Add Nios II arch flags and compatibility tests
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
b90efa5b 2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6
TS
351#define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
40209cad
MR
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1171#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1174#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1185
43c0598f
RS
1186/* Sign-extend 16-bit value X. */
1187#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
885add95
CD
1189/* Is the given value a sign-extended 32-bit value? */
1190#define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194/* Is the given value a sign-extended 16-bit value? */
1195#define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
df58fc94
RS
1199/* Is the given value a sign-extended 12-bit value? */
1200#define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
7f3c4072
CM
1203/* Is the given value a sign-extended 9-bit value? */
1204#define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
2051e8c4
MR
1207/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208#define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
bf12938e
RS
1212/* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
bf12938e 1217/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1218#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1223#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
5c04167a
RS
1227
1228/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1230\f
df58fc94
RS
1231/* Whether or not we are emitting a branch-likely macro. */
1232static bfd_boolean emit_branch_likely_macro = FALSE;
1233
4d7206a2
RS
1234/* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253} mips_relax;
252b5132 1254\f
584892a6
RS
1255/* Global variables used to decide whether a macro needs a warning. */
1256static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
df58fc94
RS
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
584892a6
RS
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
df58fc94
RS
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
584892a6
RS
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289} mips_macro_warning;
1290\f
252b5132
RH
1291/* Prototypes for static functions. */
1292
252b5132
RH
1293enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
b34976b6 1295static void append_insn
df58fc94
RS
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
7d10b47d 1298static void mips_no_prev_insn (void);
c67a084a 1299static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1300static void mips16_macro_build
03ea81db 1301 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1302static void load_register (int, expressionS *, int);
584892a6
RS
1303static void macro_start (void);
1304static void macro_end (void);
833794fc 1305static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1306static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1307static void mips_ip (char *str, struct mips_cl_insn * ip);
1308static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1309static void mips16_immed
43c0598f
RS
1310 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
5e0116d5 1312static size_t my_getSmallExpression
17a2f251
TS
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314static void my_getExpression (expressionS *, char *);
1315static void s_align (int);
1316static void s_change_sec (int);
1317static void s_change_section (int);
1318static void s_cons (int);
1319static void s_float_cons (int);
1320static void s_mips_globl (int);
1321static void s_option (int);
1322static void s_mipsset (int);
1323static void s_abicalls (int);
1324static void s_cpload (int);
1325static void s_cpsetup (int);
1326static void s_cplocal (int);
1327static void s_cprestore (int);
1328static void s_cpreturn (int);
741d6ea8
JM
1329static void s_dtprelword (int);
1330static void s_dtpreldword (int);
d0f13682
CLT
1331static void s_tprelword (int);
1332static void s_tpreldword (int);
17a2f251
TS
1333static void s_gpvalue (int);
1334static void s_gpword (int);
1335static void s_gpdword (int);
a3f278e2 1336static void s_ehword (int);
17a2f251
TS
1337static void s_cpadd (int);
1338static void s_insn (int);
ba92f887 1339static void s_nan (int);
919731af 1340static void s_module (int);
17a2f251
TS
1341static void s_mips_ent (int);
1342static void s_mips_end (int);
1343static void s_mips_frame (int);
1344static void s_mips_mask (int reg_type);
1345static void s_mips_stab (int);
1346static void s_mips_weakext (int);
1347static void s_mips_file (int);
1348static void s_mips_loc (int);
1349static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1350static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1351static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1353static void file_mips_check_options (void);
e7af610e
NC
1354
1355/* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
e972090a
NC
1358struct mips_cpu_info
1359{
e7af610e 1360 const char *name; /* CPU or ISA name. */
d16afab6
RS
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365};
1366
ad3fea08 1367#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1368
17a2f251
TS
1369static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1372\f
c31f3936
RS
1373/* Command-line options. */
1374const char *md_shortopts = "O::g::G:";
1375
1376enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
ae52f483
AB
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
7361da2c 1390 OPTION_MIPS32R6,
c31f3936 1391 OPTION_MIPS64R2,
ae52f483
AB
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
7361da2c 1394 OPTION_MIPS64R6,
c31f3936
RS
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
56d438b1
CF
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
c31f3936
RS
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
7d64c587
AB
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
c31f3936
RS
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
a8d14a88
CM
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
c31f3936
RS
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
351cdf24 1455 OPTION_FPXX,
c31f3936
RS
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
c31f3936
RS
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
c31f3936
RS
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
ba92f887 1482 OPTION_NAN,
351cdf24
MF
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
c31f3936
RS
1485 OPTION_END_OF_ENUM
1486 };
1487
1488struct option md_longopts[] =
1489{
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
c31f3936
RS
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1615 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1616
1617 {NULL, no_argument, NULL, 0}
1618};
1619size_t md_longopts_size = sizeof (md_longopts);
1620\f
c6278170
RS
1621/* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624struct mips_ase
1625{
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
7361da2c
AB
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
c6278170
RS
1652};
1653
1654/* A table of all supported ASEs. */
1655static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1658 2, 2, 2, 2,
1659 -1 },
c6278170
RS
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1663 2, 2, 2, 2,
1664 -1 },
c6278170
RS
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1668 2, 2, 2, 2,
1669 -1 },
c6278170
RS
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1673 2, 2, 2, 2,
1674 -1 },
c6278170
RS
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1679 -1, 1, -1, -1,
1680 6 },
c6278170
RS
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1685 2, 1, -1, -1,
1686 6 },
c6278170
RS
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1690 2, 2, -1, -1,
1691 -1 },
c6278170
RS
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1695 1, -1, -1, -1,
1696 6 },
c6278170
RS
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1700 2, 2, 2, 2,
1701 -1 },
56d438b1
CF
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1705 2, 2, 2, 2,
1706 -1 },
7d64c587
AB
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1710 2, 2, -1, -1,
1711 -1 },
c6278170
RS
1712};
1713
1714/* The set of ASEs that require -mfp64. */
82bda27b 1715#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1716
1717/* Groups of ASE_* flags that represent different revisions of an ASE. */
1718static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720};
1721\f
252b5132
RH
1722/* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
d84bcf09 1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1738
e972090a
NC
1739static const pseudo_typeS mips_pseudo_table[] =
1740{
beae10d5 1741 /* MIPS specific pseudo-ops. */
252b5132
RH
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
6478892d
TS
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
252b5132 1751 {"cprestore", s_cprestore, 0},
6478892d 1752 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
6478892d 1757 {"gpvalue", s_gpvalue, 0},
252b5132 1758 {"gpword", s_gpword, 0},
10181a0d 1759 {"gpdword", s_gpdword, 0},
a3f278e2 1760 {"ehword", s_ehword, 0},
252b5132
RH
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
ba92f887 1763 {"nan", s_nan, 0},
919731af 1764 {"module", s_module, 0},
252b5132 1765
beae10d5 1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1767 chips. */
38a57ae7 1768 {"asciiz", stringer, 8 + 1},
252b5132
RH
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
252b5132 1776
998b3c36
MR
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
beae10d5 1780 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
cca86cc8 1794 {"section", s_change_section, 0},
252b5132
RH
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
754e2bb9 1797 {"stabd", s_mips_stab, 'd'},
252b5132 1798 {"stabn", s_mips_stab, 'n'},
754e2bb9 1799 {"stabs", s_mips_stab, 's'},
252b5132
RH
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
add56521 1802
add56521 1803 { "extern", ecoff_directive_extern, 0},
add56521 1804
43841e91 1805 { NULL, NULL, 0 },
252b5132
RH
1806};
1807
e972090a
NC
1808static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809{
beae10d5
KH
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
c5dd6aab 1817 {"file", s_mips_file, 0},
252b5132
RH
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
c5dd6aab 1820 {"loc", s_mips_loc, 0},
252b5132
RH
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
43841e91 1823 { NULL, NULL, 0 },
252b5132
RH
1824};
1825
3ae8dd8d
MR
1826/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829int
1830mips_address_bytes (void)
1831{
919731af 1832 file_mips_check_options ();
3ae8dd8d
MR
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834}
1835
17a2f251 1836extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1837
1838void
17a2f251 1839mips_pop_insert (void)
252b5132
RH
1840{
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844}
1845\f
1846/* Symbols labelling the current insn. */
1847
e972090a
NC
1848struct insn_label_list
1849{
252b5132
RH
1850 struct insn_label_list *next;
1851 symbolS *label;
1852};
1853
252b5132 1854static struct insn_label_list *free_insn_labels;
742a56fe 1855#define label_list tc_segment_info_data.labels
252b5132 1856
17a2f251 1857static void mips_clear_insn_labels (void);
df58fc94
RS
1858static void mips_mark_labels (void);
1859static void mips_compressed_mark_labels (void);
252b5132
RH
1860
1861static inline void
17a2f251 1862mips_clear_insn_labels (void)
252b5132 1863{
ed9e98c2 1864 struct insn_label_list **pl;
a8dbcb85 1865 segment_info_type *si;
252b5132 1866
a8dbcb85
TS
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
1871
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
252b5132 1876}
a8dbcb85 1877
df58fc94
RS
1878/* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880static inline void
1881mips_mark_labels (void)
1882{
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885}
252b5132
RH
1886\f
1887static char *expr_end;
1888
e423441d 1889/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1890 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1891
1892static expressionS imm_expr;
252b5132 1893
77bd4346
RS
1894/* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
252b5132 1898
77bd4346 1899static expressionS offset_expr;
f6688943
TS
1900static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1902
df58fc94
RS
1903/* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
252b5132 1906
df58fc94 1907static unsigned int forced_insn_length;
252b5132 1908
e1b47bd5
RS
1909/* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912static bfd_boolean mips_assembling_insn;
1913
ecb4347a
DJ
1914/* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
252b5132
RH
1916
1917static segT pdr_seg;
252b5132 1918
e013f690
TS
1919/* The default target format to use. */
1920
aeffff67
RS
1921#if defined (TE_FreeBSD)
1922#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923#elif defined (TE_TMIPS)
1924#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925#else
1926#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927#endif
1928
e013f690 1929const char *
17a2f251 1930mips_target_format (void)
e013f690
TS
1931{
1932 switch (OUTPUT_FLAVOR)
1933 {
e013f690 1934 case bfd_target_elf_flavour:
0a44bf69
RS
1935#ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940#endif
e013f690 1941 return (target_big_endian
cfe86eaa 1942 ? (HAVE_64BIT_OBJECTS
aeffff67 1943 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1944 : (HAVE_NEWABI
aeffff67
RS
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1947 : (HAVE_64BIT_OBJECTS
aeffff67 1948 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1949 : (HAVE_NEWABI
aeffff67
RS
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956}
1957
c6278170
RS
1958/* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961static int
1962mips_isa_rev (void)
1963{
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
ae52f483
AB
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
7361da2c
AB
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
c6278170
RS
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984}
1985
1986/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988static unsigned int
1989mips_ase_mask (unsigned int flags)
1990{
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997}
1998
1999/* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002static void
2003mips_check_isa_supports_ase (const struct mips_ase *ase)
2004{
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
1661c76c 2021 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2022 " `%s' extension"), size, base, ase->name);
2023 else
1661c76c 2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2025 ase->name, base, size, min_rev);
2026 }
7361da2c
AB
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
c6278170 2037 if ((ase->flags & FP64_ASES)
0b35dfee 2038 && mips_opts.fp != 64
c6278170
RS
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
1661c76c 2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2043 }
2044}
2045
2046/* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049static void
2050mips_check_isa_supports_ases (void)
2051{
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060}
2061
2062/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065static unsigned int
919731af 2066mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
c6278170
RS
2068{
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
919731af 2072 opts->ase &= ~mask;
c6278170 2073 if (enabled_p)
919731af 2074 opts->ase |= ase->flags;
c6278170
RS
2075 return mask;
2076}
2077
2078/* Return the ASE called NAME, or null if none. */
2079
2080static const struct mips_ase *
2081mips_lookup_ase (const char *name)
2082{
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089}
2090
df58fc94
RS
2091/* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
2093 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
2094 major opcode) will require further modifications to the opcode
2095 table. */
2096
2097static inline unsigned int
2098micromips_insn_length (const struct mips_opcode *mo)
2099{
2100 return (mo->mask >> 16) == 0 ? 2 : 4;
2101}
2102
5c04167a
RS
2103/* Return the length of MIPS16 instruction OPCODE. */
2104
2105static inline unsigned int
2106mips16_opcode_length (unsigned long opcode)
2107{
2108 return (opcode >> 16) == 0 ? 2 : 4;
2109}
2110
1e915849
RS
2111/* Return the length of instruction INSN. */
2112
2113static inline unsigned int
2114insn_length (const struct mips_cl_insn *insn)
2115{
df58fc94
RS
2116 if (mips_opts.micromips)
2117 return micromips_insn_length (insn->insn_mo);
2118 else if (mips_opts.mips16)
5c04167a 2119 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2120 else
1e915849 2121 return 4;
1e915849
RS
2122}
2123
2124/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2125
2126static void
2127create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2128{
2129 size_t i;
2130
2131 insn->insn_mo = mo;
1e915849
RS
2132 insn->insn_opcode = mo->match;
2133 insn->frag = NULL;
2134 insn->where = 0;
2135 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2136 insn->fixp[i] = NULL;
2137 insn->fixed_p = (mips_opts.noreorder > 0);
2138 insn->noreorder_p = (mips_opts.noreorder > 0);
2139 insn->mips16_absolute_jump_p = 0;
15be625d 2140 insn->complete_p = 0;
e407c74b 2141 insn->cleared_p = 0;
1e915849
RS
2142}
2143
fc76e730
RS
2144/* Get a list of all the operands in INSN. */
2145
2146static const struct mips_operand_array *
2147insn_operands (const struct mips_cl_insn *insn)
2148{
2149 if (insn->insn_mo >= &mips_opcodes[0]
2150 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2151 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2152
2153 if (insn->insn_mo >= &mips16_opcodes[0]
2154 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2155 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2156
2157 if (insn->insn_mo >= &micromips_opcodes[0]
2158 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2159 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2160
2161 abort ();
2162}
2163
2164/* Get a description of operand OPNO of INSN. */
2165
2166static const struct mips_operand *
2167insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2168{
2169 const struct mips_operand_array *operands;
2170
2171 operands = insn_operands (insn);
2172 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2173 abort ();
2174 return operands->operand[opno];
2175}
2176
e077a1c8
RS
2177/* Install UVAL as the value of OPERAND in INSN. */
2178
2179static inline void
2180insn_insert_operand (struct mips_cl_insn *insn,
2181 const struct mips_operand *operand, unsigned int uval)
2182{
2183 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2184}
2185
fc76e730
RS
2186/* Extract the value of OPERAND from INSN. */
2187
2188static inline unsigned
2189insn_extract_operand (const struct mips_cl_insn *insn,
2190 const struct mips_operand *operand)
2191{
2192 return mips_extract_operand (operand, insn->insn_opcode);
2193}
2194
df58fc94 2195/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2196
2197static void
df58fc94 2198mips_record_compressed_mode (void)
742a56fe
RS
2199{
2200 segment_info_type *si;
2201
2202 si = seg_info (now_seg);
2203 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2204 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2205 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2206 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2207}
2208
4d68580a
RS
2209/* Read a standard MIPS instruction from BUF. */
2210
2211static unsigned long
2212read_insn (char *buf)
2213{
2214 if (target_big_endian)
2215 return bfd_getb32 ((bfd_byte *) buf);
2216 else
2217 return bfd_getl32 ((bfd_byte *) buf);
2218}
2219
2220/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2221 the next byte. */
2222
2223static char *
2224write_insn (char *buf, unsigned int insn)
2225{
2226 md_number_to_chars (buf, insn, 4);
2227 return buf + 4;
2228}
2229
2230/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2231 has length LENGTH. */
2232
2233static unsigned long
2234read_compressed_insn (char *buf, unsigned int length)
2235{
2236 unsigned long insn;
2237 unsigned int i;
2238
2239 insn = 0;
2240 for (i = 0; i < length; i += 2)
2241 {
2242 insn <<= 16;
2243 if (target_big_endian)
2244 insn |= bfd_getb16 ((char *) buf);
2245 else
2246 insn |= bfd_getl16 ((char *) buf);
2247 buf += 2;
2248 }
2249 return insn;
2250}
2251
5c04167a
RS
2252/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2253 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2254
2255static char *
2256write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2257{
2258 unsigned int i;
2259
2260 for (i = 0; i < length; i += 2)
2261 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2262 return buf + length;
2263}
2264
1e915849
RS
2265/* Install INSN at the location specified by its "frag" and "where" fields. */
2266
2267static void
2268install_insn (const struct mips_cl_insn *insn)
2269{
2270 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2271 if (HAVE_CODE_COMPRESSION)
2272 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2273 else
4d68580a 2274 write_insn (f, insn->insn_opcode);
df58fc94 2275 mips_record_compressed_mode ();
1e915849
RS
2276}
2277
2278/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2279 and install the opcode in the new location. */
2280
2281static void
2282move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2283{
2284 size_t i;
2285
2286 insn->frag = frag;
2287 insn->where = where;
2288 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2289 if (insn->fixp[i] != NULL)
2290 {
2291 insn->fixp[i]->fx_frag = frag;
2292 insn->fixp[i]->fx_where = where;
2293 }
2294 install_insn (insn);
2295}
2296
2297/* Add INSN to the end of the output. */
2298
2299static void
2300add_fixed_insn (struct mips_cl_insn *insn)
2301{
2302 char *f = frag_more (insn_length (insn));
2303 move_insn (insn, frag_now, f - frag_now->fr_literal);
2304}
2305
2306/* Start a variant frag and move INSN to the start of the variant part,
2307 marking it as fixed. The other arguments are as for frag_var. */
2308
2309static void
2310add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2311 relax_substateT subtype, symbolS *symbol, offsetT offset)
2312{
2313 frag_grow (max_chars);
2314 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2315 insn->fixed_p = 1;
2316 frag_var (rs_machine_dependent, max_chars, var,
2317 subtype, symbol, offset, NULL);
2318}
2319
2320/* Insert N copies of INSN into the history buffer, starting at
2321 position FIRST. Neither FIRST nor N need to be clipped. */
2322
2323static void
2324insert_into_history (unsigned int first, unsigned int n,
2325 const struct mips_cl_insn *insn)
2326{
2327 if (mips_relax.sequence != 2)
2328 {
2329 unsigned int i;
2330
2331 for (i = ARRAY_SIZE (history); i-- > first;)
2332 if (i >= first + n)
2333 history[i] = history[i - n];
2334 else
2335 history[i] = *insn;
2336 }
2337}
2338
e3de51ce
RS
2339/* Clear the error in insn_error. */
2340
2341static void
2342clear_insn_error (void)
2343{
2344 memset (&insn_error, 0, sizeof (insn_error));
2345}
2346
2347/* Possibly record error message MSG for the current instruction.
2348 If the error is about a particular argument, ARGNUM is the 1-based
2349 number of that argument, otherwise it is 0. FORMAT is the format
2350 of MSG. Return true if MSG was used, false if the current message
2351 was kept. */
2352
2353static bfd_boolean
2354set_insn_error_format (int argnum, enum mips_insn_error_format format,
2355 const char *msg)
2356{
2357 if (argnum == 0)
2358 {
2359 /* Give priority to errors against specific arguments, and to
2360 the first whole-instruction message. */
2361 if (insn_error.msg)
2362 return FALSE;
2363 }
2364 else
2365 {
2366 /* Keep insn_error if it is against a later argument. */
2367 if (argnum < insn_error.min_argnum)
2368 return FALSE;
2369
2370 /* If both errors are against the same argument but are different,
2371 give up on reporting a specific error for this argument.
2372 See the comment about mips_insn_error for details. */
2373 if (argnum == insn_error.min_argnum
2374 && insn_error.msg
2375 && strcmp (insn_error.msg, msg) != 0)
2376 {
2377 insn_error.msg = 0;
2378 insn_error.min_argnum += 1;
2379 return FALSE;
2380 }
2381 }
2382 insn_error.min_argnum = argnum;
2383 insn_error.format = format;
2384 insn_error.msg = msg;
2385 return TRUE;
2386}
2387
2388/* Record an instruction error with no % format fields. ARGNUM and MSG are
2389 as for set_insn_error_format. */
2390
2391static void
2392set_insn_error (int argnum, const char *msg)
2393{
2394 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2395}
2396
2397/* Record an instruction error with one %d field I. ARGNUM and MSG are
2398 as for set_insn_error_format. */
2399
2400static void
2401set_insn_error_i (int argnum, const char *msg, int i)
2402{
2403 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2404 insn_error.u.i = i;
2405}
2406
2407/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2408 are as for set_insn_error_format. */
2409
2410static void
2411set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2412{
2413 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2414 {
2415 insn_error.u.ss[0] = s1;
2416 insn_error.u.ss[1] = s2;
2417 }
2418}
2419
2420/* Report the error in insn_error, which is against assembly code STR. */
2421
2422static void
2423report_insn_error (const char *str)
2424{
2425 const char *msg;
2426
2427 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2428 switch (insn_error.format)
2429 {
2430 case ERR_FMT_PLAIN:
2431 as_bad (msg, str);
2432 break;
2433
2434 case ERR_FMT_I:
2435 as_bad (msg, insn_error.u.i, str);
2436 break;
2437
2438 case ERR_FMT_SS:
2439 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2440 break;
2441 }
2442}
2443
71400594
RS
2444/* Initialize vr4120_conflicts. There is a bit of duplication here:
2445 the idea is to make it obvious at a glance that each errata is
2446 included. */
2447
2448static void
2449init_vr4120_conflicts (void)
2450{
2451#define CONFLICT(FIRST, SECOND) \
2452 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2453
2454 /* Errata 21 - [D]DIV[U] after [D]MACC */
2455 CONFLICT (MACC, DIV);
2456 CONFLICT (DMACC, DIV);
2457
2458 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2459 CONFLICT (DMULT, DMULT);
2460 CONFLICT (DMULT, DMACC);
2461 CONFLICT (DMACC, DMULT);
2462 CONFLICT (DMACC, DMACC);
2463
2464 /* Errata 24 - MT{LO,HI} after [D]MACC */
2465 CONFLICT (MACC, MTHILO);
2466 CONFLICT (DMACC, MTHILO);
2467
2468 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2469 instruction is executed immediately after a MACC or DMACC
2470 instruction, the result of [either instruction] is incorrect." */
2471 CONFLICT (MACC, MULT);
2472 CONFLICT (MACC, DMULT);
2473 CONFLICT (DMACC, MULT);
2474 CONFLICT (DMACC, DMULT);
2475
2476 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2477 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2478 DDIV or DDIVU instruction, the result of the MACC or
2479 DMACC instruction is incorrect.". */
2480 CONFLICT (DMULT, MACC);
2481 CONFLICT (DMULT, DMACC);
2482 CONFLICT (DIV, MACC);
2483 CONFLICT (DIV, DMACC);
2484
2485#undef CONFLICT
2486}
2487
707bfff6
TS
2488struct regname {
2489 const char *name;
2490 unsigned int num;
2491};
2492
14daeee3 2493#define RNUM_MASK 0x00000ff
56d438b1 2494#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2495#define RTYPE_NUM 0x0000100
2496#define RTYPE_FPU 0x0000200
2497#define RTYPE_FCC 0x0000400
2498#define RTYPE_VEC 0x0000800
2499#define RTYPE_GP 0x0001000
2500#define RTYPE_CP0 0x0002000
2501#define RTYPE_PC 0x0004000
2502#define RTYPE_ACC 0x0008000
2503#define RTYPE_CCC 0x0010000
2504#define RTYPE_VI 0x0020000
2505#define RTYPE_VF 0x0040000
2506#define RTYPE_R5900_I 0x0080000
2507#define RTYPE_R5900_Q 0x0100000
2508#define RTYPE_R5900_R 0x0200000
2509#define RTYPE_R5900_ACC 0x0400000
56d438b1 2510#define RTYPE_MSA 0x0800000
14daeee3 2511#define RWARN 0x8000000
707bfff6
TS
2512
2513#define GENERIC_REGISTER_NUMBERS \
2514 {"$0", RTYPE_NUM | 0}, \
2515 {"$1", RTYPE_NUM | 1}, \
2516 {"$2", RTYPE_NUM | 2}, \
2517 {"$3", RTYPE_NUM | 3}, \
2518 {"$4", RTYPE_NUM | 4}, \
2519 {"$5", RTYPE_NUM | 5}, \
2520 {"$6", RTYPE_NUM | 6}, \
2521 {"$7", RTYPE_NUM | 7}, \
2522 {"$8", RTYPE_NUM | 8}, \
2523 {"$9", RTYPE_NUM | 9}, \
2524 {"$10", RTYPE_NUM | 10}, \
2525 {"$11", RTYPE_NUM | 11}, \
2526 {"$12", RTYPE_NUM | 12}, \
2527 {"$13", RTYPE_NUM | 13}, \
2528 {"$14", RTYPE_NUM | 14}, \
2529 {"$15", RTYPE_NUM | 15}, \
2530 {"$16", RTYPE_NUM | 16}, \
2531 {"$17", RTYPE_NUM | 17}, \
2532 {"$18", RTYPE_NUM | 18}, \
2533 {"$19", RTYPE_NUM | 19}, \
2534 {"$20", RTYPE_NUM | 20}, \
2535 {"$21", RTYPE_NUM | 21}, \
2536 {"$22", RTYPE_NUM | 22}, \
2537 {"$23", RTYPE_NUM | 23}, \
2538 {"$24", RTYPE_NUM | 24}, \
2539 {"$25", RTYPE_NUM | 25}, \
2540 {"$26", RTYPE_NUM | 26}, \
2541 {"$27", RTYPE_NUM | 27}, \
2542 {"$28", RTYPE_NUM | 28}, \
2543 {"$29", RTYPE_NUM | 29}, \
2544 {"$30", RTYPE_NUM | 30}, \
2545 {"$31", RTYPE_NUM | 31}
2546
2547#define FPU_REGISTER_NAMES \
2548 {"$f0", RTYPE_FPU | 0}, \
2549 {"$f1", RTYPE_FPU | 1}, \
2550 {"$f2", RTYPE_FPU | 2}, \
2551 {"$f3", RTYPE_FPU | 3}, \
2552 {"$f4", RTYPE_FPU | 4}, \
2553 {"$f5", RTYPE_FPU | 5}, \
2554 {"$f6", RTYPE_FPU | 6}, \
2555 {"$f7", RTYPE_FPU | 7}, \
2556 {"$f8", RTYPE_FPU | 8}, \
2557 {"$f9", RTYPE_FPU | 9}, \
2558 {"$f10", RTYPE_FPU | 10}, \
2559 {"$f11", RTYPE_FPU | 11}, \
2560 {"$f12", RTYPE_FPU | 12}, \
2561 {"$f13", RTYPE_FPU | 13}, \
2562 {"$f14", RTYPE_FPU | 14}, \
2563 {"$f15", RTYPE_FPU | 15}, \
2564 {"$f16", RTYPE_FPU | 16}, \
2565 {"$f17", RTYPE_FPU | 17}, \
2566 {"$f18", RTYPE_FPU | 18}, \
2567 {"$f19", RTYPE_FPU | 19}, \
2568 {"$f20", RTYPE_FPU | 20}, \
2569 {"$f21", RTYPE_FPU | 21}, \
2570 {"$f22", RTYPE_FPU | 22}, \
2571 {"$f23", RTYPE_FPU | 23}, \
2572 {"$f24", RTYPE_FPU | 24}, \
2573 {"$f25", RTYPE_FPU | 25}, \
2574 {"$f26", RTYPE_FPU | 26}, \
2575 {"$f27", RTYPE_FPU | 27}, \
2576 {"$f28", RTYPE_FPU | 28}, \
2577 {"$f29", RTYPE_FPU | 29}, \
2578 {"$f30", RTYPE_FPU | 30}, \
2579 {"$f31", RTYPE_FPU | 31}
2580
2581#define FPU_CONDITION_CODE_NAMES \
2582 {"$fcc0", RTYPE_FCC | 0}, \
2583 {"$fcc1", RTYPE_FCC | 1}, \
2584 {"$fcc2", RTYPE_FCC | 2}, \
2585 {"$fcc3", RTYPE_FCC | 3}, \
2586 {"$fcc4", RTYPE_FCC | 4}, \
2587 {"$fcc5", RTYPE_FCC | 5}, \
2588 {"$fcc6", RTYPE_FCC | 6}, \
2589 {"$fcc7", RTYPE_FCC | 7}
2590
2591#define COPROC_CONDITION_CODE_NAMES \
2592 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2593 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2594 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2595 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2596 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2597 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2598 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2599 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2600
2601#define N32N64_SYMBOLIC_REGISTER_NAMES \
2602 {"$a4", RTYPE_GP | 8}, \
2603 {"$a5", RTYPE_GP | 9}, \
2604 {"$a6", RTYPE_GP | 10}, \
2605 {"$a7", RTYPE_GP | 11}, \
2606 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2607 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2608 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2609 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2610 {"$t0", RTYPE_GP | 12}, \
2611 {"$t1", RTYPE_GP | 13}, \
2612 {"$t2", RTYPE_GP | 14}, \
2613 {"$t3", RTYPE_GP | 15}
2614
2615#define O32_SYMBOLIC_REGISTER_NAMES \
2616 {"$t0", RTYPE_GP | 8}, \
2617 {"$t1", RTYPE_GP | 9}, \
2618 {"$t2", RTYPE_GP | 10}, \
2619 {"$t3", RTYPE_GP | 11}, \
2620 {"$t4", RTYPE_GP | 12}, \
2621 {"$t5", RTYPE_GP | 13}, \
2622 {"$t6", RTYPE_GP | 14}, \
2623 {"$t7", RTYPE_GP | 15}, \
2624 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2625 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2626 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2627 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2628
2629/* Remaining symbolic register names */
2630#define SYMBOLIC_REGISTER_NAMES \
2631 {"$zero", RTYPE_GP | 0}, \
2632 {"$at", RTYPE_GP | 1}, \
2633 {"$AT", RTYPE_GP | 1}, \
2634 {"$v0", RTYPE_GP | 2}, \
2635 {"$v1", RTYPE_GP | 3}, \
2636 {"$a0", RTYPE_GP | 4}, \
2637 {"$a1", RTYPE_GP | 5}, \
2638 {"$a2", RTYPE_GP | 6}, \
2639 {"$a3", RTYPE_GP | 7}, \
2640 {"$s0", RTYPE_GP | 16}, \
2641 {"$s1", RTYPE_GP | 17}, \
2642 {"$s2", RTYPE_GP | 18}, \
2643 {"$s3", RTYPE_GP | 19}, \
2644 {"$s4", RTYPE_GP | 20}, \
2645 {"$s5", RTYPE_GP | 21}, \
2646 {"$s6", RTYPE_GP | 22}, \
2647 {"$s7", RTYPE_GP | 23}, \
2648 {"$t8", RTYPE_GP | 24}, \
2649 {"$t9", RTYPE_GP | 25}, \
2650 {"$k0", RTYPE_GP | 26}, \
2651 {"$kt0", RTYPE_GP | 26}, \
2652 {"$k1", RTYPE_GP | 27}, \
2653 {"$kt1", RTYPE_GP | 27}, \
2654 {"$gp", RTYPE_GP | 28}, \
2655 {"$sp", RTYPE_GP | 29}, \
2656 {"$s8", RTYPE_GP | 30}, \
2657 {"$fp", RTYPE_GP | 30}, \
2658 {"$ra", RTYPE_GP | 31}
2659
2660#define MIPS16_SPECIAL_REGISTER_NAMES \
2661 {"$pc", RTYPE_PC | 0}
2662
2663#define MDMX_VECTOR_REGISTER_NAMES \
2664 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2665 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2666 {"$v2", RTYPE_VEC | 2}, \
2667 {"$v3", RTYPE_VEC | 3}, \
2668 {"$v4", RTYPE_VEC | 4}, \
2669 {"$v5", RTYPE_VEC | 5}, \
2670 {"$v6", RTYPE_VEC | 6}, \
2671 {"$v7", RTYPE_VEC | 7}, \
2672 {"$v8", RTYPE_VEC | 8}, \
2673 {"$v9", RTYPE_VEC | 9}, \
2674 {"$v10", RTYPE_VEC | 10}, \
2675 {"$v11", RTYPE_VEC | 11}, \
2676 {"$v12", RTYPE_VEC | 12}, \
2677 {"$v13", RTYPE_VEC | 13}, \
2678 {"$v14", RTYPE_VEC | 14}, \
2679 {"$v15", RTYPE_VEC | 15}, \
2680 {"$v16", RTYPE_VEC | 16}, \
2681 {"$v17", RTYPE_VEC | 17}, \
2682 {"$v18", RTYPE_VEC | 18}, \
2683 {"$v19", RTYPE_VEC | 19}, \
2684 {"$v20", RTYPE_VEC | 20}, \
2685 {"$v21", RTYPE_VEC | 21}, \
2686 {"$v22", RTYPE_VEC | 22}, \
2687 {"$v23", RTYPE_VEC | 23}, \
2688 {"$v24", RTYPE_VEC | 24}, \
2689 {"$v25", RTYPE_VEC | 25}, \
2690 {"$v26", RTYPE_VEC | 26}, \
2691 {"$v27", RTYPE_VEC | 27}, \
2692 {"$v28", RTYPE_VEC | 28}, \
2693 {"$v29", RTYPE_VEC | 29}, \
2694 {"$v30", RTYPE_VEC | 30}, \
2695 {"$v31", RTYPE_VEC | 31}
2696
14daeee3
RS
2697#define R5900_I_NAMES \
2698 {"$I", RTYPE_R5900_I | 0}
2699
2700#define R5900_Q_NAMES \
2701 {"$Q", RTYPE_R5900_Q | 0}
2702
2703#define R5900_R_NAMES \
2704 {"$R", RTYPE_R5900_R | 0}
2705
2706#define R5900_ACC_NAMES \
2707 {"$ACC", RTYPE_R5900_ACC | 0 }
2708
707bfff6
TS
2709#define MIPS_DSP_ACCUMULATOR_NAMES \
2710 {"$ac0", RTYPE_ACC | 0}, \
2711 {"$ac1", RTYPE_ACC | 1}, \
2712 {"$ac2", RTYPE_ACC | 2}, \
2713 {"$ac3", RTYPE_ACC | 3}
2714
2715static const struct regname reg_names[] = {
2716 GENERIC_REGISTER_NUMBERS,
2717 FPU_REGISTER_NAMES,
2718 FPU_CONDITION_CODE_NAMES,
2719 COPROC_CONDITION_CODE_NAMES,
2720
2721 /* The $txx registers depends on the abi,
2722 these will be added later into the symbol table from
2723 one of the tables below once mips_abi is set after
2724 parsing of arguments from the command line. */
2725 SYMBOLIC_REGISTER_NAMES,
2726
2727 MIPS16_SPECIAL_REGISTER_NAMES,
2728 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2729 R5900_I_NAMES,
2730 R5900_Q_NAMES,
2731 R5900_R_NAMES,
2732 R5900_ACC_NAMES,
707bfff6
TS
2733 MIPS_DSP_ACCUMULATOR_NAMES,
2734 {0, 0}
2735};
2736
2737static const struct regname reg_names_o32[] = {
2738 O32_SYMBOLIC_REGISTER_NAMES,
2739 {0, 0}
2740};
2741
2742static const struct regname reg_names_n32n64[] = {
2743 N32N64_SYMBOLIC_REGISTER_NAMES,
2744 {0, 0}
2745};
2746
a92713e6
RS
2747/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2748 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2749 of these register symbols, return the associated vector register,
2750 otherwise return SYMVAL itself. */
df58fc94 2751
a92713e6
RS
2752static unsigned int
2753mips_prefer_vec_regno (unsigned int symval)
707bfff6 2754{
a92713e6
RS
2755 if ((symval & -2) == (RTYPE_GP | 2))
2756 return RTYPE_VEC | (symval & 1);
2757 return symval;
2758}
2759
14daeee3
RS
2760/* Return true if string [S, E) is a valid register name, storing its
2761 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2762
2763static bfd_boolean
14daeee3 2764mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2765{
707bfff6 2766 char save_c;
14daeee3 2767 symbolS *symbol;
707bfff6
TS
2768
2769 /* Terminate name. */
2770 save_c = *e;
2771 *e = '\0';
2772
a92713e6
RS
2773 /* Look up the name. */
2774 symbol = symbol_find (s);
2775 *e = save_c;
2776
2777 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2778 return FALSE;
2779
14daeee3
RS
2780 *symval_ptr = S_GET_VALUE (symbol);
2781 return TRUE;
2782}
2783
2784/* Return true if the string at *SPTR is a valid register name. Allow it
2785 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2786 is nonnull.
2787
2788 When returning true, move *SPTR past the register, store the
2789 register's symbol value in *SYMVAL_PTR and the channel mask in
2790 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2791 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2792 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2793
2794static bfd_boolean
2795mips_parse_register (char **sptr, unsigned int *symval_ptr,
2796 unsigned int *channels_ptr)
2797{
2798 char *s, *e, *m;
2799 const char *q;
2800 unsigned int channels, symval, bit;
2801
2802 /* Find end of name. */
2803 s = e = *sptr;
2804 if (is_name_beginner (*e))
2805 ++e;
2806 while (is_part_of_name (*e))
2807 ++e;
2808
2809 channels = 0;
2810 if (!mips_parse_register_1 (s, e, &symval))
2811 {
2812 if (!channels_ptr)
2813 return FALSE;
2814
2815 /* Eat characters from the end of the string that are valid
2816 channel suffixes. The preceding register must be $ACC or
2817 end with a digit, so there is no ambiguity. */
2818 bit = 1;
2819 m = e;
2820 for (q = "wzyx"; *q; q++, bit <<= 1)
2821 if (m > s && m[-1] == *q)
2822 {
2823 --m;
2824 channels |= bit;
2825 }
2826
2827 if (channels == 0
2828 || !mips_parse_register_1 (s, m, &symval)
2829 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2830 return FALSE;
2831 }
2832
a92713e6 2833 *sptr = e;
14daeee3
RS
2834 *symval_ptr = symval;
2835 if (channels_ptr)
2836 *channels_ptr = channels;
a92713e6
RS
2837 return TRUE;
2838}
2839
2840/* Check if SPTR points at a valid register specifier according to TYPES.
2841 If so, then return 1, advance S to consume the specifier and store
2842 the register's number in REGNOP, otherwise return 0. */
2843
2844static int
2845reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2846{
2847 unsigned int regno;
2848
14daeee3 2849 if (mips_parse_register (s, &regno, NULL))
707bfff6 2850 {
a92713e6
RS
2851 if (types & RTYPE_VEC)
2852 regno = mips_prefer_vec_regno (regno);
2853 if (regno & types)
2854 regno &= RNUM_MASK;
2855 else
2856 regno = ~0;
707bfff6 2857 }
a92713e6 2858 else
707bfff6 2859 {
a92713e6 2860 if (types & RWARN)
1661c76c 2861 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2862 regno = ~0;
707bfff6 2863 }
707bfff6 2864 if (regnop)
a92713e6
RS
2865 *regnop = regno;
2866 return regno <= RNUM_MASK;
707bfff6
TS
2867}
2868
14daeee3
RS
2869/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2870 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2871
2872static char *
2873mips_parse_vu0_channels (char *s, unsigned int *channels)
2874{
2875 unsigned int i;
2876
2877 *channels = 0;
2878 for (i = 0; i < 4; i++)
2879 if (*s == "xyzw"[i])
2880 {
2881 *channels |= 1 << (3 - i);
2882 ++s;
2883 }
2884 return s;
2885}
2886
a92713e6
RS
2887/* Token types for parsed operand lists. */
2888enum mips_operand_token_type {
2889 /* A plain register, e.g. $f2. */
2890 OT_REG,
df58fc94 2891
14daeee3
RS
2892 /* A 4-bit XYZW channel mask. */
2893 OT_CHANNELS,
2894
56d438b1
CF
2895 /* A constant vector index, e.g. [1]. */
2896 OT_INTEGER_INDEX,
2897
2898 /* A register vector index, e.g. [$2]. */
2899 OT_REG_INDEX,
df58fc94 2900
a92713e6
RS
2901 /* A continuous range of registers, e.g. $s0-$s4. */
2902 OT_REG_RANGE,
2903
2904 /* A (possibly relocated) expression. */
2905 OT_INTEGER,
2906
2907 /* A floating-point value. */
2908 OT_FLOAT,
2909
2910 /* A single character. This can be '(', ')' or ',', but '(' only appears
2911 before OT_REGs. */
2912 OT_CHAR,
2913
14daeee3
RS
2914 /* A doubled character, either "--" or "++". */
2915 OT_DOUBLE_CHAR,
2916
a92713e6
RS
2917 /* The end of the operand list. */
2918 OT_END
2919};
2920
2921/* A parsed operand token. */
2922struct mips_operand_token
2923{
2924 /* The type of token. */
2925 enum mips_operand_token_type type;
2926 union
2927 {
56d438b1 2928 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2929 unsigned int regno;
2930
14daeee3
RS
2931 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2932 unsigned int channels;
2933
56d438b1
CF
2934 /* The integer value of an OT_INTEGER_INDEX. */
2935 addressT index;
a92713e6
RS
2936
2937 /* The two register symbol values involved in an OT_REG_RANGE. */
2938 struct {
2939 unsigned int regno1;
2940 unsigned int regno2;
2941 } reg_range;
2942
2943 /* The value of an OT_INTEGER. The value is represented as an
2944 expression and the relocation operators that were applied to
2945 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2946 relocation operators were used. */
2947 struct {
2948 expressionS value;
2949 bfd_reloc_code_real_type relocs[3];
2950 } integer;
2951
2952 /* The binary data for an OT_FLOAT constant, and the number of bytes
2953 in the constant. */
2954 struct {
2955 unsigned char data[8];
2956 int length;
2957 } flt;
2958
14daeee3 2959 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2960 char ch;
2961 } u;
2962};
2963
2964/* An obstack used to construct lists of mips_operand_tokens. */
2965static struct obstack mips_operand_tokens;
2966
2967/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2968
2969static void
2970mips_add_token (struct mips_operand_token *token,
2971 enum mips_operand_token_type type)
2972{
2973 token->type = type;
2974 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2975}
2976
2977/* Check whether S is '(' followed by a register name. Add OT_CHAR
2978 and OT_REG tokens for them if so, and return a pointer to the first
2979 unconsumed character. Return null otherwise. */
2980
2981static char *
2982mips_parse_base_start (char *s)
2983{
2984 struct mips_operand_token token;
14daeee3
RS
2985 unsigned int regno, channels;
2986 bfd_boolean decrement_p;
df58fc94 2987
a92713e6
RS
2988 if (*s != '(')
2989 return 0;
2990
2991 ++s;
2992 SKIP_SPACE_TABS (s);
14daeee3
RS
2993
2994 /* Only match "--" as part of a base expression. In other contexts "--X"
2995 is a double negative. */
2996 decrement_p = (s[0] == '-' && s[1] == '-');
2997 if (decrement_p)
2998 {
2999 s += 2;
3000 SKIP_SPACE_TABS (s);
3001 }
3002
3003 /* Allow a channel specifier because that leads to better error messages
3004 than treating something like "$vf0x++" as an expression. */
3005 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3006 return 0;
3007
3008 token.u.ch = '(';
3009 mips_add_token (&token, OT_CHAR);
3010
14daeee3
RS
3011 if (decrement_p)
3012 {
3013 token.u.ch = '-';
3014 mips_add_token (&token, OT_DOUBLE_CHAR);
3015 }
3016
a92713e6
RS
3017 token.u.regno = regno;
3018 mips_add_token (&token, OT_REG);
3019
14daeee3
RS
3020 if (channels)
3021 {
3022 token.u.channels = channels;
3023 mips_add_token (&token, OT_CHANNELS);
3024 }
3025
3026 /* For consistency, only match "++" as part of base expressions too. */
3027 SKIP_SPACE_TABS (s);
3028 if (s[0] == '+' && s[1] == '+')
3029 {
3030 s += 2;
3031 token.u.ch = '+';
3032 mips_add_token (&token, OT_DOUBLE_CHAR);
3033 }
3034
a92713e6
RS
3035 return s;
3036}
3037
3038/* Parse one or more tokens from S. Return a pointer to the first
3039 unconsumed character on success. Return null if an error was found
3040 and store the error text in insn_error. FLOAT_FORMAT is as for
3041 mips_parse_arguments. */
3042
3043static char *
3044mips_parse_argument_token (char *s, char float_format)
3045{
3046 char *end, *save_in, *err;
14daeee3 3047 unsigned int regno1, regno2, channels;
a92713e6
RS
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
14daeee3 3066 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3067 {
14daeee3
RS
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
a92713e6
RS
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
df58fc94 3081 {
a92713e6
RS
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
14daeee3 3085 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3086 {
1661c76c 3087 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3088 return 0;
3089 }
df58fc94 3090
a92713e6
RS
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
a92713e6 3096
56d438b1
CF
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
a92713e6
RS
3104 ++s;
3105 SKIP_SPACE_TABS (s);
56d438b1
CF
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
a92713e6 3109 {
56d438b1
CF
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3121 }
a92713e6
RS
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
1661c76c 3125 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3126 return 0;
3127 }
3128 ++s;
df58fc94 3129 }
a92713e6 3130 return s;
df58fc94
RS
3131 }
3132
a92713e6
RS
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
e3de51ce 3144 set_insn_error (0, err);
a92713e6
RS
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162}
3163
3164/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172static struct mips_operand_token *
3173mips_parse_arguments (char *s, char float_format)
3174{
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3191}
3192
d301a56b
RS
3193/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3195
3196static bfd_boolean
f79e2745 3197is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3198{
3199 int isa = mips_opts.isa;
846ef2d0 3200 int ase = mips_opts.ase;
037b32b9 3201 int fp_s, fp_d;
c6278170 3202 unsigned int i;
037b32b9 3203
c6278170
RS
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
037b32b9 3208
d301a56b 3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233}
3234
3235/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238static bfd_boolean
3239is_opcode_valid_16 (const struct mips_opcode *mo)
3240{
d301a56b 3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3242}
3243
df58fc94
RS
3244/* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247static bfd_boolean
3248is_size_valid (const struct mips_opcode *mo)
3249{
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
833794fc
MR
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
df58fc94
RS
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265}
3266
3267/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
df58fc94
RS
3280
3281static bfd_boolean
3282is_delay_slot_valid (const struct mips_opcode *mo)
3283{
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
c06dec14 3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297}
3298
fc76e730
RS
3299/* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
ab902481
RS
3307
3308static int
3309validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
fc76e730
RS
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
ab902481
RS
3313{
3314 const char *s;
fc76e730 3315 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3316 const struct mips_operand *operand;
3317
fc76e730
RS
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
fc76e730 3326 opno = 0;
14daeee3
RS
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
14daeee3
RS
3337 case '#':
3338 s++;
3339 break;
3340
ab902481 3341 default:
fc76e730
RS
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
fc76e730
RS
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
14daeee3 3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3355 {
14daeee3 3356 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
ab902481 3364 /* Skip prefix characters. */
7361da2c 3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3366 ++s;
fc76e730 3367 opno += 1;
ab902481
RS
3368 break;
3369 }
fc76e730 3370 doubled = used_bits & mask & insn_bits;
ab902481
RS
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
fc76e730 3377 used_bits |= mask;
ab902481 3378 undefined = ~used_bits & insn_bits;
fc76e730 3379 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393}
3394
fc76e730
RS
3395/* The MIPS16 version of validate_mips_insn. */
3396
3397static int
3398validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400{
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413}
3414
ab902481
RS
3415/* The microMIPS version of validate_mips_insn. */
3416
3417static int
fc76e730
RS
3418validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
ab902481
RS
3420{
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
fc76e730
RS
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
ab902481
RS
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
1661c76c 3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
1661c76c 3440 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
fc76e730
RS
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
ab902481
RS
3451}
3452
707bfff6
TS
3453/* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3455
252b5132 3456void
17a2f251 3457md_begin (void)
252b5132 3458{
3994f87e 3459 const char *retval = NULL;
156c2f8b 3460 int i = 0;
252b5132 3461 int broken = 0;
1f25f5d3 3462
0a44bf69
RS
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
3469
0b35dfee 3470 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3471 as_warn (_("could not set architecture and machine"));
252b5132 3472
252b5132
RH
3473 op_hash = hash_new ();
3474
fc76e730 3475 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3476 for (i = 0; i < NUMOPCODES;)
3477 {
3478 const char *name = mips_opcodes[i].name;
3479
17a2f251 3480 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3481 if (retval != NULL)
3482 {
3483 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3484 mips_opcodes[i].name, retval);
3485 /* Probably a memory allocation problem? Give up now. */
1661c76c 3486 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3487 }
3488 do
3489 {
fc76e730
RS
3490 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3491 decode_mips_operand, &mips_operands[i]))
3492 broken = 1;
3493 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3494 {
fc76e730
RS
3495 create_insn (&nop_insn, mips_opcodes + i);
3496 if (mips_fix_loongson2f_nop)
3497 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3498 nop_insn.fixed_p = 1;
252b5132
RH
3499 }
3500 ++i;
3501 }
3502 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3503 }
3504
3505 mips16_op_hash = hash_new ();
fc76e730
RS
3506 mips16_operands = XCNEWVEC (struct mips_operand_array,
3507 bfd_mips16_num_opcodes);
252b5132
RH
3508
3509 i = 0;
3510 while (i < bfd_mips16_num_opcodes)
3511 {
3512 const char *name = mips16_opcodes[i].name;
3513
17a2f251 3514 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3515 if (retval != NULL)
3516 as_fatal (_("internal: can't hash `%s': %s"),
3517 mips16_opcodes[i].name, retval);
3518 do
3519 {
fc76e730
RS
3520 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3521 broken = 1;
1e915849
RS
3522 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3523 {
3524 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3525 mips16_nop_insn.fixed_p = 1;
3526 }
252b5132
RH
3527 ++i;
3528 }
3529 while (i < bfd_mips16_num_opcodes
3530 && strcmp (mips16_opcodes[i].name, name) == 0);
3531 }
3532
df58fc94 3533 micromips_op_hash = hash_new ();
fc76e730
RS
3534 micromips_operands = XCNEWVEC (struct mips_operand_array,
3535 bfd_micromips_num_opcodes);
df58fc94
RS
3536
3537 i = 0;
3538 while (i < bfd_micromips_num_opcodes)
3539 {
3540 const char *name = micromips_opcodes[i].name;
3541
3542 retval = hash_insert (micromips_op_hash, name,
3543 (void *) &micromips_opcodes[i]);
3544 if (retval != NULL)
3545 as_fatal (_("internal: can't hash `%s': %s"),
3546 micromips_opcodes[i].name, retval);
3547 do
fc76e730
RS
3548 {
3549 struct mips_cl_insn *micromips_nop_insn;
3550
3551 if (!validate_micromips_insn (&micromips_opcodes[i],
3552 &micromips_operands[i]))
3553 broken = 1;
3554
3555 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3556 {
3557 if (micromips_insn_length (micromips_opcodes + i) == 2)
3558 micromips_nop_insn = &micromips_nop16_insn;
3559 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3560 micromips_nop_insn = &micromips_nop32_insn;
3561 else
3562 continue;
3563
3564 if (micromips_nop_insn->insn_mo == NULL
3565 && strcmp (name, "nop") == 0)
3566 {
3567 create_insn (micromips_nop_insn, micromips_opcodes + i);
3568 micromips_nop_insn->fixed_p = 1;
3569 }
3570 }
3571 }
df58fc94
RS
3572 while (++i < bfd_micromips_num_opcodes
3573 && strcmp (micromips_opcodes[i].name, name) == 0);
3574 }
3575
252b5132 3576 if (broken)
1661c76c 3577 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3578
3579 /* We add all the general register names to the symbol table. This
3580 helps us detect invalid uses of them. */
707bfff6
TS
3581 for (i = 0; reg_names[i].name; i++)
3582 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3583 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3584 &zero_address_frag));
3585 if (HAVE_NEWABI)
3586 for (i = 0; reg_names_n32n64[i].name; i++)
3587 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3588 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3589 &zero_address_frag));
707bfff6
TS
3590 else
3591 for (i = 0; reg_names_o32[i].name; i++)
3592 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3593 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3594 &zero_address_frag));
6047c971 3595
14daeee3
RS
3596 for (i = 0; i < 32; i++)
3597 {
3598 char regname[7];
3599
3600 /* R5900 VU0 floating-point register. */
3601 regname[sizeof (rename) - 1] = 0;
3602 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3603 symbol_table_insert (symbol_new (regname, reg_section,
3604 RTYPE_VF | i, &zero_address_frag));
3605
3606 /* R5900 VU0 integer register. */
3607 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VI | i, &zero_address_frag));
3610
56d438b1
CF
3611 /* MSA register. */
3612 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3615 }
3616
a92713e6
RS
3617 obstack_init (&mips_operand_tokens);
3618
7d10b47d 3619 mips_no_prev_insn ();
252b5132
RH
3620
3621 mips_gprmask = 0;
3622 mips_cprmask[0] = 0;
3623 mips_cprmask[1] = 0;
3624 mips_cprmask[2] = 0;
3625 mips_cprmask[3] = 0;
3626
3627 /* set the default alignment for the text section (2**2) */
3628 record_alignment (text_section, 2);
3629
4d0d148d 3630 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3631
f3ded42a
RS
3632 /* On a native system other than VxWorks, sections must be aligned
3633 to 16 byte boundaries. When configured for an embedded ELF
3634 target, we don't bother. */
3635 if (strncmp (TARGET_OS, "elf", 3) != 0
3636 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3637 {
f3ded42a
RS
3638 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3639 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3640 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3641 }
252b5132 3642
f3ded42a
RS
3643 /* Create a .reginfo section for register masks and a .mdebug
3644 section for debugging information. */
3645 {
3646 segT seg;
3647 subsegT subseg;
3648 flagword flags;
3649 segT sec;
3650
3651 seg = now_seg;
3652 subseg = now_subseg;
3653
3654 /* The ABI says this section should be loaded so that the
3655 running program can access it. However, we don't load it
3656 if we are configured for an embedded target */
3657 flags = SEC_READONLY | SEC_DATA;
3658 if (strncmp (TARGET_OS, "elf", 3) != 0)
3659 flags |= SEC_ALLOC | SEC_LOAD;
3660
3661 if (mips_abi != N64_ABI)
252b5132 3662 {
f3ded42a 3663 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3664
f3ded42a
RS
3665 bfd_set_section_flags (stdoutput, sec, flags);
3666 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3667
f3ded42a
RS
3668 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3669 }
3670 else
3671 {
3672 /* The 64-bit ABI uses a .MIPS.options section rather than
3673 .reginfo section. */
3674 sec = subseg_new (".MIPS.options", (subsegT) 0);
3675 bfd_set_section_flags (stdoutput, sec, flags);
3676 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3677
f3ded42a
RS
3678 /* Set up the option header. */
3679 {
3680 Elf_Internal_Options opthdr;
3681 char *f;
3682
3683 opthdr.kind = ODK_REGINFO;
3684 opthdr.size = (sizeof (Elf_External_Options)
3685 + sizeof (Elf64_External_RegInfo));
3686 opthdr.section = 0;
3687 opthdr.info = 0;
3688 f = frag_more (sizeof (Elf_External_Options));
3689 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3690 (Elf_External_Options *) f);
3691
3692 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3693 }
3694 }
252b5132 3695
351cdf24
MF
3696 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3697 bfd_set_section_flags (stdoutput, sec,
3698 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3699 bfd_set_section_alignment (stdoutput, sec, 3);
3700 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3701
f3ded42a
RS
3702 if (ECOFF_DEBUGGING)
3703 {
3704 sec = subseg_new (".mdebug", (subsegT) 0);
3705 (void) bfd_set_section_flags (stdoutput, sec,
3706 SEC_HAS_CONTENTS | SEC_READONLY);
3707 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3708 }
f3ded42a
RS
3709 else if (mips_flag_pdr)
3710 {
3711 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3712 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3713 SEC_READONLY | SEC_RELOC
3714 | SEC_DEBUGGING);
3715 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3716 }
3717
3718 subseg_set (seg, subseg);
3719 }
252b5132 3720
71400594
RS
3721 if (mips_fix_vr4120)
3722 init_vr4120_conflicts ();
252b5132
RH
3723}
3724
351cdf24
MF
3725static inline void
3726fpabi_incompatible_with (int fpabi, const char *what)
3727{
3728 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3729 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3730}
3731
3732static inline void
3733fpabi_requires (int fpabi, const char *what)
3734{
3735 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3736 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3737}
3738
3739/* Check -mabi and register sizes against the specified FP ABI. */
3740static void
3741check_fpabi (int fpabi)
3742{
351cdf24
MF
3743 switch (fpabi)
3744 {
3745 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3746 if (file_mips_opts.soft_float)
3747 fpabi_incompatible_with (fpabi, "softfloat");
3748 else if (file_mips_opts.single_float)
3749 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3750 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3751 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3752 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3753 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3754 break;
3755
3756 case Val_GNU_MIPS_ABI_FP_XX:
3757 if (mips_abi != O32_ABI)
3758 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3759 else if (file_mips_opts.soft_float)
3760 fpabi_incompatible_with (fpabi, "softfloat");
3761 else if (file_mips_opts.single_float)
3762 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3763 else if (file_mips_opts.fp != 0)
3764 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3765 break;
3766
3767 case Val_GNU_MIPS_ABI_FP_64A:
3768 case Val_GNU_MIPS_ABI_FP_64:
3769 if (mips_abi != O32_ABI)
3770 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3771 else if (file_mips_opts.soft_float)
3772 fpabi_incompatible_with (fpabi, "softfloat");
3773 else if (file_mips_opts.single_float)
3774 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3775 else if (file_mips_opts.fp != 64)
3776 fpabi_requires (fpabi, "fp=64");
3777 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3778 fpabi_incompatible_with (fpabi, "nooddspreg");
3779 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3780 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3781 break;
3782
3783 case Val_GNU_MIPS_ABI_FP_SINGLE:
3784 if (file_mips_opts.soft_float)
3785 fpabi_incompatible_with (fpabi, "softfloat");
3786 else if (!file_mips_opts.single_float)
3787 fpabi_requires (fpabi, "singlefloat");
3788 break;
3789
3790 case Val_GNU_MIPS_ABI_FP_SOFT:
3791 if (!file_mips_opts.soft_float)
3792 fpabi_requires (fpabi, "softfloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_OLD_64:
3796 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3797 Tag_GNU_MIPS_ABI_FP, fpabi);
3798 break;
3799
3800 default:
3801 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3802 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3803 break;
3804 }
351cdf24
MF
3805}
3806
919731af 3807/* Perform consistency checks on the current options. */
3808
3809static void
3810mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3811{
3812 /* Check the size of integer registers agrees with the ABI and ISA. */
3813 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3814 as_bad (_("`gp=64' used with a 32-bit processor"));
3815 else if (abi_checks
3816 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3817 as_bad (_("`gp=32' used with a 64-bit ABI"));
3818 else if (abi_checks
3819 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3820 as_bad (_("`gp=64' used with a 32-bit ABI"));
3821
3822 /* Check the size of the float registers agrees with the ABI and ISA. */
3823 switch (opts->fp)
3824 {
351cdf24
MF
3825 case 0:
3826 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3827 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3828 else if (opts->single_float == 1)
3829 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3830 break;
919731af 3831 case 64:
3832 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3833 as_bad (_("`fp=64' used with a 32-bit fpu"));
3834 else if (abi_checks
3835 && ABI_NEEDS_32BIT_REGS (mips_abi)
3836 && !ISA_HAS_MXHC1 (opts->isa))
3837 as_warn (_("`fp=64' used with a 32-bit ABI"));
3838 break;
3839 case 32:
3840 if (abi_checks
3841 && ABI_NEEDS_64BIT_REGS (mips_abi))
3842 as_warn (_("`fp=32' used with a 64-bit ABI"));
7361da2c
AB
3843 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3844 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3845 break;
3846 default:
3847 as_bad (_("Unknown size of floating point registers"));
3848 break;
3849 }
3850
351cdf24
MF
3851 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3852 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3853
919731af 3854 if (opts->micromips == 1 && opts->mips16 == 1)
3855 as_bad (_("`mips16' cannot be used with `micromips'"));
7361da2c
AB
3856 else if (ISA_IS_R6 (mips_opts.isa)
3857 && (opts->micromips == 1
3858 || opts->mips16 == 1))
3859 as_fatal (_("`%s' can not be used with `%s'"),
3860 opts->micromips ? "micromips" : "mips16",
3861 mips_cpu_info_from_isa (mips_opts.isa)->name);
3862
3863 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3864 as_fatal (_("branch relaxation is not supported in `%s'"),
3865 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3866}
3867
3868/* Perform consistency checks on the module level options exactly once.
3869 This is a deferred check that happens:
3870 at the first .set directive
3871 or, at the first pseudo op that generates code (inc .dc.a)
3872 or, at the first instruction
3873 or, at the end. */
3874
3875static void
3876file_mips_check_options (void)
3877{
3878 const struct mips_cpu_info *arch_info = 0;
3879
3880 if (file_mips_opts_checked)
3881 return;
3882
3883 /* The following code determines the register size.
3884 Similar code was added to GCC 3.3 (see override_options() in
3885 config/mips/mips.c). The GAS and GCC code should be kept in sync
3886 as much as possible. */
3887
3888 if (file_mips_opts.gp < 0)
3889 {
3890 /* Infer the integer register size from the ABI and processor.
3891 Restrict ourselves to 32-bit registers if that's all the
3892 processor has, or if the ABI cannot handle 64-bit registers. */
3893 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3894 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3895 ? 32 : 64;
3896 }
3897
3898 if (file_mips_opts.fp < 0)
3899 {
3900 /* No user specified float register size.
3901 ??? GAS treats single-float processors as though they had 64-bit
3902 float registers (although it complains when double-precision
3903 instructions are used). As things stand, saying they have 32-bit
3904 registers would lead to spurious "register must be even" messages.
