Use getters/setters to access ARM branch type
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6
TS
351#define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
40209cad
MR
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1171#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1174#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1185
43c0598f
RS
1186/* Sign-extend 16-bit value X. */
1187#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
885add95
CD
1189/* Is the given value a sign-extended 32-bit value? */
1190#define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194/* Is the given value a sign-extended 16-bit value? */
1195#define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
df58fc94
RS
1199/* Is the given value a sign-extended 12-bit value? */
1200#define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
7f3c4072
CM
1203/* Is the given value a sign-extended 9-bit value? */
1204#define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
2051e8c4
MR
1207/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208#define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
bf12938e
RS
1212/* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
bf12938e 1217/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1218#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1223#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
5c04167a
RS
1227
1228/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1230\f
df58fc94
RS
1231/* Whether or not we are emitting a branch-likely macro. */
1232static bfd_boolean emit_branch_likely_macro = FALSE;
1233
4d7206a2
RS
1234/* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253} mips_relax;
252b5132 1254\f
584892a6
RS
1255/* Global variables used to decide whether a macro needs a warning. */
1256static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
df58fc94
RS
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
584892a6
RS
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
df58fc94
RS
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
584892a6
RS
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289} mips_macro_warning;
1290\f
252b5132
RH
1291/* Prototypes for static functions. */
1292
252b5132
RH
1293enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
b34976b6 1295static void append_insn
df58fc94
RS
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
7d10b47d 1298static void mips_no_prev_insn (void);
c67a084a 1299static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1300static void mips16_macro_build
03ea81db 1301 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1302static void load_register (int, expressionS *, int);
584892a6
RS
1303static void macro_start (void);
1304static void macro_end (void);
833794fc 1305static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1306static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1307static void mips_ip (char *str, struct mips_cl_insn * ip);
1308static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1309static void mips16_immed
3b4dbbbf 1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1311 unsigned int, unsigned long *);
5e0116d5 1312static size_t my_getSmallExpression
17a2f251
TS
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314static void my_getExpression (expressionS *, char *);
1315static void s_align (int);
1316static void s_change_sec (int);
1317static void s_change_section (int);
1318static void s_cons (int);
1319static void s_float_cons (int);
1320static void s_mips_globl (int);
1321static void s_option (int);
1322static void s_mipsset (int);
1323static void s_abicalls (int);
1324static void s_cpload (int);
1325static void s_cpsetup (int);
1326static void s_cplocal (int);
1327static void s_cprestore (int);
1328static void s_cpreturn (int);
741d6ea8
JM
1329static void s_dtprelword (int);
1330static void s_dtpreldword (int);
d0f13682
CLT
1331static void s_tprelword (int);
1332static void s_tpreldword (int);
17a2f251
TS
1333static void s_gpvalue (int);
1334static void s_gpword (int);
1335static void s_gpdword (int);
a3f278e2 1336static void s_ehword (int);
17a2f251
TS
1337static void s_cpadd (int);
1338static void s_insn (int);
ba92f887 1339static void s_nan (int);
919731af 1340static void s_module (int);
17a2f251
TS
1341static void s_mips_ent (int);
1342static void s_mips_end (int);
1343static void s_mips_frame (int);
1344static void s_mips_mask (int reg_type);
1345static void s_mips_stab (int);
1346static void s_mips_weakext (int);
1347static void s_mips_file (int);
1348static void s_mips_loc (int);
1349static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1350static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1351static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1353static void file_mips_check_options (void);
e7af610e
NC
1354
1355/* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
e972090a
NC
1358struct mips_cpu_info
1359{
e7af610e 1360 const char *name; /* CPU or ISA name. */
d16afab6
RS
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365};
1366
ad3fea08 1367#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1368
17a2f251
TS
1369static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1372\f
c31f3936
RS
1373/* Command-line options. */
1374const char *md_shortopts = "O::g::G:";
1375
1376enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
ae52f483
AB
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
7361da2c 1390 OPTION_MIPS32R6,
c31f3936 1391 OPTION_MIPS64R2,
ae52f483
AB
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
7361da2c 1394 OPTION_MIPS64R6,
c31f3936
RS
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
56d438b1
CF
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
c31f3936
RS
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
7d64c587
AB
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
c31f3936
RS
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
a8d14a88
CM
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
c31f3936
RS
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
351cdf24 1455 OPTION_FPXX,
c31f3936
RS
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
c31f3936
RS
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
c31f3936
RS
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
ba92f887 1482 OPTION_NAN,
351cdf24
MF
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
c31f3936
RS
1485 OPTION_END_OF_ENUM
1486 };
1487
1488struct option md_longopts[] =
1489{
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
c31f3936
RS
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1615 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1616
1617 {NULL, no_argument, NULL, 0}
1618};
1619size_t md_longopts_size = sizeof (md_longopts);
1620\f
c6278170
RS
1621/* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624struct mips_ase
1625{
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
7361da2c
AB
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
c6278170
RS
1652};
1653
1654/* A table of all supported ASEs. */
1655static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1658 2, 2, 2, 2,
1659 -1 },
c6278170
RS
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1663 2, 2, 2, 2,
1664 -1 },
c6278170
RS
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1668 2, 2, 2, 2,
1669 -1 },
c6278170
RS
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1673 2, 2, 2, 2,
1674 -1 },
c6278170
RS
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1679 -1, 1, -1, -1,
1680 6 },
c6278170
RS
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1685 2, 1, -1, -1,
1686 6 },
c6278170
RS
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1690 2, 2, -1, -1,
1691 -1 },
c6278170
RS
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1695 1, -1, -1, -1,
1696 6 },
c6278170
RS
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1700 2, 2, 2, 2,
1701 -1 },
56d438b1
CF
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1705 2, 2, 2, 2,
1706 -1 },
7d64c587
AB
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1710 2, 2, -1, -1,
1711 -1 },
c6278170
RS
1712};
1713
1714/* The set of ASEs that require -mfp64. */
82bda27b 1715#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1716
1717/* Groups of ASE_* flags that represent different revisions of an ASE. */
1718static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720};
1721\f
252b5132
RH
1722/* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
d84bcf09 1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1738
e972090a
NC
1739static const pseudo_typeS mips_pseudo_table[] =
1740{
beae10d5 1741 /* MIPS specific pseudo-ops. */
252b5132
RH
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
6478892d
TS
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
252b5132 1751 {"cprestore", s_cprestore, 0},
6478892d 1752 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
6478892d 1757 {"gpvalue", s_gpvalue, 0},
252b5132 1758 {"gpword", s_gpword, 0},
10181a0d 1759 {"gpdword", s_gpdword, 0},
a3f278e2 1760 {"ehword", s_ehword, 0},
252b5132
RH
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
ba92f887 1763 {"nan", s_nan, 0},
919731af 1764 {"module", s_module, 0},
252b5132 1765
beae10d5 1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1767 chips. */
38a57ae7 1768 {"asciiz", stringer, 8 + 1},
252b5132
RH
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
252b5132 1776
998b3c36
MR
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
beae10d5 1780 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
cca86cc8 1794 {"section", s_change_section, 0},
252b5132
RH
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
754e2bb9 1797 {"stabd", s_mips_stab, 'd'},
252b5132 1798 {"stabn", s_mips_stab, 'n'},
754e2bb9 1799 {"stabs", s_mips_stab, 's'},
252b5132
RH
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
add56521 1802
add56521 1803 { "extern", ecoff_directive_extern, 0},
add56521 1804
43841e91 1805 { NULL, NULL, 0 },
252b5132
RH
1806};
1807
e972090a
NC
1808static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809{
beae10d5
KH
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
c5dd6aab 1817 {"file", s_mips_file, 0},
252b5132
RH
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
c5dd6aab 1820 {"loc", s_mips_loc, 0},
252b5132
RH
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
43841e91 1823 { NULL, NULL, 0 },
252b5132
RH
1824};
1825
3ae8dd8d
MR
1826/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829int
1830mips_address_bytes (void)
1831{
919731af 1832 file_mips_check_options ();
3ae8dd8d
MR
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834}
1835
17a2f251 1836extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1837
1838void
17a2f251 1839mips_pop_insert (void)
252b5132
RH
1840{
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844}
1845\f
1846/* Symbols labelling the current insn. */
1847
e972090a
NC
1848struct insn_label_list
1849{
252b5132
RH
1850 struct insn_label_list *next;
1851 symbolS *label;
1852};
1853
252b5132 1854static struct insn_label_list *free_insn_labels;
742a56fe 1855#define label_list tc_segment_info_data.labels
252b5132 1856
17a2f251 1857static void mips_clear_insn_labels (void);
df58fc94
RS
1858static void mips_mark_labels (void);
1859static void mips_compressed_mark_labels (void);
252b5132
RH
1860
1861static inline void
17a2f251 1862mips_clear_insn_labels (void)
252b5132 1863{
ed9e98c2 1864 struct insn_label_list **pl;
a8dbcb85 1865 segment_info_type *si;
252b5132 1866
a8dbcb85
TS
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
3739860c 1871
a8dbcb85
TS
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
252b5132 1876}
a8dbcb85 1877
df58fc94
RS
1878/* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880static inline void
1881mips_mark_labels (void)
1882{
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885}
252b5132
RH
1886\f
1887static char *expr_end;
1888
e423441d 1889/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1890 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1891
1892static expressionS imm_expr;
252b5132 1893
77bd4346
RS
1894/* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
252b5132 1898
77bd4346 1899static expressionS offset_expr;
f6688943
TS
1900static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1902
df58fc94
RS
1903/* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
252b5132 1906
df58fc94 1907static unsigned int forced_insn_length;
252b5132 1908
e1b47bd5
RS
1909/* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912static bfd_boolean mips_assembling_insn;
1913
ecb4347a
DJ
1914/* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
252b5132
RH
1916
1917static segT pdr_seg;
252b5132 1918
e013f690
TS
1919/* The default target format to use. */
1920
aeffff67
RS
1921#if defined (TE_FreeBSD)
1922#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923#elif defined (TE_TMIPS)
1924#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925#else
1926#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927#endif
1928
e013f690 1929const char *
17a2f251 1930mips_target_format (void)
e013f690
TS
1931{
1932 switch (OUTPUT_FLAVOR)
1933 {
e013f690 1934 case bfd_target_elf_flavour:
0a44bf69
RS
1935#ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940#endif
e013f690 1941 return (target_big_endian
cfe86eaa 1942 ? (HAVE_64BIT_OBJECTS
aeffff67 1943 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1944 : (HAVE_NEWABI
aeffff67
RS
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1947 : (HAVE_64BIT_OBJECTS
aeffff67 1948 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1949 : (HAVE_NEWABI
aeffff67
RS
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956}
1957
c6278170
RS
1958/* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961static int
1962mips_isa_rev (void)
1963{
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
ae52f483
AB
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
7361da2c
AB
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
c6278170
RS
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984}
1985
1986/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988static unsigned int
1989mips_ase_mask (unsigned int flags)
1990{
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997}
1998
1999/* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002static void
2003mips_check_isa_supports_ase (const struct mips_ase *ase)
2004{
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
1661c76c 2021 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2022 " `%s' extension"), size, base, ase->name);
2023 else
1661c76c 2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2025 ase->name, base, size, min_rev);
2026 }
7361da2c
AB
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
c6278170 2037 if ((ase->flags & FP64_ASES)
0b35dfee 2038 && mips_opts.fp != 64
c6278170
RS
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
1661c76c 2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2043 }
2044}
2045
2046/* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049static void
2050mips_check_isa_supports_ases (void)
2051{
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060}
2061
2062/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065static unsigned int
919731af 2066mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
c6278170
RS
2068{
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
919731af 2072 opts->ase &= ~mask;
c6278170 2073 if (enabled_p)
919731af 2074 opts->ase |= ase->flags;
c6278170
RS
2075 return mask;
2076}
2077
2078/* Return the ASE called NAME, or null if none. */
2079
2080static const struct mips_ase *
2081mips_lookup_ase (const char *name)
2082{
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089}
2090
df58fc94 2091/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2093 otherwise it is a 32-bit instruction. */
df58fc94
RS
2094
2095static inline unsigned int
2096micromips_insn_length (const struct mips_opcode *mo)
2097{
2098 return (mo->mask >> 16) == 0 ? 2 : 4;
2099}
2100
5c04167a
RS
2101/* Return the length of MIPS16 instruction OPCODE. */
2102
2103static inline unsigned int
2104mips16_opcode_length (unsigned long opcode)
2105{
2106 return (opcode >> 16) == 0 ? 2 : 4;
2107}
2108
1e915849
RS
2109/* Return the length of instruction INSN. */
2110
2111static inline unsigned int
2112insn_length (const struct mips_cl_insn *insn)
2113{
df58fc94
RS
2114 if (mips_opts.micromips)
2115 return micromips_insn_length (insn->insn_mo);
2116 else if (mips_opts.mips16)
5c04167a 2117 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2118 else
1e915849 2119 return 4;
1e915849
RS
2120}
2121
2122/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2123
2124static void
2125create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2126{
2127 size_t i;
2128
2129 insn->insn_mo = mo;
1e915849
RS
2130 insn->insn_opcode = mo->match;
2131 insn->frag = NULL;
2132 insn->where = 0;
2133 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2134 insn->fixp[i] = NULL;
2135 insn->fixed_p = (mips_opts.noreorder > 0);
2136 insn->noreorder_p = (mips_opts.noreorder > 0);
2137 insn->mips16_absolute_jump_p = 0;
15be625d 2138 insn->complete_p = 0;
e407c74b 2139 insn->cleared_p = 0;
1e915849
RS
2140}
2141
fc76e730
RS
2142/* Get a list of all the operands in INSN. */
2143
2144static const struct mips_operand_array *
2145insn_operands (const struct mips_cl_insn *insn)
2146{
2147 if (insn->insn_mo >= &mips_opcodes[0]
2148 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2149 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2150
2151 if (insn->insn_mo >= &mips16_opcodes[0]
2152 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2153 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2154
2155 if (insn->insn_mo >= &micromips_opcodes[0]
2156 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2157 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2158
2159 abort ();
2160}
2161
2162/* Get a description of operand OPNO of INSN. */
2163
2164static const struct mips_operand *
2165insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2166{
2167 const struct mips_operand_array *operands;
2168
2169 operands = insn_operands (insn);
2170 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2171 abort ();
2172 return operands->operand[opno];
2173}
2174
e077a1c8
RS
2175/* Install UVAL as the value of OPERAND in INSN. */
2176
2177static inline void
2178insn_insert_operand (struct mips_cl_insn *insn,
2179 const struct mips_operand *operand, unsigned int uval)
2180{
2181 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2182}
2183
fc76e730
RS
2184/* Extract the value of OPERAND from INSN. */
2185
2186static inline unsigned
2187insn_extract_operand (const struct mips_cl_insn *insn,
2188 const struct mips_operand *operand)
2189{
2190 return mips_extract_operand (operand, insn->insn_opcode);
2191}
2192
df58fc94 2193/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2194
2195static void
df58fc94 2196mips_record_compressed_mode (void)
742a56fe
RS
2197{
2198 segment_info_type *si;
2199
2200 si = seg_info (now_seg);
2201 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2202 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2203 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2204 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2205}
2206
4d68580a
RS
2207/* Read a standard MIPS instruction from BUF. */
2208
2209static unsigned long
2210read_insn (char *buf)
2211{
2212 if (target_big_endian)
2213 return bfd_getb32 ((bfd_byte *) buf);
2214 else
2215 return bfd_getl32 ((bfd_byte *) buf);
2216}
2217
2218/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2219 the next byte. */
2220
2221static char *
2222write_insn (char *buf, unsigned int insn)
2223{
2224 md_number_to_chars (buf, insn, 4);
2225 return buf + 4;
2226}
2227
2228/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2229 has length LENGTH. */
2230
2231static unsigned long
2232read_compressed_insn (char *buf, unsigned int length)
2233{
2234 unsigned long insn;
2235 unsigned int i;
2236
2237 insn = 0;
2238 for (i = 0; i < length; i += 2)
2239 {
2240 insn <<= 16;
2241 if (target_big_endian)
2242 insn |= bfd_getb16 ((char *) buf);
2243 else
2244 insn |= bfd_getl16 ((char *) buf);
2245 buf += 2;
2246 }
2247 return insn;
2248}
2249
5c04167a
RS
2250/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2251 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2252
2253static char *
2254write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2255{
2256 unsigned int i;
2257
2258 for (i = 0; i < length; i += 2)
2259 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2260 return buf + length;
2261}
2262
1e915849
RS
2263/* Install INSN at the location specified by its "frag" and "where" fields. */
2264
2265static void
2266install_insn (const struct mips_cl_insn *insn)
2267{
2268 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2269 if (HAVE_CODE_COMPRESSION)
2270 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2271 else
4d68580a 2272 write_insn (f, insn->insn_opcode);
df58fc94 2273 mips_record_compressed_mode ();
1e915849
RS
2274}
2275
2276/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2277 and install the opcode in the new location. */
2278
2279static void
2280move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2281{
2282 size_t i;
2283
2284 insn->frag = frag;
2285 insn->where = where;
2286 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2287 if (insn->fixp[i] != NULL)
2288 {
2289 insn->fixp[i]->fx_frag = frag;
2290 insn->fixp[i]->fx_where = where;
2291 }
2292 install_insn (insn);
2293}
2294
2295/* Add INSN to the end of the output. */
2296
2297static void
2298add_fixed_insn (struct mips_cl_insn *insn)
2299{
2300 char *f = frag_more (insn_length (insn));
2301 move_insn (insn, frag_now, f - frag_now->fr_literal);
2302}
2303
2304/* Start a variant frag and move INSN to the start of the variant part,
2305 marking it as fixed. The other arguments are as for frag_var. */
2306
2307static void
2308add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2309 relax_substateT subtype, symbolS *symbol, offsetT offset)
2310{
2311 frag_grow (max_chars);
2312 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2313 insn->fixed_p = 1;
2314 frag_var (rs_machine_dependent, max_chars, var,
2315 subtype, symbol, offset, NULL);
2316}
2317
2318/* Insert N copies of INSN into the history buffer, starting at
2319 position FIRST. Neither FIRST nor N need to be clipped. */
2320
2321static void
2322insert_into_history (unsigned int first, unsigned int n,
2323 const struct mips_cl_insn *insn)
2324{
2325 if (mips_relax.sequence != 2)
2326 {
2327 unsigned int i;
2328
2329 for (i = ARRAY_SIZE (history); i-- > first;)
2330 if (i >= first + n)
2331 history[i] = history[i - n];
2332 else
2333 history[i] = *insn;
2334 }
2335}
2336
e3de51ce
RS
2337/* Clear the error in insn_error. */
2338
2339static void
2340clear_insn_error (void)
2341{
2342 memset (&insn_error, 0, sizeof (insn_error));
2343}
2344
2345/* Possibly record error message MSG for the current instruction.
2346 If the error is about a particular argument, ARGNUM is the 1-based
2347 number of that argument, otherwise it is 0. FORMAT is the format
2348 of MSG. Return true if MSG was used, false if the current message
2349 was kept. */
2350
2351static bfd_boolean
2352set_insn_error_format (int argnum, enum mips_insn_error_format format,
2353 const char *msg)
2354{
2355 if (argnum == 0)
2356 {
2357 /* Give priority to errors against specific arguments, and to
2358 the first whole-instruction message. */
2359 if (insn_error.msg)
2360 return FALSE;
2361 }
2362 else
2363 {
2364 /* Keep insn_error if it is against a later argument. */
2365 if (argnum < insn_error.min_argnum)
2366 return FALSE;
2367
2368 /* If both errors are against the same argument but are different,
2369 give up on reporting a specific error for this argument.
2370 See the comment about mips_insn_error for details. */
2371 if (argnum == insn_error.min_argnum
2372 && insn_error.msg
2373 && strcmp (insn_error.msg, msg) != 0)
2374 {
2375 insn_error.msg = 0;
2376 insn_error.min_argnum += 1;
2377 return FALSE;
2378 }
2379 }
2380 insn_error.min_argnum = argnum;
2381 insn_error.format = format;
2382 insn_error.msg = msg;
2383 return TRUE;
2384}
2385
2386/* Record an instruction error with no % format fields. ARGNUM and MSG are
2387 as for set_insn_error_format. */
2388
2389static void
2390set_insn_error (int argnum, const char *msg)
2391{
2392 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2393}
2394
2395/* Record an instruction error with one %d field I. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398static void
2399set_insn_error_i (int argnum, const char *msg, int i)
2400{
2401 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2402 insn_error.u.i = i;
2403}
2404
2405/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2406 are as for set_insn_error_format. */
2407
2408static void
2409set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2410{
2411 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2412 {
2413 insn_error.u.ss[0] = s1;
2414 insn_error.u.ss[1] = s2;
2415 }
2416}
2417
2418/* Report the error in insn_error, which is against assembly code STR. */
2419
2420static void
2421report_insn_error (const char *str)
2422{
e1fa0163 2423 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2424
e3de51ce
RS
2425 switch (insn_error.format)
2426 {
2427 case ERR_FMT_PLAIN:
2428 as_bad (msg, str);
2429 break;
2430
2431 case ERR_FMT_I:
2432 as_bad (msg, insn_error.u.i, str);
2433 break;
2434
2435 case ERR_FMT_SS:
2436 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2437 break;
2438 }
e1fa0163
NC
2439
2440 free ((char *) msg);
e3de51ce
RS
2441}
2442
71400594
RS
2443/* Initialize vr4120_conflicts. There is a bit of duplication here:
2444 the idea is to make it obvious at a glance that each errata is
2445 included. */
2446
2447static void
2448init_vr4120_conflicts (void)
2449{
2450#define CONFLICT(FIRST, SECOND) \
2451 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2452
2453 /* Errata 21 - [D]DIV[U] after [D]MACC */
2454 CONFLICT (MACC, DIV);
2455 CONFLICT (DMACC, DIV);
2456
2457 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2458 CONFLICT (DMULT, DMULT);
2459 CONFLICT (DMULT, DMACC);
2460 CONFLICT (DMACC, DMULT);
2461 CONFLICT (DMACC, DMACC);
2462
2463 /* Errata 24 - MT{LO,HI} after [D]MACC */
2464 CONFLICT (MACC, MTHILO);
2465 CONFLICT (DMACC, MTHILO);
2466
2467 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2468 instruction is executed immediately after a MACC or DMACC
2469 instruction, the result of [either instruction] is incorrect." */
2470 CONFLICT (MACC, MULT);
2471 CONFLICT (MACC, DMULT);
2472 CONFLICT (DMACC, MULT);
2473 CONFLICT (DMACC, DMULT);
2474
2475 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2476 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2477 DDIV or DDIVU instruction, the result of the MACC or
2478 DMACC instruction is incorrect.". */
2479 CONFLICT (DMULT, MACC);
2480 CONFLICT (DMULT, DMACC);
2481 CONFLICT (DIV, MACC);
2482 CONFLICT (DIV, DMACC);
2483
2484#undef CONFLICT
2485}
2486
707bfff6
TS
2487struct regname {
2488 const char *name;
2489 unsigned int num;
2490};
2491
14daeee3 2492#define RNUM_MASK 0x00000ff
56d438b1 2493#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2494#define RTYPE_NUM 0x0000100
2495#define RTYPE_FPU 0x0000200
2496#define RTYPE_FCC 0x0000400
2497#define RTYPE_VEC 0x0000800
2498#define RTYPE_GP 0x0001000
2499#define RTYPE_CP0 0x0002000
2500#define RTYPE_PC 0x0004000
2501#define RTYPE_ACC 0x0008000
2502#define RTYPE_CCC 0x0010000
2503#define RTYPE_VI 0x0020000
2504#define RTYPE_VF 0x0040000
2505#define RTYPE_R5900_I 0x0080000
2506#define RTYPE_R5900_Q 0x0100000
2507#define RTYPE_R5900_R 0x0200000
2508#define RTYPE_R5900_ACC 0x0400000
56d438b1 2509#define RTYPE_MSA 0x0800000
14daeee3 2510#define RWARN 0x8000000
707bfff6
TS
2511
2512#define GENERIC_REGISTER_NUMBERS \
2513 {"$0", RTYPE_NUM | 0}, \
2514 {"$1", RTYPE_NUM | 1}, \
2515 {"$2", RTYPE_NUM | 2}, \
2516 {"$3", RTYPE_NUM | 3}, \
2517 {"$4", RTYPE_NUM | 4}, \
2518 {"$5", RTYPE_NUM | 5}, \
2519 {"$6", RTYPE_NUM | 6}, \
2520 {"$7", RTYPE_NUM | 7}, \
2521 {"$8", RTYPE_NUM | 8}, \
2522 {"$9", RTYPE_NUM | 9}, \
2523 {"$10", RTYPE_NUM | 10}, \
2524 {"$11", RTYPE_NUM | 11}, \
2525 {"$12", RTYPE_NUM | 12}, \
2526 {"$13", RTYPE_NUM | 13}, \
2527 {"$14", RTYPE_NUM | 14}, \
2528 {"$15", RTYPE_NUM | 15}, \
2529 {"$16", RTYPE_NUM | 16}, \
2530 {"$17", RTYPE_NUM | 17}, \
2531 {"$18", RTYPE_NUM | 18}, \
2532 {"$19", RTYPE_NUM | 19}, \
2533 {"$20", RTYPE_NUM | 20}, \
2534 {"$21", RTYPE_NUM | 21}, \
2535 {"$22", RTYPE_NUM | 22}, \
2536 {"$23", RTYPE_NUM | 23}, \
2537 {"$24", RTYPE_NUM | 24}, \
2538 {"$25", RTYPE_NUM | 25}, \
2539 {"$26", RTYPE_NUM | 26}, \
2540 {"$27", RTYPE_NUM | 27}, \
2541 {"$28", RTYPE_NUM | 28}, \
2542 {"$29", RTYPE_NUM | 29}, \
2543 {"$30", RTYPE_NUM | 30}, \
3739860c 2544 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2545
2546#define FPU_REGISTER_NAMES \
2547 {"$f0", RTYPE_FPU | 0}, \
2548 {"$f1", RTYPE_FPU | 1}, \
2549 {"$f2", RTYPE_FPU | 2}, \
2550 {"$f3", RTYPE_FPU | 3}, \
2551 {"$f4", RTYPE_FPU | 4}, \
2552 {"$f5", RTYPE_FPU | 5}, \
2553 {"$f6", RTYPE_FPU | 6}, \
2554 {"$f7", RTYPE_FPU | 7}, \
2555 {"$f8", RTYPE_FPU | 8}, \
2556 {"$f9", RTYPE_FPU | 9}, \
2557 {"$f10", RTYPE_FPU | 10}, \
2558 {"$f11", RTYPE_FPU | 11}, \
2559 {"$f12", RTYPE_FPU | 12}, \
2560 {"$f13", RTYPE_FPU | 13}, \
2561 {"$f14", RTYPE_FPU | 14}, \
2562 {"$f15", RTYPE_FPU | 15}, \
2563 {"$f16", RTYPE_FPU | 16}, \
2564 {"$f17", RTYPE_FPU | 17}, \
2565 {"$f18", RTYPE_FPU | 18}, \
2566 {"$f19", RTYPE_FPU | 19}, \
2567 {"$f20", RTYPE_FPU | 20}, \
2568 {"$f21", RTYPE_FPU | 21}, \
2569 {"$f22", RTYPE_FPU | 22}, \
2570 {"$f23", RTYPE_FPU | 23}, \
2571 {"$f24", RTYPE_FPU | 24}, \
2572 {"$f25", RTYPE_FPU | 25}, \
2573 {"$f26", RTYPE_FPU | 26}, \
2574 {"$f27", RTYPE_FPU | 27}, \
2575 {"$f28", RTYPE_FPU | 28}, \
2576 {"$f29", RTYPE_FPU | 29}, \
2577 {"$f30", RTYPE_FPU | 30}, \
2578 {"$f31", RTYPE_FPU | 31}
2579
2580#define FPU_CONDITION_CODE_NAMES \
2581 {"$fcc0", RTYPE_FCC | 0}, \
2582 {"$fcc1", RTYPE_FCC | 1}, \
2583 {"$fcc2", RTYPE_FCC | 2}, \
2584 {"$fcc3", RTYPE_FCC | 3}, \
2585 {"$fcc4", RTYPE_FCC | 4}, \
2586 {"$fcc5", RTYPE_FCC | 5}, \
2587 {"$fcc6", RTYPE_FCC | 6}, \
2588 {"$fcc7", RTYPE_FCC | 7}
2589
2590#define COPROC_CONDITION_CODE_NAMES \
2591 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2592 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2593 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2594 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2595 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2596 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2597 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2598 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2599
2600#define N32N64_SYMBOLIC_REGISTER_NAMES \
2601 {"$a4", RTYPE_GP | 8}, \
2602 {"$a5", RTYPE_GP | 9}, \
2603 {"$a6", RTYPE_GP | 10}, \
2604 {"$a7", RTYPE_GP | 11}, \
2605 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2606 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2607 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2608 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2609 {"$t0", RTYPE_GP | 12}, \
2610 {"$t1", RTYPE_GP | 13}, \
2611 {"$t2", RTYPE_GP | 14}, \
2612 {"$t3", RTYPE_GP | 15}
2613
2614#define O32_SYMBOLIC_REGISTER_NAMES \
2615 {"$t0", RTYPE_GP | 8}, \
2616 {"$t1", RTYPE_GP | 9}, \
2617 {"$t2", RTYPE_GP | 10}, \
2618 {"$t3", RTYPE_GP | 11}, \
2619 {"$t4", RTYPE_GP | 12}, \
2620 {"$t5", RTYPE_GP | 13}, \
2621 {"$t6", RTYPE_GP | 14}, \
2622 {"$t7", RTYPE_GP | 15}, \
2623 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2624 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2625 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2626 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2627
2628/* Remaining symbolic register names */
2629#define SYMBOLIC_REGISTER_NAMES \
2630 {"$zero", RTYPE_GP | 0}, \
2631 {"$at", RTYPE_GP | 1}, \
2632 {"$AT", RTYPE_GP | 1}, \
2633 {"$v0", RTYPE_GP | 2}, \
2634 {"$v1", RTYPE_GP | 3}, \
2635 {"$a0", RTYPE_GP | 4}, \
2636 {"$a1", RTYPE_GP | 5}, \
2637 {"$a2", RTYPE_GP | 6}, \
2638 {"$a3", RTYPE_GP | 7}, \
2639 {"$s0", RTYPE_GP | 16}, \
2640 {"$s1", RTYPE_GP | 17}, \
2641 {"$s2", RTYPE_GP | 18}, \
2642 {"$s3", RTYPE_GP | 19}, \
2643 {"$s4", RTYPE_GP | 20}, \
2644 {"$s5", RTYPE_GP | 21}, \
2645 {"$s6", RTYPE_GP | 22}, \
2646 {"$s7", RTYPE_GP | 23}, \
2647 {"$t8", RTYPE_GP | 24}, \
2648 {"$t9", RTYPE_GP | 25}, \
2649 {"$k0", RTYPE_GP | 26}, \
2650 {"$kt0", RTYPE_GP | 26}, \
2651 {"$k1", RTYPE_GP | 27}, \
2652 {"$kt1", RTYPE_GP | 27}, \
2653 {"$gp", RTYPE_GP | 28}, \
2654 {"$sp", RTYPE_GP | 29}, \
2655 {"$s8", RTYPE_GP | 30}, \
2656 {"$fp", RTYPE_GP | 30}, \
2657 {"$ra", RTYPE_GP | 31}
2658
2659#define MIPS16_SPECIAL_REGISTER_NAMES \
2660 {"$pc", RTYPE_PC | 0}
2661
2662#define MDMX_VECTOR_REGISTER_NAMES \
2663 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2664 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2665 {"$v2", RTYPE_VEC | 2}, \
2666 {"$v3", RTYPE_VEC | 3}, \
2667 {"$v4", RTYPE_VEC | 4}, \
2668 {"$v5", RTYPE_VEC | 5}, \
2669 {"$v6", RTYPE_VEC | 6}, \
2670 {"$v7", RTYPE_VEC | 7}, \
2671 {"$v8", RTYPE_VEC | 8}, \
2672 {"$v9", RTYPE_VEC | 9}, \
2673 {"$v10", RTYPE_VEC | 10}, \
2674 {"$v11", RTYPE_VEC | 11}, \
2675 {"$v12", RTYPE_VEC | 12}, \
2676 {"$v13", RTYPE_VEC | 13}, \
2677 {"$v14", RTYPE_VEC | 14}, \
2678 {"$v15", RTYPE_VEC | 15}, \
2679 {"$v16", RTYPE_VEC | 16}, \
2680 {"$v17", RTYPE_VEC | 17}, \
2681 {"$v18", RTYPE_VEC | 18}, \
2682 {"$v19", RTYPE_VEC | 19}, \
2683 {"$v20", RTYPE_VEC | 20}, \
2684 {"$v21", RTYPE_VEC | 21}, \
2685 {"$v22", RTYPE_VEC | 22}, \
2686 {"$v23", RTYPE_VEC | 23}, \
2687 {"$v24", RTYPE_VEC | 24}, \
2688 {"$v25", RTYPE_VEC | 25}, \
2689 {"$v26", RTYPE_VEC | 26}, \
2690 {"$v27", RTYPE_VEC | 27}, \
2691 {"$v28", RTYPE_VEC | 28}, \
2692 {"$v29", RTYPE_VEC | 29}, \
2693 {"$v30", RTYPE_VEC | 30}, \
2694 {"$v31", RTYPE_VEC | 31}
2695
14daeee3
RS
2696#define R5900_I_NAMES \
2697 {"$I", RTYPE_R5900_I | 0}
2698
2699#define R5900_Q_NAMES \
2700 {"$Q", RTYPE_R5900_Q | 0}
2701
2702#define R5900_R_NAMES \
2703 {"$R", RTYPE_R5900_R | 0}
2704
2705#define R5900_ACC_NAMES \
2706 {"$ACC", RTYPE_R5900_ACC | 0 }
2707
707bfff6
TS
2708#define MIPS_DSP_ACCUMULATOR_NAMES \
2709 {"$ac0", RTYPE_ACC | 0}, \
2710 {"$ac1", RTYPE_ACC | 1}, \
2711 {"$ac2", RTYPE_ACC | 2}, \
2712 {"$ac3", RTYPE_ACC | 3}
2713
2714static const struct regname reg_names[] = {
2715 GENERIC_REGISTER_NUMBERS,
2716 FPU_REGISTER_NAMES,
2717 FPU_CONDITION_CODE_NAMES,
2718 COPROC_CONDITION_CODE_NAMES,
2719
2720 /* The $txx registers depends on the abi,
2721 these will be added later into the symbol table from
3739860c 2722 one of the tables below once mips_abi is set after
707bfff6
TS
2723 parsing of arguments from the command line. */
2724 SYMBOLIC_REGISTER_NAMES,
2725
2726 MIPS16_SPECIAL_REGISTER_NAMES,
2727 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2728 R5900_I_NAMES,
2729 R5900_Q_NAMES,
2730 R5900_R_NAMES,
2731 R5900_ACC_NAMES,
707bfff6
TS
2732 MIPS_DSP_ACCUMULATOR_NAMES,
2733 {0, 0}
2734};
2735
2736static const struct regname reg_names_o32[] = {
2737 O32_SYMBOLIC_REGISTER_NAMES,
2738 {0, 0}
2739};
2740
2741static const struct regname reg_names_n32n64[] = {
2742 N32N64_SYMBOLIC_REGISTER_NAMES,
2743 {0, 0}
2744};
2745
a92713e6
RS
2746/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2747 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2748 of these register symbols, return the associated vector register,
2749 otherwise return SYMVAL itself. */
df58fc94 2750
a92713e6
RS
2751static unsigned int
2752mips_prefer_vec_regno (unsigned int symval)
707bfff6 2753{
a92713e6
RS
2754 if ((symval & -2) == (RTYPE_GP | 2))
2755 return RTYPE_VEC | (symval & 1);
2756 return symval;
2757}
2758
14daeee3
RS
2759/* Return true if string [S, E) is a valid register name, storing its
2760 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2761
2762static bfd_boolean
14daeee3 2763mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2764{
707bfff6 2765 char save_c;
14daeee3 2766 symbolS *symbol;
707bfff6
TS
2767
2768 /* Terminate name. */
2769 save_c = *e;
2770 *e = '\0';
2771
a92713e6
RS
2772 /* Look up the name. */
2773 symbol = symbol_find (s);
2774 *e = save_c;
2775
2776 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2777 return FALSE;
2778
14daeee3
RS
2779 *symval_ptr = S_GET_VALUE (symbol);
2780 return TRUE;
2781}
2782
2783/* Return true if the string at *SPTR is a valid register name. Allow it
2784 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2785 is nonnull.
2786
2787 When returning true, move *SPTR past the register, store the
2788 register's symbol value in *SYMVAL_PTR and the channel mask in
2789 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2790 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2791 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2792
2793static bfd_boolean
2794mips_parse_register (char **sptr, unsigned int *symval_ptr,
2795 unsigned int *channels_ptr)
2796{
2797 char *s, *e, *m;
2798 const char *q;
2799 unsigned int channels, symval, bit;
2800
2801 /* Find end of name. */
2802 s = e = *sptr;
2803 if (is_name_beginner (*e))
2804 ++e;
2805 while (is_part_of_name (*e))
2806 ++e;
2807
2808 channels = 0;
2809 if (!mips_parse_register_1 (s, e, &symval))
2810 {
2811 if (!channels_ptr)
2812 return FALSE;
2813
2814 /* Eat characters from the end of the string that are valid
2815 channel suffixes. The preceding register must be $ACC or
2816 end with a digit, so there is no ambiguity. */
2817 bit = 1;
2818 m = e;
2819 for (q = "wzyx"; *q; q++, bit <<= 1)
2820 if (m > s && m[-1] == *q)
2821 {
2822 --m;
2823 channels |= bit;
2824 }
2825
2826 if (channels == 0
2827 || !mips_parse_register_1 (s, m, &symval)
2828 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2829 return FALSE;
2830 }
2831
a92713e6 2832 *sptr = e;
14daeee3
RS
2833 *symval_ptr = symval;
2834 if (channels_ptr)
2835 *channels_ptr = channels;
a92713e6
RS
2836 return TRUE;
2837}
2838
2839/* Check if SPTR points at a valid register specifier according to TYPES.
2840 If so, then return 1, advance S to consume the specifier and store
2841 the register's number in REGNOP, otherwise return 0. */
2842
2843static int
2844reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2845{
2846 unsigned int regno;
2847
14daeee3 2848 if (mips_parse_register (s, &regno, NULL))
707bfff6 2849 {
a92713e6
RS
2850 if (types & RTYPE_VEC)
2851 regno = mips_prefer_vec_regno (regno);
2852 if (regno & types)
2853 regno &= RNUM_MASK;
2854 else
2855 regno = ~0;
707bfff6 2856 }
a92713e6 2857 else
707bfff6 2858 {
a92713e6 2859 if (types & RWARN)
1661c76c 2860 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2861 regno = ~0;
707bfff6 2862 }
707bfff6 2863 if (regnop)
a92713e6
RS
2864 *regnop = regno;
2865 return regno <= RNUM_MASK;
707bfff6
TS
2866}
2867
14daeee3
RS
2868/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2869 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2870
2871static char *
2872mips_parse_vu0_channels (char *s, unsigned int *channels)
2873{
2874 unsigned int i;
2875
2876 *channels = 0;
2877 for (i = 0; i < 4; i++)
2878 if (*s == "xyzw"[i])
2879 {
2880 *channels |= 1 << (3 - i);
2881 ++s;
2882 }
2883 return s;
2884}
2885
a92713e6
RS
2886/* Token types for parsed operand lists. */
2887enum mips_operand_token_type {
2888 /* A plain register, e.g. $f2. */
2889 OT_REG,
df58fc94 2890
14daeee3
RS
2891 /* A 4-bit XYZW channel mask. */
2892 OT_CHANNELS,
2893
56d438b1
CF
2894 /* A constant vector index, e.g. [1]. */
2895 OT_INTEGER_INDEX,
2896
2897 /* A register vector index, e.g. [$2]. */
2898 OT_REG_INDEX,
df58fc94 2899
a92713e6
RS
2900 /* A continuous range of registers, e.g. $s0-$s4. */
2901 OT_REG_RANGE,
2902
2903 /* A (possibly relocated) expression. */
2904 OT_INTEGER,
2905
2906 /* A floating-point value. */
2907 OT_FLOAT,
2908
2909 /* A single character. This can be '(', ')' or ',', but '(' only appears
2910 before OT_REGs. */
2911 OT_CHAR,
2912
14daeee3
RS
2913 /* A doubled character, either "--" or "++". */
2914 OT_DOUBLE_CHAR,
2915
a92713e6
RS
2916 /* The end of the operand list. */
2917 OT_END
2918};
2919
2920/* A parsed operand token. */
2921struct mips_operand_token
2922{
2923 /* The type of token. */
2924 enum mips_operand_token_type type;
2925 union
2926 {
56d438b1 2927 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2928 unsigned int regno;
2929
14daeee3
RS
2930 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2931 unsigned int channels;
2932
56d438b1
CF
2933 /* The integer value of an OT_INTEGER_INDEX. */
2934 addressT index;
a92713e6
RS
2935
2936 /* The two register symbol values involved in an OT_REG_RANGE. */
2937 struct {
2938 unsigned int regno1;
2939 unsigned int regno2;
2940 } reg_range;
2941
2942 /* The value of an OT_INTEGER. The value is represented as an
2943 expression and the relocation operators that were applied to
2944 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2945 relocation operators were used. */
2946 struct {
2947 expressionS value;
2948 bfd_reloc_code_real_type relocs[3];
2949 } integer;
2950
2951 /* The binary data for an OT_FLOAT constant, and the number of bytes
2952 in the constant. */
2953 struct {
2954 unsigned char data[8];
2955 int length;
2956 } flt;
2957
14daeee3 2958 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2959 char ch;
2960 } u;
2961};
2962
2963/* An obstack used to construct lists of mips_operand_tokens. */
2964static struct obstack mips_operand_tokens;
2965
2966/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2967
2968static void
2969mips_add_token (struct mips_operand_token *token,
2970 enum mips_operand_token_type type)
2971{
2972 token->type = type;
2973 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2974}
2975
2976/* Check whether S is '(' followed by a register name. Add OT_CHAR
2977 and OT_REG tokens for them if so, and return a pointer to the first
2978 unconsumed character. Return null otherwise. */
2979
2980static char *
2981mips_parse_base_start (char *s)
2982{
2983 struct mips_operand_token token;
14daeee3
RS
2984 unsigned int regno, channels;
2985 bfd_boolean decrement_p;
df58fc94 2986
a92713e6
RS
2987 if (*s != '(')
2988 return 0;
2989
2990 ++s;
2991 SKIP_SPACE_TABS (s);
14daeee3
RS
2992
2993 /* Only match "--" as part of a base expression. In other contexts "--X"
2994 is a double negative. */
2995 decrement_p = (s[0] == '-' && s[1] == '-');
2996 if (decrement_p)
2997 {
2998 s += 2;
2999 SKIP_SPACE_TABS (s);
3000 }
3001
3002 /* Allow a channel specifier because that leads to better error messages
3003 than treating something like "$vf0x++" as an expression. */
3004 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3005 return 0;
3006
3007 token.u.ch = '(';
3008 mips_add_token (&token, OT_CHAR);
3009
14daeee3
RS
3010 if (decrement_p)
3011 {
3012 token.u.ch = '-';
3013 mips_add_token (&token, OT_DOUBLE_CHAR);
3014 }
3015
a92713e6
RS
3016 token.u.regno = regno;
3017 mips_add_token (&token, OT_REG);
3018
14daeee3
RS
3019 if (channels)
3020 {
3021 token.u.channels = channels;
3022 mips_add_token (&token, OT_CHANNELS);
3023 }
3024
3025 /* For consistency, only match "++" as part of base expressions too. */
3026 SKIP_SPACE_TABS (s);
3027 if (s[0] == '+' && s[1] == '+')
3028 {
3029 s += 2;
3030 token.u.ch = '+';
3031 mips_add_token (&token, OT_DOUBLE_CHAR);
3032 }
3033
a92713e6
RS
3034 return s;
3035}
3036
3037/* Parse one or more tokens from S. Return a pointer to the first
3038 unconsumed character on success. Return null if an error was found
3039 and store the error text in insn_error. FLOAT_FORMAT is as for
3040 mips_parse_arguments. */
3041
3042static char *
3043mips_parse_argument_token (char *s, char float_format)
3044{
6d4af3c2
AM
3045 char *end, *save_in;
3046 const char *err;
14daeee3 3047 unsigned int regno1, regno2, channels;
a92713e6
RS
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
14daeee3 3066 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3067 {
14daeee3
RS
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
a92713e6
RS
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
df58fc94 3081 {
a92713e6
RS
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
14daeee3 3085 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3086 {
1661c76c 3087 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3088 return 0;
3089 }
df58fc94 3090
a92713e6
RS
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
a92713e6 3096
56d438b1
CF
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
a92713e6
RS
3104 ++s;
3105 SKIP_SPACE_TABS (s);
56d438b1
CF
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
a92713e6 3109 {
56d438b1
CF
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3121 }
a92713e6
RS
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
1661c76c 3125 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3126 return 0;
3127 }
3128 ++s;
df58fc94 3129 }
a92713e6 3130 return s;
df58fc94
RS
3131 }
3132
a92713e6
RS
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
e3de51ce 3144 set_insn_error (0, err);
a92713e6
RS
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162}
3163
3164/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172static struct mips_operand_token *
3173mips_parse_arguments (char *s, char float_format)
3174{
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3191}
3192
d301a56b
RS
3193/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3195
3196static bfd_boolean
f79e2745 3197is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3198{
3199 int isa = mips_opts.isa;
846ef2d0 3200 int ase = mips_opts.ase;
037b32b9 3201 int fp_s, fp_d;
c6278170 3202 unsigned int i;
037b32b9 3203
c6278170
RS
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
037b32b9 3208
d301a56b 3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233}
3234
3235/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238static bfd_boolean
3239is_opcode_valid_16 (const struct mips_opcode *mo)
3240{
d301a56b 3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3242}
3243
df58fc94
RS
3244/* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247static bfd_boolean
3248is_size_valid (const struct mips_opcode *mo)
3249{
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
833794fc
MR
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
df58fc94
RS
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265}
3266
3267/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
df58fc94
RS
3280
3281static bfd_boolean
3282is_delay_slot_valid (const struct mips_opcode *mo)
3283{
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
c06dec14 3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297}
3298
fc76e730
RS
3299/* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
ab902481
RS
3307
3308static int
3309validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
fc76e730
RS
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
ab902481
RS
3313{
3314 const char *s;
fc76e730 3315 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3316 const struct mips_operand *operand;
3317
fc76e730
RS
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
fc76e730 3326 opno = 0;
14daeee3
RS
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
14daeee3
RS
3337 case '#':
3338 s++;
3339 break;
3340
ab902481 3341 default:
fc76e730
RS
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
fc76e730
RS
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
14daeee3 3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3355 {
14daeee3 3356 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
ab902481 3364 /* Skip prefix characters. */
7361da2c 3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3366 ++s;
fc76e730 3367 opno += 1;
ab902481
RS
3368 break;
3369 }
fc76e730 3370 doubled = used_bits & mask & insn_bits;
ab902481
RS
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
fc76e730 3377 used_bits |= mask;
ab902481 3378 undefined = ~used_bits & insn_bits;
fc76e730 3379 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393}
3394
fc76e730
RS
3395/* The MIPS16 version of validate_mips_insn. */
3396
3397static int
3398validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400{
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413}
3414
ab902481
RS
3415/* The microMIPS version of validate_mips_insn. */
3416
3417static int
fc76e730
RS
3418validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
ab902481
RS
3420{
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
fc76e730
RS
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
ab902481
RS
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
1661c76c 3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
1661c76c 3440 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
fc76e730
RS
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
ab902481
RS
3451}
3452
707bfff6
TS
3453/* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3455
252b5132 3456void
17a2f251 3457md_begin (void)
252b5132 3458{
3994f87e 3459 const char *retval = NULL;
156c2f8b 3460 int i = 0;
252b5132 3461 int broken = 0;
1f25f5d3 3462
0a44bf69
RS
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
00acd688
CM
3469 else if (mips_abicalls)
3470 {
3471 if (g_switch_seen && g_switch_value != 0)
3472 as_bad (_("-G may not be used with abicalls"));
3473 g_switch_value = 0;
3474 }
0a44bf69 3475
0b35dfee 3476 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3477 as_warn (_("could not set architecture and machine"));
252b5132 3478
252b5132
RH
3479 op_hash = hash_new ();
3480
fc76e730 3481 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3482 for (i = 0; i < NUMOPCODES;)
3483 {
3484 const char *name = mips_opcodes[i].name;
3485
17a2f251 3486 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3487 if (retval != NULL)
3488 {
3489 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3490 mips_opcodes[i].name, retval);
3491 /* Probably a memory allocation problem? Give up now. */
1661c76c 3492 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3493 }
3494 do
3495 {
fc76e730
RS
3496 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3497 decode_mips_operand, &mips_operands[i]))
3498 broken = 1;
3499 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3500 {
fc76e730
RS
3501 create_insn (&nop_insn, mips_opcodes + i);
3502 if (mips_fix_loongson2f_nop)
3503 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3504 nop_insn.fixed_p = 1;
252b5132
RH
3505 }
3506 ++i;
3507 }
3508 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3509 }
3510
3511 mips16_op_hash = hash_new ();
fc76e730
RS
3512 mips16_operands = XCNEWVEC (struct mips_operand_array,
3513 bfd_mips16_num_opcodes);
252b5132
RH
3514
3515 i = 0;
3516 while (i < bfd_mips16_num_opcodes)
3517 {
3518 const char *name = mips16_opcodes[i].name;
3519
17a2f251 3520 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3521 if (retval != NULL)
3522 as_fatal (_("internal: can't hash `%s': %s"),
3523 mips16_opcodes[i].name, retval);
3524 do
3525 {
fc76e730
RS
3526 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3527 broken = 1;
1e915849
RS
3528 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3529 {
3530 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3531 mips16_nop_insn.fixed_p = 1;
3532 }
252b5132
RH
3533 ++i;
3534 }
3535 while (i < bfd_mips16_num_opcodes
3536 && strcmp (mips16_opcodes[i].name, name) == 0);
3537 }
3538
df58fc94 3539 micromips_op_hash = hash_new ();
fc76e730
RS
3540 micromips_operands = XCNEWVEC (struct mips_operand_array,
3541 bfd_micromips_num_opcodes);
df58fc94
RS
3542
3543 i = 0;
3544 while (i < bfd_micromips_num_opcodes)
3545 {
3546 const char *name = micromips_opcodes[i].name;
3547
3548 retval = hash_insert (micromips_op_hash, name,
3549 (void *) &micromips_opcodes[i]);
3550 if (retval != NULL)
3551 as_fatal (_("internal: can't hash `%s': %s"),
3552 micromips_opcodes[i].name, retval);
3553 do
fc76e730
RS
3554 {
3555 struct mips_cl_insn *micromips_nop_insn;
3556
3557 if (!validate_micromips_insn (&micromips_opcodes[i],
3558 &micromips_operands[i]))
3559 broken = 1;
3560
3561 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3562 {
3563 if (micromips_insn_length (micromips_opcodes + i) == 2)
3564 micromips_nop_insn = &micromips_nop16_insn;
3565 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3566 micromips_nop_insn = &micromips_nop32_insn;
3567 else
3568 continue;
3569
3570 if (micromips_nop_insn->insn_mo == NULL
3571 && strcmp (name, "nop") == 0)
3572 {
3573 create_insn (micromips_nop_insn, micromips_opcodes + i);
3574 micromips_nop_insn->fixed_p = 1;
3575 }
3576 }
3577 }
df58fc94
RS
3578 while (++i < bfd_micromips_num_opcodes
3579 && strcmp (micromips_opcodes[i].name, name) == 0);
3580 }
3581
252b5132 3582 if (broken)
1661c76c 3583 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3584
3585 /* We add all the general register names to the symbol table. This
3586 helps us detect invalid uses of them. */
3739860c 3587 for (i = 0; reg_names[i].name; i++)
707bfff6 3588 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3589 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3590 &zero_address_frag));
3591 if (HAVE_NEWABI)
3739860c 3592 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3593 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3594 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3595 &zero_address_frag));
707bfff6 3596 else
3739860c 3597 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3598 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3599 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3600 &zero_address_frag));
6047c971 3601
14daeee3
RS
3602 for (i = 0; i < 32; i++)
3603 {
92fce9bd 3604 char regname[6];
14daeee3
RS
3605
3606 /* R5900 VU0 floating-point register. */
92fce9bd 3607 sprintf (regname, "$vf%d", i);
14daeee3
RS
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VF | i, &zero_address_frag));
3610
3611 /* R5900 VU0 integer register. */
92fce9bd 3612 sprintf (regname, "$vi%d", i);
14daeee3
RS
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_VI | i, &zero_address_frag));
3615
56d438b1 3616 /* MSA register. */
92fce9bd 3617 sprintf (regname, "$w%d", i);
56d438b1
CF
3618 symbol_table_insert (symbol_new (regname, reg_section,
3619 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3620 }
3621
a92713e6
RS
3622 obstack_init (&mips_operand_tokens);
3623
7d10b47d 3624 mips_no_prev_insn ();
252b5132
RH
3625
3626 mips_gprmask = 0;
3627 mips_cprmask[0] = 0;
3628 mips_cprmask[1] = 0;
3629 mips_cprmask[2] = 0;
3630 mips_cprmask[3] = 0;
3631
3632 /* set the default alignment for the text section (2**2) */
3633 record_alignment (text_section, 2);
3634
4d0d148d 3635 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3636
f3ded42a
RS
3637 /* On a native system other than VxWorks, sections must be aligned
3638 to 16 byte boundaries. When configured for an embedded ELF
3639 target, we don't bother. */
3640 if (strncmp (TARGET_OS, "elf", 3) != 0
3641 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3642 {
f3ded42a
RS
3643 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3644 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3645 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3646 }
252b5132 3647
f3ded42a
RS
3648 /* Create a .reginfo section for register masks and a .mdebug
3649 section for debugging information. */
3650 {
3651 segT seg;
3652 subsegT subseg;
3653 flagword flags;
3654 segT sec;
3655
3656 seg = now_seg;
3657 subseg = now_subseg;
3658
3659 /* The ABI says this section should be loaded so that the
3660 running program can access it. However, we don't load it
3661 if we are configured for an embedded target */
3662 flags = SEC_READONLY | SEC_DATA;
3663 if (strncmp (TARGET_OS, "elf", 3) != 0)
3664 flags |= SEC_ALLOC | SEC_LOAD;
3665
3666 if (mips_abi != N64_ABI)
252b5132 3667 {
f3ded42a 3668 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3669
f3ded42a
RS
3670 bfd_set_section_flags (stdoutput, sec, flags);
3671 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3672
f3ded42a
RS
3673 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3674 }
3675 else
3676 {
3677 /* The 64-bit ABI uses a .MIPS.options section rather than
3678 .reginfo section. */
3679 sec = subseg_new (".MIPS.options", (subsegT) 0);
3680 bfd_set_section_flags (stdoutput, sec, flags);
3681 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3682
f3ded42a
RS
3683 /* Set up the option header. */
3684 {
3685 Elf_Internal_Options opthdr;
3686 char *f;
3687
3688 opthdr.kind = ODK_REGINFO;
3689 opthdr.size = (sizeof (Elf_External_Options)
3690 + sizeof (Elf64_External_RegInfo));
3691 opthdr.section = 0;
3692 opthdr.info = 0;
3693 f = frag_more (sizeof (Elf_External_Options));
3694 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3695 (Elf_External_Options *) f);
3696
3697 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3698 }
3699 }
252b5132 3700
351cdf24
MF
3701 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3702 bfd_set_section_flags (stdoutput, sec,
3703 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3704 bfd_set_section_alignment (stdoutput, sec, 3);
3705 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3706
f3ded42a
RS
3707 if (ECOFF_DEBUGGING)
3708 {
3709 sec = subseg_new (".mdebug", (subsegT) 0);
3710 (void) bfd_set_section_flags (stdoutput, sec,
3711 SEC_HAS_CONTENTS | SEC_READONLY);
3712 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3713 }
f3ded42a
RS
3714 else if (mips_flag_pdr)
3715 {
3716 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3717 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3718 SEC_READONLY | SEC_RELOC
3719 | SEC_DEBUGGING);
3720 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3721 }
3722
3723 subseg_set (seg, subseg);
3724 }
252b5132 3725
71400594
RS
3726 if (mips_fix_vr4120)
3727 init_vr4120_conflicts ();
252b5132
RH
3728}
3729
351cdf24
MF
3730static inline void
3731fpabi_incompatible_with (int fpabi, const char *what)
3732{
3733 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3734 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3735}
3736
3737static inline void
3738fpabi_requires (int fpabi, const char *what)
3739{
3740 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3741 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3742}
3743
3744/* Check -mabi and register sizes against the specified FP ABI. */
3745static void
3746check_fpabi (int fpabi)
3747{
351cdf24
MF
3748 switch (fpabi)
3749 {
3750 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3751 if (file_mips_opts.soft_float)
3752 fpabi_incompatible_with (fpabi, "softfloat");
3753 else if (file_mips_opts.single_float)
3754 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3755 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3756 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3757 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3758 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3759 break;
3760
3761 case Val_GNU_MIPS_ABI_FP_XX:
3762 if (mips_abi != O32_ABI)
3763 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3764 else if (file_mips_opts.soft_float)
3765 fpabi_incompatible_with (fpabi, "softfloat");
3766 else if (file_mips_opts.single_float)
3767 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3768 else if (file_mips_opts.fp != 0)
3769 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3770 break;
3771
3772 case Val_GNU_MIPS_ABI_FP_64A:
3773 case Val_GNU_MIPS_ABI_FP_64:
3774 if (mips_abi != O32_ABI)
3775 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3776 else if (file_mips_opts.soft_float)
3777 fpabi_incompatible_with (fpabi, "softfloat");
3778 else if (file_mips_opts.single_float)
3779 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3780 else if (file_mips_opts.fp != 64)
3781 fpabi_requires (fpabi, "fp=64");
3782 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3783 fpabi_incompatible_with (fpabi, "nooddspreg");
3784 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3785 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3786 break;
3787
3788 case Val_GNU_MIPS_ABI_FP_SINGLE:
3789 if (file_mips_opts.soft_float)
3790 fpabi_incompatible_with (fpabi, "softfloat");
3791 else if (!file_mips_opts.single_float)
3792 fpabi_requires (fpabi, "singlefloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_SOFT:
3796 if (!file_mips_opts.soft_float)
3797 fpabi_requires (fpabi, "softfloat");
3798 break;
3799
3800 case Val_GNU_MIPS_ABI_FP_OLD_64:
3801 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3802 Tag_GNU_MIPS_ABI_FP, fpabi);
3803 break;
3804
3350cc01
CM
3805 case Val_GNU_MIPS_ABI_FP_NAN2008:
3806 /* Silently ignore compatibility value. */
3807 break;
3808
351cdf24
MF
3809 default:
3810 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3811 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813 }
351cdf24
MF
3814}
3815
919731af 3816/* Perform consistency checks on the current options. */
3817
3818static void
3819mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3820{
3821 /* Check the size of integer registers agrees with the ABI and ISA. */
3822 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3823 as_bad (_("`gp=64' used with a 32-bit processor"));
3824 else if (abi_checks
3825 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3826 as_bad (_("`gp=32' used with a 64-bit ABI"));
3827 else if (abi_checks
3828 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3829 as_bad (_("`gp=64' used with a 32-bit ABI"));
3830
3831 /* Check the size of the float registers agrees with the ABI and ISA. */
3832 switch (opts->fp)
3833 {
351cdf24
MF
3834 case 0:
3835 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3836 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3837 else if (opts->single_float == 1)
3838 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3839 break;
919731af 3840 case 64:
3841 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3842 as_bad (_("`fp=64' used with a 32-bit fpu"));
3843 else if (abi_checks
3844 && ABI_NEEDS_32BIT_REGS (mips_abi)
3845 && !ISA_HAS_MXHC1 (opts->isa))
3846 as_warn (_("`fp=64' used with a 32-bit ABI"));
3847 break;
3848 case 32:
3849 if (abi_checks
3850 && ABI_NEEDS_64BIT_REGS (mips_abi))
3851 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3852 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3853 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3854 break;
3855 default:
3856 as_bad (_("Unknown size of floating point registers"));
3857 break;
3858 }
3859
351cdf24
MF
3860 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3861 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3862
919731af 3863 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3864 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3865 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3866 && (opts->micromips == 1
3867 || opts->mips16 == 1))
1357373c 3868 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3869 opts->micromips ? "micromips" : "mips16",
5f4678bb 3870 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3871
3872 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3873 as_fatal (_("branch relaxation is not supported in `%s'"),
3874 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3875}
3876
3877/* Perform consistency checks on the module level options exactly once.
3878 This is a deferred check that happens:
3879 at the first .set directive
3880 or, at the first pseudo op that generates code (inc .dc.a)
3881 or, at the first instruction
3882 or, at the end. */
3883
3884static void
3885file_mips_check_options (void)
3886{
3887 const struct mips_cpu_info *arch_info = 0;
3888
3889 if (file_mips_opts_checked)
3890 return;
3891
3892 /* The following code determines the register size.
3893 Similar code was added to GCC 3.3 (see override_options() in
3894 config/mips/mips.c). The GAS and GCC code should be kept in sync
3895 as much as possible. */
3896
3897 if (file_mips_opts.gp < 0)
3898 {
3899 /* Infer the integer register size from the ABI and processor.
3900 Restrict ourselves to 32-bit registers if that's all the
3901 processor has, or if the ABI cannot handle 64-bit registers. */
3902 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3903 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3904 ? 32 : 64;
3905 }
3906
3907 if (file_mips_opts.fp < 0)
3908 {
3909 /* No user specified float register size.
3910 ??? GAS treats single-float processors as though they had 64-bit
3911 float registers (although it complains when double-precision
3912 instructions are used). As things stand, saying they have 32-bit
3913 registers would lead to spurious "register must be even" messages.
