP->fx_r_type == BFD_RELOC_64
15275 || fixP->fx_r_type == BFD_RELOC_CTOR
15276 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 15277 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
15278 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15279 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
15280 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15281 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 15282
4d68580a 15283 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 15284
b1dca8ee
RS
15285 /* Don't treat parts of a composite relocation as done. There are two
15286 reasons for this:
15287
15288 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15289 should nevertheless be emitted if the first part is.
15290
15291 (2) In normal usage, composite relocations are never assembly-time
15292 constants. The easiest way of dealing with the pathological
15293 exceptions is to generate a relocation against STN_UNDEF and
15294 leave everything up to the linker. */
3994f87e 15295 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
15296 fixP->fx_done = 1;
15297
15298 switch (fixP->fx_r_type)
15299 {
3f98094e
DJ
15300 case BFD_RELOC_MIPS_TLS_GD:
15301 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
15302 case BFD_RELOC_MIPS_TLS_DTPREL32:
15303 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
15304 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15305 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15306 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
15307 case BFD_RELOC_MIPS_TLS_TPREL32:
15308 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
15309 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15310 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
15311 case BFD_RELOC_MICROMIPS_TLS_GD:
15312 case BFD_RELOC_MICROMIPS_TLS_LDM:
15313 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15314 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15315 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15316 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15317 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
15318 case BFD_RELOC_MIPS16_TLS_GD:
15319 case BFD_RELOC_MIPS16_TLS_LDM:
15320 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15321 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15322 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15323 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15324 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
15325 if (fixP->fx_addsy)
15326 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15327 else
15328 as_bad_where (fixP->fx_file, fixP->fx_line,
15329 _("TLS relocation against a constant"));
15330 break;
3f98094e 15331
252b5132 15332 case BFD_RELOC_MIPS_JMP:
9d862524
MR
15333 case BFD_RELOC_MIPS16_JMP:
15334 case BFD_RELOC_MICROMIPS_JMP:
15335 {
15336 int shift;
15337
15338 gas_assert (!fixP->fx_done);
15339
15340 /* Shift is 2, unusually, for microMIPS JALX. */
15341 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15342 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15343 shift = 1;
15344 else
15345 shift = 2;
15346
15347 if (fix_bad_cross_mode_jump_p (fixP))
15348 as_bad_where (fixP->fx_file, fixP->fx_line,
15349 _("jump to a symbol in another ISA mode"));
15350 else if (fix_bad_same_mode_jalx_p (fixP))
15351 as_bad_where (fixP->fx_file, fixP->fx_line,
15352 _("JALX to a symbol in the same ISA mode"));
15353 else if (fix_bad_misaligned_jump_p (fixP, shift))
15354 as_bad_where (fixP->fx_file, fixP->fx_line,
15355 _("jump to misaligned address (0x%lx)"),
15356 (long) (S_GET_VALUE (fixP->fx_addsy)
15357 + fixP->fx_offset));
15358 else if (HAVE_IN_PLACE_ADDENDS
15359 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15360 as_bad_where (fixP->fx_file, fixP->fx_line,
15361 _("cannot encode misaligned addend "
15362 "in the relocatable field (0x%lx)"),
15363 (long) fixP->fx_offset);
15364 }
15365 /* Fall through. */
15366
e369bcce
TS
15367 case BFD_RELOC_MIPS_SHIFT5:
15368 case BFD_RELOC_MIPS_SHIFT6:
15369 case BFD_RELOC_MIPS_GOT_DISP:
15370 case BFD_RELOC_MIPS_GOT_PAGE:
15371 case BFD_RELOC_MIPS_GOT_OFST:
15372 case BFD_RELOC_MIPS_SUB:
15373 case BFD_RELOC_MIPS_INSERT_A:
15374 case BFD_RELOC_MIPS_INSERT_B:
15375 case BFD_RELOC_MIPS_DELETE:
15376 case BFD_RELOC_MIPS_HIGHEST:
15377 case BFD_RELOC_MIPS_HIGHER:
15378 case BFD_RELOC_MIPS_SCN_DISP:
15379 case BFD_RELOC_MIPS_REL16:
15380 case BFD_RELOC_MIPS_RELGOT:
15381 case BFD_RELOC_MIPS_JALR:
252b5132
RH
15382 case BFD_RELOC_HI16:
15383 case BFD_RELOC_HI16_S:
b886a2ab 15384 case BFD_RELOC_LO16:
cdf6fd85 15385 case BFD_RELOC_GPREL16:
252b5132
RH
15386 case BFD_RELOC_MIPS_LITERAL:
15387 case BFD_RELOC_MIPS_CALL16:
15388 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 15389 case BFD_RELOC_GPREL32:
252b5132
RH
15390 case BFD_RELOC_MIPS_GOT_HI16:
15391 case BFD_RELOC_MIPS_GOT_LO16:
15392 case BFD_RELOC_MIPS_CALL_HI16:
15393 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
15394 case BFD_RELOC_HI16_S_PCREL:
15395 case BFD_RELOC_LO16_PCREL:
252b5132 15396 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
15397 case BFD_RELOC_MIPS16_GOT16:
15398 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
15399 case BFD_RELOC_MIPS16_HI16:
15400 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 15401 case BFD_RELOC_MIPS16_LO16:
df58fc94
RS
15402 case BFD_RELOC_MICROMIPS_GOT_DISP:
15403 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15404 case BFD_RELOC_MICROMIPS_GOT_OFST:
15405 case BFD_RELOC_MICROMIPS_SUB:
15406 case BFD_RELOC_MICROMIPS_HIGHEST:
15407 case BFD_RELOC_MICROMIPS_HIGHER:
15408 case BFD_RELOC_MICROMIPS_SCN_DISP:
15409 case BFD_RELOC_MICROMIPS_JALR:
15410 case BFD_RELOC_MICROMIPS_HI16:
15411 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 15412 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
15413 case BFD_RELOC_MICROMIPS_GPREL16:
15414 case BFD_RELOC_MICROMIPS_LITERAL:
15415 case BFD_RELOC_MICROMIPS_CALL16:
15416 case BFD_RELOC_MICROMIPS_GOT16:
15417 case BFD_RELOC_MICROMIPS_GOT_HI16:
15418 case BFD_RELOC_MICROMIPS_GOT_LO16:
15419 case BFD_RELOC_MICROMIPS_CALL_HI16:
15420 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 15421 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
15422 if (fixP->fx_done)
15423 {
15424 offsetT value;
15425
15426 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15427 {
15428 insn = read_reloc_insn (buf, fixP->fx_r_type);
15429 if (mips16_reloc_p (fixP->fx_r_type))
15430 insn |= mips16_immed_extend (value, 16);
15431 else
15432 insn |= (value & 0xffff);
15433 write_reloc_insn (buf, fixP->fx_r_type, insn);
15434 }
15435 else
15436 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15437 _("unsupported constant in relocation"));
b886a2ab 15438 }
252b5132
RH
15439 break;
15440
252b5132
RH
15441 case BFD_RELOC_64:
15442 /* This is handled like BFD_RELOC_32, but we output a sign
15443 extended value if we are only 32 bits. */
3e722fb5 15444 if (fixP->fx_done)
252b5132
RH
15445 {
15446 if (8 <= sizeof (valueT))
4d68580a 15447 md_number_to_chars (buf, *valP, 8);
252b5132
RH
15448 else
15449 {
a7ebbfdf 15450 valueT hiv;
252b5132 15451
a7ebbfdf 15452 if ((*valP & 0x80000000) != 0)
252b5132
RH
15453 hiv = 0xffffffff;
15454 else
15455 hiv = 0;
4d68580a
RS
15456 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15457 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15458 }
15459 }
15460 break;
15461
056350c6 15462 case BFD_RELOC_RVA:
252b5132 15463 case BFD_RELOC_32:
b47468a6 15464 case BFD_RELOC_32_PCREL:
252b5132 15465 case BFD_RELOC_16:
d56a8dda 15466 case BFD_RELOC_8:
252b5132 15467 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15468 value now. This can happen if we have a .word which is not
15469 resolved when it appears but is later defined. */
252b5132 15470 if (fixP->fx_done)
4d68580a 15471 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15472 break;
15473
7361da2c 15474 case BFD_RELOC_MIPS_21_PCREL_S2:
9d862524 15475 fix_validate_branch (fixP, *valP);
41947d9e
MR
15476 if (!fixP->fx_done)
15477 break;
15478
15479 if (*valP + 0x400000 <= 0x7fffff)
15480 {
15481 insn = read_insn (buf);
15482 insn |= (*valP >> 2) & 0x1fffff;
15483 write_insn (buf, insn);
15484 }
15485 else
15486 as_bad_where (fixP->fx_file, fixP->fx_line,
15487 _("branch out of range"));
15488 break;
15489
7361da2c 15490 case BFD_RELOC_MIPS_26_PCREL_S2:
9d862524 15491 fix_validate_branch (fixP, *valP);
41947d9e
MR
15492 if (!fixP->fx_done)
15493 break;
7361da2c 15494
41947d9e
MR
15495 if (*valP + 0x8000000 <= 0xfffffff)
15496 {
15497 insn = read_insn (buf);
15498 insn |= (*valP >> 2) & 0x3ffffff;
15499 write_insn (buf, insn);
15500 }
15501 else
15502 as_bad_where (fixP->fx_file, fixP->fx_line,
15503 _("branch out of range"));
7361da2c
AB
15504 break;
15505
15506 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 15507 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15508 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15509 _("PC-relative access using misaligned symbol (%lx)"),
15510 (long) S_GET_VALUE (fixP->fx_addsy));
15511 if ((fixP->fx_offset & 0x7) != 0)
15512 as_bad_where (fixP->fx_file, fixP->fx_line,
15513 _("PC-relative access using misaligned offset (%lx)"),
15514 (long) fixP->fx_offset);
41947d9e
MR
15515 if (!fixP->fx_done)
15516 break;
7361da2c 15517
41947d9e
MR
15518 if (*valP + 0x100000 <= 0x1fffff)
15519 {
15520 insn = read_insn (buf);
15521 insn |= (*valP >> 3) & 0x3ffff;
15522 write_insn (buf, insn);
15523 }
15524 else
15525 as_bad_where (fixP->fx_file, fixP->fx_line,
15526 _("PC-relative access out of range"));
7361da2c
AB
15527 break;
15528
15529 case BFD_RELOC_MIPS_19_PCREL_S2:
15530 if ((*valP & 0x3) != 0)
15531 as_bad_where (fixP->fx_file, fixP->fx_line,
15532 _("PC-relative access to misaligned address (%lx)"),
717ba204 15533 (long) *valP);
41947d9e
MR
15534 if (!fixP->fx_done)
15535 break;
7361da2c 15536
41947d9e
MR
15537 if (*valP + 0x100000 <= 0x1fffff)
15538 {
15539 insn = read_insn (buf);
15540 insn |= (*valP >> 2) & 0x7ffff;
15541 write_insn (buf, insn);
15542 }
15543 else
15544 as_bad_where (fixP->fx_file, fixP->fx_line,
15545 _("PC-relative access out of range"));
7361da2c
AB
15546 break;
15547
252b5132 15548 case BFD_RELOC_16_PCREL_S2:
9d862524 15549 fix_validate_branch (fixP, *valP);
cb56d3d3 15550
54f4ddb3
TS
15551 /* We need to save the bits in the instruction since fixup_segment()
15552 might be deleting the relocation entry (i.e., a branch within
15553 the current segment). */
a7ebbfdf 15554 if (! fixP->fx_done)
bb2d6cd7 15555 break;
252b5132 15556
54f4ddb3 15557 /* Update old instruction data. */
4d68580a 15558 insn = read_insn (buf);
252b5132 15559
a7ebbfdf
TS
15560 if (*valP + 0x20000 <= 0x3ffff)
15561 {
15562 insn |= (*valP >> 2) & 0xffff;
4d68580a 15563 write_insn (buf, insn);
a7ebbfdf
TS
15564 }
15565 else if (mips_pic == NO_PIC
15566 && fixP->fx_done
15567 && fixP->fx_frag->fr_address >= text_section->vma
15568 && (fixP->fx_frag->fr_address
587aac4e 15569 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15570 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15571 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15572 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15573 {
15574 /* The branch offset is too large. If this is an
15575 unconditional branch, and we are not generating PIC code,
15576 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15577 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15578 insn = 0x0c000000; /* jal */
252b5132 15579 else
a7ebbfdf
TS
15580 insn = 0x08000000; /* j */
15581 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15582 fixP->fx_done = 0;
15583 fixP->fx_addsy = section_symbol (text_section);
15584 *valP += md_pcrel_from (fixP);
4d68580a 15585 write_insn (buf, insn);
a7ebbfdf
TS
15586 }
15587 else
15588 {
15589 /* If we got here, we have branch-relaxation disabled,
15590 and there's nothing we can do to fix this instruction
15591 without turning it into a longer sequence. */
15592 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15593 _("branch out of range"));
252b5132 15594 }
252b5132
RH
15595 break;
15596
c9775dde 15597 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
15598 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15599 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15600 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
96e9ba5f 15601 gas_assert (!fixP->fx_done);
9d862524
MR
15602 if (fix_bad_cross_mode_branch_p (fixP))
15603 as_bad_where (fixP->fx_file, fixP->fx_line,
15604 _("branch to a symbol in another ISA mode"));
15605 else if (fixP->fx_addsy
15606 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15607 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15608 && (fixP->fx_offset & 0x1) != 0)
15609 as_bad_where (fixP->fx_file, fixP->fx_line,
15610 _("branch to misaligned address (0x%lx)"),
15611 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15612 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15613 as_bad_where (fixP->fx_file, fixP->fx_line,
15614 _("cannot encode misaligned addend "
15615 "in the relocatable field (0x%lx)"),
15616 (long) fixP->fx_offset);
df58fc94
RS
15617 break;
15618
252b5132
RH
15619 case BFD_RELOC_VTABLE_INHERIT:
15620 fixP->fx_done = 0;
15621 if (fixP->fx_addsy
15622 && !S_IS_DEFINED (fixP->fx_addsy)
15623 && !S_IS_WEAK (fixP->fx_addsy))
15624 S_SET_WEAK (fixP->fx_addsy);
15625 break;
15626
2f0c68f2 15627 case BFD_RELOC_NONE:
252b5132
RH
15628 case BFD_RELOC_VTABLE_ENTRY:
15629 fixP->fx_done = 0;
15630 break;
15631
15632 default:
b37df7c4 15633 abort ();
252b5132 15634 }
a7ebbfdf
TS
15635
15636 /* Remember value for tc_gen_reloc. */
15637 fixP->fx_addnumber = *valP;
252b5132
RH
15638}
15639
252b5132 15640static symbolS *
17a2f251 15641get_symbol (void)
252b5132
RH
15642{
15643 int c;
15644 char *name;
15645 symbolS *p;
15646
d02603dc 15647 c = get_symbol_name (&name);
252b5132 15648 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15649 (void) restore_line_pointer (c);
252b5132
RH
15650 return p;
15651}
15652
742a56fe
RS
15653/* Align the current frag to a given power of two. If a particular
15654 fill byte should be used, FILL points to an integer that contains
15655 that byte, otherwise FILL is null.
15656
462427c4
RS
15657 This function used to have the comment:
15658
15659 The MIPS assembler also automatically adjusts any preceding label.
15660
15661 The implementation therefore applied the adjustment to a maximum of
15662 one label. However, other label adjustments are applied to batches
15663 of labels, and adjusting just one caused problems when new labels
15664 were added for the sake of debugging or unwind information.
15665 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15666
15667static void
462427c4 15668mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15669{
7d10b47d 15670 mips_emit_delays ();
df58fc94 15671 mips_record_compressed_mode ();
742a56fe
RS
15672 if (fill == NULL && subseg_text_p (now_seg))
15673 frag_align_code (to, 0);
15674 else
15675 frag_align (to, fill ? *fill : 0, 0);
252b5132 15676 record_alignment (now_seg, to);
462427c4 15677 mips_move_labels (labels, FALSE);
252b5132
RH
15678}
15679
15680/* Align to a given power of two. .align 0 turns off the automatic
15681 alignment used by the data creating pseudo-ops. */
15682
15683static void
17a2f251 15684s_align (int x ATTRIBUTE_UNUSED)
252b5132 15685{
742a56fe 15686 int temp, fill_value, *fill_ptr;
49954fb4 15687 long max_alignment = 28;
252b5132 15688
54f4ddb3 15689 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15690 to the aligned address.
54f4ddb3 15691 o It's not documented but auto alignment is reinstated by
252b5132 15692 a .align pseudo instruction.
