Implement Intel SMAP instructions
[deliverable/binutils-gdb.git] / gas / config / tc-nios2.c
CommitLineData
36591ba1
SL
1/* Altera Nios II assembler.
2 Copyright (C) 2012, 2013 Free Software Foundation, Inc.
3 Contributed by Nigel Gray (ngray@altera.com).
4 Contributed by Mentor Graphics, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23#include "as.h"
24#include "opcode/nios2.h"
25#include "elf/nios2.h"
26#include "tc-nios2.h"
27#include "bfd.h"
28#include "dwarf2dbg.h"
29#include "subsegs.h"
30#include "safe-ctype.h"
31#include "dw2gencfi.h"
32
33#ifndef OBJ_ELF
34/* We are not supporting any other target so we throw a compile time error. */
35OBJ_ELF not defined
36#endif
37
38/* We can choose our endianness at run-time, regardless of configuration. */
39extern int target_big_endian;
40
41/* This array holds the chars that always start a comment. If the
42 pre-processor is disabled, these aren't very useful. */
43const char comment_chars[] = "#";
44
45/* This array holds the chars that only start a comment at the beginning of
46 a line. If the line seems to have the form '# 123 filename'
47 .line and .file directives will appear in the pre-processed output. */
48/* Note that input_file.c hand checks for '#' at the beginning of the
49 first line of the input file. This is because the compiler outputs
50 #NO_APP at the beginning of its output. */
51/* Also note that C style comments are always supported. */
52const char line_comment_chars[] = "#";
53
54/* This array holds machine specific line separator characters. */
55const char line_separator_chars[] = ";";
56
57/* Chars that can be used to separate mant from exp in floating point nums. */
58const char EXP_CHARS[] = "eE";
59
60/* Chars that mean this number is a floating point constant. */
61/* As in 0f12.456 */
62/* or 0d1.2345e12 */
63const char FLT_CHARS[] = "rRsSfFdDxXpP";
64
65/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
66 changed in read.c. Ideally it shouldn't have to know about it at all,
67 but nothing is ideal around here. */
68
69/* Machine-dependent command-line options. */
70
71const char *md_shortopts = "r";
72
73struct option md_longopts[] = {
74#define OPTION_RELAX_ALL (OPTION_MD_BASE + 0)
75 {"relax-all", no_argument, NULL, OPTION_RELAX_ALL},
76#define OPTION_NORELAX (OPTION_MD_BASE + 1)
77 {"no-relax", no_argument, NULL, OPTION_NORELAX},
78#define OPTION_RELAX_SECTION (OPTION_MD_BASE + 2)
79 {"relax-section", no_argument, NULL, OPTION_RELAX_SECTION},
80#define OPTION_EB (OPTION_MD_BASE + 3)
81 {"EB", no_argument, NULL, OPTION_EB},
82#define OPTION_EL (OPTION_MD_BASE + 4)
83 {"EL", no_argument, NULL, OPTION_EL}
84};
85
86size_t md_longopts_size = sizeof (md_longopts);
87
88/* The assembler supports three different relaxation modes, controlled by
89 command-line options. */
90typedef enum
91{
92 relax_section = 0,
93 relax_none,
94 relax_all
95} relax_optionT;
96
97/* Struct contains all assembler options set with .set. */
98struct
99{
100 /* .set noat -> noat = 1 allows assembly code to use at without warning
101 and macro expansions generate a warning.
102 .set at -> noat = 0, assembly code using at warn but macro expansions
103 do not generate warnings. */
104 bfd_boolean noat;
105
106 /* .set nobreak -> nobreak = 1 allows assembly code to use ba,bt without
107 warning.
108 .set break -> nobreak = 0, assembly code using ba,bt warns. */
109 bfd_boolean nobreak;
110
111 /* .cmd line option -relax-all allows all branches and calls to be replaced
112 with longer versions.
113 -no-relax inhibits branch/call conversion.
114 The default value is relax_section, which relaxes branches within
115 a section. */
116 relax_optionT relax;
117
118} nios2_as_options = {FALSE, FALSE, relax_section};
119
120
121typedef struct nios2_insn_reloc
122{
123 /* Any expression in the instruction is parsed into this field,
124 which is passed to fix_new_exp() to generate a fixup. */
125 expressionS reloc_expression;
126
127 /* The type of the relocation to be applied. */
128 bfd_reloc_code_real_type reloc_type;
129
130 /* PC-relative. */
131 unsigned int reloc_pcrel;
132
133 /* The next relocation to be applied to the instruction. */
134 struct nios2_insn_reloc *reloc_next;
135} nios2_insn_relocS;
136
137/* This struct is used to hold state when assembling instructions. */
138typedef struct nios2_insn_info
139{
140 /* Assembled instruction. */
141 unsigned long insn_code;
142 /* Pointer to the relevant bit of the opcode table. */
143 const struct nios2_opcode *insn_nios2_opcode;
144 /* After parsing ptrs to the tokens in the instruction fill this array
145 it is terminated with a null pointer (hence the first +1).
146 The second +1 is because in some parts of the code the opcode
147 is not counted as a token, but still placed in this array. */
148 const char *insn_tokens[NIOS2_MAX_INSN_TOKENS + 1 + 1];
149
150 /* This holds information used to generate fixups
151 and eventually relocations if it is not null. */
152 nios2_insn_relocS *insn_reloc;
153} nios2_insn_infoS;
154
155/* This struct associates an argument assemble function with
156 an argument syntax string. Used by the assembler to find out
157 how to parse and assemble a set of instruction operands and
158 return the instruction field values. */
159typedef struct nios2_arg_info
160{
161 const char *args;
162 void (*assemble_args_func) (nios2_insn_infoS *insn_info);
163} nios2_arg_infoS;
164
165/* This struct is used to convert Nios II pseudo-ops into the
166 corresponding real op. */
167typedef struct nios2_ps_insn_info
168{
169 /* Map this pseudo_op... */
170 const char *pseudo_insn;
171
172 /* ...to this real instruction. */
173 const char *insn;
174
175 /* Call this function to modify the operands.... */
176 void (*arg_modifer_func) (char ** parsed_args, const char *arg, int num,
177 int start);
178
179 /* ...with these arguments. */
180 const char *arg_modifier;
181 int num;
182 int index;
183
184 /* If arg_modifier_func allocates new memory, provide this function
185 to free it afterwards. */
186 void (*arg_cleanup_func) (char **parsed_args, int num, int start);
187} nios2_ps_insn_infoS;
188
189/* Opcode hash table. */
190static struct hash_control *nios2_opcode_hash = NULL;
191#define nios2_opcode_lookup(NAME) \
192 ((struct nios2_opcode *) hash_find (nios2_opcode_hash, (NAME)))
193
194/* Register hash table. */
195static struct hash_control *nios2_reg_hash = NULL;
196#define nios2_reg_lookup(NAME) \
197 ((struct nios2_reg *) hash_find (nios2_reg_hash, (NAME)))
198
199/* Parse args hash table. */
200static struct hash_control *nios2_arg_hash = NULL;
201#define nios2_arg_lookup(NAME) \
202 ((nios2_arg_infoS *) hash_find (nios2_arg_hash, (NAME)))
203
204/* Pseudo-op hash table. */
205static struct hash_control *nios2_ps_hash = NULL;
206#define nios2_ps_lookup(NAME) \
207 ((nios2_ps_insn_infoS *) hash_find (nios2_ps_hash, (NAME)))
208
209/* The known current alignment of the current section. */
210static int nios2_current_align;
211static segT nios2_current_align_seg;
212
213static int nios2_auto_align_on = 1;
214
215/* The last seen label in the current section. This is used to auto-align
216 labels preceeding instructions. */
217static symbolS *nios2_last_label;
218
219#ifdef OBJ_ELF
220/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
221symbolS *GOT_symbol;
222#endif
223
224\f
225/** Utility routines. */
226/* Function md_chars_to_number takes the sequence of
227 bytes in buf and returns the corresponding value
228 in an int. n must be 1, 2 or 4. */
229static valueT
230md_chars_to_number (char *buf, int n)
231{
232 int i;
233 valueT val;
234
235 gas_assert (n == 1 || n == 2 || n == 4);
236
237 val = 0;
238 if (target_big_endian)
239 for (i = 0; i < n; ++i)
240 val = val | ((buf[i] & 0xff) << 8 * (n - (i + 1)));
241 else
242 for (i = 0; i < n; ++i)
243 val = val | ((buf[i] & 0xff) << 8 * i);
244 return val;
245}
246
247
248/* This function turns a C long int, short int or char
249 into the series of bytes that represent the number
250 on the target machine. */
251void
252md_number_to_chars (char *buf, valueT val, int n)
253{
254 gas_assert (n == 1 || n == 2 || n == 4 || n == 8);
255 if (target_big_endian)
256 number_to_chars_bigendian (buf, val, n);
257 else
258 number_to_chars_littleendian (buf, val, n);
259}
260
261/* Turn a string in input_line_pointer into a floating point constant
262 of type TYPE, and store the appropriate bytes in *LITP. The number
263 of LITTLENUMS emitted is stored in *SIZEP. An error message is
264 returned, or NULL on OK. */
265char *
266md_atof (int type, char *litP, int *sizeP)
267{
268 int prec;
269 LITTLENUM_TYPE words[4];
270 char *t;
271 int i;
272
273 switch (type)
274 {
275 case 'f':
276 prec = 2;
277 break;
278 case 'd':
279 prec = 4;
280 break;
281 default:
282 *sizeP = 0;
283 return _("bad call to md_atof");
284 }
285
286 t = atof_ieee (input_line_pointer, type, words);
287 if (t)
288 input_line_pointer = t;
289
290 *sizeP = prec * 2;
291
292 if (! target_big_endian)
293 for (i = prec - 1; i >= 0; i--, litP += 2)
294 md_number_to_chars (litP, (valueT) words[i], 2);
295 else
296 for (i = 0; i < prec; i++, litP += 2)
297 md_number_to_chars (litP, (valueT) words[i], 2);
298
299 return NULL;
300}
301
302/* Return true if STR starts with PREFIX, which should be a string literal. */
303#define strprefix(STR, PREFIX) \
304 (strncmp ((STR), PREFIX, strlen (PREFIX)) == 0)
305
306/* Return true if STR is prefixed with a control register name. */
307static int
308nios2_control_register_arg_p (const char *str)
309{
310 return (strprefix (str, "ctl")
311 || strprefix (str, "cpuid")
312 || strprefix (str, "status")
313 || strprefix (str, "estatus")
314 || strprefix (str, "bstatus")
315 || strprefix (str, "ienable")
316 || strprefix (str, "ipending")
317 || strprefix (str, "exception")
318 || strprefix (str, "pteaddr")
319 || strprefix (str, "tlbacc")
320 || strprefix (str, "tlbmisc")
321 || strprefix (str, "fstatus")
322 || strprefix (str, "config")
323 || strprefix (str, "mpubase")
324 || strprefix (str, "mpuacc")
325 || strprefix (str, "badaddr"));
326}
327
328/* Return true if STR is prefixed with a special relocation operator. */
329static int
330nios2_special_relocation_p (const char *str)
331{
332 return (strprefix (str, "%lo")
333 || strprefix (str, "%hi")
334 || strprefix (str, "%hiadj")
335 || strprefix (str, "%gprel")
336 || strprefix (str, "%got")
337 || strprefix (str, "%call")
338 || strprefix (str, "%gotoff_lo")
339 || strprefix (str, "%gotoff_hiadj")
340 || strprefix (str, "%tls_gd")
341 || strprefix (str, "%tls_ldm")
342 || strprefix (str, "%tls_ldo")
343 || strprefix (str, "%tls_ie")
344 || strprefix (str, "%tls_le")
345 || strprefix (str, "%gotoff"));
346}
347
348/* Checks whether the register name is a coprocessor
349 register - returns TRUE if it is, FALSE otherwise. */
350static bfd_boolean
351nios2_coproc_reg (const char *reg_name)
352{
353 gas_assert (reg_name != NULL);
354
355 /* Check that we do have a valid register name and that it is a
356 coprocessor register.
357 It must begin with c, not be a control register, and be a valid
358 register name. */
359 if (strprefix (reg_name, "c")
360 && !strprefix (reg_name, "ctl")
361 && hash_find (nios2_reg_hash, reg_name) != NULL)
362 return TRUE;
363 else
364 return FALSE;
365}
366
367/* nop fill pattern for text section. */
368static char const nop[4] = { 0x3a, 0x88, 0x01, 0x00 };
369
370/* Handles all machine-dependent alignment needs. */
371static void
372nios2_align (int log_size, const char *pfill, symbolS *label)
373{
374 int align;
375 long max_alignment = 15;
376
377 /* The front end is prone to changing segments out from under us
378 temporarily when -g is in effect. */
379 int switched_seg_p = (nios2_current_align_seg != now_seg);
380
381 align = log_size;
382 if (align > max_alignment)
383 {
384 align = max_alignment;
385 as_bad (_("Alignment too large: %d. assumed"), align);
386 }
387 else if (align < 0)
388 {
389 as_warn (_("Alignment negative: 0 assumed"));
390 align = 0;
391 }
392
393 if (align != 0)
394 {
395 if (subseg_text_p (now_seg) && align >= 2)
396 {
397 /* First, make sure we're on a four-byte boundary, in case
398 someone has been putting .byte values the text section. */
399 if (nios2_current_align < 2 || switched_seg_p)
400 frag_align (2, 0, 0);
401
402 /* Now fill in the alignment pattern. */
403 if (pfill != NULL)
404 frag_align_pattern (align, pfill, sizeof nop, 0);
405 else
406 frag_align (align, 0, 0);
407 }
408 else
409 frag_align (align, 0, 0);
410
411 if (!switched_seg_p)
412 nios2_current_align = align;
413
414 /* If the last label was in a different section we can't align it. */
415 if (label != NULL && !switched_seg_p)
416 {
417 symbolS *sym;
418 int label_seen = FALSE;
419 struct frag *old_frag;
420 valueT old_value;
421 valueT new_value;
422
423 gas_assert (S_GET_SEGMENT (label) == now_seg);
424
425 old_frag = symbol_get_frag (label);
426 old_value = S_GET_VALUE (label);
427 new_value = (valueT) frag_now_fix ();
428
429 /* It is possible to have more than one label at a particular
430 address, especially if debugging is enabled, so we must
431 take care to adjust all the labels at this address in this
432 fragment. To save time we search from the end of the symbol
433 list, backwards, since the symbols we are interested in are
434 almost certainly the ones that were most recently added.