3905 So here we assume float registers are never smaller than the
3906 integer ones. */
3907 if (file_mips_opts.gp == 64)
3908 /* 64-bit integer registers implies 64-bit float registers. */
3909 file_mips_opts.fp = 64;
3910 else if ((file_mips_opts.ase & FP64_ASES)
3911 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3912 /* Handle ASEs that require 64-bit float registers, if possible. */
3913 file_mips_opts.fp = 64;
7361da2c
AB
3914 else if (ISA_IS_R6 (mips_opts.isa))
3915 /* R6 implies 64-bit float registers. */
3916 file_mips_opts.fp = 64;
919731af 3917 else
3918 /* 32-bit float registers. */
3919 file_mips_opts.fp = 32;
3920 }
3921
3922 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3923
351cdf24
MF
3924 /* Disable operations on odd-numbered floating-point registers by default
3925 when using the FPXX ABI. */
3926 if (file_mips_opts.oddspreg < 0)
3927 {
3928 if (file_mips_opts.fp == 0)
3929 file_mips_opts.oddspreg = 0;
3930 else
3931 file_mips_opts.oddspreg = 1;
3932 }
3933
919731af 3934 /* End of GCC-shared inference code. */
3935
3936 /* This flag is set when we have a 64-bit capable CPU but use only
3937 32-bit wide registers. Note that EABI does not use it. */
3938 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3939 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3940 || mips_abi == O32_ABI))
3941 mips_32bitmode = 1;
3942
3943 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3944 as_bad (_("trap exception not supported at ISA 1"));
3945
3946 /* If the selected architecture includes support for ASEs, enable
3947 generation of code for them. */
3948 if (file_mips_opts.mips16 == -1)
3949 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3950 if (file_mips_opts.micromips == -1)
3951 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3952 ? 1 : 0;
3953
7361da2c
AB
3954 if (mips_nan2008 == -1)
3955 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3956 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3957 as_fatal (_("`%s' does not support legacy NaN"),
3958 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3959
919731af 3960 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3961 being selected implicitly. */
3962 if (file_mips_opts.fp != 64)
3963 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3964
3965 /* If the user didn't explicitly select or deselect a particular ASE,
3966 use the default setting for the CPU. */
3967 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3968
3969 /* Set up the current options. These may change throughout assembly. */
3970 mips_opts = file_mips_opts;
3971
3972 mips_check_isa_supports_ases ();
3973 mips_check_options (&file_mips_opts, TRUE);
3974 file_mips_opts_checked = TRUE;
3975
3976 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3977 as_warn (_("could not set architecture and machine"));
3978}
3979
252b5132 3980void
17a2f251 3981md_assemble (char *str)
252b5132
RH
3982{
3983 struct mips_cl_insn insn;
f6688943
TS
3984 bfd_reloc_code_real_type unused_reloc[3]
3985 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 3986
919731af 3987 file_mips_check_options ();
3988
252b5132 3989 imm_expr.X_op = O_absent;
252b5132 3990 offset_expr.X_op = O_absent;
f6688943
TS
3991 offset_reloc[0] = BFD_RELOC_UNUSED;
3992 offset_reloc[1] = BFD_RELOC_UNUSED;
3993 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 3994
e1b47bd5
RS
3995 mips_mark_labels ();
3996 mips_assembling_insn = TRUE;
e3de51ce 3997 clear_insn_error ();
e1b47bd5 3998
252b5132
RH
3999 if (mips_opts.mips16)
4000 mips16_ip (str, &insn);
4001 else
4002 {
4003 mips_ip (str, &insn);
beae10d5
KH
4004 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4005 str, insn.insn_opcode));
252b5132
RH
4006 }
4007
e3de51ce
RS
4008 if (insn_error.msg)
4009 report_insn_error (str);
e1b47bd5 4010 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4011 {
584892a6 4012 macro_start ();
252b5132
RH
4013 if (mips_opts.mips16)
4014 mips16_macro (&insn);
4015 else
833794fc 4016 macro (&insn, str);
584892a6 4017 macro_end ();
252b5132
RH
4018 }
4019 else
4020 {
77bd4346 4021 if (offset_expr.X_op != O_absent)
df58fc94 4022 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4023 else
df58fc94 4024 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4025 }
e1b47bd5
RS
4026
4027 mips_assembling_insn = FALSE;
252b5132
RH
4028}
4029
738e5348
RS
4030/* Convenience functions for abstracting away the differences between
4031 MIPS16 and non-MIPS16 relocations. */
4032
4033static inline bfd_boolean
4034mips16_reloc_p (bfd_reloc_code_real_type reloc)
4035{
4036 switch (reloc)
4037 {
4038 case BFD_RELOC_MIPS16_JMP:
4039 case BFD_RELOC_MIPS16_GPREL:
4040 case BFD_RELOC_MIPS16_GOT16:
4041 case BFD_RELOC_MIPS16_CALL16:
4042 case BFD_RELOC_MIPS16_HI16_S:
4043 case BFD_RELOC_MIPS16_HI16:
4044 case BFD_RELOC_MIPS16_LO16:
4045 return TRUE;
4046
4047 default:
4048 return FALSE;
4049 }
4050}
4051
df58fc94
RS
4052static inline bfd_boolean
4053micromips_reloc_p (bfd_reloc_code_real_type reloc)
4054{
4055 switch (reloc)
4056 {
4057 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4058 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4059 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4060 case BFD_RELOC_MICROMIPS_GPREL16:
4061 case BFD_RELOC_MICROMIPS_JMP:
4062 case BFD_RELOC_MICROMIPS_HI16:
4063 case BFD_RELOC_MICROMIPS_HI16_S:
4064 case BFD_RELOC_MICROMIPS_LO16:
4065 case BFD_RELOC_MICROMIPS_LITERAL:
4066 case BFD_RELOC_MICROMIPS_GOT16:
4067 case BFD_RELOC_MICROMIPS_CALL16:
4068 case BFD_RELOC_MICROMIPS_GOT_HI16:
4069 case BFD_RELOC_MICROMIPS_GOT_LO16:
4070 case BFD_RELOC_MICROMIPS_CALL_HI16:
4071 case BFD_RELOC_MICROMIPS_CALL_LO16:
4072 case BFD_RELOC_MICROMIPS_SUB:
4073 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4074 case BFD_RELOC_MICROMIPS_GOT_OFST:
4075 case BFD_RELOC_MICROMIPS_GOT_DISP:
4076 case BFD_RELOC_MICROMIPS_HIGHEST:
4077 case BFD_RELOC_MICROMIPS_HIGHER:
4078 case BFD_RELOC_MICROMIPS_SCN_DISP:
4079 case BFD_RELOC_MICROMIPS_JALR:
4080 return TRUE;
4081
4082 default:
4083 return FALSE;
4084 }
4085}
4086
2309ddf2
MR
4087static inline bfd_boolean
4088jmp_reloc_p (bfd_reloc_code_real_type reloc)
4089{
4090 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4091}
4092
738e5348
RS
4093static inline bfd_boolean
4094got16_reloc_p (bfd_reloc_code_real_type reloc)
4095{
2309ddf2 4096 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4097 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4098}
4099
4100static inline bfd_boolean
4101hi16_reloc_p (bfd_reloc_code_real_type reloc)
4102{
2309ddf2 4103 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4104 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4105}
4106
4107static inline bfd_boolean
4108lo16_reloc_p (bfd_reloc_code_real_type reloc)
4109{
2309ddf2 4110 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4111 || reloc == BFD_RELOC_MICROMIPS_LO16);
4112}
4113
df58fc94
RS
4114static inline bfd_boolean
4115jalr_reloc_p (bfd_reloc_code_real_type reloc)
4116{
2309ddf2 4117 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4118}
4119
f2ae14a1
RS
4120static inline bfd_boolean
4121gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4122{
4123 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4124 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4125}
4126
2de39019
CM
4127/* Return true if RELOC is a PC-relative relocation that does not have
4128 full address range. */
4129
4130static inline bfd_boolean
4131limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4132{
4133 switch (reloc)
4134 {
4135 case BFD_RELOC_16_PCREL_S2:
4136 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4137 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4138 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4139 case BFD_RELOC_MIPS_21_PCREL_S2:
4140 case BFD_RELOC_MIPS_26_PCREL_S2:
4141 case BFD_RELOC_MIPS_18_PCREL_S3:
4142 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4143 return TRUE;
4144
b47468a6 4145 case BFD_RELOC_32_PCREL:
7361da2c
AB
4146 case BFD_RELOC_HI16_S_PCREL:
4147 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4148 return HAVE_64BIT_ADDRESSES;
4149
2de39019
CM
4150 default:
4151 return FALSE;
4152 }
4153}
b47468a6 4154
5919d012 4155/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4156 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4157 need a matching %lo() when applied to local symbols. */
5919d012
RS
4158
4159static inline bfd_boolean
17a2f251 4160reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4161{
3b91255e 4162 return (HAVE_IN_PLACE_ADDENDS
738e5348 4163 && (hi16_reloc_p (reloc)
0a44bf69
RS
4164 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4165 all GOT16 relocations evaluate to "G". */
738e5348
RS
4166 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4167}
4168
4169/* Return the type of %lo() reloc needed by RELOC, given that
4170 reloc_needs_lo_p. */
4171
4172static inline bfd_reloc_code_real_type
4173matching_lo_reloc (bfd_reloc_code_real_type reloc)
4174{
df58fc94
RS
4175 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4176 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4177 : BFD_RELOC_LO16));
5919d012
RS
4178}
4179
4180/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4181 relocation. */
4182
4183static inline bfd_boolean
17a2f251 4184fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4185{
4186 return (fixp->fx_next != NULL
738e5348 4187 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4188 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4189 && fixp->fx_offset == fixp->fx_next->fx_offset);
4190}
4191
462427c4
RS
4192/* Move all labels in LABELS to the current insertion point. TEXT_P
4193 says whether the labels refer to text or data. */
404a8071
RS
4194
4195static void
462427c4 4196mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4197{
4198 struct insn_label_list *l;
4199 valueT val;
4200
462427c4 4201 for (l = labels; l != NULL; l = l->next)
404a8071 4202 {
9c2799c2 4203 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4204 symbol_set_frag (l->label, frag_now);
4205 val = (valueT) frag_now_fix ();
df58fc94 4206 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4207 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4208 ++val;
4209 S_SET_VALUE (l->label, val);
4210 }
4211}
4212
462427c4
RS
4213/* Move all labels in insn_labels to the current insertion point
4214 and treat them as text labels. */
4215
4216static void
4217mips_move_text_labels (void)
4218{
4219 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4220}
4221
5f0fe04b
TS
4222static bfd_boolean
4223s_is_linkonce (symbolS *sym, segT from_seg)
4224{
4225 bfd_boolean linkonce = FALSE;
4226 segT symseg = S_GET_SEGMENT (sym);
4227
4228 if (symseg != from_seg && !S_IS_LOCAL (sym))
4229 {
4230 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4231 linkonce = TRUE;
5f0fe04b
TS
4232 /* The GNU toolchain uses an extension for ELF: a section
4233 beginning with the magic string .gnu.linkonce is a
4234 linkonce section. */
4235 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4236 sizeof ".gnu.linkonce" - 1) == 0)
4237 linkonce = TRUE;
5f0fe04b
TS
4238 }
4239 return linkonce;
4240}
4241
e1b47bd5 4242/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4243 linker to handle them specially, such as generating jalx instructions
4244 when needed. We also make them odd for the duration of the assembly,
4245 in order to generate the right sort of code. We will make them even
252b5132
RH
4246 in the adjust_symtab routine, while leaving them marked. This is
4247 convenient for the debugger and the disassembler. The linker knows
4248 to make them odd again. */
4249
4250static void
e1b47bd5 4251mips_compressed_mark_label (symbolS *label)
252b5132 4252{
df58fc94 4253 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4254
f3ded42a
RS
4255 if (mips_opts.mips16)
4256 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4257 else
4258 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4259 if ((S_GET_VALUE (label) & 1) == 0
4260 /* Don't adjust the address if the label is global or weak, or
4261 in a link-once section, since we'll be emitting symbol reloc
4262 references to it which will be patched up by the linker, and
4263 the final value of the symbol may or may not be MIPS16/microMIPS. */
4264 && !S_IS_WEAK (label)
4265 && !S_IS_EXTERNAL (label)
4266 && !s_is_linkonce (label, now_seg))
4267 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4268}
4269
4270/* Mark preceding MIPS16 or microMIPS instruction labels. */
4271
4272static void
4273mips_compressed_mark_labels (void)
4274{
4275 struct insn_label_list *l;
4276
4277 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4278 mips_compressed_mark_label (l->label);
252b5132
RH
4279}
4280
4d7206a2
RS
4281/* End the current frag. Make it a variant frag and record the
4282 relaxation info. */
4283
4284static void
4285relax_close_frag (void)
4286{
584892a6 4287 mips_macro_warning.first_frag = frag_now;
4d7206a2 4288 frag_var (rs_machine_dependent, 0, 0,
584892a6 4289 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4290 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4291
4292 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4293 mips_relax.first_fixup = 0;
4294}
4295
4296/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4297 See the comment above RELAX_ENCODE for more details. */
4298
4299static void
4300relax_start (symbolS *symbol)
4301{
9c2799c2 4302 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4303 mips_relax.sequence = 1;
4304 mips_relax.symbol = symbol;
4305}
4306
4307/* Start generating the second version of a relaxable sequence.
4308 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4309
4310static void
4d7206a2
RS
4311relax_switch (void)
4312{
9c2799c2 4313 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4314 mips_relax.sequence = 2;
4315}
4316
4317/* End the current relaxable sequence. */
4318
4319static void
4320relax_end (void)
4321{
9c2799c2 4322 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4323 relax_close_frag ();
4324 mips_relax.sequence = 0;
4325}
4326
11625dd8
RS
4327/* Return true if IP is a delayed branch or jump. */
4328
4329static inline bfd_boolean
4330delayed_branch_p (const struct mips_cl_insn *ip)
4331{
4332 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4333 | INSN_COND_BRANCH_DELAY
4334 | INSN_COND_BRANCH_LIKELY)) != 0;
4335}
4336
4337/* Return true if IP is a compact branch or jump. */
4338
4339static inline bfd_boolean
4340compact_branch_p (const struct mips_cl_insn *ip)
4341{
26545944
RS
4342 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4343 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4344}
4345
4346/* Return true if IP is an unconditional branch or jump. */
4347
4348static inline bfd_boolean
4349uncond_branch_p (const struct mips_cl_insn *ip)
4350{
4351 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4352 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4353}
4354
4355/* Return true if IP is a branch-likely instruction. */
4356
4357static inline bfd_boolean
4358branch_likely_p (const struct mips_cl_insn *ip)
4359{
4360 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4361}
4362
14fe068b
RS
4363/* Return the type of nop that should be used to fill the delay slot
4364 of delayed branch IP. */
4365
4366static struct mips_cl_insn *
4367get_delay_slot_nop (const struct mips_cl_insn *ip)
4368{
4369 if (mips_opts.micromips
4370 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4371 return &micromips_nop32_insn;
4372 return NOP_INSN;
4373}
4374
fc76e730
RS
4375/* Return a mask that has bit N set if OPCODE reads the register(s)
4376 in operand N. */
df58fc94
RS
4377
4378static unsigned int
fc76e730 4379insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4380{
fc76e730
RS
4381 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4382}
df58fc94 4383
fc76e730
RS
4384/* Return a mask that has bit N set if OPCODE writes to the register(s)
4385 in operand N. */
4386
4387static unsigned int
4388insn_write_mask (const struct mips_opcode *opcode)
4389{
4390 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4391}
4392
4393/* Return a mask of the registers specified by operand OPERAND of INSN.
4394 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4395 is set. */
4396
4397static unsigned int
4398operand_reg_mask (const struct mips_cl_insn *insn,
4399 const struct mips_operand *operand,
4400 unsigned int type_mask)
4401{
4402 unsigned int uval, vsel;
4403
4404 switch (operand->type)
df58fc94 4405 {
fc76e730
RS
4406 case OP_INT:
4407 case OP_MAPPED_INT:
4408 case OP_MSB:
4409 case OP_PCREL:
4410 case OP_PERF_REG:
4411 case OP_ADDIUSP_INT:
4412 case OP_ENTRY_EXIT_LIST:
4413 case OP_REPEAT_DEST_REG:
4414 case OP_REPEAT_PREV_REG:
4415 case OP_PC:
14daeee3
RS
4416 case OP_VU0_SUFFIX:
4417 case OP_VU0_MATCH_SUFFIX:
56d438b1 4418 case OP_IMM_INDEX:
fc76e730
RS
4419 abort ();
4420
4421 case OP_REG:
0f35dbc4 4422 case OP_OPTIONAL_REG:
fc76e730
RS
4423 {
4424 const struct mips_reg_operand *reg_op;
4425
4426 reg_op = (const struct mips_reg_operand *) operand;
4427 if (!(type_mask & (1 << reg_op->reg_type)))
4428 return 0;
4429 uval = insn_extract_operand (insn, operand);
4430 return 1 << mips_decode_reg_operand (reg_op, uval);
4431 }
4432
4433 case OP_REG_PAIR:
4434 {
4435 const struct mips_reg_pair_operand *pair_op;
4436
4437 pair_op = (const struct mips_reg_pair_operand *) operand;
4438 if (!(type_mask & (1 << pair_op->reg_type)))
4439 return 0;
4440 uval = insn_extract_operand (insn, operand);
4441 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4442 }
4443
4444 case OP_CLO_CLZ_DEST:
4445 if (!(type_mask & (1 << OP_REG_GP)))
4446 return 0;
4447 uval = insn_extract_operand (insn, operand);
4448 return (1 << (uval & 31)) | (1 << (uval >> 5));
4449
7361da2c
AB
4450 case OP_SAME_RS_RT:
4451 if (!(type_mask & (1 << OP_REG_GP)))
4452 return 0;
4453 uval = insn_extract_operand (insn, operand);
4454 gas_assert ((uval & 31) == (uval >> 5));
4455 return 1 << (uval & 31);
4456
4457 case OP_CHECK_PREV:
4458 case OP_NON_ZERO_REG:
4459 if (!(type_mask & (1 << OP_REG_GP)))
4460 return 0;
4461 uval = insn_extract_operand (insn, operand);
4462 return 1 << (uval & 31);
4463
fc76e730
RS
4464 case OP_LWM_SWM_LIST:
4465 abort ();
4466
4467 case OP_SAVE_RESTORE_LIST:
4468 abort ();
4469
4470 case OP_MDMX_IMM_REG:
4471 if (!(type_mask & (1 << OP_REG_VEC)))
4472 return 0;
4473 uval = insn_extract_operand (insn, operand);
4474 vsel = uval >> 5;
4475 if ((vsel & 0x18) == 0x18)
4476 return 0;
4477 return 1 << (uval & 31);
56d438b1
CF
4478
4479 case OP_REG_INDEX:
4480 if (!(type_mask & (1 << OP_REG_GP)))
4481 return 0;
4482 return 1 << insn_extract_operand (insn, operand);
df58fc94 4483 }
fc76e730
RS
4484 abort ();
4485}
4486
4487/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4488 where bit N of OPNO_MASK is set if operand N should be included.
4489 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4490 is set. */
4491
4492static unsigned int
4493insn_reg_mask (const struct mips_cl_insn *insn,
4494 unsigned int type_mask, unsigned int opno_mask)
4495{
4496 unsigned int opno, reg_mask;
4497
4498 opno = 0;
4499 reg_mask = 0;
4500 while (opno_mask != 0)
4501 {
4502 if (opno_mask & 1)
4503 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4504 opno_mask >>= 1;
4505 opno += 1;
4506 }
4507 return reg_mask;
df58fc94
RS
4508}
4509
4c260379
RS
4510/* Return the mask of core registers that IP reads. */
4511
4512static unsigned int
4513gpr_read_mask (const struct mips_cl_insn *ip)
4514{
4515 unsigned long pinfo, pinfo2;
4516 unsigned int mask;
4517
fc76e730 4518 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4519 pinfo = ip->insn_mo->pinfo;
4520 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4521 if (pinfo & INSN_UDI)
4c260379 4522 {
fc76e730
RS
4523 /* UDI instructions have traditionally been assumed to read RS
4524 and RT. */
4525 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4526 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4527 }
fc76e730
RS
4528 if (pinfo & INSN_READ_GPR_24)
4529 mask |= 1 << 24;
4530 if (pinfo2 & INSN2_READ_GPR_16)
4531 mask |= 1 << 16;
4532 if (pinfo2 & INSN2_READ_SP)
4533 mask |= 1 << SP;
26545944 4534 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4535 mask |= 1 << 31;
fe35f09f
RS
4536 /* Don't include register 0. */
4537 return mask & ~1;
4c260379
RS
4538}
4539
4540/* Return the mask of core registers that IP writes. */
4541
4542static unsigned int
4543gpr_write_mask (const struct mips_cl_insn *ip)
4544{
4545 unsigned long pinfo, pinfo2;
4546 unsigned int mask;
4547
fc76e730 4548 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4549 pinfo = ip->insn_mo->pinfo;
4550 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4551 if (pinfo & INSN_WRITE_GPR_24)
4552 mask |= 1 << 24;
4553 if (pinfo & INSN_WRITE_GPR_31)
4554 mask |= 1 << 31;
4555 if (pinfo & INSN_UDI)
4556 /* UDI instructions have traditionally been assumed to write to RD. */
4557 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4558 if (pinfo2 & INSN2_WRITE_SP)
4559 mask |= 1 << SP;
fe35f09f
RS
4560 /* Don't include register 0. */
4561 return mask & ~1;
4c260379
RS
4562}
4563
4564/* Return the mask of floating-point registers that IP reads. */
4565
4566static unsigned int
4567fpr_read_mask (const struct mips_cl_insn *ip)
4568{
fc76e730 4569 unsigned long pinfo;
4c260379
RS
4570 unsigned int mask;
4571
9d5de888
CF
4572 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4573 | (1 << OP_REG_MSA)),
fc76e730 4574 insn_read_mask (ip->insn_mo));
4c260379 4575 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4576 /* Conservatively treat all operands to an FP_D instruction are doubles.
4577 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4578 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4579 mask |= mask << 1;
4580 return mask;
4581}
4582
4583/* Return the mask of floating-point registers that IP writes. */
4584
4585static unsigned int
4586fpr_write_mask (const struct mips_cl_insn *ip)
4587{
fc76e730 4588 unsigned long pinfo;
4c260379
RS
4589 unsigned int mask;
4590
9d5de888
CF
4591 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4592 | (1 << OP_REG_MSA)),
fc76e730 4593 insn_write_mask (ip->insn_mo));
4c260379 4594 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4595 /* Conservatively treat all operands to an FP_D instruction are doubles.
4596 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4597 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4598 mask |= mask << 1;
4599 return mask;
4600}
4601
a1d78564
RS
4602/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4603 Check whether that is allowed. */
4604
4605static bfd_boolean
4606mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4607{
4608 const char *s = insn->name;
351cdf24
MF
4609 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4610 || FPR_SIZE == 64)
4611 && mips_opts.oddspreg;
a1d78564
RS
4612
4613 if (insn->pinfo == INSN_MACRO)
4614 /* Let a macro pass, we'll catch it later when it is expanded. */
4615 return TRUE;
4616
351cdf24
MF
4617 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4618 otherwise it depends on oddspreg. */
4619 if ((insn->pinfo & FP_S)
4620 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4621 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4622 return FPR_SIZE == 32 || oddspreg;
a1d78564 4623
351cdf24
MF
4624 /* Allow odd registers for single-precision ops and double-precision if the
4625 floating-point registers are 64-bit wide. */
4626 switch (insn->pinfo & (FP_S | FP_D))
4627 {
4628 case FP_S:
4629 case 0:
4630 return oddspreg;
4631 case FP_D:
4632 return FPR_SIZE == 64;
4633 default:
4634 break;
a1d78564
RS
4635 }
4636
351cdf24
MF
4637 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4638 s = strchr (insn->name, '.');
4639 if (s != NULL && opnum == 2)
4640 s = strchr (s + 1, '.');
4641 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4642 return oddspreg;
a1d78564 4643
351cdf24 4644 return FPR_SIZE == 64;
a1d78564
RS
4645}
4646
a1d78564
RS
4647/* Information about an instruction argument that we're trying to match. */
4648struct mips_arg_info
4649{
4650 /* The instruction so far. */
4651 struct mips_cl_insn *insn;
4652
a92713e6
RS
4653 /* The first unconsumed operand token. */
4654 struct mips_operand_token *token;
4655
a1d78564
RS
4656 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4657 int opnum;
4658
4659 /* The 1-based argument number, for error reporting. This does not
4660 count elided optional registers, etc.. */
4661 int argnum;
4662
4663 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4664 unsigned int last_regno;
4665
4666 /* If the first operand was an OP_REG, this is the register that it
4667 specified, otherwise it is ILLEGAL_REG. */
4668 unsigned int dest_regno;
4669
4670 /* The value of the last OP_INT operand. Only used for OP_MSB,
4671 where it gives the lsb position. */
4672 unsigned int last_op_int;
4673
60f20e8b
RS
4674 /* If true, match routines should assume that no later instruction
4675 alternative matches and should therefore be as accomodating as
4676 possible. Match routines should not report errors if something
4677 is only invalid for !LAX_MATCH. */
4678 bfd_boolean lax_match;
a1d78564 4679
a1d78564
RS
4680 /* True if a reference to the current AT register was seen. */
4681 bfd_boolean seen_at;
4682};
4683
1a00e612
RS
4684/* Record that the argument is out of range. */
4685
4686static void
4687match_out_of_range (struct mips_arg_info *arg)
4688{
4689 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4690}
4691
4692/* Record that the argument isn't constant but needs to be. */
4693
4694static void
4695match_not_constant (struct mips_arg_info *arg)
4696{
4697 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4698 arg->argnum);
4699}
4700
a92713e6
RS
4701/* Try to match an OT_CHAR token for character CH. Consume the token
4702 and return true on success, otherwise return false. */
a1d78564 4703
a92713e6
RS
4704static bfd_boolean
4705match_char (struct mips_arg_info *arg, char ch)
a1d78564 4706{
a92713e6
RS
4707 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4708 {
4709 ++arg->token;
4710 if (ch == ',')
4711 arg->argnum += 1;
4712 return TRUE;
4713 }
4714 return FALSE;
4715}
a1d78564 4716
a92713e6
RS
4717/* Try to get an expression from the next tokens in ARG. Consume the
4718 tokens and return true on success, storing the expression value in
4719 VALUE and relocation types in R. */
4720
4721static bfd_boolean
4722match_expression (struct mips_arg_info *arg, expressionS *value,
4723 bfd_reloc_code_real_type *r)
4724{
d436c1c2
RS
4725 /* If the next token is a '(' that was parsed as being part of a base
4726 expression, assume we have an elided offset. The later match will fail
4727 if this turns out to be wrong. */
4728 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4729 {
d436c1c2
RS
4730 value->X_op = O_constant;
4731 value->X_add_number = 0;
4732 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4733 return TRUE;
4734 }
4735
d436c1c2
RS
4736 /* Reject register-based expressions such as "0+$2" and "(($2))".
4737 For plain registers the default error seems more appropriate. */
4738 if (arg->token->type == OT_INTEGER
4739 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4740 {
d436c1c2
RS
4741 set_insn_error (arg->argnum, _("register value used as expression"));
4742 return FALSE;
a1d78564 4743 }
d436c1c2
RS
4744
4745 if (arg->token->type == OT_INTEGER)
a92713e6 4746 {
d436c1c2
RS
4747 *value = arg->token->u.integer.value;
4748 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4749 ++arg->token;
4750 return TRUE;
a92713e6 4751 }
a92713e6 4752
d436c1c2
RS
4753 set_insn_error_i
4754 (arg->argnum, _("operand %d must be an immediate expression"),
4755 arg->argnum);
4756 return FALSE;
a92713e6
RS
4757}
4758
4759/* Try to get a constant expression from the next tokens in ARG. Consume
4760 the tokens and return return true on success, storing the constant value
4761 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4762 error. */
4763
4764static bfd_boolean
1a00e612 4765match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4766{
4767 expressionS ex;
4768 bfd_reloc_code_real_type r[3];
a1d78564 4769
a92713e6
RS
4770 if (!match_expression (arg, &ex, r))
4771 return FALSE;
4772
4773 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4774 *value = ex.X_add_number;
4775 else
4776 {
1a00e612
RS
4777 match_not_constant (arg);
4778 return FALSE;
a1d78564 4779 }
a92713e6 4780 return TRUE;
a1d78564
RS
4781}
4782
4783/* Return the RTYPE_* flags for a register operand of type TYPE that
4784 appears in instruction OPCODE. */
4785
4786static unsigned int
4787convert_reg_type (const struct mips_opcode *opcode,
4788 enum mips_reg_operand_type type)
4789{
4790 switch (type)
4791 {
4792 case OP_REG_GP:
4793 return RTYPE_NUM | RTYPE_GP;
4794
4795 case OP_REG_FP:
4796 /* Allow vector register names for MDMX if the instruction is a 64-bit
4797 FPR load, store or move (including moves to and from GPRs). */
4798 if ((mips_opts.ase & ASE_MDMX)
4799 && (opcode->pinfo & FP_D)
43885403 4800 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4801 | INSN_COPROC_MEMORY_DELAY
43885403 4802 | INSN_LOAD_COPROC
67dc82bc 4803 | INSN_LOAD_MEMORY
a1d78564
RS
4804 | INSN_STORE_MEMORY)))
4805 return RTYPE_FPU | RTYPE_VEC;
4806 return RTYPE_FPU;
4807
4808 case OP_REG_CCC:
4809 if (opcode->pinfo & (FP_D | FP_S))
4810 return RTYPE_CCC | RTYPE_FCC;
4811 return RTYPE_CCC;
4812
4813 case OP_REG_VEC:
4814 if (opcode->membership & INSN_5400)
4815 return RTYPE_FPU;
4816 return RTYPE_FPU | RTYPE_VEC;
4817
4818 case OP_REG_ACC:
4819 return RTYPE_ACC;
4820
4821 case OP_REG_COPRO:
4822 if (opcode->name[strlen (opcode->name) - 1] == '0')
4823 return RTYPE_NUM | RTYPE_CP0;
4824 return RTYPE_NUM;
4825
4826 case OP_REG_HW:
4827 return RTYPE_NUM;
14daeee3
RS
4828
4829 case OP_REG_VI:
4830 return RTYPE_NUM | RTYPE_VI;
4831
4832 case OP_REG_VF:
4833 return RTYPE_NUM | RTYPE_VF;
4834
4835 case OP_REG_R5900_I:
4836 return RTYPE_R5900_I;
4837
4838 case OP_REG_R5900_Q:
4839 return RTYPE_R5900_Q;
4840
4841 case OP_REG_R5900_R:
4842 return RTYPE_R5900_R;
4843
4844 case OP_REG_R5900_ACC:
4845 return RTYPE_R5900_ACC;
56d438b1
CF
4846
4847 case OP_REG_MSA:
4848 return RTYPE_MSA;
4849
4850 case OP_REG_MSA_CTRL:
4851 return RTYPE_NUM;
a1d78564
RS
4852 }
4853 abort ();
4854}
4855
4856/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4857
4858static void
4859check_regno (struct mips_arg_info *arg,
4860 enum mips_reg_operand_type type, unsigned int regno)
4861{
4862 if (AT && type == OP_REG_GP && regno == AT)
4863 arg->seen_at = TRUE;
4864
4865 if (type == OP_REG_FP
4866 && (regno & 1) != 0
a1d78564 4867 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4868 {
4869 /* This was a warning prior to introducing O32 FPXX and FP64 support
4870 so maintain a warning for FP32 but raise an error for the new
4871 cases. */
4872 if (FPR_SIZE == 32)
4873 as_warn (_("float register should be even, was %d"), regno);
4874 else
4875 as_bad (_("float register should be even, was %d"), regno);
4876 }
a1d78564
RS
4877
4878 if (type == OP_REG_CCC)
4879 {
4880 const char *name;
4881 size_t length;
4882
4883 name = arg->insn->insn_mo->name;
4884 length = strlen (name);
4885 if ((regno & 1) != 0
4886 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4887 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4888 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4889 name, regno);
4890
4891 if ((regno & 3) != 0
4892 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4893 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4894 name, regno);
4895 }
4896}
4897
a92713e6
RS
4898/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4899 a register of type TYPE. Return true on success, storing the register
4900 number in *REGNO and warning about any dubious uses. */
4901
4902static bfd_boolean
4903match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4904 unsigned int symval, unsigned int *regno)
4905{
4906 if (type == OP_REG_VEC)
4907 symval = mips_prefer_vec_regno (symval);
4908 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4909 return FALSE;
4910
4911 *regno = symval & RNUM_MASK;
4912 check_regno (arg, type, *regno);
4913 return TRUE;
4914}
4915
4916/* Try to interpret the next token in ARG as a register of type TYPE.
4917 Consume the token and return true on success, storing the register
4918 number in *REGNO. Return false on failure. */
4919
4920static bfd_boolean
4921match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4922 unsigned int *regno)
4923{
4924 if (arg->token->type == OT_REG
4925 && match_regno (arg, type, arg->token->u.regno, regno))
4926 {
4927 ++arg->token;
4928 return TRUE;
4929 }
4930 return FALSE;
4931}
4932
4933/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4934 Consume the token and return true on success, storing the register numbers
4935 in *REGNO1 and *REGNO2. Return false on failure. */
4936
4937static bfd_boolean
4938match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4939 unsigned int *regno1, unsigned int *regno2)
4940{
4941 if (match_reg (arg, type, regno1))
4942 {
4943 *regno2 = *regno1;
4944 return TRUE;
4945 }
4946 if (arg->token->type == OT_REG_RANGE
4947 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4948 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4949 && *regno1 <= *regno2)
4950 {
4951 ++arg->token;
4952 return TRUE;
4953 }
4954 return FALSE;
4955}
4956
a1d78564
RS
4957/* OP_INT matcher. */
4958
a92713e6 4959static bfd_boolean
a1d78564 4960match_int_operand (struct mips_arg_info *arg,
a92713e6 4961 const struct mips_operand *operand_base)
a1d78564
RS
4962{
4963 const struct mips_int_operand *operand;
3ccad066 4964 unsigned int uval;
a1d78564
RS
4965 int min_val, max_val, factor;
4966 offsetT sval;
a1d78564
RS
4967
4968 operand = (const struct mips_int_operand *) operand_base;
4969 factor = 1 << operand->shift;
3ccad066
RS
4970 min_val = mips_int_operand_min (operand);
4971 max_val = mips_int_operand_max (operand);
a1d78564 4972
d436c1c2
RS
4973 if (operand_base->lsb == 0
4974 && operand_base->size == 16
4975 && operand->shift == 0
4976 && operand->bias == 0
4977 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
4978 {
4979 /* The operand can be relocated. */
a92713e6
RS
4980 if (!match_expression (arg, &offset_expr, offset_reloc))
4981 return FALSE;
4982
4983 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
4984 /* Relocation operators were used. Accept the arguent and
4985 leave the relocation value in offset_expr and offset_relocs
4986 for the caller to process. */
a92713e6
RS
4987 return TRUE;
4988
4989 if (offset_expr.X_op != O_constant)
a1d78564 4990 {
60f20e8b
RS
4991 /* Accept non-constant operands if no later alternative matches,
4992 leaving it for the caller to process. */
4993 if (!arg->lax_match)
4994 return FALSE;
a92713e6
RS
4995 offset_reloc[0] = BFD_RELOC_LO16;
4996 return TRUE;
a1d78564 4997 }
a92713e6 4998
a1d78564
RS
4999 /* Clear the global state; we're going to install the operand
5000 ourselves. */
a92713e6 5001 sval = offset_expr.X_add_number;
a1d78564 5002 offset_expr.X_op = O_absent;
60f20e8b
RS
5003
5004 /* For compatibility with older assemblers, we accept
5005 0x8000-0xffff as signed 16-bit numbers when only
5006 signed numbers are allowed. */
5007 if (sval > max_val)
5008 {
5009 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5010 if (!arg->lax_match && sval <= max_val)
5011 return FALSE;
5012 }
a1d78564
RS
5013 }
5014 else
5015 {
1a00e612 5016 if (!match_const_int (arg, &sval))
a92713e6 5017 return FALSE;
a1d78564
RS
5018 }
5019
5020 arg->last_op_int = sval;
5021
1a00e612 5022 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5023 {
1a00e612
RS
5024 match_out_of_range (arg);
5025 return FALSE;
a1d78564
RS
5026 }
5027
5028 uval = (unsigned int) sval >> operand->shift;
5029 uval -= operand->bias;
5030
5031 /* Handle -mfix-cn63xxp1. */
5032 if (arg->opnum == 1
5033 && mips_fix_cn63xxp1
5034 && !mips_opts.micromips
5035 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5036 switch (uval)
5037 {
5038 case 5:
5039 case 25:
5040 case 26:
5041 case 27:
5042 case 28:
5043 case 29:
5044 case 30:
5045 case 31:
5046 /* These are ok. */
5047 break;
5048
5049 default:
5050 /* The rest must be changed to 28. */
5051 uval = 28;
5052 break;
5053 }
5054
5055 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5056 return TRUE;
a1d78564
RS
5057}
5058
5059/* OP_MAPPED_INT matcher. */
5060
a92713e6 5061static bfd_boolean
a1d78564 5062match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5063 const struct mips_operand *operand_base)
a1d78564
RS
5064{
5065 const struct mips_mapped_int_operand *operand;
5066 unsigned int uval, num_vals;
5067 offsetT sval;
5068
5069 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5070 if (!match_const_int (arg, &sval))
a92713e6 5071 return FALSE;
a1d78564
RS
5072
5073 num_vals = 1 << operand_base->size;
5074 for (uval = 0; uval < num_vals; uval++)
5075 if (operand->int_map[uval] == sval)
5076 break;
5077 if (uval == num_vals)
1a00e612
RS
5078 {
5079 match_out_of_range (arg);
5080 return FALSE;
5081 }
a1d78564
RS
5082
5083 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5084 return TRUE;
a1d78564
RS
5085}
5086
5087/* OP_MSB matcher. */
5088
a92713e6 5089static bfd_boolean
a1d78564 5090match_msb_operand (struct mips_arg_info *arg,
a92713e6 5091 const struct mips_operand *operand_base)
a1d78564
RS
5092{
5093 const struct mips_msb_operand *operand;
5094 int min_val, max_val, max_high;
5095 offsetT size, sval, high;
5096
5097 operand = (const struct mips_msb_operand *) operand_base;
5098 min_val = operand->bias;
5099 max_val = min_val + (1 << operand_base->size) - 1;
5100 max_high = operand->opsize;
5101
1a00e612 5102 if (!match_const_int (arg, &size))
a92713e6 5103 return FALSE;
a1d78564
RS
5104
5105 high = size + arg->last_op_int;
5106 sval = operand->add_lsb ? high : size;
5107
5108 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5109 {
1a00e612
RS
5110 match_out_of_range (arg);
5111 return FALSE;
a1d78564
RS
5112 }
5113 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5114 return TRUE;
a1d78564
RS
5115}
5116
5117/* OP_REG matcher. */
5118
a92713e6 5119static bfd_boolean
a1d78564 5120match_reg_operand (struct mips_arg_info *arg,
a92713e6 5121 const struct mips_operand *operand_base)
a1d78564
RS
5122{
5123 const struct mips_reg_operand *operand;
a92713e6 5124 unsigned int regno, uval, num_vals;
a1d78564
RS
5125
5126 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5127 if (!match_reg (arg, operand->reg_type, &regno))
5128 return FALSE;
a1d78564
RS
5129
5130 if (operand->reg_map)
5131 {
5132 num_vals = 1 << operand->root.size;
5133 for (uval = 0; uval < num_vals; uval++)
5134 if (operand->reg_map[uval] == regno)
5135 break;
5136 if (num_vals == uval)
a92713e6 5137 return FALSE;
a1d78564
RS
5138 }
5139 else
5140 uval = regno;
5141
a1d78564
RS
5142 arg->last_regno = regno;
5143 if (arg->opnum == 1)
5144 arg->dest_regno = regno;
5145 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5146 return TRUE;
a1d78564
RS
5147}
5148
5149/* OP_REG_PAIR matcher. */
5150
a92713e6 5151static bfd_boolean
a1d78564 5152match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5153 const struct mips_operand *operand_base)
a1d78564
RS
5154{
5155 const struct mips_reg_pair_operand *operand;
a92713e6 5156 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5157
5158 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5159 if (!match_reg (arg, operand->reg_type, &regno1)
5160 || !match_char (arg, ',')
5161 || !match_reg (arg, operand->reg_type, &regno2))
5162 return FALSE;
a1d78564
RS
5163
5164 num_vals = 1 << operand_base->size;
5165 for (uval = 0; uval < num_vals; uval++)
5166 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5167 break;
5168 if (uval == num_vals)
a92713e6 5169 return FALSE;
a1d78564 5170
a1d78564 5171 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5172 return TRUE;
a1d78564
RS
5173}
5174
5175/* OP_PCREL matcher. The caller chooses the relocation type. */
5176
a92713e6
RS
5177static bfd_boolean
5178match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5179{
a92713e6
RS
5180 bfd_reloc_code_real_type r[3];
5181
5182 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5183}
5184
5185/* OP_PERF_REG matcher. */
5186
a92713e6 5187static bfd_boolean
a1d78564 5188match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5189 const struct mips_operand *operand)
a1d78564
RS
5190{
5191 offsetT sval;
5192
1a00e612 5193 if (!match_const_int (arg, &sval))
a92713e6 5194 return FALSE;
a1d78564
RS
5195
5196 if (sval != 0
5197 && (sval != 1
5198 || (mips_opts.arch == CPU_R5900
5199 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5200 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5201 {
1a00e612
RS
5202 set_insn_error (arg->argnum, _("invalid performance register"));
5203 return FALSE;
a1d78564
RS
5204 }
5205
5206 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5207 return TRUE;
a1d78564
RS
5208}
5209
5210/* OP_ADDIUSP matcher. */
5211
a92713e6 5212static bfd_boolean
a1d78564 5213match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5214 const struct mips_operand *operand)
a1d78564
RS
5215{
5216 offsetT sval;
5217 unsigned int uval;
5218
1a00e612 5219 if (!match_const_int (arg, &sval))
a92713e6 5220 return FALSE;
a1d78564
RS
5221
5222 if (sval % 4)
1a00e612
RS
5223 {
5224 match_out_of_range (arg);
5225 return FALSE;
5226 }
a1d78564
RS
5227
5228 sval /= 4;
5229 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5230 {
5231 match_out_of_range (arg);
5232 return FALSE;
5233 }
a1d78564
RS
5234
5235 uval = (unsigned int) sval;
5236 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5237 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5238 return TRUE;
a1d78564
RS
5239}
5240
5241/* OP_CLO_CLZ_DEST matcher. */
5242
a92713e6 5243static bfd_boolean
a1d78564 5244match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5245 const struct mips_operand *operand)
a1d78564
RS
5246{
5247 unsigned int regno;
5248
a92713e6
RS
5249 if (!match_reg (arg, OP_REG_GP, &regno))
5250 return FALSE;
a1d78564 5251
a1d78564 5252 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5253 return TRUE;
a1d78564
RS
5254}
5255
7361da2c
AB
5256/* OP_CHECK_PREV matcher. */
5257
5258static bfd_boolean
5259match_check_prev_operand (struct mips_arg_info *arg,
5260 const struct mips_operand *operand_base)
5261{
5262 const struct mips_check_prev_operand *operand;
5263 unsigned int regno;
5264
5265 operand = (const struct mips_check_prev_operand *) operand_base;
5266
5267 if (!match_reg (arg, OP_REG_GP, &regno))
5268 return FALSE;
5269
5270 if (!operand->zero_ok && regno == 0)
5271 return FALSE;
5272
5273 if ((operand->less_than_ok && regno < arg->last_regno)
5274 || (operand->greater_than_ok && regno > arg->last_regno)
5275 || (operand->equal_ok && regno == arg->last_regno))
5276 {
5277 arg->last_regno = regno;
5278 insn_insert_operand (arg->insn, operand_base, regno);
5279 return TRUE;
5280 }
5281
5282 return FALSE;
5283}
5284
5285/* OP_SAME_RS_RT matcher. */
5286
5287static bfd_boolean
5288match_same_rs_rt_operand (struct mips_arg_info *arg,
5289 const struct mips_operand *operand)
5290{
5291 unsigned int regno;
5292
5293 if (!match_reg (arg, OP_REG_GP, &regno))
5294 return FALSE;
5295
5296 if (regno == 0)
5297 {
5298 set_insn_error (arg->argnum, _("the source register must not be $0"));
5299 return FALSE;
5300 }
5301
5302 arg->last_regno = regno;
5303
5304 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5305 return TRUE;
5306}
5307
a1d78564
RS
5308/* OP_LWM_SWM_LIST matcher. */
5309
a92713e6 5310static bfd_boolean
a1d78564 5311match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5312 const struct mips_operand *operand)
a1d78564 5313{
a92713e6
RS
5314 unsigned int reglist, sregs, ra, regno1, regno2;
5315 struct mips_arg_info reset;
a1d78564 5316
a92713e6
RS
5317 reglist = 0;
5318 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5319 return FALSE;
5320 do
5321 {
5322 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5323 {
5324 reglist |= 1 << FP;
5325 regno2 = S7;
5326 }
5327 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5328 reset = *arg;
5329 }
5330 while (match_char (arg, ',')
5331 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5332 *arg = reset;
a1d78564
RS
5333
5334 if (operand->size == 2)
5335 {
5336 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5337
5338 s0, ra
5339 s0, s1, ra, s2, s3
5340 s0-s2, ra
5341
5342 and any permutations of these. */
5343 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5344 return FALSE;
a1d78564
RS
5345
5346 sregs = (reglist >> 17) & 7;
5347 ra = 0;
5348 }
5349 else
5350 {
5351 /* The list must include at least one of ra and s0-sN,
5352 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5353 which are $23 and $30 respectively.) E.g.:
5354
5355 ra
5356 s0
5357 ra, s0, s1, s2
5358 s0-s8
5359 s0-s5, ra
5360
5361 and any permutations of these. */
5362 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5363 return FALSE;
a1d78564
RS
5364
5365 ra = (reglist >> 27) & 0x10;
5366 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5367 }
5368 sregs += 1;
5369 if ((sregs & -sregs) != sregs)
a92713e6 5370 return FALSE;
a1d78564
RS
5371
5372 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5373 return TRUE;
a1d78564
RS
5374}
5375
364215c8
RS
5376/* OP_ENTRY_EXIT_LIST matcher. */
5377
a92713e6 5378static unsigned int
364215c8 5379match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5380 const struct mips_operand *operand)
364215c8
RS
5381{
5382 unsigned int mask;
5383 bfd_boolean is_exit;
5384
5385 /* The format is the same for both ENTRY and EXIT, but the constraints
5386 are different. */
5387 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5388 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5389 do
364215c8
RS
5390 {
5391 unsigned int regno1, regno2;
5392 bfd_boolean is_freg;
5393
a92713e6 5394 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5395 is_freg = FALSE;
a92713e6 5396 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5397 is_freg = TRUE;
5398 else
a92713e6 5399 return FALSE;
364215c8
RS
5400
5401 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5402 {
5403 mask &= ~(7 << 3);
5404 mask |= (5 + regno2) << 3;
5405 }
5406 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5407 mask |= (regno2 - 3) << 3;
5408 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5409 mask |= (regno2 - 15) << 1;
5410 else if (regno1 == RA && regno2 == RA)
5411 mask |= 1;
5412 else
a92713e6 5413 return FALSE;
364215c8 5414 }
a92713e6
RS
5415 while (match_char (arg, ','));
5416
364215c8 5417 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5418 return TRUE;
364215c8
RS
5419}
5420
5421/* OP_SAVE_RESTORE_LIST matcher. */
5422
a92713e6
RS
5423static bfd_boolean
5424match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5425{
5426 unsigned int opcode, args, statics, sregs;
5427 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5428 offsetT frame_size;
364215c8 5429
364215c8
RS
5430 opcode = arg->insn->insn_opcode;
5431 frame_size = 0;
5432 num_frame_sizes = 0;
5433 args = 0;
5434 statics = 0;
5435 sregs = 0;
a92713e6 5436 do
364215c8
RS
5437 {
5438 unsigned int regno1, regno2;
5439
a92713e6 5440 if (arg->token->type == OT_INTEGER)
364215c8
RS
5441 {
5442 /* Handle the frame size. */
1a00e612 5443 if (!match_const_int (arg, &frame_size))
a92713e6 5444 return FALSE;
364215c8 5445 num_frame_sizes += 1;
364215c8
RS
5446 }
5447 else
5448 {
a92713e6
RS
5449 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5450 return FALSE;
364215c8
RS
5451
5452 while (regno1 <= regno2)
5453 {
5454 if (regno1 >= 4 && regno1 <= 7)
5455 {
5456 if (num_frame_sizes == 0)
5457 /* args $a0-$a3 */
5458 args |= 1 << (regno1 - 4);
5459 else
5460 /* statics $a0-$a3 */
5461 statics |= 1 << (regno1 - 4);
5462 }
5463 else if (regno1 >= 16 && regno1 <= 23)
5464 /* $s0-$s7 */
5465 sregs |= 1 << (regno1 - 16);
5466 else if (regno1 == 30)
5467 /* $s8 */
5468 sregs |= 1 << 8;
5469 else if (regno1 == 31)
5470 /* Add $ra to insn. */
5471 opcode |= 0x40;
5472 else
a92713e6 5473 return FALSE;
364215c8
RS
5474 regno1 += 1;
5475 if (regno1 == 24)
5476 regno1 = 30;
5477 }
5478 }
364215c8 5479 }
a92713e6 5480 while (match_char (arg, ','));
364215c8
RS
5481
5482 /* Encode args/statics combination. */
5483 if (args & statics)
a92713e6 5484 return FALSE;
364215c8
RS
5485 else if (args == 0xf)
5486 /* All $a0-$a3 are args. */
5487 opcode |= MIPS16_ALL_ARGS << 16;
5488 else if (statics == 0xf)
5489 /* All $a0-$a3 are statics. */
5490 opcode |= MIPS16_ALL_STATICS << 16;
5491 else
5492 {
5493 /* Count arg registers. */
5494 num_args = 0;
5495 while (args & 0x1)
5496 {
5497 args >>= 1;
5498 num_args += 1;
5499 }
5500 if (args != 0)
a92713e6 5501 return FALSE;
364215c8
RS
5502
5503 /* Count static registers. */
5504 num_statics = 0;
5505 while (statics & 0x8)
5506 {
5507 statics = (statics << 1) & 0xf;
5508 num_statics += 1;
5509 }
5510 if (statics != 0)
a92713e6 5511 return FALSE;
364215c8
RS
5512
5513 /* Encode args/statics. */
5514 opcode |= ((num_args << 2) | num_statics) << 16;
5515 }
5516
5517 /* Encode $s0/$s1. */
5518 if (sregs & (1 << 0)) /* $s0 */
5519 opcode |= 0x20;
5520 if (sregs & (1 << 1)) /* $s1 */
5521 opcode |= 0x10;
5522 sregs >>= 2;
5523
5524 /* Encode $s2-$s8. */
5525 num_sregs = 0;
5526 while (sregs & 1)
5527 {
5528 sregs >>= 1;
5529 num_sregs += 1;
5530 }
5531 if (sregs != 0)
a92713e6 5532 return FALSE;
364215c8
RS
5533 opcode |= num_sregs << 24;
5534
5535 /* Encode frame size. */
5536 if (num_frame_sizes == 0)
1a00e612
RS
5537 {
5538 set_insn_error (arg->argnum, _("missing frame size"));
5539 return FALSE;
5540 }
5541 if (num_frame_sizes > 1)
5542 {
5543 set_insn_error (arg->argnum, _("frame size specified twice"));
5544 return FALSE;
5545 }
5546 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5547 {
5548 set_insn_error (arg->argnum, _("invalid frame size"));
5549 return FALSE;
5550 }
5551 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5552 {
5553 frame_size /= 8;
5554 opcode |= (((frame_size & 0xf0) << 16)
5555 | (frame_size & 0x0f));
5556 }
5557
364215c8
RS
5558 /* Finally build the instruction. */
5559 if ((opcode >> 16) != 0 || frame_size == 0)
5560 opcode |= MIPS16_EXTEND;
5561 arg->insn->insn_opcode = opcode;
a92713e6 5562 return TRUE;
364215c8
RS
5563}
5564
a1d78564
RS
5565/* OP_MDMX_IMM_REG matcher. */
5566
a92713e6 5567static bfd_boolean
a1d78564 5568match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5569 const struct mips_operand *operand)
a1d78564 5570{
a92713e6 5571 unsigned int regno, uval;
a1d78564
RS
5572 bfd_boolean is_qh;
5573 const struct mips_opcode *opcode;
5574
5575 /* The mips_opcode records whether this is an octobyte or quadhalf
5576 instruction. Start out with that bit in place. */
5577 opcode = arg->insn->insn_mo;
5578 uval = mips_extract_operand (operand, opcode->match);
5579 is_qh = (uval != 0);
5580
56d438b1 5581 if (arg->token->type == OT_REG)
a1d78564
RS
5582 {
5583 if ((opcode->membership & INSN_5400)
5584 && strcmp (opcode->name, "rzu.ob") == 0)
5585 {
1a00e612
RS
5586 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5587 arg->argnum);
5588 return FALSE;
a1d78564
RS
5589 }
5590
56d438b1
CF
5591 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5592 return FALSE;
5593 ++arg->token;
5594
a1d78564
RS
5595 /* Check whether this is a vector register or a broadcast of
5596 a single element. */
56d438b1 5597 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5598 {
56d438b1 5599 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5600 {
1a00e612
RS
5601 set_insn_error (arg->argnum, _("invalid element selector"));
5602 return FALSE;
a1d78564 5603 }
56d438b1
CF
5604 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5605 ++arg->token;
a1d78564
RS
5606 }
5607 else
5608 {
5609 /* A full vector. */
5610 if ((opcode->membership & INSN_5400)
5611 && (strcmp (opcode->name, "sll.ob") == 0
5612 || strcmp (opcode->name, "srl.ob") == 0))
5613 {
1a00e612
RS
5614 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5615 arg->argnum);
5616 return FALSE;
a1d78564
RS
5617 }
5618
5619 if (is_qh)
5620 uval |= MDMX_FMTSEL_VEC_QH << 5;
5621 else
5622 uval |= MDMX_FMTSEL_VEC_OB << 5;
5623 }
a1d78564
RS
5624 uval |= regno;
5625 }
5626 else
5627 {
5628 offsetT sval;
5629
1a00e612 5630 if (!match_const_int (arg, &sval))
a92713e6 5631 return FALSE;
a1d78564
RS
5632 if (sval < 0 || sval > 31)
5633 {
1a00e612
RS
5634 match_out_of_range (arg);
5635 return FALSE;
a1d78564
RS
5636 }
5637 uval |= (sval & 31);
5638 if (is_qh)
5639 uval |= MDMX_FMTSEL_IMM_QH << 5;
5640 else
5641 uval |= MDMX_FMTSEL_IMM_OB << 5;
5642 }
5643 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5644 return TRUE;
a1d78564
RS
5645}
5646
56d438b1
CF
5647/* OP_IMM_INDEX matcher. */
5648
5649static bfd_boolean
5650match_imm_index_operand (struct mips_arg_info *arg,
5651 const struct mips_operand *operand)
5652{
5653 unsigned int max_val;
5654
5655 if (arg->token->type != OT_INTEGER_INDEX)
5656 return FALSE;
5657
5658 max_val = (1 << operand->size) - 1;
5659 if (arg->token->u.index > max_val)
5660 {
5661 match_out_of_range (arg);
5662 return FALSE;
5663 }
5664 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5665 ++arg->token;
5666 return TRUE;
5667}
5668
5669/* OP_REG_INDEX matcher. */
5670
5671static bfd_boolean
5672match_reg_index_operand (struct mips_arg_info *arg,
5673 const struct mips_operand *operand)
5674{
5675 unsigned int regno;
5676
5677 if (arg->token->type != OT_REG_INDEX)
5678 return FALSE;
5679
5680 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5681 return FALSE;
5682
5683 insn_insert_operand (arg->insn, operand, regno);
5684 ++arg->token;
5685 return TRUE;
5686}
5687
a1d78564
RS
5688/* OP_PC matcher. */
5689
a92713e6
RS
5690static bfd_boolean
5691match_pc_operand (struct mips_arg_info *arg)
a1d78564 5692{
a92713e6
RS
5693 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5694 {
5695 ++arg->token;
5696 return TRUE;
5697 }
5698 return FALSE;
a1d78564
RS
5699}
5700
7361da2c
AB
5701/* OP_NON_ZERO_REG matcher. */
5702
5703static bfd_boolean
5704match_non_zero_reg_operand (struct mips_arg_info *arg,
5705 const struct mips_operand *operand)
5706{
5707 unsigned int regno;
5708
5709 if (!match_reg (arg, OP_REG_GP, &regno))
5710 return FALSE;
5711
5712 if (regno == 0)
5713 return FALSE;
5714
5715 arg->last_regno = regno;
5716 insn_insert_operand (arg->insn, operand, regno);
5717 return TRUE;
5718}
5719
a1d78564
RS
5720/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5721 register that we need to match. */
5722
a92713e6
RS
5723static bfd_boolean
5724match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5725{
5726 unsigned int regno;
5727
a92713e6 5728 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5729}
5730
89565f1b
RS
5731/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5732 the length of the value in bytes (4 for float, 8 for double) and
5733 USING_GPRS says whether the destination is a GPR rather than an FPR.
5734
5735 Return the constant in IMM and OFFSET as follows:
5736
5737 - If the constant should be loaded via memory, set IMM to O_absent and
5738 OFFSET to the memory address.
5739
5740 - Otherwise, if the constant should be loaded into two 32-bit registers,
5741 set IMM to the O_constant to load into the high register and OFFSET
5742 to the corresponding value for the low register.
5743
5744 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5745
5746 These constants only appear as the last operand in an instruction,
5747 and every instruction that accepts them in any variant accepts them
5748 in all variants. This means we don't have to worry about backing out
5749 any changes if the instruction does not match. We just match
5750 unconditionally and report an error if the constant is invalid. */
5751
a92713e6
RS
5752static bfd_boolean
5753match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5754 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5755{
a92713e6 5756 char *p;
89565f1b
RS
5757 segT seg, new_seg;
5758 subsegT subseg;
5759 const char *newname;
a92713e6 5760 unsigned char *data;
89565f1b
RS
5761
5762 /* Where the constant is placed is based on how the MIPS assembler
5763 does things:
5764
5765 length == 4 && using_gprs -- immediate value only
5766 length == 8 && using_gprs -- .rdata or immediate value
5767 length == 4 && !using_gprs -- .lit4 or immediate value
5768 length == 8 && !using_gprs -- .lit8 or immediate value
5769
5770 The .lit4 and .lit8 sections are only used if permitted by the
5771 -G argument. */
a92713e6 5772 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5773 {
5774 set_insn_error (arg->argnum, _("floating-point expression required"));
5775 return FALSE;
5776 }
a92713e6
RS
5777
5778 gas_assert (arg->token->u.flt.length == length);
5779 data = arg->token->u.flt.data;
5780 ++arg->token;
89565f1b
RS
5781
5782 /* Handle 32-bit constants for which an immediate value is best. */
5783 if (length == 4
5784 && (using_gprs
5785 || g_switch_value < 4
5786 || (data[0] == 0 && data[1] == 0)
5787 || (data[2] == 0 && data[3] == 0)))
5788 {
5789 imm->X_op = O_constant;
5790 if (!target_big_endian)
5791 imm->X_add_number = bfd_getl32 (data);
5792 else
5793 imm->X_add_number = bfd_getb32 (data);
5794 offset->X_op = O_absent;
a92713e6 5795 return TRUE;
89565f1b
RS
5796 }
5797
5798 /* Handle 64-bit constants for which an immediate value is best. */
5799 if (length == 8
5800 && !mips_disable_float_construction
351cdf24
MF
5801 /* Constants can only be constructed in GPRs and copied to FPRs if the
5802 GPRs are at least as wide as the FPRs or MTHC1 is available.
5803 Unlike most tests for 32-bit floating-point registers this check
5804 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5805 permit 64-bit moves without MXHC1.
5806 Force the constant into memory otherwise. */
5807 && (using_gprs
5808 || GPR_SIZE == 64
5809 || ISA_HAS_MXHC1 (mips_opts.isa)
5810 || FPR_SIZE == 32)
89565f1b
RS
5811 && ((data[0] == 0 && data[1] == 0)
5812 || (data[2] == 0 && data[3] == 0))
5813 && ((data[4] == 0 && data[5] == 0)
5814 || (data[6] == 0 && data[7] == 0)))
5815 {
5816 /* The value is simple enough to load with a couple of instructions.
5817 If using 32-bit registers, set IMM to the high order 32 bits and
5818 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5819 64 bit constant. */
351cdf24 5820 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5821 {
5822 imm->X_op = O_constant;
5823 offset->X_op = O_constant;
5824 if (!target_big_endian)
5825 {
5826 imm->X_add_number = bfd_getl32 (data + 4);
5827 offset->X_add_number = bfd_getl32 (data);
5828 }
5829 else
5830 {
5831 imm->X_add_number = bfd_getb32 (data);
5832 offset->X_add_number = bfd_getb32 (data + 4);
5833 }
5834 if (offset->X_add_number == 0)
5835 offset->X_op = O_absent;
5836 }
5837 else
5838 {
5839 imm->X_op = O_constant;
5840 if (!target_big_endian)
5841 imm->X_add_number = bfd_getl64 (data);
5842 else
5843 imm->X_add_number = bfd_getb64 (data);
5844 offset->X_op = O_absent;
5845 }
a92713e6 5846 return TRUE;
89565f1b
RS
5847 }
5848
5849 /* Switch to the right section. */
5850 seg = now_seg;
5851 subseg = now_subseg;
5852 if (length == 4)
5853 {
5854 gas_assert (!using_gprs && g_switch_value >= 4);
5855 newname = ".lit4";
5856 }
5857 else
5858 {
5859 if (using_gprs || g_switch_value < 8)
5860 newname = RDATA_SECTION_NAME;
5861 else
5862 newname = ".lit8";
5863 }
5864
5865 new_seg = subseg_new (newname, (subsegT) 0);
5866 bfd_set_section_flags (stdoutput, new_seg,
5867 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5868 frag_align (length == 4 ? 2 : 3, 0, 0);
5869 if (strncmp (TARGET_OS, "elf", 3) != 0)
5870 record_alignment (new_seg, 4);
5871 else
5872 record_alignment (new_seg, length == 4 ? 2 : 3);
5873 if (seg == now_seg)
1661c76c 5874 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5875
5876 /* Set the argument to the current address in the section. */
5877 imm->X_op = O_absent;
5878 offset->X_op = O_symbol;
5879 offset->X_add_symbol = symbol_temp_new_now ();
5880 offset->X_add_number = 0;
5881
5882 /* Put the floating point number into the section. */
5883 p = frag_more (length);
5884 memcpy (p, data, length);
5885
5886 /* Switch back to the original section. */
5887 subseg_set (seg, subseg);
a92713e6 5888 return TRUE;
89565f1b
RS
5889}
5890
14daeee3
RS
5891/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5892 them. */
5893
5894static bfd_boolean
5895match_vu0_suffix_operand (struct mips_arg_info *arg,
5896 const struct mips_operand *operand,
5897 bfd_boolean match_p)
5898{
5899 unsigned int uval;
5900
5901 /* The operand can be an XYZW mask or a single 2-bit channel index
5902 (with X being 0). */
5903 gas_assert (operand->size == 2 || operand->size == 4);
5904
ee5734f0 5905 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5906 if (arg->token->type != OT_CHANNELS)
ee5734f0 5907 return match_p;
14daeee3
RS
5908
5909 uval = arg->token->u.channels;
5910 if (operand->size == 2)
5911 {
5912 /* Check that a single bit is set and convert it into a 2-bit index. */
5913 if ((uval & -uval) != uval)
5914 return FALSE;
5915 uval = 4 - ffs (uval);
5916 }
5917
5918 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5919 return FALSE;
5920
5921 ++arg->token;
5922 if (!match_p)
5923 insn_insert_operand (arg->insn, operand, uval);
5924 return TRUE;
5925}
5926
a1d78564
RS
5927/* S is the text seen for ARG. Match it against OPERAND. Return the end
5928 of the argument text if the match is successful, otherwise return null. */
5929
a92713e6 5930static bfd_boolean
a1d78564 5931match_operand (struct mips_arg_info *arg,
a92713e6 5932 const struct mips_operand *operand)
a1d78564
RS
5933{
5934 switch (operand->type)
5935 {
5936 case OP_INT:
a92713e6 5937 return match_int_operand (arg, operand);
a1d78564
RS
5938
5939 case OP_MAPPED_INT:
a92713e6 5940 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5941
5942 case OP_MSB:
a92713e6 5943 return match_msb_operand (arg, operand);
a1d78564
RS
5944
5945 case OP_REG:
0f35dbc4 5946 case OP_OPTIONAL_REG:
a92713e6 5947 return match_reg_operand (arg, operand);
a1d78564
RS
5948
5949 case OP_REG_PAIR:
a92713e6 5950 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5951
5952 case OP_PCREL:
a92713e6 5953 return match_pcrel_operand (arg);
a1d78564
RS
5954
5955 case OP_PERF_REG:
a92713e6 5956 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5957
5958 case OP_ADDIUSP_INT:
a92713e6 5959 return match_addiusp_operand (arg, operand);
a1d78564
RS
5960
5961 case OP_CLO_CLZ_DEST:
a92713e6 5962 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5963
5964 case OP_LWM_SWM_LIST:
a92713e6 5965 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5966
5967 case OP_ENTRY_EXIT_LIST:
a92713e6 5968 return match_entry_exit_operand (arg, operand);
364215c8 5969
a1d78564 5970 case OP_SAVE_RESTORE_LIST:
a92713e6 5971 return match_save_restore_list_operand (arg);
a1d78564
RS
5972
5973 case OP_MDMX_IMM_REG:
a92713e6 5974 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
5975
5976 case OP_REPEAT_DEST_REG:
a92713e6 5977 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
5978
5979 case OP_REPEAT_PREV_REG:
a92713e6 5980 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
5981
5982 case OP_PC:
a92713e6 5983 return match_pc_operand (arg);
14daeee3
RS
5984
5985 case OP_VU0_SUFFIX:
5986 return match_vu0_suffix_operand (arg, operand, FALSE);
5987
5988 case OP_VU0_MATCH_SUFFIX:
5989 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
5990
5991 case OP_IMM_INDEX:
5992 return match_imm_index_operand (arg, operand);
5993
5994 case OP_REG_INDEX:
5995 return match_reg_index_operand (arg, operand);
7361da2c
AB
5996
5997 case OP_SAME_RS_RT:
5998 return match_same_rs_rt_operand (arg, operand);
5999
6000 case OP_CHECK_PREV:
6001 return match_check_prev_operand (arg, operand);
6002
6003 case OP_NON_ZERO_REG:
6004 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6005 }
6006 abort ();
6007}
6008
6009/* ARG is the state after successfully matching an instruction.
6010 Issue any queued-up warnings. */
6011
6012static void
6013check_completed_insn (struct mips_arg_info *arg)
6014{
6015 if (arg->seen_at)
6016 {
6017 if (AT == ATREG)
1661c76c 6018 as_warn (_("used $at without \".set noat\""));
a1d78564 6019 else
1661c76c 6020 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6021 }
6022}
a1d78564 6023
85fcb30f
RS
6024/* Return true if modifying general-purpose register REG needs a delay. */
6025
6026static bfd_boolean
6027reg_needs_delay (unsigned int reg)
6028{
6029 unsigned long prev_pinfo;
6030
6031 prev_pinfo = history[0].insn_mo->pinfo;
6032 if (!mips_opts.noreorder
67dc82bc 6033 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6034 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6035 && (gpr_write_mask (&history[0]) & (1 << reg)))
6036 return TRUE;
6037
6038 return FALSE;
6039}
6040
71400594
RS
6041/* Classify an instruction according to the FIX_VR4120_* enumeration.
6042 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6043 by VR4120 errata. */
4d7206a2 6044
71400594
RS
6045static unsigned int
6046classify_vr4120_insn (const char *name)
252b5132 6047{
71400594
RS
6048 if (strncmp (name, "macc", 4) == 0)
6049 return FIX_VR4120_MACC;
6050 if (strncmp (name, "dmacc", 5) == 0)
6051 return FIX_VR4120_DMACC;
6052 if (strncmp (name, "mult", 4) == 0)
6053 return FIX_VR4120_MULT;
6054 if (strncmp (name, "dmult", 5) == 0)
6055 return FIX_VR4120_DMULT;
6056 if (strstr (name, "div"))
6057 return FIX_VR4120_DIV;
6058 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6059 return FIX_VR4120_MTHILO;
6060 return NUM_FIX_VR4120_CLASSES;
6061}
252b5132 6062
a8d14a88
CM
6063#define INSN_ERET 0x42000018
6064#define INSN_DERET 0x4200001f
6065#define INSN_DMULT 0x1c
6066#define INSN_DMULTU 0x1d
ff239038 6067
71400594
RS
6068/* Return the number of instructions that must separate INSN1 and INSN2,
6069 where INSN1 is the earlier instruction. Return the worst-case value
6070 for any INSN2 if INSN2 is null. */
252b5132 6071
71400594
RS
6072static unsigned int
6073insns_between (const struct mips_cl_insn *insn1,
6074 const struct mips_cl_insn *insn2)
6075{
6076 unsigned long pinfo1, pinfo2;
4c260379 6077 unsigned int mask;
71400594 6078
85fcb30f
RS
6079 /* If INFO2 is null, pessimistically assume that all flags are set for
6080 the second instruction. */
71400594
RS
6081 pinfo1 = insn1->insn_mo->pinfo;
6082 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6083
71400594
RS
6084 /* For most targets, write-after-read dependencies on the HI and LO
6085 registers must be separated by at least two instructions. */
6086 if (!hilo_interlocks)
252b5132 6087 {
71400594
RS
6088 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6089 return 2;
6090 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6091 return 2;
6092 }
6093
6094 /* If we're working around r7000 errata, there must be two instructions
6095 between an mfhi or mflo and any instruction that uses the result. */
6096 if (mips_7000_hilo_fix
df58fc94 6097 && !mips_opts.micromips
71400594 6098 && MF_HILO_INSN (pinfo1)
85fcb30f 6099 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6100 return 2;
6101
ff239038
CM
6102 /* If we're working around 24K errata, one instruction is required
6103 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6104 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6105 {
6106 if (insn1->insn_opcode == INSN_ERET
6107 || insn1->insn_opcode == INSN_DERET)
6108 {
6109 if (insn2 == NULL
6110 || insn2->insn_opcode == INSN_ERET
6111 || insn2->insn_opcode == INSN_DERET
11625dd8 6112 || delayed_branch_p (insn2))
ff239038
CM
6113 return 1;
6114 }
6115 }
6116
a8d14a88
CM
6117 /* If we're working around PMC RM7000 errata, there must be three
6118 nops between a dmult and a load instruction. */
6119 if (mips_fix_rm7000 && !mips_opts.micromips)
6120 {
6121 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6122 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6123 {
6124 if (pinfo2 & INSN_LOAD_MEMORY)
6125 return 3;
6126 }
6127 }
6128
71400594
RS
6129 /* If working around VR4120 errata, check for combinations that need
6130 a single intervening instruction. */
df58fc94 6131 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6132 {
6133 unsigned int class1, class2;
252b5132 6134
71400594
RS
6135 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6136 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6137 {
71400594
RS
6138 if (insn2 == NULL)
6139 return 1;
6140 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6141 if (vr4120_conflicts[class1] & (1 << class2))
6142 return 1;
252b5132 6143 }
71400594
RS
6144 }
6145
df58fc94 6146 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6147 {
6148 /* Check for GPR or coprocessor load delays. All such delays
6149 are on the RT register. */
6150 /* Itbl support may require additional care here. */
67dc82bc 6151 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6152 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6153 {
85fcb30f 6154 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6155 return 1;
6156 }
6157
6158 /* Check for generic coprocessor hazards.
6159
6160 This case is not handled very well. There is no special
6161 knowledge of CP0 handling, and the coprocessors other than
6162 the floating point unit are not distinguished at all. */
6163 /* Itbl support may require additional care here. FIXME!
