MIPS: Only build microMIPS specific simulator functions if microMIPS support is required.
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6
TS
351#define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
40209cad
MR
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1171#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1174#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1185
43c0598f
RS
1186/* Sign-extend 16-bit value X. */
1187#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
885add95
CD
1189/* Is the given value a sign-extended 32-bit value? */
1190#define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194/* Is the given value a sign-extended 16-bit value? */
1195#define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
df58fc94
RS
1199/* Is the given value a sign-extended 12-bit value? */
1200#define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
7f3c4072
CM
1203/* Is the given value a sign-extended 9-bit value? */
1204#define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
2051e8c4
MR
1207/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208#define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
bf12938e
RS
1212/* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
bf12938e 1217/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1218#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1223#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
5c04167a
RS
1227
1228/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1230\f
df58fc94
RS
1231/* Whether or not we are emitting a branch-likely macro. */
1232static bfd_boolean emit_branch_likely_macro = FALSE;
1233
4d7206a2
RS
1234/* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253} mips_relax;
252b5132 1254\f
584892a6
RS
1255/* Global variables used to decide whether a macro needs a warning. */
1256static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
df58fc94
RS
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
584892a6
RS
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
df58fc94
RS
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
584892a6
RS
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289} mips_macro_warning;
1290\f
252b5132
RH
1291/* Prototypes for static functions. */
1292
252b5132
RH
1293enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
b34976b6 1295static void append_insn
df58fc94
RS
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
7d10b47d 1298static void mips_no_prev_insn (void);
c67a084a 1299static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1300static void mips16_macro_build
03ea81db 1301 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1302static void load_register (int, expressionS *, int);
584892a6
RS
1303static void macro_start (void);
1304static void macro_end (void);
833794fc 1305static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1306static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1307static void mips_ip (char *str, struct mips_cl_insn * ip);
1308static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1309static void mips16_immed
43c0598f
RS
1310 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
5e0116d5 1312static size_t my_getSmallExpression
17a2f251
TS
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314static void my_getExpression (expressionS *, char *);
1315static void s_align (int);
1316static void s_change_sec (int);
1317static void s_change_section (int);
1318static void s_cons (int);
1319static void s_float_cons (int);
1320static void s_mips_globl (int);
1321static void s_option (int);
1322static void s_mipsset (int);
1323static void s_abicalls (int);
1324static void s_cpload (int);
1325static void s_cpsetup (int);
1326static void s_cplocal (int);
1327static void s_cprestore (int);
1328static void s_cpreturn (int);
741d6ea8
JM
1329static void s_dtprelword (int);
1330static void s_dtpreldword (int);
d0f13682
CLT
1331static void s_tprelword (int);
1332static void s_tpreldword (int);
17a2f251
TS
1333static void s_gpvalue (int);
1334static void s_gpword (int);
1335static void s_gpdword (int);
a3f278e2 1336static void s_ehword (int);
17a2f251
TS
1337static void s_cpadd (int);
1338static void s_insn (int);
ba92f887 1339static void s_nan (int);
919731af 1340static void s_module (int);
17a2f251
TS
1341static void s_mips_ent (int);
1342static void s_mips_end (int);
1343static void s_mips_frame (int);
1344static void s_mips_mask (int reg_type);
1345static void s_mips_stab (int);
1346static void s_mips_weakext (int);
1347static void s_mips_file (int);
1348static void s_mips_loc (int);
1349static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1350static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1351static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1353static void file_mips_check_options (void);
e7af610e
NC
1354
1355/* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
e972090a
NC
1358struct mips_cpu_info
1359{
e7af610e 1360 const char *name; /* CPU or ISA name. */
d16afab6
RS
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365};
1366
ad3fea08 1367#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1368
17a2f251
TS
1369static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1372\f
c31f3936
RS
1373/* Command-line options. */
1374const char *md_shortopts = "O::g::G:";
1375
1376enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
ae52f483
AB
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
7361da2c 1390 OPTION_MIPS32R6,
c31f3936 1391 OPTION_MIPS64R2,
ae52f483
AB
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
7361da2c 1394 OPTION_MIPS64R6,
c31f3936
RS
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
56d438b1
CF
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
c31f3936
RS
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
7d64c587
AB
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
c31f3936
RS
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
a8d14a88
CM
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
c31f3936
RS
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
351cdf24 1455 OPTION_FPXX,
c31f3936
RS
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
c31f3936
RS
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
c31f3936
RS
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
ba92f887 1482 OPTION_NAN,
351cdf24
MF
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
c31f3936
RS
1485 OPTION_END_OF_ENUM
1486 };
1487
1488struct option md_longopts[] =
1489{
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
c31f3936
RS
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1615 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1616
1617 {NULL, no_argument, NULL, 0}
1618};
1619size_t md_longopts_size = sizeof (md_longopts);
1620\f
c6278170
RS
1621/* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624struct mips_ase
1625{
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
7361da2c
AB
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
c6278170
RS
1652};
1653
1654/* A table of all supported ASEs. */
1655static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1658 2, 2, 2, 2,
1659 -1 },
c6278170
RS
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1663 2, 2, 2, 2,
1664 -1 },
c6278170
RS
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1668 2, 2, 2, 2,
1669 -1 },
c6278170
RS
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1673 2, 2, 2, 2,
1674 -1 },
c6278170
RS
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1679 -1, 1, -1, -1,
1680 6 },
c6278170
RS
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1685 2, 1, -1, -1,
1686 6 },
c6278170
RS
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1690 2, 2, -1, -1,
1691 -1 },
c6278170
RS
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1695 1, -1, -1, -1,
1696 6 },
c6278170
RS
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1700 2, 2, 2, 2,
1701 -1 },
56d438b1
CF
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1705 2, 2, 2, 2,
1706 -1 },
7d64c587
AB
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1710 2, 2, -1, -1,
1711 -1 },
c6278170
RS
1712};
1713
1714/* The set of ASEs that require -mfp64. */
82bda27b 1715#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1716
1717/* Groups of ASE_* flags that represent different revisions of an ASE. */
1718static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720};
1721\f
252b5132
RH
1722/* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
d84bcf09 1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1738
e972090a
NC
1739static const pseudo_typeS mips_pseudo_table[] =
1740{
beae10d5 1741 /* MIPS specific pseudo-ops. */
252b5132
RH
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
6478892d
TS
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
252b5132 1751 {"cprestore", s_cprestore, 0},
6478892d 1752 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
6478892d 1757 {"gpvalue", s_gpvalue, 0},
252b5132 1758 {"gpword", s_gpword, 0},
10181a0d 1759 {"gpdword", s_gpdword, 0},
a3f278e2 1760 {"ehword", s_ehword, 0},
252b5132
RH
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
ba92f887 1763 {"nan", s_nan, 0},
919731af 1764 {"module", s_module, 0},
252b5132 1765
beae10d5 1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1767 chips. */
38a57ae7 1768 {"asciiz", stringer, 8 + 1},
252b5132
RH
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
252b5132 1776
998b3c36
MR
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
beae10d5 1780 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
cca86cc8 1794 {"section", s_change_section, 0},
252b5132
RH
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
754e2bb9 1797 {"stabd", s_mips_stab, 'd'},
252b5132 1798 {"stabn", s_mips_stab, 'n'},
754e2bb9 1799 {"stabs", s_mips_stab, 's'},
252b5132
RH
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
add56521 1802
add56521 1803 { "extern", ecoff_directive_extern, 0},
add56521 1804
43841e91 1805 { NULL, NULL, 0 },
252b5132
RH
1806};
1807
e972090a
NC
1808static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809{
beae10d5
KH
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
c5dd6aab 1817 {"file", s_mips_file, 0},
252b5132
RH
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
c5dd6aab 1820 {"loc", s_mips_loc, 0},
252b5132
RH
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
43841e91 1823 { NULL, NULL, 0 },
252b5132
RH
1824};
1825
3ae8dd8d
MR
1826/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829int
1830mips_address_bytes (void)
1831{
919731af 1832 file_mips_check_options ();
3ae8dd8d
MR
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834}
1835
17a2f251 1836extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1837
1838void
17a2f251 1839mips_pop_insert (void)
252b5132
RH
1840{
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844}
1845\f
1846/* Symbols labelling the current insn. */
1847
e972090a
NC
1848struct insn_label_list
1849{
252b5132
RH
1850 struct insn_label_list *next;
1851 symbolS *label;
1852};
1853
252b5132 1854static struct insn_label_list *free_insn_labels;
742a56fe 1855#define label_list tc_segment_info_data.labels
252b5132 1856
17a2f251 1857static void mips_clear_insn_labels (void);
df58fc94
RS
1858static void mips_mark_labels (void);
1859static void mips_compressed_mark_labels (void);
252b5132
RH
1860
1861static inline void
17a2f251 1862mips_clear_insn_labels (void)
252b5132 1863{
ed9e98c2 1864 struct insn_label_list **pl;
a8dbcb85 1865 segment_info_type *si;
252b5132 1866
a8dbcb85
TS
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
3739860c 1871
a8dbcb85
TS
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
252b5132 1876}
a8dbcb85 1877
df58fc94
RS
1878/* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880static inline void
1881mips_mark_labels (void)
1882{
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885}
252b5132
RH
1886\f
1887static char *expr_end;
1888
e423441d 1889/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1890 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1891
1892static expressionS imm_expr;
252b5132 1893
77bd4346
RS
1894/* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
252b5132 1898
77bd4346 1899static expressionS offset_expr;
f6688943
TS
1900static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1902
df58fc94
RS
1903/* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
252b5132 1906
df58fc94 1907static unsigned int forced_insn_length;
252b5132 1908
e1b47bd5
RS
1909/* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912static bfd_boolean mips_assembling_insn;
1913
ecb4347a
DJ
1914/* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
252b5132
RH
1916
1917static segT pdr_seg;
252b5132 1918
e013f690
TS
1919/* The default target format to use. */
1920
aeffff67
RS
1921#if defined (TE_FreeBSD)
1922#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923#elif defined (TE_TMIPS)
1924#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925#else
1926#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927#endif
1928
e013f690 1929const char *
17a2f251 1930mips_target_format (void)
e013f690
TS
1931{
1932 switch (OUTPUT_FLAVOR)
1933 {
e013f690 1934 case bfd_target_elf_flavour:
0a44bf69
RS
1935#ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940#endif
e013f690 1941 return (target_big_endian
cfe86eaa 1942 ? (HAVE_64BIT_OBJECTS
aeffff67 1943 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1944 : (HAVE_NEWABI
aeffff67
RS
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1947 : (HAVE_64BIT_OBJECTS
aeffff67 1948 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1949 : (HAVE_NEWABI
aeffff67
RS
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956}
1957
c6278170
RS
1958/* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961static int
1962mips_isa_rev (void)
1963{
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
ae52f483
AB
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
7361da2c
AB
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
c6278170
RS
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984}
1985
1986/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988static unsigned int
1989mips_ase_mask (unsigned int flags)
1990{
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997}
1998
1999/* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002static void
2003mips_check_isa_supports_ase (const struct mips_ase *ase)
2004{
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
1661c76c 2021 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2022 " `%s' extension"), size, base, ase->name);
2023 else
1661c76c 2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2025 ase->name, base, size, min_rev);
2026 }
7361da2c
AB
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
c6278170 2037 if ((ase->flags & FP64_ASES)
0b35dfee 2038 && mips_opts.fp != 64
c6278170
RS
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
1661c76c 2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2043 }
2044}
2045
2046/* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049static void
2050mips_check_isa_supports_ases (void)
2051{
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060}
2061
2062/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065static unsigned int
919731af 2066mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
c6278170
RS
2068{
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
919731af 2072 opts->ase &= ~mask;
c6278170 2073 if (enabled_p)
919731af 2074 opts->ase |= ase->flags;
c6278170
RS
2075 return mask;
2076}
2077
2078/* Return the ASE called NAME, or null if none. */
2079
2080static const struct mips_ase *
2081mips_lookup_ase (const char *name)
2082{
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089}
2090
df58fc94
RS
2091/* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
2093 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
2094 major opcode) will require further modifications to the opcode
2095 table. */
2096
2097static inline unsigned int
2098micromips_insn_length (const struct mips_opcode *mo)
2099{
2100 return (mo->mask >> 16) == 0 ? 2 : 4;
2101}
2102
5c04167a
RS
2103/* Return the length of MIPS16 instruction OPCODE. */
2104
2105static inline unsigned int
2106mips16_opcode_length (unsigned long opcode)
2107{
2108 return (opcode >> 16) == 0 ? 2 : 4;
2109}
2110
1e915849
RS
2111/* Return the length of instruction INSN. */
2112
2113static inline unsigned int
2114insn_length (const struct mips_cl_insn *insn)
2115{
df58fc94
RS
2116 if (mips_opts.micromips)
2117 return micromips_insn_length (insn->insn_mo);
2118 else if (mips_opts.mips16)
5c04167a 2119 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2120 else
1e915849 2121 return 4;
1e915849
RS
2122}
2123
2124/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2125
2126static void
2127create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2128{
2129 size_t i;
2130
2131 insn->insn_mo = mo;
1e915849
RS
2132 insn->insn_opcode = mo->match;
2133 insn->frag = NULL;
2134 insn->where = 0;
2135 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2136 insn->fixp[i] = NULL;
2137 insn->fixed_p = (mips_opts.noreorder > 0);
2138 insn->noreorder_p = (mips_opts.noreorder > 0);
2139 insn->mips16_absolute_jump_p = 0;
15be625d 2140 insn->complete_p = 0;
e407c74b 2141 insn->cleared_p = 0;
1e915849
RS
2142}
2143
fc76e730
RS
2144/* Get a list of all the operands in INSN. */
2145
2146static const struct mips_operand_array *
2147insn_operands (const struct mips_cl_insn *insn)
2148{
2149 if (insn->insn_mo >= &mips_opcodes[0]
2150 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2151 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2152
2153 if (insn->insn_mo >= &mips16_opcodes[0]
2154 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2155 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2156
2157 if (insn->insn_mo >= &micromips_opcodes[0]
2158 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2159 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2160
2161 abort ();
2162}
2163
2164/* Get a description of operand OPNO of INSN. */
2165
2166static const struct mips_operand *
2167insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2168{
2169 const struct mips_operand_array *operands;
2170
2171 operands = insn_operands (insn);
2172 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2173 abort ();
2174 return operands->operand[opno];
2175}
2176
e077a1c8
RS
2177/* Install UVAL as the value of OPERAND in INSN. */
2178
2179static inline void
2180insn_insert_operand (struct mips_cl_insn *insn,
2181 const struct mips_operand *operand, unsigned int uval)
2182{
2183 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2184}
2185
fc76e730
RS
2186/* Extract the value of OPERAND from INSN. */
2187
2188static inline unsigned
2189insn_extract_operand (const struct mips_cl_insn *insn,
2190 const struct mips_operand *operand)
2191{
2192 return mips_extract_operand (operand, insn->insn_opcode);
2193}
2194
df58fc94 2195/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2196
2197static void
df58fc94 2198mips_record_compressed_mode (void)
742a56fe
RS
2199{
2200 segment_info_type *si;
2201
2202 si = seg_info (now_seg);
2203 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2204 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2205 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2206 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2207}
2208
4d68580a
RS
2209/* Read a standard MIPS instruction from BUF. */
2210
2211static unsigned long
2212read_insn (char *buf)
2213{
2214 if (target_big_endian)
2215 return bfd_getb32 ((bfd_byte *) buf);
2216 else
2217 return bfd_getl32 ((bfd_byte *) buf);
2218}
2219
2220/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2221 the next byte. */
2222
2223static char *
2224write_insn (char *buf, unsigned int insn)
2225{
2226 md_number_to_chars (buf, insn, 4);
2227 return buf + 4;
2228}
2229
2230/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2231 has length LENGTH. */
2232
2233static unsigned long
2234read_compressed_insn (char *buf, unsigned int length)
2235{
2236 unsigned long insn;
2237 unsigned int i;
2238
2239 insn = 0;
2240 for (i = 0; i < length; i += 2)
2241 {
2242 insn <<= 16;
2243 if (target_big_endian)
2244 insn |= bfd_getb16 ((char *) buf);
2245 else
2246 insn |= bfd_getl16 ((char *) buf);
2247 buf += 2;
2248 }
2249 return insn;
2250}
2251
5c04167a
RS
2252/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2253 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2254
2255static char *
2256write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2257{
2258 unsigned int i;
2259
2260 for (i = 0; i < length; i += 2)
2261 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2262 return buf + length;
2263}
2264
1e915849
RS
2265/* Install INSN at the location specified by its "frag" and "where" fields. */
2266
2267static void
2268install_insn (const struct mips_cl_insn *insn)
2269{
2270 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2271 if (HAVE_CODE_COMPRESSION)
2272 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2273 else
4d68580a 2274 write_insn (f, insn->insn_opcode);
df58fc94 2275 mips_record_compressed_mode ();
1e915849
RS
2276}
2277
2278/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2279 and install the opcode in the new location. */
2280
2281static void
2282move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2283{
2284 size_t i;
2285
2286 insn->frag = frag;
2287 insn->where = where;
2288 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2289 if (insn->fixp[i] != NULL)
2290 {
2291 insn->fixp[i]->fx_frag = frag;
2292 insn->fixp[i]->fx_where = where;
2293 }
2294 install_insn (insn);
2295}
2296
2297/* Add INSN to the end of the output. */
2298
2299static void
2300add_fixed_insn (struct mips_cl_insn *insn)
2301{
2302 char *f = frag_more (insn_length (insn));
2303 move_insn (insn, frag_now, f - frag_now->fr_literal);
2304}
2305
2306/* Start a variant frag and move INSN to the start of the variant part,
2307 marking it as fixed. The other arguments are as for frag_var. */
2308
2309static void
2310add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2311 relax_substateT subtype, symbolS *symbol, offsetT offset)
2312{
2313 frag_grow (max_chars);
2314 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2315 insn->fixed_p = 1;
2316 frag_var (rs_machine_dependent, max_chars, var,
2317 subtype, symbol, offset, NULL);
2318}
2319
2320/* Insert N copies of INSN into the history buffer, starting at
2321 position FIRST. Neither FIRST nor N need to be clipped. */
2322
2323static void
2324insert_into_history (unsigned int first, unsigned int n,
2325 const struct mips_cl_insn *insn)
2326{
2327 if (mips_relax.sequence != 2)
2328 {
2329 unsigned int i;
2330
2331 for (i = ARRAY_SIZE (history); i-- > first;)
2332 if (i >= first + n)
2333 history[i] = history[i - n];
2334 else
2335 history[i] = *insn;
2336 }
2337}
2338
e3de51ce
RS
2339/* Clear the error in insn_error. */
2340
2341static void
2342clear_insn_error (void)
2343{
2344 memset (&insn_error, 0, sizeof (insn_error));
2345}
2346
2347/* Possibly record error message MSG for the current instruction.
2348 If the error is about a particular argument, ARGNUM is the 1-based
2349 number of that argument, otherwise it is 0. FORMAT is the format
2350 of MSG. Return true if MSG was used, false if the current message
2351 was kept. */
2352
2353static bfd_boolean
2354set_insn_error_format (int argnum, enum mips_insn_error_format format,
2355 const char *msg)
2356{
2357 if (argnum == 0)
2358 {
2359 /* Give priority to errors against specific arguments, and to
2360 the first whole-instruction message. */
2361 if (insn_error.msg)
2362 return FALSE;
2363 }
2364 else
2365 {
2366 /* Keep insn_error if it is against a later argument. */
2367 if (argnum < insn_error.min_argnum)
2368 return FALSE;
2369
2370 /* If both errors are against the same argument but are different,
2371 give up on reporting a specific error for this argument.
2372 See the comment about mips_insn_error for details. */
2373 if (argnum == insn_error.min_argnum
2374 && insn_error.msg
2375 && strcmp (insn_error.msg, msg) != 0)
2376 {
2377 insn_error.msg = 0;
2378 insn_error.min_argnum += 1;
2379 return FALSE;
2380 }
2381 }
2382 insn_error.min_argnum = argnum;
2383 insn_error.format = format;
2384 insn_error.msg = msg;
2385 return TRUE;
2386}
2387
2388/* Record an instruction error with no % format fields. ARGNUM and MSG are
2389 as for set_insn_error_format. */
2390
2391static void
2392set_insn_error (int argnum, const char *msg)
2393{
2394 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2395}
2396
2397/* Record an instruction error with one %d field I. ARGNUM and MSG are
2398 as for set_insn_error_format. */
2399
2400static void
2401set_insn_error_i (int argnum, const char *msg, int i)
2402{
2403 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2404 insn_error.u.i = i;
2405}
2406
2407/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2408 are as for set_insn_error_format. */
2409
2410static void
2411set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2412{
2413 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2414 {
2415 insn_error.u.ss[0] = s1;
2416 insn_error.u.ss[1] = s2;
2417 }
2418}
2419
2420/* Report the error in insn_error, which is against assembly code STR. */
2421
2422static void
2423report_insn_error (const char *str)
2424{
2425 const char *msg;
2426
2427 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2428 switch (insn_error.format)
2429 {
2430 case ERR_FMT_PLAIN:
2431 as_bad (msg, str);
2432 break;
2433
2434 case ERR_FMT_I:
2435 as_bad (msg, insn_error.u.i, str);
2436 break;
2437
2438 case ERR_FMT_SS:
2439 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2440 break;
2441 }
2442}
2443
71400594
RS
2444/* Initialize vr4120_conflicts. There is a bit of duplication here:
2445 the idea is to make it obvious at a glance that each errata is
2446 included. */
2447
2448static void
2449init_vr4120_conflicts (void)
2450{
2451#define CONFLICT(FIRST, SECOND) \
2452 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2453
2454 /* Errata 21 - [D]DIV[U] after [D]MACC */
2455 CONFLICT (MACC, DIV);
2456 CONFLICT (DMACC, DIV);
2457
2458 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2459 CONFLICT (DMULT, DMULT);
2460 CONFLICT (DMULT, DMACC);
2461 CONFLICT (DMACC, DMULT);
2462 CONFLICT (DMACC, DMACC);
2463
2464 /* Errata 24 - MT{LO,HI} after [D]MACC */
2465 CONFLICT (MACC, MTHILO);
2466 CONFLICT (DMACC, MTHILO);
2467
2468 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2469 instruction is executed immediately after a MACC or DMACC
2470 instruction, the result of [either instruction] is incorrect." */
2471 CONFLICT (MACC, MULT);
2472 CONFLICT (MACC, DMULT);
2473 CONFLICT (DMACC, MULT);
2474 CONFLICT (DMACC, DMULT);
2475
2476 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2477 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2478 DDIV or DDIVU instruction, the result of the MACC or
2479 DMACC instruction is incorrect.". */
2480 CONFLICT (DMULT, MACC);
2481 CONFLICT (DMULT, DMACC);
2482 CONFLICT (DIV, MACC);
2483 CONFLICT (DIV, DMACC);
2484
2485#undef CONFLICT
2486}
2487
707bfff6
TS
2488struct regname {
2489 const char *name;
2490 unsigned int num;
2491};
2492
14daeee3 2493#define RNUM_MASK 0x00000ff
56d438b1 2494#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2495#define RTYPE_NUM 0x0000100
2496#define RTYPE_FPU 0x0000200
2497#define RTYPE_FCC 0x0000400
2498#define RTYPE_VEC 0x0000800
2499#define RTYPE_GP 0x0001000
2500#define RTYPE_CP0 0x0002000
2501#define RTYPE_PC 0x0004000
2502#define RTYPE_ACC 0x0008000
2503#define RTYPE_CCC 0x0010000
2504#define RTYPE_VI 0x0020000
2505#define RTYPE_VF 0x0040000
2506#define RTYPE_R5900_I 0x0080000
2507#define RTYPE_R5900_Q 0x0100000
2508#define RTYPE_R5900_R 0x0200000
2509#define RTYPE_R5900_ACC 0x0400000
56d438b1 2510#define RTYPE_MSA 0x0800000
14daeee3 2511#define RWARN 0x8000000
707bfff6
TS
2512
2513#define GENERIC_REGISTER_NUMBERS \
2514 {"$0", RTYPE_NUM | 0}, \
2515 {"$1", RTYPE_NUM | 1}, \
2516 {"$2", RTYPE_NUM | 2}, \
2517 {"$3", RTYPE_NUM | 3}, \
2518 {"$4", RTYPE_NUM | 4}, \
2519 {"$5", RTYPE_NUM | 5}, \
2520 {"$6", RTYPE_NUM | 6}, \
2521 {"$7", RTYPE_NUM | 7}, \
2522 {"$8", RTYPE_NUM | 8}, \
2523 {"$9", RTYPE_NUM | 9}, \
2524 {"$10", RTYPE_NUM | 10}, \
2525 {"$11", RTYPE_NUM | 11}, \
2526 {"$12", RTYPE_NUM | 12}, \
2527 {"$13", RTYPE_NUM | 13}, \
2528 {"$14", RTYPE_NUM | 14}, \
2529 {"$15", RTYPE_NUM | 15}, \
2530 {"$16", RTYPE_NUM | 16}, \
2531 {"$17", RTYPE_NUM | 17}, \
2532 {"$18", RTYPE_NUM | 18}, \
2533 {"$19", RTYPE_NUM | 19}, \
2534 {"$20", RTYPE_NUM | 20}, \
2535 {"$21", RTYPE_NUM | 21}, \
2536 {"$22", RTYPE_NUM | 22}, \
2537 {"$23", RTYPE_NUM | 23}, \
2538 {"$24", RTYPE_NUM | 24}, \
2539 {"$25", RTYPE_NUM | 25}, \
2540 {"$26", RTYPE_NUM | 26}, \
2541 {"$27", RTYPE_NUM | 27}, \
2542 {"$28", RTYPE_NUM | 28}, \
2543 {"$29", RTYPE_NUM | 29}, \
2544 {"$30", RTYPE_NUM | 30}, \
3739860c 2545 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2546
2547#define FPU_REGISTER_NAMES \
2548 {"$f0", RTYPE_FPU | 0}, \
2549 {"$f1", RTYPE_FPU | 1}, \
2550 {"$f2", RTYPE_FPU | 2}, \
2551 {"$f3", RTYPE_FPU | 3}, \
2552 {"$f4", RTYPE_FPU | 4}, \
2553 {"$f5", RTYPE_FPU | 5}, \
2554 {"$f6", RTYPE_FPU | 6}, \
2555 {"$f7", RTYPE_FPU | 7}, \
2556 {"$f8", RTYPE_FPU | 8}, \
2557 {"$f9", RTYPE_FPU | 9}, \
2558 {"$f10", RTYPE_FPU | 10}, \
2559 {"$f11", RTYPE_FPU | 11}, \
2560 {"$f12", RTYPE_FPU | 12}, \
2561 {"$f13", RTYPE_FPU | 13}, \
2562 {"$f14", RTYPE_FPU | 14}, \
2563 {"$f15", RTYPE_FPU | 15}, \
2564 {"$f16", RTYPE_FPU | 16}, \
2565 {"$f17", RTYPE_FPU | 17}, \
2566 {"$f18", RTYPE_FPU | 18}, \
2567 {"$f19", RTYPE_FPU | 19}, \
2568 {"$f20", RTYPE_FPU | 20}, \
2569 {"$f21", RTYPE_FPU | 21}, \
2570 {"$f22", RTYPE_FPU | 22}, \
2571 {"$f23", RTYPE_FPU | 23}, \
2572 {"$f24", RTYPE_FPU | 24}, \
2573 {"$f25", RTYPE_FPU | 25}, \
2574 {"$f26", RTYPE_FPU | 26}, \
2575 {"$f27", RTYPE_FPU | 27}, \
2576 {"$f28", RTYPE_FPU | 28}, \
2577 {"$f29", RTYPE_FPU | 29}, \
2578 {"$f30", RTYPE_FPU | 30}, \
2579 {"$f31", RTYPE_FPU | 31}
2580
2581#define FPU_CONDITION_CODE_NAMES \
2582 {"$fcc0", RTYPE_FCC | 0}, \
2583 {"$fcc1", RTYPE_FCC | 1}, \
2584 {"$fcc2", RTYPE_FCC | 2}, \
2585 {"$fcc3", RTYPE_FCC | 3}, \
2586 {"$fcc4", RTYPE_FCC | 4}, \
2587 {"$fcc5", RTYPE_FCC | 5}, \
2588 {"$fcc6", RTYPE_FCC | 6}, \
2589 {"$fcc7", RTYPE_FCC | 7}
2590
2591#define COPROC_CONDITION_CODE_NAMES \
2592 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2593 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2594 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2595 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2596 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2597 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2598 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2599 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2600
2601#define N32N64_SYMBOLIC_REGISTER_NAMES \
2602 {"$a4", RTYPE_GP | 8}, \
2603 {"$a5", RTYPE_GP | 9}, \
2604 {"$a6", RTYPE_GP | 10}, \
2605 {"$a7", RTYPE_GP | 11}, \
2606 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2607 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2608 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2609 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2610 {"$t0", RTYPE_GP | 12}, \
2611 {"$t1", RTYPE_GP | 13}, \
2612 {"$t2", RTYPE_GP | 14}, \
2613 {"$t3", RTYPE_GP | 15}
2614
2615#define O32_SYMBOLIC_REGISTER_NAMES \
2616 {"$t0", RTYPE_GP | 8}, \
2617 {"$t1", RTYPE_GP | 9}, \
2618 {"$t2", RTYPE_GP | 10}, \
2619 {"$t3", RTYPE_GP | 11}, \
2620 {"$t4", RTYPE_GP | 12}, \
2621 {"$t5", RTYPE_GP | 13}, \
2622 {"$t6", RTYPE_GP | 14}, \
2623 {"$t7", RTYPE_GP | 15}, \
2624 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2625 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2626 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2627 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2628
2629/* Remaining symbolic register names */
2630#define SYMBOLIC_REGISTER_NAMES \
2631 {"$zero", RTYPE_GP | 0}, \
2632 {"$at", RTYPE_GP | 1}, \
2633 {"$AT", RTYPE_GP | 1}, \
2634 {"$v0", RTYPE_GP | 2}, \
2635 {"$v1", RTYPE_GP | 3}, \
2636 {"$a0", RTYPE_GP | 4}, \
2637 {"$a1", RTYPE_GP | 5}, \
2638 {"$a2", RTYPE_GP | 6}, \
2639 {"$a3", RTYPE_GP | 7}, \
2640 {"$s0", RTYPE_GP | 16}, \
2641 {"$s1", RTYPE_GP | 17}, \
2642 {"$s2", RTYPE_GP | 18}, \
2643 {"$s3", RTYPE_GP | 19}, \
2644 {"$s4", RTYPE_GP | 20}, \
2645 {"$s5", RTYPE_GP | 21}, \
2646 {"$s6", RTYPE_GP | 22}, \
2647 {"$s7", RTYPE_GP | 23}, \
2648 {"$t8", RTYPE_GP | 24}, \
2649 {"$t9", RTYPE_GP | 25}, \
2650 {"$k0", RTYPE_GP | 26}, \
2651 {"$kt0", RTYPE_GP | 26}, \
2652 {"$k1", RTYPE_GP | 27}, \
2653 {"$kt1", RTYPE_GP | 27}, \
2654 {"$gp", RTYPE_GP | 28}, \
2655 {"$sp", RTYPE_GP | 29}, \
2656 {"$s8", RTYPE_GP | 30}, \
2657 {"$fp", RTYPE_GP | 30}, \
2658 {"$ra", RTYPE_GP | 31}
2659
2660#define MIPS16_SPECIAL_REGISTER_NAMES \
2661 {"$pc", RTYPE_PC | 0}
2662
2663#define MDMX_VECTOR_REGISTER_NAMES \
2664 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2665 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2666 {"$v2", RTYPE_VEC | 2}, \
2667 {"$v3", RTYPE_VEC | 3}, \
2668 {"$v4", RTYPE_VEC | 4}, \
2669 {"$v5", RTYPE_VEC | 5}, \
2670 {"$v6", RTYPE_VEC | 6}, \
2671 {"$v7", RTYPE_VEC | 7}, \
2672 {"$v8", RTYPE_VEC | 8}, \
2673 {"$v9", RTYPE_VEC | 9}, \
2674 {"$v10", RTYPE_VEC | 10}, \
2675 {"$v11", RTYPE_VEC | 11}, \
2676 {"$v12", RTYPE_VEC | 12}, \
2677 {"$v13", RTYPE_VEC | 13}, \
2678 {"$v14", RTYPE_VEC | 14}, \
2679 {"$v15", RTYPE_VEC | 15}, \
2680 {"$v16", RTYPE_VEC | 16}, \
2681 {"$v17", RTYPE_VEC | 17}, \
2682 {"$v18", RTYPE_VEC | 18}, \
2683 {"$v19", RTYPE_VEC | 19}, \
2684 {"$v20", RTYPE_VEC | 20}, \
2685 {"$v21", RTYPE_VEC | 21}, \
2686 {"$v22", RTYPE_VEC | 22}, \
2687 {"$v23", RTYPE_VEC | 23}, \
2688 {"$v24", RTYPE_VEC | 24}, \
2689 {"$v25", RTYPE_VEC | 25}, \
2690 {"$v26", RTYPE_VEC | 26}, \
2691 {"$v27", RTYPE_VEC | 27}, \
2692 {"$v28", RTYPE_VEC | 28}, \
2693 {"$v29", RTYPE_VEC | 29}, \
2694 {"$v30", RTYPE_VEC | 30}, \
2695 {"$v31", RTYPE_VEC | 31}
2696
14daeee3
RS
2697#define R5900_I_NAMES \
2698 {"$I", RTYPE_R5900_I | 0}
2699
2700#define R5900_Q_NAMES \
2701 {"$Q", RTYPE_R5900_Q | 0}
2702
2703#define R5900_R_NAMES \
2704 {"$R", RTYPE_R5900_R | 0}
2705
2706#define R5900_ACC_NAMES \
2707 {"$ACC", RTYPE_R5900_ACC | 0 }
2708
707bfff6
TS
2709#define MIPS_DSP_ACCUMULATOR_NAMES \
2710 {"$ac0", RTYPE_ACC | 0}, \
2711 {"$ac1", RTYPE_ACC | 1}, \
2712 {"$ac2", RTYPE_ACC | 2}, \
2713 {"$ac3", RTYPE_ACC | 3}
2714
2715static const struct regname reg_names[] = {
2716 GENERIC_REGISTER_NUMBERS,
2717 FPU_REGISTER_NAMES,
2718 FPU_CONDITION_CODE_NAMES,
2719 COPROC_CONDITION_CODE_NAMES,
2720
2721 /* The $txx registers depends on the abi,
2722 these will be added later into the symbol table from
3739860c 2723 one of the tables below once mips_abi is set after
707bfff6
TS
2724 parsing of arguments from the command line. */
2725 SYMBOLIC_REGISTER_NAMES,
2726
2727 MIPS16_SPECIAL_REGISTER_NAMES,
2728 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2729 R5900_I_NAMES,
2730 R5900_Q_NAMES,
2731 R5900_R_NAMES,
2732 R5900_ACC_NAMES,
707bfff6
TS
2733 MIPS_DSP_ACCUMULATOR_NAMES,
2734 {0, 0}
2735};
2736
2737static const struct regname reg_names_o32[] = {
2738 O32_SYMBOLIC_REGISTER_NAMES,
2739 {0, 0}
2740};
2741
2742static const struct regname reg_names_n32n64[] = {
2743 N32N64_SYMBOLIC_REGISTER_NAMES,
2744 {0, 0}
2745};
2746
a92713e6
RS
2747/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2748 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2749 of these register symbols, return the associated vector register,
2750 otherwise return SYMVAL itself. */
df58fc94 2751
a92713e6
RS
2752static unsigned int
2753mips_prefer_vec_regno (unsigned int symval)
707bfff6 2754{
a92713e6
RS
2755 if ((symval & -2) == (RTYPE_GP | 2))
2756 return RTYPE_VEC | (symval & 1);
2757 return symval;
2758}
2759
14daeee3
RS
2760/* Return true if string [S, E) is a valid register name, storing its
2761 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2762
2763static bfd_boolean
14daeee3 2764mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2765{
707bfff6 2766 char save_c;
14daeee3 2767 symbolS *symbol;
707bfff6
TS
2768
2769 /* Terminate name. */
2770 save_c = *e;
2771 *e = '\0';
2772
a92713e6
RS
2773 /* Look up the name. */
2774 symbol = symbol_find (s);
2775 *e = save_c;
2776
2777 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2778 return FALSE;
2779
14daeee3
RS
2780 *symval_ptr = S_GET_VALUE (symbol);
2781 return TRUE;
2782}
2783
2784/* Return true if the string at *SPTR is a valid register name. Allow it
2785 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2786 is nonnull.
2787
2788 When returning true, move *SPTR past the register, store the
2789 register's symbol value in *SYMVAL_PTR and the channel mask in
2790 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2791 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2792 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2793
2794static bfd_boolean
2795mips_parse_register (char **sptr, unsigned int *symval_ptr,
2796 unsigned int *channels_ptr)
2797{
2798 char *s, *e, *m;
2799 const char *q;
2800 unsigned int channels, symval, bit;
2801
2802 /* Find end of name. */
2803 s = e = *sptr;
2804 if (is_name_beginner (*e))
2805 ++e;
2806 while (is_part_of_name (*e))
2807 ++e;
2808
2809 channels = 0;
2810 if (!mips_parse_register_1 (s, e, &symval))
2811 {
2812 if (!channels_ptr)
2813 return FALSE;
2814
2815 /* Eat characters from the end of the string that are valid
2816 channel suffixes. The preceding register must be $ACC or
2817 end with a digit, so there is no ambiguity. */
2818 bit = 1;
2819 m = e;
2820 for (q = "wzyx"; *q; q++, bit <<= 1)
2821 if (m > s && m[-1] == *q)
2822 {
2823 --m;
2824 channels |= bit;
2825 }
2826
2827 if (channels == 0
2828 || !mips_parse_register_1 (s, m, &symval)
2829 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2830 return FALSE;
2831 }
2832
a92713e6 2833 *sptr = e;
14daeee3
RS
2834 *symval_ptr = symval;
2835 if (channels_ptr)
2836 *channels_ptr = channels;
a92713e6
RS
2837 return TRUE;
2838}
2839
2840/* Check if SPTR points at a valid register specifier according to TYPES.
2841 If so, then return 1, advance S to consume the specifier and store
2842 the register's number in REGNOP, otherwise return 0. */
2843
2844static int
2845reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2846{
2847 unsigned int regno;
2848
14daeee3 2849 if (mips_parse_register (s, &regno, NULL))
707bfff6 2850 {
a92713e6
RS
2851 if (types & RTYPE_VEC)
2852 regno = mips_prefer_vec_regno (regno);
2853 if (regno & types)
2854 regno &= RNUM_MASK;
2855 else
2856 regno = ~0;
707bfff6 2857 }
a92713e6 2858 else
707bfff6 2859 {
a92713e6 2860 if (types & RWARN)
1661c76c 2861 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2862 regno = ~0;
707bfff6 2863 }
707bfff6 2864 if (regnop)
a92713e6
RS
2865 *regnop = regno;
2866 return regno <= RNUM_MASK;
707bfff6
TS
2867}
2868
14daeee3
RS
2869/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2870 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2871
2872static char *
2873mips_parse_vu0_channels (char *s, unsigned int *channels)
2874{
2875 unsigned int i;
2876
2877 *channels = 0;
2878 for (i = 0; i < 4; i++)
2879 if (*s == "xyzw"[i])
2880 {
2881 *channels |= 1 << (3 - i);
2882 ++s;
2883 }
2884 return s;
2885}
2886
a92713e6
RS
2887/* Token types for parsed operand lists. */
2888enum mips_operand_token_type {
2889 /* A plain register, e.g. $f2. */
2890 OT_REG,
df58fc94 2891
14daeee3
RS
2892 /* A 4-bit XYZW channel mask. */
2893 OT_CHANNELS,
2894
56d438b1
CF
2895 /* A constant vector index, e.g. [1]. */
2896 OT_INTEGER_INDEX,
2897
2898 /* A register vector index, e.g. [$2]. */
2899 OT_REG_INDEX,
df58fc94 2900
a92713e6
RS
2901 /* A continuous range of registers, e.g. $s0-$s4. */
2902 OT_REG_RANGE,
2903
2904 /* A (possibly relocated) expression. */
2905 OT_INTEGER,
2906
2907 /* A floating-point value. */
2908 OT_FLOAT,
2909
2910 /* A single character. This can be '(', ')' or ',', but '(' only appears
2911 before OT_REGs. */
2912 OT_CHAR,
2913
14daeee3
RS
2914 /* A doubled character, either "--" or "++". */
2915 OT_DOUBLE_CHAR,
2916
a92713e6
RS
2917 /* The end of the operand list. */
2918 OT_END
2919};
2920
2921/* A parsed operand token. */
2922struct mips_operand_token
2923{
2924 /* The type of token. */
2925 enum mips_operand_token_type type;
2926 union
2927 {
56d438b1 2928 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2929 unsigned int regno;
2930
14daeee3
RS
2931 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2932 unsigned int channels;
2933
56d438b1
CF
2934 /* The integer value of an OT_INTEGER_INDEX. */
2935 addressT index;
a92713e6
RS
2936
2937 /* The two register symbol values involved in an OT_REG_RANGE. */
2938 struct {
2939 unsigned int regno1;
2940 unsigned int regno2;
2941 } reg_range;
2942
2943 /* The value of an OT_INTEGER. The value is represented as an
2944 expression and the relocation operators that were applied to
2945 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2946 relocation operators were used. */
2947 struct {
2948 expressionS value;
2949 bfd_reloc_code_real_type relocs[3];
2950 } integer;
2951
2952 /* The binary data for an OT_FLOAT constant, and the number of bytes
2953 in the constant. */
2954 struct {
2955 unsigned char data[8];
2956 int length;
2957 } flt;
2958
14daeee3 2959 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2960 char ch;
2961 } u;
2962};
2963
2964/* An obstack used to construct lists of mips_operand_tokens. */
2965static struct obstack mips_operand_tokens;
2966
2967/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2968
2969static void
2970mips_add_token (struct mips_operand_token *token,
2971 enum mips_operand_token_type type)
2972{
2973 token->type = type;
2974 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2975}
2976
2977/* Check whether S is '(' followed by a register name. Add OT_CHAR
2978 and OT_REG tokens for them if so, and return a pointer to the first
2979 unconsumed character. Return null otherwise. */
2980
2981static char *
2982mips_parse_base_start (char *s)
2983{
2984 struct mips_operand_token token;
14daeee3
RS
2985 unsigned int regno, channels;
2986 bfd_boolean decrement_p;
df58fc94 2987
a92713e6
RS
2988 if (*s != '(')
2989 return 0;
2990
2991 ++s;
2992 SKIP_SPACE_TABS (s);
14daeee3
RS
2993
2994 /* Only match "--" as part of a base expression. In other contexts "--X"
2995 is a double negative. */
2996 decrement_p = (s[0] == '-' && s[1] == '-');
2997 if (decrement_p)
2998 {
2999 s += 2;
3000 SKIP_SPACE_TABS (s);
3001 }
3002
3003 /* Allow a channel specifier because that leads to better error messages
3004 than treating something like "$vf0x++" as an expression. */
3005 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3006 return 0;
3007
3008 token.u.ch = '(';
3009 mips_add_token (&token, OT_CHAR);
3010
14daeee3
RS
3011 if (decrement_p)
3012 {
3013 token.u.ch = '-';
3014 mips_add_token (&token, OT_DOUBLE_CHAR);
3015 }
3016
a92713e6
RS
3017 token.u.regno = regno;
3018 mips_add_token (&token, OT_REG);
3019
14daeee3
RS
3020 if (channels)
3021 {
3022 token.u.channels = channels;
3023 mips_add_token (&token, OT_CHANNELS);
3024 }
3025
3026 /* For consistency, only match "++" as part of base expressions too. */
3027 SKIP_SPACE_TABS (s);
3028 if (s[0] == '+' && s[1] == '+')
3029 {
3030 s += 2;
3031 token.u.ch = '+';
3032 mips_add_token (&token, OT_DOUBLE_CHAR);
3033 }
3034
a92713e6
RS
3035 return s;
3036}
3037
3038/* Parse one or more tokens from S. Return a pointer to the first
3039 unconsumed character on success. Return null if an error was found
3040 and store the error text in insn_error. FLOAT_FORMAT is as for
3041 mips_parse_arguments. */
3042
3043static char *
3044mips_parse_argument_token (char *s, char float_format)
3045{
3046 char *end, *save_in, *err;
14daeee3 3047 unsigned int regno1, regno2, channels;
a92713e6
RS
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
14daeee3 3066 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3067 {
14daeee3
RS
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
a92713e6
RS
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
df58fc94 3081 {
a92713e6
RS
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
14daeee3 3085 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3086 {
1661c76c 3087 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3088 return 0;
3089 }
df58fc94 3090
a92713e6
RS
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
a92713e6 3096
56d438b1
CF
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
a92713e6
RS
3104 ++s;
3105 SKIP_SPACE_TABS (s);
56d438b1
CF
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
a92713e6 3109 {
56d438b1
CF
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3121 }
a92713e6
RS
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
1661c76c 3125 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3126 return 0;
3127 }
3128 ++s;
df58fc94 3129 }
a92713e6 3130 return s;
df58fc94
RS
3131 }
3132
a92713e6
RS
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
e3de51ce 3144 set_insn_error (0, err);
a92713e6
RS
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162}
3163
3164/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172static struct mips_operand_token *
3173mips_parse_arguments (char *s, char float_format)
3174{
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3191}
3192
d301a56b
RS
3193/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3195
3196static bfd_boolean
f79e2745 3197is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3198{
3199 int isa = mips_opts.isa;
846ef2d0 3200 int ase = mips_opts.ase;
037b32b9 3201 int fp_s, fp_d;
c6278170 3202 unsigned int i;
037b32b9 3203
c6278170
RS
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
037b32b9 3208
d301a56b 3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233}
3234
3235/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238static bfd_boolean
3239is_opcode_valid_16 (const struct mips_opcode *mo)
3240{
d301a56b 3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3242}
3243
df58fc94
RS
3244/* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247static bfd_boolean
3248is_size_valid (const struct mips_opcode *mo)
3249{
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
833794fc
MR
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
df58fc94
RS
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265}
3266
3267/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
df58fc94
RS
3280
3281static bfd_boolean
3282is_delay_slot_valid (const struct mips_opcode *mo)
3283{
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
c06dec14 3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297}
3298
fc76e730
RS
3299/* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
ab902481
RS
3307
3308static int
3309validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
fc76e730
RS
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
ab902481
RS
3313{
3314 const char *s;
fc76e730 3315 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3316 const struct mips_operand *operand;
3317
fc76e730
RS
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
fc76e730 3326 opno = 0;
14daeee3
RS
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
14daeee3
RS
3337 case '#':
3338 s++;
3339 break;
3340
ab902481 3341 default:
fc76e730
RS
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
fc76e730
RS
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
14daeee3 3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3355 {
14daeee3 3356 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
ab902481 3364 /* Skip prefix characters. */
7361da2c 3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3366 ++s;
fc76e730 3367 opno += 1;
ab902481
RS
3368 break;
3369 }
fc76e730 3370 doubled = used_bits & mask & insn_bits;
ab902481
RS
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
fc76e730 3377 used_bits |= mask;
ab902481 3378 undefined = ~used_bits & insn_bits;
fc76e730 3379 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393}
3394
fc76e730
RS
3395/* The MIPS16 version of validate_mips_insn. */
3396
3397static int
3398validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400{
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413}
3414
ab902481
RS
3415/* The microMIPS version of validate_mips_insn. */
3416
3417static int
fc76e730
RS
3418validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
ab902481
RS
3420{
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
fc76e730
RS
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
ab902481
RS
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
1661c76c 3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
1661c76c 3440 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
fc76e730
RS
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
ab902481
RS
3451}
3452
707bfff6
TS
3453/* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3455
252b5132 3456void
17a2f251 3457md_begin (void)
252b5132 3458{
3994f87e 3459 const char *retval = NULL;
156c2f8b 3460 int i = 0;
252b5132 3461 int broken = 0;
1f25f5d3 3462
0a44bf69
RS
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
3469
0b35dfee 3470 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3471 as_warn (_("could not set architecture and machine"));
252b5132 3472
252b5132
RH
3473 op_hash = hash_new ();
3474
fc76e730 3475 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3476 for (i = 0; i < NUMOPCODES;)
3477 {
3478 const char *name = mips_opcodes[i].name;
3479
17a2f251 3480 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3481 if (retval != NULL)
3482 {
3483 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3484 mips_opcodes[i].name, retval);
3485 /* Probably a memory allocation problem? Give up now. */
1661c76c 3486 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3487 }
3488 do
3489 {
fc76e730
RS
3490 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3491 decode_mips_operand, &mips_operands[i]))
3492 broken = 1;
3493 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3494 {
fc76e730
RS
3495 create_insn (&nop_insn, mips_opcodes + i);
3496 if (mips_fix_loongson2f_nop)
3497 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3498 nop_insn.fixed_p = 1;
252b5132
RH
3499 }
3500 ++i;
3501 }
3502 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3503 }
3504
3505 mips16_op_hash = hash_new ();
fc76e730
RS
3506 mips16_operands = XCNEWVEC (struct mips_operand_array,
3507 bfd_mips16_num_opcodes);
252b5132
RH
3508
3509 i = 0;
3510 while (i < bfd_mips16_num_opcodes)
3511 {
3512 const char *name = mips16_opcodes[i].name;
3513
17a2f251 3514 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3515 if (retval != NULL)
3516 as_fatal (_("internal: can't hash `%s': %s"),
3517 mips16_opcodes[i].name, retval);
3518 do
3519 {
fc76e730
RS
3520 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3521 broken = 1;
1e915849
RS
3522 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3523 {
3524 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3525 mips16_nop_insn.fixed_p = 1;
3526 }
252b5132
RH
3527 ++i;
3528 }
3529 while (i < bfd_mips16_num_opcodes
3530 && strcmp (mips16_opcodes[i].name, name) == 0);
3531 }
3532
df58fc94 3533 micromips_op_hash = hash_new ();
fc76e730
RS
3534 micromips_operands = XCNEWVEC (struct mips_operand_array,
3535 bfd_micromips_num_opcodes);
df58fc94
RS
3536
3537 i = 0;
3538 while (i < bfd_micromips_num_opcodes)
3539 {
3540 const char *name = micromips_opcodes[i].name;
3541
3542 retval = hash_insert (micromips_op_hash, name,
3543 (void *) &micromips_opcodes[i]);
3544 if (retval != NULL)
3545 as_fatal (_("internal: can't hash `%s': %s"),
3546 micromips_opcodes[i].name, retval);
3547 do
fc76e730
RS
3548 {
3549 struct mips_cl_insn *micromips_nop_insn;
3550
3551 if (!validate_micromips_insn (&micromips_opcodes[i],
3552 &micromips_operands[i]))
3553 broken = 1;
3554
3555 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3556 {
3557 if (micromips_insn_length (micromips_opcodes + i) == 2)
3558 micromips_nop_insn = &micromips_nop16_insn;
3559 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3560 micromips_nop_insn = &micromips_nop32_insn;
3561 else
3562 continue;
3563
3564 if (micromips_nop_insn->insn_mo == NULL
3565 && strcmp (name, "nop") == 0)
3566 {
3567 create_insn (micromips_nop_insn, micromips_opcodes + i);
3568 micromips_nop_insn->fixed_p = 1;
3569 }
3570 }
3571 }
df58fc94
RS
3572 while (++i < bfd_micromips_num_opcodes
3573 && strcmp (micromips_opcodes[i].name, name) == 0);
3574 }
3575
252b5132 3576 if (broken)
1661c76c 3577 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3578
3579 /* We add all the general register names to the symbol table. This
3580 helps us detect invalid uses of them. */
3739860c 3581 for (i = 0; reg_names[i].name; i++)
707bfff6 3582 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3583 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3584 &zero_address_frag));
3585 if (HAVE_NEWABI)
3739860c 3586 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3587 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3588 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3589 &zero_address_frag));
707bfff6 3590 else
3739860c 3591 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3592 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3593 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3594 &zero_address_frag));
6047c971 3595
14daeee3
RS
3596 for (i = 0; i < 32; i++)
3597 {
3598 char regname[7];
3599
3600 /* R5900 VU0 floating-point register. */
3601 regname[sizeof (rename) - 1] = 0;
3602 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3603 symbol_table_insert (symbol_new (regname, reg_section,
3604 RTYPE_VF | i, &zero_address_frag));
3605
3606 /* R5900 VU0 integer register. */
3607 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VI | i, &zero_address_frag));
3610
56d438b1
CF
3611 /* MSA register. */
3612 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3615 }
3616
a92713e6
RS
3617 obstack_init (&mips_operand_tokens);
3618
7d10b47d 3619 mips_no_prev_insn ();
252b5132
RH
3620
3621 mips_gprmask = 0;
3622 mips_cprmask[0] = 0;
3623 mips_cprmask[1] = 0;
3624 mips_cprmask[2] = 0;
3625 mips_cprmask[3] = 0;
3626
3627 /* set the default alignment for the text section (2**2) */
3628 record_alignment (text_section, 2);
3629
4d0d148d 3630 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3631
f3ded42a
RS
3632 /* On a native system other than VxWorks, sections must be aligned
3633 to 16 byte boundaries. When configured for an embedded ELF
3634 target, we don't bother. */
3635 if (strncmp (TARGET_OS, "elf", 3) != 0
3636 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3637 {
f3ded42a
RS
3638 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3639 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3640 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3641 }
252b5132 3642
f3ded42a
RS
3643 /* Create a .reginfo section for register masks and a .mdebug
3644 section for debugging information. */
3645 {
3646 segT seg;
3647 subsegT subseg;
3648 flagword flags;
3649 segT sec;
3650
3651 seg = now_seg;
3652 subseg = now_subseg;
3653
3654 /* The ABI says this section should be loaded so that the
3655 running program can access it. However, we don't load it
3656 if we are configured for an embedded target */
3657 flags = SEC_READONLY | SEC_DATA;
3658 if (strncmp (TARGET_OS, "elf", 3) != 0)
3659 flags |= SEC_ALLOC | SEC_LOAD;
3660
3661 if (mips_abi != N64_ABI)
252b5132 3662 {
f3ded42a 3663 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3664
f3ded42a
RS
3665 bfd_set_section_flags (stdoutput, sec, flags);
3666 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3667
f3ded42a
RS
3668 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3669 }
3670 else
3671 {
3672 /* The 64-bit ABI uses a .MIPS.options section rather than
3673 .reginfo section. */
3674 sec = subseg_new (".MIPS.options", (subsegT) 0);
3675 bfd_set_section_flags (stdoutput, sec, flags);
3676 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3677
f3ded42a
RS
3678 /* Set up the option header. */
3679 {
3680 Elf_Internal_Options opthdr;
3681 char *f;
3682
3683 opthdr.kind = ODK_REGINFO;
3684 opthdr.size = (sizeof (Elf_External_Options)
3685 + sizeof (Elf64_External_RegInfo));
3686 opthdr.section = 0;
3687 opthdr.info = 0;
3688 f = frag_more (sizeof (Elf_External_Options));
3689 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3690 (Elf_External_Options *) f);
3691
3692 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3693 }
3694 }
252b5132 3695
351cdf24
MF
3696 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3697 bfd_set_section_flags (stdoutput, sec,
3698 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3699 bfd_set_section_alignment (stdoutput, sec, 3);
3700 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3701
f3ded42a
RS
3702 if (ECOFF_DEBUGGING)
3703 {
3704 sec = subseg_new (".mdebug", (subsegT) 0);
3705 (void) bfd_set_section_flags (stdoutput, sec,
3706 SEC_HAS_CONTENTS | SEC_READONLY);
3707 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3708 }
f3ded42a
RS
3709 else if (mips_flag_pdr)
3710 {
3711 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3712 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3713 SEC_READONLY | SEC_RELOC
3714 | SEC_DEBUGGING);
3715 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3716 }
3717
3718 subseg_set (seg, subseg);
3719 }
252b5132 3720
71400594
RS
3721 if (mips_fix_vr4120)
3722 init_vr4120_conflicts ();
252b5132
RH
3723}
3724
351cdf24
MF
3725static inline void
3726fpabi_incompatible_with (int fpabi, const char *what)
3727{
3728 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3729 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3730}
3731
3732static inline void
3733fpabi_requires (int fpabi, const char *what)
3734{
3735 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3736 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3737}
3738
3739/* Check -mabi and register sizes against the specified FP ABI. */
3740static void
3741check_fpabi (int fpabi)
3742{
351cdf24
MF
3743 switch (fpabi)
3744 {
3745 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3746 if (file_mips_opts.soft_float)
3747 fpabi_incompatible_with (fpabi, "softfloat");
3748 else if (file_mips_opts.single_float)
3749 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3750 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3751 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3752 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3753 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3754 break;
3755
3756 case Val_GNU_MIPS_ABI_FP_XX:
3757 if (mips_abi != O32_ABI)
3758 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3759 else if (file_mips_opts.soft_float)
3760 fpabi_incompatible_with (fpabi, "softfloat");
3761 else if (file_mips_opts.single_float)
3762 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3763 else if (file_mips_opts.fp != 0)
3764 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3765 break;
3766
3767 case Val_GNU_MIPS_ABI_FP_64A:
3768 case Val_GNU_MIPS_ABI_FP_64:
3769 if (mips_abi != O32_ABI)
3770 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3771 else if (file_mips_opts.soft_float)
3772 fpabi_incompatible_with (fpabi, "softfloat");
3773 else if (file_mips_opts.single_float)
3774 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3775 else if (file_mips_opts.fp != 64)
3776 fpabi_requires (fpabi, "fp=64");
3777 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3778 fpabi_incompatible_with (fpabi, "nooddspreg");
3779 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3780 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3781 break;
3782
3783 case Val_GNU_MIPS_ABI_FP_SINGLE:
3784 if (file_mips_opts.soft_float)
3785 fpabi_incompatible_with (fpabi, "softfloat");
3786 else if (!file_mips_opts.single_float)
3787 fpabi_requires (fpabi, "singlefloat");
3788 break;
3789
3790 case Val_GNU_MIPS_ABI_FP_SOFT:
3791 if (!file_mips_opts.soft_float)
3792 fpabi_requires (fpabi, "softfloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_OLD_64:
3796 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3797 Tag_GNU_MIPS_ABI_FP, fpabi);
3798 break;
3799
3350cc01
CM
3800 case Val_GNU_MIPS_ABI_FP_NAN2008:
3801 /* Silently ignore compatibility value. */
3802 break;
3803
351cdf24
MF
3804 default:
3805 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3806 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3807 break;
3808 }
351cdf24
MF
3809}
3810
919731af 3811/* Perform consistency checks on the current options. */
3812
3813static void
3814mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3815{
3816 /* Check the size of integer registers agrees with the ABI and ISA. */
3817 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3818 as_bad (_("`gp=64' used with a 32-bit processor"));
3819 else if (abi_checks
3820 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3821 as_bad (_("`gp=32' used with a 64-bit ABI"));
3822 else if (abi_checks
3823 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3824 as_bad (_("`gp=64' used with a 32-bit ABI"));
3825
3826 /* Check the size of the float registers agrees with the ABI and ISA. */
3827 switch (opts->fp)
3828 {
351cdf24
MF
3829 case 0:
3830 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3831 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3832 else if (opts->single_float == 1)
3833 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3834 break;
919731af 3835 case 64:
3836 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3837 as_bad (_("`fp=64' used with a 32-bit fpu"));
3838 else if (abi_checks
3839 && ABI_NEEDS_32BIT_REGS (mips_abi)
3840 && !ISA_HAS_MXHC1 (opts->isa))
3841 as_warn (_("`fp=64' used with a 32-bit ABI"));
3842 break;
3843 case 32:
3844 if (abi_checks
3845 && ABI_NEEDS_64BIT_REGS (mips_abi))
3846 as_warn (_("`fp=32' used with a 64-bit ABI"));
7361da2c
AB
3847 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3848 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3849 break;
3850 default:
3851 as_bad (_("Unknown size of floating point registers"));
3852 break;
3853 }
3854
351cdf24
MF
3855 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3856 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3857
919731af 3858 if (opts->micromips == 1 && opts->mips16 == 1)
3859 as_bad (_("`mips16' cannot be used with `micromips'"));
7361da2c
AB
3860 else if (ISA_IS_R6 (mips_opts.isa)
3861 && (opts->micromips == 1
3862 || opts->mips16 == 1))
3863 as_fatal (_("`%s' can not be used with `%s'"),
3864 opts->micromips ? "micromips" : "mips16",
3865 mips_cpu_info_from_isa (mips_opts.isa)->name);
3866
3867 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3868 as_fatal (_("branch relaxation is not supported in `%s'"),
3869 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3870}
3871
3872/* Perform consistency checks on the module level options exactly once.
3873 This is a deferred check that happens:
3874 at the first .set directive
3875 or, at the first pseudo op that generates code (inc .dc.a)
3876 or, at the first instruction
3877 or, at the end. */
3878
3879static void
3880file_mips_check_options (void)
3881{
3882 const struct mips_cpu_info *arch_info = 0;
3883
3884 if (file_mips_opts_checked)
3885 return;
3886
3887 /* The following code determines the register size.
3888 Similar code was added to GCC 3.3 (see override_options() in
3889 config/mips/mips.c). The GAS and GCC code should be kept in sync
3890 as much as possible. */
3891
3892 if (file_mips_opts.gp < 0)
3893 {
3894 /* Infer the integer register size from the ABI and processor.
3895 Restrict ourselves to 32-bit registers if that's all the
3896 processor has, or if the ABI cannot handle 64-bit registers. */
3897 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3898 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3899 ? 32 : 64;
3900 }
3901
3902 if (file_mips_opts.fp < 0)
3903 {
3904 /* No user specified float register size.
3905 ??? GAS treats single-float processors as though they had 64-bit
3906 float registers (although it complains when double-precision
3907 instructions are used). As things stand, saying they have 32-bit
3908 registers would lead to spurious "register must be even" messages.