54f4ddb3 15693 o Note also that after auto alignment is turned off the mips assembler
252b5132 15694 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15695 We don't. */
252b5132
RH
15696
15697 temp = get_absolute_expression ();
15698 if (temp > max_alignment)
1661c76c 15699 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15700 else if (temp < 0)
15701 {
1661c76c 15702 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15703 temp = 0;
15704 }
15705 if (*input_line_pointer == ',')
15706 {
f9419b05 15707 ++input_line_pointer;
742a56fe
RS
15708 fill_value = get_absolute_expression ();
15709 fill_ptr = &fill_value;
252b5132
RH
15710 }
15711 else
742a56fe 15712 fill_ptr = 0;
252b5132
RH
15713 if (temp)
15714 {
a8dbcb85
TS
15715 segment_info_type *si = seg_info (now_seg);
15716 struct insn_label_list *l = si->label_list;
54f4ddb3 15717 /* Auto alignment should be switched on by next section change. */
252b5132 15718 auto_align = 1;
462427c4 15719 mips_align (temp, fill_ptr, l);
252b5132
RH
15720 }
15721 else
15722 {
15723 auto_align = 0;
15724 }
15725
15726 demand_empty_rest_of_line ();
15727}
15728
252b5132 15729static void
17a2f251 15730s_change_sec (int sec)
252b5132
RH
15731{
15732 segT seg;
15733
252b5132
RH
15734 /* The ELF backend needs to know that we are changing sections, so
15735 that .previous works correctly. We could do something like check
b6ff326e 15736 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15737 as it would not be appropriate to use it in the section changing
15738 functions in read.c, since obj-elf.c intercepts those. FIXME:
15739 This should be cleaner, somehow. */
f3ded42a 15740 obj_elf_section_change_hook ();
252b5132 15741
7d10b47d 15742 mips_emit_delays ();
6a32d874 15743
252b5132
RH
15744 switch (sec)
15745 {
15746 case 't':
15747 s_text (0);
15748 break;
15749 case 'd':
15750 s_data (0);
15751 break;
15752 case 'b':
15753 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15754 demand_empty_rest_of_line ();
15755 break;
15756
15757 case 'r':
4d0d148d
TS
15758 seg = subseg_new (RDATA_SECTION_NAME,
15759 (subsegT) get_absolute_expression ());
f3ded42a
RS
15760 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15761 | SEC_READONLY | SEC_RELOC
15762 | SEC_DATA));
15763 if (strncmp (TARGET_OS, "elf", 3) != 0)
15764 record_alignment (seg, 4);
4d0d148d 15765 demand_empty_rest_of_line ();
252b5132
RH
15766 break;
15767
15768 case 's':
4d0d148d 15769 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15770 bfd_set_section_flags (stdoutput, seg,
15771 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15772 if (strncmp (TARGET_OS, "elf", 3) != 0)
15773 record_alignment (seg, 4);
4d0d148d
TS
15774 demand_empty_rest_of_line ();
15775 break;
998b3c36
MR
15776
15777 case 'B':
15778 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15779 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15780 if (strncmp (TARGET_OS, "elf", 3) != 0)
15781 record_alignment (seg, 4);
998b3c36
MR
15782 demand_empty_rest_of_line ();
15783 break;
252b5132
RH
15784 }
15785
15786 auto_align = 1;
15787}
b34976b6 15788
cca86cc8 15789void
17a2f251 15790s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15791{
d02603dc 15792 char *saved_ilp;
cca86cc8 15793 char *section_name;
d02603dc 15794 char c, endc;
684022ea 15795 char next_c = 0;
cca86cc8
SC
15796 int section_type;
15797 int section_flag;
15798 int section_entry_size;
15799 int section_alignment;
b34976b6 15800
d02603dc
NC
15801 saved_ilp = input_line_pointer;
15802 endc = get_symbol_name (&section_name);
15803 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15804 if (c)
d02603dc 15805 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15806
4cf0dd0d
TS
15807 /* Do we have .section Name<,"flags">? */
15808 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15809 {
d02603dc
NC
15810 /* Just after name is now '\0'. */
15811 (void) restore_line_pointer (endc);
15812 input_line_pointer = saved_ilp;
cca86cc8
SC
15813 obj_elf_section (ignore);
15814 return;
15815 }
d02603dc
NC
15816
15817 section_name = xstrdup (section_name);
15818 c = restore_line_pointer (endc);
15819
cca86cc8
SC
15820 input_line_pointer++;
15821
15822 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15823 if (c == ',')
15824 section_type = get_absolute_expression ();
15825 else
15826 section_type = 0;
d02603dc 15827
cca86cc8
SC
15828 if (*input_line_pointer++ == ',')
15829 section_flag = get_absolute_expression ();
15830 else
15831 section_flag = 0;
d02603dc 15832
cca86cc8
SC
15833 if (*input_line_pointer++ == ',')
15834 section_entry_size = get_absolute_expression ();
15835 else
15836 section_entry_size = 0;
d02603dc 15837
cca86cc8
SC
15838 if (*input_line_pointer++ == ',')
15839 section_alignment = get_absolute_expression ();
15840 else
15841 section_alignment = 0;
d02603dc 15842
87975d2a
AM
15843 /* FIXME: really ignore? */
15844 (void) section_alignment;
cca86cc8 15845
8ab8a5c8
RS
15846 /* When using the generic form of .section (as implemented by obj-elf.c),
15847 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15848 traditionally had to fall back on the more common @progbits instead.
15849
15850 There's nothing really harmful in this, since bfd will correct
15851 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15852 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15853 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15854
15855 Even so, we shouldn't force users of the MIPS .section syntax to
15856 incorrectly label the sections as SHT_PROGBITS. The best compromise
15857 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15858 generic type-checking code. */
15859 if (section_type == SHT_MIPS_DWARF)
15860 section_type = SHT_PROGBITS;
15861
cca86cc8
SC
15862 obj_elf_change_section (section_name, section_type, section_flag,
15863 section_entry_size, 0, 0, 0);
a816d1ed
AO
15864
15865 if (now_seg->name != section_name)
15866 free (section_name);
cca86cc8 15867}
252b5132
RH
15868
15869void
17a2f251 15870mips_enable_auto_align (void)
252b5132
RH
15871{
15872 auto_align = 1;
15873}
15874
15875static void
17a2f251 15876s_cons (int log_size)
252b5132 15877{
a8dbcb85
TS
15878 segment_info_type *si = seg_info (now_seg);
15879 struct insn_label_list *l = si->label_list;
252b5132 15880
7d10b47d 15881 mips_emit_delays ();
252b5132 15882 if (log_size > 0 && auto_align)
462427c4 15883 mips_align (log_size, 0, l);
252b5132 15884 cons (1 << log_size);
a1facbec 15885 mips_clear_insn_labels ();
252b5132
RH
15886}
15887
15888static void
17a2f251 15889s_float_cons (int type)
252b5132 15890{
a8dbcb85
TS
15891 segment_info_type *si = seg_info (now_seg);
15892 struct insn_label_list *l = si->label_list;
252b5132 15893
7d10b47d 15894 mips_emit_delays ();
252b5132
RH
15895
15896 if (auto_align)
49309057
ILT
15897 {
15898 if (type == 'd')
462427c4 15899 mips_align (3, 0, l);
49309057 15900 else
462427c4 15901 mips_align (2, 0, l);
49309057 15902 }
252b5132 15903
252b5132 15904 float_cons (type);
a1facbec 15905 mips_clear_insn_labels ();
252b5132
RH
15906}
15907
15908/* Handle .globl. We need to override it because on Irix 5 you are
15909 permitted to say
15910 .globl foo .text
15911 where foo is an undefined symbol, to mean that foo should be
15912 considered to be the address of a function. */
15913
15914static void
17a2f251 15915s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15916{
15917 char *name;
15918 int c;
15919 symbolS *symbolP;
15920 flagword flag;
15921
8a06b769 15922 do
252b5132 15923 {
d02603dc 15924 c = get_symbol_name (&name);
8a06b769
TS
15925 symbolP = symbol_find_or_make (name);
15926 S_SET_EXTERNAL (symbolP);
15927
252b5132 15928 *input_line_pointer = c;
d02603dc 15929 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15930
8a06b769
TS
15931 /* On Irix 5, every global symbol that is not explicitly labelled as
15932 being a function is apparently labelled as being an object. */
15933 flag = BSF_OBJECT;
252b5132 15934
8a06b769
TS
15935 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15936 && (*input_line_pointer != ','))
15937 {
15938 char *secname;
15939 asection *sec;
15940
d02603dc 15941 c = get_symbol_name (&secname);
8a06b769
TS
15942 sec = bfd_get_section_by_name (stdoutput, secname);
15943 if (sec == NULL)
15944 as_bad (_("%s: no such section"), secname);
d02603dc 15945 (void) restore_line_pointer (c);
8a06b769
TS
15946
15947 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15948 flag = BSF_FUNCTION;
15949 }
15950
15951 symbol_get_bfdsym (symbolP)->flags |= flag;
15952
15953 c = *input_line_pointer;
15954 if (c == ',')
15955 {
15956 input_line_pointer++;
15957 SKIP_WHITESPACE ();
15958 if (is_end_of_line[(unsigned char) *input_line_pointer])
15959 c = '\n';
15960 }
15961 }
15962 while (c == ',');
252b5132 15963
252b5132
RH
15964 demand_empty_rest_of_line ();
15965}
15966
15967static void
17a2f251 15968s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15969{
15970 char *opt;
15971 char c;
15972
d02603dc 15973 c = get_symbol_name (&opt);
252b5132
RH
15974
15975 if (*opt == 'O')
15976 {
15977 /* FIXME: What does this mean? */
15978 }
41a1578e 15979 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
15980 {
15981 int i;
15982
15983 i = atoi (opt + 3);
668c5ebc
MR
15984 if (i != 0 && i != 2)
15985 as_bad (_(".option pic%d not supported"), i);
15986 else if (mips_pic == VXWORKS_PIC)
15987 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15988 else if (i == 0)
252b5132
RH
15989 mips_pic = NO_PIC;
15990 else if (i == 2)
143d77c5 15991 {
8b828383 15992 mips_pic = SVR4_PIC;
143d77c5
EC
15993 mips_abicalls = TRUE;
15994 }
252b5132 15995
4d0d148d 15996 if (mips_pic == SVR4_PIC)
252b5132
RH
15997 {
15998 if (g_switch_seen && g_switch_value != 0)
15999 as_warn (_("-G may not be used with SVR4 PIC code"));
16000 g_switch_value = 0;
16001 bfd_set_gp_size (stdoutput, 0);
16002 }
16003 }
16004 else
1661c76c 16005 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 16006
d02603dc 16007 (void) restore_line_pointer (c);
252b5132
RH
16008 demand_empty_rest_of_line ();
16009}
16010
16011/* This structure is used to hold a stack of .set values. */
16012
e972090a
NC
16013struct mips_option_stack
16014{
252b5132
RH
16015 struct mips_option_stack *next;
16016 struct mips_set_options options;
16017};
16018
16019static struct mips_option_stack *mips_opts_stack;
16020
22522f88
MR
16021/* Return status for .set/.module option handling. */
16022
16023enum code_option_type
16024{
16025 /* Unrecognized option. */
16026 OPTION_TYPE_BAD = -1,
16027
16028 /* Ordinary option. */
16029 OPTION_TYPE_NORMAL,
16030
16031 /* ISA changing option. */
16032 OPTION_TYPE_ISA
16033};
16034
16035/* Handle common .set/.module options. Return status indicating option
16036 type. */
16037
16038static enum code_option_type
919731af 16039parse_code_option (char * name)
252b5132 16040{
22522f88 16041 bfd_boolean isa_set = FALSE;
c6278170 16042 const struct mips_ase *ase;
22522f88 16043
919731af 16044 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
16045 {
16046 char *s = name + 3;
16047
16048 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 16049 as_bad (_("unrecognized register name `%s'"), s);
741fe287 16050 }
252b5132 16051 else if (strcmp (name, "at") == 0)
919731af 16052 mips_opts.at = ATREG;
252b5132 16053 else if (strcmp (name, "noat") == 0)
919731af 16054 mips_opts.at = ZERO;
252b5132 16055 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 16056 mips_opts.nomove = 0;
252b5132 16057 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 16058 mips_opts.nomove = 1;
252b5132 16059 else if (strcmp (name, "bopt") == 0)
919731af 16060 mips_opts.nobopt = 0;
252b5132 16061 else if (strcmp (name, "nobopt") == 0)
919731af 16062 mips_opts.nobopt = 1;
ad3fea08 16063 else if (strcmp (name, "gp=32") == 0)
bad1aba3 16064 mips_opts.gp = 32;
ad3fea08 16065 else if (strcmp (name, "gp=64") == 0)
919731af 16066 mips_opts.gp = 64;
ad3fea08 16067 else if (strcmp (name, "fp=32") == 0)
0b35dfee 16068 mips_opts.fp = 32;
351cdf24
MF
16069 else if (strcmp (name, "fp=xx") == 0)
16070 mips_opts.fp = 0;
ad3fea08 16071 else if (strcmp (name, "fp=64") == 0)
919731af 16072 mips_opts.fp = 64;
037b32b9
AN
16073 else if (strcmp (name, "softfloat") == 0)
16074 mips_opts.soft_float = 1;
16075 else if (strcmp (name, "hardfloat") == 0)
16076 mips_opts.soft_float = 0;
16077 else if (strcmp (name, "singlefloat") == 0)
16078 mips_opts.single_float = 1;
16079 else if (strcmp (name, "doublefloat") == 0)
16080 mips_opts.single_float = 0;
351cdf24
MF
16081 else if (strcmp (name, "nooddspreg") == 0)
16082 mips_opts.oddspreg = 0;
16083 else if (strcmp (name, "oddspreg") == 0)
16084 mips_opts.oddspreg = 1;
252b5132
RH
16085 else if (strcmp (name, "mips16") == 0
16086 || strcmp (name, "MIPS-16") == 0)
919731af 16087 mips_opts.mips16 = 1;
252b5132
RH
16088 else if (strcmp (name, "nomips16") == 0
16089 || strcmp (name, "noMIPS-16") == 0)
16090 mips_opts.mips16 = 0;
df58fc94 16091 else if (strcmp (name, "micromips") == 0)
919731af 16092 mips_opts.micromips = 1;
df58fc94
RS
16093 else if (strcmp (name, "nomicromips") == 0)
16094 mips_opts.micromips = 0;
c6278170
RS
16095 else if (name[0] == 'n'
16096 && name[1] == 'o'
16097 && (ase = mips_lookup_ase (name + 2)))
919731af 16098 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 16099 else if ((ase = mips_lookup_ase (name)))
919731af 16100 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 16101 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 16102 {
1a2c1fad
CD
16103 /* Permit the user to change the ISA and architecture on the fly.
16104 Needless to say, misuse can cause serious problems. */
919731af 16105 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
16106 {
16107 const struct mips_cpu_info *p;
16108
919731af 16109 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
16110 if (!p)
16111 as_bad (_("unknown architecture %s"), name + 5);
16112 else
16113 {
16114 mips_opts.arch = p->cpu;
16115 mips_opts.isa = p->isa;
22522f88 16116 isa_set = TRUE;
1a2c1fad
CD
16117 }
16118 }
81a21e38
TS
16119 else if (strncmp (name, "mips", 4) == 0)
16120 {
16121 const struct mips_cpu_info *p;
16122
919731af 16123 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
16124 if (!p)
16125 as_bad (_("unknown ISA level %s"), name + 4);
16126 else
16127 {
16128 mips_opts.arch = p->cpu;
16129 mips_opts.isa = p->isa;
22522f88 16130 isa_set = TRUE;
81a21e38
TS
16131 }
16132 }
af7ee8bf 16133 else
81a21e38 16134 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
16135 }
16136 else if (strcmp (name, "autoextend") == 0)
16137 mips_opts.noautoextend = 0;
16138 else if (strcmp (name, "noautoextend") == 0)
16139 mips_opts.noautoextend = 1;
833794fc
MR
16140 else if (strcmp (name, "insn32") == 0)
16141 mips_opts.insn32 = TRUE;
16142 else if (strcmp (name, "noinsn32") == 0)
16143 mips_opts.insn32 = FALSE;
919731af 16144 else if (strcmp (name, "sym32") == 0)
16145 mips_opts.sym32 = TRUE;
16146 else if (strcmp (name, "nosym32") == 0)
16147 mips_opts.sym32 = FALSE;
16148 else
22522f88
MR
16149 return OPTION_TYPE_BAD;
16150
16151 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 16152}
16153
16154/* Handle the .set pseudo-op. */
16155
16156static void
16157s_mipsset (int x ATTRIBUTE_UNUSED)
16158{
22522f88 16159 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 16160 char *name = input_line_pointer, ch;
919731af 16161
16162 file_mips_check_options ();
16163
16164 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16165 ++input_line_pointer;
16166 ch = *input_line_pointer;
16167 *input_line_pointer = '\0';
16168
16169 if (strchr (name, ','))
16170 {
16171 /* Generic ".set" directive; use the generic handler. */
16172 *input_line_pointer = ch;
16173 input_line_pointer = name;
16174 s_set (0);
16175 return;
16176 }
16177
16178 if (strcmp (name, "reorder") == 0)
16179 {
16180 if (mips_opts.noreorder)
16181 end_noreorder ();
16182 }
16183 else if (strcmp (name, "noreorder") == 0)
16184 {
16185 if (!mips_opts.noreorder)
16186 start_noreorder ();
16187 }
16188 else if (strcmp (name, "macro") == 0)
16189 mips_opts.warn_about_macros = 0;
16190 else if (strcmp (name, "nomacro") == 0)
16191 {
16192 if (mips_opts.noreorder == 0)
16193 as_bad (_("`noreorder' must be set before `nomacro'"));
16194 mips_opts.warn_about_macros = 1;
16195 }
16196 else if (strcmp (name, "gp=default") == 0)
16197 mips_opts.gp = file_mips_opts.gp;
16198 else if (strcmp (name, "fp=default") == 0)
16199 mips_opts.fp = file_mips_opts.fp;
16200 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16201 {
16202 mips_opts.isa = file_mips_opts.isa;
16203 mips_opts.arch = file_mips_opts.arch;
16204 mips_opts.gp = file_mips_opts.gp;
16205 mips_opts.fp = file_mips_opts.fp;
16206 }
252b5132
RH
16207 else if (strcmp (name, "push") == 0)
16208 {
16209 struct mips_option_stack *s;
16210
325801bd 16211 s = XNEW (struct mips_option_stack);
252b5132
RH
16212 s->next = mips_opts_stack;
16213 s->options = mips_opts;
16214 mips_opts_stack = s;
16215 }
16216 else if (strcmp (name, "pop") == 0)
16217 {
16218 struct mips_option_stack *s;
16219
16220 s = mips_opts_stack;
16221 if (s == NULL)
16222 as_bad (_(".set pop with no .set push"));
16223 else
16224 {
16225 /* If we're changing the reorder mode we need to handle
16226 delay slots correctly. */
16227 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 16228 start_noreorder ();
252b5132 16229 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 16230 end_noreorder ();
252b5132
RH
16231
16232 mips_opts = s->options;
16233 mips_opts_stack = s->next;
16234 free (s);
16235 }
16236 }
22522f88
MR
16237 else
16238 {
16239 type = parse_code_option (name);
16240 if (type == OPTION_TYPE_BAD)
16241 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16242 }
919731af 16243
16244 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16245 registers based on what is supported by the arch/cpu. */
22522f88 16246 if (type == OPTION_TYPE_ISA)
e6559e01 16247 {
919731af 16248 switch (mips_opts.isa)
16249 {
16250 case 0:
16251 break;
16252 case ISA_MIPS1:
351cdf24
MF
16253 /* MIPS I cannot support FPXX. */
16254 mips_opts.fp = 32;
16255 /* fall-through. */
919731af 16256 case ISA_MIPS2:
16257 case ISA_MIPS32:
16258 case ISA_MIPS32R2:
16259 case ISA_MIPS32R3:
16260 case ISA_MIPS32R5:
16261 mips_opts.gp = 32;
351cdf24
MF
16262 if (mips_opts.fp != 0)
16263 mips_opts.fp = 32;
919731af 16264 break;
7361da2c
AB
16265 case ISA_MIPS32R6:
16266 mips_opts.gp = 32;
16267 mips_opts.fp = 64;
16268 break;
919731af 16269 case ISA_MIPS3:
16270 case ISA_MIPS4:
16271 case ISA_MIPS5:
16272 case ISA_MIPS64:
16273 case ISA_MIPS64R2:
16274 case ISA_MIPS64R3:
16275 case ISA_MIPS64R5:
7361da2c 16276 case ISA_MIPS64R6:
919731af 16277 mips_opts.gp = 64;
351cdf24
MF
16278 if (mips_opts.fp != 0)
16279 {
16280 if (mips_opts.arch == CPU_R5900)
16281 mips_opts.fp = 32;
16282 else
16283 mips_opts.fp = 64;
16284 }
919731af 16285 break;
16286 default:
16287 as_bad (_("unknown ISA level %s"), name + 4);
16288 break;
16289 }
e6559e01 16290 }
919731af 16291
16292 mips_check_options (&mips_opts, FALSE);
16293
16294 mips_check_isa_supports_ases ();
16295 *input_line_pointer = ch;
16296 demand_empty_rest_of_line ();
16297}
16298
16299/* Handle the .module pseudo-op. */
16300
16301static void
16302s_module (int ignore ATTRIBUTE_UNUSED)
16303{
16304 char *name = input_line_pointer, ch;
16305
16306 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16307 ++input_line_pointer;
16308 ch = *input_line_pointer;
16309 *input_line_pointer = '\0';
16310
16311 if (!file_mips_opts_checked)
252b5132 16312 {
22522f88 16313 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 16314 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16315
16316 /* Update module level settings from mips_opts. */
16317 file_mips_opts = mips_opts;
252b5132 16318 }
919731af 16319 else
16320 as_bad (_(".module is not permitted after generating code"));
16321
252b5132
RH
16322 *input_line_pointer = ch;
16323 demand_empty_rest_of_line ();
16324}
16325
16326/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16327 .option pic2. It means to generate SVR4 PIC calls. */
16328
16329static void
17a2f251 16330s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16331{
16332 mips_pic = SVR4_PIC;
143d77c5 16333 mips_abicalls = TRUE;
4d0d148d
TS
16334
16335 if (g_switch_seen && g_switch_value != 0)
16336 as_warn (_("-G may not be used with SVR4 PIC code"));
16337 g_switch_value = 0;
16338
252b5132
RH
16339 bfd_set_gp_size (stdoutput, 0);
16340 demand_empty_rest_of_line ();
16341}
16342
16343/* Handle the .cpload pseudo-op. This is used when generating SVR4
16344 PIC code. It sets the $gp register for the function based on the
16345 function address, which is in the register named in the argument.
