This adjusts equate handling by
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
CommitLineData
e0001a05 1/* tc-xtensa.c -- Assemble Xtensa instructions.
aef6203b 2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
e0001a05
NC
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
4b4da160
NC
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
e0001a05
NC
20
21#include <string.h>
43cd72b9 22#include <limits.h>
e0001a05
NC
23#include "as.h"
24#include "sb.h"
25#include "safe-ctype.h"
26#include "tc-xtensa.h"
27#include "frags.h"
28#include "subsegs.h"
29#include "xtensa-relax.h"
30#include "xtensa-istack.h"
cda2eb9e 31#include "dwarf2dbg.h"
e0001a05
NC
32#include "struc-symbol.h"
33#include "xtensa-config.h"
34
35#ifndef uint32
36#define uint32 unsigned int
37#endif
38#ifndef int32
39#define int32 signed int
40#endif
41
42/* Notes:
43
e0001a05
NC
44 Naming conventions (used somewhat inconsistently):
45 The xtensa_ functions are exported
46 The xg_ functions are internal
47
48 We also have a couple of different extensibility mechanisms.
49 1) The idiom replacement:
50 This is used when a line is first parsed to
51 replace an instruction pattern with another instruction
52 It is currently limited to replacements of instructions
53 with constant operands.
54 2) The xtensa-relax.c mechanism that has stronger instruction
55 replacement patterns. When an instruction's immediate field
56 does not fit the next instruction sequence is attempted.
57 In addition, "narrow" opcodes are supported this way. */
58
59
60/* Define characters with special meanings to GAS. */
61const char comment_chars[] = "#";
62const char line_comment_chars[] = "#";
63const char line_separator_chars[] = ";";
64const char EXP_CHARS[] = "eE";
65const char FLT_CHARS[] = "rRsSfFdDxXpP";
66
67
43cd72b9
BW
68/* Flags to indicate whether the hardware supports the density and
69 absolute literals options. */
e0001a05 70
e0001a05 71bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
43cd72b9
BW
72bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
73
74/* Maximum width we would pad an unreachable frag to get alignment. */
75#define UNREACHABLE_MAX_WIDTH 8
e0001a05 76
43cd72b9
BW
77static vliw_insn cur_vinsn;
78
d77b99c9 79unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
43cd72b9
BW
80
81static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
82
83/* Some functions are only valid in the front end. This variable
c138bc38 84 allows us to assert that we haven't crossed over into the
43cd72b9
BW
85 back end. */
86static bfd_boolean past_xtensa_end = FALSE;
e0001a05
NC
87
88/* Flags for properties of the last instruction in a segment. */
89#define FLAG_IS_A0_WRITER 0x1
90#define FLAG_IS_BAD_LOOPEND 0x2
91
92
93/* We define a special segment names ".literal" to place literals
94 into. The .fini and .init sections are special because they
95 contain code that is moved together by the linker. We give them
96 their own special .fini.literal and .init.literal sections. */
97
98#define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
43cd72b9 99#define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
e0001a05
NC
100#define FINI_SECTION_NAME xtensa_section_rename (".fini")
101#define INIT_SECTION_NAME xtensa_section_rename (".init")
102#define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
103#define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
104
105
43cd72b9 106/* This type is used for the directive_stack to keep track of the
e0001a05
NC
107 state of the literal collection pools. */
108
109typedef struct lit_state_struct
110{
111 const char *lit_seg_name;
43cd72b9 112 const char *lit4_seg_name;
e0001a05
NC
113 const char *init_lit_seg_name;
114 const char *fini_lit_seg_name;
115 segT lit_seg;
43cd72b9 116 segT lit4_seg;
e0001a05
NC
117 segT init_lit_seg;
118 segT fini_lit_seg;
119} lit_state;
120
121static lit_state default_lit_sections;
122
123
124/* We keep lists of literal segments. The seg_list type is the node
125 for such a list. The *_literal_head locals are the heads of the
126 various lists. All of these lists have a dummy node at the start. */
127
128typedef struct seg_list_struct
129{
130 struct seg_list_struct *next;
131 segT seg;
132} seg_list;
133
134static seg_list literal_head_h;
135static seg_list *literal_head = &literal_head_h;
136static seg_list init_literal_head_h;
137static seg_list *init_literal_head = &init_literal_head_h;
138static seg_list fini_literal_head_h;
139static seg_list *fini_literal_head = &fini_literal_head_h;
140
141
82e7541d
BW
142/* Lists of symbols. We keep a list of symbols that label the current
143 instruction, so that we can adjust the symbols when inserting alignment
144 for various instructions. We also keep a list of all the symbols on
145 literals, so that we can fix up those symbols when the literals are
146 later moved into the text sections. */
147
148typedef struct sym_list_struct
149{
150 struct sym_list_struct *next;
151 symbolS *sym;
152} sym_list;
153
154static sym_list *insn_labels = NULL;
155static sym_list *free_insn_labels = NULL;
156static sym_list *saved_insn_labels = NULL;
157
158static sym_list *literal_syms;
159
160
43cd72b9
BW
161/* Flags to determine whether to prefer const16 or l32r
162 if both options are available. */
163int prefer_const16 = 0;
164int prefer_l32r = 0;
165
e0001a05
NC
166/* Global flag to indicate when we are emitting literals. */
167int generating_literals = 0;
168
43cd72b9
BW
169/* The following PROPERTY table definitions are copied from
170 <elf/xtensa.h> and must be kept in sync with the code there. */
171
172/* Flags in the property tables to specify whether blocks of memory
173 are literals, instructions, data, or unreachable. For
174 instructions, blocks that begin loop targets and branch targets are
175 designated. Blocks that do not allow density, instruction
176 reordering or transformation are also specified. Finally, for
177 branch targets, branch target alignment priority is included.
178 Alignment of the next block is specified in the current block
179 and the size of the current block does not include any fill required
180 to align to the next block. */
181
182#define XTENSA_PROP_LITERAL 0x00000001
183#define XTENSA_PROP_INSN 0x00000002
184#define XTENSA_PROP_DATA 0x00000004
185#define XTENSA_PROP_UNREACHABLE 0x00000008
186/* Instruction only properties at beginning of code. */
187#define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
188#define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
189/* Instruction only properties about code. */
190#define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
191#define XTENSA_PROP_INSN_NO_REORDER 0x00000080
192#define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100
193
194/* Branch target alignment information. This transmits information
195 to the linker optimization about the priority of aligning a
196 particular block for branch target alignment: None, low priority,
197 high priority, or required. These only need to be checked in
198 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
199 Common usage is
200
201 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
202 case XTENSA_PROP_BT_ALIGN_NONE:
203 case XTENSA_PROP_BT_ALIGN_LOW:
204 case XTENSA_PROP_BT_ALIGN_HIGH:
205 case XTENSA_PROP_BT_ALIGN_REQUIRE:
206*/
207#define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
208
209/* No branch target alignment. */
210#define XTENSA_PROP_BT_ALIGN_NONE 0x0
211/* Low priority branch target alignment. */
212#define XTENSA_PROP_BT_ALIGN_LOW 0x1
213/* High priority branch target alignment. */
214#define XTENSA_PROP_BT_ALIGN_HIGH 0x2
215/* Required branch target alignment. */
216#define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
217
218#define GET_XTENSA_PROP_BT_ALIGN(flag) \
219 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
220#define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
221 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
222 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
223
224
225/* Alignment is specified in the block BEFORE the one that needs
226 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
227 get the required alignment specified as a power of 2. Use
228 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
229 alignment. Be careful of side effects since the SET will evaluate
230 flags twice. Also, note that the SIZE of a block in the property
231 table does not include the alignment size, so the alignment fill
232 must be calculated to determine if two blocks are contiguous.
233 TEXT_ALIGN is not currently implemented but is a placeholder for a
234 possible future implementation. */
235
236#define XTENSA_PROP_ALIGN 0x00000800
237
238#define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
239
240#define GET_XTENSA_PROP_ALIGNMENT(flag) \
241 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
242#define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
243 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
244 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
245
246#define XTENSA_PROP_INSN_ABSLIT 0x00020000
247
248
249/* Structure for saving instruction and alignment per-fragment data
250 that will be written to the object file. This structure is
251 equivalent to the actual data that will be written out to the file
252 but is easier to use. We provide a conversion to file flags
253 in frag_flags_to_number. */
254
255typedef struct frag_flags_struct frag_flags;
256
257struct frag_flags_struct
258{
259 /* is_literal should only be used after xtensa_move_literals.
260 If you need to check if you are generating a literal fragment,
261 then use the generating_literals global. */
262
263 unsigned is_literal : 1;
264 unsigned is_insn : 1;
265 unsigned is_data : 1;
266 unsigned is_unreachable : 1;
267
268 struct
269 {
270 unsigned is_loop_target : 1;
271 unsigned is_branch_target : 1; /* Branch targets have a priority. */
272 unsigned bt_align_priority : 2;
273
274 unsigned is_no_density : 1;
275 /* no_longcalls flag does not need to be placed in the object file. */
276 /* is_specific_opcode implies no_transform. */
277 unsigned is_no_transform : 1;
278
279 unsigned is_no_reorder : 1;
280
281 /* Uses absolute literal addressing for l32r. */
282 unsigned is_abslit : 1;
283 } insn;
284 unsigned is_align : 1;
285 unsigned alignment : 5;
286};
287
288
289/* Structure for saving information about a block of property data
290 for frags that have the same flags. */
291struct xtensa_block_info_struct
292{
293 segT sec;
294 bfd_vma offset;
295 size_t size;
296 frag_flags flags;
297 struct xtensa_block_info_struct *next;
298};
299
e0001a05
NC
300
301/* Structure for saving the current state before emitting literals. */
302typedef struct emit_state_struct
303{
304 const char *name;
305 segT now_seg;
306 subsegT now_subseg;
307 int generating_literals;
308} emit_state;
309
310
43cd72b9
BW
311/* Opcode placement information */
312
313typedef unsigned long long bitfield;
314#define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
315#define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
316#define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
317
318#define MAX_FORMATS 32
319
320typedef struct op_placement_info_struct
321{
322 int num_formats;
323 /* A number describing how restrictive the issue is for this
324 opcode. For example, an opcode that fits lots of different
c138bc38 325 formats has a high freedom, as does an opcode that fits
43cd72b9 326 only one format but many slots in that format. The most
c138bc38 327 restrictive is the opcode that fits only one slot in one
43cd72b9
BW
328 format. */
329 int issuef;
330 /* The single format (i.e., if the op can live in a bundle by itself),
c138bc38 331 narrowest format, and widest format the op can be bundled in
43cd72b9
BW
332 and their sizes: */
333 xtensa_format single;
334 xtensa_format narrowest;
335 xtensa_format widest;
336 char narrowest_size;
337 char widest_size;
338 char single_size;
339
340 /* formats is a bitfield with the Nth bit set
341 if the opcode fits in the Nth xtensa_format. */
342 bitfield formats;
343
344 /* slots[N]'s Mth bit is set if the op fits in the
345 Mth slot of the Nth xtensa_format. */
346 bitfield slots[MAX_FORMATS];
347
348 /* A count of the number of slots in a given format
349 an op can fit (i.e., the bitcount of the slot field above). */
350 char slots_in_format[MAX_FORMATS];
351
352} op_placement_info, *op_placement_info_table;
353
354op_placement_info_table op_placement_table;
355
356
357/* Extra expression types. */
358
359#define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
360#define O_hi16 O_md2 /* use high 16 bits of symbolic value */
361#define O_lo16 O_md3 /* use low 16 bits of symbolic value */
362
363
e0001a05
NC
364/* Directives. */
365
366typedef enum
367{
368 directive_none = 0,
369 directive_literal,
370 directive_density,
43cd72b9 371 directive_transform,
e0001a05
NC
372 directive_freeregs,
373 directive_longcalls,
43cd72b9
BW
374 directive_literal_prefix,
375 directive_schedule,
376 directive_absolute_literals,
377 directive_last_directive
e0001a05
NC
378} directiveE;
379
380typedef struct
381{
382 const char *name;
383 bfd_boolean can_be_negated;
384} directive_infoS;
385
386const directive_infoS directive_info[] =
387{
43cd72b9
BW
388 { "none", FALSE },
389 { "literal", FALSE },
390 { "density", TRUE },
391 { "transform", TRUE },
392 { "freeregs", FALSE },
393 { "longcalls", TRUE },
394 { "literal_prefix", FALSE },
395 { "schedule", TRUE },
396 { "absolute-literals", TRUE }
e0001a05
NC
397};
398
399bfd_boolean directive_state[] =
400{
401 FALSE, /* none */
402 FALSE, /* literal */
43cd72b9 403#if !XCHAL_HAVE_DENSITY
e0001a05
NC
404 FALSE, /* density */
405#else
406 TRUE, /* density */
407#endif
43cd72b9 408 TRUE, /* transform */
e0001a05
NC
409 FALSE, /* freeregs */
410 FALSE, /* longcalls */
43cd72b9
BW
411 FALSE, /* literal_prefix */
412 TRUE, /* schedule */
413#if XSHAL_USE_ABSOLUTE_LITERALS
414 TRUE /* absolute_literals */
415#else
416 FALSE /* absolute_literals */
417#endif
e0001a05
NC
418};
419
e0001a05
NC
420
421/* Directive functions. */
422
7fa3d080
BW
423static void xtensa_begin_directive (int);
424static void xtensa_end_directive (int);
425static void xtensa_dwarf2_directive_loc (int);
426static void xtensa_literal_prefix (char const *, int);
427static void xtensa_literal_position (int);
428static void xtensa_literal_pseudo (int);
429static void xtensa_frequency_pseudo (int);
430static void xtensa_elf_cons (int);
e0001a05 431
7fa3d080 432/* Parsing and Idiom Translation. */
e0001a05 433
7fa3d080 434static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
e0001a05 435
e0001a05
NC
436/* Various Other Internal Functions. */
437
84b08ed9
BW
438extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
439static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
7fa3d080
BW
440static void xtensa_mark_literal_pool_location (void);
441static addressT get_expanded_loop_offset (xtensa_opcode);
442static fragS *get_literal_pool_location (segT);
443static void set_literal_pool_location (segT, fragS *);
444static void xtensa_set_frag_assembly_state (fragS *);
445static void finish_vinsn (vliw_insn *);
446static bfd_boolean emit_single_op (TInsn *);
34e41783 447static int total_frag_text_expansion (fragS *);
e0001a05
NC
448
449/* Alignment Functions. */
450
d77b99c9
BW
451static int get_text_align_power (unsigned);
452static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
664df4e4 453static int branch_align_power (segT);
e0001a05
NC
454
455/* Helpers for xtensa_relax_frag(). */
456
7fa3d080 457static long relax_frag_add_nop (fragS *);
e0001a05 458
b08b5071 459/* Accessors for additional per-subsegment information. */
e0001a05 460
7fa3d080
BW
461static unsigned get_last_insn_flags (segT, subsegT);
462static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
b08b5071
BW
463static float get_subseg_total_freq (segT, subsegT);
464static float get_subseg_target_freq (segT, subsegT);
465static void set_subseg_freq (segT, subsegT, float, float);
e0001a05
NC
466
467/* Segment list functions. */
468
7fa3d080
BW
469static void xtensa_move_literals (void);
470static void xtensa_reorder_segments (void);
471static void xtensa_switch_to_literal_fragment (emit_state *);
472static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
473static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
474static void xtensa_restore_emit_state (emit_state *);
e0001a05 475static void cache_literal_section
7fa3d080 476 (seg_list *, const char *, segT *, bfd_boolean);
e0001a05 477
e0001a05 478/* Import from elf32-xtensa.c in BFD library. */
43cd72b9 479
7fa3d080 480extern char *xtensa_get_property_section_name (asection *, const char *);
e0001a05 481
43cd72b9
BW
482/* op_placement_info functions. */
483
7fa3d080
BW
484static void init_op_placement_info_table (void);
485extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
486static int xg_get_single_size (xtensa_opcode);
487static xtensa_format xg_get_single_format (xtensa_opcode);
43cd72b9 488
e0001a05 489/* TInsn and IStack functions. */
43cd72b9 490
7fa3d080
BW
491static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
492static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
493static bfd_boolean tinsn_has_complex_operands (const TInsn *);
494static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
495static bfd_boolean tinsn_check_arguments (const TInsn *);
496static void tinsn_from_chars (TInsn *, char *, int);
497static void tinsn_immed_from_frag (TInsn *, fragS *, int);
498static int get_num_stack_text_bytes (IStack *);
499static int get_num_stack_literal_bytes (IStack *);
e0001a05 500
43cd72b9
BW
501/* vliw_insn functions. */
502
7fa3d080
BW
503static void xg_init_vinsn (vliw_insn *);
504static void xg_clear_vinsn (vliw_insn *);
505static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
506static void xg_free_vinsn (vliw_insn *);
43cd72b9 507static bfd_boolean vinsn_to_insnbuf
7fa3d080
BW
508 (vliw_insn *, char *, fragS *, bfd_boolean);
509static void vinsn_from_chars (vliw_insn *, char *);
43cd72b9 510
e0001a05 511/* Expression Utilities. */
43cd72b9 512
7fa3d080
BW
513bfd_boolean expr_is_const (const expressionS *);
514offsetT get_expr_const (const expressionS *);
515void set_expr_const (expressionS *, offsetT);
516bfd_boolean expr_is_register (const expressionS *);
517offsetT get_expr_register (const expressionS *);
518void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
43cd72b9 519static void set_expr_symbol_offset_diff
7fa3d080
BW
520 (expressionS *, symbolS *, symbolS *, offsetT);
521bfd_boolean expr_is_equal (expressionS *, expressionS *);
522static void copy_expr (expressionS *, const expressionS *);
e0001a05 523
9456465c
BW
524/* Section renaming. */
525
7fa3d080 526static void build_section_rename (const char *);
e0001a05 527
e0001a05
NC
528
529/* ISA imported from bfd. */
530extern xtensa_isa xtensa_default_isa;
531
532extern int target_big_endian;
533
534static xtensa_opcode xtensa_addi_opcode;
535static xtensa_opcode xtensa_addmi_opcode;
536static xtensa_opcode xtensa_call0_opcode;
537static xtensa_opcode xtensa_call4_opcode;
538static xtensa_opcode xtensa_call8_opcode;
539static xtensa_opcode xtensa_call12_opcode;
540static xtensa_opcode xtensa_callx0_opcode;
541static xtensa_opcode xtensa_callx4_opcode;
542static xtensa_opcode xtensa_callx8_opcode;
543static xtensa_opcode xtensa_callx12_opcode;
43cd72b9 544static xtensa_opcode xtensa_const16_opcode;
e0001a05 545static xtensa_opcode xtensa_entry_opcode;
43cd72b9
BW
546static xtensa_opcode xtensa_movi_opcode;
547static xtensa_opcode xtensa_movi_n_opcode;
e0001a05 548static xtensa_opcode xtensa_isync_opcode;
e0001a05 549static xtensa_opcode xtensa_jx_opcode;
43cd72b9 550static xtensa_opcode xtensa_l32r_opcode;
e0001a05
NC
551static xtensa_opcode xtensa_loop_opcode;
552static xtensa_opcode xtensa_loopnez_opcode;
553static xtensa_opcode xtensa_loopgtz_opcode;
43cd72b9 554static xtensa_opcode xtensa_nop_opcode;
e0001a05
NC
555static xtensa_opcode xtensa_nop_n_opcode;
556static xtensa_opcode xtensa_or_opcode;
557static xtensa_opcode xtensa_ret_opcode;
558static xtensa_opcode xtensa_ret_n_opcode;
559static xtensa_opcode xtensa_retw_opcode;
560static xtensa_opcode xtensa_retw_n_opcode;
43cd72b9 561static xtensa_opcode xtensa_rsr_lcount_opcode;
e0001a05
NC
562static xtensa_opcode xtensa_waiti_opcode;
563
564\f
565/* Command-line Options. */
566
567bfd_boolean use_literal_section = TRUE;
568static bfd_boolean align_targets = TRUE;
43cd72b9 569static bfd_boolean warn_unaligned_branch_targets = FALSE;
e0001a05 570static bfd_boolean has_a0_b_retw = FALSE;
43cd72b9
BW
571static bfd_boolean workaround_a0_b_retw = FALSE;
572static bfd_boolean workaround_b_j_loop_end = FALSE;
573static bfd_boolean workaround_short_loop = FALSE;
e0001a05 574static bfd_boolean maybe_has_short_loop = FALSE;
43cd72b9 575static bfd_boolean workaround_close_loop_end = FALSE;
e0001a05
NC
576static bfd_boolean maybe_has_close_loop_end = FALSE;
577
43cd72b9
BW
578/* When workaround_short_loops is TRUE, all loops with early exits must
579 have at least 3 instructions. workaround_all_short_loops is a modifier
580 to the workaround_short_loop flag. In addition to the
581 workaround_short_loop actions, all straightline loopgtz and loopnez
582 must have at least 3 instructions. */
e0001a05 583
43cd72b9 584static bfd_boolean workaround_all_short_loops = FALSE;
e0001a05 585
7fa3d080
BW
586
587static void
588xtensa_setup_hw_workarounds (int earliest, int latest)
589{
590 if (earliest > latest)
591 as_fatal (_("illegal range of target hardware versions"));
592
593 /* Enable all workarounds for pre-T1050.0 hardware. */
594 if (earliest < 105000 || latest < 105000)
595 {
596 workaround_a0_b_retw |= TRUE;
597 workaround_b_j_loop_end |= TRUE;
598 workaround_short_loop |= TRUE;
599 workaround_close_loop_end |= TRUE;
600 workaround_all_short_loops |= TRUE;
601 }
602}
603
604
e0001a05
NC
605enum
606{
607 option_density = OPTION_MD_BASE,
608 option_no_density,
609
610 option_relax,
611 option_no_relax,
612
43cd72b9
BW
613 option_link_relax,
614 option_no_link_relax,
615
e0001a05
NC
616 option_generics,
617 option_no_generics,
618
43cd72b9
BW
619 option_transform,
620 option_no_transform,
621
e0001a05
NC
622 option_text_section_literals,
623 option_no_text_section_literals,
624
43cd72b9
BW
625 option_absolute_literals,
626 option_no_absolute_literals,
627
e0001a05
NC
628 option_align_targets,
629 option_no_align_targets,
630
43cd72b9 631 option_warn_unaligned_targets,
e0001a05
NC
632
633 option_longcalls,
634 option_no_longcalls,
635
636 option_workaround_a0_b_retw,
637 option_no_workaround_a0_b_retw,
638
639 option_workaround_b_j_loop_end,
640 option_no_workaround_b_j_loop_end,
641
642 option_workaround_short_loop,
643 option_no_workaround_short_loop,
644
645 option_workaround_all_short_loops,
646 option_no_workaround_all_short_loops,
647
648 option_workaround_close_loop_end,
649 option_no_workaround_close_loop_end,
650
651 option_no_workarounds,
652
e0001a05 653 option_rename_section_name,
e0001a05 654
43cd72b9
BW
655 option_prefer_l32r,
656 option_prefer_const16,
657
658 option_target_hardware
e0001a05
NC
659};
660
661const char *md_shortopts = "";
662
663struct option md_longopts[] =
664{
43cd72b9
BW
665 { "density", no_argument, NULL, option_density },
666 { "no-density", no_argument, NULL, option_no_density },
667
668 /* Both "relax" and "generics" are deprecated and treated as equivalent
669 to the "transform" option. */
670 { "relax", no_argument, NULL, option_relax },
671 { "no-relax", no_argument, NULL, option_no_relax },
672 { "generics", no_argument, NULL, option_generics },
673 { "no-generics", no_argument, NULL, option_no_generics },
674
675 { "transform", no_argument, NULL, option_transform },
676 { "no-transform", no_argument, NULL, option_no_transform },
677 { "text-section-literals", no_argument, NULL, option_text_section_literals },
678 { "no-text-section-literals", no_argument, NULL,
679 option_no_text_section_literals },
680 { "absolute-literals", no_argument, NULL, option_absolute_literals },
681 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
e0001a05
NC
682 /* This option was changed from -align-target to -target-align
683 because it conflicted with the "-al" option. */
43cd72b9 684 { "target-align", no_argument, NULL, option_align_targets },
7fa3d080
BW
685 { "no-target-align", no_argument, NULL, option_no_align_targets },
686 { "warn-unaligned-targets", no_argument, NULL,
687 option_warn_unaligned_targets },
43cd72b9
BW
688 { "longcalls", no_argument, NULL, option_longcalls },
689 { "no-longcalls", no_argument, NULL, option_no_longcalls },
690
691 { "no-workaround-a0-b-retw", no_argument, NULL,
692 option_no_workaround_a0_b_retw },
693 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
e0001a05 694
43cd72b9
BW
695 { "no-workaround-b-j-loop-end", no_argument, NULL,
696 option_no_workaround_b_j_loop_end },
697 { "workaround-b-j-loop-end", no_argument, NULL,
698 option_workaround_b_j_loop_end },
e0001a05 699
43cd72b9
BW
700 { "no-workaround-short-loops", no_argument, NULL,
701 option_no_workaround_short_loop },
7fa3d080
BW
702 { "workaround-short-loops", no_argument, NULL,
703 option_workaround_short_loop },
e0001a05 704
43cd72b9
BW
705 { "no-workaround-all-short-loops", no_argument, NULL,
706 option_no_workaround_all_short_loops },
707 { "workaround-all-short-loop", no_argument, NULL,
708 option_workaround_all_short_loops },
709
710 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
711 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
712
713 { "no-workarounds", no_argument, NULL, option_no_workarounds },
714
715 { "no-workaround-close-loop-end", no_argument, NULL,
716 option_no_workaround_close_loop_end },
717 { "workaround-close-loop-end", no_argument, NULL,
718 option_workaround_close_loop_end },
e0001a05 719
7fa3d080 720 { "rename-section", required_argument, NULL, option_rename_section_name },
e0001a05 721
43cd72b9
BW
722 { "link-relax", no_argument, NULL, option_link_relax },
723 { "no-link-relax", no_argument, NULL, option_no_link_relax },
724
725 { "target-hardware", required_argument, NULL, option_target_hardware },
726
727 { NULL, no_argument, NULL, 0 }
e0001a05
NC
728};
729
730size_t md_longopts_size = sizeof md_longopts;
731
732
733int
7fa3d080 734md_parse_option (int c, char *arg)
e0001a05
NC
735{
736 switch (c)
737 {
738 case option_density:
43cd72b9 739 as_warn (_("--density option is ignored"));
e0001a05
NC
740 return 1;
741 case option_no_density:
43cd72b9 742 as_warn (_("--no-density option is ignored"));
e0001a05 743 return 1;
43cd72b9
BW
744 case option_link_relax:
745 linkrelax = 1;
e0001a05 746 return 1;
43cd72b9
BW
747 case option_no_link_relax:
748 linkrelax = 0;
e0001a05 749 return 1;
43cd72b9
BW
750 case option_generics:
751 as_warn (_("--generics is deprecated; use --transform instead"));
752 return md_parse_option (option_transform, arg);
753 case option_no_generics:
754 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
755 return md_parse_option (option_no_transform, arg);
756 case option_relax:
757 as_warn (_("--relax is deprecated; use --transform instead"));
758 return md_parse_option (option_transform, arg);
759 case option_no_relax:
760 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
761 return md_parse_option (option_no_transform, arg);
e0001a05
NC
762 case option_longcalls:
763 directive_state[directive_longcalls] = TRUE;
764 return 1;
765 case option_no_longcalls:
766 directive_state[directive_longcalls] = FALSE;
767 return 1;
768 case option_text_section_literals:
769 use_literal_section = FALSE;
770 return 1;
771 case option_no_text_section_literals:
772 use_literal_section = TRUE;
773 return 1;
43cd72b9
BW
774 case option_absolute_literals:
775 if (!absolute_literals_supported)
776 {
777 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
778 return 0;
779 }
780 directive_state[directive_absolute_literals] = TRUE;
781 return 1;
782 case option_no_absolute_literals:
783 directive_state[directive_absolute_literals] = FALSE;
784 return 1;
785
e0001a05
NC
786 case option_workaround_a0_b_retw:
787 workaround_a0_b_retw = TRUE;
e0001a05
NC
788 return 1;
789 case option_no_workaround_a0_b_retw:
790 workaround_a0_b_retw = FALSE;
e0001a05
NC
791 return 1;
792 case option_workaround_b_j_loop_end:
793 workaround_b_j_loop_end = TRUE;
e0001a05
NC
794 return 1;
795 case option_no_workaround_b_j_loop_end:
796 workaround_b_j_loop_end = FALSE;
e0001a05
NC
797 return 1;
798
799 case option_workaround_short_loop:
800 workaround_short_loop = TRUE;
e0001a05
NC
801 return 1;
802 case option_no_workaround_short_loop:
803 workaround_short_loop = FALSE;
e0001a05
NC
804 return 1;
805
806 case option_workaround_all_short_loops:
807 workaround_all_short_loops = TRUE;
e0001a05
NC
808 return 1;
809 case option_no_workaround_all_short_loops:
810 workaround_all_short_loops = FALSE;
e0001a05
NC
811 return 1;
812
813 case option_workaround_close_loop_end:
814 workaround_close_loop_end = TRUE;
e0001a05
NC
815 return 1;
816 case option_no_workaround_close_loop_end:
817 workaround_close_loop_end = FALSE;
e0001a05
NC
818 return 1;
819
820 case option_no_workarounds:
821 workaround_a0_b_retw = FALSE;
e0001a05 822 workaround_b_j_loop_end = FALSE;
e0001a05 823 workaround_short_loop = FALSE;
e0001a05 824 workaround_all_short_loops = FALSE;
e0001a05 825 workaround_close_loop_end = FALSE;
e0001a05 826 return 1;
43cd72b9 827
e0001a05
NC
828 case option_align_targets:
829 align_targets = TRUE;
830 return 1;
831 case option_no_align_targets:
832 align_targets = FALSE;
833 return 1;
834
43cd72b9
BW
835 case option_warn_unaligned_targets:
836 warn_unaligned_branch_targets = TRUE;
e0001a05
NC
837 return 1;
838
e0001a05
NC
839 case option_rename_section_name:
840 build_section_rename (arg);
841 return 1;
e0001a05
NC
842
843 case 'Q':
844 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
845 should be emitted or not. FIXME: Not implemented. */
846 return 1;
c138bc38 847
43cd72b9
BW
848 case option_prefer_l32r:
849 if (prefer_const16)
850 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
851 prefer_l32r = 1;
852 return 1;
853
854 case option_prefer_const16:
855 if (prefer_l32r)
856 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
857 prefer_const16 = 1;
858 return 1;
859
c138bc38 860 case option_target_hardware:
43cd72b9
BW
861 {
862 int earliest, latest = 0;
863 if (*arg == 0 || *arg == '-')
864 as_fatal (_("invalid target hardware version"));
865
866 earliest = strtol (arg, &arg, 0);
867
868 if (*arg == 0)
869 latest = earliest;
870 else if (*arg == '-')
871 {
872 if (*++arg == 0)
873 as_fatal (_("invalid target hardware version"));
874 latest = strtol (arg, &arg, 0);
875 }
876 if (*arg != 0)
877 as_fatal (_("invalid target hardware version"));
878
879 xtensa_setup_hw_workarounds (earliest, latest);
880 return 1;
881 }
882
883 case option_transform:
884 /* This option has no affect other than to use the defaults,
885 which are already set. */
886 return 1;
887
888 case option_no_transform:
889 /* This option turns off all transformations of any kind.
890 However, because we want to preserve the state of other
891 directives, we only change its own field. Thus, before
892 you perform any transformation, always check if transform
893 is available. If you use the functions we provide for this
894 purpose, you will be ok. */
895 directive_state[directive_transform] = FALSE;
896 return 1;
897
e0001a05
NC
898 default:
899 return 0;
900 }
901}
902
903
904void
7fa3d080 905md_show_usage (FILE *stream)
e0001a05 906{
43cd72b9
BW
907 fputs ("\n\
908Xtensa options:\n\
9456465c
BW
909 --[no-]text-section-literals\n\
910 [Do not] put literals in the text section\n\
911 --[no-]absolute-literals\n\
912 [Do not] default to use non-PC-relative literals\n\
913 --[no-]target-align [Do not] try to align branch targets\n\
914 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
915 --[no-]transform [Do not] transform instructions\n\
916 --rename-section old=new Rename section 'old' to 'new'\n", stream);
e0001a05
NC
917}
918
7fa3d080
BW
919\f
920/* Functions related to the list of current label symbols. */
43cd72b9
BW
921
922static void
7fa3d080 923xtensa_add_insn_label (symbolS *sym)
43cd72b9 924{
7fa3d080 925 sym_list *l;
43cd72b9 926
7fa3d080
BW
927 if (!free_insn_labels)
928 l = (sym_list *) xmalloc (sizeof (sym_list));
929 else
43cd72b9 930 {
7fa3d080
BW
931 l = free_insn_labels;
932 free_insn_labels = l->next;
933 }
934
935 l->sym = sym;
936 l->next = insn_labels;
937 insn_labels = l;
938}
939
940
941static void
942xtensa_clear_insn_labels (void)
943{
944 sym_list **pl;
945
946 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
947 ;
948 *pl = insn_labels;
949 insn_labels = NULL;
950}
951
952
c138bc38
BW
953/* The "loops_ok" argument is provided to allow ignoring labels that
954 define loop ends. This fixes a bug where the NOPs to align a
7fa3d080
BW
955 loop opcode were included in a previous zero-cost loop:
956
957 loop a0, loopend
958 <loop1 body>
959 loopend:
960
961 loop a2, loopend2
962 <loop2 body>
963
964 would become:
965
966 loop a0, loopend
967 <loop1 body>
968 nop.n <===== bad!
969 loopend:
970
971 loop a2, loopend2
972 <loop2 body>
973
974 This argument is used to prevent moving the NOP to before the
975 loop-end label, which is what you want in this special case. */
976
977static void
978xtensa_move_labels (fragS *new_frag, valueT new_offset, bfd_boolean loops_ok)
979{
980 sym_list *lit;
981
982 for (lit = insn_labels; lit; lit = lit->next)
983 {
984 symbolS *lit_sym = lit->sym;
985 if (loops_ok || ! symbol_get_tc (lit_sym)->is_loop_target)
986 {
987 S_SET_VALUE (lit_sym, new_offset);
988 symbol_set_frag (lit_sym, new_frag);
989 }
43cd72b9
BW
990 }
991}
992
e0001a05
NC
993\f
994/* Directive data and functions. */
995
996typedef struct state_stackS_struct
997{
998 directiveE directive;
999 bfd_boolean negated;
1000 bfd_boolean old_state;
1001 const char *file;
1002 unsigned int line;
1003 const void *datum;
1004 struct state_stackS_struct *prev;
1005} state_stackS;
1006
1007state_stackS *directive_state_stack;
1008
1009const pseudo_typeS md_pseudo_table[] =
1010{
43cd72b9
BW
1011 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1012 { "literal_position", xtensa_literal_position, 0 },
1013 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1014 { "long", xtensa_elf_cons, 4 },
1015 { "word", xtensa_elf_cons, 4 },
1016 { "short", xtensa_elf_cons, 2 },
1017 { "begin", xtensa_begin_directive, 0 },
1018 { "end", xtensa_end_directive, 0 },
1019 { "loc", xtensa_dwarf2_directive_loc, 0 },
1020 { "literal", xtensa_literal_pseudo, 0 },
1021 { "frequency", xtensa_frequency_pseudo, 0 },
1022 { NULL, 0, 0 },
e0001a05
NC
1023};
1024
1025
7fa3d080
BW
1026static bfd_boolean
1027use_transform (void)
e0001a05 1028{
43cd72b9
BW
1029 /* After md_end, you should be checking frag by frag, rather
1030 than state directives. */
1031 assert (!past_xtensa_end);
1032 return directive_state[directive_transform];
e0001a05
NC
1033}
1034
1035
7fa3d080
BW
1036static bfd_boolean
1037do_align_targets (void)
e0001a05 1038{
7b1cc377
BW
1039 /* Do not use this function after md_end; just look at align_targets
1040 instead. There is no target-align directive, so alignment is either
1041 enabled for all frags or not done at all. */
43cd72b9
BW
1042 assert (!past_xtensa_end);
1043 return align_targets && use_transform ();
e0001a05
NC
1044}
1045
1046
1047static void
7fa3d080 1048directive_push (directiveE directive, bfd_boolean negated, const void *datum)
e0001a05
NC
1049{
1050 char *file;
1051 unsigned int line;
1052 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1053
1054 as_where (&file, &line);
1055
1056 stack->directive = directive;
1057 stack->negated = negated;
1058 stack->old_state = directive_state[directive];
1059 stack->file = file;
1060 stack->line = line;
1061 stack->datum = datum;
1062 stack->prev = directive_state_stack;
1063 directive_state_stack = stack;
1064
1065 directive_state[directive] = !negated;
1066}
1067
7fa3d080 1068
e0001a05 1069static void
7fa3d080
BW
1070directive_pop (directiveE *directive,
1071 bfd_boolean *negated,
1072 const char **file,
1073 unsigned int *line,
1074 const void **datum)
e0001a05
NC
1075{
1076 state_stackS *top = directive_state_stack;
1077
1078 if (!directive_state_stack)
1079 {
1080 as_bad (_("unmatched end directive"));
1081 *directive = directive_none;
1082 return;
1083 }
1084
1085 directive_state[directive_state_stack->directive] = top->old_state;
1086 *directive = top->directive;
1087 *negated = top->negated;
1088 *file = top->file;
1089 *line = top->line;
1090 *datum = top->datum;
1091 directive_state_stack = top->prev;
1092 free (top);
1093}
1094
1095
1096static void
7fa3d080 1097directive_balance (void)
e0001a05
NC
1098{
1099 while (directive_state_stack)
1100 {
1101 directiveE directive;
1102 bfd_boolean negated;
1103 const char *file;
1104 unsigned int line;
1105 const void *datum;
1106
1107 directive_pop (&directive, &negated, &file, &line, &datum);
1108 as_warn_where ((char *) file, line,
1109 _(".begin directive with no matching .end directive"));
1110 }
1111}
1112
1113
1114static bfd_boolean
7fa3d080 1115inside_directive (directiveE dir)
e0001a05
NC
1116{
1117 state_stackS *top = directive_state_stack;
1118
1119 while (top && top->directive != dir)
1120 top = top->prev;
1121
1122 return (top != NULL);
1123}
1124
1125
1126static void
7fa3d080 1127get_directive (directiveE *directive, bfd_boolean *negated)
e0001a05
NC
1128{
1129 int len;
1130 unsigned i;
43cd72b9 1131 char *directive_string;
e0001a05
NC
1132
1133 if (strncmp (input_line_pointer, "no-", 3) != 0)
1134 *negated = FALSE;
1135 else
1136 {
1137 *negated = TRUE;
1138 input_line_pointer += 3;
1139 }
1140
1141 len = strspn (input_line_pointer,
43cd72b9
BW
1142 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1143
1144 /* This code is a hack to make .begin [no-][generics|relax] exactly
1145 equivalent to .begin [no-]transform. We should remove it when
1146 we stop accepting those options. */
c138bc38 1147
43cd72b9
BW
1148 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1149 {
1150 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1151 directive_string = "transform";
1152 }
1153 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1154 {
1155 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1156 directive_string = "transform";
c138bc38 1157 }
43cd72b9
BW
1158 else
1159 directive_string = input_line_pointer;
e0001a05
NC
1160
1161 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1162 {
43cd72b9 1163 if (strncmp (directive_string, directive_info[i].name, len) == 0)
e0001a05
NC
1164 {
1165 input_line_pointer += len;
1166 *directive = (directiveE) i;
1167 if (*negated && !directive_info[i].can_be_negated)
43cd72b9 1168 as_bad (_("directive %s cannot be negated"),
e0001a05
NC
1169 directive_info[i].name);
1170 return;
1171 }
1172 }
1173
1174 as_bad (_("unknown directive"));
1175 *directive = (directiveE) XTENSA_UNDEFINED;
1176}
1177
1178
1179static void
7fa3d080 1180xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
e0001a05
NC
1181{
1182 directiveE directive;
1183 bfd_boolean negated;
1184 emit_state *state;
1185 int len;
1186 lit_state *ls;
1187
1188 get_directive (&directive, &negated);
1189 if (directive == (directiveE) XTENSA_UNDEFINED)
1190 {
1191 discard_rest_of_line ();
1192 return;
1193 }
1194
43cd72b9
BW
1195 if (cur_vinsn.inside_bundle)
1196 as_bad (_("directives are not valid inside bundles"));
1197
e0001a05
NC
1198 switch (directive)
1199 {
1200 case directive_literal:
82e7541d
BW
1201 if (!inside_directive (directive_literal))
1202 {
1203 /* Previous labels go with whatever follows this directive, not with
1204 the literal, so save them now. */
1205 saved_insn_labels = insn_labels;
1206 insn_labels = NULL;
1207 }
43cd72b9 1208 as_warn (_(".begin literal is deprecated; use .literal instead"));
e0001a05
NC
1209 state = (emit_state *) xmalloc (sizeof (emit_state));
1210 xtensa_switch_to_literal_fragment (state);
1211 directive_push (directive_literal, negated, state);
1212 break;
1213
1214 case directive_literal_prefix:
c138bc38 1215 /* Have to flush pending output because a movi relaxed to an l32r
43cd72b9
BW
1216 might produce a literal. */
1217 md_flush_pending_output ();
e0001a05
NC
1218 /* Check to see if the current fragment is a literal
1219 fragment. If it is, then this operation is not allowed. */
43cd72b9 1220 if (generating_literals)
e0001a05
NC
1221 {
1222 as_bad (_("cannot set literal_prefix inside literal fragment"));
1223 return;
1224 }
1225
1226 /* Allocate the literal state for this section and push
1227 onto the directive stack. */
1228 ls = xmalloc (sizeof (lit_state));
1229 assert (ls);
1230
1231 *ls = default_lit_sections;
1232
1233 directive_push (directive_literal_prefix, negated, ls);
1234
1235 /* Parse the new prefix from the input_line_pointer. */
1236 SKIP_WHITESPACE ();
1237 len = strspn (input_line_pointer,
1238 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1239 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1240
1241 /* Process the new prefix. */
1242 xtensa_literal_prefix (input_line_pointer, len);
1243
1244 /* Skip the name in the input line. */
1245 input_line_pointer += len;
1246 break;
1247
1248 case directive_freeregs:
1249 /* This information is currently unused, but we'll accept the statement
1250 and just discard the rest of the line. This won't check the syntax,
1251 but it will accept every correct freeregs directive. */
1252 input_line_pointer += strcspn (input_line_pointer, "\n");
1253 directive_push (directive_freeregs, negated, 0);
1254 break;
1255
43cd72b9
BW
1256 case directive_schedule:
1257 md_flush_pending_output ();
1258 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1259 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1260 directive_push (directive_schedule, negated, 0);
1261 xtensa_set_frag_assembly_state (frag_now);
1262 break;
1263
e0001a05 1264 case directive_density:
43cd72b9
BW
1265 as_warn (_(".begin [no-]density is ignored"));
1266 break;
1267
1268 case directive_absolute_literals:
1269 md_flush_pending_output ();
1270 if (!absolute_literals_supported && !negated)
e0001a05 1271 {
43cd72b9 1272 as_warn (_("Xtensa absolute literals option not supported; ignored"));
e0001a05
NC
1273 break;
1274 }
43cd72b9
BW
1275 xtensa_set_frag_assembly_state (frag_now);
1276 directive_push (directive, negated, 0);
1277 break;
e0001a05
NC
1278
1279 default:
43cd72b9
BW
1280 md_flush_pending_output ();
1281 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
1282 directive_push (directive, negated, 0);
1283 break;
1284 }
1285
1286 demand_empty_rest_of_line ();
1287}
1288
1289
1290static void
7fa3d080 1291xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
e0001a05
NC
1292{
1293 directiveE begin_directive, end_directive;
1294 bfd_boolean begin_negated, end_negated;
1295 const char *file;
1296 unsigned int line;
1297 emit_state *state;
43cd72b9 1298 emit_state **state_ptr;
e0001a05
NC
1299 lit_state *s;
1300
43cd72b9
BW
1301 if (cur_vinsn.inside_bundle)
1302 as_bad (_("directives are not valid inside bundles"));
82e7541d 1303
e0001a05 1304 get_directive (&end_directive, &end_negated);
43cd72b9
BW
1305
1306 md_flush_pending_output ();
1307
1308 switch (end_directive)
e0001a05 1309 {
43cd72b9 1310 case (directiveE) XTENSA_UNDEFINED:
e0001a05
NC
1311 discard_rest_of_line ();
1312 return;
e0001a05 1313
43cd72b9
BW
1314 case directive_density:
1315 as_warn (_(".end [no-]density is ignored"));
e0001a05 1316 demand_empty_rest_of_line ();
43cd72b9
BW
1317 break;
1318
1319 case directive_absolute_literals:
1320 if (!absolute_literals_supported && !end_negated)
1321 {
1322 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1323 demand_empty_rest_of_line ();
1324 return;
1325 }
1326 break;
1327
1328 default:
1329 break;
e0001a05
NC
1330 }
1331
43cd72b9 1332 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
e0001a05 1333 directive_pop (&begin_directive, &begin_negated, &file, &line,
43cd72b9 1334 (const void **) state_ptr);
e0001a05
NC
1335
1336 if (begin_directive != directive_none)
1337 {
1338 if (begin_directive != end_directive || begin_negated != end_negated)
1339 {
1340 as_bad (_("does not match begin %s%s at %s:%d"),
1341 begin_negated ? "no-" : "",
1342 directive_info[begin_directive].name, file, line);
1343 }
1344 else
1345 {
1346 switch (end_directive)
1347 {
1348 case directive_literal:
1349 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1350 xtensa_restore_emit_state (state);
43cd72b9 1351 xtensa_set_frag_assembly_state (frag_now);
e0001a05 1352 free (state);
82e7541d
BW
1353 if (!inside_directive (directive_literal))
1354 {
1355 /* Restore the list of current labels. */
1356 xtensa_clear_insn_labels ();
1357 insn_labels = saved_insn_labels;
1358 }
e0001a05
NC
1359 break;
1360
e0001a05
NC
1361 case directive_literal_prefix:
1362 /* Restore the default collection sections from saved state. */
1363 s = (lit_state *) state;
1364 assert (s);
1365
1366 if (use_literal_section)
1367 default_lit_sections = *s;
1368
1369 /* free the state storage */
1370 free (s);
1371 break;
1372
43cd72b9
BW
1373 case directive_schedule:
1374 case directive_freeregs:
1375 break;
1376
e0001a05 1377 default:
43cd72b9 1378 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
1379 break;
1380 }
1381 }
1382 }
1383
1384 demand_empty_rest_of_line ();
1385}
1386
1387
43cd72b9
BW
1388/* Wrap dwarf2 functions so that we correctly support the .loc directive. */
1389
1390static bfd_boolean xtensa_loc_directive_seen = FALSE;
1391
1392static void
7fa3d080 1393xtensa_dwarf2_directive_loc (int x)
43cd72b9
BW
1394{
1395 xtensa_loc_directive_seen = TRUE;
1396 dwarf2_directive_loc (x);
1397}
1398
1399
1400static void
7fa3d080 1401xtensa_dwarf2_emit_insn (int size, struct dwarf2_line_info *loc)
43cd72b9
BW
1402{
1403 if (debug_type != DEBUG_DWARF2 && ! xtensa_loc_directive_seen)
1404 return;
1405 xtensa_loc_directive_seen = FALSE;
1406 dwarf2_gen_line_info (frag_now_fix () - size, loc);
1407}
1408
1409
e0001a05
NC
1410/* Place an aligned literal fragment at the current location. */
1411
1412static void
7fa3d080 1413xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
e0001a05 1414{
43cd72b9
BW
1415 md_flush_pending_output ();
1416
e0001a05
NC
1417 if (inside_directive (directive_literal))
1418 as_warn (_(".literal_position inside literal directive; ignoring"));
43cd72b9 1419 xtensa_mark_literal_pool_location ();
e0001a05
NC
1420
1421 demand_empty_rest_of_line ();
82e7541d 1422 xtensa_clear_insn_labels ();
e0001a05
NC
1423}
1424
1425
43cd72b9 1426/* Support .literal label, expr, ... */
e0001a05
NC
1427
1428static void
7fa3d080 1429xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
e0001a05
NC
1430{
1431 emit_state state;
1745fcba 1432 char *p, *base_name;
e0001a05 1433 char c;
e0001a05
NC
1434 segT dest_seg;
1435
82e7541d
BW
1436 if (inside_directive (directive_literal))
1437 {
1438 as_bad (_(".literal not allowed inside .begin literal region"));
1439 ignore_rest_of_line ();
1440 return;
1441 }
1442
43cd72b9
BW
1443 md_flush_pending_output ();
1444
82e7541d
BW
1445 /* Previous labels go with whatever follows this directive, not with
1446 the literal, so save them now. */
1447 saved_insn_labels = insn_labels;
1448 insn_labels = NULL;
1449
e0001a05
NC
1450 /* If we are using text-section literals, then this is the right value... */
1451 dest_seg = now_seg;
1452
1453 base_name = input_line_pointer;
1454
1455 xtensa_switch_to_literal_fragment (&state);
1456
43cd72b9 1457 /* ...but if we aren't using text-section-literals, then we
e0001a05 1458 need to put them in the section we just switched to. */
43cd72b9 1459 if (use_literal_section || directive_state[directive_absolute_literals])
e0001a05
NC
1460 dest_seg = now_seg;
1461
43cd72b9
BW
1462 /* All literals are aligned to four-byte boundaries. */
1463 frag_align (2, 0, 0);
1464 record_alignment (now_seg, 2);
e0001a05
NC
1465
1466 c = get_symbol_end ();
1467 /* Just after name is now '\0'. */
1468 p = input_line_pointer;
1469 *p = c;
1470 SKIP_WHITESPACE ();
1471
1472 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1473 {
1474 as_bad (_("expected comma or colon after symbol name; "
1475 "rest of line ignored"));
1476 ignore_rest_of_line ();
1477 xtensa_restore_emit_state (&state);
1478 return;
1479 }
1480 *p = 0;
1481
e0001a05 1482 colon (base_name);
e0001a05 1483
e0001a05 1484 *p = c;
43cd72b9 1485 input_line_pointer++; /* skip ',' or ':' */
e0001a05 1486
43cd72b9 1487 xtensa_elf_cons (4);
e0001a05
NC
1488
1489 xtensa_restore_emit_state (&state);
82e7541d
BW
1490
1491 /* Restore the list of current labels. */
1492 xtensa_clear_insn_labels ();
1493 insn_labels = saved_insn_labels;
e0001a05
NC
1494}
1495
1496
1497static void
7fa3d080 1498xtensa_literal_prefix (char const *start, int len)
e0001a05 1499{
43cd72b9
BW
1500 char *name, *linkonce_suffix;
1501 char *newname, *newname4;
1502 size_t linkonce_len;
e0001a05
NC
1503
1504 /* Get a null-terminated copy of the name. */
1505 name = xmalloc (len + 1);
1506 assert (name);
1507
1508 strncpy (name, start, len);
1509 name[len] = 0;
1510
1511 /* Allocate the sections (interesting note: the memory pointing to
1512 the name is actually used for the name by the new section). */
43cd72b9 1513
e0001a05 1514 newname = xmalloc (len + strlen (".literal") + 1);
43cd72b9 1515 newname4 = xmalloc (len + strlen (".lit4") + 1);
e0001a05 1516
43cd72b9
BW
1517 linkonce_len = sizeof (".gnu.linkonce.") - 1;
1518 if (strncmp (name, ".gnu.linkonce.", linkonce_len) == 0
1519 && (linkonce_suffix = strchr (name + linkonce_len, '.')) != 0)
1520 {
1521 strcpy (newname, ".gnu.linkonce.literal");
1522 strcpy (newname4, ".gnu.linkonce.lit4");
e0001a05 1523
43cd72b9
BW
1524 strcat (newname, linkonce_suffix);
1525 strcat (newname4, linkonce_suffix);
1526 }
1527 else
1528 {
1529 int suffix_pos = len;
1530
1531 /* If the section name ends with ".text", then replace that suffix
1532 instead of appending an additional suffix. */
1533 if (len >= 5 && strcmp (name + len - 5, ".text") == 0)
1534 suffix_pos -= 5;
1535
1536 strcpy (newname, name);
1537 strcpy (newname4, name);
1538
1539 strcpy (newname + suffix_pos, ".literal");
1540 strcpy (newname4 + suffix_pos, ".lit4");
1541 }
1542
b08b5071 1543 /* Note that cache_literal_section does not create a segment if
43cd72b9
BW
1544 it already exists. */
1545 default_lit_sections.lit_seg = NULL;
1546 default_lit_sections.lit4_seg = NULL;
1547
1548 /* Canonicalizing section names allows renaming literal
e0001a05 1549 sections to occur correctly. */
43cd72b9
BW
1550 default_lit_sections.lit_seg_name = tc_canonicalize_symbol_name (newname);
1551 default_lit_sections.lit4_seg_name = tc_canonicalize_symbol_name (newname4);
e0001a05
NC
1552
1553 free (name);
43cd72b9
BW
1554}
1555
1556
1557/* Support ".frequency branch_target_frequency fall_through_frequency". */
1558
1559static void
7fa3d080 1560xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
43cd72b9
BW
1561{
1562 float fall_through_f, target_f;
43cd72b9
BW
1563
1564 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1565 if (fall_through_f < 0)
1566 {
1567 as_bad (_("fall through frequency must be greater than 0"));
1568 ignore_rest_of_line ();
1569 return;
1570 }
1571
1572 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1573 if (target_f < 0)
1574 {
1575 as_bad (_("branch target frequency must be greater than 0"));
1576 ignore_rest_of_line ();
1577 return;
1578 }
1579
b08b5071 1580 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
43cd72b9
BW
1581
1582 demand_empty_rest_of_line ();
1583}
1584
1585
1586/* Like normal .long/.short/.word, except support @plt, etc.