3909 So here we assume float registers are never smaller than the
3910 integer ones. */
3911 if (file_mips_opts.gp == 64)
3912 /* 64-bit integer registers implies 64-bit float registers. */
3913 file_mips_opts.fp = 64;
3914 else if ((file_mips_opts.ase & FP64_ASES)
3915 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3916 /* Handle ASEs that require 64-bit float registers, if possible. */
3917 file_mips_opts.fp = 64;
7361da2c
AB
3918 else if (ISA_IS_R6 (mips_opts.isa))
3919 /* R6 implies 64-bit float registers. */
3920 file_mips_opts.fp = 64;
919731af 3921 else
3922 /* 32-bit float registers. */
3923 file_mips_opts.fp = 32;
3924 }
3925
3926 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3927
351cdf24
MF
3928 /* Disable operations on odd-numbered floating-point registers by default
3929 when using the FPXX ABI. */
3930 if (file_mips_opts.oddspreg < 0)
3931 {
3932 if (file_mips_opts.fp == 0)
3933 file_mips_opts.oddspreg = 0;
3934 else
3935 file_mips_opts.oddspreg = 1;
3936 }
3937
919731af 3938 /* End of GCC-shared inference code. */
3939
3940 /* This flag is set when we have a 64-bit capable CPU but use only
3941 32-bit wide registers. Note that EABI does not use it. */
3942 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3943 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3944 || mips_abi == O32_ABI))
3945 mips_32bitmode = 1;
3946
3947 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3948 as_bad (_("trap exception not supported at ISA 1"));
3949
3950 /* If the selected architecture includes support for ASEs, enable
3951 generation of code for them. */
3952 if (file_mips_opts.mips16 == -1)
3953 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3954 if (file_mips_opts.micromips == -1)
3955 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3956 ? 1 : 0;
3957
7361da2c
AB
3958 if (mips_nan2008 == -1)
3959 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3960 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3961 as_fatal (_("`%s' does not support legacy NaN"),
3962 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3963
919731af 3964 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3965 being selected implicitly. */
3966 if (file_mips_opts.fp != 64)
3967 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3968
3969 /* If the user didn't explicitly select or deselect a particular ASE,
3970 use the default setting for the CPU. */
3971 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3972
3973 /* Set up the current options. These may change throughout assembly. */
3974 mips_opts = file_mips_opts;
3975
3976 mips_check_isa_supports_ases ();
3977 mips_check_options (&file_mips_opts, TRUE);
3978 file_mips_opts_checked = TRUE;
3979
3980 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3981 as_warn (_("could not set architecture and machine"));
3982}
3983
252b5132 3984void
17a2f251 3985md_assemble (char *str)
252b5132
RH
3986{
3987 struct mips_cl_insn insn;
f6688943
TS
3988 bfd_reloc_code_real_type unused_reloc[3]
3989 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 3990
919731af 3991 file_mips_check_options ();
3992
252b5132 3993 imm_expr.X_op = O_absent;
252b5132 3994 offset_expr.X_op = O_absent;
f6688943
TS
3995 offset_reloc[0] = BFD_RELOC_UNUSED;
3996 offset_reloc[1] = BFD_RELOC_UNUSED;
3997 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 3998
e1b47bd5
RS
3999 mips_mark_labels ();
4000 mips_assembling_insn = TRUE;
e3de51ce 4001 clear_insn_error ();
e1b47bd5 4002
252b5132
RH
4003 if (mips_opts.mips16)
4004 mips16_ip (str, &insn);
4005 else
4006 {
4007 mips_ip (str, &insn);
beae10d5
KH
4008 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4009 str, insn.insn_opcode));
252b5132
RH
4010 }
4011
e3de51ce
RS
4012 if (insn_error.msg)
4013 report_insn_error (str);
e1b47bd5 4014 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4015 {
584892a6 4016 macro_start ();
252b5132
RH
4017 if (mips_opts.mips16)
4018 mips16_macro (&insn);
4019 else
833794fc 4020 macro (&insn, str);
584892a6 4021 macro_end ();
252b5132
RH
4022 }
4023 else
4024 {
77bd4346 4025 if (offset_expr.X_op != O_absent)
df58fc94 4026 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4027 else
df58fc94 4028 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4029 }
e1b47bd5
RS
4030
4031 mips_assembling_insn = FALSE;
252b5132
RH
4032}
4033
738e5348
RS
4034/* Convenience functions for abstracting away the differences between
4035 MIPS16 and non-MIPS16 relocations. */
4036
4037static inline bfd_boolean
4038mips16_reloc_p (bfd_reloc_code_real_type reloc)
4039{
4040 switch (reloc)
4041 {
4042 case BFD_RELOC_MIPS16_JMP:
4043 case BFD_RELOC_MIPS16_GPREL:
4044 case BFD_RELOC_MIPS16_GOT16:
4045 case BFD_RELOC_MIPS16_CALL16:
4046 case BFD_RELOC_MIPS16_HI16_S:
4047 case BFD_RELOC_MIPS16_HI16:
4048 case BFD_RELOC_MIPS16_LO16:
4049 return TRUE;
4050
4051 default:
4052 return FALSE;
4053 }
4054}
4055
df58fc94
RS
4056static inline bfd_boolean
4057micromips_reloc_p (bfd_reloc_code_real_type reloc)
4058{
4059 switch (reloc)
4060 {
4061 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4062 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4063 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4064 case BFD_RELOC_MICROMIPS_GPREL16:
4065 case BFD_RELOC_MICROMIPS_JMP:
4066 case BFD_RELOC_MICROMIPS_HI16:
4067 case BFD_RELOC_MICROMIPS_HI16_S:
4068 case BFD_RELOC_MICROMIPS_LO16:
4069 case BFD_RELOC_MICROMIPS_LITERAL:
4070 case BFD_RELOC_MICROMIPS_GOT16:
4071 case BFD_RELOC_MICROMIPS_CALL16:
4072 case BFD_RELOC_MICROMIPS_GOT_HI16:
4073 case BFD_RELOC_MICROMIPS_GOT_LO16:
4074 case BFD_RELOC_MICROMIPS_CALL_HI16:
4075 case BFD_RELOC_MICROMIPS_CALL_LO16:
4076 case BFD_RELOC_MICROMIPS_SUB:
4077 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4078 case BFD_RELOC_MICROMIPS_GOT_OFST:
4079 case BFD_RELOC_MICROMIPS_GOT_DISP:
4080 case BFD_RELOC_MICROMIPS_HIGHEST:
4081 case BFD_RELOC_MICROMIPS_HIGHER:
4082 case BFD_RELOC_MICROMIPS_SCN_DISP:
4083 case BFD_RELOC_MICROMIPS_JALR:
4084 return TRUE;
4085
4086 default:
4087 return FALSE;
4088 }
4089}
4090
2309ddf2
MR
4091static inline bfd_boolean
4092jmp_reloc_p (bfd_reloc_code_real_type reloc)
4093{
4094 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4095}
4096
738e5348
RS
4097static inline bfd_boolean
4098got16_reloc_p (bfd_reloc_code_real_type reloc)
4099{
2309ddf2 4100 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4101 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4102}
4103
4104static inline bfd_boolean
4105hi16_reloc_p (bfd_reloc_code_real_type reloc)
4106{
2309ddf2 4107 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4108 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4109}
4110
4111static inline bfd_boolean
4112lo16_reloc_p (bfd_reloc_code_real_type reloc)
4113{
2309ddf2 4114 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4115 || reloc == BFD_RELOC_MICROMIPS_LO16);
4116}
4117
df58fc94
RS
4118static inline bfd_boolean
4119jalr_reloc_p (bfd_reloc_code_real_type reloc)
4120{
2309ddf2 4121 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4122}
4123
f2ae14a1
RS
4124static inline bfd_boolean
4125gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4126{
4127 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4128 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4129}
4130
2de39019
CM
4131/* Return true if RELOC is a PC-relative relocation that does not have
4132 full address range. */
4133
4134static inline bfd_boolean
4135limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4136{
4137 switch (reloc)
4138 {
4139 case BFD_RELOC_16_PCREL_S2:
4140 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4141 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4142 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4143 case BFD_RELOC_MIPS_21_PCREL_S2:
4144 case BFD_RELOC_MIPS_26_PCREL_S2:
4145 case BFD_RELOC_MIPS_18_PCREL_S3:
4146 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4147 return TRUE;
4148
b47468a6 4149 case BFD_RELOC_32_PCREL:
7361da2c
AB
4150 case BFD_RELOC_HI16_S_PCREL:
4151 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4152 return HAVE_64BIT_ADDRESSES;
4153
2de39019
CM
4154 default:
4155 return FALSE;
4156 }
4157}
b47468a6 4158
5919d012 4159/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4160 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4161 need a matching %lo() when applied to local symbols. */
5919d012
RS
4162
4163static inline bfd_boolean
17a2f251 4164reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4165{
3b91255e 4166 return (HAVE_IN_PLACE_ADDENDS
738e5348 4167 && (hi16_reloc_p (reloc)
0a44bf69
RS
4168 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4169 all GOT16 relocations evaluate to "G". */
738e5348
RS
4170 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4171}
4172
4173/* Return the type of %lo() reloc needed by RELOC, given that
4174 reloc_needs_lo_p. */
4175
4176static inline bfd_reloc_code_real_type
4177matching_lo_reloc (bfd_reloc_code_real_type reloc)
4178{
df58fc94
RS
4179 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4180 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4181 : BFD_RELOC_LO16));
5919d012
RS
4182}
4183
4184/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4185 relocation. */
4186
4187static inline bfd_boolean
17a2f251 4188fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4189{
4190 return (fixp->fx_next != NULL
738e5348 4191 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4192 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4193 && fixp->fx_offset == fixp->fx_next->fx_offset);
4194}
4195
462427c4
RS
4196/* Move all labels in LABELS to the current insertion point. TEXT_P
4197 says whether the labels refer to text or data. */
404a8071
RS
4198
4199static void
462427c4 4200mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4201{
4202 struct insn_label_list *l;
4203 valueT val;
4204
462427c4 4205 for (l = labels; l != NULL; l = l->next)
404a8071 4206 {
9c2799c2 4207 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4208 symbol_set_frag (l->label, frag_now);
4209 val = (valueT) frag_now_fix ();
df58fc94 4210 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4211 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4212 ++val;
4213 S_SET_VALUE (l->label, val);
4214 }
4215}
4216
462427c4
RS
4217/* Move all labels in insn_labels to the current insertion point
4218 and treat them as text labels. */
4219
4220static void
4221mips_move_text_labels (void)
4222{
4223 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4224}
4225
5f0fe04b
TS
4226static bfd_boolean
4227s_is_linkonce (symbolS *sym, segT from_seg)
4228{
4229 bfd_boolean linkonce = FALSE;
4230 segT symseg = S_GET_SEGMENT (sym);
4231
4232 if (symseg != from_seg && !S_IS_LOCAL (sym))
4233 {
4234 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4235 linkonce = TRUE;
5f0fe04b
TS
4236 /* The GNU toolchain uses an extension for ELF: a section
4237 beginning with the magic string .gnu.linkonce is a
4238 linkonce section. */
4239 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4240 sizeof ".gnu.linkonce" - 1) == 0)
4241 linkonce = TRUE;
5f0fe04b
TS
4242 }
4243 return linkonce;
4244}
4245
e1b47bd5 4246/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4247 linker to handle them specially, such as generating jalx instructions
4248 when needed. We also make them odd for the duration of the assembly,
4249 in order to generate the right sort of code. We will make them even
252b5132
RH
4250 in the adjust_symtab routine, while leaving them marked. This is
4251 convenient for the debugger and the disassembler. The linker knows
4252 to make them odd again. */
4253
4254static void
e1b47bd5 4255mips_compressed_mark_label (symbolS *label)
252b5132 4256{
df58fc94 4257 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4258
f3ded42a
RS
4259 if (mips_opts.mips16)
4260 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4261 else
4262 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4263 if ((S_GET_VALUE (label) & 1) == 0
4264 /* Don't adjust the address if the label is global or weak, or
4265 in a link-once section, since we'll be emitting symbol reloc
4266 references to it which will be patched up by the linker, and
4267 the final value of the symbol may or may not be MIPS16/microMIPS. */
4268 && !S_IS_WEAK (label)
4269 && !S_IS_EXTERNAL (label)
4270 && !s_is_linkonce (label, now_seg))
4271 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4272}
4273
4274/* Mark preceding MIPS16 or microMIPS instruction labels. */
4275
4276static void
4277mips_compressed_mark_labels (void)
4278{
4279 struct insn_label_list *l;
4280
4281 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4282 mips_compressed_mark_label (l->label);
252b5132
RH
4283}
4284
4d7206a2
RS
4285/* End the current frag. Make it a variant frag and record the
4286 relaxation info. */
4287
4288static void
4289relax_close_frag (void)
4290{
584892a6 4291 mips_macro_warning.first_frag = frag_now;
4d7206a2 4292 frag_var (rs_machine_dependent, 0, 0,
584892a6 4293 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4294 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4295
4296 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4297 mips_relax.first_fixup = 0;
4298}
4299
4300/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4301 See the comment above RELAX_ENCODE for more details. */
4302
4303static void
4304relax_start (symbolS *symbol)
4305{
9c2799c2 4306 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4307 mips_relax.sequence = 1;
4308 mips_relax.symbol = symbol;
4309}
4310
4311/* Start generating the second version of a relaxable sequence.
4312 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4313
4314static void
4d7206a2
RS
4315relax_switch (void)
4316{
9c2799c2 4317 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4318 mips_relax.sequence = 2;
4319}
4320
4321/* End the current relaxable sequence. */
4322
4323static void
4324relax_end (void)
4325{
9c2799c2 4326 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4327 relax_close_frag ();
4328 mips_relax.sequence = 0;
4329}
4330
11625dd8
RS
4331/* Return true if IP is a delayed branch or jump. */
4332
4333static inline bfd_boolean
4334delayed_branch_p (const struct mips_cl_insn *ip)
4335{
4336 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4337 | INSN_COND_BRANCH_DELAY
4338 | INSN_COND_BRANCH_LIKELY)) != 0;
4339}
4340
4341/* Return true if IP is a compact branch or jump. */
4342
4343static inline bfd_boolean
4344compact_branch_p (const struct mips_cl_insn *ip)
4345{
26545944
RS
4346 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4347 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4348}
4349
4350/* Return true if IP is an unconditional branch or jump. */
4351
4352static inline bfd_boolean
4353uncond_branch_p (const struct mips_cl_insn *ip)
4354{
4355 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4356 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4357}
4358
4359/* Return true if IP is a branch-likely instruction. */
4360
4361static inline bfd_boolean
4362branch_likely_p (const struct mips_cl_insn *ip)
4363{
4364 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4365}
4366
14fe068b
RS
4367/* Return the type of nop that should be used to fill the delay slot
4368 of delayed branch IP. */
4369
4370static struct mips_cl_insn *
4371get_delay_slot_nop (const struct mips_cl_insn *ip)
4372{
4373 if (mips_opts.micromips
4374 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4375 return &micromips_nop32_insn;
4376 return NOP_INSN;
4377}
4378
fc76e730
RS
4379/* Return a mask that has bit N set if OPCODE reads the register(s)
4380 in operand N. */
df58fc94
RS
4381
4382static unsigned int
fc76e730 4383insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4384{
fc76e730
RS
4385 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4386}
df58fc94 4387
fc76e730
RS
4388/* Return a mask that has bit N set if OPCODE writes to the register(s)
4389 in operand N. */
4390
4391static unsigned int
4392insn_write_mask (const struct mips_opcode *opcode)
4393{
4394 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4395}
4396
4397/* Return a mask of the registers specified by operand OPERAND of INSN.
4398 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4399 is set. */
4400
4401static unsigned int
4402operand_reg_mask (const struct mips_cl_insn *insn,
4403 const struct mips_operand *operand,
4404 unsigned int type_mask)
4405{
4406 unsigned int uval, vsel;
4407
4408 switch (operand->type)
df58fc94 4409 {
fc76e730
RS
4410 case OP_INT:
4411 case OP_MAPPED_INT:
4412 case OP_MSB:
4413 case OP_PCREL:
4414 case OP_PERF_REG:
4415 case OP_ADDIUSP_INT:
4416 case OP_ENTRY_EXIT_LIST:
4417 case OP_REPEAT_DEST_REG:
4418 case OP_REPEAT_PREV_REG:
4419 case OP_PC:
14daeee3
RS
4420 case OP_VU0_SUFFIX:
4421 case OP_VU0_MATCH_SUFFIX:
56d438b1 4422 case OP_IMM_INDEX:
fc76e730
RS
4423 abort ();
4424
4425 case OP_REG:
0f35dbc4 4426 case OP_OPTIONAL_REG:
fc76e730
RS
4427 {
4428 const struct mips_reg_operand *reg_op;
4429
4430 reg_op = (const struct mips_reg_operand *) operand;
4431 if (!(type_mask & (1 << reg_op->reg_type)))
4432 return 0;
4433 uval = insn_extract_operand (insn, operand);
4434 return 1 << mips_decode_reg_operand (reg_op, uval);
4435 }
4436
4437 case OP_REG_PAIR:
4438 {
4439 const struct mips_reg_pair_operand *pair_op;
4440
4441 pair_op = (const struct mips_reg_pair_operand *) operand;
4442 if (!(type_mask & (1 << pair_op->reg_type)))
4443 return 0;
4444 uval = insn_extract_operand (insn, operand);
4445 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4446 }
4447
4448 case OP_CLO_CLZ_DEST:
4449 if (!(type_mask & (1 << OP_REG_GP)))
4450 return 0;
4451 uval = insn_extract_operand (insn, operand);
4452 return (1 << (uval & 31)) | (1 << (uval >> 5));
4453
7361da2c
AB
4454 case OP_SAME_RS_RT:
4455 if (!(type_mask & (1 << OP_REG_GP)))
4456 return 0;
4457 uval = insn_extract_operand (insn, operand);
4458 gas_assert ((uval & 31) == (uval >> 5));
4459 return 1 << (uval & 31);
4460
4461 case OP_CHECK_PREV:
4462 case OP_NON_ZERO_REG:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4464 return 0;
4465 uval = insn_extract_operand (insn, operand);
4466 return 1 << (uval & 31);
4467
fc76e730
RS
4468 case OP_LWM_SWM_LIST:
4469 abort ();
4470
4471 case OP_SAVE_RESTORE_LIST:
4472 abort ();
4473
4474 case OP_MDMX_IMM_REG:
4475 if (!(type_mask & (1 << OP_REG_VEC)))
4476 return 0;
4477 uval = insn_extract_operand (insn, operand);
4478 vsel = uval >> 5;
4479 if ((vsel & 0x18) == 0x18)
4480 return 0;
4481 return 1 << (uval & 31);
56d438b1
CF
4482
4483 case OP_REG_INDEX:
4484 if (!(type_mask & (1 << OP_REG_GP)))
4485 return 0;
4486 return 1 << insn_extract_operand (insn, operand);
df58fc94 4487 }
fc76e730
RS
4488 abort ();
4489}
4490
4491/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4492 where bit N of OPNO_MASK is set if operand N should be included.
4493 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4494 is set. */
4495
4496static unsigned int
4497insn_reg_mask (const struct mips_cl_insn *insn,
4498 unsigned int type_mask, unsigned int opno_mask)
4499{
4500 unsigned int opno, reg_mask;
4501
4502 opno = 0;
4503 reg_mask = 0;
4504 while (opno_mask != 0)
4505 {
4506 if (opno_mask & 1)
4507 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4508 opno_mask >>= 1;
4509 opno += 1;
4510 }
4511 return reg_mask;
df58fc94
RS
4512}
4513
4c260379
RS
4514/* Return the mask of core registers that IP reads. */
4515
4516static unsigned int
4517gpr_read_mask (const struct mips_cl_insn *ip)
4518{
4519 unsigned long pinfo, pinfo2;
4520 unsigned int mask;
4521
fc76e730 4522 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4523 pinfo = ip->insn_mo->pinfo;
4524 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4525 if (pinfo & INSN_UDI)
4c260379 4526 {
fc76e730
RS
4527 /* UDI instructions have traditionally been assumed to read RS
4528 and RT. */
4529 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4530 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4531 }
fc76e730
RS
4532 if (pinfo & INSN_READ_GPR_24)
4533 mask |= 1 << 24;
4534 if (pinfo2 & INSN2_READ_GPR_16)
4535 mask |= 1 << 16;
4536 if (pinfo2 & INSN2_READ_SP)
4537 mask |= 1 << SP;
26545944 4538 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4539 mask |= 1 << 31;
fe35f09f
RS
4540 /* Don't include register 0. */
4541 return mask & ~1;
4c260379
RS
4542}
4543
4544/* Return the mask of core registers that IP writes. */
4545
4546static unsigned int
4547gpr_write_mask (const struct mips_cl_insn *ip)
4548{
4549 unsigned long pinfo, pinfo2;
4550 unsigned int mask;
4551
fc76e730 4552 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4553 pinfo = ip->insn_mo->pinfo;
4554 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4555 if (pinfo & INSN_WRITE_GPR_24)
4556 mask |= 1 << 24;
4557 if (pinfo & INSN_WRITE_GPR_31)
4558 mask |= 1 << 31;
4559 if (pinfo & INSN_UDI)
4560 /* UDI instructions have traditionally been assumed to write to RD. */
4561 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4562 if (pinfo2 & INSN2_WRITE_SP)
4563 mask |= 1 << SP;
fe35f09f
RS
4564 /* Don't include register 0. */
4565 return mask & ~1;
4c260379
RS
4566}
4567
4568/* Return the mask of floating-point registers that IP reads. */
4569
4570static unsigned int
4571fpr_read_mask (const struct mips_cl_insn *ip)
4572{
fc76e730 4573 unsigned long pinfo;
4c260379
RS
4574 unsigned int mask;
4575
9d5de888
CF
4576 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4577 | (1 << OP_REG_MSA)),
fc76e730 4578 insn_read_mask (ip->insn_mo));
4c260379 4579 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4580 /* Conservatively treat all operands to an FP_D instruction are doubles.
4581 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4582 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4583 mask |= mask << 1;
4584 return mask;
4585}
4586
4587/* Return the mask of floating-point registers that IP writes. */
4588
4589static unsigned int
4590fpr_write_mask (const struct mips_cl_insn *ip)
4591{
fc76e730 4592 unsigned long pinfo;
4c260379
RS
4593 unsigned int mask;
4594
9d5de888
CF
4595 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4596 | (1 << OP_REG_MSA)),
fc76e730 4597 insn_write_mask (ip->insn_mo));
4c260379 4598 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4599 /* Conservatively treat all operands to an FP_D instruction are doubles.
4600 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4601 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4602 mask |= mask << 1;
4603 return mask;
4604}
4605
a1d78564
RS
4606/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4607 Check whether that is allowed. */
4608
4609static bfd_boolean
4610mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4611{
4612 const char *s = insn->name;
351cdf24
MF
4613 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4614 || FPR_SIZE == 64)
4615 && mips_opts.oddspreg;
a1d78564
RS
4616
4617 if (insn->pinfo == INSN_MACRO)
4618 /* Let a macro pass, we'll catch it later when it is expanded. */
4619 return TRUE;
4620
351cdf24
MF
4621 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4622 otherwise it depends on oddspreg. */
4623 if ((insn->pinfo & FP_S)
4624 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4625 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4626 return FPR_SIZE == 32 || oddspreg;
a1d78564 4627
351cdf24
MF
4628 /* Allow odd registers for single-precision ops and double-precision if the
4629 floating-point registers are 64-bit wide. */
4630 switch (insn->pinfo & (FP_S | FP_D))
4631 {
4632 case FP_S:
4633 case 0:
4634 return oddspreg;
4635 case FP_D:
4636 return FPR_SIZE == 64;
4637 default:
4638 break;
a1d78564
RS
4639 }
4640
351cdf24
MF
4641 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4642 s = strchr (insn->name, '.');
4643 if (s != NULL && opnum == 2)
4644 s = strchr (s + 1, '.');
4645 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4646 return oddspreg;
a1d78564 4647
351cdf24 4648 return FPR_SIZE == 64;
a1d78564
RS
4649}
4650
a1d78564
RS
4651/* Information about an instruction argument that we're trying to match. */
4652struct mips_arg_info
4653{
4654 /* The instruction so far. */
4655 struct mips_cl_insn *insn;
4656
a92713e6
RS
4657 /* The first unconsumed operand token. */
4658 struct mips_operand_token *token;
4659
a1d78564
RS
4660 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4661 int opnum;
4662
4663 /* The 1-based argument number, for error reporting. This does not
4664 count elided optional registers, etc.. */
4665 int argnum;
4666
4667 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4668 unsigned int last_regno;
4669
4670 /* If the first operand was an OP_REG, this is the register that it
4671 specified, otherwise it is ILLEGAL_REG. */
4672 unsigned int dest_regno;
4673
4674 /* The value of the last OP_INT operand. Only used for OP_MSB,
4675 where it gives the lsb position. */
4676 unsigned int last_op_int;
4677
60f20e8b
RS
4678 /* If true, match routines should assume that no later instruction
4679 alternative matches and should therefore be as accomodating as
4680 possible. Match routines should not report errors if something
4681 is only invalid for !LAX_MATCH. */
4682 bfd_boolean lax_match;
a1d78564 4683
a1d78564
RS
4684 /* True if a reference to the current AT register was seen. */
4685 bfd_boolean seen_at;
4686};
4687
1a00e612
RS
4688/* Record that the argument is out of range. */
4689
4690static void
4691match_out_of_range (struct mips_arg_info *arg)
4692{
4693 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4694}
4695
4696/* Record that the argument isn't constant but needs to be. */
4697
4698static void
4699match_not_constant (struct mips_arg_info *arg)
4700{
4701 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4702 arg->argnum);
4703}
4704
a92713e6
RS
4705/* Try to match an OT_CHAR token for character CH. Consume the token
4706 and return true on success, otherwise return false. */
a1d78564 4707
a92713e6
RS
4708static bfd_boolean
4709match_char (struct mips_arg_info *arg, char ch)
a1d78564 4710{
a92713e6
RS
4711 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4712 {
4713 ++arg->token;
4714 if (ch == ',')
4715 arg->argnum += 1;
4716 return TRUE;
4717 }
4718 return FALSE;
4719}
a1d78564 4720
a92713e6
RS
4721/* Try to get an expression from the next tokens in ARG. Consume the
4722 tokens and return true on success, storing the expression value in
4723 VALUE and relocation types in R. */
4724
4725static bfd_boolean
4726match_expression (struct mips_arg_info *arg, expressionS *value,
4727 bfd_reloc_code_real_type *r)
4728{
d436c1c2
RS
4729 /* If the next token is a '(' that was parsed as being part of a base
4730 expression, assume we have an elided offset. The later match will fail
4731 if this turns out to be wrong. */
4732 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4733 {
d436c1c2
RS
4734 value->X_op = O_constant;
4735 value->X_add_number = 0;
4736 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4737 return TRUE;
4738 }
4739
d436c1c2
RS
4740 /* Reject register-based expressions such as "0+$2" and "(($2))".
4741 For plain registers the default error seems more appropriate. */
4742 if (arg->token->type == OT_INTEGER
4743 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4744 {
d436c1c2
RS
4745 set_insn_error (arg->argnum, _("register value used as expression"));
4746 return FALSE;
a1d78564 4747 }
d436c1c2
RS
4748
4749 if (arg->token->type == OT_INTEGER)
a92713e6 4750 {
d436c1c2
RS
4751 *value = arg->token->u.integer.value;
4752 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4753 ++arg->token;
4754 return TRUE;
a92713e6 4755 }
a92713e6 4756
d436c1c2
RS
4757 set_insn_error_i
4758 (arg->argnum, _("operand %d must be an immediate expression"),
4759 arg->argnum);
4760 return FALSE;
a92713e6
RS
4761}
4762
4763/* Try to get a constant expression from the next tokens in ARG. Consume
4764 the tokens and return return true on success, storing the constant value
4765 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4766 error. */
4767
4768static bfd_boolean
1a00e612 4769match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4770{
4771 expressionS ex;
4772 bfd_reloc_code_real_type r[3];
a1d78564 4773
a92713e6
RS
4774 if (!match_expression (arg, &ex, r))
4775 return FALSE;
4776
4777 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4778 *value = ex.X_add_number;
4779 else
4780 {
1a00e612
RS
4781 match_not_constant (arg);
4782 return FALSE;
a1d78564 4783 }
a92713e6 4784 return TRUE;
a1d78564
RS
4785}
4786
4787/* Return the RTYPE_* flags for a register operand of type TYPE that
4788 appears in instruction OPCODE. */
4789
4790static unsigned int
4791convert_reg_type (const struct mips_opcode *opcode,
4792 enum mips_reg_operand_type type)
4793{
4794 switch (type)
4795 {
4796 case OP_REG_GP:
4797 return RTYPE_NUM | RTYPE_GP;
4798
4799 case OP_REG_FP:
4800 /* Allow vector register names for MDMX if the instruction is a 64-bit
4801 FPR load, store or move (including moves to and from GPRs). */
4802 if ((mips_opts.ase & ASE_MDMX)
4803 && (opcode->pinfo & FP_D)
43885403 4804 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4805 | INSN_COPROC_MEMORY_DELAY
43885403 4806 | INSN_LOAD_COPROC
67dc82bc 4807 | INSN_LOAD_MEMORY
a1d78564
RS
4808 | INSN_STORE_MEMORY)))
4809 return RTYPE_FPU | RTYPE_VEC;
4810 return RTYPE_FPU;
4811
4812 case OP_REG_CCC:
4813 if (opcode->pinfo & (FP_D | FP_S))
4814 return RTYPE_CCC | RTYPE_FCC;
4815 return RTYPE_CCC;
4816
4817 case OP_REG_VEC:
4818 if (opcode->membership & INSN_5400)
4819 return RTYPE_FPU;
4820 return RTYPE_FPU | RTYPE_VEC;
4821
4822 case OP_REG_ACC:
4823 return RTYPE_ACC;
4824
4825 case OP_REG_COPRO:
4826 if (opcode->name[strlen (opcode->name) - 1] == '0')
4827 return RTYPE_NUM | RTYPE_CP0;
4828 return RTYPE_NUM;
4829
4830 case OP_REG_HW:
4831 return RTYPE_NUM;
14daeee3
RS
4832
4833 case OP_REG_VI:
4834 return RTYPE_NUM | RTYPE_VI;
4835
4836 case OP_REG_VF:
4837 return RTYPE_NUM | RTYPE_VF;
4838
4839 case OP_REG_R5900_I:
4840 return RTYPE_R5900_I;
4841
4842 case OP_REG_R5900_Q:
4843 return RTYPE_R5900_Q;
4844
4845 case OP_REG_R5900_R:
4846 return RTYPE_R5900_R;
4847
4848 case OP_REG_R5900_ACC:
4849 return RTYPE_R5900_ACC;
56d438b1
CF
4850
4851 case OP_REG_MSA:
4852 return RTYPE_MSA;
4853
4854 case OP_REG_MSA_CTRL:
4855 return RTYPE_NUM;
a1d78564
RS
4856 }
4857 abort ();
4858}
4859
4860/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4861
4862static void
4863check_regno (struct mips_arg_info *arg,
4864 enum mips_reg_operand_type type, unsigned int regno)
4865{
4866 if (AT && type == OP_REG_GP && regno == AT)
4867 arg->seen_at = TRUE;
4868
4869 if (type == OP_REG_FP
4870 && (regno & 1) != 0
a1d78564 4871 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4872 {
4873 /* This was a warning prior to introducing O32 FPXX and FP64 support
4874 so maintain a warning for FP32 but raise an error for the new
4875 cases. */
4876 if (FPR_SIZE == 32)
4877 as_warn (_("float register should be even, was %d"), regno);
4878 else
4879 as_bad (_("float register should be even, was %d"), regno);
4880 }
a1d78564
RS
4881
4882 if (type == OP_REG_CCC)
4883 {
4884 const char *name;
4885 size_t length;
4886
4887 name = arg->insn->insn_mo->name;
4888 length = strlen (name);
4889 if ((regno & 1) != 0
4890 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4891 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4892 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4893 name, regno);
4894
4895 if ((regno & 3) != 0
4896 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4897 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4898 name, regno);
4899 }
4900}
4901
a92713e6
RS
4902/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4903 a register of type TYPE. Return true on success, storing the register
4904 number in *REGNO and warning about any dubious uses. */
4905
4906static bfd_boolean
4907match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4908 unsigned int symval, unsigned int *regno)
4909{
4910 if (type == OP_REG_VEC)
4911 symval = mips_prefer_vec_regno (symval);
4912 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4913 return FALSE;
4914
4915 *regno = symval & RNUM_MASK;
4916 check_regno (arg, type, *regno);
4917 return TRUE;
4918}
4919
4920/* Try to interpret the next token in ARG as a register of type TYPE.
4921 Consume the token and return true on success, storing the register
4922 number in *REGNO. Return false on failure. */
4923
4924static bfd_boolean
4925match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4926 unsigned int *regno)
4927{
4928 if (arg->token->type == OT_REG
4929 && match_regno (arg, type, arg->token->u.regno, regno))
4930 {
4931 ++arg->token;
4932 return TRUE;
4933 }
4934 return FALSE;
4935}
4936
4937/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4938 Consume the token and return true on success, storing the register numbers
4939 in *REGNO1 and *REGNO2. Return false on failure. */
4940
4941static bfd_boolean
4942match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4943 unsigned int *regno1, unsigned int *regno2)
4944{
4945 if (match_reg (arg, type, regno1))
4946 {
4947 *regno2 = *regno1;
4948 return TRUE;
4949 }
4950 if (arg->token->type == OT_REG_RANGE
4951 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4952 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4953 && *regno1 <= *regno2)
4954 {
4955 ++arg->token;
4956 return TRUE;
4957 }
4958 return FALSE;
4959}
4960
a1d78564
RS
4961/* OP_INT matcher. */
4962
a92713e6 4963static bfd_boolean
a1d78564 4964match_int_operand (struct mips_arg_info *arg,
a92713e6 4965 const struct mips_operand *operand_base)
a1d78564
RS
4966{
4967 const struct mips_int_operand *operand;
3ccad066 4968 unsigned int uval;
a1d78564
RS
4969 int min_val, max_val, factor;
4970 offsetT sval;
a1d78564
RS
4971
4972 operand = (const struct mips_int_operand *) operand_base;
4973 factor = 1 << operand->shift;
3ccad066
RS
4974 min_val = mips_int_operand_min (operand);
4975 max_val = mips_int_operand_max (operand);
a1d78564 4976
d436c1c2
RS
4977 if (operand_base->lsb == 0
4978 && operand_base->size == 16
4979 && operand->shift == 0
4980 && operand->bias == 0
4981 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
4982 {
4983 /* The operand can be relocated. */
a92713e6
RS
4984 if (!match_expression (arg, &offset_expr, offset_reloc))
4985 return FALSE;
4986
4987 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
4988 /* Relocation operators were used. Accept the arguent and
4989 leave the relocation value in offset_expr and offset_relocs
4990 for the caller to process. */
a92713e6
RS
4991 return TRUE;
4992
4993 if (offset_expr.X_op != O_constant)
a1d78564 4994 {
60f20e8b
RS
4995 /* Accept non-constant operands if no later alternative matches,
4996 leaving it for the caller to process. */
4997 if (!arg->lax_match)
4998 return FALSE;
a92713e6
RS
4999 offset_reloc[0] = BFD_RELOC_LO16;
5000 return TRUE;
a1d78564 5001 }
a92713e6 5002
a1d78564
RS
5003 /* Clear the global state; we're going to install the operand
5004 ourselves. */
a92713e6 5005 sval = offset_expr.X_add_number;
a1d78564 5006 offset_expr.X_op = O_absent;
60f20e8b
RS
5007
5008 /* For compatibility with older assemblers, we accept
5009 0x8000-0xffff as signed 16-bit numbers when only
5010 signed numbers are allowed. */
5011 if (sval > max_val)
5012 {
5013 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5014 if (!arg->lax_match && sval <= max_val)
5015 return FALSE;
5016 }
a1d78564
RS
5017 }
5018 else
5019 {
1a00e612 5020 if (!match_const_int (arg, &sval))
a92713e6 5021 return FALSE;
a1d78564
RS
5022 }
5023
5024 arg->last_op_int = sval;
5025
1a00e612 5026 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5027 {
1a00e612
RS
5028 match_out_of_range (arg);
5029 return FALSE;
a1d78564
RS
5030 }
5031
5032 uval = (unsigned int) sval >> operand->shift;
5033 uval -= operand->bias;
5034
5035 /* Handle -mfix-cn63xxp1. */
5036 if (arg->opnum == 1
5037 && mips_fix_cn63xxp1
5038 && !mips_opts.micromips
5039 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5040 switch (uval)
5041 {
5042 case 5:
5043 case 25:
5044 case 26:
5045 case 27:
5046 case 28:
5047 case 29:
5048 case 30:
5049 case 31:
5050 /* These are ok. */
5051 break;
5052
5053 default:
5054 /* The rest must be changed to 28. */
5055 uval = 28;
5056 break;
5057 }
5058
5059 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5060 return TRUE;
a1d78564
RS
5061}
5062
5063/* OP_MAPPED_INT matcher. */
5064
a92713e6 5065static bfd_boolean
a1d78564 5066match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5067 const struct mips_operand *operand_base)
a1d78564
RS
5068{
5069 const struct mips_mapped_int_operand *operand;
5070 unsigned int uval, num_vals;
5071 offsetT sval;
5072
5073 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5074 if (!match_const_int (arg, &sval))
a92713e6 5075 return FALSE;
a1d78564
RS
5076
5077 num_vals = 1 << operand_base->size;
5078 for (uval = 0; uval < num_vals; uval++)
5079 if (operand->int_map[uval] == sval)
5080 break;
5081 if (uval == num_vals)
1a00e612
RS
5082 {
5083 match_out_of_range (arg);
5084 return FALSE;
5085 }
a1d78564
RS
5086
5087 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5088 return TRUE;
a1d78564
RS
5089}
5090
5091/* OP_MSB matcher. */
5092
a92713e6 5093static bfd_boolean
a1d78564 5094match_msb_operand (struct mips_arg_info *arg,
a92713e6 5095 const struct mips_operand *operand_base)
a1d78564
RS
5096{
5097 const struct mips_msb_operand *operand;
5098 int min_val, max_val, max_high;
5099 offsetT size, sval, high;
5100
5101 operand = (const struct mips_msb_operand *) operand_base;
5102 min_val = operand->bias;
5103 max_val = min_val + (1 << operand_base->size) - 1;
5104 max_high = operand->opsize;
5105
1a00e612 5106 if (!match_const_int (arg, &size))
a92713e6 5107 return FALSE;
a1d78564
RS
5108
5109 high = size + arg->last_op_int;
5110 sval = operand->add_lsb ? high : size;
5111
5112 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5113 {
1a00e612
RS
5114 match_out_of_range (arg);
5115 return FALSE;
a1d78564
RS
5116 }
5117 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5118 return TRUE;
a1d78564
RS
5119}
5120
5121/* OP_REG matcher. */
5122
a92713e6 5123static bfd_boolean
a1d78564 5124match_reg_operand (struct mips_arg_info *arg,
a92713e6 5125 const struct mips_operand *operand_base)
a1d78564
RS
5126{
5127 const struct mips_reg_operand *operand;
a92713e6 5128 unsigned int regno, uval, num_vals;
a1d78564
RS
5129
5130 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5131 if (!match_reg (arg, operand->reg_type, &regno))
5132 return FALSE;
a1d78564
RS
5133
5134 if (operand->reg_map)
5135 {
5136 num_vals = 1 << operand->root.size;
5137 for (uval = 0; uval < num_vals; uval++)
5138 if (operand->reg_map[uval] == regno)
5139 break;
5140 if (num_vals == uval)
a92713e6 5141 return FALSE;
a1d78564
RS
5142 }
5143 else
5144 uval = regno;
5145
a1d78564
RS
5146 arg->last_regno = regno;
5147 if (arg->opnum == 1)
5148 arg->dest_regno = regno;
5149 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5150 return TRUE;
a1d78564
RS
5151}
5152
5153/* OP_REG_PAIR matcher. */
5154
a92713e6 5155static bfd_boolean
a1d78564 5156match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5157 const struct mips_operand *operand_base)
a1d78564
RS
5158{
5159 const struct mips_reg_pair_operand *operand;
a92713e6 5160 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5161
5162 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5163 if (!match_reg (arg, operand->reg_type, &regno1)
5164 || !match_char (arg, ',')
5165 || !match_reg (arg, operand->reg_type, &regno2))
5166 return FALSE;
a1d78564
RS
5167
5168 num_vals = 1 << operand_base->size;
5169 for (uval = 0; uval < num_vals; uval++)
5170 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5171 break;
5172 if (uval == num_vals)
a92713e6 5173 return FALSE;
a1d78564 5174
a1d78564 5175 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5176 return TRUE;
a1d78564
RS
5177}
5178
5179/* OP_PCREL matcher. The caller chooses the relocation type. */
5180
a92713e6
RS
5181static bfd_boolean
5182match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5183{
a92713e6
RS
5184 bfd_reloc_code_real_type r[3];
5185
5186 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5187}
5188
5189/* OP_PERF_REG matcher. */
5190
a92713e6 5191static bfd_boolean
a1d78564 5192match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5193 const struct mips_operand *operand)
a1d78564
RS
5194{
5195 offsetT sval;
5196
1a00e612 5197 if (!match_const_int (arg, &sval))
a92713e6 5198 return FALSE;
a1d78564
RS
5199
5200 if (sval != 0
5201 && (sval != 1
5202 || (mips_opts.arch == CPU_R5900
5203 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5204 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5205 {
1a00e612
RS
5206 set_insn_error (arg->argnum, _("invalid performance register"));
5207 return FALSE;
a1d78564
RS
5208 }
5209
5210 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5211 return TRUE;
a1d78564
RS
5212}
5213
5214/* OP_ADDIUSP matcher. */
5215
a92713e6 5216static bfd_boolean
a1d78564 5217match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5218 const struct mips_operand *operand)
a1d78564
RS
5219{
5220 offsetT sval;
5221 unsigned int uval;
5222
1a00e612 5223 if (!match_const_int (arg, &sval))
a92713e6 5224 return FALSE;
a1d78564
RS
5225
5226 if (sval % 4)
1a00e612
RS
5227 {
5228 match_out_of_range (arg);
5229 return FALSE;
5230 }
a1d78564
RS
5231
5232 sval /= 4;
5233 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5234 {
5235 match_out_of_range (arg);
5236 return FALSE;
5237 }
a1d78564
RS
5238
5239 uval = (unsigned int) sval;
5240 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5241 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5242 return TRUE;
a1d78564
RS
5243}
5244
5245/* OP_CLO_CLZ_DEST matcher. */
5246
a92713e6 5247static bfd_boolean
a1d78564 5248match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5249 const struct mips_operand *operand)
a1d78564
RS
5250{
5251 unsigned int regno;
5252
a92713e6
RS
5253 if (!match_reg (arg, OP_REG_GP, &regno))
5254 return FALSE;
a1d78564 5255
a1d78564 5256 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5257 return TRUE;
a1d78564
RS
5258}
5259
7361da2c
AB
5260/* OP_CHECK_PREV matcher. */
5261
5262static bfd_boolean
5263match_check_prev_operand (struct mips_arg_info *arg,
5264 const struct mips_operand *operand_base)
5265{
5266 const struct mips_check_prev_operand *operand;
5267 unsigned int regno;
5268
5269 operand = (const struct mips_check_prev_operand *) operand_base;
5270
5271 if (!match_reg (arg, OP_REG_GP, &regno))
5272 return FALSE;
5273
5274 if (!operand->zero_ok && regno == 0)
5275 return FALSE;
5276
5277 if ((operand->less_than_ok && regno < arg->last_regno)
5278 || (operand->greater_than_ok && regno > arg->last_regno)
5279 || (operand->equal_ok && regno == arg->last_regno))
5280 {
5281 arg->last_regno = regno;
5282 insn_insert_operand (arg->insn, operand_base, regno);
5283 return TRUE;
5284 }
5285
5286 return FALSE;
5287}
5288
5289/* OP_SAME_RS_RT matcher. */
5290
5291static bfd_boolean
5292match_same_rs_rt_operand (struct mips_arg_info *arg,
5293 const struct mips_operand *operand)
5294{
5295 unsigned int regno;
5296
5297 if (!match_reg (arg, OP_REG_GP, &regno))
5298 return FALSE;
5299
5300 if (regno == 0)
5301 {
5302 set_insn_error (arg->argnum, _("the source register must not be $0"));
5303 return FALSE;
5304 }
5305
5306 arg->last_regno = regno;
5307
5308 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5309 return TRUE;
5310}
5311
a1d78564
RS
5312/* OP_LWM_SWM_LIST matcher. */
5313
a92713e6 5314static bfd_boolean
a1d78564 5315match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5316 const struct mips_operand *operand)
a1d78564 5317{
a92713e6
RS
5318 unsigned int reglist, sregs, ra, regno1, regno2;
5319 struct mips_arg_info reset;
a1d78564 5320
a92713e6
RS
5321 reglist = 0;
5322 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5323 return FALSE;
5324 do
5325 {
5326 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5327 {
5328 reglist |= 1 << FP;
5329 regno2 = S7;
5330 }
5331 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5332 reset = *arg;
5333 }
5334 while (match_char (arg, ',')
5335 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5336 *arg = reset;
a1d78564
RS
5337
5338 if (operand->size == 2)
5339 {
5340 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5341
5342 s0, ra
5343 s0, s1, ra, s2, s3
5344 s0-s2, ra
5345
5346 and any permutations of these. */
5347 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5348 return FALSE;
a1d78564
RS
5349
5350 sregs = (reglist >> 17) & 7;
5351 ra = 0;
5352 }
5353 else
5354 {
5355 /* The list must include at least one of ra and s0-sN,
5356 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5357 which are $23 and $30 respectively.) E.g.:
5358
5359 ra
5360 s0
5361 ra, s0, s1, s2
5362 s0-s8
5363 s0-s5, ra
5364
5365 and any permutations of these. */
5366 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5367 return FALSE;
a1d78564
RS
5368
5369 ra = (reglist >> 27) & 0x10;
5370 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5371 }
5372 sregs += 1;
5373 if ((sregs & -sregs) != sregs)
a92713e6 5374 return FALSE;
a1d78564
RS
5375
5376 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5377 return TRUE;
a1d78564
RS
5378}
5379
364215c8
RS
5380/* OP_ENTRY_EXIT_LIST matcher. */
5381
a92713e6 5382static unsigned int
364215c8 5383match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5384 const struct mips_operand *operand)
364215c8
RS
5385{
5386 unsigned int mask;
5387 bfd_boolean is_exit;
5388
5389 /* The format is the same for both ENTRY and EXIT, but the constraints
5390 are different. */
5391 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5392 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5393 do
364215c8
RS
5394 {
5395 unsigned int regno1, regno2;
5396 bfd_boolean is_freg;
5397
a92713e6 5398 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5399 is_freg = FALSE;
a92713e6 5400 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5401 is_freg = TRUE;
5402 else
a92713e6 5403 return FALSE;
364215c8
RS
5404
5405 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5406 {
5407 mask &= ~(7 << 3);
5408 mask |= (5 + regno2) << 3;
5409 }
5410 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5411 mask |= (regno2 - 3) << 3;
5412 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5413 mask |= (regno2 - 15) << 1;
5414 else if (regno1 == RA && regno2 == RA)
5415 mask |= 1;
5416 else
a92713e6 5417 return FALSE;
364215c8 5418 }
a92713e6
RS
5419 while (match_char (arg, ','));
5420
364215c8 5421 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5422 return TRUE;
364215c8
RS
5423}
5424
5425/* OP_SAVE_RESTORE_LIST matcher. */
5426
a92713e6
RS
5427static bfd_boolean
5428match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5429{
5430 unsigned int opcode, args, statics, sregs;
5431 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5432 offsetT frame_size;
364215c8 5433
364215c8
RS
5434 opcode = arg->insn->insn_opcode;
5435 frame_size = 0;
5436 num_frame_sizes = 0;
5437 args = 0;
5438 statics = 0;
5439 sregs = 0;
a92713e6 5440 do
364215c8
RS
5441 {
5442 unsigned int regno1, regno2;
5443
a92713e6 5444 if (arg->token->type == OT_INTEGER)
364215c8
RS
5445 {
5446 /* Handle the frame size. */
1a00e612 5447 if (!match_const_int (arg, &frame_size))
a92713e6 5448 return FALSE;
364215c8 5449 num_frame_sizes += 1;
364215c8
RS
5450 }
5451 else
5452 {
a92713e6
RS
5453 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5454 return FALSE;
364215c8
RS
5455
5456 while (regno1 <= regno2)
5457 {
5458 if (regno1 >= 4 && regno1 <= 7)
5459 {
5460 if (num_frame_sizes == 0)
5461 /* args $a0-$a3 */
5462 args |= 1 << (regno1 - 4);
5463 else
5464 /* statics $a0-$a3 */
5465 statics |= 1 << (regno1 - 4);
5466 }
5467 else if (regno1 >= 16 && regno1 <= 23)
5468 /* $s0-$s7 */
5469 sregs |= 1 << (regno1 - 16);
5470 else if (regno1 == 30)
5471 /* $s8 */
5472 sregs |= 1 << 8;
5473 else if (regno1 == 31)
5474 /* Add $ra to insn. */
5475 opcode |= 0x40;
5476 else
a92713e6 5477 return FALSE;
364215c8
RS
5478 regno1 += 1;
5479 if (regno1 == 24)
5480 regno1 = 30;
5481 }
5482 }
364215c8 5483 }
a92713e6 5484 while (match_char (arg, ','));
364215c8
RS
5485
5486 /* Encode args/statics combination. */
5487 if (args & statics)
a92713e6 5488 return FALSE;
364215c8
RS
5489 else if (args == 0xf)
5490 /* All $a0-$a3 are args. */
5491 opcode |= MIPS16_ALL_ARGS << 16;
5492 else if (statics == 0xf)
5493 /* All $a0-$a3 are statics. */
5494 opcode |= MIPS16_ALL_STATICS << 16;
5495 else
5496 {
5497 /* Count arg registers. */
5498 num_args = 0;
5499 while (args & 0x1)
5500 {
5501 args >>= 1;
5502 num_args += 1;
5503 }
5504 if (args != 0)
a92713e6 5505 return FALSE;
364215c8
RS
5506
5507 /* Count static registers. */
5508 num_statics = 0;
5509 while (statics & 0x8)
5510 {
5511 statics = (statics << 1) & 0xf;
5512 num_statics += 1;
5513 }
5514 if (statics != 0)
a92713e6 5515 return FALSE;
364215c8
RS
5516
5517 /* Encode args/statics. */
5518 opcode |= ((num_args << 2) | num_statics) << 16;
5519 }
5520
5521 /* Encode $s0/$s1. */
5522 if (sregs & (1 << 0)) /* $s0 */
5523 opcode |= 0x20;
5524 if (sregs & (1 << 1)) /* $s1 */
5525 opcode |= 0x10;
5526 sregs >>= 2;
5527
5528 /* Encode $s2-$s8. */
5529 num_sregs = 0;
5530 while (sregs & 1)
5531 {
5532 sregs >>= 1;
5533 num_sregs += 1;
5534 }
5535 if (sregs != 0)
a92713e6 5536 return FALSE;
364215c8
RS
5537 opcode |= num_sregs << 24;
5538
5539 /* Encode frame size. */
5540 if (num_frame_sizes == 0)
1a00e612
RS
5541 {
5542 set_insn_error (arg->argnum, _("missing frame size"));
5543 return FALSE;
5544 }
5545 if (num_frame_sizes > 1)
5546 {
5547 set_insn_error (arg->argnum, _("frame size specified twice"));
5548 return FALSE;
5549 }
5550 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5551 {
5552 set_insn_error (arg->argnum, _("invalid frame size"));
5553 return FALSE;
5554 }
5555 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5556 {
5557 frame_size /= 8;
5558 opcode |= (((frame_size & 0xf0) << 16)
5559 | (frame_size & 0x0f));
5560 }
5561
364215c8
RS
5562 /* Finally build the instruction. */
5563 if ((opcode >> 16) != 0 || frame_size == 0)
5564 opcode |= MIPS16_EXTEND;
5565 arg->insn->insn_opcode = opcode;
a92713e6 5566 return TRUE;
364215c8
RS
5567}
5568
a1d78564
RS
5569/* OP_MDMX_IMM_REG matcher. */
5570
a92713e6 5571static bfd_boolean
a1d78564 5572match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5573 const struct mips_operand *operand)
a1d78564 5574{
a92713e6 5575 unsigned int regno, uval;
a1d78564
RS
5576 bfd_boolean is_qh;
5577 const struct mips_opcode *opcode;
5578
5579 /* The mips_opcode records whether this is an octobyte or quadhalf
5580 instruction. Start out with that bit in place. */
5581 opcode = arg->insn->insn_mo;
5582 uval = mips_extract_operand (operand, opcode->match);
5583 is_qh = (uval != 0);
5584
56d438b1 5585 if (arg->token->type == OT_REG)
a1d78564
RS
5586 {
5587 if ((opcode->membership & INSN_5400)
5588 && strcmp (opcode->name, "rzu.ob") == 0)
5589 {
1a00e612
RS
5590 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5591 arg->argnum);
5592 return FALSE;
a1d78564
RS
5593 }
5594
56d438b1
CF
5595 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5596 return FALSE;
5597 ++arg->token;
5598
a1d78564
RS
5599 /* Check whether this is a vector register or a broadcast of
5600 a single element. */
56d438b1 5601 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5602 {
56d438b1 5603 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5604 {
1a00e612
RS
5605 set_insn_error (arg->argnum, _("invalid element selector"));
5606 return FALSE;
a1d78564 5607 }
56d438b1
CF
5608 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5609 ++arg->token;
a1d78564
RS
5610 }
5611 else
5612 {
5613 /* A full vector. */
5614 if ((opcode->membership & INSN_5400)
5615 && (strcmp (opcode->name, "sll.ob") == 0
5616 || strcmp (opcode->name, "srl.ob") == 0))
5617 {
1a00e612
RS
5618 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5619 arg->argnum);
5620 return FALSE;
a1d78564
RS
5621 }
5622
5623 if (is_qh)
5624 uval |= MDMX_FMTSEL_VEC_QH << 5;
5625 else
5626 uval |= MDMX_FMTSEL_VEC_OB << 5;
5627 }
a1d78564
RS
5628 uval |= regno;
5629 }
5630 else
5631 {
5632 offsetT sval;
5633
1a00e612 5634 if (!match_const_int (arg, &sval))
a92713e6 5635 return FALSE;
a1d78564
RS
5636 if (sval < 0 || sval > 31)
5637 {
1a00e612
RS
5638 match_out_of_range (arg);
5639 return FALSE;
a1d78564
RS
5640 }
5641 uval |= (sval & 31);
5642 if (is_qh)
5643 uval |= MDMX_FMTSEL_IMM_QH << 5;
5644 else
5645 uval |= MDMX_FMTSEL_IMM_OB << 5;
5646 }
5647 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5648 return TRUE;
a1d78564
RS
5649}
5650
56d438b1
CF
5651/* OP_IMM_INDEX matcher. */
5652
5653static bfd_boolean
5654match_imm_index_operand (struct mips_arg_info *arg,
5655 const struct mips_operand *operand)
5656{
5657 unsigned int max_val;
5658
5659 if (arg->token->type != OT_INTEGER_INDEX)
5660 return FALSE;
5661
5662 max_val = (1 << operand->size) - 1;
5663 if (arg->token->u.index > max_val)
5664 {
5665 match_out_of_range (arg);
5666 return FALSE;
5667 }
5668 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5669 ++arg->token;
5670 return TRUE;
5671}
5672
5673/* OP_REG_INDEX matcher. */
5674
5675static bfd_boolean
5676match_reg_index_operand (struct mips_arg_info *arg,
5677 const struct mips_operand *operand)
5678{
5679 unsigned int regno;
5680
5681 if (arg->token->type != OT_REG_INDEX)
5682 return FALSE;
5683
5684 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5685 return FALSE;
5686
5687 insn_insert_operand (arg->insn, operand, regno);
5688 ++arg->token;
5689 return TRUE;
5690}
5691
a1d78564
RS
5692/* OP_PC matcher. */
5693
a92713e6
RS
5694static bfd_boolean
5695match_pc_operand (struct mips_arg_info *arg)
a1d78564 5696{
a92713e6
RS
5697 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5698 {
5699 ++arg->token;
5700 return TRUE;
5701 }
5702 return FALSE;
a1d78564
RS
5703}
5704
7361da2c
AB
5705/* OP_NON_ZERO_REG matcher. */
5706
5707static bfd_boolean
5708match_non_zero_reg_operand (struct mips_arg_info *arg,
5709 const struct mips_operand *operand)
5710{
5711 unsigned int regno;
5712
5713 if (!match_reg (arg, OP_REG_GP, &regno))
5714 return FALSE;
5715
5716 if (regno == 0)
5717 return FALSE;
5718
5719 arg->last_regno = regno;
5720 insn_insert_operand (arg->insn, operand, regno);
5721 return TRUE;
5722}
5723
a1d78564
RS
5724/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5725 register that we need to match. */
5726
a92713e6
RS
5727static bfd_boolean
5728match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5729{
5730 unsigned int regno;
5731
a92713e6 5732 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5733}
5734
89565f1b
RS
5735/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5736 the length of the value in bytes (4 for float, 8 for double) and
5737 USING_GPRS says whether the destination is a GPR rather than an FPR.
5738
5739 Return the constant in IMM and OFFSET as follows:
5740
5741 - If the constant should be loaded via memory, set IMM to O_absent and
5742 OFFSET to the memory address.
5743
5744 - Otherwise, if the constant should be loaded into two 32-bit registers,
5745 set IMM to the O_constant to load into the high register and OFFSET
5746 to the corresponding value for the low register.
5747
5748 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5749
5750 These constants only appear as the last operand in an instruction,
5751 and every instruction that accepts them in any variant accepts them
5752 in all variants. This means we don't have to worry about backing out
5753 any changes if the instruction does not match. We just match
5754 unconditionally and report an error if the constant is invalid. */
5755
a92713e6
RS
5756static bfd_boolean
5757match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5758 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5759{
a92713e6 5760 char *p;
89565f1b
RS
5761 segT seg, new_seg;
5762 subsegT subseg;
5763 const char *newname;
a92713e6 5764 unsigned char *data;
89565f1b
RS
5765
5766 /* Where the constant is placed is based on how the MIPS assembler
5767 does things:
5768
5769 length == 4 && using_gprs -- immediate value only
5770 length == 8 && using_gprs -- .rdata or immediate value
5771 length == 4 && !using_gprs -- .lit4 or immediate value
5772 length == 8 && !using_gprs -- .lit8 or immediate value
5773
5774 The .lit4 and .lit8 sections are only used if permitted by the
5775 -G argument. */
a92713e6 5776 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5777 {
5778 set_insn_error (arg->argnum, _("floating-point expression required"));
5779 return FALSE;
5780 }
a92713e6
RS
5781
5782 gas_assert (arg->token->u.flt.length == length);
5783 data = arg->token->u.flt.data;
5784 ++arg->token;
89565f1b
RS
5785
5786 /* Handle 32-bit constants for which an immediate value is best. */
5787 if (length == 4
5788 && (using_gprs
5789 || g_switch_value < 4
5790 || (data[0] == 0 && data[1] == 0)
5791 || (data[2] == 0 && data[3] == 0)))
5792 {
5793 imm->X_op = O_constant;
5794 if (!target_big_endian)
5795 imm->X_add_number = bfd_getl32 (data);
5796 else
5797 imm->X_add_number = bfd_getb32 (data);
5798 offset->X_op = O_absent;
a92713e6 5799 return TRUE;
89565f1b
RS
5800 }
5801
5802 /* Handle 64-bit constants for which an immediate value is best. */
5803 if (length == 8
5804 && !mips_disable_float_construction
351cdf24
MF
5805 /* Constants can only be constructed in GPRs and copied to FPRs if the
5806 GPRs are at least as wide as the FPRs or MTHC1 is available.
5807 Unlike most tests for 32-bit floating-point registers this check
5808 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5809 permit 64-bit moves without MXHC1.
5810 Force the constant into memory otherwise. */
5811 && (using_gprs
5812 || GPR_SIZE == 64
5813 || ISA_HAS_MXHC1 (mips_opts.isa)
5814 || FPR_SIZE == 32)
89565f1b
RS
5815 && ((data[0] == 0 && data[1] == 0)
5816 || (data[2] == 0 && data[3] == 0))
5817 && ((data[4] == 0 && data[5] == 0)
5818 || (data[6] == 0 && data[7] == 0)))
5819 {
5820 /* The value is simple enough to load with a couple of instructions.
5821 If using 32-bit registers, set IMM to the high order 32 bits and
5822 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5823 64 bit constant. */
351cdf24 5824 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5825 {
5826 imm->X_op = O_constant;
5827 offset->X_op = O_constant;
5828 if (!target_big_endian)
5829 {
5830 imm->X_add_number = bfd_getl32 (data + 4);
5831 offset->X_add_number = bfd_getl32 (data);
5832 }
5833 else
5834 {
5835 imm->X_add_number = bfd_getb32 (data);
5836 offset->X_add_number = bfd_getb32 (data + 4);
5837 }
5838 if (offset->X_add_number == 0)
5839 offset->X_op = O_absent;
5840 }
5841 else
5842 {
5843 imm->X_op = O_constant;
5844 if (!target_big_endian)
5845 imm->X_add_number = bfd_getl64 (data);
5846 else
5847 imm->X_add_number = bfd_getb64 (data);
5848 offset->X_op = O_absent;
5849 }
a92713e6 5850 return TRUE;
89565f1b
RS
5851 }
5852
5853 /* Switch to the right section. */
5854 seg = now_seg;
5855 subseg = now_subseg;
5856 if (length == 4)
5857 {
5858 gas_assert (!using_gprs && g_switch_value >= 4);
5859 newname = ".lit4";
5860 }
5861 else
5862 {
5863 if (using_gprs || g_switch_value < 8)
5864 newname = RDATA_SECTION_NAME;
5865 else
5866 newname = ".lit8";
5867 }
5868
5869 new_seg = subseg_new (newname, (subsegT) 0);
5870 bfd_set_section_flags (stdoutput, new_seg,
5871 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5872 frag_align (length == 4 ? 2 : 3, 0, 0);
5873 if (strncmp (TARGET_OS, "elf", 3) != 0)
5874 record_alignment (new_seg, 4);
5875 else
5876 record_alignment (new_seg, length == 4 ? 2 : 3);
5877 if (seg == now_seg)
1661c76c 5878 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5879
5880 /* Set the argument to the current address in the section. */
5881 imm->X_op = O_absent;
5882 offset->X_op = O_symbol;
5883 offset->X_add_symbol = symbol_temp_new_now ();
5884 offset->X_add_number = 0;
5885
5886 /* Put the floating point number into the section. */
5887 p = frag_more (length);
5888 memcpy (p, data, length);
5889
5890 /* Switch back to the original section. */
5891 subseg_set (seg, subseg);
a92713e6 5892 return TRUE;
89565f1b
RS
5893}
5894
14daeee3
RS
5895/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5896 them. */
5897
5898static bfd_boolean
5899match_vu0_suffix_operand (struct mips_arg_info *arg,
5900 const struct mips_operand *operand,
5901 bfd_boolean match_p)
5902{
5903 unsigned int uval;
5904
5905 /* The operand can be an XYZW mask or a single 2-bit channel index
5906 (with X being 0). */
5907 gas_assert (operand->size == 2 || operand->size == 4);
5908
ee5734f0 5909 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5910 if (arg->token->type != OT_CHANNELS)
ee5734f0 5911 return match_p;
14daeee3
RS
5912
5913 uval = arg->token->u.channels;
5914 if (operand->size == 2)
5915 {
5916 /* Check that a single bit is set and convert it into a 2-bit index. */
5917 if ((uval & -uval) != uval)
5918 return FALSE;
5919 uval = 4 - ffs (uval);
5920 }
5921
5922 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5923 return FALSE;
5924
5925 ++arg->token;
5926 if (!match_p)
5927 insn_insert_operand (arg->insn, operand, uval);
5928 return TRUE;
5929}
5930
a1d78564
RS
5931/* S is the text seen for ARG. Match it against OPERAND. Return the end
5932 of the argument text if the match is successful, otherwise return null. */
5933
a92713e6 5934static bfd_boolean
a1d78564 5935match_operand (struct mips_arg_info *arg,
a92713e6 5936 const struct mips_operand *operand)
a1d78564
RS
5937{
5938 switch (operand->type)
5939 {
5940 case OP_INT:
a92713e6 5941 return match_int_operand (arg, operand);
a1d78564
RS
5942
5943 case OP_MAPPED_INT:
a92713e6 5944 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5945
5946 case OP_MSB:
a92713e6 5947 return match_msb_operand (arg, operand);
a1d78564
RS
5948
5949 case OP_REG:
0f35dbc4 5950 case OP_OPTIONAL_REG:
a92713e6 5951 return match_reg_operand (arg, operand);
a1d78564
RS
5952
5953 case OP_REG_PAIR:
a92713e6 5954 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5955
5956 case OP_PCREL:
a92713e6 5957 return match_pcrel_operand (arg);
a1d78564
RS
5958
5959 case OP_PERF_REG:
a92713e6 5960 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5961
5962 case OP_ADDIUSP_INT:
a92713e6 5963 return match_addiusp_operand (arg, operand);
a1d78564
RS
5964
5965 case OP_CLO_CLZ_DEST:
a92713e6 5966 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5967
5968 case OP_LWM_SWM_LIST:
a92713e6 5969 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5970
5971 case OP_ENTRY_EXIT_LIST:
a92713e6 5972 return match_entry_exit_operand (arg, operand);
364215c8 5973
a1d78564 5974 case OP_SAVE_RESTORE_LIST:
a92713e6 5975 return match_save_restore_list_operand (arg);
a1d78564
RS
5976
5977 case OP_MDMX_IMM_REG:
a92713e6 5978 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
5979
5980 case OP_REPEAT_DEST_REG:
a92713e6 5981 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
5982
5983 case OP_REPEAT_PREV_REG:
a92713e6 5984 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
5985
5986 case OP_PC:
a92713e6 5987 return match_pc_operand (arg);
14daeee3
RS
5988
5989 case OP_VU0_SUFFIX:
5990 return match_vu0_suffix_operand (arg, operand, FALSE);
5991
5992 case OP_VU0_MATCH_SUFFIX:
5993 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
5994
5995 case OP_IMM_INDEX:
5996 return match_imm_index_operand (arg, operand);
5997
5998 case OP_REG_INDEX:
5999 return match_reg_index_operand (arg, operand);
7361da2c
AB
6000
6001 case OP_SAME_RS_RT:
6002 return match_same_rs_rt_operand (arg, operand);
6003
6004 case OP_CHECK_PREV:
6005 return match_check_prev_operand (arg, operand);
6006
6007 case OP_NON_ZERO_REG:
6008 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6009 }
6010 abort ();
6011}
6012
6013/* ARG is the state after successfully matching an instruction.
6014 Issue any queued-up warnings. */
6015
6016static void
6017check_completed_insn (struct mips_arg_info *arg)
6018{
6019 if (arg->seen_at)
6020 {
6021 if (AT == ATREG)
1661c76c 6022 as_warn (_("used $at without \".set noat\""));
a1d78564 6023 else
1661c76c 6024 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6025 }
6026}
a1d78564 6027
85fcb30f
RS
6028/* Return true if modifying general-purpose register REG needs a delay. */
6029
6030static bfd_boolean
6031reg_needs_delay (unsigned int reg)
6032{
6033 unsigned long prev_pinfo;
6034
6035 prev_pinfo = history[0].insn_mo->pinfo;
6036 if (!mips_opts.noreorder
67dc82bc 6037 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6038 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6039 && (gpr_write_mask (&history[0]) & (1 << reg)))
6040 return TRUE;
6041
6042 return FALSE;
6043}
6044
71400594
RS
6045/* Classify an instruction according to the FIX_VR4120_* enumeration.
6046 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6047 by VR4120 errata. */
4d7206a2 6048
71400594
RS
6049static unsigned int
6050classify_vr4120_insn (const char *name)
252b5132 6051{
71400594
RS
6052 if (strncmp (name, "macc", 4) == 0)
6053 return FIX_VR4120_MACC;
6054 if (strncmp (name, "dmacc", 5) == 0)
6055 return FIX_VR4120_DMACC;
6056 if (strncmp (name, "mult", 4) == 0)
6057 return FIX_VR4120_MULT;
6058 if (strncmp (name, "dmult", 5) == 0)
6059 return FIX_VR4120_DMULT;
6060 if (strstr (name, "div"))
6061 return FIX_VR4120_DIV;
6062 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6063 return FIX_VR4120_MTHILO;
6064 return NUM_FIX_VR4120_CLASSES;
6065}
252b5132 6066
a8d14a88
CM
6067#define INSN_ERET 0x42000018
6068#define INSN_DERET 0x4200001f
6069#define INSN_DMULT 0x1c
6070#define INSN_DMULTU 0x1d
ff239038 6071
71400594
RS
6072/* Return the number of instructions that must separate INSN1 and INSN2,
6073 where INSN1 is the earlier instruction. Return the worst-case value
6074 for any INSN2 if INSN2 is null. */
252b5132 6075
71400594
RS
6076static unsigned int
6077insns_between (const struct mips_cl_insn *insn1,
6078 const struct mips_cl_insn *insn2)
6079{
6080 unsigned long pinfo1, pinfo2;
4c260379 6081 unsigned int mask;
71400594 6082
85fcb30f
RS
6083 /* If INFO2 is null, pessimistically assume that all flags are set for
6084 the second instruction. */
71400594
RS
6085 pinfo1 = insn1->insn_mo->pinfo;
6086 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6087
71400594
RS
6088 /* For most targets, write-after-read dependencies on the HI and LO
6089 registers must be separated by at least two instructions. */
6090 if (!hilo_interlocks)
252b5132 6091 {
71400594
RS
6092 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6093 return 2;
6094 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6095 return 2;
6096 }
6097
6098 /* If we're working around r7000 errata, there must be two instructions
6099 between an mfhi or mflo and any instruction that uses the result. */
6100 if (mips_7000_hilo_fix
df58fc94 6101 && !mips_opts.micromips
71400594 6102 && MF_HILO_INSN (pinfo1)
85fcb30f 6103 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6104 return 2;
6105
ff239038
CM
6106 /* If we're working around 24K errata, one instruction is required
6107 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6108 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6109 {
6110 if (insn1->insn_opcode == INSN_ERET
6111 || insn1->insn_opcode == INSN_DERET)
6112 {
6113 if (insn2 == NULL
6114 || insn2->insn_opcode == INSN_ERET
6115 || insn2->insn_opcode == INSN_DERET
11625dd8 6116 || delayed_branch_p (insn2))
ff239038
CM
6117 return 1;
6118 }
6119 }
6120
a8d14a88
CM
6121 /* If we're working around PMC RM7000 errata, there must be three
6122 nops between a dmult and a load instruction. */
6123 if (mips_fix_rm7000 && !mips_opts.micromips)
6124 {
6125 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6126 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6127 {
6128 if (pinfo2 & INSN_LOAD_MEMORY)
6129 return 3;
6130 }
6131 }
6132
71400594
RS
6133 /* If working around VR4120 errata, check for combinations that need
6134 a single intervening instruction. */
df58fc94 6135 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6136 {
6137 unsigned int class1, class2;
252b5132 6138
71400594
RS
6139 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6140 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6141 {
71400594
RS
6142 if (insn2 == NULL)
6143 return 1;
6144 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6145 if (vr4120_conflicts[class1] & (1 << class2))
6146 return 1;
252b5132 6147 }
71400594
RS
6148 }
6149
df58fc94 6150 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6151 {
6152 /* Check for GPR or coprocessor load delays. All such delays
6153 are on the RT register. */
6154 /* Itbl support may require additional care here. */
67dc82bc 6155 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6156 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6157 {
85fcb30f 6158 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6159 return 1;
6160 }
6161
6162 /* Check for generic coprocessor hazards.
6163
6164 This case is not handled very well. There is no special
6165 knowledge of CP0 handling, and the coprocessors other than
6166 the floating point unit are not distinguished at all. */
6167 /* Itbl support may require additional care here. FIXME!