16346 This uses a relocation against _gp_disp, which is handled specially
16347 by the linker. The result is:
16348 lui $gp,%hi(_gp_disp)
16349 addiu $gp,$gp,%lo(_gp_disp)
16350 addu $gp,$gp,.cpload argument
aa6975fb
ILT
16351 The .cpload argument is normally $25 == $t9.
16352
16353 The -mno-shared option changes this to:
bbe506e8
TS
16354 lui $gp,%hi(__gnu_local_gp)
16355 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
16356 and the argument is ignored. This saves an instruction, but the
16357 resulting code is not position independent; it uses an absolute
bbe506e8
TS
16358 address for __gnu_local_gp. Thus code assembled with -mno-shared
16359 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
16360
16361static void
17a2f251 16362s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16363{
16364 expressionS ex;
aa6975fb
ILT
16365 int reg;
16366 int in_shared;
252b5132 16367
919731af 16368 file_mips_check_options ();
16369
6478892d
TS
16370 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16371 .cpload is ignored. */
16372 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16373 {
16374 s_ignore (0);
16375 return;
16376 }
16377
a276b80c
MR
16378 if (mips_opts.mips16)
16379 {
16380 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16381 ignore_rest_of_line ();
16382 return;
16383 }
16384
d3ecfc59 16385 /* .cpload should be in a .set noreorder section. */
252b5132
RH
16386 if (mips_opts.noreorder == 0)
16387 as_warn (_(".cpload not in noreorder section"));
16388
aa6975fb
ILT
16389 reg = tc_get_register (0);
16390
16391 /* If we need to produce a 64-bit address, we are better off using
16392 the default instruction sequence. */
aed1a261 16393 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 16394
252b5132 16395 ex.X_op = O_symbol;
bbe506e8
TS
16396 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16397 "__gnu_local_gp");
252b5132
RH
16398 ex.X_op_symbol = NULL;
16399 ex.X_add_number = 0;
16400
16401 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 16402 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 16403
8a75745d
MR
16404 mips_mark_labels ();
16405 mips_assembling_insn = TRUE;
16406
584892a6 16407 macro_start ();
67c0d1eb
RS
16408 macro_build_lui (&ex, mips_gp_register);
16409 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 16410 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
16411 if (in_shared)
16412 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16413 mips_gp_register, reg);
584892a6 16414 macro_end ();
252b5132 16415
8a75745d 16416 mips_assembling_insn = FALSE;
252b5132
RH
16417 demand_empty_rest_of_line ();
16418}
16419
6478892d
TS
16420/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16421 .cpsetup $reg1, offset|$reg2, label
16422
16423 If offset is given, this results in:
16424 sd $gp, offset($sp)
956cd1d6 16425 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16426 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16427 daddu $gp, $gp, $reg1
6478892d
TS
16428
16429 If $reg2 is given, this results in:
40fc1451 16430 or $reg2, $gp, $0
956cd1d6 16431 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16432 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16433 daddu $gp, $gp, $reg1
aa6975fb
ILT
16434 $reg1 is normally $25 == $t9.
16435
16436 The -mno-shared option replaces the last three instructions with
16437 lui $gp,%hi(_gp)
54f4ddb3 16438 addiu $gp,$gp,%lo(_gp) */
aa6975fb 16439
6478892d 16440static void
17a2f251 16441s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16442{
16443 expressionS ex_off;
16444 expressionS ex_sym;
16445 int reg1;
6478892d 16446
919731af 16447 file_mips_check_options ();
16448
8586fc66 16449 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
16450 We also need NewABI support. */
16451 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16452 {
16453 s_ignore (0);
16454 return;
16455 }
16456
a276b80c
MR
16457 if (mips_opts.mips16)
16458 {
16459 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16460 ignore_rest_of_line ();
16461 return;
16462 }
16463
6478892d
TS
16464 reg1 = tc_get_register (0);
16465 SKIP_WHITESPACE ();
16466 if (*input_line_pointer != ',')
16467 {
16468 as_bad (_("missing argument separator ',' for .cpsetup"));
16469 return;
16470 }
16471 else
80245285 16472 ++input_line_pointer;
6478892d
TS
16473 SKIP_WHITESPACE ();
16474 if (*input_line_pointer == '$')
80245285
TS
16475 {
16476 mips_cpreturn_register = tc_get_register (0);
16477 mips_cpreturn_offset = -1;
16478 }
6478892d 16479 else
80245285
TS
16480 {
16481 mips_cpreturn_offset = get_absolute_expression ();
16482 mips_cpreturn_register = -1;
16483 }
6478892d
TS
16484 SKIP_WHITESPACE ();
16485 if (*input_line_pointer != ',')
16486 {
16487 as_bad (_("missing argument separator ',' for .cpsetup"));
16488 return;
16489 }
16490 else
f9419b05 16491 ++input_line_pointer;
6478892d 16492 SKIP_WHITESPACE ();
f21f8242 16493 expression (&ex_sym);
6478892d 16494
8a75745d
MR
16495 mips_mark_labels ();
16496 mips_assembling_insn = TRUE;
16497
584892a6 16498 macro_start ();
6478892d
TS
16499 if (mips_cpreturn_register == -1)
16500 {
16501 ex_off.X_op = O_constant;
16502 ex_off.X_add_symbol = NULL;
16503 ex_off.X_op_symbol = NULL;
16504 ex_off.X_add_number = mips_cpreturn_offset;
16505
67c0d1eb 16506 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16507 BFD_RELOC_LO16, SP);
6478892d
TS
16508 }
16509 else
40fc1451 16510 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16511
aed1a261 16512 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16513 {
df58fc94 16514 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16515 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16516 BFD_RELOC_HI16_S);
16517
16518 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16519 mips_gp_register, -1, BFD_RELOC_GPREL16,
16520 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16521
16522 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16523 mips_gp_register, reg1);
16524 }
16525 else
16526 {
16527 expressionS ex;
16528
16529 ex.X_op = O_symbol;
4184909a 16530 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16531 ex.X_op_symbol = NULL;
16532 ex.X_add_number = 0;
6e1304d8 16533
aa6975fb
ILT
16534 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16535 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16536
16537 macro_build_lui (&ex, mips_gp_register);
16538 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16539 mips_gp_register, BFD_RELOC_LO16);
16540 }
f21f8242 16541
584892a6 16542 macro_end ();
6478892d 16543
8a75745d 16544 mips_assembling_insn = FALSE;
6478892d
TS
16545 demand_empty_rest_of_line ();
16546}
16547
16548static void
17a2f251 16549s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16550{
919731af 16551 file_mips_check_options ();
16552
6478892d 16553 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16554 .cplocal is ignored. */
6478892d
TS
16555 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16556 {
16557 s_ignore (0);
16558 return;
16559 }
16560
a276b80c
MR
16561 if (mips_opts.mips16)
16562 {
16563 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16564 ignore_rest_of_line ();
16565 return;
16566 }
16567
6478892d 16568 mips_gp_register = tc_get_register (0);
85b51719 16569 demand_empty_rest_of_line ();
6478892d
TS
16570}
16571
252b5132
RH
16572/* Handle the .cprestore pseudo-op. This stores $gp into a given
16573 offset from $sp. The offset is remembered, and after making a PIC
16574 call $gp is restored from that location. */
16575
16576static void
17a2f251 16577s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16578{
16579 expressionS ex;
252b5132 16580
919731af 16581 file_mips_check_options ();
16582
6478892d 16583 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16584 .cprestore is ignored. */
6478892d 16585 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16586 {
16587 s_ignore (0);
16588 return;
16589 }
16590
a276b80c
MR
16591 if (mips_opts.mips16)
16592 {
16593 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16594 ignore_rest_of_line ();
16595 return;
16596 }
16597
252b5132 16598 mips_cprestore_offset = get_absolute_expression ();
7a621144 16599 mips_cprestore_valid = 1;
252b5132
RH
16600
16601 ex.X_op = O_constant;
16602 ex.X_add_symbol = NULL;
16603 ex.X_op_symbol = NULL;
16604 ex.X_add_number = mips_cprestore_offset;
16605
8a75745d
MR
16606 mips_mark_labels ();
16607 mips_assembling_insn = TRUE;
16608
584892a6 16609 macro_start ();
67c0d1eb
RS
16610 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16611 SP, HAVE_64BIT_ADDRESSES);
584892a6 16612 macro_end ();
252b5132 16613
8a75745d 16614 mips_assembling_insn = FALSE;
252b5132
RH
16615 demand_empty_rest_of_line ();
16616}
16617
6478892d 16618/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16619 was given in the preceding .cpsetup, it results in:
6478892d 16620 ld $gp, offset($sp)
76b3015f 16621
6478892d 16622 If a register $reg2 was given there, it results in:
40fc1451 16623 or $gp, $reg2, $0 */
54f4ddb3 16624
6478892d 16625static void
17a2f251 16626s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16627{
16628 expressionS ex;
6478892d 16629
919731af 16630 file_mips_check_options ();
16631
6478892d
TS
16632 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16633 We also need NewABI support. */
16634 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16635 {
16636 s_ignore (0);
16637 return;
16638 }
16639
a276b80c
MR
16640 if (mips_opts.mips16)
16641 {
16642 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16643 ignore_rest_of_line ();
16644 return;
16645 }
16646
8a75745d
MR
16647 mips_mark_labels ();
16648 mips_assembling_insn = TRUE;
16649
584892a6 16650 macro_start ();
6478892d
TS
16651 if (mips_cpreturn_register == -1)
16652 {
16653 ex.X_op = O_constant;
16654 ex.X_add_symbol = NULL;
16655 ex.X_op_symbol = NULL;
16656 ex.X_add_number = mips_cpreturn_offset;
16657
67c0d1eb 16658 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16659 }
16660 else
40fc1451
SD
16661 move_register (mips_gp_register, mips_cpreturn_register);
16662
584892a6 16663 macro_end ();
6478892d 16664
8a75745d 16665 mips_assembling_insn = FALSE;
6478892d
TS
16666 demand_empty_rest_of_line ();
16667}
16668
d0f13682
CLT
16669/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16670 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16671 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16672 debug information or MIPS16 TLS. */
741d6ea8
JM
16673
16674static void
d0f13682
CLT
16675s_tls_rel_directive (const size_t bytes, const char *dirstr,
16676 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16677{
16678 expressionS ex;
16679 char *p;
16680
16681 expression (&ex);
16682
16683 if (ex.X_op != O_symbol)
16684 {
1661c76c 16685 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16686 ignore_rest_of_line ();
16687 }
16688
16689 p = frag_more (bytes);
16690 md_number_to_chars (p, 0, bytes);
d0f13682 16691 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16692 demand_empty_rest_of_line ();
de64cffd 16693 mips_clear_insn_labels ();
741d6ea8
JM
16694}
16695
16696/* Handle .dtprelword. */
16697
16698static void
16699s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16700{
d0f13682 16701 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16702}
16703
16704/* Handle .dtpreldword. */
16705
16706static void
16707s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16708{
d0f13682
CLT
16709 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16710}
16711
16712/* Handle .tprelword. */
16713
16714static void
16715s_tprelword (int ignore ATTRIBUTE_UNUSED)
16716{
16717 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16718}
16719
16720/* Handle .tpreldword. */
16721
16722static void
16723s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16724{
16725 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16726}
16727
6478892d
TS
16728/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16729 code. It sets the offset to use in gp_rel relocations. */
16730
16731static void
17a2f251 16732s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16733{
16734 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16735 We also need NewABI support. */
16736 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16737 {
16738 s_ignore (0);
16739 return;
16740 }
16741
def2e0dd 16742 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16743
16744 demand_empty_rest_of_line ();
16745}
16746
252b5132
RH
16747/* Handle the .gpword pseudo-op. This is used when generating PIC
16748 code. It generates a 32 bit GP relative reloc. */
16749
16750static void
17a2f251 16751s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16752{
a8dbcb85
TS
16753 segment_info_type *si;
16754 struct insn_label_list *l;
252b5132
RH
16755 expressionS ex;
16756 char *p;
16757
16758 /* When not generating PIC code, this is treated as .word. */
16759 if (mips_pic != SVR4_PIC)
16760 {
16761 s_cons (2);
16762 return;
16763 }
16764
a8dbcb85
TS
16765 si = seg_info (now_seg);
16766 l = si->label_list;
7d10b47d 16767 mips_emit_delays ();
252b5132 16768 if (auto_align)
462427c4 16769 mips_align (2, 0, l);
252b5132
RH
16770
16771 expression (&ex);
a1facbec 16772 mips_clear_insn_labels ();
252b5132
RH
16773
16774 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16775 {
1661c76c 16776 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16777 ignore_rest_of_line ();
16778 }
16779
16780 p = frag_more (4);
17a2f251 16781 md_number_to_chars (p, 0, 4);
b34976b6 16782 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16783 BFD_RELOC_GPREL32);
252b5132
RH
16784
16785 demand_empty_rest_of_line ();
16786}
16787
10181a0d 16788static void
17a2f251 16789s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16790{
a8dbcb85
TS
16791 segment_info_type *si;
16792 struct insn_label_list *l;
10181a0d
AO
16793 expressionS ex;
16794 char *p;
16795
16796 /* When not generating PIC code, this is treated as .dword. */
16797 if (mips_pic != SVR4_PIC)
16798 {
16799 s_cons (3);
16800 return;
16801 }
16802
a8dbcb85
TS
16803 si = seg_info (now_seg);
16804 l = si->label_list;
7d10b47d 16805 mips_emit_delays ();
10181a0d 16806 if (auto_align)
462427c4 16807 mips_align (3, 0, l);
10181a0d
AO
16808
16809 expression (&ex);
a1facbec 16810 mips_clear_insn_labels ();
10181a0d
AO
16811
16812 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16813 {
1661c76c 16814 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16815 ignore_rest_of_line ();
16816 }
16817
16818 p = frag_more (8);
17a2f251 16819 md_number_to_chars (p, 0, 8);
a105a300 16820 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16821 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16822
16823 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16824 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16825 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16826
16827 demand_empty_rest_of_line ();
16828}
16829
a3f278e2
CM
16830/* Handle the .ehword pseudo-op. This is used when generating unwinding
16831 tables. It generates a R_MIPS_EH reloc. */
16832
16833static void
16834s_ehword (int ignore ATTRIBUTE_UNUSED)
16835{
16836 expressionS ex;
16837 char *p;
16838
16839 mips_emit_delays ();
16840
16841 expression (&ex);
16842 mips_clear_insn_labels ();
16843
16844 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16845 {
1661c76c 16846 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16847 ignore_rest_of_line ();
16848 }
16849
16850 p = frag_more (4);
16851 md_number_to_chars (p, 0, 4);
16852 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16853 BFD_RELOC_32_PCREL);
a3f278e2
CM
16854
16855 demand_empty_rest_of_line ();
16856}
16857
252b5132
RH
16858/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16859 tables in SVR4 PIC code. */
16860
16861static void
17a2f251 16862s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16863{
252b5132
RH
16864 int reg;
16865
919731af 16866 file_mips_check_options ();
16867
10181a0d
AO
16868 /* This is ignored when not generating SVR4 PIC code. */
16869 if (mips_pic != SVR4_PIC)
252b5132
RH
16870 {
16871 s_ignore (0);
16872 return;
16873 }
16874
8a75745d
MR
16875 mips_mark_labels ();
16876 mips_assembling_insn = TRUE;
16877
252b5132 16878 /* Add $gp to the register named as an argument. */
584892a6 16879 macro_start ();
252b5132 16880 reg = tc_get_register (0);
67c0d1eb 16881 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16882 macro_end ();
252b5132 16883
8a75745d 16884 mips_assembling_insn = FALSE;
bdaaa2e1 16885 demand_empty_rest_of_line ();
252b5132
RH
16886}
16887
16888/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16889 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16890 such as generating jalx instructions when needed. We also make
16891 them odd for the duration of the assembly, in order to generate the
16892 right sort of code. We will make them even in the adjust_symtab
16893 routine, while leaving them marked. This is convenient for the
16894 debugger and the disassembler. The linker knows to make them odd
16895 again. */
16896
16897static void
17a2f251 16898s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16899{
7bb01e2d
MR
16900 file_mips_check_options ();
16901 file_ase_mips16 |= mips_opts.mips16;
16902 file_ase_micromips |= mips_opts.micromips;
16903
df58fc94 16904 mips_mark_labels ();
252b5132
RH
16905
16906 demand_empty_rest_of_line ();
16907}
16908
ba92f887
MR
16909/* Handle the .nan pseudo-op. */
16910
16911static void
16912s_nan (int ignore ATTRIBUTE_UNUSED)
16913{
16914 static const char str_legacy[] = "legacy";
16915 static const char str_2008[] = "2008";
16916 size_t i;
16917
16918 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16919
16920 if (i == sizeof (str_2008) - 1
16921 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16922 mips_nan2008 = 1;
ba92f887
MR
16923 else if (i == sizeof (str_legacy) - 1
16924 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16925 {
16926 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16927 mips_nan2008 = 0;
16928 else
16929 as_bad (_("`%s' does not support legacy NaN"),
16930 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16931 }
ba92f887 16932 else
1661c76c 16933 as_bad (_("bad .nan directive"));
ba92f887
MR
16934
16935 input_line_pointer += i;
16936 demand_empty_rest_of_line ();
16937}
16938
754e2bb9
RS
16939/* Handle a .stab[snd] directive. Ideally these directives would be
16940 implemented in a transparent way, so that removing them would not
16941 have any effect on the generated instructions. However, s_stab
16942 internally changes the section, so in practice we need to decide
16943 now whether the preceding label marks compressed code. We do not
16944 support changing the compression mode of a label after a .stab*
16945 directive, such as in:
16946
16947 foo:
134c0c8b 16948 .stabs ...
