Remove trailing spaces in gas
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
b90efa5b 2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6
TS
351#define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
40209cad
MR
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1171#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1174#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1185
43c0598f
RS
1186/* Sign-extend 16-bit value X. */
1187#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
885add95
CD
1189/* Is the given value a sign-extended 32-bit value? */
1190#define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194/* Is the given value a sign-extended 16-bit value? */
1195#define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
df58fc94
RS
1199/* Is the given value a sign-extended 12-bit value? */
1200#define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
7f3c4072
CM
1203/* Is the given value a sign-extended 9-bit value? */
1204#define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
2051e8c4
MR
1207/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208#define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
bf12938e
RS
1212/* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
bf12938e 1217/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1218#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1223#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
5c04167a
RS
1227
1228/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1230\f
df58fc94
RS
1231/* Whether or not we are emitting a branch-likely macro. */
1232static bfd_boolean emit_branch_likely_macro = FALSE;
1233
4d7206a2
RS
1234/* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253} mips_relax;
252b5132 1254\f
584892a6
RS
1255/* Global variables used to decide whether a macro needs a warning. */
1256static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
df58fc94
RS
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
584892a6
RS
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
df58fc94
RS
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
584892a6
RS
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289} mips_macro_warning;
1290\f
252b5132
RH
1291/* Prototypes for static functions. */
1292
252b5132
RH
1293enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
b34976b6 1295static void append_insn
df58fc94
RS
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
7d10b47d 1298static void mips_no_prev_insn (void);
c67a084a 1299static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1300static void mips16_macro_build
03ea81db 1301 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1302static void load_register (int, expressionS *, int);
584892a6
RS
1303static void macro_start (void);
1304static void macro_end (void);
833794fc 1305static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1306static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1307static void mips_ip (char *str, struct mips_cl_insn * ip);
1308static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1309static void mips16_immed
43c0598f
RS
1310 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
5e0116d5 1312static size_t my_getSmallExpression
17a2f251
TS
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314static void my_getExpression (expressionS *, char *);
1315static void s_align (int);
1316static void s_change_sec (int);
1317static void s_change_section (int);
1318static void s_cons (int);
1319static void s_float_cons (int);
1320static void s_mips_globl (int);
1321static void s_option (int);
1322static void s_mipsset (int);
1323static void s_abicalls (int);
1324static void s_cpload (int);
1325static void s_cpsetup (int);
1326static void s_cplocal (int);
1327static void s_cprestore (int);
1328static void s_cpreturn (int);
741d6ea8
JM
1329static void s_dtprelword (int);
1330static void s_dtpreldword (int);
d0f13682
CLT
1331static void s_tprelword (int);
1332static void s_tpreldword (int);
17a2f251
TS
1333static void s_gpvalue (int);
1334static void s_gpword (int);
1335static void s_gpdword (int);
a3f278e2 1336static void s_ehword (int);
17a2f251
TS
1337static void s_cpadd (int);
1338static void s_insn (int);
ba92f887 1339static void s_nan (int);
919731af 1340static void s_module (int);
17a2f251
TS
1341static void s_mips_ent (int);
1342static void s_mips_end (int);
1343static void s_mips_frame (int);
1344static void s_mips_mask (int reg_type);
1345static void s_mips_stab (int);
1346static void s_mips_weakext (int);
1347static void s_mips_file (int);
1348static void s_mips_loc (int);
1349static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1350static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1351static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1353static void file_mips_check_options (void);
e7af610e
NC
1354
1355/* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
e972090a
NC
1358struct mips_cpu_info
1359{
e7af610e 1360 const char *name; /* CPU or ISA name. */
d16afab6
RS
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365};
1366
ad3fea08 1367#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1368
17a2f251
TS
1369static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1372\f
c31f3936
RS
1373/* Command-line options. */
1374const char *md_shortopts = "O::g::G:";
1375
1376enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
ae52f483
AB
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
7361da2c 1390 OPTION_MIPS32R6,
c31f3936 1391 OPTION_MIPS64R2,
ae52f483
AB
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
7361da2c 1394 OPTION_MIPS64R6,
c31f3936
RS
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
56d438b1
CF
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
c31f3936
RS
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
7d64c587
AB
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
c31f3936
RS
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
a8d14a88
CM
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
c31f3936
RS
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
351cdf24 1455 OPTION_FPXX,
c31f3936
RS
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
c31f3936
RS
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
c31f3936
RS
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
ba92f887 1482 OPTION_NAN,
351cdf24
MF
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
c31f3936
RS
1485 OPTION_END_OF_ENUM
1486 };
1487
1488struct option md_longopts[] =
1489{
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
c31f3936
RS
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1615 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1616
1617 {NULL, no_argument, NULL, 0}
1618};
1619size_t md_longopts_size = sizeof (md_longopts);
1620\f
c6278170
RS
1621/* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624struct mips_ase
1625{
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
7361da2c
AB
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
c6278170
RS
1652};
1653
1654/* A table of all supported ASEs. */
1655static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1658 2, 2, 2, 2,
1659 -1 },
c6278170
RS
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1663 2, 2, 2, 2,
1664 -1 },
c6278170
RS
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1668 2, 2, 2, 2,
1669 -1 },
c6278170
RS
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1673 2, 2, 2, 2,
1674 -1 },
c6278170
RS
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1679 -1, 1, -1, -1,
1680 6 },
c6278170
RS
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1685 2, 1, -1, -1,
1686 6 },
c6278170
RS
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1690 2, 2, -1, -1,
1691 -1 },
c6278170
RS
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1695 1, -1, -1, -1,
1696 6 },
c6278170
RS
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1700 2, 2, 2, 2,
1701 -1 },
56d438b1
CF
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1705 2, 2, 2, 2,
1706 -1 },
7d64c587
AB
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1710 2, 2, -1, -1,
1711 -1 },
c6278170
RS
1712};
1713
1714/* The set of ASEs that require -mfp64. */
82bda27b 1715#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1716
1717/* Groups of ASE_* flags that represent different revisions of an ASE. */
1718static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720};
1721\f
252b5132
RH
1722/* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
d84bcf09 1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1738
e972090a
NC
1739static const pseudo_typeS mips_pseudo_table[] =
1740{
beae10d5 1741 /* MIPS specific pseudo-ops. */
252b5132
RH
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
6478892d
TS
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
252b5132 1751 {"cprestore", s_cprestore, 0},
6478892d 1752 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
6478892d 1757 {"gpvalue", s_gpvalue, 0},
252b5132 1758 {"gpword", s_gpword, 0},
10181a0d 1759 {"gpdword", s_gpdword, 0},
a3f278e2 1760 {"ehword", s_ehword, 0},
252b5132
RH
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
ba92f887 1763 {"nan", s_nan, 0},
919731af 1764 {"module", s_module, 0},
252b5132 1765
beae10d5 1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1767 chips. */
38a57ae7 1768 {"asciiz", stringer, 8 + 1},
252b5132
RH
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
252b5132 1776
998b3c36
MR
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
beae10d5 1780 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
cca86cc8 1794 {"section", s_change_section, 0},
252b5132
RH
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
754e2bb9 1797 {"stabd", s_mips_stab, 'd'},
252b5132 1798 {"stabn", s_mips_stab, 'n'},
754e2bb9 1799 {"stabs", s_mips_stab, 's'},
252b5132
RH
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
add56521 1802
add56521 1803 { "extern", ecoff_directive_extern, 0},
add56521 1804
43841e91 1805 { NULL, NULL, 0 },
252b5132
RH
1806};
1807
e972090a
NC
1808static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809{
beae10d5
KH
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
c5dd6aab 1817 {"file", s_mips_file, 0},
252b5132
RH
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
c5dd6aab 1820 {"loc", s_mips_loc, 0},
252b5132
RH
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
43841e91 1823 { NULL, NULL, 0 },
252b5132
RH
1824};
1825
3ae8dd8d
MR
1826/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829int
1830mips_address_bytes (void)
1831{
919731af 1832 file_mips_check_options ();
3ae8dd8d
MR
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834}
1835
17a2f251 1836extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1837
1838void
17a2f251 1839mips_pop_insert (void)
252b5132
RH
1840{
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844}
1845\f
1846/* Symbols labelling the current insn. */
1847
e972090a
NC
1848struct insn_label_list
1849{
252b5132
RH
1850 struct insn_label_list *next;
1851 symbolS *label;
1852};
1853
252b5132 1854static struct insn_label_list *free_insn_labels;
742a56fe 1855#define label_list tc_segment_info_data.labels
252b5132 1856
17a2f251 1857static void mips_clear_insn_labels (void);
df58fc94
RS
1858static void mips_mark_labels (void);
1859static void mips_compressed_mark_labels (void);
252b5132
RH
1860
1861static inline void
17a2f251 1862mips_clear_insn_labels (void)
252b5132 1863{
ed9e98c2 1864 struct insn_label_list **pl;
a8dbcb85 1865 segment_info_type *si;
252b5132 1866
a8dbcb85
TS
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
3739860c 1871
a8dbcb85
TS
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
252b5132 1876}
a8dbcb85 1877
df58fc94
RS
1878/* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880static inline void
1881mips_mark_labels (void)
1882{
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885}
252b5132
RH
1886\f
1887static char *expr_end;
1888
e423441d 1889/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1890 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1891
1892static expressionS imm_expr;
252b5132 1893
77bd4346
RS
1894/* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
252b5132 1898
77bd4346 1899static expressionS offset_expr;
f6688943
TS
1900static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1902
df58fc94
RS
1903/* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
252b5132 1906
df58fc94 1907static unsigned int forced_insn_length;
252b5132 1908
e1b47bd5
RS
1909/* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912static bfd_boolean mips_assembling_insn;
1913
ecb4347a
DJ
1914/* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
252b5132
RH
1916
1917static segT pdr_seg;
252b5132 1918
e013f690
TS
1919/* The default target format to use. */
1920
aeffff67
RS
1921#if defined (TE_FreeBSD)
1922#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923#elif defined (TE_TMIPS)
1924#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925#else
1926#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927#endif
1928
e013f690 1929const char *
17a2f251 1930mips_target_format (void)
e013f690
TS
1931{
1932 switch (OUTPUT_FLAVOR)
1933 {
e013f690 1934 case bfd_target_elf_flavour:
0a44bf69
RS
1935#ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940#endif
e013f690 1941 return (target_big_endian
cfe86eaa 1942 ? (HAVE_64BIT_OBJECTS
aeffff67 1943 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1944 : (HAVE_NEWABI
aeffff67
RS
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1947 : (HAVE_64BIT_OBJECTS
aeffff67 1948 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1949 : (HAVE_NEWABI
aeffff67
RS
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956}
1957
c6278170
RS
1958/* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961static int
1962mips_isa_rev (void)
1963{
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
ae52f483
AB
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
7361da2c
AB
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
c6278170
RS
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984}
1985
1986/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988static unsigned int
1989mips_ase_mask (unsigned int flags)
1990{
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997}
1998
1999/* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002static void
2003mips_check_isa_supports_ase (const struct mips_ase *ase)
2004{
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
1661c76c 2021 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2022 " `%s' extension"), size, base, ase->name);
2023 else
1661c76c 2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2025 ase->name, base, size, min_rev);
2026 }
7361da2c
AB
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
c6278170 2037 if ((ase->flags & FP64_ASES)
0b35dfee 2038 && mips_opts.fp != 64
c6278170
RS
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
1661c76c 2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2043 }
2044}
2045
2046/* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049static void
2050mips_check_isa_supports_ases (void)
2051{
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060}
2061
2062/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065static unsigned int
919731af 2066mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
c6278170
RS
2068{
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
919731af 2072 opts->ase &= ~mask;
c6278170 2073 if (enabled_p)
919731af 2074 opts->ase |= ase->flags;
c6278170
RS
2075 return mask;
2076}
2077
2078/* Return the ASE called NAME, or null if none. */
2079
2080static const struct mips_ase *
2081mips_lookup_ase (const char *name)
2082{
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089}
2090
df58fc94
RS
2091/* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
2093 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
2094 major opcode) will require further modifications to the opcode
2095 table. */
2096
2097static inline unsigned int
2098micromips_insn_length (const struct mips_opcode *mo)
2099{
2100 return (mo->mask >> 16) == 0 ? 2 : 4;
2101}
2102
5c04167a
RS
2103/* Return the length of MIPS16 instruction OPCODE. */
2104
2105static inline unsigned int
2106mips16_opcode_length (unsigned long opcode)
2107{
2108 return (opcode >> 16) == 0 ? 2 : 4;
2109}
2110
1e915849
RS
2111/* Return the length of instruction INSN. */
2112
2113static inline unsigned int
2114insn_length (const struct mips_cl_insn *insn)
2115{
df58fc94
RS
2116 if (mips_opts.micromips)
2117 return micromips_insn_length (insn->insn_mo);
2118 else if (mips_opts.mips16)
5c04167a 2119 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2120 else
1e915849 2121 return 4;
1e915849
RS
2122}
2123
2124/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2125
2126static void
2127create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2128{
2129 size_t i;
2130
2131 insn->insn_mo = mo;
1e915849
RS
2132 insn->insn_opcode = mo->match;
2133 insn->frag = NULL;
2134 insn->where = 0;
2135 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2136 insn->fixp[i] = NULL;
2137 insn->fixed_p = (mips_opts.noreorder > 0);
2138 insn->noreorder_p = (mips_opts.noreorder > 0);
2139 insn->mips16_absolute_jump_p = 0;
15be625d 2140 insn->complete_p = 0;
e407c74b 2141 insn->cleared_p = 0;
1e915849
RS
2142}
2143
fc76e730
RS
2144/* Get a list of all the operands in INSN. */
2145
2146static const struct mips_operand_array *
2147insn_operands (const struct mips_cl_insn *insn)
2148{
2149 if (insn->insn_mo >= &mips_opcodes[0]
2150 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2151 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2152
2153 if (insn->insn_mo >= &mips16_opcodes[0]
2154 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2155 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2156
2157 if (insn->insn_mo >= &micromips_opcodes[0]
2158 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2159 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2160
2161 abort ();
2162}
2163
2164/* Get a description of operand OPNO of INSN. */
2165
2166static const struct mips_operand *
2167insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2168{
2169 const struct mips_operand_array *operands;
2170
2171 operands = insn_operands (insn);
2172 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2173 abort ();
2174 return operands->operand[opno];
2175}
2176
e077a1c8
RS
2177/* Install UVAL as the value of OPERAND in INSN. */
2178
2179static inline void
2180insn_insert_operand (struct mips_cl_insn *insn,
2181 const struct mips_operand *operand, unsigned int uval)
2182{
2183 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2184}
2185
fc76e730
RS
2186/* Extract the value of OPERAND from INSN. */
2187
2188static inline unsigned
2189insn_extract_operand (const struct mips_cl_insn *insn,
2190 const struct mips_operand *operand)
2191{
2192 return mips_extract_operand (operand, insn->insn_opcode);
2193}
2194
df58fc94 2195/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2196
2197static void
df58fc94 2198mips_record_compressed_mode (void)
742a56fe
RS
2199{
2200 segment_info_type *si;
2201
2202 si = seg_info (now_seg);
2203 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2204 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2205 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2206 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2207}
2208
4d68580a
RS
2209/* Read a standard MIPS instruction from BUF. */
2210
2211static unsigned long
2212read_insn (char *buf)
2213{
2214 if (target_big_endian)
2215 return bfd_getb32 ((bfd_byte *) buf);
2216 else
2217 return bfd_getl32 ((bfd_byte *) buf);
2218}
2219
2220/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2221 the next byte. */
2222
2223static char *
2224write_insn (char *buf, unsigned int insn)
2225{
2226 md_number_to_chars (buf, insn, 4);
2227 return buf + 4;
2228}
2229
2230/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2231 has length LENGTH. */
2232
2233static unsigned long
2234read_compressed_insn (char *buf, unsigned int length)
2235{
2236 unsigned long insn;
2237 unsigned int i;
2238
2239 insn = 0;
2240 for (i = 0; i < length; i += 2)
2241 {
2242 insn <<= 16;
2243 if (target_big_endian)
2244 insn |= bfd_getb16 ((char *) buf);
2245 else
2246 insn |= bfd_getl16 ((char *) buf);
2247 buf += 2;
2248 }
2249 return insn;
2250}
2251
5c04167a
RS
2252/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2253 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2254
2255static char *
2256write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2257{
2258 unsigned int i;
2259
2260 for (i = 0; i < length; i += 2)
2261 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2262 return buf + length;
2263}
2264
1e915849
RS
2265/* Install INSN at the location specified by its "frag" and "where" fields. */
2266
2267static void
2268install_insn (const struct mips_cl_insn *insn)
2269{
2270 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2271 if (HAVE_CODE_COMPRESSION)
2272 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2273 else
4d68580a 2274 write_insn (f, insn->insn_opcode);
df58fc94 2275 mips_record_compressed_mode ();
1e915849
RS
2276}
2277
2278/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2279 and install the opcode in the new location. */
2280
2281static void
2282move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2283{
2284 size_t i;
2285
2286 insn->frag = frag;
2287 insn->where = where;
2288 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2289 if (insn->fixp[i] != NULL)
2290 {
2291 insn->fixp[i]->fx_frag = frag;
2292 insn->fixp[i]->fx_where = where;
2293 }
2294 install_insn (insn);
2295}
2296
2297/* Add INSN to the end of the output. */
2298
2299static void
2300add_fixed_insn (struct mips_cl_insn *insn)
2301{
2302 char *f = frag_more (insn_length (insn));
2303 move_insn (insn, frag_now, f - frag_now->fr_literal);
2304}
2305
2306/* Start a variant frag and move INSN to the start of the variant part,
2307 marking it as fixed. The other arguments are as for frag_var. */
2308
2309static void
2310add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2311 relax_substateT subtype, symbolS *symbol, offsetT offset)
2312{
2313 frag_grow (max_chars);
2314 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2315 insn->fixed_p = 1;
2316 frag_var (rs_machine_dependent, max_chars, var,
2317 subtype, symbol, offset, NULL);
2318}
2319
2320/* Insert N copies of INSN into the history buffer, starting at
2321 position FIRST. Neither FIRST nor N need to be clipped. */
2322
2323static void
2324insert_into_history (unsigned int first, unsigned int n,
2325 const struct mips_cl_insn *insn)
2326{
2327 if (mips_relax.sequence != 2)
2328 {
2329 unsigned int i;
2330
2331 for (i = ARRAY_SIZE (history); i-- > first;)
2332 if (i >= first + n)
2333 history[i] = history[i - n];
2334 else
2335 history[i] = *insn;
2336 }
2337}
2338
e3de51ce
RS
2339/* Clear the error in insn_error. */
2340
2341static void
2342clear_insn_error (void)
2343{
2344 memset (&insn_error, 0, sizeof (insn_error));
2345}
2346
2347/* Possibly record error message MSG for the current instruction.
2348 If the error is about a particular argument, ARGNUM is the 1-based
2349 number of that argument, otherwise it is 0. FORMAT is the format
2350 of MSG. Return true if MSG was used, false if the current message
2351 was kept. */
2352
2353static bfd_boolean
2354set_insn_error_format (int argnum, enum mips_insn_error_format format,
2355 const char *msg)
2356{
2357 if (argnum == 0)
2358 {
2359 /* Give priority to errors against specific arguments, and to
2360 the first whole-instruction message. */
2361 if (insn_error.msg)
2362 return FALSE;
2363 }
2364 else
2365 {
2366 /* Keep insn_error if it is against a later argument. */
2367 if (argnum < insn_error.min_argnum)
2368 return FALSE;
2369
2370 /* If both errors are against the same argument but are different,
2371 give up on reporting a specific error for this argument.
2372 See the comment about mips_insn_error for details. */
2373 if (argnum == insn_error.min_argnum
2374 && insn_error.msg
2375 && strcmp (insn_error.msg, msg) != 0)
2376 {
2377 insn_error.msg = 0;
2378 insn_error.min_argnum += 1;
2379 return FALSE;
2380 }
2381 }
2382 insn_error.min_argnum = argnum;
2383 insn_error.format = format;
2384 insn_error.msg = msg;
2385 return TRUE;
2386}
2387
2388/* Record an instruction error with no % format fields. ARGNUM and MSG are
2389 as for set_insn_error_format. */
2390
2391static void
2392set_insn_error (int argnum, const char *msg)
2393{
2394 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2395}
2396
2397/* Record an instruction error with one %d field I. ARGNUM and MSG are
2398 as for set_insn_error_format. */
2399
2400static void
2401set_insn_error_i (int argnum, const char *msg, int i)
2402{
2403 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2404 insn_error.u.i = i;
2405}
2406
2407/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2408 are as for set_insn_error_format. */
2409
2410static void
2411set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2412{
2413 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2414 {
2415 insn_error.u.ss[0] = s1;
2416 insn_error.u.ss[1] = s2;
2417 }
2418}
2419
2420/* Report the error in insn_error, which is against assembly code STR. */
2421
2422static void
2423report_insn_error (const char *str)
2424{
2425 const char *msg;
2426
2427 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2428 switch (insn_error.format)
2429 {
2430 case ERR_FMT_PLAIN:
2431 as_bad (msg, str);
2432 break;
2433
2434 case ERR_FMT_I:
2435 as_bad (msg, insn_error.u.i, str);
2436 break;
2437
2438 case ERR_FMT_SS:
2439 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2440 break;
2441 }
2442}
2443
71400594
RS
2444/* Initialize vr4120_conflicts. There is a bit of duplication here:
2445 the idea is to make it obvious at a glance that each errata is
2446 included. */
2447
2448static void
2449init_vr4120_conflicts (void)
2450{
2451#define CONFLICT(FIRST, SECOND) \
2452 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2453
2454 /* Errata 21 - [D]DIV[U] after [D]MACC */
2455 CONFLICT (MACC, DIV);
2456 CONFLICT (DMACC, DIV);
2457
2458 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2459 CONFLICT (DMULT, DMULT);
2460 CONFLICT (DMULT, DMACC);
2461 CONFLICT (DMACC, DMULT);
2462 CONFLICT (DMACC, DMACC);
2463
2464 /* Errata 24 - MT{LO,HI} after [D]MACC */
2465 CONFLICT (MACC, MTHILO);
2466 CONFLICT (DMACC, MTHILO);
2467
2468 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2469 instruction is executed immediately after a MACC or DMACC
2470 instruction, the result of [either instruction] is incorrect." */
2471 CONFLICT (MACC, MULT);
2472 CONFLICT (MACC, DMULT);
2473 CONFLICT (DMACC, MULT);
2474 CONFLICT (DMACC, DMULT);
2475
2476 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2477 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2478 DDIV or DDIVU instruction, the result of the MACC or
2479 DMACC instruction is incorrect.". */
2480 CONFLICT (DMULT, MACC);
2481 CONFLICT (DMULT, DMACC);
2482 CONFLICT (DIV, MACC);
2483 CONFLICT (DIV, DMACC);
2484
2485#undef CONFLICT
2486}
2487
707bfff6
TS
2488struct regname {
2489 const char *name;
2490 unsigned int num;
2491};
2492
14daeee3 2493#define RNUM_MASK 0x00000ff
56d438b1 2494#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2495#define RTYPE_NUM 0x0000100
2496#define RTYPE_FPU 0x0000200
2497#define RTYPE_FCC 0x0000400
2498#define RTYPE_VEC 0x0000800
2499#define RTYPE_GP 0x0001000
2500#define RTYPE_CP0 0x0002000
2501#define RTYPE_PC 0x0004000
2502#define RTYPE_ACC 0x0008000
2503#define RTYPE_CCC 0x0010000
2504#define RTYPE_VI 0x0020000
2505#define RTYPE_VF 0x0040000
2506#define RTYPE_R5900_I 0x0080000
2507#define RTYPE_R5900_Q 0x0100000
2508#define RTYPE_R5900_R 0x0200000
2509#define RTYPE_R5900_ACC 0x0400000
56d438b1 2510#define RTYPE_MSA 0x0800000
14daeee3 2511#define RWARN 0x8000000
707bfff6
TS
2512
2513#define GENERIC_REGISTER_NUMBERS \
2514 {"$0", RTYPE_NUM | 0}, \
2515 {"$1", RTYPE_NUM | 1}, \
2516 {"$2", RTYPE_NUM | 2}, \
2517 {"$3", RTYPE_NUM | 3}, \
2518 {"$4", RTYPE_NUM | 4}, \
2519 {"$5", RTYPE_NUM | 5}, \
2520 {"$6", RTYPE_NUM | 6}, \
2521 {"$7", RTYPE_NUM | 7}, \
2522 {"$8", RTYPE_NUM | 8}, \
2523 {"$9", RTYPE_NUM | 9}, \
2524 {"$10", RTYPE_NUM | 10}, \
2525 {"$11", RTYPE_NUM | 11}, \
2526 {"$12", RTYPE_NUM | 12}, \
2527 {"$13", RTYPE_NUM | 13}, \
2528 {"$14", RTYPE_NUM | 14}, \
2529 {"$15", RTYPE_NUM | 15}, \
2530 {"$16", RTYPE_NUM | 16}, \
2531 {"$17", RTYPE_NUM | 17}, \
2532 {"$18", RTYPE_NUM | 18}, \
2533 {"$19", RTYPE_NUM | 19}, \
2534 {"$20", RTYPE_NUM | 20}, \
2535 {"$21", RTYPE_NUM | 21}, \
2536 {"$22", RTYPE_NUM | 22}, \
2537 {"$23", RTYPE_NUM | 23}, \
2538 {"$24", RTYPE_NUM | 24}, \
2539 {"$25", RTYPE_NUM | 25}, \
2540 {"$26", RTYPE_NUM | 26}, \
2541 {"$27", RTYPE_NUM | 27}, \
2542 {"$28", RTYPE_NUM | 28}, \
2543 {"$29", RTYPE_NUM | 29}, \
2544 {"$30", RTYPE_NUM | 30}, \
3739860c 2545 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2546
2547#define FPU_REGISTER_NAMES \
2548 {"$f0", RTYPE_FPU | 0}, \
2549 {"$f1", RTYPE_FPU | 1}, \
2550 {"$f2", RTYPE_FPU | 2}, \
2551 {"$f3", RTYPE_FPU | 3}, \
2552 {"$f4", RTYPE_FPU | 4}, \
2553 {"$f5", RTYPE_FPU | 5}, \
2554 {"$f6", RTYPE_FPU | 6}, \
2555 {"$f7", RTYPE_FPU | 7}, \
2556 {"$f8", RTYPE_FPU | 8}, \
2557 {"$f9", RTYPE_FPU | 9}, \
2558 {"$f10", RTYPE_FPU | 10}, \
2559 {"$f11", RTYPE_FPU | 11}, \
2560 {"$f12", RTYPE_FPU | 12}, \
2561 {"$f13", RTYPE_FPU | 13}, \
2562 {"$f14", RTYPE_FPU | 14}, \
2563 {"$f15", RTYPE_FPU | 15}, \
2564 {"$f16", RTYPE_FPU | 16}, \
2565 {"$f17", RTYPE_FPU | 17}, \
2566 {"$f18", RTYPE_FPU | 18}, \
2567 {"$f19", RTYPE_FPU | 19}, \
2568 {"$f20", RTYPE_FPU | 20}, \
2569 {"$f21", RTYPE_FPU | 21}, \
2570 {"$f22", RTYPE_FPU | 22}, \
2571 {"$f23", RTYPE_FPU | 23}, \
2572 {"$f24", RTYPE_FPU | 24}, \
2573 {"$f25", RTYPE_FPU | 25}, \
2574 {"$f26", RTYPE_FPU | 26}, \
2575 {"$f27", RTYPE_FPU | 27}, \
2576 {"$f28", RTYPE_FPU | 28}, \
2577 {"$f29", RTYPE_FPU | 29}, \
2578 {"$f30", RTYPE_FPU | 30}, \
2579 {"$f31", RTYPE_FPU | 31}
2580
2581#define FPU_CONDITION_CODE_NAMES \
2582 {"$fcc0", RTYPE_FCC | 0}, \
2583 {"$fcc1", RTYPE_FCC | 1}, \
2584 {"$fcc2", RTYPE_FCC | 2}, \
2585 {"$fcc3", RTYPE_FCC | 3}, \
2586 {"$fcc4", RTYPE_FCC | 4}, \
2587 {"$fcc5", RTYPE_FCC | 5}, \
2588 {"$fcc6", RTYPE_FCC | 6}, \
2589 {"$fcc7", RTYPE_FCC | 7}
2590
2591#define COPROC_CONDITION_CODE_NAMES \
2592 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2593 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2594 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2595 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2596 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2597 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2598 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2599 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2600
2601#define N32N64_SYMBOLIC_REGISTER_NAMES \
2602 {"$a4", RTYPE_GP | 8}, \
2603 {"$a5", RTYPE_GP | 9}, \
2604 {"$a6", RTYPE_GP | 10}, \
2605 {"$a7", RTYPE_GP | 11}, \
2606 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2607 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2608 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2609 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2610 {"$t0", RTYPE_GP | 12}, \
2611 {"$t1", RTYPE_GP | 13}, \
2612 {"$t2", RTYPE_GP | 14}, \
2613 {"$t3", RTYPE_GP | 15}
2614
2615#define O32_SYMBOLIC_REGISTER_NAMES \
2616 {"$t0", RTYPE_GP | 8}, \
2617 {"$t1", RTYPE_GP | 9}, \
2618 {"$t2", RTYPE_GP | 10}, \
2619 {"$t3", RTYPE_GP | 11}, \
2620 {"$t4", RTYPE_GP | 12}, \
2621 {"$t5", RTYPE_GP | 13}, \
2622 {"$t6", RTYPE_GP | 14}, \
2623 {"$t7", RTYPE_GP | 15}, \
2624 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2625 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2626 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2627 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2628
2629/* Remaining symbolic register names */
2630#define SYMBOLIC_REGISTER_NAMES \
2631 {"$zero", RTYPE_GP | 0}, \
2632 {"$at", RTYPE_GP | 1}, \
2633 {"$AT", RTYPE_GP | 1}, \
2634 {"$v0", RTYPE_GP | 2}, \
2635 {"$v1", RTYPE_GP | 3}, \
2636 {"$a0", RTYPE_GP | 4}, \
2637 {"$a1", RTYPE_GP | 5}, \
2638 {"$a2", RTYPE_GP | 6}, \
2639 {"$a3", RTYPE_GP | 7}, \
2640 {"$s0", RTYPE_GP | 16}, \
2641 {"$s1", RTYPE_GP | 17}, \
2642 {"$s2", RTYPE_GP | 18}, \
2643 {"$s3", RTYPE_GP | 19}, \
2644 {"$s4", RTYPE_GP | 20}, \
2645 {"$s5", RTYPE_GP | 21}, \
2646 {"$s6", RTYPE_GP | 22}, \
2647 {"$s7", RTYPE_GP | 23}, \
2648 {"$t8", RTYPE_GP | 24}, \
2649 {"$t9", RTYPE_GP | 25}, \
2650 {"$k0", RTYPE_GP | 26}, \
2651 {"$kt0", RTYPE_GP | 26}, \
2652 {"$k1", RTYPE_GP | 27}, \
2653 {"$kt1", RTYPE_GP | 27}, \
2654 {"$gp", RTYPE_GP | 28}, \
2655 {"$sp", RTYPE_GP | 29}, \
2656 {"$s8", RTYPE_GP | 30}, \
2657 {"$fp", RTYPE_GP | 30}, \
2658 {"$ra", RTYPE_GP | 31}
2659
2660#define MIPS16_SPECIAL_REGISTER_NAMES \
2661 {"$pc", RTYPE_PC | 0}
2662
2663#define MDMX_VECTOR_REGISTER_NAMES \
2664 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2665 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2666 {"$v2", RTYPE_VEC | 2}, \
2667 {"$v3", RTYPE_VEC | 3}, \
2668 {"$v4", RTYPE_VEC | 4}, \
2669 {"$v5", RTYPE_VEC | 5}, \
2670 {"$v6", RTYPE_VEC | 6}, \
2671 {"$v7", RTYPE_VEC | 7}, \
2672 {"$v8", RTYPE_VEC | 8}, \
2673 {"$v9", RTYPE_VEC | 9}, \
2674 {"$v10", RTYPE_VEC | 10}, \
2675 {"$v11", RTYPE_VEC | 11}, \
2676 {"$v12", RTYPE_VEC | 12}, \
2677 {"$v13", RTYPE_VEC | 13}, \
2678 {"$v14", RTYPE_VEC | 14}, \
2679 {"$v15", RTYPE_VEC | 15}, \
2680 {"$v16", RTYPE_VEC | 16}, \
2681 {"$v17", RTYPE_VEC | 17}, \
2682 {"$v18", RTYPE_VEC | 18}, \
2683 {"$v19", RTYPE_VEC | 19}, \
2684 {"$v20", RTYPE_VEC | 20}, \
2685 {"$v21", RTYPE_VEC | 21}, \
2686 {"$v22", RTYPE_VEC | 22}, \
2687 {"$v23", RTYPE_VEC | 23}, \
2688 {"$v24", RTYPE_VEC | 24}, \
2689 {"$v25", RTYPE_VEC | 25}, \
2690 {"$v26", RTYPE_VEC | 26}, \
2691 {"$v27", RTYPE_VEC | 27}, \
2692 {"$v28", RTYPE_VEC | 28}, \
2693 {"$v29", RTYPE_VEC | 29}, \
2694 {"$v30", RTYPE_VEC | 30}, \
2695 {"$v31", RTYPE_VEC | 31}
2696
14daeee3
RS
2697#define R5900_I_NAMES \
2698 {"$I", RTYPE_R5900_I | 0}
2699
2700#define R5900_Q_NAMES \
2701 {"$Q", RTYPE_R5900_Q | 0}
2702
2703#define R5900_R_NAMES \
2704 {"$R", RTYPE_R5900_R | 0}
2705
2706#define R5900_ACC_NAMES \
2707 {"$ACC", RTYPE_R5900_ACC | 0 }
2708
707bfff6
TS
2709#define MIPS_DSP_ACCUMULATOR_NAMES \
2710 {"$ac0", RTYPE_ACC | 0}, \
2711 {"$ac1", RTYPE_ACC | 1}, \
2712 {"$ac2", RTYPE_ACC | 2}, \
2713 {"$ac3", RTYPE_ACC | 3}
2714
2715static const struct regname reg_names[] = {
2716 GENERIC_REGISTER_NUMBERS,
2717 FPU_REGISTER_NAMES,
2718 FPU_CONDITION_CODE_NAMES,
2719 COPROC_CONDITION_CODE_NAMES,
2720
2721 /* The $txx registers depends on the abi,
2722 these will be added later into the symbol table from
3739860c 2723 one of the tables below once mips_abi is set after
707bfff6
TS
2724 parsing of arguments from the command line. */
2725 SYMBOLIC_REGISTER_NAMES,
2726
2727 MIPS16_SPECIAL_REGISTER_NAMES,
2728 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2729 R5900_I_NAMES,
2730 R5900_Q_NAMES,
2731 R5900_R_NAMES,
2732 R5900_ACC_NAMES,
707bfff6
TS
2733 MIPS_DSP_ACCUMULATOR_NAMES,
2734 {0, 0}
2735};
2736
2737static const struct regname reg_names_o32[] = {
2738 O32_SYMBOLIC_REGISTER_NAMES,
2739 {0, 0}
2740};
2741
2742static const struct regname reg_names_n32n64[] = {
2743 N32N64_SYMBOLIC_REGISTER_NAMES,
2744 {0, 0}
2745};
2746
a92713e6
RS
2747/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2748 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2749 of these register symbols, return the associated vector register,
2750 otherwise return SYMVAL itself. */
df58fc94 2751
a92713e6
RS
2752static unsigned int
2753mips_prefer_vec_regno (unsigned int symval)
707bfff6 2754{
a92713e6
RS
2755 if ((symval & -2) == (RTYPE_GP | 2))
2756 return RTYPE_VEC | (symval & 1);
2757 return symval;
2758}
2759
14daeee3
RS
2760/* Return true if string [S, E) is a valid register name, storing its
2761 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2762
2763static bfd_boolean
14daeee3 2764mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2765{
707bfff6 2766 char save_c;
14daeee3 2767 symbolS *symbol;
707bfff6
TS
2768
2769 /* Terminate name. */
2770 save_c = *e;
2771 *e = '\0';
2772
a92713e6
RS
2773 /* Look up the name. */
2774 symbol = symbol_find (s);
2775 *e = save_c;
2776
2777 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2778 return FALSE;
2779
14daeee3
RS
2780 *symval_ptr = S_GET_VALUE (symbol);
2781 return TRUE;
2782}
2783
2784/* Return true if the string at *SPTR is a valid register name. Allow it
2785 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2786 is nonnull.
2787
2788 When returning true, move *SPTR past the register, store the
2789 register's symbol value in *SYMVAL_PTR and the channel mask in
2790 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2791 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2792 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2793
2794static bfd_boolean
2795mips_parse_register (char **sptr, unsigned int *symval_ptr,
2796 unsigned int *channels_ptr)
2797{
2798 char *s, *e, *m;
2799 const char *q;
2800 unsigned int channels, symval, bit;
2801
2802 /* Find end of name. */
2803 s = e = *sptr;
2804 if (is_name_beginner (*e))
2805 ++e;
2806 while (is_part_of_name (*e))
2807 ++e;
2808
2809 channels = 0;
2810 if (!mips_parse_register_1 (s, e, &symval))
2811 {
2812 if (!channels_ptr)
2813 return FALSE;
2814
2815 /* Eat characters from the end of the string that are valid
2816 channel suffixes. The preceding register must be $ACC or
2817 end with a digit, so there is no ambiguity. */
2818 bit = 1;
2819 m = e;
2820 for (q = "wzyx"; *q; q++, bit <<= 1)
2821 if (m > s && m[-1] == *q)
2822 {
2823 --m;
2824 channels |= bit;
2825 }
2826
2827 if (channels == 0
2828 || !mips_parse_register_1 (s, m, &symval)
2829 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2830 return FALSE;
2831 }
2832
a92713e6 2833 *sptr = e;
14daeee3
RS
2834 *symval_ptr = symval;
2835 if (channels_ptr)
2836 *channels_ptr = channels;
a92713e6
RS
2837 return TRUE;
2838}
2839
2840/* Check if SPTR points at a valid register specifier according to TYPES.
2841 If so, then return 1, advance S to consume the specifier and store
2842 the register's number in REGNOP, otherwise return 0. */
2843
2844static int
2845reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2846{
2847 unsigned int regno;
2848
14daeee3 2849 if (mips_parse_register (s, &regno, NULL))
707bfff6 2850 {
a92713e6
RS
2851 if (types & RTYPE_VEC)
2852 regno = mips_prefer_vec_regno (regno);
2853 if (regno & types)
2854 regno &= RNUM_MASK;
2855 else
2856 regno = ~0;
707bfff6 2857 }
a92713e6 2858 else
707bfff6 2859 {
a92713e6 2860 if (types & RWARN)
1661c76c 2861 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2862 regno = ~0;
707bfff6 2863 }
707bfff6 2864 if (regnop)
a92713e6
RS
2865 *regnop = regno;
2866 return regno <= RNUM_MASK;
707bfff6
TS
2867}
2868
14daeee3
RS
2869/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2870 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2871
2872static char *
2873mips_parse_vu0_channels (char *s, unsigned int *channels)
2874{
2875 unsigned int i;
2876
2877 *channels = 0;
2878 for (i = 0; i < 4; i++)
2879 if (*s == "xyzw"[i])
2880 {
2881 *channels |= 1 << (3 - i);
2882 ++s;
2883 }
2884 return s;
2885}
2886
a92713e6
RS
2887/* Token types for parsed operand lists. */
2888enum mips_operand_token_type {
2889 /* A plain register, e.g. $f2. */
2890 OT_REG,
df58fc94 2891
14daeee3
RS
2892 /* A 4-bit XYZW channel mask. */
2893 OT_CHANNELS,
2894
56d438b1
CF
2895 /* A constant vector index, e.g. [1]. */
2896 OT_INTEGER_INDEX,
2897
2898 /* A register vector index, e.g. [$2]. */
2899 OT_REG_INDEX,
df58fc94 2900
a92713e6
RS
2901 /* A continuous range of registers, e.g. $s0-$s4. */
2902 OT_REG_RANGE,
2903
2904 /* A (possibly relocated) expression. */
2905 OT_INTEGER,
2906
2907 /* A floating-point value. */
2908 OT_FLOAT,
2909
2910 /* A single character. This can be '(', ')' or ',', but '(' only appears
2911 before OT_REGs. */
2912 OT_CHAR,
2913
14daeee3
RS
2914 /* A doubled character, either "--" or "++". */
2915 OT_DOUBLE_CHAR,
2916
a92713e6
RS
2917 /* The end of the operand list. */
2918 OT_END
2919};
2920
2921/* A parsed operand token. */
2922struct mips_operand_token
2923{
2924 /* The type of token. */
2925 enum mips_operand_token_type type;
2926 union
2927 {
56d438b1 2928 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2929 unsigned int regno;
2930
14daeee3
RS
2931 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2932 unsigned int channels;
2933
56d438b1
CF
2934 /* The integer value of an OT_INTEGER_INDEX. */
2935 addressT index;
a92713e6
RS
2936
2937 /* The two register symbol values involved in an OT_REG_RANGE. */
2938 struct {
2939 unsigned int regno1;
2940 unsigned int regno2;
2941 } reg_range;
2942
2943 /* The value of an OT_INTEGER. The value is represented as an
2944 expression and the relocation operators that were applied to
2945 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2946 relocation operators were used. */
2947 struct {
2948 expressionS value;
2949 bfd_reloc_code_real_type relocs[3];
2950 } integer;
2951
2952 /* The binary data for an OT_FLOAT constant, and the number of bytes
2953 in the constant. */
2954 struct {
2955 unsigned char data[8];
2956 int length;
2957 } flt;
2958
14daeee3 2959 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2960 char ch;
2961 } u;
2962};
2963
2964/* An obstack used to construct lists of mips_operand_tokens. */
2965static struct obstack mips_operand_tokens;
2966
2967/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2968
2969static void
2970mips_add_token (struct mips_operand_token *token,
2971 enum mips_operand_token_type type)
2972{
2973 token->type = type;
2974 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2975}
2976
2977/* Check whether S is '(' followed by a register name. Add OT_CHAR
2978 and OT_REG tokens for them if so, and return a pointer to the first
2979 unconsumed character. Return null otherwise. */
2980
2981static char *
2982mips_parse_base_start (char *s)
2983{
2984 struct mips_operand_token token;
14daeee3
RS
2985 unsigned int regno, channels;
2986 bfd_boolean decrement_p;
df58fc94 2987
a92713e6
RS
2988 if (*s != '(')
2989 return 0;
2990
2991 ++s;
2992 SKIP_SPACE_TABS (s);
14daeee3
RS
2993
2994 /* Only match "--" as part of a base expression. In other contexts "--X"
2995 is a double negative. */
2996 decrement_p = (s[0] == '-' && s[1] == '-');
2997 if (decrement_p)
2998 {
2999 s += 2;
3000 SKIP_SPACE_TABS (s);
3001 }
3002
3003 /* Allow a channel specifier because that leads to better error messages
3004 than treating something like "$vf0x++" as an expression. */
3005 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3006 return 0;
3007
3008 token.u.ch = '(';
3009 mips_add_token (&token, OT_CHAR);
3010
14daeee3
RS
3011 if (decrement_p)
3012 {
3013 token.u.ch = '-';
3014 mips_add_token (&token, OT_DOUBLE_CHAR);
3015 }
3016
a92713e6
RS
3017 token.u.regno = regno;
3018 mips_add_token (&token, OT_REG);
3019
14daeee3
RS
3020 if (channels)
3021 {
3022 token.u.channels = channels;
3023 mips_add_token (&token, OT_CHANNELS);
3024 }
3025
3026 /* For consistency, only match "++" as part of base expressions too. */
3027 SKIP_SPACE_TABS (s);
3028 if (s[0] == '+' && s[1] == '+')
3029 {
3030 s += 2;
3031 token.u.ch = '+';
3032 mips_add_token (&token, OT_DOUBLE_CHAR);
3033 }
3034
a92713e6
RS
3035 return s;
3036}
3037
3038/* Parse one or more tokens from S. Return a pointer to the first
3039 unconsumed character on success. Return null if an error was found
3040 and store the error text in insn_error. FLOAT_FORMAT is as for
3041 mips_parse_arguments. */
3042
3043static char *
3044mips_parse_argument_token (char *s, char float_format)
3045{
3046 char *end, *save_in, *err;
14daeee3 3047 unsigned int regno1, regno2, channels;
a92713e6
RS
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
14daeee3 3066 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3067 {
14daeee3
RS
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
a92713e6
RS
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
df58fc94 3081 {
a92713e6
RS
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
14daeee3 3085 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3086 {
1661c76c 3087 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3088 return 0;
3089 }
df58fc94 3090
a92713e6
RS
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
a92713e6 3096
56d438b1
CF
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
a92713e6
RS
3104 ++s;
3105 SKIP_SPACE_TABS (s);
56d438b1
CF
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
a92713e6 3109 {
56d438b1
CF
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3121 }
a92713e6
RS
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
1661c76c 3125 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3126 return 0;
3127 }
3128 ++s;
df58fc94 3129 }
a92713e6 3130 return s;
df58fc94
RS
3131 }
3132
a92713e6
RS
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
e3de51ce 3144 set_insn_error (0, err);
a92713e6
RS
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162}
3163
3164/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172static struct mips_operand_token *
3173mips_parse_arguments (char *s, char float_format)
3174{
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3191}
3192
d301a56b
RS
3193/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3195
3196static bfd_boolean
f79e2745 3197is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3198{
3199 int isa = mips_opts.isa;
846ef2d0 3200 int ase = mips_opts.ase;
037b32b9 3201 int fp_s, fp_d;
c6278170 3202 unsigned int i;
037b32b9 3203
c6278170
RS
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
037b32b9 3208
d301a56b 3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233}
3234
3235/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238static bfd_boolean
3239is_opcode_valid_16 (const struct mips_opcode *mo)
3240{
d301a56b 3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3242}
3243
df58fc94
RS
3244/* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247static bfd_boolean
3248is_size_valid (const struct mips_opcode *mo)
3249{
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
833794fc
MR
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
df58fc94
RS
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265}
3266
3267/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
df58fc94
RS
3280
3281static bfd_boolean
3282is_delay_slot_valid (const struct mips_opcode *mo)
3283{
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
c06dec14 3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297}
3298
fc76e730
RS
3299/* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
ab902481
RS
3307
3308static int
3309validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
fc76e730
RS
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
ab902481
RS
3313{
3314 const char *s;
fc76e730 3315 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3316 const struct mips_operand *operand;
3317
fc76e730
RS
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
fc76e730 3326 opno = 0;
14daeee3
RS
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
14daeee3
RS
3337 case '#':
3338 s++;
3339 break;
3340
ab902481 3341 default:
fc76e730
RS
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
fc76e730
RS
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
14daeee3 3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3355 {
14daeee3 3356 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
ab902481 3364 /* Skip prefix characters. */
7361da2c 3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3366 ++s;
fc76e730 3367 opno += 1;
ab902481
RS
3368 break;
3369 }
fc76e730 3370 doubled = used_bits & mask & insn_bits;
ab902481
RS
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
fc76e730 3377 used_bits |= mask;
ab902481 3378 undefined = ~used_bits & insn_bits;
fc76e730 3379 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393}
3394
fc76e730
RS
3395/* The MIPS16 version of validate_mips_insn. */
3396
3397static int
3398validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400{
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413}
3414
ab902481
RS
3415/* The microMIPS version of validate_mips_insn. */
3416
3417static int
fc76e730
RS
3418validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
ab902481
RS
3420{
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
fc76e730
RS
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
ab902481
RS
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
1661c76c 3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
1661c76c 3440 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
fc76e730
RS
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
ab902481
RS
3451}
3452
707bfff6
TS
3453/* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3455
252b5132 3456void
17a2f251 3457md_begin (void)
252b5132 3458{
3994f87e 3459 const char *retval = NULL;
156c2f8b 3460 int i = 0;
252b5132 3461 int broken = 0;
1f25f5d3 3462
0a44bf69
RS
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
3469
0b35dfee 3470 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3471 as_warn (_("could not set architecture and machine"));
252b5132 3472
252b5132
RH
3473 op_hash = hash_new ();
3474
fc76e730 3475 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3476 for (i = 0; i < NUMOPCODES;)
3477 {
3478 const char *name = mips_opcodes[i].name;
3479
17a2f251 3480 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3481 if (retval != NULL)
3482 {
3483 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3484 mips_opcodes[i].name, retval);
3485 /* Probably a memory allocation problem? Give up now. */
1661c76c 3486 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3487 }
3488 do
3489 {
fc76e730
RS
3490 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3491 decode_mips_operand, &mips_operands[i]))
3492 broken = 1;
3493 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3494 {
fc76e730
RS
3495 create_insn (&nop_insn, mips_opcodes + i);
3496 if (mips_fix_loongson2f_nop)
3497 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3498 nop_insn.fixed_p = 1;
252b5132
RH
3499 }
3500 ++i;
3501 }
3502 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3503 }
3504
3505 mips16_op_hash = hash_new ();
fc76e730
RS
3506 mips16_operands = XCNEWVEC (struct mips_operand_array,
3507 bfd_mips16_num_opcodes);
252b5132
RH
3508
3509 i = 0;
3510 while (i < bfd_mips16_num_opcodes)
3511 {
3512 const char *name = mips16_opcodes[i].name;
3513
17a2f251 3514 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3515 if (retval != NULL)
3516 as_fatal (_("internal: can't hash `%s': %s"),
3517 mips16_opcodes[i].name, retval);
3518 do
3519 {
fc76e730
RS
3520 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3521 broken = 1;
1e915849
RS
3522 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3523 {
3524 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3525 mips16_nop_insn.fixed_p = 1;
3526 }
252b5132
RH
3527 ++i;
3528 }
3529 while (i < bfd_mips16_num_opcodes
3530 && strcmp (mips16_opcodes[i].name, name) == 0);
3531 }
3532
df58fc94 3533 micromips_op_hash = hash_new ();
fc76e730
RS
3534 micromips_operands = XCNEWVEC (struct mips_operand_array,
3535 bfd_micromips_num_opcodes);
df58fc94
RS
3536
3537 i = 0;
3538 while (i < bfd_micromips_num_opcodes)
3539 {
3540 const char *name = micromips_opcodes[i].name;
3541
3542 retval = hash_insert (micromips_op_hash, name,
3543 (void *) &micromips_opcodes[i]);
3544 if (retval != NULL)
3545 as_fatal (_("internal: can't hash `%s': %s"),
3546 micromips_opcodes[i].name, retval);
3547 do
fc76e730
RS
3548 {
3549 struct mips_cl_insn *micromips_nop_insn;
3550
3551 if (!validate_micromips_insn (&micromips_opcodes[i],
3552 &micromips_operands[i]))
3553 broken = 1;
3554
3555 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3556 {
3557 if (micromips_insn_length (micromips_opcodes + i) == 2)
3558 micromips_nop_insn = &micromips_nop16_insn;
3559 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3560 micromips_nop_insn = &micromips_nop32_insn;
3561 else
3562 continue;
3563
3564 if (micromips_nop_insn->insn_mo == NULL
3565 && strcmp (name, "nop") == 0)
3566 {
3567 create_insn (micromips_nop_insn, micromips_opcodes + i);
3568 micromips_nop_insn->fixed_p = 1;
3569 }
3570 }
3571 }
df58fc94
RS
3572 while (++i < bfd_micromips_num_opcodes
3573 && strcmp (micromips_opcodes[i].name, name) == 0);
3574 }
3575
252b5132 3576 if (broken)
1661c76c 3577 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3578
3579 /* We add all the general register names to the symbol table. This
3580 helps us detect invalid uses of them. */
3739860c 3581 for (i = 0; reg_names[i].name; i++)
707bfff6 3582 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3583 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3584 &zero_address_frag));
3585 if (HAVE_NEWABI)
3739860c 3586 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3587 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3588 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3589 &zero_address_frag));
707bfff6 3590 else
3739860c 3591 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3592 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3593 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3594 &zero_address_frag));
6047c971 3595
14daeee3
RS
3596 for (i = 0; i < 32; i++)
3597 {
3598 char regname[7];
3599
3600 /* R5900 VU0 floating-point register. */
3601 regname[sizeof (rename) - 1] = 0;
3602 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3603 symbol_table_insert (symbol_new (regname, reg_section,
3604 RTYPE_VF | i, &zero_address_frag));
3605
3606 /* R5900 VU0 integer register. */
3607 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VI | i, &zero_address_frag));
3610
56d438b1
CF
3611 /* MSA register. */
3612 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3615 }
3616
a92713e6
RS
3617 obstack_init (&mips_operand_tokens);
3618
7d10b47d 3619 mips_no_prev_insn ();
252b5132
RH
3620
3621 mips_gprmask = 0;
3622 mips_cprmask[0] = 0;
3623 mips_cprmask[1] = 0;
3624 mips_cprmask[2] = 0;
3625 mips_cprmask[3] = 0;
3626
3627 /* set the default alignment for the text section (2**2) */
3628 record_alignment (text_section, 2);
3629
4d0d148d 3630 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3631
f3ded42a
RS
3632 /* On a native system other than VxWorks, sections must be aligned
3633 to 16 byte boundaries. When configured for an embedded ELF
3634 target, we don't bother. */
3635 if (strncmp (TARGET_OS, "elf", 3) != 0
3636 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3637 {
f3ded42a
RS
3638 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3639 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3640 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3641 }
252b5132 3642
f3ded42a
RS
3643 /* Create a .reginfo section for register masks and a .mdebug
3644 section for debugging information. */
3645 {
3646 segT seg;
3647 subsegT subseg;
3648 flagword flags;
3649 segT sec;
3650
3651 seg = now_seg;
3652 subseg = now_subseg;
3653
3654 /* The ABI says this section should be loaded so that the
3655 running program can access it. However, we don't load it
3656 if we are configured for an embedded target */
3657 flags = SEC_READONLY | SEC_DATA;
3658 if (strncmp (TARGET_OS, "elf", 3) != 0)
3659 flags |= SEC_ALLOC | SEC_LOAD;
3660
3661 if (mips_abi != N64_ABI)
252b5132 3662 {
f3ded42a 3663 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3664
f3ded42a
RS
3665 bfd_set_section_flags (stdoutput, sec, flags);
3666 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3667
f3ded42a
RS
3668 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3669 }
3670 else
3671 {
3672 /* The 64-bit ABI uses a .MIPS.options section rather than
3673 .reginfo section. */
3674 sec = subseg_new (".MIPS.options", (subsegT) 0);
3675 bfd_set_section_flags (stdoutput, sec, flags);
3676 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3677
f3ded42a
RS
3678 /* Set up the option header. */
3679 {
3680 Elf_Internal_Options opthdr;
3681 char *f;
3682
3683 opthdr.kind = ODK_REGINFO;
3684 opthdr.size = (sizeof (Elf_External_Options)
3685 + sizeof (Elf64_External_RegInfo));
3686 opthdr.section = 0;
3687 opthdr.info = 0;
3688 f = frag_more (sizeof (Elf_External_Options));
3689 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3690 (Elf_External_Options *) f);
3691
3692 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3693 }
3694 }
252b5132 3695
351cdf24
MF
3696 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3697 bfd_set_section_flags (stdoutput, sec,
3698 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3699 bfd_set_section_alignment (stdoutput, sec, 3);
3700 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3701
f3ded42a
RS
3702 if (ECOFF_DEBUGGING)
3703 {
3704 sec = subseg_new (".mdebug", (subsegT) 0);
3705 (void) bfd_set_section_flags (stdoutput, sec,
3706 SEC_HAS_CONTENTS | SEC_READONLY);
3707 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3708 }
f3ded42a
RS
3709 else if (mips_flag_pdr)
3710 {
3711 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3712 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3713 SEC_READONLY | SEC_RELOC
3714 | SEC_DEBUGGING);
3715 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3716 }
3717
3718 subseg_set (seg, subseg);
3719 }
252b5132 3720
71400594
RS
3721 if (mips_fix_vr4120)
3722 init_vr4120_conflicts ();
252b5132
RH
3723}
3724
351cdf24
MF
3725static inline void
3726fpabi_incompatible_with (int fpabi, const char *what)
3727{
3728 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3729 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3730}
3731
3732static inline void
3733fpabi_requires (int fpabi, const char *what)
3734{
3735 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3736 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3737}
3738
3739/* Check -mabi and register sizes against the specified FP ABI. */
3740static void
3741check_fpabi (int fpabi)
3742{
351cdf24
MF
3743 switch (fpabi)
3744 {
3745 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3746 if (file_mips_opts.soft_float)
3747 fpabi_incompatible_with (fpabi, "softfloat");
3748 else if (file_mips_opts.single_float)
3749 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3750 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3751 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3752 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3753 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3754 break;
3755
3756 case Val_GNU_MIPS_ABI_FP_XX:
3757 if (mips_abi != O32_ABI)
3758 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3759 else if (file_mips_opts.soft_float)
3760 fpabi_incompatible_with (fpabi, "softfloat");
3761 else if (file_mips_opts.single_float)
3762 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3763 else if (file_mips_opts.fp != 0)
3764 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3765 break;
3766
3767 case Val_GNU_MIPS_ABI_FP_64A:
3768 case Val_GNU_MIPS_ABI_FP_64:
3769 if (mips_abi != O32_ABI)
3770 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3771 else if (file_mips_opts.soft_float)
3772 fpabi_incompatible_with (fpabi, "softfloat");
3773 else if (file_mips_opts.single_float)
3774 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3775 else if (file_mips_opts.fp != 64)
3776 fpabi_requires (fpabi, "fp=64");
3777 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3778 fpabi_incompatible_with (fpabi, "nooddspreg");
3779 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3780 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3781 break;
3782
3783 case Val_GNU_MIPS_ABI_FP_SINGLE:
3784 if (file_mips_opts.soft_float)
3785 fpabi_incompatible_with (fpabi, "softfloat");
3786 else if (!file_mips_opts.single_float)
3787 fpabi_requires (fpabi, "singlefloat");
3788 break;
3789
3790 case Val_GNU_MIPS_ABI_FP_SOFT:
3791 if (!file_mips_opts.soft_float)
3792 fpabi_requires (fpabi, "softfloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_OLD_64:
3796 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3797 Tag_GNU_MIPS_ABI_FP, fpabi);
3798 break;
3799
3350cc01
CM
3800 case Val_GNU_MIPS_ABI_FP_NAN2008:
3801 /* Silently ignore compatibility value. */
3802 break;
3803
351cdf24
MF
3804 default:
3805 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3806 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3807 break;
3808 }
351cdf24
MF
3809}
3810
919731af 3811/* Perform consistency checks on the current options. */
3812
3813static void
3814mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3815{
3816 /* Check the size of integer registers agrees with the ABI and ISA. */
3817 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3818 as_bad (_("`gp=64' used with a 32-bit processor"));
3819 else if (abi_checks
3820 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3821 as_bad (_("`gp=32' used with a 64-bit ABI"));
3822 else if (abi_checks
3823 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3824 as_bad (_("`gp=64' used with a 32-bit ABI"));
3825
3826 /* Check the size of the float registers agrees with the ABI and ISA. */
3827 switch (opts->fp)
3828 {
351cdf24
MF
3829 case 0:
3830 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3831 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3832 else if (opts->single_float == 1)
3833 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3834 break;
919731af 3835 case 64:
3836 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3837 as_bad (_("`fp=64' used with a 32-bit fpu"));
3838 else if (abi_checks
3839 && ABI_NEEDS_32BIT_REGS (mips_abi)
3840 && !ISA_HAS_MXHC1 (opts->isa))
3841 as_warn (_("`fp=64' used with a 32-bit ABI"));
3842 break;
3843 case 32:
3844 if (abi_checks
3845 && ABI_NEEDS_64BIT_REGS (mips_abi))
3846 as_warn (_("`fp=32' used with a 64-bit ABI"));
7361da2c
AB
3847 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3848 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3849 break;
3850 default:
3851 as_bad (_("Unknown size of floating point registers"));
3852 break;
3853 }
3854
351cdf24
MF
3855 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3856 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3857
919731af 3858 if (opts->micromips == 1 && opts->mips16 == 1)
3859 as_bad (_("`mips16' cannot be used with `micromips'"));
7361da2c
AB
3860 else if (ISA_IS_R6 (mips_opts.isa)
3861 && (opts->micromips == 1
3862 || opts->mips16 == 1))
3863 as_fatal (_("`%s' can not be used with `%s'"),
3864 opts->micromips ? "micromips" : "mips16",
3865 mips_cpu_info_from_isa (mips_opts.isa)->name);
3866
3867 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3868 as_fatal (_("branch relaxation is not supported in `%s'"),
3869 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3870}
3871
3872/* Perform consistency checks on the module level options exactly once.
3873 This is a deferred check that happens:
3874 at the first .set directive
3875 or, at the first pseudo op that generates code (inc .dc.a)
3876 or, at the first instruction
3877 or, at the end. */
3878
3879static void
3880file_mips_check_options (void)
3881{
3882 const struct mips_cpu_info *arch_info = 0;
3883
3884 if (file_mips_opts_checked)
3885 return;
3886
3887 /* The following code determines the register size.
3888 Similar code was added to GCC 3.3 (see override_options() in
3889 config/mips/mips.c). The GAS and GCC code should be kept in sync
3890 as much as possible. */
3891
3892 if (file_mips_opts.gp < 0)
3893 {
3894 /* Infer the integer register size from the ABI and processor.
3895 Restrict ourselves to 32-bit registers if that's all the
3896 processor has, or if the ABI cannot handle 64-bit registers. */
3897 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3898 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3899 ? 32 : 64;
3900 }
3901
3902 if (file_mips_opts.fp < 0)
3903 {
3904 /* No user specified float register size.
3905 ??? GAS treats single-float processors as though they had 64-bit
3906 float registers (although it complains when double-precision
3907 instructions are used). As things stand, saying they have 32-bit
3908 registers would lead to spurious "register must be even" messages.