435 Also to save time we stop searching once we have seen at least
436 one matching label, and we encounter a label that is no longer
437 in the target fragment. Note, this search is guaranteed to
438 find at least one match when sym == label, so no special case
439 code is necessary. */
440 for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym))
441 if (symbol_get_frag (sym) == old_frag
442 && S_GET_VALUE (sym) == old_value)
443 {
444 label_seen = TRUE;
445 symbol_set_frag (sym, frag_now);
446 S_SET_VALUE (sym, new_value);
447 }
448 else if (label_seen && symbol_get_frag (sym) != old_frag)
449 break;
450 }
451 record_alignment (now_seg, align);
452 }
453}
454
455\f
456/** Support for self-check mode. */
457
458/* Mode of the assembler. */
459typedef enum
460{
461 NIOS2_MODE_ASSEMBLE, /* Ordinary operation. */
462 NIOS2_MODE_TEST /* Hidden mode used for self testing. */
463} NIOS2_MODE;
464
465static NIOS2_MODE nios2_mode = NIOS2_MODE_ASSEMBLE;
466
467/* This function is used to in self-checking mode
468 to check the assembled instruction
469 opcode should be the assembled opcode, and exp_opcode
470 the parsed string representing the expected opcode. */
471static void
472nios2_check_assembly (unsigned int opcode, const char *exp_opcode)
473{
474 if (nios2_mode == NIOS2_MODE_TEST)
475 {
476 if (exp_opcode == NULL)
477 as_bad (_("expecting opcode string in self test mode"));
478 else if (opcode != strtoul (exp_opcode, NULL, 16))
479 as_bad (_("assembly 0x%08x, expected %s"), opcode, exp_opcode);
480 }
481}
482
483\f
484/** Support for machine-dependent assembler directives. */
485/* Handle the .align pseudo-op. This aligns to a power of two. It
486 also adjusts any current instruction label. We treat this the same
487 way the MIPS port does: .align 0 turns off auto alignment. */
488static void
489s_nios2_align (int ignore ATTRIBUTE_UNUSED)
490{
491 int align;
492 char fill;
493 const char *pfill = NULL;
494 long max_alignment = 15;
495
496 align = get_absolute_expression ();
497 if (align > max_alignment)
498 {
499 align = max_alignment;
500 as_bad (_("Alignment too large: %d. assumed"), align);
501 }
502 else if (align < 0)
503 {
504 as_warn (_("Alignment negative: 0 assumed"));
505 align = 0;
506 }
507
508 if (*input_line_pointer == ',')
509 {
510 input_line_pointer++;
511 fill = get_absolute_expression ();
512 pfill = (const char *) &fill;
513 }
514 else if (subseg_text_p (now_seg))
515 pfill = (const char *) &nop;
516 else
517 {
518 pfill = NULL;
519 nios2_last_label = NULL;
520 }
521
522 if (align != 0)
523 {
524 nios2_auto_align_on = 1;
525 nios2_align (align, pfill, nios2_last_label);
526 nios2_last_label = NULL;
527 }
528 else
529 nios2_auto_align_on = 0;
530
531 demand_empty_rest_of_line ();
532}
533
534/* Handle the .text pseudo-op. This is like the usual one, but it
535 clears the saved last label and resets known alignment. */
536static void
537s_nios2_text (int i)
538{
539 s_text (i);
540 nios2_last_label = NULL;
541 nios2_current_align = 0;
542 nios2_current_align_seg = now_seg;
543}
544
545/* Handle the .data pseudo-op. This is like the usual one, but it
546 clears the saved last label and resets known alignment. */
547static void
548s_nios2_data (int i)
549{
550 s_data (i);
551 nios2_last_label = NULL;
552 nios2_current_align = 0;
553 nios2_current_align_seg = now_seg;
554}
555
556/* Handle the .section pseudo-op. This is like the usual one, but it
557 clears the saved last label and resets known alignment. */
558static void
559s_nios2_section (int ignore)
560{
561 obj_elf_section (ignore);
562 nios2_last_label = NULL;
563 nios2_current_align = 0;
564 nios2_current_align_seg = now_seg;
565}
566
567/* Explicitly unaligned cons. */
568static void
569s_nios2_ucons (int nbytes)
570{
571 int hold;
572 hold = nios2_auto_align_on;
573 nios2_auto_align_on = 0;
574 cons (nbytes);
575 nios2_auto_align_on = hold;
576}
577
578/* Handle the .sdata directive. */
579static void
580s_nios2_sdata (int ignore ATTRIBUTE_UNUSED)
581{
582 get_absolute_expression (); /* Ignored. */
583 subseg_new (".sdata", 0);
584 demand_empty_rest_of_line ();
585}
586
587/* .set sets assembler options eg noat/at and is also used
588 to set symbol values (.equ, .equiv ). */
589static void
590s_nios2_set (int equiv)
591{
592 char *directive = input_line_pointer;
593 char delim = get_symbol_end ();
594 char *endline = input_line_pointer;
595 *endline = delim;
596
597 /* We only want to handle ".set XXX" if the
598 user has tried ".set XXX, YYY" they are not
599 trying a directive. This prevents
600 us from polluting the name space. */
601 SKIP_WHITESPACE ();
602 if (is_end_of_line[(unsigned char) *input_line_pointer])
603 {
604 bfd_boolean done = TRUE;
605 *endline = 0;
606
607 if (!strcmp (directive, "noat"))
608 nios2_as_options.noat = TRUE;
609 else if (!strcmp (directive, "at"))
610 nios2_as_options.noat = FALSE;
611 else if (!strcmp (directive, "nobreak"))
612 nios2_as_options.nobreak = TRUE;
613 else if (!strcmp (directive, "break"))
614 nios2_as_options.nobreak = FALSE;
615 else if (!strcmp (directive, "norelax"))
616 nios2_as_options.relax = relax_none;
617 else if (!strcmp (directive, "relaxsection"))
618 nios2_as_options.relax = relax_section;
619 else if (!strcmp (directive, "relaxall"))
620 nios2_as_options.relax = relax_all;
621 else
622 done = FALSE;
623
624 if (done)
625 {
626 *endline = delim;
627 demand_empty_rest_of_line ();
628 return;
629 }
630 }
631
632 /* If we fall through to here, either we have ".set XXX, YYY"
633 or we have ".set XXX" where XXX is unknown or we have
634 a syntax error. */
635 input_line_pointer = directive;
636 *endline = delim;
637 s_set (equiv);
638}
639
640/* Machine-dependent assembler directives.
641 Format of each entry is:
642 { "directive", handler_func, param } */
643const pseudo_typeS md_pseudo_table[] = {
644 {"align", s_nios2_align, 0},
645 {"text", s_nios2_text, 0},
646 {"data", s_nios2_data, 0},
647 {"section", s_nios2_section, 0},
648 {"section.s", s_nios2_section, 0},
649 {"sect", s_nios2_section, 0},
650 {"sect.s", s_nios2_section, 0},
651 /* .dword and .half are included for compatibility with MIPS. */
652 {"dword", cons, 8},
653 {"half", cons, 2},
654 /* NIOS2 native word size is 4 bytes, so we override
655 the GAS default of 2. */
656 {"word", cons, 4},
657 /* Explicitly unaligned directives. */
658 {"2byte", s_nios2_ucons, 2},
659 {"4byte", s_nios2_ucons, 4},
660 {"8byte", s_nios2_ucons, 8},
661 {"16byte", s_nios2_ucons, 16},
662#ifdef OBJ_ELF
663 {"sdata", s_nios2_sdata, 0},
664#endif
665 {"set", s_nios2_set, 0},
666 {NULL, NULL, 0}
667};
668
669\f
670/** Relaxation support. */
671
672/* We support two relaxation modes: a limited PC-relative mode with
673 -relax-section (the default), and an absolute jump mode with -relax-all.
674
675 Nios II PC-relative branch instructions only support 16-bit offsets.
676 And, there's no good way to add a 32-bit constant to the PC without
677 using two registers.
678
679 To deal with this, for the pc-relative relaxation mode we convert
680 br label
681 into a series of 16-bit adds, like:
682 nextpc at
683 addi at, at, 32767
684 ...
685 addi at, at, remainder
686 jmp at
687
688 Similarly, conditional branches are converted from
689 b(condition) r, s, label
690 into a series like:
691 b(opposite condition) r, s, skip
692 nextpc at
693 addi at, at, 32767
694 ...
695 addi at, at, remainder
696 jmp at
697 skip:
698
699 The compiler can do a better job, either by converting the branch
700 directly into a JMP (going through the GOT for PIC) or by allocating
701 a second register for the 32-bit displacement.
702
703 For the -relax-all relaxation mode, the conversions are
704 movhi at, %hi(symbol+offset)
705 ori at, %lo(symbol+offset)
706 jmp at
707 and
708 b(opposite condition), r, s, skip
709 movhi at, %hi(symbol+offset)
710 ori at, %lo(symbol+offset)
711 jmp at
712 skip:
713 respectively.
714*/
715
716/* Arbitrarily limit the number of addis we can insert; we need to be able
717 to specify the maximum growth size for each frag that contains a
718 relaxable branch. There's no point in specifying a huge number here
719 since that means the assembler needs to allocate that much extra
720 memory for every branch, and almost no real code will ever need it.
721 Plus, as already noted a better solution is to just use a jmp, or
722 allocate a second register to hold a 32-bit displacement.
723 FIXME: Rather than making this a constant, it could be controlled by
724 a command-line argument. */
725#define RELAX_MAX_ADDI 32
726
727/* The fr_subtype field represents the target-specific relocation state.
728 It has type relax_substateT (unsigned int). We use it to track the
729 number of addis necessary, plus a bit to track whether this is a
730 conditional branch.
731 Regardless of the smaller RELAX_MAX_ADDI limit, we reserve 16 bits
732 in the fr_subtype to encode the number of addis so that the whole
733 theoretically-valid range is representable.
734 For the -relax-all mode, N = 0 represents an in-range branch and N = 1
735 represents a branch that needs to be relaxed. */
736#define UBRANCH (0 << 16)
737#define CBRANCH (1 << 16)
738#define IS_CBRANCH(SUBTYPE) ((SUBTYPE) & CBRANCH)
739#define IS_UBRANCH(SUBTYPE) (!IS_CBRANCH (SUBTYPE))
740#define UBRANCH_SUBTYPE(N) (UBRANCH | (N))
741#define CBRANCH_SUBTYPE(N) (CBRANCH | (N))
742#define SUBTYPE_ADDIS(SUBTYPE) ((SUBTYPE) & 0xffff)
743
744/* For the -relax-section mode, unconditional branches require 2 extra i
745 nstructions besides the addis, conditional branches require 3. */
746#define UBRANCH_ADDIS_TO_SIZE(N) (((N) + 2) * 4)
747#define CBRANCH_ADDIS_TO_SIZE(N) (((N) + 3) * 4)
748
749/* For the -relax-all mode, unconditional branches require 3 instructions
750 and conditional branches require 4. */
751#define UBRANCH_JUMP_SIZE 12
752#define CBRANCH_JUMP_SIZE 16
753
754/* Maximum sizes of relaxation sequences. */
755#define UBRANCH_MAX_SIZE \
756 (nios2_as_options.relax == relax_all \
757 ? UBRANCH_JUMP_SIZE \
758 : UBRANCH_ADDIS_TO_SIZE (RELAX_MAX_ADDI))
759#define CBRANCH_MAX_SIZE \
760 (nios2_as_options.relax == relax_all \
761 ? CBRANCH_JUMP_SIZE \
762 : CBRANCH_ADDIS_TO_SIZE (RELAX_MAX_ADDI))
763
764/* Register number of AT, the assembler temporary. */
765#define AT_REGNUM 1
766
767/* Determine how many bytes are required to represent the sequence
768 indicated by SUBTYPE. */
769static int
770nios2_relax_subtype_size (relax_substateT subtype)
771{
772 int n = SUBTYPE_ADDIS (subtype);
773 if (n == 0)
774 /* Regular conditional/unconditional branch instruction. */
775 return 4;
776 else if (nios2_as_options.relax == relax_all)
777 return (IS_CBRANCH (subtype) ? CBRANCH_JUMP_SIZE : UBRANCH_JUMP_SIZE);
778 else if (IS_CBRANCH (subtype))
779 return CBRANCH_ADDIS_TO_SIZE (n);
780 else
781 return UBRANCH_ADDIS_TO_SIZE (n);
782}
783
784/* Estimate size of fragp before relaxation.