3914 So here we assume float registers are never smaller than the
3915 integer ones. */
3916 if (file_mips_opts.gp == 64)
3917 /* 64-bit integer registers implies 64-bit float registers. */
3918 file_mips_opts.fp = 64;
3919 else if ((file_mips_opts.ase & FP64_ASES)
3920 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3921 /* Handle ASEs that require 64-bit float registers, if possible. */
3922 file_mips_opts.fp = 64;
7361da2c
AB
3923 else if (ISA_IS_R6 (mips_opts.isa))
3924 /* R6 implies 64-bit float registers. */
3925 file_mips_opts.fp = 64;
919731af 3926 else
3927 /* 32-bit float registers. */
3928 file_mips_opts.fp = 32;
3929 }
3930
3931 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3932
351cdf24
MF
3933 /* Disable operations on odd-numbered floating-point registers by default
3934 when using the FPXX ABI. */
3935 if (file_mips_opts.oddspreg < 0)
3936 {
3937 if (file_mips_opts.fp == 0)
3938 file_mips_opts.oddspreg = 0;
3939 else
3940 file_mips_opts.oddspreg = 1;
3941 }
3942
919731af 3943 /* End of GCC-shared inference code. */
3944
3945 /* This flag is set when we have a 64-bit capable CPU but use only
3946 32-bit wide registers. Note that EABI does not use it. */
3947 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3948 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3949 || mips_abi == O32_ABI))
3950 mips_32bitmode = 1;
3951
3952 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3953 as_bad (_("trap exception not supported at ISA 1"));
3954
3955 /* If the selected architecture includes support for ASEs, enable
3956 generation of code for them. */
3957 if (file_mips_opts.mips16 == -1)
3958 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3959 if (file_mips_opts.micromips == -1)
3960 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3961 ? 1 : 0;
3962
7361da2c
AB
3963 if (mips_nan2008 == -1)
3964 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3965 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3966 as_fatal (_("`%s' does not support legacy NaN"),
3967 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3968
919731af 3969 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3970 being selected implicitly. */
3971 if (file_mips_opts.fp != 64)
3972 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3973
3974 /* If the user didn't explicitly select or deselect a particular ASE,
3975 use the default setting for the CPU. */
3976 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3977
3978 /* Set up the current options. These may change throughout assembly. */
3979 mips_opts = file_mips_opts;
3980
3981 mips_check_isa_supports_ases ();
3982 mips_check_options (&file_mips_opts, TRUE);
3983 file_mips_opts_checked = TRUE;
3984
3985 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3986 as_warn (_("could not set architecture and machine"));
3987}
3988
252b5132 3989void
17a2f251 3990md_assemble (char *str)
252b5132
RH
3991{
3992 struct mips_cl_insn insn;
f6688943
TS
3993 bfd_reloc_code_real_type unused_reloc[3]
3994 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 3995
919731af 3996 file_mips_check_options ();
3997
252b5132 3998 imm_expr.X_op = O_absent;
252b5132 3999 offset_expr.X_op = O_absent;
f6688943
TS
4000 offset_reloc[0] = BFD_RELOC_UNUSED;
4001 offset_reloc[1] = BFD_RELOC_UNUSED;
4002 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4003
e1b47bd5
RS
4004 mips_mark_labels ();
4005 mips_assembling_insn = TRUE;
e3de51ce 4006 clear_insn_error ();
e1b47bd5 4007
252b5132
RH
4008 if (mips_opts.mips16)
4009 mips16_ip (str, &insn);
4010 else
4011 {
4012 mips_ip (str, &insn);
beae10d5
KH
4013 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4014 str, insn.insn_opcode));
252b5132
RH
4015 }
4016
e3de51ce
RS
4017 if (insn_error.msg)
4018 report_insn_error (str);
e1b47bd5 4019 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4020 {
584892a6 4021 macro_start ();
252b5132
RH
4022 if (mips_opts.mips16)
4023 mips16_macro (&insn);
4024 else
833794fc 4025 macro (&insn, str);
584892a6 4026 macro_end ();
252b5132
RH
4027 }
4028 else
4029 {
77bd4346 4030 if (offset_expr.X_op != O_absent)
df58fc94 4031 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4032 else
df58fc94 4033 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4034 }
e1b47bd5
RS
4035
4036 mips_assembling_insn = FALSE;
252b5132
RH
4037}
4038
738e5348
RS
4039/* Convenience functions for abstracting away the differences between
4040 MIPS16 and non-MIPS16 relocations. */
4041
4042static inline bfd_boolean
4043mips16_reloc_p (bfd_reloc_code_real_type reloc)
4044{
4045 switch (reloc)
4046 {
4047 case BFD_RELOC_MIPS16_JMP:
4048 case BFD_RELOC_MIPS16_GPREL:
4049 case BFD_RELOC_MIPS16_GOT16:
4050 case BFD_RELOC_MIPS16_CALL16:
4051 case BFD_RELOC_MIPS16_HI16_S:
4052 case BFD_RELOC_MIPS16_HI16:
4053 case BFD_RELOC_MIPS16_LO16:
4054 return TRUE;
4055
4056 default:
4057 return FALSE;
4058 }
4059}
4060
df58fc94
RS
4061static inline bfd_boolean
4062micromips_reloc_p (bfd_reloc_code_real_type reloc)
4063{
4064 switch (reloc)
4065 {
4066 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4067 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4068 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4069 case BFD_RELOC_MICROMIPS_GPREL16:
4070 case BFD_RELOC_MICROMIPS_JMP:
4071 case BFD_RELOC_MICROMIPS_HI16:
4072 case BFD_RELOC_MICROMIPS_HI16_S:
4073 case BFD_RELOC_MICROMIPS_LO16:
4074 case BFD_RELOC_MICROMIPS_LITERAL:
4075 case BFD_RELOC_MICROMIPS_GOT16:
4076 case BFD_RELOC_MICROMIPS_CALL16:
4077 case BFD_RELOC_MICROMIPS_GOT_HI16:
4078 case BFD_RELOC_MICROMIPS_GOT_LO16:
4079 case BFD_RELOC_MICROMIPS_CALL_HI16:
4080 case BFD_RELOC_MICROMIPS_CALL_LO16:
4081 case BFD_RELOC_MICROMIPS_SUB:
4082 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4083 case BFD_RELOC_MICROMIPS_GOT_OFST:
4084 case BFD_RELOC_MICROMIPS_GOT_DISP:
4085 case BFD_RELOC_MICROMIPS_HIGHEST:
4086 case BFD_RELOC_MICROMIPS_HIGHER:
4087 case BFD_RELOC_MICROMIPS_SCN_DISP:
4088 case BFD_RELOC_MICROMIPS_JALR:
4089 return TRUE;
4090
4091 default:
4092 return FALSE;
4093 }
4094}
4095
2309ddf2
MR
4096static inline bfd_boolean
4097jmp_reloc_p (bfd_reloc_code_real_type reloc)
4098{
4099 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4100}
4101
738e5348
RS
4102static inline bfd_boolean
4103got16_reloc_p (bfd_reloc_code_real_type reloc)
4104{
2309ddf2 4105 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4106 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4107}
4108
4109static inline bfd_boolean
4110hi16_reloc_p (bfd_reloc_code_real_type reloc)
4111{
2309ddf2 4112 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4113 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4114}
4115
4116static inline bfd_boolean
4117lo16_reloc_p (bfd_reloc_code_real_type reloc)
4118{
2309ddf2 4119 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4120 || reloc == BFD_RELOC_MICROMIPS_LO16);
4121}
4122
df58fc94
RS
4123static inline bfd_boolean
4124jalr_reloc_p (bfd_reloc_code_real_type reloc)
4125{
2309ddf2 4126 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4127}
4128
f2ae14a1
RS
4129static inline bfd_boolean
4130gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4131{
4132 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4133 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4134}
4135
2de39019
CM
4136/* Return true if RELOC is a PC-relative relocation that does not have
4137 full address range. */
4138
4139static inline bfd_boolean
4140limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4141{
4142 switch (reloc)
4143 {
4144 case BFD_RELOC_16_PCREL_S2:
4145 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4146 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4147 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4148 case BFD_RELOC_MIPS_21_PCREL_S2:
4149 case BFD_RELOC_MIPS_26_PCREL_S2:
4150 case BFD_RELOC_MIPS_18_PCREL_S3:
4151 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4152 return TRUE;
4153
b47468a6 4154 case BFD_RELOC_32_PCREL:
7361da2c
AB
4155 case BFD_RELOC_HI16_S_PCREL:
4156 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4157 return HAVE_64BIT_ADDRESSES;
4158
2de39019
CM
4159 default:
4160 return FALSE;
4161 }
4162}
b47468a6 4163
5919d012 4164/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4165 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4166 need a matching %lo() when applied to local symbols. */
5919d012
RS
4167
4168static inline bfd_boolean
17a2f251 4169reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4170{
3b91255e 4171 return (HAVE_IN_PLACE_ADDENDS
738e5348 4172 && (hi16_reloc_p (reloc)
0a44bf69
RS
4173 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4174 all GOT16 relocations evaluate to "G". */
738e5348
RS
4175 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4176}
4177
4178/* Return the type of %lo() reloc needed by RELOC, given that
4179 reloc_needs_lo_p. */
4180
4181static inline bfd_reloc_code_real_type
4182matching_lo_reloc (bfd_reloc_code_real_type reloc)
4183{
df58fc94
RS
4184 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4185 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4186 : BFD_RELOC_LO16));
5919d012
RS
4187}
4188
4189/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4190 relocation. */
4191
4192static inline bfd_boolean
17a2f251 4193fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4194{
4195 return (fixp->fx_next != NULL
738e5348 4196 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4197 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4198 && fixp->fx_offset == fixp->fx_next->fx_offset);
4199}
4200
462427c4
RS
4201/* Move all labels in LABELS to the current insertion point. TEXT_P
4202 says whether the labels refer to text or data. */
404a8071
RS
4203
4204static void
462427c4 4205mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4206{
4207 struct insn_label_list *l;
4208 valueT val;
4209
462427c4 4210 for (l = labels; l != NULL; l = l->next)
404a8071 4211 {
9c2799c2 4212 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4213 symbol_set_frag (l->label, frag_now);
4214 val = (valueT) frag_now_fix ();
df58fc94 4215 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4216 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4217 ++val;
4218 S_SET_VALUE (l->label, val);
4219 }
4220}
4221
462427c4
RS
4222/* Move all labels in insn_labels to the current insertion point
4223 and treat them as text labels. */
4224
4225static void
4226mips_move_text_labels (void)
4227{
4228 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4229}
4230
5f0fe04b
TS
4231static bfd_boolean
4232s_is_linkonce (symbolS *sym, segT from_seg)
4233{
4234 bfd_boolean linkonce = FALSE;
4235 segT symseg = S_GET_SEGMENT (sym);
4236
4237 if (symseg != from_seg && !S_IS_LOCAL (sym))
4238 {
4239 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4240 linkonce = TRUE;
5f0fe04b
TS
4241 /* The GNU toolchain uses an extension for ELF: a section
4242 beginning with the magic string .gnu.linkonce is a
4243 linkonce section. */
4244 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4245 sizeof ".gnu.linkonce" - 1) == 0)
4246 linkonce = TRUE;
5f0fe04b
TS
4247 }
4248 return linkonce;
4249}
4250
e1b47bd5 4251/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4252 linker to handle them specially, such as generating jalx instructions
4253 when needed. We also make them odd for the duration of the assembly,
4254 in order to generate the right sort of code. We will make them even
252b5132
RH
4255 in the adjust_symtab routine, while leaving them marked. This is
4256 convenient for the debugger and the disassembler. The linker knows
4257 to make them odd again. */
4258
4259static void
e1b47bd5 4260mips_compressed_mark_label (symbolS *label)
252b5132 4261{
df58fc94 4262 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4263
f3ded42a
RS
4264 if (mips_opts.mips16)
4265 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4266 else
4267 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4268 if ((S_GET_VALUE (label) & 1) == 0
4269 /* Don't adjust the address if the label is global or weak, or
4270 in a link-once section, since we'll be emitting symbol reloc
4271 references to it which will be patched up by the linker, and
4272 the final value of the symbol may or may not be MIPS16/microMIPS. */
4273 && !S_IS_WEAK (label)
4274 && !S_IS_EXTERNAL (label)
4275 && !s_is_linkonce (label, now_seg))
4276 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4277}
4278
4279/* Mark preceding MIPS16 or microMIPS instruction labels. */
4280
4281static void
4282mips_compressed_mark_labels (void)
4283{
4284 struct insn_label_list *l;
4285
4286 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4287 mips_compressed_mark_label (l->label);
252b5132
RH
4288}
4289
4d7206a2
RS
4290/* End the current frag. Make it a variant frag and record the
4291 relaxation info. */
4292
4293static void
4294relax_close_frag (void)
4295{
584892a6 4296 mips_macro_warning.first_frag = frag_now;
4d7206a2 4297 frag_var (rs_machine_dependent, 0, 0,
584892a6 4298 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4299 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4300
4301 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4302 mips_relax.first_fixup = 0;
4303}
4304
4305/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4306 See the comment above RELAX_ENCODE for more details. */
4307
4308static void
4309relax_start (symbolS *symbol)
4310{
9c2799c2 4311 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4312 mips_relax.sequence = 1;
4313 mips_relax.symbol = symbol;
4314}
4315
4316/* Start generating the second version of a relaxable sequence.
4317 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4318
4319static void
4d7206a2
RS
4320relax_switch (void)
4321{
9c2799c2 4322 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4323 mips_relax.sequence = 2;
4324}
4325
4326/* End the current relaxable sequence. */
4327
4328static void
4329relax_end (void)
4330{
9c2799c2 4331 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4332 relax_close_frag ();
4333 mips_relax.sequence = 0;
4334}
4335
11625dd8
RS
4336/* Return true if IP is a delayed branch or jump. */
4337
4338static inline bfd_boolean
4339delayed_branch_p (const struct mips_cl_insn *ip)
4340{
4341 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_DELAY
4343 | INSN_COND_BRANCH_LIKELY)) != 0;
4344}
4345
4346/* Return true if IP is a compact branch or jump. */
4347
4348static inline bfd_boolean
4349compact_branch_p (const struct mips_cl_insn *ip)
4350{
26545944
RS
4351 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4352 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4353}
4354
4355/* Return true if IP is an unconditional branch or jump. */
4356
4357static inline bfd_boolean
4358uncond_branch_p (const struct mips_cl_insn *ip)
4359{
4360 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4361 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4362}
4363
4364/* Return true if IP is a branch-likely instruction. */
4365
4366static inline bfd_boolean
4367branch_likely_p (const struct mips_cl_insn *ip)
4368{
4369 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4370}
4371
14fe068b
RS
4372/* Return the type of nop that should be used to fill the delay slot
4373 of delayed branch IP. */
4374
4375static struct mips_cl_insn *
4376get_delay_slot_nop (const struct mips_cl_insn *ip)
4377{
4378 if (mips_opts.micromips
4379 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4380 return &micromips_nop32_insn;
4381 return NOP_INSN;
4382}
4383
fc76e730
RS
4384/* Return a mask that has bit N set if OPCODE reads the register(s)
4385 in operand N. */
df58fc94
RS
4386
4387static unsigned int
fc76e730 4388insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4389{
fc76e730
RS
4390 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4391}
df58fc94 4392
fc76e730
RS
4393/* Return a mask that has bit N set if OPCODE writes to the register(s)
4394 in operand N. */
4395
4396static unsigned int
4397insn_write_mask (const struct mips_opcode *opcode)
4398{
4399 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4400}
4401
4402/* Return a mask of the registers specified by operand OPERAND of INSN.
4403 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4404 is set. */
4405
4406static unsigned int
4407operand_reg_mask (const struct mips_cl_insn *insn,
4408 const struct mips_operand *operand,
4409 unsigned int type_mask)
4410{
4411 unsigned int uval, vsel;
4412
4413 switch (operand->type)
df58fc94 4414 {
fc76e730
RS
4415 case OP_INT:
4416 case OP_MAPPED_INT:
4417 case OP_MSB:
4418 case OP_PCREL:
4419 case OP_PERF_REG:
4420 case OP_ADDIUSP_INT:
4421 case OP_ENTRY_EXIT_LIST:
4422 case OP_REPEAT_DEST_REG:
4423 case OP_REPEAT_PREV_REG:
4424 case OP_PC:
14daeee3
RS
4425 case OP_VU0_SUFFIX:
4426 case OP_VU0_MATCH_SUFFIX:
56d438b1 4427 case OP_IMM_INDEX:
fc76e730
RS
4428 abort ();
4429
4430 case OP_REG:
0f35dbc4 4431 case OP_OPTIONAL_REG:
fc76e730
RS
4432 {
4433 const struct mips_reg_operand *reg_op;
4434
4435 reg_op = (const struct mips_reg_operand *) operand;
4436 if (!(type_mask & (1 << reg_op->reg_type)))
4437 return 0;
4438 uval = insn_extract_operand (insn, operand);
4439 return 1 << mips_decode_reg_operand (reg_op, uval);
4440 }
4441
4442 case OP_REG_PAIR:
4443 {
4444 const struct mips_reg_pair_operand *pair_op;
4445
4446 pair_op = (const struct mips_reg_pair_operand *) operand;
4447 if (!(type_mask & (1 << pair_op->reg_type)))
4448 return 0;
4449 uval = insn_extract_operand (insn, operand);
4450 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4451 }
4452
4453 case OP_CLO_CLZ_DEST:
4454 if (!(type_mask & (1 << OP_REG_GP)))
4455 return 0;
4456 uval = insn_extract_operand (insn, operand);
4457 return (1 << (uval & 31)) | (1 << (uval >> 5));
4458
7361da2c
AB
4459 case OP_SAME_RS_RT:
4460 if (!(type_mask & (1 << OP_REG_GP)))
4461 return 0;
4462 uval = insn_extract_operand (insn, operand);
4463 gas_assert ((uval & 31) == (uval >> 5));
4464 return 1 << (uval & 31);
4465
4466 case OP_CHECK_PREV:
4467 case OP_NON_ZERO_REG:
4468 if (!(type_mask & (1 << OP_REG_GP)))
4469 return 0;
4470 uval = insn_extract_operand (insn, operand);
4471 return 1 << (uval & 31);
4472
fc76e730
RS
4473 case OP_LWM_SWM_LIST:
4474 abort ();
4475
4476 case OP_SAVE_RESTORE_LIST:
4477 abort ();
4478
4479 case OP_MDMX_IMM_REG:
4480 if (!(type_mask & (1 << OP_REG_VEC)))
4481 return 0;
4482 uval = insn_extract_operand (insn, operand);
4483 vsel = uval >> 5;
4484 if ((vsel & 0x18) == 0x18)
4485 return 0;
4486 return 1 << (uval & 31);
56d438b1
CF
4487
4488 case OP_REG_INDEX:
4489 if (!(type_mask & (1 << OP_REG_GP)))
4490 return 0;
4491 return 1 << insn_extract_operand (insn, operand);
df58fc94 4492 }
fc76e730
RS
4493 abort ();
4494}
4495
4496/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4497 where bit N of OPNO_MASK is set if operand N should be included.
4498 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4499 is set. */
4500
4501static unsigned int
4502insn_reg_mask (const struct mips_cl_insn *insn,
4503 unsigned int type_mask, unsigned int opno_mask)
4504{
4505 unsigned int opno, reg_mask;
4506
4507 opno = 0;
4508 reg_mask = 0;
4509 while (opno_mask != 0)
4510 {
4511 if (opno_mask & 1)
4512 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4513 opno_mask >>= 1;
4514 opno += 1;
4515 }
4516 return reg_mask;
df58fc94
RS
4517}
4518
4c260379
RS
4519/* Return the mask of core registers that IP reads. */
4520
4521static unsigned int
4522gpr_read_mask (const struct mips_cl_insn *ip)
4523{
4524 unsigned long pinfo, pinfo2;
4525 unsigned int mask;
4526
fc76e730 4527 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4528 pinfo = ip->insn_mo->pinfo;
4529 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4530 if (pinfo & INSN_UDI)
4c260379 4531 {
fc76e730
RS
4532 /* UDI instructions have traditionally been assumed to read RS
4533 and RT. */
4534 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4535 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4536 }
fc76e730
RS
4537 if (pinfo & INSN_READ_GPR_24)
4538 mask |= 1 << 24;
4539 if (pinfo2 & INSN2_READ_GPR_16)
4540 mask |= 1 << 16;
4541 if (pinfo2 & INSN2_READ_SP)
4542 mask |= 1 << SP;
26545944 4543 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4544 mask |= 1 << 31;
fe35f09f
RS
4545 /* Don't include register 0. */
4546 return mask & ~1;
4c260379
RS
4547}
4548
4549/* Return the mask of core registers that IP writes. */
4550
4551static unsigned int
4552gpr_write_mask (const struct mips_cl_insn *ip)
4553{
4554 unsigned long pinfo, pinfo2;
4555 unsigned int mask;
4556
fc76e730 4557 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4558 pinfo = ip->insn_mo->pinfo;
4559 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4560 if (pinfo & INSN_WRITE_GPR_24)
4561 mask |= 1 << 24;
4562 if (pinfo & INSN_WRITE_GPR_31)
4563 mask |= 1 << 31;
4564 if (pinfo & INSN_UDI)
4565 /* UDI instructions have traditionally been assumed to write to RD. */
4566 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4567 if (pinfo2 & INSN2_WRITE_SP)
4568 mask |= 1 << SP;
fe35f09f
RS
4569 /* Don't include register 0. */
4570 return mask & ~1;
4c260379
RS
4571}
4572
4573/* Return the mask of floating-point registers that IP reads. */
4574
4575static unsigned int
4576fpr_read_mask (const struct mips_cl_insn *ip)
4577{
fc76e730 4578 unsigned long pinfo;
4c260379
RS
4579 unsigned int mask;
4580
9d5de888
CF
4581 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4582 | (1 << OP_REG_MSA)),
fc76e730 4583 insn_read_mask (ip->insn_mo));
4c260379 4584 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4585 /* Conservatively treat all operands to an FP_D instruction are doubles.
4586 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4587 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4588 mask |= mask << 1;
4589 return mask;
4590}
4591
4592/* Return the mask of floating-point registers that IP writes. */
4593
4594static unsigned int
4595fpr_write_mask (const struct mips_cl_insn *ip)
4596{
fc76e730 4597 unsigned long pinfo;
4c260379
RS
4598 unsigned int mask;
4599
9d5de888
CF
4600 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4601 | (1 << OP_REG_MSA)),
fc76e730 4602 insn_write_mask (ip->insn_mo));
4c260379 4603 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4604 /* Conservatively treat all operands to an FP_D instruction are doubles.
4605 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4606 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4607 mask |= mask << 1;
4608 return mask;
4609}
4610
a1d78564
RS
4611/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4612 Check whether that is allowed. */
4613
4614static bfd_boolean
4615mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4616{
4617 const char *s = insn->name;
351cdf24
MF
4618 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4619 || FPR_SIZE == 64)
4620 && mips_opts.oddspreg;
a1d78564
RS
4621
4622 if (insn->pinfo == INSN_MACRO)
4623 /* Let a macro pass, we'll catch it later when it is expanded. */
4624 return TRUE;
4625
351cdf24
MF
4626 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4627 otherwise it depends on oddspreg. */
4628 if ((insn->pinfo & FP_S)
4629 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4630 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4631 return FPR_SIZE == 32 || oddspreg;
a1d78564 4632
351cdf24
MF
4633 /* Allow odd registers for single-precision ops and double-precision if the
4634 floating-point registers are 64-bit wide. */
4635 switch (insn->pinfo & (FP_S | FP_D))
4636 {
4637 case FP_S:
4638 case 0:
4639 return oddspreg;
4640 case FP_D:
4641 return FPR_SIZE == 64;
4642 default:
4643 break;
a1d78564
RS
4644 }
4645
351cdf24
MF
4646 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4647 s = strchr (insn->name, '.');
4648 if (s != NULL && opnum == 2)
4649 s = strchr (s + 1, '.');
4650 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4651 return oddspreg;
a1d78564 4652
351cdf24 4653 return FPR_SIZE == 64;
a1d78564
RS
4654}
4655
a1d78564
RS
4656/* Information about an instruction argument that we're trying to match. */
4657struct mips_arg_info
4658{
4659 /* The instruction so far. */
4660 struct mips_cl_insn *insn;
4661
a92713e6
RS
4662 /* The first unconsumed operand token. */
4663 struct mips_operand_token *token;
4664
a1d78564
RS
4665 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4666 int opnum;
4667
4668 /* The 1-based argument number, for error reporting. This does not
4669 count elided optional registers, etc.. */
4670 int argnum;
4671
4672 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4673 unsigned int last_regno;
4674
4675 /* If the first operand was an OP_REG, this is the register that it
4676 specified, otherwise it is ILLEGAL_REG. */
4677 unsigned int dest_regno;
4678
4679 /* The value of the last OP_INT operand. Only used for OP_MSB,
4680 where it gives the lsb position. */
4681 unsigned int last_op_int;
4682
60f20e8b
RS
4683 /* If true, match routines should assume that no later instruction
4684 alternative matches and should therefore be as accomodating as
4685 possible. Match routines should not report errors if something
4686 is only invalid for !LAX_MATCH. */
4687 bfd_boolean lax_match;
a1d78564 4688
a1d78564
RS
4689 /* True if a reference to the current AT register was seen. */
4690 bfd_boolean seen_at;
4691};
4692
1a00e612
RS
4693/* Record that the argument is out of range. */
4694
4695static void
4696match_out_of_range (struct mips_arg_info *arg)
4697{
4698 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4699}
4700
4701/* Record that the argument isn't constant but needs to be. */
4702
4703static void
4704match_not_constant (struct mips_arg_info *arg)
4705{
4706 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4707 arg->argnum);
4708}
4709
a92713e6
RS
4710/* Try to match an OT_CHAR token for character CH. Consume the token
4711 and return true on success, otherwise return false. */
a1d78564 4712
a92713e6
RS
4713static bfd_boolean
4714match_char (struct mips_arg_info *arg, char ch)
a1d78564 4715{
a92713e6
RS
4716 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4717 {
4718 ++arg->token;
4719 if (ch == ',')
4720 arg->argnum += 1;
4721 return TRUE;
4722 }
4723 return FALSE;
4724}
a1d78564 4725
a92713e6
RS
4726/* Try to get an expression from the next tokens in ARG. Consume the
4727 tokens and return true on success, storing the expression value in
4728 VALUE and relocation types in R. */
4729
4730static bfd_boolean
4731match_expression (struct mips_arg_info *arg, expressionS *value,
4732 bfd_reloc_code_real_type *r)
4733{
d436c1c2
RS
4734 /* If the next token is a '(' that was parsed as being part of a base
4735 expression, assume we have an elided offset. The later match will fail
4736 if this turns out to be wrong. */
4737 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4738 {
d436c1c2
RS
4739 value->X_op = O_constant;
4740 value->X_add_number = 0;
4741 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4742 return TRUE;
4743 }
4744
d436c1c2
RS
4745 /* Reject register-based expressions such as "0+$2" and "(($2))".
4746 For plain registers the default error seems more appropriate. */
4747 if (arg->token->type == OT_INTEGER
4748 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4749 {
d436c1c2
RS
4750 set_insn_error (arg->argnum, _("register value used as expression"));
4751 return FALSE;
a1d78564 4752 }
d436c1c2
RS
4753
4754 if (arg->token->type == OT_INTEGER)
a92713e6 4755 {
d436c1c2
RS
4756 *value = arg->token->u.integer.value;
4757 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4758 ++arg->token;
4759 return TRUE;
a92713e6 4760 }
a92713e6 4761
d436c1c2
RS
4762 set_insn_error_i
4763 (arg->argnum, _("operand %d must be an immediate expression"),
4764 arg->argnum);
4765 return FALSE;
a92713e6
RS
4766}
4767
4768/* Try to get a constant expression from the next tokens in ARG. Consume
4769 the tokens and return return true on success, storing the constant value
4770 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4771 error. */
4772
4773static bfd_boolean
1a00e612 4774match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4775{
4776 expressionS ex;
4777 bfd_reloc_code_real_type r[3];
a1d78564 4778
a92713e6
RS
4779 if (!match_expression (arg, &ex, r))
4780 return FALSE;
4781
4782 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4783 *value = ex.X_add_number;
4784 else
4785 {
1a00e612
RS
4786 match_not_constant (arg);
4787 return FALSE;
a1d78564 4788 }
a92713e6 4789 return TRUE;
a1d78564
RS
4790}
4791
4792/* Return the RTYPE_* flags for a register operand of type TYPE that
4793 appears in instruction OPCODE. */
4794
4795static unsigned int
4796convert_reg_type (const struct mips_opcode *opcode,
4797 enum mips_reg_operand_type type)
4798{
4799 switch (type)
4800 {
4801 case OP_REG_GP:
4802 return RTYPE_NUM | RTYPE_GP;
4803
4804 case OP_REG_FP:
4805 /* Allow vector register names for MDMX if the instruction is a 64-bit
4806 FPR load, store or move (including moves to and from GPRs). */
4807 if ((mips_opts.ase & ASE_MDMX)
4808 && (opcode->pinfo & FP_D)
43885403 4809 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4810 | INSN_COPROC_MEMORY_DELAY
43885403 4811 | INSN_LOAD_COPROC
67dc82bc 4812 | INSN_LOAD_MEMORY
a1d78564
RS
4813 | INSN_STORE_MEMORY)))
4814 return RTYPE_FPU | RTYPE_VEC;
4815 return RTYPE_FPU;
4816
4817 case OP_REG_CCC:
4818 if (opcode->pinfo & (FP_D | FP_S))
4819 return RTYPE_CCC | RTYPE_FCC;
4820 return RTYPE_CCC;
4821
4822 case OP_REG_VEC:
4823 if (opcode->membership & INSN_5400)
4824 return RTYPE_FPU;
4825 return RTYPE_FPU | RTYPE_VEC;
4826
4827 case OP_REG_ACC:
4828 return RTYPE_ACC;
4829
4830 case OP_REG_COPRO:
4831 if (opcode->name[strlen (opcode->name) - 1] == '0')
4832 return RTYPE_NUM | RTYPE_CP0;
4833 return RTYPE_NUM;
4834
4835 case OP_REG_HW:
4836 return RTYPE_NUM;
14daeee3
RS
4837
4838 case OP_REG_VI:
4839 return RTYPE_NUM | RTYPE_VI;
4840
4841 case OP_REG_VF:
4842 return RTYPE_NUM | RTYPE_VF;
4843
4844 case OP_REG_R5900_I:
4845 return RTYPE_R5900_I;
4846
4847 case OP_REG_R5900_Q:
4848 return RTYPE_R5900_Q;
4849
4850 case OP_REG_R5900_R:
4851 return RTYPE_R5900_R;
4852
4853 case OP_REG_R5900_ACC:
4854 return RTYPE_R5900_ACC;
56d438b1
CF
4855
4856 case OP_REG_MSA:
4857 return RTYPE_MSA;
4858
4859 case OP_REG_MSA_CTRL:
4860 return RTYPE_NUM;
a1d78564
RS
4861 }
4862 abort ();
4863}
4864
4865/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4866
4867static void
4868check_regno (struct mips_arg_info *arg,
4869 enum mips_reg_operand_type type, unsigned int regno)
4870{
4871 if (AT && type == OP_REG_GP && regno == AT)
4872 arg->seen_at = TRUE;
4873
4874 if (type == OP_REG_FP
4875 && (regno & 1) != 0
a1d78564 4876 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4877 {
4878 /* This was a warning prior to introducing O32 FPXX and FP64 support
4879 so maintain a warning for FP32 but raise an error for the new
4880 cases. */
4881 if (FPR_SIZE == 32)
4882 as_warn (_("float register should be even, was %d"), regno);
4883 else
4884 as_bad (_("float register should be even, was %d"), regno);
4885 }
a1d78564
RS
4886
4887 if (type == OP_REG_CCC)
4888 {
4889 const char *name;
4890 size_t length;
4891
4892 name = arg->insn->insn_mo->name;
4893 length = strlen (name);
4894 if ((regno & 1) != 0
4895 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4896 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4897 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4898 name, regno);
4899
4900 if ((regno & 3) != 0
4901 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4902 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4903 name, regno);
4904 }
4905}
4906
a92713e6
RS
4907/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4908 a register of type TYPE. Return true on success, storing the register
4909 number in *REGNO and warning about any dubious uses. */
4910
4911static bfd_boolean
4912match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4913 unsigned int symval, unsigned int *regno)
4914{
4915 if (type == OP_REG_VEC)
4916 symval = mips_prefer_vec_regno (symval);
4917 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4918 return FALSE;
4919
4920 *regno = symval & RNUM_MASK;
4921 check_regno (arg, type, *regno);
4922 return TRUE;
4923}
4924
4925/* Try to interpret the next token in ARG as a register of type TYPE.
4926 Consume the token and return true on success, storing the register
4927 number in *REGNO. Return false on failure. */
4928
4929static bfd_boolean
4930match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4931 unsigned int *regno)
4932{
4933 if (arg->token->type == OT_REG
4934 && match_regno (arg, type, arg->token->u.regno, regno))
4935 {
4936 ++arg->token;
4937 return TRUE;
4938 }
4939 return FALSE;
4940}
4941
4942/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4943 Consume the token and return true on success, storing the register numbers
4944 in *REGNO1 and *REGNO2. Return false on failure. */
4945
4946static bfd_boolean
4947match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4948 unsigned int *regno1, unsigned int *regno2)
4949{
4950 if (match_reg (arg, type, regno1))
4951 {
4952 *regno2 = *regno1;
4953 return TRUE;
4954 }
4955 if (arg->token->type == OT_REG_RANGE
4956 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4957 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4958 && *regno1 <= *regno2)
4959 {
4960 ++arg->token;
4961 return TRUE;
4962 }
4963 return FALSE;
4964}
4965
a1d78564
RS
4966/* OP_INT matcher. */
4967
a92713e6 4968static bfd_boolean
a1d78564 4969match_int_operand (struct mips_arg_info *arg,
a92713e6 4970 const struct mips_operand *operand_base)
a1d78564
RS
4971{
4972 const struct mips_int_operand *operand;
3ccad066 4973 unsigned int uval;
a1d78564
RS
4974 int min_val, max_val, factor;
4975 offsetT sval;
a1d78564
RS
4976
4977 operand = (const struct mips_int_operand *) operand_base;
4978 factor = 1 << operand->shift;
3ccad066
RS
4979 min_val = mips_int_operand_min (operand);
4980 max_val = mips_int_operand_max (operand);
a1d78564 4981
d436c1c2
RS
4982 if (operand_base->lsb == 0
4983 && operand_base->size == 16
4984 && operand->shift == 0
4985 && operand->bias == 0
4986 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
4987 {
4988 /* The operand can be relocated. */
a92713e6
RS
4989 if (!match_expression (arg, &offset_expr, offset_reloc))
4990 return FALSE;
4991
4992 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
4993 /* Relocation operators were used. Accept the arguent and
4994 leave the relocation value in offset_expr and offset_relocs
4995 for the caller to process. */
a92713e6
RS
4996 return TRUE;
4997
4998 if (offset_expr.X_op != O_constant)
a1d78564 4999 {
60f20e8b
RS
5000 /* Accept non-constant operands if no later alternative matches,
5001 leaving it for the caller to process. */
5002 if (!arg->lax_match)
5003 return FALSE;
a92713e6
RS
5004 offset_reloc[0] = BFD_RELOC_LO16;
5005 return TRUE;
a1d78564 5006 }
a92713e6 5007
a1d78564
RS
5008 /* Clear the global state; we're going to install the operand
5009 ourselves. */
a92713e6 5010 sval = offset_expr.X_add_number;
a1d78564 5011 offset_expr.X_op = O_absent;
60f20e8b
RS
5012
5013 /* For compatibility with older assemblers, we accept
5014 0x8000-0xffff as signed 16-bit numbers when only
5015 signed numbers are allowed. */
5016 if (sval > max_val)
5017 {
5018 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5019 if (!arg->lax_match && sval <= max_val)
5020 return FALSE;
5021 }
a1d78564
RS
5022 }
5023 else
5024 {
1a00e612 5025 if (!match_const_int (arg, &sval))
a92713e6 5026 return FALSE;
a1d78564
RS
5027 }
5028
5029 arg->last_op_int = sval;
5030
1a00e612 5031 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5032 {
1a00e612
RS
5033 match_out_of_range (arg);
5034 return FALSE;
a1d78564
RS
5035 }
5036
5037 uval = (unsigned int) sval >> operand->shift;
5038 uval -= operand->bias;
5039
5040 /* Handle -mfix-cn63xxp1. */
5041 if (arg->opnum == 1
5042 && mips_fix_cn63xxp1
5043 && !mips_opts.micromips
5044 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5045 switch (uval)
5046 {
5047 case 5:
5048 case 25:
5049 case 26:
5050 case 27:
5051 case 28:
5052 case 29:
5053 case 30:
5054 case 31:
5055 /* These are ok. */
5056 break;
5057
5058 default:
5059 /* The rest must be changed to 28. */
5060 uval = 28;
5061 break;
5062 }
5063
5064 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5065 return TRUE;
a1d78564
RS
5066}
5067
5068/* OP_MAPPED_INT matcher. */
5069
a92713e6 5070static bfd_boolean
a1d78564 5071match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5072 const struct mips_operand *operand_base)
a1d78564
RS
5073{
5074 const struct mips_mapped_int_operand *operand;
5075 unsigned int uval, num_vals;
5076 offsetT sval;
5077
5078 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5079 if (!match_const_int (arg, &sval))
a92713e6 5080 return FALSE;
a1d78564
RS
5081
5082 num_vals = 1 << operand_base->size;
5083 for (uval = 0; uval < num_vals; uval++)
5084 if (operand->int_map[uval] == sval)
5085 break;
5086 if (uval == num_vals)
1a00e612
RS
5087 {
5088 match_out_of_range (arg);
5089 return FALSE;
5090 }
a1d78564
RS
5091
5092 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5093 return TRUE;
a1d78564
RS
5094}
5095
5096/* OP_MSB matcher. */
5097
a92713e6 5098static bfd_boolean
a1d78564 5099match_msb_operand (struct mips_arg_info *arg,
a92713e6 5100 const struct mips_operand *operand_base)
a1d78564
RS
5101{
5102 const struct mips_msb_operand *operand;
5103 int min_val, max_val, max_high;
5104 offsetT size, sval, high;
5105
5106 operand = (const struct mips_msb_operand *) operand_base;
5107 min_val = operand->bias;
5108 max_val = min_val + (1 << operand_base->size) - 1;
5109 max_high = operand->opsize;
5110
1a00e612 5111 if (!match_const_int (arg, &size))
a92713e6 5112 return FALSE;
a1d78564
RS
5113
5114 high = size + arg->last_op_int;
5115 sval = operand->add_lsb ? high : size;
5116
5117 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5118 {
1a00e612
RS
5119 match_out_of_range (arg);
5120 return FALSE;
a1d78564
RS
5121 }
5122 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5123 return TRUE;
a1d78564
RS
5124}
5125
5126/* OP_REG matcher. */
5127
a92713e6 5128static bfd_boolean
a1d78564 5129match_reg_operand (struct mips_arg_info *arg,
a92713e6 5130 const struct mips_operand *operand_base)
a1d78564
RS
5131{
5132 const struct mips_reg_operand *operand;
a92713e6 5133 unsigned int regno, uval, num_vals;
a1d78564
RS
5134
5135 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5136 if (!match_reg (arg, operand->reg_type, &regno))
5137 return FALSE;
a1d78564
RS
5138
5139 if (operand->reg_map)
5140 {
5141 num_vals = 1 << operand->root.size;
5142 for (uval = 0; uval < num_vals; uval++)
5143 if (operand->reg_map[uval] == regno)
5144 break;
5145 if (num_vals == uval)
a92713e6 5146 return FALSE;
a1d78564
RS
5147 }
5148 else
5149 uval = regno;
5150
a1d78564
RS
5151 arg->last_regno = regno;
5152 if (arg->opnum == 1)
5153 arg->dest_regno = regno;
5154 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5155 return TRUE;
a1d78564
RS
5156}
5157
5158/* OP_REG_PAIR matcher. */
5159
a92713e6 5160static bfd_boolean
a1d78564 5161match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5162 const struct mips_operand *operand_base)
a1d78564
RS
5163{
5164 const struct mips_reg_pair_operand *operand;
a92713e6 5165 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5166
5167 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5168 if (!match_reg (arg, operand->reg_type, &regno1)
5169 || !match_char (arg, ',')
5170 || !match_reg (arg, operand->reg_type, &regno2))
5171 return FALSE;
a1d78564
RS
5172
5173 num_vals = 1 << operand_base->size;
5174 for (uval = 0; uval < num_vals; uval++)
5175 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5176 break;
5177 if (uval == num_vals)
a92713e6 5178 return FALSE;
a1d78564 5179
a1d78564 5180 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5181 return TRUE;
a1d78564
RS
5182}
5183
5184/* OP_PCREL matcher. The caller chooses the relocation type. */
5185
a92713e6
RS
5186static bfd_boolean
5187match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5188{
a92713e6
RS
5189 bfd_reloc_code_real_type r[3];
5190
5191 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5192}
5193
5194/* OP_PERF_REG matcher. */
5195
a92713e6 5196static bfd_boolean
a1d78564 5197match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5198 const struct mips_operand *operand)
a1d78564
RS
5199{
5200 offsetT sval;
5201
1a00e612 5202 if (!match_const_int (arg, &sval))
a92713e6 5203 return FALSE;
a1d78564
RS
5204
5205 if (sval != 0
5206 && (sval != 1
5207 || (mips_opts.arch == CPU_R5900
5208 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5209 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5210 {
1a00e612
RS
5211 set_insn_error (arg->argnum, _("invalid performance register"));
5212 return FALSE;
a1d78564
RS
5213 }
5214
5215 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5216 return TRUE;
a1d78564
RS
5217}
5218
5219/* OP_ADDIUSP matcher. */
5220
a92713e6 5221static bfd_boolean
a1d78564 5222match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5223 const struct mips_operand *operand)
a1d78564
RS
5224{
5225 offsetT sval;
5226 unsigned int uval;
5227
1a00e612 5228 if (!match_const_int (arg, &sval))
a92713e6 5229 return FALSE;
a1d78564
RS
5230
5231 if (sval % 4)
1a00e612
RS
5232 {
5233 match_out_of_range (arg);
5234 return FALSE;
5235 }
a1d78564
RS
5236
5237 sval /= 4;
5238 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5239 {
5240 match_out_of_range (arg);
5241 return FALSE;
5242 }
a1d78564
RS
5243
5244 uval = (unsigned int) sval;
5245 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5246 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5247 return TRUE;
a1d78564
RS
5248}
5249
5250/* OP_CLO_CLZ_DEST matcher. */
5251
a92713e6 5252static bfd_boolean
a1d78564 5253match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5254 const struct mips_operand *operand)
a1d78564
RS
5255{
5256 unsigned int regno;
5257
a92713e6
RS
5258 if (!match_reg (arg, OP_REG_GP, &regno))
5259 return FALSE;
a1d78564 5260
a1d78564 5261 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5262 return TRUE;
a1d78564
RS
5263}
5264
7361da2c
AB
5265/* OP_CHECK_PREV matcher. */
5266
5267static bfd_boolean
5268match_check_prev_operand (struct mips_arg_info *arg,
5269 const struct mips_operand *operand_base)
5270{
5271 const struct mips_check_prev_operand *operand;
5272 unsigned int regno;
5273
5274 operand = (const struct mips_check_prev_operand *) operand_base;
5275
5276 if (!match_reg (arg, OP_REG_GP, &regno))
5277 return FALSE;
5278
5279 if (!operand->zero_ok && regno == 0)
5280 return FALSE;
5281
5282 if ((operand->less_than_ok && regno < arg->last_regno)
5283 || (operand->greater_than_ok && regno > arg->last_regno)
5284 || (operand->equal_ok && regno == arg->last_regno))
5285 {
5286 arg->last_regno = regno;
5287 insn_insert_operand (arg->insn, operand_base, regno);
5288 return TRUE;
5289 }
5290
5291 return FALSE;
5292}
5293
5294/* OP_SAME_RS_RT matcher. */
5295
5296static bfd_boolean
5297match_same_rs_rt_operand (struct mips_arg_info *arg,
5298 const struct mips_operand *operand)
5299{
5300 unsigned int regno;
5301
5302 if (!match_reg (arg, OP_REG_GP, &regno))
5303 return FALSE;
5304
5305 if (regno == 0)
5306 {
5307 set_insn_error (arg->argnum, _("the source register must not be $0"));
5308 return FALSE;
5309 }
5310
5311 arg->last_regno = regno;
5312
5313 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5314 return TRUE;
5315}
5316
a1d78564
RS
5317/* OP_LWM_SWM_LIST matcher. */
5318
a92713e6 5319static bfd_boolean
a1d78564 5320match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5321 const struct mips_operand *operand)
a1d78564 5322{
a92713e6
RS
5323 unsigned int reglist, sregs, ra, regno1, regno2;
5324 struct mips_arg_info reset;
a1d78564 5325
a92713e6
RS
5326 reglist = 0;
5327 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5328 return FALSE;
5329 do
5330 {
5331 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5332 {
5333 reglist |= 1 << FP;
5334 regno2 = S7;
5335 }
5336 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5337 reset = *arg;
5338 }
5339 while (match_char (arg, ',')
5340 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5341 *arg = reset;
a1d78564
RS
5342
5343 if (operand->size == 2)
5344 {
5345 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5346
5347 s0, ra
5348 s0, s1, ra, s2, s3
5349 s0-s2, ra
5350
5351 and any permutations of these. */
5352 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5353 return FALSE;
a1d78564
RS
5354
5355 sregs = (reglist >> 17) & 7;
5356 ra = 0;
5357 }
5358 else
5359 {
5360 /* The list must include at least one of ra and s0-sN,
5361 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5362 which are $23 and $30 respectively.) E.g.:
5363
5364 ra
5365 s0
5366 ra, s0, s1, s2
5367 s0-s8
5368 s0-s5, ra
5369
5370 and any permutations of these. */
5371 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5372 return FALSE;
a1d78564
RS
5373
5374 ra = (reglist >> 27) & 0x10;
5375 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5376 }
5377 sregs += 1;
5378 if ((sregs & -sregs) != sregs)
a92713e6 5379 return FALSE;
a1d78564
RS
5380
5381 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5382 return TRUE;
a1d78564
RS
5383}
5384
364215c8
RS
5385/* OP_ENTRY_EXIT_LIST matcher. */
5386
a92713e6 5387static unsigned int
364215c8 5388match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5389 const struct mips_operand *operand)
364215c8
RS
5390{
5391 unsigned int mask;
5392 bfd_boolean is_exit;
5393
5394 /* The format is the same for both ENTRY and EXIT, but the constraints
5395 are different. */
5396 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5397 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5398 do
364215c8
RS
5399 {
5400 unsigned int regno1, regno2;
5401 bfd_boolean is_freg;
5402
a92713e6 5403 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5404 is_freg = FALSE;
a92713e6 5405 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5406 is_freg = TRUE;
5407 else
a92713e6 5408 return FALSE;
364215c8
RS
5409
5410 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5411 {
5412 mask &= ~(7 << 3);
5413 mask |= (5 + regno2) << 3;
5414 }
5415 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5416 mask |= (regno2 - 3) << 3;
5417 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5418 mask |= (regno2 - 15) << 1;
5419 else if (regno1 == RA && regno2 == RA)
5420 mask |= 1;
5421 else
a92713e6 5422 return FALSE;
364215c8 5423 }
a92713e6
RS
5424 while (match_char (arg, ','));
5425
364215c8 5426 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5427 return TRUE;
364215c8
RS
5428}
5429
5430/* OP_SAVE_RESTORE_LIST matcher. */
5431
a92713e6
RS
5432static bfd_boolean
5433match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5434{
5435 unsigned int opcode, args, statics, sregs;
5436 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5437 offsetT frame_size;
364215c8 5438
364215c8
RS
5439 opcode = arg->insn->insn_opcode;
5440 frame_size = 0;
5441 num_frame_sizes = 0;
5442 args = 0;
5443 statics = 0;
5444 sregs = 0;
a92713e6 5445 do
364215c8
RS
5446 {
5447 unsigned int regno1, regno2;
5448
a92713e6 5449 if (arg->token->type == OT_INTEGER)
364215c8
RS
5450 {
5451 /* Handle the frame size. */
1a00e612 5452 if (!match_const_int (arg, &frame_size))
a92713e6 5453 return FALSE;
364215c8 5454 num_frame_sizes += 1;
364215c8
RS
5455 }
5456 else
5457 {
a92713e6
RS
5458 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5459 return FALSE;
364215c8
RS
5460
5461 while (regno1 <= regno2)
5462 {
5463 if (regno1 >= 4 && regno1 <= 7)
5464 {
5465 if (num_frame_sizes == 0)
5466 /* args $a0-$a3 */
5467 args |= 1 << (regno1 - 4);
5468 else
5469 /* statics $a0-$a3 */
5470 statics |= 1 << (regno1 - 4);
5471 }
5472 else if (regno1 >= 16 && regno1 <= 23)
5473 /* $s0-$s7 */
5474 sregs |= 1 << (regno1 - 16);
5475 else if (regno1 == 30)
5476 /* $s8 */
5477 sregs |= 1 << 8;
5478 else if (regno1 == 31)
5479 /* Add $ra to insn. */
5480 opcode |= 0x40;
5481 else
a92713e6 5482 return FALSE;
364215c8
RS
5483 regno1 += 1;
5484 if (regno1 == 24)
5485 regno1 = 30;
5486 }
5487 }
364215c8 5488 }
a92713e6 5489 while (match_char (arg, ','));
364215c8
RS
5490
5491 /* Encode args/statics combination. */
5492 if (args & statics)
a92713e6 5493 return FALSE;
364215c8
RS
5494 else if (args == 0xf)
5495 /* All $a0-$a3 are args. */
5496 opcode |= MIPS16_ALL_ARGS << 16;
5497 else if (statics == 0xf)
5498 /* All $a0-$a3 are statics. */
5499 opcode |= MIPS16_ALL_STATICS << 16;
5500 else
5501 {
5502 /* Count arg registers. */
5503 num_args = 0;
5504 while (args & 0x1)
5505 {
5506 args >>= 1;
5507 num_args += 1;
5508 }
5509 if (args != 0)
a92713e6 5510 return FALSE;
364215c8
RS
5511
5512 /* Count static registers. */
5513 num_statics = 0;
5514 while (statics & 0x8)
5515 {
5516 statics = (statics << 1) & 0xf;
5517 num_statics += 1;
5518 }
5519 if (statics != 0)
a92713e6 5520 return FALSE;
364215c8
RS
5521
5522 /* Encode args/statics. */
5523 opcode |= ((num_args << 2) | num_statics) << 16;
5524 }
5525
5526 /* Encode $s0/$s1. */
5527 if (sregs & (1 << 0)) /* $s0 */
5528 opcode |= 0x20;
5529 if (sregs & (1 << 1)) /* $s1 */
5530 opcode |= 0x10;
5531 sregs >>= 2;
5532
5533 /* Encode $s2-$s8. */
5534 num_sregs = 0;
5535 while (sregs & 1)
5536 {
5537 sregs >>= 1;
5538 num_sregs += 1;
5539 }
5540 if (sregs != 0)
a92713e6 5541 return FALSE;
364215c8
RS
5542 opcode |= num_sregs << 24;
5543
5544 /* Encode frame size. */
5545 if (num_frame_sizes == 0)
1a00e612
RS
5546 {
5547 set_insn_error (arg->argnum, _("missing frame size"));
5548 return FALSE;
5549 }
5550 if (num_frame_sizes > 1)
5551 {
5552 set_insn_error (arg->argnum, _("frame size specified twice"));
5553 return FALSE;
5554 }
5555 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5556 {
5557 set_insn_error (arg->argnum, _("invalid frame size"));
5558 return FALSE;
5559 }
5560 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5561 {
5562 frame_size /= 8;
5563 opcode |= (((frame_size & 0xf0) << 16)
5564 | (frame_size & 0x0f));
5565 }
5566
364215c8
RS
5567 /* Finally build the instruction. */
5568 if ((opcode >> 16) != 0 || frame_size == 0)
5569 opcode |= MIPS16_EXTEND;
5570 arg->insn->insn_opcode = opcode;
a92713e6 5571 return TRUE;
364215c8
RS
5572}
5573
a1d78564
RS
5574/* OP_MDMX_IMM_REG matcher. */
5575
a92713e6 5576static bfd_boolean
a1d78564 5577match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5578 const struct mips_operand *operand)
a1d78564 5579{
a92713e6 5580 unsigned int regno, uval;
a1d78564
RS
5581 bfd_boolean is_qh;
5582 const struct mips_opcode *opcode;
5583
5584 /* The mips_opcode records whether this is an octobyte or quadhalf
5585 instruction. Start out with that bit in place. */
5586 opcode = arg->insn->insn_mo;
5587 uval = mips_extract_operand (operand, opcode->match);
5588 is_qh = (uval != 0);
5589
56d438b1 5590 if (arg->token->type == OT_REG)
a1d78564
RS
5591 {
5592 if ((opcode->membership & INSN_5400)
5593 && strcmp (opcode->name, "rzu.ob") == 0)
5594 {
1a00e612
RS
5595 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5596 arg->argnum);
5597 return FALSE;
a1d78564
RS
5598 }
5599
56d438b1
CF
5600 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5601 return FALSE;
5602 ++arg->token;
5603
a1d78564
RS
5604 /* Check whether this is a vector register or a broadcast of
5605 a single element. */
56d438b1 5606 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5607 {
56d438b1 5608 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5609 {
1a00e612
RS
5610 set_insn_error (arg->argnum, _("invalid element selector"));
5611 return FALSE;
a1d78564 5612 }
56d438b1
CF
5613 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5614 ++arg->token;
a1d78564
RS
5615 }
5616 else
5617 {
5618 /* A full vector. */
5619 if ((opcode->membership & INSN_5400)
5620 && (strcmp (opcode->name, "sll.ob") == 0
5621 || strcmp (opcode->name, "srl.ob") == 0))
5622 {
1a00e612
RS
5623 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5624 arg->argnum);
5625 return FALSE;
a1d78564
RS
5626 }
5627
5628 if (is_qh)
5629 uval |= MDMX_FMTSEL_VEC_QH << 5;
5630 else
5631 uval |= MDMX_FMTSEL_VEC_OB << 5;
5632 }
a1d78564
RS
5633 uval |= regno;
5634 }
5635 else
5636 {
5637 offsetT sval;
5638
1a00e612 5639 if (!match_const_int (arg, &sval))
a92713e6 5640 return FALSE;
a1d78564
RS
5641 if (sval < 0 || sval > 31)
5642 {
1a00e612
RS
5643 match_out_of_range (arg);
5644 return FALSE;
a1d78564
RS
5645 }
5646 uval |= (sval & 31);
5647 if (is_qh)
5648 uval |= MDMX_FMTSEL_IMM_QH << 5;
5649 else
5650 uval |= MDMX_FMTSEL_IMM_OB << 5;
5651 }
5652 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5653 return TRUE;
a1d78564
RS
5654}
5655
56d438b1
CF
5656/* OP_IMM_INDEX matcher. */
5657
5658static bfd_boolean
5659match_imm_index_operand (struct mips_arg_info *arg,
5660 const struct mips_operand *operand)
5661{
5662 unsigned int max_val;
5663
5664 if (arg->token->type != OT_INTEGER_INDEX)
5665 return FALSE;
5666
5667 max_val = (1 << operand->size) - 1;
5668 if (arg->token->u.index > max_val)
5669 {
5670 match_out_of_range (arg);
5671 return FALSE;
5672 }
5673 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5674 ++arg->token;
5675 return TRUE;
5676}
5677
5678/* OP_REG_INDEX matcher. */
5679
5680static bfd_boolean
5681match_reg_index_operand (struct mips_arg_info *arg,
5682 const struct mips_operand *operand)
5683{
5684 unsigned int regno;
5685
5686 if (arg->token->type != OT_REG_INDEX)
5687 return FALSE;
5688
5689 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5690 return FALSE;
5691
5692 insn_insert_operand (arg->insn, operand, regno);
5693 ++arg->token;
5694 return TRUE;
5695}
5696
a1d78564
RS
5697/* OP_PC matcher. */
5698
a92713e6
RS
5699static bfd_boolean
5700match_pc_operand (struct mips_arg_info *arg)
a1d78564 5701{
a92713e6
RS
5702 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5703 {
5704 ++arg->token;
5705 return TRUE;
5706 }
5707 return FALSE;
a1d78564
RS
5708}
5709
7361da2c
AB
5710/* OP_NON_ZERO_REG matcher. */
5711
5712static bfd_boolean
5713match_non_zero_reg_operand (struct mips_arg_info *arg,
5714 const struct mips_operand *operand)
5715{
5716 unsigned int regno;
5717
5718 if (!match_reg (arg, OP_REG_GP, &regno))
5719 return FALSE;
5720
5721 if (regno == 0)
5722 return FALSE;
5723
5724 arg->last_regno = regno;
5725 insn_insert_operand (arg->insn, operand, regno);
5726 return TRUE;
5727}
5728
a1d78564
RS
5729/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5730 register that we need to match. */
5731
a92713e6
RS
5732static bfd_boolean
5733match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5734{
5735 unsigned int regno;
5736
a92713e6 5737 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5738}
5739
89565f1b
RS
5740/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5741 the length of the value in bytes (4 for float, 8 for double) and
5742 USING_GPRS says whether the destination is a GPR rather than an FPR.
5743
5744 Return the constant in IMM and OFFSET as follows:
5745
5746 - If the constant should be loaded via memory, set IMM to O_absent and
5747 OFFSET to the memory address.
5748
5749 - Otherwise, if the constant should be loaded into two 32-bit registers,
5750 set IMM to the O_constant to load into the high register and OFFSET
5751 to the corresponding value for the low register.
5752
5753 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5754
5755 These constants only appear as the last operand in an instruction,
5756 and every instruction that accepts them in any variant accepts them
5757 in all variants. This means we don't have to worry about backing out
5758 any changes if the instruction does not match. We just match
5759 unconditionally and report an error if the constant is invalid. */
5760
a92713e6
RS
5761static bfd_boolean
5762match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5763 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5764{
a92713e6 5765 char *p;
89565f1b
RS
5766 segT seg, new_seg;
5767 subsegT subseg;
5768 const char *newname;
a92713e6 5769 unsigned char *data;
89565f1b
RS
5770
5771 /* Where the constant is placed is based on how the MIPS assembler
5772 does things:
5773
5774 length == 4 && using_gprs -- immediate value only
5775 length == 8 && using_gprs -- .rdata or immediate value
5776 length == 4 && !using_gprs -- .lit4 or immediate value
5777 length == 8 && !using_gprs -- .lit8 or immediate value
5778
5779 The .lit4 and .lit8 sections are only used if permitted by the
5780 -G argument. */
a92713e6 5781 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5782 {
5783 set_insn_error (arg->argnum, _("floating-point expression required"));
5784 return FALSE;
5785 }
a92713e6
RS
5786
5787 gas_assert (arg->token->u.flt.length == length);
5788 data = arg->token->u.flt.data;
5789 ++arg->token;
89565f1b
RS
5790
5791 /* Handle 32-bit constants for which an immediate value is best. */
5792 if (length == 4
5793 && (using_gprs
5794 || g_switch_value < 4
5795 || (data[0] == 0 && data[1] == 0)
5796 || (data[2] == 0 && data[3] == 0)))
5797 {
5798 imm->X_op = O_constant;
5799 if (!target_big_endian)
5800 imm->X_add_number = bfd_getl32 (data);
5801 else
5802 imm->X_add_number = bfd_getb32 (data);
5803 offset->X_op = O_absent;
a92713e6 5804 return TRUE;
89565f1b
RS
5805 }
5806
5807 /* Handle 64-bit constants for which an immediate value is best. */
5808 if (length == 8
5809 && !mips_disable_float_construction
351cdf24
MF
5810 /* Constants can only be constructed in GPRs and copied to FPRs if the
5811 GPRs are at least as wide as the FPRs or MTHC1 is available.
5812 Unlike most tests for 32-bit floating-point registers this check
5813 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5814 permit 64-bit moves without MXHC1.
5815 Force the constant into memory otherwise. */
5816 && (using_gprs
5817 || GPR_SIZE == 64
5818 || ISA_HAS_MXHC1 (mips_opts.isa)
5819 || FPR_SIZE == 32)
89565f1b
RS
5820 && ((data[0] == 0 && data[1] == 0)
5821 || (data[2] == 0 && data[3] == 0))
5822 && ((data[4] == 0 && data[5] == 0)
5823 || (data[6] == 0 && data[7] == 0)))
5824 {
5825 /* The value is simple enough to load with a couple of instructions.
5826 If using 32-bit registers, set IMM to the high order 32 bits and
5827 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5828 64 bit constant. */
351cdf24 5829 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5830 {
5831 imm->X_op = O_constant;
5832 offset->X_op = O_constant;
5833 if (!target_big_endian)
5834 {
5835 imm->X_add_number = bfd_getl32 (data + 4);
5836 offset->X_add_number = bfd_getl32 (data);
5837 }
5838 else
5839 {
5840 imm->X_add_number = bfd_getb32 (data);
5841 offset->X_add_number = bfd_getb32 (data + 4);
5842 }
5843 if (offset->X_add_number == 0)
5844 offset->X_op = O_absent;
5845 }
5846 else
5847 {
5848 imm->X_op = O_constant;
5849 if (!target_big_endian)
5850 imm->X_add_number = bfd_getl64 (data);
5851 else
5852 imm->X_add_number = bfd_getb64 (data);
5853 offset->X_op = O_absent;
5854 }
a92713e6 5855 return TRUE;
89565f1b
RS
5856 }
5857
5858 /* Switch to the right section. */
5859 seg = now_seg;
5860 subseg = now_subseg;
5861 if (length == 4)
5862 {
5863 gas_assert (!using_gprs && g_switch_value >= 4);
5864 newname = ".lit4";
5865 }
5866 else
5867 {
5868 if (using_gprs || g_switch_value < 8)
5869 newname = RDATA_SECTION_NAME;
5870 else
5871 newname = ".lit8";
5872 }
5873
5874 new_seg = subseg_new (newname, (subsegT) 0);
5875 bfd_set_section_flags (stdoutput, new_seg,
5876 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5877 frag_align (length == 4 ? 2 : 3, 0, 0);
5878 if (strncmp (TARGET_OS, "elf", 3) != 0)
5879 record_alignment (new_seg, 4);
5880 else
5881 record_alignment (new_seg, length == 4 ? 2 : 3);
5882 if (seg == now_seg)
1661c76c 5883 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5884
5885 /* Set the argument to the current address in the section. */
5886 imm->X_op = O_absent;
5887 offset->X_op = O_symbol;
5888 offset->X_add_symbol = symbol_temp_new_now ();
5889 offset->X_add_number = 0;
5890
5891 /* Put the floating point number into the section. */
5892 p = frag_more (length);
5893 memcpy (p, data, length);
5894
5895 /* Switch back to the original section. */
5896 subseg_set (seg, subseg);
a92713e6 5897 return TRUE;
89565f1b
RS
5898}
5899
14daeee3
RS
5900/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5901 them. */
5902
5903static bfd_boolean
5904match_vu0_suffix_operand (struct mips_arg_info *arg,
5905 const struct mips_operand *operand,
5906 bfd_boolean match_p)
5907{
5908 unsigned int uval;
5909
5910 /* The operand can be an XYZW mask or a single 2-bit channel index
5911 (with X being 0). */
5912 gas_assert (operand->size == 2 || operand->size == 4);
5913
ee5734f0 5914 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5915 if (arg->token->type != OT_CHANNELS)
ee5734f0 5916 return match_p;
14daeee3
RS
5917
5918 uval = arg->token->u.channels;
5919 if (operand->size == 2)
5920 {
5921 /* Check that a single bit is set and convert it into a 2-bit index. */
5922 if ((uval & -uval) != uval)
5923 return FALSE;
5924 uval = 4 - ffs (uval);
5925 }
5926
5927 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5928 return FALSE;
5929
5930 ++arg->token;
5931 if (!match_p)
5932 insn_insert_operand (arg->insn, operand, uval);
5933 return TRUE;
5934}
5935
a1d78564
RS
5936/* S is the text seen for ARG. Match it against OPERAND. Return the end
5937 of the argument text if the match is successful, otherwise return null. */
5938
a92713e6 5939static bfd_boolean
a1d78564 5940match_operand (struct mips_arg_info *arg,
a92713e6 5941 const struct mips_operand *operand)
a1d78564
RS
5942{
5943 switch (operand->type)
5944 {
5945 case OP_INT:
a92713e6 5946 return match_int_operand (arg, operand);
a1d78564
RS
5947
5948 case OP_MAPPED_INT:
a92713e6 5949 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5950
5951 case OP_MSB:
a92713e6 5952 return match_msb_operand (arg, operand);
a1d78564
RS
5953
5954 case OP_REG:
0f35dbc4 5955 case OP_OPTIONAL_REG:
a92713e6 5956 return match_reg_operand (arg, operand);
a1d78564
RS
5957
5958 case OP_REG_PAIR:
a92713e6 5959 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5960
5961 case OP_PCREL:
a92713e6 5962 return match_pcrel_operand (arg);
a1d78564
RS
5963
5964 case OP_PERF_REG:
a92713e6 5965 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5966
5967 case OP_ADDIUSP_INT:
a92713e6 5968 return match_addiusp_operand (arg, operand);
a1d78564
RS
5969
5970 case OP_CLO_CLZ_DEST:
a92713e6 5971 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5972
5973 case OP_LWM_SWM_LIST:
a92713e6 5974 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5975
5976 case OP_ENTRY_EXIT_LIST:
a92713e6 5977 return match_entry_exit_operand (arg, operand);
364215c8 5978
a1d78564 5979 case OP_SAVE_RESTORE_LIST:
a92713e6 5980 return match_save_restore_list_operand (arg);
a1d78564
RS
5981
5982 case OP_MDMX_IMM_REG:
a92713e6 5983 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
5984
5985 case OP_REPEAT_DEST_REG:
a92713e6 5986 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
5987
5988 case OP_REPEAT_PREV_REG:
a92713e6 5989 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
5990
5991 case OP_PC:
a92713e6 5992 return match_pc_operand (arg);
14daeee3
RS
5993
5994 case OP_VU0_SUFFIX:
5995 return match_vu0_suffix_operand (arg, operand, FALSE);
5996
5997 case OP_VU0_MATCH_SUFFIX:
5998 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
5999
6000 case OP_IMM_INDEX:
6001 return match_imm_index_operand (arg, operand);
6002
6003 case OP_REG_INDEX:
6004 return match_reg_index_operand (arg, operand);
7361da2c
AB
6005
6006 case OP_SAME_RS_RT:
6007 return match_same_rs_rt_operand (arg, operand);
6008
6009 case OP_CHECK_PREV:
6010 return match_check_prev_operand (arg, operand);
6011
6012 case OP_NON_ZERO_REG:
6013 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6014 }
6015 abort ();
6016}
6017
6018/* ARG is the state after successfully matching an instruction.
6019 Issue any queued-up warnings. */
6020
6021static void
6022check_completed_insn (struct mips_arg_info *arg)
6023{
6024 if (arg->seen_at)
6025 {
6026 if (AT == ATREG)
1661c76c 6027 as_warn (_("used $at without \".set noat\""));
a1d78564 6028 else
1661c76c 6029 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6030 }
6031}
a1d78564 6032
85fcb30f
RS
6033/* Return true if modifying general-purpose register REG needs a delay. */
6034
6035static bfd_boolean
6036reg_needs_delay (unsigned int reg)
6037{
6038 unsigned long prev_pinfo;
6039
6040 prev_pinfo = history[0].insn_mo->pinfo;
6041 if (!mips_opts.noreorder
67dc82bc 6042 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6043 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6044 && (gpr_write_mask (&history[0]) & (1 << reg)))
6045 return TRUE;
6046
6047 return FALSE;
6048}
6049
71400594
RS
6050/* Classify an instruction according to the FIX_VR4120_* enumeration.
6051 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6052 by VR4120 errata. */
4d7206a2 6053
71400594
RS
6054static unsigned int
6055classify_vr4120_insn (const char *name)
252b5132 6056{
71400594
RS
6057 if (strncmp (name, "macc", 4) == 0)
6058 return FIX_VR4120_MACC;
6059 if (strncmp (name, "dmacc", 5) == 0)
6060 return FIX_VR4120_DMACC;
6061 if (strncmp (name, "mult", 4) == 0)
6062 return FIX_VR4120_MULT;
6063 if (strncmp (name, "dmult", 5) == 0)
6064 return FIX_VR4120_DMULT;
6065 if (strstr (name, "div"))
6066 return FIX_VR4120_DIV;
6067 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6068 return FIX_VR4120_MTHILO;
6069 return NUM_FIX_VR4120_CLASSES;
6070}
252b5132 6071
a8d14a88
CM
6072#define INSN_ERET 0x42000018
6073#define INSN_DERET 0x4200001f
6074#define INSN_DMULT 0x1c
6075#define INSN_DMULTU 0x1d
ff239038 6076
71400594
RS
6077/* Return the number of instructions that must separate INSN1 and INSN2,
6078 where INSN1 is the earlier instruction. Return the worst-case value
6079 for any INSN2 if INSN2 is null. */
252b5132 6080
71400594
RS
6081static unsigned int
6082insns_between (const struct mips_cl_insn *insn1,
6083 const struct mips_cl_insn *insn2)
6084{
6085 unsigned long pinfo1, pinfo2;
4c260379 6086 unsigned int mask;
71400594 6087
85fcb30f
RS
6088 /* If INFO2 is null, pessimistically assume that all flags are set for
6089 the second instruction. */
71400594
RS
6090 pinfo1 = insn1->insn_mo->pinfo;
6091 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6092
71400594
RS
6093 /* For most targets, write-after-read dependencies on the HI and LO
6094 registers must be separated by at least two instructions. */
6095 if (!hilo_interlocks)
252b5132 6096 {
71400594
RS
6097 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6098 return 2;
6099 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6100 return 2;
6101 }
6102
6103 /* If we're working around r7000 errata, there must be two instructions
6104 between an mfhi or mflo and any instruction that uses the result. */
6105 if (mips_7000_hilo_fix
df58fc94 6106 && !mips_opts.micromips
71400594 6107 && MF_HILO_INSN (pinfo1)
85fcb30f 6108 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6109 return 2;
6110
ff239038
CM
6111 /* If we're working around 24K errata, one instruction is required
6112 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6113 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6114 {
6115 if (insn1->insn_opcode == INSN_ERET
6116 || insn1->insn_opcode == INSN_DERET)
6117 {
6118 if (insn2 == NULL
6119 || insn2->insn_opcode == INSN_ERET
6120 || insn2->insn_opcode == INSN_DERET
11625dd8 6121 || delayed_branch_p (insn2))
ff239038
CM
6122 return 1;
6123 }
6124 }
6125
a8d14a88
CM
6126 /* If we're working around PMC RM7000 errata, there must be three
6127 nops between a dmult and a load instruction. */
6128 if (mips_fix_rm7000 && !mips_opts.micromips)
6129 {
6130 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6131 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6132 {
6133 if (pinfo2 & INSN_LOAD_MEMORY)
6134 return 3;
6135 }
6136 }
6137
71400594
RS
6138 /* If working around VR4120 errata, check for combinations that need
6139 a single intervening instruction. */
df58fc94 6140 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6141 {
6142 unsigned int class1, class2;
252b5132 6143
71400594
RS
6144 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6145 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6146 {
71400594
RS
6147 if (insn2 == NULL)
6148 return 1;
6149 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6150 if (vr4120_conflicts[class1] & (1 << class2))
6151 return 1;
252b5132 6152 }
71400594
RS
6153 }
6154
df58fc94 6155 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6156 {
6157 /* Check for GPR or coprocessor load delays. All such delays
6158 are on the RT register. */
6159 /* Itbl support may require additional care here. */
67dc82bc 6160 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6161 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6162 {
85fcb30f 6163 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6164 return 1;
6165 }
6166
6167 /* Check for generic coprocessor hazards.
6168
6169 This case is not handled very well. There is no special
6170 knowledge of CP0 handling, and the coprocessors other than
6171 the floating point unit are not distinguished at all. */
6172 /* Itbl support may require additional care here. FIXME!