3909 So here we assume float registers are never smaller than the
3910 integer ones. */
3911 if (file_mips_opts.gp == 64)
3912 /* 64-bit integer registers implies 64-bit float registers. */
3913 file_mips_opts.fp = 64;
3914 else if ((file_mips_opts.ase & FP64_ASES)
3915 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3916 /* Handle ASEs that require 64-bit float registers, if possible. */
3917 file_mips_opts.fp = 64;
7361da2c
AB
3918 else if (ISA_IS_R6 (mips_opts.isa))
3919 /* R6 implies 64-bit float registers. */
3920 file_mips_opts.fp = 64;
919731af 3921 else
3922 /* 32-bit float registers. */
3923 file_mips_opts.fp = 32;
3924 }
3925
3926 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3927
351cdf24
MF
3928 /* Disable operations on odd-numbered floating-point registers by default
3929 when using the FPXX ABI. */
3930 if (file_mips_opts.oddspreg < 0)
3931 {
3932 if (file_mips_opts.fp == 0)
3933 file_mips_opts.oddspreg = 0;
3934 else
3935 file_mips_opts.oddspreg = 1;
3936 }
3937
919731af 3938 /* End of GCC-shared inference code. */
3939
3940 /* This flag is set when we have a 64-bit capable CPU but use only
3941 32-bit wide registers. Note that EABI does not use it. */
3942 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3943 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3944 || mips_abi == O32_ABI))
3945 mips_32bitmode = 1;
3946
3947 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3948 as_bad (_("trap exception not supported at ISA 1"));
3949
3950 /* If the selected architecture includes support for ASEs, enable
3951 generation of code for them. */
3952 if (file_mips_opts.mips16 == -1)
3953 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3954 if (file_mips_opts.micromips == -1)
3955 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3956 ? 1 : 0;
3957
7361da2c
AB
3958 if (mips_nan2008 == -1)
3959 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3960 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3961 as_fatal (_("`%s' does not support legacy NaN"),
3962 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3963
919731af 3964 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3965 being selected implicitly. */
3966 if (file_mips_opts.fp != 64)
3967 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3968
3969 /* If the user didn't explicitly select or deselect a particular ASE,
3970 use the default setting for the CPU. */
3971 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3972
3973 /* Set up the current options. These may change throughout assembly. */
3974 mips_opts = file_mips_opts;
3975
3976 mips_check_isa_supports_ases ();
3977 mips_check_options (&file_mips_opts, TRUE);
3978 file_mips_opts_checked = TRUE;
3979
3980 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3981 as_warn (_("could not set architecture and machine"));
3982}
3983
252b5132 3984void
17a2f251 3985md_assemble (char *str)
252b5132
RH
3986{
3987 struct mips_cl_insn insn;
f6688943
TS
3988 bfd_reloc_code_real_type unused_reloc[3]
3989 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 3990
919731af 3991 file_mips_check_options ();
3992
252b5132 3993 imm_expr.X_op = O_absent;
252b5132 3994 offset_expr.X_op = O_absent;
f6688943
TS
3995 offset_reloc[0] = BFD_RELOC_UNUSED;
3996 offset_reloc[1] = BFD_RELOC_UNUSED;
3997 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 3998
e1b47bd5
RS
3999 mips_mark_labels ();
4000 mips_assembling_insn = TRUE;
e3de51ce 4001 clear_insn_error ();
e1b47bd5 4002
252b5132
RH
4003 if (mips_opts.mips16)
4004 mips16_ip (str, &insn);
4005 else
4006 {
4007 mips_ip (str, &insn);
beae10d5
KH
4008 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4009 str, insn.insn_opcode));
252b5132
RH
4010 }
4011
e3de51ce
RS
4012 if (insn_error.msg)
4013 report_insn_error (str);
e1b47bd5 4014 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4015 {
584892a6 4016 macro_start ();
252b5132
RH
4017 if (mips_opts.mips16)
4018 mips16_macro (&insn);
4019 else
833794fc 4020 macro (&insn, str);
584892a6 4021 macro_end ();
252b5132
RH
4022 }
4023 else
4024 {
77bd4346 4025 if (offset_expr.X_op != O_absent)
df58fc94 4026 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4027 else
df58fc94 4028 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4029 }
e1b47bd5
RS
4030
4031 mips_assembling_insn = FALSE;
252b5132
RH
4032}
4033
738e5348
RS
4034/* Convenience functions for abstracting away the differences between
4035 MIPS16 and non-MIPS16 relocations. */
4036
4037static inline bfd_boolean
4038mips16_reloc_p (bfd_reloc_code_real_type reloc)
4039{
4040 switch (reloc)
4041 {
4042 case BFD_RELOC_MIPS16_JMP:
4043 case BFD_RELOC_MIPS16_GPREL:
4044 case BFD_RELOC_MIPS16_GOT16:
4045 case BFD_RELOC_MIPS16_CALL16:
4046 case BFD_RELOC_MIPS16_HI16_S:
4047 case BFD_RELOC_MIPS16_HI16:
4048 case BFD_RELOC_MIPS16_LO16:
4049 return TRUE;
4050
4051 default:
4052 return FALSE;
4053 }
4054}
4055
df58fc94
RS
4056static inline bfd_boolean
4057micromips_reloc_p (bfd_reloc_code_real_type reloc)
4058{
4059 switch (reloc)
4060 {
4061 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4062 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4063 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4064 case BFD_RELOC_MICROMIPS_GPREL16:
4065 case BFD_RELOC_MICROMIPS_JMP:
4066 case BFD_RELOC_MICROMIPS_HI16:
4067 case BFD_RELOC_MICROMIPS_HI16_S:
4068 case BFD_RELOC_MICROMIPS_LO16:
4069 case BFD_RELOC_MICROMIPS_LITERAL:
4070 case BFD_RELOC_MICROMIPS_GOT16:
4071 case BFD_RELOC_MICROMIPS_CALL16:
4072 case BFD_RELOC_MICROMIPS_GOT_HI16:
4073 case BFD_RELOC_MICROMIPS_GOT_LO16:
4074 case BFD_RELOC_MICROMIPS_CALL_HI16:
4075 case BFD_RELOC_MICROMIPS_CALL_LO16:
4076 case BFD_RELOC_MICROMIPS_SUB:
4077 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4078 case BFD_RELOC_MICROMIPS_GOT_OFST:
4079 case BFD_RELOC_MICROMIPS_GOT_DISP:
4080 case BFD_RELOC_MICROMIPS_HIGHEST:
4081 case BFD_RELOC_MICROMIPS_HIGHER:
4082 case BFD_RELOC_MICROMIPS_SCN_DISP:
4083 case BFD_RELOC_MICROMIPS_JALR:
4084 return TRUE;
4085
4086 default:
4087 return FALSE;
4088 }
4089}
4090
2309ddf2
MR
4091static inline bfd_boolean
4092jmp_reloc_p (bfd_reloc_code_real_type reloc)
4093{
4094 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4095}
4096
738e5348
RS
4097static inline bfd_boolean
4098got16_reloc_p (bfd_reloc_code_real_type reloc)
4099{
2309ddf2 4100 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4101 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4102}
4103
4104static inline bfd_boolean
4105hi16_reloc_p (bfd_reloc_code_real_type reloc)
4106{
2309ddf2 4107 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4108 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4109}
4110
4111static inline bfd_boolean
4112lo16_reloc_p (bfd_reloc_code_real_type reloc)
4113{
2309ddf2 4114 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4115 || reloc == BFD_RELOC_MICROMIPS_LO16);
4116}
4117
df58fc94
RS
4118static inline bfd_boolean
4119jalr_reloc_p (bfd_reloc_code_real_type reloc)
4120{
2309ddf2 4121 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4122}
4123
f2ae14a1
RS
4124static inline bfd_boolean
4125gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4126{
4127 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4128 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4129}
4130
2de39019
CM
4131/* Return true if RELOC is a PC-relative relocation that does not have
4132 full address range. */
4133
4134static inline bfd_boolean
4135limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4136{
4137 switch (reloc)
4138 {
4139 case BFD_RELOC_16_PCREL_S2:
4140 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4141 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4142 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4143 case BFD_RELOC_MIPS_21_PCREL_S2:
4144 case BFD_RELOC_MIPS_26_PCREL_S2:
4145 case BFD_RELOC_MIPS_18_PCREL_S3:
4146 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4147 return TRUE;
4148
b47468a6 4149 case BFD_RELOC_32_PCREL:
7361da2c
AB
4150 case BFD_RELOC_HI16_S_PCREL:
4151 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4152 return HAVE_64BIT_ADDRESSES;
4153
2de39019
CM
4154 default:
4155 return FALSE;
4156 }
4157}
b47468a6 4158
5919d012 4159/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4160 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4161 need a matching %lo() when applied to local symbols. */
5919d012
RS
4162
4163static inline bfd_boolean
17a2f251 4164reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4165{
3b91255e 4166 return (HAVE_IN_PLACE_ADDENDS
738e5348 4167 && (hi16_reloc_p (reloc)
0a44bf69
RS
4168 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4169 all GOT16 relocations evaluate to "G". */
738e5348
RS
4170 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4171}
4172
4173/* Return the type of %lo() reloc needed by RELOC, given that
4174 reloc_needs_lo_p. */
4175
4176static inline bfd_reloc_code_real_type
4177matching_lo_reloc (bfd_reloc_code_real_type reloc)
4178{
df58fc94
RS
4179 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4180 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4181 : BFD_RELOC_LO16));
5919d012
RS
4182}
4183
4184/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4185 relocation. */
4186
4187static inline bfd_boolean
17a2f251 4188fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4189{
4190 return (fixp->fx_next != NULL
738e5348 4191 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4192 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4193 && fixp->fx_offset == fixp->fx_next->fx_offset);
4194}
4195
462427c4
RS
4196/* Move all labels in LABELS to the current insertion point. TEXT_P
4197 says whether the labels refer to text or data. */
404a8071
RS
4198
4199static void
462427c4 4200mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4201{
4202 struct insn_label_list *l;
4203 valueT val;
4204
462427c4 4205 for (l = labels; l != NULL; l = l->next)
404a8071 4206 {
9c2799c2 4207 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4208 symbol_set_frag (l->label, frag_now);
4209 val = (valueT) frag_now_fix ();
df58fc94 4210 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4211 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4212 ++val;
4213 S_SET_VALUE (l->label, val);
4214 }
4215}
4216
462427c4
RS
4217/* Move all labels in insn_labels to the current insertion point
4218 and treat them as text labels. */
4219
4220static void
4221mips_move_text_labels (void)
4222{
4223 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4224}
4225
5f0fe04b
TS
4226static bfd_boolean
4227s_is_linkonce (symbolS *sym, segT from_seg)
4228{
4229 bfd_boolean linkonce = FALSE;
4230 segT symseg = S_GET_SEGMENT (sym);
4231
4232 if (symseg != from_seg && !S_IS_LOCAL (sym))
4233 {
4234 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4235 linkonce = TRUE;
5f0fe04b
TS
4236 /* The GNU toolchain uses an extension for ELF: a section
4237 beginning with the magic string .gnu.linkonce is a
4238 linkonce section. */
4239 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4240 sizeof ".gnu.linkonce" - 1) == 0)
4241 linkonce = TRUE;
5f0fe04b
TS
4242 }
4243 return linkonce;
4244}
4245
e1b47bd5 4246/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4247 linker to handle them specially, such as generating jalx instructions
4248 when needed. We also make them odd for the duration of the assembly,
4249 in order to generate the right sort of code. We will make them even
252b5132
RH
4250 in the adjust_symtab routine, while leaving them marked. This is
4251 convenient for the debugger and the disassembler. The linker knows
4252 to make them odd again. */
4253
4254static void
e1b47bd5 4255mips_compressed_mark_label (symbolS *label)
252b5132 4256{
df58fc94 4257 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4258
f3ded42a
RS
4259 if (mips_opts.mips16)
4260 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4261 else
4262 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4263 if ((S_GET_VALUE (label) & 1) == 0
4264 /* Don't adjust the address if the label is global or weak, or
4265 in a link-once section, since we'll be emitting symbol reloc
4266 references to it which will be patched up by the linker, and
4267 the final value of the symbol may or may not be MIPS16/microMIPS. */
4268 && !S_IS_WEAK (label)
4269 && !S_IS_EXTERNAL (label)
4270 && !s_is_linkonce (label, now_seg))
4271 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4272}
4273
4274/* Mark preceding MIPS16 or microMIPS instruction labels. */
4275
4276static void
4277mips_compressed_mark_labels (void)
4278{
4279 struct insn_label_list *l;
4280
4281 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4282 mips_compressed_mark_label (l->label);
252b5132
RH
4283}
4284
4d7206a2
RS
4285/* End the current frag. Make it a variant frag and record the
4286 relaxation info. */
4287
4288static void
4289relax_close_frag (void)
4290{
584892a6 4291 mips_macro_warning.first_frag = frag_now;
4d7206a2 4292 frag_var (rs_machine_dependent, 0, 0,
584892a6 4293 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4294 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4295
4296 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4297 mips_relax.first_fixup = 0;
4298}
4299
4300/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4301 See the comment above RELAX_ENCODE for more details. */
4302
4303static void
4304relax_start (symbolS *symbol)
4305{
9c2799c2 4306 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4307 mips_relax.sequence = 1;
4308 mips_relax.symbol = symbol;
4309}
4310
4311/* Start generating the second version of a relaxable sequence.
4312 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4313
4314static void
4d7206a2
RS
4315relax_switch (void)
4316{
9c2799c2 4317 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4318 mips_relax.sequence = 2;
4319}
4320
4321/* End the current relaxable sequence. */
4322
4323static void
4324relax_end (void)
4325{
9c2799c2 4326 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4327 relax_close_frag ();
4328 mips_relax.sequence = 0;
4329}
4330
11625dd8
RS
4331/* Return true if IP is a delayed branch or jump. */
4332
4333static inline bfd_boolean
4334delayed_branch_p (const struct mips_cl_insn *ip)
4335{
4336 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4337 | INSN_COND_BRANCH_DELAY
4338 | INSN_COND_BRANCH_LIKELY)) != 0;
4339}
4340
4341/* Return true if IP is a compact branch or jump. */
4342
4343static inline bfd_boolean
4344compact_branch_p (const struct mips_cl_insn *ip)
4345{
26545944
RS
4346 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4347 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4348}
4349
4350/* Return true if IP is an unconditional branch or jump. */
4351
4352static inline bfd_boolean
4353uncond_branch_p (const struct mips_cl_insn *ip)
4354{
4355 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4356 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4357}
4358
4359/* Return true if IP is a branch-likely instruction. */
4360
4361static inline bfd_boolean
4362branch_likely_p (const struct mips_cl_insn *ip)
4363{
4364 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4365}
4366
14fe068b
RS
4367/* Return the type of nop that should be used to fill the delay slot
4368 of delayed branch IP. */
4369
4370static struct mips_cl_insn *
4371get_delay_slot_nop (const struct mips_cl_insn *ip)
4372{
4373 if (mips_opts.micromips
4374 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4375 return &micromips_nop32_insn;
4376 return NOP_INSN;
4377}
4378
fc76e730
RS
4379/* Return a mask that has bit N set if OPCODE reads the register(s)
4380 in operand N. */
df58fc94
RS
4381
4382static unsigned int
fc76e730 4383insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4384{
fc76e730
RS
4385 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4386}
df58fc94 4387
fc76e730
RS
4388/* Return a mask that has bit N set if OPCODE writes to the register(s)
4389 in operand N. */
4390
4391static unsigned int
4392insn_write_mask (const struct mips_opcode *opcode)
4393{
4394 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4395}
4396
4397/* Return a mask of the registers specified by operand OPERAND of INSN.
4398 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4399 is set. */
4400
4401static unsigned int
4402operand_reg_mask (const struct mips_cl_insn *insn,
4403 const struct mips_operand *operand,
4404 unsigned int type_mask)
4405{
4406 unsigned int uval, vsel;
4407
4408 switch (operand->type)
df58fc94 4409 {
fc76e730
RS
4410 case OP_INT:
4411 case OP_MAPPED_INT:
4412 case OP_MSB:
4413 case OP_PCREL:
4414 case OP_PERF_REG:
4415 case OP_ADDIUSP_INT:
4416 case OP_ENTRY_EXIT_LIST:
4417 case OP_REPEAT_DEST_REG:
4418 case OP_REPEAT_PREV_REG:
4419 case OP_PC:
14daeee3
RS
4420 case OP_VU0_SUFFIX:
4421 case OP_VU0_MATCH_SUFFIX:
56d438b1 4422 case OP_IMM_INDEX:
fc76e730
RS
4423 abort ();
4424
4425 case OP_REG:
0f35dbc4 4426 case OP_OPTIONAL_REG:
fc76e730
RS
4427 {
4428 const struct mips_reg_operand *reg_op;
4429
4430 reg_op = (const struct mips_reg_operand *) operand;
4431 if (!(type_mask & (1 << reg_op->reg_type)))
4432 return 0;
4433 uval = insn_extract_operand (insn, operand);
4434 return 1 << mips_decode_reg_operand (reg_op, uval);
4435 }
4436
4437 case OP_REG_PAIR:
4438 {
4439 const struct mips_reg_pair_operand *pair_op;
4440
4441 pair_op = (const struct mips_reg_pair_operand *) operand;
4442 if (!(type_mask & (1 << pair_op->reg_type)))
4443 return 0;
4444 uval = insn_extract_operand (insn, operand);
4445 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4446 }
4447
4448 case OP_CLO_CLZ_DEST:
4449 if (!(type_mask & (1 << OP_REG_GP)))
4450 return 0;
4451 uval = insn_extract_operand (insn, operand);
4452 return (1 << (uval & 31)) | (1 << (uval >> 5));
4453
7361da2c
AB
4454 case OP_SAME_RS_RT:
4455 if (!(type_mask & (1 << OP_REG_GP)))
4456 return 0;
4457 uval = insn_extract_operand (insn, operand);
4458 gas_assert ((uval & 31) == (uval >> 5));
4459 return 1 << (uval & 31);
4460
4461 case OP_CHECK_PREV:
4462 case OP_NON_ZERO_REG:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4464 return 0;
4465 uval = insn_extract_operand (insn, operand);
4466 return 1 << (uval & 31);
4467
fc76e730
RS
4468 case OP_LWM_SWM_LIST:
4469 abort ();
4470
4471 case OP_SAVE_RESTORE_LIST:
4472 abort ();
4473
4474 case OP_MDMX_IMM_REG:
4475 if (!(type_mask & (1 << OP_REG_VEC)))
4476 return 0;
4477 uval = insn_extract_operand (insn, operand);
4478 vsel = uval >> 5;
4479 if ((vsel & 0x18) == 0x18)
4480 return 0;
4481 return 1 << (uval & 31);
56d438b1
CF
4482
4483 case OP_REG_INDEX:
4484 if (!(type_mask & (1 << OP_REG_GP)))
4485 return 0;
4486 return 1 << insn_extract_operand (insn, operand);
df58fc94 4487 }
fc76e730
RS
4488 abort ();
4489}
4490
4491/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4492 where bit N of OPNO_MASK is set if operand N should be included.
4493 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4494 is set. */
4495
4496static unsigned int
4497insn_reg_mask (const struct mips_cl_insn *insn,
4498 unsigned int type_mask, unsigned int opno_mask)
4499{
4500 unsigned int opno, reg_mask;
4501
4502 opno = 0;
4503 reg_mask = 0;
4504 while (opno_mask != 0)
4505 {
4506 if (opno_mask & 1)
4507 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4508 opno_mask >>= 1;
4509 opno += 1;
4510 }
4511 return reg_mask;
df58fc94
RS
4512}
4513
4c260379
RS
4514/* Return the mask of core registers that IP reads. */
4515
4516static unsigned int
4517gpr_read_mask (const struct mips_cl_insn *ip)
4518{
4519 unsigned long pinfo, pinfo2;
4520 unsigned int mask;
4521
fc76e730 4522 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4523 pinfo = ip->insn_mo->pinfo;
4524 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4525 if (pinfo & INSN_UDI)
4c260379 4526 {
fc76e730
RS
4527 /* UDI instructions have traditionally been assumed to read RS
4528 and RT. */
4529 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4530 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4531 }
fc76e730
RS
4532 if (pinfo & INSN_READ_GPR_24)
4533 mask |= 1 << 24;
4534 if (pinfo2 & INSN2_READ_GPR_16)
4535 mask |= 1 << 16;
4536 if (pinfo2 & INSN2_READ_SP)
4537 mask |= 1 << SP;
26545944 4538 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4539 mask |= 1 << 31;
fe35f09f
RS
4540 /* Don't include register 0. */
4541 return mask & ~1;
4c260379
RS
4542}
4543
4544/* Return the mask of core registers that IP writes. */
4545
4546static unsigned int
4547gpr_write_mask (const struct mips_cl_insn *ip)
4548{
4549 unsigned long pinfo, pinfo2;
4550 unsigned int mask;
4551
fc76e730 4552 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4553 pinfo = ip->insn_mo->pinfo;
4554 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4555 if (pinfo & INSN_WRITE_GPR_24)
4556 mask |= 1 << 24;
4557 if (pinfo & INSN_WRITE_GPR_31)
4558 mask |= 1 << 31;
4559 if (pinfo & INSN_UDI)
4560 /* UDI instructions have traditionally been assumed to write to RD. */
4561 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4562 if (pinfo2 & INSN2_WRITE_SP)
4563 mask |= 1 << SP;
fe35f09f
RS
4564 /* Don't include register 0. */
4565 return mask & ~1;
4c260379
RS
4566}
4567
4568/* Return the mask of floating-point registers that IP reads. */
4569
4570static unsigned int
4571fpr_read_mask (const struct mips_cl_insn *ip)
4572{
fc76e730 4573 unsigned long pinfo;
4c260379
RS
4574 unsigned int mask;
4575
9d5de888
CF
4576 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4577 | (1 << OP_REG_MSA)),
fc76e730 4578 insn_read_mask (ip->insn_mo));
4c260379 4579 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4580 /* Conservatively treat all operands to an FP_D instruction are doubles.
4581 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4582 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4583 mask |= mask << 1;
4584 return mask;
4585}
4586
4587/* Return the mask of floating-point registers that IP writes. */
4588
4589static unsigned int
4590fpr_write_mask (const struct mips_cl_insn *ip)
4591{
fc76e730 4592 unsigned long pinfo;
4c260379
RS
4593 unsigned int mask;
4594
9d5de888
CF
4595 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4596 | (1 << OP_REG_MSA)),
fc76e730 4597 insn_write_mask (ip->insn_mo));
4c260379 4598 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4599 /* Conservatively treat all operands to an FP_D instruction are doubles.
4600 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4601 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4602 mask |= mask << 1;
4603 return mask;
4604}
4605
a1d78564
RS
4606/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4607 Check whether that is allowed. */
4608
4609static bfd_boolean
4610mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4611{
4612 const char *s = insn->name;
351cdf24
MF
4613 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4614 || FPR_SIZE == 64)
4615 && mips_opts.oddspreg;
a1d78564
RS
4616
4617 if (insn->pinfo == INSN_MACRO)
4618 /* Let a macro pass, we'll catch it later when it is expanded. */
4619 return TRUE;
4620
351cdf24
MF
4621 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4622 otherwise it depends on oddspreg. */
4623 if ((insn->pinfo & FP_S)
4624 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4625 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4626 return FPR_SIZE == 32 || oddspreg;
a1d78564 4627
351cdf24
MF
4628 /* Allow odd registers for single-precision ops and double-precision if the
4629 floating-point registers are 64-bit wide. */
4630 switch (insn->pinfo & (FP_S | FP_D))
4631 {
4632 case FP_S:
4633 case 0:
4634 return oddspreg;
4635 case FP_D:
4636 return FPR_SIZE == 64;
4637 default:
4638 break;
a1d78564
RS
4639 }
4640
351cdf24
MF
4641 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4642 s = strchr (insn->name, '.');
4643 if (s != NULL && opnum == 2)
4644 s = strchr (s + 1, '.');
4645 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4646 return oddspreg;
a1d78564 4647
351cdf24 4648 return FPR_SIZE == 64;
a1d78564
RS
4649}
4650
a1d78564
RS
4651/* Information about an instruction argument that we're trying to match. */
4652struct mips_arg_info
4653{
4654 /* The instruction so far. */
4655 struct mips_cl_insn *insn;
4656
a92713e6
RS
4657 /* The first unconsumed operand token. */
4658 struct mips_operand_token *token;
4659
a1d78564
RS
4660 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4661 int opnum;
4662
4663 /* The 1-based argument number, for error reporting. This does not
4664 count elided optional registers, etc.. */
4665 int argnum;
4666
4667 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4668 unsigned int last_regno;
4669
4670 /* If the first operand was an OP_REG, this is the register that it
4671 specified, otherwise it is ILLEGAL_REG. */
4672 unsigned int dest_regno;
4673
4674 /* The value of the last OP_INT operand. Only used for OP_MSB,
4675 where it gives the lsb position. */
4676 unsigned int last_op_int;
4677
60f20e8b
RS
4678 /* If true, match routines should assume that no later instruction
4679 alternative matches and should therefore be as accomodating as
4680 possible. Match routines should not report errors if something
4681 is only invalid for !LAX_MATCH. */
4682 bfd_boolean lax_match;
a1d78564 4683
a1d78564
RS
4684 /* True if a reference to the current AT register was seen. */
4685 bfd_boolean seen_at;
4686};
4687
1a00e612
RS
4688/* Record that the argument is out of range. */
4689
4690static void
4691match_out_of_range (struct mips_arg_info *arg)
4692{
4693 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4694}
4695
4696/* Record that the argument isn't constant but needs to be. */
4697
4698static void
4699match_not_constant (struct mips_arg_info *arg)
4700{
4701 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4702 arg->argnum);
4703}
4704
a92713e6
RS
4705/* Try to match an OT_CHAR token for character CH. Consume the token
4706 and return true on success, otherwise return false. */
a1d78564 4707
a92713e6
RS
4708static bfd_boolean
4709match_char (struct mips_arg_info *arg, char ch)
a1d78564 4710{
a92713e6
RS
4711 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4712 {
4713 ++arg->token;
4714 if (ch == ',')
4715 arg->argnum += 1;
4716 return TRUE;
4717 }
4718 return FALSE;
4719}
a1d78564 4720
a92713e6
RS
4721/* Try to get an expression from the next tokens in ARG. Consume the
4722 tokens and return true on success, storing the expression value in
4723 VALUE and relocation types in R. */
4724
4725static bfd_boolean
4726match_expression (struct mips_arg_info *arg, expressionS *value,
4727 bfd_reloc_code_real_type *r)
4728{
d436c1c2
RS
4729 /* If the next token is a '(' that was parsed as being part of a base
4730 expression, assume we have an elided offset. The later match will fail
4731 if this turns out to be wrong. */
4732 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4733 {
d436c1c2
RS
4734 value->X_op = O_constant;
4735 value->X_add_number = 0;
4736 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4737 return TRUE;
4738 }
4739
d436c1c2
RS
4740 /* Reject register-based expressions such as "0+$2" and "(($2))".
4741 For plain registers the default error seems more appropriate. */
4742 if (arg->token->type == OT_INTEGER
4743 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4744 {
d436c1c2
RS
4745 set_insn_error (arg->argnum, _("register value used as expression"));
4746 return FALSE;
a1d78564 4747 }
d436c1c2
RS
4748
4749 if (arg->token->type == OT_INTEGER)
a92713e6 4750 {
d436c1c2
RS
4751 *value = arg->token->u.integer.value;
4752 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4753 ++arg->token;
4754 return TRUE;
a92713e6 4755 }
a92713e6 4756
d436c1c2
RS
4757 set_insn_error_i
4758 (arg->argnum, _("operand %d must be an immediate expression"),
4759 arg->argnum);
4760 return FALSE;
a92713e6
RS
4761}
4762
4763/* Try to get a constant expression from the next tokens in ARG. Consume
4764 the tokens and return return true on success, storing the constant value
4765 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4766 error. */
4767
4768static bfd_boolean
1a00e612 4769match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4770{
4771 expressionS ex;
4772 bfd_reloc_code_real_type r[3];
a1d78564 4773
a92713e6
RS
4774 if (!match_expression (arg, &ex, r))
4775 return FALSE;
4776
4777 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4778 *value = ex.X_add_number;
4779 else
4780 {
1a00e612
RS
4781 match_not_constant (arg);
4782 return FALSE;
a1d78564 4783 }
a92713e6 4784 return TRUE;
a1d78564
RS
4785}
4786
4787/* Return the RTYPE_* flags for a register operand of type TYPE that
4788 appears in instruction OPCODE. */
4789
4790static unsigned int
4791convert_reg_type (const struct mips_opcode *opcode,
4792 enum mips_reg_operand_type type)
4793{
4794 switch (type)
4795 {
4796 case OP_REG_GP:
4797 return RTYPE_NUM | RTYPE_GP;
4798
4799 case OP_REG_FP:
4800 /* Allow vector register names for MDMX if the instruction is a 64-bit
4801 FPR load, store or move (including moves to and from GPRs). */
4802 if ((mips_opts.ase & ASE_MDMX)
4803 && (opcode->pinfo & FP_D)
43885403 4804 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4805 | INSN_COPROC_MEMORY_DELAY
43885403 4806 | INSN_LOAD_COPROC
67dc82bc 4807 | INSN_LOAD_MEMORY
a1d78564
RS
4808 | INSN_STORE_MEMORY)))
4809 return RTYPE_FPU | RTYPE_VEC;
4810 return RTYPE_FPU;
4811
4812 case OP_REG_CCC:
4813 if (opcode->pinfo & (FP_D | FP_S))
4814 return RTYPE_CCC | RTYPE_FCC;
4815 return RTYPE_CCC;
4816
4817 case OP_REG_VEC:
4818 if (opcode->membership & INSN_5400)
4819 return RTYPE_FPU;
4820 return RTYPE_FPU | RTYPE_VEC;
4821
4822 case OP_REG_ACC:
4823 return RTYPE_ACC;
4824
4825 case OP_REG_COPRO:
4826 if (opcode->name[strlen (opcode->name) - 1] == '0')
4827 return RTYPE_NUM | RTYPE_CP0;
4828 return RTYPE_NUM;
4829
4830 case OP_REG_HW:
4831 return RTYPE_NUM;
14daeee3
RS
4832
4833 case OP_REG_VI:
4834 return RTYPE_NUM | RTYPE_VI;
4835
4836 case OP_REG_VF:
4837 return RTYPE_NUM | RTYPE_VF;
4838
4839 case OP_REG_R5900_I:
4840 return RTYPE_R5900_I;
4841
4842 case OP_REG_R5900_Q:
4843 return RTYPE_R5900_Q;
4844
4845 case OP_REG_R5900_R:
4846 return RTYPE_R5900_R;
4847
4848 case OP_REG_R5900_ACC:
4849 return RTYPE_R5900_ACC;
56d438b1
CF
4850
4851 case OP_REG_MSA:
4852 return RTYPE_MSA;
4853
4854 case OP_REG_MSA_CTRL:
4855 return RTYPE_NUM;
a1d78564
RS
4856 }
4857 abort ();
4858}
4859
4860/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4861
4862static void
4863check_regno (struct mips_arg_info *arg,
4864 enum mips_reg_operand_type type, unsigned int regno)
4865{
4866 if (AT && type == OP_REG_GP && regno == AT)
4867 arg->seen_at = TRUE;
4868
4869 if (type == OP_REG_FP
4870 && (regno & 1) != 0
a1d78564 4871 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4872 {
4873 /* This was a warning prior to introducing O32 FPXX and FP64 support
4874 so maintain a warning for FP32 but raise an error for the new
4875 cases. */
4876 if (FPR_SIZE == 32)
4877 as_warn (_("float register should be even, was %d"), regno);
4878 else
4879 as_bad (_("float register should be even, was %d"), regno);
4880 }
a1d78564
RS
4881
4882 if (type == OP_REG_CCC)
4883 {
4884 const char *name;
4885 size_t length;
4886
4887 name = arg->insn->insn_mo->name;
4888 length = strlen (name);
4889 if ((regno & 1) != 0
4890 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4891 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4892 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4893 name, regno);
4894
4895 if ((regno & 3) != 0
4896 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4897 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4898 name, regno);
4899 }
4900}
4901
a92713e6
RS
4902/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4903 a register of type TYPE. Return true on success, storing the register
4904 number in *REGNO and warning about any dubious uses. */
4905
4906static bfd_boolean
4907match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4908 unsigned int symval, unsigned int *regno)
4909{
4910 if (type == OP_REG_VEC)
4911 symval = mips_prefer_vec_regno (symval);
4912 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4913 return FALSE;
4914
4915 *regno = symval & RNUM_MASK;
4916 check_regno (arg, type, *regno);
4917 return TRUE;
4918}
4919
4920/* Try to interpret the next token in ARG as a register of type TYPE.
4921 Consume the token and return true on success, storing the register
4922 number in *REGNO. Return false on failure. */
4923
4924static bfd_boolean
4925match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4926 unsigned int *regno)
4927{
4928 if (arg->token->type == OT_REG
4929 && match_regno (arg, type, arg->token->u.regno, regno))
4930 {
4931 ++arg->token;
4932 return TRUE;
4933 }
4934 return FALSE;
4935}
4936
4937/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4938 Consume the token and return true on success, storing the register numbers
4939 in *REGNO1 and *REGNO2. Return false on failure. */
4940
4941static bfd_boolean
4942match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4943 unsigned int *regno1, unsigned int *regno2)
4944{
4945 if (match_reg (arg, type, regno1))
4946 {
4947 *regno2 = *regno1;
4948 return TRUE;
4949 }
4950 if (arg->token->type == OT_REG_RANGE
4951 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4952 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4953 && *regno1 <= *regno2)
4954 {
4955 ++arg->token;
4956 return TRUE;
4957 }
4958 return FALSE;
4959}
4960
a1d78564
RS
4961/* OP_INT matcher. */
4962
a92713e6 4963static bfd_boolean
a1d78564 4964match_int_operand (struct mips_arg_info *arg,
a92713e6 4965 const struct mips_operand *operand_base)
a1d78564
RS
4966{
4967 const struct mips_int_operand *operand;
3ccad066 4968 unsigned int uval;
a1d78564
RS
4969 int min_val, max_val, factor;
4970 offsetT sval;
a1d78564
RS
4971
4972 operand = (const struct mips_int_operand *) operand_base;
4973 factor = 1 << operand->shift;
3ccad066
RS
4974 min_val = mips_int_operand_min (operand);
4975 max_val = mips_int_operand_max (operand);
a1d78564 4976
d436c1c2
RS
4977 if (operand_base->lsb == 0
4978 && operand_base->size == 16
4979 && operand->shift == 0
4980 && operand->bias == 0
4981 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
4982 {
4983 /* The operand can be relocated. */
a92713e6
RS
4984 if (!match_expression (arg, &offset_expr, offset_reloc))
4985 return FALSE;
4986
4987 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
4988 /* Relocation operators were used. Accept the arguent and
4989 leave the relocation value in offset_expr and offset_relocs
4990 for the caller to process. */
a92713e6
RS
4991 return TRUE;
4992
4993 if (offset_expr.X_op != O_constant)
a1d78564 4994 {
60f20e8b
RS
4995 /* Accept non-constant operands if no later alternative matches,
4996 leaving it for the caller to process. */
4997 if (!arg->lax_match)
4998 return FALSE;
a92713e6
RS
4999 offset_reloc[0] = BFD_RELOC_LO16;
5000 return TRUE;
a1d78564 5001 }
a92713e6 5002
a1d78564
RS
5003 /* Clear the global state; we're going to install the operand
5004 ourselves. */
a92713e6 5005 sval = offset_expr.X_add_number;
a1d78564 5006 offset_expr.X_op = O_absent;
60f20e8b
RS
5007
5008 /* For compatibility with older assemblers, we accept
5009 0x8000-0xffff as signed 16-bit numbers when only
5010 signed numbers are allowed. */
5011 if (sval > max_val)
5012 {
5013 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5014 if (!arg->lax_match && sval <= max_val)
5015 return FALSE;
5016 }
a1d78564
RS
5017 }
5018 else
5019 {
1a00e612 5020 if (!match_const_int (arg, &sval))
a92713e6 5021 return FALSE;
a1d78564
RS
5022 }
5023
5024 arg->last_op_int = sval;
5025
1a00e612 5026 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5027 {
1a00e612
RS
5028 match_out_of_range (arg);
5029 return FALSE;
a1d78564
RS
5030 }
5031
5032 uval = (unsigned int) sval >> operand->shift;
5033 uval -= operand->bias;
5034
5035 /* Handle -mfix-cn63xxp1. */
5036 if (arg->opnum == 1
5037 && mips_fix_cn63xxp1
5038 && !mips_opts.micromips
5039 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5040 switch (uval)
5041 {
5042 case 5:
5043 case 25:
5044 case 26:
5045 case 27:
5046 case 28:
5047 case 29:
5048 case 30:
5049 case 31:
5050 /* These are ok. */
5051 break;
5052
5053 default:
5054 /* The rest must be changed to 28. */
5055 uval = 28;
5056 break;
5057 }
5058
5059 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5060 return TRUE;
a1d78564
RS
5061}
5062
5063/* OP_MAPPED_INT matcher. */
5064
a92713e6 5065static bfd_boolean
a1d78564 5066match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5067 const struct mips_operand *operand_base)
a1d78564
RS
5068{
5069 const struct mips_mapped_int_operand *operand;
5070 unsigned int uval, num_vals;
5071 offsetT sval;
5072
5073 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5074 if (!match_const_int (arg, &sval))
a92713e6 5075 return FALSE;
a1d78564
RS
5076
5077 num_vals = 1 << operand_base->size;
5078 for (uval = 0; uval < num_vals; uval++)
5079 if (operand->int_map[uval] == sval)
5080 break;
5081 if (uval == num_vals)
1a00e612
RS
5082 {
5083 match_out_of_range (arg);
5084 return FALSE;
5085 }
a1d78564
RS
5086
5087 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5088 return TRUE;
a1d78564
RS
5089}
5090
5091/* OP_MSB matcher. */
5092
a92713e6 5093static bfd_boolean
a1d78564 5094match_msb_operand (struct mips_arg_info *arg,
a92713e6 5095 const struct mips_operand *operand_base)
a1d78564
RS
5096{
5097 const struct mips_msb_operand *operand;
5098 int min_val, max_val, max_high;
5099 offsetT size, sval, high;
5100
5101 operand = (const struct mips_msb_operand *) operand_base;
5102 min_val = operand->bias;
5103 max_val = min_val + (1 << operand_base->size) - 1;
5104 max_high = operand->opsize;
5105
1a00e612 5106 if (!match_const_int (arg, &size))
a92713e6 5107 return FALSE;
a1d78564
RS
5108
5109 high = size + arg->last_op_int;
5110 sval = operand->add_lsb ? high : size;
5111
5112 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5113 {
1a00e612
RS
5114 match_out_of_range (arg);
5115 return FALSE;
a1d78564
RS
5116 }
5117 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5118 return TRUE;
a1d78564
RS
5119}
5120
5121/* OP_REG matcher. */
5122
a92713e6 5123static bfd_boolean
a1d78564 5124match_reg_operand (struct mips_arg_info *arg,
a92713e6 5125 const struct mips_operand *operand_base)
a1d78564
RS
5126{
5127 const struct mips_reg_operand *operand;
a92713e6 5128 unsigned int regno, uval, num_vals;
a1d78564
RS
5129
5130 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5131 if (!match_reg (arg, operand->reg_type, &regno))
5132 return FALSE;
a1d78564
RS
5133
5134 if (operand->reg_map)
5135 {
5136 num_vals = 1 << operand->root.size;
5137 for (uval = 0; uval < num_vals; uval++)
5138 if (operand->reg_map[uval] == regno)
5139 break;
5140 if (num_vals == uval)
a92713e6 5141 return FALSE;
a1d78564
RS
5142 }
5143 else
5144 uval = regno;
5145
a1d78564
RS
5146 arg->last_regno = regno;
5147 if (arg->opnum == 1)
5148 arg->dest_regno = regno;
5149 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5150 return TRUE;
a1d78564
RS
5151}
5152
5153/* OP_REG_PAIR matcher. */
5154
a92713e6 5155static bfd_boolean
a1d78564 5156match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5157 const struct mips_operand *operand_base)
a1d78564
RS
5158{
5159 const struct mips_reg_pair_operand *operand;
a92713e6 5160 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5161
5162 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5163 if (!match_reg (arg, operand->reg_type, &regno1)
5164 || !match_char (arg, ',')
5165 || !match_reg (arg, operand->reg_type, &regno2))
5166 return FALSE;
a1d78564
RS
5167
5168 num_vals = 1 << operand_base->size;
5169 for (uval = 0; uval < num_vals; uval++)
5170 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5171 break;
5172 if (uval == num_vals)
a92713e6 5173 return FALSE;
a1d78564 5174
a1d78564 5175 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5176 return TRUE;
a1d78564
RS
5177}
5178
5179/* OP_PCREL matcher. The caller chooses the relocation type. */
5180
a92713e6
RS
5181static bfd_boolean
5182match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5183{
a92713e6
RS
5184 bfd_reloc_code_real_type r[3];
5185
5186 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5187}
5188
5189/* OP_PERF_REG matcher. */
5190
a92713e6 5191static bfd_boolean
a1d78564 5192match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5193 const struct mips_operand *operand)
a1d78564
RS
5194{
5195 offsetT sval;
5196
1a00e612 5197 if (!match_const_int (arg, &sval))
a92713e6 5198 return FALSE;
a1d78564
RS
5199
5200 if (sval != 0
5201 && (sval != 1
5202 || (mips_opts.arch == CPU_R5900
5203 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5204 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5205 {
1a00e612
RS
5206 set_insn_error (arg->argnum, _("invalid performance register"));
5207 return FALSE;
a1d78564
RS
5208 }
5209
5210 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5211 return TRUE;
a1d78564
RS
5212}
5213
5214/* OP_ADDIUSP matcher. */
5215
a92713e6 5216static bfd_boolean
a1d78564 5217match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5218 const struct mips_operand *operand)
a1d78564
RS
5219{
5220 offsetT sval;
5221 unsigned int uval;
5222
1a00e612 5223 if (!match_const_int (arg, &sval))
a92713e6 5224 return FALSE;
a1d78564
RS
5225
5226 if (sval % 4)
1a00e612
RS
5227 {
5228 match_out_of_range (arg);
5229 return FALSE;
5230 }
a1d78564
RS
5231
5232 sval /= 4;
5233 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5234 {
5235 match_out_of_range (arg);
5236 return FALSE;
5237 }
a1d78564
RS
5238
5239 uval = (unsigned int) sval;
5240 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5241 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5242 return TRUE;
a1d78564
RS
5243}
5244
5245/* OP_CLO_CLZ_DEST matcher. */
5246
a92713e6 5247static bfd_boolean
a1d78564 5248match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5249 const struct mips_operand *operand)
a1d78564
RS
5250{
5251 unsigned int regno;
5252
a92713e6
RS
5253 if (!match_reg (arg, OP_REG_GP, &regno))
5254 return FALSE;
a1d78564 5255
a1d78564 5256 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5257 return TRUE;
a1d78564
RS
5258}
5259
7361da2c
AB
5260/* OP_CHECK_PREV matcher. */
5261
5262static bfd_boolean
5263match_check_prev_operand (struct mips_arg_info *arg,
5264 const struct mips_operand *operand_base)
5265{
5266 const struct mips_check_prev_operand *operand;
5267 unsigned int regno;
5268
5269 operand = (const struct mips_check_prev_operand *) operand_base;
5270
5271 if (!match_reg (arg, OP_REG_GP, &regno))
5272 return FALSE;
5273
5274 if (!operand->zero_ok && regno == 0)
5275 return FALSE;
5276
5277 if ((operand->less_than_ok && regno < arg->last_regno)
5278 || (operand->greater_than_ok && regno > arg->last_regno)
5279 || (operand->equal_ok && regno == arg->last_regno))
5280 {
5281 arg->last_regno = regno;
5282 insn_insert_operand (arg->insn, operand_base, regno);
5283 return TRUE;
5284 }
5285
5286 return FALSE;
5287}
5288
5289/* OP_SAME_RS_RT matcher. */
5290
5291static bfd_boolean
5292match_same_rs_rt_operand (struct mips_arg_info *arg,
5293 const struct mips_operand *operand)
5294{
5295 unsigned int regno;
5296
5297 if (!match_reg (arg, OP_REG_GP, &regno))
5298 return FALSE;
5299
5300 if (regno == 0)
5301 {
5302 set_insn_error (arg->argnum, _("the source register must not be $0"));
5303 return FALSE;
5304 }
5305
5306 arg->last_regno = regno;
5307
5308 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5309 return TRUE;
5310}
5311
a1d78564
RS
5312/* OP_LWM_SWM_LIST matcher. */
5313
a92713e6 5314static bfd_boolean
a1d78564 5315match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5316 const struct mips_operand *operand)
a1d78564 5317{
a92713e6
RS
5318 unsigned int reglist, sregs, ra, regno1, regno2;
5319 struct mips_arg_info reset;
a1d78564 5320
a92713e6
RS
5321 reglist = 0;
5322 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5323 return FALSE;
5324 do
5325 {
5326 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5327 {
5328 reglist |= 1 << FP;
5329 regno2 = S7;
5330 }
5331 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5332 reset = *arg;
5333 }
5334 while (match_char (arg, ',')
5335 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5336 *arg = reset;
a1d78564
RS
5337
5338 if (operand->size == 2)
5339 {
5340 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5341
5342 s0, ra
5343 s0, s1, ra, s2, s3
5344 s0-s2, ra
5345
5346 and any permutations of these. */
5347 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5348 return FALSE;
a1d78564
RS
5349
5350 sregs = (reglist >> 17) & 7;
5351 ra = 0;
5352 }
5353 else
5354 {
5355 /* The list must include at least one of ra and s0-sN,
5356 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5357 which are $23 and $30 respectively.) E.g.:
5358
5359 ra
5360 s0
5361 ra, s0, s1, s2
5362 s0-s8
5363 s0-s5, ra
5364
5365 and any permutations of these. */
5366 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5367 return FALSE;
a1d78564
RS
5368
5369 ra = (reglist >> 27) & 0x10;
5370 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5371 }
5372 sregs += 1;
5373 if ((sregs & -sregs) != sregs)
a92713e6 5374 return FALSE;
a1d78564
RS
5375
5376 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5377 return TRUE;
a1d78564
RS
5378}
5379
364215c8
RS
5380/* OP_ENTRY_EXIT_LIST matcher. */
5381
a92713e6 5382static unsigned int
364215c8 5383match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5384 const struct mips_operand *operand)
364215c8
RS
5385{
5386 unsigned int mask;
5387 bfd_boolean is_exit;
5388
5389 /* The format is the same for both ENTRY and EXIT, but the constraints
5390 are different. */
5391 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5392 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5393 do
364215c8
RS
5394 {
5395 unsigned int regno1, regno2;
5396 bfd_boolean is_freg;
5397
a92713e6 5398 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5399 is_freg = FALSE;
a92713e6 5400 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5401 is_freg = TRUE;
5402 else
a92713e6 5403 return FALSE;
364215c8
RS
5404
5405 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5406 {
5407 mask &= ~(7 << 3);
5408 mask |= (5 + regno2) << 3;
5409 }
5410 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5411 mask |= (regno2 - 3) << 3;
5412 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5413 mask |= (regno2 - 15) << 1;
5414 else if (regno1 == RA && regno2 == RA)
5415 mask |= 1;
5416 else
a92713e6 5417 return FALSE;
364215c8 5418 }
a92713e6
RS
5419 while (match_char (arg, ','));
5420
364215c8 5421 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5422 return TRUE;
364215c8
RS
5423}
5424
5425/* OP_SAVE_RESTORE_LIST matcher. */
5426
a92713e6
RS
5427static bfd_boolean
5428match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5429{
5430 unsigned int opcode, args, statics, sregs;
5431 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5432 offsetT frame_size;
364215c8 5433
364215c8
RS
5434 opcode = arg->insn->insn_opcode;
5435 frame_size = 0;
5436 num_frame_sizes = 0;
5437 args = 0;
5438 statics = 0;
5439 sregs = 0;
a92713e6 5440 do
364215c8
RS
5441 {
5442 unsigned int regno1, regno2;
5443
a92713e6 5444 if (arg->token->type == OT_INTEGER)
364215c8
RS
5445 {
5446 /* Handle the frame size. */
1a00e612 5447 if (!match_const_int (arg, &frame_size))
a92713e6 5448 return FALSE;
364215c8 5449 num_frame_sizes += 1;
364215c8
RS
5450 }
5451 else
5452 {
a92713e6
RS
5453 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5454 return FALSE;
364215c8
RS
5455
5456 while (regno1 <= regno2)
5457 {
5458 if (regno1 >= 4 && regno1 <= 7)
5459 {
5460 if (num_frame_sizes == 0)
5461 /* args $a0-$a3 */
5462 args |= 1 << (regno1 - 4);
5463 else
5464 /* statics $a0-$a3 */
5465 statics |= 1 << (regno1 - 4);
5466 }
5467 else if (regno1 >= 16 && regno1 <= 23)
5468 /* $s0-$s7 */
5469 sregs |= 1 << (regno1 - 16);
5470 else if (regno1 == 30)
5471 /* $s8 */
5472 sregs |= 1 << 8;
5473 else if (regno1 == 31)
5474 /* Add $ra to insn. */
5475 opcode |= 0x40;
5476 else
a92713e6 5477 return FALSE;
364215c8
RS
5478 regno1 += 1;
5479 if (regno1 == 24)
5480 regno1 = 30;
5481 }
5482 }
364215c8 5483 }
a92713e6 5484 while (match_char (arg, ','));
364215c8
RS
5485
5486 /* Encode args/statics combination. */
5487 if (args & statics)
a92713e6 5488 return FALSE;
364215c8
RS
5489 else if (args == 0xf)
5490 /* All $a0-$a3 are args. */
5491 opcode |= MIPS16_ALL_ARGS << 16;
5492 else if (statics == 0xf)
5493 /* All $a0-$a3 are statics. */
5494 opcode |= MIPS16_ALL_STATICS << 16;
5495 else
5496 {
5497 /* Count arg registers. */
5498 num_args = 0;
5499 while (args & 0x1)
5500 {
5501 args >>= 1;
5502 num_args += 1;
5503 }
5504 if (args != 0)
a92713e6 5505 return FALSE;
364215c8
RS
5506
5507 /* Count static registers. */
5508 num_statics = 0;
5509 while (statics & 0x8)
5510 {
5511 statics = (statics << 1) & 0xf;
5512 num_statics += 1;
5513 }
5514 if (statics != 0)
a92713e6 5515 return FALSE;
364215c8
RS
5516
5517 /* Encode args/statics. */
5518 opcode |= ((num_args << 2) | num_statics) << 16;
5519 }
5520
5521 /* Encode $s0/$s1. */
5522 if (sregs & (1 << 0)) /* $s0 */
5523 opcode |= 0x20;
5524 if (sregs & (1 << 1)) /* $s1 */
5525 opcode |= 0x10;
5526 sregs >>= 2;
5527
5528 /* Encode $s2-$s8. */
5529 num_sregs = 0;
5530 while (sregs & 1)
5531 {
5532 sregs >>= 1;
5533 num_sregs += 1;
5534 }
5535 if (sregs != 0)
a92713e6 5536 return FALSE;
364215c8
RS
5537 opcode |= num_sregs << 24;
5538
5539 /* Encode frame size. */
5540 if (num_frame_sizes == 0)
1a00e612
RS
5541 {
5542 set_insn_error (arg->argnum, _("missing frame size"));
5543 return FALSE;
5544 }
5545 if (num_frame_sizes > 1)
5546 {
5547 set_insn_error (arg->argnum, _("frame size specified twice"));
5548 return FALSE;
5549 }
5550 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5551 {
5552 set_insn_error (arg->argnum, _("invalid frame size"));
5553 return FALSE;
5554 }
5555 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5556 {
5557 frame_size /= 8;
5558 opcode |= (((frame_size & 0xf0) << 16)
5559 | (frame_size & 0x0f));
5560 }
5561
364215c8
RS
5562 /* Finally build the instruction. */
5563 if ((opcode >> 16) != 0 || frame_size == 0)
5564 opcode |= MIPS16_EXTEND;
5565 arg->insn->insn_opcode = opcode;
a92713e6 5566 return TRUE;
364215c8
RS
5567}
5568
a1d78564
RS
5569/* OP_MDMX_IMM_REG matcher. */
5570
a92713e6 5571static bfd_boolean
a1d78564 5572match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5573 const struct mips_operand *operand)
a1d78564 5574{
a92713e6 5575 unsigned int regno, uval;
a1d78564
RS
5576 bfd_boolean is_qh;
5577 const struct mips_opcode *opcode;
5578
5579 /* The mips_opcode records whether this is an octobyte or quadhalf
5580 instruction. Start out with that bit in place. */
5581 opcode = arg->insn->insn_mo;
5582 uval = mips_extract_operand (operand, opcode->match);
5583 is_qh = (uval != 0);
5584
56d438b1 5585 if (arg->token->type == OT_REG)
a1d78564
RS
5586 {
5587 if ((opcode->membership & INSN_5400)
5588 && strcmp (opcode->name, "rzu.ob") == 0)
5589 {
1a00e612
RS
5590 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5591 arg->argnum);
5592 return FALSE;
a1d78564
RS
5593 }
5594
56d438b1
CF
5595 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5596 return FALSE;
5597 ++arg->token;
5598
a1d78564
RS
5599 /* Check whether this is a vector register or a broadcast of
5600 a single element. */
56d438b1 5601 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5602 {
56d438b1 5603 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5604 {
1a00e612
RS
5605 set_insn_error (arg->argnum, _("invalid element selector"));
5606 return FALSE;
a1d78564 5607 }
56d438b1
CF
5608 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5609 ++arg->token;
a1d78564
RS
5610 }
5611 else
5612 {
5613 /* A full vector. */
5614 if ((opcode->membership & INSN_5400)
5615 && (strcmp (opcode->name, "sll.ob") == 0
5616 || strcmp (opcode->name, "srl.ob") == 0))
5617 {
1a00e612
RS
5618 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5619 arg->argnum);
5620 return FALSE;
a1d78564
RS
5621 }
5622
5623 if (is_qh)
5624 uval |= MDMX_FMTSEL_VEC_QH << 5;
5625 else
5626 uval |= MDMX_FMTSEL_VEC_OB << 5;
5627 }
a1d78564
RS
5628 uval |= regno;
5629 }
5630 else
5631 {
5632 offsetT sval;
5633
1a00e612 5634 if (!match_const_int (arg, &sval))
a92713e6 5635 return FALSE;
a1d78564
RS
5636 if (sval < 0 || sval > 31)
5637 {
1a00e612
RS
5638 match_out_of_range (arg);
5639 return FALSE;
a1d78564
RS
5640 }
5641 uval |= (sval & 31);
5642 if (is_qh)
5643 uval |= MDMX_FMTSEL_IMM_QH << 5;
5644 else
5645 uval |= MDMX_FMTSEL_IMM_OB << 5;
5646 }
5647 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5648 return TRUE;
a1d78564
RS
5649}
5650
56d438b1
CF
5651/* OP_IMM_INDEX matcher. */
5652
5653static bfd_boolean
5654match_imm_index_operand (struct mips_arg_info *arg,
5655 const struct mips_operand *operand)
5656{
5657 unsigned int max_val;
5658
5659 if (arg->token->type != OT_INTEGER_INDEX)
5660 return FALSE;
5661
5662 max_val = (1 << operand->size) - 1;
5663 if (arg->token->u.index > max_val)
5664 {
5665 match_out_of_range (arg);
5666 return FALSE;
5667 }
5668 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5669 ++arg->token;
5670 return TRUE;
5671}
5672
5673/* OP_REG_INDEX matcher. */
5674
5675static bfd_boolean
5676match_reg_index_operand (struct mips_arg_info *arg,
5677 const struct mips_operand *operand)
5678{
5679 unsigned int regno;
5680
5681 if (arg->token->type != OT_REG_INDEX)
5682 return FALSE;
5683
5684 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5685 return FALSE;
5686
5687 insn_insert_operand (arg->insn, operand, regno);
5688 ++arg->token;
5689 return TRUE;
5690}
5691
a1d78564
RS
5692/* OP_PC matcher. */
5693
a92713e6
RS
5694static bfd_boolean
5695match_pc_operand (struct mips_arg_info *arg)
a1d78564 5696{
a92713e6
RS
5697 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5698 {
5699 ++arg->token;
5700 return TRUE;
5701 }
5702 return FALSE;
a1d78564
RS
5703}
5704
7361da2c
AB
5705/* OP_NON_ZERO_REG matcher. */
5706
5707static bfd_boolean
5708match_non_zero_reg_operand (struct mips_arg_info *arg,
5709 const struct mips_operand *operand)
5710{
5711 unsigned int regno;
5712
5713 if (!match_reg (arg, OP_REG_GP, &regno))
5714 return FALSE;
5715
5716 if (regno == 0)
5717 return FALSE;
5718
5719 arg->last_regno = regno;
5720 insn_insert_operand (arg->insn, operand, regno);
5721 return TRUE;
5722}
5723
a1d78564
RS
5724/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5725 register that we need to match. */
5726
a92713e6
RS
5727static bfd_boolean
5728match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5729{
5730 unsigned int regno;
5731
a92713e6 5732 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5733}
5734
89565f1b
RS
5735/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5736 the length of the value in bytes (4 for float, 8 for double) and
5737 USING_GPRS says whether the destination is a GPR rather than an FPR.
5738
5739 Return the constant in IMM and OFFSET as follows:
5740
5741 - If the constant should be loaded via memory, set IMM to O_absent and
5742 OFFSET to the memory address.
5743
5744 - Otherwise, if the constant should be loaded into two 32-bit registers,
5745 set IMM to the O_constant to load into the high register and OFFSET
5746 to the corresponding value for the low register.
5747
5748 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5749
5750 These constants only appear as the last operand in an instruction,
5751 and every instruction that accepts them in any variant accepts them
5752 in all variants. This means we don't have to worry about backing out
5753 any changes if the instruction does not match. We just match
5754 unconditionally and report an error if the constant is invalid. */
5755
a92713e6
RS
5756static bfd_boolean
5757match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5758 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5759{
a92713e6 5760 char *p;
89565f1b
RS
5761 segT seg, new_seg;
5762 subsegT subseg;
5763 const char *newname;
a92713e6 5764 unsigned char *data;
89565f1b
RS
5765
5766 /* Where the constant is placed is based on how the MIPS assembler
5767 does things:
5768
5769 length == 4 && using_gprs -- immediate value only
5770 length == 8 && using_gprs -- .rdata or immediate value
5771 length == 4 && !using_gprs -- .lit4 or immediate value
5772 length == 8 && !using_gprs -- .lit8 or immediate value
5773
5774 The .lit4 and .lit8 sections are only used if permitted by the
5775 -G argument. */
a92713e6 5776 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5777 {
5778 set_insn_error (arg->argnum, _("floating-point expression required"));
5779 return FALSE;
5780 }
a92713e6
RS
5781
5782 gas_assert (arg->token->u.flt.length == length);
5783 data = arg->token->u.flt.data;
5784 ++arg->token;
89565f1b
RS
5785
5786 /* Handle 32-bit constants for which an immediate value is best. */
5787 if (length == 4
5788 && (using_gprs
5789 || g_switch_value < 4
5790 || (data[0] == 0 && data[1] == 0)
5791 || (data[2] == 0 && data[3] == 0)))
5792 {
5793 imm->X_op = O_constant;
5794 if (!target_big_endian)
5795 imm->X_add_number = bfd_getl32 (data);
5796 else
5797 imm->X_add_number = bfd_getb32 (data);
5798 offset->X_op = O_absent;
a92713e6 5799 return TRUE;
89565f1b
RS
5800 }
5801
5802 /* Handle 64-bit constants for which an immediate value is best. */
5803 if (length == 8
5804 && !mips_disable_float_construction
351cdf24
MF
5805 /* Constants can only be constructed in GPRs and copied to FPRs if the
5806 GPRs are at least as wide as the FPRs or MTHC1 is available.
5807 Unlike most tests for 32-bit floating-point registers this check
5808 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5809 permit 64-bit moves without MXHC1.
5810 Force the constant into memory otherwise. */
5811 && (using_gprs
5812 || GPR_SIZE == 64
5813 || ISA_HAS_MXHC1 (mips_opts.isa)
5814 || FPR_SIZE == 32)
89565f1b
RS
5815 && ((data[0] == 0 && data[1] == 0)
5816 || (data[2] == 0 && data[3] == 0))
5817 && ((data[4] == 0 && data[5] == 0)
5818 || (data[6] == 0 && data[7] == 0)))
5819 {
5820 /* The value is simple enough to load with a couple of instructions.
5821 If using 32-bit registers, set IMM to the high order 32 bits and
5822 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5823 64 bit constant. */
351cdf24 5824 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5825 {
5826 imm->X_op = O_constant;
5827 offset->X_op = O_constant;
5828 if (!target_big_endian)
5829 {
5830 imm->X_add_number = bfd_getl32 (data + 4);
5831 offset->X_add_number = bfd_getl32 (data);
5832 }
5833 else
5834 {
5835 imm->X_add_number = bfd_getb32 (data);
5836 offset->X_add_number = bfd_getb32 (data + 4);
5837 }
5838 if (offset->X_add_number == 0)
5839 offset->X_op = O_absent;
5840 }
5841 else
5842 {
5843 imm->X_op = O_constant;
5844 if (!target_big_endian)
5845 imm->X_add_number = bfd_getl64 (data);
5846 else
5847 imm->X_add_number = bfd_getb64 (data);
5848 offset->X_op = O_absent;
5849 }
a92713e6 5850 return TRUE;
89565f1b
RS
5851 }
5852
5853 /* Switch to the right section. */
5854 seg = now_seg;
5855 subseg = now_subseg;
5856 if (length == 4)
5857 {
5858 gas_assert (!using_gprs && g_switch_value >= 4);
5859 newname = ".lit4";
5860 }
5861 else
5862 {
5863 if (using_gprs || g_switch_value < 8)
5864 newname = RDATA_SECTION_NAME;
5865 else
5866 newname = ".lit8";
5867 }
5868
5869 new_seg = subseg_new (newname, (subsegT) 0);
5870 bfd_set_section_flags (stdoutput, new_seg,
5871 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5872 frag_align (length == 4 ? 2 : 3, 0, 0);
5873 if (strncmp (TARGET_OS, "elf", 3) != 0)
5874 record_alignment (new_seg, 4);
5875 else
5876 record_alignment (new_seg, length == 4 ? 2 : 3);
5877 if (seg == now_seg)
1661c76c 5878 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5879
5880 /* Set the argument to the current address in the section. */
5881 imm->X_op = O_absent;
5882 offset->X_op = O_symbol;
5883 offset->X_add_symbol = symbol_temp_new_now ();
5884 offset->X_add_number = 0;
5885
5886 /* Put the floating point number into the section. */
5887 p = frag_more (length);
5888 memcpy (p, data, length);
5889
5890 /* Switch back to the original section. */
5891 subseg_set (seg, subseg);
a92713e6 5892 return TRUE;
89565f1b
RS
5893}
5894
14daeee3
RS
5895/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5896 them. */
5897
5898static bfd_boolean
5899match_vu0_suffix_operand (struct mips_arg_info *arg,
5900 const struct mips_operand *operand,
5901 bfd_boolean match_p)
5902{
5903 unsigned int uval;
5904
5905 /* The operand can be an XYZW mask or a single 2-bit channel index
5906 (with X being 0). */
5907 gas_assert (operand->size == 2 || operand->size == 4);
5908
ee5734f0 5909 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5910 if (arg->token->type != OT_CHANNELS)
ee5734f0 5911 return match_p;
14daeee3
RS
5912
5913 uval = arg->token->u.channels;
5914 if (operand->size == 2)
5915 {
5916 /* Check that a single bit is set and convert it into a 2-bit index. */
5917 if ((uval & -uval) != uval)
5918 return FALSE;
5919 uval = 4 - ffs (uval);
5920 }
5921
5922 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5923 return FALSE;
5924
5925 ++arg->token;
5926 if (!match_p)
5927 insn_insert_operand (arg->insn, operand, uval);
5928 return TRUE;
5929}
5930
a1d78564
RS
5931/* S is the text seen for ARG. Match it against OPERAND. Return the end
5932 of the argument text if the match is successful, otherwise return null. */
5933
a92713e6 5934static bfd_boolean
a1d78564 5935match_operand (struct mips_arg_info *arg,
a92713e6 5936 const struct mips_operand *operand)
a1d78564
RS
5937{
5938 switch (operand->type)
5939 {
5940 case OP_INT:
a92713e6 5941 return match_int_operand (arg, operand);
a1d78564
RS
5942
5943 case OP_MAPPED_INT:
a92713e6 5944 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5945
5946 case OP_MSB:
a92713e6 5947 return match_msb_operand (arg, operand);
a1d78564
RS
5948
5949 case OP_REG:
0f35dbc4 5950 case OP_OPTIONAL_REG:
a92713e6 5951 return match_reg_operand (arg, operand);
a1d78564
RS
5952
5953 case OP_REG_PAIR:
a92713e6 5954 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5955
5956 case OP_PCREL:
a92713e6 5957 return match_pcrel_operand (arg);
a1d78564
RS
5958
5959 case OP_PERF_REG:
a92713e6 5960 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5961
5962 case OP_ADDIUSP_INT:
a92713e6 5963 return match_addiusp_operand (arg, operand);
a1d78564
RS
5964
5965 case OP_CLO_CLZ_DEST:
a92713e6 5966 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5967
5968 case OP_LWM_SWM_LIST:
a92713e6 5969 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5970
5971 case OP_ENTRY_EXIT_LIST:
a92713e6 5972 return match_entry_exit_operand (arg, operand);
364215c8 5973
a1d78564 5974 case OP_SAVE_RESTORE_LIST:
a92713e6 5975 return match_save_restore_list_operand (arg);
a1d78564
RS
5976
5977 case OP_MDMX_IMM_REG:
a92713e6 5978 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
5979
5980 case OP_REPEAT_DEST_REG:
a92713e6 5981 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
5982
5983 case OP_REPEAT_PREV_REG:
a92713e6 5984 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
5985
5986 case OP_PC:
a92713e6 5987 return match_pc_operand (arg);
14daeee3
RS
5988
5989 case OP_VU0_SUFFIX:
5990 return match_vu0_suffix_operand (arg, operand, FALSE);
5991
5992 case OP_VU0_MATCH_SUFFIX:
5993 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
5994
5995 case OP_IMM_INDEX:
5996 return match_imm_index_operand (arg, operand);
5997
5998 case OP_REG_INDEX:
5999 return match_reg_index_operand (arg, operand);
7361da2c
AB
6000
6001 case OP_SAME_RS_RT:
6002 return match_same_rs_rt_operand (arg, operand);
6003
6004 case OP_CHECK_PREV:
6005 return match_check_prev_operand (arg, operand);
6006
6007 case OP_NON_ZERO_REG:
6008 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6009 }
6010 abort ();
6011}
6012
6013/* ARG is the state after successfully matching an instruction.
6014 Issue any queued-up warnings. */
6015
6016static void
6017check_completed_insn (struct mips_arg_info *arg)
6018{
6019 if (arg->seen_at)
6020 {
6021 if (AT == ATREG)
1661c76c 6022 as_warn (_("used $at without \".set noat\""));
a1d78564 6023 else
1661c76c 6024 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6025 }
6026}
a1d78564 6027
85fcb30f
RS
6028/* Return true if modifying general-purpose register REG needs a delay. */
6029
6030static bfd_boolean
6031reg_needs_delay (unsigned int reg)
6032{
6033 unsigned long prev_pinfo;
6034
6035 prev_pinfo = history[0].insn_mo->pinfo;
6036 if (!mips_opts.noreorder
67dc82bc 6037 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6038 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6039 && (gpr_write_mask (&history[0]) & (1 << reg)))
6040 return TRUE;
6041
6042 return FALSE;
6043}
6044
71400594
RS
6045/* Classify an instruction according to the FIX_VR4120_* enumeration.
6046 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6047 by VR4120 errata. */
4d7206a2 6048
71400594
RS
6049static unsigned int
6050classify_vr4120_insn (const char *name)
252b5132 6051{
71400594
RS
6052 if (strncmp (name, "macc", 4) == 0)
6053 return FIX_VR4120_MACC;
6054 if (strncmp (name, "dmacc", 5) == 0)
6055 return FIX_VR4120_DMACC;
6056 if (strncmp (name, "mult", 4) == 0)
6057 return FIX_VR4120_MULT;
6058 if (strncmp (name, "dmult", 5) == 0)
6059 return FIX_VR4120_DMULT;
6060 if (strstr (name, "div"))
6061 return FIX_VR4120_DIV;
6062 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6063 return FIX_VR4120_MTHILO;
6064 return NUM_FIX_VR4120_CLASSES;
6065}
252b5132 6066
a8d14a88
CM
6067#define INSN_ERET 0x42000018
6068#define INSN_DERET 0x4200001f
6069#define INSN_DMULT 0x1c
6070#define INSN_DMULTU 0x1d
ff239038 6071
71400594
RS
6072/* Return the number of instructions that must separate INSN1 and INSN2,
6073 where INSN1 is the earlier instruction. Return the worst-case value
6074 for any INSN2 if INSN2 is null. */
252b5132 6075
71400594
RS
6076static unsigned int
6077insns_between (const struct mips_cl_insn *insn1,
6078 const struct mips_cl_insn *insn2)
6079{
6080 unsigned long pinfo1, pinfo2;
4c260379 6081 unsigned int mask;
71400594 6082
85fcb30f
RS
6083 /* If INFO2 is null, pessimistically assume that all flags are set for
6084 the second instruction. */
71400594
RS
6085 pinfo1 = insn1->insn_mo->pinfo;
6086 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6087
71400594
RS
6088 /* For most targets, write-after-read dependencies on the HI and LO
6089 registers must be separated by at least two instructions. */
6090 if (!hilo_interlocks)
252b5132 6091 {
71400594
RS
6092 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6093 return 2;
6094 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6095 return 2;
6096 }
6097
6098 /* If we're working around r7000 errata, there must be two instructions
6099 between an mfhi or mflo and any instruction that uses the result. */
6100 if (mips_7000_hilo_fix
df58fc94 6101 && !mips_opts.micromips
71400594 6102 && MF_HILO_INSN (pinfo1)
85fcb30f 6103 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6104 return 2;
6105
ff239038
CM
6106 /* If we're working around 24K errata, one instruction is required
6107 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6108 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6109 {
6110 if (insn1->insn_opcode == INSN_ERET
6111 || insn1->insn_opcode == INSN_DERET)
6112 {
6113 if (insn2 == NULL
6114 || insn2->insn_opcode == INSN_ERET
6115 || insn2->insn_opcode == INSN_DERET
11625dd8 6116 || delayed_branch_p (insn2))
ff239038
CM
6117 return 1;
6118 }
6119 }
6120
a8d14a88
CM
6121 /* If we're working around PMC RM7000 errata, there must be three
6122 nops between a dmult and a load instruction. */
6123 if (mips_fix_rm7000 && !mips_opts.micromips)
6124 {
6125 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6126 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6127 {
6128 if (pinfo2 & INSN_LOAD_MEMORY)
6129 return 3;
6130 }
6131 }
6132
71400594
RS
6133 /* If working around VR4120 errata, check for combinations that need
6134 a single intervening instruction. */
df58fc94 6135 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6136 {
6137 unsigned int class1, class2;
252b5132 6138
71400594
RS
6139 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6140 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6141 {
71400594
RS
6142 if (insn2 == NULL)
6143 return 1;
6144 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6145 if (vr4120_conflicts[class1] & (1 << class2))
6146 return 1;
252b5132 6147 }
71400594
RS
6148 }
6149
df58fc94 6150 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6151 {
6152 /* Check for GPR or coprocessor load delays. All such delays
6153 are on the RT register. */
6154 /* Itbl support may require additional care here. */
67dc82bc 6155 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6156 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6157 {
85fcb30f 6158 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6159 return 1;
6160 }
6161
6162 /* Check for generic coprocessor hazards.
6163
6164 This case is not handled very well. There is no special
6165 knowledge of CP0 handling, and the coprocessors other than
6166 the floating point unit are not distinguished at all. */
6167 /* Itbl support may require additional care here. FIXME!