754e2bb9
RS
16949 .set mips16
16950
16951 so the current mode wins. */
252b5132
RH
16952
16953static void
17a2f251 16954s_mips_stab (int type)
252b5132 16955{
754e2bb9 16956 mips_mark_labels ();
252b5132
RH
16957 s_stab (type);
16958}
16959
54f4ddb3 16960/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16961
16962static void
17a2f251 16963s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16964{
16965 char *name;
16966 int c;
16967 symbolS *symbolP;
16968 expressionS exp;
16969
d02603dc 16970 c = get_symbol_name (&name);
252b5132
RH
16971 symbolP = symbol_find_or_make (name);
16972 S_SET_WEAK (symbolP);
16973 *input_line_pointer = c;
16974
d02603dc 16975 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16976
16977 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16978 {
16979 if (S_IS_DEFINED (symbolP))
16980 {
20203fb9 16981 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16982 S_GET_NAME (symbolP));
16983 ignore_rest_of_line ();
16984 return;
16985 }
bdaaa2e1 16986
252b5132
RH
16987 if (*input_line_pointer == ',')
16988 {
16989 ++input_line_pointer;
16990 SKIP_WHITESPACE ();
16991 }
bdaaa2e1 16992
252b5132
RH
16993 expression (&exp);
16994 if (exp.X_op != O_symbol)
16995 {
20203fb9 16996 as_bad (_("bad .weakext directive"));
98d3f06f 16997 ignore_rest_of_line ();
252b5132
RH
16998 return;
16999 }
49309057 17000 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
17001 }
17002
17003 demand_empty_rest_of_line ();
17004}
17005
17006/* Parse a register string into a number. Called from the ECOFF code
17007 to parse .frame. The argument is non-zero if this is the frame
17008 register, so that we can record it in mips_frame_reg. */
17009
17010int
17a2f251 17011tc_get_register (int frame)
252b5132 17012{
707bfff6 17013 unsigned int reg;
252b5132
RH
17014
17015 SKIP_WHITESPACE ();
707bfff6
TS
17016 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17017 reg = 0;
252b5132 17018 if (frame)
7a621144
DJ
17019 {
17020 mips_frame_reg = reg != 0 ? reg : SP;
17021 mips_frame_reg_valid = 1;
17022 mips_cprestore_valid = 0;
17023 }
252b5132
RH
17024 return reg;
17025}
17026
17027valueT
17a2f251 17028md_section_align (asection *seg, valueT addr)
252b5132
RH
17029{
17030 int align = bfd_get_section_alignment (stdoutput, seg);
17031
f3ded42a
RS
17032 /* We don't need to align ELF sections to the full alignment.
17033 However, Irix 5 may prefer that we align them at least to a 16
17034 byte boundary. We don't bother to align the sections if we
17035 are targeted for an embedded system. */
17036 if (strncmp (TARGET_OS, "elf", 3) == 0)
17037 return addr;
17038 if (align > 4)
17039 align = 4;
252b5132 17040
8d3842cd 17041 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
17042}
17043
17044/* Utility routine, called from above as well. If called while the
17045 input file is still being read, it's only an approximation. (For
17046 example, a symbol may later become defined which appeared to be
17047 undefined earlier.) */
17048
17049static int
17a2f251 17050nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
17051{
17052 if (sym == 0)
17053 return 0;
17054
4d0d148d 17055 if (g_switch_value > 0)
252b5132
RH
17056 {
17057 const char *symname;
17058 int change;
17059
c9914766 17060 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
17061 register. It can be if it is smaller than the -G size or if
17062 it is in the .sdata or .sbss section. Certain symbols can
c9914766 17063 not be referenced off the $gp, although it appears as though
252b5132
RH
17064 they can. */
17065 symname = S_GET_NAME (sym);
17066 if (symname != (const char *) NULL
17067 && (strcmp (symname, "eprol") == 0
17068 || strcmp (symname, "etext") == 0
17069 || strcmp (symname, "_gp") == 0
17070 || strcmp (symname, "edata") == 0
17071 || strcmp (symname, "_fbss") == 0
17072 || strcmp (symname, "_fdata") == 0
17073 || strcmp (symname, "_ftext") == 0
17074 || strcmp (symname, "end") == 0
17075 || strcmp (symname, "_gp_disp") == 0))
17076 change = 1;
17077 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17078 && (0
17079#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
17080 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17081 && (symbol_get_obj (sym)->ecoff_extern_size
17082 <= g_switch_value))
252b5132
RH
17083#endif
17084 /* We must defer this decision until after the whole
17085 file has been read, since there might be a .extern
17086 after the first use of this symbol. */
17087 || (before_relaxing
17088#ifndef NO_ECOFF_DEBUGGING
49309057 17089 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
17090#endif
17091 && S_GET_VALUE (sym) == 0)
17092 || (S_GET_VALUE (sym) != 0
17093 && S_GET_VALUE (sym) <= g_switch_value)))
17094 change = 0;
17095 else
17096 {
17097 const char *segname;
17098
17099 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 17100 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
17101 && strcmp (segname, ".lit4") != 0);
17102 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
17103 && strcmp (segname, ".sbss") != 0
17104 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
17105 && strncmp (segname, ".sbss.", 6) != 0
17106 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 17107 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
17108 }
17109 return change;
17110 }
17111 else
c9914766 17112 /* We are not optimizing for the $gp register. */
252b5132
RH
17113 return 1;
17114}
17115
5919d012
RS
17116
17117/* Return true if the given symbol should be considered local for SVR4 PIC. */
17118
17119static bfd_boolean
17a2f251 17120pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
17121{
17122 asection *symsec;
5919d012
RS
17123
17124 /* Handle the case of a symbol equated to another symbol. */
17125 while (symbol_equated_reloc_p (sym))
17126 {
17127 symbolS *n;
17128
5f0fe04b 17129 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
17130 n = symbol_get_value_expression (sym)->X_add_symbol;
17131 if (n == sym)
17132 break;
17133 sym = n;
17134 }
17135
df1f3cda
DD
17136 if (symbol_section_p (sym))
17137 return TRUE;
17138
5919d012
RS
17139 symsec = S_GET_SEGMENT (sym);
17140
5919d012 17141 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
17142 return (!bfd_is_und_section (symsec)
17143 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
17144 && !bfd_is_com_section (symsec)
17145 && !s_is_linkonce (sym, segtype)
5919d012 17146 /* A global or weak symbol is treated as external. */
f3ded42a 17147 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
17148}
17149
17150
252b5132
RH
17151/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17152 extended opcode. SEC is the section the frag is in. */
17153
17154static int
17a2f251 17155mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
17156{
17157 int type;
3ccad066 17158 const struct mips_int_operand *operand;
252b5132 17159 offsetT val;
252b5132 17160 segT symsec;
98aa84af 17161 fragS *sym_frag;
252b5132
RH
17162
17163 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17164 return 0;
17165 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17166 return 1;
17167
88a7ef16 17168 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 17169 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17170 operand = mips16_immed_operand (type, FALSE);
88a7ef16
MR
17171 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17172 || (operand->root.type == OP_PCREL
17173 ? sec != symsec
17174 : !bfd_is_abs_section (symsec)))
17175 return 1;
252b5132 17176
98aa84af 17177 sym_frag = symbol_get_frag (fragp->fr_symbol);
88a7ef16 17178 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 17179
3ccad066 17180 if (operand->root.type == OP_PCREL)
252b5132 17181 {
3ccad066 17182 const struct mips_pcrel_operand *pcrel_op;
252b5132 17183 addressT addr;
3ccad066 17184 offsetT maxtiny;
252b5132 17185
88a7ef16
MR
17186 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17187 return 1;
252b5132 17188
88a7ef16 17189 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 17190
88a7ef16
MR
17191 /* If the relax_marker of the symbol fragment differs from the
17192 relax_marker of this fragment, we have not yet adjusted the
17193 symbol fragment fr_address. We want to add in STRETCH in
17194 order to get a better estimate of the address. This
17195 particularly matters because of the shift bits. */
252b5132 17196 if (stretch != 0
98aa84af 17197 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
17198 {
17199 fragS *f;
17200
17201 /* Adjust stretch for any alignment frag. Note that if have
17202 been expanding the earlier code, the symbol may be
17203 defined in what appears to be an earlier frag. FIXME:
17204 This doesn't handle the fr_subtype field, which specifies
17205 a maximum number of bytes to skip when doing an
17206 alignment. */
98aa84af 17207 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
17208 {
17209 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17210 {
17211 if (stretch < 0)
17212 stretch = - ((- stretch)
17213 & ~ ((1 << (int) f->fr_offset) - 1));
17214 else
17215 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17216 if (stretch == 0)
17217 break;
17218 }
17219 }
17220 if (f != NULL)
17221 val += stretch;
17222 }
17223
17224 addr = fragp->fr_address + fragp->fr_fix;
17225
17226 /* The base address rules are complicated. The base address of
17227 a branch is the following instruction. The base address of a
17228 PC relative load or add is the instruction itself, but if it
17229 is in a delay slot (in which case it can not be extended) use
17230 the address of the instruction whose delay slot it is in. */
3ccad066 17231 if (pcrel_op->include_isa_bit)
252b5132
RH
17232 {
17233 addr += 2;
17234
17235 /* If we are currently assuming that this frag should be
17236 extended, then, the current address is two bytes
bdaaa2e1 17237 higher. */
252b5132
RH
17238 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17239 addr += 2;
17240
17241 /* Ignore the low bit in the target, since it will be set
17242 for a text label. */
3ccad066 17243 val &= -2;
252b5132
RH
17244 }
17245 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17246 addr -= 4;
17247 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17248 addr -= 2;
17249
3ccad066 17250 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
17251
17252 /* If any of the shifted bits are set, we must use an extended
17253 opcode. If the address depends on the size of this
17254 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
17255 use an extended opcode. */
17256 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
17257 {
17258 fragp->fr_subtype =
17259 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17260 return 1;
17261 }
17262
17263 /* If we are about to mark a frag as extended because the value
3ccad066
RS
17264 is precisely the next value above maxtiny, then there is a
17265 chance of an infinite loop as in the following code:
252b5132
RH
17266 la $4,foo
17267 .skip 1020
17268 .align 2
17269 foo:
17270 In this case when the la is extended, foo is 0x3fc bytes
17271 away, so the la can be shrunk, but then foo is 0x400 away, so
17272 the la must be extended. To avoid this loop, we mark the
17273 frag as extended if it was small, and is about to become
3ccad066
RS
17274 extended with the next value above maxtiny. */
17275 maxtiny = mips_int_operand_max (operand);
17276 if (val == maxtiny + (1 << operand->shift)
88a7ef16 17277 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
17278 {
17279 fragp->fr_subtype =
17280 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17281 return 1;
17282 }
17283 }
252b5132 17284
3ccad066 17285 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
17286}
17287
4a6a3df4
AO
17288/* Compute the length of a branch sequence, and adjust the
17289 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17290 worst-case length is computed, with UPDATE being used to indicate
17291 whether an unconditional (-1), branch-likely (+1) or regular (0)
17292 branch is to be computed. */
17293static int
17a2f251 17294relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 17295{
b34976b6 17296 bfd_boolean toofar;
4a6a3df4
AO
17297 int length;
17298
17299 if (fragp
17300 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17301 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
17302 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17303 {
17304 addressT addr;
17305 offsetT val;
17306
17307 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17308
17309 addr = fragp->fr_address + fragp->fr_fix + 4;
17310
17311 val -= addr;
17312
17313 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17314 }
4a6a3df4 17315 else
c1f61bd2
MR
17316 /* If the symbol is not defined or it's in a different segment,
17317 we emit the long sequence. */
b34976b6 17318 toofar = TRUE;
4a6a3df4
AO
17319
17320 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17321 fragp->fr_subtype
66b3e8da
MR
17322 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17323 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
17324 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17325 RELAX_BRANCH_LINK (fragp->fr_subtype),
17326 toofar);
17327
17328 length = 4;
17329 if (toofar)
17330 {
17331 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17332 length += 8;
17333
17334 if (mips_pic != NO_PIC)
17335 {
17336 /* Additional space for PIC loading of target address. */
17337 length += 8;
17338 if (mips_opts.isa == ISA_MIPS1)
17339 /* Additional space for $at-stabilizing nop. */
17340 length += 4;
17341 }
17342
17343 /* If branch is conditional. */
17344 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17345 length += 8;
17346 }
b34976b6 17347
4a6a3df4
AO
17348 return length;
17349}
17350
7bd374a4
MR
17351/* Get a FRAG's branch instruction delay slot size, either from the
17352 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17353 or SHORT_INSN_SIZE otherwise. */
17354
17355static int
17356frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17357{
17358 char *buf = fragp->fr_literal + fragp->fr_fix;
17359
17360 if (al)
17361 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17362 else
17363 return short_insn_size;
17364}
17365
df58fc94
RS
17366/* Compute the length of a branch sequence, and adjust the
17367 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17368 worst-case length is computed, with UPDATE being used to indicate
17369 whether an unconditional (-1), or regular (0) branch is to be
17370 computed. */
17371
17372static int
17373relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17374{
7bd374a4
MR
17375 bfd_boolean insn32 = TRUE;
17376 bfd_boolean nods = TRUE;
17377 bfd_boolean al = TRUE;
17378 int short_insn_size;
df58fc94
RS
17379 bfd_boolean toofar;
17380 int length;
17381
7bd374a4
MR
17382 if (fragp)
17383 {
17384 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17385 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17386 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17387 }
17388 short_insn_size = insn32 ? 4 : 2;
17389
df58fc94
RS
17390 if (fragp
17391 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17392 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17393 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17394 {
17395 addressT addr;
17396 offsetT val;
17397
17398 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17399 /* Ignore the low bit in the target, since it will be set
17400 for a text label. */
17401 if ((val & 1) != 0)
17402 --val;
17403
17404 addr = fragp->fr_address + fragp->fr_fix + 4;
17405
17406 val -= addr;
17407
17408 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17409 }
df58fc94 17410 else
c1f61bd2
MR
17411 /* If the symbol is not defined or it's in a different segment,
17412 we emit the long sequence. */
df58fc94
RS
17413 toofar = TRUE;
17414
17415 if (fragp && update
17416 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17417 fragp->fr_subtype = (toofar
17418 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17419 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17420
17421 length = 4;
17422 if (toofar)
17423 {
17424 bfd_boolean compact_known = fragp != NULL;
17425 bfd_boolean compact = FALSE;
17426 bfd_boolean uncond;
17427
df58fc94 17428 if (fragp)
8484fb75
MR
17429 {
17430 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17431 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
8484fb75 17432 }
df58fc94
RS
17433 else
17434 uncond = update < 0;
17435
17436 /* If label is out of range, we turn branch <br>:
17437
17438 <br> label # 4 bytes
17439 0:
17440
17441 into:
17442
17443 j label # 4 bytes
8484fb75
MR
17444 nop # 2/4 bytes if
17445 # compact && (!PIC || insn32)
df58fc94
RS
17446 0:
17447 */
8484fb75
MR
17448 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17449 length += short_insn_size;
df58fc94
RS
17450
17451 /* If assembling PIC code, we further turn:
17452
17453 j label # 4 bytes
17454
17455 into:
17456
17457 lw/ld at, %got(label)(gp) # 4 bytes
17458 d/addiu at, %lo(label) # 4 bytes
8484fb75 17459 jr/c at # 2/4 bytes
df58fc94
RS
17460 */
17461 if (mips_pic != NO_PIC)
8484fb75 17462 length += 4 + short_insn_size;
df58fc94 17463
7bd374a4
MR
17464 /* Add an extra nop if the jump has no compact form and we need
17465 to fill the delay slot. */
17466 if ((mips_pic == NO_PIC || al) && nods)
17467 length += (fragp
17468 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17469 : short_insn_size);
17470
df58fc94
RS
17471 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17472
17473 <brneg> 0f # 4 bytes
8484fb75 17474 nop # 2/4 bytes if !compact
df58fc94
RS
17475 */
17476 if (!uncond)
8484fb75 17477 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
df58fc94 17478 }
7bd374a4
MR
17479 else if (nods)
17480 {
17481 /* Add an extra nop to fill the delay slot. */
17482 gas_assert (fragp);
17483 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17484 }
df58fc94
RS
17485
17486 return length;
17487}
17488
17489/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17490 bit accordingly. */
17491
17492static int
17493relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17494{
17495 bfd_boolean toofar;
17496
df58fc94
RS
17497 if (fragp
17498 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17499 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17500 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17501 {
17502 addressT addr;
17503 offsetT val;
17504 int type;
17505
17506 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17507 /* Ignore the low bit in the target, since it will be set
17508 for a text label. */
17509 if ((val & 1) != 0)
17510 --val;
17511
17512 /* Assume this is a 2-byte branch. */
17513 addr = fragp->fr_address + fragp->fr_fix + 2;
17514
17515 /* We try to avoid the infinite loop by not adding 2 more bytes for
17516 long branches. */
17517
17518 val -= addr;
17519
17520 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17521 if (type == 'D')
17522 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17523 else if (type == 'E')
17524 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17525 else
17526 abort ();
17527 }
17528 else
17529 /* If the symbol is not defined or it's in a different segment,
17530 we emit a normal 32-bit branch. */
17531 toofar = TRUE;
17532
17533 if (fragp && update
17534 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17535 fragp->fr_subtype
17536 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17537 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17538
17539 if (toofar)
17540 return 4;
17541
17542 return 2;
17543}
17544
252b5132
RH
17545/* Estimate the size of a frag before relaxing. Unless this is the
17546 mips16, we are not really relaxing here, and the final size is
17547 encoded in the subtype information. For the mips16, we have to
17548 decide whether we are using an extended opcode or not. */
17549
252b5132 17550int
17a2f251 17551md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17552{
5919d012 17553 int change;
252b5132 17554
4a6a3df4
AO
17555 if (RELAX_BRANCH_P (fragp->fr_subtype))
17556 {
17557
b34976b6
AM
17558 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17559
4a6a3df4
AO
17560 return fragp->fr_var;
17561 }
17562
252b5132 17563 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17564 /* We don't want to modify the EXTENDED bit here; it might get us
17565 into infinite loops. We change it only in mips_relax_frag(). */
17566 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17567
df58fc94
RS
17568 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17569 {
17570 int length = 4;
17571
17572 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17573 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17574 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17575 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17576 fragp->fr_var = length;
17577
17578 return length;
17579 }
17580
252b5132 17581 if (mips_pic == NO_PIC)
5919d012 17582 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17583 else if (mips_pic == SVR4_PIC)
5919d012 17584 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17585 else if (mips_pic == VXWORKS_PIC)
17586 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17587 change = 0;
252b5132
RH
17588 else
17589 abort ();
17590
17591 if (change)
17592 {
4d7206a2 17593 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17594 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17595 }
4d7206a2
RS
17596 else
17597 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17598}
17599
17600/* This is called to see whether a reloc against a defined symbol
de7e6852 17601 should be converted into a reloc against a section. */
252b5132
RH
17602
17603int
17a2f251 17604mips_fix_adjustable (fixS *fixp)
252b5132 17605{
252b5132
RH
17606 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17607 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17608 return 0;
a161fe53 17609
252b5132
RH
17610 if (fixp->fx_addsy == NULL)
17611 return 1;
a161fe53 17612
2f0c68f2
CM
17613 /* Allow relocs used for EH tables. */
17614 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17615 return 1;
17616
de7e6852
RS
17617 /* If symbol SYM is in a mergeable section, relocations of the form
17618 SYM + 0 can usually be made section-relative. The mergeable data
17619 is then identified by the section offset rather than by the symbol.