6173 Need to modify this to include knowledge about
6174 user specified delays! */
43885403 6175 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6176 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6177 {
6178 /* Handle cases where INSN1 writes to a known general coprocessor
6179 register. There must be a one instruction delay before INSN2
6180 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6181 mask = fpr_write_mask (insn1);
6182 if (mask != 0)
252b5132 6183 {
4c260379 6184 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6185 return 1;
252b5132
RH
6186 }
6187 else
6188 {
71400594
RS
6189 /* Read-after-write dependencies on the control registers
6190 require a two-instruction gap. */
6191 if ((pinfo1 & INSN_WRITE_COND_CODE)
6192 && (pinfo2 & INSN_READ_COND_CODE))
6193 return 2;
6194
6195 /* We don't know exactly what INSN1 does. If INSN2 is
6196 also a coprocessor instruction, assume there must be
6197 a one instruction gap. */
6198 if (pinfo2 & INSN_COP)
6199 return 1;
252b5132
RH
6200 }
6201 }
6b76fefe 6202
71400594
RS
6203 /* Check for read-after-write dependencies on the coprocessor
6204 control registers in cases where INSN1 does not need a general
6205 coprocessor delay. This means that INSN1 is a floating point
6206 comparison instruction. */
6207 /* Itbl support may require additional care here. */
6208 else if (!cop_interlocks
6209 && (pinfo1 & INSN_WRITE_COND_CODE)
6210 && (pinfo2 & INSN_READ_COND_CODE))
6211 return 1;
6212 }
6b76fefe 6213
7361da2c
AB
6214 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6215 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6216 and pause. */
6217 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6218 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6219 || (insn2 && delayed_branch_p (insn2))))
6220 return 1;
6221
71400594
RS
6222 return 0;
6223}
6b76fefe 6224
7d8e00cf
RS
6225/* Return the number of nops that would be needed to work around the
6226 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6227 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6228 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6229
6230static int
932d1a1b 6231nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6232 const struct mips_cl_insn *insn)
6233{
4c260379
RS
6234 int i, j;
6235 unsigned int mask;
7d8e00cf
RS
6236
6237 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6238 are not affected by the errata. */
6239 if (insn != 0
6240 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6241 || strcmp (insn->insn_mo->name, "mtlo") == 0
6242 || strcmp (insn->insn_mo->name, "mthi") == 0))
6243 return 0;
6244
6245 /* Search for the first MFLO or MFHI. */
6246 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6247 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6248 {
6249 /* Extract the destination register. */
4c260379 6250 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6251
6252 /* No nops are needed if INSN reads that register. */
4c260379 6253 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6254 return 0;
6255
6256 /* ...or if any of the intervening instructions do. */
6257 for (j = 0; j < i; j++)
4c260379 6258 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6259 return 0;
6260
932d1a1b
RS
6261 if (i >= ignore)
6262 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6263 }
6264 return 0;
6265}
6266
15be625d
CM
6267#define BASE_REG_EQ(INSN1, INSN2) \
6268 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6269 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6270
6271/* Return the minimum alignment for this store instruction. */
6272
6273static int
6274fix_24k_align_to (const struct mips_opcode *mo)
6275{
6276 if (strcmp (mo->name, "sh") == 0)
6277 return 2;
6278
6279 if (strcmp (mo->name, "swc1") == 0
6280 || strcmp (mo->name, "swc2") == 0
6281 || strcmp (mo->name, "sw") == 0
6282 || strcmp (mo->name, "sc") == 0
6283 || strcmp (mo->name, "s.s") == 0)
6284 return 4;
6285
6286 if (strcmp (mo->name, "sdc1") == 0
6287 || strcmp (mo->name, "sdc2") == 0
6288 || strcmp (mo->name, "s.d") == 0)
6289 return 8;
6290
6291 /* sb, swl, swr */
6292 return 1;
6293}
6294
6295struct fix_24k_store_info
6296 {
6297 /* Immediate offset, if any, for this store instruction. */
6298 short off;
6299 /* Alignment required by this store instruction. */
6300 int align_to;
6301 /* True for register offsets. */
6302 int register_offset;
6303 };
6304
6305/* Comparison function used by qsort. */
6306
6307static int
6308fix_24k_sort (const void *a, const void *b)
6309{
6310 const struct fix_24k_store_info *pos1 = a;
6311 const struct fix_24k_store_info *pos2 = b;
6312
6313 return (pos1->off - pos2->off);
6314}
6315
6316/* INSN is a store instruction. Try to record the store information
6317 in STINFO. Return false if the information isn't known. */
6318
6319static bfd_boolean
6320fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6321 const struct mips_cl_insn *insn)
15be625d
CM
6322{
6323 /* The instruction must have a known offset. */
6324 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6325 return FALSE;
6326
6327 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6328 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6329 return TRUE;
6330}
6331
932d1a1b
RS
6332/* Return the number of nops that would be needed to work around the 24k
6333 "lost data on stores during refill" errata if instruction INSN
6334 immediately followed the 2 instructions described by HIST.
6335 Ignore hazards that are contained within the first IGNORE
6336 instructions of HIST.
6337
6338 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6339 for the data cache refills and store data. The following describes
6340 the scenario where the store data could be lost.
6341
6342 * A data cache miss, due to either a load or a store, causing fill
6343 data to be supplied by the memory subsystem
6344 * The first three doublewords of fill data are returned and written
6345 into the cache
6346 * A sequence of four stores occurs in consecutive cycles around the
6347 final doubleword of the fill:
6348 * Store A
6349 * Store B
6350 * Store C
6351 * Zero, One or more instructions
6352 * Store D
6353
6354 The four stores A-D must be to different doublewords of the line that
6355 is being filled. The fourth instruction in the sequence above permits
6356 the fill of the final doubleword to be transferred from the FSB into
6357 the cache. In the sequence above, the stores may be either integer
6358 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6359 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6360 different doublewords on the line. If the floating point unit is
6361 running in 1:2 mode, it is not possible to create the sequence above
6362 using only floating point store instructions.
15be625d
CM
6363
6364 In this case, the cache line being filled is incorrectly marked
6365 invalid, thereby losing the data from any store to the line that
6366 occurs between the original miss and the completion of the five
6367 cycle sequence shown above.
6368
932d1a1b 6369 The workarounds are:
15be625d 6370
932d1a1b
RS
6371 * Run the data cache in write-through mode.
6372 * Insert a non-store instruction between
6373 Store A and Store B or Store B and Store C. */
3739860c 6374
15be625d 6375static int
932d1a1b 6376nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6377 const struct mips_cl_insn *insn)
6378{
6379 struct fix_24k_store_info pos[3];
6380 int align, i, base_offset;
6381
932d1a1b
RS
6382 if (ignore >= 2)
6383 return 0;
6384
ab9794cf
RS
6385 /* If the previous instruction wasn't a store, there's nothing to
6386 worry about. */
15be625d
CM
6387 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6388 return 0;
6389
ab9794cf
RS
6390 /* If the instructions after the previous one are unknown, we have
6391 to assume the worst. */
6392 if (!insn)
15be625d
CM
6393 return 1;
6394
ab9794cf
RS
6395 /* Check whether we are dealing with three consecutive stores. */
6396 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6397 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6398 return 0;
6399
6400 /* If we don't know the relationship between the store addresses,
6401 assume the worst. */
ab9794cf 6402 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6403 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6404 return 1;
6405
6406 if (!fix_24k_record_store_info (&pos[0], insn)
6407 || !fix_24k_record_store_info (&pos[1], &hist[0])
6408 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6409 return 1;
6410
6411 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6412
6413 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6414 X bytes and such that the base register + X is known to be aligned
6415 to align bytes. */
6416
6417 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6418 align = 8;
6419 else
6420 {
6421 align = pos[0].align_to;
6422 base_offset = pos[0].off;
6423 for (i = 1; i < 3; i++)
6424 if (align < pos[i].align_to)
6425 {
6426 align = pos[i].align_to;
6427 base_offset = pos[i].off;
6428 }
6429 for (i = 0; i < 3; i++)
6430 pos[i].off -= base_offset;
6431 }
6432
6433 pos[0].off &= ~align + 1;
6434 pos[1].off &= ~align + 1;
6435 pos[2].off &= ~align + 1;
6436
6437 /* If any two stores write to the same chunk, they also write to the
6438 same doubleword. The offsets are still sorted at this point. */
6439 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6440 return 0;
6441
6442 /* A range of at least 9 bytes is needed for the stores to be in
6443 non-overlapping doublewords. */
6444 if (pos[2].off - pos[0].off <= 8)
6445 return 0;
6446
6447 if (pos[2].off - pos[1].off >= 24
6448 || pos[1].off - pos[0].off >= 24
6449 || pos[2].off - pos[0].off >= 32)
6450 return 0;
6451
6452 return 1;
6453}
6454
71400594 6455/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6456 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6457 where HIST[0] is the most recent instruction. Ignore hazards
6458 between INSN and the first IGNORE instructions in HIST.
6459
6460 If INSN is null, return the worse-case number of nops for any
6461 instruction. */
bdaaa2e1 6462
71400594 6463static int
932d1a1b 6464nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6465 const struct mips_cl_insn *insn)
6466{
6467 int i, nops, tmp_nops;
bdaaa2e1 6468
71400594 6469 nops = 0;
932d1a1b 6470 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6471 {
91d6fa6a 6472 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6473 if (tmp_nops > nops)
6474 nops = tmp_nops;
6475 }
7d8e00cf 6476
df58fc94 6477 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6478 {
932d1a1b 6479 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6480 if (tmp_nops > nops)
6481 nops = tmp_nops;
6482 }
6483
df58fc94 6484 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6485 {
932d1a1b 6486 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6487 if (tmp_nops > nops)
6488 nops = tmp_nops;
6489 }
6490
71400594
RS
6491 return nops;
6492}
252b5132 6493
71400594 6494/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6495 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6496 would be needed after the extended sequence, ignoring hazards
6497 in the first IGNORE instructions. */
252b5132 6498
71400594 6499static int
932d1a1b
RS
6500nops_for_sequence (int num_insns, int ignore,
6501 const struct mips_cl_insn *hist, ...)
71400594
RS
6502{
6503 va_list args;
6504 struct mips_cl_insn buffer[MAX_NOPS];
6505 struct mips_cl_insn *cursor;
6506 int nops;
6507
91d6fa6a 6508 va_start (args, hist);
71400594 6509 cursor = buffer + num_insns;
91d6fa6a 6510 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6511 while (cursor > buffer)
6512 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6513
932d1a1b 6514 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6515 va_end (args);
6516 return nops;
6517}
252b5132 6518
71400594
RS
6519/* Like nops_for_insn, but if INSN is a branch, take into account the
6520 worst-case delay for the branch target. */
252b5132 6521
71400594 6522static int
932d1a1b 6523nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6524 const struct mips_cl_insn *insn)
6525{
6526 int nops, tmp_nops;
60b63b72 6527
932d1a1b 6528 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6529 if (delayed_branch_p (insn))
71400594 6530 {
932d1a1b 6531 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6532 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6533 if (tmp_nops > nops)
6534 nops = tmp_nops;
6535 }
11625dd8 6536 else if (compact_branch_p (insn))
71400594 6537 {
932d1a1b 6538 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6539 if (tmp_nops > nops)
6540 nops = tmp_nops;
6541 }
6542 return nops;
6543}
6544
c67a084a
NC
6545/* Fix NOP issue: Replace nops by "or at,at,zero". */
6546
6547static void
6548fix_loongson2f_nop (struct mips_cl_insn * ip)
6549{
df58fc94 6550 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6551 if (strcmp (ip->insn_mo->name, "nop") == 0)
6552 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6553}
6554
6555/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6556 jr target pc &= 'hffff_ffff_cfff_ffff. */
6557
6558static void
6559fix_loongson2f_jump (struct mips_cl_insn * ip)
6560{
df58fc94 6561 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6562 if (strcmp (ip->insn_mo->name, "j") == 0
6563 || strcmp (ip->insn_mo->name, "jr") == 0
6564 || strcmp (ip->insn_mo->name, "jalr") == 0)
6565 {
6566 int sreg;
6567 expressionS ep;
6568
6569 if (! mips_opts.at)
6570 return;
6571
df58fc94 6572 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6573 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6574 return;
6575
6576 ep.X_op = O_constant;
6577 ep.X_add_number = 0xcfff0000;
6578 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6579 ep.X_add_number = 0xffff;
6580 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6581 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6582 }
6583}
6584
6585static void
6586fix_loongson2f (struct mips_cl_insn * ip)
6587{
6588 if (mips_fix_loongson2f_nop)
6589 fix_loongson2f_nop (ip);
6590
6591 if (mips_fix_loongson2f_jump)
6592 fix_loongson2f_jump (ip);
6593}
6594
a4e06468
RS
6595/* IP is a branch that has a delay slot, and we need to fill it
6596 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6597 with the previous instruction.
6598 ADDRESS_EXPR is an operand of the instruction to be used with
6599 RELOC_TYPE. */
a4e06468
RS
6600
6601static bfd_boolean
e407c74b 6602can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6603 bfd_reloc_code_real_type *reloc_type)
a4e06468 6604{
2b0c8b40 6605 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6606 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6607 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6608
6609 /* -O2 and above is required for this optimization. */
6610 if (mips_optimize < 2)
6611 return FALSE;
6612
6613 /* If we have seen .set volatile or .set nomove, don't optimize. */
6614 if (mips_opts.nomove)
6615 return FALSE;
6616
6617 /* We can't swap if the previous instruction's position is fixed. */
6618 if (history[0].fixed_p)
6619 return FALSE;
6620
6621 /* If the previous previous insn was in a .set noreorder, we can't
6622 swap. Actually, the MIPS assembler will swap in this situation.
6623 However, gcc configured -with-gnu-as will generate code like
6624
6625 .set noreorder
6626 lw $4,XXX
6627 .set reorder
6628 INSN
6629 bne $4,$0,foo
6630
6631 in which we can not swap the bne and INSN. If gcc is not configured
6632 -with-gnu-as, it does not output the .set pseudo-ops. */
6633 if (history[1].noreorder_p)
6634 return FALSE;
6635
87333bb7
MR
6636 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6637 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6638 if (mips_opts.mips16 && history[0].fixp[0])
6639 return FALSE;
6640
6641 /* If the branch is itself the target of a branch, we can not swap.
6642 We cheat on this; all we check for is whether there is a label on
6643 this instruction. If there are any branches to anything other than
6644 a label, users must use .set noreorder. */
6645 if (seg_info (now_seg)->label_list)
6646 return FALSE;
6647
6648 /* If the previous instruction is in a variant frag other than this
2309ddf2 6649 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6650 MIPS16 code, which uses variant frags for different purposes. */
6651 if (!mips_opts.mips16
a4e06468
RS
6652 && history[0].frag
6653 && history[0].frag->fr_type == rs_machine_dependent)
6654 return FALSE;
6655
bcd530a7
RS
6656 /* We do not swap with instructions that cannot architecturally
6657 be placed in a branch delay slot, such as SYNC or ERET. We
6658 also refrain from swapping with a trap instruction, since it
6659 complicates trap handlers to have the trap instruction be in
6660 a delay slot. */
a4e06468 6661 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6662 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6663 return FALSE;
6664
6665 /* Check for conflicts between the branch and the instructions
6666 before the candidate delay slot. */
6667 if (nops_for_insn (0, history + 1, ip) > 0)
6668 return FALSE;
6669
6670 /* Check for conflicts between the swapped sequence and the
6671 target of the branch. */
6672 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6673 return FALSE;
6674
6675 /* If the branch reads a register that the previous
6676 instruction sets, we can not swap. */
6677 gpr_read = gpr_read_mask (ip);
6678 prev_gpr_write = gpr_write_mask (&history[0]);
6679 if (gpr_read & prev_gpr_write)
6680 return FALSE;
6681
9d5de888
CF
6682 fpr_read = fpr_read_mask (ip);
6683 prev_fpr_write = fpr_write_mask (&history[0]);
6684 if (fpr_read & prev_fpr_write)
6685 return FALSE;
6686
a4e06468
RS
6687 /* If the branch writes a register that the previous
6688 instruction sets, we can not swap. */
6689 gpr_write = gpr_write_mask (ip);
6690 if (gpr_write & prev_gpr_write)
6691 return FALSE;
6692
6693 /* If the branch writes a register that the previous
6694 instruction reads, we can not swap. */
6695 prev_gpr_read = gpr_read_mask (&history[0]);
6696 if (gpr_write & prev_gpr_read)
6697 return FALSE;
6698
6699 /* If one instruction sets a condition code and the
6700 other one uses a condition code, we can not swap. */
6701 pinfo = ip->insn_mo->pinfo;
6702 if ((pinfo & INSN_READ_COND_CODE)
6703 && (prev_pinfo & INSN_WRITE_COND_CODE))
6704 return FALSE;
6705 if ((pinfo & INSN_WRITE_COND_CODE)
6706 && (prev_pinfo & INSN_READ_COND_CODE))
6707 return FALSE;
6708
6709 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6710 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6711 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6712 return FALSE;
a4e06468 6713
df58fc94
RS
6714 /* If the previous instruction has an incorrect size for a fixed
6715 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6716 pinfo2 = ip->insn_mo->pinfo2;
6717 if (mips_opts.micromips
6718 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6719 && insn_length (history) != 2)
6720 return FALSE;
6721 if (mips_opts.micromips
6722 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6723 && insn_length (history) != 4)
6724 return FALSE;
6725
e407c74b
NC
6726 /* On R5900 short loops need to be fixed by inserting a nop in
6727 the branch delay slots.
6728 A short loop can be terminated too early. */
6729 if (mips_opts.arch == CPU_R5900
6730 /* Check if instruction has a parameter, ignore "j $31". */
6731 && (address_expr != NULL)
6732 /* Parameter must be 16 bit. */
6733 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6734 /* Branch to same segment. */
41065f5e 6735 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6736 /* Branch to same code fragment. */
41065f5e 6737 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6738 /* Can only calculate branch offset if value is known. */
41065f5e 6739 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6740 /* Check if branch is really conditional. */
6741 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6742 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6743 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6744 {
6745 int distance;
6746 /* Check if loop is shorter than 6 instructions including
6747 branch and delay slot. */
41065f5e 6748 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6749 if (distance <= 20)
6750 {
6751 int i;
6752 int rv;
6753
6754 rv = FALSE;
6755 /* When the loop includes branches or jumps,
6756 it is not a short loop. */
6757 for (i = 0; i < (distance / 4); i++)
6758 {
6759 if ((history[i].cleared_p)
41065f5e 6760 || delayed_branch_p (&history[i]))
e407c74b
NC
6761 {
6762 rv = TRUE;
6763 break;
6764 }
6765 }
6766 if (rv == FALSE)
6767 {
6768 /* Insert nop after branch to fix short loop. */
6769 return FALSE;
6770 }
6771 }
6772 }
6773
a4e06468
RS
6774 return TRUE;
6775}
6776
e407c74b
NC
6777/* Decide how we should add IP to the instruction stream.
6778 ADDRESS_EXPR is an operand of the instruction to be used with
6779 RELOC_TYPE. */
a4e06468
RS
6780
6781static enum append_method
e407c74b 6782get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6783 bfd_reloc_code_real_type *reloc_type)
a4e06468 6784{
a4e06468
RS
6785 /* The relaxed version of a macro sequence must be inherently
6786 hazard-free. */
6787 if (mips_relax.sequence == 2)
6788 return APPEND_ADD;
6789
6790 /* We must not dabble with instructions in a ".set norerorder" block. */
6791 if (mips_opts.noreorder)
6792 return APPEND_ADD;
6793
6794 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6795 if (delayed_branch_p (ip))
a4e06468 6796 {
e407c74b
NC
6797 if (!branch_likely_p (ip)
6798 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6799 return APPEND_SWAP;
6800
6801 if (mips_opts.mips16
6802 && ISA_SUPPORTS_MIPS16E
fc76e730 6803 && gpr_read_mask (ip) != 0)
a4e06468
RS
6804 return APPEND_ADD_COMPACT;
6805
6806 return APPEND_ADD_WITH_NOP;
6807 }
6808
a4e06468
RS
6809 return APPEND_ADD;
6810}
6811
ceb94aa5
RS
6812/* IP is a MIPS16 instruction whose opcode we have just changed.
6813 Point IP->insn_mo to the new opcode's definition. */
6814
6815static void
6816find_altered_mips16_opcode (struct mips_cl_insn *ip)
6817{
6818 const struct mips_opcode *mo, *end;
6819
6820 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6821 for (mo = ip->insn_mo; mo < end; mo++)
6822 if ((ip->insn_opcode & mo->mask) == mo->match)
6823 {
6824 ip->insn_mo = mo;
6825 return;
6826 }
6827 abort ();
6828}
6829
df58fc94
RS
6830/* For microMIPS macros, we need to generate a local number label
6831 as the target of branches. */
6832#define MICROMIPS_LABEL_CHAR '\037'
6833static unsigned long micromips_target_label;
6834static char micromips_target_name[32];
6835
6836static char *
6837micromips_label_name (void)
6838{
6839 char *p = micromips_target_name;
6840 char symbol_name_temporary[24];
6841 unsigned long l;
6842 int i;
6843
6844 if (*p)
6845 return p;
6846
6847 i = 0;
6848 l = micromips_target_label;
6849#ifdef LOCAL_LABEL_PREFIX
6850 *p++ = LOCAL_LABEL_PREFIX;
6851#endif
6852 *p++ = 'L';
6853 *p++ = MICROMIPS_LABEL_CHAR;
6854 do
6855 {
6856 symbol_name_temporary[i++] = l % 10 + '0';
6857 l /= 10;
6858 }
6859 while (l != 0);
6860 while (i > 0)
6861 *p++ = symbol_name_temporary[--i];
6862 *p = '\0';
6863
6864 return micromips_target_name;
6865}
6866
6867static void
6868micromips_label_expr (expressionS *label_expr)
6869{
6870 label_expr->X_op = O_symbol;
6871 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6872 label_expr->X_add_number = 0;
6873}
6874
6875static void
6876micromips_label_inc (void)
6877{
6878 micromips_target_label++;
6879 *micromips_target_name = '\0';
6880}
6881
6882static void
6883micromips_add_label (void)
6884{
6885 symbolS *s;
6886
6887 s = colon (micromips_label_name ());
6888 micromips_label_inc ();
f3ded42a 6889 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6890}
6891
6892/* If assembling microMIPS code, then return the microMIPS reloc
6893 corresponding to the requested one if any. Otherwise return
6894 the reloc unchanged. */
6895
6896static bfd_reloc_code_real_type
6897micromips_map_reloc (bfd_reloc_code_real_type reloc)
6898{
6899 static const bfd_reloc_code_real_type relocs[][2] =
6900 {
6901 /* Keep sorted incrementally by the left-hand key. */
6902 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6903 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6904 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6905 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6906 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6907 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6908 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6909 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6910 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6911 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6912 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6913 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6914 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6915 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6916 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6917 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6918 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6919 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6920 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6921 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6922 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6923 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6924 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6925 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6926 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6927 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6928 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6929 };
6930 bfd_reloc_code_real_type r;
6931 size_t i;
6932
6933 if (!mips_opts.micromips)
6934 return reloc;
6935 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6936 {
6937 r = relocs[i][0];
6938 if (r > reloc)
6939 return reloc;
6940 if (r == reloc)
6941 return relocs[i][1];
6942 }
6943 return reloc;
6944}
6945
b886a2ab
RS
6946/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6947 Return true on success, storing the resolved value in RESULT. */
6948
6949static bfd_boolean
6950calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6951 offsetT *result)
6952{
6953 switch (reloc)
6954 {
6955 case BFD_RELOC_MIPS_HIGHEST:
6956 case BFD_RELOC_MICROMIPS_HIGHEST:
6957 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6958 return TRUE;
6959
6960 case BFD_RELOC_MIPS_HIGHER:
6961 case BFD_RELOC_MICROMIPS_HIGHER:
6962 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6963 return TRUE;
6964
6965 case BFD_RELOC_HI16_S:
6966 case BFD_RELOC_MICROMIPS_HI16_S:
6967 case BFD_RELOC_MIPS16_HI16_S:
6968 *result = ((operand + 0x8000) >> 16) & 0xffff;
6969 return TRUE;
6970
6971 case BFD_RELOC_HI16:
6972 case BFD_RELOC_MICROMIPS_HI16:
6973 case BFD_RELOC_MIPS16_HI16:
6974 *result = (operand >> 16) & 0xffff;
6975 return TRUE;
6976
6977 case BFD_RELOC_LO16:
6978 case BFD_RELOC_MICROMIPS_LO16:
6979 case BFD_RELOC_MIPS16_LO16:
6980 *result = operand & 0xffff;
6981 return TRUE;
6982
6983 case BFD_RELOC_UNUSED:
6984 *result = operand;
6985 return TRUE;
6986
6987 default:
6988 return FALSE;
6989 }
6990}
6991
71400594
RS
6992/* Output an instruction. IP is the instruction information.
6993 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
6994 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6995 a macro expansion. */
71400594
RS
6996
6997static void
6998append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 6999 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7000{
14fe068b 7001 unsigned long prev_pinfo2, pinfo;
71400594 7002 bfd_boolean relaxed_branch = FALSE;
a4e06468 7003 enum append_method method;
2309ddf2 7004 bfd_boolean relax32;
2b0c8b40 7005 int branch_disp;
71400594 7006
2309ddf2 7007 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7008 fix_loongson2f (ip);
7009
738f4d98 7010 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7011 file_ase_micromips |= mips_opts.micromips;
738f4d98 7012
df58fc94 7013 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7014 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
7015
7016 if (mips_opts.micromips
7017 && !expansionp
7018 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7019 && micromips_insn_length (ip->insn_mo) != 2)
7020 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7021 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7022 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7023 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7024
15be625d
CM
7025 if (address_expr == NULL)
7026 ip->complete_p = 1;
b886a2ab
RS
7027 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7028 && reloc_type[1] == BFD_RELOC_UNUSED
7029 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7030 && address_expr->X_op == O_constant)
7031 {
15be625d
CM
7032 switch (*reloc_type)
7033 {
15be625d 7034 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7035 {
7036 int shift;
7037
7038 shift = mips_opts.micromips ? 1 : 2;
7039 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7040 as_bad (_("jump to misaligned address (0x%lx)"),
7041 (unsigned long) address_expr->X_add_number);
7042 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7043 & 0x3ffffff);
335574df 7044 ip->complete_p = 1;
df58fc94 7045 }
15be625d
CM
7046 break;
7047
7048 case BFD_RELOC_MIPS16_JMP:
7049 if ((address_expr->X_add_number & 3) != 0)
7050 as_bad (_("jump to misaligned address (0x%lx)"),
7051 (unsigned long) address_expr->X_add_number);
7052 ip->insn_opcode |=
7053 (((address_expr->X_add_number & 0x7c0000) << 3)
7054 | ((address_expr->X_add_number & 0xf800000) >> 7)
7055 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7056 ip->complete_p = 1;
15be625d
CM
7057 break;
7058
7059 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7060 {
7061 int shift;
7062
7063 shift = mips_opts.micromips ? 1 : 2;
7064 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7065 as_bad (_("branch to misaligned address (0x%lx)"),
7066 (unsigned long) address_expr->X_add_number);
7067 if (!mips_relax_branch)
7068 {
7069 if ((address_expr->X_add_number + (1 << (shift + 15)))
7070 & ~((1 << (shift + 16)) - 1))
7071 as_bad (_("branch address range overflow (0x%lx)"),
7072 (unsigned long) address_expr->X_add_number);
7073 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7074 & 0xffff);
7075 }
df58fc94 7076 }
15be625d
CM
7077 break;
7078
7361da2c
AB
7079 case BFD_RELOC_MIPS_21_PCREL_S2:
7080 {
7081 int shift;
7082
7083 shift = 2;
7084 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7085 as_bad (_("branch to misaligned address (0x%lx)"),
7086 (unsigned long) address_expr->X_add_number);
7087 if ((address_expr->X_add_number + (1 << (shift + 20)))
7088 & ~((1 << (shift + 21)) - 1))
7089 as_bad (_("branch address range overflow (0x%lx)"),
7090 (unsigned long) address_expr->X_add_number);
7091 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7092 & 0x1fffff);
7093 }
7094 break;
7095
7096 case BFD_RELOC_MIPS_26_PCREL_S2:
7097 {
7098 int shift;
7099
7100 shift = 2;
7101 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7102 as_bad (_("branch to misaligned address (0x%lx)"),
7103 (unsigned long) address_expr->X_add_number);
7104 if ((address_expr->X_add_number + (1 << (shift + 25)))
7105 & ~((1 << (shift + 26)) - 1))
7106 as_bad (_("branch address range overflow (0x%lx)"),
7107 (unsigned long) address_expr->X_add_number);
7108 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7109 & 0x3ffffff);
7110 }
7111 break;
7112
15be625d 7113 default:
b886a2ab
RS
7114 {
7115 offsetT value;
7116
7117 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7118 &value))
7119 {
7120 ip->insn_opcode |= value & 0xffff;
7121 ip->complete_p = 1;
7122 }
7123 }
7124 break;
7125 }
15be625d
CM
7126 }
7127
71400594
RS
7128 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7129 {
7130 /* There are a lot of optimizations we could do that we don't.
7131 In particular, we do not, in general, reorder instructions.
7132 If you use gcc with optimization, it will reorder
7133 instructions and generally do much more optimization then we
7134 do here; repeating all that work in the assembler would only
7135 benefit hand written assembly code, and does not seem worth
7136 it. */
7137 int nops = (mips_optimize == 0
932d1a1b
RS
7138 ? nops_for_insn (0, history, NULL)
7139 : nops_for_insn_or_target (0, history, ip));
71400594 7140 if (nops > 0)
252b5132
RH
7141 {
7142 fragS *old_frag;
7143 unsigned long old_frag_offset;
7144 int i;
252b5132
RH
7145
7146 old_frag = frag_now;
7147 old_frag_offset = frag_now_fix ();
7148
7149 for (i = 0; i < nops; i++)
14fe068b
RS
7150 add_fixed_insn (NOP_INSN);
7151 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7152
7153 if (listing)
7154 {
7155 listing_prev_line ();
7156 /* We may be at the start of a variant frag. In case we
7157 are, make sure there is enough space for the frag
7158 after the frags created by listing_prev_line. The
7159 argument to frag_grow here must be at least as large
7160 as the argument to all other calls to frag_grow in
7161 this file. We don't have to worry about being in the
7162 middle of a variant frag, because the variants insert
7163 all needed nop instructions themselves. */
7164 frag_grow (40);
7165 }
7166
462427c4 7167 mips_move_text_labels ();
252b5132
RH
7168
7169#ifndef NO_ECOFF_DEBUGGING
7170 if (ECOFF_DEBUGGING)
7171 ecoff_fix_loc (old_frag, old_frag_offset);
7172#endif
7173 }
71400594
RS
7174 }
7175 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7176 {
932d1a1b
RS
7177 int nops;
7178
7179 /* Work out how many nops in prev_nop_frag are needed by IP,
7180 ignoring hazards generated by the first prev_nop_frag_since
7181 instructions. */
7182 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7183 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7184
71400594
RS
7185 /* Enforce NOPS as a minimum. */
7186 if (nops > prev_nop_frag_required)
7187 prev_nop_frag_required = nops;
252b5132 7188
71400594
RS
7189 if (prev_nop_frag_holds == prev_nop_frag_required)
7190 {
7191 /* Settle for the current number of nops. Update the history
7192 accordingly (for the benefit of any future .set reorder code). */
7193 prev_nop_frag = NULL;
7194 insert_into_history (prev_nop_frag_since,
7195 prev_nop_frag_holds, NOP_INSN);
7196 }
7197 else
7198 {
7199 /* Allow this instruction to replace one of the nops that was
7200 tentatively added to prev_nop_frag. */
df58fc94 7201 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7202 prev_nop_frag_holds--;
7203 prev_nop_frag_since++;
252b5132
RH
7204 }
7205 }
7206
e407c74b 7207 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7208 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7209
e410add4
RS
7210 dwarf2_emit_insn (0);
7211 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7212 so "move" the instruction address accordingly.
7213
7214 Also, it doesn't seem appropriate for the assembler to reorder .loc
7215 entries. If this instruction is a branch that we are going to swap
7216 with the previous instruction, the two instructions should be
7217 treated as a unit, and the debug information for both instructions
7218 should refer to the start of the branch sequence. Using the
7219 current position is certainly wrong when swapping a 32-bit branch
7220 and a 16-bit delay slot, since the current position would then be
7221 in the middle of a branch. */
7222 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7223
df58fc94
RS
7224 relax32 = (mips_relax_branch
7225 /* Don't try branch relaxation within .set nomacro, or within
7226 .set noat if we use $at for PIC computations. If it turns
7227 out that the branch was out-of-range, we'll get an error. */
7228 && !mips_opts.warn_about_macros
7229 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7230 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7231 as they have no complementing branches. */
7232 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7233
7234 if (!HAVE_CODE_COMPRESSION
7235 && address_expr
7236 && relax32
0b25d3e6 7237 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7238 && delayed_branch_p (ip))
4a6a3df4 7239 {
895921c9 7240 relaxed_branch = TRUE;
1e915849
RS
7241 add_relaxed_insn (ip, (relaxed_branch_length
7242 (NULL, NULL,
11625dd8
RS
7243 uncond_branch_p (ip) ? -1
7244 : branch_likely_p (ip) ? 1
1e915849
RS
7245 : 0)), 4,
7246 RELAX_BRANCH_ENCODE
66b3e8da 7247 (AT,
11625dd8
RS
7248 uncond_branch_p (ip),
7249 branch_likely_p (ip),
1e915849
RS
7250 pinfo & INSN_WRITE_GPR_31,
7251 0),
7252 address_expr->X_add_symbol,
7253 address_expr->X_add_number);
4a6a3df4
AO
7254 *reloc_type = BFD_RELOC_UNUSED;
7255 }
df58fc94
RS
7256 else if (mips_opts.micromips
7257 && address_expr
7258 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7259 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7260 && (delayed_branch_p (ip) || compact_branch_p (ip))
7261 /* Don't try branch relaxation when users specify
7262 16-bit/32-bit instructions. */
7263 && !forced_insn_length)
df58fc94
RS
7264 {
7265 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7266 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
7267 int uncond = uncond_branch_p (ip) ? -1 : 0;
7268 int compact = compact_branch_p (ip);
df58fc94
RS
7269 int al = pinfo & INSN_WRITE_GPR_31;
7270 int length32;
7271
7272 gas_assert (address_expr != NULL);
7273 gas_assert (!mips_relax.sequence);
7274
2b0c8b40 7275 relaxed_branch = TRUE;
df58fc94
RS
7276 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7277 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
7278 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7279 relax32, 0, 0),
df58fc94
RS
7280 address_expr->X_add_symbol,
7281 address_expr->X_add_number);
7282 *reloc_type = BFD_RELOC_UNUSED;
7283 }
7284 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132
RH
7285 {
7286 /* We need to set up a variant frag. */
df58fc94 7287 gas_assert (address_expr != NULL);
1e915849
RS
7288 add_relaxed_insn (ip, 4, 0,
7289 RELAX_MIPS16_ENCODE
7290 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 7291 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 7292 delayed_branch_p (&history[0]),
1e915849
RS
7293 history[0].mips16_absolute_jump_p),
7294 make_expr_symbol (address_expr), 0);
252b5132 7295 }
5c04167a 7296 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7297 {
11625dd8 7298 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7299 /* Make sure there is enough room to swap this instruction with
7300 a following jump instruction. */
7301 frag_grow (6);
1e915849 7302 add_fixed_insn (ip);
252b5132
RH
7303 }
7304 else
7305 {
7306 if (mips_opts.mips16
7307 && mips_opts.noreorder
11625dd8 7308 && delayed_branch_p (&history[0]))
252b5132
RH
7309 as_warn (_("extended instruction in delay slot"));
7310
4d7206a2
RS
7311 if (mips_relax.sequence)
7312 {
7313 /* If we've reached the end of this frag, turn it into a variant
7314 frag and record the information for the instructions we've
7315 written so far. */
7316 if (frag_room () < 4)
7317 relax_close_frag ();
df58fc94 7318 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7319 }
7320
584892a6 7321 if (mips_relax.sequence != 2)
df58fc94
RS
7322 {
7323 if (mips_macro_warning.first_insn_sizes[0] == 0)
7324 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7325 mips_macro_warning.sizes[0] += insn_length (ip);
7326 mips_macro_warning.insns[0]++;
7327 }
584892a6 7328 if (mips_relax.sequence != 1)
df58fc94
RS
7329 {
7330 if (mips_macro_warning.first_insn_sizes[1] == 0)
7331 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7332 mips_macro_warning.sizes[1] += insn_length (ip);
7333 mips_macro_warning.insns[1]++;
7334 }
584892a6 7335
1e915849
RS
7336 if (mips_opts.mips16)
7337 {
7338 ip->fixed_p = 1;
7339 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7340 }
7341 add_fixed_insn (ip);
252b5132
RH
7342 }
7343
9fe77896 7344 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7345 {
df58fc94 7346 bfd_reloc_code_real_type final_type[3];
2309ddf2 7347 reloc_howto_type *howto0;
9fe77896
RS
7348 reloc_howto_type *howto;
7349 int i;
34ce925e 7350
df58fc94
RS
7351 /* Perform any necessary conversion to microMIPS relocations
7352 and find out how many relocations there actually are. */
7353 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7354 final_type[i] = micromips_map_reloc (reloc_type[i]);
7355
9fe77896
RS
7356 /* In a compound relocation, it is the final (outermost)
7357 operator that determines the relocated field. */
2309ddf2 7358 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7359 if (!howto)
7360 abort ();
2309ddf2
MR
7361
7362 if (i > 1)
7363 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7364 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7365 bfd_get_reloc_size (howto),
7366 address_expr,
2309ddf2
MR
7367 howto0 && howto0->pc_relative,
7368 final_type[0]);
9fe77896
RS
7369
7370 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7371 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7372 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7373
7374 /* These relocations can have an addend that won't fit in
7375 4 octets for 64bit assembly. */
bad1aba3 7376 if (GPR_SIZE == 64
9fe77896
RS
7377 && ! howto->partial_inplace
7378 && (reloc_type[0] == BFD_RELOC_16
7379 || reloc_type[0] == BFD_RELOC_32
7380 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7381 || reloc_type[0] == BFD_RELOC_GPREL16
7382 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7383 || reloc_type[0] == BFD_RELOC_GPREL32
7384 || reloc_type[0] == BFD_RELOC_64
7385 || reloc_type[0] == BFD_RELOC_CTOR
7386 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7387 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7388 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7389 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7390 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7391 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7392 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7393 || hi16_reloc_p (reloc_type[0])
7394 || lo16_reloc_p (reloc_type[0])))
7395 ip->fixp[0]->fx_no_overflow = 1;
7396
ddaf2c41
MR
7397 /* These relocations can have an addend that won't fit in 2 octets. */
7398 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7399 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7400 ip->fixp[0]->fx_no_overflow = 1;
7401
9fe77896
RS
7402 if (mips_relax.sequence)
7403 {
7404 if (mips_relax.first_fixup == 0)
7405 mips_relax.first_fixup = ip->fixp[0];
7406 }
7407 else if (reloc_needs_lo_p (*reloc_type))
7408 {
7409 struct mips_hi_fixup *hi_fixup;
7410
7411 /* Reuse the last entry if it already has a matching %lo. */
7412 hi_fixup = mips_hi_fixup_list;
7413 if (hi_fixup == 0
7414 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7415 {
325801bd 7416 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7417 hi_fixup->next = mips_hi_fixup_list;
7418 mips_hi_fixup_list = hi_fixup;
4d7206a2 7419 }
9fe77896
RS
7420 hi_fixup->fixp = ip->fixp[0];
7421 hi_fixup->seg = now_seg;
7422 }
252b5132 7423
9fe77896
RS
7424 /* Add fixups for the second and third relocations, if given.
7425 Note that the ABI allows the second relocation to be
7426 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7427 moment we only use RSS_UNDEF, but we could add support
7428 for the others if it ever becomes necessary. */
7429 for (i = 1; i < 3; i++)
7430 if (reloc_type[i] != BFD_RELOC_UNUSED)
7431 {
7432 ip->fixp[i] = fix_new (ip->frag, ip->where,
7433 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7434 FALSE, final_type[i]);
f6688943 7435
9fe77896
RS
7436 /* Use fx_tcbit to mark compound relocs. */
7437 ip->fixp[0]->fx_tcbit = 1;
7438 ip->fixp[i]->fx_tcbit = 1;
7439 }
252b5132 7440 }
1e915849 7441 install_insn (ip);
252b5132
RH
7442
7443 /* Update the register mask information. */
4c260379
RS
7444 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7445 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7446
a4e06468 7447 switch (method)
252b5132 7448 {
a4e06468
RS
7449 case APPEND_ADD:
7450 insert_into_history (0, 1, ip);
7451 break;
7452
7453 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7454 {
7455 struct mips_cl_insn *nop;
7456
7457 insert_into_history (0, 1, ip);
7458 nop = get_delay_slot_nop (ip);
7459 add_fixed_insn (nop);
7460 insert_into_history (0, 1, nop);
7461 if (mips_relax.sequence)
7462 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7463 }
a4e06468
RS
7464 break;
7465
7466 case APPEND_ADD_COMPACT:
7467 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7468 gas_assert (mips_opts.mips16);
7469 ip->insn_opcode |= 0x0080;
7470 find_altered_mips16_opcode (ip);
7471 install_insn (ip);
7472 insert_into_history (0, 1, ip);
7473 break;
7474
7475 case APPEND_SWAP:
7476 {
7477 struct mips_cl_insn delay = history[0];
7478 if (mips_opts.mips16)
7479 {
7480 know (delay.frag == ip->frag);
7481 move_insn (ip, delay.frag, delay.where);
7482 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7483 }
464ab0e5 7484 else if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7485 {
7486 /* Add the delay slot instruction to the end of the
7487 current frag and shrink the fixed part of the
7488 original frag. If the branch occupies the tail of
7489 the latter, move it backwards to cover the gap. */
2b0c8b40 7490 delay.frag->fr_fix -= branch_disp;
a4e06468 7491 if (delay.frag == ip->frag)
2b0c8b40 7492 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7493 add_fixed_insn (&delay);
7494 }
7495 else
7496 {
2b0c8b40
MR
7497 move_insn (&delay, ip->frag,
7498 ip->where - branch_disp + insn_length (ip));
a4e06468
RS
7499 move_insn (ip, history[0].frag, history[0].where);
7500 }
7501 history[0] = *ip;
7502 delay.fixed_p = 1;
7503 insert_into_history (0, 1, &delay);
7504 }
7505 break;
252b5132
RH
7506 }
7507
13408f1e 7508 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7509 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7510 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7511 {
7512 unsigned int i;
7513
79850f26 7514 mips_no_prev_insn ();
13408f1e 7515
e407c74b 7516 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7517 history[i].cleared_p = 1;
e407c74b
NC
7518 }
7519
df58fc94
RS
7520 /* We need to emit a label at the end of branch-likely macros. */
7521 if (emit_branch_likely_macro)
7522 {
7523 emit_branch_likely_macro = FALSE;
7524 micromips_add_label ();
7525 }
7526
252b5132
RH
7527 /* We just output an insn, so the next one doesn't have a label. */
7528 mips_clear_insn_labels ();
252b5132
RH
7529}
7530
e407c74b
NC
7531/* Forget that there was any previous instruction or label.
7532 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7533
7534static void
7d10b47d 7535mips_no_prev_insn (void)
252b5132 7536{
7d10b47d
RS
7537 prev_nop_frag = NULL;
7538 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7539 mips_clear_insn_labels ();
7540}
7541
7d10b47d
RS
7542/* This function must be called before we emit something other than
7543 instructions. It is like mips_no_prev_insn except that it inserts
7544 any NOPS that might be needed by previous instructions. */
252b5132 7545
7d10b47d
RS
7546void
7547mips_emit_delays (void)
252b5132
RH
7548{
7549 if (! mips_opts.noreorder)
7550 {
932d1a1b 7551 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7552 if (nops > 0)
7553 {
7d10b47d
RS
7554 while (nops-- > 0)
7555 add_fixed_insn (NOP_INSN);
462427c4 7556 mips_move_text_labels ();
7d10b47d
RS
7557 }
7558 }
7559 mips_no_prev_insn ();
7560}
7561
7562/* Start a (possibly nested) noreorder block. */
7563
7564static void
7565start_noreorder (void)
7566{
7567 if (mips_opts.noreorder == 0)
7568 {
7569 unsigned int i;
7570 int nops;
7571
7572 /* None of the instructions before the .set noreorder can be moved. */
7573 for (i = 0; i < ARRAY_SIZE (history); i++)
7574 history[i].fixed_p = 1;
7575
7576 /* Insert any nops that might be needed between the .set noreorder
7577 block and the previous instructions. We will later remove any
7578 nops that turn out not to be needed. */
932d1a1b 7579 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7580 if (nops > 0)
7581 {
7582 if (mips_optimize != 0)
252b5132
RH
7583 {
7584 /* Record the frag which holds the nop instructions, so
7585 that we can remove them if we don't need them. */
df58fc94 7586 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7587 prev_nop_frag = frag_now;
7588 prev_nop_frag_holds = nops;
7589 prev_nop_frag_required = 0;
7590 prev_nop_frag_since = 0;
7591 }
7592
7593 for (; nops > 0; --nops)
1e915849 7594 add_fixed_insn (NOP_INSN);
252b5132 7595
7d10b47d
RS
7596 /* Move on to a new frag, so that it is safe to simply
7597 decrease the size of prev_nop_frag. */
7598 frag_wane (frag_now);
7599 frag_new (0);
462427c4 7600 mips_move_text_labels ();
252b5132 7601 }
df58fc94 7602 mips_mark_labels ();
7d10b47d 7603 mips_clear_insn_labels ();
252b5132 7604 }
7d10b47d
RS
7605 mips_opts.noreorder++;
7606 mips_any_noreorder = 1;
7607}
252b5132 7608
7d10b47d 7609/* End a nested noreorder block. */
252b5132 7610
7d10b47d
RS
7611static void
7612end_noreorder (void)
7613{
7614 mips_opts.noreorder--;
7615 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7616 {
7617 /* Commit to inserting prev_nop_frag_required nops and go back to
7618 handling nop insertion the .set reorder way. */
7619 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7620 * NOP_INSN_SIZE);
7d10b47d
RS
7621 insert_into_history (prev_nop_frag_since,
7622 prev_nop_frag_required, NOP_INSN);
7623 prev_nop_frag = NULL;
7624 }
252b5132
RH
7625}
7626
97d87491
RS
7627/* Sign-extend 32-bit mode constants that have bit 31 set and all
7628 higher bits unset. */
7629
7630static void
7631normalize_constant_expr (expressionS *ex)
7632{
7633 if (ex->X_op == O_constant
7634 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7635 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7636 - 0x80000000);
7637}
7638
7639/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7640 all higher bits unset. */
7641
7642static void
7643normalize_address_expr (expressionS *ex)
7644{
7645 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7646 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7647 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7648 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7649 - 0x80000000);
7650}
7651
7652/* Try to match TOKENS against OPCODE, storing the result in INSN.
7653 Return true if the match was successful.
7654
7655 OPCODE_EXTRA is a value that should be ORed into the opcode
7656 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7657 there are more alternatives after OPCODE and SOFT_MATCH is
7658 as for mips_arg_info. */
7659
7660static bfd_boolean
7661match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7662 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7663 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7664{
7665 const char *args;
7666 struct mips_arg_info arg;
7667 const struct mips_operand *operand;
7668 char c;
7669
7670 imm_expr.X_op = O_absent;
97d87491
RS
7671 offset_expr.X_op = O_absent;
7672 offset_reloc[0] = BFD_RELOC_UNUSED;
7673 offset_reloc[1] = BFD_RELOC_UNUSED;
7674 offset_reloc[2] = BFD_RELOC_UNUSED;
7675
7676 create_insn (insn, opcode);
60f20e8b
RS
7677 /* When no opcode suffix is specified, assume ".xyzw". */
7678 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7679 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7680 else
7681 insn->insn_opcode |= opcode_extra;
97d87491
RS
7682 memset (&arg, 0, sizeof (arg));
7683 arg.insn = insn;
7684 arg.token = tokens;
7685 arg.argnum = 1;
7686 arg.last_regno = ILLEGAL_REG;
7687 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7688 arg.lax_match = lax_match;
97d87491
RS
7689 for (args = opcode->args;; ++args)
7690 {
7691 if (arg.token->type == OT_END)
7692 {
7693 /* Handle unary instructions in which only one operand is given.
7694 The source is then the same as the destination. */
7695 if (arg.opnum == 1 && *args == ',')
7696 {
7697 operand = (mips_opts.micromips
7698 ? decode_micromips_operand (args + 1)
7699 : decode_mips_operand (args + 1));
7700 if (operand && mips_optional_operand_p (operand))
7701 {
7702 arg.token = tokens;
7703 arg.argnum = 1;
7704 continue;
7705 }
7706 }
7707
7708 /* Treat elided base registers as $0. */
7709 if (strcmp (args, "(b)") == 0)
7710 args += 3;
7711
7712 if (args[0] == '+')
7713 switch (args[1])
7714 {
7715 case 'K':
7716 case 'N':
7717 /* The register suffix is optional. */
7718 args += 2;
7719 break;
7720 }
7721
7722 /* Fail the match if there were too few operands. */
7723 if (*args)
7724 return FALSE;
7725
7726 /* Successful match. */
60f20e8b
RS
7727 if (!complete_p)
7728 return TRUE;
e3de51ce 7729 clear_insn_error ();
97d87491
RS
7730 if (arg.dest_regno == arg.last_regno
7731 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7732 {
7733 if (arg.opnum == 2)
e3de51ce 7734 set_insn_error
1661c76c 7735 (0, _("source and destination must be different"));
97d87491 7736 else if (arg.last_regno == 31)
e3de51ce 7737 set_insn_error
1661c76c 7738 (0, _("a destination register must be supplied"));
97d87491 7739 }
173d3447
CF
7740 else if (arg.last_regno == 31
7741 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7742 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7743 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7744 check_completed_insn (&arg);
7745 return TRUE;
7746 }
7747
7748 /* Fail the match if the line has too many operands. */
7749 if (*args == 0)
7750 return FALSE;
7751
7752 /* Handle characters that need to match exactly. */
7753 if (*args == '(' || *args == ')' || *args == ',')
7754 {
7755 if (match_char (&arg, *args))
7756 continue;
7757 return FALSE;
7758 }
7759 if (*args == '#')
7760 {
7761 ++args;
7762 if (arg.token->type == OT_DOUBLE_CHAR
7763 && arg.token->u.ch == *args)
7764 {
7765 ++arg.token;
7766 continue;
7767 }
7768 return FALSE;
7769 }
7770
7771 /* Handle special macro operands. Work out the properties of
7772 other operands. */
7773 arg.opnum += 1;
97d87491
RS
7774 switch (*args)
7775 {
7361da2c
AB
7776 case '-':
7777 switch (args[1])
7778 {
7779 case 'A':
7780 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7781 break;
7782
7783 case 'B':
7784 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7785 break;
7786 }
7787 break;
7788
97d87491
RS
7789 case '+':
7790 switch (args[1])
7791 {
97d87491
RS
7792 case 'i':
7793 *offset_reloc = BFD_RELOC_MIPS_JMP;
7794 break;
7361da2c
AB
7795
7796 case '\'':
7797 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7798 break;
7799
7800 case '\"':
7801 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7802 break;
97d87491
RS
7803 }
7804 break;
7805
97d87491 7806 case 'I':
1a00e612
RS
7807 if (!match_const_int (&arg, &imm_expr.X_add_number))
7808 return FALSE;
7809 imm_expr.X_op = O_constant;
bad1aba3 7810 if (GPR_SIZE == 32)
97d87491
RS
7811 normalize_constant_expr (&imm_expr);
7812 continue;
7813
7814 case 'A':
7815 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7816 {
7817 /* Assume that the offset has been elided and that what
7818 we saw was a base register. The match will fail later
7819 if that assumption turns out to be wrong. */
7820 offset_expr.X_op = O_constant;
7821 offset_expr.X_add_number = 0;
7822 }
97d87491 7823 else
1a00e612
RS
7824 {
7825 if (!match_expression (&arg, &offset_expr, offset_reloc))
7826 return FALSE;
7827 normalize_address_expr (&offset_expr);
7828 }
97d87491
RS
7829 continue;
7830
7831 case 'F':
7832 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7833 8, TRUE))
1a00e612 7834 return FALSE;
97d87491
RS
7835 continue;
7836
7837 case 'L':
7838 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7839 8, FALSE))
1a00e612 7840 return FALSE;
97d87491
RS
7841 continue;
7842
7843 case 'f':
7844 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7845 4, TRUE))
1a00e612 7846 return FALSE;
97d87491
RS
7847 continue;
7848
7849 case 'l':
7850 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7851 4, FALSE))
1a00e612 7852 return FALSE;
97d87491
RS
7853 continue;
7854
97d87491
RS
7855 case 'p':
7856 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7857 break;
7858
7859 case 'a':
7860 *offset_reloc = BFD_RELOC_MIPS_JMP;
7861 break;
7862
7863 case 'm':
7864 gas_assert (mips_opts.micromips);
7865 c = args[1];
7866 switch (c)
7867 {
7868 case 'D':
7869 case 'E':
7870 if (!forced_insn_length)
7871 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7872 else if (c == 'D')
7873 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7874 else
7875 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7876 break;
7877 }
7878 break;
7879 }
7880
7881 operand = (mips_opts.micromips
7882 ? decode_micromips_operand (args)
7883 : decode_mips_operand (args));
7884 if (!operand)
7885 abort ();
7886
7887 /* Skip prefixes. */
7361da2c 7888 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
7889 args++;
7890
7891 if (mips_optional_operand_p (operand)
7892 && args[1] == ','
7893 && (arg.token[0].type != OT_REG
7894 || arg.token[1].type == OT_END))
7895 {
7896 /* Assume that the register has been elided and is the
7897 same as the first operand. */
7898 arg.token = tokens;
7899 arg.argnum = 1;
7900 }
7901
7902 if (!match_operand (&arg, operand))
7903 return FALSE;
7904 }
7905}
7906
7907/* Like match_insn, but for MIPS16. */
7908
7909static bfd_boolean
7910match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 7911 struct mips_operand_token *tokens)
97d87491
RS
7912{
7913 const char *args;
7914 const struct mips_operand *operand;
7915 const struct mips_operand *ext_operand;
7916 struct mips_arg_info arg;
7917 int relax_char;
7918
7919 create_insn (insn, opcode);
7920 imm_expr.X_op = O_absent;
97d87491
RS
7921 offset_expr.X_op = O_absent;
7922 offset_reloc[0] = BFD_RELOC_UNUSED;
7923 offset_reloc[1] = BFD_RELOC_UNUSED;
7924 offset_reloc[2] = BFD_RELOC_UNUSED;
7925 relax_char = 0;
7926
7927 memset (&arg, 0, sizeof (arg));
7928 arg.insn = insn;
7929 arg.token = tokens;
7930 arg.argnum = 1;
7931 arg.last_regno = ILLEGAL_REG;
7932 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
7933 relax_char = 0;
7934 for (args = opcode->args;; ++args)
7935 {
7936 int c;
7937
7938 if (arg.token->type == OT_END)
7939 {
7940 offsetT value;
7941
7942 /* Handle unary instructions in which only one operand is given.
7943 The source is then the same as the destination. */
7944 if (arg.opnum == 1 && *args == ',')
7945 {
7946 operand = decode_mips16_operand (args[1], FALSE);
7947 if (operand && mips_optional_operand_p (operand))
7948 {
7949 arg.token = tokens;
7950 arg.argnum = 1;
7951 continue;
7952 }
7953 }
7954
7955 /* Fail the match if there were too few operands. */
7956 if (*args)
7957 return FALSE;
7958
7959 /* Successful match. Stuff the immediate value in now, if
7960 we can. */
e3de51ce 7961 clear_insn_error ();
97d87491
RS
7962 if (opcode->pinfo == INSN_MACRO)
7963 {
7964 gas_assert (relax_char == 0 || relax_char == 'p');
7965 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7966 }
7967 else if (relax_char
7968 && offset_expr.X_op == O_constant
7969 && calculate_reloc (*offset_reloc,
7970 offset_expr.X_add_number,
7971 &value))
7972 {
7973 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7974 forced_insn_length, &insn->insn_opcode);
7975 offset_expr.X_op = O_absent;
7976 *offset_reloc = BFD_RELOC_UNUSED;
7977 }
7978 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7979 {
7980 if (forced_insn_length == 2)
e3de51ce 7981 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
7982 forced_insn_length = 4;
7983 insn->insn_opcode |= MIPS16_EXTEND;
7984 }
7985 else if (relax_char)
7986 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7987
7988 check_completed_insn (&arg);
7989 return TRUE;
7990 }
7991
7992 /* Fail the match if the line has too many operands. */
7993 if (*args == 0)
7994 return FALSE;
7995
7996 /* Handle characters that need to match exactly. */
7997 if (*args == '(' || *args == ')' || *args == ',')
7998 {
7999 if (match_char (&arg, *args))
8000 continue;
8001 return FALSE;
8002 }
8003
8004 arg.opnum += 1;
8005 c = *args;
8006 switch (c)
8007 {
8008 case 'p':
8009 case 'q':
8010 case 'A':
8011 case 'B':
8012 case 'E':
8013 relax_char = c;
8014 break;
8015
8016 case 'I':
1a00e612
RS
8017 if (!match_const_int (&arg, &imm_expr.X_add_number))
8018 return FALSE;
8019 imm_expr.X_op = O_constant;
bad1aba3 8020 if (GPR_SIZE == 32)
97d87491
RS
8021 normalize_constant_expr (&imm_expr);
8022 continue;
8023
8024 case 'a':
8025 case 'i':
8026 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8027 insn->insn_opcode <<= 16;
8028 break;
8029 }
8030
8031 operand = decode_mips16_operand (c, FALSE);
8032 if (!operand)
8033 abort ();
8034
8035 /* '6' is a special case. It is used for BREAK and SDBBP,
8036 whose operands are only meaningful to the software that decodes
8037 them. This means that there is no architectural reason why
8038 they cannot be prefixed by EXTEND, but in practice,
8039 exception handlers will only look at the instruction
8040 itself. We therefore allow '6' to be extended when
8041 disassembling but not when assembling. */
8042 if (operand->type != OP_PCREL && c != '6')
8043 {
8044 ext_operand = decode_mips16_operand (c, TRUE);
8045 if (operand != ext_operand)
8046 {
8047 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8048 {
8049 offset_expr.X_op = O_constant;
8050 offset_expr.X_add_number = 0;
8051 relax_char = c;
8052 continue;
8053 }
8054
8055 /* We need the OT_INTEGER check because some MIPS16
8056 immediate variants are listed before the register ones. */
8057 if (arg.token->type != OT_INTEGER
8058 || !match_expression (&arg, &offset_expr, offset_reloc))
8059 return FALSE;
8060
8061 /* '8' is used for SLTI(U) and has traditionally not
8062 been allowed to take relocation operators. */
8063 if (offset_reloc[0] != BFD_RELOC_UNUSED
8064 && (ext_operand->size != 16 || c == '8'))
8065 return FALSE;
8066
8067 relax_char = c;
8068 continue;
8069 }
8070 }
8071
8072 if (mips_optional_operand_p (operand)
8073 && args[1] == ','
8074 && (arg.token[0].type != OT_REG
8075 || arg.token[1].type == OT_END))
8076 {
8077 /* Assume that the register has been elided and is the
8078 same as the first operand. */
8079 arg.token = tokens;
8080 arg.argnum = 1;
8081 }
8082
8083 if (!match_operand (&arg, operand))
8084 return FALSE;
8085 }
8086}
8087
60f20e8b
RS
8088/* Record that the current instruction is invalid for the current ISA. */
8089
8090static void
8091match_invalid_for_isa (void)
8092{
8093 set_insn_error_ss
1661c76c 8094 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8095 mips_cpu_info_from_arch (mips_opts.arch)->name,
8096 mips_cpu_info_from_isa (mips_opts.isa)->name);
8097}
8098
8099/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8100 Return true if a definite match or failure was found, storing any match
8101 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8102 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8103 tried and failed to match under normal conditions and now want to try a
8104 more relaxed match. */
8105
8106static bfd_boolean
8107match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8108 const struct mips_opcode *past, struct mips_operand_token *tokens,
8109 int opcode_extra, bfd_boolean lax_match)
8110{
8111 const struct mips_opcode *opcode;
8112 const struct mips_opcode *invalid_delay_slot;
8113 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8114
8115 /* Search for a match, ignoring alternatives that don't satisfy the
8116 current ISA or forced_length. */
8117 invalid_delay_slot = 0;
8118 seen_valid_for_isa = FALSE;
8119 seen_valid_for_size = FALSE;
8120 opcode = first;
8121 do
8122 {
8123 gas_assert (strcmp (opcode->name, first->name) == 0);
8124 if (is_opcode_valid (opcode))
8125 {
8126 seen_valid_for_isa = TRUE;
8127 if (is_size_valid (opcode))
8128 {
8129 bfd_boolean delay_slot_ok;
8130
8131 seen_valid_for_size = TRUE;
8132 delay_slot_ok = is_delay_slot_valid (opcode);
8133 if (match_insn (insn, opcode, tokens, opcode_extra,
8134 lax_match, delay_slot_ok))
8135 {
8136 if (!delay_slot_ok)
8137 {
8138 if (!invalid_delay_slot)
8139 invalid_delay_slot = opcode;
8140 }
8141 else
8142 return TRUE;
8143 }
8144 }
8145 }
8146 ++opcode;
8147 }
8148 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8149
8150 /* If the only matches we found had the wrong length for the delay slot,
8151 pick the first such match. We'll issue an appropriate warning later. */
8152 if (invalid_delay_slot)
8153 {
8154 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8155 lax_match, TRUE))
8156 return TRUE;
8157 abort ();
8158 }
8159
8160 /* Handle the case where we didn't try to match an instruction because
8161 all the alternatives were incompatible with the current ISA. */
8162 if (!seen_valid_for_isa)
8163 {
8164 match_invalid_for_isa ();
8165 return TRUE;
8166 }
8167
8168 /* Handle the case where we didn't try to match an instruction because
8169 all the alternatives were of the wrong size. */
8170 if (!seen_valid_for_size)
8171 {
8172 if (mips_opts.insn32)
1661c76c 8173 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8174 else
8175 set_insn_error_i
1661c76c 8176 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8177 8 * forced_insn_length);
8178 return TRUE;
8179 }
8180
8181 return FALSE;
8182}
8183
8184/* Like match_insns, but for MIPS16. */
8185
8186static bfd_boolean
8187match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8188 struct mips_operand_token *tokens)
8189{
8190 const struct mips_opcode *opcode;
8191 bfd_boolean seen_valid_for_isa;
8192
8193 /* Search for a match, ignoring alternatives that don't satisfy the
8194 current ISA. There are no separate entries for extended forms so
8195 we deal with forced_length later. */
8196 seen_valid_for_isa = FALSE;
8197 opcode = first;
8198 do
8199 {
8200 gas_assert (strcmp (opcode->name, first->name) == 0);
8201 if (is_opcode_valid_16 (opcode))
8202 {
8203 seen_valid_for_isa = TRUE;
8204 if (match_mips16_insn (insn, opcode, tokens))
8205 return TRUE;
8206 }
8207 ++opcode;
8208 }
8209 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8210 && strcmp (opcode->name, first->name) == 0);
8211
8212 /* Handle the case where we didn't try to match an instruction because
8213 all the alternatives were incompatible with the current ISA. */
8214 if (!seen_valid_for_isa)
8215 {
8216 match_invalid_for_isa ();
8217 return TRUE;
8218 }
8219
8220 return FALSE;
8221}
8222
584892a6
RS
8223/* Set up global variables for the start of a new macro. */
8224
8225static void
8226macro_start (void)
8227{
8228 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8229 memset (&mips_macro_warning.first_insn_sizes, 0,
8230 sizeof (mips_macro_warning.first_insn_sizes));
8231 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8232 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8233 && delayed_branch_p (&history[0]));
df58fc94
RS
8234 switch (history[0].insn_mo->pinfo2
8235 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8236 {
8237 case INSN2_BRANCH_DELAY_32BIT:
8238 mips_macro_warning.delay_slot_length = 4;
8239 break;
8240 case INSN2_BRANCH_DELAY_16BIT:
8241 mips_macro_warning.delay_slot_length = 2;
8242 break;
8243 default:
8244 mips_macro_warning.delay_slot_length = 0;
8245 break;
8246 }
8247 mips_macro_warning.first_frag = NULL;
584892a6
RS
8248}
8249
df58fc94
RS
8250/* Given that a macro is longer than one instruction or of the wrong size,
8251 return the appropriate warning for it. Return null if no warning is
8252 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8253 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8254 and RELAX_NOMACRO. */
584892a6
RS
8255
8256static const char *
8257macro_warning (relax_substateT subtype)
8258{
8259 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8260 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8261 " in a branch delay slot");
8262 else if (subtype & RELAX_NOMACRO)
1661c76c 8263 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8264 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8265 | RELAX_DELAY_SLOT_SIZE_SECOND))
8266 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8267 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8268 " in a 16-bit branch delay slot")
1661c76c 8269 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8270 " in a 32-bit branch delay slot"));
584892a6
RS
8271 else
8272 return 0;
8273}
8274
8275/* Finish up a macro. Emit warnings as appropriate. */
8276
8277static void
8278macro_end (void)
8279{
df58fc94
RS
8280 /* Relaxation warning flags. */
8281 relax_substateT subtype = 0;
8282
8283 /* Check delay slot size requirements. */
8284 if (mips_macro_warning.delay_slot_length == 2)
8285 subtype |= RELAX_DELAY_SLOT_16BIT;
8286 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8287 {
df58fc94
RS
8288 if (mips_macro_warning.delay_slot_length
8289 != mips_macro_warning.first_insn_sizes[0])
8290 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8291 if (mips_macro_warning.delay_slot_length
8292 != mips_macro_warning.first_insn_sizes[1])
8293 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8294 }
584892a6 8295
df58fc94
RS
8296 /* Check instruction count requirements. */
8297 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8298 {
8299 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8300 subtype |= RELAX_SECOND_LONGER;
8301 if (mips_opts.warn_about_macros)
8302 subtype |= RELAX_NOMACRO;
8303 if (mips_macro_warning.delay_slot_p)
8304 subtype |= RELAX_DELAY_SLOT;
df58fc94 8305 }
584892a6 8306
df58fc94
RS
8307 /* If both alternatives fail to fill a delay slot correctly,
8308 emit the warning now. */
8309 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8310 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8311 {
8312 relax_substateT s;
8313 const char *msg;
8314
8315 s = subtype & (RELAX_DELAY_SLOT_16BIT
8316 | RELAX_DELAY_SLOT_SIZE_FIRST
8317 | RELAX_DELAY_SLOT_SIZE_SECOND);
8318 msg = macro_warning (s);
8319 if (msg != NULL)
8320 as_warn ("%s", msg);
8321 subtype &= ~s;
8322 }
8323
8324 /* If both implementations are longer than 1 instruction, then emit the
8325 warning now. */
8326 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8327 {
8328 relax_substateT s;
8329 const char *msg;
8330
8331 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8332 msg = macro_warning (s);
8333 if (msg != NULL)
8334 as_warn ("%s", msg);
8335 subtype &= ~s;
584892a6 8336 }
df58fc94
RS
8337
8338 /* If any flags still set, then one implementation might need a warning
8339 and the other either will need one of a different kind or none at all.