1587 Clobbers input_line_pointer, checks end-of-line. */
1588
1589static void
7fa3d080 1590xtensa_elf_cons (int nbytes)
43cd72b9
BW
1591{
1592 expressionS exp;
1593 bfd_reloc_code_real_type reloc;
1594
1595 md_flush_pending_output ();
1596
1597 if (cur_vinsn.inside_bundle)
1598 as_bad (_("directives are not valid inside bundles"));
1599
1600 if (is_it_end_of_statement ())
1601 {
1602 demand_empty_rest_of_line ();
1603 return;
1604 }
1605
1606 do
1607 {
1608 expression (&exp);
1609 if (exp.X_op == O_symbol
1610 && *input_line_pointer == '@'
1611 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1612 != BFD_RELOC_NONE))
1613 {
1614 reloc_howto_type *reloc_howto =
1615 bfd_reloc_type_lookup (stdoutput, reloc);
1616
1617 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1618 as_bad (_("unsupported relocation"));
1619 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1620 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1621 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1622 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1623 as_bad (_("opcode-specific %s relocation used outside "
1624 "an instruction"), reloc_howto->name);
1625 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1626 as_bad (_("%s relocations do not fit in %d bytes"),
1627 reloc_howto->name, nbytes);
1628 else
1629 {
1630 char *p = frag_more ((int) nbytes);
1631 xtensa_set_frag_assembly_state (frag_now);
1632 fix_new_exp (frag_now, p - frag_now->fr_literal,
1633 nbytes, &exp, 0, reloc);
1634 }
1635 }
1636 else
1637 emit_expr (&exp, (unsigned int) nbytes);
1638 }
1639 while (*input_line_pointer++ == ',');
1640
1641 input_line_pointer--; /* Put terminator back into stream. */
1642 demand_empty_rest_of_line ();
1643}
1644
7fa3d080
BW
1645\f
1646/* Parsing and Idiom Translation. */
43cd72b9
BW
1647
1648/* Parse @plt, etc. and return the desired relocation. */
1649static bfd_reloc_code_real_type
7fa3d080 1650xtensa_elf_suffix (char **str_p, expressionS *exp_p)
43cd72b9
BW
1651{
1652 struct map_bfd
1653 {
1654 char *string;
1655 int length;
1656 bfd_reloc_code_real_type reloc;
1657 };
1658
1659 char ident[20];
1660 char *str = *str_p;
1661 char *str2;
1662 int ch;
1663 int len;
1664 struct map_bfd *ptr;
1665
1666#define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
e0001a05 1667
43cd72b9
BW
1668 static struct map_bfd mapping[] =
1669 {
1670 MAP ("l", BFD_RELOC_LO16),
1671 MAP ("h", BFD_RELOC_HI16),
1672 MAP ("plt", BFD_RELOC_XTENSA_PLT),
1673 { (char *) 0, 0, BFD_RELOC_UNUSED }
1674 };
1675
1676 if (*str++ != '@')
1677 return BFD_RELOC_NONE;
1678
1679 for (ch = *str, str2 = ident;
1680 (str2 < ident + sizeof (ident) - 1
1681 && (ISALNUM (ch) || ch == '@'));
1682 ch = *++str)
1683 {
1684 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1685 }
1686
1687 *str2 = '\0';
1688 len = str2 - ident;
1689
1690 ch = ident[0];
1691 for (ptr = &mapping[0]; ptr->length > 0; ptr++)
1692 if (ch == ptr->string[0]
1693 && len == ptr->length
1694 && memcmp (ident, ptr->string, ptr->length) == 0)
1695 {
1696 /* Now check for "identifier@suffix+constant". */
1697 if (*str == '-' || *str == '+')
1698 {
1699 char *orig_line = input_line_pointer;
1700 expressionS new_exp;
1701
1702 input_line_pointer = str;
1703 expression (&new_exp);
1704 if (new_exp.X_op == O_constant)
1705 {
1706 exp_p->X_add_number += new_exp.X_add_number;
1707 str = input_line_pointer;
1708 }
1709
1710 if (&input_line_pointer != str_p)
1711 input_line_pointer = orig_line;
1712 }
1713
1714 *str_p = str;
1715 return ptr->reloc;
1716 }
1717
1718 return BFD_RELOC_UNUSED;
e0001a05
NC
1719}
1720
e0001a05
NC
1721
1722static const char *
7fa3d080 1723expression_end (const char *name)
e0001a05
NC
1724{
1725 while (1)
1726 {
1727 switch (*name)
1728 {
43cd72b9 1729 case '}':
e0001a05
NC
1730 case ';':
1731 case '\0':
1732 case ',':
43cd72b9 1733 case ':':
e0001a05
NC
1734 return name;
1735 case ' ':
1736 case '\t':
1737 ++name;
1738 continue;
1739 default:
1740 return 0;
1741 }
1742 }
1743}
1744
1745
1746#define ERROR_REG_NUM ((unsigned) -1)
1747
1748static unsigned
7fa3d080 1749tc_get_register (const char *prefix)
e0001a05
NC
1750{
1751 unsigned reg;
1752 const char *next_expr;
1753 const char *old_line_pointer;
1754
1755 SKIP_WHITESPACE ();
1756 old_line_pointer = input_line_pointer;
1757
1758 if (*input_line_pointer == '$')
1759 ++input_line_pointer;
1760
1761 /* Accept "sp" as a synonym for "a1". */
1762 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1763 && expression_end (input_line_pointer + 2))
1764 {
1765 input_line_pointer += 2;
1766 return 1; /* AR[1] */
1767 }
1768
1769 while (*input_line_pointer++ == *prefix++)
1770 ;
1771 --input_line_pointer;
1772 --prefix;
1773
1774 if (*prefix)
1775 {
1776 as_bad (_("bad register name: %s"), old_line_pointer);
1777 return ERROR_REG_NUM;
1778 }
1779
1780 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1781 {
1782 as_bad (_("bad register number: %s"), input_line_pointer);
1783 return ERROR_REG_NUM;
1784 }
1785
1786 reg = 0;
1787
1788 while (ISDIGIT ((int) *input_line_pointer))
1789 reg = reg * 10 + *input_line_pointer++ - '0';
1790
1791 if (!(next_expr = expression_end (input_line_pointer)))
1792 {
1793 as_bad (_("bad register name: %s"), old_line_pointer);
1794 return ERROR_REG_NUM;
1795 }
1796
1797 input_line_pointer = (char *) next_expr;
1798
1799 return reg;
1800}
1801
1802
e0001a05 1803static void
7fa3d080 1804expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
e0001a05 1805{
43cd72b9 1806 xtensa_isa isa = xtensa_default_isa;
e0001a05 1807
43cd72b9
BW
1808 /* Check if this is an immediate operand. */
1809 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
e0001a05 1810 {
43cd72b9 1811 bfd_reloc_code_real_type reloc;
e0001a05 1812 segT t = expression (tok);
43cd72b9
BW
1813 if (t == absolute_section
1814 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
e0001a05
NC
1815 {
1816 assert (tok->X_op == O_constant);
1817 tok->X_op = O_symbol;
1818 tok->X_add_symbol = &abs_symbol;
1819 }
43cd72b9
BW
1820
1821 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1822 && (reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1823 && (reloc != BFD_RELOC_NONE))
e0001a05 1824 {
43cd72b9
BW
1825 switch (reloc)
1826 {
1827 default:
1828 case BFD_RELOC_UNUSED:
1829 as_bad (_("unsupported relocation"));
1830 break;
1831
1832 case BFD_RELOC_XTENSA_PLT:
1833 tok->X_op = O_pltrel;
1834 break;
1835
1836 case BFD_RELOC_LO16:
1837 if (tok->X_op == O_constant)
1838 tok->X_add_number &= 0xffff;
1839 else
1840 tok->X_op = O_lo16;
1841 break;
1842
1843 case BFD_RELOC_HI16:
1844 if (tok->X_op == O_constant)
1845 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1846 else
1847 tok->X_op = O_hi16;
1848 break;
1849 }
e0001a05 1850 }
e0001a05
NC
1851 }
1852 else
1853 {
43cd72b9
BW
1854 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1855 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
e0001a05
NC
1856
1857 if (reg != ERROR_REG_NUM) /* Already errored */
1858 {
1859 uint32 buf = reg;
43cd72b9 1860 if (xtensa_operand_encode (isa, opc, opnd, &buf))
e0001a05
NC
1861 as_bad (_("register number out of range"));
1862 }
1863
1864 tok->X_op = O_register;
1865 tok->X_add_symbol = 0;
1866 tok->X_add_number = reg;
1867 }
1868}
1869
1870
1871/* Split up the arguments for an opcode or pseudo-op. */
1872
1873static int
7fa3d080 1874tokenize_arguments (char **args, char *str)
e0001a05
NC
1875{
1876 char *old_input_line_pointer;
1877 bfd_boolean saw_comma = FALSE;
1878 bfd_boolean saw_arg = FALSE;
43cd72b9 1879 bfd_boolean saw_colon = FALSE;
e0001a05
NC
1880 int num_args = 0;
1881 char *arg_end, *arg;
1882 int arg_len;
43cd72b9
BW
1883
1884 /* Save and restore input_line_pointer around this function. */
e0001a05
NC
1885 old_input_line_pointer = input_line_pointer;
1886 input_line_pointer = str;
1887
1888 while (*input_line_pointer)
1889 {
1890 SKIP_WHITESPACE ();
1891 switch (*input_line_pointer)
1892 {
1893 case '\0':
43cd72b9 1894 case '}':
e0001a05
NC
1895 goto fini;
1896
43cd72b9
BW
1897 case ':':
1898 input_line_pointer++;
1899 if (saw_comma || saw_colon || !saw_arg)
1900 goto err;
1901 saw_colon = TRUE;
1902 break;
1903
e0001a05
NC
1904 case ',':
1905 input_line_pointer++;
43cd72b9 1906 if (saw_comma || saw_colon || !saw_arg)
e0001a05
NC
1907 goto err;
1908 saw_comma = TRUE;
1909 break;
1910
1911 default:
43cd72b9 1912 if (!saw_comma && !saw_colon && saw_arg)
e0001a05
NC
1913 goto err;
1914
1915 arg_end = input_line_pointer + 1;
1916 while (!expression_end (arg_end))
1917 arg_end += 1;
43cd72b9 1918
e0001a05 1919 arg_len = arg_end - input_line_pointer;
43cd72b9 1920 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
e0001a05
NC
1921 args[num_args] = arg;
1922
43cd72b9
BW
1923 if (saw_colon)
1924 *arg++ = ':';
e0001a05
NC
1925 strncpy (arg, input_line_pointer, arg_len);
1926 arg[arg_len] = '\0';
43cd72b9 1927
e0001a05
NC
1928 input_line_pointer = arg_end;
1929 num_args += 1;
c138bc38 1930 saw_comma = FALSE;
43cd72b9 1931 saw_colon = FALSE;
c138bc38 1932 saw_arg = TRUE;
e0001a05
NC
1933 break;
1934 }
1935 }
1936
1937fini:
43cd72b9 1938 if (saw_comma || saw_colon)
e0001a05
NC
1939 goto err;
1940 input_line_pointer = old_input_line_pointer;
1941 return num_args;
1942
1943err:
43cd72b9
BW
1944 if (saw_comma)
1945 as_bad (_("extra comma"));
1946 else if (saw_colon)
1947 as_bad (_("extra colon"));
1948 else if (!saw_arg)
c138bc38 1949 as_bad (_("missing argument"));
43cd72b9
BW
1950 else
1951 as_bad (_("missing comma or colon"));
e0001a05
NC
1952 input_line_pointer = old_input_line_pointer;
1953 return -1;
1954}
1955
1956
43cd72b9 1957/* Parse the arguments to an opcode. Return TRUE on error. */
e0001a05
NC
1958
1959static bfd_boolean
7fa3d080 1960parse_arguments (TInsn *insn, int num_args, char **arg_strings)
e0001a05 1961{
43cd72b9 1962 expressionS *tok, *last_tok;
e0001a05
NC
1963 xtensa_opcode opcode = insn->opcode;
1964 bfd_boolean had_error = TRUE;
43cd72b9
BW
1965 xtensa_isa isa = xtensa_default_isa;
1966 int n, num_regs = 0;
e0001a05 1967 int opcode_operand_count;
43cd72b9
BW
1968 int opnd_cnt, last_opnd_cnt;
1969 unsigned int next_reg = 0;
e0001a05
NC
1970 char *old_input_line_pointer;
1971
1972 if (insn->insn_type == ITYPE_LITERAL)
1973 opcode_operand_count = 1;
1974 else
43cd72b9 1975 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
e0001a05 1976
43cd72b9 1977 tok = insn->tok;
e0001a05
NC
1978 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
1979
1980 /* Save and restore input_line_pointer around this function. */
43cd72b9
BW
1981 old_input_line_pointer = input_line_pointer;
1982
1983 last_tok = 0;
1984 last_opnd_cnt = -1;
1985 opnd_cnt = 0;
1986
1987 /* Skip invisible operands. */
1988 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
1989 {
1990 opnd_cnt += 1;
1991 tok++;
1992 }
e0001a05
NC
1993
1994 for (n = 0; n < num_args; n++)
43cd72b9 1995 {
e0001a05 1996 input_line_pointer = arg_strings[n];
43cd72b9
BW
1997 if (*input_line_pointer == ':')
1998 {
1999 xtensa_regfile opnd_rf;
2000 input_line_pointer++;
2001 if (num_regs == 0)
2002 goto err;
2003 assert (opnd_cnt > 0);
2004 num_regs--;
2005 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2006 if (next_reg
2007 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2008 as_warn (_("incorrect register number, ignoring"));
2009 next_reg++;
2010 }
2011 else
2012 {
2013 if (opnd_cnt >= opcode_operand_count)
2014 {
2015 as_warn (_("too many arguments"));
2016 goto err;
2017 }
2018 assert (opnd_cnt < MAX_INSN_ARGS);
2019
2020 expression_maybe_register (opcode, opnd_cnt, tok);
2021 next_reg = tok->X_add_number + 1;
2022
2023 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2024 goto err;
2025 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2026 {
2027 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2028 /* minus 1 because we are seeing one right now */
2029 }
2030 else
2031 num_regs = 0;
e0001a05 2032
43cd72b9
BW
2033 last_tok = tok;
2034 last_opnd_cnt = opnd_cnt;
e0001a05 2035
43cd72b9
BW
2036 do
2037 {
2038 opnd_cnt += 1;
2039 tok++;
2040 }
2041 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2042 }
2043 }
e0001a05 2044
43cd72b9
BW
2045 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2046 goto err;
e0001a05
NC
2047
2048 insn->ntok = tok - insn->tok;
c138bc38 2049 had_error = FALSE;
e0001a05
NC
2050
2051 err:
43cd72b9 2052 input_line_pointer = old_input_line_pointer;
e0001a05
NC
2053 return had_error;
2054}
2055
2056
43cd72b9 2057static int
7fa3d080 2058get_invisible_operands (TInsn *insn)
43cd72b9
BW
2059{
2060 xtensa_isa isa = xtensa_default_isa;
2061 static xtensa_insnbuf slotbuf = NULL;
2062 xtensa_format fmt;
2063 xtensa_opcode opc = insn->opcode;
2064 int slot, opnd, fmt_found;
2065 unsigned val;
2066
2067 if (!slotbuf)
2068 slotbuf = xtensa_insnbuf_alloc (isa);
2069
2070 /* Find format/slot where this can be encoded. */
2071 fmt_found = 0;
2072 slot = 0;
2073 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2074 {
2075 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2076 {
2077 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2078 {
2079 fmt_found = 1;
2080 break;
2081 }
2082 }
2083 if (fmt_found) break;
2084 }
2085
2086 if (!fmt_found)
2087 {
2088 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2089 return -1;
2090 }
2091
2092 /* First encode all the visible operands
2093 (to deal with shared field operands). */
2094 for (opnd = 0; opnd < insn->ntok; opnd++)
2095 {
2096 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2097 && (insn->tok[opnd].X_op == O_register
2098 || insn->tok[opnd].X_op == O_constant))
2099 {
2100 val = insn->tok[opnd].X_add_number;
2101 xtensa_operand_encode (isa, opc, opnd, &val);
2102 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2103 }
2104 }
2105
2106 /* Then pull out the values for the invisible ones. */
2107 for (opnd = 0; opnd < insn->ntok; opnd++)
2108 {
2109 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2110 {
2111 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2112 xtensa_operand_decode (isa, opc, opnd, &val);
2113 insn->tok[opnd].X_add_number = val;
2114 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2115 insn->tok[opnd].X_op = O_register;
2116 else
2117 insn->tok[opnd].X_op = O_constant;
2118 }
2119 }
2120
2121 return 0;
2122}
2123
2124
e0001a05 2125static void
7fa3d080 2126xg_reverse_shift_count (char **cnt_argp)
e0001a05
NC
2127{
2128 char *cnt_arg, *new_arg;
2129 cnt_arg = *cnt_argp;
2130
2131 /* replace the argument with "31-(argument)" */
2132 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2133 sprintf (new_arg, "31-(%s)", cnt_arg);
2134
2135 free (cnt_arg);
2136 *cnt_argp = new_arg;
2137}
2138
2139
2140/* If "arg" is a constant expression, return non-zero with the value
2141 in *valp. */
2142
2143static int
7fa3d080 2144xg_arg_is_constant (char *arg, offsetT *valp)
e0001a05
NC
2145{
2146 expressionS exp;
2147 char *save_ptr = input_line_pointer;
2148
2149 input_line_pointer = arg;
2150 expression (&exp);
2151 input_line_pointer = save_ptr;
2152
2153 if (exp.X_op == O_constant)
2154 {
2155 *valp = exp.X_add_number;
2156 return 1;
2157 }
2158
2159 return 0;
2160}
2161
2162
2163static void
7fa3d080 2164xg_replace_opname (char **popname, char *newop)
e0001a05
NC
2165{
2166 free (*popname);
2167 *popname = (char *) xmalloc (strlen (newop) + 1);
2168 strcpy (*popname, newop);
2169}
2170
2171
2172static int
7fa3d080
BW
2173xg_check_num_args (int *pnum_args,
2174 int expected_num,
2175 char *opname,
2176 char **arg_strings)
e0001a05
NC
2177{
2178 int num_args = *pnum_args;
2179
43cd72b9 2180 if (num_args < expected_num)
e0001a05
NC
2181 {
2182 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2183 num_args, opname, expected_num);
2184 return -1;
2185 }
2186
2187 if (num_args > expected_num)
2188 {
2189 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2190 num_args, opname, expected_num);
2191 while (num_args-- > expected_num)
2192 {
2193 free (arg_strings[num_args]);
2194 arg_strings[num_args] = 0;
2195 }
2196 *pnum_args = expected_num;
2197 return -1;
2198 }
2199
2200 return 0;
2201}
2202
2203
43cd72b9
BW
2204/* If the register is not specified as part of the opcode,
2205 then get it from the operand and move it to the opcode. */
2206
e0001a05 2207static int
7fa3d080 2208xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
e0001a05 2209{
43cd72b9
BW
2210 xtensa_isa isa = xtensa_default_isa;
2211 xtensa_sysreg sr;
e0001a05 2212 char *opname, *new_opname;
43cd72b9
BW
2213 const char *sr_name;
2214 int is_user, is_write;
e0001a05
NC
2215 bfd_boolean has_underbar = FALSE;
2216
2217 opname = *popname;
2218 if (*opname == '_')
2219 {
2220 has_underbar = TRUE;
2221 opname += 1;
2222 }
43cd72b9
BW
2223 is_user = (opname[1] == 'u');
2224 is_write = (opname[0] == 'w');
e0001a05 2225
43cd72b9 2226 /* Opname == [rw]ur or [rwx]sr... */
e0001a05 2227
43cd72b9
BW
2228 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2229 return -1;
e0001a05 2230
43cd72b9
BW
2231 /* Check if the argument is a symbolic register name. */
2232 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2233 /* Handle WSR to "INTSET" as a special case. */
2234 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2235 && !strcasecmp (arg_strings[1], "intset"))
2236 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2237 if (sr == XTENSA_UNDEFINED
2238 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2239 {
2240 /* Maybe it's a register number.... */
2241 offsetT val;
e0001a05
NC
2242 if (!xg_arg_is_constant (arg_strings[1], &val))
2243 {
43cd72b9
BW
2244 as_bad (_("invalid register '%s' for '%s' instruction"),
2245 arg_strings[1], opname);
e0001a05
NC
2246 return -1;
2247 }
43cd72b9
BW
2248 sr = xtensa_sysreg_lookup (isa, val, is_user);
2249 if (sr == XTENSA_UNDEFINED)
e0001a05 2250 {
43cd72b9 2251 as_bad (_("invalid register number (%ld) for '%s' instruction"),
dd49a749 2252 (long) val, opname);
e0001a05
NC
2253 return -1;
2254 }
43cd72b9 2255 }
e0001a05 2256
43cd72b9
BW
2257 /* Remove the last argument, which is now part of the opcode. */
2258 free (arg_strings[1]);
2259 arg_strings[1] = 0;
2260 *pnum_args = 1;
2261
2262 /* Translate the opcode. */
2263 sr_name = xtensa_sysreg_name (isa, sr);
2264 /* Another special case for "WSR.INTSET".... */
2265 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2266 sr_name = "intset";
2267 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2268 sprintf (new_opname, "%s%s.%s", (has_underbar ? "_" : ""),
2269 *popname, sr_name);
2270 free (*popname);
2271 *popname = new_opname;
2272
2273 return 0;
2274}
2275
2276
2277static int
7fa3d080 2278xtensa_translate_old_userreg_ops (char **popname)
43cd72b9
BW
2279{
2280 xtensa_isa isa = xtensa_default_isa;
2281 xtensa_sysreg sr;
2282 char *opname, *new_opname;
2283 const char *sr_name;
2284 bfd_boolean has_underbar = FALSE;
2285
2286 opname = *popname;
2287 if (opname[0] == '_')
2288 {
2289 has_underbar = TRUE;
2290 opname += 1;
2291 }
2292
2293 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2294 if (sr != XTENSA_UNDEFINED)
2295 {
2296 /* The new default name ("nnn") is different from the old default
2297 name ("URnnn"). The old default is handled below, and we don't
2298 want to recognize [RW]nnn, so do nothing if the name is the (new)
2299 default. */
2300 static char namebuf[10];
2301 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2302 if (strcmp (namebuf, opname + 1) == 0)
2303 return 0;
2304 }
2305 else
2306 {
2307 offsetT val;
2308 char *end;
2309
2310 /* Only continue if the reg name is "URnnn". */
2311 if (opname[1] != 'u' || opname[2] != 'r')
2312 return 0;
2313 val = strtoul (opname + 3, &end, 10);
2314 if (*end != '\0')
2315 return 0;
2316
2317 sr = xtensa_sysreg_lookup (isa, val, 1);
2318 if (sr == XTENSA_UNDEFINED)
2319 {
2320 as_bad (_("invalid register number (%ld) for '%s'"),
dd49a749 2321 (long) val, opname);
43cd72b9
BW
2322 return -1;
2323 }
2324 }
2325
2326 /* Translate the opcode. */
2327 sr_name = xtensa_sysreg_name (isa, sr);
2328 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2329 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2330 opname[0], sr_name);
2331 free (*popname);
2332 *popname = new_opname;
2333
2334 return 0;
2335}
2336
2337
2338static int
7fa3d080
BW
2339xtensa_translate_zero_immed (char *old_op,
2340 char *new_op,
2341 char **popname,
2342 int *pnum_args,
2343 char **arg_strings)
43cd72b9
BW
2344{
2345 char *opname;
2346 offsetT val;
2347
2348 opname = *popname;
2349 assert (opname[0] != '_');
2350
2351 if (strcmp (opname, old_op) != 0)
2352 return 0;
e0001a05 2353
43cd72b9
BW
2354 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2355 return -1;
2356 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2357 {
2358 xg_replace_opname (popname, new_op);
2359 free (arg_strings[1]);
2360 arg_strings[1] = arg_strings[2];
2361 arg_strings[2] = 0;
2362 *pnum_args = 2;
e0001a05
NC
2363 }
2364
2365 return 0;
2366}
2367
2368
2369/* If the instruction is an idiom (i.e., a built-in macro), translate it.
2370 Returns non-zero if an error was found. */
2371
2372static int
7fa3d080 2373xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
e0001a05
NC
2374{
2375 char *opname = *popname;
2376 bfd_boolean has_underbar = FALSE;
2377
43cd72b9
BW
2378 if (cur_vinsn.inside_bundle)
2379 return 0;
2380
e0001a05
NC
2381 if (*opname == '_')
2382 {
2383 has_underbar = TRUE;
2384 opname += 1;
2385 }
2386
2387 if (strcmp (opname, "mov") == 0)
2388 {
43cd72b9 2389 if (use_transform () && !has_underbar && density_supported)
e0001a05
NC
2390 xg_replace_opname (popname, "mov.n");
2391 else
2392 {
2393 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2394 return -1;
2395 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2396 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2397 strcpy (arg_strings[2], arg_strings[1]);
2398 *pnum_args = 3;
2399 }
2400 return 0;
2401 }
2402
2403 if (strcmp (opname, "bbsi.l") == 0)
2404 {
2405 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2406 return -1;
2407 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2408 if (target_big_endian)
2409 xg_reverse_shift_count (&arg_strings[1]);
2410 return 0;
2411 }
2412
2413 if (strcmp (opname, "bbci.l") == 0)
2414 {
2415 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2416 return -1;
2417 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2418 if (target_big_endian)
2419 xg_reverse_shift_count (&arg_strings[1]);
2420 return 0;
2421 }
2422
43cd72b9
BW
2423 if (xtensa_nop_opcode == XTENSA_UNDEFINED
2424 && strcmp (opname, "nop") == 0)
e0001a05 2425 {
43cd72b9 2426 if (use_transform () && !has_underbar && density_supported)
e0001a05
NC
2427 xg_replace_opname (popname, "nop.n");
2428 else
2429 {
2430 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2431 return -1;
2432 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2433 arg_strings[0] = (char *) xmalloc (3);
2434 arg_strings[1] = (char *) xmalloc (3);
2435 arg_strings[2] = (char *) xmalloc (3);
2436 strcpy (arg_strings[0], "a1");
2437 strcpy (arg_strings[1], "a1");
2438 strcpy (arg_strings[2], "a1");
2439 *pnum_args = 3;
2440 }
2441 return 0;
2442 }
2443
43cd72b9
BW
2444 /* Recognize [RW]UR and [RWX]SR. */
2445 if ((((opname[0] == 'r' || opname[0] == 'w')
2446 && (opname[1] == 'u' || opname[1] == 's'))
2447 || (opname[0] == 'x' && opname[1] == 's'))
2448 && opname[2] == 'r'
2449 && opname[3] == '\0')
e0001a05
NC
2450 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2451
43cd72b9
BW
2452 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2453 [RW]<name> if <name> is the non-default name of a user register. */
2454 if ((opname[0] == 'r' || opname[0] == 'w')
2455 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2456 return xtensa_translate_old_userreg_ops (popname);
e0001a05 2457
43cd72b9
BW
2458 /* Relax branches that don't allow comparisons against an immediate value
2459 of zero to the corresponding branches with implicit zero immediates. */
2460 if (!has_underbar && use_transform ())
2461 {
2462 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2463 pnum_args, arg_strings))
2464 return -1;
e0001a05 2465
43cd72b9
BW
2466 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2467 pnum_args, arg_strings))
2468 return -1;
e0001a05 2469
43cd72b9
BW
2470 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2471 pnum_args, arg_strings))
2472 return -1;
e0001a05 2473
43cd72b9
BW
2474 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2475 pnum_args, arg_strings))
2476 return -1;
2477 }
e0001a05 2478
43cd72b9
BW
2479 return 0;
2480}
e0001a05 2481
43cd72b9
BW
2482\f
2483/* Functions for dealing with the Xtensa ISA. */
e0001a05 2484
43cd72b9
BW
2485/* Currently the assembler only allows us to use a single target per
2486 fragment. Because of this, only one operand for a given
2487 instruction may be symbolic. If there is a PC-relative operand,
2488 the last one is chosen. Otherwise, the result is the number of the
2489 last immediate operand, and if there are none of those, we fail and
2490 return -1. */
e0001a05 2491
7fa3d080
BW
2492static int
2493get_relaxable_immed (xtensa_opcode opcode)
43cd72b9
BW
2494{
2495 int last_immed = -1;
2496 int noperands, opi;
e0001a05 2497
43cd72b9
BW
2498 if (opcode == XTENSA_UNDEFINED)
2499 return -1;
e0001a05 2500
43cd72b9
BW
2501 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2502 for (opi = noperands - 1; opi >= 0; opi--)
2503 {
2504 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2505 continue;
2506 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2507 return opi;
2508 if (last_immed == -1
2509 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2510 last_immed = opi;
e0001a05 2511 }
43cd72b9 2512 return last_immed;
e0001a05
NC
2513}
2514
e0001a05 2515
43cd72b9 2516static xtensa_opcode
7fa3d080 2517get_opcode_from_buf (const char *buf, int slot)
e0001a05 2518{
43cd72b9
BW
2519 static xtensa_insnbuf insnbuf = NULL;
2520 static xtensa_insnbuf slotbuf = NULL;
2521 xtensa_isa isa = xtensa_default_isa;
2522 xtensa_format fmt;
2523
2524 if (!insnbuf)
e0001a05 2525 {
43cd72b9
BW
2526 insnbuf = xtensa_insnbuf_alloc (isa);
2527 slotbuf = xtensa_insnbuf_alloc (isa);
e0001a05 2528 }
e0001a05 2529
d77b99c9 2530 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
43cd72b9
BW
2531 fmt = xtensa_format_decode (isa, insnbuf);
2532 if (fmt == XTENSA_UNDEFINED)
2533 return XTENSA_UNDEFINED;
e0001a05 2534
43cd72b9
BW
2535 if (slot >= xtensa_format_num_slots (isa, fmt))
2536 return XTENSA_UNDEFINED;
e0001a05 2537
43cd72b9
BW
2538 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2539 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
e0001a05
NC
2540}
2541
2542
43cd72b9 2543#ifdef TENSILICA_DEBUG
e0001a05 2544
43cd72b9 2545/* For debugging, print out the mapping of opcode numbers to opcodes. */
e0001a05 2546
7fa3d080
BW
2547static void
2548xtensa_print_insn_table (void)
43cd72b9
BW
2549{
2550 int num_opcodes, num_operands;
2551 xtensa_opcode opcode;
2552 xtensa_isa isa = xtensa_default_isa;
e0001a05 2553
43cd72b9
BW
2554 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2555 for (opcode = 0; opcode < num_opcodes; opcode++)
e0001a05 2556 {
43cd72b9
BW
2557 int opn;
2558 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2559 num_operands = xtensa_opcode_num_operands (isa, opcode);
2560 for (opn = 0; opn < num_operands; opn++)
2561 {
2562 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2563 continue;
2564 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2565 {
2566 xtensa_regfile opnd_rf =
2567 xtensa_operand_regfile (isa, opcode, opn);
2568 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2569 }
2570 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2571 fputs ("[lLr] ", stderr);
2572 else
2573 fputs ("i ", stderr);
2574 }
2575 fprintf (stderr, "\n");
e0001a05 2576 }
e0001a05
NC
2577}
2578
2579
43cd72b9 2580static void
7fa3d080 2581print_vliw_insn (xtensa_insnbuf vbuf)
e0001a05 2582{
e0001a05 2583 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
2584 xtensa_format f = xtensa_format_decode (isa, vbuf);
2585 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2586 int op;
e0001a05 2587
43cd72b9 2588 fprintf (stderr, "format = %d\n", f);
e0001a05 2589
43cd72b9
BW
2590 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2591 {
2592 xtensa_opcode opcode;
2593 const char *opname;
2594 int operands;
2595
2596 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2597 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2598 opname = xtensa_opcode_name (isa, opcode);
2599
2600 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2601 fprintf (stderr, " operands = ");
2602 for (operands = 0;
2603 operands < xtensa_opcode_num_operands (isa, opcode);
2604 operands++)
2605 {
2606 unsigned int val;
2607 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2608 continue;
2609 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2610 xtensa_operand_decode (isa, opcode, operands, &val);
2611 fprintf (stderr, "%d ", val);
2612 }
2613 fprintf (stderr, "\n");
2614 }
2615 xtensa_insnbuf_free (isa, sbuf);
e0001a05
NC
2616}
2617
43cd72b9
BW
2618#endif /* TENSILICA_DEBUG */
2619
e0001a05
NC
2620
2621static bfd_boolean
7fa3d080 2622is_direct_call_opcode (xtensa_opcode opcode)
e0001a05 2623{
43cd72b9
BW
2624 xtensa_isa isa = xtensa_default_isa;
2625 int n, num_operands;
e0001a05 2626
43cd72b9 2627 if (xtensa_opcode_is_call (isa, opcode) == 0)
e0001a05
NC
2628 return FALSE;
2629
43cd72b9
BW
2630 num_operands = xtensa_opcode_num_operands (isa, opcode);
2631 for (n = 0; n < num_operands; n++)
2632 {
2633 if (xtensa_operand_is_register (isa, opcode, n) == 0
2634 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2635 return TRUE;
2636 }
2637 return FALSE;
e0001a05
NC
2638}
2639
2640
43cd72b9
BW
2641/* Convert from BFD relocation type code to slot and operand number.
2642 Returns non-zero on failure. */
e0001a05 2643
43cd72b9 2644static int
7fa3d080 2645decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
e0001a05 2646{
43cd72b9
BW
2647 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2648 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
e0001a05 2649 {
43cd72b9
BW
2650 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2651 *is_alt = FALSE;
e0001a05 2652 }
43cd72b9
BW
2653 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2654 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
e0001a05 2655 {
43cd72b9
BW
2656 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2657 *is_alt = TRUE;
e0001a05 2658 }
43cd72b9
BW
2659 else
2660 return -1;
2661
2662 return 0;
e0001a05
NC
2663}
2664
2665
43cd72b9
BW
2666/* Convert from slot number to BFD relocation type code for the
2667 standard PC-relative relocations. Return BFD_RELOC_NONE on
2668 failure. */
e0001a05 2669
43cd72b9 2670static bfd_reloc_code_real_type
7fa3d080 2671encode_reloc (int slot)
e0001a05 2672{
43cd72b9
BW
2673 if (slot < 0 || slot > 14)
2674 return BFD_RELOC_NONE;
2675
2676 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
e0001a05
NC
2677}
2678
2679
43cd72b9
BW
2680/* Convert from slot numbers to BFD relocation type code for the
2681 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
e0001a05 2682
43cd72b9 2683static bfd_reloc_code_real_type
7fa3d080 2684encode_alt_reloc (int slot)
e0001a05 2685{
43cd72b9
BW
2686 if (slot < 0 || slot > 14)
2687 return BFD_RELOC_NONE;
2688
2689 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
e0001a05
NC
2690}
2691
2692
2693static void
7fa3d080
BW
2694xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2695 xtensa_format fmt,
2696 int slot,
2697 xtensa_opcode opcode,
2698 int operand,
2699 uint32 value,
2700 const char *file,
2701 unsigned int line)
e0001a05 2702{
e0001a05
NC
2703 uint32 valbuf = value;
2704
43cd72b9 2705 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
e0001a05 2706 {
43cd72b9
BW
2707 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2708 == 1)
2709 as_bad_where ((char *) file, line,
d7c531cd
BW
2710 _("operand %d of '%s' has out of range value '%u'"),
2711 operand + 1,
2712 xtensa_opcode_name (xtensa_default_isa, opcode),
2713 value);
43cd72b9
BW
2714 else
2715 as_bad_where ((char *) file, line,
d7c531cd
BW
2716 _("operand %d of '%s' has invalid value '%u'"),
2717 operand + 1,
2718 xtensa_opcode_name (xtensa_default_isa, opcode),
2719 value);
43cd72b9 2720 return;
e0001a05
NC
2721 }
2722
43cd72b9
BW
2723 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2724 slotbuf, valbuf);
e0001a05
NC
2725}
2726
2727
2728static uint32
7fa3d080
BW
2729xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2730 xtensa_format fmt,
2731 int slot,
2732 xtensa_opcode opcode,
2733 int opnum)
e0001a05 2734{
43cd72b9
BW
2735 uint32 val = 0;
2736 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2737 fmt, slot, slotbuf, &val);
2738 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2739 return val;
e0001a05
NC
2740}
2741
e0001a05 2742\f
7fa3d080 2743/* Checks for rules from xtensa-relax tables. */
e0001a05 2744
7fa3d080
BW
2745/* The routine xg_instruction_matches_option_term must return TRUE
2746 when a given option term is true. The meaning of all of the option
2747 terms is given interpretation by this function. This is needed when
2748 an option depends on the state of a directive, but there are no such
2749 options in use right now. */
e0001a05 2750
7fa3d080
BW
2751static bfd_boolean
2752xg_instruction_matches_option_term (TInsn *insn ATTRIBUTE_UNUSED,
2753 const ReqOrOption *option)
e0001a05 2754{
7fa3d080
BW
2755 if (strcmp (option->option_name, "realnop") == 0
2756 || strncmp (option->option_name, "IsaUse", 6) == 0)
2757 {
2758 /* These conditions were evaluated statically when building the
2759 relaxation table. There's no need to reevaluate them now. */
2760 return TRUE;
2761 }
2762 else
2763 {
2764 as_fatal (_("internal error: unknown option name '%s'"),
2765 option->option_name);
2766 }
e0001a05
NC
2767}
2768
2769
7fa3d080
BW
2770static bfd_boolean
2771xg_instruction_matches_or_options (TInsn *insn,
2772 const ReqOrOptionList *or_option)
e0001a05 2773{
7fa3d080
BW
2774 const ReqOrOption *option;
2775 /* Must match each of the AND terms. */
2776 for (option = or_option; option != NULL; option = option->next)
e0001a05 2777 {
7fa3d080
BW
2778 if (xg_instruction_matches_option_term (insn, option))
2779 return TRUE;
e0001a05 2780 }
7fa3d080 2781 return FALSE;
e0001a05
NC
2782}
2783
2784
7fa3d080
BW
2785static bfd_boolean
2786xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
e0001a05 2787{
7fa3d080
BW
2788 const ReqOption *req_options;
2789 /* Must match each of the AND terms. */
2790 for (req_options = options;
2791 req_options != NULL;
2792 req_options = req_options->next)
e0001a05 2793 {
7fa3d080
BW
2794 /* Must match one of the OR clauses. */
2795 if (!xg_instruction_matches_or_options (insn,
2796 req_options->or_option_terms))
2797 return FALSE;
e0001a05 2798 }
7fa3d080 2799 return TRUE;
e0001a05
NC
2800}
2801
2802
7fa3d080 2803/* Return the transition rule that matches or NULL if none matches. */
e0001a05 2804
7fa3d080
BW
2805static bfd_boolean
2806xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
e0001a05 2807{
7fa3d080 2808 PreconditionList *condition_l;
e0001a05 2809
7fa3d080
BW
2810 if (rule->opcode != insn->opcode)
2811 return FALSE;
e0001a05 2812
7fa3d080
BW
2813 for (condition_l = rule->conditions;
2814 condition_l != NULL;
2815 condition_l = condition_l->next)
e0001a05 2816 {
7fa3d080
BW
2817 expressionS *exp1;
2818 expressionS *exp2;
2819 Precondition *cond = condition_l->precond;
e0001a05 2820
7fa3d080 2821 switch (cond->typ)
e0001a05 2822 {
7fa3d080
BW
2823 case OP_CONSTANT:
2824 /* The expression must be the constant. */
2825 assert (cond->op_num < insn->ntok);
2826 exp1 = &insn->tok[cond->op_num];
2827 if (expr_is_const (exp1))
2828 {
2829 switch (cond->cmp)
2830 {
2831 case OP_EQUAL:
2832 if (get_expr_const (exp1) != cond->op_data)
2833 return FALSE;
2834 break;
2835 case OP_NOTEQUAL:
2836 if (get_expr_const (exp1) == cond->op_data)
2837 return FALSE;
2838 break;
2839 default:
2840 return FALSE;
2841 }
2842 }
2843 else if (expr_is_register (exp1))
2844 {
2845 switch (cond->cmp)
2846 {
2847 case OP_EQUAL:
2848 if (get_expr_register (exp1) != cond->op_data)
2849 return FALSE;
2850 break;
2851 case OP_NOTEQUAL:
2852 if (get_expr_register (exp1) == cond->op_data)
2853 return FALSE;
2854 break;
2855 default:
2856 return FALSE;
2857 }
2858 }
2859 else
2860 return FALSE;
2861 break;
2862
2863 case OP_OPERAND:
2864 assert (cond->op_num < insn->ntok);
2865 assert (cond->op_data < insn->ntok);
2866 exp1 = &insn->tok[cond->op_num];
2867 exp2 = &insn->tok[cond->op_data];
2868
2869 switch (cond->cmp)
2870 {
2871 case OP_EQUAL:
2872 if (!expr_is_equal (exp1, exp2))
2873 return FALSE;
2874 break;
2875 case OP_NOTEQUAL:
2876 if (expr_is_equal (exp1, exp2))
2877 return FALSE;
2878 break;
2879 }
2880 break;
2881
2882 case OP_LITERAL:
2883 case OP_LABEL:
2884 default:
2885 return FALSE;
2886 }
2887 }
2888 if (!xg_instruction_matches_options (insn, rule->options))
2889 return FALSE;
2890
2891 return TRUE;
2892}
2893
2894
2895static int
2896transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
2897{
2898 bfd_boolean a_greater = FALSE;
2899 bfd_boolean b_greater = FALSE;
2900
2901 ReqOptionList *l_a = a->options;
2902 ReqOptionList *l_b = b->options;
2903
2904 /* We only care if they both are the same except for
2905 a const16 vs. an l32r. */
2906
2907 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2908 {
2909 ReqOrOptionList *l_or_a = l_a->or_option_terms;
2910 ReqOrOptionList *l_or_b = l_b->or_option_terms;
2911 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
2912 {
2913 if (l_or_a->is_true != l_or_b->is_true)
2914 return 0;
2915 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
2916 {
2917 /* This is the case we care about. */
2918 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
2919 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
2920 {
2921 if (prefer_const16)
2922 a_greater = TRUE;
2923 else
2924 b_greater = TRUE;
2925 }
2926 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
2927 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
2928 {
2929 if (prefer_const16)
2930 b_greater = TRUE;
2931 else
2932 a_greater = TRUE;
2933 }
2934 else
2935 return 0;
2936 }
2937 l_or_a = l_or_a->next;
2938 l_or_b = l_or_b->next;
2939 }
2940 if (l_or_a || l_or_b)
2941 return 0;
2942
2943 l_a = l_a->next;
2944 l_b = l_b->next;
2945 }
2946 if (l_a || l_b)
2947 return 0;
2948
2949 /* Incomparable if the substitution was used differently in two cases. */
2950 if (a_greater && b_greater)
2951 return 0;
2952
2953 if (b_greater)
2954 return 1;
2955 if (a_greater)
2956 return -1;
2957
2958 return 0;
2959}
2960
2961
2962static TransitionRule *
2963xg_instruction_match (TInsn *insn)
2964{
2965 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
2966 TransitionList *l;
2967 assert (insn->opcode < table->num_opcodes);
2968
2969 /* Walk through all of the possible transitions. */
2970 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
2971 {
2972 TransitionRule *rule = l->rule;
2973 if (xg_instruction_matches_rule (insn, rule))
2974 return rule;
2975 }
2976 return NULL;
2977}
2978
2979\f
2980/* Various Other Internal Functions. */
2981
2982static bfd_boolean
2983is_unique_insn_expansion (TransitionRule *r)
2984{
2985 if (!r->to_instr || r->to_instr->next != NULL)
2986 return FALSE;
2987 if (r->to_instr->typ != INSTR_INSTR)
2988 return FALSE;
2989 return TRUE;
2990}
2991
2992
84b08ed9
BW
2993/* Check if there is exactly one relaxation for INSN that converts it to
2994 another instruction of equal or larger size. If so, and if TARG is
2995 non-null, go ahead and generate the relaxed instruction into TARG. If
2996 NARROW_ONLY is true, then only consider relaxations that widen a narrow
2997 instruction, i.e., ignore relaxations that convert to an instruction of
2998 equal size. In some contexts where this function is used, only
c138bc38 2999 a single widening is allowed and the NARROW_ONLY argument is used to
84b08ed9
BW
3000 exclude cases like ADDI being "widened" to an ADDMI, which may
3001 later be relaxed to an ADDMI/ADDI pair. */
7fa3d080 3002
84b08ed9
BW
3003bfd_boolean
3004xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
7fa3d080
BW
3005{
3006 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3007 TransitionList *l;
84b08ed9 3008 TransitionRule *match = 0;
7fa3d080 3009
7fa3d080
BW
3010 assert (insn->insn_type == ITYPE_INSN);
3011 assert (insn->opcode < table->num_opcodes);
3012
3013 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3014 {
3015 TransitionRule *rule = l->rule;
3016
3017 if (xg_instruction_matches_rule (insn, rule)
84b08ed9
BW
3018 && is_unique_insn_expansion (rule)
3019 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
3020 <= xg_get_single_size (rule->to_instr->opcode)))
7fa3d080 3021 {
84b08ed9
BW
3022 if (match)
3023 return FALSE;
3024 match = rule;
7fa3d080
BW
3025 }
3026 }
84b08ed9
BW
3027 if (!match)
3028 return FALSE;
3029
3030 if (targ)
3031 xg_build_to_insn (targ, insn, match->to_instr);
3032 return TRUE;
7fa3d080
BW
3033}
3034
3035
3036/* Return the maximum number of bytes this opcode can expand to. */
3037
3038static int
3039xg_get_max_insn_widen_size (xtensa_opcode opcode)
3040{
3041 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3042 TransitionList *l;
3043 int max_size = xg_get_single_size (opcode);
3044
3045 assert (opcode < table->num_opcodes);
3046
3047 for (l = table->table[opcode]; l != NULL; l = l->next)
3048 {
3049 TransitionRule *rule = l->rule;
3050 BuildInstr *build_list;
3051 int this_size = 0;
3052
3053 if (!rule)
3054 continue;
3055 build_list = rule->to_instr;
3056 if (is_unique_insn_expansion (rule))
3057 {
3058 assert (build_list->typ == INSTR_INSTR);
3059 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3060 }
3061 else
3062 for (; build_list != NULL; build_list = build_list->next)
3063 {
3064 switch (build_list->typ)
3065 {
3066 case INSTR_INSTR:
3067 this_size += xg_get_single_size (build_list->opcode);
3068 break;
3069 case INSTR_LITERAL_DEF:
3070 case INSTR_LABEL_DEF:
e0001a05
NC
3071 default:
3072 break;
3073 }
3074 }
3075 if (this_size > max_size)
3076 max_size = this_size;
3077 }
3078 return max_size;
3079}
3080
3081
3082/* Return the maximum number of literal bytes this opcode can generate. */
3083
7fa3d080
BW
3084static int
3085xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
e0001a05 3086{
43cd72b9 3087 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
e0001a05
NC
3088 TransitionList *l;
3089 int max_size = 0;
3090
3091 assert (opcode < table->num_opcodes);
3092
3093 for (l = table->table[opcode]; l != NULL; l = l->next)
3094 {
3095 TransitionRule *rule = l->rule;
3096 BuildInstr *build_list;
3097 int this_size = 0;
3098
3099 if (!rule)
3100 continue;
3101 build_list = rule->to_instr;
3102 if (is_unique_insn_expansion (rule))
3103 {
3104 assert (build_list->typ == INSTR_INSTR);
3105 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3106 }
3107 else
3108 for (; build_list != NULL; build_list = build_list->next)
3109 {
3110 switch (build_list->typ)
3111 {
3112 case INSTR_LITERAL_DEF:
43cd72b9 3113 /* Hard-coded 4-byte literal. */
e0001a05
NC
3114 this_size += 4;
3115 break;
3116 case INSTR_INSTR:
3117 case INSTR_LABEL_DEF:
3118 default:
3119 break;
3120 }
3121 }
3122 if (this_size > max_size)
3123 max_size = this_size;
3124 }
3125 return max_size;
3126}
3127
3128
7fa3d080
BW
3129static bfd_boolean
3130xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3131{
3132 int steps_taken = 0;
3133 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3134 TransitionList *l;
3135
3136 assert (insn->insn_type == ITYPE_INSN);
3137 assert (insn->opcode < table->num_opcodes);
3138
3139 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3140 {
3141 TransitionRule *rule = l->rule;
3142
3143 if (xg_instruction_matches_rule (insn, rule))
3144 {
3145 if (steps_taken == lateral_steps)
3146 return TRUE;
3147 steps_taken++;
3148 }
3149 }
3150 return FALSE;
3151}
3152
3153
3154static symbolS *
3155get_special_literal_symbol (void)
3156{
3157 static symbolS *sym = NULL;
3158
3159 if (sym == NULL)
3160 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3161 return sym;
3162}
3163
3164
3165static symbolS *
3166get_special_label_symbol (void)
3167{
3168 static symbolS *sym = NULL;
3169
3170 if (sym == NULL)
3171 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3172 return sym;
3173}
3174
3175
3176static bfd_boolean
3177xg_valid_literal_expression (const expressionS *exp)
3178{
3179 switch (exp->X_op)
3180 {
3181 case O_constant:
3182 case O_symbol:
3183 case O_big:
3184 case O_uminus:
3185 case O_subtract:
3186 case O_pltrel:
3187 return TRUE;
3188 default:
3189 return FALSE;
3190 }
3191}
3192
3193
3194/* This will check to see if the value can be converted into the
3195 operand type. It will return TRUE if it does not fit. */
3196
3197static bfd_boolean
3198xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3199{
3200 uint32 valbuf = value;
3201 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3202 return TRUE;
3203 return FALSE;
3204}
3205
3206
3207/* Assumes: All immeds are constants. Check that all constants fit
3208 into their immeds; return FALSE if not. */
3209
3210static bfd_boolean
3211xg_immeds_fit (const TInsn *insn)
3212{
3213 xtensa_isa isa = xtensa_default_isa;
3214 int i;
3215
3216 int n = insn->ntok;
3217 assert (insn->insn_type == ITYPE_INSN);
3218 for (i = 0; i < n; ++i)
3219 {
3220 const expressionS *expr = &insn->tok[i];
3221 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3222 continue;
3223
3224 switch (expr->X_op)
3225 {
3226 case O_register:
3227 case O_constant:
3228 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3229 return FALSE;
3230 break;
3231
3232 default:
3233 /* The symbol should have a fixup associated with it. */
3234 assert (FALSE);
3235 break;
3236 }
3237 }
3238 return TRUE;
3239}
3240
3241
3242/* This should only be called after we have an initial
3243 estimate of the addresses. */
3244
3245static bfd_boolean
3246xg_symbolic_immeds_fit (const TInsn *insn,
3247 segT pc_seg,
3248 fragS *pc_frag,
3249 offsetT pc_offset,
3250 long stretch)
e0001a05 3251{
7fa3d080
BW
3252 xtensa_isa isa = xtensa_default_isa;
3253 symbolS *symbolP;
3254 fragS *sym_frag;
3255 offsetT target, pc;
3256 uint32 new_offset;
3257 int i;
3258 int n = insn->ntok;
e0001a05
NC
3259
3260 assert (insn->insn_type == ITYPE_INSN);
e0001a05 3261
7fa3d080 3262 for (i = 0; i < n; ++i)
e0001a05 3263 {
7fa3d080
BW
3264 const expressionS *expr = &insn->tok[i];
3265 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3266 continue;
e0001a05 3267
7fa3d080 3268 switch (expr->X_op)
e0001a05 3269 {
7fa3d080
BW
3270 case O_register:
3271 case O_constant:
3272 if (xg_check_operand (expr->X_add_number, insn->opcode, i))
3273 return FALSE;
3274 break;
e0001a05 3275
7fa3d080
BW
3276 case O_lo16:
3277 case O_hi16:
3278 /* Check for the worst case. */
3279 if (xg_check_operand (0xffff, insn->opcode, i))
3280 return FALSE;
3281 break;
e0001a05 3282
7fa3d080 3283 case O_symbol:
7c834684 3284 /* We only allow symbols for PC-relative references.