6168 Need to modify this to include knowledge about
6169 user specified delays! */
43885403 6170 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6171 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6172 {
6173 /* Handle cases where INSN1 writes to a known general coprocessor
6174 register. There must be a one instruction delay before INSN2
6175 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6176 mask = fpr_write_mask (insn1);
6177 if (mask != 0)
252b5132 6178 {
4c260379 6179 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6180 return 1;
252b5132
RH
6181 }
6182 else
6183 {
71400594
RS
6184 /* Read-after-write dependencies on the control registers
6185 require a two-instruction gap. */
6186 if ((pinfo1 & INSN_WRITE_COND_CODE)
6187 && (pinfo2 & INSN_READ_COND_CODE))
6188 return 2;
6189
6190 /* We don't know exactly what INSN1 does. If INSN2 is
6191 also a coprocessor instruction, assume there must be
6192 a one instruction gap. */
6193 if (pinfo2 & INSN_COP)
6194 return 1;
252b5132
RH
6195 }
6196 }
6b76fefe 6197
71400594
RS
6198 /* Check for read-after-write dependencies on the coprocessor
6199 control registers in cases where INSN1 does not need a general
6200 coprocessor delay. This means that INSN1 is a floating point
6201 comparison instruction. */
6202 /* Itbl support may require additional care here. */
6203 else if (!cop_interlocks
6204 && (pinfo1 & INSN_WRITE_COND_CODE)
6205 && (pinfo2 & INSN_READ_COND_CODE))
6206 return 1;
6207 }
6b76fefe 6208
7361da2c
AB
6209 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6210 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6211 and pause. */
6212 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6213 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6214 || (insn2 && delayed_branch_p (insn2))))
6215 return 1;
6216
71400594
RS
6217 return 0;
6218}
6b76fefe 6219
7d8e00cf
RS
6220/* Return the number of nops that would be needed to work around the
6221 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6222 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6223 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6224
6225static int
932d1a1b 6226nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6227 const struct mips_cl_insn *insn)
6228{
4c260379
RS
6229 int i, j;
6230 unsigned int mask;
7d8e00cf
RS
6231
6232 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6233 are not affected by the errata. */
6234 if (insn != 0
6235 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6236 || strcmp (insn->insn_mo->name, "mtlo") == 0
6237 || strcmp (insn->insn_mo->name, "mthi") == 0))
6238 return 0;
6239
6240 /* Search for the first MFLO or MFHI. */
6241 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6242 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6243 {
6244 /* Extract the destination register. */
4c260379 6245 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6246
6247 /* No nops are needed if INSN reads that register. */
4c260379 6248 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6249 return 0;
6250
6251 /* ...or if any of the intervening instructions do. */
6252 for (j = 0; j < i; j++)
4c260379 6253 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6254 return 0;
6255
932d1a1b
RS
6256 if (i >= ignore)
6257 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6258 }
6259 return 0;
6260}
6261
15be625d
CM
6262#define BASE_REG_EQ(INSN1, INSN2) \
6263 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6264 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6265
6266/* Return the minimum alignment for this store instruction. */
6267
6268static int
6269fix_24k_align_to (const struct mips_opcode *mo)
6270{
6271 if (strcmp (mo->name, "sh") == 0)
6272 return 2;
6273
6274 if (strcmp (mo->name, "swc1") == 0
6275 || strcmp (mo->name, "swc2") == 0
6276 || strcmp (mo->name, "sw") == 0
6277 || strcmp (mo->name, "sc") == 0
6278 || strcmp (mo->name, "s.s") == 0)
6279 return 4;
6280
6281 if (strcmp (mo->name, "sdc1") == 0
6282 || strcmp (mo->name, "sdc2") == 0
6283 || strcmp (mo->name, "s.d") == 0)
6284 return 8;
6285
6286 /* sb, swl, swr */
6287 return 1;
6288}
6289
6290struct fix_24k_store_info
6291 {
6292 /* Immediate offset, if any, for this store instruction. */
6293 short off;
6294 /* Alignment required by this store instruction. */
6295 int align_to;
6296 /* True for register offsets. */
6297 int register_offset;
6298 };
6299
6300/* Comparison function used by qsort. */
6301
6302static int
6303fix_24k_sort (const void *a, const void *b)
6304{
6305 const struct fix_24k_store_info *pos1 = a;
6306 const struct fix_24k_store_info *pos2 = b;
6307
6308 return (pos1->off - pos2->off);
6309}
6310
6311/* INSN is a store instruction. Try to record the store information
6312 in STINFO. Return false if the information isn't known. */
6313
6314static bfd_boolean
6315fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6316 const struct mips_cl_insn *insn)
15be625d
CM
6317{
6318 /* The instruction must have a known offset. */
6319 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6320 return FALSE;
6321
6322 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6323 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6324 return TRUE;
6325}
6326
932d1a1b
RS
6327/* Return the number of nops that would be needed to work around the 24k
6328 "lost data on stores during refill" errata if instruction INSN
6329 immediately followed the 2 instructions described by HIST.
6330 Ignore hazards that are contained within the first IGNORE
6331 instructions of HIST.
6332
6333 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6334 for the data cache refills and store data. The following describes
6335 the scenario where the store data could be lost.
6336
6337 * A data cache miss, due to either a load or a store, causing fill
6338 data to be supplied by the memory subsystem
6339 * The first three doublewords of fill data are returned and written
6340 into the cache
6341 * A sequence of four stores occurs in consecutive cycles around the
6342 final doubleword of the fill:
6343 * Store A
6344 * Store B
6345 * Store C
6346 * Zero, One or more instructions
6347 * Store D
6348
6349 The four stores A-D must be to different doublewords of the line that
6350 is being filled. The fourth instruction in the sequence above permits
6351 the fill of the final doubleword to be transferred from the FSB into
6352 the cache. In the sequence above, the stores may be either integer
6353 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6354 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6355 different doublewords on the line. If the floating point unit is
6356 running in 1:2 mode, it is not possible to create the sequence above
6357 using only floating point store instructions.
15be625d
CM
6358
6359 In this case, the cache line being filled is incorrectly marked
6360 invalid, thereby losing the data from any store to the line that
6361 occurs between the original miss and the completion of the five
6362 cycle sequence shown above.
6363
932d1a1b 6364 The workarounds are:
15be625d 6365
932d1a1b
RS
6366 * Run the data cache in write-through mode.
6367 * Insert a non-store instruction between
6368 Store A and Store B or Store B and Store C. */
3739860c 6369
15be625d 6370static int
932d1a1b 6371nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6372 const struct mips_cl_insn *insn)
6373{
6374 struct fix_24k_store_info pos[3];
6375 int align, i, base_offset;
6376
932d1a1b
RS
6377 if (ignore >= 2)
6378 return 0;
6379
ab9794cf
RS
6380 /* If the previous instruction wasn't a store, there's nothing to
6381 worry about. */
15be625d
CM
6382 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6383 return 0;
6384
ab9794cf
RS
6385 /* If the instructions after the previous one are unknown, we have
6386 to assume the worst. */
6387 if (!insn)
15be625d
CM
6388 return 1;
6389
ab9794cf
RS
6390 /* Check whether we are dealing with three consecutive stores. */
6391 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6392 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6393 return 0;
6394
6395 /* If we don't know the relationship between the store addresses,
6396 assume the worst. */
ab9794cf 6397 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6398 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6399 return 1;
6400
6401 if (!fix_24k_record_store_info (&pos[0], insn)
6402 || !fix_24k_record_store_info (&pos[1], &hist[0])
6403 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6404 return 1;
6405
6406 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6407
6408 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6409 X bytes and such that the base register + X is known to be aligned
6410 to align bytes. */
6411
6412 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6413 align = 8;
6414 else
6415 {
6416 align = pos[0].align_to;
6417 base_offset = pos[0].off;
6418 for (i = 1; i < 3; i++)
6419 if (align < pos[i].align_to)
6420 {
6421 align = pos[i].align_to;
6422 base_offset = pos[i].off;
6423 }
6424 for (i = 0; i < 3; i++)
6425 pos[i].off -= base_offset;
6426 }
6427
6428 pos[0].off &= ~align + 1;
6429 pos[1].off &= ~align + 1;
6430 pos[2].off &= ~align + 1;
6431
6432 /* If any two stores write to the same chunk, they also write to the
6433 same doubleword. The offsets are still sorted at this point. */
6434 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6435 return 0;
6436
6437 /* A range of at least 9 bytes is needed for the stores to be in
6438 non-overlapping doublewords. */
6439 if (pos[2].off - pos[0].off <= 8)
6440 return 0;
6441
6442 if (pos[2].off - pos[1].off >= 24
6443 || pos[1].off - pos[0].off >= 24
6444 || pos[2].off - pos[0].off >= 32)
6445 return 0;
6446
6447 return 1;
6448}
6449
71400594 6450/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6451 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6452 where HIST[0] is the most recent instruction. Ignore hazards
6453 between INSN and the first IGNORE instructions in HIST.
6454
6455 If INSN is null, return the worse-case number of nops for any
6456 instruction. */
bdaaa2e1 6457
71400594 6458static int
932d1a1b 6459nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6460 const struct mips_cl_insn *insn)
6461{
6462 int i, nops, tmp_nops;
bdaaa2e1 6463
71400594 6464 nops = 0;
932d1a1b 6465 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6466 {
91d6fa6a 6467 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6468 if (tmp_nops > nops)
6469 nops = tmp_nops;
6470 }
7d8e00cf 6471
df58fc94 6472 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6473 {
932d1a1b 6474 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6475 if (tmp_nops > nops)
6476 nops = tmp_nops;
6477 }
6478
df58fc94 6479 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6480 {
932d1a1b 6481 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6482 if (tmp_nops > nops)
6483 nops = tmp_nops;
6484 }
6485
71400594
RS
6486 return nops;
6487}
252b5132 6488
71400594 6489/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6490 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6491 would be needed after the extended sequence, ignoring hazards
6492 in the first IGNORE instructions. */
252b5132 6493
71400594 6494static int
932d1a1b
RS
6495nops_for_sequence (int num_insns, int ignore,
6496 const struct mips_cl_insn *hist, ...)
71400594
RS
6497{
6498 va_list args;
6499 struct mips_cl_insn buffer[MAX_NOPS];
6500 struct mips_cl_insn *cursor;
6501 int nops;
6502
91d6fa6a 6503 va_start (args, hist);
71400594 6504 cursor = buffer + num_insns;
91d6fa6a 6505 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6506 while (cursor > buffer)
6507 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6508
932d1a1b 6509 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6510 va_end (args);
6511 return nops;
6512}
252b5132 6513
71400594
RS
6514/* Like nops_for_insn, but if INSN is a branch, take into account the
6515 worst-case delay for the branch target. */
252b5132 6516
71400594 6517static int
932d1a1b 6518nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6519 const struct mips_cl_insn *insn)
6520{
6521 int nops, tmp_nops;
60b63b72 6522
932d1a1b 6523 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6524 if (delayed_branch_p (insn))
71400594 6525 {
932d1a1b 6526 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6527 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6528 if (tmp_nops > nops)
6529 nops = tmp_nops;
6530 }
11625dd8 6531 else if (compact_branch_p (insn))
71400594 6532 {
932d1a1b 6533 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6534 if (tmp_nops > nops)
6535 nops = tmp_nops;
6536 }
6537 return nops;
6538}
6539
c67a084a
NC
6540/* Fix NOP issue: Replace nops by "or at,at,zero". */
6541
6542static void
6543fix_loongson2f_nop (struct mips_cl_insn * ip)
6544{
df58fc94 6545 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6546 if (strcmp (ip->insn_mo->name, "nop") == 0)
6547 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6548}
6549
6550/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6551 jr target pc &= 'hffff_ffff_cfff_ffff. */
6552
6553static void
6554fix_loongson2f_jump (struct mips_cl_insn * ip)
6555{
df58fc94 6556 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6557 if (strcmp (ip->insn_mo->name, "j") == 0
6558 || strcmp (ip->insn_mo->name, "jr") == 0
6559 || strcmp (ip->insn_mo->name, "jalr") == 0)
6560 {
6561 int sreg;
6562 expressionS ep;
6563
6564 if (! mips_opts.at)
6565 return;
6566
df58fc94 6567 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6568 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6569 return;
6570
6571 ep.X_op = O_constant;
6572 ep.X_add_number = 0xcfff0000;
6573 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6574 ep.X_add_number = 0xffff;
6575 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6576 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6577 }
6578}
6579
6580static void
6581fix_loongson2f (struct mips_cl_insn * ip)
6582{
6583 if (mips_fix_loongson2f_nop)
6584 fix_loongson2f_nop (ip);
6585
6586 if (mips_fix_loongson2f_jump)
6587 fix_loongson2f_jump (ip);
6588}
6589
a4e06468
RS
6590/* IP is a branch that has a delay slot, and we need to fill it
6591 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6592 with the previous instruction.
6593 ADDRESS_EXPR is an operand of the instruction to be used with
6594 RELOC_TYPE. */
a4e06468
RS
6595
6596static bfd_boolean
e407c74b 6597can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6598 bfd_reloc_code_real_type *reloc_type)
a4e06468 6599{
2b0c8b40 6600 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6601 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6602 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6603
6604 /* -O2 and above is required for this optimization. */
6605 if (mips_optimize < 2)
6606 return FALSE;
6607
6608 /* If we have seen .set volatile or .set nomove, don't optimize. */
6609 if (mips_opts.nomove)
6610 return FALSE;
6611
6612 /* We can't swap if the previous instruction's position is fixed. */
6613 if (history[0].fixed_p)
6614 return FALSE;
6615
6616 /* If the previous previous insn was in a .set noreorder, we can't
6617 swap. Actually, the MIPS assembler will swap in this situation.
6618 However, gcc configured -with-gnu-as will generate code like
6619
6620 .set noreorder
6621 lw $4,XXX
6622 .set reorder
6623 INSN
6624 bne $4,$0,foo
6625
6626 in which we can not swap the bne and INSN. If gcc is not configured
6627 -with-gnu-as, it does not output the .set pseudo-ops. */
6628 if (history[1].noreorder_p)
6629 return FALSE;
6630
87333bb7
MR
6631 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6632 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6633 if (mips_opts.mips16 && history[0].fixp[0])
6634 return FALSE;
6635
6636 /* If the branch is itself the target of a branch, we can not swap.
6637 We cheat on this; all we check for is whether there is a label on
6638 this instruction. If there are any branches to anything other than
6639 a label, users must use .set noreorder. */
6640 if (seg_info (now_seg)->label_list)
6641 return FALSE;
6642
6643 /* If the previous instruction is in a variant frag other than this
2309ddf2 6644 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6645 MIPS16 code, which uses variant frags for different purposes. */
6646 if (!mips_opts.mips16
a4e06468
RS
6647 && history[0].frag
6648 && history[0].frag->fr_type == rs_machine_dependent)
6649 return FALSE;
6650
bcd530a7
RS
6651 /* We do not swap with instructions that cannot architecturally
6652 be placed in a branch delay slot, such as SYNC or ERET. We
6653 also refrain from swapping with a trap instruction, since it
6654 complicates trap handlers to have the trap instruction be in
6655 a delay slot. */
a4e06468 6656 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6657 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6658 return FALSE;
6659
6660 /* Check for conflicts between the branch and the instructions
6661 before the candidate delay slot. */
6662 if (nops_for_insn (0, history + 1, ip) > 0)
6663 return FALSE;
6664
6665 /* Check for conflicts between the swapped sequence and the
6666 target of the branch. */
6667 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6668 return FALSE;
6669
6670 /* If the branch reads a register that the previous
6671 instruction sets, we can not swap. */
6672 gpr_read = gpr_read_mask (ip);
6673 prev_gpr_write = gpr_write_mask (&history[0]);
6674 if (gpr_read & prev_gpr_write)
6675 return FALSE;
6676
9d5de888
CF
6677 fpr_read = fpr_read_mask (ip);
6678 prev_fpr_write = fpr_write_mask (&history[0]);
6679 if (fpr_read & prev_fpr_write)
6680 return FALSE;
6681
a4e06468
RS
6682 /* If the branch writes a register that the previous
6683 instruction sets, we can not swap. */
6684 gpr_write = gpr_write_mask (ip);
6685 if (gpr_write & prev_gpr_write)
6686 return FALSE;
6687
6688 /* If the branch writes a register that the previous
6689 instruction reads, we can not swap. */
6690 prev_gpr_read = gpr_read_mask (&history[0]);
6691 if (gpr_write & prev_gpr_read)
6692 return FALSE;
6693
6694 /* If one instruction sets a condition code and the
6695 other one uses a condition code, we can not swap. */
6696 pinfo = ip->insn_mo->pinfo;
6697 if ((pinfo & INSN_READ_COND_CODE)
6698 && (prev_pinfo & INSN_WRITE_COND_CODE))
6699 return FALSE;
6700 if ((pinfo & INSN_WRITE_COND_CODE)
6701 && (prev_pinfo & INSN_READ_COND_CODE))
6702 return FALSE;
6703
6704 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6705 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6706 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6707 return FALSE;
a4e06468 6708
df58fc94
RS
6709 /* If the previous instruction has an incorrect size for a fixed
6710 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6711 pinfo2 = ip->insn_mo->pinfo2;
6712 if (mips_opts.micromips
6713 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6714 && insn_length (history) != 2)
6715 return FALSE;
6716 if (mips_opts.micromips
6717 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6718 && insn_length (history) != 4)
6719 return FALSE;
6720
e407c74b
NC
6721 /* On R5900 short loops need to be fixed by inserting a nop in
6722 the branch delay slots.
6723 A short loop can be terminated too early. */
6724 if (mips_opts.arch == CPU_R5900
6725 /* Check if instruction has a parameter, ignore "j $31". */
6726 && (address_expr != NULL)
6727 /* Parameter must be 16 bit. */
6728 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6729 /* Branch to same segment. */
6730 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6731 /* Branch to same code fragment. */
6732 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6733 /* Can only calculate branch offset if value is known. */
6734 && symbol_constant_p(address_expr->X_add_symbol)
6735 /* Check if branch is really conditional. */
6736 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6737 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6738 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6739 {
6740 int distance;
6741 /* Check if loop is shorter than 6 instructions including
6742 branch and delay slot. */
6743 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6744 if (distance <= 20)
6745 {
6746 int i;
6747 int rv;
6748
6749 rv = FALSE;
6750 /* When the loop includes branches or jumps,
6751 it is not a short loop. */
6752 for (i = 0; i < (distance / 4); i++)
6753 {
6754 if ((history[i].cleared_p)
6755 || delayed_branch_p(&history[i]))
6756 {
6757 rv = TRUE;
6758 break;
6759 }
6760 }
6761 if (rv == FALSE)
6762 {
6763 /* Insert nop after branch to fix short loop. */
6764 return FALSE;
6765 }
6766 }
6767 }
6768
a4e06468
RS
6769 return TRUE;
6770}
6771
e407c74b
NC
6772/* Decide how we should add IP to the instruction stream.
6773 ADDRESS_EXPR is an operand of the instruction to be used with
6774 RELOC_TYPE. */
a4e06468
RS
6775
6776static enum append_method
e407c74b 6777get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6778 bfd_reloc_code_real_type *reloc_type)
a4e06468 6779{
a4e06468
RS
6780 /* The relaxed version of a macro sequence must be inherently
6781 hazard-free. */
6782 if (mips_relax.sequence == 2)
6783 return APPEND_ADD;
6784
6785 /* We must not dabble with instructions in a ".set norerorder" block. */
6786 if (mips_opts.noreorder)
6787 return APPEND_ADD;
6788
6789 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6790 if (delayed_branch_p (ip))
a4e06468 6791 {
e407c74b
NC
6792 if (!branch_likely_p (ip)
6793 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6794 return APPEND_SWAP;
6795
6796 if (mips_opts.mips16
6797 && ISA_SUPPORTS_MIPS16E
fc76e730 6798 && gpr_read_mask (ip) != 0)
a4e06468
RS
6799 return APPEND_ADD_COMPACT;
6800
6801 return APPEND_ADD_WITH_NOP;
6802 }
6803
a4e06468
RS
6804 return APPEND_ADD;
6805}
6806
ceb94aa5
RS
6807/* IP is a MIPS16 instruction whose opcode we have just changed.
6808 Point IP->insn_mo to the new opcode's definition. */
6809
6810static void
6811find_altered_mips16_opcode (struct mips_cl_insn *ip)
6812{
6813 const struct mips_opcode *mo, *end;
6814
6815 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6816 for (mo = ip->insn_mo; mo < end; mo++)
6817 if ((ip->insn_opcode & mo->mask) == mo->match)
6818 {
6819 ip->insn_mo = mo;
6820 return;
6821 }
6822 abort ();
6823}
6824
df58fc94
RS
6825/* For microMIPS macros, we need to generate a local number label
6826 as the target of branches. */
6827#define MICROMIPS_LABEL_CHAR '\037'
6828static unsigned long micromips_target_label;
6829static char micromips_target_name[32];
6830
6831static char *
6832micromips_label_name (void)
6833{
6834 char *p = micromips_target_name;
6835 char symbol_name_temporary[24];
6836 unsigned long l;
6837 int i;
6838
6839 if (*p)
6840 return p;
6841
6842 i = 0;
6843 l = micromips_target_label;
6844#ifdef LOCAL_LABEL_PREFIX
6845 *p++ = LOCAL_LABEL_PREFIX;
6846#endif
6847 *p++ = 'L';
6848 *p++ = MICROMIPS_LABEL_CHAR;
6849 do
6850 {
6851 symbol_name_temporary[i++] = l % 10 + '0';
6852 l /= 10;
6853 }
6854 while (l != 0);
6855 while (i > 0)
6856 *p++ = symbol_name_temporary[--i];
6857 *p = '\0';
6858
6859 return micromips_target_name;
6860}
6861
6862static void
6863micromips_label_expr (expressionS *label_expr)
6864{
6865 label_expr->X_op = O_symbol;
6866 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6867 label_expr->X_add_number = 0;
6868}
6869
6870static void
6871micromips_label_inc (void)
6872{
6873 micromips_target_label++;
6874 *micromips_target_name = '\0';
6875}
6876
6877static void
6878micromips_add_label (void)
6879{
6880 symbolS *s;
6881
6882 s = colon (micromips_label_name ());
6883 micromips_label_inc ();
f3ded42a 6884 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6885}
6886
6887/* If assembling microMIPS code, then return the microMIPS reloc
6888 corresponding to the requested one if any. Otherwise return
6889 the reloc unchanged. */
6890
6891static bfd_reloc_code_real_type
6892micromips_map_reloc (bfd_reloc_code_real_type reloc)
6893{
6894 static const bfd_reloc_code_real_type relocs[][2] =
6895 {
6896 /* Keep sorted incrementally by the left-hand key. */
6897 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6898 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6899 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6900 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6901 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6902 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6903 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6904 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6905 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6906 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6907 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6908 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6909 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6910 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6911 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6912 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6913 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6914 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6915 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6916 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6917 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6918 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6919 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6920 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6921 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6922 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6923 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6924 };
6925 bfd_reloc_code_real_type r;
6926 size_t i;
6927
6928 if (!mips_opts.micromips)
6929 return reloc;
6930 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6931 {
6932 r = relocs[i][0];
6933 if (r > reloc)
6934 return reloc;
6935 if (r == reloc)
6936 return relocs[i][1];
6937 }
6938 return reloc;
6939}
6940
b886a2ab
RS
6941/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6942 Return true on success, storing the resolved value in RESULT. */
6943
6944static bfd_boolean
6945calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6946 offsetT *result)
6947{
6948 switch (reloc)
6949 {
6950 case BFD_RELOC_MIPS_HIGHEST:
6951 case BFD_RELOC_MICROMIPS_HIGHEST:
6952 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6953 return TRUE;
6954
6955 case BFD_RELOC_MIPS_HIGHER:
6956 case BFD_RELOC_MICROMIPS_HIGHER:
6957 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6958 return TRUE;
6959
6960 case BFD_RELOC_HI16_S:
6961 case BFD_RELOC_MICROMIPS_HI16_S:
6962 case BFD_RELOC_MIPS16_HI16_S:
6963 *result = ((operand + 0x8000) >> 16) & 0xffff;
6964 return TRUE;
6965
6966 case BFD_RELOC_HI16:
6967 case BFD_RELOC_MICROMIPS_HI16:
6968 case BFD_RELOC_MIPS16_HI16:
6969 *result = (operand >> 16) & 0xffff;
6970 return TRUE;
6971
6972 case BFD_RELOC_LO16:
6973 case BFD_RELOC_MICROMIPS_LO16:
6974 case BFD_RELOC_MIPS16_LO16:
6975 *result = operand & 0xffff;
6976 return TRUE;
6977
6978 case BFD_RELOC_UNUSED:
6979 *result = operand;
6980 return TRUE;
6981
6982 default:
6983 return FALSE;
6984 }
6985}
6986
71400594
RS
6987/* Output an instruction. IP is the instruction information.
6988 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
6989 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6990 a macro expansion. */
71400594
RS
6991
6992static void
6993append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 6994 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 6995{
14fe068b 6996 unsigned long prev_pinfo2, pinfo;
71400594 6997 bfd_boolean relaxed_branch = FALSE;
a4e06468 6998 enum append_method method;
2309ddf2 6999 bfd_boolean relax32;
2b0c8b40 7000 int branch_disp;
71400594 7001
2309ddf2 7002 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7003 fix_loongson2f (ip);
7004
738f4d98 7005 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7006 file_ase_micromips |= mips_opts.micromips;
738f4d98 7007
df58fc94 7008 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7009 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
7010
7011 if (mips_opts.micromips
7012 && !expansionp
7013 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7014 && micromips_insn_length (ip->insn_mo) != 2)
7015 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7016 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7017 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7018 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7019
15be625d
CM
7020 if (address_expr == NULL)
7021 ip->complete_p = 1;
b886a2ab
RS
7022 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7023 && reloc_type[1] == BFD_RELOC_UNUSED
7024 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7025 && address_expr->X_op == O_constant)
7026 {
15be625d
CM
7027 switch (*reloc_type)
7028 {
15be625d 7029 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7030 {
7031 int shift;
7032
7033 shift = mips_opts.micromips ? 1 : 2;
7034 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7035 as_bad (_("jump to misaligned address (0x%lx)"),
7036 (unsigned long) address_expr->X_add_number);
7037 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7038 & 0x3ffffff);
335574df 7039 ip->complete_p = 1;
df58fc94 7040 }
15be625d
CM
7041 break;
7042
7043 case BFD_RELOC_MIPS16_JMP:
7044 if ((address_expr->X_add_number & 3) != 0)
7045 as_bad (_("jump to misaligned address (0x%lx)"),
7046 (unsigned long) address_expr->X_add_number);
7047 ip->insn_opcode |=
7048 (((address_expr->X_add_number & 0x7c0000) << 3)
7049 | ((address_expr->X_add_number & 0xf800000) >> 7)
7050 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7051 ip->complete_p = 1;
15be625d
CM
7052 break;
7053
7054 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7055 {
7056 int shift;
7057
7058 shift = mips_opts.micromips ? 1 : 2;
7059 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7060 as_bad (_("branch to misaligned address (0x%lx)"),
7061 (unsigned long) address_expr->X_add_number);
7062 if (!mips_relax_branch)
7063 {
7064 if ((address_expr->X_add_number + (1 << (shift + 15)))
7065 & ~((1 << (shift + 16)) - 1))
7066 as_bad (_("branch address range overflow (0x%lx)"),
7067 (unsigned long) address_expr->X_add_number);
7068 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7069 & 0xffff);
7070 }
df58fc94 7071 }
15be625d
CM
7072 break;
7073
7361da2c
AB
7074 case BFD_RELOC_MIPS_21_PCREL_S2:
7075 {
7076 int shift;
7077
7078 shift = 2;
7079 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7080 as_bad (_("branch to misaligned address (0x%lx)"),
7081 (unsigned long) address_expr->X_add_number);
7082 if ((address_expr->X_add_number + (1 << (shift + 20)))
7083 & ~((1 << (shift + 21)) - 1))
7084 as_bad (_("branch address range overflow (0x%lx)"),
7085 (unsigned long) address_expr->X_add_number);
7086 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7087 & 0x1fffff);
7088 }
7089 break;
7090
7091 case BFD_RELOC_MIPS_26_PCREL_S2:
7092 {
7093 int shift;
7094
7095 shift = 2;
7096 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7097 as_bad (_("branch to misaligned address (0x%lx)"),
7098 (unsigned long) address_expr->X_add_number);
7099 if ((address_expr->X_add_number + (1 << (shift + 25)))
7100 & ~((1 << (shift + 26)) - 1))
7101 as_bad (_("branch address range overflow (0x%lx)"),
7102 (unsigned long) address_expr->X_add_number);
7103 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7104 & 0x3ffffff);
7105 }
7106 break;
7107
15be625d 7108 default:
b886a2ab
RS
7109 {
7110 offsetT value;
7111
7112 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7113 &value))
7114 {
7115 ip->insn_opcode |= value & 0xffff;
7116 ip->complete_p = 1;
7117 }
7118 }
7119 break;
7120 }
15be625d
CM
7121 }
7122
71400594
RS
7123 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7124 {
7125 /* There are a lot of optimizations we could do that we don't.
7126 In particular, we do not, in general, reorder instructions.
7127 If you use gcc with optimization, it will reorder
7128 instructions and generally do much more optimization then we
7129 do here; repeating all that work in the assembler would only
7130 benefit hand written assembly code, and does not seem worth
7131 it. */
7132 int nops = (mips_optimize == 0
932d1a1b
RS
7133 ? nops_for_insn (0, history, NULL)
7134 : nops_for_insn_or_target (0, history, ip));
71400594 7135 if (nops > 0)
252b5132
RH
7136 {
7137 fragS *old_frag;
7138 unsigned long old_frag_offset;
7139 int i;
252b5132
RH
7140
7141 old_frag = frag_now;
7142 old_frag_offset = frag_now_fix ();
7143
7144 for (i = 0; i < nops; i++)
14fe068b
RS
7145 add_fixed_insn (NOP_INSN);
7146 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7147
7148 if (listing)
7149 {
7150 listing_prev_line ();
7151 /* We may be at the start of a variant frag. In case we
7152 are, make sure there is enough space for the frag
7153 after the frags created by listing_prev_line. The
7154 argument to frag_grow here must be at least as large
7155 as the argument to all other calls to frag_grow in
7156 this file. We don't have to worry about being in the
7157 middle of a variant frag, because the variants insert
7158 all needed nop instructions themselves. */
7159 frag_grow (40);
7160 }
7161
462427c4 7162 mips_move_text_labels ();
252b5132
RH
7163
7164#ifndef NO_ECOFF_DEBUGGING
7165 if (ECOFF_DEBUGGING)
7166 ecoff_fix_loc (old_frag, old_frag_offset);
7167#endif
7168 }
71400594
RS
7169 }
7170 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7171 {
932d1a1b
RS
7172 int nops;
7173
7174 /* Work out how many nops in prev_nop_frag are needed by IP,
7175 ignoring hazards generated by the first prev_nop_frag_since
7176 instructions. */
7177 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7178 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7179
71400594
RS
7180 /* Enforce NOPS as a minimum. */
7181 if (nops > prev_nop_frag_required)
7182 prev_nop_frag_required = nops;
252b5132 7183
71400594
RS
7184 if (prev_nop_frag_holds == prev_nop_frag_required)
7185 {
7186 /* Settle for the current number of nops. Update the history
7187 accordingly (for the benefit of any future .set reorder code). */
7188 prev_nop_frag = NULL;
7189 insert_into_history (prev_nop_frag_since,
7190 prev_nop_frag_holds, NOP_INSN);
7191 }
7192 else
7193 {
7194 /* Allow this instruction to replace one of the nops that was
7195 tentatively added to prev_nop_frag. */
df58fc94 7196 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7197 prev_nop_frag_holds--;
7198 prev_nop_frag_since++;
252b5132
RH
7199 }
7200 }
7201
e407c74b 7202 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7203 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7204
e410add4
RS
7205 dwarf2_emit_insn (0);
7206 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7207 so "move" the instruction address accordingly.
7208
7209 Also, it doesn't seem appropriate for the assembler to reorder .loc
7210 entries. If this instruction is a branch that we are going to swap
7211 with the previous instruction, the two instructions should be
7212 treated as a unit, and the debug information for both instructions
7213 should refer to the start of the branch sequence. Using the
7214 current position is certainly wrong when swapping a 32-bit branch
7215 and a 16-bit delay slot, since the current position would then be
7216 in the middle of a branch. */
7217 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7218
df58fc94
RS
7219 relax32 = (mips_relax_branch
7220 /* Don't try branch relaxation within .set nomacro, or within
7221 .set noat if we use $at for PIC computations. If it turns
7222 out that the branch was out-of-range, we'll get an error. */
7223 && !mips_opts.warn_about_macros
7224 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7225 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7226 as they have no complementing branches. */
7227 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7228
7229 if (!HAVE_CODE_COMPRESSION
7230 && address_expr
7231 && relax32
0b25d3e6 7232 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7233 && delayed_branch_p (ip))
4a6a3df4 7234 {
895921c9 7235 relaxed_branch = TRUE;
1e915849
RS
7236 add_relaxed_insn (ip, (relaxed_branch_length
7237 (NULL, NULL,
11625dd8
RS
7238 uncond_branch_p (ip) ? -1
7239 : branch_likely_p (ip) ? 1
1e915849
RS
7240 : 0)), 4,
7241 RELAX_BRANCH_ENCODE
66b3e8da 7242 (AT,
11625dd8
RS
7243 uncond_branch_p (ip),
7244 branch_likely_p (ip),
1e915849
RS
7245 pinfo & INSN_WRITE_GPR_31,
7246 0),
7247 address_expr->X_add_symbol,
7248 address_expr->X_add_number);
4a6a3df4
AO
7249 *reloc_type = BFD_RELOC_UNUSED;
7250 }
df58fc94
RS
7251 else if (mips_opts.micromips
7252 && address_expr
7253 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7254 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7255 && (delayed_branch_p (ip) || compact_branch_p (ip))
7256 /* Don't try branch relaxation when users specify
7257 16-bit/32-bit instructions. */
7258 && !forced_insn_length)
df58fc94
RS
7259 {
7260 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7261 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
7262 int uncond = uncond_branch_p (ip) ? -1 : 0;
7263 int compact = compact_branch_p (ip);
df58fc94
RS
7264 int al = pinfo & INSN_WRITE_GPR_31;
7265 int length32;
7266
7267 gas_assert (address_expr != NULL);
7268 gas_assert (!mips_relax.sequence);
7269
2b0c8b40 7270 relaxed_branch = TRUE;
df58fc94
RS
7271 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7272 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
7273 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7274 relax32, 0, 0),
df58fc94
RS
7275 address_expr->X_add_symbol,
7276 address_expr->X_add_number);
7277 *reloc_type = BFD_RELOC_UNUSED;
7278 }
7279 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132
RH
7280 {
7281 /* We need to set up a variant frag. */
df58fc94 7282 gas_assert (address_expr != NULL);
1e915849
RS
7283 add_relaxed_insn (ip, 4, 0,
7284 RELAX_MIPS16_ENCODE
7285 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 7286 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 7287 delayed_branch_p (&history[0]),
1e915849
RS
7288 history[0].mips16_absolute_jump_p),
7289 make_expr_symbol (address_expr), 0);
252b5132 7290 }
5c04167a 7291 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7292 {
11625dd8 7293 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7294 /* Make sure there is enough room to swap this instruction with
7295 a following jump instruction. */
7296 frag_grow (6);
1e915849 7297 add_fixed_insn (ip);
252b5132
RH
7298 }
7299 else
7300 {
7301 if (mips_opts.mips16
7302 && mips_opts.noreorder
11625dd8 7303 && delayed_branch_p (&history[0]))
252b5132
RH
7304 as_warn (_("extended instruction in delay slot"));
7305
4d7206a2
RS
7306 if (mips_relax.sequence)
7307 {
7308 /* If we've reached the end of this frag, turn it into a variant
7309 frag and record the information for the instructions we've
7310 written so far. */
7311 if (frag_room () < 4)
7312 relax_close_frag ();
df58fc94 7313 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7314 }
7315
584892a6 7316 if (mips_relax.sequence != 2)
df58fc94
RS
7317 {
7318 if (mips_macro_warning.first_insn_sizes[0] == 0)
7319 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7320 mips_macro_warning.sizes[0] += insn_length (ip);
7321 mips_macro_warning.insns[0]++;
7322 }
584892a6 7323 if (mips_relax.sequence != 1)
df58fc94
RS
7324 {
7325 if (mips_macro_warning.first_insn_sizes[1] == 0)
7326 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7327 mips_macro_warning.sizes[1] += insn_length (ip);
7328 mips_macro_warning.insns[1]++;
7329 }
584892a6 7330
1e915849
RS
7331 if (mips_opts.mips16)
7332 {
7333 ip->fixed_p = 1;
7334 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7335 }
7336 add_fixed_insn (ip);
252b5132
RH
7337 }
7338
9fe77896 7339 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7340 {
df58fc94 7341 bfd_reloc_code_real_type final_type[3];
2309ddf2 7342 reloc_howto_type *howto0;
9fe77896
RS
7343 reloc_howto_type *howto;
7344 int i;
34ce925e 7345
df58fc94
RS
7346 /* Perform any necessary conversion to microMIPS relocations
7347 and find out how many relocations there actually are. */
7348 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7349 final_type[i] = micromips_map_reloc (reloc_type[i]);
7350
9fe77896
RS
7351 /* In a compound relocation, it is the final (outermost)
7352 operator that determines the relocated field. */
2309ddf2 7353 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7354 if (!howto)
7355 abort ();
2309ddf2
MR
7356
7357 if (i > 1)
7358 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7359 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7360 bfd_get_reloc_size (howto),
7361 address_expr,
2309ddf2
MR
7362 howto0 && howto0->pc_relative,
7363 final_type[0]);
9fe77896
RS
7364
7365 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7366 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7367 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7368
7369 /* These relocations can have an addend that won't fit in
7370 4 octets for 64bit assembly. */
bad1aba3 7371 if (GPR_SIZE == 64
9fe77896
RS
7372 && ! howto->partial_inplace
7373 && (reloc_type[0] == BFD_RELOC_16
7374 || reloc_type[0] == BFD_RELOC_32
7375 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7376 || reloc_type[0] == BFD_RELOC_GPREL16
7377 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7378 || reloc_type[0] == BFD_RELOC_GPREL32
7379 || reloc_type[0] == BFD_RELOC_64
7380 || reloc_type[0] == BFD_RELOC_CTOR
7381 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7382 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7383 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7384 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7385 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7386 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7387 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7388 || hi16_reloc_p (reloc_type[0])
7389 || lo16_reloc_p (reloc_type[0])))
7390 ip->fixp[0]->fx_no_overflow = 1;
7391
ddaf2c41
MR
7392 /* These relocations can have an addend that won't fit in 2 octets. */
7393 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7394 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7395 ip->fixp[0]->fx_no_overflow = 1;
7396
9fe77896
RS
7397 if (mips_relax.sequence)
7398 {
7399 if (mips_relax.first_fixup == 0)
7400 mips_relax.first_fixup = ip->fixp[0];
7401 }
7402 else if (reloc_needs_lo_p (*reloc_type))
7403 {
7404 struct mips_hi_fixup *hi_fixup;
7405
7406 /* Reuse the last entry if it already has a matching %lo. */
7407 hi_fixup = mips_hi_fixup_list;
7408 if (hi_fixup == 0
7409 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7410 {
9fe77896
RS
7411 hi_fixup = ((struct mips_hi_fixup *)
7412 xmalloc (sizeof (struct mips_hi_fixup)));
7413 hi_fixup->next = mips_hi_fixup_list;
7414 mips_hi_fixup_list = hi_fixup;
4d7206a2 7415 }
9fe77896
RS
7416 hi_fixup->fixp = ip->fixp[0];
7417 hi_fixup->seg = now_seg;
7418 }
252b5132 7419
9fe77896
RS
7420 /* Add fixups for the second and third relocations, if given.
7421 Note that the ABI allows the second relocation to be
7422 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7423 moment we only use RSS_UNDEF, but we could add support
7424 for the others if it ever becomes necessary. */
7425 for (i = 1; i < 3; i++)
7426 if (reloc_type[i] != BFD_RELOC_UNUSED)
7427 {
7428 ip->fixp[i] = fix_new (ip->frag, ip->where,
7429 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7430 FALSE, final_type[i]);
f6688943 7431
9fe77896
RS
7432 /* Use fx_tcbit to mark compound relocs. */
7433 ip->fixp[0]->fx_tcbit = 1;
7434 ip->fixp[i]->fx_tcbit = 1;
7435 }
252b5132 7436 }
1e915849 7437 install_insn (ip);
252b5132
RH
7438
7439 /* Update the register mask information. */
4c260379
RS
7440 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7441 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7442
a4e06468 7443 switch (method)
252b5132 7444 {
a4e06468
RS
7445 case APPEND_ADD:
7446 insert_into_history (0, 1, ip);
7447 break;
7448
7449 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7450 {
7451 struct mips_cl_insn *nop;
7452
7453 insert_into_history (0, 1, ip);
7454 nop = get_delay_slot_nop (ip);
7455 add_fixed_insn (nop);
7456 insert_into_history (0, 1, nop);
7457 if (mips_relax.sequence)
7458 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7459 }
a4e06468
RS
7460 break;
7461
7462 case APPEND_ADD_COMPACT:
7463 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7464 gas_assert (mips_opts.mips16);
7465 ip->insn_opcode |= 0x0080;
7466 find_altered_mips16_opcode (ip);
7467 install_insn (ip);
7468 insert_into_history (0, 1, ip);
7469 break;
7470
7471 case APPEND_SWAP:
7472 {
7473 struct mips_cl_insn delay = history[0];
7474 if (mips_opts.mips16)
7475 {
7476 know (delay.frag == ip->frag);
7477 move_insn (ip, delay.frag, delay.where);
7478 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7479 }
464ab0e5 7480 else if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7481 {
7482 /* Add the delay slot instruction to the end of the
7483 current frag and shrink the fixed part of the
7484 original frag. If the branch occupies the tail of
7485 the latter, move it backwards to cover the gap. */
2b0c8b40 7486 delay.frag->fr_fix -= branch_disp;
a4e06468 7487 if (delay.frag == ip->frag)
2b0c8b40 7488 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7489 add_fixed_insn (&delay);
7490 }
7491 else
7492 {
2b0c8b40
MR
7493 move_insn (&delay, ip->frag,
7494 ip->where - branch_disp + insn_length (ip));
a4e06468
RS
7495 move_insn (ip, history[0].frag, history[0].where);
7496 }
7497 history[0] = *ip;
7498 delay.fixed_p = 1;
7499 insert_into_history (0, 1, &delay);
7500 }
7501 break;
252b5132
RH
7502 }
7503
13408f1e 7504 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7505 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7506 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7507 {
7508 unsigned int i;
7509
79850f26 7510 mips_no_prev_insn ();
13408f1e 7511
e407c74b 7512 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7513 history[i].cleared_p = 1;
e407c74b
NC
7514 }
7515
df58fc94
RS
7516 /* We need to emit a label at the end of branch-likely macros. */
7517 if (emit_branch_likely_macro)
7518 {
7519 emit_branch_likely_macro = FALSE;
7520 micromips_add_label ();
7521 }
7522
252b5132
RH
7523 /* We just output an insn, so the next one doesn't have a label. */
7524 mips_clear_insn_labels ();
252b5132
RH
7525}
7526
e407c74b
NC
7527/* Forget that there was any previous instruction or label.
7528 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7529
7530static void
7d10b47d 7531mips_no_prev_insn (void)
252b5132 7532{
7d10b47d
RS
7533 prev_nop_frag = NULL;
7534 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7535 mips_clear_insn_labels ();
7536}
7537
7d10b47d
RS
7538/* This function must be called before we emit something other than
7539 instructions. It is like mips_no_prev_insn except that it inserts
7540 any NOPS that might be needed by previous instructions. */
252b5132 7541
7d10b47d
RS
7542void
7543mips_emit_delays (void)
252b5132
RH
7544{
7545 if (! mips_opts.noreorder)
7546 {
932d1a1b 7547 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7548 if (nops > 0)
7549 {
7d10b47d
RS
7550 while (nops-- > 0)
7551 add_fixed_insn (NOP_INSN);
462427c4 7552 mips_move_text_labels ();
7d10b47d
RS
7553 }
7554 }
7555 mips_no_prev_insn ();
7556}
7557
7558/* Start a (possibly nested) noreorder block. */
7559
7560static void
7561start_noreorder (void)
7562{
7563 if (mips_opts.noreorder == 0)
7564 {
7565 unsigned int i;
7566 int nops;
7567
7568 /* None of the instructions before the .set noreorder can be moved. */
7569 for (i = 0; i < ARRAY_SIZE (history); i++)
7570 history[i].fixed_p = 1;
7571
7572 /* Insert any nops that might be needed between the .set noreorder
7573 block and the previous instructions. We will later remove any
7574 nops that turn out not to be needed. */
932d1a1b 7575 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7576 if (nops > 0)
7577 {
7578 if (mips_optimize != 0)
252b5132
RH
7579 {
7580 /* Record the frag which holds the nop instructions, so
7581 that we can remove them if we don't need them. */
df58fc94 7582 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7583 prev_nop_frag = frag_now;
7584 prev_nop_frag_holds = nops;
7585 prev_nop_frag_required = 0;
7586 prev_nop_frag_since = 0;
7587 }
7588
7589 for (; nops > 0; --nops)
1e915849 7590 add_fixed_insn (NOP_INSN);
252b5132 7591
7d10b47d
RS
7592 /* Move on to a new frag, so that it is safe to simply
7593 decrease the size of prev_nop_frag. */
7594 frag_wane (frag_now);
7595 frag_new (0);
462427c4 7596 mips_move_text_labels ();
252b5132 7597 }
df58fc94 7598 mips_mark_labels ();
7d10b47d 7599 mips_clear_insn_labels ();
252b5132 7600 }
7d10b47d
RS
7601 mips_opts.noreorder++;
7602 mips_any_noreorder = 1;
7603}
252b5132 7604
7d10b47d 7605/* End a nested noreorder block. */
252b5132 7606
7d10b47d
RS
7607static void
7608end_noreorder (void)
7609{
7610 mips_opts.noreorder--;
7611 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7612 {
7613 /* Commit to inserting prev_nop_frag_required nops and go back to
7614 handling nop insertion the .set reorder way. */
7615 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7616 * NOP_INSN_SIZE);
7d10b47d
RS
7617 insert_into_history (prev_nop_frag_since,
7618 prev_nop_frag_required, NOP_INSN);
7619 prev_nop_frag = NULL;
7620 }
252b5132
RH
7621}
7622
97d87491
RS
7623/* Sign-extend 32-bit mode constants that have bit 31 set and all
7624 higher bits unset. */
7625
7626static void
7627normalize_constant_expr (expressionS *ex)
7628{
7629 if (ex->X_op == O_constant
7630 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7631 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7632 - 0x80000000);
7633}
7634
7635/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7636 all higher bits unset. */
7637
7638static void
7639normalize_address_expr (expressionS *ex)
7640{
7641 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7642 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7643 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7644 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7645 - 0x80000000);
7646}
7647
7648/* Try to match TOKENS against OPCODE, storing the result in INSN.
7649 Return true if the match was successful.
7650
7651 OPCODE_EXTRA is a value that should be ORed into the opcode
7652 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7653 there are more alternatives after OPCODE and SOFT_MATCH is
7654 as for mips_arg_info. */
7655
7656static bfd_boolean
7657match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7658 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7659 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7660{
7661 const char *args;
7662 struct mips_arg_info arg;
7663 const struct mips_operand *operand;
7664 char c;
7665
7666 imm_expr.X_op = O_absent;
97d87491
RS
7667 offset_expr.X_op = O_absent;
7668 offset_reloc[0] = BFD_RELOC_UNUSED;
7669 offset_reloc[1] = BFD_RELOC_UNUSED;
7670 offset_reloc[2] = BFD_RELOC_UNUSED;
7671
7672 create_insn (insn, opcode);
60f20e8b
RS
7673 /* When no opcode suffix is specified, assume ".xyzw". */
7674 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7675 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7676 else
7677 insn->insn_opcode |= opcode_extra;
97d87491
RS
7678 memset (&arg, 0, sizeof (arg));
7679 arg.insn = insn;
7680 arg.token = tokens;
7681 arg.argnum = 1;
7682 arg.last_regno = ILLEGAL_REG;
7683 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7684 arg.lax_match = lax_match;
97d87491
RS
7685 for (args = opcode->args;; ++args)
7686 {
7687 if (arg.token->type == OT_END)
7688 {
7689 /* Handle unary instructions in which only one operand is given.
7690 The source is then the same as the destination. */
7691 if (arg.opnum == 1 && *args == ',')
7692 {
7693 operand = (mips_opts.micromips
7694 ? decode_micromips_operand (args + 1)
7695 : decode_mips_operand (args + 1));
7696 if (operand && mips_optional_operand_p (operand))
7697 {
7698 arg.token = tokens;
7699 arg.argnum = 1;
7700 continue;
7701 }
7702 }
7703
7704 /* Treat elided base registers as $0. */
7705 if (strcmp (args, "(b)") == 0)
7706 args += 3;
7707
7708 if (args[0] == '+')
7709 switch (args[1])
7710 {
7711 case 'K':
7712 case 'N':
7713 /* The register suffix is optional. */
7714 args += 2;
7715 break;
7716 }
7717
7718 /* Fail the match if there were too few operands. */
7719 if (*args)
7720 return FALSE;
7721
7722 /* Successful match. */
60f20e8b
RS
7723 if (!complete_p)
7724 return TRUE;
e3de51ce 7725 clear_insn_error ();
97d87491
RS
7726 if (arg.dest_regno == arg.last_regno
7727 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7728 {
7729 if (arg.opnum == 2)
e3de51ce 7730 set_insn_error
1661c76c 7731 (0, _("source and destination must be different"));
97d87491 7732 else if (arg.last_regno == 31)
e3de51ce 7733 set_insn_error
1661c76c 7734 (0, _("a destination register must be supplied"));
97d87491 7735 }
173d3447
CF
7736 else if (arg.last_regno == 31
7737 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7738 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7739 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7740 check_completed_insn (&arg);
7741 return TRUE;
7742 }
7743
7744 /* Fail the match if the line has too many operands. */
7745 if (*args == 0)
7746 return FALSE;
7747
7748 /* Handle characters that need to match exactly. */
7749 if (*args == '(' || *args == ')' || *args == ',')
7750 {
7751 if (match_char (&arg, *args))
7752 continue;
7753 return FALSE;
7754 }
7755 if (*args == '#')
7756 {
7757 ++args;
7758 if (arg.token->type == OT_DOUBLE_CHAR
7759 && arg.token->u.ch == *args)
7760 {
7761 ++arg.token;
7762 continue;
7763 }
7764 return FALSE;
7765 }
7766
7767 /* Handle special macro operands. Work out the properties of
7768 other operands. */
7769 arg.opnum += 1;
97d87491
RS
7770 switch (*args)
7771 {
7361da2c
AB
7772 case '-':
7773 switch (args[1])
7774 {
7775 case 'A':
7776 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7777 break;
7778
7779 case 'B':
7780 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7781 break;
7782 }
7783 break;
7784
97d87491
RS
7785 case '+':
7786 switch (args[1])
7787 {
97d87491
RS
7788 case 'i':
7789 *offset_reloc = BFD_RELOC_MIPS_JMP;
7790 break;
7361da2c
AB
7791
7792 case '\'':
7793 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7794 break;
7795
7796 case '\"':
7797 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7798 break;
97d87491
RS
7799 }
7800 break;
7801
97d87491 7802 case 'I':
1a00e612
RS
7803 if (!match_const_int (&arg, &imm_expr.X_add_number))
7804 return FALSE;
7805 imm_expr.X_op = O_constant;
bad1aba3 7806 if (GPR_SIZE == 32)
97d87491
RS
7807 normalize_constant_expr (&imm_expr);
7808 continue;
7809
7810 case 'A':
7811 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7812 {
7813 /* Assume that the offset has been elided and that what
7814 we saw was a base register. The match will fail later
7815 if that assumption turns out to be wrong. */
7816 offset_expr.X_op = O_constant;
7817 offset_expr.X_add_number = 0;
7818 }
97d87491 7819 else
1a00e612
RS
7820 {
7821 if (!match_expression (&arg, &offset_expr, offset_reloc))
7822 return FALSE;
7823 normalize_address_expr (&offset_expr);
7824 }
97d87491
RS
7825 continue;
7826
7827 case 'F':
7828 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7829 8, TRUE))
1a00e612 7830 return FALSE;
97d87491
RS
7831 continue;
7832
7833 case 'L':
7834 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7835 8, FALSE))
1a00e612 7836 return FALSE;
97d87491
RS
7837 continue;
7838
7839 case 'f':
7840 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7841 4, TRUE))
1a00e612 7842 return FALSE;
97d87491
RS
7843 continue;
7844
7845 case 'l':
7846 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7847 4, FALSE))
1a00e612 7848 return FALSE;
97d87491
RS
7849 continue;
7850
97d87491
RS
7851 case 'p':
7852 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7853 break;
7854
7855 case 'a':
7856 *offset_reloc = BFD_RELOC_MIPS_JMP;
7857 break;
7858
7859 case 'm':
7860 gas_assert (mips_opts.micromips);
7861 c = args[1];
7862 switch (c)
7863 {
7864 case 'D':
7865 case 'E':
7866 if (!forced_insn_length)
7867 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7868 else if (c == 'D')
7869 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7870 else
7871 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7872 break;
7873 }
7874 break;
7875 }
7876
7877 operand = (mips_opts.micromips
7878 ? decode_micromips_operand (args)
7879 : decode_mips_operand (args));
7880 if (!operand)
7881 abort ();
7882
7883 /* Skip prefixes. */
7361da2c 7884 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
7885 args++;
7886
7887 if (mips_optional_operand_p (operand)
7888 && args[1] == ','
7889 && (arg.token[0].type != OT_REG
7890 || arg.token[1].type == OT_END))
7891 {
7892 /* Assume that the register has been elided and is the
7893 same as the first operand. */
7894 arg.token = tokens;
7895 arg.argnum = 1;
7896 }
7897
7898 if (!match_operand (&arg, operand))
7899 return FALSE;
7900 }
7901}
7902
7903/* Like match_insn, but for MIPS16. */
7904
7905static bfd_boolean
7906match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 7907 struct mips_operand_token *tokens)
97d87491
RS
7908{
7909 const char *args;
7910 const struct mips_operand *operand;
7911 const struct mips_operand *ext_operand;
7912 struct mips_arg_info arg;
7913 int relax_char;
7914
7915 create_insn (insn, opcode);
7916 imm_expr.X_op = O_absent;
97d87491
RS
7917 offset_expr.X_op = O_absent;
7918 offset_reloc[0] = BFD_RELOC_UNUSED;
7919 offset_reloc[1] = BFD_RELOC_UNUSED;
7920 offset_reloc[2] = BFD_RELOC_UNUSED;
7921 relax_char = 0;
7922
7923 memset (&arg, 0, sizeof (arg));
7924 arg.insn = insn;
7925 arg.token = tokens;
7926 arg.argnum = 1;
7927 arg.last_regno = ILLEGAL_REG;
7928 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
7929 relax_char = 0;
7930 for (args = opcode->args;; ++args)
7931 {
7932 int c;
7933
7934 if (arg.token->type == OT_END)
7935 {
7936 offsetT value;
7937
7938 /* Handle unary instructions in which only one operand is given.
7939 The source is then the same as the destination. */
7940 if (arg.opnum == 1 && *args == ',')
7941 {
7942 operand = decode_mips16_operand (args[1], FALSE);
7943 if (operand && mips_optional_operand_p (operand))
7944 {
7945 arg.token = tokens;
7946 arg.argnum = 1;
7947 continue;
7948 }
7949 }
7950
7951 /* Fail the match if there were too few operands. */
7952 if (*args)
7953 return FALSE;
7954
7955 /* Successful match. Stuff the immediate value in now, if
7956 we can. */
e3de51ce 7957 clear_insn_error ();
97d87491
RS
7958 if (opcode->pinfo == INSN_MACRO)
7959 {
7960 gas_assert (relax_char == 0 || relax_char == 'p');
7961 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7962 }
7963 else if (relax_char
7964 && offset_expr.X_op == O_constant
7965 && calculate_reloc (*offset_reloc,
7966 offset_expr.X_add_number,
7967 &value))
7968 {
7969 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7970 forced_insn_length, &insn->insn_opcode);
7971 offset_expr.X_op = O_absent;
7972 *offset_reloc = BFD_RELOC_UNUSED;
7973 }
7974 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7975 {
7976 if (forced_insn_length == 2)
e3de51ce 7977 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
7978 forced_insn_length = 4;
7979 insn->insn_opcode |= MIPS16_EXTEND;
7980 }
7981 else if (relax_char)
7982 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7983
7984 check_completed_insn (&arg);
7985 return TRUE;
7986 }
7987
7988 /* Fail the match if the line has too many operands. */
7989 if (*args == 0)
7990 return FALSE;
7991
7992 /* Handle characters that need to match exactly. */
7993 if (*args == '(' || *args == ')' || *args == ',')
7994 {
7995 if (match_char (&arg, *args))
7996 continue;
7997 return FALSE;
7998 }
7999
8000 arg.opnum += 1;
8001 c = *args;
8002 switch (c)
8003 {
8004 case 'p':
8005 case 'q':
8006 case 'A':
8007 case 'B':
8008 case 'E':
8009 relax_char = c;
8010 break;
8011
8012 case 'I':
1a00e612
RS
8013 if (!match_const_int (&arg, &imm_expr.X_add_number))
8014 return FALSE;
8015 imm_expr.X_op = O_constant;
bad1aba3 8016 if (GPR_SIZE == 32)
97d87491
RS
8017 normalize_constant_expr (&imm_expr);
8018 continue;
8019
8020 case 'a':
8021 case 'i':
8022 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8023 insn->insn_opcode <<= 16;
8024 break;
8025 }
8026
8027 operand = decode_mips16_operand (c, FALSE);
8028 if (!operand)
8029 abort ();
8030
8031 /* '6' is a special case. It is used for BREAK and SDBBP,
8032 whose operands are only meaningful to the software that decodes
8033 them. This means that there is no architectural reason why
8034 they cannot be prefixed by EXTEND, but in practice,
8035 exception handlers will only look at the instruction
8036 itself. We therefore allow '6' to be extended when
8037 disassembling but not when assembling. */
8038 if (operand->type != OP_PCREL && c != '6')
8039 {
8040 ext_operand = decode_mips16_operand (c, TRUE);
8041 if (operand != ext_operand)
8042 {
8043 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8044 {
8045 offset_expr.X_op = O_constant;
8046 offset_expr.X_add_number = 0;
8047 relax_char = c;
8048 continue;
8049 }
8050
8051 /* We need the OT_INTEGER check because some MIPS16
8052 immediate variants are listed before the register ones. */
8053 if (arg.token->type != OT_INTEGER
8054 || !match_expression (&arg, &offset_expr, offset_reloc))
8055 return FALSE;
8056
8057 /* '8' is used for SLTI(U) and has traditionally not
8058 been allowed to take relocation operators. */
8059 if (offset_reloc[0] != BFD_RELOC_UNUSED
8060 && (ext_operand->size != 16 || c == '8'))
8061 return FALSE;
8062
8063 relax_char = c;
8064 continue;
8065 }
8066 }
8067
8068 if (mips_optional_operand_p (operand)
8069 && args[1] == ','
8070 && (arg.token[0].type != OT_REG
8071 || arg.token[1].type == OT_END))
8072 {
8073 /* Assume that the register has been elided and is the
8074 same as the first operand. */
8075 arg.token = tokens;
8076 arg.argnum = 1;
8077 }
8078
8079 if (!match_operand (&arg, operand))
8080 return FALSE;
8081 }
8082}
8083
60f20e8b
RS
8084/* Record that the current instruction is invalid for the current ISA. */
8085
8086static void
8087match_invalid_for_isa (void)
8088{
8089 set_insn_error_ss
1661c76c 8090 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8091 mips_cpu_info_from_arch (mips_opts.arch)->name,
8092 mips_cpu_info_from_isa (mips_opts.isa)->name);
8093}
8094
8095/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8096 Return true if a definite match or failure was found, storing any match
8097 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8098 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8099 tried and failed to match under normal conditions and now want to try a
8100 more relaxed match. */
8101
8102static bfd_boolean
8103match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8104 const struct mips_opcode *past, struct mips_operand_token *tokens,
8105 int opcode_extra, bfd_boolean lax_match)
8106{
8107 const struct mips_opcode *opcode;
8108 const struct mips_opcode *invalid_delay_slot;
8109 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8110
8111 /* Search for a match, ignoring alternatives that don't satisfy the
8112 current ISA or forced_length. */
8113 invalid_delay_slot = 0;
8114 seen_valid_for_isa = FALSE;
8115 seen_valid_for_size = FALSE;
8116 opcode = first;
8117 do
8118 {
8119 gas_assert (strcmp (opcode->name, first->name) == 0);
8120 if (is_opcode_valid (opcode))
8121 {
8122 seen_valid_for_isa = TRUE;
8123 if (is_size_valid (opcode))
8124 {
8125 bfd_boolean delay_slot_ok;
8126
8127 seen_valid_for_size = TRUE;
8128 delay_slot_ok = is_delay_slot_valid (opcode);
8129 if (match_insn (insn, opcode, tokens, opcode_extra,
8130 lax_match, delay_slot_ok))
8131 {
8132 if (!delay_slot_ok)
8133 {
8134 if (!invalid_delay_slot)
8135 invalid_delay_slot = opcode;
8136 }
8137 else
8138 return TRUE;
8139 }
8140 }
8141 }
8142 ++opcode;
8143 }
8144 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8145
8146 /* If the only matches we found had the wrong length for the delay slot,
8147 pick the first such match. We'll issue an appropriate warning later. */
8148 if (invalid_delay_slot)
8149 {
8150 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8151 lax_match, TRUE))
8152 return TRUE;
8153 abort ();
8154 }
8155
8156 /* Handle the case where we didn't try to match an instruction because
8157 all the alternatives were incompatible with the current ISA. */
8158 if (!seen_valid_for_isa)
8159 {
8160 match_invalid_for_isa ();
8161 return TRUE;
8162 }
8163
8164 /* Handle the case where we didn't try to match an instruction because
8165 all the alternatives were of the wrong size. */
8166 if (!seen_valid_for_size)
8167 {
8168 if (mips_opts.insn32)
1661c76c 8169 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8170 else
8171 set_insn_error_i
1661c76c 8172 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8173 8 * forced_insn_length);
8174 return TRUE;
8175 }
8176
8177 return FALSE;
8178}
8179
8180/* Like match_insns, but for MIPS16. */
8181
8182static bfd_boolean
8183match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8184 struct mips_operand_token *tokens)
8185{
8186 const struct mips_opcode *opcode;
8187 bfd_boolean seen_valid_for_isa;
8188
8189 /* Search for a match, ignoring alternatives that don't satisfy the
8190 current ISA. There are no separate entries for extended forms so
8191 we deal with forced_length later. */
8192 seen_valid_for_isa = FALSE;
8193 opcode = first;
8194 do
8195 {
8196 gas_assert (strcmp (opcode->name, first->name) == 0);
8197 if (is_opcode_valid_16 (opcode))
8198 {
8199 seen_valid_for_isa = TRUE;
8200 if (match_mips16_insn (insn, opcode, tokens))
8201 return TRUE;
8202 }
8203 ++opcode;
8204 }
8205 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8206 && strcmp (opcode->name, first->name) == 0);
8207
8208 /* Handle the case where we didn't try to match an instruction because
8209 all the alternatives were incompatible with the current ISA. */
8210 if (!seen_valid_for_isa)
8211 {
8212 match_invalid_for_isa ();
8213 return TRUE;
8214 }
8215
8216 return FALSE;
8217}
8218
584892a6
RS
8219/* Set up global variables for the start of a new macro. */
8220
8221static void
8222macro_start (void)
8223{
8224 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8225 memset (&mips_macro_warning.first_insn_sizes, 0,
8226 sizeof (mips_macro_warning.first_insn_sizes));
8227 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8228 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8229 && delayed_branch_p (&history[0]));
df58fc94
RS
8230 switch (history[0].insn_mo->pinfo2
8231 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8232 {
8233 case INSN2_BRANCH_DELAY_32BIT:
8234 mips_macro_warning.delay_slot_length = 4;
8235 break;
8236 case INSN2_BRANCH_DELAY_16BIT:
8237 mips_macro_warning.delay_slot_length = 2;
8238 break;
8239 default:
8240 mips_macro_warning.delay_slot_length = 0;
8241 break;
8242 }
8243 mips_macro_warning.first_frag = NULL;
584892a6
RS
8244}
8245
df58fc94
RS
8246/* Given that a macro is longer than one instruction or of the wrong size,
8247 return the appropriate warning for it. Return null if no warning is
8248 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8249 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8250 and RELAX_NOMACRO. */
584892a6
RS
8251
8252static const char *
8253macro_warning (relax_substateT subtype)
8254{
8255 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8256 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8257 " in a branch delay slot");
8258 else if (subtype & RELAX_NOMACRO)
1661c76c 8259 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8260 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8261 | RELAX_DELAY_SLOT_SIZE_SECOND))
8262 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8263 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8264 " in a 16-bit branch delay slot")
1661c76c 8265 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8266 " in a 32-bit branch delay slot"));
584892a6
RS
8267 else
8268 return 0;
8269}
8270
8271/* Finish up a macro. Emit warnings as appropriate. */
8272
8273static void
8274macro_end (void)
8275{
df58fc94
RS
8276 /* Relaxation warning flags. */
8277 relax_substateT subtype = 0;
8278
8279 /* Check delay slot size requirements. */
8280 if (mips_macro_warning.delay_slot_length == 2)
8281 subtype |= RELAX_DELAY_SLOT_16BIT;
8282 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8283 {
df58fc94
RS
8284 if (mips_macro_warning.delay_slot_length
8285 != mips_macro_warning.first_insn_sizes[0])
8286 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8287 if (mips_macro_warning.delay_slot_length
8288 != mips_macro_warning.first_insn_sizes[1])
8289 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8290 }
584892a6 8291
df58fc94
RS
8292 /* Check instruction count requirements. */
8293 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8294 {
8295 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8296 subtype |= RELAX_SECOND_LONGER;
8297 if (mips_opts.warn_about_macros)
8298 subtype |= RELAX_NOMACRO;
8299 if (mips_macro_warning.delay_slot_p)
8300 subtype |= RELAX_DELAY_SLOT;
df58fc94 8301 }
584892a6 8302
df58fc94
RS
8303 /* If both alternatives fail to fill a delay slot correctly,
8304 emit the warning now. */
8305 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8306 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8307 {
8308 relax_substateT s;
8309 const char *msg;
8310
8311 s = subtype & (RELAX_DELAY_SLOT_16BIT
8312 | RELAX_DELAY_SLOT_SIZE_FIRST
8313 | RELAX_DELAY_SLOT_SIZE_SECOND);
8314 msg = macro_warning (s);
8315 if (msg != NULL)
8316 as_warn ("%s", msg);
8317 subtype &= ~s;
8318 }
8319
8320 /* If both implementations are longer than 1 instruction, then emit the
8321 warning now. */
8322 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8323 {
8324 relax_substateT s;
8325 const char *msg;
8326
8327 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8328 msg = macro_warning (s);
8329 if (msg != NULL)
8330 as_warn ("%s", msg);
8331 subtype &= ~s;
584892a6 8332 }
df58fc94
RS
8333
8334 /* If any flags still set, then one implementation might need a warning
8335 and the other either will need one of a different kind or none at all.