8340 Pass any remaining flags over to relaxation. */
8341 if (mips_macro_warning.first_frag != NULL)
8342 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8343}
8344
df58fc94
RS
8345/* Instruction operand formats used in macros that vary between
8346 standard MIPS and microMIPS code. */
8347
833794fc 8348static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8349static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8350static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8351static const char * const lui_fmt[2] = { "t,u", "s,u" };
8352static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8353static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8354static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8355static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8356
833794fc 8357#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8358#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8359 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8360#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8361#define LUI_FMT (lui_fmt[mips_opts.micromips])
8362#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8363#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8364 : mem12_fmt[mips_opts.micromips])
833794fc 8365#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8366#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8367#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8368
6e1304d8
RS
8369/* Read a macro's relocation codes from *ARGS and store them in *R.
8370 The first argument in *ARGS will be either the code for a single
8371 relocation or -1 followed by the three codes that make up a
8372 composite relocation. */
8373
8374static void
8375macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8376{
8377 int i, next;
8378
8379 next = va_arg (*args, int);
8380 if (next >= 0)
8381 r[0] = (bfd_reloc_code_real_type) next;
8382 else
f2ae14a1
RS
8383 {
8384 for (i = 0; i < 3; i++)
8385 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8386 /* This function is only used for 16-bit relocation fields.
8387 To make the macro code simpler, treat an unrelocated value
8388 in the same way as BFD_RELOC_LO16. */
8389 if (r[0] == BFD_RELOC_UNUSED)
8390 r[0] = BFD_RELOC_LO16;
8391 }
6e1304d8
RS
8392}
8393
252b5132
RH
8394/* Build an instruction created by a macro expansion. This is passed
8395 a pointer to the count of instructions created so far, an
8396 expression, the name of the instruction to build, an operand format
8397 string, and corresponding arguments. */
8398
252b5132 8399static void
67c0d1eb 8400macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8401{
df58fc94 8402 const struct mips_opcode *mo = NULL;
f6688943 8403 bfd_reloc_code_real_type r[3];
df58fc94 8404 const struct mips_opcode *amo;
e077a1c8 8405 const struct mips_operand *operand;
df58fc94
RS
8406 struct hash_control *hash;
8407 struct mips_cl_insn insn;
252b5132 8408 va_list args;
e077a1c8 8409 unsigned int uval;
252b5132 8410
252b5132 8411 va_start (args, fmt);
252b5132 8412
252b5132
RH
8413 if (mips_opts.mips16)
8414 {
03ea81db 8415 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8416 va_end (args);
8417 return;
8418 }
8419
f6688943
TS
8420 r[0] = BFD_RELOC_UNUSED;
8421 r[1] = BFD_RELOC_UNUSED;
8422 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8423 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8424 amo = (struct mips_opcode *) hash_find (hash, name);
8425 gas_assert (amo);
8426 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8427
df58fc94 8428 do
8b082fb1
TS
8429 {
8430 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8431 macros will never generate MDMX, MIPS-3D, or MT instructions.
8432 We try to match an instruction that fulfils the branch delay
8433 slot instruction length requirement (if any) of the previous
8434 instruction. While doing this we record the first instruction
8435 seen that matches all the other conditions and use it anyway
8436 if the requirement cannot be met; we will issue an appropriate
8437 warning later on. */
8438 if (strcmp (fmt, amo->args) == 0
8439 && amo->pinfo != INSN_MACRO
8440 && is_opcode_valid (amo)
8441 && is_size_valid (amo))
8442 {
8443 if (is_delay_slot_valid (amo))
8444 {
8445 mo = amo;
8446 break;
8447 }
8448 else if (!mo)
8449 mo = amo;
8450 }
8b082fb1 8451
df58fc94
RS
8452 ++amo;
8453 gas_assert (amo->name);
252b5132 8454 }
df58fc94 8455 while (strcmp (name, amo->name) == 0);
252b5132 8456
df58fc94 8457 gas_assert (mo);
1e915849 8458 create_insn (&insn, mo);
e077a1c8 8459 for (; *fmt; ++fmt)
252b5132 8460 {
e077a1c8 8461 switch (*fmt)
252b5132 8462 {
252b5132
RH
8463 case ',':
8464 case '(':
8465 case ')':
252b5132 8466 case 'z':
e077a1c8 8467 break;
252b5132
RH
8468
8469 case 'i':
8470 case 'j':
6e1304d8 8471 macro_read_relocs (&args, r);
9c2799c2 8472 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8473 || *r == BFD_RELOC_MIPS_HIGHER
8474 || *r == BFD_RELOC_HI16_S
8475 || *r == BFD_RELOC_LO16
8476 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8477 break;
e391c024
RS
8478
8479 case 'o':
8480 macro_read_relocs (&args, r);
e077a1c8 8481 break;
252b5132
RH
8482
8483 case 'u':
6e1304d8 8484 macro_read_relocs (&args, r);
9c2799c2 8485 gas_assert (ep != NULL
90ecf173
MR
8486 && (ep->X_op == O_constant
8487 || (ep->X_op == O_symbol
8488 && (*r == BFD_RELOC_MIPS_HIGHEST
8489 || *r == BFD_RELOC_HI16_S
8490 || *r == BFD_RELOC_HI16
8491 || *r == BFD_RELOC_GPREL16
8492 || *r == BFD_RELOC_MIPS_GOT_HI16
8493 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8494 break;
252b5132
RH
8495
8496 case 'p':
9c2799c2 8497 gas_assert (ep != NULL);
bad36eac 8498
252b5132
RH
8499 /*
8500 * This allows macro() to pass an immediate expression for
8501 * creating short branches without creating a symbol.
bad36eac
DJ
8502 *
8503 * We don't allow branch relaxation for these branches, as
8504 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8505 */
8506 if (ep->X_op == O_constant)
8507 {
df58fc94
RS
8508 /* For microMIPS we always use relocations for branches.
8509 So we should not resolve immediate values. */
8510 gas_assert (!mips_opts.micromips);
8511
bad36eac
DJ
8512 if ((ep->X_add_number & 3) != 0)
8513 as_bad (_("branch to misaligned address (0x%lx)"),
8514 (unsigned long) ep->X_add_number);
8515 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8516 as_bad (_("branch address range overflow (0x%lx)"),
8517 (unsigned long) ep->X_add_number);
252b5132
RH
8518 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8519 ep = NULL;
8520 }
8521 else
0b25d3e6 8522 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8523 break;
252b5132
RH
8524
8525 case 'a':
9c2799c2 8526 gas_assert (ep != NULL);
f6688943 8527 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8528 break;
d43b4baf 8529
252b5132 8530 default:
e077a1c8
RS
8531 operand = (mips_opts.micromips
8532 ? decode_micromips_operand (fmt)
8533 : decode_mips_operand (fmt));
8534 if (!operand)
8535 abort ();
8536
8537 uval = va_arg (args, int);
8538 if (operand->type == OP_CLO_CLZ_DEST)
8539 uval |= (uval << 5);
8540 insn_insert_operand (&insn, operand, uval);
8541
7361da2c 8542 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8543 ++fmt;
8544 break;
252b5132 8545 }
252b5132
RH
8546 }
8547 va_end (args);
9c2799c2 8548 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8549
df58fc94 8550 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8551}
8552
8553static void
67c0d1eb 8554mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8555 va_list *args)
252b5132 8556{
1e915849 8557 struct mips_opcode *mo;
252b5132 8558 struct mips_cl_insn insn;
e077a1c8 8559 const struct mips_operand *operand;
f6688943
TS
8560 bfd_reloc_code_real_type r[3]
8561 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8562
1e915849 8563 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8564 gas_assert (mo);
8565 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8566
1e915849 8567 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8568 {
1e915849 8569 ++mo;
9c2799c2
NC
8570 gas_assert (mo->name);
8571 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8572 }
8573
1e915849 8574 create_insn (&insn, mo);
e077a1c8 8575 for (; *fmt; ++fmt)
252b5132
RH
8576 {
8577 int c;
8578
e077a1c8 8579 c = *fmt;
252b5132
RH
8580 switch (c)
8581 {
252b5132
RH
8582 case ',':
8583 case '(':
8584 case ')':
e077a1c8 8585 break;
252b5132
RH
8586
8587 case '0':
8588 case 'S':
8589 case 'P':
8590 case 'R':
e077a1c8 8591 break;
252b5132
RH
8592
8593 case '<':
8594 case '>':
8595 case '4':
8596 case '5':
8597 case 'H':
8598 case 'W':
8599 case 'D':
8600 case 'j':
8601 case '8':
8602 case 'V':
8603 case 'C':
8604 case 'U':
8605 case 'k':
8606 case 'K':
8607 case 'p':
8608 case 'q':
8609 {
b886a2ab
RS
8610 offsetT value;
8611
9c2799c2 8612 gas_assert (ep != NULL);
252b5132
RH
8613
8614 if (ep->X_op != O_constant)
874e8986 8615 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8616 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8617 {
b886a2ab 8618 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8619 ep = NULL;
f6688943 8620 *r = BFD_RELOC_UNUSED;
252b5132
RH
8621 }
8622 }
e077a1c8 8623 break;
252b5132 8624
e077a1c8
RS
8625 default:
8626 operand = decode_mips16_operand (c, FALSE);
8627 if (!operand)
8628 abort ();
252b5132 8629
4a06e5a2 8630 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8631 break;
8632 }
252b5132
RH
8633 }
8634
9c2799c2 8635 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8636
df58fc94 8637 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8638}
8639
438c16b8
TS
8640/*
8641 * Generate a "jalr" instruction with a relocation hint to the called
8642 * function. This occurs in NewABI PIC code.
8643 */
8644static void
df58fc94 8645macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8646{
df58fc94
RS
8647 static const bfd_reloc_code_real_type jalr_relocs[2]
8648 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8649 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8650 const char *jalr;
685736be 8651 char *f = NULL;
b34976b6 8652
1180b5a4 8653 if (MIPS_JALR_HINT_P (ep))
f21f8242 8654 {
cc3d92a5 8655 frag_grow (8);
f21f8242
AO
8656 f = frag_more (0);
8657 }
2906b037 8658 if (mips_opts.micromips)
df58fc94 8659 {
833794fc
MR
8660 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8661 ? "jalr" : "jalrs");
e64af278 8662 if (MIPS_JALR_HINT_P (ep)
833794fc 8663 || mips_opts.insn32
e64af278 8664 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8665 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8666 else
8667 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8668 }
2906b037
MR
8669 else
8670 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8671 if (MIPS_JALR_HINT_P (ep))
df58fc94 8672 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8673}
8674
252b5132
RH
8675/*
8676 * Generate a "lui" instruction.
8677 */
8678static void
67c0d1eb 8679macro_build_lui (expressionS *ep, int regnum)
252b5132 8680{
9c2799c2 8681 gas_assert (! mips_opts.mips16);
252b5132 8682
df58fc94 8683 if (ep->X_op != O_constant)
252b5132 8684 {
9c2799c2 8685 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8686 /* _gp_disp is a special case, used from s_cpload.
8687 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8688 gas_assert (mips_pic == NO_PIC
78e1bb40 8689 || (! HAVE_NEWABI
aa6975fb
ILT
8690 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8691 || (! mips_in_shared
bbe506e8
TS
8692 && strcmp (S_GET_NAME (ep->X_add_symbol),
8693 "__gnu_local_gp") == 0));
252b5132
RH
8694 }
8695
df58fc94 8696 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8697}
8698
885add95
CD
8699/* Generate a sequence of instructions to do a load or store from a constant
8700 offset off of a base register (breg) into/from a target register (treg),
8701 using AT if necessary. */
8702static void
67c0d1eb
RS
8703macro_build_ldst_constoffset (expressionS *ep, const char *op,
8704 int treg, int breg, int dbl)
885add95 8705{
9c2799c2 8706 gas_assert (ep->X_op == O_constant);
885add95 8707
256ab948 8708 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8709 if (!dbl)
8710 normalize_constant_expr (ep);
256ab948 8711
67c1ffbe 8712 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8713 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8714 as_warn (_("operand overflow"));
8715
8716 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8717 {
8718 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8719 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8720 }
8721 else
8722 {
8723 /* 32-bit offset, need multiple instructions and AT, like:
8724 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8725 addu $tempreg,$tempreg,$breg
8726 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8727 to handle the complete offset. */
67c0d1eb
RS
8728 macro_build_lui (ep, AT);
8729 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8730 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8731
741fe287 8732 if (!mips_opts.at)
1661c76c 8733 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8734 }
8735}
8736
252b5132
RH
8737/* set_at()
8738 * Generates code to set the $at register to true (one)
8739 * if reg is less than the immediate expression.
8740 */
8741static void
67c0d1eb 8742set_at (int reg, int unsignedp)
252b5132 8743{
b0e6f033 8744 if (imm_expr.X_add_number >= -0x8000
252b5132 8745 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8746 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8747 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8748 else
8749 {
bad1aba3 8750 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8751 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8752 }
8753}
8754
252b5132
RH
8755/* Count the leading zeroes by performing a binary chop. This is a
8756 bulky bit of source, but performance is a LOT better for the
8757 majority of values than a simple loop to count the bits:
8758 for (lcnt = 0; (lcnt < 32); lcnt++)
8759 if ((v) & (1 << (31 - lcnt)))
8760 break;
8761 However it is not code size friendly, and the gain will drop a bit
8762 on certain cached systems.
8763*/
8764#define COUNT_TOP_ZEROES(v) \
8765 (((v) & ~0xffff) == 0 \
8766 ? ((v) & ~0xff) == 0 \
8767 ? ((v) & ~0xf) == 0 \
8768 ? ((v) & ~0x3) == 0 \
8769 ? ((v) & ~0x1) == 0 \
8770 ? !(v) \
8771 ? 32 \
8772 : 31 \
8773 : 30 \
8774 : ((v) & ~0x7) == 0 \
8775 ? 29 \
8776 : 28 \
8777 : ((v) & ~0x3f) == 0 \
8778 ? ((v) & ~0x1f) == 0 \
8779 ? 27 \
8780 : 26 \
8781 : ((v) & ~0x7f) == 0 \
8782 ? 25 \
8783 : 24 \
8784 : ((v) & ~0xfff) == 0 \
8785 ? ((v) & ~0x3ff) == 0 \
8786 ? ((v) & ~0x1ff) == 0 \
8787 ? 23 \
8788 : 22 \
8789 : ((v) & ~0x7ff) == 0 \
8790 ? 21 \
8791 : 20 \
8792 : ((v) & ~0x3fff) == 0 \
8793 ? ((v) & ~0x1fff) == 0 \
8794 ? 19 \
8795 : 18 \
8796 : ((v) & ~0x7fff) == 0 \
8797 ? 17 \
8798 : 16 \
8799 : ((v) & ~0xffffff) == 0 \
8800 ? ((v) & ~0xfffff) == 0 \
8801 ? ((v) & ~0x3ffff) == 0 \
8802 ? ((v) & ~0x1ffff) == 0 \
8803 ? 15 \
8804 : 14 \
8805 : ((v) & ~0x7ffff) == 0 \
8806 ? 13 \
8807 : 12 \
8808 : ((v) & ~0x3fffff) == 0 \
8809 ? ((v) & ~0x1fffff) == 0 \
8810 ? 11 \
8811 : 10 \
8812 : ((v) & ~0x7fffff) == 0 \
8813 ? 9 \
8814 : 8 \
8815 : ((v) & ~0xfffffff) == 0 \
8816 ? ((v) & ~0x3ffffff) == 0 \
8817 ? ((v) & ~0x1ffffff) == 0 \
8818 ? 7 \
8819 : 6 \
8820 : ((v) & ~0x7ffffff) == 0 \
8821 ? 5 \
8822 : 4 \
8823 : ((v) & ~0x3fffffff) == 0 \
8824 ? ((v) & ~0x1fffffff) == 0 \
8825 ? 3 \
8826 : 2 \
8827 : ((v) & ~0x7fffffff) == 0 \
8828 ? 1 \
8829 : 0)
8830
8831/* load_register()
67c1ffbe 8832 * This routine generates the least number of instructions necessary to load
252b5132
RH
8833 * an absolute expression value into a register.
8834 */
8835static void
67c0d1eb 8836load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
8837{
8838 int freg;
8839 expressionS hi32, lo32;
8840
8841 if (ep->X_op != O_big)
8842 {
9c2799c2 8843 gas_assert (ep->X_op == O_constant);
256ab948
TS
8844
8845 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8846 if (!dbl)
8847 normalize_constant_expr (ep);
256ab948
TS
8848
8849 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
8850 {
8851 /* We can handle 16 bit signed values with an addiu to
8852 $zero. No need to ever use daddiu here, since $zero and
8853 the result are always correct in 32 bit mode. */
67c0d1eb 8854 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8855 return;
8856 }
8857 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8858 {
8859 /* We can handle 16 bit unsigned values with an ori to
8860 $zero. */
67c0d1eb 8861 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8862 return;
8863 }
256ab948 8864 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
8865 {
8866 /* 32 bit values require an lui. */
df58fc94 8867 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8868 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 8869 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
8870 return;
8871 }
8872 }
8873
8874 /* The value is larger than 32 bits. */
8875
bad1aba3 8876 if (!dbl || GPR_SIZE == 32)
252b5132 8877 {
55e08f71
NC
8878 char value[32];
8879
8880 sprintf_vma (value, ep->X_add_number);
1661c76c 8881 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 8882 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8883 return;
8884 }
8885
8886 if (ep->X_op != O_big)
8887 {
8888 hi32 = *ep;
8889 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8890 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8891 hi32.X_add_number &= 0xffffffff;
8892 lo32 = *ep;
8893 lo32.X_add_number &= 0xffffffff;
8894 }
8895 else
8896 {
9c2799c2 8897 gas_assert (ep->X_add_number > 2);
252b5132
RH
8898 if (ep->X_add_number == 3)
8899 generic_bignum[3] = 0;
8900 else if (ep->X_add_number > 4)
1661c76c 8901 as_bad (_("number larger than 64 bits"));
252b5132
RH
8902 lo32.X_op = O_constant;
8903 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8904 hi32.X_op = O_constant;
8905 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8906 }
8907
8908 if (hi32.X_add_number == 0)
8909 freg = 0;
8910 else
8911 {
8912 int shift, bit;
8913 unsigned long hi, lo;
8914
956cd1d6 8915 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
8916 {
8917 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8918 {
67c0d1eb 8919 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8920 return;
8921 }
8922 if (lo32.X_add_number & 0x80000000)
8923 {
df58fc94 8924 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8925 if (lo32.X_add_number & 0xffff)
67c0d1eb 8926 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
8927 return;
8928 }
8929 }
252b5132
RH
8930
8931 /* Check for 16bit shifted constant. We know that hi32 is
8932 non-zero, so start the mask on the first bit of the hi32
8933 value. */
8934 shift = 17;
8935 do
beae10d5
KH
8936 {
8937 unsigned long himask, lomask;
8938
8939 if (shift < 32)
8940 {
8941 himask = 0xffff >> (32 - shift);
8942 lomask = (0xffff << shift) & 0xffffffff;
8943 }
8944 else
8945 {
8946 himask = 0xffff << (shift - 32);
8947 lomask = 0;
8948 }
8949 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8950 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8951 {
8952 expressionS tmp;
8953
8954 tmp.X_op = O_constant;
8955 if (shift < 32)
8956 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8957 | (lo32.X_add_number >> shift));
8958 else
8959 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 8960 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 8961 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 8962 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
8963 return;
8964 }
f9419b05 8965 ++shift;
beae10d5
KH
8966 }
8967 while (shift <= (64 - 16));
252b5132
RH
8968
8969 /* Find the bit number of the lowest one bit, and store the
8970 shifted value in hi/lo. */
8971 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8972 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8973 if (lo != 0)
8974 {
8975 bit = 0;
8976 while ((lo & 1) == 0)
8977 {
8978 lo >>= 1;
8979 ++bit;
8980 }
8981 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8982 hi >>= bit;
8983 }
8984 else
8985 {
8986 bit = 32;
8987 while ((hi & 1) == 0)
8988 {
8989 hi >>= 1;
8990 ++bit;
8991 }
8992 lo = hi;
8993 hi = 0;
8994 }
8995
8996 /* Optimize if the shifted value is a (power of 2) - 1. */
8997 if ((hi == 0 && ((lo + 1) & lo) == 0)
8998 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
8999 {
9000 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9001 if (shift != 0)
beae10d5 9002 {
252b5132
RH
9003 expressionS tmp;
9004
9005 /* This instruction will set the register to be all
9006 ones. */
beae10d5
KH
9007 tmp.X_op = O_constant;
9008 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9009 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9010 if (bit != 0)
9011 {
9012 bit += shift;
df58fc94 9013 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9014 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9015 }
df58fc94 9016 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9017 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9018 return;
9019 }
9020 }
252b5132
RH
9021
9022 /* Sign extend hi32 before calling load_register, because we can
9023 generally get better code when we load a sign extended value. */
9024 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9025 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9026 load_register (reg, &hi32, 0);
252b5132
RH
9027 freg = reg;
9028 }
9029 if ((lo32.X_add_number & 0xffff0000) == 0)
9030 {
9031 if (freg != 0)
9032 {
df58fc94 9033 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9034 freg = reg;
9035 }
9036 }
9037 else
9038 {
9039 expressionS mid16;
9040
956cd1d6 9041 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9042 {
df58fc94
RS
9043 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9044 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9045 return;
9046 }
252b5132
RH
9047
9048 if (freg != 0)
9049 {
df58fc94 9050 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9051 freg = reg;
9052 }
9053 mid16 = lo32;
9054 mid16.X_add_number >>= 16;
67c0d1eb 9055 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9056 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9057 freg = reg;
9058 }
9059 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9060 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9061}
9062
269137b2
TS
9063static inline void
9064load_delay_nop (void)
9065{
9066 if (!gpr_interlocks)
9067 macro_build (NULL, "nop", "");
9068}
9069
252b5132
RH
9070/* Load an address into a register. */
9071
9072static void
67c0d1eb 9073load_address (int reg, expressionS *ep, int *used_at)
252b5132 9074{
252b5132
RH
9075 if (ep->X_op != O_constant
9076 && ep->X_op != O_symbol)
9077 {
9078 as_bad (_("expression too complex"));
9079 ep->X_op = O_constant;
9080 }
9081
9082 if (ep->X_op == O_constant)
9083 {
67c0d1eb 9084 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9085 return;
9086 }
9087
9088 if (mips_pic == NO_PIC)
9089 {
9090 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9091 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9092 Otherwise we want
9093 lui $reg,<sym> (BFD_RELOC_HI16_S)
9094 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9095 If we have an addend, we always use the latter form.
76b3015f 9096
d6bc6245
TS
9097 With 64bit address space and a usable $at we want
9098 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9099 lui $at,<sym> (BFD_RELOC_HI16_S)
9100 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9101 daddiu $at,<sym> (BFD_RELOC_LO16)
9102 dsll32 $reg,0
3a482fd5 9103 daddu $reg,$reg,$at
76b3015f 9104
c03099e6 9105 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9106 on superscalar processors.
9107 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9108 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9109 dsll $reg,16
9110 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9111 dsll $reg,16
9112 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9113
9114 For GP relative symbols in 64bit address space we can use
9115 the same sequence as in 32bit address space. */
aed1a261 9116 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9117 {
6caf9ef4
TS
9118 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9119 && !nopic_need_relax (ep->X_add_symbol, 1))
9120 {
9121 relax_start (ep->X_add_symbol);
9122 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9123 mips_gp_register, BFD_RELOC_GPREL16);
9124 relax_switch ();
9125 }
d6bc6245 9126
741fe287 9127 if (*used_at == 0 && mips_opts.at)
d6bc6245 9128 {
df58fc94
RS
9129 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9130 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9131 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9132 BFD_RELOC_MIPS_HIGHER);
9133 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9134 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9135 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9136 *used_at = 1;
9137 }
9138 else
9139 {
df58fc94 9140 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9141 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9142 BFD_RELOC_MIPS_HIGHER);
df58fc94 9143 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9144 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9145 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9146 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9147 }
6caf9ef4
TS
9148
9149 if (mips_relax.sequence)
9150 relax_end ();
d6bc6245 9151 }
252b5132
RH
9152 else
9153 {
d6bc6245 9154 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9155 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9156 {
4d7206a2 9157 relax_start (ep->X_add_symbol);
67c0d1eb 9158 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9159 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9160 relax_switch ();
d6bc6245 9161 }
67c0d1eb
RS
9162 macro_build_lui (ep, reg);
9163 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9164 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9165 if (mips_relax.sequence)
9166 relax_end ();
d6bc6245 9167 }
252b5132 9168 }
0a44bf69 9169 else if (!mips_big_got)
252b5132
RH
9170 {
9171 expressionS ex;
9172
9173 /* If this is a reference to an external symbol, we want
9174 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9175 Otherwise we want
9176 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9177 nop
9178 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9179 If there is a constant, it must be added in after.
9180
ed6fb7bd 9181 If we have NewABI, we want
f5040a92
AO
9182 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9183 unless we're referencing a global symbol with a non-zero
9184 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9185 if (HAVE_NEWABI)
9186 {
f5040a92
AO
9187 if (ep->X_add_number)
9188 {
4d7206a2 9189 ex.X_add_number = ep->X_add_number;
f5040a92 9190 ep->X_add_number = 0;
4d7206a2 9191 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9192 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9193 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9194 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9195 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9196 ex.X_op = O_constant;
67c0d1eb 9197 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9198 reg, reg, BFD_RELOC_LO16);
f5040a92 9199 ep->X_add_number = ex.X_add_number;
4d7206a2 9200 relax_switch ();
f5040a92 9201 }
67c0d1eb 9202 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9203 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9204 if (mips_relax.sequence)
9205 relax_end ();
ed6fb7bd
SC
9206 }
9207 else
9208 {
f5040a92
AO
9209 ex.X_add_number = ep->X_add_number;
9210 ep->X_add_number = 0;
67c0d1eb
RS
9211 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9212 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9213 load_delay_nop ();
4d7206a2
RS
9214 relax_start (ep->X_add_symbol);
9215 relax_switch ();
67c0d1eb 9216 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9217 BFD_RELOC_LO16);
4d7206a2 9218 relax_end ();
ed6fb7bd 9219
f5040a92
AO
9220 if (ex.X_add_number != 0)
9221 {
9222 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9223 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9224 ex.X_op = O_constant;
67c0d1eb 9225 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9226 reg, reg, BFD_RELOC_LO16);
f5040a92 9227 }
252b5132
RH
9228 }
9229 }
0a44bf69 9230 else if (mips_big_got)
252b5132
RH
9231 {
9232 expressionS ex;
252b5132
RH
9233
9234 /* This is the large GOT case. If this is a reference to an
9235 external symbol, we want
9236 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9237 addu $reg,$reg,$gp
9238 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9239
9240 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9241 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9242 nop
9243 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9244 If there is a constant, it must be added in after.
f5040a92
AO
9245
9246 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9247 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9248 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9249 */
438c16b8
TS
9250 if (HAVE_NEWABI)
9251 {
4d7206a2 9252 ex.X_add_number = ep->X_add_number;
f5040a92 9253 ep->X_add_number = 0;
4d7206a2 9254 relax_start (ep->X_add_symbol);
df58fc94 9255 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9256 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9257 reg, reg, mips_gp_register);
9258 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9259 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9260 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9261 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9262 else if (ex.X_add_number)
9263 {
9264 ex.X_op = O_constant;
67c0d1eb
RS
9265 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9266 BFD_RELOC_LO16);
f5040a92
AO
9267 }
9268
9269 ep->X_add_number = ex.X_add_number;
4d7206a2 9270 relax_switch ();
67c0d1eb 9271 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9272 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9273 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9274 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9275 relax_end ();
438c16b8 9276 }
252b5132 9277 else
438c16b8 9278 {
f5040a92
AO
9279 ex.X_add_number = ep->X_add_number;
9280 ep->X_add_number = 0;
4d7206a2 9281 relax_start (ep->X_add_symbol);
df58fc94 9282 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9283 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9284 reg, reg, mips_gp_register);
9285 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9286 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9287 relax_switch ();
9288 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9289 {
9290 /* We need a nop before loading from $gp. This special
9291 check is required because the lui which starts the main
9292 instruction stream does not refer to $gp, and so will not
9293 insert the nop which may be required. */
67c0d1eb 9294 macro_build (NULL, "nop", "");
438c16b8 9295 }
67c0d1eb 9296 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9297 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9298 load_delay_nop ();
67c0d1eb 9299 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9300 BFD_RELOC_LO16);
4d7206a2 9301 relax_end ();
438c16b8 9302
f5040a92
AO
9303 if (ex.X_add_number != 0)
9304 {
9305 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9306 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9307 ex.X_op = O_constant;
67c0d1eb
RS
9308 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9309 BFD_RELOC_LO16);
f5040a92 9310 }
252b5132
RH
9311 }
9312 }
252b5132
RH
9313 else
9314 abort ();
8fc2e39e 9315
741fe287 9316 if (!mips_opts.at && *used_at == 1)
1661c76c 9317 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9318}
9319
ea1fb5dc
RS
9320/* Move the contents of register SOURCE into register DEST. */
9321
9322static void
67c0d1eb 9323move_register (int dest, int source)
ea1fb5dc 9324{
df58fc94
RS
9325 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9326 instruction specifically requires a 32-bit one. */
9327 if (mips_opts.micromips
833794fc 9328 && !mips_opts.insn32
df58fc94 9329 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9330 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9331 else
40fc1451 9332 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9333}
9334
4d7206a2 9335/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9336 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9337 The two alternatives are:
4d7206a2
RS
9338
9339 Global symbol Local sybmol
9340 ------------- ------------
9341 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9342 ... ...
9343 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9344
9345 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9346 emits the second for a 16-bit offset or add_got_offset_hilo emits
9347 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9348
9349static void
67c0d1eb 9350load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9351{
9352 expressionS global;
9353
9354 global = *local;
9355 global.X_add_number = 0;
9356
9357 relax_start (local->X_add_symbol);
67c0d1eb
RS
9358 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9359 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9360 relax_switch ();
67c0d1eb
RS
9361 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9362 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9363 relax_end ();
9364}
9365
9366static void
67c0d1eb 9367add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9368{
9369 expressionS global;
9370
9371 global.X_op = O_constant;
9372 global.X_op_symbol = NULL;
9373 global.X_add_symbol = NULL;
9374 global.X_add_number = local->X_add_number;
9375
9376 relax_start (local->X_add_symbol);
67c0d1eb 9377 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9378 dest, dest, BFD_RELOC_LO16);
9379 relax_switch ();
67c0d1eb 9380 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9381 relax_end ();
9382}
9383
f6a22291
MR
9384static void
9385add_got_offset_hilo (int dest, expressionS *local, int tmp)
9386{
9387 expressionS global;
9388 int hold_mips_optimize;
9389
9390 global.X_op = O_constant;
9391 global.X_op_symbol = NULL;
9392 global.X_add_symbol = NULL;
9393 global.X_add_number = local->X_add_number;
9394
9395 relax_start (local->X_add_symbol);
9396 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9397 relax_switch ();
9398 /* Set mips_optimize around the lui instruction to avoid
9399 inserting an unnecessary nop after the lw. */
9400 hold_mips_optimize = mips_optimize;
9401 mips_optimize = 2;
9402 macro_build_lui (&global, tmp);
9403 mips_optimize = hold_mips_optimize;
9404 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9405 relax_end ();
9406
9407 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9408}
9409
df58fc94
RS
9410/* Emit a sequence of instructions to emulate a branch likely operation.
9411 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9412 is its complementing branch with the original condition negated.
9413 CALL is set if the original branch specified the link operation.
9414 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9415
9416 Code like this is produced in the noreorder mode:
9417
9418 BRNEG <args>, 1f
9419 nop
9420 b <sym>
9421 delay slot (executed only if branch taken)
9422 1:
9423
9424 or, if CALL is set:
9425
9426 BRNEG <args>, 1f
9427 nop
9428 bal <sym>
9429 delay slot (executed only if branch taken)
9430 1:
9431
9432 In the reorder mode the delay slot would be filled with a nop anyway,
9433 so code produced is simply:
9434
9435 BR <args>, <sym>
9436 nop
9437
9438 This function is used when producing code for the microMIPS ASE that
9439 does not implement branch likely instructions in hardware. */
9440
9441static void
9442macro_build_branch_likely (const char *br, const char *brneg,
9443 int call, expressionS *ep, const char *fmt,
9444 unsigned int sreg, unsigned int treg)
9445{
9446 int noreorder = mips_opts.noreorder;
9447 expressionS expr1;
9448
9449 gas_assert (mips_opts.micromips);
9450 start_noreorder ();
9451 if (noreorder)
9452 {
9453 micromips_label_expr (&expr1);
9454 macro_build (&expr1, brneg, fmt, sreg, treg);
9455 macro_build (NULL, "nop", "");
9456 macro_build (ep, call ? "bal" : "b", "p");
9457
9458 /* Set to true so that append_insn adds a label. */
9459 emit_branch_likely_macro = TRUE;
9460 }
9461 else
9462 {
9463 macro_build (ep, br, fmt, sreg, treg);
9464 macro_build (NULL, "nop", "");
9465 }
9466 end_noreorder ();
9467}
9468
9469/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9470 the condition code tested. EP specifies the branch target. */
9471
9472static void
9473macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9474{
9475 const int call = 0;
9476 const char *brneg;
9477 const char *br;
9478
9479 switch (type)
9480 {
9481 case M_BC1FL:
9482 br = "bc1f";
9483 brneg = "bc1t";
9484 break;
9485 case M_BC1TL:
9486 br = "bc1t";
9487 brneg = "bc1f";
9488 break;
9489 case M_BC2FL:
9490 br = "bc2f";
9491 brneg = "bc2t";
9492 break;
9493 case M_BC2TL:
9494 br = "bc2t";
9495 brneg = "bc2f";
9496 break;
9497 default:
9498 abort ();
9499 }
9500 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9501}
9502
9503/* Emit a two-argument branch macro specified by TYPE, using SREG as
9504 the register tested. EP specifies the branch target. */
9505
9506static void
9507macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9508{
9509 const char *brneg = NULL;
9510 const char *br;
9511 int call = 0;
9512
9513 switch (type)
9514 {
9515 case M_BGEZ:
9516 br = "bgez";
9517 break;
9518 case M_BGEZL:
9519 br = mips_opts.micromips ? "bgez" : "bgezl";
9520 brneg = "bltz";
9521 break;
9522 case M_BGEZALL:
9523 gas_assert (mips_opts.micromips);
833794fc 9524 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9525 brneg = "bltz";
9526 call = 1;
9527 break;
9528 case M_BGTZ:
9529 br = "bgtz";
9530 break;
9531 case M_BGTZL:
9532 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9533 brneg = "blez";
9534 break;
9535 case M_BLEZ:
9536 br = "blez";
9537 break;
9538 case M_BLEZL:
9539 br = mips_opts.micromips ? "blez" : "blezl";
9540 brneg = "bgtz";
9541 break;
9542 case M_BLTZ:
9543 br = "bltz";
9544 break;
9545 case M_BLTZL:
9546 br = mips_opts.micromips ? "bltz" : "bltzl";
9547 brneg = "bgez";
9548 break;
9549 case M_BLTZALL:
9550 gas_assert (mips_opts.micromips);
833794fc 9551 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9552 brneg = "bgez";
9553 call = 1;
9554 break;
9555 default:
9556 abort ();
9557 }
9558 if (mips_opts.micromips && brneg)
9559 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9560 else
9561 macro_build (ep, br, "s,p", sreg);
9562}
9563
9564/* Emit a three-argument branch macro specified by TYPE, using SREG and
9565 TREG as the registers tested. EP specifies the branch target. */
9566
9567static void
9568macro_build_branch_rsrt (int type, expressionS *ep,
9569 unsigned int sreg, unsigned int treg)
9570{
9571 const char *brneg = NULL;
9572 const int call = 0;
9573 const char *br;
9574
9575 switch (type)
9576 {
9577 case M_BEQ:
9578 case M_BEQ_I:
9579 br = "beq";
9580 break;
9581 case M_BEQL:
9582 case M_BEQL_I:
9583 br = mips_opts.micromips ? "beq" : "beql";
9584 brneg = "bne";
9585 break;
9586 case M_BNE:
9587 case M_BNE_I:
9588 br = "bne";
9589 break;
9590 case M_BNEL:
9591 case M_BNEL_I:
9592 br = mips_opts.micromips ? "bne" : "bnel";
9593 brneg = "beq";
9594 break;
9595 default:
9596 abort ();
9597 }
9598 if (mips_opts.micromips && brneg)
9599 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9600 else
9601 macro_build (ep, br, "s,t,p", sreg, treg);
9602}
9603
f2ae14a1
RS
9604/* Return the high part that should be loaded in order to make the low
9605 part of VALUE accessible using an offset of OFFBITS bits. */
9606
9607static offsetT
9608offset_high_part (offsetT value, unsigned int offbits)
9609{
9610 offsetT bias;
9611 addressT low_mask;
9612
9613 if (offbits == 0)
9614 return value;
9615 bias = 1 << (offbits - 1);
9616 low_mask = bias * 2 - 1;
9617 return (value + bias) & ~low_mask;
9618}
9619
9620/* Return true if the value stored in offset_expr and offset_reloc
9621 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9622 amount that the caller wants to add without inducing overflow
9623 and ALIGN is the known alignment of the value in bytes. */
9624
9625static bfd_boolean
9626small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9627{
9628 if (offbits == 16)
9629 {
9630 /* Accept any relocation operator if overflow isn't a concern. */
9631 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9632 return TRUE;
9633
9634 /* These relocations are guaranteed not to overflow in correct links. */
9635 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9636 || gprel16_reloc_p (*offset_reloc))
9637 return TRUE;
9638 }
9639 if (offset_expr.X_op == O_constant
9640 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9641 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9642 return TRUE;
9643 return FALSE;
9644}
9645
252b5132
RH
9646/*
9647 * Build macros
9648 * This routine implements the seemingly endless macro or synthesized
9649 * instructions and addressing modes in the mips assembly language. Many
9650 * of these macros are simple and are similar to each other. These could
67c1ffbe 9651 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9652 * this verbose method. Others are not simple macros but are more like
9653 * optimizing code generation.
9654 * One interesting optimization is when several store macros appear
67c1ffbe 9655 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
9656 * The ensuing load upper instructions are ommited. This implies some kind
9657 * of global optimization. We currently only optimize within a single macro.
9658 * For many of the load and store macros if the address is specified as a
9659 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9660 * first load register 'at' with zero and use it as the base register. The
9661 * mips assembler simply uses register $zero. Just one tiny optimization
9662 * we're missing.
9663 */
9664static void
833794fc 9665macro (struct mips_cl_insn *ip, char *str)
252b5132 9666{
c0ebe874
RS
9667 const struct mips_operand_array *operands;
9668 unsigned int breg, i;
741fe287 9669 unsigned int tempreg;
252b5132 9670 int mask;
43841e91 9671 int used_at = 0;
df58fc94 9672 expressionS label_expr;
252b5132 9673 expressionS expr1;
df58fc94 9674 expressionS *ep;
252b5132
RH
9675 const char *s;
9676 const char *s2;
9677 const char *fmt;
9678 int likely = 0;
252b5132 9679 int coproc = 0;
7f3c4072 9680 int offbits = 16;
1abe91b1 9681 int call = 0;
df58fc94
RS
9682 int jals = 0;
9683 int dbl = 0;
9684 int imm = 0;
9685 int ust = 0;
9686 int lp = 0;
f2ae14a1 9687 bfd_boolean large_offset;
252b5132 9688 int off;
252b5132 9689 int hold_mips_optimize;
f2ae14a1 9690 unsigned int align;
c0ebe874 9691 unsigned int op[MAX_OPERANDS];
252b5132 9692
9c2799c2 9693 gas_assert (! mips_opts.mips16);
252b5132 9694
c0ebe874
RS
9695 operands = insn_operands (ip);
9696 for (i = 0; i < MAX_OPERANDS; i++)
9697 if (operands->operand[i])
9698 op[i] = insn_extract_operand (ip, operands->operand[i]);
9699 else
9700 op[i] = -1;
9701
252b5132
RH
9702 mask = ip->insn_mo->mask;
9703
df58fc94
RS
9704 label_expr.X_op = O_constant;
9705 label_expr.X_op_symbol = NULL;
9706 label_expr.X_add_symbol = NULL;
9707 label_expr.X_add_number = 0;
9708
252b5132
RH
9709 expr1.X_op = O_constant;
9710 expr1.X_op_symbol = NULL;
9711 expr1.X_add_symbol = NULL;
9712 expr1.X_add_number = 1;
f2ae14a1 9713 align = 1;
252b5132
RH
9714
9715 switch (mask)
9716 {
9717 case M_DABS:
9718 dbl = 1;
9719 case M_ABS:
df58fc94
RS
9720 /* bgez $a0,1f
9721 move v0,$a0
9722 sub v0,$zero,$a0
9723 1:
9724 */
252b5132 9725
7d10b47d 9726 start_noreorder ();
252b5132 9727
df58fc94
RS
9728 if (mips_opts.micromips)
9729 micromips_label_expr (&label_expr);
9730 else
9731 label_expr.X_add_number = 8;
c0ebe874
RS
9732 macro_build (&label_expr, "bgez", "s,p", op[1]);
9733 if (op[0] == op[1])
a605d2b3 9734 macro_build (NULL, "nop", "");
252b5132 9735 else
c0ebe874
RS
9736 move_register (op[0], op[1]);
9737 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9738 if (mips_opts.micromips)
9739 micromips_add_label ();
252b5132 9740
7d10b47d 9741 end_noreorder ();
8fc2e39e 9742 break;
252b5132
RH
9743
9744 case M_ADD_I:
9745 s = "addi";
9746 s2 = "add";
9747 goto do_addi;
9748 case M_ADDU_I:
9749 s = "addiu";
9750 s2 = "addu";
9751 goto do_addi;
9752 case M_DADD_I:
9753 dbl = 1;
9754 s = "daddi";
9755 s2 = "dadd";
df58fc94
RS
9756 if (!mips_opts.micromips)
9757 goto do_addi;
b0e6f033 9758 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9759 && imm_expr.X_add_number < 0x200)
9760 {
b0e6f033
RS
9761 macro_build (NULL, s, "t,r,.", op[0], op[1],
9762 (int) imm_expr.X_add_number);
df58fc94
RS
9763 break;
9764 }
9765 goto do_addi_i;
252b5132
RH
9766 case M_DADDU_I:
9767 dbl = 1;
9768 s = "daddiu";
9769 s2 = "daddu";
9770 do_addi:
b0e6f033 9771 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9772 && imm_expr.X_add_number < 0x8000)
9773 {
c0ebe874 9774 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9775 break;
252b5132 9776 }
df58fc94 9777 do_addi_i:
8fc2e39e 9778 used_at = 1;
67c0d1eb 9779 load_register (AT, &imm_expr, dbl);
c0ebe874 9780 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9781 break;
9782
9783 case M_AND_I:
9784 s = "andi";
9785 s2 = "and";
9786 goto do_bit;
9787 case M_OR_I:
9788 s = "ori";
9789 s2 = "or";
9790 goto do_bit;
9791 case M_NOR_I:
9792 s = "";
9793 s2 = "nor";
9794 goto do_bit;
9795 case M_XOR_I:
9796 s = "xori";
9797 s2 = "xor";
9798 do_bit:
b0e6f033 9799 if (imm_expr.X_add_number >= 0
252b5132
RH
9800 && imm_expr.X_add_number < 0x10000)
9801 {
9802 if (mask != M_NOR_I)
c0ebe874 9803 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9804 else
9805 {
67c0d1eb 9806 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9807 op[0], op[1], BFD_RELOC_LO16);
9808 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9809 }
8fc2e39e 9810 break;
252b5132
RH
9811 }
9812
8fc2e39e 9813 used_at = 1;
bad1aba3 9814 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9815 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9816 break;
9817
8b082fb1
TS
9818 case M_BALIGN:
9819 switch (imm_expr.X_add_number)
9820 {
9821 case 0:
9822 macro_build (NULL, "nop", "");
9823 break;
9824 case 2:
c0ebe874 9825 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 9826 break;
03f66e8a
MR
9827 case 1:
9828 case 3:
c0ebe874 9829 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 9830 (int) imm_expr.X_add_number);
8b082fb1 9831 break;
03f66e8a
MR
9832 default:
9833 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9834 (unsigned long) imm_expr.X_add_number);
9835 break;
8b082fb1
TS
9836 }
9837 break;
9838
df58fc94
RS
9839 case M_BC1FL:
9840 case M_BC1TL:
9841 case M_BC2FL:
9842 case M_BC2TL:
9843 gas_assert (mips_opts.micromips);
9844 macro_build_branch_ccl (mask, &offset_expr,
9845 EXTRACT_OPERAND (1, BCC, *ip));
9846 break;
9847
252b5132 9848 case M_BEQ_I:
252b5132 9849 case M_BEQL_I:
252b5132 9850 case M_BNE_I:
252b5132 9851 case M_BNEL_I:
b0e6f033 9852 if (imm_expr.X_add_number == 0)
c0ebe874 9853 op[1] = 0;
df58fc94 9854 else
252b5132 9855 {
c0ebe874 9856 op[1] = AT;
df58fc94 9857 used_at = 1;
bad1aba3 9858 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 9859 }
df58fc94
RS
9860 /* Fall through. */
9861 case M_BEQL:
9862 case M_BNEL:
c0ebe874 9863 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
9864 break;
9865
9866 case M_BGEL:
9867 likely = 1;
9868 case M_BGE:
c0ebe874
RS
9869 if (op[1] == 0)
9870 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9871 else if (op[0] == 0)
9872 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 9873 else
252b5132 9874 {
df58fc94 9875 used_at = 1;
c0ebe874 9876 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9877 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9878 &offset_expr, AT, ZERO);
252b5132 9879 }
df58fc94
RS
9880 break;
9881
9882 case M_BGEZL:
9883 case M_BGEZALL:
9884 case M_BGTZL:
9885 case M_BLEZL:
9886 case M_BLTZL:
9887 case M_BLTZALL:
c0ebe874 9888 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
9889 break;
9890
9891 case M_BGTL_I:
9892 likely = 1;
9893 case M_BGT_I:
90ecf173 9894 /* Check for > max integer. */
b0e6f033 9895 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
9896 {
9897 do_false:
90ecf173 9898 /* Result is always false. */
252b5132 9899 if (! likely)
a605d2b3 9900 macro_build (NULL, "nop", "");
252b5132 9901 else
df58fc94 9902 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 9903 break;
252b5132 9904 }
f9419b05 9905 ++imm_expr.X_add_number;
252b5132
RH
9906 /* FALLTHROUGH */
9907 case M_BGE_I:
9908 case M_BGEL_I:
9909 if (mask == M_BGEL_I)
9910 likely = 1;
b0e6f033 9911 if (imm_expr.X_add_number == 0)
252b5132 9912 {
df58fc94 9913 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 9914 &offset_expr, op[0]);
8fc2e39e 9915 break;
252b5132 9916 }
b0e6f033 9917 if (imm_expr.X_add_number == 1)
252b5132 9918 {
df58fc94 9919 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 9920 &offset_expr, op[0]);
8fc2e39e 9921 break;
252b5132 9922 }
b0e6f033 9923 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
9924 {
9925 do_true:
9926 /* result is always true */
1661c76c 9927 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 9928 macro_build (&offset_expr, "b", "p");
8fc2e39e 9929 break;
252b5132 9930 }
8fc2e39e 9931 used_at = 1;
c0ebe874 9932 set_at (op[0], 0);
df58fc94
RS
9933 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9934 &offset_expr, AT, ZERO);
252b5132
RH
9935 break;
9936
9937 case M_BGEUL:
9938 likely = 1;
9939 case M_BGEU:
c0ebe874 9940 if (op[1] == 0)
252b5132 9941 goto do_true;
c0ebe874 9942 else if (op[0] == 0)
df58fc94 9943 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9944 &offset_expr, ZERO, op[1]);
df58fc94 9945 else
252b5132 9946 {
df58fc94 9947 used_at = 1;
c0ebe874 9948 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9949 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9950 &offset_expr, AT, ZERO);
252b5132 9951 }
252b5132
RH
9952 break;
9953
9954 case M_BGTUL_I:
9955 likely = 1;
9956 case M_BGTU_I:
c0ebe874 9957 if (op[0] == 0
bad1aba3 9958 || (GPR_SIZE == 32
f01dc953 9959 && imm_expr.X_add_number == -1))
252b5132 9960 goto do_false;
f9419b05 9961 ++imm_expr.X_add_number;
252b5132
RH
9962 /* FALLTHROUGH */
9963 case M_BGEU_I:
9964 case M_BGEUL_I:
9965 if (mask == M_BGEUL_I)
9966 likely = 1;
b0e6f033 9967 if (imm_expr.X_add_number == 0)
252b5132 9968 goto do_true;
b0e6f033 9969 else if (imm_expr.X_add_number == 1)
df58fc94 9970 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 9971 &offset_expr, op[0], ZERO);
df58fc94 9972 else
252b5132 9973 {
df58fc94 9974 used_at = 1;
c0ebe874 9975 set_at (op[0], 1);
df58fc94
RS
9976 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9977 &offset_expr, AT, ZERO);
252b5132 9978 }
252b5132
RH
9979 break;
9980
9981 case M_BGTL:
9982 likely = 1;
9983 case M_BGT:
c0ebe874
RS
9984 if (op[1] == 0)
9985 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9986 else if (op[0] == 0)
9987 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 9988 else
252b5132 9989 {
df58fc94 9990 used_at = 1;
c0ebe874 9991 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
9992 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9993 &offset_expr, AT, ZERO);
252b5132 9994 }
252b5132
RH
9995 break;
9996
9997 case M_BGTUL:
9998 likely = 1;
9999 case M_BGTU:
c0ebe874 10000 if (op[1] == 0)
df58fc94 10001 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10002 &offset_expr, op[0], ZERO);
10003 else if (op[0] == 0)
df58fc94
RS
10004 goto do_false;
10005 else
252b5132 10006 {
df58fc94 10007 used_at = 1;
c0ebe874 10008 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10009 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10010 &offset_expr, AT, ZERO);
252b5132 10011 }
252b5132
RH
10012 break;
10013
10014 case M_BLEL:
10015 likely = 1;
10016 case M_BLE:
c0ebe874
RS
10017 if (op[1] == 0)
10018 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10019 else if (op[0] == 0)
10020 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10021 else
252b5132 10022 {
df58fc94 10023 used_at = 1;
c0ebe874 10024 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10025 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10026 &offset_expr, AT, ZERO);
252b5132 10027 }
252b5132
RH
10028 break;
10029
10030 case M_BLEL_I:
10031 likely = 1;
10032 case M_BLE_I:
b0e6f033 10033 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10034 goto do_true;
f9419b05 10035 ++imm_expr.X_add_number;
252b5132
RH
10036 /* FALLTHROUGH */
10037 case M_BLT_I:
10038 case M_BLTL_I:
10039 if (mask == M_BLTL_I)
10040 likely = 1;
b0e6f033 10041 if (imm_expr.X_add_number == 0)
c0ebe874 10042 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10043 else if (imm_expr.X_add_number == 1)
c0ebe874 10044 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10045 else
252b5132 10046 {
df58fc94 10047 used_at = 1;
c0ebe874 10048 set_at (op[0], 0);
df58fc94
RS
10049 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10050 &offset_expr, AT, ZERO);
252b5132 10051 }
252b5132
RH
10052 break;
10053
10054 case M_BLEUL:
10055 likely = 1;
10056 case M_BLEU:
c0ebe874 10057 if (op[1] == 0)
df58fc94 10058 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10059 &offset_expr, op[0], ZERO);
10060 else if (op[0] == 0)
df58fc94
RS
10061 goto do_true;
10062 else
252b5132 10063 {
df58fc94 10064 used_at = 1;
c0ebe874 10065 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10066 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10067 &offset_expr, AT, ZERO);
252b5132 10068 }
252b5132
RH
10069 break;
10070
10071 case M_BLEUL_I:
10072 likely = 1;
10073 case M_BLEU_I:
c0ebe874 10074 if (op[0] == 0
bad1aba3 10075 || (GPR_SIZE == 32
f01dc953 10076 && imm_expr.X_add_number == -1))
252b5132 10077 goto do_true;
f9419b05 10078 ++imm_expr.X_add_number;
252b5132
RH
10079 /* FALLTHROUGH */
10080 case M_BLTU_I:
10081 case M_BLTUL_I:
10082 if (mask == M_BLTUL_I)
10083 likely = 1;
b0e6f033 10084 if (imm_expr.X_add_number == 0)
252b5132 10085 goto do_false;
b0e6f033 10086 else if (imm_expr.X_add_number == 1)
df58fc94 10087 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10088 &offset_expr, op[0], ZERO);
df58fc94 10089 else
252b5132 10090 {
df58fc94 10091 used_at = 1;
c0ebe874 10092 set_at (op[0], 1);
df58fc94
RS
10093 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10094 &offset_expr, AT, ZERO);
252b5132 10095 }
252b5132
RH
10096 break;
10097
10098 case M_BLTL:
10099 likely = 1;
10100 case M_BLT:
c0ebe874
RS
10101 if (op[1] == 0)
10102 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10103 else if (op[0] == 0)
10104 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10105 else
252b5132 10106 {
df58fc94 10107 used_at = 1;
c0ebe874 10108 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10109 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10110 &offset_expr, AT, ZERO);
252b5132 10111 }
252b5132
RH
10112 break;
10113
10114 case M_BLTUL:
10115 likely = 1;
10116 case M_BLTU:
c0ebe874 10117 if (op[1] == 0)
252b5132 10118 goto do_false;
c0ebe874 10119 else if (op[0] == 0)
df58fc94 10120 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10121 &offset_expr, ZERO, op[1]);
df58fc94 10122 else
252b5132 10123 {
df58fc94 10124 used_at = 1;
c0ebe874 10125 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10126 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10127 &offset_expr, AT, ZERO);
252b5132 10128 }
252b5132
RH
10129 break;
10130
10131 case M_DDIV_3:
10132 dbl = 1;
10133 case M_DIV_3:
10134 s = "mflo";
10135 goto do_div3;
10136 case M_DREM_3:
10137 dbl = 1;
10138 case M_REM_3:
10139 s = "mfhi";
10140 do_div3:
c0ebe874 10141 if (op[2] == 0)
252b5132 10142 {
1661c76c 10143 as_warn (_("divide by zero"));
252b5132 10144 if (mips_trap)
df58fc94 10145 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10146 else
df58fc94 10147 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10148 break;
252b5132
RH
10149 }
10150
7d10b47d 10151 start_noreorder ();
252b5132
RH
10152 if (mips_trap)
10153 {
c0ebe874
RS
10154 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10155 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10156 }
10157 else
10158 {
df58fc94
RS
10159 if (mips_opts.micromips)
10160 micromips_label_expr (&label_expr);
10161 else
10162 label_expr.X_add_number = 8;
c0ebe874
RS
10163 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10164 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10165 macro_build (NULL, "break", BRK_FMT, 7);
10166 if (mips_opts.micromips)
10167 micromips_add_label ();
252b5132
RH
10168 }
10169 expr1.X_add_number = -1;
8fc2e39e 10170 used_at = 1;
f6a22291 10171 load_register (AT, &expr1, dbl);
df58fc94
RS
10172 if (mips_opts.micromips)
10173 micromips_label_expr (&label_expr);
10174 else
10175 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10176 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10177 if (dbl)
10178 {
10179 expr1.X_add_number = 1;
f6a22291 10180 load_register (AT, &expr1, dbl);
df58fc94 10181 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10182 }
10183 else
10184 {
10185 expr1.X_add_number = 0x80000000;
df58fc94 10186 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10187 }
10188 if (mips_trap)
10189 {
c0ebe874 10190 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10191 /* We want to close the noreorder block as soon as possible, so
10192 that later insns are available for delay slot filling. */
7d10b47d 10193 end_noreorder ();
252b5132
RH
10194 }
10195 else
10196 {
df58fc94
RS
10197 if (mips_opts.micromips)
10198 micromips_label_expr (&label_expr);
10199 else
10200 label_expr.X_add_number = 8;
c0ebe874 10201 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10202 macro_build (NULL, "nop", "");
252b5132
RH
10203
10204 /* We want to close the noreorder block as soon as possible, so
10205 that later insns are available for delay slot filling. */
7d10b47d 10206 end_noreorder ();
252b5132 10207
df58fc94 10208 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10209 }
df58fc94
RS
10210 if (mips_opts.micromips)
10211 micromips_add_label ();
c0ebe874 10212 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10213 break;
10214
10215 case M_DIV_3I:
10216 s = "div";
10217 s2 = "mflo";
10218 goto do_divi;
10219 case M_DIVU_3I:
10220 s = "divu";
10221 s2 = "mflo";
10222 goto do_divi;
10223 case M_REM_3I:
10224 s = "div";
10225 s2 = "mfhi";
10226 goto do_divi;
10227 case M_REMU_3I:
10228 s = "divu";
10229 s2 = "mfhi";
10230 goto do_divi;
10231 case M_DDIV_3I:
10232 dbl = 1;
10233 s = "ddiv";
10234 s2 = "mflo";
10235 goto do_divi;
10236 case M_DDIVU_3I:
10237 dbl = 1;
10238 s = "ddivu";
10239 s2 = "mflo";
10240 goto do_divi;
10241 case M_DREM_3I:
10242 dbl = 1;
10243 s = "ddiv";
10244 s2 = "mfhi";
10245 goto do_divi;
10246 case M_DREMU_3I:
10247 dbl = 1;
10248 s = "ddivu";
10249 s2 = "mfhi";
10250 do_divi:
b0e6f033 10251 if (imm_expr.X_add_number == 0)
252b5132 10252 {
1661c76c 10253 as_warn (_("divide by zero"));
252b5132 10254 if (mips_trap)
df58fc94 10255 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10256 else
df58fc94 10257 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10258 break;
252b5132 10259 }
b0e6f033 10260 if (imm_expr.X_add_number == 1)
252b5132
RH
10261 {
10262 if (strcmp (s2, "mflo") == 0)
c0ebe874 10263 move_register (op[0], op[1]);
252b5132 10264 else
c0ebe874 10265 move_register (op[0], ZERO);
8fc2e39e 10266 break;
252b5132 10267 }
b0e6f033 10268 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10269 {
10270 if (strcmp (s2, "mflo") == 0)
c0ebe874 10271 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10272 else
c0ebe874 10273 move_register (op[0], ZERO);
8fc2e39e 10274 break;
252b5132
RH
10275 }
10276
8fc2e39e 10277 used_at = 1;
67c0d1eb 10278 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10279 macro_build (NULL, s, "z,s,t", op[1], AT);
10280 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10281 break;
10282
10283 case M_DIVU_3:
10284 s = "divu";
10285 s2 = "mflo";
10286 goto do_divu3;
10287 case M_REMU_3:
10288 s = "divu";
10289 s2 = "mfhi";
10290 goto do_divu3;
10291 case M_DDIVU_3:
10292 s = "ddivu";
10293 s2 = "mflo";
10294 goto do_divu3;
10295 case M_DREMU_3:
10296 s = "ddivu";
10297 s2 = "mfhi";
10298 do_divu3:
7d10b47d 10299 start_noreorder ();
252b5132
RH
10300 if (mips_trap)
10301 {
c0ebe874
RS
10302 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10303 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10304 /* We want to close the noreorder block as soon as possible, so
10305 that later insns are available for delay slot filling. */
7d10b47d 10306 end_noreorder ();
252b5132
RH
10307 }
10308 else
10309 {
df58fc94
RS
10310 if (mips_opts.micromips)
10311 micromips_label_expr (&label_expr);
10312 else
10313 label_expr.X_add_number = 8;
c0ebe874
RS
10314 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10315 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10316
10317 /* We want to close the noreorder block as soon as possible, so
10318 that later insns are available for delay slot filling. */
7d10b47d 10319 end_noreorder ();
df58fc94
RS
10320 macro_build (NULL, "break", BRK_FMT, 7);
10321 if (mips_opts.micromips)
10322 micromips_add_label ();
252b5132 10323 }
c0ebe874 10324 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10325 break;
252b5132 10326
1abe91b1
MR
10327 case M_DLCA_AB:
10328 dbl = 1;
10329 case M_LCA_AB:
10330 call = 1;
10331 goto do_la;
252b5132
RH
10332 case M_DLA_AB:
10333 dbl = 1;
10334 case M_LA_AB:
1abe91b1 10335 do_la:
252b5132
RH
10336 /* Load the address of a symbol into a register. If breg is not
10337 zero, we then add a base register to it. */
10338
c0ebe874 10339 breg = op[2];
bad1aba3 10340 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10341 as_warn (_("dla used to load 32-bit register; recommend using la "
10342 "instead"));
3bec30a8 10343
90ecf173 10344 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10345 as_warn (_("la used to load 64-bit address; recommend using dla "
10346 "instead"));
3bec30a8 10347
f2ae14a1 10348 if (small_offset_p (0, align, 16))
0c11417f 10349 {
c0ebe874 10350 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10351 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10352 break;
0c11417f
MR
10353 }
10354
c0ebe874 10355 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10356 {
10357 tempreg = AT;
10358 used_at = 1;
10359 }
10360 else
c0ebe874 10361 tempreg = op[0];
afdbd6d0 10362
252b5132
RH
10363 if (offset_expr.X_op != O_symbol
10364 && offset_expr.X_op != O_constant)
10365 {
1661c76c 10366 as_bad (_("expression too complex"));
252b5132
RH
10367 offset_expr.X_op = O_constant;
10368 }
10369
252b5132 10370 if (offset_expr.X_op == O_constant)
aed1a261 10371 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10372 else if (mips_pic == NO_PIC)
10373 {
d6bc6245 10374 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10375 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10376 Otherwise we want
10377 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10378 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10379 If we have a constant, we need two instructions anyhow,
d6bc6245 10380 so we may as well always use the latter form.
76b3015f 10381
6caf9ef4
TS
10382 With 64bit address space and a usable $at we want
10383 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10384 lui $at,<sym> (BFD_RELOC_HI16_S)
10385 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10386 daddiu $at,<sym> (BFD_RELOC_LO16)
10387 dsll32 $tempreg,0
10388 daddu $tempreg,$tempreg,$at
10389
10390 If $at is already in use, we use a path which is suboptimal
10391 on superscalar processors.
10392 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10393 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10394 dsll $tempreg,16
10395 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10396 dsll $tempreg,16
10397 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10398
10399 For GP relative symbols in 64bit address space we can use
10400 the same sequence as in 32bit address space. */
aed1a261 10401 if (HAVE_64BIT_SYMBOLS)
252b5132 10402 {
6caf9ef4
TS
10403 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10404 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10405 {
10406 relax_start (offset_expr.X_add_symbol);
10407 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10408 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10409 relax_switch ();
10410 }
d6bc6245 10411
741fe287 10412 if (used_at == 0 && mips_opts.at)
98d3f06f 10413 {
df58fc94 10414 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10415 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10416 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10417 AT, BFD_RELOC_HI16_S);
67c0d1eb 10418 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10419 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10420 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10421 AT, AT, BFD_RELOC_LO16);
df58fc94 10422 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10423 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10424 used_at = 1;
10425 }
10426 else
10427 {
df58fc94 10428 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10429 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10430 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10431 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10432 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10433 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10434 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10435 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10436 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10437 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10438 }
6caf9ef4
TS
10439
10440 if (mips_relax.sequence)
10441 relax_end ();
98d3f06f
KH
10442 }
10443 else
10444 {
10445 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10446 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10447 {
4d7206a2 10448 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10449 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10450 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10451 relax_switch ();
98d3f06f 10452 }
6943caf0 10453 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10454 as_bad (_("offset too large"));
67c0d1eb
RS
10455 macro_build_lui (&offset_expr, tempreg);
10456 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10457 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10458 if (mips_relax.sequence)
10459 relax_end ();
98d3f06f 10460 }
252b5132 10461 }
0a44bf69 10462 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10463 {
9117d219
NC
10464 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10465
252b5132
RH
10466 /* If this is a reference to an external symbol, and there
10467 is no constant, we want
10468 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10469 or for lca or if tempreg is PIC_CALL_REG
9117d219 10470 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10471 For a local symbol, we want
10472 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10473 nop
10474 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10475
10476 If we have a small constant, and this is a reference to
10477 an external symbol, we want
10478 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10479 nop
10480 addiu $tempreg,$tempreg,<constant>
10481 For a local symbol, we want the same instruction
10482 sequence, but we output a BFD_RELOC_LO16 reloc on the
10483 addiu instruction.