7fa3d080 3285 If pc_frag == 0, then we don't have frag locations yet. */
7c834684
BW
3286 if (pc_frag == 0
3287 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
7fa3d080 3288 return FALSE;
e0001a05 3289
7c834684
BW
3290 /* If it is a weak symbol, then assume it won't reach. */
3291 if (S_IS_WEAK (expr->X_add_symbol))
7fa3d080 3292 return FALSE;
e0001a05 3293
7c834684
BW
3294 if (is_direct_call_opcode (insn->opcode)
3295 && ! pc_frag->tc_frag_data.use_longcalls)
3296 {
3297 /* If callee is undefined or in a different segment, be
3298 optimistic and assume it will be in range. */
3299 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
3300 return TRUE;
3301 }
3302
3303 /* Only references within a segment can be known to fit in the
3304 operands at assembly time. */
3305 if (S_GET_SEGMENT (expr->X_add_symbol) != pc_seg)
7fa3d080 3306 return FALSE;
e0001a05 3307
7fa3d080
BW
3308 symbolP = expr->X_add_symbol;
3309 sym_frag = symbol_get_frag (symbolP);
3310 target = S_GET_VALUE (symbolP) + expr->X_add_number;
3311 pc = pc_frag->fr_address + pc_offset;
e0001a05 3312
7fa3d080
BW
3313 /* If frag has yet to be reached on this pass, assume it
3314 will move by STRETCH just as we did. If this is not so,
3315 it will be because some frag between grows, and that will
3316 force another pass. Beware zero-length frags. There
3317 should be a faster way to do this. */
3318
3319 if (stretch != 0
3320 && sym_frag->relax_marker != pc_frag->relax_marker
3321 && S_GET_SEGMENT (symbolP) == pc_seg)
3322 {
3323 target += stretch;
3324 }
c138bc38 3325
7fa3d080
BW
3326 new_offset = target;
3327 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3328 if (xg_check_operand (new_offset, insn->opcode, i))
3329 return FALSE;
3330 break;
3331
3332 default:
3333 /* The symbol should have a fixup associated with it. */
3334 return FALSE;
3335 }
3336 }
3337
3338 return TRUE;
e0001a05
NC
3339}
3340
3341
43cd72b9 3342/* Return TRUE on success. */
e0001a05 3343
7fa3d080
BW
3344static bfd_boolean
3345xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
e0001a05
NC
3346{
3347 BuildOp *op;
3348 symbolS *sym;
3349
3350 memset (targ, 0, sizeof (TInsn));
43cd72b9 3351 targ->loc = insn->loc;
e0001a05
NC
3352 switch (bi->typ)
3353 {
3354 case INSTR_INSTR:
3355 op = bi->ops;
3356 targ->opcode = bi->opcode;
3357 targ->insn_type = ITYPE_INSN;
3358 targ->is_specific_opcode = FALSE;
3359
3360 for (; op != NULL; op = op->next)
3361 {
3362 int op_num = op->op_num;
3363 int op_data = op->op_data;
3364
3365 assert (op->op_num < MAX_INSN_ARGS);
3366
3367 if (targ->ntok <= op_num)
3368 targ->ntok = op_num + 1;
3369
3370 switch (op->typ)
3371 {
3372 case OP_CONSTANT:
3373 set_expr_const (&targ->tok[op_num], op_data);
3374 break;
3375 case OP_OPERAND:
3376 assert (op_data < insn->ntok);
3377 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3378 break;
3379 case OP_LITERAL:
3380 sym = get_special_literal_symbol ();
3381 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3382 break;
3383 case OP_LABEL:
3384 sym = get_special_label_symbol ();
3385 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3386 break;
43cd72b9
BW
3387 case OP_OPERAND_HI16U:
3388 case OP_OPERAND_LOW16U:
3389 assert (op_data < insn->ntok);
3390 if (expr_is_const (&insn->tok[op_data]))
3391 {
3392 long val;
3393 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3394 val = xg_apply_userdef_op_fn (op->typ,
3395 targ->tok[op_num].
3396 X_add_number);
3397 targ->tok[op_num].X_add_number = val;
3398 }
3399 else
3400 {
3401 /* For const16 we can create relocations for these. */
3402 if (targ->opcode == XTENSA_UNDEFINED
3403 || (targ->opcode != xtensa_const16_opcode))
3404 return FALSE;
3405 assert (op_data < insn->ntok);
3406 /* Need to build a O_lo16 or O_hi16. */
3407 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3408 if (targ->tok[op_num].X_op == O_symbol)
3409 {
3410 if (op->typ == OP_OPERAND_HI16U)
3411 targ->tok[op_num].X_op = O_hi16;
3412 else if (op->typ == OP_OPERAND_LOW16U)
3413 targ->tok[op_num].X_op = O_lo16;
3414 else
3415 return FALSE;
3416 }
3417 }
3418 break;
e0001a05
NC
3419 default:
3420 /* currently handles:
3421 OP_OPERAND_LOW8
3422 OP_OPERAND_HI24S
3423 OP_OPERAND_F32MINUS */
3424 if (xg_has_userdef_op_fn (op->typ))
3425 {
3426 assert (op_data < insn->ntok);
3427 if (expr_is_const (&insn->tok[op_data]))
3428 {
3429 long val;
3430 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3431 val = xg_apply_userdef_op_fn (op->typ,
3432 targ->tok[op_num].
3433 X_add_number);
3434 targ->tok[op_num].X_add_number = val;
3435 }
3436 else
3437 return FALSE; /* We cannot use a relocation for this. */
3438 break;
3439 }
3440 assert (0);
3441 break;
3442 }
3443 }
3444 break;
3445
3446 case INSTR_LITERAL_DEF:
3447 op = bi->ops;
3448 targ->opcode = XTENSA_UNDEFINED;
3449 targ->insn_type = ITYPE_LITERAL;
3450 targ->is_specific_opcode = FALSE;
3451 for (; op != NULL; op = op->next)
3452 {
3453 int op_num = op->op_num;
3454 int op_data = op->op_data;
3455 assert (op->op_num < MAX_INSN_ARGS);
3456
3457 if (targ->ntok <= op_num)
3458 targ->ntok = op_num + 1;
3459
3460 switch (op->typ)
3461 {
3462 case OP_OPERAND:
3463 assert (op_data < insn->ntok);
43cd72b9
BW
3464 /* We can only pass resolvable literals through. */
3465 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3466 return FALSE;
e0001a05
NC
3467 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3468 break;
3469 case OP_LITERAL:
3470 case OP_CONSTANT:
3471 case OP_LABEL:
3472 default:
3473 assert (0);
3474 break;
3475 }
3476 }
3477 break;
3478
3479 case INSTR_LABEL_DEF:
3480 op = bi->ops;
3481 targ->opcode = XTENSA_UNDEFINED;
3482 targ->insn_type = ITYPE_LABEL;
3483 targ->is_specific_opcode = FALSE;
43cd72b9 3484 /* Literal with no ops is a label? */
e0001a05
NC
3485 assert (op == NULL);
3486 break;
3487
3488 default:
3489 assert (0);
3490 }
3491
3492 return TRUE;
3493}
3494
3495
43cd72b9 3496/* Return TRUE on success. */
e0001a05 3497
7fa3d080
BW
3498static bfd_boolean
3499xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
e0001a05
NC
3500{
3501 for (; bi != NULL; bi = bi->next)
3502 {
3503 TInsn *next_insn = istack_push_space (istack);
3504
3505 if (!xg_build_to_insn (next_insn, insn, bi))
3506 return FALSE;
3507 }
3508 return TRUE;
3509}
3510
3511
43cd72b9 3512/* Return TRUE on valid expansion. */
e0001a05 3513
7fa3d080
BW
3514static bfd_boolean
3515xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
e0001a05
NC
3516{
3517 int stack_size = istack->ninsn;
3518 int steps_taken = 0;
43cd72b9 3519 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
e0001a05
NC
3520 TransitionList *l;
3521
3522 assert (insn->insn_type == ITYPE_INSN);
3523 assert (insn->opcode < table->num_opcodes);
3524
3525 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3526 {
3527 TransitionRule *rule = l->rule;
3528
3529 if (xg_instruction_matches_rule (insn, rule))
3530 {
3531 if (lateral_steps == steps_taken)
3532 {
3533 int i;
3534
3535 /* This is it. Expand the rule to the stack. */
3536 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3537 return FALSE;
3538
3539 /* Check to see if it fits. */
3540 for (i = stack_size; i < istack->ninsn; i++)
3541 {
3542 TInsn *insn = &istack->insn[i];
3543
3544 if (insn->insn_type == ITYPE_INSN
3545 && !tinsn_has_symbolic_operands (insn)
3546 && !xg_immeds_fit (insn))
3547 {
3548 istack->ninsn = stack_size;
3549 return FALSE;
3550 }
3551 }
3552 return TRUE;
3553 }
3554 steps_taken++;
3555 }
3556 }
3557 return FALSE;
3558}
3559
43cd72b9 3560\f
43cd72b9
BW
3561/* Relax the assembly instruction at least "min_steps".
3562 Return the number of steps taken. */
e0001a05 3563
7fa3d080
BW
3564static int
3565xg_assembly_relax (IStack *istack,
3566 TInsn *insn,
3567 segT pc_seg,
3568 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3569 offsetT pc_offset, /* offset in fragment */
3570 int min_steps, /* minimum conversion steps */
3571 long stretch) /* number of bytes stretched so far */
e0001a05
NC
3572{
3573 int steps_taken = 0;
3574
3575 /* assert (has no symbolic operands)
3576 Some of its immeds don't fit.
3577 Try to build a relaxed version.
3578 This may go through a couple of stages
3579 of single instruction transformations before
3580 we get there. */
3581
3582 TInsn single_target;
3583 TInsn current_insn;
3584 int lateral_steps = 0;
3585 int istack_size = istack->ninsn;
3586
3587 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3588 && steps_taken >= min_steps)
3589 {
3590 istack_push (istack, insn);
3591 return steps_taken;
3592 }
43cd72b9 3593 current_insn = *insn;
e0001a05 3594
7c834684 3595 /* Walk through all of the single instruction expansions. */
84b08ed9 3596 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
e0001a05 3597 {
e0001a05
NC
3598 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3599 stretch))
3600 {
3601 steps_taken++;
3602 if (steps_taken >= min_steps)
3603 {
3604 istack_push (istack, &single_target);
3605 return steps_taken;
3606 }
3607 }
43cd72b9 3608 current_insn = single_target;
e0001a05
NC
3609 }
3610
3611 /* Now check for a multi-instruction expansion. */
3612 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3613 {
3614 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3615 stretch))
3616 {
3617 if (steps_taken >= min_steps)
3618 {
3619 istack_push (istack, &current_insn);
3620 return steps_taken;
3621 }
3622 }
3623 steps_taken++;
3624 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3625 {
3626 if (steps_taken >= min_steps)
3627 return steps_taken;
3628 }
3629 lateral_steps++;
3630 istack->ninsn = istack_size;
3631 }
3632
3633 /* It's not going to work -- use the original. */
3634 istack_push (istack, insn);
3635 return steps_taken;
3636}
3637
3638
3639static void
7fa3d080 3640xg_force_frag_space (int size)
e0001a05
NC
3641{
3642 /* This may have the side effect of creating a new fragment for the
3643 space to go into. I just do not like the name of the "frag"
3644 functions. */
3645 frag_grow (size);
3646}
3647
3648
7fa3d080
BW
3649static void
3650xg_finish_frag (char *last_insn,
3651 enum xtensa_relax_statesE frag_state,
3652 enum xtensa_relax_statesE slot0_state,
3653 int max_growth,
3654 bfd_boolean is_insn)
e0001a05
NC
3655{
3656 /* Finish off this fragment so that it has at LEAST the desired
3657 max_growth. If it doesn't fit in this fragment, close this one
3658 and start a new one. In either case, return a pointer to the
3659 beginning of the growth area. */
3660
3661 fragS *old_frag;
43cd72b9 3662
e0001a05
NC
3663 xg_force_frag_space (max_growth);
3664
3665 old_frag = frag_now;
3666
3667 frag_now->fr_opcode = last_insn;
3668 if (is_insn)
3669 frag_now->tc_frag_data.is_insn = TRUE;
3670
3671 frag_var (rs_machine_dependent, max_growth, max_growth,
43cd72b9
BW
3672 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3673
3674 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3675 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
3676
3677 /* Just to make sure that we did not split it up. */
3678 assert (old_frag->fr_next == frag_now);
3679}
3680
3681
7fa3d080
BW
3682/* Return TRUE if the target frag is one of the next non-empty frags. */
3683
3684static bfd_boolean
3685is_next_frag_target (const fragS *fragP, const fragS *target)
3686{
3687 if (fragP == NULL)
3688 return FALSE;
3689
3690 for (; fragP; fragP = fragP->fr_next)
3691 {
3692 if (fragP == target)
3693 return TRUE;
3694 if (fragP->fr_fix != 0)
3695 return FALSE;
3696 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3697 return FALSE;
3698 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3699 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3700 return FALSE;
3701 if (fragP->fr_type == rs_space)
3702 return FALSE;
3703 }
3704 return FALSE;
3705}
3706
3707
e0001a05 3708static bfd_boolean
7fa3d080 3709is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
e0001a05
NC
3710{
3711 xtensa_isa isa = xtensa_default_isa;
3712 int i;
43cd72b9 3713 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
e0001a05
NC
3714 int target_op = -1;
3715 symbolS *sym;
3716 fragS *target_frag;
3717
43cd72b9
BW
3718 if (xtensa_opcode_is_branch (isa, insn->opcode) == 0
3719 && xtensa_opcode_is_jump (isa, insn->opcode) == 0)
e0001a05
NC
3720 return FALSE;
3721
3722 for (i = 0; i < num_ops; i++)
3723 {
43cd72b9 3724 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
e0001a05
NC
3725 {
3726 target_op = i;
3727 break;
3728 }
3729 }
3730 if (target_op == -1)
3731 return FALSE;
3732
3733 if (insn->ntok <= target_op)
3734 return FALSE;
3735
3736 if (insn->tok[target_op].X_op != O_symbol)
3737 return FALSE;
3738
3739 sym = insn->tok[target_op].X_add_symbol;
3740 if (sym == NULL)
3741 return FALSE;
3742
3743 if (insn->tok[target_op].X_add_number != 0)
3744 return FALSE;
3745
3746 target_frag = symbol_get_frag (sym);
3747 if (target_frag == NULL)
3748 return FALSE;
3749
c138bc38 3750 if (is_next_frag_target (fragP->fr_next, target_frag)
e0001a05
NC
3751 && S_GET_VALUE (sym) == target_frag->fr_address)
3752 return TRUE;
3753
3754 return FALSE;
3755}
3756
3757
3758static void
7fa3d080 3759xg_add_branch_and_loop_targets (TInsn *insn)
e0001a05
NC
3760{
3761 xtensa_isa isa = xtensa_default_isa;
7fa3d080 3762 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
43cd72b9 3763
7fa3d080
BW
3764 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3765 {
3766 int i = 1;
3767 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3768 && insn->tok[i].X_op == O_symbol)
3769 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3770 return;
3771 }
e0001a05 3772
7fa3d080
BW
3773 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3774 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
e0001a05 3775 {
7fa3d080
BW
3776 int i;
3777
3778 for (i = 0; i < insn->ntok && i < num_ops; i++)
3779 {
3780 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3781 && insn->tok[i].X_op == O_symbol)
3782 {
3783 symbolS *sym = insn->tok[i].X_add_symbol;
3784 symbol_get_tc (sym)->is_branch_target = TRUE;
3785 if (S_IS_DEFINED (sym))
3786 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3787 }
3788 }
e0001a05 3789 }
e0001a05
NC
3790}
3791
3792
43cd72b9 3793/* Return FALSE if no error. */
e0001a05 3794
7fa3d080
BW
3795static bfd_boolean
3796xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
e0001a05
NC
3797{
3798 int num_ops = 0;
3799 BuildOp *b_op;
3800
3801 switch (instr_spec->typ)
3802 {
3803 case INSTR_INSTR:
3804 new_insn->insn_type = ITYPE_INSN;
3805 new_insn->opcode = instr_spec->opcode;
3806 new_insn->is_specific_opcode = FALSE;
43cd72b9 3807 new_insn->loc = old_insn->loc;
e0001a05
NC
3808 break;
3809 case INSTR_LITERAL_DEF:
3810 new_insn->insn_type = ITYPE_LITERAL;
3811 new_insn->opcode = XTENSA_UNDEFINED;
3812 new_insn->is_specific_opcode = FALSE;
43cd72b9 3813 new_insn->loc = old_insn->loc;
e0001a05
NC
3814 break;
3815 case INSTR_LABEL_DEF:
3816 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3817 break;
3818 }
3819
3820 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3821 {
3822 expressionS *exp;
3823 const expressionS *src_exp;
3824
3825 num_ops++;
3826 switch (b_op->typ)
3827 {
3828 case OP_CONSTANT:
3829 /* The expression must be the constant. */
3830 assert (b_op->op_num < MAX_INSN_ARGS);
3831 exp = &new_insn->tok[b_op->op_num];
3832 set_expr_const (exp, b_op->op_data);
3833 break;
3834
3835 case OP_OPERAND:
3836 assert (b_op->op_num < MAX_INSN_ARGS);
3837 assert (b_op->op_data < (unsigned) old_insn->ntok);
3838 src_exp = &old_insn->tok[b_op->op_data];
3839 exp = &new_insn->tok[b_op->op_num];
3840 copy_expr (exp, src_exp);
3841 break;
3842
3843 case OP_LITERAL:
3844 case OP_LABEL:
3845 as_bad (_("can't handle generation of literal/labels yet"));
3846 assert (0);
3847
3848 default:
3849 as_bad (_("can't handle undefined OP TYPE"));
3850 assert (0);
3851 }
3852 }
3853
3854 new_insn->ntok = num_ops;
3855 return FALSE;
3856}
3857
3858
43cd72b9 3859/* Return TRUE if it was simplified. */
e0001a05 3860
7fa3d080
BW
3861static bfd_boolean
3862xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
e0001a05 3863{
43cd72b9 3864 TransitionRule *rule;
e0001a05 3865 BuildInstr *insn_spec;
43cd72b9
BW
3866
3867 if (old_insn->is_specific_opcode || !density_supported)
3868 return FALSE;
3869
3870 rule = xg_instruction_match (old_insn);
e0001a05
NC
3871 if (rule == NULL)
3872 return FALSE;
3873
3874 insn_spec = rule->to_instr;
3875 /* There should only be one. */
3876 assert (insn_spec != NULL);
3877 assert (insn_spec->next == NULL);
3878 if (insn_spec->next != NULL)
3879 return FALSE;
3880
3881 xg_build_token_insn (insn_spec, old_insn, new_insn);
3882
3883 return TRUE;
3884}
3885
3886
3887/* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3888 l32i.n. (2) Check the number of operands. (3) Place the instruction
7c834684
BW
3889 tokens into the stack or relax it and place multiple
3890 instructions/literals onto the stack. Return FALSE if no error. */
e0001a05
NC
3891
3892static bfd_boolean
7fa3d080 3893xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
e0001a05
NC
3894{
3895 int noperands;
3896 TInsn new_insn;
7c834684
BW
3897 bfd_boolean do_expand;
3898
e0001a05
NC
3899 memset (&new_insn, 0, sizeof (TInsn));
3900
43cd72b9
BW
3901 /* Narrow it if we can. xg_simplify_insn now does all the
3902 appropriate checking (e.g., for the density option). */
3903 if (xg_simplify_insn (orig_insn, &new_insn))
3904 orig_insn = &new_insn;
e0001a05 3905
43cd72b9
BW
3906 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
3907 orig_insn->opcode);
e0001a05
NC
3908 if (orig_insn->ntok < noperands)
3909 {
3910 as_bad (_("found %d operands for '%s': Expected %d"),
3911 orig_insn->ntok,
3912 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3913 noperands);
3914 return TRUE;
3915 }
3916 if (orig_insn->ntok > noperands)
3917 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3918 orig_insn->ntok,
3919 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
3920 noperands);
3921
43cd72b9 3922 /* If there are not enough operands, we will assert above. If there
e0001a05 3923 are too many, just cut out the extras here. */
e0001a05
NC
3924 orig_insn->ntok = noperands;
3925
e0001a05
NC
3926 if (tinsn_has_invalid_symbolic_operands (orig_insn))
3927 return TRUE;
3928
7c834684
BW
3929 /* If the instruction will definitely need to be relaxed, it is better
3930 to expand it now for better scheduling. Decide whether to expand
3931 now.... */
3932 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
3933
3934 /* Calls should be expanded to longcalls only in the backend relaxation
3935 so that the assembly scheduler will keep the L32R/CALLX instructions
3936 adjacent. */
3937 if (is_direct_call_opcode (orig_insn->opcode))
3938 do_expand = FALSE;
e0001a05
NC
3939
3940 if (tinsn_has_symbolic_operands (orig_insn))
3941 {
7c834684
BW
3942 /* The values of symbolic operands are not known yet, so only expand
3943 now if an operand is "complex" (e.g., difference of symbols) and
3944 will have to be stored as a literal regardless of the value. */
3945 if (!tinsn_has_complex_operands (orig_insn))
3946 do_expand = FALSE;
e0001a05 3947 }
7c834684
BW
3948 else if (xg_immeds_fit (orig_insn))
3949 do_expand = FALSE;
3950
3951 if (do_expand)
3952 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
e0001a05 3953 else
7c834684 3954 istack_push (istack, orig_insn);
e0001a05 3955
e0001a05
NC
3956 return FALSE;
3957}
3958
3959
7fa3d080
BW
3960/* Return TRUE if the section flags are marked linkonce
3961 or the name is .gnu.linkonce*. */
3962
3963static bfd_boolean
3964get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
3965{
3966 flagword flags, link_once_flags;
3967
3968 flags = bfd_get_section_flags (abfd, sec);
3969 link_once_flags = (flags & SEC_LINK_ONCE);
3970
3971 /* Flags might not be set yet. */
3972 if (!link_once_flags)
3973 {
3974 static size_t len = sizeof ".gnu.linkonce.t.";
3975
3976 if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0)
3977 link_once_flags = SEC_LINK_ONCE;
3978 }
3979 return (link_once_flags != 0);
3980}
3981
3982
3983static void
3984xtensa_add_literal_sym (symbolS *sym)
3985{
3986 sym_list *l;
3987
3988 l = (sym_list *) xmalloc (sizeof (sym_list));
3989 l->sym = sym;
3990 l->next = literal_syms;
3991 literal_syms = l;
3992}
3993
3994
3995static symbolS *
3996xtensa_create_literal_symbol (segT sec, fragS *frag)
3997{
3998 static int lit_num = 0;
3999 static char name[256];
4000 symbolS *symbolP;
4001
4002 sprintf (name, ".L_lit_sym%d", lit_num);
4003
4004 /* Create a local symbol. If it is in a linkonce section, we have to
4005 be careful to make sure that if it is used in a relocation that the
4006 symbol will be in the output file. */
4007 if (get_is_linkonce_section (stdoutput, sec))
4008 {
4009 symbolP = symbol_new (name, sec, 0, frag);
4010 S_CLEAR_EXTERNAL (symbolP);
4011 /* symbolP->local = 1; */
4012 }
4013 else
4014 symbolP = symbol_new (name, sec, 0, frag);
4015
4016 xtensa_add_literal_sym (symbolP);
4017
4018 frag->tc_frag_data.is_literal = TRUE;
4019 lit_num++;
4020 return symbolP;
4021}
4022
4023
e0001a05
NC
4024/* Currently all literals that are generated here are 32-bit L32R targets. */
4025
7fa3d080
BW
4026static symbolS *
4027xg_assemble_literal (/* const */ TInsn *insn)
e0001a05
NC
4028{
4029 emit_state state;
4030 symbolS *lit_sym = NULL;
4031
4032 /* size = 4 for L32R. It could easily be larger when we move to
4033 larger constants. Add a parameter later. */
4034 offsetT litsize = 4;
4035 offsetT litalign = 2; /* 2^2 = 4 */
4036 expressionS saved_loc;
43cd72b9
BW
4037 expressionS * emit_val;
4038
e0001a05
NC
4039 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4040
4041 assert (insn->insn_type == ITYPE_LITERAL);
77cd6497 4042 assert (insn->ntok == 1); /* must be only one token here */
e0001a05
NC
4043
4044 xtensa_switch_to_literal_fragment (&state);
4045
43cd72b9
BW
4046 emit_val = &insn->tok[0];
4047 if (emit_val->X_op == O_big)
4048 {
4049 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4050 if (size > litsize)
4051 {
4052 /* This happens when someone writes a "movi a2, big_number". */
c138bc38 4053 as_bad_where (frag_now->fr_file, frag_now->fr_line,
43cd72b9
BW
4054 _("invalid immediate"));
4055 xtensa_restore_emit_state (&state);
4056 return NULL;
4057 }
4058 }
4059
e0001a05
NC
4060 /* Force a 4-byte align here. Note that this opens a new frag, so all
4061 literals done with this function have a frag to themselves. That's
4062 important for the way text section literals work. */
4063 frag_align (litalign, 0, 0);
43cd72b9 4064 record_alignment (now_seg, litalign);
e0001a05 4065
43cd72b9
BW
4066 if (emit_val->X_op == O_pltrel)
4067 {
4068 char *p = frag_more (litsize);
4069 xtensa_set_frag_assembly_state (frag_now);
4070 if (emit_val->X_add_symbol)
4071 emit_val->X_op = O_symbol;
4072 else
4073 emit_val->X_op = O_constant;
4074 fix_new_exp (frag_now, p - frag_now->fr_literal,
4075 litsize, emit_val, 0, BFD_RELOC_XTENSA_PLT);
4076 }
4077 else
4078 emit_expr (emit_val, litsize);
e0001a05
NC
4079
4080 assert (frag_now->tc_frag_data.literal_frag == NULL);
4081 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4082 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4083 lit_sym = frag_now->fr_symbol;
4084 frag_now->tc_frag_data.is_literal = TRUE;
4085
4086 /* Go back. */
4087 xtensa_restore_emit_state (&state);
4088 return lit_sym;
4089}
4090
4091
4092static void
7fa3d080 4093xg_assemble_literal_space (/* const */ int size, int slot)
e0001a05
NC
4094{
4095 emit_state state;
43cd72b9 4096 /* We might have to do something about this alignment. It only
e0001a05
NC
4097 takes effect if something is placed here. */
4098 offsetT litalign = 2; /* 2^2 = 4 */
4099 fragS *lit_saved_frag;
4100
e0001a05 4101 assert (size % 4 == 0);
e0001a05
NC
4102
4103 xtensa_switch_to_literal_fragment (&state);
4104
4105 /* Force a 4-byte align here. */
4106 frag_align (litalign, 0, 0);
43cd72b9 4107 record_alignment (now_seg, litalign);
e0001a05
NC
4108
4109 xg_force_frag_space (size);
4110
4111 lit_saved_frag = frag_now;
4112 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4113 frag_now->tc_frag_data.is_literal = TRUE;
4114 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
43cd72b9 4115 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
e0001a05
NC
4116
4117 /* Go back. */
4118 xtensa_restore_emit_state (&state);
43cd72b9 4119 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
e0001a05
NC
4120}
4121
4122
e0001a05 4123/* Put in a fixup record based on the opcode.
43cd72b9 4124 Return TRUE on success. */
e0001a05 4125
7fa3d080
BW
4126static bfd_boolean
4127xg_add_opcode_fix (TInsn *tinsn,
4128 int opnum,
4129 xtensa_format fmt,
4130 int slot,
4131 expressionS *expr,
4132 fragS *fragP,
4133 offsetT offset)
43cd72b9
BW
4134{
4135 xtensa_opcode opcode = tinsn->opcode;
4136 bfd_reloc_code_real_type reloc;
4137 reloc_howto_type *howto;
4138 int fmt_length;
e0001a05
NC
4139 fixS *the_fix;
4140
43cd72b9
BW
4141 reloc = BFD_RELOC_NONE;
4142
4143 /* First try the special cases for "alternate" relocs. */
4144 if (opcode == xtensa_l32r_opcode)
4145 {
4146 if (fragP->tc_frag_data.use_absolute_literals)
4147 reloc = encode_alt_reloc (slot);
4148 }
4149 else if (opcode == xtensa_const16_opcode)
4150 {
4151 if (expr->X_op == O_lo16)
4152 {
4153 reloc = encode_reloc (slot);
4154 expr->X_op = O_symbol;
4155 }
4156 else if (expr->X_op == O_hi16)
4157 {
4158 reloc = encode_alt_reloc (slot);
4159 expr->X_op = O_symbol;
4160 }
4161 }
4162
4163 if (opnum != get_relaxable_immed (opcode))
e0001a05 4164 {
43cd72b9 4165 as_bad (_("invalid relocation for operand %i of '%s'"),
e0001a05
NC
4166 opnum, xtensa_opcode_name (xtensa_default_isa, opcode));
4167 return FALSE;
4168 }
4169
43cd72b9
BW
4170 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4171 into the symbol table where the generic portions of the assembler
4172 won't know what to do with them. */
4173 if (expr->X_op == O_lo16 || expr->X_op == O_hi16)
4174 {
4175 as_bad (_("invalid expression for operand %i of '%s'"),
4176 opnum, xtensa_opcode_name (xtensa_default_isa, opcode));
4177 return FALSE;
4178 }
4179
4180 /* Next try the generic relocs. */
4181 if (reloc == BFD_RELOC_NONE)
4182 reloc = encode_reloc (slot);
4183 if (reloc == BFD_RELOC_NONE)
4184 {
4185 as_bad (_("invalid relocation in instruction slot %i"), slot);
4186 return FALSE;
4187 }
e0001a05 4188
43cd72b9 4189 howto = bfd_reloc_type_lookup (stdoutput, reloc);
e0001a05
NC
4190 if (!howto)
4191 {
43cd72b9 4192 as_bad (_("undefined symbol for opcode \"%s\""),
e0001a05
NC
4193 xtensa_opcode_name (xtensa_default_isa, opcode));
4194 return FALSE;
4195 }
4196
43cd72b9
BW
4197 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4198 the_fix = fix_new_exp (fragP, offset, fmt_length, expr,
e0001a05 4199 howto->pc_relative, reloc);
d9740523 4200 the_fix->fx_no_overflow = 1;
e0001a05 4201
7fa3d080
BW
4202 if (expr->X_add_symbol
4203 && (S_IS_EXTERNAL (expr->X_add_symbol)
4204 || S_IS_WEAK (expr->X_add_symbol)))
4205 the_fix->fx_plt = TRUE;
4206
4207 the_fix->tc_fix_data.X_add_symbol = expr->X_add_symbol;
4208 the_fix->tc_fix_data.X_add_number = expr->X_add_number;
4209 the_fix->tc_fix_data.slot = slot;
c138bc38 4210
7fa3d080
BW
4211 return TRUE;
4212}
4213
4214
4215static bfd_boolean
4216xg_emit_insn_to_buf (TInsn *tinsn,
4217 xtensa_format fmt,
4218 char *buf,
4219 fragS *fragP,
4220 offsetT offset,
4221 bfd_boolean build_fix)
4222{
4223 static xtensa_insnbuf insnbuf = NULL;
4224 bfd_boolean has_symbolic_immed = FALSE;
4225 bfd_boolean ok = TRUE;
4226 if (!insnbuf)
4227 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4228
4229 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4230 if (has_symbolic_immed && build_fix)
4231 {
4232 /* Add a fixup. */
4233 int opnum = get_relaxable_immed (tinsn->opcode);
4234 expressionS *exp = &tinsn->tok[opnum];
43cd72b9 4235
7fa3d080
BW
4236 if (!xg_add_opcode_fix (tinsn, opnum, fmt, 0, exp, fragP, offset))
4237 ok = FALSE;
4238 }
4239 fragP->tc_frag_data.is_insn = TRUE;
d77b99c9
BW
4240 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4241 (unsigned char *) buf, 0);
7fa3d080 4242 return ok;
e0001a05
NC
4243}
4244
4245
7fa3d080
BW
4246static void
4247xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
e0001a05
NC
4248{
4249 symbolS *sym = get_special_literal_symbol ();
4250 int i;
4251 if (lit_sym == 0)
4252 return;
4253 assert (insn->insn_type == ITYPE_INSN);
4254 for (i = 0; i < insn->ntok; i++)
4255 if (insn->tok[i].X_add_symbol == sym)
4256 insn->tok[i].X_add_symbol = lit_sym;
4257
4258}
4259
4260
7fa3d080
BW
4261static void
4262xg_resolve_labels (TInsn *insn, symbolS *label_sym)
e0001a05
NC
4263{
4264 symbolS *sym = get_special_label_symbol ();
4265 int i;
43cd72b9 4266 /* assert (!insn->is_literal); */
e0001a05
NC
4267 for (i = 0; i < insn->ntok; i++)
4268 if (insn->tok[i].X_add_symbol == sym)
4269 insn->tok[i].X_add_symbol = label_sym;
4270
4271}
4272
4273
43cd72b9 4274/* Return TRUE if the instruction can write to the specified
e0001a05
NC
4275 integer register. */
4276
4277static bfd_boolean
7fa3d080 4278is_register_writer (const TInsn *insn, const char *regset, int regnum)
e0001a05
NC
4279{
4280 int i;
4281 int num_ops;
4282 xtensa_isa isa = xtensa_default_isa;
4283
43cd72b9 4284 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
e0001a05
NC
4285
4286 for (i = 0; i < num_ops; i++)
4287 {
43cd72b9
BW
4288 char inout;
4289 inout = xtensa_operand_inout (isa, insn->opcode, i);
4290 if ((inout == 'o' || inout == 'm')
4291 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
e0001a05 4292 {
43cd72b9
BW
4293 xtensa_regfile opnd_rf =
4294 xtensa_operand_regfile (isa, insn->opcode, i);
4295 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
e0001a05
NC
4296 {
4297 if ((insn->tok[i].X_op == O_register)
4298 && (insn->tok[i].X_add_number == regnum))
4299 return TRUE;
4300 }
4301 }
4302 }
4303 return FALSE;
4304}
4305
4306
4307static bfd_boolean
7fa3d080 4308is_bad_loopend_opcode (const TInsn *tinsn)
e0001a05
NC
4309{
4310 xtensa_opcode opcode = tinsn->opcode;
4311
4312 if (opcode == XTENSA_UNDEFINED)
4313 return FALSE;
4314
4315 if (opcode == xtensa_call0_opcode
4316 || opcode == xtensa_callx0_opcode
4317 || opcode == xtensa_call4_opcode
4318 || opcode == xtensa_callx4_opcode
4319 || opcode == xtensa_call8_opcode
4320 || opcode == xtensa_callx8_opcode
4321 || opcode == xtensa_call12_opcode
4322 || opcode == xtensa_callx12_opcode
4323 || opcode == xtensa_isync_opcode
4324 || opcode == xtensa_ret_opcode
4325 || opcode == xtensa_ret_n_opcode
4326 || opcode == xtensa_retw_opcode
4327 || opcode == xtensa_retw_n_opcode
43cd72b9
BW
4328 || opcode == xtensa_waiti_opcode
4329 || opcode == xtensa_rsr_lcount_opcode)
e0001a05 4330 return TRUE;
c138bc38 4331
e0001a05
NC
4332 return FALSE;
4333}
4334
4335
4336/* Labels that begin with ".Ln" or ".LM" are unaligned.
4337 This allows the debugger to add unaligned labels.
4338 Also, the assembler generates stabs labels that need
4339 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4340
7fa3d080
BW
4341static bfd_boolean
4342is_unaligned_label (symbolS *sym)
e0001a05
NC
4343{
4344 const char *name = S_GET_NAME (sym);
4345 static size_t fake_size = 0;
4346
4347 if (name
4348 && name[0] == '.'
4349 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4350 return TRUE;
4351
4352 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4353 if (fake_size == 0)
4354 fake_size = strlen (FAKE_LABEL_NAME);
4355
43cd72b9 4356 if (name
e0001a05
NC
4357 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4358 && (name[fake_size] == 'F'
4359 || name[fake_size] == 'L'
4360 || (name[fake_size] == 'e'
4361 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4362 return TRUE;
4363
4364 return FALSE;
4365}
4366
4367
7fa3d080
BW
4368static fragS *
4369next_non_empty_frag (const fragS *fragP)
e0001a05
NC
4370{
4371 fragS *next_fragP = fragP->fr_next;
4372
c138bc38 4373 /* Sometimes an empty will end up here due storage allocation issues.
e0001a05
NC
4374 So we have to skip until we find something legit. */
4375 while (next_fragP && next_fragP->fr_fix == 0)
4376 next_fragP = next_fragP->fr_next;
4377
4378 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4379 return NULL;
4380
4381 return next_fragP;
4382}
4383
4384
43cd72b9 4385static bfd_boolean
7fa3d080 4386next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
43cd72b9
BW
4387{
4388 xtensa_opcode out_opcode;
4389 const fragS *next_fragP = next_non_empty_frag (fragP);
4390
4391 if (next_fragP == NULL)
4392 return FALSE;
4393
4394 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4395 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4396 {
4397 *opcode = out_opcode;
4398 return TRUE;
4399 }
4400 return FALSE;
4401}
4402
4403
4404static int
7fa3d080 4405frag_format_size (const fragS *fragP)
43cd72b9 4406{
e0001a05
NC
4407 static xtensa_insnbuf insnbuf = NULL;
4408 xtensa_isa isa = xtensa_default_isa;
43cd72b9 4409 xtensa_format fmt;
c138bc38 4410 int fmt_size;
e0001a05
NC
4411
4412 if (!insnbuf)
4413 insnbuf = xtensa_insnbuf_alloc (isa);
4414
43cd72b9
BW
4415 if (fragP == NULL)
4416 return XTENSA_UNDEFINED;
4417
d77b99c9
BW
4418 xtensa_insnbuf_from_chars (isa, insnbuf,
4419 (unsigned char *) fragP->fr_literal, 0);
43cd72b9
BW
4420
4421 fmt = xtensa_format_decode (isa, insnbuf);
4422 if (fmt == XTENSA_UNDEFINED)
e0001a05 4423 return XTENSA_UNDEFINED;
43cd72b9
BW
4424 fmt_size = xtensa_format_length (isa, fmt);
4425
4426 /* If the next format won't be changing due to relaxation, just
4427 return the length of the first format. */
4428 if (fragP->fr_opcode != fragP->fr_literal)
4429 return fmt_size;
4430
c138bc38 4431 /* If during relaxation we have to pull an instruction out of a
43cd72b9
BW
4432 multi-slot instruction, we will return the more conservative
4433 number. This works because alignment on bigger instructions
4434 is more restrictive than alignment on smaller instructions.
4435 This is more conservative than we would like, but it happens
4436 infrequently. */
4437
4438 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4439 return fmt_size;
4440
4441 /* If we aren't doing one of our own relaxations or it isn't
4442 slot-based, then the insn size won't change. */
4443 if (fragP->fr_type != rs_machine_dependent)
4444 return fmt_size;
4445 if (fragP->fr_subtype != RELAX_SLOTS)
4446 return fmt_size;
4447
4448 /* If an instruction is about to grow, return the longer size. */
4449 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4450 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2)
4451 return 3;
c138bc38 4452
43cd72b9
BW
4453 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4454 return 2 + fragP->tc_frag_data.text_expansion[0];
e0001a05 4455
43cd72b9 4456 return fmt_size;
e0001a05
NC
4457}
4458
4459
7fa3d080
BW
4460static int
4461next_frag_format_size (const fragS *fragP)
e0001a05 4462{
7fa3d080
BW
4463 const fragS *next_fragP = next_non_empty_frag (fragP);
4464 return frag_format_size (next_fragP);
e0001a05
NC
4465}
4466
4467
4468/* If the next legit fragment is an end-of-loop marker,
4469 switch its state so it will instantiate a NOP. */
4470
4471static void
1d19a770 4472update_next_frag_state (fragS *fragP)
e0001a05
NC
4473{
4474 fragS *next_fragP = fragP->fr_next;
43cd72b9 4475 fragS *new_target = NULL;
e0001a05 4476
7b1cc377 4477 if (align_targets)
43cd72b9
BW
4478 {
4479 /* We are guaranteed there will be one of these... */
4480 while (!(next_fragP->fr_type == rs_machine_dependent
4481 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4482 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4483 next_fragP = next_fragP->fr_next;
4484
4485 assert (next_fragP->fr_type == rs_machine_dependent
4486 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4487 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4488
4489 /* ...and one of these. */
4490 new_target = next_fragP->fr_next;
4491 while (!(new_target->fr_type == rs_machine_dependent
4492 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4493 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4494 new_target = new_target->fr_next;
4495
4496 assert (new_target->fr_type == rs_machine_dependent
4497 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4498 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4499 }
43cd72b9 4500
1d19a770 4501 while (next_fragP && next_fragP->fr_fix == 0)
43cd72b9 4502 {
1d19a770
BW
4503 if (next_fragP->fr_type == rs_machine_dependent
4504 && next_fragP->fr_subtype == RELAX_LOOP_END)
43cd72b9 4505 {
1d19a770
BW
4506 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4507 return;
e0001a05 4508 }
1d19a770
BW
4509
4510 next_fragP = next_fragP->fr_next;
e0001a05
NC
4511 }
4512}
4513
4514
4515static bfd_boolean
7fa3d080 4516next_frag_is_branch_target (const fragS *fragP)
e0001a05 4517{
43cd72b9 4518 /* Sometimes an empty will end up here due to storage allocation issues,
e0001a05
NC
4519 so we have to skip until we find something legit. */
4520 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4521 {
4522 if (fragP->tc_frag_data.is_branch_target)
4523 return TRUE;
4524 if (fragP->fr_fix != 0)
4525 break;
4526 }
4527 return FALSE;
4528}
4529
4530
4531static bfd_boolean
7fa3d080 4532next_frag_is_loop_target (const fragS *fragP)
e0001a05 4533{
c138bc38 4534 /* Sometimes an empty will end up here due storage allocation issues.
e0001a05
NC
4535 So we have to skip until we find something legit. */
4536 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4537 {
4538 if (fragP->tc_frag_data.is_loop_target)
4539 return TRUE;
4540 if (fragP->fr_fix != 0)
4541 break;
4542 }
4543 return FALSE;
4544}
4545
4546
4547static addressT
7fa3d080 4548next_frag_pre_opcode_bytes (const fragS *fragp)
e0001a05
NC
4549{
4550 const fragS *next_fragp = fragp->fr_next;
43cd72b9 4551 xtensa_opcode next_opcode;
e0001a05 4552
43cd72b9 4553 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
e0001a05
NC
4554 return 0;
4555
43cd72b9
BW
4556 /* Sometimes an empty will end up here due to storage allocation issues,
4557 so we have to skip until we find something legit. */
e0001a05
NC
4558 while (next_fragp->fr_fix == 0)
4559 next_fragp = next_fragp->fr_next;
4560
4561 if (next_fragp->fr_type != rs_machine_dependent)
4562 return 0;
4563
4564 /* There is some implicit knowledge encoded in here.