6164 Need to modify this to include knowledge about
6165 user specified delays! */
43885403 6166 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6167 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6168 {
6169 /* Handle cases where INSN1 writes to a known general coprocessor
6170 register. There must be a one instruction delay before INSN2
6171 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6172 mask = fpr_write_mask (insn1);
6173 if (mask != 0)
252b5132 6174 {
4c260379 6175 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6176 return 1;
252b5132
RH
6177 }
6178 else
6179 {
71400594
RS
6180 /* Read-after-write dependencies on the control registers
6181 require a two-instruction gap. */
6182 if ((pinfo1 & INSN_WRITE_COND_CODE)
6183 && (pinfo2 & INSN_READ_COND_CODE))
6184 return 2;
6185
6186 /* We don't know exactly what INSN1 does. If INSN2 is
6187 also a coprocessor instruction, assume there must be
6188 a one instruction gap. */
6189 if (pinfo2 & INSN_COP)
6190 return 1;
252b5132
RH
6191 }
6192 }
6b76fefe 6193
71400594
RS
6194 /* Check for read-after-write dependencies on the coprocessor
6195 control registers in cases where INSN1 does not need a general
6196 coprocessor delay. This means that INSN1 is a floating point
6197 comparison instruction. */
6198 /* Itbl support may require additional care here. */
6199 else if (!cop_interlocks
6200 && (pinfo1 & INSN_WRITE_COND_CODE)
6201 && (pinfo2 & INSN_READ_COND_CODE))
6202 return 1;
6203 }
6b76fefe 6204
7361da2c
AB
6205 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6206 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6207 and pause. */
6208 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6209 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6210 || (insn2 && delayed_branch_p (insn2))))
6211 return 1;
6212
71400594
RS
6213 return 0;
6214}
6b76fefe 6215
7d8e00cf
RS
6216/* Return the number of nops that would be needed to work around the
6217 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6218 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6219 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6220
6221static int
932d1a1b 6222nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6223 const struct mips_cl_insn *insn)
6224{
4c260379
RS
6225 int i, j;
6226 unsigned int mask;
7d8e00cf
RS
6227
6228 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6229 are not affected by the errata. */
6230 if (insn != 0
6231 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6232 || strcmp (insn->insn_mo->name, "mtlo") == 0
6233 || strcmp (insn->insn_mo->name, "mthi") == 0))
6234 return 0;
6235
6236 /* Search for the first MFLO or MFHI. */
6237 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6238 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6239 {
6240 /* Extract the destination register. */
4c260379 6241 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6242
6243 /* No nops are needed if INSN reads that register. */
4c260379 6244 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6245 return 0;
6246
6247 /* ...or if any of the intervening instructions do. */
6248 for (j = 0; j < i; j++)
4c260379 6249 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6250 return 0;
6251
932d1a1b
RS
6252 if (i >= ignore)
6253 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6254 }
6255 return 0;
6256}
6257
15be625d
CM
6258#define BASE_REG_EQ(INSN1, INSN2) \
6259 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6260 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6261
6262/* Return the minimum alignment for this store instruction. */
6263
6264static int
6265fix_24k_align_to (const struct mips_opcode *mo)
6266{
6267 if (strcmp (mo->name, "sh") == 0)
6268 return 2;
6269
6270 if (strcmp (mo->name, "swc1") == 0
6271 || strcmp (mo->name, "swc2") == 0
6272 || strcmp (mo->name, "sw") == 0
6273 || strcmp (mo->name, "sc") == 0
6274 || strcmp (mo->name, "s.s") == 0)
6275 return 4;
6276
6277 if (strcmp (mo->name, "sdc1") == 0
6278 || strcmp (mo->name, "sdc2") == 0
6279 || strcmp (mo->name, "s.d") == 0)
6280 return 8;
6281
6282 /* sb, swl, swr */
6283 return 1;
6284}
6285
6286struct fix_24k_store_info
6287 {
6288 /* Immediate offset, if any, for this store instruction. */
6289 short off;
6290 /* Alignment required by this store instruction. */
6291 int align_to;
6292 /* True for register offsets. */
6293 int register_offset;
6294 };
6295
6296/* Comparison function used by qsort. */
6297
6298static int
6299fix_24k_sort (const void *a, const void *b)
6300{
6301 const struct fix_24k_store_info *pos1 = a;
6302 const struct fix_24k_store_info *pos2 = b;
6303
6304 return (pos1->off - pos2->off);
6305}
6306
6307/* INSN is a store instruction. Try to record the store information
6308 in STINFO. Return false if the information isn't known. */
6309
6310static bfd_boolean
6311fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6312 const struct mips_cl_insn *insn)
15be625d
CM
6313{
6314 /* The instruction must have a known offset. */
6315 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6316 return FALSE;
6317
6318 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6319 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6320 return TRUE;
6321}
6322
932d1a1b
RS
6323/* Return the number of nops that would be needed to work around the 24k
6324 "lost data on stores during refill" errata if instruction INSN
6325 immediately followed the 2 instructions described by HIST.
6326 Ignore hazards that are contained within the first IGNORE
6327 instructions of HIST.
6328
6329 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6330 for the data cache refills and store data. The following describes
6331 the scenario where the store data could be lost.
6332
6333 * A data cache miss, due to either a load or a store, causing fill
6334 data to be supplied by the memory subsystem
6335 * The first three doublewords of fill data are returned and written
6336 into the cache
6337 * A sequence of four stores occurs in consecutive cycles around the
6338 final doubleword of the fill:
6339 * Store A
6340 * Store B
6341 * Store C
6342 * Zero, One or more instructions
6343 * Store D
6344
6345 The four stores A-D must be to different doublewords of the line that
6346 is being filled. The fourth instruction in the sequence above permits
6347 the fill of the final doubleword to be transferred from the FSB into
6348 the cache. In the sequence above, the stores may be either integer
6349 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6350 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6351 different doublewords on the line. If the floating point unit is
6352 running in 1:2 mode, it is not possible to create the sequence above
6353 using only floating point store instructions.
15be625d
CM
6354
6355 In this case, the cache line being filled is incorrectly marked
6356 invalid, thereby losing the data from any store to the line that
6357 occurs between the original miss and the completion of the five
6358 cycle sequence shown above.
6359
932d1a1b 6360 The workarounds are:
15be625d 6361
932d1a1b
RS
6362 * Run the data cache in write-through mode.
6363 * Insert a non-store instruction between
6364 Store A and Store B or Store B and Store C. */
15be625d
CM
6365
6366static int
932d1a1b 6367nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6368 const struct mips_cl_insn *insn)
6369{
6370 struct fix_24k_store_info pos[3];
6371 int align, i, base_offset;
6372
932d1a1b
RS
6373 if (ignore >= 2)
6374 return 0;
6375
ab9794cf
RS
6376 /* If the previous instruction wasn't a store, there's nothing to
6377 worry about. */
15be625d
CM
6378 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6379 return 0;
6380
ab9794cf
RS
6381 /* If the instructions after the previous one are unknown, we have
6382 to assume the worst. */
6383 if (!insn)
15be625d
CM
6384 return 1;
6385
ab9794cf
RS
6386 /* Check whether we are dealing with three consecutive stores. */
6387 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6388 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6389 return 0;
6390
6391 /* If we don't know the relationship between the store addresses,
6392 assume the worst. */
ab9794cf 6393 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6394 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6395 return 1;
6396
6397 if (!fix_24k_record_store_info (&pos[0], insn)
6398 || !fix_24k_record_store_info (&pos[1], &hist[0])
6399 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6400 return 1;
6401
6402 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6403
6404 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6405 X bytes and such that the base register + X is known to be aligned
6406 to align bytes. */
6407
6408 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6409 align = 8;
6410 else
6411 {
6412 align = pos[0].align_to;
6413 base_offset = pos[0].off;
6414 for (i = 1; i < 3; i++)
6415 if (align < pos[i].align_to)
6416 {
6417 align = pos[i].align_to;
6418 base_offset = pos[i].off;
6419 }
6420 for (i = 0; i < 3; i++)
6421 pos[i].off -= base_offset;
6422 }
6423
6424 pos[0].off &= ~align + 1;
6425 pos[1].off &= ~align + 1;
6426 pos[2].off &= ~align + 1;
6427
6428 /* If any two stores write to the same chunk, they also write to the
6429 same doubleword. The offsets are still sorted at this point. */
6430 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6431 return 0;
6432
6433 /* A range of at least 9 bytes is needed for the stores to be in
6434 non-overlapping doublewords. */
6435 if (pos[2].off - pos[0].off <= 8)
6436 return 0;
6437
6438 if (pos[2].off - pos[1].off >= 24
6439 || pos[1].off - pos[0].off >= 24
6440 || pos[2].off - pos[0].off >= 32)
6441 return 0;
6442
6443 return 1;
6444}
6445
71400594 6446/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6447 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6448 where HIST[0] is the most recent instruction. Ignore hazards
6449 between INSN and the first IGNORE instructions in HIST.
6450
6451 If INSN is null, return the worse-case number of nops for any
6452 instruction. */
bdaaa2e1 6453
71400594 6454static int
932d1a1b 6455nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6456 const struct mips_cl_insn *insn)
6457{
6458 int i, nops, tmp_nops;
bdaaa2e1 6459
71400594 6460 nops = 0;
932d1a1b 6461 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6462 {
91d6fa6a 6463 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6464 if (tmp_nops > nops)
6465 nops = tmp_nops;
6466 }
7d8e00cf 6467
df58fc94 6468 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6469 {
932d1a1b 6470 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6471 if (tmp_nops > nops)
6472 nops = tmp_nops;
6473 }
6474
df58fc94 6475 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6476 {
932d1a1b 6477 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6478 if (tmp_nops > nops)
6479 nops = tmp_nops;
6480 }
6481
71400594
RS
6482 return nops;
6483}
252b5132 6484
71400594 6485/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6486 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6487 would be needed after the extended sequence, ignoring hazards
6488 in the first IGNORE instructions. */
252b5132 6489
71400594 6490static int
932d1a1b
RS
6491nops_for_sequence (int num_insns, int ignore,
6492 const struct mips_cl_insn *hist, ...)
71400594
RS
6493{
6494 va_list args;
6495 struct mips_cl_insn buffer[MAX_NOPS];
6496 struct mips_cl_insn *cursor;
6497 int nops;
6498
91d6fa6a 6499 va_start (args, hist);
71400594 6500 cursor = buffer + num_insns;
91d6fa6a 6501 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6502 while (cursor > buffer)
6503 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6504
932d1a1b 6505 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6506 va_end (args);
6507 return nops;
6508}
252b5132 6509
71400594
RS
6510/* Like nops_for_insn, but if INSN is a branch, take into account the
6511 worst-case delay for the branch target. */
252b5132 6512
71400594 6513static int
932d1a1b 6514nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6515 const struct mips_cl_insn *insn)
6516{
6517 int nops, tmp_nops;
60b63b72 6518
932d1a1b 6519 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6520 if (delayed_branch_p (insn))
71400594 6521 {
932d1a1b 6522 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6523 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6524 if (tmp_nops > nops)
6525 nops = tmp_nops;
6526 }
11625dd8 6527 else if (compact_branch_p (insn))
71400594 6528 {
932d1a1b 6529 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6530 if (tmp_nops > nops)
6531 nops = tmp_nops;
6532 }
6533 return nops;
6534}
6535
c67a084a
NC
6536/* Fix NOP issue: Replace nops by "or at,at,zero". */
6537
6538static void
6539fix_loongson2f_nop (struct mips_cl_insn * ip)
6540{
df58fc94 6541 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6542 if (strcmp (ip->insn_mo->name, "nop") == 0)
6543 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6544}
6545
6546/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6547 jr target pc &= 'hffff_ffff_cfff_ffff. */
6548
6549static void
6550fix_loongson2f_jump (struct mips_cl_insn * ip)
6551{
df58fc94 6552 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6553 if (strcmp (ip->insn_mo->name, "j") == 0
6554 || strcmp (ip->insn_mo->name, "jr") == 0
6555 || strcmp (ip->insn_mo->name, "jalr") == 0)
6556 {
6557 int sreg;
6558 expressionS ep;
6559
6560 if (! mips_opts.at)
6561 return;
6562
df58fc94 6563 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6564 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6565 return;
6566
6567 ep.X_op = O_constant;
6568 ep.X_add_number = 0xcfff0000;
6569 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6570 ep.X_add_number = 0xffff;
6571 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6572 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6573 }
6574}
6575
6576static void
6577fix_loongson2f (struct mips_cl_insn * ip)
6578{
6579 if (mips_fix_loongson2f_nop)
6580 fix_loongson2f_nop (ip);
6581
6582 if (mips_fix_loongson2f_jump)
6583 fix_loongson2f_jump (ip);
6584}
6585
a4e06468
RS
6586/* IP is a branch that has a delay slot, and we need to fill it
6587 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6588 with the previous instruction.
6589 ADDRESS_EXPR is an operand of the instruction to be used with
6590 RELOC_TYPE. */
a4e06468
RS
6591
6592static bfd_boolean
e407c74b 6593can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6594 bfd_reloc_code_real_type *reloc_type)
a4e06468 6595{
2b0c8b40 6596 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6597 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6598 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6599
6600 /* -O2 and above is required for this optimization. */
6601 if (mips_optimize < 2)
6602 return FALSE;
6603
6604 /* If we have seen .set volatile or .set nomove, don't optimize. */
6605 if (mips_opts.nomove)
6606 return FALSE;
6607
6608 /* We can't swap if the previous instruction's position is fixed. */
6609 if (history[0].fixed_p)
6610 return FALSE;
6611
6612 /* If the previous previous insn was in a .set noreorder, we can't
6613 swap. Actually, the MIPS assembler will swap in this situation.
6614 However, gcc configured -with-gnu-as will generate code like
6615
6616 .set noreorder
6617 lw $4,XXX
6618 .set reorder
6619 INSN
6620 bne $4,$0,foo
6621
6622 in which we can not swap the bne and INSN. If gcc is not configured
6623 -with-gnu-as, it does not output the .set pseudo-ops. */
6624 if (history[1].noreorder_p)
6625 return FALSE;
6626
87333bb7
MR
6627 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6628 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6629 if (mips_opts.mips16 && history[0].fixp[0])
6630 return FALSE;
6631
6632 /* If the branch is itself the target of a branch, we can not swap.
6633 We cheat on this; all we check for is whether there is a label on
6634 this instruction. If there are any branches to anything other than
6635 a label, users must use .set noreorder. */
6636 if (seg_info (now_seg)->label_list)
6637 return FALSE;
6638
6639 /* If the previous instruction is in a variant frag other than this
2309ddf2 6640 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6641 MIPS16 code, which uses variant frags for different purposes. */
6642 if (!mips_opts.mips16
a4e06468
RS
6643 && history[0].frag
6644 && history[0].frag->fr_type == rs_machine_dependent)
6645 return FALSE;
6646
bcd530a7
RS
6647 /* We do not swap with instructions that cannot architecturally
6648 be placed in a branch delay slot, such as SYNC or ERET. We
6649 also refrain from swapping with a trap instruction, since it
6650 complicates trap handlers to have the trap instruction be in
6651 a delay slot. */
a4e06468 6652 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6653 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6654 return FALSE;
6655
6656 /* Check for conflicts between the branch and the instructions
6657 before the candidate delay slot. */
6658 if (nops_for_insn (0, history + 1, ip) > 0)
6659 return FALSE;
6660
6661 /* Check for conflicts between the swapped sequence and the
6662 target of the branch. */
6663 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6664 return FALSE;
6665
6666 /* If the branch reads a register that the previous
6667 instruction sets, we can not swap. */
6668 gpr_read = gpr_read_mask (ip);
6669 prev_gpr_write = gpr_write_mask (&history[0]);
6670 if (gpr_read & prev_gpr_write)
6671 return FALSE;
6672
9d5de888
CF
6673 fpr_read = fpr_read_mask (ip);
6674 prev_fpr_write = fpr_write_mask (&history[0]);
6675 if (fpr_read & prev_fpr_write)
6676 return FALSE;
6677
a4e06468
RS
6678 /* If the branch writes a register that the previous
6679 instruction sets, we can not swap. */
6680 gpr_write = gpr_write_mask (ip);
6681 if (gpr_write & prev_gpr_write)
6682 return FALSE;
6683
6684 /* If the branch writes a register that the previous
6685 instruction reads, we can not swap. */
6686 prev_gpr_read = gpr_read_mask (&history[0]);
6687 if (gpr_write & prev_gpr_read)
6688 return FALSE;
6689
6690 /* If one instruction sets a condition code and the
6691 other one uses a condition code, we can not swap. */
6692 pinfo = ip->insn_mo->pinfo;
6693 if ((pinfo & INSN_READ_COND_CODE)
6694 && (prev_pinfo & INSN_WRITE_COND_CODE))
6695 return FALSE;
6696 if ((pinfo & INSN_WRITE_COND_CODE)
6697 && (prev_pinfo & INSN_READ_COND_CODE))
6698 return FALSE;
6699
6700 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6701 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6702 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6703 return FALSE;
a4e06468 6704
df58fc94
RS
6705 /* If the previous instruction has an incorrect size for a fixed
6706 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6707 pinfo2 = ip->insn_mo->pinfo2;
6708 if (mips_opts.micromips
6709 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6710 && insn_length (history) != 2)
6711 return FALSE;
6712 if (mips_opts.micromips
6713 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6714 && insn_length (history) != 4)
6715 return FALSE;
6716
e407c74b
NC
6717 /* On R5900 short loops need to be fixed by inserting a nop in
6718 the branch delay slots.
6719 A short loop can be terminated too early. */
6720 if (mips_opts.arch == CPU_R5900
6721 /* Check if instruction has a parameter, ignore "j $31". */
6722 && (address_expr != NULL)
6723 /* Parameter must be 16 bit. */
6724 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6725 /* Branch to same segment. */
6726 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6727 /* Branch to same code fragment. */
6728 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6729 /* Can only calculate branch offset if value is known. */
6730 && symbol_constant_p(address_expr->X_add_symbol)
6731 /* Check if branch is really conditional. */
6732 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6733 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6734 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6735 {
6736 int distance;
6737 /* Check if loop is shorter than 6 instructions including
6738 branch and delay slot. */
6739 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6740 if (distance <= 20)
6741 {
6742 int i;
6743 int rv;
6744
6745 rv = FALSE;
6746 /* When the loop includes branches or jumps,
6747 it is not a short loop. */
6748 for (i = 0; i < (distance / 4); i++)
6749 {
6750 if ((history[i].cleared_p)
6751 || delayed_branch_p(&history[i]))
6752 {
6753 rv = TRUE;
6754 break;
6755 }
6756 }
6757 if (rv == FALSE)
6758 {
6759 /* Insert nop after branch to fix short loop. */
6760 return FALSE;
6761 }
6762 }
6763 }
6764
a4e06468
RS
6765 return TRUE;
6766}
6767
e407c74b
NC
6768/* Decide how we should add IP to the instruction stream.
6769 ADDRESS_EXPR is an operand of the instruction to be used with
6770 RELOC_TYPE. */
a4e06468
RS
6771
6772static enum append_method
e407c74b 6773get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6774 bfd_reloc_code_real_type *reloc_type)
a4e06468 6775{
a4e06468
RS
6776 /* The relaxed version of a macro sequence must be inherently
6777 hazard-free. */
6778 if (mips_relax.sequence == 2)
6779 return APPEND_ADD;
6780
6781 /* We must not dabble with instructions in a ".set norerorder" block. */
6782 if (mips_opts.noreorder)
6783 return APPEND_ADD;
6784
6785 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6786 if (delayed_branch_p (ip))
a4e06468 6787 {
e407c74b
NC
6788 if (!branch_likely_p (ip)
6789 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6790 return APPEND_SWAP;
6791
6792 if (mips_opts.mips16
6793 && ISA_SUPPORTS_MIPS16E
fc76e730 6794 && gpr_read_mask (ip) != 0)
a4e06468
RS
6795 return APPEND_ADD_COMPACT;
6796
6797 return APPEND_ADD_WITH_NOP;
6798 }
6799
a4e06468
RS
6800 return APPEND_ADD;
6801}
6802
ceb94aa5
RS
6803/* IP is a MIPS16 instruction whose opcode we have just changed.
6804 Point IP->insn_mo to the new opcode's definition. */
6805
6806static void
6807find_altered_mips16_opcode (struct mips_cl_insn *ip)
6808{
6809 const struct mips_opcode *mo, *end;
6810
6811 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6812 for (mo = ip->insn_mo; mo < end; mo++)
6813 if ((ip->insn_opcode & mo->mask) == mo->match)
6814 {
6815 ip->insn_mo = mo;
6816 return;
6817 }
6818 abort ();
6819}
6820
df58fc94
RS
6821/* For microMIPS macros, we need to generate a local number label
6822 as the target of branches. */
6823#define MICROMIPS_LABEL_CHAR '\037'
6824static unsigned long micromips_target_label;
6825static char micromips_target_name[32];
6826
6827static char *
6828micromips_label_name (void)
6829{
6830 char *p = micromips_target_name;
6831 char symbol_name_temporary[24];
6832 unsigned long l;
6833 int i;
6834
6835 if (*p)
6836 return p;
6837
6838 i = 0;
6839 l = micromips_target_label;
6840#ifdef LOCAL_LABEL_PREFIX
6841 *p++ = LOCAL_LABEL_PREFIX;
6842#endif
6843 *p++ = 'L';
6844 *p++ = MICROMIPS_LABEL_CHAR;
6845 do
6846 {
6847 symbol_name_temporary[i++] = l % 10 + '0';
6848 l /= 10;
6849 }
6850 while (l != 0);
6851 while (i > 0)
6852 *p++ = symbol_name_temporary[--i];
6853 *p = '\0';
6854
6855 return micromips_target_name;
6856}
6857
6858static void
6859micromips_label_expr (expressionS *label_expr)
6860{
6861 label_expr->X_op = O_symbol;
6862 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6863 label_expr->X_add_number = 0;
6864}
6865
6866static void
6867micromips_label_inc (void)
6868{
6869 micromips_target_label++;
6870 *micromips_target_name = '\0';
6871}
6872
6873static void
6874micromips_add_label (void)
6875{
6876 symbolS *s;
6877
6878 s = colon (micromips_label_name ());
6879 micromips_label_inc ();
f3ded42a 6880 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6881}
6882
6883/* If assembling microMIPS code, then return the microMIPS reloc
6884 corresponding to the requested one if any. Otherwise return
6885 the reloc unchanged. */
6886
6887static bfd_reloc_code_real_type
6888micromips_map_reloc (bfd_reloc_code_real_type reloc)
6889{
6890 static const bfd_reloc_code_real_type relocs[][2] =
6891 {
6892 /* Keep sorted incrementally by the left-hand key. */
6893 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6894 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6895 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6896 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6897 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6898 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6899 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6900 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6901 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6902 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6903 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6904 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6905 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6906 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6907 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6908 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6909 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6910 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6911 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6912 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6913 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6914 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6915 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6916 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6917 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6918 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6919 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6920 };
6921 bfd_reloc_code_real_type r;
6922 size_t i;
6923
6924 if (!mips_opts.micromips)
6925 return reloc;
6926 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6927 {
6928 r = relocs[i][0];
6929 if (r > reloc)
6930 return reloc;
6931 if (r == reloc)
6932 return relocs[i][1];
6933 }
6934 return reloc;
6935}
6936
b886a2ab
RS
6937/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6938 Return true on success, storing the resolved value in RESULT. */
6939
6940static bfd_boolean
6941calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6942 offsetT *result)
6943{
6944 switch (reloc)
6945 {
6946 case BFD_RELOC_MIPS_HIGHEST:
6947 case BFD_RELOC_MICROMIPS_HIGHEST:
6948 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6949 return TRUE;
6950
6951 case BFD_RELOC_MIPS_HIGHER:
6952 case BFD_RELOC_MICROMIPS_HIGHER:
6953 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6954 return TRUE;
6955
6956 case BFD_RELOC_HI16_S:
6957 case BFD_RELOC_MICROMIPS_HI16_S:
6958 case BFD_RELOC_MIPS16_HI16_S:
6959 *result = ((operand + 0x8000) >> 16) & 0xffff;
6960 return TRUE;
6961
6962 case BFD_RELOC_HI16:
6963 case BFD_RELOC_MICROMIPS_HI16:
6964 case BFD_RELOC_MIPS16_HI16:
6965 *result = (operand >> 16) & 0xffff;
6966 return TRUE;
6967
6968 case BFD_RELOC_LO16:
6969 case BFD_RELOC_MICROMIPS_LO16:
6970 case BFD_RELOC_MIPS16_LO16:
6971 *result = operand & 0xffff;
6972 return TRUE;
6973
6974 case BFD_RELOC_UNUSED:
6975 *result = operand;
6976 return TRUE;
6977
6978 default:
6979 return FALSE;
6980 }
6981}
6982
71400594
RS
6983/* Output an instruction. IP is the instruction information.
6984 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
6985 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6986 a macro expansion. */
71400594
RS
6987
6988static void
6989append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 6990 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 6991{
14fe068b 6992 unsigned long prev_pinfo2, pinfo;
71400594 6993 bfd_boolean relaxed_branch = FALSE;
a4e06468 6994 enum append_method method;
2309ddf2 6995 bfd_boolean relax32;
2b0c8b40 6996 int branch_disp;
71400594 6997
2309ddf2 6998 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
6999 fix_loongson2f (ip);
7000
738f4d98 7001 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7002 file_ase_micromips |= mips_opts.micromips;
738f4d98 7003
df58fc94 7004 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7005 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
7006
7007 if (mips_opts.micromips
7008 && !expansionp
7009 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7010 && micromips_insn_length (ip->insn_mo) != 2)
7011 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7012 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7013 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7014 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7015
15be625d
CM
7016 if (address_expr == NULL)
7017 ip->complete_p = 1;
b886a2ab
RS
7018 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7019 && reloc_type[1] == BFD_RELOC_UNUSED
7020 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7021 && address_expr->X_op == O_constant)
7022 {
15be625d
CM
7023 switch (*reloc_type)
7024 {
15be625d 7025 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7026 {
7027 int shift;
7028
7029 shift = mips_opts.micromips ? 1 : 2;
7030 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7031 as_bad (_("jump to misaligned address (0x%lx)"),
7032 (unsigned long) address_expr->X_add_number);
7033 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7034 & 0x3ffffff);
335574df 7035 ip->complete_p = 1;
df58fc94 7036 }
15be625d
CM
7037 break;
7038
7039 case BFD_RELOC_MIPS16_JMP:
7040 if ((address_expr->X_add_number & 3) != 0)
7041 as_bad (_("jump to misaligned address (0x%lx)"),
7042 (unsigned long) address_expr->X_add_number);
7043 ip->insn_opcode |=
7044 (((address_expr->X_add_number & 0x7c0000) << 3)
7045 | ((address_expr->X_add_number & 0xf800000) >> 7)
7046 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7047 ip->complete_p = 1;
15be625d
CM
7048 break;
7049
7050 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7051 {
7052 int shift;
7053
7054 shift = mips_opts.micromips ? 1 : 2;
7055 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7056 as_bad (_("branch to misaligned address (0x%lx)"),
7057 (unsigned long) address_expr->X_add_number);
7058 if (!mips_relax_branch)
7059 {
7060 if ((address_expr->X_add_number + (1 << (shift + 15)))
7061 & ~((1 << (shift + 16)) - 1))
7062 as_bad (_("branch address range overflow (0x%lx)"),
7063 (unsigned long) address_expr->X_add_number);
7064 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7065 & 0xffff);
7066 }
df58fc94 7067 }
15be625d
CM
7068 break;
7069
7361da2c
AB
7070 case BFD_RELOC_MIPS_21_PCREL_S2:
7071 {
7072 int shift;
7073
7074 shift = 2;
7075 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7076 as_bad (_("branch to misaligned address (0x%lx)"),
7077 (unsigned long) address_expr->X_add_number);
7078 if ((address_expr->X_add_number + (1 << (shift + 20)))
7079 & ~((1 << (shift + 21)) - 1))
7080 as_bad (_("branch address range overflow (0x%lx)"),
7081 (unsigned long) address_expr->X_add_number);
7082 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7083 & 0x1fffff);
7084 }
7085 break;
7086
7087 case BFD_RELOC_MIPS_26_PCREL_S2:
7088 {
7089 int shift;
7090
7091 shift = 2;
7092 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7093 as_bad (_("branch to misaligned address (0x%lx)"),
7094 (unsigned long) address_expr->X_add_number);
7095 if ((address_expr->X_add_number + (1 << (shift + 25)))
7096 & ~((1 << (shift + 26)) - 1))
7097 as_bad (_("branch address range overflow (0x%lx)"),
7098 (unsigned long) address_expr->X_add_number);
7099 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7100 & 0x3ffffff);
7101 }
7102 break;
7103
15be625d 7104 default:
b886a2ab
RS
7105 {
7106 offsetT value;
7107
7108 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7109 &value))
7110 {
7111 ip->insn_opcode |= value & 0xffff;
7112 ip->complete_p = 1;
7113 }
7114 }
7115 break;
7116 }
15be625d
CM
7117 }
7118
71400594
RS
7119 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7120 {
7121 /* There are a lot of optimizations we could do that we don't.
7122 In particular, we do not, in general, reorder instructions.
7123 If you use gcc with optimization, it will reorder
7124 instructions and generally do much more optimization then we
7125 do here; repeating all that work in the assembler would only
7126 benefit hand written assembly code, and does not seem worth
7127 it. */
7128 int nops = (mips_optimize == 0
932d1a1b
RS
7129 ? nops_for_insn (0, history, NULL)
7130 : nops_for_insn_or_target (0, history, ip));
71400594 7131 if (nops > 0)
252b5132
RH
7132 {
7133 fragS *old_frag;
7134 unsigned long old_frag_offset;
7135 int i;
252b5132
RH
7136
7137 old_frag = frag_now;
7138 old_frag_offset = frag_now_fix ();
7139
7140 for (i = 0; i < nops; i++)
14fe068b
RS
7141 add_fixed_insn (NOP_INSN);
7142 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7143
7144 if (listing)
7145 {
7146 listing_prev_line ();
7147 /* We may be at the start of a variant frag. In case we
7148 are, make sure there is enough space for the frag
7149 after the frags created by listing_prev_line. The
7150 argument to frag_grow here must be at least as large
7151 as the argument to all other calls to frag_grow in
7152 this file. We don't have to worry about being in the
7153 middle of a variant frag, because the variants insert
7154 all needed nop instructions themselves. */
7155 frag_grow (40);
7156 }
7157
462427c4 7158 mips_move_text_labels ();
252b5132
RH
7159
7160#ifndef NO_ECOFF_DEBUGGING
7161 if (ECOFF_DEBUGGING)
7162 ecoff_fix_loc (old_frag, old_frag_offset);
7163#endif
7164 }
71400594
RS
7165 }
7166 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7167 {
932d1a1b
RS
7168 int nops;
7169
7170 /* Work out how many nops in prev_nop_frag are needed by IP,
7171 ignoring hazards generated by the first prev_nop_frag_since
7172 instructions. */
7173 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7174 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7175
71400594
RS
7176 /* Enforce NOPS as a minimum. */
7177 if (nops > prev_nop_frag_required)
7178 prev_nop_frag_required = nops;
252b5132 7179
71400594
RS
7180 if (prev_nop_frag_holds == prev_nop_frag_required)
7181 {
7182 /* Settle for the current number of nops. Update the history
7183 accordingly (for the benefit of any future .set reorder code). */
7184 prev_nop_frag = NULL;
7185 insert_into_history (prev_nop_frag_since,
7186 prev_nop_frag_holds, NOP_INSN);
7187 }
7188 else
7189 {
7190 /* Allow this instruction to replace one of the nops that was
7191 tentatively added to prev_nop_frag. */
df58fc94 7192 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7193 prev_nop_frag_holds--;
7194 prev_nop_frag_since++;
252b5132
RH
7195 }
7196 }
7197
e407c74b 7198 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7199 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7200
e410add4
RS
7201 dwarf2_emit_insn (0);
7202 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7203 so "move" the instruction address accordingly.
7204
7205 Also, it doesn't seem appropriate for the assembler to reorder .loc
7206 entries. If this instruction is a branch that we are going to swap
7207 with the previous instruction, the two instructions should be
7208 treated as a unit, and the debug information for both instructions
7209 should refer to the start of the branch sequence. Using the
7210 current position is certainly wrong when swapping a 32-bit branch
7211 and a 16-bit delay slot, since the current position would then be
7212 in the middle of a branch. */
7213 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7214
df58fc94
RS
7215 relax32 = (mips_relax_branch
7216 /* Don't try branch relaxation within .set nomacro, or within
7217 .set noat if we use $at for PIC computations. If it turns
7218 out that the branch was out-of-range, we'll get an error. */
7219 && !mips_opts.warn_about_macros
7220 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7221 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7222 as they have no complementing branches. */
7223 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7224
7225 if (!HAVE_CODE_COMPRESSION
7226 && address_expr
7227 && relax32
0b25d3e6 7228 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7229 && delayed_branch_p (ip))
4a6a3df4 7230 {
895921c9 7231 relaxed_branch = TRUE;
1e915849
RS
7232 add_relaxed_insn (ip, (relaxed_branch_length
7233 (NULL, NULL,
11625dd8
RS
7234 uncond_branch_p (ip) ? -1
7235 : branch_likely_p (ip) ? 1
1e915849
RS
7236 : 0)), 4,
7237 RELAX_BRANCH_ENCODE
66b3e8da 7238 (AT,
11625dd8
RS
7239 uncond_branch_p (ip),
7240 branch_likely_p (ip),
1e915849
RS
7241 pinfo & INSN_WRITE_GPR_31,
7242 0),
7243 address_expr->X_add_symbol,
7244 address_expr->X_add_number);
4a6a3df4
AO
7245 *reloc_type = BFD_RELOC_UNUSED;
7246 }
df58fc94
RS
7247 else if (mips_opts.micromips
7248 && address_expr
7249 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7250 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7251 && (delayed_branch_p (ip) || compact_branch_p (ip))
7252 /* Don't try branch relaxation when users specify
7253 16-bit/32-bit instructions. */
7254 && !forced_insn_length)
df58fc94
RS
7255 {
7256 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7257 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
7258 int uncond = uncond_branch_p (ip) ? -1 : 0;
7259 int compact = compact_branch_p (ip);
df58fc94
RS
7260 int al = pinfo & INSN_WRITE_GPR_31;
7261 int length32;
7262
7263 gas_assert (address_expr != NULL);
7264 gas_assert (!mips_relax.sequence);
7265
2b0c8b40 7266 relaxed_branch = TRUE;
df58fc94
RS
7267 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7268 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
7269 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7270 relax32, 0, 0),
df58fc94
RS
7271 address_expr->X_add_symbol,
7272 address_expr->X_add_number);
7273 *reloc_type = BFD_RELOC_UNUSED;
7274 }
7275 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132
RH
7276 {
7277 /* We need to set up a variant frag. */
df58fc94 7278 gas_assert (address_expr != NULL);
1e915849
RS
7279 add_relaxed_insn (ip, 4, 0,
7280 RELAX_MIPS16_ENCODE
7281 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 7282 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 7283 delayed_branch_p (&history[0]),
1e915849
RS
7284 history[0].mips16_absolute_jump_p),
7285 make_expr_symbol (address_expr), 0);
252b5132 7286 }
5c04167a 7287 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7288 {
11625dd8 7289 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7290 /* Make sure there is enough room to swap this instruction with
7291 a following jump instruction. */
7292 frag_grow (6);
1e915849 7293 add_fixed_insn (ip);
252b5132
RH
7294 }
7295 else
7296 {
7297 if (mips_opts.mips16
7298 && mips_opts.noreorder
11625dd8 7299 && delayed_branch_p (&history[0]))
252b5132
RH
7300 as_warn (_("extended instruction in delay slot"));
7301
4d7206a2
RS
7302 if (mips_relax.sequence)
7303 {
7304 /* If we've reached the end of this frag, turn it into a variant
7305 frag and record the information for the instructions we've
7306 written so far. */
7307 if (frag_room () < 4)
7308 relax_close_frag ();
df58fc94 7309 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7310 }
7311
584892a6 7312 if (mips_relax.sequence != 2)
df58fc94
RS
7313 {
7314 if (mips_macro_warning.first_insn_sizes[0] == 0)
7315 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7316 mips_macro_warning.sizes[0] += insn_length (ip);
7317 mips_macro_warning.insns[0]++;
7318 }
584892a6 7319 if (mips_relax.sequence != 1)
df58fc94
RS
7320 {
7321 if (mips_macro_warning.first_insn_sizes[1] == 0)
7322 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7323 mips_macro_warning.sizes[1] += insn_length (ip);
7324 mips_macro_warning.insns[1]++;
7325 }
584892a6 7326
1e915849
RS
7327 if (mips_opts.mips16)
7328 {
7329 ip->fixed_p = 1;
7330 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7331 }
7332 add_fixed_insn (ip);
252b5132
RH
7333 }
7334
9fe77896 7335 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7336 {
df58fc94 7337 bfd_reloc_code_real_type final_type[3];
2309ddf2 7338 reloc_howto_type *howto0;
9fe77896
RS
7339 reloc_howto_type *howto;
7340 int i;
34ce925e 7341
df58fc94
RS
7342 /* Perform any necessary conversion to microMIPS relocations
7343 and find out how many relocations there actually are. */
7344 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7345 final_type[i] = micromips_map_reloc (reloc_type[i]);
7346
9fe77896
RS
7347 /* In a compound relocation, it is the final (outermost)
7348 operator that determines the relocated field. */
2309ddf2 7349 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7350 if (!howto)
7351 abort ();
2309ddf2
MR
7352
7353 if (i > 1)
7354 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7355 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7356 bfd_get_reloc_size (howto),
7357 address_expr,
2309ddf2
MR
7358 howto0 && howto0->pc_relative,
7359 final_type[0]);
9fe77896
RS
7360
7361 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7362 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7363 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7364
7365 /* These relocations can have an addend that won't fit in
7366 4 octets for 64bit assembly. */
bad1aba3 7367 if (GPR_SIZE == 64
9fe77896
RS
7368 && ! howto->partial_inplace
7369 && (reloc_type[0] == BFD_RELOC_16
7370 || reloc_type[0] == BFD_RELOC_32
7371 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7372 || reloc_type[0] == BFD_RELOC_GPREL16
7373 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7374 || reloc_type[0] == BFD_RELOC_GPREL32
7375 || reloc_type[0] == BFD_RELOC_64
7376 || reloc_type[0] == BFD_RELOC_CTOR
7377 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7378 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7379 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7380 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7381 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7382 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7383 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7384 || hi16_reloc_p (reloc_type[0])
7385 || lo16_reloc_p (reloc_type[0])))
7386 ip->fixp[0]->fx_no_overflow = 1;
7387
ddaf2c41
MR
7388 /* These relocations can have an addend that won't fit in 2 octets. */
7389 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7390 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7391 ip->fixp[0]->fx_no_overflow = 1;
7392
9fe77896
RS
7393 if (mips_relax.sequence)
7394 {
7395 if (mips_relax.first_fixup == 0)
7396 mips_relax.first_fixup = ip->fixp[0];
7397 }
7398 else if (reloc_needs_lo_p (*reloc_type))
7399 {
7400 struct mips_hi_fixup *hi_fixup;
7401
7402 /* Reuse the last entry if it already has a matching %lo. */
7403 hi_fixup = mips_hi_fixup_list;
7404 if (hi_fixup == 0
7405 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7406 {
9fe77896
RS
7407 hi_fixup = ((struct mips_hi_fixup *)
7408 xmalloc (sizeof (struct mips_hi_fixup)));
7409 hi_fixup->next = mips_hi_fixup_list;
7410 mips_hi_fixup_list = hi_fixup;
4d7206a2 7411 }
9fe77896
RS
7412 hi_fixup->fixp = ip->fixp[0];
7413 hi_fixup->seg = now_seg;
7414 }
252b5132 7415
9fe77896
RS
7416 /* Add fixups for the second and third relocations, if given.
7417 Note that the ABI allows the second relocation to be
7418 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7419 moment we only use RSS_UNDEF, but we could add support
7420 for the others if it ever becomes necessary. */
7421 for (i = 1; i < 3; i++)
7422 if (reloc_type[i] != BFD_RELOC_UNUSED)
7423 {
7424 ip->fixp[i] = fix_new (ip->frag, ip->where,
7425 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7426 FALSE, final_type[i]);
f6688943 7427
9fe77896
RS
7428 /* Use fx_tcbit to mark compound relocs. */
7429 ip->fixp[0]->fx_tcbit = 1;
7430 ip->fixp[i]->fx_tcbit = 1;
7431 }
252b5132 7432 }
1e915849 7433 install_insn (ip);
252b5132
RH
7434
7435 /* Update the register mask information. */
4c260379
RS
7436 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7437 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7438
a4e06468 7439 switch (method)
252b5132 7440 {
a4e06468
RS
7441 case APPEND_ADD:
7442 insert_into_history (0, 1, ip);
7443 break;
7444
7445 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7446 {
7447 struct mips_cl_insn *nop;
7448
7449 insert_into_history (0, 1, ip);
7450 nop = get_delay_slot_nop (ip);
7451 add_fixed_insn (nop);
7452 insert_into_history (0, 1, nop);
7453 if (mips_relax.sequence)
7454 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7455 }
a4e06468
RS
7456 break;
7457
7458 case APPEND_ADD_COMPACT:
7459 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7460 gas_assert (mips_opts.mips16);
7461 ip->insn_opcode |= 0x0080;
7462 find_altered_mips16_opcode (ip);
7463 install_insn (ip);
7464 insert_into_history (0, 1, ip);
7465 break;
7466
7467 case APPEND_SWAP:
7468 {
7469 struct mips_cl_insn delay = history[0];
7470 if (mips_opts.mips16)
7471 {
7472 know (delay.frag == ip->frag);
7473 move_insn (ip, delay.frag, delay.where);
7474 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7475 }
464ab0e5 7476 else if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7477 {
7478 /* Add the delay slot instruction to the end of the
7479 current frag and shrink the fixed part of the
7480 original frag. If the branch occupies the tail of
7481 the latter, move it backwards to cover the gap. */
2b0c8b40 7482 delay.frag->fr_fix -= branch_disp;
a4e06468 7483 if (delay.frag == ip->frag)
2b0c8b40 7484 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7485 add_fixed_insn (&delay);
7486 }
7487 else
7488 {
2b0c8b40
MR
7489 move_insn (&delay, ip->frag,
7490 ip->where - branch_disp + insn_length (ip));
a4e06468
RS
7491 move_insn (ip, history[0].frag, history[0].where);
7492 }
7493 history[0] = *ip;
7494 delay.fixed_p = 1;
7495 insert_into_history (0, 1, &delay);
7496 }
7497 break;
252b5132
RH
7498 }
7499
13408f1e 7500 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7501 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7502 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7503 {
7504 unsigned int i;
7505
79850f26 7506 mips_no_prev_insn ();
13408f1e 7507
e407c74b 7508 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7509 history[i].cleared_p = 1;
e407c74b
NC
7510 }
7511
df58fc94
RS
7512 /* We need to emit a label at the end of branch-likely macros. */
7513 if (emit_branch_likely_macro)
7514 {
7515 emit_branch_likely_macro = FALSE;
7516 micromips_add_label ();
7517 }
7518
252b5132
RH
7519 /* We just output an insn, so the next one doesn't have a label. */
7520 mips_clear_insn_labels ();
252b5132
RH
7521}
7522
e407c74b
NC
7523/* Forget that there was any previous instruction or label.
7524 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7525
7526static void
7d10b47d 7527mips_no_prev_insn (void)
252b5132 7528{
7d10b47d
RS
7529 prev_nop_frag = NULL;
7530 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7531 mips_clear_insn_labels ();
7532}
7533
7d10b47d
RS
7534/* This function must be called before we emit something other than
7535 instructions. It is like mips_no_prev_insn except that it inserts
7536 any NOPS that might be needed by previous instructions. */
252b5132 7537
7d10b47d
RS
7538void
7539mips_emit_delays (void)
252b5132
RH
7540{
7541 if (! mips_opts.noreorder)
7542 {
932d1a1b 7543 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7544 if (nops > 0)
7545 {
7d10b47d
RS
7546 while (nops-- > 0)
7547 add_fixed_insn (NOP_INSN);
462427c4 7548 mips_move_text_labels ();
7d10b47d
RS
7549 }
7550 }
7551 mips_no_prev_insn ();
7552}
7553
7554/* Start a (possibly nested) noreorder block. */
7555
7556static void
7557start_noreorder (void)
7558{
7559 if (mips_opts.noreorder == 0)
7560 {
7561 unsigned int i;
7562 int nops;
7563
7564 /* None of the instructions before the .set noreorder can be moved. */
7565 for (i = 0; i < ARRAY_SIZE (history); i++)
7566 history[i].fixed_p = 1;
7567
7568 /* Insert any nops that might be needed between the .set noreorder
7569 block and the previous instructions. We will later remove any
7570 nops that turn out not to be needed. */
932d1a1b 7571 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7572 if (nops > 0)
7573 {
7574 if (mips_optimize != 0)
252b5132
RH
7575 {
7576 /* Record the frag which holds the nop instructions, so
7577 that we can remove them if we don't need them. */
df58fc94 7578 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7579 prev_nop_frag = frag_now;
7580 prev_nop_frag_holds = nops;
7581 prev_nop_frag_required = 0;
7582 prev_nop_frag_since = 0;
7583 }
7584
7585 for (; nops > 0; --nops)
1e915849 7586 add_fixed_insn (NOP_INSN);
252b5132 7587
7d10b47d
RS
7588 /* Move on to a new frag, so that it is safe to simply
7589 decrease the size of prev_nop_frag. */
7590 frag_wane (frag_now);
7591 frag_new (0);
462427c4 7592 mips_move_text_labels ();
252b5132 7593 }
df58fc94 7594 mips_mark_labels ();
7d10b47d 7595 mips_clear_insn_labels ();
252b5132 7596 }
7d10b47d
RS
7597 mips_opts.noreorder++;
7598 mips_any_noreorder = 1;
7599}
252b5132 7600
7d10b47d 7601/* End a nested noreorder block. */
252b5132 7602
7d10b47d
RS
7603static void
7604end_noreorder (void)
7605{
7606 mips_opts.noreorder--;
7607 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7608 {
7609 /* Commit to inserting prev_nop_frag_required nops and go back to
7610 handling nop insertion the .set reorder way. */
7611 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7612 * NOP_INSN_SIZE);
7d10b47d
RS
7613 insert_into_history (prev_nop_frag_since,
7614 prev_nop_frag_required, NOP_INSN);
7615 prev_nop_frag = NULL;
7616 }
252b5132
RH
7617}
7618
97d87491
RS
7619/* Sign-extend 32-bit mode constants that have bit 31 set and all
7620 higher bits unset. */
7621
7622static void
7623normalize_constant_expr (expressionS *ex)
7624{
7625 if (ex->X_op == O_constant
7626 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7627 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7628 - 0x80000000);
7629}
7630
7631/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7632 all higher bits unset. */
7633
7634static void
7635normalize_address_expr (expressionS *ex)
7636{
7637 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7638 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7639 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7640 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7641 - 0x80000000);
7642}
7643
7644/* Try to match TOKENS against OPCODE, storing the result in INSN.
7645 Return true if the match was successful.
7646
7647 OPCODE_EXTRA is a value that should be ORed into the opcode
7648 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7649 there are more alternatives after OPCODE and SOFT_MATCH is
7650 as for mips_arg_info. */
7651
7652static bfd_boolean
7653match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7654 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7655 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7656{
7657 const char *args;
7658 struct mips_arg_info arg;
7659 const struct mips_operand *operand;
7660 char c;
7661
7662 imm_expr.X_op = O_absent;
97d87491
RS
7663 offset_expr.X_op = O_absent;
7664 offset_reloc[0] = BFD_RELOC_UNUSED;
7665 offset_reloc[1] = BFD_RELOC_UNUSED;
7666 offset_reloc[2] = BFD_RELOC_UNUSED;
7667
7668 create_insn (insn, opcode);
60f20e8b
RS
7669 /* When no opcode suffix is specified, assume ".xyzw". */
7670 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7671 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7672 else
7673 insn->insn_opcode |= opcode_extra;
97d87491
RS
7674 memset (&arg, 0, sizeof (arg));
7675 arg.insn = insn;
7676 arg.token = tokens;
7677 arg.argnum = 1;
7678 arg.last_regno = ILLEGAL_REG;
7679 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7680 arg.lax_match = lax_match;
97d87491
RS
7681 for (args = opcode->args;; ++args)
7682 {
7683 if (arg.token->type == OT_END)
7684 {
7685 /* Handle unary instructions in which only one operand is given.
7686 The source is then the same as the destination. */
7687 if (arg.opnum == 1 && *args == ',')
7688 {
7689 operand = (mips_opts.micromips
7690 ? decode_micromips_operand (args + 1)
7691 : decode_mips_operand (args + 1));
7692 if (operand && mips_optional_operand_p (operand))
7693 {
7694 arg.token = tokens;
7695 arg.argnum = 1;
7696 continue;
7697 }
7698 }
7699
7700 /* Treat elided base registers as $0. */
7701 if (strcmp (args, "(b)") == 0)
7702 args += 3;
7703
7704 if (args[0] == '+')
7705 switch (args[1])
7706 {
7707 case 'K':
7708 case 'N':
7709 /* The register suffix is optional. */
7710 args += 2;
7711 break;
7712 }
7713
7714 /* Fail the match if there were too few operands. */
7715 if (*args)
7716 return FALSE;
7717
7718 /* Successful match. */
60f20e8b
RS
7719 if (!complete_p)
7720 return TRUE;
e3de51ce 7721 clear_insn_error ();
97d87491
RS
7722 if (arg.dest_regno == arg.last_regno
7723 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7724 {
7725 if (arg.opnum == 2)
e3de51ce 7726 set_insn_error
1661c76c 7727 (0, _("source and destination must be different"));
97d87491 7728 else if (arg.last_regno == 31)
e3de51ce 7729 set_insn_error
1661c76c 7730 (0, _("a destination register must be supplied"));
97d87491 7731 }
173d3447
CF
7732 else if (arg.last_regno == 31
7733 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7734 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7735 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7736 check_completed_insn (&arg);
7737 return TRUE;
7738 }
7739
7740 /* Fail the match if the line has too many operands. */
7741 if (*args == 0)
7742 return FALSE;
7743
7744 /* Handle characters that need to match exactly. */
7745 if (*args == '(' || *args == ')' || *args == ',')
7746 {
7747 if (match_char (&arg, *args))
7748 continue;
7749 return FALSE;
7750 }
7751 if (*args == '#')
7752 {
7753 ++args;
7754 if (arg.token->type == OT_DOUBLE_CHAR
7755 && arg.token->u.ch == *args)
7756 {
7757 ++arg.token;
7758 continue;
7759 }
7760 return FALSE;
7761 }
7762
7763 /* Handle special macro operands. Work out the properties of
7764 other operands. */
7765 arg.opnum += 1;
97d87491
RS
7766 switch (*args)
7767 {
7361da2c
AB
7768 case '-':
7769 switch (args[1])
7770 {
7771 case 'A':
7772 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7773 break;
7774
7775 case 'B':
7776 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7777 break;
7778 }
7779 break;
7780
97d87491
RS
7781 case '+':
7782 switch (args[1])
7783 {
97d87491
RS
7784 case 'i':
7785 *offset_reloc = BFD_RELOC_MIPS_JMP;
7786 break;
7361da2c
AB
7787
7788 case '\'':
7789 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7790 break;
7791
7792 case '\"':
7793 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7794 break;
97d87491
RS
7795 }
7796 break;
7797
97d87491 7798 case 'I':
1a00e612
RS
7799 if (!match_const_int (&arg, &imm_expr.X_add_number))
7800 return FALSE;
7801 imm_expr.X_op = O_constant;
bad1aba3 7802 if (GPR_SIZE == 32)
97d87491
RS
7803 normalize_constant_expr (&imm_expr);
7804 continue;
7805
7806 case 'A':
7807 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7808 {
7809 /* Assume that the offset has been elided and that what
7810 we saw was a base register. The match will fail later
7811 if that assumption turns out to be wrong. */
7812 offset_expr.X_op = O_constant;
7813 offset_expr.X_add_number = 0;
7814 }
97d87491 7815 else
1a00e612
RS
7816 {
7817 if (!match_expression (&arg, &offset_expr, offset_reloc))
7818 return FALSE;
7819 normalize_address_expr (&offset_expr);
7820 }
97d87491
RS
7821 continue;
7822
7823 case 'F':
7824 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7825 8, TRUE))
1a00e612 7826 return FALSE;
97d87491
RS
7827 continue;
7828
7829 case 'L':
7830 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7831 8, FALSE))
1a00e612 7832 return FALSE;
97d87491
RS
7833 continue;
7834
7835 case 'f':
7836 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7837 4, TRUE))
1a00e612 7838 return FALSE;
97d87491
RS
7839 continue;
7840
7841 case 'l':
7842 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7843 4, FALSE))
1a00e612 7844 return FALSE;
97d87491
RS
7845 continue;
7846
97d87491
RS
7847 case 'p':
7848 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7849 break;
7850
7851 case 'a':
7852 *offset_reloc = BFD_RELOC_MIPS_JMP;
7853 break;
7854
7855 case 'm':
7856 gas_assert (mips_opts.micromips);
7857 c = args[1];
7858 switch (c)
7859 {
7860 case 'D':
7861 case 'E':
7862 if (!forced_insn_length)
7863 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7864 else if (c == 'D')
7865 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7866 else
7867 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7868 break;
7869 }
7870 break;
7871 }
7872
7873 operand = (mips_opts.micromips
7874 ? decode_micromips_operand (args)
7875 : decode_mips_operand (args));
7876 if (!operand)
7877 abort ();
7878
7879 /* Skip prefixes. */
7361da2c 7880 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
7881 args++;
7882
7883 if (mips_optional_operand_p (operand)
7884 && args[1] == ','
7885 && (arg.token[0].type != OT_REG
7886 || arg.token[1].type == OT_END))
7887 {
7888 /* Assume that the register has been elided and is the
7889 same as the first operand. */
7890 arg.token = tokens;
7891 arg.argnum = 1;
7892 }
7893
7894 if (!match_operand (&arg, operand))
7895 return FALSE;
7896 }
7897}
7898
7899/* Like match_insn, but for MIPS16. */
7900
7901static bfd_boolean
7902match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 7903 struct mips_operand_token *tokens)
97d87491
RS
7904{
7905 const char *args;
7906 const struct mips_operand *operand;
7907 const struct mips_operand *ext_operand;
7908 struct mips_arg_info arg;
7909 int relax_char;
7910
7911 create_insn (insn, opcode);
7912 imm_expr.X_op = O_absent;
97d87491
RS
7913 offset_expr.X_op = O_absent;
7914 offset_reloc[0] = BFD_RELOC_UNUSED;
7915 offset_reloc[1] = BFD_RELOC_UNUSED;
7916 offset_reloc[2] = BFD_RELOC_UNUSED;
7917 relax_char = 0;
7918
7919 memset (&arg, 0, sizeof (arg));
7920 arg.insn = insn;
7921 arg.token = tokens;
7922 arg.argnum = 1;
7923 arg.last_regno = ILLEGAL_REG;
7924 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
7925 relax_char = 0;
7926 for (args = opcode->args;; ++args)
7927 {
7928 int c;
7929
7930 if (arg.token->type == OT_END)
7931 {
7932 offsetT value;
7933
7934 /* Handle unary instructions in which only one operand is given.
7935 The source is then the same as the destination. */
7936 if (arg.opnum == 1 && *args == ',')
7937 {
7938 operand = decode_mips16_operand (args[1], FALSE);
7939 if (operand && mips_optional_operand_p (operand))
7940 {
7941 arg.token = tokens;
7942 arg.argnum = 1;
7943 continue;
7944 }
7945 }
7946
7947 /* Fail the match if there were too few operands. */
7948 if (*args)
7949 return FALSE;
7950
7951 /* Successful match. Stuff the immediate value in now, if
7952 we can. */
e3de51ce 7953 clear_insn_error ();
97d87491
RS
7954 if (opcode->pinfo == INSN_MACRO)
7955 {
7956 gas_assert (relax_char == 0 || relax_char == 'p');
7957 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7958 }
7959 else if (relax_char
7960 && offset_expr.X_op == O_constant
7961 && calculate_reloc (*offset_reloc,
7962 offset_expr.X_add_number,
7963 &value))
7964 {
7965 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7966 forced_insn_length, &insn->insn_opcode);
7967 offset_expr.X_op = O_absent;
7968 *offset_reloc = BFD_RELOC_UNUSED;
7969 }
7970 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7971 {
7972 if (forced_insn_length == 2)
e3de51ce 7973 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
7974 forced_insn_length = 4;
7975 insn->insn_opcode |= MIPS16_EXTEND;
7976 }
7977 else if (relax_char)
7978 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7979
7980 check_completed_insn (&arg);
7981 return TRUE;
7982 }
7983
7984 /* Fail the match if the line has too many operands. */
7985 if (*args == 0)
7986 return FALSE;
7987
7988 /* Handle characters that need to match exactly. */
7989 if (*args == '(' || *args == ')' || *args == ',')
7990 {
7991 if (match_char (&arg, *args))
7992 continue;
7993 return FALSE;
7994 }
7995
7996 arg.opnum += 1;
7997 c = *args;
7998 switch (c)
7999 {
8000 case 'p':
8001 case 'q':
8002 case 'A':
8003 case 'B':
8004 case 'E':
8005 relax_char = c;
8006 break;
8007
8008 case 'I':
1a00e612
RS
8009 if (!match_const_int (&arg, &imm_expr.X_add_number))
8010 return FALSE;
8011 imm_expr.X_op = O_constant;
bad1aba3 8012 if (GPR_SIZE == 32)
97d87491
RS
8013 normalize_constant_expr (&imm_expr);
8014 continue;
8015
8016 case 'a':
8017 case 'i':
8018 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8019 insn->insn_opcode <<= 16;
8020 break;
8021 }
8022
8023 operand = decode_mips16_operand (c, FALSE);
8024 if (!operand)
8025 abort ();
8026
8027 /* '6' is a special case. It is used for BREAK and SDBBP,
8028 whose operands are only meaningful to the software that decodes
8029 them. This means that there is no architectural reason why
8030 they cannot be prefixed by EXTEND, but in practice,
8031 exception handlers will only look at the instruction
8032 itself. We therefore allow '6' to be extended when
8033 disassembling but not when assembling. */
8034 if (operand->type != OP_PCREL && c != '6')
8035 {
8036 ext_operand = decode_mips16_operand (c, TRUE);
8037 if (operand != ext_operand)
8038 {
8039 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8040 {
8041 offset_expr.X_op = O_constant;
8042 offset_expr.X_add_number = 0;
8043 relax_char = c;
8044 continue;
8045 }
8046
8047 /* We need the OT_INTEGER check because some MIPS16
8048 immediate variants are listed before the register ones. */
8049 if (arg.token->type != OT_INTEGER
8050 || !match_expression (&arg, &offset_expr, offset_reloc))
8051 return FALSE;
8052
8053 /* '8' is used for SLTI(U) and has traditionally not
8054 been allowed to take relocation operators. */
8055 if (offset_reloc[0] != BFD_RELOC_UNUSED
8056 && (ext_operand->size != 16 || c == '8'))
8057 return FALSE;
8058
8059 relax_char = c;
8060 continue;
8061 }
8062 }
8063
8064 if (mips_optional_operand_p (operand)
8065 && args[1] == ','
8066 && (arg.token[0].type != OT_REG
8067 || arg.token[1].type == OT_END))
8068 {
8069 /* Assume that the register has been elided and is the
8070 same as the first operand. */
8071 arg.token = tokens;
8072 arg.argnum = 1;
8073 }
8074
8075 if (!match_operand (&arg, operand))
8076 return FALSE;
8077 }
8078}
8079
60f20e8b
RS
8080/* Record that the current instruction is invalid for the current ISA. */
8081
8082static void
8083match_invalid_for_isa (void)
8084{
8085 set_insn_error_ss
1661c76c 8086 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8087 mips_cpu_info_from_arch (mips_opts.arch)->name,
8088 mips_cpu_info_from_isa (mips_opts.isa)->name);
8089}
8090
8091/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8092 Return true if a definite match or failure was found, storing any match
8093 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8094 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8095 tried and failed to match under normal conditions and now want to try a
8096 more relaxed match. */
8097
8098static bfd_boolean
8099match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8100 const struct mips_opcode *past, struct mips_operand_token *tokens,
8101 int opcode_extra, bfd_boolean lax_match)
8102{
8103 const struct mips_opcode *opcode;
8104 const struct mips_opcode *invalid_delay_slot;
8105 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8106
8107 /* Search for a match, ignoring alternatives that don't satisfy the
8108 current ISA or forced_length. */
8109 invalid_delay_slot = 0;
8110 seen_valid_for_isa = FALSE;
8111 seen_valid_for_size = FALSE;
8112 opcode = first;
8113 do
8114 {
8115 gas_assert (strcmp (opcode->name, first->name) == 0);
8116 if (is_opcode_valid (opcode))
8117 {
8118 seen_valid_for_isa = TRUE;
8119 if (is_size_valid (opcode))
8120 {
8121 bfd_boolean delay_slot_ok;
8122
8123 seen_valid_for_size = TRUE;
8124 delay_slot_ok = is_delay_slot_valid (opcode);
8125 if (match_insn (insn, opcode, tokens, opcode_extra,
8126 lax_match, delay_slot_ok))
8127 {
8128 if (!delay_slot_ok)
8129 {
8130 if (!invalid_delay_slot)
8131 invalid_delay_slot = opcode;
8132 }
8133 else
8134 return TRUE;
8135 }
8136 }
8137 }
8138 ++opcode;
8139 }
8140 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8141
8142 /* If the only matches we found had the wrong length for the delay slot,
8143 pick the first such match. We'll issue an appropriate warning later. */
8144 if (invalid_delay_slot)
8145 {
8146 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8147 lax_match, TRUE))
8148 return TRUE;
8149 abort ();
8150 }
8151
8152 /* Handle the case where we didn't try to match an instruction because
8153 all the alternatives were incompatible with the current ISA. */
8154 if (!seen_valid_for_isa)
8155 {
8156 match_invalid_for_isa ();
8157 return TRUE;
8158 }
8159
8160 /* Handle the case where we didn't try to match an instruction because
8161 all the alternatives were of the wrong size. */
8162 if (!seen_valid_for_size)
8163 {
8164 if (mips_opts.insn32)
1661c76c 8165 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8166 else
8167 set_insn_error_i
1661c76c 8168 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8169 8 * forced_insn_length);
8170 return TRUE;
8171 }
8172
8173 return FALSE;
8174}
8175
8176/* Like match_insns, but for MIPS16. */
8177
8178static bfd_boolean
8179match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8180 struct mips_operand_token *tokens)
8181{
8182 const struct mips_opcode *opcode;
8183 bfd_boolean seen_valid_for_isa;
8184
8185 /* Search for a match, ignoring alternatives that don't satisfy the
8186 current ISA. There are no separate entries for extended forms so
8187 we deal with forced_length later. */
8188 seen_valid_for_isa = FALSE;
8189 opcode = first;
8190 do
8191 {
8192 gas_assert (strcmp (opcode->name, first->name) == 0);
8193 if (is_opcode_valid_16 (opcode))
8194 {
8195 seen_valid_for_isa = TRUE;
8196 if (match_mips16_insn (insn, opcode, tokens))
8197 return TRUE;
8198 }
8199 ++opcode;
8200 }
8201 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8202 && strcmp (opcode->name, first->name) == 0);
8203
8204 /* Handle the case where we didn't try to match an instruction because
8205 all the alternatives were incompatible with the current ISA. */
8206 if (!seen_valid_for_isa)
8207 {
8208 match_invalid_for_isa ();
8209 return TRUE;
8210 }
8211
8212 return FALSE;
8213}
8214
584892a6
RS
8215/* Set up global variables for the start of a new macro. */
8216
8217static void
8218macro_start (void)
8219{
8220 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8221 memset (&mips_macro_warning.first_insn_sizes, 0,
8222 sizeof (mips_macro_warning.first_insn_sizes));
8223 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8224 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8225 && delayed_branch_p (&history[0]));
df58fc94
RS
8226 switch (history[0].insn_mo->pinfo2
8227 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8228 {
8229 case INSN2_BRANCH_DELAY_32BIT:
8230 mips_macro_warning.delay_slot_length = 4;
8231 break;
8232 case INSN2_BRANCH_DELAY_16BIT:
8233 mips_macro_warning.delay_slot_length = 2;
8234 break;
8235 default:
8236 mips_macro_warning.delay_slot_length = 0;
8237 break;
8238 }
8239 mips_macro_warning.first_frag = NULL;
584892a6
RS
8240}
8241
df58fc94
RS
8242/* Given that a macro is longer than one instruction or of the wrong size,
8243 return the appropriate warning for it. Return null if no warning is
8244 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8245 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8246 and RELAX_NOMACRO. */
584892a6
RS
8247
8248static const char *
8249macro_warning (relax_substateT subtype)
8250{
8251 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8252 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8253 " in a branch delay slot");
8254 else if (subtype & RELAX_NOMACRO)
1661c76c 8255 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8256 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8257 | RELAX_DELAY_SLOT_SIZE_SECOND))
8258 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8259 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8260 " in a 16-bit branch delay slot")
1661c76c 8261 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8262 " in a 32-bit branch delay slot"));
584892a6
RS
8263 else
8264 return 0;
8265}
8266
8267/* Finish up a macro. Emit warnings as appropriate. */
8268
8269static void
8270macro_end (void)
8271{
df58fc94
RS
8272 /* Relaxation warning flags. */
8273 relax_substateT subtype = 0;
8274
8275 /* Check delay slot size requirements. */
8276 if (mips_macro_warning.delay_slot_length == 2)
8277 subtype |= RELAX_DELAY_SLOT_16BIT;
8278 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8279 {
df58fc94
RS
8280 if (mips_macro_warning.delay_slot_length
8281 != mips_macro_warning.first_insn_sizes[0])
8282 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8283 if (mips_macro_warning.delay_slot_length
8284 != mips_macro_warning.first_insn_sizes[1])
8285 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8286 }
584892a6 8287
df58fc94
RS
8288 /* Check instruction count requirements. */
8289 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8290 {
8291 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8292 subtype |= RELAX_SECOND_LONGER;
8293 if (mips_opts.warn_about_macros)
8294 subtype |= RELAX_NOMACRO;
8295 if (mips_macro_warning.delay_slot_p)
8296 subtype |= RELAX_DELAY_SLOT;
df58fc94 8297 }
584892a6 8298
df58fc94
RS
8299 /* If both alternatives fail to fill a delay slot correctly,
8300 emit the warning now. */
8301 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8302 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8303 {
8304 relax_substateT s;
8305 const char *msg;
8306
8307 s = subtype & (RELAX_DELAY_SLOT_16BIT
8308 | RELAX_DELAY_SLOT_SIZE_FIRST
8309 | RELAX_DELAY_SLOT_SIZE_SECOND);
8310 msg = macro_warning (s);
8311 if (msg != NULL)
8312 as_warn ("%s", msg);
8313 subtype &= ~s;
8314 }
8315
8316 /* If both implementations are longer than 1 instruction, then emit the
8317 warning now. */
8318 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8319 {
8320 relax_substateT s;
8321 const char *msg;
8322
8323 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8324 msg = macro_warning (s);
8325 if (msg != NULL)
8326 as_warn ("%s", msg);
8327 subtype &= ~s;
584892a6 8328 }
df58fc94
RS
8329
8330 /* If any flags still set, then one implementation might need a warning
8331 and the other either will need one of a different kind or none at all.