785 This could also examine the offset in fragp and adjust
786 fragp->fr_subtype, but we will do that in nios2_relax_frag anyway. */
787int
788md_estimate_size_before_relax (fragS *fragp, segT segment ATTRIBUTE_UNUSED)
789{
790 return nios2_relax_subtype_size (fragp->fr_subtype);
791}
792
793/* Implement md_relax_frag, returning the change in size of the frag. */
794long
795nios2_relax_frag (segT segment, fragS *fragp, long stretch)
796{
797 addressT target = fragp->fr_offset;
798 relax_substateT subtype = fragp->fr_subtype;
799 symbolS *symbolp = fragp->fr_symbol;
800
801 if (symbolp)
802 {
803 fragS *sym_frag = symbol_get_frag (symbolp);
804 offsetT offset;
805 int n;
806
807 target += S_GET_VALUE (symbolp);
808
809 /* See comments in write.c:relax_frag about handling of stretch. */
810 if (stretch != 0
811 && sym_frag->relax_marker != fragp->relax_marker)
812 {
813 if (stretch < 0 || sym_frag->region == fragp->region)
814 target += stretch;
815 else if (target < fragp->fr_address)
816 target = fragp->fr_next->fr_address + stretch;
817 }
818
819 /* We subtract 4 because all pc relative branches are
820 from the next instruction. */
821 offset = target - fragp->fr_address - fragp->fr_fix - 4;
822 if (offset >= -32768 && offset <= 32764)
823 /* Fits in PC-relative branch. */
824 n = 0;
825 else if (nios2_as_options.relax == relax_all)
826 /* Convert to jump. */
827 n = 1;
828 else if (nios2_as_options.relax == relax_section
829 && S_GET_SEGMENT (symbolp) == segment
830 && S_IS_DEFINED (symbolp))
831 /* Attempt a PC-relative relaxation on a branch to a defined
832 symbol in the same segment. */
833 {
834 /* The relaxation for conditional branches is offset by 4
835 bytes because we insert the inverted branch around the
836 sequence. */
837 if (IS_CBRANCH (subtype))
838 offset = offset - 4;
839 if (offset > 0)
840 n = offset / 32767 + 1;
841 else
842 n = offset / -32768 + 1;
843
844 /* Bail out immediately if relaxation has failed. If we try to
845 defer the diagnostic to md_convert_frag, some pathological test
846 cases (e.g. gcc/testsuite/gcc.c-torture/compile/20001226-1.c)
847 apparently never converge. By returning 0 here we could pretend
848 to the caller that nothing has changed, but that leaves things
849 in an inconsistent state when we get to md_convert_frag. */
850 if (n > RELAX_MAX_ADDI)
851 {
852 as_bad_where (fragp->fr_file, fragp->fr_line,
853 _("branch offset out of range\n"));
854 as_fatal (_("branch relaxation failed\n"));
855 }
856 }
857 else
858 /* We cannot handle this case, diagnose overflow later. */
859 return 0;
860
861 if (IS_CBRANCH (subtype))
862 fragp->fr_subtype = CBRANCH_SUBTYPE (n);
863 else
864 fragp->fr_subtype = UBRANCH_SUBTYPE (n);
865
866 return (nios2_relax_subtype_size (fragp->fr_subtype)
867 - nios2_relax_subtype_size (subtype));
868 }
869
870 /* If we got here, it's probably an error. */
871 return 0;
872}
873
874
875/* Complete fragp using the data from the relaxation pass. */
876void
877md_convert_frag (bfd *headers ATTRIBUTE_UNUSED, segT segment ATTRIBUTE_UNUSED,
878 fragS *fragp)
879{
880 char *buffer = fragp->fr_literal + fragp->fr_fix;
881 relax_substateT subtype = fragp->fr_subtype;
882 int n = SUBTYPE_ADDIS (subtype);
883 addressT target = fragp->fr_offset;
884 symbolS *symbolp = fragp->fr_symbol;
885 offsetT offset;
886 unsigned int addend_mask, addi_mask;
887 offsetT addend, remainder;
888 int i;
889
890 /* If we didn't or can't relax, this is a regular branch instruction.
891 We just need to generate the fixup for the symbol and offset. */
892 if (n == 0)
893 {
894 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset, 1,
895 BFD_RELOC_16_PCREL);
896 fragp->fr_fix += 4;
897 return;
898 }
899
900 /* Replace the cbranch at fr_fix with one that has the opposite condition
901 in order to jump around the block of instructions we'll be adding. */
902 if (IS_CBRANCH (subtype))
903 {
904 unsigned int br_opcode;
905 int nbytes;
906
907 /* Account for the nextpc and jmp in the pc-relative case, or the two
908 load instructions and jump in the absolute case. */
909 if (nios2_as_options.relax == relax_section)
910 nbytes = (n + 2) * 4;
911 else
912 nbytes = 12;
913
914 br_opcode = md_chars_to_number (buffer, 4);
915 switch (br_opcode & OP_MASK_OP)
916 {
917 case OP_MATCH_BEQ:
918 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BNE;
919 break;
920 case OP_MATCH_BNE:
921 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BEQ ;
922 break;
923 case OP_MATCH_BGE:
924 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BLT ;
925 break;
926 case OP_MATCH_BGEU:
927 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BLTU ;
928 break;
929 case OP_MATCH_BLT:
930 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BGE ;
931 break;
932 case OP_MATCH_BLTU:
933 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BGEU ;
934 break;
935 default:
936 as_bad_where (fragp->fr_file, fragp->fr_line,
937 _("expecting conditional branch for relaxation\n"));
938 abort ();
939 }
940
941 br_opcode = br_opcode | (nbytes << OP_SH_IMM16);
942 md_number_to_chars (buffer, br_opcode, 4);
943 fragp->fr_fix += 4;
944 buffer += 4;
945 }
946
947 /* Load at for the PC-relative case. */
948 if (nios2_as_options.relax == relax_section)
949 {
950 /* Insert the nextpc instruction. */
951 md_number_to_chars (buffer,
952 OP_MATCH_NEXTPC | (AT_REGNUM << OP_SH_RRD), 4);
953 fragp->fr_fix += 4;
954 buffer += 4;
955
956 /* We need to know whether the offset is positive or negative. */
957 target += S_GET_VALUE (symbolp);
958 offset = target - fragp->fr_address - fragp->fr_fix;
959 if (offset > 0)
960 addend = 32767;
961 else
962 addend = -32768;
963 addend_mask = (((unsigned int)addend) & 0xffff) << OP_SH_IMM16;
964
965 /* Insert n-1 addi instructions. */
966 addi_mask = (OP_MATCH_ADDI
967 | (AT_REGNUM << OP_SH_IRD)
968 | (AT_REGNUM << OP_SH_IRS));
969 for (i = 0; i < n - 1; i ++)
970 {
971 md_number_to_chars (buffer, addi_mask | addend_mask, 4);
972 fragp->fr_fix += 4;
973 buffer += 4;
974 }
975
976 /* Insert the last addi instruction to hold the remainder. */
977 remainder = offset - addend * (n - 1);
978 gas_assert (remainder >= -32768 && remainder <= 32767);
979 addend_mask = (((unsigned int)remainder) & 0xffff) << OP_SH_IMM16;
980 md_number_to_chars (buffer, addi_mask | addend_mask, 4);
981 fragp->fr_fix += 4;
982 buffer += 4;
983 }
984
985 /* Load at for the absolute case. */
986 else
987 {
988 md_number_to_chars (buffer, OP_MATCH_ORHI | 0x00400000, 4);
989 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset,
990 0, BFD_RELOC_NIOS2_HI16);
991 fragp->fr_fix += 4;
992 buffer += 4;
993 md_number_to_chars (buffer, OP_MATCH_ORI | 0x08400000, 4);
994 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset,
995 0, BFD_RELOC_NIOS2_LO16);
996 fragp->fr_fix += 4;
997 buffer += 4;
998 }
999
1000 /* Insert the jmp instruction. */
1001 md_number_to_chars (buffer, OP_MATCH_JMP | (AT_REGNUM << OP_SH_RRS), 4);
1002 fragp->fr_fix += 4;
1003 buffer += 4;
1004}
1005
1006\f
1007/** Fixups and overflow checking. */
1008
1009/* Check a fixup for overflow. */
1010static bfd_boolean
1011nios2_check_overflow (valueT fixup, reloc_howto_type *howto)
1012{
1013 /* Apply the rightshift before checking for overflow. */
1014 fixup = ((signed)fixup) >> howto->rightshift;
1015
1016 /* Check for overflow - return TRUE if overflow, FALSE if not. */
1017 switch (howto->complain_on_overflow)
1018 {
1019 case complain_overflow_dont:
1020 break;
1021 case complain_overflow_bitfield:
1022 if ((fixup >> howto->bitsize) != 0
1023 && ((signed) fixup >> howto->bitsize) != -1)
1024 return TRUE;
1025 break;
1026 case complain_overflow_signed:
1027 if ((fixup & 0x80000000) > 0)
1028 {
1029 /* Check for negative overflow. */
1030 if ((signed) fixup < ((signed) 0x80000000 >> howto->bitsize))
1031 return TRUE;
1032 }
1033 else
1034 {
1035 /* Check for positive overflow. */
1036 if (fixup >= ((unsigned) 1 << (howto->bitsize - 1)))
1037 return TRUE;
1038 }
1039 break;
1040 case complain_overflow_unsigned:
1041 if ((fixup >> howto->bitsize) != 0)
1042 return TRUE;
1043 break;
1044 default:
1045 as_bad (_("error checking for overflow - broken assembler"));
1046 break;
1047 }
1048 return FALSE;
1049}
1050
1051/* Emit diagnostic for fixup overflow. */
1052static void
1053nios2_diagnose_overflow (valueT fixup, reloc_howto_type *howto,
1054 fixS *fixP, valueT value)
1055{
1056 if (fixP->fx_r_type == BFD_RELOC_8
1057 || fixP->fx_r_type == BFD_RELOC_16
1058 || fixP->fx_r_type == BFD_RELOC_32)
1059 /* These relocs are against data, not instructions. */
1060 as_bad_where (fixP->fx_file, fixP->fx_line,
1061 _("immediate value 0x%x truncated to 0x%x"),
1062 (unsigned int) fixup,
1063 (unsigned int) (~(~(valueT) 0 << howto->bitsize) & fixup));
1064 else
1065 {
1066 /* What opcode is the instruction? This will determine
1067 whether we check for overflow in immediate values
1068 and what error message we get. */
1069 const struct nios2_opcode *opcode;
1070 enum overflow_type overflow_msg_type;
1071 unsigned int range_min;
1072 unsigned int range_max;
1073 unsigned int address;
1074 gas_assert (fixP->fx_size == 4);
1075 opcode = nios2_find_opcode_hash (value);
1076 gas_assert (opcode);
1077 overflow_msg_type = opcode->overflow_msg;
1078 switch (overflow_msg_type)
1079 {
1080 case call_target_overflow:
1081 range_min
1082 = ((fixP->fx_frag->fr_address + fixP->fx_where) & 0xf0000000);
1083 range_max = range_min + 0x0fffffff;
1084 address = fixup | range_min;
1085
1086 as_bad_where (fixP->fx_file, fixP->fx_line,
1087 _("call target address 0x%08x out of range 0x%08x to 0x%08x"),
1088 address, range_min, range_max);
1089 break;
1090 case branch_target_overflow:
1091 as_bad_where (fixP->fx_file, fixP->fx_line,
1092 _("branch offset %d out of range %d to %d"),
1093 (int)fixup, -32768, 32767);
1094 break;
1095 case address_offset_overflow:
1096 as_bad_where (fixP->fx_file, fixP->fx_line,
1097 _("%s offset %d out of range %d to %d"),
1098 opcode->name, (int)fixup, -32768, 32767);
1099 break;
1100 case signed_immed16_overflow:
1101 as_bad_where (fixP->fx_file, fixP->fx_line,
1102 _("immediate value %d out of range %d to %d"),
1103 (int)fixup, -32768, 32767);
1104 break;
1105 case unsigned_immed16_overflow:
1106 as_bad_where (fixP->fx_file, fixP->fx_line,
1107 _("immediate value %u out of range %u to %u"),
1108 (unsigned int)fixup, 0, 65535);
1109 break;
1110 case unsigned_immed5_overflow:
1111 as_bad_where (fixP->fx_file, fixP->fx_line,
1112 _("immediate value %u out of range %u to %u"),
1113 (unsigned int)fixup, 0, 31);
1114 break;
1115 case custom_opcode_overflow:
1116 as_bad_where (fixP->fx_file, fixP->fx_line,
1117 _("custom instruction opcode %u out of range %u to %u"),
1118 (unsigned int)fixup, 0, 255);
1119 break;
1120 default:
1121 as_bad_where (fixP->fx_file, fixP->fx_line,
1122 _("overflow in immediate argument"));
1123 break;
1124 }
1125 }
1126}
1127
1128/* Apply a fixup to the object file. */
1129void
1130md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
1131{
1132 /* Assert that the fixup is one we can handle. */
1133 gas_assert (fixP != NULL && valP != NULL
1134 && (fixP->fx_r_type == BFD_RELOC_8
1135 || fixP->fx_r_type == BFD_RELOC_16
1136 || fixP->fx_r_type == BFD_RELOC_32
1137 || fixP->fx_r_type == BFD_RELOC_64
1138 || fixP->fx_r_type == BFD_RELOC_NIOS2_S16
1139 || fixP->fx_r_type == BFD_RELOC_NIOS2_U16
1140 || fixP->fx_r_type == BFD_RELOC_16_PCREL
1141 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALL26
1142 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM5
1143 || fixP->fx_r_type == BFD_RELOC_NIOS2_CACHE_OPX
1144 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM6
1145 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM8
1146 || fixP->fx_r_type == BFD_RELOC_NIOS2_HI16
1147 || fixP->fx_r_type == BFD_RELOC_NIOS2_LO16
1148 || fixP->fx_r_type == BFD_RELOC_NIOS2_HIADJ16
1149 || fixP->fx_r_type == BFD_RELOC_NIOS2_GPREL
1150 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1151 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
1152 || fixP->fx_r_type == BFD_RELOC_NIOS2_UJMP
1153 || fixP->fx_r_type == BFD_RELOC_NIOS2_CJMP
1154 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALLR
1155 || fixP->fx_r_type == BFD_RELOC_NIOS2_ALIGN
1156 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOT16
1157 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALL16
1158 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_LO
1159 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_HA
1160 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_GD16
1161 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LDM16
1162 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LDO16
1163 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_IE16
1164 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LE16
1165 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF
1166 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPREL
1167 /* Add other relocs here as we generate them. */
1168 ));
1169
1170 if (fixP->fx_r_type == BFD_RELOC_64)
1171 {
1172 /* We may reach here due to .8byte directives, but we never output
1173 BFD_RELOC_64; it must be resolved. */
1174 if (fixP->fx_addsy != NULL)
1175 as_bad_where (fixP->fx_file, fixP->fx_line,
1176 _("cannot create 64-bit relocation"));
1177 else
1178 {
1179 md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
1180 *valP, 8);
1181 fixP->fx_done = 1;
1182 }
1183 return;
1184 }
1185
1186 /* The value passed in valP can be the value of a fully
1187 resolved expression, or it can be the value of a partially
1188 resolved expression. In the former case, both fixP->fx_addsy
1189 and fixP->fx_subsy are NULL, and fixP->fx_offset == *valP, and
1190 we can fix up the instruction that fixP relates to.