17620
17621 However, if we're generating REL LO16 relocations, the offset is split
17622 between the LO16 and parterning high part relocation. The linker will
17623 need to recalculate the complete offset in order to correctly identify
17624 the merge data.
17625
17626 The linker has traditionally not looked for the parterning high part
17627 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17628 placed anywhere. Rather than break backwards compatibility by changing
17629 this, it seems better not to force the issue, and instead keep the
17630 original symbol. This will work with either linker behavior. */
738e5348 17631 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17632 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17633 && HAVE_IN_PLACE_ADDENDS
17634 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17635 return 0;
17636
97f50151
MR
17637 /* There is no place to store an in-place offset for JALR relocations. */
17638 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17639 return 0;
17640
17641 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 17642 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17643 start address of the symbol's containing section.
17644
17645 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17646 section relative to allow linker relaxations to be performed later on. */
97f50151 17647 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 17648 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
17649 return 0;
17650
b314ec0e
RS
17651 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17652 to a floating-point stub. The same is true for non-R_MIPS16_26
17653 relocations against MIPS16 functions; in this case, the stub becomes
17654 the function's canonical address.
17655
17656 Floating-point stubs are stored in unique .mips16.call.* or
17657 .mips16.fn.* sections. If a stub T for function F is in section S,
17658 the first relocation in section S must be against F; this is how the
17659 linker determines the target function. All relocations that might
17660 resolve to T must also be against F. We therefore have the following
17661 restrictions, which are given in an intentionally-redundant way:
17662
17663 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17664 symbols.
17665
17666 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17667 if that stub might be used.
17668
17669 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17670 symbols.
17671
17672 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17673 that stub might be used.
17674
17675 There is a further restriction:
17676
df58fc94 17677 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 17678 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
17679 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17680 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17681 against MIPS16 or microMIPS symbols because we need to keep the
17682 MIPS16 or microMIPS symbol for the purpose of mode mismatch
a6ebf616
MR
17683 detection and JAL or BAL to JALX instruction conversion in the
17684 linker.
b314ec0e 17685
df58fc94 17686 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 17687 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 17688 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
17689
17690 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17691 relocation against some symbol R, no relocation against R may be
17692 reduced. (Note that this deals with (2) as well as (1) because
17693 relocations against global symbols will never be reduced on ELF
17694 targets.) This approach is a little simpler than trying to detect
17695 stub sections, and gives the "all or nothing" per-symbol consistency
17696 that we have for MIPS16 symbols. */
f3ded42a 17697 if (fixp->fx_subsy == NULL
30c09090 17698 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 17699 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
17700 && (jmp_reloc_p (fixp->fx_r_type)
17701 || b_reloc_p (fixp->fx_r_type)))
44d3da23 17702 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 17703 return 0;
a161fe53 17704
252b5132
RH
17705 return 1;
17706}
17707
17708/* Translate internal representation of relocation info to BFD target
17709 format. */
17710
17711arelent **
17a2f251 17712tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17713{
17714 static arelent *retval[4];
17715 arelent *reloc;
17716 bfd_reloc_code_real_type code;
17717
4b0cff4e 17718 memset (retval, 0, sizeof(retval));
325801bd
TS
17719 reloc = retval[0] = XCNEW (arelent);
17720 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17721 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17722 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17723
bad36eac
DJ
17724 if (fixp->fx_pcrel)
17725 {
df58fc94 17726 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 17727 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
17728 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17729 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17730 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17731 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17732 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17733 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17734 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17735 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17736 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17737 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17738
17739 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17740 Relocations want only the symbol offset. */
51f6035b
MR
17741 switch (fixp->fx_r_type)
17742 {
17743 case BFD_RELOC_MIPS_18_PCREL_S3:
17744 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17745 break;
17746 default:
17747 reloc->addend = fixp->fx_addnumber + reloc->address;
17748 break;
17749 }
bad36eac 17750 }
17c6c9d9
MR
17751 else if (HAVE_IN_PLACE_ADDENDS
17752 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17753 && (read_compressed_insn (fixp->fx_frag->fr_literal
17754 + fixp->fx_where, 4) >> 26) == 0x3c)
17755 {
17756 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17757 addend accordingly. */
17758 reloc->addend = fixp->fx_addnumber >> 1;
17759 }
bad36eac
DJ
17760 else
17761 reloc->addend = fixp->fx_addnumber;
252b5132 17762
438c16b8
TS
17763 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17764 entry to be used in the relocation's section offset. */
17765 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17766 {
17767 reloc->address = reloc->addend;
17768 reloc->addend = 0;
17769 }
17770
252b5132 17771 code = fixp->fx_r_type;
252b5132 17772
bad36eac 17773 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17774 if (reloc->howto == NULL)
17775 {
17776 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17777 _("cannot represent %s relocation in this object file"
17778 " format"),
252b5132
RH
17779 bfd_get_reloc_code_name (code));
17780 retval[0] = NULL;
17781 }
17782
17783 return retval;
17784}
17785
17786/* Relax a machine dependent frag. This returns the amount by which
17787 the current size of the frag should change. */
17788
17789int
17a2f251 17790mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17791{
4a6a3df4
AO
17792 if (RELAX_BRANCH_P (fragp->fr_subtype))
17793 {
17794 offsetT old_var = fragp->fr_var;
b34976b6
AM
17795
17796 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17797
17798 return fragp->fr_var - old_var;
17799 }
17800
df58fc94
RS
17801 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17802 {
17803 offsetT old_var = fragp->fr_var;
17804 offsetT new_var = 4;
17805
17806 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17807 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17808 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17809 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17810 fragp->fr_var = new_var;
17811
17812 return new_var - old_var;
17813 }
17814
252b5132
RH
17815 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17816 return 0;
17817
88a7ef16 17818 if (mips16_extended_frag (fragp, sec, stretch))
252b5132
RH
17819 {
17820 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17821 return 0;
17822 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17823 return 2;
17824 }
17825 else
17826 {
17827 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17828 return 0;
17829 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17830 return -2;
17831 }
17832
17833 return 0;
17834}
17835
17836/* Convert a machine dependent frag. */
17837
17838void
17a2f251 17839md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17840{
4a6a3df4
AO
17841 if (RELAX_BRANCH_P (fragp->fr_subtype))
17842 {
4d68580a 17843 char *buf;
4a6a3df4
AO
17844 unsigned long insn;
17845 expressionS exp;
17846 fixS *fixp;
b34976b6 17847
4d68580a
RS
17848 buf = fragp->fr_literal + fragp->fr_fix;
17849 insn = read_insn (buf);
b34976b6 17850
4a6a3df4
AO
17851 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17852 {
17853 /* We generate a fixup instead of applying it right now
17854 because, if there are linker relaxations, we're going to
17855 need the relocations. */
17856 exp.X_op = O_symbol;
17857 exp.X_add_symbol = fragp->fr_symbol;
17858 exp.X_add_number = fragp->fr_offset;
17859
4d68580a
RS
17860 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17861 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17862 fixp->fx_file = fragp->fr_file;
17863 fixp->fx_line = fragp->fr_line;
b34976b6 17864
4d68580a 17865 buf = write_insn (buf, insn);
4a6a3df4
AO
17866 }
17867 else
17868 {
17869 int i;
17870
17871 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17872 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17873
17874 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17875 goto uncond;
17876
17877 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17878 {
17879 /* Reverse the branch. */
17880 switch ((insn >> 28) & 0xf)
17881 {
17882 case 4:
56d438b1
CF
17883 if ((insn & 0xff000000) == 0x47000000
17884 || (insn & 0xff600000) == 0x45600000)
17885 {
17886 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17887 reversed by tweaking bit 23. */
17888 insn ^= 0x00800000;
17889 }
17890 else
17891 {
17892 /* bc[0-3][tf]l? instructions can have the condition
17893 reversed by tweaking a single TF bit, and their
17894 opcodes all have 0x4???????. */
17895 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17896 insn ^= 0x00010000;
17897 }
4a6a3df4
AO
17898 break;
17899
17900 case 0:
17901 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17902 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17903 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17904 insn ^= 0x00010000;
17905 break;
b34976b6 17906
4a6a3df4
AO
17907 case 1:
17908 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17909 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17910 insn ^= 0x04000000;
17911 break;
17912
17913 default:
17914 abort ();
17915 }
17916 }
17917
17918 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17919 {
17920 /* Clear the and-link bit. */
9c2799c2 17921 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17922
54f4ddb3
TS
17923 /* bltzal 0x04100000 bgezal 0x04110000
17924 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17925 insn &= ~0x00100000;
17926 }
17927
17928 /* Branch over the branch (if the branch was likely) or the
17929 full jump (not likely case). Compute the offset from the
17930 current instruction to branch to. */
17931 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17932 i = 16;
17933 else
17934 {
17935 /* How many bytes in instructions we've already emitted? */
4d68580a 17936 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17937 /* How many bytes in instructions from here to the end? */
17938 i = fragp->fr_var - i;
17939 }
17940 /* Convert to instruction count. */
17941 i >>= 2;
17942 /* Branch counts from the next instruction. */
b34976b6 17943 i--;
4a6a3df4
AO
17944 insn |= i;
17945 /* Branch over the jump. */
4d68580a 17946 buf = write_insn (buf, insn);
4a6a3df4 17947
54f4ddb3 17948 /* nop */
4d68580a 17949 buf = write_insn (buf, 0);
4a6a3df4
AO
17950
17951 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17952 {
17953 /* beql $0, $0, 2f */
17954 insn = 0x50000000;
17955 /* Compute the PC offset from the current instruction to
17956 the end of the variable frag. */
17957 /* How many bytes in instructions we've already emitted? */
4d68580a 17958 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17959 /* How many bytes in instructions from here to the end? */
17960 i = fragp->fr_var - i;
17961 /* Convert to instruction count. */
17962 i >>= 2;
17963 /* Don't decrement i, because we want to branch over the
17964 delay slot. */
4a6a3df4 17965 insn |= i;
4a6a3df4 17966
4d68580a
RS
17967 buf = write_insn (buf, insn);
17968 buf = write_insn (buf, 0);
4a6a3df4
AO
17969 }
17970
17971 uncond:
17972 if (mips_pic == NO_PIC)
17973 {
17974 /* j or jal. */
17975 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17976 ? 0x0c000000 : 0x08000000);
17977 exp.X_op = O_symbol;
17978 exp.X_add_symbol = fragp->fr_symbol;
17979 exp.X_add_number = fragp->fr_offset;
17980
4d68580a
RS
17981 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17982 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17983 fixp->fx_file = fragp->fr_file;
17984 fixp->fx_line = fragp->fr_line;
17985
4d68580a 17986 buf = write_insn (buf, insn);
4a6a3df4
AO
17987 }
17988 else
17989 {
66b3e8da
MR
17990 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17991
4a6a3df4 17992 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17993 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17994 insn |= at << OP_SH_RT;
4a6a3df4
AO
17995 exp.X_op = O_symbol;
17996 exp.X_add_symbol = fragp->fr_symbol;
17997 exp.X_add_number = fragp->fr_offset;
17998
17999 if (fragp->fr_offset)
18000 {
18001 exp.X_add_symbol = make_expr_symbol (&exp);
18002 exp.X_add_number = 0;
18003 }
18004
4d68580a
RS
18005 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18006 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
18007 fixp->fx_file = fragp->fr_file;
18008 fixp->fx_line = fragp->fr_line;
18009
4d68580a 18010 buf = write_insn (buf, insn);
b34976b6 18011
4a6a3df4 18012 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
18013 /* nop */
18014 buf = write_insn (buf, 0);
4a6a3df4
AO
18015
18016 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
18017 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18018 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 18019
4d68580a
RS
18020 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18021 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
18022 fixp->fx_file = fragp->fr_file;
18023 fixp->fx_line = fragp->fr_line;
b34976b6 18024
4d68580a 18025 buf = write_insn (buf, insn);
4a6a3df4
AO
18026
18027 /* j(al)r $at. */
18028 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 18029 insn = 0x0000f809;
4a6a3df4 18030 else
66b3e8da
MR
18031 insn = 0x00000008;
18032 insn |= at << OP_SH_RS;
4a6a3df4 18033
4d68580a 18034 buf = write_insn (buf, insn);
4a6a3df4
AO
18035 }
18036 }
18037
4a6a3df4 18038 fragp->fr_fix += fragp->fr_var;
4d68580a 18039 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
18040 return;
18041 }
18042
df58fc94
RS
18043 /* Relax microMIPS branches. */
18044 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18045 {
4d68580a 18046 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94 18047 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
8484fb75 18048 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
7bd374a4 18049 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
df58fc94
RS
18050 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18051 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 18052 bfd_boolean short_ds;
df58fc94
RS
18053 unsigned long insn;
18054 expressionS exp;
18055 fixS *fixp;
18056
18057 exp.X_op = O_symbol;
18058 exp.X_add_symbol = fragp->fr_symbol;