4565 The LOOP instructions that are NOT RELAX_IMMED have
43cd72b9
BW
4566 been relaxed. Note that we can assume that the LOOP
4567 instruction is in slot 0 because loops aren't bundleable. */
4568 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
e0001a05
NC
4569 return get_expanded_loop_offset (next_opcode);
4570
4571 return 0;
4572}
4573
4574
4575/* Mark a location where we can later insert literal frags. Update
4576 the section's literal_pool_loc, so subsequent literals can be
4577 placed nearest to their use. */
4578
4579static void
7fa3d080 4580xtensa_mark_literal_pool_location (void)
e0001a05
NC
4581{
4582 /* Any labels pointing to the current location need
4583 to be adjusted to after the literal pool. */
4584 emit_state s;
e0001a05 4585 fragS *pool_location;
e0001a05 4586
43cd72b9
BW
4587 if (use_literal_section && !directive_state[directive_absolute_literals])
4588 return;
4589
e0001a05 4590 frag_align (2, 0, 0);
43cd72b9 4591 record_alignment (now_seg, 2);
e0001a05 4592
dd49a749
BW
4593 /* We stash info in these frags so we can later move the literal's
4594 fixes into this frchain's fix list. */
e0001a05 4595 pool_location = frag_now;
dd49a749
BW
4596 frag_now->tc_frag_data.lit_frchain = frchain_now;
4597 frag_variant (rs_machine_dependent, 0, 0,
e0001a05 4598 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
43cd72b9 4599 xtensa_set_frag_assembly_state (frag_now);
dd49a749
BW
4600 frag_now->tc_frag_data.lit_seg = now_seg;
4601 frag_variant (rs_machine_dependent, 0, 0,
e0001a05 4602 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
43cd72b9 4603 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4604
4605 /* Now put a frag into the literal pool that points to this location. */
4606 set_literal_pool_location (now_seg, pool_location);
43cd72b9
BW
4607 xtensa_switch_to_non_abs_literal_fragment (&s);
4608 frag_align (2, 0, 0);
4609 record_alignment (now_seg, 2);
e0001a05
NC
4610
4611 /* Close whatever frag is there. */
4612 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 4613 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4614 frag_now->tc_frag_data.literal_frag = pool_location;
4615 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4616 xtensa_restore_emit_state (&s);
43cd72b9 4617 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
4618}
4619
4620
43cd72b9
BW
4621/* Build a nop of the correct size into tinsn. */
4622
4623static void
7fa3d080 4624build_nop (TInsn *tinsn, int size)
43cd72b9
BW
4625{
4626 tinsn_init (tinsn);
4627 switch (size)
4628 {
4629 case 2:
4630 tinsn->opcode = xtensa_nop_n_opcode;
4631 tinsn->ntok = 0;
4632 if (tinsn->opcode == XTENSA_UNDEFINED)
4633 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4634 break;
4635
4636 case 3:
4637 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4638 {
4639 tinsn->opcode = xtensa_or_opcode;
4640 set_expr_const (&tinsn->tok[0], 1);
4641 set_expr_const (&tinsn->tok[1], 1);
4642 set_expr_const (&tinsn->tok[2], 1);
4643 tinsn->ntok = 3;
4644 }
4645 else
4646 tinsn->opcode = xtensa_nop_opcode;
4647
4648 assert (tinsn->opcode != XTENSA_UNDEFINED);
4649 }
4650}
4651
4652
e0001a05
NC
4653/* Assemble a NOP of the requested size in the buffer. User must have
4654 allocated "buf" with at least "size" bytes. */
4655
7fa3d080 4656static void
d77b99c9 4657assemble_nop (int size, char *buf)
e0001a05
NC
4658{
4659 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 4660 TInsn tinsn;
e0001a05 4661
43cd72b9 4662 build_nop (&tinsn, size);
e0001a05 4663
43cd72b9
BW
4664 if (!insnbuf)
4665 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
e0001a05 4666
43cd72b9 4667 tinsn_to_insnbuf (&tinsn, insnbuf);
d77b99c9
BW
4668 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4669 (unsigned char *) buf, 0);
e0001a05
NC
4670}
4671
4672
4673/* Return the number of bytes for the offset of the expanded loop
4674 instruction. This should be incorporated into the relaxation
4675 specification but is hard-coded here. This is used to auto-align
4676 the loop instruction. It is invalid to call this function if the
4677 configuration does not have loops or if the opcode is not a loop
4678 opcode. */
4679
4680static addressT
7fa3d080 4681get_expanded_loop_offset (xtensa_opcode opcode)
e0001a05
NC
4682{
4683 /* This is the OFFSET of the loop instruction in the expanded loop.
4684 This MUST correspond directly to the specification of the loop
4685 expansion. It will be validated on fragment conversion. */
43cd72b9 4686 assert (opcode != XTENSA_UNDEFINED);
e0001a05
NC
4687 if (opcode == xtensa_loop_opcode)
4688 return 0;
4689 if (opcode == xtensa_loopnez_opcode)
4690 return 3;
4691 if (opcode == xtensa_loopgtz_opcode)
4692 return 6;
4693 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4694 return 0;
4695}
4696
4697
7fa3d080
BW
4698static fragS *
4699get_literal_pool_location (segT seg)
e0001a05
NC
4700{
4701 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4702}
4703
4704
4705static void
7fa3d080 4706set_literal_pool_location (segT seg, fragS *literal_pool_loc)
e0001a05
NC
4707{
4708 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4709}
4710
43cd72b9
BW
4711
4712/* Set frag assembly state should be called when a new frag is
4713 opened and after a frag has been closed. */
4714
7fa3d080
BW
4715static void
4716xtensa_set_frag_assembly_state (fragS *fragP)
43cd72b9
BW
4717{
4718 if (!density_supported)
4719 fragP->tc_frag_data.is_no_density = TRUE;
4720
4721 /* This function is called from subsegs_finish, which is called
c138bc38 4722 after xtensa_end, so we can't use "use_transform" or
43cd72b9
BW
4723 "use_schedule" here. */
4724 if (!directive_state[directive_transform])
4725 fragP->tc_frag_data.is_no_transform = TRUE;
7c834684
BW
4726 if (directive_state[directive_longcalls])
4727 fragP->tc_frag_data.use_longcalls = TRUE;
43cd72b9
BW
4728 fragP->tc_frag_data.use_absolute_literals =
4729 directive_state[directive_absolute_literals];
4730 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4731}
4732
4733
7fa3d080
BW
4734static bfd_boolean
4735relaxable_section (asection *sec)
43cd72b9
BW
4736{
4737 return (sec->flags & SEC_DEBUGGING) == 0;
4738}
4739
4740
4741static void
7fa3d080 4742xtensa_find_unmarked_state_frags (void)
43cd72b9
BW
4743{
4744 segT *seclist;
4745
4746 /* Walk over each fragment of all of the current segments. For each
4747 unmarked fragment, mark it with the same info as the previous
4748 fragment. */
4749 for (seclist = &stdoutput->sections;
4750 seclist && *seclist;
4751 seclist = &(*seclist)->next)
4752 {
4753 segT sec = *seclist;
4754 segment_info_type *seginfo;
4755 fragS *fragP;
4756 flagword flags;
4757 flags = bfd_get_section_flags (stdoutput, sec);
4758 if (flags & SEC_DEBUGGING)
4759 continue;
4760 if (!(flags & SEC_ALLOC))
4761 continue;
4762
4763 seginfo = seg_info (sec);
4764 if (seginfo && seginfo->frchainP)
4765 {
4766 fragS *last_fragP = 0;
4767 for (fragP = seginfo->frchainP->frch_root; fragP;
4768 fragP = fragP->fr_next)
4769 {
4770 if (fragP->fr_fix != 0
4771 && !fragP->tc_frag_data.is_assembly_state_set)
4772 {
4773 if (last_fragP == 0)
4774 {
4775 as_warn_where (fragP->fr_file, fragP->fr_line,
4776 _("assembly state not set for first frag in section %s"),
4777 sec->name);
4778 }
4779 else
4780 {
4781 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4782 fragP->tc_frag_data.is_no_density =
4783 last_fragP->tc_frag_data.is_no_density;
4784 fragP->tc_frag_data.is_no_transform =
4785 last_fragP->tc_frag_data.is_no_transform;
7c834684
BW
4786 fragP->tc_frag_data.use_longcalls =
4787 last_fragP->tc_frag_data.use_longcalls;
43cd72b9
BW
4788 fragP->tc_frag_data.use_absolute_literals =
4789 last_fragP->tc_frag_data.use_absolute_literals;
4790 }
4791 }
4792 if (fragP->tc_frag_data.is_assembly_state_set)
4793 last_fragP = fragP;
4794 }
4795 }
4796 }
4797}
4798
4799
4800static void
7fa3d080
BW
4801xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
4802 asection *sec,
4803 void *unused ATTRIBUTE_UNUSED)
43cd72b9
BW
4804{
4805 flagword flags = bfd_get_section_flags (abfd, sec);
4806 segment_info_type *seginfo = seg_info (sec);
4807 fragS *frag = seginfo->frchainP->frch_root;
c138bc38 4808
43cd72b9 4809 if (flags & SEC_CODE)
c138bc38 4810 {
43cd72b9
BW
4811 xtensa_isa isa = xtensa_default_isa;
4812 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4813 while (frag != NULL)
4814 {
4815 if (frag->tc_frag_data.is_branch_target)
4816 {
4817 int op_size;
664df4e4 4818 addressT branch_align, frag_addr;
43cd72b9
BW
4819 xtensa_format fmt;
4820
d77b99c9
BW
4821 xtensa_insnbuf_from_chars
4822 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
43cd72b9
BW
4823 fmt = xtensa_format_decode (isa, insnbuf);
4824 op_size = xtensa_format_length (isa, fmt);
664df4e4
BW
4825 branch_align = 1 << branch_align_power (sec);
4826 frag_addr = frag->fr_address % branch_align;
4827 if (frag_addr + op_size > branch_align)
43cd72b9
BW
4828 as_warn_where (frag->fr_file, frag->fr_line,
4829 _("unaligned branch target: %d bytes at 0x%lx"),
dd49a749 4830 op_size, (long) frag->fr_address);
43cd72b9
BW
4831 }
4832 frag = frag->fr_next;
4833 }
4834 xtensa_insnbuf_free (isa, insnbuf);
4835 }
4836}
4837
4838
4839static void
7fa3d080
BW
4840xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
4841 asection *sec,
4842 void *unused ATTRIBUTE_UNUSED)
43cd72b9
BW
4843{
4844 flagword flags = bfd_get_section_flags (abfd, sec);
4845 segment_info_type *seginfo = seg_info (sec);
4846 fragS *frag = seginfo->frchainP->frch_root;
4847 xtensa_isa isa = xtensa_default_isa;
c138bc38 4848
43cd72b9 4849 if (flags & SEC_CODE)
c138bc38 4850 {
43cd72b9
BW
4851 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
4852 while (frag != NULL)
4853 {
4854 if (frag->tc_frag_data.is_first_loop_insn)
4855 {
4856 int op_size;
d77b99c9 4857 addressT frag_addr;
43cd72b9
BW
4858 xtensa_format fmt;
4859
d77b99c9
BW
4860 xtensa_insnbuf_from_chars
4861 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
43cd72b9
BW
4862 fmt = xtensa_format_decode (isa, insnbuf);
4863 op_size = xtensa_format_length (isa, fmt);
4864 frag_addr = frag->fr_address % xtensa_fetch_width;
4865
d77b99c9 4866 if (frag_addr + op_size > xtensa_fetch_width)
43cd72b9
BW
4867 as_warn_where (frag->fr_file, frag->fr_line,
4868 _("unaligned loop: %d bytes at 0x%lx"),
dd49a749 4869 op_size, (long) frag->fr_address);
43cd72b9
BW
4870 }
4871 frag = frag->fr_next;
4872 }
4873 xtensa_insnbuf_free (isa, insnbuf);
4874 }
4875}
4876
4877
30f725a1
BW
4878static int
4879xg_apply_fix_value (fixS *fixP, valueT val)
43cd72b9
BW
4880{
4881 xtensa_isa isa = xtensa_default_isa;
4882 static xtensa_insnbuf insnbuf = NULL;
4883 static xtensa_insnbuf slotbuf = NULL;
4884 xtensa_format fmt;
4885 int slot;
4886 bfd_boolean alt_reloc;
4887 xtensa_opcode opcode;
4888 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
4889
4890 (void) decode_reloc (fixP->fx_r_type, &slot, &alt_reloc);
4891 if (alt_reloc)
4892 as_fatal (_("unexpected fix"));
4893
4894 if (!insnbuf)
4895 {
4896 insnbuf = xtensa_insnbuf_alloc (isa);
4897 slotbuf = xtensa_insnbuf_alloc (isa);
4898 }
4899
d77b99c9 4900 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
43cd72b9
BW
4901 fmt = xtensa_format_decode (isa, insnbuf);
4902 if (fmt == XTENSA_UNDEFINED)
4903 as_fatal (_("undecodable fix"));
4904 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4905 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4906 if (opcode == XTENSA_UNDEFINED)
4907 as_fatal (_("undecodable fix"));
4908
4909 /* CONST16 immediates are not PC-relative, despite the fact that we
4910 reuse the normal PC-relative operand relocations for the low part
30f725a1 4911 of a CONST16 operand. */
43cd72b9 4912 if (opcode == xtensa_const16_opcode)
30f725a1 4913 return 0;
43cd72b9
BW
4914
4915 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
4916 get_relaxable_immed (opcode), val,
4917 fixP->fx_file, fixP->fx_line);
4918
4919 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
d77b99c9 4920 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
30f725a1
BW
4921
4922 return 1;
43cd72b9
BW
4923}
4924
e0001a05
NC
4925\f
4926/* External Functions and Other GAS Hooks. */
4927
4928const char *
7fa3d080 4929xtensa_target_format (void)
e0001a05
NC
4930{
4931 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
4932}
4933
4934
4935void
7fa3d080 4936xtensa_file_arch_init (bfd *abfd)
e0001a05
NC
4937{
4938 bfd_set_private_flags (abfd, 0x100 | 0x200);
4939}
4940
4941
4942void
7fa3d080 4943md_number_to_chars (char *buf, valueT val, int n)
e0001a05
NC
4944{
4945 if (target_big_endian)
4946 number_to_chars_bigendian (buf, val, n);
4947 else
4948 number_to_chars_littleendian (buf, val, n);
4949}
4950
4951
4952/* This function is called once, at assembler startup time. It should
4953 set up all the tables, etc. that the MD part of the assembler will
4954 need. */
4955
4956void
7fa3d080 4957md_begin (void)
e0001a05
NC
4958{
4959 segT current_section = now_seg;
4960 int current_subsec = now_subseg;
4961 xtensa_isa isa;
4962
43cd72b9 4963 xtensa_default_isa = xtensa_isa_init (0, 0);
e0001a05 4964 isa = xtensa_default_isa;
e0001a05 4965
43cd72b9
BW
4966 linkrelax = 1;
4967
4968 /* Set up the .literal, .fini.literal and .init.literal sections. */
e0001a05
NC
4969 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
4970 default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME;
4971 default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME;
4972 default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME;
43cd72b9 4973 default_lit_sections.lit4_seg_name = LIT4_SECTION_NAME;
e0001a05
NC
4974
4975 subseg_set (current_section, current_subsec);
4976
43cd72b9
BW
4977 xg_init_vinsn (&cur_vinsn);
4978
e0001a05
NC
4979 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
4980 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
4981 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
4982 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
4983 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
4984 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
4985 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
4986 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
4987 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
4988 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
43cd72b9 4989 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
e0001a05 4990 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
43cd72b9
BW
4991 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
4992 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
e0001a05 4993 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
e0001a05 4994 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
43cd72b9 4995 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
e0001a05
NC
4996 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
4997 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
4998 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
43cd72b9 4999 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
e0001a05
NC
5000 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
5001 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
5002 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
5003 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5004 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5005 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
43cd72b9 5006 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
e0001a05 5007 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
43cd72b9
BW
5008
5009 init_op_placement_info_table ();
5010
5011 /* Set up the assembly state. */
5012 if (!frag_now->tc_frag_data.is_assembly_state_set)
5013 xtensa_set_frag_assembly_state (frag_now);
5014}
5015
5016
5017/* TC_INIT_FIX_DATA hook */
5018
5019void
7fa3d080 5020xtensa_init_fix_data (fixS *x)
43cd72b9
BW
5021{
5022 x->tc_fix_data.slot = 0;
5023 x->tc_fix_data.X_add_symbol = NULL;
5024 x->tc_fix_data.X_add_number = 0;
e0001a05
NC
5025}
5026
5027
5028/* tc_frob_label hook */
5029
5030void
7fa3d080 5031xtensa_frob_label (symbolS *sym)
e0001a05 5032{
3ea38ac2
BW
5033 float freq;
5034
5035 if (cur_vinsn.inside_bundle)
5036 {
5037 as_bad (_("labels are not valid inside bundles"));
5038 return;
5039 }
5040
5041 freq = get_subseg_target_freq (now_seg, now_subseg);
7b1cc377 5042
43cd72b9
BW
5043 /* Since the label was already attached to a frag associated with the
5044 previous basic block, it now needs to be reset to the current frag. */
5045 symbol_set_frag (sym, frag_now);
5046 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5047
82e7541d
BW
5048 if (generating_literals)
5049 xtensa_add_literal_sym (sym);
5050 else
5051 xtensa_add_insn_label (sym);
5052
7b1cc377
BW
5053 if (symbol_get_tc (sym)->is_loop_target)
5054 {
5055 if ((get_last_insn_flags (now_seg, now_subseg)
e0001a05 5056 & FLAG_IS_BAD_LOOPEND) != 0)
7b1cc377
BW
5057 as_bad (_("invalid last instruction for a zero-overhead loop"));
5058
5059 xtensa_set_frag_assembly_state (frag_now);
5060 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5061 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5062
5063 xtensa_set_frag_assembly_state (frag_now);
5064 xtensa_move_labels (frag_now, 0, TRUE);
07a53e5c 5065 }
e0001a05
NC
5066
5067 /* No target aligning in the absolute section. */
61846f28 5068 if (now_seg != absolute_section
43cd72b9 5069 && do_align_targets ()
61846f28 5070 && !is_unaligned_label (sym)
43cd72b9
BW
5071 && !generating_literals)
5072 {
43cd72b9
BW
5073 xtensa_set_frag_assembly_state (frag_now);
5074
43cd72b9 5075 frag_var (rs_machine_dependent,
7b1cc377 5076 0, (int) freq,
e0001a05
NC
5077 RELAX_DESIRE_ALIGN_IF_TARGET,
5078 frag_now->fr_symbol, frag_now->fr_offset, NULL);
43cd72b9 5079 xtensa_set_frag_assembly_state (frag_now);
82e7541d 5080 xtensa_move_labels (frag_now, 0, TRUE);
43cd72b9
BW
5081 }
5082
5083 /* We need to mark the following properties even if we aren't aligning. */
5084
5085 /* If the label is already known to be a branch target, i.e., a
5086 forward branch, mark the frag accordingly. Backward branches
5087 are handled by xg_add_branch_and_loop_targets. */
5088 if (symbol_get_tc (sym)->is_branch_target)
5089 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5090
5091 /* Loops only go forward, so they can be identified here. */
5092 if (symbol_get_tc (sym)->is_loop_target)
5093 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
07a53e5c
RH
5094
5095 dwarf2_emit_label (sym);
43cd72b9
BW
5096}
5097
5098
5099/* tc_unrecognized_line hook */
5100
5101int
7fa3d080 5102xtensa_unrecognized_line (int ch)
43cd72b9
BW
5103{
5104 switch (ch)
5105 {
5106 case '{' :
5107 if (cur_vinsn.inside_bundle == 0)
5108 {
5109 /* PR8110: Cannot emit line number info inside a FLIX bundle
5110 when using --gstabs. Temporarily disable debug info. */
5111 generate_lineno_debug ();
5112 if (debug_type == DEBUG_STABS)
5113 {
5114 xt_saved_debug_type = debug_type;
5115 debug_type = DEBUG_NONE;
5116 }
82e7541d 5117
43cd72b9
BW
5118 cur_vinsn.inside_bundle = 1;
5119 }
5120 else
5121 {
5122 as_bad (_("extra opening brace"));
5123 return 0;
5124 }
5125 break;
82e7541d 5126
43cd72b9
BW
5127 case '}' :
5128 if (cur_vinsn.inside_bundle)
5129 finish_vinsn (&cur_vinsn);
5130 else
5131 {
5132 as_bad (_("extra closing brace"));
5133 return 0;
5134 }
5135 break;
5136 default:
5137 as_bad (_("syntax error"));
5138 return 0;
e0001a05 5139 }
43cd72b9 5140 return 1;
e0001a05
NC
5141}
5142
5143
5144/* md_flush_pending_output hook */
5145
5146void
7fa3d080 5147xtensa_flush_pending_output (void)
e0001a05 5148{
43cd72b9
BW
5149 if (cur_vinsn.inside_bundle)
5150 as_bad (_("missing closing brace"));
5151
e0001a05
NC
5152 /* If there is a non-zero instruction fragment, close it. */
5153 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5154 {
5155 frag_wane (frag_now);
5156 frag_new (0);
43cd72b9 5157 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
5158 }
5159 frag_now->tc_frag_data.is_insn = FALSE;
82e7541d
BW
5160
5161 xtensa_clear_insn_labels ();
e0001a05
NC
5162}
5163
5164
43cd72b9
BW
5165/* We had an error while parsing an instruction. The string might look
5166 like this: "insn arg1, arg2 }". If so, we need to see the closing
5167 brace and reset some fields. Otherwise, the vinsn never gets closed
5168 and the num_slots field will grow past the end of the array of slots,
5169 and bad things happen. */
5170
5171static void
7fa3d080 5172error_reset_cur_vinsn (void)
43cd72b9
BW
5173{
5174 if (cur_vinsn.inside_bundle)
5175 {
5176 if (*input_line_pointer == '}'
5177 || *(input_line_pointer - 1) == '}'
5178 || *(input_line_pointer - 2) == '}')
5179 xg_clear_vinsn (&cur_vinsn);
5180 }
5181}
5182
5183
e0001a05 5184void
7fa3d080 5185md_assemble (char *str)
e0001a05
NC
5186{
5187 xtensa_isa isa = xtensa_default_isa;
5188 char *opname;
5189 unsigned opnamelen;
5190 bfd_boolean has_underbar = FALSE;
43cd72b9 5191 char *arg_strings[MAX_INSN_ARGS];
e0001a05 5192 int num_args;
e0001a05 5193 TInsn orig_insn; /* Original instruction from the input. */
e0001a05 5194
e0001a05
NC
5195 tinsn_init (&orig_insn);
5196
5197 /* Split off the opcode. */
5198 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5199 opname = xmalloc (opnamelen + 1);
5200 memcpy (opname, str, opnamelen);
5201 opname[opnamelen] = '\0';
5202
5203 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5204 if (num_args == -1)
5205 {
5206 as_bad (_("syntax error"));
5207 return;
5208 }
5209
5210 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5211 return;
5212
5213 /* Check for an underbar prefix. */
5214 if (*opname == '_')
5215 {
5216 has_underbar = TRUE;
5217 opname += 1;
5218 }
5219
5220 orig_insn.insn_type = ITYPE_INSN;
5221 orig_insn.ntok = 0;
43cd72b9 5222 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
e0001a05
NC
5223
5224 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5225 if (orig_insn.opcode == XTENSA_UNDEFINED)
5226 {
43cd72b9
BW
5227 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5228 if (fmt == XTENSA_UNDEFINED)
5229 {
5230 as_bad (_("unknown opcode or format name '%s'"), opname);
5231 error_reset_cur_vinsn ();
5232 return;
5233 }
5234 if (!cur_vinsn.inside_bundle)
5235 {
5236 as_bad (_("format names only valid inside bundles"));
5237 error_reset_cur_vinsn ();
5238 return;
5239 }
5240 if (cur_vinsn.format != XTENSA_UNDEFINED)
5241 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5242 opname);
5243 cur_vinsn.format = fmt;
5244 free (has_underbar ? opname - 1 : opname);
5245 error_reset_cur_vinsn ();
e0001a05
NC
5246 return;
5247 }
5248
e0001a05
NC
5249 /* Parse the arguments. */
5250 if (parse_arguments (&orig_insn, num_args, arg_strings))
5251 {
5252 as_bad (_("syntax error"));
43cd72b9 5253 error_reset_cur_vinsn ();
e0001a05
NC
5254 return;
5255 }
5256
5257 /* Free the opcode and argument strings, now that they've been parsed. */
5258 free (has_underbar ? opname - 1 : opname);
5259 opname = 0;
5260 while (num_args-- > 0)
5261 free (arg_strings[num_args]);
5262
43cd72b9
BW
5263 /* Get expressions for invisible operands. */
5264 if (get_invisible_operands (&orig_insn))
5265 {
5266 error_reset_cur_vinsn ();
5267 return;
5268 }
5269
e0001a05
NC
5270 /* Check for the right number and type of arguments. */
5271 if (tinsn_check_arguments (&orig_insn))
e0001a05 5272 {
43cd72b9
BW
5273 error_reset_cur_vinsn ();
5274 return;
e0001a05
NC
5275 }
5276
43cd72b9 5277 dwarf2_where (&orig_insn.loc);
c138bc38 5278
43cd72b9
BW
5279 xg_add_branch_and_loop_targets (&orig_insn);
5280
61846f28 5281 /* Special-case for "entry" instruction. */
b08b5071 5282 if (orig_insn.opcode == xtensa_entry_opcode)
e0001a05 5283 {
43cd72b9
BW
5284 /* Check that the third opcode (#2) is >= 16. */
5285 if (orig_insn.ntok >= 3)
e0001a05 5286 {
43cd72b9 5287 expressionS *exp = &orig_insn.tok[2];
e0001a05
NC
5288 switch (exp->X_op)
5289 {
5290 case O_constant:
5291 if (exp->X_add_number < 16)
5292 as_warn (_("entry instruction with stack decrement < 16"));
5293 break;
5294
5295 default:
5296 as_warn (_("entry instruction with non-constant decrement"));
5297 }
5298 }
e0001a05
NC
5299 }
5300
e0001a05 5301 /* Finish it off:
43cd72b9
BW
5302 assemble_tokens (opcode, tok, ntok);
5303 expand the tokens from the orig_insn into the
5304 stack of instructions that will not expand
e0001a05 5305 unless required at relaxation time. */
e0001a05 5306
43cd72b9
BW
5307 if (!cur_vinsn.inside_bundle)
5308 emit_single_op (&orig_insn);
5309 else /* We are inside a bundle. */
e0001a05 5310 {
43cd72b9
BW
5311 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5312 cur_vinsn.num_slots++;
5313 if (*input_line_pointer == '}'
5314 || *(input_line_pointer - 1) == '}'
5315 || *(input_line_pointer - 2) == '}')
5316 finish_vinsn (&cur_vinsn);
e0001a05
NC
5317 }
5318
43cd72b9
BW
5319 /* We've just emitted a new instruction so clear the list of labels. */
5320 xtensa_clear_insn_labels ();
e0001a05
NC
5321}
5322
5323
43cd72b9 5324/* HANDLE_ALIGN hook */
e0001a05 5325
43cd72b9
BW
5326/* For a .align directive, we mark the previous block with the alignment
5327 information. This will be placed in the object file in the
5328 property section corresponding to this section. */
e0001a05 5329
43cd72b9 5330void
7fa3d080 5331xtensa_handle_align (fragS *fragP)
43cd72b9
BW
5332{
5333 if (linkrelax
b08b5071 5334 && ! fragP->tc_frag_data.is_literal
43cd72b9
BW
5335 && (fragP->fr_type == rs_align
5336 || fragP->fr_type == rs_align_code)
5337 && fragP->fr_address + fragP->fr_fix > 0
5338 && fragP->fr_offset > 0
5339 && now_seg != bss_section)
e0001a05 5340 {
43cd72b9
BW
5341 fragP->tc_frag_data.is_align = TRUE;
5342 fragP->tc_frag_data.alignment = fragP->fr_offset;
e0001a05
NC
5343 }
5344
43cd72b9 5345 if (fragP->fr_type == rs_align_test)
e0001a05 5346 {
43cd72b9
BW
5347 int count;
5348 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5349 if (count != 0)
c138bc38 5350 as_bad_where (fragP->fr_file, fragP->fr_line,
43cd72b9 5351 _("unaligned entry instruction"));
e0001a05 5352 }
e0001a05 5353}
43cd72b9 5354
e0001a05
NC
5355
5356/* TC_FRAG_INIT hook */
5357
5358void
7fa3d080 5359xtensa_frag_init (fragS *frag)
e0001a05 5360{
43cd72b9 5361 xtensa_set_frag_assembly_state (frag);
e0001a05
NC
5362}
5363
5364
5365symbolS *
7fa3d080 5366md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
e0001a05
NC
5367{
5368 return NULL;
5369}
5370
5371
5372/* Round up a section size to the appropriate boundary. */
5373
5374valueT
7fa3d080 5375md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
e0001a05
NC
5376{
5377 return size; /* Byte alignment is fine. */
5378}
5379
5380
5381long
7fa3d080 5382md_pcrel_from (fixS *fixP)
e0001a05
NC
5383{
5384 char *insn_p;
5385 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 5386 static xtensa_insnbuf slotbuf = NULL;
e0001a05 5387 int opnum;
43cd72b9 5388 uint32 opnd_value;
e0001a05 5389 xtensa_opcode opcode;
43cd72b9
BW
5390 xtensa_format fmt;
5391 int slot;
e0001a05
NC
5392 xtensa_isa isa = xtensa_default_isa;
5393 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
43cd72b9 5394 bfd_boolean alt_reloc;
e0001a05 5395
e0001a05 5396 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
30f725a1 5397 return 0;
e0001a05
NC
5398
5399 if (!insnbuf)
43cd72b9
BW
5400 {
5401 insnbuf = xtensa_insnbuf_alloc (isa);
5402 slotbuf = xtensa_insnbuf_alloc (isa);
5403 }
e0001a05
NC
5404
5405 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
d77b99c9 5406 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
43cd72b9
BW
5407 fmt = xtensa_format_decode (isa, insnbuf);
5408
5409 if (fmt == XTENSA_UNDEFINED)
5410 as_fatal (_("bad instruction format"));
5411
5412 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5413 as_fatal (_("invalid relocation"));
5414
5415 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5416 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5417
30f725a1
BW
5418 /* Check for "alternate" relocations (operand not specified). None
5419 of the current uses for these are really PC-relative. */
43cd72b9
BW
5420 if (alt_reloc || opcode == xtensa_const16_opcode)
5421 {
5422 if (opcode != xtensa_l32r_opcode
5423 && opcode != xtensa_const16_opcode)
5424 as_fatal (_("invalid relocation for '%s' instruction"),
5425 xtensa_opcode_name (isa, opcode));
30f725a1 5426 return 0;
e0001a05
NC
5427 }
5428
43cd72b9
BW
5429 opnum = get_relaxable_immed (opcode);
5430 opnd_value = 0;
5431 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5432 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
e0001a05
NC
5433 {
5434 as_bad_where (fixP->fx_file,
5435 fixP->fx_line,
5436 _("invalid relocation for operand %d of '%s'"),
5437 opnum, xtensa_opcode_name (isa, opcode));
30f725a1 5438 return 0;
e0001a05 5439 }
43cd72b9
BW
5440 return 0 - opnd_value;
5441}
5442
5443
5444/* TC_FORCE_RELOCATION hook */
5445
5446int
7fa3d080 5447xtensa_force_relocation (fixS *fix)
43cd72b9
BW
5448{
5449 switch (fix->fx_r_type)
30f725a1
BW
5450 {
5451 case BFD_RELOC_XTENSA_ASM_EXPAND:
43cd72b9
BW
5452 case BFD_RELOC_XTENSA_SLOT0_ALT:
5453 case BFD_RELOC_XTENSA_SLOT1_ALT:
5454 case BFD_RELOC_XTENSA_SLOT2_ALT:
5455 case BFD_RELOC_XTENSA_SLOT3_ALT:
5456 case BFD_RELOC_XTENSA_SLOT4_ALT:
5457 case BFD_RELOC_XTENSA_SLOT5_ALT:
5458 case BFD_RELOC_XTENSA_SLOT6_ALT:
5459 case BFD_RELOC_XTENSA_SLOT7_ALT:
5460 case BFD_RELOC_XTENSA_SLOT8_ALT:
5461 case BFD_RELOC_XTENSA_SLOT9_ALT:
5462 case BFD_RELOC_XTENSA_SLOT10_ALT:
5463 case BFD_RELOC_XTENSA_SLOT11_ALT:
5464 case BFD_RELOC_XTENSA_SLOT12_ALT:
5465 case BFD_RELOC_XTENSA_SLOT13_ALT:
5466 case BFD_RELOC_XTENSA_SLOT14_ALT:
43cd72b9
BW
5467 return 1;
5468 default:
5469 break;
e0001a05
NC
5470 }
5471
43cd72b9
BW
5472 if (linkrelax && fix->fx_addsy
5473 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5474 return 1;
5475
5476 return generic_force_reloc (fix);
5477}
5478
5479
30f725a1
BW
5480/* TC_VALIDATE_FIX_SUB hook */
5481
5482int
5483xtensa_validate_fix_sub (fixS *fix)
5484{
5485 segT add_symbol_segment, sub_symbol_segment;
5486
5487 /* The difference of two symbols should be resolved by the assembler when
5488 linkrelax is not set. If the linker may relax the section containing
5489 the symbols, then an Xtensa DIFF relocation must be generated so that
5490 the linker knows to adjust the difference value. */
5491 if (!linkrelax || fix->fx_addsy == NULL)
5492 return 0;
5493
5494 /* Make sure both symbols are in the same segment, and that segment is
5495 "normal" and relaxable. If the segment is not "normal", then the
5496 fix is not valid. If the segment is not "relaxable", then the fix
5497 should have been handled earlier. */
5498 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5499 if (! SEG_NORMAL (add_symbol_segment) ||
5500 ! relaxable_section (add_symbol_segment))
5501 return 0;
5502 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5503 return (sub_symbol_segment == add_symbol_segment);
5504}
5505
5506
43cd72b9
BW
5507/* NO_PSEUDO_DOT hook */
5508
5509/* This function has nothing to do with pseudo dots, but this is the
5510 nearest macro to where the check needs to take place. FIXME: This
5511 seems wrong. */
5512
5513bfd_boolean
7fa3d080 5514xtensa_check_inside_bundle (void)
43cd72b9
BW
5515{
5516 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5517 as_bad (_("directives are not valid inside bundles"));
5518
5519 /* This function must always return FALSE because it is called via a
5520 macro that has nothing to do with bundling. */
5521 return FALSE;
e0001a05
NC
5522}
5523
5524
43cd72b9 5525/* md_elf_section_change_hook */
e0001a05
NC
5526
5527void
7fa3d080 5528xtensa_elf_section_change_hook (void)
e0001a05 5529{
43cd72b9
BW
5530 /* Set up the assembly state. */
5531 if (!frag_now->tc_frag_data.is_assembly_state_set)
5532 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
5533}
5534
5535
5536/* tc_fix_adjustable hook */
5537
5538bfd_boolean
7fa3d080 5539xtensa_fix_adjustable (fixS *fixP)
e0001a05 5540{
43cd72b9
BW
5541 /* An offset is not allowed in combination with the difference of two
5542 symbols, but that cannot be easily detected after a local symbol
5543 has been adjusted to a (section+offset) form. Return 0 so that such
5544 an fix will not be adjusted. */
5545 if (fixP->fx_subsy && fixP->fx_addsy && fixP->fx_offset
5546 && relaxable_section (S_GET_SEGMENT (fixP->fx_subsy)))
5547 return 0;
5548
e0001a05
NC
5549 /* We need the symbol name for the VTABLE entries. */
5550 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5551 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5552 return 0;
5553
5554 return 1;
5555}
5556
5557
5558void
55cf6793 5559md_apply_fix (fixS *fixP, valueT *valP, segT seg)
e0001a05 5560{
30f725a1
BW
5561 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5562 valueT val;
5563
5564 switch (fixP->fx_r_type)
e0001a05 5565 {
30f725a1
BW
5566 case BFD_RELOC_32:
5567 case BFD_RELOC_16:
5568 case BFD_RELOC_8:
5569 if (linkrelax && fixP->fx_subsy)
5570 {
5571 switch (fixP->fx_r_type)
5572 {
5573 case BFD_RELOC_8:
5574 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5575 break;
5576 case BFD_RELOC_16:
5577 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5578 break;
5579 case BFD_RELOC_32:
5580 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5581 break;
5582 default:
5583 break;
5584 }
e0001a05 5585
30f725a1
BW
5586 /* An offset is only allowed when it results from adjusting a
5587 local symbol into a section-relative offset. If the offset
5588 came from the original expression, tc_fix_adjustable will have
5589 prevented the fix from being converted to a section-relative
5590 form so that we can flag the error here. */
5591 if (fixP->fx_offset != 0 && !symbol_section_p (fixP->fx_addsy))
5592 as_bad_where (fixP->fx_file, fixP->fx_line,
5593 _("cannot represent subtraction with an offset"));
5594
5595 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5596 - S_GET_VALUE (fixP->fx_subsy));
5597
5598 /* The difference value gets written out, and the DIFF reloc
5599 identifies the address of the subtracted symbol (i.e., the one
5600 with the lowest address). */
5601 *valP = val;
5602 fixP->fx_offset -= val;
5603 fixP->fx_subsy = NULL;
5604 }
5605 else if (! fixP->fx_addsy)
e0001a05 5606 {
30f725a1 5607 val = *valP;
e0001a05 5608 fixP->fx_done = 1;
30f725a1
BW
5609 }
5610 else
5611 break;
5612 md_number_to_chars (fixpos, val, fixP->fx_size);
5613 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5614 break;
e0001a05 5615
30f725a1
BW
5616 case BFD_RELOC_XTENSA_SLOT0_OP:
5617 case BFD_RELOC_XTENSA_SLOT1_OP:
5618 case BFD_RELOC_XTENSA_SLOT2_OP:
5619 case BFD_RELOC_XTENSA_SLOT3_OP:
5620 case BFD_RELOC_XTENSA_SLOT4_OP:
5621 case BFD_RELOC_XTENSA_SLOT5_OP:
5622 case BFD_RELOC_XTENSA_SLOT6_OP:
5623 case BFD_RELOC_XTENSA_SLOT7_OP:
5624 case BFD_RELOC_XTENSA_SLOT8_OP:
5625 case BFD_RELOC_XTENSA_SLOT9_OP:
5626 case BFD_RELOC_XTENSA_SLOT10_OP:
5627 case BFD_RELOC_XTENSA_SLOT11_OP:
5628 case BFD_RELOC_XTENSA_SLOT12_OP:
5629 case BFD_RELOC_XTENSA_SLOT13_OP:
5630 case BFD_RELOC_XTENSA_SLOT14_OP:
5631 if (linkrelax)
5632 {
5633 /* Write the tentative value of a PC-relative relocation to a
5634 local symbol into the instruction. The value will be ignored
5635 by the linker, and it makes the object file disassembly
5636 readable when all branch targets are encoded in relocations. */
5637
5638 assert (fixP->fx_addsy);
5639 if (S_GET_SEGMENT (fixP->fx_addsy) == seg && !fixP->fx_plt
5640 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
5641 {
5642 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5643 - md_pcrel_from (fixP));
5644 (void) xg_apply_fix_value (fixP, val);
5645 }
5646 }
5647 else if (! fixP->fx_addsy)
5648 {
5649 val = *valP;
5650 if (xg_apply_fix_value (fixP, val))
5651 fixP->fx_done = 1;
5652 }
5653 break;
e0001a05 5654
6e2a91a3 5655 case BFD_RELOC_XTENSA_PLT:
30f725a1
BW
5656 case BFD_RELOC_XTENSA_ASM_EXPAND:
5657 case BFD_RELOC_XTENSA_SLOT0_ALT:
5658 case BFD_RELOC_XTENSA_SLOT1_ALT:
5659 case BFD_RELOC_XTENSA_SLOT2_ALT:
5660 case BFD_RELOC_XTENSA_SLOT3_ALT:
5661 case BFD_RELOC_XTENSA_SLOT4_ALT:
5662 case BFD_RELOC_XTENSA_SLOT5_ALT:
5663 case BFD_RELOC_XTENSA_SLOT6_ALT:
5664 case BFD_RELOC_XTENSA_SLOT7_ALT:
5665 case BFD_RELOC_XTENSA_SLOT8_ALT:
5666 case BFD_RELOC_XTENSA_SLOT9_ALT:
5667 case BFD_RELOC_XTENSA_SLOT10_ALT:
5668 case BFD_RELOC_XTENSA_SLOT11_ALT:
5669 case BFD_RELOC_XTENSA_SLOT12_ALT:
5670 case BFD_RELOC_XTENSA_SLOT13_ALT:
5671 case BFD_RELOC_XTENSA_SLOT14_ALT:
5672 /* These all need to be resolved at link-time. Do nothing now. */
5673 break;
e0001a05 5674
30f725a1
BW
5675 case BFD_RELOC_VTABLE_INHERIT:
5676 case BFD_RELOC_VTABLE_ENTRY:
5677 fixP->fx_done = 0;
5678 break;
e0001a05 5679
30f725a1
BW
5680 default:
5681 as_bad (_("unhandled local relocation fix %s"),
5682 bfd_get_reloc_code_name (fixP->fx_r_type));
e0001a05
NC
5683 }
5684}
5685
5686
5687char *
7fa3d080 5688md_atof (int type, char *litP, int *sizeP)
e0001a05
NC
5689{
5690 int prec;
5691 LITTLENUM_TYPE words[4];
5692 char *t;
5693 int i;
5694
5695 switch (type)
5696 {
5697 case 'f':
5698 prec = 2;
5699 break;
5700
5701 case 'd':
5702 prec = 4;
5703 break;
5704
5705 default:
5706 *sizeP = 0;
5707 return "bad call to md_atof";
5708 }
5709
5710 t = atof_ieee (input_line_pointer, type, words);
5711 if (t)
5712 input_line_pointer = t;
5713
5714 *sizeP = prec * 2;
5715
5716 for (i = prec - 1; i >= 0; i--)
5717 {
5718 int idx = i;
5719 if (target_big_endian)
5720 idx = (prec - 1 - i);
5721
5722 md_number_to_chars (litP, (valueT) words[idx], 2);
5723 litP += 2;
5724 }
5725
5726 return NULL;
5727}
5728
5729
5730int
7fa3d080 5731md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
e0001a05 5732{
34e41783 5733 return total_frag_text_expansion (fragP);
e0001a05
NC
5734}
5735
5736
5737/* Translate internal representation of relocation info to BFD target
5738 format. */
5739
5740arelent *
30f725a1 5741tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
e0001a05
NC
5742{
5743 arelent *reloc;
5744
5745 reloc = (arelent *) xmalloc (sizeof (arelent));
5746 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5747 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5748 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
5749
5750 /* Make sure none of our internal relocations make it this far.
5751 They'd better have been fully resolved by this point. */
5752 assert ((int) fixp->fx_r_type > 0);
5753
30f725a1 5754 reloc->addend = fixp->fx_offset;
43cd72b9 5755
e0001a05
NC
5756 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
5757 if (reloc->howto == NULL)
5758 {
5759 as_bad_where (fixp->fx_file, fixp->fx_line,
5760 _("cannot represent `%s' relocation in object file"),
5761 bfd_get_reloc_code_name (fixp->fx_r_type));
43cd72b9
BW
5762 free (reloc->sym_ptr_ptr);
5763 free (reloc);
e0001a05
NC
5764 return NULL;
5765 }
5766
5767 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
43cd72b9
BW
5768 as_fatal (_("internal error? cannot generate `%s' relocation"),
5769 bfd_get_reloc_code_name (fixp->fx_r_type));
e0001a05 5770
e0001a05
NC
5771 return reloc;
5772}
5773
7fa3d080
BW
5774\f
5775/* Checks for resource conflicts between instructions. */
5776
c138bc38
BW
5777/* The func unit stuff could be implemented as bit-vectors rather
5778 than the iterative approach here. If it ends up being too
7fa3d080
BW
5779 slow, we will switch it. */
5780
c138bc38 5781resource_table *
7fa3d080
BW
5782new_resource_table (void *data,
5783 int cycles,
5784 int nu,
5785 unit_num_copies_func uncf,
5786 opcode_num_units_func onuf,
5787 opcode_funcUnit_use_unit_func ouuf,
5788 opcode_funcUnit_use_stage_func ousf)
5789{
5790 int i;
5791 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
5792 rt->data = data;
5793 rt->cycles = cycles;
5794 rt->allocated_cycles = cycles;
5795 rt->num_units = nu;
5796 rt->unit_num_copies = uncf;
5797 rt->opcode_num_units = onuf;
5798 rt->opcode_unit_use = ouuf;
5799 rt->opcode_unit_stage = ousf;
5800
0bf60745 5801 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
7fa3d080 5802 for (i = 0; i < cycles; i++)
0bf60745 5803 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
7fa3d080
BW
5804
5805 return rt;
5806}
5807
5808
c138bc38 5809void
7fa3d080
BW
5810clear_resource_table (resource_table *rt)
5811{
5812 int i, j;
5813 for (i = 0; i < rt->allocated_cycles; i++)
5814 for (j = 0; j < rt->num_units; j++)
5815 rt->units[i][j] = 0;
5816}
5817
5818
5819/* We never shrink it, just fake it into thinking so. */
5820
c138bc38 5821void
7fa3d080
BW
5822resize_resource_table (resource_table *rt, int cycles)
5823{
5824 int i, old_cycles;
5825
5826 rt->cycles = cycles;
5827 if (cycles <= rt->allocated_cycles)
5828 return;
5829
5830 old_cycles = rt->allocated_cycles;
5831 rt->allocated_cycles = cycles;
5832
0bf60745
BW
5833 rt->units = xrealloc (rt->units,
5834 rt->allocated_cycles * sizeof (unsigned char *));
7fa3d080 5835 for (i = 0; i < old_cycles; i++)
0bf60745
BW
5836 rt->units[i] = xrealloc (rt->units[i],
5837 rt->num_units * sizeof (unsigned char));
7fa3d080 5838 for (i = old_cycles; i < cycles; i++)
0bf60745 5839 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
7fa3d080
BW
5840}
5841
5842
c138bc38 5843bfd_boolean
7fa3d080
BW
5844resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
5845{
5846 int i;
5847 int uses = (rt->opcode_num_units) (rt->data, opcode);
5848
c138bc38 5849 for (i = 0; i < uses; i++)
7fa3d080
BW
5850 {
5851 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5852 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
5853 int copies_in_use = rt->units[stage + cycle][unit];
5854 int copies = (rt->unit_num_copies) (rt->data, unit);
5855 if (copies_in_use >= copies)
5856 return FALSE;
5857 }
5858 return TRUE;
5859}
7fa3d080 5860
c138bc38
BW
5861
5862void
7fa3d080
BW
5863reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5864{
5865 int i;
5866 int uses = (rt->opcode_num_units) (rt->data, opcode);
5867
c138bc38 5868 for (i = 0; i < uses; i++)
7fa3d080
BW
5869 {
5870 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5871 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
c138bc38
BW
5872 /* Note that this allows resources to be oversubscribed. That's
5873 essential to the way the optional scheduler works.
7fa3d080
BW
5874 resources_available reports when a resource is over-subscribed,
5875 so it's easy to tell. */
5876 rt->units[stage + cycle][unit]++;
5877 }
5878}
5879
5880
c138bc38 5881void
7fa3d080
BW
5882release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
5883{
5884 int i;
5885 int uses = (rt->opcode_num_units) (rt->data, opcode);
5886
c138bc38 5887 for (i = 0; i < uses; i++)
7fa3d080
BW
5888 {
5889 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
5890 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
0bf60745 5891 assert (rt->units[stage + cycle][unit] > 0);
7fa3d080 5892 rt->units[stage + cycle][unit]--;
7fa3d080
BW
5893 }
5894}
c138bc38 5895
7fa3d080
BW
5896
5897/* Wrapper functions make parameterized resource reservation
5898 more convenient. */
5899
c138bc38 5900int
7fa3d080
BW
5901opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
5902{
5903 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
c138bc38 5904 return use->unit;
7fa3d080
BW
5905}
5906
5907
c138bc38 5908int
7fa3d080
BW
5909opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
5910{
5911 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
5912 return use->stage;
5913}
5914
5915
5916/* Note that this function does not check issue constraints, but
5917 solely whether the hardware is available to execute the given
c138bc38 5918 instructions together. It also doesn't check if the tinsns
7fa3d080 5919 write the same state, or access the same tieports. That is
a1ace8d8 5920 checked by check_t1_t2_reads_and_writes. */
7fa3d080
BW
5921
5922static bfd_boolean
5923resources_conflict (vliw_insn *vinsn)
5924{
5925 int i;
5926 static resource_table *rt = NULL;
5927
5928 /* This is the most common case by far. Optimize it. */
5929 if (vinsn->num_slots == 1)
5930 return FALSE;
43cd72b9 5931
c138bc38 5932 if (rt == NULL)
7fa3d080
BW
5933 {
5934 xtensa_isa isa = xtensa_default_isa;
5935 rt = new_resource_table
5936 (isa, xtensa_isa_num_pipe_stages (isa),
5937 xtensa_isa_num_funcUnits (isa),
5938 (unit_num_copies_func) xtensa_funcUnit_num_copies,
5939 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
5940 opcode_funcUnit_use_unit,
5941 opcode_funcUnit_use_stage);
5942 }
43cd72b9 5943
7fa3d080 5944 clear_resource_table (rt);
43cd72b9 5945
7fa3d080
BW
5946 for (i = 0; i < vinsn->num_slots; i++)
5947 {
5948 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
5949 return TRUE;
5950 reserve_resources (rt, vinsn->slots[i].opcode, 0);
5951 }
e0001a05 5952
7fa3d080
BW
5953 return FALSE;
5954}
e0001a05 5955
7fa3d080
BW
5956\f
5957/* finish_vinsn, emit_single_op and helper functions. */
e0001a05 5958
7fa3d080
BW
5959static bfd_boolean find_vinsn_conflicts (vliw_insn *);
5960static xtensa_format xg_find_narrowest_format (vliw_insn *);
5961static void bundle_single_op (TInsn *);
5962static void xg_assemble_vliw_tokens (vliw_insn *);
e0001a05
NC
5963
5964
43cd72b9
BW
5965/* We have reached the end of a bundle; emit into the frag. */
5966
e0001a05 5967static void
7fa3d080 5968finish_vinsn (vliw_insn *vinsn)
e0001a05 5969{
43cd72b9
BW
5970 IStack slotstack;
5971 int i;
5972 char *file_name;
d77b99c9 5973 unsigned line;
e0001a05 5974
43cd72b9 5975 if (find_vinsn_conflicts (vinsn))
a1ace8d8
BW
5976 {
5977 xg_clear_vinsn (vinsn);
5978 return;
5979 }
43cd72b9
BW
5980
5981 /* First, find a format that works. */
5982 if (vinsn->format == XTENSA_UNDEFINED)
5983 vinsn->format = xg_find_narrowest_format (vinsn);
5984
5985 if (vinsn->format == XTENSA_UNDEFINED)
5986 {
5987 as_where (&file_name, &line);
5988 as_bad_where (file_name, line,
5989 _("couldn't find a valid instruction format"));
5990 fprintf (stderr, _(" ops were: "));
5991 for (i = 0; i < vinsn->num_slots; i++)
5992 fprintf (stderr, _(" %s;"),
5993 xtensa_opcode_name (xtensa_default_isa,
5994 vinsn->slots[i].opcode));
5995 fprintf (stderr, _("\n"));
5996 xg_clear_vinsn (vinsn);
5997 return;
5998 }
5999
6000 if (vinsn->num_slots
6001 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
e0001a05 6002 {
43cd72b9
BW
6003 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
6004 xtensa_format_name (xtensa_default_isa, vinsn->format),
6005 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
6006 vinsn->num_slots);
6007 xg_clear_vinsn (vinsn);
6008 return;
6009 }
e0001a05 6010
c138bc38 6011 if (resources_conflict (vinsn))
43cd72b9
BW
6012 {
6013 as_where (&file_name, &line);
6014 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6015 fprintf (stderr, " ops were: ");
6016 for (i = 0; i < vinsn->num_slots; i++)
6017 fprintf (stderr, " %s;",
6018 xtensa_opcode_name (xtensa_default_isa,
6019 vinsn->slots[i].opcode));
6020 fprintf (stderr, "\n");
6021 xg_clear_vinsn (vinsn);
6022 return;
6023 }
6024
6025 for (i = 0; i < vinsn->num_slots; i++)
6026 {
6027 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
e0001a05 6028 {
43cd72b9
BW
6029 symbolS *lit_sym = NULL;
6030 int j;
6031 bfd_boolean e = FALSE;
6032 bfd_boolean saved_density = density_supported;
6033
6034 /* We don't want to narrow ops inside multi-slot bundles. */
6035 if (vinsn->num_slots > 1)
6036 density_supported = FALSE;
6037
6038 istack_init (&slotstack);
6039 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
e0001a05 6040 {
43cd72b9
BW
6041 vinsn->slots[i].opcode =
6042 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6043 vinsn->format, i);
6044 vinsn->slots[i].ntok = 0;
6045 }
e0001a05 6046
43cd72b9
BW
6047 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6048 {
6049 e = TRUE;
6050 continue;
e0001a05 6051 }
e0001a05 6052
43cd72b9 6053 density_supported = saved_density;
e0001a05 6054
43cd72b9
BW
6055 if (e)
6056 {
6057 xg_clear_vinsn (vinsn);
6058 return;
6059 }
e0001a05 6060
0fa77c95 6061 for (j = 0; j < slotstack.ninsn; j++)
43cd72b9
BW
6062 {
6063 TInsn *insn = &slotstack.insn[j];
6064 if (insn->insn_type == ITYPE_LITERAL)
6065 {
6066 assert (lit_sym == NULL);
6067 lit_sym = xg_assemble_literal (insn);
6068 }
6069 else
6070 {
0fa77c95 6071 assert (insn->insn_type == ITYPE_INSN);
43cd72b9
BW
6072 if (lit_sym)
6073 xg_resolve_literals (insn, lit_sym);
0fa77c95
BW
6074 if (j != slotstack.ninsn - 1)
6075 emit_single_op (insn);
43cd72b9
BW
6076 }
6077 }
6078
6079 if (vinsn->num_slots > 1)
6080 {
6081 if (opcode_fits_format_slot
6082 (slotstack.insn[slotstack.ninsn - 1].opcode,
6083 vinsn->format, i))
6084 {
6085 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6086 }
6087 else
6088 {
6089 bundle_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6090 if (vinsn->format == XTENSA_UNDEFINED)
6091 vinsn->slots[i].opcode = xtensa_nop_opcode;
6092 else
c138bc38 6093 vinsn->slots[i].opcode
43cd72b9
BW
6094 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6095 vinsn->format, i);
6096
6097 vinsn->slots[i].ntok = 0;
6098 }
6099 }
6100 else
6101 {
6102 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6103 vinsn->format = XTENSA_UNDEFINED;
6104 }
6105 }
6106 }
6107
6108 /* Now check resource conflicts on the modified bundle. */
c138bc38 6109 if (resources_conflict (vinsn))
43cd72b9
BW
6110 {
6111 as_where (&file_name, &line);
6112 as_bad_where (file_name, line, _("illegal resource usage in bundle"));
6113 fprintf (stderr, " ops were: ");
6114 for (i = 0; i < vinsn->num_slots; i++)
6115 fprintf (stderr, " %s;",
6116 xtensa_opcode_name (xtensa_default_isa,
6117 vinsn->slots[i].opcode));
6118 fprintf (stderr, "\n");
6119 xg_clear_vinsn (vinsn);
6120 return;
6121 }
6122
6123 /* First, find a format that works. */
6124 if (vinsn->format == XTENSA_UNDEFINED)
6125 vinsn->format = xg_find_narrowest_format (vinsn);
6126
6127 xg_assemble_vliw_tokens (vinsn);
6128
6129 xg_clear_vinsn (vinsn);
6130}
6131
6132
6133/* Given an vliw instruction, what conflicts are there in register
6134 usage and in writes to states and queues?