8332 Pass any remaining flags over to relaxation. */
8333 if (mips_macro_warning.first_frag != NULL)
8334 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8335}
8336
df58fc94
RS
8337/* Instruction operand formats used in macros that vary between
8338 standard MIPS and microMIPS code. */
8339
833794fc 8340static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8341static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8342static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8343static const char * const lui_fmt[2] = { "t,u", "s,u" };
8344static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8345static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8346static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8347static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8348
833794fc 8349#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8350#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8351 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8352#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8353#define LUI_FMT (lui_fmt[mips_opts.micromips])
8354#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8355#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8356 : mem12_fmt[mips_opts.micromips])
833794fc 8357#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8358#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8359#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8360
6e1304d8
RS
8361/* Read a macro's relocation codes from *ARGS and store them in *R.
8362 The first argument in *ARGS will be either the code for a single
8363 relocation or -1 followed by the three codes that make up a
8364 composite relocation. */
8365
8366static void
8367macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8368{
8369 int i, next;
8370
8371 next = va_arg (*args, int);
8372 if (next >= 0)
8373 r[0] = (bfd_reloc_code_real_type) next;
8374 else
f2ae14a1
RS
8375 {
8376 for (i = 0; i < 3; i++)
8377 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8378 /* This function is only used for 16-bit relocation fields.
8379 To make the macro code simpler, treat an unrelocated value
8380 in the same way as BFD_RELOC_LO16. */
8381 if (r[0] == BFD_RELOC_UNUSED)
8382 r[0] = BFD_RELOC_LO16;
8383 }
6e1304d8
RS
8384}
8385
252b5132
RH
8386/* Build an instruction created by a macro expansion. This is passed
8387 a pointer to the count of instructions created so far, an
8388 expression, the name of the instruction to build, an operand format
8389 string, and corresponding arguments. */
8390
252b5132 8391static void
67c0d1eb 8392macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8393{
df58fc94 8394 const struct mips_opcode *mo = NULL;
f6688943 8395 bfd_reloc_code_real_type r[3];
df58fc94 8396 const struct mips_opcode *amo;
e077a1c8 8397 const struct mips_operand *operand;
df58fc94
RS
8398 struct hash_control *hash;
8399 struct mips_cl_insn insn;
252b5132 8400 va_list args;
e077a1c8 8401 unsigned int uval;
252b5132 8402
252b5132 8403 va_start (args, fmt);
252b5132 8404
252b5132
RH
8405 if (mips_opts.mips16)
8406 {
03ea81db 8407 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8408 va_end (args);
8409 return;
8410 }
8411
f6688943
TS
8412 r[0] = BFD_RELOC_UNUSED;
8413 r[1] = BFD_RELOC_UNUSED;
8414 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8415 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8416 amo = (struct mips_opcode *) hash_find (hash, name);
8417 gas_assert (amo);
8418 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8419
df58fc94 8420 do
8b082fb1
TS
8421 {
8422 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8423 macros will never generate MDMX, MIPS-3D, or MT instructions.
8424 We try to match an instruction that fulfils the branch delay
8425 slot instruction length requirement (if any) of the previous
8426 instruction. While doing this we record the first instruction
8427 seen that matches all the other conditions and use it anyway
8428 if the requirement cannot be met; we will issue an appropriate
8429 warning later on. */
8430 if (strcmp (fmt, amo->args) == 0
8431 && amo->pinfo != INSN_MACRO
8432 && is_opcode_valid (amo)
8433 && is_size_valid (amo))
8434 {
8435 if (is_delay_slot_valid (amo))
8436 {
8437 mo = amo;
8438 break;
8439 }
8440 else if (!mo)
8441 mo = amo;
8442 }
8b082fb1 8443
df58fc94
RS
8444 ++amo;
8445 gas_assert (amo->name);
252b5132 8446 }
df58fc94 8447 while (strcmp (name, amo->name) == 0);
252b5132 8448
df58fc94 8449 gas_assert (mo);
1e915849 8450 create_insn (&insn, mo);
e077a1c8 8451 for (; *fmt; ++fmt)
252b5132 8452 {
e077a1c8 8453 switch (*fmt)
252b5132 8454 {
252b5132
RH
8455 case ',':
8456 case '(':
8457 case ')':
252b5132 8458 case 'z':
e077a1c8 8459 break;
252b5132
RH
8460
8461 case 'i':
8462 case 'j':
6e1304d8 8463 macro_read_relocs (&args, r);
9c2799c2 8464 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8465 || *r == BFD_RELOC_MIPS_HIGHER
8466 || *r == BFD_RELOC_HI16_S
8467 || *r == BFD_RELOC_LO16
8468 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8469 break;
e391c024
RS
8470
8471 case 'o':
8472 macro_read_relocs (&args, r);
e077a1c8 8473 break;
252b5132
RH
8474
8475 case 'u':
6e1304d8 8476 macro_read_relocs (&args, r);
9c2799c2 8477 gas_assert (ep != NULL
90ecf173
MR
8478 && (ep->X_op == O_constant
8479 || (ep->X_op == O_symbol
8480 && (*r == BFD_RELOC_MIPS_HIGHEST
8481 || *r == BFD_RELOC_HI16_S
8482 || *r == BFD_RELOC_HI16
8483 || *r == BFD_RELOC_GPREL16
8484 || *r == BFD_RELOC_MIPS_GOT_HI16
8485 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8486 break;
252b5132
RH
8487
8488 case 'p':
9c2799c2 8489 gas_assert (ep != NULL);
bad36eac 8490
252b5132
RH
8491 /*
8492 * This allows macro() to pass an immediate expression for
8493 * creating short branches without creating a symbol.
bad36eac
DJ
8494 *
8495 * We don't allow branch relaxation for these branches, as
8496 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8497 */
8498 if (ep->X_op == O_constant)
8499 {
df58fc94
RS
8500 /* For microMIPS we always use relocations for branches.
8501 So we should not resolve immediate values. */
8502 gas_assert (!mips_opts.micromips);
8503
bad36eac
DJ
8504 if ((ep->X_add_number & 3) != 0)
8505 as_bad (_("branch to misaligned address (0x%lx)"),
8506 (unsigned long) ep->X_add_number);
8507 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8508 as_bad (_("branch address range overflow (0x%lx)"),
8509 (unsigned long) ep->X_add_number);
252b5132
RH
8510 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8511 ep = NULL;
8512 }
8513 else
0b25d3e6 8514 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8515 break;
252b5132
RH
8516
8517 case 'a':
9c2799c2 8518 gas_assert (ep != NULL);
f6688943 8519 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8520 break;
d43b4baf 8521
252b5132 8522 default:
e077a1c8
RS
8523 operand = (mips_opts.micromips
8524 ? decode_micromips_operand (fmt)
8525 : decode_mips_operand (fmt));
8526 if (!operand)
8527 abort ();
8528
8529 uval = va_arg (args, int);
8530 if (operand->type == OP_CLO_CLZ_DEST)
8531 uval |= (uval << 5);
8532 insn_insert_operand (&insn, operand, uval);
8533
7361da2c 8534 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8535 ++fmt;
8536 break;
252b5132 8537 }
252b5132
RH
8538 }
8539 va_end (args);
9c2799c2 8540 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8541
df58fc94 8542 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8543}
8544
8545static void
67c0d1eb 8546mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8547 va_list *args)
252b5132 8548{
1e915849 8549 struct mips_opcode *mo;
252b5132 8550 struct mips_cl_insn insn;
e077a1c8 8551 const struct mips_operand *operand;
f6688943
TS
8552 bfd_reloc_code_real_type r[3]
8553 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8554
1e915849 8555 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8556 gas_assert (mo);
8557 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8558
1e915849 8559 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8560 {
1e915849 8561 ++mo;
9c2799c2
NC
8562 gas_assert (mo->name);
8563 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8564 }
8565
1e915849 8566 create_insn (&insn, mo);
e077a1c8 8567 for (; *fmt; ++fmt)
252b5132
RH
8568 {
8569 int c;
8570
e077a1c8 8571 c = *fmt;
252b5132
RH
8572 switch (c)
8573 {
252b5132
RH
8574 case ',':
8575 case '(':
8576 case ')':
e077a1c8 8577 break;
252b5132
RH
8578
8579 case '0':
8580 case 'S':
8581 case 'P':
8582 case 'R':
e077a1c8 8583 break;
252b5132
RH
8584
8585 case '<':
8586 case '>':
8587 case '4':
8588 case '5':
8589 case 'H':
8590 case 'W':
8591 case 'D':
8592 case 'j':
8593 case '8':
8594 case 'V':
8595 case 'C':
8596 case 'U':
8597 case 'k':
8598 case 'K':
8599 case 'p':
8600 case 'q':
8601 {
b886a2ab
RS
8602 offsetT value;
8603
9c2799c2 8604 gas_assert (ep != NULL);
252b5132
RH
8605
8606 if (ep->X_op != O_constant)
874e8986 8607 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8608 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8609 {
b886a2ab 8610 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8611 ep = NULL;
f6688943 8612 *r = BFD_RELOC_UNUSED;
252b5132
RH
8613 }
8614 }
e077a1c8 8615 break;
252b5132 8616
e077a1c8
RS
8617 default:
8618 operand = decode_mips16_operand (c, FALSE);
8619 if (!operand)
8620 abort ();
252b5132 8621
4a06e5a2 8622 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8623 break;
8624 }
252b5132
RH
8625 }
8626
9c2799c2 8627 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8628
df58fc94 8629 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8630}
8631
438c16b8
TS
8632/*
8633 * Generate a "jalr" instruction with a relocation hint to the called
8634 * function. This occurs in NewABI PIC code.
8635 */
8636static void
df58fc94 8637macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8638{
df58fc94
RS
8639 static const bfd_reloc_code_real_type jalr_relocs[2]
8640 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8641 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8642 const char *jalr;
685736be 8643 char *f = NULL;
b34976b6 8644
1180b5a4 8645 if (MIPS_JALR_HINT_P (ep))
f21f8242 8646 {
cc3d92a5 8647 frag_grow (8);
f21f8242
AO
8648 f = frag_more (0);
8649 }
2906b037 8650 if (mips_opts.micromips)
df58fc94 8651 {
833794fc
MR
8652 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8653 ? "jalr" : "jalrs");
e64af278 8654 if (MIPS_JALR_HINT_P (ep)
833794fc 8655 || mips_opts.insn32
e64af278 8656 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8657 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8658 else
8659 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8660 }
2906b037
MR
8661 else
8662 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8663 if (MIPS_JALR_HINT_P (ep))
df58fc94 8664 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8665}
8666
252b5132
RH
8667/*
8668 * Generate a "lui" instruction.
8669 */
8670static void
67c0d1eb 8671macro_build_lui (expressionS *ep, int regnum)
252b5132 8672{
9c2799c2 8673 gas_assert (! mips_opts.mips16);
252b5132 8674
df58fc94 8675 if (ep->X_op != O_constant)
252b5132 8676 {
9c2799c2 8677 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8678 /* _gp_disp is a special case, used from s_cpload.
8679 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8680 gas_assert (mips_pic == NO_PIC
78e1bb40 8681 || (! HAVE_NEWABI
aa6975fb
ILT
8682 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8683 || (! mips_in_shared
bbe506e8
TS
8684 && strcmp (S_GET_NAME (ep->X_add_symbol),
8685 "__gnu_local_gp") == 0));
252b5132
RH
8686 }
8687
df58fc94 8688 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8689}
8690
885add95
CD
8691/* Generate a sequence of instructions to do a load or store from a constant
8692 offset off of a base register (breg) into/from a target register (treg),
8693 using AT if necessary. */
8694static void
67c0d1eb
RS
8695macro_build_ldst_constoffset (expressionS *ep, const char *op,
8696 int treg, int breg, int dbl)
885add95 8697{
9c2799c2 8698 gas_assert (ep->X_op == O_constant);
885add95 8699
256ab948 8700 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8701 if (!dbl)
8702 normalize_constant_expr (ep);
256ab948 8703
67c1ffbe 8704 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8705 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8706 as_warn (_("operand overflow"));
8707
8708 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8709 {
8710 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8711 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8712 }
8713 else
8714 {
8715 /* 32-bit offset, need multiple instructions and AT, like:
8716 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8717 addu $tempreg,$tempreg,$breg
8718 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8719 to handle the complete offset. */
67c0d1eb
RS
8720 macro_build_lui (ep, AT);
8721 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8722 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8723
741fe287 8724 if (!mips_opts.at)
1661c76c 8725 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8726 }
8727}
8728
252b5132
RH
8729/* set_at()
8730 * Generates code to set the $at register to true (one)
8731 * if reg is less than the immediate expression.
8732 */
8733static void
67c0d1eb 8734set_at (int reg, int unsignedp)
252b5132 8735{
b0e6f033 8736 if (imm_expr.X_add_number >= -0x8000
252b5132 8737 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8738 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8739 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8740 else
8741 {
bad1aba3 8742 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8743 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8744 }
8745}
8746
252b5132
RH
8747/* Count the leading zeroes by performing a binary chop. This is a
8748 bulky bit of source, but performance is a LOT better for the
8749 majority of values than a simple loop to count the bits:
8750 for (lcnt = 0; (lcnt < 32); lcnt++)
8751 if ((v) & (1 << (31 - lcnt)))
8752 break;
8753 However it is not code size friendly, and the gain will drop a bit
8754 on certain cached systems.
8755*/
8756#define COUNT_TOP_ZEROES(v) \
8757 (((v) & ~0xffff) == 0 \
8758 ? ((v) & ~0xff) == 0 \
8759 ? ((v) & ~0xf) == 0 \
8760 ? ((v) & ~0x3) == 0 \
8761 ? ((v) & ~0x1) == 0 \
8762 ? !(v) \
8763 ? 32 \
8764 : 31 \
8765 : 30 \
8766 : ((v) & ~0x7) == 0 \
8767 ? 29 \
8768 : 28 \
8769 : ((v) & ~0x3f) == 0 \
8770 ? ((v) & ~0x1f) == 0 \
8771 ? 27 \
8772 : 26 \
8773 : ((v) & ~0x7f) == 0 \
8774 ? 25 \
8775 : 24 \
8776 : ((v) & ~0xfff) == 0 \
8777 ? ((v) & ~0x3ff) == 0 \
8778 ? ((v) & ~0x1ff) == 0 \
8779 ? 23 \
8780 : 22 \
8781 : ((v) & ~0x7ff) == 0 \
8782 ? 21 \
8783 : 20 \
8784 : ((v) & ~0x3fff) == 0 \
8785 ? ((v) & ~0x1fff) == 0 \
8786 ? 19 \
8787 : 18 \
8788 : ((v) & ~0x7fff) == 0 \
8789 ? 17 \
8790 : 16 \
8791 : ((v) & ~0xffffff) == 0 \
8792 ? ((v) & ~0xfffff) == 0 \
8793 ? ((v) & ~0x3ffff) == 0 \
8794 ? ((v) & ~0x1ffff) == 0 \
8795 ? 15 \
8796 : 14 \
8797 : ((v) & ~0x7ffff) == 0 \
8798 ? 13 \
8799 : 12 \
8800 : ((v) & ~0x3fffff) == 0 \
8801 ? ((v) & ~0x1fffff) == 0 \
8802 ? 11 \
8803 : 10 \
8804 : ((v) & ~0x7fffff) == 0 \
8805 ? 9 \
8806 : 8 \
8807 : ((v) & ~0xfffffff) == 0 \
8808 ? ((v) & ~0x3ffffff) == 0 \
8809 ? ((v) & ~0x1ffffff) == 0 \
8810 ? 7 \
8811 : 6 \
8812 : ((v) & ~0x7ffffff) == 0 \
8813 ? 5 \
8814 : 4 \
8815 : ((v) & ~0x3fffffff) == 0 \
8816 ? ((v) & ~0x1fffffff) == 0 \
8817 ? 3 \
8818 : 2 \
8819 : ((v) & ~0x7fffffff) == 0 \
8820 ? 1 \
8821 : 0)
8822
8823/* load_register()
67c1ffbe 8824 * This routine generates the least number of instructions necessary to load
252b5132
RH
8825 * an absolute expression value into a register.
8826 */
8827static void
67c0d1eb 8828load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
8829{
8830 int freg;
8831 expressionS hi32, lo32;
8832
8833 if (ep->X_op != O_big)
8834 {
9c2799c2 8835 gas_assert (ep->X_op == O_constant);
256ab948
TS
8836
8837 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8838 if (!dbl)
8839 normalize_constant_expr (ep);
256ab948
TS
8840
8841 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
8842 {
8843 /* We can handle 16 bit signed values with an addiu to
8844 $zero. No need to ever use daddiu here, since $zero and
8845 the result are always correct in 32 bit mode. */
67c0d1eb 8846 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8847 return;
8848 }
8849 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8850 {
8851 /* We can handle 16 bit unsigned values with an ori to
8852 $zero. */
67c0d1eb 8853 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8854 return;
8855 }
256ab948 8856 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
8857 {
8858 /* 32 bit values require an lui. */
df58fc94 8859 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8860 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 8861 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
8862 return;
8863 }
8864 }
8865
8866 /* The value is larger than 32 bits. */
8867
bad1aba3 8868 if (!dbl || GPR_SIZE == 32)
252b5132 8869 {
55e08f71
NC
8870 char value[32];
8871
8872 sprintf_vma (value, ep->X_add_number);
1661c76c 8873 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 8874 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8875 return;
8876 }
8877
8878 if (ep->X_op != O_big)
8879 {
8880 hi32 = *ep;
8881 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8882 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8883 hi32.X_add_number &= 0xffffffff;
8884 lo32 = *ep;
8885 lo32.X_add_number &= 0xffffffff;
8886 }
8887 else
8888 {
9c2799c2 8889 gas_assert (ep->X_add_number > 2);
252b5132
RH
8890 if (ep->X_add_number == 3)
8891 generic_bignum[3] = 0;
8892 else if (ep->X_add_number > 4)
1661c76c 8893 as_bad (_("number larger than 64 bits"));
252b5132
RH
8894 lo32.X_op = O_constant;
8895 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8896 hi32.X_op = O_constant;
8897 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8898 }
8899
8900 if (hi32.X_add_number == 0)
8901 freg = 0;
8902 else
8903 {
8904 int shift, bit;
8905 unsigned long hi, lo;
8906
956cd1d6 8907 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
8908 {
8909 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8910 {
67c0d1eb 8911 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8912 return;
8913 }
8914 if (lo32.X_add_number & 0x80000000)
8915 {
df58fc94 8916 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8917 if (lo32.X_add_number & 0xffff)
67c0d1eb 8918 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
8919 return;
8920 }
8921 }
252b5132
RH
8922
8923 /* Check for 16bit shifted constant. We know that hi32 is
8924 non-zero, so start the mask on the first bit of the hi32
8925 value. */
8926 shift = 17;
8927 do
beae10d5
KH
8928 {
8929 unsigned long himask, lomask;
8930
8931 if (shift < 32)
8932 {
8933 himask = 0xffff >> (32 - shift);
8934 lomask = (0xffff << shift) & 0xffffffff;
8935 }
8936 else
8937 {
8938 himask = 0xffff << (shift - 32);
8939 lomask = 0;
8940 }
8941 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8942 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8943 {
8944 expressionS tmp;
8945
8946 tmp.X_op = O_constant;
8947 if (shift < 32)
8948 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8949 | (lo32.X_add_number >> shift));
8950 else
8951 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 8952 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 8953 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 8954 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
8955 return;
8956 }
f9419b05 8957 ++shift;
beae10d5
KH
8958 }
8959 while (shift <= (64 - 16));
252b5132
RH
8960
8961 /* Find the bit number of the lowest one bit, and store the
8962 shifted value in hi/lo. */
8963 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8964 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8965 if (lo != 0)
8966 {
8967 bit = 0;
8968 while ((lo & 1) == 0)
8969 {
8970 lo >>= 1;
8971 ++bit;
8972 }
8973 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8974 hi >>= bit;
8975 }
8976 else
8977 {
8978 bit = 32;
8979 while ((hi & 1) == 0)
8980 {
8981 hi >>= 1;
8982 ++bit;
8983 }
8984 lo = hi;
8985 hi = 0;
8986 }
8987
8988 /* Optimize if the shifted value is a (power of 2) - 1. */
8989 if ((hi == 0 && ((lo + 1) & lo) == 0)
8990 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
8991 {
8992 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 8993 if (shift != 0)
beae10d5 8994 {
252b5132
RH
8995 expressionS tmp;
8996
8997 /* This instruction will set the register to be all
8998 ones. */
beae10d5
KH
8999 tmp.X_op = O_constant;
9000 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9001 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9002 if (bit != 0)
9003 {
9004 bit += shift;
df58fc94 9005 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9006 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9007 }
df58fc94 9008 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9009 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9010 return;
9011 }
9012 }
252b5132
RH
9013
9014 /* Sign extend hi32 before calling load_register, because we can
9015 generally get better code when we load a sign extended value. */
9016 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9017 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9018 load_register (reg, &hi32, 0);
252b5132
RH
9019 freg = reg;
9020 }
9021 if ((lo32.X_add_number & 0xffff0000) == 0)
9022 {
9023 if (freg != 0)
9024 {
df58fc94 9025 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9026 freg = reg;
9027 }
9028 }
9029 else
9030 {
9031 expressionS mid16;
9032
956cd1d6 9033 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9034 {
df58fc94
RS
9035 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9036 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9037 return;
9038 }
252b5132
RH
9039
9040 if (freg != 0)
9041 {
df58fc94 9042 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9043 freg = reg;
9044 }
9045 mid16 = lo32;
9046 mid16.X_add_number >>= 16;
67c0d1eb 9047 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9048 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9049 freg = reg;
9050 }
9051 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9052 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9053}
9054
269137b2
TS
9055static inline void
9056load_delay_nop (void)
9057{
9058 if (!gpr_interlocks)
9059 macro_build (NULL, "nop", "");
9060}
9061
252b5132
RH
9062/* Load an address into a register. */
9063
9064static void
67c0d1eb 9065load_address (int reg, expressionS *ep, int *used_at)
252b5132 9066{
252b5132
RH
9067 if (ep->X_op != O_constant
9068 && ep->X_op != O_symbol)
9069 {
9070 as_bad (_("expression too complex"));
9071 ep->X_op = O_constant;
9072 }
9073
9074 if (ep->X_op == O_constant)
9075 {
67c0d1eb 9076 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9077 return;
9078 }
9079
9080 if (mips_pic == NO_PIC)
9081 {
9082 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9083 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9084 Otherwise we want
9085 lui $reg,<sym> (BFD_RELOC_HI16_S)
9086 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9087 If we have an addend, we always use the latter form.
76b3015f 9088
d6bc6245
TS
9089 With 64bit address space and a usable $at we want
9090 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9091 lui $at,<sym> (BFD_RELOC_HI16_S)
9092 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9093 daddiu $at,<sym> (BFD_RELOC_LO16)
9094 dsll32 $reg,0
3a482fd5 9095 daddu $reg,$reg,$at
76b3015f 9096
c03099e6 9097 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9098 on superscalar processors.
9099 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9100 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9101 dsll $reg,16
9102 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9103 dsll $reg,16
9104 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9105
9106 For GP relative symbols in 64bit address space we can use
9107 the same sequence as in 32bit address space. */
aed1a261 9108 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9109 {
6caf9ef4
TS
9110 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9111 && !nopic_need_relax (ep->X_add_symbol, 1))
9112 {
9113 relax_start (ep->X_add_symbol);
9114 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9115 mips_gp_register, BFD_RELOC_GPREL16);
9116 relax_switch ();
9117 }
d6bc6245 9118
741fe287 9119 if (*used_at == 0 && mips_opts.at)
d6bc6245 9120 {
df58fc94
RS
9121 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9122 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9123 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9124 BFD_RELOC_MIPS_HIGHER);
9125 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9126 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9127 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9128 *used_at = 1;
9129 }
9130 else
9131 {
df58fc94 9132 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9133 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9134 BFD_RELOC_MIPS_HIGHER);
df58fc94 9135 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9136 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9137 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9138 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9139 }
6caf9ef4
TS
9140
9141 if (mips_relax.sequence)
9142 relax_end ();
d6bc6245 9143 }
252b5132
RH
9144 else
9145 {
d6bc6245 9146 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9147 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9148 {
4d7206a2 9149 relax_start (ep->X_add_symbol);
67c0d1eb 9150 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9151 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9152 relax_switch ();
d6bc6245 9153 }
67c0d1eb
RS
9154 macro_build_lui (ep, reg);
9155 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9156 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9157 if (mips_relax.sequence)
9158 relax_end ();
d6bc6245 9159 }
252b5132 9160 }
0a44bf69 9161 else if (!mips_big_got)
252b5132
RH
9162 {
9163 expressionS ex;
9164
9165 /* If this is a reference to an external symbol, we want
9166 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9167 Otherwise we want
9168 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9169 nop
9170 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9171 If there is a constant, it must be added in after.
9172
ed6fb7bd 9173 If we have NewABI, we want
f5040a92
AO
9174 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9175 unless we're referencing a global symbol with a non-zero
9176 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9177 if (HAVE_NEWABI)
9178 {
f5040a92
AO
9179 if (ep->X_add_number)
9180 {
4d7206a2 9181 ex.X_add_number = ep->X_add_number;
f5040a92 9182 ep->X_add_number = 0;
4d7206a2 9183 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9184 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9185 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9186 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9187 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9188 ex.X_op = O_constant;
67c0d1eb 9189 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9190 reg, reg, BFD_RELOC_LO16);
f5040a92 9191 ep->X_add_number = ex.X_add_number;
4d7206a2 9192 relax_switch ();
f5040a92 9193 }
67c0d1eb 9194 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9195 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9196 if (mips_relax.sequence)
9197 relax_end ();
ed6fb7bd
SC
9198 }
9199 else
9200 {
f5040a92
AO
9201 ex.X_add_number = ep->X_add_number;
9202 ep->X_add_number = 0;
67c0d1eb
RS
9203 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9204 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9205 load_delay_nop ();
4d7206a2
RS
9206 relax_start (ep->X_add_symbol);
9207 relax_switch ();
67c0d1eb 9208 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9209 BFD_RELOC_LO16);
4d7206a2 9210 relax_end ();
ed6fb7bd 9211
f5040a92
AO
9212 if (ex.X_add_number != 0)
9213 {
9214 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9215 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9216 ex.X_op = O_constant;
67c0d1eb 9217 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9218 reg, reg, BFD_RELOC_LO16);
f5040a92 9219 }
252b5132
RH
9220 }
9221 }
0a44bf69 9222 else if (mips_big_got)
252b5132
RH
9223 {
9224 expressionS ex;
252b5132
RH
9225
9226 /* This is the large GOT case. If this is a reference to an
9227 external symbol, we want
9228 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9229 addu $reg,$reg,$gp
9230 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9231
9232 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9233 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9234 nop
9235 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9236 If there is a constant, it must be added in after.
f5040a92
AO
9237
9238 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9239 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9240 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9241 */
438c16b8
TS
9242 if (HAVE_NEWABI)
9243 {
4d7206a2 9244 ex.X_add_number = ep->X_add_number;
f5040a92 9245 ep->X_add_number = 0;
4d7206a2 9246 relax_start (ep->X_add_symbol);
df58fc94 9247 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9248 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9249 reg, reg, mips_gp_register);
9250 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9251 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9252 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9253 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9254 else if (ex.X_add_number)
9255 {
9256 ex.X_op = O_constant;
67c0d1eb
RS
9257 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9258 BFD_RELOC_LO16);
f5040a92
AO
9259 }
9260
9261 ep->X_add_number = ex.X_add_number;
4d7206a2 9262 relax_switch ();
67c0d1eb 9263 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9264 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9265 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9266 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9267 relax_end ();
438c16b8 9268 }
252b5132 9269 else
438c16b8 9270 {
f5040a92
AO
9271 ex.X_add_number = ep->X_add_number;
9272 ep->X_add_number = 0;
4d7206a2 9273 relax_start (ep->X_add_symbol);
df58fc94 9274 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9275 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9276 reg, reg, mips_gp_register);
9277 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9278 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9279 relax_switch ();
9280 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9281 {
9282 /* We need a nop before loading from $gp. This special
9283 check is required because the lui which starts the main
9284 instruction stream does not refer to $gp, and so will not
9285 insert the nop which may be required. */
67c0d1eb 9286 macro_build (NULL, "nop", "");
438c16b8 9287 }
67c0d1eb 9288 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9289 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9290 load_delay_nop ();
67c0d1eb 9291 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9292 BFD_RELOC_LO16);
4d7206a2 9293 relax_end ();
438c16b8 9294
f5040a92
AO
9295 if (ex.X_add_number != 0)
9296 {
9297 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9298 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9299 ex.X_op = O_constant;
67c0d1eb
RS
9300 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9301 BFD_RELOC_LO16);
f5040a92 9302 }
252b5132
RH
9303 }
9304 }
252b5132
RH
9305 else
9306 abort ();
8fc2e39e 9307
741fe287 9308 if (!mips_opts.at && *used_at == 1)
1661c76c 9309 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9310}
9311
ea1fb5dc
RS
9312/* Move the contents of register SOURCE into register DEST. */
9313
9314static void
67c0d1eb 9315move_register (int dest, int source)
ea1fb5dc 9316{
df58fc94
RS
9317 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9318 instruction specifically requires a 32-bit one. */
9319 if (mips_opts.micromips
833794fc 9320 && !mips_opts.insn32
df58fc94 9321 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9322 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9323 else
bad1aba3 9324 macro_build (NULL, GPR_SIZE == 32 ? "addu" : "daddu", "d,v,t",
df58fc94 9325 dest, source, 0);
ea1fb5dc
RS
9326}
9327
4d7206a2 9328/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9329 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9330 The two alternatives are:
4d7206a2
RS
9331
9332 Global symbol Local sybmol
9333 ------------- ------------
9334 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9335 ... ...
9336 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9337
9338 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9339 emits the second for a 16-bit offset or add_got_offset_hilo emits
9340 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9341
9342static void
67c0d1eb 9343load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9344{
9345 expressionS global;
9346
9347 global = *local;
9348 global.X_add_number = 0;
9349
9350 relax_start (local->X_add_symbol);
67c0d1eb
RS
9351 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9352 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9353 relax_switch ();
67c0d1eb
RS
9354 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9355 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9356 relax_end ();
9357}
9358
9359static void
67c0d1eb 9360add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9361{
9362 expressionS global;
9363
9364 global.X_op = O_constant;
9365 global.X_op_symbol = NULL;
9366 global.X_add_symbol = NULL;
9367 global.X_add_number = local->X_add_number;
9368
9369 relax_start (local->X_add_symbol);
67c0d1eb 9370 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9371 dest, dest, BFD_RELOC_LO16);
9372 relax_switch ();
67c0d1eb 9373 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9374 relax_end ();
9375}
9376
f6a22291
MR
9377static void
9378add_got_offset_hilo (int dest, expressionS *local, int tmp)
9379{
9380 expressionS global;
9381 int hold_mips_optimize;
9382
9383 global.X_op = O_constant;
9384 global.X_op_symbol = NULL;
9385 global.X_add_symbol = NULL;
9386 global.X_add_number = local->X_add_number;
9387
9388 relax_start (local->X_add_symbol);
9389 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9390 relax_switch ();
9391 /* Set mips_optimize around the lui instruction to avoid
9392 inserting an unnecessary nop after the lw. */
9393 hold_mips_optimize = mips_optimize;
9394 mips_optimize = 2;
9395 macro_build_lui (&global, tmp);
9396 mips_optimize = hold_mips_optimize;
9397 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9398 relax_end ();
9399
9400 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9401}
9402
df58fc94
RS
9403/* Emit a sequence of instructions to emulate a branch likely operation.
9404 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9405 is its complementing branch with the original condition negated.
9406 CALL is set if the original branch specified the link operation.
9407 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9408
9409 Code like this is produced in the noreorder mode:
9410
9411 BRNEG <args>, 1f
9412 nop
9413 b <sym>
9414 delay slot (executed only if branch taken)
9415 1:
9416
9417 or, if CALL is set:
9418
9419 BRNEG <args>, 1f
9420 nop
9421 bal <sym>
9422 delay slot (executed only if branch taken)
9423 1:
9424
9425 In the reorder mode the delay slot would be filled with a nop anyway,
9426 so code produced is simply:
9427
9428 BR <args>, <sym>
9429 nop
9430
9431 This function is used when producing code for the microMIPS ASE that
9432 does not implement branch likely instructions in hardware. */
9433
9434static void
9435macro_build_branch_likely (const char *br, const char *brneg,
9436 int call, expressionS *ep, const char *fmt,
9437 unsigned int sreg, unsigned int treg)
9438{
9439 int noreorder = mips_opts.noreorder;
9440 expressionS expr1;
9441
9442 gas_assert (mips_opts.micromips);
9443 start_noreorder ();
9444 if (noreorder)
9445 {
9446 micromips_label_expr (&expr1);
9447 macro_build (&expr1, brneg, fmt, sreg, treg);
9448 macro_build (NULL, "nop", "");
9449 macro_build (ep, call ? "bal" : "b", "p");
9450
9451 /* Set to true so that append_insn adds a label. */
9452 emit_branch_likely_macro = TRUE;
9453 }
9454 else
9455 {
9456 macro_build (ep, br, fmt, sreg, treg);
9457 macro_build (NULL, "nop", "");
9458 }
9459 end_noreorder ();
9460}
9461
9462/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9463 the condition code tested. EP specifies the branch target. */
9464
9465static void
9466macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9467{
9468 const int call = 0;
9469 const char *brneg;
9470 const char *br;
9471
9472 switch (type)
9473 {
9474 case M_BC1FL:
9475 br = "bc1f";
9476 brneg = "bc1t";
9477 break;
9478 case M_BC1TL:
9479 br = "bc1t";
9480 brneg = "bc1f";
9481 break;
9482 case M_BC2FL:
9483 br = "bc2f";
9484 brneg = "bc2t";
9485 break;
9486 case M_BC2TL:
9487 br = "bc2t";
9488 brneg = "bc2f";
9489 break;
9490 default:
9491 abort ();
9492 }
9493 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9494}
9495
9496/* Emit a two-argument branch macro specified by TYPE, using SREG as
9497 the register tested. EP specifies the branch target. */
9498
9499static void
9500macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9501{
9502 const char *brneg = NULL;
9503 const char *br;
9504 int call = 0;
9505
9506 switch (type)
9507 {
9508 case M_BGEZ:
9509 br = "bgez";
9510 break;
9511 case M_BGEZL:
9512 br = mips_opts.micromips ? "bgez" : "bgezl";
9513 brneg = "bltz";
9514 break;
9515 case M_BGEZALL:
9516 gas_assert (mips_opts.micromips);
833794fc 9517 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9518 brneg = "bltz";
9519 call = 1;
9520 break;
9521 case M_BGTZ:
9522 br = "bgtz";
9523 break;
9524 case M_BGTZL:
9525 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9526 brneg = "blez";
9527 break;
9528 case M_BLEZ:
9529 br = "blez";
9530 break;
9531 case M_BLEZL:
9532 br = mips_opts.micromips ? "blez" : "blezl";
9533 brneg = "bgtz";
9534 break;
9535 case M_BLTZ:
9536 br = "bltz";
9537 break;
9538 case M_BLTZL:
9539 br = mips_opts.micromips ? "bltz" : "bltzl";
9540 brneg = "bgez";
9541 break;
9542 case M_BLTZALL:
9543 gas_assert (mips_opts.micromips);
833794fc 9544 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9545 brneg = "bgez";
9546 call = 1;
9547 break;
9548 default:
9549 abort ();
9550 }
9551 if (mips_opts.micromips && brneg)
9552 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9553 else
9554 macro_build (ep, br, "s,p", sreg);
9555}
9556
9557/* Emit a three-argument branch macro specified by TYPE, using SREG and
9558 TREG as the registers tested. EP specifies the branch target. */
9559
9560static void
9561macro_build_branch_rsrt (int type, expressionS *ep,
9562 unsigned int sreg, unsigned int treg)
9563{
9564 const char *brneg = NULL;
9565 const int call = 0;
9566 const char *br;
9567
9568 switch (type)
9569 {
9570 case M_BEQ:
9571 case M_BEQ_I:
9572 br = "beq";
9573 break;
9574 case M_BEQL:
9575 case M_BEQL_I:
9576 br = mips_opts.micromips ? "beq" : "beql";
9577 brneg = "bne";
9578 break;
9579 case M_BNE:
9580 case M_BNE_I:
9581 br = "bne";
9582 break;
9583 case M_BNEL:
9584 case M_BNEL_I:
9585 br = mips_opts.micromips ? "bne" : "bnel";
9586 brneg = "beq";
9587 break;
9588 default:
9589 abort ();
9590 }
9591 if (mips_opts.micromips && brneg)
9592 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9593 else
9594 macro_build (ep, br, "s,t,p", sreg, treg);
9595}
9596
f2ae14a1
RS
9597/* Return the high part that should be loaded in order to make the low
9598 part of VALUE accessible using an offset of OFFBITS bits. */
9599
9600static offsetT
9601offset_high_part (offsetT value, unsigned int offbits)
9602{
9603 offsetT bias;
9604 addressT low_mask;
9605
9606 if (offbits == 0)
9607 return value;
9608 bias = 1 << (offbits - 1);
9609 low_mask = bias * 2 - 1;
9610 return (value + bias) & ~low_mask;
9611}
9612
9613/* Return true if the value stored in offset_expr and offset_reloc
9614 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9615 amount that the caller wants to add without inducing overflow
9616 and ALIGN is the known alignment of the value in bytes. */
9617
9618static bfd_boolean
9619small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9620{
9621 if (offbits == 16)
9622 {
9623 /* Accept any relocation operator if overflow isn't a concern. */
9624 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9625 return TRUE;
9626
9627 /* These relocations are guaranteed not to overflow in correct links. */
9628 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9629 || gprel16_reloc_p (*offset_reloc))
9630 return TRUE;
9631 }
9632 if (offset_expr.X_op == O_constant
9633 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9634 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9635 return TRUE;
9636 return FALSE;
9637}
9638
252b5132
RH
9639/*
9640 * Build macros
9641 * This routine implements the seemingly endless macro or synthesized
9642 * instructions and addressing modes in the mips assembly language. Many
9643 * of these macros are simple and are similar to each other. These could
67c1ffbe 9644 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9645 * this verbose method. Others are not simple macros but are more like
9646 * optimizing code generation.
9647 * One interesting optimization is when several store macros appear
67c1ffbe 9648 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
9649 * The ensuing load upper instructions are ommited. This implies some kind
9650 * of global optimization. We currently only optimize within a single macro.
9651 * For many of the load and store macros if the address is specified as a
9652 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9653 * first load register 'at' with zero and use it as the base register. The
9654 * mips assembler simply uses register $zero. Just one tiny optimization
9655 * we're missing.
9656 */
9657static void
833794fc 9658macro (struct mips_cl_insn *ip, char *str)
252b5132 9659{
c0ebe874
RS
9660 const struct mips_operand_array *operands;
9661 unsigned int breg, i;
741fe287 9662 unsigned int tempreg;
252b5132 9663 int mask;
43841e91 9664 int used_at = 0;
df58fc94 9665 expressionS label_expr;
252b5132 9666 expressionS expr1;
df58fc94 9667 expressionS *ep;
252b5132
RH
9668 const char *s;
9669 const char *s2;
9670 const char *fmt;
9671 int likely = 0;
252b5132 9672 int coproc = 0;
7f3c4072 9673 int offbits = 16;
1abe91b1 9674 int call = 0;
df58fc94
RS
9675 int jals = 0;
9676 int dbl = 0;
9677 int imm = 0;
9678 int ust = 0;
9679 int lp = 0;
f2ae14a1 9680 bfd_boolean large_offset;
252b5132 9681 int off;
252b5132 9682 int hold_mips_optimize;
f2ae14a1 9683 unsigned int align;
c0ebe874 9684 unsigned int op[MAX_OPERANDS];
252b5132 9685
9c2799c2 9686 gas_assert (! mips_opts.mips16);
252b5132 9687
c0ebe874
RS
9688 operands = insn_operands (ip);
9689 for (i = 0; i < MAX_OPERANDS; i++)
9690 if (operands->operand[i])
9691 op[i] = insn_extract_operand (ip, operands->operand[i]);
9692 else
9693 op[i] = -1;
9694
252b5132
RH
9695 mask = ip->insn_mo->mask;
9696
df58fc94
RS
9697 label_expr.X_op = O_constant;
9698 label_expr.X_op_symbol = NULL;
9699 label_expr.X_add_symbol = NULL;
9700 label_expr.X_add_number = 0;
9701
252b5132
RH
9702 expr1.X_op = O_constant;
9703 expr1.X_op_symbol = NULL;
9704 expr1.X_add_symbol = NULL;
9705 expr1.X_add_number = 1;
f2ae14a1 9706 align = 1;
252b5132
RH
9707
9708 switch (mask)
9709 {
9710 case M_DABS:
9711 dbl = 1;
9712 case M_ABS:
df58fc94
RS
9713 /* bgez $a0,1f
9714 move v0,$a0
9715 sub v0,$zero,$a0
9716 1:
9717 */
252b5132 9718
7d10b47d 9719 start_noreorder ();
252b5132 9720
df58fc94
RS
9721 if (mips_opts.micromips)
9722 micromips_label_expr (&label_expr);
9723 else
9724 label_expr.X_add_number = 8;
c0ebe874
RS
9725 macro_build (&label_expr, "bgez", "s,p", op[1]);
9726 if (op[0] == op[1])
a605d2b3 9727 macro_build (NULL, "nop", "");
252b5132 9728 else
c0ebe874
RS
9729 move_register (op[0], op[1]);
9730 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9731 if (mips_opts.micromips)
9732 micromips_add_label ();
252b5132 9733
7d10b47d 9734 end_noreorder ();
8fc2e39e 9735 break;
252b5132
RH
9736
9737 case M_ADD_I:
9738 s = "addi";
9739 s2 = "add";
9740 goto do_addi;
9741 case M_ADDU_I:
9742 s = "addiu";
9743 s2 = "addu";
9744 goto do_addi;
9745 case M_DADD_I:
9746 dbl = 1;
9747 s = "daddi";
9748 s2 = "dadd";
df58fc94
RS
9749 if (!mips_opts.micromips)
9750 goto do_addi;
b0e6f033 9751 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9752 && imm_expr.X_add_number < 0x200)
9753 {
b0e6f033
RS
9754 macro_build (NULL, s, "t,r,.", op[0], op[1],
9755 (int) imm_expr.X_add_number);
df58fc94
RS
9756 break;
9757 }
9758 goto do_addi_i;
252b5132
RH
9759 case M_DADDU_I:
9760 dbl = 1;
9761 s = "daddiu";
9762 s2 = "daddu";
9763 do_addi:
b0e6f033 9764 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9765 && imm_expr.X_add_number < 0x8000)
9766 {
c0ebe874 9767 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9768 break;
252b5132 9769 }
df58fc94 9770 do_addi_i:
8fc2e39e 9771 used_at = 1;
67c0d1eb 9772 load_register (AT, &imm_expr, dbl);
c0ebe874 9773 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9774 break;
9775
9776 case M_AND_I:
9777 s = "andi";
9778 s2 = "and";
9779 goto do_bit;
9780 case M_OR_I:
9781 s = "ori";
9782 s2 = "or";
9783 goto do_bit;
9784 case M_NOR_I:
9785 s = "";
9786 s2 = "nor";
9787 goto do_bit;
9788 case M_XOR_I:
9789 s = "xori";
9790 s2 = "xor";
9791 do_bit:
b0e6f033 9792 if (imm_expr.X_add_number >= 0
252b5132
RH
9793 && imm_expr.X_add_number < 0x10000)
9794 {
9795 if (mask != M_NOR_I)
c0ebe874 9796 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9797 else
9798 {
67c0d1eb 9799 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9800 op[0], op[1], BFD_RELOC_LO16);
9801 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9802 }
8fc2e39e 9803 break;
252b5132
RH
9804 }
9805
8fc2e39e 9806 used_at = 1;
bad1aba3 9807 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9808 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9809 break;
9810
8b082fb1
TS
9811 case M_BALIGN:
9812 switch (imm_expr.X_add_number)
9813 {
9814 case 0:
9815 macro_build (NULL, "nop", "");
9816 break;
9817 case 2:
c0ebe874 9818 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 9819 break;
03f66e8a
MR
9820 case 1:
9821 case 3:
c0ebe874 9822 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 9823 (int) imm_expr.X_add_number);
8b082fb1 9824 break;
03f66e8a
MR
9825 default:
9826 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9827 (unsigned long) imm_expr.X_add_number);
9828 break;
8b082fb1
TS
9829 }
9830 break;
9831
df58fc94
RS
9832 case M_BC1FL:
9833 case M_BC1TL:
9834 case M_BC2FL:
9835 case M_BC2TL:
9836 gas_assert (mips_opts.micromips);
9837 macro_build_branch_ccl (mask, &offset_expr,
9838 EXTRACT_OPERAND (1, BCC, *ip));
9839 break;
9840
252b5132 9841 case M_BEQ_I:
252b5132 9842 case M_BEQL_I:
252b5132 9843 case M_BNE_I:
252b5132 9844 case M_BNEL_I:
b0e6f033 9845 if (imm_expr.X_add_number == 0)
c0ebe874 9846 op[1] = 0;
df58fc94 9847 else
252b5132 9848 {
c0ebe874 9849 op[1] = AT;
df58fc94 9850 used_at = 1;
bad1aba3 9851 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 9852 }
df58fc94
RS
9853 /* Fall through. */
9854 case M_BEQL:
9855 case M_BNEL:
c0ebe874 9856 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
9857 break;
9858
9859 case M_BGEL:
9860 likely = 1;
9861 case M_BGE:
c0ebe874
RS
9862 if (op[1] == 0)
9863 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9864 else if (op[0] == 0)
9865 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 9866 else
252b5132 9867 {
df58fc94 9868 used_at = 1;
c0ebe874 9869 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9870 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9871 &offset_expr, AT, ZERO);
252b5132 9872 }
df58fc94
RS
9873 break;
9874
9875 case M_BGEZL:
9876 case M_BGEZALL:
9877 case M_BGTZL:
9878 case M_BLEZL:
9879 case M_BLTZL:
9880 case M_BLTZALL:
c0ebe874 9881 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
9882 break;
9883
9884 case M_BGTL_I:
9885 likely = 1;
9886 case M_BGT_I:
90ecf173 9887 /* Check for > max integer. */
b0e6f033 9888 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
9889 {
9890 do_false:
90ecf173 9891 /* Result is always false. */
252b5132 9892 if (! likely)
a605d2b3 9893 macro_build (NULL, "nop", "");
252b5132 9894 else
df58fc94 9895 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 9896 break;
252b5132 9897 }
f9419b05 9898 ++imm_expr.X_add_number;
252b5132
RH
9899 /* FALLTHROUGH */
9900 case M_BGE_I:
9901 case M_BGEL_I:
9902 if (mask == M_BGEL_I)
9903 likely = 1;
b0e6f033 9904 if (imm_expr.X_add_number == 0)
252b5132 9905 {
df58fc94 9906 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 9907 &offset_expr, op[0]);
8fc2e39e 9908 break;
252b5132 9909 }
b0e6f033 9910 if (imm_expr.X_add_number == 1)
252b5132 9911 {
df58fc94 9912 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 9913 &offset_expr, op[0]);
8fc2e39e 9914 break;
252b5132 9915 }
b0e6f033 9916 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
9917 {
9918 do_true:
9919 /* result is always true */
1661c76c 9920 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 9921 macro_build (&offset_expr, "b", "p");
8fc2e39e 9922 break;
252b5132 9923 }
8fc2e39e 9924 used_at = 1;
c0ebe874 9925 set_at (op[0], 0);
df58fc94
RS
9926 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9927 &offset_expr, AT, ZERO);
252b5132
RH
9928 break;
9929
9930 case M_BGEUL:
9931 likely = 1;
9932 case M_BGEU:
c0ebe874 9933 if (op[1] == 0)
252b5132 9934 goto do_true;
c0ebe874 9935 else if (op[0] == 0)
df58fc94 9936 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9937 &offset_expr, ZERO, op[1]);
df58fc94 9938 else
252b5132 9939 {
df58fc94 9940 used_at = 1;
c0ebe874 9941 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9942 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9943 &offset_expr, AT, ZERO);
252b5132 9944 }
252b5132
RH
9945 break;
9946
9947 case M_BGTUL_I:
9948 likely = 1;
9949 case M_BGTU_I:
c0ebe874 9950 if (op[0] == 0
bad1aba3 9951 || (GPR_SIZE == 32
f01dc953 9952 && imm_expr.X_add_number == -1))
252b5132 9953 goto do_false;
f9419b05 9954 ++imm_expr.X_add_number;
252b5132
RH
9955 /* FALLTHROUGH */
9956 case M_BGEU_I:
9957 case M_BGEUL_I:
9958 if (mask == M_BGEUL_I)
9959 likely = 1;
b0e6f033 9960 if (imm_expr.X_add_number == 0)
252b5132 9961 goto do_true;
b0e6f033 9962 else if (imm_expr.X_add_number == 1)
df58fc94 9963 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 9964 &offset_expr, op[0], ZERO);
df58fc94 9965 else
252b5132 9966 {
df58fc94 9967 used_at = 1;
c0ebe874 9968 set_at (op[0], 1);
df58fc94
RS
9969 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9970 &offset_expr, AT, ZERO);
252b5132 9971 }
252b5132
RH
9972 break;
9973
9974 case M_BGTL:
9975 likely = 1;
9976 case M_BGT:
c0ebe874
RS
9977 if (op[1] == 0)
9978 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9979 else if (op[0] == 0)
9980 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 9981 else
252b5132 9982 {
df58fc94 9983 used_at = 1;
c0ebe874 9984 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
9985 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9986 &offset_expr, AT, ZERO);
252b5132 9987 }
252b5132
RH
9988 break;
9989
9990 case M_BGTUL:
9991 likely = 1;
9992 case M_BGTU:
c0ebe874 9993 if (op[1] == 0)
df58fc94 9994 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
9995 &offset_expr, op[0], ZERO);
9996 else if (op[0] == 0)
df58fc94
RS
9997 goto do_false;
9998 else
252b5132 9999 {
df58fc94 10000 used_at = 1;
c0ebe874 10001 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10002 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10003 &offset_expr, AT, ZERO);
252b5132 10004 }
252b5132
RH
10005 break;
10006
10007 case M_BLEL:
10008 likely = 1;
10009 case M_BLE:
c0ebe874
RS
10010 if (op[1] == 0)
10011 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10012 else if (op[0] == 0)
10013 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10014 else
252b5132 10015 {
df58fc94 10016 used_at = 1;
c0ebe874 10017 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10018 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10019 &offset_expr, AT, ZERO);
252b5132 10020 }
252b5132
RH
10021 break;
10022
10023 case M_BLEL_I:
10024 likely = 1;
10025 case M_BLE_I:
b0e6f033 10026 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10027 goto do_true;
f9419b05 10028 ++imm_expr.X_add_number;
252b5132
RH
10029 /* FALLTHROUGH */
10030 case M_BLT_I:
10031 case M_BLTL_I:
10032 if (mask == M_BLTL_I)
10033 likely = 1;
b0e6f033 10034 if (imm_expr.X_add_number == 0)
c0ebe874 10035 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10036 else if (imm_expr.X_add_number == 1)
c0ebe874 10037 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10038 else
252b5132 10039 {
df58fc94 10040 used_at = 1;
c0ebe874 10041 set_at (op[0], 0);
df58fc94
RS
10042 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10043 &offset_expr, AT, ZERO);
252b5132 10044 }
252b5132
RH
10045 break;
10046
10047 case M_BLEUL:
10048 likely = 1;
10049 case M_BLEU:
c0ebe874 10050 if (op[1] == 0)
df58fc94 10051 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10052 &offset_expr, op[0], ZERO);
10053 else if (op[0] == 0)
df58fc94
RS
10054 goto do_true;
10055 else
252b5132 10056 {
df58fc94 10057 used_at = 1;
c0ebe874 10058 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10059 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10060 &offset_expr, AT, ZERO);
252b5132 10061 }
252b5132
RH
10062 break;
10063
10064 case M_BLEUL_I:
10065 likely = 1;
10066 case M_BLEU_I:
c0ebe874 10067 if (op[0] == 0
bad1aba3 10068 || (GPR_SIZE == 32
f01dc953 10069 && imm_expr.X_add_number == -1))
252b5132 10070 goto do_true;
f9419b05 10071 ++imm_expr.X_add_number;
252b5132
RH
10072 /* FALLTHROUGH */
10073 case M_BLTU_I:
10074 case M_BLTUL_I:
10075 if (mask == M_BLTUL_I)
10076 likely = 1;
b0e6f033 10077 if (imm_expr.X_add_number == 0)
252b5132 10078 goto do_false;
b0e6f033 10079 else if (imm_expr.X_add_number == 1)
df58fc94 10080 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10081 &offset_expr, op[0], ZERO);
df58fc94 10082 else
252b5132 10083 {
df58fc94 10084 used_at = 1;
c0ebe874 10085 set_at (op[0], 1);
df58fc94
RS
10086 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10087 &offset_expr, AT, ZERO);
252b5132 10088 }
252b5132
RH
10089 break;
10090
10091 case M_BLTL:
10092 likely = 1;
10093 case M_BLT:
c0ebe874
RS
10094 if (op[1] == 0)
10095 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10096 else if (op[0] == 0)
10097 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10098 else
252b5132 10099 {
df58fc94 10100 used_at = 1;
c0ebe874 10101 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10102 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10103 &offset_expr, AT, ZERO);
252b5132 10104 }
252b5132
RH
10105 break;
10106
10107 case M_BLTUL:
10108 likely = 1;
10109 case M_BLTU:
c0ebe874 10110 if (op[1] == 0)
252b5132 10111 goto do_false;
c0ebe874 10112 else if (op[0] == 0)
df58fc94 10113 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10114 &offset_expr, ZERO, op[1]);
df58fc94 10115 else
252b5132 10116 {
df58fc94 10117 used_at = 1;
c0ebe874 10118 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10119 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10120 &offset_expr, AT, ZERO);
252b5132 10121 }
252b5132
RH
10122 break;
10123
10124 case M_DDIV_3:
10125 dbl = 1;
10126 case M_DIV_3:
10127 s = "mflo";
10128 goto do_div3;
10129 case M_DREM_3:
10130 dbl = 1;
10131 case M_REM_3:
10132 s = "mfhi";
10133 do_div3:
c0ebe874 10134 if (op[2] == 0)
252b5132 10135 {
1661c76c 10136 as_warn (_("divide by zero"));
252b5132 10137 if (mips_trap)
df58fc94 10138 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10139 else
df58fc94 10140 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10141 break;
252b5132
RH
10142 }
10143
7d10b47d 10144 start_noreorder ();
252b5132
RH
10145 if (mips_trap)
10146 {
c0ebe874
RS
10147 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10148 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10149 }
10150 else
10151 {
df58fc94
RS
10152 if (mips_opts.micromips)
10153 micromips_label_expr (&label_expr);
10154 else
10155 label_expr.X_add_number = 8;
c0ebe874
RS
10156 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10157 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10158 macro_build (NULL, "break", BRK_FMT, 7);
10159 if (mips_opts.micromips)
10160 micromips_add_label ();
252b5132
RH
10161 }
10162 expr1.X_add_number = -1;
8fc2e39e 10163 used_at = 1;
f6a22291 10164 load_register (AT, &expr1, dbl);
df58fc94
RS
10165 if (mips_opts.micromips)
10166 micromips_label_expr (&label_expr);
10167 else
10168 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10169 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10170 if (dbl)
10171 {
10172 expr1.X_add_number = 1;
f6a22291 10173 load_register (AT, &expr1, dbl);
df58fc94 10174 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10175 }
10176 else
10177 {
10178 expr1.X_add_number = 0x80000000;
df58fc94 10179 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10180 }
10181 if (mips_trap)
10182 {
c0ebe874 10183 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10184 /* We want to close the noreorder block as soon as possible, so
10185 that later insns are available for delay slot filling. */
7d10b47d 10186 end_noreorder ();
252b5132
RH
10187 }
10188 else
10189 {
df58fc94
RS
10190 if (mips_opts.micromips)
10191 micromips_label_expr (&label_expr);
10192 else
10193 label_expr.X_add_number = 8;
c0ebe874 10194 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10195 macro_build (NULL, "nop", "");
252b5132
RH
10196
10197 /* We want to close the noreorder block as soon as possible, so
10198 that later insns are available for delay slot filling. */
7d10b47d 10199 end_noreorder ();
252b5132 10200
df58fc94 10201 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10202 }
df58fc94
RS
10203 if (mips_opts.micromips)
10204 micromips_add_label ();
c0ebe874 10205 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10206 break;
10207
10208 case M_DIV_3I:
10209 s = "div";
10210 s2 = "mflo";
10211 goto do_divi;
10212 case M_DIVU_3I:
10213 s = "divu";
10214 s2 = "mflo";
10215 goto do_divi;
10216 case M_REM_3I:
10217 s = "div";
10218 s2 = "mfhi";
10219 goto do_divi;
10220 case M_REMU_3I:
10221 s = "divu";
10222 s2 = "mfhi";
10223 goto do_divi;
10224 case M_DDIV_3I:
10225 dbl = 1;
10226 s = "ddiv";
10227 s2 = "mflo";
10228 goto do_divi;
10229 case M_DDIVU_3I:
10230 dbl = 1;
10231 s = "ddivu";
10232 s2 = "mflo";
10233 goto do_divi;
10234 case M_DREM_3I:
10235 dbl = 1;
10236 s = "ddiv";
10237 s2 = "mfhi";
10238 goto do_divi;
10239 case M_DREMU_3I:
10240 dbl = 1;
10241 s = "ddivu";
10242 s2 = "mfhi";
10243 do_divi:
b0e6f033 10244 if (imm_expr.X_add_number == 0)
252b5132 10245 {
1661c76c 10246 as_warn (_("divide by zero"));
252b5132 10247 if (mips_trap)
df58fc94 10248 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10249 else
df58fc94 10250 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10251 break;
252b5132 10252 }
b0e6f033 10253 if (imm_expr.X_add_number == 1)
252b5132
RH
10254 {
10255 if (strcmp (s2, "mflo") == 0)
c0ebe874 10256 move_register (op[0], op[1]);
252b5132 10257 else
c0ebe874 10258 move_register (op[0], ZERO);
8fc2e39e 10259 break;
252b5132 10260 }
b0e6f033 10261 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10262 {
10263 if (strcmp (s2, "mflo") == 0)
c0ebe874 10264 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10265 else
c0ebe874 10266 move_register (op[0], ZERO);
8fc2e39e 10267 break;
252b5132
RH
10268 }
10269
8fc2e39e 10270 used_at = 1;
67c0d1eb 10271 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10272 macro_build (NULL, s, "z,s,t", op[1], AT);
10273 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10274 break;
10275
10276 case M_DIVU_3:
10277 s = "divu";
10278 s2 = "mflo";
10279 goto do_divu3;
10280 case M_REMU_3:
10281 s = "divu";
10282 s2 = "mfhi";
10283 goto do_divu3;
10284 case M_DDIVU_3:
10285 s = "ddivu";
10286 s2 = "mflo";
10287 goto do_divu3;
10288 case M_DREMU_3:
10289 s = "ddivu";
10290 s2 = "mfhi";
10291 do_divu3:
7d10b47d 10292 start_noreorder ();
252b5132
RH
10293 if (mips_trap)
10294 {
c0ebe874
RS
10295 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10296 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10297 /* We want to close the noreorder block as soon as possible, so
10298 that later insns are available for delay slot filling. */
7d10b47d 10299 end_noreorder ();
252b5132
RH
10300 }
10301 else
10302 {
df58fc94
RS
10303 if (mips_opts.micromips)
10304 micromips_label_expr (&label_expr);
10305 else
10306 label_expr.X_add_number = 8;
c0ebe874
RS
10307 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10308 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10309
10310 /* We want to close the noreorder block as soon as possible, so
10311 that later insns are available for delay slot filling. */
7d10b47d 10312 end_noreorder ();
df58fc94
RS
10313 macro_build (NULL, "break", BRK_FMT, 7);
10314 if (mips_opts.micromips)
10315 micromips_add_label ();
252b5132 10316 }
c0ebe874 10317 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10318 break;
252b5132 10319
1abe91b1
MR
10320 case M_DLCA_AB:
10321 dbl = 1;
10322 case M_LCA_AB:
10323 call = 1;
10324 goto do_la;
252b5132
RH
10325 case M_DLA_AB:
10326 dbl = 1;
10327 case M_LA_AB:
1abe91b1 10328 do_la:
252b5132
RH
10329 /* Load the address of a symbol into a register. If breg is not
10330 zero, we then add a base register to it. */
10331
c0ebe874 10332 breg = op[2];
bad1aba3 10333 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10334 as_warn (_("dla used to load 32-bit register; recommend using la "
10335 "instead"));
3bec30a8 10336
90ecf173 10337 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10338 as_warn (_("la used to load 64-bit address; recommend using dla "
10339 "instead"));
3bec30a8 10340
f2ae14a1 10341 if (small_offset_p (0, align, 16))
0c11417f 10342 {
c0ebe874 10343 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10344 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10345 break;
0c11417f
MR
10346 }
10347
c0ebe874 10348 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10349 {
10350 tempreg = AT;
10351 used_at = 1;
10352 }
10353 else
c0ebe874 10354 tempreg = op[0];
afdbd6d0 10355
252b5132
RH
10356 if (offset_expr.X_op != O_symbol
10357 && offset_expr.X_op != O_constant)
10358 {
1661c76c 10359 as_bad (_("expression too complex"));
252b5132
RH
10360 offset_expr.X_op = O_constant;
10361 }
10362
252b5132 10363 if (offset_expr.X_op == O_constant)
aed1a261 10364 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10365 else if (mips_pic == NO_PIC)
10366 {
d6bc6245 10367 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10368 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10369 Otherwise we want
10370 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10371 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10372 If we have a constant, we need two instructions anyhow,
d6bc6245 10373 so we may as well always use the latter form.
76b3015f 10374
6caf9ef4
TS
10375 With 64bit address space and a usable $at we want
10376 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10377 lui $at,<sym> (BFD_RELOC_HI16_S)
10378 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10379 daddiu $at,<sym> (BFD_RELOC_LO16)
10380 dsll32 $tempreg,0
10381 daddu $tempreg,$tempreg,$at
10382
10383 If $at is already in use, we use a path which is suboptimal
10384 on superscalar processors.
10385 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10386 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10387 dsll $tempreg,16
10388 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10389 dsll $tempreg,16
10390 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10391
10392 For GP relative symbols in 64bit address space we can use
10393 the same sequence as in 32bit address space. */
aed1a261 10394 if (HAVE_64BIT_SYMBOLS)
252b5132 10395 {
6caf9ef4
TS
10396 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10397 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10398 {
10399 relax_start (offset_expr.X_add_symbol);
10400 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10401 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10402 relax_switch ();
10403 }
d6bc6245 10404
741fe287 10405 if (used_at == 0 && mips_opts.at)
98d3f06f 10406 {
df58fc94 10407 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10408 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10409 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10410 AT, BFD_RELOC_HI16_S);
67c0d1eb 10411 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10412 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10413 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10414 AT, AT, BFD_RELOC_LO16);
df58fc94 10415 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10416 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10417 used_at = 1;
10418 }
10419 else
10420 {
df58fc94 10421 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10422 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10423 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10424 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10425 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10426 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10427 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10428 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10429 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10430 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10431 }
6caf9ef4
TS
10432
10433 if (mips_relax.sequence)
10434 relax_end ();
98d3f06f
KH
10435 }
10436 else
10437 {
10438 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10439 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10440 {
4d7206a2 10441 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10442 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10443 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10444 relax_switch ();
98d3f06f 10445 }
6943caf0 10446 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10447 as_bad (_("offset too large"));
67c0d1eb
RS
10448 macro_build_lui (&offset_expr, tempreg);
10449 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10450 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10451 if (mips_relax.sequence)
10452 relax_end ();
98d3f06f 10453 }
252b5132 10454 }
0a44bf69 10455 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10456 {
9117d219
NC
10457 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10458
252b5132
RH
10459 /* If this is a reference to an external symbol, and there
10460 is no constant, we want
10461 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10462 or for lca or if tempreg is PIC_CALL_REG
9117d219 10463 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10464 For a local symbol, we want
10465 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10466 nop
10467 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10468
10469 If we have a small constant, and this is a reference to
10470 an external symbol, we want
10471 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10472 nop
10473 addiu $tempreg,$tempreg,<constant>
10474 For a local symbol, we want the same instruction
10475 sequence, but we output a BFD_RELOC_LO16 reloc on the
10476 addiu instruction.