8336 Pass any remaining flags over to relaxation. */
8337 if (mips_macro_warning.first_frag != NULL)
8338 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8339}
8340
df58fc94
RS
8341/* Instruction operand formats used in macros that vary between
8342 standard MIPS and microMIPS code. */
8343
833794fc 8344static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8345static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8346static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8347static const char * const lui_fmt[2] = { "t,u", "s,u" };
8348static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8349static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8350static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8351static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8352
833794fc 8353#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8354#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8355 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8356#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8357#define LUI_FMT (lui_fmt[mips_opts.micromips])
8358#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8359#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8360 : mem12_fmt[mips_opts.micromips])
833794fc 8361#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8362#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8363#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8364
6e1304d8
RS
8365/* Read a macro's relocation codes from *ARGS and store them in *R.
8366 The first argument in *ARGS will be either the code for a single
8367 relocation or -1 followed by the three codes that make up a
8368 composite relocation. */
8369
8370static void
8371macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8372{
8373 int i, next;
8374
8375 next = va_arg (*args, int);
8376 if (next >= 0)
8377 r[0] = (bfd_reloc_code_real_type) next;
8378 else
f2ae14a1
RS
8379 {
8380 for (i = 0; i < 3; i++)
8381 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8382 /* This function is only used for 16-bit relocation fields.
8383 To make the macro code simpler, treat an unrelocated value
8384 in the same way as BFD_RELOC_LO16. */
8385 if (r[0] == BFD_RELOC_UNUSED)
8386 r[0] = BFD_RELOC_LO16;
8387 }
6e1304d8
RS
8388}
8389
252b5132
RH
8390/* Build an instruction created by a macro expansion. This is passed
8391 a pointer to the count of instructions created so far, an
8392 expression, the name of the instruction to build, an operand format
8393 string, and corresponding arguments. */
8394
252b5132 8395static void
67c0d1eb 8396macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8397{
df58fc94 8398 const struct mips_opcode *mo = NULL;
f6688943 8399 bfd_reloc_code_real_type r[3];
df58fc94 8400 const struct mips_opcode *amo;
e077a1c8 8401 const struct mips_operand *operand;
df58fc94
RS
8402 struct hash_control *hash;
8403 struct mips_cl_insn insn;
252b5132 8404 va_list args;
e077a1c8 8405 unsigned int uval;
252b5132 8406
252b5132 8407 va_start (args, fmt);
252b5132 8408
252b5132
RH
8409 if (mips_opts.mips16)
8410 {
03ea81db 8411 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8412 va_end (args);
8413 return;
8414 }
8415
f6688943
TS
8416 r[0] = BFD_RELOC_UNUSED;
8417 r[1] = BFD_RELOC_UNUSED;
8418 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8419 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8420 amo = (struct mips_opcode *) hash_find (hash, name);
8421 gas_assert (amo);
8422 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8423
df58fc94 8424 do
8b082fb1
TS
8425 {
8426 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8427 macros will never generate MDMX, MIPS-3D, or MT instructions.
8428 We try to match an instruction that fulfils the branch delay
8429 slot instruction length requirement (if any) of the previous
8430 instruction. While doing this we record the first instruction
8431 seen that matches all the other conditions and use it anyway
8432 if the requirement cannot be met; we will issue an appropriate
8433 warning later on. */
8434 if (strcmp (fmt, amo->args) == 0
8435 && amo->pinfo != INSN_MACRO
8436 && is_opcode_valid (amo)
8437 && is_size_valid (amo))
8438 {
8439 if (is_delay_slot_valid (amo))
8440 {
8441 mo = amo;
8442 break;
8443 }
8444 else if (!mo)
8445 mo = amo;
8446 }
8b082fb1 8447
df58fc94
RS
8448 ++amo;
8449 gas_assert (amo->name);
252b5132 8450 }
df58fc94 8451 while (strcmp (name, amo->name) == 0);
252b5132 8452
df58fc94 8453 gas_assert (mo);
1e915849 8454 create_insn (&insn, mo);
e077a1c8 8455 for (; *fmt; ++fmt)
252b5132 8456 {
e077a1c8 8457 switch (*fmt)
252b5132 8458 {
252b5132
RH
8459 case ',':
8460 case '(':
8461 case ')':
252b5132 8462 case 'z':
e077a1c8 8463 break;
252b5132
RH
8464
8465 case 'i':
8466 case 'j':
6e1304d8 8467 macro_read_relocs (&args, r);
9c2799c2 8468 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8469 || *r == BFD_RELOC_MIPS_HIGHER
8470 || *r == BFD_RELOC_HI16_S
8471 || *r == BFD_RELOC_LO16
8472 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8473 break;
e391c024
RS
8474
8475 case 'o':
8476 macro_read_relocs (&args, r);
e077a1c8 8477 break;
252b5132
RH
8478
8479 case 'u':
6e1304d8 8480 macro_read_relocs (&args, r);
9c2799c2 8481 gas_assert (ep != NULL
90ecf173
MR
8482 && (ep->X_op == O_constant
8483 || (ep->X_op == O_symbol
8484 && (*r == BFD_RELOC_MIPS_HIGHEST
8485 || *r == BFD_RELOC_HI16_S
8486 || *r == BFD_RELOC_HI16
8487 || *r == BFD_RELOC_GPREL16
8488 || *r == BFD_RELOC_MIPS_GOT_HI16
8489 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8490 break;
252b5132
RH
8491
8492 case 'p':
9c2799c2 8493 gas_assert (ep != NULL);
bad36eac 8494
252b5132
RH
8495 /*
8496 * This allows macro() to pass an immediate expression for
8497 * creating short branches without creating a symbol.
bad36eac
DJ
8498 *
8499 * We don't allow branch relaxation for these branches, as
8500 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8501 */
8502 if (ep->X_op == O_constant)
8503 {
df58fc94
RS
8504 /* For microMIPS we always use relocations for branches.
8505 So we should not resolve immediate values. */
8506 gas_assert (!mips_opts.micromips);
8507
bad36eac
DJ
8508 if ((ep->X_add_number & 3) != 0)
8509 as_bad (_("branch to misaligned address (0x%lx)"),
8510 (unsigned long) ep->X_add_number);
8511 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8512 as_bad (_("branch address range overflow (0x%lx)"),
8513 (unsigned long) ep->X_add_number);
252b5132
RH
8514 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8515 ep = NULL;
8516 }
8517 else
0b25d3e6 8518 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8519 break;
252b5132
RH
8520
8521 case 'a':
9c2799c2 8522 gas_assert (ep != NULL);
f6688943 8523 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8524 break;
d43b4baf 8525
252b5132 8526 default:
e077a1c8
RS
8527 operand = (mips_opts.micromips
8528 ? decode_micromips_operand (fmt)
8529 : decode_mips_operand (fmt));
8530 if (!operand)
8531 abort ();
8532
8533 uval = va_arg (args, int);
8534 if (operand->type == OP_CLO_CLZ_DEST)
8535 uval |= (uval << 5);
8536 insn_insert_operand (&insn, operand, uval);
8537
7361da2c 8538 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8539 ++fmt;
8540 break;
252b5132 8541 }
252b5132
RH
8542 }
8543 va_end (args);
9c2799c2 8544 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8545
df58fc94 8546 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8547}
8548
8549static void
67c0d1eb 8550mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8551 va_list *args)
252b5132 8552{
1e915849 8553 struct mips_opcode *mo;
252b5132 8554 struct mips_cl_insn insn;
e077a1c8 8555 const struct mips_operand *operand;
f6688943
TS
8556 bfd_reloc_code_real_type r[3]
8557 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8558
1e915849 8559 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8560 gas_assert (mo);
8561 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8562
1e915849 8563 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8564 {
1e915849 8565 ++mo;
9c2799c2
NC
8566 gas_assert (mo->name);
8567 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8568 }
8569
1e915849 8570 create_insn (&insn, mo);
e077a1c8 8571 for (; *fmt; ++fmt)
252b5132
RH
8572 {
8573 int c;
8574
e077a1c8 8575 c = *fmt;
252b5132
RH
8576 switch (c)
8577 {
252b5132
RH
8578 case ',':
8579 case '(':
8580 case ')':
e077a1c8 8581 break;
252b5132
RH
8582
8583 case '0':
8584 case 'S':
8585 case 'P':
8586 case 'R':
e077a1c8 8587 break;
252b5132
RH
8588
8589 case '<':
8590 case '>':
8591 case '4':
8592 case '5':
8593 case 'H':
8594 case 'W':
8595 case 'D':
8596 case 'j':
8597 case '8':
8598 case 'V':
8599 case 'C':
8600 case 'U':
8601 case 'k':
8602 case 'K':
8603 case 'p':
8604 case 'q':
8605 {
b886a2ab
RS
8606 offsetT value;
8607
9c2799c2 8608 gas_assert (ep != NULL);
252b5132
RH
8609
8610 if (ep->X_op != O_constant)
874e8986 8611 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8612 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8613 {
b886a2ab 8614 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8615 ep = NULL;
f6688943 8616 *r = BFD_RELOC_UNUSED;
252b5132
RH
8617 }
8618 }
e077a1c8 8619 break;
252b5132 8620
e077a1c8
RS
8621 default:
8622 operand = decode_mips16_operand (c, FALSE);
8623 if (!operand)
8624 abort ();
252b5132 8625
4a06e5a2 8626 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8627 break;
8628 }
252b5132
RH
8629 }
8630
9c2799c2 8631 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8632
df58fc94 8633 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8634}
8635
438c16b8
TS
8636/*
8637 * Generate a "jalr" instruction with a relocation hint to the called
8638 * function. This occurs in NewABI PIC code.
8639 */
8640static void
df58fc94 8641macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8642{
df58fc94
RS
8643 static const bfd_reloc_code_real_type jalr_relocs[2]
8644 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8645 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8646 const char *jalr;
685736be 8647 char *f = NULL;
b34976b6 8648
1180b5a4 8649 if (MIPS_JALR_HINT_P (ep))
f21f8242 8650 {
cc3d92a5 8651 frag_grow (8);
f21f8242
AO
8652 f = frag_more (0);
8653 }
2906b037 8654 if (mips_opts.micromips)
df58fc94 8655 {
833794fc
MR
8656 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8657 ? "jalr" : "jalrs");
e64af278 8658 if (MIPS_JALR_HINT_P (ep)
833794fc 8659 || mips_opts.insn32
e64af278 8660 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8661 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8662 else
8663 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8664 }
2906b037
MR
8665 else
8666 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8667 if (MIPS_JALR_HINT_P (ep))
df58fc94 8668 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8669}
8670
252b5132
RH
8671/*
8672 * Generate a "lui" instruction.
8673 */
8674static void
67c0d1eb 8675macro_build_lui (expressionS *ep, int regnum)
252b5132 8676{
9c2799c2 8677 gas_assert (! mips_opts.mips16);
252b5132 8678
df58fc94 8679 if (ep->X_op != O_constant)
252b5132 8680 {
9c2799c2 8681 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8682 /* _gp_disp is a special case, used from s_cpload.
8683 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8684 gas_assert (mips_pic == NO_PIC
78e1bb40 8685 || (! HAVE_NEWABI
aa6975fb
ILT
8686 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8687 || (! mips_in_shared
bbe506e8
TS
8688 && strcmp (S_GET_NAME (ep->X_add_symbol),
8689 "__gnu_local_gp") == 0));
252b5132
RH
8690 }
8691
df58fc94 8692 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8693}
8694
885add95
CD
8695/* Generate a sequence of instructions to do a load or store from a constant
8696 offset off of a base register (breg) into/from a target register (treg),
8697 using AT if necessary. */
8698static void
67c0d1eb
RS
8699macro_build_ldst_constoffset (expressionS *ep, const char *op,
8700 int treg, int breg, int dbl)
885add95 8701{
9c2799c2 8702 gas_assert (ep->X_op == O_constant);
885add95 8703
256ab948 8704 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8705 if (!dbl)
8706 normalize_constant_expr (ep);
256ab948 8707
67c1ffbe 8708 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8709 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8710 as_warn (_("operand overflow"));
8711
8712 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8713 {
8714 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8715 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8716 }
8717 else
8718 {
8719 /* 32-bit offset, need multiple instructions and AT, like:
8720 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8721 addu $tempreg,$tempreg,$breg
8722 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8723 to handle the complete offset. */
67c0d1eb
RS
8724 macro_build_lui (ep, AT);
8725 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8726 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8727
741fe287 8728 if (!mips_opts.at)
1661c76c 8729 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8730 }
8731}
8732
252b5132
RH
8733/* set_at()
8734 * Generates code to set the $at register to true (one)
8735 * if reg is less than the immediate expression.
8736 */
8737static void
67c0d1eb 8738set_at (int reg, int unsignedp)
252b5132 8739{
b0e6f033 8740 if (imm_expr.X_add_number >= -0x8000
252b5132 8741 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8742 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8743 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8744 else
8745 {
bad1aba3 8746 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8747 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8748 }
8749}
8750
252b5132
RH
8751/* Count the leading zeroes by performing a binary chop. This is a
8752 bulky bit of source, but performance is a LOT better for the
8753 majority of values than a simple loop to count the bits:
8754 for (lcnt = 0; (lcnt < 32); lcnt++)
8755 if ((v) & (1 << (31 - lcnt)))
8756 break;
8757 However it is not code size friendly, and the gain will drop a bit
8758 on certain cached systems.
8759*/
8760#define COUNT_TOP_ZEROES(v) \
8761 (((v) & ~0xffff) == 0 \
8762 ? ((v) & ~0xff) == 0 \
8763 ? ((v) & ~0xf) == 0 \
8764 ? ((v) & ~0x3) == 0 \
8765 ? ((v) & ~0x1) == 0 \
8766 ? !(v) \
8767 ? 32 \
8768 : 31 \
8769 : 30 \
8770 : ((v) & ~0x7) == 0 \
8771 ? 29 \
8772 : 28 \
8773 : ((v) & ~0x3f) == 0 \
8774 ? ((v) & ~0x1f) == 0 \
8775 ? 27 \
8776 : 26 \
8777 : ((v) & ~0x7f) == 0 \
8778 ? 25 \
8779 : 24 \
8780 : ((v) & ~0xfff) == 0 \
8781 ? ((v) & ~0x3ff) == 0 \
8782 ? ((v) & ~0x1ff) == 0 \
8783 ? 23 \
8784 : 22 \
8785 : ((v) & ~0x7ff) == 0 \
8786 ? 21 \
8787 : 20 \
8788 : ((v) & ~0x3fff) == 0 \
8789 ? ((v) & ~0x1fff) == 0 \
8790 ? 19 \
8791 : 18 \
8792 : ((v) & ~0x7fff) == 0 \
8793 ? 17 \
8794 : 16 \
8795 : ((v) & ~0xffffff) == 0 \
8796 ? ((v) & ~0xfffff) == 0 \
8797 ? ((v) & ~0x3ffff) == 0 \
8798 ? ((v) & ~0x1ffff) == 0 \
8799 ? 15 \
8800 : 14 \
8801 : ((v) & ~0x7ffff) == 0 \
8802 ? 13 \
8803 : 12 \
8804 : ((v) & ~0x3fffff) == 0 \
8805 ? ((v) & ~0x1fffff) == 0 \
8806 ? 11 \
8807 : 10 \
8808 : ((v) & ~0x7fffff) == 0 \
8809 ? 9 \
8810 : 8 \
8811 : ((v) & ~0xfffffff) == 0 \
8812 ? ((v) & ~0x3ffffff) == 0 \
8813 ? ((v) & ~0x1ffffff) == 0 \
8814 ? 7 \
8815 : 6 \
8816 : ((v) & ~0x7ffffff) == 0 \
8817 ? 5 \
8818 : 4 \
8819 : ((v) & ~0x3fffffff) == 0 \
8820 ? ((v) & ~0x1fffffff) == 0 \
8821 ? 3 \
8822 : 2 \
8823 : ((v) & ~0x7fffffff) == 0 \
8824 ? 1 \
8825 : 0)
8826
8827/* load_register()
67c1ffbe 8828 * This routine generates the least number of instructions necessary to load
252b5132
RH
8829 * an absolute expression value into a register.
8830 */
8831static void
67c0d1eb 8832load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
8833{
8834 int freg;
8835 expressionS hi32, lo32;
8836
8837 if (ep->X_op != O_big)
8838 {
9c2799c2 8839 gas_assert (ep->X_op == O_constant);
256ab948
TS
8840
8841 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8842 if (!dbl)
8843 normalize_constant_expr (ep);
256ab948
TS
8844
8845 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
8846 {
8847 /* We can handle 16 bit signed values with an addiu to
8848 $zero. No need to ever use daddiu here, since $zero and
8849 the result are always correct in 32 bit mode. */
67c0d1eb 8850 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8851 return;
8852 }
8853 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8854 {
8855 /* We can handle 16 bit unsigned values with an ori to
8856 $zero. */
67c0d1eb 8857 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8858 return;
8859 }
256ab948 8860 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
8861 {
8862 /* 32 bit values require an lui. */
df58fc94 8863 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8864 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 8865 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
8866 return;
8867 }
8868 }
8869
8870 /* The value is larger than 32 bits. */
8871
bad1aba3 8872 if (!dbl || GPR_SIZE == 32)
252b5132 8873 {
55e08f71
NC
8874 char value[32];
8875
8876 sprintf_vma (value, ep->X_add_number);
1661c76c 8877 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 8878 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8879 return;
8880 }
8881
8882 if (ep->X_op != O_big)
8883 {
8884 hi32 = *ep;
8885 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8886 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8887 hi32.X_add_number &= 0xffffffff;
8888 lo32 = *ep;
8889 lo32.X_add_number &= 0xffffffff;
8890 }
8891 else
8892 {
9c2799c2 8893 gas_assert (ep->X_add_number > 2);
252b5132
RH
8894 if (ep->X_add_number == 3)
8895 generic_bignum[3] = 0;
8896 else if (ep->X_add_number > 4)
1661c76c 8897 as_bad (_("number larger than 64 bits"));
252b5132
RH
8898 lo32.X_op = O_constant;
8899 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8900 hi32.X_op = O_constant;
8901 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8902 }
8903
8904 if (hi32.X_add_number == 0)
8905 freg = 0;
8906 else
8907 {
8908 int shift, bit;
8909 unsigned long hi, lo;
8910
956cd1d6 8911 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
8912 {
8913 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8914 {
67c0d1eb 8915 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8916 return;
8917 }
8918 if (lo32.X_add_number & 0x80000000)
8919 {
df58fc94 8920 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8921 if (lo32.X_add_number & 0xffff)
67c0d1eb 8922 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
8923 return;
8924 }
8925 }
252b5132
RH
8926
8927 /* Check for 16bit shifted constant. We know that hi32 is
8928 non-zero, so start the mask on the first bit of the hi32
8929 value. */
8930 shift = 17;
8931 do
beae10d5
KH
8932 {
8933 unsigned long himask, lomask;
8934
8935 if (shift < 32)
8936 {
8937 himask = 0xffff >> (32 - shift);
8938 lomask = (0xffff << shift) & 0xffffffff;
8939 }
8940 else
8941 {
8942 himask = 0xffff << (shift - 32);
8943 lomask = 0;
8944 }
8945 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8946 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8947 {
8948 expressionS tmp;
8949
8950 tmp.X_op = O_constant;
8951 if (shift < 32)
8952 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8953 | (lo32.X_add_number >> shift));
8954 else
8955 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 8956 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 8957 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 8958 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
8959 return;
8960 }
f9419b05 8961 ++shift;
beae10d5
KH
8962 }
8963 while (shift <= (64 - 16));
252b5132
RH
8964
8965 /* Find the bit number of the lowest one bit, and store the
8966 shifted value in hi/lo. */
8967 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8968 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8969 if (lo != 0)
8970 {
8971 bit = 0;
8972 while ((lo & 1) == 0)
8973 {
8974 lo >>= 1;
8975 ++bit;
8976 }
8977 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8978 hi >>= bit;
8979 }
8980 else
8981 {
8982 bit = 32;
8983 while ((hi & 1) == 0)
8984 {
8985 hi >>= 1;
8986 ++bit;
8987 }
8988 lo = hi;
8989 hi = 0;
8990 }
8991
8992 /* Optimize if the shifted value is a (power of 2) - 1. */
8993 if ((hi == 0 && ((lo + 1) & lo) == 0)
8994 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
8995 {
8996 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 8997 if (shift != 0)
beae10d5 8998 {
252b5132
RH
8999 expressionS tmp;
9000
9001 /* This instruction will set the register to be all
9002 ones. */
beae10d5
KH
9003 tmp.X_op = O_constant;
9004 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9005 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9006 if (bit != 0)
9007 {
9008 bit += shift;
df58fc94 9009 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9010 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9011 }
df58fc94 9012 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9013 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9014 return;
9015 }
9016 }
252b5132
RH
9017
9018 /* Sign extend hi32 before calling load_register, because we can
9019 generally get better code when we load a sign extended value. */
9020 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9021 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9022 load_register (reg, &hi32, 0);
252b5132
RH
9023 freg = reg;
9024 }
9025 if ((lo32.X_add_number & 0xffff0000) == 0)
9026 {
9027 if (freg != 0)
9028 {
df58fc94 9029 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9030 freg = reg;
9031 }
9032 }
9033 else
9034 {
9035 expressionS mid16;
9036
956cd1d6 9037 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9038 {
df58fc94
RS
9039 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9040 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9041 return;
9042 }
252b5132
RH
9043
9044 if (freg != 0)
9045 {
df58fc94 9046 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9047 freg = reg;
9048 }
9049 mid16 = lo32;
9050 mid16.X_add_number >>= 16;
67c0d1eb 9051 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9052 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9053 freg = reg;
9054 }
9055 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9056 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9057}
9058
269137b2
TS
9059static inline void
9060load_delay_nop (void)
9061{
9062 if (!gpr_interlocks)
9063 macro_build (NULL, "nop", "");
9064}
9065
252b5132
RH
9066/* Load an address into a register. */
9067
9068static void
67c0d1eb 9069load_address (int reg, expressionS *ep, int *used_at)
252b5132 9070{
252b5132
RH
9071 if (ep->X_op != O_constant
9072 && ep->X_op != O_symbol)
9073 {
9074 as_bad (_("expression too complex"));
9075 ep->X_op = O_constant;
9076 }
9077
9078 if (ep->X_op == O_constant)
9079 {
67c0d1eb 9080 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9081 return;
9082 }
9083
9084 if (mips_pic == NO_PIC)
9085 {
9086 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9087 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9088 Otherwise we want
9089 lui $reg,<sym> (BFD_RELOC_HI16_S)
9090 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9091 If we have an addend, we always use the latter form.
76b3015f 9092
d6bc6245
TS
9093 With 64bit address space and a usable $at we want
9094 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9095 lui $at,<sym> (BFD_RELOC_HI16_S)
9096 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9097 daddiu $at,<sym> (BFD_RELOC_LO16)
9098 dsll32 $reg,0
3a482fd5 9099 daddu $reg,$reg,$at
76b3015f 9100
c03099e6 9101 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9102 on superscalar processors.
9103 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9104 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9105 dsll $reg,16
9106 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9107 dsll $reg,16
9108 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9109
9110 For GP relative symbols in 64bit address space we can use
9111 the same sequence as in 32bit address space. */
aed1a261 9112 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9113 {
6caf9ef4
TS
9114 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9115 && !nopic_need_relax (ep->X_add_symbol, 1))
9116 {
9117 relax_start (ep->X_add_symbol);
9118 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9119 mips_gp_register, BFD_RELOC_GPREL16);
9120 relax_switch ();
9121 }
d6bc6245 9122
741fe287 9123 if (*used_at == 0 && mips_opts.at)
d6bc6245 9124 {
df58fc94
RS
9125 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9126 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9127 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9128 BFD_RELOC_MIPS_HIGHER);
9129 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9130 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9131 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9132 *used_at = 1;
9133 }
9134 else
9135 {
df58fc94 9136 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9137 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9138 BFD_RELOC_MIPS_HIGHER);
df58fc94 9139 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9140 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9141 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9142 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9143 }
6caf9ef4
TS
9144
9145 if (mips_relax.sequence)
9146 relax_end ();
d6bc6245 9147 }
252b5132
RH
9148 else
9149 {
d6bc6245 9150 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9151 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9152 {
4d7206a2 9153 relax_start (ep->X_add_symbol);
67c0d1eb 9154 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9155 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9156 relax_switch ();
d6bc6245 9157 }
67c0d1eb
RS
9158 macro_build_lui (ep, reg);
9159 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9160 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9161 if (mips_relax.sequence)
9162 relax_end ();
d6bc6245 9163 }
252b5132 9164 }
0a44bf69 9165 else if (!mips_big_got)
252b5132
RH
9166 {
9167 expressionS ex;
9168
9169 /* If this is a reference to an external symbol, we want
9170 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9171 Otherwise we want
9172 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9173 nop
9174 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9175 If there is a constant, it must be added in after.
9176
ed6fb7bd 9177 If we have NewABI, we want
f5040a92
AO
9178 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9179 unless we're referencing a global symbol with a non-zero
9180 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9181 if (HAVE_NEWABI)
9182 {
f5040a92
AO
9183 if (ep->X_add_number)
9184 {
4d7206a2 9185 ex.X_add_number = ep->X_add_number;
f5040a92 9186 ep->X_add_number = 0;
4d7206a2 9187 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9188 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9189 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9190 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9191 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9192 ex.X_op = O_constant;
67c0d1eb 9193 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9194 reg, reg, BFD_RELOC_LO16);
f5040a92 9195 ep->X_add_number = ex.X_add_number;
4d7206a2 9196 relax_switch ();
f5040a92 9197 }
67c0d1eb 9198 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9199 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9200 if (mips_relax.sequence)
9201 relax_end ();
ed6fb7bd
SC
9202 }
9203 else
9204 {
f5040a92
AO
9205 ex.X_add_number = ep->X_add_number;
9206 ep->X_add_number = 0;
67c0d1eb
RS
9207 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9208 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9209 load_delay_nop ();
4d7206a2
RS
9210 relax_start (ep->X_add_symbol);
9211 relax_switch ();
67c0d1eb 9212 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9213 BFD_RELOC_LO16);
4d7206a2 9214 relax_end ();
ed6fb7bd 9215
f5040a92
AO
9216 if (ex.X_add_number != 0)
9217 {
9218 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9219 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9220 ex.X_op = O_constant;
67c0d1eb 9221 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9222 reg, reg, BFD_RELOC_LO16);
f5040a92 9223 }
252b5132
RH
9224 }
9225 }
0a44bf69 9226 else if (mips_big_got)
252b5132
RH
9227 {
9228 expressionS ex;
252b5132
RH
9229
9230 /* This is the large GOT case. If this is a reference to an
9231 external symbol, we want
9232 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9233 addu $reg,$reg,$gp
9234 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9235
9236 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9237 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9238 nop
9239 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9240 If there is a constant, it must be added in after.
f5040a92
AO
9241
9242 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9243 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9244 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9245 */
438c16b8
TS
9246 if (HAVE_NEWABI)
9247 {
4d7206a2 9248 ex.X_add_number = ep->X_add_number;
f5040a92 9249 ep->X_add_number = 0;
4d7206a2 9250 relax_start (ep->X_add_symbol);
df58fc94 9251 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9252 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9253 reg, reg, mips_gp_register);
9254 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9255 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9256 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9257 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9258 else if (ex.X_add_number)
9259 {
9260 ex.X_op = O_constant;
67c0d1eb
RS
9261 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9262 BFD_RELOC_LO16);
f5040a92
AO
9263 }
9264
9265 ep->X_add_number = ex.X_add_number;
4d7206a2 9266 relax_switch ();
67c0d1eb 9267 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9268 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9269 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9270 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9271 relax_end ();
438c16b8 9272 }
252b5132 9273 else
438c16b8 9274 {
f5040a92
AO
9275 ex.X_add_number = ep->X_add_number;
9276 ep->X_add_number = 0;
4d7206a2 9277 relax_start (ep->X_add_symbol);
df58fc94 9278 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9279 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9280 reg, reg, mips_gp_register);
9281 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9282 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9283 relax_switch ();
9284 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9285 {
9286 /* We need a nop before loading from $gp. This special
9287 check is required because the lui which starts the main
9288 instruction stream does not refer to $gp, and so will not
9289 insert the nop which may be required. */
67c0d1eb 9290 macro_build (NULL, "nop", "");
438c16b8 9291 }
67c0d1eb 9292 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9293 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9294 load_delay_nop ();
67c0d1eb 9295 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9296 BFD_RELOC_LO16);
4d7206a2 9297 relax_end ();
438c16b8 9298
f5040a92
AO
9299 if (ex.X_add_number != 0)
9300 {
9301 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9302 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9303 ex.X_op = O_constant;
67c0d1eb
RS
9304 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9305 BFD_RELOC_LO16);
f5040a92 9306 }
252b5132
RH
9307 }
9308 }
252b5132
RH
9309 else
9310 abort ();
8fc2e39e 9311
741fe287 9312 if (!mips_opts.at && *used_at == 1)
1661c76c 9313 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9314}
9315
ea1fb5dc
RS
9316/* Move the contents of register SOURCE into register DEST. */
9317
9318static void
67c0d1eb 9319move_register (int dest, int source)
ea1fb5dc 9320{
df58fc94
RS
9321 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9322 instruction specifically requires a 32-bit one. */
9323 if (mips_opts.micromips
833794fc 9324 && !mips_opts.insn32
df58fc94 9325 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9326 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9327 else
bad1aba3 9328 macro_build (NULL, GPR_SIZE == 32 ? "addu" : "daddu", "d,v,t",
df58fc94 9329 dest, source, 0);
ea1fb5dc
RS
9330}
9331
4d7206a2 9332/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9333 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9334 The two alternatives are:
4d7206a2
RS
9335
9336 Global symbol Local sybmol
9337 ------------- ------------
9338 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9339 ... ...
9340 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9341
9342 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9343 emits the second for a 16-bit offset or add_got_offset_hilo emits
9344 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9345
9346static void
67c0d1eb 9347load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9348{
9349 expressionS global;
9350
9351 global = *local;
9352 global.X_add_number = 0;
9353
9354 relax_start (local->X_add_symbol);
67c0d1eb
RS
9355 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9356 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9357 relax_switch ();
67c0d1eb
RS
9358 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9359 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9360 relax_end ();
9361}
9362
9363static void
67c0d1eb 9364add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9365{
9366 expressionS global;
9367
9368 global.X_op = O_constant;
9369 global.X_op_symbol = NULL;
9370 global.X_add_symbol = NULL;
9371 global.X_add_number = local->X_add_number;
9372
9373 relax_start (local->X_add_symbol);
67c0d1eb 9374 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9375 dest, dest, BFD_RELOC_LO16);
9376 relax_switch ();
67c0d1eb 9377 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9378 relax_end ();
9379}
9380
f6a22291
MR
9381static void
9382add_got_offset_hilo (int dest, expressionS *local, int tmp)
9383{
9384 expressionS global;
9385 int hold_mips_optimize;
9386
9387 global.X_op = O_constant;
9388 global.X_op_symbol = NULL;
9389 global.X_add_symbol = NULL;
9390 global.X_add_number = local->X_add_number;
9391
9392 relax_start (local->X_add_symbol);
9393 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9394 relax_switch ();
9395 /* Set mips_optimize around the lui instruction to avoid
9396 inserting an unnecessary nop after the lw. */
9397 hold_mips_optimize = mips_optimize;
9398 mips_optimize = 2;
9399 macro_build_lui (&global, tmp);
9400 mips_optimize = hold_mips_optimize;
9401 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9402 relax_end ();
9403
9404 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9405}
9406
df58fc94
RS
9407/* Emit a sequence of instructions to emulate a branch likely operation.
9408 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9409 is its complementing branch with the original condition negated.
9410 CALL is set if the original branch specified the link operation.
9411 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9412
9413 Code like this is produced in the noreorder mode:
9414
9415 BRNEG <args>, 1f
9416 nop
9417 b <sym>
9418 delay slot (executed only if branch taken)
9419 1:
9420
9421 or, if CALL is set:
9422
9423 BRNEG <args>, 1f
9424 nop
9425 bal <sym>
9426 delay slot (executed only if branch taken)
9427 1:
9428
9429 In the reorder mode the delay slot would be filled with a nop anyway,
9430 so code produced is simply:
9431
9432 BR <args>, <sym>
9433 nop
9434
9435 This function is used when producing code for the microMIPS ASE that
9436 does not implement branch likely instructions in hardware. */
9437
9438static void
9439macro_build_branch_likely (const char *br, const char *brneg,
9440 int call, expressionS *ep, const char *fmt,
9441 unsigned int sreg, unsigned int treg)
9442{
9443 int noreorder = mips_opts.noreorder;
9444 expressionS expr1;
9445
9446 gas_assert (mips_opts.micromips);
9447 start_noreorder ();
9448 if (noreorder)
9449 {
9450 micromips_label_expr (&expr1);
9451 macro_build (&expr1, brneg, fmt, sreg, treg);
9452 macro_build (NULL, "nop", "");
9453 macro_build (ep, call ? "bal" : "b", "p");
9454
9455 /* Set to true so that append_insn adds a label. */
9456 emit_branch_likely_macro = TRUE;
9457 }
9458 else
9459 {
9460 macro_build (ep, br, fmt, sreg, treg);
9461 macro_build (NULL, "nop", "");
9462 }
9463 end_noreorder ();
9464}
9465
9466/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9467 the condition code tested. EP specifies the branch target. */
9468
9469static void
9470macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9471{
9472 const int call = 0;
9473 const char *brneg;
9474 const char *br;
9475
9476 switch (type)
9477 {
9478 case M_BC1FL:
9479 br = "bc1f";
9480 brneg = "bc1t";
9481 break;
9482 case M_BC1TL:
9483 br = "bc1t";
9484 brneg = "bc1f";
9485 break;
9486 case M_BC2FL:
9487 br = "bc2f";
9488 brneg = "bc2t";
9489 break;
9490 case M_BC2TL:
9491 br = "bc2t";
9492 brneg = "bc2f";
9493 break;
9494 default:
9495 abort ();
9496 }
9497 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9498}
9499
9500/* Emit a two-argument branch macro specified by TYPE, using SREG as
9501 the register tested. EP specifies the branch target. */
9502
9503static void
9504macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9505{
9506 const char *brneg = NULL;
9507 const char *br;
9508 int call = 0;
9509
9510 switch (type)
9511 {
9512 case M_BGEZ:
9513 br = "bgez";
9514 break;
9515 case M_BGEZL:
9516 br = mips_opts.micromips ? "bgez" : "bgezl";
9517 brneg = "bltz";
9518 break;
9519 case M_BGEZALL:
9520 gas_assert (mips_opts.micromips);
833794fc 9521 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9522 brneg = "bltz";
9523 call = 1;
9524 break;
9525 case M_BGTZ:
9526 br = "bgtz";
9527 break;
9528 case M_BGTZL:
9529 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9530 brneg = "blez";
9531 break;
9532 case M_BLEZ:
9533 br = "blez";
9534 break;
9535 case M_BLEZL:
9536 br = mips_opts.micromips ? "blez" : "blezl";
9537 brneg = "bgtz";
9538 break;
9539 case M_BLTZ:
9540 br = "bltz";
9541 break;
9542 case M_BLTZL:
9543 br = mips_opts.micromips ? "bltz" : "bltzl";
9544 brneg = "bgez";
9545 break;
9546 case M_BLTZALL:
9547 gas_assert (mips_opts.micromips);
833794fc 9548 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9549 brneg = "bgez";
9550 call = 1;
9551 break;
9552 default:
9553 abort ();
9554 }
9555 if (mips_opts.micromips && brneg)
9556 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9557 else
9558 macro_build (ep, br, "s,p", sreg);
9559}
9560
9561/* Emit a three-argument branch macro specified by TYPE, using SREG and
9562 TREG as the registers tested. EP specifies the branch target. */
9563
9564static void
9565macro_build_branch_rsrt (int type, expressionS *ep,
9566 unsigned int sreg, unsigned int treg)
9567{
9568 const char *brneg = NULL;
9569 const int call = 0;
9570 const char *br;
9571
9572 switch (type)
9573 {
9574 case M_BEQ:
9575 case M_BEQ_I:
9576 br = "beq";
9577 break;
9578 case M_BEQL:
9579 case M_BEQL_I:
9580 br = mips_opts.micromips ? "beq" : "beql";
9581 brneg = "bne";
9582 break;
9583 case M_BNE:
9584 case M_BNE_I:
9585 br = "bne";
9586 break;
9587 case M_BNEL:
9588 case M_BNEL_I:
9589 br = mips_opts.micromips ? "bne" : "bnel";
9590 brneg = "beq";
9591 break;
9592 default:
9593 abort ();
9594 }
9595 if (mips_opts.micromips && brneg)
9596 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9597 else
9598 macro_build (ep, br, "s,t,p", sreg, treg);
9599}
9600
f2ae14a1
RS
9601/* Return the high part that should be loaded in order to make the low
9602 part of VALUE accessible using an offset of OFFBITS bits. */
9603
9604static offsetT
9605offset_high_part (offsetT value, unsigned int offbits)
9606{
9607 offsetT bias;
9608 addressT low_mask;
9609
9610 if (offbits == 0)
9611 return value;
9612 bias = 1 << (offbits - 1);
9613 low_mask = bias * 2 - 1;
9614 return (value + bias) & ~low_mask;
9615}
9616
9617/* Return true if the value stored in offset_expr and offset_reloc
9618 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9619 amount that the caller wants to add without inducing overflow
9620 and ALIGN is the known alignment of the value in bytes. */
9621
9622static bfd_boolean
9623small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9624{
9625 if (offbits == 16)
9626 {
9627 /* Accept any relocation operator if overflow isn't a concern. */
9628 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9629 return TRUE;
9630
9631 /* These relocations are guaranteed not to overflow in correct links. */
9632 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9633 || gprel16_reloc_p (*offset_reloc))
9634 return TRUE;
9635 }
9636 if (offset_expr.X_op == O_constant
9637 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9638 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9639 return TRUE;
9640 return FALSE;
9641}
9642
252b5132
RH
9643/*
9644 * Build macros
9645 * This routine implements the seemingly endless macro or synthesized
9646 * instructions and addressing modes in the mips assembly language. Many
9647 * of these macros are simple and are similar to each other. These could
67c1ffbe 9648 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9649 * this verbose method. Others are not simple macros but are more like
9650 * optimizing code generation.
9651 * One interesting optimization is when several store macros appear
67c1ffbe 9652 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
9653 * The ensuing load upper instructions are ommited. This implies some kind
9654 * of global optimization. We currently only optimize within a single macro.
9655 * For many of the load and store macros if the address is specified as a
9656 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9657 * first load register 'at' with zero and use it as the base register. The
9658 * mips assembler simply uses register $zero. Just one tiny optimization
9659 * we're missing.
9660 */
9661static void
833794fc 9662macro (struct mips_cl_insn *ip, char *str)
252b5132 9663{
c0ebe874
RS
9664 const struct mips_operand_array *operands;
9665 unsigned int breg, i;
741fe287 9666 unsigned int tempreg;
252b5132 9667 int mask;
43841e91 9668 int used_at = 0;
df58fc94 9669 expressionS label_expr;
252b5132 9670 expressionS expr1;
df58fc94 9671 expressionS *ep;
252b5132
RH
9672 const char *s;
9673 const char *s2;
9674 const char *fmt;
9675 int likely = 0;
252b5132 9676 int coproc = 0;
7f3c4072 9677 int offbits = 16;
1abe91b1 9678 int call = 0;
df58fc94
RS
9679 int jals = 0;
9680 int dbl = 0;
9681 int imm = 0;
9682 int ust = 0;
9683 int lp = 0;
f2ae14a1 9684 bfd_boolean large_offset;
252b5132 9685 int off;
252b5132 9686 int hold_mips_optimize;
f2ae14a1 9687 unsigned int align;
c0ebe874 9688 unsigned int op[MAX_OPERANDS];
252b5132 9689
9c2799c2 9690 gas_assert (! mips_opts.mips16);
252b5132 9691
c0ebe874
RS
9692 operands = insn_operands (ip);
9693 for (i = 0; i < MAX_OPERANDS; i++)
9694 if (operands->operand[i])
9695 op[i] = insn_extract_operand (ip, operands->operand[i]);
9696 else
9697 op[i] = -1;
9698
252b5132
RH
9699 mask = ip->insn_mo->mask;
9700
df58fc94
RS
9701 label_expr.X_op = O_constant;
9702 label_expr.X_op_symbol = NULL;
9703 label_expr.X_add_symbol = NULL;
9704 label_expr.X_add_number = 0;
9705
252b5132
RH
9706 expr1.X_op = O_constant;
9707 expr1.X_op_symbol = NULL;
9708 expr1.X_add_symbol = NULL;
9709 expr1.X_add_number = 1;
f2ae14a1 9710 align = 1;
252b5132
RH
9711
9712 switch (mask)
9713 {
9714 case M_DABS:
9715 dbl = 1;
9716 case M_ABS:
df58fc94
RS
9717 /* bgez $a0,1f
9718 move v0,$a0
9719 sub v0,$zero,$a0
9720 1:
9721 */
252b5132 9722
7d10b47d 9723 start_noreorder ();
252b5132 9724
df58fc94
RS
9725 if (mips_opts.micromips)
9726 micromips_label_expr (&label_expr);
9727 else
9728 label_expr.X_add_number = 8;
c0ebe874
RS
9729 macro_build (&label_expr, "bgez", "s,p", op[1]);
9730 if (op[0] == op[1])
a605d2b3 9731 macro_build (NULL, "nop", "");
252b5132 9732 else
c0ebe874
RS
9733 move_register (op[0], op[1]);
9734 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9735 if (mips_opts.micromips)
9736 micromips_add_label ();
252b5132 9737
7d10b47d 9738 end_noreorder ();
8fc2e39e 9739 break;
252b5132
RH
9740
9741 case M_ADD_I:
9742 s = "addi";
9743 s2 = "add";
9744 goto do_addi;
9745 case M_ADDU_I:
9746 s = "addiu";
9747 s2 = "addu";
9748 goto do_addi;
9749 case M_DADD_I:
9750 dbl = 1;
9751 s = "daddi";
9752 s2 = "dadd";
df58fc94
RS
9753 if (!mips_opts.micromips)
9754 goto do_addi;
b0e6f033 9755 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9756 && imm_expr.X_add_number < 0x200)
9757 {
b0e6f033
RS
9758 macro_build (NULL, s, "t,r,.", op[0], op[1],
9759 (int) imm_expr.X_add_number);
df58fc94
RS
9760 break;
9761 }
9762 goto do_addi_i;
252b5132
RH
9763 case M_DADDU_I:
9764 dbl = 1;
9765 s = "daddiu";
9766 s2 = "daddu";
9767 do_addi:
b0e6f033 9768 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9769 && imm_expr.X_add_number < 0x8000)
9770 {
c0ebe874 9771 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9772 break;
252b5132 9773 }
df58fc94 9774 do_addi_i:
8fc2e39e 9775 used_at = 1;
67c0d1eb 9776 load_register (AT, &imm_expr, dbl);
c0ebe874 9777 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9778 break;
9779
9780 case M_AND_I:
9781 s = "andi";
9782 s2 = "and";
9783 goto do_bit;
9784 case M_OR_I:
9785 s = "ori";
9786 s2 = "or";
9787 goto do_bit;
9788 case M_NOR_I:
9789 s = "";
9790 s2 = "nor";
9791 goto do_bit;
9792 case M_XOR_I:
9793 s = "xori";
9794 s2 = "xor";
9795 do_bit:
b0e6f033 9796 if (imm_expr.X_add_number >= 0
252b5132
RH
9797 && imm_expr.X_add_number < 0x10000)
9798 {
9799 if (mask != M_NOR_I)
c0ebe874 9800 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9801 else
9802 {
67c0d1eb 9803 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9804 op[0], op[1], BFD_RELOC_LO16);
9805 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9806 }
8fc2e39e 9807 break;
252b5132
RH
9808 }
9809
8fc2e39e 9810 used_at = 1;
bad1aba3 9811 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9812 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9813 break;
9814
8b082fb1
TS
9815 case M_BALIGN:
9816 switch (imm_expr.X_add_number)
9817 {
9818 case 0:
9819 macro_build (NULL, "nop", "");
9820 break;
9821 case 2:
c0ebe874 9822 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 9823 break;
03f66e8a
MR
9824 case 1:
9825 case 3:
c0ebe874 9826 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 9827 (int) imm_expr.X_add_number);
8b082fb1 9828 break;
03f66e8a
MR
9829 default:
9830 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9831 (unsigned long) imm_expr.X_add_number);
9832 break;
8b082fb1
TS
9833 }
9834 break;
9835
df58fc94
RS
9836 case M_BC1FL:
9837 case M_BC1TL:
9838 case M_BC2FL:
9839 case M_BC2TL:
9840 gas_assert (mips_opts.micromips);
9841 macro_build_branch_ccl (mask, &offset_expr,
9842 EXTRACT_OPERAND (1, BCC, *ip));
9843 break;
9844
252b5132 9845 case M_BEQ_I:
252b5132 9846 case M_BEQL_I:
252b5132 9847 case M_BNE_I:
252b5132 9848 case M_BNEL_I:
b0e6f033 9849 if (imm_expr.X_add_number == 0)
c0ebe874 9850 op[1] = 0;
df58fc94 9851 else
252b5132 9852 {
c0ebe874 9853 op[1] = AT;
df58fc94 9854 used_at = 1;
bad1aba3 9855 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 9856 }
df58fc94
RS
9857 /* Fall through. */
9858 case M_BEQL:
9859 case M_BNEL:
c0ebe874 9860 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
9861 break;
9862
9863 case M_BGEL:
9864 likely = 1;
9865 case M_BGE:
c0ebe874
RS
9866 if (op[1] == 0)
9867 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9868 else if (op[0] == 0)
9869 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 9870 else
252b5132 9871 {
df58fc94 9872 used_at = 1;
c0ebe874 9873 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9874 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9875 &offset_expr, AT, ZERO);
252b5132 9876 }
df58fc94
RS
9877 break;
9878
9879 case M_BGEZL:
9880 case M_BGEZALL:
9881 case M_BGTZL:
9882 case M_BLEZL:
9883 case M_BLTZL:
9884 case M_BLTZALL:
c0ebe874 9885 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
9886 break;
9887
9888 case M_BGTL_I:
9889 likely = 1;
9890 case M_BGT_I:
90ecf173 9891 /* Check for > max integer. */
b0e6f033 9892 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
9893 {
9894 do_false:
90ecf173 9895 /* Result is always false. */
252b5132 9896 if (! likely)
a605d2b3 9897 macro_build (NULL, "nop", "");
252b5132 9898 else
df58fc94 9899 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 9900 break;
252b5132 9901 }
f9419b05 9902 ++imm_expr.X_add_number;
252b5132
RH
9903 /* FALLTHROUGH */
9904 case M_BGE_I:
9905 case M_BGEL_I:
9906 if (mask == M_BGEL_I)
9907 likely = 1;
b0e6f033 9908 if (imm_expr.X_add_number == 0)
252b5132 9909 {
df58fc94 9910 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 9911 &offset_expr, op[0]);
8fc2e39e 9912 break;
252b5132 9913 }
b0e6f033 9914 if (imm_expr.X_add_number == 1)
252b5132 9915 {
df58fc94 9916 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 9917 &offset_expr, op[0]);
8fc2e39e 9918 break;
252b5132 9919 }
b0e6f033 9920 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
9921 {
9922 do_true:
9923 /* result is always true */
1661c76c 9924 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 9925 macro_build (&offset_expr, "b", "p");
8fc2e39e 9926 break;
252b5132 9927 }
8fc2e39e 9928 used_at = 1;
c0ebe874 9929 set_at (op[0], 0);
df58fc94
RS
9930 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9931 &offset_expr, AT, ZERO);
252b5132
RH
9932 break;
9933
9934 case M_BGEUL:
9935 likely = 1;
9936 case M_BGEU:
c0ebe874 9937 if (op[1] == 0)
252b5132 9938 goto do_true;
c0ebe874 9939 else if (op[0] == 0)
df58fc94 9940 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9941 &offset_expr, ZERO, op[1]);
df58fc94 9942 else
252b5132 9943 {
df58fc94 9944 used_at = 1;
c0ebe874 9945 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9946 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9947 &offset_expr, AT, ZERO);
252b5132 9948 }
252b5132
RH
9949 break;
9950
9951 case M_BGTUL_I:
9952 likely = 1;
9953 case M_BGTU_I:
c0ebe874 9954 if (op[0] == 0
bad1aba3 9955 || (GPR_SIZE == 32
f01dc953 9956 && imm_expr.X_add_number == -1))
252b5132 9957 goto do_false;
f9419b05 9958 ++imm_expr.X_add_number;
252b5132
RH
9959 /* FALLTHROUGH */
9960 case M_BGEU_I:
9961 case M_BGEUL_I:
9962 if (mask == M_BGEUL_I)
9963 likely = 1;
b0e6f033 9964 if (imm_expr.X_add_number == 0)
252b5132 9965 goto do_true;
b0e6f033 9966 else if (imm_expr.X_add_number == 1)
df58fc94 9967 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 9968 &offset_expr, op[0], ZERO);
df58fc94 9969 else
252b5132 9970 {
df58fc94 9971 used_at = 1;
c0ebe874 9972 set_at (op[0], 1);
df58fc94
RS
9973 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9974 &offset_expr, AT, ZERO);
252b5132 9975 }
252b5132
RH
9976 break;
9977
9978 case M_BGTL:
9979 likely = 1;
9980 case M_BGT:
c0ebe874
RS
9981 if (op[1] == 0)
9982 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9983 else if (op[0] == 0)
9984 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 9985 else
252b5132 9986 {
df58fc94 9987 used_at = 1;
c0ebe874 9988 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
9989 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9990 &offset_expr, AT, ZERO);
252b5132 9991 }
252b5132
RH
9992 break;
9993
9994 case M_BGTUL:
9995 likely = 1;
9996 case M_BGTU:
c0ebe874 9997 if (op[1] == 0)
df58fc94 9998 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
9999 &offset_expr, op[0], ZERO);
10000 else if (op[0] == 0)
df58fc94
RS
10001 goto do_false;
10002 else
252b5132 10003 {
df58fc94 10004 used_at = 1;
c0ebe874 10005 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10006 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10007 &offset_expr, AT, ZERO);
252b5132 10008 }
252b5132
RH
10009 break;
10010
10011 case M_BLEL:
10012 likely = 1;
10013 case M_BLE:
c0ebe874
RS
10014 if (op[1] == 0)
10015 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10016 else if (op[0] == 0)
10017 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10018 else
252b5132 10019 {
df58fc94 10020 used_at = 1;
c0ebe874 10021 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10022 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10023 &offset_expr, AT, ZERO);
252b5132 10024 }
252b5132
RH
10025 break;
10026
10027 case M_BLEL_I:
10028 likely = 1;
10029 case M_BLE_I:
b0e6f033 10030 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10031 goto do_true;
f9419b05 10032 ++imm_expr.X_add_number;
252b5132
RH
10033 /* FALLTHROUGH */
10034 case M_BLT_I:
10035 case M_BLTL_I:
10036 if (mask == M_BLTL_I)
10037 likely = 1;
b0e6f033 10038 if (imm_expr.X_add_number == 0)
c0ebe874 10039 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10040 else if (imm_expr.X_add_number == 1)
c0ebe874 10041 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10042 else
252b5132 10043 {
df58fc94 10044 used_at = 1;
c0ebe874 10045 set_at (op[0], 0);
df58fc94
RS
10046 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10047 &offset_expr, AT, ZERO);
252b5132 10048 }
252b5132
RH
10049 break;
10050
10051 case M_BLEUL:
10052 likely = 1;
10053 case M_BLEU:
c0ebe874 10054 if (op[1] == 0)
df58fc94 10055 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10056 &offset_expr, op[0], ZERO);
10057 else if (op[0] == 0)
df58fc94
RS
10058 goto do_true;
10059 else
252b5132 10060 {
df58fc94 10061 used_at = 1;
c0ebe874 10062 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10063 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10064 &offset_expr, AT, ZERO);
252b5132 10065 }
252b5132
RH
10066 break;
10067
10068 case M_BLEUL_I:
10069 likely = 1;
10070 case M_BLEU_I:
c0ebe874 10071 if (op[0] == 0
bad1aba3 10072 || (GPR_SIZE == 32
f01dc953 10073 && imm_expr.X_add_number == -1))
252b5132 10074 goto do_true;
f9419b05 10075 ++imm_expr.X_add_number;
252b5132
RH
10076 /* FALLTHROUGH */
10077 case M_BLTU_I:
10078 case M_BLTUL_I:
10079 if (mask == M_BLTUL_I)
10080 likely = 1;
b0e6f033 10081 if (imm_expr.X_add_number == 0)
252b5132 10082 goto do_false;
b0e6f033 10083 else if (imm_expr.X_add_number == 1)
df58fc94 10084 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10085 &offset_expr, op[0], ZERO);
df58fc94 10086 else
252b5132 10087 {
df58fc94 10088 used_at = 1;
c0ebe874 10089 set_at (op[0], 1);
df58fc94
RS
10090 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10091 &offset_expr, AT, ZERO);
252b5132 10092 }
252b5132
RH
10093 break;
10094
10095 case M_BLTL:
10096 likely = 1;
10097 case M_BLT:
c0ebe874
RS
10098 if (op[1] == 0)
10099 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10100 else if (op[0] == 0)
10101 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10102 else
252b5132 10103 {
df58fc94 10104 used_at = 1;
c0ebe874 10105 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10106 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10107 &offset_expr, AT, ZERO);
252b5132 10108 }
252b5132
RH
10109 break;
10110
10111 case M_BLTUL:
10112 likely = 1;
10113 case M_BLTU:
c0ebe874 10114 if (op[1] == 0)
252b5132 10115 goto do_false;
c0ebe874 10116 else if (op[0] == 0)
df58fc94 10117 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10118 &offset_expr, ZERO, op[1]);
df58fc94 10119 else
252b5132 10120 {
df58fc94 10121 used_at = 1;
c0ebe874 10122 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10123 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10124 &offset_expr, AT, ZERO);
252b5132 10125 }
252b5132
RH
10126 break;
10127
10128 case M_DDIV_3:
10129 dbl = 1;
10130 case M_DIV_3:
10131 s = "mflo";
10132 goto do_div3;
10133 case M_DREM_3:
10134 dbl = 1;
10135 case M_REM_3:
10136 s = "mfhi";
10137 do_div3:
c0ebe874 10138 if (op[2] == 0)
252b5132 10139 {
1661c76c 10140 as_warn (_("divide by zero"));
252b5132 10141 if (mips_trap)
df58fc94 10142 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10143 else
df58fc94 10144 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10145 break;
252b5132
RH
10146 }
10147
7d10b47d 10148 start_noreorder ();
252b5132
RH
10149 if (mips_trap)
10150 {
c0ebe874
RS
10151 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10152 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10153 }
10154 else
10155 {
df58fc94
RS
10156 if (mips_opts.micromips)
10157 micromips_label_expr (&label_expr);
10158 else
10159 label_expr.X_add_number = 8;
c0ebe874
RS
10160 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10161 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10162 macro_build (NULL, "break", BRK_FMT, 7);
10163 if (mips_opts.micromips)
10164 micromips_add_label ();
252b5132
RH
10165 }
10166 expr1.X_add_number = -1;
8fc2e39e 10167 used_at = 1;
f6a22291 10168 load_register (AT, &expr1, dbl);
df58fc94
RS
10169 if (mips_opts.micromips)
10170 micromips_label_expr (&label_expr);
10171 else
10172 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10173 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10174 if (dbl)
10175 {
10176 expr1.X_add_number = 1;
f6a22291 10177 load_register (AT, &expr1, dbl);
df58fc94 10178 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10179 }
10180 else
10181 {
10182 expr1.X_add_number = 0x80000000;
df58fc94 10183 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10184 }
10185 if (mips_trap)
10186 {
c0ebe874 10187 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10188 /* We want to close the noreorder block as soon as possible, so
10189 that later insns are available for delay slot filling. */
7d10b47d 10190 end_noreorder ();
252b5132
RH
10191 }
10192 else
10193 {
df58fc94
RS
10194 if (mips_opts.micromips)
10195 micromips_label_expr (&label_expr);
10196 else
10197 label_expr.X_add_number = 8;
c0ebe874 10198 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10199 macro_build (NULL, "nop", "");
252b5132
RH
10200
10201 /* We want to close the noreorder block as soon as possible, so
10202 that later insns are available for delay slot filling. */
7d10b47d 10203 end_noreorder ();
252b5132 10204
df58fc94 10205 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10206 }
df58fc94
RS
10207 if (mips_opts.micromips)
10208 micromips_add_label ();
c0ebe874 10209 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10210 break;
10211
10212 case M_DIV_3I:
10213 s = "div";
10214 s2 = "mflo";
10215 goto do_divi;
10216 case M_DIVU_3I:
10217 s = "divu";
10218 s2 = "mflo";
10219 goto do_divi;
10220 case M_REM_3I:
10221 s = "div";
10222 s2 = "mfhi";
10223 goto do_divi;
10224 case M_REMU_3I:
10225 s = "divu";
10226 s2 = "mfhi";
10227 goto do_divi;
10228 case M_DDIV_3I:
10229 dbl = 1;
10230 s = "ddiv";
10231 s2 = "mflo";
10232 goto do_divi;
10233 case M_DDIVU_3I:
10234 dbl = 1;
10235 s = "ddivu";
10236 s2 = "mflo";
10237 goto do_divi;
10238 case M_DREM_3I:
10239 dbl = 1;
10240 s = "ddiv";
10241 s2 = "mfhi";
10242 goto do_divi;
10243 case M_DREMU_3I:
10244 dbl = 1;
10245 s = "ddivu";
10246 s2 = "mfhi";
10247 do_divi:
b0e6f033 10248 if (imm_expr.X_add_number == 0)
252b5132 10249 {
1661c76c 10250 as_warn (_("divide by zero"));
252b5132 10251 if (mips_trap)
df58fc94 10252 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10253 else
df58fc94 10254 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10255 break;
252b5132 10256 }
b0e6f033 10257 if (imm_expr.X_add_number == 1)
252b5132
RH
10258 {
10259 if (strcmp (s2, "mflo") == 0)
c0ebe874 10260 move_register (op[0], op[1]);
252b5132 10261 else
c0ebe874 10262 move_register (op[0], ZERO);
8fc2e39e 10263 break;
252b5132 10264 }
b0e6f033 10265 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10266 {
10267 if (strcmp (s2, "mflo") == 0)
c0ebe874 10268 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10269 else
c0ebe874 10270 move_register (op[0], ZERO);
8fc2e39e 10271 break;
252b5132
RH
10272 }
10273
8fc2e39e 10274 used_at = 1;
67c0d1eb 10275 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10276 macro_build (NULL, s, "z,s,t", op[1], AT);
10277 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10278 break;
10279
10280 case M_DIVU_3:
10281 s = "divu";
10282 s2 = "mflo";
10283 goto do_divu3;
10284 case M_REMU_3:
10285 s = "divu";
10286 s2 = "mfhi";
10287 goto do_divu3;
10288 case M_DDIVU_3:
10289 s = "ddivu";
10290 s2 = "mflo";
10291 goto do_divu3;
10292 case M_DREMU_3:
10293 s = "ddivu";
10294 s2 = "mfhi";
10295 do_divu3:
7d10b47d 10296 start_noreorder ();
252b5132
RH
10297 if (mips_trap)
10298 {
c0ebe874
RS
10299 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10300 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10301 /* We want to close the noreorder block as soon as possible, so
10302 that later insns are available for delay slot filling. */
7d10b47d 10303 end_noreorder ();
252b5132
RH
10304 }
10305 else
10306 {
df58fc94
RS
10307 if (mips_opts.micromips)
10308 micromips_label_expr (&label_expr);
10309 else
10310 label_expr.X_add_number = 8;
c0ebe874
RS
10311 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10312 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10313
10314 /* We want to close the noreorder block as soon as possible, so
10315 that later insns are available for delay slot filling. */
7d10b47d 10316 end_noreorder ();
df58fc94
RS
10317 macro_build (NULL, "break", BRK_FMT, 7);
10318 if (mips_opts.micromips)
10319 micromips_add_label ();
252b5132 10320 }
c0ebe874 10321 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10322 break;
252b5132 10323
1abe91b1
MR
10324 case M_DLCA_AB:
10325 dbl = 1;
10326 case M_LCA_AB:
10327 call = 1;
10328 goto do_la;
252b5132
RH
10329 case M_DLA_AB:
10330 dbl = 1;
10331 case M_LA_AB:
1abe91b1 10332 do_la:
252b5132
RH
10333 /* Load the address of a symbol into a register. If breg is not
10334 zero, we then add a base register to it. */
10335
c0ebe874 10336 breg = op[2];
bad1aba3 10337 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10338 as_warn (_("dla used to load 32-bit register; recommend using la "
10339 "instead"));
3bec30a8 10340
90ecf173 10341 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10342 as_warn (_("la used to load 64-bit address; recommend using dla "
10343 "instead"));
3bec30a8 10344
f2ae14a1 10345 if (small_offset_p (0, align, 16))
0c11417f 10346 {
c0ebe874 10347 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10348 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10349 break;
0c11417f
MR
10350 }
10351
c0ebe874 10352 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10353 {
10354 tempreg = AT;
10355 used_at = 1;
10356 }
10357 else
c0ebe874 10358 tempreg = op[0];
afdbd6d0 10359
252b5132
RH
10360 if (offset_expr.X_op != O_symbol
10361 && offset_expr.X_op != O_constant)
10362 {
1661c76c 10363 as_bad (_("expression too complex"));
252b5132
RH
10364 offset_expr.X_op = O_constant;
10365 }
10366
252b5132 10367 if (offset_expr.X_op == O_constant)
aed1a261 10368 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10369 else if (mips_pic == NO_PIC)
10370 {
d6bc6245 10371 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10372 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10373 Otherwise we want
10374 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10375 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10376 If we have a constant, we need two instructions anyhow,
d6bc6245 10377 so we may as well always use the latter form.
76b3015f 10378
6caf9ef4
TS
10379 With 64bit address space and a usable $at we want
10380 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10381 lui $at,<sym> (BFD_RELOC_HI16_S)
10382 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10383 daddiu $at,<sym> (BFD_RELOC_LO16)
10384 dsll32 $tempreg,0
10385 daddu $tempreg,$tempreg,$at
10386
10387 If $at is already in use, we use a path which is suboptimal
10388 on superscalar processors.
10389 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10390 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10391 dsll $tempreg,16
10392 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10393 dsll $tempreg,16
10394 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10395
10396 For GP relative symbols in 64bit address space we can use
10397 the same sequence as in 32bit address space. */
aed1a261 10398 if (HAVE_64BIT_SYMBOLS)
252b5132 10399 {
6caf9ef4
TS
10400 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10401 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10402 {
10403 relax_start (offset_expr.X_add_symbol);
10404 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10405 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10406 relax_switch ();
10407 }
d6bc6245 10408
741fe287 10409 if (used_at == 0 && mips_opts.at)
98d3f06f 10410 {
df58fc94 10411 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10412 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10413 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10414 AT, BFD_RELOC_HI16_S);
67c0d1eb 10415 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10416 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10417 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10418 AT, AT, BFD_RELOC_LO16);
df58fc94 10419 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10420 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10421 used_at = 1;
10422 }
10423 else
10424 {
df58fc94 10425 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10426 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10427 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10428 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10429 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10430 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10431 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10432 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10433 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10434 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10435 }
6caf9ef4
TS
10436
10437 if (mips_relax.sequence)
10438 relax_end ();
98d3f06f
KH
10439 }
10440 else
10441 {
10442 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10443 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10444 {
4d7206a2 10445 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10446 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10447 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10448 relax_switch ();
98d3f06f 10449 }
6943caf0 10450 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10451 as_bad (_("offset too large"));
67c0d1eb
RS
10452 macro_build_lui (&offset_expr, tempreg);
10453 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10454 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10455 if (mips_relax.sequence)
10456 relax_end ();
98d3f06f 10457 }
252b5132 10458 }
0a44bf69 10459 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10460 {
9117d219
NC
10461 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10462
252b5132
RH
10463 /* If this is a reference to an external symbol, and there
10464 is no constant, we want
10465 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10466 or for lca or if tempreg is PIC_CALL_REG
9117d219 10467 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10468 For a local symbol, we want
10469 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10470 nop
10471 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10472
10473 If we have a small constant, and this is a reference to
10474 an external symbol, we want
10475 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10476 nop
10477 addiu $tempreg,$tempreg,<constant>
10478 For a local symbol, we want the same instruction
10479 sequence, but we output a BFD_RELOC_LO16 reloc on the
10480 addiu instruction.