6135
6136 This function does two things:
6137 1. Reports an error when a vinsn contains illegal combinations
6138 of writes to registers states or queues.
6139 2. Marks individual tinsns as not relaxable if the combination
6140 contains antidependencies.
6141
6142 Job 2 handles things like swap semantics in instructions that need
6143 to be relaxed. For example,
6144
6145 addi a0, a1, 100000
6146
6147 normally would be relaxed to
6148
6149 l32r a0, some_label
6150 add a0, a1, a0
6151
6152 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6153
6154 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6155
6156 then we can't relax it into
6157
6158 l32r a0, some_label
6159 { add a0, a1, a0 ; add a2, a0, a4 ; }
6160
6161 because the value of a0 is trashed before the second add can read it. */
6162
7fa3d080
BW
6163static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6164
43cd72b9 6165static bfd_boolean
7fa3d080 6166find_vinsn_conflicts (vliw_insn *vinsn)
43cd72b9
BW
6167{
6168 int i, j;
6169 int branches = 0;
6170 xtensa_isa isa = xtensa_default_isa;
6171
6172 assert (!past_xtensa_end);
6173
6174 for (i = 0 ; i < vinsn->num_slots; i++)
6175 {
6176 TInsn *op1 = &vinsn->slots[i];
6177 if (op1->is_specific_opcode)
6178 op1->keep_wide = TRUE;
6179 else
6180 op1->keep_wide = FALSE;
6181 }
6182
6183 for (i = 0 ; i < vinsn->num_slots; i++)
6184 {
6185 TInsn *op1 = &vinsn->slots[i];
6186
6187 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6188 branches++;
6189
6190 for (j = 0; j < vinsn->num_slots; j++)
6191 {
6192 if (i != j)
6193 {
6194 TInsn *op2 = &vinsn->slots[j];
6195 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6196 switch (conflict_type)
6197 {
6198 case 'c':
6199 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6200 xtensa_opcode_name (isa, op1->opcode), i,
6201 xtensa_opcode_name (isa, op2->opcode), j);
6202 return TRUE;
6203 case 'd':
6204 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6205 xtensa_opcode_name (isa, op1->opcode), i,
6206 xtensa_opcode_name (isa, op2->opcode), j);
6207 return TRUE;
6208 case 'e':
6209 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same queue"),
6210 xtensa_opcode_name (isa, op1->opcode), i,
6211 xtensa_opcode_name (isa, op2->opcode), j);
6212 return TRUE;
6213 case 'f':
6214 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile queue accesses"),
6215 xtensa_opcode_name (isa, op1->opcode), i,
6216 xtensa_opcode_name (isa, op2->opcode), j);
6217 return TRUE;
6218 default:
6219 /* Everything is OK. */
6220 break;
6221 }
6222 op2->is_specific_opcode = (op2->is_specific_opcode
6223 || conflict_type == 'a');
6224 }
6225 }
6226 }
6227
6228 if (branches > 1)
6229 {
6230 as_bad (_("multiple branches or jumps in the same bundle"));
6231 return TRUE;
6232 }
6233
6234 return FALSE;
6235}
6236
6237
a1ace8d8 6238/* Check how the state used by t1 and t2 relate.
43cd72b9
BW
6239 Cases found are:
6240
6241 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6242 case B: no relationship between what is read and written (both could
6243 read the same reg though)
c138bc38 6244 case C: t1 writes a register t2 writes (a register conflict within a
43cd72b9
BW
6245 bundle)
6246 case D: t1 writes a state that t2 also writes
6247 case E: t1 writes a tie queue that t2 also writes
a1ace8d8 6248 case F: two volatile queue accesses
43cd72b9
BW
6249*/
6250
6251static char
7fa3d080 6252check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
43cd72b9
BW
6253{
6254 xtensa_isa isa = xtensa_default_isa;
6255 xtensa_regfile t1_regfile, t2_regfile;
6256 int t1_reg, t2_reg;
6257 int t1_base_reg, t1_last_reg;
6258 int t2_base_reg, t2_last_reg;
6259 char t1_inout, t2_inout;
6260 int i, j;
6261 char conflict = 'b';
6262 int t1_states;
6263 int t2_states;
6264 int t1_interfaces;
6265 int t2_interfaces;
6266 bfd_boolean t1_volatile = FALSE;
6267 bfd_boolean t2_volatile = FALSE;
6268
6269 /* Check registers. */
6270 for (j = 0; j < t2->ntok; j++)
6271 {
6272 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6273 continue;
6274
6275 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6276 t2_base_reg = t2->tok[j].X_add_number;
6277 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6278
6279 for (i = 0; i < t1->ntok; i++)
6280 {
6281 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6282 continue;
6283
6284 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6285
6286 if (t1_regfile != t2_regfile)
6287 continue;
6288
6289 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6290 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6291
6292 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6293 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6294 {
6295 if (t1_inout == 'm' || t1_inout == 'o'
6296 || t2_inout == 'm' || t2_inout == 'o')
6297 {
6298 conflict = 'a';
6299 continue;
6300 }
6301 }
6302
6303 t1_base_reg = t1->tok[i].X_add_number;
6304 t1_last_reg = (t1_base_reg
6305 + xtensa_operand_num_regs (isa, t1->opcode, i));
6306
6307 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6308 {
6309 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6310 {
6311 if (t1_reg != t2_reg)
6312 continue;
6313
6314 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
7fa3d080
BW
6315 {
6316 conflict = 'a';
6317 continue;
6318 }
43cd72b9 6319
7fa3d080
BW
6320 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6321 {
6322 conflict = 'a';
6323 continue;
6324 }
43cd72b9 6325
7fa3d080
BW
6326 if (t1_inout != 'i' && t2_inout != 'i')
6327 return 'c';
6328 }
6329 }
6330 }
6331 }
43cd72b9 6332
7fa3d080
BW
6333 /* Check states. */
6334 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6335 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6336 for (j = 0; j < t2_states; j++)
43cd72b9 6337 {
7fa3d080
BW
6338 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6339 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6340 for (i = 0; i < t1_states; i++)
6341 {
6342 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6343 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
c138bc38 6344 if (t1_so != t2_so)
7fa3d080 6345 continue;
43cd72b9 6346
7fa3d080
BW
6347 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6348 {
6349 conflict = 'a';
6350 continue;
6351 }
c138bc38 6352
7fa3d080
BW
6353 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6354 {
6355 conflict = 'a';
6356 continue;
6357 }
c138bc38 6358
7fa3d080
BW
6359 if (t1_inout != 'i' && t2_inout != 'i')
6360 return 'd';
c138bc38 6361 }
7fa3d080 6362 }
43cd72b9 6363
7fa3d080
BW
6364 /* Check tieports. */
6365 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6366 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
c138bc38 6367 for (j = 0; j < t2_interfaces; j++)
43cd72b9 6368 {
7fa3d080
BW
6369 xtensa_interface t2_int
6370 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
a1ace8d8
BW
6371 int t2_class = xtensa_interface_class_id (isa, t2_int);
6372
7fa3d080 6373 t2_inout = xtensa_interface_inout (isa, j);
a1ace8d8 6374 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
7fa3d080 6375 t2_volatile = TRUE;
a1ace8d8 6376
7fa3d080
BW
6377 for (i = 0; i < t1_interfaces; i++)
6378 {
6379 xtensa_interface t1_int
6380 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
2eccd1b4 6381 int t1_class = xtensa_interface_class_id (isa, t1_int);
a1ace8d8 6382
7fa3d080 6383 t1_inout = xtensa_interface_inout (isa, i);
a1ace8d8 6384 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
7fa3d080 6385 t1_volatile = TRUE;
a1ace8d8
BW
6386
6387 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6388 return 'f';
c138bc38 6389
7fa3d080
BW
6390 if (t1_int != t2_int)
6391 continue;
c138bc38 6392
7fa3d080
BW
6393 if (t2_inout == 'i' && t1_inout == 'o')
6394 {
6395 conflict = 'a';
6396 continue;
6397 }
c138bc38 6398
7fa3d080
BW
6399 if (t1_inout == 'i' && t2_inout == 'o')
6400 {
6401 conflict = 'a';
6402 continue;
6403 }
c138bc38 6404
7fa3d080
BW
6405 if (t1_inout != 'i' && t2_inout != 'i')
6406 return 'e';
6407 }
43cd72b9 6408 }
c138bc38 6409
7fa3d080 6410 return conflict;
43cd72b9
BW
6411}
6412
6413
6414static xtensa_format
7fa3d080 6415xg_find_narrowest_format (vliw_insn *vinsn)
43cd72b9
BW
6416{
6417 /* Right now we assume that the ops within the vinsn are properly
6418 ordered for the slots that the programmer wanted them in. In
6419 other words, we don't rearrange the ops in hopes of finding a
6420 better format. The scheduler handles that. */
6421
6422 xtensa_isa isa = xtensa_default_isa;
6423 xtensa_format format;
6424 vliw_insn v_copy = *vinsn;
6425 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6426
6427 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6428 {
6429 v_copy = *vinsn;
6430 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6431 {
6432 int slot;
6433 int fit = 0;
6434 for (slot = 0; slot < v_copy.num_slots; slot++)
6435 {
6436 if (v_copy.slots[slot].opcode == nop_opcode)
6437 {
6438 v_copy.slots[slot].opcode =
6439 xtensa_format_slot_nop_opcode (isa, format, slot);
6440 v_copy.slots[slot].ntok = 0;
6441 }
6442
6443 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6444 format, slot))
6445 fit++;
7fa3d080 6446 else if (v_copy.num_slots > 1)
43cd72b9 6447 {
7fa3d080
BW
6448 TInsn widened;
6449 /* Try the widened version. */
6450 if (!v_copy.slots[slot].keep_wide
6451 && !v_copy.slots[slot].is_specific_opcode
84b08ed9
BW
6452 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6453 &widened, TRUE)
7fa3d080
BW
6454 && opcode_fits_format_slot (widened.opcode,
6455 format, slot))
43cd72b9 6456 {
7fa3d080
BW
6457 v_copy.slots[slot] = widened;
6458 fit++;
43cd72b9
BW
6459 }
6460 }
6461 }
6462 if (fit == v_copy.num_slots)
6463 {
6464 *vinsn = v_copy;
6465 xtensa_format_encode (isa, format, vinsn->insnbuf);
6466 vinsn->format = format;
6467 break;
6468 }
6469 }
6470 }
6471
6472 if (format == xtensa_isa_num_formats (isa))
6473 return XTENSA_UNDEFINED;
6474
6475 return format;
6476}
6477
6478
6479/* Return the additional space needed in a frag
6480 for possible relaxations of any ops in a VLIW insn.
6481 Also fill out the relaxations that might be required of
6482 each tinsn in the vinsn. */
6483
6484static int
7fa3d080 6485relaxation_requirements (vliw_insn *vinsn)
43cd72b9
BW
6486{
6487 int extra_space = 0;
6488 int slot;
6489
6490 for (slot = 0; slot < vinsn->num_slots; slot++)
6491 {
6492 TInsn *tinsn = &vinsn->slots[slot];
6493 if (!tinsn_has_symbolic_operands (tinsn))
6494 {
6495 /* A narrow instruction could be widened later to help
6496 alignment issues. */
84b08ed9 6497 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
43cd72b9
BW
6498 && !tinsn->is_specific_opcode
6499 && vinsn->num_slots == 1)
6500 {
6501 /* Difference in bytes between narrow and wide insns... */
6502 extra_space += 1;
6503 tinsn->subtype = RELAX_NARROW;
6504 tinsn->record_fix = TRUE;
6505 break;
6506 }
6507 else
6508 {
6509 tinsn->record_fix = FALSE;
6510 /* No extra_space needed. */
6511 }
6512 }
6513 else
6514 {
b08b5071
BW
6515 if (workaround_b_j_loop_end
6516 && tinsn->opcode == xtensa_jx_opcode
43cd72b9
BW
6517 && use_transform ())
6518 {
6519 /* Add 2 of these. */
6520 extra_space += 3; /* for the nop size */
6521 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6522 }
c138bc38 6523
43cd72b9
BW
6524 /* Need to assemble it with space for the relocation. */
6525 if (xg_is_relaxable_insn (tinsn, 0)
6526 && !tinsn->is_specific_opcode)
6527 {
6528 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6529 int max_literal_size =
6530 xg_get_max_insn_widen_literal_size (tinsn->opcode);
c138bc38 6531
43cd72b9 6532 tinsn->literal_space = max_literal_size;
c138bc38 6533
43cd72b9
BW
6534 tinsn->subtype = RELAX_IMMED;
6535 tinsn->record_fix = FALSE;
6536 extra_space += max_size;
6537 }
6538 else
6539 {
6540 tinsn->record_fix = TRUE;
6541 /* No extra space needed. */
6542 }
6543 }
6544 }
6545 return extra_space;
6546}
6547
6548
6549static void
7fa3d080 6550bundle_single_op (TInsn *orig_insn)
43cd72b9
BW
6551{
6552 xtensa_isa isa = xtensa_default_isa;
6553 vliw_insn v;
6554 int slot;
6555
6556 xg_init_vinsn (&v);
6557 v.format = op_placement_table[orig_insn->opcode].narrowest;
6558 assert (v.format != XTENSA_UNDEFINED);
6559 v.num_slots = xtensa_format_num_slots (isa, v.format);
6560
6561 for (slot = 0;
6562 !opcode_fits_format_slot (orig_insn->opcode, v.format, slot);
6563 slot++)
6564 {
6565 v.slots[slot].opcode =
6566 xtensa_format_slot_nop_opcode (isa, v.format, slot);
6567 v.slots[slot].ntok = 0;
6568 v.slots[slot].insn_type = ITYPE_INSN;
6569 }
6570
6571 v.slots[slot] = *orig_insn;
6572 slot++;
6573
6574 for ( ; slot < v.num_slots; slot++)
6575 {
6576 v.slots[slot].opcode =
6577 xtensa_format_slot_nop_opcode (isa, v.format, slot);
6578 v.slots[slot].ntok = 0;
6579 v.slots[slot].insn_type = ITYPE_INSN;
6580 }
6581
6582 finish_vinsn (&v);
6583 xg_free_vinsn (&v);
6584}
6585
6586
6587static bfd_boolean
7fa3d080 6588emit_single_op (TInsn *orig_insn)
43cd72b9
BW
6589{
6590 int i;
6591 IStack istack; /* put instructions into here */
6592 symbolS *lit_sym = NULL;
6593 symbolS *label_sym = NULL;
6594
6595 istack_init (&istack);
6596
6597 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
c138bc38
BW
6598 Because the scheduling and bundling characteristics of movi and
6599 l32r or const16 are so different, we can do much better if we relax
43cd72b9 6600 it prior to scheduling and bundling, rather than after. */
c138bc38 6601 if ((orig_insn->opcode == xtensa_movi_opcode
b08b5071
BW
6602 || orig_insn->opcode == xtensa_movi_n_opcode)
6603 && !cur_vinsn.inside_bundle
43cd72b9
BW
6604 && (orig_insn->tok[1].X_op == O_symbol
6605 || orig_insn->tok[1].X_op == O_pltrel))
6606 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6607 else
6608 if (xg_expand_assembly_insn (&istack, orig_insn))
6609 return TRUE;
6610
6611 for (i = 0; i < istack.ninsn; i++)
6612 {
6613 TInsn *insn = &istack.insn[i];
c138bc38 6614 switch (insn->insn_type)
43cd72b9
BW
6615 {
6616 case ITYPE_LITERAL:
6617 assert (lit_sym == NULL);
6618 lit_sym = xg_assemble_literal (insn);
6619 break;
6620 case ITYPE_LABEL:
6621 {
6622 static int relaxed_sym_idx = 0;
6623 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6624 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6625 colon (label);
6626 assert (label_sym == NULL);
6627 label_sym = symbol_find_or_make (label);
6628 assert (label_sym);
6629 free (label);
6630 }
6631 break;
6632 case ITYPE_INSN:
6633 if (lit_sym)
6634 xg_resolve_literals (insn, lit_sym);
6635 if (label_sym)
6636 xg_resolve_labels (insn, label_sym);
6637 bundle_single_op (insn);
6638 break;
6639 default:
6640 assert (0);
6641 break;
6642 }
6643 }
6644 return FALSE;
6645}
6646
6647
34e41783
BW
6648static int
6649total_frag_text_expansion (fragS *fragP)
6650{
6651 int slot;
6652 int total_expansion = 0;
6653
6654 for (slot = 0; slot < MAX_SLOTS; slot++)
6655 total_expansion += fragP->tc_frag_data.text_expansion[slot];
6656
6657 return total_expansion;
6658}
6659
6660
43cd72b9
BW
6661/* Emit a vliw instruction to the current fragment. */
6662
7fa3d080
BW
6663static void
6664xg_assemble_vliw_tokens (vliw_insn *vinsn)
43cd72b9
BW
6665{
6666 bfd_boolean finish_frag = FALSE;
6667 bfd_boolean is_jump = FALSE;
6668 bfd_boolean is_branch = FALSE;
6669 xtensa_isa isa = xtensa_default_isa;
6670 int i;
6671 int insn_size;
6672 int extra_space;
6673 char *f = NULL;
6674 int slot;
6675 struct dwarf2_line_info best_loc;
6676
6677 best_loc.line = INT_MAX;
6678
6679 if (generating_literals)
6680 {
6681 static int reported = 0;
6682 if (reported < 4)
6683 as_bad_where (frag_now->fr_file, frag_now->fr_line,
6684 _("cannot assemble into a literal fragment"));
6685 if (reported == 3)
6686 as_bad (_("..."));
6687 reported++;
6688 return;
6689 }
6690
6691 if (frag_now_fix () != 0
b08b5071 6692 && (! frag_now->tc_frag_data.is_insn
43cd72b9 6693 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
b08b5071 6694 || !use_transform () != frag_now->tc_frag_data.is_no_transform
7c834684
BW
6695 || (directive_state[directive_longcalls]
6696 != frag_now->tc_frag_data.use_longcalls)
43cd72b9
BW
6697 || (directive_state[directive_absolute_literals]
6698 != frag_now->tc_frag_data.use_absolute_literals)))
6699 {
6700 frag_wane (frag_now);
6701 frag_new (0);
6702 xtensa_set_frag_assembly_state (frag_now);
6703 }
6704
6705 if (workaround_a0_b_retw
6706 && vinsn->num_slots == 1
6707 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
6708 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
6709 && use_transform ())
6710 {
6711 has_a0_b_retw = TRUE;
6712
6713 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6714 After the first assembly pass we will check all of them and
6715 add a nop if needed. */
6716 frag_now->tc_frag_data.is_insn = TRUE;
6717 frag_var (rs_machine_dependent, 4, 4,
6718 RELAX_ADD_NOP_IF_A0_B_RETW,
6719 frag_now->fr_symbol,
6720 frag_now->fr_offset,
6721 NULL);
6722 xtensa_set_frag_assembly_state (frag_now);
6723 frag_now->tc_frag_data.is_insn = TRUE;
6724 frag_var (rs_machine_dependent, 4, 4,
6725 RELAX_ADD_NOP_IF_A0_B_RETW,
6726 frag_now->fr_symbol,
6727 frag_now->fr_offset,
6728 NULL);
6729 xtensa_set_frag_assembly_state (frag_now);
6730 }
6731
6732 for (i = 0; i < vinsn->num_slots; i++)
6733 {
6734 /* See if the instruction implies an aligned section. */
6735 if (xtensa_opcode_is_loop (isa, vinsn->slots[i].opcode) == 1)
6736 record_alignment (now_seg, 2);
c138bc38 6737
43cd72b9 6738 /* Also determine the best line number for debug info. */
c138bc38 6739 best_loc = vinsn->slots[i].loc.line < best_loc.line
43cd72b9
BW
6740 ? vinsn->slots[i].loc : best_loc;
6741 }
6742
6743 /* Special cases for instructions that force an alignment... */
6744 /* None of these opcodes are bundle-able. */
6745 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
6746 {
d77b99c9 6747 int max_fill;
c138bc38 6748
43cd72b9
BW
6749 xtensa_set_frag_assembly_state (frag_now);
6750 frag_now->tc_frag_data.is_insn = TRUE;
c138bc38 6751
43cd72b9
BW
6752 max_fill = get_text_align_max_fill_size
6753 (get_text_align_power (xtensa_fetch_width),
6754 TRUE, frag_now->tc_frag_data.is_no_density);
6755
6756 if (use_transform ())
6757 frag_var (rs_machine_dependent, max_fill, max_fill,
6758 RELAX_ALIGN_NEXT_OPCODE,
6759 frag_now->fr_symbol,
6760 frag_now->fr_offset,
6761 NULL);
6762 else
c138bc38 6763 frag_var (rs_machine_dependent, 0, 0,
43cd72b9
BW
6764 RELAX_CHECK_ALIGN_NEXT_OPCODE, 0, 0, NULL);
6765 xtensa_set_frag_assembly_state (frag_now);
c138bc38 6766
43cd72b9
BW
6767 xtensa_move_labels (frag_now, 0, FALSE);
6768 }
6769
b08b5071 6770 if (vinsn->slots[0].opcode == xtensa_entry_opcode
43cd72b9
BW
6771 && !vinsn->slots[0].is_specific_opcode)
6772 {
6773 xtensa_mark_literal_pool_location ();
6774 xtensa_move_labels (frag_now, 0, TRUE);
6775 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
6776 }
6777
6778 if (vinsn->num_slots == 1)
6779 {
6780 if (workaround_a0_b_retw && use_transform ())
6781 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
6782 is_register_writer (&vinsn->slots[0], "a", 0));
6783
6784 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
6785 is_bad_loopend_opcode (&vinsn->slots[0]));
6786 }
6787 else
6788 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
6789
6790 insn_size = xtensa_format_length (isa, vinsn->format);
6791
6792 extra_space = relaxation_requirements (vinsn);
6793
6794 /* vinsn_to_insnbuf will produce the error. */
6795 if (vinsn->format != XTENSA_UNDEFINED)
6796 {
d77b99c9 6797 f = frag_more (insn_size + extra_space);
43cd72b9
BW
6798 xtensa_set_frag_assembly_state (frag_now);
6799 frag_now->tc_frag_data.is_insn = TRUE;
6800 }
6801
6802 vinsn_to_insnbuf (vinsn, f, frag_now, TRUE);
6803 if (vinsn->format == XTENSA_UNDEFINED)
6804 return;
6805
d77b99c9 6806 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
c138bc38 6807
47e70edb 6808 xtensa_dwarf2_emit_insn (insn_size + extra_space, &best_loc);
43cd72b9
BW
6809
6810 for (slot = 0; slot < vinsn->num_slots; slot++)
6811 {
6812 TInsn *tinsn = &vinsn->slots[slot];
6813 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7c834684
BW
6814 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
6815 frag_now->tc_frag_data.slot_sub_symbols[slot] = tinsn->sub_symbol;
6816 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
43cd72b9
BW
6817 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
6818 if (tinsn->literal_space != 0)
6819 xg_assemble_literal_space (tinsn->literal_space, slot);
6820
6821 if (tinsn->subtype == RELAX_NARROW)
6822 assert (vinsn->num_slots == 1);
6823 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
6824 is_jump = TRUE;
6825 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
6826 is_branch = TRUE;
6827
c138bc38 6828 if (tinsn->subtype || tinsn->symbol || tinsn->record_fix
43cd72b9
BW
6829 || tinsn->offset || tinsn->literal_frag || is_jump || is_branch)
6830 finish_frag = TRUE;
6831 }
6832
6833 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
b08b5071 6834 frag_now->tc_frag_data.is_specific_opcode = TRUE;
43cd72b9
BW
6835
6836 if (finish_frag)
6837 {
6838 frag_variant (rs_machine_dependent,
6839 extra_space, extra_space, RELAX_SLOTS,
6840 frag_now->fr_symbol, frag_now->fr_offset, f);
6841 xtensa_set_frag_assembly_state (frag_now);
6842 }
6843
6844 /* Special cases for loops:
6845 close_loop_end should be inserted AFTER short_loop.
6846 Make sure that CLOSE loops are processed BEFORE short_loops
6847 when converting them. */
6848
6849 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
6850 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode)
6851 && !vinsn->slots[0].is_specific_opcode)
6852 {
6853 if (workaround_short_loop && use_transform ())
6854 {
6855 maybe_has_short_loop = TRUE;
6856 frag_now->tc_frag_data.is_insn = TRUE;
6857 frag_var (rs_machine_dependent, 4, 4,
6858 RELAX_ADD_NOP_IF_SHORT_LOOP,
6859 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6860 frag_now->tc_frag_data.is_insn = TRUE;
6861 frag_var (rs_machine_dependent, 4, 4,
6862 RELAX_ADD_NOP_IF_SHORT_LOOP,
6863 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6864 }
6865
6866 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
6867 loop at least 12 bytes away from another loop's end. */
6868 if (workaround_close_loop_end && use_transform ())
6869 {
6870 maybe_has_close_loop_end = TRUE;
6871 frag_now->tc_frag_data.is_insn = TRUE;
6872 frag_var (rs_machine_dependent, 12, 12,
6873 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
6874 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6875 }
6876 }
6877
6878 if (use_transform ())
6879 {
6880 if (is_jump)
6881 {
6882 assert (finish_frag);
6883 frag_var (rs_machine_dependent,
6884 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6885 RELAX_UNREACHABLE,
6886 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6887 xtensa_set_frag_assembly_state (frag_now);
6888 }
7b1cc377 6889 else if (is_branch && do_align_targets ())
43cd72b9
BW
6890 {
6891 assert (finish_frag);
6892 frag_var (rs_machine_dependent,
6893 UNREACHABLE_MAX_WIDTH, UNREACHABLE_MAX_WIDTH,
6894 RELAX_MAYBE_UNREACHABLE,
6895 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6896 xtensa_set_frag_assembly_state (frag_now);
6897 frag_var (rs_machine_dependent,
6898 0, 0,
6899 RELAX_MAYBE_DESIRE_ALIGN,
6900 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6901 xtensa_set_frag_assembly_state (frag_now);
6902 }
6903 }
6904
6905 /* Now, if the original opcode was a call... */
6906 if (do_align_targets ()
6907 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
6908 {
b08b5071 6909 float freq = get_subseg_total_freq (now_seg, now_subseg);
43cd72b9
BW
6910 frag_now->tc_frag_data.is_insn = TRUE;
6911 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
6912 frag_now->fr_symbol, frag_now->fr_offset, NULL);
6913 xtensa_set_frag_assembly_state (frag_now);
6914 }
6915
6916 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
6917 {
6918 frag_wane (frag_now);
6919 frag_new (0);
6920 xtensa_set_frag_assembly_state (frag_now);
6921 }
6922}
6923
6924\f
7fa3d080
BW
6925/* xtensa_end and helper functions. */
6926
6927static void xtensa_cleanup_align_frags (void);
6928static void xtensa_fix_target_frags (void);
6929static void xtensa_mark_narrow_branches (void);
6930static void xtensa_mark_zcl_first_insns (void);
6931static void xtensa_fix_a0_b_retw_frags (void);
6932static void xtensa_fix_b_j_loop_end_frags (void);
6933static void xtensa_fix_close_loop_end_frags (void);
6934static void xtensa_fix_short_loop_frags (void);
6935static void xtensa_sanity_check (void);
6936
43cd72b9 6937void
7fa3d080 6938xtensa_end (void)
43cd72b9
BW
6939{
6940 directive_balance ();
6941 xtensa_flush_pending_output ();
6942
6943 past_xtensa_end = TRUE;
6944
6945 xtensa_move_literals ();
6946
6947 xtensa_reorder_segments ();
6948 xtensa_cleanup_align_frags ();
6949 xtensa_fix_target_frags ();
6950 if (workaround_a0_b_retw && has_a0_b_retw)
6951 xtensa_fix_a0_b_retw_frags ();
6952 if (workaround_b_j_loop_end)
6953 xtensa_fix_b_j_loop_end_frags ();
6954
6955 /* "close_loop_end" should be processed BEFORE "short_loop". */
6956 if (workaround_close_loop_end && maybe_has_close_loop_end)
6957 xtensa_fix_close_loop_end_frags ();
6958
6959 if (workaround_short_loop && maybe_has_short_loop)
6960 xtensa_fix_short_loop_frags ();
6961 xtensa_mark_narrow_branches ();
6962 xtensa_mark_zcl_first_insns ();
6963
6964 xtensa_sanity_check ();
6965}
6966
6967
6968static void
7fa3d080 6969xtensa_cleanup_align_frags (void)
43cd72b9
BW
6970{
6971 frchainS *frchP;
6972
6973 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
6974 {
6975 fragS *fragP;
6976 /* Walk over all of the fragments in a subsection. */
6977 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
6978 {
6979 if ((fragP->fr_type == rs_align
6980 || fragP->fr_type == rs_align_code
6981 || (fragP->fr_type == rs_machine_dependent
6982 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
6983 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
6984 && fragP->fr_fix == 0)
6985 {
6986 fragS *next = fragP->fr_next;
6987
6988 while (next
6989 && next->fr_fix == 0
6990 && next->fr_type == rs_machine_dependent
6991 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
6992 {
6993 frag_wane (next);
6994 next = next->fr_next;
6995 }
6996 }
6997 /* If we don't widen branch targets, then they
6998 will be easier to align. */
6999 if (fragP->tc_frag_data.is_branch_target
7000 && fragP->fr_opcode == fragP->fr_literal
7001 && fragP->fr_type == rs_machine_dependent
7002 && fragP->fr_subtype == RELAX_SLOTS
7003 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
7004 frag_wane (fragP);
c138bc38 7005 if (fragP->fr_type == rs_machine_dependent
43cd72b9
BW
7006 && fragP->fr_subtype == RELAX_UNREACHABLE)
7007 fragP->tc_frag_data.is_unreachable = TRUE;
7008 }
7009 }
7010}
7011
7012
7013/* Re-process all of the fragments looking to convert all of the
7014 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7015 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7b1cc377 7016 Otherwise, convert to a .fill 0. */
7fa3d080 7017
43cd72b9 7018static void
7fa3d080 7019xtensa_fix_target_frags (void)
e0001a05
NC
7020{
7021 frchainS *frchP;
7022
7023 /* When this routine is called, all of the subsections are still intact
7024 so we walk over subsections instead of sections. */
7025 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7026 {
e0001a05
NC
7027 fragS *fragP;
7028
7029 /* Walk over all of the fragments in a subsection. */
7030 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7031 {
7032 if (fragP->fr_type == rs_machine_dependent
7033 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7034 {
7b1cc377 7035 if (next_frag_is_branch_target (fragP))
e0001a05
NC
7036 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7037 else
7038 frag_wane (fragP);
7039 }
e0001a05
NC
7040 }
7041 }
7042}
7043
7044
7fa3d080
BW
7045static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7046
43cd72b9 7047static void
7fa3d080 7048xtensa_mark_narrow_branches (void)
43cd72b9
BW
7049{
7050 frchainS *frchP;
7051
7052 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7053 {
7054 fragS *fragP;
7055 /* Walk over all of the fragments in a subsection. */
7056 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7057 {
7058 if (fragP->fr_type == rs_machine_dependent
7059 && fragP->fr_subtype == RELAX_SLOTS
7060 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7061 {
7062 vliw_insn vinsn;
7063 const expressionS *expr;
7064 symbolS *symbolP;
7065
7066 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7067 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7068
7069 expr = &vinsn.slots[0].tok[1];
7070 symbolP = expr->X_add_symbol;
7071
7072 if (vinsn.num_slots == 1
7073 && xtensa_opcode_is_branch (xtensa_default_isa,
7074 vinsn.slots[0].opcode)
7075 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7076 && is_narrow_branch_guaranteed_in_range (fragP,
7077 &vinsn.slots[0]))
7078 {
7079 fragP->fr_subtype = RELAX_SLOTS;
7080 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7081 }
7082 }
7083 }
7084 }
7085}
7086
7087
7088/* A branch is typically widened only when its target is out of
7089 range. However, we would like to widen them to align a subsequent
7090 branch target when possible.
7091
7092 Because the branch relaxation code is so convoluted, the optimal solution
7093 (combining the two cases) is difficult to get right in all circumstances.
7094 We therefore go with an "almost as good" solution, where we only
7095 use for alignment narrow branches that definitely will not expand to a
7096 jump and a branch. These functions find and mark these cases. */
7097
a67517f4
BW
7098/* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7099 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7100 We start counting beginning with the frag after the 2-byte branch, so the
7101 maximum offset is (4 - 2) + 63 = 65. */
7102#define MAX_IMMED6 65
43cd72b9 7103
d77b99c9 7104static offsetT unrelaxed_frag_max_size (fragS *);
7fa3d080 7105
43cd72b9 7106static bfd_boolean
7fa3d080 7107is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
43cd72b9
BW
7108{
7109 const expressionS *expr = &tinsn->tok[1];
7110 symbolS *symbolP = expr->X_add_symbol;
7111 fragS *target_frag = symbol_get_frag (symbolP);
d77b99c9 7112 offsetT max_distance = expr->X_add_number;
43cd72b9
BW
7113 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7114 if (is_branch_jmp_to_next (tinsn, fragP))
7115 return FALSE;
7116
7117 /* The branch doesn't branch over it's own frag,
7118 but over the subsequent ones. */
7119 fragP = fragP->fr_next;
7120 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7121 {
7122 max_distance += unrelaxed_frag_max_size (fragP);
7123 fragP = fragP->fr_next;
7124 }
7125 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7126 return TRUE;
e0001a05
NC
7127 return FALSE;
7128}
7129
7130
43cd72b9 7131static void
7fa3d080 7132xtensa_mark_zcl_first_insns (void)
43cd72b9
BW
7133{
7134 frchainS *frchP;
7135
7136 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7137 {
7138 fragS *fragP;
7139 /* Walk over all of the fragments in a subsection. */
7140 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7141 {
7142 if (fragP->fr_type == rs_machine_dependent
7143 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7144 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7145 {
7146 /* Find the loop frag. */
7147 fragS *targ_frag = next_non_empty_frag (fragP);
7148 /* Find the first insn frag. */
7149 targ_frag = next_non_empty_frag (targ_frag);
7150
7151 /* Of course, sometimes (mostly for toy test cases) a
7152 zero-cost loop instruction is the last in a section. */
c138bc38 7153 if (targ_frag)
d7c531cd
BW
7154 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7155 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7156 frag_wane (fragP);
43cd72b9
BW
7157 }
7158 }
7159 }
7160}
7161
7162
e0001a05
NC
7163/* Re-process all of the fragments looking to convert all of the
7164 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7165 conditional branch or a retw/retw.n, convert this frag to one that
7166 will generate a NOP. In any case close it off with a .fill 0. */
7167
7fa3d080
BW
7168static bfd_boolean next_instrs_are_b_retw (fragS *);
7169
e0001a05 7170static void
7fa3d080 7171xtensa_fix_a0_b_retw_frags (void)
e0001a05
NC
7172{
7173 frchainS *frchP;
7174
7175 /* When this routine is called, all of the subsections are still intact
7176 so we walk over subsections instead of sections. */
7177 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7178 {
7179 fragS *fragP;
7180
7181 /* Walk over all of the fragments in a subsection. */
7182 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7183 {
7184 if (fragP->fr_type == rs_machine_dependent
7185 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7186 {
7187 if (next_instrs_are_b_retw (fragP))
43cd72b9 7188 {
b08b5071 7189 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7190 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7191 else
7192 relax_frag_add_nop (fragP);
7193 }
7194 frag_wane (fragP);
e0001a05
NC
7195 }
7196 }
7197 }
7198}
7199
7200
7fa3d080
BW
7201static bfd_boolean
7202next_instrs_are_b_retw (fragS *fragP)
e0001a05
NC
7203{
7204 xtensa_opcode opcode;
43cd72b9 7205 xtensa_format fmt;
e0001a05
NC
7206 const fragS *next_fragP = next_non_empty_frag (fragP);
7207 static xtensa_insnbuf insnbuf = NULL;
43cd72b9 7208 static xtensa_insnbuf slotbuf = NULL;
e0001a05
NC
7209 xtensa_isa isa = xtensa_default_isa;
7210 int offset = 0;
43cd72b9
BW
7211 int slot;
7212 bfd_boolean branch_seen = FALSE;
e0001a05
NC
7213
7214 if (!insnbuf)
43cd72b9
BW
7215 {
7216 insnbuf = xtensa_insnbuf_alloc (isa);
7217 slotbuf = xtensa_insnbuf_alloc (isa);
7218 }
e0001a05
NC
7219
7220 if (next_fragP == NULL)
7221 return FALSE;
7222
7223 /* Check for the conditional branch. */
d77b99c9
BW
7224 xtensa_insnbuf_from_chars
7225 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
43cd72b9
BW
7226 fmt = xtensa_format_decode (isa, insnbuf);
7227 if (fmt == XTENSA_UNDEFINED)
7228 return FALSE;
7229
7230 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
7231 {
7232 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
7233 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
7234
7235 branch_seen = (branch_seen
7236 || xtensa_opcode_is_branch (isa, opcode) == 1);
7237 }
e0001a05 7238
43cd72b9 7239 if (!branch_seen)
e0001a05
NC
7240 return FALSE;
7241
43cd72b9 7242 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7243 if (offset == next_fragP->fr_fix)
7244 {
7245 next_fragP = next_non_empty_frag (next_fragP);
7246 offset = 0;
7247 }
43cd72b9 7248
e0001a05
NC
7249 if (next_fragP == NULL)
7250 return FALSE;
7251
7252 /* Check for the retw/retw.n. */
d77b99c9
BW
7253 xtensa_insnbuf_from_chars
7254 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
43cd72b9
BW
7255 fmt = xtensa_format_decode (isa, insnbuf);
7256
7257 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7258 have no problems. */
7259 if (fmt == XTENSA_UNDEFINED
7260 || xtensa_format_num_slots (isa, fmt) != 1)
7261 return FALSE;
7262
7263 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7264 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
e0001a05 7265
b08b5071 7266 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
e0001a05 7267 return TRUE;
43cd72b9 7268
e0001a05
NC
7269 return FALSE;
7270}
7271
7272
7273/* Re-process all of the fragments looking to convert all of the
7274 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7275 loop end label, convert this frag to one that will generate a NOP.
7276 In any case close it off with a .fill 0. */
7277
7fa3d080
BW
7278static bfd_boolean next_instr_is_loop_end (fragS *);
7279
e0001a05 7280static void
7fa3d080 7281xtensa_fix_b_j_loop_end_frags (void)
e0001a05
NC
7282{
7283 frchainS *frchP;
7284
7285 /* When this routine is called, all of the subsections are still intact
7286 so we walk over subsections instead of sections. */
7287 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7288 {
7289 fragS *fragP;
7290
7291 /* Walk over all of the fragments in a subsection. */
7292 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7293 {
7294 if (fragP->fr_type == rs_machine_dependent
7295 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
7296 {
7297 if (next_instr_is_loop_end (fragP))
43cd72b9 7298 {
b08b5071 7299 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7300 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7301 else
7302 relax_frag_add_nop (fragP);
7303 }
7304 frag_wane (fragP);
e0001a05
NC
7305 }
7306 }
7307 }
7308}
7309
7310
7fa3d080
BW
7311static bfd_boolean
7312next_instr_is_loop_end (fragS *fragP)
e0001a05
NC
7313{
7314 const fragS *next_fragP;
7315
7316 if (next_frag_is_loop_target (fragP))
7317 return FALSE;
7318
7319 next_fragP = next_non_empty_frag (fragP);
7320 if (next_fragP == NULL)
7321 return FALSE;
7322
7323 if (!next_frag_is_loop_target (next_fragP))
7324 return FALSE;
7325
7326 /* If the size is >= 3 then there is more than one instruction here.
7327 The hardware bug will not fire. */
7328 if (next_fragP->fr_fix > 3)
7329 return FALSE;
7330
7331 return TRUE;
7332}
7333
7334
7335/* Re-process all of the fragments looking to convert all of the
7336 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7337 not MY loop's loop end within 12 bytes, add enough nops here to
7338 make it at least 12 bytes away. In any case close it off with a
7339 .fill 0. */
7340
d77b99c9
BW
7341static offsetT min_bytes_to_other_loop_end
7342 (fragS *, fragS *, offsetT, offsetT);
7fa3d080 7343
e0001a05 7344static void
7fa3d080 7345xtensa_fix_close_loop_end_frags (void)
e0001a05
NC
7346{
7347 frchainS *frchP;
7348
7349 /* When this routine is called, all of the subsections are still intact
7350 so we walk over subsections instead of sections. */
7351 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7352 {
7353 fragS *fragP;
7354
7355 fragS *current_target = NULL;
7356 offsetT current_offset = 0;
7357
7358 /* Walk over all of the fragments in a subsection. */
7359 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7360 {
7361 if (fragP->fr_type == rs_machine_dependent
43cd72b9
BW
7362 && ((fragP->fr_subtype == RELAX_IMMED)
7363 || ((fragP->fr_subtype == RELAX_SLOTS)
7364 && (fragP->tc_frag_data.slot_subtypes[0]
7365 == RELAX_IMMED))))
e0001a05
NC
7366 {
7367 /* Read it. If the instruction is a loop, get the target. */
43cd72b9
BW
7368 TInsn t_insn;
7369 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7370 if (xtensa_opcode_is_loop (xtensa_default_isa,
7371 t_insn.opcode) == 1)
e0001a05 7372 {
e0001a05 7373 /* Get the current fragment target. */
43cd72b9 7374 if (fragP->tc_frag_data.slot_symbols[0])
e0001a05 7375 {
43cd72b9
BW
7376 symbolS *sym = fragP->tc_frag_data.slot_symbols[0];
7377 current_target = symbol_get_frag (sym);
e0001a05
NC
7378 current_offset = fragP->fr_offset;
7379 }
7380 }
7381 }
7382
7383 if (current_target
7384 && fragP->fr_type == rs_machine_dependent
7385 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
7386 {
d77b99c9
BW
7387 offsetT min_bytes;
7388 int bytes_added = 0;
e0001a05
NC
7389
7390#define REQUIRED_LOOP_DIVIDING_BYTES 12
7391 /* Max out at 12. */
7392 min_bytes = min_bytes_to_other_loop_end
7393 (fragP->fr_next, current_target, current_offset,
7394 REQUIRED_LOOP_DIVIDING_BYTES);
7395
7396 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
7397 {
b08b5071 7398 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7399 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7400 else
e0001a05 7401 {
43cd72b9
BW
7402 while (min_bytes + bytes_added
7403 < REQUIRED_LOOP_DIVIDING_BYTES)
e0001a05 7404 {
43cd72b9 7405 int length = 3;
c138bc38 7406
43cd72b9
BW
7407 if (fragP->fr_var < length)
7408 as_fatal (_("fr_var %lu < length %d"),
dd49a749 7409 (long) fragP->fr_var, length);
43cd72b9
BW
7410 else
7411 {
7412 assemble_nop (length,
7413 fragP->fr_literal + fragP->fr_fix);
7414 fragP->fr_fix += length;
7415 fragP->fr_var -= length;
7416 }
7417 bytes_added += length;
e0001a05 7418 }
e0001a05
NC
7419 }
7420 }
7421 frag_wane (fragP);
7422 }
43cd72b9
BW
7423 assert (fragP->fr_type != rs_machine_dependent
7424 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
e0001a05
NC
7425 }
7426 }
7427}
7428
7429
d77b99c9 7430static offsetT unrelaxed_frag_min_size (fragS *);
7fa3d080 7431
d77b99c9 7432static offsetT
7fa3d080
BW
7433min_bytes_to_other_loop_end (fragS *fragP,
7434 fragS *current_target,
7435 offsetT current_offset,
d77b99c9 7436 offsetT max_size)
e0001a05 7437{
d77b99c9 7438 offsetT offset = 0;
e0001a05
NC
7439 fragS *current_fragP;
7440
7441 for (current_fragP = fragP;
7442 current_fragP;
7443 current_fragP = current_fragP->fr_next)
7444 {
7445 if (current_fragP->tc_frag_data.is_loop_target
7446 && current_fragP != current_target)
7447 return offset + current_offset;
7448
7449 offset += unrelaxed_frag_min_size (current_fragP);
7450
7451 if (offset + current_offset >= max_size)
7452 return max_size;
7453 }
7454 return max_size;
7455}
7456
7457
d77b99c9 7458static offsetT
7fa3d080 7459unrelaxed_frag_min_size (fragS *fragP)
e0001a05 7460{
d77b99c9 7461 offsetT size = fragP->fr_fix;
e0001a05 7462
d77b99c9 7463 /* Add fill size. */
e0001a05
NC
7464 if (fragP->fr_type == rs_fill)
7465 size += fragP->fr_offset;
7466
7467 return size;
7468}
7469
7470
d77b99c9 7471static offsetT
7fa3d080 7472unrelaxed_frag_max_size (fragS *fragP)
43cd72b9 7473{
d77b99c9 7474 offsetT size = fragP->fr_fix;
43cd72b9
BW
7475 switch (fragP->fr_type)
7476 {
7477 case 0:
c138bc38 7478 /* Empty frags created by the obstack allocation scheme
43cd72b9
BW
7479 end up with type 0. */
7480 break;
7481 case rs_fill:
7482 case rs_org:
7483 case rs_space:
7484 size += fragP->fr_offset;
7485 break;
7486 case rs_align:
7487 case rs_align_code:
7488 case rs_align_test:
7489 case rs_leb128:
7490 case rs_cfa:
7491 case rs_dwarf2dbg:
7492 /* No further adjustments needed. */
7493 break;
7494 case rs_machine_dependent:
7495 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
7496 size += fragP->fr_var;
7497 break;
7498 default:
7499 /* We had darn well better know how big it is. */
7500 assert (0);
7501 break;
7502 }
7503
7504 return size;
7505}
7506
7507
e0001a05
NC
7508/* Re-process all of the fragments looking to convert all
7509 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7510
7511 A)
7512 1) the instruction size count to the loop end label
7513 is too short (<= 2 instructions),
7514 2) loop has a jump or branch in it
7515
7516 or B)
43cd72b9 7517 1) workaround_all_short_loops is TRUE
e0001a05
NC
7518 2) The generating loop was a 'loopgtz' or 'loopnez'
7519 3) the instruction size count to the loop end label is too short
7520 (<= 2 instructions)
7521 then convert this frag (and maybe the next one) to generate a NOP.