10477
10478 If we have a large constant, and this is a reference to
10479 an external symbol, we want
10480 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10481 lui $at,<hiconstant>
10482 addiu $at,$at,<loconstant>
10483 addu $tempreg,$tempreg,$at
10484 For a local symbol, we want the same instruction
10485 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10486 addiu instruction.
ed6fb7bd
SC
10487 */
10488
4d7206a2 10489 if (offset_expr.X_add_number == 0)
252b5132 10490 {
0a44bf69
RS
10491 if (mips_pic == SVR4_PIC
10492 && breg == 0
10493 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10494 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10495
10496 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10497 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10498 lw_reloc_type, mips_gp_register);
4d7206a2 10499 if (breg != 0)
252b5132
RH
10500 {
10501 /* We're going to put in an addu instruction using
10502 tempreg, so we may as well insert the nop right
10503 now. */
269137b2 10504 load_delay_nop ();
252b5132 10505 }
4d7206a2 10506 relax_switch ();
67c0d1eb
RS
10507 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10508 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10509 load_delay_nop ();
67c0d1eb
RS
10510 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10511 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10512 relax_end ();
252b5132
RH
10513 /* FIXME: If breg == 0, and the next instruction uses
10514 $tempreg, then if this variant case is used an extra
10515 nop will be generated. */
10516 }
4d7206a2
RS
10517 else if (offset_expr.X_add_number >= -0x8000
10518 && offset_expr.X_add_number < 0x8000)
252b5132 10519 {
67c0d1eb 10520 load_got_offset (tempreg, &offset_expr);
269137b2 10521 load_delay_nop ();
67c0d1eb 10522 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10523 }
10524 else
10525 {
4d7206a2
RS
10526 expr1.X_add_number = offset_expr.X_add_number;
10527 offset_expr.X_add_number =
43c0598f 10528 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10529 load_got_offset (tempreg, &offset_expr);
f6a22291 10530 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10531 /* If we are going to add in a base register, and the
10532 target register and the base register are the same,
10533 then we are using AT as a temporary register. Since
10534 we want to load the constant into AT, we add our
10535 current AT (from the global offset table) and the
10536 register into the register now, and pretend we were
10537 not using a base register. */
c0ebe874 10538 if (breg == op[0])
252b5132 10539 {
269137b2 10540 load_delay_nop ();
67c0d1eb 10541 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10542 op[0], AT, breg);
252b5132 10543 breg = 0;
c0ebe874 10544 tempreg = op[0];
252b5132 10545 }
f6a22291 10546 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10547 used_at = 1;
10548 }
10549 }
0a44bf69 10550 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10551 {
67c0d1eb 10552 int add_breg_early = 0;
f5040a92
AO
10553
10554 /* If this is a reference to an external, and there is no
10555 constant, or local symbol (*), with or without a
10556 constant, we want
10557 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10558 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10559 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10560
10561 If we have a small constant, and this is a reference to
10562 an external symbol, we want
10563 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10564 addiu $tempreg,$tempreg,<constant>
10565
10566 If we have a large constant, and this is a reference to
10567 an external symbol, we want
10568 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10569 lui $at,<hiconstant>
10570 addiu $at,$at,<loconstant>
10571 addu $tempreg,$tempreg,$at
10572
10573 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10574 local symbols, even though it introduces an additional
10575 instruction. */
10576
f5040a92
AO
10577 if (offset_expr.X_add_number)
10578 {
4d7206a2 10579 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10580 offset_expr.X_add_number = 0;
10581
4d7206a2 10582 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10583 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10584 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10585
10586 if (expr1.X_add_number >= -0x8000
10587 && expr1.X_add_number < 0x8000)
10588 {
67c0d1eb
RS
10589 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10590 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10591 }
ecd13cd3 10592 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10593 {
c0ebe874
RS
10594 unsigned int dreg;
10595
f5040a92
AO
10596 /* If we are going to add in a base register, and the
10597 target register and the base register are the same,
10598 then we are using AT as a temporary register. Since
10599 we want to load the constant into AT, we add our
10600 current AT (from the global offset table) and the
10601 register into the register now, and pretend we were
10602 not using a base register. */
c0ebe874 10603 if (breg != op[0])
f5040a92
AO
10604 dreg = tempreg;
10605 else
10606 {
9c2799c2 10607 gas_assert (tempreg == AT);
67c0d1eb 10608 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10609 op[0], AT, breg);
10610 dreg = op[0];
67c0d1eb 10611 add_breg_early = 1;
f5040a92
AO
10612 }
10613
f6a22291 10614 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10615 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10616 dreg, dreg, AT);
f5040a92 10617
f5040a92
AO
10618 used_at = 1;
10619 }
10620 else
10621 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10622
4d7206a2 10623 relax_switch ();
f5040a92
AO
10624 offset_expr.X_add_number = expr1.X_add_number;
10625
67c0d1eb
RS
10626 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10627 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10628 if (add_breg_early)
f5040a92 10629 {
67c0d1eb 10630 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10631 op[0], tempreg, breg);
f5040a92 10632 breg = 0;
c0ebe874 10633 tempreg = op[0];
f5040a92 10634 }
4d7206a2 10635 relax_end ();
f5040a92 10636 }
4d7206a2 10637 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10638 {
4d7206a2 10639 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10640 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10641 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10642 relax_switch ();
67c0d1eb
RS
10643 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10644 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10645 relax_end ();
f5040a92 10646 }
4d7206a2 10647 else
f5040a92 10648 {
67c0d1eb
RS
10649 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10650 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10651 }
10652 }
0a44bf69 10653 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10654 {
67c0d1eb 10655 int gpdelay;
9117d219
NC
10656 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10657 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10658 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10659
10660 /* This is the large GOT case. If this is a reference to an
10661 external symbol, and there is no constant, we want
10662 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10663 addu $tempreg,$tempreg,$gp
10664 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10665 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10666 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10667 addu $tempreg,$tempreg,$gp
10668 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10669 For a local symbol, we want
10670 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10671 nop
10672 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10673
10674 If we have a small constant, and this is a reference to
10675 an external symbol, we want
10676 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10677 addu $tempreg,$tempreg,$gp
10678 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10679 nop
10680 addiu $tempreg,$tempreg,<constant>
10681 For a local symbol, we want
10682 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10683 nop
10684 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10685
10686 If we have a large constant, and this is a reference to
10687 an external symbol, we want
10688 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10689 addu $tempreg,$tempreg,$gp
10690 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10691 lui $at,<hiconstant>
10692 addiu $at,$at,<loconstant>
10693 addu $tempreg,$tempreg,$at
10694 For a local symbol, we want
10695 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10696 lui $at,<hiconstant>
10697 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10698 addu $tempreg,$tempreg,$at
f5040a92 10699 */
438c16b8 10700
252b5132
RH
10701 expr1.X_add_number = offset_expr.X_add_number;
10702 offset_expr.X_add_number = 0;
4d7206a2 10703 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10704 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10705 if (expr1.X_add_number == 0 && breg == 0
10706 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10707 {
10708 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10709 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10710 }
df58fc94 10711 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10712 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10713 tempreg, tempreg, mips_gp_register);
67c0d1eb 10714 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10715 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10716 if (expr1.X_add_number == 0)
10717 {
67c0d1eb 10718 if (breg != 0)
252b5132
RH
10719 {
10720 /* We're going to put in an addu instruction using
10721 tempreg, so we may as well insert the nop right
10722 now. */
269137b2 10723 load_delay_nop ();
252b5132 10724 }
252b5132
RH
10725 }
10726 else if (expr1.X_add_number >= -0x8000
10727 && expr1.X_add_number < 0x8000)
10728 {
269137b2 10729 load_delay_nop ();
67c0d1eb 10730 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10731 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10732 }
10733 else
10734 {
c0ebe874
RS
10735 unsigned int dreg;
10736
252b5132
RH
10737 /* If we are going to add in a base register, and the
10738 target register and the base register are the same,
10739 then we are using AT as a temporary register. Since
10740 we want to load the constant into AT, we add our
10741 current AT (from the global offset table) and the
10742 register into the register now, and pretend we were
10743 not using a base register. */
c0ebe874 10744 if (breg != op[0])
67c0d1eb 10745 dreg = tempreg;
252b5132
RH
10746 else
10747 {
9c2799c2 10748 gas_assert (tempreg == AT);
269137b2 10749 load_delay_nop ();
67c0d1eb 10750 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10751 op[0], AT, breg);
10752 dreg = op[0];
252b5132
RH
10753 }
10754
f6a22291 10755 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10756 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10757
252b5132
RH
10758 used_at = 1;
10759 }
43c0598f 10760 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10761 relax_switch ();
252b5132 10762
67c0d1eb 10763 if (gpdelay)
252b5132
RH
10764 {
10765 /* This is needed because this instruction uses $gp, but
f5040a92 10766 the first instruction on the main stream does not. */
67c0d1eb 10767 macro_build (NULL, "nop", "");
252b5132 10768 }
ed6fb7bd 10769
67c0d1eb
RS
10770 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10771 local_reloc_type, mips_gp_register);
f5040a92 10772 if (expr1.X_add_number >= -0x8000
252b5132
RH
10773 && expr1.X_add_number < 0x8000)
10774 {
269137b2 10775 load_delay_nop ();
67c0d1eb
RS
10776 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10777 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10778 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10779 register, the external symbol case ended with a load,
10780 so if the symbol turns out to not be external, and
10781 the next instruction uses tempreg, an unnecessary nop
10782 will be inserted. */
252b5132
RH
10783 }
10784 else
10785 {
c0ebe874 10786 if (breg == op[0])
252b5132
RH
10787 {
10788 /* We must add in the base register now, as in the
f5040a92 10789 external symbol case. */
9c2799c2 10790 gas_assert (tempreg == AT);
269137b2 10791 load_delay_nop ();
67c0d1eb 10792 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10793 op[0], AT, breg);
10794 tempreg = op[0];
252b5132 10795 /* We set breg to 0 because we have arranged to add
f5040a92 10796 it in in both cases. */
252b5132
RH
10797 breg = 0;
10798 }
10799
67c0d1eb
RS
10800 macro_build_lui (&expr1, AT);
10801 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10802 AT, AT, BFD_RELOC_LO16);
67c0d1eb 10803 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10804 tempreg, tempreg, AT);
8fc2e39e 10805 used_at = 1;
252b5132 10806 }
4d7206a2 10807 relax_end ();
252b5132 10808 }
0a44bf69 10809 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10810 {
f5040a92
AO
10811 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10812 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 10813 int add_breg_early = 0;
f5040a92
AO
10814
10815 /* This is the large GOT case. If this is a reference to an
10816 external symbol, and there is no constant, we want
10817 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10818 add $tempreg,$tempreg,$gp
10819 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10820 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10821 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10822 add $tempreg,$tempreg,$gp
10823 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10824
10825 If we have a small constant, and this is a reference to
10826 an external symbol, we want
10827 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10828 add $tempreg,$tempreg,$gp
10829 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10830 addi $tempreg,$tempreg,<constant>
10831
10832 If we have a large constant, and this is a reference to
10833 an external symbol, we want
10834 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10835 addu $tempreg,$tempreg,$gp
10836 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10837 lui $at,<hiconstant>
10838 addi $at,$at,<loconstant>
10839 add $tempreg,$tempreg,$at
10840
10841 If we have NewABI, and we know it's a local symbol, we want
10842 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10843 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10844 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10845
4d7206a2 10846 relax_start (offset_expr.X_add_symbol);
f5040a92 10847
4d7206a2 10848 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10849 offset_expr.X_add_number = 0;
10850
1abe91b1
MR
10851 if (expr1.X_add_number == 0 && breg == 0
10852 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
10853 {
10854 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10855 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10856 }
df58fc94 10857 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10859 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
10860 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10861 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
10862
10863 if (expr1.X_add_number == 0)
4d7206a2 10864 ;
f5040a92
AO
10865 else if (expr1.X_add_number >= -0x8000
10866 && expr1.X_add_number < 0x8000)
10867 {
67c0d1eb 10868 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10869 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10870 }
ecd13cd3 10871 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10872 {
c0ebe874
RS
10873 unsigned int dreg;
10874
f5040a92
AO
10875 /* If we are going to add in a base register, and the
10876 target register and the base register are the same,
10877 then we are using AT as a temporary register. Since
10878 we want to load the constant into AT, we add our
10879 current AT (from the global offset table) and the
10880 register into the register now, and pretend we were
10881 not using a base register. */
c0ebe874 10882 if (breg != op[0])
f5040a92
AO
10883 dreg = tempreg;
10884 else
10885 {
9c2799c2 10886 gas_assert (tempreg == AT);
67c0d1eb 10887 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10888 op[0], AT, breg);
10889 dreg = op[0];
67c0d1eb 10890 add_breg_early = 1;
f5040a92
AO
10891 }
10892
f6a22291 10893 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10894 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 10895
f5040a92
AO
10896 used_at = 1;
10897 }
10898 else
10899 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10900
4d7206a2 10901 relax_switch ();
f5040a92 10902 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10903 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10904 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10905 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10906 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10907 if (add_breg_early)
f5040a92 10908 {
67c0d1eb 10909 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10910 op[0], tempreg, breg);
f5040a92 10911 breg = 0;
c0ebe874 10912 tempreg = op[0];
f5040a92 10913 }
4d7206a2 10914 relax_end ();
f5040a92 10915 }
252b5132
RH
10916 else
10917 abort ();
10918
10919 if (breg != 0)
c0ebe874 10920 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
10921 break;
10922
52b6b6b9 10923 case M_MSGSND:
df58fc94 10924 gas_assert (!mips_opts.micromips);
c0ebe874 10925 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 10926 break;
52b6b6b9
JM
10927
10928 case M_MSGLD:
df58fc94 10929 gas_assert (!mips_opts.micromips);
c8276761 10930 macro_build (NULL, "c2", "C", 0x02);
c7af4273 10931 break;
52b6b6b9
JM
10932
10933 case M_MSGLD_T:
df58fc94 10934 gas_assert (!mips_opts.micromips);
c0ebe874 10935 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 10936 break;
52b6b6b9
JM
10937
10938 case M_MSGWAIT:
df58fc94 10939 gas_assert (!mips_opts.micromips);
52b6b6b9 10940 macro_build (NULL, "c2", "C", 3);
c7af4273 10941 break;
52b6b6b9
JM
10942
10943 case M_MSGWAIT_T:
df58fc94 10944 gas_assert (!mips_opts.micromips);
c0ebe874 10945 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 10946 break;
52b6b6b9 10947
252b5132
RH
10948 case M_J_A:
10949 /* The j instruction may not be used in PIC code, since it
10950 requires an absolute address. We convert it to a b
10951 instruction. */
10952 if (mips_pic == NO_PIC)
67c0d1eb 10953 macro_build (&offset_expr, "j", "a");
252b5132 10954 else
67c0d1eb 10955 macro_build (&offset_expr, "b", "p");
8fc2e39e 10956 break;
252b5132
RH
10957
10958 /* The jal instructions must be handled as macros because when
10959 generating PIC code they expand to multi-instruction
10960 sequences. Normally they are simple instructions. */
df58fc94 10961 case M_JALS_1:
c0ebe874
RS
10962 op[1] = op[0];
10963 op[0] = RA;
df58fc94
RS
10964 /* Fall through. */
10965 case M_JALS_2:
10966 gas_assert (mips_opts.micromips);
833794fc
MR
10967 if (mips_opts.insn32)
10968 {
1661c76c 10969 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
10970 break;
10971 }
df58fc94
RS
10972 jals = 1;
10973 goto jal;
252b5132 10974 case M_JAL_1:
c0ebe874
RS
10975 op[1] = op[0];
10976 op[0] = RA;
252b5132
RH
10977 /* Fall through. */
10978 case M_JAL_2:
df58fc94 10979 jal:
3e722fb5 10980 if (mips_pic == NO_PIC)
df58fc94
RS
10981 {
10982 s = jals ? "jalrs" : "jalr";
e64af278 10983 if (mips_opts.micromips
833794fc 10984 && !mips_opts.insn32
c0ebe874 10985 && op[0] == RA
e64af278 10986 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 10987 macro_build (NULL, s, "mj", op[1]);
df58fc94 10988 else
c0ebe874 10989 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 10990 }
0a44bf69 10991 else
252b5132 10992 {
df58fc94
RS
10993 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10994 && mips_cprestore_offset >= 0);
10995
c0ebe874 10996 if (op[1] != PIC_CALL_REG)
252b5132 10997 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 10998
833794fc
MR
10999 s = ((mips_opts.micromips
11000 && !mips_opts.insn32
11001 && (!mips_opts.noreorder || cprestore))
df58fc94 11002 ? "jalrs" : "jalr");
e64af278 11003 if (mips_opts.micromips
833794fc 11004 && !mips_opts.insn32
c0ebe874 11005 && op[0] == RA
e64af278 11006 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11007 macro_build (NULL, s, "mj", op[1]);
df58fc94 11008 else
c0ebe874 11009 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11010 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11011 {
6478892d 11012 if (mips_cprestore_offset < 0)
1661c76c 11013 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11014 else
11015 {
90ecf173 11016 if (!mips_frame_reg_valid)
7a621144 11017 {
1661c76c 11018 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11019 /* Quiet this warning. */
11020 mips_frame_reg_valid = 1;
11021 }
90ecf173 11022 if (!mips_cprestore_valid)
7a621144 11023 {
1661c76c 11024 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11025 /* Quiet this warning. */
11026 mips_cprestore_valid = 1;
11027 }
d3fca0b5
MR
11028 if (mips_opts.noreorder)
11029 macro_build (NULL, "nop", "");
6478892d 11030 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11031 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11032 mips_gp_register,
256ab948
TS
11033 mips_frame_reg,
11034 HAVE_64BIT_ADDRESSES);
6478892d 11035 }
252b5132
RH
11036 }
11037 }
252b5132 11038
8fc2e39e 11039 break;
252b5132 11040
df58fc94
RS
11041 case M_JALS_A:
11042 gas_assert (mips_opts.micromips);
833794fc
MR
11043 if (mips_opts.insn32)
11044 {
1661c76c 11045 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11046 break;
11047 }
df58fc94
RS
11048 jals = 1;
11049 /* Fall through. */
252b5132
RH
11050 case M_JAL_A:
11051 if (mips_pic == NO_PIC)
df58fc94 11052 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11053 else if (mips_pic == SVR4_PIC)
11054 {
11055 /* If this is a reference to an external symbol, and we are
11056 using a small GOT, we want
11057 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11058 nop
f9419b05 11059 jalr $ra,$25
252b5132
RH
11060 nop
11061 lw $gp,cprestore($sp)
11062 The cprestore value is set using the .cprestore
11063 pseudo-op. If we are using a big GOT, we want
11064 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11065 addu $25,$25,$gp
11066 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11067 nop
f9419b05 11068 jalr $ra,$25
252b5132
RH
11069 nop
11070 lw $gp,cprestore($sp)
11071 If the symbol is not external, we want
11072 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11073 nop
11074 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11075 jalr $ra,$25
252b5132 11076 nop
438c16b8 11077 lw $gp,cprestore($sp)
f5040a92
AO
11078
11079 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11080 sequences above, minus nops, unless the symbol is local,
11081 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11082 GOT_DISP. */
438c16b8 11083 if (HAVE_NEWABI)
252b5132 11084 {
90ecf173 11085 if (!mips_big_got)
f5040a92 11086 {
4d7206a2 11087 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11088 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11089 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11090 mips_gp_register);
4d7206a2 11091 relax_switch ();
67c0d1eb
RS
11092 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11093 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11094 mips_gp_register);
11095 relax_end ();
f5040a92
AO
11096 }
11097 else
11098 {
4d7206a2 11099 relax_start (offset_expr.X_add_symbol);
df58fc94 11100 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11101 BFD_RELOC_MIPS_CALL_HI16);
11102 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11103 PIC_CALL_REG, mips_gp_register);
11104 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11105 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11106 PIC_CALL_REG);
4d7206a2 11107 relax_switch ();
67c0d1eb
RS
11108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11109 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11110 mips_gp_register);
11111 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11112 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11113 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11114 relax_end ();
f5040a92 11115 }
684022ea 11116
df58fc94 11117 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11118 }
11119 else
11120 {
4d7206a2 11121 relax_start (offset_expr.X_add_symbol);
90ecf173 11122 if (!mips_big_got)
438c16b8 11123 {
67c0d1eb
RS
11124 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11125 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11126 mips_gp_register);
269137b2 11127 load_delay_nop ();
4d7206a2 11128 relax_switch ();
438c16b8 11129 }
252b5132 11130 else
252b5132 11131 {
67c0d1eb
RS
11132 int gpdelay;
11133
11134 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11135 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11136 BFD_RELOC_MIPS_CALL_HI16);
11137 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11138 PIC_CALL_REG, mips_gp_register);
11139 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11140 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11141 PIC_CALL_REG);
269137b2 11142 load_delay_nop ();
4d7206a2 11143 relax_switch ();
67c0d1eb
RS
11144 if (gpdelay)
11145 macro_build (NULL, "nop", "");
252b5132 11146 }
67c0d1eb
RS
11147 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11148 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11149 mips_gp_register);
269137b2 11150 load_delay_nop ();
67c0d1eb
RS
11151 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11152 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11153 relax_end ();
df58fc94 11154 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11155
6478892d 11156 if (mips_cprestore_offset < 0)
1661c76c 11157 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11158 else
11159 {
90ecf173 11160 if (!mips_frame_reg_valid)
7a621144 11161 {
1661c76c 11162 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11163 /* Quiet this warning. */
11164 mips_frame_reg_valid = 1;
11165 }
90ecf173 11166 if (!mips_cprestore_valid)
7a621144 11167 {
1661c76c 11168 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11169 /* Quiet this warning. */
11170 mips_cprestore_valid = 1;
11171 }
6478892d 11172 if (mips_opts.noreorder)
67c0d1eb 11173 macro_build (NULL, "nop", "");
6478892d 11174 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11175 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11176 mips_gp_register,
256ab948
TS
11177 mips_frame_reg,
11178 HAVE_64BIT_ADDRESSES);
6478892d 11179 }
252b5132
RH
11180 }
11181 }
0a44bf69 11182 else if (mips_pic == VXWORKS_PIC)
1661c76c 11183 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11184 else
11185 abort ();
11186
8fc2e39e 11187 break;
252b5132 11188
7f3c4072 11189 case M_LBUE_AB:
7f3c4072
CM
11190 s = "lbue";
11191 fmt = "t,+j(b)";
11192 offbits = 9;
11193 goto ld_st;
11194 case M_LHUE_AB:
7f3c4072
CM
11195 s = "lhue";
11196 fmt = "t,+j(b)";
11197 offbits = 9;
11198 goto ld_st;
11199 case M_LBE_AB:
7f3c4072
CM
11200 s = "lbe";
11201 fmt = "t,+j(b)";
11202 offbits = 9;
11203 goto ld_st;
11204 case M_LHE_AB:
7f3c4072
CM
11205 s = "lhe";
11206 fmt = "t,+j(b)";
11207 offbits = 9;
11208 goto ld_st;
11209 case M_LLE_AB:
7f3c4072
CM
11210 s = "lle";
11211 fmt = "t,+j(b)";
11212 offbits = 9;
11213 goto ld_st;
11214 case M_LWE_AB:
7f3c4072
CM
11215 s = "lwe";
11216 fmt = "t,+j(b)";
11217 offbits = 9;
11218 goto ld_st;
11219 case M_LWLE_AB:
7f3c4072
CM
11220 s = "lwle";
11221 fmt = "t,+j(b)";
11222 offbits = 9;
11223 goto ld_st;
11224 case M_LWRE_AB:
7f3c4072
CM
11225 s = "lwre";
11226 fmt = "t,+j(b)";
11227 offbits = 9;
11228 goto ld_st;
11229 case M_SBE_AB:
7f3c4072
CM
11230 s = "sbe";
11231 fmt = "t,+j(b)";
11232 offbits = 9;
11233 goto ld_st;
11234 case M_SCE_AB:
7f3c4072
CM
11235 s = "sce";
11236 fmt = "t,+j(b)";
11237 offbits = 9;
11238 goto ld_st;
11239 case M_SHE_AB:
7f3c4072
CM
11240 s = "she";
11241 fmt = "t,+j(b)";
11242 offbits = 9;
11243 goto ld_st;
11244 case M_SWE_AB:
7f3c4072
CM
11245 s = "swe";
11246 fmt = "t,+j(b)";
11247 offbits = 9;
11248 goto ld_st;
11249 case M_SWLE_AB:
7f3c4072
CM
11250 s = "swle";
11251 fmt = "t,+j(b)";
11252 offbits = 9;
11253 goto ld_st;
11254 case M_SWRE_AB:
7f3c4072
CM
11255 s = "swre";
11256 fmt = "t,+j(b)";
11257 offbits = 9;
11258 goto ld_st;
dec0624d 11259 case M_ACLR_AB:
dec0624d 11260 s = "aclr";
dec0624d 11261 fmt = "\\,~(b)";
7f3c4072 11262 offbits = 12;
dec0624d
MR
11263 goto ld_st;
11264 case M_ASET_AB:
dec0624d 11265 s = "aset";
dec0624d 11266 fmt = "\\,~(b)";
7f3c4072 11267 offbits = 12;
dec0624d 11268 goto ld_st;
252b5132
RH
11269 case M_LB_AB:
11270 s = "lb";
df58fc94 11271 fmt = "t,o(b)";
252b5132
RH
11272 goto ld;
11273 case M_LBU_AB:
11274 s = "lbu";
df58fc94 11275 fmt = "t,o(b)";
252b5132
RH
11276 goto ld;
11277 case M_LH_AB:
11278 s = "lh";
df58fc94 11279 fmt = "t,o(b)";
252b5132
RH
11280 goto ld;
11281 case M_LHU_AB:
11282 s = "lhu";
df58fc94 11283 fmt = "t,o(b)";
252b5132
RH
11284 goto ld;
11285 case M_LW_AB:
11286 s = "lw";
df58fc94 11287 fmt = "t,o(b)";
252b5132
RH
11288 goto ld;
11289 case M_LWC0_AB:
df58fc94 11290 gas_assert (!mips_opts.micromips);
252b5132 11291 s = "lwc0";
df58fc94 11292 fmt = "E,o(b)";
bdaaa2e1 11293 /* Itbl support may require additional care here. */
252b5132 11294 coproc = 1;
df58fc94 11295 goto ld_st;
252b5132
RH
11296 case M_LWC1_AB:
11297 s = "lwc1";
df58fc94 11298 fmt = "T,o(b)";
bdaaa2e1 11299 /* Itbl support may require additional care here. */
252b5132 11300 coproc = 1;
df58fc94 11301 goto ld_st;
252b5132
RH
11302 case M_LWC2_AB:
11303 s = "lwc2";
df58fc94 11304 fmt = COP12_FMT;
7361da2c
AB
11305 offbits = (mips_opts.micromips ? 12
11306 : ISA_IS_R6 (mips_opts.isa) ? 11
11307 : 16);
bdaaa2e1 11308 /* Itbl support may require additional care here. */
252b5132 11309 coproc = 1;
df58fc94 11310 goto ld_st;
252b5132 11311 case M_LWC3_AB:
df58fc94 11312 gas_assert (!mips_opts.micromips);
252b5132 11313 s = "lwc3";
df58fc94 11314 fmt = "E,o(b)";
bdaaa2e1 11315 /* Itbl support may require additional care here. */
252b5132 11316 coproc = 1;
df58fc94 11317 goto ld_st;
252b5132
RH
11318 case M_LWL_AB:
11319 s = "lwl";
df58fc94 11320 fmt = MEM12_FMT;
7f3c4072 11321 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11322 goto ld_st;
252b5132
RH
11323 case M_LWR_AB:
11324 s = "lwr";
df58fc94 11325 fmt = MEM12_FMT;
7f3c4072 11326 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11327 goto ld_st;
252b5132 11328 case M_LDC1_AB:
252b5132 11329 s = "ldc1";
df58fc94 11330 fmt = "T,o(b)";
bdaaa2e1 11331 /* Itbl support may require additional care here. */
252b5132 11332 coproc = 1;
df58fc94 11333 goto ld_st;
252b5132
RH
11334 case M_LDC2_AB:
11335 s = "ldc2";
df58fc94 11336 fmt = COP12_FMT;
7361da2c
AB
11337 offbits = (mips_opts.micromips ? 12
11338 : ISA_IS_R6 (mips_opts.isa) ? 11
11339 : 16);
bdaaa2e1 11340 /* Itbl support may require additional care here. */
252b5132 11341 coproc = 1;
df58fc94 11342 goto ld_st;
c77c0862 11343 case M_LQC2_AB:
c77c0862 11344 s = "lqc2";
14daeee3 11345 fmt = "+7,o(b)";
c77c0862
RS
11346 /* Itbl support may require additional care here. */
11347 coproc = 1;
11348 goto ld_st;
252b5132
RH
11349 case M_LDC3_AB:
11350 s = "ldc3";
df58fc94 11351 fmt = "E,o(b)";
bdaaa2e1 11352 /* Itbl support may require additional care here. */
252b5132 11353 coproc = 1;
df58fc94 11354 goto ld_st;
252b5132
RH
11355 case M_LDL_AB:
11356 s = "ldl";
df58fc94 11357 fmt = MEM12_FMT;
7f3c4072 11358 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11359 goto ld_st;
252b5132
RH
11360 case M_LDR_AB:
11361 s = "ldr";
df58fc94 11362 fmt = MEM12_FMT;
7f3c4072 11363 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11364 goto ld_st;
252b5132
RH
11365 case M_LL_AB:
11366 s = "ll";
7361da2c
AB
11367 fmt = LL_SC_FMT;
11368 offbits = (mips_opts.micromips ? 12
11369 : ISA_IS_R6 (mips_opts.isa) ? 9
11370 : 16);
252b5132
RH
11371 goto ld;
11372 case M_LLD_AB:
11373 s = "lld";
7361da2c
AB
11374 fmt = LL_SC_FMT;
11375 offbits = (mips_opts.micromips ? 12
11376 : ISA_IS_R6 (mips_opts.isa) ? 9
11377 : 16);
252b5132
RH
11378 goto ld;
11379 case M_LWU_AB:
11380 s = "lwu";
df58fc94 11381 fmt = MEM12_FMT;
7f3c4072 11382 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11383 goto ld;
11384 case M_LWP_AB:
df58fc94
RS
11385 gas_assert (mips_opts.micromips);
11386 s = "lwp";
11387 fmt = "t,~(b)";
7f3c4072 11388 offbits = 12;
df58fc94
RS
11389 lp = 1;
11390 goto ld;
11391 case M_LDP_AB:
df58fc94
RS
11392 gas_assert (mips_opts.micromips);
11393 s = "ldp";
11394 fmt = "t,~(b)";
7f3c4072 11395 offbits = 12;
df58fc94
RS
11396 lp = 1;
11397 goto ld;
11398 case M_LWM_AB:
df58fc94
RS
11399 gas_assert (mips_opts.micromips);
11400 s = "lwm";
11401 fmt = "n,~(b)";
7f3c4072 11402 offbits = 12;
df58fc94
RS
11403 goto ld_st;
11404 case M_LDM_AB:
df58fc94
RS
11405 gas_assert (mips_opts.micromips);
11406 s = "ldm";
11407 fmt = "n,~(b)";
7f3c4072 11408 offbits = 12;
df58fc94
RS
11409 goto ld_st;
11410
252b5132 11411 ld:
f19ccbda 11412 /* We don't want to use $0 as tempreg. */
c0ebe874 11413 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11414 goto ld_st;
252b5132 11415 else
c0ebe874 11416 tempreg = op[0] + lp;
df58fc94
RS
11417 goto ld_noat;
11418
252b5132
RH
11419 case M_SB_AB:
11420 s = "sb";
df58fc94
RS
11421 fmt = "t,o(b)";
11422 goto ld_st;
252b5132
RH
11423 case M_SH_AB:
11424 s = "sh";
df58fc94
RS
11425 fmt = "t,o(b)";
11426 goto ld_st;
252b5132
RH
11427 case M_SW_AB:
11428 s = "sw";
df58fc94
RS
11429 fmt = "t,o(b)";
11430 goto ld_st;
252b5132 11431 case M_SWC0_AB:
df58fc94 11432 gas_assert (!mips_opts.micromips);
252b5132 11433 s = "swc0";
df58fc94 11434 fmt = "E,o(b)";
bdaaa2e1 11435 /* Itbl support may require additional care here. */
252b5132 11436 coproc = 1;
df58fc94 11437 goto ld_st;
252b5132
RH
11438 case M_SWC1_AB:
11439 s = "swc1";
df58fc94 11440 fmt = "T,o(b)";
bdaaa2e1 11441 /* Itbl support may require additional care here. */
252b5132 11442 coproc = 1;
df58fc94 11443 goto ld_st;
252b5132
RH
11444 case M_SWC2_AB:
11445 s = "swc2";
df58fc94 11446 fmt = COP12_FMT;
7361da2c
AB
11447 offbits = (mips_opts.micromips ? 12
11448 : ISA_IS_R6 (mips_opts.isa) ? 11
11449 : 16);
bdaaa2e1 11450 /* Itbl support may require additional care here. */
252b5132 11451 coproc = 1;
df58fc94 11452 goto ld_st;
252b5132 11453 case M_SWC3_AB:
df58fc94 11454 gas_assert (!mips_opts.micromips);
252b5132 11455 s = "swc3";
df58fc94 11456 fmt = "E,o(b)";
bdaaa2e1 11457 /* Itbl support may require additional care here. */
252b5132 11458 coproc = 1;
df58fc94 11459 goto ld_st;
252b5132
RH
11460 case M_SWL_AB:
11461 s = "swl";
df58fc94 11462 fmt = MEM12_FMT;
7f3c4072 11463 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11464 goto ld_st;
252b5132
RH
11465 case M_SWR_AB:
11466 s = "swr";
df58fc94 11467 fmt = MEM12_FMT;
7f3c4072 11468 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11469 goto ld_st;
252b5132
RH
11470 case M_SC_AB:
11471 s = "sc";
7361da2c
AB
11472 fmt = LL_SC_FMT;
11473 offbits = (mips_opts.micromips ? 12
11474 : ISA_IS_R6 (mips_opts.isa) ? 9
11475 : 16);
df58fc94 11476 goto ld_st;
252b5132
RH
11477 case M_SCD_AB:
11478 s = "scd";
7361da2c
AB
11479 fmt = LL_SC_FMT;
11480 offbits = (mips_opts.micromips ? 12
11481 : ISA_IS_R6 (mips_opts.isa) ? 9
11482 : 16);
df58fc94 11483 goto ld_st;
d43b4baf
TS
11484 case M_CACHE_AB:
11485 s = "cache";
7361da2c
AB
11486 fmt = (mips_opts.micromips ? "k,~(b)"
11487 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11488 : "k,o(b)");
11489 offbits = (mips_opts.micromips ? 12
11490 : ISA_IS_R6 (mips_opts.isa) ? 9
11491 : 16);
7f3c4072
CM
11492 goto ld_st;
11493 case M_CACHEE_AB:
7f3c4072
CM
11494 s = "cachee";
11495 fmt = "k,+j(b)";
11496 offbits = 9;
df58fc94 11497 goto ld_st;
3eebd5eb
MR
11498 case M_PREF_AB:
11499 s = "pref";
7361da2c
AB
11500 fmt = (mips_opts.micromips ? "k,~(b)"
11501 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11502 : "k,o(b)");
11503 offbits = (mips_opts.micromips ? 12
11504 : ISA_IS_R6 (mips_opts.isa) ? 9
11505 : 16);
7f3c4072
CM
11506 goto ld_st;
11507 case M_PREFE_AB:
7f3c4072
CM
11508 s = "prefe";
11509 fmt = "k,+j(b)";
11510 offbits = 9;
df58fc94 11511 goto ld_st;
252b5132 11512 case M_SDC1_AB:
252b5132 11513 s = "sdc1";
df58fc94 11514 fmt = "T,o(b)";
252b5132 11515 coproc = 1;
bdaaa2e1 11516 /* Itbl support may require additional care here. */
df58fc94 11517 goto ld_st;
252b5132
RH
11518 case M_SDC2_AB:
11519 s = "sdc2";
df58fc94 11520 fmt = COP12_FMT;
7361da2c
AB
11521 offbits = (mips_opts.micromips ? 12
11522 : ISA_IS_R6 (mips_opts.isa) ? 11
11523 : 16);
c77c0862
RS
11524 /* Itbl support may require additional care here. */
11525 coproc = 1;
11526 goto ld_st;
11527 case M_SQC2_AB:
c77c0862 11528 s = "sqc2";
14daeee3 11529 fmt = "+7,o(b)";
bdaaa2e1 11530 /* Itbl support may require additional care here. */
252b5132 11531 coproc = 1;
df58fc94 11532 goto ld_st;
252b5132 11533 case M_SDC3_AB:
df58fc94 11534 gas_assert (!mips_opts.micromips);
252b5132 11535 s = "sdc3";
df58fc94 11536 fmt = "E,o(b)";
bdaaa2e1 11537 /* Itbl support may require additional care here. */
252b5132 11538 coproc = 1;
df58fc94 11539 goto ld_st;
252b5132
RH
11540 case M_SDL_AB:
11541 s = "sdl";
df58fc94 11542 fmt = MEM12_FMT;
7f3c4072 11543 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11544 goto ld_st;
252b5132
RH
11545 case M_SDR_AB:
11546 s = "sdr";
df58fc94 11547 fmt = MEM12_FMT;
7f3c4072 11548 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11549 goto ld_st;
11550 case M_SWP_AB:
df58fc94
RS
11551 gas_assert (mips_opts.micromips);
11552 s = "swp";
11553 fmt = "t,~(b)";
7f3c4072 11554 offbits = 12;
df58fc94
RS
11555 goto ld_st;
11556 case M_SDP_AB:
df58fc94
RS
11557 gas_assert (mips_opts.micromips);
11558 s = "sdp";
11559 fmt = "t,~(b)";
7f3c4072 11560 offbits = 12;
df58fc94
RS
11561 goto ld_st;
11562 case M_SWM_AB:
df58fc94
RS
11563 gas_assert (mips_opts.micromips);
11564 s = "swm";
11565 fmt = "n,~(b)";
7f3c4072 11566 offbits = 12;
df58fc94
RS
11567 goto ld_st;
11568 case M_SDM_AB:
df58fc94
RS
11569 gas_assert (mips_opts.micromips);
11570 s = "sdm";
11571 fmt = "n,~(b)";
7f3c4072 11572 offbits = 12;
df58fc94
RS
11573
11574 ld_st:
8fc2e39e 11575 tempreg = AT;
df58fc94 11576 ld_noat:
c0ebe874 11577 breg = op[2];
f2ae14a1
RS
11578 if (small_offset_p (0, align, 16))
11579 {
11580 /* The first case exists for M_LD_AB and M_SD_AB, which are
11581 macros for o32 but which should act like normal instructions
11582 otherwise. */
11583 if (offbits == 16)
c0ebe874 11584 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11585 offset_reloc[1], offset_reloc[2], breg);
11586 else if (small_offset_p (0, align, offbits))
11587 {
11588 if (offbits == 0)
c0ebe874 11589 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11590 else
c0ebe874 11591 macro_build (NULL, s, fmt, op[0],
c8276761 11592 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11593 }
11594 else
11595 {
11596 if (tempreg == AT)
11597 used_at = 1;
11598 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11599 tempreg, breg, -1, offset_reloc[0],
11600 offset_reloc[1], offset_reloc[2]);
11601 if (offbits == 0)
c0ebe874 11602 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11603 else
c0ebe874 11604 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11605 }
11606 break;
11607 }
11608
11609 if (tempreg == AT)
11610 used_at = 1;
11611
252b5132
RH
11612 if (offset_expr.X_op != O_constant
11613 && offset_expr.X_op != O_symbol)
11614 {
1661c76c 11615 as_bad (_("expression too complex"));
252b5132
RH
11616 offset_expr.X_op = O_constant;
11617 }
11618
2051e8c4
MR
11619 if (HAVE_32BIT_ADDRESSES
11620 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11621 {
11622 char value [32];
11623
11624 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11625 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11626 }
2051e8c4 11627
252b5132
RH
11628 /* A constant expression in PIC code can be handled just as it
11629 is in non PIC code. */
aed1a261
RS
11630 if (offset_expr.X_op == O_constant)
11631 {
f2ae14a1
RS
11632 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11633 offbits == 0 ? 16 : offbits);
11634 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11635
f2ae14a1
RS
11636 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11637 if (breg != 0)
11638 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11639 tempreg, tempreg, breg);
7f3c4072 11640 if (offbits == 0)
dd6a37e7 11641 {
f2ae14a1 11642 if (offset_expr.X_add_number != 0)
dd6a37e7 11643 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11644 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11645 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11646 }
7f3c4072 11647 else if (offbits == 16)
c0ebe874 11648 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11649 else
c0ebe874 11650 macro_build (NULL, s, fmt, op[0],
c8276761 11651 (int) offset_expr.X_add_number, tempreg);
df58fc94 11652 }
7f3c4072 11653 else if (offbits != 16)
df58fc94 11654 {
7f3c4072
CM
11655 /* The offset field is too narrow to be used for a low-part
11656 relocation, so load the whole address into the auxillary
f2ae14a1
RS
11657 register. */
11658 load_address (tempreg, &offset_expr, &used_at);
11659 if (breg != 0)
11660 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11661 tempreg, tempreg, breg);
7f3c4072 11662 if (offbits == 0)
c0ebe874 11663 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11664 else
c0ebe874 11665 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11666 }
11667 else if (mips_pic == NO_PIC)
252b5132
RH
11668 {
11669 /* If this is a reference to a GP relative symbol, and there
11670 is no base register, we want
c0ebe874 11671 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11672 Otherwise, if there is no base register, we want
11673 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11674 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11675 If we have a constant, we need two instructions anyhow,
11676 so we always use the latter form.
11677
11678 If we have a base register, and this is a reference to a
11679 GP relative symbol, we want
11680 addu $tempreg,$breg,$gp
c0ebe874 11681 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11682 Otherwise we want
11683 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11684 addu $tempreg,$tempreg,$breg
c0ebe874 11685 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11686 With a constant we always use the latter case.
76b3015f 11687
d6bc6245
TS
11688 With 64bit address space and no base register and $at usable,
11689 we want
11690 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11691 lui $at,<sym> (BFD_RELOC_HI16_S)
11692 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11693 dsll32 $tempreg,0
11694 daddu $tempreg,$at
c0ebe874 11695 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11696 If we have a base register, we want
11697 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11698 lui $at,<sym> (BFD_RELOC_HI16_S)
11699 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11700 daddu $at,$breg
11701 dsll32 $tempreg,0
11702 daddu $tempreg,$at
c0ebe874 11703 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11704
11705 Without $at we can't generate the optimal path for superscalar
11706 processors here since this would require two temporary registers.
11707 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11708 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11709 dsll $tempreg,16
11710 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11711 dsll $tempreg,16
c0ebe874 11712 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11713 If we have a base register, we want
11714 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11715 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11716 dsll $tempreg,16
11717 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11718 dsll $tempreg,16
11719 daddu $tempreg,$tempreg,$breg
c0ebe874 11720 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11721
6caf9ef4 11722 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11723 the same sequence as in 32bit address space. */
11724 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11725 {
aed1a261 11726 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11727 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11728 {
11729 relax_start (offset_expr.X_add_symbol);
11730 if (breg == 0)
11731 {
c0ebe874 11732 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11733 BFD_RELOC_GPREL16, mips_gp_register);
11734 }
11735 else
11736 {
11737 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11738 tempreg, breg, mips_gp_register);
c0ebe874 11739 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11740 BFD_RELOC_GPREL16, tempreg);
11741 }
11742 relax_switch ();
11743 }
d6bc6245 11744
741fe287 11745 if (used_at == 0 && mips_opts.at)
d6bc6245 11746 {
df58fc94 11747 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11748 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11749 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11750 BFD_RELOC_HI16_S);
11751 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11752 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11753 if (breg != 0)
67c0d1eb 11754 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11755 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11756 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11757 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11758 tempreg);
d6bc6245
TS
11759 used_at = 1;
11760 }
11761 else
11762 {
df58fc94 11763 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11764 BFD_RELOC_MIPS_HIGHEST);
11765 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11766 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11767 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11768 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11769 tempreg, BFD_RELOC_HI16_S);
df58fc94 11770 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11771 if (breg != 0)
67c0d1eb 11772 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11773 tempreg, tempreg, breg);
c0ebe874 11774 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11775 BFD_RELOC_LO16, tempreg);
d6bc6245 11776 }
6caf9ef4
TS
11777
11778 if (mips_relax.sequence)
11779 relax_end ();
8fc2e39e 11780 break;
d6bc6245 11781 }
256ab948 11782
252b5132
RH
11783 if (breg == 0)
11784 {
67c0d1eb 11785 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11786 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11787 {
4d7206a2 11788 relax_start (offset_expr.X_add_symbol);
c0ebe874 11789 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11790 mips_gp_register);
4d7206a2 11791 relax_switch ();
252b5132 11792 }
67c0d1eb 11793 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11794 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11795 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11796 if (mips_relax.sequence)
11797 relax_end ();
252b5132
RH
11798 }
11799 else
11800 {
67c0d1eb 11801 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11802 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11803 {
4d7206a2 11804 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11805 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11806 tempreg, breg, mips_gp_register);
c0ebe874 11807 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11808 BFD_RELOC_GPREL16, tempreg);
4d7206a2 11809 relax_switch ();
252b5132 11810 }
67c0d1eb
RS
11811 macro_build_lui (&offset_expr, tempreg);
11812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11813 tempreg, tempreg, breg);
c0ebe874 11814 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11815 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11816 if (mips_relax.sequence)
11817 relax_end ();
252b5132
RH
11818 }
11819 }
0a44bf69 11820 else if (!mips_big_got)
252b5132 11821 {
ed6fb7bd 11822 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 11823
252b5132
RH
11824 /* If this is a reference to an external symbol, we want
11825 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11826 nop
c0ebe874 11827 <op> op[0],0($tempreg)
252b5132
RH
11828 Otherwise we want
11829 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11830 nop
11831 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11832 <op> op[0],0($tempreg)
f5040a92
AO
11833
11834 For NewABI, we want
11835 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11836 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 11837
252b5132
RH
11838 If there is a base register, we add it to $tempreg before
11839 the <op>. If there is a constant, we stick it in the
11840 <op> instruction. We don't handle constants larger than
11841 16 bits, because we have no way to load the upper 16 bits
11842 (actually, we could handle them for the subset of cases
11843 in which we are not using $at). */
9c2799c2 11844 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
11845 if (HAVE_NEWABI)
11846 {
67c0d1eb
RS
11847 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11848 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11849 if (breg != 0)
67c0d1eb 11850 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11851 tempreg, tempreg, breg);
c0ebe874 11852 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11853 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
11854 break;
11855 }
252b5132
RH
11856 expr1.X_add_number = offset_expr.X_add_number;
11857 offset_expr.X_add_number = 0;
11858 if (expr1.X_add_number < -0x8000
11859 || expr1.X_add_number >= 0x8000)
11860 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
11861 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11862 lw_reloc_type, mips_gp_register);
269137b2 11863 load_delay_nop ();
4d7206a2
RS
11864 relax_start (offset_expr.X_add_symbol);
11865 relax_switch ();
67c0d1eb
RS
11866 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11867 tempreg, BFD_RELOC_LO16);
4d7206a2 11868 relax_end ();
252b5132 11869 if (breg != 0)
67c0d1eb 11870 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11871 tempreg, tempreg, breg);
c0ebe874 11872 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11873 }
0a44bf69 11874 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11875 {
67c0d1eb 11876 int gpdelay;
252b5132
RH
11877
11878 /* If this is a reference to an external symbol, we want
11879 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11880 addu $tempreg,$tempreg,$gp
11881 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11882 <op> op[0],0($tempreg)
252b5132
RH
11883 Otherwise we want
11884 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11885 nop
11886 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11887 <op> op[0],0($tempreg)
252b5132
RH
11888 If there is a base register, we add it to $tempreg before
11889 the <op>. If there is a constant, we stick it in the
11890 <op> instruction. We don't handle constants larger than
11891 16 bits, because we have no way to load the upper 16 bits
11892 (actually, we could handle them for the subset of cases
f5040a92 11893 in which we are not using $at). */
9c2799c2 11894 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
11895 expr1.X_add_number = offset_expr.X_add_number;
11896 offset_expr.X_add_number = 0;
11897 if (expr1.X_add_number < -0x8000
11898 || expr1.X_add_number >= 0x8000)
11899 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11900 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11901 relax_start (offset_expr.X_add_symbol);
df58fc94 11902 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11903 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11904 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11905 mips_gp_register);
11906 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11907 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 11908 relax_switch ();
67c0d1eb
RS
11909 if (gpdelay)
11910 macro_build (NULL, "nop", "");
11911 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11912 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11913 load_delay_nop ();
67c0d1eb
RS
11914 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11915 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11916 relax_end ();
11917
252b5132 11918 if (breg != 0)
67c0d1eb 11919 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11920 tempreg, tempreg, breg);
c0ebe874 11921 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11922 }
0a44bf69 11923 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11924 {
f5040a92
AO
11925 /* If this is a reference to an external symbol, we want
11926 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11927 add $tempreg,$tempreg,$gp
11928 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11929 <op> op[0],<ofst>($tempreg)
f5040a92
AO
11930 Otherwise, for local symbols, we want:
11931 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11932 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 11933 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 11934 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11935 offset_expr.X_add_number = 0;
11936 if (expr1.X_add_number < -0x8000
11937 || expr1.X_add_number >= 0x8000)
11938 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 11939 relax_start (offset_expr.X_add_symbol);
df58fc94 11940 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11941 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11942 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11943 mips_gp_register);
11944 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11945 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 11946 if (breg != 0)
67c0d1eb 11947 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11948 tempreg, tempreg, breg);
c0ebe874 11949 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 11950
4d7206a2 11951 relax_switch ();
f5040a92 11952 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11953 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11954 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11955 if (breg != 0)
67c0d1eb 11956 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11957 tempreg, tempreg, breg);
c0ebe874 11958 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11959 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 11960 relax_end ();
f5040a92 11961 }
252b5132
RH
11962 else
11963 abort ();
11964
252b5132
RH
11965 break;
11966
833794fc
MR
11967 case M_JRADDIUSP:
11968 gas_assert (mips_opts.micromips);
11969 gas_assert (mips_opts.insn32);
11970 start_noreorder ();
11971 macro_build (NULL, "jr", "s", RA);
c0ebe874 11972 expr1.X_add_number = op[0] << 2;
833794fc
MR
11973 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11974 end_noreorder ();
11975 break;
11976
11977 case M_JRC:
11978 gas_assert (mips_opts.micromips);
11979 gas_assert (mips_opts.insn32);
c0ebe874 11980 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
11981 if (mips_opts.noreorder)
11982 macro_build (NULL, "nop", "");
11983 break;
11984
252b5132
RH
11985 case M_LI:
11986 case M_LI_S:
c0ebe874 11987 load_register (op[0], &imm_expr, 0);
8fc2e39e 11988 break;
252b5132
RH
11989
11990 case M_DLI:
c0ebe874 11991 load_register (op[0], &imm_expr, 1);
8fc2e39e 11992 break;
252b5132
RH
11993
11994 case M_LI_SS:
11995 if (imm_expr.X_op == O_constant)
11996 {
8fc2e39e 11997 used_at = 1;
67c0d1eb 11998 load_register (AT, &imm_expr, 0);
c0ebe874 11999 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12000 break;
12001 }
12002 else
12003 {
b0e6f033
RS
12004 gas_assert (imm_expr.X_op == O_absent
12005 && offset_expr.X_op == O_symbol
90ecf173
MR
12006 && strcmp (segment_name (S_GET_SEGMENT
12007 (offset_expr.X_add_symbol)),
12008 ".lit4") == 0
12009 && offset_expr.X_add_number == 0);
c0ebe874 12010 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12011 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12012 break;
252b5132
RH
12013 }
12014
12015 case M_LI_D:
ca4e0257
RS
12016 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12017 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12018 order 32 bits of the value and the low order 32 bits are either
12019 zero or in OFFSET_EXPR. */
b0e6f033 12020 if (imm_expr.X_op == O_constant)
252b5132 12021 {
bad1aba3 12022 if (GPR_SIZE == 64)
c0ebe874 12023 load_register (op[0], &imm_expr, 1);
252b5132
RH
12024 else
12025 {
12026 int hreg, lreg;
12027
12028 if (target_big_endian)
12029 {
c0ebe874
RS
12030 hreg = op[0];
12031 lreg = op[0] + 1;
252b5132
RH
12032 }
12033 else
12034 {
c0ebe874
RS
12035 hreg = op[0] + 1;
12036 lreg = op[0];
252b5132
RH
12037 }
12038
12039 if (hreg <= 31)
67c0d1eb 12040 load_register (hreg, &imm_expr, 0);
252b5132
RH
12041 if (lreg <= 31)
12042 {
12043 if (offset_expr.X_op == O_absent)
67c0d1eb 12044 move_register (lreg, 0);
252b5132
RH
12045 else
12046 {
9c2799c2 12047 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12048 load_register (lreg, &offset_expr, 0);
252b5132
RH
12049 }
12050 }
12051 }
8fc2e39e 12052 break;
252b5132 12053 }
b0e6f033 12054 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12055
12056 /* We know that sym is in the .rdata section. First we get the
12057 upper 16 bits of the address. */
12058 if (mips_pic == NO_PIC)
12059 {
67c0d1eb 12060 macro_build_lui (&offset_expr, AT);
8fc2e39e 12061 used_at = 1;
252b5132 12062 }
0a44bf69 12063 else
252b5132 12064 {
67c0d1eb
RS
12065 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12066 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12067 used_at = 1;
252b5132 12068 }
bdaaa2e1 12069
252b5132 12070 /* Now we load the register(s). */
bad1aba3 12071 if (GPR_SIZE == 64)
8fc2e39e
TS
12072 {
12073 used_at = 1;
c0ebe874
RS
12074 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12075 BFD_RELOC_LO16, AT);
8fc2e39e 12076 }
252b5132
RH
12077 else
12078 {
8fc2e39e 12079 used_at = 1;
c0ebe874
RS
12080 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12081 BFD_RELOC_LO16, AT);
12082 if (op[0] != RA)
252b5132
RH
12083 {
12084 /* FIXME: How in the world do we deal with the possible
12085 overflow here? */
12086 offset_expr.X_add_number += 4;
67c0d1eb 12087 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12088 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12089 }
12090 }
252b5132
RH
12091 break;
12092
12093 case M_LI_DD:
ca4e0257
RS
12094 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12095 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12096 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12097 the value and the low order 32 bits are either zero or in
12098 OFFSET_EXPR. */
b0e6f033 12099 if (imm_expr.X_op == O_constant)
252b5132 12100 {
8fc2e39e 12101 used_at = 1;
bad1aba3 12102 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12103 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12104 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12105 else
12106 {
351cdf24
MF
12107 if (ISA_HAS_MXHC1 (mips_opts.isa))
12108 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12109 else if (FPR_SIZE != 32)
12110 as_bad (_("Unable to generate `%s' compliant code "
12111 "without mthc1"),
12112 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12113 else
12114 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12115 if (offset_expr.X_op == O_absent)
c0ebe874 12116 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12117 else
12118 {
9c2799c2 12119 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12120 load_register (AT, &offset_expr, 0);
c0ebe874 12121 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12122 }
12123 }
12124 break;
12125 }
12126
b0e6f033
RS
12127 gas_assert (imm_expr.X_op == O_absent
12128 && offset_expr.X_op == O_symbol
90ecf173 12129 && offset_expr.X_add_number == 0);
252b5132
RH
12130 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12131 if (strcmp (s, ".lit8") == 0)
f2ae14a1 12132 {
c0ebe874 12133 op[2] = mips_gp_register;
f2ae14a1
RS
12134 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12135 offset_reloc[1] = BFD_RELOC_UNUSED;
12136 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12137 }
12138 else
12139 {
9c2799c2 12140 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12141 used_at = 1;
0a44bf69 12142 if (mips_pic != NO_PIC)
67c0d1eb
RS
12143 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12144 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12145 else
12146 {
12147 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12148 macro_build_lui (&offset_expr, AT);
252b5132 12149 }
bdaaa2e1 12150
c0ebe874 12151 op[2] = AT;
f2ae14a1
RS
12152 offset_reloc[0] = BFD_RELOC_LO16;
12153 offset_reloc[1] = BFD_RELOC_UNUSED;
12154 offset_reloc[2] = BFD_RELOC_UNUSED;
12155 }
12156 align = 8;
12157 /* Fall through */
c4a68bea 12158
252b5132
RH
12159 case M_L_DAB:
12160 /*
12161 * The MIPS assembler seems to check for X_add_number not
12162 * being double aligned and generating:
12163 * lui at,%hi(foo+1)
12164 * addu at,at,v1
12165 * addiu at,at,%lo(foo+1)
12166 * lwc1 f2,0(at)
12167 * lwc1 f3,4(at)
12168 * But, the resulting address is the same after relocation so why
12169 * generate the extra instruction?
12170 */
bdaaa2e1 12171 /* Itbl support may require additional care here. */
252b5132 12172 coproc = 1;
df58fc94 12173 fmt = "T,o(b)";
0aa27725 12174 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12175 {
12176 s = "ldc1";
df58fc94 12177 goto ld_st;
252b5132 12178 }
252b5132 12179 s = "lwc1";
252b5132
RH
12180 goto ldd_std;
12181
12182 case M_S_DAB:
df58fc94
RS
12183 gas_assert (!mips_opts.micromips);
12184 /* Itbl support may require additional care here. */
12185 coproc = 1;
12186 fmt = "T,o(b)";
0aa27725 12187 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12188 {
12189 s = "sdc1";
df58fc94 12190 goto ld_st;
252b5132 12191 }
252b5132 12192 s = "swc1";
252b5132
RH
12193 goto ldd_std;
12194
e407c74b
NC
12195 case M_LQ_AB:
12196 fmt = "t,o(b)";
12197 s = "lq";
12198 goto ld;
12199
12200 case M_SQ_AB:
12201 fmt = "t,o(b)";
12202 s = "sq";
12203 goto ld_st;
12204
252b5132 12205 case M_LD_AB:
df58fc94 12206 fmt = "t,o(b)";
bad1aba3 12207 if (GPR_SIZE == 64)
252b5132
RH
12208 {
12209 s = "ld";
12210 goto ld;
12211 }
252b5132 12212 s = "lw";
252b5132
RH
12213 goto ldd_std;
12214
12215 case M_SD_AB:
df58fc94 12216 fmt = "t,o(b)";
bad1aba3 12217 if (GPR_SIZE == 64)
252b5132
RH
12218 {
12219 s = "sd";
df58fc94 12220 goto ld_st;
252b5132 12221 }
252b5132 12222 s = "sw";
252b5132
RH
12223
12224 ldd_std:
f2ae14a1
RS
12225 /* Even on a big endian machine $fn comes before $fn+1. We have
12226 to adjust when loading from memory. We set coproc if we must
12227 load $fn+1 first. */
12228 /* Itbl support may require additional care here. */
12229 if (!target_big_endian)
12230 coproc = 0;
12231
c0ebe874 12232 breg = op[2];
f2ae14a1
RS
12233 if (small_offset_p (0, align, 16))
12234 {
12235 ep = &offset_expr;
12236 if (!small_offset_p (4, align, 16))
12237 {
12238 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12239 -1, offset_reloc[0], offset_reloc[1],
12240 offset_reloc[2]);
12241 expr1.X_add_number = 0;
12242 ep = &expr1;
12243 breg = AT;
12244 used_at = 1;
12245 offset_reloc[0] = BFD_RELOC_LO16;
12246 offset_reloc[1] = BFD_RELOC_UNUSED;
12247 offset_reloc[2] = BFD_RELOC_UNUSED;
12248 }
c0ebe874 12249 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12250 {
12251 ep->X_add_number += 4;
c0ebe874 12252 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12253 offset_reloc[1], offset_reloc[2], breg);
12254 ep->X_add_number -= 4;
c0ebe874 12255 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12256 offset_reloc[1], offset_reloc[2], breg);
12257 }
12258 else
12259 {
c0ebe874 12260 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12261 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12262 breg);
12263 ep->X_add_number += 4;
c0ebe874 12264 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12265 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12266 breg);
12267 }
12268 break;
12269 }
12270
252b5132
RH
12271 if (offset_expr.X_op != O_symbol
12272 && offset_expr.X_op != O_constant)
12273 {
1661c76c 12274 as_bad (_("expression too complex"));
252b5132
RH
12275 offset_expr.X_op = O_constant;
12276 }
12277
2051e8c4
MR
12278 if (HAVE_32BIT_ADDRESSES
12279 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12280 {
12281 char value [32];
12282
12283 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12284 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12285 }
2051e8c4 12286
90ecf173 12287 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12288 {
12289 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12290 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12291 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12292 If we have a base register, we use this
12293 addu $at,$breg,$gp
c0ebe874
RS
12294 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12295 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12296 If this is not a GP relative symbol, we want
12297 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12298 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12299 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12300 If there is a base register, we add it to $at after the
12301 lui instruction. If there is a constant, we always use
12302 the last case. */
39a59cf8
MR
12303 if (offset_expr.X_op == O_symbol
12304 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12305 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12306 {
4d7206a2 12307 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12308 if (breg == 0)
12309 {
c9914766 12310 tempreg = mips_gp_register;
252b5132
RH
12311 }
12312 else
12313 {
67c0d1eb 12314 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12315 AT, breg, mips_gp_register);
252b5132 12316 tempreg = AT;
252b5132
RH
12317 used_at = 1;
12318 }
12319
beae10d5 12320 /* Itbl support may require additional care here. */
c0ebe874 12321 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12322 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12323 offset_expr.X_add_number += 4;
12324
12325 /* Set mips_optimize to 2 to avoid inserting an
12326 undesired nop. */
12327 hold_mips_optimize = mips_optimize;
12328 mips_optimize = 2;
beae10d5 12329 /* Itbl support may require additional care here. */
c0ebe874 12330 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12331 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12332 mips_optimize = hold_mips_optimize;
12333
4d7206a2 12334 relax_switch ();
252b5132 12335
0970e49e 12336 offset_expr.X_add_number -= 4;
252b5132 12337 }
8fc2e39e 12338 used_at = 1;
f2ae14a1
RS
12339 if (offset_high_part (offset_expr.X_add_number, 16)
12340 != offset_high_part (offset_expr.X_add_number + 4, 16))
12341 {
12342 load_address (AT, &offset_expr, &used_at);
12343 offset_expr.X_op = O_constant;
12344 offset_expr.X_add_number = 0;
12345 }
12346 else
12347 macro_build_lui (&offset_expr, AT);
252b5132 12348 if (breg != 0)
67c0d1eb 12349 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12350 /* Itbl support may require additional care here. */
c0ebe874 12351 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12352 BFD_RELOC_LO16, AT);
252b5132
RH
12353 /* FIXME: How do we handle overflow here? */
12354 offset_expr.X_add_number += 4;
beae10d5 12355 /* Itbl support may require additional care here. */
c0ebe874 12356 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12357 BFD_RELOC_LO16, AT);
4d7206a2
RS
12358 if (mips_relax.sequence)
12359 relax_end ();
bdaaa2e1 12360 }
0a44bf69 12361 else if (!mips_big_got)
252b5132 12362 {
252b5132
RH
12363 /* If this is a reference to an external symbol, we want
12364 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12365 nop
c0ebe874
RS
12366 <op> op[0],0($at)
12367 <op> op[0]+1,4($at)
252b5132
RH
12368 Otherwise we want
12369 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12370 nop
c0ebe874
RS
12371 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12372 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12373 If there is a base register we add it to $at before the
12374 lwc1 instructions. If there is a constant we include it
12375 in the lwc1 instructions. */
12376 used_at = 1;
12377 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12378 if (expr1.X_add_number < -0x8000
12379 || expr1.X_add_number >= 0x8000 - 4)
12380 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12381 load_got_offset (AT, &offset_expr);
269137b2 12382 load_delay_nop ();
252b5132 12383 if (breg != 0)
67c0d1eb 12384 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12385
12386 /* Set mips_optimize to 2 to avoid inserting an undesired
12387 nop. */
12388 hold_mips_optimize = mips_optimize;
12389 mips_optimize = 2;
4d7206a2 12390
beae10d5 12391 /* Itbl support may require additional care here. */
4d7206a2 12392 relax_start (offset_expr.X_add_symbol);
c0ebe874 12393 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12394 BFD_RELOC_LO16, AT);
4d7206a2 12395 expr1.X_add_number += 4;
c0ebe874 12396 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12397 BFD_RELOC_LO16, AT);
4d7206a2 12398 relax_switch ();
c0ebe874 12399 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12400 BFD_RELOC_LO16, AT);
4d7206a2 12401 offset_expr.X_add_number += 4;
c0ebe874 12402 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12403 BFD_RELOC_LO16, AT);
4d7206a2 12404 relax_end ();
252b5132 12405
4d7206a2 12406 mips_optimize = hold_mips_optimize;
252b5132 12407 }
0a44bf69 12408 else if (mips_big_got)
252b5132 12409 {
67c0d1eb 12410 int gpdelay;
252b5132
RH
12411
12412 /* If this is a reference to an external symbol, we want
12413 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12414 addu $at,$at,$gp
12415 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12416 nop
c0ebe874
RS
12417 <op> op[0],0($at)
12418 <op> op[0]+1,4($at)
252b5132
RH
12419 Otherwise we want
12420 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12421 nop
c0ebe874
RS
12422 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12423 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12424 If there is a base register we add it to $at before the
12425 lwc1 instructions. If there is a constant we include it
12426 in the lwc1 instructions. */
12427 used_at = 1;
12428 expr1.X_add_number = offset_expr.X_add_number;
12429 offset_expr.X_add_number = 0;
12430 if (expr1.X_add_number < -0x8000
12431 || expr1.X_add_number >= 0x8000 - 4)
12432 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12433 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12434 relax_start (offset_expr.X_add_symbol);
df58fc94 12435 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12436 AT, BFD_RELOC_MIPS_GOT_HI16);
12437 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12438 AT, AT, mips_gp_register);
67c0d1eb 12439 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12440 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12441 load_delay_nop ();
252b5132 12442 if (breg != 0)
67c0d1eb 12443 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12444 /* Itbl support may require additional care here. */
c0ebe874 12445 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12446 BFD_RELOC_LO16, AT);
252b5132
RH
12447 expr1.X_add_number += 4;
12448
12449 /* Set mips_optimize to 2 to avoid inserting an undesired
12450 nop. */
12451 hold_mips_optimize = mips_optimize;
12452 mips_optimize = 2;
beae10d5 12453 /* Itbl support may require additional care here. */
c0ebe874 12454 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12455 BFD_RELOC_LO16, AT);
252b5132
RH
12456 mips_optimize = hold_mips_optimize;
12457 expr1.X_add_number -= 4;
12458
4d7206a2
RS
12459 relax_switch ();
12460 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12461 if (gpdelay)
12462 macro_build (NULL, "nop", "");
12463 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12464 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12465 load_delay_nop ();
252b5132 12466 if (breg != 0)
67c0d1eb 12467 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12468 /* Itbl support may require additional care here. */
c0ebe874 12469 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12470 BFD_RELOC_LO16, AT);
4d7206a2 12471 offset_expr.X_add_number += 4;
252b5132
RH
12472
12473 /* Set mips_optimize to 2 to avoid inserting an undesired
12474 nop. */
12475 hold_mips_optimize = mips_optimize;
12476 mips_optimize = 2;
beae10d5 12477 /* Itbl support may require additional care here. */
c0ebe874 12478 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12479 BFD_RELOC_LO16, AT);
252b5132 12480 mips_optimize = hold_mips_optimize;
4d7206a2 12481 relax_end ();
252b5132 12482 }
252b5132
RH
12483 else
12484 abort ();
12485
252b5132 12486 break;
dd6a37e7
AP
12487
12488 case M_SAA_AB:
dd6a37e7 12489 s = "saa";
0db377d0 12490 goto saa_saad;
dd6a37e7 12491 case M_SAAD_AB:
dd6a37e7 12492 s = "saad";
0db377d0
MR
12493 saa_saad:
12494 gas_assert (!mips_opts.micromips);
7f3c4072 12495 offbits = 0;
dd6a37e7
AP
12496 fmt = "t,(b)";
12497 goto ld_st;
12498
252b5132
RH
12499 /* New code added to support COPZ instructions.
12500 This code builds table entries out of the macros in mip_opcodes.
12501 R4000 uses interlocks to handle coproc delays.
12502 Other chips (like the R3000) require nops to be inserted for delays.
12503
f72c8c98 12504 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12505 In order to fill delay slots for non-interlocked chips,
12506 we must have a way to specify delays based on the coprocessor.
12507 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12508 What are the side-effects of the cop instruction?
12509 What cache support might we have and what are its effects?
12510 Both coprocessor & memory require delays. how long???
bdaaa2e1 12511 What registers are read/set/modified?