1191 In the latter case, one or both of fixP->fx_addsy and
1192 fixP->fx_subsy are not NULL, and fixP->fx_offset may or may not
1193 equal *valP. We don't need to check for fixP->fx_subsy being null
1194 because the generic part of the assembler generates an error if
1195 it is not an absolute symbol. */
1196 if (fixP->fx_addsy != NULL)
1197 /* Partially resolved expression. */
1198 {
1199 fixP->fx_addnumber = fixP->fx_offset;
1200 fixP->fx_done = 0;
1201
1202 switch (fixP->fx_r_type)
1203 {
1204 case BFD_RELOC_NIOS2_TLS_GD16:
1205 case BFD_RELOC_NIOS2_TLS_LDM16:
1206 case BFD_RELOC_NIOS2_TLS_LDO16:
1207 case BFD_RELOC_NIOS2_TLS_IE16:
1208 case BFD_RELOC_NIOS2_TLS_LE16:
1209 case BFD_RELOC_NIOS2_TLS_DTPMOD:
1210 case BFD_RELOC_NIOS2_TLS_DTPREL:
1211 case BFD_RELOC_NIOS2_TLS_TPREL:
1212 S_SET_THREAD_LOCAL (fixP->fx_addsy);
1213 break;
1214 default:
1215 break;
1216 }
1217 }
1218 else
1219 /* Fully resolved fixup. */
1220 {
1221 reloc_howto_type *howto
1222 = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
1223
1224 if (howto == NULL)
1225 as_bad_where (fixP->fx_file, fixP->fx_line,
1226 _("relocation is not supported"));
1227 else
1228 {
1229 valueT fixup = *valP;
1230 valueT value;
1231 char *buf;
1232
1233 /* If this is a pc-relative relocation, we need to
1234 subtract the current offset within the object file
1235 FIXME : for some reason fixP->fx_pcrel isn't 1 when it should be
1236 so I'm using the howto structure instead to determine this. */
1237 if (howto->pc_relative == 1)
1238 fixup = fixup - (fixP->fx_frag->fr_address + fixP->fx_where + 4);
1239
1240 /* Get the instruction or data to be fixed up. */
1241 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
1242 value = md_chars_to_number (buf, fixP->fx_size);
1243
1244 /* Check for overflow, emitting a diagnostic if necessary. */
1245 if (nios2_check_overflow (fixup, howto))
1246 nios2_diagnose_overflow (fixup, howto, fixP, value);
1247
1248 /* Apply the right shift. */
1249 fixup = ((signed)fixup) >> howto->rightshift;
1250
1251 /* Truncate the fixup to right size. */
1252 switch (fixP->fx_r_type)
1253 {
1254 case BFD_RELOC_NIOS2_HI16:
1255 fixup = (fixup >> 16) & 0xFFFF;
1256 break;
1257 case BFD_RELOC_NIOS2_LO16:
1258 fixup = fixup & 0xFFFF;
1259 break;
1260 case BFD_RELOC_NIOS2_HIADJ16:
1261 fixup = ((fixup >> 16) & 0xFFFF) + ((fixup >> 15) & 0x01);
1262 break;
1263 default:
1264 {
1265 int n = sizeof (fixup) * 8 - howto->bitsize;
1266 fixup = (fixup << n) >> n;
1267 break;
1268 }
1269 }
1270
1271 /* Fix up the instruction. */
1272 value = (value & ~howto->dst_mask) | (fixup << howto->bitpos);
1273 md_number_to_chars (buf, value, fixP->fx_size);
1274 }
1275
1276 fixP->fx_done = 1;
1277 }
1278
1279 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT)
1280 {
1281 fixP->fx_done = 0;
1282 if (fixP->fx_addsy
1283 && !S_IS_DEFINED (fixP->fx_addsy) && !S_IS_WEAK (fixP->fx_addsy))
1284 S_SET_WEAK (fixP->fx_addsy);
1285 }
1286 else if (fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1287 fixP->fx_done = 0;
1288}
1289
1290
1291\f
1292/** Instruction parsing support. */
1293
1294/* Special relocation directive strings. */
1295
1296struct nios2_special_relocS
1297{
1298 const char *string;
1299 bfd_reloc_code_real_type reloc_type;
1300};
1301
1302struct nios2_special_relocS nios2_special_reloc[] = {
1303 {"%hiadj", BFD_RELOC_NIOS2_HIADJ16},
1304 {"%hi", BFD_RELOC_NIOS2_HI16},
1305 {"%lo", BFD_RELOC_NIOS2_LO16},
1306 {"%gprel", BFD_RELOC_NIOS2_GPREL},
1307 {"%call", BFD_RELOC_NIOS2_CALL16},
1308 {"%gotoff_lo", BFD_RELOC_NIOS2_GOTOFF_LO},
1309 {"%gotoff_hiadj", BFD_RELOC_NIOS2_GOTOFF_HA},
1310 {"%tls_gd", BFD_RELOC_NIOS2_TLS_GD16},
1311 {"%tls_ldm", BFD_RELOC_NIOS2_TLS_LDM16},
1312 {"%tls_ldo", BFD_RELOC_NIOS2_TLS_LDO16},
1313 {"%tls_ie", BFD_RELOC_NIOS2_TLS_IE16},
1314 {"%tls_le", BFD_RELOC_NIOS2_TLS_LE16},
1315 {"%gotoff", BFD_RELOC_NIOS2_GOTOFF},
1316 {"%got", BFD_RELOC_NIOS2_GOT16}
1317};
1318
1319#define NIOS2_NUM_SPECIAL_RELOCS \
1320 (sizeof(nios2_special_reloc)/sizeof(nios2_special_reloc[0]))
1321const int nios2_num_special_relocs = NIOS2_NUM_SPECIAL_RELOCS;
1322
1323/* Creates a new nios2_insn_relocS and returns a pointer to it. */
1324static nios2_insn_relocS *
1325nios2_insn_reloc_new (bfd_reloc_code_real_type reloc_type, unsigned int pcrel)
1326{
1327 nios2_insn_relocS *retval;
1328 retval = (nios2_insn_relocS *) malloc (sizeof (nios2_insn_relocS));
1329 if (retval == NULL)
1330 {
1331 as_bad (_("can't create relocation"));
1332 abort ();
1333 }
1334
1335 /* Fill out the fields with default values. */
1336 retval->reloc_next = NULL;
1337 retval->reloc_type = reloc_type;
1338 retval->reloc_pcrel = pcrel;
1339 return retval;
1340}
1341
1342/* Frees up memory previously allocated by nios2_insn_reloc_new(). */
1343/* FIXME: this is never called; memory leak? */
1344#if 0
1345static void
1346nios2_insn_reloc_destroy (nios2_insn_relocS *reloc)
1347{
1348 gas_assert (reloc != NULL);
1349 free (reloc);
1350}
1351#endif
1352
1353/* The various nios2_assemble_* functions call this
1354 function to generate an expression from a string representing an expression.
1355 It then tries to evaluate the expression, and if it can, returns its value.
1356 If not, it creates a new nios2_insn_relocS and stores the expression and
1357 reloc_type for future use. */
1358static unsigned long
1359nios2_assemble_expression (const char *exprstr,
1360 nios2_insn_infoS *insn,
1361 nios2_insn_relocS *prev_reloc,
1362 bfd_reloc_code_real_type reloc_type,
1363 unsigned int pcrel)
1364{
1365 nios2_insn_relocS *reloc;
1366 char *saved_line_ptr;
1367 unsigned short value;
1368 int i;
1369
1370 gas_assert (exprstr != NULL);
1371 gas_assert (insn != NULL);
1372
1373 /* Check for relocation operators.
1374 Change the relocation type and advance the ptr to the start of
1375 the expression proper. */
1376 for (i = 0; i < nios2_num_special_relocs; i++)
1377 if (strstr (exprstr, nios2_special_reloc[i].string) != NULL)
1378 {
1379 reloc_type = nios2_special_reloc[i].reloc_type;
1380 exprstr += strlen (nios2_special_reloc[i].string) + 1;
1381
1382 /* %lo and %hiadj have different meanings for PC-relative
1383 expressions. */
1384 if (pcrel)
1385 {
1386 if (reloc_type == BFD_RELOC_NIOS2_LO16)
1387 reloc_type = BFD_RELOC_NIOS2_PCREL_LO;
1388 if (reloc_type == BFD_RELOC_NIOS2_HIADJ16)
1389 reloc_type = BFD_RELOC_NIOS2_PCREL_HA;
1390 }
1391
1392 break;
1393 }
1394
1395 /* We potentially have a relocation. */
1396 reloc = nios2_insn_reloc_new (reloc_type, pcrel);
1397 if (prev_reloc != NULL)
1398 prev_reloc->reloc_next = reloc;
1399 else
1400 insn->insn_reloc = reloc;
1401
1402 /* Parse the expression string. */
1403 saved_line_ptr = input_line_pointer;
1404 input_line_pointer = (char *) exprstr;
1405 expression (&reloc->reloc_expression);
1406 input_line_pointer = saved_line_ptr;
1407
1408 /* This is redundant as the fixup will put this into
1409 the instruction, but it is included here so that
1410 self-test mode (-r) works. */
1411 value = 0;
1412 if (nios2_mode == NIOS2_MODE_TEST
1413 && reloc->reloc_expression.X_op == O_constant)
1414 value = reloc->reloc_expression.X_add_number;
1415
1416 return (unsigned long) value;
1417}
1418
1419/* Argument assemble functions.
1420 All take an instruction argument string, and a pointer
1421 to an instruction opcode. Upon return the insn_opcode
1422 has the relevant fields filled in to represent the arg
1423 string. The return value is NULL if successful, or
1424 an error message if an error was detected.
1425
1426 The naming conventions for these functions match the args template
1427 in the nios2_opcode structure, as documented in include/opcode/nios2.h.
1428 For example, nios2_assemble_args_dst is used for instructions with
1429 "d,s,t" args.