7522 In any case close it off with a .fill 0. */
7523
d77b99c9 7524static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
7fa3d080
BW
7525static bfd_boolean branch_before_loop_end (fragS *);
7526
e0001a05 7527static void
7fa3d080 7528xtensa_fix_short_loop_frags (void)
e0001a05
NC
7529{
7530 frchainS *frchP;
7531
7532 /* When this routine is called, all of the subsections are still intact
7533 so we walk over subsections instead of sections. */
7534 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7535 {
7536 fragS *fragP;
7537 fragS *current_target = NULL;
7538 offsetT current_offset = 0;
7539 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
7540
7541 /* Walk over all of the fragments in a subsection. */
7542 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7543 {
43cd72b9 7544 /* Check on the current loop. */
e0001a05 7545 if (fragP->fr_type == rs_machine_dependent
43cd72b9
BW
7546 && ((fragP->fr_subtype == RELAX_IMMED)
7547 || ((fragP->fr_subtype == RELAX_SLOTS)
7548 && (fragP->tc_frag_data.slot_subtypes[0]
7549 == RELAX_IMMED))))
e0001a05 7550 {
43cd72b9
BW
7551 TInsn t_insn;
7552
e0001a05 7553 /* Read it. If the instruction is a loop, get the target. */
43cd72b9
BW
7554 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7555 if (xtensa_opcode_is_loop (xtensa_default_isa,
7556 t_insn.opcode) == 1)
e0001a05 7557 {
e0001a05 7558 /* Get the current fragment target. */
43cd72b9 7559 if (fragP->tc_frag_data.slot_symbols[0])
e0001a05 7560 {
43cd72b9
BW
7561 symbolS *sym = fragP->tc_frag_data.slot_symbols[0];
7562 current_target = symbol_get_frag (sym);
e0001a05 7563 current_offset = fragP->fr_offset;
43cd72b9 7564 current_opcode = t_insn.opcode;
e0001a05
NC
7565 }
7566 }
7567 }
7568
7569 if (fragP->fr_type == rs_machine_dependent
7570 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7571 {
d77b99c9 7572 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
e0001a05 7573 && (branch_before_loop_end (fragP->fr_next)
43cd72b9 7574 || (workaround_all_short_loops
e0001a05 7575 && current_opcode != XTENSA_UNDEFINED
b08b5071 7576 && current_opcode != xtensa_loop_opcode)))
43cd72b9 7577 {
b08b5071 7578 if (fragP->tc_frag_data.is_no_transform)
43cd72b9
BW
7579 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7580 else
7581 relax_frag_add_nop (fragP);
7582 }
7583 frag_wane (fragP);
e0001a05
NC
7584 }
7585 }
7586 }
7587}
7588
7589
d77b99c9 7590static int unrelaxed_frag_min_insn_count (fragS *);
7fa3d080 7591
d77b99c9 7592static int
7fa3d080
BW
7593count_insns_to_loop_end (fragS *base_fragP,
7594 bfd_boolean count_relax_add,
d77b99c9 7595 int max_count)
e0001a05
NC
7596{
7597 fragS *fragP = NULL;
d77b99c9 7598 int insn_count = 0;
e0001a05
NC
7599
7600 fragP = base_fragP;
7601
7602 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
7603 {
7604 insn_count += unrelaxed_frag_min_insn_count (fragP);
7605 if (insn_count >= max_count)
7606 return max_count;
7607
7608 if (count_relax_add)
7609 {
7610 if (fragP->fr_type == rs_machine_dependent
7611 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
7612 {
7613 /* In order to add the appropriate number of
7614 NOPs, we count an instruction for downstream
7615 occurrences. */
7616 insn_count++;
7617 if (insn_count >= max_count)
7618 return max_count;
7619 }
7620 }
7621 }
7622 return insn_count;
7623}
7624
7625
d77b99c9 7626static int
7fa3d080 7627unrelaxed_frag_min_insn_count (fragS *fragP)
e0001a05 7628{
43cd72b9
BW
7629 xtensa_isa isa = xtensa_default_isa;
7630 static xtensa_insnbuf insnbuf = NULL;
d77b99c9 7631 int insn_count = 0;
e0001a05
NC
7632 int offset = 0;
7633
7634 if (!fragP->tc_frag_data.is_insn)
7635 return insn_count;
7636
43cd72b9
BW
7637 if (!insnbuf)
7638 insnbuf = xtensa_insnbuf_alloc (isa);
7639
e0001a05
NC
7640 /* Decode the fixed instructions. */
7641 while (offset < fragP->fr_fix)
7642 {
43cd72b9
BW
7643 xtensa_format fmt;
7644
d77b99c9
BW
7645 xtensa_insnbuf_from_chars
7646 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
43cd72b9
BW
7647 fmt = xtensa_format_decode (isa, insnbuf);
7648
7649 if (fmt == XTENSA_UNDEFINED)
e0001a05
NC
7650 {
7651 as_fatal (_("undecodable instruction in instruction frag"));
7652 return insn_count;
7653 }
43cd72b9 7654 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7655 insn_count++;
7656 }
7657
7658 return insn_count;
7659}
7660
7661
7fa3d080
BW
7662static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
7663
43cd72b9 7664static bfd_boolean
7fa3d080 7665branch_before_loop_end (fragS *base_fragP)
e0001a05
NC
7666{
7667 fragS *fragP;
7668
7669 for (fragP = base_fragP;
7670 fragP && !fragP->tc_frag_data.is_loop_target;
7671 fragP = fragP->fr_next)
7672 {
7673 if (unrelaxed_frag_has_b_j (fragP))
7674 return TRUE;
7675 }
7676 return FALSE;
7677}
7678
7679
43cd72b9 7680static bfd_boolean
7fa3d080 7681unrelaxed_frag_has_b_j (fragS *fragP)
e0001a05 7682{
43cd72b9
BW
7683 static xtensa_insnbuf insnbuf = NULL;
7684 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
7685 int offset = 0;
7686
7687 if (!fragP->tc_frag_data.is_insn)
7688 return FALSE;
7689
43cd72b9
BW
7690 if (!insnbuf)
7691 insnbuf = xtensa_insnbuf_alloc (isa);
7692
e0001a05
NC
7693 /* Decode the fixed instructions. */
7694 while (offset < fragP->fr_fix)
7695 {
43cd72b9
BW
7696 xtensa_format fmt;
7697 int slot;
7698
d77b99c9
BW
7699 xtensa_insnbuf_from_chars
7700 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
43cd72b9
BW
7701 fmt = xtensa_format_decode (isa, insnbuf);
7702 if (fmt == XTENSA_UNDEFINED)
7703 return FALSE;
7704
7705 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
e0001a05 7706 {
43cd72b9
BW
7707 xtensa_opcode opcode =
7708 get_opcode_from_buf (fragP->fr_literal + offset, slot);
7709 if (xtensa_opcode_is_branch (isa, opcode) == 1
7710 || xtensa_opcode_is_jump (isa, opcode) == 1)
7711 return TRUE;
e0001a05 7712 }
43cd72b9 7713 offset += xtensa_format_length (isa, fmt);
e0001a05
NC
7714 }
7715 return FALSE;
7716}
7717
7718
7719/* Checks to be made after initial assembly but before relaxation. */
7720
7fa3d080
BW
7721static bfd_boolean is_empty_loop (const TInsn *, fragS *);
7722static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
7723
e0001a05 7724static void
7fa3d080 7725xtensa_sanity_check (void)
e0001a05
NC
7726{
7727 char *file_name;
d77b99c9 7728 unsigned line;
e0001a05
NC
7729
7730 frchainS *frchP;
7731
7732 as_where (&file_name, &line);
7733 for (frchP = frchain_root; frchP; frchP = frchP->frch_next)
7734 {
7735 fragS *fragP;
7736
7737 /* Walk over all of the fragments in a subsection. */
7738 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7739 {
7740 /* Currently we only check for empty loops here. */
7741 if (fragP->fr_type == rs_machine_dependent
7742 && fragP->fr_subtype == RELAX_IMMED)
7743 {
7744 static xtensa_insnbuf insnbuf = NULL;
7745 TInsn t_insn;
7746
7747 if (fragP->fr_opcode != NULL)
7748 {
7749 if (!insnbuf)
7750 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
43cd72b9
BW
7751 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
7752 tinsn_immed_from_frag (&t_insn, fragP, 0);
e0001a05 7753
43cd72b9
BW
7754 if (xtensa_opcode_is_loop (xtensa_default_isa,
7755 t_insn.opcode) == 1)
e0001a05
NC
7756 {
7757 if (is_empty_loop (&t_insn, fragP))
7758 {
7759 new_logical_line (fragP->fr_file, fragP->fr_line);
7760 as_bad (_("invalid empty loop"));
7761 }
7762 if (!is_local_forward_loop (&t_insn, fragP))
7763 {
7764 new_logical_line (fragP->fr_file, fragP->fr_line);
7765 as_bad (_("loop target does not follow "
7766 "loop instruction in section"));
7767 }
7768 }
7769 }
7770 }
7771 }
7772 }
7773 new_logical_line (file_name, line);
7774}
7775
7776
7777#define LOOP_IMMED_OPN 1
7778
43cd72b9 7779/* Return TRUE if the loop target is the next non-zero fragment. */
e0001a05 7780
7fa3d080
BW
7781static bfd_boolean
7782is_empty_loop (const TInsn *insn, fragS *fragP)
e0001a05
NC
7783{
7784 const expressionS *expr;
7785 symbolS *symbolP;
7786 fragS *next_fragP;
7787
7788 if (insn->insn_type != ITYPE_INSN)
7789 return FALSE;
7790
43cd72b9 7791 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
e0001a05
NC
7792 return FALSE;
7793
7794 if (insn->ntok <= LOOP_IMMED_OPN)
7795 return FALSE;
7796
7797 expr = &insn->tok[LOOP_IMMED_OPN];
7798
7799 if (expr->X_op != O_symbol)
7800 return FALSE;
7801
7802 symbolP = expr->X_add_symbol;
7803 if (!symbolP)
7804 return FALSE;
7805
7806 if (symbol_get_frag (symbolP) == NULL)
7807 return FALSE;
7808
7809 if (S_GET_VALUE (symbolP) != 0)
7810 return FALSE;
7811
7812 /* Walk through the zero-size fragments from this one. If we find
7813 the target fragment, then this is a zero-size loop. */
43cd72b9 7814
e0001a05
NC
7815 for (next_fragP = fragP->fr_next;
7816 next_fragP != NULL;
7817 next_fragP = next_fragP->fr_next)
7818 {
7819 if (next_fragP == symbol_get_frag (symbolP))
7820 return TRUE;
7821 if (next_fragP->fr_fix != 0)
7822 return FALSE;
7823 }
7824 return FALSE;
7825}
7826
7827
7fa3d080
BW
7828static bfd_boolean
7829is_local_forward_loop (const TInsn *insn, fragS *fragP)
e0001a05
NC
7830{
7831 const expressionS *expr;
7832 symbolS *symbolP;
7833 fragS *next_fragP;
7834
7835 if (insn->insn_type != ITYPE_INSN)
7836 return FALSE;
7837
43cd72b9 7838 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) == 0)
e0001a05
NC
7839 return FALSE;
7840
7841 if (insn->ntok <= LOOP_IMMED_OPN)
7842 return FALSE;
7843
7844 expr = &insn->tok[LOOP_IMMED_OPN];
7845
7846 if (expr->X_op != O_symbol)
7847 return FALSE;
7848
7849 symbolP = expr->X_add_symbol;
7850 if (!symbolP)
7851 return FALSE;
7852
7853 if (symbol_get_frag (symbolP) == NULL)
7854 return FALSE;
7855
7856 /* Walk through fragments until we find the target.
7857 If we do not find the target, then this is an invalid loop. */
43cd72b9 7858
e0001a05
NC
7859 for (next_fragP = fragP->fr_next;
7860 next_fragP != NULL;
7861 next_fragP = next_fragP->fr_next)
43cd72b9
BW
7862 {
7863 if (next_fragP == symbol_get_frag (symbolP))
7864 return TRUE;
7865 }
e0001a05
NC
7866
7867 return FALSE;
7868}
7869
7870\f
7871/* Alignment Functions. */
7872
d77b99c9
BW
7873static int
7874get_text_align_power (unsigned target_size)
e0001a05 7875{
d77b99c9
BW
7876 int i = 0;
7877 unsigned power = 1;
7878
7879 assert (target_size <= INT_MAX);
7880 while (target_size > power)
e0001a05 7881 {
d77b99c9
BW
7882 power <<= 1;
7883 i += 1;
e0001a05 7884 }
d77b99c9 7885 return i;
e0001a05
NC
7886}
7887
7888
d77b99c9 7889static int
7fa3d080
BW
7890get_text_align_max_fill_size (int align_pow,
7891 bfd_boolean use_nops,
7892 bfd_boolean use_no_density)
e0001a05
NC
7893{
7894 if (!use_nops)
7895 return (1 << align_pow);
7896 if (use_no_density)
7897 return 3 * (1 << align_pow);
7898
7899 return 1 + (1 << align_pow);
7900}
7901
7902
d77b99c9
BW
7903/* Calculate the minimum bytes of fill needed at "address" to align a
7904 target instruction of size "target_size" so that it does not cross a
7905 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
7906 the fill can be an arbitrary number of bytes. Otherwise, the space must
7907 be filled by NOP instructions. */
e0001a05 7908
d77b99c9 7909static int
7fa3d080
BW
7910get_text_align_fill_size (addressT address,
7911 int align_pow,
7912 int target_size,
7913 bfd_boolean use_nops,
7914 bfd_boolean use_no_density)
e0001a05 7915{
d77b99c9
BW
7916 addressT alignment, fill, fill_limit, fill_step;
7917 bfd_boolean skip_one = FALSE;
e0001a05 7918
d77b99c9
BW
7919 alignment = (1 << align_pow);
7920 assert (target_size > 0 && alignment >= (addressT) target_size);
c138bc38 7921
e0001a05
NC
7922 if (!use_nops)
7923 {
d77b99c9
BW
7924 fill_limit = alignment;
7925 fill_step = 1;
e0001a05 7926 }
d77b99c9 7927 else if (!use_no_density)
e0001a05 7928 {
d77b99c9
BW
7929 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
7930 fill_limit = alignment * 2;
7931 fill_step = 1;
7932 skip_one = TRUE;
e0001a05
NC
7933 }
7934 else
7935 {
d77b99c9
BW
7936 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
7937 fill_limit = alignment * 3;
7938 fill_step = 3;
7939 }
e0001a05 7940
d77b99c9
BW
7941 /* Try all fill sizes until finding one that works. */
7942 for (fill = 0; fill < fill_limit; fill += fill_step)
7943 {
7944 if (skip_one && fill == 1)
7945 continue;
7946 if ((address + fill) >> align_pow
7947 == (address + fill + target_size - 1) >> align_pow)
7948 return fill;
e0001a05
NC
7949 }
7950 assert (0);
7951 return 0;
7952}
7953
7954
664df4e4
BW
7955static int
7956branch_align_power (segT sec)
7957{
7958 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
7959 is aligned to at least an 8-byte boundary, then a branch target need
7960 only fit within an 8-byte aligned block of memory to avoid a stall.
7961 Otherwise, try to fit branch targets within 4-byte aligned blocks
7962 (which may be insufficient, e.g., if the section has no alignment, but
7963 it's good enough). */
7964 if (xtensa_fetch_width == 8)
7965 {
7966 if (get_recorded_alignment (sec) >= 3)
7967 return 3;
7968 }
7969 else
7970 assert (xtensa_fetch_width == 4);
7971
7972 return 2;
7973}
7974
7975
e0001a05
NC
7976/* This will assert if it is not possible. */
7977
d77b99c9
BW
7978static int
7979get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
e0001a05 7980{
d77b99c9
BW
7981 int count = 0;
7982
e0001a05
NC
7983 if (use_no_density)
7984 {
7985 assert (fill_size % 3 == 0);
7986 return (fill_size / 3);
7987 }
7988
7989 assert (fill_size != 1); /* Bad argument. */
7990
7991 while (fill_size > 1)
7992 {
d77b99c9 7993 int insn_size = 3;
e0001a05
NC
7994 if (fill_size == 2 || fill_size == 4)
7995 insn_size = 2;
7996 fill_size -= insn_size;
7997 count++;
7998 }
7999 assert (fill_size != 1); /* Bad algorithm. */
8000 return count;
8001}
8002
8003
d77b99c9
BW
8004static int
8005get_text_align_nth_nop_size (offsetT fill_size,
8006 int n,
7fa3d080 8007 bfd_boolean use_no_density)
e0001a05 8008{
d77b99c9 8009 int count = 0;
e0001a05
NC
8010
8011 if (use_no_density)
8012 return 3;
8013
d77b99c9
BW
8014 assert (fill_size != 1); /* Bad argument. */
8015
e0001a05
NC
8016 while (fill_size > 1)
8017 {
d77b99c9 8018 int insn_size = 3;
e0001a05
NC
8019 if (fill_size == 2 || fill_size == 4)
8020 insn_size = 2;
8021 fill_size -= insn_size;
8022 count++;
8023 if (n + 1 == count)
8024 return insn_size;
8025 }
8026 assert (0);
8027 return 0;
8028}
8029
8030
8031/* For the given fragment, find the appropriate address
8032 for it to begin at if we are using NOPs to align it. */
8033
8034static addressT
7fa3d080 8035get_noop_aligned_address (fragS *fragP, addressT address)
e0001a05 8036{
43cd72b9
BW
8037 /* The rule is: get next fragment's FIRST instruction. Find
8038 the smallest number of bytes that need to be added to
8039 ensure that the next fragment's FIRST instruction will fit
8040 in a single word.
c138bc38 8041
43cd72b9
BW
8042 E.G., 2 bytes : 0, 1, 2 mod 4
8043 3 bytes: 0, 1 mod 4
c138bc38 8044
43cd72b9
BW
8045 If the FIRST instruction MIGHT be relaxed,
8046 assume that it will become a 3-byte instruction.
c138bc38 8047
43cd72b9
BW
8048 Note again here that LOOP instructions are not bundleable,
8049 and this relaxation only applies to LOOP opcodes. */
c138bc38 8050
d77b99c9 8051 int fill_size = 0;
43cd72b9
BW
8052 int first_insn_size;
8053 int loop_insn_size;
8054 addressT pre_opcode_bytes;
d77b99c9 8055 int align_power;
43cd72b9
BW
8056 fragS *first_insn;
8057 xtensa_opcode opcode;
8058 bfd_boolean is_loop;
e0001a05 8059
43cd72b9
BW
8060 assert (fragP->fr_type == rs_machine_dependent);
8061 assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
e0001a05 8062
43cd72b9
BW
8063 /* Find the loop frag. */
8064 first_insn = next_non_empty_frag (fragP);
8065 /* Now find the first insn frag. */
8066 first_insn = next_non_empty_frag (first_insn);
e0001a05 8067
43cd72b9
BW
8068 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8069 assert (is_loop);
8070 loop_insn_size = xg_get_single_size (opcode);
e0001a05 8071
43cd72b9
BW
8072 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8073 pre_opcode_bytes += loop_insn_size;
e0001a05 8074
43cd72b9
BW
8075 /* For loops, the alignment depends on the size of the
8076 instruction following the loop, not the LOOP instruction. */
e0001a05 8077
43cd72b9
BW
8078 if (first_insn == NULL)
8079 return address;
e0001a05 8080
43cd72b9 8081 assert (first_insn->tc_frag_data.is_first_loop_insn);
e0001a05 8082
43cd72b9 8083 first_insn_size = frag_format_size (first_insn);
e0001a05 8084
43cd72b9
BW
8085 if (first_insn_size == 2 || first_insn_size == XTENSA_UNDEFINED)
8086 first_insn_size = 3; /* ISA specifies this */
e0001a05 8087
43cd72b9 8088 /* If it was 8, then we'll need a larger alignment for the section. */
d77b99c9
BW
8089 align_power = get_text_align_power (first_insn_size);
8090 record_alignment (now_seg, align_power);
c138bc38 8091
43cd72b9 8092 fill_size = get_text_align_fill_size
d77b99c9
BW
8093 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8094 fragP->tc_frag_data.is_no_density);
e0001a05
NC
8095
8096 return address + fill_size;
8097}
8098
8099
43cd72b9
BW
8100/* 3 mechanisms for relaxing an alignment:
8101
8102 Align to a power of 2.
8103 Align so the next fragment's instruction does not cross a word boundary.
8104 Align the current instruction so that if the next instruction
8105 were 3 bytes, it would not cross a word boundary.
8106
e0001a05
NC
8107 We can align with:
8108
43cd72b9
BW
8109 zeros - This is easy; always insert zeros.
8110 nops - 3-byte and 2-byte instructions
8111 2 - 2-byte nop
8112 3 - 3-byte nop
8113 4 - 2 2-byte nops
8114 >=5 : 3-byte instruction + fn (n-3)
e0001a05
NC
8115 widening - widen previous instructions. */
8116
d77b99c9
BW
8117static offsetT
8118get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
e0001a05 8119{
43cd72b9
BW
8120 addressT target_address, loop_insn_offset;
8121 int target_size;
8122 xtensa_opcode loop_opcode;
8123 bfd_boolean is_loop;
d77b99c9
BW
8124 int align_power;
8125 offsetT opt_diff;
5f9084e9 8126 offsetT branch_align;
e0001a05 8127
43cd72b9
BW
8128 assert (fragP->fr_type == rs_machine_dependent);
8129 switch (fragP->fr_subtype)
e0001a05 8130 {
43cd72b9
BW
8131 case RELAX_DESIRE_ALIGN:
8132 target_size = next_frag_format_size (fragP);
8133 if (target_size == XTENSA_UNDEFINED)
8134 target_size = 3;
664df4e4
BW
8135 align_power = branch_align_power (now_seg);
8136 branch_align = 1 << align_power;
0e5cd789
BW
8137 /* Don't count on the section alignment being as large as the target. */
8138 if (target_size > branch_align)
8139 target_size = branch_align;
d77b99c9 8140 opt_diff = get_text_align_fill_size (address, align_power,
43cd72b9
BW
8141 target_size, FALSE, FALSE);
8142
664df4e4
BW
8143 *max_diff = (opt_diff + branch_align
8144 - (target_size + ((address + opt_diff) % branch_align)));
43cd72b9
BW
8145 assert (*max_diff >= opt_diff);
8146 return opt_diff;
e0001a05 8147
43cd72b9
BW
8148 case RELAX_ALIGN_NEXT_OPCODE:
8149 target_size = next_frag_format_size (fragP);
8150 loop_insn_offset = 0;
8151 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8152 assert (is_loop);
8153
8154 /* If the loop has been expanded then the LOOP instruction
8155 could be at an offset from this fragment. */
8156 if (next_non_empty_frag(fragP)->tc_frag_data.slot_subtypes[0]
8157 != RELAX_IMMED)
8158 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8159
8160 if (target_size == 2)
8161 target_size = 3; /* ISA specifies this */
8162
8163 /* In an ideal world, which is what we are shooting for here,
8164 we wouldn't need to use any NOPs immediately prior to the
8165 LOOP instruction. If this approach fails, relax_frag_loop_align
8166 will call get_noop_aligned_address. */
8167 target_address =
8168 address + loop_insn_offset + xg_get_single_size (loop_opcode);
d77b99c9
BW
8169 align_power = get_text_align_power (target_size),
8170 opt_diff = get_text_align_fill_size (target_address, align_power,
43cd72b9
BW
8171 target_size, FALSE, FALSE);
8172
8173 *max_diff = xtensa_fetch_width
8174 - ((target_address + opt_diff) % xtensa_fetch_width)
8175 - target_size + opt_diff;
8176 assert (*max_diff >= opt_diff);
8177 return opt_diff;
e0001a05 8178
43cd72b9
BW
8179 default:
8180 break;
e0001a05 8181 }
43cd72b9
BW
8182 assert (0);
8183 return 0;
e0001a05
NC
8184}
8185
8186\f
8187/* md_relax_frag Hook and Helper Functions. */
8188
7fa3d080
BW
8189static long relax_frag_loop_align (fragS *, long);
8190static long relax_frag_for_align (fragS *, long);
8191static long relax_frag_immed
8192 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
8193
8194
e0001a05
NC
8195/* Return the number of bytes added to this fragment, given that the
8196 input has been stretched already by "stretch". */
8197
8198long
7fa3d080 8199xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
e0001a05 8200{
43cd72b9 8201 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
8202 int unreported = fragP->tc_frag_data.unreported_expansion;
8203 long new_stretch = 0;
8204 char *file_name;
d77b99c9
BW
8205 unsigned line;
8206 int lit_size;
43cd72b9
BW
8207 static xtensa_insnbuf vbuf = NULL;
8208 int slot, num_slots;
8209 xtensa_format fmt;
e0001a05
NC
8210
8211 as_where (&file_name, &line);
8212 new_logical_line (fragP->fr_file, fragP->fr_line);
8213
8214 fragP->tc_frag_data.unreported_expansion = 0;
8215
8216 switch (fragP->fr_subtype)
8217 {
8218 case RELAX_ALIGN_NEXT_OPCODE:
8219 /* Always convert. */
43cd72b9
BW
8220 if (fragP->tc_frag_data.relax_seen)
8221 new_stretch = relax_frag_loop_align (fragP, stretch);
e0001a05
NC
8222 break;
8223
8224 case RELAX_LOOP_END:
8225 /* Do nothing. */
8226 break;
8227
8228 case RELAX_LOOP_END_ADD_NOP:
8229 /* Add a NOP and switch to .fill 0. */
8230 new_stretch = relax_frag_add_nop (fragP);
43cd72b9 8231 frag_wane (fragP);
e0001a05
NC
8232 break;
8233
8234 case RELAX_DESIRE_ALIGN:
43cd72b9 8235 /* Do nothing. The narrowing before this frag will either align
e0001a05
NC
8236 it or not. */
8237 break;
8238
8239 case RELAX_LITERAL:
8240 case RELAX_LITERAL_FINAL:
8241 return 0;
8242
8243 case RELAX_LITERAL_NR:
8244 lit_size = 4;
8245 fragP->fr_subtype = RELAX_LITERAL_FINAL;
8246 assert (unreported == lit_size);
8247 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
8248 fragP->fr_var -= lit_size;
8249 fragP->fr_fix += lit_size;
8250 new_stretch = 4;
8251 break;
8252
43cd72b9
BW
8253 case RELAX_SLOTS:
8254 if (vbuf == NULL)
8255 vbuf = xtensa_insnbuf_alloc (isa);
8256
d77b99c9
BW
8257 xtensa_insnbuf_from_chars
8258 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
43cd72b9
BW
8259 fmt = xtensa_format_decode (isa, vbuf);
8260 num_slots = xtensa_format_num_slots (isa, fmt);
e0001a05 8261
43cd72b9
BW
8262 for (slot = 0; slot < num_slots; slot++)
8263 {
8264 switch (fragP->tc_frag_data.slot_subtypes[slot])
8265 {
8266 case RELAX_NARROW:
8267 if (fragP->tc_frag_data.relax_seen)
8268 new_stretch += relax_frag_for_align (fragP, stretch);
8269 break;
8270
8271 case RELAX_IMMED:
8272 case RELAX_IMMED_STEP1:
8273 case RELAX_IMMED_STEP2:
8274 /* Place the immediate. */
8275 new_stretch += relax_frag_immed
8276 (now_seg, fragP, stretch,
8277 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8278 fmt, slot, stretched_p, FALSE);
8279 break;
8280
8281 default:
8282 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8283 break;
8284 }
8285 }
e0001a05
NC
8286 break;
8287
8288 case RELAX_LITERAL_POOL_BEGIN:
8289 case RELAX_LITERAL_POOL_END:
43cd72b9
BW
8290 case RELAX_MAYBE_UNREACHABLE:
8291 case RELAX_MAYBE_DESIRE_ALIGN:
e0001a05
NC
8292 /* No relaxation required. */
8293 break;
8294
43cd72b9
BW
8295 case RELAX_FILL_NOP:
8296 case RELAX_UNREACHABLE:
8297 if (fragP->tc_frag_data.relax_seen)
8298 new_stretch += relax_frag_for_align (fragP, stretch);
8299 break;
8300
e0001a05
NC
8301 default:
8302 as_bad (_("bad relaxation state"));
8303 }
8304
43cd72b9 8305 /* Tell gas we need another relaxation pass. */
c138bc38 8306 if (! fragP->tc_frag_data.relax_seen)
43cd72b9
BW
8307 {
8308 fragP->tc_frag_data.relax_seen = TRUE;
8309 *stretched_p = 1;
8310 }
8311
e0001a05
NC
8312 new_logical_line (file_name, line);
8313 return new_stretch;
8314}
8315
8316
8317static long
7fa3d080 8318relax_frag_loop_align (fragS *fragP, long stretch)
e0001a05
NC
8319{
8320 addressT old_address, old_next_address, old_size;
8321 addressT new_address, new_next_address, new_size;
8322 addressT growth;
8323
43cd72b9
BW
8324 /* All the frags with relax_frag_for_alignment prior to this one in the
8325 section have been done, hopefully eliminating the need for a NOP here.
8326 But, this will put it in if necessary. */
e0001a05
NC
8327
8328 /* Calculate the old address of this fragment and the next fragment. */
8329 old_address = fragP->fr_address - stretch;
8330 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
43cd72b9 8331 fragP->tc_frag_data.text_expansion[0]);
e0001a05
NC
8332 old_size = old_next_address - old_address;
8333
8334 /* Calculate the new address of this fragment and the next fragment. */
8335 new_address = fragP->fr_address;
8336 new_next_address =
8337 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
8338 new_size = new_next_address - new_address;
8339
8340 growth = new_size - old_size;
8341
8342 /* Fix up the text_expansion field and return the new growth. */
43cd72b9 8343 fragP->tc_frag_data.text_expansion[0] += growth;
e0001a05
NC
8344 return growth;
8345}
8346
8347
43cd72b9 8348/* Add a NOP instruction. */
e0001a05
NC
8349
8350static long
7fa3d080 8351relax_frag_add_nop (fragS *fragP)
e0001a05 8352{
e0001a05 8353 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
43cd72b9
BW
8354 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
8355 assemble_nop (length, nop_buf);
e0001a05 8356 fragP->tc_frag_data.is_insn = TRUE;
e0001a05 8357
e0001a05
NC
8358 if (fragP->fr_var < length)
8359 {
dd49a749 8360 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
e0001a05
NC
8361 return 0;
8362 }
8363
8364 fragP->fr_fix += length;
8365 fragP->fr_var -= length;
e0001a05
NC
8366 return length;
8367}
8368
8369
7fa3d080
BW
8370static long future_alignment_required (fragS *, long);
8371
e0001a05 8372static long
7fa3d080 8373relax_frag_for_align (fragS *fragP, long stretch)
e0001a05 8374{
43cd72b9
BW
8375 /* Overview of the relaxation procedure for alignment:
8376 We can widen with NOPs or by widening instructions or by filling
8377 bytes after jump instructions. Find the opportune places and widen
8378 them if necessary. */
8379
8380 long stretch_me;
8381 long diff;
e0001a05 8382
43cd72b9
BW
8383 assert (fragP->fr_subtype == RELAX_FILL_NOP
8384 || fragP->fr_subtype == RELAX_UNREACHABLE
8385 || (fragP->fr_subtype == RELAX_SLOTS
8386 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
8387
8388 stretch_me = future_alignment_required (fragP, stretch);
8389 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
8390 if (diff == 0)
8391 return 0;
e0001a05 8392
43cd72b9 8393 if (diff < 0)
e0001a05 8394 {
43cd72b9
BW
8395 /* We expanded on a previous pass. Can we shrink now? */
8396 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
8397 if (shrink <= stretch && stretch > 0)
e0001a05 8398 {
43cd72b9
BW
8399 fragP->tc_frag_data.text_expansion[0] = stretch_me;
8400 return -shrink;
e0001a05
NC
8401 }
8402 return 0;
8403 }
8404
43cd72b9
BW
8405 /* Below here, diff > 0. */
8406 fragP->tc_frag_data.text_expansion[0] = stretch_me;
e0001a05 8407
43cd72b9 8408 return diff;
e0001a05
NC
8409}
8410
8411
43cd72b9
BW
8412/* Return the address of the next frag that should be aligned.
8413
8414 By "address" we mean the address it _would_ be at if there
8415 is no action taken to align it between here and the target frag.
8416 In other words, if no narrows and no fill nops are used between
8417 here and the frag to align, _even_if_ some of the frags we use
8418 to align targets have already expanded on a previous relaxation
8419 pass.
8420
8421 Also, count each frag that may be used to help align the target.
8422
8423 Return 0 if there are no frags left in the chain that need to be
8424 aligned. */
8425
8426static addressT
7fa3d080
BW
8427find_address_of_next_align_frag (fragS **fragPP,
8428 int *wide_nops,
8429 int *narrow_nops,
8430 int *widens,
8431 bfd_boolean *paddable)
e0001a05 8432{
43cd72b9
BW
8433 fragS *fragP = *fragPP;
8434 addressT address = fragP->fr_address;
8435
8436 /* Do not reset the counts to 0. */
e0001a05
NC
8437
8438 while (fragP)
8439 {
8440 /* Limit this to a small search. */
43cd72b9
BW
8441 if (*widens > 8)
8442 {
8443 *fragPP = fragP;
8444 return 0;
8445 }
e0001a05
NC
8446 address += fragP->fr_fix;
8447
43cd72b9
BW
8448 if (fragP->fr_type == rs_fill)
8449 address += fragP->fr_offset * fragP->fr_var;
8450 else if (fragP->fr_type == rs_machine_dependent)
e0001a05 8451 {
e0001a05
NC
8452 switch (fragP->fr_subtype)
8453 {
43cd72b9
BW
8454 case RELAX_UNREACHABLE:
8455 *paddable = TRUE;
8456 break;
8457
8458 case RELAX_FILL_NOP:
8459 (*wide_nops)++;
8460 if (!fragP->tc_frag_data.is_no_density)
8461 (*narrow_nops)++;
8462 break;
8463
8464 case RELAX_SLOTS:
8465 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8466 {
8467 (*widens)++;
8468 break;
8469 }
34e41783 8470 address += total_frag_text_expansion (fragP);;
e0001a05
NC
8471 break;
8472
8473 case RELAX_IMMED:
43cd72b9 8474 address += fragP->tc_frag_data.text_expansion[0];
e0001a05
NC
8475 break;
8476
8477 case RELAX_ALIGN_NEXT_OPCODE:
8478 case RELAX_DESIRE_ALIGN:
43cd72b9
BW
8479 *fragPP = fragP;
8480 return address;
8481
8482 case RELAX_MAYBE_UNREACHABLE:
8483 case RELAX_MAYBE_DESIRE_ALIGN:
8484 /* Do nothing. */
e0001a05
NC
8485 break;
8486
8487 default:
43cd72b9
BW
8488 /* Just punt if we don't know the type. */
8489 *fragPP = fragP;
8490 return 0;
e0001a05 8491 }
43cd72b9 8492 }
c138bc38 8493 else
43cd72b9
BW
8494 {
8495 /* Just punt if we don't know the type. */
8496 *fragPP = fragP;
8497 return 0;
8498 }
8499 fragP = fragP->fr_next;
8500 }
8501
8502 *fragPP = fragP;
8503 return 0;
8504}
8505
8506
7fa3d080
BW
8507static long bytes_to_stretch (fragS *, int, int, int, int);
8508
43cd72b9 8509static long
7fa3d080 8510future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
43cd72b9
BW
8511{
8512 fragS *this_frag = fragP;
8513 long address;
8514 int num_widens = 0;
8515 int wide_nops = 0;
8516 int narrow_nops = 0;
8517 bfd_boolean paddable = FALSE;
8518 offsetT local_opt_diff;
8519 offsetT opt_diff;
8520 offsetT max_diff;
8521 int stretch_amount = 0;
8522 int local_stretch_amount;
8523 int global_stretch_amount;
8524
7fa3d080
BW
8525 address = find_address_of_next_align_frag
8526 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
43cd72b9
BW
8527
8528 if (address)
8529 {
8530 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
8531 opt_diff = local_opt_diff;
8532 assert (opt_diff >= 0);
8533 assert (max_diff >= opt_diff);
c138bc38 8534 if (max_diff == 0)
43cd72b9 8535 return 0;
d2a033cd 8536
43cd72b9
BW
8537 if (fragP)
8538 fragP = fragP->fr_next;
8539
8540 while (fragP && opt_diff < max_diff && address)
8541 {
8542 /* We only use these to determine if we can exit early
c138bc38 8543 because there will be plenty of ways to align future
43cd72b9 8544 align frags. */
d77b99c9 8545 int glob_widens = 0;
43cd72b9
BW
8546 int dnn = 0;
8547 int dw = 0;
8548 bfd_boolean glob_pad = 0;
7fa3d080
BW
8549 address = find_address_of_next_align_frag
8550 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
43cd72b9 8551 /* If there is a padable portion, then skip. */
664df4e4 8552 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
43cd72b9
BW
8553 break;
8554
c138bc38 8555 if (address)
43cd72b9
BW
8556 {
8557 offsetT next_m_diff;
8558 offsetT next_o_diff;
8559
8560 /* Downrange frags haven't had stretch added to them yet. */
8561 address += stretch;
8562
8563 /* The address also includes any text expansion from this
8564 frag in a previous pass, but we don't want that. */
8565 address -= this_frag->tc_frag_data.text_expansion[0];
8566
8567 /* Assume we are going to move at least opt_diff. In
8568 reality, we might not be able to, but assuming that
8569 we will helps catch cases where moving opt_diff pushes
8570 the next target from aligned to unaligned. */
8571 address += opt_diff;
8572
8573 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
8574
8575 /* Now cleanup for the adjustments to address. */
8576 next_o_diff += opt_diff;
8577 next_m_diff += opt_diff;
8578 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
8579 opt_diff = next_o_diff;
8580 if (next_m_diff < max_diff)
8581 max_diff = next_m_diff;
8582 fragP = fragP->fr_next;
8583 }
8584 }
d2a033cd 8585
43cd72b9
BW
8586 /* If there are enough wideners in between, do it. */
8587 if (paddable)
8588 {
8589 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
8590 {
8591 assert (opt_diff <= UNREACHABLE_MAX_WIDTH);
8592 return opt_diff;
8593 }
8594 return 0;
8595 }
c138bc38 8596 local_stretch_amount
43cd72b9
BW
8597 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
8598 num_widens, local_opt_diff);
c138bc38
BW
8599 global_stretch_amount
8600 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
43cd72b9 8601 num_widens, opt_diff);
c138bc38
BW
8602 /* If the condition below is true, then the frag couldn't
8603 stretch the correct amount for the global case, so we just
8604 optimize locally. We'll rely on the subsequent frags to get
43cd72b9
BW
8605 the correct alignment in the global case. */
8606 if (global_stretch_amount < local_stretch_amount)
8607 stretch_amount = local_stretch_amount;
8608 else
8609 stretch_amount = global_stretch_amount;
d2a033cd 8610
43cd72b9
BW
8611 if (this_frag->fr_subtype == RELAX_SLOTS
8612 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8613 assert (stretch_amount <= 1);
8614 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
8615 {
8616 if (this_frag->tc_frag_data.is_no_density)
8617 assert (stretch_amount == 3 || stretch_amount == 0);
8618 else
8619 assert (stretch_amount <= 3);
8620 }
8621 }
8622 return stretch_amount;
8623}
8624
8625
8626/* The idea: widen everything you can to get a target or loop aligned,
8627 then start using NOPs.
8628
8629 When we must have a NOP, here is a table of how we decide
8630 (so you don't have to fight through the control flow below):
8631
8632 wide_nops = the number of wide NOPs available for aligning
8633 narrow_nops = the number of narrow NOPs available for aligning
8634 (a subset of wide_nops)
8635 widens = the number of narrow instructions that should be widened
8636
8637 Desired wide narrow
8638 Diff nop nop widens
8639 1 0 0 1
8640 2 0 1 0
8641 3a 1 0 0
8642 b 0 1 1 (case 3a makes this case unnecessary)
8643 4a 1 0 1
8644 b 0 2 0
8645 c 0 1 2 (case 4a makes this case unnecessary)
8646 5a 1 0 2
8647 b 1 1 0
8648 c 0 2 1 (case 5b makes this case unnecessary)
8649 6a 2 0 0
8650 b 1 0 3
8651 c 0 1 4 (case 6b makes this case unneccesary)
8652 d 1 1 1 (case 6a makes this case unnecessary)
8653 e 0 2 2 (case 6a makes this case unnecessary)
8654 f 0 3 0 (case 6a makes this case unnecessary)
8655 7a 1 0 4
8656 b 2 0 1
8657 c 1 1 2 (case 7b makes this case unnecessary)
8658 d 0 1 5 (case 7a makes this case unnecessary)
8659 e 0 2 3 (case 7b makes this case unnecessary)
8660 f 0 3 1 (case 7b makes this case unnecessary)
8661 g 1 2 1 (case 7b makes this case unnecessary)
8662*/
8663
8664static long
7fa3d080
BW
8665bytes_to_stretch (fragS *this_frag,
8666 int wide_nops,
8667 int narrow_nops,
8668 int num_widens,
8669 int desired_diff)
43cd72b9
BW
8670{
8671 int bytes_short = desired_diff - num_widens;
8672
8673 assert (desired_diff >= 0 && desired_diff < 8);
8674 if (desired_diff == 0)
8675 return 0;
c138bc38 8676
43cd72b9 8677 assert (wide_nops > 0 || num_widens > 0);
e0001a05 8678
43cd72b9
BW
8679 /* Always prefer widening to NOP-filling. */
8680 if (bytes_short < 0)
8681 {
8682 /* There are enough RELAX_NARROW frags after this one
8683 to align the target without widening this frag in any way. */
8684 return 0;
8685 }
c138bc38 8686
43cd72b9
BW
8687 if (bytes_short == 0)
8688 {
8689 /* Widen every narrow between here and the align target
8690 and the align target will be properly aligned. */
8691 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8692 return 0;
8693 else
8694 return 1;
8695 }
c138bc38 8696
43cd72b9
BW
8697 /* From here we will need at least one NOP to get an alignment.
8698 However, we may not be able to align at all, in which case,
8699 don't widen. */
8700 if (this_frag->fr_subtype == RELAX_FILL_NOP)
8701 {
8702 switch (desired_diff)
8703 {
8704 case 1:
8705 return 0;
8706 case 2:
8707 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 1)
8708 return 2; /* case 2 */
8709 return 0;
c138bc38 8710 case 3:
43cd72b9
BW
8711 if (wide_nops > 1)
8712 return 0;
8713 else
8714 return 3; /* case 3a */
8715 case 4:
8716 if (num_widens >= 1 && wide_nops == 1)
8717 return 3; /* case 4a */
8718 if (!this_frag->tc_frag_data.is_no_density && narrow_nops == 2)
8719 return 2; /* case 4b */
8720 return 0;
8721 case 5:
8722 if (num_widens >= 2 && wide_nops == 1)
8723 return 3; /* case 5a */
c138bc38 8724 /* We will need two nops. Are there enough nops
43cd72b9
BW
8725 between here and the align target? */
8726 if (wide_nops < 2 || narrow_nops == 0)
8727 return 0;
8728 /* Are there other nops closer that can serve instead? */
8729 if (wide_nops > 2 && narrow_nops > 1)
8730 return 0;
8731 /* Take the density one first, because there might not be
8732 another density one available. */
8733 if (!this_frag->tc_frag_data.is_no_density)
8734 return 2; /* case 5b narrow */
8735 else
8736 return 3; /* case 5b wide */
8737 return 0;
8738 case 6:
8739 if (wide_nops == 2)
8740 return 3; /* case 6a */
8741 else if (num_widens >= 3 && wide_nops == 1)
8742 return 3; /* case 6b */
8743 return 0;
8744 case 7:
8745 if (wide_nops == 1 && num_widens >= 4)
8746 return 3; /* case 7a */
8747 else if (wide_nops == 2 && num_widens >= 1)
8748 return 3; /* case 7b */
8749 return 0;
e0001a05 8750 default:
43cd72b9 8751 assert (0);
e0001a05 8752 }
e0001a05 8753 }
43cd72b9
BW
8754 else
8755 {
c138bc38 8756 /* We will need a NOP no matter what, but should we widen
43cd72b9 8757 this instruction to help?
e0001a05 8758
43cd72b9
BW
8759 This is a RELAX_FRAG_NARROW frag. */
8760 switch (desired_diff)
8761 {
8762 case 1:
8763 assert (0);
8764 return 0;
8765 case 2:
8766 case 3:
8767 return 0;
8768 case 4:
8769 if (wide_nops >= 1 && num_widens == 1)
8770 return 1; /* case 4a */
8771 return 0;
8772 case 5:
8773 if (wide_nops >= 1 && num_widens == 2)
8774 return 1; /* case 5a */
8775 return 0;
8776 case 6:
8777 if (wide_nops >= 2)
8778 return 0; /* case 6a */
8779 else if (wide_nops >= 1 && num_widens == 3)
8780 return 1; /* case 6b */
8781 return 0;
8782 case 7:
8783 if (wide_nops >= 1 && num_widens == 4)
8784 return 1; /* case 7a */
8785 else if (wide_nops >= 2 && num_widens == 1)
8786 return 1; /* case 7b */
8787 return 0;
8788 default:
8789 assert (0);
8790 return 0;
8791 }
8792 }
8793 assert (0);
8794 return 0;
e0001a05
NC
8795}
8796
8797
8798static long
7fa3d080
BW
8799relax_frag_immed (segT segP,
8800 fragS *fragP,
8801 long stretch,
8802 int min_steps,
8803 xtensa_format fmt,
8804 int slot,
8805 int *stretched_p,
8806 bfd_boolean estimate_only)
e0001a05 8807{
43cd72b9
BW
8808 TInsn tinsn;
8809 vliw_insn orig_vinsn;
e0001a05
NC
8810 int old_size;
8811 bfd_boolean negatable_branch = FALSE;
8812 bfd_boolean branch_jmp_to_next = FALSE;
43cd72b9
BW
8813 bfd_boolean wide_insn = FALSE;
8814 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
8815 IStack istack;
8816 offsetT frag_offset;
8817 int num_steps;
8818 fragS *lit_fragP;
8819 int num_text_bytes, num_literal_bytes;
43cd72b9 8820 int literal_diff, total_text_diff, this_text_diff, first;
e0001a05
NC
8821
8822 assert (fragP->fr_opcode != NULL);
8823
43cd72b9
BW
8824 xg_init_vinsn (&orig_vinsn);
8825 vinsn_from_chars (&orig_vinsn, fragP->fr_opcode);
8826 if (xtensa_format_num_slots (isa, fmt) > 1)
8827 wide_insn = TRUE;
8828
8829 tinsn = orig_vinsn.slots[slot];
8830 tinsn_immed_from_frag (&tinsn, fragP, slot);
e0001a05 8831
43cd72b9
BW
8832 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode))
8833 return 0;
e0001a05 8834
b08b5071 8835 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
43cd72b9 8836 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
e0001a05 8837
43cd72b9 8838 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
e0001a05 8839
43cd72b9 8840 old_size = xtensa_format_length (isa, fmt);
e0001a05
NC
8841
8842 /* Special case: replace a branch to the next instruction with a NOP.
8843 This is required to work around a hardware bug in T1040.0 and also
8844 serves as an optimization. */
8845
8846 if (branch_jmp_to_next
8847 && ((old_size == 2) || (old_size == 3))
8848 && !next_frag_is_loop_target (fragP))
8849 return 0;
8850
8851 /* Here is the fun stuff: Get the immediate field from this
8852 instruction. If it fits, we are done. If not, find the next
8853 instruction sequence that fits. */
8854
8855 frag_offset = fragP->fr_opcode - fragP->fr_literal;
8856 istack_init (&istack);
43cd72b9 8857 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
e0001a05
NC
8858 min_steps, stretch);
8859 if (num_steps < min_steps)
8860 {
8861 as_fatal (_("internal error: relaxation failed"));
8862 return 0;
8863 }
8864
8865 if (num_steps > RELAX_IMMED_MAXSTEPS)
8866 {
8867 as_fatal (_("internal error: relaxation requires too many steps"));
8868 return 0;
8869 }
8870
43cd72b9 8871 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
e0001a05
NC
8872
8873 /* Figure out the number of bytes needed. */
8874 lit_fragP = 0;
e0001a05 8875 num_literal_bytes = get_num_stack_literal_bytes (&istack);
43cd72b9
BW
8876 literal_diff =
8877 num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
8878 first = 0;
8879 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
8880 first++;
8881 num_text_bytes = get_num_stack_text_bytes (&istack);
8882 if (wide_insn)
8883 {
8884 num_text_bytes += old_size;
8885 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
8886 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
8887 }
8888 total_text_diff = num_text_bytes - old_size;
8889 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
e0001a05
NC
8890
8891 /* It MUST get larger. If not, we could get an infinite loop. */
43cd72b9
BW
8892 assert (num_text_bytes >= 0);
8893 assert (literal_diff >= 0);
8894 assert (total_text_diff >= 0);
e0001a05 8895
43cd72b9
BW
8896 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
8897 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
8898 assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
8899 assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
e0001a05
NC
8900
8901 /* Find the associated expandable literal for this. */
8902 if (literal_diff != 0)
8903 {
43cd72b9 8904 lit_fragP = fragP->tc_frag_data.literal_frags[slot];
e0001a05
NC
8905 if (lit_fragP)
8906 {
8907 assert (literal_diff == 4);
8908 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
8909
8910 /* We expect that the literal section state has NOT been
8911 modified yet. */
8912 assert (lit_fragP->fr_type == rs_machine_dependent
8913 && lit_fragP->fr_subtype == RELAX_LITERAL);
8914 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
8915
8916 /* We need to mark this section for another iteration
8917 of relaxation. */
8918 (*stretched_p)++;
8919 }
8920 }
8921
43cd72b9 8922 if (negatable_branch && istack.ninsn > 1)
1d19a770 8923 update_next_frag_state (fragP);
e0001a05 8924
43cd72b9 8925 return this_text_diff;
e0001a05
NC
8926}
8927
8928\f
8929/* md_convert_frag Hook and Helper Functions. */
8930
7fa3d080
BW
8931static void convert_frag_align_next_opcode (fragS *);
8932static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
8933static void convert_frag_fill_nop (fragS *);
8934static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
8935
e0001a05 8936void
7fa3d080 8937md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
e0001a05 8938{
43cd72b9
BW
8939 static xtensa_insnbuf vbuf = NULL;
8940 xtensa_isa isa = xtensa_default_isa;
8941 int slot;
8942 int num_slots;
8943 xtensa_format fmt;
e0001a05 8944 char *file_name;
d77b99c9 8945 unsigned line;
e0001a05
NC
8946
8947 as_where (&file_name, &line);
8948 new_logical_line (fragp->fr_file, fragp->fr_line);
8949
8950 switch (fragp->fr_subtype)
8951 {
8952 case RELAX_ALIGN_NEXT_OPCODE:
8953 /* Always convert. */
8954 convert_frag_align_next_opcode (fragp);
8955 break;
8956
8957 case RELAX_DESIRE_ALIGN:
8958 /* Do nothing. If not aligned already, too bad. */
8959 break;
8960
43cd72b9
BW
8961 case RELAX_LITERAL:
8962 case RELAX_LITERAL_FINAL:
8963 break;
8964
8965 case RELAX_SLOTS:
8966 if (vbuf == NULL)
8967 vbuf = xtensa_insnbuf_alloc (isa);
8968
d77b99c9
BW
8969 xtensa_insnbuf_from_chars
8970 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
43cd72b9
BW
8971 fmt = xtensa_format_decode (isa, vbuf);
8972 num_slots = xtensa_format_num_slots (isa, fmt);
8973
8974 for (slot = 0; slot < num_slots; slot++)
8975 {
8976 switch (fragp->tc_frag_data.slot_subtypes[slot])
8977 {
8978 case RELAX_NARROW:
8979 convert_frag_narrow (sec, fragp, fmt, slot);
8980 break;
8981
8982 case RELAX_IMMED:
8983 case RELAX_IMMED_STEP1:
8984 case RELAX_IMMED_STEP2:
8985 /* Place the immediate. */
8986 convert_frag_immed
8987 (sec, fragp,
8988 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
8989 fmt, slot);
8990 break;
8991
8992 default:
8993 /* This is OK because some slots could have
8994 relaxations and others have none. */
8995 break;
8996 }
8997 }
8998 break;
8999
9000 case RELAX_UNREACHABLE:
9001 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
9002 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
9003 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
9004 frag_wane (fragp);
e0001a05
NC
9005 break;
9006
43cd72b9
BW
9007 case RELAX_MAYBE_UNREACHABLE:
9008 case RELAX_MAYBE_DESIRE_ALIGN:
9009 frag_wane (fragp);
e0001a05
NC
9010 break;
9011
43cd72b9
BW
9012 case RELAX_FILL_NOP:
9013 convert_frag_fill_nop (fragp);
e0001a05
NC
9014 break;
9015
9016 case RELAX_LITERAL_NR:
9017 if (use_literal_section)
9018 {
9019 /* This should have been handled during relaxation. When
9020 relaxing a code segment, literals sometimes need to be
9021 added to the corresponding literal segment. If that
9022 literal segment has already been relaxed, then we end up
9023 in this situation. Marking the literal segments as data
9024 would make this happen less often (since GAS always relaxes
9025 code before data), but we could still get into trouble if
9026 there are instructions in a segment that is not marked as
9027 containing code. Until we can implement a better solution,
9028 cheat and adjust the addresses of all the following frags.