252b5132
RH
12512
12513 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12514 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12515
12516 case M_COP0:
12517 s = "c0";
12518 goto copz;
12519 case M_COP1:
12520 s = "c1";
12521 goto copz;
12522 case M_COP2:
12523 s = "c2";
12524 goto copz;
12525 case M_COP3:
12526 s = "c3";
12527 copz:
df58fc94 12528 gas_assert (!mips_opts.micromips);
252b5132
RH
12529 /* For now we just do C (same as Cz). The parameter will be
12530 stored in insn_opcode by mips_ip. */
c8276761 12531 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12532 break;
252b5132 12533
ea1fb5dc 12534 case M_MOVE:
c0ebe874 12535 move_register (op[0], op[1]);
8fc2e39e 12536 break;
ea1fb5dc 12537
833794fc
MR
12538 case M_MOVEP:
12539 gas_assert (mips_opts.micromips);
12540 gas_assert (mips_opts.insn32);
c0ebe874
RS
12541 move_register (micromips_to_32_reg_h_map1[op[0]],
12542 micromips_to_32_reg_m_map[op[1]]);
12543 move_register (micromips_to_32_reg_h_map2[op[0]],
12544 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12545 break;
12546
252b5132
RH
12547 case M_DMUL:
12548 dbl = 1;
12549 case M_MUL:
e407c74b 12550 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12551 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12552 op[2]);
e407c74b
NC
12553 else
12554 {
c0ebe874
RS
12555 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12556 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12557 }
8fc2e39e 12558 break;
252b5132
RH
12559
12560 case M_DMUL_I:
12561 dbl = 1;
12562 case M_MUL_I:
12563 /* The MIPS assembler some times generates shifts and adds. I'm
12564 not trying to be that fancy. GCC should do this for us
12565 anyway. */
8fc2e39e 12566 used_at = 1;
67c0d1eb 12567 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12568 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12569 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12570 break;
12571
12572 case M_DMULO_I:
12573 dbl = 1;
12574 case M_MULO_I:
12575 imm = 1;
12576 goto do_mulo;
12577
12578 case M_DMULO:
12579 dbl = 1;
12580 case M_MULO:
12581 do_mulo:
7d10b47d 12582 start_noreorder ();
8fc2e39e 12583 used_at = 1;
252b5132 12584 if (imm)
67c0d1eb 12585 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12586 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12587 op[1], imm ? AT : op[2]);
12588 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12589 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12590 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12591 if (mips_trap)
c0ebe874 12592 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12593 else
12594 {
df58fc94
RS
12595 if (mips_opts.micromips)
12596 micromips_label_expr (&label_expr);
12597 else
12598 label_expr.X_add_number = 8;
c0ebe874 12599 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12600 macro_build (NULL, "nop", "");
df58fc94
RS
12601 macro_build (NULL, "break", BRK_FMT, 6);
12602 if (mips_opts.micromips)
12603 micromips_add_label ();
252b5132 12604 }
7d10b47d 12605 end_noreorder ();
c0ebe874 12606 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12607 break;
12608
12609 case M_DMULOU_I:
12610 dbl = 1;
12611 case M_MULOU_I:
12612 imm = 1;
12613 goto do_mulou;
12614
12615 case M_DMULOU:
12616 dbl = 1;
12617 case M_MULOU:
12618 do_mulou:
7d10b47d 12619 start_noreorder ();
8fc2e39e 12620 used_at = 1;
252b5132 12621 if (imm)
67c0d1eb
RS
12622 load_register (AT, &imm_expr, dbl);
12623 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12624 op[1], imm ? AT : op[2]);
df58fc94 12625 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12626 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12627 if (mips_trap)
df58fc94 12628 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12629 else
12630 {
df58fc94
RS
12631 if (mips_opts.micromips)
12632 micromips_label_expr (&label_expr);
12633 else
12634 label_expr.X_add_number = 8;
12635 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12636 macro_build (NULL, "nop", "");
df58fc94
RS
12637 macro_build (NULL, "break", BRK_FMT, 6);
12638 if (mips_opts.micromips)
12639 micromips_add_label ();
252b5132 12640 }
7d10b47d 12641 end_noreorder ();
252b5132
RH
12642 break;
12643
771c7ce4 12644 case M_DROL:
fef14a42 12645 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12646 {
c0ebe874 12647 if (op[0] == op[1])
82dd0097
CD
12648 {
12649 tempreg = AT;
12650 used_at = 1;
12651 }
12652 else
c0ebe874
RS
12653 tempreg = op[0];
12654 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12655 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12656 break;
82dd0097 12657 }
8fc2e39e 12658 used_at = 1;
c0ebe874
RS
12659 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12660 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12661 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12662 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12663 break;
12664
252b5132 12665 case M_ROL:
fef14a42 12666 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12667 {
c0ebe874 12668 if (op[0] == op[1])
82dd0097
CD
12669 {
12670 tempreg = AT;
12671 used_at = 1;
12672 }
12673 else
c0ebe874
RS
12674 tempreg = op[0];
12675 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12676 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12677 break;
82dd0097 12678 }
8fc2e39e 12679 used_at = 1;
c0ebe874
RS
12680 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12681 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12682 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12683 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12684 break;
12685
771c7ce4
TS
12686 case M_DROL_I:
12687 {
12688 unsigned int rot;
91d6fa6a
NC
12689 char *l;
12690 char *rr;
771c7ce4 12691
771c7ce4 12692 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12693 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12694 {
12695 rot = (64 - rot) & 0x3f;
12696 if (rot >= 32)
c0ebe874 12697 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12698 else
c0ebe874 12699 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12700 break;
60b63b72 12701 }
483fc7cd 12702 if (rot == 0)
483fc7cd 12703 {
c0ebe874 12704 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12705 break;
483fc7cd 12706 }
82dd0097 12707 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12708 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12709 rot &= 0x1f;
8fc2e39e 12710 used_at = 1;
c0ebe874
RS
12711 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12712 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12713 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12714 }
12715 break;
12716
252b5132 12717 case M_ROL_I:
771c7ce4
TS
12718 {
12719 unsigned int rot;
12720
771c7ce4 12721 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12722 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12723 {
c0ebe874
RS
12724 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12725 (32 - rot) & 0x1f);
8fc2e39e 12726 break;
60b63b72 12727 }
483fc7cd 12728 if (rot == 0)
483fc7cd 12729 {
c0ebe874 12730 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12731 break;
483fc7cd 12732 }
8fc2e39e 12733 used_at = 1;
c0ebe874
RS
12734 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12735 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12736 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12737 }
12738 break;
12739
12740 case M_DROR:
fef14a42 12741 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12742 {
c0ebe874 12743 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12744 break;
82dd0097 12745 }
8fc2e39e 12746 used_at = 1;
c0ebe874
RS
12747 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12748 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12749 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12750 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12751 break;
12752
12753 case M_ROR:
fef14a42 12754 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12755 {
c0ebe874 12756 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12757 break;
82dd0097 12758 }
8fc2e39e 12759 used_at = 1;
c0ebe874
RS
12760 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12761 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12762 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12763 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12764 break;
12765
771c7ce4
TS
12766 case M_DROR_I:
12767 {
12768 unsigned int rot;
91d6fa6a
NC
12769 char *l;
12770 char *rr;
771c7ce4 12771
771c7ce4 12772 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12773 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12774 {
12775 if (rot >= 32)
c0ebe874 12776 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12777 else
c0ebe874 12778 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12779 break;
82dd0097 12780 }
483fc7cd 12781 if (rot == 0)
483fc7cd 12782 {
c0ebe874 12783 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12784 break;
483fc7cd 12785 }
91d6fa6a 12786 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12787 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12788 rot &= 0x1f;
8fc2e39e 12789 used_at = 1;
c0ebe874
RS
12790 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12791 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12792 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12793 }
12794 break;
12795
252b5132 12796 case M_ROR_I:
771c7ce4
TS
12797 {
12798 unsigned int rot;
12799
771c7ce4 12800 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12801 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12802 {
c0ebe874 12803 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12804 break;
82dd0097 12805 }
483fc7cd 12806 if (rot == 0)
483fc7cd 12807 {
c0ebe874 12808 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12809 break;
483fc7cd 12810 }
8fc2e39e 12811 used_at = 1;
c0ebe874
RS
12812 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12813 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12814 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 12815 }
252b5132
RH
12816 break;
12817
252b5132 12818 case M_SEQ:
c0ebe874
RS
12819 if (op[1] == 0)
12820 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12821 else if (op[2] == 0)
12822 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12823 else
12824 {
c0ebe874
RS
12825 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12826 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 12827 }
8fc2e39e 12828 break;
252b5132
RH
12829
12830 case M_SEQ_I:
b0e6f033 12831 if (imm_expr.X_add_number == 0)
252b5132 12832 {
c0ebe874 12833 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12834 break;
252b5132 12835 }
c0ebe874 12836 if (op[1] == 0)
252b5132 12837 {
1661c76c 12838 as_warn (_("instruction %s: result is always false"),
252b5132 12839 ip->insn_mo->name);
c0ebe874 12840 move_register (op[0], 0);
8fc2e39e 12841 break;
252b5132 12842 }
dd3cbb7e
NC
12843 if (CPU_HAS_SEQ (mips_opts.arch)
12844 && -512 <= imm_expr.X_add_number
12845 && imm_expr.X_add_number < 512)
12846 {
c0ebe874 12847 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 12848 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12849 break;
12850 }
b0e6f033 12851 if (imm_expr.X_add_number >= 0
252b5132 12852 && imm_expr.X_add_number < 0x10000)
c0ebe874 12853 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 12854 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12855 && imm_expr.X_add_number < 0)
12856 {
12857 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 12858 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 12859 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12860 }
dd3cbb7e
NC
12861 else if (CPU_HAS_SEQ (mips_opts.arch))
12862 {
12863 used_at = 1;
bad1aba3 12864 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12865 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12866 break;
12867 }
252b5132
RH
12868 else
12869 {
bad1aba3 12870 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12871 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12872 used_at = 1;
12873 }
c0ebe874 12874 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12875 break;
252b5132 12876
c0ebe874 12877 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
12878 s = "slt";
12879 goto sge;
12880 case M_SGEU:
12881 s = "sltu";
12882 sge:
c0ebe874
RS
12883 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12884 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12885 break;
252b5132 12886
c0ebe874 12887 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 12888 case M_SGEU_I:
b0e6f033 12889 if (imm_expr.X_add_number >= -0x8000
252b5132 12890 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
12891 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12892 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12893 else
12894 {
bad1aba3 12895 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 12896 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 12897 op[0], op[1], AT);
252b5132
RH
12898 used_at = 1;
12899 }
c0ebe874 12900 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12901 break;
252b5132 12902
c0ebe874 12903 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
12904 s = "slt";
12905 goto sgt;
12906 case M_SGTU:
12907 s = "sltu";
12908 sgt:
c0ebe874 12909 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 12910 break;
252b5132 12911
c0ebe874 12912 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
12913 s = "slt";
12914 goto sgti;
12915 case M_SGTU_I:
12916 s = "sltu";
12917 sgti:
8fc2e39e 12918 used_at = 1;
bad1aba3 12919 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12920 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
12921 break;
12922
c0ebe874 12923 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
12924 s = "slt";
12925 goto sle;
12926 case M_SLEU:
12927 s = "sltu";
12928 sle:
c0ebe874
RS
12929 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12930 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12931 break;
252b5132 12932
c0ebe874 12933 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
12934 s = "slt";
12935 goto slei;
12936 case M_SLEU_I:
12937 s = "sltu";
12938 slei:
8fc2e39e 12939 used_at = 1;
bad1aba3 12940 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
12941 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12942 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
12943 break;
12944
12945 case M_SLT_I:
b0e6f033 12946 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12947 && imm_expr.X_add_number < 0x8000)
12948 {
c0ebe874
RS
12949 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12950 BFD_RELOC_LO16);
8fc2e39e 12951 break;
252b5132 12952 }
8fc2e39e 12953 used_at = 1;
bad1aba3 12954 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12955 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
12956 break;
12957
12958 case M_SLTU_I:
b0e6f033 12959 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12960 && imm_expr.X_add_number < 0x8000)
12961 {
c0ebe874 12962 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 12963 BFD_RELOC_LO16);
8fc2e39e 12964 break;
252b5132 12965 }
8fc2e39e 12966 used_at = 1;
bad1aba3 12967 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12968 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
12969 break;
12970
12971 case M_SNE:
c0ebe874
RS
12972 if (op[1] == 0)
12973 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12974 else if (op[2] == 0)
12975 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
12976 else
12977 {
c0ebe874
RS
12978 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12979 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 12980 }
8fc2e39e 12981 break;
252b5132
RH
12982
12983 case M_SNE_I:
b0e6f033 12984 if (imm_expr.X_add_number == 0)
252b5132 12985 {
c0ebe874 12986 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 12987 break;
252b5132 12988 }
c0ebe874 12989 if (op[1] == 0)
252b5132 12990 {
1661c76c 12991 as_warn (_("instruction %s: result is always true"),
252b5132 12992 ip->insn_mo->name);
bad1aba3 12993 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 12994 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 12995 break;
252b5132 12996 }
dd3cbb7e
NC
12997 if (CPU_HAS_SEQ (mips_opts.arch)
12998 && -512 <= imm_expr.X_add_number
12999 && imm_expr.X_add_number < 512)
13000 {
c0ebe874 13001 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13002 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13003 break;
13004 }
b0e6f033 13005 if (imm_expr.X_add_number >= 0
252b5132
RH
13006 && imm_expr.X_add_number < 0x10000)
13007 {
c0ebe874
RS
13008 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13009 BFD_RELOC_LO16);
252b5132 13010 }
b0e6f033 13011 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13012 && imm_expr.X_add_number < 0)
13013 {
13014 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13015 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13016 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13017 }
dd3cbb7e
NC
13018 else if (CPU_HAS_SEQ (mips_opts.arch))
13019 {
13020 used_at = 1;
bad1aba3 13021 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13022 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13023 break;
13024 }
252b5132
RH
13025 else
13026 {
bad1aba3 13027 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13028 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13029 used_at = 1;
13030 }
c0ebe874 13031 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13032 break;
252b5132 13033
df58fc94
RS
13034 case M_SUB_I:
13035 s = "addi";
13036 s2 = "sub";
13037 goto do_subi;
13038 case M_SUBU_I:
13039 s = "addiu";
13040 s2 = "subu";
13041 goto do_subi;
252b5132
RH
13042 case M_DSUB_I:
13043 dbl = 1;
df58fc94
RS
13044 s = "daddi";
13045 s2 = "dsub";
13046 if (!mips_opts.micromips)
13047 goto do_subi;
b0e6f033 13048 if (imm_expr.X_add_number > -0x200
df58fc94 13049 && imm_expr.X_add_number <= 0x200)
252b5132 13050 {
b0e6f033
RS
13051 macro_build (NULL, s, "t,r,.", op[0], op[1],
13052 (int) -imm_expr.X_add_number);
8fc2e39e 13053 break;
252b5132 13054 }
df58fc94 13055 goto do_subi_i;
252b5132
RH
13056 case M_DSUBU_I:
13057 dbl = 1;
df58fc94
RS
13058 s = "daddiu";
13059 s2 = "dsubu";
13060 do_subi:
b0e6f033 13061 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13062 && imm_expr.X_add_number <= 0x8000)
13063 {
13064 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13065 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13066 break;
252b5132 13067 }
df58fc94 13068 do_subi_i:
8fc2e39e 13069 used_at = 1;
67c0d1eb 13070 load_register (AT, &imm_expr, dbl);
c0ebe874 13071 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13072 break;
13073
13074 case M_TEQ_I:
13075 s = "teq";
13076 goto trap;
13077 case M_TGE_I:
13078 s = "tge";
13079 goto trap;
13080 case M_TGEU_I:
13081 s = "tgeu";
13082 goto trap;
13083 case M_TLT_I:
13084 s = "tlt";
13085 goto trap;
13086 case M_TLTU_I:
13087 s = "tltu";
13088 goto trap;
13089 case M_TNE_I:
13090 s = "tne";
13091 trap:
8fc2e39e 13092 used_at = 1;
bad1aba3 13093 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13094 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13095 break;
13096
252b5132 13097 case M_TRUNCWS:
43841e91 13098 case M_TRUNCWD:
df58fc94 13099 gas_assert (!mips_opts.micromips);
0aa27725 13100 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13101 used_at = 1;
252b5132
RH
13102
13103 /*
13104 * Is the double cfc1 instruction a bug in the mips assembler;
13105 * or is there a reason for it?
13106 */
7d10b47d 13107 start_noreorder ();
c0ebe874
RS
13108 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13109 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13110 macro_build (NULL, "nop", "");
252b5132 13111 expr1.X_add_number = 3;
c0ebe874 13112 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13113 expr1.X_add_number = 2;
67c0d1eb
RS
13114 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13115 macro_build (NULL, "ctc1", "t,G", AT, RA);
13116 macro_build (NULL, "nop", "");
13117 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13118 op[0], op[1]);
13119 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13120 macro_build (NULL, "nop", "");
7d10b47d 13121 end_noreorder ();
252b5132
RH
13122 break;
13123
f2ae14a1 13124 case M_ULH_AB:
252b5132 13125 s = "lb";
df58fc94
RS
13126 s2 = "lbu";
13127 off = 1;
13128 goto uld_st;
f2ae14a1 13129 case M_ULHU_AB:
252b5132 13130 s = "lbu";
df58fc94
RS
13131 s2 = "lbu";
13132 off = 1;
13133 goto uld_st;
f2ae14a1 13134 case M_ULW_AB:
df58fc94
RS
13135 s = "lwl";
13136 s2 = "lwr";
7f3c4072 13137 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13138 off = 3;
13139 goto uld_st;
f2ae14a1 13140 case M_ULD_AB:
252b5132
RH
13141 s = "ldl";
13142 s2 = "ldr";
7f3c4072 13143 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13144 off = 7;
df58fc94 13145 goto uld_st;
f2ae14a1 13146 case M_USH_AB:
df58fc94
RS
13147 s = "sb";
13148 s2 = "sb";
13149 off = 1;
13150 ust = 1;
13151 goto uld_st;
f2ae14a1 13152 case M_USW_AB:
df58fc94
RS
13153 s = "swl";
13154 s2 = "swr";
7f3c4072 13155 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13156 off = 3;
df58fc94
RS
13157 ust = 1;
13158 goto uld_st;
f2ae14a1 13159 case M_USD_AB:
df58fc94
RS
13160 s = "sdl";
13161 s2 = "sdr";
7f3c4072 13162 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13163 off = 7;
13164 ust = 1;
13165
13166 uld_st:
c0ebe874 13167 breg = op[2];
f2ae14a1 13168 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13169 ep = &offset_expr;
13170 expr1.X_add_number = 0;
f2ae14a1 13171 if (large_offset)
df58fc94
RS
13172 {
13173 used_at = 1;
13174 tempreg = AT;
f2ae14a1
RS
13175 if (small_offset_p (0, align, 16))
13176 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13177 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13178 else
13179 {
13180 load_address (tempreg, ep, &used_at);
13181 if (breg != 0)
13182 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13183 tempreg, tempreg, breg);
13184 }
13185 offset_reloc[0] = BFD_RELOC_LO16;
13186 offset_reloc[1] = BFD_RELOC_UNUSED;
13187 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13188 breg = tempreg;
c0ebe874 13189 tempreg = op[0];
df58fc94
RS
13190 ep = &expr1;
13191 }
c0ebe874 13192 else if (!ust && op[0] == breg)
8fc2e39e
TS
13193 {
13194 used_at = 1;
13195 tempreg = AT;
13196 }
252b5132 13197 else
c0ebe874 13198 tempreg = op[0];
af22f5b2 13199
df58fc94
RS
13200 if (off == 1)
13201 goto ulh_sh;
252b5132 13202
90ecf173 13203 if (!target_big_endian)
df58fc94 13204 ep->X_add_number += off;
f2ae14a1 13205 if (offbits == 12)
c8276761 13206 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13207 else
13208 macro_build (ep, s, "t,o(b)", tempreg, -1,
13209 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13210
90ecf173 13211 if (!target_big_endian)
df58fc94 13212 ep->X_add_number -= off;
252b5132 13213 else
df58fc94 13214 ep->X_add_number += off;
f2ae14a1 13215 if (offbits == 12)
df58fc94 13216 macro_build (NULL, s2, "t,~(b)",
c8276761 13217 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13218 else
13219 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13220 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13221
df58fc94 13222 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13223 if (!ust && op[0] != tempreg)
df58fc94
RS
13224 {
13225 /* Protect second load's delay slot. */
13226 load_delay_nop ();
c0ebe874 13227 move_register (op[0], tempreg);
df58fc94 13228 }
8fc2e39e 13229 break;
252b5132 13230
df58fc94 13231 ulh_sh:
d6bc6245 13232 used_at = 1;
df58fc94
RS
13233 if (target_big_endian == ust)
13234 ep->X_add_number += off;
c0ebe874 13235 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13236 macro_build (ep, s, "t,o(b)", tempreg, -1,
13237 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13238
13239 /* For halfword transfers we need a temporary register to shuffle
13240 bytes. Unfortunately for M_USH_A we have none available before
13241 the next store as AT holds the base address. We deal with this
13242 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13243 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13244 if (ust)
c0ebe874 13245 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13246
13247 if (target_big_endian == ust)
13248 ep->X_add_number -= off;
252b5132 13249 else
df58fc94 13250 ep->X_add_number += off;
f2ae14a1
RS
13251 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13252 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13253
df58fc94 13254 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13255 if (ust && large_offset)
df58fc94
RS
13256 {
13257 if (target_big_endian)
13258 ep->X_add_number += off;
13259 else
13260 ep->X_add_number -= off;
f2ae14a1
RS
13261 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13262 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13263 }
13264 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13265 if (!ust || large_offset)
df58fc94 13266 {
c0ebe874 13267 tempreg = !large_offset ? AT : op[0];
df58fc94 13268 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13269 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13270 }
252b5132
RH
13271 break;
13272
13273 default:
13274 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13275 are added dynamically. */
1661c76c 13276 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13277 break;
13278 }
741fe287 13279 if (!mips_opts.at && used_at)
1661c76c 13280 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13281}
13282
13283/* Implement macros in mips16 mode. */
13284
13285static void
17a2f251 13286mips16_macro (struct mips_cl_insn *ip)
252b5132 13287{
c0ebe874 13288 const struct mips_operand_array *operands;
252b5132 13289 int mask;
c0ebe874 13290 int tmp;
252b5132
RH
13291 expressionS expr1;
13292 int dbl;
13293 const char *s, *s2, *s3;
c0ebe874
RS
13294 unsigned int op[MAX_OPERANDS];
13295 unsigned int i;
252b5132
RH
13296
13297 mask = ip->insn_mo->mask;
13298
c0ebe874
RS
13299 operands = insn_operands (ip);
13300 for (i = 0; i < MAX_OPERANDS; i++)
13301 if (operands->operand[i])
13302 op[i] = insn_extract_operand (ip, operands->operand[i]);
13303 else
13304 op[i] = -1;
252b5132 13305
252b5132
RH
13306 expr1.X_op = O_constant;
13307 expr1.X_op_symbol = NULL;
13308 expr1.X_add_symbol = NULL;
13309 expr1.X_add_number = 1;
13310
13311 dbl = 0;
13312
13313 switch (mask)
13314 {
13315 default:
b37df7c4 13316 abort ();
252b5132
RH
13317
13318 case M_DDIV_3:
13319 dbl = 1;
13320 case M_DIV_3:
13321 s = "mflo";
13322 goto do_div3;
13323 case M_DREM_3:
13324 dbl = 1;
13325 case M_REM_3:
13326 s = "mfhi";
13327 do_div3:
7d10b47d 13328 start_noreorder ();
c0ebe874 13329 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13330 expr1.X_add_number = 2;
c0ebe874 13331 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13332 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13333
252b5132
RH
13334 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13335 since that causes an overflow. We should do that as well,
13336 but I don't see how to do the comparisons without a temporary
13337 register. */
7d10b47d 13338 end_noreorder ();
c0ebe874 13339 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13340 break;
13341
13342 case M_DIVU_3:
13343 s = "divu";
13344 s2 = "mflo";
13345 goto do_divu3;
13346 case M_REMU_3:
13347 s = "divu";
13348 s2 = "mfhi";
13349 goto do_divu3;
13350 case M_DDIVU_3:
13351 s = "ddivu";
13352 s2 = "mflo";
13353 goto do_divu3;
13354 case M_DREMU_3:
13355 s = "ddivu";
13356 s2 = "mfhi";
13357 do_divu3:
7d10b47d 13358 start_noreorder ();
c0ebe874 13359 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13360 expr1.X_add_number = 2;
c0ebe874 13361 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13362 macro_build (NULL, "break", "6", 7);
7d10b47d 13363 end_noreorder ();
c0ebe874 13364 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13365 break;
13366
13367 case M_DMUL:
13368 dbl = 1;
13369 case M_MUL:
c0ebe874
RS
13370 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13371 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13372 break;
252b5132
RH
13373
13374 case M_DSUBU_I:
13375 dbl = 1;
13376 goto do_subu;
13377 case M_SUBU_I:
13378 do_subu:
252b5132 13379 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13380 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13381 break;
13382
13383 case M_SUBU_I_2:
252b5132 13384 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13385 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13386 break;
13387
13388 case M_DSUBU_I_2:
252b5132 13389 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13390 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13391 break;
13392
13393 case M_BEQ:
13394 s = "cmp";
13395 s2 = "bteqz";
13396 goto do_branch;
13397 case M_BNE:
13398 s = "cmp";
13399 s2 = "btnez";
13400 goto do_branch;
13401 case M_BLT:
13402 s = "slt";
13403 s2 = "btnez";
13404 goto do_branch;
13405 case M_BLTU:
13406 s = "sltu";
13407 s2 = "btnez";
13408 goto do_branch;
13409 case M_BLE:
13410 s = "slt";
13411 s2 = "bteqz";
13412 goto do_reverse_branch;
13413 case M_BLEU:
13414 s = "sltu";
13415 s2 = "bteqz";
13416 goto do_reverse_branch;
13417 case M_BGE:
13418 s = "slt";
13419 s2 = "bteqz";
13420 goto do_branch;
13421 case M_BGEU:
13422 s = "sltu";
13423 s2 = "bteqz";
13424 goto do_branch;
13425 case M_BGT:
13426 s = "slt";
13427 s2 = "btnez";
13428 goto do_reverse_branch;
13429 case M_BGTU:
13430 s = "sltu";
13431 s2 = "btnez";
13432
13433 do_reverse_branch:
c0ebe874
RS
13434 tmp = op[1];
13435 op[1] = op[0];
13436 op[0] = tmp;
252b5132
RH
13437
13438 do_branch:
c0ebe874 13439 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13440 macro_build (&offset_expr, s2, "p");
252b5132
RH
13441 break;
13442
13443 case M_BEQ_I:
13444 s = "cmpi";
13445 s2 = "bteqz";
13446 s3 = "x,U";
13447 goto do_branch_i;
13448 case M_BNE_I:
13449 s = "cmpi";
13450 s2 = "btnez";
13451 s3 = "x,U";
13452 goto do_branch_i;
13453 case M_BLT_I:
13454 s = "slti";
13455 s2 = "btnez";
13456 s3 = "x,8";
13457 goto do_branch_i;
13458 case M_BLTU_I:
13459 s = "sltiu";
13460 s2 = "btnez";
13461 s3 = "x,8";
13462 goto do_branch_i;
13463 case M_BLE_I:
13464 s = "slti";
13465 s2 = "btnez";
13466 s3 = "x,8";
13467 goto do_addone_branch_i;
13468 case M_BLEU_I:
13469 s = "sltiu";
13470 s2 = "btnez";
13471 s3 = "x,8";
13472 goto do_addone_branch_i;
13473 case M_BGE_I:
13474 s = "slti";
13475 s2 = "bteqz";
13476 s3 = "x,8";
13477 goto do_branch_i;
13478 case M_BGEU_I:
13479 s = "sltiu";
13480 s2 = "bteqz";
13481 s3 = "x,8";
13482 goto do_branch_i;
13483 case M_BGT_I:
13484 s = "slti";
13485 s2 = "bteqz";
13486 s3 = "x,8";
13487 goto do_addone_branch_i;
13488 case M_BGTU_I:
13489 s = "sltiu";
13490 s2 = "bteqz";
13491 s3 = "x,8";
13492
13493 do_addone_branch_i:
252b5132
RH
13494 ++imm_expr.X_add_number;
13495
13496 do_branch_i:
c0ebe874 13497 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13498 macro_build (&offset_expr, s2, "p");
252b5132
RH
13499 break;
13500
13501 case M_ABS:
13502 expr1.X_add_number = 0;
c0ebe874
RS
13503 macro_build (&expr1, "slti", "x,8", op[1]);
13504 if (op[0] != op[1])
13505 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13506 expr1.X_add_number = 2;
67c0d1eb 13507 macro_build (&expr1, "bteqz", "p");
c0ebe874 13508 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13509 break;
252b5132
RH
13510 }
13511}
13512
14daeee3
RS
13513/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13514 opcode bits in *OPCODE_EXTRA. */
13515
13516static struct mips_opcode *
13517mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13518 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13519{
13520 char *name, *dot, *p;
13521 unsigned int mask, suffix;
da8bca91 13522 ssize_t opend;
14daeee3
RS
13523 struct mips_opcode *insn;
13524
13525 /* Make a copy of the instruction so that we can fiddle with it. */
13526 name = alloca (length + 1);
13527 memcpy (name, start, length);
13528 name[length] = '\0';
13529
13530 /* Look up the instruction as-is. */
13531 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13532 if (insn)
14daeee3
RS
13533 return insn;
13534
13535 dot = strchr (name, '.');
13536 if (dot && dot[1])
13537 {
13538 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13539 p = mips_parse_vu0_channels (dot + 1, &mask);
13540 if (*p == 0 && mask != 0)
13541 {
13542 *dot = 0;
13543 insn = (struct mips_opcode *) hash_find (hash, name);
13544 *dot = '.';
13545 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13546 {
13547 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13548 return insn;
13549 }
13550 }
13551 }
13552
13553 if (mips_opts.micromips)
13554 {
13555 /* See if there's an instruction size override suffix,
13556 either `16' or `32', at the end of the mnemonic proper,
13557 that defines the operation, i.e. before the first `.'
13558 character if any. Strip it and retry. */
13559 opend = dot != NULL ? dot - name : length;
13560 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13561 suffix = 2;
13562 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13563 suffix = 4;
13564 else
13565 suffix = 0;
13566 if (suffix)
13567 {
13568 memcpy (name + opend - 2, name + opend, length - opend + 1);
13569 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13570 if (insn)
14daeee3
RS
13571 {
13572 forced_insn_length = suffix;
13573 return insn;
13574 }
13575 }
13576 }
13577
13578 return NULL;
13579}
13580
77bd4346 13581/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13582 is a macro, set imm_expr and offset_expr to the values associated
13583 with "I" and "A" operands respectively. Otherwise store the value
13584 of the relocatable field (if any) in offset_expr. In both cases
13585 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13586
13587static void
60f20e8b 13588mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13589{
60f20e8b 13590 const struct mips_opcode *first, *past;
df58fc94 13591 struct hash_control *hash;
a92713e6 13592 char format;
14daeee3 13593 size_t end;
a92713e6 13594 struct mips_operand_token *tokens;
14daeee3 13595 unsigned int opcode_extra;
252b5132 13596
df58fc94
RS
13597 if (mips_opts.micromips)
13598 {
13599 hash = micromips_op_hash;
13600 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13601 }
13602 else
13603 {
13604 hash = op_hash;
13605 past = &mips_opcodes[NUMOPCODES];
13606 }
13607 forced_insn_length = 0;
14daeee3 13608 opcode_extra = 0;
252b5132 13609
df58fc94 13610 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13611 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13612 continue;
bdaaa2e1 13613
60f20e8b
RS
13614 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13615 if (first == NULL)
252b5132 13616 {
1661c76c 13617 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13618 return;
252b5132
RH
13619 }
13620
60f20e8b 13621 if (strcmp (first->name, "li.s") == 0)
a92713e6 13622 format = 'f';
60f20e8b 13623 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13624 format = 'd';
13625 else
13626 format = 0;
13627 tokens = mips_parse_arguments (str + end, format);
13628 if (!tokens)
13629 return;
13630
60f20e8b
RS
13631 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13632 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13633 set_insn_error (0, _("invalid operands"));
df58fc94 13634
e3de51ce 13635 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13636}
13637
77bd4346
RS
13638/* As for mips_ip, but used when assembling MIPS16 code.
13639 Also set forced_insn_length to the resulting instruction size in
13640 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13641
13642static void
60f20e8b 13643mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13644{
1a00e612 13645 char *end, *s, c;
60f20e8b 13646 struct mips_opcode *first;
a92713e6 13647 struct mips_operand_token *tokens;
252b5132 13648
df58fc94 13649 forced_insn_length = 0;
252b5132 13650
3882b010 13651 for (s = str; ISLOWER (*s); ++s)
252b5132 13652 ;
1a00e612
RS
13653 end = s;
13654 c = *end;
13655 switch (c)
252b5132
RH
13656 {
13657 case '\0':
13658 break;
13659
13660 case ' ':
1a00e612 13661 s++;
252b5132
RH
13662 break;
13663
13664 case '.':
13665 if (s[1] == 't' && s[2] == ' ')
13666 {
df58fc94 13667 forced_insn_length = 2;
252b5132
RH
13668 s += 3;
13669 break;
13670 }
13671 else if (s[1] == 'e' && s[2] == ' ')
13672 {
df58fc94 13673 forced_insn_length = 4;
252b5132
RH
13674 s += 3;
13675 break;
13676 }
13677 /* Fall through. */
13678 default:
1661c76c 13679 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13680 return;
13681 }
13682
df58fc94
RS
13683 if (mips_opts.noautoextend && !forced_insn_length)
13684 forced_insn_length = 2;
252b5132 13685
1a00e612 13686 *end = 0;
60f20e8b 13687 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13688 *end = c;
13689
60f20e8b 13690 if (!first)
252b5132 13691 {
1661c76c 13692 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13693 return;
13694 }
13695
a92713e6
RS
13696 tokens = mips_parse_arguments (s, 0);
13697 if (!tokens)
13698 return;
13699
60f20e8b 13700 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13701 set_insn_error (0, _("invalid operands"));
252b5132 13702
e3de51ce 13703 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13704}
13705
b886a2ab
RS
13706/* Marshal immediate value VAL for an extended MIPS16 instruction.
13707 NBITS is the number of significant bits in VAL. */
13708
13709static unsigned long
13710mips16_immed_extend (offsetT val, unsigned int nbits)
13711{
13712 int extval;
13713 if (nbits == 16)
13714 {
13715 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13716 val &= 0x1f;
13717 }
13718 else if (nbits == 15)
13719 {
13720 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13721 val &= 0xf;
13722 }
13723 else
13724 {
13725 extval = ((val & 0x1f) << 6) | (val & 0x20);
13726 val = 0;
13727 }
13728 return (extval << 16) | val;
13729}
13730
3ccad066
RS
13731/* Like decode_mips16_operand, but require the operand to be defined and
13732 require it to be an integer. */
13733
13734static const struct mips_int_operand *
13735mips16_immed_operand (int type, bfd_boolean extended_p)
13736{
13737 const struct mips_operand *operand;
13738
13739 operand = decode_mips16_operand (type, extended_p);
13740 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13741 abort ();
13742 return (const struct mips_int_operand *) operand;
13743}
13744
13745/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13746
13747static bfd_boolean
13748mips16_immed_in_range_p (const struct mips_int_operand *operand,
13749 bfd_reloc_code_real_type reloc, offsetT sval)
13750{
13751 int min_val, max_val;
13752
13753 min_val = mips_int_operand_min (operand);
13754 max_val = mips_int_operand_max (operand);
13755 if (reloc != BFD_RELOC_UNUSED)
13756 {
13757 if (min_val < 0)
13758 sval = SEXT_16BIT (sval);
13759 else
13760 sval &= 0xffff;
13761 }
13762
13763 return (sval >= min_val
13764 && sval <= max_val
13765 && (sval & ((1 << operand->shift) - 1)) == 0);
13766}
13767
5c04167a
RS
13768/* Install immediate value VAL into MIPS16 instruction *INSN,
13769 extending it if necessary. The instruction in *INSN may
13770 already be extended.
13771
43c0598f
RS
13772 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13773 if none. In the former case, VAL is a 16-bit number with no
13774 defined signedness.
13775
13776 TYPE is the type of the immediate field. USER_INSN_LENGTH
13777 is the length that the user requested, or 0 if none. */
252b5132
RH
13778
13779static void
43c0598f
RS
13780mips16_immed (char *file, unsigned int line, int type,
13781 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13782 unsigned int user_insn_length, unsigned long *insn)
252b5132 13783{
3ccad066
RS
13784 const struct mips_int_operand *operand;
13785 unsigned int uval, length;
252b5132 13786
3ccad066
RS
13787 operand = mips16_immed_operand (type, FALSE);
13788 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13789 {
13790 /* We need an extended instruction. */
13791 if (user_insn_length == 2)
13792 as_bad_where (file, line, _("invalid unextended operand value"));
13793 else
13794 *insn |= MIPS16_EXTEND;
13795 }
13796 else if (user_insn_length == 4)
13797 {
13798 /* The operand doesn't force an unextended instruction to be extended.
13799 Warn if the user wanted an extended instruction anyway. */
13800 *insn |= MIPS16_EXTEND;
13801 as_warn_where (file, line,
13802 _("extended operand requested but not required"));
13803 }
252b5132 13804
3ccad066
RS
13805 length = mips16_opcode_length (*insn);
13806 if (length == 4)
252b5132 13807 {
3ccad066
RS
13808 operand = mips16_immed_operand (type, TRUE);
13809 if (!mips16_immed_in_range_p (operand, reloc, val))
13810 as_bad_where (file, line,
13811 _("operand value out of range for instruction"));
252b5132 13812 }
3ccad066
RS
13813 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13814 if (length == 2)
13815 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 13816 else
3ccad066 13817 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
13818}
13819\f
d6f16593 13820struct percent_op_match
ad8d3bb3 13821{
5e0116d5
RS
13822 const char *str;
13823 bfd_reloc_code_real_type reloc;
d6f16593
MR
13824};
13825
13826static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 13827{
5e0116d5 13828 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
13829 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13830 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13831 {"%call16", BFD_RELOC_MIPS_CALL16},
13832 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13833 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13834 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13835 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13836 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13837 {"%got", BFD_RELOC_MIPS_GOT16},
13838 {"%gp_rel", BFD_RELOC_GPREL16},
13839 {"%half", BFD_RELOC_16},
13840 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13841 {"%higher", BFD_RELOC_MIPS_HIGHER},
13842 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
13843 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13844 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13845 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13846 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13847 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13848 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13849 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
13850 {"%hi", BFD_RELOC_HI16_S},
13851 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13852 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
13853};
13854
d6f16593
MR
13855static const struct percent_op_match mips16_percent_op[] =
13856{
13857 {"%lo", BFD_RELOC_MIPS16_LO16},
13858 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
13859 {"%got", BFD_RELOC_MIPS16_GOT16},
13860 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
13861 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13862 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13863 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13864 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13865 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13866 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13867 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13868 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
13869};
13870
252b5132 13871
5e0116d5
RS
13872/* Return true if *STR points to a relocation operator. When returning true,
13873 move *STR over the operator and store its relocation code in *RELOC.
13874 Leave both *STR and *RELOC alone when returning false. */
13875
13876static bfd_boolean
17a2f251 13877parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 13878{
d6f16593
MR
13879 const struct percent_op_match *percent_op;
13880 size_t limit, i;
13881
13882 if (mips_opts.mips16)
13883 {
13884 percent_op = mips16_percent_op;
13885 limit = ARRAY_SIZE (mips16_percent_op);
13886 }
13887 else
13888 {
13889 percent_op = mips_percent_op;
13890 limit = ARRAY_SIZE (mips_percent_op);
13891 }
76b3015f 13892
d6f16593 13893 for (i = 0; i < limit; i++)
5e0116d5 13894 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13895 {
3f98094e
DJ
13896 int len = strlen (percent_op[i].str);
13897
13898 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13899 continue;
13900
5e0116d5
RS
13901 *str += strlen (percent_op[i].str);
13902 *reloc = percent_op[i].reloc;
394f9b3a 13903
5e0116d5
RS
13904 /* Check whether the output BFD supports this relocation.
13905 If not, issue an error and fall back on something safe. */
13906 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13907 {
20203fb9 13908 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13909 percent_op[i].str);
01a3f561 13910 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13911 }
5e0116d5 13912 return TRUE;
394f9b3a 13913 }
5e0116d5 13914 return FALSE;
394f9b3a 13915}
ad8d3bb3 13916
ad8d3bb3 13917
5e0116d5
RS
13918/* Parse string STR as a 16-bit relocatable operand. Store the
13919 expression in *EP and the relocations in the array starting
13920 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13921
01a3f561 13922 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13923
5e0116d5 13924static size_t
17a2f251
TS
13925my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13926 char *str)
ad8d3bb3 13927{
5e0116d5
RS
13928 bfd_reloc_code_real_type reversed_reloc[3];
13929 size_t reloc_index, i;
09b8f35a
RS
13930 int crux_depth, str_depth;
13931 char *crux;
5e0116d5
RS
13932
13933 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13934 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13935 of the main expression and with CRUX_DEPTH containing the number
13936 of open brackets at that point. */
13937 reloc_index = -1;
13938 str_depth = 0;
13939 do
fb1b3232 13940 {
09b8f35a
RS
13941 reloc_index++;
13942 crux = str;
13943 crux_depth = str_depth;
13944
13945 /* Skip over whitespace and brackets, keeping count of the number
13946 of brackets. */
13947 while (*str == ' ' || *str == '\t' || *str == '(')
13948 if (*str++ == '(')
13949 str_depth++;
5e0116d5 13950 }
09b8f35a
RS
13951 while (*str == '%'
13952 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13953 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 13954
09b8f35a 13955 my_getExpression (ep, crux);
5e0116d5 13956 str = expr_end;
394f9b3a 13957
5e0116d5 13958 /* Match every open bracket. */
09b8f35a 13959 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 13960 if (*str++ == ')')
09b8f35a 13961 crux_depth--;
394f9b3a 13962
09b8f35a 13963 if (crux_depth > 0)
20203fb9 13964 as_bad (_("unclosed '('"));
394f9b3a 13965
5e0116d5 13966 expr_end = str;
252b5132 13967
01a3f561 13968 if (reloc_index != 0)
64bdfcaf
RS
13969 {
13970 prev_reloc_op_frag = frag_now;
13971 for (i = 0; i < reloc_index; i++)
13972 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13973 }
fb1b3232 13974
5e0116d5 13975 return reloc_index;
252b5132
RH
13976}
13977
13978static void
17a2f251 13979my_getExpression (expressionS *ep, char *str)
252b5132
RH
13980{
13981 char *save_in;
13982
13983 save_in = input_line_pointer;
13984 input_line_pointer = str;
13985 expression (ep);
13986 expr_end = input_line_pointer;
13987 input_line_pointer = save_in;
252b5132
RH
13988}
13989
252b5132 13990char *
17a2f251 13991md_atof (int type, char *litP, int *sizeP)
252b5132 13992{
499ac353 13993 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
13994}
13995
13996void
17a2f251 13997md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
13998{
13999 if (target_big_endian)
14000 number_to_chars_bigendian (buf, val, n);
14001 else
14002 number_to_chars_littleendian (buf, val, n);
14003}
14004\f
e013f690
TS
14005static int support_64bit_objects(void)
14006{
14007 const char **list, **l;
aa3d8fdf 14008 int yes;
e013f690
TS
14009
14010 list = bfd_target_list ();
14011 for (l = list; *l != NULL; l++)
aeffff67
RS
14012 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14013 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14014 break;
aa3d8fdf 14015 yes = (*l != NULL);
e013f690 14016 free (list);
aa3d8fdf 14017 return yes;
e013f690
TS
14018}
14019
316f5878
RS
14020/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14021 NEW_VALUE. Warn if another value was already specified. Note:
14022 we have to defer parsing the -march and -mtune arguments in order
14023 to handle 'from-abi' correctly, since the ABI might be specified
14024 in a later argument. */
14025
14026static void
17a2f251 14027mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14028{
14029 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14030 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14031 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14032 new_value);
14033
14034 *string_ptr = new_value;
14035}
14036
252b5132 14037int
17a2f251 14038md_parse_option (int c, char *arg)
252b5132 14039{
c6278170
RS
14040 unsigned int i;
14041
14042 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14043 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14044 {
919731af 14045 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14046 c == mips_ases[i].option_on);
14047 return 1;
14048 }
14049
252b5132
RH
14050 switch (c)
14051 {
119d663a
NC
14052 case OPTION_CONSTRUCT_FLOATS:
14053 mips_disable_float_construction = 0;
14054 break;
bdaaa2e1 14055
119d663a
NC
14056 case OPTION_NO_CONSTRUCT_FLOATS:
14057 mips_disable_float_construction = 1;
14058 break;
bdaaa2e1 14059
252b5132
RH
14060 case OPTION_TRAP:
14061 mips_trap = 1;
14062 break;
14063
14064 case OPTION_BREAK:
14065 mips_trap = 0;
14066 break;
14067
14068 case OPTION_EB:
14069 target_big_endian = 1;
14070 break;
14071
14072 case OPTION_EL:
14073 target_big_endian = 0;
14074 break;
14075
14076 case 'O':
4ffff32f
TS
14077 if (arg == NULL)
14078 mips_optimize = 1;
14079 else if (arg[0] == '0')
14080 mips_optimize = 0;
14081 else if (arg[0] == '1')
252b5132
RH
14082 mips_optimize = 1;
14083 else
14084 mips_optimize = 2;
14085 break;
14086
14087 case 'g':
14088 if (arg == NULL)
14089 mips_debug = 2;
14090 else
14091 mips_debug = atoi (arg);
252b5132
RH
14092 break;
14093
14094 case OPTION_MIPS1:
0b35dfee 14095 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14096 break;
14097
14098 case OPTION_MIPS2:
0b35dfee 14099 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14100 break;
14101
14102 case OPTION_MIPS3:
0b35dfee 14103 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14104 break;
14105
14106 case OPTION_MIPS4:
0b35dfee 14107 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14108 break;
14109
84ea6cf2 14110 case OPTION_MIPS5:
0b35dfee 14111 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14112 break;
14113
e7af610e 14114 case OPTION_MIPS32:
0b35dfee 14115 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14116 break;
14117
af7ee8bf 14118 case OPTION_MIPS32R2:
0b35dfee 14119 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14120 break;
14121
ae52f483 14122 case OPTION_MIPS32R3:
0ae19f05 14123 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14124 break;
14125
14126 case OPTION_MIPS32R5:
0ae19f05 14127 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14128 break;
14129
7361da2c
AB
14130 case OPTION_MIPS32R6:
14131 file_mips_opts.isa = ISA_MIPS32R6;
14132 break;
14133
5f74bc13 14134 case OPTION_MIPS64R2:
0b35dfee 14135 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14136 break;
14137
ae52f483 14138 case OPTION_MIPS64R3:
0ae19f05 14139 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14140 break;
14141
14142 case OPTION_MIPS64R5:
0ae19f05 14143 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14144 break;
14145
7361da2c
AB
14146 case OPTION_MIPS64R6:
14147 file_mips_opts.isa = ISA_MIPS64R6;
14148 break;
14149
84ea6cf2 14150 case OPTION_MIPS64:
0b35dfee 14151 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14152 break;
14153
ec68c924 14154 case OPTION_MTUNE:
316f5878
RS
14155 mips_set_option_string (&mips_tune_string, arg);
14156 break;
ec68c924 14157
316f5878
RS
14158 case OPTION_MARCH:
14159 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14160 break;
14161
14162 case OPTION_M4650:
316f5878
RS
14163 mips_set_option_string (&mips_arch_string, "4650");
14164 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14165 break;
14166
14167 case OPTION_NO_M4650:
14168 break;
14169
14170 case OPTION_M4010:
316f5878
RS
14171 mips_set_option_string (&mips_arch_string, "4010");
14172 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14173 break;
14174
14175 case OPTION_NO_M4010:
14176 break;
14177
14178 case OPTION_M4100:
316f5878
RS
14179 mips_set_option_string (&mips_arch_string, "4100");
14180 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14181 break;
14182
14183 case OPTION_NO_M4100:
14184 break;
14185
252b5132 14186 case OPTION_M3900:
316f5878
RS
14187 mips_set_option_string (&mips_arch_string, "3900");
14188 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14189 break;
bdaaa2e1 14190
252b5132
RH
14191 case OPTION_NO_M3900:
14192 break;
14193
df58fc94 14194 case OPTION_MICROMIPS:
919731af 14195 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14196 {
14197 as_bad (_("-mmicromips cannot be used with -mips16"));
14198 return 0;
14199 }
919731af 14200 file_mips_opts.micromips = 1;
df58fc94
RS
14201 mips_no_prev_insn ();
14202 break;
14203
14204 case OPTION_NO_MICROMIPS:
919731af 14205 file_mips_opts.micromips = 0;
df58fc94
RS
14206 mips_no_prev_insn ();
14207 break;
14208
252b5132 14209 case OPTION_MIPS16:
919731af 14210 if (file_mips_opts.micromips == 1)
df58fc94
RS
14211 {
14212 as_bad (_("-mips16 cannot be used with -micromips"));
14213 return 0;
14214 }
919731af 14215 file_mips_opts.mips16 = 1;
7d10b47d 14216 mips_no_prev_insn ();
252b5132
RH
14217 break;
14218
14219 case OPTION_NO_MIPS16:
919731af 14220 file_mips_opts.mips16 = 0;
7d10b47d 14221 mips_no_prev_insn ();
252b5132
RH
14222 break;
14223
6a32d874
CM
14224 case OPTION_FIX_24K:
14225 mips_fix_24k = 1;
14226 break;
14227
14228 case OPTION_NO_FIX_24K:
14229 mips_fix_24k = 0;
14230 break;
14231
a8d14a88
CM
14232 case OPTION_FIX_RM7000:
14233 mips_fix_rm7000 = 1;
14234 break;
14235
14236 case OPTION_NO_FIX_RM7000:
14237 mips_fix_rm7000 = 0;
14238 break;
14239
c67a084a
NC
14240 case OPTION_FIX_LOONGSON2F_JUMP:
14241 mips_fix_loongson2f_jump = TRUE;
14242 break;
14243
14244 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14245 mips_fix_loongson2f_jump = FALSE;
14246 break;
14247
14248 case OPTION_FIX_LOONGSON2F_NOP:
14249 mips_fix_loongson2f_nop = TRUE;
14250 break;
14251
14252 case OPTION_NO_FIX_LOONGSON2F_NOP:
14253 mips_fix_loongson2f_nop = FALSE;
14254 break;
14255
d766e8ec
RS
14256 case OPTION_FIX_VR4120:
14257 mips_fix_vr4120 = 1;
60b63b72
RS
14258 break;
14259
d766e8ec
RS
14260 case OPTION_NO_FIX_VR4120:
14261 mips_fix_vr4120 = 0;
60b63b72
RS
14262 break;
14263
7d8e00cf
RS
14264 case OPTION_FIX_VR4130:
14265 mips_fix_vr4130 = 1;
14266 break;
14267
14268 case OPTION_NO_FIX_VR4130:
14269 mips_fix_vr4130 = 0;
14270 break;
14271
d954098f
DD
14272 case OPTION_FIX_CN63XXP1:
14273 mips_fix_cn63xxp1 = TRUE;
14274 break;
14275
14276 case OPTION_NO_FIX_CN63XXP1:
14277 mips_fix_cn63xxp1 = FALSE;
14278 break;
14279
4a6a3df4
AO
14280 case OPTION_RELAX_BRANCH:
14281 mips_relax_branch = 1;
14282 break;
14283
14284 case OPTION_NO_RELAX_BRANCH:
14285 mips_relax_branch = 0;
14286 break;
14287
833794fc 14288 case OPTION_INSN32:
919731af 14289 file_mips_opts.insn32 = TRUE;
833794fc
MR
14290 break;
14291
14292 case OPTION_NO_INSN32:
919731af 14293 file_mips_opts.insn32 = FALSE;
833794fc
MR
14294 break;
14295
aa6975fb
ILT
14296 case OPTION_MSHARED:
14297 mips_in_shared = TRUE;
14298 break;
14299
14300 case OPTION_MNO_SHARED:
14301 mips_in_shared = FALSE;
14302 break;
14303
aed1a261 14304 case OPTION_MSYM32:
919731af 14305 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14306 break;
14307
14308 case OPTION_MNO_SYM32:
919731af 14309 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14310 break;
14311
252b5132
RH
14312 /* When generating ELF code, we permit -KPIC and -call_shared to
14313 select SVR4_PIC, and -non_shared to select no PIC. This is
14314 intended to be compatible with Irix 5. */
14315 case OPTION_CALL_SHARED:
252b5132 14316 mips_pic = SVR4_PIC;
143d77c5 14317 mips_abicalls = TRUE;
252b5132
RH
14318 break;
14319
861fb55a 14320 case OPTION_CALL_NONPIC:
861fb55a
DJ
14321 mips_pic = NO_PIC;
14322 mips_abicalls = TRUE;
14323 break;
14324
252b5132 14325 case OPTION_NON_SHARED:
252b5132 14326 mips_pic = NO_PIC;
143d77c5 14327 mips_abicalls = FALSE;
252b5132
RH
14328 break;
14329
44075ae2
TS
14330 /* The -xgot option tells the assembler to use 32 bit offsets
14331 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14332 compatibility. */
14333 case OPTION_XGOT:
14334 mips_big_got = 1;
14335 break;
14336
14337 case 'G':
6caf9ef4
TS
14338 g_switch_value = atoi (arg);
14339 g_switch_seen = 1;
252b5132
RH
14340 break;
14341
34ba82a8
TS
14342 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14343 and -mabi=64. */
252b5132 14344 case OPTION_32:
f3ded42a 14345 mips_abi = O32_ABI;
252b5132
RH
14346 break;
14347
e013f690 14348 case OPTION_N32:
316f5878 14349 mips_abi = N32_ABI;
e013f690 14350 break;
252b5132 14351
e013f690 14352 case OPTION_64:
316f5878 14353 mips_abi = N64_ABI;
f43abd2b 14354 if (!support_64bit_objects())
1661c76c 14355 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14356 break;
14357
c97ef257 14358 case OPTION_GP32:
bad1aba3 14359 file_mips_opts.gp = 32;
c97ef257
AH
14360 break;
14361
14362 case OPTION_GP64:
bad1aba3 14363 file_mips_opts.gp = 64;
c97ef257 14364 break;
252b5132 14365
ca4e0257 14366 case OPTION_FP32:
0b35dfee 14367 file_mips_opts.fp = 32;
316f5878
RS
14368 break;
14369
351cdf24
MF
14370 case OPTION_FPXX:
14371 file_mips_opts.fp = 0;
14372 break;
14373
316f5878 14374 case OPTION_FP64:
0b35dfee 14375 file_mips_opts.fp = 64;
ca4e0257
RS
14376 break;
14377
351cdf24
MF
14378 case OPTION_ODD_SPREG:
14379 file_mips_opts.oddspreg = 1;
14380 break;
14381
14382 case OPTION_NO_ODD_SPREG:
14383 file_mips_opts.oddspreg = 0;
14384 break;
14385
037b32b9 14386 case OPTION_SINGLE_FLOAT:
0b35dfee 14387 file_mips_opts.single_float = 1;
037b32b9
AN
14388 break;
14389
14390 case OPTION_DOUBLE_FLOAT:
0b35dfee 14391 file_mips_opts.single_float = 0;
037b32b9
AN
14392 break;
14393
14394 case OPTION_SOFT_FLOAT:
0b35dfee 14395 file_mips_opts.soft_float = 1;
037b32b9
AN
14396 break;
14397
14398 case OPTION_HARD_FLOAT:
0b35dfee 14399 file_mips_opts.soft_float = 0;
037b32b9
AN
14400 break;
14401
252b5132 14402 case OPTION_MABI:
e013f690 14403 if (strcmp (arg, "32") == 0)
316f5878 14404 mips_abi = O32_ABI;
e013f690 14405 else if (strcmp (arg, "o64") == 0)
316f5878 14406 mips_abi = O64_ABI;
e013f690 14407 else if (strcmp (arg, "n32") == 0)
316f5878 14408 mips_abi = N32_ABI;
e013f690
TS
14409 else if (strcmp (arg, "64") == 0)
14410 {
316f5878 14411 mips_abi = N64_ABI;
e013f690 14412 if (! support_64bit_objects())
1661c76c 14413 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14414 "format"));
14415 }
14416 else if (strcmp (arg, "eabi") == 0)
316f5878 14417 mips_abi = EABI_ABI;
e013f690 14418 else
da0e507f
TS
14419 {
14420 as_fatal (_("invalid abi -mabi=%s"), arg);
14421 return 0;
14422 }
252b5132
RH
14423 break;
14424
6b76fefe 14425 case OPTION_M7000_HILO_FIX:
b34976b6 14426 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14427 break;
14428
9ee72ff1 14429 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14430 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14431 break;
14432
ecb4347a 14433 case OPTION_MDEBUG:
b34976b6 14434 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14435 break;
14436
14437 case OPTION_NO_MDEBUG:
b34976b6 14438 mips_flag_mdebug = FALSE;
ecb4347a 14439 break;
dcd410fe
RO
14440
14441 case OPTION_PDR:
14442 mips_flag_pdr = TRUE;
14443 break;
14444
14445 case OPTION_NO_PDR:
14446 mips_flag_pdr = FALSE;
14447 break;
0a44bf69
RS
14448
14449 case OPTION_MVXWORKS_PIC:
14450 mips_pic = VXWORKS_PIC;
14451 break;
ecb4347a 14452
ba92f887
MR
14453 case OPTION_NAN:
14454 if (strcmp (arg, "2008") == 0)
7361da2c 14455 mips_nan2008 = 1;
ba92f887 14456 else if (strcmp (arg, "legacy") == 0)
7361da2c 14457 mips_nan2008 = 0;
ba92f887
MR
14458 else
14459 {
1661c76c 14460 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14461 return 0;
14462 }
14463 break;
14464
252b5132
RH
14465 default:
14466 return 0;
14467 }
14468
c67a084a
NC
14469 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14470
252b5132
RH
14471 return 1;
14472}
316f5878 14473\f
919731af 14474/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14475
316f5878 14476static void
17a2f251 14477mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14478{
14479 if (info != 0)
fef14a42 14480 mips_tune = info->cpu;
316f5878 14481}
80cc45a5 14482
34ba82a8 14483
252b5132 14484void
17a2f251 14485mips_after_parse_args (void)
e9670677 14486{
fef14a42
TS
14487 const struct mips_cpu_info *arch_info = 0;
14488 const struct mips_cpu_info *tune_info = 0;
14489
e9670677 14490 /* GP relative stuff not working for PE */
6caf9ef4 14491 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14492 {
6caf9ef4 14493 if (g_switch_seen && g_switch_value != 0)
1661c76c 14494 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14495 g_switch_value = 0;
14496 }
14497
cac012d6
AO
14498 if (mips_abi == NO_ABI)
14499 mips_abi = MIPS_DEFAULT_ABI;
14500
919731af 14501 /* The following code determines the architecture.
22923709
RS
14502 Similar code was added to GCC 3.3 (see override_options() in
14503 config/mips/mips.c). The GAS and GCC code should be kept in sync
14504 as much as possible. */
e9670677 14505
316f5878 14506 if (mips_arch_string != 0)
fef14a42 14507 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14508
0b35dfee 14509 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14510 {
0b35dfee 14511 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14512 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14513 the -march selection (if any). */
fef14a42 14514 if (arch_info != 0)
e9670677 14515 {
316f5878
RS
14516 /* -march takes precedence over -mipsN, since it is more descriptive.
14517 There's no harm in specifying both as long as the ISA levels
14518 are the same. */
0b35dfee 14519 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14520 as_bad (_("-%s conflicts with the other architecture options,"
14521 " which imply -%s"),
0b35dfee 14522 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14523 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14524 }
316f5878 14525 else
0b35dfee 14526 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14527 }
14528
fef14a42 14529 if (arch_info == 0)
95bfe26e
MF
14530 {
14531 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14532 gas_assert (arch_info);
14533 }
e9670677 14534
fef14a42 14535 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14536 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14537 arch_info->name);
14538
919731af 14539 file_mips_opts.arch = arch_info->cpu;
14540 file_mips_opts.isa = arch_info->isa;
14541
14542 /* Set up initial mips_opts state. */
14543 mips_opts = file_mips_opts;
14544
14545 /* The register size inference code is now placed in
14546 file_mips_check_options. */
fef14a42 14547
0b35dfee 14548 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14549 processor. */
fef14a42
TS
14550 if (mips_tune_string != 0)
14551 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14552
fef14a42
TS
14553 if (tune_info == 0)
14554 mips_set_tune (arch_info);
14555 else
14556 mips_set_tune (tune_info);
e9670677 14557
ecb4347a 14558 if (mips_flag_mdebug < 0)
e8044f35 14559 mips_flag_mdebug = 0;
e9670677
MR
14560}
14561\f
14562void
17a2f251 14563mips_init_after_args (void)
252b5132
RH
14564{
14565 /* initialize opcodes */
14566 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14567 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14568}
14569
14570long
17a2f251 14571md_pcrel_from (fixS *fixP)
252b5132 14572{
a7ebbfdf
TS
14573 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14574 switch (fixP->fx_r_type)
14575 {
df58fc94
RS
14576 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14577 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14578 /* Return the address of the delay slot. */
14579 return addr + 2;
14580
14581 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14582 case BFD_RELOC_MICROMIPS_JMP:
a7ebbfdf 14583 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14584 case BFD_RELOC_MIPS_21_PCREL_S2:
14585 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14586 case BFD_RELOC_MIPS_JMP:
14587 /* Return the address of the delay slot. */
14588 return addr + 4;
df58fc94 14589
a7ebbfdf
TS
14590 default:
14591 return addr;
14592 }
252b5132
RH
14593}
14594
252b5132
RH
14595/* This is called before the symbol table is processed. In order to
14596 work with gcc when using mips-tfile, we must keep all local labels.
14597 However, in other cases, we want to discard them. If we were
14598 called with -g, but we didn't see any debugging information, it may
14599 mean that gcc is smuggling debugging information through to
14600 mips-tfile, in which case we must generate all local labels. */
14601
14602void
17a2f251 14603mips_frob_file_before_adjust (void)
252b5132
RH
14604{
14605#ifndef NO_ECOFF_DEBUGGING
14606 if (ECOFF_DEBUGGING
14607 && mips_debug != 0
14608 && ! ecoff_debugging_seen)
14609 flag_keep_locals = 1;
14610#endif
14611}
14612
3b91255e 14613/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14614 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14615 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14616 relocation operators.
14617
14618 For our purposes, a %lo() expression matches a %got() or %hi()
14619 expression if:
14620
14621 (a) it refers to the same symbol; and
14622 (b) the offset applied in the %lo() expression is no lower than
14623 the offset applied in the %got() or %hi().
14624
14625 (b) allows us to cope with code like:
14626
14627 lui $4,%hi(foo)
14628 lh $4,%lo(foo+2)($4)
14629
14630 ...which is legal on RELA targets, and has a well-defined behaviour
14631 if the user knows that adding 2 to "foo" will not induce a carry to
14632 the high 16 bits.
14633
14634 When several %lo()s match a particular %got() or %hi(), we use the
14635 following rules to distinguish them:
14636
14637 (1) %lo()s with smaller offsets are a better match than %lo()s with
14638 higher offsets.
14639
14640 (2) %lo()s with no matching %got() or %hi() are better than those
14641 that already have a matching %got() or %hi().
14642
14643 (3) later %lo()s are better than earlier %lo()s.
14644
14645 These rules are applied in order.
14646
14647 (1) means, among other things, that %lo()s with identical offsets are
14648 chosen if they exist.
14649
14650 (2) means that we won't associate several high-part relocations with
14651 the same low-part relocation unless there's no alternative. Having
14652 several high parts for the same low part is a GNU extension; this rule
14653 allows careful users to avoid it.
14654
14655 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14656 with the last high-part relocation being at the front of the list.
14657 It therefore makes sense to choose the last matching low-part
14658 relocation, all other things being equal. It's also easier
14659 to code that way. */
252b5132
RH
14660
14661void
17a2f251 14662mips_frob_file (void)
252b5132
RH
14663{
14664 struct mips_hi_fixup *l;
35903be0 14665 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14666
14667 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14668 {
14669 segment_info_type *seginfo;
3b91255e
RS
14670 bfd_boolean matched_lo_p;
14671 fixS **hi_pos, **lo_pos, **pos;
252b5132 14672
9c2799c2 14673 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14674
5919d012 14675 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14676 there isn't supposed to be a matching LO. Ignore %gots against
14677 constants; we'll report an error for those later. */
738e5348 14678 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14679 && !(l->fixp->fx_addsy
14680 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14681 continue;
14682
14683 /* Check quickly whether the next fixup happens to be a matching %lo. */
14684 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14685 continue;
14686
252b5132 14687 seginfo = seg_info (l->seg);
252b5132 14688
3b91255e
RS
14689 /* Set HI_POS to the position of this relocation in the chain.
14690 Set LO_POS to the position of the chosen low-part relocation.
14691 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14692 relocation that matches an immediately-preceding high-part
14693 relocation. */
14694 hi_pos = NULL;
14695 lo_pos = NULL;
14696 matched_lo_p = FALSE;
738e5348 14697 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14698
3b91255e
RS
14699 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14700 {
14701 if (*pos == l->fixp)
14702 hi_pos = pos;
14703
35903be0 14704 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14705 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14706 && (*pos)->fx_offset >= l->fixp->fx_offset
14707 && (lo_pos == NULL
14708 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14709 || (!matched_lo_p
14710 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14711 lo_pos = pos;
14712
14713 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14714 && fixup_has_matching_lo_p (*pos));
14715 }
14716
14717 /* If we found a match, remove the high-part relocation from its
14718 current position and insert it before the low-part relocation.
14719 Make the offsets match so that fixup_has_matching_lo_p()
14720 will return true.
14721
14722 We don't warn about unmatched high-part relocations since some
14723 versions of gcc have been known to emit dead "lui ...%hi(...)"
14724 instructions. */
14725 if (lo_pos != NULL)
14726 {
14727 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14728 if (l->fixp->fx_next != *lo_pos)
252b5132 14729 {
3b91255e
RS
14730 *hi_pos = l->fixp->fx_next;
14731 l->fixp->fx_next = *lo_pos;
14732 *lo_pos = l->fixp;
252b5132 14733 }
252b5132
RH
14734 }
14735 }
14736}
14737
252b5132 14738int
17a2f251 14739mips_force_relocation (fixS *fixp)
252b5132 14740{
ae6063d4 14741 if (generic_force_reloc (fixp))
252b5132
RH
14742 return 1;
14743
df58fc94
RS
14744 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14745 so that the linker relaxation can update targets. */
14746 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14747 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14748 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14749 return 1;
14750
7361da2c
AB
14751 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14752 if (ISA_IS_R6 (mips_opts.isa)
14753 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14754 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14755 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14756 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14757 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14758 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14759 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14760 return 1;
14761
3e722fb5 14762 return 0;
252b5132
RH
14763}
14764
b886a2ab
RS
14765/* Read the instruction associated with RELOC from BUF. */
14766
14767static unsigned int
14768read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14769{
14770 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14771 return read_compressed_insn (buf, 4);
14772 else
14773 return read_insn (buf);
14774}
14775
14776/* Write instruction INSN to BUF, given that it has been relocated
14777 by RELOC. */
14778
14779static void
14780write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14781 unsigned long insn)
14782{
14783 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14784 write_compressed_insn (buf, insn, 4);
14785 else
14786 write_insn (buf, insn);
14787}
14788
252b5132
RH
14789/* Apply a fixup to the object file. */
14790
94f592af 14791void
55cf6793 14792md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 14793{
4d68580a 14794 char *buf;
b886a2ab 14795 unsigned long insn;
a7ebbfdf 14796 reloc_howto_type *howto;
252b5132 14797
d56a8dda
RS
14798 if (fixP->fx_pcrel)
14799 switch (fixP->fx_r_type)
14800 {
14801 case BFD_RELOC_16_PCREL_S2:
14802 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14803 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14804 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14805 case BFD_RELOC_32_PCREL:
7361da2c
AB
14806 case BFD_RELOC_MIPS_21_PCREL_S2:
14807 case BFD_RELOC_MIPS_26_PCREL_S2:
14808 case BFD_RELOC_MIPS_18_PCREL_S3:
14809 case BFD_RELOC_MIPS_19_PCREL_S2:
14810 case BFD_RELOC_HI16_S_PCREL:
14811 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
14812 break;
14813
14814 case BFD_RELOC_32:
14815 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14816 break;
14817
14818 default:
14819 as_bad_where (fixP->fx_file, fixP->fx_line,
14820 _("PC-relative reference to a different section"));
14821 break;
14822 }
14823
14824 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14825 that have no MIPS ELF equivalent. */
14826 if (fixP->fx_r_type != BFD_RELOC_8)
14827 {
14828 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14829 if (!howto)
14830 return;
14831 }
65551fa4 14832
df58fc94
RS
14833 gas_assert (fixP->fx_size == 2
14834 || fixP->fx_size == 4
d56a8dda 14835 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
14836 || fixP->fx_r_type == BFD_RELOC_16
14837 || fixP->fx_r_type == BFD_RELOC_64
14838 || fixP->fx_r_type == BFD_RELOC_CTOR
14839 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 14840 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
14841 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14842 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
14843 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14844 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 14845
4d68580a 14846 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 14847
b1dca8ee
RS
14848 /* Don't treat parts of a composite relocation as done. There are two
14849 reasons for this:
14850
14851 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14852 should nevertheless be emitted if the first part is.