6168 Need to modify this to include knowledge about
6169 user specified delays! */
43885403 6170 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6171 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6172 {
6173 /* Handle cases where INSN1 writes to a known general coprocessor
6174 register. There must be a one instruction delay before INSN2
6175 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6176 mask = fpr_write_mask (insn1);
6177 if (mask != 0)
252b5132 6178 {
4c260379 6179 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6180 return 1;
252b5132
RH
6181 }
6182 else
6183 {
71400594
RS
6184 /* Read-after-write dependencies on the control registers
6185 require a two-instruction gap. */
6186 if ((pinfo1 & INSN_WRITE_COND_CODE)
6187 && (pinfo2 & INSN_READ_COND_CODE))
6188 return 2;
6189
6190 /* We don't know exactly what INSN1 does. If INSN2 is
6191 also a coprocessor instruction, assume there must be
6192 a one instruction gap. */
6193 if (pinfo2 & INSN_COP)
6194 return 1;
252b5132
RH
6195 }
6196 }
6b76fefe 6197
71400594
RS
6198 /* Check for read-after-write dependencies on the coprocessor
6199 control registers in cases where INSN1 does not need a general
6200 coprocessor delay. This means that INSN1 is a floating point
6201 comparison instruction. */
6202 /* Itbl support may require additional care here. */
6203 else if (!cop_interlocks
6204 && (pinfo1 & INSN_WRITE_COND_CODE)
6205 && (pinfo2 & INSN_READ_COND_CODE))
6206 return 1;
6207 }
6b76fefe 6208
7361da2c
AB
6209 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6210 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6211 and pause. */
6212 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6213 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6214 || (insn2 && delayed_branch_p (insn2))))
6215 return 1;
6216
71400594
RS
6217 return 0;
6218}
6b76fefe 6219
7d8e00cf
RS
6220/* Return the number of nops that would be needed to work around the
6221 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6222 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6223 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6224
6225static int
932d1a1b 6226nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6227 const struct mips_cl_insn *insn)
6228{
4c260379
RS
6229 int i, j;
6230 unsigned int mask;
7d8e00cf
RS
6231
6232 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6233 are not affected by the errata. */
6234 if (insn != 0
6235 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6236 || strcmp (insn->insn_mo->name, "mtlo") == 0
6237 || strcmp (insn->insn_mo->name, "mthi") == 0))
6238 return 0;
6239
6240 /* Search for the first MFLO or MFHI. */
6241 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6242 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6243 {
6244 /* Extract the destination register. */
4c260379 6245 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6246
6247 /* No nops are needed if INSN reads that register. */
4c260379 6248 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6249 return 0;
6250
6251 /* ...or if any of the intervening instructions do. */
6252 for (j = 0; j < i; j++)
4c260379 6253 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6254 return 0;
6255
932d1a1b
RS
6256 if (i >= ignore)
6257 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6258 }
6259 return 0;
6260}
6261
15be625d
CM
6262#define BASE_REG_EQ(INSN1, INSN2) \
6263 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6264 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6265
6266/* Return the minimum alignment for this store instruction. */
6267
6268static int
6269fix_24k_align_to (const struct mips_opcode *mo)
6270{
6271 if (strcmp (mo->name, "sh") == 0)
6272 return 2;
6273
6274 if (strcmp (mo->name, "swc1") == 0
6275 || strcmp (mo->name, "swc2") == 0
6276 || strcmp (mo->name, "sw") == 0
6277 || strcmp (mo->name, "sc") == 0
6278 || strcmp (mo->name, "s.s") == 0)
6279 return 4;
6280
6281 if (strcmp (mo->name, "sdc1") == 0
6282 || strcmp (mo->name, "sdc2") == 0
6283 || strcmp (mo->name, "s.d") == 0)
6284 return 8;
6285
6286 /* sb, swl, swr */
6287 return 1;
6288}
6289
6290struct fix_24k_store_info
6291 {
6292 /* Immediate offset, if any, for this store instruction. */
6293 short off;
6294 /* Alignment required by this store instruction. */
6295 int align_to;
6296 /* True for register offsets. */
6297 int register_offset;
6298 };
6299
6300/* Comparison function used by qsort. */
6301
6302static int
6303fix_24k_sort (const void *a, const void *b)
6304{
6305 const struct fix_24k_store_info *pos1 = a;
6306 const struct fix_24k_store_info *pos2 = b;
6307
6308 return (pos1->off - pos2->off);
6309}
6310
6311/* INSN is a store instruction. Try to record the store information
6312 in STINFO. Return false if the information isn't known. */
6313
6314static bfd_boolean
6315fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6316 const struct mips_cl_insn *insn)
15be625d
CM
6317{
6318 /* The instruction must have a known offset. */
6319 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6320 return FALSE;
6321
6322 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6323 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6324 return TRUE;
6325}
6326
932d1a1b
RS
6327/* Return the number of nops that would be needed to work around the 24k
6328 "lost data on stores during refill" errata if instruction INSN
6329 immediately followed the 2 instructions described by HIST.
6330 Ignore hazards that are contained within the first IGNORE
6331 instructions of HIST.
6332
6333 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6334 for the data cache refills and store data. The following describes
6335 the scenario where the store data could be lost.
6336
6337 * A data cache miss, due to either a load or a store, causing fill
6338 data to be supplied by the memory subsystem
6339 * The first three doublewords of fill data are returned and written
6340 into the cache
6341 * A sequence of four stores occurs in consecutive cycles around the
6342 final doubleword of the fill:
6343 * Store A
6344 * Store B
6345 * Store C
6346 * Zero, One or more instructions
6347 * Store D
6348
6349 The four stores A-D must be to different doublewords of the line that
6350 is being filled. The fourth instruction in the sequence above permits
6351 the fill of the final doubleword to be transferred from the FSB into
6352 the cache. In the sequence above, the stores may be either integer
6353 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6354 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6355 different doublewords on the line. If the floating point unit is
6356 running in 1:2 mode, it is not possible to create the sequence above
6357 using only floating point store instructions.
15be625d
CM
6358
6359 In this case, the cache line being filled is incorrectly marked
6360 invalid, thereby losing the data from any store to the line that
6361 occurs between the original miss and the completion of the five
6362 cycle sequence shown above.
6363
932d1a1b 6364 The workarounds are:
15be625d 6365
932d1a1b
RS
6366 * Run the data cache in write-through mode.
6367 * Insert a non-store instruction between
6368 Store A and Store B or Store B and Store C. */
3739860c 6369
15be625d 6370static int
932d1a1b 6371nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6372 const struct mips_cl_insn *insn)
6373{
6374 struct fix_24k_store_info pos[3];
6375 int align, i, base_offset;
6376
932d1a1b
RS
6377 if (ignore >= 2)
6378 return 0;
6379
ab9794cf
RS
6380 /* If the previous instruction wasn't a store, there's nothing to
6381 worry about. */
15be625d
CM
6382 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6383 return 0;
6384
ab9794cf
RS
6385 /* If the instructions after the previous one are unknown, we have
6386 to assume the worst. */
6387 if (!insn)
15be625d
CM
6388 return 1;
6389
ab9794cf
RS
6390 /* Check whether we are dealing with three consecutive stores. */
6391 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6392 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6393 return 0;
6394
6395 /* If we don't know the relationship between the store addresses,
6396 assume the worst. */
ab9794cf 6397 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6398 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6399 return 1;
6400
6401 if (!fix_24k_record_store_info (&pos[0], insn)
6402 || !fix_24k_record_store_info (&pos[1], &hist[0])
6403 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6404 return 1;
6405
6406 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6407
6408 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6409 X bytes and such that the base register + X is known to be aligned
6410 to align bytes. */
6411
6412 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6413 align = 8;
6414 else
6415 {
6416 align = pos[0].align_to;
6417 base_offset = pos[0].off;
6418 for (i = 1; i < 3; i++)
6419 if (align < pos[i].align_to)
6420 {
6421 align = pos[i].align_to;
6422 base_offset = pos[i].off;
6423 }
6424 for (i = 0; i < 3; i++)
6425 pos[i].off -= base_offset;
6426 }
6427
6428 pos[0].off &= ~align + 1;
6429 pos[1].off &= ~align + 1;
6430 pos[2].off &= ~align + 1;
6431
6432 /* If any two stores write to the same chunk, they also write to the
6433 same doubleword. The offsets are still sorted at this point. */
6434 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6435 return 0;
6436
6437 /* A range of at least 9 bytes is needed for the stores to be in
6438 non-overlapping doublewords. */
6439 if (pos[2].off - pos[0].off <= 8)
6440 return 0;
6441
6442 if (pos[2].off - pos[1].off >= 24
6443 || pos[1].off - pos[0].off >= 24
6444 || pos[2].off - pos[0].off >= 32)
6445 return 0;
6446
6447 return 1;
6448}
6449
71400594 6450/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6451 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6452 where HIST[0] is the most recent instruction. Ignore hazards
6453 between INSN and the first IGNORE instructions in HIST.
6454
6455 If INSN is null, return the worse-case number of nops for any
6456 instruction. */
bdaaa2e1 6457
71400594 6458static int
932d1a1b 6459nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6460 const struct mips_cl_insn *insn)
6461{
6462 int i, nops, tmp_nops;
bdaaa2e1 6463
71400594 6464 nops = 0;
932d1a1b 6465 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6466 {
91d6fa6a 6467 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6468 if (tmp_nops > nops)
6469 nops = tmp_nops;
6470 }
7d8e00cf 6471
df58fc94 6472 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6473 {
932d1a1b 6474 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6475 if (tmp_nops > nops)
6476 nops = tmp_nops;
6477 }
6478
df58fc94 6479 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6480 {
932d1a1b 6481 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6482 if (tmp_nops > nops)
6483 nops = tmp_nops;
6484 }
6485
71400594
RS
6486 return nops;
6487}
252b5132 6488
71400594 6489/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6490 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6491 would be needed after the extended sequence, ignoring hazards
6492 in the first IGNORE instructions. */
252b5132 6493
71400594 6494static int
932d1a1b
RS
6495nops_for_sequence (int num_insns, int ignore,
6496 const struct mips_cl_insn *hist, ...)
71400594
RS
6497{
6498 va_list args;
6499 struct mips_cl_insn buffer[MAX_NOPS];
6500 struct mips_cl_insn *cursor;
6501 int nops;
6502
91d6fa6a 6503 va_start (args, hist);
71400594 6504 cursor = buffer + num_insns;
91d6fa6a 6505 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6506 while (cursor > buffer)
6507 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6508
932d1a1b 6509 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6510 va_end (args);
6511 return nops;
6512}
252b5132 6513
71400594
RS
6514/* Like nops_for_insn, but if INSN is a branch, take into account the
6515 worst-case delay for the branch target. */
252b5132 6516
71400594 6517static int
932d1a1b 6518nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6519 const struct mips_cl_insn *insn)
6520{
6521 int nops, tmp_nops;
60b63b72 6522
932d1a1b 6523 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6524 if (delayed_branch_p (insn))
71400594 6525 {
932d1a1b 6526 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6527 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6528 if (tmp_nops > nops)
6529 nops = tmp_nops;
6530 }
11625dd8 6531 else if (compact_branch_p (insn))
71400594 6532 {
932d1a1b 6533 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6534 if (tmp_nops > nops)
6535 nops = tmp_nops;
6536 }
6537 return nops;
6538}
6539
c67a084a
NC
6540/* Fix NOP issue: Replace nops by "or at,at,zero". */
6541
6542static void
6543fix_loongson2f_nop (struct mips_cl_insn * ip)
6544{
df58fc94 6545 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6546 if (strcmp (ip->insn_mo->name, "nop") == 0)
6547 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6548}
6549
6550/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6551 jr target pc &= 'hffff_ffff_cfff_ffff. */
6552
6553static void
6554fix_loongson2f_jump (struct mips_cl_insn * ip)
6555{
df58fc94 6556 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6557 if (strcmp (ip->insn_mo->name, "j") == 0
6558 || strcmp (ip->insn_mo->name, "jr") == 0
6559 || strcmp (ip->insn_mo->name, "jalr") == 0)
6560 {
6561 int sreg;
6562 expressionS ep;
6563
6564 if (! mips_opts.at)
6565 return;
6566
df58fc94 6567 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6568 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6569 return;
6570
6571 ep.X_op = O_constant;
6572 ep.X_add_number = 0xcfff0000;
6573 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6574 ep.X_add_number = 0xffff;
6575 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6576 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6577 }
6578}
6579
6580static void
6581fix_loongson2f (struct mips_cl_insn * ip)
6582{
6583 if (mips_fix_loongson2f_nop)
6584 fix_loongson2f_nop (ip);
6585
6586 if (mips_fix_loongson2f_jump)
6587 fix_loongson2f_jump (ip);
6588}
6589
a4e06468
RS
6590/* IP is a branch that has a delay slot, and we need to fill it
6591 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6592 with the previous instruction.
6593 ADDRESS_EXPR is an operand of the instruction to be used with
6594 RELOC_TYPE. */
a4e06468
RS
6595
6596static bfd_boolean
e407c74b 6597can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6598 bfd_reloc_code_real_type *reloc_type)
a4e06468 6599{
2b0c8b40 6600 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6601 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6602 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6603
6604 /* -O2 and above is required for this optimization. */
6605 if (mips_optimize < 2)
6606 return FALSE;
6607
6608 /* If we have seen .set volatile or .set nomove, don't optimize. */
6609 if (mips_opts.nomove)
6610 return FALSE;
6611
6612 /* We can't swap if the previous instruction's position is fixed. */
6613 if (history[0].fixed_p)
6614 return FALSE;
6615
6616 /* If the previous previous insn was in a .set noreorder, we can't
6617 swap. Actually, the MIPS assembler will swap in this situation.
6618 However, gcc configured -with-gnu-as will generate code like
6619
6620 .set noreorder
6621 lw $4,XXX
6622 .set reorder
6623 INSN
6624 bne $4,$0,foo
6625
6626 in which we can not swap the bne and INSN. If gcc is not configured
6627 -with-gnu-as, it does not output the .set pseudo-ops. */
6628 if (history[1].noreorder_p)
6629 return FALSE;
6630
87333bb7
MR
6631 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6632 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6633 if (mips_opts.mips16 && history[0].fixp[0])
6634 return FALSE;
6635
6636 /* If the branch is itself the target of a branch, we can not swap.
6637 We cheat on this; all we check for is whether there is a label on
6638 this instruction. If there are any branches to anything other than
6639 a label, users must use .set noreorder. */
6640 if (seg_info (now_seg)->label_list)
6641 return FALSE;
6642
6643 /* If the previous instruction is in a variant frag other than this
2309ddf2 6644 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6645 MIPS16 code, which uses variant frags for different purposes. */
6646 if (!mips_opts.mips16
a4e06468
RS
6647 && history[0].frag
6648 && history[0].frag->fr_type == rs_machine_dependent)
6649 return FALSE;
6650
bcd530a7
RS
6651 /* We do not swap with instructions that cannot architecturally
6652 be placed in a branch delay slot, such as SYNC or ERET. We
6653 also refrain from swapping with a trap instruction, since it
6654 complicates trap handlers to have the trap instruction be in
6655 a delay slot. */
a4e06468 6656 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6657 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6658 return FALSE;
6659
6660 /* Check for conflicts between the branch and the instructions
6661 before the candidate delay slot. */
6662 if (nops_for_insn (0, history + 1, ip) > 0)
6663 return FALSE;
6664
6665 /* Check for conflicts between the swapped sequence and the
6666 target of the branch. */
6667 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6668 return FALSE;
6669
6670 /* If the branch reads a register that the previous
6671 instruction sets, we can not swap. */
6672 gpr_read = gpr_read_mask (ip);
6673 prev_gpr_write = gpr_write_mask (&history[0]);
6674 if (gpr_read & prev_gpr_write)
6675 return FALSE;
6676
9d5de888
CF
6677 fpr_read = fpr_read_mask (ip);
6678 prev_fpr_write = fpr_write_mask (&history[0]);
6679 if (fpr_read & prev_fpr_write)
6680 return FALSE;
6681
a4e06468
RS
6682 /* If the branch writes a register that the previous
6683 instruction sets, we can not swap. */
6684 gpr_write = gpr_write_mask (ip);
6685 if (gpr_write & prev_gpr_write)
6686 return FALSE;
6687
6688 /* If the branch writes a register that the previous
6689 instruction reads, we can not swap. */
6690 prev_gpr_read = gpr_read_mask (&history[0]);
6691 if (gpr_write & prev_gpr_read)
6692 return FALSE;
6693
6694 /* If one instruction sets a condition code and the
6695 other one uses a condition code, we can not swap. */
6696 pinfo = ip->insn_mo->pinfo;
6697 if ((pinfo & INSN_READ_COND_CODE)
6698 && (prev_pinfo & INSN_WRITE_COND_CODE))
6699 return FALSE;
6700 if ((pinfo & INSN_WRITE_COND_CODE)
6701 && (prev_pinfo & INSN_READ_COND_CODE))
6702 return FALSE;
6703
6704 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6705 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6706 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6707 return FALSE;
a4e06468 6708
df58fc94
RS
6709 /* If the previous instruction has an incorrect size for a fixed
6710 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6711 pinfo2 = ip->insn_mo->pinfo2;
6712 if (mips_opts.micromips
6713 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6714 && insn_length (history) != 2)
6715 return FALSE;
6716 if (mips_opts.micromips
6717 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6718 && insn_length (history) != 4)
6719 return FALSE;
6720
e407c74b
NC
6721 /* On R5900 short loops need to be fixed by inserting a nop in
6722 the branch delay slots.
6723 A short loop can be terminated too early. */
6724 if (mips_opts.arch == CPU_R5900
6725 /* Check if instruction has a parameter, ignore "j $31". */
6726 && (address_expr != NULL)
6727 /* Parameter must be 16 bit. */
6728 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6729 /* Branch to same segment. */
6730 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6731 /* Branch to same code fragment. */
6732 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6733 /* Can only calculate branch offset if value is known. */
6734 && symbol_constant_p(address_expr->X_add_symbol)
6735 /* Check if branch is really conditional. */
6736 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6737 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6738 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6739 {
6740 int distance;
6741 /* Check if loop is shorter than 6 instructions including
6742 branch and delay slot. */
6743 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6744 if (distance <= 20)
6745 {
6746 int i;
6747 int rv;
6748
6749 rv = FALSE;
6750 /* When the loop includes branches or jumps,
6751 it is not a short loop. */
6752 for (i = 0; i < (distance / 4); i++)
6753 {
6754 if ((history[i].cleared_p)
6755 || delayed_branch_p(&history[i]))
6756 {
6757 rv = TRUE;
6758 break;
6759 }
6760 }
6761 if (rv == FALSE)
6762 {
6763 /* Insert nop after branch to fix short loop. */
6764 return FALSE;
6765 }
6766 }
6767 }
6768
a4e06468
RS
6769 return TRUE;
6770}
6771
e407c74b
NC
6772/* Decide how we should add IP to the instruction stream.
6773 ADDRESS_EXPR is an operand of the instruction to be used with
6774 RELOC_TYPE. */
a4e06468
RS
6775
6776static enum append_method
e407c74b 6777get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6778 bfd_reloc_code_real_type *reloc_type)
a4e06468 6779{
a4e06468
RS
6780 /* The relaxed version of a macro sequence must be inherently
6781 hazard-free. */
6782 if (mips_relax.sequence == 2)
6783 return APPEND_ADD;
6784
6785 /* We must not dabble with instructions in a ".set norerorder" block. */
6786 if (mips_opts.noreorder)
6787 return APPEND_ADD;
6788
6789 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6790 if (delayed_branch_p (ip))
a4e06468 6791 {
e407c74b
NC
6792 if (!branch_likely_p (ip)
6793 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6794 return APPEND_SWAP;
6795
6796 if (mips_opts.mips16
6797 && ISA_SUPPORTS_MIPS16E
fc76e730 6798 && gpr_read_mask (ip) != 0)
a4e06468
RS
6799 return APPEND_ADD_COMPACT;
6800
6801 return APPEND_ADD_WITH_NOP;
6802 }
6803
a4e06468
RS
6804 return APPEND_ADD;
6805}
6806
ceb94aa5
RS
6807/* IP is a MIPS16 instruction whose opcode we have just changed.
6808 Point IP->insn_mo to the new opcode's definition. */
6809
6810static void
6811find_altered_mips16_opcode (struct mips_cl_insn *ip)
6812{
6813 const struct mips_opcode *mo, *end;
6814
6815 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6816 for (mo = ip->insn_mo; mo < end; mo++)
6817 if ((ip->insn_opcode & mo->mask) == mo->match)
6818 {
6819 ip->insn_mo = mo;
6820 return;
6821 }
6822 abort ();
6823}
6824
df58fc94
RS
6825/* For microMIPS macros, we need to generate a local number label
6826 as the target of branches. */
6827#define MICROMIPS_LABEL_CHAR '\037'
6828static unsigned long micromips_target_label;
6829static char micromips_target_name[32];
6830
6831static char *
6832micromips_label_name (void)
6833{
6834 char *p = micromips_target_name;
6835 char symbol_name_temporary[24];
6836 unsigned long l;
6837 int i;
6838
6839 if (*p)
6840 return p;
6841
6842 i = 0;
6843 l = micromips_target_label;
6844#ifdef LOCAL_LABEL_PREFIX
6845 *p++ = LOCAL_LABEL_PREFIX;
6846#endif
6847 *p++ = 'L';
6848 *p++ = MICROMIPS_LABEL_CHAR;
6849 do
6850 {
6851 symbol_name_temporary[i++] = l % 10 + '0';
6852 l /= 10;
6853 }
6854 while (l != 0);
6855 while (i > 0)
6856 *p++ = symbol_name_temporary[--i];
6857 *p = '\0';
6858
6859 return micromips_target_name;
6860}
6861
6862static void
6863micromips_label_expr (expressionS *label_expr)
6864{
6865 label_expr->X_op = O_symbol;
6866 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6867 label_expr->X_add_number = 0;
6868}
6869
6870static void
6871micromips_label_inc (void)
6872{
6873 micromips_target_label++;
6874 *micromips_target_name = '\0';
6875}
6876
6877static void
6878micromips_add_label (void)
6879{
6880 symbolS *s;
6881
6882 s = colon (micromips_label_name ());
6883 micromips_label_inc ();
f3ded42a 6884 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6885}
6886
6887/* If assembling microMIPS code, then return the microMIPS reloc
6888 corresponding to the requested one if any. Otherwise return
6889 the reloc unchanged. */
6890
6891static bfd_reloc_code_real_type
6892micromips_map_reloc (bfd_reloc_code_real_type reloc)
6893{
6894 static const bfd_reloc_code_real_type relocs[][2] =
6895 {
6896 /* Keep sorted incrementally by the left-hand key. */
6897 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6898 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6899 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6900 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6901 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6902 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6903 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6904 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6905 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6906 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6907 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6908 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6909 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6910 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6911 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6912 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6913 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6914 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6915 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6916 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6917 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6918 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6919 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6920 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6921 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6922 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6923 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6924 };
6925 bfd_reloc_code_real_type r;
6926 size_t i;
6927
6928 if (!mips_opts.micromips)
6929 return reloc;
6930 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6931 {
6932 r = relocs[i][0];
6933 if (r > reloc)
6934 return reloc;
6935 if (r == reloc)
6936 return relocs[i][1];
6937 }
6938 return reloc;
6939}
6940
b886a2ab
RS
6941/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6942 Return true on success, storing the resolved value in RESULT. */
6943
6944static bfd_boolean
6945calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6946 offsetT *result)
6947{
6948 switch (reloc)
6949 {
6950 case BFD_RELOC_MIPS_HIGHEST:
6951 case BFD_RELOC_MICROMIPS_HIGHEST:
6952 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6953 return TRUE;
6954
6955 case BFD_RELOC_MIPS_HIGHER:
6956 case BFD_RELOC_MICROMIPS_HIGHER:
6957 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6958 return TRUE;
6959
6960 case BFD_RELOC_HI16_S:
6961 case BFD_RELOC_MICROMIPS_HI16_S:
6962 case BFD_RELOC_MIPS16_HI16_S:
6963 *result = ((operand + 0x8000) >> 16) & 0xffff;
6964 return TRUE;
6965
6966 case BFD_RELOC_HI16:
6967 case BFD_RELOC_MICROMIPS_HI16:
6968 case BFD_RELOC_MIPS16_HI16:
6969 *result = (operand >> 16) & 0xffff;
6970 return TRUE;
6971
6972 case BFD_RELOC_LO16:
6973 case BFD_RELOC_MICROMIPS_LO16:
6974 case BFD_RELOC_MIPS16_LO16:
6975 *result = operand & 0xffff;
6976 return TRUE;
6977
6978 case BFD_RELOC_UNUSED:
6979 *result = operand;
6980 return TRUE;
6981
6982 default:
6983 return FALSE;
6984 }
6985}
6986
71400594
RS
6987/* Output an instruction. IP is the instruction information.
6988 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
6989 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6990 a macro expansion. */
71400594
RS
6991
6992static void
6993append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 6994 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 6995{
14fe068b 6996 unsigned long prev_pinfo2, pinfo;
71400594 6997 bfd_boolean relaxed_branch = FALSE;
a4e06468 6998 enum append_method method;
2309ddf2 6999 bfd_boolean relax32;
2b0c8b40 7000 int branch_disp;
71400594 7001
2309ddf2 7002 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7003 fix_loongson2f (ip);
7004
738f4d98 7005 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7006 file_ase_micromips |= mips_opts.micromips;
738f4d98 7007
df58fc94 7008 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7009 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
7010
7011 if (mips_opts.micromips
7012 && !expansionp
7013 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7014 && micromips_insn_length (ip->insn_mo) != 2)
7015 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7016 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7017 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7018 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7019
15be625d
CM
7020 if (address_expr == NULL)
7021 ip->complete_p = 1;
b886a2ab
RS
7022 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7023 && reloc_type[1] == BFD_RELOC_UNUSED
7024 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7025 && address_expr->X_op == O_constant)
7026 {
15be625d
CM
7027 switch (*reloc_type)
7028 {
15be625d 7029 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7030 {
7031 int shift;
7032
7033 shift = mips_opts.micromips ? 1 : 2;
7034 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7035 as_bad (_("jump to misaligned address (0x%lx)"),
7036 (unsigned long) address_expr->X_add_number);
7037 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7038 & 0x3ffffff);
335574df 7039 ip->complete_p = 1;
df58fc94 7040 }
15be625d
CM
7041 break;
7042
7043 case BFD_RELOC_MIPS16_JMP:
7044 if ((address_expr->X_add_number & 3) != 0)
7045 as_bad (_("jump to misaligned address (0x%lx)"),
7046 (unsigned long) address_expr->X_add_number);
7047 ip->insn_opcode |=
7048 (((address_expr->X_add_number & 0x7c0000) << 3)
7049 | ((address_expr->X_add_number & 0xf800000) >> 7)
7050 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7051 ip->complete_p = 1;
15be625d
CM
7052 break;
7053
7054 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7055 {
7056 int shift;
7057
7058 shift = mips_opts.micromips ? 1 : 2;
7059 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7060 as_bad (_("branch to misaligned address (0x%lx)"),
7061 (unsigned long) address_expr->X_add_number);
7062 if (!mips_relax_branch)
7063 {
7064 if ((address_expr->X_add_number + (1 << (shift + 15)))
7065 & ~((1 << (shift + 16)) - 1))
7066 as_bad (_("branch address range overflow (0x%lx)"),
7067 (unsigned long) address_expr->X_add_number);
7068 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7069 & 0xffff);
7070 }
df58fc94 7071 }
15be625d
CM
7072 break;
7073
7361da2c
AB
7074 case BFD_RELOC_MIPS_21_PCREL_S2:
7075 {
7076 int shift;
7077
7078 shift = 2;
7079 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7080 as_bad (_("branch to misaligned address (0x%lx)"),
7081 (unsigned long) address_expr->X_add_number);
7082 if ((address_expr->X_add_number + (1 << (shift + 20)))
7083 & ~((1 << (shift + 21)) - 1))
7084 as_bad (_("branch address range overflow (0x%lx)"),
7085 (unsigned long) address_expr->X_add_number);
7086 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7087 & 0x1fffff);
7088 }
7089 break;
7090
7091 case BFD_RELOC_MIPS_26_PCREL_S2:
7092 {
7093 int shift;
7094
7095 shift = 2;
7096 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7097 as_bad (_("branch to misaligned address (0x%lx)"),
7098 (unsigned long) address_expr->X_add_number);
7099 if ((address_expr->X_add_number + (1 << (shift + 25)))
7100 & ~((1 << (shift + 26)) - 1))
7101 as_bad (_("branch address range overflow (0x%lx)"),
7102 (unsigned long) address_expr->X_add_number);
7103 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7104 & 0x3ffffff);
7105 }
7106 break;
7107
15be625d 7108 default:
b886a2ab
RS
7109 {
7110 offsetT value;
7111
7112 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7113 &value))
7114 {
7115 ip->insn_opcode |= value & 0xffff;
7116 ip->complete_p = 1;
7117 }
7118 }
7119 break;
7120 }
15be625d
CM
7121 }
7122
71400594
RS
7123 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7124 {
7125 /* There are a lot of optimizations we could do that we don't.
7126 In particular, we do not, in general, reorder instructions.
7127 If you use gcc with optimization, it will reorder
7128 instructions and generally do much more optimization then we
7129 do here; repeating all that work in the assembler would only
7130 benefit hand written assembly code, and does not seem worth
7131 it. */
7132 int nops = (mips_optimize == 0
932d1a1b
RS
7133 ? nops_for_insn (0, history, NULL)
7134 : nops_for_insn_or_target (0, history, ip));
71400594 7135 if (nops > 0)
252b5132
RH
7136 {
7137 fragS *old_frag;
7138 unsigned long old_frag_offset;
7139 int i;
252b5132
RH
7140
7141 old_frag = frag_now;
7142 old_frag_offset = frag_now_fix ();
7143
7144 for (i = 0; i < nops; i++)
14fe068b
RS
7145 add_fixed_insn (NOP_INSN);
7146 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7147
7148 if (listing)
7149 {
7150 listing_prev_line ();
7151 /* We may be at the start of a variant frag. In case we
7152 are, make sure there is enough space for the frag
7153 after the frags created by listing_prev_line. The
7154 argument to frag_grow here must be at least as large
7155 as the argument to all other calls to frag_grow in
7156 this file. We don't have to worry about being in the
7157 middle of a variant frag, because the variants insert
7158 all needed nop instructions themselves. */
7159 frag_grow (40);
7160 }
7161
462427c4 7162 mips_move_text_labels ();
252b5132
RH
7163
7164#ifndef NO_ECOFF_DEBUGGING
7165 if (ECOFF_DEBUGGING)
7166 ecoff_fix_loc (old_frag, old_frag_offset);
7167#endif
7168 }
71400594
RS
7169 }
7170 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7171 {
932d1a1b
RS
7172 int nops;
7173
7174 /* Work out how many nops in prev_nop_frag are needed by IP,
7175 ignoring hazards generated by the first prev_nop_frag_since
7176 instructions. */
7177 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7178 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7179
71400594
RS
7180 /* Enforce NOPS as a minimum. */
7181 if (nops > prev_nop_frag_required)
7182 prev_nop_frag_required = nops;
252b5132 7183
71400594
RS
7184 if (prev_nop_frag_holds == prev_nop_frag_required)
7185 {
7186 /* Settle for the current number of nops. Update the history
7187 accordingly (for the benefit of any future .set reorder code). */
7188 prev_nop_frag = NULL;
7189 insert_into_history (prev_nop_frag_since,
7190 prev_nop_frag_holds, NOP_INSN);
7191 }
7192 else
7193 {
7194 /* Allow this instruction to replace one of the nops that was
7195 tentatively added to prev_nop_frag. */
df58fc94 7196 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7197 prev_nop_frag_holds--;
7198 prev_nop_frag_since++;
252b5132
RH
7199 }
7200 }
7201
e407c74b 7202 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7203 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7204
e410add4
RS
7205 dwarf2_emit_insn (0);
7206 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7207 so "move" the instruction address accordingly.
7208
7209 Also, it doesn't seem appropriate for the assembler to reorder .loc
7210 entries. If this instruction is a branch that we are going to swap
7211 with the previous instruction, the two instructions should be
7212 treated as a unit, and the debug information for both instructions
7213 should refer to the start of the branch sequence. Using the
7214 current position is certainly wrong when swapping a 32-bit branch
7215 and a 16-bit delay slot, since the current position would then be
7216 in the middle of a branch. */
7217 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7218
df58fc94
RS
7219 relax32 = (mips_relax_branch
7220 /* Don't try branch relaxation within .set nomacro, or within
7221 .set noat if we use $at for PIC computations. If it turns
7222 out that the branch was out-of-range, we'll get an error. */
7223 && !mips_opts.warn_about_macros
7224 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7225 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7226 as they have no complementing branches. */
7227 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7228
7229 if (!HAVE_CODE_COMPRESSION
7230 && address_expr
7231 && relax32
0b25d3e6 7232 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7233 && delayed_branch_p (ip))
4a6a3df4 7234 {
895921c9 7235 relaxed_branch = TRUE;
1e915849
RS
7236 add_relaxed_insn (ip, (relaxed_branch_length
7237 (NULL, NULL,
11625dd8
RS
7238 uncond_branch_p (ip) ? -1
7239 : branch_likely_p (ip) ? 1
1e915849
RS
7240 : 0)), 4,
7241 RELAX_BRANCH_ENCODE
66b3e8da 7242 (AT,
11625dd8
RS
7243 uncond_branch_p (ip),
7244 branch_likely_p (ip),
1e915849
RS
7245 pinfo & INSN_WRITE_GPR_31,
7246 0),
7247 address_expr->X_add_symbol,
7248 address_expr->X_add_number);
4a6a3df4
AO
7249 *reloc_type = BFD_RELOC_UNUSED;
7250 }
df58fc94
RS
7251 else if (mips_opts.micromips
7252 && address_expr
7253 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7254 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7255 && (delayed_branch_p (ip) || compact_branch_p (ip))
7256 /* Don't try branch relaxation when users specify
7257 16-bit/32-bit instructions. */
7258 && !forced_insn_length)
df58fc94
RS
7259 {
7260 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7261 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
7262 int uncond = uncond_branch_p (ip) ? -1 : 0;
7263 int compact = compact_branch_p (ip);
df58fc94
RS
7264 int al = pinfo & INSN_WRITE_GPR_31;
7265 int length32;
7266
7267 gas_assert (address_expr != NULL);
7268 gas_assert (!mips_relax.sequence);
7269
2b0c8b40 7270 relaxed_branch = TRUE;
df58fc94
RS
7271 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7272 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
7273 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7274 relax32, 0, 0),
df58fc94
RS
7275 address_expr->X_add_symbol,
7276 address_expr->X_add_number);
7277 *reloc_type = BFD_RELOC_UNUSED;
7278 }
7279 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132
RH
7280 {
7281 /* We need to set up a variant frag. */
df58fc94 7282 gas_assert (address_expr != NULL);
1e915849
RS
7283 add_relaxed_insn (ip, 4, 0,
7284 RELAX_MIPS16_ENCODE
7285 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 7286 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 7287 delayed_branch_p (&history[0]),
1e915849
RS
7288 history[0].mips16_absolute_jump_p),
7289 make_expr_symbol (address_expr), 0);
252b5132 7290 }
5c04167a 7291 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7292 {
11625dd8 7293 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7294 /* Make sure there is enough room to swap this instruction with
7295 a following jump instruction. */
7296 frag_grow (6);
1e915849 7297 add_fixed_insn (ip);
252b5132
RH
7298 }
7299 else
7300 {
7301 if (mips_opts.mips16
7302 && mips_opts.noreorder
11625dd8 7303 && delayed_branch_p (&history[0]))
252b5132
RH
7304 as_warn (_("extended instruction in delay slot"));
7305
4d7206a2
RS
7306 if (mips_relax.sequence)
7307 {
7308 /* If we've reached the end of this frag, turn it into a variant
7309 frag and record the information for the instructions we've
7310 written so far. */
7311 if (frag_room () < 4)
7312 relax_close_frag ();
df58fc94 7313 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7314 }
7315
584892a6 7316 if (mips_relax.sequence != 2)
df58fc94
RS
7317 {
7318 if (mips_macro_warning.first_insn_sizes[0] == 0)
7319 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7320 mips_macro_warning.sizes[0] += insn_length (ip);
7321 mips_macro_warning.insns[0]++;
7322 }
584892a6 7323 if (mips_relax.sequence != 1)
df58fc94
RS
7324 {
7325 if (mips_macro_warning.first_insn_sizes[1] == 0)
7326 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7327 mips_macro_warning.sizes[1] += insn_length (ip);
7328 mips_macro_warning.insns[1]++;
7329 }
584892a6 7330
1e915849
RS
7331 if (mips_opts.mips16)
7332 {
7333 ip->fixed_p = 1;
7334 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7335 }
7336 add_fixed_insn (ip);
252b5132
RH
7337 }
7338
9fe77896 7339 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7340 {
df58fc94 7341 bfd_reloc_code_real_type final_type[3];
2309ddf2 7342 reloc_howto_type *howto0;
9fe77896
RS
7343 reloc_howto_type *howto;
7344 int i;
34ce925e 7345
df58fc94
RS
7346 /* Perform any necessary conversion to microMIPS relocations
7347 and find out how many relocations there actually are. */
7348 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7349 final_type[i] = micromips_map_reloc (reloc_type[i]);
7350
9fe77896
RS
7351 /* In a compound relocation, it is the final (outermost)
7352 operator that determines the relocated field. */
2309ddf2 7353 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7354 if (!howto)
7355 abort ();
2309ddf2
MR
7356
7357 if (i > 1)
7358 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7359 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7360 bfd_get_reloc_size (howto),
7361 address_expr,
2309ddf2
MR
7362 howto0 && howto0->pc_relative,
7363 final_type[0]);
9fe77896
RS
7364
7365 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7366 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7367 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7368
7369 /* These relocations can have an addend that won't fit in
7370 4 octets for 64bit assembly. */
bad1aba3 7371 if (GPR_SIZE == 64
9fe77896
RS
7372 && ! howto->partial_inplace
7373 && (reloc_type[0] == BFD_RELOC_16
7374 || reloc_type[0] == BFD_RELOC_32
7375 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7376 || reloc_type[0] == BFD_RELOC_GPREL16
7377 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7378 || reloc_type[0] == BFD_RELOC_GPREL32
7379 || reloc_type[0] == BFD_RELOC_64
7380 || reloc_type[0] == BFD_RELOC_CTOR
7381 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7382 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7383 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7384 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7385 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7386 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7387 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7388 || hi16_reloc_p (reloc_type[0])
7389 || lo16_reloc_p (reloc_type[0])))
7390 ip->fixp[0]->fx_no_overflow = 1;
7391
ddaf2c41
MR
7392 /* These relocations can have an addend that won't fit in 2 octets. */
7393 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7394 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7395 ip->fixp[0]->fx_no_overflow = 1;
7396
9fe77896
RS
7397 if (mips_relax.sequence)
7398 {
7399 if (mips_relax.first_fixup == 0)
7400 mips_relax.first_fixup = ip->fixp[0];
7401 }
7402 else if (reloc_needs_lo_p (*reloc_type))
7403 {
7404 struct mips_hi_fixup *hi_fixup;
7405
7406 /* Reuse the last entry if it already has a matching %lo. */
7407 hi_fixup = mips_hi_fixup_list;
7408 if (hi_fixup == 0
7409 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7410 {
9fe77896
RS
7411 hi_fixup = ((struct mips_hi_fixup *)
7412 xmalloc (sizeof (struct mips_hi_fixup)));
7413 hi_fixup->next = mips_hi_fixup_list;
7414 mips_hi_fixup_list = hi_fixup;
4d7206a2 7415 }
9fe77896
RS
7416 hi_fixup->fixp = ip->fixp[0];
7417 hi_fixup->seg = now_seg;
7418 }
252b5132 7419
9fe77896
RS
7420 /* Add fixups for the second and third relocations, if given.
7421 Note that the ABI allows the second relocation to be
7422 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7423 moment we only use RSS_UNDEF, but we could add support
7424 for the others if it ever becomes necessary. */
7425 for (i = 1; i < 3; i++)
7426 if (reloc_type[i] != BFD_RELOC_UNUSED)
7427 {
7428 ip->fixp[i] = fix_new (ip->frag, ip->where,
7429 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7430 FALSE, final_type[i]);
f6688943 7431
9fe77896
RS
7432 /* Use fx_tcbit to mark compound relocs. */
7433 ip->fixp[0]->fx_tcbit = 1;
7434 ip->fixp[i]->fx_tcbit = 1;
7435 }
252b5132 7436 }
1e915849 7437 install_insn (ip);
252b5132
RH
7438
7439 /* Update the register mask information. */
4c260379
RS
7440 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7441 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7442
a4e06468 7443 switch (method)
252b5132 7444 {
a4e06468
RS
7445 case APPEND_ADD:
7446 insert_into_history (0, 1, ip);
7447 break;
7448
7449 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7450 {
7451 struct mips_cl_insn *nop;
7452
7453 insert_into_history (0, 1, ip);
7454 nop = get_delay_slot_nop (ip);
7455 add_fixed_insn (nop);
7456 insert_into_history (0, 1, nop);
7457 if (mips_relax.sequence)
7458 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7459 }
a4e06468
RS
7460 break;
7461
7462 case APPEND_ADD_COMPACT:
7463 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7464 gas_assert (mips_opts.mips16);
7465 ip->insn_opcode |= 0x0080;
7466 find_altered_mips16_opcode (ip);
7467 install_insn (ip);
7468 insert_into_history (0, 1, ip);
7469 break;
7470
7471 case APPEND_SWAP:
7472 {
7473 struct mips_cl_insn delay = history[0];
7474 if (mips_opts.mips16)
7475 {
7476 know (delay.frag == ip->frag);
7477 move_insn (ip, delay.frag, delay.where);
7478 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7479 }
464ab0e5 7480 else if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7481 {
7482 /* Add the delay slot instruction to the end of the
7483 current frag and shrink the fixed part of the
7484 original frag. If the branch occupies the tail of
7485 the latter, move it backwards to cover the gap. */
2b0c8b40 7486 delay.frag->fr_fix -= branch_disp;
a4e06468 7487 if (delay.frag == ip->frag)
2b0c8b40 7488 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7489 add_fixed_insn (&delay);
7490 }
7491 else
7492 {
2b0c8b40
MR
7493 move_insn (&delay, ip->frag,
7494 ip->where - branch_disp + insn_length (ip));
a4e06468
RS
7495 move_insn (ip, history[0].frag, history[0].where);
7496 }
7497 history[0] = *ip;
7498 delay.fixed_p = 1;
7499 insert_into_history (0, 1, &delay);
7500 }
7501 break;
252b5132
RH
7502 }
7503
13408f1e 7504 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7505 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7506 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7507 {
7508 unsigned int i;
7509
79850f26 7510 mips_no_prev_insn ();
13408f1e 7511
e407c74b 7512 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7513 history[i].cleared_p = 1;
e407c74b
NC
7514 }
7515
df58fc94
RS
7516 /* We need to emit a label at the end of branch-likely macros. */
7517 if (emit_branch_likely_macro)
7518 {
7519 emit_branch_likely_macro = FALSE;
7520 micromips_add_label ();
7521 }
7522
252b5132
RH
7523 /* We just output an insn, so the next one doesn't have a label. */
7524 mips_clear_insn_labels ();
252b5132
RH
7525}
7526
e407c74b
NC
7527/* Forget that there was any previous instruction or label.
7528 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7529
7530static void
7d10b47d 7531mips_no_prev_insn (void)
252b5132 7532{
7d10b47d
RS
7533 prev_nop_frag = NULL;
7534 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7535 mips_clear_insn_labels ();
7536}
7537
7d10b47d
RS
7538/* This function must be called before we emit something other than
7539 instructions. It is like mips_no_prev_insn except that it inserts
7540 any NOPS that might be needed by previous instructions. */
252b5132 7541
7d10b47d
RS
7542void
7543mips_emit_delays (void)
252b5132
RH
7544{
7545 if (! mips_opts.noreorder)
7546 {
932d1a1b 7547 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7548 if (nops > 0)
7549 {
7d10b47d
RS
7550 while (nops-- > 0)
7551 add_fixed_insn (NOP_INSN);
462427c4 7552 mips_move_text_labels ();
7d10b47d
RS
7553 }
7554 }
7555 mips_no_prev_insn ();
7556}
7557
7558/* Start a (possibly nested) noreorder block. */
7559
7560static void
7561start_noreorder (void)
7562{
7563 if (mips_opts.noreorder == 0)
7564 {
7565 unsigned int i;
7566 int nops;
7567
7568 /* None of the instructions before the .set noreorder can be moved. */
7569 for (i = 0; i < ARRAY_SIZE (history); i++)
7570 history[i].fixed_p = 1;
7571
7572 /* Insert any nops that might be needed between the .set noreorder
7573 block and the previous instructions. We will later remove any
7574 nops that turn out not to be needed. */
932d1a1b 7575 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7576 if (nops > 0)
7577 {
7578 if (mips_optimize != 0)
252b5132
RH
7579 {
7580 /* Record the frag which holds the nop instructions, so
7581 that we can remove them if we don't need them. */
df58fc94 7582 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7583 prev_nop_frag = frag_now;
7584 prev_nop_frag_holds = nops;
7585 prev_nop_frag_required = 0;
7586 prev_nop_frag_since = 0;
7587 }
7588
7589 for (; nops > 0; --nops)
1e915849 7590 add_fixed_insn (NOP_INSN);
252b5132 7591
7d10b47d
RS
7592 /* Move on to a new frag, so that it is safe to simply
7593 decrease the size of prev_nop_frag. */
7594 frag_wane (frag_now);
7595 frag_new (0);
462427c4 7596 mips_move_text_labels ();
252b5132 7597 }
df58fc94 7598 mips_mark_labels ();
7d10b47d 7599 mips_clear_insn_labels ();
252b5132 7600 }
7d10b47d
RS
7601 mips_opts.noreorder++;
7602 mips_any_noreorder = 1;
7603}
252b5132 7604
7d10b47d 7605/* End a nested noreorder block. */
252b5132 7606
7d10b47d
RS
7607static void
7608end_noreorder (void)
7609{
7610 mips_opts.noreorder--;
7611 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7612 {
7613 /* Commit to inserting prev_nop_frag_required nops and go back to
7614 handling nop insertion the .set reorder way. */
7615 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7616 * NOP_INSN_SIZE);
7d10b47d
RS
7617 insert_into_history (prev_nop_frag_since,
7618 prev_nop_frag_required, NOP_INSN);
7619 prev_nop_frag = NULL;
7620 }
252b5132
RH
7621}
7622
97d87491
RS
7623/* Sign-extend 32-bit mode constants that have bit 31 set and all
7624 higher bits unset. */
7625
7626static void
7627normalize_constant_expr (expressionS *ex)
7628{
7629 if (ex->X_op == O_constant
7630 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7631 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7632 - 0x80000000);
7633}
7634
7635/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7636 all higher bits unset. */
7637
7638static void
7639normalize_address_expr (expressionS *ex)
7640{
7641 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7642 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7643 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7644 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7645 - 0x80000000);
7646}
7647
7648/* Try to match TOKENS against OPCODE, storing the result in INSN.
7649 Return true if the match was successful.
7650
7651 OPCODE_EXTRA is a value that should be ORed into the opcode
7652 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7653 there are more alternatives after OPCODE and SOFT_MATCH is
7654 as for mips_arg_info. */
7655
7656static bfd_boolean
7657match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7658 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7659 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7660{
7661 const char *args;
7662 struct mips_arg_info arg;
7663 const struct mips_operand *operand;
7664 char c;
7665
7666 imm_expr.X_op = O_absent;
97d87491
RS
7667 offset_expr.X_op = O_absent;
7668 offset_reloc[0] = BFD_RELOC_UNUSED;
7669 offset_reloc[1] = BFD_RELOC_UNUSED;
7670 offset_reloc[2] = BFD_RELOC_UNUSED;
7671
7672 create_insn (insn, opcode);
60f20e8b
RS
7673 /* When no opcode suffix is specified, assume ".xyzw". */
7674 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7675 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7676 else
7677 insn->insn_opcode |= opcode_extra;
97d87491
RS
7678 memset (&arg, 0, sizeof (arg));
7679 arg.insn = insn;
7680 arg.token = tokens;
7681 arg.argnum = 1;
7682 arg.last_regno = ILLEGAL_REG;
7683 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7684 arg.lax_match = lax_match;
97d87491
RS
7685 for (args = opcode->args;; ++args)
7686 {
7687 if (arg.token->type == OT_END)
7688 {
7689 /* Handle unary instructions in which only one operand is given.
7690 The source is then the same as the destination. */
7691 if (arg.opnum == 1 && *args == ',')
7692 {
7693 operand = (mips_opts.micromips
7694 ? decode_micromips_operand (args + 1)
7695 : decode_mips_operand (args + 1));
7696 if (operand && mips_optional_operand_p (operand))
7697 {
7698 arg.token = tokens;
7699 arg.argnum = 1;
7700 continue;
7701 }
7702 }
7703
7704 /* Treat elided base registers as $0. */
7705 if (strcmp (args, "(b)") == 0)
7706 args += 3;
7707
7708 if (args[0] == '+')
7709 switch (args[1])
7710 {
7711 case 'K':
7712 case 'N':
7713 /* The register suffix is optional. */
7714 args += 2;
7715 break;
7716 }
7717
7718 /* Fail the match if there were too few operands. */
7719 if (*args)
7720 return FALSE;
7721
7722 /* Successful match. */
60f20e8b
RS
7723 if (!complete_p)
7724 return TRUE;
e3de51ce 7725 clear_insn_error ();
97d87491
RS
7726 if (arg.dest_regno == arg.last_regno
7727 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7728 {
7729 if (arg.opnum == 2)
e3de51ce 7730 set_insn_error
1661c76c 7731 (0, _("source and destination must be different"));
97d87491 7732 else if (arg.last_regno == 31)
e3de51ce 7733 set_insn_error
1661c76c 7734 (0, _("a destination register must be supplied"));
97d87491 7735 }
173d3447
CF
7736 else if (arg.last_regno == 31
7737 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7738 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7739 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7740 check_completed_insn (&arg);
7741 return TRUE;
7742 }
7743
7744 /* Fail the match if the line has too many operands. */
7745 if (*args == 0)
7746 return FALSE;
7747
7748 /* Handle characters that need to match exactly. */
7749 if (*args == '(' || *args == ')' || *args == ',')
7750 {
7751 if (match_char (&arg, *args))
7752 continue;
7753 return FALSE;
7754 }
7755 if (*args == '#')
7756 {
7757 ++args;
7758 if (arg.token->type == OT_DOUBLE_CHAR
7759 && arg.token->u.ch == *args)
7760 {
7761 ++arg.token;
7762 continue;
7763 }
7764 return FALSE;
7765 }
7766
7767 /* Handle special macro operands. Work out the properties of
7768 other operands. */
7769 arg.opnum += 1;
97d87491
RS
7770 switch (*args)
7771 {
7361da2c
AB
7772 case '-':
7773 switch (args[1])
7774 {
7775 case 'A':
7776 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7777 break;
7778
7779 case 'B':
7780 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7781 break;
7782 }
7783 break;
7784
97d87491
RS
7785 case '+':
7786 switch (args[1])
7787 {
97d87491
RS
7788 case 'i':
7789 *offset_reloc = BFD_RELOC_MIPS_JMP;
7790 break;
7361da2c
AB
7791
7792 case '\'':
7793 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7794 break;
7795
7796 case '\"':
7797 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7798 break;
97d87491
RS
7799 }
7800 break;
7801
97d87491 7802 case 'I':
1a00e612
RS
7803 if (!match_const_int (&arg, &imm_expr.X_add_number))
7804 return FALSE;
7805 imm_expr.X_op = O_constant;
bad1aba3 7806 if (GPR_SIZE == 32)
97d87491
RS
7807 normalize_constant_expr (&imm_expr);
7808 continue;
7809
7810 case 'A':
7811 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7812 {
7813 /* Assume that the offset has been elided and that what
7814 we saw was a base register. The match will fail later
7815 if that assumption turns out to be wrong. */
7816 offset_expr.X_op = O_constant;
7817 offset_expr.X_add_number = 0;
7818 }
97d87491 7819 else
1a00e612
RS
7820 {
7821 if (!match_expression (&arg, &offset_expr, offset_reloc))
7822 return FALSE;
7823 normalize_address_expr (&offset_expr);
7824 }
97d87491
RS
7825 continue;
7826
7827 case 'F':
7828 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7829 8, TRUE))
1a00e612 7830 return FALSE;
97d87491
RS
7831 continue;
7832
7833 case 'L':
7834 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7835 8, FALSE))
1a00e612 7836 return FALSE;
97d87491
RS
7837 continue;
7838
7839 case 'f':
7840 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7841 4, TRUE))
1a00e612 7842 return FALSE;
97d87491
RS
7843 continue;
7844
7845 case 'l':
7846 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7847 4, FALSE))
1a00e612 7848 return FALSE;
97d87491
RS
7849 continue;
7850
97d87491
RS
7851 case 'p':
7852 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7853 break;
7854
7855 case 'a':
7856 *offset_reloc = BFD_RELOC_MIPS_JMP;
7857 break;
7858
7859 case 'm':
7860 gas_assert (mips_opts.micromips);
7861 c = args[1];
7862 switch (c)
7863 {
7864 case 'D':
7865 case 'E':
7866 if (!forced_insn_length)
7867 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7868 else if (c == 'D')
7869 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7870 else
7871 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7872 break;
7873 }
7874 break;
7875 }
7876
7877 operand = (mips_opts.micromips
7878 ? decode_micromips_operand (args)
7879 : decode_mips_operand (args));
7880 if (!operand)
7881 abort ();
7882
7883 /* Skip prefixes. */
7361da2c 7884 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
7885 args++;
7886
7887 if (mips_optional_operand_p (operand)
7888 && args[1] == ','
7889 && (arg.token[0].type != OT_REG
7890 || arg.token[1].type == OT_END))
7891 {
7892 /* Assume that the register has been elided and is the
7893 same as the first operand. */
7894 arg.token = tokens;
7895 arg.argnum = 1;
7896 }
7897
7898 if (!match_operand (&arg, operand))
7899 return FALSE;
7900 }
7901}
7902
7903/* Like match_insn, but for MIPS16. */
7904
7905static bfd_boolean
7906match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 7907 struct mips_operand_token *tokens)
97d87491
RS
7908{
7909 const char *args;
7910 const struct mips_operand *operand;
7911 const struct mips_operand *ext_operand;
7912 struct mips_arg_info arg;
7913 int relax_char;
7914
7915 create_insn (insn, opcode);
7916 imm_expr.X_op = O_absent;
97d87491
RS
7917 offset_expr.X_op = O_absent;
7918 offset_reloc[0] = BFD_RELOC_UNUSED;
7919 offset_reloc[1] = BFD_RELOC_UNUSED;
7920 offset_reloc[2] = BFD_RELOC_UNUSED;
7921 relax_char = 0;
7922
7923 memset (&arg, 0, sizeof (arg));
7924 arg.insn = insn;
7925 arg.token = tokens;
7926 arg.argnum = 1;
7927 arg.last_regno = ILLEGAL_REG;
7928 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
7929 relax_char = 0;
7930 for (args = opcode->args;; ++args)
7931 {
7932 int c;
7933
7934 if (arg.token->type == OT_END)
7935 {
7936 offsetT value;
7937
7938 /* Handle unary instructions in which only one operand is given.
7939 The source is then the same as the destination. */
7940 if (arg.opnum == 1 && *args == ',')
7941 {
7942 operand = decode_mips16_operand (args[1], FALSE);
7943 if (operand && mips_optional_operand_p (operand))
7944 {
7945 arg.token = tokens;
7946 arg.argnum = 1;
7947 continue;
7948 }
7949 }
7950
7951 /* Fail the match if there were too few operands. */
7952 if (*args)
7953 return FALSE;
7954
7955 /* Successful match. Stuff the immediate value in now, if
7956 we can. */
e3de51ce 7957 clear_insn_error ();
97d87491
RS
7958 if (opcode->pinfo == INSN_MACRO)
7959 {
7960 gas_assert (relax_char == 0 || relax_char == 'p');
7961 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7962 }
7963 else if (relax_char
7964 && offset_expr.X_op == O_constant
7965 && calculate_reloc (*offset_reloc,
7966 offset_expr.X_add_number,
7967 &value))
7968 {
7969 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7970 forced_insn_length, &insn->insn_opcode);
7971 offset_expr.X_op = O_absent;
7972 *offset_reloc = BFD_RELOC_UNUSED;
7973 }
7974 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7975 {
7976 if (forced_insn_length == 2)
e3de51ce 7977 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
7978 forced_insn_length = 4;
7979 insn->insn_opcode |= MIPS16_EXTEND;
7980 }
7981 else if (relax_char)
7982 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7983
7984 check_completed_insn (&arg);
7985 return TRUE;
7986 }
7987
7988 /* Fail the match if the line has too many operands. */
7989 if (*args == 0)
7990 return FALSE;
7991
7992 /* Handle characters that need to match exactly. */
7993 if (*args == '(' || *args == ')' || *args == ',')
7994 {
7995 if (match_char (&arg, *args))
7996 continue;
7997 return FALSE;
7998 }
7999
8000 arg.opnum += 1;
8001 c = *args;
8002 switch (c)
8003 {
8004 case 'p':
8005 case 'q':
8006 case 'A':
8007 case 'B':
8008 case 'E':
8009 relax_char = c;
8010 break;
8011
8012 case 'I':
1a00e612
RS
8013 if (!match_const_int (&arg, &imm_expr.X_add_number))
8014 return FALSE;
8015 imm_expr.X_op = O_constant;
bad1aba3 8016 if (GPR_SIZE == 32)
97d87491
RS
8017 normalize_constant_expr (&imm_expr);
8018 continue;
8019
8020 case 'a':
8021 case 'i':
8022 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8023 insn->insn_opcode <<= 16;
8024 break;
8025 }
8026
8027 operand = decode_mips16_operand (c, FALSE);
8028 if (!operand)
8029 abort ();
8030
8031 /* '6' is a special case. It is used for BREAK and SDBBP,
8032 whose operands are only meaningful to the software that decodes
8033 them. This means that there is no architectural reason why
8034 they cannot be prefixed by EXTEND, but in practice,
8035 exception handlers will only look at the instruction
8036 itself. We therefore allow '6' to be extended when
8037 disassembling but not when assembling. */
8038 if (operand->type != OP_PCREL && c != '6')
8039 {
8040 ext_operand = decode_mips16_operand (c, TRUE);
8041 if (operand != ext_operand)
8042 {
8043 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8044 {
8045 offset_expr.X_op = O_constant;
8046 offset_expr.X_add_number = 0;
8047 relax_char = c;
8048 continue;
8049 }
8050
8051 /* We need the OT_INTEGER check because some MIPS16
8052 immediate variants are listed before the register ones. */
8053 if (arg.token->type != OT_INTEGER
8054 || !match_expression (&arg, &offset_expr, offset_reloc))
8055 return FALSE;
8056
8057 /* '8' is used for SLTI(U) and has traditionally not
8058 been allowed to take relocation operators. */
8059 if (offset_reloc[0] != BFD_RELOC_UNUSED
8060 && (ext_operand->size != 16 || c == '8'))
8061 return FALSE;
8062
8063 relax_char = c;
8064 continue;
8065 }
8066 }
8067
8068 if (mips_optional_operand_p (operand)
8069 && args[1] == ','
8070 && (arg.token[0].type != OT_REG
8071 || arg.token[1].type == OT_END))
8072 {
8073 /* Assume that the register has been elided and is the
8074 same as the first operand. */
8075 arg.token = tokens;
8076 arg.argnum = 1;
8077 }
8078
8079 if (!match_operand (&arg, operand))
8080 return FALSE;
8081 }
8082}
8083
60f20e8b
RS
8084/* Record that the current instruction is invalid for the current ISA. */
8085
8086static void
8087match_invalid_for_isa (void)
8088{
8089 set_insn_error_ss
1661c76c 8090 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8091 mips_cpu_info_from_arch (mips_opts.arch)->name,
8092 mips_cpu_info_from_isa (mips_opts.isa)->name);
8093}
8094
8095/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8096 Return true if a definite match or failure was found, storing any match
8097 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8098 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8099 tried and failed to match under normal conditions and now want to try a
8100 more relaxed match. */
8101
8102static bfd_boolean
8103match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8104 const struct mips_opcode *past, struct mips_operand_token *tokens,
8105 int opcode_extra, bfd_boolean lax_match)
8106{
8107 const struct mips_opcode *opcode;
8108 const struct mips_opcode *invalid_delay_slot;
8109 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8110
8111 /* Search for a match, ignoring alternatives that don't satisfy the
8112 current ISA or forced_length. */
8113 invalid_delay_slot = 0;
8114 seen_valid_for_isa = FALSE;
8115 seen_valid_for_size = FALSE;
8116 opcode = first;
8117 do
8118 {
8119 gas_assert (strcmp (opcode->name, first->name) == 0);
8120 if (is_opcode_valid (opcode))
8121 {
8122 seen_valid_for_isa = TRUE;
8123 if (is_size_valid (opcode))
8124 {
8125 bfd_boolean delay_slot_ok;
8126
8127 seen_valid_for_size = TRUE;
8128 delay_slot_ok = is_delay_slot_valid (opcode);
8129 if (match_insn (insn, opcode, tokens, opcode_extra,
8130 lax_match, delay_slot_ok))
8131 {
8132 if (!delay_slot_ok)
8133 {
8134 if (!invalid_delay_slot)
8135 invalid_delay_slot = opcode;
8136 }
8137 else
8138 return TRUE;
8139 }
8140 }
8141 }
8142 ++opcode;
8143 }
8144 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8145
8146 /* If the only matches we found had the wrong length for the delay slot,
8147 pick the first such match. We'll issue an appropriate warning later. */
8148 if (invalid_delay_slot)
8149 {
8150 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8151 lax_match, TRUE))
8152 return TRUE;
8153 abort ();
8154 }
8155
8156 /* Handle the case where we didn't try to match an instruction because
8157 all the alternatives were incompatible with the current ISA. */
8158 if (!seen_valid_for_isa)
8159 {
8160 match_invalid_for_isa ();
8161 return TRUE;
8162 }
8163
8164 /* Handle the case where we didn't try to match an instruction because
8165 all the alternatives were of the wrong size. */
8166 if (!seen_valid_for_size)
8167 {
8168 if (mips_opts.insn32)
1661c76c 8169 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8170 else
8171 set_insn_error_i
1661c76c 8172 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8173 8 * forced_insn_length);
8174 return TRUE;
8175 }
8176
8177 return FALSE;
8178}
8179
8180/* Like match_insns, but for MIPS16. */
8181
8182static bfd_boolean
8183match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8184 struct mips_operand_token *tokens)
8185{
8186 const struct mips_opcode *opcode;
8187 bfd_boolean seen_valid_for_isa;
8188
8189 /* Search for a match, ignoring alternatives that don't satisfy the
8190 current ISA. There are no separate entries for extended forms so
8191 we deal with forced_length later. */
8192 seen_valid_for_isa = FALSE;
8193 opcode = first;
8194 do
8195 {
8196 gas_assert (strcmp (opcode->name, first->name) == 0);
8197 if (is_opcode_valid_16 (opcode))
8198 {
8199 seen_valid_for_isa = TRUE;
8200 if (match_mips16_insn (insn, opcode, tokens))
8201 return TRUE;
8202 }
8203 ++opcode;
8204 }
8205 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8206 && strcmp (opcode->name, first->name) == 0);
8207
8208 /* Handle the case where we didn't try to match an instruction because
8209 all the alternatives were incompatible with the current ISA. */
8210 if (!seen_valid_for_isa)
8211 {
8212 match_invalid_for_isa ();
8213 return TRUE;
8214 }
8215
8216 return FALSE;
8217}
8218
584892a6
RS
8219/* Set up global variables for the start of a new macro. */
8220
8221static void
8222macro_start (void)
8223{
8224 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8225 memset (&mips_macro_warning.first_insn_sizes, 0,
8226 sizeof (mips_macro_warning.first_insn_sizes));
8227 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8228 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8229 && delayed_branch_p (&history[0]));
df58fc94
RS
8230 switch (history[0].insn_mo->pinfo2
8231 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8232 {
8233 case INSN2_BRANCH_DELAY_32BIT:
8234 mips_macro_warning.delay_slot_length = 4;
8235 break;
8236 case INSN2_BRANCH_DELAY_16BIT:
8237 mips_macro_warning.delay_slot_length = 2;
8238 break;
8239 default:
8240 mips_macro_warning.delay_slot_length = 0;
8241 break;
8242 }
8243 mips_macro_warning.first_frag = NULL;
584892a6
RS
8244}
8245
df58fc94
RS
8246/* Given that a macro is longer than one instruction or of the wrong size,
8247 return the appropriate warning for it. Return null if no warning is
8248 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8249 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8250 and RELAX_NOMACRO. */
584892a6
RS
8251
8252static const char *
8253macro_warning (relax_substateT subtype)
8254{
8255 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8256 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8257 " in a branch delay slot");
8258 else if (subtype & RELAX_NOMACRO)
1661c76c 8259 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8260 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8261 | RELAX_DELAY_SLOT_SIZE_SECOND))
8262 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8263 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8264 " in a 16-bit branch delay slot")
1661c76c 8265 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8266 " in a 32-bit branch delay slot"));
584892a6
RS
8267 else
8268 return 0;
8269}
8270
8271/* Finish up a macro. Emit warnings as appropriate. */
8272
8273static void
8274macro_end (void)
8275{
df58fc94
RS
8276 /* Relaxation warning flags. */
8277 relax_substateT subtype = 0;
8278
8279 /* Check delay slot size requirements. */
8280 if (mips_macro_warning.delay_slot_length == 2)
8281 subtype |= RELAX_DELAY_SLOT_16BIT;
8282 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8283 {
df58fc94
RS
8284 if (mips_macro_warning.delay_slot_length
8285 != mips_macro_warning.first_insn_sizes[0])
8286 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8287 if (mips_macro_warning.delay_slot_length
8288 != mips_macro_warning.first_insn_sizes[1])
8289 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8290 }
584892a6 8291
df58fc94
RS
8292 /* Check instruction count requirements. */
8293 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8294 {
8295 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8296 subtype |= RELAX_SECOND_LONGER;
8297 if (mips_opts.warn_about_macros)
8298 subtype |= RELAX_NOMACRO;
8299 if (mips_macro_warning.delay_slot_p)
8300 subtype |= RELAX_DELAY_SLOT;
df58fc94 8301 }
584892a6 8302
df58fc94
RS
8303 /* If both alternatives fail to fill a delay slot correctly,
8304 emit the warning now. */
8305 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8306 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8307 {
8308 relax_substateT s;
8309 const char *msg;
8310
8311 s = subtype & (RELAX_DELAY_SLOT_16BIT
8312 | RELAX_DELAY_SLOT_SIZE_FIRST
8313 | RELAX_DELAY_SLOT_SIZE_SECOND);
8314 msg = macro_warning (s);
8315 if (msg != NULL)
8316 as_warn ("%s", msg);
8317 subtype &= ~s;
8318 }
8319
8320 /* If both implementations are longer than 1 instruction, then emit the
8321 warning now. */
8322 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8323 {
8324 relax_substateT s;
8325 const char *msg;
8326
8327 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8328 msg = macro_warning (s);
8329 if (msg != NULL)
8330 as_warn ("%s", msg);
8331 subtype &= ~s;
584892a6 8332 }
df58fc94
RS
8333
8334 /* If any flags still set, then one implementation might need a warning
8335 and the other either will need one of a different kind or none at all.