1430 See nios2_arg_info_structs below for the exact correspondence. */
1431
1432static void
1433nios2_assemble_args_dst (nios2_insn_infoS *insn_info)
1434{
1435 if (insn_info->insn_tokens[1] != NULL
1436 && insn_info->insn_tokens[2] != NULL
1437 && insn_info->insn_tokens[3] != NULL)
1438 {
1439 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1440 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1441 struct nios2_reg *src2 = nios2_reg_lookup (insn_info->insn_tokens[3]);
1442
1443 if (dst == NULL)
1444 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1445 else
1446 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1447
1448 if (src1 == NULL)
1449 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1450 else
1451 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1452
1453 if (src2 == NULL)
1454 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1455 else
1456 SET_INSN_FIELD (RRT, insn_info->insn_code, src2->index);
1457
1458 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1459 }
1460}
1461
1462static void
1463nios2_assemble_args_tsi (nios2_insn_infoS *insn_info)
1464{
1465 if (insn_info->insn_tokens[1] != NULL &&
1466 insn_info->insn_tokens[2] != NULL && insn_info->insn_tokens[3] != NULL)
1467 {
1468 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1469 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1470 unsigned int src2
1471 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1472 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1473 0);
1474
1475 if (dst == NULL)
1476 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1477 else
1478 SET_INSN_FIELD (IRT, insn_info->insn_code, dst->index);
1479
1480 if (src1 == NULL)
1481 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1482 else
1483 SET_INSN_FIELD (IRS, insn_info->insn_code, src1->index);
1484
1485 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1486 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1487 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1488 }
1489}
1490
1491static void
1492nios2_assemble_args_tsu (nios2_insn_infoS *insn_info)
1493{
1494 if (insn_info->insn_tokens[1] != NULL
1495 && insn_info->insn_tokens[2] != NULL
1496 && insn_info->insn_tokens[3] != NULL)
1497 {
1498 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1499 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1500 unsigned int src2
1501 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1502 insn_info->insn_reloc, BFD_RELOC_NIOS2_U16,
1503 0);
1504
1505 if (dst == NULL)
1506 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1507 else
1508 SET_INSN_FIELD (IRT, insn_info->insn_code, dst->index);
1509
1510 if (src1 == NULL)
1511 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1512 else
1513 SET_INSN_FIELD (IRS, insn_info->insn_code, src1->index);
1514
1515 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1516 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1517 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1518 }
1519}
1520
1521static void
1522nios2_assemble_args_sto (nios2_insn_infoS *insn_info)
1523{
1524 if (insn_info->insn_tokens[1] != NULL
1525 && insn_info->insn_tokens[2] != NULL
1526 && insn_info->insn_tokens[3] != NULL)
1527 {
1528 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1529 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1530 unsigned int src2
1531 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1532 insn_info->insn_reloc, BFD_RELOC_16_PCREL,
1533 1);
1534
1535 if (dst == NULL)
1536 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1537 else
1538 SET_INSN_FIELD (IRS, insn_info->insn_code, dst->index);
1539
1540 if (src1 == NULL)
1541 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1542 else
1543 SET_INSN_FIELD (IRT, insn_info->insn_code, src1->index);
1544
1545 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1546 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1547 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1548 }
1549}
1550
1551static void
1552nios2_assemble_args_o (nios2_insn_infoS *insn_info)
1553{
1554 if (insn_info->insn_tokens[1] != NULL)
1555 {
1556 unsigned long immed
1557 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1558 insn_info->insn_reloc, BFD_RELOC_16_PCREL,
1559 1);
1560 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1561 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1562 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1563 }
1564}
1565
1566static void
1567nios2_assemble_args_is (nios2_insn_infoS *insn_info)
1568{
1569 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1570 {
1571 struct nios2_reg *addr_src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1572 unsigned long immed
1573 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1574 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1575 0);
1576
1577 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1578
1579 if (addr_src == NULL)
1580 as_bad (_("unknown base register %s"), insn_info->insn_tokens[2]);
1581 else
1582 SET_INSN_FIELD (RRS, insn_info->insn_code, addr_src->index);
1583
1584 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1585 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1586 }
1587}
1588
1589static void
1590nios2_assemble_args_m (nios2_insn_infoS *insn_info)
1591{
1592 if (insn_info->insn_tokens[1] != NULL)
1593 {
1594 unsigned long immed
1595 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1596 insn_info->insn_reloc,
1597 BFD_RELOC_NIOS2_CALL26, 0);
1598
1599 SET_INSN_FIELD (IMM26, insn_info->insn_code, immed);
1600 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1601 SET_INSN_FIELD (IMM26, insn_info->insn_code, 0);
1602 }
1603}
1604
1605static void
1606nios2_assemble_args_s (nios2_insn_infoS *insn_info)
1607{
1608 if (insn_info->insn_tokens[1] != NULL)
1609 {
1610 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[1]);
1611 if (src == NULL)
1612 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1613 else
1614 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1615
1616 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1617 }
1618}
1619
1620static void
1621nios2_assemble_args_tis (nios2_insn_infoS *insn_info)
1622{
1623 if (insn_info->insn_tokens[1] != NULL
1624 && insn_info->insn_tokens[2] != NULL
1625 && insn_info->insn_tokens[3] != NULL)
1626 {
1627 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1628 struct nios2_reg *addr_src = nios2_reg_lookup (insn_info->insn_tokens[3]);
1629 unsigned long immed
1630 = nios2_assemble_expression (insn_info->insn_tokens[2], insn_info,
1631 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1632 0);
1633
1634 if (addr_src == NULL)
1635 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1636 else
1637 SET_INSN_FIELD (RRS, insn_info->insn_code, addr_src->index);
1638
1639 if (dst == NULL)
1640 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1641 else
1642 SET_INSN_FIELD (RRT, insn_info->insn_code, dst->index);
1643
1644 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1645 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1646 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1647 }
1648}
1649
1650static void
1651nios2_assemble_args_dc (nios2_insn_infoS *insn_info)
1652{
1653 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1654 {
1655 struct nios2_reg *ctl = nios2_reg_lookup (insn_info->insn_tokens[2]);
1656 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1657
1658 if (ctl == NULL)
1659 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1660 else
1661 SET_INSN_FIELD (RCTL, insn_info->insn_code, ctl->index);
1662
1663 if (dst == NULL)
1664 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1665 else
1666 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1667
1668 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1669 }
1670}
1671
1672static void
1673nios2_assemble_args_cs (nios2_insn_infoS *insn_info)
1674{
1675 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1676 {
1677 struct nios2_reg *ctl = nios2_reg_lookup (insn_info->insn_tokens[1]);
1678 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1679
1680 if (ctl == NULL)
1681 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1682 else if (ctl->index == 4)
1683 as_bad (_("ipending control register (ctl4) is read-only\n"));
1684 else
1685 SET_INSN_FIELD (RCTL, insn_info->insn_code, ctl->index);
1686
1687 if (src == NULL)
1688 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1689 else
1690 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1691
1692 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1693 }
1694}
1695
1696static void
1697nios2_assemble_args_ldst (nios2_insn_infoS *insn_info)
1698{
1699 if (insn_info->insn_tokens[1] != NULL
1700 && insn_info->insn_tokens[2] != NULL
1701 && insn_info->insn_tokens[3] != NULL
1702 && insn_info->insn_tokens[4] != NULL)
1703 {
1704 unsigned long custom_n
1705 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1706 insn_info->insn_reloc,
1707 BFD_RELOC_NIOS2_IMM8, 0);
1708
1709 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[2]);
1710 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[3]);
1711 struct nios2_reg *src2 = nios2_reg_lookup (insn_info->insn_tokens[4]);
1712
1713 SET_INSN_FIELD (CUSTOM_N, insn_info->insn_code, custom_n);
1714
1715 if (dst == NULL)
1716 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1717 else
1718 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1719
1720 if (src1 == NULL)
1721 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1722 else
1723 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1724
1725 if (src2 == NULL)
1726 as_bad (_("unknown register %s"), insn_info->insn_tokens[4]);
1727 else
1728 SET_INSN_FIELD (RRT, insn_info->insn_code, src2->index);
1729
1730 /* Set or clear the bits to indicate whether coprocessor registers are
1731 used. */
1732 if (nios2_coproc_reg (insn_info->insn_tokens[2]))
1733 SET_INSN_FIELD (CUSTOM_C, insn_info->insn_code, 0);
1734 else
1735 SET_INSN_FIELD (CUSTOM_C, insn_info->insn_code, 1);
1736
1737 if (nios2_coproc_reg (insn_info->insn_tokens[3]))
1738 SET_INSN_FIELD (CUSTOM_A, insn_info->insn_code, 0);
1739 else
1740 SET_INSN_FIELD (CUSTOM_A, insn_info->insn_code, 1);
1741
1742 if (nios2_coproc_reg (insn_info->insn_tokens[4]))
1743 SET_INSN_FIELD (CUSTOM_B, insn_info->insn_code, 0);
1744 else
1745 SET_INSN_FIELD (CUSTOM_B, insn_info->insn_code, 1);
1746
1747 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[5]);
1748 }
1749}
1750
1751static void
1752nios2_assemble_args_none (nios2_insn_infoS *insn_info ATTRIBUTE_UNUSED)
1753{
1754 /* Nothing to do. */
1755}
1756
1757static void
1758nios2_assemble_args_dsj (nios2_insn_infoS *insn_info)
1759{
1760 if (insn_info->insn_tokens[1] != NULL
1761 && insn_info->insn_tokens[2] != NULL
1762 && insn_info->insn_tokens[3] != NULL)
1763 {
1764 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1765 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1766
1767 /* A 5-bit constant expression. */
1768 unsigned int src2 =
1769 nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1770 insn_info->insn_reloc,
1771 BFD_RELOC_NIOS2_IMM5, 0);
1772
1773 if (dst == NULL)
1774 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1775 else
1776 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1777
1778 if (src1 == NULL)
1779 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1780 else
1781 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1782
1783 SET_INSN_FIELD (IMM5, insn_info->insn_code, src2);
1784 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1785 SET_INSN_FIELD (IMM5, insn_info->insn_code, 0);
1786 }
1787}
1788
1789static void
1790nios2_assemble_args_d (nios2_insn_infoS *insn_info)
1791{
1792 if (insn_info->insn_tokens[1] != NULL)
1793 {
1794 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1795
1796 if (dst == NULL)
1797 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1798 else
1799 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1800
1801 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1802 }
1803}
1804
1805static void
1806nios2_assemble_args_b (nios2_insn_infoS *insn_info)
1807{
1808 unsigned int imm5 = 0;
1809
1810 if (insn_info->insn_tokens[1] != NULL)
1811 {
1812 /* A 5-bit constant expression. */
1813 imm5 = nios2_assemble_expression (insn_info->insn_tokens[1],
1814 insn_info, insn_info->insn_reloc,
1815 BFD_RELOC_NIOS2_IMM5, 0);
1816 SET_INSN_FIELD (TRAP_IMM5, insn_info->insn_code, imm5);
1817 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1818 }
1819
1820 SET_INSN_FIELD (TRAP_IMM5, insn_info->insn_code, imm5);
1821
1822 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1823}
1824
1825/* This table associates pointers to functions that parse the arguments to an
1826 instruction and fill in the relevant fields of the instruction. */
1827const nios2_arg_infoS nios2_arg_info_structs[] = {
1828 /* args, assemble_args_func */
1829 {"d,s,t", nios2_assemble_args_dst},
1830 {"d,s,t,E", nios2_assemble_args_dst},
1831 {"t,s,i", nios2_assemble_args_tsi},
1832 {"t,s,i,E", nios2_assemble_args_tsi},
1833 {"t,s,u", nios2_assemble_args_tsu},
1834 {"t,s,u,E", nios2_assemble_args_tsu},
1835 {"s,t,o", nios2_assemble_args_sto},
1836 {"s,t,o,E", nios2_assemble_args_sto},
1837 {"o", nios2_assemble_args_o},
1838 {"o,E", nios2_assemble_args_o},
1839 {"s", nios2_assemble_args_s},
1840 {"s,E", nios2_assemble_args_s},
1841 {"", nios2_assemble_args_none},
1842 {"E", nios2_assemble_args_none},
1843 {"i(s)", nios2_assemble_args_is},
1844 {"i(s)E", nios2_assemble_args_is},
1845 {"m", nios2_assemble_args_m},
1846 {"m,E", nios2_assemble_args_m},
1847 {"t,i(s)", nios2_assemble_args_tis},
1848 {"t,i(s)E", nios2_assemble_args_tis},
1849 {"d,c", nios2_assemble_args_dc},
1850 {"d,c,E", nios2_assemble_args_dc},
1851 {"c,s", nios2_assemble_args_cs},
1852 {"c,s,E", nios2_assemble_args_cs},
1853 {"l,d,s,t", nios2_assemble_args_ldst},
1854 {"l,d,s,t,E", nios2_assemble_args_ldst},
1855 {"d,s,j", nios2_assemble_args_dsj},
1856 {"d,s,j,E", nios2_assemble_args_dsj},
1857 {"d", nios2_assemble_args_d},
1858 {"d,E", nios2_assemble_args_d},
1859 {"b", nios2_assemble_args_b},
1860 {"b,E", nios2_assemble_args_b}
1861};
1862
1863#define NIOS2_NUM_ARGS \
1864 ((sizeof(nios2_arg_info_structs)/sizeof(nios2_arg_info_structs[0])))
1865const int nios2_num_arg_info_structs = NIOS2_NUM_ARGS;
1866
1867/* The function consume_arg takes a pointer into a string
1868 of instruction tokens (args) and a pointer into a string
1869 representing the expected sequence of tokens and separators.