10481
10482 If we have a large constant, and this is a reference to
10483 an external symbol, we want
10484 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10485 lui $at,<hiconstant>
10486 addiu $at,$at,<loconstant>
10487 addu $tempreg,$tempreg,$at
10488 For a local symbol, we want the same instruction
10489 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10490 addiu instruction.
ed6fb7bd
SC
10491 */
10492
4d7206a2 10493 if (offset_expr.X_add_number == 0)
252b5132 10494 {
0a44bf69
RS
10495 if (mips_pic == SVR4_PIC
10496 && breg == 0
10497 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10498 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10499
10500 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10501 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10502 lw_reloc_type, mips_gp_register);
4d7206a2 10503 if (breg != 0)
252b5132
RH
10504 {
10505 /* We're going to put in an addu instruction using
10506 tempreg, so we may as well insert the nop right
10507 now. */
269137b2 10508 load_delay_nop ();
252b5132 10509 }
4d7206a2 10510 relax_switch ();
67c0d1eb
RS
10511 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10512 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10513 load_delay_nop ();
67c0d1eb
RS
10514 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10515 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10516 relax_end ();
252b5132
RH
10517 /* FIXME: If breg == 0, and the next instruction uses
10518 $tempreg, then if this variant case is used an extra
10519 nop will be generated. */
10520 }
4d7206a2
RS
10521 else if (offset_expr.X_add_number >= -0x8000
10522 && offset_expr.X_add_number < 0x8000)
252b5132 10523 {
67c0d1eb 10524 load_got_offset (tempreg, &offset_expr);
269137b2 10525 load_delay_nop ();
67c0d1eb 10526 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10527 }
10528 else
10529 {
4d7206a2
RS
10530 expr1.X_add_number = offset_expr.X_add_number;
10531 offset_expr.X_add_number =
43c0598f 10532 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10533 load_got_offset (tempreg, &offset_expr);
f6a22291 10534 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10535 /* If we are going to add in a base register, and the
10536 target register and the base register are the same,
10537 then we are using AT as a temporary register. Since
10538 we want to load the constant into AT, we add our
10539 current AT (from the global offset table) and the
10540 register into the register now, and pretend we were
10541 not using a base register. */
c0ebe874 10542 if (breg == op[0])
252b5132 10543 {
269137b2 10544 load_delay_nop ();
67c0d1eb 10545 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10546 op[0], AT, breg);
252b5132 10547 breg = 0;
c0ebe874 10548 tempreg = op[0];
252b5132 10549 }
f6a22291 10550 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10551 used_at = 1;
10552 }
10553 }
0a44bf69 10554 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10555 {
67c0d1eb 10556 int add_breg_early = 0;
f5040a92
AO
10557
10558 /* If this is a reference to an external, and there is no
10559 constant, or local symbol (*), with or without a
10560 constant, we want
10561 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10562 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10563 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10564
10565 If we have a small constant, and this is a reference to
10566 an external symbol, we want
10567 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10568 addiu $tempreg,$tempreg,<constant>
10569
10570 If we have a large constant, and this is a reference to
10571 an external symbol, we want
10572 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10573 lui $at,<hiconstant>
10574 addiu $at,$at,<loconstant>
10575 addu $tempreg,$tempreg,$at
10576
10577 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10578 local symbols, even though it introduces an additional
10579 instruction. */
10580
f5040a92
AO
10581 if (offset_expr.X_add_number)
10582 {
4d7206a2 10583 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10584 offset_expr.X_add_number = 0;
10585
4d7206a2 10586 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10587 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10588 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10589
10590 if (expr1.X_add_number >= -0x8000
10591 && expr1.X_add_number < 0x8000)
10592 {
67c0d1eb
RS
10593 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10594 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10595 }
ecd13cd3 10596 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10597 {
c0ebe874
RS
10598 unsigned int dreg;
10599
f5040a92
AO
10600 /* If we are going to add in a base register, and the
10601 target register and the base register are the same,
10602 then we are using AT as a temporary register. Since
10603 we want to load the constant into AT, we add our
10604 current AT (from the global offset table) and the
10605 register into the register now, and pretend we were
10606 not using a base register. */
c0ebe874 10607 if (breg != op[0])
f5040a92
AO
10608 dreg = tempreg;
10609 else
10610 {
9c2799c2 10611 gas_assert (tempreg == AT);
67c0d1eb 10612 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10613 op[0], AT, breg);
10614 dreg = op[0];
67c0d1eb 10615 add_breg_early = 1;
f5040a92
AO
10616 }
10617
f6a22291 10618 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10619 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10620 dreg, dreg, AT);
f5040a92 10621
f5040a92
AO
10622 used_at = 1;
10623 }
10624 else
10625 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10626
4d7206a2 10627 relax_switch ();
f5040a92
AO
10628 offset_expr.X_add_number = expr1.X_add_number;
10629
67c0d1eb
RS
10630 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10631 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10632 if (add_breg_early)
f5040a92 10633 {
67c0d1eb 10634 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10635 op[0], tempreg, breg);
f5040a92 10636 breg = 0;
c0ebe874 10637 tempreg = op[0];
f5040a92 10638 }
4d7206a2 10639 relax_end ();
f5040a92 10640 }
4d7206a2 10641 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10642 {
4d7206a2 10643 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10644 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10645 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10646 relax_switch ();
67c0d1eb
RS
10647 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10648 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10649 relax_end ();
f5040a92 10650 }
4d7206a2 10651 else
f5040a92 10652 {
67c0d1eb
RS
10653 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10654 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10655 }
10656 }
0a44bf69 10657 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10658 {
67c0d1eb 10659 int gpdelay;
9117d219
NC
10660 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10661 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10662 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10663
10664 /* This is the large GOT case. If this is a reference to an
10665 external symbol, and there is no constant, we want
10666 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10667 addu $tempreg,$tempreg,$gp
10668 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10669 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10670 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10671 addu $tempreg,$tempreg,$gp
10672 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10673 For a local symbol, we want
10674 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10675 nop
10676 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10677
10678 If we have a small constant, and this is a reference to
10679 an external symbol, we want
10680 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10681 addu $tempreg,$tempreg,$gp
10682 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10683 nop
10684 addiu $tempreg,$tempreg,<constant>
10685 For a local symbol, we want
10686 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10687 nop
10688 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10689
10690 If we have a large constant, and this is a reference to
10691 an external symbol, we want
10692 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10693 addu $tempreg,$tempreg,$gp
10694 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10695 lui $at,<hiconstant>
10696 addiu $at,$at,<loconstant>
10697 addu $tempreg,$tempreg,$at
10698 For a local symbol, we want
10699 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10700 lui $at,<hiconstant>
10701 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10702 addu $tempreg,$tempreg,$at
f5040a92 10703 */
438c16b8 10704
252b5132
RH
10705 expr1.X_add_number = offset_expr.X_add_number;
10706 offset_expr.X_add_number = 0;
4d7206a2 10707 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10708 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10709 if (expr1.X_add_number == 0 && breg == 0
10710 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10711 {
10712 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10713 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10714 }
df58fc94 10715 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10716 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10717 tempreg, tempreg, mips_gp_register);
67c0d1eb 10718 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10719 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10720 if (expr1.X_add_number == 0)
10721 {
67c0d1eb 10722 if (breg != 0)
252b5132
RH
10723 {
10724 /* We're going to put in an addu instruction using
10725 tempreg, so we may as well insert the nop right
10726 now. */
269137b2 10727 load_delay_nop ();
252b5132 10728 }
252b5132
RH
10729 }
10730 else if (expr1.X_add_number >= -0x8000
10731 && expr1.X_add_number < 0x8000)
10732 {
269137b2 10733 load_delay_nop ();
67c0d1eb 10734 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10735 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10736 }
10737 else
10738 {
c0ebe874
RS
10739 unsigned int dreg;
10740
252b5132
RH
10741 /* If we are going to add in a base register, and the
10742 target register and the base register are the same,
10743 then we are using AT as a temporary register. Since
10744 we want to load the constant into AT, we add our
10745 current AT (from the global offset table) and the
10746 register into the register now, and pretend we were
10747 not using a base register. */
c0ebe874 10748 if (breg != op[0])
67c0d1eb 10749 dreg = tempreg;
252b5132
RH
10750 else
10751 {
9c2799c2 10752 gas_assert (tempreg == AT);
269137b2 10753 load_delay_nop ();
67c0d1eb 10754 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10755 op[0], AT, breg);
10756 dreg = op[0];
252b5132
RH
10757 }
10758
f6a22291 10759 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10760 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10761
252b5132
RH
10762 used_at = 1;
10763 }
43c0598f 10764 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10765 relax_switch ();
252b5132 10766
67c0d1eb 10767 if (gpdelay)
252b5132
RH
10768 {
10769 /* This is needed because this instruction uses $gp, but
f5040a92 10770 the first instruction on the main stream does not. */
67c0d1eb 10771 macro_build (NULL, "nop", "");
252b5132 10772 }
ed6fb7bd 10773
67c0d1eb
RS
10774 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10775 local_reloc_type, mips_gp_register);
f5040a92 10776 if (expr1.X_add_number >= -0x8000
252b5132
RH
10777 && expr1.X_add_number < 0x8000)
10778 {
269137b2 10779 load_delay_nop ();
67c0d1eb
RS
10780 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10781 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10782 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10783 register, the external symbol case ended with a load,
10784 so if the symbol turns out to not be external, and
10785 the next instruction uses tempreg, an unnecessary nop
10786 will be inserted. */
252b5132
RH
10787 }
10788 else
10789 {
c0ebe874 10790 if (breg == op[0])
252b5132
RH
10791 {
10792 /* We must add in the base register now, as in the
f5040a92 10793 external symbol case. */
9c2799c2 10794 gas_assert (tempreg == AT);
269137b2 10795 load_delay_nop ();
67c0d1eb 10796 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10797 op[0], AT, breg);
10798 tempreg = op[0];
252b5132 10799 /* We set breg to 0 because we have arranged to add
f5040a92 10800 it in in both cases. */
252b5132
RH
10801 breg = 0;
10802 }
10803
67c0d1eb
RS
10804 macro_build_lui (&expr1, AT);
10805 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10806 AT, AT, BFD_RELOC_LO16);
67c0d1eb 10807 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10808 tempreg, tempreg, AT);
8fc2e39e 10809 used_at = 1;
252b5132 10810 }
4d7206a2 10811 relax_end ();
252b5132 10812 }
0a44bf69 10813 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10814 {
f5040a92
AO
10815 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10816 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 10817 int add_breg_early = 0;
f5040a92
AO
10818
10819 /* This is the large GOT case. If this is a reference to an
10820 external symbol, and there is no constant, we want
10821 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10822 add $tempreg,$tempreg,$gp
10823 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10824 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10825 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10826 add $tempreg,$tempreg,$gp
10827 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10828
10829 If we have a small constant, and this is a reference to
10830 an external symbol, we want
10831 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10832 add $tempreg,$tempreg,$gp
10833 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10834 addi $tempreg,$tempreg,<constant>
10835
10836 If we have a large constant, and this is a reference to
10837 an external symbol, we want
10838 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10839 addu $tempreg,$tempreg,$gp
10840 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10841 lui $at,<hiconstant>
10842 addi $at,$at,<loconstant>
10843 add $tempreg,$tempreg,$at
10844
10845 If we have NewABI, and we know it's a local symbol, we want
10846 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10847 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10848 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10849
4d7206a2 10850 relax_start (offset_expr.X_add_symbol);
f5040a92 10851
4d7206a2 10852 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10853 offset_expr.X_add_number = 0;
10854
1abe91b1
MR
10855 if (expr1.X_add_number == 0 && breg == 0
10856 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
10857 {
10858 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10859 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10860 }
df58fc94 10861 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10862 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10863 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
10864 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10865 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
10866
10867 if (expr1.X_add_number == 0)
4d7206a2 10868 ;
f5040a92
AO
10869 else if (expr1.X_add_number >= -0x8000
10870 && expr1.X_add_number < 0x8000)
10871 {
67c0d1eb 10872 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10873 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10874 }
ecd13cd3 10875 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10876 {
c0ebe874
RS
10877 unsigned int dreg;
10878
f5040a92
AO
10879 /* If we are going to add in a base register, and the
10880 target register and the base register are the same,
10881 then we are using AT as a temporary register. Since
10882 we want to load the constant into AT, we add our
10883 current AT (from the global offset table) and the
10884 register into the register now, and pretend we were
10885 not using a base register. */
c0ebe874 10886 if (breg != op[0])
f5040a92
AO
10887 dreg = tempreg;
10888 else
10889 {
9c2799c2 10890 gas_assert (tempreg == AT);
67c0d1eb 10891 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10892 op[0], AT, breg);
10893 dreg = op[0];
67c0d1eb 10894 add_breg_early = 1;
f5040a92
AO
10895 }
10896
f6a22291 10897 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10898 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 10899
f5040a92
AO
10900 used_at = 1;
10901 }
10902 else
10903 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10904
4d7206a2 10905 relax_switch ();
f5040a92 10906 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10907 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10908 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10909 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10910 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10911 if (add_breg_early)
f5040a92 10912 {
67c0d1eb 10913 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10914 op[0], tempreg, breg);
f5040a92 10915 breg = 0;
c0ebe874 10916 tempreg = op[0];
f5040a92 10917 }
4d7206a2 10918 relax_end ();
f5040a92 10919 }
252b5132
RH
10920 else
10921 abort ();
10922
10923 if (breg != 0)
c0ebe874 10924 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
10925 break;
10926
52b6b6b9 10927 case M_MSGSND:
df58fc94 10928 gas_assert (!mips_opts.micromips);
c0ebe874 10929 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 10930 break;
52b6b6b9
JM
10931
10932 case M_MSGLD:
df58fc94 10933 gas_assert (!mips_opts.micromips);
c8276761 10934 macro_build (NULL, "c2", "C", 0x02);
c7af4273 10935 break;
52b6b6b9
JM
10936
10937 case M_MSGLD_T:
df58fc94 10938 gas_assert (!mips_opts.micromips);
c0ebe874 10939 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 10940 break;
52b6b6b9
JM
10941
10942 case M_MSGWAIT:
df58fc94 10943 gas_assert (!mips_opts.micromips);
52b6b6b9 10944 macro_build (NULL, "c2", "C", 3);
c7af4273 10945 break;
52b6b6b9
JM
10946
10947 case M_MSGWAIT_T:
df58fc94 10948 gas_assert (!mips_opts.micromips);
c0ebe874 10949 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 10950 break;
52b6b6b9 10951
252b5132
RH
10952 case M_J_A:
10953 /* The j instruction may not be used in PIC code, since it
10954 requires an absolute address. We convert it to a b
10955 instruction. */
10956 if (mips_pic == NO_PIC)
67c0d1eb 10957 macro_build (&offset_expr, "j", "a");
252b5132 10958 else
67c0d1eb 10959 macro_build (&offset_expr, "b", "p");
8fc2e39e 10960 break;
252b5132
RH
10961
10962 /* The jal instructions must be handled as macros because when
10963 generating PIC code they expand to multi-instruction
10964 sequences. Normally they are simple instructions. */
df58fc94 10965 case M_JALS_1:
c0ebe874
RS
10966 op[1] = op[0];
10967 op[0] = RA;
df58fc94
RS
10968 /* Fall through. */
10969 case M_JALS_2:
10970 gas_assert (mips_opts.micromips);
833794fc
MR
10971 if (mips_opts.insn32)
10972 {
1661c76c 10973 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
10974 break;
10975 }
df58fc94
RS
10976 jals = 1;
10977 goto jal;
252b5132 10978 case M_JAL_1:
c0ebe874
RS
10979 op[1] = op[0];
10980 op[0] = RA;
252b5132
RH
10981 /* Fall through. */
10982 case M_JAL_2:
df58fc94 10983 jal:
3e722fb5 10984 if (mips_pic == NO_PIC)
df58fc94
RS
10985 {
10986 s = jals ? "jalrs" : "jalr";
e64af278 10987 if (mips_opts.micromips
833794fc 10988 && !mips_opts.insn32
c0ebe874 10989 && op[0] == RA
e64af278 10990 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 10991 macro_build (NULL, s, "mj", op[1]);
df58fc94 10992 else
c0ebe874 10993 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 10994 }
0a44bf69 10995 else
252b5132 10996 {
df58fc94
RS
10997 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10998 && mips_cprestore_offset >= 0);
10999
c0ebe874 11000 if (op[1] != PIC_CALL_REG)
252b5132 11001 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11002
833794fc
MR
11003 s = ((mips_opts.micromips
11004 && !mips_opts.insn32
11005 && (!mips_opts.noreorder || cprestore))
df58fc94 11006 ? "jalrs" : "jalr");
e64af278 11007 if (mips_opts.micromips
833794fc 11008 && !mips_opts.insn32
c0ebe874 11009 && op[0] == RA
e64af278 11010 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11011 macro_build (NULL, s, "mj", op[1]);
df58fc94 11012 else
c0ebe874 11013 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11014 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11015 {
6478892d 11016 if (mips_cprestore_offset < 0)
1661c76c 11017 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11018 else
11019 {
90ecf173 11020 if (!mips_frame_reg_valid)
7a621144 11021 {
1661c76c 11022 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11023 /* Quiet this warning. */
11024 mips_frame_reg_valid = 1;
11025 }
90ecf173 11026 if (!mips_cprestore_valid)
7a621144 11027 {
1661c76c 11028 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11029 /* Quiet this warning. */
11030 mips_cprestore_valid = 1;
11031 }
d3fca0b5
MR
11032 if (mips_opts.noreorder)
11033 macro_build (NULL, "nop", "");
6478892d 11034 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11035 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11036 mips_gp_register,
256ab948
TS
11037 mips_frame_reg,
11038 HAVE_64BIT_ADDRESSES);
6478892d 11039 }
252b5132
RH
11040 }
11041 }
252b5132 11042
8fc2e39e 11043 break;
252b5132 11044
df58fc94
RS
11045 case M_JALS_A:
11046 gas_assert (mips_opts.micromips);
833794fc
MR
11047 if (mips_opts.insn32)
11048 {
1661c76c 11049 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11050 break;
11051 }
df58fc94
RS
11052 jals = 1;
11053 /* Fall through. */
252b5132
RH
11054 case M_JAL_A:
11055 if (mips_pic == NO_PIC)
df58fc94 11056 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11057 else if (mips_pic == SVR4_PIC)
11058 {
11059 /* If this is a reference to an external symbol, and we are
11060 using a small GOT, we want
11061 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11062 nop
f9419b05 11063 jalr $ra,$25
252b5132
RH
11064 nop
11065 lw $gp,cprestore($sp)
11066 The cprestore value is set using the .cprestore
11067 pseudo-op. If we are using a big GOT, we want
11068 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11069 addu $25,$25,$gp
11070 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11071 nop
f9419b05 11072 jalr $ra,$25
252b5132
RH
11073 nop
11074 lw $gp,cprestore($sp)
11075 If the symbol is not external, we want
11076 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11077 nop
11078 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11079 jalr $ra,$25
252b5132 11080 nop
438c16b8 11081 lw $gp,cprestore($sp)
f5040a92
AO
11082
11083 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11084 sequences above, minus nops, unless the symbol is local,
11085 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11086 GOT_DISP. */
438c16b8 11087 if (HAVE_NEWABI)
252b5132 11088 {
90ecf173 11089 if (!mips_big_got)
f5040a92 11090 {
4d7206a2 11091 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11092 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11093 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11094 mips_gp_register);
4d7206a2 11095 relax_switch ();
67c0d1eb
RS
11096 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11097 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11098 mips_gp_register);
11099 relax_end ();
f5040a92
AO
11100 }
11101 else
11102 {
4d7206a2 11103 relax_start (offset_expr.X_add_symbol);
df58fc94 11104 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11105 BFD_RELOC_MIPS_CALL_HI16);
11106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11107 PIC_CALL_REG, mips_gp_register);
11108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11109 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11110 PIC_CALL_REG);
4d7206a2 11111 relax_switch ();
67c0d1eb
RS
11112 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11113 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11114 mips_gp_register);
11115 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11116 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11117 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11118 relax_end ();
f5040a92 11119 }
684022ea 11120
df58fc94 11121 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11122 }
11123 else
11124 {
4d7206a2 11125 relax_start (offset_expr.X_add_symbol);
90ecf173 11126 if (!mips_big_got)
438c16b8 11127 {
67c0d1eb
RS
11128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11129 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11130 mips_gp_register);
269137b2 11131 load_delay_nop ();
4d7206a2 11132 relax_switch ();
438c16b8 11133 }
252b5132 11134 else
252b5132 11135 {
67c0d1eb
RS
11136 int gpdelay;
11137
11138 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11139 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11140 BFD_RELOC_MIPS_CALL_HI16);
11141 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11142 PIC_CALL_REG, mips_gp_register);
11143 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11144 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11145 PIC_CALL_REG);
269137b2 11146 load_delay_nop ();
4d7206a2 11147 relax_switch ();
67c0d1eb
RS
11148 if (gpdelay)
11149 macro_build (NULL, "nop", "");
252b5132 11150 }
67c0d1eb
RS
11151 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11152 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11153 mips_gp_register);
269137b2 11154 load_delay_nop ();
67c0d1eb
RS
11155 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11156 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11157 relax_end ();
df58fc94 11158 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11159
6478892d 11160 if (mips_cprestore_offset < 0)
1661c76c 11161 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11162 else
11163 {
90ecf173 11164 if (!mips_frame_reg_valid)
7a621144 11165 {
1661c76c 11166 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11167 /* Quiet this warning. */
11168 mips_frame_reg_valid = 1;
11169 }
90ecf173 11170 if (!mips_cprestore_valid)
7a621144 11171 {
1661c76c 11172 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11173 /* Quiet this warning. */
11174 mips_cprestore_valid = 1;
11175 }
6478892d 11176 if (mips_opts.noreorder)
67c0d1eb 11177 macro_build (NULL, "nop", "");
6478892d 11178 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11179 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11180 mips_gp_register,
256ab948
TS
11181 mips_frame_reg,
11182 HAVE_64BIT_ADDRESSES);
6478892d 11183 }
252b5132
RH
11184 }
11185 }
0a44bf69 11186 else if (mips_pic == VXWORKS_PIC)
1661c76c 11187 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11188 else
11189 abort ();
11190
8fc2e39e 11191 break;
252b5132 11192
7f3c4072 11193 case M_LBUE_AB:
7f3c4072
CM
11194 s = "lbue";
11195 fmt = "t,+j(b)";
11196 offbits = 9;
11197 goto ld_st;
11198 case M_LHUE_AB:
7f3c4072
CM
11199 s = "lhue";
11200 fmt = "t,+j(b)";
11201 offbits = 9;
11202 goto ld_st;
11203 case M_LBE_AB:
7f3c4072
CM
11204 s = "lbe";
11205 fmt = "t,+j(b)";
11206 offbits = 9;
11207 goto ld_st;
11208 case M_LHE_AB:
7f3c4072
CM
11209 s = "lhe";
11210 fmt = "t,+j(b)";
11211 offbits = 9;
11212 goto ld_st;
11213 case M_LLE_AB:
7f3c4072
CM
11214 s = "lle";
11215 fmt = "t,+j(b)";
11216 offbits = 9;
11217 goto ld_st;
11218 case M_LWE_AB:
7f3c4072
CM
11219 s = "lwe";
11220 fmt = "t,+j(b)";
11221 offbits = 9;
11222 goto ld_st;
11223 case M_LWLE_AB:
7f3c4072
CM
11224 s = "lwle";
11225 fmt = "t,+j(b)";
11226 offbits = 9;
11227 goto ld_st;
11228 case M_LWRE_AB:
7f3c4072
CM
11229 s = "lwre";
11230 fmt = "t,+j(b)";
11231 offbits = 9;
11232 goto ld_st;
11233 case M_SBE_AB:
7f3c4072
CM
11234 s = "sbe";
11235 fmt = "t,+j(b)";
11236 offbits = 9;
11237 goto ld_st;
11238 case M_SCE_AB:
7f3c4072
CM
11239 s = "sce";
11240 fmt = "t,+j(b)";
11241 offbits = 9;
11242 goto ld_st;
11243 case M_SHE_AB:
7f3c4072
CM
11244 s = "she";
11245 fmt = "t,+j(b)";
11246 offbits = 9;
11247 goto ld_st;
11248 case M_SWE_AB:
7f3c4072
CM
11249 s = "swe";
11250 fmt = "t,+j(b)";
11251 offbits = 9;
11252 goto ld_st;
11253 case M_SWLE_AB:
7f3c4072
CM
11254 s = "swle";
11255 fmt = "t,+j(b)";
11256 offbits = 9;
11257 goto ld_st;
11258 case M_SWRE_AB:
7f3c4072
CM
11259 s = "swre";
11260 fmt = "t,+j(b)";
11261 offbits = 9;
11262 goto ld_st;
dec0624d 11263 case M_ACLR_AB:
dec0624d 11264 s = "aclr";
dec0624d 11265 fmt = "\\,~(b)";
7f3c4072 11266 offbits = 12;
dec0624d
MR
11267 goto ld_st;
11268 case M_ASET_AB:
dec0624d 11269 s = "aset";
dec0624d 11270 fmt = "\\,~(b)";
7f3c4072 11271 offbits = 12;
dec0624d 11272 goto ld_st;
252b5132
RH
11273 case M_LB_AB:
11274 s = "lb";
df58fc94 11275 fmt = "t,o(b)";
252b5132
RH
11276 goto ld;
11277 case M_LBU_AB:
11278 s = "lbu";
df58fc94 11279 fmt = "t,o(b)";
252b5132
RH
11280 goto ld;
11281 case M_LH_AB:
11282 s = "lh";
df58fc94 11283 fmt = "t,o(b)";
252b5132
RH
11284 goto ld;
11285 case M_LHU_AB:
11286 s = "lhu";
df58fc94 11287 fmt = "t,o(b)";
252b5132
RH
11288 goto ld;
11289 case M_LW_AB:
11290 s = "lw";
df58fc94 11291 fmt = "t,o(b)";
252b5132
RH
11292 goto ld;
11293 case M_LWC0_AB:
df58fc94 11294 gas_assert (!mips_opts.micromips);
252b5132 11295 s = "lwc0";
df58fc94 11296 fmt = "E,o(b)";
bdaaa2e1 11297 /* Itbl support may require additional care here. */
252b5132 11298 coproc = 1;
df58fc94 11299 goto ld_st;
252b5132
RH
11300 case M_LWC1_AB:
11301 s = "lwc1";
df58fc94 11302 fmt = "T,o(b)";
bdaaa2e1 11303 /* Itbl support may require additional care here. */
252b5132 11304 coproc = 1;
df58fc94 11305 goto ld_st;
252b5132
RH
11306 case M_LWC2_AB:
11307 s = "lwc2";
df58fc94 11308 fmt = COP12_FMT;
7361da2c
AB
11309 offbits = (mips_opts.micromips ? 12
11310 : ISA_IS_R6 (mips_opts.isa) ? 11
11311 : 16);
bdaaa2e1 11312 /* Itbl support may require additional care here. */
252b5132 11313 coproc = 1;
df58fc94 11314 goto ld_st;
252b5132 11315 case M_LWC3_AB:
df58fc94 11316 gas_assert (!mips_opts.micromips);
252b5132 11317 s = "lwc3";
df58fc94 11318 fmt = "E,o(b)";
bdaaa2e1 11319 /* Itbl support may require additional care here. */
252b5132 11320 coproc = 1;
df58fc94 11321 goto ld_st;
252b5132
RH
11322 case M_LWL_AB:
11323 s = "lwl";
df58fc94 11324 fmt = MEM12_FMT;
7f3c4072 11325 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11326 goto ld_st;
252b5132
RH
11327 case M_LWR_AB:
11328 s = "lwr";
df58fc94 11329 fmt = MEM12_FMT;
7f3c4072 11330 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11331 goto ld_st;
252b5132 11332 case M_LDC1_AB:
252b5132 11333 s = "ldc1";
df58fc94 11334 fmt = "T,o(b)";
bdaaa2e1 11335 /* Itbl support may require additional care here. */
252b5132 11336 coproc = 1;
df58fc94 11337 goto ld_st;
252b5132
RH
11338 case M_LDC2_AB:
11339 s = "ldc2";
df58fc94 11340 fmt = COP12_FMT;
7361da2c
AB
11341 offbits = (mips_opts.micromips ? 12
11342 : ISA_IS_R6 (mips_opts.isa) ? 11
11343 : 16);
bdaaa2e1 11344 /* Itbl support may require additional care here. */
252b5132 11345 coproc = 1;
df58fc94 11346 goto ld_st;
c77c0862 11347 case M_LQC2_AB:
c77c0862 11348 s = "lqc2";
14daeee3 11349 fmt = "+7,o(b)";
c77c0862
RS
11350 /* Itbl support may require additional care here. */
11351 coproc = 1;
11352 goto ld_st;
252b5132
RH
11353 case M_LDC3_AB:
11354 s = "ldc3";
df58fc94 11355 fmt = "E,o(b)";
bdaaa2e1 11356 /* Itbl support may require additional care here. */
252b5132 11357 coproc = 1;
df58fc94 11358 goto ld_st;
252b5132
RH
11359 case M_LDL_AB:
11360 s = "ldl";
df58fc94 11361 fmt = MEM12_FMT;
7f3c4072 11362 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11363 goto ld_st;
252b5132
RH
11364 case M_LDR_AB:
11365 s = "ldr";
df58fc94 11366 fmt = MEM12_FMT;
7f3c4072 11367 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11368 goto ld_st;
252b5132
RH
11369 case M_LL_AB:
11370 s = "ll";
7361da2c
AB
11371 fmt = LL_SC_FMT;
11372 offbits = (mips_opts.micromips ? 12
11373 : ISA_IS_R6 (mips_opts.isa) ? 9
11374 : 16);
252b5132
RH
11375 goto ld;
11376 case M_LLD_AB:
11377 s = "lld";
7361da2c
AB
11378 fmt = LL_SC_FMT;
11379 offbits = (mips_opts.micromips ? 12
11380 : ISA_IS_R6 (mips_opts.isa) ? 9
11381 : 16);
252b5132
RH
11382 goto ld;
11383 case M_LWU_AB:
11384 s = "lwu";
df58fc94 11385 fmt = MEM12_FMT;
7f3c4072 11386 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11387 goto ld;
11388 case M_LWP_AB:
df58fc94
RS
11389 gas_assert (mips_opts.micromips);
11390 s = "lwp";
11391 fmt = "t,~(b)";
7f3c4072 11392 offbits = 12;
df58fc94
RS
11393 lp = 1;
11394 goto ld;
11395 case M_LDP_AB:
df58fc94
RS
11396 gas_assert (mips_opts.micromips);
11397 s = "ldp";
11398 fmt = "t,~(b)";
7f3c4072 11399 offbits = 12;
df58fc94
RS
11400 lp = 1;
11401 goto ld;
11402 case M_LWM_AB:
df58fc94
RS
11403 gas_assert (mips_opts.micromips);
11404 s = "lwm";
11405 fmt = "n,~(b)";
7f3c4072 11406 offbits = 12;
df58fc94
RS
11407 goto ld_st;
11408 case M_LDM_AB:
df58fc94
RS
11409 gas_assert (mips_opts.micromips);
11410 s = "ldm";
11411 fmt = "n,~(b)";
7f3c4072 11412 offbits = 12;
df58fc94
RS
11413 goto ld_st;
11414
252b5132 11415 ld:
f19ccbda 11416 /* We don't want to use $0 as tempreg. */
c0ebe874 11417 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11418 goto ld_st;
252b5132 11419 else
c0ebe874 11420 tempreg = op[0] + lp;
df58fc94
RS
11421 goto ld_noat;
11422
252b5132
RH
11423 case M_SB_AB:
11424 s = "sb";
df58fc94
RS
11425 fmt = "t,o(b)";
11426 goto ld_st;
252b5132
RH
11427 case M_SH_AB:
11428 s = "sh";
df58fc94
RS
11429 fmt = "t,o(b)";
11430 goto ld_st;
252b5132
RH
11431 case M_SW_AB:
11432 s = "sw";
df58fc94
RS
11433 fmt = "t,o(b)";
11434 goto ld_st;
252b5132 11435 case M_SWC0_AB:
df58fc94 11436 gas_assert (!mips_opts.micromips);
252b5132 11437 s = "swc0";
df58fc94 11438 fmt = "E,o(b)";
bdaaa2e1 11439 /* Itbl support may require additional care here. */
252b5132 11440 coproc = 1;
df58fc94 11441 goto ld_st;
252b5132
RH
11442 case M_SWC1_AB:
11443 s = "swc1";
df58fc94 11444 fmt = "T,o(b)";
bdaaa2e1 11445 /* Itbl support may require additional care here. */
252b5132 11446 coproc = 1;
df58fc94 11447 goto ld_st;
252b5132
RH
11448 case M_SWC2_AB:
11449 s = "swc2";
df58fc94 11450 fmt = COP12_FMT;
7361da2c
AB
11451 offbits = (mips_opts.micromips ? 12
11452 : ISA_IS_R6 (mips_opts.isa) ? 11
11453 : 16);
bdaaa2e1 11454 /* Itbl support may require additional care here. */
252b5132 11455 coproc = 1;
df58fc94 11456 goto ld_st;
252b5132 11457 case M_SWC3_AB:
df58fc94 11458 gas_assert (!mips_opts.micromips);
252b5132 11459 s = "swc3";
df58fc94 11460 fmt = "E,o(b)";
bdaaa2e1 11461 /* Itbl support may require additional care here. */
252b5132 11462 coproc = 1;
df58fc94 11463 goto ld_st;
252b5132
RH
11464 case M_SWL_AB:
11465 s = "swl";
df58fc94 11466 fmt = MEM12_FMT;
7f3c4072 11467 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11468 goto ld_st;
252b5132
RH
11469 case M_SWR_AB:
11470 s = "swr";
df58fc94 11471 fmt = MEM12_FMT;
7f3c4072 11472 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11473 goto ld_st;
252b5132
RH
11474 case M_SC_AB:
11475 s = "sc";
7361da2c
AB
11476 fmt = LL_SC_FMT;
11477 offbits = (mips_opts.micromips ? 12
11478 : ISA_IS_R6 (mips_opts.isa) ? 9
11479 : 16);
df58fc94 11480 goto ld_st;
252b5132
RH
11481 case M_SCD_AB:
11482 s = "scd";
7361da2c
AB
11483 fmt = LL_SC_FMT;
11484 offbits = (mips_opts.micromips ? 12
11485 : ISA_IS_R6 (mips_opts.isa) ? 9
11486 : 16);
df58fc94 11487 goto ld_st;
d43b4baf
TS
11488 case M_CACHE_AB:
11489 s = "cache";
7361da2c
AB
11490 fmt = (mips_opts.micromips ? "k,~(b)"
11491 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11492 : "k,o(b)");
11493 offbits = (mips_opts.micromips ? 12
11494 : ISA_IS_R6 (mips_opts.isa) ? 9
11495 : 16);
7f3c4072
CM
11496 goto ld_st;
11497 case M_CACHEE_AB:
7f3c4072
CM
11498 s = "cachee";
11499 fmt = "k,+j(b)";
11500 offbits = 9;
df58fc94 11501 goto ld_st;
3eebd5eb
MR
11502 case M_PREF_AB:
11503 s = "pref";
7361da2c
AB
11504 fmt = (mips_opts.micromips ? "k,~(b)"
11505 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11506 : "k,o(b)");
11507 offbits = (mips_opts.micromips ? 12
11508 : ISA_IS_R6 (mips_opts.isa) ? 9
11509 : 16);
7f3c4072
CM
11510 goto ld_st;
11511 case M_PREFE_AB:
7f3c4072
CM
11512 s = "prefe";
11513 fmt = "k,+j(b)";
11514 offbits = 9;
df58fc94 11515 goto ld_st;
252b5132 11516 case M_SDC1_AB:
252b5132 11517 s = "sdc1";
df58fc94 11518 fmt = "T,o(b)";
252b5132 11519 coproc = 1;
bdaaa2e1 11520 /* Itbl support may require additional care here. */
df58fc94 11521 goto ld_st;
252b5132
RH
11522 case M_SDC2_AB:
11523 s = "sdc2";
df58fc94 11524 fmt = COP12_FMT;
7361da2c
AB
11525 offbits = (mips_opts.micromips ? 12
11526 : ISA_IS_R6 (mips_opts.isa) ? 11
11527 : 16);
c77c0862
RS
11528 /* Itbl support may require additional care here. */
11529 coproc = 1;
11530 goto ld_st;
11531 case M_SQC2_AB:
c77c0862 11532 s = "sqc2";
14daeee3 11533 fmt = "+7,o(b)";
bdaaa2e1 11534 /* Itbl support may require additional care here. */
252b5132 11535 coproc = 1;
df58fc94 11536 goto ld_st;
252b5132 11537 case M_SDC3_AB:
df58fc94 11538 gas_assert (!mips_opts.micromips);
252b5132 11539 s = "sdc3";
df58fc94 11540 fmt = "E,o(b)";
bdaaa2e1 11541 /* Itbl support may require additional care here. */
252b5132 11542 coproc = 1;
df58fc94 11543 goto ld_st;
252b5132
RH
11544 case M_SDL_AB:
11545 s = "sdl";
df58fc94 11546 fmt = MEM12_FMT;
7f3c4072 11547 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11548 goto ld_st;
252b5132
RH
11549 case M_SDR_AB:
11550 s = "sdr";
df58fc94 11551 fmt = MEM12_FMT;
7f3c4072 11552 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11553 goto ld_st;
11554 case M_SWP_AB:
df58fc94
RS
11555 gas_assert (mips_opts.micromips);
11556 s = "swp";
11557 fmt = "t,~(b)";
7f3c4072 11558 offbits = 12;
df58fc94
RS
11559 goto ld_st;
11560 case M_SDP_AB:
df58fc94
RS
11561 gas_assert (mips_opts.micromips);
11562 s = "sdp";
11563 fmt = "t,~(b)";
7f3c4072 11564 offbits = 12;
df58fc94
RS
11565 goto ld_st;
11566 case M_SWM_AB:
df58fc94
RS
11567 gas_assert (mips_opts.micromips);
11568 s = "swm";
11569 fmt = "n,~(b)";
7f3c4072 11570 offbits = 12;
df58fc94
RS
11571 goto ld_st;
11572 case M_SDM_AB:
df58fc94
RS
11573 gas_assert (mips_opts.micromips);
11574 s = "sdm";
11575 fmt = "n,~(b)";
7f3c4072 11576 offbits = 12;
df58fc94
RS
11577
11578 ld_st:
8fc2e39e 11579 tempreg = AT;
df58fc94 11580 ld_noat:
c0ebe874 11581 breg = op[2];
f2ae14a1
RS
11582 if (small_offset_p (0, align, 16))
11583 {
11584 /* The first case exists for M_LD_AB and M_SD_AB, which are
11585 macros for o32 but which should act like normal instructions
11586 otherwise. */
11587 if (offbits == 16)
c0ebe874 11588 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11589 offset_reloc[1], offset_reloc[2], breg);
11590 else if (small_offset_p (0, align, offbits))
11591 {
11592 if (offbits == 0)
c0ebe874 11593 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11594 else
c0ebe874 11595 macro_build (NULL, s, fmt, op[0],
c8276761 11596 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11597 }
11598 else
11599 {
11600 if (tempreg == AT)
11601 used_at = 1;
11602 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11603 tempreg, breg, -1, offset_reloc[0],
11604 offset_reloc[1], offset_reloc[2]);
11605 if (offbits == 0)
c0ebe874 11606 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11607 else
c0ebe874 11608 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11609 }
11610 break;
11611 }
11612
11613 if (tempreg == AT)
11614 used_at = 1;
11615
252b5132
RH
11616 if (offset_expr.X_op != O_constant
11617 && offset_expr.X_op != O_symbol)
11618 {
1661c76c 11619 as_bad (_("expression too complex"));
252b5132
RH
11620 offset_expr.X_op = O_constant;
11621 }
11622
2051e8c4
MR
11623 if (HAVE_32BIT_ADDRESSES
11624 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11625 {
11626 char value [32];
11627
11628 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11629 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11630 }
2051e8c4 11631
252b5132
RH
11632 /* A constant expression in PIC code can be handled just as it
11633 is in non PIC code. */
aed1a261
RS
11634 if (offset_expr.X_op == O_constant)
11635 {
f2ae14a1
RS
11636 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11637 offbits == 0 ? 16 : offbits);
11638 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11639
f2ae14a1
RS
11640 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11641 if (breg != 0)
11642 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11643 tempreg, tempreg, breg);
7f3c4072 11644 if (offbits == 0)
dd6a37e7 11645 {
f2ae14a1 11646 if (offset_expr.X_add_number != 0)
dd6a37e7 11647 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11648 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11649 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11650 }
7f3c4072 11651 else if (offbits == 16)
c0ebe874 11652 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11653 else
c0ebe874 11654 macro_build (NULL, s, fmt, op[0],
c8276761 11655 (int) offset_expr.X_add_number, tempreg);
df58fc94 11656 }
7f3c4072 11657 else if (offbits != 16)
df58fc94 11658 {
7f3c4072
CM
11659 /* The offset field is too narrow to be used for a low-part
11660 relocation, so load the whole address into the auxillary
f2ae14a1
RS
11661 register. */
11662 load_address (tempreg, &offset_expr, &used_at);
11663 if (breg != 0)
11664 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11665 tempreg, tempreg, breg);
7f3c4072 11666 if (offbits == 0)
c0ebe874 11667 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11668 else
c0ebe874 11669 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11670 }
11671 else if (mips_pic == NO_PIC)
252b5132
RH
11672 {
11673 /* If this is a reference to a GP relative symbol, and there
11674 is no base register, we want
c0ebe874 11675 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11676 Otherwise, if there is no base register, we want
11677 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11678 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11679 If we have a constant, we need two instructions anyhow,
11680 so we always use the latter form.
11681
11682 If we have a base register, and this is a reference to a
11683 GP relative symbol, we want
11684 addu $tempreg,$breg,$gp
c0ebe874 11685 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11686 Otherwise we want
11687 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11688 addu $tempreg,$tempreg,$breg
c0ebe874 11689 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11690 With a constant we always use the latter case.
76b3015f 11691
d6bc6245
TS
11692 With 64bit address space and no base register and $at usable,
11693 we want
11694 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11695 lui $at,<sym> (BFD_RELOC_HI16_S)
11696 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11697 dsll32 $tempreg,0
11698 daddu $tempreg,$at
c0ebe874 11699 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11700 If we have a base register, we want
11701 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11702 lui $at,<sym> (BFD_RELOC_HI16_S)
11703 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11704 daddu $at,$breg
11705 dsll32 $tempreg,0
11706 daddu $tempreg,$at
c0ebe874 11707 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11708
11709 Without $at we can't generate the optimal path for superscalar
11710 processors here since this would require two temporary registers.
11711 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11712 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11713 dsll $tempreg,16
11714 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11715 dsll $tempreg,16
c0ebe874 11716 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11717 If we have a base register, we want
11718 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11719 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11720 dsll $tempreg,16
11721 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11722 dsll $tempreg,16
11723 daddu $tempreg,$tempreg,$breg
c0ebe874 11724 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11725
6caf9ef4 11726 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11727 the same sequence as in 32bit address space. */
11728 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11729 {
aed1a261 11730 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11731 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11732 {
11733 relax_start (offset_expr.X_add_symbol);
11734 if (breg == 0)
11735 {
c0ebe874 11736 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11737 BFD_RELOC_GPREL16, mips_gp_register);
11738 }
11739 else
11740 {
11741 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11742 tempreg, breg, mips_gp_register);
c0ebe874 11743 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11744 BFD_RELOC_GPREL16, tempreg);
11745 }
11746 relax_switch ();
11747 }
d6bc6245 11748
741fe287 11749 if (used_at == 0 && mips_opts.at)
d6bc6245 11750 {
df58fc94 11751 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11752 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11753 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11754 BFD_RELOC_HI16_S);
11755 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11756 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11757 if (breg != 0)
67c0d1eb 11758 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11759 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11760 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11761 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11762 tempreg);
d6bc6245
TS
11763 used_at = 1;
11764 }
11765 else
11766 {
df58fc94 11767 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11768 BFD_RELOC_MIPS_HIGHEST);
11769 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11770 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11771 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11772 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11773 tempreg, BFD_RELOC_HI16_S);
df58fc94 11774 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11775 if (breg != 0)
67c0d1eb 11776 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11777 tempreg, tempreg, breg);
c0ebe874 11778 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11779 BFD_RELOC_LO16, tempreg);
d6bc6245 11780 }
6caf9ef4
TS
11781
11782 if (mips_relax.sequence)
11783 relax_end ();
8fc2e39e 11784 break;
d6bc6245 11785 }
256ab948 11786
252b5132
RH
11787 if (breg == 0)
11788 {
67c0d1eb 11789 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11790 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11791 {
4d7206a2 11792 relax_start (offset_expr.X_add_symbol);
c0ebe874 11793 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11794 mips_gp_register);
4d7206a2 11795 relax_switch ();
252b5132 11796 }
67c0d1eb 11797 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11798 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11799 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11800 if (mips_relax.sequence)
11801 relax_end ();
252b5132
RH
11802 }
11803 else
11804 {
67c0d1eb 11805 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11806 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11807 {
4d7206a2 11808 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11809 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11810 tempreg, breg, mips_gp_register);
c0ebe874 11811 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11812 BFD_RELOC_GPREL16, tempreg);
4d7206a2 11813 relax_switch ();
252b5132 11814 }
67c0d1eb
RS
11815 macro_build_lui (&offset_expr, tempreg);
11816 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11817 tempreg, tempreg, breg);
c0ebe874 11818 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11819 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11820 if (mips_relax.sequence)
11821 relax_end ();
252b5132
RH
11822 }
11823 }
0a44bf69 11824 else if (!mips_big_got)
252b5132 11825 {
ed6fb7bd 11826 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 11827
252b5132
RH
11828 /* If this is a reference to an external symbol, we want
11829 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11830 nop
c0ebe874 11831 <op> op[0],0($tempreg)
252b5132
RH
11832 Otherwise we want
11833 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11834 nop
11835 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11836 <op> op[0],0($tempreg)
f5040a92
AO
11837
11838 For NewABI, we want
11839 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11840 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 11841
252b5132
RH
11842 If there is a base register, we add it to $tempreg before
11843 the <op>. If there is a constant, we stick it in the
11844 <op> instruction. We don't handle constants larger than
11845 16 bits, because we have no way to load the upper 16 bits
11846 (actually, we could handle them for the subset of cases
11847 in which we are not using $at). */
9c2799c2 11848 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
11849 if (HAVE_NEWABI)
11850 {
67c0d1eb
RS
11851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11852 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11853 if (breg != 0)
67c0d1eb 11854 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11855 tempreg, tempreg, breg);
c0ebe874 11856 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11857 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
11858 break;
11859 }
252b5132
RH
11860 expr1.X_add_number = offset_expr.X_add_number;
11861 offset_expr.X_add_number = 0;
11862 if (expr1.X_add_number < -0x8000
11863 || expr1.X_add_number >= 0x8000)
11864 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
11865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11866 lw_reloc_type, mips_gp_register);
269137b2 11867 load_delay_nop ();
4d7206a2
RS
11868 relax_start (offset_expr.X_add_symbol);
11869 relax_switch ();
67c0d1eb
RS
11870 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11871 tempreg, BFD_RELOC_LO16);
4d7206a2 11872 relax_end ();
252b5132 11873 if (breg != 0)
67c0d1eb 11874 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11875 tempreg, tempreg, breg);
c0ebe874 11876 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11877 }
0a44bf69 11878 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11879 {
67c0d1eb 11880 int gpdelay;
252b5132
RH
11881
11882 /* If this is a reference to an external symbol, we want
11883 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11884 addu $tempreg,$tempreg,$gp
11885 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11886 <op> op[0],0($tempreg)
252b5132
RH
11887 Otherwise we want
11888 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11889 nop
11890 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11891 <op> op[0],0($tempreg)
252b5132
RH
11892 If there is a base register, we add it to $tempreg before
11893 the <op>. If there is a constant, we stick it in the
11894 <op> instruction. We don't handle constants larger than
11895 16 bits, because we have no way to load the upper 16 bits
11896 (actually, we could handle them for the subset of cases
f5040a92 11897 in which we are not using $at). */
9c2799c2 11898 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
11899 expr1.X_add_number = offset_expr.X_add_number;
11900 offset_expr.X_add_number = 0;
11901 if (expr1.X_add_number < -0x8000
11902 || expr1.X_add_number >= 0x8000)
11903 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11904 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11905 relax_start (offset_expr.X_add_symbol);
df58fc94 11906 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11907 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11908 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11909 mips_gp_register);
11910 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11911 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 11912 relax_switch ();
67c0d1eb
RS
11913 if (gpdelay)
11914 macro_build (NULL, "nop", "");
11915 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11916 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11917 load_delay_nop ();
67c0d1eb
RS
11918 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11919 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11920 relax_end ();
11921
252b5132 11922 if (breg != 0)
67c0d1eb 11923 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11924 tempreg, tempreg, breg);
c0ebe874 11925 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11926 }
0a44bf69 11927 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11928 {
f5040a92
AO
11929 /* If this is a reference to an external symbol, we want
11930 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11931 add $tempreg,$tempreg,$gp
11932 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11933 <op> op[0],<ofst>($tempreg)
f5040a92
AO
11934 Otherwise, for local symbols, we want:
11935 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11936 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 11937 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 11938 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11939 offset_expr.X_add_number = 0;
11940 if (expr1.X_add_number < -0x8000
11941 || expr1.X_add_number >= 0x8000)
11942 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 11943 relax_start (offset_expr.X_add_symbol);
df58fc94 11944 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11945 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11946 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11947 mips_gp_register);
11948 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11949 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 11950 if (breg != 0)
67c0d1eb 11951 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11952 tempreg, tempreg, breg);
c0ebe874 11953 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 11954
4d7206a2 11955 relax_switch ();
f5040a92 11956 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11957 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11958 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11959 if (breg != 0)
67c0d1eb 11960 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11961 tempreg, tempreg, breg);
c0ebe874 11962 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11963 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 11964 relax_end ();
f5040a92 11965 }
252b5132
RH
11966 else
11967 abort ();
11968
252b5132
RH
11969 break;
11970
833794fc
MR
11971 case M_JRADDIUSP:
11972 gas_assert (mips_opts.micromips);
11973 gas_assert (mips_opts.insn32);
11974 start_noreorder ();
11975 macro_build (NULL, "jr", "s", RA);
c0ebe874 11976 expr1.X_add_number = op[0] << 2;
833794fc
MR
11977 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11978 end_noreorder ();
11979 break;
11980
11981 case M_JRC:
11982 gas_assert (mips_opts.micromips);
11983 gas_assert (mips_opts.insn32);
c0ebe874 11984 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
11985 if (mips_opts.noreorder)
11986 macro_build (NULL, "nop", "");
11987 break;
11988
252b5132
RH
11989 case M_LI:
11990 case M_LI_S:
c0ebe874 11991 load_register (op[0], &imm_expr, 0);
8fc2e39e 11992 break;
252b5132
RH
11993
11994 case M_DLI:
c0ebe874 11995 load_register (op[0], &imm_expr, 1);
8fc2e39e 11996 break;
252b5132
RH
11997
11998 case M_LI_SS:
11999 if (imm_expr.X_op == O_constant)
12000 {
8fc2e39e 12001 used_at = 1;
67c0d1eb 12002 load_register (AT, &imm_expr, 0);
c0ebe874 12003 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12004 break;
12005 }
12006 else
12007 {
b0e6f033
RS
12008 gas_assert (imm_expr.X_op == O_absent
12009 && offset_expr.X_op == O_symbol
90ecf173
MR
12010 && strcmp (segment_name (S_GET_SEGMENT
12011 (offset_expr.X_add_symbol)),
12012 ".lit4") == 0
12013 && offset_expr.X_add_number == 0);
c0ebe874 12014 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12015 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12016 break;
252b5132
RH
12017 }
12018
12019 case M_LI_D:
ca4e0257
RS
12020 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12021 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12022 order 32 bits of the value and the low order 32 bits are either
12023 zero or in OFFSET_EXPR. */
b0e6f033 12024 if (imm_expr.X_op == O_constant)
252b5132 12025 {
bad1aba3 12026 if (GPR_SIZE == 64)
c0ebe874 12027 load_register (op[0], &imm_expr, 1);
252b5132
RH
12028 else
12029 {
12030 int hreg, lreg;
12031
12032 if (target_big_endian)
12033 {
c0ebe874
RS
12034 hreg = op[0];
12035 lreg = op[0] + 1;
252b5132
RH
12036 }
12037 else
12038 {
c0ebe874
RS
12039 hreg = op[0] + 1;
12040 lreg = op[0];
252b5132
RH
12041 }
12042
12043 if (hreg <= 31)
67c0d1eb 12044 load_register (hreg, &imm_expr, 0);
252b5132
RH
12045 if (lreg <= 31)
12046 {
12047 if (offset_expr.X_op == O_absent)
67c0d1eb 12048 move_register (lreg, 0);
252b5132
RH
12049 else
12050 {
9c2799c2 12051 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12052 load_register (lreg, &offset_expr, 0);
252b5132
RH
12053 }
12054 }
12055 }
8fc2e39e 12056 break;
252b5132 12057 }
b0e6f033 12058 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12059
12060 /* We know that sym is in the .rdata section. First we get the
12061 upper 16 bits of the address. */
12062 if (mips_pic == NO_PIC)
12063 {
67c0d1eb 12064 macro_build_lui (&offset_expr, AT);
8fc2e39e 12065 used_at = 1;
252b5132 12066 }
0a44bf69 12067 else
252b5132 12068 {
67c0d1eb
RS
12069 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12070 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12071 used_at = 1;
252b5132 12072 }
bdaaa2e1 12073
252b5132 12074 /* Now we load the register(s). */
bad1aba3 12075 if (GPR_SIZE == 64)
8fc2e39e
TS
12076 {
12077 used_at = 1;
c0ebe874
RS
12078 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12079 BFD_RELOC_LO16, AT);
8fc2e39e 12080 }
252b5132
RH
12081 else
12082 {
8fc2e39e 12083 used_at = 1;
c0ebe874
RS
12084 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12085 BFD_RELOC_LO16, AT);
12086 if (op[0] != RA)
252b5132
RH
12087 {
12088 /* FIXME: How in the world do we deal with the possible
12089 overflow here? */
12090 offset_expr.X_add_number += 4;
67c0d1eb 12091 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12092 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12093 }
12094 }
252b5132
RH
12095 break;
12096
12097 case M_LI_DD:
ca4e0257
RS
12098 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12099 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12100 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12101 the value and the low order 32 bits are either zero or in
12102 OFFSET_EXPR. */
b0e6f033 12103 if (imm_expr.X_op == O_constant)
252b5132 12104 {
8fc2e39e 12105 used_at = 1;
bad1aba3 12106 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12107 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12108 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12109 else
12110 {
351cdf24
MF
12111 if (ISA_HAS_MXHC1 (mips_opts.isa))
12112 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12113 else if (FPR_SIZE != 32)
12114 as_bad (_("Unable to generate `%s' compliant code "
12115 "without mthc1"),
12116 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12117 else
12118 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12119 if (offset_expr.X_op == O_absent)
c0ebe874 12120 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12121 else
12122 {
9c2799c2 12123 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12124 load_register (AT, &offset_expr, 0);
c0ebe874 12125 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12126 }
12127 }
12128 break;
12129 }
12130
b0e6f033
RS
12131 gas_assert (imm_expr.X_op == O_absent
12132 && offset_expr.X_op == O_symbol
90ecf173 12133 && offset_expr.X_add_number == 0);
252b5132
RH
12134 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12135 if (strcmp (s, ".lit8") == 0)
f2ae14a1 12136 {
c0ebe874 12137 op[2] = mips_gp_register;
f2ae14a1
RS
12138 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12139 offset_reloc[1] = BFD_RELOC_UNUSED;
12140 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12141 }
12142 else
12143 {
9c2799c2 12144 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12145 used_at = 1;
0a44bf69 12146 if (mips_pic != NO_PIC)
67c0d1eb
RS
12147 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12148 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12149 else
12150 {
12151 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12152 macro_build_lui (&offset_expr, AT);
252b5132 12153 }
bdaaa2e1 12154
c0ebe874 12155 op[2] = AT;
f2ae14a1
RS
12156 offset_reloc[0] = BFD_RELOC_LO16;
12157 offset_reloc[1] = BFD_RELOC_UNUSED;
12158 offset_reloc[2] = BFD_RELOC_UNUSED;
12159 }
12160 align = 8;
12161 /* Fall through */
c4a68bea 12162
252b5132
RH
12163 case M_L_DAB:
12164 /*
12165 * The MIPS assembler seems to check for X_add_number not
12166 * being double aligned and generating:
12167 * lui at,%hi(foo+1)
12168 * addu at,at,v1
12169 * addiu at,at,%lo(foo+1)
12170 * lwc1 f2,0(at)
12171 * lwc1 f3,4(at)
12172 * But, the resulting address is the same after relocation so why
12173 * generate the extra instruction?
12174 */
bdaaa2e1 12175 /* Itbl support may require additional care here. */
252b5132 12176 coproc = 1;
df58fc94 12177 fmt = "T,o(b)";
0aa27725 12178 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12179 {
12180 s = "ldc1";
df58fc94 12181 goto ld_st;
252b5132 12182 }
252b5132 12183 s = "lwc1";
252b5132
RH
12184 goto ldd_std;
12185
12186 case M_S_DAB:
df58fc94
RS
12187 gas_assert (!mips_opts.micromips);
12188 /* Itbl support may require additional care here. */
12189 coproc = 1;
12190 fmt = "T,o(b)";
0aa27725 12191 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12192 {
12193 s = "sdc1";
df58fc94 12194 goto ld_st;
252b5132 12195 }
252b5132 12196 s = "swc1";
252b5132
RH
12197 goto ldd_std;
12198
e407c74b
NC
12199 case M_LQ_AB:
12200 fmt = "t,o(b)";
12201 s = "lq";
12202 goto ld;
12203
12204 case M_SQ_AB:
12205 fmt = "t,o(b)";
12206 s = "sq";
12207 goto ld_st;
12208
252b5132 12209 case M_LD_AB:
df58fc94 12210 fmt = "t,o(b)";
bad1aba3 12211 if (GPR_SIZE == 64)
252b5132
RH
12212 {
12213 s = "ld";
12214 goto ld;
12215 }
252b5132 12216 s = "lw";
252b5132
RH
12217 goto ldd_std;
12218
12219 case M_SD_AB:
df58fc94 12220 fmt = "t,o(b)";
bad1aba3 12221 if (GPR_SIZE == 64)
252b5132
RH
12222 {
12223 s = "sd";
df58fc94 12224 goto ld_st;
252b5132 12225 }
252b5132 12226 s = "sw";
252b5132
RH
12227
12228 ldd_std:
f2ae14a1
RS
12229 /* Even on a big endian machine $fn comes before $fn+1. We have
12230 to adjust when loading from memory. We set coproc if we must
12231 load $fn+1 first. */
12232 /* Itbl support may require additional care here. */
12233 if (!target_big_endian)
12234 coproc = 0;
12235
c0ebe874 12236 breg = op[2];
f2ae14a1
RS
12237 if (small_offset_p (0, align, 16))
12238 {
12239 ep = &offset_expr;
12240 if (!small_offset_p (4, align, 16))
12241 {
12242 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12243 -1, offset_reloc[0], offset_reloc[1],
12244 offset_reloc[2]);
12245 expr1.X_add_number = 0;
12246 ep = &expr1;
12247 breg = AT;
12248 used_at = 1;
12249 offset_reloc[0] = BFD_RELOC_LO16;
12250 offset_reloc[1] = BFD_RELOC_UNUSED;
12251 offset_reloc[2] = BFD_RELOC_UNUSED;
12252 }
c0ebe874 12253 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12254 {
12255 ep->X_add_number += 4;
c0ebe874 12256 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12257 offset_reloc[1], offset_reloc[2], breg);
12258 ep->X_add_number -= 4;
c0ebe874 12259 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12260 offset_reloc[1], offset_reloc[2], breg);
12261 }
12262 else
12263 {
c0ebe874 12264 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12265 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12266 breg);
12267 ep->X_add_number += 4;
c0ebe874 12268 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12269 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12270 breg);
12271 }
12272 break;
12273 }
12274
252b5132
RH
12275 if (offset_expr.X_op != O_symbol
12276 && offset_expr.X_op != O_constant)
12277 {
1661c76c 12278 as_bad (_("expression too complex"));
252b5132
RH
12279 offset_expr.X_op = O_constant;
12280 }
12281
2051e8c4
MR
12282 if (HAVE_32BIT_ADDRESSES
12283 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12284 {
12285 char value [32];
12286
12287 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12288 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12289 }
2051e8c4 12290
90ecf173 12291 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12292 {
12293 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12294 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12295 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12296 If we have a base register, we use this
12297 addu $at,$breg,$gp
c0ebe874
RS
12298 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12299 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12300 If this is not a GP relative symbol, we want
12301 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12302 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12303 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12304 If there is a base register, we add it to $at after the
12305 lui instruction. If there is a constant, we always use
12306 the last case. */
39a59cf8
MR
12307 if (offset_expr.X_op == O_symbol
12308 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12309 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12310 {
4d7206a2 12311 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12312 if (breg == 0)
12313 {
c9914766 12314 tempreg = mips_gp_register;
252b5132
RH
12315 }
12316 else
12317 {
67c0d1eb 12318 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12319 AT, breg, mips_gp_register);
252b5132 12320 tempreg = AT;
252b5132
RH
12321 used_at = 1;
12322 }
12323
beae10d5 12324 /* Itbl support may require additional care here. */
c0ebe874 12325 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12326 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12327 offset_expr.X_add_number += 4;
12328
12329 /* Set mips_optimize to 2 to avoid inserting an
12330 undesired nop. */
12331 hold_mips_optimize = mips_optimize;
12332 mips_optimize = 2;
beae10d5 12333 /* Itbl support may require additional care here. */
c0ebe874 12334 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12335 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12336 mips_optimize = hold_mips_optimize;
12337
4d7206a2 12338 relax_switch ();
252b5132 12339
0970e49e 12340 offset_expr.X_add_number -= 4;
252b5132 12341 }
8fc2e39e 12342 used_at = 1;
f2ae14a1
RS
12343 if (offset_high_part (offset_expr.X_add_number, 16)
12344 != offset_high_part (offset_expr.X_add_number + 4, 16))
12345 {
12346 load_address (AT, &offset_expr, &used_at);
12347 offset_expr.X_op = O_constant;
12348 offset_expr.X_add_number = 0;
12349 }
12350 else
12351 macro_build_lui (&offset_expr, AT);
252b5132 12352 if (breg != 0)
67c0d1eb 12353 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12354 /* Itbl support may require additional care here. */
c0ebe874 12355 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12356 BFD_RELOC_LO16, AT);
252b5132
RH
12357 /* FIXME: How do we handle overflow here? */
12358 offset_expr.X_add_number += 4;
beae10d5 12359 /* Itbl support may require additional care here. */
c0ebe874 12360 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12361 BFD_RELOC_LO16, AT);
4d7206a2
RS
12362 if (mips_relax.sequence)
12363 relax_end ();
bdaaa2e1 12364 }
0a44bf69 12365 else if (!mips_big_got)
252b5132 12366 {
252b5132
RH
12367 /* If this is a reference to an external symbol, we want
12368 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12369 nop
c0ebe874
RS
12370 <op> op[0],0($at)
12371 <op> op[0]+1,4($at)
252b5132
RH
12372 Otherwise we want
12373 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12374 nop
c0ebe874
RS
12375 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12376 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12377 If there is a base register we add it to $at before the
12378 lwc1 instructions. If there is a constant we include it
12379 in the lwc1 instructions. */
12380 used_at = 1;
12381 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12382 if (expr1.X_add_number < -0x8000
12383 || expr1.X_add_number >= 0x8000 - 4)
12384 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12385 load_got_offset (AT, &offset_expr);
269137b2 12386 load_delay_nop ();
252b5132 12387 if (breg != 0)
67c0d1eb 12388 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12389
12390 /* Set mips_optimize to 2 to avoid inserting an undesired
12391 nop. */
12392 hold_mips_optimize = mips_optimize;
12393 mips_optimize = 2;
4d7206a2 12394
beae10d5 12395 /* Itbl support may require additional care here. */
4d7206a2 12396 relax_start (offset_expr.X_add_symbol);
c0ebe874 12397 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12398 BFD_RELOC_LO16, AT);
4d7206a2 12399 expr1.X_add_number += 4;
c0ebe874 12400 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12401 BFD_RELOC_LO16, AT);
4d7206a2 12402 relax_switch ();
c0ebe874 12403 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12404 BFD_RELOC_LO16, AT);
4d7206a2 12405 offset_expr.X_add_number += 4;
c0ebe874 12406 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12407 BFD_RELOC_LO16, AT);
4d7206a2 12408 relax_end ();
252b5132 12409
4d7206a2 12410 mips_optimize = hold_mips_optimize;
252b5132 12411 }
0a44bf69 12412 else if (mips_big_got)
252b5132 12413 {
67c0d1eb 12414 int gpdelay;
252b5132
RH
12415
12416 /* If this is a reference to an external symbol, we want
12417 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12418 addu $at,$at,$gp
12419 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12420 nop
c0ebe874
RS
12421 <op> op[0],0($at)
12422 <op> op[0]+1,4($at)
252b5132
RH
12423 Otherwise we want
12424 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12425 nop
c0ebe874
RS
12426 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12427 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12428 If there is a base register we add it to $at before the
12429 lwc1 instructions. If there is a constant we include it
12430 in the lwc1 instructions. */
12431 used_at = 1;
12432 expr1.X_add_number = offset_expr.X_add_number;
12433 offset_expr.X_add_number = 0;
12434 if (expr1.X_add_number < -0x8000
12435 || expr1.X_add_number >= 0x8000 - 4)
12436 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12437 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12438 relax_start (offset_expr.X_add_symbol);
df58fc94 12439 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12440 AT, BFD_RELOC_MIPS_GOT_HI16);
12441 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12442 AT, AT, mips_gp_register);
67c0d1eb 12443 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12444 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12445 load_delay_nop ();
252b5132 12446 if (breg != 0)
67c0d1eb 12447 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12448 /* Itbl support may require additional care here. */
c0ebe874 12449 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12450 BFD_RELOC_LO16, AT);
252b5132
RH
12451 expr1.X_add_number += 4;
12452
12453 /* Set mips_optimize to 2 to avoid inserting an undesired
12454 nop. */
12455 hold_mips_optimize = mips_optimize;
12456 mips_optimize = 2;
beae10d5 12457 /* Itbl support may require additional care here. */
c0ebe874 12458 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12459 BFD_RELOC_LO16, AT);
252b5132
RH
12460 mips_optimize = hold_mips_optimize;
12461 expr1.X_add_number -= 4;
12462
4d7206a2
RS
12463 relax_switch ();
12464 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12465 if (gpdelay)
12466 macro_build (NULL, "nop", "");
12467 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12468 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12469 load_delay_nop ();
252b5132 12470 if (breg != 0)
67c0d1eb 12471 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12472 /* Itbl support may require additional care here. */
c0ebe874 12473 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12474 BFD_RELOC_LO16, AT);
4d7206a2 12475 offset_expr.X_add_number += 4;
252b5132
RH
12476
12477 /* Set mips_optimize to 2 to avoid inserting an undesired
12478 nop. */
12479 hold_mips_optimize = mips_optimize;
12480 mips_optimize = 2;
beae10d5 12481 /* Itbl support may require additional care here. */
c0ebe874 12482 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12483 BFD_RELOC_LO16, AT);
252b5132 12484 mips_optimize = hold_mips_optimize;
4d7206a2 12485 relax_end ();
252b5132 12486 }
252b5132
RH
12487 else
12488 abort ();
12489
252b5132 12490 break;
3739860c 12491
dd6a37e7 12492 case M_SAA_AB:
dd6a37e7 12493 s = "saa";
0db377d0 12494 goto saa_saad;
dd6a37e7 12495 case M_SAAD_AB:
dd6a37e7 12496 s = "saad";
0db377d0
MR
12497 saa_saad:
12498 gas_assert (!mips_opts.micromips);
7f3c4072 12499 offbits = 0;
dd6a37e7
AP
12500 fmt = "t,(b)";
12501 goto ld_st;
12502
252b5132
RH
12503 /* New code added to support COPZ instructions.
12504 This code builds table entries out of the macros in mip_opcodes.
12505 R4000 uses interlocks to handle coproc delays.
12506 Other chips (like the R3000) require nops to be inserted for delays.
12507
f72c8c98 12508 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12509 In order to fill delay slots for non-interlocked chips,
12510 we must have a way to specify delays based on the coprocessor.
12511 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12512 What are the side-effects of the cop instruction?
12513 What cache support might we have and what are its effects?
12514 Both coprocessor & memory require delays. how long???
bdaaa2e1 12515 What registers are read/set/modified?