10484
10485 If we have a large constant, and this is a reference to
10486 an external symbol, we want
10487 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10488 lui $at,<hiconstant>
10489 addiu $at,$at,<loconstant>
10490 addu $tempreg,$tempreg,$at
10491 For a local symbol, we want the same instruction
10492 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10493 addiu instruction.
ed6fb7bd
SC
10494 */
10495
4d7206a2 10496 if (offset_expr.X_add_number == 0)
252b5132 10497 {
0a44bf69
RS
10498 if (mips_pic == SVR4_PIC
10499 && breg == 0
10500 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10501 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10502
10503 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10504 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10505 lw_reloc_type, mips_gp_register);
4d7206a2 10506 if (breg != 0)
252b5132
RH
10507 {
10508 /* We're going to put in an addu instruction using
10509 tempreg, so we may as well insert the nop right
10510 now. */
269137b2 10511 load_delay_nop ();
252b5132 10512 }
4d7206a2 10513 relax_switch ();
67c0d1eb
RS
10514 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10515 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10516 load_delay_nop ();
67c0d1eb
RS
10517 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10518 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10519 relax_end ();
252b5132
RH
10520 /* FIXME: If breg == 0, and the next instruction uses
10521 $tempreg, then if this variant case is used an extra
10522 nop will be generated. */
10523 }
4d7206a2
RS
10524 else if (offset_expr.X_add_number >= -0x8000
10525 && offset_expr.X_add_number < 0x8000)
252b5132 10526 {
67c0d1eb 10527 load_got_offset (tempreg, &offset_expr);
269137b2 10528 load_delay_nop ();
67c0d1eb 10529 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10530 }
10531 else
10532 {
4d7206a2
RS
10533 expr1.X_add_number = offset_expr.X_add_number;
10534 offset_expr.X_add_number =
43c0598f 10535 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10536 load_got_offset (tempreg, &offset_expr);
f6a22291 10537 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10538 /* If we are going to add in a base register, and the
10539 target register and the base register are the same,
10540 then we are using AT as a temporary register. Since
10541 we want to load the constant into AT, we add our
10542 current AT (from the global offset table) and the
10543 register into the register now, and pretend we were
10544 not using a base register. */
c0ebe874 10545 if (breg == op[0])
252b5132 10546 {
269137b2 10547 load_delay_nop ();
67c0d1eb 10548 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10549 op[0], AT, breg);
252b5132 10550 breg = 0;
c0ebe874 10551 tempreg = op[0];
252b5132 10552 }
f6a22291 10553 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10554 used_at = 1;
10555 }
10556 }
0a44bf69 10557 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10558 {
67c0d1eb 10559 int add_breg_early = 0;
f5040a92
AO
10560
10561 /* If this is a reference to an external, and there is no
10562 constant, or local symbol (*), with or without a
10563 constant, we want
10564 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10565 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10567
10568 If we have a small constant, and this is a reference to
10569 an external symbol, we want
10570 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10571 addiu $tempreg,$tempreg,<constant>
10572
10573 If we have a large constant, and this is a reference to
10574 an external symbol, we want
10575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10576 lui $at,<hiconstant>
10577 addiu $at,$at,<loconstant>
10578 addu $tempreg,$tempreg,$at
10579
10580 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10581 local symbols, even though it introduces an additional
10582 instruction. */
10583
f5040a92
AO
10584 if (offset_expr.X_add_number)
10585 {
4d7206a2 10586 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10587 offset_expr.X_add_number = 0;
10588
4d7206a2 10589 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10590 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10591 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10592
10593 if (expr1.X_add_number >= -0x8000
10594 && expr1.X_add_number < 0x8000)
10595 {
67c0d1eb
RS
10596 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10597 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10598 }
ecd13cd3 10599 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10600 {
c0ebe874
RS
10601 unsigned int dreg;
10602
f5040a92
AO
10603 /* If we are going to add in a base register, and the
10604 target register and the base register are the same,
10605 then we are using AT as a temporary register. Since
10606 we want to load the constant into AT, we add our
10607 current AT (from the global offset table) and the
10608 register into the register now, and pretend we were
10609 not using a base register. */
c0ebe874 10610 if (breg != op[0])
f5040a92
AO
10611 dreg = tempreg;
10612 else
10613 {
9c2799c2 10614 gas_assert (tempreg == AT);
67c0d1eb 10615 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10616 op[0], AT, breg);
10617 dreg = op[0];
67c0d1eb 10618 add_breg_early = 1;
f5040a92
AO
10619 }
10620
f6a22291 10621 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10622 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10623 dreg, dreg, AT);
f5040a92 10624
f5040a92
AO
10625 used_at = 1;
10626 }
10627 else
10628 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10629
4d7206a2 10630 relax_switch ();
f5040a92
AO
10631 offset_expr.X_add_number = expr1.X_add_number;
10632
67c0d1eb
RS
10633 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10634 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10635 if (add_breg_early)
f5040a92 10636 {
67c0d1eb 10637 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10638 op[0], tempreg, breg);
f5040a92 10639 breg = 0;
c0ebe874 10640 tempreg = op[0];
f5040a92 10641 }
4d7206a2 10642 relax_end ();
f5040a92 10643 }
4d7206a2 10644 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10645 {
4d7206a2 10646 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10647 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10648 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10649 relax_switch ();
67c0d1eb
RS
10650 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10651 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10652 relax_end ();
f5040a92 10653 }
4d7206a2 10654 else
f5040a92 10655 {
67c0d1eb
RS
10656 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10657 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10658 }
10659 }
0a44bf69 10660 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10661 {
67c0d1eb 10662 int gpdelay;
9117d219
NC
10663 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10664 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10665 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10666
10667 /* This is the large GOT case. If this is a reference to an
10668 external symbol, and there is no constant, we want
10669 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10670 addu $tempreg,$tempreg,$gp
10671 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10672 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10673 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10674 addu $tempreg,$tempreg,$gp
10675 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10676 For a local symbol, we want
10677 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10678 nop
10679 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10680
10681 If we have a small constant, and this is a reference to
10682 an external symbol, we want
10683 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10684 addu $tempreg,$tempreg,$gp
10685 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10686 nop
10687 addiu $tempreg,$tempreg,<constant>
10688 For a local symbol, we want
10689 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10690 nop
10691 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10692
10693 If we have a large constant, and this is a reference to
10694 an external symbol, we want
10695 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10696 addu $tempreg,$tempreg,$gp
10697 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10698 lui $at,<hiconstant>
10699 addiu $at,$at,<loconstant>
10700 addu $tempreg,$tempreg,$at
10701 For a local symbol, we want
10702 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10703 lui $at,<hiconstant>
10704 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10705 addu $tempreg,$tempreg,$at
f5040a92 10706 */
438c16b8 10707
252b5132
RH
10708 expr1.X_add_number = offset_expr.X_add_number;
10709 offset_expr.X_add_number = 0;
4d7206a2 10710 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10711 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10712 if (expr1.X_add_number == 0 && breg == 0
10713 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10714 {
10715 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10716 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10717 }
df58fc94 10718 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10719 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10720 tempreg, tempreg, mips_gp_register);
67c0d1eb 10721 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10722 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10723 if (expr1.X_add_number == 0)
10724 {
67c0d1eb 10725 if (breg != 0)
252b5132
RH
10726 {
10727 /* We're going to put in an addu instruction using
10728 tempreg, so we may as well insert the nop right
10729 now. */
269137b2 10730 load_delay_nop ();
252b5132 10731 }
252b5132
RH
10732 }
10733 else if (expr1.X_add_number >= -0x8000
10734 && expr1.X_add_number < 0x8000)
10735 {
269137b2 10736 load_delay_nop ();
67c0d1eb 10737 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10738 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10739 }
10740 else
10741 {
c0ebe874
RS
10742 unsigned int dreg;
10743
252b5132
RH
10744 /* If we are going to add in a base register, and the
10745 target register and the base register are the same,
10746 then we are using AT as a temporary register. Since
10747 we want to load the constant into AT, we add our
10748 current AT (from the global offset table) and the
10749 register into the register now, and pretend we were
10750 not using a base register. */
c0ebe874 10751 if (breg != op[0])
67c0d1eb 10752 dreg = tempreg;
252b5132
RH
10753 else
10754 {
9c2799c2 10755 gas_assert (tempreg == AT);
269137b2 10756 load_delay_nop ();
67c0d1eb 10757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10758 op[0], AT, breg);
10759 dreg = op[0];
252b5132
RH
10760 }
10761
f6a22291 10762 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10763 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10764
252b5132
RH
10765 used_at = 1;
10766 }
43c0598f 10767 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10768 relax_switch ();
252b5132 10769
67c0d1eb 10770 if (gpdelay)
252b5132
RH
10771 {
10772 /* This is needed because this instruction uses $gp, but
f5040a92 10773 the first instruction on the main stream does not. */
67c0d1eb 10774 macro_build (NULL, "nop", "");
252b5132 10775 }
ed6fb7bd 10776
67c0d1eb
RS
10777 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10778 local_reloc_type, mips_gp_register);
f5040a92 10779 if (expr1.X_add_number >= -0x8000
252b5132
RH
10780 && expr1.X_add_number < 0x8000)
10781 {
269137b2 10782 load_delay_nop ();
67c0d1eb
RS
10783 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10784 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10785 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10786 register, the external symbol case ended with a load,
10787 so if the symbol turns out to not be external, and
10788 the next instruction uses tempreg, an unnecessary nop
10789 will be inserted. */
252b5132
RH
10790 }
10791 else
10792 {
c0ebe874 10793 if (breg == op[0])
252b5132
RH
10794 {
10795 /* We must add in the base register now, as in the
f5040a92 10796 external symbol case. */
9c2799c2 10797 gas_assert (tempreg == AT);
269137b2 10798 load_delay_nop ();
67c0d1eb 10799 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10800 op[0], AT, breg);
10801 tempreg = op[0];
252b5132 10802 /* We set breg to 0 because we have arranged to add
f5040a92 10803 it in in both cases. */
252b5132
RH
10804 breg = 0;
10805 }
10806
67c0d1eb
RS
10807 macro_build_lui (&expr1, AT);
10808 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10809 AT, AT, BFD_RELOC_LO16);
67c0d1eb 10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10811 tempreg, tempreg, AT);
8fc2e39e 10812 used_at = 1;
252b5132 10813 }
4d7206a2 10814 relax_end ();
252b5132 10815 }
0a44bf69 10816 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10817 {
f5040a92
AO
10818 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10819 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 10820 int add_breg_early = 0;
f5040a92
AO
10821
10822 /* This is the large GOT case. If this is a reference to an
10823 external symbol, and there is no constant, we want
10824 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10825 add $tempreg,$tempreg,$gp
10826 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10827 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10828 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10829 add $tempreg,$tempreg,$gp
10830 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10831
10832 If we have a small constant, and this is a reference to
10833 an external symbol, we want
10834 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10835 add $tempreg,$tempreg,$gp
10836 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10837 addi $tempreg,$tempreg,<constant>
10838
10839 If we have a large constant, and this is a reference to
10840 an external symbol, we want
10841 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10842 addu $tempreg,$tempreg,$gp
10843 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10844 lui $at,<hiconstant>
10845 addi $at,$at,<loconstant>
10846 add $tempreg,$tempreg,$at
10847
10848 If we have NewABI, and we know it's a local symbol, we want
10849 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10850 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10851 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10852
4d7206a2 10853 relax_start (offset_expr.X_add_symbol);
f5040a92 10854
4d7206a2 10855 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10856 offset_expr.X_add_number = 0;
10857
1abe91b1
MR
10858 if (expr1.X_add_number == 0 && breg == 0
10859 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
10860 {
10861 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10862 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10863 }
df58fc94 10864 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10865 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10866 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
10867 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10868 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
10869
10870 if (expr1.X_add_number == 0)
4d7206a2 10871 ;
f5040a92
AO
10872 else if (expr1.X_add_number >= -0x8000
10873 && expr1.X_add_number < 0x8000)
10874 {
67c0d1eb 10875 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10876 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10877 }
ecd13cd3 10878 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10879 {
c0ebe874
RS
10880 unsigned int dreg;
10881
f5040a92
AO
10882 /* If we are going to add in a base register, and the
10883 target register and the base register are the same,
10884 then we are using AT as a temporary register. Since
10885 we want to load the constant into AT, we add our
10886 current AT (from the global offset table) and the
10887 register into the register now, and pretend we were
10888 not using a base register. */
c0ebe874 10889 if (breg != op[0])
f5040a92
AO
10890 dreg = tempreg;
10891 else
10892 {
9c2799c2 10893 gas_assert (tempreg == AT);
67c0d1eb 10894 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10895 op[0], AT, breg);
10896 dreg = op[0];
67c0d1eb 10897 add_breg_early = 1;
f5040a92
AO
10898 }
10899
f6a22291 10900 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10901 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 10902
f5040a92
AO
10903 used_at = 1;
10904 }
10905 else
10906 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10907
4d7206a2 10908 relax_switch ();
f5040a92 10909 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10910 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10911 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10912 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10913 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10914 if (add_breg_early)
f5040a92 10915 {
67c0d1eb 10916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10917 op[0], tempreg, breg);
f5040a92 10918 breg = 0;
c0ebe874 10919 tempreg = op[0];
f5040a92 10920 }
4d7206a2 10921 relax_end ();
f5040a92 10922 }
252b5132
RH
10923 else
10924 abort ();
10925
10926 if (breg != 0)
c0ebe874 10927 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
10928 break;
10929
52b6b6b9 10930 case M_MSGSND:
df58fc94 10931 gas_assert (!mips_opts.micromips);
c0ebe874 10932 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 10933 break;
52b6b6b9
JM
10934
10935 case M_MSGLD:
df58fc94 10936 gas_assert (!mips_opts.micromips);
c8276761 10937 macro_build (NULL, "c2", "C", 0x02);
c7af4273 10938 break;
52b6b6b9
JM
10939
10940 case M_MSGLD_T:
df58fc94 10941 gas_assert (!mips_opts.micromips);
c0ebe874 10942 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 10943 break;
52b6b6b9
JM
10944
10945 case M_MSGWAIT:
df58fc94 10946 gas_assert (!mips_opts.micromips);
52b6b6b9 10947 macro_build (NULL, "c2", "C", 3);
c7af4273 10948 break;
52b6b6b9
JM
10949
10950 case M_MSGWAIT_T:
df58fc94 10951 gas_assert (!mips_opts.micromips);
c0ebe874 10952 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 10953 break;
52b6b6b9 10954
252b5132
RH
10955 case M_J_A:
10956 /* The j instruction may not be used in PIC code, since it
10957 requires an absolute address. We convert it to a b
10958 instruction. */
10959 if (mips_pic == NO_PIC)
67c0d1eb 10960 macro_build (&offset_expr, "j", "a");
252b5132 10961 else
67c0d1eb 10962 macro_build (&offset_expr, "b", "p");
8fc2e39e 10963 break;
252b5132
RH
10964
10965 /* The jal instructions must be handled as macros because when
10966 generating PIC code they expand to multi-instruction
10967 sequences. Normally they are simple instructions. */
df58fc94 10968 case M_JALS_1:
c0ebe874
RS
10969 op[1] = op[0];
10970 op[0] = RA;
df58fc94
RS
10971 /* Fall through. */
10972 case M_JALS_2:
10973 gas_assert (mips_opts.micromips);
833794fc
MR
10974 if (mips_opts.insn32)
10975 {
1661c76c 10976 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
10977 break;
10978 }
df58fc94
RS
10979 jals = 1;
10980 goto jal;
252b5132 10981 case M_JAL_1:
c0ebe874
RS
10982 op[1] = op[0];
10983 op[0] = RA;
252b5132
RH
10984 /* Fall through. */
10985 case M_JAL_2:
df58fc94 10986 jal:
3e722fb5 10987 if (mips_pic == NO_PIC)
df58fc94
RS
10988 {
10989 s = jals ? "jalrs" : "jalr";
e64af278 10990 if (mips_opts.micromips
833794fc 10991 && !mips_opts.insn32
c0ebe874 10992 && op[0] == RA
e64af278 10993 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 10994 macro_build (NULL, s, "mj", op[1]);
df58fc94 10995 else
c0ebe874 10996 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 10997 }
0a44bf69 10998 else
252b5132 10999 {
df58fc94
RS
11000 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11001 && mips_cprestore_offset >= 0);
11002
c0ebe874 11003 if (op[1] != PIC_CALL_REG)
252b5132 11004 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11005
833794fc
MR
11006 s = ((mips_opts.micromips
11007 && !mips_opts.insn32
11008 && (!mips_opts.noreorder || cprestore))
df58fc94 11009 ? "jalrs" : "jalr");
e64af278 11010 if (mips_opts.micromips
833794fc 11011 && !mips_opts.insn32
c0ebe874 11012 && op[0] == RA
e64af278 11013 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11014 macro_build (NULL, s, "mj", op[1]);
df58fc94 11015 else
c0ebe874 11016 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11017 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11018 {
6478892d 11019 if (mips_cprestore_offset < 0)
1661c76c 11020 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11021 else
11022 {
90ecf173 11023 if (!mips_frame_reg_valid)
7a621144 11024 {
1661c76c 11025 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11026 /* Quiet this warning. */
11027 mips_frame_reg_valid = 1;
11028 }
90ecf173 11029 if (!mips_cprestore_valid)
7a621144 11030 {
1661c76c 11031 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11032 /* Quiet this warning. */
11033 mips_cprestore_valid = 1;
11034 }
d3fca0b5
MR
11035 if (mips_opts.noreorder)
11036 macro_build (NULL, "nop", "");
6478892d 11037 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11038 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11039 mips_gp_register,
256ab948
TS
11040 mips_frame_reg,
11041 HAVE_64BIT_ADDRESSES);
6478892d 11042 }
252b5132
RH
11043 }
11044 }
252b5132 11045
8fc2e39e 11046 break;
252b5132 11047
df58fc94
RS
11048 case M_JALS_A:
11049 gas_assert (mips_opts.micromips);
833794fc
MR
11050 if (mips_opts.insn32)
11051 {
1661c76c 11052 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11053 break;
11054 }
df58fc94
RS
11055 jals = 1;
11056 /* Fall through. */
252b5132
RH
11057 case M_JAL_A:
11058 if (mips_pic == NO_PIC)
df58fc94 11059 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11060 else if (mips_pic == SVR4_PIC)
11061 {
11062 /* If this is a reference to an external symbol, and we are
11063 using a small GOT, we want
11064 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11065 nop
f9419b05 11066 jalr $ra,$25
252b5132
RH
11067 nop
11068 lw $gp,cprestore($sp)
11069 The cprestore value is set using the .cprestore
11070 pseudo-op. If we are using a big GOT, we want
11071 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11072 addu $25,$25,$gp
11073 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11074 nop
f9419b05 11075 jalr $ra,$25
252b5132
RH
11076 nop
11077 lw $gp,cprestore($sp)
11078 If the symbol is not external, we want
11079 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11080 nop
11081 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11082 jalr $ra,$25
252b5132 11083 nop
438c16b8 11084 lw $gp,cprestore($sp)
f5040a92
AO
11085
11086 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11087 sequences above, minus nops, unless the symbol is local,
11088 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11089 GOT_DISP. */
438c16b8 11090 if (HAVE_NEWABI)
252b5132 11091 {
90ecf173 11092 if (!mips_big_got)
f5040a92 11093 {
4d7206a2 11094 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11095 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11096 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11097 mips_gp_register);
4d7206a2 11098 relax_switch ();
67c0d1eb
RS
11099 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11100 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11101 mips_gp_register);
11102 relax_end ();
f5040a92
AO
11103 }
11104 else
11105 {
4d7206a2 11106 relax_start (offset_expr.X_add_symbol);
df58fc94 11107 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11108 BFD_RELOC_MIPS_CALL_HI16);
11109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11110 PIC_CALL_REG, mips_gp_register);
11111 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11112 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11113 PIC_CALL_REG);
4d7206a2 11114 relax_switch ();
67c0d1eb
RS
11115 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11116 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11117 mips_gp_register);
11118 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11119 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11120 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11121 relax_end ();
f5040a92 11122 }
684022ea 11123
df58fc94 11124 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11125 }
11126 else
11127 {
4d7206a2 11128 relax_start (offset_expr.X_add_symbol);
90ecf173 11129 if (!mips_big_got)
438c16b8 11130 {
67c0d1eb
RS
11131 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11132 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11133 mips_gp_register);
269137b2 11134 load_delay_nop ();
4d7206a2 11135 relax_switch ();
438c16b8 11136 }
252b5132 11137 else
252b5132 11138 {
67c0d1eb
RS
11139 int gpdelay;
11140
11141 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11142 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11143 BFD_RELOC_MIPS_CALL_HI16);
11144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11145 PIC_CALL_REG, mips_gp_register);
11146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11147 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11148 PIC_CALL_REG);
269137b2 11149 load_delay_nop ();
4d7206a2 11150 relax_switch ();
67c0d1eb
RS
11151 if (gpdelay)
11152 macro_build (NULL, "nop", "");
252b5132 11153 }
67c0d1eb
RS
11154 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11155 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11156 mips_gp_register);
269137b2 11157 load_delay_nop ();
67c0d1eb
RS
11158 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11159 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11160 relax_end ();
df58fc94 11161 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11162
6478892d 11163 if (mips_cprestore_offset < 0)
1661c76c 11164 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11165 else
11166 {
90ecf173 11167 if (!mips_frame_reg_valid)
7a621144 11168 {
1661c76c 11169 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11170 /* Quiet this warning. */
11171 mips_frame_reg_valid = 1;
11172 }
90ecf173 11173 if (!mips_cprestore_valid)
7a621144 11174 {
1661c76c 11175 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11176 /* Quiet this warning. */
11177 mips_cprestore_valid = 1;
11178 }
6478892d 11179 if (mips_opts.noreorder)
67c0d1eb 11180 macro_build (NULL, "nop", "");
6478892d 11181 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11182 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11183 mips_gp_register,
256ab948
TS
11184 mips_frame_reg,
11185 HAVE_64BIT_ADDRESSES);
6478892d 11186 }
252b5132
RH
11187 }
11188 }
0a44bf69 11189 else if (mips_pic == VXWORKS_PIC)
1661c76c 11190 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11191 else
11192 abort ();
11193
8fc2e39e 11194 break;
252b5132 11195
7f3c4072 11196 case M_LBUE_AB:
7f3c4072
CM
11197 s = "lbue";
11198 fmt = "t,+j(b)";
11199 offbits = 9;
11200 goto ld_st;
11201 case M_LHUE_AB:
7f3c4072
CM
11202 s = "lhue";
11203 fmt = "t,+j(b)";
11204 offbits = 9;
11205 goto ld_st;
11206 case M_LBE_AB:
7f3c4072
CM
11207 s = "lbe";
11208 fmt = "t,+j(b)";
11209 offbits = 9;
11210 goto ld_st;
11211 case M_LHE_AB:
7f3c4072
CM
11212 s = "lhe";
11213 fmt = "t,+j(b)";
11214 offbits = 9;
11215 goto ld_st;
11216 case M_LLE_AB:
7f3c4072
CM
11217 s = "lle";
11218 fmt = "t,+j(b)";
11219 offbits = 9;
11220 goto ld_st;
11221 case M_LWE_AB:
7f3c4072
CM
11222 s = "lwe";
11223 fmt = "t,+j(b)";
11224 offbits = 9;
11225 goto ld_st;
11226 case M_LWLE_AB:
7f3c4072
CM
11227 s = "lwle";
11228 fmt = "t,+j(b)";
11229 offbits = 9;
11230 goto ld_st;
11231 case M_LWRE_AB:
7f3c4072
CM
11232 s = "lwre";
11233 fmt = "t,+j(b)";
11234 offbits = 9;
11235 goto ld_st;
11236 case M_SBE_AB:
7f3c4072
CM
11237 s = "sbe";
11238 fmt = "t,+j(b)";
11239 offbits = 9;
11240 goto ld_st;
11241 case M_SCE_AB:
7f3c4072
CM
11242 s = "sce";
11243 fmt = "t,+j(b)";
11244 offbits = 9;
11245 goto ld_st;
11246 case M_SHE_AB:
7f3c4072
CM
11247 s = "she";
11248 fmt = "t,+j(b)";
11249 offbits = 9;
11250 goto ld_st;
11251 case M_SWE_AB:
7f3c4072
CM
11252 s = "swe";
11253 fmt = "t,+j(b)";
11254 offbits = 9;
11255 goto ld_st;
11256 case M_SWLE_AB:
7f3c4072
CM
11257 s = "swle";
11258 fmt = "t,+j(b)";
11259 offbits = 9;
11260 goto ld_st;
11261 case M_SWRE_AB:
7f3c4072
CM
11262 s = "swre";
11263 fmt = "t,+j(b)";
11264 offbits = 9;
11265 goto ld_st;
dec0624d 11266 case M_ACLR_AB:
dec0624d 11267 s = "aclr";
dec0624d 11268 fmt = "\\,~(b)";
7f3c4072 11269 offbits = 12;
dec0624d
MR
11270 goto ld_st;
11271 case M_ASET_AB:
dec0624d 11272 s = "aset";
dec0624d 11273 fmt = "\\,~(b)";
7f3c4072 11274 offbits = 12;
dec0624d 11275 goto ld_st;
252b5132
RH
11276 case M_LB_AB:
11277 s = "lb";
df58fc94 11278 fmt = "t,o(b)";
252b5132
RH
11279 goto ld;
11280 case M_LBU_AB:
11281 s = "lbu";
df58fc94 11282 fmt = "t,o(b)";
252b5132
RH
11283 goto ld;
11284 case M_LH_AB:
11285 s = "lh";
df58fc94 11286 fmt = "t,o(b)";
252b5132
RH
11287 goto ld;
11288 case M_LHU_AB:
11289 s = "lhu";
df58fc94 11290 fmt = "t,o(b)";
252b5132
RH
11291 goto ld;
11292 case M_LW_AB:
11293 s = "lw";
df58fc94 11294 fmt = "t,o(b)";
252b5132
RH
11295 goto ld;
11296 case M_LWC0_AB:
df58fc94 11297 gas_assert (!mips_opts.micromips);
252b5132 11298 s = "lwc0";
df58fc94 11299 fmt = "E,o(b)";
bdaaa2e1 11300 /* Itbl support may require additional care here. */
252b5132 11301 coproc = 1;
df58fc94 11302 goto ld_st;
252b5132
RH
11303 case M_LWC1_AB:
11304 s = "lwc1";
df58fc94 11305 fmt = "T,o(b)";
bdaaa2e1 11306 /* Itbl support may require additional care here. */
252b5132 11307 coproc = 1;
df58fc94 11308 goto ld_st;
252b5132
RH
11309 case M_LWC2_AB:
11310 s = "lwc2";
df58fc94 11311 fmt = COP12_FMT;
7361da2c
AB
11312 offbits = (mips_opts.micromips ? 12
11313 : ISA_IS_R6 (mips_opts.isa) ? 11
11314 : 16);
bdaaa2e1 11315 /* Itbl support may require additional care here. */
252b5132 11316 coproc = 1;
df58fc94 11317 goto ld_st;
252b5132 11318 case M_LWC3_AB:
df58fc94 11319 gas_assert (!mips_opts.micromips);
252b5132 11320 s = "lwc3";
df58fc94 11321 fmt = "E,o(b)";
bdaaa2e1 11322 /* Itbl support may require additional care here. */
252b5132 11323 coproc = 1;
df58fc94 11324 goto ld_st;
252b5132
RH
11325 case M_LWL_AB:
11326 s = "lwl";
df58fc94 11327 fmt = MEM12_FMT;
7f3c4072 11328 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11329 goto ld_st;
252b5132
RH
11330 case M_LWR_AB:
11331 s = "lwr";
df58fc94 11332 fmt = MEM12_FMT;
7f3c4072 11333 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11334 goto ld_st;
252b5132 11335 case M_LDC1_AB:
252b5132 11336 s = "ldc1";
df58fc94 11337 fmt = "T,o(b)";
bdaaa2e1 11338 /* Itbl support may require additional care here. */
252b5132 11339 coproc = 1;
df58fc94 11340 goto ld_st;
252b5132
RH
11341 case M_LDC2_AB:
11342 s = "ldc2";
df58fc94 11343 fmt = COP12_FMT;
7361da2c
AB
11344 offbits = (mips_opts.micromips ? 12
11345 : ISA_IS_R6 (mips_opts.isa) ? 11
11346 : 16);
bdaaa2e1 11347 /* Itbl support may require additional care here. */
252b5132 11348 coproc = 1;
df58fc94 11349 goto ld_st;
c77c0862 11350 case M_LQC2_AB:
c77c0862 11351 s = "lqc2";
14daeee3 11352 fmt = "+7,o(b)";
c77c0862
RS
11353 /* Itbl support may require additional care here. */
11354 coproc = 1;
11355 goto ld_st;
252b5132
RH
11356 case M_LDC3_AB:
11357 s = "ldc3";
df58fc94 11358 fmt = "E,o(b)";
bdaaa2e1 11359 /* Itbl support may require additional care here. */
252b5132 11360 coproc = 1;
df58fc94 11361 goto ld_st;
252b5132
RH
11362 case M_LDL_AB:
11363 s = "ldl";
df58fc94 11364 fmt = MEM12_FMT;
7f3c4072 11365 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11366 goto ld_st;
252b5132
RH
11367 case M_LDR_AB:
11368 s = "ldr";
df58fc94 11369 fmt = MEM12_FMT;
7f3c4072 11370 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11371 goto ld_st;
252b5132
RH
11372 case M_LL_AB:
11373 s = "ll";
7361da2c
AB
11374 fmt = LL_SC_FMT;
11375 offbits = (mips_opts.micromips ? 12
11376 : ISA_IS_R6 (mips_opts.isa) ? 9
11377 : 16);
252b5132
RH
11378 goto ld;
11379 case M_LLD_AB:
11380 s = "lld";
7361da2c
AB
11381 fmt = LL_SC_FMT;
11382 offbits = (mips_opts.micromips ? 12
11383 : ISA_IS_R6 (mips_opts.isa) ? 9
11384 : 16);
252b5132
RH
11385 goto ld;
11386 case M_LWU_AB:
11387 s = "lwu";
df58fc94 11388 fmt = MEM12_FMT;
7f3c4072 11389 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11390 goto ld;
11391 case M_LWP_AB:
df58fc94
RS
11392 gas_assert (mips_opts.micromips);
11393 s = "lwp";
11394 fmt = "t,~(b)";
7f3c4072 11395 offbits = 12;
df58fc94
RS
11396 lp = 1;
11397 goto ld;
11398 case M_LDP_AB:
df58fc94
RS
11399 gas_assert (mips_opts.micromips);
11400 s = "ldp";
11401 fmt = "t,~(b)";
7f3c4072 11402 offbits = 12;
df58fc94
RS
11403 lp = 1;
11404 goto ld;
11405 case M_LWM_AB:
df58fc94
RS
11406 gas_assert (mips_opts.micromips);
11407 s = "lwm";
11408 fmt = "n,~(b)";
7f3c4072 11409 offbits = 12;
df58fc94
RS
11410 goto ld_st;
11411 case M_LDM_AB:
df58fc94
RS
11412 gas_assert (mips_opts.micromips);
11413 s = "ldm";
11414 fmt = "n,~(b)";
7f3c4072 11415 offbits = 12;
df58fc94
RS
11416 goto ld_st;
11417
252b5132 11418 ld:
f19ccbda 11419 /* We don't want to use $0 as tempreg. */
c0ebe874 11420 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11421 goto ld_st;
252b5132 11422 else
c0ebe874 11423 tempreg = op[0] + lp;
df58fc94
RS
11424 goto ld_noat;
11425
252b5132
RH
11426 case M_SB_AB:
11427 s = "sb";
df58fc94
RS
11428 fmt = "t,o(b)";
11429 goto ld_st;
252b5132
RH
11430 case M_SH_AB:
11431 s = "sh";
df58fc94
RS
11432 fmt = "t,o(b)";
11433 goto ld_st;
252b5132
RH
11434 case M_SW_AB:
11435 s = "sw";
df58fc94
RS
11436 fmt = "t,o(b)";
11437 goto ld_st;
252b5132 11438 case M_SWC0_AB:
df58fc94 11439 gas_assert (!mips_opts.micromips);
252b5132 11440 s = "swc0";
df58fc94 11441 fmt = "E,o(b)";
bdaaa2e1 11442 /* Itbl support may require additional care here. */
252b5132 11443 coproc = 1;
df58fc94 11444 goto ld_st;
252b5132
RH
11445 case M_SWC1_AB:
11446 s = "swc1";
df58fc94 11447 fmt = "T,o(b)";
bdaaa2e1 11448 /* Itbl support may require additional care here. */
252b5132 11449 coproc = 1;
df58fc94 11450 goto ld_st;
252b5132
RH
11451 case M_SWC2_AB:
11452 s = "swc2";
df58fc94 11453 fmt = COP12_FMT;
7361da2c
AB
11454 offbits = (mips_opts.micromips ? 12
11455 : ISA_IS_R6 (mips_opts.isa) ? 11
11456 : 16);
bdaaa2e1 11457 /* Itbl support may require additional care here. */
252b5132 11458 coproc = 1;
df58fc94 11459 goto ld_st;
252b5132 11460 case M_SWC3_AB:
df58fc94 11461 gas_assert (!mips_opts.micromips);
252b5132 11462 s = "swc3";
df58fc94 11463 fmt = "E,o(b)";
bdaaa2e1 11464 /* Itbl support may require additional care here. */
252b5132 11465 coproc = 1;
df58fc94 11466 goto ld_st;
252b5132
RH
11467 case M_SWL_AB:
11468 s = "swl";
df58fc94 11469 fmt = MEM12_FMT;
7f3c4072 11470 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11471 goto ld_st;
252b5132
RH
11472 case M_SWR_AB:
11473 s = "swr";
df58fc94 11474 fmt = MEM12_FMT;
7f3c4072 11475 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11476 goto ld_st;
252b5132
RH
11477 case M_SC_AB:
11478 s = "sc";
7361da2c
AB
11479 fmt = LL_SC_FMT;
11480 offbits = (mips_opts.micromips ? 12
11481 : ISA_IS_R6 (mips_opts.isa) ? 9
11482 : 16);
df58fc94 11483 goto ld_st;
252b5132
RH
11484 case M_SCD_AB:
11485 s = "scd";
7361da2c
AB
11486 fmt = LL_SC_FMT;
11487 offbits = (mips_opts.micromips ? 12
11488 : ISA_IS_R6 (mips_opts.isa) ? 9
11489 : 16);
df58fc94 11490 goto ld_st;
d43b4baf
TS
11491 case M_CACHE_AB:
11492 s = "cache";
7361da2c
AB
11493 fmt = (mips_opts.micromips ? "k,~(b)"
11494 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11495 : "k,o(b)");
11496 offbits = (mips_opts.micromips ? 12
11497 : ISA_IS_R6 (mips_opts.isa) ? 9
11498 : 16);
7f3c4072
CM
11499 goto ld_st;
11500 case M_CACHEE_AB:
7f3c4072
CM
11501 s = "cachee";
11502 fmt = "k,+j(b)";
11503 offbits = 9;
df58fc94 11504 goto ld_st;
3eebd5eb
MR
11505 case M_PREF_AB:
11506 s = "pref";
7361da2c
AB
11507 fmt = (mips_opts.micromips ? "k,~(b)"
11508 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11509 : "k,o(b)");
11510 offbits = (mips_opts.micromips ? 12
11511 : ISA_IS_R6 (mips_opts.isa) ? 9
11512 : 16);
7f3c4072
CM
11513 goto ld_st;
11514 case M_PREFE_AB:
7f3c4072
CM
11515 s = "prefe";
11516 fmt = "k,+j(b)";
11517 offbits = 9;
df58fc94 11518 goto ld_st;
252b5132 11519 case M_SDC1_AB:
252b5132 11520 s = "sdc1";
df58fc94 11521 fmt = "T,o(b)";
252b5132 11522 coproc = 1;
bdaaa2e1 11523 /* Itbl support may require additional care here. */
df58fc94 11524 goto ld_st;
252b5132
RH
11525 case M_SDC2_AB:
11526 s = "sdc2";
df58fc94 11527 fmt = COP12_FMT;
7361da2c
AB
11528 offbits = (mips_opts.micromips ? 12
11529 : ISA_IS_R6 (mips_opts.isa) ? 11
11530 : 16);
c77c0862
RS
11531 /* Itbl support may require additional care here. */
11532 coproc = 1;
11533 goto ld_st;
11534 case M_SQC2_AB:
c77c0862 11535 s = "sqc2";
14daeee3 11536 fmt = "+7,o(b)";
bdaaa2e1 11537 /* Itbl support may require additional care here. */
252b5132 11538 coproc = 1;
df58fc94 11539 goto ld_st;
252b5132 11540 case M_SDC3_AB:
df58fc94 11541 gas_assert (!mips_opts.micromips);
252b5132 11542 s = "sdc3";
df58fc94 11543 fmt = "E,o(b)";
bdaaa2e1 11544 /* Itbl support may require additional care here. */
252b5132 11545 coproc = 1;
df58fc94 11546 goto ld_st;
252b5132
RH
11547 case M_SDL_AB:
11548 s = "sdl";
df58fc94 11549 fmt = MEM12_FMT;
7f3c4072 11550 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11551 goto ld_st;
252b5132
RH
11552 case M_SDR_AB:
11553 s = "sdr";
df58fc94 11554 fmt = MEM12_FMT;
7f3c4072 11555 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11556 goto ld_st;
11557 case M_SWP_AB:
df58fc94
RS
11558 gas_assert (mips_opts.micromips);
11559 s = "swp";
11560 fmt = "t,~(b)";
7f3c4072 11561 offbits = 12;
df58fc94
RS
11562 goto ld_st;
11563 case M_SDP_AB:
df58fc94
RS
11564 gas_assert (mips_opts.micromips);
11565 s = "sdp";
11566 fmt = "t,~(b)";
7f3c4072 11567 offbits = 12;
df58fc94
RS
11568 goto ld_st;
11569 case M_SWM_AB:
df58fc94
RS
11570 gas_assert (mips_opts.micromips);
11571 s = "swm";
11572 fmt = "n,~(b)";
7f3c4072 11573 offbits = 12;
df58fc94
RS
11574 goto ld_st;
11575 case M_SDM_AB:
df58fc94
RS
11576 gas_assert (mips_opts.micromips);
11577 s = "sdm";
11578 fmt = "n,~(b)";
7f3c4072 11579 offbits = 12;
df58fc94
RS
11580
11581 ld_st:
8fc2e39e 11582 tempreg = AT;
df58fc94 11583 ld_noat:
c0ebe874 11584 breg = op[2];
f2ae14a1
RS
11585 if (small_offset_p (0, align, 16))
11586 {
11587 /* The first case exists for M_LD_AB and M_SD_AB, which are
11588 macros for o32 but which should act like normal instructions
11589 otherwise. */
11590 if (offbits == 16)
c0ebe874 11591 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11592 offset_reloc[1], offset_reloc[2], breg);
11593 else if (small_offset_p (0, align, offbits))
11594 {
11595 if (offbits == 0)
c0ebe874 11596 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11597 else
c0ebe874 11598 macro_build (NULL, s, fmt, op[0],
c8276761 11599 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11600 }
11601 else
11602 {
11603 if (tempreg == AT)
11604 used_at = 1;
11605 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11606 tempreg, breg, -1, offset_reloc[0],
11607 offset_reloc[1], offset_reloc[2]);
11608 if (offbits == 0)
c0ebe874 11609 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11610 else
c0ebe874 11611 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11612 }
11613 break;
11614 }
11615
11616 if (tempreg == AT)
11617 used_at = 1;
11618
252b5132
RH
11619 if (offset_expr.X_op != O_constant
11620 && offset_expr.X_op != O_symbol)
11621 {
1661c76c 11622 as_bad (_("expression too complex"));
252b5132
RH
11623 offset_expr.X_op = O_constant;
11624 }
11625
2051e8c4
MR
11626 if (HAVE_32BIT_ADDRESSES
11627 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11628 {
11629 char value [32];
11630
11631 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11632 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11633 }
2051e8c4 11634
252b5132
RH
11635 /* A constant expression in PIC code can be handled just as it
11636 is in non PIC code. */
aed1a261
RS
11637 if (offset_expr.X_op == O_constant)
11638 {
f2ae14a1
RS
11639 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11640 offbits == 0 ? 16 : offbits);
11641 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11642
f2ae14a1
RS
11643 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11644 if (breg != 0)
11645 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11646 tempreg, tempreg, breg);
7f3c4072 11647 if (offbits == 0)
dd6a37e7 11648 {
f2ae14a1 11649 if (offset_expr.X_add_number != 0)
dd6a37e7 11650 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11651 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11652 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11653 }
7f3c4072 11654 else if (offbits == 16)
c0ebe874 11655 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11656 else
c0ebe874 11657 macro_build (NULL, s, fmt, op[0],
c8276761 11658 (int) offset_expr.X_add_number, tempreg);
df58fc94 11659 }
7f3c4072 11660 else if (offbits != 16)
df58fc94 11661 {
7f3c4072
CM
11662 /* The offset field is too narrow to be used for a low-part
11663 relocation, so load the whole address into the auxillary
f2ae14a1
RS
11664 register. */
11665 load_address (tempreg, &offset_expr, &used_at);
11666 if (breg != 0)
11667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11668 tempreg, tempreg, breg);
7f3c4072 11669 if (offbits == 0)
c0ebe874 11670 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11671 else
c0ebe874 11672 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11673 }
11674 else if (mips_pic == NO_PIC)
252b5132
RH
11675 {
11676 /* If this is a reference to a GP relative symbol, and there
11677 is no base register, we want
c0ebe874 11678 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11679 Otherwise, if there is no base register, we want
11680 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11681 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11682 If we have a constant, we need two instructions anyhow,
11683 so we always use the latter form.
11684
11685 If we have a base register, and this is a reference to a
11686 GP relative symbol, we want
11687 addu $tempreg,$breg,$gp
c0ebe874 11688 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11689 Otherwise we want
11690 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11691 addu $tempreg,$tempreg,$breg
c0ebe874 11692 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11693 With a constant we always use the latter case.
76b3015f 11694
d6bc6245
TS
11695 With 64bit address space and no base register and $at usable,
11696 we want
11697 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11698 lui $at,<sym> (BFD_RELOC_HI16_S)
11699 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11700 dsll32 $tempreg,0
11701 daddu $tempreg,$at
c0ebe874 11702 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11703 If we have a base register, we want
11704 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11705 lui $at,<sym> (BFD_RELOC_HI16_S)
11706 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11707 daddu $at,$breg
11708 dsll32 $tempreg,0
11709 daddu $tempreg,$at
c0ebe874 11710 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11711
11712 Without $at we can't generate the optimal path for superscalar
11713 processors here since this would require two temporary registers.
11714 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11715 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11716 dsll $tempreg,16
11717 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11718 dsll $tempreg,16
c0ebe874 11719 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11720 If we have a base register, we want
11721 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11722 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11723 dsll $tempreg,16
11724 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11725 dsll $tempreg,16
11726 daddu $tempreg,$tempreg,$breg
c0ebe874 11727 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11728
6caf9ef4 11729 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11730 the same sequence as in 32bit address space. */
11731 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11732 {
aed1a261 11733 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11734 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11735 {
11736 relax_start (offset_expr.X_add_symbol);
11737 if (breg == 0)
11738 {
c0ebe874 11739 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11740 BFD_RELOC_GPREL16, mips_gp_register);
11741 }
11742 else
11743 {
11744 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11745 tempreg, breg, mips_gp_register);
c0ebe874 11746 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11747 BFD_RELOC_GPREL16, tempreg);
11748 }
11749 relax_switch ();
11750 }
d6bc6245 11751
741fe287 11752 if (used_at == 0 && mips_opts.at)
d6bc6245 11753 {
df58fc94 11754 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11755 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11756 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11757 BFD_RELOC_HI16_S);
11758 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11759 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11760 if (breg != 0)
67c0d1eb 11761 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11762 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11763 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11764 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11765 tempreg);
d6bc6245
TS
11766 used_at = 1;
11767 }
11768 else
11769 {
df58fc94 11770 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11771 BFD_RELOC_MIPS_HIGHEST);
11772 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11773 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11774 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11775 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11776 tempreg, BFD_RELOC_HI16_S);
df58fc94 11777 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11778 if (breg != 0)
67c0d1eb 11779 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11780 tempreg, tempreg, breg);
c0ebe874 11781 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11782 BFD_RELOC_LO16, tempreg);
d6bc6245 11783 }
6caf9ef4
TS
11784
11785 if (mips_relax.sequence)
11786 relax_end ();
8fc2e39e 11787 break;
d6bc6245 11788 }
256ab948 11789
252b5132
RH
11790 if (breg == 0)
11791 {
67c0d1eb 11792 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11793 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11794 {
4d7206a2 11795 relax_start (offset_expr.X_add_symbol);
c0ebe874 11796 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11797 mips_gp_register);
4d7206a2 11798 relax_switch ();
252b5132 11799 }
67c0d1eb 11800 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11801 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11802 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11803 if (mips_relax.sequence)
11804 relax_end ();
252b5132
RH
11805 }
11806 else
11807 {
67c0d1eb 11808 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11809 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11810 {
4d7206a2 11811 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11813 tempreg, breg, mips_gp_register);
c0ebe874 11814 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11815 BFD_RELOC_GPREL16, tempreg);
4d7206a2 11816 relax_switch ();
252b5132 11817 }
67c0d1eb
RS
11818 macro_build_lui (&offset_expr, tempreg);
11819 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11820 tempreg, tempreg, breg);
c0ebe874 11821 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11822 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11823 if (mips_relax.sequence)
11824 relax_end ();
252b5132
RH
11825 }
11826 }
0a44bf69 11827 else if (!mips_big_got)
252b5132 11828 {
ed6fb7bd 11829 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 11830
252b5132
RH
11831 /* If this is a reference to an external symbol, we want
11832 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11833 nop
c0ebe874 11834 <op> op[0],0($tempreg)
252b5132
RH
11835 Otherwise we want
11836 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11837 nop
11838 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11839 <op> op[0],0($tempreg)
f5040a92
AO
11840
11841 For NewABI, we want
11842 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11843 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 11844
252b5132
RH
11845 If there is a base register, we add it to $tempreg before
11846 the <op>. If there is a constant, we stick it in the
11847 <op> instruction. We don't handle constants larger than
11848 16 bits, because we have no way to load the upper 16 bits
11849 (actually, we could handle them for the subset of cases
11850 in which we are not using $at). */
9c2799c2 11851 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
11852 if (HAVE_NEWABI)
11853 {
67c0d1eb
RS
11854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11855 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11856 if (breg != 0)
67c0d1eb 11857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11858 tempreg, tempreg, breg);
c0ebe874 11859 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11860 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
11861 break;
11862 }
252b5132
RH
11863 expr1.X_add_number = offset_expr.X_add_number;
11864 offset_expr.X_add_number = 0;
11865 if (expr1.X_add_number < -0x8000
11866 || expr1.X_add_number >= 0x8000)
11867 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
11868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11869 lw_reloc_type, mips_gp_register);
269137b2 11870 load_delay_nop ();
4d7206a2
RS
11871 relax_start (offset_expr.X_add_symbol);
11872 relax_switch ();
67c0d1eb
RS
11873 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11874 tempreg, BFD_RELOC_LO16);
4d7206a2 11875 relax_end ();
252b5132 11876 if (breg != 0)
67c0d1eb 11877 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11878 tempreg, tempreg, breg);
c0ebe874 11879 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11880 }
0a44bf69 11881 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11882 {
67c0d1eb 11883 int gpdelay;
252b5132
RH
11884
11885 /* If this is a reference to an external symbol, we want
11886 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11887 addu $tempreg,$tempreg,$gp
11888 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11889 <op> op[0],0($tempreg)
252b5132
RH
11890 Otherwise we want
11891 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11892 nop
11893 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11894 <op> op[0],0($tempreg)
252b5132
RH
11895 If there is a base register, we add it to $tempreg before
11896 the <op>. If there is a constant, we stick it in the
11897 <op> instruction. We don't handle constants larger than
11898 16 bits, because we have no way to load the upper 16 bits
11899 (actually, we could handle them for the subset of cases
f5040a92 11900 in which we are not using $at). */
9c2799c2 11901 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
11902 expr1.X_add_number = offset_expr.X_add_number;
11903 offset_expr.X_add_number = 0;
11904 if (expr1.X_add_number < -0x8000
11905 || expr1.X_add_number >= 0x8000)
11906 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11907 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11908 relax_start (offset_expr.X_add_symbol);
df58fc94 11909 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11910 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11911 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11912 mips_gp_register);
11913 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11914 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 11915 relax_switch ();
67c0d1eb
RS
11916 if (gpdelay)
11917 macro_build (NULL, "nop", "");
11918 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11919 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11920 load_delay_nop ();
67c0d1eb
RS
11921 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11922 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11923 relax_end ();
11924
252b5132 11925 if (breg != 0)
67c0d1eb 11926 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11927 tempreg, tempreg, breg);
c0ebe874 11928 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11929 }
0a44bf69 11930 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11931 {
f5040a92
AO
11932 /* If this is a reference to an external symbol, we want
11933 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11934 add $tempreg,$tempreg,$gp
11935 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11936 <op> op[0],<ofst>($tempreg)
f5040a92
AO
11937 Otherwise, for local symbols, we want:
11938 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11939 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 11940 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 11941 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11942 offset_expr.X_add_number = 0;
11943 if (expr1.X_add_number < -0x8000
11944 || expr1.X_add_number >= 0x8000)
11945 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 11946 relax_start (offset_expr.X_add_symbol);
df58fc94 11947 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11948 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11949 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11950 mips_gp_register);
11951 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11952 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 11953 if (breg != 0)
67c0d1eb 11954 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11955 tempreg, tempreg, breg);
c0ebe874 11956 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 11957
4d7206a2 11958 relax_switch ();
f5040a92 11959 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11960 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11961 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11962 if (breg != 0)
67c0d1eb 11963 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11964 tempreg, tempreg, breg);
c0ebe874 11965 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11966 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 11967 relax_end ();
f5040a92 11968 }
252b5132
RH
11969 else
11970 abort ();
11971
252b5132
RH
11972 break;
11973
833794fc
MR
11974 case M_JRADDIUSP:
11975 gas_assert (mips_opts.micromips);
11976 gas_assert (mips_opts.insn32);
11977 start_noreorder ();
11978 macro_build (NULL, "jr", "s", RA);
c0ebe874 11979 expr1.X_add_number = op[0] << 2;
833794fc
MR
11980 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11981 end_noreorder ();
11982 break;
11983
11984 case M_JRC:
11985 gas_assert (mips_opts.micromips);
11986 gas_assert (mips_opts.insn32);
c0ebe874 11987 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
11988 if (mips_opts.noreorder)
11989 macro_build (NULL, "nop", "");
11990 break;
11991
252b5132
RH
11992 case M_LI:
11993 case M_LI_S:
c0ebe874 11994 load_register (op[0], &imm_expr, 0);
8fc2e39e 11995 break;
252b5132
RH
11996
11997 case M_DLI:
c0ebe874 11998 load_register (op[0], &imm_expr, 1);
8fc2e39e 11999 break;
252b5132
RH
12000
12001 case M_LI_SS:
12002 if (imm_expr.X_op == O_constant)
12003 {
8fc2e39e 12004 used_at = 1;
67c0d1eb 12005 load_register (AT, &imm_expr, 0);
c0ebe874 12006 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12007 break;
12008 }
12009 else
12010 {
b0e6f033
RS
12011 gas_assert (imm_expr.X_op == O_absent
12012 && offset_expr.X_op == O_symbol
90ecf173
MR
12013 && strcmp (segment_name (S_GET_SEGMENT
12014 (offset_expr.X_add_symbol)),
12015 ".lit4") == 0
12016 && offset_expr.X_add_number == 0);
c0ebe874 12017 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12018 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12019 break;
252b5132
RH
12020 }
12021
12022 case M_LI_D:
ca4e0257
RS
12023 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12024 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12025 order 32 bits of the value and the low order 32 bits are either
12026 zero or in OFFSET_EXPR. */
b0e6f033 12027 if (imm_expr.X_op == O_constant)
252b5132 12028 {
bad1aba3 12029 if (GPR_SIZE == 64)
c0ebe874 12030 load_register (op[0], &imm_expr, 1);
252b5132
RH
12031 else
12032 {
12033 int hreg, lreg;
12034
12035 if (target_big_endian)
12036 {
c0ebe874
RS
12037 hreg = op[0];
12038 lreg = op[0] + 1;
252b5132
RH
12039 }
12040 else
12041 {
c0ebe874
RS
12042 hreg = op[0] + 1;
12043 lreg = op[0];
252b5132
RH
12044 }
12045
12046 if (hreg <= 31)
67c0d1eb 12047 load_register (hreg, &imm_expr, 0);
252b5132
RH
12048 if (lreg <= 31)
12049 {
12050 if (offset_expr.X_op == O_absent)
67c0d1eb 12051 move_register (lreg, 0);
252b5132
RH
12052 else
12053 {
9c2799c2 12054 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12055 load_register (lreg, &offset_expr, 0);
252b5132
RH
12056 }
12057 }
12058 }
8fc2e39e 12059 break;
252b5132 12060 }
b0e6f033 12061 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12062
12063 /* We know that sym is in the .rdata section. First we get the
12064 upper 16 bits of the address. */
12065 if (mips_pic == NO_PIC)
12066 {
67c0d1eb 12067 macro_build_lui (&offset_expr, AT);
8fc2e39e 12068 used_at = 1;
252b5132 12069 }
0a44bf69 12070 else
252b5132 12071 {
67c0d1eb
RS
12072 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12073 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12074 used_at = 1;
252b5132 12075 }
bdaaa2e1 12076
252b5132 12077 /* Now we load the register(s). */
bad1aba3 12078 if (GPR_SIZE == 64)
8fc2e39e
TS
12079 {
12080 used_at = 1;
c0ebe874
RS
12081 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12082 BFD_RELOC_LO16, AT);
8fc2e39e 12083 }
252b5132
RH
12084 else
12085 {
8fc2e39e 12086 used_at = 1;
c0ebe874
RS
12087 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12088 BFD_RELOC_LO16, AT);
12089 if (op[0] != RA)
252b5132
RH
12090 {
12091 /* FIXME: How in the world do we deal with the possible
12092 overflow here? */
12093 offset_expr.X_add_number += 4;
67c0d1eb 12094 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12095 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12096 }
12097 }
252b5132
RH
12098 break;
12099
12100 case M_LI_DD:
ca4e0257
RS
12101 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12102 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12103 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12104 the value and the low order 32 bits are either zero or in
12105 OFFSET_EXPR. */
b0e6f033 12106 if (imm_expr.X_op == O_constant)
252b5132 12107 {
8fc2e39e 12108 used_at = 1;
bad1aba3 12109 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12110 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12111 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12112 else
12113 {
351cdf24
MF
12114 if (ISA_HAS_MXHC1 (mips_opts.isa))
12115 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12116 else if (FPR_SIZE != 32)
12117 as_bad (_("Unable to generate `%s' compliant code "
12118 "without mthc1"),
12119 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12120 else
12121 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12122 if (offset_expr.X_op == O_absent)
c0ebe874 12123 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12124 else
12125 {
9c2799c2 12126 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12127 load_register (AT, &offset_expr, 0);
c0ebe874 12128 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12129 }
12130 }
12131 break;
12132 }
12133
b0e6f033
RS
12134 gas_assert (imm_expr.X_op == O_absent
12135 && offset_expr.X_op == O_symbol
90ecf173 12136 && offset_expr.X_add_number == 0);
252b5132
RH
12137 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12138 if (strcmp (s, ".lit8") == 0)
f2ae14a1 12139 {
c0ebe874 12140 op[2] = mips_gp_register;
f2ae14a1
RS
12141 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12142 offset_reloc[1] = BFD_RELOC_UNUSED;
12143 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12144 }
12145 else
12146 {
9c2799c2 12147 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12148 used_at = 1;
0a44bf69 12149 if (mips_pic != NO_PIC)
67c0d1eb
RS
12150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12151 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12152 else
12153 {
12154 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12155 macro_build_lui (&offset_expr, AT);
252b5132 12156 }
bdaaa2e1 12157
c0ebe874 12158 op[2] = AT;
f2ae14a1
RS
12159 offset_reloc[0] = BFD_RELOC_LO16;
12160 offset_reloc[1] = BFD_RELOC_UNUSED;
12161 offset_reloc[2] = BFD_RELOC_UNUSED;
12162 }
12163 align = 8;
12164 /* Fall through */
c4a68bea 12165
252b5132
RH
12166 case M_L_DAB:
12167 /*
12168 * The MIPS assembler seems to check for X_add_number not
12169 * being double aligned and generating:
12170 * lui at,%hi(foo+1)
12171 * addu at,at,v1
12172 * addiu at,at,%lo(foo+1)
12173 * lwc1 f2,0(at)
12174 * lwc1 f3,4(at)
12175 * But, the resulting address is the same after relocation so why
12176 * generate the extra instruction?
12177 */
bdaaa2e1 12178 /* Itbl support may require additional care here. */
252b5132 12179 coproc = 1;
df58fc94 12180 fmt = "T,o(b)";
0aa27725 12181 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12182 {
12183 s = "ldc1";
df58fc94 12184 goto ld_st;
252b5132 12185 }
252b5132 12186 s = "lwc1";
252b5132
RH
12187 goto ldd_std;
12188
12189 case M_S_DAB:
df58fc94
RS
12190 gas_assert (!mips_opts.micromips);
12191 /* Itbl support may require additional care here. */
12192 coproc = 1;
12193 fmt = "T,o(b)";
0aa27725 12194 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12195 {
12196 s = "sdc1";
df58fc94 12197 goto ld_st;
252b5132 12198 }
252b5132 12199 s = "swc1";
252b5132
RH
12200 goto ldd_std;
12201
e407c74b
NC
12202 case M_LQ_AB:
12203 fmt = "t,o(b)";
12204 s = "lq";
12205 goto ld;
12206
12207 case M_SQ_AB:
12208 fmt = "t,o(b)";
12209 s = "sq";
12210 goto ld_st;
12211
252b5132 12212 case M_LD_AB:
df58fc94 12213 fmt = "t,o(b)";
bad1aba3 12214 if (GPR_SIZE == 64)
252b5132
RH
12215 {
12216 s = "ld";
12217 goto ld;
12218 }
252b5132 12219 s = "lw";
252b5132
RH
12220 goto ldd_std;
12221
12222 case M_SD_AB:
df58fc94 12223 fmt = "t,o(b)";
bad1aba3 12224 if (GPR_SIZE == 64)
252b5132
RH
12225 {
12226 s = "sd";
df58fc94 12227 goto ld_st;
252b5132 12228 }
252b5132 12229 s = "sw";
252b5132
RH
12230
12231 ldd_std:
f2ae14a1
RS
12232 /* Even on a big endian machine $fn comes before $fn+1. We have
12233 to adjust when loading from memory. We set coproc if we must
12234 load $fn+1 first. */
12235 /* Itbl support may require additional care here. */
12236 if (!target_big_endian)
12237 coproc = 0;
12238
c0ebe874 12239 breg = op[2];
f2ae14a1
RS
12240 if (small_offset_p (0, align, 16))
12241 {
12242 ep = &offset_expr;
12243 if (!small_offset_p (4, align, 16))
12244 {
12245 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12246 -1, offset_reloc[0], offset_reloc[1],
12247 offset_reloc[2]);
12248 expr1.X_add_number = 0;
12249 ep = &expr1;
12250 breg = AT;
12251 used_at = 1;
12252 offset_reloc[0] = BFD_RELOC_LO16;
12253 offset_reloc[1] = BFD_RELOC_UNUSED;
12254 offset_reloc[2] = BFD_RELOC_UNUSED;
12255 }
c0ebe874 12256 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12257 {
12258 ep->X_add_number += 4;
c0ebe874 12259 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12260 offset_reloc[1], offset_reloc[2], breg);
12261 ep->X_add_number -= 4;
c0ebe874 12262 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12263 offset_reloc[1], offset_reloc[2], breg);
12264 }
12265 else
12266 {
c0ebe874 12267 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12268 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12269 breg);
12270 ep->X_add_number += 4;
c0ebe874 12271 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12272 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12273 breg);
12274 }
12275 break;
12276 }
12277
252b5132
RH
12278 if (offset_expr.X_op != O_symbol
12279 && offset_expr.X_op != O_constant)
12280 {
1661c76c 12281 as_bad (_("expression too complex"));
252b5132
RH
12282 offset_expr.X_op = O_constant;
12283 }
12284
2051e8c4
MR
12285 if (HAVE_32BIT_ADDRESSES
12286 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12287 {
12288 char value [32];
12289
12290 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12291 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12292 }
2051e8c4 12293
90ecf173 12294 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12295 {
12296 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12297 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12298 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12299 If we have a base register, we use this
12300 addu $at,$breg,$gp
c0ebe874
RS
12301 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12302 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12303 If this is not a GP relative symbol, we want
12304 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12305 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12306 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12307 If there is a base register, we add it to $at after the
12308 lui instruction. If there is a constant, we always use
12309 the last case. */
39a59cf8
MR
12310 if (offset_expr.X_op == O_symbol
12311 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12312 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12313 {
4d7206a2 12314 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12315 if (breg == 0)
12316 {
c9914766 12317 tempreg = mips_gp_register;
252b5132
RH
12318 }
12319 else
12320 {
67c0d1eb 12321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12322 AT, breg, mips_gp_register);
252b5132 12323 tempreg = AT;
252b5132
RH
12324 used_at = 1;
12325 }
12326
beae10d5 12327 /* Itbl support may require additional care here. */
c0ebe874 12328 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12329 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12330 offset_expr.X_add_number += 4;
12331
12332 /* Set mips_optimize to 2 to avoid inserting an
12333 undesired nop. */
12334 hold_mips_optimize = mips_optimize;
12335 mips_optimize = 2;
beae10d5 12336 /* Itbl support may require additional care here. */
c0ebe874 12337 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12338 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12339 mips_optimize = hold_mips_optimize;
12340
4d7206a2 12341 relax_switch ();
252b5132 12342
0970e49e 12343 offset_expr.X_add_number -= 4;
252b5132 12344 }
8fc2e39e 12345 used_at = 1;
f2ae14a1
RS
12346 if (offset_high_part (offset_expr.X_add_number, 16)
12347 != offset_high_part (offset_expr.X_add_number + 4, 16))
12348 {
12349 load_address (AT, &offset_expr, &used_at);
12350 offset_expr.X_op = O_constant;
12351 offset_expr.X_add_number = 0;
12352 }
12353 else
12354 macro_build_lui (&offset_expr, AT);
252b5132 12355 if (breg != 0)
67c0d1eb 12356 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12357 /* Itbl support may require additional care here. */
c0ebe874 12358 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12359 BFD_RELOC_LO16, AT);
252b5132
RH
12360 /* FIXME: How do we handle overflow here? */
12361 offset_expr.X_add_number += 4;
beae10d5 12362 /* Itbl support may require additional care here. */
c0ebe874 12363 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12364 BFD_RELOC_LO16, AT);
4d7206a2
RS
12365 if (mips_relax.sequence)
12366 relax_end ();
bdaaa2e1 12367 }
0a44bf69 12368 else if (!mips_big_got)
252b5132 12369 {
252b5132
RH
12370 /* If this is a reference to an external symbol, we want
12371 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12372 nop
c0ebe874
RS
12373 <op> op[0],0($at)
12374 <op> op[0]+1,4($at)
252b5132
RH
12375 Otherwise we want
12376 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12377 nop
c0ebe874
RS
12378 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12379 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12380 If there is a base register we add it to $at before the
12381 lwc1 instructions. If there is a constant we include it
12382 in the lwc1 instructions. */
12383 used_at = 1;
12384 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12385 if (expr1.X_add_number < -0x8000
12386 || expr1.X_add_number >= 0x8000 - 4)
12387 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12388 load_got_offset (AT, &offset_expr);
269137b2 12389 load_delay_nop ();
252b5132 12390 if (breg != 0)
67c0d1eb 12391 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12392
12393 /* Set mips_optimize to 2 to avoid inserting an undesired
12394 nop. */
12395 hold_mips_optimize = mips_optimize;
12396 mips_optimize = 2;
4d7206a2 12397
beae10d5 12398 /* Itbl support may require additional care here. */
4d7206a2 12399 relax_start (offset_expr.X_add_symbol);
c0ebe874 12400 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12401 BFD_RELOC_LO16, AT);
4d7206a2 12402 expr1.X_add_number += 4;
c0ebe874 12403 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12404 BFD_RELOC_LO16, AT);
4d7206a2 12405 relax_switch ();
c0ebe874 12406 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12407 BFD_RELOC_LO16, AT);
4d7206a2 12408 offset_expr.X_add_number += 4;
c0ebe874 12409 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12410 BFD_RELOC_LO16, AT);
4d7206a2 12411 relax_end ();
252b5132 12412
4d7206a2 12413 mips_optimize = hold_mips_optimize;
252b5132 12414 }
0a44bf69 12415 else if (mips_big_got)
252b5132 12416 {
67c0d1eb 12417 int gpdelay;
252b5132
RH
12418
12419 /* If this is a reference to an external symbol, we want
12420 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12421 addu $at,$at,$gp
12422 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12423 nop
c0ebe874
RS
12424 <op> op[0],0($at)
12425 <op> op[0]+1,4($at)
252b5132
RH
12426 Otherwise we want
12427 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12428 nop
c0ebe874
RS
12429 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12430 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12431 If there is a base register we add it to $at before the
12432 lwc1 instructions. If there is a constant we include it
12433 in the lwc1 instructions. */
12434 used_at = 1;
12435 expr1.X_add_number = offset_expr.X_add_number;
12436 offset_expr.X_add_number = 0;
12437 if (expr1.X_add_number < -0x8000
12438 || expr1.X_add_number >= 0x8000 - 4)
12439 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12440 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12441 relax_start (offset_expr.X_add_symbol);
df58fc94 12442 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12443 AT, BFD_RELOC_MIPS_GOT_HI16);
12444 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12445 AT, AT, mips_gp_register);
67c0d1eb 12446 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12447 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12448 load_delay_nop ();
252b5132 12449 if (breg != 0)
67c0d1eb 12450 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12451 /* Itbl support may require additional care here. */
c0ebe874 12452 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12453 BFD_RELOC_LO16, AT);
252b5132
RH
12454 expr1.X_add_number += 4;
12455
12456 /* Set mips_optimize to 2 to avoid inserting an undesired
12457 nop. */
12458 hold_mips_optimize = mips_optimize;
12459 mips_optimize = 2;
beae10d5 12460 /* Itbl support may require additional care here. */
c0ebe874 12461 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12462 BFD_RELOC_LO16, AT);
252b5132
RH
12463 mips_optimize = hold_mips_optimize;
12464 expr1.X_add_number -= 4;
12465
4d7206a2
RS
12466 relax_switch ();
12467 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12468 if (gpdelay)
12469 macro_build (NULL, "nop", "");
12470 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12471 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12472 load_delay_nop ();
252b5132 12473 if (breg != 0)
67c0d1eb 12474 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12475 /* Itbl support may require additional care here. */
c0ebe874 12476 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12477 BFD_RELOC_LO16, AT);
4d7206a2 12478 offset_expr.X_add_number += 4;
252b5132
RH
12479
12480 /* Set mips_optimize to 2 to avoid inserting an undesired
12481 nop. */
12482 hold_mips_optimize = mips_optimize;
12483 mips_optimize = 2;
beae10d5 12484 /* Itbl support may require additional care here. */
c0ebe874 12485 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12486 BFD_RELOC_LO16, AT);
252b5132 12487 mips_optimize = hold_mips_optimize;
4d7206a2 12488 relax_end ();
252b5132 12489 }
252b5132
RH
12490 else
12491 abort ();
12492
252b5132 12493 break;
3739860c 12494
dd6a37e7 12495 case M_SAA_AB:
dd6a37e7 12496 s = "saa";
0db377d0 12497 goto saa_saad;
dd6a37e7 12498 case M_SAAD_AB:
dd6a37e7 12499 s = "saad";
0db377d0
MR
12500 saa_saad:
12501 gas_assert (!mips_opts.micromips);
7f3c4072 12502 offbits = 0;
dd6a37e7
AP
12503 fmt = "t,(b)";
12504 goto ld_st;
12505
252b5132
RH
12506 /* New code added to support COPZ instructions.
12507 This code builds table entries out of the macros in mip_opcodes.
12508 R4000 uses interlocks to handle coproc delays.
12509 Other chips (like the R3000) require nops to be inserted for delays.
12510
f72c8c98 12511 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12512 In order to fill delay slots for non-interlocked chips,
12513 we must have a way to specify delays based on the coprocessor.
12514 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12515 What are the side-effects of the cop instruction?
12516 What cache support might we have and what are its effects?
12517 Both coprocessor & memory require delays. how long???
bdaaa2e1 12518 What registers are read/set/modified?