8336 Pass any remaining flags over to relaxation. */
8337 if (mips_macro_warning.first_frag != NULL)
8338 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8339}
8340
df58fc94
RS
8341/* Instruction operand formats used in macros that vary between
8342 standard MIPS and microMIPS code. */
8343
833794fc 8344static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8345static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8346static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8347static const char * const lui_fmt[2] = { "t,u", "s,u" };
8348static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8349static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8350static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8351static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8352
833794fc 8353#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8354#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8355 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8356#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8357#define LUI_FMT (lui_fmt[mips_opts.micromips])
8358#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8359#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8360 : mem12_fmt[mips_opts.micromips])
833794fc 8361#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8362#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8363#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8364
6e1304d8
RS
8365/* Read a macro's relocation codes from *ARGS and store them in *R.
8366 The first argument in *ARGS will be either the code for a single
8367 relocation or -1 followed by the three codes that make up a
8368 composite relocation. */
8369
8370static void
8371macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8372{
8373 int i, next;
8374
8375 next = va_arg (*args, int);
8376 if (next >= 0)
8377 r[0] = (bfd_reloc_code_real_type) next;
8378 else
f2ae14a1
RS
8379 {
8380 for (i = 0; i < 3; i++)
8381 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8382 /* This function is only used for 16-bit relocation fields.
8383 To make the macro code simpler, treat an unrelocated value
8384 in the same way as BFD_RELOC_LO16. */
8385 if (r[0] == BFD_RELOC_UNUSED)
8386 r[0] = BFD_RELOC_LO16;
8387 }
6e1304d8
RS
8388}
8389
252b5132
RH
8390/* Build an instruction created by a macro expansion. This is passed
8391 a pointer to the count of instructions created so far, an
8392 expression, the name of the instruction to build, an operand format
8393 string, and corresponding arguments. */
8394
252b5132 8395static void
67c0d1eb 8396macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8397{
df58fc94 8398 const struct mips_opcode *mo = NULL;
f6688943 8399 bfd_reloc_code_real_type r[3];
df58fc94 8400 const struct mips_opcode *amo;
e077a1c8 8401 const struct mips_operand *operand;
df58fc94
RS
8402 struct hash_control *hash;
8403 struct mips_cl_insn insn;
252b5132 8404 va_list args;
e077a1c8 8405 unsigned int uval;
252b5132 8406
252b5132 8407 va_start (args, fmt);
252b5132 8408
252b5132
RH
8409 if (mips_opts.mips16)
8410 {
03ea81db 8411 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8412 va_end (args);
8413 return;
8414 }
8415
f6688943
TS
8416 r[0] = BFD_RELOC_UNUSED;
8417 r[1] = BFD_RELOC_UNUSED;
8418 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8419 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8420 amo = (struct mips_opcode *) hash_find (hash, name);
8421 gas_assert (amo);
8422 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8423
df58fc94 8424 do
8b082fb1
TS
8425 {
8426 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8427 macros will never generate MDMX, MIPS-3D, or MT instructions.
8428 We try to match an instruction that fulfils the branch delay
8429 slot instruction length requirement (if any) of the previous
8430 instruction. While doing this we record the first instruction
8431 seen that matches all the other conditions and use it anyway
8432 if the requirement cannot be met; we will issue an appropriate
8433 warning later on. */
8434 if (strcmp (fmt, amo->args) == 0
8435 && amo->pinfo != INSN_MACRO
8436 && is_opcode_valid (amo)
8437 && is_size_valid (amo))
8438 {
8439 if (is_delay_slot_valid (amo))
8440 {
8441 mo = amo;
8442 break;
8443 }
8444 else if (!mo)
8445 mo = amo;
8446 }
8b082fb1 8447
df58fc94
RS
8448 ++amo;
8449 gas_assert (amo->name);
252b5132 8450 }
df58fc94 8451 while (strcmp (name, amo->name) == 0);
252b5132 8452
df58fc94 8453 gas_assert (mo);
1e915849 8454 create_insn (&insn, mo);
e077a1c8 8455 for (; *fmt; ++fmt)
252b5132 8456 {
e077a1c8 8457 switch (*fmt)
252b5132 8458 {
252b5132
RH
8459 case ',':
8460 case '(':
8461 case ')':
252b5132 8462 case 'z':
e077a1c8 8463 break;
252b5132
RH
8464
8465 case 'i':
8466 case 'j':
6e1304d8 8467 macro_read_relocs (&args, r);
9c2799c2 8468 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8469 || *r == BFD_RELOC_MIPS_HIGHER
8470 || *r == BFD_RELOC_HI16_S
8471 || *r == BFD_RELOC_LO16
8472 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8473 break;
e391c024
RS
8474
8475 case 'o':
8476 macro_read_relocs (&args, r);
e077a1c8 8477 break;
252b5132
RH
8478
8479 case 'u':
6e1304d8 8480 macro_read_relocs (&args, r);
9c2799c2 8481 gas_assert (ep != NULL
90ecf173
MR
8482 && (ep->X_op == O_constant
8483 || (ep->X_op == O_symbol
8484 && (*r == BFD_RELOC_MIPS_HIGHEST
8485 || *r == BFD_RELOC_HI16_S
8486 || *r == BFD_RELOC_HI16
8487 || *r == BFD_RELOC_GPREL16
8488 || *r == BFD_RELOC_MIPS_GOT_HI16
8489 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8490 break;
252b5132
RH
8491
8492 case 'p':
9c2799c2 8493 gas_assert (ep != NULL);
bad36eac 8494
252b5132
RH
8495 /*
8496 * This allows macro() to pass an immediate expression for
8497 * creating short branches without creating a symbol.
bad36eac
DJ
8498 *
8499 * We don't allow branch relaxation for these branches, as
8500 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8501 */
8502 if (ep->X_op == O_constant)
8503 {
df58fc94
RS
8504 /* For microMIPS we always use relocations for branches.
8505 So we should not resolve immediate values. */
8506 gas_assert (!mips_opts.micromips);
8507
bad36eac
DJ
8508 if ((ep->X_add_number & 3) != 0)
8509 as_bad (_("branch to misaligned address (0x%lx)"),
8510 (unsigned long) ep->X_add_number);
8511 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8512 as_bad (_("branch address range overflow (0x%lx)"),
8513 (unsigned long) ep->X_add_number);
252b5132
RH
8514 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8515 ep = NULL;
8516 }
8517 else
0b25d3e6 8518 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8519 break;
252b5132
RH
8520
8521 case 'a':
9c2799c2 8522 gas_assert (ep != NULL);
f6688943 8523 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8524 break;
d43b4baf 8525
252b5132 8526 default:
e077a1c8
RS
8527 operand = (mips_opts.micromips
8528 ? decode_micromips_operand (fmt)
8529 : decode_mips_operand (fmt));
8530 if (!operand)
8531 abort ();
8532
8533 uval = va_arg (args, int);
8534 if (operand->type == OP_CLO_CLZ_DEST)
8535 uval |= (uval << 5);
8536 insn_insert_operand (&insn, operand, uval);
8537
7361da2c 8538 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8539 ++fmt;
8540 break;
252b5132 8541 }
252b5132
RH
8542 }
8543 va_end (args);
9c2799c2 8544 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8545
df58fc94 8546 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8547}
8548
8549static void
67c0d1eb 8550mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8551 va_list *args)
252b5132 8552{
1e915849 8553 struct mips_opcode *mo;
252b5132 8554 struct mips_cl_insn insn;
e077a1c8 8555 const struct mips_operand *operand;
f6688943
TS
8556 bfd_reloc_code_real_type r[3]
8557 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8558
1e915849 8559 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8560 gas_assert (mo);
8561 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8562
1e915849 8563 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8564 {
1e915849 8565 ++mo;
9c2799c2
NC
8566 gas_assert (mo->name);
8567 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8568 }
8569
1e915849 8570 create_insn (&insn, mo);
e077a1c8 8571 for (; *fmt; ++fmt)
252b5132
RH
8572 {
8573 int c;
8574
e077a1c8 8575 c = *fmt;
252b5132
RH
8576 switch (c)
8577 {
252b5132
RH
8578 case ',':
8579 case '(':
8580 case ')':
e077a1c8 8581 break;
252b5132
RH
8582
8583 case '0':
8584 case 'S':
8585 case 'P':
8586 case 'R':
e077a1c8 8587 break;
252b5132
RH
8588
8589 case '<':
8590 case '>':
8591 case '4':
8592 case '5':
8593 case 'H':
8594 case 'W':
8595 case 'D':
8596 case 'j':
8597 case '8':
8598 case 'V':
8599 case 'C':
8600 case 'U':
8601 case 'k':
8602 case 'K':
8603 case 'p':
8604 case 'q':
8605 {
b886a2ab
RS
8606 offsetT value;
8607
9c2799c2 8608 gas_assert (ep != NULL);
252b5132
RH
8609
8610 if (ep->X_op != O_constant)
874e8986 8611 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8612 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8613 {
b886a2ab 8614 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8615 ep = NULL;
f6688943 8616 *r = BFD_RELOC_UNUSED;
252b5132
RH
8617 }
8618 }
e077a1c8 8619 break;
252b5132 8620
e077a1c8
RS
8621 default:
8622 operand = decode_mips16_operand (c, FALSE);
8623 if (!operand)
8624 abort ();
252b5132 8625
4a06e5a2 8626 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8627 break;
8628 }
252b5132
RH
8629 }
8630
9c2799c2 8631 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8632
df58fc94 8633 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8634}
8635
438c16b8
TS
8636/*
8637 * Generate a "jalr" instruction with a relocation hint to the called
8638 * function. This occurs in NewABI PIC code.
8639 */
8640static void
df58fc94 8641macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8642{
df58fc94
RS
8643 static const bfd_reloc_code_real_type jalr_relocs[2]
8644 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8645 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8646 const char *jalr;
685736be 8647 char *f = NULL;
b34976b6 8648
1180b5a4 8649 if (MIPS_JALR_HINT_P (ep))
f21f8242 8650 {
cc3d92a5 8651 frag_grow (8);
f21f8242
AO
8652 f = frag_more (0);
8653 }
2906b037 8654 if (mips_opts.micromips)
df58fc94 8655 {
833794fc
MR
8656 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8657 ? "jalr" : "jalrs");
e64af278 8658 if (MIPS_JALR_HINT_P (ep)
833794fc 8659 || mips_opts.insn32
e64af278 8660 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8661 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8662 else
8663 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8664 }
2906b037
MR
8665 else
8666 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8667 if (MIPS_JALR_HINT_P (ep))
df58fc94 8668 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8669}
8670
252b5132
RH
8671/*
8672 * Generate a "lui" instruction.
8673 */
8674static void
67c0d1eb 8675macro_build_lui (expressionS *ep, int regnum)
252b5132 8676{
9c2799c2 8677 gas_assert (! mips_opts.mips16);
252b5132 8678
df58fc94 8679 if (ep->X_op != O_constant)
252b5132 8680 {
9c2799c2 8681 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8682 /* _gp_disp is a special case, used from s_cpload.
8683 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8684 gas_assert (mips_pic == NO_PIC
78e1bb40 8685 || (! HAVE_NEWABI
aa6975fb
ILT
8686 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8687 || (! mips_in_shared
bbe506e8
TS
8688 && strcmp (S_GET_NAME (ep->X_add_symbol),
8689 "__gnu_local_gp") == 0));
252b5132
RH
8690 }
8691
df58fc94 8692 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8693}
8694
885add95
CD
8695/* Generate a sequence of instructions to do a load or store from a constant
8696 offset off of a base register (breg) into/from a target register (treg),
8697 using AT if necessary. */
8698static void
67c0d1eb
RS
8699macro_build_ldst_constoffset (expressionS *ep, const char *op,
8700 int treg, int breg, int dbl)
885add95 8701{
9c2799c2 8702 gas_assert (ep->X_op == O_constant);
885add95 8703
256ab948 8704 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8705 if (!dbl)
8706 normalize_constant_expr (ep);
256ab948 8707
67c1ffbe 8708 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8709 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8710 as_warn (_("operand overflow"));
8711
8712 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8713 {
8714 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8715 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8716 }
8717 else
8718 {
8719 /* 32-bit offset, need multiple instructions and AT, like:
8720 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8721 addu $tempreg,$tempreg,$breg
8722 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8723 to handle the complete offset. */
67c0d1eb
RS
8724 macro_build_lui (ep, AT);
8725 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8726 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8727
741fe287 8728 if (!mips_opts.at)
1661c76c 8729 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8730 }
8731}
8732
252b5132
RH
8733/* set_at()
8734 * Generates code to set the $at register to true (one)
8735 * if reg is less than the immediate expression.
8736 */
8737static void
67c0d1eb 8738set_at (int reg, int unsignedp)
252b5132 8739{
b0e6f033 8740 if (imm_expr.X_add_number >= -0x8000
252b5132 8741 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8742 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8743 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8744 else
8745 {
bad1aba3 8746 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8747 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8748 }
8749}
8750
252b5132
RH
8751/* Count the leading zeroes by performing a binary chop. This is a
8752 bulky bit of source, but performance is a LOT better for the
8753 majority of values than a simple loop to count the bits:
8754 for (lcnt = 0; (lcnt < 32); lcnt++)
8755 if ((v) & (1 << (31 - lcnt)))
8756 break;
8757 However it is not code size friendly, and the gain will drop a bit
8758 on certain cached systems.
8759*/
8760#define COUNT_TOP_ZEROES(v) \
8761 (((v) & ~0xffff) == 0 \
8762 ? ((v) & ~0xff) == 0 \
8763 ? ((v) & ~0xf) == 0 \
8764 ? ((v) & ~0x3) == 0 \
8765 ? ((v) & ~0x1) == 0 \
8766 ? !(v) \
8767 ? 32 \
8768 : 31 \
8769 : 30 \
8770 : ((v) & ~0x7) == 0 \
8771 ? 29 \
8772 : 28 \
8773 : ((v) & ~0x3f) == 0 \
8774 ? ((v) & ~0x1f) == 0 \
8775 ? 27 \
8776 : 26 \
8777 : ((v) & ~0x7f) == 0 \
8778 ? 25 \
8779 : 24 \
8780 : ((v) & ~0xfff) == 0 \
8781 ? ((v) & ~0x3ff) == 0 \
8782 ? ((v) & ~0x1ff) == 0 \
8783 ? 23 \
8784 : 22 \
8785 : ((v) & ~0x7ff) == 0 \
8786 ? 21 \
8787 : 20 \
8788 : ((v) & ~0x3fff) == 0 \
8789 ? ((v) & ~0x1fff) == 0 \
8790 ? 19 \
8791 : 18 \
8792 : ((v) & ~0x7fff) == 0 \
8793 ? 17 \
8794 : 16 \
8795 : ((v) & ~0xffffff) == 0 \
8796 ? ((v) & ~0xfffff) == 0 \
8797 ? ((v) & ~0x3ffff) == 0 \
8798 ? ((v) & ~0x1ffff) == 0 \
8799 ? 15 \
8800 : 14 \
8801 : ((v) & ~0x7ffff) == 0 \
8802 ? 13 \
8803 : 12 \
8804 : ((v) & ~0x3fffff) == 0 \
8805 ? ((v) & ~0x1fffff) == 0 \
8806 ? 11 \
8807 : 10 \
8808 : ((v) & ~0x7fffff) == 0 \
8809 ? 9 \
8810 : 8 \
8811 : ((v) & ~0xfffffff) == 0 \
8812 ? ((v) & ~0x3ffffff) == 0 \
8813 ? ((v) & ~0x1ffffff) == 0 \
8814 ? 7 \
8815 : 6 \
8816 : ((v) & ~0x7ffffff) == 0 \
8817 ? 5 \
8818 : 4 \
8819 : ((v) & ~0x3fffffff) == 0 \
8820 ? ((v) & ~0x1fffffff) == 0 \
8821 ? 3 \
8822 : 2 \
8823 : ((v) & ~0x7fffffff) == 0 \
8824 ? 1 \
8825 : 0)
8826
8827/* load_register()
67c1ffbe 8828 * This routine generates the least number of instructions necessary to load
252b5132
RH
8829 * an absolute expression value into a register.
8830 */
8831static void
67c0d1eb 8832load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
8833{
8834 int freg;
8835 expressionS hi32, lo32;
8836
8837 if (ep->X_op != O_big)
8838 {
9c2799c2 8839 gas_assert (ep->X_op == O_constant);
256ab948
TS
8840
8841 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8842 if (!dbl)
8843 normalize_constant_expr (ep);
256ab948
TS
8844
8845 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
8846 {
8847 /* We can handle 16 bit signed values with an addiu to
8848 $zero. No need to ever use daddiu here, since $zero and
8849 the result are always correct in 32 bit mode. */
67c0d1eb 8850 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8851 return;
8852 }
8853 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8854 {
8855 /* We can handle 16 bit unsigned values with an ori to
8856 $zero. */
67c0d1eb 8857 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8858 return;
8859 }
256ab948 8860 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
8861 {
8862 /* 32 bit values require an lui. */
df58fc94 8863 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8864 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 8865 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
8866 return;
8867 }
8868 }
8869
8870 /* The value is larger than 32 bits. */
8871
bad1aba3 8872 if (!dbl || GPR_SIZE == 32)
252b5132 8873 {
55e08f71
NC
8874 char value[32];
8875
8876 sprintf_vma (value, ep->X_add_number);
1661c76c 8877 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 8878 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8879 return;
8880 }
8881
8882 if (ep->X_op != O_big)
8883 {
8884 hi32 = *ep;
8885 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8886 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8887 hi32.X_add_number &= 0xffffffff;
8888 lo32 = *ep;
8889 lo32.X_add_number &= 0xffffffff;
8890 }
8891 else
8892 {
9c2799c2 8893 gas_assert (ep->X_add_number > 2);
252b5132
RH
8894 if (ep->X_add_number == 3)
8895 generic_bignum[3] = 0;
8896 else if (ep->X_add_number > 4)
1661c76c 8897 as_bad (_("number larger than 64 bits"));
252b5132
RH
8898 lo32.X_op = O_constant;
8899 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8900 hi32.X_op = O_constant;
8901 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8902 }
8903
8904 if (hi32.X_add_number == 0)
8905 freg = 0;
8906 else
8907 {
8908 int shift, bit;
8909 unsigned long hi, lo;
8910
956cd1d6 8911 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
8912 {
8913 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8914 {
67c0d1eb 8915 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8916 return;
8917 }
8918 if (lo32.X_add_number & 0x80000000)
8919 {
df58fc94 8920 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8921 if (lo32.X_add_number & 0xffff)
67c0d1eb 8922 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
8923 return;
8924 }
8925 }
252b5132
RH
8926
8927 /* Check for 16bit shifted constant. We know that hi32 is
8928 non-zero, so start the mask on the first bit of the hi32
8929 value. */
8930 shift = 17;
8931 do
beae10d5
KH
8932 {
8933 unsigned long himask, lomask;
8934
8935 if (shift < 32)
8936 {
8937 himask = 0xffff >> (32 - shift);
8938 lomask = (0xffff << shift) & 0xffffffff;
8939 }
8940 else
8941 {
8942 himask = 0xffff << (shift - 32);
8943 lomask = 0;
8944 }
8945 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8946 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8947 {
8948 expressionS tmp;
8949
8950 tmp.X_op = O_constant;
8951 if (shift < 32)
8952 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8953 | (lo32.X_add_number >> shift));
8954 else
8955 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 8956 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 8957 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 8958 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
8959 return;
8960 }
f9419b05 8961 ++shift;
beae10d5
KH
8962 }
8963 while (shift <= (64 - 16));
252b5132
RH
8964
8965 /* Find the bit number of the lowest one bit, and store the
8966 shifted value in hi/lo. */
8967 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8968 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8969 if (lo != 0)
8970 {
8971 bit = 0;
8972 while ((lo & 1) == 0)
8973 {
8974 lo >>= 1;
8975 ++bit;
8976 }
8977 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8978 hi >>= bit;
8979 }
8980 else
8981 {
8982 bit = 32;
8983 while ((hi & 1) == 0)
8984 {
8985 hi >>= 1;
8986 ++bit;
8987 }
8988 lo = hi;
8989 hi = 0;
8990 }
8991
8992 /* Optimize if the shifted value is a (power of 2) - 1. */
8993 if ((hi == 0 && ((lo + 1) & lo) == 0)
8994 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
8995 {
8996 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 8997 if (shift != 0)
beae10d5 8998 {
252b5132
RH
8999 expressionS tmp;
9000
9001 /* This instruction will set the register to be all
9002 ones. */
beae10d5
KH
9003 tmp.X_op = O_constant;
9004 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9005 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9006 if (bit != 0)
9007 {
9008 bit += shift;
df58fc94 9009 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9010 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9011 }
df58fc94 9012 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9013 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9014 return;
9015 }
9016 }
252b5132
RH
9017
9018 /* Sign extend hi32 before calling load_register, because we can
9019 generally get better code when we load a sign extended value. */
9020 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9021 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9022 load_register (reg, &hi32, 0);
252b5132
RH
9023 freg = reg;
9024 }
9025 if ((lo32.X_add_number & 0xffff0000) == 0)
9026 {
9027 if (freg != 0)
9028 {
df58fc94 9029 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9030 freg = reg;
9031 }
9032 }
9033 else
9034 {
9035 expressionS mid16;
9036
956cd1d6 9037 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9038 {
df58fc94
RS
9039 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9040 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9041 return;
9042 }
252b5132
RH
9043
9044 if (freg != 0)
9045 {
df58fc94 9046 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9047 freg = reg;
9048 }
9049 mid16 = lo32;
9050 mid16.X_add_number >>= 16;
67c0d1eb 9051 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9052 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9053 freg = reg;
9054 }
9055 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9056 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9057}
9058
269137b2
TS
9059static inline void
9060load_delay_nop (void)
9061{
9062 if (!gpr_interlocks)
9063 macro_build (NULL, "nop", "");
9064}
9065
252b5132
RH
9066/* Load an address into a register. */
9067
9068static void
67c0d1eb 9069load_address (int reg, expressionS *ep, int *used_at)
252b5132 9070{
252b5132
RH
9071 if (ep->X_op != O_constant
9072 && ep->X_op != O_symbol)
9073 {
9074 as_bad (_("expression too complex"));
9075 ep->X_op = O_constant;
9076 }
9077
9078 if (ep->X_op == O_constant)
9079 {
67c0d1eb 9080 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9081 return;
9082 }
9083
9084 if (mips_pic == NO_PIC)
9085 {
9086 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9087 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9088 Otherwise we want
9089 lui $reg,<sym> (BFD_RELOC_HI16_S)
9090 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9091 If we have an addend, we always use the latter form.
76b3015f 9092
d6bc6245
TS
9093 With 64bit address space and a usable $at we want
9094 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9095 lui $at,<sym> (BFD_RELOC_HI16_S)
9096 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9097 daddiu $at,<sym> (BFD_RELOC_LO16)
9098 dsll32 $reg,0
3a482fd5 9099 daddu $reg,$reg,$at
76b3015f 9100
c03099e6 9101 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9102 on superscalar processors.
9103 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9104 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9105 dsll $reg,16
9106 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9107 dsll $reg,16
9108 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9109
9110 For GP relative symbols in 64bit address space we can use
9111 the same sequence as in 32bit address space. */
aed1a261 9112 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9113 {
6caf9ef4
TS
9114 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9115 && !nopic_need_relax (ep->X_add_symbol, 1))
9116 {
9117 relax_start (ep->X_add_symbol);
9118 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9119 mips_gp_register, BFD_RELOC_GPREL16);
9120 relax_switch ();
9121 }
d6bc6245 9122
741fe287 9123 if (*used_at == 0 && mips_opts.at)
d6bc6245 9124 {
df58fc94
RS
9125 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9126 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9127 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9128 BFD_RELOC_MIPS_HIGHER);
9129 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9130 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9131 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9132 *used_at = 1;
9133 }
9134 else
9135 {
df58fc94 9136 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9137 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9138 BFD_RELOC_MIPS_HIGHER);
df58fc94 9139 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9140 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9141 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9142 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9143 }
6caf9ef4
TS
9144
9145 if (mips_relax.sequence)
9146 relax_end ();
d6bc6245 9147 }
252b5132
RH
9148 else
9149 {
d6bc6245 9150 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9151 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9152 {
4d7206a2 9153 relax_start (ep->X_add_symbol);
67c0d1eb 9154 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9155 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9156 relax_switch ();
d6bc6245 9157 }
67c0d1eb
RS
9158 macro_build_lui (ep, reg);
9159 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9160 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9161 if (mips_relax.sequence)
9162 relax_end ();
d6bc6245 9163 }
252b5132 9164 }
0a44bf69 9165 else if (!mips_big_got)
252b5132
RH
9166 {
9167 expressionS ex;
9168
9169 /* If this is a reference to an external symbol, we want
9170 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9171 Otherwise we want
9172 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9173 nop
9174 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9175 If there is a constant, it must be added in after.
9176
ed6fb7bd 9177 If we have NewABI, we want
f5040a92
AO
9178 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9179 unless we're referencing a global symbol with a non-zero
9180 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9181 if (HAVE_NEWABI)
9182 {
f5040a92
AO
9183 if (ep->X_add_number)
9184 {
4d7206a2 9185 ex.X_add_number = ep->X_add_number;
f5040a92 9186 ep->X_add_number = 0;
4d7206a2 9187 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9188 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9189 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9190 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9191 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9192 ex.X_op = O_constant;
67c0d1eb 9193 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9194 reg, reg, BFD_RELOC_LO16);
f5040a92 9195 ep->X_add_number = ex.X_add_number;
4d7206a2 9196 relax_switch ();
f5040a92 9197 }
67c0d1eb 9198 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9199 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9200 if (mips_relax.sequence)
9201 relax_end ();
ed6fb7bd
SC
9202 }
9203 else
9204 {
f5040a92
AO
9205 ex.X_add_number = ep->X_add_number;
9206 ep->X_add_number = 0;
67c0d1eb
RS
9207 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9208 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9209 load_delay_nop ();
4d7206a2
RS
9210 relax_start (ep->X_add_symbol);
9211 relax_switch ();
67c0d1eb 9212 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9213 BFD_RELOC_LO16);
4d7206a2 9214 relax_end ();
ed6fb7bd 9215
f5040a92
AO
9216 if (ex.X_add_number != 0)
9217 {
9218 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9219 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9220 ex.X_op = O_constant;
67c0d1eb 9221 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9222 reg, reg, BFD_RELOC_LO16);
f5040a92 9223 }
252b5132
RH
9224 }
9225 }
0a44bf69 9226 else if (mips_big_got)
252b5132
RH
9227 {
9228 expressionS ex;
252b5132
RH
9229
9230 /* This is the large GOT case. If this is a reference to an
9231 external symbol, we want
9232 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9233 addu $reg,$reg,$gp
9234 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9235
9236 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9237 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9238 nop
9239 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9240 If there is a constant, it must be added in after.
f5040a92
AO
9241
9242 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9243 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9244 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9245 */
438c16b8
TS
9246 if (HAVE_NEWABI)
9247 {
4d7206a2 9248 ex.X_add_number = ep->X_add_number;
f5040a92 9249 ep->X_add_number = 0;
4d7206a2 9250 relax_start (ep->X_add_symbol);
df58fc94 9251 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9252 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9253 reg, reg, mips_gp_register);
9254 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9255 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9256 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9257 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9258 else if (ex.X_add_number)
9259 {
9260 ex.X_op = O_constant;
67c0d1eb
RS
9261 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9262 BFD_RELOC_LO16);
f5040a92
AO
9263 }
9264
9265 ep->X_add_number = ex.X_add_number;
4d7206a2 9266 relax_switch ();
67c0d1eb 9267 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9268 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9269 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9270 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9271 relax_end ();
438c16b8 9272 }
252b5132 9273 else
438c16b8 9274 {
f5040a92
AO
9275 ex.X_add_number = ep->X_add_number;
9276 ep->X_add_number = 0;
4d7206a2 9277 relax_start (ep->X_add_symbol);
df58fc94 9278 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9279 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9280 reg, reg, mips_gp_register);
9281 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9282 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9283 relax_switch ();
9284 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9285 {
9286 /* We need a nop before loading from $gp. This special
9287 check is required because the lui which starts the main
9288 instruction stream does not refer to $gp, and so will not
9289 insert the nop which may be required. */
67c0d1eb 9290 macro_build (NULL, "nop", "");
438c16b8 9291 }
67c0d1eb 9292 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9293 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9294 load_delay_nop ();
67c0d1eb 9295 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9296 BFD_RELOC_LO16);
4d7206a2 9297 relax_end ();
438c16b8 9298
f5040a92
AO
9299 if (ex.X_add_number != 0)
9300 {
9301 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9302 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9303 ex.X_op = O_constant;
67c0d1eb
RS
9304 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9305 BFD_RELOC_LO16);
f5040a92 9306 }
252b5132
RH
9307 }
9308 }
252b5132
RH
9309 else
9310 abort ();
8fc2e39e 9311
741fe287 9312 if (!mips_opts.at && *used_at == 1)
1661c76c 9313 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9314}
9315
ea1fb5dc
RS
9316/* Move the contents of register SOURCE into register DEST. */
9317
9318static void
67c0d1eb 9319move_register (int dest, int source)
ea1fb5dc 9320{
df58fc94
RS
9321 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9322 instruction specifically requires a 32-bit one. */
9323 if (mips_opts.micromips
833794fc 9324 && !mips_opts.insn32
df58fc94 9325 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9326 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9327 else
40fc1451 9328 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9329}
9330
4d7206a2 9331/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9332 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9333 The two alternatives are:
4d7206a2
RS
9334
9335 Global symbol Local sybmol
9336 ------------- ------------
9337 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9338 ... ...
9339 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9340
9341 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9342 emits the second for a 16-bit offset or add_got_offset_hilo emits
9343 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9344
9345static void
67c0d1eb 9346load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9347{
9348 expressionS global;
9349
9350 global = *local;
9351 global.X_add_number = 0;
9352
9353 relax_start (local->X_add_symbol);
67c0d1eb
RS
9354 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9355 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9356 relax_switch ();
67c0d1eb
RS
9357 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9358 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9359 relax_end ();
9360}
9361
9362static void
67c0d1eb 9363add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9364{
9365 expressionS global;
9366
9367 global.X_op = O_constant;
9368 global.X_op_symbol = NULL;
9369 global.X_add_symbol = NULL;
9370 global.X_add_number = local->X_add_number;
9371
9372 relax_start (local->X_add_symbol);
67c0d1eb 9373 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9374 dest, dest, BFD_RELOC_LO16);
9375 relax_switch ();
67c0d1eb 9376 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9377 relax_end ();
9378}
9379
f6a22291
MR
9380static void
9381add_got_offset_hilo (int dest, expressionS *local, int tmp)
9382{
9383 expressionS global;
9384 int hold_mips_optimize;
9385
9386 global.X_op = O_constant;
9387 global.X_op_symbol = NULL;
9388 global.X_add_symbol = NULL;
9389 global.X_add_number = local->X_add_number;
9390
9391 relax_start (local->X_add_symbol);
9392 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9393 relax_switch ();
9394 /* Set mips_optimize around the lui instruction to avoid
9395 inserting an unnecessary nop after the lw. */
9396 hold_mips_optimize = mips_optimize;
9397 mips_optimize = 2;
9398 macro_build_lui (&global, tmp);
9399 mips_optimize = hold_mips_optimize;
9400 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9401 relax_end ();
9402
9403 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9404}
9405
df58fc94
RS
9406/* Emit a sequence of instructions to emulate a branch likely operation.
9407 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9408 is its complementing branch with the original condition negated.
9409 CALL is set if the original branch specified the link operation.
9410 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9411
9412 Code like this is produced in the noreorder mode:
9413
9414 BRNEG <args>, 1f
9415 nop
9416 b <sym>
9417 delay slot (executed only if branch taken)
9418 1:
9419
9420 or, if CALL is set:
9421
9422 BRNEG <args>, 1f
9423 nop
9424 bal <sym>
9425 delay slot (executed only if branch taken)
9426 1:
9427
9428 In the reorder mode the delay slot would be filled with a nop anyway,
9429 so code produced is simply:
9430
9431 BR <args>, <sym>
9432 nop
9433
9434 This function is used when producing code for the microMIPS ASE that
9435 does not implement branch likely instructions in hardware. */
9436
9437static void
9438macro_build_branch_likely (const char *br, const char *brneg,
9439 int call, expressionS *ep, const char *fmt,
9440 unsigned int sreg, unsigned int treg)
9441{
9442 int noreorder = mips_opts.noreorder;
9443 expressionS expr1;
9444
9445 gas_assert (mips_opts.micromips);
9446 start_noreorder ();
9447 if (noreorder)
9448 {
9449 micromips_label_expr (&expr1);
9450 macro_build (&expr1, brneg, fmt, sreg, treg);
9451 macro_build (NULL, "nop", "");
9452 macro_build (ep, call ? "bal" : "b", "p");
9453
9454 /* Set to true so that append_insn adds a label. */
9455 emit_branch_likely_macro = TRUE;
9456 }
9457 else
9458 {
9459 macro_build (ep, br, fmt, sreg, treg);
9460 macro_build (NULL, "nop", "");
9461 }
9462 end_noreorder ();
9463}
9464
9465/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9466 the condition code tested. EP specifies the branch target. */
9467
9468static void
9469macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9470{
9471 const int call = 0;
9472 const char *brneg;
9473 const char *br;
9474
9475 switch (type)
9476 {
9477 case M_BC1FL:
9478 br = "bc1f";
9479 brneg = "bc1t";
9480 break;
9481 case M_BC1TL:
9482 br = "bc1t";
9483 brneg = "bc1f";
9484 break;
9485 case M_BC2FL:
9486 br = "bc2f";
9487 brneg = "bc2t";
9488 break;
9489 case M_BC2TL:
9490 br = "bc2t";
9491 brneg = "bc2f";
9492 break;
9493 default:
9494 abort ();
9495 }
9496 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9497}
9498
9499/* Emit a two-argument branch macro specified by TYPE, using SREG as
9500 the register tested. EP specifies the branch target. */
9501
9502static void
9503macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9504{
9505 const char *brneg = NULL;
9506 const char *br;
9507 int call = 0;
9508
9509 switch (type)
9510 {
9511 case M_BGEZ:
9512 br = "bgez";
9513 break;
9514 case M_BGEZL:
9515 br = mips_opts.micromips ? "bgez" : "bgezl";
9516 brneg = "bltz";
9517 break;
9518 case M_BGEZALL:
9519 gas_assert (mips_opts.micromips);
833794fc 9520 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9521 brneg = "bltz";
9522 call = 1;
9523 break;
9524 case M_BGTZ:
9525 br = "bgtz";
9526 break;
9527 case M_BGTZL:
9528 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9529 brneg = "blez";
9530 break;
9531 case M_BLEZ:
9532 br = "blez";
9533 break;
9534 case M_BLEZL:
9535 br = mips_opts.micromips ? "blez" : "blezl";
9536 brneg = "bgtz";
9537 break;
9538 case M_BLTZ:
9539 br = "bltz";
9540 break;
9541 case M_BLTZL:
9542 br = mips_opts.micromips ? "bltz" : "bltzl";
9543 brneg = "bgez";
9544 break;
9545 case M_BLTZALL:
9546 gas_assert (mips_opts.micromips);
833794fc 9547 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9548 brneg = "bgez";
9549 call = 1;
9550 break;
9551 default:
9552 abort ();
9553 }
9554 if (mips_opts.micromips && brneg)
9555 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9556 else
9557 macro_build (ep, br, "s,p", sreg);
9558}
9559
9560/* Emit a three-argument branch macro specified by TYPE, using SREG and
9561 TREG as the registers tested. EP specifies the branch target. */
9562
9563static void
9564macro_build_branch_rsrt (int type, expressionS *ep,
9565 unsigned int sreg, unsigned int treg)
9566{
9567 const char *brneg = NULL;
9568 const int call = 0;
9569 const char *br;
9570
9571 switch (type)
9572 {
9573 case M_BEQ:
9574 case M_BEQ_I:
9575 br = "beq";
9576 break;
9577 case M_BEQL:
9578 case M_BEQL_I:
9579 br = mips_opts.micromips ? "beq" : "beql";
9580 brneg = "bne";
9581 break;
9582 case M_BNE:
9583 case M_BNE_I:
9584 br = "bne";
9585 break;
9586 case M_BNEL:
9587 case M_BNEL_I:
9588 br = mips_opts.micromips ? "bne" : "bnel";
9589 brneg = "beq";
9590 break;
9591 default:
9592 abort ();
9593 }
9594 if (mips_opts.micromips && brneg)
9595 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9596 else
9597 macro_build (ep, br, "s,t,p", sreg, treg);
9598}
9599
f2ae14a1
RS
9600/* Return the high part that should be loaded in order to make the low
9601 part of VALUE accessible using an offset of OFFBITS bits. */
9602
9603static offsetT
9604offset_high_part (offsetT value, unsigned int offbits)
9605{
9606 offsetT bias;
9607 addressT low_mask;
9608
9609 if (offbits == 0)
9610 return value;
9611 bias = 1 << (offbits - 1);
9612 low_mask = bias * 2 - 1;
9613 return (value + bias) & ~low_mask;
9614}
9615
9616/* Return true if the value stored in offset_expr and offset_reloc
9617 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9618 amount that the caller wants to add without inducing overflow
9619 and ALIGN is the known alignment of the value in bytes. */
9620
9621static bfd_boolean
9622small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9623{
9624 if (offbits == 16)
9625 {
9626 /* Accept any relocation operator if overflow isn't a concern. */
9627 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9628 return TRUE;
9629
9630 /* These relocations are guaranteed not to overflow in correct links. */
9631 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9632 || gprel16_reloc_p (*offset_reloc))
9633 return TRUE;
9634 }
9635 if (offset_expr.X_op == O_constant
9636 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9637 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9638 return TRUE;
9639 return FALSE;
9640}
9641
252b5132
RH
9642/*
9643 * Build macros
9644 * This routine implements the seemingly endless macro or synthesized
9645 * instructions and addressing modes in the mips assembly language. Many
9646 * of these macros are simple and are similar to each other. These could
67c1ffbe 9647 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9648 * this verbose method. Others are not simple macros but are more like
9649 * optimizing code generation.
9650 * One interesting optimization is when several store macros appear
67c1ffbe 9651 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
9652 * The ensuing load upper instructions are ommited. This implies some kind
9653 * of global optimization. We currently only optimize within a single macro.
9654 * For many of the load and store macros if the address is specified as a
9655 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9656 * first load register 'at' with zero and use it as the base register. The
9657 * mips assembler simply uses register $zero. Just one tiny optimization
9658 * we're missing.
9659 */
9660static void
833794fc 9661macro (struct mips_cl_insn *ip, char *str)
252b5132 9662{
c0ebe874
RS
9663 const struct mips_operand_array *operands;
9664 unsigned int breg, i;
741fe287 9665 unsigned int tempreg;
252b5132 9666 int mask;
43841e91 9667 int used_at = 0;
df58fc94 9668 expressionS label_expr;
252b5132 9669 expressionS expr1;
df58fc94 9670 expressionS *ep;
252b5132
RH
9671 const char *s;
9672 const char *s2;
9673 const char *fmt;
9674 int likely = 0;
252b5132 9675 int coproc = 0;
7f3c4072 9676 int offbits = 16;
1abe91b1 9677 int call = 0;
df58fc94
RS
9678 int jals = 0;
9679 int dbl = 0;
9680 int imm = 0;
9681 int ust = 0;
9682 int lp = 0;
f2ae14a1 9683 bfd_boolean large_offset;
252b5132 9684 int off;
252b5132 9685 int hold_mips_optimize;
f2ae14a1 9686 unsigned int align;
c0ebe874 9687 unsigned int op[MAX_OPERANDS];
252b5132 9688
9c2799c2 9689 gas_assert (! mips_opts.mips16);
252b5132 9690
c0ebe874
RS
9691 operands = insn_operands (ip);
9692 for (i = 0; i < MAX_OPERANDS; i++)
9693 if (operands->operand[i])
9694 op[i] = insn_extract_operand (ip, operands->operand[i]);
9695 else
9696 op[i] = -1;
9697
252b5132
RH
9698 mask = ip->insn_mo->mask;
9699
df58fc94
RS
9700 label_expr.X_op = O_constant;
9701 label_expr.X_op_symbol = NULL;
9702 label_expr.X_add_symbol = NULL;
9703 label_expr.X_add_number = 0;
9704
252b5132
RH
9705 expr1.X_op = O_constant;
9706 expr1.X_op_symbol = NULL;
9707 expr1.X_add_symbol = NULL;
9708 expr1.X_add_number = 1;
f2ae14a1 9709 align = 1;
252b5132
RH
9710
9711 switch (mask)
9712 {
9713 case M_DABS:
9714 dbl = 1;
9715 case M_ABS:
df58fc94
RS
9716 /* bgez $a0,1f
9717 move v0,$a0
9718 sub v0,$zero,$a0
9719 1:
9720 */
252b5132 9721
7d10b47d 9722 start_noreorder ();
252b5132 9723
df58fc94
RS
9724 if (mips_opts.micromips)
9725 micromips_label_expr (&label_expr);
9726 else
9727 label_expr.X_add_number = 8;
c0ebe874
RS
9728 macro_build (&label_expr, "bgez", "s,p", op[1]);
9729 if (op[0] == op[1])
a605d2b3 9730 macro_build (NULL, "nop", "");
252b5132 9731 else
c0ebe874
RS
9732 move_register (op[0], op[1]);
9733 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9734 if (mips_opts.micromips)
9735 micromips_add_label ();
252b5132 9736
7d10b47d 9737 end_noreorder ();
8fc2e39e 9738 break;
252b5132
RH
9739
9740 case M_ADD_I:
9741 s = "addi";
9742 s2 = "add";
9743 goto do_addi;
9744 case M_ADDU_I:
9745 s = "addiu";
9746 s2 = "addu";
9747 goto do_addi;
9748 case M_DADD_I:
9749 dbl = 1;
9750 s = "daddi";
9751 s2 = "dadd";
df58fc94
RS
9752 if (!mips_opts.micromips)
9753 goto do_addi;
b0e6f033 9754 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9755 && imm_expr.X_add_number < 0x200)
9756 {
b0e6f033
RS
9757 macro_build (NULL, s, "t,r,.", op[0], op[1],
9758 (int) imm_expr.X_add_number);
df58fc94
RS
9759 break;
9760 }
9761 goto do_addi_i;
252b5132
RH
9762 case M_DADDU_I:
9763 dbl = 1;
9764 s = "daddiu";
9765 s2 = "daddu";
9766 do_addi:
b0e6f033 9767 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9768 && imm_expr.X_add_number < 0x8000)
9769 {
c0ebe874 9770 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9771 break;
252b5132 9772 }
df58fc94 9773 do_addi_i:
8fc2e39e 9774 used_at = 1;
67c0d1eb 9775 load_register (AT, &imm_expr, dbl);
c0ebe874 9776 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9777 break;
9778
9779 case M_AND_I:
9780 s = "andi";
9781 s2 = "and";
9782 goto do_bit;
9783 case M_OR_I:
9784 s = "ori";
9785 s2 = "or";
9786 goto do_bit;
9787 case M_NOR_I:
9788 s = "";
9789 s2 = "nor";
9790 goto do_bit;
9791 case M_XOR_I:
9792 s = "xori";
9793 s2 = "xor";
9794 do_bit:
b0e6f033 9795 if (imm_expr.X_add_number >= 0
252b5132
RH
9796 && imm_expr.X_add_number < 0x10000)
9797 {
9798 if (mask != M_NOR_I)
c0ebe874 9799 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9800 else
9801 {
67c0d1eb 9802 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9803 op[0], op[1], BFD_RELOC_LO16);
9804 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9805 }
8fc2e39e 9806 break;
252b5132
RH
9807 }
9808
8fc2e39e 9809 used_at = 1;
bad1aba3 9810 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9811 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9812 break;
9813
8b082fb1
TS
9814 case M_BALIGN:
9815 switch (imm_expr.X_add_number)
9816 {
9817 case 0:
9818 macro_build (NULL, "nop", "");
9819 break;
9820 case 2:
c0ebe874 9821 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 9822 break;
03f66e8a
MR
9823 case 1:
9824 case 3:
c0ebe874 9825 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 9826 (int) imm_expr.X_add_number);
8b082fb1 9827 break;
03f66e8a
MR
9828 default:
9829 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9830 (unsigned long) imm_expr.X_add_number);
9831 break;
8b082fb1
TS
9832 }
9833 break;
9834
df58fc94
RS
9835 case M_BC1FL:
9836 case M_BC1TL:
9837 case M_BC2FL:
9838 case M_BC2TL:
9839 gas_assert (mips_opts.micromips);
9840 macro_build_branch_ccl (mask, &offset_expr,
9841 EXTRACT_OPERAND (1, BCC, *ip));
9842 break;
9843
252b5132 9844 case M_BEQ_I:
252b5132 9845 case M_BEQL_I:
252b5132 9846 case M_BNE_I:
252b5132 9847 case M_BNEL_I:
b0e6f033 9848 if (imm_expr.X_add_number == 0)
c0ebe874 9849 op[1] = 0;
df58fc94 9850 else
252b5132 9851 {
c0ebe874 9852 op[1] = AT;
df58fc94 9853 used_at = 1;
bad1aba3 9854 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 9855 }
df58fc94
RS
9856 /* Fall through. */
9857 case M_BEQL:
9858 case M_BNEL:
c0ebe874 9859 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
9860 break;
9861
9862 case M_BGEL:
9863 likely = 1;
9864 case M_BGE:
c0ebe874
RS
9865 if (op[1] == 0)
9866 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9867 else if (op[0] == 0)
9868 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 9869 else
252b5132 9870 {
df58fc94 9871 used_at = 1;
c0ebe874 9872 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9873 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9874 &offset_expr, AT, ZERO);
252b5132 9875 }
df58fc94
RS
9876 break;
9877
9878 case M_BGEZL:
9879 case M_BGEZALL:
9880 case M_BGTZL:
9881 case M_BLEZL:
9882 case M_BLTZL:
9883 case M_BLTZALL:
c0ebe874 9884 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
9885 break;
9886
9887 case M_BGTL_I:
9888 likely = 1;
9889 case M_BGT_I:
90ecf173 9890 /* Check for > max integer. */
b0e6f033 9891 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
9892 {
9893 do_false:
90ecf173 9894 /* Result is always false. */
252b5132 9895 if (! likely)
a605d2b3 9896 macro_build (NULL, "nop", "");
252b5132 9897 else
df58fc94 9898 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 9899 break;
252b5132 9900 }
f9419b05 9901 ++imm_expr.X_add_number;
252b5132
RH
9902 /* FALLTHROUGH */
9903 case M_BGE_I:
9904 case M_BGEL_I:
9905 if (mask == M_BGEL_I)
9906 likely = 1;
b0e6f033 9907 if (imm_expr.X_add_number == 0)
252b5132 9908 {
df58fc94 9909 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 9910 &offset_expr, op[0]);
8fc2e39e 9911 break;
252b5132 9912 }
b0e6f033 9913 if (imm_expr.X_add_number == 1)
252b5132 9914 {
df58fc94 9915 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 9916 &offset_expr, op[0]);
8fc2e39e 9917 break;
252b5132 9918 }
b0e6f033 9919 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
9920 {
9921 do_true:
9922 /* result is always true */
1661c76c 9923 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 9924 macro_build (&offset_expr, "b", "p");
8fc2e39e 9925 break;
252b5132 9926 }
8fc2e39e 9927 used_at = 1;
c0ebe874 9928 set_at (op[0], 0);
df58fc94
RS
9929 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9930 &offset_expr, AT, ZERO);
252b5132
RH
9931 break;
9932
9933 case M_BGEUL:
9934 likely = 1;
9935 case M_BGEU:
c0ebe874 9936 if (op[1] == 0)
252b5132 9937 goto do_true;
c0ebe874 9938 else if (op[0] == 0)
df58fc94 9939 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9940 &offset_expr, ZERO, op[1]);
df58fc94 9941 else
252b5132 9942 {
df58fc94 9943 used_at = 1;
c0ebe874 9944 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9945 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9946 &offset_expr, AT, ZERO);
252b5132 9947 }
252b5132
RH
9948 break;
9949
9950 case M_BGTUL_I:
9951 likely = 1;
9952 case M_BGTU_I:
c0ebe874 9953 if (op[0] == 0
bad1aba3 9954 || (GPR_SIZE == 32
f01dc953 9955 && imm_expr.X_add_number == -1))
252b5132 9956 goto do_false;
f9419b05 9957 ++imm_expr.X_add_number;
252b5132
RH
9958 /* FALLTHROUGH */
9959 case M_BGEU_I:
9960 case M_BGEUL_I:
9961 if (mask == M_BGEUL_I)
9962 likely = 1;
b0e6f033 9963 if (imm_expr.X_add_number == 0)
252b5132 9964 goto do_true;
b0e6f033 9965 else if (imm_expr.X_add_number == 1)
df58fc94 9966 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 9967 &offset_expr, op[0], ZERO);
df58fc94 9968 else
252b5132 9969 {
df58fc94 9970 used_at = 1;
c0ebe874 9971 set_at (op[0], 1);
df58fc94
RS
9972 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9973 &offset_expr, AT, ZERO);
252b5132 9974 }
252b5132
RH
9975 break;
9976
9977 case M_BGTL:
9978 likely = 1;
9979 case M_BGT:
c0ebe874
RS
9980 if (op[1] == 0)
9981 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9982 else if (op[0] == 0)
9983 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 9984 else
252b5132 9985 {
df58fc94 9986 used_at = 1;
c0ebe874 9987 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
9988 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9989 &offset_expr, AT, ZERO);
252b5132 9990 }
252b5132
RH
9991 break;
9992
9993 case M_BGTUL:
9994 likely = 1;
9995 case M_BGTU:
c0ebe874 9996 if (op[1] == 0)
df58fc94 9997 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
9998 &offset_expr, op[0], ZERO);
9999 else if (op[0] == 0)
df58fc94
RS
10000 goto do_false;
10001 else
252b5132 10002 {
df58fc94 10003 used_at = 1;
c0ebe874 10004 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10005 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10006 &offset_expr, AT, ZERO);
252b5132 10007 }
252b5132
RH
10008 break;
10009
10010 case M_BLEL:
10011 likely = 1;
10012 case M_BLE:
c0ebe874
RS
10013 if (op[1] == 0)
10014 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10015 else if (op[0] == 0)
10016 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10017 else
252b5132 10018 {
df58fc94 10019 used_at = 1;
c0ebe874 10020 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10021 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10022 &offset_expr, AT, ZERO);
252b5132 10023 }
252b5132
RH
10024 break;
10025
10026 case M_BLEL_I:
10027 likely = 1;
10028 case M_BLE_I:
b0e6f033 10029 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10030 goto do_true;
f9419b05 10031 ++imm_expr.X_add_number;
252b5132
RH
10032 /* FALLTHROUGH */
10033 case M_BLT_I:
10034 case M_BLTL_I:
10035 if (mask == M_BLTL_I)
10036 likely = 1;
b0e6f033 10037 if (imm_expr.X_add_number == 0)
c0ebe874 10038 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10039 else if (imm_expr.X_add_number == 1)
c0ebe874 10040 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10041 else
252b5132 10042 {
df58fc94 10043 used_at = 1;
c0ebe874 10044 set_at (op[0], 0);
df58fc94
RS
10045 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10046 &offset_expr, AT, ZERO);
252b5132 10047 }
252b5132
RH
10048 break;
10049
10050 case M_BLEUL:
10051 likely = 1;
10052 case M_BLEU:
c0ebe874 10053 if (op[1] == 0)
df58fc94 10054 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10055 &offset_expr, op[0], ZERO);
10056 else if (op[0] == 0)
df58fc94
RS
10057 goto do_true;
10058 else
252b5132 10059 {
df58fc94 10060 used_at = 1;
c0ebe874 10061 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10062 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10063 &offset_expr, AT, ZERO);
252b5132 10064 }
252b5132
RH
10065 break;
10066
10067 case M_BLEUL_I:
10068 likely = 1;
10069 case M_BLEU_I:
c0ebe874 10070 if (op[0] == 0
bad1aba3 10071 || (GPR_SIZE == 32
f01dc953 10072 && imm_expr.X_add_number == -1))
252b5132 10073 goto do_true;
f9419b05 10074 ++imm_expr.X_add_number;
252b5132
RH
10075 /* FALLTHROUGH */
10076 case M_BLTU_I:
10077 case M_BLTUL_I:
10078 if (mask == M_BLTUL_I)
10079 likely = 1;
b0e6f033 10080 if (imm_expr.X_add_number == 0)
252b5132 10081 goto do_false;
b0e6f033 10082 else if (imm_expr.X_add_number == 1)
df58fc94 10083 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10084 &offset_expr, op[0], ZERO);
df58fc94 10085 else
252b5132 10086 {
df58fc94 10087 used_at = 1;
c0ebe874 10088 set_at (op[0], 1);
df58fc94
RS
10089 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10090 &offset_expr, AT, ZERO);
252b5132 10091 }
252b5132
RH
10092 break;
10093
10094 case M_BLTL:
10095 likely = 1;
10096 case M_BLT:
c0ebe874
RS
10097 if (op[1] == 0)
10098 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10099 else if (op[0] == 0)
10100 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10101 else
252b5132 10102 {
df58fc94 10103 used_at = 1;
c0ebe874 10104 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10105 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10106 &offset_expr, AT, ZERO);
252b5132 10107 }
252b5132
RH
10108 break;
10109
10110 case M_BLTUL:
10111 likely = 1;
10112 case M_BLTU:
c0ebe874 10113 if (op[1] == 0)
252b5132 10114 goto do_false;
c0ebe874 10115 else if (op[0] == 0)
df58fc94 10116 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10117 &offset_expr, ZERO, op[1]);
df58fc94 10118 else
252b5132 10119 {
df58fc94 10120 used_at = 1;
c0ebe874 10121 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10122 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10123 &offset_expr, AT, ZERO);
252b5132 10124 }
252b5132
RH
10125 break;
10126
10127 case M_DDIV_3:
10128 dbl = 1;
10129 case M_DIV_3:
10130 s = "mflo";
10131 goto do_div3;
10132 case M_DREM_3:
10133 dbl = 1;
10134 case M_REM_3:
10135 s = "mfhi";
10136 do_div3:
c0ebe874 10137 if (op[2] == 0)
252b5132 10138 {
1661c76c 10139 as_warn (_("divide by zero"));
252b5132 10140 if (mips_trap)
df58fc94 10141 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10142 else
df58fc94 10143 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10144 break;
252b5132
RH
10145 }
10146
7d10b47d 10147 start_noreorder ();
252b5132
RH
10148 if (mips_trap)
10149 {
c0ebe874
RS
10150 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10151 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10152 }
10153 else
10154 {
df58fc94
RS
10155 if (mips_opts.micromips)
10156 micromips_label_expr (&label_expr);
10157 else
10158 label_expr.X_add_number = 8;
c0ebe874
RS
10159 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10160 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10161 macro_build (NULL, "break", BRK_FMT, 7);
10162 if (mips_opts.micromips)
10163 micromips_add_label ();
252b5132
RH
10164 }
10165 expr1.X_add_number = -1;
8fc2e39e 10166 used_at = 1;
f6a22291 10167 load_register (AT, &expr1, dbl);
df58fc94
RS
10168 if (mips_opts.micromips)
10169 micromips_label_expr (&label_expr);
10170 else
10171 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10172 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10173 if (dbl)
10174 {
10175 expr1.X_add_number = 1;
f6a22291 10176 load_register (AT, &expr1, dbl);
df58fc94 10177 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10178 }
10179 else
10180 {
10181 expr1.X_add_number = 0x80000000;
df58fc94 10182 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10183 }
10184 if (mips_trap)
10185 {
c0ebe874 10186 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10187 /* We want to close the noreorder block as soon as possible, so
10188 that later insns are available for delay slot filling. */
7d10b47d 10189 end_noreorder ();
252b5132
RH
10190 }
10191 else
10192 {
df58fc94
RS
10193 if (mips_opts.micromips)
10194 micromips_label_expr (&label_expr);
10195 else
10196 label_expr.X_add_number = 8;
c0ebe874 10197 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10198 macro_build (NULL, "nop", "");
252b5132
RH
10199
10200 /* We want to close the noreorder block as soon as possible, so
10201 that later insns are available for delay slot filling. */
7d10b47d 10202 end_noreorder ();
252b5132 10203
df58fc94 10204 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10205 }
df58fc94
RS
10206 if (mips_opts.micromips)
10207 micromips_add_label ();
c0ebe874 10208 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10209 break;
10210
10211 case M_DIV_3I:
10212 s = "div";
10213 s2 = "mflo";
10214 goto do_divi;
10215 case M_DIVU_3I:
10216 s = "divu";
10217 s2 = "mflo";
10218 goto do_divi;
10219 case M_REM_3I:
10220 s = "div";
10221 s2 = "mfhi";
10222 goto do_divi;
10223 case M_REMU_3I:
10224 s = "divu";
10225 s2 = "mfhi";
10226 goto do_divi;
10227 case M_DDIV_3I:
10228 dbl = 1;
10229 s = "ddiv";
10230 s2 = "mflo";
10231 goto do_divi;
10232 case M_DDIVU_3I:
10233 dbl = 1;
10234 s = "ddivu";
10235 s2 = "mflo";
10236 goto do_divi;
10237 case M_DREM_3I:
10238 dbl = 1;
10239 s = "ddiv";
10240 s2 = "mfhi";
10241 goto do_divi;
10242 case M_DREMU_3I:
10243 dbl = 1;
10244 s = "ddivu";
10245 s2 = "mfhi";
10246 do_divi:
b0e6f033 10247 if (imm_expr.X_add_number == 0)
252b5132 10248 {
1661c76c 10249 as_warn (_("divide by zero"));
252b5132 10250 if (mips_trap)
df58fc94 10251 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10252 else
df58fc94 10253 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10254 break;
252b5132 10255 }
b0e6f033 10256 if (imm_expr.X_add_number == 1)
252b5132
RH
10257 {
10258 if (strcmp (s2, "mflo") == 0)
c0ebe874 10259 move_register (op[0], op[1]);
252b5132 10260 else
c0ebe874 10261 move_register (op[0], ZERO);
8fc2e39e 10262 break;
252b5132 10263 }
b0e6f033 10264 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10265 {
10266 if (strcmp (s2, "mflo") == 0)
c0ebe874 10267 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10268 else
c0ebe874 10269 move_register (op[0], ZERO);
8fc2e39e 10270 break;
252b5132
RH
10271 }
10272
8fc2e39e 10273 used_at = 1;
67c0d1eb 10274 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10275 macro_build (NULL, s, "z,s,t", op[1], AT);
10276 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10277 break;
10278
10279 case M_DIVU_3:
10280 s = "divu";
10281 s2 = "mflo";
10282 goto do_divu3;
10283 case M_REMU_3:
10284 s = "divu";
10285 s2 = "mfhi";
10286 goto do_divu3;
10287 case M_DDIVU_3:
10288 s = "ddivu";
10289 s2 = "mflo";
10290 goto do_divu3;
10291 case M_DREMU_3:
10292 s = "ddivu";
10293 s2 = "mfhi";
10294 do_divu3:
7d10b47d 10295 start_noreorder ();
252b5132
RH
10296 if (mips_trap)
10297 {
c0ebe874
RS
10298 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10299 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10300 /* We want to close the noreorder block as soon as possible, so
10301 that later insns are available for delay slot filling. */
7d10b47d 10302 end_noreorder ();
252b5132
RH
10303 }
10304 else
10305 {
df58fc94
RS
10306 if (mips_opts.micromips)
10307 micromips_label_expr (&label_expr);
10308 else
10309 label_expr.X_add_number = 8;
c0ebe874
RS
10310 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10311 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10312
10313 /* We want to close the noreorder block as soon as possible, so
10314 that later insns are available for delay slot filling. */
7d10b47d 10315 end_noreorder ();
df58fc94
RS
10316 macro_build (NULL, "break", BRK_FMT, 7);
10317 if (mips_opts.micromips)
10318 micromips_add_label ();
252b5132 10319 }
c0ebe874 10320 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10321 break;
252b5132 10322
1abe91b1
MR
10323 case M_DLCA_AB:
10324 dbl = 1;
10325 case M_LCA_AB:
10326 call = 1;
10327 goto do_la;
252b5132
RH
10328 case M_DLA_AB:
10329 dbl = 1;
10330 case M_LA_AB:
1abe91b1 10331 do_la:
252b5132
RH
10332 /* Load the address of a symbol into a register. If breg is not
10333 zero, we then add a base register to it. */
10334
c0ebe874 10335 breg = op[2];
bad1aba3 10336 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10337 as_warn (_("dla used to load 32-bit register; recommend using la "
10338 "instead"));
3bec30a8 10339
90ecf173 10340 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10341 as_warn (_("la used to load 64-bit address; recommend using dla "
10342 "instead"));
3bec30a8 10343
f2ae14a1 10344 if (small_offset_p (0, align, 16))
0c11417f 10345 {
c0ebe874 10346 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10347 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10348 break;
0c11417f
MR
10349 }
10350
c0ebe874 10351 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10352 {
10353 tempreg = AT;
10354 used_at = 1;
10355 }
10356 else
c0ebe874 10357 tempreg = op[0];
afdbd6d0 10358
252b5132
RH
10359 if (offset_expr.X_op != O_symbol
10360 && offset_expr.X_op != O_constant)
10361 {
1661c76c 10362 as_bad (_("expression too complex"));
252b5132
RH
10363 offset_expr.X_op = O_constant;
10364 }
10365
252b5132 10366 if (offset_expr.X_op == O_constant)
aed1a261 10367 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10368 else if (mips_pic == NO_PIC)
10369 {
d6bc6245 10370 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10371 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10372 Otherwise we want
10373 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10374 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10375 If we have a constant, we need two instructions anyhow,
d6bc6245 10376 so we may as well always use the latter form.
76b3015f 10377
6caf9ef4
TS
10378 With 64bit address space and a usable $at we want
10379 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10380 lui $at,<sym> (BFD_RELOC_HI16_S)
10381 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10382 daddiu $at,<sym> (BFD_RELOC_LO16)
10383 dsll32 $tempreg,0
10384 daddu $tempreg,$tempreg,$at
10385
10386 If $at is already in use, we use a path which is suboptimal
10387 on superscalar processors.
10388 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10389 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10390 dsll $tempreg,16
10391 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10392 dsll $tempreg,16
10393 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10394
10395 For GP relative symbols in 64bit address space we can use
10396 the same sequence as in 32bit address space. */
aed1a261 10397 if (HAVE_64BIT_SYMBOLS)
252b5132 10398 {
6caf9ef4
TS
10399 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10400 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10401 {
10402 relax_start (offset_expr.X_add_symbol);
10403 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10404 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10405 relax_switch ();
10406 }
d6bc6245 10407
741fe287 10408 if (used_at == 0 && mips_opts.at)
98d3f06f 10409 {
df58fc94 10410 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10411 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10412 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10413 AT, BFD_RELOC_HI16_S);
67c0d1eb 10414 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10415 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10416 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10417 AT, AT, BFD_RELOC_LO16);
df58fc94 10418 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10419 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10420 used_at = 1;
10421 }
10422 else
10423 {
df58fc94 10424 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10425 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10426 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10427 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10428 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10429 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10430 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10431 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10432 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10433 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10434 }
6caf9ef4
TS
10435
10436 if (mips_relax.sequence)
10437 relax_end ();
98d3f06f
KH
10438 }
10439 else
10440 {
10441 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10442 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10443 {
4d7206a2 10444 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10445 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10446 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10447 relax_switch ();
98d3f06f 10448 }
6943caf0 10449 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10450 as_bad (_("offset too large"));
67c0d1eb
RS
10451 macro_build_lui (&offset_expr, tempreg);
10452 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10453 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10454 if (mips_relax.sequence)
10455 relax_end ();
98d3f06f 10456 }
252b5132 10457 }
0a44bf69 10458 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10459 {
9117d219
NC
10460 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10461
252b5132
RH
10462 /* If this is a reference to an external symbol, and there
10463 is no constant, we want
10464 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10465 or for lca or if tempreg is PIC_CALL_REG
9117d219 10466 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10467 For a local symbol, we want
10468 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10469 nop
10470 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10471
10472 If we have a small constant, and this is a reference to
10473 an external symbol, we want
10474 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10475 nop
10476 addiu $tempreg,$tempreg,<constant>
10477 For a local symbol, we want the same instruction
10478 sequence, but we output a BFD_RELOC_LO16 reloc on the
10479 addiu instruction.