252b5132
RH
12516
12517 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12518 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12519
12520 case M_COP0:
12521 s = "c0";
12522 goto copz;
12523 case M_COP1:
12524 s = "c1";
12525 goto copz;
12526 case M_COP2:
12527 s = "c2";
12528 goto copz;
12529 case M_COP3:
12530 s = "c3";
12531 copz:
df58fc94 12532 gas_assert (!mips_opts.micromips);
252b5132
RH
12533 /* For now we just do C (same as Cz). The parameter will be
12534 stored in insn_opcode by mips_ip. */
c8276761 12535 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12536 break;
252b5132 12537
ea1fb5dc 12538 case M_MOVE:
c0ebe874 12539 move_register (op[0], op[1]);
8fc2e39e 12540 break;
ea1fb5dc 12541
833794fc
MR
12542 case M_MOVEP:
12543 gas_assert (mips_opts.micromips);
12544 gas_assert (mips_opts.insn32);
c0ebe874
RS
12545 move_register (micromips_to_32_reg_h_map1[op[0]],
12546 micromips_to_32_reg_m_map[op[1]]);
12547 move_register (micromips_to_32_reg_h_map2[op[0]],
12548 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12549 break;
12550
252b5132
RH
12551 case M_DMUL:
12552 dbl = 1;
12553 case M_MUL:
e407c74b 12554 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12555 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12556 op[2]);
e407c74b
NC
12557 else
12558 {
c0ebe874
RS
12559 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12560 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12561 }
8fc2e39e 12562 break;
252b5132
RH
12563
12564 case M_DMUL_I:
12565 dbl = 1;
12566 case M_MUL_I:
12567 /* The MIPS assembler some times generates shifts and adds. I'm
12568 not trying to be that fancy. GCC should do this for us
12569 anyway. */
8fc2e39e 12570 used_at = 1;
67c0d1eb 12571 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12572 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12573 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12574 break;
12575
12576 case M_DMULO_I:
12577 dbl = 1;
12578 case M_MULO_I:
12579 imm = 1;
12580 goto do_mulo;
12581
12582 case M_DMULO:
12583 dbl = 1;
12584 case M_MULO:
12585 do_mulo:
7d10b47d 12586 start_noreorder ();
8fc2e39e 12587 used_at = 1;
252b5132 12588 if (imm)
67c0d1eb 12589 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12590 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12591 op[1], imm ? AT : op[2]);
12592 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12593 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12594 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12595 if (mips_trap)
c0ebe874 12596 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12597 else
12598 {
df58fc94
RS
12599 if (mips_opts.micromips)
12600 micromips_label_expr (&label_expr);
12601 else
12602 label_expr.X_add_number = 8;
c0ebe874 12603 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12604 macro_build (NULL, "nop", "");
df58fc94
RS
12605 macro_build (NULL, "break", BRK_FMT, 6);
12606 if (mips_opts.micromips)
12607 micromips_add_label ();
252b5132 12608 }
7d10b47d 12609 end_noreorder ();
c0ebe874 12610 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12611 break;
12612
12613 case M_DMULOU_I:
12614 dbl = 1;
12615 case M_MULOU_I:
12616 imm = 1;
12617 goto do_mulou;
12618
12619 case M_DMULOU:
12620 dbl = 1;
12621 case M_MULOU:
12622 do_mulou:
7d10b47d 12623 start_noreorder ();
8fc2e39e 12624 used_at = 1;
252b5132 12625 if (imm)
67c0d1eb
RS
12626 load_register (AT, &imm_expr, dbl);
12627 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12628 op[1], imm ? AT : op[2]);
df58fc94 12629 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12630 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12631 if (mips_trap)
df58fc94 12632 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12633 else
12634 {
df58fc94
RS
12635 if (mips_opts.micromips)
12636 micromips_label_expr (&label_expr);
12637 else
12638 label_expr.X_add_number = 8;
12639 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12640 macro_build (NULL, "nop", "");
df58fc94
RS
12641 macro_build (NULL, "break", BRK_FMT, 6);
12642 if (mips_opts.micromips)
12643 micromips_add_label ();
252b5132 12644 }
7d10b47d 12645 end_noreorder ();
252b5132
RH
12646 break;
12647
771c7ce4 12648 case M_DROL:
fef14a42 12649 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12650 {
c0ebe874 12651 if (op[0] == op[1])
82dd0097
CD
12652 {
12653 tempreg = AT;
12654 used_at = 1;
12655 }
12656 else
c0ebe874
RS
12657 tempreg = op[0];
12658 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12659 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12660 break;
82dd0097 12661 }
8fc2e39e 12662 used_at = 1;
c0ebe874
RS
12663 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12664 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12665 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12666 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12667 break;
12668
252b5132 12669 case M_ROL:
fef14a42 12670 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12671 {
c0ebe874 12672 if (op[0] == op[1])
82dd0097
CD
12673 {
12674 tempreg = AT;
12675 used_at = 1;
12676 }
12677 else
c0ebe874
RS
12678 tempreg = op[0];
12679 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12680 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12681 break;
82dd0097 12682 }
8fc2e39e 12683 used_at = 1;
c0ebe874
RS
12684 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12685 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12686 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12687 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12688 break;
12689
771c7ce4
TS
12690 case M_DROL_I:
12691 {
12692 unsigned int rot;
91d6fa6a
NC
12693 char *l;
12694 char *rr;
771c7ce4 12695
771c7ce4 12696 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12697 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12698 {
12699 rot = (64 - rot) & 0x3f;
12700 if (rot >= 32)
c0ebe874 12701 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12702 else
c0ebe874 12703 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12704 break;
60b63b72 12705 }
483fc7cd 12706 if (rot == 0)
483fc7cd 12707 {
c0ebe874 12708 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12709 break;
483fc7cd 12710 }
82dd0097 12711 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12712 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12713 rot &= 0x1f;
8fc2e39e 12714 used_at = 1;
c0ebe874
RS
12715 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12716 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12717 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12718 }
12719 break;
12720
252b5132 12721 case M_ROL_I:
771c7ce4
TS
12722 {
12723 unsigned int rot;
12724
771c7ce4 12725 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12726 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12727 {
c0ebe874
RS
12728 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12729 (32 - rot) & 0x1f);
8fc2e39e 12730 break;
60b63b72 12731 }
483fc7cd 12732 if (rot == 0)
483fc7cd 12733 {
c0ebe874 12734 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12735 break;
483fc7cd 12736 }
8fc2e39e 12737 used_at = 1;
c0ebe874
RS
12738 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12739 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12740 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12741 }
12742 break;
12743
12744 case M_DROR:
fef14a42 12745 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12746 {
c0ebe874 12747 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12748 break;
82dd0097 12749 }
8fc2e39e 12750 used_at = 1;
c0ebe874
RS
12751 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12752 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12753 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12754 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12755 break;
12756
12757 case M_ROR:
fef14a42 12758 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12759 {
c0ebe874 12760 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12761 break;
82dd0097 12762 }
8fc2e39e 12763 used_at = 1;
c0ebe874
RS
12764 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12765 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12766 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12767 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12768 break;
12769
771c7ce4
TS
12770 case M_DROR_I:
12771 {
12772 unsigned int rot;
91d6fa6a
NC
12773 char *l;
12774 char *rr;
771c7ce4 12775
771c7ce4 12776 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12777 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12778 {
12779 if (rot >= 32)
c0ebe874 12780 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12781 else
c0ebe874 12782 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12783 break;
82dd0097 12784 }
483fc7cd 12785 if (rot == 0)
483fc7cd 12786 {
c0ebe874 12787 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12788 break;
483fc7cd 12789 }
91d6fa6a 12790 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12791 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12792 rot &= 0x1f;
8fc2e39e 12793 used_at = 1;
c0ebe874
RS
12794 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12795 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12796 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12797 }
12798 break;
12799
252b5132 12800 case M_ROR_I:
771c7ce4
TS
12801 {
12802 unsigned int rot;
12803
771c7ce4 12804 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12805 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12806 {
c0ebe874 12807 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12808 break;
82dd0097 12809 }
483fc7cd 12810 if (rot == 0)
483fc7cd 12811 {
c0ebe874 12812 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12813 break;
483fc7cd 12814 }
8fc2e39e 12815 used_at = 1;
c0ebe874
RS
12816 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12817 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12818 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 12819 }
252b5132
RH
12820 break;
12821
252b5132 12822 case M_SEQ:
c0ebe874
RS
12823 if (op[1] == 0)
12824 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12825 else if (op[2] == 0)
12826 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12827 else
12828 {
c0ebe874
RS
12829 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12830 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 12831 }
8fc2e39e 12832 break;
252b5132
RH
12833
12834 case M_SEQ_I:
b0e6f033 12835 if (imm_expr.X_add_number == 0)
252b5132 12836 {
c0ebe874 12837 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12838 break;
252b5132 12839 }
c0ebe874 12840 if (op[1] == 0)
252b5132 12841 {
1661c76c 12842 as_warn (_("instruction %s: result is always false"),
252b5132 12843 ip->insn_mo->name);
c0ebe874 12844 move_register (op[0], 0);
8fc2e39e 12845 break;
252b5132 12846 }
dd3cbb7e
NC
12847 if (CPU_HAS_SEQ (mips_opts.arch)
12848 && -512 <= imm_expr.X_add_number
12849 && imm_expr.X_add_number < 512)
12850 {
c0ebe874 12851 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 12852 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12853 break;
12854 }
b0e6f033 12855 if (imm_expr.X_add_number >= 0
252b5132 12856 && imm_expr.X_add_number < 0x10000)
c0ebe874 12857 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 12858 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12859 && imm_expr.X_add_number < 0)
12860 {
12861 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 12862 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 12863 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12864 }
dd3cbb7e
NC
12865 else if (CPU_HAS_SEQ (mips_opts.arch))
12866 {
12867 used_at = 1;
bad1aba3 12868 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12869 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12870 break;
12871 }
252b5132
RH
12872 else
12873 {
bad1aba3 12874 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12875 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12876 used_at = 1;
12877 }
c0ebe874 12878 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12879 break;
252b5132 12880
c0ebe874 12881 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
12882 s = "slt";
12883 goto sge;
12884 case M_SGEU:
12885 s = "sltu";
12886 sge:
c0ebe874
RS
12887 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12888 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12889 break;
252b5132 12890
c0ebe874 12891 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 12892 case M_SGEU_I:
b0e6f033 12893 if (imm_expr.X_add_number >= -0x8000
252b5132 12894 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
12895 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12896 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12897 else
12898 {
bad1aba3 12899 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 12900 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 12901 op[0], op[1], AT);
252b5132
RH
12902 used_at = 1;
12903 }
c0ebe874 12904 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12905 break;
252b5132 12906
c0ebe874 12907 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
12908 s = "slt";
12909 goto sgt;
12910 case M_SGTU:
12911 s = "sltu";
12912 sgt:
c0ebe874 12913 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 12914 break;
252b5132 12915
c0ebe874 12916 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
12917 s = "slt";
12918 goto sgti;
12919 case M_SGTU_I:
12920 s = "sltu";
12921 sgti:
8fc2e39e 12922 used_at = 1;
bad1aba3 12923 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12924 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
12925 break;
12926
c0ebe874 12927 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
12928 s = "slt";
12929 goto sle;
12930 case M_SLEU:
12931 s = "sltu";
12932 sle:
c0ebe874
RS
12933 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12934 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12935 break;
252b5132 12936
c0ebe874 12937 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
12938 s = "slt";
12939 goto slei;
12940 case M_SLEU_I:
12941 s = "sltu";
12942 slei:
8fc2e39e 12943 used_at = 1;
bad1aba3 12944 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
12945 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12946 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
12947 break;
12948
12949 case M_SLT_I:
b0e6f033 12950 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12951 && imm_expr.X_add_number < 0x8000)
12952 {
c0ebe874
RS
12953 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12954 BFD_RELOC_LO16);
8fc2e39e 12955 break;
252b5132 12956 }
8fc2e39e 12957 used_at = 1;
bad1aba3 12958 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12959 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
12960 break;
12961
12962 case M_SLTU_I:
b0e6f033 12963 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12964 && imm_expr.X_add_number < 0x8000)
12965 {
c0ebe874 12966 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 12967 BFD_RELOC_LO16);
8fc2e39e 12968 break;
252b5132 12969 }
8fc2e39e 12970 used_at = 1;
bad1aba3 12971 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12972 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
12973 break;
12974
12975 case M_SNE:
c0ebe874
RS
12976 if (op[1] == 0)
12977 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12978 else if (op[2] == 0)
12979 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
12980 else
12981 {
c0ebe874
RS
12982 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12983 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 12984 }
8fc2e39e 12985 break;
252b5132
RH
12986
12987 case M_SNE_I:
b0e6f033 12988 if (imm_expr.X_add_number == 0)
252b5132 12989 {
c0ebe874 12990 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 12991 break;
252b5132 12992 }
c0ebe874 12993 if (op[1] == 0)
252b5132 12994 {
1661c76c 12995 as_warn (_("instruction %s: result is always true"),
252b5132 12996 ip->insn_mo->name);
bad1aba3 12997 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 12998 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 12999 break;
252b5132 13000 }
dd3cbb7e
NC
13001 if (CPU_HAS_SEQ (mips_opts.arch)
13002 && -512 <= imm_expr.X_add_number
13003 && imm_expr.X_add_number < 512)
13004 {
c0ebe874 13005 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13006 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13007 break;
13008 }
b0e6f033 13009 if (imm_expr.X_add_number >= 0
252b5132
RH
13010 && imm_expr.X_add_number < 0x10000)
13011 {
c0ebe874
RS
13012 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13013 BFD_RELOC_LO16);
252b5132 13014 }
b0e6f033 13015 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13016 && imm_expr.X_add_number < 0)
13017 {
13018 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13019 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13020 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13021 }
dd3cbb7e
NC
13022 else if (CPU_HAS_SEQ (mips_opts.arch))
13023 {
13024 used_at = 1;
bad1aba3 13025 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13026 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13027 break;
13028 }
252b5132
RH
13029 else
13030 {
bad1aba3 13031 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13032 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13033 used_at = 1;
13034 }
c0ebe874 13035 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13036 break;
252b5132 13037
df58fc94
RS
13038 case M_SUB_I:
13039 s = "addi";
13040 s2 = "sub";
13041 goto do_subi;
13042 case M_SUBU_I:
13043 s = "addiu";
13044 s2 = "subu";
13045 goto do_subi;
252b5132
RH
13046 case M_DSUB_I:
13047 dbl = 1;
df58fc94
RS
13048 s = "daddi";
13049 s2 = "dsub";
13050 if (!mips_opts.micromips)
13051 goto do_subi;
b0e6f033 13052 if (imm_expr.X_add_number > -0x200
df58fc94 13053 && imm_expr.X_add_number <= 0x200)
252b5132 13054 {
b0e6f033
RS
13055 macro_build (NULL, s, "t,r,.", op[0], op[1],
13056 (int) -imm_expr.X_add_number);
8fc2e39e 13057 break;
252b5132 13058 }
df58fc94 13059 goto do_subi_i;
252b5132
RH
13060 case M_DSUBU_I:
13061 dbl = 1;
df58fc94
RS
13062 s = "daddiu";
13063 s2 = "dsubu";
13064 do_subi:
b0e6f033 13065 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13066 && imm_expr.X_add_number <= 0x8000)
13067 {
13068 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13069 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13070 break;
252b5132 13071 }
df58fc94 13072 do_subi_i:
8fc2e39e 13073 used_at = 1;
67c0d1eb 13074 load_register (AT, &imm_expr, dbl);
c0ebe874 13075 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13076 break;
13077
13078 case M_TEQ_I:
13079 s = "teq";
13080 goto trap;
13081 case M_TGE_I:
13082 s = "tge";
13083 goto trap;
13084 case M_TGEU_I:
13085 s = "tgeu";
13086 goto trap;
13087 case M_TLT_I:
13088 s = "tlt";
13089 goto trap;
13090 case M_TLTU_I:
13091 s = "tltu";
13092 goto trap;
13093 case M_TNE_I:
13094 s = "tne";
13095 trap:
8fc2e39e 13096 used_at = 1;
bad1aba3 13097 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13098 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13099 break;
13100
252b5132 13101 case M_TRUNCWS:
43841e91 13102 case M_TRUNCWD:
df58fc94 13103 gas_assert (!mips_opts.micromips);
0aa27725 13104 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13105 used_at = 1;
252b5132
RH
13106
13107 /*
13108 * Is the double cfc1 instruction a bug in the mips assembler;
13109 * or is there a reason for it?
13110 */
7d10b47d 13111 start_noreorder ();
c0ebe874
RS
13112 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13113 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13114 macro_build (NULL, "nop", "");
252b5132 13115 expr1.X_add_number = 3;
c0ebe874 13116 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13117 expr1.X_add_number = 2;
67c0d1eb
RS
13118 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13119 macro_build (NULL, "ctc1", "t,G", AT, RA);
13120 macro_build (NULL, "nop", "");
13121 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13122 op[0], op[1]);
13123 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13124 macro_build (NULL, "nop", "");
7d10b47d 13125 end_noreorder ();
252b5132
RH
13126 break;
13127
f2ae14a1 13128 case M_ULH_AB:
252b5132 13129 s = "lb";
df58fc94
RS
13130 s2 = "lbu";
13131 off = 1;
13132 goto uld_st;
f2ae14a1 13133 case M_ULHU_AB:
252b5132 13134 s = "lbu";
df58fc94
RS
13135 s2 = "lbu";
13136 off = 1;
13137 goto uld_st;
f2ae14a1 13138 case M_ULW_AB:
df58fc94
RS
13139 s = "lwl";
13140 s2 = "lwr";
7f3c4072 13141 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13142 off = 3;
13143 goto uld_st;
f2ae14a1 13144 case M_ULD_AB:
252b5132
RH
13145 s = "ldl";
13146 s2 = "ldr";
7f3c4072 13147 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13148 off = 7;
df58fc94 13149 goto uld_st;
f2ae14a1 13150 case M_USH_AB:
df58fc94
RS
13151 s = "sb";
13152 s2 = "sb";
13153 off = 1;
13154 ust = 1;
13155 goto uld_st;
f2ae14a1 13156 case M_USW_AB:
df58fc94
RS
13157 s = "swl";
13158 s2 = "swr";
7f3c4072 13159 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13160 off = 3;
df58fc94
RS
13161 ust = 1;
13162 goto uld_st;
f2ae14a1 13163 case M_USD_AB:
df58fc94
RS
13164 s = "sdl";
13165 s2 = "sdr";
7f3c4072 13166 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13167 off = 7;
13168 ust = 1;
13169
13170 uld_st:
c0ebe874 13171 breg = op[2];
f2ae14a1 13172 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13173 ep = &offset_expr;
13174 expr1.X_add_number = 0;
f2ae14a1 13175 if (large_offset)
df58fc94
RS
13176 {
13177 used_at = 1;
13178 tempreg = AT;
f2ae14a1
RS
13179 if (small_offset_p (0, align, 16))
13180 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13181 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13182 else
13183 {
13184 load_address (tempreg, ep, &used_at);
13185 if (breg != 0)
13186 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13187 tempreg, tempreg, breg);
13188 }
13189 offset_reloc[0] = BFD_RELOC_LO16;
13190 offset_reloc[1] = BFD_RELOC_UNUSED;
13191 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13192 breg = tempreg;
c0ebe874 13193 tempreg = op[0];
df58fc94
RS
13194 ep = &expr1;
13195 }
c0ebe874 13196 else if (!ust && op[0] == breg)
8fc2e39e
TS
13197 {
13198 used_at = 1;
13199 tempreg = AT;
13200 }
252b5132 13201 else
c0ebe874 13202 tempreg = op[0];
af22f5b2 13203
df58fc94
RS
13204 if (off == 1)
13205 goto ulh_sh;
252b5132 13206
90ecf173 13207 if (!target_big_endian)
df58fc94 13208 ep->X_add_number += off;
f2ae14a1 13209 if (offbits == 12)
c8276761 13210 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13211 else
13212 macro_build (ep, s, "t,o(b)", tempreg, -1,
13213 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13214
90ecf173 13215 if (!target_big_endian)
df58fc94 13216 ep->X_add_number -= off;
252b5132 13217 else
df58fc94 13218 ep->X_add_number += off;
f2ae14a1 13219 if (offbits == 12)
df58fc94 13220 macro_build (NULL, s2, "t,~(b)",
c8276761 13221 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13222 else
13223 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13224 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13225
df58fc94 13226 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13227 if (!ust && op[0] != tempreg)
df58fc94
RS
13228 {
13229 /* Protect second load's delay slot. */
13230 load_delay_nop ();
c0ebe874 13231 move_register (op[0], tempreg);
df58fc94 13232 }
8fc2e39e 13233 break;
252b5132 13234
df58fc94 13235 ulh_sh:
d6bc6245 13236 used_at = 1;
df58fc94
RS
13237 if (target_big_endian == ust)
13238 ep->X_add_number += off;
c0ebe874 13239 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13240 macro_build (ep, s, "t,o(b)", tempreg, -1,
13241 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13242
13243 /* For halfword transfers we need a temporary register to shuffle
13244 bytes. Unfortunately for M_USH_A we have none available before
13245 the next store as AT holds the base address. We deal with this
13246 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13247 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13248 if (ust)
c0ebe874 13249 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13250
13251 if (target_big_endian == ust)
13252 ep->X_add_number -= off;
252b5132 13253 else
df58fc94 13254 ep->X_add_number += off;
f2ae14a1
RS
13255 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13256 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13257
df58fc94 13258 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13259 if (ust && large_offset)
df58fc94
RS
13260 {
13261 if (target_big_endian)
13262 ep->X_add_number += off;
13263 else
13264 ep->X_add_number -= off;
f2ae14a1
RS
13265 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13266 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13267 }
13268 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13269 if (!ust || large_offset)
df58fc94 13270 {
c0ebe874 13271 tempreg = !large_offset ? AT : op[0];
df58fc94 13272 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13273 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13274 }
252b5132
RH
13275 break;
13276
13277 default:
13278 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13279 are added dynamically. */
1661c76c 13280 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13281 break;
13282 }
741fe287 13283 if (!mips_opts.at && used_at)
1661c76c 13284 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13285}
13286
13287/* Implement macros in mips16 mode. */
13288
13289static void
17a2f251 13290mips16_macro (struct mips_cl_insn *ip)
252b5132 13291{
c0ebe874 13292 const struct mips_operand_array *operands;
252b5132 13293 int mask;
c0ebe874 13294 int tmp;
252b5132
RH
13295 expressionS expr1;
13296 int dbl;
13297 const char *s, *s2, *s3;
c0ebe874
RS
13298 unsigned int op[MAX_OPERANDS];
13299 unsigned int i;
252b5132
RH
13300
13301 mask = ip->insn_mo->mask;
13302
c0ebe874
RS
13303 operands = insn_operands (ip);
13304 for (i = 0; i < MAX_OPERANDS; i++)
13305 if (operands->operand[i])
13306 op[i] = insn_extract_operand (ip, operands->operand[i]);
13307 else
13308 op[i] = -1;
252b5132 13309
252b5132
RH
13310 expr1.X_op = O_constant;
13311 expr1.X_op_symbol = NULL;
13312 expr1.X_add_symbol = NULL;
13313 expr1.X_add_number = 1;
13314
13315 dbl = 0;
13316
13317 switch (mask)
13318 {
13319 default:
b37df7c4 13320 abort ();
252b5132
RH
13321
13322 case M_DDIV_3:
13323 dbl = 1;
13324 case M_DIV_3:
13325 s = "mflo";
13326 goto do_div3;
13327 case M_DREM_3:
13328 dbl = 1;
13329 case M_REM_3:
13330 s = "mfhi";
13331 do_div3:
7d10b47d 13332 start_noreorder ();
c0ebe874 13333 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13334 expr1.X_add_number = 2;
c0ebe874 13335 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13336 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13337
252b5132
RH
13338 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13339 since that causes an overflow. We should do that as well,
13340 but I don't see how to do the comparisons without a temporary
13341 register. */
7d10b47d 13342 end_noreorder ();
c0ebe874 13343 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13344 break;
13345
13346 case M_DIVU_3:
13347 s = "divu";
13348 s2 = "mflo";
13349 goto do_divu3;
13350 case M_REMU_3:
13351 s = "divu";
13352 s2 = "mfhi";
13353 goto do_divu3;
13354 case M_DDIVU_3:
13355 s = "ddivu";
13356 s2 = "mflo";
13357 goto do_divu3;
13358 case M_DREMU_3:
13359 s = "ddivu";
13360 s2 = "mfhi";
13361 do_divu3:
7d10b47d 13362 start_noreorder ();
c0ebe874 13363 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13364 expr1.X_add_number = 2;
c0ebe874 13365 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13366 macro_build (NULL, "break", "6", 7);
7d10b47d 13367 end_noreorder ();
c0ebe874 13368 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13369 break;
13370
13371 case M_DMUL:
13372 dbl = 1;
13373 case M_MUL:
c0ebe874
RS
13374 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13375 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13376 break;
252b5132
RH
13377
13378 case M_DSUBU_I:
13379 dbl = 1;
13380 goto do_subu;
13381 case M_SUBU_I:
13382 do_subu:
252b5132 13383 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13384 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13385 break;
13386
13387 case M_SUBU_I_2:
252b5132 13388 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13389 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13390 break;
13391
13392 case M_DSUBU_I_2:
252b5132 13393 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13394 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13395 break;
13396
13397 case M_BEQ:
13398 s = "cmp";
13399 s2 = "bteqz";
13400 goto do_branch;
13401 case M_BNE:
13402 s = "cmp";
13403 s2 = "btnez";
13404 goto do_branch;
13405 case M_BLT:
13406 s = "slt";
13407 s2 = "btnez";
13408 goto do_branch;
13409 case M_BLTU:
13410 s = "sltu";
13411 s2 = "btnez";
13412 goto do_branch;
13413 case M_BLE:
13414 s = "slt";
13415 s2 = "bteqz";
13416 goto do_reverse_branch;
13417 case M_BLEU:
13418 s = "sltu";
13419 s2 = "bteqz";
13420 goto do_reverse_branch;
13421 case M_BGE:
13422 s = "slt";
13423 s2 = "bteqz";
13424 goto do_branch;
13425 case M_BGEU:
13426 s = "sltu";
13427 s2 = "bteqz";
13428 goto do_branch;
13429 case M_BGT:
13430 s = "slt";
13431 s2 = "btnez";
13432 goto do_reverse_branch;
13433 case M_BGTU:
13434 s = "sltu";
13435 s2 = "btnez";
13436
13437 do_reverse_branch:
c0ebe874
RS
13438 tmp = op[1];
13439 op[1] = op[0];
13440 op[0] = tmp;
252b5132
RH
13441
13442 do_branch:
c0ebe874 13443 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13444 macro_build (&offset_expr, s2, "p");
252b5132
RH
13445 break;
13446
13447 case M_BEQ_I:
13448 s = "cmpi";
13449 s2 = "bteqz";
13450 s3 = "x,U";
13451 goto do_branch_i;
13452 case M_BNE_I:
13453 s = "cmpi";
13454 s2 = "btnez";
13455 s3 = "x,U";
13456 goto do_branch_i;
13457 case M_BLT_I:
13458 s = "slti";
13459 s2 = "btnez";
13460 s3 = "x,8";
13461 goto do_branch_i;
13462 case M_BLTU_I:
13463 s = "sltiu";
13464 s2 = "btnez";
13465 s3 = "x,8";
13466 goto do_branch_i;
13467 case M_BLE_I:
13468 s = "slti";
13469 s2 = "btnez";
13470 s3 = "x,8";
13471 goto do_addone_branch_i;
13472 case M_BLEU_I:
13473 s = "sltiu";
13474 s2 = "btnez";
13475 s3 = "x,8";
13476 goto do_addone_branch_i;
13477 case M_BGE_I:
13478 s = "slti";
13479 s2 = "bteqz";
13480 s3 = "x,8";
13481 goto do_branch_i;
13482 case M_BGEU_I:
13483 s = "sltiu";
13484 s2 = "bteqz";
13485 s3 = "x,8";
13486 goto do_branch_i;
13487 case M_BGT_I:
13488 s = "slti";
13489 s2 = "bteqz";
13490 s3 = "x,8";
13491 goto do_addone_branch_i;
13492 case M_BGTU_I:
13493 s = "sltiu";
13494 s2 = "bteqz";
13495 s3 = "x,8";
13496
13497 do_addone_branch_i:
252b5132
RH
13498 ++imm_expr.X_add_number;
13499
13500 do_branch_i:
c0ebe874 13501 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13502 macro_build (&offset_expr, s2, "p");
252b5132
RH
13503 break;
13504
13505 case M_ABS:
13506 expr1.X_add_number = 0;
c0ebe874
RS
13507 macro_build (&expr1, "slti", "x,8", op[1]);
13508 if (op[0] != op[1])
13509 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13510 expr1.X_add_number = 2;
67c0d1eb 13511 macro_build (&expr1, "bteqz", "p");
c0ebe874 13512 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13513 break;
252b5132
RH
13514 }
13515}
13516
14daeee3
RS
13517/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13518 opcode bits in *OPCODE_EXTRA. */
13519
13520static struct mips_opcode *
13521mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13522 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13523{
13524 char *name, *dot, *p;
13525 unsigned int mask, suffix;
da8bca91 13526 ssize_t opend;
14daeee3
RS
13527 struct mips_opcode *insn;
13528
13529 /* Make a copy of the instruction so that we can fiddle with it. */
13530 name = alloca (length + 1);
13531 memcpy (name, start, length);
13532 name[length] = '\0';
13533
13534 /* Look up the instruction as-is. */
13535 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13536 if (insn)
14daeee3
RS
13537 return insn;
13538
13539 dot = strchr (name, '.');
13540 if (dot && dot[1])
13541 {
13542 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13543 p = mips_parse_vu0_channels (dot + 1, &mask);
13544 if (*p == 0 && mask != 0)
13545 {
13546 *dot = 0;
13547 insn = (struct mips_opcode *) hash_find (hash, name);
13548 *dot = '.';
13549 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13550 {
13551 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13552 return insn;
13553 }
13554 }
13555 }
13556
13557 if (mips_opts.micromips)
13558 {
13559 /* See if there's an instruction size override suffix,
13560 either `16' or `32', at the end of the mnemonic proper,
13561 that defines the operation, i.e. before the first `.'
13562 character if any. Strip it and retry. */
13563 opend = dot != NULL ? dot - name : length;
13564 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13565 suffix = 2;
13566 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13567 suffix = 4;
13568 else
13569 suffix = 0;
13570 if (suffix)
13571 {
13572 memcpy (name + opend - 2, name + opend, length - opend + 1);
13573 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13574 if (insn)
14daeee3
RS
13575 {
13576 forced_insn_length = suffix;
13577 return insn;
13578 }
13579 }
13580 }
13581
13582 return NULL;
13583}
13584
77bd4346 13585/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13586 is a macro, set imm_expr and offset_expr to the values associated
13587 with "I" and "A" operands respectively. Otherwise store the value
13588 of the relocatable field (if any) in offset_expr. In both cases
13589 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13590
13591static void
60f20e8b 13592mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13593{
60f20e8b 13594 const struct mips_opcode *first, *past;
df58fc94 13595 struct hash_control *hash;
a92713e6 13596 char format;
14daeee3 13597 size_t end;
a92713e6 13598 struct mips_operand_token *tokens;
14daeee3 13599 unsigned int opcode_extra;
252b5132 13600
df58fc94
RS
13601 if (mips_opts.micromips)
13602 {
13603 hash = micromips_op_hash;
13604 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13605 }
13606 else
13607 {
13608 hash = op_hash;
13609 past = &mips_opcodes[NUMOPCODES];
13610 }
13611 forced_insn_length = 0;
14daeee3 13612 opcode_extra = 0;
252b5132 13613
df58fc94 13614 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13615 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13616 continue;
bdaaa2e1 13617
60f20e8b
RS
13618 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13619 if (first == NULL)
252b5132 13620 {
1661c76c 13621 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13622 return;
252b5132
RH
13623 }
13624
60f20e8b 13625 if (strcmp (first->name, "li.s") == 0)
a92713e6 13626 format = 'f';
60f20e8b 13627 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13628 format = 'd';
13629 else
13630 format = 0;
13631 tokens = mips_parse_arguments (str + end, format);
13632 if (!tokens)
13633 return;
13634
60f20e8b
RS
13635 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13636 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13637 set_insn_error (0, _("invalid operands"));
df58fc94 13638
e3de51ce 13639 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13640}
13641
77bd4346
RS
13642/* As for mips_ip, but used when assembling MIPS16 code.
13643 Also set forced_insn_length to the resulting instruction size in
13644 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13645
13646static void
60f20e8b 13647mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13648{
1a00e612 13649 char *end, *s, c;
60f20e8b 13650 struct mips_opcode *first;
a92713e6 13651 struct mips_operand_token *tokens;
252b5132 13652
df58fc94 13653 forced_insn_length = 0;
252b5132 13654
3882b010 13655 for (s = str; ISLOWER (*s); ++s)
252b5132 13656 ;
1a00e612
RS
13657 end = s;
13658 c = *end;
13659 switch (c)
252b5132
RH
13660 {
13661 case '\0':
13662 break;
13663
13664 case ' ':
1a00e612 13665 s++;
252b5132
RH
13666 break;
13667
13668 case '.':
13669 if (s[1] == 't' && s[2] == ' ')
13670 {
df58fc94 13671 forced_insn_length = 2;
252b5132
RH
13672 s += 3;
13673 break;
13674 }
13675 else if (s[1] == 'e' && s[2] == ' ')
13676 {
df58fc94 13677 forced_insn_length = 4;
252b5132
RH
13678 s += 3;
13679 break;
13680 }
13681 /* Fall through. */
13682 default:
1661c76c 13683 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13684 return;
13685 }
13686
df58fc94
RS
13687 if (mips_opts.noautoextend && !forced_insn_length)
13688 forced_insn_length = 2;
252b5132 13689
1a00e612 13690 *end = 0;
60f20e8b 13691 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13692 *end = c;
13693
60f20e8b 13694 if (!first)
252b5132 13695 {
1661c76c 13696 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13697 return;
13698 }
13699
a92713e6
RS
13700 tokens = mips_parse_arguments (s, 0);
13701 if (!tokens)
13702 return;
13703
60f20e8b 13704 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13705 set_insn_error (0, _("invalid operands"));
252b5132 13706
e3de51ce 13707 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13708}
13709
b886a2ab
RS
13710/* Marshal immediate value VAL for an extended MIPS16 instruction.
13711 NBITS is the number of significant bits in VAL. */
13712
13713static unsigned long
13714mips16_immed_extend (offsetT val, unsigned int nbits)
13715{
13716 int extval;
13717 if (nbits == 16)
13718 {
13719 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13720 val &= 0x1f;
13721 }
13722 else if (nbits == 15)
13723 {
13724 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13725 val &= 0xf;
13726 }
13727 else
13728 {
13729 extval = ((val & 0x1f) << 6) | (val & 0x20);
13730 val = 0;
13731 }
13732 return (extval << 16) | val;
13733}
13734
3ccad066
RS
13735/* Like decode_mips16_operand, but require the operand to be defined and
13736 require it to be an integer. */
13737
13738static const struct mips_int_operand *
13739mips16_immed_operand (int type, bfd_boolean extended_p)
13740{
13741 const struct mips_operand *operand;
13742
13743 operand = decode_mips16_operand (type, extended_p);
13744 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13745 abort ();
13746 return (const struct mips_int_operand *) operand;
13747}
13748
13749/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13750
13751static bfd_boolean
13752mips16_immed_in_range_p (const struct mips_int_operand *operand,
13753 bfd_reloc_code_real_type reloc, offsetT sval)
13754{
13755 int min_val, max_val;
13756
13757 min_val = mips_int_operand_min (operand);
13758 max_val = mips_int_operand_max (operand);
13759 if (reloc != BFD_RELOC_UNUSED)
13760 {
13761 if (min_val < 0)
13762 sval = SEXT_16BIT (sval);
13763 else
13764 sval &= 0xffff;
13765 }
13766
13767 return (sval >= min_val
13768 && sval <= max_val
13769 && (sval & ((1 << operand->shift) - 1)) == 0);
13770}
13771
5c04167a
RS
13772/* Install immediate value VAL into MIPS16 instruction *INSN,
13773 extending it if necessary. The instruction in *INSN may
13774 already be extended.
13775
43c0598f
RS
13776 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13777 if none. In the former case, VAL is a 16-bit number with no
13778 defined signedness.
13779
13780 TYPE is the type of the immediate field. USER_INSN_LENGTH
13781 is the length that the user requested, or 0 if none. */
252b5132
RH
13782
13783static void
43c0598f
RS
13784mips16_immed (char *file, unsigned int line, int type,
13785 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13786 unsigned int user_insn_length, unsigned long *insn)
252b5132 13787{
3ccad066
RS
13788 const struct mips_int_operand *operand;
13789 unsigned int uval, length;
252b5132 13790
3ccad066
RS
13791 operand = mips16_immed_operand (type, FALSE);
13792 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13793 {
13794 /* We need an extended instruction. */
13795 if (user_insn_length == 2)
13796 as_bad_where (file, line, _("invalid unextended operand value"));
13797 else
13798 *insn |= MIPS16_EXTEND;
13799 }
13800 else if (user_insn_length == 4)
13801 {
13802 /* The operand doesn't force an unextended instruction to be extended.
13803 Warn if the user wanted an extended instruction anyway. */
13804 *insn |= MIPS16_EXTEND;
13805 as_warn_where (file, line,
13806 _("extended operand requested but not required"));
13807 }
252b5132 13808
3ccad066
RS
13809 length = mips16_opcode_length (*insn);
13810 if (length == 4)
252b5132 13811 {
3ccad066
RS
13812 operand = mips16_immed_operand (type, TRUE);
13813 if (!mips16_immed_in_range_p (operand, reloc, val))
13814 as_bad_where (file, line,
13815 _("operand value out of range for instruction"));
252b5132 13816 }
3ccad066
RS
13817 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13818 if (length == 2)
13819 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 13820 else
3ccad066 13821 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
13822}
13823\f
d6f16593 13824struct percent_op_match
ad8d3bb3 13825{
5e0116d5
RS
13826 const char *str;
13827 bfd_reloc_code_real_type reloc;
d6f16593
MR
13828};
13829
13830static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 13831{
5e0116d5 13832 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
13833 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13834 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13835 {"%call16", BFD_RELOC_MIPS_CALL16},
13836 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13837 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13838 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13839 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13840 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13841 {"%got", BFD_RELOC_MIPS_GOT16},
13842 {"%gp_rel", BFD_RELOC_GPREL16},
13843 {"%half", BFD_RELOC_16},
13844 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13845 {"%higher", BFD_RELOC_MIPS_HIGHER},
13846 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
13847 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13848 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13849 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13850 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13851 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13852 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13853 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
13854 {"%hi", BFD_RELOC_HI16_S},
13855 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13856 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
13857};
13858
d6f16593
MR
13859static const struct percent_op_match mips16_percent_op[] =
13860{
13861 {"%lo", BFD_RELOC_MIPS16_LO16},
13862 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
13863 {"%got", BFD_RELOC_MIPS16_GOT16},
13864 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
13865 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13866 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13867 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13868 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13869 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13870 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13871 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13872 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
13873};
13874
252b5132 13875
5e0116d5
RS
13876/* Return true if *STR points to a relocation operator. When returning true,
13877 move *STR over the operator and store its relocation code in *RELOC.
13878 Leave both *STR and *RELOC alone when returning false. */
13879
13880static bfd_boolean
17a2f251 13881parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 13882{
d6f16593
MR
13883 const struct percent_op_match *percent_op;
13884 size_t limit, i;
13885
13886 if (mips_opts.mips16)
13887 {
13888 percent_op = mips16_percent_op;
13889 limit = ARRAY_SIZE (mips16_percent_op);
13890 }
13891 else
13892 {
13893 percent_op = mips_percent_op;
13894 limit = ARRAY_SIZE (mips_percent_op);
13895 }
76b3015f 13896
d6f16593 13897 for (i = 0; i < limit; i++)
5e0116d5 13898 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13899 {
3f98094e
DJ
13900 int len = strlen (percent_op[i].str);
13901
13902 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13903 continue;
13904
5e0116d5
RS
13905 *str += strlen (percent_op[i].str);
13906 *reloc = percent_op[i].reloc;
394f9b3a 13907
5e0116d5
RS
13908 /* Check whether the output BFD supports this relocation.
13909 If not, issue an error and fall back on something safe. */
13910 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13911 {
20203fb9 13912 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13913 percent_op[i].str);
01a3f561 13914 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13915 }
5e0116d5 13916 return TRUE;
394f9b3a 13917 }
5e0116d5 13918 return FALSE;
394f9b3a 13919}
ad8d3bb3 13920
ad8d3bb3 13921
5e0116d5
RS
13922/* Parse string STR as a 16-bit relocatable operand. Store the
13923 expression in *EP and the relocations in the array starting
13924 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13925
01a3f561 13926 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13927
5e0116d5 13928static size_t
17a2f251
TS
13929my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13930 char *str)
ad8d3bb3 13931{
5e0116d5
RS
13932 bfd_reloc_code_real_type reversed_reloc[3];
13933 size_t reloc_index, i;
09b8f35a
RS
13934 int crux_depth, str_depth;
13935 char *crux;
5e0116d5
RS
13936
13937 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13938 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13939 of the main expression and with CRUX_DEPTH containing the number
13940 of open brackets at that point. */
13941 reloc_index = -1;
13942 str_depth = 0;
13943 do
fb1b3232 13944 {
09b8f35a
RS
13945 reloc_index++;
13946 crux = str;
13947 crux_depth = str_depth;
13948
13949 /* Skip over whitespace and brackets, keeping count of the number
13950 of brackets. */
13951 while (*str == ' ' || *str == '\t' || *str == '(')
13952 if (*str++ == '(')
13953 str_depth++;
5e0116d5 13954 }
09b8f35a
RS
13955 while (*str == '%'
13956 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13957 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 13958
09b8f35a 13959 my_getExpression (ep, crux);
5e0116d5 13960 str = expr_end;
394f9b3a 13961
5e0116d5 13962 /* Match every open bracket. */
09b8f35a 13963 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 13964 if (*str++ == ')')
09b8f35a 13965 crux_depth--;
394f9b3a 13966
09b8f35a 13967 if (crux_depth > 0)
20203fb9 13968 as_bad (_("unclosed '('"));
394f9b3a 13969
5e0116d5 13970 expr_end = str;
252b5132 13971
01a3f561 13972 if (reloc_index != 0)
64bdfcaf
RS
13973 {
13974 prev_reloc_op_frag = frag_now;
13975 for (i = 0; i < reloc_index; i++)
13976 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13977 }
fb1b3232 13978
5e0116d5 13979 return reloc_index;
252b5132
RH
13980}
13981
13982static void
17a2f251 13983my_getExpression (expressionS *ep, char *str)
252b5132
RH
13984{
13985 char *save_in;
13986
13987 save_in = input_line_pointer;
13988 input_line_pointer = str;
13989 expression (ep);
13990 expr_end = input_line_pointer;
13991 input_line_pointer = save_in;
252b5132
RH
13992}
13993
252b5132 13994char *
17a2f251 13995md_atof (int type, char *litP, int *sizeP)
252b5132 13996{
499ac353 13997 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
13998}
13999
14000void
17a2f251 14001md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14002{
14003 if (target_big_endian)
14004 number_to_chars_bigendian (buf, val, n);
14005 else
14006 number_to_chars_littleendian (buf, val, n);
14007}
14008\f
e013f690
TS
14009static int support_64bit_objects(void)
14010{
14011 const char **list, **l;
aa3d8fdf 14012 int yes;
e013f690
TS
14013
14014 list = bfd_target_list ();
14015 for (l = list; *l != NULL; l++)
aeffff67
RS
14016 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14017 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14018 break;
aa3d8fdf 14019 yes = (*l != NULL);
e013f690 14020 free (list);
aa3d8fdf 14021 return yes;
e013f690
TS
14022}
14023
316f5878
RS
14024/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14025 NEW_VALUE. Warn if another value was already specified. Note:
14026 we have to defer parsing the -march and -mtune arguments in order
14027 to handle 'from-abi' correctly, since the ABI might be specified
14028 in a later argument. */
14029
14030static void
17a2f251 14031mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14032{
14033 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14034 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14035 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14036 new_value);
14037
14038 *string_ptr = new_value;
14039}
14040
252b5132 14041int
17a2f251 14042md_parse_option (int c, char *arg)
252b5132 14043{
c6278170
RS
14044 unsigned int i;
14045
14046 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14047 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14048 {
919731af 14049 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14050 c == mips_ases[i].option_on);
14051 return 1;
14052 }
14053
252b5132
RH
14054 switch (c)
14055 {
119d663a
NC
14056 case OPTION_CONSTRUCT_FLOATS:
14057 mips_disable_float_construction = 0;
14058 break;
bdaaa2e1 14059
119d663a
NC
14060 case OPTION_NO_CONSTRUCT_FLOATS:
14061 mips_disable_float_construction = 1;
14062 break;
bdaaa2e1 14063
252b5132
RH
14064 case OPTION_TRAP:
14065 mips_trap = 1;
14066 break;
14067
14068 case OPTION_BREAK:
14069 mips_trap = 0;
14070 break;
14071
14072 case OPTION_EB:
14073 target_big_endian = 1;
14074 break;
14075
14076 case OPTION_EL:
14077 target_big_endian = 0;
14078 break;
14079
14080 case 'O':
4ffff32f
TS
14081 if (arg == NULL)
14082 mips_optimize = 1;
14083 else if (arg[0] == '0')
14084 mips_optimize = 0;
14085 else if (arg[0] == '1')
252b5132
RH
14086 mips_optimize = 1;
14087 else
14088 mips_optimize = 2;
14089 break;
14090
14091 case 'g':
14092 if (arg == NULL)
14093 mips_debug = 2;
14094 else
14095 mips_debug = atoi (arg);
252b5132
RH
14096 break;
14097
14098 case OPTION_MIPS1:
0b35dfee 14099 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14100 break;
14101
14102 case OPTION_MIPS2:
0b35dfee 14103 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14104 break;
14105
14106 case OPTION_MIPS3:
0b35dfee 14107 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14108 break;
14109
14110 case OPTION_MIPS4:
0b35dfee 14111 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14112 break;
14113
84ea6cf2 14114 case OPTION_MIPS5:
0b35dfee 14115 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14116 break;
14117
e7af610e 14118 case OPTION_MIPS32:
0b35dfee 14119 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14120 break;
14121
af7ee8bf 14122 case OPTION_MIPS32R2:
0b35dfee 14123 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14124 break;
14125
ae52f483 14126 case OPTION_MIPS32R3:
0ae19f05 14127 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14128 break;
14129
14130 case OPTION_MIPS32R5:
0ae19f05 14131 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14132 break;
14133
7361da2c
AB
14134 case OPTION_MIPS32R6:
14135 file_mips_opts.isa = ISA_MIPS32R6;
14136 break;
14137
5f74bc13 14138 case OPTION_MIPS64R2:
0b35dfee 14139 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14140 break;
14141
ae52f483 14142 case OPTION_MIPS64R3:
0ae19f05 14143 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14144 break;
14145
14146 case OPTION_MIPS64R5:
0ae19f05 14147 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14148 break;
14149
7361da2c
AB
14150 case OPTION_MIPS64R6:
14151 file_mips_opts.isa = ISA_MIPS64R6;
14152 break;
14153
84ea6cf2 14154 case OPTION_MIPS64:
0b35dfee 14155 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14156 break;
14157
ec68c924 14158 case OPTION_MTUNE:
316f5878
RS
14159 mips_set_option_string (&mips_tune_string, arg);
14160 break;
ec68c924 14161
316f5878
RS
14162 case OPTION_MARCH:
14163 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14164 break;
14165
14166 case OPTION_M4650:
316f5878
RS
14167 mips_set_option_string (&mips_arch_string, "4650");
14168 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14169 break;
14170
14171 case OPTION_NO_M4650:
14172 break;
14173
14174 case OPTION_M4010:
316f5878
RS
14175 mips_set_option_string (&mips_arch_string, "4010");
14176 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14177 break;
14178
14179 case OPTION_NO_M4010:
14180 break;
14181
14182 case OPTION_M4100:
316f5878
RS
14183 mips_set_option_string (&mips_arch_string, "4100");
14184 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14185 break;
14186
14187 case OPTION_NO_M4100:
14188 break;
14189
252b5132 14190 case OPTION_M3900:
316f5878
RS
14191 mips_set_option_string (&mips_arch_string, "3900");
14192 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14193 break;
bdaaa2e1 14194
252b5132
RH
14195 case OPTION_NO_M3900:
14196 break;
14197
df58fc94 14198 case OPTION_MICROMIPS:
919731af 14199 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14200 {
14201 as_bad (_("-mmicromips cannot be used with -mips16"));
14202 return 0;
14203 }
919731af 14204 file_mips_opts.micromips = 1;
df58fc94
RS
14205 mips_no_prev_insn ();
14206 break;
14207
14208 case OPTION_NO_MICROMIPS:
919731af 14209 file_mips_opts.micromips = 0;
df58fc94
RS
14210 mips_no_prev_insn ();
14211 break;
14212
252b5132 14213 case OPTION_MIPS16:
919731af 14214 if (file_mips_opts.micromips == 1)
df58fc94
RS
14215 {
14216 as_bad (_("-mips16 cannot be used with -micromips"));
14217 return 0;
14218 }
919731af 14219 file_mips_opts.mips16 = 1;
7d10b47d 14220 mips_no_prev_insn ();
252b5132
RH
14221 break;
14222
14223 case OPTION_NO_MIPS16:
919731af 14224 file_mips_opts.mips16 = 0;
7d10b47d 14225 mips_no_prev_insn ();
252b5132
RH
14226 break;
14227
6a32d874
CM
14228 case OPTION_FIX_24K:
14229 mips_fix_24k = 1;
14230 break;
14231
14232 case OPTION_NO_FIX_24K:
14233 mips_fix_24k = 0;
14234 break;
14235
a8d14a88
CM
14236 case OPTION_FIX_RM7000:
14237 mips_fix_rm7000 = 1;
14238 break;
14239
14240 case OPTION_NO_FIX_RM7000:
14241 mips_fix_rm7000 = 0;
14242 break;
14243
c67a084a
NC
14244 case OPTION_FIX_LOONGSON2F_JUMP:
14245 mips_fix_loongson2f_jump = TRUE;
14246 break;
14247
14248 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14249 mips_fix_loongson2f_jump = FALSE;
14250 break;
14251
14252 case OPTION_FIX_LOONGSON2F_NOP:
14253 mips_fix_loongson2f_nop = TRUE;
14254 break;
14255
14256 case OPTION_NO_FIX_LOONGSON2F_NOP:
14257 mips_fix_loongson2f_nop = FALSE;
14258 break;
14259
d766e8ec
RS
14260 case OPTION_FIX_VR4120:
14261 mips_fix_vr4120 = 1;
60b63b72
RS
14262 break;
14263
d766e8ec
RS
14264 case OPTION_NO_FIX_VR4120:
14265 mips_fix_vr4120 = 0;
60b63b72
RS
14266 break;
14267
7d8e00cf
RS
14268 case OPTION_FIX_VR4130:
14269 mips_fix_vr4130 = 1;
14270 break;
14271
14272 case OPTION_NO_FIX_VR4130:
14273 mips_fix_vr4130 = 0;
14274 break;
14275
d954098f
DD
14276 case OPTION_FIX_CN63XXP1:
14277 mips_fix_cn63xxp1 = TRUE;
14278 break;
14279
14280 case OPTION_NO_FIX_CN63XXP1:
14281 mips_fix_cn63xxp1 = FALSE;
14282 break;
14283
4a6a3df4
AO
14284 case OPTION_RELAX_BRANCH:
14285 mips_relax_branch = 1;
14286 break;
14287
14288 case OPTION_NO_RELAX_BRANCH:
14289 mips_relax_branch = 0;
14290 break;
14291
833794fc 14292 case OPTION_INSN32:
919731af 14293 file_mips_opts.insn32 = TRUE;
833794fc
MR
14294 break;
14295
14296 case OPTION_NO_INSN32:
919731af 14297 file_mips_opts.insn32 = FALSE;
833794fc
MR
14298 break;
14299
aa6975fb
ILT
14300 case OPTION_MSHARED:
14301 mips_in_shared = TRUE;
14302 break;
14303
14304 case OPTION_MNO_SHARED:
14305 mips_in_shared = FALSE;
14306 break;
14307
aed1a261 14308 case OPTION_MSYM32:
919731af 14309 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14310 break;
14311
14312 case OPTION_MNO_SYM32:
919731af 14313 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14314 break;
14315
252b5132
RH
14316 /* When generating ELF code, we permit -KPIC and -call_shared to
14317 select SVR4_PIC, and -non_shared to select no PIC. This is
14318 intended to be compatible with Irix 5. */
14319 case OPTION_CALL_SHARED:
252b5132 14320 mips_pic = SVR4_PIC;
143d77c5 14321 mips_abicalls = TRUE;
252b5132
RH
14322 break;
14323
861fb55a 14324 case OPTION_CALL_NONPIC:
861fb55a
DJ
14325 mips_pic = NO_PIC;
14326 mips_abicalls = TRUE;
14327 break;
14328
252b5132 14329 case OPTION_NON_SHARED:
252b5132 14330 mips_pic = NO_PIC;
143d77c5 14331 mips_abicalls = FALSE;
252b5132
RH
14332 break;
14333
44075ae2
TS
14334 /* The -xgot option tells the assembler to use 32 bit offsets
14335 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14336 compatibility. */
14337 case OPTION_XGOT:
14338 mips_big_got = 1;
14339 break;
14340
14341 case 'G':
6caf9ef4
TS
14342 g_switch_value = atoi (arg);
14343 g_switch_seen = 1;
252b5132
RH
14344 break;
14345
34ba82a8
TS
14346 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14347 and -mabi=64. */
252b5132 14348 case OPTION_32:
f3ded42a 14349 mips_abi = O32_ABI;
252b5132
RH
14350 break;
14351
e013f690 14352 case OPTION_N32:
316f5878 14353 mips_abi = N32_ABI;
e013f690 14354 break;
252b5132 14355
e013f690 14356 case OPTION_64:
316f5878 14357 mips_abi = N64_ABI;
f43abd2b 14358 if (!support_64bit_objects())
1661c76c 14359 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14360 break;
14361
c97ef257 14362 case OPTION_GP32:
bad1aba3 14363 file_mips_opts.gp = 32;
c97ef257
AH
14364 break;
14365
14366 case OPTION_GP64:
bad1aba3 14367 file_mips_opts.gp = 64;
c97ef257 14368 break;
252b5132 14369
ca4e0257 14370 case OPTION_FP32:
0b35dfee 14371 file_mips_opts.fp = 32;
316f5878
RS
14372 break;
14373
351cdf24
MF
14374 case OPTION_FPXX:
14375 file_mips_opts.fp = 0;
14376 break;
14377
316f5878 14378 case OPTION_FP64:
0b35dfee 14379 file_mips_opts.fp = 64;
ca4e0257
RS
14380 break;
14381
351cdf24
MF
14382 case OPTION_ODD_SPREG:
14383 file_mips_opts.oddspreg = 1;
14384 break;
14385
14386 case OPTION_NO_ODD_SPREG:
14387 file_mips_opts.oddspreg = 0;
14388 break;
14389
037b32b9 14390 case OPTION_SINGLE_FLOAT:
0b35dfee 14391 file_mips_opts.single_float = 1;
037b32b9
AN
14392 break;
14393
14394 case OPTION_DOUBLE_FLOAT:
0b35dfee 14395 file_mips_opts.single_float = 0;
037b32b9
AN
14396 break;
14397
14398 case OPTION_SOFT_FLOAT:
0b35dfee 14399 file_mips_opts.soft_float = 1;
037b32b9
AN
14400 break;
14401
14402 case OPTION_HARD_FLOAT:
0b35dfee 14403 file_mips_opts.soft_float = 0;
037b32b9
AN
14404 break;
14405
252b5132 14406 case OPTION_MABI:
e013f690 14407 if (strcmp (arg, "32") == 0)
316f5878 14408 mips_abi = O32_ABI;
e013f690 14409 else if (strcmp (arg, "o64") == 0)
316f5878 14410 mips_abi = O64_ABI;
e013f690 14411 else if (strcmp (arg, "n32") == 0)
316f5878 14412 mips_abi = N32_ABI;
e013f690
TS
14413 else if (strcmp (arg, "64") == 0)
14414 {
316f5878 14415 mips_abi = N64_ABI;
e013f690 14416 if (! support_64bit_objects())
1661c76c 14417 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14418 "format"));
14419 }
14420 else if (strcmp (arg, "eabi") == 0)
316f5878 14421 mips_abi = EABI_ABI;
e013f690 14422 else
da0e507f
TS
14423 {
14424 as_fatal (_("invalid abi -mabi=%s"), arg);
14425 return 0;
14426 }
252b5132
RH
14427 break;
14428
6b76fefe 14429 case OPTION_M7000_HILO_FIX:
b34976b6 14430 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14431 break;
14432
9ee72ff1 14433 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14434 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14435 break;
14436
ecb4347a 14437 case OPTION_MDEBUG:
b34976b6 14438 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14439 break;
14440
14441 case OPTION_NO_MDEBUG:
b34976b6 14442 mips_flag_mdebug = FALSE;
ecb4347a 14443 break;
dcd410fe
RO
14444
14445 case OPTION_PDR:
14446 mips_flag_pdr = TRUE;
14447 break;
14448
14449 case OPTION_NO_PDR:
14450 mips_flag_pdr = FALSE;
14451 break;
0a44bf69
RS
14452
14453 case OPTION_MVXWORKS_PIC:
14454 mips_pic = VXWORKS_PIC;
14455 break;
ecb4347a 14456
ba92f887
MR
14457 case OPTION_NAN:
14458 if (strcmp (arg, "2008") == 0)
7361da2c 14459 mips_nan2008 = 1;
ba92f887 14460 else if (strcmp (arg, "legacy") == 0)
7361da2c 14461 mips_nan2008 = 0;
ba92f887
MR
14462 else
14463 {
1661c76c 14464 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14465 return 0;
14466 }
14467 break;
14468
252b5132
RH
14469 default:
14470 return 0;
14471 }
14472
c67a084a
NC
14473 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14474
252b5132
RH
14475 return 1;
14476}
316f5878 14477\f
919731af 14478/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14479
316f5878 14480static void
17a2f251 14481mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14482{
14483 if (info != 0)
fef14a42 14484 mips_tune = info->cpu;
316f5878 14485}
80cc45a5 14486
34ba82a8 14487
252b5132 14488void
17a2f251 14489mips_after_parse_args (void)
e9670677 14490{
fef14a42
TS
14491 const struct mips_cpu_info *arch_info = 0;
14492 const struct mips_cpu_info *tune_info = 0;
14493
e9670677 14494 /* GP relative stuff not working for PE */
6caf9ef4 14495 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14496 {
6caf9ef4 14497 if (g_switch_seen && g_switch_value != 0)
1661c76c 14498 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14499 g_switch_value = 0;
14500 }
14501
cac012d6
AO
14502 if (mips_abi == NO_ABI)
14503 mips_abi = MIPS_DEFAULT_ABI;
14504
919731af 14505 /* The following code determines the architecture.
22923709
RS
14506 Similar code was added to GCC 3.3 (see override_options() in
14507 config/mips/mips.c). The GAS and GCC code should be kept in sync
14508 as much as possible. */
e9670677 14509
316f5878 14510 if (mips_arch_string != 0)
fef14a42 14511 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14512
0b35dfee 14513 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14514 {
0b35dfee 14515 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14516 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14517 the -march selection (if any). */
fef14a42 14518 if (arch_info != 0)
e9670677 14519 {
316f5878
RS
14520 /* -march takes precedence over -mipsN, since it is more descriptive.
14521 There's no harm in specifying both as long as the ISA levels
14522 are the same. */
0b35dfee 14523 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14524 as_bad (_("-%s conflicts with the other architecture options,"
14525 " which imply -%s"),
0b35dfee 14526 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14527 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14528 }
316f5878 14529 else
0b35dfee 14530 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14531 }
14532
fef14a42 14533 if (arch_info == 0)
95bfe26e
MF
14534 {
14535 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14536 gas_assert (arch_info);
14537 }
e9670677 14538
fef14a42 14539 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14540 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14541 arch_info->name);
14542
919731af 14543 file_mips_opts.arch = arch_info->cpu;
14544 file_mips_opts.isa = arch_info->isa;
14545
14546 /* Set up initial mips_opts state. */
14547 mips_opts = file_mips_opts;
14548
14549 /* The register size inference code is now placed in
14550 file_mips_check_options. */
fef14a42 14551
0b35dfee 14552 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14553 processor. */
fef14a42
TS
14554 if (mips_tune_string != 0)
14555 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14556
fef14a42
TS
14557 if (tune_info == 0)
14558 mips_set_tune (arch_info);
14559 else
14560 mips_set_tune (tune_info);
e9670677 14561
ecb4347a 14562 if (mips_flag_mdebug < 0)
e8044f35 14563 mips_flag_mdebug = 0;
e9670677
MR
14564}
14565\f
14566void
17a2f251 14567mips_init_after_args (void)
252b5132
RH
14568{
14569 /* initialize opcodes */
14570 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14571 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14572}
14573
14574long
17a2f251 14575md_pcrel_from (fixS *fixP)
252b5132 14576{
a7ebbfdf
TS
14577 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14578 switch (fixP->fx_r_type)
14579 {
df58fc94
RS
14580 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14581 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14582 /* Return the address of the delay slot. */
14583 return addr + 2;
14584
14585 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14586 case BFD_RELOC_MICROMIPS_JMP:
a7ebbfdf 14587 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14588 case BFD_RELOC_MIPS_21_PCREL_S2:
14589 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14590 case BFD_RELOC_MIPS_JMP:
14591 /* Return the address of the delay slot. */
14592 return addr + 4;
df58fc94 14593
a7ebbfdf
TS
14594 default:
14595 return addr;
14596 }
252b5132
RH
14597}
14598
252b5132
RH
14599/* This is called before the symbol table is processed. In order to
14600 work with gcc when using mips-tfile, we must keep all local labels.
14601 However, in other cases, we want to discard them. If we were
14602 called with -g, but we didn't see any debugging information, it may
14603 mean that gcc is smuggling debugging information through to
14604 mips-tfile, in which case we must generate all local labels. */
14605
14606void
17a2f251 14607mips_frob_file_before_adjust (void)
252b5132
RH
14608{
14609#ifndef NO_ECOFF_DEBUGGING
14610 if (ECOFF_DEBUGGING
14611 && mips_debug != 0
14612 && ! ecoff_debugging_seen)
14613 flag_keep_locals = 1;
14614#endif
14615}
14616
3b91255e 14617/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14618 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14619 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14620 relocation operators.
14621
14622 For our purposes, a %lo() expression matches a %got() or %hi()
14623 expression if:
14624
14625 (a) it refers to the same symbol; and
14626 (b) the offset applied in the %lo() expression is no lower than
14627 the offset applied in the %got() or %hi().
14628
14629 (b) allows us to cope with code like:
14630
14631 lui $4,%hi(foo)
14632 lh $4,%lo(foo+2)($4)
14633
14634 ...which is legal on RELA targets, and has a well-defined behaviour
14635 if the user knows that adding 2 to "foo" will not induce a carry to
14636 the high 16 bits.
14637
14638 When several %lo()s match a particular %got() or %hi(), we use the
14639 following rules to distinguish them:
14640
14641 (1) %lo()s with smaller offsets are a better match than %lo()s with
14642 higher offsets.
14643
14644 (2) %lo()s with no matching %got() or %hi() are better than those
14645 that already have a matching %got() or %hi().
14646
14647 (3) later %lo()s are better than earlier %lo()s.
14648
14649 These rules are applied in order.
14650
14651 (1) means, among other things, that %lo()s with identical offsets are
14652 chosen if they exist.
14653
14654 (2) means that we won't associate several high-part relocations with
14655 the same low-part relocation unless there's no alternative. Having
14656 several high parts for the same low part is a GNU extension; this rule
14657 allows careful users to avoid it.
14658
14659 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14660 with the last high-part relocation being at the front of the list.
14661 It therefore makes sense to choose the last matching low-part
14662 relocation, all other things being equal. It's also easier
14663 to code that way. */
252b5132
RH
14664
14665void
17a2f251 14666mips_frob_file (void)
252b5132
RH
14667{
14668 struct mips_hi_fixup *l;
35903be0 14669 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14670
14671 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14672 {
14673 segment_info_type *seginfo;
3b91255e
RS
14674 bfd_boolean matched_lo_p;
14675 fixS **hi_pos, **lo_pos, **pos;
252b5132 14676
9c2799c2 14677 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14678
5919d012 14679 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14680 there isn't supposed to be a matching LO. Ignore %gots against
14681 constants; we'll report an error for those later. */
738e5348 14682 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14683 && !(l->fixp->fx_addsy
14684 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14685 continue;
14686
14687 /* Check quickly whether the next fixup happens to be a matching %lo. */
14688 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14689 continue;
14690
252b5132 14691 seginfo = seg_info (l->seg);
252b5132 14692
3b91255e
RS
14693 /* Set HI_POS to the position of this relocation in the chain.
14694 Set LO_POS to the position of the chosen low-part relocation.
14695 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14696 relocation that matches an immediately-preceding high-part
14697 relocation. */
14698 hi_pos = NULL;
14699 lo_pos = NULL;
14700 matched_lo_p = FALSE;
738e5348 14701 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14702
3b91255e
RS
14703 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14704 {
14705 if (*pos == l->fixp)
14706 hi_pos = pos;
14707
35903be0 14708 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14709 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14710 && (*pos)->fx_offset >= l->fixp->fx_offset
14711 && (lo_pos == NULL
14712 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14713 || (!matched_lo_p
14714 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14715 lo_pos = pos;
14716
14717 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14718 && fixup_has_matching_lo_p (*pos));
14719 }
14720
14721 /* If we found a match, remove the high-part relocation from its
14722 current position and insert it before the low-part relocation.
14723 Make the offsets match so that fixup_has_matching_lo_p()
14724 will return true.
14725
14726 We don't warn about unmatched high-part relocations since some
14727 versions of gcc have been known to emit dead "lui ...%hi(...)"
14728 instructions. */
14729 if (lo_pos != NULL)
14730 {
14731 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14732 if (l->fixp->fx_next != *lo_pos)
252b5132 14733 {
3b91255e
RS
14734 *hi_pos = l->fixp->fx_next;
14735 l->fixp->fx_next = *lo_pos;
14736 *lo_pos = l->fixp;
252b5132 14737 }
252b5132
RH
14738 }
14739 }
14740}
14741
252b5132 14742int
17a2f251 14743mips_force_relocation (fixS *fixp)
252b5132 14744{
ae6063d4 14745 if (generic_force_reloc (fixp))
252b5132
RH
14746 return 1;
14747
df58fc94
RS
14748 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14749 so that the linker relaxation can update targets. */
14750 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14751 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14752 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14753 return 1;
14754
7361da2c
AB
14755 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14756 if (ISA_IS_R6 (mips_opts.isa)
14757 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14758 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14759 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14760 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14761 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14762 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14763 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14764 return 1;
14765
3e722fb5 14766 return 0;
252b5132
RH
14767}
14768
b886a2ab
RS
14769/* Read the instruction associated with RELOC from BUF. */
14770
14771static unsigned int
14772read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14773{
14774 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14775 return read_compressed_insn (buf, 4);
14776 else
14777 return read_insn (buf);
14778}
14779
14780/* Write instruction INSN to BUF, given that it has been relocated
14781 by RELOC. */
14782
14783static void
14784write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14785 unsigned long insn)
14786{
14787 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14788 write_compressed_insn (buf, insn, 4);
14789 else
14790 write_insn (buf, insn);
14791}
14792
252b5132
RH
14793/* Apply a fixup to the object file. */
14794
94f592af 14795void
55cf6793 14796md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 14797{
4d68580a 14798 char *buf;
b886a2ab 14799 unsigned long insn;
a7ebbfdf 14800 reloc_howto_type *howto;
252b5132 14801
d56a8dda
RS
14802 if (fixP->fx_pcrel)
14803 switch (fixP->fx_r_type)
14804 {
14805 case BFD_RELOC_16_PCREL_S2:
14806 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14807 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14808 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14809 case BFD_RELOC_32_PCREL:
7361da2c
AB
14810 case BFD_RELOC_MIPS_21_PCREL_S2:
14811 case BFD_RELOC_MIPS_26_PCREL_S2:
14812 case BFD_RELOC_MIPS_18_PCREL_S3:
14813 case BFD_RELOC_MIPS_19_PCREL_S2:
14814 case BFD_RELOC_HI16_S_PCREL:
14815 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
14816 break;
14817
14818 case BFD_RELOC_32:
14819 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14820 break;
14821
14822 default:
14823 as_bad_where (fixP->fx_file, fixP->fx_line,
14824 _("PC-relative reference to a different section"));
14825 break;
14826 }
14827
14828 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14829 that have no MIPS ELF equivalent. */
14830 if (fixP->fx_r_type != BFD_RELOC_8)
14831 {
14832 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14833 if (!howto)
14834 return;
14835 }
65551fa4 14836
df58fc94
RS
14837 gas_assert (fixP->fx_size == 2
14838 || fixP->fx_size == 4
d56a8dda 14839 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
14840 || fixP->fx_r_type == BFD_RELOC_16
14841 || fixP->fx_r_type == BFD_RELOC_64
14842 || fixP->fx_r_type == BFD_RELOC_CTOR
14843 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 14844 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
14845 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14846 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
14847 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14848 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 14849
4d68580a 14850 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 14851
b1dca8ee
RS
14852 /* Don't treat parts of a composite relocation as done. There are two
14853 reasons for this:
14854
14855 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14856 should nevertheless be emitted if the first part is.