18059 exp.X_add_number = fragp->fr_offset;
18060
18061 fragp->fr_fix += fragp->fr_var;
18062
18063 /* Handle 16-bit branches that fit or are forced to fit. */
18064 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18065 {
18066 /* We generate a fixup instead of applying it right now,
18067 because if there is linker relaxation, we're going to
18068 need the relocations. */
18069 if (type == 'D')
4d68580a 18070 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18071 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18072 else if (type == 'E')
4d68580a 18073 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18074 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18075 else
18076 abort ();
18077
18078 fixp->fx_file = fragp->fr_file;
18079 fixp->fx_line = fragp->fr_line;
18080
18081 /* These relocations can have an addend that won't fit in
18082 2 octets. */
18083 fixp->fx_no_overflow = 1;
18084
18085 return;
18086 }
18087
2309ddf2 18088 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
18089 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18090 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18091 {
18092 /* We generate a fixup instead of applying it right now,
18093 because if there is linker relaxation, we're going to
18094 need the relocations. */
4d68580a
RS
18095 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18096 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18097 fixp->fx_file = fragp->fr_file;
18098 fixp->fx_line = fragp->fr_line;
18099
18100 if (type == 0)
7bd374a4
MR
18101 {
18102 insn = read_compressed_insn (buf, 4);
18103 buf += 4;
18104
18105 if (nods)
18106 {
18107 /* Check the short-delay-slot bit. */
18108 if (!al || (insn & 0x02000000) != 0)
18109 buf = write_compressed_insn (buf, 0x0c00, 2);
18110 else
18111 buf = write_compressed_insn (buf, 0x00000000, 4);
18112 }
18113
18114 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18115 return;
18116 }
df58fc94
RS
18117 }
18118
18119 /* Relax 16-bit branches to 32-bit branches. */
18120 if (type != 0)
18121 {
4d68580a 18122 insn = read_compressed_insn (buf, 2);
df58fc94
RS
18123
18124 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18125 insn = 0x94000000; /* beq */
18126 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18127 {
18128 unsigned long regno;
18129
18130 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18131 regno = micromips_to_32_reg_d_map [regno];
18132 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18133 insn |= regno << MICROMIPSOP_SH_RS;
18134 }
18135 else
18136 abort ();
18137
18138 /* Nothing else to do, just write it out. */
18139 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18140 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18141 {
4d68580a 18142 buf = write_compressed_insn (buf, insn, 4);
7bd374a4
MR
18143 if (nods)
18144 buf = write_compressed_insn (buf, 0x0c00, 2);
4d68580a 18145 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18146 return;
18147 }
18148 }
18149 else
4d68580a 18150 insn = read_compressed_insn (buf, 4);
df58fc94
RS
18151
18152 /* Relax 32-bit branches to a sequence of instructions. */
18153 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18154 _("relaxed out-of-range branch into a jump"));
df58fc94 18155
2309ddf2 18156 /* Set the short-delay-slot bit. */
7bd374a4 18157 short_ds = !al || (insn & 0x02000000) != 0;
df58fc94
RS
18158
18159 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18160 {
18161 symbolS *l;
18162
18163 /* Reverse the branch. */
18164 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18165 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18166 insn ^= 0x20000000;
18167 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18168 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18169 || (insn & 0xffe00000) == 0x40800000 /* blez */
18170 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18171 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18172 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18173 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18174 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18175 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18176 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18177 insn ^= 0x00400000;
18178 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18179 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18180 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18181 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18182 insn ^= 0x00200000;
56d438b1
CF
18183 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18184 BNZ.df */
18185 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18186 BNZ.V */
18187 insn ^= 0x00800000;
df58fc94
RS
18188 else
18189 abort ();
18190
18191 if (al)
18192 {
18193 /* Clear the and-link and short-delay-slot bits. */
18194 gas_assert ((insn & 0xfda00000) == 0x40200000);
18195
18196 /* bltzal 0x40200000 bgezal 0x40600000 */
18197 /* bltzals 0x42200000 bgezals 0x42600000 */
18198 insn &= ~0x02200000;
18199 }
18200
18201 /* Make a label at the end for use with the branch. */
18202 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18203 micromips_label_inc ();
f3ded42a 18204 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
18205
18206 /* Refer to it. */
4d68580a
RS
18207 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18208 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18209 fixp->fx_file = fragp->fr_file;
18210 fixp->fx_line = fragp->fr_line;
18211
18212 /* Branch over the jump. */
4d68580a 18213 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18214
df58fc94 18215 if (!compact)
8484fb75
MR
18216 {
18217 /* nop */
18218 if (insn32)
18219 buf = write_compressed_insn (buf, 0x00000000, 4);
18220 else
18221 buf = write_compressed_insn (buf, 0x0c00, 2);
18222 }
df58fc94
RS
18223 }
18224
18225 if (mips_pic == NO_PIC)
18226 {
7bd374a4
MR
18227 unsigned long jal = (short_ds || nods
18228 ? 0x74000000 : 0xf4000000); /* jal/s */
2309ddf2 18229
df58fc94
RS
18230 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18231 insn = al ? jal : 0xd4000000;
18232
4d68580a
RS
18233 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18234 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
18235 fixp->fx_file = fragp->fr_file;
18236 fixp->fx_line = fragp->fr_line;
18237
4d68580a 18238 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18239
7bd374a4 18240 if (compact || nods)
8484fb75
MR
18241 {
18242 /* nop */
18243 if (insn32)
18244 buf = write_compressed_insn (buf, 0x00000000, 4);
18245 else
18246 buf = write_compressed_insn (buf, 0x0c00, 2);
18247 }
df58fc94
RS
18248 }
18249 else
18250 {
18251 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18252
18253 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18254 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18255 insn |= at << MICROMIPSOP_SH_RT;
18256
18257 if (exp.X_add_number)
18258 {
18259 exp.X_add_symbol = make_expr_symbol (&exp);
18260 exp.X_add_number = 0;
18261 }
18262
4d68580a
RS
18263 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18264 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
18265 fixp->fx_file = fragp->fr_file;
18266 fixp->fx_line = fragp->fr_line;
18267
4d68580a 18268 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
18269
18270 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18271 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18272 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18273
4d68580a
RS
18274 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18275 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
18276 fixp->fx_file = fragp->fr_file;
18277 fixp->fx_line = fragp->fr_line;
18278
4d68580a 18279 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18280
8484fb75
MR
18281 if (insn32)
18282 {
18283 /* jr/jalr $at */
18284 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18285 insn |= at << MICROMIPSOP_SH_RS;
18286
18287 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18288
7bd374a4 18289 if (compact || nods)
8484fb75
MR
18290 /* nop */
18291 buf = write_compressed_insn (buf, 0x00000000, 4);
18292 }
18293 else
18294 {
18295 /* jr/jrc/jalr/jalrs $at */
18296 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
7bd374a4 18297 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
8484fb75
MR
18298
18299 insn = al ? jalr : jr;
18300 insn |= at << MICROMIPSOP_SH_MJ;
18301
18302 buf = write_compressed_insn (buf, insn, 2);
7bd374a4
MR
18303 if (al && nods)
18304 {
18305 /* nop */
18306 if (short_ds)
18307 buf = write_compressed_insn (buf, 0x0c00, 2);
18308 else
18309 buf = write_compressed_insn (buf, 0x00000000, 4);
18310 }
8484fb75 18311 }
df58fc94
RS
18312 }
18313
4d68580a 18314 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18315 return;
18316 }
18317
252b5132
RH
18318 if (RELAX_MIPS16_P (fragp->fr_subtype))
18319 {
18320 int type;
3ccad066 18321 const struct mips_int_operand *operand;
252b5132 18322 offsetT val;
5c04167a
RS
18323 char *buf;
18324 unsigned int user_length, length;
9d862524 18325 bfd_boolean need_reloc;
252b5132 18326 unsigned long insn;
5c04167a 18327 bfd_boolean ext;
88a7ef16 18328 segT symsec;
252b5132
RH
18329
18330 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 18331 operand = mips16_immed_operand (type, FALSE);
252b5132 18332
5c04167a 18333 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 18334 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
9d862524
MR
18335
18336 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18337 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18338 || (operand->root.type == OP_PCREL
18339 ? asec != symsec
18340 : !bfd_is_abs_section (symsec)));
18341
3ccad066 18342 if (operand->root.type == OP_PCREL)
252b5132 18343 {
3ccad066 18344 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
18345 addressT addr;
18346
3ccad066 18347 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
18348 addr = fragp->fr_address + fragp->fr_fix;
18349
18350 /* The rules for the base address of a PC relative reloc are
18351 complicated; see mips16_extended_frag. */
3ccad066 18352 if (pcrel_op->include_isa_bit)
252b5132 18353 {
9d862524
MR
18354 if (!need_reloc)
18355 {
18356 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18357 as_bad_where (fragp->fr_file, fragp->fr_line,
18358 _("branch to a symbol in another ISA mode"));
18359 else if ((fragp->fr_offset & 0x1) != 0)
18360 as_bad_where (fragp->fr_file, fragp->fr_line,
18361 _("branch to misaligned address (0x%lx)"),
18362 (long) val);
18363 }
252b5132
RH
18364 addr += 2;
18365 if (ext)
18366 addr += 2;
18367 /* Ignore the low bit in the target, since it will be
18368 set for a text label. */
3ccad066 18369 val &= -2;
252b5132
RH
18370 }
18371 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18372 addr -= 4;
18373 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18374 addr -= 2;
18375
3ccad066 18376 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
18377 val -= addr;
18378
18379 /* Make sure the section winds up with the alignment we have
18380 assumed. */
3ccad066
RS
18381 if (operand->shift > 0)
18382 record_alignment (asec, operand->shift);
252b5132
RH
18383 }
18384
18385 if (ext
18386 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18387 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18388 as_warn_where (fragp->fr_file, fragp->fr_line,
18389 _("extended instruction in delay slot"));
18390
5c04167a 18391 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 18392
4d68580a 18393 insn = read_compressed_insn (buf, 2);
5c04167a
RS
18394 if (ext)
18395 insn |= MIPS16_EXTEND;
252b5132 18396
5c04167a
RS
18397 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18398 user_length = 4;
18399 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18400 user_length = 2;
18401 else
18402 user_length = 0;
18403
9d862524 18404 if (need_reloc)
c9775dde
MR
18405 {
18406 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18407 expressionS exp;
18408 fixS *fixp;
18409
18410 switch (type)
18411 {
18412 case 'p':
18413 case 'q':
18414 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18415 break;
18416 default:
18417 as_bad_where (fragp->fr_file, fragp->fr_line,
18418 _("unsupported relocation"));
18419 break;
18420 }
eefc3365
MR
18421 if (reloc == BFD_RELOC_NONE)
18422 ;
18423 else if (ext)
c9775dde 18424 {
c9775dde
MR
18425 exp.X_op = O_symbol;
18426 exp.X_add_symbol = fragp->fr_symbol;
18427 exp.X_add_number = fragp->fr_offset;
18428
18429 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18430 TRUE, reloc);
18431
18432 fixp->fx_file = fragp->fr_file;
18433 fixp->fx_line = fragp->fr_line;
18434
18435 /* These relocations can have an addend that won't fit
18436 in 2 octets. */
18437 fixp->fx_no_overflow = 1;
18438 }
eefc3365
MR
18439 else
18440 as_bad_where (fragp->fr_file, fragp->fr_line,
18441 _("invalid unextended operand value"));
c9775dde 18442 }
88a7ef16
MR
18443 else
18444 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18445 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 18446
5c04167a
RS
18447 length = (ext ? 4 : 2);
18448 gas_assert (mips16_opcode_length (insn) == length);
18449 write_compressed_insn (buf, insn, length);
18450 fragp->fr_fix += length;
252b5132
RH
18451 }
18452 else
18453 {
df58fc94
RS
18454 relax_substateT subtype = fragp->fr_subtype;
18455 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18456 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
18457 int first, second;
18458 fixS *fixp;
252b5132 18459
df58fc94
RS
18460 first = RELAX_FIRST (subtype);
18461 second = RELAX_SECOND (subtype);
4d7206a2 18462 fixp = (fixS *) fragp->fr_opcode;
252b5132 18463
df58fc94
RS
18464 /* If the delay slot chosen does not match the size of the instruction,
18465 then emit a warning. */
18466 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18467 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18468 {
18469 relax_substateT s;
18470 const char *msg;
18471
18472 s = subtype & (RELAX_DELAY_SLOT_16BIT
18473 | RELAX_DELAY_SLOT_SIZE_FIRST
18474 | RELAX_DELAY_SLOT_SIZE_SECOND);
18475 msg = macro_warning (s);
18476 if (msg != NULL)
db9b2be4 18477 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
18478 subtype &= ~s;
18479 }
18480
584892a6 18481 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 18482 if (use_second == second_longer)
584892a6 18483 {
df58fc94
RS
18484 relax_substateT s;
18485 const char *msg;
18486
18487 s = (subtype
18488 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18489 msg = macro_warning (s);
18490 if (msg != NULL)
db9b2be4 18491 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 18492 subtype &= ~s;
584892a6
RS
18493 }
18494
4d7206a2
RS
18495 /* Go through all the fixups for the first sequence. Disable them
18496 (by marking them as done) if we're going to use the second
18497 sequence instead. */
18498 while (fixp
18499 && fixp->fx_frag == fragp
18500 && fixp->fx_where < fragp->fr_fix - second)
18501 {
df58fc94 18502 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18503 fixp->fx_done = 1;
18504 fixp = fixp->fx_next;
18505 }
252b5132 18506
4d7206a2
RS
18507 /* Go through the fixups for the second sequence. Disable them if
18508 we're going to use the first sequence, otherwise adjust their
18509 addresses to account for the relaxation. */
18510 while (fixp && fixp->fx_frag == fragp)
18511 {
df58fc94 18512 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18513 fixp->fx_where -= first;
18514 else
18515 fixp->fx_done = 1;
18516 fixp = fixp->fx_next;
18517 }
18518
18519 /* Now modify the frag contents. */
df58fc94 18520 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18521 {
18522 char *start;
18523
18524 start = fragp->fr_literal + fragp->fr_fix - first - second;
18525 memmove (start, start + first, second);
18526 fragp->fr_fix -= first;
18527 }
18528 else
18529 fragp->fr_fix -= second;
252b5132
RH
18530 }
18531}
18532
252b5132
RH
18533/* This function is called after the relocs have been generated.