10480
10481 If we have a large constant, and this is a reference to
10482 an external symbol, we want
10483 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10484 lui $at,<hiconstant>
10485 addiu $at,$at,<loconstant>
10486 addu $tempreg,$tempreg,$at
10487 For a local symbol, we want the same instruction
10488 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10489 addiu instruction.
ed6fb7bd
SC
10490 */
10491
4d7206a2 10492 if (offset_expr.X_add_number == 0)
252b5132 10493 {
0a44bf69
RS
10494 if (mips_pic == SVR4_PIC
10495 && breg == 0
10496 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10497 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10498
10499 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10500 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10501 lw_reloc_type, mips_gp_register);
4d7206a2 10502 if (breg != 0)
252b5132
RH
10503 {
10504 /* We're going to put in an addu instruction using
10505 tempreg, so we may as well insert the nop right
10506 now. */
269137b2 10507 load_delay_nop ();
252b5132 10508 }
4d7206a2 10509 relax_switch ();
67c0d1eb
RS
10510 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10511 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10512 load_delay_nop ();
67c0d1eb
RS
10513 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10514 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10515 relax_end ();
252b5132
RH
10516 /* FIXME: If breg == 0, and the next instruction uses
10517 $tempreg, then if this variant case is used an extra
10518 nop will be generated. */
10519 }
4d7206a2
RS
10520 else if (offset_expr.X_add_number >= -0x8000
10521 && offset_expr.X_add_number < 0x8000)
252b5132 10522 {
67c0d1eb 10523 load_got_offset (tempreg, &offset_expr);
269137b2 10524 load_delay_nop ();
67c0d1eb 10525 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10526 }
10527 else
10528 {
4d7206a2
RS
10529 expr1.X_add_number = offset_expr.X_add_number;
10530 offset_expr.X_add_number =
43c0598f 10531 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10532 load_got_offset (tempreg, &offset_expr);
f6a22291 10533 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10534 /* If we are going to add in a base register, and the
10535 target register and the base register are the same,
10536 then we are using AT as a temporary register. Since
10537 we want to load the constant into AT, we add our
10538 current AT (from the global offset table) and the
10539 register into the register now, and pretend we were
10540 not using a base register. */
c0ebe874 10541 if (breg == op[0])
252b5132 10542 {
269137b2 10543 load_delay_nop ();
67c0d1eb 10544 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10545 op[0], AT, breg);
252b5132 10546 breg = 0;
c0ebe874 10547 tempreg = op[0];
252b5132 10548 }
f6a22291 10549 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10550 used_at = 1;
10551 }
10552 }
0a44bf69 10553 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10554 {
67c0d1eb 10555 int add_breg_early = 0;
f5040a92
AO
10556
10557 /* If this is a reference to an external, and there is no
10558 constant, or local symbol (*), with or without a
10559 constant, we want
10560 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10561 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10562 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10563
10564 If we have a small constant, and this is a reference to
10565 an external symbol, we want
10566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10567 addiu $tempreg,$tempreg,<constant>
10568
10569 If we have a large constant, and this is a reference to
10570 an external symbol, we want
10571 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10572 lui $at,<hiconstant>
10573 addiu $at,$at,<loconstant>
10574 addu $tempreg,$tempreg,$at
10575
10576 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10577 local symbols, even though it introduces an additional
10578 instruction. */
10579
f5040a92
AO
10580 if (offset_expr.X_add_number)
10581 {
4d7206a2 10582 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10583 offset_expr.X_add_number = 0;
10584
4d7206a2 10585 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10586 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10587 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10588
10589 if (expr1.X_add_number >= -0x8000
10590 && expr1.X_add_number < 0x8000)
10591 {
67c0d1eb
RS
10592 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10593 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10594 }
ecd13cd3 10595 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10596 {
c0ebe874
RS
10597 unsigned int dreg;
10598
f5040a92
AO
10599 /* If we are going to add in a base register, and the
10600 target register and the base register are the same,
10601 then we are using AT as a temporary register. Since
10602 we want to load the constant into AT, we add our
10603 current AT (from the global offset table) and the
10604 register into the register now, and pretend we were
10605 not using a base register. */
c0ebe874 10606 if (breg != op[0])
f5040a92
AO
10607 dreg = tempreg;
10608 else
10609 {
9c2799c2 10610 gas_assert (tempreg == AT);
67c0d1eb 10611 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10612 op[0], AT, breg);
10613 dreg = op[0];
67c0d1eb 10614 add_breg_early = 1;
f5040a92
AO
10615 }
10616
f6a22291 10617 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10618 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10619 dreg, dreg, AT);
f5040a92 10620
f5040a92
AO
10621 used_at = 1;
10622 }
10623 else
10624 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10625
4d7206a2 10626 relax_switch ();
f5040a92
AO
10627 offset_expr.X_add_number = expr1.X_add_number;
10628
67c0d1eb
RS
10629 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10630 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10631 if (add_breg_early)
f5040a92 10632 {
67c0d1eb 10633 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10634 op[0], tempreg, breg);
f5040a92 10635 breg = 0;
c0ebe874 10636 tempreg = op[0];
f5040a92 10637 }
4d7206a2 10638 relax_end ();
f5040a92 10639 }
4d7206a2 10640 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10641 {
4d7206a2 10642 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10643 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10644 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10645 relax_switch ();
67c0d1eb
RS
10646 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10647 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10648 relax_end ();
f5040a92 10649 }
4d7206a2 10650 else
f5040a92 10651 {
67c0d1eb
RS
10652 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10653 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10654 }
10655 }
0a44bf69 10656 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10657 {
67c0d1eb 10658 int gpdelay;
9117d219
NC
10659 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10660 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10661 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10662
10663 /* This is the large GOT case. If this is a reference to an
10664 external symbol, and there is no constant, we want
10665 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10666 addu $tempreg,$tempreg,$gp
10667 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10668 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10669 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10670 addu $tempreg,$tempreg,$gp
10671 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10672 For a local symbol, we want
10673 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10674 nop
10675 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10676
10677 If we have a small constant, and this is a reference to
10678 an external symbol, we want
10679 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10680 addu $tempreg,$tempreg,$gp
10681 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10682 nop
10683 addiu $tempreg,$tempreg,<constant>
10684 For a local symbol, we want
10685 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10686 nop
10687 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10688
10689 If we have a large constant, and this is a reference to
10690 an external symbol, we want
10691 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10692 addu $tempreg,$tempreg,$gp
10693 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10694 lui $at,<hiconstant>
10695 addiu $at,$at,<loconstant>
10696 addu $tempreg,$tempreg,$at
10697 For a local symbol, we want
10698 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10699 lui $at,<hiconstant>
10700 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10701 addu $tempreg,$tempreg,$at
f5040a92 10702 */
438c16b8 10703
252b5132
RH
10704 expr1.X_add_number = offset_expr.X_add_number;
10705 offset_expr.X_add_number = 0;
4d7206a2 10706 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10707 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10708 if (expr1.X_add_number == 0 && breg == 0
10709 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10710 {
10711 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10712 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10713 }
df58fc94 10714 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10715 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10716 tempreg, tempreg, mips_gp_register);
67c0d1eb 10717 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10718 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10719 if (expr1.X_add_number == 0)
10720 {
67c0d1eb 10721 if (breg != 0)
252b5132
RH
10722 {
10723 /* We're going to put in an addu instruction using
10724 tempreg, so we may as well insert the nop right
10725 now. */
269137b2 10726 load_delay_nop ();
252b5132 10727 }
252b5132
RH
10728 }
10729 else if (expr1.X_add_number >= -0x8000
10730 && expr1.X_add_number < 0x8000)
10731 {
269137b2 10732 load_delay_nop ();
67c0d1eb 10733 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10734 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10735 }
10736 else
10737 {
c0ebe874
RS
10738 unsigned int dreg;
10739
252b5132
RH
10740 /* If we are going to add in a base register, and the
10741 target register and the base register are the same,
10742 then we are using AT as a temporary register. Since
10743 we want to load the constant into AT, we add our
10744 current AT (from the global offset table) and the
10745 register into the register now, and pretend we were
10746 not using a base register. */
c0ebe874 10747 if (breg != op[0])
67c0d1eb 10748 dreg = tempreg;
252b5132
RH
10749 else
10750 {
9c2799c2 10751 gas_assert (tempreg == AT);
269137b2 10752 load_delay_nop ();
67c0d1eb 10753 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10754 op[0], AT, breg);
10755 dreg = op[0];
252b5132
RH
10756 }
10757
f6a22291 10758 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10759 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10760
252b5132
RH
10761 used_at = 1;
10762 }
43c0598f 10763 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10764 relax_switch ();
252b5132 10765
67c0d1eb 10766 if (gpdelay)
252b5132
RH
10767 {
10768 /* This is needed because this instruction uses $gp, but
f5040a92 10769 the first instruction on the main stream does not. */
67c0d1eb 10770 macro_build (NULL, "nop", "");
252b5132 10771 }
ed6fb7bd 10772
67c0d1eb
RS
10773 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10774 local_reloc_type, mips_gp_register);
f5040a92 10775 if (expr1.X_add_number >= -0x8000
252b5132
RH
10776 && expr1.X_add_number < 0x8000)
10777 {
269137b2 10778 load_delay_nop ();
67c0d1eb
RS
10779 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10780 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10781 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10782 register, the external symbol case ended with a load,
10783 so if the symbol turns out to not be external, and
10784 the next instruction uses tempreg, an unnecessary nop
10785 will be inserted. */
252b5132
RH
10786 }
10787 else
10788 {
c0ebe874 10789 if (breg == op[0])
252b5132
RH
10790 {
10791 /* We must add in the base register now, as in the
f5040a92 10792 external symbol case. */
9c2799c2 10793 gas_assert (tempreg == AT);
269137b2 10794 load_delay_nop ();
67c0d1eb 10795 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10796 op[0], AT, breg);
10797 tempreg = op[0];
252b5132 10798 /* We set breg to 0 because we have arranged to add
f5040a92 10799 it in in both cases. */
252b5132
RH
10800 breg = 0;
10801 }
10802
67c0d1eb
RS
10803 macro_build_lui (&expr1, AT);
10804 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10805 AT, AT, BFD_RELOC_LO16);
67c0d1eb 10806 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10807 tempreg, tempreg, AT);
8fc2e39e 10808 used_at = 1;
252b5132 10809 }
4d7206a2 10810 relax_end ();
252b5132 10811 }
0a44bf69 10812 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10813 {
f5040a92
AO
10814 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10815 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 10816 int add_breg_early = 0;
f5040a92
AO
10817
10818 /* This is the large GOT case. If this is a reference to an
10819 external symbol, and there is no constant, we want
10820 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10821 add $tempreg,$tempreg,$gp
10822 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10823 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10824 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10825 add $tempreg,$tempreg,$gp
10826 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10827
10828 If we have a small constant, and this is a reference to
10829 an external symbol, we want
10830 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10831 add $tempreg,$tempreg,$gp
10832 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10833 addi $tempreg,$tempreg,<constant>
10834
10835 If we have a large constant, and this is a reference to
10836 an external symbol, we want
10837 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10838 addu $tempreg,$tempreg,$gp
10839 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10840 lui $at,<hiconstant>
10841 addi $at,$at,<loconstant>
10842 add $tempreg,$tempreg,$at
10843
10844 If we have NewABI, and we know it's a local symbol, we want
10845 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10846 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10847 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10848
4d7206a2 10849 relax_start (offset_expr.X_add_symbol);
f5040a92 10850
4d7206a2 10851 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10852 offset_expr.X_add_number = 0;
10853
1abe91b1
MR
10854 if (expr1.X_add_number == 0 && breg == 0
10855 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
10856 {
10857 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10858 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10859 }
df58fc94 10860 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10862 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
10863 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10864 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
10865
10866 if (expr1.X_add_number == 0)
4d7206a2 10867 ;
f5040a92
AO
10868 else if (expr1.X_add_number >= -0x8000
10869 && expr1.X_add_number < 0x8000)
10870 {
67c0d1eb 10871 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10872 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10873 }
ecd13cd3 10874 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10875 {
c0ebe874
RS
10876 unsigned int dreg;
10877
f5040a92
AO
10878 /* If we are going to add in a base register, and the
10879 target register and the base register are the same,
10880 then we are using AT as a temporary register. Since
10881 we want to load the constant into AT, we add our
10882 current AT (from the global offset table) and the
10883 register into the register now, and pretend we were
10884 not using a base register. */
c0ebe874 10885 if (breg != op[0])
f5040a92
AO
10886 dreg = tempreg;
10887 else
10888 {
9c2799c2 10889 gas_assert (tempreg == AT);
67c0d1eb 10890 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10891 op[0], AT, breg);
10892 dreg = op[0];
67c0d1eb 10893 add_breg_early = 1;
f5040a92
AO
10894 }
10895
f6a22291 10896 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10897 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 10898
f5040a92
AO
10899 used_at = 1;
10900 }
10901 else
10902 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10903
4d7206a2 10904 relax_switch ();
f5040a92 10905 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10906 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10907 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10908 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10909 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10910 if (add_breg_early)
f5040a92 10911 {
67c0d1eb 10912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10913 op[0], tempreg, breg);
f5040a92 10914 breg = 0;
c0ebe874 10915 tempreg = op[0];
f5040a92 10916 }
4d7206a2 10917 relax_end ();
f5040a92 10918 }
252b5132
RH
10919 else
10920 abort ();
10921
10922 if (breg != 0)
c0ebe874 10923 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
10924 break;
10925
52b6b6b9 10926 case M_MSGSND:
df58fc94 10927 gas_assert (!mips_opts.micromips);
c0ebe874 10928 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 10929 break;
52b6b6b9
JM
10930
10931 case M_MSGLD:
df58fc94 10932 gas_assert (!mips_opts.micromips);
c8276761 10933 macro_build (NULL, "c2", "C", 0x02);
c7af4273 10934 break;
52b6b6b9
JM
10935
10936 case M_MSGLD_T:
df58fc94 10937 gas_assert (!mips_opts.micromips);
c0ebe874 10938 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 10939 break;
52b6b6b9
JM
10940
10941 case M_MSGWAIT:
df58fc94 10942 gas_assert (!mips_opts.micromips);
52b6b6b9 10943 macro_build (NULL, "c2", "C", 3);
c7af4273 10944 break;
52b6b6b9
JM
10945
10946 case M_MSGWAIT_T:
df58fc94 10947 gas_assert (!mips_opts.micromips);
c0ebe874 10948 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 10949 break;
52b6b6b9 10950
252b5132
RH
10951 case M_J_A:
10952 /* The j instruction may not be used in PIC code, since it
10953 requires an absolute address. We convert it to a b
10954 instruction. */
10955 if (mips_pic == NO_PIC)
67c0d1eb 10956 macro_build (&offset_expr, "j", "a");
252b5132 10957 else
67c0d1eb 10958 macro_build (&offset_expr, "b", "p");
8fc2e39e 10959 break;
252b5132
RH
10960
10961 /* The jal instructions must be handled as macros because when
10962 generating PIC code they expand to multi-instruction
10963 sequences. Normally they are simple instructions. */
df58fc94 10964 case M_JALS_1:
c0ebe874
RS
10965 op[1] = op[0];
10966 op[0] = RA;
df58fc94
RS
10967 /* Fall through. */
10968 case M_JALS_2:
10969 gas_assert (mips_opts.micromips);
833794fc
MR
10970 if (mips_opts.insn32)
10971 {
1661c76c 10972 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
10973 break;
10974 }
df58fc94
RS
10975 jals = 1;
10976 goto jal;
252b5132 10977 case M_JAL_1:
c0ebe874
RS
10978 op[1] = op[0];
10979 op[0] = RA;
252b5132
RH
10980 /* Fall through. */
10981 case M_JAL_2:
df58fc94 10982 jal:
3e722fb5 10983 if (mips_pic == NO_PIC)
df58fc94
RS
10984 {
10985 s = jals ? "jalrs" : "jalr";
e64af278 10986 if (mips_opts.micromips
833794fc 10987 && !mips_opts.insn32
c0ebe874 10988 && op[0] == RA
e64af278 10989 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 10990 macro_build (NULL, s, "mj", op[1]);
df58fc94 10991 else
c0ebe874 10992 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 10993 }
0a44bf69 10994 else
252b5132 10995 {
df58fc94
RS
10996 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10997 && mips_cprestore_offset >= 0);
10998
c0ebe874 10999 if (op[1] != PIC_CALL_REG)
252b5132 11000 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11001
833794fc
MR
11002 s = ((mips_opts.micromips
11003 && !mips_opts.insn32
11004 && (!mips_opts.noreorder || cprestore))
df58fc94 11005 ? "jalrs" : "jalr");
e64af278 11006 if (mips_opts.micromips
833794fc 11007 && !mips_opts.insn32
c0ebe874 11008 && op[0] == RA
e64af278 11009 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11010 macro_build (NULL, s, "mj", op[1]);
df58fc94 11011 else
c0ebe874 11012 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11013 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11014 {
6478892d 11015 if (mips_cprestore_offset < 0)
1661c76c 11016 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11017 else
11018 {
90ecf173 11019 if (!mips_frame_reg_valid)
7a621144 11020 {
1661c76c 11021 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11022 /* Quiet this warning. */
11023 mips_frame_reg_valid = 1;
11024 }
90ecf173 11025 if (!mips_cprestore_valid)
7a621144 11026 {
1661c76c 11027 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11028 /* Quiet this warning. */
11029 mips_cprestore_valid = 1;
11030 }
d3fca0b5
MR
11031 if (mips_opts.noreorder)
11032 macro_build (NULL, "nop", "");
6478892d 11033 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11034 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11035 mips_gp_register,
256ab948
TS
11036 mips_frame_reg,
11037 HAVE_64BIT_ADDRESSES);
6478892d 11038 }
252b5132
RH
11039 }
11040 }
252b5132 11041
8fc2e39e 11042 break;
252b5132 11043
df58fc94
RS
11044 case M_JALS_A:
11045 gas_assert (mips_opts.micromips);
833794fc
MR
11046 if (mips_opts.insn32)
11047 {
1661c76c 11048 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11049 break;
11050 }
df58fc94
RS
11051 jals = 1;
11052 /* Fall through. */
252b5132
RH
11053 case M_JAL_A:
11054 if (mips_pic == NO_PIC)
df58fc94 11055 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11056 else if (mips_pic == SVR4_PIC)
11057 {
11058 /* If this is a reference to an external symbol, and we are
11059 using a small GOT, we want
11060 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11061 nop
f9419b05 11062 jalr $ra,$25
252b5132
RH
11063 nop
11064 lw $gp,cprestore($sp)
11065 The cprestore value is set using the .cprestore
11066 pseudo-op. If we are using a big GOT, we want
11067 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11068 addu $25,$25,$gp
11069 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11070 nop
f9419b05 11071 jalr $ra,$25
252b5132
RH
11072 nop
11073 lw $gp,cprestore($sp)
11074 If the symbol is not external, we want
11075 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11076 nop
11077 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11078 jalr $ra,$25
252b5132 11079 nop
438c16b8 11080 lw $gp,cprestore($sp)
f5040a92
AO
11081
11082 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11083 sequences above, minus nops, unless the symbol is local,
11084 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11085 GOT_DISP. */
438c16b8 11086 if (HAVE_NEWABI)
252b5132 11087 {
90ecf173 11088 if (!mips_big_got)
f5040a92 11089 {
4d7206a2 11090 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11091 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11092 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11093 mips_gp_register);
4d7206a2 11094 relax_switch ();
67c0d1eb
RS
11095 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11096 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11097 mips_gp_register);
11098 relax_end ();
f5040a92
AO
11099 }
11100 else
11101 {
4d7206a2 11102 relax_start (offset_expr.X_add_symbol);
df58fc94 11103 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11104 BFD_RELOC_MIPS_CALL_HI16);
11105 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11106 PIC_CALL_REG, mips_gp_register);
11107 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11108 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11109 PIC_CALL_REG);
4d7206a2 11110 relax_switch ();
67c0d1eb
RS
11111 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11112 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11113 mips_gp_register);
11114 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11115 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11116 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11117 relax_end ();
f5040a92 11118 }
684022ea 11119
df58fc94 11120 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11121 }
11122 else
11123 {
4d7206a2 11124 relax_start (offset_expr.X_add_symbol);
90ecf173 11125 if (!mips_big_got)
438c16b8 11126 {
67c0d1eb
RS
11127 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11128 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11129 mips_gp_register);
269137b2 11130 load_delay_nop ();
4d7206a2 11131 relax_switch ();
438c16b8 11132 }
252b5132 11133 else
252b5132 11134 {
67c0d1eb
RS
11135 int gpdelay;
11136
11137 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11138 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11139 BFD_RELOC_MIPS_CALL_HI16);
11140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11141 PIC_CALL_REG, mips_gp_register);
11142 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11143 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11144 PIC_CALL_REG);
269137b2 11145 load_delay_nop ();
4d7206a2 11146 relax_switch ();
67c0d1eb
RS
11147 if (gpdelay)
11148 macro_build (NULL, "nop", "");
252b5132 11149 }
67c0d1eb
RS
11150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11151 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11152 mips_gp_register);
269137b2 11153 load_delay_nop ();
67c0d1eb
RS
11154 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11155 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11156 relax_end ();
df58fc94 11157 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11158
6478892d 11159 if (mips_cprestore_offset < 0)
1661c76c 11160 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11161 else
11162 {
90ecf173 11163 if (!mips_frame_reg_valid)
7a621144 11164 {
1661c76c 11165 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11166 /* Quiet this warning. */
11167 mips_frame_reg_valid = 1;
11168 }
90ecf173 11169 if (!mips_cprestore_valid)
7a621144 11170 {
1661c76c 11171 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11172 /* Quiet this warning. */
11173 mips_cprestore_valid = 1;
11174 }
6478892d 11175 if (mips_opts.noreorder)
67c0d1eb 11176 macro_build (NULL, "nop", "");
6478892d 11177 expr1.X_add_number = mips_cprestore_offset;
67c0d1eb 11178 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11179 mips_gp_register,
256ab948
TS
11180 mips_frame_reg,
11181 HAVE_64BIT_ADDRESSES);
6478892d 11182 }
252b5132
RH
11183 }
11184 }
0a44bf69 11185 else if (mips_pic == VXWORKS_PIC)
1661c76c 11186 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11187 else
11188 abort ();
11189
8fc2e39e 11190 break;
252b5132 11191
7f3c4072 11192 case M_LBUE_AB:
7f3c4072
CM
11193 s = "lbue";
11194 fmt = "t,+j(b)";
11195 offbits = 9;
11196 goto ld_st;
11197 case M_LHUE_AB:
7f3c4072
CM
11198 s = "lhue";
11199 fmt = "t,+j(b)";
11200 offbits = 9;
11201 goto ld_st;
11202 case M_LBE_AB:
7f3c4072
CM
11203 s = "lbe";
11204 fmt = "t,+j(b)";
11205 offbits = 9;
11206 goto ld_st;
11207 case M_LHE_AB:
7f3c4072
CM
11208 s = "lhe";
11209 fmt = "t,+j(b)";
11210 offbits = 9;
11211 goto ld_st;
11212 case M_LLE_AB:
7f3c4072
CM
11213 s = "lle";
11214 fmt = "t,+j(b)";
11215 offbits = 9;
11216 goto ld_st;
11217 case M_LWE_AB:
7f3c4072
CM
11218 s = "lwe";
11219 fmt = "t,+j(b)";
11220 offbits = 9;
11221 goto ld_st;
11222 case M_LWLE_AB:
7f3c4072
CM
11223 s = "lwle";
11224 fmt = "t,+j(b)";
11225 offbits = 9;
11226 goto ld_st;
11227 case M_LWRE_AB:
7f3c4072
CM
11228 s = "lwre";
11229 fmt = "t,+j(b)";
11230 offbits = 9;
11231 goto ld_st;
11232 case M_SBE_AB:
7f3c4072
CM
11233 s = "sbe";
11234 fmt = "t,+j(b)";
11235 offbits = 9;
11236 goto ld_st;
11237 case M_SCE_AB:
7f3c4072
CM
11238 s = "sce";
11239 fmt = "t,+j(b)";
11240 offbits = 9;
11241 goto ld_st;
11242 case M_SHE_AB:
7f3c4072
CM
11243 s = "she";
11244 fmt = "t,+j(b)";
11245 offbits = 9;
11246 goto ld_st;
11247 case M_SWE_AB:
7f3c4072
CM
11248 s = "swe";
11249 fmt = "t,+j(b)";
11250 offbits = 9;
11251 goto ld_st;
11252 case M_SWLE_AB:
7f3c4072
CM
11253 s = "swle";
11254 fmt = "t,+j(b)";
11255 offbits = 9;
11256 goto ld_st;
11257 case M_SWRE_AB:
7f3c4072
CM
11258 s = "swre";
11259 fmt = "t,+j(b)";
11260 offbits = 9;
11261 goto ld_st;
dec0624d 11262 case M_ACLR_AB:
dec0624d 11263 s = "aclr";
dec0624d 11264 fmt = "\\,~(b)";
7f3c4072 11265 offbits = 12;
dec0624d
MR
11266 goto ld_st;
11267 case M_ASET_AB:
dec0624d 11268 s = "aset";
dec0624d 11269 fmt = "\\,~(b)";
7f3c4072 11270 offbits = 12;
dec0624d 11271 goto ld_st;
252b5132
RH
11272 case M_LB_AB:
11273 s = "lb";
df58fc94 11274 fmt = "t,o(b)";
252b5132
RH
11275 goto ld;
11276 case M_LBU_AB:
11277 s = "lbu";
df58fc94 11278 fmt = "t,o(b)";
252b5132
RH
11279 goto ld;
11280 case M_LH_AB:
11281 s = "lh";
df58fc94 11282 fmt = "t,o(b)";
252b5132
RH
11283 goto ld;
11284 case M_LHU_AB:
11285 s = "lhu";
df58fc94 11286 fmt = "t,o(b)";
252b5132
RH
11287 goto ld;
11288 case M_LW_AB:
11289 s = "lw";
df58fc94 11290 fmt = "t,o(b)";
252b5132
RH
11291 goto ld;
11292 case M_LWC0_AB:
df58fc94 11293 gas_assert (!mips_opts.micromips);
252b5132 11294 s = "lwc0";
df58fc94 11295 fmt = "E,o(b)";
bdaaa2e1 11296 /* Itbl support may require additional care here. */
252b5132 11297 coproc = 1;
df58fc94 11298 goto ld_st;
252b5132
RH
11299 case M_LWC1_AB:
11300 s = "lwc1";
df58fc94 11301 fmt = "T,o(b)";
bdaaa2e1 11302 /* Itbl support may require additional care here. */
252b5132 11303 coproc = 1;
df58fc94 11304 goto ld_st;
252b5132
RH
11305 case M_LWC2_AB:
11306 s = "lwc2";
df58fc94 11307 fmt = COP12_FMT;
7361da2c
AB
11308 offbits = (mips_opts.micromips ? 12
11309 : ISA_IS_R6 (mips_opts.isa) ? 11
11310 : 16);
bdaaa2e1 11311 /* Itbl support may require additional care here. */
252b5132 11312 coproc = 1;
df58fc94 11313 goto ld_st;
252b5132 11314 case M_LWC3_AB:
df58fc94 11315 gas_assert (!mips_opts.micromips);
252b5132 11316 s = "lwc3";
df58fc94 11317 fmt = "E,o(b)";
bdaaa2e1 11318 /* Itbl support may require additional care here. */
252b5132 11319 coproc = 1;
df58fc94 11320 goto ld_st;
252b5132
RH
11321 case M_LWL_AB:
11322 s = "lwl";
df58fc94 11323 fmt = MEM12_FMT;
7f3c4072 11324 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11325 goto ld_st;
252b5132
RH
11326 case M_LWR_AB:
11327 s = "lwr";
df58fc94 11328 fmt = MEM12_FMT;
7f3c4072 11329 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11330 goto ld_st;
252b5132 11331 case M_LDC1_AB:
252b5132 11332 s = "ldc1";
df58fc94 11333 fmt = "T,o(b)";
bdaaa2e1 11334 /* Itbl support may require additional care here. */
252b5132 11335 coproc = 1;
df58fc94 11336 goto ld_st;
252b5132
RH
11337 case M_LDC2_AB:
11338 s = "ldc2";
df58fc94 11339 fmt = COP12_FMT;
7361da2c
AB
11340 offbits = (mips_opts.micromips ? 12
11341 : ISA_IS_R6 (mips_opts.isa) ? 11
11342 : 16);
bdaaa2e1 11343 /* Itbl support may require additional care here. */
252b5132 11344 coproc = 1;
df58fc94 11345 goto ld_st;
c77c0862 11346 case M_LQC2_AB:
c77c0862 11347 s = "lqc2";
14daeee3 11348 fmt = "+7,o(b)";
c77c0862
RS
11349 /* Itbl support may require additional care here. */
11350 coproc = 1;
11351 goto ld_st;
252b5132
RH
11352 case M_LDC3_AB:
11353 s = "ldc3";
df58fc94 11354 fmt = "E,o(b)";
bdaaa2e1 11355 /* Itbl support may require additional care here. */
252b5132 11356 coproc = 1;
df58fc94 11357 goto ld_st;
252b5132
RH
11358 case M_LDL_AB:
11359 s = "ldl";
df58fc94 11360 fmt = MEM12_FMT;
7f3c4072 11361 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11362 goto ld_st;
252b5132
RH
11363 case M_LDR_AB:
11364 s = "ldr";
df58fc94 11365 fmt = MEM12_FMT;
7f3c4072 11366 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11367 goto ld_st;
252b5132
RH
11368 case M_LL_AB:
11369 s = "ll";
7361da2c
AB
11370 fmt = LL_SC_FMT;
11371 offbits = (mips_opts.micromips ? 12
11372 : ISA_IS_R6 (mips_opts.isa) ? 9
11373 : 16);
252b5132
RH
11374 goto ld;
11375 case M_LLD_AB:
11376 s = "lld";
7361da2c
AB
11377 fmt = LL_SC_FMT;
11378 offbits = (mips_opts.micromips ? 12
11379 : ISA_IS_R6 (mips_opts.isa) ? 9
11380 : 16);
252b5132
RH
11381 goto ld;
11382 case M_LWU_AB:
11383 s = "lwu";
df58fc94 11384 fmt = MEM12_FMT;
7f3c4072 11385 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11386 goto ld;
11387 case M_LWP_AB:
df58fc94
RS
11388 gas_assert (mips_opts.micromips);
11389 s = "lwp";
11390 fmt = "t,~(b)";
7f3c4072 11391 offbits = 12;
df58fc94
RS
11392 lp = 1;
11393 goto ld;
11394 case M_LDP_AB:
df58fc94
RS
11395 gas_assert (mips_opts.micromips);
11396 s = "ldp";
11397 fmt = "t,~(b)";
7f3c4072 11398 offbits = 12;
df58fc94
RS
11399 lp = 1;
11400 goto ld;
11401 case M_LWM_AB:
df58fc94
RS
11402 gas_assert (mips_opts.micromips);
11403 s = "lwm";
11404 fmt = "n,~(b)";
7f3c4072 11405 offbits = 12;
df58fc94
RS
11406 goto ld_st;
11407 case M_LDM_AB:
df58fc94
RS
11408 gas_assert (mips_opts.micromips);
11409 s = "ldm";
11410 fmt = "n,~(b)";
7f3c4072 11411 offbits = 12;
df58fc94
RS
11412 goto ld_st;
11413
252b5132 11414 ld:
f19ccbda 11415 /* We don't want to use $0 as tempreg. */
c0ebe874 11416 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11417 goto ld_st;
252b5132 11418 else
c0ebe874 11419 tempreg = op[0] + lp;
df58fc94
RS
11420 goto ld_noat;
11421
252b5132
RH
11422 case M_SB_AB:
11423 s = "sb";
df58fc94
RS
11424 fmt = "t,o(b)";
11425 goto ld_st;
252b5132
RH
11426 case M_SH_AB:
11427 s = "sh";
df58fc94
RS
11428 fmt = "t,o(b)";
11429 goto ld_st;
252b5132
RH
11430 case M_SW_AB:
11431 s = "sw";
df58fc94
RS
11432 fmt = "t,o(b)";
11433 goto ld_st;
252b5132 11434 case M_SWC0_AB:
df58fc94 11435 gas_assert (!mips_opts.micromips);
252b5132 11436 s = "swc0";
df58fc94 11437 fmt = "E,o(b)";
bdaaa2e1 11438 /* Itbl support may require additional care here. */
252b5132 11439 coproc = 1;
df58fc94 11440 goto ld_st;
252b5132
RH
11441 case M_SWC1_AB:
11442 s = "swc1";
df58fc94 11443 fmt = "T,o(b)";
bdaaa2e1 11444 /* Itbl support may require additional care here. */
252b5132 11445 coproc = 1;
df58fc94 11446 goto ld_st;
252b5132
RH
11447 case M_SWC2_AB:
11448 s = "swc2";
df58fc94 11449 fmt = COP12_FMT;
7361da2c
AB
11450 offbits = (mips_opts.micromips ? 12
11451 : ISA_IS_R6 (mips_opts.isa) ? 11
11452 : 16);
bdaaa2e1 11453 /* Itbl support may require additional care here. */
252b5132 11454 coproc = 1;
df58fc94 11455 goto ld_st;
252b5132 11456 case M_SWC3_AB:
df58fc94 11457 gas_assert (!mips_opts.micromips);
252b5132 11458 s = "swc3";
df58fc94 11459 fmt = "E,o(b)";
bdaaa2e1 11460 /* Itbl support may require additional care here. */
252b5132 11461 coproc = 1;
df58fc94 11462 goto ld_st;
252b5132
RH
11463 case M_SWL_AB:
11464 s = "swl";
df58fc94 11465 fmt = MEM12_FMT;
7f3c4072 11466 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11467 goto ld_st;
252b5132
RH
11468 case M_SWR_AB:
11469 s = "swr";
df58fc94 11470 fmt = MEM12_FMT;
7f3c4072 11471 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11472 goto ld_st;
252b5132
RH
11473 case M_SC_AB:
11474 s = "sc";
7361da2c
AB
11475 fmt = LL_SC_FMT;
11476 offbits = (mips_opts.micromips ? 12
11477 : ISA_IS_R6 (mips_opts.isa) ? 9
11478 : 16);
df58fc94 11479 goto ld_st;
252b5132
RH
11480 case M_SCD_AB:
11481 s = "scd";
7361da2c
AB
11482 fmt = LL_SC_FMT;
11483 offbits = (mips_opts.micromips ? 12
11484 : ISA_IS_R6 (mips_opts.isa) ? 9
11485 : 16);
df58fc94 11486 goto ld_st;
d43b4baf
TS
11487 case M_CACHE_AB:
11488 s = "cache";
7361da2c
AB
11489 fmt = (mips_opts.micromips ? "k,~(b)"
11490 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11491 : "k,o(b)");
11492 offbits = (mips_opts.micromips ? 12
11493 : ISA_IS_R6 (mips_opts.isa) ? 9
11494 : 16);
7f3c4072
CM
11495 goto ld_st;
11496 case M_CACHEE_AB:
7f3c4072
CM
11497 s = "cachee";
11498 fmt = "k,+j(b)";
11499 offbits = 9;
df58fc94 11500 goto ld_st;
3eebd5eb
MR
11501 case M_PREF_AB:
11502 s = "pref";
7361da2c
AB
11503 fmt = (mips_opts.micromips ? "k,~(b)"
11504 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11505 : "k,o(b)");
11506 offbits = (mips_opts.micromips ? 12
11507 : ISA_IS_R6 (mips_opts.isa) ? 9
11508 : 16);
7f3c4072
CM
11509 goto ld_st;
11510 case M_PREFE_AB:
7f3c4072
CM
11511 s = "prefe";
11512 fmt = "k,+j(b)";
11513 offbits = 9;
df58fc94 11514 goto ld_st;
252b5132 11515 case M_SDC1_AB:
252b5132 11516 s = "sdc1";
df58fc94 11517 fmt = "T,o(b)";
252b5132 11518 coproc = 1;
bdaaa2e1 11519 /* Itbl support may require additional care here. */
df58fc94 11520 goto ld_st;
252b5132
RH
11521 case M_SDC2_AB:
11522 s = "sdc2";
df58fc94 11523 fmt = COP12_FMT;
7361da2c
AB
11524 offbits = (mips_opts.micromips ? 12
11525 : ISA_IS_R6 (mips_opts.isa) ? 11
11526 : 16);
c77c0862
RS
11527 /* Itbl support may require additional care here. */
11528 coproc = 1;
11529 goto ld_st;
11530 case M_SQC2_AB:
c77c0862 11531 s = "sqc2";
14daeee3 11532 fmt = "+7,o(b)";
bdaaa2e1 11533 /* Itbl support may require additional care here. */
252b5132 11534 coproc = 1;
df58fc94 11535 goto ld_st;
252b5132 11536 case M_SDC3_AB:
df58fc94 11537 gas_assert (!mips_opts.micromips);
252b5132 11538 s = "sdc3";
df58fc94 11539 fmt = "E,o(b)";
bdaaa2e1 11540 /* Itbl support may require additional care here. */
252b5132 11541 coproc = 1;
df58fc94 11542 goto ld_st;
252b5132
RH
11543 case M_SDL_AB:
11544 s = "sdl";
df58fc94 11545 fmt = MEM12_FMT;
7f3c4072 11546 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11547 goto ld_st;
252b5132
RH
11548 case M_SDR_AB:
11549 s = "sdr";
df58fc94 11550 fmt = MEM12_FMT;
7f3c4072 11551 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11552 goto ld_st;
11553 case M_SWP_AB:
df58fc94
RS
11554 gas_assert (mips_opts.micromips);
11555 s = "swp";
11556 fmt = "t,~(b)";
7f3c4072 11557 offbits = 12;
df58fc94
RS
11558 goto ld_st;
11559 case M_SDP_AB:
df58fc94
RS
11560 gas_assert (mips_opts.micromips);
11561 s = "sdp";
11562 fmt = "t,~(b)";
7f3c4072 11563 offbits = 12;
df58fc94
RS
11564 goto ld_st;
11565 case M_SWM_AB:
df58fc94
RS
11566 gas_assert (mips_opts.micromips);
11567 s = "swm";
11568 fmt = "n,~(b)";
7f3c4072 11569 offbits = 12;
df58fc94
RS
11570 goto ld_st;
11571 case M_SDM_AB:
df58fc94
RS
11572 gas_assert (mips_opts.micromips);
11573 s = "sdm";
11574 fmt = "n,~(b)";
7f3c4072 11575 offbits = 12;
df58fc94
RS
11576
11577 ld_st:
8fc2e39e 11578 tempreg = AT;
df58fc94 11579 ld_noat:
c0ebe874 11580 breg = op[2];
f2ae14a1
RS
11581 if (small_offset_p (0, align, 16))
11582 {
11583 /* The first case exists for M_LD_AB and M_SD_AB, which are
11584 macros for o32 but which should act like normal instructions
11585 otherwise. */
11586 if (offbits == 16)
c0ebe874 11587 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11588 offset_reloc[1], offset_reloc[2], breg);
11589 else if (small_offset_p (0, align, offbits))
11590 {
11591 if (offbits == 0)
c0ebe874 11592 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11593 else
c0ebe874 11594 macro_build (NULL, s, fmt, op[0],
c8276761 11595 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11596 }
11597 else
11598 {
11599 if (tempreg == AT)
11600 used_at = 1;
11601 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11602 tempreg, breg, -1, offset_reloc[0],
11603 offset_reloc[1], offset_reloc[2]);
11604 if (offbits == 0)
c0ebe874 11605 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11606 else
c0ebe874 11607 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11608 }
11609 break;
11610 }
11611
11612 if (tempreg == AT)
11613 used_at = 1;
11614
252b5132
RH
11615 if (offset_expr.X_op != O_constant
11616 && offset_expr.X_op != O_symbol)
11617 {
1661c76c 11618 as_bad (_("expression too complex"));
252b5132
RH
11619 offset_expr.X_op = O_constant;
11620 }
11621
2051e8c4
MR
11622 if (HAVE_32BIT_ADDRESSES
11623 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11624 {
11625 char value [32];
11626
11627 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11628 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11629 }
2051e8c4 11630
252b5132
RH
11631 /* A constant expression in PIC code can be handled just as it
11632 is in non PIC code. */
aed1a261
RS
11633 if (offset_expr.X_op == O_constant)
11634 {
f2ae14a1
RS
11635 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11636 offbits == 0 ? 16 : offbits);
11637 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11638
f2ae14a1
RS
11639 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11640 if (breg != 0)
11641 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11642 tempreg, tempreg, breg);
7f3c4072 11643 if (offbits == 0)
dd6a37e7 11644 {
f2ae14a1 11645 if (offset_expr.X_add_number != 0)
dd6a37e7 11646 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11647 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11648 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11649 }
7f3c4072 11650 else if (offbits == 16)
c0ebe874 11651 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11652 else
c0ebe874 11653 macro_build (NULL, s, fmt, op[0],
c8276761 11654 (int) offset_expr.X_add_number, tempreg);
df58fc94 11655 }
7f3c4072 11656 else if (offbits != 16)
df58fc94 11657 {
7f3c4072
CM
11658 /* The offset field is too narrow to be used for a low-part
11659 relocation, so load the whole address into the auxillary
f2ae14a1
RS
11660 register. */
11661 load_address (tempreg, &offset_expr, &used_at);
11662 if (breg != 0)
11663 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11664 tempreg, tempreg, breg);
7f3c4072 11665 if (offbits == 0)
c0ebe874 11666 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11667 else
c0ebe874 11668 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11669 }
11670 else if (mips_pic == NO_PIC)
252b5132
RH
11671 {
11672 /* If this is a reference to a GP relative symbol, and there
11673 is no base register, we want
c0ebe874 11674 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11675 Otherwise, if there is no base register, we want
11676 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11677 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11678 If we have a constant, we need two instructions anyhow,
11679 so we always use the latter form.
11680
11681 If we have a base register, and this is a reference to a
11682 GP relative symbol, we want
11683 addu $tempreg,$breg,$gp
c0ebe874 11684 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11685 Otherwise we want
11686 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11687 addu $tempreg,$tempreg,$breg
c0ebe874 11688 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11689 With a constant we always use the latter case.
76b3015f 11690
d6bc6245
TS
11691 With 64bit address space and no base register and $at usable,
11692 we want
11693 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11694 lui $at,<sym> (BFD_RELOC_HI16_S)
11695 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11696 dsll32 $tempreg,0
11697 daddu $tempreg,$at
c0ebe874 11698 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11699 If we have a base register, we want
11700 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11701 lui $at,<sym> (BFD_RELOC_HI16_S)
11702 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11703 daddu $at,$breg
11704 dsll32 $tempreg,0
11705 daddu $tempreg,$at
c0ebe874 11706 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11707
11708 Without $at we can't generate the optimal path for superscalar
11709 processors here since this would require two temporary registers.
11710 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11711 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11712 dsll $tempreg,16
11713 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11714 dsll $tempreg,16
c0ebe874 11715 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11716 If we have a base register, we want
11717 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11718 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11719 dsll $tempreg,16
11720 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11721 dsll $tempreg,16
11722 daddu $tempreg,$tempreg,$breg
c0ebe874 11723 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11724
6caf9ef4 11725 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11726 the same sequence as in 32bit address space. */
11727 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11728 {
aed1a261 11729 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11730 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11731 {
11732 relax_start (offset_expr.X_add_symbol);
11733 if (breg == 0)
11734 {
c0ebe874 11735 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11736 BFD_RELOC_GPREL16, mips_gp_register);
11737 }
11738 else
11739 {
11740 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11741 tempreg, breg, mips_gp_register);
c0ebe874 11742 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11743 BFD_RELOC_GPREL16, tempreg);
11744 }
11745 relax_switch ();
11746 }
d6bc6245 11747
741fe287 11748 if (used_at == 0 && mips_opts.at)
d6bc6245 11749 {
df58fc94 11750 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11751 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11752 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11753 BFD_RELOC_HI16_S);
11754 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11755 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11756 if (breg != 0)
67c0d1eb 11757 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11758 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11759 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11760 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11761 tempreg);
d6bc6245
TS
11762 used_at = 1;
11763 }
11764 else
11765 {
df58fc94 11766 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11767 BFD_RELOC_MIPS_HIGHEST);
11768 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11769 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11770 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11771 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11772 tempreg, BFD_RELOC_HI16_S);
df58fc94 11773 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11774 if (breg != 0)
67c0d1eb 11775 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11776 tempreg, tempreg, breg);
c0ebe874 11777 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11778 BFD_RELOC_LO16, tempreg);
d6bc6245 11779 }
6caf9ef4
TS
11780
11781 if (mips_relax.sequence)
11782 relax_end ();
8fc2e39e 11783 break;
d6bc6245 11784 }
256ab948 11785
252b5132
RH
11786 if (breg == 0)
11787 {
67c0d1eb 11788 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11789 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11790 {
4d7206a2 11791 relax_start (offset_expr.X_add_symbol);
c0ebe874 11792 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11793 mips_gp_register);
4d7206a2 11794 relax_switch ();
252b5132 11795 }
67c0d1eb 11796 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11797 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11798 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11799 if (mips_relax.sequence)
11800 relax_end ();
252b5132
RH
11801 }
11802 else
11803 {
67c0d1eb 11804 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11805 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11806 {
4d7206a2 11807 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11808 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11809 tempreg, breg, mips_gp_register);
c0ebe874 11810 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11811 BFD_RELOC_GPREL16, tempreg);
4d7206a2 11812 relax_switch ();
252b5132 11813 }
67c0d1eb
RS
11814 macro_build_lui (&offset_expr, tempreg);
11815 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11816 tempreg, tempreg, breg);
c0ebe874 11817 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11818 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11819 if (mips_relax.sequence)
11820 relax_end ();
252b5132
RH
11821 }
11822 }
0a44bf69 11823 else if (!mips_big_got)
252b5132 11824 {
ed6fb7bd 11825 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 11826
252b5132
RH
11827 /* If this is a reference to an external symbol, we want
11828 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11829 nop
c0ebe874 11830 <op> op[0],0($tempreg)
252b5132
RH
11831 Otherwise we want
11832 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11833 nop
11834 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11835 <op> op[0],0($tempreg)
f5040a92
AO
11836
11837 For NewABI, we want
11838 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11839 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 11840
252b5132
RH
11841 If there is a base register, we add it to $tempreg before
11842 the <op>. If there is a constant, we stick it in the
11843 <op> instruction. We don't handle constants larger than
11844 16 bits, because we have no way to load the upper 16 bits
11845 (actually, we could handle them for the subset of cases
11846 in which we are not using $at). */
9c2799c2 11847 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
11848 if (HAVE_NEWABI)
11849 {
67c0d1eb
RS
11850 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11851 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11852 if (breg != 0)
67c0d1eb 11853 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11854 tempreg, tempreg, breg);
c0ebe874 11855 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11856 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
11857 break;
11858 }
252b5132
RH
11859 expr1.X_add_number = offset_expr.X_add_number;
11860 offset_expr.X_add_number = 0;
11861 if (expr1.X_add_number < -0x8000
11862 || expr1.X_add_number >= 0x8000)
11863 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
11864 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11865 lw_reloc_type, mips_gp_register);
269137b2 11866 load_delay_nop ();
4d7206a2
RS
11867 relax_start (offset_expr.X_add_symbol);
11868 relax_switch ();
67c0d1eb
RS
11869 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11870 tempreg, BFD_RELOC_LO16);
4d7206a2 11871 relax_end ();
252b5132 11872 if (breg != 0)
67c0d1eb 11873 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11874 tempreg, tempreg, breg);
c0ebe874 11875 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11876 }
0a44bf69 11877 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11878 {
67c0d1eb 11879 int gpdelay;
252b5132
RH
11880
11881 /* If this is a reference to an external symbol, we want
11882 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11883 addu $tempreg,$tempreg,$gp
11884 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11885 <op> op[0],0($tempreg)
252b5132
RH
11886 Otherwise we want
11887 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11888 nop
11889 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11890 <op> op[0],0($tempreg)
252b5132
RH
11891 If there is a base register, we add it to $tempreg before
11892 the <op>. If there is a constant, we stick it in the
11893 <op> instruction. We don't handle constants larger than
11894 16 bits, because we have no way to load the upper 16 bits
11895 (actually, we could handle them for the subset of cases
f5040a92 11896 in which we are not using $at). */
9c2799c2 11897 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
11898 expr1.X_add_number = offset_expr.X_add_number;
11899 offset_expr.X_add_number = 0;
11900 if (expr1.X_add_number < -0x8000
11901 || expr1.X_add_number >= 0x8000)
11902 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11903 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11904 relax_start (offset_expr.X_add_symbol);
df58fc94 11905 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11906 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11908 mips_gp_register);
11909 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11910 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 11911 relax_switch ();
67c0d1eb
RS
11912 if (gpdelay)
11913 macro_build (NULL, "nop", "");
11914 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11915 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11916 load_delay_nop ();
67c0d1eb
RS
11917 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11918 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11919 relax_end ();
11920
252b5132 11921 if (breg != 0)
67c0d1eb 11922 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11923 tempreg, tempreg, breg);
c0ebe874 11924 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11925 }
0a44bf69 11926 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11927 {
f5040a92
AO
11928 /* If this is a reference to an external symbol, we want
11929 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11930 add $tempreg,$tempreg,$gp
11931 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11932 <op> op[0],<ofst>($tempreg)
f5040a92
AO
11933 Otherwise, for local symbols, we want:
11934 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11935 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 11936 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 11937 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11938 offset_expr.X_add_number = 0;
11939 if (expr1.X_add_number < -0x8000
11940 || expr1.X_add_number >= 0x8000)
11941 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 11942 relax_start (offset_expr.X_add_symbol);
df58fc94 11943 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11944 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11945 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11946 mips_gp_register);
11947 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11948 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 11949 if (breg != 0)
67c0d1eb 11950 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11951 tempreg, tempreg, breg);
c0ebe874 11952 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 11953
4d7206a2 11954 relax_switch ();
f5040a92 11955 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11956 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11957 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11958 if (breg != 0)
67c0d1eb 11959 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11960 tempreg, tempreg, breg);
c0ebe874 11961 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11962 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 11963 relax_end ();
f5040a92 11964 }
252b5132
RH
11965 else
11966 abort ();
11967
252b5132
RH
11968 break;
11969
833794fc
MR
11970 case M_JRADDIUSP:
11971 gas_assert (mips_opts.micromips);
11972 gas_assert (mips_opts.insn32);
11973 start_noreorder ();
11974 macro_build (NULL, "jr", "s", RA);
c0ebe874 11975 expr1.X_add_number = op[0] << 2;
833794fc
MR
11976 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11977 end_noreorder ();
11978 break;
11979
11980 case M_JRC:
11981 gas_assert (mips_opts.micromips);
11982 gas_assert (mips_opts.insn32);
c0ebe874 11983 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
11984 if (mips_opts.noreorder)
11985 macro_build (NULL, "nop", "");
11986 break;
11987
252b5132
RH
11988 case M_LI:
11989 case M_LI_S:
c0ebe874 11990 load_register (op[0], &imm_expr, 0);
8fc2e39e 11991 break;
252b5132
RH
11992
11993 case M_DLI:
c0ebe874 11994 load_register (op[0], &imm_expr, 1);
8fc2e39e 11995 break;
252b5132
RH
11996
11997 case M_LI_SS:
11998 if (imm_expr.X_op == O_constant)
11999 {
8fc2e39e 12000 used_at = 1;
67c0d1eb 12001 load_register (AT, &imm_expr, 0);
c0ebe874 12002 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12003 break;
12004 }
12005 else
12006 {
b0e6f033
RS
12007 gas_assert (imm_expr.X_op == O_absent
12008 && offset_expr.X_op == O_symbol
90ecf173
MR
12009 && strcmp (segment_name (S_GET_SEGMENT
12010 (offset_expr.X_add_symbol)),
12011 ".lit4") == 0
12012 && offset_expr.X_add_number == 0);
c0ebe874 12013 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12014 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12015 break;
252b5132
RH
12016 }
12017
12018 case M_LI_D:
ca4e0257
RS
12019 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12020 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12021 order 32 bits of the value and the low order 32 bits are either
12022 zero or in OFFSET_EXPR. */
b0e6f033 12023 if (imm_expr.X_op == O_constant)
252b5132 12024 {
bad1aba3 12025 if (GPR_SIZE == 64)
c0ebe874 12026 load_register (op[0], &imm_expr, 1);
252b5132
RH
12027 else
12028 {
12029 int hreg, lreg;
12030
12031 if (target_big_endian)
12032 {
c0ebe874
RS
12033 hreg = op[0];
12034 lreg = op[0] + 1;
252b5132
RH
12035 }
12036 else
12037 {
c0ebe874
RS
12038 hreg = op[0] + 1;
12039 lreg = op[0];
252b5132
RH
12040 }
12041
12042 if (hreg <= 31)
67c0d1eb 12043 load_register (hreg, &imm_expr, 0);
252b5132
RH
12044 if (lreg <= 31)
12045 {
12046 if (offset_expr.X_op == O_absent)
67c0d1eb 12047 move_register (lreg, 0);
252b5132
RH
12048 else
12049 {
9c2799c2 12050 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12051 load_register (lreg, &offset_expr, 0);
252b5132
RH
12052 }
12053 }
12054 }
8fc2e39e 12055 break;
252b5132 12056 }
b0e6f033 12057 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12058
12059 /* We know that sym is in the .rdata section. First we get the
12060 upper 16 bits of the address. */
12061 if (mips_pic == NO_PIC)
12062 {
67c0d1eb 12063 macro_build_lui (&offset_expr, AT);
8fc2e39e 12064 used_at = 1;
252b5132 12065 }
0a44bf69 12066 else
252b5132 12067 {
67c0d1eb
RS
12068 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12069 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12070 used_at = 1;
252b5132 12071 }
bdaaa2e1 12072
252b5132 12073 /* Now we load the register(s). */
bad1aba3 12074 if (GPR_SIZE == 64)
8fc2e39e
TS
12075 {
12076 used_at = 1;
c0ebe874
RS
12077 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12078 BFD_RELOC_LO16, AT);
8fc2e39e 12079 }
252b5132
RH
12080 else
12081 {
8fc2e39e 12082 used_at = 1;
c0ebe874
RS
12083 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12084 BFD_RELOC_LO16, AT);
12085 if (op[0] != RA)
252b5132
RH
12086 {
12087 /* FIXME: How in the world do we deal with the possible
12088 overflow here? */
12089 offset_expr.X_add_number += 4;
67c0d1eb 12090 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12091 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12092 }
12093 }
252b5132
RH
12094 break;
12095
12096 case M_LI_DD:
ca4e0257
RS
12097 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12098 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12099 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12100 the value and the low order 32 bits are either zero or in
12101 OFFSET_EXPR. */
b0e6f033 12102 if (imm_expr.X_op == O_constant)
252b5132 12103 {
8fc2e39e 12104 used_at = 1;
bad1aba3 12105 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12106 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12107 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12108 else
12109 {
351cdf24
MF
12110 if (ISA_HAS_MXHC1 (mips_opts.isa))
12111 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12112 else if (FPR_SIZE != 32)
12113 as_bad (_("Unable to generate `%s' compliant code "
12114 "without mthc1"),
12115 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12116 else
12117 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12118 if (offset_expr.X_op == O_absent)
c0ebe874 12119 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12120 else
12121 {
9c2799c2 12122 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12123 load_register (AT, &offset_expr, 0);
c0ebe874 12124 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12125 }
12126 }
12127 break;
12128 }
12129
b0e6f033
RS
12130 gas_assert (imm_expr.X_op == O_absent
12131 && offset_expr.X_op == O_symbol
90ecf173 12132 && offset_expr.X_add_number == 0);
252b5132
RH
12133 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12134 if (strcmp (s, ".lit8") == 0)
f2ae14a1 12135 {
c0ebe874 12136 op[2] = mips_gp_register;
f2ae14a1
RS
12137 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12138 offset_reloc[1] = BFD_RELOC_UNUSED;
12139 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12140 }
12141 else
12142 {
9c2799c2 12143 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12144 used_at = 1;
0a44bf69 12145 if (mips_pic != NO_PIC)
67c0d1eb
RS
12146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12147 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12148 else
12149 {
12150 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12151 macro_build_lui (&offset_expr, AT);
252b5132 12152 }
bdaaa2e1 12153
c0ebe874 12154 op[2] = AT;
f2ae14a1
RS
12155 offset_reloc[0] = BFD_RELOC_LO16;
12156 offset_reloc[1] = BFD_RELOC_UNUSED;
12157 offset_reloc[2] = BFD_RELOC_UNUSED;
12158 }
12159 align = 8;
12160 /* Fall through */
c4a68bea 12161
252b5132
RH
12162 case M_L_DAB:
12163 /*
12164 * The MIPS assembler seems to check for X_add_number not
12165 * being double aligned and generating:
12166 * lui at,%hi(foo+1)
12167 * addu at,at,v1
12168 * addiu at,at,%lo(foo+1)
12169 * lwc1 f2,0(at)
12170 * lwc1 f3,4(at)
12171 * But, the resulting address is the same after relocation so why
12172 * generate the extra instruction?
12173 */
bdaaa2e1 12174 /* Itbl support may require additional care here. */
252b5132 12175 coproc = 1;
df58fc94 12176 fmt = "T,o(b)";
0aa27725 12177 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12178 {
12179 s = "ldc1";
df58fc94 12180 goto ld_st;
252b5132 12181 }
252b5132 12182 s = "lwc1";
252b5132
RH
12183 goto ldd_std;
12184
12185 case M_S_DAB:
df58fc94
RS
12186 gas_assert (!mips_opts.micromips);
12187 /* Itbl support may require additional care here. */
12188 coproc = 1;
12189 fmt = "T,o(b)";
0aa27725 12190 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12191 {
12192 s = "sdc1";
df58fc94 12193 goto ld_st;
252b5132 12194 }
252b5132 12195 s = "swc1";
252b5132
RH
12196 goto ldd_std;
12197
e407c74b
NC
12198 case M_LQ_AB:
12199 fmt = "t,o(b)";
12200 s = "lq";
12201 goto ld;
12202
12203 case M_SQ_AB:
12204 fmt = "t,o(b)";
12205 s = "sq";
12206 goto ld_st;
12207
252b5132 12208 case M_LD_AB:
df58fc94 12209 fmt = "t,o(b)";
bad1aba3 12210 if (GPR_SIZE == 64)
252b5132
RH
12211 {
12212 s = "ld";
12213 goto ld;
12214 }
252b5132 12215 s = "lw";
252b5132
RH
12216 goto ldd_std;
12217
12218 case M_SD_AB:
df58fc94 12219 fmt = "t,o(b)";
bad1aba3 12220 if (GPR_SIZE == 64)
252b5132
RH
12221 {
12222 s = "sd";
df58fc94 12223 goto ld_st;
252b5132 12224 }
252b5132 12225 s = "sw";
252b5132
RH
12226
12227 ldd_std:
f2ae14a1
RS
12228 /* Even on a big endian machine $fn comes before $fn+1. We have
12229 to adjust when loading from memory. We set coproc if we must
12230 load $fn+1 first. */
12231 /* Itbl support may require additional care here. */
12232 if (!target_big_endian)
12233 coproc = 0;
12234
c0ebe874 12235 breg = op[2];
f2ae14a1
RS
12236 if (small_offset_p (0, align, 16))
12237 {
12238 ep = &offset_expr;
12239 if (!small_offset_p (4, align, 16))
12240 {
12241 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12242 -1, offset_reloc[0], offset_reloc[1],
12243 offset_reloc[2]);
12244 expr1.X_add_number = 0;
12245 ep = &expr1;
12246 breg = AT;
12247 used_at = 1;
12248 offset_reloc[0] = BFD_RELOC_LO16;
12249 offset_reloc[1] = BFD_RELOC_UNUSED;
12250 offset_reloc[2] = BFD_RELOC_UNUSED;
12251 }
c0ebe874 12252 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12253 {
12254 ep->X_add_number += 4;
c0ebe874 12255 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12256 offset_reloc[1], offset_reloc[2], breg);
12257 ep->X_add_number -= 4;
c0ebe874 12258 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12259 offset_reloc[1], offset_reloc[2], breg);
12260 }
12261 else
12262 {
c0ebe874 12263 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12264 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12265 breg);
12266 ep->X_add_number += 4;
c0ebe874 12267 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12268 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12269 breg);
12270 }
12271 break;
12272 }
12273
252b5132
RH
12274 if (offset_expr.X_op != O_symbol
12275 && offset_expr.X_op != O_constant)
12276 {
1661c76c 12277 as_bad (_("expression too complex"));
252b5132
RH
12278 offset_expr.X_op = O_constant;
12279 }
12280
2051e8c4
MR
12281 if (HAVE_32BIT_ADDRESSES
12282 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12283 {
12284 char value [32];
12285
12286 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12287 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12288 }
2051e8c4 12289
90ecf173 12290 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12291 {
12292 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12293 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12294 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12295 If we have a base register, we use this
12296 addu $at,$breg,$gp
c0ebe874
RS
12297 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12298 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12299 If this is not a GP relative symbol, we want
12300 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12301 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12302 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12303 If there is a base register, we add it to $at after the
12304 lui instruction. If there is a constant, we always use
12305 the last case. */
39a59cf8
MR
12306 if (offset_expr.X_op == O_symbol
12307 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12308 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12309 {
4d7206a2 12310 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12311 if (breg == 0)
12312 {
c9914766 12313 tempreg = mips_gp_register;
252b5132
RH
12314 }
12315 else
12316 {
67c0d1eb 12317 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12318 AT, breg, mips_gp_register);
252b5132 12319 tempreg = AT;
252b5132
RH
12320 used_at = 1;
12321 }
12322
beae10d5 12323 /* Itbl support may require additional care here. */
c0ebe874 12324 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12325 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12326 offset_expr.X_add_number += 4;
12327
12328 /* Set mips_optimize to 2 to avoid inserting an
12329 undesired nop. */
12330 hold_mips_optimize = mips_optimize;
12331 mips_optimize = 2;
beae10d5 12332 /* Itbl support may require additional care here. */
c0ebe874 12333 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12334 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12335 mips_optimize = hold_mips_optimize;
12336
4d7206a2 12337 relax_switch ();
252b5132 12338
0970e49e 12339 offset_expr.X_add_number -= 4;
252b5132 12340 }
8fc2e39e 12341 used_at = 1;
f2ae14a1
RS
12342 if (offset_high_part (offset_expr.X_add_number, 16)
12343 != offset_high_part (offset_expr.X_add_number + 4, 16))
12344 {
12345 load_address (AT, &offset_expr, &used_at);
12346 offset_expr.X_op = O_constant;
12347 offset_expr.X_add_number = 0;
12348 }
12349 else
12350 macro_build_lui (&offset_expr, AT);
252b5132 12351 if (breg != 0)
67c0d1eb 12352 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12353 /* Itbl support may require additional care here. */
c0ebe874 12354 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12355 BFD_RELOC_LO16, AT);
252b5132
RH
12356 /* FIXME: How do we handle overflow here? */
12357 offset_expr.X_add_number += 4;
beae10d5 12358 /* Itbl support may require additional care here. */
c0ebe874 12359 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12360 BFD_RELOC_LO16, AT);
4d7206a2
RS
12361 if (mips_relax.sequence)
12362 relax_end ();
bdaaa2e1 12363 }
0a44bf69 12364 else if (!mips_big_got)
252b5132 12365 {
252b5132
RH
12366 /* If this is a reference to an external symbol, we want
12367 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12368 nop
c0ebe874
RS
12369 <op> op[0],0($at)
12370 <op> op[0]+1,4($at)
252b5132
RH
12371 Otherwise we want
12372 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12373 nop
c0ebe874
RS
12374 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12375 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12376 If there is a base register we add it to $at before the
12377 lwc1 instructions. If there is a constant we include it
12378 in the lwc1 instructions. */
12379 used_at = 1;
12380 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12381 if (expr1.X_add_number < -0x8000
12382 || expr1.X_add_number >= 0x8000 - 4)
12383 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12384 load_got_offset (AT, &offset_expr);
269137b2 12385 load_delay_nop ();
252b5132 12386 if (breg != 0)
67c0d1eb 12387 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12388
12389 /* Set mips_optimize to 2 to avoid inserting an undesired
12390 nop. */
12391 hold_mips_optimize = mips_optimize;
12392 mips_optimize = 2;
4d7206a2 12393
beae10d5 12394 /* Itbl support may require additional care here. */
4d7206a2 12395 relax_start (offset_expr.X_add_symbol);
c0ebe874 12396 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12397 BFD_RELOC_LO16, AT);
4d7206a2 12398 expr1.X_add_number += 4;
c0ebe874 12399 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12400 BFD_RELOC_LO16, AT);
4d7206a2 12401 relax_switch ();
c0ebe874 12402 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12403 BFD_RELOC_LO16, AT);
4d7206a2 12404 offset_expr.X_add_number += 4;
c0ebe874 12405 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12406 BFD_RELOC_LO16, AT);
4d7206a2 12407 relax_end ();
252b5132 12408
4d7206a2 12409 mips_optimize = hold_mips_optimize;
252b5132 12410 }
0a44bf69 12411 else if (mips_big_got)
252b5132 12412 {
67c0d1eb 12413 int gpdelay;
252b5132
RH
12414
12415 /* If this is a reference to an external symbol, we want
12416 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12417 addu $at,$at,$gp
12418 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12419 nop
c0ebe874
RS
12420 <op> op[0],0($at)
12421 <op> op[0]+1,4($at)
252b5132
RH
12422 Otherwise we want
12423 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12424 nop
c0ebe874
RS
12425 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12426 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12427 If there is a base register we add it to $at before the
12428 lwc1 instructions. If there is a constant we include it
12429 in the lwc1 instructions. */
12430 used_at = 1;
12431 expr1.X_add_number = offset_expr.X_add_number;
12432 offset_expr.X_add_number = 0;
12433 if (expr1.X_add_number < -0x8000
12434 || expr1.X_add_number >= 0x8000 - 4)
12435 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12436 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12437 relax_start (offset_expr.X_add_symbol);
df58fc94 12438 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12439 AT, BFD_RELOC_MIPS_GOT_HI16);
12440 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12441 AT, AT, mips_gp_register);
67c0d1eb 12442 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12443 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12444 load_delay_nop ();
252b5132 12445 if (breg != 0)
67c0d1eb 12446 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12447 /* Itbl support may require additional care here. */
c0ebe874 12448 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12449 BFD_RELOC_LO16, AT);
252b5132
RH
12450 expr1.X_add_number += 4;
12451
12452 /* Set mips_optimize to 2 to avoid inserting an undesired
12453 nop. */
12454 hold_mips_optimize = mips_optimize;
12455 mips_optimize = 2;
beae10d5 12456 /* Itbl support may require additional care here. */
c0ebe874 12457 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12458 BFD_RELOC_LO16, AT);
252b5132
RH
12459 mips_optimize = hold_mips_optimize;
12460 expr1.X_add_number -= 4;
12461
4d7206a2
RS
12462 relax_switch ();
12463 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12464 if (gpdelay)
12465 macro_build (NULL, "nop", "");
12466 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12467 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12468 load_delay_nop ();
252b5132 12469 if (breg != 0)
67c0d1eb 12470 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12471 /* Itbl support may require additional care here. */
c0ebe874 12472 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12473 BFD_RELOC_LO16, AT);
4d7206a2 12474 offset_expr.X_add_number += 4;
252b5132
RH
12475
12476 /* Set mips_optimize to 2 to avoid inserting an undesired
12477 nop. */
12478 hold_mips_optimize = mips_optimize;
12479 mips_optimize = 2;
beae10d5 12480 /* Itbl support may require additional care here. */
c0ebe874 12481 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12482 BFD_RELOC_LO16, AT);
252b5132 12483 mips_optimize = hold_mips_optimize;
4d7206a2 12484 relax_end ();
252b5132 12485 }
252b5132
RH
12486 else
12487 abort ();
12488
252b5132 12489 break;
3739860c 12490
dd6a37e7 12491 case M_SAA_AB:
dd6a37e7 12492 s = "saa";
0db377d0 12493 goto saa_saad;
dd6a37e7 12494 case M_SAAD_AB:
dd6a37e7 12495 s = "saad";
0db377d0
MR
12496 saa_saad:
12497 gas_assert (!mips_opts.micromips);
7f3c4072 12498 offbits = 0;
dd6a37e7
AP
12499 fmt = "t,(b)";
12500 goto ld_st;
12501
252b5132
RH
12502 /* New code added to support COPZ instructions.
12503 This code builds table entries out of the macros in mip_opcodes.
12504 R4000 uses interlocks to handle coproc delays.
12505 Other chips (like the R3000) require nops to be inserted for delays.
12506
f72c8c98 12507 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12508 In order to fill delay slots for non-interlocked chips,
12509 we must have a way to specify delays based on the coprocessor.
12510 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12511 What are the side-effects of the cop instruction?
12512 What cache support might we have and what are its effects?
12513 Both coprocessor & memory require delays. how long???
bdaaa2e1 12514 What registers are read/set/modified?