1870 It checks whether the first argument in argstr is of the
1871 expected type, throwing an error if it is not, and returns
1872 the pointer argstr. */
1873static char *
1874nios2_consume_arg (nios2_insn_infoS *insn, char *argstr, const char *parsestr)
1875{
1876 char *temp;
1877 int regno = -1;
1878
1879 switch (*parsestr)
1880 {
1881 case 'c':
1882 if (!nios2_control_register_arg_p (argstr))
1883 as_bad (_("expecting control register"));
1884 break;
1885 case 'd':
1886 case 's':
1887 case 't':
1888
1889 /* We check to make sure we don't have a control register. */
1890 if (nios2_control_register_arg_p (argstr))
1891 as_bad (_("illegal use of control register"));
1892
1893 /* And whether coprocessor registers are valid here. */
1894 if (nios2_coproc_reg (argstr)
1895 && insn->insn_nios2_opcode->match != OP_MATCH_CUSTOM)
1896 as_bad (_("illegal use of coprocessor register\n"));
1897
1898 /* Extract a register number if the register is of the
1899 form r[0-9]+, if it is a normal register, set
1900 regno to its number (0-31), else set regno to -1. */
1901 if (argstr[0] == 'r' && ISDIGIT (argstr[1]))
1902 {
1903 char *p = argstr;
1904
1905 ++p;
1906 regno = 0;
1907 do
1908 {
1909 regno *= 10;
1910 regno += *p - '0';
1911 ++p;
1912 }
1913 while (ISDIGIT (*p));
1914 }
1915 else
1916 regno = -1;
1917
1918 /* And whether we are using at. */
1919 if (!nios2_as_options.noat
1920 && (regno == 1 || strprefix (argstr, "at")))
1921 as_warn (_("Register at (r1) can sometimes be corrupted by assembler "
1922 "optimizations.\n"
1923 "Use .set noat to turn off those optimizations (and this "
1924 "warning)."));
1925
1926 /* And whether we are using oci registers. */
1927 if (!nios2_as_options.nobreak
1928 && (regno == 25 || strprefix (argstr, "bt")))
1929 as_warn (_("The debugger will corrupt bt (r25). If you don't need to "
1930 "debug this\n"
1931 "code then use .set nobreak to turn off this warning."));
1932
1933 if (!nios2_as_options.nobreak
1934 && (regno == 30 || strprefix (argstr, "ba")))
1935 as_warn (_("The debugger will corrupt ba (r30). If you don't need to "
1936 "debug this\n"
1937 "code then use .set nobreak to turn off this warning."));
1938 break;
1939 case 'i':
1940 case 'u':
1941 if (*argstr == '%')
1942 {
1943 if (nios2_special_relocation_p (argstr))
1944 {
1945 /* We zap the parentheses because we don't want them confused
1946 with separators. */
1947 temp = strchr (argstr, '(');
1948 if (temp != NULL)
1949 *temp = ' ';
1950 temp = strchr (argstr, ')');
1951 if (temp != NULL)
1952 *temp = ' ';
1953 }
1954 else
1955 as_bad (_("badly formed expression near %s"), argstr);
1956 }
1957 break;
1958 case 'm':
1959 case 'j':
1960 case 'k':
1961 case 'l':
1962 case 'b':
1963 /* We can't have %hi, %lo or %hiadj here. */
1964 if (*argstr == '%')
1965 as_bad (_("badly formed expression near %s"), argstr);
1966 break;
1967 default:
1968 break;
1969 }
1970
1971 return argstr;
1972}
1973
1974/* The function consume_separator takes a pointer into a string
1975 of instruction tokens (args) and a pointer into a string representing
1976 the expected sequence of tokens and separators. It finds the first
1977 instance of the character pointed to by separator in argstr, and
1978 returns a pointer to the next element of argstr, which is the
1979 following token in the sequence. */
1980static char *
1981nios2_consume_separator (char *argstr, const char *separator)
1982{
1983 char *p;
1984
1985 /* If we have a opcode reg, expr(reg) type instruction, and
1986 * we are separating the expr from the (reg), we find the last
1987 * (, just in case the expression has parentheses. */
1988
1989 if (*separator == '(')
1990 p = strrchr (argstr, *separator);
1991 else
1992 p = strchr (argstr, *separator);
1993
1994 if (p != NULL)
1995 *p++ = 0;
1996 else
1997 as_bad (_("expecting %c near %s"), *separator, argstr);
1998 return p;
1999}
2000
2001
2002/* The principal argument parsing function which takes a string argstr
2003 representing the instruction arguments for insn, and extracts the argument
2004 tokens matching parsestr into parsed_args. */
2005static void
2006nios2_parse_args (nios2_insn_infoS *insn, char *argstr,
2007 const char *parsestr, char **parsed_args)
2008{
2009 char *p;
2010 char *end = NULL;
2011 int i;
2012 p = argstr;
2013 i = 0;
2014 bfd_boolean terminate = FALSE;
2015
2016 /* This rest of this function is it too fragile and it mostly works,
2017 therefore special case this one. */
2018 if (*parsestr == 0 && argstr != 0)
2019 {
2020 as_bad (_("too many arguments"));
2021 parsed_args[0] = NULL;
2022 return;
2023 }
2024
2025 while (p != NULL && !terminate && i < NIOS2_MAX_INSN_TOKENS)
2026 {
2027 parsed_args[i] = nios2_consume_arg (insn, p, parsestr);
2028 ++parsestr;
2029 if (*parsestr != '\0')
2030 {
2031 p = nios2_consume_separator (p, parsestr);
2032 ++parsestr;
2033 }
2034 else
2035 {
2036 /* Check that the argument string has no trailing arguments. */
2037 /* If we've got a %lo etc relocation, we've zapped the parens with
2038 spaces. */
2039 if (nios2_special_relocation_p (p))
2040 end = strpbrk (p, ",");
2041 else
2042 end = strpbrk (p, " ,");
2043
2044 if (end != NULL)
2045 as_bad (_("too many arguments"));
2046 }
2047
2048 if (*parsestr == '\0' || (p != NULL && *p == '\0'))
2049 terminate = TRUE;
2050 ++i;
2051 }
2052
2053 parsed_args[i] = NULL;
2054
2055 if (*parsestr != '\0' && insn->insn_nios2_opcode->match != OP_MATCH_BREAK)
2056 as_bad (_("missing argument"));
2057}
2058
2059
2060\f
2061/** Support for pseudo-op parsing. These are macro-like opcodes that
2062 expand into real insns by suitable fiddling with the operands. */
2063
2064/* Append the string modifier to the string contained in the argument at
2065 parsed_args[ndx]. */
2066static void
2067nios2_modify_arg (char **parsed_args, const char *modifier,
2068 int unused ATTRIBUTE_UNUSED, int ndx)
2069{
2070 char *tmp = parsed_args[ndx];
2071
2072 parsed_args[ndx]
2073 = (char *) malloc (strlen (parsed_args[ndx]) + strlen (modifier) + 1);
2074 strcpy (parsed_args[ndx], tmp);
2075 strcat (parsed_args[ndx], modifier);
2076}
2077
2078/* Modify parsed_args[ndx] by negating that argument. */
2079static void
2080nios2_negate_arg (char **parsed_args, const char *modifier ATTRIBUTE_UNUSED,
2081 int unused ATTRIBUTE_UNUSED, int ndx)
2082{
2083 char *tmp = parsed_args[ndx];
2084
2085 parsed_args[ndx]
2086 = (char *) malloc (strlen ("~(") + strlen (parsed_args[ndx]) +
2087 strlen (")+1") + 1);
2088
2089 strcpy (parsed_args[ndx], "~(");
2090 strcat (parsed_args[ndx], tmp);
2091 strcat (parsed_args[ndx], ")+1");
2092}
2093
2094/* The function nios2_swap_args swaps the pointers at indices index_1 and
2095 index_2 in the array parsed_args[] - this is used for operand swapping
2096 for comparison operations. */
2097static void
2098nios2_swap_args (char **parsed_args, const char *unused ATTRIBUTE_UNUSED,
2099 int index_1, int index_2)
2100{
2101 char *tmp;
2102 gas_assert (index_1 < NIOS2_MAX_INSN_TOKENS
2103 && index_2 < NIOS2_MAX_INSN_TOKENS);
2104 tmp = parsed_args[index_1];
2105 parsed_args[index_1] = parsed_args[index_2];
2106 parsed_args[index_2] = tmp;
2107}
2108
2109/* This function appends the string appnd to the array of strings in
2110 parsed_args num times starting at index start in the array. */
2111static void
2112nios2_append_arg (char **parsed_args, const char *appnd, int num,
2113 int start)
2114{
2115 int i, count;
2116 char *tmp;
2117
2118 gas_assert ((start + num) < NIOS2_MAX_INSN_TOKENS);
2119
2120 if (nios2_mode == NIOS2_MODE_TEST)
2121 tmp = parsed_args[start];
2122 else
2123 tmp = NULL;
2124
2125 for (i = start, count = num; count > 0; ++i, --count)
2126 parsed_args[i] = (char *) appnd;
2127
2128 gas_assert (i == (start + num));
2129 parsed_args[i] = tmp;
2130 parsed_args[i + 1] = NULL;
2131}
2132
2133/* This function inserts the string insert num times in the array
2134 parsed_args, starting at the index start. */
2135static void
2136nios2_insert_arg (char **parsed_args, const char *insert, int num,
2137 int start)
2138{
2139 int i, count;
2140
2141 gas_assert ((start + num) < NIOS2_MAX_INSN_TOKENS);
2142
2143 /* Move the existing arguments up to create space. */
2144 for (i = NIOS2_MAX_INSN_TOKENS; i - num >= start; --i)
2145 parsed_args[i] = parsed_args[i - num];
2146
2147 for (i = start, count = num; count > 0; ++i, --count)
2148 parsed_args[i] = (char *) insert;
2149}
2150
2151/* Cleanup function to free malloc'ed arg strings. */
2152static void
2153nios2_free_arg (char **parsed_args, int num ATTRIBUTE_UNUSED, int start)
2154{
2155 if (parsed_args[start])
2156 {
2157 free (parsed_args[start]);
2158 parsed_args[start] = NULL;
2159 }
2160}
2161
2162/* This function swaps the pseudo-op for a real op. */
2163static nios2_ps_insn_infoS*
2164nios2_translate_pseudo_insn (nios2_insn_infoS *insn)
2165{
2166
2167 nios2_ps_insn_infoS *ps_insn;
2168
2169 /* Find which real insn the pseudo-op transates to and
2170 switch the insn_info ptr to point to it. */
2171 ps_insn = nios2_ps_lookup (insn->insn_nios2_opcode->name);
2172
2173 if (ps_insn != NULL)
2174 {
2175 insn->insn_nios2_opcode = nios2_opcode_lookup (ps_insn->insn);
2176 insn->insn_tokens[0] = insn->insn_nios2_opcode->name;
2177 /* Modify the args so they work with the real insn. */
2178 ps_insn->arg_modifer_func ((char **) insn->insn_tokens,
2179 ps_insn->arg_modifier, ps_insn->num,
2180 ps_insn->index);
2181 }
2182 else
2183 /* we cannot recover from this. */
2184 as_fatal (_("unrecognized pseudo-instruction %s"),
2185 ps_insn->pseudo_insn);
2186 return ps_insn;
2187}
2188
2189/* Invoke the cleanup handler for pseudo-insn ps_insn on insn. */
2190static void
2191nios2_cleanup_pseudo_insn (nios2_insn_infoS *insn,
2192 nios2_ps_insn_infoS *ps_insn)
2193{
2194 if (ps_insn->arg_cleanup_func)
2195 (ps_insn->arg_cleanup_func) ((char **) insn->insn_tokens,
2196 ps_insn->num, ps_insn->index);
2197}
2198
2199const nios2_ps_insn_infoS nios2_ps_insn_info_structs[] = {
2200 /* pseudo-op, real-op, arg, arg_modifier_func, num, index, arg_cleanup_func */
2201 {"mov", "add", nios2_append_arg, "zero", 1, 3, NULL},
2202 {"movi", "addi", nios2_insert_arg, "zero", 1, 2, NULL},
2203 {"movhi", "orhi", nios2_insert_arg, "zero", 1, 2, NULL},
2204 {"movui", "ori", nios2_insert_arg, "zero", 1, 2, NULL},
2205 {"movia", "orhi", nios2_insert_arg, "zero", 1, 2, NULL},
2206 {"nop", "add", nios2_append_arg, "zero", 3, 1, NULL},
2207 {"bgt", "blt", nios2_swap_args, "", 1, 2, NULL},
2208 {"bgtu", "bltu", nios2_swap_args, "", 1, 2, NULL},
2209 {"ble", "bge", nios2_swap_args, "", 1, 2, NULL},
2210 {"bleu", "bgeu", nios2_swap_args, "", 1, 2, NULL},
2211 {"cmpgt", "cmplt", nios2_swap_args, "", 2, 3, NULL},
2212 {"cmpgtu", "cmpltu", nios2_swap_args, "", 2, 3, NULL},
2213 {"cmple", "cmpge", nios2_swap_args, "", 2, 3, NULL},
2214 {"cmpleu", "cmpgeu", nios2_swap_args, "", 2, 3, NULL},
2215 {"cmpgti", "cmpgei", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2216 {"cmpgtui", "cmpgeui", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2217 {"cmplei", "cmplti", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2218 {"cmpleui", "cmpltui", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2219 {"subi", "addi", nios2_negate_arg, "", 0, 3, nios2_free_arg}
2220 /* Add further pseudo-ops here. */
2221};
2222
2223#define NIOS2_NUM_PSEUDO_INSNS \
2224 ((sizeof(nios2_ps_insn_info_structs)/ \
2225 sizeof(nios2_ps_insn_info_structs[0])))
2226const int nios2_num_ps_insn_info_structs = NIOS2_NUM_PSEUDO_INSNS;
2227
2228\f
2229/** Assembler output support. */
2230
2231static int
2232can_evaluate_expr (nios2_insn_infoS *insn)
2233{
2234 /* Remove this check for null and the invalid insn "ori r9, 1234" seg faults. */
2235 if (!insn->insn_reloc)
2236 /* ??? Ideally we should do something other than as_fatal here as we can
2237 continue to assemble.
2238 However this function (actually the output_* functions) should not
2239 have been called in the first place once an illegal instruction had
2240 been encountered. */
2241 as_fatal (_("Invalid instruction encountered, cannot recover. No assembly attempted."));
2242
2243 if (insn->insn_reloc->reloc_expression.X_op == O_constant)
2244 return 1;
2245
2246 return 0;
2247}
2248
2249static int
2250get_expr_value (nios2_insn_infoS *insn)
2251{
2252 int value = 0;
2253
2254 if (insn->insn_reloc->reloc_expression.X_op == O_constant)
2255 value = insn->insn_reloc->reloc_expression.X_add_number;
2256 return value;
2257}
2258
2259/* Output a normal instruction. */
2260static void
2261output_insn (nios2_insn_infoS *insn)
2262{
2263 char *f;
2264 nios2_insn_relocS *reloc;
2265
2266 f = frag_more (4);
2267 /* This allocates enough space for the instruction
2268 and puts it in the current frag. */
2269 md_number_to_chars (f, insn->insn_code, 4);
2270 /* Emit debug info. */
2271 dwarf2_emit_insn (4);
2272 /* Create any fixups to be acted on later. */
2273 for (reloc = insn->insn_reloc; reloc != NULL; reloc = reloc->reloc_next)
2274 fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
2275 &reloc->reloc_expression, reloc->reloc_pcrel,
2276 reloc->reloc_type);
2277}
2278
2279/* Output an unconditional branch. */
2280static void
2281output_ubranch (nios2_insn_infoS *insn)
2282{
2283 nios2_insn_relocS *reloc = insn->insn_reloc;
2284
2285 /* If the reloc is NULL, there was an error assembling the branch. */
2286 if (reloc != NULL)
2287 {
2288 symbolS *symp = reloc->reloc_expression.X_add_symbol;
2289 offsetT offset = reloc->reloc_expression.X_add_number;
2290 char *f;
2291
2292 /* Tag dwarf2 debug info to the address at the start of the insn.