14857
14858 (2) In normal usage, composite relocations are never assembly-time
14859 constants. The easiest way of dealing with the pathological
14860 exceptions is to generate a relocation against STN_UNDEF and
14861 leave everything up to the linker. */
3994f87e 14862 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14863 fixP->fx_done = 1;
14864
14865 switch (fixP->fx_r_type)
14866 {
3f98094e
DJ
14867 case BFD_RELOC_MIPS_TLS_GD:
14868 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14869 case BFD_RELOC_MIPS_TLS_DTPREL32:
14870 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14871 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14872 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14873 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14874 case BFD_RELOC_MIPS_TLS_TPREL32:
14875 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14876 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14877 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14878 case BFD_RELOC_MICROMIPS_TLS_GD:
14879 case BFD_RELOC_MICROMIPS_TLS_LDM:
14880 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14881 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14882 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14883 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14884 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14885 case BFD_RELOC_MIPS16_TLS_GD:
14886 case BFD_RELOC_MIPS16_TLS_LDM:
14887 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14888 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14889 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14890 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14891 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
b886a2ab
RS
14892 if (!fixP->fx_addsy)
14893 {
14894 as_bad_where (fixP->fx_file, fixP->fx_line,
14895 _("TLS relocation against a constant"));
14896 break;
14897 }
3f98094e
DJ
14898 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14899 /* fall through */
14900
252b5132 14901 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14902 case BFD_RELOC_MIPS_SHIFT5:
14903 case BFD_RELOC_MIPS_SHIFT6:
14904 case BFD_RELOC_MIPS_GOT_DISP:
14905 case BFD_RELOC_MIPS_GOT_PAGE:
14906 case BFD_RELOC_MIPS_GOT_OFST:
14907 case BFD_RELOC_MIPS_SUB:
14908 case BFD_RELOC_MIPS_INSERT_A:
14909 case BFD_RELOC_MIPS_INSERT_B:
14910 case BFD_RELOC_MIPS_DELETE:
14911 case BFD_RELOC_MIPS_HIGHEST:
14912 case BFD_RELOC_MIPS_HIGHER:
14913 case BFD_RELOC_MIPS_SCN_DISP:
14914 case BFD_RELOC_MIPS_REL16:
14915 case BFD_RELOC_MIPS_RELGOT:
14916 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14917 case BFD_RELOC_HI16:
14918 case BFD_RELOC_HI16_S:
b886a2ab 14919 case BFD_RELOC_LO16:
cdf6fd85 14920 case BFD_RELOC_GPREL16:
252b5132
RH
14921 case BFD_RELOC_MIPS_LITERAL:
14922 case BFD_RELOC_MIPS_CALL16:
14923 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14924 case BFD_RELOC_GPREL32:
252b5132
RH
14925 case BFD_RELOC_MIPS_GOT_HI16:
14926 case BFD_RELOC_MIPS_GOT_LO16:
14927 case BFD_RELOC_MIPS_CALL_HI16:
14928 case BFD_RELOC_MIPS_CALL_LO16:
14929 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14930 case BFD_RELOC_MIPS16_GOT16:
14931 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14932 case BFD_RELOC_MIPS16_HI16:
14933 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14934 case BFD_RELOC_MIPS16_LO16:
252b5132 14935 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14936 case BFD_RELOC_MICROMIPS_JMP:
14937 case BFD_RELOC_MICROMIPS_GOT_DISP:
14938 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14939 case BFD_RELOC_MICROMIPS_GOT_OFST:
14940 case BFD_RELOC_MICROMIPS_SUB:
14941 case BFD_RELOC_MICROMIPS_HIGHEST:
14942 case BFD_RELOC_MICROMIPS_HIGHER:
14943 case BFD_RELOC_MICROMIPS_SCN_DISP:
14944 case BFD_RELOC_MICROMIPS_JALR:
14945 case BFD_RELOC_MICROMIPS_HI16:
14946 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14947 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14948 case BFD_RELOC_MICROMIPS_GPREL16:
14949 case BFD_RELOC_MICROMIPS_LITERAL:
14950 case BFD_RELOC_MICROMIPS_CALL16:
14951 case BFD_RELOC_MICROMIPS_GOT16:
14952 case BFD_RELOC_MICROMIPS_GOT_HI16:
14953 case BFD_RELOC_MICROMIPS_GOT_LO16:
14954 case BFD_RELOC_MICROMIPS_CALL_HI16:
14955 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 14956 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
14957 if (fixP->fx_done)
14958 {
14959 offsetT value;
14960
14961 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14962 {
14963 insn = read_reloc_insn (buf, fixP->fx_r_type);
14964 if (mips16_reloc_p (fixP->fx_r_type))
14965 insn |= mips16_immed_extend (value, 16);
14966 else
14967 insn |= (value & 0xffff);
14968 write_reloc_insn (buf, fixP->fx_r_type, insn);
14969 }
14970 else
14971 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 14972 _("unsupported constant in relocation"));
b886a2ab 14973 }
252b5132
RH
14974 break;
14975
252b5132
RH
14976 case BFD_RELOC_64:
14977 /* This is handled like BFD_RELOC_32, but we output a sign
14978 extended value if we are only 32 bits. */
3e722fb5 14979 if (fixP->fx_done)
252b5132
RH
14980 {
14981 if (8 <= sizeof (valueT))
4d68580a 14982 md_number_to_chars (buf, *valP, 8);
252b5132
RH
14983 else
14984 {
a7ebbfdf 14985 valueT hiv;
252b5132 14986
a7ebbfdf 14987 if ((*valP & 0x80000000) != 0)
252b5132
RH
14988 hiv = 0xffffffff;
14989 else
14990 hiv = 0;
4d68580a
RS
14991 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14992 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
14993 }
14994 }
14995 break;
14996
056350c6 14997 case BFD_RELOC_RVA:
252b5132 14998 case BFD_RELOC_32:
b47468a6 14999 case BFD_RELOC_32_PCREL:
252b5132 15000 case BFD_RELOC_16:
d56a8dda 15001 case BFD_RELOC_8:
252b5132 15002 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15003 value now. This can happen if we have a .word which is not
15004 resolved when it appears but is later defined. */
252b5132 15005 if (fixP->fx_done)
4d68580a 15006 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15007 break;
15008
7361da2c
AB
15009 case BFD_RELOC_MIPS_21_PCREL_S2:
15010 case BFD_RELOC_MIPS_26_PCREL_S2:
15011 if ((*valP & 0x3) != 0)
15012 as_bad_where (fixP->fx_file, fixP->fx_line,
15013 _("branch to misaligned address (%lx)"), (long) *valP);
15014
15015 gas_assert (!fixP->fx_done);
15016 break;
15017
15018 case BFD_RELOC_MIPS_18_PCREL_S3:
0866e94c 15019 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15020 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15021 _("PC-relative access using misaligned symbol (%lx)"),
15022 (long) S_GET_VALUE (fixP->fx_addsy));
15023 if ((fixP->fx_offset & 0x7) != 0)
15024 as_bad_where (fixP->fx_file, fixP->fx_line,
15025 _("PC-relative access using misaligned offset (%lx)"),
15026 (long) fixP->fx_offset);
7361da2c
AB
15027
15028 gas_assert (!fixP->fx_done);
15029 break;
15030
15031 case BFD_RELOC_MIPS_19_PCREL_S2:
15032 if ((*valP & 0x3) != 0)
15033 as_bad_where (fixP->fx_file, fixP->fx_line,
15034 _("PC-relative access to misaligned address (%lx)"),
0866e94c 15035 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
7361da2c
AB
15036
15037 gas_assert (!fixP->fx_done);
15038 break;
15039
15040 case BFD_RELOC_HI16_S_PCREL:
15041 case BFD_RELOC_LO16_PCREL:
15042 gas_assert (!fixP->fx_done);
15043 break;
15044
252b5132 15045 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 15046 if ((*valP & 0x3) != 0)
cb56d3d3 15047 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15048 _("branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 15049
54f4ddb3
TS
15050 /* We need to save the bits in the instruction since fixup_segment()
15051 might be deleting the relocation entry (i.e., a branch within
15052 the current segment). */
a7ebbfdf 15053 if (! fixP->fx_done)
bb2d6cd7 15054 break;
252b5132 15055
54f4ddb3 15056 /* Update old instruction data. */
4d68580a 15057 insn = read_insn (buf);
252b5132 15058
a7ebbfdf
TS
15059 if (*valP + 0x20000 <= 0x3ffff)
15060 {
15061 insn |= (*valP >> 2) & 0xffff;
4d68580a 15062 write_insn (buf, insn);
a7ebbfdf
TS
15063 }
15064 else if (mips_pic == NO_PIC
15065 && fixP->fx_done
15066 && fixP->fx_frag->fr_address >= text_section->vma
15067 && (fixP->fx_frag->fr_address
587aac4e 15068 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15069 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15070 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15071 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15072 {
15073 /* The branch offset is too large. If this is an
15074 unconditional branch, and we are not generating PIC code,
15075 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15076 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15077 insn = 0x0c000000; /* jal */
252b5132 15078 else
a7ebbfdf
TS
15079 insn = 0x08000000; /* j */
15080 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15081 fixP->fx_done = 0;
15082 fixP->fx_addsy = section_symbol (text_section);
15083 *valP += md_pcrel_from (fixP);
4d68580a 15084 write_insn (buf, insn);
a7ebbfdf
TS
15085 }
15086 else
15087 {
15088 /* If we got here, we have branch-relaxation disabled,
15089 and there's nothing we can do to fix this instruction
15090 without turning it into a longer sequence. */
15091 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15092 _("branch out of range"));
252b5132 15093 }
252b5132
RH
15094 break;
15095
df58fc94
RS
15096 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15097 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15098 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15099 /* We adjust the offset back to even. */
15100 if ((*valP & 0x1) != 0)
15101 --(*valP);
15102
15103 if (! fixP->fx_done)
15104 break;
15105
15106 /* Should never visit here, because we keep the relocation. */
15107 abort ();
15108 break;
15109
252b5132
RH
15110 case BFD_RELOC_VTABLE_INHERIT:
15111 fixP->fx_done = 0;
15112 if (fixP->fx_addsy
15113 && !S_IS_DEFINED (fixP->fx_addsy)
15114 && !S_IS_WEAK (fixP->fx_addsy))
15115 S_SET_WEAK (fixP->fx_addsy);
15116 break;
15117
2f0c68f2 15118 case BFD_RELOC_NONE:
252b5132
RH
15119 case BFD_RELOC_VTABLE_ENTRY:
15120 fixP->fx_done = 0;
15121 break;
15122
15123 default:
b37df7c4 15124 abort ();
252b5132 15125 }
a7ebbfdf
TS
15126
15127 /* Remember value for tc_gen_reloc. */
15128 fixP->fx_addnumber = *valP;
252b5132
RH
15129}
15130
252b5132 15131static symbolS *
17a2f251 15132get_symbol (void)
252b5132
RH
15133{
15134 int c;
15135 char *name;
15136 symbolS *p;
15137
15138 name = input_line_pointer;
15139 c = get_symbol_end ();
15140 p = (symbolS *) symbol_find_or_make (name);
15141 *input_line_pointer = c;
15142 return p;
15143}
15144
742a56fe
RS
15145/* Align the current frag to a given power of two. If a particular
15146 fill byte should be used, FILL points to an integer that contains
15147 that byte, otherwise FILL is null.
15148
462427c4
RS
15149 This function used to have the comment:
15150
15151 The MIPS assembler also automatically adjusts any preceding label.
15152
15153 The implementation therefore applied the adjustment to a maximum of
15154 one label. However, other label adjustments are applied to batches
15155 of labels, and adjusting just one caused problems when new labels
15156 were added for the sake of debugging or unwind information.
15157 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15158
15159static void
462427c4 15160mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15161{
7d10b47d 15162 mips_emit_delays ();
df58fc94 15163 mips_record_compressed_mode ();
742a56fe
RS
15164 if (fill == NULL && subseg_text_p (now_seg))
15165 frag_align_code (to, 0);
15166 else
15167 frag_align (to, fill ? *fill : 0, 0);
252b5132 15168 record_alignment (now_seg, to);
462427c4 15169 mips_move_labels (labels, FALSE);
252b5132
RH
15170}
15171
15172/* Align to a given power of two. .align 0 turns off the automatic
15173 alignment used by the data creating pseudo-ops. */
15174
15175static void
17a2f251 15176s_align (int x ATTRIBUTE_UNUSED)
252b5132 15177{
742a56fe 15178 int temp, fill_value, *fill_ptr;
49954fb4 15179 long max_alignment = 28;
252b5132 15180
54f4ddb3 15181 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15182 to the aligned address.
54f4ddb3 15183 o It's not documented but auto alignment is reinstated by
252b5132 15184 a .align pseudo instruction.
54f4ddb3 15185 o Note also that after auto alignment is turned off the mips assembler
252b5132 15186 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15187 We don't. */
252b5132
RH
15188
15189 temp = get_absolute_expression ();
15190 if (temp > max_alignment)
1661c76c 15191 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15192 else if (temp < 0)
15193 {
1661c76c 15194 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15195 temp = 0;
15196 }
15197 if (*input_line_pointer == ',')
15198 {
f9419b05 15199 ++input_line_pointer;
742a56fe
RS
15200 fill_value = get_absolute_expression ();
15201 fill_ptr = &fill_value;
252b5132
RH
15202 }
15203 else
742a56fe 15204 fill_ptr = 0;
252b5132
RH
15205 if (temp)
15206 {
a8dbcb85
TS
15207 segment_info_type *si = seg_info (now_seg);
15208 struct insn_label_list *l = si->label_list;
54f4ddb3 15209 /* Auto alignment should be switched on by next section change. */
252b5132 15210 auto_align = 1;
462427c4 15211 mips_align (temp, fill_ptr, l);
252b5132
RH
15212 }
15213 else
15214 {
15215 auto_align = 0;
15216 }
15217
15218 demand_empty_rest_of_line ();
15219}
15220
252b5132 15221static void
17a2f251 15222s_change_sec (int sec)
252b5132
RH
15223{
15224 segT seg;
15225
252b5132
RH
15226 /* The ELF backend needs to know that we are changing sections, so
15227 that .previous works correctly. We could do something like check
b6ff326e 15228 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15229 as it would not be appropriate to use it in the section changing
15230 functions in read.c, since obj-elf.c intercepts those. FIXME:
15231 This should be cleaner, somehow. */
f3ded42a 15232 obj_elf_section_change_hook ();
252b5132 15233
7d10b47d 15234 mips_emit_delays ();
6a32d874 15235
252b5132
RH
15236 switch (sec)
15237 {
15238 case 't':
15239 s_text (0);
15240 break;
15241 case 'd':
15242 s_data (0);
15243 break;
15244 case 'b':
15245 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15246 demand_empty_rest_of_line ();
15247 break;
15248
15249 case 'r':
4d0d148d
TS
15250 seg = subseg_new (RDATA_SECTION_NAME,
15251 (subsegT) get_absolute_expression ());
f3ded42a
RS
15252 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15253 | SEC_READONLY | SEC_RELOC
15254 | SEC_DATA));
15255 if (strncmp (TARGET_OS, "elf", 3) != 0)
15256 record_alignment (seg, 4);
4d0d148d 15257 demand_empty_rest_of_line ();
252b5132
RH
15258 break;
15259
15260 case 's':
4d0d148d 15261 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15262 bfd_set_section_flags (stdoutput, seg,
15263 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15264 if (strncmp (TARGET_OS, "elf", 3) != 0)
15265 record_alignment (seg, 4);
4d0d148d
TS
15266 demand_empty_rest_of_line ();
15267 break;
998b3c36
MR
15268
15269 case 'B':
15270 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15271 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15272 if (strncmp (TARGET_OS, "elf", 3) != 0)
15273 record_alignment (seg, 4);
998b3c36
MR
15274 demand_empty_rest_of_line ();
15275 break;
252b5132
RH
15276 }
15277
15278 auto_align = 1;
15279}
b34976b6 15280
cca86cc8 15281void
17a2f251 15282s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15283{
cca86cc8
SC
15284 char *section_name;
15285 char c;
684022ea 15286 char next_c = 0;
cca86cc8
SC
15287 int section_type;
15288 int section_flag;
15289 int section_entry_size;
15290 int section_alignment;
b34976b6 15291
cca86cc8
SC
15292 section_name = input_line_pointer;
15293 c = get_symbol_end ();
a816d1ed
AO
15294 if (c)
15295 next_c = *(input_line_pointer + 1);
cca86cc8 15296
4cf0dd0d
TS
15297 /* Do we have .section Name<,"flags">? */
15298 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15299 {
4cf0dd0d
TS
15300 /* just after name is now '\0'. */
15301 *input_line_pointer = c;
cca86cc8
SC
15302 input_line_pointer = section_name;
15303 obj_elf_section (ignore);
15304 return;
15305 }
15306 input_line_pointer++;
15307
15308 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15309 if (c == ',')
15310 section_type = get_absolute_expression ();
15311 else
15312 section_type = 0;
15313 if (*input_line_pointer++ == ',')
15314 section_flag = get_absolute_expression ();
15315 else
15316 section_flag = 0;
15317 if (*input_line_pointer++ == ',')
15318 section_entry_size = get_absolute_expression ();
15319 else
15320 section_entry_size = 0;
15321 if (*input_line_pointer++ == ',')
15322 section_alignment = get_absolute_expression ();
15323 else
15324 section_alignment = 0;
87975d2a
AM
15325 /* FIXME: really ignore? */
15326 (void) section_alignment;
cca86cc8 15327
a816d1ed
AO
15328 section_name = xstrdup (section_name);
15329
8ab8a5c8
RS
15330 /* When using the generic form of .section (as implemented by obj-elf.c),
15331 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15332 traditionally had to fall back on the more common @progbits instead.
15333
15334 There's nothing really harmful in this, since bfd will correct
15335 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15336 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15337 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15338
15339 Even so, we shouldn't force users of the MIPS .section syntax to
15340 incorrectly label the sections as SHT_PROGBITS. The best compromise
15341 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15342 generic type-checking code. */
15343 if (section_type == SHT_MIPS_DWARF)
15344 section_type = SHT_PROGBITS;
15345
cca86cc8
SC
15346 obj_elf_change_section (section_name, section_type, section_flag,
15347 section_entry_size, 0, 0, 0);
a816d1ed
AO
15348
15349 if (now_seg->name != section_name)
15350 free (section_name);
cca86cc8 15351}
252b5132
RH
15352
15353void
17a2f251 15354mips_enable_auto_align (void)
252b5132
RH
15355{
15356 auto_align = 1;
15357}
15358
15359static void
17a2f251 15360s_cons (int log_size)
252b5132 15361{
a8dbcb85
TS
15362 segment_info_type *si = seg_info (now_seg);
15363 struct insn_label_list *l = si->label_list;
252b5132 15364
7d10b47d 15365 mips_emit_delays ();
252b5132 15366 if (log_size > 0 && auto_align)
462427c4 15367 mips_align (log_size, 0, l);
252b5132 15368 cons (1 << log_size);
a1facbec 15369 mips_clear_insn_labels ();
252b5132
RH
15370}
15371
15372static void
17a2f251 15373s_float_cons (int type)
252b5132 15374{
a8dbcb85
TS
15375 segment_info_type *si = seg_info (now_seg);
15376 struct insn_label_list *l = si->label_list;
252b5132 15377
7d10b47d 15378 mips_emit_delays ();
252b5132
RH
15379
15380 if (auto_align)
49309057
ILT
15381 {
15382 if (type == 'd')
462427c4 15383 mips_align (3, 0, l);
49309057 15384 else
462427c4 15385 mips_align (2, 0, l);
49309057 15386 }
252b5132 15387
252b5132 15388 float_cons (type);
a1facbec 15389 mips_clear_insn_labels ();
252b5132
RH
15390}
15391
15392/* Handle .globl. We need to override it because on Irix 5 you are
15393 permitted to say
15394 .globl foo .text
15395 where foo is an undefined symbol, to mean that foo should be
15396 considered to be the address of a function. */
15397
15398static void
17a2f251 15399s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15400{
15401 char *name;
15402 int c;
15403 symbolS *symbolP;
15404 flagword flag;
15405
8a06b769 15406 do
252b5132 15407 {
8a06b769 15408 name = input_line_pointer;
252b5132 15409 c = get_symbol_end ();
8a06b769
TS
15410 symbolP = symbol_find_or_make (name);
15411 S_SET_EXTERNAL (symbolP);
15412
252b5132 15413 *input_line_pointer = c;
8a06b769 15414 SKIP_WHITESPACE ();
252b5132 15415
8a06b769
TS
15416 /* On Irix 5, every global symbol that is not explicitly labelled as
15417 being a function is apparently labelled as being an object. */
15418 flag = BSF_OBJECT;
252b5132 15419
8a06b769
TS
15420 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15421 && (*input_line_pointer != ','))
15422 {
15423 char *secname;
15424 asection *sec;
15425
15426 secname = input_line_pointer;
15427 c = get_symbol_end ();
15428 sec = bfd_get_section_by_name (stdoutput, secname);
15429 if (sec == NULL)
15430 as_bad (_("%s: no such section"), secname);
15431 *input_line_pointer = c;
15432
15433 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15434 flag = BSF_FUNCTION;
15435 }
15436
15437 symbol_get_bfdsym (symbolP)->flags |= flag;
15438
15439 c = *input_line_pointer;
15440 if (c == ',')
15441 {
15442 input_line_pointer++;
15443 SKIP_WHITESPACE ();
15444 if (is_end_of_line[(unsigned char) *input_line_pointer])
15445 c = '\n';
15446 }
15447 }
15448 while (c == ',');
252b5132 15449
252b5132
RH
15450 demand_empty_rest_of_line ();
15451}
15452
15453static void
17a2f251 15454s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15455{
15456 char *opt;
15457 char c;
15458
15459 opt = input_line_pointer;
15460 c = get_symbol_end ();
15461
15462 if (*opt == 'O')
15463 {
15464 /* FIXME: What does this mean? */
15465 }
15466 else if (strncmp (opt, "pic", 3) == 0)
15467 {
15468 int i;
15469
15470 i = atoi (opt + 3);
15471 if (i == 0)
15472 mips_pic = NO_PIC;
15473 else if (i == 2)
143d77c5 15474 {
8b828383 15475 mips_pic = SVR4_PIC;
143d77c5
EC
15476 mips_abicalls = TRUE;
15477 }
252b5132
RH
15478 else
15479 as_bad (_(".option pic%d not supported"), i);
15480
4d0d148d 15481 if (mips_pic == SVR4_PIC)
252b5132
RH
15482 {
15483 if (g_switch_seen && g_switch_value != 0)
15484 as_warn (_("-G may not be used with SVR4 PIC code"));
15485 g_switch_value = 0;
15486 bfd_set_gp_size (stdoutput, 0);
15487 }
15488 }
15489 else
1661c76c 15490 as_warn (_("unrecognized option \"%s\""), opt);
252b5132
RH
15491
15492 *input_line_pointer = c;
15493 demand_empty_rest_of_line ();
15494}
15495
15496/* This structure is used to hold a stack of .set values. */
15497
e972090a
NC
15498struct mips_option_stack
15499{
252b5132
RH
15500 struct mips_option_stack *next;
15501 struct mips_set_options options;
15502};
15503
15504static struct mips_option_stack *mips_opts_stack;
15505
919731af 15506static bfd_boolean
15507parse_code_option (char * name)
252b5132 15508{
c6278170 15509 const struct mips_ase *ase;
919731af 15510 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
15511 {
15512 char *s = name + 3;
15513
15514 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 15515 as_bad (_("unrecognized register name `%s'"), s);
741fe287 15516 }
252b5132 15517 else if (strcmp (name, "at") == 0)
919731af 15518 mips_opts.at = ATREG;
252b5132 15519 else if (strcmp (name, "noat") == 0)
919731af 15520 mips_opts.at = ZERO;
252b5132 15521 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 15522 mips_opts.nomove = 0;
252b5132 15523 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 15524 mips_opts.nomove = 1;
252b5132 15525 else if (strcmp (name, "bopt") == 0)
919731af 15526 mips_opts.nobopt = 0;
252b5132 15527 else if (strcmp (name, "nobopt") == 0)
919731af 15528 mips_opts.nobopt = 1;
ad3fea08 15529 else if (strcmp (name, "gp=32") == 0)
bad1aba3 15530 mips_opts.gp = 32;
ad3fea08 15531 else if (strcmp (name, "gp=64") == 0)
919731af 15532 mips_opts.gp = 64;
ad3fea08 15533 else if (strcmp (name, "fp=32") == 0)
0b35dfee 15534 mips_opts.fp = 32;
351cdf24
MF
15535 else if (strcmp (name, "fp=xx") == 0)
15536 mips_opts.fp = 0;
ad3fea08 15537 else if (strcmp (name, "fp=64") == 0)
919731af 15538 mips_opts.fp = 64;
037b32b9
AN
15539 else if (strcmp (name, "softfloat") == 0)
15540 mips_opts.soft_float = 1;
15541 else if (strcmp (name, "hardfloat") == 0)
15542 mips_opts.soft_float = 0;
15543 else if (strcmp (name, "singlefloat") == 0)
15544 mips_opts.single_float = 1;
15545 else if (strcmp (name, "doublefloat") == 0)
15546 mips_opts.single_float = 0;
351cdf24
MF
15547 else if (strcmp (name, "nooddspreg") == 0)
15548 mips_opts.oddspreg = 0;
15549 else if (strcmp (name, "oddspreg") == 0)
15550 mips_opts.oddspreg = 1;
252b5132
RH
15551 else if (strcmp (name, "mips16") == 0
15552 || strcmp (name, "MIPS-16") == 0)
919731af 15553 mips_opts.mips16 = 1;
252b5132
RH
15554 else if (strcmp (name, "nomips16") == 0
15555 || strcmp (name, "noMIPS-16") == 0)
15556 mips_opts.mips16 = 0;
df58fc94 15557 else if (strcmp (name, "micromips") == 0)
919731af 15558 mips_opts.micromips = 1;
df58fc94
RS
15559 else if (strcmp (name, "nomicromips") == 0)
15560 mips_opts.micromips = 0;
c6278170
RS
15561 else if (name[0] == 'n'
15562 && name[1] == 'o'
15563 && (ase = mips_lookup_ase (name + 2)))
919731af 15564 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 15565 else if ((ase = mips_lookup_ase (name)))
919731af 15566 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 15567 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 15568 {
1a2c1fad
CD
15569 /* Permit the user to change the ISA and architecture on the fly.
15570 Needless to say, misuse can cause serious problems. */
919731af 15571 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
15572 {
15573 const struct mips_cpu_info *p;
15574
919731af 15575 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
15576 if (!p)
15577 as_bad (_("unknown architecture %s"), name + 5);
15578 else
15579 {
15580 mips_opts.arch = p->cpu;
15581 mips_opts.isa = p->isa;
15582 }
15583 }
81a21e38
TS
15584 else if (strncmp (name, "mips", 4) == 0)
15585 {
15586 const struct mips_cpu_info *p;
15587
919731af 15588 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
15589 if (!p)
15590 as_bad (_("unknown ISA level %s"), name + 4);
15591 else
15592 {
15593 mips_opts.arch = p->cpu;
15594 mips_opts.isa = p->isa;
15595 }
15596 }
af7ee8bf 15597 else
81a21e38 15598 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
15599 }
15600 else if (strcmp (name, "autoextend") == 0)
15601 mips_opts.noautoextend = 0;
15602 else if (strcmp (name, "noautoextend") == 0)
15603 mips_opts.noautoextend = 1;
833794fc
MR
15604 else if (strcmp (name, "insn32") == 0)
15605 mips_opts.insn32 = TRUE;
15606 else if (strcmp (name, "noinsn32") == 0)
15607 mips_opts.insn32 = FALSE;
919731af 15608 else if (strcmp (name, "sym32") == 0)
15609 mips_opts.sym32 = TRUE;
15610 else if (strcmp (name, "nosym32") == 0)
15611 mips_opts.sym32 = FALSE;
15612 else
15613 return FALSE;
15614 return TRUE;
15615}
15616
15617/* Handle the .set pseudo-op. */
15618
15619static void
15620s_mipsset (int x ATTRIBUTE_UNUSED)
15621{
15622 char *name = input_line_pointer, ch;
15623 int prev_isa = mips_opts.isa;
15624
15625 file_mips_check_options ();
15626
15627 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15628 ++input_line_pointer;
15629 ch = *input_line_pointer;
15630 *input_line_pointer = '\0';
15631
15632 if (strchr (name, ','))
15633 {
15634 /* Generic ".set" directive; use the generic handler. */
15635 *input_line_pointer = ch;
15636 input_line_pointer = name;
15637 s_set (0);
15638 return;
15639 }
15640
15641 if (strcmp (name, "reorder") == 0)
15642 {
15643 if (mips_opts.noreorder)
15644 end_noreorder ();
15645 }
15646 else if (strcmp (name, "noreorder") == 0)
15647 {
15648 if (!mips_opts.noreorder)
15649 start_noreorder ();
15650 }
15651 else if (strcmp (name, "macro") == 0)
15652 mips_opts.warn_about_macros = 0;
15653 else if (strcmp (name, "nomacro") == 0)
15654 {
15655 if (mips_opts.noreorder == 0)
15656 as_bad (_("`noreorder' must be set before `nomacro'"));
15657 mips_opts.warn_about_macros = 1;
15658 }
15659 else if (strcmp (name, "gp=default") == 0)
15660 mips_opts.gp = file_mips_opts.gp;
15661 else if (strcmp (name, "fp=default") == 0)
15662 mips_opts.fp = file_mips_opts.fp;
15663 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15664 {
15665 mips_opts.isa = file_mips_opts.isa;
15666 mips_opts.arch = file_mips_opts.arch;
15667 mips_opts.gp = file_mips_opts.gp;
15668 mips_opts.fp = file_mips_opts.fp;
15669 }
252b5132
RH
15670 else if (strcmp (name, "push") == 0)
15671 {
15672 struct mips_option_stack *s;
15673
15674 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15675 s->next = mips_opts_stack;
15676 s->options = mips_opts;
15677 mips_opts_stack = s;
15678 }
15679 else if (strcmp (name, "pop") == 0)
15680 {
15681 struct mips_option_stack *s;
15682
15683 s = mips_opts_stack;
15684 if (s == NULL)
15685 as_bad (_(".set pop with no .set push"));
15686 else
15687 {
15688 /* If we're changing the reorder mode we need to handle
15689 delay slots correctly. */
15690 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 15691 start_noreorder ();
252b5132 15692 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 15693 end_noreorder ();
252b5132
RH
15694
15695 mips_opts = s->options;
15696 mips_opts_stack = s->next;
15697 free (s);
15698 }
15699 }
919731af 15700 else if (!parse_code_option (name))
15701 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15702
15703 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15704 registers based on what is supported by the arch/cpu. */
15705 if (mips_opts.isa != prev_isa)
e6559e01 15706 {
919731af 15707 switch (mips_opts.isa)
15708 {
15709 case 0:
15710 break;
15711 case ISA_MIPS1:
351cdf24
MF
15712 /* MIPS I cannot support FPXX. */
15713 mips_opts.fp = 32;
15714 /* fall-through. */
919731af 15715 case ISA_MIPS2:
15716 case ISA_MIPS32:
15717 case ISA_MIPS32R2:
15718 case ISA_MIPS32R3:
15719 case ISA_MIPS32R5:
15720 mips_opts.gp = 32;
351cdf24
MF
15721 if (mips_opts.fp != 0)
15722 mips_opts.fp = 32;
919731af 15723 break;
7361da2c
AB
15724 case ISA_MIPS32R6:
15725 mips_opts.gp = 32;
15726 mips_opts.fp = 64;
15727 break;
919731af 15728 case ISA_MIPS3:
15729 case ISA_MIPS4:
15730 case ISA_MIPS5:
15731 case ISA_MIPS64:
15732 case ISA_MIPS64R2:
15733 case ISA_MIPS64R3:
15734 case ISA_MIPS64R5:
7361da2c 15735 case ISA_MIPS64R6:
919731af 15736 mips_opts.gp = 64;
351cdf24
MF
15737 if (mips_opts.fp != 0)
15738 {
15739 if (mips_opts.arch == CPU_R5900)
15740 mips_opts.fp = 32;
15741 else
15742 mips_opts.fp = 64;
15743 }
919731af 15744 break;
15745 default:
15746 as_bad (_("unknown ISA level %s"), name + 4);
15747 break;
15748 }
e6559e01 15749 }
919731af 15750
15751 mips_check_options (&mips_opts, FALSE);
15752
15753 mips_check_isa_supports_ases ();
15754 *input_line_pointer = ch;
15755 demand_empty_rest_of_line ();
15756}
15757
15758/* Handle the .module pseudo-op. */
15759
15760static void
15761s_module (int ignore ATTRIBUTE_UNUSED)
15762{
15763 char *name = input_line_pointer, ch;
15764
15765 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15766 ++input_line_pointer;
15767 ch = *input_line_pointer;
15768 *input_line_pointer = '\0';
15769
15770 if (!file_mips_opts_checked)
252b5132 15771 {
919731af 15772 if (!parse_code_option (name))
15773 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15774
15775 /* Update module level settings from mips_opts. */
15776 file_mips_opts = mips_opts;
252b5132 15777 }
919731af 15778 else
15779 as_bad (_(".module is not permitted after generating code"));
15780
252b5132
RH
15781 *input_line_pointer = ch;
15782 demand_empty_rest_of_line ();
15783}
15784
15785/* Handle the .abicalls pseudo-op. I believe this is equivalent to
15786 .option pic2. It means to generate SVR4 PIC calls. */
15787
15788static void
17a2f251 15789s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15790{
15791 mips_pic = SVR4_PIC;
143d77c5 15792 mips_abicalls = TRUE;
4d0d148d
TS
15793
15794 if (g_switch_seen && g_switch_value != 0)
15795 as_warn (_("-G may not be used with SVR4 PIC code"));
15796 g_switch_value = 0;
15797
252b5132
RH
15798 bfd_set_gp_size (stdoutput, 0);
15799 demand_empty_rest_of_line ();
15800}
15801
15802/* Handle the .cpload pseudo-op. This is used when generating SVR4
15803 PIC code. It sets the $gp register for the function based on the
15804 function address, which is in the register named in the argument.
15805 This uses a relocation against _gp_disp, which is handled specially
15806 by the linker. The result is:
15807 lui $gp,%hi(_gp_disp)
15808 addiu $gp,$gp,%lo(_gp_disp)
15809 addu $gp,$gp,.cpload argument
aa6975fb
ILT
15810 The .cpload argument is normally $25 == $t9.
15811
15812 The -mno-shared option changes this to:
bbe506e8
TS
15813 lui $gp,%hi(__gnu_local_gp)
15814 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
15815 and the argument is ignored. This saves an instruction, but the
15816 resulting code is not position independent; it uses an absolute
bbe506e8
TS
15817 address for __gnu_local_gp. Thus code assembled with -mno-shared
15818 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
15819
15820static void
17a2f251 15821s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15822{
15823 expressionS ex;
aa6975fb
ILT
15824 int reg;
15825 int in_shared;
252b5132 15826
919731af 15827 file_mips_check_options ();
15828
6478892d
TS
15829 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15830 .cpload is ignored. */
15831 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15832 {
15833 s_ignore (0);
15834 return;
15835 }
15836
a276b80c
MR
15837 if (mips_opts.mips16)
15838 {
15839 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15840 ignore_rest_of_line ();
15841 return;
15842 }
15843
d3ecfc59 15844 /* .cpload should be in a .set noreorder section. */
252b5132
RH
15845 if (mips_opts.noreorder == 0)
15846 as_warn (_(".cpload not in noreorder section"));
15847
aa6975fb
ILT
15848 reg = tc_get_register (0);
15849
15850 /* If we need to produce a 64-bit address, we are better off using
15851 the default instruction sequence. */
aed1a261 15852 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 15853
252b5132 15854 ex.X_op = O_symbol;
bbe506e8
TS
15855 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15856 "__gnu_local_gp");
252b5132
RH
15857 ex.X_op_symbol = NULL;
15858 ex.X_add_number = 0;
15859
15860 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 15861 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 15862
8a75745d
MR
15863 mips_mark_labels ();
15864 mips_assembling_insn = TRUE;
15865
584892a6 15866 macro_start ();
67c0d1eb
RS
15867 macro_build_lui (&ex, mips_gp_register);
15868 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 15869 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
15870 if (in_shared)
15871 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15872 mips_gp_register, reg);
584892a6 15873 macro_end ();
252b5132 15874
8a75745d 15875 mips_assembling_insn = FALSE;
252b5132
RH
15876 demand_empty_rest_of_line ();
15877}
15878
6478892d
TS
15879/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15880 .cpsetup $reg1, offset|$reg2, label
15881
15882 If offset is given, this results in:
15883 sd $gp, offset($sp)
956cd1d6 15884 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15885 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15886 daddu $gp, $gp, $reg1
6478892d
TS
15887
15888 If $reg2 is given, this results in:
15889 daddu $reg2, $gp, $0
956cd1d6 15890 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15891 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15892 daddu $gp, $gp, $reg1
aa6975fb
ILT
15893 $reg1 is normally $25 == $t9.
15894
15895 The -mno-shared option replaces the last three instructions with
15896 lui $gp,%hi(_gp)
54f4ddb3 15897 addiu $gp,$gp,%lo(_gp) */
aa6975fb 15898
6478892d 15899static void
17a2f251 15900s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15901{
15902 expressionS ex_off;
15903 expressionS ex_sym;
15904 int reg1;
6478892d 15905
919731af 15906 file_mips_check_options ();
15907
8586fc66 15908 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
15909 We also need NewABI support. */
15910 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15911 {
15912 s_ignore (0);
15913 return;
15914 }
15915
a276b80c
MR
15916 if (mips_opts.mips16)
15917 {
15918 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15919 ignore_rest_of_line ();
15920 return;
15921 }
15922
6478892d
TS
15923 reg1 = tc_get_register (0);
15924 SKIP_WHITESPACE ();
15925 if (*input_line_pointer != ',')
15926 {
15927 as_bad (_("missing argument separator ',' for .cpsetup"));
15928 return;
15929 }
15930 else
80245285 15931 ++input_line_pointer;
6478892d
TS
15932 SKIP_WHITESPACE ();
15933 if (*input_line_pointer == '$')
80245285
TS
15934 {
15935 mips_cpreturn_register = tc_get_register (0);
15936 mips_cpreturn_offset = -1;
15937 }
6478892d 15938 else
80245285
TS
15939 {
15940 mips_cpreturn_offset = get_absolute_expression ();
15941 mips_cpreturn_register = -1;
15942 }
6478892d
TS
15943 SKIP_WHITESPACE ();
15944 if (*input_line_pointer != ',')
15945 {
15946 as_bad (_("missing argument separator ',' for .cpsetup"));
15947 return;
15948 }
15949 else
f9419b05 15950 ++input_line_pointer;
6478892d 15951 SKIP_WHITESPACE ();
f21f8242 15952 expression (&ex_sym);
6478892d 15953
8a75745d
MR
15954 mips_mark_labels ();
15955 mips_assembling_insn = TRUE;
15956
584892a6 15957 macro_start ();
6478892d
TS
15958 if (mips_cpreturn_register == -1)
15959 {
15960 ex_off.X_op = O_constant;
15961 ex_off.X_add_symbol = NULL;
15962 ex_off.X_op_symbol = NULL;
15963 ex_off.X_add_number = mips_cpreturn_offset;
15964
67c0d1eb 15965 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 15966 BFD_RELOC_LO16, SP);
6478892d
TS
15967 }
15968 else
67c0d1eb 15969 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
17a2f251 15970 mips_gp_register, 0);
6478892d 15971
aed1a261 15972 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 15973 {
df58fc94 15974 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
15975 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15976 BFD_RELOC_HI16_S);
15977
15978 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15979 mips_gp_register, -1, BFD_RELOC_GPREL16,
15980 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15981
15982 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15983 mips_gp_register, reg1);
15984 }
15985 else
15986 {
15987 expressionS ex;
15988
15989 ex.X_op = O_symbol;
4184909a 15990 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
15991 ex.X_op_symbol = NULL;
15992 ex.X_add_number = 0;
6e1304d8 15993
aa6975fb
ILT
15994 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15995 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15996
15997 macro_build_lui (&ex, mips_gp_register);
15998 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15999 mips_gp_register, BFD_RELOC_LO16);
16000 }
f21f8242 16001
584892a6 16002 macro_end ();
6478892d 16003
8a75745d 16004 mips_assembling_insn = FALSE;
6478892d
TS
16005 demand_empty_rest_of_line ();
16006}
16007
16008static void
17a2f251 16009s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16010{
919731af 16011 file_mips_check_options ();
16012
6478892d 16013 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16014 .cplocal is ignored. */
6478892d
TS
16015 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16016 {
16017 s_ignore (0);
16018 return;
16019 }
16020
a276b80c
MR
16021 if (mips_opts.mips16)
16022 {
16023 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16024 ignore_rest_of_line ();
16025 return;
16026 }
16027
6478892d 16028 mips_gp_register = tc_get_register (0);
85b51719 16029 demand_empty_rest_of_line ();
6478892d
TS
16030}
16031
252b5132
RH
16032/* Handle the .cprestore pseudo-op. This stores $gp into a given
16033 offset from $sp. The offset is remembered, and after making a PIC
16034 call $gp is restored from that location. */
16035
16036static void
17a2f251 16037s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16038{
16039 expressionS ex;
252b5132 16040
919731af 16041 file_mips_check_options ();
16042
6478892d 16043 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16044 .cprestore is ignored. */
6478892d 16045 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16046 {
16047 s_ignore (0);
16048 return;
16049 }
16050
a276b80c
MR
16051 if (mips_opts.mips16)
16052 {
16053 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16054 ignore_rest_of_line ();
16055 return;
16056 }
16057
252b5132 16058 mips_cprestore_offset = get_absolute_expression ();
7a621144 16059 mips_cprestore_valid = 1;
252b5132
RH
16060
16061 ex.X_op = O_constant;
16062 ex.X_add_symbol = NULL;
16063 ex.X_op_symbol = NULL;
16064 ex.X_add_number = mips_cprestore_offset;
16065
8a75745d
MR
16066 mips_mark_labels ();
16067 mips_assembling_insn = TRUE;
16068
584892a6 16069 macro_start ();
67c0d1eb
RS
16070 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16071 SP, HAVE_64BIT_ADDRESSES);
584892a6 16072 macro_end ();
252b5132 16073
8a75745d 16074 mips_assembling_insn = FALSE;
252b5132
RH
16075 demand_empty_rest_of_line ();
16076}
16077
6478892d 16078/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16079 was given in the preceding .cpsetup, it results in:
6478892d 16080 ld $gp, offset($sp)
76b3015f 16081
6478892d 16082 If a register $reg2 was given there, it results in:
54f4ddb3
TS
16083 daddu $gp, $reg2, $0 */
16084
6478892d 16085static void
17a2f251 16086s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16087{
16088 expressionS ex;
6478892d 16089
919731af 16090 file_mips_check_options ();
16091
6478892d
TS
16092 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16093 We also need NewABI support. */
16094 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16095 {
16096 s_ignore (0);
16097 return;
16098 }
16099
a276b80c
MR
16100 if (mips_opts.mips16)
16101 {
16102 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16103 ignore_rest_of_line ();
16104 return;
16105 }
16106
8a75745d
MR
16107 mips_mark_labels ();
16108 mips_assembling_insn = TRUE;
16109
584892a6 16110 macro_start ();
6478892d
TS
16111 if (mips_cpreturn_register == -1)
16112 {
16113 ex.X_op = O_constant;
16114 ex.X_add_symbol = NULL;
16115 ex.X_op_symbol = NULL;
16116 ex.X_add_number = mips_cpreturn_offset;
16117
67c0d1eb 16118 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16119 }
16120 else
67c0d1eb 16121 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
17a2f251 16122 mips_cpreturn_register, 0);
584892a6 16123 macro_end ();
6478892d 16124
8a75745d 16125 mips_assembling_insn = FALSE;
6478892d
TS
16126 demand_empty_rest_of_line ();
16127}
16128
d0f13682
CLT
16129/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16130 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16131 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16132 debug information or MIPS16 TLS. */
741d6ea8
JM
16133
16134static void
d0f13682
CLT
16135s_tls_rel_directive (const size_t bytes, const char *dirstr,
16136 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16137{
16138 expressionS ex;
16139 char *p;
16140
16141 expression (&ex);
16142
16143 if (ex.X_op != O_symbol)
16144 {
1661c76c 16145 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16146 ignore_rest_of_line ();
16147 }
16148
16149 p = frag_more (bytes);
16150 md_number_to_chars (p, 0, bytes);
d0f13682 16151 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16152 demand_empty_rest_of_line ();
de64cffd 16153 mips_clear_insn_labels ();
741d6ea8
JM
16154}
16155
16156/* Handle .dtprelword. */
16157
16158static void
16159s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16160{
d0f13682 16161 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16162}
16163
16164/* Handle .dtpreldword. */
16165
16166static void
16167s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16168{
d0f13682
CLT
16169 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16170}
16171
16172/* Handle .tprelword. */
16173
16174static void
16175s_tprelword (int ignore ATTRIBUTE_UNUSED)
16176{
16177 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16178}
16179
16180/* Handle .tpreldword. */
16181
16182static void
16183s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16184{
16185 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16186}
16187
6478892d
TS
16188/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16189 code. It sets the offset to use in gp_rel relocations. */
16190
16191static void
17a2f251 16192s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16193{
16194 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16195 We also need NewABI support. */
16196 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16197 {
16198 s_ignore (0);
16199 return;
16200 }
16201
def2e0dd 16202 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16203
16204 demand_empty_rest_of_line ();
16205}
16206
252b5132
RH
16207/* Handle the .gpword pseudo-op. This is used when generating PIC
16208 code. It generates a 32 bit GP relative reloc. */
16209
16210static void
17a2f251 16211s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16212{
a8dbcb85
TS
16213 segment_info_type *si;
16214 struct insn_label_list *l;
252b5132
RH
16215 expressionS ex;
16216 char *p;
16217
16218 /* When not generating PIC code, this is treated as .word. */
16219 if (mips_pic != SVR4_PIC)
16220 {
16221 s_cons (2);
16222 return;
16223 }
16224
a8dbcb85
TS
16225 si = seg_info (now_seg);
16226 l = si->label_list;
7d10b47d 16227 mips_emit_delays ();
252b5132 16228 if (auto_align)
462427c4 16229 mips_align (2, 0, l);
252b5132
RH
16230
16231 expression (&ex);
a1facbec 16232 mips_clear_insn_labels ();
252b5132
RH
16233
16234 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16235 {
1661c76c 16236 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16237 ignore_rest_of_line ();
16238 }
16239
16240 p = frag_more (4);
17a2f251 16241 md_number_to_chars (p, 0, 4);
b34976b6 16242 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16243 BFD_RELOC_GPREL32);
252b5132
RH
16244
16245 demand_empty_rest_of_line ();
16246}
16247
10181a0d 16248static void
17a2f251 16249s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16250{
a8dbcb85
TS
16251 segment_info_type *si;
16252 struct insn_label_list *l;
10181a0d
AO
16253 expressionS ex;
16254 char *p;
16255
16256 /* When not generating PIC code, this is treated as .dword. */
16257 if (mips_pic != SVR4_PIC)
16258 {
16259 s_cons (3);
16260 return;
16261 }
16262
a8dbcb85
TS
16263 si = seg_info (now_seg);
16264 l = si->label_list;
7d10b47d 16265 mips_emit_delays ();
10181a0d 16266 if (auto_align)
462427c4 16267 mips_align (3, 0, l);
10181a0d
AO
16268
16269 expression (&ex);
a1facbec 16270 mips_clear_insn_labels ();
10181a0d
AO
16271
16272 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16273 {
1661c76c 16274 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16275 ignore_rest_of_line ();
16276 }
16277
16278 p = frag_more (8);
17a2f251 16279 md_number_to_chars (p, 0, 8);
a105a300 16280 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16281 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16282
16283 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16284 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16285 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16286
16287 demand_empty_rest_of_line ();
16288}
16289
a3f278e2
CM
16290/* Handle the .ehword pseudo-op. This is used when generating unwinding
16291 tables. It generates a R_MIPS_EH reloc. */
16292
16293static void
16294s_ehword (int ignore ATTRIBUTE_UNUSED)
16295{
16296 expressionS ex;
16297 char *p;
16298
16299 mips_emit_delays ();
16300
16301 expression (&ex);
16302 mips_clear_insn_labels ();
16303
16304 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16305 {
1661c76c 16306 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16307 ignore_rest_of_line ();
16308 }
16309
16310 p = frag_more (4);
16311 md_number_to_chars (p, 0, 4);
16312 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16313 BFD_RELOC_32_PCREL);
a3f278e2
CM
16314
16315 demand_empty_rest_of_line ();
16316}
16317
252b5132
RH
16318/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16319 tables in SVR4 PIC code. */
16320
16321static void
17a2f251 16322s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16323{
252b5132
RH
16324 int reg;
16325
919731af 16326 file_mips_check_options ();
16327
10181a0d
AO
16328 /* This is ignored when not generating SVR4 PIC code. */
16329 if (mips_pic != SVR4_PIC)
252b5132
RH
16330 {
16331 s_ignore (0);
16332 return;
16333 }
16334
8a75745d
MR
16335 mips_mark_labels ();
16336 mips_assembling_insn = TRUE;
16337
252b5132 16338 /* Add $gp to the register named as an argument. */
584892a6 16339 macro_start ();
252b5132 16340 reg = tc_get_register (0);
67c0d1eb 16341 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16342 macro_end ();
252b5132 16343
8a75745d 16344 mips_assembling_insn = FALSE;
bdaaa2e1 16345 demand_empty_rest_of_line ();
252b5132
RH
16346}
16347
16348/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16349 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16350 such as generating jalx instructions when needed. We also make
16351 them odd for the duration of the assembly, in order to generate the
16352 right sort of code. We will make them even in the adjust_symtab
16353 routine, while leaving them marked. This is convenient for the
16354 debugger and the disassembler. The linker knows to make them odd
16355 again. */
16356
16357static void
17a2f251 16358s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16359{
7bb01e2d
MR
16360 file_mips_check_options ();
16361 file_ase_mips16 |= mips_opts.mips16;
16362 file_ase_micromips |= mips_opts.micromips;
16363
df58fc94 16364 mips_mark_labels ();
252b5132
RH
16365
16366 demand_empty_rest_of_line ();
16367}
16368
ba92f887
MR
16369/* Handle the .nan pseudo-op. */
16370
16371static void
16372s_nan (int ignore ATTRIBUTE_UNUSED)
16373{
16374 static const char str_legacy[] = "legacy";
16375 static const char str_2008[] = "2008";
16376 size_t i;
16377
16378 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16379
16380 if (i == sizeof (str_2008) - 1
16381 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16382 mips_nan2008 = 1;
ba92f887
MR
16383 else if (i == sizeof (str_legacy) - 1
16384 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16385 {
16386 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16387 mips_nan2008 = 0;
16388 else
16389 as_bad (_("`%s' does not support legacy NaN"),
16390 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16391 }
ba92f887 16392 else
1661c76c 16393 as_bad (_("bad .nan directive"));
ba92f887
MR
16394
16395 input_line_pointer += i;
16396 demand_empty_rest_of_line ();
16397}
16398
754e2bb9
RS
16399/* Handle a .stab[snd] directive. Ideally these directives would be
16400 implemented in a transparent way, so that removing them would not
16401 have any effect on the generated instructions. However, s_stab
16402 internally changes the section, so in practice we need to decide
16403 now whether the preceding label marks compressed code. We do not
16404 support changing the compression mode of a label after a .stab*
16405 directive, such as in:
16406
16407 foo:
16408 .stabs ...
16409 .set mips16
16410
16411 so the current mode wins. */
252b5132
RH
16412
16413static void
17a2f251 16414s_mips_stab (int type)
252b5132 16415{
754e2bb9 16416 mips_mark_labels ();
252b5132
RH
16417 s_stab (type);
16418}
16419
54f4ddb3 16420/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16421
16422static void
17a2f251 16423s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16424{
16425 char *name;
16426 int c;
16427 symbolS *symbolP;
16428 expressionS exp;
16429
16430 name = input_line_pointer;
16431 c = get_symbol_end ();
16432 symbolP = symbol_find_or_make (name);
16433 S_SET_WEAK (symbolP);
16434 *input_line_pointer = c;
16435
16436 SKIP_WHITESPACE ();
16437
16438 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16439 {
16440 if (S_IS_DEFINED (symbolP))
16441 {
20203fb9 16442 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16443 S_GET_NAME (symbolP));
16444 ignore_rest_of_line ();
16445 return;
16446 }
bdaaa2e1 16447
252b5132
RH
16448 if (*input_line_pointer == ',')
16449 {
16450 ++input_line_pointer;
16451 SKIP_WHITESPACE ();
16452 }
bdaaa2e1 16453
252b5132
RH
16454 expression (&exp);
16455 if (exp.X_op != O_symbol)
16456 {
20203fb9 16457 as_bad (_("bad .weakext directive"));
98d3f06f 16458 ignore_rest_of_line ();
252b5132
RH
16459 return;
16460 }
49309057 16461 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16462 }
16463
16464 demand_empty_rest_of_line ();
16465}
16466
16467/* Parse a register string into a number. Called from the ECOFF code
16468 to parse .frame. The argument is non-zero if this is the frame
16469 register, so that we can record it in mips_frame_reg. */
16470
16471int
17a2f251 16472tc_get_register (int frame)
252b5132 16473{
707bfff6 16474 unsigned int reg;
252b5132
RH
16475
16476 SKIP_WHITESPACE ();
707bfff6
TS
16477 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16478 reg = 0;
252b5132 16479 if (frame)
7a621144
DJ
16480 {
16481 mips_frame_reg = reg != 0 ? reg : SP;
16482 mips_frame_reg_valid = 1;
16483 mips_cprestore_valid = 0;
16484 }
252b5132
RH
16485 return reg;
16486}
16487
16488valueT
17a2f251 16489md_section_align (asection *seg, valueT addr)
252b5132
RH
16490{
16491 int align = bfd_get_section_alignment (stdoutput, seg);
16492
f3ded42a
RS
16493 /* We don't need to align ELF sections to the full alignment.
16494 However, Irix 5 may prefer that we align them at least to a 16
16495 byte boundary. We don't bother to align the sections if we
16496 are targeted for an embedded system. */
16497 if (strncmp (TARGET_OS, "elf", 3) == 0)
16498 return addr;
16499 if (align > 4)
16500 align = 4;
252b5132
RH
16501
16502 return ((addr + (1 << align) - 1) & (-1 << align));
16503}
16504
16505/* Utility routine, called from above as well. If called while the
16506 input file is still being read, it's only an approximation. (For
16507 example, a symbol may later become defined which appeared to be
16508 undefined earlier.) */
16509
16510static int
17a2f251 16511nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
16512{
16513 if (sym == 0)
16514 return 0;
16515
4d0d148d 16516 if (g_switch_value > 0)
252b5132
RH
16517 {
16518 const char *symname;
16519 int change;
16520
c9914766 16521 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
16522 register. It can be if it is smaller than the -G size or if
16523 it is in the .sdata or .sbss section. Certain symbols can
c9914766 16524 not be referenced off the $gp, although it appears as though
252b5132
RH
16525 they can. */
16526 symname = S_GET_NAME (sym);
16527 if (symname != (const char *) NULL
16528 && (strcmp (symname, "eprol") == 0
16529 || strcmp (symname, "etext") == 0
16530 || strcmp (symname, "_gp") == 0
16531 || strcmp (symname, "edata") == 0
16532 || strcmp (symname, "_fbss") == 0
16533 || strcmp (symname, "_fdata") == 0
16534 || strcmp (symname, "_ftext") == 0
16535 || strcmp (symname, "end") == 0
16536 || strcmp (symname, "_gp_disp") == 0))
16537 change = 1;
16538 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16539 && (0
16540#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
16541 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16542 && (symbol_get_obj (sym)->ecoff_extern_size
16543 <= g_switch_value))
252b5132
RH
16544#endif
16545 /* We must defer this decision until after the whole
16546 file has been read, since there might be a .extern
16547 after the first use of this symbol. */
16548 || (before_relaxing
16549#ifndef NO_ECOFF_DEBUGGING
49309057 16550 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
16551#endif
16552 && S_GET_VALUE (sym) == 0)
16553 || (S_GET_VALUE (sym) != 0
16554 && S_GET_VALUE (sym) <= g_switch_value)))
16555 change = 0;
16556 else
16557 {
16558 const char *segname;
16559
16560 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 16561 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
16562 && strcmp (segname, ".lit4") != 0);
16563 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
16564 && strcmp (segname, ".sbss") != 0
16565 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
16566 && strncmp (segname, ".sbss.", 6) != 0
16567 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 16568 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
16569 }
16570 return change;
16571 }
16572 else
c9914766 16573 /* We are not optimizing for the $gp register. */
252b5132
RH
16574 return 1;
16575}
16576
5919d012
RS
16577
16578/* Return true if the given symbol should be considered local for SVR4 PIC. */
16579
16580static bfd_boolean
17a2f251 16581pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
16582{
16583 asection *symsec;
5919d012
RS
16584
16585 /* Handle the case of a symbol equated to another symbol. */
16586 while (symbol_equated_reloc_p (sym))
16587 {
16588 symbolS *n;
16589
5f0fe04b 16590 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
16591 n = symbol_get_value_expression (sym)->X_add_symbol;
16592 if (n == sym)
16593 break;
16594 sym = n;
16595 }
16596
df1f3cda
DD
16597 if (symbol_section_p (sym))
16598 return TRUE;
16599
5919d012
RS
16600 symsec = S_GET_SEGMENT (sym);
16601
5919d012 16602 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
16603 return (!bfd_is_und_section (symsec)
16604 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
16605 && !bfd_is_com_section (symsec)
16606 && !s_is_linkonce (sym, segtype)
5919d012 16607 /* A global or weak symbol is treated as external. */
f3ded42a 16608 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
16609}
16610
16611
252b5132
RH
16612/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16613 extended opcode. SEC is the section the frag is in. */
16614
16615static int
17a2f251 16616mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
16617{
16618 int type;
3ccad066 16619 const struct mips_int_operand *operand;
252b5132 16620 offsetT val;
252b5132 16621 segT symsec;
98aa84af 16622 fragS *sym_frag;
252b5132
RH
16623
16624 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16625 return 0;
16626 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16627 return 1;
16628
16629 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16630 operand = mips16_immed_operand (type, FALSE);
252b5132 16631
98aa84af 16632 sym_frag = symbol_get_frag (fragp->fr_symbol);
ac62c346 16633 val = S_GET_VALUE (fragp->fr_symbol);
98aa84af 16634 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 16635
3ccad066 16636 if (operand->root.type == OP_PCREL)
252b5132 16637 {
3ccad066 16638 const struct mips_pcrel_operand *pcrel_op;
252b5132 16639 addressT addr;
3ccad066 16640 offsetT maxtiny;
252b5132
RH
16641
16642 /* We won't have the section when we are called from
16643 mips_relax_frag. However, we will always have been called
16644 from md_estimate_size_before_relax first. If this is a
16645 branch to a different section, we mark it as such. If SEC is
16646 NULL, and the frag is not marked, then it must be a branch to
16647 the same section. */
3ccad066 16648 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
16649 if (sec == NULL)
16650 {
16651 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16652 return 1;
16653 }
16654 else
16655 {
98aa84af 16656 /* Must have been called from md_estimate_size_before_relax. */
252b5132
RH
16657 if (symsec != sec)
16658 {
16659 fragp->fr_subtype =
16660 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16661
16662 /* FIXME: We should support this, and let the linker
16663 catch branches and loads that are out of range. */
16664 as_bad_where (fragp->fr_file, fragp->fr_line,
16665 _("unsupported PC relative reference to different section"));
16666
16667 return 1;
16668 }
98aa84af
AM
16669 if (fragp != sym_frag && sym_frag->fr_address == 0)
16670 /* Assume non-extended on the first relaxation pass.
16671 The address we have calculated will be bogus if this is
16672 a forward branch to another frag, as the forward frag
16673 will have fr_address == 0. */
16674 return 0;
252b5132
RH
16675 }
16676
16677 /* In this case, we know for sure that the symbol fragment is in
98aa84af
AM
16678 the same section. If the relax_marker of the symbol fragment
16679 differs from the relax_marker of this fragment, we have not
16680 yet adjusted the symbol fragment fr_address. We want to add
252b5132
RH
16681 in STRETCH in order to get a better estimate of the address.