252b5132
RH
12515
12516 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12517 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12518
12519 case M_COP0:
12520 s = "c0";
12521 goto copz;
12522 case M_COP1:
12523 s = "c1";
12524 goto copz;
12525 case M_COP2:
12526 s = "c2";
12527 goto copz;
12528 case M_COP3:
12529 s = "c3";
12530 copz:
df58fc94 12531 gas_assert (!mips_opts.micromips);
252b5132
RH
12532 /* For now we just do C (same as Cz). The parameter will be
12533 stored in insn_opcode by mips_ip. */
c8276761 12534 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12535 break;
252b5132 12536
ea1fb5dc 12537 case M_MOVE:
c0ebe874 12538 move_register (op[0], op[1]);
8fc2e39e 12539 break;
ea1fb5dc 12540
833794fc
MR
12541 case M_MOVEP:
12542 gas_assert (mips_opts.micromips);
12543 gas_assert (mips_opts.insn32);
c0ebe874
RS
12544 move_register (micromips_to_32_reg_h_map1[op[0]],
12545 micromips_to_32_reg_m_map[op[1]]);
12546 move_register (micromips_to_32_reg_h_map2[op[0]],
12547 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12548 break;
12549
252b5132
RH
12550 case M_DMUL:
12551 dbl = 1;
12552 case M_MUL:
e407c74b 12553 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12554 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12555 op[2]);
e407c74b
NC
12556 else
12557 {
c0ebe874
RS
12558 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12559 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12560 }
8fc2e39e 12561 break;
252b5132
RH
12562
12563 case M_DMUL_I:
12564 dbl = 1;
12565 case M_MUL_I:
12566 /* The MIPS assembler some times generates shifts and adds. I'm
12567 not trying to be that fancy. GCC should do this for us
12568 anyway. */
8fc2e39e 12569 used_at = 1;
67c0d1eb 12570 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12571 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12572 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12573 break;
12574
12575 case M_DMULO_I:
12576 dbl = 1;
12577 case M_MULO_I:
12578 imm = 1;
12579 goto do_mulo;
12580
12581 case M_DMULO:
12582 dbl = 1;
12583 case M_MULO:
12584 do_mulo:
7d10b47d 12585 start_noreorder ();
8fc2e39e 12586 used_at = 1;
252b5132 12587 if (imm)
67c0d1eb 12588 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12589 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12590 op[1], imm ? AT : op[2]);
12591 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12592 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12593 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12594 if (mips_trap)
c0ebe874 12595 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12596 else
12597 {
df58fc94
RS
12598 if (mips_opts.micromips)
12599 micromips_label_expr (&label_expr);
12600 else
12601 label_expr.X_add_number = 8;
c0ebe874 12602 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12603 macro_build (NULL, "nop", "");
df58fc94
RS
12604 macro_build (NULL, "break", BRK_FMT, 6);
12605 if (mips_opts.micromips)
12606 micromips_add_label ();
252b5132 12607 }
7d10b47d 12608 end_noreorder ();
c0ebe874 12609 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12610 break;
12611
12612 case M_DMULOU_I:
12613 dbl = 1;
12614 case M_MULOU_I:
12615 imm = 1;
12616 goto do_mulou;
12617
12618 case M_DMULOU:
12619 dbl = 1;
12620 case M_MULOU:
12621 do_mulou:
7d10b47d 12622 start_noreorder ();
8fc2e39e 12623 used_at = 1;
252b5132 12624 if (imm)
67c0d1eb
RS
12625 load_register (AT, &imm_expr, dbl);
12626 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12627 op[1], imm ? AT : op[2]);
df58fc94 12628 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12629 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12630 if (mips_trap)
df58fc94 12631 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12632 else
12633 {
df58fc94
RS
12634 if (mips_opts.micromips)
12635 micromips_label_expr (&label_expr);
12636 else
12637 label_expr.X_add_number = 8;
12638 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12639 macro_build (NULL, "nop", "");
df58fc94
RS
12640 macro_build (NULL, "break", BRK_FMT, 6);
12641 if (mips_opts.micromips)
12642 micromips_add_label ();
252b5132 12643 }
7d10b47d 12644 end_noreorder ();
252b5132
RH
12645 break;
12646
771c7ce4 12647 case M_DROL:
fef14a42 12648 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12649 {
c0ebe874 12650 if (op[0] == op[1])
82dd0097
CD
12651 {
12652 tempreg = AT;
12653 used_at = 1;
12654 }
12655 else
c0ebe874
RS
12656 tempreg = op[0];
12657 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12658 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12659 break;
82dd0097 12660 }
8fc2e39e 12661 used_at = 1;
c0ebe874
RS
12662 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12663 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12664 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12665 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12666 break;
12667
252b5132 12668 case M_ROL:
fef14a42 12669 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12670 {
c0ebe874 12671 if (op[0] == op[1])
82dd0097
CD
12672 {
12673 tempreg = AT;
12674 used_at = 1;
12675 }
12676 else
c0ebe874
RS
12677 tempreg = op[0];
12678 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12679 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12680 break;
82dd0097 12681 }
8fc2e39e 12682 used_at = 1;
c0ebe874
RS
12683 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12684 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12685 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12686 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12687 break;
12688
771c7ce4
TS
12689 case M_DROL_I:
12690 {
12691 unsigned int rot;
91d6fa6a
NC
12692 char *l;
12693 char *rr;
771c7ce4 12694
771c7ce4 12695 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12696 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12697 {
12698 rot = (64 - rot) & 0x3f;
12699 if (rot >= 32)
c0ebe874 12700 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12701 else
c0ebe874 12702 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12703 break;
60b63b72 12704 }
483fc7cd 12705 if (rot == 0)
483fc7cd 12706 {
c0ebe874 12707 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12708 break;
483fc7cd 12709 }
82dd0097 12710 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12711 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12712 rot &= 0x1f;
8fc2e39e 12713 used_at = 1;
c0ebe874
RS
12714 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12715 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12716 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12717 }
12718 break;
12719
252b5132 12720 case M_ROL_I:
771c7ce4
TS
12721 {
12722 unsigned int rot;
12723
771c7ce4 12724 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12725 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12726 {
c0ebe874
RS
12727 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12728 (32 - rot) & 0x1f);
8fc2e39e 12729 break;
60b63b72 12730 }
483fc7cd 12731 if (rot == 0)
483fc7cd 12732 {
c0ebe874 12733 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12734 break;
483fc7cd 12735 }
8fc2e39e 12736 used_at = 1;
c0ebe874
RS
12737 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12738 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12739 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12740 }
12741 break;
12742
12743 case M_DROR:
fef14a42 12744 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12745 {
c0ebe874 12746 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12747 break;
82dd0097 12748 }
8fc2e39e 12749 used_at = 1;
c0ebe874
RS
12750 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12751 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12752 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12753 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12754 break;
12755
12756 case M_ROR:
fef14a42 12757 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12758 {
c0ebe874 12759 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12760 break;
82dd0097 12761 }
8fc2e39e 12762 used_at = 1;
c0ebe874
RS
12763 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12764 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12765 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12766 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12767 break;
12768
771c7ce4
TS
12769 case M_DROR_I:
12770 {
12771 unsigned int rot;
91d6fa6a
NC
12772 char *l;
12773 char *rr;
771c7ce4 12774
771c7ce4 12775 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12776 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12777 {
12778 if (rot >= 32)
c0ebe874 12779 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12780 else
c0ebe874 12781 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12782 break;
82dd0097 12783 }
483fc7cd 12784 if (rot == 0)
483fc7cd 12785 {
c0ebe874 12786 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12787 break;
483fc7cd 12788 }
91d6fa6a 12789 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12790 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12791 rot &= 0x1f;
8fc2e39e 12792 used_at = 1;
c0ebe874
RS
12793 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12794 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12795 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12796 }
12797 break;
12798
252b5132 12799 case M_ROR_I:
771c7ce4
TS
12800 {
12801 unsigned int rot;
12802
771c7ce4 12803 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12804 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12805 {
c0ebe874 12806 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12807 break;
82dd0097 12808 }
483fc7cd 12809 if (rot == 0)
483fc7cd 12810 {
c0ebe874 12811 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12812 break;
483fc7cd 12813 }
8fc2e39e 12814 used_at = 1;
c0ebe874
RS
12815 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12816 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12817 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 12818 }
252b5132
RH
12819 break;
12820
252b5132 12821 case M_SEQ:
c0ebe874
RS
12822 if (op[1] == 0)
12823 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12824 else if (op[2] == 0)
12825 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12826 else
12827 {
c0ebe874
RS
12828 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12829 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 12830 }
8fc2e39e 12831 break;
252b5132
RH
12832
12833 case M_SEQ_I:
b0e6f033 12834 if (imm_expr.X_add_number == 0)
252b5132 12835 {
c0ebe874 12836 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12837 break;
252b5132 12838 }
c0ebe874 12839 if (op[1] == 0)
252b5132 12840 {
1661c76c 12841 as_warn (_("instruction %s: result is always false"),
252b5132 12842 ip->insn_mo->name);
c0ebe874 12843 move_register (op[0], 0);
8fc2e39e 12844 break;
252b5132 12845 }
dd3cbb7e
NC
12846 if (CPU_HAS_SEQ (mips_opts.arch)
12847 && -512 <= imm_expr.X_add_number
12848 && imm_expr.X_add_number < 512)
12849 {
c0ebe874 12850 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 12851 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12852 break;
12853 }
b0e6f033 12854 if (imm_expr.X_add_number >= 0
252b5132 12855 && imm_expr.X_add_number < 0x10000)
c0ebe874 12856 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 12857 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12858 && imm_expr.X_add_number < 0)
12859 {
12860 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 12861 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 12862 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12863 }
dd3cbb7e
NC
12864 else if (CPU_HAS_SEQ (mips_opts.arch))
12865 {
12866 used_at = 1;
bad1aba3 12867 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12868 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12869 break;
12870 }
252b5132
RH
12871 else
12872 {
bad1aba3 12873 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12874 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12875 used_at = 1;
12876 }
c0ebe874 12877 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12878 break;
252b5132 12879
c0ebe874 12880 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
12881 s = "slt";
12882 goto sge;
12883 case M_SGEU:
12884 s = "sltu";
12885 sge:
c0ebe874
RS
12886 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12887 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12888 break;
252b5132 12889
c0ebe874 12890 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 12891 case M_SGEU_I:
b0e6f033 12892 if (imm_expr.X_add_number >= -0x8000
252b5132 12893 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
12894 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12895 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12896 else
12897 {
bad1aba3 12898 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 12899 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 12900 op[0], op[1], AT);
252b5132
RH
12901 used_at = 1;
12902 }
c0ebe874 12903 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12904 break;
252b5132 12905
c0ebe874 12906 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
12907 s = "slt";
12908 goto sgt;
12909 case M_SGTU:
12910 s = "sltu";
12911 sgt:
c0ebe874 12912 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 12913 break;
252b5132 12914
c0ebe874 12915 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
12916 s = "slt";
12917 goto sgti;
12918 case M_SGTU_I:
12919 s = "sltu";
12920 sgti:
8fc2e39e 12921 used_at = 1;
bad1aba3 12922 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12923 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
12924 break;
12925
c0ebe874 12926 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
12927 s = "slt";
12928 goto sle;
12929 case M_SLEU:
12930 s = "sltu";
12931 sle:
c0ebe874
RS
12932 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12933 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12934 break;
252b5132 12935
c0ebe874 12936 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
12937 s = "slt";
12938 goto slei;
12939 case M_SLEU_I:
12940 s = "sltu";
12941 slei:
8fc2e39e 12942 used_at = 1;
bad1aba3 12943 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
12944 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12945 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
12946 break;
12947
12948 case M_SLT_I:
b0e6f033 12949 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12950 && imm_expr.X_add_number < 0x8000)
12951 {
c0ebe874
RS
12952 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12953 BFD_RELOC_LO16);
8fc2e39e 12954 break;
252b5132 12955 }
8fc2e39e 12956 used_at = 1;
bad1aba3 12957 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12958 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
12959 break;
12960
12961 case M_SLTU_I:
b0e6f033 12962 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12963 && imm_expr.X_add_number < 0x8000)
12964 {
c0ebe874 12965 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 12966 BFD_RELOC_LO16);
8fc2e39e 12967 break;
252b5132 12968 }
8fc2e39e 12969 used_at = 1;
bad1aba3 12970 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12971 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
12972 break;
12973
12974 case M_SNE:
c0ebe874
RS
12975 if (op[1] == 0)
12976 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12977 else if (op[2] == 0)
12978 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
12979 else
12980 {
c0ebe874
RS
12981 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12982 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 12983 }
8fc2e39e 12984 break;
252b5132
RH
12985
12986 case M_SNE_I:
b0e6f033 12987 if (imm_expr.X_add_number == 0)
252b5132 12988 {
c0ebe874 12989 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 12990 break;
252b5132 12991 }
c0ebe874 12992 if (op[1] == 0)
252b5132 12993 {
1661c76c 12994 as_warn (_("instruction %s: result is always true"),
252b5132 12995 ip->insn_mo->name);
bad1aba3 12996 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 12997 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 12998 break;
252b5132 12999 }
dd3cbb7e
NC
13000 if (CPU_HAS_SEQ (mips_opts.arch)
13001 && -512 <= imm_expr.X_add_number
13002 && imm_expr.X_add_number < 512)
13003 {
c0ebe874 13004 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13005 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13006 break;
13007 }
b0e6f033 13008 if (imm_expr.X_add_number >= 0
252b5132
RH
13009 && imm_expr.X_add_number < 0x10000)
13010 {
c0ebe874
RS
13011 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13012 BFD_RELOC_LO16);
252b5132 13013 }
b0e6f033 13014 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13015 && imm_expr.X_add_number < 0)
13016 {
13017 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13018 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13019 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13020 }
dd3cbb7e
NC
13021 else if (CPU_HAS_SEQ (mips_opts.arch))
13022 {
13023 used_at = 1;
bad1aba3 13024 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13025 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13026 break;
13027 }
252b5132
RH
13028 else
13029 {
bad1aba3 13030 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13031 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13032 used_at = 1;
13033 }
c0ebe874 13034 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13035 break;
252b5132 13036
df58fc94
RS
13037 case M_SUB_I:
13038 s = "addi";
13039 s2 = "sub";
13040 goto do_subi;
13041 case M_SUBU_I:
13042 s = "addiu";
13043 s2 = "subu";
13044 goto do_subi;
252b5132
RH
13045 case M_DSUB_I:
13046 dbl = 1;
df58fc94
RS
13047 s = "daddi";
13048 s2 = "dsub";
13049 if (!mips_opts.micromips)
13050 goto do_subi;
b0e6f033 13051 if (imm_expr.X_add_number > -0x200
df58fc94 13052 && imm_expr.X_add_number <= 0x200)
252b5132 13053 {
b0e6f033
RS
13054 macro_build (NULL, s, "t,r,.", op[0], op[1],
13055 (int) -imm_expr.X_add_number);
8fc2e39e 13056 break;
252b5132 13057 }
df58fc94 13058 goto do_subi_i;
252b5132
RH
13059 case M_DSUBU_I:
13060 dbl = 1;
df58fc94
RS
13061 s = "daddiu";
13062 s2 = "dsubu";
13063 do_subi:
b0e6f033 13064 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13065 && imm_expr.X_add_number <= 0x8000)
13066 {
13067 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13068 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13069 break;
252b5132 13070 }
df58fc94 13071 do_subi_i:
8fc2e39e 13072 used_at = 1;
67c0d1eb 13073 load_register (AT, &imm_expr, dbl);
c0ebe874 13074 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13075 break;
13076
13077 case M_TEQ_I:
13078 s = "teq";
13079 goto trap;
13080 case M_TGE_I:
13081 s = "tge";
13082 goto trap;
13083 case M_TGEU_I:
13084 s = "tgeu";
13085 goto trap;
13086 case M_TLT_I:
13087 s = "tlt";
13088 goto trap;
13089 case M_TLTU_I:
13090 s = "tltu";
13091 goto trap;
13092 case M_TNE_I:
13093 s = "tne";
13094 trap:
8fc2e39e 13095 used_at = 1;
bad1aba3 13096 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13097 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13098 break;
13099
252b5132 13100 case M_TRUNCWS:
43841e91 13101 case M_TRUNCWD:
df58fc94 13102 gas_assert (!mips_opts.micromips);
0aa27725 13103 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13104 used_at = 1;
252b5132
RH
13105
13106 /*
13107 * Is the double cfc1 instruction a bug in the mips assembler;
13108 * or is there a reason for it?
13109 */
7d10b47d 13110 start_noreorder ();
c0ebe874
RS
13111 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13112 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13113 macro_build (NULL, "nop", "");
252b5132 13114 expr1.X_add_number = 3;
c0ebe874 13115 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13116 expr1.X_add_number = 2;
67c0d1eb
RS
13117 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13118 macro_build (NULL, "ctc1", "t,G", AT, RA);
13119 macro_build (NULL, "nop", "");
13120 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13121 op[0], op[1]);
13122 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13123 macro_build (NULL, "nop", "");
7d10b47d 13124 end_noreorder ();
252b5132
RH
13125 break;
13126
f2ae14a1 13127 case M_ULH_AB:
252b5132 13128 s = "lb";
df58fc94
RS
13129 s2 = "lbu";
13130 off = 1;
13131 goto uld_st;
f2ae14a1 13132 case M_ULHU_AB:
252b5132 13133 s = "lbu";
df58fc94
RS
13134 s2 = "lbu";
13135 off = 1;
13136 goto uld_st;
f2ae14a1 13137 case M_ULW_AB:
df58fc94
RS
13138 s = "lwl";
13139 s2 = "lwr";
7f3c4072 13140 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13141 off = 3;
13142 goto uld_st;
f2ae14a1 13143 case M_ULD_AB:
252b5132
RH
13144 s = "ldl";
13145 s2 = "ldr";
7f3c4072 13146 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13147 off = 7;
df58fc94 13148 goto uld_st;
f2ae14a1 13149 case M_USH_AB:
df58fc94
RS
13150 s = "sb";
13151 s2 = "sb";
13152 off = 1;
13153 ust = 1;
13154 goto uld_st;
f2ae14a1 13155 case M_USW_AB:
df58fc94
RS
13156 s = "swl";
13157 s2 = "swr";
7f3c4072 13158 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13159 off = 3;
df58fc94
RS
13160 ust = 1;
13161 goto uld_st;
f2ae14a1 13162 case M_USD_AB:
df58fc94
RS
13163 s = "sdl";
13164 s2 = "sdr";
7f3c4072 13165 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13166 off = 7;
13167 ust = 1;
13168
13169 uld_st:
c0ebe874 13170 breg = op[2];
f2ae14a1 13171 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13172 ep = &offset_expr;
13173 expr1.X_add_number = 0;
f2ae14a1 13174 if (large_offset)
df58fc94
RS
13175 {
13176 used_at = 1;
13177 tempreg = AT;
f2ae14a1
RS
13178 if (small_offset_p (0, align, 16))
13179 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13180 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13181 else
13182 {
13183 load_address (tempreg, ep, &used_at);
13184 if (breg != 0)
13185 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13186 tempreg, tempreg, breg);
13187 }
13188 offset_reloc[0] = BFD_RELOC_LO16;
13189 offset_reloc[1] = BFD_RELOC_UNUSED;
13190 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13191 breg = tempreg;
c0ebe874 13192 tempreg = op[0];
df58fc94
RS
13193 ep = &expr1;
13194 }
c0ebe874 13195 else if (!ust && op[0] == breg)
8fc2e39e
TS
13196 {
13197 used_at = 1;
13198 tempreg = AT;
13199 }
252b5132 13200 else
c0ebe874 13201 tempreg = op[0];
af22f5b2 13202
df58fc94
RS
13203 if (off == 1)
13204 goto ulh_sh;
252b5132 13205
90ecf173 13206 if (!target_big_endian)
df58fc94 13207 ep->X_add_number += off;
f2ae14a1 13208 if (offbits == 12)
c8276761 13209 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13210 else
13211 macro_build (ep, s, "t,o(b)", tempreg, -1,
13212 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13213
90ecf173 13214 if (!target_big_endian)
df58fc94 13215 ep->X_add_number -= off;
252b5132 13216 else
df58fc94 13217 ep->X_add_number += off;
f2ae14a1 13218 if (offbits == 12)
df58fc94 13219 macro_build (NULL, s2, "t,~(b)",
c8276761 13220 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13221 else
13222 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13223 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13224
df58fc94 13225 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13226 if (!ust && op[0] != tempreg)
df58fc94
RS
13227 {
13228 /* Protect second load's delay slot. */
13229 load_delay_nop ();
c0ebe874 13230 move_register (op[0], tempreg);
df58fc94 13231 }
8fc2e39e 13232 break;
252b5132 13233
df58fc94 13234 ulh_sh:
d6bc6245 13235 used_at = 1;
df58fc94
RS
13236 if (target_big_endian == ust)
13237 ep->X_add_number += off;
c0ebe874 13238 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13239 macro_build (ep, s, "t,o(b)", tempreg, -1,
13240 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13241
13242 /* For halfword transfers we need a temporary register to shuffle
13243 bytes. Unfortunately for M_USH_A we have none available before
13244 the next store as AT holds the base address. We deal with this
13245 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13246 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13247 if (ust)
c0ebe874 13248 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13249
13250 if (target_big_endian == ust)
13251 ep->X_add_number -= off;
252b5132 13252 else
df58fc94 13253 ep->X_add_number += off;
f2ae14a1
RS
13254 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13255 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13256
df58fc94 13257 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13258 if (ust && large_offset)
df58fc94
RS
13259 {
13260 if (target_big_endian)
13261 ep->X_add_number += off;
13262 else
13263 ep->X_add_number -= off;
f2ae14a1
RS
13264 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13265 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13266 }
13267 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13268 if (!ust || large_offset)
df58fc94 13269 {
c0ebe874 13270 tempreg = !large_offset ? AT : op[0];
df58fc94 13271 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13272 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13273 }
252b5132
RH
13274 break;
13275
13276 default:
13277 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13278 are added dynamically. */
1661c76c 13279 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13280 break;
13281 }
741fe287 13282 if (!mips_opts.at && used_at)
1661c76c 13283 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13284}
13285
13286/* Implement macros in mips16 mode. */
13287
13288static void
17a2f251 13289mips16_macro (struct mips_cl_insn *ip)
252b5132 13290{
c0ebe874 13291 const struct mips_operand_array *operands;
252b5132 13292 int mask;
c0ebe874 13293 int tmp;
252b5132
RH
13294 expressionS expr1;
13295 int dbl;
13296 const char *s, *s2, *s3;
c0ebe874
RS
13297 unsigned int op[MAX_OPERANDS];
13298 unsigned int i;
252b5132
RH
13299
13300 mask = ip->insn_mo->mask;
13301
c0ebe874
RS
13302 operands = insn_operands (ip);
13303 for (i = 0; i < MAX_OPERANDS; i++)
13304 if (operands->operand[i])
13305 op[i] = insn_extract_operand (ip, operands->operand[i]);
13306 else
13307 op[i] = -1;
252b5132 13308
252b5132
RH
13309 expr1.X_op = O_constant;
13310 expr1.X_op_symbol = NULL;
13311 expr1.X_add_symbol = NULL;
13312 expr1.X_add_number = 1;
13313
13314 dbl = 0;
13315
13316 switch (mask)
13317 {
13318 default:
b37df7c4 13319 abort ();
252b5132
RH
13320
13321 case M_DDIV_3:
13322 dbl = 1;
13323 case M_DIV_3:
13324 s = "mflo";
13325 goto do_div3;
13326 case M_DREM_3:
13327 dbl = 1;
13328 case M_REM_3:
13329 s = "mfhi";
13330 do_div3:
7d10b47d 13331 start_noreorder ();
c0ebe874 13332 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13333 expr1.X_add_number = 2;
c0ebe874 13334 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13335 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13336
252b5132
RH
13337 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13338 since that causes an overflow. We should do that as well,
13339 but I don't see how to do the comparisons without a temporary
13340 register. */
7d10b47d 13341 end_noreorder ();
c0ebe874 13342 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13343 break;
13344
13345 case M_DIVU_3:
13346 s = "divu";
13347 s2 = "mflo";
13348 goto do_divu3;
13349 case M_REMU_3:
13350 s = "divu";
13351 s2 = "mfhi";
13352 goto do_divu3;
13353 case M_DDIVU_3:
13354 s = "ddivu";
13355 s2 = "mflo";
13356 goto do_divu3;
13357 case M_DREMU_3:
13358 s = "ddivu";
13359 s2 = "mfhi";
13360 do_divu3:
7d10b47d 13361 start_noreorder ();
c0ebe874 13362 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13363 expr1.X_add_number = 2;
c0ebe874 13364 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13365 macro_build (NULL, "break", "6", 7);
7d10b47d 13366 end_noreorder ();
c0ebe874 13367 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13368 break;
13369
13370 case M_DMUL:
13371 dbl = 1;
13372 case M_MUL:
c0ebe874
RS
13373 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13374 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13375 break;
252b5132
RH
13376
13377 case M_DSUBU_I:
13378 dbl = 1;
13379 goto do_subu;
13380 case M_SUBU_I:
13381 do_subu:
252b5132 13382 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13383 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13384 break;
13385
13386 case M_SUBU_I_2:
252b5132 13387 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13388 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13389 break;
13390
13391 case M_DSUBU_I_2:
252b5132 13392 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13393 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13394 break;
13395
13396 case M_BEQ:
13397 s = "cmp";
13398 s2 = "bteqz";
13399 goto do_branch;
13400 case M_BNE:
13401 s = "cmp";
13402 s2 = "btnez";
13403 goto do_branch;
13404 case M_BLT:
13405 s = "slt";
13406 s2 = "btnez";
13407 goto do_branch;
13408 case M_BLTU:
13409 s = "sltu";
13410 s2 = "btnez";
13411 goto do_branch;
13412 case M_BLE:
13413 s = "slt";
13414 s2 = "bteqz";
13415 goto do_reverse_branch;
13416 case M_BLEU:
13417 s = "sltu";
13418 s2 = "bteqz";
13419 goto do_reverse_branch;
13420 case M_BGE:
13421 s = "slt";
13422 s2 = "bteqz";
13423 goto do_branch;
13424 case M_BGEU:
13425 s = "sltu";
13426 s2 = "bteqz";
13427 goto do_branch;
13428 case M_BGT:
13429 s = "slt";
13430 s2 = "btnez";
13431 goto do_reverse_branch;
13432 case M_BGTU:
13433 s = "sltu";
13434 s2 = "btnez";
13435
13436 do_reverse_branch:
c0ebe874
RS
13437 tmp = op[1];
13438 op[1] = op[0];
13439 op[0] = tmp;
252b5132
RH
13440
13441 do_branch:
c0ebe874 13442 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13443 macro_build (&offset_expr, s2, "p");
252b5132
RH
13444 break;
13445
13446 case M_BEQ_I:
13447 s = "cmpi";
13448 s2 = "bteqz";
13449 s3 = "x,U";
13450 goto do_branch_i;
13451 case M_BNE_I:
13452 s = "cmpi";
13453 s2 = "btnez";
13454 s3 = "x,U";
13455 goto do_branch_i;
13456 case M_BLT_I:
13457 s = "slti";
13458 s2 = "btnez";
13459 s3 = "x,8";
13460 goto do_branch_i;
13461 case M_BLTU_I:
13462 s = "sltiu";
13463 s2 = "btnez";
13464 s3 = "x,8";
13465 goto do_branch_i;
13466 case M_BLE_I:
13467 s = "slti";
13468 s2 = "btnez";
13469 s3 = "x,8";
13470 goto do_addone_branch_i;
13471 case M_BLEU_I:
13472 s = "sltiu";
13473 s2 = "btnez";
13474 s3 = "x,8";
13475 goto do_addone_branch_i;
13476 case M_BGE_I:
13477 s = "slti";
13478 s2 = "bteqz";
13479 s3 = "x,8";
13480 goto do_branch_i;
13481 case M_BGEU_I:
13482 s = "sltiu";
13483 s2 = "bteqz";
13484 s3 = "x,8";
13485 goto do_branch_i;
13486 case M_BGT_I:
13487 s = "slti";
13488 s2 = "bteqz";
13489 s3 = "x,8";
13490 goto do_addone_branch_i;
13491 case M_BGTU_I:
13492 s = "sltiu";
13493 s2 = "bteqz";
13494 s3 = "x,8";
13495
13496 do_addone_branch_i:
252b5132
RH
13497 ++imm_expr.X_add_number;
13498
13499 do_branch_i:
c0ebe874 13500 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13501 macro_build (&offset_expr, s2, "p");
252b5132
RH
13502 break;
13503
13504 case M_ABS:
13505 expr1.X_add_number = 0;
c0ebe874
RS
13506 macro_build (&expr1, "slti", "x,8", op[1]);
13507 if (op[0] != op[1])
13508 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13509 expr1.X_add_number = 2;
67c0d1eb 13510 macro_build (&expr1, "bteqz", "p");
c0ebe874 13511 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13512 break;
252b5132
RH
13513 }
13514}
13515
14daeee3
RS
13516/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13517 opcode bits in *OPCODE_EXTRA. */
13518
13519static struct mips_opcode *
13520mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13521 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13522{
13523 char *name, *dot, *p;
13524 unsigned int mask, suffix;
da8bca91 13525 ssize_t opend;
14daeee3
RS
13526 struct mips_opcode *insn;
13527
13528 /* Make a copy of the instruction so that we can fiddle with it. */
13529 name = alloca (length + 1);
13530 memcpy (name, start, length);
13531 name[length] = '\0';
13532
13533 /* Look up the instruction as-is. */
13534 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13535 if (insn)
14daeee3
RS
13536 return insn;
13537
13538 dot = strchr (name, '.');
13539 if (dot && dot[1])
13540 {
13541 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13542 p = mips_parse_vu0_channels (dot + 1, &mask);
13543 if (*p == 0 && mask != 0)
13544 {
13545 *dot = 0;
13546 insn = (struct mips_opcode *) hash_find (hash, name);
13547 *dot = '.';
13548 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13549 {
13550 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13551 return insn;
13552 }
13553 }
13554 }
13555
13556 if (mips_opts.micromips)
13557 {
13558 /* See if there's an instruction size override suffix,
13559 either `16' or `32', at the end of the mnemonic proper,
13560 that defines the operation, i.e. before the first `.'
13561 character if any. Strip it and retry. */
13562 opend = dot != NULL ? dot - name : length;
13563 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13564 suffix = 2;
13565 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13566 suffix = 4;
13567 else
13568 suffix = 0;
13569 if (suffix)
13570 {
13571 memcpy (name + opend - 2, name + opend, length - opend + 1);
13572 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13573 if (insn)
14daeee3
RS
13574 {
13575 forced_insn_length = suffix;
13576 return insn;
13577 }
13578 }
13579 }
13580
13581 return NULL;
13582}
13583
77bd4346 13584/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13585 is a macro, set imm_expr and offset_expr to the values associated
13586 with "I" and "A" operands respectively. Otherwise store the value
13587 of the relocatable field (if any) in offset_expr. In both cases
13588 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13589
13590static void
60f20e8b 13591mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13592{
60f20e8b 13593 const struct mips_opcode *first, *past;
df58fc94 13594 struct hash_control *hash;
a92713e6 13595 char format;
14daeee3 13596 size_t end;
a92713e6 13597 struct mips_operand_token *tokens;
14daeee3 13598 unsigned int opcode_extra;
252b5132 13599
df58fc94
RS
13600 if (mips_opts.micromips)
13601 {
13602 hash = micromips_op_hash;
13603 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13604 }
13605 else
13606 {
13607 hash = op_hash;
13608 past = &mips_opcodes[NUMOPCODES];
13609 }
13610 forced_insn_length = 0;
14daeee3 13611 opcode_extra = 0;
252b5132 13612
df58fc94 13613 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13614 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13615 continue;
bdaaa2e1 13616
60f20e8b
RS
13617 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13618 if (first == NULL)
252b5132 13619 {
1661c76c 13620 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13621 return;
252b5132
RH
13622 }
13623
60f20e8b 13624 if (strcmp (first->name, "li.s") == 0)
a92713e6 13625 format = 'f';
60f20e8b 13626 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13627 format = 'd';
13628 else
13629 format = 0;
13630 tokens = mips_parse_arguments (str + end, format);
13631 if (!tokens)
13632 return;
13633
60f20e8b
RS
13634 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13635 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13636 set_insn_error (0, _("invalid operands"));
df58fc94 13637
e3de51ce 13638 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13639}
13640
77bd4346
RS
13641/* As for mips_ip, but used when assembling MIPS16 code.
13642 Also set forced_insn_length to the resulting instruction size in
13643 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13644
13645static void
60f20e8b 13646mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13647{
1a00e612 13648 char *end, *s, c;
60f20e8b 13649 struct mips_opcode *first;
a92713e6 13650 struct mips_operand_token *tokens;
252b5132 13651
df58fc94 13652 forced_insn_length = 0;
252b5132 13653
3882b010 13654 for (s = str; ISLOWER (*s); ++s)
252b5132 13655 ;
1a00e612
RS
13656 end = s;
13657 c = *end;
13658 switch (c)
252b5132
RH
13659 {
13660 case '\0':
13661 break;
13662
13663 case ' ':
1a00e612 13664 s++;
252b5132
RH
13665 break;
13666
13667 case '.':
13668 if (s[1] == 't' && s[2] == ' ')
13669 {
df58fc94 13670 forced_insn_length = 2;
252b5132
RH
13671 s += 3;
13672 break;
13673 }
13674 else if (s[1] == 'e' && s[2] == ' ')
13675 {
df58fc94 13676 forced_insn_length = 4;
252b5132
RH
13677 s += 3;
13678 break;
13679 }
13680 /* Fall through. */
13681 default:
1661c76c 13682 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13683 return;
13684 }
13685
df58fc94
RS
13686 if (mips_opts.noautoextend && !forced_insn_length)
13687 forced_insn_length = 2;
252b5132 13688
1a00e612 13689 *end = 0;
60f20e8b 13690 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13691 *end = c;
13692
60f20e8b 13693 if (!first)
252b5132 13694 {
1661c76c 13695 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13696 return;
13697 }
13698
a92713e6
RS
13699 tokens = mips_parse_arguments (s, 0);
13700 if (!tokens)
13701 return;
13702
60f20e8b 13703 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13704 set_insn_error (0, _("invalid operands"));
252b5132 13705
e3de51ce 13706 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13707}
13708
b886a2ab
RS
13709/* Marshal immediate value VAL for an extended MIPS16 instruction.
13710 NBITS is the number of significant bits in VAL. */
13711
13712static unsigned long
13713mips16_immed_extend (offsetT val, unsigned int nbits)
13714{
13715 int extval;
13716 if (nbits == 16)
13717 {
13718 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13719 val &= 0x1f;
13720 }
13721 else if (nbits == 15)
13722 {
13723 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13724 val &= 0xf;
13725 }
13726 else
13727 {
13728 extval = ((val & 0x1f) << 6) | (val & 0x20);
13729 val = 0;
13730 }
13731 return (extval << 16) | val;
13732}
13733
3ccad066
RS
13734/* Like decode_mips16_operand, but require the operand to be defined and
13735 require it to be an integer. */
13736
13737static const struct mips_int_operand *
13738mips16_immed_operand (int type, bfd_boolean extended_p)
13739{
13740 const struct mips_operand *operand;
13741
13742 operand = decode_mips16_operand (type, extended_p);
13743 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13744 abort ();
13745 return (const struct mips_int_operand *) operand;
13746}
13747
13748/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13749
13750static bfd_boolean
13751mips16_immed_in_range_p (const struct mips_int_operand *operand,
13752 bfd_reloc_code_real_type reloc, offsetT sval)
13753{
13754 int min_val, max_val;
13755
13756 min_val = mips_int_operand_min (operand);
13757 max_val = mips_int_operand_max (operand);
13758 if (reloc != BFD_RELOC_UNUSED)
13759 {
13760 if (min_val < 0)
13761 sval = SEXT_16BIT (sval);
13762 else
13763 sval &= 0xffff;
13764 }
13765
13766 return (sval >= min_val
13767 && sval <= max_val
13768 && (sval & ((1 << operand->shift) - 1)) == 0);
13769}
13770
5c04167a
RS
13771/* Install immediate value VAL into MIPS16 instruction *INSN,
13772 extending it if necessary. The instruction in *INSN may
13773 already be extended.
13774
43c0598f
RS
13775 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13776 if none. In the former case, VAL is a 16-bit number with no
13777 defined signedness.
13778
13779 TYPE is the type of the immediate field. USER_INSN_LENGTH
13780 is the length that the user requested, or 0 if none. */
252b5132
RH
13781
13782static void
43c0598f
RS
13783mips16_immed (char *file, unsigned int line, int type,
13784 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13785 unsigned int user_insn_length, unsigned long *insn)
252b5132 13786{
3ccad066
RS
13787 const struct mips_int_operand *operand;
13788 unsigned int uval, length;
252b5132 13789
3ccad066
RS
13790 operand = mips16_immed_operand (type, FALSE);
13791 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13792 {
13793 /* We need an extended instruction. */
13794 if (user_insn_length == 2)
13795 as_bad_where (file, line, _("invalid unextended operand value"));
13796 else
13797 *insn |= MIPS16_EXTEND;
13798 }
13799 else if (user_insn_length == 4)
13800 {
13801 /* The operand doesn't force an unextended instruction to be extended.
13802 Warn if the user wanted an extended instruction anyway. */
13803 *insn |= MIPS16_EXTEND;
13804 as_warn_where (file, line,
13805 _("extended operand requested but not required"));
13806 }
252b5132 13807
3ccad066
RS
13808 length = mips16_opcode_length (*insn);
13809 if (length == 4)
252b5132 13810 {
3ccad066
RS
13811 operand = mips16_immed_operand (type, TRUE);
13812 if (!mips16_immed_in_range_p (operand, reloc, val))
13813 as_bad_where (file, line,
13814 _("operand value out of range for instruction"));
252b5132 13815 }
3ccad066
RS
13816 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13817 if (length == 2)
13818 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 13819 else
3ccad066 13820 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
13821}
13822\f
d6f16593 13823struct percent_op_match
ad8d3bb3 13824{
5e0116d5
RS
13825 const char *str;
13826 bfd_reloc_code_real_type reloc;
d6f16593
MR
13827};
13828
13829static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 13830{
5e0116d5 13831 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
13832 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13833 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13834 {"%call16", BFD_RELOC_MIPS_CALL16},
13835 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13836 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13837 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13838 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13839 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13840 {"%got", BFD_RELOC_MIPS_GOT16},
13841 {"%gp_rel", BFD_RELOC_GPREL16},
13842 {"%half", BFD_RELOC_16},
13843 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13844 {"%higher", BFD_RELOC_MIPS_HIGHER},
13845 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
13846 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13847 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13848 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13849 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13850 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13851 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13852 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
13853 {"%hi", BFD_RELOC_HI16_S},
13854 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13855 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
13856};
13857
d6f16593
MR
13858static const struct percent_op_match mips16_percent_op[] =
13859{
13860 {"%lo", BFD_RELOC_MIPS16_LO16},
13861 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
13862 {"%got", BFD_RELOC_MIPS16_GOT16},
13863 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
13864 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13865 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13866 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13867 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13868 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13869 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13870 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13871 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
13872};
13873
252b5132 13874
5e0116d5
RS
13875/* Return true if *STR points to a relocation operator. When returning true,
13876 move *STR over the operator and store its relocation code in *RELOC.
13877 Leave both *STR and *RELOC alone when returning false. */
13878
13879static bfd_boolean
17a2f251 13880parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 13881{
d6f16593
MR
13882 const struct percent_op_match *percent_op;
13883 size_t limit, i;
13884
13885 if (mips_opts.mips16)
13886 {
13887 percent_op = mips16_percent_op;
13888 limit = ARRAY_SIZE (mips16_percent_op);
13889 }
13890 else
13891 {
13892 percent_op = mips_percent_op;
13893 limit = ARRAY_SIZE (mips_percent_op);
13894 }
76b3015f 13895
d6f16593 13896 for (i = 0; i < limit; i++)
5e0116d5 13897 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13898 {
3f98094e
DJ
13899 int len = strlen (percent_op[i].str);
13900
13901 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13902 continue;
13903
5e0116d5
RS
13904 *str += strlen (percent_op[i].str);
13905 *reloc = percent_op[i].reloc;
394f9b3a 13906
5e0116d5
RS
13907 /* Check whether the output BFD supports this relocation.
13908 If not, issue an error and fall back on something safe. */
13909 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13910 {
20203fb9 13911 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13912 percent_op[i].str);
01a3f561 13913 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13914 }
5e0116d5 13915 return TRUE;
394f9b3a 13916 }
5e0116d5 13917 return FALSE;
394f9b3a 13918}
ad8d3bb3 13919
ad8d3bb3 13920
5e0116d5
RS
13921/* Parse string STR as a 16-bit relocatable operand. Store the
13922 expression in *EP and the relocations in the array starting
13923 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13924
01a3f561 13925 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13926
5e0116d5 13927static size_t
17a2f251
TS
13928my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13929 char *str)
ad8d3bb3 13930{
5e0116d5
RS
13931 bfd_reloc_code_real_type reversed_reloc[3];
13932 size_t reloc_index, i;
09b8f35a
RS
13933 int crux_depth, str_depth;
13934 char *crux;
5e0116d5
RS
13935
13936 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13937 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13938 of the main expression and with CRUX_DEPTH containing the number
13939 of open brackets at that point. */
13940 reloc_index = -1;
13941 str_depth = 0;
13942 do
fb1b3232 13943 {
09b8f35a
RS
13944 reloc_index++;
13945 crux = str;
13946 crux_depth = str_depth;
13947
13948 /* Skip over whitespace and brackets, keeping count of the number
13949 of brackets. */
13950 while (*str == ' ' || *str == '\t' || *str == '(')
13951 if (*str++ == '(')
13952 str_depth++;
5e0116d5 13953 }
09b8f35a
RS
13954 while (*str == '%'
13955 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13956 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 13957
09b8f35a 13958 my_getExpression (ep, crux);
5e0116d5 13959 str = expr_end;
394f9b3a 13960
5e0116d5 13961 /* Match every open bracket. */
09b8f35a 13962 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 13963 if (*str++ == ')')
09b8f35a 13964 crux_depth--;
394f9b3a 13965
09b8f35a 13966 if (crux_depth > 0)
20203fb9 13967 as_bad (_("unclosed '('"));
394f9b3a 13968
5e0116d5 13969 expr_end = str;
252b5132 13970
01a3f561 13971 if (reloc_index != 0)
64bdfcaf
RS
13972 {
13973 prev_reloc_op_frag = frag_now;
13974 for (i = 0; i < reloc_index; i++)
13975 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13976 }
fb1b3232 13977
5e0116d5 13978 return reloc_index;
252b5132
RH
13979}
13980
13981static void
17a2f251 13982my_getExpression (expressionS *ep, char *str)
252b5132
RH
13983{
13984 char *save_in;
13985
13986 save_in = input_line_pointer;
13987 input_line_pointer = str;
13988 expression (ep);
13989 expr_end = input_line_pointer;
13990 input_line_pointer = save_in;
252b5132
RH
13991}
13992
252b5132 13993char *
17a2f251 13994md_atof (int type, char *litP, int *sizeP)
252b5132 13995{
499ac353 13996 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
13997}
13998
13999void
17a2f251 14000md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14001{
14002 if (target_big_endian)
14003 number_to_chars_bigendian (buf, val, n);
14004 else
14005 number_to_chars_littleendian (buf, val, n);
14006}
14007\f
e013f690
TS
14008static int support_64bit_objects(void)
14009{
14010 const char **list, **l;
aa3d8fdf 14011 int yes;
e013f690
TS
14012
14013 list = bfd_target_list ();
14014 for (l = list; *l != NULL; l++)
aeffff67
RS
14015 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14016 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14017 break;
aa3d8fdf 14018 yes = (*l != NULL);
e013f690 14019 free (list);
aa3d8fdf 14020 return yes;
e013f690
TS
14021}
14022
316f5878
RS
14023/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14024 NEW_VALUE. Warn if another value was already specified. Note:
14025 we have to defer parsing the -march and -mtune arguments in order
14026 to handle 'from-abi' correctly, since the ABI might be specified
14027 in a later argument. */
14028
14029static void
17a2f251 14030mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14031{
14032 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14033 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14034 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14035 new_value);
14036
14037 *string_ptr = new_value;
14038}
14039
252b5132 14040int
17a2f251 14041md_parse_option (int c, char *arg)
252b5132 14042{
c6278170
RS
14043 unsigned int i;
14044
14045 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14046 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14047 {
919731af 14048 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14049 c == mips_ases[i].option_on);
14050 return 1;
14051 }
14052
252b5132
RH
14053 switch (c)
14054 {
119d663a
NC
14055 case OPTION_CONSTRUCT_FLOATS:
14056 mips_disable_float_construction = 0;
14057 break;
bdaaa2e1 14058
119d663a
NC
14059 case OPTION_NO_CONSTRUCT_FLOATS:
14060 mips_disable_float_construction = 1;
14061 break;
bdaaa2e1 14062
252b5132
RH
14063 case OPTION_TRAP:
14064 mips_trap = 1;
14065 break;
14066
14067 case OPTION_BREAK:
14068 mips_trap = 0;
14069 break;
14070
14071 case OPTION_EB:
14072 target_big_endian = 1;
14073 break;
14074
14075 case OPTION_EL:
14076 target_big_endian = 0;
14077 break;
14078
14079 case 'O':
4ffff32f
TS
14080 if (arg == NULL)
14081 mips_optimize = 1;
14082 else if (arg[0] == '0')
14083 mips_optimize = 0;
14084 else if (arg[0] == '1')
252b5132
RH
14085 mips_optimize = 1;
14086 else
14087 mips_optimize = 2;
14088 break;
14089
14090 case 'g':
14091 if (arg == NULL)
14092 mips_debug = 2;
14093 else
14094 mips_debug = atoi (arg);
252b5132
RH
14095 break;
14096
14097 case OPTION_MIPS1:
0b35dfee 14098 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14099 break;
14100
14101 case OPTION_MIPS2:
0b35dfee 14102 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14103 break;
14104
14105 case OPTION_MIPS3:
0b35dfee 14106 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14107 break;
14108
14109 case OPTION_MIPS4:
0b35dfee 14110 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14111 break;
14112
84ea6cf2 14113 case OPTION_MIPS5:
0b35dfee 14114 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14115 break;
14116
e7af610e 14117 case OPTION_MIPS32:
0b35dfee 14118 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14119 break;
14120
af7ee8bf 14121 case OPTION_MIPS32R2:
0b35dfee 14122 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14123 break;
14124
ae52f483 14125 case OPTION_MIPS32R3:
0ae19f05 14126 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14127 break;
14128
14129 case OPTION_MIPS32R5:
0ae19f05 14130 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14131 break;
14132
7361da2c
AB
14133 case OPTION_MIPS32R6:
14134 file_mips_opts.isa = ISA_MIPS32R6;
14135 break;
14136
5f74bc13 14137 case OPTION_MIPS64R2:
0b35dfee 14138 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14139 break;
14140
ae52f483 14141 case OPTION_MIPS64R3:
0ae19f05 14142 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14143 break;
14144
14145 case OPTION_MIPS64R5:
0ae19f05 14146 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14147 break;
14148
7361da2c
AB
14149 case OPTION_MIPS64R6:
14150 file_mips_opts.isa = ISA_MIPS64R6;
14151 break;
14152
84ea6cf2 14153 case OPTION_MIPS64:
0b35dfee 14154 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14155 break;
14156
ec68c924 14157 case OPTION_MTUNE:
316f5878
RS
14158 mips_set_option_string (&mips_tune_string, arg);
14159 break;
ec68c924 14160
316f5878
RS
14161 case OPTION_MARCH:
14162 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14163 break;
14164
14165 case OPTION_M4650:
316f5878
RS
14166 mips_set_option_string (&mips_arch_string, "4650");
14167 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14168 break;
14169
14170 case OPTION_NO_M4650:
14171 break;
14172
14173 case OPTION_M4010:
316f5878
RS
14174 mips_set_option_string (&mips_arch_string, "4010");
14175 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14176 break;
14177
14178 case OPTION_NO_M4010:
14179 break;
14180
14181 case OPTION_M4100:
316f5878
RS
14182 mips_set_option_string (&mips_arch_string, "4100");
14183 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14184 break;
14185
14186 case OPTION_NO_M4100:
14187 break;
14188
252b5132 14189 case OPTION_M3900:
316f5878
RS
14190 mips_set_option_string (&mips_arch_string, "3900");
14191 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14192 break;
bdaaa2e1 14193
252b5132
RH
14194 case OPTION_NO_M3900:
14195 break;
14196
df58fc94 14197 case OPTION_MICROMIPS:
919731af 14198 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14199 {
14200 as_bad (_("-mmicromips cannot be used with -mips16"));
14201 return 0;
14202 }
919731af 14203 file_mips_opts.micromips = 1;
df58fc94
RS
14204 mips_no_prev_insn ();
14205 break;
14206
14207 case OPTION_NO_MICROMIPS:
919731af 14208 file_mips_opts.micromips = 0;
df58fc94
RS
14209 mips_no_prev_insn ();
14210 break;
14211
252b5132 14212 case OPTION_MIPS16:
919731af 14213 if (file_mips_opts.micromips == 1)
df58fc94
RS
14214 {
14215 as_bad (_("-mips16 cannot be used with -micromips"));
14216 return 0;
14217 }
919731af 14218 file_mips_opts.mips16 = 1;
7d10b47d 14219 mips_no_prev_insn ();
252b5132
RH
14220 break;
14221
14222 case OPTION_NO_MIPS16:
919731af 14223 file_mips_opts.mips16 = 0;
7d10b47d 14224 mips_no_prev_insn ();
252b5132
RH
14225 break;
14226
6a32d874
CM
14227 case OPTION_FIX_24K:
14228 mips_fix_24k = 1;
14229 break;
14230
14231 case OPTION_NO_FIX_24K:
14232 mips_fix_24k = 0;
14233 break;
14234
a8d14a88
CM
14235 case OPTION_FIX_RM7000:
14236 mips_fix_rm7000 = 1;
14237 break;
14238
14239 case OPTION_NO_FIX_RM7000:
14240 mips_fix_rm7000 = 0;
14241 break;
14242
c67a084a
NC
14243 case OPTION_FIX_LOONGSON2F_JUMP:
14244 mips_fix_loongson2f_jump = TRUE;
14245 break;
14246
14247 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14248 mips_fix_loongson2f_jump = FALSE;
14249 break;
14250
14251 case OPTION_FIX_LOONGSON2F_NOP:
14252 mips_fix_loongson2f_nop = TRUE;
14253 break;
14254
14255 case OPTION_NO_FIX_LOONGSON2F_NOP:
14256 mips_fix_loongson2f_nop = FALSE;
14257 break;
14258
d766e8ec
RS
14259 case OPTION_FIX_VR4120:
14260 mips_fix_vr4120 = 1;
60b63b72
RS
14261 break;
14262
d766e8ec
RS
14263 case OPTION_NO_FIX_VR4120:
14264 mips_fix_vr4120 = 0;
60b63b72
RS
14265 break;
14266
7d8e00cf
RS
14267 case OPTION_FIX_VR4130:
14268 mips_fix_vr4130 = 1;
14269 break;
14270
14271 case OPTION_NO_FIX_VR4130:
14272 mips_fix_vr4130 = 0;
14273 break;
14274
d954098f
DD
14275 case OPTION_FIX_CN63XXP1:
14276 mips_fix_cn63xxp1 = TRUE;
14277 break;
14278
14279 case OPTION_NO_FIX_CN63XXP1:
14280 mips_fix_cn63xxp1 = FALSE;
14281 break;
14282
4a6a3df4
AO
14283 case OPTION_RELAX_BRANCH:
14284 mips_relax_branch = 1;
14285 break;
14286
14287 case OPTION_NO_RELAX_BRANCH:
14288 mips_relax_branch = 0;
14289 break;
14290
833794fc 14291 case OPTION_INSN32:
919731af 14292 file_mips_opts.insn32 = TRUE;
833794fc
MR
14293 break;
14294
14295 case OPTION_NO_INSN32:
919731af 14296 file_mips_opts.insn32 = FALSE;
833794fc
MR
14297 break;
14298
aa6975fb
ILT
14299 case OPTION_MSHARED:
14300 mips_in_shared = TRUE;
14301 break;
14302
14303 case OPTION_MNO_SHARED:
14304 mips_in_shared = FALSE;
14305 break;
14306
aed1a261 14307 case OPTION_MSYM32:
919731af 14308 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14309 break;
14310
14311 case OPTION_MNO_SYM32:
919731af 14312 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14313 break;
14314
252b5132
RH
14315 /* When generating ELF code, we permit -KPIC and -call_shared to
14316 select SVR4_PIC, and -non_shared to select no PIC. This is
14317 intended to be compatible with Irix 5. */
14318 case OPTION_CALL_SHARED:
252b5132 14319 mips_pic = SVR4_PIC;
143d77c5 14320 mips_abicalls = TRUE;
252b5132
RH
14321 break;
14322
861fb55a 14323 case OPTION_CALL_NONPIC:
861fb55a
DJ
14324 mips_pic = NO_PIC;
14325 mips_abicalls = TRUE;
14326 break;
14327
252b5132 14328 case OPTION_NON_SHARED:
252b5132 14329 mips_pic = NO_PIC;
143d77c5 14330 mips_abicalls = FALSE;
252b5132
RH
14331 break;
14332
44075ae2
TS
14333 /* The -xgot option tells the assembler to use 32 bit offsets
14334 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14335 compatibility. */
14336 case OPTION_XGOT:
14337 mips_big_got = 1;
14338 break;
14339
14340 case 'G':
6caf9ef4
TS
14341 g_switch_value = atoi (arg);
14342 g_switch_seen = 1;
252b5132
RH
14343 break;
14344
34ba82a8
TS
14345 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14346 and -mabi=64. */
252b5132 14347 case OPTION_32:
f3ded42a 14348 mips_abi = O32_ABI;
252b5132
RH
14349 break;
14350
e013f690 14351 case OPTION_N32:
316f5878 14352 mips_abi = N32_ABI;
e013f690 14353 break;
252b5132 14354
e013f690 14355 case OPTION_64:
316f5878 14356 mips_abi = N64_ABI;
f43abd2b 14357 if (!support_64bit_objects())
1661c76c 14358 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14359 break;
14360
c97ef257 14361 case OPTION_GP32:
bad1aba3 14362 file_mips_opts.gp = 32;
c97ef257
AH
14363 break;
14364
14365 case OPTION_GP64:
bad1aba3 14366 file_mips_opts.gp = 64;
c97ef257 14367 break;
252b5132 14368
ca4e0257 14369 case OPTION_FP32:
0b35dfee 14370 file_mips_opts.fp = 32;
316f5878
RS
14371 break;
14372
351cdf24
MF
14373 case OPTION_FPXX:
14374 file_mips_opts.fp = 0;
14375 break;
14376
316f5878 14377 case OPTION_FP64:
0b35dfee 14378 file_mips_opts.fp = 64;
ca4e0257
RS
14379 break;
14380
351cdf24
MF
14381 case OPTION_ODD_SPREG:
14382 file_mips_opts.oddspreg = 1;
14383 break;
14384
14385 case OPTION_NO_ODD_SPREG:
14386 file_mips_opts.oddspreg = 0;
14387 break;
14388
037b32b9 14389 case OPTION_SINGLE_FLOAT:
0b35dfee 14390 file_mips_opts.single_float = 1;
037b32b9
AN
14391 break;
14392
14393 case OPTION_DOUBLE_FLOAT:
0b35dfee 14394 file_mips_opts.single_float = 0;
037b32b9
AN
14395 break;
14396
14397 case OPTION_SOFT_FLOAT:
0b35dfee 14398 file_mips_opts.soft_float = 1;
037b32b9
AN
14399 break;
14400
14401 case OPTION_HARD_FLOAT:
0b35dfee 14402 file_mips_opts.soft_float = 0;
037b32b9
AN
14403 break;
14404
252b5132 14405 case OPTION_MABI:
e013f690 14406 if (strcmp (arg, "32") == 0)
316f5878 14407 mips_abi = O32_ABI;
e013f690 14408 else if (strcmp (arg, "o64") == 0)
316f5878 14409 mips_abi = O64_ABI;
e013f690 14410 else if (strcmp (arg, "n32") == 0)
316f5878 14411 mips_abi = N32_ABI;
e013f690
TS
14412 else if (strcmp (arg, "64") == 0)
14413 {
316f5878 14414 mips_abi = N64_ABI;
e013f690 14415 if (! support_64bit_objects())
1661c76c 14416 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14417 "format"));
14418 }
14419 else if (strcmp (arg, "eabi") == 0)
316f5878 14420 mips_abi = EABI_ABI;
e013f690 14421 else
da0e507f
TS
14422 {
14423 as_fatal (_("invalid abi -mabi=%s"), arg);
14424 return 0;
14425 }
252b5132
RH
14426 break;
14427
6b76fefe 14428 case OPTION_M7000_HILO_FIX:
b34976b6 14429 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14430 break;
14431
9ee72ff1 14432 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14433 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14434 break;
14435
ecb4347a 14436 case OPTION_MDEBUG:
b34976b6 14437 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14438 break;
14439
14440 case OPTION_NO_MDEBUG:
b34976b6 14441 mips_flag_mdebug = FALSE;
ecb4347a 14442 break;
dcd410fe
RO
14443
14444 case OPTION_PDR:
14445 mips_flag_pdr = TRUE;
14446 break;
14447
14448 case OPTION_NO_PDR:
14449 mips_flag_pdr = FALSE;
14450 break;
0a44bf69
RS
14451
14452 case OPTION_MVXWORKS_PIC:
14453 mips_pic = VXWORKS_PIC;
14454 break;
ecb4347a 14455
ba92f887
MR
14456 case OPTION_NAN:
14457 if (strcmp (arg, "2008") == 0)
7361da2c 14458 mips_nan2008 = 1;
ba92f887 14459 else if (strcmp (arg, "legacy") == 0)
7361da2c 14460 mips_nan2008 = 0;
ba92f887
MR
14461 else
14462 {
1661c76c 14463 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14464 return 0;
14465 }
14466 break;
14467
252b5132
RH
14468 default:
14469 return 0;
14470 }
14471
c67a084a
NC
14472 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14473
252b5132
RH
14474 return 1;
14475}
316f5878 14476\f
919731af 14477/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14478
316f5878 14479static void
17a2f251 14480mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14481{
14482 if (info != 0)
fef14a42 14483 mips_tune = info->cpu;
316f5878 14484}
80cc45a5 14485
34ba82a8 14486
252b5132 14487void
17a2f251 14488mips_after_parse_args (void)
e9670677 14489{
fef14a42
TS
14490 const struct mips_cpu_info *arch_info = 0;
14491 const struct mips_cpu_info *tune_info = 0;
14492
e9670677 14493 /* GP relative stuff not working for PE */
6caf9ef4 14494 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14495 {
6caf9ef4 14496 if (g_switch_seen && g_switch_value != 0)
1661c76c 14497 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14498 g_switch_value = 0;
14499 }
14500
cac012d6
AO
14501 if (mips_abi == NO_ABI)
14502 mips_abi = MIPS_DEFAULT_ABI;
14503
919731af 14504 /* The following code determines the architecture.
22923709
RS
14505 Similar code was added to GCC 3.3 (see override_options() in
14506 config/mips/mips.c). The GAS and GCC code should be kept in sync
14507 as much as possible. */
e9670677 14508
316f5878 14509 if (mips_arch_string != 0)
fef14a42 14510 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14511
0b35dfee 14512 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14513 {
0b35dfee 14514 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14515 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14516 the -march selection (if any). */
fef14a42 14517 if (arch_info != 0)
e9670677 14518 {
316f5878
RS
14519 /* -march takes precedence over -mipsN, since it is more descriptive.
14520 There's no harm in specifying both as long as the ISA levels
14521 are the same. */
0b35dfee 14522 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14523 as_bad (_("-%s conflicts with the other architecture options,"
14524 " which imply -%s"),
0b35dfee 14525 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14526 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14527 }
316f5878 14528 else
0b35dfee 14529 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14530 }
14531
fef14a42 14532 if (arch_info == 0)
95bfe26e
MF
14533 {
14534 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14535 gas_assert (arch_info);
14536 }
e9670677 14537
fef14a42 14538 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14539 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14540 arch_info->name);
14541
919731af 14542 file_mips_opts.arch = arch_info->cpu;
14543 file_mips_opts.isa = arch_info->isa;
14544
14545 /* Set up initial mips_opts state. */
14546 mips_opts = file_mips_opts;
14547
14548 /* The register size inference code is now placed in
14549 file_mips_check_options. */
fef14a42 14550
0b35dfee 14551 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14552 processor. */
fef14a42
TS
14553 if (mips_tune_string != 0)
14554 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14555
fef14a42
TS
14556 if (tune_info == 0)
14557 mips_set_tune (arch_info);
14558 else
14559 mips_set_tune (tune_info);
e9670677 14560
ecb4347a 14561 if (mips_flag_mdebug < 0)
e8044f35 14562 mips_flag_mdebug = 0;
e9670677
MR
14563}
14564\f
14565void
17a2f251 14566mips_init_after_args (void)
252b5132
RH
14567{
14568 /* initialize opcodes */
14569 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14570 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14571}
14572
14573long
17a2f251 14574md_pcrel_from (fixS *fixP)
252b5132 14575{
a7ebbfdf
TS
14576 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14577 switch (fixP->fx_r_type)
14578 {
df58fc94
RS
14579 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14580 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14581 /* Return the address of the delay slot. */
14582 return addr + 2;
14583
14584 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14585 case BFD_RELOC_MICROMIPS_JMP:
a7ebbfdf 14586 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14587 case BFD_RELOC_MIPS_21_PCREL_S2:
14588 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14589 case BFD_RELOC_MIPS_JMP:
14590 /* Return the address of the delay slot. */
14591 return addr + 4;
df58fc94 14592
a7ebbfdf
TS
14593 default:
14594 return addr;
14595 }
252b5132
RH
14596}
14597
252b5132
RH
14598/* This is called before the symbol table is processed. In order to
14599 work with gcc when using mips-tfile, we must keep all local labels.
14600 However, in other cases, we want to discard them. If we were
14601 called with -g, but we didn't see any debugging information, it may
14602 mean that gcc is smuggling debugging information through to
14603 mips-tfile, in which case we must generate all local labels. */
14604
14605void
17a2f251 14606mips_frob_file_before_adjust (void)
252b5132
RH
14607{
14608#ifndef NO_ECOFF_DEBUGGING
14609 if (ECOFF_DEBUGGING
14610 && mips_debug != 0
14611 && ! ecoff_debugging_seen)
14612 flag_keep_locals = 1;
14613#endif
14614}
14615
3b91255e 14616/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14617 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14618 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14619 relocation operators.
14620
14621 For our purposes, a %lo() expression matches a %got() or %hi()
14622 expression if:
14623
14624 (a) it refers to the same symbol; and
14625 (b) the offset applied in the %lo() expression is no lower than
14626 the offset applied in the %got() or %hi().
14627
14628 (b) allows us to cope with code like:
14629
14630 lui $4,%hi(foo)
14631 lh $4,%lo(foo+2)($4)
14632
14633 ...which is legal on RELA targets, and has a well-defined behaviour
14634 if the user knows that adding 2 to "foo" will not induce a carry to
14635 the high 16 bits.
14636
14637 When several %lo()s match a particular %got() or %hi(), we use the
14638 following rules to distinguish them:
14639
14640 (1) %lo()s with smaller offsets are a better match than %lo()s with
14641 higher offsets.
14642
14643 (2) %lo()s with no matching %got() or %hi() are better than those
14644 that already have a matching %got() or %hi().
14645
14646 (3) later %lo()s are better than earlier %lo()s.
14647
14648 These rules are applied in order.
14649
14650 (1) means, among other things, that %lo()s with identical offsets are
14651 chosen if they exist.
14652
14653 (2) means that we won't associate several high-part relocations with
14654 the same low-part relocation unless there's no alternative. Having
14655 several high parts for the same low part is a GNU extension; this rule
14656 allows careful users to avoid it.
14657
14658 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14659 with the last high-part relocation being at the front of the list.
14660 It therefore makes sense to choose the last matching low-part
14661 relocation, all other things being equal. It's also easier
14662 to code that way. */
252b5132
RH
14663
14664void
17a2f251 14665mips_frob_file (void)
252b5132
RH
14666{
14667 struct mips_hi_fixup *l;
35903be0 14668 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14669
14670 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14671 {
14672 segment_info_type *seginfo;
3b91255e
RS
14673 bfd_boolean matched_lo_p;
14674 fixS **hi_pos, **lo_pos, **pos;
252b5132 14675
9c2799c2 14676 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14677
5919d012 14678 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14679 there isn't supposed to be a matching LO. Ignore %gots against
14680 constants; we'll report an error for those later. */
738e5348 14681 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14682 && !(l->fixp->fx_addsy
14683 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14684 continue;
14685
14686 /* Check quickly whether the next fixup happens to be a matching %lo. */
14687 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14688 continue;
14689
252b5132 14690 seginfo = seg_info (l->seg);
252b5132 14691
3b91255e
RS
14692 /* Set HI_POS to the position of this relocation in the chain.
14693 Set LO_POS to the position of the chosen low-part relocation.
14694 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14695 relocation that matches an immediately-preceding high-part
14696 relocation. */
14697 hi_pos = NULL;
14698 lo_pos = NULL;
14699 matched_lo_p = FALSE;
738e5348 14700 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14701
3b91255e
RS
14702 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14703 {
14704 if (*pos == l->fixp)
14705 hi_pos = pos;
14706
35903be0 14707 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14708 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14709 && (*pos)->fx_offset >= l->fixp->fx_offset
14710 && (lo_pos == NULL
14711 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14712 || (!matched_lo_p
14713 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14714 lo_pos = pos;
14715
14716 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14717 && fixup_has_matching_lo_p (*pos));
14718 }
14719
14720 /* If we found a match, remove the high-part relocation from its
14721 current position and insert it before the low-part relocation.
14722 Make the offsets match so that fixup_has_matching_lo_p()
14723 will return true.
14724
14725 We don't warn about unmatched high-part relocations since some
14726 versions of gcc have been known to emit dead "lui ...%hi(...)"
14727 instructions. */
14728 if (lo_pos != NULL)
14729 {
14730 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14731 if (l->fixp->fx_next != *lo_pos)
252b5132 14732 {
3b91255e
RS
14733 *hi_pos = l->fixp->fx_next;
14734 l->fixp->fx_next = *lo_pos;
14735 *lo_pos = l->fixp;
252b5132 14736 }
252b5132
RH
14737 }
14738 }
14739}
14740
252b5132 14741int
17a2f251 14742mips_force_relocation (fixS *fixp)
252b5132 14743{
ae6063d4 14744 if (generic_force_reloc (fixp))
252b5132
RH
14745 return 1;
14746
df58fc94
RS
14747 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14748 so that the linker relaxation can update targets. */
14749 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14750 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14751 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14752 return 1;
14753
7361da2c
AB
14754 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14755 if (ISA_IS_R6 (mips_opts.isa)
14756 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14757 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14758 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14759 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14760 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14761 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14762 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14763 return 1;
14764
3e722fb5 14765 return 0;
252b5132
RH
14766}
14767
b886a2ab
RS
14768/* Read the instruction associated with RELOC from BUF. */
14769
14770static unsigned int
14771read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14772{
14773 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14774 return read_compressed_insn (buf, 4);
14775 else
14776 return read_insn (buf);
14777}
14778
14779/* Write instruction INSN to BUF, given that it has been relocated
14780 by RELOC. */
14781
14782static void
14783write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14784 unsigned long insn)
14785{
14786 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14787 write_compressed_insn (buf, insn, 4);
14788 else
14789 write_insn (buf, insn);
14790}
14791
252b5132
RH
14792/* Apply a fixup to the object file. */
14793
94f592af 14794void
55cf6793 14795md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 14796{
4d68580a 14797 char *buf;
b886a2ab 14798 unsigned long insn;
a7ebbfdf 14799 reloc_howto_type *howto;
252b5132 14800
d56a8dda
RS
14801 if (fixP->fx_pcrel)
14802 switch (fixP->fx_r_type)
14803 {
14804 case BFD_RELOC_16_PCREL_S2:
14805 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14806 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14807 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14808 case BFD_RELOC_32_PCREL:
7361da2c
AB
14809 case BFD_RELOC_MIPS_21_PCREL_S2:
14810 case BFD_RELOC_MIPS_26_PCREL_S2:
14811 case BFD_RELOC_MIPS_18_PCREL_S3:
14812 case BFD_RELOC_MIPS_19_PCREL_S2:
14813 case BFD_RELOC_HI16_S_PCREL:
14814 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
14815 break;
14816
14817 case BFD_RELOC_32:
14818 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14819 break;
14820
14821 default:
14822 as_bad_where (fixP->fx_file, fixP->fx_line,
14823 _("PC-relative reference to a different section"));
14824 break;
14825 }
14826
14827 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14828 that have no MIPS ELF equivalent. */
14829 if (fixP->fx_r_type != BFD_RELOC_8)
14830 {
14831 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14832 if (!howto)
14833 return;
14834 }
65551fa4 14835
df58fc94
RS
14836 gas_assert (fixP->fx_size == 2
14837 || fixP->fx_size == 4
d56a8dda 14838 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
14839 || fixP->fx_r_type == BFD_RELOC_16
14840 || fixP->fx_r_type == BFD_RELOC_64
14841 || fixP->fx_r_type == BFD_RELOC_CTOR
14842 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 14843 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
14844 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14845 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
14846 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14847 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 14848
4d68580a 14849 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 14850
b1dca8ee
RS
14851 /* Don't treat parts of a composite relocation as done. There are two
14852 reasons for this:
14853
14854 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14855 should nevertheless be emitted if the first part is.