2293 We must do it before frag_var() below closes off the frag. */
2294 dwarf2_emit_insn (0);
2295
2296 /* We create a machine dependent frag which can grow
2297 to accommodate the largest possible instruction sequence
2298 this may generate. */
2299 f = frag_var (rs_machine_dependent,
2300 UBRANCH_MAX_SIZE, 4, UBRANCH_SUBTYPE (0),
2301 symp, offset, NULL);
2302
2303 md_number_to_chars (f, insn->insn_code, 4);
2304
2305 /* We leave fixup generation to md_convert_frag. */
2306 }
2307}
2308
2309/* Output a conditional branch. */
2310static void
2311output_cbranch (nios2_insn_infoS *insn)
2312{
2313 nios2_insn_relocS *reloc = insn->insn_reloc;
2314
2315 /* If the reloc is NULL, there was an error assembling the branch. */
2316 if (reloc != NULL)
2317 {
2318 symbolS *symp = reloc->reloc_expression.X_add_symbol;
2319 offsetT offset = reloc->reloc_expression.X_add_number;
2320 char *f;
2321
2322 /* Tag dwarf2 debug info to the address at the start of the insn.
2323 We must do it before frag_var() below closes off the frag. */
2324 dwarf2_emit_insn (0);
2325
2326 /* We create a machine dependent frag which can grow
2327 to accommodate the largest possible instruction sequence
2328 this may generate. */
2329 f = frag_var (rs_machine_dependent,
2330 CBRANCH_MAX_SIZE, 4, CBRANCH_SUBTYPE (0),
2331 symp, offset, NULL);
2332
2333 md_number_to_chars (f, insn->insn_code, 4);
2334
2335 /* We leave fixup generation to md_convert_frag. */
2336 }
2337}
2338
2339/* Output a call sequence. Since calls are not pc-relative for NIOS2,
2340 but are page-relative, we cannot tell at any stage in assembly
2341 whether a call will be out of range since a section may be linked
2342 at any address. So if we are relaxing, we convert all call instructions
2343 to long call sequences, and rely on the linker to relax them back to
2344 short calls. */
2345static void
2346output_call (nios2_insn_infoS *insn)
2347{
2348 /* This allocates enough space for the instruction
2349 and puts it in the current frag. */
2350 char *f = frag_more (12);
2351 nios2_insn_relocS *reloc = insn->insn_reloc;
2352
2353 md_number_to_chars (f, OP_MATCH_ORHI | 0x00400000, 4);
2354 dwarf2_emit_insn (4);
2355 fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
2356 &reloc->reloc_expression, 0, BFD_RELOC_NIOS2_HI16);
2357 md_number_to_chars (f + 4, OP_MATCH_ORI | 0x08400000, 4);
2358 dwarf2_emit_insn (4);
2359 fix_new_exp (frag_now, f - frag_now->fr_literal + 4, 4,
2360 &reloc->reloc_expression, 0, BFD_RELOC_NIOS2_LO16);
2361 md_number_to_chars (f + 8, OP_MATCH_CALLR | 0x08000000, 4);
2362 dwarf2_emit_insn (4);
2363}
2364
2365/* Output an addi - will silently convert to
2366 orhi if rA = r0 and (expr & 0xffff0000) == 0. */
2367static void
2368output_addi (nios2_insn_infoS *insn)
2369{
2370 if (can_evaluate_expr (insn))
2371 {
2372 int expr_val = get_expr_value (insn);
2373 if (GET_INSN_FIELD (RRS, insn->insn_code) == 0
2374 && (expr_val & 0xffff) == 0
2375 && expr_val != 0)
2376 {
2377 /* We really want a movhi (orhi) here. */
2378 insn->insn_code = (insn->insn_code & ~OP_MATCH_ADDI) | OP_MATCH_ORHI;
2379 insn->insn_reloc->reloc_expression.X_add_number =
2380 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2381 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2382 }
2383 }
2384
2385 /* Output an instruction. */
2386 output_insn (insn);
2387}
2388
2389static void
2390output_andi (nios2_insn_infoS *insn)
2391{
2392 if (can_evaluate_expr (insn))
2393 {
2394 int expr_val = get_expr_value (insn);
2395 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2396 {
2397 /* We really want a movhi (orhi) here. */
2398 insn->insn_code = (insn->insn_code & ~OP_MATCH_ANDI) | OP_MATCH_ANDHI;
2399 insn->insn_reloc->reloc_expression.X_add_number =
2400 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2401 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2402 }
2403 }
2404
2405 /* Output an instruction. */
2406 output_insn (insn);
2407}
2408
2409static void
2410output_ori (nios2_insn_infoS *insn)
2411{
2412 if (can_evaluate_expr (insn))
2413 {
2414 int expr_val = get_expr_value (insn);
2415 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2416 {
2417 /* We really want a movhi (orhi) here. */
2418 insn->insn_code = (insn->insn_code & ~OP_MATCH_ORI) | OP_MATCH_ORHI;
2419 insn->insn_reloc->reloc_expression.X_add_number =
2420 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2421 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2422 }
2423 }
2424
2425 /* Output an instruction. */
2426 output_insn (insn);
2427}
2428
2429static void
2430output_xori (nios2_insn_infoS *insn)
2431{
2432 if (can_evaluate_expr (insn))
2433 {
2434 int expr_val = get_expr_value (insn);
2435 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2436 {
2437 /* We really want a movhi (orhi) here. */
2438 insn->insn_code = (insn->insn_code & ~OP_MATCH_XORI) | OP_MATCH_XORHI;
2439 insn->insn_reloc->reloc_expression.X_add_number =
2440 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2441 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2442 }
2443 }
2444
2445 /* Output an instruction. */
2446 output_insn (insn);
2447}
2448
2449
2450/* Output a movhi/addi pair for the movia pseudo-op. */
2451static void
2452output_movia (nios2_insn_infoS *insn)
2453{
2454 /* This allocates enough space for the instruction
2455 and puts it in the current frag. */
2456 char *f = frag_more (8);
2457 nios2_insn_relocS *reloc = insn->insn_reloc;
2458 unsigned long reg_index = GET_INSN_FIELD (IRT, insn->insn_code);
2459
2460 /* If the reloc is NULL, there was an error assembling the movia. */
2461 if (reloc != NULL)
2462 {
2463 md_number_to_chars (f, insn->insn_code, 4);
2464 dwarf2_emit_insn (4);
2465 md_number_to_chars (f + 4,
2466 (OP_MATCH_ADDI | (reg_index << OP_SH_IRT)
2467 | (reg_index << OP_SH_IRS)),
2468 4);
2469 dwarf2_emit_insn (4);
2470 fix_new (frag_now, f - frag_now->fr_literal, 4,
2471 reloc->reloc_expression.X_add_symbol,
2472 reloc->reloc_expression.X_add_number, 0,
2473 BFD_RELOC_NIOS2_HIADJ16);
2474 fix_new (frag_now, f + 4 - frag_now->fr_literal, 4,
2475 reloc->reloc_expression.X_add_symbol,
2476 reloc->reloc_expression.X_add_number, 0, BFD_RELOC_NIOS2_LO16);
2477 }
2478}
2479
2480
2481\f
2482/** External interfaces. */
2483
2484/* The following functions are called by machine-independent parts of
2485 the assembler. */
2486int
2487md_parse_option (int c, char *arg ATTRIBUTE_UNUSED)
2488{
2489 switch (c)
2490 {
2491 case 'r':
2492 /* Hidden option for self-test mode. */
2493 nios2_mode = NIOS2_MODE_TEST;
2494 break;
2495 case OPTION_RELAX_ALL:
2496 nios2_as_options.relax = relax_all;
2497 break;
2498 case OPTION_NORELAX:
2499 nios2_as_options.relax = relax_none;
2500 break;
2501 case OPTION_RELAX_SECTION:
2502 nios2_as_options.relax = relax_section;
2503 break;
2504 case OPTION_EB:
2505 target_big_endian = 1;
2506 break;
2507 case OPTION_EL:
2508 target_big_endian = 0;
2509 break;
2510 default:
2511 return 0;
2512 break;
2513 }
2514
2515 return 1;
2516}
2517
2518/* Implement TARGET_FORMAT. We can choose to be big-endian or
2519 little-endian at runtime based on a switch. */
2520const char *
2521nios2_target_format (void)
2522{
2523 return target_big_endian ? "elf32-bignios2" : "elf32-littlenios2";
2524}
2525
2526/* Machine-dependent usage message. */
2527void
2528md_show_usage (FILE *stream)
2529{
2530 fprintf (stream, " NIOS2 options:\n"
2531 " -relax-all replace all branch and call "
2532 "instructions with jmp and callr sequences\n"
2533 " -relax-section replace identified out of range "
2534 "branches with jmp sequences (default)\n"
2535 " -no-relax do not replace any branches or calls\n"
2536 " -EB force big-endian byte ordering\n"
2537 " -EL force little-endian byte ordering\n");
2538}
2539
2540/* This function is called once, at assembler startup time.
2541 It should set up all the tables, etc. that the MD part of the
2542 assembler will need. */
2543void
2544md_begin (void)
2545{
2546 int i;
2547 const char *inserted;
2548
2549 /* Create and fill a hashtable for the Nios II opcodes, registers and
2550 arguments. */
2551 nios2_opcode_hash = hash_new ();
2552 nios2_reg_hash = hash_new ();
2553 nios2_arg_hash = hash_new ();
2554 nios2_ps_hash = hash_new ();
2555
2556 for (i = 0; i < NUMOPCODES; ++i)
2557 {
2558 inserted
2559 = hash_insert (nios2_opcode_hash, nios2_opcodes[i].name,
2560 (PTR) & nios2_opcodes[i]);
2561 if (inserted != NULL)
2562 {
2563 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2564 nios2_opcodes[i].name, inserted);
2565 /* Probably a memory allocation problem? Give up now. */
2566 as_fatal (_("Broken assembler. No assembly attempted."));
2567 }
2568 }
2569
2570 for (i = 0; i < nios2_num_regs; ++i)
2571 {
2572 inserted
2573 = hash_insert (nios2_reg_hash, nios2_regs[i].name,
2574 (PTR) & nios2_regs[i]);
2575 if (inserted != NULL)
2576 {
2577 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2578 nios2_regs[i].name, inserted);
2579 /* Probably a memory allocation problem? Give up now. */
2580 as_fatal (_("Broken assembler. No assembly attempted."));
2581 }
2582
2583 }
2584
2585 for (i = 0; i < nios2_num_arg_info_structs; ++i)
2586 {
2587 inserted
2588 = hash_insert (nios2_arg_hash, nios2_arg_info_structs[i].args,
2589 (PTR) & nios2_arg_info_structs[i]);
2590 if (inserted != NULL)
2591 {
2592 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2593 nios2_arg_info_structs[i].args, inserted);
2594 /* Probably a memory allocation problem? Give up now. */
2595 as_fatal (_("Broken assembler. No assembly attempted."));
2596 }
2597 }
2598
2599 for (i = 0; i < nios2_num_ps_insn_info_structs; ++i)
2600 {
2601 inserted
2602 = hash_insert (nios2_ps_hash, nios2_ps_insn_info_structs[i].pseudo_insn,
2603 (PTR) & nios2_ps_insn_info_structs[i]);
2604 if (inserted != NULL)
2605 {
2606 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2607 nios2_ps_insn_info_structs[i].pseudo_insn, inserted);
2608 /* Probably a memory allocation problem? Give up now. */
2609 as_fatal (_("Broken assembler. No assembly attempted."));
2610 }
2611 }
2612
2613 /* Assembler option defaults. */
2614 nios2_as_options.noat = FALSE;
2615 nios2_as_options.nobreak = FALSE;
2616
2617 /* Debug information is incompatible with relaxation. */
2618 if (debug_type != DEBUG_UNSPECIFIED)
2619 nios2_as_options.relax = relax_none;
2620
2621 /* Initialize the alignment data. */
2622 nios2_current_align_seg = now_seg;
2623 nios2_last_label = NULL;
2624 nios2_current_align = 0;
2625}
2626
2627
2628/* Assembles a single line of Nios II assembly language. */
2629void
2630md_assemble (char *op_str)
2631{
2632 char *argstr;
2633 char *op_strdup = NULL;
2634 nios2_arg_infoS *arg_info;
2635 unsigned long saved_pinfo = 0;
2636 nios2_insn_infoS thisinsn;
2637 nios2_insn_infoS *insn = &thisinsn;
2638
2639 /* Make sure we are aligned on a 4-byte boundary. */
2640 if (nios2_current_align < 2)
2641 nios2_align (2, NULL, nios2_last_label);
2642 else if (nios2_current_align > 2)
2643 nios2_current_align = 2;
2644 nios2_last_label = NULL;
2645
2646 /* We don't want to clobber to op_str
2647 because we want to be able to use it in messages. */
2648 op_strdup = strdup (op_str);
2649 insn->insn_tokens[0] = strtok (op_strdup, " ");
2650 argstr = strtok (NULL, "");
2651
2652 /* Assemble the opcode. */
2653 insn->insn_nios2_opcode = nios2_opcode_lookup (insn->insn_tokens[0]);
2654 insn->insn_reloc = NULL;
2655
2656 if (insn->insn_nios2_opcode != NULL)
2657 {
2658 nios2_ps_insn_infoS *ps_insn = NULL;
2659 /* Set the opcode for the instruction. */
2660 insn->insn_code = insn->insn_nios2_opcode->match;
2661
2662 /* Parse the arguments pointed to by argstr. */
2663 if (nios2_mode == NIOS2_MODE_ASSEMBLE)
2664 nios2_parse_args (insn, argstr, insn->insn_nios2_opcode->args,
2665 (char **) &insn->insn_tokens[1]);
2666 else
2667 nios2_parse_args (insn, argstr, insn->insn_nios2_opcode->args_test,