14853
14854 (2) In normal usage, composite relocations are never assembly-time
14855 constants. The easiest way of dealing with the pathological
14856 exceptions is to generate a relocation against STN_UNDEF and
14857 leave everything up to the linker. */
3994f87e 14858 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14859 fixP->fx_done = 1;
14860
14861 switch (fixP->fx_r_type)
14862 {
3f98094e
DJ
14863 case BFD_RELOC_MIPS_TLS_GD:
14864 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14865 case BFD_RELOC_MIPS_TLS_DTPREL32:
14866 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14867 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14868 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14869 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14870 case BFD_RELOC_MIPS_TLS_TPREL32:
14871 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14872 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14873 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14874 case BFD_RELOC_MICROMIPS_TLS_GD:
14875 case BFD_RELOC_MICROMIPS_TLS_LDM:
14876 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14877 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14878 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14879 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14880 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14881 case BFD_RELOC_MIPS16_TLS_GD:
14882 case BFD_RELOC_MIPS16_TLS_LDM:
14883 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14884 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14885 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14886 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14887 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
b886a2ab
RS
14888 if (!fixP->fx_addsy)
14889 {
14890 as_bad_where (fixP->fx_file, fixP->fx_line,
14891 _("TLS relocation against a constant"));
14892 break;
14893 }
3f98094e
DJ
14894 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14895 /* fall through */
14896
252b5132 14897 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14898 case BFD_RELOC_MIPS_SHIFT5:
14899 case BFD_RELOC_MIPS_SHIFT6:
14900 case BFD_RELOC_MIPS_GOT_DISP:
14901 case BFD_RELOC_MIPS_GOT_PAGE:
14902 case BFD_RELOC_MIPS_GOT_OFST:
14903 case BFD_RELOC_MIPS_SUB:
14904 case BFD_RELOC_MIPS_INSERT_A:
14905 case BFD_RELOC_MIPS_INSERT_B:
14906 case BFD_RELOC_MIPS_DELETE:
14907 case BFD_RELOC_MIPS_HIGHEST:
14908 case BFD_RELOC_MIPS_HIGHER:
14909 case BFD_RELOC_MIPS_SCN_DISP:
14910 case BFD_RELOC_MIPS_REL16:
14911 case BFD_RELOC_MIPS_RELGOT:
14912 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14913 case BFD_RELOC_HI16:
14914 case BFD_RELOC_HI16_S:
b886a2ab 14915 case BFD_RELOC_LO16:
cdf6fd85 14916 case BFD_RELOC_GPREL16:
252b5132
RH
14917 case BFD_RELOC_MIPS_LITERAL:
14918 case BFD_RELOC_MIPS_CALL16:
14919 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14920 case BFD_RELOC_GPREL32:
252b5132
RH
14921 case BFD_RELOC_MIPS_GOT_HI16:
14922 case BFD_RELOC_MIPS_GOT_LO16:
14923 case BFD_RELOC_MIPS_CALL_HI16:
14924 case BFD_RELOC_MIPS_CALL_LO16:
14925 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14926 case BFD_RELOC_MIPS16_GOT16:
14927 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14928 case BFD_RELOC_MIPS16_HI16:
14929 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14930 case BFD_RELOC_MIPS16_LO16:
252b5132 14931 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14932 case BFD_RELOC_MICROMIPS_JMP:
14933 case BFD_RELOC_MICROMIPS_GOT_DISP:
14934 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14935 case BFD_RELOC_MICROMIPS_GOT_OFST:
14936 case BFD_RELOC_MICROMIPS_SUB:
14937 case BFD_RELOC_MICROMIPS_HIGHEST:
14938 case BFD_RELOC_MICROMIPS_HIGHER:
14939 case BFD_RELOC_MICROMIPS_SCN_DISP:
14940 case BFD_RELOC_MICROMIPS_JALR:
14941 case BFD_RELOC_MICROMIPS_HI16:
14942 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14943 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14944 case BFD_RELOC_MICROMIPS_GPREL16:
14945 case BFD_RELOC_MICROMIPS_LITERAL:
14946 case BFD_RELOC_MICROMIPS_CALL16:
14947 case BFD_RELOC_MICROMIPS_GOT16:
14948 case BFD_RELOC_MICROMIPS_GOT_HI16:
14949 case BFD_RELOC_MICROMIPS_GOT_LO16:
14950 case BFD_RELOC_MICROMIPS_CALL_HI16:
14951 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 14952 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
14953 if (fixP->fx_done)
14954 {
14955 offsetT value;
14956
14957 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14958 {
14959 insn = read_reloc_insn (buf, fixP->fx_r_type);
14960 if (mips16_reloc_p (fixP->fx_r_type))
14961 insn |= mips16_immed_extend (value, 16);
14962 else
14963 insn |= (value & 0xffff);
14964 write_reloc_insn (buf, fixP->fx_r_type, insn);
14965 }
14966 else
14967 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 14968 _("unsupported constant in relocation"));
b886a2ab 14969 }
252b5132
RH
14970 break;
14971
252b5132
RH
14972 case BFD_RELOC_64:
14973 /* This is handled like BFD_RELOC_32, but we output a sign
14974 extended value if we are only 32 bits. */
3e722fb5 14975 if (fixP->fx_done)
252b5132
RH
14976 {
14977 if (8 <= sizeof (valueT))
4d68580a 14978 md_number_to_chars (buf, *valP, 8);
252b5132
RH
14979 else
14980 {
a7ebbfdf 14981 valueT hiv;
252b5132 14982
a7ebbfdf 14983 if ((*valP & 0x80000000) != 0)
252b5132
RH
14984 hiv = 0xffffffff;
14985 else
14986 hiv = 0;
4d68580a
RS
14987 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14988 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
14989 }
14990 }
14991 break;
14992
056350c6 14993 case BFD_RELOC_RVA:
252b5132 14994 case BFD_RELOC_32:
b47468a6 14995 case BFD_RELOC_32_PCREL:
252b5132 14996 case BFD_RELOC_16:
d56a8dda 14997 case BFD_RELOC_8:
252b5132 14998 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
14999 value now. This can happen if we have a .word which is not
15000 resolved when it appears but is later defined. */
252b5132 15001 if (fixP->fx_done)
4d68580a 15002 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15003 break;
15004
7361da2c
AB
15005 case BFD_RELOC_MIPS_21_PCREL_S2:
15006 case BFD_RELOC_MIPS_26_PCREL_S2:
15007 if ((*valP & 0x3) != 0)
15008 as_bad_where (fixP->fx_file, fixP->fx_line,
15009 _("branch to misaligned address (%lx)"), (long) *valP);
15010
15011 gas_assert (!fixP->fx_done);
15012 break;
15013
15014 case BFD_RELOC_MIPS_18_PCREL_S3:
0866e94c 15015 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15016 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15017 _("PC-relative access using misaligned symbol (%lx)"),
15018 (long) S_GET_VALUE (fixP->fx_addsy));
15019 if ((fixP->fx_offset & 0x7) != 0)
15020 as_bad_where (fixP->fx_file, fixP->fx_line,
15021 _("PC-relative access using misaligned offset (%lx)"),
15022 (long) fixP->fx_offset);
7361da2c
AB
15023
15024 gas_assert (!fixP->fx_done);
15025 break;
15026
15027 case BFD_RELOC_MIPS_19_PCREL_S2:
15028 if ((*valP & 0x3) != 0)
15029 as_bad_where (fixP->fx_file, fixP->fx_line,
15030 _("PC-relative access to misaligned address (%lx)"),
0866e94c 15031 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
7361da2c
AB
15032
15033 gas_assert (!fixP->fx_done);
15034 break;
15035
15036 case BFD_RELOC_HI16_S_PCREL:
15037 case BFD_RELOC_LO16_PCREL:
15038 gas_assert (!fixP->fx_done);
15039 break;
15040
252b5132 15041 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 15042 if ((*valP & 0x3) != 0)
cb56d3d3 15043 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15044 _("branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 15045
54f4ddb3
TS
15046 /* We need to save the bits in the instruction since fixup_segment()
15047 might be deleting the relocation entry (i.e., a branch within
15048 the current segment). */
a7ebbfdf 15049 if (! fixP->fx_done)
bb2d6cd7 15050 break;
252b5132 15051
54f4ddb3 15052 /* Update old instruction data. */
4d68580a 15053 insn = read_insn (buf);
252b5132 15054
a7ebbfdf
TS
15055 if (*valP + 0x20000 <= 0x3ffff)
15056 {
15057 insn |= (*valP >> 2) & 0xffff;
4d68580a 15058 write_insn (buf, insn);
a7ebbfdf
TS
15059 }
15060 else if (mips_pic == NO_PIC
15061 && fixP->fx_done
15062 && fixP->fx_frag->fr_address >= text_section->vma
15063 && (fixP->fx_frag->fr_address
587aac4e 15064 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15065 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15066 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15067 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15068 {
15069 /* The branch offset is too large. If this is an
15070 unconditional branch, and we are not generating PIC code,
15071 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15072 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15073 insn = 0x0c000000; /* jal */
252b5132 15074 else
a7ebbfdf
TS
15075 insn = 0x08000000; /* j */
15076 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15077 fixP->fx_done = 0;
15078 fixP->fx_addsy = section_symbol (text_section);
15079 *valP += md_pcrel_from (fixP);
4d68580a 15080 write_insn (buf, insn);
a7ebbfdf
TS
15081 }
15082 else
15083 {
15084 /* If we got here, we have branch-relaxation disabled,
15085 and there's nothing we can do to fix this instruction
15086 without turning it into a longer sequence. */
15087 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15088 _("branch out of range"));
252b5132 15089 }
252b5132
RH
15090 break;
15091
df58fc94
RS
15092 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15093 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15094 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15095 /* We adjust the offset back to even. */
15096 if ((*valP & 0x1) != 0)
15097 --(*valP);
15098
15099 if (! fixP->fx_done)
15100 break;
15101
15102 /* Should never visit here, because we keep the relocation. */
15103 abort ();
15104 break;
15105
252b5132
RH
15106 case BFD_RELOC_VTABLE_INHERIT:
15107 fixP->fx_done = 0;
15108 if (fixP->fx_addsy
15109 && !S_IS_DEFINED (fixP->fx_addsy)
15110 && !S_IS_WEAK (fixP->fx_addsy))
15111 S_SET_WEAK (fixP->fx_addsy);
15112 break;
15113
2f0c68f2 15114 case BFD_RELOC_NONE:
252b5132
RH
15115 case BFD_RELOC_VTABLE_ENTRY:
15116 fixP->fx_done = 0;
15117 break;
15118
15119 default:
b37df7c4 15120 abort ();
252b5132 15121 }
a7ebbfdf
TS
15122
15123 /* Remember value for tc_gen_reloc. */
15124 fixP->fx_addnumber = *valP;
252b5132
RH
15125}
15126
252b5132 15127static symbolS *
17a2f251 15128get_symbol (void)
252b5132
RH
15129{
15130 int c;
15131 char *name;
15132 symbolS *p;
15133
15134 name = input_line_pointer;
15135 c = get_symbol_end ();
15136 p = (symbolS *) symbol_find_or_make (name);
15137 *input_line_pointer = c;
15138 return p;
15139}
15140
742a56fe
RS
15141/* Align the current frag to a given power of two. If a particular
15142 fill byte should be used, FILL points to an integer that contains
15143 that byte, otherwise FILL is null.
15144
462427c4
RS
15145 This function used to have the comment:
15146
15147 The MIPS assembler also automatically adjusts any preceding label.
15148
15149 The implementation therefore applied the adjustment to a maximum of
15150 one label. However, other label adjustments are applied to batches
15151 of labels, and adjusting just one caused problems when new labels
15152 were added for the sake of debugging or unwind information.
15153 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15154
15155static void
462427c4 15156mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15157{
7d10b47d 15158 mips_emit_delays ();
df58fc94 15159 mips_record_compressed_mode ();
742a56fe
RS
15160 if (fill == NULL && subseg_text_p (now_seg))
15161 frag_align_code (to, 0);
15162 else
15163 frag_align (to, fill ? *fill : 0, 0);
252b5132 15164 record_alignment (now_seg, to);
462427c4 15165 mips_move_labels (labels, FALSE);
252b5132
RH
15166}
15167
15168/* Align to a given power of two. .align 0 turns off the automatic
15169 alignment used by the data creating pseudo-ops. */
15170
15171static void
17a2f251 15172s_align (int x ATTRIBUTE_UNUSED)
252b5132 15173{
742a56fe 15174 int temp, fill_value, *fill_ptr;
49954fb4 15175 long max_alignment = 28;
252b5132 15176
54f4ddb3 15177 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15178 to the aligned address.
54f4ddb3 15179 o It's not documented but auto alignment is reinstated by
252b5132 15180 a .align pseudo instruction.
54f4ddb3 15181 o Note also that after auto alignment is turned off the mips assembler
252b5132 15182 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15183 We don't. */
252b5132
RH
15184
15185 temp = get_absolute_expression ();
15186 if (temp > max_alignment)
1661c76c 15187 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15188 else if (temp < 0)
15189 {
1661c76c 15190 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15191 temp = 0;
15192 }
15193 if (*input_line_pointer == ',')
15194 {
f9419b05 15195 ++input_line_pointer;
742a56fe
RS
15196 fill_value = get_absolute_expression ();
15197 fill_ptr = &fill_value;
252b5132
RH
15198 }
15199 else
742a56fe 15200 fill_ptr = 0;
252b5132
RH
15201 if (temp)
15202 {
a8dbcb85
TS
15203 segment_info_type *si = seg_info (now_seg);
15204 struct insn_label_list *l = si->label_list;
54f4ddb3 15205 /* Auto alignment should be switched on by next section change. */
252b5132 15206 auto_align = 1;
462427c4 15207 mips_align (temp, fill_ptr, l);
252b5132
RH
15208 }
15209 else
15210 {
15211 auto_align = 0;
15212 }
15213
15214 demand_empty_rest_of_line ();
15215}
15216
252b5132 15217static void
17a2f251 15218s_change_sec (int sec)
252b5132
RH
15219{
15220 segT seg;
15221
252b5132
RH
15222 /* The ELF backend needs to know that we are changing sections, so
15223 that .previous works correctly. We could do something like check
b6ff326e 15224 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15225 as it would not be appropriate to use it in the section changing
15226 functions in read.c, since obj-elf.c intercepts those. FIXME:
15227 This should be cleaner, somehow. */
f3ded42a 15228 obj_elf_section_change_hook ();
252b5132 15229
7d10b47d 15230 mips_emit_delays ();
6a32d874 15231
252b5132
RH
15232 switch (sec)
15233 {
15234 case 't':
15235 s_text (0);
15236 break;
15237 case 'd':
15238 s_data (0);
15239 break;
15240 case 'b':
15241 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15242 demand_empty_rest_of_line ();
15243 break;
15244
15245 case 'r':
4d0d148d
TS
15246 seg = subseg_new (RDATA_SECTION_NAME,
15247 (subsegT) get_absolute_expression ());
f3ded42a
RS
15248 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15249 | SEC_READONLY | SEC_RELOC
15250 | SEC_DATA));
15251 if (strncmp (TARGET_OS, "elf", 3) != 0)
15252 record_alignment (seg, 4);
4d0d148d 15253 demand_empty_rest_of_line ();
252b5132
RH
15254 break;
15255
15256 case 's':
4d0d148d 15257 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15258 bfd_set_section_flags (stdoutput, seg,
15259 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15260 if (strncmp (TARGET_OS, "elf", 3) != 0)
15261 record_alignment (seg, 4);
4d0d148d
TS
15262 demand_empty_rest_of_line ();
15263 break;
998b3c36
MR
15264
15265 case 'B':
15266 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15267 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15268 if (strncmp (TARGET_OS, "elf", 3) != 0)
15269 record_alignment (seg, 4);
998b3c36
MR
15270 demand_empty_rest_of_line ();
15271 break;
252b5132
RH
15272 }
15273
15274 auto_align = 1;
15275}
b34976b6 15276
cca86cc8 15277void
17a2f251 15278s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15279{
cca86cc8
SC
15280 char *section_name;
15281 char c;
684022ea 15282 char next_c = 0;
cca86cc8
SC
15283 int section_type;
15284 int section_flag;
15285 int section_entry_size;
15286 int section_alignment;
b34976b6 15287
cca86cc8
SC
15288 section_name = input_line_pointer;
15289 c = get_symbol_end ();
a816d1ed
AO
15290 if (c)
15291 next_c = *(input_line_pointer + 1);
cca86cc8 15292
4cf0dd0d
TS
15293 /* Do we have .section Name<,"flags">? */
15294 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15295 {
4cf0dd0d
TS
15296 /* just after name is now '\0'. */
15297 *input_line_pointer = c;
cca86cc8
SC
15298 input_line_pointer = section_name;
15299 obj_elf_section (ignore);
15300 return;
15301 }
15302 input_line_pointer++;
15303
15304 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15305 if (c == ',')
15306 section_type = get_absolute_expression ();
15307 else
15308 section_type = 0;
15309 if (*input_line_pointer++ == ',')
15310 section_flag = get_absolute_expression ();
15311 else
15312 section_flag = 0;
15313 if (*input_line_pointer++ == ',')
15314 section_entry_size = get_absolute_expression ();
15315 else
15316 section_entry_size = 0;
15317 if (*input_line_pointer++ == ',')
15318 section_alignment = get_absolute_expression ();
15319 else
15320 section_alignment = 0;
87975d2a
AM
15321 /* FIXME: really ignore? */
15322 (void) section_alignment;
cca86cc8 15323
a816d1ed
AO
15324 section_name = xstrdup (section_name);
15325
8ab8a5c8
RS
15326 /* When using the generic form of .section (as implemented by obj-elf.c),
15327 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15328 traditionally had to fall back on the more common @progbits instead.
15329
15330 There's nothing really harmful in this, since bfd will correct
15331 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15332 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15333 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15334
15335 Even so, we shouldn't force users of the MIPS .section syntax to
15336 incorrectly label the sections as SHT_PROGBITS. The best compromise
15337 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15338 generic type-checking code. */
15339 if (section_type == SHT_MIPS_DWARF)
15340 section_type = SHT_PROGBITS;
15341
cca86cc8
SC
15342 obj_elf_change_section (section_name, section_type, section_flag,
15343 section_entry_size, 0, 0, 0);
a816d1ed
AO
15344
15345 if (now_seg->name != section_name)
15346 free (section_name);
cca86cc8 15347}
252b5132
RH
15348
15349void
17a2f251 15350mips_enable_auto_align (void)
252b5132
RH
15351{
15352 auto_align = 1;
15353}
15354
15355static void
17a2f251 15356s_cons (int log_size)
252b5132 15357{
a8dbcb85
TS
15358 segment_info_type *si = seg_info (now_seg);
15359 struct insn_label_list *l = si->label_list;
252b5132 15360
7d10b47d 15361 mips_emit_delays ();
252b5132 15362 if (log_size > 0 && auto_align)
462427c4 15363 mips_align (log_size, 0, l);
252b5132 15364 cons (1 << log_size);
a1facbec 15365 mips_clear_insn_labels ();
252b5132
RH
15366}
15367
15368static void
17a2f251 15369s_float_cons (int type)
252b5132 15370{
a8dbcb85
TS
15371 segment_info_type *si = seg_info (now_seg);
15372 struct insn_label_list *l = si->label_list;
252b5132 15373
7d10b47d 15374 mips_emit_delays ();
252b5132
RH
15375
15376 if (auto_align)
49309057
ILT
15377 {
15378 if (type == 'd')
462427c4 15379 mips_align (3, 0, l);
49309057 15380 else
462427c4 15381 mips_align (2, 0, l);
49309057 15382 }
252b5132 15383
252b5132 15384 float_cons (type);
a1facbec 15385 mips_clear_insn_labels ();
252b5132
RH
15386}
15387
15388/* Handle .globl. We need to override it because on Irix 5 you are
15389 permitted to say
15390 .globl foo .text
15391 where foo is an undefined symbol, to mean that foo should be
15392 considered to be the address of a function. */
15393
15394static void
17a2f251 15395s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15396{
15397 char *name;
15398 int c;
15399 symbolS *symbolP;
15400 flagword flag;
15401
8a06b769 15402 do
252b5132 15403 {
8a06b769 15404 name = input_line_pointer;
252b5132 15405 c = get_symbol_end ();
8a06b769
TS
15406 symbolP = symbol_find_or_make (name);
15407 S_SET_EXTERNAL (symbolP);
15408
252b5132 15409 *input_line_pointer = c;
8a06b769 15410 SKIP_WHITESPACE ();
252b5132 15411
8a06b769
TS
15412 /* On Irix 5, every global symbol that is not explicitly labelled as
15413 being a function is apparently labelled as being an object. */
15414 flag = BSF_OBJECT;
252b5132 15415
8a06b769
TS
15416 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15417 && (*input_line_pointer != ','))
15418 {
15419 char *secname;
15420 asection *sec;
15421
15422 secname = input_line_pointer;
15423 c = get_symbol_end ();
15424 sec = bfd_get_section_by_name (stdoutput, secname);
15425 if (sec == NULL)
15426 as_bad (_("%s: no such section"), secname);
15427 *input_line_pointer = c;
15428
15429 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15430 flag = BSF_FUNCTION;
15431 }
15432
15433 symbol_get_bfdsym (symbolP)->flags |= flag;
15434
15435 c = *input_line_pointer;
15436 if (c == ',')
15437 {
15438 input_line_pointer++;
15439 SKIP_WHITESPACE ();
15440 if (is_end_of_line[(unsigned char) *input_line_pointer])
15441 c = '\n';
15442 }
15443 }
15444 while (c == ',');
252b5132 15445
252b5132
RH
15446 demand_empty_rest_of_line ();
15447}
15448
15449static void
17a2f251 15450s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15451{
15452 char *opt;
15453 char c;
15454
15455 opt = input_line_pointer;
15456 c = get_symbol_end ();
15457
15458 if (*opt == 'O')
15459 {
15460 /* FIXME: What does this mean? */
15461 }
15462 else if (strncmp (opt, "pic", 3) == 0)
15463 {
15464 int i;
15465
15466 i = atoi (opt + 3);
15467 if (i == 0)
15468 mips_pic = NO_PIC;
15469 else if (i == 2)
143d77c5 15470 {
8b828383 15471 mips_pic = SVR4_PIC;
143d77c5
EC
15472 mips_abicalls = TRUE;
15473 }
252b5132
RH
15474 else
15475 as_bad (_(".option pic%d not supported"), i);
15476
4d0d148d 15477 if (mips_pic == SVR4_PIC)
252b5132
RH
15478 {
15479 if (g_switch_seen && g_switch_value != 0)
15480 as_warn (_("-G may not be used with SVR4 PIC code"));
15481 g_switch_value = 0;
15482 bfd_set_gp_size (stdoutput, 0);
15483 }
15484 }
15485 else
1661c76c 15486 as_warn (_("unrecognized option \"%s\""), opt);
252b5132
RH
15487
15488 *input_line_pointer = c;
15489 demand_empty_rest_of_line ();
15490}
15491
15492/* This structure is used to hold a stack of .set values. */
15493
e972090a
NC
15494struct mips_option_stack
15495{
252b5132
RH
15496 struct mips_option_stack *next;
15497 struct mips_set_options options;
15498};
15499
15500static struct mips_option_stack *mips_opts_stack;
15501
919731af 15502static bfd_boolean
15503parse_code_option (char * name)
252b5132 15504{
c6278170 15505 const struct mips_ase *ase;
919731af 15506 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
15507 {
15508 char *s = name + 3;
15509
15510 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 15511 as_bad (_("unrecognized register name `%s'"), s);
741fe287 15512 }
252b5132 15513 else if (strcmp (name, "at") == 0)
919731af 15514 mips_opts.at = ATREG;
252b5132 15515 else if (strcmp (name, "noat") == 0)
919731af 15516 mips_opts.at = ZERO;
252b5132 15517 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 15518 mips_opts.nomove = 0;
252b5132 15519 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 15520 mips_opts.nomove = 1;
252b5132 15521 else if (strcmp (name, "bopt") == 0)
919731af 15522 mips_opts.nobopt = 0;
252b5132 15523 else if (strcmp (name, "nobopt") == 0)
919731af 15524 mips_opts.nobopt = 1;
ad3fea08 15525 else if (strcmp (name, "gp=32") == 0)
bad1aba3 15526 mips_opts.gp = 32;
ad3fea08 15527 else if (strcmp (name, "gp=64") == 0)
919731af 15528 mips_opts.gp = 64;
ad3fea08 15529 else if (strcmp (name, "fp=32") == 0)
0b35dfee 15530 mips_opts.fp = 32;
351cdf24
MF
15531 else if (strcmp (name, "fp=xx") == 0)
15532 mips_opts.fp = 0;
ad3fea08 15533 else if (strcmp (name, "fp=64") == 0)
919731af 15534 mips_opts.fp = 64;
037b32b9
AN
15535 else if (strcmp (name, "softfloat") == 0)
15536 mips_opts.soft_float = 1;
15537 else if (strcmp (name, "hardfloat") == 0)
15538 mips_opts.soft_float = 0;
15539 else if (strcmp (name, "singlefloat") == 0)
15540 mips_opts.single_float = 1;
15541 else if (strcmp (name, "doublefloat") == 0)
15542 mips_opts.single_float = 0;
351cdf24
MF
15543 else if (strcmp (name, "nooddspreg") == 0)
15544 mips_opts.oddspreg = 0;
15545 else if (strcmp (name, "oddspreg") == 0)
15546 mips_opts.oddspreg = 1;
252b5132
RH
15547 else if (strcmp (name, "mips16") == 0
15548 || strcmp (name, "MIPS-16") == 0)
919731af 15549 mips_opts.mips16 = 1;
252b5132
RH
15550 else if (strcmp (name, "nomips16") == 0
15551 || strcmp (name, "noMIPS-16") == 0)
15552 mips_opts.mips16 = 0;
df58fc94 15553 else if (strcmp (name, "micromips") == 0)
919731af 15554 mips_opts.micromips = 1;
df58fc94
RS
15555 else if (strcmp (name, "nomicromips") == 0)
15556 mips_opts.micromips = 0;
c6278170
RS
15557 else if (name[0] == 'n'
15558 && name[1] == 'o'
15559 && (ase = mips_lookup_ase (name + 2)))
919731af 15560 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 15561 else if ((ase = mips_lookup_ase (name)))
919731af 15562 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 15563 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 15564 {
1a2c1fad
CD
15565 /* Permit the user to change the ISA and architecture on the fly.
15566 Needless to say, misuse can cause serious problems. */
919731af 15567 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
15568 {
15569 const struct mips_cpu_info *p;
15570
919731af 15571 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
15572 if (!p)
15573 as_bad (_("unknown architecture %s"), name + 5);
15574 else
15575 {
15576 mips_opts.arch = p->cpu;
15577 mips_opts.isa = p->isa;
15578 }
15579 }
81a21e38
TS
15580 else if (strncmp (name, "mips", 4) == 0)
15581 {
15582 const struct mips_cpu_info *p;
15583
919731af 15584 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
15585 if (!p)
15586 as_bad (_("unknown ISA level %s"), name + 4);
15587 else
15588 {
15589 mips_opts.arch = p->cpu;
15590 mips_opts.isa = p->isa;
15591 }
15592 }
af7ee8bf 15593 else
81a21e38 15594 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
15595 }
15596 else if (strcmp (name, "autoextend") == 0)
15597 mips_opts.noautoextend = 0;
15598 else if (strcmp (name, "noautoextend") == 0)
15599 mips_opts.noautoextend = 1;
833794fc
MR
15600 else if (strcmp (name, "insn32") == 0)
15601 mips_opts.insn32 = TRUE;
15602 else if (strcmp (name, "noinsn32") == 0)
15603 mips_opts.insn32 = FALSE;
919731af 15604 else if (strcmp (name, "sym32") == 0)
15605 mips_opts.sym32 = TRUE;
15606 else if (strcmp (name, "nosym32") == 0)
15607 mips_opts.sym32 = FALSE;
15608 else
15609 return FALSE;
15610 return TRUE;
15611}
15612
15613/* Handle the .set pseudo-op. */
15614
15615static void
15616s_mipsset (int x ATTRIBUTE_UNUSED)
15617{
15618 char *name = input_line_pointer, ch;
15619 int prev_isa = mips_opts.isa;
15620
15621 file_mips_check_options ();
15622
15623 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15624 ++input_line_pointer;
15625 ch = *input_line_pointer;
15626 *input_line_pointer = '\0';
15627
15628 if (strchr (name, ','))
15629 {
15630 /* Generic ".set" directive; use the generic handler. */
15631 *input_line_pointer = ch;
15632 input_line_pointer = name;
15633 s_set (0);
15634 return;
15635 }
15636
15637 if (strcmp (name, "reorder") == 0)
15638 {
15639 if (mips_opts.noreorder)
15640 end_noreorder ();
15641 }
15642 else if (strcmp (name, "noreorder") == 0)
15643 {
15644 if (!mips_opts.noreorder)
15645 start_noreorder ();
15646 }
15647 else if (strcmp (name, "macro") == 0)
15648 mips_opts.warn_about_macros = 0;
15649 else if (strcmp (name, "nomacro") == 0)
15650 {
15651 if (mips_opts.noreorder == 0)
15652 as_bad (_("`noreorder' must be set before `nomacro'"));
15653 mips_opts.warn_about_macros = 1;
15654 }
15655 else if (strcmp (name, "gp=default") == 0)
15656 mips_opts.gp = file_mips_opts.gp;
15657 else if (strcmp (name, "fp=default") == 0)
15658 mips_opts.fp = file_mips_opts.fp;
15659 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15660 {
15661 mips_opts.isa = file_mips_opts.isa;
15662 mips_opts.arch = file_mips_opts.arch;
15663 mips_opts.gp = file_mips_opts.gp;
15664 mips_opts.fp = file_mips_opts.fp;
15665 }
252b5132
RH
15666 else if (strcmp (name, "push") == 0)
15667 {
15668 struct mips_option_stack *s;
15669
15670 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15671 s->next = mips_opts_stack;
15672 s->options = mips_opts;
15673 mips_opts_stack = s;
15674 }
15675 else if (strcmp (name, "pop") == 0)
15676 {
15677 struct mips_option_stack *s;
15678
15679 s = mips_opts_stack;
15680 if (s == NULL)
15681 as_bad (_(".set pop with no .set push"));
15682 else
15683 {
15684 /* If we're changing the reorder mode we need to handle
15685 delay slots correctly. */
15686 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 15687 start_noreorder ();
252b5132 15688 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 15689 end_noreorder ();
252b5132
RH
15690
15691 mips_opts = s->options;
15692 mips_opts_stack = s->next;
15693 free (s);
15694 }
15695 }
919731af 15696 else if (!parse_code_option (name))
15697 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15698
15699 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15700 registers based on what is supported by the arch/cpu. */
15701 if (mips_opts.isa != prev_isa)
e6559e01 15702 {
919731af 15703 switch (mips_opts.isa)
15704 {
15705 case 0:
15706 break;
15707 case ISA_MIPS1:
351cdf24
MF
15708 /* MIPS I cannot support FPXX. */
15709 mips_opts.fp = 32;
15710 /* fall-through. */
919731af 15711 case ISA_MIPS2:
15712 case ISA_MIPS32:
15713 case ISA_MIPS32R2:
15714 case ISA_MIPS32R3:
15715 case ISA_MIPS32R5:
15716 mips_opts.gp = 32;
351cdf24
MF
15717 if (mips_opts.fp != 0)
15718 mips_opts.fp = 32;
919731af 15719 break;
7361da2c
AB
15720 case ISA_MIPS32R6:
15721 mips_opts.gp = 32;
15722 mips_opts.fp = 64;
15723 break;
919731af 15724 case ISA_MIPS3:
15725 case ISA_MIPS4:
15726 case ISA_MIPS5:
15727 case ISA_MIPS64:
15728 case ISA_MIPS64R2:
15729 case ISA_MIPS64R3:
15730 case ISA_MIPS64R5:
7361da2c 15731 case ISA_MIPS64R6:
919731af 15732 mips_opts.gp = 64;
351cdf24
MF
15733 if (mips_opts.fp != 0)
15734 {
15735 if (mips_opts.arch == CPU_R5900)
15736 mips_opts.fp = 32;
15737 else
15738 mips_opts.fp = 64;
15739 }
919731af 15740 break;
15741 default:
15742 as_bad (_("unknown ISA level %s"), name + 4);
15743 break;
15744 }
e6559e01 15745 }
919731af 15746
15747 mips_check_options (&mips_opts, FALSE);
15748
15749 mips_check_isa_supports_ases ();
15750 *input_line_pointer = ch;
15751 demand_empty_rest_of_line ();
15752}
15753
15754/* Handle the .module pseudo-op. */
15755
15756static void
15757s_module (int ignore ATTRIBUTE_UNUSED)
15758{
15759 char *name = input_line_pointer, ch;
15760
15761 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15762 ++input_line_pointer;
15763 ch = *input_line_pointer;
15764 *input_line_pointer = '\0';
15765
15766 if (!file_mips_opts_checked)
252b5132 15767 {
919731af 15768 if (!parse_code_option (name))
15769 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15770
15771 /* Update module level settings from mips_opts. */
15772 file_mips_opts = mips_opts;
252b5132 15773 }
919731af 15774 else
15775 as_bad (_(".module is not permitted after generating code"));
15776
252b5132
RH
15777 *input_line_pointer = ch;
15778 demand_empty_rest_of_line ();
15779}
15780
15781/* Handle the .abicalls pseudo-op. I believe this is equivalent to
15782 .option pic2. It means to generate SVR4 PIC calls. */
15783
15784static void
17a2f251 15785s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15786{
15787 mips_pic = SVR4_PIC;
143d77c5 15788 mips_abicalls = TRUE;
4d0d148d
TS
15789
15790 if (g_switch_seen && g_switch_value != 0)
15791 as_warn (_("-G may not be used with SVR4 PIC code"));
15792 g_switch_value = 0;
15793
252b5132
RH
15794 bfd_set_gp_size (stdoutput, 0);
15795 demand_empty_rest_of_line ();
15796}
15797
15798/* Handle the .cpload pseudo-op. This is used when generating SVR4
15799 PIC code. It sets the $gp register for the function based on the
15800 function address, which is in the register named in the argument.
15801 This uses a relocation against _gp_disp, which is handled specially
15802 by the linker. The result is:
15803 lui $gp,%hi(_gp_disp)
15804 addiu $gp,$gp,%lo(_gp_disp)
15805 addu $gp,$gp,.cpload argument
aa6975fb
ILT
15806 The .cpload argument is normally $25 == $t9.
15807
15808 The -mno-shared option changes this to:
bbe506e8
TS
15809 lui $gp,%hi(__gnu_local_gp)
15810 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
15811 and the argument is ignored. This saves an instruction, but the
15812 resulting code is not position independent; it uses an absolute
bbe506e8
TS
15813 address for __gnu_local_gp. Thus code assembled with -mno-shared
15814 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
15815
15816static void
17a2f251 15817s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15818{
15819 expressionS ex;
aa6975fb
ILT
15820 int reg;
15821 int in_shared;
252b5132 15822
919731af 15823 file_mips_check_options ();
15824
6478892d
TS
15825 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15826 .cpload is ignored. */
15827 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15828 {
15829 s_ignore (0);
15830 return;
15831 }
15832
a276b80c
MR
15833 if (mips_opts.mips16)
15834 {
15835 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15836 ignore_rest_of_line ();
15837 return;
15838 }
15839
d3ecfc59 15840 /* .cpload should be in a .set noreorder section. */
252b5132
RH
15841 if (mips_opts.noreorder == 0)
15842 as_warn (_(".cpload not in noreorder section"));
15843
aa6975fb
ILT
15844 reg = tc_get_register (0);
15845
15846 /* If we need to produce a 64-bit address, we are better off using
15847 the default instruction sequence. */
aed1a261 15848 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 15849
252b5132 15850 ex.X_op = O_symbol;
bbe506e8
TS
15851 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15852 "__gnu_local_gp");
252b5132
RH
15853 ex.X_op_symbol = NULL;
15854 ex.X_add_number = 0;
15855
15856 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 15857 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 15858
8a75745d
MR
15859 mips_mark_labels ();
15860 mips_assembling_insn = TRUE;
15861
584892a6 15862 macro_start ();
67c0d1eb
RS
15863 macro_build_lui (&ex, mips_gp_register);
15864 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 15865 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
15866 if (in_shared)
15867 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15868 mips_gp_register, reg);
584892a6 15869 macro_end ();
252b5132 15870
8a75745d 15871 mips_assembling_insn = FALSE;
252b5132
RH
15872 demand_empty_rest_of_line ();
15873}
15874
6478892d
TS
15875/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15876 .cpsetup $reg1, offset|$reg2, label
15877
15878 If offset is given, this results in:
15879 sd $gp, offset($sp)
956cd1d6 15880 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15881 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15882 daddu $gp, $gp, $reg1
6478892d
TS
15883
15884 If $reg2 is given, this results in:
15885 daddu $reg2, $gp, $0
956cd1d6 15886 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15887 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15888 daddu $gp, $gp, $reg1
aa6975fb
ILT
15889 $reg1 is normally $25 == $t9.
15890
15891 The -mno-shared option replaces the last three instructions with
15892 lui $gp,%hi(_gp)
54f4ddb3 15893 addiu $gp,$gp,%lo(_gp) */
aa6975fb 15894
6478892d 15895static void
17a2f251 15896s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15897{
15898 expressionS ex_off;
15899 expressionS ex_sym;
15900 int reg1;
6478892d 15901
919731af 15902 file_mips_check_options ();
15903
8586fc66 15904 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
15905 We also need NewABI support. */
15906 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15907 {
15908 s_ignore (0);
15909 return;
15910 }
15911
a276b80c
MR
15912 if (mips_opts.mips16)
15913 {
15914 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15915 ignore_rest_of_line ();
15916 return;
15917 }
15918
6478892d
TS
15919 reg1 = tc_get_register (0);
15920 SKIP_WHITESPACE ();
15921 if (*input_line_pointer != ',')
15922 {
15923 as_bad (_("missing argument separator ',' for .cpsetup"));
15924 return;
15925 }
15926 else
80245285 15927 ++input_line_pointer;
6478892d
TS
15928 SKIP_WHITESPACE ();
15929 if (*input_line_pointer == '$')
80245285
TS
15930 {
15931 mips_cpreturn_register = tc_get_register (0);
15932 mips_cpreturn_offset = -1;
15933 }
6478892d 15934 else
80245285
TS
15935 {
15936 mips_cpreturn_offset = get_absolute_expression ();
15937 mips_cpreturn_register = -1;
15938 }
6478892d
TS
15939 SKIP_WHITESPACE ();
15940 if (*input_line_pointer != ',')
15941 {
15942 as_bad (_("missing argument separator ',' for .cpsetup"));
15943 return;
15944 }
15945 else
f9419b05 15946 ++input_line_pointer;
6478892d 15947 SKIP_WHITESPACE ();
f21f8242 15948 expression (&ex_sym);
6478892d 15949
8a75745d
MR
15950 mips_mark_labels ();
15951 mips_assembling_insn = TRUE;
15952
584892a6 15953 macro_start ();
6478892d
TS
15954 if (mips_cpreturn_register == -1)
15955 {
15956 ex_off.X_op = O_constant;
15957 ex_off.X_add_symbol = NULL;
15958 ex_off.X_op_symbol = NULL;
15959 ex_off.X_add_number = mips_cpreturn_offset;
15960
67c0d1eb 15961 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 15962 BFD_RELOC_LO16, SP);
6478892d
TS
15963 }
15964 else
67c0d1eb 15965 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
17a2f251 15966 mips_gp_register, 0);
6478892d 15967
aed1a261 15968 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 15969 {
df58fc94 15970 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
15971 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15972 BFD_RELOC_HI16_S);
15973
15974 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15975 mips_gp_register, -1, BFD_RELOC_GPREL16,
15976 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15977
15978 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15979 mips_gp_register, reg1);
15980 }
15981 else
15982 {
15983 expressionS ex;
15984
15985 ex.X_op = O_symbol;
4184909a 15986 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
15987 ex.X_op_symbol = NULL;
15988 ex.X_add_number = 0;
6e1304d8 15989
aa6975fb
ILT
15990 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15991 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15992
15993 macro_build_lui (&ex, mips_gp_register);
15994 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15995 mips_gp_register, BFD_RELOC_LO16);
15996 }
f21f8242 15997
584892a6 15998 macro_end ();
6478892d 15999
8a75745d 16000 mips_assembling_insn = FALSE;
6478892d
TS
16001 demand_empty_rest_of_line ();
16002}
16003
16004static void
17a2f251 16005s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16006{
919731af 16007 file_mips_check_options ();
16008
6478892d 16009 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16010 .cplocal is ignored. */
6478892d
TS
16011 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16012 {
16013 s_ignore (0);
16014 return;
16015 }
16016
a276b80c
MR
16017 if (mips_opts.mips16)
16018 {
16019 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16020 ignore_rest_of_line ();
16021 return;
16022 }
16023
6478892d 16024 mips_gp_register = tc_get_register (0);
85b51719 16025 demand_empty_rest_of_line ();
6478892d
TS
16026}
16027
252b5132
RH
16028/* Handle the .cprestore pseudo-op. This stores $gp into a given
16029 offset from $sp. The offset is remembered, and after making a PIC
16030 call $gp is restored from that location. */
16031
16032static void
17a2f251 16033s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16034{
16035 expressionS ex;
252b5132 16036
919731af 16037 file_mips_check_options ();
16038
6478892d 16039 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16040 .cprestore is ignored. */
6478892d 16041 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16042 {
16043 s_ignore (0);
16044 return;
16045 }
16046
a276b80c
MR
16047 if (mips_opts.mips16)
16048 {
16049 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16050 ignore_rest_of_line ();
16051 return;
16052 }
16053
252b5132 16054 mips_cprestore_offset = get_absolute_expression ();
7a621144 16055 mips_cprestore_valid = 1;
252b5132
RH
16056
16057 ex.X_op = O_constant;
16058 ex.X_add_symbol = NULL;
16059 ex.X_op_symbol = NULL;
16060 ex.X_add_number = mips_cprestore_offset;
16061
8a75745d
MR
16062 mips_mark_labels ();
16063 mips_assembling_insn = TRUE;
16064
584892a6 16065 macro_start ();
67c0d1eb
RS
16066 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16067 SP, HAVE_64BIT_ADDRESSES);
584892a6 16068 macro_end ();
252b5132 16069
8a75745d 16070 mips_assembling_insn = FALSE;
252b5132
RH
16071 demand_empty_rest_of_line ();
16072}
16073
6478892d 16074/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16075 was given in the preceding .cpsetup, it results in:
6478892d 16076 ld $gp, offset($sp)
76b3015f 16077
6478892d 16078 If a register $reg2 was given there, it results in:
54f4ddb3
TS
16079 daddu $gp, $reg2, $0 */
16080
6478892d 16081static void
17a2f251 16082s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16083{
16084 expressionS ex;
6478892d 16085
919731af 16086 file_mips_check_options ();
16087
6478892d
TS
16088 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16089 We also need NewABI support. */
16090 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16091 {
16092 s_ignore (0);
16093 return;
16094 }
16095
a276b80c
MR
16096 if (mips_opts.mips16)
16097 {
16098 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16099 ignore_rest_of_line ();
16100 return;
16101 }
16102
8a75745d
MR
16103 mips_mark_labels ();
16104 mips_assembling_insn = TRUE;
16105
584892a6 16106 macro_start ();
6478892d
TS
16107 if (mips_cpreturn_register == -1)
16108 {
16109 ex.X_op = O_constant;
16110 ex.X_add_symbol = NULL;
16111 ex.X_op_symbol = NULL;
16112 ex.X_add_number = mips_cpreturn_offset;
16113
67c0d1eb 16114 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16115 }
16116 else
67c0d1eb 16117 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
17a2f251 16118 mips_cpreturn_register, 0);
584892a6 16119 macro_end ();
6478892d 16120
8a75745d 16121 mips_assembling_insn = FALSE;
6478892d
TS
16122 demand_empty_rest_of_line ();
16123}
16124
d0f13682
CLT
16125/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16126 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16127 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16128 debug information or MIPS16 TLS. */
741d6ea8
JM
16129
16130static void
d0f13682
CLT
16131s_tls_rel_directive (const size_t bytes, const char *dirstr,
16132 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16133{
16134 expressionS ex;
16135 char *p;
16136
16137 expression (&ex);
16138
16139 if (ex.X_op != O_symbol)
16140 {
1661c76c 16141 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16142 ignore_rest_of_line ();
16143 }
16144
16145 p = frag_more (bytes);
16146 md_number_to_chars (p, 0, bytes);
d0f13682 16147 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16148 demand_empty_rest_of_line ();
de64cffd 16149 mips_clear_insn_labels ();
741d6ea8
JM
16150}
16151
16152/* Handle .dtprelword. */
16153
16154static void
16155s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16156{
d0f13682 16157 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16158}
16159
16160/* Handle .dtpreldword. */
16161
16162static void
16163s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16164{
d0f13682
CLT
16165 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16166}
16167
16168/* Handle .tprelword. */
16169
16170static void
16171s_tprelword (int ignore ATTRIBUTE_UNUSED)
16172{
16173 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16174}
16175
16176/* Handle .tpreldword. */
16177
16178static void
16179s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16180{
16181 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16182}
16183
6478892d
TS
16184/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16185 code. It sets the offset to use in gp_rel relocations. */
16186
16187static void
17a2f251 16188s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16189{
16190 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16191 We also need NewABI support. */
16192 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16193 {
16194 s_ignore (0);
16195 return;
16196 }
16197
def2e0dd 16198 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16199
16200 demand_empty_rest_of_line ();
16201}
16202
252b5132
RH
16203/* Handle the .gpword pseudo-op. This is used when generating PIC
16204 code. It generates a 32 bit GP relative reloc. */
16205
16206static void
17a2f251 16207s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16208{
a8dbcb85
TS
16209 segment_info_type *si;
16210 struct insn_label_list *l;
252b5132
RH
16211 expressionS ex;
16212 char *p;
16213
16214 /* When not generating PIC code, this is treated as .word. */
16215 if (mips_pic != SVR4_PIC)
16216 {
16217 s_cons (2);
16218 return;
16219 }
16220
a8dbcb85
TS
16221 si = seg_info (now_seg);
16222 l = si->label_list;
7d10b47d 16223 mips_emit_delays ();
252b5132 16224 if (auto_align)
462427c4 16225 mips_align (2, 0, l);
252b5132
RH
16226
16227 expression (&ex);
a1facbec 16228 mips_clear_insn_labels ();
252b5132
RH
16229
16230 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16231 {
1661c76c 16232 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16233 ignore_rest_of_line ();
16234 }
16235
16236 p = frag_more (4);
17a2f251 16237 md_number_to_chars (p, 0, 4);
b34976b6 16238 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16239 BFD_RELOC_GPREL32);
252b5132
RH
16240
16241 demand_empty_rest_of_line ();
16242}
16243
10181a0d 16244static void
17a2f251 16245s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16246{
a8dbcb85
TS
16247 segment_info_type *si;
16248 struct insn_label_list *l;
10181a0d
AO
16249 expressionS ex;
16250 char *p;
16251
16252 /* When not generating PIC code, this is treated as .dword. */
16253 if (mips_pic != SVR4_PIC)
16254 {
16255 s_cons (3);
16256 return;
16257 }
16258
a8dbcb85
TS
16259 si = seg_info (now_seg);
16260 l = si->label_list;
7d10b47d 16261 mips_emit_delays ();
10181a0d 16262 if (auto_align)
462427c4 16263 mips_align (3, 0, l);
10181a0d
AO
16264
16265 expression (&ex);
a1facbec 16266 mips_clear_insn_labels ();
10181a0d
AO
16267
16268 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16269 {
1661c76c 16270 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16271 ignore_rest_of_line ();
16272 }
16273
16274 p = frag_more (8);
17a2f251 16275 md_number_to_chars (p, 0, 8);
a105a300 16276 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16277 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16278
16279 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16280 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16281 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16282
16283 demand_empty_rest_of_line ();
16284}
16285
a3f278e2
CM
16286/* Handle the .ehword pseudo-op. This is used when generating unwinding
16287 tables. It generates a R_MIPS_EH reloc. */
16288
16289static void
16290s_ehword (int ignore ATTRIBUTE_UNUSED)
16291{
16292 expressionS ex;
16293 char *p;
16294
16295 mips_emit_delays ();
16296
16297 expression (&ex);
16298 mips_clear_insn_labels ();
16299
16300 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16301 {
1661c76c 16302 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16303 ignore_rest_of_line ();
16304 }
16305
16306 p = frag_more (4);
16307 md_number_to_chars (p, 0, 4);
16308 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16309 BFD_RELOC_32_PCREL);
a3f278e2
CM
16310
16311 demand_empty_rest_of_line ();
16312}
16313
252b5132
RH
16314/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16315 tables in SVR4 PIC code. */
16316
16317static void
17a2f251 16318s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16319{
252b5132
RH
16320 int reg;
16321
919731af 16322 file_mips_check_options ();
16323
10181a0d
AO
16324 /* This is ignored when not generating SVR4 PIC code. */
16325 if (mips_pic != SVR4_PIC)
252b5132
RH
16326 {
16327 s_ignore (0);
16328 return;
16329 }
16330
8a75745d
MR
16331 mips_mark_labels ();
16332 mips_assembling_insn = TRUE;
16333
252b5132 16334 /* Add $gp to the register named as an argument. */
584892a6 16335 macro_start ();
252b5132 16336 reg = tc_get_register (0);
67c0d1eb 16337 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16338 macro_end ();
252b5132 16339
8a75745d 16340 mips_assembling_insn = FALSE;
bdaaa2e1 16341 demand_empty_rest_of_line ();
252b5132
RH
16342}
16343
16344/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16345 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16346 such as generating jalx instructions when needed. We also make
16347 them odd for the duration of the assembly, in order to generate the
16348 right sort of code. We will make them even in the adjust_symtab
16349 routine, while leaving them marked. This is convenient for the
16350 debugger and the disassembler. The linker knows to make them odd
16351 again. */
16352
16353static void
17a2f251 16354s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16355{
7bb01e2d
MR
16356 file_mips_check_options ();
16357 file_ase_mips16 |= mips_opts.mips16;
16358 file_ase_micromips |= mips_opts.micromips;
16359
df58fc94 16360 mips_mark_labels ();
252b5132
RH
16361
16362 demand_empty_rest_of_line ();
16363}
16364
ba92f887
MR
16365/* Handle the .nan pseudo-op. */
16366
16367static void
16368s_nan (int ignore ATTRIBUTE_UNUSED)
16369{
16370 static const char str_legacy[] = "legacy";
16371 static const char str_2008[] = "2008";
16372 size_t i;
16373
16374 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16375
16376 if (i == sizeof (str_2008) - 1
16377 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16378 mips_nan2008 = 1;
ba92f887
MR
16379 else if (i == sizeof (str_legacy) - 1
16380 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16381 {
16382 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16383 mips_nan2008 = 0;
16384 else
16385 as_bad (_("`%s' does not support legacy NaN"),
16386 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16387 }
ba92f887 16388 else
1661c76c 16389 as_bad (_("bad .nan directive"));
ba92f887
MR
16390
16391 input_line_pointer += i;
16392 demand_empty_rest_of_line ();
16393}
16394
754e2bb9
RS
16395/* Handle a .stab[snd] directive. Ideally these directives would be
16396 implemented in a transparent way, so that removing them would not
16397 have any effect on the generated instructions. However, s_stab
16398 internally changes the section, so in practice we need to decide
16399 now whether the preceding label marks compressed code. We do not
16400 support changing the compression mode of a label after a .stab*
16401 directive, such as in:
16402
16403 foo:
16404 .stabs ...
16405 .set mips16
16406
16407 so the current mode wins. */
252b5132
RH
16408
16409static void
17a2f251 16410s_mips_stab (int type)
252b5132 16411{
754e2bb9 16412 mips_mark_labels ();
252b5132
RH
16413 s_stab (type);
16414}
16415
54f4ddb3 16416/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16417
16418static void
17a2f251 16419s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16420{
16421 char *name;
16422 int c;
16423 symbolS *symbolP;
16424 expressionS exp;
16425
16426 name = input_line_pointer;
16427 c = get_symbol_end ();
16428 symbolP = symbol_find_or_make (name);
16429 S_SET_WEAK (symbolP);
16430 *input_line_pointer = c;
16431
16432 SKIP_WHITESPACE ();
16433
16434 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16435 {
16436 if (S_IS_DEFINED (symbolP))
16437 {
20203fb9 16438 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16439 S_GET_NAME (symbolP));
16440 ignore_rest_of_line ();
16441 return;
16442 }
bdaaa2e1 16443
252b5132
RH
16444 if (*input_line_pointer == ',')
16445 {
16446 ++input_line_pointer;
16447 SKIP_WHITESPACE ();
16448 }
bdaaa2e1 16449
252b5132
RH
16450 expression (&exp);
16451 if (exp.X_op != O_symbol)
16452 {
20203fb9 16453 as_bad (_("bad .weakext directive"));
98d3f06f 16454 ignore_rest_of_line ();
252b5132
RH
16455 return;
16456 }
49309057 16457 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16458 }
16459
16460 demand_empty_rest_of_line ();
16461}
16462
16463/* Parse a register string into a number. Called from the ECOFF code
16464 to parse .frame. The argument is non-zero if this is the frame
16465 register, so that we can record it in mips_frame_reg. */
16466
16467int
17a2f251 16468tc_get_register (int frame)
252b5132 16469{
707bfff6 16470 unsigned int reg;
252b5132
RH
16471
16472 SKIP_WHITESPACE ();
707bfff6
TS
16473 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16474 reg = 0;
252b5132 16475 if (frame)
7a621144
DJ
16476 {
16477 mips_frame_reg = reg != 0 ? reg : SP;
16478 mips_frame_reg_valid = 1;
16479 mips_cprestore_valid = 0;
16480 }
252b5132
RH
16481 return reg;
16482}
16483
16484valueT
17a2f251 16485md_section_align (asection *seg, valueT addr)
252b5132
RH
16486{
16487 int align = bfd_get_section_alignment (stdoutput, seg);
16488
f3ded42a
RS
16489 /* We don't need to align ELF sections to the full alignment.
16490 However, Irix 5 may prefer that we align them at least to a 16
16491 byte boundary. We don't bother to align the sections if we
16492 are targeted for an embedded system. */
16493 if (strncmp (TARGET_OS, "elf", 3) == 0)
16494 return addr;
16495 if (align > 4)
16496 align = 4;
252b5132
RH
16497
16498 return ((addr + (1 << align) - 1) & (-1 << align));
16499}
16500
16501/* Utility routine, called from above as well. If called while the
16502 input file is still being read, it's only an approximation. (For
16503 example, a symbol may later become defined which appeared to be
16504 undefined earlier.) */
16505
16506static int
17a2f251 16507nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
16508{
16509 if (sym == 0)
16510 return 0;
16511
4d0d148d 16512 if (g_switch_value > 0)
252b5132
RH
16513 {
16514 const char *symname;
16515 int change;
16516
c9914766 16517 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
16518 register. It can be if it is smaller than the -G size or if
16519 it is in the .sdata or .sbss section. Certain symbols can
c9914766 16520 not be referenced off the $gp, although it appears as though
252b5132
RH
16521 they can. */
16522 symname = S_GET_NAME (sym);
16523 if (symname != (const char *) NULL
16524 && (strcmp (symname, "eprol") == 0
16525 || strcmp (symname, "etext") == 0
16526 || strcmp (symname, "_gp") == 0
16527 || strcmp (symname, "edata") == 0
16528 || strcmp (symname, "_fbss") == 0
16529 || strcmp (symname, "_fdata") == 0
16530 || strcmp (symname, "_ftext") == 0
16531 || strcmp (symname, "end") == 0
16532 || strcmp (symname, "_gp_disp") == 0))
16533 change = 1;
16534 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16535 && (0
16536#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
16537 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16538 && (symbol_get_obj (sym)->ecoff_extern_size
16539 <= g_switch_value))
252b5132
RH
16540#endif
16541 /* We must defer this decision until after the whole
16542 file has been read, since there might be a .extern
16543 after the first use of this symbol. */
16544 || (before_relaxing
16545#ifndef NO_ECOFF_DEBUGGING
49309057 16546 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
16547#endif
16548 && S_GET_VALUE (sym) == 0)
16549 || (S_GET_VALUE (sym) != 0
16550 && S_GET_VALUE (sym) <= g_switch_value)))
16551 change = 0;
16552 else
16553 {
16554 const char *segname;
16555
16556 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 16557 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
16558 && strcmp (segname, ".lit4") != 0);
16559 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
16560 && strcmp (segname, ".sbss") != 0
16561 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
16562 && strncmp (segname, ".sbss.", 6) != 0
16563 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 16564 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
16565 }
16566 return change;
16567 }
16568 else
c9914766 16569 /* We are not optimizing for the $gp register. */
252b5132
RH
16570 return 1;
16571}
16572
5919d012
RS
16573
16574/* Return true if the given symbol should be considered local for SVR4 PIC. */
16575
16576static bfd_boolean
17a2f251 16577pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
16578{
16579 asection *symsec;
5919d012
RS
16580
16581 /* Handle the case of a symbol equated to another symbol. */
16582 while (symbol_equated_reloc_p (sym))
16583 {
16584 symbolS *n;
16585
5f0fe04b 16586 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
16587 n = symbol_get_value_expression (sym)->X_add_symbol;
16588 if (n == sym)
16589 break;
16590 sym = n;
16591 }
16592
df1f3cda
DD
16593 if (symbol_section_p (sym))
16594 return TRUE;
16595
5919d012
RS
16596 symsec = S_GET_SEGMENT (sym);
16597
5919d012 16598 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
16599 return (!bfd_is_und_section (symsec)
16600 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
16601 && !bfd_is_com_section (symsec)
16602 && !s_is_linkonce (sym, segtype)
5919d012 16603 /* A global or weak symbol is treated as external. */
f3ded42a 16604 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
16605}
16606
16607
252b5132
RH
16608/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16609 extended opcode. SEC is the section the frag is in. */
16610
16611static int
17a2f251 16612mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
16613{
16614 int type;
3ccad066 16615 const struct mips_int_operand *operand;
252b5132 16616 offsetT val;
252b5132 16617 segT symsec;
98aa84af 16618 fragS *sym_frag;
252b5132
RH
16619
16620 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16621 return 0;
16622 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16623 return 1;
16624
16625 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16626 operand = mips16_immed_operand (type, FALSE);
252b5132 16627
98aa84af 16628 sym_frag = symbol_get_frag (fragp->fr_symbol);
ac62c346 16629 val = S_GET_VALUE (fragp->fr_symbol);
98aa84af 16630 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 16631
3ccad066 16632 if (operand->root.type == OP_PCREL)
252b5132 16633 {
3ccad066 16634 const struct mips_pcrel_operand *pcrel_op;
252b5132 16635 addressT addr;
3ccad066 16636 offsetT maxtiny;
252b5132
RH
16637
16638 /* We won't have the section when we are called from
16639 mips_relax_frag. However, we will always have been called
16640 from md_estimate_size_before_relax first. If this is a
16641 branch to a different section, we mark it as such. If SEC is
16642 NULL, and the frag is not marked, then it must be a branch to
16643 the same section. */
3ccad066 16644 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
16645 if (sec == NULL)
16646 {
16647 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16648 return 1;
16649 }
16650 else
16651 {
98aa84af 16652 /* Must have been called from md_estimate_size_before_relax. */
252b5132
RH
16653 if (symsec != sec)
16654 {
16655 fragp->fr_subtype =
16656 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16657
16658 /* FIXME: We should support this, and let the linker
16659 catch branches and loads that are out of range. */
16660 as_bad_where (fragp->fr_file, fragp->fr_line,
16661 _("unsupported PC relative reference to different section"));
16662
16663 return 1;
16664 }
98aa84af
AM
16665 if (fragp != sym_frag && sym_frag->fr_address == 0)
16666 /* Assume non-extended on the first relaxation pass.
16667 The address we have calculated will be bogus if this is
16668 a forward branch to another frag, as the forward frag
16669 will have fr_address == 0. */
16670 return 0;
252b5132
RH
16671 }
16672
16673 /* In this case, we know for sure that the symbol fragment is in
98aa84af
AM
16674 the same section. If the relax_marker of the symbol fragment
16675 differs from the relax_marker of this fragment, we have not
16676 yet adjusted the symbol fragment fr_address. We want to add
252b5132
RH
16677 in STRETCH in order to get a better estimate of the address.