14856
14857 (2) In normal usage, composite relocations are never assembly-time
14858 constants. The easiest way of dealing with the pathological
14859 exceptions is to generate a relocation against STN_UNDEF and
14860 leave everything up to the linker. */
3994f87e 14861 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14862 fixP->fx_done = 1;
14863
14864 switch (fixP->fx_r_type)
14865 {
3f98094e
DJ
14866 case BFD_RELOC_MIPS_TLS_GD:
14867 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14868 case BFD_RELOC_MIPS_TLS_DTPREL32:
14869 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14870 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14871 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14872 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14873 case BFD_RELOC_MIPS_TLS_TPREL32:
14874 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14875 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14876 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14877 case BFD_RELOC_MICROMIPS_TLS_GD:
14878 case BFD_RELOC_MICROMIPS_TLS_LDM:
14879 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14880 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14881 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14882 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14883 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14884 case BFD_RELOC_MIPS16_TLS_GD:
14885 case BFD_RELOC_MIPS16_TLS_LDM:
14886 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14887 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14888 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14889 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14890 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
b886a2ab
RS
14891 if (!fixP->fx_addsy)
14892 {
14893 as_bad_where (fixP->fx_file, fixP->fx_line,
14894 _("TLS relocation against a constant"));
14895 break;
14896 }
3f98094e
DJ
14897 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14898 /* fall through */
14899
252b5132 14900 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14901 case BFD_RELOC_MIPS_SHIFT5:
14902 case BFD_RELOC_MIPS_SHIFT6:
14903 case BFD_RELOC_MIPS_GOT_DISP:
14904 case BFD_RELOC_MIPS_GOT_PAGE:
14905 case BFD_RELOC_MIPS_GOT_OFST:
14906 case BFD_RELOC_MIPS_SUB:
14907 case BFD_RELOC_MIPS_INSERT_A:
14908 case BFD_RELOC_MIPS_INSERT_B:
14909 case BFD_RELOC_MIPS_DELETE:
14910 case BFD_RELOC_MIPS_HIGHEST:
14911 case BFD_RELOC_MIPS_HIGHER:
14912 case BFD_RELOC_MIPS_SCN_DISP:
14913 case BFD_RELOC_MIPS_REL16:
14914 case BFD_RELOC_MIPS_RELGOT:
14915 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14916 case BFD_RELOC_HI16:
14917 case BFD_RELOC_HI16_S:
b886a2ab 14918 case BFD_RELOC_LO16:
cdf6fd85 14919 case BFD_RELOC_GPREL16:
252b5132
RH
14920 case BFD_RELOC_MIPS_LITERAL:
14921 case BFD_RELOC_MIPS_CALL16:
14922 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14923 case BFD_RELOC_GPREL32:
252b5132
RH
14924 case BFD_RELOC_MIPS_GOT_HI16:
14925 case BFD_RELOC_MIPS_GOT_LO16:
14926 case BFD_RELOC_MIPS_CALL_HI16:
14927 case BFD_RELOC_MIPS_CALL_LO16:
14928 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14929 case BFD_RELOC_MIPS16_GOT16:
14930 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14931 case BFD_RELOC_MIPS16_HI16:
14932 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14933 case BFD_RELOC_MIPS16_LO16:
252b5132 14934 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14935 case BFD_RELOC_MICROMIPS_JMP:
14936 case BFD_RELOC_MICROMIPS_GOT_DISP:
14937 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14938 case BFD_RELOC_MICROMIPS_GOT_OFST:
14939 case BFD_RELOC_MICROMIPS_SUB:
14940 case BFD_RELOC_MICROMIPS_HIGHEST:
14941 case BFD_RELOC_MICROMIPS_HIGHER:
14942 case BFD_RELOC_MICROMIPS_SCN_DISP:
14943 case BFD_RELOC_MICROMIPS_JALR:
14944 case BFD_RELOC_MICROMIPS_HI16:
14945 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14946 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14947 case BFD_RELOC_MICROMIPS_GPREL16:
14948 case BFD_RELOC_MICROMIPS_LITERAL:
14949 case BFD_RELOC_MICROMIPS_CALL16:
14950 case BFD_RELOC_MICROMIPS_GOT16:
14951 case BFD_RELOC_MICROMIPS_GOT_HI16:
14952 case BFD_RELOC_MICROMIPS_GOT_LO16:
14953 case BFD_RELOC_MICROMIPS_CALL_HI16:
14954 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 14955 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
14956 if (fixP->fx_done)
14957 {
14958 offsetT value;
14959
14960 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14961 {
14962 insn = read_reloc_insn (buf, fixP->fx_r_type);
14963 if (mips16_reloc_p (fixP->fx_r_type))
14964 insn |= mips16_immed_extend (value, 16);
14965 else
14966 insn |= (value & 0xffff);
14967 write_reloc_insn (buf, fixP->fx_r_type, insn);
14968 }
14969 else
14970 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 14971 _("unsupported constant in relocation"));
b886a2ab 14972 }
252b5132
RH
14973 break;
14974
252b5132
RH
14975 case BFD_RELOC_64:
14976 /* This is handled like BFD_RELOC_32, but we output a sign
14977 extended value if we are only 32 bits. */
3e722fb5 14978 if (fixP->fx_done)
252b5132
RH
14979 {
14980 if (8 <= sizeof (valueT))
4d68580a 14981 md_number_to_chars (buf, *valP, 8);
252b5132
RH
14982 else
14983 {
a7ebbfdf 14984 valueT hiv;
252b5132 14985
a7ebbfdf 14986 if ((*valP & 0x80000000) != 0)
252b5132
RH
14987 hiv = 0xffffffff;
14988 else
14989 hiv = 0;
4d68580a
RS
14990 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14991 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
14992 }
14993 }
14994 break;
14995
056350c6 14996 case BFD_RELOC_RVA:
252b5132 14997 case BFD_RELOC_32:
b47468a6 14998 case BFD_RELOC_32_PCREL:
252b5132 14999 case BFD_RELOC_16:
d56a8dda 15000 case BFD_RELOC_8:
252b5132 15001 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15002 value now. This can happen if we have a .word which is not
15003 resolved when it appears but is later defined. */
252b5132 15004 if (fixP->fx_done)
4d68580a 15005 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15006 break;
15007
7361da2c
AB
15008 case BFD_RELOC_MIPS_21_PCREL_S2:
15009 case BFD_RELOC_MIPS_26_PCREL_S2:
15010 if ((*valP & 0x3) != 0)
15011 as_bad_where (fixP->fx_file, fixP->fx_line,
15012 _("branch to misaligned address (%lx)"), (long) *valP);
15013
15014 gas_assert (!fixP->fx_done);
15015 break;
15016
15017 case BFD_RELOC_MIPS_18_PCREL_S3:
0866e94c 15018 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15019 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15020 _("PC-relative access using misaligned symbol (%lx)"),
15021 (long) S_GET_VALUE (fixP->fx_addsy));
15022 if ((fixP->fx_offset & 0x7) != 0)
15023 as_bad_where (fixP->fx_file, fixP->fx_line,
15024 _("PC-relative access using misaligned offset (%lx)"),
15025 (long) fixP->fx_offset);
7361da2c
AB
15026
15027 gas_assert (!fixP->fx_done);
15028 break;
15029
15030 case BFD_RELOC_MIPS_19_PCREL_S2:
15031 if ((*valP & 0x3) != 0)
15032 as_bad_where (fixP->fx_file, fixP->fx_line,
15033 _("PC-relative access to misaligned address (%lx)"),
0866e94c 15034 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
7361da2c
AB
15035
15036 gas_assert (!fixP->fx_done);
15037 break;
15038
15039 case BFD_RELOC_HI16_S_PCREL:
15040 case BFD_RELOC_LO16_PCREL:
15041 gas_assert (!fixP->fx_done);
15042 break;
15043
252b5132 15044 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 15045 if ((*valP & 0x3) != 0)
cb56d3d3 15046 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15047 _("branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 15048
54f4ddb3
TS
15049 /* We need to save the bits in the instruction since fixup_segment()
15050 might be deleting the relocation entry (i.e., a branch within
15051 the current segment). */
a7ebbfdf 15052 if (! fixP->fx_done)
bb2d6cd7 15053 break;
252b5132 15054
54f4ddb3 15055 /* Update old instruction data. */
4d68580a 15056 insn = read_insn (buf);
252b5132 15057
a7ebbfdf
TS
15058 if (*valP + 0x20000 <= 0x3ffff)
15059 {
15060 insn |= (*valP >> 2) & 0xffff;
4d68580a 15061 write_insn (buf, insn);
a7ebbfdf
TS
15062 }
15063 else if (mips_pic == NO_PIC
15064 && fixP->fx_done
15065 && fixP->fx_frag->fr_address >= text_section->vma
15066 && (fixP->fx_frag->fr_address
587aac4e 15067 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15068 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15069 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15070 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15071 {
15072 /* The branch offset is too large. If this is an
15073 unconditional branch, and we are not generating PIC code,
15074 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15075 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15076 insn = 0x0c000000; /* jal */
252b5132 15077 else
a7ebbfdf
TS
15078 insn = 0x08000000; /* j */
15079 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15080 fixP->fx_done = 0;
15081 fixP->fx_addsy = section_symbol (text_section);
15082 *valP += md_pcrel_from (fixP);
4d68580a 15083 write_insn (buf, insn);
a7ebbfdf
TS
15084 }
15085 else
15086 {
15087 /* If we got here, we have branch-relaxation disabled,
15088 and there's nothing we can do to fix this instruction
15089 without turning it into a longer sequence. */
15090 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15091 _("branch out of range"));
252b5132 15092 }
252b5132
RH
15093 break;
15094
df58fc94
RS
15095 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15096 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15097 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15098 /* We adjust the offset back to even. */
15099 if ((*valP & 0x1) != 0)
15100 --(*valP);
15101
15102 if (! fixP->fx_done)
15103 break;
15104
15105 /* Should never visit here, because we keep the relocation. */
15106 abort ();
15107 break;
15108
252b5132
RH
15109 case BFD_RELOC_VTABLE_INHERIT:
15110 fixP->fx_done = 0;
15111 if (fixP->fx_addsy
15112 && !S_IS_DEFINED (fixP->fx_addsy)
15113 && !S_IS_WEAK (fixP->fx_addsy))
15114 S_SET_WEAK (fixP->fx_addsy);
15115 break;
15116
2f0c68f2 15117 case BFD_RELOC_NONE:
252b5132
RH
15118 case BFD_RELOC_VTABLE_ENTRY:
15119 fixP->fx_done = 0;
15120 break;
15121
15122 default:
b37df7c4 15123 abort ();
252b5132 15124 }
a7ebbfdf
TS
15125
15126 /* Remember value for tc_gen_reloc. */
15127 fixP->fx_addnumber = *valP;
252b5132
RH
15128}
15129
252b5132 15130static symbolS *
17a2f251 15131get_symbol (void)
252b5132
RH
15132{
15133 int c;
15134 char *name;
15135 symbolS *p;
15136
d02603dc 15137 c = get_symbol_name (&name);
252b5132 15138 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15139 (void) restore_line_pointer (c);
252b5132
RH
15140 return p;
15141}
15142
742a56fe
RS
15143/* Align the current frag to a given power of two. If a particular
15144 fill byte should be used, FILL points to an integer that contains
15145 that byte, otherwise FILL is null.
15146
462427c4
RS
15147 This function used to have the comment:
15148
15149 The MIPS assembler also automatically adjusts any preceding label.
15150
15151 The implementation therefore applied the adjustment to a maximum of
15152 one label. However, other label adjustments are applied to batches
15153 of labels, and adjusting just one caused problems when new labels
15154 were added for the sake of debugging or unwind information.
15155 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15156
15157static void
462427c4 15158mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15159{
7d10b47d 15160 mips_emit_delays ();
df58fc94 15161 mips_record_compressed_mode ();
742a56fe
RS
15162 if (fill == NULL && subseg_text_p (now_seg))
15163 frag_align_code (to, 0);
15164 else
15165 frag_align (to, fill ? *fill : 0, 0);
252b5132 15166 record_alignment (now_seg, to);
462427c4 15167 mips_move_labels (labels, FALSE);
252b5132
RH
15168}
15169
15170/* Align to a given power of two. .align 0 turns off the automatic
15171 alignment used by the data creating pseudo-ops. */
15172
15173static void
17a2f251 15174s_align (int x ATTRIBUTE_UNUSED)
252b5132 15175{
742a56fe 15176 int temp, fill_value, *fill_ptr;
49954fb4 15177 long max_alignment = 28;
252b5132 15178
54f4ddb3 15179 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15180 to the aligned address.
54f4ddb3 15181 o It's not documented but auto alignment is reinstated by
252b5132 15182 a .align pseudo instruction.
54f4ddb3 15183 o Note also that after auto alignment is turned off the mips assembler
252b5132 15184 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15185 We don't. */
252b5132
RH
15186
15187 temp = get_absolute_expression ();
15188 if (temp > max_alignment)
1661c76c 15189 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15190 else if (temp < 0)
15191 {
1661c76c 15192 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15193 temp = 0;
15194 }
15195 if (*input_line_pointer == ',')
15196 {
f9419b05 15197 ++input_line_pointer;
742a56fe
RS
15198 fill_value = get_absolute_expression ();
15199 fill_ptr = &fill_value;
252b5132
RH
15200 }
15201 else
742a56fe 15202 fill_ptr = 0;
252b5132
RH
15203 if (temp)
15204 {
a8dbcb85
TS
15205 segment_info_type *si = seg_info (now_seg);
15206 struct insn_label_list *l = si->label_list;
54f4ddb3 15207 /* Auto alignment should be switched on by next section change. */
252b5132 15208 auto_align = 1;
462427c4 15209 mips_align (temp, fill_ptr, l);
252b5132
RH
15210 }
15211 else
15212 {
15213 auto_align = 0;
15214 }
15215
15216 demand_empty_rest_of_line ();
15217}
15218
252b5132 15219static void
17a2f251 15220s_change_sec (int sec)
252b5132
RH
15221{
15222 segT seg;
15223
252b5132
RH
15224 /* The ELF backend needs to know that we are changing sections, so
15225 that .previous works correctly. We could do something like check
b6ff326e 15226 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15227 as it would not be appropriate to use it in the section changing
15228 functions in read.c, since obj-elf.c intercepts those. FIXME:
15229 This should be cleaner, somehow. */
f3ded42a 15230 obj_elf_section_change_hook ();
252b5132 15231
7d10b47d 15232 mips_emit_delays ();
6a32d874 15233
252b5132
RH
15234 switch (sec)
15235 {
15236 case 't':
15237 s_text (0);
15238 break;
15239 case 'd':
15240 s_data (0);
15241 break;
15242 case 'b':
15243 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15244 demand_empty_rest_of_line ();
15245 break;
15246
15247 case 'r':
4d0d148d
TS
15248 seg = subseg_new (RDATA_SECTION_NAME,
15249 (subsegT) get_absolute_expression ());
f3ded42a
RS
15250 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15251 | SEC_READONLY | SEC_RELOC
15252 | SEC_DATA));
15253 if (strncmp (TARGET_OS, "elf", 3) != 0)
15254 record_alignment (seg, 4);
4d0d148d 15255 demand_empty_rest_of_line ();
252b5132
RH
15256 break;
15257
15258 case 's':
4d0d148d 15259 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15260 bfd_set_section_flags (stdoutput, seg,
15261 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15262 if (strncmp (TARGET_OS, "elf", 3) != 0)
15263 record_alignment (seg, 4);
4d0d148d
TS
15264 demand_empty_rest_of_line ();
15265 break;
998b3c36
MR
15266
15267 case 'B':
15268 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15269 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15270 if (strncmp (TARGET_OS, "elf", 3) != 0)
15271 record_alignment (seg, 4);
998b3c36
MR
15272 demand_empty_rest_of_line ();
15273 break;
252b5132
RH
15274 }
15275
15276 auto_align = 1;
15277}
b34976b6 15278
cca86cc8 15279void
17a2f251 15280s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15281{
d02603dc 15282 char *saved_ilp;
cca86cc8 15283 char *section_name;
d02603dc 15284 char c, endc;
684022ea 15285 char next_c = 0;
cca86cc8
SC
15286 int section_type;
15287 int section_flag;
15288 int section_entry_size;
15289 int section_alignment;
b34976b6 15290
d02603dc
NC
15291 saved_ilp = input_line_pointer;
15292 endc = get_symbol_name (&section_name);
15293 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15294 if (c)
d02603dc 15295 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15296
4cf0dd0d
TS
15297 /* Do we have .section Name<,"flags">? */
15298 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15299 {
d02603dc
NC
15300 /* Just after name is now '\0'. */
15301 (void) restore_line_pointer (endc);
15302 input_line_pointer = saved_ilp;
cca86cc8
SC
15303 obj_elf_section (ignore);
15304 return;
15305 }
d02603dc
NC
15306
15307 section_name = xstrdup (section_name);
15308 c = restore_line_pointer (endc);
15309
cca86cc8
SC
15310 input_line_pointer++;
15311
15312 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15313 if (c == ',')
15314 section_type = get_absolute_expression ();
15315 else
15316 section_type = 0;
d02603dc 15317
cca86cc8
SC
15318 if (*input_line_pointer++ == ',')
15319 section_flag = get_absolute_expression ();
15320 else
15321 section_flag = 0;
d02603dc 15322
cca86cc8
SC
15323 if (*input_line_pointer++ == ',')
15324 section_entry_size = get_absolute_expression ();
15325 else
15326 section_entry_size = 0;
d02603dc 15327
cca86cc8
SC
15328 if (*input_line_pointer++ == ',')
15329 section_alignment = get_absolute_expression ();
15330 else
15331 section_alignment = 0;
d02603dc 15332
87975d2a
AM
15333 /* FIXME: really ignore? */
15334 (void) section_alignment;
cca86cc8 15335
8ab8a5c8
RS
15336 /* When using the generic form of .section (as implemented by obj-elf.c),
15337 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15338 traditionally had to fall back on the more common @progbits instead.
15339
15340 There's nothing really harmful in this, since bfd will correct
15341 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15342 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15343 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15344
15345 Even so, we shouldn't force users of the MIPS .section syntax to
15346 incorrectly label the sections as SHT_PROGBITS. The best compromise
15347 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15348 generic type-checking code. */
15349 if (section_type == SHT_MIPS_DWARF)
15350 section_type = SHT_PROGBITS;
15351
cca86cc8
SC
15352 obj_elf_change_section (section_name, section_type, section_flag,
15353 section_entry_size, 0, 0, 0);
a816d1ed
AO
15354
15355 if (now_seg->name != section_name)
15356 free (section_name);
cca86cc8 15357}
252b5132
RH
15358
15359void
17a2f251 15360mips_enable_auto_align (void)
252b5132
RH
15361{
15362 auto_align = 1;
15363}
15364
15365static void
17a2f251 15366s_cons (int log_size)
252b5132 15367{
a8dbcb85
TS
15368 segment_info_type *si = seg_info (now_seg);
15369 struct insn_label_list *l = si->label_list;
252b5132 15370
7d10b47d 15371 mips_emit_delays ();
252b5132 15372 if (log_size > 0 && auto_align)
462427c4 15373 mips_align (log_size, 0, l);
252b5132 15374 cons (1 << log_size);
a1facbec 15375 mips_clear_insn_labels ();
252b5132
RH
15376}
15377
15378static void
17a2f251 15379s_float_cons (int type)
252b5132 15380{
a8dbcb85
TS
15381 segment_info_type *si = seg_info (now_seg);
15382 struct insn_label_list *l = si->label_list;
252b5132 15383
7d10b47d 15384 mips_emit_delays ();
252b5132
RH
15385
15386 if (auto_align)
49309057
ILT
15387 {
15388 if (type == 'd')
462427c4 15389 mips_align (3, 0, l);
49309057 15390 else
462427c4 15391 mips_align (2, 0, l);
49309057 15392 }
252b5132 15393
252b5132 15394 float_cons (type);
a1facbec 15395 mips_clear_insn_labels ();
252b5132
RH
15396}
15397
15398/* Handle .globl. We need to override it because on Irix 5 you are
15399 permitted to say
15400 .globl foo .text
15401 where foo is an undefined symbol, to mean that foo should be
15402 considered to be the address of a function. */
15403
15404static void
17a2f251 15405s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15406{
15407 char *name;
15408 int c;
15409 symbolS *symbolP;
15410 flagword flag;
15411
8a06b769 15412 do
252b5132 15413 {
d02603dc 15414 c = get_symbol_name (&name);
8a06b769
TS
15415 symbolP = symbol_find_or_make (name);
15416 S_SET_EXTERNAL (symbolP);
15417
252b5132 15418 *input_line_pointer = c;
d02603dc 15419 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15420
8a06b769
TS
15421 /* On Irix 5, every global symbol that is not explicitly labelled as
15422 being a function is apparently labelled as being an object. */
15423 flag = BSF_OBJECT;
252b5132 15424
8a06b769
TS
15425 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15426 && (*input_line_pointer != ','))
15427 {
15428 char *secname;
15429 asection *sec;
15430
d02603dc 15431 c = get_symbol_name (&secname);
8a06b769
TS
15432 sec = bfd_get_section_by_name (stdoutput, secname);
15433 if (sec == NULL)
15434 as_bad (_("%s: no such section"), secname);
d02603dc 15435 (void) restore_line_pointer (c);
8a06b769
TS
15436
15437 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15438 flag = BSF_FUNCTION;
15439 }
15440
15441 symbol_get_bfdsym (symbolP)->flags |= flag;
15442
15443 c = *input_line_pointer;
15444 if (c == ',')
15445 {
15446 input_line_pointer++;
15447 SKIP_WHITESPACE ();
15448 if (is_end_of_line[(unsigned char) *input_line_pointer])
15449 c = '\n';
15450 }
15451 }
15452 while (c == ',');
252b5132 15453
252b5132
RH
15454 demand_empty_rest_of_line ();
15455}
15456
15457static void
17a2f251 15458s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15459{
15460 char *opt;
15461 char c;
15462
d02603dc 15463 c = get_symbol_name (&opt);
252b5132
RH
15464
15465 if (*opt == 'O')
15466 {
15467 /* FIXME: What does this mean? */
15468 }
15469 else if (strncmp (opt, "pic", 3) == 0)
15470 {
15471 int i;
15472
15473 i = atoi (opt + 3);
15474 if (i == 0)
15475 mips_pic = NO_PIC;
15476 else if (i == 2)
143d77c5 15477 {
8b828383 15478 mips_pic = SVR4_PIC;
143d77c5
EC
15479 mips_abicalls = TRUE;
15480 }
252b5132
RH
15481 else
15482 as_bad (_(".option pic%d not supported"), i);
15483
4d0d148d 15484 if (mips_pic == SVR4_PIC)
252b5132
RH
15485 {
15486 if (g_switch_seen && g_switch_value != 0)
15487 as_warn (_("-G may not be used with SVR4 PIC code"));
15488 g_switch_value = 0;
15489 bfd_set_gp_size (stdoutput, 0);
15490 }
15491 }
15492 else
1661c76c 15493 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 15494
d02603dc 15495 (void) restore_line_pointer (c);
252b5132
RH
15496 demand_empty_rest_of_line ();
15497}
15498
15499/* This structure is used to hold a stack of .set values. */
15500
e972090a
NC
15501struct mips_option_stack
15502{
252b5132
RH
15503 struct mips_option_stack *next;
15504 struct mips_set_options options;
15505};
15506
15507static struct mips_option_stack *mips_opts_stack;
15508
919731af 15509static bfd_boolean
15510parse_code_option (char * name)
252b5132 15511{
c6278170 15512 const struct mips_ase *ase;
919731af 15513 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
15514 {
15515 char *s = name + 3;
15516
15517 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 15518 as_bad (_("unrecognized register name `%s'"), s);
741fe287 15519 }
252b5132 15520 else if (strcmp (name, "at") == 0)
919731af 15521 mips_opts.at = ATREG;
252b5132 15522 else if (strcmp (name, "noat") == 0)
919731af 15523 mips_opts.at = ZERO;
252b5132 15524 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 15525 mips_opts.nomove = 0;
252b5132 15526 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 15527 mips_opts.nomove = 1;
252b5132 15528 else if (strcmp (name, "bopt") == 0)
919731af 15529 mips_opts.nobopt = 0;
252b5132 15530 else if (strcmp (name, "nobopt") == 0)
919731af 15531 mips_opts.nobopt = 1;
ad3fea08 15532 else if (strcmp (name, "gp=32") == 0)
bad1aba3 15533 mips_opts.gp = 32;
ad3fea08 15534 else if (strcmp (name, "gp=64") == 0)
919731af 15535 mips_opts.gp = 64;
ad3fea08 15536 else if (strcmp (name, "fp=32") == 0)
0b35dfee 15537 mips_opts.fp = 32;
351cdf24
MF
15538 else if (strcmp (name, "fp=xx") == 0)
15539 mips_opts.fp = 0;
ad3fea08 15540 else if (strcmp (name, "fp=64") == 0)
919731af 15541 mips_opts.fp = 64;
037b32b9
AN
15542 else if (strcmp (name, "softfloat") == 0)
15543 mips_opts.soft_float = 1;
15544 else if (strcmp (name, "hardfloat") == 0)
15545 mips_opts.soft_float = 0;
15546 else if (strcmp (name, "singlefloat") == 0)
15547 mips_opts.single_float = 1;
15548 else if (strcmp (name, "doublefloat") == 0)
15549 mips_opts.single_float = 0;
351cdf24
MF
15550 else if (strcmp (name, "nooddspreg") == 0)
15551 mips_opts.oddspreg = 0;
15552 else if (strcmp (name, "oddspreg") == 0)
15553 mips_opts.oddspreg = 1;
252b5132
RH
15554 else if (strcmp (name, "mips16") == 0
15555 || strcmp (name, "MIPS-16") == 0)
919731af 15556 mips_opts.mips16 = 1;
252b5132
RH
15557 else if (strcmp (name, "nomips16") == 0
15558 || strcmp (name, "noMIPS-16") == 0)
15559 mips_opts.mips16 = 0;
df58fc94 15560 else if (strcmp (name, "micromips") == 0)
919731af 15561 mips_opts.micromips = 1;
df58fc94
RS
15562 else if (strcmp (name, "nomicromips") == 0)
15563 mips_opts.micromips = 0;
c6278170
RS
15564 else if (name[0] == 'n'
15565 && name[1] == 'o'
15566 && (ase = mips_lookup_ase (name + 2)))
919731af 15567 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 15568 else if ((ase = mips_lookup_ase (name)))
919731af 15569 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 15570 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 15571 {
1a2c1fad
CD
15572 /* Permit the user to change the ISA and architecture on the fly.
15573 Needless to say, misuse can cause serious problems. */
919731af 15574 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
15575 {
15576 const struct mips_cpu_info *p;
15577
919731af 15578 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
15579 if (!p)
15580 as_bad (_("unknown architecture %s"), name + 5);
15581 else
15582 {
15583 mips_opts.arch = p->cpu;
15584 mips_opts.isa = p->isa;
15585 }
15586 }
81a21e38
TS
15587 else if (strncmp (name, "mips", 4) == 0)
15588 {
15589 const struct mips_cpu_info *p;
15590
919731af 15591 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
15592 if (!p)
15593 as_bad (_("unknown ISA level %s"), name + 4);
15594 else
15595 {
15596 mips_opts.arch = p->cpu;
15597 mips_opts.isa = p->isa;
15598 }
15599 }
af7ee8bf 15600 else
81a21e38 15601 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
15602 }
15603 else if (strcmp (name, "autoextend") == 0)
15604 mips_opts.noautoextend = 0;
15605 else if (strcmp (name, "noautoextend") == 0)
15606 mips_opts.noautoextend = 1;
833794fc
MR
15607 else if (strcmp (name, "insn32") == 0)
15608 mips_opts.insn32 = TRUE;
15609 else if (strcmp (name, "noinsn32") == 0)
15610 mips_opts.insn32 = FALSE;
919731af 15611 else if (strcmp (name, "sym32") == 0)
15612 mips_opts.sym32 = TRUE;
15613 else if (strcmp (name, "nosym32") == 0)
15614 mips_opts.sym32 = FALSE;
15615 else
15616 return FALSE;
15617 return TRUE;
15618}
15619
15620/* Handle the .set pseudo-op. */
15621
15622static void
15623s_mipsset (int x ATTRIBUTE_UNUSED)
15624{
15625 char *name = input_line_pointer, ch;
15626 int prev_isa = mips_opts.isa;
15627
15628 file_mips_check_options ();
15629
15630 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15631 ++input_line_pointer;
15632 ch = *input_line_pointer;
15633 *input_line_pointer = '\0';
15634
15635 if (strchr (name, ','))
15636 {
15637 /* Generic ".set" directive; use the generic handler. */
15638 *input_line_pointer = ch;
15639 input_line_pointer = name;
15640 s_set (0);
15641 return;
15642 }
15643
15644 if (strcmp (name, "reorder") == 0)
15645 {
15646 if (mips_opts.noreorder)
15647 end_noreorder ();
15648 }
15649 else if (strcmp (name, "noreorder") == 0)
15650 {
15651 if (!mips_opts.noreorder)
15652 start_noreorder ();
15653 }
15654 else if (strcmp (name, "macro") == 0)
15655 mips_opts.warn_about_macros = 0;
15656 else if (strcmp (name, "nomacro") == 0)
15657 {
15658 if (mips_opts.noreorder == 0)
15659 as_bad (_("`noreorder' must be set before `nomacro'"));
15660 mips_opts.warn_about_macros = 1;
15661 }
15662 else if (strcmp (name, "gp=default") == 0)
15663 mips_opts.gp = file_mips_opts.gp;
15664 else if (strcmp (name, "fp=default") == 0)
15665 mips_opts.fp = file_mips_opts.fp;
15666 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15667 {
15668 mips_opts.isa = file_mips_opts.isa;
15669 mips_opts.arch = file_mips_opts.arch;
15670 mips_opts.gp = file_mips_opts.gp;
15671 mips_opts.fp = file_mips_opts.fp;
15672 }
252b5132
RH
15673 else if (strcmp (name, "push") == 0)
15674 {
15675 struct mips_option_stack *s;
15676
15677 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15678 s->next = mips_opts_stack;
15679 s->options = mips_opts;
15680 mips_opts_stack = s;
15681 }
15682 else if (strcmp (name, "pop") == 0)
15683 {
15684 struct mips_option_stack *s;
15685
15686 s = mips_opts_stack;
15687 if (s == NULL)
15688 as_bad (_(".set pop with no .set push"));
15689 else
15690 {
15691 /* If we're changing the reorder mode we need to handle
15692 delay slots correctly. */
15693 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 15694 start_noreorder ();
252b5132 15695 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 15696 end_noreorder ();
252b5132
RH
15697
15698 mips_opts = s->options;
15699 mips_opts_stack = s->next;
15700 free (s);
15701 }
15702 }
919731af 15703 else if (!parse_code_option (name))
15704 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15705
15706 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15707 registers based on what is supported by the arch/cpu. */
15708 if (mips_opts.isa != prev_isa)
e6559e01 15709 {
919731af 15710 switch (mips_opts.isa)
15711 {
15712 case 0:
15713 break;
15714 case ISA_MIPS1:
351cdf24
MF
15715 /* MIPS I cannot support FPXX. */
15716 mips_opts.fp = 32;
15717 /* fall-through. */
919731af 15718 case ISA_MIPS2:
15719 case ISA_MIPS32:
15720 case ISA_MIPS32R2:
15721 case ISA_MIPS32R3:
15722 case ISA_MIPS32R5:
15723 mips_opts.gp = 32;
351cdf24
MF
15724 if (mips_opts.fp != 0)
15725 mips_opts.fp = 32;
919731af 15726 break;
7361da2c
AB
15727 case ISA_MIPS32R6:
15728 mips_opts.gp = 32;
15729 mips_opts.fp = 64;
15730 break;
919731af 15731 case ISA_MIPS3:
15732 case ISA_MIPS4:
15733 case ISA_MIPS5:
15734 case ISA_MIPS64:
15735 case ISA_MIPS64R2:
15736 case ISA_MIPS64R3:
15737 case ISA_MIPS64R5:
7361da2c 15738 case ISA_MIPS64R6:
919731af 15739 mips_opts.gp = 64;
351cdf24
MF
15740 if (mips_opts.fp != 0)
15741 {
15742 if (mips_opts.arch == CPU_R5900)
15743 mips_opts.fp = 32;
15744 else
15745 mips_opts.fp = 64;
15746 }
919731af 15747 break;
15748 default:
15749 as_bad (_("unknown ISA level %s"), name + 4);
15750 break;
15751 }
e6559e01 15752 }
919731af 15753
15754 mips_check_options (&mips_opts, FALSE);
15755
15756 mips_check_isa_supports_ases ();
15757 *input_line_pointer = ch;
15758 demand_empty_rest_of_line ();
15759}
15760
15761/* Handle the .module pseudo-op. */
15762
15763static void
15764s_module (int ignore ATTRIBUTE_UNUSED)
15765{
15766 char *name = input_line_pointer, ch;
15767
15768 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15769 ++input_line_pointer;
15770 ch = *input_line_pointer;
15771 *input_line_pointer = '\0';
15772
15773 if (!file_mips_opts_checked)
252b5132 15774 {
919731af 15775 if (!parse_code_option (name))
15776 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15777
15778 /* Update module level settings from mips_opts. */
15779 file_mips_opts = mips_opts;
252b5132 15780 }
919731af 15781 else
15782 as_bad (_(".module is not permitted after generating code"));
15783
252b5132
RH
15784 *input_line_pointer = ch;
15785 demand_empty_rest_of_line ();
15786}
15787
15788/* Handle the .abicalls pseudo-op. I believe this is equivalent to
15789 .option pic2. It means to generate SVR4 PIC calls. */
15790
15791static void
17a2f251 15792s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15793{
15794 mips_pic = SVR4_PIC;
143d77c5 15795 mips_abicalls = TRUE;
4d0d148d
TS
15796
15797 if (g_switch_seen && g_switch_value != 0)
15798 as_warn (_("-G may not be used with SVR4 PIC code"));
15799 g_switch_value = 0;
15800
252b5132
RH
15801 bfd_set_gp_size (stdoutput, 0);
15802 demand_empty_rest_of_line ();
15803}
15804
15805/* Handle the .cpload pseudo-op. This is used when generating SVR4
15806 PIC code. It sets the $gp register for the function based on the
15807 function address, which is in the register named in the argument.
15808 This uses a relocation against _gp_disp, which is handled specially
15809 by the linker. The result is:
15810 lui $gp,%hi(_gp_disp)
15811 addiu $gp,$gp,%lo(_gp_disp)
15812 addu $gp,$gp,.cpload argument
aa6975fb
ILT
15813 The .cpload argument is normally $25 == $t9.
15814
15815 The -mno-shared option changes this to:
bbe506e8
TS
15816 lui $gp,%hi(__gnu_local_gp)
15817 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
15818 and the argument is ignored. This saves an instruction, but the
15819 resulting code is not position independent; it uses an absolute
bbe506e8
TS
15820 address for __gnu_local_gp. Thus code assembled with -mno-shared
15821 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
15822
15823static void
17a2f251 15824s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15825{
15826 expressionS ex;
aa6975fb
ILT
15827 int reg;
15828 int in_shared;
252b5132 15829
919731af 15830 file_mips_check_options ();
15831
6478892d
TS
15832 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15833 .cpload is ignored. */
15834 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15835 {
15836 s_ignore (0);
15837 return;
15838 }
15839
a276b80c
MR
15840 if (mips_opts.mips16)
15841 {
15842 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15843 ignore_rest_of_line ();
15844 return;
15845 }
15846
d3ecfc59 15847 /* .cpload should be in a .set noreorder section. */
252b5132
RH
15848 if (mips_opts.noreorder == 0)
15849 as_warn (_(".cpload not in noreorder section"));
15850
aa6975fb
ILT
15851 reg = tc_get_register (0);
15852
15853 /* If we need to produce a 64-bit address, we are better off using
15854 the default instruction sequence. */
aed1a261 15855 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 15856
252b5132 15857 ex.X_op = O_symbol;
bbe506e8
TS
15858 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15859 "__gnu_local_gp");
252b5132
RH
15860 ex.X_op_symbol = NULL;
15861 ex.X_add_number = 0;
15862
15863 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 15864 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 15865
8a75745d
MR
15866 mips_mark_labels ();
15867 mips_assembling_insn = TRUE;
15868
584892a6 15869 macro_start ();
67c0d1eb
RS
15870 macro_build_lui (&ex, mips_gp_register);
15871 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 15872 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
15873 if (in_shared)
15874 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15875 mips_gp_register, reg);
584892a6 15876 macro_end ();
252b5132 15877
8a75745d 15878 mips_assembling_insn = FALSE;
252b5132
RH
15879 demand_empty_rest_of_line ();
15880}
15881
6478892d
TS
15882/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15883 .cpsetup $reg1, offset|$reg2, label
15884
15885 If offset is given, this results in:
15886 sd $gp, offset($sp)
956cd1d6 15887 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15888 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15889 daddu $gp, $gp, $reg1
6478892d
TS
15890
15891 If $reg2 is given, this results in:
40fc1451 15892 or $reg2, $gp, $0
956cd1d6 15893 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15894 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15895 daddu $gp, $gp, $reg1
aa6975fb
ILT
15896 $reg1 is normally $25 == $t9.
15897
15898 The -mno-shared option replaces the last three instructions with
15899 lui $gp,%hi(_gp)
54f4ddb3 15900 addiu $gp,$gp,%lo(_gp) */
aa6975fb 15901
6478892d 15902static void
17a2f251 15903s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15904{
15905 expressionS ex_off;
15906 expressionS ex_sym;
15907 int reg1;
6478892d 15908
919731af 15909 file_mips_check_options ();
15910
8586fc66 15911 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
15912 We also need NewABI support. */
15913 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15914 {
15915 s_ignore (0);
15916 return;
15917 }
15918
a276b80c
MR
15919 if (mips_opts.mips16)
15920 {
15921 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15922 ignore_rest_of_line ();
15923 return;
15924 }
15925
6478892d
TS
15926 reg1 = tc_get_register (0);
15927 SKIP_WHITESPACE ();
15928 if (*input_line_pointer != ',')
15929 {
15930 as_bad (_("missing argument separator ',' for .cpsetup"));
15931 return;
15932 }
15933 else
80245285 15934 ++input_line_pointer;
6478892d
TS
15935 SKIP_WHITESPACE ();
15936 if (*input_line_pointer == '$')
80245285
TS
15937 {
15938 mips_cpreturn_register = tc_get_register (0);
15939 mips_cpreturn_offset = -1;
15940 }
6478892d 15941 else
80245285
TS
15942 {
15943 mips_cpreturn_offset = get_absolute_expression ();
15944 mips_cpreturn_register = -1;
15945 }
6478892d
TS
15946 SKIP_WHITESPACE ();
15947 if (*input_line_pointer != ',')
15948 {
15949 as_bad (_("missing argument separator ',' for .cpsetup"));
15950 return;
15951 }
15952 else
f9419b05 15953 ++input_line_pointer;
6478892d 15954 SKIP_WHITESPACE ();
f21f8242 15955 expression (&ex_sym);
6478892d 15956
8a75745d
MR
15957 mips_mark_labels ();
15958 mips_assembling_insn = TRUE;
15959
584892a6 15960 macro_start ();
6478892d
TS
15961 if (mips_cpreturn_register == -1)
15962 {
15963 ex_off.X_op = O_constant;
15964 ex_off.X_add_symbol = NULL;
15965 ex_off.X_op_symbol = NULL;
15966 ex_off.X_add_number = mips_cpreturn_offset;
15967
67c0d1eb 15968 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 15969 BFD_RELOC_LO16, SP);
6478892d
TS
15970 }
15971 else
40fc1451 15972 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 15973
aed1a261 15974 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 15975 {
df58fc94 15976 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
15977 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15978 BFD_RELOC_HI16_S);
15979
15980 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15981 mips_gp_register, -1, BFD_RELOC_GPREL16,
15982 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15983
15984 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15985 mips_gp_register, reg1);
15986 }
15987 else
15988 {
15989 expressionS ex;
15990
15991 ex.X_op = O_symbol;
4184909a 15992 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
15993 ex.X_op_symbol = NULL;
15994 ex.X_add_number = 0;
6e1304d8 15995
aa6975fb
ILT
15996 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15997 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15998
15999 macro_build_lui (&ex, mips_gp_register);
16000 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16001 mips_gp_register, BFD_RELOC_LO16);
16002 }
f21f8242 16003
584892a6 16004 macro_end ();
6478892d 16005
8a75745d 16006 mips_assembling_insn = FALSE;
6478892d
TS
16007 demand_empty_rest_of_line ();
16008}
16009
16010static void
17a2f251 16011s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16012{
919731af 16013 file_mips_check_options ();
16014
6478892d 16015 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16016 .cplocal is ignored. */
6478892d
TS
16017 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16018 {
16019 s_ignore (0);
16020 return;
16021 }
16022
a276b80c
MR
16023 if (mips_opts.mips16)
16024 {
16025 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16026 ignore_rest_of_line ();
16027 return;
16028 }
16029
6478892d 16030 mips_gp_register = tc_get_register (0);
85b51719 16031 demand_empty_rest_of_line ();
6478892d
TS
16032}
16033
252b5132
RH
16034/* Handle the .cprestore pseudo-op. This stores $gp into a given
16035 offset from $sp. The offset is remembered, and after making a PIC
16036 call $gp is restored from that location. */
16037
16038static void
17a2f251 16039s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16040{
16041 expressionS ex;
252b5132 16042
919731af 16043 file_mips_check_options ();
16044
6478892d 16045 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16046 .cprestore is ignored. */
6478892d 16047 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16048 {
16049 s_ignore (0);
16050 return;
16051 }
16052
a276b80c
MR
16053 if (mips_opts.mips16)
16054 {
16055 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16056 ignore_rest_of_line ();
16057 return;
16058 }
16059
252b5132 16060 mips_cprestore_offset = get_absolute_expression ();
7a621144 16061 mips_cprestore_valid = 1;
252b5132
RH
16062
16063 ex.X_op = O_constant;
16064 ex.X_add_symbol = NULL;
16065 ex.X_op_symbol = NULL;
16066 ex.X_add_number = mips_cprestore_offset;
16067
8a75745d
MR
16068 mips_mark_labels ();
16069 mips_assembling_insn = TRUE;
16070
584892a6 16071 macro_start ();
67c0d1eb
RS
16072 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16073 SP, HAVE_64BIT_ADDRESSES);
584892a6 16074 macro_end ();
252b5132 16075
8a75745d 16076 mips_assembling_insn = FALSE;
252b5132
RH
16077 demand_empty_rest_of_line ();
16078}
16079
6478892d 16080/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16081 was given in the preceding .cpsetup, it results in:
6478892d 16082 ld $gp, offset($sp)
76b3015f 16083
6478892d 16084 If a register $reg2 was given there, it results in:
40fc1451 16085 or $gp, $reg2, $0 */
54f4ddb3 16086
6478892d 16087static void
17a2f251 16088s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16089{
16090 expressionS ex;
6478892d 16091
919731af 16092 file_mips_check_options ();
16093
6478892d
TS
16094 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16095 We also need NewABI support. */
16096 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16097 {
16098 s_ignore (0);
16099 return;
16100 }
16101
a276b80c
MR
16102 if (mips_opts.mips16)
16103 {
16104 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16105 ignore_rest_of_line ();
16106 return;
16107 }
16108
8a75745d
MR
16109 mips_mark_labels ();
16110 mips_assembling_insn = TRUE;
16111
584892a6 16112 macro_start ();
6478892d
TS
16113 if (mips_cpreturn_register == -1)
16114 {
16115 ex.X_op = O_constant;
16116 ex.X_add_symbol = NULL;
16117 ex.X_op_symbol = NULL;
16118 ex.X_add_number = mips_cpreturn_offset;
16119
67c0d1eb 16120 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16121 }
16122 else
40fc1451
SD
16123 move_register (mips_gp_register, mips_cpreturn_register);
16124
584892a6 16125 macro_end ();
6478892d 16126
8a75745d 16127 mips_assembling_insn = FALSE;
6478892d
TS
16128 demand_empty_rest_of_line ();
16129}
16130
d0f13682
CLT
16131/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16132 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16133 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16134 debug information or MIPS16 TLS. */
741d6ea8
JM
16135
16136static void
d0f13682
CLT
16137s_tls_rel_directive (const size_t bytes, const char *dirstr,
16138 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16139{
16140 expressionS ex;
16141 char *p;
16142
16143 expression (&ex);
16144
16145 if (ex.X_op != O_symbol)
16146 {
1661c76c 16147 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16148 ignore_rest_of_line ();
16149 }
16150
16151 p = frag_more (bytes);
16152 md_number_to_chars (p, 0, bytes);
d0f13682 16153 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16154 demand_empty_rest_of_line ();
de64cffd 16155 mips_clear_insn_labels ();
741d6ea8
JM
16156}
16157
16158/* Handle .dtprelword. */
16159
16160static void
16161s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16162{
d0f13682 16163 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16164}
16165
16166/* Handle .dtpreldword. */
16167
16168static void
16169s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16170{
d0f13682
CLT
16171 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16172}
16173
16174/* Handle .tprelword. */
16175
16176static void
16177s_tprelword (int ignore ATTRIBUTE_UNUSED)
16178{
16179 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16180}
16181
16182/* Handle .tpreldword. */
16183
16184static void
16185s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16186{
16187 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16188}
16189
6478892d
TS
16190/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16191 code. It sets the offset to use in gp_rel relocations. */
16192
16193static void
17a2f251 16194s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16195{
16196 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16197 We also need NewABI support. */
16198 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16199 {
16200 s_ignore (0);
16201 return;
16202 }
16203
def2e0dd 16204 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16205
16206 demand_empty_rest_of_line ();
16207}
16208
252b5132
RH
16209/* Handle the .gpword pseudo-op. This is used when generating PIC
16210 code. It generates a 32 bit GP relative reloc. */
16211
16212static void
17a2f251 16213s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16214{
a8dbcb85
TS
16215 segment_info_type *si;
16216 struct insn_label_list *l;
252b5132
RH
16217 expressionS ex;
16218 char *p;
16219
16220 /* When not generating PIC code, this is treated as .word. */
16221 if (mips_pic != SVR4_PIC)
16222 {
16223 s_cons (2);
16224 return;
16225 }
16226
a8dbcb85
TS
16227 si = seg_info (now_seg);
16228 l = si->label_list;
7d10b47d 16229 mips_emit_delays ();
252b5132 16230 if (auto_align)
462427c4 16231 mips_align (2, 0, l);
252b5132
RH
16232
16233 expression (&ex);
a1facbec 16234 mips_clear_insn_labels ();
252b5132
RH
16235
16236 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16237 {
1661c76c 16238 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16239 ignore_rest_of_line ();
16240 }
16241
16242 p = frag_more (4);
17a2f251 16243 md_number_to_chars (p, 0, 4);
b34976b6 16244 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16245 BFD_RELOC_GPREL32);
252b5132
RH
16246
16247 demand_empty_rest_of_line ();
16248}
16249
10181a0d 16250static void
17a2f251 16251s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16252{
a8dbcb85
TS
16253 segment_info_type *si;
16254 struct insn_label_list *l;
10181a0d
AO
16255 expressionS ex;
16256 char *p;
16257
16258 /* When not generating PIC code, this is treated as .dword. */
16259 if (mips_pic != SVR4_PIC)
16260 {
16261 s_cons (3);
16262 return;
16263 }
16264
a8dbcb85
TS
16265 si = seg_info (now_seg);
16266 l = si->label_list;
7d10b47d 16267 mips_emit_delays ();
10181a0d 16268 if (auto_align)
462427c4 16269 mips_align (3, 0, l);
10181a0d
AO
16270
16271 expression (&ex);
a1facbec 16272 mips_clear_insn_labels ();
10181a0d
AO
16273
16274 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16275 {
1661c76c 16276 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16277 ignore_rest_of_line ();
16278 }
16279
16280 p = frag_more (8);
17a2f251 16281 md_number_to_chars (p, 0, 8);
a105a300 16282 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16283 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16284
16285 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16286 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16287 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16288
16289 demand_empty_rest_of_line ();
16290}
16291
a3f278e2
CM
16292/* Handle the .ehword pseudo-op. This is used when generating unwinding
16293 tables. It generates a R_MIPS_EH reloc. */
16294
16295static void
16296s_ehword (int ignore ATTRIBUTE_UNUSED)
16297{
16298 expressionS ex;
16299 char *p;
16300
16301 mips_emit_delays ();
16302
16303 expression (&ex);
16304 mips_clear_insn_labels ();
16305
16306 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16307 {
1661c76c 16308 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16309 ignore_rest_of_line ();
16310 }
16311
16312 p = frag_more (4);
16313 md_number_to_chars (p, 0, 4);
16314 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16315 BFD_RELOC_32_PCREL);
a3f278e2
CM
16316
16317 demand_empty_rest_of_line ();
16318}
16319
252b5132
RH
16320/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16321 tables in SVR4 PIC code. */
16322
16323static void
17a2f251 16324s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16325{
252b5132
RH
16326 int reg;
16327
919731af 16328 file_mips_check_options ();
16329
10181a0d
AO
16330 /* This is ignored when not generating SVR4 PIC code. */
16331 if (mips_pic != SVR4_PIC)
252b5132
RH
16332 {
16333 s_ignore (0);
16334 return;
16335 }
16336
8a75745d
MR
16337 mips_mark_labels ();
16338 mips_assembling_insn = TRUE;
16339
252b5132 16340 /* Add $gp to the register named as an argument. */
584892a6 16341 macro_start ();
252b5132 16342 reg = tc_get_register (0);
67c0d1eb 16343 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16344 macro_end ();
252b5132 16345
8a75745d 16346 mips_assembling_insn = FALSE;
bdaaa2e1 16347 demand_empty_rest_of_line ();
252b5132
RH
16348}
16349
16350/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16351 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16352 such as generating jalx instructions when needed. We also make
16353 them odd for the duration of the assembly, in order to generate the
16354 right sort of code. We will make them even in the adjust_symtab
16355 routine, while leaving them marked. This is convenient for the
16356 debugger and the disassembler. The linker knows to make them odd
16357 again. */
16358
16359static void
17a2f251 16360s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16361{
7bb01e2d
MR
16362 file_mips_check_options ();
16363 file_ase_mips16 |= mips_opts.mips16;
16364 file_ase_micromips |= mips_opts.micromips;
16365
df58fc94 16366 mips_mark_labels ();
252b5132
RH
16367
16368 demand_empty_rest_of_line ();
16369}
16370
ba92f887
MR
16371/* Handle the .nan pseudo-op. */
16372
16373static void
16374s_nan (int ignore ATTRIBUTE_UNUSED)
16375{
16376 static const char str_legacy[] = "legacy";
16377 static const char str_2008[] = "2008";
16378 size_t i;
16379
16380 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16381
16382 if (i == sizeof (str_2008) - 1
16383 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16384 mips_nan2008 = 1;
ba92f887
MR
16385 else if (i == sizeof (str_legacy) - 1
16386 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16387 {
16388 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16389 mips_nan2008 = 0;
16390 else
16391 as_bad (_("`%s' does not support legacy NaN"),
16392 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16393 }
ba92f887 16394 else
1661c76c 16395 as_bad (_("bad .nan directive"));
ba92f887
MR
16396
16397 input_line_pointer += i;
16398 demand_empty_rest_of_line ();
16399}
16400
754e2bb9
RS
16401/* Handle a .stab[snd] directive. Ideally these directives would be
16402 implemented in a transparent way, so that removing them would not
16403 have any effect on the generated instructions. However, s_stab
16404 internally changes the section, so in practice we need to decide
16405 now whether the preceding label marks compressed code. We do not
16406 support changing the compression mode of a label after a .stab*
16407 directive, such as in:
16408
16409 foo:
16410 .stabs ...
16411 .set mips16
16412
16413 so the current mode wins. */
252b5132
RH
16414
16415static void
17a2f251 16416s_mips_stab (int type)
252b5132 16417{
754e2bb9 16418 mips_mark_labels ();
252b5132
RH
16419 s_stab (type);
16420}
16421
54f4ddb3 16422/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16423
16424static void
17a2f251 16425s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16426{
16427 char *name;
16428 int c;
16429 symbolS *symbolP;
16430 expressionS exp;
16431
d02603dc 16432 c = get_symbol_name (&name);
252b5132
RH
16433 symbolP = symbol_find_or_make (name);
16434 S_SET_WEAK (symbolP);
16435 *input_line_pointer = c;
16436
d02603dc 16437 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16438
16439 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16440 {
16441 if (S_IS_DEFINED (symbolP))
16442 {
20203fb9 16443 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16444 S_GET_NAME (symbolP));
16445 ignore_rest_of_line ();
16446 return;
16447 }
bdaaa2e1 16448
252b5132
RH
16449 if (*input_line_pointer == ',')
16450 {
16451 ++input_line_pointer;
16452 SKIP_WHITESPACE ();
16453 }
bdaaa2e1 16454
252b5132
RH
16455 expression (&exp);
16456 if (exp.X_op != O_symbol)
16457 {
20203fb9 16458 as_bad (_("bad .weakext directive"));
98d3f06f 16459 ignore_rest_of_line ();
252b5132
RH
16460 return;
16461 }
49309057 16462 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16463 }
16464
16465 demand_empty_rest_of_line ();
16466}
16467
16468/* Parse a register string into a number. Called from the ECOFF code
16469 to parse .frame. The argument is non-zero if this is the frame
16470 register, so that we can record it in mips_frame_reg. */
16471
16472int
17a2f251 16473tc_get_register (int frame)
252b5132 16474{
707bfff6 16475 unsigned int reg;
252b5132
RH
16476
16477 SKIP_WHITESPACE ();
707bfff6
TS
16478 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16479 reg = 0;
252b5132 16480 if (frame)
7a621144
DJ
16481 {
16482 mips_frame_reg = reg != 0 ? reg : SP;
16483 mips_frame_reg_valid = 1;
16484 mips_cprestore_valid = 0;
16485 }
252b5132
RH
16486 return reg;
16487}
16488
16489valueT
17a2f251 16490md_section_align (asection *seg, valueT addr)
252b5132
RH
16491{
16492 int align = bfd_get_section_alignment (stdoutput, seg);
16493
f3ded42a
RS
16494 /* We don't need to align ELF sections to the full alignment.
16495 However, Irix 5 may prefer that we align them at least to a 16
16496 byte boundary. We don't bother to align the sections if we
16497 are targeted for an embedded system. */
16498 if (strncmp (TARGET_OS, "elf", 3) == 0)
16499 return addr;
16500 if (align > 4)
16501 align = 4;
252b5132 16502
8d3842cd 16503 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
16504}
16505
16506/* Utility routine, called from above as well. If called while the
16507 input file is still being read, it's only an approximation. (For
16508 example, a symbol may later become defined which appeared to be
16509 undefined earlier.) */
16510
16511static int
17a2f251 16512nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
16513{
16514 if (sym == 0)
16515 return 0;
16516
4d0d148d 16517 if (g_switch_value > 0)
252b5132
RH
16518 {
16519 const char *symname;
16520 int change;
16521
c9914766 16522 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
16523 register. It can be if it is smaller than the -G size or if
16524 it is in the .sdata or .sbss section. Certain symbols can
c9914766 16525 not be referenced off the $gp, although it appears as though
252b5132
RH
16526 they can. */
16527 symname = S_GET_NAME (sym);
16528 if (symname != (const char *) NULL
16529 && (strcmp (symname, "eprol") == 0
16530 || strcmp (symname, "etext") == 0
16531 || strcmp (symname, "_gp") == 0
16532 || strcmp (symname, "edata") == 0
16533 || strcmp (symname, "_fbss") == 0
16534 || strcmp (symname, "_fdata") == 0
16535 || strcmp (symname, "_ftext") == 0
16536 || strcmp (symname, "end") == 0
16537 || strcmp (symname, "_gp_disp") == 0))
16538 change = 1;
16539 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16540 && (0
16541#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
16542 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16543 && (symbol_get_obj (sym)->ecoff_extern_size
16544 <= g_switch_value))
252b5132
RH
16545#endif
16546 /* We must defer this decision until after the whole
16547 file has been read, since there might be a .extern
16548 after the first use of this symbol. */
16549 || (before_relaxing
16550#ifndef NO_ECOFF_DEBUGGING
49309057 16551 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
16552#endif
16553 && S_GET_VALUE (sym) == 0)
16554 || (S_GET_VALUE (sym) != 0
16555 && S_GET_VALUE (sym) <= g_switch_value)))
16556 change = 0;
16557 else
16558 {
16559 const char *segname;
16560
16561 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 16562 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
16563 && strcmp (segname, ".lit4") != 0);
16564 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
16565 && strcmp (segname, ".sbss") != 0
16566 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
16567 && strncmp (segname, ".sbss.", 6) != 0
16568 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 16569 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
16570 }
16571 return change;
16572 }
16573 else
c9914766 16574 /* We are not optimizing for the $gp register. */
252b5132
RH
16575 return 1;
16576}
16577
5919d012
RS
16578
16579/* Return true if the given symbol should be considered local for SVR4 PIC. */
16580
16581static bfd_boolean
17a2f251 16582pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
16583{
16584 asection *symsec;
5919d012
RS
16585
16586 /* Handle the case of a symbol equated to another symbol. */
16587 while (symbol_equated_reloc_p (sym))
16588 {
16589 symbolS *n;
16590
5f0fe04b 16591 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
16592 n = symbol_get_value_expression (sym)->X_add_symbol;
16593 if (n == sym)
16594 break;
16595 sym = n;
16596 }
16597
df1f3cda
DD
16598 if (symbol_section_p (sym))
16599 return TRUE;
16600
5919d012
RS
16601 symsec = S_GET_SEGMENT (sym);
16602
5919d012 16603 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
16604 return (!bfd_is_und_section (symsec)
16605 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
16606 && !bfd_is_com_section (symsec)
16607 && !s_is_linkonce (sym, segtype)
5919d012 16608 /* A global or weak symbol is treated as external. */
f3ded42a 16609 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
16610}
16611
16612
252b5132
RH
16613/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16614 extended opcode. SEC is the section the frag is in. */
16615
16616static int
17a2f251 16617mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
16618{
16619 int type;
3ccad066 16620 const struct mips_int_operand *operand;
252b5132 16621 offsetT val;
252b5132 16622 segT symsec;
98aa84af 16623 fragS *sym_frag;
252b5132
RH
16624
16625 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16626 return 0;
16627 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16628 return 1;
16629
16630 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16631 operand = mips16_immed_operand (type, FALSE);
252b5132 16632
98aa84af 16633 sym_frag = symbol_get_frag (fragp->fr_symbol);
ac62c346 16634 val = S_GET_VALUE (fragp->fr_symbol);
98aa84af 16635 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 16636
3ccad066 16637 if (operand->root.type == OP_PCREL)
252b5132 16638 {
3ccad066 16639 const struct mips_pcrel_operand *pcrel_op;
252b5132 16640 addressT addr;
3ccad066 16641 offsetT maxtiny;
252b5132
RH
16642
16643 /* We won't have the section when we are called from
16644 mips_relax_frag. However, we will always have been called
16645 from md_estimate_size_before_relax first. If this is a
16646 branch to a different section, we mark it as such. If SEC is
16647 NULL, and the frag is not marked, then it must be a branch to
16648 the same section. */
3ccad066 16649 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
16650 if (sec == NULL)
16651 {
16652 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16653 return 1;
16654 }
16655 else
16656 {
98aa84af 16657 /* Must have been called from md_estimate_size_before_relax. */
252b5132
RH
16658 if (symsec != sec)
16659 {
16660 fragp->fr_subtype =
16661 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16662
16663 /* FIXME: We should support this, and let the linker
16664 catch branches and loads that are out of range. */
16665 as_bad_where (fragp->fr_file, fragp->fr_line,
16666 _("unsupported PC relative reference to different section"));
16667
16668 return 1;
16669 }
98aa84af
AM
16670 if (fragp != sym_frag && sym_frag->fr_address == 0)
16671 /* Assume non-extended on the first relaxation pass.
16672 The address we have calculated will be bogus if this is
16673 a forward branch to another frag, as the forward frag
16674 will have fr_address == 0. */
16675 return 0;
252b5132
RH
16676 }
16677
16678 /* In this case, we know for sure that the symbol fragment is in
98aa84af
AM
16679 the same section. If the relax_marker of the symbol fragment
16680 differs from the relax_marker of this fragment, we have not
16681 yet adjusted the symbol fragment fr_address. We want to add
252b5132
RH
16682 in STRETCH in order to get a better estimate of the address.