252b5132
RH
12519
12520 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12521 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12522
12523 case M_COP0:
12524 s = "c0";
12525 goto copz;
12526 case M_COP1:
12527 s = "c1";
12528 goto copz;
12529 case M_COP2:
12530 s = "c2";
12531 goto copz;
12532 case M_COP3:
12533 s = "c3";
12534 copz:
df58fc94 12535 gas_assert (!mips_opts.micromips);
252b5132
RH
12536 /* For now we just do C (same as Cz). The parameter will be
12537 stored in insn_opcode by mips_ip. */
c8276761 12538 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12539 break;
252b5132 12540
ea1fb5dc 12541 case M_MOVE:
c0ebe874 12542 move_register (op[0], op[1]);
8fc2e39e 12543 break;
ea1fb5dc 12544
833794fc
MR
12545 case M_MOVEP:
12546 gas_assert (mips_opts.micromips);
12547 gas_assert (mips_opts.insn32);
c0ebe874
RS
12548 move_register (micromips_to_32_reg_h_map1[op[0]],
12549 micromips_to_32_reg_m_map[op[1]]);
12550 move_register (micromips_to_32_reg_h_map2[op[0]],
12551 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12552 break;
12553
252b5132
RH
12554 case M_DMUL:
12555 dbl = 1;
12556 case M_MUL:
e407c74b 12557 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12558 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12559 op[2]);
e407c74b
NC
12560 else
12561 {
c0ebe874
RS
12562 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12563 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12564 }
8fc2e39e 12565 break;
252b5132
RH
12566
12567 case M_DMUL_I:
12568 dbl = 1;
12569 case M_MUL_I:
12570 /* The MIPS assembler some times generates shifts and adds. I'm
12571 not trying to be that fancy. GCC should do this for us
12572 anyway. */
8fc2e39e 12573 used_at = 1;
67c0d1eb 12574 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12575 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12576 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12577 break;
12578
12579 case M_DMULO_I:
12580 dbl = 1;
12581 case M_MULO_I:
12582 imm = 1;
12583 goto do_mulo;
12584
12585 case M_DMULO:
12586 dbl = 1;
12587 case M_MULO:
12588 do_mulo:
7d10b47d 12589 start_noreorder ();
8fc2e39e 12590 used_at = 1;
252b5132 12591 if (imm)
67c0d1eb 12592 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12593 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12594 op[1], imm ? AT : op[2]);
12595 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12596 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12597 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12598 if (mips_trap)
c0ebe874 12599 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12600 else
12601 {
df58fc94
RS
12602 if (mips_opts.micromips)
12603 micromips_label_expr (&label_expr);
12604 else
12605 label_expr.X_add_number = 8;
c0ebe874 12606 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12607 macro_build (NULL, "nop", "");
df58fc94
RS
12608 macro_build (NULL, "break", BRK_FMT, 6);
12609 if (mips_opts.micromips)
12610 micromips_add_label ();
252b5132 12611 }
7d10b47d 12612 end_noreorder ();
c0ebe874 12613 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12614 break;
12615
12616 case M_DMULOU_I:
12617 dbl = 1;
12618 case M_MULOU_I:
12619 imm = 1;
12620 goto do_mulou;
12621
12622 case M_DMULOU:
12623 dbl = 1;
12624 case M_MULOU:
12625 do_mulou:
7d10b47d 12626 start_noreorder ();
8fc2e39e 12627 used_at = 1;
252b5132 12628 if (imm)
67c0d1eb
RS
12629 load_register (AT, &imm_expr, dbl);
12630 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12631 op[1], imm ? AT : op[2]);
df58fc94 12632 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12633 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12634 if (mips_trap)
df58fc94 12635 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12636 else
12637 {
df58fc94
RS
12638 if (mips_opts.micromips)
12639 micromips_label_expr (&label_expr);
12640 else
12641 label_expr.X_add_number = 8;
12642 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12643 macro_build (NULL, "nop", "");
df58fc94
RS
12644 macro_build (NULL, "break", BRK_FMT, 6);
12645 if (mips_opts.micromips)
12646 micromips_add_label ();
252b5132 12647 }
7d10b47d 12648 end_noreorder ();
252b5132
RH
12649 break;
12650
771c7ce4 12651 case M_DROL:
fef14a42 12652 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12653 {
c0ebe874 12654 if (op[0] == op[1])
82dd0097
CD
12655 {
12656 tempreg = AT;
12657 used_at = 1;
12658 }
12659 else
c0ebe874
RS
12660 tempreg = op[0];
12661 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12662 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12663 break;
82dd0097 12664 }
8fc2e39e 12665 used_at = 1;
c0ebe874
RS
12666 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12667 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12668 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12669 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12670 break;
12671
252b5132 12672 case M_ROL:
fef14a42 12673 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12674 {
c0ebe874 12675 if (op[0] == op[1])
82dd0097
CD
12676 {
12677 tempreg = AT;
12678 used_at = 1;
12679 }
12680 else
c0ebe874
RS
12681 tempreg = op[0];
12682 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12683 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12684 break;
82dd0097 12685 }
8fc2e39e 12686 used_at = 1;
c0ebe874
RS
12687 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12688 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12689 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12690 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12691 break;
12692
771c7ce4
TS
12693 case M_DROL_I:
12694 {
12695 unsigned int rot;
e0471c16
TS
12696 const char *l;
12697 const char *rr;
771c7ce4 12698
771c7ce4 12699 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12700 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12701 {
12702 rot = (64 - rot) & 0x3f;
12703 if (rot >= 32)
c0ebe874 12704 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12705 else
c0ebe874 12706 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12707 break;
60b63b72 12708 }
483fc7cd 12709 if (rot == 0)
483fc7cd 12710 {
c0ebe874 12711 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12712 break;
483fc7cd 12713 }
82dd0097 12714 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12715 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12716 rot &= 0x1f;
8fc2e39e 12717 used_at = 1;
c0ebe874
RS
12718 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12719 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12720 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12721 }
12722 break;
12723
252b5132 12724 case M_ROL_I:
771c7ce4
TS
12725 {
12726 unsigned int rot;
12727
771c7ce4 12728 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12729 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12730 {
c0ebe874
RS
12731 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12732 (32 - rot) & 0x1f);
8fc2e39e 12733 break;
60b63b72 12734 }
483fc7cd 12735 if (rot == 0)
483fc7cd 12736 {
c0ebe874 12737 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12738 break;
483fc7cd 12739 }
8fc2e39e 12740 used_at = 1;
c0ebe874
RS
12741 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12742 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12743 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12744 }
12745 break;
12746
12747 case M_DROR:
fef14a42 12748 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12749 {
c0ebe874 12750 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12751 break;
82dd0097 12752 }
8fc2e39e 12753 used_at = 1;
c0ebe874
RS
12754 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12755 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12756 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12757 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12758 break;
12759
12760 case M_ROR:
fef14a42 12761 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12762 {
c0ebe874 12763 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12764 break;
82dd0097 12765 }
8fc2e39e 12766 used_at = 1;
c0ebe874
RS
12767 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12768 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12769 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12770 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12771 break;
12772
771c7ce4
TS
12773 case M_DROR_I:
12774 {
12775 unsigned int rot;
e0471c16
TS
12776 const char *l;
12777 const char *rr;
771c7ce4 12778
771c7ce4 12779 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12780 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12781 {
12782 if (rot >= 32)
c0ebe874 12783 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12784 else
c0ebe874 12785 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12786 break;
82dd0097 12787 }
483fc7cd 12788 if (rot == 0)
483fc7cd 12789 {
c0ebe874 12790 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12791 break;
483fc7cd 12792 }
91d6fa6a 12793 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12794 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12795 rot &= 0x1f;
8fc2e39e 12796 used_at = 1;
c0ebe874
RS
12797 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12798 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12799 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12800 }
12801 break;
12802
252b5132 12803 case M_ROR_I:
771c7ce4
TS
12804 {
12805 unsigned int rot;
12806
771c7ce4 12807 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12808 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12809 {
c0ebe874 12810 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12811 break;
82dd0097 12812 }
483fc7cd 12813 if (rot == 0)
483fc7cd 12814 {
c0ebe874 12815 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12816 break;
483fc7cd 12817 }
8fc2e39e 12818 used_at = 1;
c0ebe874
RS
12819 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12820 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12821 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 12822 }
252b5132
RH
12823 break;
12824
252b5132 12825 case M_SEQ:
c0ebe874
RS
12826 if (op[1] == 0)
12827 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12828 else if (op[2] == 0)
12829 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12830 else
12831 {
c0ebe874
RS
12832 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12833 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 12834 }
8fc2e39e 12835 break;
252b5132
RH
12836
12837 case M_SEQ_I:
b0e6f033 12838 if (imm_expr.X_add_number == 0)
252b5132 12839 {
c0ebe874 12840 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12841 break;
252b5132 12842 }
c0ebe874 12843 if (op[1] == 0)
252b5132 12844 {
1661c76c 12845 as_warn (_("instruction %s: result is always false"),
252b5132 12846 ip->insn_mo->name);
c0ebe874 12847 move_register (op[0], 0);
8fc2e39e 12848 break;
252b5132 12849 }
dd3cbb7e
NC
12850 if (CPU_HAS_SEQ (mips_opts.arch)
12851 && -512 <= imm_expr.X_add_number
12852 && imm_expr.X_add_number < 512)
12853 {
c0ebe874 12854 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 12855 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12856 break;
12857 }
b0e6f033 12858 if (imm_expr.X_add_number >= 0
252b5132 12859 && imm_expr.X_add_number < 0x10000)
c0ebe874 12860 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 12861 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12862 && imm_expr.X_add_number < 0)
12863 {
12864 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 12865 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 12866 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12867 }
dd3cbb7e
NC
12868 else if (CPU_HAS_SEQ (mips_opts.arch))
12869 {
12870 used_at = 1;
bad1aba3 12871 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12872 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12873 break;
12874 }
252b5132
RH
12875 else
12876 {
bad1aba3 12877 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12878 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12879 used_at = 1;
12880 }
c0ebe874 12881 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12882 break;
252b5132 12883
c0ebe874 12884 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
12885 s = "slt";
12886 goto sge;
12887 case M_SGEU:
12888 s = "sltu";
12889 sge:
c0ebe874
RS
12890 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12891 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12892 break;
252b5132 12893
c0ebe874 12894 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 12895 case M_SGEU_I:
b0e6f033 12896 if (imm_expr.X_add_number >= -0x8000
252b5132 12897 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
12898 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12899 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12900 else
12901 {
bad1aba3 12902 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 12903 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 12904 op[0], op[1], AT);
252b5132
RH
12905 used_at = 1;
12906 }
c0ebe874 12907 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12908 break;
252b5132 12909
c0ebe874 12910 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
12911 s = "slt";
12912 goto sgt;
12913 case M_SGTU:
12914 s = "sltu";
12915 sgt:
c0ebe874 12916 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 12917 break;
252b5132 12918
c0ebe874 12919 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
12920 s = "slt";
12921 goto sgti;
12922 case M_SGTU_I:
12923 s = "sltu";
12924 sgti:
8fc2e39e 12925 used_at = 1;
bad1aba3 12926 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12927 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
12928 break;
12929
c0ebe874 12930 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
12931 s = "slt";
12932 goto sle;
12933 case M_SLEU:
12934 s = "sltu";
12935 sle:
c0ebe874
RS
12936 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12937 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12938 break;
252b5132 12939
c0ebe874 12940 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
12941 s = "slt";
12942 goto slei;
12943 case M_SLEU_I:
12944 s = "sltu";
12945 slei:
8fc2e39e 12946 used_at = 1;
bad1aba3 12947 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
12948 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12949 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
12950 break;
12951
12952 case M_SLT_I:
b0e6f033 12953 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12954 && imm_expr.X_add_number < 0x8000)
12955 {
c0ebe874
RS
12956 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12957 BFD_RELOC_LO16);
8fc2e39e 12958 break;
252b5132 12959 }
8fc2e39e 12960 used_at = 1;
bad1aba3 12961 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12962 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
12963 break;
12964
12965 case M_SLTU_I:
b0e6f033 12966 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12967 && imm_expr.X_add_number < 0x8000)
12968 {
c0ebe874 12969 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 12970 BFD_RELOC_LO16);
8fc2e39e 12971 break;
252b5132 12972 }
8fc2e39e 12973 used_at = 1;
bad1aba3 12974 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12975 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
12976 break;
12977
12978 case M_SNE:
c0ebe874
RS
12979 if (op[1] == 0)
12980 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12981 else if (op[2] == 0)
12982 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
12983 else
12984 {
c0ebe874
RS
12985 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12986 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 12987 }
8fc2e39e 12988 break;
252b5132
RH
12989
12990 case M_SNE_I:
b0e6f033 12991 if (imm_expr.X_add_number == 0)
252b5132 12992 {
c0ebe874 12993 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 12994 break;
252b5132 12995 }
c0ebe874 12996 if (op[1] == 0)
252b5132 12997 {
1661c76c 12998 as_warn (_("instruction %s: result is always true"),
252b5132 12999 ip->insn_mo->name);
bad1aba3 13000 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13001 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13002 break;
252b5132 13003 }
dd3cbb7e
NC
13004 if (CPU_HAS_SEQ (mips_opts.arch)
13005 && -512 <= imm_expr.X_add_number
13006 && imm_expr.X_add_number < 512)
13007 {
c0ebe874 13008 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13009 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13010 break;
13011 }
b0e6f033 13012 if (imm_expr.X_add_number >= 0
252b5132
RH
13013 && imm_expr.X_add_number < 0x10000)
13014 {
c0ebe874
RS
13015 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13016 BFD_RELOC_LO16);
252b5132 13017 }
b0e6f033 13018 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13019 && imm_expr.X_add_number < 0)
13020 {
13021 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13022 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13023 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13024 }
dd3cbb7e
NC
13025 else if (CPU_HAS_SEQ (mips_opts.arch))
13026 {
13027 used_at = 1;
bad1aba3 13028 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13029 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13030 break;
13031 }
252b5132
RH
13032 else
13033 {
bad1aba3 13034 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13035 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13036 used_at = 1;
13037 }
c0ebe874 13038 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13039 break;
252b5132 13040
df58fc94
RS
13041 case M_SUB_I:
13042 s = "addi";
13043 s2 = "sub";
13044 goto do_subi;
13045 case M_SUBU_I:
13046 s = "addiu";
13047 s2 = "subu";
13048 goto do_subi;
252b5132
RH
13049 case M_DSUB_I:
13050 dbl = 1;
df58fc94
RS
13051 s = "daddi";
13052 s2 = "dsub";
13053 if (!mips_opts.micromips)
13054 goto do_subi;
b0e6f033 13055 if (imm_expr.X_add_number > -0x200
df58fc94 13056 && imm_expr.X_add_number <= 0x200)
252b5132 13057 {
b0e6f033
RS
13058 macro_build (NULL, s, "t,r,.", op[0], op[1],
13059 (int) -imm_expr.X_add_number);
8fc2e39e 13060 break;
252b5132 13061 }
df58fc94 13062 goto do_subi_i;
252b5132
RH
13063 case M_DSUBU_I:
13064 dbl = 1;
df58fc94
RS
13065 s = "daddiu";
13066 s2 = "dsubu";
13067 do_subi:
b0e6f033 13068 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13069 && imm_expr.X_add_number <= 0x8000)
13070 {
13071 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13072 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13073 break;
252b5132 13074 }
df58fc94 13075 do_subi_i:
8fc2e39e 13076 used_at = 1;
67c0d1eb 13077 load_register (AT, &imm_expr, dbl);
c0ebe874 13078 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13079 break;
13080
13081 case M_TEQ_I:
13082 s = "teq";
13083 goto trap;
13084 case M_TGE_I:
13085 s = "tge";
13086 goto trap;
13087 case M_TGEU_I:
13088 s = "tgeu";
13089 goto trap;
13090 case M_TLT_I:
13091 s = "tlt";
13092 goto trap;
13093 case M_TLTU_I:
13094 s = "tltu";
13095 goto trap;
13096 case M_TNE_I:
13097 s = "tne";
13098 trap:
8fc2e39e 13099 used_at = 1;
bad1aba3 13100 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13101 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13102 break;
13103
252b5132 13104 case M_TRUNCWS:
43841e91 13105 case M_TRUNCWD:
df58fc94 13106 gas_assert (!mips_opts.micromips);
0aa27725 13107 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13108 used_at = 1;
252b5132
RH
13109
13110 /*
13111 * Is the double cfc1 instruction a bug in the mips assembler;
13112 * or is there a reason for it?
13113 */
7d10b47d 13114 start_noreorder ();
c0ebe874
RS
13115 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13116 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13117 macro_build (NULL, "nop", "");
252b5132 13118 expr1.X_add_number = 3;
c0ebe874 13119 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13120 expr1.X_add_number = 2;
67c0d1eb
RS
13121 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13122 macro_build (NULL, "ctc1", "t,G", AT, RA);
13123 macro_build (NULL, "nop", "");
13124 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13125 op[0], op[1]);
13126 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13127 macro_build (NULL, "nop", "");
7d10b47d 13128 end_noreorder ();
252b5132
RH
13129 break;
13130
f2ae14a1 13131 case M_ULH_AB:
252b5132 13132 s = "lb";
df58fc94
RS
13133 s2 = "lbu";
13134 off = 1;
13135 goto uld_st;
f2ae14a1 13136 case M_ULHU_AB:
252b5132 13137 s = "lbu";
df58fc94
RS
13138 s2 = "lbu";
13139 off = 1;
13140 goto uld_st;
f2ae14a1 13141 case M_ULW_AB:
df58fc94
RS
13142 s = "lwl";
13143 s2 = "lwr";
7f3c4072 13144 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13145 off = 3;
13146 goto uld_st;
f2ae14a1 13147 case M_ULD_AB:
252b5132
RH
13148 s = "ldl";
13149 s2 = "ldr";
7f3c4072 13150 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13151 off = 7;
df58fc94 13152 goto uld_st;
f2ae14a1 13153 case M_USH_AB:
df58fc94
RS
13154 s = "sb";
13155 s2 = "sb";
13156 off = 1;
13157 ust = 1;
13158 goto uld_st;
f2ae14a1 13159 case M_USW_AB:
df58fc94
RS
13160 s = "swl";
13161 s2 = "swr";
7f3c4072 13162 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13163 off = 3;
df58fc94
RS
13164 ust = 1;
13165 goto uld_st;
f2ae14a1 13166 case M_USD_AB:
df58fc94
RS
13167 s = "sdl";
13168 s2 = "sdr";
7f3c4072 13169 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13170 off = 7;
13171 ust = 1;
13172
13173 uld_st:
c0ebe874 13174 breg = op[2];
f2ae14a1 13175 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13176 ep = &offset_expr;
13177 expr1.X_add_number = 0;
f2ae14a1 13178 if (large_offset)
df58fc94
RS
13179 {
13180 used_at = 1;
13181 tempreg = AT;
f2ae14a1
RS
13182 if (small_offset_p (0, align, 16))
13183 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13184 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13185 else
13186 {
13187 load_address (tempreg, ep, &used_at);
13188 if (breg != 0)
13189 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13190 tempreg, tempreg, breg);
13191 }
13192 offset_reloc[0] = BFD_RELOC_LO16;
13193 offset_reloc[1] = BFD_RELOC_UNUSED;
13194 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13195 breg = tempreg;
c0ebe874 13196 tempreg = op[0];
df58fc94
RS
13197 ep = &expr1;
13198 }
c0ebe874 13199 else if (!ust && op[0] == breg)
8fc2e39e
TS
13200 {
13201 used_at = 1;
13202 tempreg = AT;
13203 }
252b5132 13204 else
c0ebe874 13205 tempreg = op[0];
af22f5b2 13206
df58fc94
RS
13207 if (off == 1)
13208 goto ulh_sh;
252b5132 13209
90ecf173 13210 if (!target_big_endian)
df58fc94 13211 ep->X_add_number += off;
f2ae14a1 13212 if (offbits == 12)
c8276761 13213 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13214 else
13215 macro_build (ep, s, "t,o(b)", tempreg, -1,
13216 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13217
90ecf173 13218 if (!target_big_endian)
df58fc94 13219 ep->X_add_number -= off;
252b5132 13220 else
df58fc94 13221 ep->X_add_number += off;
f2ae14a1 13222 if (offbits == 12)
df58fc94 13223 macro_build (NULL, s2, "t,~(b)",
c8276761 13224 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13225 else
13226 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13227 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13228
df58fc94 13229 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13230 if (!ust && op[0] != tempreg)
df58fc94
RS
13231 {
13232 /* Protect second load's delay slot. */
13233 load_delay_nop ();
c0ebe874 13234 move_register (op[0], tempreg);
df58fc94 13235 }
8fc2e39e 13236 break;
252b5132 13237
df58fc94 13238 ulh_sh:
d6bc6245 13239 used_at = 1;
df58fc94
RS
13240 if (target_big_endian == ust)
13241 ep->X_add_number += off;
c0ebe874 13242 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13243 macro_build (ep, s, "t,o(b)", tempreg, -1,
13244 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13245
13246 /* For halfword transfers we need a temporary register to shuffle
13247 bytes. Unfortunately for M_USH_A we have none available before
13248 the next store as AT holds the base address. We deal with this
13249 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13250 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13251 if (ust)
c0ebe874 13252 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13253
13254 if (target_big_endian == ust)
13255 ep->X_add_number -= off;
252b5132 13256 else
df58fc94 13257 ep->X_add_number += off;
f2ae14a1
RS
13258 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13259 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13260
df58fc94 13261 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13262 if (ust && large_offset)
df58fc94
RS
13263 {
13264 if (target_big_endian)
13265 ep->X_add_number += off;
13266 else
13267 ep->X_add_number -= off;
f2ae14a1
RS
13268 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13269 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13270 }
13271 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13272 if (!ust || large_offset)
df58fc94 13273 {
c0ebe874 13274 tempreg = !large_offset ? AT : op[0];
df58fc94 13275 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13276 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13277 }
252b5132
RH
13278 break;
13279
13280 default:
13281 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13282 are added dynamically. */
1661c76c 13283 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13284 break;
13285 }
741fe287 13286 if (!mips_opts.at && used_at)
1661c76c 13287 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13288}
13289
13290/* Implement macros in mips16 mode. */
13291
13292static void
17a2f251 13293mips16_macro (struct mips_cl_insn *ip)
252b5132 13294{
c0ebe874 13295 const struct mips_operand_array *operands;
252b5132 13296 int mask;
c0ebe874 13297 int tmp;
252b5132
RH
13298 expressionS expr1;
13299 int dbl;
13300 const char *s, *s2, *s3;
c0ebe874
RS
13301 unsigned int op[MAX_OPERANDS];
13302 unsigned int i;
252b5132
RH
13303
13304 mask = ip->insn_mo->mask;
13305
c0ebe874
RS
13306 operands = insn_operands (ip);
13307 for (i = 0; i < MAX_OPERANDS; i++)
13308 if (operands->operand[i])
13309 op[i] = insn_extract_operand (ip, operands->operand[i]);
13310 else
13311 op[i] = -1;
252b5132 13312
252b5132
RH
13313 expr1.X_op = O_constant;
13314 expr1.X_op_symbol = NULL;
13315 expr1.X_add_symbol = NULL;
13316 expr1.X_add_number = 1;
13317
13318 dbl = 0;
13319
13320 switch (mask)
13321 {
13322 default:
b37df7c4 13323 abort ();
252b5132
RH
13324
13325 case M_DDIV_3:
13326 dbl = 1;
13327 case M_DIV_3:
13328 s = "mflo";
13329 goto do_div3;
13330 case M_DREM_3:
13331 dbl = 1;
13332 case M_REM_3:
13333 s = "mfhi";
13334 do_div3:
7d10b47d 13335 start_noreorder ();
c0ebe874 13336 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13337 expr1.X_add_number = 2;
c0ebe874 13338 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13339 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13340
252b5132
RH
13341 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13342 since that causes an overflow. We should do that as well,
13343 but I don't see how to do the comparisons without a temporary
13344 register. */
7d10b47d 13345 end_noreorder ();
c0ebe874 13346 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13347 break;
13348
13349 case M_DIVU_3:
13350 s = "divu";
13351 s2 = "mflo";
13352 goto do_divu3;
13353 case M_REMU_3:
13354 s = "divu";
13355 s2 = "mfhi";
13356 goto do_divu3;
13357 case M_DDIVU_3:
13358 s = "ddivu";
13359 s2 = "mflo";
13360 goto do_divu3;
13361 case M_DREMU_3:
13362 s = "ddivu";
13363 s2 = "mfhi";
13364 do_divu3:
7d10b47d 13365 start_noreorder ();
c0ebe874 13366 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13367 expr1.X_add_number = 2;
c0ebe874 13368 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13369 macro_build (NULL, "break", "6", 7);
7d10b47d 13370 end_noreorder ();
c0ebe874 13371 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13372 break;
13373
13374 case M_DMUL:
13375 dbl = 1;
13376 case M_MUL:
c0ebe874
RS
13377 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13378 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13379 break;
252b5132
RH
13380
13381 case M_DSUBU_I:
13382 dbl = 1;
13383 goto do_subu;
13384 case M_SUBU_I:
13385 do_subu:
252b5132 13386 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13387 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13388 break;
13389
13390 case M_SUBU_I_2:
252b5132 13391 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13392 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13393 break;
13394
13395 case M_DSUBU_I_2:
252b5132 13396 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13397 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13398 break;
13399
13400 case M_BEQ:
13401 s = "cmp";
13402 s2 = "bteqz";
13403 goto do_branch;
13404 case M_BNE:
13405 s = "cmp";
13406 s2 = "btnez";
13407 goto do_branch;
13408 case M_BLT:
13409 s = "slt";
13410 s2 = "btnez";
13411 goto do_branch;
13412 case M_BLTU:
13413 s = "sltu";
13414 s2 = "btnez";
13415 goto do_branch;
13416 case M_BLE:
13417 s = "slt";
13418 s2 = "bteqz";
13419 goto do_reverse_branch;
13420 case M_BLEU:
13421 s = "sltu";
13422 s2 = "bteqz";
13423 goto do_reverse_branch;
13424 case M_BGE:
13425 s = "slt";
13426 s2 = "bteqz";
13427 goto do_branch;
13428 case M_BGEU:
13429 s = "sltu";
13430 s2 = "bteqz";
13431 goto do_branch;
13432 case M_BGT:
13433 s = "slt";
13434 s2 = "btnez";
13435 goto do_reverse_branch;
13436 case M_BGTU:
13437 s = "sltu";
13438 s2 = "btnez";
13439
13440 do_reverse_branch:
c0ebe874
RS
13441 tmp = op[1];
13442 op[1] = op[0];
13443 op[0] = tmp;
252b5132
RH
13444
13445 do_branch:
c0ebe874 13446 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13447 macro_build (&offset_expr, s2, "p");
252b5132
RH
13448 break;
13449
13450 case M_BEQ_I:
13451 s = "cmpi";
13452 s2 = "bteqz";
13453 s3 = "x,U";
13454 goto do_branch_i;
13455 case M_BNE_I:
13456 s = "cmpi";
13457 s2 = "btnez";
13458 s3 = "x,U";
13459 goto do_branch_i;
13460 case M_BLT_I:
13461 s = "slti";
13462 s2 = "btnez";
13463 s3 = "x,8";
13464 goto do_branch_i;
13465 case M_BLTU_I:
13466 s = "sltiu";
13467 s2 = "btnez";
13468 s3 = "x,8";
13469 goto do_branch_i;
13470 case M_BLE_I:
13471 s = "slti";
13472 s2 = "btnez";
13473 s3 = "x,8";
13474 goto do_addone_branch_i;
13475 case M_BLEU_I:
13476 s = "sltiu";
13477 s2 = "btnez";
13478 s3 = "x,8";
13479 goto do_addone_branch_i;
13480 case M_BGE_I:
13481 s = "slti";
13482 s2 = "bteqz";
13483 s3 = "x,8";
13484 goto do_branch_i;
13485 case M_BGEU_I:
13486 s = "sltiu";
13487 s2 = "bteqz";
13488 s3 = "x,8";
13489 goto do_branch_i;
13490 case M_BGT_I:
13491 s = "slti";
13492 s2 = "bteqz";
13493 s3 = "x,8";
13494 goto do_addone_branch_i;
13495 case M_BGTU_I:
13496 s = "sltiu";
13497 s2 = "bteqz";
13498 s3 = "x,8";
13499
13500 do_addone_branch_i:
252b5132
RH
13501 ++imm_expr.X_add_number;
13502
13503 do_branch_i:
c0ebe874 13504 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13505 macro_build (&offset_expr, s2, "p");
252b5132
RH
13506 break;
13507
13508 case M_ABS:
13509 expr1.X_add_number = 0;
c0ebe874
RS
13510 macro_build (&expr1, "slti", "x,8", op[1]);
13511 if (op[0] != op[1])
13512 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13513 expr1.X_add_number = 2;
67c0d1eb 13514 macro_build (&expr1, "bteqz", "p");
c0ebe874 13515 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13516 break;
252b5132
RH
13517 }
13518}
13519
14daeee3
RS
13520/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13521 opcode bits in *OPCODE_EXTRA. */
13522
13523static struct mips_opcode *
13524mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13525 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13526{
13527 char *name, *dot, *p;
13528 unsigned int mask, suffix;
da8bca91 13529 ssize_t opend;
14daeee3
RS
13530 struct mips_opcode *insn;
13531
13532 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13533 name = xstrndup (start, length);
14daeee3
RS
13534
13535 /* Look up the instruction as-is. */
13536 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13537 if (insn)
e1fa0163 13538 goto end;
14daeee3
RS
13539
13540 dot = strchr (name, '.');
13541 if (dot && dot[1])
13542 {
13543 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13544 p = mips_parse_vu0_channels (dot + 1, &mask);
13545 if (*p == 0 && mask != 0)
13546 {
13547 *dot = 0;
13548 insn = (struct mips_opcode *) hash_find (hash, name);
13549 *dot = '.';
13550 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13551 {
13552 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13553 goto end;
14daeee3
RS
13554 }
13555 }
13556 }
13557
13558 if (mips_opts.micromips)
13559 {
13560 /* See if there's an instruction size override suffix,
13561 either `16' or `32', at the end of the mnemonic proper,
13562 that defines the operation, i.e. before the first `.'
13563 character if any. Strip it and retry. */
13564 opend = dot != NULL ? dot - name : length;
13565 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13566 suffix = 2;
13567 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13568 suffix = 4;
13569 else
13570 suffix = 0;
13571 if (suffix)
13572 {
13573 memcpy (name + opend - 2, name + opend, length - opend + 1);
13574 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13575 if (insn)
14daeee3
RS
13576 {
13577 forced_insn_length = suffix;
e1fa0163 13578 goto end;
14daeee3
RS
13579 }
13580 }
13581 }
13582
e1fa0163
NC
13583 insn = NULL;
13584 end:
13585 free (name);
13586 return insn;
14daeee3
RS
13587}
13588
77bd4346 13589/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13590 is a macro, set imm_expr and offset_expr to the values associated
13591 with "I" and "A" operands respectively. Otherwise store the value
13592 of the relocatable field (if any) in offset_expr. In both cases
13593 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13594
13595static void
60f20e8b 13596mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13597{
60f20e8b 13598 const struct mips_opcode *first, *past;
df58fc94 13599 struct hash_control *hash;
a92713e6 13600 char format;
14daeee3 13601 size_t end;
a92713e6 13602 struct mips_operand_token *tokens;
14daeee3 13603 unsigned int opcode_extra;
252b5132 13604
df58fc94
RS
13605 if (mips_opts.micromips)
13606 {
13607 hash = micromips_op_hash;
13608 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13609 }
13610 else
13611 {
13612 hash = op_hash;
13613 past = &mips_opcodes[NUMOPCODES];
13614 }
13615 forced_insn_length = 0;
14daeee3 13616 opcode_extra = 0;
252b5132 13617
df58fc94 13618 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13619 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13620 continue;
bdaaa2e1 13621
60f20e8b
RS
13622 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13623 if (first == NULL)
252b5132 13624 {
1661c76c 13625 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13626 return;
252b5132
RH
13627 }
13628
60f20e8b 13629 if (strcmp (first->name, "li.s") == 0)
a92713e6 13630 format = 'f';
60f20e8b 13631 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13632 format = 'd';
13633 else
13634 format = 0;
13635 tokens = mips_parse_arguments (str + end, format);
13636 if (!tokens)
13637 return;
13638
60f20e8b
RS
13639 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13640 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13641 set_insn_error (0, _("invalid operands"));
df58fc94 13642
e3de51ce 13643 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13644}
13645
77bd4346
RS
13646/* As for mips_ip, but used when assembling MIPS16 code.
13647 Also set forced_insn_length to the resulting instruction size in
13648 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13649
13650static void
60f20e8b 13651mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13652{
1a00e612 13653 char *end, *s, c;
60f20e8b 13654 struct mips_opcode *first;
a92713e6 13655 struct mips_operand_token *tokens;
252b5132 13656
df58fc94 13657 forced_insn_length = 0;
252b5132 13658
3882b010 13659 for (s = str; ISLOWER (*s); ++s)
252b5132 13660 ;
1a00e612
RS
13661 end = s;
13662 c = *end;
13663 switch (c)
252b5132
RH
13664 {
13665 case '\0':
13666 break;
13667
13668 case ' ':
1a00e612 13669 s++;
252b5132
RH
13670 break;
13671
13672 case '.':
13673 if (s[1] == 't' && s[2] == ' ')
13674 {
df58fc94 13675 forced_insn_length = 2;
252b5132
RH
13676 s += 3;
13677 break;
13678 }
13679 else if (s[1] == 'e' && s[2] == ' ')
13680 {
df58fc94 13681 forced_insn_length = 4;
252b5132
RH
13682 s += 3;
13683 break;
13684 }
13685 /* Fall through. */
13686 default:
1661c76c 13687 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13688 return;
13689 }
13690
df58fc94
RS
13691 if (mips_opts.noautoextend && !forced_insn_length)
13692 forced_insn_length = 2;
252b5132 13693
1a00e612 13694 *end = 0;
60f20e8b 13695 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13696 *end = c;
13697
60f20e8b 13698 if (!first)
252b5132 13699 {
1661c76c 13700 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13701 return;
13702 }
13703
a92713e6
RS
13704 tokens = mips_parse_arguments (s, 0);
13705 if (!tokens)
13706 return;
13707
60f20e8b 13708 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13709 set_insn_error (0, _("invalid operands"));
252b5132 13710
e3de51ce 13711 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13712}
13713
b886a2ab
RS
13714/* Marshal immediate value VAL for an extended MIPS16 instruction.
13715 NBITS is the number of significant bits in VAL. */
13716
13717static unsigned long
13718mips16_immed_extend (offsetT val, unsigned int nbits)
13719{
13720 int extval;
13721 if (nbits == 16)
13722 {
13723 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13724 val &= 0x1f;
13725 }
13726 else if (nbits == 15)
13727 {
13728 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13729 val &= 0xf;
13730 }
13731 else
13732 {
13733 extval = ((val & 0x1f) << 6) | (val & 0x20);
13734 val = 0;
13735 }
13736 return (extval << 16) | val;
13737}
13738
3ccad066
RS
13739/* Like decode_mips16_operand, but require the operand to be defined and
13740 require it to be an integer. */
13741
13742static const struct mips_int_operand *
13743mips16_immed_operand (int type, bfd_boolean extended_p)
13744{
13745 const struct mips_operand *operand;
13746
13747 operand = decode_mips16_operand (type, extended_p);
13748 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13749 abort ();
13750 return (const struct mips_int_operand *) operand;
13751}
13752
13753/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13754
13755static bfd_boolean
13756mips16_immed_in_range_p (const struct mips_int_operand *operand,
13757 bfd_reloc_code_real_type reloc, offsetT sval)
13758{
13759 int min_val, max_val;
13760
13761 min_val = mips_int_operand_min (operand);
13762 max_val = mips_int_operand_max (operand);
13763 if (reloc != BFD_RELOC_UNUSED)
13764 {
13765 if (min_val < 0)
13766 sval = SEXT_16BIT (sval);
13767 else
13768 sval &= 0xffff;
13769 }
13770
13771 return (sval >= min_val
13772 && sval <= max_val
13773 && (sval & ((1 << operand->shift) - 1)) == 0);
13774}
13775
5c04167a
RS
13776/* Install immediate value VAL into MIPS16 instruction *INSN,
13777 extending it if necessary. The instruction in *INSN may
13778 already be extended.
13779
43c0598f
RS
13780 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13781 if none. In the former case, VAL is a 16-bit number with no
13782 defined signedness.
13783
13784 TYPE is the type of the immediate field. USER_INSN_LENGTH
13785 is the length that the user requested, or 0 if none. */
252b5132
RH
13786
13787static void
3b4dbbbf 13788mips16_immed (const char *file, unsigned int line, int type,
43c0598f 13789 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13790 unsigned int user_insn_length, unsigned long *insn)
252b5132 13791{
3ccad066
RS
13792 const struct mips_int_operand *operand;
13793 unsigned int uval, length;
252b5132 13794
3ccad066
RS
13795 operand = mips16_immed_operand (type, FALSE);
13796 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13797 {
13798 /* We need an extended instruction. */
13799 if (user_insn_length == 2)
13800 as_bad_where (file, line, _("invalid unextended operand value"));
13801 else
13802 *insn |= MIPS16_EXTEND;
13803 }
13804 else if (user_insn_length == 4)
13805 {
13806 /* The operand doesn't force an unextended instruction to be extended.
13807 Warn if the user wanted an extended instruction anyway. */
13808 *insn |= MIPS16_EXTEND;
13809 as_warn_where (file, line,
13810 _("extended operand requested but not required"));
13811 }
252b5132 13812
3ccad066
RS
13813 length = mips16_opcode_length (*insn);
13814 if (length == 4)
252b5132 13815 {
3ccad066
RS
13816 operand = mips16_immed_operand (type, TRUE);
13817 if (!mips16_immed_in_range_p (operand, reloc, val))
13818 as_bad_where (file, line,
13819 _("operand value out of range for instruction"));
252b5132 13820 }
3ccad066
RS
13821 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13822 if (length == 2)
13823 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 13824 else
3ccad066 13825 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
13826}
13827\f
d6f16593 13828struct percent_op_match
ad8d3bb3 13829{
5e0116d5
RS
13830 const char *str;
13831 bfd_reloc_code_real_type reloc;
d6f16593
MR
13832};
13833
13834static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 13835{
5e0116d5 13836 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
13837 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13838 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13839 {"%call16", BFD_RELOC_MIPS_CALL16},
13840 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13841 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13842 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13843 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13844 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13845 {"%got", BFD_RELOC_MIPS_GOT16},
13846 {"%gp_rel", BFD_RELOC_GPREL16},
13847 {"%half", BFD_RELOC_16},
13848 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13849 {"%higher", BFD_RELOC_MIPS_HIGHER},
13850 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
13851 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13852 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13853 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13854 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13855 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13856 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13857 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
13858 {"%hi", BFD_RELOC_HI16_S},
13859 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13860 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
13861};
13862
d6f16593
MR
13863static const struct percent_op_match mips16_percent_op[] =
13864{
13865 {"%lo", BFD_RELOC_MIPS16_LO16},
13866 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
13867 {"%got", BFD_RELOC_MIPS16_GOT16},
13868 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
13869 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13870 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13871 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13872 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13873 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13874 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13875 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13876 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
13877};
13878
252b5132 13879
5e0116d5
RS
13880/* Return true if *STR points to a relocation operator. When returning true,
13881 move *STR over the operator and store its relocation code in *RELOC.
13882 Leave both *STR and *RELOC alone when returning false. */
13883
13884static bfd_boolean
17a2f251 13885parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 13886{
d6f16593
MR
13887 const struct percent_op_match *percent_op;
13888 size_t limit, i;
13889
13890 if (mips_opts.mips16)
13891 {
13892 percent_op = mips16_percent_op;
13893 limit = ARRAY_SIZE (mips16_percent_op);
13894 }
13895 else
13896 {
13897 percent_op = mips_percent_op;
13898 limit = ARRAY_SIZE (mips_percent_op);
13899 }
76b3015f 13900
d6f16593 13901 for (i = 0; i < limit; i++)
5e0116d5 13902 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13903 {
3f98094e
DJ
13904 int len = strlen (percent_op[i].str);
13905
13906 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13907 continue;
13908
5e0116d5
RS
13909 *str += strlen (percent_op[i].str);
13910 *reloc = percent_op[i].reloc;
394f9b3a 13911
5e0116d5
RS
13912 /* Check whether the output BFD supports this relocation.
13913 If not, issue an error and fall back on something safe. */
13914 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13915 {
20203fb9 13916 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13917 percent_op[i].str);
01a3f561 13918 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13919 }
5e0116d5 13920 return TRUE;
394f9b3a 13921 }
5e0116d5 13922 return FALSE;
394f9b3a 13923}
ad8d3bb3 13924
ad8d3bb3 13925
5e0116d5
RS
13926/* Parse string STR as a 16-bit relocatable operand. Store the
13927 expression in *EP and the relocations in the array starting
13928 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13929
01a3f561 13930 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13931
5e0116d5 13932static size_t
17a2f251
TS
13933my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13934 char *str)
ad8d3bb3 13935{
5e0116d5
RS
13936 bfd_reloc_code_real_type reversed_reloc[3];
13937 size_t reloc_index, i;
09b8f35a
RS
13938 int crux_depth, str_depth;
13939 char *crux;
5e0116d5
RS
13940
13941 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13942 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13943 of the main expression and with CRUX_DEPTH containing the number
13944 of open brackets at that point. */
13945 reloc_index = -1;
13946 str_depth = 0;
13947 do
fb1b3232 13948 {
09b8f35a
RS
13949 reloc_index++;
13950 crux = str;
13951 crux_depth = str_depth;
13952
13953 /* Skip over whitespace and brackets, keeping count of the number
13954 of brackets. */
13955 while (*str == ' ' || *str == '\t' || *str == '(')
13956 if (*str++ == '(')
13957 str_depth++;
5e0116d5 13958 }
09b8f35a
RS
13959 while (*str == '%'
13960 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13961 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 13962
09b8f35a 13963 my_getExpression (ep, crux);
5e0116d5 13964 str = expr_end;
394f9b3a 13965
5e0116d5 13966 /* Match every open bracket. */
09b8f35a 13967 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 13968 if (*str++ == ')')
09b8f35a 13969 crux_depth--;
394f9b3a 13970
09b8f35a 13971 if (crux_depth > 0)
20203fb9 13972 as_bad (_("unclosed '('"));
394f9b3a 13973
5e0116d5 13974 expr_end = str;
252b5132 13975
01a3f561 13976 if (reloc_index != 0)
64bdfcaf
RS
13977 {
13978 prev_reloc_op_frag = frag_now;
13979 for (i = 0; i < reloc_index; i++)
13980 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13981 }
fb1b3232 13982
5e0116d5 13983 return reloc_index;
252b5132
RH
13984}
13985
13986static void
17a2f251 13987my_getExpression (expressionS *ep, char *str)
252b5132
RH
13988{
13989 char *save_in;
13990
13991 save_in = input_line_pointer;
13992 input_line_pointer = str;
13993 expression (ep);
13994 expr_end = input_line_pointer;
13995 input_line_pointer = save_in;
252b5132
RH
13996}
13997
6d4af3c2 13998const char *
17a2f251 13999md_atof (int type, char *litP, int *sizeP)
252b5132 14000{
499ac353 14001 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14002}
14003
14004void
17a2f251 14005md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14006{
14007 if (target_big_endian)
14008 number_to_chars_bigendian (buf, val, n);
14009 else
14010 number_to_chars_littleendian (buf, val, n);
14011}
14012\f
e013f690
TS
14013static int support_64bit_objects(void)
14014{
14015 const char **list, **l;
aa3d8fdf 14016 int yes;
e013f690
TS
14017
14018 list = bfd_target_list ();
14019 for (l = list; *l != NULL; l++)
aeffff67
RS
14020 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14021 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14022 break;
aa3d8fdf 14023 yes = (*l != NULL);
e013f690 14024 free (list);
aa3d8fdf 14025 return yes;
e013f690
TS
14026}
14027
316f5878
RS
14028/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14029 NEW_VALUE. Warn if another value was already specified. Note:
14030 we have to defer parsing the -march and -mtune arguments in order
14031 to handle 'from-abi' correctly, since the ABI might be specified
14032 in a later argument. */
14033
14034static void
17a2f251 14035mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14036{
14037 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14038 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14039 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14040 new_value);
14041
14042 *string_ptr = new_value;
14043}
14044
252b5132 14045int
17b9d67d 14046md_parse_option (int c, const char *arg)
252b5132 14047{
c6278170
RS
14048 unsigned int i;
14049
14050 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14051 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14052 {
919731af 14053 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14054 c == mips_ases[i].option_on);
14055 return 1;
14056 }
14057
252b5132
RH
14058 switch (c)
14059 {
119d663a
NC
14060 case OPTION_CONSTRUCT_FLOATS:
14061 mips_disable_float_construction = 0;
14062 break;
bdaaa2e1 14063
119d663a
NC
14064 case OPTION_NO_CONSTRUCT_FLOATS:
14065 mips_disable_float_construction = 1;
14066 break;
bdaaa2e1 14067
252b5132
RH
14068 case OPTION_TRAP:
14069 mips_trap = 1;
14070 break;
14071
14072 case OPTION_BREAK:
14073 mips_trap = 0;
14074 break;
14075
14076 case OPTION_EB:
14077 target_big_endian = 1;
14078 break;
14079
14080 case OPTION_EL:
14081 target_big_endian = 0;
14082 break;
14083
14084 case 'O':
4ffff32f
TS
14085 if (arg == NULL)
14086 mips_optimize = 1;
14087 else if (arg[0] == '0')
14088 mips_optimize = 0;
14089 else if (arg[0] == '1')
252b5132
RH
14090 mips_optimize = 1;
14091 else
14092 mips_optimize = 2;
14093 break;
14094
14095 case 'g':
14096 if (arg == NULL)
14097 mips_debug = 2;
14098 else
14099 mips_debug = atoi (arg);
252b5132
RH
14100 break;
14101
14102 case OPTION_MIPS1:
0b35dfee 14103 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14104 break;
14105
14106 case OPTION_MIPS2:
0b35dfee 14107 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14108 break;
14109
14110 case OPTION_MIPS3:
0b35dfee 14111 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14112 break;
14113
14114 case OPTION_MIPS4:
0b35dfee 14115 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14116 break;
14117
84ea6cf2 14118 case OPTION_MIPS5:
0b35dfee 14119 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14120 break;
14121
e7af610e 14122 case OPTION_MIPS32:
0b35dfee 14123 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14124 break;
14125
af7ee8bf 14126 case OPTION_MIPS32R2:
0b35dfee 14127 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14128 break;
14129
ae52f483 14130 case OPTION_MIPS32R3:
0ae19f05 14131 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14132 break;
14133
14134 case OPTION_MIPS32R5:
0ae19f05 14135 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14136 break;
14137
7361da2c
AB
14138 case OPTION_MIPS32R6:
14139 file_mips_opts.isa = ISA_MIPS32R6;
14140 break;
14141
5f74bc13 14142 case OPTION_MIPS64R2:
0b35dfee 14143 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14144 break;
14145
ae52f483 14146 case OPTION_MIPS64R3:
0ae19f05 14147 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14148 break;
14149
14150 case OPTION_MIPS64R5:
0ae19f05 14151 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14152 break;
14153
7361da2c
AB
14154 case OPTION_MIPS64R6:
14155 file_mips_opts.isa = ISA_MIPS64R6;
14156 break;
14157
84ea6cf2 14158 case OPTION_MIPS64:
0b35dfee 14159 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14160 break;
14161
ec68c924 14162 case OPTION_MTUNE:
316f5878
RS
14163 mips_set_option_string (&mips_tune_string, arg);
14164 break;
ec68c924 14165
316f5878
RS
14166 case OPTION_MARCH:
14167 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14168 break;
14169
14170 case OPTION_M4650:
316f5878
RS
14171 mips_set_option_string (&mips_arch_string, "4650");
14172 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14173 break;
14174
14175 case OPTION_NO_M4650:
14176 break;
14177
14178 case OPTION_M4010:
316f5878
RS
14179 mips_set_option_string (&mips_arch_string, "4010");
14180 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14181 break;
14182
14183 case OPTION_NO_M4010:
14184 break;
14185
14186 case OPTION_M4100:
316f5878
RS
14187 mips_set_option_string (&mips_arch_string, "4100");
14188 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14189 break;
14190
14191 case OPTION_NO_M4100:
14192 break;
14193
252b5132 14194 case OPTION_M3900:
316f5878
RS
14195 mips_set_option_string (&mips_arch_string, "3900");
14196 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14197 break;
bdaaa2e1 14198
252b5132
RH
14199 case OPTION_NO_M3900:
14200 break;
14201
df58fc94 14202 case OPTION_MICROMIPS:
919731af 14203 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14204 {
14205 as_bad (_("-mmicromips cannot be used with -mips16"));
14206 return 0;
14207 }
919731af 14208 file_mips_opts.micromips = 1;
df58fc94
RS
14209 mips_no_prev_insn ();
14210 break;
14211
14212 case OPTION_NO_MICROMIPS:
919731af 14213 file_mips_opts.micromips = 0;
df58fc94
RS
14214 mips_no_prev_insn ();
14215 break;
14216
252b5132 14217 case OPTION_MIPS16:
919731af 14218 if (file_mips_opts.micromips == 1)
df58fc94
RS
14219 {
14220 as_bad (_("-mips16 cannot be used with -micromips"));
14221 return 0;
14222 }
919731af 14223 file_mips_opts.mips16 = 1;
7d10b47d 14224 mips_no_prev_insn ();
252b5132
RH
14225 break;
14226
14227 case OPTION_NO_MIPS16:
919731af 14228 file_mips_opts.mips16 = 0;
7d10b47d 14229 mips_no_prev_insn ();
252b5132
RH
14230 break;
14231
6a32d874
CM
14232 case OPTION_FIX_24K:
14233 mips_fix_24k = 1;
14234 break;
14235
14236 case OPTION_NO_FIX_24K:
14237 mips_fix_24k = 0;
14238 break;
14239
a8d14a88
CM
14240 case OPTION_FIX_RM7000:
14241 mips_fix_rm7000 = 1;
14242 break;
14243
14244 case OPTION_NO_FIX_RM7000:
14245 mips_fix_rm7000 = 0;
14246 break;
14247
c67a084a
NC
14248 case OPTION_FIX_LOONGSON2F_JUMP:
14249 mips_fix_loongson2f_jump = TRUE;
14250 break;
14251
14252 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14253 mips_fix_loongson2f_jump = FALSE;
14254 break;
14255
14256 case OPTION_FIX_LOONGSON2F_NOP:
14257 mips_fix_loongson2f_nop = TRUE;
14258 break;
14259
14260 case OPTION_NO_FIX_LOONGSON2F_NOP:
14261 mips_fix_loongson2f_nop = FALSE;
14262 break;
14263
d766e8ec
RS
14264 case OPTION_FIX_VR4120:
14265 mips_fix_vr4120 = 1;
60b63b72
RS
14266 break;
14267
d766e8ec
RS
14268 case OPTION_NO_FIX_VR4120:
14269 mips_fix_vr4120 = 0;
60b63b72
RS
14270 break;
14271
7d8e00cf
RS
14272 case OPTION_FIX_VR4130:
14273 mips_fix_vr4130 = 1;
14274 break;
14275
14276 case OPTION_NO_FIX_VR4130:
14277 mips_fix_vr4130 = 0;
14278 break;
14279
d954098f
DD
14280 case OPTION_FIX_CN63XXP1:
14281 mips_fix_cn63xxp1 = TRUE;
14282 break;
14283
14284 case OPTION_NO_FIX_CN63XXP1:
14285 mips_fix_cn63xxp1 = FALSE;
14286 break;
14287
4a6a3df4
AO
14288 case OPTION_RELAX_BRANCH:
14289 mips_relax_branch = 1;
14290 break;
14291
14292 case OPTION_NO_RELAX_BRANCH:
14293 mips_relax_branch = 0;
14294 break;
14295
833794fc 14296 case OPTION_INSN32:
919731af 14297 file_mips_opts.insn32 = TRUE;
833794fc
MR
14298 break;
14299
14300 case OPTION_NO_INSN32:
919731af 14301 file_mips_opts.insn32 = FALSE;
833794fc
MR
14302 break;
14303
aa6975fb
ILT
14304 case OPTION_MSHARED:
14305 mips_in_shared = TRUE;
14306 break;
14307
14308 case OPTION_MNO_SHARED:
14309 mips_in_shared = FALSE;
14310 break;
14311
aed1a261 14312 case OPTION_MSYM32:
919731af 14313 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14314 break;
14315
14316 case OPTION_MNO_SYM32:
919731af 14317 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14318 break;
14319
252b5132
RH
14320 /* When generating ELF code, we permit -KPIC and -call_shared to
14321 select SVR4_PIC, and -non_shared to select no PIC. This is
14322 intended to be compatible with Irix 5. */
14323 case OPTION_CALL_SHARED:
252b5132 14324 mips_pic = SVR4_PIC;
143d77c5 14325 mips_abicalls = TRUE;
252b5132
RH
14326 break;
14327
861fb55a 14328 case OPTION_CALL_NONPIC:
861fb55a
DJ
14329 mips_pic = NO_PIC;
14330 mips_abicalls = TRUE;
14331 break;
14332
252b5132 14333 case OPTION_NON_SHARED:
252b5132 14334 mips_pic = NO_PIC;
143d77c5 14335 mips_abicalls = FALSE;
252b5132
RH
14336 break;
14337
44075ae2
TS
14338 /* The -xgot option tells the assembler to use 32 bit offsets
14339 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14340 compatibility. */
14341 case OPTION_XGOT:
14342 mips_big_got = 1;
14343 break;
14344
14345 case 'G':
6caf9ef4
TS
14346 g_switch_value = atoi (arg);
14347 g_switch_seen = 1;
252b5132
RH
14348 break;
14349
34ba82a8
TS
14350 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14351 and -mabi=64. */
252b5132 14352 case OPTION_32:
f3ded42a 14353 mips_abi = O32_ABI;
252b5132
RH
14354 break;
14355
e013f690 14356 case OPTION_N32:
316f5878 14357 mips_abi = N32_ABI;
e013f690 14358 break;
252b5132 14359
e013f690 14360 case OPTION_64:
316f5878 14361 mips_abi = N64_ABI;
f43abd2b 14362 if (!support_64bit_objects())
1661c76c 14363 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14364 break;
14365
c97ef257 14366 case OPTION_GP32:
bad1aba3 14367 file_mips_opts.gp = 32;
c97ef257
AH
14368 break;
14369
14370 case OPTION_GP64:
bad1aba3 14371 file_mips_opts.gp = 64;
c97ef257 14372 break;
252b5132 14373
ca4e0257 14374 case OPTION_FP32:
0b35dfee 14375 file_mips_opts.fp = 32;
316f5878
RS
14376 break;
14377
351cdf24
MF
14378 case OPTION_FPXX:
14379 file_mips_opts.fp = 0;
14380 break;
14381
316f5878 14382 case OPTION_FP64:
0b35dfee 14383 file_mips_opts.fp = 64;
ca4e0257
RS
14384 break;
14385
351cdf24
MF
14386 case OPTION_ODD_SPREG:
14387 file_mips_opts.oddspreg = 1;
14388 break;
14389
14390 case OPTION_NO_ODD_SPREG:
14391 file_mips_opts.oddspreg = 0;
14392 break;
14393
037b32b9 14394 case OPTION_SINGLE_FLOAT:
0b35dfee 14395 file_mips_opts.single_float = 1;
037b32b9
AN
14396 break;
14397
14398 case OPTION_DOUBLE_FLOAT:
0b35dfee 14399 file_mips_opts.single_float = 0;
037b32b9
AN
14400 break;
14401
14402 case OPTION_SOFT_FLOAT:
0b35dfee 14403 file_mips_opts.soft_float = 1;
037b32b9
AN
14404 break;
14405
14406 case OPTION_HARD_FLOAT:
0b35dfee 14407 file_mips_opts.soft_float = 0;
037b32b9
AN
14408 break;
14409
252b5132 14410 case OPTION_MABI:
e013f690 14411 if (strcmp (arg, "32") == 0)
316f5878 14412 mips_abi = O32_ABI;
e013f690 14413 else if (strcmp (arg, "o64") == 0)
316f5878 14414 mips_abi = O64_ABI;
e013f690 14415 else if (strcmp (arg, "n32") == 0)
316f5878 14416 mips_abi = N32_ABI;
e013f690
TS
14417 else if (strcmp (arg, "64") == 0)
14418 {
316f5878 14419 mips_abi = N64_ABI;
e013f690 14420 if (! support_64bit_objects())
1661c76c 14421 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14422 "format"));
14423 }
14424 else if (strcmp (arg, "eabi") == 0)
316f5878 14425 mips_abi = EABI_ABI;
e013f690 14426 else
da0e507f
TS
14427 {
14428 as_fatal (_("invalid abi -mabi=%s"), arg);
14429 return 0;
14430 }
252b5132
RH
14431 break;
14432
6b76fefe 14433 case OPTION_M7000_HILO_FIX:
b34976b6 14434 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14435 break;
14436
9ee72ff1 14437 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14438 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14439 break;
14440
ecb4347a 14441 case OPTION_MDEBUG:
b34976b6 14442 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14443 break;
14444
14445 case OPTION_NO_MDEBUG:
b34976b6 14446 mips_flag_mdebug = FALSE;
ecb4347a 14447 break;
dcd410fe
RO
14448
14449 case OPTION_PDR:
14450 mips_flag_pdr = TRUE;
14451 break;
14452
14453 case OPTION_NO_PDR:
14454 mips_flag_pdr = FALSE;
14455 break;
0a44bf69
RS
14456
14457 case OPTION_MVXWORKS_PIC:
14458 mips_pic = VXWORKS_PIC;
14459 break;
ecb4347a 14460
ba92f887
MR
14461 case OPTION_NAN:
14462 if (strcmp (arg, "2008") == 0)
7361da2c 14463 mips_nan2008 = 1;
ba92f887 14464 else if (strcmp (arg, "legacy") == 0)
7361da2c 14465 mips_nan2008 = 0;
ba92f887
MR
14466 else
14467 {
1661c76c 14468 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14469 return 0;
14470 }
14471 break;
14472
252b5132
RH
14473 default:
14474 return 0;
14475 }
14476
c67a084a
NC
14477 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14478
252b5132
RH
14479 return 1;
14480}
316f5878 14481\f
919731af 14482/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14483
316f5878 14484static void
17a2f251 14485mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14486{
14487 if (info != 0)
fef14a42 14488 mips_tune = info->cpu;
316f5878 14489}
80cc45a5 14490
34ba82a8 14491
252b5132 14492void
17a2f251 14493mips_after_parse_args (void)
e9670677 14494{
fef14a42
TS
14495 const struct mips_cpu_info *arch_info = 0;
14496 const struct mips_cpu_info *tune_info = 0;
14497
e9670677 14498 /* GP relative stuff not working for PE */
6caf9ef4 14499 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14500 {
6caf9ef4 14501 if (g_switch_seen && g_switch_value != 0)
1661c76c 14502 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14503 g_switch_value = 0;
14504 }
14505
cac012d6
AO
14506 if (mips_abi == NO_ABI)
14507 mips_abi = MIPS_DEFAULT_ABI;
14508
919731af 14509 /* The following code determines the architecture.
22923709
RS
14510 Similar code was added to GCC 3.3 (see override_options() in
14511 config/mips/mips.c). The GAS and GCC code should be kept in sync
14512 as much as possible. */
e9670677 14513
316f5878 14514 if (mips_arch_string != 0)
fef14a42 14515 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14516
0b35dfee 14517 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14518 {
0b35dfee 14519 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14520 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14521 the -march selection (if any). */
fef14a42 14522 if (arch_info != 0)
e9670677 14523 {
316f5878
RS
14524 /* -march takes precedence over -mipsN, since it is more descriptive.
14525 There's no harm in specifying both as long as the ISA levels
14526 are the same. */
0b35dfee 14527 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14528 as_bad (_("-%s conflicts with the other architecture options,"
14529 " which imply -%s"),
0b35dfee 14530 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14531 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14532 }
316f5878 14533 else
0b35dfee 14534 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14535 }
14536
fef14a42 14537 if (arch_info == 0)
95bfe26e
MF
14538 {
14539 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14540 gas_assert (arch_info);
14541 }
e9670677 14542
fef14a42 14543 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14544 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14545 arch_info->name);
14546
919731af 14547 file_mips_opts.arch = arch_info->cpu;
14548 file_mips_opts.isa = arch_info->isa;
14549
14550 /* Set up initial mips_opts state. */
14551 mips_opts = file_mips_opts;
14552
14553 /* The register size inference code is now placed in
14554 file_mips_check_options. */
fef14a42 14555
0b35dfee 14556 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14557 processor. */
fef14a42
TS
14558 if (mips_tune_string != 0)
14559 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14560
fef14a42
TS
14561 if (tune_info == 0)
14562 mips_set_tune (arch_info);
14563 else
14564 mips_set_tune (tune_info);
e9670677 14565
ecb4347a 14566 if (mips_flag_mdebug < 0)
e8044f35 14567 mips_flag_mdebug = 0;
e9670677
MR
14568}
14569\f
14570void
17a2f251 14571mips_init_after_args (void)
252b5132
RH
14572{
14573 /* initialize opcodes */
14574 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14575 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14576}
14577
14578long
17a2f251 14579md_pcrel_from (fixS *fixP)
252b5132 14580{
a7ebbfdf
TS
14581 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14582 switch (fixP->fx_r_type)
14583 {
df58fc94
RS
14584 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14585 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14586 /* Return the address of the delay slot. */
14587 return addr + 2;
14588
14589 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14590 case BFD_RELOC_MICROMIPS_JMP:
a7ebbfdf 14591 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14592 case BFD_RELOC_MIPS_21_PCREL_S2:
14593 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14594 case BFD_RELOC_MIPS_JMP:
14595 /* Return the address of the delay slot. */
14596 return addr + 4;
df58fc94 14597
a7ebbfdf
TS
14598 default:
14599 return addr;
14600 }
252b5132
RH
14601}
14602
252b5132
RH
14603/* This is called before the symbol table is processed. In order to
14604 work with gcc when using mips-tfile, we must keep all local labels.
14605 However, in other cases, we want to discard them. If we were
14606 called with -g, but we didn't see any debugging information, it may
14607 mean that gcc is smuggling debugging information through to
14608 mips-tfile, in which case we must generate all local labels. */
14609
14610void
17a2f251 14611mips_frob_file_before_adjust (void)
252b5132
RH
14612{
14613#ifndef NO_ECOFF_DEBUGGING
14614 if (ECOFF_DEBUGGING
14615 && mips_debug != 0
14616 && ! ecoff_debugging_seen)
14617 flag_keep_locals = 1;
14618#endif
14619}
14620
3b91255e 14621/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14622 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14623 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14624 relocation operators.
14625
14626 For our purposes, a %lo() expression matches a %got() or %hi()
14627 expression if:
14628
14629 (a) it refers to the same symbol; and
14630 (b) the offset applied in the %lo() expression is no lower than
14631 the offset applied in the %got() or %hi().
14632
14633 (b) allows us to cope with code like:
14634
14635 lui $4,%hi(foo)
14636 lh $4,%lo(foo+2)($4)
14637
14638 ...which is legal on RELA targets, and has a well-defined behaviour
14639 if the user knows that adding 2 to "foo" will not induce a carry to
14640 the high 16 bits.
14641
14642 When several %lo()s match a particular %got() or %hi(), we use the
14643 following rules to distinguish them:
14644
14645 (1) %lo()s with smaller offsets are a better match than %lo()s with
14646 higher offsets.
14647
14648 (2) %lo()s with no matching %got() or %hi() are better than those
14649 that already have a matching %got() or %hi().
14650
14651 (3) later %lo()s are better than earlier %lo()s.
14652
14653 These rules are applied in order.
14654
14655 (1) means, among other things, that %lo()s with identical offsets are
14656 chosen if they exist.
14657
14658 (2) means that we won't associate several high-part relocations with
14659 the same low-part relocation unless there's no alternative. Having
14660 several high parts for the same low part is a GNU extension; this rule
14661 allows careful users to avoid it.
14662
14663 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14664 with the last high-part relocation being at the front of the list.
14665 It therefore makes sense to choose the last matching low-part
14666 relocation, all other things being equal. It's also easier
14667 to code that way. */
252b5132
RH
14668
14669void
17a2f251 14670mips_frob_file (void)
252b5132
RH
14671{
14672 struct mips_hi_fixup *l;
35903be0 14673 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14674
14675 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14676 {
14677 segment_info_type *seginfo;
3b91255e
RS
14678 bfd_boolean matched_lo_p;
14679 fixS **hi_pos, **lo_pos, **pos;
252b5132 14680
9c2799c2 14681 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14682
5919d012 14683 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14684 there isn't supposed to be a matching LO. Ignore %gots against
14685 constants; we'll report an error for those later. */
738e5348 14686 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14687 && !(l->fixp->fx_addsy
14688 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14689 continue;
14690
14691 /* Check quickly whether the next fixup happens to be a matching %lo. */
14692 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14693 continue;
14694
252b5132 14695 seginfo = seg_info (l->seg);
252b5132 14696
3b91255e
RS
14697 /* Set HI_POS to the position of this relocation in the chain.
14698 Set LO_POS to the position of the chosen low-part relocation.
14699 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14700 relocation that matches an immediately-preceding high-part
14701 relocation. */
14702 hi_pos = NULL;
14703 lo_pos = NULL;
14704 matched_lo_p = FALSE;
738e5348 14705 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14706
3b91255e
RS
14707 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14708 {
14709 if (*pos == l->fixp)
14710 hi_pos = pos;
14711
35903be0 14712 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14713 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14714 && (*pos)->fx_offset >= l->fixp->fx_offset
14715 && (lo_pos == NULL
14716 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14717 || (!matched_lo_p
14718 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14719 lo_pos = pos;
14720
14721 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14722 && fixup_has_matching_lo_p (*pos));
14723 }
14724
14725 /* If we found a match, remove the high-part relocation from its
14726 current position and insert it before the low-part relocation.
14727 Make the offsets match so that fixup_has_matching_lo_p()
14728 will return true.
14729
14730 We don't warn about unmatched high-part relocations since some
14731 versions of gcc have been known to emit dead "lui ...%hi(...)"
14732 instructions. */
14733 if (lo_pos != NULL)
14734 {
14735 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14736 if (l->fixp->fx_next != *lo_pos)
252b5132 14737 {
3b91255e
RS
14738 *hi_pos = l->fixp->fx_next;
14739 l->fixp->fx_next = *lo_pos;
14740 *lo_pos = l->fixp;
252b5132 14741 }
252b5132
RH
14742 }
14743 }
14744}
14745
252b5132 14746int
17a2f251 14747mips_force_relocation (fixS *fixp)
252b5132 14748{
ae6063d4 14749 if (generic_force_reloc (fixp))
252b5132
RH
14750 return 1;
14751
df58fc94
RS
14752 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14753 so that the linker relaxation can update targets. */
14754 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14755 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14756 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14757 return 1;
14758
7361da2c
AB
14759 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14760 if (ISA_IS_R6 (mips_opts.isa)
14761 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14762 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14763 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14764 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14765 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14766 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14767 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14768 return 1;
14769
3e722fb5 14770 return 0;
252b5132
RH
14771}
14772
b886a2ab
RS
14773/* Read the instruction associated with RELOC from BUF. */
14774
14775static unsigned int
14776read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14777{
14778 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14779 return read_compressed_insn (buf, 4);
14780 else
14781 return read_insn (buf);
14782}
14783
14784/* Write instruction INSN to BUF, given that it has been relocated
14785 by RELOC. */
14786
14787static void
14788write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14789 unsigned long insn)
14790{
14791 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14792 write_compressed_insn (buf, insn, 4);
14793 else
14794 write_insn (buf, insn);
14795}
14796
252b5132
RH
14797/* Apply a fixup to the object file. */
14798
94f592af 14799void
55cf6793 14800md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 14801{
4d68580a 14802 char *buf;
b886a2ab 14803 unsigned long insn;
a7ebbfdf 14804 reloc_howto_type *howto;
252b5132 14805
d56a8dda
RS
14806 if (fixP->fx_pcrel)
14807 switch (fixP->fx_r_type)
14808 {
14809 case BFD_RELOC_16_PCREL_S2:
14810 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14811 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14812 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14813 case BFD_RELOC_32_PCREL:
7361da2c
AB
14814 case BFD_RELOC_MIPS_21_PCREL_S2:
14815 case BFD_RELOC_MIPS_26_PCREL_S2:
14816 case BFD_RELOC_MIPS_18_PCREL_S3:
14817 case BFD_RELOC_MIPS_19_PCREL_S2:
14818 case BFD_RELOC_HI16_S_PCREL:
14819 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
14820 break;
14821
14822 case BFD_RELOC_32:
14823 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14824 break;
14825
14826 default:
14827 as_bad_where (fixP->fx_file, fixP->fx_line,
14828 _("PC-relative reference to a different section"));
14829 break;
14830 }
14831
14832 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14833 that have no MIPS ELF equivalent. */
14834 if (fixP->fx_r_type != BFD_RELOC_8)
14835 {
14836 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14837 if (!howto)
14838 return;
14839 }
65551fa4 14840
df58fc94
RS
14841 gas_assert (fixP->fx_size == 2
14842 || fixP->fx_size == 4
d56a8dda 14843 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
14844 || fixP->fx_r_type == BFD_RELOC_16
14845 || fixP->fx_r_type == BFD_RELOC_64
14846 || fixP->fx_r_type == BFD_RELOC_CTOR
14847 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 14848 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
14849 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14850 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
14851 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14852 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 14853
4d68580a 14854 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 14855
b1dca8ee
RS
14856 /* Don't treat parts of a composite relocation as done. There are two
14857 reasons for this:
14858
14859 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14860 should nevertheless be emitted if the first part is.