18534 We've been storing mips16 text labels as odd. Here we convert them
18535 back to even for the convenience of the debugger. */
18536
18537void
17a2f251 18538mips_frob_file_after_relocs (void)
252b5132
RH
18539{
18540 asymbol **syms;
18541 unsigned int count, i;
18542
252b5132
RH
18543 syms = bfd_get_outsymbols (stdoutput);
18544 count = bfd_get_symcount (stdoutput);
18545 for (i = 0; i < count; i++, syms++)
df58fc94
RS
18546 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18547 && ((*syms)->value & 1) != 0)
18548 {
18549 (*syms)->value &= ~1;
18550 /* If the symbol has an odd size, it was probably computed
18551 incorrectly, so adjust that as well. */
18552 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18553 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18554 }
252b5132
RH
18555}
18556
a1facbec
MR
18557/* This function is called whenever a label is defined, including fake
18558 labels instantiated off the dot special symbol. It is used when
18559 handling branch delays; if a branch has a label, we assume we cannot
18560 move it. This also bumps the value of the symbol by 1 in compressed
18561 code. */
252b5132 18562
e1b47bd5 18563static void
a1facbec 18564mips_record_label (symbolS *sym)
252b5132 18565{
a8dbcb85 18566 segment_info_type *si = seg_info (now_seg);
252b5132
RH
18567 struct insn_label_list *l;
18568
18569 if (free_insn_labels == NULL)
325801bd 18570 l = XNEW (struct insn_label_list);
252b5132
RH
18571 else
18572 {
18573 l = free_insn_labels;
18574 free_insn_labels = l->next;
18575 }
18576
18577 l->label = sym;
a8dbcb85
TS
18578 l->next = si->label_list;
18579 si->label_list = l;
a1facbec 18580}
07a53e5c 18581
a1facbec
MR
18582/* This function is called as tc_frob_label() whenever a label is defined
18583 and adds a DWARF-2 record we only want for true labels. */
18584
18585void
18586mips_define_label (symbolS *sym)
18587{
18588 mips_record_label (sym);
07a53e5c 18589 dwarf2_emit_label (sym);
252b5132 18590}
e1b47bd5
RS
18591
18592/* This function is called by tc_new_dot_label whenever a new dot symbol
18593 is defined. */
18594
18595void
18596mips_add_dot_label (symbolS *sym)
18597{
18598 mips_record_label (sym);
18599 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18600 mips_compressed_mark_label (sym);
18601}
252b5132 18602\f
351cdf24
MF
18603/* Converting ASE flags from internal to .MIPS.abiflags values. */
18604static unsigned int
18605mips_convert_ase_flags (int ase)
18606{
18607 unsigned int ext_ases = 0;
18608
18609 if (ase & ASE_DSP)
18610 ext_ases |= AFL_ASE_DSP;
18611 if (ase & ASE_DSPR2)
18612 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
18613 if (ase & ASE_DSPR3)
18614 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
18615 if (ase & ASE_EVA)
18616 ext_ases |= AFL_ASE_EVA;
18617 if (ase & ASE_MCU)
18618 ext_ases |= AFL_ASE_MCU;
18619 if (ase & ASE_MDMX)
18620 ext_ases |= AFL_ASE_MDMX;
18621 if (ase & ASE_MIPS3D)
18622 ext_ases |= AFL_ASE_MIPS3D;
18623 if (ase & ASE_MT)
18624 ext_ases |= AFL_ASE_MT;
18625 if (ase & ASE_SMARTMIPS)
18626 ext_ases |= AFL_ASE_SMARTMIPS;
18627 if (ase & ASE_VIRT)
18628 ext_ases |= AFL_ASE_VIRT;
18629 if (ase & ASE_MSA)
18630 ext_ases |= AFL_ASE_MSA;
18631 if (ase & ASE_XPA)
18632 ext_ases |= AFL_ASE_XPA;
18633
18634 return ext_ases;
18635}
252b5132
RH
18636/* Some special processing for a MIPS ELF file. */
18637
18638void
17a2f251 18639mips_elf_final_processing (void)
252b5132 18640{
351cdf24
MF
18641 int fpabi;
18642 Elf_Internal_ABIFlags_v0 flags;
18643
18644 flags.version = 0;
18645 flags.isa_rev = 0;
18646 switch (file_mips_opts.isa)
18647 {
18648 case INSN_ISA1:
18649 flags.isa_level = 1;
18650 break;
18651 case INSN_ISA2:
18652 flags.isa_level = 2;
18653 break;
18654 case INSN_ISA3:
18655 flags.isa_level = 3;
18656 break;
18657 case INSN_ISA4:
18658 flags.isa_level = 4;
18659 break;
18660 case INSN_ISA5:
18661 flags.isa_level = 5;
18662 break;
18663 case INSN_ISA32:
18664 flags.isa_level = 32;
18665 flags.isa_rev = 1;
18666 break;
18667 case INSN_ISA32R2:
18668 flags.isa_level = 32;
18669 flags.isa_rev = 2;
18670 break;
18671 case INSN_ISA32R3:
18672 flags.isa_level = 32;
18673 flags.isa_rev = 3;
18674 break;
18675 case INSN_ISA32R5:
18676 flags.isa_level = 32;
18677 flags.isa_rev = 5;
18678 break;
09c14161
MF
18679 case INSN_ISA32R6:
18680 flags.isa_level = 32;
18681 flags.isa_rev = 6;
18682 break;
351cdf24
MF
18683 case INSN_ISA64:
18684 flags.isa_level = 64;
18685 flags.isa_rev = 1;
18686 break;
18687 case INSN_ISA64R2:
18688 flags.isa_level = 64;
18689 flags.isa_rev = 2;
18690 break;
18691 case INSN_ISA64R3:
18692 flags.isa_level = 64;
18693 flags.isa_rev = 3;
18694 break;
18695 case INSN_ISA64R5:
18696 flags.isa_level = 64;
18697 flags.isa_rev = 5;
18698 break;
09c14161
MF
18699 case INSN_ISA64R6:
18700 flags.isa_level = 64;
18701 flags.isa_rev = 6;
18702 break;
351cdf24
MF
18703 }
18704
18705 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18706 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18707 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18708 : (file_mips_opts.fp == 64) ? AFL_REG_64
18709 : AFL_REG_32;
18710 flags.cpr2_size = AFL_REG_NONE;
18711 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18712 Tag_GNU_MIPS_ABI_FP);
18713 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18714 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18715 if (file_ase_mips16)
18716 flags.ases |= AFL_ASE_MIPS16;
18717 if (file_ase_micromips)
18718 flags.ases |= AFL_ASE_MICROMIPS;
18719 flags.flags1 = 0;
18720 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18721 || file_mips_opts.fp == 64)
18722 && file_mips_opts.oddspreg)
18723 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18724 flags.flags2 = 0;
18725
18726 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18727 ((Elf_External_ABIFlags_v0 *)
18728 mips_flags_frag));
18729
252b5132 18730 /* Write out the register information. */
316f5878 18731 if (mips_abi != N64_ABI)
252b5132
RH
18732 {
18733 Elf32_RegInfo s;
18734
18735 s.ri_gprmask = mips_gprmask;
18736 s.ri_cprmask[0] = mips_cprmask[0];
18737 s.ri_cprmask[1] = mips_cprmask[1];
18738 s.ri_cprmask[2] = mips_cprmask[2];
18739 s.ri_cprmask[3] = mips_cprmask[3];
18740 /* The gp_value field is set by the MIPS ELF backend. */
18741
18742 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18743 ((Elf32_External_RegInfo *)
18744 mips_regmask_frag));
18745 }
18746 else
18747 {
18748 Elf64_Internal_RegInfo s;
18749
18750 s.ri_gprmask = mips_gprmask;
18751 s.ri_pad = 0;
18752 s.ri_cprmask[0] = mips_cprmask[0];
18753 s.ri_cprmask[1] = mips_cprmask[1];
18754 s.ri_cprmask[2] = mips_cprmask[2];
18755 s.ri_cprmask[3] = mips_cprmask[3];
18756 /* The gp_value field is set by the MIPS ELF backend. */
18757
18758 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18759 ((Elf64_External_RegInfo *)
18760 mips_regmask_frag));
18761 }
18762
18763 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18764 sort of BFD interface for this. */
18765 if (mips_any_noreorder)
18766 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18767 if (mips_pic != NO_PIC)
143d77c5 18768 {
8b828383 18769 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18770 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18771 }
18772 if (mips_abicalls)
18773 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18774
b015e599
AP
18775 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18776 defined at present; this might need to change in future. */
a4672219
TS
18777 if (file_ase_mips16)
18778 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18779 if (file_ase_micromips)
18780 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18781 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18782 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18783
bdaaa2e1 18784 /* Set the MIPS ELF ABI flags. */
316f5878 18785 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18786 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18787 else if (mips_abi == O64_ABI)
252b5132 18788 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18789 else if (mips_abi == EABI_ABI)
252b5132 18790 {
bad1aba3 18791 if (file_mips_opts.gp == 64)
252b5132
RH
18792 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18793 else
18794 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18795 }
316f5878 18796 else if (mips_abi == N32_ABI)
be00bddd
TS
18797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18798
c9914766 18799 /* Nothing to do for N64_ABI. */
252b5132
RH
18800
18801 if (mips_32bitmode)
18802 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18803
7361da2c 18804 if (mips_nan2008 == 1)
ba92f887
MR
18805 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18806
ad3fea08 18807 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18808 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18809 Tag_GNU_MIPS_ABI_FP);
18810 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18811 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18812}
252b5132 18813\f
beae10d5 18814typedef struct proc {
9b2f1d35
EC
18815 symbolS *func_sym;
18816 symbolS *func_end_sym;
beae10d5
KH
18817 unsigned long reg_mask;
18818 unsigned long reg_offset;
18819 unsigned long fpreg_mask;
18820 unsigned long fpreg_offset;
18821 unsigned long frame_offset;
18822 unsigned long frame_reg;
18823 unsigned long pc_reg;
18824} procS;
252b5132
RH
18825
18826static procS cur_proc;
18827static procS *cur_proc_ptr;
18828static int numprocs;
18829
df58fc94
RS
18830/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18831 as "2", and a normal nop as "0". */
18832
18833#define NOP_OPCODE_MIPS 0
18834#define NOP_OPCODE_MIPS16 1
18835#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18836
18837char
18838mips_nop_opcode (void)
18839{
df58fc94
RS
18840 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18841 return NOP_OPCODE_MICROMIPS;
18842 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18843 return NOP_OPCODE_MIPS16;
18844 else
18845 return NOP_OPCODE_MIPS;
742a56fe
RS
18846}
18847
df58fc94
RS
18848/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18849 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18850
0a9ef439 18851void
17a2f251 18852mips_handle_align (fragS *fragp)
a19d8eb0 18853{
df58fc94 18854 char nop_opcode;
742a56fe 18855 char *p;
c67a084a
NC
18856 int bytes, size, excess;
18857 valueT opcode;
742a56fe 18858
0a9ef439
RH
18859 if (fragp->fr_type != rs_align_code)
18860 return;
18861
742a56fe 18862 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18863 nop_opcode = *p;
18864 switch (nop_opcode)
a19d8eb0 18865 {
df58fc94
RS
18866 case NOP_OPCODE_MICROMIPS:
18867 opcode = micromips_nop32_insn.insn_opcode;
18868 size = 4;
18869 break;
18870 case NOP_OPCODE_MIPS16:
c67a084a
NC
18871 opcode = mips16_nop_insn.insn_opcode;
18872 size = 2;
df58fc94
RS
18873 break;
18874 case NOP_OPCODE_MIPS:
18875 default:
c67a084a
NC
18876 opcode = nop_insn.insn_opcode;
18877 size = 4;
df58fc94 18878 break;
c67a084a 18879 }
a19d8eb0 18880
c67a084a
NC
18881 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18882 excess = bytes % size;
df58fc94
RS
18883
18884 /* Handle the leading part if we're not inserting a whole number of
18885 instructions, and make it the end of the fixed part of the frag.
18886 Try to fit in a short microMIPS NOP if applicable and possible,
18887 and use zeroes otherwise. */
18888 gas_assert (excess < 4);
18889 fragp->fr_fix += excess;
18890 switch (excess)
c67a084a 18891 {
df58fc94
RS
18892 case 3:
18893 *p++ = '\0';
18894 /* Fall through. */
18895 case 2:
833794fc 18896 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18897 {
4d68580a 18898 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18899 break;
18900 }
18901 *p++ = '\0';
18902 /* Fall through. */
18903 case 1:
18904 *p++ = '\0';
18905 /* Fall through. */
18906 case 0:
18907 break;
a19d8eb0 18908 }
c67a084a
NC
18909
18910 md_number_to_chars (p, opcode, size);
18911 fragp->fr_var = size;
a19d8eb0
CP
18912}
18913
252b5132 18914static long
17a2f251 18915get_number (void)
252b5132
RH
18916{
18917 int negative = 0;
18918 long val = 0;
18919
18920 if (*input_line_pointer == '-')
18921 {
18922 ++input_line_pointer;
18923 negative = 1;
18924 }
3882b010 18925 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18926 as_bad (_("expected simple number"));
252b5132
RH
18927 if (input_line_pointer[0] == '0')
18928 {
18929 if (input_line_pointer[1] == 'x')
18930 {
18931 input_line_pointer += 2;
3882b010 18932 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18933 {
18934 val <<= 4;
18935 val |= hex_value (*input_line_pointer++);
18936 }
18937 return negative ? -val : val;
18938 }
18939 else
18940 {
18941 ++input_line_pointer;
3882b010 18942 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18943 {
18944 val <<= 3;
18945 val |= *input_line_pointer++ - '0';
18946 }
18947 return negative ? -val : val;
18948 }
18949 }
3882b010 18950 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18951 {
18952 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18953 *input_line_pointer, *input_line_pointer);
956cd1d6 18954 as_warn (_("invalid number"));
252b5132
RH
18955 return -1;
18956 }
3882b010 18957 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18958 {
18959 val *= 10;
18960 val += *input_line_pointer++ - '0';
18961 }
18962 return negative ? -val : val;
18963}
18964
18965/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18966 is an initial number which is the ECOFF file index. In the non-ECOFF
18967 case .file implies DWARF-2. */
18968
18969static void
17a2f251 18970s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18971{
ecb4347a
DJ
18972 static int first_file_directive = 0;
18973
c5dd6aab
DJ
18974 if (ECOFF_DEBUGGING)
18975 {
18976 get_number ();
18977 s_app_file (0);
18978 }
18979 else
ecb4347a
DJ
18980 {
18981 char *filename;
18982
18983 filename = dwarf2_directive_file (0);
18984
18985 /* Versions of GCC up to 3.1 start files with a ".file"
18986 directive even for stabs output. Make sure that this
18987 ".file" is handled. Note that you need a version of GCC
18988 after 3.1 in order to support DWARF-2 on MIPS. */
18989 if (filename != NULL && ! first_file_directive)
18990 {
18991 (void) new_logical_line (filename, -1);
c04f5787 18992 s_app_file_string (filename, 0);
ecb4347a
DJ
18993 }
18994 first_file_directive = 1;
18995 }
c5dd6aab
DJ
18996}
18997
18998/* The .loc directive, implying DWARF-2. */
252b5132
RH
18999
19000static void
17a2f251 19001s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 19002{
c5dd6aab
DJ
19003 if (!ECOFF_DEBUGGING)
19004 dwarf2_directive_loc (0);
252b5132
RH
19005}
19006
252b5132
RH
19007/* The .end directive. */
19008
19009static void
17a2f251 19010s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
19011{
19012 symbolS *p;
252b5132 19013
7a621144
DJ
19014 /* Following functions need their own .frame and .cprestore directives. */
19015 mips_frame_reg_valid = 0;
19016 mips_cprestore_valid = 0;
19017
252b5132
RH
19018 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19019 {
19020 p = get_symbol ();
19021 demand_empty_rest_of_line ();
19022 }
19023 else
19024 p = NULL;
19025
14949570 19026 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
19027 as_warn (_(".end not in text section"));
19028
19029 if (!cur_proc_ptr)
19030 {
1661c76c 19031 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
19032 demand_empty_rest_of_line ();
19033 return;
19034 }
19035
19036 if (p != NULL)
19037 {
9c2799c2 19038 gas_assert (S_GET_NAME (p));
9b2f1d35 19039 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 19040 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
19041
19042 if (debug_type == DEBUG_STABS)
19043 stabs_generate_asm_endfunc (S_GET_NAME (p),
19044 S_GET_NAME (p));
252b5132
RH
19045 }
19046 else
19047 as_warn (_(".end directive missing or unknown symbol"));
19048
9b2f1d35
EC
19049 /* Create an expression to calculate the size of the function. */
19050 if (p && cur_proc_ptr)
19051 {
19052 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 19053 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
19054
19055 obj->size = exp;
19056 exp->X_op = O_subtract;
19057 exp->X_add_symbol = symbol_temp_new_now ();
19058 exp->X_op_symbol = p;
19059 exp->X_add_number = 0;
19060
19061 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19062 }
19063
ecb4347a 19064 /* Generate a .pdr section. */
f3ded42a 19065 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
19066 {
19067 segT saved_seg = now_seg;
19068 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
19069 expressionS exp;
19070 char *fragp;
252b5132 19071
252b5132 19072#ifdef md_flush_pending_output
ecb4347a 19073 md_flush_pending_output ();
252b5132
RH
19074#endif
19075
9c2799c2 19076 gas_assert (pdr_seg);
ecb4347a 19077 subseg_set (pdr_seg, 0);
252b5132 19078
ecb4347a
DJ
19079 /* Write the symbol. */
19080 exp.X_op = O_symbol;
19081 exp.X_add_symbol = p;
19082 exp.X_add_number = 0;
19083 emit_expr (&exp, 4);
252b5132 19084
ecb4347a 19085 fragp = frag_more (7 * 4);
252b5132 19086
17a2f251
TS
19087 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19088 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19089 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19090 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19091 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19092 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19093 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 19094
ecb4347a
DJ
19095 subseg_set (saved_seg, saved_subseg);
19096 }
252b5132
RH
19097
19098 cur_proc_ptr = NULL;
19099}
19100
19101/* The .aent and .ent directives. */
19102
19103static void
17a2f251 19104s_mips_ent (int aent)
252b5132 19105{
252b5132 19106 symbolS *symbolP;
252b5132
RH
19107
19108 symbolP = get_symbol ();
19109 if (*input_line_pointer == ',')
f9419b05 19110 ++input_line_pointer;
252b5132 19111 SKIP_WHITESPACE ();
3882b010 19112 if (ISDIGIT (*input_line_pointer)
d9a62219 19113 || *input_line_pointer == '-')
874e8986 19114 get_number ();
252b5132 19115
14949570 19116 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 19117 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
19118
19119 if (!aent && cur_proc_ptr)
9a41af64 19120 as_warn (_("missing .end"));
252b5132
RH
19121
19122 if (!aent)
19123 {
7a621144
DJ
19124 /* This function needs its own .frame and .cprestore directives. */
19125 mips_frame_reg_valid = 0;
19126 mips_cprestore_valid = 0;
19127
252b5132
RH
19128 cur_proc_ptr = &cur_proc;
19129 memset (cur_proc_ptr, '\0', sizeof (procS));
19130
9b2f1d35 19131 cur_proc_ptr->func_sym = symbolP;
252b5132 19132
f9419b05 19133 ++numprocs;
ecb4347a
DJ
19134
19135 if (debug_type == DEBUG_STABS)
19136 stabs_generate_asm_func (S_GET_NAME (symbolP),
19137 S_GET_NAME (symbolP));
252b5132
RH
19138 }
19139
7c0fc524
MR
19140 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19141
252b5132
RH
19142 demand_empty_rest_of_line ();
19143}
19144
19145/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 19146 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 19147 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 19148 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
19149 symbol table (in the mdebug section). */
19150
19151static void
17a2f251 19152s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 19153{
f3ded42a
RS
19154 if (ECOFF_DEBUGGING)
19155 s_ignore (ignore);
19156 else
ecb4347a
DJ
19157 {
19158 long val;
252b5132 19159
ecb4347a
DJ
19160 if (cur_proc_ptr == (procS *) NULL)
19161 {
19162 as_warn (_(".frame outside of .ent"));
19163 demand_empty_rest_of_line ();
19164 return;
19165 }
252b5132 19166
ecb4347a
DJ
19167 cur_proc_ptr->frame_reg = tc_get_register (1);
19168
19169 SKIP_WHITESPACE ();
19170 if (*input_line_pointer++ != ','
19171 || get_absolute_expression_and_terminator (&val) != ',')
19172 {
1661c76c 19173 as_warn (_("bad .frame directive"));
ecb4347a
DJ
19174 --input_line_pointer;
19175 demand_empty_rest_of_line ();
19176 return;
19177 }
252b5132 19178
ecb4347a
DJ
19179 cur_proc_ptr->frame_offset = val;
19180 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 19181
252b5132 19182 demand_empty_rest_of_line ();
252b5132 19183 }
252b5132
RH
19184}
19185
bdaaa2e1
KH
19186/* The .fmask and .mask directives. If the mdebug section is present
19187 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 19188 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 19189 information correctly. We can't use the ecoff routines because they
252b5132
RH
19190 make reference to the ecoff symbol table (in the mdebug section). */
19191
19192static void
17a2f251 19193s_mips_mask (int reg_type)
252b5132 19194{
f3ded42a
RS
19195 if (ECOFF_DEBUGGING)
19196 s_ignore (reg_type);
19197 else
252b5132 19198 {
ecb4347a 19199 long mask, off;
252b5132 19200
ecb4347a
DJ
19201 if (cur_proc_ptr == (procS *) NULL)
19202 {
19203 as_warn (_(".mask/.fmask outside of .ent"));
19204 demand_empty_rest_of_line ();
19205 return;
19206 }
252b5132 19207
ecb4347a
DJ
19208 if (get_absolute_expression_and_terminator (&mask) != ',')
19209 {
1661c76c 19210 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
19211 --input_line_pointer;
19212 demand_empty_rest_of_line ();
19213 return;
19214 }
252b5132 19215
ecb4347a
DJ
19216 off = get_absolute_expression ();
19217
19218 if (reg_type == 'F')
19219 {
19220 cur_proc_ptr->fpreg_mask = mask;
19221 cur_proc_ptr->fpreg_offset = off;
19222 }
19223 else
19224 {
19225 cur_proc_ptr->reg_mask = mask;
19226 cur_proc_ptr->reg_offset = off;
19227 }
19228
19229 demand_empty_rest_of_line ();
252b5132 19230 }
252b5132
RH
19231}
19232
316f5878
RS
19233/* A table describing all the processors gas knows about. Names are
19234 matched in the order listed.