16683 This particularly matters because of the shift bits. */
16684 if (stretch != 0
98aa84af 16685 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
16686 {
16687 fragS *f;
16688
16689 /* Adjust stretch for any alignment frag. Note that if have
16690 been expanding the earlier code, the symbol may be
16691 defined in what appears to be an earlier frag. FIXME:
16692 This doesn't handle the fr_subtype field, which specifies
16693 a maximum number of bytes to skip when doing an
16694 alignment. */
98aa84af 16695 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
16696 {
16697 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16698 {
16699 if (stretch < 0)
16700 stretch = - ((- stretch)
16701 & ~ ((1 << (int) f->fr_offset) - 1));
16702 else
16703 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16704 if (stretch == 0)
16705 break;
16706 }
16707 }
16708 if (f != NULL)
16709 val += stretch;
16710 }
16711
16712 addr = fragp->fr_address + fragp->fr_fix;
16713
16714 /* The base address rules are complicated. The base address of
16715 a branch is the following instruction. The base address of a
16716 PC relative load or add is the instruction itself, but if it
16717 is in a delay slot (in which case it can not be extended) use
16718 the address of the instruction whose delay slot it is in. */
3ccad066 16719 if (pcrel_op->include_isa_bit)
252b5132
RH
16720 {
16721 addr += 2;
16722
16723 /* If we are currently assuming that this frag should be
16724 extended, then, the current address is two bytes
bdaaa2e1 16725 higher. */
252b5132
RH
16726 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16727 addr += 2;
16728
16729 /* Ignore the low bit in the target, since it will be set
16730 for a text label. */
3ccad066 16731 val &= -2;
252b5132
RH
16732 }
16733 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16734 addr -= 4;
16735 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16736 addr -= 2;
16737
3ccad066 16738 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
16739
16740 /* If any of the shifted bits are set, we must use an extended
16741 opcode. If the address depends on the size of this
16742 instruction, this can lead to a loop, so we arrange to always
16743 use an extended opcode. We only check this when we are in
16744 the main relaxation loop, when SEC is NULL. */
3ccad066 16745 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
252b5132
RH
16746 {
16747 fragp->fr_subtype =
16748 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16749 return 1;
16750 }
16751
16752 /* If we are about to mark a frag as extended because the value
3ccad066
RS
16753 is precisely the next value above maxtiny, then there is a
16754 chance of an infinite loop as in the following code:
252b5132
RH
16755 la $4,foo
16756 .skip 1020
16757 .align 2
16758 foo:
16759 In this case when the la is extended, foo is 0x3fc bytes
16760 away, so the la can be shrunk, but then foo is 0x400 away, so
16761 the la must be extended. To avoid this loop, we mark the
16762 frag as extended if it was small, and is about to become
3ccad066
RS
16763 extended with the next value above maxtiny. */
16764 maxtiny = mips_int_operand_max (operand);
16765 if (val == maxtiny + (1 << operand->shift)
252b5132
RH
16766 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16767 && sec == NULL)
16768 {
16769 fragp->fr_subtype =
16770 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16771 return 1;
16772 }
16773 }
16774 else if (symsec != absolute_section && sec != NULL)
16775 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16776
3ccad066 16777 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
16778}
16779
4a6a3df4
AO
16780/* Compute the length of a branch sequence, and adjust the
16781 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16782 worst-case length is computed, with UPDATE being used to indicate
16783 whether an unconditional (-1), branch-likely (+1) or regular (0)
16784 branch is to be computed. */
16785static int
17a2f251 16786relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 16787{
b34976b6 16788 bfd_boolean toofar;
4a6a3df4
AO
16789 int length;
16790
16791 if (fragp
16792 && S_IS_DEFINED (fragp->fr_symbol)
16793 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16794 {
16795 addressT addr;
16796 offsetT val;
16797
16798 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16799
16800 addr = fragp->fr_address + fragp->fr_fix + 4;
16801
16802 val -= addr;
16803
16804 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16805 }
16806 else if (fragp)
16807 /* If the symbol is not defined or it's in a different segment,
16808 assume the user knows what's going on and emit a short
16809 branch. */
b34976b6 16810 toofar = FALSE;
4a6a3df4 16811 else
b34976b6 16812 toofar = TRUE;
4a6a3df4
AO
16813
16814 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16815 fragp->fr_subtype
66b3e8da
MR
16816 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16817 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
16818 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16819 RELAX_BRANCH_LINK (fragp->fr_subtype),
16820 toofar);
16821
16822 length = 4;
16823 if (toofar)
16824 {
16825 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16826 length += 8;
16827
16828 if (mips_pic != NO_PIC)
16829 {
16830 /* Additional space for PIC loading of target address. */
16831 length += 8;
16832 if (mips_opts.isa == ISA_MIPS1)
16833 /* Additional space for $at-stabilizing nop. */
16834 length += 4;
16835 }
16836
16837 /* If branch is conditional. */
16838 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16839 length += 8;
16840 }
b34976b6 16841
4a6a3df4
AO
16842 return length;
16843}
16844
df58fc94
RS
16845/* Compute the length of a branch sequence, and adjust the
16846 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16847 worst-case length is computed, with UPDATE being used to indicate
16848 whether an unconditional (-1), or regular (0) branch is to be
16849 computed. */
16850
16851static int
16852relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16853{
16854 bfd_boolean toofar;
16855 int length;
16856
16857 if (fragp
16858 && S_IS_DEFINED (fragp->fr_symbol)
16859 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16860 {
16861 addressT addr;
16862 offsetT val;
16863
16864 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16865 /* Ignore the low bit in the target, since it will be set
16866 for a text label. */
16867 if ((val & 1) != 0)
16868 --val;
16869
16870 addr = fragp->fr_address + fragp->fr_fix + 4;
16871
16872 val -= addr;
16873
16874 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16875 }
16876 else if (fragp)
16877 /* If the symbol is not defined or it's in a different segment,
16878 assume the user knows what's going on and emit a short
16879 branch. */
16880 toofar = FALSE;
16881 else
16882 toofar = TRUE;
16883
16884 if (fragp && update
16885 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16886 fragp->fr_subtype = (toofar
16887 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16888 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16889
16890 length = 4;
16891 if (toofar)
16892 {
16893 bfd_boolean compact_known = fragp != NULL;
16894 bfd_boolean compact = FALSE;
16895 bfd_boolean uncond;
16896
16897 if (compact_known)
16898 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16899 if (fragp)
16900 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16901 else
16902 uncond = update < 0;
16903
16904 /* If label is out of range, we turn branch <br>:
16905
16906 <br> label # 4 bytes
16907 0:
16908
16909 into:
16910
16911 j label # 4 bytes
16912 nop # 2 bytes if compact && !PIC
16913 0:
16914 */
16915 if (mips_pic == NO_PIC && (!compact_known || compact))
16916 length += 2;
16917
16918 /* If assembling PIC code, we further turn:
16919
16920 j label # 4 bytes
16921
16922 into:
16923
16924 lw/ld at, %got(label)(gp) # 4 bytes
16925 d/addiu at, %lo(label) # 4 bytes
16926 jr/c at # 2 bytes
16927 */
16928 if (mips_pic != NO_PIC)
16929 length += 6;
16930
16931 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16932
16933 <brneg> 0f # 4 bytes
16934 nop # 2 bytes if !compact
16935 */
16936 if (!uncond)
16937 length += (compact_known && compact) ? 4 : 6;
16938 }
16939
16940 return length;
16941}
16942
16943/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16944 bit accordingly. */
16945
16946static int
16947relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16948{
16949 bfd_boolean toofar;
16950
df58fc94
RS
16951 if (fragp
16952 && S_IS_DEFINED (fragp->fr_symbol)
16953 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16954 {
16955 addressT addr;
16956 offsetT val;
16957 int type;
16958
16959 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16960 /* Ignore the low bit in the target, since it will be set
16961 for a text label. */
16962 if ((val & 1) != 0)
16963 --val;
16964
16965 /* Assume this is a 2-byte branch. */
16966 addr = fragp->fr_address + fragp->fr_fix + 2;
16967
16968 /* We try to avoid the infinite loop by not adding 2 more bytes for
16969 long branches. */
16970
16971 val -= addr;
16972
16973 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16974 if (type == 'D')
16975 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16976 else if (type == 'E')
16977 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16978 else
16979 abort ();
16980 }
16981 else
16982 /* If the symbol is not defined or it's in a different segment,
16983 we emit a normal 32-bit branch. */
16984 toofar = TRUE;
16985
16986 if (fragp && update
16987 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16988 fragp->fr_subtype
16989 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16990 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16991
16992 if (toofar)
16993 return 4;
16994
16995 return 2;
16996}
16997
252b5132
RH
16998/* Estimate the size of a frag before relaxing. Unless this is the
16999 mips16, we are not really relaxing here, and the final size is
17000 encoded in the subtype information. For the mips16, we have to
17001 decide whether we are using an extended opcode or not. */
17002
252b5132 17003int
17a2f251 17004md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17005{
5919d012 17006 int change;
252b5132 17007
4a6a3df4
AO
17008 if (RELAX_BRANCH_P (fragp->fr_subtype))
17009 {
17010
b34976b6
AM
17011 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17012
4a6a3df4
AO
17013 return fragp->fr_var;
17014 }
17015
252b5132 17016 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17017 /* We don't want to modify the EXTENDED bit here; it might get us
17018 into infinite loops. We change it only in mips_relax_frag(). */
17019 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17020
df58fc94
RS
17021 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17022 {
17023 int length = 4;
17024
17025 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17026 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17027 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17028 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17029 fragp->fr_var = length;
17030
17031 return length;
17032 }
17033
252b5132 17034 if (mips_pic == NO_PIC)
5919d012 17035 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17036 else if (mips_pic == SVR4_PIC)
5919d012 17037 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17038 else if (mips_pic == VXWORKS_PIC)
17039 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17040 change = 0;
252b5132
RH
17041 else
17042 abort ();
17043
17044 if (change)
17045 {
4d7206a2 17046 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17047 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17048 }
4d7206a2
RS
17049 else
17050 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17051}
17052
17053/* This is called to see whether a reloc against a defined symbol
de7e6852 17054 should be converted into a reloc against a section. */
252b5132
RH
17055
17056int
17a2f251 17057mips_fix_adjustable (fixS *fixp)
252b5132 17058{
252b5132
RH
17059 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17060 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17061 return 0;
a161fe53 17062
252b5132
RH
17063 if (fixp->fx_addsy == NULL)
17064 return 1;
a161fe53 17065
2f0c68f2
CM
17066 /* Allow relocs used for EH tables. */
17067 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17068 return 1;
17069
de7e6852
RS
17070 /* If symbol SYM is in a mergeable section, relocations of the form
17071 SYM + 0 can usually be made section-relative. The mergeable data
17072 is then identified by the section offset rather than by the symbol.
17073
17074 However, if we're generating REL LO16 relocations, the offset is split
17075 between the LO16 and parterning high part relocation. The linker will
17076 need to recalculate the complete offset in order to correctly identify
17077 the merge data.
17078
17079 The linker has traditionally not looked for the parterning high part
17080 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17081 placed anywhere. Rather than break backwards compatibility by changing
17082 this, it seems better not to force the issue, and instead keep the
17083 original symbol. This will work with either linker behavior. */
738e5348 17084 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17085 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17086 && HAVE_IN_PLACE_ADDENDS
17087 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17088 return 0;
17089
ce70d90a 17090 /* There is no place to store an in-place offset for JALR relocations.
2de39019
CM
17091 Likewise an in-range offset of limited PC-relative relocations may
17092 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17093 start address of the symbol's containing section.
17094
17095 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17096 section relative to allow linker relaxations to be performed later on. */
17097 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
2de39019
CM
17098 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17099 || jalr_reloc_p (fixp->fx_r_type)))
1180b5a4
RS
17100 return 0;
17101
b314ec0e
RS
17102 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17103 to a floating-point stub. The same is true for non-R_MIPS16_26
17104 relocations against MIPS16 functions; in this case, the stub becomes
17105 the function's canonical address.
17106
17107 Floating-point stubs are stored in unique .mips16.call.* or
17108 .mips16.fn.* sections. If a stub T for function F is in section S,
17109 the first relocation in section S must be against F; this is how the
17110 linker determines the target function. All relocations that might
17111 resolve to T must also be against F. We therefore have the following
17112 restrictions, which are given in an intentionally-redundant way:
17113
17114 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17115 symbols.
17116
17117 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17118 if that stub might be used.
17119
17120 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17121 symbols.
17122
17123 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17124 that stub might be used.
17125
17126 There is a further restriction:
17127
df58fc94
RS
17128 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17129 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17130 targets with in-place addends; the relocation field cannot
b314ec0e
RS
17131 encode the low bit.
17132
df58fc94
RS
17133 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17134 against a MIPS16 symbol. We deal with (5) by by not reducing any
17135 such relocations on REL targets.
b314ec0e
RS
17136
17137 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17138 relocation against some symbol R, no relocation against R may be
17139 reduced. (Note that this deals with (2) as well as (1) because
17140 relocations against global symbols will never be reduced on ELF
17141 targets.) This approach is a little simpler than trying to detect
17142 stub sections, and gives the "all or nothing" per-symbol consistency
17143 that we have for MIPS16 symbols. */
f3ded42a 17144 if (fixp->fx_subsy == NULL
30c09090 17145 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
df58fc94
RS
17146 || *symbol_get_tc (fixp->fx_addsy)
17147 || (HAVE_IN_PLACE_ADDENDS
17148 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17149 && jmp_reloc_p (fixp->fx_r_type))))
252b5132 17150 return 0;
a161fe53 17151
252b5132
RH
17152 return 1;
17153}
17154
17155/* Translate internal representation of relocation info to BFD target
17156 format. */
17157
17158arelent **
17a2f251 17159tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17160{
17161 static arelent *retval[4];
17162 arelent *reloc;
17163 bfd_reloc_code_real_type code;
17164
4b0cff4e
TS
17165 memset (retval, 0, sizeof(retval));
17166 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
49309057
ILT
17167 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17168 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17169 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17170
bad36eac
DJ
17171 if (fixp->fx_pcrel)
17172 {
df58fc94
RS
17173 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17174 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17175 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17176 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17177 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17178 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17179 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17180 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17181 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17182 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17183 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17184
17185 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17186 Relocations want only the symbol offset. */
17187 reloc->addend = fixp->fx_addnumber + reloc->address;
bad36eac
DJ
17188 }
17189 else
17190 reloc->addend = fixp->fx_addnumber;
252b5132 17191
438c16b8
TS
17192 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17193 entry to be used in the relocation's section offset. */
17194 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17195 {
17196 reloc->address = reloc->addend;
17197 reloc->addend = 0;
17198 }
17199
252b5132 17200 code = fixp->fx_r_type;
252b5132 17201
bad36eac 17202 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17203 if (reloc->howto == NULL)
17204 {
17205 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17206 _("cannot represent %s relocation in this object file"
17207 " format"),
252b5132
RH
17208 bfd_get_reloc_code_name (code));
17209 retval[0] = NULL;
17210 }
17211
17212 return retval;
17213}
17214
17215/* Relax a machine dependent frag. This returns the amount by which
17216 the current size of the frag should change. */
17217
17218int
17a2f251 17219mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17220{
4a6a3df4
AO
17221 if (RELAX_BRANCH_P (fragp->fr_subtype))
17222 {
17223 offsetT old_var = fragp->fr_var;
b34976b6
AM
17224
17225 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17226
17227 return fragp->fr_var - old_var;
17228 }
17229
df58fc94
RS
17230 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17231 {
17232 offsetT old_var = fragp->fr_var;
17233 offsetT new_var = 4;
17234
17235 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17236 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17237 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17238 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17239 fragp->fr_var = new_var;
17240
17241 return new_var - old_var;
17242 }
17243
252b5132
RH
17244 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17245 return 0;
17246
c4e7957c 17247 if (mips16_extended_frag (fragp, NULL, stretch))
252b5132
RH
17248 {
17249 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17250 return 0;
17251 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17252 return 2;
17253 }
17254 else
17255 {
17256 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17257 return 0;
17258 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17259 return -2;
17260 }
17261
17262 return 0;
17263}
17264
17265/* Convert a machine dependent frag. */
17266
17267void
17a2f251 17268md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17269{
4a6a3df4
AO
17270 if (RELAX_BRANCH_P (fragp->fr_subtype))
17271 {
4d68580a 17272 char *buf;
4a6a3df4
AO
17273 unsigned long insn;
17274 expressionS exp;
17275 fixS *fixp;
b34976b6 17276
4d68580a
RS
17277 buf = fragp->fr_literal + fragp->fr_fix;
17278 insn = read_insn (buf);
b34976b6 17279
4a6a3df4
AO
17280 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17281 {
17282 /* We generate a fixup instead of applying it right now
17283 because, if there are linker relaxations, we're going to
17284 need the relocations. */
17285 exp.X_op = O_symbol;
17286 exp.X_add_symbol = fragp->fr_symbol;
17287 exp.X_add_number = fragp->fr_offset;
17288
4d68580a
RS
17289 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17290 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17291 fixp->fx_file = fragp->fr_file;
17292 fixp->fx_line = fragp->fr_line;
b34976b6 17293
4d68580a 17294 buf = write_insn (buf, insn);
4a6a3df4
AO
17295 }
17296 else
17297 {
17298 int i;
17299
17300 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17301 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17302
17303 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17304 goto uncond;
17305
17306 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17307 {
17308 /* Reverse the branch. */
17309 switch ((insn >> 28) & 0xf)
17310 {
17311 case 4:
56d438b1
CF
17312 if ((insn & 0xff000000) == 0x47000000
17313 || (insn & 0xff600000) == 0x45600000)
17314 {
17315 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17316 reversed by tweaking bit 23. */
17317 insn ^= 0x00800000;
17318 }
17319 else
17320 {
17321 /* bc[0-3][tf]l? instructions can have the condition
17322 reversed by tweaking a single TF bit, and their
17323 opcodes all have 0x4???????. */
17324 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17325 insn ^= 0x00010000;
17326 }
4a6a3df4
AO
17327 break;
17328
17329 case 0:
17330 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17331 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17332 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17333 insn ^= 0x00010000;
17334 break;
b34976b6 17335
4a6a3df4
AO
17336 case 1:
17337 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17338 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17339 insn ^= 0x04000000;
17340 break;
17341
17342 default:
17343 abort ();
17344 }
17345 }
17346
17347 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17348 {
17349 /* Clear the and-link bit. */
9c2799c2 17350 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17351
54f4ddb3
TS
17352 /* bltzal 0x04100000 bgezal 0x04110000
17353 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17354 insn &= ~0x00100000;
17355 }
17356
17357 /* Branch over the branch (if the branch was likely) or the
17358 full jump (not likely case). Compute the offset from the
17359 current instruction to branch to. */
17360 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17361 i = 16;
17362 else
17363 {
17364 /* How many bytes in instructions we've already emitted? */
4d68580a 17365 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17366 /* How many bytes in instructions from here to the end? */
17367 i = fragp->fr_var - i;
17368 }
17369 /* Convert to instruction count. */
17370 i >>= 2;
17371 /* Branch counts from the next instruction. */
b34976b6 17372 i--;
4a6a3df4
AO
17373 insn |= i;
17374 /* Branch over the jump. */
4d68580a 17375 buf = write_insn (buf, insn);
4a6a3df4 17376
54f4ddb3 17377 /* nop */
4d68580a 17378 buf = write_insn (buf, 0);
4a6a3df4
AO
17379
17380 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17381 {
17382 /* beql $0, $0, 2f */
17383 insn = 0x50000000;
17384 /* Compute the PC offset from the current instruction to
17385 the end of the variable frag. */
17386 /* How many bytes in instructions we've already emitted? */
4d68580a 17387 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17388 /* How many bytes in instructions from here to the end? */
17389 i = fragp->fr_var - i;
17390 /* Convert to instruction count. */
17391 i >>= 2;
17392 /* Don't decrement i, because we want to branch over the
17393 delay slot. */
4a6a3df4 17394 insn |= i;
4a6a3df4 17395
4d68580a
RS
17396 buf = write_insn (buf, insn);
17397 buf = write_insn (buf, 0);
4a6a3df4
AO
17398 }
17399
17400 uncond:
17401 if (mips_pic == NO_PIC)
17402 {
17403 /* j or jal. */
17404 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17405 ? 0x0c000000 : 0x08000000);
17406 exp.X_op = O_symbol;
17407 exp.X_add_symbol = fragp->fr_symbol;
17408 exp.X_add_number = fragp->fr_offset;
17409
4d68580a
RS
17410 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17411 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17412 fixp->fx_file = fragp->fr_file;
17413 fixp->fx_line = fragp->fr_line;
17414
4d68580a 17415 buf = write_insn (buf, insn);
4a6a3df4
AO
17416 }
17417 else
17418 {
66b3e8da
MR
17419 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17420
4a6a3df4 17421 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17422 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17423 insn |= at << OP_SH_RT;
4a6a3df4
AO
17424 exp.X_op = O_symbol;
17425 exp.X_add_symbol = fragp->fr_symbol;
17426 exp.X_add_number = fragp->fr_offset;
17427
17428 if (fragp->fr_offset)
17429 {
17430 exp.X_add_symbol = make_expr_symbol (&exp);
17431 exp.X_add_number = 0;
17432 }
17433
4d68580a
RS
17434 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17435 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
17436 fixp->fx_file = fragp->fr_file;
17437 fixp->fx_line = fragp->fr_line;
17438
4d68580a 17439 buf = write_insn (buf, insn);
b34976b6 17440
4a6a3df4 17441 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
17442 /* nop */
17443 buf = write_insn (buf, 0);
4a6a3df4
AO
17444
17445 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
17446 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17447 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 17448
4d68580a
RS
17449 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17450 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
17451 fixp->fx_file = fragp->fr_file;
17452 fixp->fx_line = fragp->fr_line;
b34976b6 17453
4d68580a 17454 buf = write_insn (buf, insn);
4a6a3df4
AO
17455
17456 /* j(al)r $at. */
17457 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 17458 insn = 0x0000f809;
4a6a3df4 17459 else
66b3e8da
MR
17460 insn = 0x00000008;
17461 insn |= at << OP_SH_RS;
4a6a3df4 17462
4d68580a 17463 buf = write_insn (buf, insn);
4a6a3df4
AO
17464 }
17465 }
17466
4a6a3df4 17467 fragp->fr_fix += fragp->fr_var;
4d68580a 17468 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
17469 return;
17470 }
17471
df58fc94
RS
17472 /* Relax microMIPS branches. */
17473 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17474 {
4d68580a 17475 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17476 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17477 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17478 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 17479 bfd_boolean short_ds;
df58fc94
RS
17480 unsigned long insn;
17481 expressionS exp;
17482 fixS *fixp;
17483
17484 exp.X_op = O_symbol;
17485 exp.X_add_symbol = fragp->fr_symbol;
17486 exp.X_add_number = fragp->fr_offset;
17487
17488 fragp->fr_fix += fragp->fr_var;
17489
17490 /* Handle 16-bit branches that fit or are forced to fit. */
17491 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17492 {
17493 /* We generate a fixup instead of applying it right now,
17494 because if there is linker relaxation, we're going to
17495 need the relocations. */
17496 if (type == 'D')
4d68580a 17497 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17498 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17499 else if (type == 'E')
4d68580a 17500 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17501 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17502 else
17503 abort ();
17504
17505 fixp->fx_file = fragp->fr_file;
17506 fixp->fx_line = fragp->fr_line;
17507
17508 /* These relocations can have an addend that won't fit in
17509 2 octets. */
17510 fixp->fx_no_overflow = 1;
17511
17512 return;
17513 }
17514
2309ddf2 17515 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
17516 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17517 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17518 {
17519 /* We generate a fixup instead of applying it right now,
17520 because if there is linker relaxation, we're going to
17521 need the relocations. */
4d68580a
RS
17522 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17523 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17524 fixp->fx_file = fragp->fr_file;
17525 fixp->fx_line = fragp->fr_line;
17526
17527 if (type == 0)
17528 return;
17529 }
17530
17531 /* Relax 16-bit branches to 32-bit branches. */
17532 if (type != 0)
17533 {
4d68580a 17534 insn = read_compressed_insn (buf, 2);
df58fc94
RS
17535
17536 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17537 insn = 0x94000000; /* beq */
17538 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17539 {
17540 unsigned long regno;
17541
17542 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17543 regno = micromips_to_32_reg_d_map [regno];
17544 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17545 insn |= regno << MICROMIPSOP_SH_RS;
17546 }
17547 else
17548 abort ();
17549
17550 /* Nothing else to do, just write it out. */
17551 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17552 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17553 {
4d68580a
RS
17554 buf = write_compressed_insn (buf, insn, 4);
17555 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17556 return;
17557 }
17558 }
17559 else
4d68580a 17560 insn = read_compressed_insn (buf, 4);
df58fc94
RS
17561
17562 /* Relax 32-bit branches to a sequence of instructions. */
17563 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17564 _("relaxed out-of-range branch into a jump"));
df58fc94 17565
2309ddf2
MR
17566 /* Set the short-delay-slot bit. */
17567 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
17568
17569 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17570 {
17571 symbolS *l;
17572
17573 /* Reverse the branch. */
17574 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17575 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17576 insn ^= 0x20000000;
17577 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17578 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17579 || (insn & 0xffe00000) == 0x40800000 /* blez */
17580 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17581 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17582 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17583 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17584 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17585 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17586 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17587 insn ^= 0x00400000;
17588 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17589 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17590 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17591 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17592 insn ^= 0x00200000;
56d438b1
CF
17593 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17594 BNZ.df */
17595 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17596 BNZ.V */
17597 insn ^= 0x00800000;
df58fc94
RS
17598 else
17599 abort ();
17600
17601 if (al)
17602 {
17603 /* Clear the and-link and short-delay-slot bits. */
17604 gas_assert ((insn & 0xfda00000) == 0x40200000);
17605
17606 /* bltzal 0x40200000 bgezal 0x40600000 */
17607 /* bltzals 0x42200000 bgezals 0x42600000 */
17608 insn &= ~0x02200000;
17609 }
17610
17611 /* Make a label at the end for use with the branch. */
17612 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17613 micromips_label_inc ();
f3ded42a 17614 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
17615
17616 /* Refer to it. */
4d68580a
RS
17617 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17618 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17619 fixp->fx_file = fragp->fr_file;
17620 fixp->fx_line = fragp->fr_line;
17621
17622 /* Branch over the jump. */
4d68580a 17623 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17624 if (!compact)
4d68580a
RS
17625 /* nop */
17626 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17627 }
17628
17629 if (mips_pic == NO_PIC)
17630 {
2309ddf2
MR
17631 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17632
df58fc94
RS
17633 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17634 insn = al ? jal : 0xd4000000;
17635
4d68580a
RS
17636 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17637 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
17638 fixp->fx_file = fragp->fr_file;
17639 fixp->fx_line = fragp->fr_line;
17640
4d68580a 17641 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17642 if (compact)
4d68580a
RS
17643 /* nop */
17644 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17645 }
17646 else
17647 {
17648 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
17649 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17650 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
17651
17652 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17653 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17654 insn |= at << MICROMIPSOP_SH_RT;
17655
17656 if (exp.X_add_number)
17657 {
17658 exp.X_add_symbol = make_expr_symbol (&exp);
17659 exp.X_add_number = 0;
17660 }
17661
4d68580a
RS
17662 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17663 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
17664 fixp->fx_file = fragp->fr_file;
17665 fixp->fx_line = fragp->fr_line;
17666
4d68580a 17667 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17668
17669 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17670 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17671 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17672
4d68580a
RS
17673 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17674 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
17675 fixp->fx_file = fragp->fr_file;
17676 fixp->fx_line = fragp->fr_line;
17677
4d68580a 17678 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17679
17680 /* jr/jrc/jalr/jalrs $at */
17681 insn = al ? jalr : jr;
17682 insn |= at << MICROMIPSOP_SH_MJ;
17683
4d68580a 17684 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
17685 }
17686
4d68580a 17687 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17688 return;
17689 }
17690
252b5132
RH
17691 if (RELAX_MIPS16_P (fragp->fr_subtype))
17692 {
17693 int type;
3ccad066 17694 const struct mips_int_operand *operand;
252b5132 17695 offsetT val;
5c04167a
RS
17696 char *buf;
17697 unsigned int user_length, length;
252b5132 17698 unsigned long insn;
5c04167a 17699 bfd_boolean ext;
252b5132
RH
17700
17701 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17702 operand = mips16_immed_operand (type, FALSE);
252b5132 17703
5c04167a 17704 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
5f5f22c0 17705 val = resolve_symbol_value (fragp->fr_symbol);
3ccad066 17706 if (operand->root.type == OP_PCREL)
252b5132 17707 {
3ccad066 17708 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
17709 addressT addr;
17710
3ccad066 17711 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
17712 addr = fragp->fr_address + fragp->fr_fix;
17713
17714 /* The rules for the base address of a PC relative reloc are
17715 complicated; see mips16_extended_frag. */
3ccad066 17716 if (pcrel_op->include_isa_bit)
252b5132
RH
17717 {
17718 addr += 2;
17719 if (ext)
17720 addr += 2;
17721 /* Ignore the low bit in the target, since it will be
17722 set for a text label. */
3ccad066 17723 val &= -2;
252b5132
RH
17724 }
17725 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17726 addr -= 4;
17727 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17728 addr -= 2;
17729
3ccad066 17730 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
17731 val -= addr;
17732
17733 /* Make sure the section winds up with the alignment we have
17734 assumed. */
3ccad066
RS
17735 if (operand->shift > 0)
17736 record_alignment (asec, operand->shift);
252b5132
RH
17737 }
17738
17739 if (ext
17740 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17741 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17742 as_warn_where (fragp->fr_file, fragp->fr_line,
17743 _("extended instruction in delay slot"));
17744
5c04167a 17745 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 17746
4d68580a 17747 insn = read_compressed_insn (buf, 2);
5c04167a
RS
17748 if (ext)
17749 insn |= MIPS16_EXTEND;
252b5132 17750
5c04167a
RS
17751 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17752 user_length = 4;
17753 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17754 user_length = 2;
17755 else
17756 user_length = 0;
17757
43c0598f 17758 mips16_immed (fragp->fr_file, fragp->fr_line, type,
c150d1d2 17759 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 17760
5c04167a
RS
17761 length = (ext ? 4 : 2);
17762 gas_assert (mips16_opcode_length (insn) == length);
17763 write_compressed_insn (buf, insn, length);
17764 fragp->fr_fix += length;
252b5132
RH
17765 }
17766 else
17767 {
df58fc94
RS
17768 relax_substateT subtype = fragp->fr_subtype;
17769 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17770 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
17771 int first, second;
17772 fixS *fixp;
252b5132 17773
df58fc94
RS
17774 first = RELAX_FIRST (subtype);
17775 second = RELAX_SECOND (subtype);
4d7206a2 17776 fixp = (fixS *) fragp->fr_opcode;
252b5132 17777
df58fc94
RS
17778 /* If the delay slot chosen does not match the size of the instruction,
17779 then emit a warning. */
17780 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17781 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17782 {
17783 relax_substateT s;
17784 const char *msg;
17785
17786 s = subtype & (RELAX_DELAY_SLOT_16BIT
17787 | RELAX_DELAY_SLOT_SIZE_FIRST
17788 | RELAX_DELAY_SLOT_SIZE_SECOND);
17789 msg = macro_warning (s);
17790 if (msg != NULL)
db9b2be4 17791 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
17792 subtype &= ~s;
17793 }
17794
584892a6 17795 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 17796 if (use_second == second_longer)
584892a6 17797 {
df58fc94
RS
17798 relax_substateT s;
17799 const char *msg;
17800
17801 s = (subtype
17802 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17803 msg = macro_warning (s);
17804 if (msg != NULL)
db9b2be4 17805 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 17806 subtype &= ~s;
584892a6
RS
17807 }
17808
4d7206a2
RS
17809 /* Go through all the fixups for the first sequence. Disable them
17810 (by marking them as done) if we're going to use the second
17811 sequence instead. */
17812 while (fixp
17813 && fixp->fx_frag == fragp
17814 && fixp->fx_where < fragp->fr_fix - second)
17815 {
df58fc94 17816 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17817 fixp->fx_done = 1;
17818 fixp = fixp->fx_next;
17819 }
252b5132 17820
4d7206a2
RS
17821 /* Go through the fixups for the second sequence. Disable them if
17822 we're going to use the first sequence, otherwise adjust their
17823 addresses to account for the relaxation. */
17824 while (fixp && fixp->fx_frag == fragp)
17825 {
df58fc94 17826 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17827 fixp->fx_where -= first;
17828 else
17829 fixp->fx_done = 1;
17830 fixp = fixp->fx_next;
17831 }
17832
17833 /* Now modify the frag contents. */
df58fc94 17834 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17835 {
17836 char *start;
17837
17838 start = fragp->fr_literal + fragp->fr_fix - first - second;
17839 memmove (start, start + first, second);
17840 fragp->fr_fix -= first;
17841 }
17842 else
17843 fragp->fr_fix -= second;
252b5132
RH
17844 }
17845}
17846
252b5132
RH
17847/* This function is called after the relocs have been generated.
17848 We've been storing mips16 text labels as odd. Here we convert them
17849 back to even for the convenience of the debugger. */
17850
17851void
17a2f251 17852mips_frob_file_after_relocs (void)
252b5132
RH
17853{
17854 asymbol **syms;
17855 unsigned int count, i;
17856
252b5132
RH
17857 syms = bfd_get_outsymbols (stdoutput);
17858 count = bfd_get_symcount (stdoutput);
17859 for (i = 0; i < count; i++, syms++)
df58fc94
RS
17860 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17861 && ((*syms)->value & 1) != 0)
17862 {
17863 (*syms)->value &= ~1;
17864 /* If the symbol has an odd size, it was probably computed
17865 incorrectly, so adjust that as well. */
17866 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17867 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17868 }
252b5132
RH
17869}
17870
a1facbec
MR
17871/* This function is called whenever a label is defined, including fake
17872 labels instantiated off the dot special symbol. It is used when
17873 handling branch delays; if a branch has a label, we assume we cannot
17874 move it. This also bumps the value of the symbol by 1 in compressed
17875 code. */
252b5132 17876
e1b47bd5 17877static void
a1facbec 17878mips_record_label (symbolS *sym)
252b5132 17879{
a8dbcb85 17880 segment_info_type *si = seg_info (now_seg);
252b5132
RH
17881 struct insn_label_list *l;
17882
17883 if (free_insn_labels == NULL)
17884 l = (struct insn_label_list *) xmalloc (sizeof *l);
17885 else
17886 {
17887 l = free_insn_labels;
17888 free_insn_labels = l->next;
17889 }
17890
17891 l->label = sym;
a8dbcb85
TS
17892 l->next = si->label_list;
17893 si->label_list = l;
a1facbec 17894}
07a53e5c 17895
a1facbec
MR
17896/* This function is called as tc_frob_label() whenever a label is defined
17897 and adds a DWARF-2 record we only want for true labels. */
17898
17899void
17900mips_define_label (symbolS *sym)
17901{
17902 mips_record_label (sym);
07a53e5c 17903 dwarf2_emit_label (sym);
252b5132 17904}
e1b47bd5
RS
17905
17906/* This function is called by tc_new_dot_label whenever a new dot symbol
17907 is defined. */
17908
17909void
17910mips_add_dot_label (symbolS *sym)
17911{
17912 mips_record_label (sym);
17913 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17914 mips_compressed_mark_label (sym);
17915}
252b5132 17916\f
351cdf24
MF
17917/* Converting ASE flags from internal to .MIPS.abiflags values. */
17918static unsigned int
17919mips_convert_ase_flags (int ase)
17920{
17921 unsigned int ext_ases = 0;
17922
17923 if (ase & ASE_DSP)
17924 ext_ases |= AFL_ASE_DSP;
17925 if (ase & ASE_DSPR2)
17926 ext_ases |= AFL_ASE_DSPR2;
17927 if (ase & ASE_EVA)
17928 ext_ases |= AFL_ASE_EVA;
17929 if (ase & ASE_MCU)
17930 ext_ases |= AFL_ASE_MCU;
17931 if (ase & ASE_MDMX)
17932 ext_ases |= AFL_ASE_MDMX;
17933 if (ase & ASE_MIPS3D)
17934 ext_ases |= AFL_ASE_MIPS3D;
17935 if (ase & ASE_MT)
17936 ext_ases |= AFL_ASE_MT;
17937 if (ase & ASE_SMARTMIPS)
17938 ext_ases |= AFL_ASE_SMARTMIPS;
17939 if (ase & ASE_VIRT)
17940 ext_ases |= AFL_ASE_VIRT;
17941 if (ase & ASE_MSA)
17942 ext_ases |= AFL_ASE_MSA;
17943 if (ase & ASE_XPA)
17944 ext_ases |= AFL_ASE_XPA;
17945
17946 return ext_ases;
17947}
252b5132
RH
17948/* Some special processing for a MIPS ELF file. */
17949
17950void
17a2f251 17951mips_elf_final_processing (void)
252b5132 17952{
351cdf24
MF
17953 int fpabi;
17954 Elf_Internal_ABIFlags_v0 flags;
17955
17956 flags.version = 0;
17957 flags.isa_rev = 0;
17958 switch (file_mips_opts.isa)
17959 {
17960 case INSN_ISA1:
17961 flags.isa_level = 1;
17962 break;
17963 case INSN_ISA2:
17964 flags.isa_level = 2;
17965 break;
17966 case INSN_ISA3:
17967 flags.isa_level = 3;
17968 break;
17969 case INSN_ISA4:
17970 flags.isa_level = 4;
17971 break;
17972 case INSN_ISA5:
17973 flags.isa_level = 5;
17974 break;
17975 case INSN_ISA32:
17976 flags.isa_level = 32;
17977 flags.isa_rev = 1;
17978 break;
17979 case INSN_ISA32R2:
17980 flags.isa_level = 32;
17981 flags.isa_rev = 2;
17982 break;
17983 case INSN_ISA32R3:
17984 flags.isa_level = 32;
17985 flags.isa_rev = 3;
17986 break;
17987 case INSN_ISA32R5:
17988 flags.isa_level = 32;
17989 flags.isa_rev = 5;
17990 break;
09c14161
MF
17991 case INSN_ISA32R6:
17992 flags.isa_level = 32;
17993 flags.isa_rev = 6;
17994 break;
351cdf24
MF
17995 case INSN_ISA64:
17996 flags.isa_level = 64;
17997 flags.isa_rev = 1;
17998 break;
17999 case INSN_ISA64R2:
18000 flags.isa_level = 64;
18001 flags.isa_rev = 2;
18002 break;
18003 case INSN_ISA64R3:
18004 flags.isa_level = 64;
18005 flags.isa_rev = 3;
18006 break;
18007 case INSN_ISA64R5:
18008 flags.isa_level = 64;
18009 flags.isa_rev = 5;
18010 break;
09c14161
MF
18011 case INSN_ISA64R6:
18012 flags.isa_level = 64;
18013 flags.isa_rev = 6;
18014 break;
351cdf24
MF
18015 }
18016
18017 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18018 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18019 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18020 : (file_mips_opts.fp == 64) ? AFL_REG_64
18021 : AFL_REG_32;
18022 flags.cpr2_size = AFL_REG_NONE;
18023 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18024 Tag_GNU_MIPS_ABI_FP);
18025 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18026 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18027 if (file_ase_mips16)
18028 flags.ases |= AFL_ASE_MIPS16;
18029 if (file_ase_micromips)
18030 flags.ases |= AFL_ASE_MICROMIPS;
18031 flags.flags1 = 0;
18032 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18033 || file_mips_opts.fp == 64)
18034 && file_mips_opts.oddspreg)
18035 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18036 flags.flags2 = 0;
18037
18038 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18039 ((Elf_External_ABIFlags_v0 *)
18040 mips_flags_frag));
18041
252b5132 18042 /* Write out the register information. */
316f5878 18043 if (mips_abi != N64_ABI)
252b5132
RH
18044 {
18045 Elf32_RegInfo s;
18046
18047 s.ri_gprmask = mips_gprmask;
18048 s.ri_cprmask[0] = mips_cprmask[0];
18049 s.ri_cprmask[1] = mips_cprmask[1];
18050 s.ri_cprmask[2] = mips_cprmask[2];
18051 s.ri_cprmask[3] = mips_cprmask[3];
18052 /* The gp_value field is set by the MIPS ELF backend. */
18053
18054 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18055 ((Elf32_External_RegInfo *)
18056 mips_regmask_frag));
18057 }
18058 else
18059 {
18060 Elf64_Internal_RegInfo s;
18061
18062 s.ri_gprmask = mips_gprmask;
18063 s.ri_pad = 0;
18064 s.ri_cprmask[0] = mips_cprmask[0];
18065 s.ri_cprmask[1] = mips_cprmask[1];
18066 s.ri_cprmask[2] = mips_cprmask[2];
18067 s.ri_cprmask[3] = mips_cprmask[3];
18068 /* The gp_value field is set by the MIPS ELF backend. */
18069
18070 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18071 ((Elf64_External_RegInfo *)
18072 mips_regmask_frag));
18073 }
18074
18075 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18076 sort of BFD interface for this. */
18077 if (mips_any_noreorder)
18078 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18079 if (mips_pic != NO_PIC)
143d77c5 18080 {
8b828383 18081 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18082 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18083 }
18084 if (mips_abicalls)
18085 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18086
b015e599
AP
18087 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18088 defined at present; this might need to change in future. */
a4672219
TS
18089 if (file_ase_mips16)
18090 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18091 if (file_ase_micromips)
18092 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18093 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18094 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18095
bdaaa2e1 18096 /* Set the MIPS ELF ABI flags. */
316f5878 18097 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18098 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18099 else if (mips_abi == O64_ABI)
252b5132 18100 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18101 else if (mips_abi == EABI_ABI)
252b5132 18102 {
bad1aba3 18103 if (file_mips_opts.gp == 64)
252b5132
RH
18104 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18105 else
18106 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18107 }
316f5878 18108 else if (mips_abi == N32_ABI)
be00bddd
TS
18109 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18110
c9914766 18111 /* Nothing to do for N64_ABI. */
252b5132
RH
18112
18113 if (mips_32bitmode)
18114 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18115
7361da2c 18116 if (mips_nan2008 == 1)
ba92f887
MR
18117 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18118
ad3fea08 18119 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18120 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18121 Tag_GNU_MIPS_ABI_FP);
18122 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18123 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18124}
252b5132 18125\f
beae10d5 18126typedef struct proc {
9b2f1d35
EC
18127 symbolS *func_sym;
18128 symbolS *func_end_sym;
beae10d5
KH
18129 unsigned long reg_mask;
18130 unsigned long reg_offset;
18131 unsigned long fpreg_mask;
18132 unsigned long fpreg_offset;
18133 unsigned long frame_offset;
18134 unsigned long frame_reg;
18135 unsigned long pc_reg;
18136} procS;
252b5132
RH
18137
18138static procS cur_proc;
18139static procS *cur_proc_ptr;
18140static int numprocs;
18141
df58fc94
RS
18142/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18143 as "2", and a normal nop as "0". */
18144
18145#define NOP_OPCODE_MIPS 0
18146#define NOP_OPCODE_MIPS16 1
18147#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18148
18149char
18150mips_nop_opcode (void)
18151{
df58fc94
RS
18152 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18153 return NOP_OPCODE_MICROMIPS;
18154 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18155 return NOP_OPCODE_MIPS16;
18156 else
18157 return NOP_OPCODE_MIPS;
742a56fe
RS
18158}
18159
df58fc94
RS
18160/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18161 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18162
0a9ef439 18163void
17a2f251 18164mips_handle_align (fragS *fragp)
a19d8eb0 18165{
df58fc94 18166 char nop_opcode;
742a56fe 18167 char *p;
c67a084a
NC
18168 int bytes, size, excess;
18169 valueT opcode;
742a56fe 18170
0a9ef439
RH
18171 if (fragp->fr_type != rs_align_code)
18172 return;
18173
742a56fe 18174 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18175 nop_opcode = *p;
18176 switch (nop_opcode)
a19d8eb0 18177 {
df58fc94
RS
18178 case NOP_OPCODE_MICROMIPS:
18179 opcode = micromips_nop32_insn.insn_opcode;
18180 size = 4;
18181 break;
18182 case NOP_OPCODE_MIPS16:
c67a084a
NC
18183 opcode = mips16_nop_insn.insn_opcode;
18184 size = 2;
df58fc94
RS
18185 break;
18186 case NOP_OPCODE_MIPS:
18187 default:
c67a084a
NC
18188 opcode = nop_insn.insn_opcode;
18189 size = 4;
df58fc94 18190 break;
c67a084a 18191 }
a19d8eb0 18192
c67a084a
NC
18193 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18194 excess = bytes % size;
df58fc94
RS
18195
18196 /* Handle the leading part if we're not inserting a whole number of
18197 instructions, and make it the end of the fixed part of the frag.
18198 Try to fit in a short microMIPS NOP if applicable and possible,
18199 and use zeroes otherwise. */
18200 gas_assert (excess < 4);
18201 fragp->fr_fix += excess;
18202 switch (excess)
c67a084a 18203 {
df58fc94
RS
18204 case 3:
18205 *p++ = '\0';
18206 /* Fall through. */
18207 case 2:
833794fc 18208 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18209 {
4d68580a 18210 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18211 break;
18212 }
18213 *p++ = '\0';
18214 /* Fall through. */
18215 case 1:
18216 *p++ = '\0';
18217 /* Fall through. */
18218 case 0:
18219 break;
a19d8eb0 18220 }
c67a084a
NC
18221
18222 md_number_to_chars (p, opcode, size);
18223 fragp->fr_var = size;
a19d8eb0
CP
18224}
18225
252b5132 18226static long
17a2f251 18227get_number (void)
252b5132
RH
18228{
18229 int negative = 0;
18230 long val = 0;
18231
18232 if (*input_line_pointer == '-')
18233 {
18234 ++input_line_pointer;
18235 negative = 1;
18236 }
3882b010 18237 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18238 as_bad (_("expected simple number"));
252b5132
RH
18239 if (input_line_pointer[0] == '0')
18240 {
18241 if (input_line_pointer[1] == 'x')
18242 {
18243 input_line_pointer += 2;
3882b010 18244 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18245 {
18246 val <<= 4;
18247 val |= hex_value (*input_line_pointer++);
18248 }
18249 return negative ? -val : val;
18250 }
18251 else
18252 {
18253 ++input_line_pointer;
3882b010 18254 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18255 {
18256 val <<= 3;
18257 val |= *input_line_pointer++ - '0';
18258 }
18259 return negative ? -val : val;
18260 }
18261 }
3882b010 18262 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18263 {
18264 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18265 *input_line_pointer, *input_line_pointer);
956cd1d6 18266 as_warn (_("invalid number"));
252b5132
RH
18267 return -1;
18268 }
3882b010 18269 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18270 {
18271 val *= 10;
18272 val += *input_line_pointer++ - '0';
18273 }
18274 return negative ? -val : val;
18275}
18276
18277/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18278 is an initial number which is the ECOFF file index. In the non-ECOFF
18279 case .file implies DWARF-2. */
18280
18281static void
17a2f251 18282s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18283{
ecb4347a
DJ
18284 static int first_file_directive = 0;
18285
c5dd6aab
DJ
18286 if (ECOFF_DEBUGGING)
18287 {
18288 get_number ();
18289 s_app_file (0);
18290 }
18291 else
ecb4347a
DJ
18292 {
18293 char *filename;
18294
18295 filename = dwarf2_directive_file (0);
18296
18297 /* Versions of GCC up to 3.1 start files with a ".file"
18298 directive even for stabs output. Make sure that this
18299 ".file" is handled. Note that you need a version of GCC
18300 after 3.1 in order to support DWARF-2 on MIPS. */
18301 if (filename != NULL && ! first_file_directive)
18302 {
18303 (void) new_logical_line (filename, -1);
c04f5787 18304 s_app_file_string (filename, 0);
ecb4347a
DJ
18305 }
18306 first_file_directive = 1;
18307 }
c5dd6aab
DJ
18308}
18309
18310/* The .loc directive, implying DWARF-2. */
252b5132
RH
18311
18312static void
17a2f251 18313s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18314{
c5dd6aab
DJ
18315 if (!ECOFF_DEBUGGING)
18316 dwarf2_directive_loc (0);
252b5132
RH
18317}
18318
252b5132
RH
18319/* The .end directive. */
18320
18321static void
17a2f251 18322s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
18323{
18324 symbolS *p;
252b5132 18325
7a621144
DJ
18326 /* Following functions need their own .frame and .cprestore directives. */
18327 mips_frame_reg_valid = 0;
18328 mips_cprestore_valid = 0;
18329
252b5132
RH
18330 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18331 {
18332 p = get_symbol ();
18333 demand_empty_rest_of_line ();
18334 }
18335 else
18336 p = NULL;
18337
14949570 18338 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
18339 as_warn (_(".end not in text section"));
18340
18341 if (!cur_proc_ptr)
18342 {
1661c76c 18343 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
18344 demand_empty_rest_of_line ();
18345 return;
18346 }
18347
18348 if (p != NULL)
18349 {
9c2799c2 18350 gas_assert (S_GET_NAME (p));
9b2f1d35 18351 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 18352 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
18353
18354 if (debug_type == DEBUG_STABS)
18355 stabs_generate_asm_endfunc (S_GET_NAME (p),
18356 S_GET_NAME (p));
252b5132
RH
18357 }
18358 else
18359 as_warn (_(".end directive missing or unknown symbol"));
18360
9b2f1d35
EC
18361 /* Create an expression to calculate the size of the function. */
18362 if (p && cur_proc_ptr)
18363 {
18364 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18365 expressionS *exp = xmalloc (sizeof (expressionS));
18366
18367 obj->size = exp;
18368 exp->X_op = O_subtract;
18369 exp->X_add_symbol = symbol_temp_new_now ();
18370 exp->X_op_symbol = p;
18371 exp->X_add_number = 0;
18372
18373 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18374 }
18375
ecb4347a 18376 /* Generate a .pdr section. */
f3ded42a 18377 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
18378 {
18379 segT saved_seg = now_seg;
18380 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
18381 expressionS exp;
18382 char *fragp;
252b5132 18383
252b5132 18384#ifdef md_flush_pending_output
ecb4347a 18385 md_flush_pending_output ();
252b5132
RH
18386#endif
18387
9c2799c2 18388 gas_assert (pdr_seg);
ecb4347a 18389 subseg_set (pdr_seg, 0);
252b5132 18390
ecb4347a
DJ
18391 /* Write the symbol. */
18392 exp.X_op = O_symbol;
18393 exp.X_add_symbol = p;
18394 exp.X_add_number = 0;
18395 emit_expr (&exp, 4);
252b5132 18396
ecb4347a 18397 fragp = frag_more (7 * 4);
252b5132 18398
17a2f251
TS
18399 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18400 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18401 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18402 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18403 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18404 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18405 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 18406
ecb4347a
DJ
18407 subseg_set (saved_seg, saved_subseg);
18408 }
252b5132
RH
18409
18410 cur_proc_ptr = NULL;
18411}
18412
18413/* The .aent and .ent directives. */
18414
18415static void
17a2f251 18416s_mips_ent (int aent)
252b5132 18417{
252b5132 18418 symbolS *symbolP;
252b5132
RH
18419
18420 symbolP = get_symbol ();
18421 if (*input_line_pointer == ',')
f9419b05 18422 ++input_line_pointer;
252b5132 18423 SKIP_WHITESPACE ();
3882b010 18424 if (ISDIGIT (*input_line_pointer)
d9a62219 18425 || *input_line_pointer == '-')
874e8986 18426 get_number ();
252b5132 18427
14949570 18428 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 18429 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
18430
18431 if (!aent && cur_proc_ptr)
9a41af64 18432 as_warn (_("missing .end"));
252b5132
RH
18433
18434 if (!aent)
18435 {
7a621144
DJ
18436 /* This function needs its own .frame and .cprestore directives. */
18437 mips_frame_reg_valid = 0;
18438 mips_cprestore_valid = 0;
18439
252b5132
RH
18440 cur_proc_ptr = &cur_proc;
18441 memset (cur_proc_ptr, '\0', sizeof (procS));
18442
9b2f1d35 18443 cur_proc_ptr->func_sym = symbolP;
252b5132 18444
f9419b05 18445 ++numprocs;
ecb4347a
DJ
18446
18447 if (debug_type == DEBUG_STABS)
18448 stabs_generate_asm_func (S_GET_NAME (symbolP),
18449 S_GET_NAME (symbolP));
252b5132
RH
18450 }
18451
7c0fc524
MR
18452 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18453
252b5132
RH
18454 demand_empty_rest_of_line ();
18455}
18456
18457/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 18458 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 18459 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 18460 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
18461 symbol table (in the mdebug section). */
18462
18463static void
17a2f251 18464s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 18465{
f3ded42a
RS
18466 if (ECOFF_DEBUGGING)
18467 s_ignore (ignore);
18468 else
ecb4347a
DJ
18469 {
18470 long val;
252b5132 18471
ecb4347a
DJ
18472 if (cur_proc_ptr == (procS *) NULL)
18473 {
18474 as_warn (_(".frame outside of .ent"));
18475 demand_empty_rest_of_line ();
18476 return;
18477 }
252b5132 18478
ecb4347a
DJ
18479 cur_proc_ptr->frame_reg = tc_get_register (1);
18480
18481 SKIP_WHITESPACE ();
18482 if (*input_line_pointer++ != ','
18483 || get_absolute_expression_and_terminator (&val) != ',')
18484 {
1661c76c 18485 as_warn (_("bad .frame directive"));
ecb4347a
DJ
18486 --input_line_pointer;
18487 demand_empty_rest_of_line ();
18488 return;
18489 }
252b5132 18490
ecb4347a
DJ
18491 cur_proc_ptr->frame_offset = val;
18492 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 18493
252b5132 18494 demand_empty_rest_of_line ();
252b5132 18495 }
252b5132
RH
18496}
18497
bdaaa2e1
KH
18498/* The .fmask and .mask directives. If the mdebug section is present
18499 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 18500 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 18501 information correctly. We can't use the ecoff routines because they
252b5132
RH
18502 make reference to the ecoff symbol table (in the mdebug section). */
18503
18504static void
17a2f251 18505s_mips_mask (int reg_type)
252b5132 18506{
f3ded42a
RS
18507 if (ECOFF_DEBUGGING)
18508 s_ignore (reg_type);
18509 else
252b5132 18510 {
ecb4347a 18511 long mask, off;
252b5132 18512
ecb4347a
DJ
18513 if (cur_proc_ptr == (procS *) NULL)
18514 {
18515 as_warn (_(".mask/.fmask outside of .ent"));
18516 demand_empty_rest_of_line ();
18517 return;
18518 }
252b5132 18519
ecb4347a
DJ
18520 if (get_absolute_expression_and_terminator (&mask) != ',')
18521 {
1661c76c 18522 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
18523 --input_line_pointer;
18524 demand_empty_rest_of_line ();
18525 return;
18526 }
252b5132 18527
ecb4347a
DJ
18528 off = get_absolute_expression ();
18529
18530 if (reg_type == 'F')
18531 {
18532 cur_proc_ptr->fpreg_mask = mask;
18533 cur_proc_ptr->fpreg_offset = off;
18534 }
18535 else
18536 {
18537 cur_proc_ptr->reg_mask = mask;
18538 cur_proc_ptr->reg_offset = off;
18539 }
18540
18541 demand_empty_rest_of_line ();
252b5132 18542 }
252b5132
RH
18543}
18544
316f5878
RS
18545/* A table describing all the processors gas knows about. Names are
18546 matched in the order listed.
e7af610e 18547
316f5878
RS
18548 To ease comparison, please keep this table in the same order as
18549 gcc's mips_cpu_info_table[]. */
e972090a
NC
18550static const struct mips_cpu_info mips_cpu_info_table[] =
18551{
316f5878 18552 /* Entries for generic ISAs */
d16afab6
RS
18553 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18554 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18555 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18556 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18557 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18558 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18559 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
18560 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18561 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 18562 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
18563 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18564 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
18565 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18566 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 18567 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
18568
18569 /* MIPS I */
d16afab6
RS
18570 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18571 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18572 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
18573
18574 /* MIPS II */
d16afab6 18575 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
18576
18577 /* MIPS III */
d16afab6
RS
18578 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18579 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18580 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18581 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18582 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18583 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18584 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18585 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18586 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18587 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18588 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18589 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18590 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 18591 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
18592 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18593 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
18594
18595 /* MIPS IV */
d16afab6
RS
18596 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18597 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18598 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18599 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18600 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18601 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18602 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18603 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18604 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18605 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18606 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18607 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18608 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18609 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18610 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
18611
18612 /* MIPS 32 */
d16afab6
RS
18613 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18614 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18615 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18616 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
18617
18618 /* MIPS 32 Release 2 */
d16afab6
RS
18619 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18620 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18621 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18622 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18623 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18624 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18625 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18626 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18627 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18628 ISA_MIPS32R2, CPU_MIPS32R2 },
18629 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18630 ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18632 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18633 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18634 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18635 /* Deprecated forms of the above. */
d16afab6
RS
18636 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18637 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18638 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
18639 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18641 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18643 /* Deprecated forms of the above. */
d16afab6
RS
18644 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18646 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
18647 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18648 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18649 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18651 /* Deprecated forms of the above. */
d16afab6
RS
18652 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 18654 /* 34Kn is a 34kc without DSP. */
d16afab6 18655 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18656 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
18657 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18659 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18660 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18661 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18662 /* Deprecated forms of the above. */
d16afab6
RS
18663 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 18665 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
18666 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
18670 /* interaptiv is the new name for 1004kf */
18671 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
18672 /* M5100 family */
18673 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18674 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 18675 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
ae52f483 18676 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 18677
316f5878 18678 /* MIPS 64 */
d16afab6
RS
18679 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18680 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18681 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18682 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 18683
c7a23324 18684 /* Broadcom SB-1 CPU core */
d16afab6 18685 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 18686 /* Broadcom SB-1A CPU core */
d16afab6 18687 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 18688
4ba154f5 18689 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 18690
ed163775
MR
18691 /* MIPS 64 Release 2 */
18692
967344c6 18693 /* Cavium Networks Octeon CPU core */
d16afab6
RS
18694 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18695 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18696 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 18697 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 18698
52b6b6b9 18699 /* RMI Xlr */
d16afab6 18700 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 18701
55a36193
MK
18702 /* Broadcom XLP.
18703 XLP is mostly like XLR, with the prominent exception that it is
18704 MIPS64R2 rather than MIPS64. */
d16afab6 18705 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 18706
7ef0d297
AB
18707 /* i6400. */
18708 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18709
316f5878 18710 /* End marker */
d16afab6 18711 { NULL, 0, 0, 0, 0 }
316f5878 18712};
e7af610e 18713
84ea6cf2 18714
316f5878
RS
18715/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18716 with a final "000" replaced by "k". Ignore case.
e7af610e 18717
316f5878 18718 Note: this function is shared between GCC and GAS. */
c6c98b38 18719
b34976b6 18720static bfd_boolean
17a2f251 18721mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18722{
18723 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18724 given++, canonical++;
18725
18726 return ((*given == 0 && *canonical == 0)
18727 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18728}
18729
18730
18731/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18732 CPU name. We've traditionally allowed a lot of variation here.
18733
18734 Note: this function is shared between GCC and GAS. */
18735
b34976b6 18736static bfd_boolean
17a2f251 18737mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18738{
18739 /* First see if the name matches exactly, or with a final "000"
18740 turned into "k". */
18741 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 18742 return TRUE;
316f5878
RS
18743
18744 /* If not, try comparing based on numerical designation alone.
18745 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18746 if (TOLOWER (*given) == 'r')
18747 given++;
18748 if (!ISDIGIT (*given))
b34976b6 18749 return FALSE;
316f5878
RS
18750
18751 /* Skip over some well-known prefixes in the canonical name,
18752 hoping to find a number there too. */
18753 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18754 canonical += 2;
18755 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18756 canonical += 2;
18757 else if (TOLOWER (canonical[0]) == 'r')
18758 canonical += 1;
18759
18760 return mips_strict_matching_cpu_name_p (canonical, given);
18761}
18762
18763
18764/* Parse an option that takes the name of a processor as its argument.
18765 OPTION is the name of the option and CPU_STRING is the argument.
18766 Return the corresponding processor enumeration if the CPU_STRING is
18767 recognized, otherwise report an error and return null.
18768
18769 A similar function exists in GCC. */
e7af610e
NC
18770
18771static const struct mips_cpu_info *
17a2f251 18772mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 18773{
316f5878 18774 const struct mips_cpu_info *p;
e7af610e 18775
316f5878
RS
18776 /* 'from-abi' selects the most compatible architecture for the given
18777 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18778 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18779 version. Look first at the -mgp options, if given, otherwise base
18780 the choice on MIPS_DEFAULT_64BIT.
e7af610e 18781
316f5878
RS
18782 Treat NO_ABI like the EABIs. One reason to do this is that the
18783 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18784 architecture. This code picks MIPS I for 'mips' and MIPS III for
18785 'mips64', just as we did in the days before 'from-abi'. */
18786 if (strcasecmp (cpu_string, "from-abi") == 0)
18787 {
18788 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18789 return mips_cpu_info_from_isa (ISA_MIPS1);
18790
18791 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18792 return mips_cpu_info_from_isa (ISA_MIPS3);
18793
bad1aba3 18794 if (file_mips_opts.gp >= 0)
18795 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 18796 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
18797
18798 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18799 ? ISA_MIPS3
18800 : ISA_MIPS1);
18801 }
18802
18803 /* 'default' has traditionally been a no-op. Probably not very useful. */
18804 if (strcasecmp (cpu_string, "default") == 0)
18805 return 0;
18806
18807 for (p = mips_cpu_info_table; p->name != 0; p++)
18808 if (mips_matching_cpu_name_p (p->name, cpu_string))
18809 return p;
18810
1661c76c 18811 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 18812 return 0;
e7af610e
NC
18813}
18814
316f5878
RS
18815/* Return the canonical processor information for ISA (a member of the
18816 ISA_MIPS* enumeration). */
18817
e7af610e 18818static const struct mips_cpu_info *
17a2f251 18819mips_cpu_info_from_isa (int isa)
e7af610e
NC
18820{
18821 int i;
18822
18823 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 18824 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 18825 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
18826 return (&mips_cpu_info_table[i]);
18827
e972090a 18828 return NULL;
e7af610e 18829}
fef14a42
TS
18830
18831static const struct mips_cpu_info *
17a2f251 18832mips_cpu_info_from_arch (int arch)
fef14a42
TS
18833{
18834 int i;
18835
18836 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18837 if (arch == mips_cpu_info_table[i].cpu)
18838 return (&mips_cpu_info_table[i]);
18839
18840 return NULL;
18841}
316f5878
RS
18842\f
18843static void
17a2f251 18844show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
18845{
18846 if (*first_p)
18847 {
18848 fprintf (stream, "%24s", "");
18849 *col_p = 24;
18850 }
18851 else
18852 {
18853 fprintf (stream, ", ");
18854 *col_p += 2;
18855 }
e7af610e 18856
316f5878
RS
18857 if (*col_p + strlen (string) > 72)
18858 {
18859 fprintf (stream, "\n%24s", "");
18860 *col_p = 24;
18861 }
18862
18863 fprintf (stream, "%s", string);
18864 *col_p += strlen (string);
18865
18866 *first_p = 0;
18867}
18868
18869void
17a2f251 18870md_show_usage (FILE *stream)
e7af610e 18871{
316f5878
RS
18872 int column, first;
18873 size_t i;
18874
18875 fprintf (stream, _("\
18876MIPS options:\n\
316f5878
RS
18877-EB generate big endian output\n\
18878-EL generate little endian output\n\
18879-g, -g2 do not remove unneeded NOPs or swap branches\n\
18880-G NUM allow referencing objects up to NUM bytes\n\
18881 implicitly with the gp register [default 8]\n"));
18882 fprintf (stream, _("\
18883-mips1 generate MIPS ISA I instructions\n\
18884-mips2 generate MIPS ISA II instructions\n\
18885-mips3 generate MIPS ISA III instructions\n\
18886-mips4 generate MIPS ISA IV instructions\n\
18887-mips5 generate MIPS ISA V instructions\n\
18888-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 18889-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
18890-mips32r3 generate MIPS32 release 3 ISA instructions\n\
18891-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 18892-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 18893-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 18894-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
18895-mips64r3 generate MIPS64 release 3 ISA instructions\n\
18896-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 18897-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
18898-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18899
18900 first = 1;
e7af610e
NC
18901
18902 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
18903 show (stream, mips_cpu_info_table[i].name, &column, &first);
18904 show (stream, "from-abi", &column, &first);
18905 fputc ('\n', stream);
e7af610e 18906
316f5878
RS
18907 fprintf (stream, _("\
18908-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18909-no-mCPU don't generate code specific to CPU.\n\
18910 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18911
18912 first = 1;
18913
18914 show (stream, "3900", &column, &first);
18915 show (stream, "4010", &column, &first);
18916 show (stream, "4100", &column, &first);
18917 show (stream, "4650", &column, &first);
18918 fputc ('\n', stream);
18919
18920 fprintf (stream, _("\
18921-mips16 generate mips16 instructions\n\
18922-no-mips16 do not generate mips16 instructions\n"));
18923 fprintf (stream, _("\
df58fc94
RS
18924-mmicromips generate microMIPS instructions\n\
18925-mno-micromips do not generate microMIPS instructions\n"));
18926 fprintf (stream, _("\
e16bfa71 18927-msmartmips generate smartmips instructions\n\
3739860c 18928-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 18929 fprintf (stream, _("\
74cd071d
CF
18930-mdsp generate DSP instructions\n\
18931-mno-dsp do not generate DSP instructions\n"));
18932 fprintf (stream, _("\
8b082fb1
TS
18933-mdspr2 generate DSP R2 instructions\n\
18934-mno-dspr2 do not generate DSP R2 instructions\n"));
18935 fprintf (stream, _("\
ef2e4d86
CF
18936-mmt generate MT instructions\n\
18937-mno-mt do not generate MT instructions\n"));
18938 fprintf (stream, _("\
dec0624d
MR
18939-mmcu generate MCU instructions\n\
18940-mno-mcu do not generate MCU instructions\n"));
18941 fprintf (stream, _("\
56d438b1
CF
18942-mmsa generate MSA instructions\n\
18943-mno-msa do not generate MSA instructions\n"));
18944 fprintf (stream, _("\
7d64c587
AB
18945-mxpa generate eXtended Physical Address (XPA) instructions\n\
18946-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18947 fprintf (stream, _("\
b015e599
AP
18948-mvirt generate Virtualization instructions\n\
18949-mno-virt do not generate Virtualization instructions\n"));
18950 fprintf (stream, _("\
833794fc
MR
18951-minsn32 only generate 32-bit microMIPS instructions\n\
18952-mno-insn32 generate all microMIPS instructions\n"));
18953 fprintf (stream, _("\
c67a084a
NC
18954-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18955-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 18956-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 18957-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 18958-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 18959-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
18960-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18961-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 18962-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
18963-O0 remove unneeded NOPs, do not swap branches\n\
18964-O remove unneeded NOPs and swap branches\n\
316f5878
RS
18965--trap, --no-break trap exception on div by 0 and mult overflow\n\
18966--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
18967 fprintf (stream, _("\
18968-mhard-float allow floating-point instructions\n\
18969-msoft-float do not allow floating-point instructions\n\
18970-msingle-float only allow 32-bit floating-point operations\n\
18971-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 18972--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
18973--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18974-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18975
18976 first = 1;
18977
18978 show (stream, "legacy", &column, &first);
18979 show (stream, "2008", &column, &first);
18980
18981 fputc ('\n', stream);
18982
316f5878
RS
18983 fprintf (stream, _("\
18984-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 18985-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 18986-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 18987-non_shared do not generate code that can operate with DSOs\n\
316f5878 18988-xgot assume a 32 bit GOT\n\
dcd410fe 18989-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 18990-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 18991 position dependent (non shared) code\n\
316f5878
RS
18992-mabi=ABI create ABI conformant object file for:\n"));
18993
18994 first = 1;
18995
18996 show (stream, "32", &column, &first);
18997 show (stream, "o64", &column, &first);
18998 show (stream, "n32", &column, &first);
18999 show (stream, "64", &column, &first);
19000 show (stream, "eabi", &column, &first);
19001
19002 fputc ('\n', stream);
19003
19004 fprintf (stream, _("\
19005-32 create o32 ABI object file (default)\n\
19006-n32 create n32 ABI object file\n\
19007-64 create 64 ABI object file\n"));
e7af610e 19008}
14e777e0 19009
1575952e 19010#ifdef TE_IRIX
14e777e0 19011enum dwarf2_format
413a266c 19012mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19013{
369943fe 19014 if (HAVE_64BIT_SYMBOLS)
1575952e 19015 return dwarf2_format_64bit_irix;
14e777e0
KB
19016 else
19017 return dwarf2_format_32bit;
19018}
1575952e 19019#endif
73369e65
EC
19020
19021int
19022mips_dwarf2_addr_size (void)
19023{
6b6b3450 19024 if (HAVE_64BIT_OBJECTS)
73369e65 19025 return 8;
73369e65
EC
19026 else
19027 return 4;
19028}
5862107c
EC
19029
19030/* Standard calling conventions leave the CFA at SP on entry. */
19031void
19032mips_cfi_frame_initial_instructions (void)
19033{
19034 cfi_add_CFA_def_cfa_register (SP);
19035}
19036
707bfff6
TS
19037int
19038tc_mips_regname_to_dw2regnum (char *regname)
19039{
19040 unsigned int regnum = -1;
19041 unsigned int reg;
19042
19043 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19044 regnum = reg;
19045
19046 return regnum;
19047}
263b2574 19048
19049/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19050 Given a symbolic attribute NAME, return the proper integer value.
19051 Returns -1 if the attribute is not known. */
19052
19053int
19054mips_convert_symbolic_attribute (const char *name)
19055{
19056 static const struct
19057 {
19058 const char * name;
19059 const int tag;
19060 }
19061 attribute_table[] =
19062 {
19063#define T(tag) {#tag, tag}
19064 T (Tag_GNU_MIPS_ABI_FP),
19065 T (Tag_GNU_MIPS_ABI_MSA),
19066#undef T
19067 };
19068 unsigned int i;
19069
19070 if (name == NULL)
19071 return -1;
19072
19073 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19074 if (streq (name, attribute_table[i].name))
19075 return attribute_table[i].tag;
19076
19077 return -1;
19078}
fd5c94ab
RS
19079
19080void
19081md_mips_end (void)
19082{
351cdf24
MF
19083 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19084
fd5c94ab
RS
19085 mips_emit_delays ();
19086 if (cur_proc_ptr)
19087 as_warn (_("missing .end at end of assembly"));
919731af 19088
19089 /* Just in case no code was emitted, do the consistency check. */
19090 file_mips_check_options ();
351cdf24
MF
19091
19092 /* Set a floating-point ABI if the user did not. */
19093 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19094 {
19095 /* Perform consistency checks on the floating-point ABI. */
19096 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19097 Tag_GNU_MIPS_ABI_FP);
19098 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19099 check_fpabi (fpabi);
19100 }
19101 else
19102 {
19103 /* Soft-float gets precedence over single-float, the two options should
19104 not be used together so this should not matter. */
19105 if (file_mips_opts.soft_float == 1)
19106 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19107 /* Single-float gets precedence over all double_float cases. */
19108 else if (file_mips_opts.single_float == 1)
19109 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19110 else
19111 {
19112 switch (file_mips_opts.fp)
19113 {
19114 case 32:
19115 if (file_mips_opts.gp == 32)
19116 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19117 break;
19118 case 0:
19119 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19120 break;
19121 case 64:
19122 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19123 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19124 else if (file_mips_opts.gp == 32)
19125 fpabi = Val_GNU_MIPS_ABI_FP_64;
19126 else
19127 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19128 break;
19129 }
19130 }
19131
19132 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19133 Tag_GNU_MIPS_ABI_FP, fpabi);
19134 }
fd5c94ab 19135}
2f0c68f2
CM
19136
19137/* Returns the relocation type required for a particular CFI encoding. */
19138
19139bfd_reloc_code_real_type
19140mips_cfi_reloc_for_encoding (int encoding)
19141{
19142 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19143 return BFD_RELOC_32_PCREL;
19144 else return BFD_RELOC_NONE;
19145}
This page took 3.042002 seconds and 4 git commands to generate.