14861
14862 (2) In normal usage, composite relocations are never assembly-time
14863 constants. The easiest way of dealing with the pathological
14864 exceptions is to generate a relocation against STN_UNDEF and
14865 leave everything up to the linker. */
3994f87e 14866 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14867 fixP->fx_done = 1;
14868
14869 switch (fixP->fx_r_type)
14870 {
3f98094e
DJ
14871 case BFD_RELOC_MIPS_TLS_GD:
14872 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14873 case BFD_RELOC_MIPS_TLS_DTPREL32:
14874 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14875 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14876 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14877 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14878 case BFD_RELOC_MIPS_TLS_TPREL32:
14879 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14880 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14881 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14882 case BFD_RELOC_MICROMIPS_TLS_GD:
14883 case BFD_RELOC_MICROMIPS_TLS_LDM:
14884 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14885 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14886 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14887 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14888 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14889 case BFD_RELOC_MIPS16_TLS_GD:
14890 case BFD_RELOC_MIPS16_TLS_LDM:
14891 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14892 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14893 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14894 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14895 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
b886a2ab
RS
14896 if (!fixP->fx_addsy)
14897 {
14898 as_bad_where (fixP->fx_file, fixP->fx_line,
14899 _("TLS relocation against a constant"));
14900 break;
14901 }
3f98094e
DJ
14902 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14903 /* fall through */
14904
252b5132 14905 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14906 case BFD_RELOC_MIPS_SHIFT5:
14907 case BFD_RELOC_MIPS_SHIFT6:
14908 case BFD_RELOC_MIPS_GOT_DISP:
14909 case BFD_RELOC_MIPS_GOT_PAGE:
14910 case BFD_RELOC_MIPS_GOT_OFST:
14911 case BFD_RELOC_MIPS_SUB:
14912 case BFD_RELOC_MIPS_INSERT_A:
14913 case BFD_RELOC_MIPS_INSERT_B:
14914 case BFD_RELOC_MIPS_DELETE:
14915 case BFD_RELOC_MIPS_HIGHEST:
14916 case BFD_RELOC_MIPS_HIGHER:
14917 case BFD_RELOC_MIPS_SCN_DISP:
14918 case BFD_RELOC_MIPS_REL16:
14919 case BFD_RELOC_MIPS_RELGOT:
14920 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14921 case BFD_RELOC_HI16:
14922 case BFD_RELOC_HI16_S:
b886a2ab 14923 case BFD_RELOC_LO16:
cdf6fd85 14924 case BFD_RELOC_GPREL16:
252b5132
RH
14925 case BFD_RELOC_MIPS_LITERAL:
14926 case BFD_RELOC_MIPS_CALL16:
14927 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14928 case BFD_RELOC_GPREL32:
252b5132
RH
14929 case BFD_RELOC_MIPS_GOT_HI16:
14930 case BFD_RELOC_MIPS_GOT_LO16:
14931 case BFD_RELOC_MIPS_CALL_HI16:
14932 case BFD_RELOC_MIPS_CALL_LO16:
14933 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14934 case BFD_RELOC_MIPS16_GOT16:
14935 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14936 case BFD_RELOC_MIPS16_HI16:
14937 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14938 case BFD_RELOC_MIPS16_LO16:
252b5132 14939 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14940 case BFD_RELOC_MICROMIPS_JMP:
14941 case BFD_RELOC_MICROMIPS_GOT_DISP:
14942 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14943 case BFD_RELOC_MICROMIPS_GOT_OFST:
14944 case BFD_RELOC_MICROMIPS_SUB:
14945 case BFD_RELOC_MICROMIPS_HIGHEST:
14946 case BFD_RELOC_MICROMIPS_HIGHER:
14947 case BFD_RELOC_MICROMIPS_SCN_DISP:
14948 case BFD_RELOC_MICROMIPS_JALR:
14949 case BFD_RELOC_MICROMIPS_HI16:
14950 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14951 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14952 case BFD_RELOC_MICROMIPS_GPREL16:
14953 case BFD_RELOC_MICROMIPS_LITERAL:
14954 case BFD_RELOC_MICROMIPS_CALL16:
14955 case BFD_RELOC_MICROMIPS_GOT16:
14956 case BFD_RELOC_MICROMIPS_GOT_HI16:
14957 case BFD_RELOC_MICROMIPS_GOT_LO16:
14958 case BFD_RELOC_MICROMIPS_CALL_HI16:
14959 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 14960 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
14961 if (fixP->fx_done)
14962 {
14963 offsetT value;
14964
14965 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14966 {
14967 insn = read_reloc_insn (buf, fixP->fx_r_type);
14968 if (mips16_reloc_p (fixP->fx_r_type))
14969 insn |= mips16_immed_extend (value, 16);
14970 else
14971 insn |= (value & 0xffff);
14972 write_reloc_insn (buf, fixP->fx_r_type, insn);
14973 }
14974 else
14975 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 14976 _("unsupported constant in relocation"));
b886a2ab 14977 }
252b5132
RH
14978 break;
14979
252b5132
RH
14980 case BFD_RELOC_64:
14981 /* This is handled like BFD_RELOC_32, but we output a sign
14982 extended value if we are only 32 bits. */
3e722fb5 14983 if (fixP->fx_done)
252b5132
RH
14984 {
14985 if (8 <= sizeof (valueT))
4d68580a 14986 md_number_to_chars (buf, *valP, 8);
252b5132
RH
14987 else
14988 {
a7ebbfdf 14989 valueT hiv;
252b5132 14990
a7ebbfdf 14991 if ((*valP & 0x80000000) != 0)
252b5132
RH
14992 hiv = 0xffffffff;
14993 else
14994 hiv = 0;
4d68580a
RS
14995 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14996 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
14997 }
14998 }
14999 break;
15000
056350c6 15001 case BFD_RELOC_RVA:
252b5132 15002 case BFD_RELOC_32:
b47468a6 15003 case BFD_RELOC_32_PCREL:
252b5132 15004 case BFD_RELOC_16:
d56a8dda 15005 case BFD_RELOC_8:
252b5132 15006 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15007 value now. This can happen if we have a .word which is not
15008 resolved when it appears but is later defined. */
252b5132 15009 if (fixP->fx_done)
4d68580a 15010 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15011 break;
15012
7361da2c
AB
15013 case BFD_RELOC_MIPS_21_PCREL_S2:
15014 case BFD_RELOC_MIPS_26_PCREL_S2:
15015 if ((*valP & 0x3) != 0)
15016 as_bad_where (fixP->fx_file, fixP->fx_line,
15017 _("branch to misaligned address (%lx)"), (long) *valP);
15018
15019 gas_assert (!fixP->fx_done);
15020 break;
15021
15022 case BFD_RELOC_MIPS_18_PCREL_S3:
0866e94c 15023 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15024 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15025 _("PC-relative access using misaligned symbol (%lx)"),
15026 (long) S_GET_VALUE (fixP->fx_addsy));
15027 if ((fixP->fx_offset & 0x7) != 0)
15028 as_bad_where (fixP->fx_file, fixP->fx_line,
15029 _("PC-relative access using misaligned offset (%lx)"),
15030 (long) fixP->fx_offset);
7361da2c
AB
15031
15032 gas_assert (!fixP->fx_done);
15033 break;
15034
15035 case BFD_RELOC_MIPS_19_PCREL_S2:
15036 if ((*valP & 0x3) != 0)
15037 as_bad_where (fixP->fx_file, fixP->fx_line,
15038 _("PC-relative access to misaligned address (%lx)"),
0866e94c 15039 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
7361da2c
AB
15040
15041 gas_assert (!fixP->fx_done);
15042 break;
15043
15044 case BFD_RELOC_HI16_S_PCREL:
15045 case BFD_RELOC_LO16_PCREL:
15046 gas_assert (!fixP->fx_done);
15047 break;
15048
252b5132 15049 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 15050 if ((*valP & 0x3) != 0)
cb56d3d3 15051 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15052 _("branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 15053
54f4ddb3
TS
15054 /* We need to save the bits in the instruction since fixup_segment()
15055 might be deleting the relocation entry (i.e., a branch within
15056 the current segment). */
a7ebbfdf 15057 if (! fixP->fx_done)
bb2d6cd7 15058 break;
252b5132 15059
54f4ddb3 15060 /* Update old instruction data. */
4d68580a 15061 insn = read_insn (buf);
252b5132 15062
a7ebbfdf
TS
15063 if (*valP + 0x20000 <= 0x3ffff)
15064 {
15065 insn |= (*valP >> 2) & 0xffff;
4d68580a 15066 write_insn (buf, insn);
a7ebbfdf
TS
15067 }
15068 else if (mips_pic == NO_PIC
15069 && fixP->fx_done
15070 && fixP->fx_frag->fr_address >= text_section->vma
15071 && (fixP->fx_frag->fr_address
587aac4e 15072 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15073 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15074 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15075 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15076 {
15077 /* The branch offset is too large. If this is an
15078 unconditional branch, and we are not generating PIC code,
15079 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15080 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15081 insn = 0x0c000000; /* jal */
252b5132 15082 else
a7ebbfdf
TS
15083 insn = 0x08000000; /* j */
15084 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15085 fixP->fx_done = 0;
15086 fixP->fx_addsy = section_symbol (text_section);
15087 *valP += md_pcrel_from (fixP);
4d68580a 15088 write_insn (buf, insn);
a7ebbfdf
TS
15089 }
15090 else
15091 {
15092 /* If we got here, we have branch-relaxation disabled,
15093 and there's nothing we can do to fix this instruction
15094 without turning it into a longer sequence. */
15095 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15096 _("branch out of range"));
252b5132 15097 }
252b5132
RH
15098 break;
15099
df58fc94
RS
15100 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15101 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15102 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15103 /* We adjust the offset back to even. */
15104 if ((*valP & 0x1) != 0)
15105 --(*valP);
15106
15107 if (! fixP->fx_done)
15108 break;
15109
15110 /* Should never visit here, because we keep the relocation. */
15111 abort ();
15112 break;
15113
252b5132
RH
15114 case BFD_RELOC_VTABLE_INHERIT:
15115 fixP->fx_done = 0;
15116 if (fixP->fx_addsy
15117 && !S_IS_DEFINED (fixP->fx_addsy)
15118 && !S_IS_WEAK (fixP->fx_addsy))
15119 S_SET_WEAK (fixP->fx_addsy);
15120 break;
15121
2f0c68f2 15122 case BFD_RELOC_NONE:
252b5132
RH
15123 case BFD_RELOC_VTABLE_ENTRY:
15124 fixP->fx_done = 0;
15125 break;
15126
15127 default:
b37df7c4 15128 abort ();
252b5132 15129 }
a7ebbfdf
TS
15130
15131 /* Remember value for tc_gen_reloc. */
15132 fixP->fx_addnumber = *valP;
252b5132
RH
15133}
15134
252b5132 15135static symbolS *
17a2f251 15136get_symbol (void)
252b5132
RH
15137{
15138 int c;
15139 char *name;
15140 symbolS *p;
15141
d02603dc 15142 c = get_symbol_name (&name);
252b5132 15143 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15144 (void) restore_line_pointer (c);
252b5132
RH
15145 return p;
15146}
15147
742a56fe
RS
15148/* Align the current frag to a given power of two. If a particular
15149 fill byte should be used, FILL points to an integer that contains
15150 that byte, otherwise FILL is null.
15151
462427c4
RS
15152 This function used to have the comment:
15153
15154 The MIPS assembler also automatically adjusts any preceding label.
15155
15156 The implementation therefore applied the adjustment to a maximum of
15157 one label. However, other label adjustments are applied to batches
15158 of labels, and adjusting just one caused problems when new labels
15159 were added for the sake of debugging or unwind information.
15160 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15161
15162static void
462427c4 15163mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15164{
7d10b47d 15165 mips_emit_delays ();
df58fc94 15166 mips_record_compressed_mode ();
742a56fe
RS
15167 if (fill == NULL && subseg_text_p (now_seg))
15168 frag_align_code (to, 0);
15169 else
15170 frag_align (to, fill ? *fill : 0, 0);
252b5132 15171 record_alignment (now_seg, to);
462427c4 15172 mips_move_labels (labels, FALSE);
252b5132
RH
15173}
15174
15175/* Align to a given power of two. .align 0 turns off the automatic
15176 alignment used by the data creating pseudo-ops. */
15177
15178static void
17a2f251 15179s_align (int x ATTRIBUTE_UNUSED)
252b5132 15180{
742a56fe 15181 int temp, fill_value, *fill_ptr;
49954fb4 15182 long max_alignment = 28;
252b5132 15183
54f4ddb3 15184 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15185 to the aligned address.
54f4ddb3 15186 o It's not documented but auto alignment is reinstated by
252b5132 15187 a .align pseudo instruction.
54f4ddb3 15188 o Note also that after auto alignment is turned off the mips assembler
252b5132 15189 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15190 We don't. */
252b5132
RH
15191
15192 temp = get_absolute_expression ();
15193 if (temp > max_alignment)
1661c76c 15194 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15195 else if (temp < 0)
15196 {
1661c76c 15197 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15198 temp = 0;
15199 }
15200 if (*input_line_pointer == ',')
15201 {
f9419b05 15202 ++input_line_pointer;
742a56fe
RS
15203 fill_value = get_absolute_expression ();
15204 fill_ptr = &fill_value;
252b5132
RH
15205 }
15206 else
742a56fe 15207 fill_ptr = 0;
252b5132
RH
15208 if (temp)
15209 {
a8dbcb85
TS
15210 segment_info_type *si = seg_info (now_seg);
15211 struct insn_label_list *l = si->label_list;
54f4ddb3 15212 /* Auto alignment should be switched on by next section change. */
252b5132 15213 auto_align = 1;
462427c4 15214 mips_align (temp, fill_ptr, l);
252b5132
RH
15215 }
15216 else
15217 {
15218 auto_align = 0;
15219 }
15220
15221 demand_empty_rest_of_line ();
15222}
15223
252b5132 15224static void
17a2f251 15225s_change_sec (int sec)
252b5132
RH
15226{
15227 segT seg;
15228
252b5132
RH
15229 /* The ELF backend needs to know that we are changing sections, so
15230 that .previous works correctly. We could do something like check
b6ff326e 15231 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15232 as it would not be appropriate to use it in the section changing
15233 functions in read.c, since obj-elf.c intercepts those. FIXME:
15234 This should be cleaner, somehow. */
f3ded42a 15235 obj_elf_section_change_hook ();
252b5132 15236
7d10b47d 15237 mips_emit_delays ();
6a32d874 15238
252b5132
RH
15239 switch (sec)
15240 {
15241 case 't':
15242 s_text (0);
15243 break;
15244 case 'd':
15245 s_data (0);
15246 break;
15247 case 'b':
15248 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15249 demand_empty_rest_of_line ();
15250 break;
15251
15252 case 'r':
4d0d148d
TS
15253 seg = subseg_new (RDATA_SECTION_NAME,
15254 (subsegT) get_absolute_expression ());
f3ded42a
RS
15255 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15256 | SEC_READONLY | SEC_RELOC
15257 | SEC_DATA));
15258 if (strncmp (TARGET_OS, "elf", 3) != 0)
15259 record_alignment (seg, 4);
4d0d148d 15260 demand_empty_rest_of_line ();
252b5132
RH
15261 break;
15262
15263 case 's':
4d0d148d 15264 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15265 bfd_set_section_flags (stdoutput, seg,
15266 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15267 if (strncmp (TARGET_OS, "elf", 3) != 0)
15268 record_alignment (seg, 4);
4d0d148d
TS
15269 demand_empty_rest_of_line ();
15270 break;
998b3c36
MR
15271
15272 case 'B':
15273 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15274 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15275 if (strncmp (TARGET_OS, "elf", 3) != 0)
15276 record_alignment (seg, 4);
998b3c36
MR
15277 demand_empty_rest_of_line ();
15278 break;
252b5132
RH
15279 }
15280
15281 auto_align = 1;
15282}
b34976b6 15283
cca86cc8 15284void
17a2f251 15285s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15286{
d02603dc 15287 char *saved_ilp;
cca86cc8 15288 char *section_name;
d02603dc 15289 char c, endc;
684022ea 15290 char next_c = 0;
cca86cc8
SC
15291 int section_type;
15292 int section_flag;
15293 int section_entry_size;
15294 int section_alignment;
b34976b6 15295
d02603dc
NC
15296 saved_ilp = input_line_pointer;
15297 endc = get_symbol_name (&section_name);
15298 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15299 if (c)
d02603dc 15300 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15301
4cf0dd0d
TS
15302 /* Do we have .section Name<,"flags">? */
15303 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15304 {
d02603dc
NC
15305 /* Just after name is now '\0'. */
15306 (void) restore_line_pointer (endc);
15307 input_line_pointer = saved_ilp;
cca86cc8
SC
15308 obj_elf_section (ignore);
15309 return;
15310 }
d02603dc
NC
15311
15312 section_name = xstrdup (section_name);
15313 c = restore_line_pointer (endc);
15314
cca86cc8
SC
15315 input_line_pointer++;
15316
15317 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15318 if (c == ',')
15319 section_type = get_absolute_expression ();
15320 else
15321 section_type = 0;
d02603dc 15322
cca86cc8
SC
15323 if (*input_line_pointer++ == ',')
15324 section_flag = get_absolute_expression ();
15325 else
15326 section_flag = 0;
d02603dc 15327
cca86cc8
SC
15328 if (*input_line_pointer++ == ',')
15329 section_entry_size = get_absolute_expression ();
15330 else
15331 section_entry_size = 0;
d02603dc 15332
cca86cc8
SC
15333 if (*input_line_pointer++ == ',')
15334 section_alignment = get_absolute_expression ();
15335 else
15336 section_alignment = 0;
d02603dc 15337
87975d2a
AM
15338 /* FIXME: really ignore? */
15339 (void) section_alignment;
cca86cc8 15340
8ab8a5c8
RS
15341 /* When using the generic form of .section (as implemented by obj-elf.c),
15342 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15343 traditionally had to fall back on the more common @progbits instead.
15344
15345 There's nothing really harmful in this, since bfd will correct
15346 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15347 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15348 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15349
15350 Even so, we shouldn't force users of the MIPS .section syntax to
15351 incorrectly label the sections as SHT_PROGBITS. The best compromise
15352 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15353 generic type-checking code. */
15354 if (section_type == SHT_MIPS_DWARF)
15355 section_type = SHT_PROGBITS;
15356
cca86cc8
SC
15357 obj_elf_change_section (section_name, section_type, section_flag,
15358 section_entry_size, 0, 0, 0);
a816d1ed
AO
15359
15360 if (now_seg->name != section_name)
15361 free (section_name);
cca86cc8 15362}
252b5132
RH
15363
15364void
17a2f251 15365mips_enable_auto_align (void)
252b5132
RH
15366{
15367 auto_align = 1;
15368}
15369
15370static void
17a2f251 15371s_cons (int log_size)
252b5132 15372{
a8dbcb85
TS
15373 segment_info_type *si = seg_info (now_seg);
15374 struct insn_label_list *l = si->label_list;
252b5132 15375
7d10b47d 15376 mips_emit_delays ();
252b5132 15377 if (log_size > 0 && auto_align)
462427c4 15378 mips_align (log_size, 0, l);
252b5132 15379 cons (1 << log_size);
a1facbec 15380 mips_clear_insn_labels ();
252b5132
RH
15381}
15382
15383static void
17a2f251 15384s_float_cons (int type)
252b5132 15385{
a8dbcb85
TS
15386 segment_info_type *si = seg_info (now_seg);
15387 struct insn_label_list *l = si->label_list;
252b5132 15388
7d10b47d 15389 mips_emit_delays ();
252b5132
RH
15390
15391 if (auto_align)
49309057
ILT
15392 {
15393 if (type == 'd')
462427c4 15394 mips_align (3, 0, l);
49309057 15395 else
462427c4 15396 mips_align (2, 0, l);
49309057 15397 }
252b5132 15398
252b5132 15399 float_cons (type);
a1facbec 15400 mips_clear_insn_labels ();
252b5132
RH
15401}
15402
15403/* Handle .globl. We need to override it because on Irix 5 you are
15404 permitted to say
15405 .globl foo .text
15406 where foo is an undefined symbol, to mean that foo should be
15407 considered to be the address of a function. */
15408
15409static void
17a2f251 15410s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15411{
15412 char *name;
15413 int c;
15414 symbolS *symbolP;
15415 flagword flag;
15416
8a06b769 15417 do
252b5132 15418 {
d02603dc 15419 c = get_symbol_name (&name);
8a06b769
TS
15420 symbolP = symbol_find_or_make (name);
15421 S_SET_EXTERNAL (symbolP);
15422
252b5132 15423 *input_line_pointer = c;
d02603dc 15424 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15425
8a06b769
TS
15426 /* On Irix 5, every global symbol that is not explicitly labelled as
15427 being a function is apparently labelled as being an object. */
15428 flag = BSF_OBJECT;
252b5132 15429
8a06b769
TS
15430 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15431 && (*input_line_pointer != ','))
15432 {
15433 char *secname;
15434 asection *sec;
15435
d02603dc 15436 c = get_symbol_name (&secname);
8a06b769
TS
15437 sec = bfd_get_section_by_name (stdoutput, secname);
15438 if (sec == NULL)
15439 as_bad (_("%s: no such section"), secname);
d02603dc 15440 (void) restore_line_pointer (c);
8a06b769
TS
15441
15442 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15443 flag = BSF_FUNCTION;
15444 }
15445
15446 symbol_get_bfdsym (symbolP)->flags |= flag;
15447
15448 c = *input_line_pointer;
15449 if (c == ',')
15450 {
15451 input_line_pointer++;
15452 SKIP_WHITESPACE ();
15453 if (is_end_of_line[(unsigned char) *input_line_pointer])
15454 c = '\n';
15455 }
15456 }
15457 while (c == ',');
252b5132 15458
252b5132
RH
15459 demand_empty_rest_of_line ();
15460}
15461
15462static void
17a2f251 15463s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15464{
15465 char *opt;
15466 char c;
15467
d02603dc 15468 c = get_symbol_name (&opt);
252b5132
RH
15469
15470 if (*opt == 'O')
15471 {
15472 /* FIXME: What does this mean? */
15473 }
41a1578e 15474 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
15475 {
15476 int i;
15477
15478 i = atoi (opt + 3);
668c5ebc
MR
15479 if (i != 0 && i != 2)
15480 as_bad (_(".option pic%d not supported"), i);
15481 else if (mips_pic == VXWORKS_PIC)
15482 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15483 else if (i == 0)
252b5132
RH
15484 mips_pic = NO_PIC;
15485 else if (i == 2)
143d77c5 15486 {
8b828383 15487 mips_pic = SVR4_PIC;
143d77c5
EC
15488 mips_abicalls = TRUE;
15489 }
252b5132 15490
4d0d148d 15491 if (mips_pic == SVR4_PIC)
252b5132
RH
15492 {
15493 if (g_switch_seen && g_switch_value != 0)
15494 as_warn (_("-G may not be used with SVR4 PIC code"));
15495 g_switch_value = 0;
15496 bfd_set_gp_size (stdoutput, 0);
15497 }
15498 }
15499 else
1661c76c 15500 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 15501
d02603dc 15502 (void) restore_line_pointer (c);
252b5132
RH
15503 demand_empty_rest_of_line ();
15504}
15505
15506/* This structure is used to hold a stack of .set values. */
15507
e972090a
NC
15508struct mips_option_stack
15509{
252b5132
RH
15510 struct mips_option_stack *next;
15511 struct mips_set_options options;
15512};
15513
15514static struct mips_option_stack *mips_opts_stack;
15515
22522f88
MR
15516/* Return status for .set/.module option handling. */
15517
15518enum code_option_type
15519{
15520 /* Unrecognized option. */
15521 OPTION_TYPE_BAD = -1,
15522
15523 /* Ordinary option. */
15524 OPTION_TYPE_NORMAL,
15525
15526 /* ISA changing option. */
15527 OPTION_TYPE_ISA
15528};
15529
15530/* Handle common .set/.module options. Return status indicating option
15531 type. */
15532
15533static enum code_option_type
919731af 15534parse_code_option (char * name)
252b5132 15535{
22522f88 15536 bfd_boolean isa_set = FALSE;
c6278170 15537 const struct mips_ase *ase;
22522f88 15538
919731af 15539 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
15540 {
15541 char *s = name + 3;
15542
15543 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 15544 as_bad (_("unrecognized register name `%s'"), s);
741fe287 15545 }
252b5132 15546 else if (strcmp (name, "at") == 0)
919731af 15547 mips_opts.at = ATREG;
252b5132 15548 else if (strcmp (name, "noat") == 0)
919731af 15549 mips_opts.at = ZERO;
252b5132 15550 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 15551 mips_opts.nomove = 0;
252b5132 15552 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 15553 mips_opts.nomove = 1;
252b5132 15554 else if (strcmp (name, "bopt") == 0)
919731af 15555 mips_opts.nobopt = 0;
252b5132 15556 else if (strcmp (name, "nobopt") == 0)
919731af 15557 mips_opts.nobopt = 1;
ad3fea08 15558 else if (strcmp (name, "gp=32") == 0)
bad1aba3 15559 mips_opts.gp = 32;
ad3fea08 15560 else if (strcmp (name, "gp=64") == 0)
919731af 15561 mips_opts.gp = 64;
ad3fea08 15562 else if (strcmp (name, "fp=32") == 0)
0b35dfee 15563 mips_opts.fp = 32;
351cdf24
MF
15564 else if (strcmp (name, "fp=xx") == 0)
15565 mips_opts.fp = 0;
ad3fea08 15566 else if (strcmp (name, "fp=64") == 0)
919731af 15567 mips_opts.fp = 64;
037b32b9
AN
15568 else if (strcmp (name, "softfloat") == 0)
15569 mips_opts.soft_float = 1;
15570 else if (strcmp (name, "hardfloat") == 0)
15571 mips_opts.soft_float = 0;
15572 else if (strcmp (name, "singlefloat") == 0)
15573 mips_opts.single_float = 1;
15574 else if (strcmp (name, "doublefloat") == 0)
15575 mips_opts.single_float = 0;
351cdf24
MF
15576 else if (strcmp (name, "nooddspreg") == 0)
15577 mips_opts.oddspreg = 0;
15578 else if (strcmp (name, "oddspreg") == 0)
15579 mips_opts.oddspreg = 1;
252b5132
RH
15580 else if (strcmp (name, "mips16") == 0
15581 || strcmp (name, "MIPS-16") == 0)
919731af 15582 mips_opts.mips16 = 1;
252b5132
RH
15583 else if (strcmp (name, "nomips16") == 0
15584 || strcmp (name, "noMIPS-16") == 0)
15585 mips_opts.mips16 = 0;
df58fc94 15586 else if (strcmp (name, "micromips") == 0)
919731af 15587 mips_opts.micromips = 1;
df58fc94
RS
15588 else if (strcmp (name, "nomicromips") == 0)
15589 mips_opts.micromips = 0;
c6278170
RS
15590 else if (name[0] == 'n'
15591 && name[1] == 'o'
15592 && (ase = mips_lookup_ase (name + 2)))
919731af 15593 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 15594 else if ((ase = mips_lookup_ase (name)))
919731af 15595 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 15596 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 15597 {
1a2c1fad
CD
15598 /* Permit the user to change the ISA and architecture on the fly.
15599 Needless to say, misuse can cause serious problems. */
919731af 15600 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
15601 {
15602 const struct mips_cpu_info *p;
15603
919731af 15604 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
15605 if (!p)
15606 as_bad (_("unknown architecture %s"), name + 5);
15607 else
15608 {
15609 mips_opts.arch = p->cpu;
15610 mips_opts.isa = p->isa;
22522f88 15611 isa_set = TRUE;
1a2c1fad
CD
15612 }
15613 }
81a21e38
TS
15614 else if (strncmp (name, "mips", 4) == 0)
15615 {
15616 const struct mips_cpu_info *p;
15617
919731af 15618 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
15619 if (!p)
15620 as_bad (_("unknown ISA level %s"), name + 4);
15621 else
15622 {
15623 mips_opts.arch = p->cpu;
15624 mips_opts.isa = p->isa;
22522f88 15625 isa_set = TRUE;
81a21e38
TS
15626 }
15627 }
af7ee8bf 15628 else
81a21e38 15629 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
15630 }
15631 else if (strcmp (name, "autoextend") == 0)
15632 mips_opts.noautoextend = 0;
15633 else if (strcmp (name, "noautoextend") == 0)
15634 mips_opts.noautoextend = 1;
833794fc
MR
15635 else if (strcmp (name, "insn32") == 0)
15636 mips_opts.insn32 = TRUE;
15637 else if (strcmp (name, "noinsn32") == 0)
15638 mips_opts.insn32 = FALSE;
919731af 15639 else if (strcmp (name, "sym32") == 0)
15640 mips_opts.sym32 = TRUE;
15641 else if (strcmp (name, "nosym32") == 0)
15642 mips_opts.sym32 = FALSE;
15643 else
22522f88
MR
15644 return OPTION_TYPE_BAD;
15645
15646 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 15647}
15648
15649/* Handle the .set pseudo-op. */
15650
15651static void
15652s_mipsset (int x ATTRIBUTE_UNUSED)
15653{
22522f88 15654 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 15655 char *name = input_line_pointer, ch;
919731af 15656
15657 file_mips_check_options ();
15658
15659 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15660 ++input_line_pointer;
15661 ch = *input_line_pointer;
15662 *input_line_pointer = '\0';
15663
15664 if (strchr (name, ','))
15665 {
15666 /* Generic ".set" directive; use the generic handler. */
15667 *input_line_pointer = ch;
15668 input_line_pointer = name;
15669 s_set (0);
15670 return;
15671 }
15672
15673 if (strcmp (name, "reorder") == 0)
15674 {
15675 if (mips_opts.noreorder)
15676 end_noreorder ();
15677 }
15678 else if (strcmp (name, "noreorder") == 0)
15679 {
15680 if (!mips_opts.noreorder)
15681 start_noreorder ();
15682 }
15683 else if (strcmp (name, "macro") == 0)
15684 mips_opts.warn_about_macros = 0;
15685 else if (strcmp (name, "nomacro") == 0)
15686 {
15687 if (mips_opts.noreorder == 0)
15688 as_bad (_("`noreorder' must be set before `nomacro'"));
15689 mips_opts.warn_about_macros = 1;
15690 }
15691 else if (strcmp (name, "gp=default") == 0)
15692 mips_opts.gp = file_mips_opts.gp;
15693 else if (strcmp (name, "fp=default") == 0)
15694 mips_opts.fp = file_mips_opts.fp;
15695 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15696 {
15697 mips_opts.isa = file_mips_opts.isa;
15698 mips_opts.arch = file_mips_opts.arch;
15699 mips_opts.gp = file_mips_opts.gp;
15700 mips_opts.fp = file_mips_opts.fp;
15701 }
252b5132
RH
15702 else if (strcmp (name, "push") == 0)
15703 {
15704 struct mips_option_stack *s;
15705
325801bd 15706 s = XNEW (struct mips_option_stack);
252b5132
RH
15707 s->next = mips_opts_stack;
15708 s->options = mips_opts;
15709 mips_opts_stack = s;
15710 }
15711 else if (strcmp (name, "pop") == 0)
15712 {
15713 struct mips_option_stack *s;
15714
15715 s = mips_opts_stack;
15716 if (s == NULL)
15717 as_bad (_(".set pop with no .set push"));
15718 else
15719 {
15720 /* If we're changing the reorder mode we need to handle
15721 delay slots correctly. */
15722 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 15723 start_noreorder ();
252b5132 15724 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 15725 end_noreorder ();
252b5132
RH
15726
15727 mips_opts = s->options;
15728 mips_opts_stack = s->next;
15729 free (s);
15730 }
15731 }
22522f88
MR
15732 else
15733 {
15734 type = parse_code_option (name);
15735 if (type == OPTION_TYPE_BAD)
15736 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15737 }
919731af 15738
15739 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15740 registers based on what is supported by the arch/cpu. */
22522f88 15741 if (type == OPTION_TYPE_ISA)
e6559e01 15742 {
919731af 15743 switch (mips_opts.isa)
15744 {
15745 case 0:
15746 break;
15747 case ISA_MIPS1:
351cdf24
MF
15748 /* MIPS I cannot support FPXX. */
15749 mips_opts.fp = 32;
15750 /* fall-through. */
919731af 15751 case ISA_MIPS2:
15752 case ISA_MIPS32:
15753 case ISA_MIPS32R2:
15754 case ISA_MIPS32R3:
15755 case ISA_MIPS32R5:
15756 mips_opts.gp = 32;
351cdf24
MF
15757 if (mips_opts.fp != 0)
15758 mips_opts.fp = 32;
919731af 15759 break;
7361da2c
AB
15760 case ISA_MIPS32R6:
15761 mips_opts.gp = 32;
15762 mips_opts.fp = 64;
15763 break;
919731af 15764 case ISA_MIPS3:
15765 case ISA_MIPS4:
15766 case ISA_MIPS5:
15767 case ISA_MIPS64:
15768 case ISA_MIPS64R2:
15769 case ISA_MIPS64R3:
15770 case ISA_MIPS64R5:
7361da2c 15771 case ISA_MIPS64R6:
919731af 15772 mips_opts.gp = 64;
351cdf24
MF
15773 if (mips_opts.fp != 0)
15774 {
15775 if (mips_opts.arch == CPU_R5900)
15776 mips_opts.fp = 32;
15777 else
15778 mips_opts.fp = 64;
15779 }
919731af 15780 break;
15781 default:
15782 as_bad (_("unknown ISA level %s"), name + 4);
15783 break;
15784 }
e6559e01 15785 }
919731af 15786
15787 mips_check_options (&mips_opts, FALSE);
15788
15789 mips_check_isa_supports_ases ();
15790 *input_line_pointer = ch;
15791 demand_empty_rest_of_line ();
15792}
15793
15794/* Handle the .module pseudo-op. */
15795
15796static void
15797s_module (int ignore ATTRIBUTE_UNUSED)
15798{
15799 char *name = input_line_pointer, ch;
15800
15801 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15802 ++input_line_pointer;
15803 ch = *input_line_pointer;
15804 *input_line_pointer = '\0';
15805
15806 if (!file_mips_opts_checked)
252b5132 15807 {
22522f88 15808 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 15809 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15810
15811 /* Update module level settings from mips_opts. */
15812 file_mips_opts = mips_opts;
252b5132 15813 }
919731af 15814 else
15815 as_bad (_(".module is not permitted after generating code"));
15816
252b5132
RH
15817 *input_line_pointer = ch;
15818 demand_empty_rest_of_line ();
15819}
15820
15821/* Handle the .abicalls pseudo-op. I believe this is equivalent to
15822 .option pic2. It means to generate SVR4 PIC calls. */
15823
15824static void
17a2f251 15825s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15826{
15827 mips_pic = SVR4_PIC;
143d77c5 15828 mips_abicalls = TRUE;
4d0d148d
TS
15829
15830 if (g_switch_seen && g_switch_value != 0)
15831 as_warn (_("-G may not be used with SVR4 PIC code"));
15832 g_switch_value = 0;
15833
252b5132
RH
15834 bfd_set_gp_size (stdoutput, 0);
15835 demand_empty_rest_of_line ();
15836}
15837
15838/* Handle the .cpload pseudo-op. This is used when generating SVR4
15839 PIC code. It sets the $gp register for the function based on the
15840 function address, which is in the register named in the argument.
15841 This uses a relocation against _gp_disp, which is handled specially
15842 by the linker. The result is:
15843 lui $gp,%hi(_gp_disp)
15844 addiu $gp,$gp,%lo(_gp_disp)
15845 addu $gp,$gp,.cpload argument
aa6975fb
ILT
15846 The .cpload argument is normally $25 == $t9.
15847
15848 The -mno-shared option changes this to:
bbe506e8
TS
15849 lui $gp,%hi(__gnu_local_gp)
15850 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
15851 and the argument is ignored. This saves an instruction, but the
15852 resulting code is not position independent; it uses an absolute
bbe506e8
TS
15853 address for __gnu_local_gp. Thus code assembled with -mno-shared
15854 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
15855
15856static void
17a2f251 15857s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15858{
15859 expressionS ex;
aa6975fb
ILT
15860 int reg;
15861 int in_shared;
252b5132 15862
919731af 15863 file_mips_check_options ();
15864
6478892d
TS
15865 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15866 .cpload is ignored. */
15867 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15868 {
15869 s_ignore (0);
15870 return;
15871 }
15872
a276b80c
MR
15873 if (mips_opts.mips16)
15874 {
15875 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15876 ignore_rest_of_line ();
15877 return;
15878 }
15879
d3ecfc59 15880 /* .cpload should be in a .set noreorder section. */
252b5132
RH
15881 if (mips_opts.noreorder == 0)
15882 as_warn (_(".cpload not in noreorder section"));
15883
aa6975fb
ILT
15884 reg = tc_get_register (0);
15885
15886 /* If we need to produce a 64-bit address, we are better off using
15887 the default instruction sequence. */
aed1a261 15888 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 15889
252b5132 15890 ex.X_op = O_symbol;
bbe506e8
TS
15891 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15892 "__gnu_local_gp");
252b5132
RH
15893 ex.X_op_symbol = NULL;
15894 ex.X_add_number = 0;
15895
15896 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 15897 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 15898
8a75745d
MR
15899 mips_mark_labels ();
15900 mips_assembling_insn = TRUE;
15901
584892a6 15902 macro_start ();
67c0d1eb
RS
15903 macro_build_lui (&ex, mips_gp_register);
15904 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 15905 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
15906 if (in_shared)
15907 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15908 mips_gp_register, reg);
584892a6 15909 macro_end ();
252b5132 15910
8a75745d 15911 mips_assembling_insn = FALSE;
252b5132
RH
15912 demand_empty_rest_of_line ();
15913}
15914
6478892d
TS
15915/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15916 .cpsetup $reg1, offset|$reg2, label
15917
15918 If offset is given, this results in:
15919 sd $gp, offset($sp)
956cd1d6 15920 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15921 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15922 daddu $gp, $gp, $reg1
6478892d
TS
15923
15924 If $reg2 is given, this results in:
40fc1451 15925 or $reg2, $gp, $0
956cd1d6 15926 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15927 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15928 daddu $gp, $gp, $reg1
aa6975fb
ILT
15929 $reg1 is normally $25 == $t9.
15930
15931 The -mno-shared option replaces the last three instructions with
15932 lui $gp,%hi(_gp)
54f4ddb3 15933 addiu $gp,$gp,%lo(_gp) */
aa6975fb 15934
6478892d 15935static void
17a2f251 15936s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15937{
15938 expressionS ex_off;
15939 expressionS ex_sym;
15940 int reg1;
6478892d 15941
919731af 15942 file_mips_check_options ();
15943
8586fc66 15944 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
15945 We also need NewABI support. */
15946 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15947 {
15948 s_ignore (0);
15949 return;
15950 }
15951
a276b80c
MR
15952 if (mips_opts.mips16)
15953 {
15954 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15955 ignore_rest_of_line ();
15956 return;
15957 }
15958
6478892d
TS
15959 reg1 = tc_get_register (0);
15960 SKIP_WHITESPACE ();
15961 if (*input_line_pointer != ',')
15962 {
15963 as_bad (_("missing argument separator ',' for .cpsetup"));
15964 return;
15965 }
15966 else
80245285 15967 ++input_line_pointer;
6478892d
TS
15968 SKIP_WHITESPACE ();
15969 if (*input_line_pointer == '$')
80245285
TS
15970 {
15971 mips_cpreturn_register = tc_get_register (0);
15972 mips_cpreturn_offset = -1;
15973 }
6478892d 15974 else
80245285
TS
15975 {
15976 mips_cpreturn_offset = get_absolute_expression ();
15977 mips_cpreturn_register = -1;
15978 }
6478892d
TS
15979 SKIP_WHITESPACE ();
15980 if (*input_line_pointer != ',')
15981 {
15982 as_bad (_("missing argument separator ',' for .cpsetup"));
15983 return;
15984 }
15985 else
f9419b05 15986 ++input_line_pointer;
6478892d 15987 SKIP_WHITESPACE ();
f21f8242 15988 expression (&ex_sym);
6478892d 15989
8a75745d
MR
15990 mips_mark_labels ();
15991 mips_assembling_insn = TRUE;
15992
584892a6 15993 macro_start ();
6478892d
TS
15994 if (mips_cpreturn_register == -1)
15995 {
15996 ex_off.X_op = O_constant;
15997 ex_off.X_add_symbol = NULL;
15998 ex_off.X_op_symbol = NULL;
15999 ex_off.X_add_number = mips_cpreturn_offset;
16000
67c0d1eb 16001 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16002 BFD_RELOC_LO16, SP);
6478892d
TS
16003 }
16004 else
40fc1451 16005 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16006
aed1a261 16007 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16008 {
df58fc94 16009 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16010 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16011 BFD_RELOC_HI16_S);
16012
16013 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16014 mips_gp_register, -1, BFD_RELOC_GPREL16,
16015 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16016
16017 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16018 mips_gp_register, reg1);
16019 }
16020 else
16021 {
16022 expressionS ex;
16023
16024 ex.X_op = O_symbol;
4184909a 16025 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16026 ex.X_op_symbol = NULL;
16027 ex.X_add_number = 0;
6e1304d8 16028
aa6975fb
ILT
16029 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16030 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16031
16032 macro_build_lui (&ex, mips_gp_register);
16033 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16034 mips_gp_register, BFD_RELOC_LO16);
16035 }
f21f8242 16036
584892a6 16037 macro_end ();
6478892d 16038
8a75745d 16039 mips_assembling_insn = FALSE;
6478892d
TS
16040 demand_empty_rest_of_line ();
16041}
16042
16043static void
17a2f251 16044s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16045{
919731af 16046 file_mips_check_options ();
16047
6478892d 16048 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16049 .cplocal is ignored. */
6478892d
TS
16050 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16051 {
16052 s_ignore (0);
16053 return;
16054 }
16055
a276b80c
MR
16056 if (mips_opts.mips16)
16057 {
16058 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16059 ignore_rest_of_line ();
16060 return;
16061 }
16062
6478892d 16063 mips_gp_register = tc_get_register (0);
85b51719 16064 demand_empty_rest_of_line ();
6478892d
TS
16065}
16066
252b5132
RH
16067/* Handle the .cprestore pseudo-op. This stores $gp into a given
16068 offset from $sp. The offset is remembered, and after making a PIC
16069 call $gp is restored from that location. */
16070
16071static void
17a2f251 16072s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16073{
16074 expressionS ex;
252b5132 16075
919731af 16076 file_mips_check_options ();
16077
6478892d 16078 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16079 .cprestore is ignored. */
6478892d 16080 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16081 {
16082 s_ignore (0);
16083 return;
16084 }
16085
a276b80c
MR
16086 if (mips_opts.mips16)
16087 {
16088 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16089 ignore_rest_of_line ();
16090 return;
16091 }
16092
252b5132 16093 mips_cprestore_offset = get_absolute_expression ();
7a621144 16094 mips_cprestore_valid = 1;
252b5132
RH
16095
16096 ex.X_op = O_constant;
16097 ex.X_add_symbol = NULL;
16098 ex.X_op_symbol = NULL;
16099 ex.X_add_number = mips_cprestore_offset;
16100
8a75745d
MR
16101 mips_mark_labels ();
16102 mips_assembling_insn = TRUE;
16103
584892a6 16104 macro_start ();
67c0d1eb
RS
16105 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16106 SP, HAVE_64BIT_ADDRESSES);
584892a6 16107 macro_end ();
252b5132 16108
8a75745d 16109 mips_assembling_insn = FALSE;
252b5132
RH
16110 demand_empty_rest_of_line ();
16111}
16112
6478892d 16113/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16114 was given in the preceding .cpsetup, it results in:
6478892d 16115 ld $gp, offset($sp)
76b3015f 16116
6478892d 16117 If a register $reg2 was given there, it results in:
40fc1451 16118 or $gp, $reg2, $0 */
54f4ddb3 16119
6478892d 16120static void
17a2f251 16121s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16122{
16123 expressionS ex;
6478892d 16124
919731af 16125 file_mips_check_options ();
16126
6478892d
TS
16127 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16128 We also need NewABI support. */
16129 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16130 {
16131 s_ignore (0);
16132 return;
16133 }
16134
a276b80c
MR
16135 if (mips_opts.mips16)
16136 {
16137 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16138 ignore_rest_of_line ();
16139 return;
16140 }
16141
8a75745d
MR
16142 mips_mark_labels ();
16143 mips_assembling_insn = TRUE;
16144
584892a6 16145 macro_start ();
6478892d
TS
16146 if (mips_cpreturn_register == -1)
16147 {
16148 ex.X_op = O_constant;
16149 ex.X_add_symbol = NULL;
16150 ex.X_op_symbol = NULL;
16151 ex.X_add_number = mips_cpreturn_offset;
16152
67c0d1eb 16153 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16154 }
16155 else
40fc1451
SD
16156 move_register (mips_gp_register, mips_cpreturn_register);
16157
584892a6 16158 macro_end ();
6478892d 16159
8a75745d 16160 mips_assembling_insn = FALSE;
6478892d
TS
16161 demand_empty_rest_of_line ();
16162}
16163
d0f13682
CLT
16164/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16165 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16166 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16167 debug information or MIPS16 TLS. */
741d6ea8
JM
16168
16169static void
d0f13682
CLT
16170s_tls_rel_directive (const size_t bytes, const char *dirstr,
16171 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16172{
16173 expressionS ex;
16174 char *p;
16175
16176 expression (&ex);
16177
16178 if (ex.X_op != O_symbol)
16179 {
1661c76c 16180 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16181 ignore_rest_of_line ();
16182 }
16183
16184 p = frag_more (bytes);
16185 md_number_to_chars (p, 0, bytes);
d0f13682 16186 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16187 demand_empty_rest_of_line ();
de64cffd 16188 mips_clear_insn_labels ();
741d6ea8
JM
16189}
16190
16191/* Handle .dtprelword. */
16192
16193static void
16194s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16195{
d0f13682 16196 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16197}
16198
16199/* Handle .dtpreldword. */
16200
16201static void
16202s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16203{
d0f13682
CLT
16204 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16205}
16206
16207/* Handle .tprelword. */
16208
16209static void
16210s_tprelword (int ignore ATTRIBUTE_UNUSED)
16211{
16212 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16213}
16214
16215/* Handle .tpreldword. */
16216
16217static void
16218s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16219{
16220 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16221}
16222
6478892d
TS
16223/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16224 code. It sets the offset to use in gp_rel relocations. */
16225
16226static void
17a2f251 16227s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16228{
16229 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16230 We also need NewABI support. */
16231 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16232 {
16233 s_ignore (0);
16234 return;
16235 }
16236
def2e0dd 16237 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16238
16239 demand_empty_rest_of_line ();
16240}
16241
252b5132
RH
16242/* Handle the .gpword pseudo-op. This is used when generating PIC
16243 code. It generates a 32 bit GP relative reloc. */
16244
16245static void
17a2f251 16246s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16247{
a8dbcb85
TS
16248 segment_info_type *si;
16249 struct insn_label_list *l;
252b5132
RH
16250 expressionS ex;
16251 char *p;
16252
16253 /* When not generating PIC code, this is treated as .word. */
16254 if (mips_pic != SVR4_PIC)
16255 {
16256 s_cons (2);
16257 return;
16258 }
16259
a8dbcb85
TS
16260 si = seg_info (now_seg);
16261 l = si->label_list;
7d10b47d 16262 mips_emit_delays ();
252b5132 16263 if (auto_align)
462427c4 16264 mips_align (2, 0, l);
252b5132
RH
16265
16266 expression (&ex);
a1facbec 16267 mips_clear_insn_labels ();
252b5132
RH
16268
16269 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16270 {
1661c76c 16271 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16272 ignore_rest_of_line ();
16273 }
16274
16275 p = frag_more (4);
17a2f251 16276 md_number_to_chars (p, 0, 4);
b34976b6 16277 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16278 BFD_RELOC_GPREL32);
252b5132
RH
16279
16280 demand_empty_rest_of_line ();
16281}
16282
10181a0d 16283static void
17a2f251 16284s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16285{
a8dbcb85
TS
16286 segment_info_type *si;
16287 struct insn_label_list *l;
10181a0d
AO
16288 expressionS ex;
16289 char *p;
16290
16291 /* When not generating PIC code, this is treated as .dword. */
16292 if (mips_pic != SVR4_PIC)
16293 {
16294 s_cons (3);
16295 return;
16296 }
16297
a8dbcb85
TS
16298 si = seg_info (now_seg);
16299 l = si->label_list;
7d10b47d 16300 mips_emit_delays ();
10181a0d 16301 if (auto_align)
462427c4 16302 mips_align (3, 0, l);
10181a0d
AO
16303
16304 expression (&ex);
a1facbec 16305 mips_clear_insn_labels ();
10181a0d
AO
16306
16307 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16308 {
1661c76c 16309 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16310 ignore_rest_of_line ();
16311 }
16312
16313 p = frag_more (8);
17a2f251 16314 md_number_to_chars (p, 0, 8);
a105a300 16315 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16316 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16317
16318 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16319 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16320 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16321
16322 demand_empty_rest_of_line ();
16323}
16324
a3f278e2
CM
16325/* Handle the .ehword pseudo-op. This is used when generating unwinding
16326 tables. It generates a R_MIPS_EH reloc. */
16327
16328static void
16329s_ehword (int ignore ATTRIBUTE_UNUSED)
16330{
16331 expressionS ex;
16332 char *p;
16333
16334 mips_emit_delays ();
16335
16336 expression (&ex);
16337 mips_clear_insn_labels ();
16338
16339 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16340 {
1661c76c 16341 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16342 ignore_rest_of_line ();
16343 }
16344
16345 p = frag_more (4);
16346 md_number_to_chars (p, 0, 4);
16347 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16348 BFD_RELOC_32_PCREL);
a3f278e2
CM
16349
16350 demand_empty_rest_of_line ();
16351}
16352
252b5132
RH
16353/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16354 tables in SVR4 PIC code. */
16355
16356static void
17a2f251 16357s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16358{
252b5132
RH
16359 int reg;
16360
919731af 16361 file_mips_check_options ();
16362
10181a0d
AO
16363 /* This is ignored when not generating SVR4 PIC code. */
16364 if (mips_pic != SVR4_PIC)
252b5132
RH
16365 {
16366 s_ignore (0);
16367 return;
16368 }
16369
8a75745d
MR
16370 mips_mark_labels ();
16371 mips_assembling_insn = TRUE;
16372
252b5132 16373 /* Add $gp to the register named as an argument. */
584892a6 16374 macro_start ();
252b5132 16375 reg = tc_get_register (0);
67c0d1eb 16376 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16377 macro_end ();
252b5132 16378
8a75745d 16379 mips_assembling_insn = FALSE;
bdaaa2e1 16380 demand_empty_rest_of_line ();
252b5132
RH
16381}
16382
16383/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16384 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16385 such as generating jalx instructions when needed. We also make
16386 them odd for the duration of the assembly, in order to generate the
16387 right sort of code. We will make them even in the adjust_symtab
16388 routine, while leaving them marked. This is convenient for the
16389 debugger and the disassembler. The linker knows to make them odd
16390 again. */
16391
16392static void
17a2f251 16393s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16394{
7bb01e2d
MR
16395 file_mips_check_options ();
16396 file_ase_mips16 |= mips_opts.mips16;
16397 file_ase_micromips |= mips_opts.micromips;
16398
df58fc94 16399 mips_mark_labels ();
252b5132
RH
16400
16401 demand_empty_rest_of_line ();
16402}
16403
ba92f887
MR
16404/* Handle the .nan pseudo-op. */
16405
16406static void
16407s_nan (int ignore ATTRIBUTE_UNUSED)
16408{
16409 static const char str_legacy[] = "legacy";
16410 static const char str_2008[] = "2008";
16411 size_t i;
16412
16413 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16414
16415 if (i == sizeof (str_2008) - 1
16416 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16417 mips_nan2008 = 1;
ba92f887
MR
16418 else if (i == sizeof (str_legacy) - 1
16419 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16420 {
16421 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16422 mips_nan2008 = 0;
16423 else
16424 as_bad (_("`%s' does not support legacy NaN"),
16425 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16426 }
ba92f887 16427 else
1661c76c 16428 as_bad (_("bad .nan directive"));
ba92f887
MR
16429
16430 input_line_pointer += i;
16431 demand_empty_rest_of_line ();
16432}
16433
754e2bb9
RS
16434/* Handle a .stab[snd] directive. Ideally these directives would be
16435 implemented in a transparent way, so that removing them would not
16436 have any effect on the generated instructions. However, s_stab
16437 internally changes the section, so in practice we need to decide
16438 now whether the preceding label marks compressed code. We do not
16439 support changing the compression mode of a label after a .stab*
16440 directive, such as in:
16441
16442 foo:
16443 .stabs ...
16444 .set mips16
16445
16446 so the current mode wins. */
252b5132
RH
16447
16448static void
17a2f251 16449s_mips_stab (int type)
252b5132 16450{
754e2bb9 16451 mips_mark_labels ();
252b5132
RH
16452 s_stab (type);
16453}
16454
54f4ddb3 16455/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16456
16457static void
17a2f251 16458s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16459{
16460 char *name;
16461 int c;
16462 symbolS *symbolP;
16463 expressionS exp;
16464
d02603dc 16465 c = get_symbol_name (&name);
252b5132
RH
16466 symbolP = symbol_find_or_make (name);
16467 S_SET_WEAK (symbolP);
16468 *input_line_pointer = c;
16469
d02603dc 16470 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16471
16472 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16473 {
16474 if (S_IS_DEFINED (symbolP))
16475 {
20203fb9 16476 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16477 S_GET_NAME (symbolP));
16478 ignore_rest_of_line ();
16479 return;
16480 }
bdaaa2e1 16481
252b5132
RH
16482 if (*input_line_pointer == ',')
16483 {
16484 ++input_line_pointer;
16485 SKIP_WHITESPACE ();
16486 }
bdaaa2e1 16487
252b5132
RH
16488 expression (&exp);
16489 if (exp.X_op != O_symbol)
16490 {
20203fb9 16491 as_bad (_("bad .weakext directive"));
98d3f06f 16492 ignore_rest_of_line ();
252b5132
RH
16493 return;
16494 }
49309057 16495 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16496 }
16497
16498 demand_empty_rest_of_line ();
16499}
16500
16501/* Parse a register string into a number. Called from the ECOFF code
16502 to parse .frame. The argument is non-zero if this is the frame
16503 register, so that we can record it in mips_frame_reg. */
16504
16505int
17a2f251 16506tc_get_register (int frame)
252b5132 16507{
707bfff6 16508 unsigned int reg;
252b5132
RH
16509
16510 SKIP_WHITESPACE ();
707bfff6
TS
16511 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16512 reg = 0;
252b5132 16513 if (frame)
7a621144
DJ
16514 {
16515 mips_frame_reg = reg != 0 ? reg : SP;
16516 mips_frame_reg_valid = 1;
16517 mips_cprestore_valid = 0;
16518 }
252b5132
RH
16519 return reg;
16520}
16521
16522valueT
17a2f251 16523md_section_align (asection *seg, valueT addr)
252b5132
RH
16524{
16525 int align = bfd_get_section_alignment (stdoutput, seg);
16526
f3ded42a
RS
16527 /* We don't need to align ELF sections to the full alignment.
16528 However, Irix 5 may prefer that we align them at least to a 16
16529 byte boundary. We don't bother to align the sections if we
16530 are targeted for an embedded system. */
16531 if (strncmp (TARGET_OS, "elf", 3) == 0)
16532 return addr;
16533 if (align > 4)
16534 align = 4;
252b5132 16535
8d3842cd 16536 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
16537}
16538
16539/* Utility routine, called from above as well. If called while the
16540 input file is still being read, it's only an approximation. (For
16541 example, a symbol may later become defined which appeared to be
16542 undefined earlier.) */
16543
16544static int
17a2f251 16545nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
16546{
16547 if (sym == 0)
16548 return 0;
16549
4d0d148d 16550 if (g_switch_value > 0)
252b5132
RH
16551 {
16552 const char *symname;
16553 int change;
16554
c9914766 16555 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
16556 register. It can be if it is smaller than the -G size or if
16557 it is in the .sdata or .sbss section. Certain symbols can
c9914766 16558 not be referenced off the $gp, although it appears as though
252b5132
RH
16559 they can. */
16560 symname = S_GET_NAME (sym);
16561 if (symname != (const char *) NULL
16562 && (strcmp (symname, "eprol") == 0
16563 || strcmp (symname, "etext") == 0
16564 || strcmp (symname, "_gp") == 0
16565 || strcmp (symname, "edata") == 0
16566 || strcmp (symname, "_fbss") == 0
16567 || strcmp (symname, "_fdata") == 0
16568 || strcmp (symname, "_ftext") == 0
16569 || strcmp (symname, "end") == 0
16570 || strcmp (symname, "_gp_disp") == 0))
16571 change = 1;
16572 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16573 && (0
16574#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
16575 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16576 && (symbol_get_obj (sym)->ecoff_extern_size
16577 <= g_switch_value))
252b5132
RH
16578#endif
16579 /* We must defer this decision until after the whole
16580 file has been read, since there might be a .extern
16581 after the first use of this symbol. */
16582 || (before_relaxing
16583#ifndef NO_ECOFF_DEBUGGING
49309057 16584 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
16585#endif
16586 && S_GET_VALUE (sym) == 0)
16587 || (S_GET_VALUE (sym) != 0
16588 && S_GET_VALUE (sym) <= g_switch_value)))
16589 change = 0;
16590 else
16591 {
16592 const char *segname;
16593
16594 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 16595 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
16596 && strcmp (segname, ".lit4") != 0);
16597 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
16598 && strcmp (segname, ".sbss") != 0
16599 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
16600 && strncmp (segname, ".sbss.", 6) != 0
16601 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 16602 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
16603 }
16604 return change;
16605 }
16606 else
c9914766 16607 /* We are not optimizing for the $gp register. */
252b5132
RH
16608 return 1;
16609}
16610
5919d012
RS
16611
16612/* Return true if the given symbol should be considered local for SVR4 PIC. */
16613
16614static bfd_boolean
17a2f251 16615pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
16616{
16617 asection *symsec;
5919d012
RS
16618
16619 /* Handle the case of a symbol equated to another symbol. */
16620 while (symbol_equated_reloc_p (sym))
16621 {
16622 symbolS *n;
16623
5f0fe04b 16624 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
16625 n = symbol_get_value_expression (sym)->X_add_symbol;
16626 if (n == sym)
16627 break;
16628 sym = n;
16629 }
16630
df1f3cda
DD
16631 if (symbol_section_p (sym))
16632 return TRUE;
16633
5919d012
RS
16634 symsec = S_GET_SEGMENT (sym);
16635
5919d012 16636 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
16637 return (!bfd_is_und_section (symsec)
16638 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
16639 && !bfd_is_com_section (symsec)
16640 && !s_is_linkonce (sym, segtype)
5919d012 16641 /* A global or weak symbol is treated as external. */
f3ded42a 16642 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
16643}
16644
16645
252b5132
RH
16646/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16647 extended opcode. SEC is the section the frag is in. */
16648
16649static int
17a2f251 16650mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
16651{
16652 int type;
3ccad066 16653 const struct mips_int_operand *operand;
252b5132 16654 offsetT val;
252b5132 16655 segT symsec;
98aa84af 16656 fragS *sym_frag;
252b5132
RH
16657
16658 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16659 return 0;
16660 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16661 return 1;
16662
16663 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16664 operand = mips16_immed_operand (type, FALSE);
252b5132 16665
98aa84af 16666 sym_frag = symbol_get_frag (fragp->fr_symbol);
ac62c346 16667 val = S_GET_VALUE (fragp->fr_symbol);
98aa84af 16668 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 16669
3ccad066 16670 if (operand->root.type == OP_PCREL)
252b5132 16671 {
3ccad066 16672 const struct mips_pcrel_operand *pcrel_op;
252b5132 16673 addressT addr;
3ccad066 16674 offsetT maxtiny;
252b5132
RH
16675
16676 /* We won't have the section when we are called from
16677 mips_relax_frag. However, we will always have been called
16678 from md_estimate_size_before_relax first. If this is a
16679 branch to a different section, we mark it as such. If SEC is
16680 NULL, and the frag is not marked, then it must be a branch to
16681 the same section. */
3ccad066 16682 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
16683 if (sec == NULL)
16684 {
16685 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16686 return 1;
16687 }
16688 else
16689 {
98aa84af 16690 /* Must have been called from md_estimate_size_before_relax. */
252b5132
RH
16691 if (symsec != sec)
16692 {
16693 fragp->fr_subtype =
16694 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16695
16696 /* FIXME: We should support this, and let the linker
16697 catch branches and loads that are out of range. */
16698 as_bad_where (fragp->fr_file, fragp->fr_line,
16699 _("unsupported PC relative reference to different section"));
16700
16701 return 1;
16702 }
98aa84af
AM
16703 if (fragp != sym_frag && sym_frag->fr_address == 0)
16704 /* Assume non-extended on the first relaxation pass.
16705 The address we have calculated will be bogus if this is
16706 a forward branch to another frag, as the forward frag
16707 will have fr_address == 0. */
16708 return 0;
252b5132
RH
16709 }
16710
16711 /* In this case, we know for sure that the symbol fragment is in
98aa84af
AM
16712 the same section. If the relax_marker of the symbol fragment
16713 differs from the relax_marker of this fragment, we have not
16714 yet adjusted the symbol fragment fr_address. We want to add
252b5132
RH
16715 in STRETCH in order to get a better estimate of the address.