e7af610e 19235
316f5878
RS
19236 To ease comparison, please keep this table in the same order as
19237 gcc's mips_cpu_info_table[]. */
e972090a
NC
19238static const struct mips_cpu_info mips_cpu_info_table[] =
19239{
316f5878 19240 /* Entries for generic ISAs */
d16afab6
RS
19241 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19242 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19243 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19244 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19245 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19246 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19247 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
19248 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19249 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 19250 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
19251 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19252 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
19253 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19254 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 19255 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
19256
19257 /* MIPS I */
d16afab6
RS
19258 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19259 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19260 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
19261
19262 /* MIPS II */
d16afab6 19263 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
19264
19265 /* MIPS III */
d16afab6
RS
19266 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19267 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19268 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19269 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19270 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19271 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19272 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19273 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19274 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19275 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19276 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19277 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19278 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 19279 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
19280 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19281 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
19282
19283 /* MIPS IV */
d16afab6
RS
19284 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19285 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19286 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19287 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19288 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19289 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19290 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19291 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19292 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19293 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19294 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19295 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19296 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19297 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19298 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
19299
19300 /* MIPS 32 */
d16afab6
RS
19301 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19302 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19303 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19304 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
19305
19306 /* MIPS 32 Release 2 */
d16afab6
RS
19307 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19308 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19309 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19310 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19311 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19312 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19313 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19314 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19315 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19316 ISA_MIPS32R2, CPU_MIPS32R2 },
19317 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19318 ISA_MIPS32R2, CPU_MIPS32R2 },
19319 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19320 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19321 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19322 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19323 /* Deprecated forms of the above. */
d16afab6
RS
19324 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19325 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19326 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
19327 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19328 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19329 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19330 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19331 /* Deprecated forms of the above. */
d16afab6
RS
19332 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19333 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19334 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
19335 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19337 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19338 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19339 /* Deprecated forms of the above. */
d16afab6
RS
19340 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19341 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 19342 /* 34Kn is a 34kc without DSP. */
d16afab6 19343 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19344 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
19345 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19346 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19347 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19348 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19349 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19350 /* Deprecated forms of the above. */
d16afab6
RS
19351 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 19353 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
19354 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19355 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19356 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19357 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
19358 /* interaptiv is the new name for 1004kf */
19359 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
19360 /* M5100 family */
19361 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19362 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 19363 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 19364 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 19365
316f5878 19366 /* MIPS 64 */
d16afab6
RS
19367 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19368 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19369 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19370 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 19371
c7a23324 19372 /* Broadcom SB-1 CPU core */
d16afab6 19373 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 19374 /* Broadcom SB-1A CPU core */
d16afab6 19375 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 19376
4ba154f5 19377 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 19378
ed163775
MR
19379 /* MIPS 64 Release 2 */
19380
967344c6 19381 /* Cavium Networks Octeon CPU core */
d16afab6
RS
19382 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19383 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19384 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 19385 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 19386
52b6b6b9 19387 /* RMI Xlr */
d16afab6 19388 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 19389
55a36193
MK
19390 /* Broadcom XLP.
19391 XLP is mostly like XLR, with the prominent exception that it is
19392 MIPS64R2 rather than MIPS64. */
d16afab6 19393 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 19394
a4968f42 19395 /* MIPS 64 Release 6 */
7ef0d297 19396 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 19397 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 19398
316f5878 19399 /* End marker */
d16afab6 19400 { NULL, 0, 0, 0, 0 }
316f5878 19401};
e7af610e 19402
84ea6cf2 19403
316f5878
RS
19404/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19405 with a final "000" replaced by "k". Ignore case.
e7af610e 19406
316f5878 19407 Note: this function is shared between GCC and GAS. */
c6c98b38 19408
b34976b6 19409static bfd_boolean
17a2f251 19410mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19411{
19412 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19413 given++, canonical++;
19414
19415 return ((*given == 0 && *canonical == 0)
19416 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19417}
19418
19419
19420/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19421 CPU name. We've traditionally allowed a lot of variation here.
19422
19423 Note: this function is shared between GCC and GAS. */
19424
b34976b6 19425static bfd_boolean
17a2f251 19426mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19427{
19428 /* First see if the name matches exactly, or with a final "000"
19429 turned into "k". */
19430 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 19431 return TRUE;
316f5878
RS
19432
19433 /* If not, try comparing based on numerical designation alone.
19434 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19435 if (TOLOWER (*given) == 'r')
19436 given++;
19437 if (!ISDIGIT (*given))
b34976b6 19438 return FALSE;
316f5878
RS
19439
19440 /* Skip over some well-known prefixes in the canonical name,
19441 hoping to find a number there too. */
19442 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19443 canonical += 2;
19444 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19445 canonical += 2;
19446 else if (TOLOWER (canonical[0]) == 'r')
19447 canonical += 1;
19448
19449 return mips_strict_matching_cpu_name_p (canonical, given);
19450}
19451
19452
19453/* Parse an option that takes the name of a processor as its argument.
19454 OPTION is the name of the option and CPU_STRING is the argument.
19455 Return the corresponding processor enumeration if the CPU_STRING is
19456 recognized, otherwise report an error and return null.
19457
19458 A similar function exists in GCC. */
e7af610e
NC
19459
19460static const struct mips_cpu_info *
17a2f251 19461mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 19462{
316f5878 19463 const struct mips_cpu_info *p;
e7af610e 19464
316f5878
RS
19465 /* 'from-abi' selects the most compatible architecture for the given
19466 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19467 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19468 version. Look first at the -mgp options, if given, otherwise base
19469 the choice on MIPS_DEFAULT_64BIT.
e7af610e 19470
316f5878
RS
19471 Treat NO_ABI like the EABIs. One reason to do this is that the
19472 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19473 architecture. This code picks MIPS I for 'mips' and MIPS III for
19474 'mips64', just as we did in the days before 'from-abi'. */
19475 if (strcasecmp (cpu_string, "from-abi") == 0)
19476 {
19477 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19478 return mips_cpu_info_from_isa (ISA_MIPS1);
19479
19480 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19481 return mips_cpu_info_from_isa (ISA_MIPS3);
19482
bad1aba3 19483 if (file_mips_opts.gp >= 0)
19484 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 19485 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
19486
19487 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19488 ? ISA_MIPS3
19489 : ISA_MIPS1);
19490 }
19491
19492 /* 'default' has traditionally been a no-op. Probably not very useful. */
19493 if (strcasecmp (cpu_string, "default") == 0)
19494 return 0;
19495
19496 for (p = mips_cpu_info_table; p->name != 0; p++)
19497 if (mips_matching_cpu_name_p (p->name, cpu_string))
19498 return p;
19499
1661c76c 19500 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 19501 return 0;
e7af610e
NC
19502}
19503
316f5878
RS
19504/* Return the canonical processor information for ISA (a member of the
19505 ISA_MIPS* enumeration). */
19506
e7af610e 19507static const struct mips_cpu_info *
17a2f251 19508mips_cpu_info_from_isa (int isa)
e7af610e
NC
19509{
19510 int i;
19511
19512 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 19513 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 19514 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
19515 return (&mips_cpu_info_table[i]);
19516
e972090a 19517 return NULL;
e7af610e 19518}
fef14a42
TS
19519
19520static const struct mips_cpu_info *
17a2f251 19521mips_cpu_info_from_arch (int arch)
fef14a42
TS
19522{
19523 int i;
19524
19525 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19526 if (arch == mips_cpu_info_table[i].cpu)
19527 return (&mips_cpu_info_table[i]);
19528
19529 return NULL;
19530}
316f5878
RS
19531\f
19532static void
17a2f251 19533show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
19534{
19535 if (*first_p)
19536 {
19537 fprintf (stream, "%24s", "");
19538 *col_p = 24;
19539 }
19540 else
19541 {
19542 fprintf (stream, ", ");
19543 *col_p += 2;
19544 }
e7af610e 19545
316f5878
RS
19546 if (*col_p + strlen (string) > 72)
19547 {
19548 fprintf (stream, "\n%24s", "");
19549 *col_p = 24;
19550 }
19551
19552 fprintf (stream, "%s", string);
19553 *col_p += strlen (string);
19554
19555 *first_p = 0;
19556}
19557
19558void
17a2f251 19559md_show_usage (FILE *stream)
e7af610e 19560{
316f5878
RS
19561 int column, first;
19562 size_t i;
19563
19564 fprintf (stream, _("\
19565MIPS options:\n\
316f5878
RS
19566-EB generate big endian output\n\
19567-EL generate little endian output\n\
19568-g, -g2 do not remove unneeded NOPs or swap branches\n\
19569-G NUM allow referencing objects up to NUM bytes\n\
19570 implicitly with the gp register [default 8]\n"));
19571 fprintf (stream, _("\
19572-mips1 generate MIPS ISA I instructions\n\
19573-mips2 generate MIPS ISA II instructions\n\
19574-mips3 generate MIPS ISA III instructions\n\
19575-mips4 generate MIPS ISA IV instructions\n\
19576-mips5 generate MIPS ISA V instructions\n\
19577-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 19578-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
19579-mips32r3 generate MIPS32 release 3 ISA instructions\n\
19580-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 19581-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 19582-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 19583-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
19584-mips64r3 generate MIPS64 release 3 ISA instructions\n\
19585-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 19586-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
19587-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19588
19589 first = 1;
e7af610e
NC
19590
19591 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
19592 show (stream, mips_cpu_info_table[i].name, &column, &first);
19593 show (stream, "from-abi", &column, &first);
19594 fputc ('\n', stream);
e7af610e 19595
316f5878
RS
19596 fprintf (stream, _("\
19597-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19598-no-mCPU don't generate code specific to CPU.\n\
19599 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19600
19601 first = 1;
19602
19603 show (stream, "3900", &column, &first);
19604 show (stream, "4010", &column, &first);
19605 show (stream, "4100", &column, &first);
19606 show (stream, "4650", &column, &first);
19607 fputc ('\n', stream);
19608
19609 fprintf (stream, _("\
19610-mips16 generate mips16 instructions\n\
19611-no-mips16 do not generate mips16 instructions\n"));
19612 fprintf (stream, _("\
df58fc94
RS
19613-mmicromips generate microMIPS instructions\n\
19614-mno-micromips do not generate microMIPS instructions\n"));
19615 fprintf (stream, _("\
e16bfa71 19616-msmartmips generate smartmips instructions\n\
3739860c 19617-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 19618 fprintf (stream, _("\
74cd071d
CF
19619-mdsp generate DSP instructions\n\
19620-mno-dsp do not generate DSP instructions\n"));
19621 fprintf (stream, _("\
8b082fb1
TS
19622-mdspr2 generate DSP R2 instructions\n\
19623-mno-dspr2 do not generate DSP R2 instructions\n"));
19624 fprintf (stream, _("\
8f4f9071
MF
19625-mdspr3 generate DSP R3 instructions\n\
19626-mno-dspr3 do not generate DSP R3 instructions\n"));
19627 fprintf (stream, _("\
ef2e4d86
CF
19628-mmt generate MT instructions\n\
19629-mno-mt do not generate MT instructions\n"));
19630 fprintf (stream, _("\
dec0624d
MR
19631-mmcu generate MCU instructions\n\
19632-mno-mcu do not generate MCU instructions\n"));
19633 fprintf (stream, _("\
56d438b1
CF
19634-mmsa generate MSA instructions\n\
19635-mno-msa do not generate MSA instructions\n"));
19636 fprintf (stream, _("\
7d64c587
AB
19637-mxpa generate eXtended Physical Address (XPA) instructions\n\
19638-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19639 fprintf (stream, _("\
b015e599
AP
19640-mvirt generate Virtualization instructions\n\
19641-mno-virt do not generate Virtualization instructions\n"));
19642 fprintf (stream, _("\
833794fc
MR
19643-minsn32 only generate 32-bit microMIPS instructions\n\
19644-mno-insn32 generate all microMIPS instructions\n"));
19645 fprintf (stream, _("\
c67a084a
NC
19646-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19647-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 19648-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 19649-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 19650-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 19651-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
19652-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19653-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 19654-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
19655-O0 remove unneeded NOPs, do not swap branches\n\
19656-O remove unneeded NOPs and swap branches\n\
316f5878
RS
19657--trap, --no-break trap exception on div by 0 and mult overflow\n\
19658--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
19659 fprintf (stream, _("\
19660-mhard-float allow floating-point instructions\n\
19661-msoft-float do not allow floating-point instructions\n\
19662-msingle-float only allow 32-bit floating-point operations\n\
19663-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19664--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
19665--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19666-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19667
19668 first = 1;
19669
19670 show (stream, "legacy", &column, &first);
19671 show (stream, "2008", &column, &first);
19672
19673 fputc ('\n', stream);
19674
316f5878
RS
19675 fprintf (stream, _("\
19676-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19677-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19678-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19679-non_shared do not generate code that can operate with DSOs\n\
316f5878 19680-xgot assume a 32 bit GOT\n\
dcd410fe 19681-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19682-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19683 position dependent (non shared) code\n\
316f5878
RS
19684-mabi=ABI create ABI conformant object file for:\n"));
19685
19686 first = 1;
19687
19688 show (stream, "32", &column, &first);
19689 show (stream, "o64", &column, &first);
19690 show (stream, "n32", &column, &first);
19691 show (stream, "64", &column, &first);
19692 show (stream, "eabi", &column, &first);
19693
19694 fputc ('\n', stream);
19695
19696 fprintf (stream, _("\
19697-32 create o32 ABI object file (default)\n\
19698-n32 create n32 ABI object file\n\
19699-64 create 64 ABI object file\n"));
e7af610e 19700}
14e777e0 19701
1575952e 19702#ifdef TE_IRIX
14e777e0 19703enum dwarf2_format
413a266c 19704mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19705{
369943fe 19706 if (HAVE_64BIT_SYMBOLS)
1575952e 19707 return dwarf2_format_64bit_irix;
14e777e0
KB
19708 else
19709 return dwarf2_format_32bit;
19710}
1575952e 19711#endif
73369e65
EC
19712
19713int
19714mips_dwarf2_addr_size (void)
19715{
6b6b3450 19716 if (HAVE_64BIT_OBJECTS)
73369e65 19717 return 8;
73369e65
EC
19718 else
19719 return 4;
19720}
5862107c
EC
19721
19722/* Standard calling conventions leave the CFA at SP on entry. */
19723void
19724mips_cfi_frame_initial_instructions (void)
19725{
19726 cfi_add_CFA_def_cfa_register (SP);
19727}
19728
707bfff6
TS
19729int
19730tc_mips_regname_to_dw2regnum (char *regname)
19731{
19732 unsigned int regnum = -1;
19733 unsigned int reg;
19734
19735 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19736 regnum = reg;
19737
19738 return regnum;
19739}
263b2574 19740
19741/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19742 Given a symbolic attribute NAME, return the proper integer value.
19743 Returns -1 if the attribute is not known. */
19744
19745int
19746mips_convert_symbolic_attribute (const char *name)
19747{
19748 static const struct
19749 {
19750 const char * name;
19751 const int tag;
19752 }
19753 attribute_table[] =
19754 {
19755#define T(tag) {#tag, tag}
19756 T (Tag_GNU_MIPS_ABI_FP),
19757 T (Tag_GNU_MIPS_ABI_MSA),
19758#undef T
19759 };
19760 unsigned int i;
19761
19762 if (name == NULL)
19763 return -1;
19764
19765 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19766 if (streq (name, attribute_table[i].name))
19767 return attribute_table[i].tag;
19768
19769 return -1;
19770}
fd5c94ab
RS
19771
19772void
19773md_mips_end (void)
19774{
351cdf24
MF
19775 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19776
fd5c94ab
RS
19777 mips_emit_delays ();
19778 if (cur_proc_ptr)
19779 as_warn (_("missing .end at end of assembly"));
919731af 19780
19781 /* Just in case no code was emitted, do the consistency check. */
19782 file_mips_check_options ();
351cdf24
MF
19783
19784 /* Set a floating-point ABI if the user did not. */
19785 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19786 {
19787 /* Perform consistency checks on the floating-point ABI. */
19788 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19789 Tag_GNU_MIPS_ABI_FP);
19790 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19791 check_fpabi (fpabi);
19792 }
19793 else
19794 {
19795 /* Soft-float gets precedence over single-float, the two options should
19796 not be used together so this should not matter. */
19797 if (file_mips_opts.soft_float == 1)
19798 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19799 /* Single-float gets precedence over all double_float cases. */
19800 else if (file_mips_opts.single_float == 1)
19801 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19802 else
19803 {
19804 switch (file_mips_opts.fp)
19805 {
19806 case 32:
19807 if (file_mips_opts.gp == 32)
19808 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19809 break;
19810 case 0:
19811 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19812 break;
19813 case 64:
19814 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19815 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19816 else if (file_mips_opts.gp == 32)
19817 fpabi = Val_GNU_MIPS_ABI_FP_64;
19818 else
19819 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19820 break;
19821 }
19822 }
19823
19824 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19825 Tag_GNU_MIPS_ABI_FP, fpabi);
19826 }
fd5c94ab 19827}
2f0c68f2
CM
19828
19829/* Returns the relocation type required for a particular CFI encoding. */
19830
19831bfd_reloc_code_real_type
19832mips_cfi_reloc_for_encoding (int encoding)
19833{
19834 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19835 return BFD_RELOC_32_PCREL;
19836 else return BFD_RELOC_NONE;
19837}
This page took 2.958191 seconds and 4 git commands to generate.