2668 (char **) &insn->insn_tokens[1]);
2669
2670 /* We need to preserve the MOVIA macro as this is clobbered by
2671 translate_pseudo_insn. */
2672 if (insn->insn_nios2_opcode->pinfo == NIOS2_INSN_MACRO_MOVIA)
2673 saved_pinfo = NIOS2_INSN_MACRO_MOVIA;
2674 /* If the instruction is an pseudo-instruction, we want to replace it
2675 with its real equivalent, and then continue. */
2676 if ((insn->insn_nios2_opcode->pinfo & NIOS2_INSN_MACRO)
2677 == NIOS2_INSN_MACRO)
2678 ps_insn = nios2_translate_pseudo_insn (insn);
2679
2680 /* Find the assemble function, and call it. */
2681 arg_info = nios2_arg_lookup (insn->insn_nios2_opcode->args);
2682 if (arg_info != NULL)
2683 {
2684 arg_info->assemble_args_func (insn);
2685
2686 if (nios2_as_options.relax != relax_none
2687 && !nios2_as_options.noat
2688 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_UBRANCH)
2689 output_ubranch (insn);
2690 else if (nios2_as_options.relax != relax_none
2691 && !nios2_as_options.noat
2692 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_CBRANCH)
2693 output_cbranch (insn);
2694 else if (nios2_as_options.relax == relax_all
2695 && !nios2_as_options.noat
2696 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_CALL
2697 && insn->insn_reloc
2698 && insn->insn_reloc->reloc_type == BFD_RELOC_NIOS2_CALL26)
2699 output_call (insn);
2700 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ANDI)
2701 output_andi (insn);
2702 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ORI)
2703 output_ori (insn);
2704 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_XORI)
2705 output_xori (insn);
2706 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ADDI)
2707 output_addi (insn);
2708 else if (saved_pinfo == NIOS2_INSN_MACRO_MOVIA)
2709 output_movia (insn);
2710 else
2711 output_insn (insn);
2712 if (ps_insn)
2713 nios2_cleanup_pseudo_insn (insn, ps_insn);
2714 }
2715 else
2716 {
2717 /* The assembler is broken. */
2718 fprintf (stderr,
2719 _("internal error: %s is not a valid argument syntax\n"),
2720 insn->insn_nios2_opcode->args);
2721 /* Probably a memory allocation problem. Give up now. */
2722 as_fatal (_("Broken assembler. No assembly attempted."));
2723 }
2724 }
2725 else
2726 /* Unrecognised instruction - error. */
2727 as_bad (_("unrecognised instruction %s"), insn->insn_tokens[0]);
2728
2729 /* Don't leak memory. */
2730 free (op_strdup);
2731}
2732
2733/* Round up section size. */
2734valueT
2735md_section_align (asection *seg ATTRIBUTE_UNUSED, valueT size)
2736{
2737 /* I think byte alignment is fine here. */
2738 return size;
2739}
2740
2741/* Implement TC_FORCE_RELOCATION. */
2742int
2743nios2_force_relocation (fixS *fixp)
2744{
2745 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2746 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2747 || fixp->fx_r_type == BFD_RELOC_NIOS2_ALIGN)
2748 return 1;
2749
2750 return generic_force_reloc (fixp);
2751}
2752
2753/* Implement tc_fix_adjustable. */
2754int
2755nios2_fix_adjustable (fixS *fixp)
2756{
2757 if (fixp->fx_addsy == NULL)
2758 return 1;
2759
2760#ifdef OBJ_ELF
2761 /* Prevent all adjustments to global symbols. */
2762 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
2763 && (S_IS_EXTERNAL (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)))
2764 return 0;
2765#endif
2766 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2767 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2768 return 0;
2769
2770 /* Preserve relocations against symbols with function type. */
2771 if (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION)
2772 return 0;
2773
2774 /* Don't allow symbols to be discarded on GOT related relocs. */
2775 if (fixp->fx_r_type == BFD_RELOC_NIOS2_GOT16
2776 || fixp->fx_r_type == BFD_RELOC_NIOS2_CALL16
2777 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_LO
2778 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_HA
2779 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_GD16
2780 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LDM16
2781 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LDO16
2782 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_IE16
2783 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LE16
2784 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPMOD
2785 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPREL
2786 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_TPREL
2787 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF)
2788 return 0;
2789
2790 return 1;
2791}
2792
2793/* Implement tc_frob_symbol. This is called in adjust_reloc_syms;
2794 it is used to remove *ABS* references from the symbol table. */
2795int
2796nios2_frob_symbol (symbolS *symp)
2797{
2798 if ((OUTPUT_FLAVOR == bfd_target_elf_flavour
2799 && symp == section_symbol (absolute_section))
2800 || !S_IS_DEFINED (symp))
2801 return 1;
2802 else
2803 return 0;
2804}
2805
2806/* The function tc_gen_reloc creates a relocation structure for the
2807 fixup fixp, and returns a pointer to it. This structure is passed
2808 to bfd_install_relocation so that it can be written to the object
2809 file for linking. */
2810arelent *
2811tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2812{
2813 arelent *reloc = (arelent *) xmalloc (sizeof (arelent));
2814 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2815 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2816
2817 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2818 reloc->addend = fixp->fx_offset; /* fixp->fx_addnumber; */
2819
2820 if (fixp->fx_pcrel)
2821 {
2822 switch (fixp->fx_r_type)
2823 {
2824 case BFD_RELOC_16:
2825 fixp->fx_r_type = BFD_RELOC_16_PCREL;
2826 break;
2827 case BFD_RELOC_NIOS2_LO16:
2828 fixp->fx_r_type = BFD_RELOC_NIOS2_PCREL_LO;
2829 break;
2830 case BFD_RELOC_NIOS2_HIADJ16:
2831 fixp->fx_r_type = BFD_RELOC_NIOS2_PCREL_HA;
2832 break;
2833 default:
2834 break;
2835 }
2836 }
2837
2838 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
2839 if (reloc->howto == NULL)
2840 {
2841 as_bad_where (fixp->fx_file, fixp->fx_line,
2842 _("can't represent relocation type %s"),
2843 bfd_get_reloc_code_name (fixp->fx_r_type));
2844
2845 /* Set howto to a garbage value so that we can keep going. */
2846 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
2847 gas_assert (reloc->howto != NULL);
2848 }
2849 return reloc;
2850}
2851
2852long
2853md_pcrel_from (fixS *fixP ATTRIBUTE_UNUSED)
2854{
2855 return 0;
2856}
2857
2858/* Called just before the assembler exits. */
2859void
2860md_end ()
2861{
2862 /* FIXME - not yet implemented */
2863}
2864
2865/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
2866 Otherwise we have no need to default values of symbols. */
2867symbolS *
2868md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2869{
2870#ifdef OBJ_ELF
2871 if (name[0] == '_' && name[1] == 'G'
2872 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
2873 {
2874 if (!GOT_symbol)
2875 {
2876 if (symbol_find (name))
2877 as_bad ("GOT already in the symbol table");
2878
2879 GOT_symbol = symbol_new (name, undefined_section,
2880 (valueT) 0, &zero_address_frag);
2881 }
2882
2883 return GOT_symbol;
2884 }
2885#endif
2886
2887 return 0;
2888}
2889
2890/* Implement tc_frob_label. */
2891void
2892nios2_frob_label (symbolS *lab)
2893{
2894 /* Emit dwarf information. */
2895 dwarf2_emit_label (lab);
2896
2897 /* Update the label's address with the current output pointer. */
2898 symbol_set_frag (lab, frag_now);
2899 S_SET_VALUE (lab, (valueT) frag_now_fix ());
2900
2901 /* Record this label for future adjustment after we find out what
2902 kind of data it references, and the required alignment therewith. */
2903 nios2_last_label = lab;
2904}
2905
2906/* Implement md_cons_align. */
2907void
2908nios2_cons_align (int size)
2909{
2910 int log_size = 0;
2911 const char *pfill = NULL;
2912
2913 while ((size >>= 1) != 0)
2914 ++log_size;
2915
2916 if (subseg_text_p (now_seg))
2917 pfill = (const char *) &nop;
2918 else
2919 pfill = NULL;
2920
2921 if (nios2_auto_align_on)
2922 nios2_align (log_size, pfill, NULL);
2923
2924 nios2_last_label = NULL;
2925}
2926
2927/* Map 's' to SHF_NIOS2_GPREL. */
2928/* This is from the Alpha code tc-alpha.c. */
2929int
2930nios2_elf_section_letter (int letter, char **ptr_msg)
2931{
2932 if (letter == 's')
2933 return SHF_NIOS2_GPREL;
2934
2935 *ptr_msg = _("Bad .section directive: want a,s,w,x,M,S,G,T in string");
2936 return -1;
2937}
2938
2939/* Map SHF_ALPHA_GPREL to SEC_SMALL_DATA. */
2940/* This is from the Alpha code tc-alpha.c. */
2941flagword
2942nios2_elf_section_flags (flagword flags, int attr, int type ATTRIBUTE_UNUSED)
2943{
2944 if (attr & SHF_NIOS2_GPREL)
2945 flags |= SEC_SMALL_DATA;
2946 return flags;
2947}
2948
2949/* Implement TC_PARSE_CONS_EXPRESSION to handle %tls_ldo(...) */
2950static int nios2_tls_ldo_reloc;
2951
2952void
2953nios2_cons (expressionS *exp, int size)
2954{
2955 nios2_tls_ldo_reloc = 0;
2956
2957 SKIP_WHITESPACE ();
2958 if (input_line_pointer[0] == '%')
2959 {
2960 if (strprefix (input_line_pointer + 1, "tls_ldo"))
2961 {
2962 if (size != 4)
2963 as_bad (_("Illegal operands: %%tls_ldo in %d-byte data field"),
2964 size);
2965 else
2966 {
2967 input_line_pointer += 8;
2968 nios2_tls_ldo_reloc = 1;
2969 }
2970 }
2971 if (nios2_tls_ldo_reloc)
2972 {
2973 SKIP_WHITESPACE ();
2974 if (input_line_pointer[0] != '(')
2975 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
2976 else
2977 {
2978 int c;
2979 char *end = ++input_line_pointer;
2980 int npar = 0;
2981
2982 for (c = *end; !is_end_of_line[c]; end++, c = *end)
2983 if (c == '(')
2984 npar++;
2985 else if (c == ')')
2986 {
2987 if (!npar)
2988 break;
2989 npar--;
2990 }
2991
2992 if (c != ')')
2993 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
2994 else
2995 {
2996 *end = '\0';
2997 expression (exp);
2998 *end = c;
2999 if (input_line_pointer != end)
3000 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3001 else
3002 {
3003 input_line_pointer++;
3004 SKIP_WHITESPACE ();
3005 c = *input_line_pointer;
3006 if (! is_end_of_line[c] && c != ',')
3007 as_bad (_("Illegal operands: garbage after %%tls_ldo()"));
3008 }
3009 }
3010 }
3011 }
3012 }
3013 if (!nios2_tls_ldo_reloc)
3014 expression (exp);
3015}
3016
3017/* Implement TC_CONS_FIX_NEW. */
3018void
3019nios2_cons_fix_new (fragS *frag, int where, unsigned int nbytes,
3020 expressionS *exp)
3021{
3022 bfd_reloc_code_real_type r;
3023
3024 r = (nbytes == 1 ? BFD_RELOC_8
3025 : (nbytes == 2 ? BFD_RELOC_16
3026 : (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
3027
3028 if (nios2_tls_ldo_reloc)
3029 r = BFD_RELOC_NIOS2_TLS_DTPREL;
3030
3031 fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
3032 nios2_tls_ldo_reloc = 0;
3033}
3034
3035/* Implement HANDLE_ALIGN. */
3036void
3037nios2_handle_align (fragS *fragp)
3038{
3039 /* If we are expecting to relax in the linker, then we must output a
3040 relocation to tell the linker we are aligning code. */
3041 if (nios2_as_options.relax == relax_all
3042 && (fragp->fr_type == rs_align || fragp->fr_type == rs_align_code)
3043 && fragp->fr_address + fragp->fr_fix > 0
3044 && fragp->fr_offset > 1
3045 && now_seg != bss_section)
3046 fix_new (fragp, fragp->fr_fix, 0, &abs_symbol, fragp->fr_offset, 0,
3047 BFD_RELOC_NIOS2_ALIGN);
3048}
3049
3050/* Implement tc_regname_to_dw2regnum, to convert REGNAME to a DWARF-2
3051 register number. */
3052int
3053nios2_regname_to_dw2regnum (char *regname)
3054{
3055 struct nios2_reg *r = nios2_reg_lookup (regname);
3056 if (r == NULL)
3057 return -1;
3058 return r->index;
3059}
3060
3061/* Implement tc_cfi_frame_initial_instructions, to initialize the DWARF-2
3062 unwind information for this procedure. */
3063void
3064nios2_frame_initial_instructions (void)
3065{
3066 cfi_add_CFA_def_cfa (27, 0);
3067}
This page took 0.139641 seconds and 4 git commands to generate.