16682 This particularly matters because of the shift bits. */
16683 if (stretch != 0
98aa84af 16684 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
16685 {
16686 fragS *f;
16687
16688 /* Adjust stretch for any alignment frag. Note that if have
16689 been expanding the earlier code, the symbol may be
16690 defined in what appears to be an earlier frag. FIXME:
16691 This doesn't handle the fr_subtype field, which specifies
16692 a maximum number of bytes to skip when doing an
16693 alignment. */
98aa84af 16694 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
16695 {
16696 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16697 {
16698 if (stretch < 0)
16699 stretch = - ((- stretch)
16700 & ~ ((1 << (int) f->fr_offset) - 1));
16701 else
16702 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16703 if (stretch == 0)
16704 break;
16705 }
16706 }
16707 if (f != NULL)
16708 val += stretch;
16709 }
16710
16711 addr = fragp->fr_address + fragp->fr_fix;
16712
16713 /* The base address rules are complicated. The base address of
16714 a branch is the following instruction. The base address of a
16715 PC relative load or add is the instruction itself, but if it
16716 is in a delay slot (in which case it can not be extended) use
16717 the address of the instruction whose delay slot it is in. */
3ccad066 16718 if (pcrel_op->include_isa_bit)
252b5132
RH
16719 {
16720 addr += 2;
16721
16722 /* If we are currently assuming that this frag should be
16723 extended, then, the current address is two bytes
bdaaa2e1 16724 higher. */
252b5132
RH
16725 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16726 addr += 2;
16727
16728 /* Ignore the low bit in the target, since it will be set
16729 for a text label. */
3ccad066 16730 val &= -2;
252b5132
RH
16731 }
16732 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16733 addr -= 4;
16734 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16735 addr -= 2;
16736
3ccad066 16737 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
16738
16739 /* If any of the shifted bits are set, we must use an extended
16740 opcode. If the address depends on the size of this
16741 instruction, this can lead to a loop, so we arrange to always
16742 use an extended opcode. We only check this when we are in
16743 the main relaxation loop, when SEC is NULL. */
3ccad066 16744 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
252b5132
RH
16745 {
16746 fragp->fr_subtype =
16747 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16748 return 1;
16749 }
16750
16751 /* If we are about to mark a frag as extended because the value
3ccad066
RS
16752 is precisely the next value above maxtiny, then there is a
16753 chance of an infinite loop as in the following code:
252b5132
RH
16754 la $4,foo
16755 .skip 1020
16756 .align 2
16757 foo:
16758 In this case when the la is extended, foo is 0x3fc bytes
16759 away, so the la can be shrunk, but then foo is 0x400 away, so
16760 the la must be extended. To avoid this loop, we mark the
16761 frag as extended if it was small, and is about to become
3ccad066
RS
16762 extended with the next value above maxtiny. */
16763 maxtiny = mips_int_operand_max (operand);
16764 if (val == maxtiny + (1 << operand->shift)
252b5132
RH
16765 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16766 && sec == NULL)
16767 {
16768 fragp->fr_subtype =
16769 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16770 return 1;
16771 }
16772 }
16773 else if (symsec != absolute_section && sec != NULL)
16774 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16775
3ccad066 16776 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
16777}
16778
4a6a3df4
AO
16779/* Compute the length of a branch sequence, and adjust the
16780 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16781 worst-case length is computed, with UPDATE being used to indicate
16782 whether an unconditional (-1), branch-likely (+1) or regular (0)
16783 branch is to be computed. */
16784static int
17a2f251 16785relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 16786{
b34976b6 16787 bfd_boolean toofar;
4a6a3df4
AO
16788 int length;
16789
16790 if (fragp
16791 && S_IS_DEFINED (fragp->fr_symbol)
16792 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16793 {
16794 addressT addr;
16795 offsetT val;
16796
16797 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16798
16799 addr = fragp->fr_address + fragp->fr_fix + 4;
16800
16801 val -= addr;
16802
16803 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16804 }
16805 else if (fragp)
16806 /* If the symbol is not defined or it's in a different segment,
16807 assume the user knows what's going on and emit a short
16808 branch. */
b34976b6 16809 toofar = FALSE;
4a6a3df4 16810 else
b34976b6 16811 toofar = TRUE;
4a6a3df4
AO
16812
16813 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16814 fragp->fr_subtype
66b3e8da
MR
16815 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16816 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
16817 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16818 RELAX_BRANCH_LINK (fragp->fr_subtype),
16819 toofar);
16820
16821 length = 4;
16822 if (toofar)
16823 {
16824 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16825 length += 8;
16826
16827 if (mips_pic != NO_PIC)
16828 {
16829 /* Additional space for PIC loading of target address. */
16830 length += 8;
16831 if (mips_opts.isa == ISA_MIPS1)
16832 /* Additional space for $at-stabilizing nop. */
16833 length += 4;
16834 }
16835
16836 /* If branch is conditional. */
16837 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16838 length += 8;
16839 }
b34976b6 16840
4a6a3df4
AO
16841 return length;
16842}
16843
df58fc94
RS
16844/* Compute the length of a branch sequence, and adjust the
16845 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16846 worst-case length is computed, with UPDATE being used to indicate
16847 whether an unconditional (-1), or regular (0) branch is to be
16848 computed. */
16849
16850static int
16851relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16852{
16853 bfd_boolean toofar;
16854 int length;
16855
16856 if (fragp
16857 && S_IS_DEFINED (fragp->fr_symbol)
16858 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16859 {
16860 addressT addr;
16861 offsetT val;
16862
16863 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16864 /* Ignore the low bit in the target, since it will be set
16865 for a text label. */
16866 if ((val & 1) != 0)
16867 --val;
16868
16869 addr = fragp->fr_address + fragp->fr_fix + 4;
16870
16871 val -= addr;
16872
16873 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16874 }
16875 else if (fragp)
16876 /* If the symbol is not defined or it's in a different segment,
16877 assume the user knows what's going on and emit a short
16878 branch. */
16879 toofar = FALSE;
16880 else
16881 toofar = TRUE;
16882
16883 if (fragp && update
16884 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16885 fragp->fr_subtype = (toofar
16886 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16887 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16888
16889 length = 4;
16890 if (toofar)
16891 {
16892 bfd_boolean compact_known = fragp != NULL;
16893 bfd_boolean compact = FALSE;
16894 bfd_boolean uncond;
16895
16896 if (compact_known)
16897 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16898 if (fragp)
16899 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16900 else
16901 uncond = update < 0;
16902
16903 /* If label is out of range, we turn branch <br>:
16904
16905 <br> label # 4 bytes
16906 0:
16907
16908 into:
16909
16910 j label # 4 bytes
16911 nop # 2 bytes if compact && !PIC
16912 0:
16913 */
16914 if (mips_pic == NO_PIC && (!compact_known || compact))
16915 length += 2;
16916
16917 /* If assembling PIC code, we further turn:
16918
16919 j label # 4 bytes
16920
16921 into:
16922
16923 lw/ld at, %got(label)(gp) # 4 bytes
16924 d/addiu at, %lo(label) # 4 bytes
16925 jr/c at # 2 bytes
16926 */
16927 if (mips_pic != NO_PIC)
16928 length += 6;
16929
16930 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16931
16932 <brneg> 0f # 4 bytes
16933 nop # 2 bytes if !compact
16934 */
16935 if (!uncond)
16936 length += (compact_known && compact) ? 4 : 6;
16937 }
16938
16939 return length;
16940}
16941
16942/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16943 bit accordingly. */
16944
16945static int
16946relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16947{
16948 bfd_boolean toofar;
16949
df58fc94
RS
16950 if (fragp
16951 && S_IS_DEFINED (fragp->fr_symbol)
16952 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16953 {
16954 addressT addr;
16955 offsetT val;
16956 int type;
16957
16958 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16959 /* Ignore the low bit in the target, since it will be set
16960 for a text label. */
16961 if ((val & 1) != 0)
16962 --val;
16963
16964 /* Assume this is a 2-byte branch. */
16965 addr = fragp->fr_address + fragp->fr_fix + 2;
16966
16967 /* We try to avoid the infinite loop by not adding 2 more bytes for
16968 long branches. */
16969
16970 val -= addr;
16971
16972 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16973 if (type == 'D')
16974 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16975 else if (type == 'E')
16976 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16977 else
16978 abort ();
16979 }
16980 else
16981 /* If the symbol is not defined or it's in a different segment,
16982 we emit a normal 32-bit branch. */
16983 toofar = TRUE;
16984
16985 if (fragp && update
16986 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16987 fragp->fr_subtype
16988 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16989 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16990
16991 if (toofar)
16992 return 4;
16993
16994 return 2;
16995}
16996
252b5132
RH
16997/* Estimate the size of a frag before relaxing. Unless this is the
16998 mips16, we are not really relaxing here, and the final size is
16999 encoded in the subtype information. For the mips16, we have to
17000 decide whether we are using an extended opcode or not. */
17001
252b5132 17002int
17a2f251 17003md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17004{
5919d012 17005 int change;
252b5132 17006
4a6a3df4
AO
17007 if (RELAX_BRANCH_P (fragp->fr_subtype))
17008 {
17009
b34976b6
AM
17010 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17011
4a6a3df4
AO
17012 return fragp->fr_var;
17013 }
17014
252b5132 17015 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17016 /* We don't want to modify the EXTENDED bit here; it might get us
17017 into infinite loops. We change it only in mips_relax_frag(). */
17018 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17019
df58fc94
RS
17020 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17021 {
17022 int length = 4;
17023
17024 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17025 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17026 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17027 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17028 fragp->fr_var = length;
17029
17030 return length;
17031 }
17032
252b5132 17033 if (mips_pic == NO_PIC)
5919d012 17034 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17035 else if (mips_pic == SVR4_PIC)
5919d012 17036 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17037 else if (mips_pic == VXWORKS_PIC)
17038 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17039 change = 0;
252b5132
RH
17040 else
17041 abort ();
17042
17043 if (change)
17044 {
4d7206a2 17045 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17046 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17047 }
4d7206a2
RS
17048 else
17049 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17050}
17051
17052/* This is called to see whether a reloc against a defined symbol
de7e6852 17053 should be converted into a reloc against a section. */
252b5132
RH
17054
17055int
17a2f251 17056mips_fix_adjustable (fixS *fixp)
252b5132 17057{
252b5132
RH
17058 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17059 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17060 return 0;
a161fe53 17061
252b5132
RH
17062 if (fixp->fx_addsy == NULL)
17063 return 1;
a161fe53 17064
2f0c68f2
CM
17065 /* Allow relocs used for EH tables. */
17066 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17067 return 1;
17068
de7e6852
RS
17069 /* If symbol SYM is in a mergeable section, relocations of the form
17070 SYM + 0 can usually be made section-relative. The mergeable data
17071 is then identified by the section offset rather than by the symbol.
17072
17073 However, if we're generating REL LO16 relocations, the offset is split
17074 between the LO16 and parterning high part relocation. The linker will
17075 need to recalculate the complete offset in order to correctly identify
17076 the merge data.
17077
17078 The linker has traditionally not looked for the parterning high part
17079 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17080 placed anywhere. Rather than break backwards compatibility by changing
17081 this, it seems better not to force the issue, and instead keep the
17082 original symbol. This will work with either linker behavior. */
738e5348 17083 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17084 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17085 && HAVE_IN_PLACE_ADDENDS
17086 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17087 return 0;
17088
ce70d90a 17089 /* There is no place to store an in-place offset for JALR relocations.
2de39019
CM
17090 Likewise an in-range offset of limited PC-relative relocations may
17091 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17092 start address of the symbol's containing section.
17093
17094 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17095 section relative to allow linker relaxations to be performed later on. */
17096 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
2de39019
CM
17097 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17098 || jalr_reloc_p (fixp->fx_r_type)))
1180b5a4
RS
17099 return 0;
17100
b314ec0e
RS
17101 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17102 to a floating-point stub. The same is true for non-R_MIPS16_26
17103 relocations against MIPS16 functions; in this case, the stub becomes
17104 the function's canonical address.
17105
17106 Floating-point stubs are stored in unique .mips16.call.* or
17107 .mips16.fn.* sections. If a stub T for function F is in section S,
17108 the first relocation in section S must be against F; this is how the
17109 linker determines the target function. All relocations that might
17110 resolve to T must also be against F. We therefore have the following
17111 restrictions, which are given in an intentionally-redundant way:
17112
17113 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17114 symbols.
17115
17116 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17117 if that stub might be used.
17118
17119 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17120 symbols.
17121
17122 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17123 that stub might be used.
17124
17125 There is a further restriction:
17126
df58fc94
RS
17127 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17128 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17129 targets with in-place addends; the relocation field cannot
b314ec0e
RS
17130 encode the low bit.
17131
df58fc94
RS
17132 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17133 against a MIPS16 symbol. We deal with (5) by by not reducing any
17134 such relocations on REL targets.
b314ec0e
RS
17135
17136 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17137 relocation against some symbol R, no relocation against R may be
17138 reduced. (Note that this deals with (2) as well as (1) because
17139 relocations against global symbols will never be reduced on ELF
17140 targets.) This approach is a little simpler than trying to detect
17141 stub sections, and gives the "all or nothing" per-symbol consistency
17142 that we have for MIPS16 symbols. */
f3ded42a 17143 if (fixp->fx_subsy == NULL
30c09090 17144 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
df58fc94
RS
17145 || *symbol_get_tc (fixp->fx_addsy)
17146 || (HAVE_IN_PLACE_ADDENDS
17147 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17148 && jmp_reloc_p (fixp->fx_r_type))))
252b5132 17149 return 0;
a161fe53 17150
252b5132
RH
17151 return 1;
17152}
17153
17154/* Translate internal representation of relocation info to BFD target
17155 format. */
17156
17157arelent **
17a2f251 17158tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17159{
17160 static arelent *retval[4];
17161 arelent *reloc;
17162 bfd_reloc_code_real_type code;
17163
4b0cff4e
TS
17164 memset (retval, 0, sizeof(retval));
17165 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
49309057
ILT
17166 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17167 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17168 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17169
bad36eac
DJ
17170 if (fixp->fx_pcrel)
17171 {
df58fc94
RS
17172 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17173 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17174 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17175 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17176 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17177 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17178 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17179 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17180 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17181 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17182 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17183
17184 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17185 Relocations want only the symbol offset. */
17186 reloc->addend = fixp->fx_addnumber + reloc->address;
bad36eac
DJ
17187 }
17188 else
17189 reloc->addend = fixp->fx_addnumber;
252b5132 17190
438c16b8
TS
17191 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17192 entry to be used in the relocation's section offset. */
17193 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17194 {
17195 reloc->address = reloc->addend;
17196 reloc->addend = 0;
17197 }
17198
252b5132 17199 code = fixp->fx_r_type;
252b5132 17200
bad36eac 17201 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17202 if (reloc->howto == NULL)
17203 {
17204 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17205 _("cannot represent %s relocation in this object file"
17206 " format"),
252b5132
RH
17207 bfd_get_reloc_code_name (code));
17208 retval[0] = NULL;
17209 }
17210
17211 return retval;
17212}
17213
17214/* Relax a machine dependent frag. This returns the amount by which
17215 the current size of the frag should change. */
17216
17217int
17a2f251 17218mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17219{
4a6a3df4
AO
17220 if (RELAX_BRANCH_P (fragp->fr_subtype))
17221 {
17222 offsetT old_var = fragp->fr_var;
b34976b6
AM
17223
17224 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17225
17226 return fragp->fr_var - old_var;
17227 }
17228
df58fc94
RS
17229 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17230 {
17231 offsetT old_var = fragp->fr_var;
17232 offsetT new_var = 4;
17233
17234 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17235 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17236 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17237 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17238 fragp->fr_var = new_var;
17239
17240 return new_var - old_var;
17241 }
17242
252b5132
RH
17243 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17244 return 0;
17245
c4e7957c 17246 if (mips16_extended_frag (fragp, NULL, stretch))
252b5132
RH
17247 {
17248 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17249 return 0;
17250 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17251 return 2;
17252 }
17253 else
17254 {
17255 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17256 return 0;
17257 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17258 return -2;
17259 }
17260
17261 return 0;
17262}
17263
17264/* Convert a machine dependent frag. */
17265
17266void
17a2f251 17267md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17268{
4a6a3df4
AO
17269 if (RELAX_BRANCH_P (fragp->fr_subtype))
17270 {
4d68580a 17271 char *buf;
4a6a3df4
AO
17272 unsigned long insn;
17273 expressionS exp;
17274 fixS *fixp;
b34976b6 17275
4d68580a
RS
17276 buf = fragp->fr_literal + fragp->fr_fix;
17277 insn = read_insn (buf);
b34976b6 17278
4a6a3df4
AO
17279 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17280 {
17281 /* We generate a fixup instead of applying it right now
17282 because, if there are linker relaxations, we're going to
17283 need the relocations. */
17284 exp.X_op = O_symbol;
17285 exp.X_add_symbol = fragp->fr_symbol;
17286 exp.X_add_number = fragp->fr_offset;
17287
4d68580a
RS
17288 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17289 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17290 fixp->fx_file = fragp->fr_file;
17291 fixp->fx_line = fragp->fr_line;
b34976b6 17292
4d68580a 17293 buf = write_insn (buf, insn);
4a6a3df4
AO
17294 }
17295 else
17296 {
17297 int i;
17298
17299 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17300 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17301
17302 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17303 goto uncond;
17304
17305 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17306 {
17307 /* Reverse the branch. */
17308 switch ((insn >> 28) & 0xf)
17309 {
17310 case 4:
56d438b1
CF
17311 if ((insn & 0xff000000) == 0x47000000
17312 || (insn & 0xff600000) == 0x45600000)
17313 {
17314 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17315 reversed by tweaking bit 23. */
17316 insn ^= 0x00800000;
17317 }
17318 else
17319 {
17320 /* bc[0-3][tf]l? instructions can have the condition
17321 reversed by tweaking a single TF bit, and their
17322 opcodes all have 0x4???????. */
17323 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17324 insn ^= 0x00010000;
17325 }
4a6a3df4
AO
17326 break;
17327
17328 case 0:
17329 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17330 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17331 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17332 insn ^= 0x00010000;
17333 break;
b34976b6 17334
4a6a3df4
AO
17335 case 1:
17336 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17337 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17338 insn ^= 0x04000000;
17339 break;
17340
17341 default:
17342 abort ();
17343 }
17344 }
17345
17346 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17347 {
17348 /* Clear the and-link bit. */
9c2799c2 17349 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17350
54f4ddb3
TS
17351 /* bltzal 0x04100000 bgezal 0x04110000
17352 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17353 insn &= ~0x00100000;
17354 }
17355
17356 /* Branch over the branch (if the branch was likely) or the
17357 full jump (not likely case). Compute the offset from the
17358 current instruction to branch to. */
17359 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17360 i = 16;
17361 else
17362 {
17363 /* How many bytes in instructions we've already emitted? */
4d68580a 17364 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17365 /* How many bytes in instructions from here to the end? */
17366 i = fragp->fr_var - i;
17367 }
17368 /* Convert to instruction count. */
17369 i >>= 2;
17370 /* Branch counts from the next instruction. */
b34976b6 17371 i--;
4a6a3df4
AO
17372 insn |= i;
17373 /* Branch over the jump. */
4d68580a 17374 buf = write_insn (buf, insn);
4a6a3df4 17375
54f4ddb3 17376 /* nop */
4d68580a 17377 buf = write_insn (buf, 0);
4a6a3df4
AO
17378
17379 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17380 {
17381 /* beql $0, $0, 2f */
17382 insn = 0x50000000;
17383 /* Compute the PC offset from the current instruction to
17384 the end of the variable frag. */
17385 /* How many bytes in instructions we've already emitted? */
4d68580a 17386 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17387 /* How many bytes in instructions from here to the end? */
17388 i = fragp->fr_var - i;
17389 /* Convert to instruction count. */
17390 i >>= 2;
17391 /* Don't decrement i, because we want to branch over the
17392 delay slot. */
4a6a3df4 17393 insn |= i;
4a6a3df4 17394
4d68580a
RS
17395 buf = write_insn (buf, insn);
17396 buf = write_insn (buf, 0);
4a6a3df4
AO
17397 }
17398
17399 uncond:
17400 if (mips_pic == NO_PIC)
17401 {
17402 /* j or jal. */
17403 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17404 ? 0x0c000000 : 0x08000000);
17405 exp.X_op = O_symbol;
17406 exp.X_add_symbol = fragp->fr_symbol;
17407 exp.X_add_number = fragp->fr_offset;
17408
4d68580a
RS
17409 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17410 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17411 fixp->fx_file = fragp->fr_file;
17412 fixp->fx_line = fragp->fr_line;
17413
4d68580a 17414 buf = write_insn (buf, insn);
4a6a3df4
AO
17415 }
17416 else
17417 {
66b3e8da
MR
17418 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17419
4a6a3df4 17420 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17421 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17422 insn |= at << OP_SH_RT;
4a6a3df4
AO
17423 exp.X_op = O_symbol;
17424 exp.X_add_symbol = fragp->fr_symbol;
17425 exp.X_add_number = fragp->fr_offset;
17426
17427 if (fragp->fr_offset)
17428 {
17429 exp.X_add_symbol = make_expr_symbol (&exp);
17430 exp.X_add_number = 0;
17431 }
17432
4d68580a
RS
17433 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17434 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
17435 fixp->fx_file = fragp->fr_file;
17436 fixp->fx_line = fragp->fr_line;
17437
4d68580a 17438 buf = write_insn (buf, insn);
b34976b6 17439
4a6a3df4 17440 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
17441 /* nop */
17442 buf = write_insn (buf, 0);
4a6a3df4
AO
17443
17444 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
17445 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17446 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 17447
4d68580a
RS
17448 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17449 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
17450 fixp->fx_file = fragp->fr_file;
17451 fixp->fx_line = fragp->fr_line;
b34976b6 17452
4d68580a 17453 buf = write_insn (buf, insn);
4a6a3df4
AO
17454
17455 /* j(al)r $at. */
17456 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 17457 insn = 0x0000f809;
4a6a3df4 17458 else
66b3e8da
MR
17459 insn = 0x00000008;
17460 insn |= at << OP_SH_RS;
4a6a3df4 17461
4d68580a 17462 buf = write_insn (buf, insn);
4a6a3df4
AO
17463 }
17464 }
17465
4a6a3df4 17466 fragp->fr_fix += fragp->fr_var;
4d68580a 17467 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
17468 return;
17469 }
17470
df58fc94
RS
17471 /* Relax microMIPS branches. */
17472 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17473 {
4d68580a 17474 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17475 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17476 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17477 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 17478 bfd_boolean short_ds;
df58fc94
RS
17479 unsigned long insn;
17480 expressionS exp;
17481 fixS *fixp;
17482
17483 exp.X_op = O_symbol;
17484 exp.X_add_symbol = fragp->fr_symbol;
17485 exp.X_add_number = fragp->fr_offset;
17486
17487 fragp->fr_fix += fragp->fr_var;
17488
17489 /* Handle 16-bit branches that fit or are forced to fit. */
17490 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17491 {
17492 /* We generate a fixup instead of applying it right now,
17493 because if there is linker relaxation, we're going to
17494 need the relocations. */
17495 if (type == 'D')
4d68580a 17496 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17497 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17498 else if (type == 'E')
4d68580a 17499 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17500 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17501 else
17502 abort ();
17503
17504 fixp->fx_file = fragp->fr_file;
17505 fixp->fx_line = fragp->fr_line;
17506
17507 /* These relocations can have an addend that won't fit in
17508 2 octets. */
17509 fixp->fx_no_overflow = 1;
17510
17511 return;
17512 }
17513
2309ddf2 17514 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
17515 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17516 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17517 {
17518 /* We generate a fixup instead of applying it right now,
17519 because if there is linker relaxation, we're going to
17520 need the relocations. */
4d68580a
RS
17521 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17522 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17523 fixp->fx_file = fragp->fr_file;
17524 fixp->fx_line = fragp->fr_line;
17525
17526 if (type == 0)
17527 return;
17528 }
17529
17530 /* Relax 16-bit branches to 32-bit branches. */
17531 if (type != 0)
17532 {
4d68580a 17533 insn = read_compressed_insn (buf, 2);
df58fc94
RS
17534
17535 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17536 insn = 0x94000000; /* beq */
17537 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17538 {
17539 unsigned long regno;
17540
17541 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17542 regno = micromips_to_32_reg_d_map [regno];
17543 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17544 insn |= regno << MICROMIPSOP_SH_RS;
17545 }
17546 else
17547 abort ();
17548
17549 /* Nothing else to do, just write it out. */
17550 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17551 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17552 {
4d68580a
RS
17553 buf = write_compressed_insn (buf, insn, 4);
17554 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17555 return;
17556 }
17557 }
17558 else
4d68580a 17559 insn = read_compressed_insn (buf, 4);
df58fc94
RS
17560
17561 /* Relax 32-bit branches to a sequence of instructions. */
17562 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17563 _("relaxed out-of-range branch into a jump"));
df58fc94 17564
2309ddf2
MR
17565 /* Set the short-delay-slot bit. */
17566 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
17567
17568 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17569 {
17570 symbolS *l;
17571
17572 /* Reverse the branch. */
17573 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17574 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17575 insn ^= 0x20000000;
17576 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17577 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17578 || (insn & 0xffe00000) == 0x40800000 /* blez */
17579 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17580 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17581 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17582 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17583 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17584 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17585 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17586 insn ^= 0x00400000;
17587 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17588 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17589 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17590 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17591 insn ^= 0x00200000;
56d438b1
CF
17592 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17593 BNZ.df */
17594 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17595 BNZ.V */
17596 insn ^= 0x00800000;
df58fc94
RS
17597 else
17598 abort ();
17599
17600 if (al)
17601 {
17602 /* Clear the and-link and short-delay-slot bits. */
17603 gas_assert ((insn & 0xfda00000) == 0x40200000);
17604
17605 /* bltzal 0x40200000 bgezal 0x40600000 */
17606 /* bltzals 0x42200000 bgezals 0x42600000 */
17607 insn &= ~0x02200000;
17608 }
17609
17610 /* Make a label at the end for use with the branch. */
17611 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17612 micromips_label_inc ();
f3ded42a 17613 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
17614
17615 /* Refer to it. */
4d68580a
RS
17616 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17617 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17618 fixp->fx_file = fragp->fr_file;
17619 fixp->fx_line = fragp->fr_line;
17620
17621 /* Branch over the jump. */
4d68580a 17622 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17623 if (!compact)
4d68580a
RS
17624 /* nop */
17625 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17626 }
17627
17628 if (mips_pic == NO_PIC)
17629 {
2309ddf2
MR
17630 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17631
df58fc94
RS
17632 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17633 insn = al ? jal : 0xd4000000;
17634
4d68580a
RS
17635 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17636 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
17637 fixp->fx_file = fragp->fr_file;
17638 fixp->fx_line = fragp->fr_line;
17639
4d68580a 17640 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17641 if (compact)
4d68580a
RS
17642 /* nop */
17643 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17644 }
17645 else
17646 {
17647 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
17648 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17649 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
17650
17651 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17652 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17653 insn |= at << MICROMIPSOP_SH_RT;
17654
17655 if (exp.X_add_number)
17656 {
17657 exp.X_add_symbol = make_expr_symbol (&exp);
17658 exp.X_add_number = 0;
17659 }
17660
4d68580a
RS
17661 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17662 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
17663 fixp->fx_file = fragp->fr_file;
17664 fixp->fx_line = fragp->fr_line;
17665
4d68580a 17666 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17667
17668 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17669 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17670 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17671
4d68580a
RS
17672 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17673 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
17674 fixp->fx_file = fragp->fr_file;
17675 fixp->fx_line = fragp->fr_line;
17676
4d68580a 17677 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17678
17679 /* jr/jrc/jalr/jalrs $at */
17680 insn = al ? jalr : jr;
17681 insn |= at << MICROMIPSOP_SH_MJ;
17682
4d68580a 17683 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
17684 }
17685
4d68580a 17686 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17687 return;
17688 }
17689
252b5132
RH
17690 if (RELAX_MIPS16_P (fragp->fr_subtype))
17691 {
17692 int type;
3ccad066 17693 const struct mips_int_operand *operand;
252b5132 17694 offsetT val;
5c04167a
RS
17695 char *buf;
17696 unsigned int user_length, length;
252b5132 17697 unsigned long insn;
5c04167a 17698 bfd_boolean ext;
252b5132
RH
17699
17700 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17701 operand = mips16_immed_operand (type, FALSE);
252b5132 17702
5c04167a 17703 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
5f5f22c0 17704 val = resolve_symbol_value (fragp->fr_symbol);
3ccad066 17705 if (operand->root.type == OP_PCREL)
252b5132 17706 {
3ccad066 17707 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
17708 addressT addr;
17709
3ccad066 17710 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
17711 addr = fragp->fr_address + fragp->fr_fix;
17712
17713 /* The rules for the base address of a PC relative reloc are
17714 complicated; see mips16_extended_frag. */
3ccad066 17715 if (pcrel_op->include_isa_bit)
252b5132
RH
17716 {
17717 addr += 2;
17718 if (ext)
17719 addr += 2;
17720 /* Ignore the low bit in the target, since it will be
17721 set for a text label. */
3ccad066 17722 val &= -2;
252b5132
RH
17723 }
17724 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17725 addr -= 4;
17726 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17727 addr -= 2;
17728
3ccad066 17729 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
17730 val -= addr;
17731
17732 /* Make sure the section winds up with the alignment we have
17733 assumed. */
3ccad066
RS
17734 if (operand->shift > 0)
17735 record_alignment (asec, operand->shift);
252b5132
RH
17736 }
17737
17738 if (ext
17739 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17740 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17741 as_warn_where (fragp->fr_file, fragp->fr_line,
17742 _("extended instruction in delay slot"));
17743
5c04167a 17744 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 17745
4d68580a 17746 insn = read_compressed_insn (buf, 2);
5c04167a
RS
17747 if (ext)
17748 insn |= MIPS16_EXTEND;
252b5132 17749
5c04167a
RS
17750 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17751 user_length = 4;
17752 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17753 user_length = 2;
17754 else
17755 user_length = 0;
17756
43c0598f 17757 mips16_immed (fragp->fr_file, fragp->fr_line, type,
c150d1d2 17758 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 17759
5c04167a
RS
17760 length = (ext ? 4 : 2);
17761 gas_assert (mips16_opcode_length (insn) == length);
17762 write_compressed_insn (buf, insn, length);
17763 fragp->fr_fix += length;
252b5132
RH
17764 }
17765 else
17766 {
df58fc94
RS
17767 relax_substateT subtype = fragp->fr_subtype;
17768 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17769 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
17770 int first, second;
17771 fixS *fixp;
252b5132 17772
df58fc94
RS
17773 first = RELAX_FIRST (subtype);
17774 second = RELAX_SECOND (subtype);
4d7206a2 17775 fixp = (fixS *) fragp->fr_opcode;
252b5132 17776
df58fc94
RS
17777 /* If the delay slot chosen does not match the size of the instruction,
17778 then emit a warning. */
17779 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17780 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17781 {
17782 relax_substateT s;
17783 const char *msg;
17784
17785 s = subtype & (RELAX_DELAY_SLOT_16BIT
17786 | RELAX_DELAY_SLOT_SIZE_FIRST
17787 | RELAX_DELAY_SLOT_SIZE_SECOND);
17788 msg = macro_warning (s);
17789 if (msg != NULL)
db9b2be4 17790 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
17791 subtype &= ~s;
17792 }
17793
584892a6 17794 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 17795 if (use_second == second_longer)
584892a6 17796 {
df58fc94
RS
17797 relax_substateT s;
17798 const char *msg;
17799
17800 s = (subtype
17801 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17802 msg = macro_warning (s);
17803 if (msg != NULL)
db9b2be4 17804 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 17805 subtype &= ~s;
584892a6
RS
17806 }
17807
4d7206a2
RS
17808 /* Go through all the fixups for the first sequence. Disable them
17809 (by marking them as done) if we're going to use the second
17810 sequence instead. */
17811 while (fixp
17812 && fixp->fx_frag == fragp
17813 && fixp->fx_where < fragp->fr_fix - second)
17814 {
df58fc94 17815 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17816 fixp->fx_done = 1;
17817 fixp = fixp->fx_next;
17818 }
252b5132 17819
4d7206a2
RS
17820 /* Go through the fixups for the second sequence. Disable them if
17821 we're going to use the first sequence, otherwise adjust their
17822 addresses to account for the relaxation. */
17823 while (fixp && fixp->fx_frag == fragp)
17824 {
df58fc94 17825 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17826 fixp->fx_where -= first;
17827 else
17828 fixp->fx_done = 1;
17829 fixp = fixp->fx_next;
17830 }
17831
17832 /* Now modify the frag contents. */
df58fc94 17833 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17834 {
17835 char *start;
17836
17837 start = fragp->fr_literal + fragp->fr_fix - first - second;
17838 memmove (start, start + first, second);
17839 fragp->fr_fix -= first;
17840 }
17841 else
17842 fragp->fr_fix -= second;
252b5132
RH
17843 }
17844}
17845
252b5132
RH
17846/* This function is called after the relocs have been generated.
17847 We've been storing mips16 text labels as odd. Here we convert them
17848 back to even for the convenience of the debugger. */
17849
17850void
17a2f251 17851mips_frob_file_after_relocs (void)
252b5132
RH
17852{
17853 asymbol **syms;
17854 unsigned int count, i;
17855
252b5132
RH
17856 syms = bfd_get_outsymbols (stdoutput);
17857 count = bfd_get_symcount (stdoutput);
17858 for (i = 0; i < count; i++, syms++)
df58fc94
RS
17859 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17860 && ((*syms)->value & 1) != 0)
17861 {
17862 (*syms)->value &= ~1;
17863 /* If the symbol has an odd size, it was probably computed
17864 incorrectly, so adjust that as well. */
17865 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17866 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17867 }
252b5132
RH
17868}
17869
a1facbec
MR
17870/* This function is called whenever a label is defined, including fake
17871 labels instantiated off the dot special symbol. It is used when
17872 handling branch delays; if a branch has a label, we assume we cannot
17873 move it. This also bumps the value of the symbol by 1 in compressed
17874 code. */
252b5132 17875
e1b47bd5 17876static void
a1facbec 17877mips_record_label (symbolS *sym)
252b5132 17878{
a8dbcb85 17879 segment_info_type *si = seg_info (now_seg);
252b5132
RH
17880 struct insn_label_list *l;
17881
17882 if (free_insn_labels == NULL)
17883 l = (struct insn_label_list *) xmalloc (sizeof *l);
17884 else
17885 {
17886 l = free_insn_labels;
17887 free_insn_labels = l->next;
17888 }
17889
17890 l->label = sym;
a8dbcb85
TS
17891 l->next = si->label_list;
17892 si->label_list = l;
a1facbec 17893}
07a53e5c 17894
a1facbec
MR
17895/* This function is called as tc_frob_label() whenever a label is defined
17896 and adds a DWARF-2 record we only want for true labels. */
17897
17898void
17899mips_define_label (symbolS *sym)
17900{
17901 mips_record_label (sym);
07a53e5c 17902 dwarf2_emit_label (sym);
252b5132 17903}
e1b47bd5
RS
17904
17905/* This function is called by tc_new_dot_label whenever a new dot symbol
17906 is defined. */
17907
17908void
17909mips_add_dot_label (symbolS *sym)
17910{
17911 mips_record_label (sym);
17912 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17913 mips_compressed_mark_label (sym);
17914}
252b5132 17915\f
351cdf24
MF
17916/* Converting ASE flags from internal to .MIPS.abiflags values. */
17917static unsigned int
17918mips_convert_ase_flags (int ase)
17919{
17920 unsigned int ext_ases = 0;
17921
17922 if (ase & ASE_DSP)
17923 ext_ases |= AFL_ASE_DSP;
17924 if (ase & ASE_DSPR2)
17925 ext_ases |= AFL_ASE_DSPR2;
17926 if (ase & ASE_EVA)
17927 ext_ases |= AFL_ASE_EVA;
17928 if (ase & ASE_MCU)
17929 ext_ases |= AFL_ASE_MCU;
17930 if (ase & ASE_MDMX)
17931 ext_ases |= AFL_ASE_MDMX;
17932 if (ase & ASE_MIPS3D)
17933 ext_ases |= AFL_ASE_MIPS3D;
17934 if (ase & ASE_MT)
17935 ext_ases |= AFL_ASE_MT;
17936 if (ase & ASE_SMARTMIPS)
17937 ext_ases |= AFL_ASE_SMARTMIPS;
17938 if (ase & ASE_VIRT)
17939 ext_ases |= AFL_ASE_VIRT;
17940 if (ase & ASE_MSA)
17941 ext_ases |= AFL_ASE_MSA;
17942 if (ase & ASE_XPA)
17943 ext_ases |= AFL_ASE_XPA;
17944
17945 return ext_ases;
17946}
252b5132
RH
17947/* Some special processing for a MIPS ELF file. */
17948
17949void
17a2f251 17950mips_elf_final_processing (void)
252b5132 17951{
351cdf24
MF
17952 int fpabi;
17953 Elf_Internal_ABIFlags_v0 flags;
17954
17955 flags.version = 0;
17956 flags.isa_rev = 0;
17957 switch (file_mips_opts.isa)
17958 {
17959 case INSN_ISA1:
17960 flags.isa_level = 1;
17961 break;
17962 case INSN_ISA2:
17963 flags.isa_level = 2;
17964 break;
17965 case INSN_ISA3:
17966 flags.isa_level = 3;
17967 break;
17968 case INSN_ISA4:
17969 flags.isa_level = 4;
17970 break;
17971 case INSN_ISA5:
17972 flags.isa_level = 5;
17973 break;
17974 case INSN_ISA32:
17975 flags.isa_level = 32;
17976 flags.isa_rev = 1;
17977 break;
17978 case INSN_ISA32R2:
17979 flags.isa_level = 32;
17980 flags.isa_rev = 2;
17981 break;
17982 case INSN_ISA32R3:
17983 flags.isa_level = 32;
17984 flags.isa_rev = 3;
17985 break;
17986 case INSN_ISA32R5:
17987 flags.isa_level = 32;
17988 flags.isa_rev = 5;
17989 break;
09c14161
MF
17990 case INSN_ISA32R6:
17991 flags.isa_level = 32;
17992 flags.isa_rev = 6;
17993 break;
351cdf24
MF
17994 case INSN_ISA64:
17995 flags.isa_level = 64;
17996 flags.isa_rev = 1;
17997 break;
17998 case INSN_ISA64R2:
17999 flags.isa_level = 64;
18000 flags.isa_rev = 2;
18001 break;
18002 case INSN_ISA64R3:
18003 flags.isa_level = 64;
18004 flags.isa_rev = 3;
18005 break;
18006 case INSN_ISA64R5:
18007 flags.isa_level = 64;
18008 flags.isa_rev = 5;
18009 break;
09c14161
MF
18010 case INSN_ISA64R6:
18011 flags.isa_level = 64;
18012 flags.isa_rev = 6;
18013 break;
351cdf24
MF
18014 }
18015
18016 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18017 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18018 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18019 : (file_mips_opts.fp == 64) ? AFL_REG_64
18020 : AFL_REG_32;
18021 flags.cpr2_size = AFL_REG_NONE;
18022 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18023 Tag_GNU_MIPS_ABI_FP);
18024 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18025 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18026 if (file_ase_mips16)
18027 flags.ases |= AFL_ASE_MIPS16;
18028 if (file_ase_micromips)
18029 flags.ases |= AFL_ASE_MICROMIPS;
18030 flags.flags1 = 0;
18031 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18032 || file_mips_opts.fp == 64)
18033 && file_mips_opts.oddspreg)
18034 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18035 flags.flags2 = 0;
18036
18037 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18038 ((Elf_External_ABIFlags_v0 *)
18039 mips_flags_frag));
18040
252b5132 18041 /* Write out the register information. */
316f5878 18042 if (mips_abi != N64_ABI)
252b5132
RH
18043 {
18044 Elf32_RegInfo s;
18045
18046 s.ri_gprmask = mips_gprmask;
18047 s.ri_cprmask[0] = mips_cprmask[0];
18048 s.ri_cprmask[1] = mips_cprmask[1];
18049 s.ri_cprmask[2] = mips_cprmask[2];
18050 s.ri_cprmask[3] = mips_cprmask[3];
18051 /* The gp_value field is set by the MIPS ELF backend. */
18052
18053 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18054 ((Elf32_External_RegInfo *)
18055 mips_regmask_frag));
18056 }
18057 else
18058 {
18059 Elf64_Internal_RegInfo s;
18060
18061 s.ri_gprmask = mips_gprmask;
18062 s.ri_pad = 0;
18063 s.ri_cprmask[0] = mips_cprmask[0];
18064 s.ri_cprmask[1] = mips_cprmask[1];
18065 s.ri_cprmask[2] = mips_cprmask[2];
18066 s.ri_cprmask[3] = mips_cprmask[3];
18067 /* The gp_value field is set by the MIPS ELF backend. */
18068
18069 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18070 ((Elf64_External_RegInfo *)
18071 mips_regmask_frag));
18072 }
18073
18074 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18075 sort of BFD interface for this. */
18076 if (mips_any_noreorder)
18077 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18078 if (mips_pic != NO_PIC)
143d77c5 18079 {
8b828383 18080 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18081 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18082 }
18083 if (mips_abicalls)
18084 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18085
b015e599
AP
18086 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18087 defined at present; this might need to change in future. */
a4672219
TS
18088 if (file_ase_mips16)
18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18090 if (file_ase_micromips)
18091 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18092 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18093 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18094
bdaaa2e1 18095 /* Set the MIPS ELF ABI flags. */
316f5878 18096 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18097 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18098 else if (mips_abi == O64_ABI)
252b5132 18099 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18100 else if (mips_abi == EABI_ABI)
252b5132 18101 {
bad1aba3 18102 if (file_mips_opts.gp == 64)
252b5132
RH
18103 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18104 else
18105 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18106 }
316f5878 18107 else if (mips_abi == N32_ABI)
be00bddd
TS
18108 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18109
c9914766 18110 /* Nothing to do for N64_ABI. */
252b5132
RH
18111
18112 if (mips_32bitmode)
18113 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18114
7361da2c 18115 if (mips_nan2008 == 1)
ba92f887
MR
18116 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18117
ad3fea08 18118 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18119 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18120 Tag_GNU_MIPS_ABI_FP);
18121 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18122 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18123}
252b5132 18124\f
beae10d5 18125typedef struct proc {
9b2f1d35
EC
18126 symbolS *func_sym;
18127 symbolS *func_end_sym;
beae10d5
KH
18128 unsigned long reg_mask;
18129 unsigned long reg_offset;
18130 unsigned long fpreg_mask;
18131 unsigned long fpreg_offset;
18132 unsigned long frame_offset;
18133 unsigned long frame_reg;
18134 unsigned long pc_reg;
18135} procS;
252b5132
RH
18136
18137static procS cur_proc;
18138static procS *cur_proc_ptr;
18139static int numprocs;
18140
df58fc94
RS
18141/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18142 as "2", and a normal nop as "0". */
18143
18144#define NOP_OPCODE_MIPS 0
18145#define NOP_OPCODE_MIPS16 1
18146#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18147
18148char
18149mips_nop_opcode (void)
18150{
df58fc94
RS
18151 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18152 return NOP_OPCODE_MICROMIPS;
18153 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18154 return NOP_OPCODE_MIPS16;
18155 else
18156 return NOP_OPCODE_MIPS;
742a56fe
RS
18157}
18158
df58fc94
RS
18159/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18160 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18161
0a9ef439 18162void
17a2f251 18163mips_handle_align (fragS *fragp)
a19d8eb0 18164{
df58fc94 18165 char nop_opcode;
742a56fe 18166 char *p;
c67a084a
NC
18167 int bytes, size, excess;
18168 valueT opcode;
742a56fe 18169
0a9ef439
RH
18170 if (fragp->fr_type != rs_align_code)
18171 return;
18172
742a56fe 18173 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18174 nop_opcode = *p;
18175 switch (nop_opcode)
a19d8eb0 18176 {
df58fc94
RS
18177 case NOP_OPCODE_MICROMIPS:
18178 opcode = micromips_nop32_insn.insn_opcode;
18179 size = 4;
18180 break;
18181 case NOP_OPCODE_MIPS16:
c67a084a
NC
18182 opcode = mips16_nop_insn.insn_opcode;
18183 size = 2;
df58fc94
RS
18184 break;
18185 case NOP_OPCODE_MIPS:
18186 default:
c67a084a
NC
18187 opcode = nop_insn.insn_opcode;
18188 size = 4;
df58fc94 18189 break;
c67a084a 18190 }
a19d8eb0 18191
c67a084a
NC
18192 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18193 excess = bytes % size;
df58fc94
RS
18194
18195 /* Handle the leading part if we're not inserting a whole number of
18196 instructions, and make it the end of the fixed part of the frag.
18197 Try to fit in a short microMIPS NOP if applicable and possible,
18198 and use zeroes otherwise. */
18199 gas_assert (excess < 4);
18200 fragp->fr_fix += excess;
18201 switch (excess)
c67a084a 18202 {
df58fc94
RS
18203 case 3:
18204 *p++ = '\0';
18205 /* Fall through. */
18206 case 2:
833794fc 18207 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18208 {
4d68580a 18209 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18210 break;
18211 }
18212 *p++ = '\0';
18213 /* Fall through. */
18214 case 1:
18215 *p++ = '\0';
18216 /* Fall through. */
18217 case 0:
18218 break;
a19d8eb0 18219 }
c67a084a
NC
18220
18221 md_number_to_chars (p, opcode, size);
18222 fragp->fr_var = size;
a19d8eb0
CP
18223}
18224
252b5132 18225static long
17a2f251 18226get_number (void)
252b5132
RH
18227{
18228 int negative = 0;
18229 long val = 0;
18230
18231 if (*input_line_pointer == '-')
18232 {
18233 ++input_line_pointer;
18234 negative = 1;
18235 }
3882b010 18236 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18237 as_bad (_("expected simple number"));
252b5132
RH
18238 if (input_line_pointer[0] == '0')
18239 {
18240 if (input_line_pointer[1] == 'x')
18241 {
18242 input_line_pointer += 2;
3882b010 18243 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18244 {
18245 val <<= 4;
18246 val |= hex_value (*input_line_pointer++);
18247 }
18248 return negative ? -val : val;
18249 }
18250 else
18251 {
18252 ++input_line_pointer;
3882b010 18253 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18254 {
18255 val <<= 3;
18256 val |= *input_line_pointer++ - '0';
18257 }
18258 return negative ? -val : val;
18259 }
18260 }
3882b010 18261 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18262 {
18263 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18264 *input_line_pointer, *input_line_pointer);
956cd1d6 18265 as_warn (_("invalid number"));
252b5132
RH
18266 return -1;
18267 }
3882b010 18268 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18269 {
18270 val *= 10;
18271 val += *input_line_pointer++ - '0';
18272 }
18273 return negative ? -val : val;
18274}
18275
18276/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18277 is an initial number which is the ECOFF file index. In the non-ECOFF
18278 case .file implies DWARF-2. */
18279
18280static void
17a2f251 18281s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18282{
ecb4347a
DJ
18283 static int first_file_directive = 0;
18284
c5dd6aab
DJ
18285 if (ECOFF_DEBUGGING)
18286 {
18287 get_number ();
18288 s_app_file (0);
18289 }
18290 else
ecb4347a
DJ
18291 {
18292 char *filename;
18293
18294 filename = dwarf2_directive_file (0);
18295
18296 /* Versions of GCC up to 3.1 start files with a ".file"
18297 directive even for stabs output. Make sure that this
18298 ".file" is handled. Note that you need a version of GCC
18299 after 3.1 in order to support DWARF-2 on MIPS. */
18300 if (filename != NULL && ! first_file_directive)
18301 {
18302 (void) new_logical_line (filename, -1);
c04f5787 18303 s_app_file_string (filename, 0);
ecb4347a
DJ
18304 }
18305 first_file_directive = 1;
18306 }
c5dd6aab
DJ
18307}
18308
18309/* The .loc directive, implying DWARF-2. */
252b5132
RH
18310
18311static void
17a2f251 18312s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18313{
c5dd6aab
DJ
18314 if (!ECOFF_DEBUGGING)
18315 dwarf2_directive_loc (0);
252b5132
RH
18316}
18317
252b5132
RH
18318/* The .end directive. */
18319
18320static void
17a2f251 18321s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
18322{
18323 symbolS *p;
252b5132 18324
7a621144
DJ
18325 /* Following functions need their own .frame and .cprestore directives. */
18326 mips_frame_reg_valid = 0;
18327 mips_cprestore_valid = 0;
18328
252b5132
RH
18329 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18330 {
18331 p = get_symbol ();
18332 demand_empty_rest_of_line ();
18333 }
18334 else
18335 p = NULL;
18336
14949570 18337 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
18338 as_warn (_(".end not in text section"));
18339
18340 if (!cur_proc_ptr)
18341 {
1661c76c 18342 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
18343 demand_empty_rest_of_line ();
18344 return;
18345 }
18346
18347 if (p != NULL)
18348 {
9c2799c2 18349 gas_assert (S_GET_NAME (p));
9b2f1d35 18350 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 18351 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
18352
18353 if (debug_type == DEBUG_STABS)
18354 stabs_generate_asm_endfunc (S_GET_NAME (p),
18355 S_GET_NAME (p));
252b5132
RH
18356 }
18357 else
18358 as_warn (_(".end directive missing or unknown symbol"));
18359
9b2f1d35
EC
18360 /* Create an expression to calculate the size of the function. */
18361 if (p && cur_proc_ptr)
18362 {
18363 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18364 expressionS *exp = xmalloc (sizeof (expressionS));
18365
18366 obj->size = exp;
18367 exp->X_op = O_subtract;
18368 exp->X_add_symbol = symbol_temp_new_now ();
18369 exp->X_op_symbol = p;
18370 exp->X_add_number = 0;
18371
18372 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18373 }
18374
ecb4347a 18375 /* Generate a .pdr section. */
f3ded42a 18376 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
18377 {
18378 segT saved_seg = now_seg;
18379 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
18380 expressionS exp;
18381 char *fragp;
252b5132 18382
252b5132 18383#ifdef md_flush_pending_output
ecb4347a 18384 md_flush_pending_output ();
252b5132
RH
18385#endif
18386
9c2799c2 18387 gas_assert (pdr_seg);
ecb4347a 18388 subseg_set (pdr_seg, 0);
252b5132 18389
ecb4347a
DJ
18390 /* Write the symbol. */
18391 exp.X_op = O_symbol;
18392 exp.X_add_symbol = p;
18393 exp.X_add_number = 0;
18394 emit_expr (&exp, 4);
252b5132 18395
ecb4347a 18396 fragp = frag_more (7 * 4);
252b5132 18397
17a2f251
TS
18398 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18399 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18400 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18401 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18402 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18403 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18404 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 18405
ecb4347a
DJ
18406 subseg_set (saved_seg, saved_subseg);
18407 }
252b5132
RH
18408
18409 cur_proc_ptr = NULL;
18410}
18411
18412/* The .aent and .ent directives. */
18413
18414static void
17a2f251 18415s_mips_ent (int aent)
252b5132 18416{
252b5132 18417 symbolS *symbolP;
252b5132
RH
18418
18419 symbolP = get_symbol ();
18420 if (*input_line_pointer == ',')
f9419b05 18421 ++input_line_pointer;
252b5132 18422 SKIP_WHITESPACE ();
3882b010 18423 if (ISDIGIT (*input_line_pointer)
d9a62219 18424 || *input_line_pointer == '-')
874e8986 18425 get_number ();
252b5132 18426
14949570 18427 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 18428 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
18429
18430 if (!aent && cur_proc_ptr)
9a41af64 18431 as_warn (_("missing .end"));
252b5132
RH
18432
18433 if (!aent)
18434 {
7a621144
DJ
18435 /* This function needs its own .frame and .cprestore directives. */
18436 mips_frame_reg_valid = 0;
18437 mips_cprestore_valid = 0;
18438
252b5132
RH
18439 cur_proc_ptr = &cur_proc;
18440 memset (cur_proc_ptr, '\0', sizeof (procS));
18441
9b2f1d35 18442 cur_proc_ptr->func_sym = symbolP;
252b5132 18443
f9419b05 18444 ++numprocs;
ecb4347a
DJ
18445
18446 if (debug_type == DEBUG_STABS)
18447 stabs_generate_asm_func (S_GET_NAME (symbolP),
18448 S_GET_NAME (symbolP));
252b5132
RH
18449 }
18450
7c0fc524
MR
18451 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18452
252b5132
RH
18453 demand_empty_rest_of_line ();
18454}
18455
18456/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 18457 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 18458 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 18459 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
18460 symbol table (in the mdebug section). */
18461
18462static void
17a2f251 18463s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 18464{
f3ded42a
RS
18465 if (ECOFF_DEBUGGING)
18466 s_ignore (ignore);
18467 else
ecb4347a
DJ
18468 {
18469 long val;
252b5132 18470
ecb4347a
DJ
18471 if (cur_proc_ptr == (procS *) NULL)
18472 {
18473 as_warn (_(".frame outside of .ent"));
18474 demand_empty_rest_of_line ();
18475 return;
18476 }
252b5132 18477
ecb4347a
DJ
18478 cur_proc_ptr->frame_reg = tc_get_register (1);
18479
18480 SKIP_WHITESPACE ();
18481 if (*input_line_pointer++ != ','
18482 || get_absolute_expression_and_terminator (&val) != ',')
18483 {
1661c76c 18484 as_warn (_("bad .frame directive"));
ecb4347a
DJ
18485 --input_line_pointer;
18486 demand_empty_rest_of_line ();
18487 return;
18488 }
252b5132 18489
ecb4347a
DJ
18490 cur_proc_ptr->frame_offset = val;
18491 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 18492
252b5132 18493 demand_empty_rest_of_line ();
252b5132 18494 }
252b5132
RH
18495}
18496
bdaaa2e1
KH
18497/* The .fmask and .mask directives. If the mdebug section is present
18498 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 18499 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 18500 information correctly. We can't use the ecoff routines because they
252b5132
RH
18501 make reference to the ecoff symbol table (in the mdebug section). */
18502
18503static void
17a2f251 18504s_mips_mask (int reg_type)
252b5132 18505{
f3ded42a
RS
18506 if (ECOFF_DEBUGGING)
18507 s_ignore (reg_type);
18508 else
252b5132 18509 {
ecb4347a 18510 long mask, off;
252b5132 18511
ecb4347a
DJ
18512 if (cur_proc_ptr == (procS *) NULL)
18513 {
18514 as_warn (_(".mask/.fmask outside of .ent"));
18515 demand_empty_rest_of_line ();
18516 return;
18517 }
252b5132 18518
ecb4347a
DJ
18519 if (get_absolute_expression_and_terminator (&mask) != ',')
18520 {
1661c76c 18521 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
18522 --input_line_pointer;
18523 demand_empty_rest_of_line ();
18524 return;
18525 }
252b5132 18526
ecb4347a
DJ
18527 off = get_absolute_expression ();
18528
18529 if (reg_type == 'F')
18530 {
18531 cur_proc_ptr->fpreg_mask = mask;
18532 cur_proc_ptr->fpreg_offset = off;
18533 }
18534 else
18535 {
18536 cur_proc_ptr->reg_mask = mask;
18537 cur_proc_ptr->reg_offset = off;
18538 }
18539
18540 demand_empty_rest_of_line ();
252b5132 18541 }
252b5132
RH
18542}
18543
316f5878
RS
18544/* A table describing all the processors gas knows about. Names are
18545 matched in the order listed.
e7af610e 18546
316f5878
RS
18547 To ease comparison, please keep this table in the same order as
18548 gcc's mips_cpu_info_table[]. */
e972090a
NC
18549static const struct mips_cpu_info mips_cpu_info_table[] =
18550{
316f5878 18551 /* Entries for generic ISAs */
d16afab6
RS
18552 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18553 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18554 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18555 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18556 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18557 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18558 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
18559 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18560 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 18561 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
18562 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18563 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
18564 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18565 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 18566 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
18567
18568 /* MIPS I */
d16afab6
RS
18569 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18570 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18571 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
18572
18573 /* MIPS II */
d16afab6 18574 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
18575
18576 /* MIPS III */
d16afab6
RS
18577 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18578 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18579 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18580 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18581 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18582 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18583 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18584 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18585 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18586 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18587 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18588 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18589 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 18590 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
18591 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18592 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
18593
18594 /* MIPS IV */
d16afab6
RS
18595 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18596 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18597 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18598 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18599 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18600 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18601 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18602 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18603 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18604 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18605 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18606 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18607 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18608 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18609 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
18610
18611 /* MIPS 32 */
d16afab6
RS
18612 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18613 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18614 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18615 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
18616
18617 /* MIPS 32 Release 2 */
d16afab6
RS
18618 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18619 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18620 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18621 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18622 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18623 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18624 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18625 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18626 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18627 ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18629 ISA_MIPS32R2, CPU_MIPS32R2 },
18630 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18632 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18633 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18634 /* Deprecated forms of the above. */
d16afab6
RS
18635 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18636 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18637 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
18638 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18639 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18641 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18642 /* Deprecated forms of the above. */
d16afab6
RS
18643 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18644 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18645 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
18646 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18647 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18648 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18649 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18650 /* Deprecated forms of the above. */
d16afab6
RS
18651 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18652 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 18653 /* 34Kn is a 34kc without DSP. */
d16afab6 18654 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18655 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
18656 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18659 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18660 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18661 /* Deprecated forms of the above. */
d16afab6
RS
18662 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 18664 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
18665 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
18669 /* interaptiv is the new name for 1004kf */
18670 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
18671 /* M5100 family */
18672 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18673 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 18674 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
ae52f483 18675 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 18676
316f5878 18677 /* MIPS 64 */
d16afab6
RS
18678 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18679 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18680 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18681 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 18682
c7a23324 18683 /* Broadcom SB-1 CPU core */
d16afab6 18684 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 18685 /* Broadcom SB-1A CPU core */
d16afab6 18686 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 18687
4ba154f5 18688 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 18689
ed163775
MR
18690 /* MIPS 64 Release 2 */
18691
967344c6 18692 /* Cavium Networks Octeon CPU core */
d16afab6
RS
18693 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18694 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18695 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 18696 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 18697
52b6b6b9 18698 /* RMI Xlr */
d16afab6 18699 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 18700
55a36193
MK
18701 /* Broadcom XLP.
18702 XLP is mostly like XLR, with the prominent exception that it is
18703 MIPS64R2 rather than MIPS64. */
d16afab6 18704 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 18705
7ef0d297
AB
18706 /* i6400. */
18707 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18708
316f5878 18709 /* End marker */
d16afab6 18710 { NULL, 0, 0, 0, 0 }
316f5878 18711};
e7af610e 18712
84ea6cf2 18713
316f5878
RS
18714/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18715 with a final "000" replaced by "k". Ignore case.
e7af610e 18716
316f5878 18717 Note: this function is shared between GCC and GAS. */
c6c98b38 18718
b34976b6 18719static bfd_boolean
17a2f251 18720mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18721{
18722 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18723 given++, canonical++;
18724
18725 return ((*given == 0 && *canonical == 0)
18726 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18727}
18728
18729
18730/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18731 CPU name. We've traditionally allowed a lot of variation here.
18732
18733 Note: this function is shared between GCC and GAS. */
18734
b34976b6 18735static bfd_boolean
17a2f251 18736mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18737{
18738 /* First see if the name matches exactly, or with a final "000"
18739 turned into "k". */
18740 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 18741 return TRUE;
316f5878
RS
18742
18743 /* If not, try comparing based on numerical designation alone.
18744 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18745 if (TOLOWER (*given) == 'r')
18746 given++;
18747 if (!ISDIGIT (*given))
b34976b6 18748 return FALSE;
316f5878
RS
18749
18750 /* Skip over some well-known prefixes in the canonical name,
18751 hoping to find a number there too. */
18752 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18753 canonical += 2;
18754 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18755 canonical += 2;
18756 else if (TOLOWER (canonical[0]) == 'r')
18757 canonical += 1;
18758
18759 return mips_strict_matching_cpu_name_p (canonical, given);
18760}
18761
18762
18763/* Parse an option that takes the name of a processor as its argument.
18764 OPTION is the name of the option and CPU_STRING is the argument.
18765 Return the corresponding processor enumeration if the CPU_STRING is
18766 recognized, otherwise report an error and return null.
18767
18768 A similar function exists in GCC. */
e7af610e
NC
18769
18770static const struct mips_cpu_info *
17a2f251 18771mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 18772{
316f5878 18773 const struct mips_cpu_info *p;
e7af610e 18774
316f5878
RS
18775 /* 'from-abi' selects the most compatible architecture for the given
18776 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18777 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18778 version. Look first at the -mgp options, if given, otherwise base
18779 the choice on MIPS_DEFAULT_64BIT.
e7af610e 18780
316f5878
RS
18781 Treat NO_ABI like the EABIs. One reason to do this is that the
18782 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18783 architecture. This code picks MIPS I for 'mips' and MIPS III for
18784 'mips64', just as we did in the days before 'from-abi'. */
18785 if (strcasecmp (cpu_string, "from-abi") == 0)
18786 {
18787 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18788 return mips_cpu_info_from_isa (ISA_MIPS1);
18789
18790 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18791 return mips_cpu_info_from_isa (ISA_MIPS3);
18792
bad1aba3 18793 if (file_mips_opts.gp >= 0)
18794 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 18795 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
18796
18797 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18798 ? ISA_MIPS3
18799 : ISA_MIPS1);
18800 }
18801
18802 /* 'default' has traditionally been a no-op. Probably not very useful. */
18803 if (strcasecmp (cpu_string, "default") == 0)
18804 return 0;
18805
18806 for (p = mips_cpu_info_table; p->name != 0; p++)
18807 if (mips_matching_cpu_name_p (p->name, cpu_string))
18808 return p;
18809
1661c76c 18810 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 18811 return 0;
e7af610e
NC
18812}
18813
316f5878
RS
18814/* Return the canonical processor information for ISA (a member of the
18815 ISA_MIPS* enumeration). */
18816
e7af610e 18817static const struct mips_cpu_info *
17a2f251 18818mips_cpu_info_from_isa (int isa)
e7af610e
NC
18819{
18820 int i;
18821
18822 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 18823 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 18824 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
18825 return (&mips_cpu_info_table[i]);
18826
e972090a 18827 return NULL;
e7af610e 18828}
fef14a42
TS
18829
18830static const struct mips_cpu_info *
17a2f251 18831mips_cpu_info_from_arch (int arch)
fef14a42
TS
18832{
18833 int i;
18834
18835 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18836 if (arch == mips_cpu_info_table[i].cpu)
18837 return (&mips_cpu_info_table[i]);
18838
18839 return NULL;
18840}
316f5878
RS
18841\f
18842static void
17a2f251 18843show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
18844{
18845 if (*first_p)
18846 {
18847 fprintf (stream, "%24s", "");
18848 *col_p = 24;
18849 }
18850 else
18851 {
18852 fprintf (stream, ", ");
18853 *col_p += 2;
18854 }
e7af610e 18855
316f5878
RS
18856 if (*col_p + strlen (string) > 72)
18857 {
18858 fprintf (stream, "\n%24s", "");
18859 *col_p = 24;
18860 }
18861
18862 fprintf (stream, "%s", string);
18863 *col_p += strlen (string);
18864
18865 *first_p = 0;
18866}
18867
18868void
17a2f251 18869md_show_usage (FILE *stream)
e7af610e 18870{
316f5878
RS
18871 int column, first;
18872 size_t i;
18873
18874 fprintf (stream, _("\
18875MIPS options:\n\
316f5878
RS
18876-EB generate big endian output\n\
18877-EL generate little endian output\n\
18878-g, -g2 do not remove unneeded NOPs or swap branches\n\
18879-G NUM allow referencing objects up to NUM bytes\n\
18880 implicitly with the gp register [default 8]\n"));
18881 fprintf (stream, _("\
18882-mips1 generate MIPS ISA I instructions\n\
18883-mips2 generate MIPS ISA II instructions\n\
18884-mips3 generate MIPS ISA III instructions\n\
18885-mips4 generate MIPS ISA IV instructions\n\
18886-mips5 generate MIPS ISA V instructions\n\
18887-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 18888-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
18889-mips32r3 generate MIPS32 release 3 ISA instructions\n\
18890-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 18891-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 18892-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 18893-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
18894-mips64r3 generate MIPS64 release 3 ISA instructions\n\
18895-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 18896-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
18897-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18898
18899 first = 1;
e7af610e
NC
18900
18901 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
18902 show (stream, mips_cpu_info_table[i].name, &column, &first);
18903 show (stream, "from-abi", &column, &first);
18904 fputc ('\n', stream);
e7af610e 18905
316f5878
RS
18906 fprintf (stream, _("\
18907-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18908-no-mCPU don't generate code specific to CPU.\n\
18909 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18910
18911 first = 1;
18912
18913 show (stream, "3900", &column, &first);
18914 show (stream, "4010", &column, &first);
18915 show (stream, "4100", &column, &first);
18916 show (stream, "4650", &column, &first);
18917 fputc ('\n', stream);
18918
18919 fprintf (stream, _("\
18920-mips16 generate mips16 instructions\n\
18921-no-mips16 do not generate mips16 instructions\n"));
18922 fprintf (stream, _("\
df58fc94
RS
18923-mmicromips generate microMIPS instructions\n\
18924-mno-micromips do not generate microMIPS instructions\n"));
18925 fprintf (stream, _("\
e16bfa71 18926-msmartmips generate smartmips instructions\n\
3739860c 18927-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 18928 fprintf (stream, _("\
74cd071d
CF
18929-mdsp generate DSP instructions\n\
18930-mno-dsp do not generate DSP instructions\n"));
18931 fprintf (stream, _("\
8b082fb1
TS
18932-mdspr2 generate DSP R2 instructions\n\
18933-mno-dspr2 do not generate DSP R2 instructions\n"));
18934 fprintf (stream, _("\
ef2e4d86
CF
18935-mmt generate MT instructions\n\
18936-mno-mt do not generate MT instructions\n"));
18937 fprintf (stream, _("\
dec0624d
MR
18938-mmcu generate MCU instructions\n\
18939-mno-mcu do not generate MCU instructions\n"));
18940 fprintf (stream, _("\
56d438b1
CF
18941-mmsa generate MSA instructions\n\
18942-mno-msa do not generate MSA instructions\n"));
18943 fprintf (stream, _("\
7d64c587
AB
18944-mxpa generate eXtended Physical Address (XPA) instructions\n\
18945-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18946 fprintf (stream, _("\
b015e599
AP
18947-mvirt generate Virtualization instructions\n\
18948-mno-virt do not generate Virtualization instructions\n"));
18949 fprintf (stream, _("\
833794fc
MR
18950-minsn32 only generate 32-bit microMIPS instructions\n\
18951-mno-insn32 generate all microMIPS instructions\n"));
18952 fprintf (stream, _("\
c67a084a
NC
18953-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18954-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 18955-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 18956-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 18957-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 18958-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
18959-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18960-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 18961-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
18962-O0 remove unneeded NOPs, do not swap branches\n\
18963-O remove unneeded NOPs and swap branches\n\
316f5878
RS
18964--trap, --no-break trap exception on div by 0 and mult overflow\n\
18965--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
18966 fprintf (stream, _("\
18967-mhard-float allow floating-point instructions\n\
18968-msoft-float do not allow floating-point instructions\n\
18969-msingle-float only allow 32-bit floating-point operations\n\
18970-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 18971--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
18972--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18973-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18974
18975 first = 1;
18976
18977 show (stream, "legacy", &column, &first);
18978 show (stream, "2008", &column, &first);
18979
18980 fputc ('\n', stream);
18981
316f5878
RS
18982 fprintf (stream, _("\
18983-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 18984-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 18985-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 18986-non_shared do not generate code that can operate with DSOs\n\
316f5878 18987-xgot assume a 32 bit GOT\n\
dcd410fe 18988-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 18989-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 18990 position dependent (non shared) code\n\
316f5878
RS
18991-mabi=ABI create ABI conformant object file for:\n"));
18992
18993 first = 1;
18994
18995 show (stream, "32", &column, &first);
18996 show (stream, "o64", &column, &first);
18997 show (stream, "n32", &column, &first);
18998 show (stream, "64", &column, &first);
18999 show (stream, "eabi", &column, &first);
19000
19001 fputc ('\n', stream);
19002
19003 fprintf (stream, _("\
19004-32 create o32 ABI object file (default)\n\
19005-n32 create n32 ABI object file\n\
19006-64 create 64 ABI object file\n"));
e7af610e 19007}
14e777e0 19008
1575952e 19009#ifdef TE_IRIX
14e777e0 19010enum dwarf2_format
413a266c 19011mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19012{
369943fe 19013 if (HAVE_64BIT_SYMBOLS)
1575952e 19014 return dwarf2_format_64bit_irix;
14e777e0
KB
19015 else
19016 return dwarf2_format_32bit;
19017}
1575952e 19018#endif
73369e65
EC
19019
19020int
19021mips_dwarf2_addr_size (void)
19022{
6b6b3450 19023 if (HAVE_64BIT_OBJECTS)
73369e65 19024 return 8;
73369e65
EC
19025 else
19026 return 4;
19027}
5862107c
EC
19028
19029/* Standard calling conventions leave the CFA at SP on entry. */
19030void
19031mips_cfi_frame_initial_instructions (void)
19032{
19033 cfi_add_CFA_def_cfa_register (SP);
19034}
19035
707bfff6
TS
19036int
19037tc_mips_regname_to_dw2regnum (char *regname)
19038{
19039 unsigned int regnum = -1;
19040 unsigned int reg;
19041
19042 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19043 regnum = reg;
19044
19045 return regnum;
19046}
263b2574 19047
19048/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19049 Given a symbolic attribute NAME, return the proper integer value.
19050 Returns -1 if the attribute is not known. */
19051
19052int
19053mips_convert_symbolic_attribute (const char *name)
19054{
19055 static const struct
19056 {
19057 const char * name;
19058 const int tag;
19059 }
19060 attribute_table[] =
19061 {
19062#define T(tag) {#tag, tag}
19063 T (Tag_GNU_MIPS_ABI_FP),
19064 T (Tag_GNU_MIPS_ABI_MSA),
19065#undef T
19066 };
19067 unsigned int i;
19068
19069 if (name == NULL)
19070 return -1;
19071
19072 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19073 if (streq (name, attribute_table[i].name))
19074 return attribute_table[i].tag;
19075
19076 return -1;
19077}
fd5c94ab
RS
19078
19079void
19080md_mips_end (void)
19081{
351cdf24
MF
19082 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19083
fd5c94ab
RS
19084 mips_emit_delays ();
19085 if (cur_proc_ptr)
19086 as_warn (_("missing .end at end of assembly"));
919731af 19087
19088 /* Just in case no code was emitted, do the consistency check. */
19089 file_mips_check_options ();
351cdf24
MF
19090
19091 /* Set a floating-point ABI if the user did not. */
19092 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19093 {
19094 /* Perform consistency checks on the floating-point ABI. */
19095 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19096 Tag_GNU_MIPS_ABI_FP);
19097 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19098 check_fpabi (fpabi);
19099 }
19100 else
19101 {
19102 /* Soft-float gets precedence over single-float, the two options should
19103 not be used together so this should not matter. */
19104 if (file_mips_opts.soft_float == 1)
19105 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19106 /* Single-float gets precedence over all double_float cases. */
19107 else if (file_mips_opts.single_float == 1)
19108 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19109 else
19110 {
19111 switch (file_mips_opts.fp)
19112 {
19113 case 32:
19114 if (file_mips_opts.gp == 32)
19115 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19116 break;
19117 case 0:
19118 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19119 break;
19120 case 64:
19121 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19122 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19123 else if (file_mips_opts.gp == 32)
19124 fpabi = Val_GNU_MIPS_ABI_FP_64;
19125 else
19126 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19127 break;
19128 }
19129 }
19130
19131 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19132 Tag_GNU_MIPS_ABI_FP, fpabi);
19133 }
fd5c94ab 19134}
2f0c68f2
CM
19135
19136/* Returns the relocation type required for a particular CFI encoding. */
19137
19138bfd_reloc_code_real_type
19139mips_cfi_reloc_for_encoding (int encoding)
19140{
19141 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19142 return BFD_RELOC_32_PCREL;
19143 else return BFD_RELOC_NONE;
19144}
This page took 3.406966 seconds and 4 git commands to generate.