16678 This particularly matters because of the shift bits. */
16679 if (stretch != 0
98aa84af 16680 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
16681 {
16682 fragS *f;
16683
16684 /* Adjust stretch for any alignment frag. Note that if have
16685 been expanding the earlier code, the symbol may be
16686 defined in what appears to be an earlier frag. FIXME:
16687 This doesn't handle the fr_subtype field, which specifies
16688 a maximum number of bytes to skip when doing an
16689 alignment. */
98aa84af 16690 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
16691 {
16692 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16693 {
16694 if (stretch < 0)
16695 stretch = - ((- stretch)
16696 & ~ ((1 << (int) f->fr_offset) - 1));
16697 else
16698 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16699 if (stretch == 0)
16700 break;
16701 }
16702 }
16703 if (f != NULL)
16704 val += stretch;
16705 }
16706
16707 addr = fragp->fr_address + fragp->fr_fix;
16708
16709 /* The base address rules are complicated. The base address of
16710 a branch is the following instruction. The base address of a
16711 PC relative load or add is the instruction itself, but if it
16712 is in a delay slot (in which case it can not be extended) use
16713 the address of the instruction whose delay slot it is in. */
3ccad066 16714 if (pcrel_op->include_isa_bit)
252b5132
RH
16715 {
16716 addr += 2;
16717
16718 /* If we are currently assuming that this frag should be
16719 extended, then, the current address is two bytes
bdaaa2e1 16720 higher. */
252b5132
RH
16721 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16722 addr += 2;
16723
16724 /* Ignore the low bit in the target, since it will be set
16725 for a text label. */
3ccad066 16726 val &= -2;
252b5132
RH
16727 }
16728 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16729 addr -= 4;
16730 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16731 addr -= 2;
16732
3ccad066 16733 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
16734
16735 /* If any of the shifted bits are set, we must use an extended
16736 opcode. If the address depends on the size of this
16737 instruction, this can lead to a loop, so we arrange to always
16738 use an extended opcode. We only check this when we are in
16739 the main relaxation loop, when SEC is NULL. */
3ccad066 16740 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
252b5132
RH
16741 {
16742 fragp->fr_subtype =
16743 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16744 return 1;
16745 }
16746
16747 /* If we are about to mark a frag as extended because the value
3ccad066
RS
16748 is precisely the next value above maxtiny, then there is a
16749 chance of an infinite loop as in the following code:
252b5132
RH
16750 la $4,foo
16751 .skip 1020
16752 .align 2
16753 foo:
16754 In this case when the la is extended, foo is 0x3fc bytes
16755 away, so the la can be shrunk, but then foo is 0x400 away, so
16756 the la must be extended. To avoid this loop, we mark the
16757 frag as extended if it was small, and is about to become
3ccad066
RS
16758 extended with the next value above maxtiny. */
16759 maxtiny = mips_int_operand_max (operand);
16760 if (val == maxtiny + (1 << operand->shift)
252b5132
RH
16761 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16762 && sec == NULL)
16763 {
16764 fragp->fr_subtype =
16765 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16766 return 1;
16767 }
16768 }
16769 else if (symsec != absolute_section && sec != NULL)
16770 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16771
3ccad066 16772 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
16773}
16774
4a6a3df4
AO
16775/* Compute the length of a branch sequence, and adjust the
16776 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16777 worst-case length is computed, with UPDATE being used to indicate
16778 whether an unconditional (-1), branch-likely (+1) or regular (0)
16779 branch is to be computed. */
16780static int
17a2f251 16781relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 16782{
b34976b6 16783 bfd_boolean toofar;
4a6a3df4
AO
16784 int length;
16785
16786 if (fragp
16787 && S_IS_DEFINED (fragp->fr_symbol)
16788 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16789 {
16790 addressT addr;
16791 offsetT val;
16792
16793 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16794
16795 addr = fragp->fr_address + fragp->fr_fix + 4;
16796
16797 val -= addr;
16798
16799 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16800 }
16801 else if (fragp)
16802 /* If the symbol is not defined or it's in a different segment,
16803 assume the user knows what's going on and emit a short
16804 branch. */
b34976b6 16805 toofar = FALSE;
4a6a3df4 16806 else
b34976b6 16807 toofar = TRUE;
4a6a3df4
AO
16808
16809 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16810 fragp->fr_subtype
66b3e8da
MR
16811 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16812 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
16813 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16814 RELAX_BRANCH_LINK (fragp->fr_subtype),
16815 toofar);
16816
16817 length = 4;
16818 if (toofar)
16819 {
16820 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16821 length += 8;
16822
16823 if (mips_pic != NO_PIC)
16824 {
16825 /* Additional space for PIC loading of target address. */
16826 length += 8;
16827 if (mips_opts.isa == ISA_MIPS1)
16828 /* Additional space for $at-stabilizing nop. */
16829 length += 4;
16830 }
16831
16832 /* If branch is conditional. */
16833 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16834 length += 8;
16835 }
b34976b6 16836
4a6a3df4
AO
16837 return length;
16838}
16839
df58fc94
RS
16840/* Compute the length of a branch sequence, and adjust the
16841 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16842 worst-case length is computed, with UPDATE being used to indicate
16843 whether an unconditional (-1), or regular (0) branch is to be
16844 computed. */
16845
16846static int
16847relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16848{
16849 bfd_boolean toofar;
16850 int length;
16851
16852 if (fragp
16853 && S_IS_DEFINED (fragp->fr_symbol)
16854 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16855 {
16856 addressT addr;
16857 offsetT val;
16858
16859 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16860 /* Ignore the low bit in the target, since it will be set
16861 for a text label. */
16862 if ((val & 1) != 0)
16863 --val;
16864
16865 addr = fragp->fr_address + fragp->fr_fix + 4;
16866
16867 val -= addr;
16868
16869 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16870 }
16871 else if (fragp)
16872 /* If the symbol is not defined or it's in a different segment,
16873 assume the user knows what's going on and emit a short
16874 branch. */
16875 toofar = FALSE;
16876 else
16877 toofar = TRUE;
16878
16879 if (fragp && update
16880 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16881 fragp->fr_subtype = (toofar
16882 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16883 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16884
16885 length = 4;
16886 if (toofar)
16887 {
16888 bfd_boolean compact_known = fragp != NULL;
16889 bfd_boolean compact = FALSE;
16890 bfd_boolean uncond;
16891
16892 if (compact_known)
16893 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16894 if (fragp)
16895 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16896 else
16897 uncond = update < 0;
16898
16899 /* If label is out of range, we turn branch <br>:
16900
16901 <br> label # 4 bytes
16902 0:
16903
16904 into:
16905
16906 j label # 4 bytes
16907 nop # 2 bytes if compact && !PIC
16908 0:
16909 */
16910 if (mips_pic == NO_PIC && (!compact_known || compact))
16911 length += 2;
16912
16913 /* If assembling PIC code, we further turn:
16914
16915 j label # 4 bytes
16916
16917 into:
16918
16919 lw/ld at, %got(label)(gp) # 4 bytes
16920 d/addiu at, %lo(label) # 4 bytes
16921 jr/c at # 2 bytes
16922 */
16923 if (mips_pic != NO_PIC)
16924 length += 6;
16925
16926 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16927
16928 <brneg> 0f # 4 bytes
16929 nop # 2 bytes if !compact
16930 */
16931 if (!uncond)
16932 length += (compact_known && compact) ? 4 : 6;
16933 }
16934
16935 return length;
16936}
16937
16938/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16939 bit accordingly. */
16940
16941static int
16942relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16943{
16944 bfd_boolean toofar;
16945
df58fc94
RS
16946 if (fragp
16947 && S_IS_DEFINED (fragp->fr_symbol)
16948 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16949 {
16950 addressT addr;
16951 offsetT val;
16952 int type;
16953
16954 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16955 /* Ignore the low bit in the target, since it will be set
16956 for a text label. */
16957 if ((val & 1) != 0)
16958 --val;
16959
16960 /* Assume this is a 2-byte branch. */
16961 addr = fragp->fr_address + fragp->fr_fix + 2;
16962
16963 /* We try to avoid the infinite loop by not adding 2 more bytes for
16964 long branches. */
16965
16966 val -= addr;
16967
16968 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16969 if (type == 'D')
16970 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16971 else if (type == 'E')
16972 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16973 else
16974 abort ();
16975 }
16976 else
16977 /* If the symbol is not defined or it's in a different segment,
16978 we emit a normal 32-bit branch. */
16979 toofar = TRUE;
16980
16981 if (fragp && update
16982 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16983 fragp->fr_subtype
16984 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16985 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16986
16987 if (toofar)
16988 return 4;
16989
16990 return 2;
16991}
16992
252b5132
RH
16993/* Estimate the size of a frag before relaxing. Unless this is the
16994 mips16, we are not really relaxing here, and the final size is
16995 encoded in the subtype information. For the mips16, we have to
16996 decide whether we are using an extended opcode or not. */
16997
252b5132 16998int
17a2f251 16999md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17000{
5919d012 17001 int change;
252b5132 17002
4a6a3df4
AO
17003 if (RELAX_BRANCH_P (fragp->fr_subtype))
17004 {
17005
b34976b6
AM
17006 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17007
4a6a3df4
AO
17008 return fragp->fr_var;
17009 }
17010
252b5132 17011 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17012 /* We don't want to modify the EXTENDED bit here; it might get us
17013 into infinite loops. We change it only in mips_relax_frag(). */
17014 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17015
df58fc94
RS
17016 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17017 {
17018 int length = 4;
17019
17020 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17021 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17022 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17023 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17024 fragp->fr_var = length;
17025
17026 return length;
17027 }
17028
252b5132 17029 if (mips_pic == NO_PIC)
5919d012 17030 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17031 else if (mips_pic == SVR4_PIC)
5919d012 17032 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17033 else if (mips_pic == VXWORKS_PIC)
17034 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17035 change = 0;
252b5132
RH
17036 else
17037 abort ();
17038
17039 if (change)
17040 {
4d7206a2 17041 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17042 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17043 }
4d7206a2
RS
17044 else
17045 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17046}
17047
17048/* This is called to see whether a reloc against a defined symbol
de7e6852 17049 should be converted into a reloc against a section. */
252b5132
RH
17050
17051int
17a2f251 17052mips_fix_adjustable (fixS *fixp)
252b5132 17053{
252b5132
RH
17054 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17055 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17056 return 0;
a161fe53 17057
252b5132
RH
17058 if (fixp->fx_addsy == NULL)
17059 return 1;
a161fe53 17060
2f0c68f2
CM
17061 /* Allow relocs used for EH tables. */
17062 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17063 return 1;
17064
de7e6852
RS
17065 /* If symbol SYM is in a mergeable section, relocations of the form
17066 SYM + 0 can usually be made section-relative. The mergeable data
17067 is then identified by the section offset rather than by the symbol.
17068
17069 However, if we're generating REL LO16 relocations, the offset is split
17070 between the LO16 and parterning high part relocation. The linker will
17071 need to recalculate the complete offset in order to correctly identify
17072 the merge data.
17073
17074 The linker has traditionally not looked for the parterning high part
17075 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17076 placed anywhere. Rather than break backwards compatibility by changing
17077 this, it seems better not to force the issue, and instead keep the
17078 original symbol. This will work with either linker behavior. */
738e5348 17079 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17080 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17081 && HAVE_IN_PLACE_ADDENDS
17082 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17083 return 0;
17084
ce70d90a 17085 /* There is no place to store an in-place offset for JALR relocations.
2de39019
CM
17086 Likewise an in-range offset of limited PC-relative relocations may
17087 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17088 start address of the symbol's containing section.
17089
17090 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17091 section relative to allow linker relaxations to be performed later on. */
17092 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
2de39019
CM
17093 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17094 || jalr_reloc_p (fixp->fx_r_type)))
1180b5a4
RS
17095 return 0;
17096
b314ec0e
RS
17097 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17098 to a floating-point stub. The same is true for non-R_MIPS16_26
17099 relocations against MIPS16 functions; in this case, the stub becomes
17100 the function's canonical address.
17101
17102 Floating-point stubs are stored in unique .mips16.call.* or
17103 .mips16.fn.* sections. If a stub T for function F is in section S,
17104 the first relocation in section S must be against F; this is how the
17105 linker determines the target function. All relocations that might
17106 resolve to T must also be against F. We therefore have the following
17107 restrictions, which are given in an intentionally-redundant way:
17108
17109 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17110 symbols.
17111
17112 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17113 if that stub might be used.
17114
17115 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17116 symbols.
17117
17118 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17119 that stub might be used.
17120
17121 There is a further restriction:
17122
df58fc94
RS
17123 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17124 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17125 targets with in-place addends; the relocation field cannot
b314ec0e
RS
17126 encode the low bit.
17127
df58fc94
RS
17128 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17129 against a MIPS16 symbol. We deal with (5) by by not reducing any
17130 such relocations on REL targets.
b314ec0e
RS
17131
17132 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17133 relocation against some symbol R, no relocation against R may be
17134 reduced. (Note that this deals with (2) as well as (1) because
17135 relocations against global symbols will never be reduced on ELF
17136 targets.) This approach is a little simpler than trying to detect
17137 stub sections, and gives the "all or nothing" per-symbol consistency
17138 that we have for MIPS16 symbols. */
f3ded42a 17139 if (fixp->fx_subsy == NULL
30c09090 17140 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
df58fc94
RS
17141 || *symbol_get_tc (fixp->fx_addsy)
17142 || (HAVE_IN_PLACE_ADDENDS
17143 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17144 && jmp_reloc_p (fixp->fx_r_type))))
252b5132 17145 return 0;
a161fe53 17146
252b5132
RH
17147 return 1;
17148}
17149
17150/* Translate internal representation of relocation info to BFD target
17151 format. */
17152
17153arelent **
17a2f251 17154tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17155{
17156 static arelent *retval[4];
17157 arelent *reloc;
17158 bfd_reloc_code_real_type code;
17159
4b0cff4e
TS
17160 memset (retval, 0, sizeof(retval));
17161 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
49309057
ILT
17162 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17163 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17164 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17165
bad36eac
DJ
17166 if (fixp->fx_pcrel)
17167 {
df58fc94
RS
17168 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17169 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17170 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17171 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17172 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17173 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17174 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17175 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17176 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17177 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17178 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17179
17180 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17181 Relocations want only the symbol offset. */
17182 reloc->addend = fixp->fx_addnumber + reloc->address;
bad36eac
DJ
17183 }
17184 else
17185 reloc->addend = fixp->fx_addnumber;
252b5132 17186
438c16b8
TS
17187 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17188 entry to be used in the relocation's section offset. */
17189 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17190 {
17191 reloc->address = reloc->addend;
17192 reloc->addend = 0;
17193 }
17194
252b5132 17195 code = fixp->fx_r_type;
252b5132 17196
bad36eac 17197 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17198 if (reloc->howto == NULL)
17199 {
17200 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17201 _("cannot represent %s relocation in this object file"
17202 " format"),
252b5132
RH
17203 bfd_get_reloc_code_name (code));
17204 retval[0] = NULL;
17205 }
17206
17207 return retval;
17208}
17209
17210/* Relax a machine dependent frag. This returns the amount by which
17211 the current size of the frag should change. */
17212
17213int
17a2f251 17214mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17215{
4a6a3df4
AO
17216 if (RELAX_BRANCH_P (fragp->fr_subtype))
17217 {
17218 offsetT old_var = fragp->fr_var;
b34976b6
AM
17219
17220 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17221
17222 return fragp->fr_var - old_var;
17223 }
17224
df58fc94
RS
17225 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17226 {
17227 offsetT old_var = fragp->fr_var;
17228 offsetT new_var = 4;
17229
17230 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17231 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17232 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17233 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17234 fragp->fr_var = new_var;
17235
17236 return new_var - old_var;
17237 }
17238
252b5132
RH
17239 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17240 return 0;
17241
c4e7957c 17242 if (mips16_extended_frag (fragp, NULL, stretch))
252b5132
RH
17243 {
17244 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17245 return 0;
17246 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17247 return 2;
17248 }
17249 else
17250 {
17251 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17252 return 0;
17253 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17254 return -2;
17255 }
17256
17257 return 0;
17258}
17259
17260/* Convert a machine dependent frag. */
17261
17262void
17a2f251 17263md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17264{
4a6a3df4
AO
17265 if (RELAX_BRANCH_P (fragp->fr_subtype))
17266 {
4d68580a 17267 char *buf;
4a6a3df4
AO
17268 unsigned long insn;
17269 expressionS exp;
17270 fixS *fixp;
b34976b6 17271
4d68580a
RS
17272 buf = fragp->fr_literal + fragp->fr_fix;
17273 insn = read_insn (buf);
b34976b6 17274
4a6a3df4
AO
17275 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17276 {
17277 /* We generate a fixup instead of applying it right now
17278 because, if there are linker relaxations, we're going to
17279 need the relocations. */
17280 exp.X_op = O_symbol;
17281 exp.X_add_symbol = fragp->fr_symbol;
17282 exp.X_add_number = fragp->fr_offset;
17283
4d68580a
RS
17284 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17285 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17286 fixp->fx_file = fragp->fr_file;
17287 fixp->fx_line = fragp->fr_line;
b34976b6 17288
4d68580a 17289 buf = write_insn (buf, insn);
4a6a3df4
AO
17290 }
17291 else
17292 {
17293 int i;
17294
17295 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17296 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17297
17298 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17299 goto uncond;
17300
17301 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17302 {
17303 /* Reverse the branch. */
17304 switch ((insn >> 28) & 0xf)
17305 {
17306 case 4:
56d438b1
CF
17307 if ((insn & 0xff000000) == 0x47000000
17308 || (insn & 0xff600000) == 0x45600000)
17309 {
17310 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17311 reversed by tweaking bit 23. */
17312 insn ^= 0x00800000;
17313 }
17314 else
17315 {
17316 /* bc[0-3][tf]l? instructions can have the condition
17317 reversed by tweaking a single TF bit, and their
17318 opcodes all have 0x4???????. */
17319 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17320 insn ^= 0x00010000;
17321 }
4a6a3df4
AO
17322 break;
17323
17324 case 0:
17325 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17326 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17327 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17328 insn ^= 0x00010000;
17329 break;
b34976b6 17330
4a6a3df4
AO
17331 case 1:
17332 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17333 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17334 insn ^= 0x04000000;
17335 break;
17336
17337 default:
17338 abort ();
17339 }
17340 }
17341
17342 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17343 {
17344 /* Clear the and-link bit. */
9c2799c2 17345 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17346
54f4ddb3
TS
17347 /* bltzal 0x04100000 bgezal 0x04110000
17348 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17349 insn &= ~0x00100000;
17350 }
17351
17352 /* Branch over the branch (if the branch was likely) or the
17353 full jump (not likely case). Compute the offset from the
17354 current instruction to branch to. */
17355 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17356 i = 16;
17357 else
17358 {
17359 /* How many bytes in instructions we've already emitted? */
4d68580a 17360 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17361 /* How many bytes in instructions from here to the end? */
17362 i = fragp->fr_var - i;
17363 }
17364 /* Convert to instruction count. */
17365 i >>= 2;
17366 /* Branch counts from the next instruction. */
b34976b6 17367 i--;
4a6a3df4
AO
17368 insn |= i;
17369 /* Branch over the jump. */
4d68580a 17370 buf = write_insn (buf, insn);
4a6a3df4 17371
54f4ddb3 17372 /* nop */
4d68580a 17373 buf = write_insn (buf, 0);
4a6a3df4
AO
17374
17375 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17376 {
17377 /* beql $0, $0, 2f */
17378 insn = 0x50000000;
17379 /* Compute the PC offset from the current instruction to
17380 the end of the variable frag. */
17381 /* How many bytes in instructions we've already emitted? */
4d68580a 17382 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17383 /* How many bytes in instructions from here to the end? */
17384 i = fragp->fr_var - i;
17385 /* Convert to instruction count. */
17386 i >>= 2;
17387 /* Don't decrement i, because we want to branch over the
17388 delay slot. */
4a6a3df4 17389 insn |= i;
4a6a3df4 17390
4d68580a
RS
17391 buf = write_insn (buf, insn);
17392 buf = write_insn (buf, 0);
4a6a3df4
AO
17393 }
17394
17395 uncond:
17396 if (mips_pic == NO_PIC)
17397 {
17398 /* j or jal. */
17399 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17400 ? 0x0c000000 : 0x08000000);
17401 exp.X_op = O_symbol;
17402 exp.X_add_symbol = fragp->fr_symbol;
17403 exp.X_add_number = fragp->fr_offset;
17404
4d68580a
RS
17405 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17406 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17407 fixp->fx_file = fragp->fr_file;
17408 fixp->fx_line = fragp->fr_line;
17409
4d68580a 17410 buf = write_insn (buf, insn);
4a6a3df4
AO
17411 }
17412 else
17413 {
66b3e8da
MR
17414 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17415
4a6a3df4 17416 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17417 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17418 insn |= at << OP_SH_RT;
4a6a3df4
AO
17419 exp.X_op = O_symbol;
17420 exp.X_add_symbol = fragp->fr_symbol;
17421 exp.X_add_number = fragp->fr_offset;
17422
17423 if (fragp->fr_offset)
17424 {
17425 exp.X_add_symbol = make_expr_symbol (&exp);
17426 exp.X_add_number = 0;
17427 }
17428
4d68580a
RS
17429 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17430 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
17431 fixp->fx_file = fragp->fr_file;
17432 fixp->fx_line = fragp->fr_line;
17433
4d68580a 17434 buf = write_insn (buf, insn);
b34976b6 17435
4a6a3df4 17436 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
17437 /* nop */
17438 buf = write_insn (buf, 0);
4a6a3df4
AO
17439
17440 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
17441 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17442 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 17443
4d68580a
RS
17444 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17445 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
17446 fixp->fx_file = fragp->fr_file;
17447 fixp->fx_line = fragp->fr_line;
b34976b6 17448
4d68580a 17449 buf = write_insn (buf, insn);
4a6a3df4
AO
17450
17451 /* j(al)r $at. */
17452 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 17453 insn = 0x0000f809;
4a6a3df4 17454 else
66b3e8da
MR
17455 insn = 0x00000008;
17456 insn |= at << OP_SH_RS;
4a6a3df4 17457
4d68580a 17458 buf = write_insn (buf, insn);
4a6a3df4
AO
17459 }
17460 }
17461
4a6a3df4 17462 fragp->fr_fix += fragp->fr_var;
4d68580a 17463 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
17464 return;
17465 }
17466
df58fc94
RS
17467 /* Relax microMIPS branches. */
17468 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17469 {
4d68580a 17470 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17471 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17472 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17473 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 17474 bfd_boolean short_ds;
df58fc94
RS
17475 unsigned long insn;
17476 expressionS exp;
17477 fixS *fixp;
17478
17479 exp.X_op = O_symbol;
17480 exp.X_add_symbol = fragp->fr_symbol;
17481 exp.X_add_number = fragp->fr_offset;
17482
17483 fragp->fr_fix += fragp->fr_var;
17484
17485 /* Handle 16-bit branches that fit or are forced to fit. */
17486 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17487 {
17488 /* We generate a fixup instead of applying it right now,
17489 because if there is linker relaxation, we're going to
17490 need the relocations. */
17491 if (type == 'D')
4d68580a 17492 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17493 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17494 else if (type == 'E')
4d68580a 17495 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17496 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17497 else
17498 abort ();
17499
17500 fixp->fx_file = fragp->fr_file;
17501 fixp->fx_line = fragp->fr_line;
17502
17503 /* These relocations can have an addend that won't fit in
17504 2 octets. */
17505 fixp->fx_no_overflow = 1;
17506
17507 return;
17508 }
17509
2309ddf2 17510 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
17511 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17512 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17513 {
17514 /* We generate a fixup instead of applying it right now,
17515 because if there is linker relaxation, we're going to
17516 need the relocations. */
4d68580a
RS
17517 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17518 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17519 fixp->fx_file = fragp->fr_file;
17520 fixp->fx_line = fragp->fr_line;
17521
17522 if (type == 0)
17523 return;
17524 }
17525
17526 /* Relax 16-bit branches to 32-bit branches. */
17527 if (type != 0)
17528 {
4d68580a 17529 insn = read_compressed_insn (buf, 2);
df58fc94
RS
17530
17531 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17532 insn = 0x94000000; /* beq */
17533 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17534 {
17535 unsigned long regno;
17536
17537 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17538 regno = micromips_to_32_reg_d_map [regno];
17539 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17540 insn |= regno << MICROMIPSOP_SH_RS;
17541 }
17542 else
17543 abort ();
17544
17545 /* Nothing else to do, just write it out. */
17546 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17547 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17548 {
4d68580a
RS
17549 buf = write_compressed_insn (buf, insn, 4);
17550 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17551 return;
17552 }
17553 }
17554 else
4d68580a 17555 insn = read_compressed_insn (buf, 4);
df58fc94
RS
17556
17557 /* Relax 32-bit branches to a sequence of instructions. */
17558 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17559 _("relaxed out-of-range branch into a jump"));
df58fc94 17560
2309ddf2
MR
17561 /* Set the short-delay-slot bit. */
17562 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
17563
17564 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17565 {
17566 symbolS *l;
17567
17568 /* Reverse the branch. */
17569 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17570 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17571 insn ^= 0x20000000;
17572 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17573 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17574 || (insn & 0xffe00000) == 0x40800000 /* blez */
17575 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17576 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17577 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17578 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17579 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17580 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17581 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17582 insn ^= 0x00400000;
17583 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17584 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17585 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17586 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17587 insn ^= 0x00200000;
56d438b1
CF
17588 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17589 BNZ.df */
17590 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17591 BNZ.V */
17592 insn ^= 0x00800000;
df58fc94
RS
17593 else
17594 abort ();
17595
17596 if (al)
17597 {
17598 /* Clear the and-link and short-delay-slot bits. */
17599 gas_assert ((insn & 0xfda00000) == 0x40200000);
17600
17601 /* bltzal 0x40200000 bgezal 0x40600000 */
17602 /* bltzals 0x42200000 bgezals 0x42600000 */
17603 insn &= ~0x02200000;
17604 }
17605
17606 /* Make a label at the end for use with the branch. */
17607 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17608 micromips_label_inc ();
f3ded42a 17609 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
17610
17611 /* Refer to it. */
4d68580a
RS
17612 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17613 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17614 fixp->fx_file = fragp->fr_file;
17615 fixp->fx_line = fragp->fr_line;
17616
17617 /* Branch over the jump. */
4d68580a 17618 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17619 if (!compact)
4d68580a
RS
17620 /* nop */
17621 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17622 }
17623
17624 if (mips_pic == NO_PIC)
17625 {
2309ddf2
MR
17626 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17627
df58fc94
RS
17628 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17629 insn = al ? jal : 0xd4000000;
17630
4d68580a
RS
17631 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17632 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
17633 fixp->fx_file = fragp->fr_file;
17634 fixp->fx_line = fragp->fr_line;
17635
4d68580a 17636 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17637 if (compact)
4d68580a
RS
17638 /* nop */
17639 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17640 }
17641 else
17642 {
17643 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
17644 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17645 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
17646
17647 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17648 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17649 insn |= at << MICROMIPSOP_SH_RT;
17650
17651 if (exp.X_add_number)
17652 {
17653 exp.X_add_symbol = make_expr_symbol (&exp);
17654 exp.X_add_number = 0;
17655 }
17656
4d68580a
RS
17657 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17658 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
17659 fixp->fx_file = fragp->fr_file;
17660 fixp->fx_line = fragp->fr_line;
17661
4d68580a 17662 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17663
17664 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17665 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17666 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17667
4d68580a
RS
17668 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17669 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
17670 fixp->fx_file = fragp->fr_file;
17671 fixp->fx_line = fragp->fr_line;
17672
4d68580a 17673 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17674
17675 /* jr/jrc/jalr/jalrs $at */
17676 insn = al ? jalr : jr;
17677 insn |= at << MICROMIPSOP_SH_MJ;
17678
4d68580a 17679 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
17680 }
17681
4d68580a 17682 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17683 return;
17684 }
17685
252b5132
RH
17686 if (RELAX_MIPS16_P (fragp->fr_subtype))
17687 {
17688 int type;
3ccad066 17689 const struct mips_int_operand *operand;
252b5132 17690 offsetT val;
5c04167a
RS
17691 char *buf;
17692 unsigned int user_length, length;
252b5132 17693 unsigned long insn;
5c04167a 17694 bfd_boolean ext;
252b5132
RH
17695
17696 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17697 operand = mips16_immed_operand (type, FALSE);
252b5132 17698
5c04167a 17699 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
5f5f22c0 17700 val = resolve_symbol_value (fragp->fr_symbol);
3ccad066 17701 if (operand->root.type == OP_PCREL)
252b5132 17702 {
3ccad066 17703 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
17704 addressT addr;
17705
3ccad066 17706 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
17707 addr = fragp->fr_address + fragp->fr_fix;
17708
17709 /* The rules for the base address of a PC relative reloc are
17710 complicated; see mips16_extended_frag. */
3ccad066 17711 if (pcrel_op->include_isa_bit)
252b5132
RH
17712 {
17713 addr += 2;
17714 if (ext)
17715 addr += 2;
17716 /* Ignore the low bit in the target, since it will be
17717 set for a text label. */
3ccad066 17718 val &= -2;
252b5132
RH
17719 }
17720 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17721 addr -= 4;
17722 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17723 addr -= 2;
17724
3ccad066 17725 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
17726 val -= addr;
17727
17728 /* Make sure the section winds up with the alignment we have
17729 assumed. */
3ccad066
RS
17730 if (operand->shift > 0)
17731 record_alignment (asec, operand->shift);
252b5132
RH
17732 }
17733
17734 if (ext
17735 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17736 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17737 as_warn_where (fragp->fr_file, fragp->fr_line,
17738 _("extended instruction in delay slot"));
17739
5c04167a 17740 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 17741
4d68580a 17742 insn = read_compressed_insn (buf, 2);
5c04167a
RS
17743 if (ext)
17744 insn |= MIPS16_EXTEND;
252b5132 17745
5c04167a
RS
17746 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17747 user_length = 4;
17748 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17749 user_length = 2;
17750 else
17751 user_length = 0;
17752
43c0598f 17753 mips16_immed (fragp->fr_file, fragp->fr_line, type,
c150d1d2 17754 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 17755
5c04167a
RS
17756 length = (ext ? 4 : 2);
17757 gas_assert (mips16_opcode_length (insn) == length);
17758 write_compressed_insn (buf, insn, length);
17759 fragp->fr_fix += length;
252b5132
RH
17760 }
17761 else
17762 {
df58fc94
RS
17763 relax_substateT subtype = fragp->fr_subtype;
17764 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17765 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
17766 int first, second;
17767 fixS *fixp;
252b5132 17768
df58fc94
RS
17769 first = RELAX_FIRST (subtype);
17770 second = RELAX_SECOND (subtype);
4d7206a2 17771 fixp = (fixS *) fragp->fr_opcode;
252b5132 17772
df58fc94
RS
17773 /* If the delay slot chosen does not match the size of the instruction,
17774 then emit a warning. */
17775 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17776 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17777 {
17778 relax_substateT s;
17779 const char *msg;
17780
17781 s = subtype & (RELAX_DELAY_SLOT_16BIT
17782 | RELAX_DELAY_SLOT_SIZE_FIRST
17783 | RELAX_DELAY_SLOT_SIZE_SECOND);
17784 msg = macro_warning (s);
17785 if (msg != NULL)
db9b2be4 17786 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
17787 subtype &= ~s;
17788 }
17789
584892a6 17790 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 17791 if (use_second == second_longer)
584892a6 17792 {
df58fc94
RS
17793 relax_substateT s;
17794 const char *msg;
17795
17796 s = (subtype
17797 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17798 msg = macro_warning (s);
17799 if (msg != NULL)
db9b2be4 17800 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 17801 subtype &= ~s;
584892a6
RS
17802 }
17803
4d7206a2
RS
17804 /* Go through all the fixups for the first sequence. Disable them
17805 (by marking them as done) if we're going to use the second
17806 sequence instead. */
17807 while (fixp
17808 && fixp->fx_frag == fragp
17809 && fixp->fx_where < fragp->fr_fix - second)
17810 {
df58fc94 17811 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17812 fixp->fx_done = 1;
17813 fixp = fixp->fx_next;
17814 }
252b5132 17815
4d7206a2
RS
17816 /* Go through the fixups for the second sequence. Disable them if
17817 we're going to use the first sequence, otherwise adjust their
17818 addresses to account for the relaxation. */
17819 while (fixp && fixp->fx_frag == fragp)
17820 {
df58fc94 17821 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17822 fixp->fx_where -= first;
17823 else
17824 fixp->fx_done = 1;
17825 fixp = fixp->fx_next;
17826 }
17827
17828 /* Now modify the frag contents. */
df58fc94 17829 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17830 {
17831 char *start;
17832
17833 start = fragp->fr_literal + fragp->fr_fix - first - second;
17834 memmove (start, start + first, second);
17835 fragp->fr_fix -= first;
17836 }
17837 else
17838 fragp->fr_fix -= second;
252b5132
RH
17839 }
17840}
17841
252b5132
RH
17842/* This function is called after the relocs have been generated.
17843 We've been storing mips16 text labels as odd. Here we convert them
17844 back to even for the convenience of the debugger. */
17845
17846void
17a2f251 17847mips_frob_file_after_relocs (void)
252b5132
RH
17848{
17849 asymbol **syms;
17850 unsigned int count, i;
17851
252b5132
RH
17852 syms = bfd_get_outsymbols (stdoutput);
17853 count = bfd_get_symcount (stdoutput);
17854 for (i = 0; i < count; i++, syms++)
df58fc94
RS
17855 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17856 && ((*syms)->value & 1) != 0)
17857 {
17858 (*syms)->value &= ~1;
17859 /* If the symbol has an odd size, it was probably computed
17860 incorrectly, so adjust that as well. */
17861 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17862 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17863 }
252b5132
RH
17864}
17865
a1facbec
MR
17866/* This function is called whenever a label is defined, including fake
17867 labels instantiated off the dot special symbol. It is used when
17868 handling branch delays; if a branch has a label, we assume we cannot
17869 move it. This also bumps the value of the symbol by 1 in compressed
17870 code. */
252b5132 17871
e1b47bd5 17872static void
a1facbec 17873mips_record_label (symbolS *sym)
252b5132 17874{
a8dbcb85 17875 segment_info_type *si = seg_info (now_seg);
252b5132
RH
17876 struct insn_label_list *l;
17877
17878 if (free_insn_labels == NULL)
17879 l = (struct insn_label_list *) xmalloc (sizeof *l);
17880 else
17881 {
17882 l = free_insn_labels;
17883 free_insn_labels = l->next;
17884 }
17885
17886 l->label = sym;
a8dbcb85
TS
17887 l->next = si->label_list;
17888 si->label_list = l;
a1facbec 17889}
07a53e5c 17890
a1facbec
MR
17891/* This function is called as tc_frob_label() whenever a label is defined
17892 and adds a DWARF-2 record we only want for true labels. */
17893
17894void
17895mips_define_label (symbolS *sym)
17896{
17897 mips_record_label (sym);
07a53e5c 17898 dwarf2_emit_label (sym);
252b5132 17899}
e1b47bd5
RS
17900
17901/* This function is called by tc_new_dot_label whenever a new dot symbol
17902 is defined. */
17903
17904void
17905mips_add_dot_label (symbolS *sym)
17906{
17907 mips_record_label (sym);
17908 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17909 mips_compressed_mark_label (sym);
17910}
252b5132 17911\f
351cdf24
MF
17912/* Converting ASE flags from internal to .MIPS.abiflags values. */
17913static unsigned int
17914mips_convert_ase_flags (int ase)
17915{
17916 unsigned int ext_ases = 0;
17917
17918 if (ase & ASE_DSP)
17919 ext_ases |= AFL_ASE_DSP;
17920 if (ase & ASE_DSPR2)
17921 ext_ases |= AFL_ASE_DSPR2;
17922 if (ase & ASE_EVA)
17923 ext_ases |= AFL_ASE_EVA;
17924 if (ase & ASE_MCU)
17925 ext_ases |= AFL_ASE_MCU;
17926 if (ase & ASE_MDMX)
17927 ext_ases |= AFL_ASE_MDMX;
17928 if (ase & ASE_MIPS3D)
17929 ext_ases |= AFL_ASE_MIPS3D;
17930 if (ase & ASE_MT)
17931 ext_ases |= AFL_ASE_MT;
17932 if (ase & ASE_SMARTMIPS)
17933 ext_ases |= AFL_ASE_SMARTMIPS;
17934 if (ase & ASE_VIRT)
17935 ext_ases |= AFL_ASE_VIRT;
17936 if (ase & ASE_MSA)
17937 ext_ases |= AFL_ASE_MSA;
17938 if (ase & ASE_XPA)
17939 ext_ases |= AFL_ASE_XPA;
17940
17941 return ext_ases;
17942}
252b5132
RH
17943/* Some special processing for a MIPS ELF file. */
17944
17945void
17a2f251 17946mips_elf_final_processing (void)
252b5132 17947{
351cdf24
MF
17948 int fpabi;
17949 Elf_Internal_ABIFlags_v0 flags;
17950
17951 flags.version = 0;
17952 flags.isa_rev = 0;
17953 switch (file_mips_opts.isa)
17954 {
17955 case INSN_ISA1:
17956 flags.isa_level = 1;
17957 break;
17958 case INSN_ISA2:
17959 flags.isa_level = 2;
17960 break;
17961 case INSN_ISA3:
17962 flags.isa_level = 3;
17963 break;
17964 case INSN_ISA4:
17965 flags.isa_level = 4;
17966 break;
17967 case INSN_ISA5:
17968 flags.isa_level = 5;
17969 break;
17970 case INSN_ISA32:
17971 flags.isa_level = 32;
17972 flags.isa_rev = 1;
17973 break;
17974 case INSN_ISA32R2:
17975 flags.isa_level = 32;
17976 flags.isa_rev = 2;
17977 break;
17978 case INSN_ISA32R3:
17979 flags.isa_level = 32;
17980 flags.isa_rev = 3;
17981 break;
17982 case INSN_ISA32R5:
17983 flags.isa_level = 32;
17984 flags.isa_rev = 5;
17985 break;
09c14161
MF
17986 case INSN_ISA32R6:
17987 flags.isa_level = 32;
17988 flags.isa_rev = 6;
17989 break;
351cdf24
MF
17990 case INSN_ISA64:
17991 flags.isa_level = 64;
17992 flags.isa_rev = 1;
17993 break;
17994 case INSN_ISA64R2:
17995 flags.isa_level = 64;
17996 flags.isa_rev = 2;
17997 break;
17998 case INSN_ISA64R3:
17999 flags.isa_level = 64;
18000 flags.isa_rev = 3;
18001 break;
18002 case INSN_ISA64R5:
18003 flags.isa_level = 64;
18004 flags.isa_rev = 5;
18005 break;
09c14161
MF
18006 case INSN_ISA64R6:
18007 flags.isa_level = 64;
18008 flags.isa_rev = 6;
18009 break;
351cdf24
MF
18010 }
18011
18012 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18013 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18014 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18015 : (file_mips_opts.fp == 64) ? AFL_REG_64
18016 : AFL_REG_32;
18017 flags.cpr2_size = AFL_REG_NONE;
18018 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18019 Tag_GNU_MIPS_ABI_FP);
18020 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18021 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18022 if (file_ase_mips16)
18023 flags.ases |= AFL_ASE_MIPS16;
18024 if (file_ase_micromips)
18025 flags.ases |= AFL_ASE_MICROMIPS;
18026 flags.flags1 = 0;
18027 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18028 || file_mips_opts.fp == 64)
18029 && file_mips_opts.oddspreg)
18030 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18031 flags.flags2 = 0;
18032
18033 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18034 ((Elf_External_ABIFlags_v0 *)
18035 mips_flags_frag));
18036
252b5132 18037 /* Write out the register information. */
316f5878 18038 if (mips_abi != N64_ABI)
252b5132
RH
18039 {
18040 Elf32_RegInfo s;
18041
18042 s.ri_gprmask = mips_gprmask;
18043 s.ri_cprmask[0] = mips_cprmask[0];
18044 s.ri_cprmask[1] = mips_cprmask[1];
18045 s.ri_cprmask[2] = mips_cprmask[2];
18046 s.ri_cprmask[3] = mips_cprmask[3];
18047 /* The gp_value field is set by the MIPS ELF backend. */
18048
18049 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18050 ((Elf32_External_RegInfo *)
18051 mips_regmask_frag));
18052 }
18053 else
18054 {
18055 Elf64_Internal_RegInfo s;
18056
18057 s.ri_gprmask = mips_gprmask;
18058 s.ri_pad = 0;
18059 s.ri_cprmask[0] = mips_cprmask[0];
18060 s.ri_cprmask[1] = mips_cprmask[1];
18061 s.ri_cprmask[2] = mips_cprmask[2];
18062 s.ri_cprmask[3] = mips_cprmask[3];
18063 /* The gp_value field is set by the MIPS ELF backend. */
18064
18065 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18066 ((Elf64_External_RegInfo *)
18067 mips_regmask_frag));
18068 }
18069
18070 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18071 sort of BFD interface for this. */
18072 if (mips_any_noreorder)
18073 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18074 if (mips_pic != NO_PIC)
143d77c5 18075 {
8b828383 18076 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18077 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18078 }
18079 if (mips_abicalls)
18080 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18081
b015e599
AP
18082 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18083 defined at present; this might need to change in future. */
a4672219
TS
18084 if (file_ase_mips16)
18085 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18086 if (file_ase_micromips)
18087 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18088 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18090
bdaaa2e1 18091 /* Set the MIPS ELF ABI flags. */
316f5878 18092 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18093 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18094 else if (mips_abi == O64_ABI)
252b5132 18095 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18096 else if (mips_abi == EABI_ABI)
252b5132 18097 {
bad1aba3 18098 if (file_mips_opts.gp == 64)
252b5132
RH
18099 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18100 else
18101 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18102 }
316f5878 18103 else if (mips_abi == N32_ABI)
be00bddd
TS
18104 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18105
c9914766 18106 /* Nothing to do for N64_ABI. */
252b5132
RH
18107
18108 if (mips_32bitmode)
18109 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18110
7361da2c 18111 if (mips_nan2008 == 1)
ba92f887
MR
18112 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18113
ad3fea08 18114 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18115 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18116 Tag_GNU_MIPS_ABI_FP);
18117 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18118 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18119}
252b5132 18120\f
beae10d5 18121typedef struct proc {
9b2f1d35
EC
18122 symbolS *func_sym;
18123 symbolS *func_end_sym;
beae10d5
KH
18124 unsigned long reg_mask;
18125 unsigned long reg_offset;
18126 unsigned long fpreg_mask;
18127 unsigned long fpreg_offset;
18128 unsigned long frame_offset;
18129 unsigned long frame_reg;
18130 unsigned long pc_reg;
18131} procS;
252b5132
RH
18132
18133static procS cur_proc;
18134static procS *cur_proc_ptr;
18135static int numprocs;
18136
df58fc94
RS
18137/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18138 as "2", and a normal nop as "0". */
18139
18140#define NOP_OPCODE_MIPS 0
18141#define NOP_OPCODE_MIPS16 1
18142#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18143
18144char
18145mips_nop_opcode (void)
18146{
df58fc94
RS
18147 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18148 return NOP_OPCODE_MICROMIPS;
18149 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18150 return NOP_OPCODE_MIPS16;
18151 else
18152 return NOP_OPCODE_MIPS;
742a56fe
RS
18153}
18154
df58fc94
RS
18155/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18156 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18157
0a9ef439 18158void
17a2f251 18159mips_handle_align (fragS *fragp)
a19d8eb0 18160{
df58fc94 18161 char nop_opcode;
742a56fe 18162 char *p;
c67a084a
NC
18163 int bytes, size, excess;
18164 valueT opcode;
742a56fe 18165
0a9ef439
RH
18166 if (fragp->fr_type != rs_align_code)
18167 return;
18168
742a56fe 18169 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18170 nop_opcode = *p;
18171 switch (nop_opcode)
a19d8eb0 18172 {
df58fc94
RS
18173 case NOP_OPCODE_MICROMIPS:
18174 opcode = micromips_nop32_insn.insn_opcode;
18175 size = 4;
18176 break;
18177 case NOP_OPCODE_MIPS16:
c67a084a
NC
18178 opcode = mips16_nop_insn.insn_opcode;
18179 size = 2;
df58fc94
RS
18180 break;
18181 case NOP_OPCODE_MIPS:
18182 default:
c67a084a
NC
18183 opcode = nop_insn.insn_opcode;
18184 size = 4;
df58fc94 18185 break;
c67a084a 18186 }
a19d8eb0 18187
c67a084a
NC
18188 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18189 excess = bytes % size;
df58fc94
RS
18190
18191 /* Handle the leading part if we're not inserting a whole number of
18192 instructions, and make it the end of the fixed part of the frag.
18193 Try to fit in a short microMIPS NOP if applicable and possible,
18194 and use zeroes otherwise. */
18195 gas_assert (excess < 4);
18196 fragp->fr_fix += excess;
18197 switch (excess)
c67a084a 18198 {
df58fc94
RS
18199 case 3:
18200 *p++ = '\0';
18201 /* Fall through. */
18202 case 2:
833794fc 18203 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18204 {
4d68580a 18205 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18206 break;
18207 }
18208 *p++ = '\0';
18209 /* Fall through. */
18210 case 1:
18211 *p++ = '\0';
18212 /* Fall through. */
18213 case 0:
18214 break;
a19d8eb0 18215 }
c67a084a
NC
18216
18217 md_number_to_chars (p, opcode, size);
18218 fragp->fr_var = size;
a19d8eb0
CP
18219}
18220
252b5132 18221static long
17a2f251 18222get_number (void)
252b5132
RH
18223{
18224 int negative = 0;
18225 long val = 0;
18226
18227 if (*input_line_pointer == '-')
18228 {
18229 ++input_line_pointer;
18230 negative = 1;
18231 }
3882b010 18232 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18233 as_bad (_("expected simple number"));
252b5132
RH
18234 if (input_line_pointer[0] == '0')
18235 {
18236 if (input_line_pointer[1] == 'x')
18237 {
18238 input_line_pointer += 2;
3882b010 18239 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18240 {
18241 val <<= 4;
18242 val |= hex_value (*input_line_pointer++);
18243 }
18244 return negative ? -val : val;
18245 }
18246 else
18247 {
18248 ++input_line_pointer;
3882b010 18249 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18250 {
18251 val <<= 3;
18252 val |= *input_line_pointer++ - '0';
18253 }
18254 return negative ? -val : val;
18255 }
18256 }
3882b010 18257 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18258 {
18259 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18260 *input_line_pointer, *input_line_pointer);
956cd1d6 18261 as_warn (_("invalid number"));
252b5132
RH
18262 return -1;
18263 }
3882b010 18264 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18265 {
18266 val *= 10;
18267 val += *input_line_pointer++ - '0';
18268 }
18269 return negative ? -val : val;
18270}
18271
18272/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18273 is an initial number which is the ECOFF file index. In the non-ECOFF
18274 case .file implies DWARF-2. */
18275
18276static void
17a2f251 18277s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18278{
ecb4347a
DJ
18279 static int first_file_directive = 0;
18280
c5dd6aab
DJ
18281 if (ECOFF_DEBUGGING)
18282 {
18283 get_number ();
18284 s_app_file (0);
18285 }
18286 else
ecb4347a
DJ
18287 {
18288 char *filename;
18289
18290 filename = dwarf2_directive_file (0);
18291
18292 /* Versions of GCC up to 3.1 start files with a ".file"
18293 directive even for stabs output. Make sure that this
18294 ".file" is handled. Note that you need a version of GCC
18295 after 3.1 in order to support DWARF-2 on MIPS. */
18296 if (filename != NULL && ! first_file_directive)
18297 {
18298 (void) new_logical_line (filename, -1);
c04f5787 18299 s_app_file_string (filename, 0);
ecb4347a
DJ
18300 }
18301 first_file_directive = 1;
18302 }
c5dd6aab
DJ
18303}
18304
18305/* The .loc directive, implying DWARF-2. */
252b5132
RH
18306
18307static void
17a2f251 18308s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18309{
c5dd6aab
DJ
18310 if (!ECOFF_DEBUGGING)
18311 dwarf2_directive_loc (0);
252b5132
RH
18312}
18313
252b5132
RH
18314/* The .end directive. */
18315
18316static void
17a2f251 18317s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
18318{
18319 symbolS *p;
252b5132 18320
7a621144
DJ
18321 /* Following functions need their own .frame and .cprestore directives. */
18322 mips_frame_reg_valid = 0;
18323 mips_cprestore_valid = 0;
18324
252b5132
RH
18325 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18326 {
18327 p = get_symbol ();
18328 demand_empty_rest_of_line ();
18329 }
18330 else
18331 p = NULL;
18332
14949570 18333 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
18334 as_warn (_(".end not in text section"));
18335
18336 if (!cur_proc_ptr)
18337 {
1661c76c 18338 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
18339 demand_empty_rest_of_line ();
18340 return;
18341 }
18342
18343 if (p != NULL)
18344 {
9c2799c2 18345 gas_assert (S_GET_NAME (p));
9b2f1d35 18346 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 18347 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
18348
18349 if (debug_type == DEBUG_STABS)
18350 stabs_generate_asm_endfunc (S_GET_NAME (p),
18351 S_GET_NAME (p));
252b5132
RH
18352 }
18353 else
18354 as_warn (_(".end directive missing or unknown symbol"));
18355
9b2f1d35
EC
18356 /* Create an expression to calculate the size of the function. */
18357 if (p && cur_proc_ptr)
18358 {
18359 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18360 expressionS *exp = xmalloc (sizeof (expressionS));
18361
18362 obj->size = exp;
18363 exp->X_op = O_subtract;
18364 exp->X_add_symbol = symbol_temp_new_now ();
18365 exp->X_op_symbol = p;
18366 exp->X_add_number = 0;
18367
18368 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18369 }
18370
ecb4347a 18371 /* Generate a .pdr section. */
f3ded42a 18372 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
18373 {
18374 segT saved_seg = now_seg;
18375 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
18376 expressionS exp;
18377 char *fragp;
252b5132 18378
252b5132 18379#ifdef md_flush_pending_output
ecb4347a 18380 md_flush_pending_output ();
252b5132
RH
18381#endif
18382
9c2799c2 18383 gas_assert (pdr_seg);
ecb4347a 18384 subseg_set (pdr_seg, 0);
252b5132 18385
ecb4347a
DJ
18386 /* Write the symbol. */
18387 exp.X_op = O_symbol;
18388 exp.X_add_symbol = p;
18389 exp.X_add_number = 0;
18390 emit_expr (&exp, 4);
252b5132 18391
ecb4347a 18392 fragp = frag_more (7 * 4);
252b5132 18393
17a2f251
TS
18394 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18395 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18396 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18397 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18398 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18399 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18400 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 18401
ecb4347a
DJ
18402 subseg_set (saved_seg, saved_subseg);
18403 }
252b5132
RH
18404
18405 cur_proc_ptr = NULL;
18406}
18407
18408/* The .aent and .ent directives. */
18409
18410static void
17a2f251 18411s_mips_ent (int aent)
252b5132 18412{
252b5132 18413 symbolS *symbolP;
252b5132
RH
18414
18415 symbolP = get_symbol ();
18416 if (*input_line_pointer == ',')
f9419b05 18417 ++input_line_pointer;
252b5132 18418 SKIP_WHITESPACE ();
3882b010 18419 if (ISDIGIT (*input_line_pointer)
d9a62219 18420 || *input_line_pointer == '-')
874e8986 18421 get_number ();
252b5132 18422
14949570 18423 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 18424 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
18425
18426 if (!aent && cur_proc_ptr)
9a41af64 18427 as_warn (_("missing .end"));
252b5132
RH
18428
18429 if (!aent)
18430 {
7a621144
DJ
18431 /* This function needs its own .frame and .cprestore directives. */
18432 mips_frame_reg_valid = 0;
18433 mips_cprestore_valid = 0;
18434
252b5132
RH
18435 cur_proc_ptr = &cur_proc;
18436 memset (cur_proc_ptr, '\0', sizeof (procS));
18437
9b2f1d35 18438 cur_proc_ptr->func_sym = symbolP;
252b5132 18439
f9419b05 18440 ++numprocs;
ecb4347a
DJ
18441
18442 if (debug_type == DEBUG_STABS)
18443 stabs_generate_asm_func (S_GET_NAME (symbolP),
18444 S_GET_NAME (symbolP));
252b5132
RH
18445 }
18446
7c0fc524
MR
18447 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18448
252b5132
RH
18449 demand_empty_rest_of_line ();
18450}
18451
18452/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 18453 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 18454 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 18455 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
18456 symbol table (in the mdebug section). */
18457
18458static void
17a2f251 18459s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 18460{
f3ded42a
RS
18461 if (ECOFF_DEBUGGING)
18462 s_ignore (ignore);
18463 else
ecb4347a
DJ
18464 {
18465 long val;
252b5132 18466
ecb4347a
DJ
18467 if (cur_proc_ptr == (procS *) NULL)
18468 {
18469 as_warn (_(".frame outside of .ent"));
18470 demand_empty_rest_of_line ();
18471 return;
18472 }
252b5132 18473
ecb4347a
DJ
18474 cur_proc_ptr->frame_reg = tc_get_register (1);
18475
18476 SKIP_WHITESPACE ();
18477 if (*input_line_pointer++ != ','
18478 || get_absolute_expression_and_terminator (&val) != ',')
18479 {
1661c76c 18480 as_warn (_("bad .frame directive"));
ecb4347a
DJ
18481 --input_line_pointer;
18482 demand_empty_rest_of_line ();
18483 return;
18484 }
252b5132 18485
ecb4347a
DJ
18486 cur_proc_ptr->frame_offset = val;
18487 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 18488
252b5132 18489 demand_empty_rest_of_line ();
252b5132 18490 }
252b5132
RH
18491}
18492
bdaaa2e1
KH
18493/* The .fmask and .mask directives. If the mdebug section is present
18494 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 18495 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 18496 information correctly. We can't use the ecoff routines because they
252b5132
RH
18497 make reference to the ecoff symbol table (in the mdebug section). */
18498
18499static void
17a2f251 18500s_mips_mask (int reg_type)
252b5132 18501{
f3ded42a
RS
18502 if (ECOFF_DEBUGGING)
18503 s_ignore (reg_type);
18504 else
252b5132 18505 {
ecb4347a 18506 long mask, off;
252b5132 18507
ecb4347a
DJ
18508 if (cur_proc_ptr == (procS *) NULL)
18509 {
18510 as_warn (_(".mask/.fmask outside of .ent"));
18511 demand_empty_rest_of_line ();
18512 return;
18513 }
252b5132 18514
ecb4347a
DJ
18515 if (get_absolute_expression_and_terminator (&mask) != ',')
18516 {
1661c76c 18517 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
18518 --input_line_pointer;
18519 demand_empty_rest_of_line ();
18520 return;
18521 }
252b5132 18522
ecb4347a
DJ
18523 off = get_absolute_expression ();
18524
18525 if (reg_type == 'F')
18526 {
18527 cur_proc_ptr->fpreg_mask = mask;
18528 cur_proc_ptr->fpreg_offset = off;
18529 }
18530 else
18531 {
18532 cur_proc_ptr->reg_mask = mask;
18533 cur_proc_ptr->reg_offset = off;
18534 }
18535
18536 demand_empty_rest_of_line ();
252b5132 18537 }
252b5132
RH
18538}
18539
316f5878
RS
18540/* A table describing all the processors gas knows about. Names are
18541 matched in the order listed.
e7af610e 18542
316f5878
RS
18543 To ease comparison, please keep this table in the same order as
18544 gcc's mips_cpu_info_table[]. */
e972090a
NC
18545static const struct mips_cpu_info mips_cpu_info_table[] =
18546{
316f5878 18547 /* Entries for generic ISAs */
d16afab6
RS
18548 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18549 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18550 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18551 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18552 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18553 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18554 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
18555 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18556 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 18557 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
18558 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18559 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
18560 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18561 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 18562 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
18563
18564 /* MIPS I */
d16afab6
RS
18565 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18566 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18567 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
18568
18569 /* MIPS II */
d16afab6 18570 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
18571
18572 /* MIPS III */
d16afab6
RS
18573 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18574 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18575 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18576 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18577 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18578 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18579 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18580 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18581 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18582 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18583 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18584 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18585 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 18586 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
18587 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18588 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
18589
18590 /* MIPS IV */
d16afab6
RS
18591 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18592 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18593 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18594 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18595 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18596 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18597 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18598 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18599 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18600 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18601 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18602 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18603 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18604 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18605 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
18606
18607 /* MIPS 32 */
d16afab6
RS
18608 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18609 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18610 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18611 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
18612
18613 /* MIPS 32 Release 2 */
d16afab6
RS
18614 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18615 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18616 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18617 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18618 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18619 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18620 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18621 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18622 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18623 ISA_MIPS32R2, CPU_MIPS32R2 },
18624 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18625 ISA_MIPS32R2, CPU_MIPS32R2 },
18626 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18627 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18629 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18630 /* Deprecated forms of the above. */
d16afab6
RS
18631 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18632 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18633 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
18634 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18635 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18636 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18637 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18638 /* Deprecated forms of the above. */
d16afab6
RS
18639 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18641 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
18642 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18643 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18644 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18646 /* Deprecated forms of the above. */
d16afab6
RS
18647 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18648 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 18649 /* 34Kn is a 34kc without DSP. */
d16afab6 18650 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18651 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
18652 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18654 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18655 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18656 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18657 /* Deprecated forms of the above. */
d16afab6
RS
18658 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18659 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 18660 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
18661 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18662 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
bbaa46c0 18665 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
ae52f483 18666 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 18667
316f5878 18668 /* MIPS 64 */
d16afab6
RS
18669 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18670 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18671 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18672 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 18673
c7a23324 18674 /* Broadcom SB-1 CPU core */
d16afab6 18675 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 18676 /* Broadcom SB-1A CPU core */
d16afab6 18677 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
d051516a 18678
4ba154f5 18679 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 18680
ed163775
MR
18681 /* MIPS 64 Release 2 */
18682
967344c6 18683 /* Cavium Networks Octeon CPU core */
d16afab6
RS
18684 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18685 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18686 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 18687 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 18688
52b6b6b9 18689 /* RMI Xlr */
d16afab6 18690 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 18691
55a36193
MK
18692 /* Broadcom XLP.
18693 XLP is mostly like XLR, with the prominent exception that it is
18694 MIPS64R2 rather than MIPS64. */
d16afab6 18695 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 18696
7ef0d297
AB
18697 /* i6400. */
18698 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18699
316f5878 18700 /* End marker */
d16afab6 18701 { NULL, 0, 0, 0, 0 }
316f5878 18702};
e7af610e 18703
84ea6cf2 18704
316f5878
RS
18705/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18706 with a final "000" replaced by "k". Ignore case.
e7af610e 18707
316f5878 18708 Note: this function is shared between GCC and GAS. */
c6c98b38 18709
b34976b6 18710static bfd_boolean
17a2f251 18711mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18712{
18713 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18714 given++, canonical++;
18715
18716 return ((*given == 0 && *canonical == 0)
18717 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18718}
18719
18720
18721/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18722 CPU name. We've traditionally allowed a lot of variation here.
18723
18724 Note: this function is shared between GCC and GAS. */
18725
b34976b6 18726static bfd_boolean
17a2f251 18727mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18728{
18729 /* First see if the name matches exactly, or with a final "000"
18730 turned into "k". */
18731 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 18732 return TRUE;
316f5878
RS
18733
18734 /* If not, try comparing based on numerical designation alone.
18735 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18736 if (TOLOWER (*given) == 'r')
18737 given++;
18738 if (!ISDIGIT (*given))
b34976b6 18739 return FALSE;
316f5878
RS
18740
18741 /* Skip over some well-known prefixes in the canonical name,
18742 hoping to find a number there too. */
18743 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18744 canonical += 2;
18745 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18746 canonical += 2;
18747 else if (TOLOWER (canonical[0]) == 'r')
18748 canonical += 1;
18749
18750 return mips_strict_matching_cpu_name_p (canonical, given);
18751}
18752
18753
18754/* Parse an option that takes the name of a processor as its argument.
18755 OPTION is the name of the option and CPU_STRING is the argument.
18756 Return the corresponding processor enumeration if the CPU_STRING is
18757 recognized, otherwise report an error and return null.
18758
18759 A similar function exists in GCC. */
e7af610e
NC
18760
18761static const struct mips_cpu_info *
17a2f251 18762mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 18763{
316f5878 18764 const struct mips_cpu_info *p;
e7af610e 18765
316f5878
RS
18766 /* 'from-abi' selects the most compatible architecture for the given
18767 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18768 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18769 version. Look first at the -mgp options, if given, otherwise base
18770 the choice on MIPS_DEFAULT_64BIT.
e7af610e 18771
316f5878
RS
18772 Treat NO_ABI like the EABIs. One reason to do this is that the
18773 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18774 architecture. This code picks MIPS I for 'mips' and MIPS III for
18775 'mips64', just as we did in the days before 'from-abi'. */
18776 if (strcasecmp (cpu_string, "from-abi") == 0)
18777 {
18778 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18779 return mips_cpu_info_from_isa (ISA_MIPS1);
18780
18781 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18782 return mips_cpu_info_from_isa (ISA_MIPS3);
18783
bad1aba3 18784 if (file_mips_opts.gp >= 0)
18785 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 18786 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
18787
18788 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18789 ? ISA_MIPS3
18790 : ISA_MIPS1);
18791 }
18792
18793 /* 'default' has traditionally been a no-op. Probably not very useful. */
18794 if (strcasecmp (cpu_string, "default") == 0)
18795 return 0;
18796
18797 for (p = mips_cpu_info_table; p->name != 0; p++)
18798 if (mips_matching_cpu_name_p (p->name, cpu_string))
18799 return p;
18800
1661c76c 18801 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 18802 return 0;
e7af610e
NC
18803}
18804
316f5878
RS
18805/* Return the canonical processor information for ISA (a member of the
18806 ISA_MIPS* enumeration). */
18807
e7af610e 18808static const struct mips_cpu_info *
17a2f251 18809mips_cpu_info_from_isa (int isa)
e7af610e
NC
18810{
18811 int i;
18812
18813 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 18814 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 18815 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
18816 return (&mips_cpu_info_table[i]);
18817
e972090a 18818 return NULL;
e7af610e 18819}
fef14a42
TS
18820
18821static const struct mips_cpu_info *
17a2f251 18822mips_cpu_info_from_arch (int arch)
fef14a42
TS
18823{
18824 int i;
18825
18826 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18827 if (arch == mips_cpu_info_table[i].cpu)
18828 return (&mips_cpu_info_table[i]);
18829
18830 return NULL;
18831}
316f5878
RS
18832\f
18833static void
17a2f251 18834show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
18835{
18836 if (*first_p)
18837 {
18838 fprintf (stream, "%24s", "");
18839 *col_p = 24;
18840 }
18841 else
18842 {
18843 fprintf (stream, ", ");
18844 *col_p += 2;
18845 }
e7af610e 18846
316f5878
RS
18847 if (*col_p + strlen (string) > 72)
18848 {
18849 fprintf (stream, "\n%24s", "");
18850 *col_p = 24;
18851 }
18852
18853 fprintf (stream, "%s", string);
18854 *col_p += strlen (string);
18855
18856 *first_p = 0;
18857}
18858
18859void
17a2f251 18860md_show_usage (FILE *stream)
e7af610e 18861{
316f5878
RS
18862 int column, first;
18863 size_t i;
18864
18865 fprintf (stream, _("\
18866MIPS options:\n\
316f5878
RS
18867-EB generate big endian output\n\
18868-EL generate little endian output\n\
18869-g, -g2 do not remove unneeded NOPs or swap branches\n\
18870-G NUM allow referencing objects up to NUM bytes\n\
18871 implicitly with the gp register [default 8]\n"));
18872 fprintf (stream, _("\
18873-mips1 generate MIPS ISA I instructions\n\
18874-mips2 generate MIPS ISA II instructions\n\
18875-mips3 generate MIPS ISA III instructions\n\
18876-mips4 generate MIPS ISA IV instructions\n\
18877-mips5 generate MIPS ISA V instructions\n\
18878-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 18879-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
18880-mips32r3 generate MIPS32 release 3 ISA instructions\n\
18881-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 18882-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 18883-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 18884-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
18885-mips64r3 generate MIPS64 release 3 ISA instructions\n\
18886-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 18887-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
18888-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18889
18890 first = 1;
e7af610e
NC
18891
18892 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
18893 show (stream, mips_cpu_info_table[i].name, &column, &first);
18894 show (stream, "from-abi", &column, &first);
18895 fputc ('\n', stream);
e7af610e 18896
316f5878
RS
18897 fprintf (stream, _("\
18898-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18899-no-mCPU don't generate code specific to CPU.\n\
18900 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18901
18902 first = 1;
18903
18904 show (stream, "3900", &column, &first);
18905 show (stream, "4010", &column, &first);
18906 show (stream, "4100", &column, &first);
18907 show (stream, "4650", &column, &first);
18908 fputc ('\n', stream);
18909
18910 fprintf (stream, _("\
18911-mips16 generate mips16 instructions\n\
18912-no-mips16 do not generate mips16 instructions\n"));
18913 fprintf (stream, _("\
df58fc94
RS
18914-mmicromips generate microMIPS instructions\n\
18915-mno-micromips do not generate microMIPS instructions\n"));
18916 fprintf (stream, _("\
e16bfa71
TS
18917-msmartmips generate smartmips instructions\n\
18918-mno-smartmips do not generate smartmips instructions\n"));
18919 fprintf (stream, _("\
74cd071d
CF
18920-mdsp generate DSP instructions\n\
18921-mno-dsp do not generate DSP instructions\n"));
18922 fprintf (stream, _("\
8b082fb1
TS
18923-mdspr2 generate DSP R2 instructions\n\
18924-mno-dspr2 do not generate DSP R2 instructions\n"));
18925 fprintf (stream, _("\
ef2e4d86
CF
18926-mmt generate MT instructions\n\
18927-mno-mt do not generate MT instructions\n"));
18928 fprintf (stream, _("\
dec0624d
MR
18929-mmcu generate MCU instructions\n\
18930-mno-mcu do not generate MCU instructions\n"));
18931 fprintf (stream, _("\
56d438b1
CF
18932-mmsa generate MSA instructions\n\
18933-mno-msa do not generate MSA instructions\n"));
18934 fprintf (stream, _("\
7d64c587
AB
18935-mxpa generate eXtended Physical Address (XPA) instructions\n\
18936-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18937 fprintf (stream, _("\
b015e599
AP
18938-mvirt generate Virtualization instructions\n\
18939-mno-virt do not generate Virtualization instructions\n"));
18940 fprintf (stream, _("\
833794fc
MR
18941-minsn32 only generate 32-bit microMIPS instructions\n\
18942-mno-insn32 generate all microMIPS instructions\n"));
18943 fprintf (stream, _("\
c67a084a
NC
18944-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18945-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 18946-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 18947-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 18948-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 18949-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
18950-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18951-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 18952-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
18953-O0 remove unneeded NOPs, do not swap branches\n\
18954-O remove unneeded NOPs and swap branches\n\
316f5878
RS
18955--trap, --no-break trap exception on div by 0 and mult overflow\n\
18956--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
18957 fprintf (stream, _("\
18958-mhard-float allow floating-point instructions\n\
18959-msoft-float do not allow floating-point instructions\n\
18960-msingle-float only allow 32-bit floating-point operations\n\
18961-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 18962--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
18963--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18964-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18965
18966 first = 1;
18967
18968 show (stream, "legacy", &column, &first);
18969 show (stream, "2008", &column, &first);
18970
18971 fputc ('\n', stream);
18972
316f5878
RS
18973 fprintf (stream, _("\
18974-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 18975-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 18976-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 18977-non_shared do not generate code that can operate with DSOs\n\
316f5878 18978-xgot assume a 32 bit GOT\n\
dcd410fe 18979-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 18980-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 18981 position dependent (non shared) code\n\
316f5878
RS
18982-mabi=ABI create ABI conformant object file for:\n"));
18983
18984 first = 1;
18985
18986 show (stream, "32", &column, &first);
18987 show (stream, "o64", &column, &first);
18988 show (stream, "n32", &column, &first);
18989 show (stream, "64", &column, &first);
18990 show (stream, "eabi", &column, &first);
18991
18992 fputc ('\n', stream);
18993
18994 fprintf (stream, _("\
18995-32 create o32 ABI object file (default)\n\
18996-n32 create n32 ABI object file\n\
18997-64 create 64 ABI object file\n"));
e7af610e 18998}
14e777e0 18999
1575952e 19000#ifdef TE_IRIX
14e777e0 19001enum dwarf2_format
413a266c 19002mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19003{
369943fe 19004 if (HAVE_64BIT_SYMBOLS)
1575952e 19005 return dwarf2_format_64bit_irix;
14e777e0
KB
19006 else
19007 return dwarf2_format_32bit;
19008}
1575952e 19009#endif
73369e65
EC
19010
19011int
19012mips_dwarf2_addr_size (void)
19013{
6b6b3450 19014 if (HAVE_64BIT_OBJECTS)
73369e65 19015 return 8;
73369e65
EC
19016 else
19017 return 4;
19018}
5862107c
EC
19019
19020/* Standard calling conventions leave the CFA at SP on entry. */
19021void
19022mips_cfi_frame_initial_instructions (void)
19023{
19024 cfi_add_CFA_def_cfa_register (SP);
19025}
19026
707bfff6
TS
19027int
19028tc_mips_regname_to_dw2regnum (char *regname)
19029{
19030 unsigned int regnum = -1;
19031 unsigned int reg;
19032
19033 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19034 regnum = reg;
19035
19036 return regnum;
19037}
263b2574 19038
19039/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19040 Given a symbolic attribute NAME, return the proper integer value.
19041 Returns -1 if the attribute is not known. */
19042
19043int
19044mips_convert_symbolic_attribute (const char *name)
19045{
19046 static const struct
19047 {
19048 const char * name;
19049 const int tag;
19050 }
19051 attribute_table[] =
19052 {
19053#define T(tag) {#tag, tag}
19054 T (Tag_GNU_MIPS_ABI_FP),
19055 T (Tag_GNU_MIPS_ABI_MSA),
19056#undef T
19057 };
19058 unsigned int i;
19059
19060 if (name == NULL)
19061 return -1;
19062
19063 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19064 if (streq (name, attribute_table[i].name))
19065 return attribute_table[i].tag;
19066
19067 return -1;
19068}
fd5c94ab
RS
19069
19070void
19071md_mips_end (void)
19072{
351cdf24
MF
19073 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19074
fd5c94ab
RS
19075 mips_emit_delays ();
19076 if (cur_proc_ptr)
19077 as_warn (_("missing .end at end of assembly"));
919731af 19078
19079 /* Just in case no code was emitted, do the consistency check. */
19080 file_mips_check_options ();
351cdf24
MF
19081
19082 /* Set a floating-point ABI if the user did not. */
19083 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19084 {
19085 /* Perform consistency checks on the floating-point ABI. */
19086 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19087 Tag_GNU_MIPS_ABI_FP);
19088 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19089 check_fpabi (fpabi);
19090 }
19091 else
19092 {
19093 /* Soft-float gets precedence over single-float, the two options should
19094 not be used together so this should not matter. */
19095 if (file_mips_opts.soft_float == 1)
19096 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19097 /* Single-float gets precedence over all double_float cases. */
19098 else if (file_mips_opts.single_float == 1)
19099 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19100 else
19101 {
19102 switch (file_mips_opts.fp)
19103 {
19104 case 32:
19105 if (file_mips_opts.gp == 32)
19106 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19107 break;
19108 case 0:
19109 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19110 break;
19111 case 64:
19112 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19113 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19114 else if (file_mips_opts.gp == 32)
19115 fpabi = Val_GNU_MIPS_ABI_FP_64;
19116 else
19117 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19118 break;
19119 }
19120 }
19121
19122 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19123 Tag_GNU_MIPS_ABI_FP, fpabi);
19124 }
fd5c94ab 19125}
2f0c68f2
CM
19126
19127/* Returns the relocation type required for a particular CFI encoding. */
19128
19129bfd_reloc_code_real_type
19130mips_cfi_reloc_for_encoding (int encoding)
19131{
19132 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19133 return BFD_RELOC_32_PCREL;
19134 else return BFD_RELOC_NONE;
19135}
This page took 2.736481 seconds and 4 git commands to generate.