16716 This particularly matters because of the shift bits. */
16717 if (stretch != 0
98aa84af 16718 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
16719 {
16720 fragS *f;
16721
16722 /* Adjust stretch for any alignment frag. Note that if have
16723 been expanding the earlier code, the symbol may be
16724 defined in what appears to be an earlier frag. FIXME:
16725 This doesn't handle the fr_subtype field, which specifies
16726 a maximum number of bytes to skip when doing an
16727 alignment. */
98aa84af 16728 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
16729 {
16730 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16731 {
16732 if (stretch < 0)
16733 stretch = - ((- stretch)
16734 & ~ ((1 << (int) f->fr_offset) - 1));
16735 else
16736 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16737 if (stretch == 0)
16738 break;
16739 }
16740 }
16741 if (f != NULL)
16742 val += stretch;
16743 }
16744
16745 addr = fragp->fr_address + fragp->fr_fix;
16746
16747 /* The base address rules are complicated. The base address of
16748 a branch is the following instruction. The base address of a
16749 PC relative load or add is the instruction itself, but if it
16750 is in a delay slot (in which case it can not be extended) use
16751 the address of the instruction whose delay slot it is in. */
3ccad066 16752 if (pcrel_op->include_isa_bit)
252b5132
RH
16753 {
16754 addr += 2;
16755
16756 /* If we are currently assuming that this frag should be
16757 extended, then, the current address is two bytes
bdaaa2e1 16758 higher. */
252b5132
RH
16759 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16760 addr += 2;
16761
16762 /* Ignore the low bit in the target, since it will be set
16763 for a text label. */
3ccad066 16764 val &= -2;
252b5132
RH
16765 }
16766 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16767 addr -= 4;
16768 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16769 addr -= 2;
16770
3ccad066 16771 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
16772
16773 /* If any of the shifted bits are set, we must use an extended
16774 opcode. If the address depends on the size of this
16775 instruction, this can lead to a loop, so we arrange to always
16776 use an extended opcode. We only check this when we are in
16777 the main relaxation loop, when SEC is NULL. */
3ccad066 16778 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
252b5132
RH
16779 {
16780 fragp->fr_subtype =
16781 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16782 return 1;
16783 }
16784
16785 /* If we are about to mark a frag as extended because the value
3ccad066
RS
16786 is precisely the next value above maxtiny, then there is a
16787 chance of an infinite loop as in the following code:
252b5132
RH
16788 la $4,foo
16789 .skip 1020
16790 .align 2
16791 foo:
16792 In this case when the la is extended, foo is 0x3fc bytes
16793 away, so the la can be shrunk, but then foo is 0x400 away, so
16794 the la must be extended. To avoid this loop, we mark the
16795 frag as extended if it was small, and is about to become
3ccad066
RS
16796 extended with the next value above maxtiny. */
16797 maxtiny = mips_int_operand_max (operand);
16798 if (val == maxtiny + (1 << operand->shift)
252b5132
RH
16799 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16800 && sec == NULL)
16801 {
16802 fragp->fr_subtype =
16803 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16804 return 1;
16805 }
16806 }
16807 else if (symsec != absolute_section && sec != NULL)
16808 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16809
3ccad066 16810 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
16811}
16812
4a6a3df4
AO
16813/* Compute the length of a branch sequence, and adjust the
16814 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16815 worst-case length is computed, with UPDATE being used to indicate
16816 whether an unconditional (-1), branch-likely (+1) or regular (0)
16817 branch is to be computed. */
16818static int
17a2f251 16819relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 16820{
b34976b6 16821 bfd_boolean toofar;
4a6a3df4
AO
16822 int length;
16823
16824 if (fragp
16825 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16826 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
16827 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16828 {
16829 addressT addr;
16830 offsetT val;
16831
16832 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16833
16834 addr = fragp->fr_address + fragp->fr_fix + 4;
16835
16836 val -= addr;
16837
16838 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16839 }
4a6a3df4 16840 else
c1f61bd2
MR
16841 /* If the symbol is not defined or it's in a different segment,
16842 we emit the long sequence. */
b34976b6 16843 toofar = TRUE;
4a6a3df4
AO
16844
16845 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16846 fragp->fr_subtype
66b3e8da
MR
16847 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16848 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
16849 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16850 RELAX_BRANCH_LINK (fragp->fr_subtype),
16851 toofar);
16852
16853 length = 4;
16854 if (toofar)
16855 {
16856 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16857 length += 8;
16858
16859 if (mips_pic != NO_PIC)
16860 {
16861 /* Additional space for PIC loading of target address. */
16862 length += 8;
16863 if (mips_opts.isa == ISA_MIPS1)
16864 /* Additional space for $at-stabilizing nop. */
16865 length += 4;
16866 }
16867
16868 /* If branch is conditional. */
16869 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16870 length += 8;
16871 }
b34976b6 16872
4a6a3df4
AO
16873 return length;
16874}
16875
df58fc94
RS
16876/* Compute the length of a branch sequence, and adjust the
16877 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16878 worst-case length is computed, with UPDATE being used to indicate
16879 whether an unconditional (-1), or regular (0) branch is to be
16880 computed. */
16881
16882static int
16883relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16884{
16885 bfd_boolean toofar;
16886 int length;
16887
16888 if (fragp
16889 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16890 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
16891 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16892 {
16893 addressT addr;
16894 offsetT val;
16895
16896 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16897 /* Ignore the low bit in the target, since it will be set
16898 for a text label. */
16899 if ((val & 1) != 0)
16900 --val;
16901
16902 addr = fragp->fr_address + fragp->fr_fix + 4;
16903
16904 val -= addr;
16905
16906 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16907 }
df58fc94 16908 else
c1f61bd2
MR
16909 /* If the symbol is not defined or it's in a different segment,
16910 we emit the long sequence. */
df58fc94
RS
16911 toofar = TRUE;
16912
16913 if (fragp && update
16914 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16915 fragp->fr_subtype = (toofar
16916 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16917 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16918
16919 length = 4;
16920 if (toofar)
16921 {
16922 bfd_boolean compact_known = fragp != NULL;
16923 bfd_boolean compact = FALSE;
16924 bfd_boolean uncond;
16925
16926 if (compact_known)
16927 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16928 if (fragp)
16929 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16930 else
16931 uncond = update < 0;
16932
16933 /* If label is out of range, we turn branch <br>:
16934
16935 <br> label # 4 bytes
16936 0:
16937
16938 into:
16939
16940 j label # 4 bytes
16941 nop # 2 bytes if compact && !PIC
16942 0:
16943 */
16944 if (mips_pic == NO_PIC && (!compact_known || compact))
16945 length += 2;
16946
16947 /* If assembling PIC code, we further turn:
16948
16949 j label # 4 bytes
16950
16951 into:
16952
16953 lw/ld at, %got(label)(gp) # 4 bytes
16954 d/addiu at, %lo(label) # 4 bytes
16955 jr/c at # 2 bytes
16956 */
16957 if (mips_pic != NO_PIC)
16958 length += 6;
16959
16960 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16961
16962 <brneg> 0f # 4 bytes
16963 nop # 2 bytes if !compact
16964 */
16965 if (!uncond)
16966 length += (compact_known && compact) ? 4 : 6;
16967 }
16968
16969 return length;
16970}
16971
16972/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16973 bit accordingly. */
16974
16975static int
16976relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16977{
16978 bfd_boolean toofar;
16979
df58fc94
RS
16980 if (fragp
16981 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16982 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
16983 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16984 {
16985 addressT addr;
16986 offsetT val;
16987 int type;
16988
16989 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16990 /* Ignore the low bit in the target, since it will be set
16991 for a text label. */
16992 if ((val & 1) != 0)
16993 --val;
16994
16995 /* Assume this is a 2-byte branch. */
16996 addr = fragp->fr_address + fragp->fr_fix + 2;
16997
16998 /* We try to avoid the infinite loop by not adding 2 more bytes for
16999 long branches. */
17000
17001 val -= addr;
17002
17003 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17004 if (type == 'D')
17005 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17006 else if (type == 'E')
17007 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17008 else
17009 abort ();
17010 }
17011 else
17012 /* If the symbol is not defined or it's in a different segment,
17013 we emit a normal 32-bit branch. */
17014 toofar = TRUE;
17015
17016 if (fragp && update
17017 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17018 fragp->fr_subtype
17019 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17020 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17021
17022 if (toofar)
17023 return 4;
17024
17025 return 2;
17026}
17027
252b5132
RH
17028/* Estimate the size of a frag before relaxing. Unless this is the
17029 mips16, we are not really relaxing here, and the final size is
17030 encoded in the subtype information. For the mips16, we have to
17031 decide whether we are using an extended opcode or not. */
17032
252b5132 17033int
17a2f251 17034md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17035{
5919d012 17036 int change;
252b5132 17037
4a6a3df4
AO
17038 if (RELAX_BRANCH_P (fragp->fr_subtype))
17039 {
17040
b34976b6
AM
17041 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17042
4a6a3df4
AO
17043 return fragp->fr_var;
17044 }
17045
252b5132 17046 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17047 /* We don't want to modify the EXTENDED bit here; it might get us
17048 into infinite loops. We change it only in mips_relax_frag(). */
17049 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17050
df58fc94
RS
17051 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17052 {
17053 int length = 4;
17054
17055 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17056 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17057 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17058 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17059 fragp->fr_var = length;
17060
17061 return length;
17062 }
17063
252b5132 17064 if (mips_pic == NO_PIC)
5919d012 17065 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17066 else if (mips_pic == SVR4_PIC)
5919d012 17067 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17068 else if (mips_pic == VXWORKS_PIC)
17069 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17070 change = 0;
252b5132
RH
17071 else
17072 abort ();
17073
17074 if (change)
17075 {
4d7206a2 17076 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17077 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17078 }
4d7206a2
RS
17079 else
17080 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17081}
17082
17083/* This is called to see whether a reloc against a defined symbol
de7e6852 17084 should be converted into a reloc against a section. */
252b5132
RH
17085
17086int
17a2f251 17087mips_fix_adjustable (fixS *fixp)
252b5132 17088{
252b5132
RH
17089 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17090 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17091 return 0;
a161fe53 17092
252b5132
RH
17093 if (fixp->fx_addsy == NULL)
17094 return 1;
a161fe53 17095
2f0c68f2
CM
17096 /* Allow relocs used for EH tables. */
17097 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17098 return 1;
17099
de7e6852
RS
17100 /* If symbol SYM is in a mergeable section, relocations of the form
17101 SYM + 0 can usually be made section-relative. The mergeable data
17102 is then identified by the section offset rather than by the symbol.
17103
17104 However, if we're generating REL LO16 relocations, the offset is split
17105 between the LO16 and parterning high part relocation. The linker will
17106 need to recalculate the complete offset in order to correctly identify
17107 the merge data.
17108
17109 The linker has traditionally not looked for the parterning high part
17110 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17111 placed anywhere. Rather than break backwards compatibility by changing
17112 this, it seems better not to force the issue, and instead keep the
17113 original symbol. This will work with either linker behavior. */
738e5348 17114 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17115 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17116 && HAVE_IN_PLACE_ADDENDS
17117 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17118 return 0;
17119
ce70d90a 17120 /* There is no place to store an in-place offset for JALR relocations.
2de39019
CM
17121 Likewise an in-range offset of limited PC-relative relocations may
17122 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17123 start address of the symbol's containing section.
17124
17125 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17126 section relative to allow linker relaxations to be performed later on. */
17127 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
2de39019
CM
17128 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17129 || jalr_reloc_p (fixp->fx_r_type)))
1180b5a4
RS
17130 return 0;
17131
b314ec0e
RS
17132 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17133 to a floating-point stub. The same is true for non-R_MIPS16_26
17134 relocations against MIPS16 functions; in this case, the stub becomes
17135 the function's canonical address.
17136
17137 Floating-point stubs are stored in unique .mips16.call.* or
17138 .mips16.fn.* sections. If a stub T for function F is in section S,
17139 the first relocation in section S must be against F; this is how the
17140 linker determines the target function. All relocations that might
17141 resolve to T must also be against F. We therefore have the following
17142 restrictions, which are given in an intentionally-redundant way:
17143
17144 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17145 symbols.
17146
17147 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17148 if that stub might be used.
17149
17150 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17151 symbols.
17152
17153 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17154 that stub might be used.
17155
17156 There is a further restriction:
17157
df58fc94
RS
17158 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17159 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17160 targets with in-place addends; the relocation field cannot
b314ec0e
RS
17161 encode the low bit.
17162
df58fc94
RS
17163 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17164 against a MIPS16 symbol. We deal with (5) by by not reducing any
17165 such relocations on REL targets.
b314ec0e
RS
17166
17167 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17168 relocation against some symbol R, no relocation against R may be
17169 reduced. (Note that this deals with (2) as well as (1) because
17170 relocations against global symbols will never be reduced on ELF
17171 targets.) This approach is a little simpler than trying to detect
17172 stub sections, and gives the "all or nothing" per-symbol consistency
17173 that we have for MIPS16 symbols. */
f3ded42a 17174 if (fixp->fx_subsy == NULL
30c09090 17175 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
df58fc94
RS
17176 || *symbol_get_tc (fixp->fx_addsy)
17177 || (HAVE_IN_PLACE_ADDENDS
17178 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17179 && jmp_reloc_p (fixp->fx_r_type))))
252b5132 17180 return 0;
a161fe53 17181
252b5132
RH
17182 return 1;
17183}
17184
17185/* Translate internal representation of relocation info to BFD target
17186 format. */
17187
17188arelent **
17a2f251 17189tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17190{
17191 static arelent *retval[4];
17192 arelent *reloc;
17193 bfd_reloc_code_real_type code;
17194
4b0cff4e 17195 memset (retval, 0, sizeof(retval));
325801bd
TS
17196 reloc = retval[0] = XCNEW (arelent);
17197 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17198 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17199 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17200
bad36eac
DJ
17201 if (fixp->fx_pcrel)
17202 {
df58fc94
RS
17203 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17204 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17205 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17206 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17207 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17208 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17209 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17210 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17211 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17212 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17213 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17214
17215 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17216 Relocations want only the symbol offset. */
17217 reloc->addend = fixp->fx_addnumber + reloc->address;
bad36eac
DJ
17218 }
17219 else
17220 reloc->addend = fixp->fx_addnumber;
252b5132 17221
438c16b8
TS
17222 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17223 entry to be used in the relocation's section offset. */
17224 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17225 {
17226 reloc->address = reloc->addend;
17227 reloc->addend = 0;
17228 }
17229
252b5132 17230 code = fixp->fx_r_type;
252b5132 17231
bad36eac 17232 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17233 if (reloc->howto == NULL)
17234 {
17235 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17236 _("cannot represent %s relocation in this object file"
17237 " format"),
252b5132
RH
17238 bfd_get_reloc_code_name (code));
17239 retval[0] = NULL;
17240 }
17241
17242 return retval;
17243}
17244
17245/* Relax a machine dependent frag. This returns the amount by which
17246 the current size of the frag should change. */
17247
17248int
17a2f251 17249mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17250{
4a6a3df4
AO
17251 if (RELAX_BRANCH_P (fragp->fr_subtype))
17252 {
17253 offsetT old_var = fragp->fr_var;
b34976b6
AM
17254
17255 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17256
17257 return fragp->fr_var - old_var;
17258 }
17259
df58fc94
RS
17260 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17261 {
17262 offsetT old_var = fragp->fr_var;
17263 offsetT new_var = 4;
17264
17265 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17266 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17267 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17268 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17269 fragp->fr_var = new_var;
17270
17271 return new_var - old_var;
17272 }
17273
252b5132
RH
17274 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17275 return 0;
17276
c4e7957c 17277 if (mips16_extended_frag (fragp, NULL, stretch))
252b5132
RH
17278 {
17279 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17280 return 0;
17281 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17282 return 2;
17283 }
17284 else
17285 {
17286 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17287 return 0;
17288 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17289 return -2;
17290 }
17291
17292 return 0;
17293}
17294
17295/* Convert a machine dependent frag. */
17296
17297void
17a2f251 17298md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17299{
4a6a3df4
AO
17300 if (RELAX_BRANCH_P (fragp->fr_subtype))
17301 {
4d68580a 17302 char *buf;
4a6a3df4
AO
17303 unsigned long insn;
17304 expressionS exp;
17305 fixS *fixp;
b34976b6 17306
4d68580a
RS
17307 buf = fragp->fr_literal + fragp->fr_fix;
17308 insn = read_insn (buf);
b34976b6 17309
4a6a3df4
AO
17310 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17311 {
17312 /* We generate a fixup instead of applying it right now
17313 because, if there are linker relaxations, we're going to
17314 need the relocations. */
17315 exp.X_op = O_symbol;
17316 exp.X_add_symbol = fragp->fr_symbol;
17317 exp.X_add_number = fragp->fr_offset;
17318
4d68580a
RS
17319 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17320 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17321 fixp->fx_file = fragp->fr_file;
17322 fixp->fx_line = fragp->fr_line;
b34976b6 17323
4d68580a 17324 buf = write_insn (buf, insn);
4a6a3df4
AO
17325 }
17326 else
17327 {
17328 int i;
17329
17330 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17331 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17332
17333 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17334 goto uncond;
17335
17336 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17337 {
17338 /* Reverse the branch. */
17339 switch ((insn >> 28) & 0xf)
17340 {
17341 case 4:
56d438b1
CF
17342 if ((insn & 0xff000000) == 0x47000000
17343 || (insn & 0xff600000) == 0x45600000)
17344 {
17345 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17346 reversed by tweaking bit 23. */
17347 insn ^= 0x00800000;
17348 }
17349 else
17350 {
17351 /* bc[0-3][tf]l? instructions can have the condition
17352 reversed by tweaking a single TF bit, and their
17353 opcodes all have 0x4???????. */
17354 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17355 insn ^= 0x00010000;
17356 }
4a6a3df4
AO
17357 break;
17358
17359 case 0:
17360 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17361 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17362 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17363 insn ^= 0x00010000;
17364 break;
b34976b6 17365
4a6a3df4
AO
17366 case 1:
17367 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17368 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17369 insn ^= 0x04000000;
17370 break;
17371
17372 default:
17373 abort ();
17374 }
17375 }
17376
17377 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17378 {
17379 /* Clear the and-link bit. */
9c2799c2 17380 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17381
54f4ddb3
TS
17382 /* bltzal 0x04100000 bgezal 0x04110000
17383 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17384 insn &= ~0x00100000;
17385 }
17386
17387 /* Branch over the branch (if the branch was likely) or the
17388 full jump (not likely case). Compute the offset from the
17389 current instruction to branch to. */
17390 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17391 i = 16;
17392 else
17393 {
17394 /* How many bytes in instructions we've already emitted? */
4d68580a 17395 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17396 /* How many bytes in instructions from here to the end? */
17397 i = fragp->fr_var - i;
17398 }
17399 /* Convert to instruction count. */
17400 i >>= 2;
17401 /* Branch counts from the next instruction. */
b34976b6 17402 i--;
4a6a3df4
AO
17403 insn |= i;
17404 /* Branch over the jump. */
4d68580a 17405 buf = write_insn (buf, insn);
4a6a3df4 17406
54f4ddb3 17407 /* nop */
4d68580a 17408 buf = write_insn (buf, 0);
4a6a3df4
AO
17409
17410 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17411 {
17412 /* beql $0, $0, 2f */
17413 insn = 0x50000000;
17414 /* Compute the PC offset from the current instruction to
17415 the end of the variable frag. */
17416 /* How many bytes in instructions we've already emitted? */
4d68580a 17417 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17418 /* How many bytes in instructions from here to the end? */
17419 i = fragp->fr_var - i;
17420 /* Convert to instruction count. */
17421 i >>= 2;
17422 /* Don't decrement i, because we want to branch over the
17423 delay slot. */
4a6a3df4 17424 insn |= i;
4a6a3df4 17425
4d68580a
RS
17426 buf = write_insn (buf, insn);
17427 buf = write_insn (buf, 0);
4a6a3df4
AO
17428 }
17429
17430 uncond:
17431 if (mips_pic == NO_PIC)
17432 {
17433 /* j or jal. */
17434 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17435 ? 0x0c000000 : 0x08000000);
17436 exp.X_op = O_symbol;
17437 exp.X_add_symbol = fragp->fr_symbol;
17438 exp.X_add_number = fragp->fr_offset;
17439
4d68580a
RS
17440 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17441 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17442 fixp->fx_file = fragp->fr_file;
17443 fixp->fx_line = fragp->fr_line;
17444
4d68580a 17445 buf = write_insn (buf, insn);
4a6a3df4
AO
17446 }
17447 else
17448 {
66b3e8da
MR
17449 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17450
4a6a3df4 17451 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17452 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17453 insn |= at << OP_SH_RT;
4a6a3df4
AO
17454 exp.X_op = O_symbol;
17455 exp.X_add_symbol = fragp->fr_symbol;
17456 exp.X_add_number = fragp->fr_offset;
17457
17458 if (fragp->fr_offset)
17459 {
17460 exp.X_add_symbol = make_expr_symbol (&exp);
17461 exp.X_add_number = 0;
17462 }
17463
4d68580a
RS
17464 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17465 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
17466 fixp->fx_file = fragp->fr_file;
17467 fixp->fx_line = fragp->fr_line;
17468
4d68580a 17469 buf = write_insn (buf, insn);
b34976b6 17470
4a6a3df4 17471 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
17472 /* nop */
17473 buf = write_insn (buf, 0);
4a6a3df4
AO
17474
17475 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
17476 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17477 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 17478
4d68580a
RS
17479 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17480 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
17481 fixp->fx_file = fragp->fr_file;
17482 fixp->fx_line = fragp->fr_line;
b34976b6 17483
4d68580a 17484 buf = write_insn (buf, insn);
4a6a3df4
AO
17485
17486 /* j(al)r $at. */
17487 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 17488 insn = 0x0000f809;
4a6a3df4 17489 else
66b3e8da
MR
17490 insn = 0x00000008;
17491 insn |= at << OP_SH_RS;
4a6a3df4 17492
4d68580a 17493 buf = write_insn (buf, insn);
4a6a3df4
AO
17494 }
17495 }
17496
4a6a3df4 17497 fragp->fr_fix += fragp->fr_var;
4d68580a 17498 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
17499 return;
17500 }
17501
df58fc94
RS
17502 /* Relax microMIPS branches. */
17503 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17504 {
4d68580a 17505 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17506 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17507 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17508 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 17509 bfd_boolean short_ds;
df58fc94
RS
17510 unsigned long insn;
17511 expressionS exp;
17512 fixS *fixp;
17513
17514 exp.X_op = O_symbol;
17515 exp.X_add_symbol = fragp->fr_symbol;
17516 exp.X_add_number = fragp->fr_offset;
17517
17518 fragp->fr_fix += fragp->fr_var;
17519
17520 /* Handle 16-bit branches that fit or are forced to fit. */
17521 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17522 {
17523 /* We generate a fixup instead of applying it right now,
17524 because if there is linker relaxation, we're going to
17525 need the relocations. */
17526 if (type == 'D')
4d68580a 17527 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17528 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17529 else if (type == 'E')
4d68580a 17530 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17531 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17532 else
17533 abort ();
17534
17535 fixp->fx_file = fragp->fr_file;
17536 fixp->fx_line = fragp->fr_line;
17537
17538 /* These relocations can have an addend that won't fit in
17539 2 octets. */
17540 fixp->fx_no_overflow = 1;
17541
17542 return;
17543 }
17544
2309ddf2 17545 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
17546 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17547 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17548 {
17549 /* We generate a fixup instead of applying it right now,
17550 because if there is linker relaxation, we're going to
17551 need the relocations. */
4d68580a
RS
17552 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17553 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17554 fixp->fx_file = fragp->fr_file;
17555 fixp->fx_line = fragp->fr_line;
17556
17557 if (type == 0)
17558 return;
17559 }
17560
17561 /* Relax 16-bit branches to 32-bit branches. */
17562 if (type != 0)
17563 {
4d68580a 17564 insn = read_compressed_insn (buf, 2);
df58fc94
RS
17565
17566 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17567 insn = 0x94000000; /* beq */
17568 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17569 {
17570 unsigned long regno;
17571
17572 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17573 regno = micromips_to_32_reg_d_map [regno];
17574 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17575 insn |= regno << MICROMIPSOP_SH_RS;
17576 }
17577 else
17578 abort ();
17579
17580 /* Nothing else to do, just write it out. */
17581 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17582 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17583 {
4d68580a
RS
17584 buf = write_compressed_insn (buf, insn, 4);
17585 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17586 return;
17587 }
17588 }
17589 else
4d68580a 17590 insn = read_compressed_insn (buf, 4);
df58fc94
RS
17591
17592 /* Relax 32-bit branches to a sequence of instructions. */
17593 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17594 _("relaxed out-of-range branch into a jump"));
df58fc94 17595
2309ddf2
MR
17596 /* Set the short-delay-slot bit. */
17597 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
17598
17599 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17600 {
17601 symbolS *l;
17602
17603 /* Reverse the branch. */
17604 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17605 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17606 insn ^= 0x20000000;
17607 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17608 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17609 || (insn & 0xffe00000) == 0x40800000 /* blez */
17610 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17611 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17612 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17613 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17614 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17615 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17616 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17617 insn ^= 0x00400000;
17618 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17619 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17620 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17621 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17622 insn ^= 0x00200000;
56d438b1
CF
17623 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17624 BNZ.df */
17625 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17626 BNZ.V */
17627 insn ^= 0x00800000;
df58fc94
RS
17628 else
17629 abort ();
17630
17631 if (al)
17632 {
17633 /* Clear the and-link and short-delay-slot bits. */
17634 gas_assert ((insn & 0xfda00000) == 0x40200000);
17635
17636 /* bltzal 0x40200000 bgezal 0x40600000 */
17637 /* bltzals 0x42200000 bgezals 0x42600000 */
17638 insn &= ~0x02200000;
17639 }
17640
17641 /* Make a label at the end for use with the branch. */
17642 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17643 micromips_label_inc ();
f3ded42a 17644 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
17645
17646 /* Refer to it. */
4d68580a
RS
17647 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17648 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17649 fixp->fx_file = fragp->fr_file;
17650 fixp->fx_line = fragp->fr_line;
17651
17652 /* Branch over the jump. */
4d68580a 17653 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17654 if (!compact)
4d68580a
RS
17655 /* nop */
17656 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17657 }
17658
17659 if (mips_pic == NO_PIC)
17660 {
2309ddf2
MR
17661 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17662
df58fc94
RS
17663 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17664 insn = al ? jal : 0xd4000000;
17665
4d68580a
RS
17666 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17667 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
17668 fixp->fx_file = fragp->fr_file;
17669 fixp->fx_line = fragp->fr_line;
17670
4d68580a 17671 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17672 if (compact)
4d68580a
RS
17673 /* nop */
17674 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17675 }
17676 else
17677 {
17678 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
17679 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17680 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
17681
17682 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17683 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17684 insn |= at << MICROMIPSOP_SH_RT;
17685
17686 if (exp.X_add_number)
17687 {
17688 exp.X_add_symbol = make_expr_symbol (&exp);
17689 exp.X_add_number = 0;
17690 }
17691
4d68580a
RS
17692 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17693 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
17694 fixp->fx_file = fragp->fr_file;
17695 fixp->fx_line = fragp->fr_line;
17696
4d68580a 17697 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17698
17699 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17700 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17701 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17702
4d68580a
RS
17703 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17704 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
17705 fixp->fx_file = fragp->fr_file;
17706 fixp->fx_line = fragp->fr_line;
17707
4d68580a 17708 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17709
17710 /* jr/jrc/jalr/jalrs $at */
17711 insn = al ? jalr : jr;
17712 insn |= at << MICROMIPSOP_SH_MJ;
17713
4d68580a 17714 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
17715 }
17716
4d68580a 17717 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17718 return;
17719 }
17720
252b5132
RH
17721 if (RELAX_MIPS16_P (fragp->fr_subtype))
17722 {
17723 int type;
3ccad066 17724 const struct mips_int_operand *operand;
252b5132 17725 offsetT val;
5c04167a
RS
17726 char *buf;
17727 unsigned int user_length, length;
252b5132 17728 unsigned long insn;
5c04167a 17729 bfd_boolean ext;
252b5132
RH
17730
17731 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17732 operand = mips16_immed_operand (type, FALSE);
252b5132 17733
5c04167a 17734 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
5f5f22c0 17735 val = resolve_symbol_value (fragp->fr_symbol);
3ccad066 17736 if (operand->root.type == OP_PCREL)
252b5132 17737 {
3ccad066 17738 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
17739 addressT addr;
17740
3ccad066 17741 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
17742 addr = fragp->fr_address + fragp->fr_fix;
17743
17744 /* The rules for the base address of a PC relative reloc are
17745 complicated; see mips16_extended_frag. */
3ccad066 17746 if (pcrel_op->include_isa_bit)
252b5132
RH
17747 {
17748 addr += 2;
17749 if (ext)
17750 addr += 2;
17751 /* Ignore the low bit in the target, since it will be
17752 set for a text label. */
3ccad066 17753 val &= -2;
252b5132
RH
17754 }
17755 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17756 addr -= 4;
17757 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17758 addr -= 2;
17759
3ccad066 17760 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
17761 val -= addr;
17762
17763 /* Make sure the section winds up with the alignment we have
17764 assumed. */
3ccad066
RS
17765 if (operand->shift > 0)
17766 record_alignment (asec, operand->shift);
252b5132
RH
17767 }
17768
17769 if (ext
17770 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17771 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17772 as_warn_where (fragp->fr_file, fragp->fr_line,
17773 _("extended instruction in delay slot"));
17774
5c04167a 17775 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 17776
4d68580a 17777 insn = read_compressed_insn (buf, 2);
5c04167a
RS
17778 if (ext)
17779 insn |= MIPS16_EXTEND;
252b5132 17780
5c04167a
RS
17781 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17782 user_length = 4;
17783 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17784 user_length = 2;
17785 else
17786 user_length = 0;
17787
43c0598f 17788 mips16_immed (fragp->fr_file, fragp->fr_line, type,
c150d1d2 17789 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 17790
5c04167a
RS
17791 length = (ext ? 4 : 2);
17792 gas_assert (mips16_opcode_length (insn) == length);
17793 write_compressed_insn (buf, insn, length);
17794 fragp->fr_fix += length;
252b5132
RH
17795 }
17796 else
17797 {
df58fc94
RS
17798 relax_substateT subtype = fragp->fr_subtype;
17799 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17800 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
17801 int first, second;
17802 fixS *fixp;
252b5132 17803
df58fc94
RS
17804 first = RELAX_FIRST (subtype);
17805 second = RELAX_SECOND (subtype);
4d7206a2 17806 fixp = (fixS *) fragp->fr_opcode;
252b5132 17807
df58fc94
RS
17808 /* If the delay slot chosen does not match the size of the instruction,
17809 then emit a warning. */
17810 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17811 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17812 {
17813 relax_substateT s;
17814 const char *msg;
17815
17816 s = subtype & (RELAX_DELAY_SLOT_16BIT
17817 | RELAX_DELAY_SLOT_SIZE_FIRST
17818 | RELAX_DELAY_SLOT_SIZE_SECOND);
17819 msg = macro_warning (s);
17820 if (msg != NULL)
db9b2be4 17821 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
17822 subtype &= ~s;
17823 }
17824
584892a6 17825 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 17826 if (use_second == second_longer)
584892a6 17827 {
df58fc94
RS
17828 relax_substateT s;
17829 const char *msg;
17830
17831 s = (subtype
17832 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17833 msg = macro_warning (s);
17834 if (msg != NULL)
db9b2be4 17835 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 17836 subtype &= ~s;
584892a6
RS
17837 }
17838
4d7206a2
RS
17839 /* Go through all the fixups for the first sequence. Disable them
17840 (by marking them as done) if we're going to use the second
17841 sequence instead. */
17842 while (fixp
17843 && fixp->fx_frag == fragp
17844 && fixp->fx_where < fragp->fr_fix - second)
17845 {
df58fc94 17846 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17847 fixp->fx_done = 1;
17848 fixp = fixp->fx_next;
17849 }
252b5132 17850
4d7206a2
RS
17851 /* Go through the fixups for the second sequence. Disable them if
17852 we're going to use the first sequence, otherwise adjust their
17853 addresses to account for the relaxation. */
17854 while (fixp && fixp->fx_frag == fragp)
17855 {
df58fc94 17856 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17857 fixp->fx_where -= first;
17858 else
17859 fixp->fx_done = 1;
17860 fixp = fixp->fx_next;
17861 }
17862
17863 /* Now modify the frag contents. */
df58fc94 17864 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17865 {
17866 char *start;
17867
17868 start = fragp->fr_literal + fragp->fr_fix - first - second;
17869 memmove (start, start + first, second);
17870 fragp->fr_fix -= first;
17871 }
17872 else
17873 fragp->fr_fix -= second;
252b5132
RH
17874 }
17875}
17876
252b5132
RH
17877/* This function is called after the relocs have been generated.
17878 We've been storing mips16 text labels as odd. Here we convert them
17879 back to even for the convenience of the debugger. */
17880
17881void
17a2f251 17882mips_frob_file_after_relocs (void)
252b5132
RH
17883{
17884 asymbol **syms;
17885 unsigned int count, i;
17886
252b5132
RH
17887 syms = bfd_get_outsymbols (stdoutput);
17888 count = bfd_get_symcount (stdoutput);
17889 for (i = 0; i < count; i++, syms++)
df58fc94
RS
17890 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17891 && ((*syms)->value & 1) != 0)
17892 {
17893 (*syms)->value &= ~1;
17894 /* If the symbol has an odd size, it was probably computed
17895 incorrectly, so adjust that as well. */
17896 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17897 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17898 }
252b5132
RH
17899}
17900
a1facbec
MR
17901/* This function is called whenever a label is defined, including fake
17902 labels instantiated off the dot special symbol. It is used when
17903 handling branch delays; if a branch has a label, we assume we cannot
17904 move it. This also bumps the value of the symbol by 1 in compressed
17905 code. */
252b5132 17906
e1b47bd5 17907static void
a1facbec 17908mips_record_label (symbolS *sym)
252b5132 17909{
a8dbcb85 17910 segment_info_type *si = seg_info (now_seg);
252b5132
RH
17911 struct insn_label_list *l;
17912
17913 if (free_insn_labels == NULL)
325801bd 17914 l = XNEW (struct insn_label_list);
252b5132
RH
17915 else
17916 {
17917 l = free_insn_labels;
17918 free_insn_labels = l->next;
17919 }
17920
17921 l->label = sym;
a8dbcb85
TS
17922 l->next = si->label_list;
17923 si->label_list = l;
a1facbec 17924}
07a53e5c 17925
a1facbec
MR
17926/* This function is called as tc_frob_label() whenever a label is defined
17927 and adds a DWARF-2 record we only want for true labels. */
17928
17929void
17930mips_define_label (symbolS *sym)
17931{
17932 mips_record_label (sym);
07a53e5c 17933 dwarf2_emit_label (sym);
252b5132 17934}
e1b47bd5
RS
17935
17936/* This function is called by tc_new_dot_label whenever a new dot symbol
17937 is defined. */
17938
17939void
17940mips_add_dot_label (symbolS *sym)
17941{
17942 mips_record_label (sym);
17943 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17944 mips_compressed_mark_label (sym);
17945}
252b5132 17946\f
351cdf24
MF
17947/* Converting ASE flags from internal to .MIPS.abiflags values. */
17948static unsigned int
17949mips_convert_ase_flags (int ase)
17950{
17951 unsigned int ext_ases = 0;
17952
17953 if (ase & ASE_DSP)
17954 ext_ases |= AFL_ASE_DSP;
17955 if (ase & ASE_DSPR2)
17956 ext_ases |= AFL_ASE_DSPR2;
17957 if (ase & ASE_EVA)
17958 ext_ases |= AFL_ASE_EVA;
17959 if (ase & ASE_MCU)
17960 ext_ases |= AFL_ASE_MCU;
17961 if (ase & ASE_MDMX)
17962 ext_ases |= AFL_ASE_MDMX;
17963 if (ase & ASE_MIPS3D)
17964 ext_ases |= AFL_ASE_MIPS3D;
17965 if (ase & ASE_MT)
17966 ext_ases |= AFL_ASE_MT;
17967 if (ase & ASE_SMARTMIPS)
17968 ext_ases |= AFL_ASE_SMARTMIPS;
17969 if (ase & ASE_VIRT)
17970 ext_ases |= AFL_ASE_VIRT;
17971 if (ase & ASE_MSA)
17972 ext_ases |= AFL_ASE_MSA;
17973 if (ase & ASE_XPA)
17974 ext_ases |= AFL_ASE_XPA;
17975
17976 return ext_ases;
17977}
252b5132
RH
17978/* Some special processing for a MIPS ELF file. */
17979
17980void
17a2f251 17981mips_elf_final_processing (void)
252b5132 17982{
351cdf24
MF
17983 int fpabi;
17984 Elf_Internal_ABIFlags_v0 flags;
17985
17986 flags.version = 0;
17987 flags.isa_rev = 0;
17988 switch (file_mips_opts.isa)
17989 {
17990 case INSN_ISA1:
17991 flags.isa_level = 1;
17992 break;
17993 case INSN_ISA2:
17994 flags.isa_level = 2;
17995 break;
17996 case INSN_ISA3:
17997 flags.isa_level = 3;
17998 break;
17999 case INSN_ISA4:
18000 flags.isa_level = 4;
18001 break;
18002 case INSN_ISA5:
18003 flags.isa_level = 5;
18004 break;
18005 case INSN_ISA32:
18006 flags.isa_level = 32;
18007 flags.isa_rev = 1;
18008 break;
18009 case INSN_ISA32R2:
18010 flags.isa_level = 32;
18011 flags.isa_rev = 2;
18012 break;
18013 case INSN_ISA32R3:
18014 flags.isa_level = 32;
18015 flags.isa_rev = 3;
18016 break;
18017 case INSN_ISA32R5:
18018 flags.isa_level = 32;
18019 flags.isa_rev = 5;
18020 break;
09c14161
MF
18021 case INSN_ISA32R6:
18022 flags.isa_level = 32;
18023 flags.isa_rev = 6;
18024 break;
351cdf24
MF
18025 case INSN_ISA64:
18026 flags.isa_level = 64;
18027 flags.isa_rev = 1;
18028 break;
18029 case INSN_ISA64R2:
18030 flags.isa_level = 64;
18031 flags.isa_rev = 2;
18032 break;
18033 case INSN_ISA64R3:
18034 flags.isa_level = 64;
18035 flags.isa_rev = 3;
18036 break;
18037 case INSN_ISA64R5:
18038 flags.isa_level = 64;
18039 flags.isa_rev = 5;
18040 break;
09c14161
MF
18041 case INSN_ISA64R6:
18042 flags.isa_level = 64;
18043 flags.isa_rev = 6;
18044 break;
351cdf24
MF
18045 }
18046
18047 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18048 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18049 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18050 : (file_mips_opts.fp == 64) ? AFL_REG_64
18051 : AFL_REG_32;
18052 flags.cpr2_size = AFL_REG_NONE;
18053 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18054 Tag_GNU_MIPS_ABI_FP);
18055 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18056 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18057 if (file_ase_mips16)
18058 flags.ases |= AFL_ASE_MIPS16;
18059 if (file_ase_micromips)
18060 flags.ases |= AFL_ASE_MICROMIPS;
18061 flags.flags1 = 0;
18062 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18063 || file_mips_opts.fp == 64)
18064 && file_mips_opts.oddspreg)
18065 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18066 flags.flags2 = 0;
18067
18068 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18069 ((Elf_External_ABIFlags_v0 *)
18070 mips_flags_frag));
18071
252b5132 18072 /* Write out the register information. */
316f5878 18073 if (mips_abi != N64_ABI)
252b5132
RH
18074 {
18075 Elf32_RegInfo s;
18076
18077 s.ri_gprmask = mips_gprmask;
18078 s.ri_cprmask[0] = mips_cprmask[0];
18079 s.ri_cprmask[1] = mips_cprmask[1];
18080 s.ri_cprmask[2] = mips_cprmask[2];
18081 s.ri_cprmask[3] = mips_cprmask[3];
18082 /* The gp_value field is set by the MIPS ELF backend. */
18083
18084 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18085 ((Elf32_External_RegInfo *)
18086 mips_regmask_frag));
18087 }
18088 else
18089 {
18090 Elf64_Internal_RegInfo s;
18091
18092 s.ri_gprmask = mips_gprmask;
18093 s.ri_pad = 0;
18094 s.ri_cprmask[0] = mips_cprmask[0];
18095 s.ri_cprmask[1] = mips_cprmask[1];
18096 s.ri_cprmask[2] = mips_cprmask[2];
18097 s.ri_cprmask[3] = mips_cprmask[3];
18098 /* The gp_value field is set by the MIPS ELF backend. */
18099
18100 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18101 ((Elf64_External_RegInfo *)
18102 mips_regmask_frag));
18103 }
18104
18105 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18106 sort of BFD interface for this. */
18107 if (mips_any_noreorder)
18108 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18109 if (mips_pic != NO_PIC)
143d77c5 18110 {
8b828383 18111 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18112 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18113 }
18114 if (mips_abicalls)
18115 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18116
b015e599
AP
18117 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18118 defined at present; this might need to change in future. */
a4672219
TS
18119 if (file_ase_mips16)
18120 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18121 if (file_ase_micromips)
18122 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18123 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18124 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18125
bdaaa2e1 18126 /* Set the MIPS ELF ABI flags. */
316f5878 18127 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18128 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18129 else if (mips_abi == O64_ABI)
252b5132 18130 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18131 else if (mips_abi == EABI_ABI)
252b5132 18132 {
bad1aba3 18133 if (file_mips_opts.gp == 64)
252b5132
RH
18134 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18135 else
18136 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18137 }
316f5878 18138 else if (mips_abi == N32_ABI)
be00bddd
TS
18139 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18140
c9914766 18141 /* Nothing to do for N64_ABI. */
252b5132
RH
18142
18143 if (mips_32bitmode)
18144 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18145
7361da2c 18146 if (mips_nan2008 == 1)
ba92f887
MR
18147 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18148
ad3fea08 18149 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18150 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18151 Tag_GNU_MIPS_ABI_FP);
18152 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18153 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18154}
252b5132 18155\f
beae10d5 18156typedef struct proc {
9b2f1d35
EC
18157 symbolS *func_sym;
18158 symbolS *func_end_sym;
beae10d5
KH
18159 unsigned long reg_mask;
18160 unsigned long reg_offset;
18161 unsigned long fpreg_mask;
18162 unsigned long fpreg_offset;
18163 unsigned long frame_offset;
18164 unsigned long frame_reg;
18165 unsigned long pc_reg;
18166} procS;
252b5132
RH
18167
18168static procS cur_proc;
18169static procS *cur_proc_ptr;
18170static int numprocs;
18171
df58fc94
RS
18172/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18173 as "2", and a normal nop as "0". */
18174
18175#define NOP_OPCODE_MIPS 0
18176#define NOP_OPCODE_MIPS16 1
18177#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18178
18179char
18180mips_nop_opcode (void)
18181{
df58fc94
RS
18182 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18183 return NOP_OPCODE_MICROMIPS;
18184 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18185 return NOP_OPCODE_MIPS16;
18186 else
18187 return NOP_OPCODE_MIPS;
742a56fe
RS
18188}
18189
df58fc94
RS
18190/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18191 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18192
0a9ef439 18193void
17a2f251 18194mips_handle_align (fragS *fragp)
a19d8eb0 18195{
df58fc94 18196 char nop_opcode;
742a56fe 18197 char *p;
c67a084a
NC
18198 int bytes, size, excess;
18199 valueT opcode;
742a56fe 18200
0a9ef439
RH
18201 if (fragp->fr_type != rs_align_code)
18202 return;
18203
742a56fe 18204 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18205 nop_opcode = *p;
18206 switch (nop_opcode)
a19d8eb0 18207 {
df58fc94
RS
18208 case NOP_OPCODE_MICROMIPS:
18209 opcode = micromips_nop32_insn.insn_opcode;
18210 size = 4;
18211 break;
18212 case NOP_OPCODE_MIPS16:
c67a084a
NC
18213 opcode = mips16_nop_insn.insn_opcode;
18214 size = 2;
df58fc94
RS
18215 break;
18216 case NOP_OPCODE_MIPS:
18217 default:
c67a084a
NC
18218 opcode = nop_insn.insn_opcode;
18219 size = 4;
df58fc94 18220 break;
c67a084a 18221 }
a19d8eb0 18222
c67a084a
NC
18223 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18224 excess = bytes % size;
df58fc94
RS
18225
18226 /* Handle the leading part if we're not inserting a whole number of
18227 instructions, and make it the end of the fixed part of the frag.
18228 Try to fit in a short microMIPS NOP if applicable and possible,
18229 and use zeroes otherwise. */
18230 gas_assert (excess < 4);
18231 fragp->fr_fix += excess;
18232 switch (excess)
c67a084a 18233 {
df58fc94
RS
18234 case 3:
18235 *p++ = '\0';
18236 /* Fall through. */
18237 case 2:
833794fc 18238 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18239 {
4d68580a 18240 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18241 break;
18242 }
18243 *p++ = '\0';
18244 /* Fall through. */
18245 case 1:
18246 *p++ = '\0';
18247 /* Fall through. */
18248 case 0:
18249 break;
a19d8eb0 18250 }
c67a084a
NC
18251
18252 md_number_to_chars (p, opcode, size);
18253 fragp->fr_var = size;
a19d8eb0
CP
18254}
18255
252b5132 18256static long
17a2f251 18257get_number (void)
252b5132
RH
18258{
18259 int negative = 0;
18260 long val = 0;
18261
18262 if (*input_line_pointer == '-')
18263 {
18264 ++input_line_pointer;
18265 negative = 1;
18266 }
3882b010 18267 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18268 as_bad (_("expected simple number"));
252b5132
RH
18269 if (input_line_pointer[0] == '0')
18270 {
18271 if (input_line_pointer[1] == 'x')
18272 {
18273 input_line_pointer += 2;
3882b010 18274 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18275 {
18276 val <<= 4;
18277 val |= hex_value (*input_line_pointer++);
18278 }
18279 return negative ? -val : val;
18280 }
18281 else
18282 {
18283 ++input_line_pointer;
3882b010 18284 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18285 {
18286 val <<= 3;
18287 val |= *input_line_pointer++ - '0';
18288 }
18289 return negative ? -val : val;
18290 }
18291 }
3882b010 18292 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18293 {
18294 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18295 *input_line_pointer, *input_line_pointer);
956cd1d6 18296 as_warn (_("invalid number"));
252b5132
RH
18297 return -1;
18298 }
3882b010 18299 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18300 {
18301 val *= 10;
18302 val += *input_line_pointer++ - '0';
18303 }
18304 return negative ? -val : val;
18305}
18306
18307/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18308 is an initial number which is the ECOFF file index. In the non-ECOFF
18309 case .file implies DWARF-2. */
18310
18311static void
17a2f251 18312s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18313{
ecb4347a
DJ
18314 static int first_file_directive = 0;
18315
c5dd6aab
DJ
18316 if (ECOFF_DEBUGGING)
18317 {
18318 get_number ();
18319 s_app_file (0);
18320 }
18321 else
ecb4347a
DJ
18322 {
18323 char *filename;
18324
18325 filename = dwarf2_directive_file (0);
18326
18327 /* Versions of GCC up to 3.1 start files with a ".file"
18328 directive even for stabs output. Make sure that this
18329 ".file" is handled. Note that you need a version of GCC
18330 after 3.1 in order to support DWARF-2 on MIPS. */
18331 if (filename != NULL && ! first_file_directive)
18332 {
18333 (void) new_logical_line (filename, -1);
c04f5787 18334 s_app_file_string (filename, 0);
ecb4347a
DJ
18335 }
18336 first_file_directive = 1;
18337 }
c5dd6aab
DJ
18338}
18339
18340/* The .loc directive, implying DWARF-2. */
252b5132
RH
18341
18342static void
17a2f251 18343s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18344{
c5dd6aab
DJ
18345 if (!ECOFF_DEBUGGING)
18346 dwarf2_directive_loc (0);
252b5132
RH
18347}
18348
252b5132
RH
18349/* The .end directive. */
18350
18351static void
17a2f251 18352s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
18353{
18354 symbolS *p;
252b5132 18355
7a621144
DJ
18356 /* Following functions need their own .frame and .cprestore directives. */
18357 mips_frame_reg_valid = 0;
18358 mips_cprestore_valid = 0;
18359
252b5132
RH
18360 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18361 {
18362 p = get_symbol ();
18363 demand_empty_rest_of_line ();
18364 }
18365 else
18366 p = NULL;
18367
14949570 18368 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
18369 as_warn (_(".end not in text section"));
18370
18371 if (!cur_proc_ptr)
18372 {
1661c76c 18373 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
18374 demand_empty_rest_of_line ();
18375 return;
18376 }
18377
18378 if (p != NULL)
18379 {
9c2799c2 18380 gas_assert (S_GET_NAME (p));
9b2f1d35 18381 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 18382 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
18383
18384 if (debug_type == DEBUG_STABS)
18385 stabs_generate_asm_endfunc (S_GET_NAME (p),
18386 S_GET_NAME (p));
252b5132
RH
18387 }
18388 else
18389 as_warn (_(".end directive missing or unknown symbol"));
18390
9b2f1d35
EC
18391 /* Create an expression to calculate the size of the function. */
18392 if (p && cur_proc_ptr)
18393 {
18394 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 18395 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
18396
18397 obj->size = exp;
18398 exp->X_op = O_subtract;
18399 exp->X_add_symbol = symbol_temp_new_now ();
18400 exp->X_op_symbol = p;
18401 exp->X_add_number = 0;
18402
18403 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18404 }
18405
ecb4347a 18406 /* Generate a .pdr section. */
f3ded42a 18407 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
18408 {
18409 segT saved_seg = now_seg;
18410 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
18411 expressionS exp;
18412 char *fragp;
252b5132 18413
252b5132 18414#ifdef md_flush_pending_output
ecb4347a 18415 md_flush_pending_output ();
252b5132
RH
18416#endif
18417
9c2799c2 18418 gas_assert (pdr_seg);
ecb4347a 18419 subseg_set (pdr_seg, 0);
252b5132 18420
ecb4347a
DJ
18421 /* Write the symbol. */
18422 exp.X_op = O_symbol;
18423 exp.X_add_symbol = p;
18424 exp.X_add_number = 0;
18425 emit_expr (&exp, 4);
252b5132 18426
ecb4347a 18427 fragp = frag_more (7 * 4);
252b5132 18428
17a2f251
TS
18429 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18430 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18431 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18432 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18433 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18434 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18435 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 18436
ecb4347a
DJ
18437 subseg_set (saved_seg, saved_subseg);
18438 }
252b5132
RH
18439
18440 cur_proc_ptr = NULL;
18441}
18442
18443/* The .aent and .ent directives. */
18444
18445static void
17a2f251 18446s_mips_ent (int aent)
252b5132 18447{
252b5132 18448 symbolS *symbolP;
252b5132
RH
18449
18450 symbolP = get_symbol ();
18451 if (*input_line_pointer == ',')
f9419b05 18452 ++input_line_pointer;
252b5132 18453 SKIP_WHITESPACE ();
3882b010 18454 if (ISDIGIT (*input_line_pointer)
d9a62219 18455 || *input_line_pointer == '-')
874e8986 18456 get_number ();
252b5132 18457
14949570 18458 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 18459 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
18460
18461 if (!aent && cur_proc_ptr)
9a41af64 18462 as_warn (_("missing .end"));
252b5132
RH
18463
18464 if (!aent)
18465 {
7a621144
DJ
18466 /* This function needs its own .frame and .cprestore directives. */
18467 mips_frame_reg_valid = 0;
18468 mips_cprestore_valid = 0;
18469
252b5132
RH
18470 cur_proc_ptr = &cur_proc;
18471 memset (cur_proc_ptr, '\0', sizeof (procS));
18472
9b2f1d35 18473 cur_proc_ptr->func_sym = symbolP;
252b5132 18474
f9419b05 18475 ++numprocs;
ecb4347a
DJ
18476
18477 if (debug_type == DEBUG_STABS)
18478 stabs_generate_asm_func (S_GET_NAME (symbolP),
18479 S_GET_NAME (symbolP));
252b5132
RH
18480 }
18481
7c0fc524
MR
18482 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18483
252b5132
RH
18484 demand_empty_rest_of_line ();
18485}
18486
18487/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 18488 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 18489 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 18490 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
18491 symbol table (in the mdebug section). */
18492
18493static void
17a2f251 18494s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 18495{
f3ded42a
RS
18496 if (ECOFF_DEBUGGING)
18497 s_ignore (ignore);
18498 else
ecb4347a
DJ
18499 {
18500 long val;
252b5132 18501
ecb4347a
DJ
18502 if (cur_proc_ptr == (procS *) NULL)
18503 {
18504 as_warn (_(".frame outside of .ent"));
18505 demand_empty_rest_of_line ();
18506 return;
18507 }
252b5132 18508
ecb4347a
DJ
18509 cur_proc_ptr->frame_reg = tc_get_register (1);
18510
18511 SKIP_WHITESPACE ();
18512 if (*input_line_pointer++ != ','
18513 || get_absolute_expression_and_terminator (&val) != ',')
18514 {
1661c76c 18515 as_warn (_("bad .frame directive"));
ecb4347a
DJ
18516 --input_line_pointer;
18517 demand_empty_rest_of_line ();
18518 return;
18519 }
252b5132 18520
ecb4347a
DJ
18521 cur_proc_ptr->frame_offset = val;
18522 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 18523
252b5132 18524 demand_empty_rest_of_line ();
252b5132 18525 }
252b5132
RH
18526}
18527
bdaaa2e1
KH
18528/* The .fmask and .mask directives. If the mdebug section is present
18529 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 18530 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 18531 information correctly. We can't use the ecoff routines because they
252b5132
RH
18532 make reference to the ecoff symbol table (in the mdebug section). */
18533
18534static void
17a2f251 18535s_mips_mask (int reg_type)
252b5132 18536{
f3ded42a
RS
18537 if (ECOFF_DEBUGGING)
18538 s_ignore (reg_type);
18539 else
252b5132 18540 {
ecb4347a 18541 long mask, off;
252b5132 18542
ecb4347a
DJ
18543 if (cur_proc_ptr == (procS *) NULL)
18544 {
18545 as_warn (_(".mask/.fmask outside of .ent"));
18546 demand_empty_rest_of_line ();
18547 return;
18548 }
252b5132 18549
ecb4347a
DJ
18550 if (get_absolute_expression_and_terminator (&mask) != ',')
18551 {
1661c76c 18552 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
18553 --input_line_pointer;
18554 demand_empty_rest_of_line ();
18555 return;
18556 }
252b5132 18557
ecb4347a
DJ
18558 off = get_absolute_expression ();
18559
18560 if (reg_type == 'F')
18561 {
18562 cur_proc_ptr->fpreg_mask = mask;
18563 cur_proc_ptr->fpreg_offset = off;
18564 }
18565 else
18566 {
18567 cur_proc_ptr->reg_mask = mask;
18568 cur_proc_ptr->reg_offset = off;
18569 }
18570
18571 demand_empty_rest_of_line ();
252b5132 18572 }
252b5132
RH
18573}
18574
316f5878
RS
18575/* A table describing all the processors gas knows about. Names are
18576 matched in the order listed.
e7af610e 18577
316f5878
RS
18578 To ease comparison, please keep this table in the same order as
18579 gcc's mips_cpu_info_table[]. */
e972090a
NC
18580static const struct mips_cpu_info mips_cpu_info_table[] =
18581{
316f5878 18582 /* Entries for generic ISAs */
d16afab6
RS
18583 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18584 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18585 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18586 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18587 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18588 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18589 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
18590 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18591 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 18592 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
18593 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18594 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
18595 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18596 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 18597 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
18598
18599 /* MIPS I */
d16afab6
RS
18600 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18601 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18602 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
18603
18604 /* MIPS II */
d16afab6 18605 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
18606
18607 /* MIPS III */
d16afab6
RS
18608 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18609 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18610 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18611 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18612 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18613 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18614 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18615 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18616 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18617 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18618 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18619 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18620 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 18621 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
18622 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18623 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
18624
18625 /* MIPS IV */
d16afab6
RS
18626 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18627 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18628 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18629 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18630 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18631 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18632 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18633 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18634 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18635 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18636 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18637 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18638 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18639 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18640 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
18641
18642 /* MIPS 32 */
d16afab6
RS
18643 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18644 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18645 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18646 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
18647
18648 /* MIPS 32 Release 2 */
d16afab6
RS
18649 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18651 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18652 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18654 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18655 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18656 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18658 ISA_MIPS32R2, CPU_MIPS32R2 },
18659 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18660 ISA_MIPS32R2, CPU_MIPS32R2 },
18661 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18662 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18665 /* Deprecated forms of the above. */
d16afab6
RS
18666 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18668 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
18669 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18670 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18671 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18673 /* Deprecated forms of the above. */
d16afab6
RS
18674 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18676 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
18677 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18678 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18679 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18680 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18681 /* Deprecated forms of the above. */
d16afab6
RS
18682 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18683 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 18684 /* 34Kn is a 34kc without DSP. */
d16afab6 18685 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18686 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
18687 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18688 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18689 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18690 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18691 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18692 /* Deprecated forms of the above. */
d16afab6
RS
18693 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18694 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 18695 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
18696 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18697 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18698 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18699 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
18700 /* interaptiv is the new name for 1004kf */
18701 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
18702 /* M5100 family */
18703 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18704 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 18705 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
ae52f483 18706 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 18707
316f5878 18708 /* MIPS 64 */
d16afab6
RS
18709 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18710 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18711 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18712 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 18713
c7a23324 18714 /* Broadcom SB-1 CPU core */
d16afab6 18715 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 18716 /* Broadcom SB-1A CPU core */
d16afab6 18717 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 18718
4ba154f5 18719 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 18720
ed163775
MR
18721 /* MIPS 64 Release 2 */
18722
967344c6 18723 /* Cavium Networks Octeon CPU core */
d16afab6
RS
18724 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18725 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18726 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 18727 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 18728
52b6b6b9 18729 /* RMI Xlr */
d16afab6 18730 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 18731
55a36193
MK
18732 /* Broadcom XLP.
18733 XLP is mostly like XLR, with the prominent exception that it is
18734 MIPS64R2 rather than MIPS64. */
d16afab6 18735 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 18736
7ef0d297
AB
18737 /* i6400. */
18738 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18739
316f5878 18740 /* End marker */
d16afab6 18741 { NULL, 0, 0, 0, 0 }
316f5878 18742};
e7af610e 18743
84ea6cf2 18744
316f5878
RS
18745/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18746 with a final "000" replaced by "k". Ignore case.
e7af610e 18747
316f5878 18748 Note: this function is shared between GCC and GAS. */
c6c98b38 18749
b34976b6 18750static bfd_boolean
17a2f251 18751mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18752{
18753 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18754 given++, canonical++;
18755
18756 return ((*given == 0 && *canonical == 0)
18757 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18758}
18759
18760
18761/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18762 CPU name. We've traditionally allowed a lot of variation here.
18763
18764 Note: this function is shared between GCC and GAS. */
18765
b34976b6 18766static bfd_boolean
17a2f251 18767mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18768{
18769 /* First see if the name matches exactly, or with a final "000"
18770 turned into "k". */
18771 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 18772 return TRUE;
316f5878
RS
18773
18774 /* If not, try comparing based on numerical designation alone.
18775 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18776 if (TOLOWER (*given) == 'r')
18777 given++;
18778 if (!ISDIGIT (*given))
b34976b6 18779 return FALSE;
316f5878
RS
18780
18781 /* Skip over some well-known prefixes in the canonical name,
18782 hoping to find a number there too. */
18783 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18784 canonical += 2;
18785 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18786 canonical += 2;
18787 else if (TOLOWER (canonical[0]) == 'r')
18788 canonical += 1;
18789
18790 return mips_strict_matching_cpu_name_p (canonical, given);
18791}
18792
18793
18794/* Parse an option that takes the name of a processor as its argument.
18795 OPTION is the name of the option and CPU_STRING is the argument.
18796 Return the corresponding processor enumeration if the CPU_STRING is
18797 recognized, otherwise report an error and return null.
18798
18799 A similar function exists in GCC. */
e7af610e
NC
18800
18801static const struct mips_cpu_info *
17a2f251 18802mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 18803{
316f5878 18804 const struct mips_cpu_info *p;
e7af610e 18805
316f5878
RS
18806 /* 'from-abi' selects the most compatible architecture for the given
18807 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18808 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18809 version. Look first at the -mgp options, if given, otherwise base
18810 the choice on MIPS_DEFAULT_64BIT.
e7af610e 18811
316f5878
RS
18812 Treat NO_ABI like the EABIs. One reason to do this is that the
18813 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18814 architecture. This code picks MIPS I for 'mips' and MIPS III for
18815 'mips64', just as we did in the days before 'from-abi'. */
18816 if (strcasecmp (cpu_string, "from-abi") == 0)
18817 {
18818 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18819 return mips_cpu_info_from_isa (ISA_MIPS1);
18820
18821 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18822 return mips_cpu_info_from_isa (ISA_MIPS3);
18823
bad1aba3 18824 if (file_mips_opts.gp >= 0)
18825 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 18826 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
18827
18828 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18829 ? ISA_MIPS3
18830 : ISA_MIPS1);
18831 }
18832
18833 /* 'default' has traditionally been a no-op. Probably not very useful. */
18834 if (strcasecmp (cpu_string, "default") == 0)
18835 return 0;
18836
18837 for (p = mips_cpu_info_table; p->name != 0; p++)
18838 if (mips_matching_cpu_name_p (p->name, cpu_string))
18839 return p;
18840
1661c76c 18841 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 18842 return 0;
e7af610e
NC
18843}
18844
316f5878
RS
18845/* Return the canonical processor information for ISA (a member of the
18846 ISA_MIPS* enumeration). */
18847
e7af610e 18848static const struct mips_cpu_info *
17a2f251 18849mips_cpu_info_from_isa (int isa)
e7af610e
NC
18850{
18851 int i;
18852
18853 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 18854 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 18855 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
18856 return (&mips_cpu_info_table[i]);
18857
e972090a 18858 return NULL;
e7af610e 18859}
fef14a42
TS
18860
18861static const struct mips_cpu_info *
17a2f251 18862mips_cpu_info_from_arch (int arch)
fef14a42
TS
18863{
18864 int i;
18865
18866 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18867 if (arch == mips_cpu_info_table[i].cpu)
18868 return (&mips_cpu_info_table[i]);
18869
18870 return NULL;
18871}
316f5878
RS
18872\f
18873static void
17a2f251 18874show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
18875{
18876 if (*first_p)
18877 {
18878 fprintf (stream, "%24s", "");
18879 *col_p = 24;
18880 }
18881 else
18882 {
18883 fprintf (stream, ", ");
18884 *col_p += 2;
18885 }
e7af610e 18886
316f5878
RS
18887 if (*col_p + strlen (string) > 72)
18888 {
18889 fprintf (stream, "\n%24s", "");
18890 *col_p = 24;
18891 }
18892
18893 fprintf (stream, "%s", string);
18894 *col_p += strlen (string);
18895
18896 *first_p = 0;
18897}
18898
18899void
17a2f251 18900md_show_usage (FILE *stream)
e7af610e 18901{
316f5878
RS
18902 int column, first;
18903 size_t i;
18904
18905 fprintf (stream, _("\
18906MIPS options:\n\
316f5878
RS
18907-EB generate big endian output\n\
18908-EL generate little endian output\n\
18909-g, -g2 do not remove unneeded NOPs or swap branches\n\
18910-G NUM allow referencing objects up to NUM bytes\n\
18911 implicitly with the gp register [default 8]\n"));
18912 fprintf (stream, _("\
18913-mips1 generate MIPS ISA I instructions\n\
18914-mips2 generate MIPS ISA II instructions\n\
18915-mips3 generate MIPS ISA III instructions\n\
18916-mips4 generate MIPS ISA IV instructions\n\
18917-mips5 generate MIPS ISA V instructions\n\
18918-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 18919-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
18920-mips32r3 generate MIPS32 release 3 ISA instructions\n\
18921-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 18922-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 18923-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 18924-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
18925-mips64r3 generate MIPS64 release 3 ISA instructions\n\
18926-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 18927-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
18928-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18929
18930 first = 1;
e7af610e
NC
18931
18932 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
18933 show (stream, mips_cpu_info_table[i].name, &column, &first);
18934 show (stream, "from-abi", &column, &first);
18935 fputc ('\n', stream);
e7af610e 18936
316f5878
RS
18937 fprintf (stream, _("\
18938-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18939-no-mCPU don't generate code specific to CPU.\n\
18940 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18941
18942 first = 1;
18943
18944 show (stream, "3900", &column, &first);
18945 show (stream, "4010", &column, &first);
18946 show (stream, "4100", &column, &first);
18947 show (stream, "4650", &column, &first);
18948 fputc ('\n', stream);
18949
18950 fprintf (stream, _("\
18951-mips16 generate mips16 instructions\n\
18952-no-mips16 do not generate mips16 instructions\n"));
18953 fprintf (stream, _("\
df58fc94
RS
18954-mmicromips generate microMIPS instructions\n\
18955-mno-micromips do not generate microMIPS instructions\n"));
18956 fprintf (stream, _("\
e16bfa71 18957-msmartmips generate smartmips instructions\n\
3739860c 18958-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 18959 fprintf (stream, _("\
74cd071d
CF
18960-mdsp generate DSP instructions\n\
18961-mno-dsp do not generate DSP instructions\n"));
18962 fprintf (stream, _("\
8b082fb1
TS
18963-mdspr2 generate DSP R2 instructions\n\
18964-mno-dspr2 do not generate DSP R2 instructions\n"));
18965 fprintf (stream, _("\
ef2e4d86
CF
18966-mmt generate MT instructions\n\
18967-mno-mt do not generate MT instructions\n"));
18968 fprintf (stream, _("\
dec0624d
MR
18969-mmcu generate MCU instructions\n\
18970-mno-mcu do not generate MCU instructions\n"));
18971 fprintf (stream, _("\
56d438b1
CF
18972-mmsa generate MSA instructions\n\
18973-mno-msa do not generate MSA instructions\n"));
18974 fprintf (stream, _("\
7d64c587
AB
18975-mxpa generate eXtended Physical Address (XPA) instructions\n\
18976-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18977 fprintf (stream, _("\
b015e599
AP
18978-mvirt generate Virtualization instructions\n\
18979-mno-virt do not generate Virtualization instructions\n"));
18980 fprintf (stream, _("\
833794fc
MR
18981-minsn32 only generate 32-bit microMIPS instructions\n\
18982-mno-insn32 generate all microMIPS instructions\n"));
18983 fprintf (stream, _("\
c67a084a
NC
18984-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18985-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 18986-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 18987-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 18988-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 18989-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
18990-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18991-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 18992-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
18993-O0 remove unneeded NOPs, do not swap branches\n\
18994-O remove unneeded NOPs and swap branches\n\
316f5878
RS
18995--trap, --no-break trap exception on div by 0 and mult overflow\n\
18996--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
18997 fprintf (stream, _("\
18998-mhard-float allow floating-point instructions\n\
18999-msoft-float do not allow floating-point instructions\n\
19000-msingle-float only allow 32-bit floating-point operations\n\
19001-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19002--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
19003--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19004-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19005
19006 first = 1;
19007
19008 show (stream, "legacy", &column, &first);
19009 show (stream, "2008", &column, &first);
19010
19011 fputc ('\n', stream);
19012
316f5878
RS
19013 fprintf (stream, _("\
19014-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19015-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19016-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19017-non_shared do not generate code that can operate with DSOs\n\
316f5878 19018-xgot assume a 32 bit GOT\n\
dcd410fe 19019-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19020-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19021 position dependent (non shared) code\n\
316f5878
RS
19022-mabi=ABI create ABI conformant object file for:\n"));
19023
19024 first = 1;
19025
19026 show (stream, "32", &column, &first);
19027 show (stream, "o64", &column, &first);
19028 show (stream, "n32", &column, &first);
19029 show (stream, "64", &column, &first);
19030 show (stream, "eabi", &column, &first);
19031
19032 fputc ('\n', stream);
19033
19034 fprintf (stream, _("\
19035-32 create o32 ABI object file (default)\n\
19036-n32 create n32 ABI object file\n\
19037-64 create 64 ABI object file\n"));
e7af610e 19038}
14e777e0 19039
1575952e 19040#ifdef TE_IRIX
14e777e0 19041enum dwarf2_format
413a266c 19042mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19043{
369943fe 19044 if (HAVE_64BIT_SYMBOLS)
1575952e 19045 return dwarf2_format_64bit_irix;
14e777e0
KB
19046 else
19047 return dwarf2_format_32bit;
19048}
1575952e 19049#endif
73369e65
EC
19050
19051int
19052mips_dwarf2_addr_size (void)
19053{
6b6b3450 19054 if (HAVE_64BIT_OBJECTS)
73369e65 19055 return 8;
73369e65
EC
19056 else
19057 return 4;
19058}
5862107c
EC
19059
19060/* Standard calling conventions leave the CFA at SP on entry. */
19061void
19062mips_cfi_frame_initial_instructions (void)
19063{
19064 cfi_add_CFA_def_cfa_register (SP);
19065}
19066
707bfff6
TS
19067int
19068tc_mips_regname_to_dw2regnum (char *regname)
19069{
19070 unsigned int regnum = -1;
19071 unsigned int reg;
19072
19073 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19074 regnum = reg;
19075
19076 return regnum;
19077}
263b2574 19078
19079/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19080 Given a symbolic attribute NAME, return the proper integer value.
19081 Returns -1 if the attribute is not known. */
19082
19083int
19084mips_convert_symbolic_attribute (const char *name)
19085{
19086 static const struct
19087 {
19088 const char * name;
19089 const int tag;
19090 }
19091 attribute_table[] =
19092 {
19093#define T(tag) {#tag, tag}
19094 T (Tag_GNU_MIPS_ABI_FP),
19095 T (Tag_GNU_MIPS_ABI_MSA),
19096#undef T
19097 };
19098 unsigned int i;
19099
19100 if (name == NULL)
19101 return -1;
19102
19103 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19104 if (streq (name, attribute_table[i].name))
19105 return attribute_table[i].tag;
19106
19107 return -1;
19108}
fd5c94ab
RS
19109
19110void
19111md_mips_end (void)
19112{
351cdf24
MF
19113 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19114
fd5c94ab
RS
19115 mips_emit_delays ();
19116 if (cur_proc_ptr)
19117 as_warn (_("missing .end at end of assembly"));
919731af 19118
19119 /* Just in case no code was emitted, do the consistency check. */
19120 file_mips_check_options ();
351cdf24
MF
19121
19122 /* Set a floating-point ABI if the user did not. */
19123 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19124 {
19125 /* Perform consistency checks on the floating-point ABI. */
19126 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19127 Tag_GNU_MIPS_ABI_FP);
19128 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19129 check_fpabi (fpabi);
19130 }
19131 else
19132 {
19133 /* Soft-float gets precedence over single-float, the two options should
19134 not be used together so this should not matter. */
19135 if (file_mips_opts.soft_float == 1)
19136 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19137 /* Single-float gets precedence over all double_float cases. */
19138 else if (file_mips_opts.single_float == 1)
19139 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19140 else
19141 {
19142 switch (file_mips_opts.fp)
19143 {
19144 case 32:
19145 if (file_mips_opts.gp == 32)
19146 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19147 break;
19148 case 0:
19149 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19150 break;
19151 case 64:
19152 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19153 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19154 else if (file_mips_opts.gp == 32)
19155 fpabi = Val_GNU_MIPS_ABI_FP_64;
19156 else
19157 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19158 break;
19159 }
19160 }
19161
19162 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19163 Tag_GNU_MIPS_ABI_FP, fpabi);
19164 }
fd5c94ab 19165}
2f0c68f2
CM
19166
19167/* Returns the relocation type required for a particular CFI encoding. */
19168
19169bfd_reloc_code_real_type
19170mips_cfi_reloc_for_encoding (int encoding)
19171{
19172 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19173 return BFD_RELOC_32_PCREL;
19174 else return BFD_RELOC_NONE;
19175}
This page took 2.809744 seconds and 4 git commands to generate.