9029 This could break subsequent alignments, but the linker's
9030 literal coalescing will do that anyway. */
9031
9032 fragS *f;
9033 fragp->fr_subtype = RELAX_LITERAL_FINAL;
9034 assert (fragp->tc_frag_data.unreported_expansion == 4);
9035 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
9036 fragp->fr_var -= 4;
9037 fragp->fr_fix += 4;
9038 for (f = fragp->fr_next; f; f = f->fr_next)
9039 f->fr_address += 4;
9040 }
9041 else
9042 as_bad (_("invalid relaxation fragment result"));
9043 break;
9044 }
9045
9046 fragp->fr_var = 0;
9047 new_logical_line (file_name, line);
9048}
9049
9050
7fa3d080
BW
9051static void
9052convert_frag_align_next_opcode (fragS *fragp)
e0001a05
NC
9053{
9054 char *nop_buf; /* Location for Writing. */
e0001a05
NC
9055 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
9056 addressT aligned_address;
d77b99c9
BW
9057 offsetT fill_size;
9058 int nop, nop_count;
e0001a05
NC
9059
9060 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
9061 fragp->fr_fix);
9062 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
9063 nop_count = get_text_align_nop_count (fill_size, use_no_density);
9064 nop_buf = fragp->fr_literal + fragp->fr_fix;
9065
d77b99c9 9066 for (nop = 0; nop < nop_count; nop++)
e0001a05 9067 {
d77b99c9
BW
9068 int nop_size;
9069 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
e0001a05
NC
9070
9071 assemble_nop (nop_size, nop_buf);
9072 nop_buf += nop_size;
9073 }
9074
9075 fragp->fr_fix += fill_size;
9076 fragp->fr_var -= fill_size;
9077}
9078
9079
9080static void
7fa3d080 9081convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
e0001a05 9082{
43cd72b9
BW
9083 TInsn tinsn, single_target;
9084 xtensa_format single_fmt;
84b08ed9 9085 int size, old_size, diff;
e0001a05
NC
9086 offsetT frag_offset;
9087
43cd72b9
BW
9088 assert (slot == 0);
9089 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
9090
9091 if (xtensa_opcode_is_branch (xtensa_default_isa, tinsn.opcode) == 1)
9092 {
9093 assert (fragP->tc_frag_data.text_expansion[0] == 1
9094 || fragP->tc_frag_data.text_expansion[0] == 0);
9095 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
9096 fmt, slot);
9097 return;
9098 }
9099
9100 if (fragP->tc_frag_data.text_expansion[0] == 0)
e0001a05
NC
9101 {
9102 /* No conversion. */
9103 fragP->fr_var = 0;
9104 return;
9105 }
9106
9107 assert (fragP->fr_opcode != NULL);
9108
43cd72b9
BW
9109 /* Frags in this relaxation state should only contain
9110 single instruction bundles. */
9111 tinsn_immed_from_frag (&tinsn, fragP, 0);
e0001a05
NC
9112
9113 /* Just convert it to a wide form.... */
9114 size = 0;
43cd72b9 9115 old_size = xg_get_single_size (tinsn.opcode);
e0001a05
NC
9116
9117 tinsn_init (&single_target);
9118 frag_offset = fragP->fr_opcode - fragP->fr_literal;
9119
84b08ed9 9120 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
43cd72b9
BW
9121 {
9122 as_bad (_("unable to widen instruction"));
9123 return;
9124 }
9125
9126 size = xg_get_single_size (single_target.opcode);
9127 single_fmt = xg_get_single_format (single_target.opcode);
e0001a05 9128
43cd72b9 9129 xg_emit_insn_to_buf (&single_target, single_fmt, fragP->fr_opcode,
e0001a05
NC
9130 fragP, frag_offset, TRUE);
9131
9132 diff = size - old_size;
9133 assert (diff >= 0);
9134 assert (diff <= fragP->fr_var);
9135 fragP->fr_var -= diff;
9136 fragP->fr_fix += diff;
9137
9138 /* clean it up */
9139 fragP->fr_var = 0;
9140}
9141
9142
9143static void
7fa3d080 9144convert_frag_fill_nop (fragS *fragP)
43cd72b9
BW
9145{
9146 char *loc = &fragP->fr_literal[fragP->fr_fix];
9147 int size = fragP->tc_frag_data.text_expansion[0];
9148 assert ((unsigned) size == (fragP->fr_next->fr_address
9149 - fragP->fr_address - fragP->fr_fix));
9150 if (size == 0)
9151 {
9152 /* No conversion. */
9153 fragP->fr_var = 0;
9154 return;
9155 }
9156 assemble_nop (size, loc);
9157 fragP->tc_frag_data.is_insn = TRUE;
9158 fragP->fr_var -= size;
9159 fragP->fr_fix += size;
9160 frag_wane (fragP);
9161}
9162
9163
7fa3d080
BW
9164static fixS *fix_new_exp_in_seg
9165 (segT, subsegT, fragS *, int, int, expressionS *, int,
9166 bfd_reloc_code_real_type);
9167static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
9168
43cd72b9 9169static void
7fa3d080
BW
9170convert_frag_immed (segT segP,
9171 fragS *fragP,
9172 int min_steps,
9173 xtensa_format fmt,
9174 int slot)
e0001a05
NC
9175{
9176 char *immed_instr = fragP->fr_opcode;
43cd72b9 9177 TInsn orig_tinsn;
e0001a05 9178 bfd_boolean expanded = FALSE;
e0001a05 9179 bfd_boolean branch_jmp_to_next = FALSE;
43cd72b9
BW
9180 char *fr_opcode = fragP->fr_opcode;
9181 vliw_insn orig_vinsn;
9182 xtensa_isa isa = xtensa_default_isa;
9183 bfd_boolean wide_insn = FALSE;
9184 int bytes;
9185 bfd_boolean is_loop;
e0001a05 9186
43cd72b9 9187 assert (fr_opcode != NULL);
e0001a05 9188
43cd72b9 9189 xg_init_vinsn (&orig_vinsn);
e0001a05 9190
43cd72b9
BW
9191 vinsn_from_chars (&orig_vinsn, fr_opcode);
9192 if (xtensa_format_num_slots (isa, fmt) > 1)
9193 wide_insn = TRUE;
e0001a05 9194
43cd72b9
BW
9195 orig_tinsn = orig_vinsn.slots[slot];
9196 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
9197
9198 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
e0001a05 9199
b08b5071 9200 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
43cd72b9 9201 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
e0001a05
NC
9202
9203 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
9204 {
9205 /* Conversion just inserts a NOP and marks the fix as completed. */
43cd72b9
BW
9206 bytes = xtensa_format_length (isa, fmt);
9207 if (bytes >= 4)
9208 {
9209 orig_vinsn.slots[slot].opcode =
9210 xtensa_format_slot_nop_opcode (isa, orig_vinsn.format, slot);
9211 orig_vinsn.slots[slot].ntok = 0;
9212 }
9213 else
9214 {
9215 bytes += fragP->tc_frag_data.text_expansion[0];
9216 assert (bytes == 2 || bytes == 3);
9217 build_nop (&orig_vinsn.slots[0], bytes);
9218 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
9219 }
9220 vinsn_to_insnbuf (&orig_vinsn, fr_opcode, frag_now, FALSE);
d77b99c9
BW
9221 xtensa_insnbuf_to_chars
9222 (isa, orig_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
e0001a05
NC
9223 fragP->fr_var = 0;
9224 }
7c834684 9225 else
e0001a05 9226 {
43cd72b9
BW
9227 /* Here is the fun stuff: Get the immediate field from this
9228 instruction. If it fits, we're done. If not, find the next
9229 instruction sequence that fits. */
9230
e0001a05
NC
9231 IStack istack;
9232 int i;
9233 symbolS *lit_sym = NULL;
9234 int total_size = 0;
43cd72b9 9235 int target_offset = 0;
e0001a05
NC
9236 int old_size;
9237 int diff;
9238 symbolS *gen_label = NULL;
9239 offsetT frag_offset;
43cd72b9
BW
9240 bfd_boolean first = TRUE;
9241 bfd_boolean last_is_jump;
e0001a05 9242
43cd72b9 9243 /* It does not fit. Find something that does and
e0001a05 9244 convert immediately. */
43cd72b9 9245 frag_offset = fr_opcode - fragP->fr_literal;
e0001a05 9246 istack_init (&istack);
43cd72b9 9247 xg_assembly_relax (&istack, &orig_tinsn,
e0001a05
NC
9248 segP, fragP, frag_offset, min_steps, 0);
9249
43cd72b9 9250 old_size = xtensa_format_length (isa, fmt);
e0001a05
NC
9251
9252 /* Assemble this right inline. */
9253
9254 /* First, create the mapping from a label name to the REAL label. */
43cd72b9 9255 target_offset = 0;
e0001a05
NC
9256 for (i = 0; i < istack.ninsn; i++)
9257 {
43cd72b9 9258 TInsn *tinsn = &istack.insn[i];
e0001a05
NC
9259 fragS *lit_frag;
9260
43cd72b9 9261 switch (tinsn->insn_type)
e0001a05
NC
9262 {
9263 case ITYPE_LITERAL:
9264 if (lit_sym != NULL)
9265 as_bad (_("multiple literals in expansion"));
9266 /* First find the appropriate space in the literal pool. */
43cd72b9 9267 lit_frag = fragP->tc_frag_data.literal_frags[slot];
e0001a05
NC
9268 if (lit_frag == NULL)
9269 as_bad (_("no registered fragment for literal"));
43cd72b9 9270 if (tinsn->ntok != 1)
e0001a05
NC
9271 as_bad (_("number of literal tokens != 1"));
9272
9273 /* Set the literal symbol and add a fixup. */
9274 lit_sym = lit_frag->fr_symbol;
9275 break;
9276
9277 case ITYPE_LABEL:
43cd72b9
BW
9278 if (align_targets && !is_loop)
9279 {
9280 fragS *unreach = fragP->fr_next;
9281 while (!(unreach->fr_type == rs_machine_dependent
9282 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9283 || unreach->fr_subtype == RELAX_UNREACHABLE)))
9284 {
9285 unreach = unreach->fr_next;
9286 }
9287
9288 assert (unreach->fr_type == rs_machine_dependent
9289 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
9290 || unreach->fr_subtype == RELAX_UNREACHABLE));
9291
9292 target_offset += unreach->tc_frag_data.text_expansion[0];
9293 }
e0001a05
NC
9294 assert (gen_label == NULL);
9295 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
43cd72b9
BW
9296 fr_opcode - fragP->fr_literal
9297 + target_offset, fragP);
e0001a05
NC
9298 break;
9299
9300 case ITYPE_INSN:
43cd72b9
BW
9301 if (first && wide_insn)
9302 {
9303 target_offset += xtensa_format_length (isa, fmt);
9304 first = FALSE;
9305 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9306 target_offset += xg_get_single_size (tinsn->opcode);
9307 }
9308 else
9309 target_offset += xg_get_single_size (tinsn->opcode);
e0001a05
NC
9310 break;
9311 }
9312 }
9313
9314 total_size = 0;
43cd72b9
BW
9315 first = TRUE;
9316 last_is_jump = FALSE;
e0001a05
NC
9317 for (i = 0; i < istack.ninsn; i++)
9318 {
43cd72b9 9319 TInsn *tinsn = &istack.insn[i];
e0001a05
NC
9320 fragS *lit_frag;
9321 int size;
9322 segT target_seg;
43cd72b9 9323 bfd_reloc_code_real_type reloc_type;
e0001a05 9324
43cd72b9 9325 switch (tinsn->insn_type)
e0001a05
NC
9326 {
9327 case ITYPE_LITERAL:
43cd72b9
BW
9328 lit_frag = fragP->tc_frag_data.literal_frags[slot];
9329 /* Already checked. */
e0001a05
NC
9330 assert (lit_frag != NULL);
9331 assert (lit_sym != NULL);
43cd72b9
BW
9332 assert (tinsn->ntok == 1);
9333 /* Add a fixup. */
e0001a05
NC
9334 target_seg = S_GET_SEGMENT (lit_sym);
9335 assert (target_seg);
43cd72b9
BW
9336 if (tinsn->tok[0].X_op == O_pltrel)
9337 reloc_type = BFD_RELOC_XTENSA_PLT;
9338 else
9339 reloc_type = BFD_RELOC_32;
e0001a05 9340 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
43cd72b9 9341 &tinsn->tok[0], FALSE, reloc_type);
e0001a05
NC
9342 break;
9343
9344 case ITYPE_LABEL:
9345 break;
9346
9347 case ITYPE_INSN:
43cd72b9
BW
9348 xg_resolve_labels (tinsn, gen_label);
9349 xg_resolve_literals (tinsn, lit_sym);
9350 if (wide_insn && first)
9351 {
9352 first = FALSE;
9353 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9354 {
9355 tinsn->record_fix = TRUE;
9356 orig_vinsn.slots[slot] = *tinsn;
9357 }
9358 else
9359 {
9360 orig_vinsn.slots[slot].opcode =
9361 xtensa_format_slot_nop_opcode (isa, fmt, slot);
9362 orig_vinsn.slots[slot].ntok = 0;
9363 orig_vinsn.slots[slot].record_fix = FALSE;
9364 }
9365 vinsn_to_insnbuf (&orig_vinsn, immed_instr, fragP, TRUE);
9366 xtensa_insnbuf_to_chars (isa, orig_vinsn.insnbuf,
d77b99c9 9367 (unsigned char *) immed_instr, 0);
43cd72b9
BW
9368 fragP->tc_frag_data.is_insn = TRUE;
9369 size = xtensa_format_length (isa, fmt);
9370 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
9371 {
9372 xtensa_format single_fmt =
9373 xg_get_single_format (tinsn->opcode);
9374
9375 xg_emit_insn_to_buf
9376 (tinsn, single_fmt, immed_instr + size, fragP,
9377 immed_instr - fragP->fr_literal + size, TRUE);
9378 size += xg_get_single_size (tinsn->opcode);
9379 }
9380 }
9381 else
9382 {
9383 xtensa_format single_format;
9384 size = xg_get_single_size (tinsn->opcode);
9385 single_format = xg_get_single_format (tinsn->opcode);
9386 xg_emit_insn_to_buf (tinsn, single_format, immed_instr,
9387 fragP,
9388 immed_instr - fragP->fr_literal, TRUE);
43cd72b9 9389 }
e0001a05 9390 immed_instr += size;
43cd72b9 9391 total_size += size;
e0001a05
NC
9392 break;
9393 }
9394 }
9395
9396 diff = total_size - old_size;
9397 assert (diff >= 0);
9398 if (diff != 0)
9399 expanded = TRUE;
9400 assert (diff <= fragP->fr_var);
9401 fragP->fr_var -= diff;
9402 fragP->fr_fix += diff;
9403 }
9404
9405 /* Clean it up. */
43cd72b9 9406 xg_free_vinsn (&orig_vinsn);
e0001a05
NC
9407
9408 /* Check for undefined immediates in LOOP instructions. */
43cd72b9 9409 if (is_loop)
e0001a05
NC
9410 {
9411 symbolS *sym;
43cd72b9 9412 sym = orig_tinsn.tok[1].X_add_symbol;
e0001a05
NC
9413 if (sym != NULL && !S_IS_DEFINED (sym))
9414 {
9415 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9416 return;
9417 }
43cd72b9 9418 sym = orig_tinsn.tok[1].X_op_symbol;
e0001a05
NC
9419 if (sym != NULL && !S_IS_DEFINED (sym))
9420 {
9421 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
9422 return;
9423 }
9424 }
9425
43cd72b9
BW
9426 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
9427 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
e0001a05 9428
43cd72b9 9429 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
e0001a05
NC
9430 {
9431 /* Add an expansion note on the expanded instruction. */
9432 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
43cd72b9 9433 &orig_tinsn.tok[0], TRUE,
e0001a05 9434 BFD_RELOC_XTENSA_ASM_EXPAND);
e0001a05
NC
9435 }
9436}
9437
9438
9439/* Add a new fix expression into the desired segment. We have to
9440 switch to that segment to do this. */
9441
9442static fixS *
7fa3d080
BW
9443fix_new_exp_in_seg (segT new_seg,
9444 subsegT new_subseg,
9445 fragS *frag,
9446 int where,
9447 int size,
9448 expressionS *exp,
9449 int pcrel,
9450 bfd_reloc_code_real_type r_type)
e0001a05
NC
9451{
9452 fixS *new_fix;
9453 segT seg = now_seg;
9454 subsegT subseg = now_subseg;
43cd72b9 9455
e0001a05
NC
9456 assert (new_seg != 0);
9457 subseg_set (new_seg, new_subseg);
9458
e0001a05
NC
9459 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
9460 subseg_set (seg, subseg);
9461 return new_fix;
9462}
9463
9464
43cd72b9
BW
9465/* Relax a loop instruction so that it can span loop >256 bytes.
9466
9467 loop as, .L1
9468 .L0:
9469 rsr as, LEND
9470 wsr as, LBEG
9471 addi as, as, lo8 (label-.L1)
9472 addmi as, as, mid8 (label-.L1)
9473 wsr as, LEND
9474 isync
9475 rsr as, LCOUNT
9476 addi as, as, 1
9477 .L1:
9478 <<body>>
9479 label:
9480*/
e0001a05
NC
9481
9482static void
7fa3d080 9483convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
e0001a05
NC
9484{
9485 TInsn loop_insn;
9486 TInsn addi_insn;
9487 TInsn addmi_insn;
9488 unsigned long target;
9489 static xtensa_insnbuf insnbuf = NULL;
9490 unsigned int loop_length, loop_length_hi, loop_length_lo;
9491 xtensa_isa isa = xtensa_default_isa;
9492 addressT loop_offset;
9493 addressT addi_offset = 9;
9494 addressT addmi_offset = 12;
43cd72b9 9495 fragS *next_fragP;
d77b99c9 9496 int target_count;
e0001a05
NC
9497
9498 if (!insnbuf)
9499 insnbuf = xtensa_insnbuf_alloc (isa);
9500
9501 /* Get the loop offset. */
43cd72b9 9502 loop_offset = get_expanded_loop_offset (tinsn->opcode);
e0001a05 9503
43cd72b9
BW
9504 /* Validate that there really is a LOOP at the loop_offset. Because
9505 loops are not bundleable, we can assume that the instruction will be
9506 in slot 0. */
9507 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
9508 tinsn_immed_from_frag (&loop_insn, fragP, 0);
9509
9510 assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
e0001a05
NC
9511 addi_offset += loop_offset;
9512 addmi_offset += loop_offset;
9513
43cd72b9 9514 assert (tinsn->ntok == 2);
b08b5071
BW
9515 if (tinsn->tok[1].X_op == O_constant)
9516 target = tinsn->tok[1].X_add_number;
9517 else if (tinsn->tok[1].X_op == O_symbol)
9518 {
9519 /* Find the fragment. */
9520 symbolS *sym = tinsn->tok[1].X_add_symbol;
9521 assert (S_GET_SEGMENT (sym) == segP
9522 || S_GET_SEGMENT (sym) == absolute_section);
9523 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
9524 }
9525 else
9526 {
9527 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
9528 target = 0;
9529 }
e0001a05
NC
9530
9531 know (symbolP);
9532 know (symbolP->sy_frag);
9533 know (!(S_GET_SEGMENT (symbolP) == absolute_section)
9534 || symbol_get_frag (symbolP) == &zero_address_frag);
9535
9536 loop_length = target - (fragP->fr_address + fragP->fr_fix);
9537 loop_length_hi = loop_length & ~0x0ff;
9538 loop_length_lo = loop_length & 0x0ff;
9539 if (loop_length_lo >= 128)
9540 {
9541 loop_length_lo -= 256;
9542 loop_length_hi += 256;
9543 }
9544
43cd72b9 9545 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
e0001a05
NC
9546 32512. If the loop is larger than that, then we just fail. */
9547 if (loop_length_hi > 32512)
9548 as_bad_where (fragP->fr_file, fragP->fr_line,
9549 _("loop too long for LOOP instruction"));
9550
43cd72b9 9551 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
e0001a05
NC
9552 assert (addi_insn.opcode == xtensa_addi_opcode);
9553
43cd72b9 9554 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
e0001a05
NC
9555 assert (addmi_insn.opcode == xtensa_addmi_opcode);
9556
9557 set_expr_const (&addi_insn.tok[2], loop_length_lo);
9558 tinsn_to_insnbuf (&addi_insn, insnbuf);
43cd72b9 9559
e0001a05 9560 fragP->tc_frag_data.is_insn = TRUE;
d77b99c9
BW
9561 xtensa_insnbuf_to_chars
9562 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
e0001a05
NC
9563
9564 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
9565 tinsn_to_insnbuf (&addmi_insn, insnbuf);
d77b99c9
BW
9566 xtensa_insnbuf_to_chars
9567 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
43cd72b9
BW
9568
9569 /* Walk through all of the frags from here to the loop end
9570 and mark them as no_transform to keep them from being modified
9571 by the linker. If we ever have a relocation for the
9572 addi/addmi of the difference of two symbols we can remove this. */
9573
9574 target_count = 0;
9575 for (next_fragP = fragP; next_fragP != NULL;
9576 next_fragP = next_fragP->fr_next)
9577 {
b08b5071 9578 next_fragP->tc_frag_data.is_no_transform = TRUE;
43cd72b9
BW
9579 if (next_fragP->tc_frag_data.is_loop_target)
9580 target_count++;
9581 if (target_count == 2)
9582 break;
9583 }
e0001a05
NC
9584}
9585
b08b5071
BW
9586\f
9587/* A map that keeps information on a per-subsegment basis. This is
9588 maintained during initial assembly, but is invalid once the
9589 subsegments are smashed together. I.E., it cannot be used during
9590 the relaxation. */
e0001a05 9591
b08b5071 9592typedef struct subseg_map_struct
e0001a05 9593{
b08b5071
BW
9594 /* the key */
9595 segT seg;
9596 subsegT subseg;
e0001a05 9597
b08b5071
BW
9598 /* the data */
9599 unsigned flags;
9600 float total_freq; /* fall-through + branch target frequency */
9601 float target_freq; /* branch target frequency alone */
9602
9603 struct subseg_map_struct *next;
9604} subseg_map;
e0001a05 9605
e0001a05 9606
e0001a05
NC
9607static subseg_map *sseg_map = NULL;
9608
43cd72b9 9609static subseg_map *
7fa3d080 9610get_subseg_info (segT seg, subsegT subseg)
e0001a05
NC
9611{
9612 subseg_map *subseg_e;
9613
9614 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
e0001a05 9615 {
43cd72b9 9616 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
b08b5071 9617 break;
e0001a05 9618 }
b08b5071
BW
9619 return subseg_e;
9620}
9621
9622
9623static subseg_map *
9624add_subseg_info (segT seg, subsegT subseg)
9625{
9626 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
43cd72b9
BW
9627 memset (subseg_e, 0, sizeof (subseg_map));
9628 subseg_e->seg = seg;
9629 subseg_e->subseg = subseg;
9630 subseg_e->flags = 0;
9631 /* Start off considering every branch target very important. */
b08b5071
BW
9632 subseg_e->target_freq = 1.0;
9633 subseg_e->total_freq = 1.0;
43cd72b9
BW
9634 subseg_e->next = sseg_map;
9635 sseg_map = subseg_e;
43cd72b9
BW
9636 return subseg_e;
9637}
e0001a05 9638
7fa3d080
BW
9639
9640static unsigned
9641get_last_insn_flags (segT seg, subsegT subseg)
9642{
9643 subseg_map *subseg_e = get_subseg_info (seg, subseg);
b08b5071
BW
9644 if (subseg_e)
9645 return subseg_e->flags;
9646 return 0;
7fa3d080
BW
9647}
9648
9649
43cd72b9 9650static void
7fa3d080
BW
9651set_last_insn_flags (segT seg,
9652 subsegT subseg,
9653 unsigned fl,
9654 bfd_boolean val)
43cd72b9
BW
9655{
9656 subseg_map *subseg_e = get_subseg_info (seg, subseg);
b08b5071
BW
9657 if (! subseg_e)
9658 subseg_e = add_subseg_info (seg, subseg);
e0001a05
NC
9659 if (val)
9660 subseg_e->flags |= fl;
9661 else
9662 subseg_e->flags &= ~fl;
9663}
9664
b08b5071
BW
9665
9666static float
9667get_subseg_total_freq (segT seg, subsegT subseg)
9668{
9669 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9670 if (subseg_e)
9671 return subseg_e->total_freq;
9672 return 1.0;
9673}
9674
9675
9676static float
9677get_subseg_target_freq (segT seg, subsegT subseg)
9678{
9679 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9680 if (subseg_e)
9681 return subseg_e->target_freq;
9682 return 1.0;
9683}
9684
9685
9686static void
9687set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
9688{
9689 subseg_map *subseg_e = get_subseg_info (seg, subseg);
9690 if (! subseg_e)
9691 subseg_e = add_subseg_info (seg, subseg);
9692 subseg_e->total_freq = total_f;
9693 subseg_e->target_freq = target_f;
9694}
9695
e0001a05
NC
9696\f
9697/* Segment Lists and emit_state Stuff. */
9698
e0001a05 9699static void
7fa3d080 9700xtensa_move_seg_list_to_beginning (seg_list *head)
e0001a05
NC
9701{
9702 head = head->next;
9703 while (head)
9704 {
9705 segT literal_section = head->seg;
9706
9707 /* Move the literal section to the front of the section list. */
9708 assert (literal_section);
69852798
AM
9709 if (literal_section != stdoutput->sections)
9710 {
9711 bfd_section_list_remove (stdoutput, literal_section);
9712 bfd_section_list_prepend (stdoutput, literal_section);
9713 }
e0001a05
NC
9714 head = head->next;
9715 }
9716}
9717
9718
7fa3d080
BW
9719static void mark_literal_frags (seg_list *);
9720
9721static void
9722xtensa_move_literals (void)
e0001a05
NC
9723{
9724 seg_list *segment;
9725 frchainS *frchain_from, *frchain_to;
9726 fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after;
9727 fragS **frag_splice;
9728 emit_state state;
9729 segT dest_seg;
9730 fixS *fix, *next_fix, **fix_splice;
82e7541d 9731 sym_list *lit;
e0001a05 9732
a7877748
BW
9733 mark_literal_frags (literal_head->next);
9734 mark_literal_frags (init_literal_head->next);
9735 mark_literal_frags (fini_literal_head->next);
e0001a05
NC
9736
9737 if (use_literal_section)
9738 return;
9739
9740 segment = literal_head->next;
9741 while (segment)
9742 {
9743 frchain_from = seg_info (segment->seg)->frchainP;
9744 search_frag = frchain_from->frch_root;
9745 literal_pool = NULL;
9746 frchain_to = NULL;
9747 frag_splice = &(frchain_from->frch_root);
9748
9749 while (!search_frag->tc_frag_data.literal_frag)
9750 {
9751 assert (search_frag->fr_fix == 0
9752 || search_frag->fr_type == rs_align);
9753 search_frag = search_frag->fr_next;
9754 }
9755
9756 assert (search_frag->tc_frag_data.literal_frag->fr_subtype
9757 == RELAX_LITERAL_POOL_BEGIN);
9758 xtensa_switch_section_emit_state (&state, segment->seg, 0);
9759
9760 /* Make sure that all the frags in this series are closed, and
9761 that there is at least one left over of zero-size. This
9762 prevents us from making a segment with an frchain without any
9763 frags in it. */
9764 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9765 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
9766 last_frag = frag_now;
9767 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 9768 xtensa_set_frag_assembly_state (frag_now);
e0001a05 9769
43cd72b9 9770 while (search_frag != frag_now)
e0001a05
NC
9771 {
9772 next_frag = search_frag->fr_next;
9773
43cd72b9 9774 /* First, move the frag out of the literal section and
e0001a05
NC
9775 to the appropriate place. */
9776 if (search_frag->tc_frag_data.literal_frag)
9777 {
9778 literal_pool = search_frag->tc_frag_data.literal_frag;
9779 assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
dd49a749
BW
9780 frchain_to = literal_pool->tc_frag_data.lit_frchain;
9781 assert (frchain_to);
e0001a05
NC
9782 }
9783 insert_after = literal_pool;
43cd72b9 9784
e0001a05
NC
9785 while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END)
9786 insert_after = insert_after->fr_next;
9787
dd49a749 9788 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
43cd72b9 9789
e0001a05
NC
9790 *frag_splice = next_frag;
9791 search_frag->fr_next = insert_after->fr_next;
9792 insert_after->fr_next = search_frag;
9793 search_frag->tc_frag_data.lit_seg = dest_seg;
9794
9795 /* Now move any fixups associated with this frag to the
9796 right section. */
9797 fix = frchain_from->fix_root;
9798 fix_splice = &(frchain_from->fix_root);
9799 while (fix)
9800 {
9801 next_fix = fix->fx_next;
9802 if (fix->fx_frag == search_frag)
9803 {
9804 *fix_splice = next_fix;
9805 fix->fx_next = frchain_to->fix_root;
9806 frchain_to->fix_root = fix;
9807 if (frchain_to->fix_tail == NULL)
9808 frchain_to->fix_tail = fix;
9809 }
9810 else
9811 fix_splice = &(fix->fx_next);
9812 fix = next_fix;
9813 }
9814 search_frag = next_frag;
9815 }
9816
9817 if (frchain_from->fix_root != NULL)
9818 {
9819 frchain_from = seg_info (segment->seg)->frchainP;
9820 as_warn (_("fixes not all moved from %s"), segment->seg->name);
9821
9822 assert (frchain_from->fix_root == NULL);
9823 }
9824 frchain_from->fix_tail = NULL;
9825 xtensa_restore_emit_state (&state);
9826 segment = segment->next;
9827 }
9828
82e7541d
BW
9829 /* Now fix up the SEGMENT value for all the literal symbols. */
9830 for (lit = literal_syms; lit; lit = lit->next)
9831 {
9832 symbolS *lit_sym = lit->sym;
9833 segT dest_seg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
43cd72b9
BW
9834 if (dest_seg)
9835 S_SET_SEGMENT (lit_sym, dest_seg);
82e7541d 9836 }
e0001a05
NC
9837}
9838
9839
a7877748
BW
9840/* Walk over all the frags for segments in a list and mark them as
9841 containing literals. As clunky as this is, we can't rely on frag_var
9842 and frag_variant to get called in all situations. */
9843
9844static void
7fa3d080 9845mark_literal_frags (seg_list *segment)
a7877748
BW
9846{
9847 frchainS *frchain_from;
9848 fragS *search_frag;
9849
9850 while (segment)
9851 {
9852 frchain_from = seg_info (segment->seg)->frchainP;
9853 search_frag = frchain_from->frch_root;
c138bc38 9854 while (search_frag)
a7877748
BW
9855 {
9856 search_frag->tc_frag_data.is_literal = TRUE;
9857 search_frag = search_frag->fr_next;
9858 }
9859 segment = segment->next;
9860 }
9861}
9862
9863
e0001a05 9864static void
7fa3d080 9865xtensa_reorder_seg_list (seg_list *head, segT after)
e0001a05
NC
9866{
9867 /* Move all of the sections in the section list to come
9868 after "after" in the gnu segment list. */
9869
9870 head = head->next;
9871 while (head)
9872 {
9873 segT literal_section = head->seg;
9874
9875 /* Move the literal section after "after". */
9876 assert (literal_section);
9877 if (literal_section != after)
9878 {
69852798
AM
9879 bfd_section_list_remove (stdoutput, literal_section);
9880 bfd_section_list_insert_after (stdoutput, after, literal_section);
e0001a05
NC
9881 }
9882
9883 head = head->next;
9884 }
9885}
9886
9887
9888/* Push all the literal segments to the end of the gnu list. */
9889
7fa3d080
BW
9890static void
9891xtensa_reorder_segments (void)
e0001a05
NC
9892{
9893 segT sec;
b08b5071 9894 segT last_sec = 0;
e0001a05
NC
9895 int old_count = 0;
9896 int new_count = 0;
9897
9898 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
b08b5071
BW
9899 {
9900 last_sec = sec;
9901 old_count++;
9902 }
e0001a05
NC
9903
9904 /* Now that we have the last section, push all the literal
9905 sections to the end. */
e0001a05
NC
9906 xtensa_reorder_seg_list (literal_head, last_sec);
9907 xtensa_reorder_seg_list (init_literal_head, last_sec);
9908 xtensa_reorder_seg_list (fini_literal_head, last_sec);
9909
9910 /* Now perform the final error check. */
9911 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
9912 new_count++;
9913 assert (new_count == old_count);
9914}
9915
9916
e0001a05
NC
9917/* Change the emit state (seg, subseg, and frag related stuff) to the
9918 correct location. Return a emit_state which can be passed to
9919 xtensa_restore_emit_state to return to current fragment. */
9920
7fa3d080
BW
9921static void
9922xtensa_switch_to_literal_fragment (emit_state *result)
43cd72b9
BW
9923{
9924 if (directive_state[directive_absolute_literals])
9925 {
9926 cache_literal_section (0, default_lit_sections.lit4_seg_name,
9927 &default_lit_sections.lit4_seg, FALSE);
9928 xtensa_switch_section_emit_state (result,
9929 default_lit_sections.lit4_seg, 0);
9930 }
9931 else
9932 xtensa_switch_to_non_abs_literal_fragment (result);
9933
9934 /* Do a 4-byte align here. */
9935 frag_align (2, 0, 0);
9936 record_alignment (now_seg, 2);
9937}
9938
9939
7fa3d080
BW
9940static void
9941xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
e0001a05
NC
9942{
9943 /* When we mark a literal pool location, we want to put a frag in
9944 the literal pool that points to it. But to do that, we want to
9945 switch_to_literal_fragment. But literal sections don't have
9946 literal pools, so their location is always null, so we would
9947 recurse forever. This is kind of hacky, but it works. */
9948
9949 static bfd_boolean recursive = FALSE;
9950 fragS *pool_location = get_literal_pool_location (now_seg);
c138bc38 9951 bfd_boolean is_init =
e0001a05
NC
9952 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
9953
c138bc38 9954 bfd_boolean is_fini =
e0001a05 9955 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
e0001a05 9956
43cd72b9
BW
9957 if (pool_location == NULL
9958 && !use_literal_section
e0001a05
NC
9959 && !recursive
9960 && !is_init && ! is_fini)
9961 {
43cd72b9 9962 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
e0001a05 9963 recursive = TRUE;
61846f28 9964 xtensa_mark_literal_pool_location ();
e0001a05
NC
9965 recursive = FALSE;
9966 }
9967
9968 /* Special case: If we are in the ".fini" or ".init" section, then
9969 we will ALWAYS be generating to the ".fini.literal" and
9970 ".init.literal" sections. */
9971
9972 if (is_init)
9973 {
9974 cache_literal_section (init_literal_head,
9975 default_lit_sections.init_lit_seg_name,
43cd72b9 9976 &default_lit_sections.init_lit_seg, TRUE);
e0001a05
NC
9977 xtensa_switch_section_emit_state (result,
9978 default_lit_sections.init_lit_seg, 0);
9979 }
9980 else if (is_fini)
9981 {
9982 cache_literal_section (fini_literal_head,
9983 default_lit_sections.fini_lit_seg_name,
43cd72b9 9984 &default_lit_sections.fini_lit_seg, TRUE);
e0001a05
NC
9985 xtensa_switch_section_emit_state (result,
9986 default_lit_sections.fini_lit_seg, 0);
9987 }
43cd72b9 9988 else
e0001a05
NC
9989 {
9990 cache_literal_section (literal_head,
9991 default_lit_sections.lit_seg_name,
43cd72b9 9992 &default_lit_sections.lit_seg, TRUE);
e0001a05
NC
9993 xtensa_switch_section_emit_state (result,
9994 default_lit_sections.lit_seg, 0);
9995 }
9996
43cd72b9
BW
9997 if (!use_literal_section
9998 && !is_init && !is_fini
9999 && get_literal_pool_location (now_seg) != pool_location)
e0001a05
NC
10000 {
10001 /* Close whatever frag is there. */
10002 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 10003 xtensa_set_frag_assembly_state (frag_now);
e0001a05
NC
10004 frag_now->tc_frag_data.literal_frag = pool_location;
10005 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
43cd72b9 10006 xtensa_set_frag_assembly_state (frag_now);
e0001a05 10007 }
e0001a05
NC
10008}
10009
10010
10011/* Call this function before emitting data into the literal section.
10012 This is a helper function for xtensa_switch_to_literal_fragment.
10013 This is similar to a .section new_now_seg subseg. */
10014
7fa3d080
BW
10015static void
10016xtensa_switch_section_emit_state (emit_state *state,
10017 segT new_now_seg,
10018 subsegT new_now_subseg)
e0001a05
NC
10019{
10020 state->name = now_seg->name;
10021 state->now_seg = now_seg;
10022 state->now_subseg = now_subseg;
10023 state->generating_literals = generating_literals;
10024 generating_literals++;
2b0210eb 10025 subseg_set (new_now_seg, new_now_subseg);
e0001a05
NC
10026}
10027
10028
10029/* Use to restore the emitting into the normal place. */
10030
7fa3d080
BW
10031static void
10032xtensa_restore_emit_state (emit_state *state)
e0001a05
NC
10033{
10034 generating_literals = state->generating_literals;
2b0210eb 10035 subseg_set (state->now_seg, state->now_subseg);
e0001a05
NC
10036}
10037
10038
10039/* Get a segment of a given name. If the segment is already
10040 present, return it; otherwise, create a new one. */
10041
10042static void
7fa3d080
BW
10043cache_literal_section (seg_list *head,
10044 const char *name,
b08b5071 10045 segT *pseg,
7fa3d080 10046 bfd_boolean is_code)
e0001a05
NC
10047{
10048 segT current_section = now_seg;
10049 int current_subsec = now_subseg;
b08b5071 10050 segT seg;
e0001a05 10051
b08b5071 10052 if (*pseg != 0)
e0001a05 10053 return;
e0001a05 10054
b08b5071
BW
10055 /* Check if the named section exists. */
10056 for (seg = stdoutput->sections; seg; seg = seg->next)
10057 {
10058 if (!strcmp (segment_name (seg), name))
10059 break;
10060 }
e0001a05 10061
b08b5071 10062 if (!seg)
e0001a05 10063 {
b08b5071
BW
10064 /* Create a new literal section. */
10065 seg = subseg_new (name, (subsegT) 0);
43cd72b9 10066 if (head)
b08b5071
BW
10067 {
10068 /* Add the newly created literal segment to the specified list. */
10069 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
10070 n->seg = seg;
10071 n->next = head->next;
10072 head->next = n;
10073 }
10074 bfd_set_section_flags (stdoutput, seg, SEC_HAS_CONTENTS |
43cd72b9
BW
10075 SEC_READONLY | SEC_ALLOC | SEC_LOAD
10076 | (is_code ? SEC_CODE : SEC_DATA));
b08b5071 10077 bfd_set_section_alignment (stdoutput, seg, 2);
e0001a05
NC
10078 }
10079
b08b5071
BW
10080 *pseg = seg;
10081 subseg_set (current_section, current_subsec);
e0001a05
NC
10082}
10083
43cd72b9
BW
10084\f
10085/* Property Tables Stuff. */
10086
7fa3d080
BW
10087#define XTENSA_INSN_SEC_NAME ".xt.insn"
10088#define XTENSA_LIT_SEC_NAME ".xt.lit"
10089#define XTENSA_PROP_SEC_NAME ".xt.prop"
10090
10091typedef bfd_boolean (*frag_predicate) (const fragS *);
10092typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
10093
b08b5071 10094static bfd_boolean get_frag_is_literal (const fragS *);
7fa3d080
BW
10095static void xtensa_create_property_segments
10096 (frag_predicate, frag_predicate, const char *, xt_section_type);
10097static void xtensa_create_xproperty_segments
10098 (frag_flags_fn, const char *, xt_section_type);
10099static segment_info_type *retrieve_segment_info (segT);
10100static segT retrieve_xtensa_section (char *);
10101static bfd_boolean section_has_property (segT, frag_predicate);
10102static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
10103static void add_xt_block_frags
10104 (segT, segT, xtensa_block_info **, frag_predicate, frag_predicate);
10105static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
10106static void xtensa_frag_flags_init (frag_flags *);
10107static void get_frag_property_flags (const fragS *, frag_flags *);
10108static bfd_vma frag_flags_to_number (const frag_flags *);
10109static void add_xt_prop_frags
10110 (segT, segT, xtensa_block_info **, frag_flags_fn);
10111
10112/* Set up property tables after relaxation. */
10113
10114void
10115xtensa_post_relax_hook (void)
10116{
10117 xtensa_move_seg_list_to_beginning (literal_head);
10118 xtensa_move_seg_list_to_beginning (init_literal_head);
10119 xtensa_move_seg_list_to_beginning (fini_literal_head);
10120
10121 xtensa_find_unmarked_state_frags ();
10122
10123 if (use_literal_section)
10124 xtensa_create_property_segments (get_frag_is_literal,
10125 NULL,
10126 XTENSA_LIT_SEC_NAME,
10127 xt_literal_sec);
10128 xtensa_create_xproperty_segments (get_frag_property_flags,
10129 XTENSA_PROP_SEC_NAME,
10130 xt_prop_sec);
10131
10132 if (warn_unaligned_branch_targets)
10133 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
10134 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
10135}
10136
10137
43cd72b9
BW
10138/* This function is only meaningful after xtensa_move_literals. */
10139
10140static bfd_boolean
7fa3d080 10141get_frag_is_literal (const fragS *fragP)
43cd72b9
BW
10142{
10143 assert (fragP != NULL);
10144 return fragP->tc_frag_data.is_literal;
10145}
10146
10147
43cd72b9 10148static void
7fa3d080
BW
10149xtensa_create_property_segments (frag_predicate property_function,
10150 frag_predicate end_property_function,
10151 const char *section_name_base,
10152 xt_section_type sec_type)
43cd72b9
BW
10153{
10154 segT *seclist;
10155
10156 /* Walk over all of the current segments.
10157 Walk over each fragment
10158 For each non-empty fragment,
10159 Build a property record (append where possible). */
10160
10161 for (seclist = &stdoutput->sections;
10162 seclist && *seclist;
10163 seclist = &(*seclist)->next)
10164 {
10165 segT sec = *seclist;
10166 flagword flags;
10167
10168 flags = bfd_get_section_flags (stdoutput, sec);
10169 if (flags & SEC_DEBUGGING)
10170 continue;
10171 if (!(flags & SEC_ALLOC))
10172 continue;
10173
10174 if (section_has_property (sec, property_function))
10175 {
10176 char *property_section_name =
10177 xtensa_get_property_section_name (sec, section_name_base);
10178 segT insn_sec = retrieve_xtensa_section (property_section_name);
10179 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
10180 xtensa_block_info **xt_blocks =
10181 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10182 /* Walk over all of the frchains here and add new sections. */
10183 add_xt_block_frags (sec, insn_sec, xt_blocks, property_function,
10184 end_property_function);
10185 }
10186 }
10187
10188 /* Now we fill them out.... */
10189
10190 for (seclist = &stdoutput->sections;
10191 seclist && *seclist;
10192 seclist = &(*seclist)->next)
10193 {
10194 segment_info_type *seginfo;
10195 xtensa_block_info *block;
10196 segT sec = *seclist;
10197
10198 seginfo = seg_info (sec);
10199 block = seginfo->tc_segment_info_data.blocks[sec_type];
10200
10201 if (block)
10202 {
10203 xtensa_block_info *cur_block;
10204 /* This is a section with some data. */
10205 int num_recs = 0;
d77b99c9 10206 bfd_size_type rec_size;
43cd72b9
BW
10207
10208 for (cur_block = block; cur_block; cur_block = cur_block->next)
10209 num_recs++;
10210
10211 rec_size = num_recs * 8;
10212 bfd_set_section_size (stdoutput, sec, rec_size);
10213
10214 /* In order to make this work with the assembler, we have to
10215 build some frags and then build the "fixups" for it. It
10216 would be easier to just set the contents then set the
10217 arlents. */
10218
10219 if (num_recs)
10220 {
10221 /* Allocate a fragment and leak it. */
10222 fragS *fragP;
d77b99c9 10223 bfd_size_type frag_size;
43cd72b9
BW
10224 fixS *fixes;
10225 frchainS *frchainP;
10226 int i;
10227 char *frag_data;
10228
10229 frag_size = sizeof (fragS) + rec_size;
10230 fragP = (fragS *) xmalloc (frag_size);
e0001a05 10231
43cd72b9
BW
10232 memset (fragP, 0, frag_size);
10233 fragP->fr_address = 0;
10234 fragP->fr_next = NULL;
10235 fragP->fr_fix = rec_size;
10236 fragP->fr_var = 0;
10237 fragP->fr_type = rs_fill;
10238 /* The rest are zeros. */
e0001a05 10239
43cd72b9
BW
10240 frchainP = seginfo->frchainP;
10241 frchainP->frch_root = fragP;
10242 frchainP->frch_last = fragP;
e0001a05 10243
43cd72b9
BW
10244 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10245 memset (fixes, 0, sizeof (fixS) * num_recs);
e0001a05 10246
43cd72b9
BW
10247 seginfo->fix_root = fixes;
10248 seginfo->fix_tail = &fixes[num_recs - 1];
10249 cur_block = block;
10250 frag_data = &fragP->fr_literal[0];
10251 for (i = 0; i < num_recs; i++)
10252 {
10253 fixS *fix = &fixes[i];
10254 assert (cur_block);
e0001a05 10255
43cd72b9
BW
10256 /* Write the fixup. */
10257 if (i != num_recs - 1)
10258 fix->fx_next = &fixes[i + 1];
10259 else
10260 fix->fx_next = NULL;
10261 fix->fx_size = 4;
10262 fix->fx_done = 0;
10263 fix->fx_frag = fragP;
10264 fix->fx_where = i * 8;
10265 fix->fx_addsy = section_symbol (cur_block->sec);
10266 fix->fx_offset = cur_block->offset;
10267 fix->fx_r_type = BFD_RELOC_32;
10268 fix->fx_file = "Internal Assembly";
10269 fix->fx_line = 0;
e0001a05 10270
43cd72b9
BW
10271 /* Write the length. */
10272 md_number_to_chars (&frag_data[4 + 8 * i],
10273 cur_block->size, 4);
10274 cur_block = cur_block->next;
10275 }
10276 }
10277 }
10278 }
e0001a05
NC
10279}
10280
10281
7fa3d080
BW
10282static void
10283xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
10284 const char *section_name_base,
10285 xt_section_type sec_type)
e0001a05
NC
10286{
10287 segT *seclist;
10288
10289 /* Walk over all of the current segments.
43cd72b9
BW
10290 Walk over each fragment.
10291 For each fragment that has instructions,
10292 build an instruction record (append where possible). */
e0001a05
NC
10293
10294 for (seclist = &stdoutput->sections;
10295 seclist && *seclist;
10296 seclist = &(*seclist)->next)
10297 {
10298 segT sec = *seclist;
43cd72b9
BW
10299 flagword flags;
10300
10301 flags = bfd_get_section_flags (stdoutput, sec);
6624cbde
BW
10302 if ((flags & SEC_DEBUGGING)
10303 || !(flags & SEC_ALLOC)
10304 || (flags & SEC_MERGE))
43cd72b9
BW
10305 continue;
10306
10307 if (section_has_xproperty (sec, flag_fn))
e0001a05 10308 {
b614a702
BW
10309 char *property_section_name =
10310 xtensa_get_property_section_name (sec, section_name_base);
e0001a05
NC
10311 segT insn_sec = retrieve_xtensa_section (property_section_name);
10312 segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec);
43cd72b9 10313 xtensa_block_info **xt_blocks =
e0001a05
NC
10314 &xt_seg_info->tc_segment_info_data.blocks[sec_type];
10315 /* Walk over all of the frchains here and add new sections. */
43cd72b9 10316 add_xt_prop_frags (sec, insn_sec, xt_blocks, flag_fn);
e0001a05
NC
10317 }
10318 }
10319
10320 /* Now we fill them out.... */
10321
10322 for (seclist = &stdoutput->sections;
10323 seclist && *seclist;
10324 seclist = &(*seclist)->next)
10325 {
10326 segment_info_type *seginfo;
10327 xtensa_block_info *block;
10328 segT sec = *seclist;
43cd72b9 10329
e0001a05
NC
10330 seginfo = seg_info (sec);
10331 block = seginfo->tc_segment_info_data.blocks[sec_type];
10332
10333 if (block)
10334 {
10335 xtensa_block_info *cur_block;
10336 /* This is a section with some data. */
43cd72b9 10337 int num_recs = 0;
d77b99c9 10338 bfd_size_type rec_size;
e0001a05
NC
10339
10340 for (cur_block = block; cur_block; cur_block = cur_block->next)
10341 num_recs++;
10342
43cd72b9 10343 rec_size = num_recs * (8 + 4);
e0001a05
NC
10344 bfd_set_section_size (stdoutput, sec, rec_size);
10345
43cd72b9
BW
10346 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10347
10348 /* In order to make this work with the assembler, we have to build
10349 some frags then build the "fixups" for it. It would be easier to
10350 just set the contents then set the arlents. */
e0001a05
NC
10351
10352 if (num_recs)
10353 {
43cd72b9 10354 /* Allocate a fragment and (unfortunately) leak it. */
e0001a05 10355 fragS *fragP;
d77b99c9 10356 bfd_size_type frag_size;
e0001a05
NC
10357 fixS *fixes;
10358 frchainS *frchainP;
43cd72b9 10359 int i;
e0001a05
NC
10360 char *frag_data;
10361
10362 frag_size = sizeof (fragS) + rec_size;
10363 fragP = (fragS *) xmalloc (frag_size);
10364
10365 memset (fragP, 0, frag_size);
10366 fragP->fr_address = 0;
10367 fragP->fr_next = NULL;
10368 fragP->fr_fix = rec_size;
10369 fragP->fr_var = 0;
10370 fragP->fr_type = rs_fill;
43cd72b9 10371 /* The rest are zeros. */
e0001a05
NC
10372
10373 frchainP = seginfo->frchainP;
10374 frchainP->frch_root = fragP;
10375 frchainP->frch_last = fragP;
10376
10377 fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs);
10378 memset (fixes, 0, sizeof (fixS) * num_recs);
10379
10380 seginfo->fix_root = fixes;
10381 seginfo->fix_tail = &fixes[num_recs - 1];
10382 cur_block = block;
10383 frag_data = &fragP->fr_literal[0];
10384 for (i = 0; i < num_recs; i++)
10385 {
10386 fixS *fix = &fixes[i];
10387 assert (cur_block);
10388
10389 /* Write the fixup. */
10390 if (i != num_recs - 1)
10391 fix->fx_next = &fixes[i + 1];
10392 else
10393 fix->fx_next = NULL;
10394 fix->fx_size = 4;
10395 fix->fx_done = 0;
10396 fix->fx_frag = fragP;
43cd72b9 10397 fix->fx_where = i * (8 + 4);
e0001a05
NC
10398 fix->fx_addsy = section_symbol (cur_block->sec);
10399 fix->fx_offset = cur_block->offset;
10400 fix->fx_r_type = BFD_RELOC_32;
10401 fix->fx_file = "Internal Assembly";
10402 fix->fx_line = 0;
10403
10404 /* Write the length. */
43cd72b9 10405 md_number_to_chars (&frag_data[4 + (8+4) * i],
e0001a05 10406 cur_block->size, 4);
43cd72b9
BW
10407 md_number_to_chars (&frag_data[8 + (8+4) * i],
10408 frag_flags_to_number (&cur_block->flags),
10409 4);
e0001a05
NC
10410 cur_block = cur_block->next;
10411 }
10412 }
10413 }
10414 }
10415}
10416
10417
7fa3d080
BW
10418static segment_info_type *
10419retrieve_segment_info (segT seg)
e0001a05
NC
10420{
10421 segment_info_type *seginfo;
10422 seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
10423 if (!seginfo)
10424 {
10425 frchainS *frchainP;
10426
10427 seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
7fa3d080 10428 memset ((void *) seginfo, 0, sizeof (*seginfo));
e0001a05
NC
10429 seginfo->fix_root = NULL;
10430 seginfo->fix_tail = NULL;
10431 seginfo->bfd_section = seg;
10432 seginfo->sym = 0;
10433 /* We will not be dealing with these, only our special ones. */
65ec77d2 10434 bfd_set_section_userdata (stdoutput, seg, (void *) seginfo);
e0001a05
NC
10435
10436 frchainP = (frchainS *) xmalloc (sizeof (frchainS));
10437 frchainP->frch_root = NULL;
10438 frchainP->frch_last = NULL;
10439 frchainP->frch_next = NULL;
10440 frchainP->frch_seg = seg;
10441 frchainP->frch_subseg = 0;
10442 frchainP->fix_root = NULL;
10443 frchainP->fix_tail = NULL;
10444 /* Do not init the objstack. */
10445 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
10446 /* frchainP->frch_frag_now = fragP; */
10447 frchainP->frch_frag_now = NULL;
10448
10449 seginfo->frchainP = frchainP;
10450 }
10451
10452 return seginfo;
10453}
10454
10455
7fa3d080
BW
10456static segT
10457retrieve_xtensa_section (char *sec_name)
e0001a05
NC
10458{
10459 bfd *abfd = stdoutput;
10460 flagword flags, out_flags, link_once_flags;
10461 segT s;
10462
10463 flags = bfd_get_section_flags (abfd, now_seg);
10464 link_once_flags = (flags & SEC_LINK_ONCE);
10465 if (link_once_flags)
10466 link_once_flags |= (flags & SEC_LINK_DUPLICATES);
10467 out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags);
10468
10469 s = bfd_make_section_old_way (abfd, sec_name);
10470 if (s == NULL)
10471 as_bad (_("could not create section %s"), sec_name);
10472 if (!bfd_set_section_flags (abfd, s, out_flags))
10473 as_bad (_("invalid flag combination on section %s"), sec_name);
10474
10475 return s;
10476}
10477
10478
7fa3d080
BW
10479static bfd_boolean
10480section_has_property (segT sec, frag_predicate property_function)
e0001a05
NC
10481{
10482 segment_info_type *seginfo = seg_info (sec);
10483 fragS *fragP;
10484
10485 if (seginfo && seginfo->frchainP)
10486 {
10487 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10488 {
10489 if (property_function (fragP)
10490 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10491 return TRUE;
10492 }
10493 }
10494 return FALSE;
10495}
10496
10497
7fa3d080
BW
10498static bfd_boolean
10499section_has_xproperty (segT sec, frag_flags_fn property_function)
43cd72b9
BW
10500{
10501 segment_info_type *seginfo = seg_info (sec);
10502 fragS *fragP;
10503
10504 if (seginfo && seginfo->frchainP)
10505 {
10506 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
10507 {
10508 frag_flags prop_flags;
10509 property_function (fragP, &prop_flags);
10510 if (!xtensa_frag_flags_is_empty (&prop_flags))
10511 return TRUE;
10512 }
10513 }
10514 return FALSE;
10515}
10516
10517
e0001a05
NC
10518/* Two types of block sections exist right now: literal and insns. */
10519
7fa3d080
BW
10520static void
10521add_xt_block_frags (segT sec,
10522 segT xt_block_sec,
10523 xtensa_block_info **xt_block,
10524 frag_predicate property_function,
10525 frag_predicate end_property_function)
e0001a05
NC
10526{
10527 segment_info_type *seg_info;
10528 segment_info_type *xt_seg_info;
10529 bfd_vma seg_offset;
10530 fragS *fragP;
10531
10532 xt_seg_info = retrieve_segment_info (xt_block_sec);
10533 seg_info = retrieve_segment_info (sec);
10534
10535 /* Build it if needed. */
10536 while (*xt_block != NULL)
10537 xt_block = &(*xt_block)->next;
10538 /* We are either at NULL at the beginning or at the end. */
10539
10540 /* Walk through the frags. */
10541 seg_offset = 0;
10542
10543 if (seg_info->frchainP)
10544 {
10545 for (fragP = seg_info->frchainP->frch_root;
10546 fragP;
10547 fragP = fragP->fr_next)
10548 {
10549 if (property_function (fragP)
10550 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
10551 {
10552 if (*xt_block != NULL)
10553 {
10554 if ((*xt_block)->offset + (*xt_block)->size
10555 == fragP->fr_address)
10556 (*xt_block)->size += fragP->fr_fix;
10557 else
10558 xt_block = &((*xt_block)->next);
10559 }
10560 if (*xt_block == NULL)
10561 {
43cd72b9
BW
10562 xtensa_block_info *new_block = (xtensa_block_info *)
10563 xmalloc (sizeof (xtensa_block_info));
10564 new_block->sec = sec;
10565 new_block->offset = fragP->fr_address;
10566 new_block->size = fragP->fr_fix;
10567 new_block->next = NULL;
10568 xtensa_frag_flags_init (&new_block->flags);
10569 *xt_block = new_block;
10570 }
10571 if (end_property_function
10572 && end_property_function (fragP))
10573 {
10574 xt_block = &((*xt_block)->next);
10575 }
10576 }
10577 }
10578 }
10579}
10580
10581
10582/* Break the encapsulation of add_xt_prop_frags here. */
10583
7fa3d080
BW
10584static bfd_boolean
10585xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
43cd72b9
BW
10586{
10587 if (prop_flags->is_literal
10588 || prop_flags->is_insn
10589 || prop_flags->is_data
10590 || prop_flags->is_unreachable)
10591 return FALSE;
10592 return TRUE;
10593}
10594
10595
7fa3d080
BW
10596static void
10597xtensa_frag_flags_init (frag_flags *prop_flags)
43cd72b9
BW
10598{
10599 memset (prop_flags, 0, sizeof (frag_flags));
10600}
10601
10602
7fa3d080
BW
10603static void
10604get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
43cd72b9
BW
10605{
10606 xtensa_frag_flags_init (prop_flags);
10607 if (fragP->tc_frag_data.is_literal)
10608 prop_flags->is_literal = TRUE;
10609 if (fragP->tc_frag_data.is_unreachable)
7fa3d080 10610 prop_flags->is_unreachable = TRUE;
43cd72b9
BW
10611 else if (fragP->tc_frag_data.is_insn)
10612 {
10613 prop_flags->is_insn = TRUE;
10614 if (fragP->tc_frag_data.is_loop_target)
10615 prop_flags->insn.is_loop_target = TRUE;
10616 if (fragP->tc_frag_data.is_branch_target)
10617 prop_flags->insn.is_branch_target = TRUE;
10618 if (fragP->tc_frag_data.is_specific_opcode
10619 || fragP->tc_frag_data.is_no_transform)
10620 prop_flags->insn.is_no_transform = TRUE;
10621 if (fragP->tc_frag_data.is_no_density)
10622 prop_flags->insn.is_no_density = TRUE;
10623 if (fragP->tc_frag_data.use_absolute_literals)
10624 prop_flags->insn.is_abslit = TRUE;
10625 }
10626 if (fragP->tc_frag_data.is_align)
10627 {
10628 prop_flags->is_align = TRUE;
10629 prop_flags->alignment = fragP->tc_frag_data.alignment;
10630 if (xtensa_frag_flags_is_empty (prop_flags))
10631 prop_flags->is_data = TRUE;
10632 }
10633}
10634
10635
7fa3d080
BW
10636static bfd_vma
10637frag_flags_to_number (const frag_flags *prop_flags)
43cd72b9
BW
10638{
10639 bfd_vma num = 0;
10640 if (prop_flags->is_literal)
10641 num |= XTENSA_PROP_LITERAL;
10642 if (prop_flags->is_insn)
10643 num |= XTENSA_PROP_INSN;
10644 if (prop_flags->is_data)
10645 num |= XTENSA_PROP_DATA;
10646 if (prop_flags->is_unreachable)
10647 num |= XTENSA_PROP_UNREACHABLE;
10648 if (prop_flags->insn.is_loop_target)
10649 num |= XTENSA_PROP_INSN_LOOP_TARGET;
10650 if (prop_flags->insn.is_branch_target)
10651 {
10652 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
10653 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
10654 }
10655
10656 if (prop_flags->insn.is_no_density)
10657 num |= XTENSA_PROP_INSN_NO_DENSITY;
10658 if (prop_flags->insn.is_no_transform)
10659 num |= XTENSA_PROP_INSN_NO_TRANSFORM;
10660 if (prop_flags->insn.is_no_reorder)
10661 num |= XTENSA_PROP_INSN_NO_REORDER;
10662 if (prop_flags->insn.is_abslit)
10663 num |= XTENSA_PROP_INSN_ABSLIT;
10664
10665 if (prop_flags->is_align)
10666 {
10667 num |= XTENSA_PROP_ALIGN;
10668 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
10669 }
10670
10671 return num;
10672}
10673
10674
10675static bfd_boolean
7fa3d080
BW
10676xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
10677 const frag_flags *prop_flags_2)
43cd72b9
BW
10678{
10679 /* Cannot combine with an end marker. */
10680
10681 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
10682 return FALSE;
10683 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
10684 return FALSE;
10685 if (prop_flags_1->is_data != prop_flags_2->is_data)
10686 return FALSE;
10687
10688 if (prop_flags_1->is_insn)
10689 {
10690 /* Properties of the beginning of the frag. */
10691 if (prop_flags_2->insn.is_loop_target)
10692 return FALSE;
10693 if (prop_flags_2->insn.is_branch_target)
10694 return FALSE;
10695 if (prop_flags_1->insn.is_no_density !=
10696 prop_flags_2->insn.is_no_density)
10697 return FALSE;
10698 if (prop_flags_1->insn.is_no_transform !=
10699 prop_flags_2->insn.is_no_transform)
10700 return FALSE;
10701 if (prop_flags_1->insn.is_no_reorder !=
10702 prop_flags_2->insn.is_no_reorder)
10703 return FALSE;
10704 if (prop_flags_1->insn.is_abslit !=
10705 prop_flags_2->insn.is_abslit)
10706 return FALSE;
10707 }
10708
10709 if (prop_flags_1->is_align)
10710 return FALSE;
10711
10712 return TRUE;
10713}
10714
10715
7fa3d080
BW
10716static bfd_vma
10717xt_block_aligned_size (const xtensa_block_info *xt_block)
43cd72b9
BW
10718{
10719 bfd_vma end_addr;
d77b99c9 10720 unsigned align_bits;
43cd72b9
BW
10721
10722 if (!xt_block->flags.is_align)
10723 return xt_block->size;
10724
10725 end_addr = xt_block->offset + xt_block->size;
10726 align_bits = xt_block->flags.alignment;
10727 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
10728 return end_addr - xt_block->offset;
10729}
10730
10731
10732static bfd_boolean
7fa3d080
BW
10733xtensa_xt_block_combine (xtensa_block_info *xt_block,
10734 const xtensa_block_info *xt_block_2)
43cd72b9
BW
10735{
10736 if (xt_block->sec != xt_block_2->sec)
10737 return FALSE;
10738 if (xt_block->offset + xt_block_aligned_size (xt_block)
10739 != xt_block_2->offset)
10740 return FALSE;
10741
10742 if (xt_block_2->size == 0
10743 && (!xt_block_2->flags.is_unreachable
10744 || xt_block->flags.is_unreachable))
10745 {
10746 if (xt_block_2->flags.is_align
10747 && xt_block->flags.is_align)
10748 {
10749 /* Nothing needed. */
10750 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
10751 return TRUE;
10752 }
10753 else
10754 {
10755 if (xt_block_2->flags.is_align)
10756 {
10757 /* Push alignment to previous entry. */
10758 xt_block->flags.is_align = xt_block_2->flags.is_align;
10759 xt_block->flags.alignment = xt_block_2->flags.alignment;
10760 }
10761 return TRUE;
10762 }
10763 }
10764 if (!xtensa_frag_flags_combinable (&xt_block->flags,
10765 &xt_block_2->flags))
10766 return FALSE;
10767
10768 xt_block->size += xt_block_2->size;
10769
10770 if (xt_block_2->flags.is_align)
10771 {
10772 xt_block->flags.is_align = TRUE;
10773 xt_block->flags.alignment = xt_block_2->flags.alignment;
10774 }
10775
10776 return TRUE;
10777}
10778
10779
7fa3d080
BW
10780static void
10781add_xt_prop_frags (segT sec,
10782 segT xt_block_sec,
10783 xtensa_block_info **xt_block,
10784 frag_flags_fn property_function)
43cd72b9
BW
10785{
10786 segment_info_type *seg_info;
10787 segment_info_type *xt_seg_info;
10788 bfd_vma seg_offset;
10789 fragS *fragP;
10790
10791 xt_seg_info = retrieve_segment_info (xt_block_sec);
10792 seg_info = retrieve_segment_info (sec);
10793 /* Build it if needed. */
10794 while (*xt_block != NULL)
10795 {
10796 xt_block = &(*xt_block)->next;
10797 }
10798 /* We are either at NULL at the beginning or at the end. */
10799
10800 /* Walk through the frags. */
10801 seg_offset = 0;
10802
10803 if (seg_info->frchainP)
10804 {
10805 for (fragP = seg_info->frchainP->frch_root; fragP;
10806 fragP = fragP->fr_next)
10807 {
10808 xtensa_block_info tmp_block;
10809 tmp_block.sec = sec;
10810 tmp_block.offset = fragP->fr_address;
10811 tmp_block.size = fragP->fr_fix;
10812 tmp_block.next = NULL;
10813 property_function (fragP, &tmp_block.flags);
10814
10815 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
10816 /* && fragP->fr_fix != 0) */
10817 {
10818 if ((*xt_block) == NULL
10819 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
10820 {
10821 xtensa_block_info *new_block;
10822 if ((*xt_block) != NULL)
10823 xt_block = &(*xt_block)->next;
10824 new_block = (xtensa_block_info *)
10825 xmalloc (sizeof (xtensa_block_info));
10826 *new_block = tmp_block;
10827 *xt_block = new_block;
10828 }
10829 }
10830 }
10831 }
10832}
10833
10834\f
10835/* op_placement_info_table */
10836
10837/* op_placement_info makes it easier to determine which
10838 ops can go in which slots. */
10839
10840static void
7fa3d080 10841init_op_placement_info_table (void)
43cd72b9
BW
10842{
10843 xtensa_isa isa = xtensa_default_isa;
10844 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
10845 xtensa_opcode opcode;
10846 xtensa_format fmt;
10847 int slot;
10848 int num_opcodes = xtensa_isa_num_opcodes (isa);
10849
10850 op_placement_table = (op_placement_info_table)
10851 xmalloc (sizeof (op_placement_info) * num_opcodes);
10852 assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
10853
10854 for (opcode = 0; opcode < num_opcodes; opcode++)
10855 {
10856 op_placement_info *opi = &op_placement_table[opcode];
10857 /* FIXME: Make tinsn allocation dynamic. */
10858 if (xtensa_opcode_num_operands (isa, opcode) >= MAX_INSN_ARGS)
10859 as_fatal (_("too many operands in instruction"));
10860 opi->single = XTENSA_UNDEFINED;
10861 opi->single_size = 0;
10862 opi->widest = XTENSA_UNDEFINED;
10863 opi->widest_size = 0;
10864 opi->narrowest = XTENSA_UNDEFINED;
10865 opi->narrowest_size = 0x7F;
10866 opi->formats = 0;
10867 opi->num_formats = 0;
10868 opi->issuef = 0;
10869 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
10870 {
10871 opi->slots[fmt] = 0;
10872 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
10873 {
10874 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
10875 {
10876 int fmt_length = xtensa_format_length (isa, fmt);
10877 opi->issuef++;
10878 set_bit (fmt, opi->formats);
10879 set_bit (slot, opi->slots[fmt]);
10880 /* opi->slot_count[fmt]++; */
10881 if (fmt_length < opi->narrowest_size)
10882 {
10883 opi->narrowest = fmt;
10884 opi->narrowest_size = fmt_length;
10885 }
10886 if (fmt_length > opi->widest_size)
10887 {
10888 opi->widest = fmt;
10889 opi->widest_size = fmt_length;
10890 }
10891 if (xtensa_format_num_slots (isa, fmt) == 1)
10892 {
10893 if (opi->single_size == 0
10894 || fmt_length < opi->single_size)
10895 {
10896 opi->single = fmt;
10897 opi->single_size = fmt_length;
10898 }
10899 }
e0001a05
NC
10900 }
10901 }
43cd72b9
BW
10902 if (opi->formats)
10903 opi->num_formats++;
e0001a05
NC
10904 }
10905 }
43cd72b9
BW
10906 xtensa_insnbuf_free (isa, ibuf);
10907}
10908
10909
10910bfd_boolean
7fa3d080 10911opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
43cd72b9
BW
10912{
10913 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
10914}
10915
10916
10917/* If the opcode is available in a single slot format, return its size. */
10918
7fa3d080
BW
10919static int
10920xg_get_single_size (xtensa_opcode opcode)
43cd72b9
BW
10921{
10922 assert (op_placement_table[opcode].single != XTENSA_UNDEFINED);
10923 return op_placement_table[opcode].single_size;
10924}
10925
10926
7fa3d080
BW
10927static xtensa_format
10928xg_get_single_format (xtensa_opcode opcode)
43cd72b9
BW
10929{
10930 return op_placement_table[opcode].single;
e0001a05
NC
10931}
10932
10933\f
10934/* Instruction Stack Functions (from "xtensa-istack.h"). */
10935
10936void
7fa3d080 10937istack_init (IStack *stack)
e0001a05
NC
10938{
10939 memset (stack, 0, sizeof (IStack));
10940 stack->ninsn = 0;
10941}
10942
10943
10944bfd_boolean
7fa3d080 10945istack_empty (IStack *stack)
e0001a05
NC
10946{
10947 return (stack->ninsn == 0);
10948}
10949
10950
10951bfd_boolean
7fa3d080 10952istack_full (IStack *stack)
e0001a05
NC
10953{
10954 return (stack->ninsn == MAX_ISTACK);
10955}
10956
10957
10958/* Return a pointer to the top IStack entry.
43cd72b9 10959 It is an error to call this if istack_empty () is TRUE. */
e0001a05
NC
10960
10961TInsn *
7fa3d080 10962istack_top (IStack *stack)
e0001a05
NC
10963{
10964 int rec = stack->ninsn - 1;
10965 assert (!istack_empty (stack));
10966 return &stack->insn[rec];
10967}
10968
10969
10970/* Add a new TInsn to an IStack.
43cd72b9 10971 It is an error to call this if istack_full () is TRUE. */
e0001a05
NC
10972
10973void
7fa3d080 10974istack_push (IStack *stack, TInsn *insn)
e0001a05
NC
10975{
10976 int rec = stack->ninsn;
10977 assert (!istack_full (stack));
43cd72b9 10978 stack->insn[rec] = *insn;
e0001a05
NC
10979 stack->ninsn++;
10980}
10981
10982
10983/* Clear space for the next TInsn on the IStack and return a pointer
43cd72b9 10984 to it. It is an error to call this if istack_full () is TRUE. */
e0001a05
NC
10985
10986TInsn *
7fa3d080 10987istack_push_space (IStack *stack)
e0001a05
NC
10988{
10989 int rec = stack->ninsn;
10990 TInsn *insn;
10991 assert (!istack_full (stack));
10992 insn = &stack->insn[rec];
10993 memset (insn, 0, sizeof (TInsn));
10994 stack->ninsn++;
10995 return insn;
10996}
10997
10998
10999/* Remove the last pushed instruction. It is an error to call this if
43cd72b9 11000 istack_empty () returns TRUE. */
e0001a05
NC
11001
11002void
7fa3d080 11003istack_pop (IStack *stack)
e0001a05
NC
11004{
11005 int rec = stack->ninsn - 1;
11006 assert (!istack_empty (stack));
11007 stack->ninsn--;
11008 memset (&stack->insn[rec], 0, sizeof (TInsn));
11009}
11010
11011\f
11012/* TInsn functions. */
11013
11014void
7fa3d080 11015tinsn_init (TInsn *dst)
e0001a05
NC
11016{
11017 memset (dst, 0, sizeof (TInsn));
11018}
11019
11020
e0001a05
NC
11021/* Get the ``num''th token of the TInsn.
11022 It is illegal to call this if num > insn->ntoks. */
11023
11024expressionS *
7fa3d080 11025tinsn_get_tok (TInsn *insn, int num)
e0001a05
NC
11026{
11027 assert (num < insn->ntok);
11028 return &insn->tok[num];
11029}
11030
11031
43cd72b9 11032/* Return TRUE if ANY of the operands in the insn are symbolic. */
e0001a05
NC
11033
11034static bfd_boolean
7fa3d080 11035tinsn_has_symbolic_operands (const TInsn *insn)
e0001a05
NC
11036{
11037 int i;
11038 int n = insn->ntok;
11039
11040 assert (insn->insn_type == ITYPE_INSN);
11041
11042 for (i = 0; i < n; ++i)
11043 {
11044 switch (insn->tok[i].X_op)
11045 {
11046 case O_register:
11047 case O_constant:
11048 break;
11049 default:
11050 return TRUE;
11051 }
11052 }
11053 return FALSE;
11054}
11055
11056
11057bfd_boolean
7fa3d080 11058tinsn_has_invalid_symbolic_operands (const TInsn *insn)
e0001a05 11059{
43cd72b9 11060 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
11061 int i;
11062 int n = insn->ntok;
11063
11064 assert (insn->insn_type == ITYPE_INSN);
11065
11066 for (i = 0; i < n; ++i)
11067 {
11068 switch (insn->tok[i].X_op)
11069 {
11070 case O_register:
11071 case O_constant:
11072 break;
43cd72b9
BW
11073 case O_big:
11074 case O_illegal:
11075 case O_absent:
11076 /* Errors for these types are caught later. */
11077 break;
11078 case O_hi16:
11079 case O_lo16:
e0001a05 11080 default:
43cd72b9
BW
11081 /* Symbolic immediates are only allowed on the last immediate
11082 operand. At this time, CONST16 is the only opcode where we
11083 support non-PC-relative relocations. (It isn't necessary
11084 to complain about non-PC-relative relocations here, but
11085 otherwise, no error is reported until the relocations are
11086 generated, and the assembler won't get that far if there
11087 are any other errors. It's nice to see all the problems
11088 at once.) */
11089 if (i != get_relaxable_immed (insn->opcode)
11090 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
11091 && insn->opcode != xtensa_const16_opcode))
11092 {
11093 as_bad (_("invalid symbolic operand %d on '%s'"),
11094 i, xtensa_opcode_name (isa, insn->opcode));
11095 return TRUE;
11096 }
e0001a05
NC
11097 }
11098 }
11099 return FALSE;
11100}
11101
11102
11103/* For assembly code with complex expressions (e.g. subtraction),
11104 we have to build them in the literal pool so that
11105 their results are calculated correctly after relaxation.
11106 The relaxation only handles expressions that
11107 boil down to SYMBOL + OFFSET. */
11108
11109static bfd_boolean
7fa3d080 11110tinsn_has_complex_operands (const TInsn *insn)
e0001a05
NC
11111{
11112 int i;
11113 int n = insn->ntok;
11114 assert (insn->insn_type == ITYPE_INSN);
11115 for (i = 0; i < n; ++i)
11116 {
11117 switch (insn->tok[i].X_op)
11118 {
11119 case O_register:
11120 case O_constant:
11121 case O_symbol:
43cd72b9
BW
11122 case O_lo16:
11123 case O_hi16:
e0001a05
NC
11124 break;
11125 default:
11126 return TRUE;
11127 }
11128 }
11129 return FALSE;
11130}
11131
11132
43cd72b9
BW
11133/* Convert the constant operands in the tinsn to insnbuf.
11134 Return TRUE if there is a symbol in the immediate field.
e0001a05 11135
43cd72b9 11136 Before this is called,
e0001a05 11137 1) the number of operands are correct
43cd72b9 11138 2) the tinsn is a ITYPE_INSN
e0001a05
NC
11139 3) ONLY the relaxable_ is built
11140 4) All operands are O_constant, O_symbol. All constants fit
11141 The return value tells whether there are any remaining O_symbols. */
11142
11143static bfd_boolean
7fa3d080 11144tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
e0001a05 11145{
43cd72b9 11146 static xtensa_insnbuf slotbuf = 0;
e0001a05 11147 xtensa_isa isa = xtensa_default_isa;
43cd72b9
BW
11148 xtensa_opcode opcode = tinsn->opcode;
11149 xtensa_format fmt = xg_get_single_format (opcode);
e0001a05 11150 bfd_boolean has_fixup = FALSE;
43cd72b9 11151 int noperands = xtensa_opcode_num_operands (isa, opcode);
e0001a05
NC
11152 int i;
11153 uint32 opnd_value;
11154 char *file_name;
d77b99c9 11155 unsigned line;
e0001a05 11156
43cd72b9
BW
11157 if (!slotbuf)
11158 slotbuf = xtensa_insnbuf_alloc (isa);
11159
11160 assert (tinsn->insn_type == ITYPE_INSN);
11161 if (noperands != tinsn->ntok)
e0001a05
NC
11162 as_fatal (_("operand number mismatch"));
11163
43cd72b9
BW
11164 if (xtensa_opcode_encode (isa, fmt, 0, slotbuf, opcode))
11165 as_fatal (_("cannot encode opcode"));
e0001a05
NC
11166
11167 for (i = 0; i < noperands; ++i)
11168 {
43cd72b9 11169 expressionS *expr = &tinsn->tok[i];
e0001a05
NC
11170 switch (expr->X_op)
11171 {
11172 case O_register:
43cd72b9
BW
11173 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11174 break;
11175 /* The register number has already been checked in
e0001a05
NC
11176 expression_maybe_register, so we don't need to check here. */
11177 opnd_value = expr->X_add_number;
43cd72b9
BW
11178 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11179 xtensa_operand_set_field (isa, opcode, i, fmt, 0,
11180 slotbuf, opnd_value);
e0001a05
NC
11181 break;
11182
11183 case O_constant:
43cd72b9
BW
11184 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11185 break;
e0001a05
NC
11186 as_where (&file_name, &line);
11187 /* It is a constant and we called this function,
11188 then we have to try to fit it. */
43cd72b9
BW
11189 xtensa_insnbuf_set_operand (slotbuf, fmt, 0, opcode, i,
11190 expr->X_add_number, file_name, line);
11191 break;
11192
11193 default:
11194 has_fixup = TRUE;
11195 break;
11196 }
11197 }
11198
11199 xtensa_format_encode (isa, fmt, insnbuf);
11200 xtensa_format_set_slot (isa, fmt, 0, insnbuf, slotbuf);
11201
11202 return has_fixup;
11203}
11204
11205
11206/* Convert the constant operands in the tinsn to slotbuf.
11207 Return TRUE if there is a symbol in the immediate field.
11208 (Eventually this should replace tinsn_to_insnbuf.) */
11209
11210/* Before this is called,
11211 1) the number of operands are correct
11212 2) the tinsn is a ITYPE_INSN
11213 3) ONLY the relaxable_ is built
11214 4) All operands are
11215 O_constant, O_symbol
11216 All constants fit
11217
11218 The return value tells whether there are any remaining O_symbols. */
11219
11220static bfd_boolean
7fa3d080
BW
11221tinsn_to_slotbuf (xtensa_format fmt,
11222 int slot,
11223 TInsn *tinsn,
11224 xtensa_insnbuf slotbuf)
43cd72b9
BW
11225{
11226 xtensa_isa isa = xtensa_default_isa;
11227 xtensa_opcode opcode = tinsn->opcode;
11228 bfd_boolean has_fixup = FALSE;
11229 int noperands = xtensa_opcode_num_operands (isa, opcode);
11230 int i;
11231
11232 *((int *) &slotbuf[0]) = 0;
11233 *((int *) &slotbuf[1]) = 0;
11234 assert (tinsn->insn_type == ITYPE_INSN);
11235 if (noperands != tinsn->ntok)
11236 as_fatal (_("operand number mismatch"));
11237
11238 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
11239 {
11240 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11241 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
11242 return FALSE;
11243 }
11244
11245 for (i = 0; i < noperands; i++)
11246 {
11247 expressionS *expr = &tinsn->tok[i];
d77b99c9
BW
11248 int rc;
11249 unsigned line;
43cd72b9
BW
11250 char *file_name;
11251 uint32 opnd_value;
11252
11253 switch (expr->X_op)
11254 {
11255 case O_register:
11256 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11257 break;
11258 /* The register number has already been checked in
11259 expression_maybe_register, so we don't need to check here. */
11260 opnd_value = expr->X_add_number;
11261 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
11262 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
11263 opnd_value);
11264 if (rc != 0)
11265 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
11266 break;
11267
11268 case O_constant:
11269 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
11270 break;
11271 as_where (&file_name, &line);
11272 /* It is a constant and we called this function
11273 then we have to try to fit it. */
11274 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
e0001a05
NC
11275 expr->X_add_number, file_name, line);
11276 break;
11277
e0001a05
NC
11278 default:
11279 has_fixup = TRUE;
11280 break;
11281 }
11282 }
43cd72b9 11283
e0001a05
NC
11284 return has_fixup;
11285}
11286
11287
43cd72b9 11288/* Check the instruction arguments. Return TRUE on failure. */
e0001a05 11289
7fa3d080
BW
11290static bfd_boolean
11291tinsn_check_arguments (const TInsn *insn)
e0001a05
NC
11292{
11293 xtensa_isa isa = xtensa_default_isa;
11294 xtensa_opcode opcode = insn->opcode;
11295
11296 if (opcode == XTENSA_UNDEFINED)
11297 {
11298 as_bad (_("invalid opcode"));
11299 return TRUE;
11300 }
11301
43cd72b9 11302 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
e0001a05
NC
11303 {
11304 as_bad (_("too few operands"));
11305 return TRUE;
11306 }
11307
43cd72b9 11308 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
e0001a05
NC
11309 {
11310 as_bad (_("too many operands"));
11311 return TRUE;
11312 }
11313 return FALSE;
11314}
11315
11316
11317/* Load an instruction from its encoded form. */
11318
11319static void
7fa3d080 11320tinsn_from_chars (TInsn *tinsn, char *f, int slot)
e0001a05 11321{
43cd72b9 11322 vliw_insn vinsn;
e0001a05 11323
43cd72b9
BW
11324 xg_init_vinsn (&vinsn);
11325 vinsn_from_chars (&vinsn, f);
11326
11327 *tinsn = vinsn.slots[slot];
11328 xg_free_vinsn (&vinsn);
11329}
e0001a05 11330
43cd72b9
BW
11331
11332static void
7fa3d080
BW
11333tinsn_from_insnbuf (TInsn *tinsn,
11334 xtensa_insnbuf slotbuf,
11335 xtensa_format fmt,
11336 int slot)
43cd72b9
BW
11337{
11338 int i;
11339 xtensa_isa isa = xtensa_default_isa;
e0001a05
NC
11340
11341 /* Find the immed. */
43cd72b9
BW
11342 tinsn_init (tinsn);
11343 tinsn->insn_type = ITYPE_INSN;
11344 tinsn->is_specific_opcode = FALSE; /* must not be specific */
11345 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
11346 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
11347 for (i = 0; i < tinsn->ntok; i++)
e0001a05 11348 {
43cd72b9
BW
11349 set_expr_const (&tinsn->tok[i],
11350 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
11351 tinsn->opcode, i));
e0001a05
NC
11352 }
11353}
11354
11355
11356/* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11357
11358static void
7fa3d080 11359tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
e0001a05 11360{
43cd72b9 11361 xtensa_opcode opcode = tinsn->opcode;
e0001a05
NC
11362 int opnum;
11363
43cd72b9 11364 if (fragP->tc_frag_data.slot_symbols[slot])
e0001a05
NC
11365 {
11366 opnum = get_relaxable_immed (opcode);
43cd72b9
BW
11367 assert (opnum >= 0);
11368 if (fragP->tc_frag_data.slot_sub_symbols[slot])
11369 {
11370 set_expr_symbol_offset_diff
11371 (&tinsn->tok[opnum],
11372 fragP->tc_frag_data.slot_symbols[slot],
11373 fragP->tc_frag_data.slot_sub_symbols[slot],
11374 fragP->tc_frag_data.slot_offsets[slot]);
11375 }
11376 else
11377 {
11378 set_expr_symbol_offset
11379 (&tinsn->tok[opnum],
11380 fragP->tc_frag_data.slot_symbols[slot],
11381 fragP->tc_frag_data.slot_offsets[slot]);
11382 }
e0001a05
NC
11383 }
11384}
11385
11386
11387static int
7fa3d080 11388get_num_stack_text_bytes (IStack *istack)
e0001a05
NC
11389{
11390 int i;
11391 int text_bytes = 0;
11392
11393 for (i = 0; i < istack->ninsn; i++)
11394 {
43cd72b9
BW
11395 TInsn *tinsn = &istack->insn[i];
11396 if (tinsn->insn_type == ITYPE_INSN)
11397 text_bytes += xg_get_single_size (tinsn->opcode);
e0001a05
NC
11398 }
11399 return text_bytes;
11400}
11401
11402
11403static int
7fa3d080 11404get_num_stack_literal_bytes (IStack *istack)
e0001a05
NC
11405{
11406 int i;
11407 int lit_bytes = 0;
11408
11409 for (i = 0; i < istack->ninsn; i++)
11410 {
43cd72b9
BW
11411 TInsn *tinsn = &istack->insn[i];
11412 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
e0001a05
NC
11413 lit_bytes += 4;
11414 }
11415 return lit_bytes;
11416}
11417
43cd72b9
BW
11418\f
11419/* vliw_insn functions. */
11420
7fa3d080
BW
11421static void
11422xg_init_vinsn (vliw_insn *v)
43cd72b9
BW
11423{
11424 int i;
11425 xtensa_isa isa = xtensa_default_isa;
11426
11427 xg_clear_vinsn (v);
11428
11429 v->insnbuf = xtensa_insnbuf_alloc (isa);
11430 if (v->insnbuf == NULL)
11431 as_fatal (_("out of memory"));
11432
11433 for (i = 0; i < MAX_SLOTS; i++)
11434 {
11435 tinsn_init (&v->slots[i]);
11436 v->slots[i].opcode = XTENSA_UNDEFINED;
11437 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
11438 if (v->slotbuf[i] == NULL)
11439 as_fatal (_("out of memory"));
11440 }
11441}
11442
11443
7fa3d080
BW
11444static void
11445xg_clear_vinsn (vliw_insn *v)
43cd72b9
BW
11446{
11447 int i;
11448 v->format = XTENSA_UNDEFINED;
11449 v->num_slots = 0;
11450 v->inside_bundle = FALSE;
11451
11452 if (xt_saved_debug_type != DEBUG_NONE)
11453 debug_type = xt_saved_debug_type;
11454
11455 for (i = 0; i < MAX_SLOTS; i++)
11456 {
11457 memset (&v->slots[i], 0, sizeof (TInsn));
11458 v->slots[i].opcode = XTENSA_UNDEFINED;
11459 }
11460}
11461
11462
7fa3d080
BW
11463static bfd_boolean
11464vinsn_has_specific_opcodes (vliw_insn *v)
43cd72b9
BW
11465{
11466 int i;
c138bc38 11467
43cd72b9
BW
11468 for (i = 0; i < v->num_slots; i++)
11469 {
11470 if (v->slots[i].is_specific_opcode)
11471 return TRUE;
11472 }
11473 return FALSE;
11474}
11475
11476
7fa3d080
BW
11477static void
11478xg_free_vinsn (vliw_insn *v)
43cd72b9
BW
11479{
11480 int i;
11481 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
11482 for (i = 0; i < MAX_SLOTS; i++)
11483 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
11484}
11485
11486
11487/* Before this is called, we should have
11488 filled out the following fields:
11489
11490 1) the number of operands for each opcode are correct
11491 2) the tinsn in the slots are ITYPE_INSN
11492 3) ONLY the relaxable_ is built
11493 4) All operands are
11494 O_constant, O_symbol
11495 All constants fit
11496
11497 The return value tells whether there are any remaining O_symbols. */
11498
11499static bfd_boolean
7fa3d080
BW
11500vinsn_to_insnbuf (vliw_insn *vinsn,
11501 char *frag_offset,
11502 fragS *fragP,
11503 bfd_boolean record_fixup)
43cd72b9
BW
11504{
11505 xtensa_isa isa = xtensa_default_isa;
11506 xtensa_format fmt = vinsn->format;
11507 xtensa_insnbuf insnbuf = vinsn->insnbuf;
11508 int slot;
11509 bfd_boolean has_fixup = FALSE;
11510
11511 xtensa_format_encode (isa, fmt, insnbuf);
11512
11513 for (slot = 0; slot < vinsn->num_slots; slot++)
11514 {
11515 TInsn *tinsn = &vinsn->slots[slot];
11516 bfd_boolean tinsn_has_fixup =
11517 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
11518 vinsn->slotbuf[slot]);
11519
11520 xtensa_format_set_slot (isa, fmt, slot,
11521 insnbuf, vinsn->slotbuf[slot]);
11522 /* tinsn_has_fixup tracks if there is a fixup at all.
11523 record_fixup controls globally. I.E., we use this
11524 function from several places, some of which are after
11525 fixups have already been recorded. Finally,
11526 tinsn->record_fixup controls based on the individual ops,
11527 which may or may not need it based on the relaxation
11528 requirements. */
11529 if (tinsn_has_fixup && record_fixup)
11530 {
11531 int i;
11532 xtensa_opcode opcode = tinsn->opcode;
11533 int noperands = xtensa_opcode_num_operands (isa, opcode);
11534 has_fixup = TRUE;
11535
11536 for (i = 0; i < noperands; i++)
11537 {
11538 expressionS* expr = &tinsn->tok[i];
11539 switch (expr->X_op)
11540 {
11541 case O_symbol:
11542 case O_lo16:
11543 case O_hi16:
11544 if (get_relaxable_immed (opcode) == i)
11545 {
11546 if (tinsn->record_fix || expr->X_op != O_symbol)
11547 {
11548 if (!xg_add_opcode_fix
11549 (tinsn, i, fmt, slot, expr, fragP,
11550 frag_offset - fragP->fr_literal))
11551 as_bad (_("instruction with constant operands does not fit"));
11552 }
11553 else
11554 {
11555 tinsn->symbol = expr->X_add_symbol;
11556 tinsn->offset = expr->X_add_number;
11557 }
11558 }
11559 else
11560 as_bad (_("invalid operand %d on '%s'"),
11561 i, xtensa_opcode_name (isa, opcode));
11562 break;
11563
11564 case O_constant:
11565 case O_register:
11566 break;
11567
11568 case O_subtract:
11569 if (get_relaxable_immed (opcode) == i)
11570 {
11571 if (tinsn->record_fix)
11572 as_bad (_("invalid subtract operand"));
11573 else
11574 {
11575 tinsn->symbol = expr->X_add_symbol;
11576 tinsn->sub_symbol = expr->X_op_symbol;
11577 tinsn->offset = expr->X_add_number;
11578 }
11579 }
11580 else
11581 as_bad (_("invalid operand %d on '%s'"),
11582 i, xtensa_opcode_name (isa, opcode));
11583 break;
11584
11585 default:
11586 as_bad (_("invalid expression for operand %d on '%s'"),
11587 i, xtensa_opcode_name (isa, opcode));
11588 break;
11589 }
11590 }
11591 }
11592 }
11593
11594 return has_fixup;
11595}
11596
11597
11598static void
7fa3d080 11599vinsn_from_chars (vliw_insn *vinsn, char *f)
43cd72b9
BW
11600{
11601 static xtensa_insnbuf insnbuf = NULL;
11602 static xtensa_insnbuf slotbuf = NULL;
11603 int i;
11604 xtensa_format fmt;
11605 xtensa_isa isa = xtensa_default_isa;
11606
11607 if (!insnbuf)
11608 {
11609 insnbuf = xtensa_insnbuf_alloc (isa);
11610 slotbuf = xtensa_insnbuf_alloc (isa);
11611 }
11612
d77b99c9 11613 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
43cd72b9
BW
11614 fmt = xtensa_format_decode (isa, insnbuf);
11615 if (fmt == XTENSA_UNDEFINED)
11616 as_fatal (_("cannot decode instruction format"));
11617 vinsn->format = fmt;
11618 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
11619
11620 for (i = 0; i < vinsn->num_slots; i++)
11621 {
11622 TInsn *tinsn = &vinsn->slots[i];
11623 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
11624 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
11625 }
11626}
11627
e0001a05
NC
11628\f
11629/* Expression utilities. */
11630
43cd72b9 11631/* Return TRUE if the expression is an integer constant. */
e0001a05
NC
11632
11633bfd_boolean
7fa3d080 11634expr_is_const (const expressionS *s)
e0001a05
NC
11635{
11636 return (s->X_op == O_constant);
11637}
11638
11639
11640/* Get the expression constant.
43cd72b9 11641 Calling this is illegal if expr_is_const () returns TRUE. */
e0001a05
NC
11642
11643offsetT
7fa3d080 11644get_expr_const (const expressionS *s)
e0001a05
NC
11645{
11646 assert (expr_is_const (s));
11647 return s->X_add_number;
11648}
11649
11650
11651/* Set the expression to a constant value. */
11652
11653void
7fa3d080 11654set_expr_const (expressionS *s, offsetT val)
e0001a05
NC
11655{
11656 s->X_op = O_constant;
11657 s->X_add_number = val;
11658 s->X_add_symbol = NULL;
11659 s->X_op_symbol = NULL;
11660}
11661
11662
43cd72b9 11663bfd_boolean
7fa3d080 11664expr_is_register (const expressionS *s)
43cd72b9
BW
11665{
11666 return (s->X_op == O_register);
11667}
11668
11669
11670/* Get the expression constant.
11671 Calling this is illegal if expr_is_const () returns TRUE. */
11672
11673offsetT
7fa3d080 11674get_expr_register (const expressionS *s)
43cd72b9
BW
11675{
11676 assert (expr_is_register (s));
11677 return s->X_add_number;
11678}
11679
11680
e0001a05
NC
11681/* Set the expression to a symbol + constant offset. */
11682
11683void
7fa3d080 11684set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
e0001a05
NC
11685{
11686 s->X_op = O_symbol;
11687 s->X_add_symbol = sym;
11688 s->X_op_symbol = NULL; /* unused */
11689 s->X_add_number = offset;
11690}
11691
11692
43cd72b9
BW
11693/* Set the expression to symbol - minus_sym + offset. */
11694
7fa3d080
BW
11695static void
11696set_expr_symbol_offset_diff (expressionS *s,
11697 symbolS *sym,
11698 symbolS *minus_sym,
11699 offsetT offset)
43cd72b9
BW
11700{
11701 s->X_op = O_subtract;
11702 s->X_add_symbol = sym;
11703 s->X_op_symbol = minus_sym; /* unused */
11704 s->X_add_number = offset;
11705}
11706
11707
11708/* Return TRUE if the two expressions are equal. */
11709
e0001a05 11710bfd_boolean
7fa3d080 11711expr_is_equal (expressionS *s1, expressionS *s2)
e0001a05
NC
11712{
11713 if (s1->X_op != s2->X_op)
11714 return FALSE;
11715 if (s1->X_add_symbol != s2->X_add_symbol)
11716 return FALSE;
11717 if (s1->X_op_symbol != s2->X_op_symbol)
11718 return FALSE;
11719 if (s1->X_add_number != s2->X_add_number)
11720 return FALSE;
11721 return TRUE;
11722}
11723
11724
11725static void
7fa3d080 11726copy_expr (expressionS *dst, const expressionS *src)
e0001a05
NC
11727{
11728 memcpy (dst, src, sizeof (expressionS));
11729}
11730
11731\f
9456465c 11732/* Support for the "--rename-section" option. */
e0001a05
NC
11733
11734struct rename_section_struct
11735{
11736 char *old_name;
11737 char *new_name;
11738 struct rename_section_struct *next;
11739};
11740
11741static struct rename_section_struct *section_rename;
11742
11743
9456465c
BW
11744/* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11745 entries to the section_rename list. Note: Specifying multiple
11746 renamings separated by colons is not documented and is retained only
11747 for backward compatibility. */
e0001a05 11748
7fa3d080
BW
11749static void
11750build_section_rename (const char *arg)
e0001a05 11751{
9456465c 11752 struct rename_section_struct *r;
e0001a05
NC
11753 char *this_arg = NULL;
11754 char *next_arg = NULL;
11755
9456465c 11756 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
e0001a05 11757 {
9456465c
BW
11758 char *old_name, *new_name;
11759
e0001a05
NC
11760 if (this_arg)
11761 {
11762 next_arg = strchr (this_arg, ':');
11763 if (next_arg)
11764 {
11765 *next_arg = '\0';
11766 next_arg++;
11767 }
11768 }
e0001a05 11769
9456465c
BW
11770 old_name = this_arg;
11771 new_name = strchr (this_arg, '=');
e0001a05 11772
9456465c
BW
11773 if (*old_name == '\0')
11774 {
11775 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11776 continue;
11777 }
11778 if (!new_name || new_name[1] == '\0')
11779 {
11780 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11781 old_name);
11782 continue;
11783 }
11784 *new_name = '\0';
11785 new_name++;
e0001a05 11786
9456465c
BW
11787 /* Check for invalid section renaming. */
11788 for (r = section_rename; r != NULL; r = r->next)
11789 {
11790 if (strcmp (r->old_name, old_name) == 0)
11791 as_bad (_("section %s renamed multiple times"), old_name);
11792 if (strcmp (r->new_name, new_name) == 0)
11793 as_bad (_("multiple sections remapped to output section %s"),
11794 new_name);
11795 }
e0001a05 11796
9456465c
BW
11797 /* Now add it. */
11798 r = (struct rename_section_struct *)
11799 xmalloc (sizeof (struct rename_section_struct));
11800 r->old_name = xstrdup (old_name);
11801 r->new_name = xstrdup (new_name);
11802 r->next = section_rename;
11803 section_rename = r;
e0001a05 11804 }
e0001a05
NC
11805}
11806
11807
9456465c
BW
11808char *
11809xtensa_section_rename (char *name)
e0001a05
NC
11810{
11811 struct rename_section_struct *r = section_rename;
11812
11813 for (r = section_rename; r != NULL; r = r->next)
43cd72b9
BW
11814 {
11815 if (strcmp (r->old_name, name) == 0)
11816 return r->new_name;
11817 }
e0001a05
NC
11818
11819 return name;
11820}
This page took 0.834129 seconds and 4 git commands to generate.